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Preface

The papers collected in this book analyse the logic-mathematics-reality relationship
from different approaches and perspectives. It connects logical theory with more
concrete issues of rationality, normativity and understanding, thus pointing to a wide
range of potential applications.

Let us say a few words about the context in which the book was created. Continu-
ing a longer tradition that started in the 1980s by the members of the Rijeka Analytic
Philosophy Circle (V. Muškardin, N. Smokrović, B. Berčić, S. Prijić-Samaržja, the
editors of the present volume, and others), the Department of Philosophy at the
University of Rijeka has been active in organizing international philosophical con-
ferences and other philosophical events in Croatia establishing thus global and vital
connections between the philosophers from all sides of the world with those from
the local region, in particular those coming from academic communities in Bulgaria,
Croatia, Hungary, Italy, Serbia and Slovenia. Thanks to its cosmopolitan atmosphere
and a regard for logic, the Department of Philosophy at University of Rijeka, the
only analytic department of philosophy in Croatia, has provided a supporting envi-
ronment for promoting logico-philosophical research. The book originated from two
recent conferences that took place in Rijeka.1

We were also lucky to have on our side the hospitality of the Inter-University
Center Dubrovnik, where we organized or helped organizing a series of conferences,
most notably the yearly courses/conferences Analytic Philosophy: Epistemology
and Metaphysics, in particular the 2010 conference The Philosophy of Logical Con-
sequence organized by Stewart Shapiro, and the Mind, World and Action course.
Also, two larger scientific projects funded by the Ministry of Science, Education
and Sports of Republic of Croatia have offered further institutional framework for
the initiatives that have led to the assembling of the book: Logic and Reality, and
Logical Structures and Intentionality.

1 In 2006, Analytic Philosophy—Logical Investigations, and in 2009, Contemporary Philosophical
Issues—Logic and Reality.
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Part I Logical and Mathematical Structures

2 Life on the Ship of Neurath: Mathematics in the Philosophy
of Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Stewart Shapiro

3 Applied Mathematics in the Sciences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Dale Jacquette

4 The Philosophical Impact of the Löwenheim-Skolem Theorem . . . . . 59
Miloš Arsenijević
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Part IV Logical Methods in Ontological and Linguistic Analyses

12 Towards a Formal Account of Identity Criteria . . . . . . . . . . . . . . . . . . . 227
Massimiliano Carrara and Silvia Gaio

13 A Mereology for the Change of Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Pierdaniele Giaretta and Giuseppe Spolaore

14 Russell Versus Frege . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Imre Rusza

15 Goodman’s Only World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Vladan Djordjević
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Part I
Logical and Mathematical Structures



Chapter 1
Introduction

Majda Trobok, Nenad Miščević, and Berislav Žarnić

Is reality logical and is logic real? Hegel has famously raised this question exactly
two centuries ago although his notion of logic was significantly different from the
predominant contemporary one at work in the present book. The ancestor of this
logic-reality couple, namely the thematic duo mathematics-reality has opened the
history of philosophy, as we know it, with Plato and his critics. The next generation
has added logic to it. Logic, reality, mathematics—this trio of concepts (and the
corresponding items) has also been in the center of discussion on contemporary
scene, in epistemology, philosophy of science and metaphysics.

The papers in the book rely on different theoretical backgrounds and focus on
diverse philosophical issues. The point of convergence lies in the exploration of
the connections between the reality, be it social, natural or ideal one, and logical
structures employed in describing or discovering it. The interface between logical
structure and reality is discussed from various perspectives. What is the origin of
logical intuitions? What is the role of logical structures in the operations of an
intelligent mind? Is there any common pattern in all of the structures? Is the role
of logical structures in concept formation regulative or constitutive or both? The
questions are addressed with the help of cutting-edge logical techniques, but formu-
lated in an accessible and readable style.

The present book tries to cover a lot of this ground, offering interesting contribu-
tions to each of the big topics that contemporary debate centre around. It begins with
the riddles of mathematics, proceeds to the epistemology of logic, then to contribu-
tions of logic to semantics, and concludes with “logic and reality”, the contribution
of logic to general ontology.

Beside the variety of topics and approaches, the book offers a hopefully attractive
combination of contributions of varied origin, it brings together papers by logicians
and philosophers from South-Eastern Europe and papers of their colleagues from the
USA, Western Europe and Japan, dedicated to the disentangling of complex logical
issues from different and interdisciplinary perspectives. Indirectly, it also offers a
unique view on the state of development of logic and its theory in the South Eastern

M. Trobok (B)
Department of Philosophy, University of Rijeka, Rijeka, Croatia
e-mail: trobok@ffri.hr

M. Trobok et al. (eds.), Between Logic and Reality, Logic, Epistemology,
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C© Springer Science+Business Media B.V. 2012
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2 M. Trobok et al.

Europe, in the dialogue with prominent or promising logicians and philosophers
from Western Europe, USA and Japan.

Back to the issues of content. The issues of logic are nowadays seen as insepara-
ble from the foundational issues in the philosophy of mathematics and the present
book endorses the same view, treating them together whenever possible. The domain
of mathematical and logical knowledge is among the most difficult ones in philos-
ophy, and there is practically no agreement between experts on any crucial issue.
There is no minimal agreement on what mathematics is about, in other words the
ontology of mathematical entities offers an embarrassment of richness. Much worse
for the present purposes, there is no agreement even about the superficial features
of logical insights and arithmetical intuition: the classics in the field, Frege, Hilbert,
Brouwer and Wittgenstein disagree on almost everything, and the recent develop-
ments have added new branches to an already richly branching tree of mathematical
epistemology and ontology.

Part I addresses fundamental issues in these two domains. Many philosophers
following the lead of Frege, believe that mathematical properties do not belong
to concrete items and their collections, but to abstract ones. To mention the most
relevant property, cardinality, Frege ascribed it to concepts, others ascribe it to sets.
Here arises a problem that “a complete philosophy of mathematics must address”
as Dale Jacquette argues is his contribution to this volume. As he puts it, “(T)he
requirements of a general semantics for the truth of mathematical theorems that
coheres also with the meaning and truth conditions for non-mathematical sentences,
according to Benacerraf, should ideally be coupled with an adequate epistemol-
ogy for the discovery of mathematical knowledge.” Also, as Jacquette argues in
his contribution, the applicability of mathematics (and, we would add, of logic)
contributes to their claim to seriousness and truth; this fact has been enshrined in
various “indispensability arguments”, most famously formulated by Quine and Put-
nam. Papers in this part address such foundational issues having to do with logical
and mathematical structures.

Stewart Shapiro has famously argued in favor of epistemic pluralism in their
regard. For instance, small, finite structures are apprehended through abstraction
via simple pattern recognition. A subject views or hears one or more structured
systems and comes to grasp the structure of those systems. Of course, we do not
have direct causal contact with structures, because they are abstract. The idea is that
we grasp some structures through their systems, just as we grasp character types
through their tokens. Next, we have Fregean abstraction. The most powerful tool,
however, is implicit definition. One way to understand and communicate a partic-
ular structure is through a direct description of it. Shapiro’s paper in this volume
Chapter 2: Life on the Ship of Neurath: Mathematics in the Philosophy of Mathe-
matics provides an interesting survey of the use of mathematical results to provide
support or counter-support to various philosophical programs concerning the foun-
dations of mathematics.

We have already mentioned Dale Jacquette’s Chapter 3: Applied Mathemat-
ics in the Sciences which criticizes standard approaches to the philosophy of
mathematics against the background of Benacerraf’s dilemma, particularly with
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respect to the problem of understanding the distinction between pure and applied
mathematics. He argues for a kind of Aristotelian inherence concept of mathemati-
cal entities.

In Chapter 4: The Philosophical Impact of the Löwenheim-Skolem Theorem
Miloš Arsenijević gives an insightful reconstruction of the Theorem. The author
goes beyond the standard approach according to which it is the expressive weakness
of the language that is revealed by the theorem, and proposes reinvestigation of
the key notions instead. An original and novel thesis is put forward: Löwenheim-
Skolem’s theorem reveals both the limits of the language and the distinctive char-
acter of mathematical structures. The cardinality of an underlying set of a mathe-
matical structure is a non-absolute property of the set since the elements in it can
be individuated only by their position in the structure. Using the infinitary Lω1ω1

extension of first-order language Arsenijević shows how non-standard models can
be eliminated (e.g. from the theory of real numbers) while retaining “the basic
assumption that the ‘world substance’ is a set of an infinite number of elements
whose cardinal number is ℵ0.”

Majda Trobok in her Chapter 5: Debating (Neo)logicism: Frege and the Neo-
Fregeans come up with a novel reading of Frege, contrasting it with the neo-Fregean
orthodoxy and drawing some interesting morals for the historian and philosophers of
logic and mathematics. The central item in Trobok’s understanding is the notion of
justification within the original Fregan program. She reads it as an objective mind-
independent relation obtaining between equally mind-independent abstract propo-
sitional items. Placed within such an objectivist framework, Frege appears purified
from his neo-Kantian associations but also quite distant from contemporary thinker-
based mainstream epistemology. Trobok endorses the view that Hume’s Principle is
not an epistemic (in the mainstream sense) route to number, but a cornerstone in the
edifice of objective justification that Frege took himself to be reconstructing.

Papers in Part II are dedicated to the epistemology of logic. The first paper shows
how informal logic becomes reconciled with formal logic as the latter encompasses
the vast ground of different reasoning styles and processes of belief formation. The
next points out to cognitive faculty and linguistic ability as real-life counterparts for
theoretical notion of logical consequence. Some authors see logic as an indispens-
able tool for our wide cognitive projects where the justification of the tool depends
on the meaningfulness of the product. Thus, logic becomes part of a much larger
picture, getting its meaning from the global processes whose destiny it shares.

Danilo Šuster in his Chapter 6: Informal Logic and Informal Consequence asks
what informal logic is and whether it is logic at all, and proceeds to answer the latter
question in the affirmative. The rationale is that according to the prevalent criteria
of informal logic an argument is cogent if and only if its premises are rationally
Acceptable, its premises are Relevant to its conclusion and its premises constitute
Grounds adequate for accepting the conclusion (the “ARG” conditions according to
Govier). Now, the ARG criteria characterize a certain broad kind of consequence
relation. We do not (in general) have truth preservation in cogent arguments but if
the premises are acceptable and other criteria are met, then so is the conclusion.
We can speak about argument form in a loose sense and finally, there is rational
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necessity of the grounding or support relation. So, a certain broad notion of logical
consequence emerges from this comparison.

Nenad Smokrović’s paper Chapter 7: Logical Consequence and Rationality
offers a long awaited detailed analysis of what is in the literature often lumped
together under the umbrella term “pre-theoretical notion of logical consequence”.
The author wisely points out that the term is used for extremely different con-
cepts and conceptions, sometimes for a hypothesized purely ordinary and every-day
notion of logical consequence (if such is available at all), sometimes for pioneering
proposals like Aristotles’, and sometimes for extremely sophisticated professional
contemporary proposals. He distinguishes two sub-species, the sophisticated and the
ordinary one, bringing a lot of clarity, and pointing to important connections in the
work of classics like Tarski and distinguished contemporaries like Shapiro.

Nenad Miščević in his Chapter 8: Logic, Indispensability and Aposteriority
argues in favor of deploying some a posteriori considerations in justifying logic:
it is justified immediately and in this weak sense a priori, but only in a relatively
prima facie and unreflective way. The logic-external consideration of indispensabil-
ity leads directly to empirical considerations having to do with success, actual or
potential, of the cognitive enterprise(s) for which logic is so badly needed. And
success is an indicator of reliability. In short, staying within the narrow conceptualist
circle amounts to placing of a “veil of conception” between us and the logic-in-the
world, blocking the understanding of what makes logic objectively valid. Thus, the
very dialectics of the conceptualist program points to a less apriorist view of logical
knowledge. This is the view to be defended indirectly in the paper, by offering an
overview of conceptualist program and a budget of problems for it.

Papers in Part III argue that logic does not live in isolation, neither from the open
cognitive project nor from the social reality (re)constituted by communicative acts
of intelligent agents. Cognition comes out of communication and logic is indispens-
able and unavoidable for the flourishing of society of minds, too. The social aspect
of logic figures prominently in Hintikka’s game semantics, whose scope is in this
part being extended to non-logical vocabulary thus providing an account of social
construction of language interpretation. Speech acts create commitments, a social
obligation pattern. On the side of theoretical philosophy, cognition must have a crit-
ical dimension, and contraction of a theory by a refuted element represents a vital, if
not crucial part in our global cognition projects. This reminds us again of the wide
compass of logic. For instance, in spite of their ontological disagreement, both real-
ism and anti-realism about abstract objects share the same assumption that logical
and mathematical knowledge is knowledge about certain objects and their relations.
However, the later Wittgenstein’s replacement of picture by game metaphor has
opened up a broader perspective for understanding of logical knowledge in proce-
dural terms. Knowledge how to fairly win a argumentation game, how to properly
respond to commitments brought by speech acts, or how to cooperatively change the
mind of the other is constitutive for understanding meaning relations at least to the
same extent as is knowledge how to preserve truth in valid proof steps. The logical
knowledge encompasses procedural knowledge and propositional knowledge. The
distinction reminds us of the one drawn in medieval times between logica utens
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as logical practice and logica docens as theoretical construction, the distinction
which survived up to the present times as the difference between inferential and
non-inferential logical knowledge. The last half of twentieth century has witnessed
an emergence of multitude of new logical theories showing that the discipline has
achieved a new understanding of procedural logical knowledge. Nowadays it is com-
monly held that the scope of logic encompasses much more than transformational
syntax of a particular language and that inferential practice is just one among other
logical activities. Instead of narrowly construing propositional logical knowledge
as being about truth-preserving inferential steps that are constitutive of inferential
knowledge in virtue of the logical terminology employed, the recent trends in logic
take propositional logical knowledge as being about rich plurality of both solitary
activities and sociable interactive procedures of cognizing minds in communica-
tion. For example, the purported validity of an exercise of procedural knowledge
may be conceptualized using a “zero agent” notions like truth or harmony of rules,
but it may also be conceived of in social terms, as possession of winning strategy
in a game, as fulfilment of commitments, or as preservation of cooperativeness in
communication. In this broad perspective of logical procedures in reasoning and
communication the art of logic ceases to be pure handmaiden of science, an ancilla
scientiae, but establishes itself as philosophical reflection on human being as a cog-
nitive social one with a potential of actively taking part in improvement of one’s
cognitive abilities and social practices.

Manuel Rebuschi in his Chapter 9: Extended Game-Theoretical Semantics
develops an extension of Hintikka’s game theoretical semantics by devising the
rules of the semantic game for the non-logical part of vocabulary. The rules for
extended game theoretical semantics are introduced both informally and formally.
The semantic game does not terminate at the level of atomic sentences, but it con-
tinues as the atomic game. In the non-extended semantic game, the game ends if
a true sentence is to be verified or a false sentence is to be falsified by the “initial
verifier,” but not so in the extended game. In the continuation of the game-theoretic
semantic decomposition at the “subatomic level” the initial verifier must prove her
competence over non-logical part of the language. The proposed extension of game
theoretical semantics gives a natural supplement to the original theory, pushing it
beyond meaning constitution towards linguistic interpretation. The author shows
various ways in which the extended game theoretical semantics might shed light on
the theories of meaning and interpretation, as well in addressing the longstanding
philosophical puzzles.

Tomoyuki Yamada in his Chapter 10: Dynamic Logic of Propositional Com-
mitments develops an original dynamic semantics framework for the analysis of
propositional commitments change brought about by speech acts of assertion and
concession. The proposed theoretical framework is also applied in the analysis of
the speech acts of assertion withdrawal and concession withdrawal. The author uses
D.N. Walton’s and E.C. Krabbe’s philosophical theory of commitments and a variant
of Van Benthem’s et al. “dynamic epistemic logic.” The paper gives an important
contribution to the development of formal semantics of speech acts. In particular,
by addressing difficult problem of “undoing a speech act” (withdrawing) within a
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concrete setting the paper opens up new perspectives for the application of dynamic
semantics, in which the problem of “downdating” has been so far addressed only at
the higher levels of theoretical abstraction. The paper provides the reflection on the
methodology employed and in that way makes the text accessible to the reader with
no previous knowledge of dynamic semantics.

In Chapter 11: Is Unsaying Polite? Berislav Žarnić gives a sketch of the history
of the distinction between speech act with negative content and negated speech act,
and proposes a general dynamic interpretation for negated speech act. The expres-
sive completeness for the formal variants of natural imperative and declarative lan-
guage utterances, none of which is a retraction, has been proved. Withdrawal of
one’s speech act is a common practice in language use, a specific type of speech act
for which Yamada in the preceding paper has provided theoretical explication using
dynamic epistemic logic, while this paper provides another approach relaying on
an extension of Veltman’s update semantics and developed in accordance with the
postulates of AGM theory of belief revision. Žarnić defines the problem of expres-
sive adequacy of a repertoire of speech acts and proves that negative speech acts
(withdrawals) are avoidable.

In Part IV logical methods are applied in philosophical analyses of problems of
concept revision, temporal mereology, metalinguistic denotata, and counterfactuals.

Massimiliano Carrara and Silvia Gaio in their Chapter 12: Towards a Formal
Account of Identity Criteria deal with an instance of the problem of concept revision
when there is discrepancy between concept’s extension and intension. The paper
presents in a systematic way the approaches to the revision of binary predicates that
occur on the right-hand side of a biconditional which defines the sameness of value
of a one-place function. Such predicates ought to denote an equivalence relation in
order to define identity, but in some cases of language use these predicates fail to
be transitive. Carrara and Gaio give a survey of the current state of the problem and
propose a further development of De Clercq and Horsten’s formal framework for
revising the extension of these predicates by taking into account contextual differ-
ences and granularity levels, and by introducing a number of concepts useful for
formal approach to the problem of identity criteria.

Pierdaniele Giaretta and Giuseppe Spolaore in the paper Chapter 13: A Mere-
ology for the Change of Parts propose a theory of temporal mereology in which both
the principles of Existence and of Uniqueness of Composition hold. The theory is
consistent both with a three-dimensionalist ontology and with the change of parts,
that is, with the view that at least one object has distinct parts at distinct times. Some
interesting consequences of the theory are proven. It is usually held that certain well
known ontological puzzles must be solved either by adopting a four-dimensionalist
ontology or by restricting some mereological principles. Here a solution to those
puzzles is stated, that consists in denying the persistence of some of the entities
involved, along the “Chrysippean” lines. The comments on Tibbles-problem show
that the authors are concerned with the application of mereology to natural wholes,
that exist through time. They are right to note that it is the organization of the com-
ponents that is responsible for their relative longevity.
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The posthumous publication of Imre Rusza’s paper Chapter 14: Russell Ver-
sus Frege is a homage to the logician who had introduced the issues of intentional
logic into the Central European intellectual scene several decades ago. His former
students are now among the best known philosophical logicians and historians of
logic, like Gyula Klima, Anna Szabolcsi, Zoltán Gendler Szabó, and many others.
The paper discusses Russell’s Gray’s Elegy argument according to which Frege’s
distinction between Sinn und Bedeutung is problematic when applied to a denoting
phrase like “the first line of Gray’s Elegy,” which denotes a linguistic expression:
“The curfew tolls the knell of parting day.” The author shows that Russell’s Gray’s
Elegy argument involves imprecision in the use of quotation marks as well as the
unwarranted identification of an expression’s meaning with the expression itself.

The aim of Vladan Djordjević’s paper Chapter 15: Goodman’s Only World, in
the author’s words, “is to investigate how . . . the highly unlikely situation” of inter-
pretations of Goodman’s account of the counterfactual conditional being “imprecise,
incorrect, or wrong, in a strange way—the incorrectness is obvious, or at least can
be shown very easily.” The strategy the author adopts is to show that different inter-
pretations of Goodman imply the CEM sentence, namely the “law of (counterfac-
tual) conditional excluded middle,” which Goodman rejects (by stating that coun-
terfactuals with contradictory consequents are not contradictories but contraries).
The author shows that the “usual interpretation (of today)” of Goodman implies the
problematic law of (counterfactual) conditional excluded middle.

To conclude, the book is connecting logical theory with more concrete issues
of speech acts, norms of rationality and issues of understanding, thus pointing to
a wide range of potential applications. The treated topics offer a wide spectrum of
approaches to the logic-reality relationship hopefully making the book interesting
for a broad readership.



Chapter 2
Life on the Ship of Neurath: Mathematics
in the Philosophy of Mathematics

Stewart Shapiro

2.1 Mathematics, Its Philosophy, and Revisionism

Some central philosophical issues concern the use of mathematics in putatively non-
mathematical, or at least not purely mathematical, endeavors. One such endeavor, of
course, is philosophy, and the philosophy of mathematics is a key instance of that.
The present survey is not meant to provide broad coverage; the topics are somewhat
idiosyncratic.

A related matter concerns the relationship—if there is one—between mathemat-
ics and the philosophy of mathematics. In general, for any field of study X, there are
interesting questions concerning the relationship between the philosophy of X and
X itself. Let me begin with a brief overview of this terrain, at least as I see things.

For a long time, many held that philosophical matters determine the proper prac-
tice of mathematics. Some still do. The idea is that philosophy sets the agenda, and,
thus, in some sense, precedes practice. One first describes or discovers the meta-
physical nature of whatever it is that mathematics is about—whether, for example,
there are mathematical entities and, if so, whether said entities are objective or mind
dependent. This fixes the way mathematics is to be done. Of course, the presumed
order here is not historical, nor is it administrative. The mathematician does not typ-
ically consult with the philosopher either before or during working hours, although
many of them engage philosophy, sometimes as a sort of hobby. The order is con-
ceptual, or metaphysical, aimed at the proper foundational hierarchy. Call this the
philosophy-first perspective.

If the first philosopher finds that mathematics is not done according to the pre-
scribed canons, then she insists that the practice be changed. This is revisionism.
An early instance of this comes from Plato, who, of course, held that mathematics
is about an eternal, unchanging, objective realm, independent of any activity done
by humans here in the paltry world of Becoming. In Book VII of The Republic,

S. Shapiro (B)
Department of Philosophy, The Ohio State University, Columbus, OH, USA
e-mail: shapiro.4@osu.edu

M. Trobok et al. (eds.), Between Logic and Reality, Logic, Epistemology,
and the Unity of Science 25, DOI 10.1007/978-94-007-2390-0_2,
C© Springer Science+Business Media B.V. 2012

11



12 S. Shapiro

he chided mathematicians for not knowing what they are talking about and, conse-
quently, doing mathematics incorrectly:

[The] science [of geometry] is in direct contradiction with the language employed by its
adepts . . . Their language is most ludicrous, . . . for they speak as if they were doing some-
thing and as if all their words were directed toward action . . . [They talk] of squaring and
applying and adding and the like . . . whereas in fact the real object of the entire subject is
. . . knowledge . . . of what eternally exists, not of anything that comes to be this or that at
some time and ceases to be.

The geometers of antiquity did not take Plato’s advice, continuing to employ
constructive, dynamic language. According to Proclus [485], the problem of such
language occupied those in the Academy for some time.

Closer to our time, intuitionism is another revisionist program, or group of pro-
grams, inspired by putative philosophical insight. L.E.J. Brouwer and Arend Heyt-
ing held that mathematics and mathematical objects are mind-dependent, in some
sense, founded on something in the neighborhood of Kantian intuition. This sup-
posedly leads to the rejection of the law of excluded middle, and other inferences
based on it. A bit later, Michael Dummett argued against classical logic, and thus
classical mathematics, on the basis of philosophical doctrines concerning the mean-
ing and deployment of mathematical language. Put one way, his conclusion is that
the strictly classical parts of mathematics do not enjoy a certain type of justification.
To be more contentious, his conclusion is that mathematics ought to have the level
of justification that is attributable only to intuitionistic mathematics.

Some of the disputes over principles like impredicative definition and the axiom
of choice were also fought on philosophical grounds. Typically, realists favor the
items in question, while various irrealists demur from them.

Of course, not every instance of philosophy-first is revisionist. Some philoso-
phers take themselves to be providing the proper first-philosophy for mathematics
as practiced. Kant is probably an example of this, with his view that arithmetic
and geometry are synthetic a priori, founded on pure intuition, the forms of possi-
ble perceptions. Nevertheless, any first-philosophy is potentially revisionist. If the
mathematical community should stray from the proposed philosophical foundation,
then, according to the first-philosopher, they have erred, and need to correct their
ways. A Kantian may find herself in this situation, when confronted with the advent
and success of non-Euclidean geometry.

When faced with such a discrepancy, the first-philosopher is free to admit that
she was mistaken about the proper philosophical basis for mathematics. A later-
day Kantian might concede that it was rash to conclude, on a priori, philosophical
grounds, that geometry is and always will be Euclidean. Perhaps she might claim
that, on reflection, pure intuition demands some non-Euclidean geometry or, more
likely, she might claim that pure intuition is neutral between a number of geome-
tries. Of course, a philosopher is always prepared to modify his views in light of
unexpected developments in mathematics is not really practicing philosophy-first.

For what it is worth, philosophy-first is not true to the history of mathematics.
The discipline tends to have a life of its own, going in various directions for vari-
ous reasons, typically independently of the musings of us philosophers. Moreover,
philosophy-first is not particularly prominent among contemporary philosophers of
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mathematics. One might go to the opposite extreme, and hold that philosophy is
irrelevant to mathematics. On this view, a position in the philosophy of mathematics
is at best an epiphenomenon which has nothing to contribute to mathematics, and at
worst a meaningless sophistry, the rambling and meddling of outsiders. We might
call this the philosophy-last-if-at-all perspective.

For present purposes, we need not go much further in articulating this distinction.
As I see things, the job of the philosopher is to give an account of mathematics
and its place in our intellectual lives. Our goal is to interpret mathematics, and
thereby answer philosophical questions concerning the place of mathematics in the
world view. Since much interpretation is linguistic, a prima facie focus is the lan-
guage of mathematics. What do mathematical assertions mean? What is their logical
form? What is the best semantics for mathematical language? How is mathematical
language to be understood? This sets the stage for answering philosophical ques-
tions about mathematics. What is its subject matter—if it has one? What is the rela-
tionship between mathematics and the subject matter of science which allows such
extensive application and cross-fertilization? How do we manage to do and know
mathematics? How can mathematics be taught? In short, the philosopher must say
something about mathematics, something about the applications of mathematics,
something about mathematical language, and something about human mathemati-
cians. This is enough to keep us occupied with interesting questions and issues,
without also setting the agenda for mathematics.

This perspective runs against the revisionism that sometimes goes with
philosophy-first. It is mathematics that is to be interpreted, and not what a prior
(or a priori) philosophical theory says that mathematics should be, or what the
philosopher says that mathematics should be. To be sure, the anti-revisionism is only
a trend of the orientation. In general, interpretation can and should involve criticism.
But here at least, criticism does not come from outside—from pre-conceived first
principles.

Our question here is the extent to which the philosopher of mathematics is to
engage in mathematics along the way. So let us turn to that.

2.2 The Big Three

I propose to begin the survey with the three main programs that dominated the foun-
dations and philosophy of mathematics for much of the twentieth century: intuition-
ism, logicism, and formalism. I’ll include Errett Albert Bishop’s [3] constructivism
in with intuitionism.

2.2.1 Intuitionism

As noted, intuitionism and constructivism are revisionist programs. Their advocates
concede that mathematicians generally accept and invoke the law of excluded mid-
dle, along with impredicative definitions and the like, but they argue that these
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inferences and principles are unjustified, often on grounds of philosophy-first. As
such, intuitionism and constructivism do not need any mathematics to bolster or
even support themselves. If the philosophical arguments against excluded middle,
impredicative definition, and the like, are sound, then excluded middle, impredica-
tive definition and the like are invalid, and the mathematician has to do without
them. End of story.

Of course, many of the intuitionists and constructivists were mathematicians,
and pursued mathematics accordingly. As a result, the rest of the mathematical
community got a good look at what the differences are, and a philosopher who
rejects philosophy-first can see what some of the costs of intuitionism and construc-
tivism are. In particular, she sees which theorems must be given up, and which can
be maintained. Quite often, the same theorem can be proved both constructively
and classically. Typically, the constructive proof provides more information—better
bounds for example. So there may be some mathematical grounds for at least explor-
ing the weakened mathematics. It should be noted, however, that sometimes clas-
sical proofs are more perspicuous, at least for a mathematician who accepts such
proofs.

Heyting’s formalization of intuitionistic logic lead to an explosion of meta-
mathematical results. A number of modeltheoretic systems were developed, which
led to sharp results concerning what can and what cannot be proven constructively.
We have deep results concerning the role of excluded middle, the axiom of choice,
and impredicative definition in mathematics. That is, the classical mathematician
has sharp results about what can and what cannot be proved in various constructive
systems. Like any other branch of mathematics, some of this meta-theory is, or can
be, done constructively, and some of it cannot.

Work like this illustrates a theme one encounters again and again in pursuit of
our present topic. The mathematics that is done through, via, or in support of, a
philosophical program typically has lasting value independent of the success or fail-
ure of the program in question. Even those who reject the intuitionistic revisions
to practice see the value and importance of the deep and penetrating logical and
mathematical studies. We learn a lot about the logical connections in our own world
view.

One area of growing interest in philosophy is the use of mathematics in science—
although a pure mathematician and perhaps an advocate of philosophy-first might
scoff at this enterprise. Philosophical argument aside, if an intuitionist or construc-
tivist is to sell his wares, he should show that this queen of the sciences is not
crippled beyond usefulness, at least for science. There is an ongoing research pro-
gram of exploring the extent to which the mathematics used in science is, or can be,
acceptable to an intuitionist or constructivist. There are some commonly cited theo-
rems that are not available, but in many cases, an acceptable, if awkward, substitute
is. To take a crude example, the intermediate value theorem is not constructively
provable, but the following is: if f is a continuous function on the real numbers,
f a < 0 and f b > 0, then for every ε > 0, there is a real number c between a and b
such that | f c| < ε. For practical applications, this is good enough.
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Unlike Bishop’s constructivism, some intuitionistic mathematics is inconsistent
with classical mathematics. Brouwer’s theory of real analysis contains results which,
when coupled with excluded middle, lead to contradiction. Another, related example
is smooth infinitesimal analysis, although it is not particularly in line with intuition-
istic philosophy. Nevertheless, this most interesting theory provides an illuminating
account of smooth functions. Yet it is inconsistent with excluded middle.

The existence of such theories raises some interesting philosophical issues, at
least for those of us who are not believing intuitionists. If one thinks that the law of
excluded middle is a logical truth, then it holds of all subject matters. This is what
we mean by saying that logic is topic neutral. But if excluded middle is universally
valid, then both Brouwer’s analysis and smooth infinitesimal analysis are inconsis-
tent, and thus incoherent. They are thus not legitimate branches of mathematics,
nor are they legitimate branches of anything else for that matter. But these theories,
considered on their own terms, at least appear to be not only coherent, but interesting
and illuminating. The very presence of these theories challenges widely held views
concerning logic.

The dilemma, in short, is this. It seems eminently plausible to accept intuitionistic
analysis and/or smooth infinitesimal analysis as legitimate branches of mathematics,
perhaps alongside other, more classical disciplines. After all, works in these subjects
appear in mainstream mathematical journals and books, subject to the highest stan-
dards of refereeing. If we are not going in for philosophy-first, one would think
that the mathematical community is at least a very good judge of what counts as
mathematics, and it seems that intuitionistic analysis and smooth infinitesimal anal-
ysis pass whatever tests they impose on themselves. But then one must concede that
the law of excluded middle is not universally valid, after all. There are legitimate
branches of mathematics in which it fails. In other words, one who accepts these
theories as legitimate mathematics must concede to the main thesis of intuitionism,
that excluded middle is not universally valid.

2.2.2 Logicism

The slogan is that mathematics is, in some sense, logic. Gottlob Frege [17, 18] held
that arithmetic and analysis are analytic, and thus not founded on either Kantian
intuition or observation. To demonstrate this, he tried to show how the basic propo-
sitions of these disciplines can be founded on logic and definitions alone. That, of
course, required considerable mathematical work. The most obvious item was the
development of mathematical logic [16]. Frege realized that it would not suffice
to provide an informal derivation of the basic principles of arithmetic from what
look like logical laws and definitions. It may be that intuition is needed to fill in
the steps in or otherwise tighten the informal derivation. He thus saw the need to
develop the notion of a valid, gap-free deduction for a language rich enough to cap-
ture arithmetic and analysis. This was provided with the first presentation of what
would later be recognized as a second-order deductive system. And Frege made bril-
liant mathematical use of the new language, introducing the ancestral and, with that,
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the notion of minimal closure, the concept that underlies induction. George Boolos
[4, p. 336] makes the observation:

The fact that the Begriffschrift contains a subtle and ingenious double induction . . . used to
prove a significant result in the general theory is not, I think, well-known, and the distinc-
tively mathematical talent he displayed is discussing and proving the result is not adequately
appreciated. Frege’s accomplishment may be likened to a feat the Wright brothers did not
perform: inventing the airplane and ending its first flight with one loop-the-loop inside
another.

That and much more straight mathematical work permeated Frege’s program.
And, of course, much remains of value, quite independent of the fate of the underly-
ing philosophy, and despite the underlying contradiction in Frege’s mature system.

The other major logicist program, that of Alfred North Whitehead and Bertrand
Russell [42], also required a considerable amount of mathematical work, much
of which was logical. The ramified type theory required meticulous attention to
detail, and substantial studies were needed to see what pre-formal results could be
recaptured—and which could not be captured.

In Russell’s thinking, or at least in his practice, mathematical needs were played
against philosophical considerations, the latter at least tending toward philosophy-
first. For example, the vicious circle principle, in its full generality, was developed
and defended on more or less metaphysical grounds concerning the nature of propo-
sitions and attributes. But the resulting ramified theory proved unworkable, not only
because it was horribly complex, but because certain results needed in mathemat-
ics were not obtainable. So the principles of infinity, choice, and reducibility were
added, the latter explicitly undoing the effects of the vicious circle principle in exten-
sional, mathematical contexts. Russell, at least, hoped to eventually justify these
principles on philosophical grounds, but they were clearly proposed for pragmatic
reasons, to allow his system to re-capture the mathematics of his day.

This is a stark instance of another recurring theme in the present study. Suppose
that a philosopher declares, for whatever reason, that mathematics is (or is just) X
(where X might be logic, mental construction, the science of structure, whatever).
To make this at all plausible, the philosopher must then show how standard mathe-
matics, or some standard mathematics, or an acceptable surrogate for standard math-
ematics, can be captured, or recaptured, in terms of X . At least intuitively, this work
is itself mathematical. The issue of philosophy-first, or philosophy last-if-at-all, or
something in between, arises when a mismatch is found between mathematics, as
practiced, and the proposed philosophical interpretation.

2.2.3 Formalism

To complete our trilogy, formalism comes in many varieties, and there is not enough
space, nor do I have the inclination, to discuss all of them or even many of them.
The most influential instance, of course, was David Hilbert’s finitism (e.g., [26]).
According to Hilbert, the corpus of mathematics is divided into two categories,
finitary arithmetic and the rest, which we may call ideal or infinitary mathematics.
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There is some exegetical controversy over the exact contents of finitary arithmetic,
but it seems to be restricted to certain simple properties of the natural numbers.
Hilbert exploited the structural analogy between natural numbers and strings on a
finite alphabet, and thereby gave finitary arithmetic a Kantian foundation, or perhaps
the view is that finitary arithmetic is so clear and basic that it needs no foundation
at all. Linguistic characters are perceived, and numbers are likened to the forms of
such characters. Moreover, the grasp of linguistic characters seems to be necessary
for any sort of reasoning at all. It is not that finitary arithmetic is absolutely certain,
beyond skeptical challenge, but if one does come to doubt finitary arithmetic, it is
not clear that she can go on to do any thinking at all (see Tait [38]).

According to Hilbert, the rest of mathematics—the bulk of it—seems to invoke
infinite structures and totalities, structures and totalities that are not intuitive, and
are not found in nature. The metaphysical existence of these things is at least prob-
lematic, and thinking about the infinite has led to contradiction. The key idea of the
Hilbert program is that ideal, infinitary mathematics can be pursued independently
of any subject matter it may have. We are to formalize each branch, by rigorously
stating the syntax and the rules for manipulating the characters of each language
and theory. Ideal mathematics can be likened to a game of manipulating linguistic
characters; it need not have content. That, of course, is the formalist element. We
are to shore up a given branch of mathematics by proving that it is consistent—that
the game is not trivial. Even more, we are to show that the branch is conservative
over finitary arithmetic—that no false, finitary statements about natural numbers
can be produced. In most cases, this conservativeness is equivalent to consistency.
The statements of conservativeness/consistency are, of course, contentful, and their
proof should be carried out in finitary arithmetic. Then, as Hilbert [26] put it, “no
one shall drive us out of the paradise which Cantor created for us”, again exploiting
the structural isomorphism between natural numbers and strings of characters.

The Hilbert program thus required a substantial amount of mathematics. The
Hilbertian had to formalize branches of mathematics and prove consistency/conser-
vativeness results. Much of this was carried out, or at least attempted, by Hilbert
himself and by other members of his school. Proof theory, and a rich field of meta-
mathematics, was thus born.

But, of course, the dream was not realized. Kurt Gödel’s [19] second incom-
pleteness theorem is that the straightforward formulation of the consistency of a
mathematical theory T cannot be proved in T, provided only that T is consistent and
sufficiently rich. If finitary arithmetic is a part of, say, real analysis, then the Hilbert
program is unattainable. We cannot prove analysis consistent in analysis, let alone in
its finitary fragment. As with logicism and intuitionism, however, the mathematical
work, and the branches of mathematics founded in support of the Hilbert program,
live on, producing insights into the logical relationships between various branches
of mathematics, and increasing our understanding of consistency, relative consis-
tency, mutual interpretability, satisfiability, independence, ordinal analysis, reverse
mathematics, and the like. And certain ongoing philosophical programs, including
advocates of predicative mathematics, various weakened logics, and scaled down
versions of the Hilbert program have emerged.
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2.3 The Contemporary Scene

For any field of study X, there is an interesting question concerning how much X
should one know before one can effectively engage in the philosophy of X, provid-
ing insights and the like. Here, our question concerns how much mathematics one
should know in order to pursue the philosophy of mathematics. And, of course, the
relevant “mathematics” may go well beyond the branches of mathematical logic: set
theory, model theory, proof theory, or the like.

I suggested above that the purpose of the philosophy of mathematics is to inter-
pret mathematics. It is a truism that one should know something about what it
is one is interpreting. Notice, however, that at least some mathematics is invoked
in everyday discourse. People count, add, balance their checkbooks, and compute
batting averages. Perhaps someone who restricts his attention to the natural num-
bers and a bit more—say basic arithmetic and elementary analysis—can provide
interesting and valuable philosophical insights without being en rapport with more
advanced branches of mathematics, especially if he keeps focused on everyday uses
and applications of this mathematics. There is some danger from the other end as
well. A philosopher may be focusing her attention on advanced mathematics, say
professional mathematics and the mathematics invoked in science, and ignore the
role and use of mathematics in ordinary life. Or a philosopher may focus solely on
pure mathematics and ignore its applications.

Some of the current accounts of mathematics do not themselves involve much,
or even any, mathematical work. One stark example is the anti-nominalist qui-
etism proposed by some naturalists. The idea is to take mathematical statements
at face value, and pretty much leave it at that. Much of the philosophical work
from that school comes from criticizing other views. Another example, perhaps,
is the defense of ontological realism via the indispensability of mathematics for
science. The philosopher simply notes that since contemporary science, which we
take to be true or nearly true, invokes considerable mathematics, we are com-
mitted to the truth of the mathematics. If we interpret the mathematics literally,
we are thus committed to the existence of mathematical objects. The indispens-
ability theorist does not do any mathematics to support this. He just comments
on the mathematics done by others—scientists in this case. Arguments from this
camp would benefit greatly from an account of exactly how mathematics is applied
in science. How application works is an interesting philosophical problem in its
own right. It may be that one needs to engage in some mathematics to tackle this
problem.

2.3.1 The Home Front

Another example of philosophical work sans mathematics is my own ante rem struc-
turalism (Shapiro [32]), along with the closely related view defended by Michael
Resnik [29]. Our books contain considerable metaphysics, ontology, epistemology,
and an account of applications, but not much mathematics. At the urging of some
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colleagues and critics, I did include an axiomatization of structure-theory. Perhaps
that counts as mathematics, but it is not very deep. The formal theory is modeled
after Zermelo-Fraenkel set theory. Mathematics plays a central role in one variety of
structuralism. A dedicated group of philosophers and mathematicians use category
theory and topos theory to explicate the notion of mathematical structure. These
philosophers attempt to develop an account of a wide range of current mathematical
practice, not just foundational theories like arithmetic and set theory. The program
has a respectable pedigree in the recent history of mathematics itself (see, for exam-
ple, Awodey [1] and McLarty [27]).

The pursuit of my other main interest in the philosophy of mathematics does
invoke some mathematics. To argue that the languages of mathematics are best
(or at least well) interpreted as second-order, I provided reconstructions of com-
mon mathematical notions, inferences, etc., and provided careful comparisons of
the first- and second-order formulations of various notions and theories. In exploring
the expressive resources of second-order languages, one is led to its model theory,
presenting standard and Henkin semantics, along with explorations of categoricity,
Löwenheim-Skolem properties, compactness, indescribable cardinals, Lindström’s
theorem, etc. And, of course, second-order logic takes on a life of its own, with its
distinctive mathematical properties. There is also an industry of exploring interme-
diate logics, those that are expressively impoverished as first-order logic while not
as intractable as full second-order logic (Shapiro [31]).

Early in my career, I got interested in intensional notions, and the interaction
of constructive and non-constructive reasoning in the very same mathematics. That
led me to a classical formal system with a modal operator that could interpret the
intuitionistic connectives and quantifiers. So one can capture statements in the form:
constructively, there exists a number n, such that, classically, . . . The solution to
Post’s problem is of this form. I stuck to arithmetic, and was able to establish sound-
ness. The project caught the interest of Nicholas Goodman and John Myhill, who
proved completeness and extended the project to set theory (Shapiro [30]).

2.3.2 Abstraction

Another prominent program in the philosophy of mathematics is Scottish neologi-
cism, sometimes called abstractionism. The idea is to develop branches of mathe-
matics from abstraction principles, in the form:

§a = §b ≡ Φ(a, b) (ABS)

where a and b are variables of a given type, typically first-order or second-order,
and Φ is an equivalence relation of items of that type. The program begins life with
a principle about cardinal numbers:

#P = #Q ≡ (P ∼ Q) (HP)
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where (P ∼ Q) is the statement that there is a one-to-one relation from the P’s onto
the Q’s. This is now called “Hume’s principle”. In words, it says that the number
of F is identical to the number of G if and only if the F’s are equinumerous with
the G’s. Frege [17] provided what amounts to a derivation of the basic principles
of arithmetic, the so-called Dedekind-Peano axioms, from Hume’s principle. The
result is now known as Frege’s theorem. No one doubts that Frege’s theorem is
an interesting and important piece of mathematics. Who would have thought that
so much arithmetic can be derived from this simple and rather obvious principle
about counting? The Scottish neo-logicist argues that (HP) can be understood as an
implicit definition, the sort of thing that can be true by stipulation. Frege’s theorem
thus shows how basic arithmetic can be known a priori, not requiring intuition or
any holistic elements (Hale and Wright [24]).

Mathematics enters the discussion of the program, pro and contra, from sev-
eral different angles. The Scottish neo-logicists is not content to leave things with
an account of arithmetic. The search is on to develop more advanced branches of
mathematics, such as geometry, real analysis, complex analysis, and even set the-
ory, from abstraction principles. This involves mathematical work, akin to Frege’s
theorem, although some of it, at least, consists of adapting well-known results to the
abstractionist framework (Shapiro [33] and Hale [22]).

A second use of mathematics is provided by Kit Fine’s [15] study of the logical
properties of various abstraction principles, and of the consequences and the models
of theories whose axioms are various collections of abstraction principles. Through
a detailed logical analysis, Fine shows which principles have certain properties, and
what models certain combinations of abstraction principles have.

Mathematics also bears on the abstractionist program through the so-called “bad
company” objection, brought by Neil Tennant [39], Dummett [11], Boolos [5], and
others. The philosophical argument is that one cannot claim that Hume’s principle
is basic, known a priori by something akin to stipulation, since it is of the same form
as Frege’s Basic Law V,

EP = EQ ≡ ∀x(Px ≡ Qx) (BLV)

which, of course, is inconsistent. One might argue that any consistent or perhaps
satisfiable abstraction principle can be known a priori. It emerged early on that this
will not do, since there are pairs of principles which are individually satisfiable, but
not satisfiable together. If either can be true by stipulation, one might think, then
so can the other. But they cannot both be true. The main response from the Scottish
neo-logicists is to formulate properties, such as various conservativeness constraints,
that the good abstraction principles must meet. The claim is that any abstraction
principle that meets the conditions can be known a priori, via stipulation, and can
be used to found a mathematical theory of the defined abstracts. To date, most of
the proposed conditions have some mathematical content, and so there is the job
of showing just which abstraction principles meet the conditions. Alan Weir and I
[37], for example, pointed out that a proposed abstraction for set theory, Boolos’s
New V, fails the proper formulation of conservativeness, since it entails that the
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universe is well-ordered. We also show that it is consistent with ZFC that New V
has no uncountable models. The search for other abstraction principles that meet the
requirements, and for more refined requirements that the principle in question does
meet, is ongoing.

Another batch of results compare the “universes” of various abstraction princi-
ples with that of standard Zermelo Fraenkel set theory. Fine, for example, shows that
all models of the theory axiomatized by the abstraction principles that meet a cer-
tain requirement have a certain structural property—being unsurpassable—which is
inconsistent with the universe being inaccessible. Thus, if Fine’s abstraction theory
describes the (entire) mathematical realm, then ZF does not, and vice versa. Roy
Cook [9] shows that ZFC entails that a certain generalization of a proposed abstrac-
tion principle (to generate the real numbers) has no set-theoretic models.

The philosophical relevance of much of this mathematics depends on one’s per-
spective toward the abstractionist program, and the relationship between it and pre-
viously established mathematics. We are in the neighborhood here of the issues con-
cerning revisionism and philosophy-first. Similar remarks apply to just about every
philosophical program that is supported with mathematical results, if the “match”
between established mathematics and the philosophical reconstruction is not perfect.

There is, first, the orientation of the established mathematician who is observing
the abstractionist project. She is interested in determining which mathematical struc-
tures have been captured by the Scottish neo-logicist, and for this reason inquires
into the meta-theoretic properties of the abstraction-based systems. This is an exter-
nal perspective, where the enterprise is assessed from the point of view of someone
who already has (or claims to have) a rich, functioning mathematics. It is generally
held that this background ontology is, or can be modeled as, the iterative hierarchy,
as described by Zermelo-Fraenkel set theory.

From the external perspective, the mathematician studies the model-theoretic
properties of abstraction principles proposed by the neologicist, just as she might
study the model-theoretic properties of any other propositions, mathematical or oth-
erwise. In this study, the mathematician uses every tool at her disposal, whether the
neo-logicist is able to reconstruct it or not.

A second, internal orientation is that of the neo-logicist. The focus is on mathe-
matical principles that can be stated and derived in a standard (second-order) logical
deductive system, augmented with various abstraction principles. Among scholars,
the received view is that meta-theory, or at least model theory, is foreign to Frege’s
logicism (see, for example, van Heijenoort [41] and Goldfarb [21]). In the language
that Frege envisioned for logic and mathematics, the various quantifiers are unre-
stricted, ranging over all the objects and all the concepts that there are. Moreover,
the language contains no nonlogical terminology. If the same goes for the Scottish
neo-logicist, then it is not clear what relevance the model-theoretic results about
abstraction principles may have.

To be sure, set theory and model-theoretic semantics are themselves respectable
branches of mathematics, and so our neo-logicist would surely want to recapture
them from abstraction principles eventually (see Hale [23] and Shapiro [34]). If
there were an abstraction-based theory whose strength is in the neighborhood of
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ZFC, then the neo-logicist could appreciate the aforementioned model-theoretic
results. But those results need not bear on the abstractionist program in its
infancy. Moreover, set theory does not play a foundational role for the neo-logicist.
There is no working hypothesis that the iterative hierarchy contains (surrogates
for) all mathematical objects, or that ZFC correctly describes the mathematical
universe.

Fine describes different attitudes that a neo-logicist can take toward “standard set
theory (as embodied in ZF or ZFC)”. In effect, the internal perspective splits into
two. The uncompromising Scottish neo-logicist simply rejects set theory outright, at
least until it can be captured with legitimate abstraction principles. This revisionist,
or “imperialist”, perspective sees “all abstract objects as arising from abstraction”.
In contrast, a compromising neo-logicist is prepared to accept mathematical the-
ories that are not based on abstraction. The focus here is on which branches of
mathematics have, or can have, abstractionist foundations. If set theory and model
theory cannot be reconstructed on the epistemic basis of abstraction principles, then
their basic principles cannot become known in the privileged manner claimed for
arithmetic. But our compromiser would not conclude from this that those branches
of mathematics cannot become known at all. Set theory might be justified on holistic
or pragmatic grounds, or perhaps it needs no extra-mathematical justification at all,
as argued by contemporary naturalists. The compromiser is out to provide a neo-
logicist foundation when one is available. In effect, the compromising neo-logicist
combines the internal and external perspectives.

When actually engaged in the abstractionist constructions (or reconstructions),
the compromiser must be careful not to smuggle in any substantial set theory—
unless that set theory can itself be captured on abstractionist grounds. That would
undermine the epistemic goals of the program. However, our compromising neo-
logicist can assess the model-theoretic properties of various abstraction principles,
and use such results to guide her neo-logicist theorizing, from the outside, so to
speak. Set theory can help in the context of discovery, perhaps, but not in the context
of Scottish neo-logicist justification.

The opening quantifiers in some of the abstractions, such as Hume’s principle
and, for that matter, Basic Law V, are unrestricted. Hume’s principle, for example,
is supposed to express a general truth about cardinal numbers. If we are to speak
of objects at all, in any domain, we can count them, and thus apply arithmetic to
those objects. The universal applicability of arithmetic supports Frege’s claim that
arithmetic is part of logic, since it is topic neutral. It also dovetails with Frege’s
contention, against the likes of Dedekind and Cantor, that the proper foundation of
a branch of mathematics should flow from its applications. The Scottish neo-logicist
follows suit (see Wright [43]).

A key question for the compromising neo-logicist is whether to accept the com-
monly accepted hypothesis that the iterative hierarchy describes the mathematical
universe in toto—in the sense that every legitimate mathematical theory can be
modeled in it. If so, there is a potential for conflict if the unrestricted abstraction
principles make structural demands on the universe inconsistent with those of stan-
dard set theory. The issue is pursued in Fine [15] and Shapiro [35, 36].
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2.3.3 No Numbers or Sets at All

On the contemporary scene, there are two varieties of nominalism, the view that
there are no abstract objects, such as numbers and sets. The fictionalist holds that
the propositions of mathematics are to be read a face value. The statement that there
is a prime number greater than twenty thus entails that there is at least one natural
number—and so it entails that natural numbers exist. So, as a nominalist, the fiction-
alist applies modus tollens. She holds that most of the assertions of mathematicians
are either false or vacuously true. It is false that there is a prime number greater
than twenty, and it is true that all numbers are prime. In contrast, the reconstructive
nominalist holds that the mathematical statements are objectively and non-trivially
true or false, but such statements are not to be read at face value. The view is that
once the basic principles of mathematics are properly understood, they have the truth
values they are commonly thought to have, but the principles do not entail the exis-
tence of distinctively mathematical objects. Both kinds of nominalistic programs are
supported with formal work, much of which is mathematical.

The two main reconstructive programs are those of Geoffrey Hellman [25] and
Charles Chihara [8], although a seed of a similar idea can be found in Hilary Putnam
[28]. In all three cases, the key philosophical thesis is that mathematical assertions
can be understood in modal terms. A mathematical proposition is a statement about
what is possible, or about what holds in all possible systems of a certain kind.
Hellman and Chihara each provide a formal language with modal terminology, and
then show how to translate formalized versions of mathematical statements into the
modal language.

Consider the above theorem that there is a prime number greater than twenty. Let
S be a system consisting of some objects, together with two distinguished relations
on those objects. Say that S is a natural-number-system if it satisfies the Dedekind-
Peano axioms. Hellman shows how to express the notion of natural-number-system,
using an ordinary second-order language, avoiding use of semantic terminology
such as satisfaction. Our theorem then comes to something like this:

Every possible natural-number-system S contains an object that is prime (in S)
and is greater than 20-object in S.

To keep the framework from being vacuous, Hellman adds a postulate that it is
possible for there to be a natural-number-system.

Unlike Hellman’s, Chihara’s reconstruction invokes semantic terminology, rely-
ing on the notion of an object satisfying an open sentence. Our theorem is rendered
as a statement that it is possible to construct an open sentence with certain semantic
properties.

Hellman provides translations of arithmetic, analysis, and set theory into his
modal language, and he shows that, given his assumptions, the translations of the
axioms are all true. Thus he shows that the translations of common theorems in
mathematics have the truth values they are thought to have. If a mathematician
manages to prove a proposition P in a standard mathematical theory, then Hellman
manages to prove the modal rendition of P .
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Chihara’s accomplishment is similar. He provides a way to render the language
of simple type theory, or what we may call pure ω-order logic, into his language
of constructibility, and he argues that the axioms of type theory, so rendered, are
all true. He can thus rely on the standard ways to interpret common mathematical
theories—short of set theory and category theory—into simple type theory. Chihara
provides an insightful way to render real analysis into his system more directly,
which sheds light on at least some aspects of how the real numbers are applied.

As noted, the fictionalist is not out to save mathematics, in the sense of show-
ing that its basic principles are true. On the contrary, she holds that all existential
mathematical statements are false. So she has no need to reconstruct mathematics
in kosher terms. The main problem facing the fictionalist is to account for the appli-
cations of mathematics in the natural and social sciences. Why is it that false and
vacuously true statements are so useful in coming to understand the material world?
Indeed, even the statements of scientific theories are shot through with mathematical
terminology. In short, the nominalist must deal with the aforementioned indispens-
ability argument.

This problem is addressed by Hartry Field [12] in one of the most interesting
and important intellectual achievements in contemporary philosophy. Field shows
how to render classical gravitation theory in a language that does not have quan-
tifiers ranging over abstract objects, such as numbers or sets. Then he shows that
adding standard mathematics to this theory, along with the usual bridge principles,
is semantically conservative: any model of the nominalistic physics can be extended
to a model of the physics plus set theory and bridge principles. So any consequence
of the combined theory that is in the nominalistic language is already a consequence
of the original nominalistic theory.

The conservativeness result is a substantial result in mathematical logic, model
theory in particular, that is brought in to support a philosophical program. So it fits
into the theme of this survey. Whether one is a nominalist or not, Field’s results
are part of a compelling and illuminating account of how mathematics is applied in
science via structural representation theorems. There is an interesting question of
whether the nominalist is entitled to use these results, however. After all, she holds
that the mathematical meta-theory, the model theory and its underlying theory of
sets, is not true. So, conservativeness proof or no conservativeness proof, why is she
justified in believing that adding mathematics to a physical theory does not produce
new consequences in the nominalistic language? Field, of course, is aware of the
potential problem, and his subsequent work provides proposals for getting around
it, to either find a nominalistically acceptable conservativeness result or to argue
that the nominalist is entitled to certain conclusions (see Field [13, 14]). A literature
discussing these issues emerged.

The first part of Field’s program is also of interest for the present survey. The
ontology of his nominalist physics consists of space-time points, which has most of
the structure of the real numbers or, to be precise, most of the structure of R

4. Field
also invokes, and has quantifiers ranging over, regions of space-time, construed as
mereological sums of points. The regions have most of the structure of the powerset
of R

4. Field argues that space-time points and regions are concrete, not abstract,
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and so they can be invoked in a legitimate nominalistic science. This has been chal-
lenged, but the details of the debate need not concern us here.

In the technical development, Field then shows how to characterize surrogates of
various mathematical operations, such as functions and their derivatives and inte-
grals, directly on space-time points and regions. This allows him to formulate the
standard laws of gravitational theory, and provides a model to extend the theory to
other, more up to date physical theories. The relationship between Field’s nominal-
istic physics and the more usual, platonistic physics, which invokes real numbers
and functions on real numbers, is the same as the relationship between synthetic
geometry, as found in Euclid’s Elements, and analytic geometry (see Burgess [7]).

Euclid’s Elements is mathematics par excellence, and one might think the same
for the relevant parts of Field’s nominalistic physics. Field maintains, however,
that his physics is thoroughly not mathematical, since it is about physical, concrete
space-time points and regions. But the relevant parts of Field’s book sure resemble
mathematics. Indeed, that is the point. If some of Microsoft’s attorneys ever go to
work for Standard Mathematical Physics, Inc., we can expect them to sue Field on
the ground that the relevant parts of his theory have the look and feel of mathematics.
Mathematicians have told me that Science without numbers is not really a science
without mathematics. The mathematics is still there, they might say. And those folks
should be able to recognize their subject when they see it.

Of course, the philosophical issue is not where to draw boundaries between disci-
plines. The concern is over the metaphysical status of numbers, sets, and points, and
what lies in the range of quantifiers of theories that are literally true. Still, there is
some irony here. The nominalistic physics developed in Field [12] looks like a prime
example of the theme of this survey, namely the use of mathematics in support of
philosophy of mathematics. And I, for one, think it is such an example. But the
advocate of the program in question, Field himself, is committed to claiming that it
is not such an example, on pain of undermining the philosophical program itself.
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Chapter 3
Applied Mathematics in the Sciences

Dale Jacquette

3.1 Pure and Applied Mathematics

The distinction between pure and applied mathematics is widely recognized in the
philosophy of mathematics. There is nevertheless scant agreement about how pre-
cisely the distinction is to be drawn or what significance it should be understood to
have. Among theorists who acknowledge the two categories, applied mathematics
is often denigrated as less important, dignified, or valuable than pure mathematics.

Pure mathematics is not merely mathematics that is not applied. Nor, paradox-
ically is applied mathematics any and every use or application of mathematics. A
system of mathematics concerning fluid mechanics is rightly classified as applied
rather than pure, even if it is never actually put to use in any practical application; if,
for example, it is worked out on paper but is never taken down from the shelf by an
engineer. Moreover, using one branch of mathematics, such as set or group theory,
to model another branch, such as ring theory or category theory, is in one sense an
application of mathematics, but would generally still be considered part and parcel
of pure mathematics, because it makes no contact with and is intended to have no
reference to anything beyond mathematics.

We shall, accordingly, distinguish between internal and external applications of
mathematics, respectively, within or outside of mathematics itself. We can then
restrict the phrase “applied mathematics” to external or extra-mathematical appli-
cations that fall outside the realm of mathematics, and more positively to its uses to
model, modify and control especially physical phenomena in the natural sciences.
This is undoubtedly the sense in which the concept of applied mathematics is usually
intended. Applied mathematics for present purposes thus means mathematical sys-
tems that are supposed to be externally or extra-mathematically applied to describe,
predict or control physical phenomena. Applications of mathematics in a more gen-
eral and nontechnical sense to other branches of mathematics are considered to fall
within the category of pure mathematics. Where there is a potential for confusing
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these two senses of applied mathematics, we shall speak of practical rather than
purely formal applications of mathematics, as in theoretical physics and engi-
neering, astronomy, chemistry, hydrology, biometrics, and other mathematicized
sciences.

3.2 Plato’s Philosophy of Mathematics and the Realm of Forms

Plato is the most venerable champion of pure mathematics who posits a distinct
nonspatiotemoral realm of ideal abstract mathematical entities. In his dialogue the
Gorgias, Plato deprecates applied mathematics as mere engineering or “mechan-
ics”, because it is a practice involving “action” (praxis) in the world of Becom-
ing, in contrast with “speech” or reason (logos). Socrates describes mathematics as
logos-related, like board games similarly involving formal relations, as relatively
independent of those kinds of practical activities in which mathematics might be
applied:

. . . there are other arts which achieve their whole effect by speech, and have no need of
action—or very little—arithmetic, for example, and calculation and geometry and I would
add games like backgammon and so on. In many of them speech and action play almost
equal parts, but in many speech is the more important and is entirely responsible for the
whole business and its result. (450c–d)

Later, Socrates adds:

Yet if he chose to use big words about his function, like you and your friends, Callicles, he
could make out a strong case and overwhelm you with reasons why everybody ought to be
an engineer and no other profession is of the smallest importance. All the same you despise
him and his art and use the term ‘mechanic’ as a term of contempt, and you would not hear
of marrying your daughter to his son or taking his daughter to wife yourself. (512b)

Plato’s reference to mechanics is significant, particularly if understood in a suffi-
ciently general sense. The concept so construed seems to involve the application of
mathematics in any practical or scientific purpose.

By reputation, we expect Plato to take this storied view of the relation between
pure and applied mathematics. We know that for Plato it is only the eternal realm
of the Ideas or Forms, the world of Being, where all mathematical entities and rela-
tions most properly reside, purified of any contamination with the changing world
of mere appearance, that constitutes reality with a claim to value as the domain
of knowledge. Applied mathematics by definition involves activities in the imper-
fect world of Becoming, where all is approximation and opinion, subjects at best
of correct belief, rather than genuine knowing. The distinction between pure and
applied mathematics neatly marks the major partition in Plato’s metaphor of the
divided line in the Republic, representing a progression of topics for the education
of the guardian class in the ideal city-state, beginning with objects of perception and
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proceeding through applied and pure mathematics to the ascending ranks of Forms,
and finally at the pinnacle to the Form of the Good.1

Thus, in the Philebus, Plato distinguishes hierarchically between pure and
applied mathematics similarly in such a way as not only to place pure above applied
mathematics, but to separate them into entirely different metaphysical categories
with entirely different presuppositions of epistemic accessibility. Inquiring into the
nature of the good life, Socrates and Protarchus have the following exchange con-
cerning the nature of mathematics:

SOCRATES: Suppose arithmetic, measurement and weighing were subtracted from all the
sciences: the remainder of each science would be pretty trivial.

PROTARCHUS: It would indeed.

SOCRATES: In fact only speculation would be left, and the training of the senses by expe-
rience and experiment. We would have to use guesswork, which is commonly thought of as
science, if practice succeeds in making it dependable.

PROTARCHUS: Yes, that’s bound to be all that’s left . . .

SOCRATES: Look at ship-building, house-building and many other types of carpentry. As
I see it, they use ruler, lathe, callipers, chalk-line and an ingenious tri-square.

PROTARCHUS: Quite, Socrates; you’re right . . .

SOCRATES: The most precise sciences, however, are those we recently called essential.

PROTARCHUS: I suppose you mean arithmetic and the other sciences you mentioned along
with it.

SOCRATES: I do. Here again, however, Protarchus, oughtn’t we to speak of two sets of
sciences, not one? What do you think?

PROTARCHUS: Which sets do you have in mind?

SOCRATES: Take arithmetic first: shouldn’t we distinguish between the common and the
philosophical variety?

PROTARCHUS: What’s the criterion for distinguishing these two kinds of arithmetic?

SOCRATES: The boundary between them is clearly visible, Protarchus. Some arithmeti-
cians operate with unequal units: for example, they add two armies together, or two cows,
or two things one of which might be the smallest and the other the largest thing in the world.
Others, however, would never follow their example unless every unit, no matter how many
there are, is taken to be identical to every other unit. . . We may take that statement of yours
to be definitive and reliable. With that assurance, our response to cunning word-twisters is
. . .

PROTARCHUS: What?

SOCRATES: . . . that there are two techniques of arithmetic, two techniques of measure-
ment, and so on for many other related sciences, which have this duality despite having
been allotted a common name. (55e1–57d10)

1 Plato’s myth of the divided line appears in Republic 509d–513e.
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Plato in Socrates’ name distinguishes between kinds of mathematics, different in
their relative certainty and “purity”. “Philosophical” types of mathematics are more
certain and pure than their “common” countertypes, the latter of which are never-
theless useful in house and ship building, among other practical engineering appli-
cations. The mere fact that both types are popularly referred to as mathematics
disguises the fact, as Plato sees things, that there are really two categories of arith-
metic, calculation, and geometry—pure or philosophical and common or applied.
Interestingly, Socrates in this context points to the fact that in common or applied
mathematics the units involved in arithmetic are unequal, as when a large red apple
and a small yellow apple are added together in a practical application of counting to
arrive at the sum by which there are two apples. In the case of pure or philosophical
arithmetic, by contrast, the units concerned as abstract timeless and changeless eter-
nal entities, are altogether indistinguishable and in every way interchangeable. We
see this in caveman stick figure notations for simple arithmetical relations, when we
write, for example: || + ||| = |||||.

The relation between pure and applied mathematics remains a difficulty in Plato’s
metaphysics. The answer, unfortunately, is not found in philosophically satisfac-
tory terms anywhere in Plato’s writings. Plato is the archetypal advocate of pure
mathematics as a study of purely formal mathematical entities and their properties.
When it comes to explaining the metaphysics of the one and the many, the relation
between pure and applied mathematics in engineering, however, Plato has nothing
more insightful or enlightening to offer than a handful of metaphors according to
which spatiotemporal particulars “imitate” or “participate” in their corresponding
Forms.2 Lacking a clear and cogent analysis of imitation or participation, let alone
of the “striving” to approximate an ideal of which Plato also speaks, we are left with
no guidance as to the connection between pure and applied mathematics generally,
or more specifically with respect to engineering and applied mathematics in the
sciences. Whether or not we consider mechanics and other practitioners of com-
mon or applied mathematics in Plato’s extended sense to be suitable prospective
sons-in-law or fathers-in-law, we can agree with Plato off the bat that there exists a
distinction between pure or philosophical and applied mathematics. There is math-
ematics as a purely formal discipline that exists in its own right independently of
its usefulness or lack thereof, and applications of mathematics in which principles,
theorems, and calculation methods are put to use in practical problem solving, in
making change at the grocery store, building bridges and moon rockets.

The trouble is to understand how pure and applied mathematics are related.
This is precisely where Plato’s metaphysics lets us down by substituting myths,
metaphors, and poetic analogies for sound theoretical explanation. Plato in a sense
is not to be faulted for perversely withholding a straightforward account of the
metaphysics linking pure and applied mathematics, or more generally for fail-
ing to explain how the Ideas or Forms of the world of Being are related to the

2 The problems of imitation of, participation in, and striving to attain approximation to archetypal
Platonic Forms are discussed by Allen [1], Lee [25], Nehamas [31] and Sweeney [44].
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spatiotemporal particulars of the world of Becoming. He is not more forthcoming
about the relation between pure mathematics and its applications to the particu-
lars in empirical experience because the problem is among the most difficult if not
ultimately intractable challenges for a realist metaphysics and philosophy of math-
ematics; yet there are compelling if not ultimately conclusive reasons for positing
mathematical entities along with the Forms as abstract existents subsisting in a time-
less realm of things distinct from the phenomenal order.

3.3 Mathematical Realism and Knowledge of the Ideal

The philosophical problems confronting Platonic mathematical realism have
nowhere been more clearly identified than in Paul Benacerraf’s landmark [6] essay,
“Mathematical Truth”. There Benacerraf raises in an especially trenchant way the
epistemic dilemma of discovering and verifying truths about mathematical entities,
given their imperceivability and causal inaccessibility. He maintains:

It is my contention that two quite distinct kinds of concerns have separately motivated
accounts of the nature of mathematical truth: (1) the concern for having a homogeneous
semantical theory in which semantics for the propositions of mathematics parallel the
semantics for the rest of the language, and (2) the concern that the account of mathematical
truth mesh with a reasonable epistemology. It will be my general thesis that almost all
accounts of the concept of mathematical truth can be identified with serving one or another
of these masters at the expense of the other. Since I believe further that both concerns must
be met by any adequate account, I find myself deeply dissatisfied with any package of
semantics and epistemology that purports to account for truth and knowledge both within
and outside of mathematics. For, as I will suggest, accounts of truth that treat mathematical
and nonmathematical discourse in relevantly similar ways do so at the cost of leaving it
unintelligible how we can have any mathematical knowledge whatsoever; whereas those
which attribute to mathematical propositions the kinds of truth conditions we can clearly
know to obtain, do so at the expense of failing to connect these conditions with any analysis
of the sentences which shows how the assigned conditions are conditions of their truth.
(403–4)

Benacerraf projects a logical dilemma whereby the philosophy of mathematics can
meet either one but not both of its semantic and epistemological obligations. He
claims that the dilemma arises for virtually any complete philosophy of mathemat-
ics, but he devotes most of his attention to Platonic realism as the most widely
accepted metaphysics of mathematics.

Statistically speaking, Benacerraf is surely right to identify the default ontol-
ogy of mathematics for most mathematicians and philosophers of mathematics as
some form of Platonic realism. Mathematicians typically consider themselves to
be engaged in the task of discovering and elaborating truths about a domain of
abstract ideal entities, consisting of the mathematical objects whose properties and
interrelations it is their task to articulate and rigorously demonstrate, primarily,
though not exclusively, by the methods of formal axiomatic proof. Platonic realism
is furthermore a prime target for Benacerraf’s assault against standard approaches to
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the philosophy of mathematics. By positing an ideal abstract mathematical realm,
Platonic realism characteristically places mathematical entities outside the reach
at least of all the usual epistemic modes of access that standardly involve some
sort of causal interaction with objects of knowledge in order both to determine
their existence and properties. We can make no direct contact with abstract or
ideal mathematical entities in Platonic heaven, because we cannot perceive them
as we can in the case of physical objects belonging to the empirical sciences.
They are instead, as Plato himself repeatedly insists, objects of reason, discourse,
or logos.

There are philosophers still today who accept Plato’s elitist conclusion that
applied mathematics should be disregarded or relegated to secondary status relative
to pure or philosophical mathematics, and that only pure mathematics, redundantly
so designated, should be considered to be mathematics in the true and proper sense.
We might also come to agree that applied mathematics as the application of math-
ematics is not mathematics itself. In that case there is mathematics, and there are
uses of mathematics that are not themselves mathematics, in somewhat the same
way, by analogy, that the use of a hammer is not itself a hammer. If we adopt
such a stance, moreover, then we might not avoid the problem of understanding
how mathematics is applied, but we could thereby minimally circumvent the need
to explain the semantics, metaphysics and epistemology of applied mathematics,
whatever it finally turns out to be, as a kind or category or branch of mathematics
properly conceived.

To fully comprehend the philosophy of mathematics, where such a distinction is
observed, it is not necessary to understand the nature, possibility, conditions or limi-
tations of applied mathematics, however independently interesting the requirements
of applied mathematics might also be. If the problem of applied mathematics rears
its head within the philosophy of mathematics, consequently, as a philosophical
problem involving concepts specifically of mathematics, it arises in that case as a set
of questions concerning the relation between pure mathematics and its applications
as two different things. The same is true regardless of whether a Platonic realist or
non-Platonic nonrealist mathematical ontology is adopted. The outlook for a satis-
factory philosophy of mathematics is complicated in that event in the following way.
We must then know what mathematics is, what applied mathematics is, and how the
two are related. Importantly, on the other hand, however, we are spared the need to
explicate applied mathematics as itself any part of mathematics.

A muted note of hope for the success of such a project is sounded when Benac-
erraf qualifies his skepticism to “almost all accounts of the concept of mathematical
truth”. He thereby leaves open the possibility, however remote, that some philosophy
of mathematics might yet be proposed to satisfy the twin goals of providing both
an adequate general semantics and epistemology of mathematics. While his con-
clusion is negative, Benacerraf’s highly influential argument has posed a problem
for other theorists in the philosophy of mathematics to try to solve. Benacerraf’s
incisive statement of the complexly interrelated semantic, epistemic, and ultimately
metaphysical problems to be addressed by an adequate philosophy of mathematics
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has invited a wide variety of responses on the part of philosophers attempting to
fit together an appropriate sense of the nature of mathematical entities with a the-
ory of knowledge and criteria of discovery and verification for the justification of
mathematical truths.

We might mention in this context, among the scores of contemporary philoso-
phers of mathematics who have taken Benacerraf’s problem as the explicit point
of departure for their semantic-metaphysical-epistemic analyses of the nature of
mathematical entities and the relation of mathematical methods to the determi-
nation of mathematical truths, and who in the process have collectively ventured
very different kinds of solutions, Michael Jubien, Michael Resnik, Penelope Maddy,
Hartry Field, Charles S. Chihara, and Stewart Shapiro. We shall briefly consider the
advantages and disadvantages of some of these interesting recent efforts, concluding
that in one way or another they each fail to provide a fully satisfactory philosophy
of mathematics. Then we shall take up Benacerraf’s challenge by proposing a very
different ontology of mathematical entities that makes it possible to satisfy both of
Benacerraf’s desiderata by providing both a semantics for the truth of mathematical
propositions and theorems that meshes seamlessly with a general semantics and
facilitates an epistemology of mathematical discovery, justification by intuition and
demonstrative proof, and knowledge.

3.4 Critique of Standard Solutions to the Problems of Applied
Mathematics

Among the problems confronting a philosophy of applied mathematics there must
prominently be included the following. The adequacy of any such theory depends
in large part on its ability to provide satisfactory answers to these questions:

a. How are pure and applied mathematics to be distinguished?
b. How are pure and applied mathematics semantically, ontically or metaphysically,

and epistemically related?
c. How is it possible for pure mathematics to describe the world of physical phe-

nomena?
d. How is it possible for applied mathematics to facilitate scientific research,

hypothesis and testing of previously unknown and unpredetermined physical
phenomena, and to facilitate their explanation, prediction, manipulation and con-
trol in practical activities and scientific engineering?

We shall consider the strengths and infirmities of frequently discussed philosophies
of mathematics with respect to the above problems concerning the nature of applied
mathematics and the relation between pure and applied mathematics. The exami-
nation of contemporary approaches to the philosophy of mathematics in explaining
applied mathematics is meant to be representative of some of the most important
and influential theories rather than exhaustive or complete.
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Limitations of space make it necessary to restrict synopses of most of these well-
established approaches to the philosophy of mathematics and in particular to the
problems of applied mathematics to a mere caricature. So, in any case, they are
likely to seem to their defenders. They may nevertheless be of use in highlighting
the differences from the alternative concept of mathematical entity to be proposed.
Some of the following philosophical theories of mathematics are problematic on
their own merits, while others are disadvantaged more particularly with respect to
their treatment of the relation between pure and applied mathematics, in responding
to the four main problems of applied mathematics.

3.4.1 Platonism or Platonic Mathematical Realism (Plato, Frege,
Gödel, Quine)

As we have seen, Platonism or Platonic realism is the default ontology for math-
ematics. Historically, it has been the most widely and enthusiastically accepted.3

The attraction of the theory is that it posits an ideal abstract realm of mathemati-
cal entities to which mathematical properties and relations can be truly predicated.
When we say, for example, that 3 is a prime number, Platonic realism interprets the
pronouncement as implying or presupposing that there exists a timeless unchanging
ideal but no less real abstract number 3 that has the mathematical property of being
prime, being evenly divisible only by 1 and itself. The analogy of an object possess-
ing a property is thereby extended from physical entities having certain physical
properties and standing in physical relations to other physical entities to an imper-
ceivable world of mathematics.

The most obvious pinch in Platonism, as dramatized in Benacerraf’s dilemma,
is its commitment to a causally epistemically inaccessible realm of ideal abstract
mathematical entities. Benacerraf’s dilemma is implicitly directed specifically
against Plato’s philosophy of mathematics. Plato’s theory provides us with a seman-
tics that is parallel in every way to the semantics for the reference and predication
of properties to ordinary physical objects, but leaves us without a satisfying com-
parable epistemology by which mathematical entities and their properties can be
known. It is unclear how we are supposed to be able to learn about the proper-
ties of objects that we cannot see and with which we cannot otherwise empirically
interact.

More importantly, the relations between abstract entities and physical phenom-
ena are generally obscure. Plato provides in lieu of explanations only mythic-poetic,
analogical, or metaphorical ways of describing the connection between mathemat-
ical Ideas or Forms and physical spatiotemporal phenomena. Where we would like
to know exactly how abstract mathematical entities are supposed to be related to the
objects of experience to which mathematics is applied in counting, measurement,
calculation, and engineering, in theory and practice, there all that Plato has to offer

3 See Balaguer [4] and Azzouni [3].
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is the conceit of a physical entity imitating or participating in or striving to make
itself as like as possible to its corresponding ideal archetypal Form. The two realms
of pure abstract mathematics and applied concrete physical entities to which applied
mathematics is applied in theory and practice seem to be so separate and distinct that
there is no bridge linking them, and no obvious way as a result to understand how the
properties of abstract mathematical entities can have anything to do with the proper-
ties of concrete physical entities. At best it is unclear how positing a realm of ideal
abstract mathematical entities to which of necessity we can have no causal epistemic
access can help to explain the success of applied mathematics in the spatiotemporal
world. The specific relation between abstract mathematical entities and the concrete
physical entities of applied mathematics remains abstruse, and consequently goes
no distance toward explaining the possibility of effectively applying mathematics
externally to nonmathematical things.

3.4.2 Conceptualism (Ockham)

William of Ockham is well-known as a nominalist in the medieval metaphysical
controversy with Platonic realism. Nominalism considered only in and itself, how-
ever, as the doctrine that there are no universals and that things are only of the same
kind in the sense that they have been given the same name for the convenience of
thought and language, appears arbitrary unless a nonuniversalist reason for assign-
ing the same name or predicate to different things can be justified.

Ockham as a nominalist is also a conceptualist. In the Summa Logicae I, he
adopts a theory of the common naming of things by which their predicate names do
not denote universals but concepts in the mind, which Ockham speaks of as second
intentions of the soul. When I use the name of a putative mathematical object, such
as the number π , according to Ockham, the name is not arbitrary, for example, in
speaking of the ratio between the circumference and diameter of more than one
circle, nor does it refer to a universal or ideal abstract mathematical entity, but to a
certain concept or intention in the mind, which is to say as something psycholog-
ical. The possibility of explaining applied mathematics is thereby raised. We can
then perhaps try to understand the effectiveness of applied mathematics as resulting
from the way we think about the structures and relations among physical entities in
empirical experience to which we assign the names of mathematical entities and
properties, in marked contrast with Plato’s theory of Forms, as relations among
occupants of the same physical spatiotemporal world.4

The difficulty for such a theory, and a potentially devastating one for concep-
tual nominalism, is what might be called the problem of the subjective disunity
of mathematical entities. If the number π is a psychological concept, then there
must be a different number π , numerically distinct, if we can even make sense of
that concept within a conceptualist framework, from the number π that any other

4 Ockham [32]. See also Boehmer [8].
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thinker entertains in thought. Such a conclusion seems absurd, and if anything the
implication makes the possibility of applied mathematics by many thinkers equally
if not more mysterious than it is for Platonic realism.

3.4.3 Formalism (Hilbert)

The limitations of Platonism, and the fact that so much of mathematics involves the
gamelike formal rule-governed manipulation of mathematical symbolism, has sug-
gested the possibility of another kind of nonconceptualistic nominalism that is often
associated with David Hilbert’s formalism in the philosophy of mathematics. The
idea is that there is no reality to mathematics beyond the formalism implied by the
rules for transforming strings of mathematical syntax into other definite strings. The
activity of mathematics is thus compared to that of playing a board game, and with
no further significance as to its meaning or referents, whether ideal and abstract,
conceptual and psychological, or something else yet again, than that which attaches
to the tokens of games like chess or checkers or backgammon or go.5

The difficulty with formalism in efforts to understand the nature of applied math-
ematics is that rule-governed syntax game-playing makes mathematical relations
self-contained. Game-playing generally might be productive by virtue of sharpen-
ing a mathematician’s strategic skills or rule-following discipline, in the way that

playing marathon sessions of Monopoly
TM

might benefit the sales objectives of an
ambitious real estate agent. Board games considered in and of themselves by defini-
tion nevertheless have no direct applicability to real life, as we would soon discover
if we tried to make a downpayment on a hotel on Atlantic Avenue or Boardwalk
with the play money included in the game, or use the Get Out of Jail Free card
if we happened to be arrested in the process of trying to become millionaires. A
game is perhaps an appropriate model or metaphor for pure mathematics, which
in turn might have been all that Hilbert was finally concerned with understanding.
Using mathematics properly to build a bridge or skyscraper on which the lives of
thousands of people depend on the other hand does not seem to be as gamelike an
activity. This is especially true in the sense that we cannot simply contrive whatever
consistent (or paraconsistent) set of rules we like with the same sort of freedom
by which we devise games like chess and go for amusement. There are external
constraints imposed on applied mathematics, as we might say, by the world, that
make the relation between physical reality and applied mathematics less capricious
than game-playing, and that for the same reason make the effectiveness of applied
mathematics in predicting and controlling events in the real world even more chal-
lenging to understand.

5 Hilbert [19, 20] and Jacquette [23, pp. 85–89].
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3.4.4 Conditionalism (If-Thenism) (Putnam)

Hilary Putnam in several sources has endorsed what has come to be known as
conditionalism or if-thenism. The idea of conditionalism is that the necessity of
mathematics is to be explained not in terms of an abstract Platonic realm of ideal
abstract mathematical entities, but rather by virtue of the logical necessity of deduc-
tive inference. The necessity of mathematics is thereby itself made conditional. If
certain axioms or principles of mathematics are true, then certain consequences
would logically necessarily follow.6

Like the other forms of nominalism or anti-Platonism that we have consid-
ered, conditionalism has much to recommend it. The theory seizes upon a rec-
ognizable feature of mathematical theory and practice by which it proposes more
generally to explain the nature of all mathematics. We do have concepts, as Ock-
ham rightly observes, that enter into the construction and use of mathematics;
mathematics, as formalists like Hilbert would have it, is rather like formal game-
playing; and mathematics, in the way that Putnam emphasizes, involves a con-
ditional commitment to axioms and other first principles which it then relates by
logical inference and typically with deductive necessity to theorems and other kinds
of mathematical consequences in mathematical reasoning and formal proofs and
demonstrations.

The trouble with Putnam’s conditionalism from the standpoint of understand-
ing the philosophical connection between pure and applied mathematics is that,
while applied mathematics might reasonably be construed as among the extra-pure-
mathematical consequences of pure mathematics, its applications, in mathematical
physics or biometrics, for example, do not hold with the same sort of deductive log-
ical necessity as do the consequences of assumptions validly derived from axioms
within pure mathematics. There is again something arbitrary about the choice of
conditions from which any number of different systems of mathematics might con-
ditionally follow if such assumptions were to be made. Applied mathematics, hard
at work in the real world of mechanics, engineering, and other practical activities,
does not seem to enjoy the same luxury of explaining its effectiveness as the result of
the necessity that holds between any arbitrarily considered axioms and their logical
consequences. It lacks the freedom that prevails in the case of whatever rules might
be chosen by which to play any number of different purely mathematical games
in a formalist philosophy of mathematics where the syntax of mathematical lan-
guages are likened to otherwise meaningless tokens moved about in rule-governed
ways on a gameboard. In this respect, formalism and conditionalism are philosoph-
ically not far apart, and might be regarded as two different ways of expressing the
same limited insights about the nature of pure mathematics in its relation to applied
mathematics.

6 Putnam [35, 36].
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3.4.5 Intuitionism (Brouwer, Heyting)

There are many forms of intuitionism. Some but not all explicitly acknowledge an
intellectual debt to Kant’s thesis that arithmetic has its origins in the experience of
successions of events in time and geometry in the experience of objects in space,
where space and time alike in Kant’s transcendental aesthetic are construed as pure
forms of intuition. As a rule, intuitionists agree that mathematical propositions are
not to be considered as true or false, even hypothetically, unless they have been first
respectively rigorously proved or disproved. One of the well-known consequences
of an intuitionistic logic and philosophy of mathematics is therefore to deny certain
classical principles of deduction, such as the rules of excluded middle and double
negation. For the same reasons, by virtue of adhering to a strict canon of proto-
cols for mathematical demonstration, most intuitionists do not accept the truth of
propositions implying the existence of infinite or transfinite numbers or sets, nor are
they willing to countenance mathematical proofs that could in principle require an
infinite or transfinite number of steps.7

The main objection to intuitionism in the present context is that it makes no
special provision for applied mathematics. Intuitionism is more of a methodologi-
cal inhibitor of mathematical excess and a principled restriction to proceeding only
on the basis of what has actually been rigorously proven or disproven by accepted
mathematical techniques of derivation. It in effect curtails the enthusiasms of Pla-
tonic realism and encourages more scrupulous epistemic caution in mathematics by
not assuming that mathematical entities and their properties and hence mathemat-
ical truths exist independently of the bounds of extant demonstrated mathematical
knowledge. Restraining the pretensions of Platonistic mathematics, however, does
not help to explain how mathematics comes to be so effectively applied in such
disciplines as mathematical physics, astronomy, chemistry, and the like.

3.4.6 Manifest Realism or Physicalism (Maddy)

The recent development of a theory that mathematical entities, sets, in particular,
are empirically perceivable has been explored by Penelope Maddy in Realism in
Mathematics and Naturalism in Mathematics.8 This is a bold, but also puzzling
and in some ways vague theory, that has undergone significant transformations in
these two books, and whose strengths and weaknesses it is beyond the scope of the
present inquiry to present in detail or with any real justice. Suffice it to say that the
proposal seems to suffer from the counterpart of the subjective disunity with which
Ockham’s conceptualist nominalism has been charged, and which might therefore
be labeled the problem of the objective disunity of mathematical entities. If a set

7 See, inter alia, Brouwer [9] and Heyting [18]. A useful introduction to Brouwer’s intutionism in
its formal and philosophical aspects is found in Van Atten [45].
8 Maddy [26–28].
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is perceivable here at this place in the physical world, but also and equally in at
least another place, as Maddy’s metaphysics would appear to allow, then there is a
parallel problem for Maddy as for Ockham. It is the problem of understanding how
the same mathematical objects can be supposed to exist simultaneously in several
different places and how they are all supposed to be related, whether objectively or
physically as in Maddy, or subjectively or psychologically as in Ockham’s doctrine
that mathematical objects are concepts that can presumably exist simultaneously in
the minds of several different thinkers.

3.4.7 Fictionalism (Field)

Hartry Field’s fictionalism seeks to avoid ontic commitment to mathematical enti-
ties, regardless of their metaphysics, by denying that there are any mathematical
truths or any true mathematical propositions. Field does not dispute the popular
semantic assumption that the truth of a mathematical proposition is to be under-
stood as the existence of a corresponding mathematical fact in which an existent
mathematical object possesses the corresponding property attributed to it by the
proposition.

By denying the existence of mathematical truths he hopes to cut off questions
about the existence of mathematical entities at their semantic root. The innovation
in Field’s theory is to adopt a Quinean instrumental account of the theories that
together with a base mathematics such as Zermelo-Frankl set theory supplemented
with Ur-elements (Z FU ) entailing a certain useful conclusion ϕ of mathematicized
natural science N can be determined to follow from N alone.9 Charles S. Chihara,
in his recent book, A Structural Account of Mathematics, has nevertheless raised
a serious difficulty challenging Field’s reliance on what he calls the conservation
principle. The principle in effect allows mathematics to serve an instrumental role
in deriving the propositions of natural science, from which it then drops out as
inessential. It follows, as Field has argued in Science Without Numbers, Realism,
Mathematics, and Modality, and numerous articles, that from the standpoint of the
useful applications of mathematics in science we can regard mathematical objects as
fictitious in merely facilitating derivations of the truths of science which they serve
in no way to constitute:

Field’s conservation principle

Z F +U ∧ N |� ϕ→ N |� ϕ
M ∧ N |� ϕ→ N |� ϕ (CP)

The difficulty for Field, according to Chihara among other critics, is in justifying the
conservation principle (CP). Field’s efforts to establish the principle seem to require
that he accept the truth of at least some metalogical theorems needed to derive (CP),

9 Field [14–17].
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contrary to the spirit of fictionalism as a general philosophy of mathematics. He
proposes to justify it by keeping it at arms length through reductio reasoning, but
all such attempts to date do not appear to provide a genuinely nominalistic proof of
(CP). Thus far, Field has only sketched how the proof might proceed, but has not yet
delivered the argument. He nevertheless needs the principle, as the key to upholding
the claim that a physical theory can produce all of its salient results without the
benefit of a consistent mathematics with which it is otherwise apparently allied and
from which its formal implications seem to derive. If Field’s fictionalism cannot
be consistently reconstructed, and in particular if there is no noncircular genuinely
nominalistic proof of (CP), then the theory does not provide an adequate solution to
the problem of understanding the relation between pure and applied mathematics.10

3.4.8 Structuralism (Resnik, Shapiro)

A variation on fictionalism is propounded by Michael Resnik, Stewart Shapiro, and
others, in several forms as structuralism or structuralist philosophy of mathemat-
ics. Structuralism emphasizes the mathematical preoccupation with formal struc-
tures, and offers to explain mathematical truth in terms of the structural features of
mathematical syntax and the formalisms of mathematical sentences in mathemat-
ical languages. Applied mathematics is then supposed to be understood in terms
of the isomorphisms or approximations of the structures of physical phenomena to
which applied mathematics is applied to the formal mathematical structures in the
theorems of pure mathematics.11

The major drawback that invalidates structuralism as an adequate philosophy of
mathematics considered on its own terms is that formal syntactical morphologies, at
least as they usually appear in standard expressions of mathematical formulas, are
not uniquely distinctive or characteristic. Many very different mathematical rela-
tions are expressed by syntactically structurally identical mathematical sentences.
The Pythagorean theorem, for example, a2 + b2 = c2, has precisely the same
syntactical structural features as unlimitedly many other mathematical sentences
that have nothing whatsoever to do with triangles or geometry. Similarly for such
sentences of applied mathematics as f = ma (force = mass × acceleration) or
e = mc2 (energy = mass × the square of the (constant) speed of light). These
two formulas, in particular, might either be said to be structurally identical or not
identical, depending on whether or not “a” expressing the acceleration value in
f = ma can be understood as the square of some numerical value; as of course
at least trivially it always can. One of the theoretical limitations of structuralism is
thus that it does not provide a decisive way of correctly determining whether or not
the sentence of applied mathematical physics “ f = ma” is or is not structurally
identical to such another sentence of applied mathematical physics as “e = mc2”.

10 See Chihara [12, especially pp. 108–13, 317–48].
11 Resnik [38–40] and Shapiro [41, 42].
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We are given no guidance by the theory, in this among other ways, as to whether
the exponent in e = mc2 is an essential or superficial accidental component of the
formula’s syntactical structure.

The only way to avoid such exact structural isomorphisms particularly in applied
if not also and equally in pure mathematics, and the uninformativeness as to mathe-
matical content and truth they imply, is to suppose that there is a deeper level of
formal structural analysis of mathematical sentences in which these equivocations
of structural properties do not obtain. Thus far, however, no structuralist has come
forward with a deeper analysis of the mathematical structures of mathematical sen-
tences than those that already appear in standard mathematical languages, where
the possibility of confusions among superficially identical syntactical structuralisms
abound. Nor is it clear precisely how structural isomorphisms between mathemat-
ical languages and physical phenomena are supposed to be sufficient to explain
the possibility and effectiveness of applied mathematics in the natural sciences.
Structuralists collectively seem blithely unaware that there might be any sort of
problem here. The mere fact that a sentence of mathematics exhibits a structural
isomorphism with a physical phenomenon does not begin to explain how the sen-
tence in question might make it possible to predict or exert engineering control over
events within the empirical world. How is structural isomorphism in and of itself
supposed to be able to make any of these things possible?

3.4.9 Constructibility Theory (Chihara)

A more sophisticated form of fictionalism and structuralism is developed by Chi-
hara in what he designates as constructibility theory. Chihara denies the common
assumption that mathematical sentences must be true in order to express useful
mathematical information, and that in order to be true or to lend themselves to
practical everyday and scientific applications mathematical sentences must refer to
existent mathematical entities.

Chihara’s constructibility theory construes mathematics as a system of formal
principles for syntactically constructing certain kinds of open sentence tokens.
Instead of interpreting the mathematical sentence 2 + 3 = 5 as the true univer-
sally quantified sentence, ∀x[2x + 3x = 5x], Chihara substitutes for the universal
quantifier a constructibility quantifier “C”, as in Cx[2x+3x = 5x]. The meaning of
the constructibility quantified formula is then explicated as an open-ended sequence
of open sentences, 2x+3x = 5x, 2y+3y = 5y, 2z+3z = 5z, . . ., none of which,
as open sentences, is true (or false). An open sentence S is satisfiable when it is such
that it can be completed by the insertion of terms to create a corresponding closed
sentence S∗. Closed sentence S∗ is true or false, and makes ostensible reference
to specific objects with mathematical properties that are ultimately reducible to or
constructible from such concepts as equinumerosity. S∗, however, immediately upon
completion or satisfaction, is not a sentence of pure mathematics, but is instead what
Chihara follows Frege in calling a mixed sentence. If Chihara’s analysis succeeds,
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then there is never any need to consider the sentences of pure mathematics as true
or consequently as making reference to any mathematical objects.12

One source of difficulty in Chihara’s constructibility theory is that it seems to
require the truth, and not merely the constructibility, of a metatheoretical mathe-
matical sentence that ascribes higher-order cardinalities to the constructible open
sentences by which the constructibility quantifier C is interpreted. The cardinality
of the list of open sentences that are successively constructible even as possibilities
in unpacking the meaning of the constructibility quantifier would appear to be no
greater than and hence restricted in application to subinfinitary enumerations. We
are supposed to have learned from Church’s theorem that reducing the universal
quantification even to a potentially infinite specification of cases, as in Wittgen-
stein’s account of the quantifiers in the Tractatus Logico-Philosophicus, can never
succeed in capturing the meaning of “all” in a universalized expression, unless we
also circularly add that these are “all” of the possible cases, thereby scotching the
reduction.

Thus, the following sentence must be true and not merely constructible in Chi-
hara’s constructibility theory Ct. As such, in the extensional semantic framework to
which Chihara is committed, but inconsistent with the theory’s intent, the sentence
must after all make reference to mathematical entities:

Ct |� [Ct → [Con(x) ∧ Con(y) ∧ Con(z) ∧ . . .] ∧ Card{x, y, z, . . .} ≥ ℵ0] (P)

As it stands, (P) is an open sentence, but in that form it is insufficient for the requisite
cardinality of Ct, unless it is not merely constructible in but true of Ct, or at least
of Ct’s metatheory. Nor does it help to regard the language of Chihara’s theory as
supporting the mere constructibility of such open sentences as x ≥ yℵ0 .

The trouble is that Chihara wants to proceed constructively from minimal syn-
tax combinations through elementary number theory via such relations as one-one-
pairing and equinumerosity step by step eventually to the further reaches of higher
mathematics. If that is how mathematics is supposed constructively to proceed, how
and at what stage of construction do we arrive at an interpretation for the term
“ℵ0”? (Whitehead and Russell in Principia Mathematica cut the Gordion knot here
by helping themselves to at least one denumerably infinite set via the Axiom of
Infinity.)

If (P) is made true by an internal rather than external application of Ct, where the
open sentence (P) constructible in Ct needs for relevance sake to be satisfied also
by Ct itself, then (P∗) is not a true mixed sentence closure of (P) for an appropriate
choice of open sentences constructible in Ct. Rather, by virtue of being satisfied
by a higher level mathematical theory, Ct, (P*) will presumably constitute a purely
mathematical truth. If (P∗) does not represent such a metatheoretical mathemati-
cal truth about Chihara’s Ct, then it is hard to see how the theory can possibly be

12 Chihara [12, pp. 107–8, 163–217]. Also Chihara [11].
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adequate to guarantee the constructibility of a sufficient supply of open sentences to
cover the purely structural properties of all of classical infinitary and transfinitary
mathematics.

Ironically, this is the same sort of criticism now leveled against Chihara’s con-
structibility theory that Chihara has raised against Field’s fictionalism. Just as Field
seems unable adequately to defend the conservation principle without presupposing
the truth of certain metamathematical principles, which he is at pains everywhere in
his nominalist philosophy of mathematics to deny, so similarly Chihara is apparently
committed to the truth rather than the mere constructibility of principle (P) in order
to secure the possibility of constructibility theory’s extension to infinite and transfi-
nite mathematics. If Chihara’s constructibility account of mathematics is supposed
to be strictly finitist, or if the cardinality of constructibility theory is something that,
as in Wittgenstein’s picture theory of meaning, is supposed to be structurally shown
rather than said, Chihara has not acknowledged these implications or made provi-
sion for them within his analysis of the applications of mathematics. Unsurprisingly,
perhaps, Chihara’s constructibility theory combining fictionalism with structuralism
inherits the limitations of both theories. The constructibility account in particular
does not avoid the problem of understanding the plurality of structural isomorphisms
within and outside of mathematical syntax, or of how the mere isomorphism hold-
ing between the syntax of a given mathematical expression and a physical state of
affairs in the spatiotemporal world enables a mathematical theorem or principle to
be applied to identically structured empirical phenomena.13

3.4.10 Logicism (Frege, Russell) (Honorable Mention)

We shall give logicism only a cursory consideration. The proposal that all of classi-
cal mathematics might be reduced to principles of logic, at least in its original forms
in Frege and Whitehead and Russell, is generally believed to have been defeated
by the limiting metatheorems of Gödel, Church, and Rosser. The early formulations
of logicism in any case were never truly logicist in the first place, but made use
of such extra-logical principles, among others, as the Axiom of Infinity, together
with the axioms of set theory whose status as propositions of logic is problematic if
not question-begging in the context of advancing a logicist reduction. Merely using
logical notation to formulate mathematical propositions in and of itself is not enough
to reduce mathematics to logic. Logicism, finally, with respect to the problems in
view, offers no special provision for applied mathematics. In Frege and Whitehead
and Russell, especially, logicism is not essentially different from a Platonic realist
philosophy of mathematics from which it acquires all the same semantic, ontic and
epistemic difficulties and limitations.

13 I offer a more extensive criticism of Chihara’s constructibility theory in my Jacquette [24] review
of Chihara [12].
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3.5 Inherence Philosophy of Mathematics

The failure of standard philosophical theories of mathematics to explain the relation
between pure and applied mathematics should naturally incline us to seek elsewhere
for adequate solutions to the four problems we have identified. We now propose an
Aristotelian inherence metaphysics, according to which a universal mathematical
property nominalized as a mathematical entity exists if and only if it inheres in an
existent physical phenomenon.

The orientation and priorities with which the philosophy of mathematics is
approached make an enormous difference in the kinds of theories that are found
acceptable or unacceptable. If a theorist is most convinced of and impressed with the
universality, aprioricity and logical necessity of mathematical theorems, then it will
be reasonable to see Platonic realism as the best mathematical ontology, despite its
epistemic liabilities. We have been addressing a different set of problems, making
an adequate explanation of the possibility and nature of applied mathematics the
first order of business for the philosophy of mathematics, while hopefully not losing
sight of the features of mathematics that standard theories have given explanatory
precedence over other aspects of mathematics. Beginning as we have with the prob-
lems for a satisfactory account of applied mathematics and of how pure mathematics
relates to its applications, offers a different and in some ways more pragmatic per-
spective on the strengths and weaknesses of traditional concepts in the philosophy
of mathematics. We have seen the difference that prioritizing an understanding of
applied mathematics makes in the criticism of the received theories presented above,
and in what follows we observe more positively the rather different kinds of theory
such a perspective affords in developing an Aristotelian inherence philosophy of
mathematics.

It is disconcerting, in a way, that, whereas Platonism is often counterposed to
Aristotelianism in other branches of philosophy, in the theory of universals, meta-
physics generally, epistemology, ethics, and theory of the arts, there has been slight
attention to the potential for an Aristotelian inherence philosophy of mathematics
to stand in sharp opposition to Platonic realism. If overlooking Aristotelianism in
philosophy of mathematics is not a mere historical accident, and if reasons are
sought for the fact that Aristotelian inherentism is not among the traditional theo-
ries frequently discussed along with Platonism, formalism, intuitionism, and the
rest, it might be that Aristotle’s metaphysics of secondary substances (forms with
a small “f”) inhering or embodied and embedded in primary substances, has been
thought to be inadequate to account for the universality, aprioricity, or necessity of
mathematics, or for such classical mathematical implications as its commitment
to actual as opposed to merely potential infinity, and to infinite and transfinite
cardinals.

We shall later consider and propose answers to such objections. First, we note
that Aristotle himself in the Physics seems to deny the possibility of an inherence
philosophy of mathematics by virtue of arguing that mathematics cannot be the same
as mathematical physics. He explains:
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The next point to consider is how the mathematician differs from the student of nature; for
natural bodies contain surfaces and volumes, lines and points, and these are the subject-
matter of mathematics. . . Now the mathematician, though he too treats of these things,
nevertheless does not treat of them as the limits of a natural body; nor does he consider
the attributes indicated as the attributes of such bodies. That is why he separates them;
for in thought they are separable from motion, and it makes no difference, nor does any
falsity result, if they are separated. The holders of the theory of Forms do the same, though
they are not aware of it; for they separate the objects of natural science, which are less
separable than those of mathematics. This becomes plain if one tries to state in each of the
two cases the definitions of the things and of their attributes. Odd and even, straight and
curved, and likewise number, line, and figure, do not involve motion; not so flesh and bone
and man—these are defined like snub nose, not like curved. (193b23–194a6)

Aristotle acknowledges a distinction between pure and applied mathematics. He
distinguishes between mathematics and mathematical physics on the grounds that as
disciplines pure mathematics concerns itself with mathematical concepts abstracted
from the world of nature. Mathematicians, unlike physicists or “students of nature”,
do not speak of round apples or oranges, but of roundness, circularity, and the like.
While the theory and language of mathematics are different from those of physics,
however, it does not follow that mathematical entities, properties and relations exist
independently of the physical world.

This is precisely the view to which Aristotle is committed by virtue of denying
the existence of Forms except insofar as definitions or secondary substances inhere
in primary substances. In the classical metaphysical dispute between Plato and Aris-
totle, Plato’s theory of Forms implies that an abstract universal Form of Horse exists
in the world of Being even if there are no particular horses in the phenomenal world
of Becoming. Aristotle in contrast holds that there is no secondary substance or
non-Platonic form (with a small “f”) of horse unless there are at least some actually
existent flesh and blood primary substance horses in which the secondary substance
horse inheres. The same is now said as part of the present proposal with respect to
mathematical properties nominalized as mathematical entities insofar as they inhere
in the empirical world of physical phenomena.

To consider the implications of an inherence metaphysics of mathematics, we
shall distinguish between applicable “pure” mathematics and inapplicable pure
mathematics. Applicable “pure” mathematics is the formal theory of that part
of mathematics that deals with nominalized mathematical properties inhering or
embodied and embedded in the actual world, that are, just as Aristotle says,
abstracted theoretically and in the languages of mathematics from the physical
things in which they inhere. Inapplicable pure mathematics, by contrast, is that part
of standardly recognized mathematics that putatively describes mathematical enti-
ties, properties and relations, that do not inhere in the natural world and by definition
are therefore extra-mathematically inapplicable. We shall say that inapplicable pure
mathematics is akin to what W.V.O. Quine has described as “recreational” mathe-
matics.14 Inapplicable pure mathematics can be understood formalistically, as mere

14 Quine [37, p. 400] speaks of the higher reaches of set theory as a “mathematical recre-
ation. . . without ontological rights”.
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formal games involving the manipulation of symbolic tokens that do not correspond
to any existent mathematical entities, properties or relations. They are formal lan-
guages that extend the legitimate formulations of mathematical languages beyond
those that rightfully describe nominalizations of mathematical properties that inhere
in physical reality, and to which such mathematical systems properly apply.

Since inapplicable pure mathematics is inapplicable, there is no need to explain
its applicability, and hence no problem of understanding the nature of applied
mathematics where such systems are concerned. We accordingly devote most of our
attention first and foremost to applicable “pure” mathematics, where, as previously
suggested, the scare quotes indicate that mathematical languages describe formal
properties that on the present Aristotelian account inhere in the physical world. They
are “pure” in an attenuated Aristotelian sense, not in the manner of Platonic realism,
but only in that they are considered from a mathematical perspective as abstracted
from the physical world of primary substances in which the mathematical entities,
properties and relations they describe and about which they theorize, inhere.

3.5.1 Applicable “Pure” Mathematics—Consequences for the
Philosophy of Applied Mathematics

A. There is an exact subsumption of that part of “pure” mathematics capable of
being applied to physical phenomena in the natural sciences, and what is other-
wise designated, even from a Platonic realist perspective, as applied mathematics.
All “pure” mathematics capable of being applied to natural phenomena is indis-
tinguishable from applied mathematics in an Aristotelian inherence philosophy of
mathematics.

Mathematics in this sense just is applied or applicable mathematics, even if it is
“pure” in that its principles are abstracted from language explicitly making reference
to the world of nature. The substantial part of mathematics that an inherence theory
comprehends includes all of (at least potentially infinitary) arithmetic, geometry,
algebra, calculus, set theory, group and category theory, and much else besides.
This hefty fragment of applicable “pure” mathematics is coextensive with applied
mathematics as traditionally conceived. There is no difference between “pure” and
applied mathematics in an Aristotelian inherence philosophy of mathematics, there
is only mathematics, concerning the formal properties that inhere in the physical
phenomena in which mathematical properties are embodied and embedded and to
which mathematical theorems apply in everyday and scientific practice. This is part
of the inherence theory answer to problem (a) (B)–(D) below further explicate the
solution.

B. The inherence theory answer to problem (b) is divided into three topics.

(i) Semantic relation
The semantic connection between applicable “pure” and applied mathematics
on the inherentist conception as a result is that the two sets of terms refer iden-
tically to the nominalized mathematical properties that inhere or are embodied
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and embedded in the physical world. There is no semantic problem of refer-
ence to mathematical entities as abstract, because they are properties that are
exemplified in the actual world. In the same way that we can refer to other
properties exemplified in the physical order, colors and tastes, for example, so
we can refer in thought and language to the mathematical properties that inhere
in physical things, nominalized as mathematical entities for convenient expres-
sion in mathematical formulas. It follows, then, that there is no conflict such as
Benacerraf envisages for the semantics and epistemology of mathematics, as in
Platonic realism and the other more standard and popularly considered philoso-
phies of mathematics; this is the “solution”, or, better, the reply, to Benacerraf’s
dilemma. Benacerraf maintains only that virtually all philosophies of mathe-
matics are subject to the problem of providing an adequate general semantics
for mathematical languages on the model of the language of physical objects at
the expense of being unable to defend an adequate epistemology of mathemat-
ical discovery. In an Aristotelian inherence metaphysics of applicable “pure”
mathematics, the problem does not arise.

(ii) Ontic (metaphysical) relation
The ontic or metaphysical relation between applicable “pure” and applied
mathematics is once again that the two concepts precisely coincide. There is
no difference between them on the present theory. Hence there is also no prob-
lem, as in Platonic mathematical realism, of trying to understand how distinct
abstract and phenomenal orders might be interrelated by reference to physical
objects “imitating”, “participating in”, or “striving to maximize likeness with”
abstract ideal mathematical archetypes.

There nevertheless remains an outstanding ontological question as to the
metaphysics of inherence. Several kinds of theories might be advanced to fill
in this gap in a more complete inherentist philosophy of mathematics. It is in
keeping with the Aristotelian and best insights of the later Scholastic tradi-
tion as reflected even in Spinoza’s concept of substance, as well as common-
sense consideration of similar ideas even today, to regard physical (primary)
substances as that which most properly exists, while all other existences are
understood as ontically dependent on them.

This includes, if the present proposal is right in main outline, all exis-
tent applicable “pure” mathematical properties nominalized as mathematical
entities that inhere in existent physical phenomena. The ontic dependence of
applicable “pure” mathematical properties on the physical entities that embody
them or in which they inhere is reminiscent of the metaphysics of superve-
nience sometimes invoked in contemporary discussions of cognitive psychol-
ogy, philosophy of mind, and theories of consciousness. It may be appropriate,
therefore, to further characterize the inherence of applicable “pure” mathemat-
ical entities inhering in physical phenomena as supervening on the physical
substances in which they are also said to inhere. For present purposes, in the
special case of the ontic dependence of applicable “pure” mathematics on the
physical phenomena in which mathematical entities, nominalized mathemati-
cal properties and relations, inhere, we can say qualifiedly that the inherence
relation is equivalent to Jaegwon Kim’s analysis of strong supervenience.
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(iii) Epistemic relation
As to the epistemology of mathematical inquiry, at least for the consider-
able domain of applicable “pure” mathematics, there is no philosophical prob-
lem such as Benacerraf projects for an Aristotelian inherentist philosophy of
mathematics. Unlike the Platonistic mathematical realism commonly accepted
by mathematicians and philosophers of mathematics, mathematical knowledge
gathering is not rendered impossible by virtue of commitment to an abstract
causally inaccessible realm of eternal unchanging Platonic mathematical enti-
ties. The world of Aristotelian applicable “pure” mathematics is right before us.
It inheres in the empirical world experienced by means of the five physiolog-
ical senses. We learn mathematical truths when we discover the mathematical
properties inherent in the physical phenomena we study in everyday observa-
tions and the natural sciences, particularly but not exclusively in mathematical
physics.

What, then, of the necessity and aprioricity of mathematics as standardly
conceived? Several responses are suggested. We might bite the bullet, as
John Stuart Mill does in A System of Logic, and maintain that all mathemat-
ics is after all and despite appearances and the proclamations of Platonists
actually only a posteriori and logically contingent. Alternatively, we might
argue that mathematical properties despite being empirically discoverable and
verifiable are necessary and a priori in the same way that other ostensibly
nonmathematical metaphysical properties inhering in primary physical sub-
stances in an Aristotelian ontology or ousiology are reasonably supposed to
be. These include at least such properties as being self-identical, being spa-
tiotemporal, and being conditionally such that if certain properties obtain then
certain other properties logically must obtain, as in Putnam’s conditionalism or
if-thenism. Such interpretations are perfectly compatible with an Aristotelian
inherence metaphysics of mathematics, and may arguably account for all that
can anyway be legitimately attributed to the necessity or aprioricity of math-
ematics. The account explains these features of mathematics, moreover, with-
out requiring that we buy into a Platonistic mathematical realism of eternal,
unchanging and causally epistemically inaccessible abstract mathematical enti-
ties that all forms of nominalism have struggled to resist.

C. The question in (c) of how it is possible for mathematics to describe the world
of physical phenomena is answered straightforwardly in an inherence philosophy of
mathematics. Mathematics applies to empirical reality because all applicable mathe-
matics inheres as the formal properties of physical phenomena. Mathematics on the
inherence theory does not exist in a separate realm of eternal abstract ideal entities to
which it must then somehow be related to a changing spatiotemporal order. Rather,
applicable “pure” mathematics, according to an inherentist ontology, exists in and
only in the physical world of existent spatiotemporal entities in which mathemat-
ical properties and relations inhere. When we study the mathematical properties
of physical systems we are already engaged in the only (applicable) mathematics
about which the inherentist thinks it makes any sense to speak. We note that natural
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philosophers such as Isaac Newton and generations of physicists before and after
him even today would not have sharply distinguished between doing mathematical
physics, physics, and mathematics, except in the way that Aristotle explains.

D. Does an Aristotelian inherentist philosophy of mathematics, as question (d) asks,
shed light on the problems of applied mathematics that Mark Steiner in The Applica-
bility of Mathematics as a Philosophical Problem has emphasized in his exposition
of the heuristics of mathematical discovery?15

If an inherentist philosophy of mathematics is correct, then it requires all of
mathematics to supervene in the appropriate sense or ontically depend on the real
inherent mathematical properties of the real physical phenomena to which applied
mathematics is applied. The first task of applied mathematics in the sciences is
accordingly to identify a correctly positively corresponding mathematical system or
language to model the physical phenomena under study. This is not always an easy
requirement to fulfill, but one that must often proceed hypothetically and through
an adjustment period during the growth of science in which refinements in both
choice and all aspects of the development of mathematical methods take place.
These tinkerings in turn often interactively affect the scientist’s understanding of
the physical phenomena themselves as different mathematical formalisms are tried
out, invented or adapted for specific needs, corrected, improved, rejected, or finally
accepted.

When this process is complete, as we believe has satisfactorily occurred in vari-
ous branches of applied mathematics in the natural sciences, then it should come as
no further surprise and no deep philosophical mystery to be resolved by appeal
to conceptual resources beyond those available to an inherentist philosophy of
mathematics, that applied mathematics both describes and can be used to predict
and control events in the physical world. The requisite mathematics in that case
will be literally embodied and embedded in the physical phenomena, so that the
system’s formal consequences must correspond with the nature, disposition and
behavior, including the previously unnoticed and future behavior, of the relevant
physical system. If this did not happen, then we could not yet be said to have arrived
at the appropriate applied mathematics for the phenomena in question. We should
note with reassurance that this process of fitting the right mathematical language to
a settled conceptual grasp of the physical phenomena to which an applied math-
ematics is supposed to be applied is precisely what we find in the history and
contemporary practice of applied mathematics in the natural sciences in the work
of such physicists as Newton and Leibniz, Einstein, Dirac, Heisenberg, Stephen
Hawking, and others. It is very much a back and forth process. Once a good fit is
made between a physical phenomenon and applied mathematical system tailored
to its corresponding scientific needs, however, then it is a matter of course that
the mathematics seems presciently to “know” previously unsuspected things and
to predict or retrodict otherwise unexpected facts about the relevant phenomena.

15 Steiner [43].
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For the same reason, it follows in an Aristotelian inherentist philosophy of
mathematics that formal pen and pencil or high-speed computer calculations of the
appropriate mathematical equations, purely formal or “abstract” in themselves—
once they have been determined to be appropriate, the right applied mathematics
for the right applied mathematics job—should enable mechanics and engineers in
real time to build, correctly predict the behavior of, manipulate, and in other ways
control physical objects and events to which the calculations are applied. There is in
any case no further philosophical, semantic, ontological, or epistemic problem to be
overcome in understanding how applications of arithmetic, algebra, geometry, cal-
culus, and probability theory, among others, in fluid dynamics, ballistics, kinematics
generally, or quantum mechanics, can be used to explain and make predetermined
things happen in the empirical world. Mathematics works so well in physics because
mathematical properties nominalized as entities and relations are embodied and
embedded in and ultimately derive all their meaning from the physical phenomena
to which applied mathematics of the appropriate kind is applied.

Mathematics on the present theory is literally in the natural world; it inheres in
or is embodied and embedded as the mathematical properties of physical reality.
So, of course, mathematical physics, once we have the right applied mathematical
methods in hand, must work. That is the proper goal for applied mathematics in the
sciences, to identify the requisite applied mathematical language for each physical
phenomenon under the aegis of each natural science. It is the goal toward which we
find scientists as applied mathematicians striving throughout the history of the exact
sciences and among their contemporary practitioners today.

3.5.2 Inapplicable Pure Mathematics—Consequences
for the Philosophy of Applied Mathematics

What is left over? What remains after we have accounted for the applicable part
of mathematics that can actually be used in the theoretical physical sciences, in
mechanics and engineering of all types, as inhering in the physical world of primary
substances to which applied mathematics is correctly and successfully applied?
What remains are all those branches of mathematics that ostensibly at least are alto-
gether inapplicable to the real empirical world of actual physical entities and actual
physical phenomena. Are there any such legitimate genuine parts of mathematics?
Can there be such languages and mathematical methods according to an inherentist
philosophy of mathematics? What should a self-respecting inherentist philosophy
of mathematics say about such developments in mathematics?

We must distinguish at the outset between mathematics, for which, as it happens,
there has thus far been no scientific physical application and those that are absolutely
and in principle inapplicable, or for which as a matter of logical, mathematical, or
causal physical necessity, there is and can be no possible application. While the
direction of discovery in mathematics has often and even paradigmatically been
from perceptions of what is needed in a formal system for real-world applications to
innovations in mathematics, the opposite line of progression has and can obviously
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on reflection also and equally occur. The classic example is probably the originally
applicationally unmotivated elaboration of non-Euclidean geometries. These, it is
frequently remarked, were genuine mathematical theories with genuine mathemati-
cal theorems even prior to Einstein’s finding an appropriate application for them in
relativity physics, in which for the first time applied mathematics required a rigorous
mathematical model of the curvature of spacetime determined by large gravitational
fields.

Such episodes in the history of applied mathematics are no embarrassment for
an inherentist philosophy of mathematics. The inherentist can say that all along
the mathematical structures inhered in the physical universe, but that it took some
time for scientists to recognize the fact. We simply did not know that Riemannian
geometry was needed for astrophysics until Einstein opened our eyes to the fact.
There is a difference between a mathematical system’s being applicable to physical
reality and our knowing that it is applicable. Now, we ask, how do we know that
the same is not true of many another if not finally of all of what currently pass for
supposedly inapplicable mathematical languages and methods? If that should turn
out to be the case for a projection of the path of natural science and its reliance
on hitherto unexploited branches of “pure” mathematics into the indefinite future,
then the inherentist philosophy of mathematics would perfectly comprehend all that
legitimately deserves to be styled mathematics, with no overlap of recalcitrant coun-
terexamples. It could conceivably happen that every supposedly pure inapplicable
mathematical system will eventually get its obligatory fifteen minutes of fame (or
considerably longer) by being applied to some physical phenomenon for which no
one previously suspected it would ever have such a use. The inherentist can then
say that the mathematical properties of apparently inapplicable pure mathematical
languages had inhered in the relevant physical phenomena all along, as fallible sci-
entists and applied mathematicians only belatedly began to appreciate.

That expectation, for a variety of reasons, is probably unrealistic. There might
and are even likely to be developments within “pure” mathematics—perhaps the
only sort properly so called—of mathematics for mathematics’s sake—that will
never be applicable even in the modally weakest sense, because in the end they
do not describe mathematical properties that actually inhere in physical phenomena
anywhere in the physical universe. What would be an example of such? They are
not hard to find. The much higher-order cardinals of Cantor’s transfinite set theory
quickly come to mind; particularly for cardinals greater than 22ℵ0, and particularly if
the physical universe is finite and closed in dimension and if quantum phenom-
ena should turn out to be fundamentally and irreducibly discrete. Both of these
assumptions, incidentally, would have found eager acceptance by Aristotle and other
empirically-minded natural philosophers such as David Hume.16

16 Aristotle, Physics 263b3–9: “To the question whether it is possible to pass through an infinite
number of units [i.e. intervals] either of time or of distance we must reply that in a sense it is and
in a sense it is not. If the units [intervals] are actual it is not possible, if they are potential, it is
possible.” Hume [21, especially pp. 27–65]. See Jacquette [23].
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3.6 Metatheoretical Choices for an Inapplicable “Pure”
Mathematics from an Inherence Perspective

What are the choices for an inherentist philosopher of mathematics in responding to
the putative mathematics of Cantor’s paradise if these propositions about the metri-
cal limitations of the physical universe should turn out to be true? What should an
inherentist say if it happens that the best scientific cosmologies conclude that the
physical universe is finite and discrete? There would appear in that case to be three
basic alternatives.

Before we proceed to provide specific details, we should comment briefly and in
general terms on the advantages and disadvantages that two of these options entail.
There are pros and cons in ascribing to a unified as opposed to a diversified theory
of any kind, and more especially within the philosophy of mathematics. A unified
account is generally neater, more principled, simpler, and possibly more likely to
be regarded as true. This is only the case, however, when a unified theory is also
fully adequate to the relevant data. When the data themselves are complex and
categorically diversified, then an adequate theory often needs to be correspondingly
complex and diversified at the risk otherwise of being oversimplified, blind to essen-
tial differences, and incapable of accounting for all the factors essential to the the-
ory’s explanatory burden. What happens when we approach the unified/diversified
dichotomy from the standpoint of placing a high premium on understanding applied
mathematics in the natural sciences? It all depends on informed opinion as to the
nature of the data; in this case, whether in fact the universe is finite or infinite,
discrete or continuous.

With these words of caution concerning scientific judgment that has yet to be
finally rendered, the basic choices for an inherentist philosophy of mathematics in
light of the conceivability of there being ultimately inapplicable putatively mathe-
matical languages and formal mathematical methods are these (Table 3.1).

We can now consider all the possibilities in their respective categories and move
toward a preferred interpretation, it any should present itself:

Choice (1)—Uncompromising Prohibitive Inherentism
Choice (2)—Conciliatory Inherentism + Intensionalism
Choice (3)—Conciliatory Inherentism + Formalism

Table 3.1 Metatheoretical choices for an inapplicable “pure” mathematics from an inherentist
perspective

Uncomporomising Concilatory
UNIFIED DIVERSIFIED

Austere NO INHERENTLY INAPPLICAPLE

“PURE” MATHEMATICS

CONCILATORY INHERENTISM +
INTENSIONALISM

Opulent CONCILATORY INHERENTISM +
FORMALISM
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Choice (1) is simply to deny that there are inherently inapplicable systems of pure
mathematics. If Cantor’s transfinite set theory fails to have physical application, if
infinity and higher-order infinities do not inhere in and are not exemplified, embod-
ied or embedded in the natural world, and we can know this, then despite the beauty
of Cantor’s formal syntax, it is, according to choice (1), not mathematics. What is it
then? An inherentist can describe transfinite set theory as a sign system superficially
similar to some genuine mathematical languages, but no more mathematics than a
historical novel is history. It is significant in this regard that Cantor himself regarded
even denumerable or countable infinity as a fiction; it is only later mathematicians
and philosophers of mathematics, relying on a default Platonic realism, that have
blurred these distinctions and treated higher-order cardinalities as existent mathe-
matical entities on a par with any others.17

Choice (2) sacrifices unity, offering separate kinds of component subtheories
for applicable and inherently inapplicable “pure” mathematics. An intensionalist
semantics for mathematical terms and sentences allows such sentences to count as
mathematical, but, in its austerity, the theory does not extend ontic status to corre-
sponding putative mathematical entities, or, even, depending on the exact nature of
the superstructural truth value semantics provided (there are several possibilities),
to the truth of relevant mathematical sentences.

Choice (3), cutting across some of these major metatheoretical classifications, is
opulent rather than austere, permissive rather than prohibitive, and diversified rather
than unified. Formalism allows inherently inapplicable but still genuinely mathe-
matical languages and methods to flourish without ontic commitment to the exis-
tence of mathematical entities or semantic commitment to the truth of mathematical
sentences beyond those forms inherent in the formal properties of mathematical
sentences themselves. We reject formalism generally in philosophy of mathematics,
for reasons previously explained, particularly because of its inability to account for
the usefulness of applied mathematics. Where inherently inapplicable “pure” mathe-
matics is concerned, this is obviously not a problem. Indeed, the one-sided diet of
examples that has malnourished formalist philosophy of mathematics is precisely
this kind of ethereal inherently inapplicable category of mathematical results to
which Cantor’s set theory might be said to belong, together with an unwarranted
drive to force all of the philosophy of mathematics, contrary perhaps to its nature,
into a single unified metatheoretical mold. Seen for what it is with its limitations on
its sleeve, formalism represents a perfectly viable choice for one-half of a diversi-
fied approach to an otherwise more fundamentally Aristotelian inherentist philos-
ophy of mathematics embodied and embedded in the empirical world of physical
phenomena.

Choice (1) is unified, resolute, but prohibitive and austere, perhaps exces-
sively so. Its advantages are potentially outweighed by its implications for the
reform of ordinary ways of speaking about mathematics if we can no longer talk
about Cantor’s formal accomplishments among conceivably unlimitedly many other

17 See Cantor, Grundlagen einer allgemeinen Mannigfaltigkeitslehre [10, pp. 181–82].
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examples that might be given, as mathematics. This might be judged too high a
price to pay for a unified pure and uncompromisingly Aristotelian inherentism in
the philosophy of mathematics. It might therefore be dispreferred in comparison
with either of the following two choices, which are equally acceptable, depend-
ing on one’s attitude toward intensional or nonexistent mathematical objects as
mere (objective) objects of thought versus the sterility of a formalist philosophy of
mathematics.
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Chapter 4
The Philosophical Impact
of the Löwenheim-Skolem Theorem

Miloš Arsenijević

4.1 The Historical Philosophico-Mathematical Background
of the Löwenheim-Skolem Theorem

4.1.1 The Relation Externalism

In his Intellectual Biography [30, Ch. V], Bertrand Russell named the year 1889
as a turn, which he relates not only to his own philosophical development but also
to the beginning of an era, in which, contrary to the opinion of Leibniz and Hegel,
relations between objects started to be treated as equally real as and not reducible
to the properties of objects between which they hold. For instance, if a and b are
two objects, then a and b plus a relation holding between them make up a relational
structure that is equally real as a and b themselves, and in addition—which is a
consequence particularly important for our present purposes—objects a and b would
remain the very same objects if they ceased to stand in a given relation and started
being in a different relation.

4.1.2 Referring to Objects, Properties and Relations According
to the Theory of Meaning Holism: Frege, Wittgenstein
and Hilbert

Frege was the first who explicitly introduced the theory of meaning holism by stating
that a concept is something unsaturated [13, p. 24] [16, I.1. pp. 33–34], which can
become a reference only by being ascribed to an object. So, for instance, if the
concept horse occupies the place of the grammatical subject in a sentence, it does
not function as a concept [14].
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As for the way in which we refer to objects, Frege applied his distinction between
sense and reference (Sinn and Bedeutung) in order to show that we normally, if
not always, refer to an object through some mode of its representation [15, pp. 57,
62, 67]. So, for instance, while “Venus” directly refers to Venus in the representation
independent way, the expressions “the Morning Star” and “the Evening Star”, when
functioning as names are two different ways in which we refer to Venus (indepen-
dently of whether it shines in the morning or in the evening). But there are cases in
which there is nothing like “Venus” in the given example. “The centre of the circle
inscribed in an equilateral triangle” and “the centre of the circle circumscribed about
the same equilateral triangle” are two different ways of referring to one and the same
point, but there is no name that would refer directly to it. And if we refer to this point
by “the centre of gravity”, it is clear that this is just another mode of representation
of the same object to which “the centre of the circle inscribed in an equilateral trian-
gle” and “the centre of the circle circumscribed about the same equilateral triangle”
refer.

Wittgenstein radicalized the theory of meaning holism by stating that names have
no reference at all outside sentences in which “state of affairs” are stated [40, 3.3],
for the world is, according to Wittgenstein, “the totality of facts, not of things”
[40, 1.1].

And finally, it was Hilbert who stated that there is no reference, either in view
of names (constants or, indirectly, individual variables) or of relations (relation
constants) or of the statements (about relations holding between objects which
the constants refer to or the variables range over) outside a whole formal theory.
So, according to Hilbert, it is only a whole system of axioms (a formal theory)
that implicitly defines objects and relations which the theory is about [20, 21].
Consequently, the whole formal theory gets its reference through a simultaneous
interpretation of all its basic symbols and well-formed formulae, and this refer-
ence is a relational structure in which the theorems of the theory are satisfied,
i.e. true.

4.1.3 Consistency, Completeness and Categoricalness

According to Hilbert’s Programme, the ideal formal system should be consistent,
complete and categorical [12, Ch. V, §4].

Syntactically, an axiom system is consistent if and only if there is no formula
A of the system for which both A and its negation can be proved. Semantically, a
system is consistent if there is an interpretation such that its axioms are true. As a
consequence, later formulated as a theorem of the Model Theory, an axiom system
(a formal theory) is consistent if and only if it has a model. So, in order to prove that
a system is consistent it would be sufficient to show that it has a model. However, for
doing this, one should have a well-established meta-theory concerning the existence
of a model. That’s why Hilbert wanted to have a purely formal consistency proof
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without relating it to a model. However, in many interesting cases such a proof is not
of elementary nature and requires always stronger and stronger theories, as it fol-
lows from Gödel’s Second Incompleteness Theorem [18]. This problem of Hilbert’s
Programme is, however, irrelevant for our main concern.

The question concerning syntactical completeness is indirectly relevant to our
topic. A formal system is syntactically complete if and only if there is no pair of
sentences—a sentence and its negation—such that neither of the two sentences is a
theorem of the system.

The demand concerning the categoricalness of a system will be of crucial impor-
tance for our main concern. An axiom system (a formal theory) is categorical if and
only if all its models are isomorphic, i.e. if and only if all the relational structures
in which the system is interpretable are such that there is a structure preserving
one-one mapping between the elements of their basic sets.

4.1.4 The Set Equipotency and Higher-Order Infinities

One of the central things that are going to be questioned by the Löwenheim-Skolem
Theorem concerns Cantor’s theory of higher-order infinities, which is based on the
conception of the power of a set [12, pp. 95ff].

Two finite sets are equipotent if and only if all the elements of one of them can be
brought into 1–1 correspondence with all the elements of the other one. That’s why,
for instance, the set of four people has the same power as the set of four apples.
By generalizing this idea, two infinite sets are also said to be equipotent if and
only if all the elements of one of them can be brought into 1–1 correspondence
with all the elements of the other one. Now, a set has less power than some other
set if and only if all its elements can be brought into 1–1 correspondence with
the elements of some proper subset of the latter set but, at the same time, there
are not enough elements of the former with which all the elements of the latter
could be brought into 1–1 correspondence. That’s why a set of five apples has a
greater power than a set of four people. And that’s also why, according to several
proofs that Cantor has offered, the set of natural numbers is equipotent with the
set of rational numbers but has a less power than the set of real numbers. Cardinal
numbers are numbers that denote set powers. So, ℵ0 denotes the power of all the
infinite sets that are equipotent with the set of natural numbers, and these sets are
the weakest infinite sets. Cardinal numbers ℵ1,ℵ2,ℵ3, . . . denote infinite sets of
always greater and greater power. Cantor had stated and believed to have proven
[5, p. 333] that the power of the set of real numbers is ℵ1, namely, that there is
no infinite sets whose power would be greater than the power of the set of natural
numbers but lesser than the power of the set of real numbers, but since his proof has
turned out to be inconclusive, this statement of his was later called the Continuum
Hypothesis.
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4.1.5 The Set Orderings

In order to get a relational structure, we have to start with a basic set and then define
at least one relation on it. The most important relation is the ordering relation, i.e.
either< or≤, where the latter can be defined via the former and the identity relation.
However, it is important to notice that, by starting with different basic sets, we can
get different orderings—in accordance with the Cantorian procedure—by using the
allegedly same ordering relation. So, for instance, the three relational structures,
〈N,≤〉, 〈Q,≤〉, 〈R,≤〉, where N, Q and R are the set of natural numbers, the set
of rational numbers and the set of real numbers, respectively, are not ordered in the
same way: the first structure is discrete, the second one is dense but not continuous,
and the third one is continuous.

Concerning the order of 〈N,≤〉, it will be very important, for the understand-
ing of an apparent paradox of the Löwenheim-Skolem Theorem, that, in the meta-
theory, the ordering relation of the standard model can be introduced in two seem-
ingly equivalent ways, whose difference, however, can be exemplified by using a
model of Non-Standard Arithmetic. Namely, since the well-order of the intended
model is well-founded and total, it seems that any of the following two pairs of
conditions is sufficient for its definition. We can either stipulate that (1) there is
an element which is the minimal element of the structure; and that (2) for any
element, there is a unique element that is his immediate successor, or, alternately,
we can retain the first condition and add: (2’) any non-empty subset of the basic
set has a unique minimal element. But, as we shall see below (see Section 4.3.2),
there are structures in which conditions (1) and (2) are satisfied, whereas (2’)
is not. This means that (1) and (2) are not sufficient for defining, in a categor-
ical way, the order of natural numbers in Standard Arithmetic, whereas (1) and
(2’) are.

As for the difference between 〈Q,≤〉 and 〈R,≤〉, it consists only in the fact—
which Cantor held to be the first who had discovered and defined it clearly
[5, p. 190]—that while each element of 〈Q,≤〉 is an accumulation point of an
infinite number of elements, it is true only in 〈R,≤〉 that each accumulation of
an infinite number of elements has as its accumulation point the element that is an
element of the basic set itself. The lesson, which will be very important for an inter-
pretation of the Löwenheim-Skolem Theorem, is that the allegedly same ordering
relation functions differently in view of N, Q and R, so that the difference between
structures which are discrete, dense but not continuous, and continuous depends on
how they are structured partly independently on how they are ordered according to
the ≤ relation. In particular, if a structure is well-ordered according to the second
definition, its basic set is countable, but it is a question, as we shall see below,
whether it is so in the case in which a structure is well-ordered according to the first
definition only.

And finally, from the Hilbertian point of view, the difference between discrete,
dense but not continuous, and continuous structures is to be obtained only through
different axioms defining implicitly the meaning of the ≤ relation. This means that,
according to the Hilbertian meaning holism, the ≤ relation cannot be said to be
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the same in each of the three cases. More concretely, though it might seem that
the same ordering relation holds between elements of the otherwise differently
structured elements of discrete, dense but not continuous, and continuous struc-
tures, the very difference between these structures is based on the fact that the
ordering relation is implicitly defined in three different ways relating to these three
structures.

4.1.6 Intuitionism and Platonism

Though Intuitionists were not directly involved in the discussion concerning the
Löwenheim-Skolem Theorem due to the fact that the Intuitionist Programme
remained untouched either by the Theorem itself or by its consequences, the concept
of constructability [12, pp. 61, 104, 108], though not in the sense in which Intuition-
ists understand it, will appear in some important examples concerning the problem
of changing cardinalities [25].

Intuitionists reject the Cantorian concept of the actual infinity and use only the
Aristotelian concept of the dynamic (or potential) infinite. So they always start
with a finite number of constructed objects that may then get greater and greater
unboundedly but never becomes actually infinite [4, pp. 270ff.]. This treatment
enables them to prove various statements about the objects introduced in such a
way whenever they have a recursive control over what they speak about and an
inductive way to prove a theorem, but they do not allow us to speak of infinite
sets or classes as “finished entities” [4, p. 433] but only of “spreads” as entities “in
statu nascendi” [39, p. 52]. For instance, we may speak of natural numbers as a
species, without restricting our discourse to a finite number of them, and can also
prove, by using mathematical induction, that any of these numbers must be odd or
even, but we mustn’t speak of “the set of all the natural numbers (whose cardinal
number is ℵ0).”

An important consequence is that we cannot use the Weierstrassian concept
of real numbers according to which any complete decimal expansion defines a
unique real number. We may say, for instance, that 0.33. . . , where 3 is supposedly
going to occur at any place of the decimal expansion, defines the unique number,
i.e. 1

3 , but we mustn’t take that the decimal expansion of π defines π as the unique
real number, because, firstly, there is no recursive way according to which such an
expansion would be defined, and, secondly, there is no mathematical object such as
the complete infinite decimal expansion.

Due to the given restriction under which one is allowed to speak of the existence
of mathematical objects and to prove the existence of their properties and relations
holding between them, the use of many classical logical principles and derivation
rules is also to be restricted. It is so in the case of the principle of excluded middle,
the counterposition, the double negation, the reductio ad absurdum and so on. In
particular, this prevents all the Cantorian proofs concerning the existence of various
types of infinity and the uncountability of the set of real numbers.
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Now, I shall call Platonists all those who do not accept the intuitionist rigors
concerning the existence of mathematical objects and their way in which the theo-
rems are only allowed to be proved. This means that Platonism will be taken in a
much broader sense than as denotation of the mathematical programme contrasted
to Logicism, Intuitionism and Formalism. In particular, Hilbert’s Programme will
not be contrasted to Platonism, since the rigor of Hilbert’s foundation of mathemat-
ics concerns the syntactical finitism and recursive control that should govern the
introduction of basic symbols and formation and derivation rules [23, pp. 137ff],
which is, as such, not directed against the transfinite mathematics that lies on the
semantical part of a formal theory. As Hilbert put it himself, “No one shall drive us
out of the paradise which Cantor has created for us” [23, p. 141].

4.2 The Löwenheim-Skolem Theorem and Its Generalization

4.2.1 What Is the Löwenheim-Skolem Theorem About?

The essential statement of what is now called the Löwenheim-Skolem Theorem as
well as its proof—in spite of some errors and slopps [38, p. 156]—are to be found
in Löwenheim’s famous paper [26]. However, due to the fact that Skolem, in his
four papers [31, 32, 34, 35], removed all gaps and omissions from Löwenheim’s
proof, got rid of any use of the Axiom of Choice, strengthened and extended the
Theorem, analyzed profoundly its meaning, formulated the Theorem related Para-
dox and offered its first resolution, his name was later rightly attached to the name
of Löwenheim when referring to the Theorem itself. Some go even further on and
call it the Skolem-Löwenheim Theorem [12, p. 302].

The Theorem is nowadays highly estimated as the first great result in what was
later called the Model Theory [38, p. 154], viz. as a contribution that proved some-
thing substantially important and seemingly paradoxical about the relation between
a formal theory and its interpretation.

Since, perhaps contrary to, say, Gödel’s Incompleteness Theorem, the under-
standing of the Löwenheim-Skolem Theorem and its consequences represents a
problem per se that does not depend essentially on the understanding of its proof,
we shall turn directly, after giving its main formulation, to the clarification of its
meaning.

4.2.2 The Main Formulation of the Löwenheim-Skolem Theorem
and the Straightforward Meaning of Its Strong Version

Löwenheim’s original formulation [26] was about a first-order sentence σ that has
a model. However, since σ can be a conjunction, we may speak, instead of σ , of a
set Σ of first-order sentences. In particular, Σ can be the set of axioms of a formal



4 The Philosophical Impact of the Löwenheim-Skolem Theorem 65

theory. As for the model, since no qualification is indicated, the basic set of the
relational structure the Theorem is about can be an infinite set of any cardinality
whatsoever.

Theorem 1 If Σ has a model whose basic set is infinite, then Σ has a model whose
basic set is countable.

Let us explain the straightforward meaning of the Strong Version of the Theorem,
where, given that A is the basic set of the original structure and B the basic set of a
countable model B, B ⊆ A. Let S be a structure which consists of (1) an infinite set
A whose cardinal |A| is greater than ℵ0, and (2) a finite or denumerable number of
relations R1, R2, . . . defined on it. Then, there is a structure S′ that consists of (1)
the basic set B whose cardinal is ℵ0, and of (2) the relations R′1, R′2, . . . that are just
the relations R1, R2, . . . of S restricted to the set B, so that for every sentence σ of
the first-order language which corresponds to S, i.e., whose extra-logical symbols
are just relation-symbols which refer to the relations R1, R2, . . . of S, σ is true in S′
if and only if σ is true in S. In particular, if T is a first-order theory and S is a model
of T, then S′, too, is a model of T.

4.2.3 The Generalized Versions of the Löwenheim-Skolem
Theorem

In 1928, Tarski presented in his seminar a form of what is now called the Upward
Löwenheim-Skolem Theorem [38, p. 160]. However, this result was never pub-
lished and was only mentioned in the editor’s note of Skolem’s paper that appeared
six years later [36]. So, the proof is to be found only in the famous paper of
Malcev [27].

Theorem 2 If Σ is countable and has a model whose basic set is infinite, then Σ
has a model in each infinite power greater than the power of the original basic set.

Since the Theorem can be generalized so as to state that Σ has a model in each
infinite power lesser than the power of the original basic set—which is its version
called the Downward Löwenheim-Skolem Theorem—the most generalized form
states that:

Theorem 3 If Σ is countable and has a model whose basic set is infinite, then Σ
has a model in each infinite power.

However, since, from a philosophical point of view, the original version of the
Theorem is sufficient for the formulation and understanding of the most intriguing
questions and the most interesting examples related to its consequences, we shall in
what follows focus our attention to this form of the Theorem and refer to it, unless
necessary, by using its name without qualification.
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4.3 The Far-Reaching Consequences of the Löwenheim-Skolem
Theorem

4.3.1 The General Problem Concerning Hilbert’s Programme
Caused by the Löwenheim-Skolem Theorem

As it is said above (Section 4.2.1), the Löwenheim-Skolem Theorem concerns the
relation between a first-order formal theory and its interpretation. Now, we have
to remember that at the time when the Löwenheim Theorem appeared one of the
main concern of mathematicians was to formulate, as first-order formal theories,
the set theory, the theory of elementary arithmetic, the theory of real numbers and
of the continuum in general (within the formalized set theory or independently
of it). These theories were expected to be in accordance with Hilbert’s Programme,
i.e., to be consistent, complete and categorical, expressing formally and unequivo-
cally all the truths discovered informally or semi-formally in the respective math-
ematical theories, i.e., in the Cantorian set theory, the Fregean or Dedekindian
Arithmetic and in the general theory of the continuum applicable in the theory
of real numbers as well as in geometry. For this “paradise state,” in which a real
breakthrough concerning the formal foundation of the most important mathemati-
cal theories was expected, the Löwenheim’s Theorem and Skolem’s analysis of its
consequences represented a real disaster.

In the first place, the Löwenheim-Skolem Theorem implies the existence of non-
intended models of all the mentioned formal theories that are non-isomorphic with
the intended models. This means that these theories are necessarily not categorical.

The non-categoricity of a theory means that we cannot formally distinguish what
is distinguishable in the corresponding informal or semi-formal theory. In particular,
the cardinality becomes something relative [11, pp. 108ff], for, according to the
generalized version of the Löwenheim-Skolem Theorem, the structure in which the
theory is interpreted can be taken to be of any cardinality whatsoever. This relative-
ness of the cardinals was very disturbing both to Skolem [32, pp. 223ff] and von
Neumann [28, pp. 239–240]. For von Neumann, it suggests a kind of unreality of
cardinals and therefore serves as the argument in favour of Intuitionism.

And finally, one can make one step more, which Skolem did, and raise the ques-
tion about a possible paradox [33], since, as we shall see, a sentence stating the
existence of uncountable sets can be true after being interpreted in a structure whose
basic set is denumerable.

4.3.2 The Non-categoricalness and the Formal Indistinguishability
of the Informally Distinguishable

In order to illustrate the problem of the non-categoricity of a formal theory, I shall
start with the formal theory of elementary arithmetic as the simplest and most obvi-
ous case.
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The objects of the basic set of the relational-operational structure that is
the intended model of the fully formalized elementary arithmetic are numbers
0, 1, 2, 3, . . . for which the so-called Archimedes Axiom holds and which are all
finite in spite of the fact that there is an infinite number of them. As it is stan-
dardly defined, “an Archimedean model of arithmetic is a model in which for every
number N and for every [positive] number ε there is a finite number n such that
ε + ε + . . .+ ε > N , where ε is taken n times” [1, pp. 926f].

Let us imagine, however, a structure that does not differ from the intended model
in any other respect except that in it the Archimedes Axiom does not hold. This
means that in the basic set of this structure, in addition to finite numbers, there
are numbers that are infinite in the sense that they cannot be reached in a finite
number of steps by starting from any number that is finite in the sense in which all
members of the basic set of an Archimedean model are finite. It is evident that this
non-Archimedean structure is not isomorphic with the structure that is the intended
model of the formal theory of elementary arithmetic.

However, though in such a non-Archimedean model there are numbers a and b
such that there is no n that is finite and such that a×n ≥ b, the structure supposedly
does not differ from an Archimedean structure in no other respect. So, every number,
be it finite or infinite, has its unique immediate successor.

Now, given that there is an infinite number of infinite numbers just as there is
an infinite number of finite numbers, the fact that there is no maximal element
of the set of finite numbers in the given non-Archimedean structure is completely
analogues to the fact that there is no minimal element of the set of infinite num-
bers. This means, in effect, that there is an infinite subset of the set of elements
of the basic set of the given non-Archimedean structure that does not have a min-
imal element, which means, consequently, that, in view of two pairs of conditions
cited in Section 4.1.5, conditions (1) and (2) are satisfied, whereas the condition
(2’) is not.

One would certainly like that, in accordance with Hilbert’s programme, the for-
mal theory of elementary arithmetic grasps the difference between the Archimedean
and the non-Archimedean arithmetic so that if the former is a model of the formal
theory, the latter is not. Unfortunately, this cannot be done if the formal theory is a
first-order theory.

The problem is that the axioms that would be formulated in the style of Dedekind
and Peano do not enable us to preclude the existence of infinite (or hyper-finite)
numbers in the basic set of the intended model of the theory. For instance, it will be
true that for any two a and b such that 0 < a and a < b, it holds that there is n
such that a × n ≥ b, independently on whether we interpret the formal theory in an
Archimedean or in a non-Archimedean structure, for if b is a hyper-finite number,
n can be a hyper-finite number as well. One could try to impose a limitation to
standard numbers, as Fraenkel did in a similar context [10, pp. 233–34], by adding
the Axiom of Restriction to Peano’s arithmetic, say of the form

∀x[x = 0 ∨ x = 0′ ∨ x = 0′′ ∨ . . .],
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but this expression is of infinite length and is, therefore, not legitimate within the
framework of the standard first-order theory. And there is no way of reformulating
it within the standard framework.

If one tries to use the fact that in the non-Archimedean structures there are infinite
sets that have no minimal element whereas in the Archimedean structures it is not
so in order to make the difference between the two, this would also lead nowhere,
since the variables of the formal theory of arithmetic range over the numbers
and not over their sets. To express the difference, one would need a second-order
language.

All in all, there is no way to avoid the non-categoricalness by interpreting the
first-order formal theory of arithmetic in such a way that it becomes also possible to
distinguish formally what is distinguishable in the meta-theory.

4.3.3 Skolem’s Paradox

It was only in 1928 that Hilbert and Ackermann formulated quite precisely the con-
cept of the completeness of a logical syntax with respect to a given semantic theory
[22]. Only two years later, Gödel was quick to prove, in his doctoral dissertation,
his famous Completeness Theorem [17], which is now called simply Gödel’s Com-
pleteness Theorem, in contrast to his Incompleteness Theorem [19], which concerns
the question of the syntactical incompleteness (see Section 4.1.3 above). Gödel’s
Completeness Theorem says that:

Theorem 4 A sentence σ of a first-order formal theory Σ is true in all the models
of Σ if σ is a theorem of Σ .

By using this theorem, it is easier to reach the point of Skolem’s Paradox than in the
way in which it was done by Skolem himself, who, for this purpose, could use only
the Löwenheim-Skolem Theorem itself.

By Gödel’s Completeness Theorem, if a first-order formulation of the Zermelo-
Fraenkel Set Theory (ZF) is consistent, then each theorem of ZF is true in any of
its models. Now, by the Löwenheim-Skolem Theorem, one of the models of ZF
is denumerable. Let S be such a model and let A be the basic set of S, and R a
binary relation formulated in ZF and interpreted in S as ∈ defined on A. For the
sake of convenience, let us take that, if a member c of A stands in the relation R to a
member b of A, c is a member of b in S, i.e., we shall speak of b as if it were the set
{c | cRb} (of all the members c such that cRb). In addition, let us denote by ω the
only member x of A that satisfies in S the formula “x is the least infinite ordinal.”
Now, on the one hand, it is a theorem of ZF that there are uncountable sets, so, (1)
the set A must have a member a such that it is true in S that a is not denumerable.
On the other hand, however, (2) all the members b of a in S are members of A,
which is supposedly a denumerable set. (1) and (2) are seemingly inconsistent, and
this is what is known as Skolem’s Paradox [12, p. 303].

Since, as mentioned above, (1) and (2), taken together, seem to imply the rel-
ativization of the cardinality, Skolem’s Paradox is sometimes also understood as
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referring to this fact, if, namely, one is prone to believe, as von Neumann was, that
the relativeness of cardinality is inconsistent with the way in which the very concept
of cardinality is to be understood.

4.4 The Positive Reactions to the Löwenheim-Skolem Theorem:
To Blame the Language or to Re-investigate Structures?

Confronted with all the unpleasant consequences of the Löwenheim-Skolem Theo-
rem and of Skolem’s Paradox in particular, one can try, in view of the fact that the
Theorem concerns the relation between a formal theory and its interpretation, to find
one of the following two ways out of the situation: to blame the first-orderness of
the language in which formal theories are supposedly formulated and use a stronger
language to formulate them or to re-investigate the very structures the theories are
about in order to re-define at least some of the key concepts underlying their under-
standing. Or perhaps, as the third possibility, one can find that it is necessary to do
both.

4.4.1 The Weakness of the Language

As a consequence of the so-called linguistic turn in philosophy that happened at
the beginning of twentieth century, one could reasonably expect that the first option
was ready to be endorsed, both by mathematicians as well as by philosophers. A
general lesson of the linguistic turn has been that very many, even if not all, problems
and apparent paradoxes which we are confronted with by dealing with reality have
their origin in the language we use to speak of it. Isn’t it so also in the philosophy
of mathematics, where, at those days, the stubborn practice to stick to first-order
theories was nearly canonized?

The idea of blaming the language of formal theories for the disastrous conse-
quences of the Löwenheim-Skolem Theorem may arise quite naturally by analysing
the informal or semi-formal theories themselves which the main formal theories
were to formalize. The point is that the axiom systems used by mathematicians were
formulated within theories—such as informal set theory in the first place—which
were essentially second-order theories, so that one had indeed categorical axiom
systems for natural numbers theory, for real numbers theory and for geometry. It is
a bit strange that this fact had not been earlier anticipated as a possible source of the
problem that later emerged as a consequence of the Löwenheim-Skolem Theorem.
Let me give an example.

As mentioned in Section 4.1.5, Cantor was the first to clearly realize that there
are two conditions which have to be met if a structure is to be continuous. A set
of elements makes up a continuum if and only if (1) it is perfect, and (2) coherent
(zusammenhängend) [5, p. 190]. The first condition is easy to formulate within a
first-order language, because the density axiom, if added to the rest of axioms defin-
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ing a linearly ordered structure, implies that in any model there is an infinite number
of elements accumulating about any of its elements. So, 〈Q,≤〉 as the standard
perfect structure, is implicitly defined by the following eight axioms:

∀αn ¬αn < αn (4.1)

∀αl∀αm∀αn((αl < αm ∧ αm < αn)→ αl < αn) (4.2)

∀αm∀αn(αm < αn ∨ αn < αm ∨ αm = αn) (4.3)

∀αl∀αm∀αn((αl = αm ∧ αl < αn)→ αm < αn) (4.4)

∀αl∀αm∀αn((αl = αm ∧ αn < αl)→ αn < αm) (4.5)

∀αm∃αn αm < αn (4.6)

∀αm∃αn αn < αm (4.7)

∀αm∀αn(αm < αn → ∃αl(αm < αl ∧ αl < αn)) (4.8)

where the last axiom is the density axiom.
However, the second condition cannot be formulated within a standard first-order

theory. Namely, in order to say that the basic set is not only perfect but also coherent
(zusammenhängend), we have to mention explicitly an infinite number of elements,
for, according to Cantor, a set is coherent only if any accumulation of an infinite
number of elements has the accumulation point that is an element of the basic set
itself. In other words, any infinite accumulation from the left to the right must have
the least upper bound that is an element of the basic set itself just as any infinite
accumulation from the right to the left must have the greatest lower bound that is an
element of the basic set itself. This can be expressed only in the second-order lan-
guage or in the extended first-order language, which is now known as the infinitary
language Lω1ω1 . For the reasons that will be mentioned below (in Section 4.5.4), let
me formulate the two necessary axioms in the language Lω1ω1 [2]:

∀α1∀α2 . . . ∀αi . . .

(∃β1

∧

1≤i<ω

αi < β1 ⇒ ∃γ1(
∧

1≤i<ω

αi < γ1 ∧ ¬∃δ1(
∧

1≤i<ω

αi < δ1 ∧ δ1 < γ1)))

(4.9)

∀α1∀α2 . . . ∀αi . . .

(∃β1

∧

1≤i<ω

αi > β1 → ∃γ1(
∧

1≤i<ω

αi > γ1 ∧ ¬∃δ1(
∧

1≤i<ω

αi < δ1 ∧ δ1 > γ1)))

(4.10)

(where αm > αn ↔de f αn < αm). Notice that the antecedents in these two axioms
are unavoidable because in 〈R,≤〉, which is the intended model of the system rep-
resenting a linear continuum, there are infinite subsets of R without an upper and/or
a lower bound, so that what we want to say is that if there is an upper (lower) bound
at all, there is also the least upper (greatest lower) bound.
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But now, though the above axiom system is formulated in the extended first-
order language, the last two axioms contain infinite conjunctions, which was not
legitimate at the time at which the continuum theory was to be formulated as a
formal theory.

Generalizing the point of the previous example and turning to Skolem’s Paradox
and all the related problems concerning the non-categoricity of formal theories pro-
posed at the time we are speaking about, we can simply say that the language used in
the formulation of these theories was blind for making all the differences expressible
only in a non-standard language. In particular, this means that, bearing on mind the
meaning of Skolem’s Paradox, there can be a relation between the elements of the
basic set which is uninterpretable as any relation of a given formal theory but which
makes the statement of the uncountability of the basic set true, in spite of the fact
that all the relations envisaged by the theory are such that they make the very same
basic set countable.

So, one might say that the allegedly paradoxical consequences of the
Löwenheim-Skolem Theorem represent nothing else but just a striking example of
the weakness of the first-order language for describing the structures in which they
are interpreted.

Some mathematicians were ready to accept this as the end of the story. So,
already in 1930, Zermelo formulated the set theory in the second-order language
[41]. More than three decades later, Abraham Robinson offered a second-order
formulation of the non-Archimedean arithmetic and real numbers theory, which
contain infinite numbers and infinitesimals [29].

The semantics of the second-order logic is far less clear than the semantics of
the first-order logic and, in addition, many philosophers are reluctant, for various
reasons, to accept the ontological commitments that follow from the ontology of
classes, properties and relations implied by the second-order mathematics. But this
is not the matter of our concern. So, let us turn directly to the second strategy of
dealing with the consequences of the Löwenheim-Skolem Theorem, which assumes
that the Theorem tells us something important about the very relational structures in
which formal theories are interpreted.

4.4.2 Changing Cardinalities: The Relativeness of Cardinality
as a Language-Independent Property

If the lesson concerning the weakness of the first-order language in view of mathe-
maticians’ attempts to use it by trying to formalize informal set theory, natural num-
bers theory, real numbers theory, etc. were all that the Löwenheim-Skolem Theorem
contributed to, it would certainly be a big result which got rid mathematical and
philosophical community of a prejudice that characterized the naïve and ill-founded
hope of the “paradise state” in the first three decades of twentieth century. But it
would not be what it is now believed to be [11, p. 106]—one of the greatest results
in the history of the twentieth century mathematics, which threw a new light on
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some basic concepts of the set theory and the concept of relational structures in
general. The meaning of this latter result became clearly visible only much later
through some revolutionary results of Paul Cohen, Solomon Feferman and Azriel
Lévy in the seventh decade of twentieth century. But, before turning to these results,
I shall try to elucidate the main point by analyzing in a more detailed way Skolem’s
Paradox itself and by using a quite simple example.

Those who, by resolving Skolem’s Paradox, stress the weakness of the first-order
formalization of informal set theory for distinguishing cardinalities of different
models in which the formal theory is interpretable do not have to stop at this defeatist
conclusion, and normally they don’t. The explanation of the blindness of a formal
theory consists in the fact that there can be a relation “invisible” by the theory which
makes a countable model uncountable or an uncountable model countable.

As for the first possibility, it is sufficient that one is reminded of the example
concerning the second Cantor’s condition for the continuity of an ordered structure
(see Section 4.4.1). Though, in accordance with Hilbert’s Programme, the difference
between the ordering relation of only dense and continuous structures should be
grasped axiomatically (see Section 4.1.5 above), and though this can be done by
the use of the language Lω1ω1 (as suggested in Section 4.4.1), it cannot be done
within a standard first-order theory, and it is exactly the formal indistinguishability
between these two ordering relations that makes it possible that the theorem of ZF
about the existence of uncountable sets is true even if the ordering relation of a
structure in which the first-order formalization of ZF is interpreted makes its basic
set denumerable.

The second possibility is more intriguing. How could it be that a supposedly
uncountable model becomes countable?—Let us start with quite a simple case. Sup-
pose that we have a formal theory interpretable in a structure that is dense but not
continuous. Is this model also countable? The immediate response will be: “Yes,
of course! The set of rational numbers is dense, but it is also countable.” However
obvious this answer might be, there is a fact that can be easily overlooked, but which
is of crucial importance. We know that there are several functions which define
mappings of the set of rationals in such a way that the set of images is directly
countable. For instance, we can “arrange” the set of positive rational numbers as
follows:

1
1 → 1

2
1
3 → 1

4 · · ·
↙ ↗ ↙

2
1

2
2

2
3 · · ·

↓ ↗ ↙
3
1

3
2 · · ·

↙
4
1 · · ·
↓
· · ·
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and then pick them up following directions indicated by arrows, obtaining the 1–1
mapping onto the set of natural numbers, which is directly countable. Since knowl-
edge implies truth, the positive answer to the question of countability of rational
numbers seems self-evident. But this “self-evidence” may hide the fact that, inde-
pendently of our knowledge or ignorance, it is yet the case that the model is denu-
merable only because there are mappings such as the given one. If, counterfactually,
we hadn’t known that there are such mappings, it would have been far from evident
that it is so.

The point could be considered philosophically perverse if there were no other,
much more interesting cases in which the same phenomenon appears. The most
interesting one concerns the denumerability of the set of real numbers.

As his most famous result, Cohen proved 1963 that if ZF is consistent, it remains
consistent when the Axiom of Choice and the Generalized Continuum Hypothesis
are added [6, 7]. Using the model of Cohen’s type applied in this proof, Feferman
and Lévy proved that, by omitting the Axiom of Choice, “if ZF is consistent, it
stays consistent after addition of the following axiom: the set of real numbers is
a denumerable union of denumerable sets” [9, p. 593].1 And then, since it can be
proved that the set of elements of a denumerable union of denumerable sets is itself
denumerable, it follows that, under given assumptions, the set of real numbers is
denumerable!

Ironically, the fact that the set of elements of a denumerable union of denumer-
able sets is itself denumerable can be proved by the very same method that I have just
used above for showing that the set of rational numbers is denumerable, and which
was originally used by Cantor himself! Namely, let B1, B2, B3, . . . be members of a
denumerable union and a11, a12, a13, . . . elements of B1, a21, a22, a23, . . . elements
of B2, a31, a32, a33, . . . elements of B3, and so on. Now, by “arranging” the elements
of B1, B2, B3, . . . as follows:

B1 a11 → a12 a13 → a14 · · ·
↙ ↗ ↙

B2 a21 a22 a23 · · ·
↓ ↗ ↙

B3 a31 a32 · · ·
↙

B4 a41 · · ·
↓
· · ·

and picking them up following directions indicated by arrows, we obtain the 1–1
mapping onto the set of natural numbers, which is directly countable.

Further elucidation concerning the significance of the omission of the Axiom of
Choice lies outside the scope of this paper. So, we shall turn directly to general
philosophical aspects concerning the mentioned consequences of the relativization
of cardinalities.

1 See also [8, p. 146] and [24, p. 142]
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4.5 Concluding Logico-Ontological Considerations

Even for the hardest Platonists, the realm of higher order infinities transcending
2ℵ0 , however interesting it may be for mathematicians, seems unsurveyable from
an ontological point of view. So, by dealing with philosophically interesting con-
sequences of the Löwenheim-Skolem Theorem and Skolem’s Paradox in particular,
we shall focus our attention to discrete, dense and continuous structures that are
sufficiently close to reality in a common sense of the word, but which involve, at the
same time, the relevant difference between the countable and the uncountable.

4.5.1 Cardinality as a Non-absolute Property

As we have just seen (in Section 4.4.2), the resolution of Skolem’s Paradox that has
had the most important impact in mathematics demands the relativization of cardi-
nalities. This relativization seems to be in a blatant contradiction with the very con-
cept of cardinal number as it was originally defined by Cantor (see Section 4.1.4).
Though the status of the Continuum Hypothesis allows us to take that 2ℵ0 = ℵ1
but also that it is not so (some mathematicians have suggested that we should rather
take that 2ℵ0 = ℵ2 [37]), this does not mean that we may assume both to be the case
at the same time. So, we need some reconceptualization of cardinality if it should
be allowed to be non-absolute.

Now, the above consideration and the cited examples suggest a clear way in
which the concept of cardinality is to be re-defined. Instead of speaking of the
cardinality of a set as such, we should rather speak of the cardinality in a qualified
sense, namely, of the cardinality of the basic set of a structure. In the literature, it
is quite common to speak of the countability or uncountability of a model. This is
not correct strictly speaking, but it can be accepted as a façon de parler. It is yet
a set which is countable or uncountable, but it is always a basic set of a structure,
which also contains relations, and the countability or the uncountability of such
a set depends essentially on relations defined on it. So, instead of simply saying
that a set is countable, we should always say that it is countable in view of this or
that relation. Then, it becomes consistent to say that a set is uncountable in view
of this but countable in view of that relation. Even the simplest example shows
what this means. The set of rationals is not countable in view of the way in which
the rationals are ordered by the standard precedence relation. But if we order them
in a different way, by using one of the well-known functions, their set becomes
countable. However trivial this may seem, it ceases to be trivial when we turn to
real numbers, where under certain conditions they can be mapped onto a structure
in such a way that they start to be countable (see Section 4.4.2). So, as suggested, it
is not the set as such which is countable or uncountable but the set structured in a
certain way.
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4.5.2 Changing Cardinalities: Relation-Dependence Without
Re-structuring the Structures

There is one thing that can be said to remain ambiguous in the just given explanation
of the relativity of cardinality. It is said that the cardinality of a set can change
depending on different relations that can be defined on it as the basic set. Can these
different relations be assumed to hold simultaneously in a relational structure? The
question is very important, for if the answer were negative, one could say that, in
fact, one and the same basic set as the set of a relational structure cannot be uncount-
able and countable at the same time. We should say instead that, if uncountable, it
can only be mapped onto a structure which is countable.

The question is tricky. On the one hand, we want to say that the set of ratio-
nal numbers and (under certain conditions) the set of real numbers are countable.
On the other hand, if we admit that they become countable only after appropriate
re-structuring of their elements, one could say that after such a re-structuring the
elements cease to be rationals or reals and become natural numbers.

I do not see any other way out but to distinguish between two senses of count-
ability, direct and derivative, and say that the set of rational numbers and the set of
real numbers are countable because there is a different structure whose basic set is
directly countable and, at the same time, such that its elements can serve as images
of the elements of the basic set of the original structures. After all, it is a function
that maps all the rationals or reals onto a set of their images that gives the meaning to
the statement that the set of rationals and the set of reals are countable. We mustn’t
detach the meaning of countability from the existence of such a function, because
it is actually only the set of images that is directly countable. This seems to be the
only way in which we can continue to speak of rationals as rationals and of reals as
reals, and to say, at the same time, that their sets are countable.

By generalizing the given example, we can say that the relativity of cardinality
concerns the change of cardinality of the basic set of a structure in view of its pos-
sible mapping onto the basic set of a different structure. So, the set of real numbers
does not cease to be uncountable in spite of the fact that there is a model in which
the set of their images is denumerable.

4.5.3 The World and Its Substance: Relation Externalism
and the Problem of Referring to Objects by Re-structuring
the Structures

According to Wittgenstein’s Tractatus, the substance of the world is just the set of
its objects [40, 2.021], whereas the world itself is a complex relational structure
involving all the actual relations between objects [40, 2.022].

Now, I suggested above (in Section 4.5.2) that rational or real numbers would
cease to be what they are if they were structured as natural numbers and that this
represents the reason for using their images when speaking of their countability
(in a derivative sense). This seems to be in a direct contradiction to Russell’s relation
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externalism (see Section 4.1.1), according to which the objects remain what they are
after having changed their relation to other objects. I think that relation externalism
fails in this case only because numbers are not entities like ordinary objects in space
and time.

Let us speak, however, of the so-called rational points of a line segment, so that
0 refers to the left end-point, 1 to the right end-point, 1

2 to the mid-point of the seg-
ment, and so on. Now, if we accept, at least arguendo, that points are basic elements
of the real world, as Cantor did [5, pp. 275ff], we can imagine a real re-structuring
of the points of the given line segment such that the set of its former rational points
becomes directly countable. But in this case we only use rational numbers to pick
out the objects (points) that supposedly exist in reality independently of how we
refer to them, while in the case in which we speak of numbers themselves it is not
so. By using the theory of meaning holism, we should say that we cannot refer to 1

2
as an element of a relational structure by ignoring its position in the given relational
structure. There is nothing like “Venus” that could be used here to refer to 1

2 directly
(see Section 4.1.2).

The difference between the above two cases—numbers versus points—may
become crucial when we try to apply the relativity of cardinality to the analysis
of reality in a sense that is stronger that the sense in which we speak of reality of
numbers. Namely, it seems that, in view of the possibility of an actual re-structuring
of the continuum, there is a sense in which it could be possible that the cardinal
number of the basic set actually becomes ℵ0. And then again, starting from the
elements of such a decomposed continuum as a pure “substance of the world,” God
could build up, in the inverse order, the world such as it actually is. The possibility
of this scenario, which is based on the relativity of cardinality, shows that, how-
ever complex the world may be, for its constitution, it might be sufficient that its
“substance” is of cardinality ℵ0.

4.5.4 How to Apply Hilbert’s Programme in the Formalization
of God’s Re-structuring the Elements of the Space-World

As I have just suggested, if the process of changing cardinalities could have been
understood as the process of a real downward decomposition of the world, it should
be also possible to suppose that God, in an inverse process, has structured the real
space-world by starting from a set of its basic elements whose cardinality is ℵ0.
The natural question is, then, how we are to proceed when trying to formalize each
of the higher-order structures obtained in the process of God’s re-structuring the
world.

If we restrict our attention up to the stage at which one-dimensional continua
have been created, the question will be reduced to the formal distinction between
discrete, dense and continuous structures. However poor this might seem in view
of other structures envisaged in the transfinite mathematics, it will be enough
for understanding what the application of Hilbert’s Programme would generally
look like.
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The first important question concerns language. As we saw above (see
Section 4.4.1), the standard first-order language would not do the job. This means
that we have to choose between some of stronger languages. For several reasons, I
suggest that we use the language Lω1ω1 [3]. One of these reasons is that we would
not have to add anything to our basic assumption that the “world substance” is a
set of an infinite number of elements whose cardinal number is ℵ0 and would also
not have to refer directly to any set at all. So, the variables will range, during the
whole process of the world construction, only over the elements of one and the same
basic set. The second important reason is that we shall be able to treat any of the
theories formalizing a higher-order structure as a direct axiomatic extension of the
lower-order theory, which will explain the relation between the non-categoricalness
and incompleteness of a theory in an interesting way. This should be one of the most
interesting results concerning the question we are dealing with.

The second important question concerns the Hilbertian idea that the difference
between the structures we are dealing with should be a consequence of the difference
in the meaning of the ordering relation, which is to be grasped only axiomatically
(see Section 4.1.5). This means that, contrary to Cantor, we do not have to add any-
thing else concerning the cardinality of the basic set as such if we find that a model
of the theory formalizing a higher-order structure is non-denumerable, because
(as stated in Section 4.5.1) the cardinality of a structure does not concern the basic
set as such but its cardinality in view of a certain relation.

Now, if we want to formalize the linear structure that is only dense, we shall
naturally add the density axiom to the rest of axioms defining implicitly a linearly
ordered structure (see Section 4.4.1). The problem is, however, that the obtained
formal theory has non-isomorphic models, as we can see by anticipating the next
step of God’s re-structuring the world. Moreover, the models will differ just in view
of their cardinality!

The standard model of a dense structure is the set of rational points, whose car-
dinal number is ℵ0. However, let us start with the unit continuum [0, 1] (supposedly
already created by God) and delete, in addition to its two end-points, all the open
intervals ( 1

3 ,
2
3 ), (

1
9 ,

2
9 ), (

7
9 ,

8
9 ), (

1
27 ,

2
27 ), (

7
27 ,

8
27 ), (

19
27 ,

20
27 ), (

25
27 ,

26
27 ), . . . and so on

analogously. Now, since 1
3 + 2

9 + 4
27 + . . . + 2n−1

3n + . . . = 1, the length of the
deleted intervals is metrically equal to 1, while the remaining points make up a
discontinuum, which is a set metrically equal to zero. This set, which is known as
Cantor’s ternary set, is dense (i.e., perfect in Cantor’s terminology), which is easy to
see. But, since the cardinal number of all the deleted intervals is supposedly greater
than ℵ0, the cardinal number of such a discontinuum should also be greater than ℵ0,
which means that it represents a non-standard model of the system containing just
first eight axioms cited above (in Section 4.4.1).

Ignoring metrical differences between the basic sets of the two models—the set
of rational points and Cantor’s discontinuum—which can be treated as something
external and irrelevant for the basic isomorphism between the models of the axiom
system that contains the density axiom, the question concerning the difference in
cardinality remains unsolved. Given the relativity of cardinality, on the basis of
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which we have supposed that the cardinal number of the basic set of elements of
God’s construction of the world that contains the structures of higher cardinalities
is not greater than ℵ0, as well as the assumption that the introduction of a higher
cardinality can mean nothing else but a change of the holistic meaning of the order-
ing relation, we must try, by pursuing the Hilbertian approach, to grasp this change
axiomatically.

Contrary to standard dense but not continuous structures, Cantor’s discontinuum
as a specific, non-standard discontinuous structure, which contains “wholes” that are
continuous, can be expressed only in a system that contains axioms 4.9 and 4.10 (see
Section 4.4.1), which implicitly define structures of a higher cardinality. This means
that the system containing just first eight axioms must be said to be incomplete, since
it is non-trivially extendable through the introduction of new axioms. So, the specific
non-categoricalness of the system defining dense structures can be overcome if we
complete it in one way or another by using axioms 4.9 and 4.10 or their negations.
Let us mention that we can get interesting non-standard models by adding only one
of the two axioms [3, 3.3].

But again, if we add axioms 4.9 and 4.10 that are necessary for obtaining lin-
ear continua, we obtain a formal theory that is further completable in different
ways! In particular, the system containing 10 axioms cited above (in Section 4.4.1)
can be extended through the introduction of the large-scale and the small-scale
Archimedean axiom as well as through the introduction of the non-Archimedean
ones. So, for instance, we can preclude the non-standard interpretation by introduc-
ing the following two axioms [3, p. 42]:

∃α1∃α2 . . . ∃αn . . . (α2 < α1 ∧
∧

1≤i<ω

α2i−1 < α2i+1 ∧
∧

1≤i<ω

α2i+2 < α2i∧

∧ ∀β
∧

1≤i<ω

((αi < β ∧ β < αi+2)→
∧

1≤k<ω

¬β = αk)∧

∧ ∀γ
∨

1≤i, j<ω

(αi < γ ∧ γ < α j ))

(4.11)

and

∃α1 . . . ∃αn . . .

(∀β
∨

1≤i, j<ω

(αi < β ∧ β < α j ) ∧ ∀γ∀δ(γ < δ→
∨

1≤i<ω

(γ < αk ∧ αk < δ)))

(4.12)

where the first of them precludes the hyper-finite elements, while the second one
precludes infinitesimals.

And so on, and so forth. It is clear in which way we are to cope with the problem
of non-categoricalness. Though it is not possible to settle this problem once for ever,
whenever it can be reduced to the incompleteness question, we can apply the pay-as-
you-go strategy and preclude the unintended non-isomorphic models by a concrete
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extension of the theory. And in a possible case in which it were not possible to
proceed in this way any longer, the problem should be re-considered as the question
concerning the weakness of the formal language we have used.

And finally, as for the question about cardinalities of different structures we come
across by following God’s re-structuring the world, it must be admitted that it cannot
be answered in a straightforward way, since it is not clear how exactly mathemati-
cians themselves use the concept of cardinality after its re-conceptualization in view
of the Löwenheim-Skolem Theorem and the cited results of Cohen, Feferman and
Lévy. As I suggested above, only discrete structures like 〈N,≤〉, should be said to
be directly denumerable. But this does not mean that there are not special reasons
for distinguishing various kinds of countability in the derivative sense. Mathemat-
ical reality is more complex than the reality of the Cantorian space-world we have
been talking about. It would be interesting to see which reasons have led some of
mathematicians to assume that 2ℵ0 = ℵ2 [37], but such an investigation lies outside
the scope of this paper.
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Chapter 5
Debating (Neo)logicism: Frege
and the Neo-Fregeans

Majda Trobok

5.1 Introduction

The problem of the internal structure and the basis of our mathematical knowledge
is a fundamental one in the philosophy of mathematics. It is often tied to the related
issue of its epistemological source. These two issues are often presented together
and labelled as “knowledge-of-sources rationale.” However we have to keep distinct,
within the rationale itself, its two prongs: the normative foundationalist project in
mathematics and the more factual question of grasp of mathematical knowledge.
This thought is going to guide the present paper. Since it is often assumed that
Frege’s original route addresses both sub-issues, in this paper I will try to argue
against this construal of his theory.

Firstly, an interpretation of Frege’s original route will be presented and defended,
which is more limited in its scope, and incompatible with the narrow epistemo-
logical reading of his theory. Secondly I shall critically concentrate on the Neo-
Fregeans’ programme that is supposed, in the context of epistemic significance,
to be following the Fregean’s one (the neo-Fregean’s logicist version I find most
appealing and whose work I shall try critically to address here, is Hale’s and
Wright’s neo-logicist account).1

As for Frege himself, I shall abide by his distinction between the narrowly epis-
temological query and the task of determining the foundations for mathematics;
and argue that his motivation is focused upon the latter one, even to the point of
exclusivity. My aim is not to de-philosophise his effort and portrait him as just
an ingenious mathematician, but instead to locate his philosophical interest in an
adequate fashion. In particular, as regards Hume’s principle, the main target of the
present-day debate, I will argue that Frege does not come to grasp and does not

1 See e.g., Hale and Wright [8, 9].
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invite the reader to grasp natural numbers through Hume’s Principle, so that to
say that Hume’s Principle offers an epistemological route is to reverse the order of
things. In short, Hume’s Principle has only a logico-semantic priority, not a genetic,
source-related, epistemic one.

Neo-Fregeans, in contrast, talk about Hume’s Principle and Frege’s theorem in
strongly epistemic terms as offering “one clear a priori route into a recognition of
the truth of. . . the fundamental laws of arithmetic (. . . ).”2

I shall argue, albeit very tentatively, for a pessimistic conclusion to the effect that
the ultimate result of all these worthy efforts might be the failure in both Frege’s
aims, taken at face value: proving the analyticity of arithmetic and hence determin-
ing the foundations of mathematics to be uncontentiously solid since based of logic.
In the last section I very briefly evaluate a possible escape route for the neo-Fregean
logicist, namely to sustain that we could truly stipulate Hume’s principle, posit cer-
tain concepts and then check their having non-empty extensions. Such a way of
stipulation tout court would not ask for numbers to be known in advance and would
be close to the Hilbert-style implicit definition. In that case Hume’s Principle would
represent an epistemic path for the knowledge of arithmetic and analysis. Such a
project would unfortunately be far away from Frege’s goals, given his negative atti-
tude toward Hilbert-style definitions. I thus limit myself to the issue of fidelity of
neo-logicism to its original paradigm; I leave it open that neo-logicism might have
independent high qualities that would recommend it as the best course to take.

5.2 Frege’s Logicism

Let me start from Frege as seen by contemporary commentators who stress the
knowledge-of-sources rationale, in order to proceed to his own pronouncements a
few paragraphs later. In Frege’s theory the knowledge-of-sources rationale would
motivate the goal of establishing a variant of logicist view, i.e. the theses of epis-
temic dependence of mathematical knowledge on logical one and thus determining
the epistemological source of the former.

According to Frege, mathematical objects were logical objects. Hence a knowledge of num-
bers calls for nothing beyond knowledge of logic and definitions. (Hale and Wright [8, p. 1,
Intro.])

So, as far as Frege’s logicist programme is concerned, in the neo-Fregeans’ inter-
pretation, it allegedly shows or aims to show how mathematical knowledge is based
on our capacity to grasp mathematical objects by the specifically reasoning faculties
of the mind. Following a well known tradition, they take Frege’s insistence on the
semantic primacy of the sentential context as crucial, in conjunction with consider-
ation of Hume’s Principle:

2 Wright, On the philosophical significance of Frege’s theorem, p. 210.
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Where neo-Fregeanism principally differs from Frege is in its taking a more optimistic view
than Frege himself came to hold of the prospects for the kind of contextual explanation
of the fundamental concepts of arithmetic and analysis—the concepts of cardinal number
and real number—which he considered and rejected in the central sections (§§60–68) of
Grundlagen. The proposal there under consideration is that the concept of (cardinal) num-
ber may be explained, in accordance with Frege’s context principle, by fixing the sense of
identity-statements linking canonical singular terms for its instances—terms of the form
“the number belonging to the concept F”, or more briefly “the number of Fs”—and that this
may be done by means of what is now widely called Hume’s Principle (Hale and Wright
[8, Intro., pp. 1–2])

Are we to accept such a reading of Frege’s logicist project? Let us start with
few historical remarks. Following Bolzano’s and his successors’ steps in aiming to
remove intuition and visual representation from arithmetic and analysis (if anything
else, because it is misleading), Frege goes one step further. Historically, the demand
of getting a strongly rigorous proof for mathematical statements while ignoring the
intuitionally based results and denying the role of our hunches goes back to the
beginning of nineteenth century and continue through the work of primarily Bolzano
and Weierstrass. In 1872 Weierstrass famously discovers the existence of functions
being continuous at each point of their domain but not being differentiable in any,
which has contradicted most shockingly the mathematicians’ intuitions about con-
tinuous functions. And he proceeds with the elimination of self-evidence and intu-
ition from mathematical proofs in—what Lakatos labels as—“the Weierstrassian
revolution of rigour” (Lakatos [12, p. 55]).

Following such demand for rigour in mathematical proofs, Frege’s further step
consists in aiming to determine the justification and foundation for the basic mathe-
matical proof-steps. He nicely confronts (Grundlagen, §2) his demand for vigour
independently from the deductive confirmation of certain mathematical results with
the demand for the improvement of Euclidean rigour, which brought to the addi-
tional study of the V Euclidean axiom and the consequently results:

. . . it lies deep in the nature of mathematics always to prefer proof, wherever it is possi-
ble, to inductive confirmation. Euclid proved many things that would have been granted
him anyway. And it was the dissatisfaction even with the Euclidean rigour that led to the
investigation of the Axiom of Parallels.3

Frege’s further and deeper step leads him to the very foundation of mathematics.
He is not however just interested in the groundwork of mathematics in the sense of
determining the justification of mathematical statements, but also with the rational
order by which such justification should proceed:

After we have convinced ourselves that a boulder is immovable, by trying unsuccessfully to
move it, there remains the further question, what is it that supports it so securely? (Frege,
Grundlagen, §2)

3 Wherever possible, the Grundlagen quotations are taken from (Beaney [1]); alternatively they
are from Austin’s translation.
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It is not just that mathematicians should be rigorous in their search for subjec-
tive certainty, they should also, indeed primarily, be concerned with the objective
foundations of mathematical knowledge. It is not enough any more to reduce a
mathematical proof into rigorous, self-evident steps in order to be sure not to have
based them on intuition—as Frege nicely points out to in Grundlagen’s paragraph
2—it is vital to determine the objective base, the foundations of mathematics. Since
even what seems to be uncontentiously true, like the case with the fifth Euclid’s
axiom was, could turn out to be open to discussion and further analyses, and reveal
the possibility of a different outcome (in the case of Euclid’s axioms, of a different
geometry based on the negation of his Axiom of Parallels). The aim is hence to
determine what it is that supports the arithmetical-boulder so securely, what makes
the truth of arithmetical statements objectively “immovable.”

Event though such a demand for reliable, objective foundations is not original
(Descartes having famously stated it in his Meditations, in his search for the true
order of knowledge), the way in which Frege tries to answer it is novel. His main
idea is to show that mathematical theorems are truths of logic, “analytic”, i.e. deriv-
able from general laws of logic and definitions. And since logic is the arbiter of all
things, in the sense that everything existing objectively has to obey the laws of logic,
by proving arithmetic to be reducible to logic, we prove it to be securely grounded,
objectively true. The question to point out to is the one that concerns the existence
of epistemic connotation of such a project. I will try to argue for a negative answer.
Many authors (e.g. Dummett, Kitcher, Martin-Löf, Shapiro, to a certain extent) find
analyticity to be for Frege an epistemic concept, turning on how a proposition is
knowable.4 I think the two aspects, foundationalism and epistemology, are to be
distinguished, the former being Frege’s main concern, the latter not being one at all.
I will argue for it in several steps. I will distinguish the less usual notion of justi-
fication, namely the logico-semantical one from its more usual counterpart, i.e. the
subject’s justification, and argue that Frege is interested in the former one, relying
on an analyses of the main Grundlagen passages; along the way I will briefly take
a critical look on the work of those more recent authors who endorse the view that
Frege’s programme is epistemological in their, justification centred meaning of the
term.

The upshot will be that Frege’s logicist project concentrates on the justifica-
tory links between arithmetic and logic, where the notion of justification is logico-
semantical (in the sense of objective grounding), not subjectively epistemological.
More particularly, in connection with Hume’s principle, I will endorse the view that
the factual and subjective-normative query about our mathematical knowledge does
not find its answer in the grasp of the Principle, since its function is limited to its
logico-semantic aspect, leaving the canonically epistemic one open.

Let us start with the definition of analyticity, which is a clearly semantic notion,
classified by Frege together with the notion of apriority, exactly as the proposed

4 See Dummett [4], Kitcher [11], Martin-Löf [13] and Shapiro [15].
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reading would predict, to the complete surprise of a present-day mainstream episte-
mologists. In Grundlagen (§3), Frege says:

When . . . a proposition is called a priori or analytic (italics mine) in my sense,. . . it is a judg-
ment about the ultimate ground upon which rests the justification for holding it to be true
. . . The problem becomes . . . that of finding the proof of the proposition, and of following it
up right back to the primitive truths. If, carrying out this process, we come only on general
laws and on definitions, then the truth is an analytic one . . . if, however, it is possible to give
the proof without making use of truths which are not of a general nature, but belong to the
sphere of some general science, then the proposition is a synthetic one.

Although Frege uses terms like justification, which to the contemporary reader may
sound explicitly epistemic, his actual description of the object of his interest reduces
it to logical semantic relations and their patterns. Contrary to what contemporary
epistemologist would choose to do,5 Frege explicitly places together the notions of
aposteriori and analytic (the distinction being notably introduced in paragraph 3)
and clearly distinguishes

The question of how we arrive at the content of a judgment from the question as to how we
provide the justification for our assertion. (Grundlagen, §3)

The notions of analyticity and aposteriority are joined in the context of determin-
ing “the ultimate ground on which the justification for holding (a proposition-MT)
to be true rests.” Frege hence does not follow the contemporary habit of locating
the aposteriori into the epistemic domain and the analytic to the logico-semantical
one, thus assigning them to completely disjoint fields of investigation. Moreover for
Frege, the notion of justification clearly belongs to mathematics rather than to the
matters concerning cognizer’s mind, and is thus logico-semantical.

In this case the question (of apriority-MT) is removed from the domain of psychology and
assigned to that of mathematics, if it concerns a mathematical truth. (Grundlagen, §3)

This suggests that we should distinguish two notions of justification. The quotation
above exemplifies the first one, objective logico-semantical notion of justification.
The more usual notion of justification is less concerned with the nature of truths and
more with the cognizers’s thinking process, it is subject’s justification that some-
times has to do with the structure of his belief-system and sometimes with the nor-
mative aspects of the very genesis of his beliefs. The two notions are independent,
or so I shall argue.

I want to take Frege’s move seriously, and following what I see as his inten-
tion, contrast the logico-semantical notion of justification, in the sense of objective
grounding, with this second one, more at home on contemporary epistemology, that
I shall call genetic, source-related.

One could object that there is an intermediate domain of judgement available, the
one of epistemic normativity which is neither psychologicalin the naturalist sense,

5 See e.g., Burge [3].
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nor purely non-epistemic in the radical sense of being independent from cognizer’s
justification. Ironically, for the present context, such normativity has been taken by
Burge [3] as being central for Frege’s project. I do not however see elements of
epistemic normativity as being central to Frege’s programme, the latter being about
reducing mathematics to logic with the aim of proving its being “immovable.” The
reduction of mathematics to logic is not an epistemic result, in any possible sense of
the word. It may have epistemic consequences, for instance, helping mathematicians
by enhancing the clarity of their grasp of fundamental mathematical notions, but
it is itself not an epistemic move. After all, the epistemic path taken by the great
mathematicians did very well in the history of mathematics without being logicist
in its root, nor Frege criticizes it as such except for its not being sufficiently well
founded, lacking the needed rigour.

We shall need the distinction between logico-semantical and genetic, source-
related notions of justification a few lines below, in connection with the crucial
move—the appeal to Hume’s Principle. The move will be introduced by providing
some background.

The lynch-pin of Frege’s logicism is clearly the claim that mathematics—more
precisely arithmetic and analysis—is reducible to logic. Since mathematical state-
ments are reducible to logic, we can determine their foundations via logic alone.
And the task of reducing arithmetic, i.e. defining basic arithmetical terms such as
numbers in logical terms only has, as such, no epistemic connotations. Shapiro, for
example, even though he initially represents the programme as an epistemic one, at
one point concludes by saying that:

Perhaps this notion of foundation is as metaphysical as it is epistemic, despite the use of
notions like “proof” and “justification”. It is not a question of whether we know, for exam-
ple, that 7+ 5 = 12, to take Frege’s (and Kant’s) own example. There is really no question
but that we do know that. Nor is it a question of how we know that 7 + 5 = 12. We knew
that proposition long before the foundational work began. Moreover, our own knowledge
did not need to go, and in fact did not go, via the proposed founding definitions. We just did
the sum. Frege was interested in objective grounding relations among propositions, perhaps
something along the lines of Bernard Bolzano’s ground-consequence relation. This seems
to drive a wedge between the state of being justified and the ultimate ground or justification
of a proposition. (Shapiro [15, pp. 22–23])

I would add that such a notion of foundation in which, as Shapiro rightly points out,
the main task is to determine objectively based relations among arithmetical and
logical truths is clearly and exclusively logico-semantical, i.e. metaphysical.

The thesis that numbers are logical objects as well as the logico-semantical anal-
yses of basic arithmetical truths and definitions have, as such, no epistemic conno-
tations in the sense of determining how we perceive such relations and, more impor-
tantly, how the basic mathematical concepts and truths are epistemically accessible
in the first place.

What about the epistemic aspect of analyticity? Frege himself points out to the
distinction between the epistemological query and the problem of determining the
foundations for mathematics; he namely asserts:
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It frequently happens that we first discover the content of a proposition and only then pro-
vide a rigorous proof in another, more difficult way, by means of which the conditions of its
validity can often also be discerned more precisely. Thus in general the question as to how
we arrive at the content of a judgement has to be distinguished from the question as to how
we provide the justification for our assertion. (Grundlagen, §3)

. . . This would make them analytic judgments, despite the fact that they would not normally
be discovered by thought alone; for we are concerned here not with the way in which they
are discovered but with the kind of ground on which their proof rests; or in LEIBNIZ’S
words, “the question here is not one of the history of our discoveries, which is different in
different men, but of the connexion and natural order of truths, which is always the same.”
(Grundlagen, §17)

The aim of a proof is to “place the truth of a proposition beyond all doubt” (§3); in
the case of mathematics it amounts to demanding “that the fundamental theorems
of arithmetic, wherever possible, must be proven with the greatest rigour; since only
if the utmost care is taken to avoid any gaps in the chain of inference can it be said
with certainty upon what primitive truths the proof is based” (§4).

And we get to the requested proofs through our reason alone; doubting here
makes no sense,

for what are things independent of the reason? To answer that would be as much as to judge
without judging, or to wash the fur without wetting it. (Frege, Grundlagen, §26)

It is interesting to contrast Frege’s detailed articulation of logico-semantical rela-
tions with his very short, and to many interpreters puzzling remarks that do concern
epistemic matters. He offers little in the way of explicit argument on how we actu-
ally grasp mathematical objects, the solution of the riddle concerning what sustains
the “mathematical boulder” so securely being the objective of his logicist project.
This solution is to be found with no appeal to our intuitions or representations, but
relying exclusively on reason. However, and this might suggest the direction towards
a future solution of the epistemic puzzle, the laws of reason are the laws of logic.
Ultimately, the rules of logic being for him those of reason, he foreshadows the
epistemic route for grasping the rules of logic, encompassing arithmetic as well.

I would like to illustrate and further document this reading of Frege by applying
it to one of the central topics of Frege’s project, indeed the one that has been turned
into the central topic by the neo-Fregeans.

In the route of proving in the Grundlagen that natural numbers are reducible
to logical laws and definitions, Frege introduces (what Boolos names) Hume’s
Principle.6

6 The principle has been called Hume’s Principle by Boolos (in “The consistency of Frege’s Foun-
dations of Arithmetic”, in [2]). Boolos gave it this title because it recalls a remark in Hume’s
Treatise (Book I, Part iii, Section 1, par. 5), and because Frege quotes Hume in Grundlagen (§63):

when two numbers are so combin’d, as that the one always as unite answering to every unite
of the other, we pronounce them equal . . .
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Hume’s Principle (HP):
∀F∀G(n(F) = n(G)⇔ F ≈ G)
F , G—concepts;
n(G)—the number of G’s;
≈—equinumerosity relation

Let us apply our distinctions to this crucial move. Hume’s Principle represents
for Frege a possible step in his logicist project. How we grasp Hume’s Principle
remains in Grundlagen without an answer. What is certain is that Frege’s aim is
to characterize the already known (mathematical) objects—natural numbers, more
precisely to offer the criterion for their identity.

In the paragraphs introductory to Hume’s Principle, i.e. the last paragraphs of
the Grundlagen (in particular §62), one well-known reading is that the mode of
presentation that Frege introduces is intrinsically an epistemic concept, as many
authors have pointed out (most famously Dummett). That, if actually the case, would
colour Frege’s logicist project with epistemic connotations. In an alternative con-
strual though, the mode of presentation is not related to the query of grasp of mathe-
matical knowledge. The fact being that for centuries mathematicians have grasped
and managed to grasp properties of mathematical objects without knowing their
mode of presentation endorsed by Frege. The mode of presentation in Frege’s terms
is objective, mathematicians can either fail to grasp it (as they did for centuries) or
succeed in doing so (as in Frege’s case).

We might take as an example the Earth and its mode of presentation as an object
that is a planet through the property of being visible by virtue of the light from
a star reflected off its surface and that is (not-perfectly) spherical in its shape.
Notwithstanding this mode of presentation and the fact that mankind has known
since Pythagoras’ formulation that the Earth is spherical, the Earth had been per-
ceived as flat by astronomers again and again in the Middle Ages (failing to grasp
its mode of presentation).

The mode of presentation thus, construed as the way an object present itself to
the world, does not reveal per se its epistemic accessibility. In this sense, it does
abide by a reading of Frege’s project that lacks epistemic connotations.

Frege’s example with Venus might look as a counter-example to my argument
but, Frege characterizes the object itself merely as heavenly body; the component
“star” in the “Morning star” and “Evening star” is, at least for Frege himself, a
semantically inert part of the two proper names.

Having endorsed the view that Frege’s project lacks an epistemic overtone, I
wish to elucidate it further by additionally refining the proposed picture of the role
of Hume’s Principle in Frege’s logicist programme of getting a description of arith-
metic based on logic, thereby giving mathematics the grounds for security and truth
it needs. I would like to claim that Frege does not grasp and does not invite the reader
to grasp natural numbers through Hume’s Principle, so that to say that Hume’s
Principle offers an epistemological route is to reverse the order of things. To put it
in above introduced terminology, Hume’s Principle has a logico-semantic priority,
not a genetic, source-related, epistemic one. Let me briefly argue for this. Firstly,
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Hume’s Principle got formulated after twenty centuries of mathematical develop-
ment. From a purely mathematical point of view, mathematicians from ancient
Greeks to modern number theorists have developed the theory of numbers to its
full extent. Of course, as Frege points out, there are still philosophico-mathematical
problems concerning “a concept that is fundamental to a great science” that remain
open, and such an investigation of the concept of number is a task that mathemati-
cians and philosophers should share. But, his approach is “more philosophical that
many mathematicians may deem appropriate” (Grundlagen, Intro.). Frege is able to
introduce Hume’s Principle due to his knowledge of mathematics in details; what
he does is to encapsulate in Hume’s Principle the criterion of identity for math-
ematically well known objects. That Frege depicts, instead of stipulating, natural
numbers is also implicit both in the Caesar problem and in Frege’s approach toward
the so-called Hilbert-style implicit definition. Firstly, when Frege says we know
Cesar is not a number, this proves that in thinking of numbers he has in mind very
specific (abstract) objects, because he talks about identities of the form: the number
of F = x , where x is not a number. But in order to know that x is not a number,
i.e. that the identity is a mixed one, we have to know what numbers are, and this
is something we could have not possibly come to know just by positing Hume’s
Principle. His asking whether Caesar is a number is a picturesque way of inquir-
ing whether Hume’s Principles leaves the truth value and hence the meaning of
so-called “mixed” identities (like Caesar = 0) undetermined. His positive answer to
it suggests that positing Hume’s principle is not a way to actually get the “extreme
example” clarified. However, we know too well that Caesar is not a number. As
Frege points out, “naturally, no one is going to confuse [Caesar] with the [number
zero]. . . ” (§62).

So contrary to what someone might suspect, there is no vicious circle involved
here, since Cesar’s not being a number is a fact uncontentiously known by us prior
to positing Hume’s Principle.

Secondly, part of the argument that Frege depicts natural numbers instead of
stipulating their definitions can also be recovered from Frege’s negative stance
toward Hilbert-style implicit definition (usually presented as a set of axioms) and
his derogatory view of what the aim of a (implicit) definition amounts to:

. . . axioms and theorems can never try to lay down the meaning of a sign or word that occurs
in them, but it must already be laid down

Standardly, in implicit definitions the reference of the terms (definienda) is deter-
mined solely by the fulfilment of requested conditions; once they are fullfiled the
nature of the objects satisfying them is irrelevant, as Hilbert famously proclaims
“One must be able to say at all times—instead of points, straight lines and planes—
tables, chairs and beer mugs.” Hence, the axioms, stated in an implicit definition
and the conditions imposed (or properties requested by them) are what determines
the primitive concepts and their extensions. And this is precisely the proposal
of a proper characterization of the role of a definition that Frege rejects in the
above quotation. I shall return to the issue of implicit definitions when discussing
neo-logicism.
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Before the section on neo-logicism, let me briefly pass to the notion of aprior-
ity in general. By Frege’s own elucidation in §3, apriority amounts to the ability
to “provide a proof from completely general laws, which themselves neither need
nor admit of proof” (and from definitions not belonging to some specific area of
knowledge—as Frege points out in the same paragraph). Hence, this concept con-
cerns the ultimate ground on which the logico-semantic justification for holding
a (mathematical) proposition to be true rests upon—and as such is not epistemic.
It is not about “the psychological, physiological and physical conditions that have
made it possible to form the content of the proposition in our mind.” After all, prior
to determining the proof we have to know what is the assertion whose truth we
want to establish. Frege hence (not just in Grundlagen) settles the question as to
whether analyticity is an epistemic concept in the negative. Hume’s Principle does
not offer an epistemic route for grasping (natural) numbers, but rather a way for
knowing/determining the ground for taking mathematical propositions to the true.

5.3 What About Neo-Fregean Logicism?

Contemporary neo-Fregean logicism attempts to vindicate the spirit, if not the letter,
of the basic doctrines of Frege’s logicism, by developing a systematic treatment
of arithmetic that fulfils the requirements of Frege’s doctrine while avoiding the
contradictoriness of Basic Law V. The aim of neo-logicism is to develop branches
of mathematics from abstraction principles and it is primarily an epistemological
programme. As Shapiro points out:

Neo-logicism is, at root, an epistemological program, attempting to determine how mathe-
matical knowledge can be grounded. We can know facts about the natural number by deriv-
ing them from HP. (Shapiro [14, p. 99])

Neo-Fregeans are themselves explicit on this one:

The neo-Fregean thesis about arithmetic is that knowledge of its fundamental laws (essen-
tially, the Dedekind-Peano axioms)—and hence of the existence of a range of objects which
satisfy them—may be based a priori on Hume’s Principle (Wright, “Is Hume’s Principle
Analytic”, in Hale and Wright [8, p. 321])

Neo-Fregeans maintain that it is possible, following Frege himself, to define by
stipulation abstract sortal concepts—that is concepts whose instances are abstract
objects of a certain kind.7 What has to be stipulated is the truth of an abstraction
principle.

The general form of an abstraction principle is the following one:

∀ f ∀g(�( f ) = �(g)⇔ f ≈ g)

7 See e.g., Hale [7].
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f and g—variables referring to entities of a certain kind (objects or concepts
usually), �—a higher-order operator which forms singular terms when applied to
f and g, so that �( f ) and �(g) are singular terms referring to objects, and ≈—an
equivalence relation on entities denoted by f and g.

It is abstraction principles which are supposed to bear the main burden of the task
of reconciling logicist or neo-Fregean logicist thesis that arithmetic and analysis are
pure logic. In so far as they are stipulations they can aspire to explain in one stroke
both how logic can be committed to abstract objects, and how it is possible to have
knowledge of these objects.

The neo-logicists claim that

. . . we can account for the necessity of at least the basic arithmetic truths and how these
truths can be known a priori. (Shapiro [16, p. 71])

In particular, the principle neo-logicists concentrate on is our already discussed
Hume’s Principle.

If such an explanatory principle . . . can be regarded as analytic, then that should suffice at
least to demonstrate the analyticity of arithmetic. Even if that term is found troubling. . . it
will remain that Hume’s Principle like any principle serving implicitly to define a certain
concept will be available without significant epistemological presupposition to one who has
mastery of the concept it configures. . . So one clear a priori route into a recognition of the
truth of. . . the fundamental laws of arithmetic. . . will have been made out.

. . .

So, . . . there will be an a priori route from a mastery of second-order logic to a full under-
standing and grasp of the truth of the fundamental laws of arithmetic. Such an epistemo-
logical route. . . would be an outcome still worth describing as logicism. . . (Wright, On the
philosophical significance of Frege’s theorem, in Hale and Wright [8, pp. 279–80])

According to the neo-Fregeans, following Frege’s priority of syntax thesis, the
required condition for singular terms to refer is they occur in true statements (leaving
aside for the moment some well known qualifications).

The idea that abstraction principles are a legitimate way of introducing mathe-
matical theories is problematic, since some of them, as the infamous Basic Law V,
are inconsistent. I shall concentrate in this talk on the epistemic aspect of it. My main
worry about the programme is the possibility that the burning epistemic problems
of neo-logicism are being projected back upon Frege; in other words that Frege is
being wrongly credited with something he does not actually assert, and for which he
would never ask any credit (in fact I will argue that the possibility has turned out to
be very much actual). In contrast, neo-Fregeans themselves insist on the epistemic
route so that they are, differently form Frege, explicit in taking their programme to
be fundamentally an epistemic one.

They begin in a modest way talking in terms of explanation:

. . . by stipulating, that the number of Fs is the same as the number of Gs just in the case the
Fs are one-one correlated with the Gs, we can set up number as a sortal concept, i.e. that
Hume’s Principle suffices to explain the concept of number as a sortal concept. (Hale and
Wright [8, p. 15])
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However, they also propose a stronger claim of an a priori route for grasping the con-
cept of number and deriving the basic laws of arithmetic via Frege’s theorem. The
problem of distinguishing the fundationalist project from the epistemological one
appears more acute in the neo-Fregean’s programme since they state it explicitly.
Hume’ Principle allegedly gives us reasons for treating mathematical knowledge as
being a priori, by offering an a priori route for acquiring mathematical knowledge,
germane to the rationalist epistemology. According to neo-Fregean logicists Frege’s
logicism was correct in all main respects except for two points: Frege overestimated
the significance of Caesar problem and underestimated the significance of Frege’s
theorem (the derivation of the axioms of arithmetic from Hume’s Principle in
second-order logic) In order to avoid appealing to the disastrous Basic Law V, neo-
Fregean logicists famously do not follow Frege all the way, they advocate instead
adding Hume’s Principle to the second-order logic as a supplementary axiom, sus-
taining that Frege’s theorem gives reason for grounding the claim that arithmetic is
analytic in Hume’s Principle. As I have said at the outset, the result is the failure
in both Frege’s aims, taken at face value: proving the analyticity of arithmetic and
hence determining the foundations of mathematics to be uncontentiously solid since
based on logic. Neo-logicism does not prove (Frege’s) analyticity of arithmetic since
Hume’s Principle is not a law of logic, as Boolos pointed out long time ago. Instead,
they say that the fact that adding Hume’s Principle to second-order logic results in
a consistent system that suffices for a foundation of arithmetic (all the basic laws of
arithmetic are derivable within the system) and that this “constitutes a vindication
of logicism, on a reasonable understanding of that thesis.”8 But if Hume’s Principle
is not a law of logic, in what sense is logicism vindicated? Next, what about the
apriorist epistemology? Neo-Fregeans sustain that

. . . the case for the existence of numbers can be made on the basis of Hume’s Principle, and
it is important to the neo-Fregean that this should be so, precisely because it provides for a
head-on response to the epistemological challenge posed by Benacerraf’s dilemma.

. . . provided that facts about the one-one correlation of concepts—in the basic case, sor-
tal concepts under which only concrete objects fall—are, as we may reasonably presume,
unproblematically accessible, we gain access, via Hume’s principle and without any need
to postulate any mysterious extrasensory faculties or so-called mathematical intuition, to
corresponding truths whose formulation involves reference to numbers. (Hale and Wright
[10, p. 172–73])

Even though Wright insightfully emphases that in every epistemic project there
are presuppositions that have to be assumed on trust, without evidential justification
(in order to avoid an infinite regress), I find the question of how we grasp Hume’s
Principle legitimate and unpalatable for the neo-Fregean’s programme. By leaving
it without an answer, the epistemic project does not offer an alternative to the mys-
terious extrasensory faculties or so-called mathematical intuition, it just shifts the
mysterious part upon the presupposed unproblematic grasp of Hume’s Principle.

8 Hale and Wright [10, p. 169].
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Hale and Wight invite us to consider an analogy. We come to know when the
directions of two lines are the same through the Direction Principle (∀a∀b(d(a) =
d(b)⇔ a ‖ b)).

The Principle seems to be stipulated, and seems to give us the meaning the direc-
tion in virtue of pure stipulation. Hale and Wright apply the same assumptions to
the epistemology of Hume’s Principle. “The number of” receives its meaning from
stipulation in the same way in which “direction” does. However, the analogy does
not hold in the epistemic sense since the introduction of directions of lines does not
presuppose any determine objects (what do we know about properties of objects
corresponding to directions of lines besides what is determined by the Direction
Principle alone?!) or any theory about directions determined intuitively or in any
other way prior to the stipulation itself. We truly stipulate directions of lines. The
analogy, upon which Frege rests, is that we understand what directions of lines
are through the Direction Principle, in the same sense in which we can know what
numbers are through Hume’s Principle—but, as I have been pointing out, this is not
an epistemic route tout court, as neo-Fregeans (and others) sustain.

Here is my final worry: the only way out for the neo-Fregean logicist might
be to sustain that we could truly stipulate Hume’s principle, posit certain concepts
and then check their having non-empty extensions. Such a way of stipulation tout
court would not ask for numbers to be known in advance and would be close to
the Hilbert-style implicit definition. As Shapiro explains (Ebert and Shapiro [5])
there are important differences between Hilbert-style and neo-Fregeans logicists’
stipulations the crucial one in this context being that

With the exception of logical terminology (connectives, etc.), no term in a Hilbert-style
implicit definition comes with the previously established meaning or extension.

. . .

For Hilbert, the satisfiability (or relative consistency) of the set of axioms is sufficient for
their truth, whereas for the neo-logicist, a crucial issue is the uniqueness of the objects
referred to by the relevant terms involved.

Could Hilbert-style reading of Hume’s Principle help?
The acceptance of a Hilbert-style implicit definition would raise a new version

of Julius Cesar worry: by using Hume’s Principle as a Hilbert-style implicit defini-
tion, it would not be possible to depict certain, unique objects; remember Hilbert’s
quip that “table, chairs and beer mugs” could be taken as satisfiers of axioms nor-
mally taken to refer to points and lines. No Hilbert-style implicit definition can
uniquely determine the objects it refers to and it’s not its aim either. As Ebert and
Shapiro rightly notice: “the connection to intuition or observation is broken for
good.”9 On the other hand, the history of mathematics shows examples that did
work this way. Let us remember, e.g. Cardano’s stipulation of “imaginary num-
bers” (1545, Ars Magna)—at first they here stipulated as numbers whose square
was a negative number and it took almost 300 years before Gauss determined

9 Ebert and Shapiro [5, p. 421].
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their geometrical interpretation and hence explained “the true metaphysics of the
imaginary numbers” (1831). Maybe a similar, truly stipulative, positing route might
be open for Hume’s principle and natural numbers as well. In that case Hume’s
Principle would represent an epistemic path for the knowledge of arithmetic and
analysis.

Such a project would unfortunately be far away from Frege’s goals, given
his approach toward Hilbert-style definitions, and the corresponding meta-theory
according to which singular terms do not have to uniquely determine the objects
they refer to.

With the adapted concept of analyticity and Hilbert-style implicit definition,
however, the essential core of Frege’s logicist programme—contrary to the neo-
Fregeans’ aim—would not to be preserved.

5.4 Conclusion

I have started from the contrast between two concepts of justification: genetic and
foundationalist. In contrast to the lot of mainstream contemporary work I have
argued that Frege’s interest is far from the genetic-epistemological and is limited
to the philosophical-mathematical task of determining the foundations for mathe-
matics.

Consequently, I offer an interpretation of Frege’s original route, which is more
limited in its scope, and incompatible with the mainstream epistemological read-
ing of his theory. I have argued for such an interpretation through the analyses
of relevant passages of Grundlagen and some mathematico-logico-historical data.
I emphasise the logico-semantical nature of Frege’s view of justification, and the
priority of the notion of analyticity. Analysing the implicit definition of numbers
in Hume’s Principle, I hope to have shown that Frege’s aim was to determine the
objective justificatory connections between arithmetic and logic, which are norma-
tive foundational in their roots. Going one step further, I argue that in Frege’s project
these connections, like any other central items for that matter, have no source-related
epistemic priority. I hence contrast the logico-semantical notion of justification,
from the subject’s justification as its more usual counterpart and propose the idea
that Frege’s project is not about the latter one at all.

More specifically, in my analysis I firstly concentrate on Frege’s aim of finding
out the objective justification of mathematical statements and the order in which
such a justification should be carried on, holding such an aim not to be related
to determining the epistemic path of mathematical knowledge. Secondly, I point
to Frege’s not following the contemporary habit of locating the aposteriori into
the epistemic domain and the analytic to the logico-semantical one, thus assign-
ing them to completely disjoint fields of investigation, but grouping them together
under what I see as the common logico semantic heading. I thirdly examine the
discrepancy between the logico-semantical and the genetic, source-related notions
of justification, illustrating it in the context of the discussion of Hume’s Principle.



5 Debating (Neo)logicism: Frege and the Neo-Fregeans 97

I then concentrate on the modes of presentation, taken to be paradigmatically epis-
temic by many authors, most importantly by Dummett. I offer an alternative reading
according to which the notion of the mode of presentation is not to be allied to
the actual epistemic grasp of arithmetical statements. Finally, I return to Hume’s
Principle debate in the context of the query of depicting vs. stipulating mathemat-
ical items and the relation to the implicit definition; the aim is to show that, given
Frege’s project, Hume’s Principle does not represent an epistemic path for the grasp
of (natural) numbers; instead, it offers a way for determining the ground for taking
arithmetical statements to the true. Witness the fact that Frege himself does not
pretend to grasp natural numbers through Hume’s Principle. The Principle has only
a logico-semantic priority, not a genetic, source-related, epistemic one.

In the second part of the paper, I critically concentrate on the Neo-Fregeans’
programme, more precisely on the neo-logicists’ version that I find most appealing,
which is Hale’s and Wright’s neo-logicist account. This project is supposed to be
following the original Fregean’s one in the matters of epistemic significance, and I
argue that the suggestion is misleading: the Neo-Fregeans do not manage to fulfil
either of Frege’s aims, taken at face value: proving the analyticity of arithmetic and
hence determining the foundations of mathematics to be uncontentiously solid since
based of logic. I do not however analyse those features, which are legion, that makes
neo-Fregean logicism a worthwhile project.
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Berislav Žarnić, Stephen Reed. Many thanks as well to Nenad Smokrović and especially to Nenad
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Part II
Epistemology and Logic



Chapter 6
Informal Logic and Informal Consequence

Danilo Šuster

6.1 Introduction

My reflections on the so-called informal logic were provoked, initially, by the prac-
tice of teaching logic to undergraduate students of philosophy. Contemporary formal
logic offers a well worked out theory; the old educational problem is simply how
to make it relevant to philosophical or even everyday reasoning. Informal logic as
an attempt to develop a logic to assess, analyse and improve ordinary language
(or “everyday”) reasoning is by definition closely tied to general educational goals
and critical inquiry. The core notion in a course of informal logic and critical think-
ing is usually the notion of the argument and questions such as: What distinguishes
good from bad arguments? What makes a good argument succeed? What makes a
bad argument fail? It seems sensible to combine classes of standard formal logic
with classes which outline various non-formal techniques of argument analysis.

Now, by the end of a typical “combined” course almost all of the students will
have mastered the required symbolic manipulations (natural deduction, axiomatic
proofs). However, when required to informally and critically analyse a piece of
“ordinary” reasoning many of them fail badly. Elementary logical “calculi” are
apparently much easier to master than the informal techniques of applied logic.
What then should we do with informal logic? What should we teach and how should
we test the results? (Mis)achievements are difficult to evaluate—is failure to be
explained by lack of knowledge in some specific field of everyday argumentation
(not something to be taught in the logic class) or by lack of some special logical
knowledge (something one should master in the logic class)? Are there any special
skills of informal logic at all? Is it all just a matter of general intelligence and the
depth of one’s knowledge?1

1 I was not the first to be puzzled. Books are now written on this topic. Cf. Sobocan and
Groarke [28].
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Peter Medawer, a Nobel laureate in medicine, gave the following comment on
scientific method and philosophy of science in general: “If the purpose of scien-
tific methodology is to prescribe or expound a system of enquiry or even a code of
practice for scientific behaviour, then scientists seem to be able to get on very well
without it. Most scientists receive no tuition in scientific method, but those who
have been instructed perform no better as scientists than those who have not. Of
what other branch of learning can it be said that it gives its proficients no advantage;
that it need not be taught or, if taught, need not be learned?” (Medawar [23, p. 8]).
Well, informal logic sprang naturally to my mind. Not surprisingly—informal logic,
or logic in a broad sense, is basically just elementary scientific methodology, or so
I will argue. Medawer also added: “Of course, the fact that scientists do not con-
sciously practice a formal methodology is very poor evidence that no such method-
ology exists” (Medawar [23, p. 9]). So, all hope for a more theoretical approach is
perhaps not lost.

The educational puzzlements lead to more general philosophical questions. What
is informal logic—is it “logic” at all? If the notion of consequence is at the
heart of logic, does it even make sense to speak about “informal” consequence?
Soundness—premise truth and deductive validity of an inference is a classical stan-
dard in argument evaluation. Informal logicians replace the standard of sound-
ness with a broader notion of argument cogency. An argument is cogent if and
only if (i) its premises are rationally acceptable, (ii) its premises are relevant to
its conclusion and (iii) its premises provide sufficient reason to accept the con-
clusion or its premises constitute grounds adequate for accepting the conclusion
(the “ARG” conditions according to Govier). I will argue that the ARG criteria
proposed by informal logicians characterize a certain broad kind of a consequence
relation. But let me start with some general, programmatic observations on informal
logic.

6.2 Informal Logic

Informal logic, variously called the logic of “real” arguments, the study of the prac-
tice of argumentation, critical thinking, argumentation theory, theory of practical
reasoning, applied logic . . . , is a blooming field of theoretical and practical activity.
In their survey article Johnson and Blair [20] describe informal logic as (a) the
theory of fallacies and (b) the theory of (actual, natural) arguments. The questions
investigated by informal logic are not new, Aristotle already addressed many of
them. But,

What is new is the central focus on argumentation in natural language, as an interpersonal,
social, purposive practice. What is new too, at least in comparison to other philosophical
investigations of arguments and reasoning in the last 100 years, is the skepticism about the
value of formal logic as a tool for analyzing and evaluating natural-language arguments.
This skepticism is implicit in the very name “informal logic”, with all its unfortunate con-
notations of sloppiness and lack of rigour (Hitchcock [14, p. 130]).
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There really is a strong tendency to associate in-formal not only with non-formal:

By “informal logic” we mean to designate a branch of logic whose task is to develop
non-formal standards, criteria, and procedures for the analysis, interpretation, evalua-
tion, critique and construction of argumentation in everyday discourse (Johnson and Blair
[19, p. 148]).

but with anti-formal. The growing disenchantment with the capacity of formal logic
to set the standards of good reasoning has led to informal logic being described as
any approach in logic which either avoids or minimizes the use of formal logic as the
theory of analysis (the notion of logical form) and as the theory of evaluation (the
notions of validity and soundness) of arguments. Nothing new, though. Present-day
informal logicians share a dislike for mathematical formalism with J.S. Mill. Mill
was aware of the work of Boole, De Morgan and Jevons, but for him “[Jevons’]
speculations on Logic, like those of Boole and De Morgan, and some of those of
Hamilton, are infected with this vice, a mania for encumbering questions with use-
less complication, and with a notation implying the existence of greater precision in
the data than the question admit of” (Mill [24], quoted in Wilson [37, p. 280]). And
this vice “is one preeminently at variance with the wants of the time, which demand
that scientific deductions should be made as simple and as easily intelligible as they
can be made without being scientific” (Mill [24], quoted in Wilson [37, p. 280]).
These remarks anticipate objections from those informal logicians who claim that
the formalism of formal logic sometimes obscures the tools needed to critically
analyze real life arguments rather than contrived examples.

In the emphasis on investigations of natural arguments in their actual settings as
opposed to formal techniques of contemporary logic one may detect the remnants of
the old divide: ideal language vs. ordinary language theorists. Formal plays the role
of the “Ugly, Dirty and Bad.” Another opposition often found in characterizing the
distinction between the two approaches is the one between syntax cum semantics
and pragmatics:

Formal logic has to do with the forms of argument (syntax) and truth values (seman-
tics). . . Informal logic (or more broadly, argumentation, as a field) has to do with the uses
of argumentation in a context of dialogue, an essentially pragmatic undertaking (Walton
[34, pp. 418–19], quoted by Johnson and Blair [20, p. 362]).

From the pragmatic point of view, any particular argument should be seen as being advanced
in the context of a particular dialogue setting. Sensitivity to the special features of different
contexts of dialogue is a requirement for the reasoned analysis of an argument (Walton
[35, p. 2]).

To be fair—not all theoreticians subscribe to the view that informal is simply anti-
formal. In his survey article on informal logic Hitchcock remarks:

In any case, the research programme of informal logic does not preclude the use of formal
methods or appeal to formal logics. Its distinctiveness consists in its consideration of a
set of questions that are not addressed in the specialist journals of formal logic, such as
the Journal of Symbolic Logic and the Notre Dame Journal of Formal Logic, or in such
histories of formal logic as that by William and Martha Kneale (1962). It might in fact better
be called “theory of argument.” Its questions have however traditionally been regarded as
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part of logic, broadly conceived. The name can thus be taken to refer to that part of logic
as traditionally conceived that is not covered by contemporary formal logic (Hitchcock
[15, p. 101]).

I agree with the spirit of this paragraph, although it does not offer much in the
way of a definition of informal logic (“that part of logic that is not covered by
formal logic”). Problems with the very definition of the discipline should give us
cause for concern. According to Walton and Brinton ([36, p. 9], quoted in Johnson
and Blair [20, p. 352]): “Informal logic has yet to come together as a clearly defined
discipline, one organized around some well-defined and agreed upon systematic
techniques that have a definite structure and can be decisively applied by users.”
Woods remarked that the bar has been set too high. If these were the conditions
under which something is a discipline “we would know disciplinary impoverishment
on a grand scale. We would have lost philosophy, for starters, to say nothing of
economics and psychology . . . (Woods [38, p. 159]).” I can not judge the situation in
economics and psychology, I agree that philosophy is (and has always been) unique,
but at least compared to modern formal logic, informal logic is a “pre-science.”

In his analysis of the structure of science Kuhn introduced a notion of “pre-
science” which, so it seems to me, fits the theoretical situation of informal logic well.
Before a scientific discipline develops into “normal” science, there is normally a
long period of somewhat inchoate, directionless research into a given subject matter.
There are various competing schools, each of which has a fundamentally different
conception of what the basic problems of the discipline are and what criteria should
be used to evaluate theories about that subject matter. Some disciplines never reach
the status of a “normal” science. If we take, now, the Fundamentals of Argumen-
tation Theory (van Eemeren et al. [5]) as our guide in the theory of argument, the
following approaches are listed: theory of fallacies, new rhetoric, critical thinking,
dialogue logic and formal dialectics, pragma-dialectics, theory of dialogue, game
theory . . . A variety of approaches signals foundational problems. What exactly is
informal logic? Is it really a branch of logic? Is it, or ought it to be, a distinct dis-
cipline? How, if at all, is informal logic to be marked off from neighboring subjects
such as critical thinking, dialogue logic, and argumentation theory as a branch of
rhetoric?

Some of the problems with were noticed long ago, at the very beginning of
the discipline, first canonized in Aristotle’s Organon which contains elementary
deductive logic and principles of argumentation, the study of fallacies, philosophy
of language, the basic principles of definition and explanation, the basic principles
of scientific methodology and epistemology,. . . Sextus Empiricus in his Outlines of
Pyrrhonism presented what I would call the dilemma of the dialectician (mentioned
briefly by Walton [31, p. 303]):

Perhaps it will not be out of place briefly to consider the topic of sophisms, since those who
glorify logic say that it is requisite for explaining them away. Thus, they say, if logic has the
ability to distinguish true from false arguments, and if sophisms are false arguments, logic
will be capable of discerning these as they abuse the truth with their apparent plausibilities.
Hence, the logicians, pretending to be giving assistance to tottering common sense, try
earnestly to give us instruction about the concept, the types, and the solutions of sophisms.
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In the case of those sophisms that logic seems particularly capable of refuting, the explana-
tion is useless; while as regards those for which explanation is useful, it is not the logician
who would explain them away but rather those in each art (techné) who have got an under-
standing of the facts (Outlines II: 236; Mates [22, p. 167]).

This sounds like Medawer on philosophers of science teaching scientific method!
Sextus, a physician himself, gave the following example:

In the abatement stage of disease, a varied diet and wine are to be approved. In every type
of disease, abatement occurs before the first three days are up. Therefore, it is necessary for
the most part to take a varied diet and wine before the first three days are up. The logician
would have nothing to say toward explaining the argument away, useful though such an
explanation would be; but the doctor will do so, knowing that “abatement” is ambiguous
and refers either to that of the entire disease, or to the tendency to betterment, after crisis, of
each particular attack; and knowing also that the abatement of the particular attack occurs
for the most part before the first three days are up but that it is not in this abatement but in
the abatement of the whole disease that we recommend the varied diet.

Whence he will say that the premises of the argument are incoherent, with one kind
of abatement—of the whole disease—taken in the first premise, and another kind—of the
particular attack—taken in the second. And thus, in the case of the sophisms that can be
usefully explained away, the logician will have nothing to say, but instead he will propound
to us such arguments as these: Snow is frozen water. But water is dark in color. Therefore,
snow is dark in color. And, when he has gathered together a collection of such nonsense, he
knits his brow and takes logic to hand, trying very solemnly to establish for us by means of
syllogistic proofs that . . . snow is white.

If, then, logic fails to explain away such sophisms as might usefully be solved, while
in the case of those that somebody might suppose that it does explain, the explanation is
useless, then logic is simply of no use in the solution of sophisms (Outlines II: 236; Mates
[22, pp. 167–68]).

We may take “logic” in this text as logic of Organon or logic in the broad tra-
ditional sense mentioned by Hitchcock. So here is our dilemma: (informal) logic
is either trivial or powerless on its own (field expertise is needed). And to follow
the lead of Sextus in contemporary terminology: the analysis of reasoning is either
“contentful”, but this is done by experts, or topic neutral. Concentrating on topic
neutral reasoning skills will only bring us back to formal logic, supposedly hardly
applicable in matters of real life. But learning to reason substantively involves learn-
ing about actual subject areas and thus requires expert knowledge. The dilemma
is reflected nicely in contemporary textbooks on informal logic (critical thinking):
on one side there are general introductions to scientific methodology, enlightened
“common sense,” with long passages and detailed analyses of scientific articles.
Woods remarks that with these works (such as Fisher [7]) informal logic lies closest
to the bosom of philosophy and he sees them as continuous with the Commen-
taries of times gone by (Woods [38, p. 156]). I see them more as works of scientific
apprenticeship—working laboriously through the material one slowly acquires the
knowledge of an expert. On the other side there is an open market in literature (“How
to Win Every Argument in 10 Steps”) introducing readers to the wonderful power
of how to tell a good argument from a bad one and influence people by being able
to put a label in Latin on short snippets from the press.
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Johnson and Blair [20, p. 352] remarked that formal logic began as a revolution
at the level of theory that later filtered down into logic textbooks. Textbooks are
instruments for passing the latest theory on to the next generation and hence the
theoretical developments found in textbooks normally represent the precipitate from
the theoretical controversies that occurred earlier in journal and monograph litera-
ture. In informal logic developments at the theoretical level were largely motivated
by the attempt to teach students how to assess arguments in use. “Be clear about
what tools are needed or need to be designed to do the job properly, then develop
the theory needed to support the toolkit” (Johnson and Blair [20, p. 352]). But this
“do-it-yourself” theory does not help much with the problems of foundations and
our dilemma of the dialectician!

Not everybody would claim that the divide formal/informal is insurmountable.
Jacquette proposes a different line of division—natural language versus symbolic
language:

I propose that a logical theory or procedure is formal if and only if it adopts a specialized
symbolism for representing logical forms that does not occur in ordinary nonspecialized
nonsymbolic thought and language. Although I acknowledge that all of logic has to do
with logical form, I do not agree that all expressions of logical form must themselves be
formal. This distinction captures much of the received concept, since it includes all of sym-
bolic logic and excludes nonsymbolic evaluations of validity or invalidity. As we might
expect, formal logic by the proposed distinction will roughly include everything belong-
ing to what has become the de facto criterion for formal logic in relations expressed by
means of standard and nonstandard notational variations and extensions of the propositional
and predicate-quantificational calculus. The definition additionally includes schematic and
graphic treatments of syllogistic logic that have traditionally been regarded as more properly
within the aegis of informal logic and critical reasoning. Informal logic by contrast on the
present proposal is limited to the consideration of a proposition’s or argument’s logical
form by discursive reconstruction within natural language, the use of counterexamples to
discredit inferences, identification of arguments as committing any of the so-called rhetori-
cal fallacies, and the like (Jacquette [18, p. 134]).

I do not see a sharp line of division along these lines, though. There is the prac-
tical value of “formal” patterns recognized by informal theoreticians devising sym-
bolic representations—diagrams, schemes, letters, . . . True, this is not a “pure” sym-
bolic language—but these representations are on a par with, say, graphic treatments
of syllogisms in traditional “formal” logic. Frege compared the use of symbolic
language instead of natural language in logic to the use of a microscope instead of
the naked eye in biology. But even in biology one does not always need a microscope
and sometimes too much precision is an “over-kill.” Jacquette adds:

The relegation of syllogistic logic, square of opposition, and argument diagramming meth-
ods to the genus of informal logic can now be seen as a kind of historical accident. Were
it not for the emergence of more powerful algebraic methods of formal logic . . . , there
is little doubt that the logic of syllogisms, Venn and other styles of diagramming, etc.,
would constitute the whole of formal logic as opposed to purely informal nonspecialized
nonsymbolic logical methods (Jacquette [18, p. 134]).

Yet it is difficult to see where the line should be drawn between an approach
that uses argument diagramming methods and one that uses reconstructions within
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natural language—both will be used in a typical course on informal logic, though
neither of them will find a place in a course on mathematical logic. Venn (or Euler)
diagrams are sometimes useful in “informal” analysis, but they are, typically, also
part of more formal approaches. And who would deny that, say, a disjunctive syl-
logism is not a useful tool in “informal” analysis of complex patterns of argumen-
tation, but the difference between using “or” and “∨” in its representation seems to
be of minor importance.2

Well, perhaps this is exactly Jacquette’s point. In any case, I am sympathetic
to his starting point—“all of logic has to do with logical form.” Informal logi-
cians disagree, or to put it guardedly, the attitude of the practitioners and “fathers”
of informal logic towards formal logic is ambivalent. Thus (Johnson and Blair
[20, p. 360]):

How does informal logic differ from formal logic? In our view, the difference is partly one
of subject matter. The social, communicative practice of argumentation can and should be
distinguished from both inference and implication. In even the simplest such argument, the
arguer proposes to the addressee that a set of propositions supports another, and thereby
invites the addressee to infer the latter from the former. The relation of support may, but
need not be, one in which the supporting propositions purportedly deductively imply the
supported proposition. Part, though not all, of the normative theory of argumentation has
as its subject-matter the answer to the question, “What sorts of support relationship are
logically cogent?” We take it that one subset of logically cogent support relationships are
ones in which the supporting propositions logically imply the supported proposition, and we
take the subject matter of formal deductive logic to consist (inter alia) of the study of forms
of entailment, that is, valid implication relationships among propositions or sentences.

And they add:

We take informal logic to be the study of all the conditions under which an addressee ought
to infer the target proposition from those adduced by the arguer as support for it. Thus
the subject matter of informal logic is different from that of formal logic. Informal logic
has the task of developing norms for the evaluation of arguments; formal logic has the
task of developing the norms for formally valid implication relations (Johnson and Blair
[20, p. 360]).

I would think that the subject matters of informal logic and formal logic at least
overlap, classical logic, after all, is also the science of correct reasoning! Johnson
and Blair sometimes deliberately go against a use of “argument” according to which
logical proofs or demonstrations are counted as arguments. I agree that the sets of
unrelated sentences or propositions they quote as an example of classically valid
arguments should not be counted as arguments (of the type “The moon is not made
of green cheese. So, 2 + 2 is 4.”). Relevant logicians share this opinion, for that
matter. But why could a (strictly deductive) proof that the square root of two is
irrational not be a good and persuasive argument? And what is wrong with more
mundane reasoning that uses deductions, say: “The player who won both Wimble-
don and the US Open in 1982 was the greater player in that year. Connors won

2 Of course, one should be aware of problems with different understandings of “or” in a natural
language, but these differences will be reflected in different symbolisms.
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both. Therefore, Connors was the greater player,” (suppose I am wondering whether
McEnroe or Connors was the greater player in 1982 and a friend of mine offers me
this argument, cf. Jackson [16, p. 102]). The reasoning offered is a perfect logical
deduction, but this does not undermine the act of propounding this obviously valid
argument.

For Johnson and Blair an argument is a set of reasons, that is, has been, or
might be, offered to another person or other persons with the intention of persuading
them, or some audience, to modify their beliefs, attitudes or behavior (Johnson and
Blair [20, p. 360]). This seems to be too narrow—the “teasing-out” function of
propounding arguments is ignored. As Jackson notes: “The act of propounding an
argument may have brought a half-buried piece of information to the surface, may
have alerted me to the relevance of certain facts to my final concern, or may simply
have enabled me to see how to get it altogether, so as to make transparent what I
want to know” (Jackson [16, p. 102]). Well, Johnson and Blair might point out that
reasoning about the greater player in 1982 and a demonstration that the square root
of two is irrational are good pieces of reasoning but not arguments (complex social,
speech activities). The “teasing-out” function allegedly pertains to proper reasoning
and not to proper argument.

We may grant that argumentation is a social and public speech activity involving
more than one party, with practical goals (persuasion). One cannot argue without
at least an imaginary audience or interlocutor. Reasoning, on the other hand, is a
mental activity that can be performed privately and much reasoning is done before
and outside the context of argument. Argumentation requires that its participants
reason, so reasoning is necessary for argumentation. At the heart of the activity
of argumentation is the offering of and response to arguments in the more nar-
row sense of reasons offered in support of or against claims. According to Blair
[2, p. 372], and perhaps not entirely consistent with other characterizations offered
by Blair and Johnson, informal logic is restricted to the normative study of the
cogency of argument, which is only one part of critical thinking and argumentation
theory. I agree with this restriction. The relationship between reasoning proper and
arguments within informal logic is complex, but, to be brief—since reasoning is
necessary for argumentation, standards of good reasoning should be respected in
argumentation and good reasoning includes deductions.

Some theoreticians, most notably Walton [32, 35], understand informal logic
as essentially pragmatic. For Johnson and Blair argumentation is a social activity
paradigmatically carried out in the medium of a natural language. But even their
approach to informal logic is described by Walton as a narrow, text-based, product-
oriented approach to argument. In pragma-dialectics, as one of the influential theo-
retical models of informal logic, argumentative discourse is conceived of as a certain
activity (a critical discussion) aimed at resolving a difference of opinion by putting
the acceptability of the “standpoints” at issue to the test by applying criteria that are
both problem-valid as well as intersubjectively valid.

Pragmatics is sometimes characterized as dealing with the use of language
and effects of context. But this has various meanings—features of the context
can be epistemic features indexed to the audience or the arguer (their belief
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systems, reasons, doubts, justifications . . .), or conversational features of a dialogue.
In argument analysis, should we consider epistemic norms or conversational norms?
According to the first interpretation we should look at the beliefs of the audience
(and/or the arguer). According to the second we should look at the conversation
itself—what the audience has said, not what they think. Fallacies are explained as
breaking the rules of proper dialogue. Circular arguments, for instance, are falla-
cious because they violate normative rules of dialogue which demand consensual
starting points (cf. van Eemeren and Grootendorst [4]).

I think that the pull toward the pragmatic in the conversational sense should be
taken with great caution in informal logic. In a critical discussion the initial conflict
of opinions could be resolved, but both parties might still be wrong. But taking the
probative function of an argument as our starting point—the use of an argument
to remove doubts about the conclusion, to make it knowable, rationally believable
or acceptable, we should be interested in the truth of the matter (or acceptability if
truth is a notion which seems ill suited to many informal contexts). And not just in
justifying our thesis and questioning or refuting the other party’s thesis, by reasoned
means, using accepted standards of evidence. Pragma-dialectics sometimes looks
like a theory of conflict resolution through argumentative discussion and some won-
der whether this is a theory of argumentation at all (cf. Wreen [39, p. 302]). Still, the
relationship between reasoning and argumentation is complex. As Parsons [25] has
noticed, arguments first have to be extracted from the texts analysed and interpreted,
filled with steps that are not articulated in the “ur-argument” that are overtly present
in the text. In the interpretative process we then have to establish the setting of an
argument—a set of statements that are taken for granted and assumed principles of
inference. The fallaciousness of an argument as analysed by informal logic is not an
inherent property of a reasoning structure apart from the setting. Dialectical schools
operate with commitments in a dialogue or initial acceptances, but the point is the
same.

As I said, I am sympathetic to Jacquette’s starting point—“all of logic has to
do with logical form.” Let me restate it slightly differently. A good argument has
traditionally been the one whose conclusion follows from its premises. And logical
form has always played an important role in explaining the concept of logical con-
sequence. So, what can we say about “formal” and “informal” consequence? Does
it even make sense to speak about “informal consequence”?

6.3 Informal Consequence

The most basic intuition about what it is for a conclusion to follow logically from
the premises is that a valid inference is truth preserving: if the premises are true, so
is the conclusion. According to Prawitz [26, p. 672] two further conditions must
also be satisfied: (i) it is because of the logical form of the sentences involved and
not because of their specific content that the inference is truth preserving; (ii) it is
necessary that if the premises are true, then so is the conclusion.
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Soundness—premise truth and deductive validity of an inference is a classical
standard in argument evaluation. There is a wide agreement within informal logic
on the inadequacy of soundness as a criterion of a good argument. Johnson and
Blair replace the standard of soundness with a broader notion of argument cogency.
An argument is cogent if and only if (i) its premises are rationally acceptable, (ii) its
premises are relevant to its conclusion and (iii) its premises provide sufficient reason
to accept the conclusion (the so called “R. S. A.” criterion). Some prefer the notion
of groundedness to that of sufficiency—premises in a cogent argument constitute
grounds adequate for accepting the conclusion. The distinction is not important for
my purposes so I will follow Trudy Govier [11] in calling conditions (i)–(iii) the
“ARG” conditions for cogent arguments, to use an acronym (acceptance, relevance,
groundedness). These three criteria are sometimes augmented with a fourth: (iv) that
there are no known better reasons for an opposite conclusion. Fallacies are explained
as being violations of one or more of these criteria. And an additional prelimi-
nary condition for cogency has to be satisfied—premises and conclusions should
be free of expressions whose meaning is ambiguous or indeterminate (cf. Freeman
[9, p. 127]).

What kind of a consequence relation, if any, do ARG conditions specify? It is
clear from the first criterion of ARG (premise acceptability) that a cogent argument
does not (necessarily) preserve truth. But this alone does not discredit the notion of
“informal” consequence. Van Benthem [1, p. 72] has remarked that:

The idea that logic is about just one notion of “logical consequence” is actually one very
particular historical stance. It was absent in the work of the great pioneer Bernard Bolzano,
who thought that logic should chart the many different consequence relations that we have,
depending on the reasoning task at hand. A similar rich view of the subject matter of the
discipline is still found in the work of Mill, and especially, C. S. Peirce, who studied com-
binations of deduction, induction, and “abduction.”

Something weaker than truth is preserved in good reasoning studied by an infor-
mal logician. But still, if the premises are acceptable (or whatever) and other criteria
are met, then so is the conclusion.

How about the classical form—content distinction, does it make any sense in
informal logic? I think it does, but it is not fixed in advance. Fallacies are com-
mon patterns of poor reasoning which can usefully be identified in the evaluation
of informal reasoning. Some informal logicians introduce a special notion of an
argumentation scheme as a stereotypical pattern of defeasible reasoning that typi-
cally occurs in common, everyday arguments. Standard accounts of argumentation
schemes describe them as representing different types of plausible arguments which,
when successfully deployed, create presumptions in favor of their conclusions and
thereby shift the burden of proof to an objector. But, as one might expect, there is not
much of an agreement in classifications and typologies used. The pragma-dialectical
school recognizes a symptomatic relation (e.g., argument from sign), a relation of
comparison (e.g., argument by analogy), and a causal relation (e.g., causal argument
and means-end argumentation). According to Walton [33] common patterns of rea-
soning employed in everyday argumentation are argument from sign, argument from
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example, argument from position to know, argument from expert opinion, argu-
ment from cause to effect, argument from analogy, argument from precedent, etc.
And there is yet another classification of schemes according to the type of warrant
involved in the argument.

Argumentation schemes are subject to default contextually in a given case, and in
this respect they differ from the context-free types of classical deductive arguments.
But classical soundness by itself was never a sufficient standard in the evaluation
of arguments. In a good argument one should not beg the question, so we are told.
Now, begging the question is often said to be including one’s conclusion in one’s
premises. But the argument does not beg the question just in case the conclusion
explicitly appears in the premises, for then a mere reformulation of premises would
be enough to avoid the charge. Surely, if “Since firefighters must be strong men
willing to face danger every day, it follows that only a man can be a firefighter,”
begs the question, then so does “Since firefighters must be strong men willing to
face danger every day, it follows that no woman can be a firefighter.” Inclusion has
to be understood more widely, the argument begs the question if the conclusion
implicitly appears in the premises. But then, as noted by Jackson [16, p. 100], it is
difficult to avoid the result that the argument begs the question when it is impossible
for premises to be true and the conclusion false. So all valid arguments are question-
begging? Not so, but one has to invoke some extra-formal considerations to explain
the difference.

On the other hand, informal logic requires an eye for pattern and form in a certain
very general sense. Informal logic uses counterexamples to discredit inferences—
but is this not a general logical ability to move in the modal space? Non-sequitur as
the most general type of logical fallacy is a violation of form insofar as it represents
a possibility for your premises to be true and your conclusion false. The procedure
of resolving questions of form is always the same: keep something fixed (logical
“constants” in classical logic) and vary the other parts. But what is fixed is not given
in advance and the possibility involved is not logical—only relevant options are
to be considered and it is notoriously difficult (context-dependent) to explicate the
notion of relevance. And of course, imagination is restricted by knowledge: if you
know nothing about a certain field, then abstract patterns alone will rarely be of help
(the moral from Sextus Empiricus).

By way of an example consider a famous paragraph from Descartes [3, p. 29]
and a comment by Leibniz3:

Next, examining attentively what I was, I saw that I could pretend that I had no body and
that there was no world or place for me to be in, but that I could not for all that pretend
that I did not exist; . . . I thereby concluded that I was a substance whose whole essence or
nature resides only in thinking, and which, in order to exist, has no need of place and is not
dependent on any material thing. Accordingly this “I”, that is to say, the Soul by which I
am what I am, is entirely distinct from the body and is even easier to know than the body;
and would not stop being everything it is, even if the body were not to exist.

3 I got this example years ago from Peter Smith in Sheffield.
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For Leibniz [21, p. 385] this is a mere sophism:

It is not valid to reason: “I can assume or imagine that no corporeal body exists, but I cannot
imagine that I do not exist or do not think. Therefore I am not corporeal, nor is thought a
modification of the body.” I am amazed that so able a man could have based so much on
so flimsy a sophism. . . No one who thinks that the soul is corporeal will admit that we can
assume that nothing corporeal exists, but he will admit that we can doubt (as long as we
are ignorant of the nature of the soul) whether anything corporeal exists or does not exist.
And since we nevertheless see clearly that our soul exists, he will admit that only one thing
follows from this: that we can still doubt that the soul is corporeal. And no amount of torture
can extort anything more from this argument.

Descartes’s reasoning has the following form: “I can imagine that X does not
exist, but I cannot imagine that I do not exist. Therefore I am not X.” Non sequitur,
according to Leibniz, inconceivability of a difference establishes doubt only and no
categorical conclusions follow.4 A counterexample is easy to find, take the case of
amnesia and put a video recording of your past self for “X.” Something is fixed (X)
and something is variable, but one cannot give a recipe for a concrete analysis in
advance. This explains one of the discrete charms of formal logic: even if ignorant
of the topic, look for the (classical) logical form of an argument and calculate the
result (whether the conclusion follows). But this would be more or less useless in
the case at hand.

The last characteristics of logical consequence mentioned by Prawitz is necessity.
Classically, if B follows from A, then it is necessary that if A is true, then so is B.
No such necessity in the case of cogency—according to the ARG criteria premises
should provide sufficient reason or adequate grounds to accept the conclusion. But
a gap between the two approaches might look greater than it really is.

Relations of support studied by an informal logician seem to be a subject matter
of epistemology. Some would even claim that “we may say that informal logic—the
theory of it at least—is a field within epistemology, that field concerned with the
norms and criteria of acceptability of claims arising within the polis” (Freeman
[9, pp. 121–22]). Several authors have argued for the thesis that informal logic
is included within epistemology or is epistemology done with a particular aim in
view. Fisher [8] emphasizes connections between the empirical studies of real-life
argumentation and naturalised epistemology. For Goldman [10] the theory of good
argumentation is a special case of social epistemology since norms of good argu-
mentation flow from the epistemic situation of cognizers, a situation that gives rise
to certain conversational norms. These norms are best seen as a social quest for
true belief and error avoidance. And according to Toulmin [30] argument analysis
is just applied epistemology—in a successful argument sufficient evidence is given
to support the conclusion, but the criteria of sufficiency depend on the nature of
problems at issue.

And here is the bridge. Philosophically, logic was always the study of correct
reasoning and reasoning is an epistemic, mental activity. In order to accommodate

4 Kripke and Chalmers would disagree, but that is not the point here.
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for the role of logical consequence in organizing and extending knowledge Shapiro
[27, p. 659] proposes the following definition of logical consequence:

� is a logical consequence of � if it is irrational to maintain that every member of � is true
and that � is false. The premises � alone justify the conclusion �.

It is difficult to explicate the notion of (ir)rationality properly, but this character-
ization of logical consequence could very well be spelled out as “G” in the “ARG”:
“the premises � constitute grounds adequate for accepting the conclusion �.” One
may also say that the conclusion classically follows by rational “necessity,” if we
believe the premises, we must believe the conclusion, on pain of contradiction. On
the other hand one might say that the conclusion in a cogent argument follows by
rational “necessity,” if we believe the premises, we must believe the conclusion.
Perhaps not on pain of contradiction but on pain of some weaker, contextual notion
of implausibility.

Despite Shapiro’s attempt to incorporate (epistemological) criteria of correct rea-
soning in the classical definition of logical consequence one may still protest against
“informal consequence.” Woods opens his inspiring discussion of informal logic
(Woods [38]) with the following quote from Hintikka [12]: “I have a great deal of
sympathy with the intentions of those philosophers who speak of ‘informal logic’,
but I don’t think that any clarity is gained by using the term ‘logic’ for what they are
doing.”

In the spirit of van Benthem [1] this is like saying that no clarity is gained by
using the term “logic” for what researchers in “non-monotonic logics” are doing.
Well, an informal logician could just shrug her shoulders and say with Shakespeare’s
Juliette—what is in name? “That which we call a rose by any other name would
smell as sweet.” But I think she can do better than that. The ARG criteria do not
score so badly as a characterization of a certain broad kind of a consequence rela-
tion. We do not (in general) have truth preservence in cogent arguments but if the
premises are acceptable and other criteria are met, then so is the conclusion. We
can speak about form in informal analysis as well and this is not an oxymoron
(argumentation schemes, patterns of fallacies, counterexamples), form in a loose
sense, but still form. And finally, there is rational necessity of the grounding or
support relation. Not quite the classical consequence relation, but still, I think that a
certain broad notion of consequence emerged from the comparison. So, contrary to
Hintikka, the term “logic” is not out of place. And to quote van Benthem [1, p. 80]
again:

My view is that there remains one logic, but not in any particular definition of logical con-
sequence, or any favoured logical system. The unity of logic, like that of other creative
disciplines, resides in the mentality of its practitioners, and their modus operandi.

Informal logic insofar it is logic is concerned with the traditional task of logic—
standards of correct reasoning. We could also speak about broad logical conse-
quence or logic in a broad sense. This logical core might be developed in differ-
ent directions, to use ARG as our starting point: what is for a certain audience to
accept premises—questions of rhetoric, dialectics, pragmatics, theory of dialogue;
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problems of relevance and form—theory of fallacies, argumentation schemes;
groundedness—induction, abduction, epistemology. Still, the most natural place-
ment for the logical core specified by ARG is an epistemological enterprise in which
argument is seen as embodying reasoning within a process of inquiry or of belief
formation.

6.4 An Example

In a sense, informal logic is a theoretical retro movement. Fallacies, inductive logic
and scientific method have been routinely discussed in the much despised elemen-
tary logic textbooks since the nineteenth century. Standards were set by Aristotle—
recall that Aristotle regarded logic as a tool for every science. This conception is
reflected in the collective title Organon that we still use to refer to Aristotle’s logical
writings. Another great work in this tradition is “A System of Logic, written by the
greatest informal logician to date, unless the nod goes to Aristotle himself,” (Woods
[38, p. 162]). Mill developed a system of logic suitable for every bit of reasoning—
for him logic of ordinary reasoning (vital moral issues included) was possible and
this same logic was logic of science.

Woods remarks that in this respect Mill’s connection with present-day informal
logic is called into question. Unjustifiably so, I think—the present-day practitioners
should learn from Mill. Are the ARG conditions not just the ideals of enlightened
common sense or elementary scientific methodology which require a respect for
available evidence and “reasonable” inference, awareness of alternatives and a will-
ingness to modify or reject those beliefs that fail to conform to the evidence? The
logical core of informal logic is most naturally placed in (basic) scientific methodol-
ogy applied to matters of “polis” and everyday life. Mill would agree, and he would
disagree with those who oppose the very logical core of scientific method.

Let me analyse—as a practical illustration of informal logic—an example of this
type of animosity to logic in the broad sense and then draw some final morals. Con-
sider Paul Feyerabend’s drastic views that science is just one of the many ideologies
that propel society and that it should be treated as such. Feyerabend claims that
negative opinions about astrology and other alternative practices are not justified by
scientific research. I think that informal logic should be embedded in elementary
scientific methodology applied to subject areas accessible to every informed intel-
lectual. The alternative practices so vigorously defended by Feyerabend (herbalism,
alternative medicine, judgments based on intuition, rain dances . . .) very often fail
to meet precisely the standards of this basic methodology. So what are Feyerabend’s
arguments for his astonishing claims?

In his plea for democratic relativism Feyerabend dismissed the predominantly
negative attitudes of scientists towards such phenomena as elitist or racist. In “The
Unusual Story of Astrology” [6] he critically analyses “Objections to Astrology,”
a statement by 192 leading scientists (first appeared in The Humanist of Septem-
ber/October 1975). The scientists declare that concepts of modern astronomy and
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physics undermine the principles of astrology. Feyerabend first interprets the prin-
ciples of astrology as a claim that celestial events (positions of planets, the Moon
and the Sun, . . .) exert influence on human life. This is a very broad interpretation of
astrology—a different, narrower and much more common definition is implied in the
text of the 1975 statement: “It is simply a mistake to imagine that the forces exerted
by stars and planets at the moment of birth can in any way shape our futures.” This
statement is now interpreted by Feyerabend as: “It is simply a mistake to imagine
that celestial events (positions of planets, the Moon and the Sun . . .) have any influ-
ence on human life.” And there is yet a third meaning of astrology in Feyerabend’s
text, namely the thesis that celestial events (positions of planets, the Moon and the
Sun, . . .) exert influence on life (in general) on Earth.

Nelson Goodman once wrote that the practical scientist does the business but the
philosopher keeps the books. So let us do some book keeping. We have astrology-
narrow (and interesting): the forces exerted by stars and planets at the moment
of birth can shape the futures of human beings (their characters, personalities).
Next we have astrology-broad: celestial events exert influence on human life. And
finally we have astrology-empty (and largely uninteresting): celestial events exert
influence on life (in general) on Earth. And here is the trick: compile a mass
of evidence against the denial of astrology-empty and present this evidence as a
counter-argument to the denial of astrology-narrow. Feyerabend meticulously sur-
veys various research reports (the influence of the activities of the Sun on life on
Earth, correlations between organic and inorganic processes on Earth and various
parameters of the Sun and the Moon; he quotes articles such as “Possible Effects
of Extra Terrestrial Stimuli on Colloidal Systems and Living Organisms”, etc.) A
lot of respect for scientific results and scientific methodology from someone so
strongly opposed to “objective” scientific standards! After being bombarded with
this counter-evidence, we read (as a minor objection, according to Feyerabend) that
the scientists in the statement also complain that psychologists have not found the
slightest evidence that astrology is of any, or even minimal value as an indicator of
the past, present or future features of one’s life. Feyerabend’s reply would exhil-
arate every PR agency advising politicians in pre-election campaigns: “This argu-
ment (against astrology, D.Š.) has no value, when we remember that astronomers
and biologists were not even able to find the evidence already published and con-
tributed by their own professions,” (presumably the articles quoted in length by
Feyerabend).

For starters: first replace astrology-narrow (“the claim that knowledge of the
apparent relative positions of celestial bodies is useful in understanding, interpret-
ing, and organizing information about personality and human affairs and other ter-
restrial matters” is suggested by Wikipedia; “type of divination that involves the
forecasting of earthly and human events through the observation and interpretation
of the fixed stars, the Sun, the Moon, and the planets” according to Encyclopædia
Britannica) with astrology-broad. Next refute a denial of astrology-empty (celestial
events exert influence on life on Earth) and ignore powerful objections to astrology-
narrow on the basis that those who objected to astrology-narrow were not able to find
any evidence for astrology-broad. They were not even looking for it, but this will
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not prevent Feyerabend from switching over to the offensive. PR agencies advising
political parties on how to win the elections prescribe the following rule: defense is
for losers, when under attack (and justifiably so) do not, ever, retreat but make an
assault. So Feyerabend, when faced with a decisive argument against his position
(no evidence for astrology-narrow), drops in an offensive ad hominem: scientists
are incompetent and they are unable to find any evidence.

Basically we have obliterating different senses of a single term (astrology-broad-
narrow-empty) and suppressed evidence (no significant correlations) spiced with
ad hominem. True, life is short and our cognitive resources are limited, but here
we encounter a deliberate selection of information. There is a ready and quite
general explanation for this selection. Some of our beliefs are very precious to
us, perhaps we have “invested” a lot in them and would like to protect them at
all costs. Denunciations of Western imperialism, his critique of science itself, as
well as his concern for environmental issues ensured that Feyerabend has become
a hero of the anti-technological counterculture. One might sympathize with Feyer-
abend’s idea of a free society in which “all traditions have equal rights and equal
access to the centres of power.” One attached to those ideals will easily ignore or
suppress counter-evidence to the conclusion that “objectively” there may be noth-
ing to choose between the claims of science and those of astrology, voodoo, and
alternative medicine. This is the familiar “confirmation bias.” And what to make
of Feyerabend’s claim that theoretical anarchism is more humanitarian and more
likely to encourage progress than its law-and-order scientific alternative? Hugh
Trevor-Rope once remarked that one of the early effects of the discovery that nature
is strictly governed by impersonal laws was to reduce the enthusiasm for burning
witches.

6.5 Conclusion

I do not think that there was a great deal of theory involved in spotting fallacious
moves in Feyerabend’s reasoning. The main features traditionally ascribed to sci-
entific method are a clear statement of a problem, careful confrontation of theory
with fact, open-mindedness, and (potential) public availability or replicability of
evidence. In the spirit of elementary scientific methodology, the starting points of
argument analysis are very simple, almost trivial: first, identify the phenomenon you
are dealing with. As always a preliminary condition for cogency has to be satisfied,
premises and conclusions have to be free of expressions whose meaning is ambigu-
ous. So, what does that (“astrology”) mean? What exactly is claimed (conclusion)
and what evidence is offered for those claims? The other two elements involved
in the analysis were problems of relevance (ad hominem) and groundedness (sup-
pressed evidence). The diagnosis of a dialectician remains the old scholastic: distin-
guo (be aware of different senses).

How about our dilemma of the dialectician? Here is what Sextus has to say about
amphiboly:
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In view of these points, then, the logical treatment of sophisms that is so much boasted about
by the logicians is useless. We say similar things about the distinguishing of amphibolies.
For if an amphiboly is a linguistic expression having two or more meanings, and if linguistic
expressions have meaning by convention, then those amphibolies that are worth resolving—
such as occur in some practical situation—will be resolved, not by the logician but by
the people practiced in each particular art, who themselves have the experience of how
they have created the conventional usage of the terms to denote the things signified, as,
for example, in the case of the amphiboly “In periods of abatement one should prescribe a
varied diet and wine” (Outlines II: 256; Mates [22, p. 168]).

What kind of knowledge was required to notice the ambiguity in Feyerabend’s
definition of astrology and non sequitur in his reasoning? Do we have to be experts
in the field (astronomers, astrologists)? I do not think so. General alertness, knowing
something about different subjects and general education is required, but one need
not be a specialist. And knowing something, or better, the access to knowledge
about different subjects has never been easier. Informal logic at its core embod-
ies the attitude of basic scientific methodology toward claims, positions, theses in
general, including those defended or put forward in the public sphere of knowl-
edge and opinion (usually media and matters of “polis”). To repeat—cultivating
respect for available evidence and “reasonable” inference, awareness of alterna-
tives and a willingness to modify or reject those beliefs that fail to conform to the
evidence.

For Toulmin logic is “concerned with the soundness of the claims we make”
(Toulmin [30, p. 7]), rather than with the task of telling apart valid from invalid
inferences, and he adds that this requires more than mere calculations, it requires
“experience, insight and judgment”. I have argued that the ability to tell valid from
invalid inferences apart is a part of logic in the broad sense, but I agree with the
stress on practice. I take the gist of Medawer’s pessimistic remark on scientific
method to be that a typical scientist will absorb the elements and skills of scien-
tific methodology through her education and practice. Something similar is true of
informal logic. In certain important aspects “applied” or informal logic includes
elements of skill. Memorizing dozens of fallacies, all of them context dependent
(not always fallacious), is useless without a “plain” ability to recognize the fact
that the conclusion does not follow—never mind the name—and the ability to find
an appropriate counterexample. Elements of skill, pattern recognition, practice and
general knowledge required to assess arguments on various topics explain the dif-
ficulties in teaching and learning this subject. The ability to recognize the same
pattern in different contexts and the ability to find an example or the counterexample
to the pattern (inference scheme, typical fallacy, analogy . . .) seem to be important
characteristics of a “critical thinker.”

The notion of logic in the broad sense, or broad logical consequence which
captures general norms of correct reasoning perhaps offers a promising theoretical
framework. True, “informal logic” often designates something wider, as a toolbox
in the sense of Organon it overlaps different disciplines and approaches. In the
retro-spirit of A System of Logic I propose to incorporate the ARG logical core
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in elementary scientific methodology extended to subject areas accessible to every
informed intellectual. But other packages are also possible (deduction, after all, can
be very persuasive, so even a rhetorician will find logic in a broad sense very useful).
How about contemporary dialectical schools? Consider the following definition (van
Eemeren and Grootendorst [4, p. 1]):

Argumentation is a verbal, social, and rational activity aimed at convincing a reasonable
critic of the acceptability of a standpoint by putting forward a constellation of propositions
justifying or refuting the proposition expressed in the standpoint.

The descriptive aspect of this definition lies in the concept of argumentation
as a speech act. The normative aspect is represented in the reference to a rea-
sonable critic, which adds a critical dimension to the definition. But all you need
to incorporate the norms of ARG into this setting is to say that for a reasonable
critic an ARG failing is automatically a dialectical or persuasive failing. Jack-
son [17, p. 472] gives a nice illustration—Galileo’s famous thought experiment
to make trouble for the view that the heavier a body is, the faster it will fall on
being released. Galileo noted that a body weighing three stone can be thought
of as two connected bodies, one weighing one stone and the other weighing two
stone, and invited questions like, does the lighter body hold back or accelerate the
heavier?

This thought experiment is a wonderful “dialectical or persuasive” success but there’s a
sense in which no new evidence has entered the picture. What happens is that contemplat-
ing the thought experiment “teases out”, makes explicit, the bearing of theses we already
accept to the question of whether or not heavier bodies fall faster. Don’t we want to count
this success as an epistemological one, in which case we’d better count the opposite as
epistemological failures? (Jackson [17, p. 472]).

The example shows how the “teasing-out” function of an argument can also be
part of a proper, persuasive argument. Jackson speaks about epistemological norms,
but one could also use the notion of the ARG criteria insofar as they constrain rea-
soning within a process of inquiry or of belief formation.

According to van Benthem [1, p. 67] logic arose in antiquity from two sources:
the study of real argumentation in the dialectical tradition, and that of axiom-based
proof patterns organizing scientific inquiry. Both are represented in Organon, but
they separated and the difference seemed to be insuperable. No longer so. Contem-
porary research programme of formal logic does not preclude the analysis of real-
life arguments. The latest developments in formal logic try to capture the subtleties
of natural reasoning (non-monotonic, dynamic, relevant, paraconsistent, preferential
logics . . .)5. One can view informal logic and its ARG logical core as an attempt of
reconciliation from the other, dialectical side. The norms of “real argumentation” are
norms of elementary scientific methodology in which argument is seen within a pro-
cess of inquiry or of belief formation in subject areas accessible to every informed
intellectual.

5 Some approaches confront “definitory” rules of standard formal logic with strategic-procedure
rules which tell you how to win an argument, cf. Hintikka [13].
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Chapter 7
Logical Consequence and Rationality

Nenad Smokrović

7.1 Introduction

One of the most salient goals of logical theory is to characterize the relation of
logical consequence. Whatever the characterization, it should characterize the most
abstract candidate relation between premises and the conclusion. Although the log-
ical consequence relation has been characterized as a mathematical formal the-
ory, from the middle of the nineteenth century on, various less rigorous, informal
attempts to articulate it were at work since the time of Aristotle. It is also pos-
sible that a consequence relation is somehow accessible to ordinary thinkers and
expressed in natural languages. In this way, we have at least three different notions
of logical consequence which have been given a common name, namely, first, a
mathematically formalized one, then second, “pre-theoretic,” in fact sophisticated
but pre-formal notion expressed more or less in natural language resources (but pos-
sibly appealing, perhaps under some other name, to philosophical categories such
as modality and formality), and third and finally, the notion of logical consequence
that corresponds to whatever is responsible for ordinary correct reasoning performed
by ordinary people (Nenad Miščević has suggested to me, in a half-kidding way,
the term “anthropo-logical consequence” for this third notion). To anticipate, I will
ecumenically call the second as well as the third notion, i.e. the sophisticated and
the ordinary ones, “pre-theoretical notions of logical consequence”. The second one
is weakly, and the third one is strongly and literally pre-theoretic.

A significant number of contemporary logicians see the theoretical articulation of
the logical consequence dependent on the pre-theoretic notion. The problem arising
here is that in the contemporary debates, theoreticians, talking sometimes about
pre-theoretic, sometimes about ordinary or intuitive notion of the logical conse-
quence, do not sufficiently clearly distinguish between “pre-theoretic,” in the sense
of pre-mathematical, but often very sophisticated and in this sense non-ordinary,
and the ordinary notion that even a naïve thinker might turn out to possesses.
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In this paper I will scrutinize the notion(s) underlying the term “pre-theoretic logi-
cal consequence” distinguishing between a stronger and weaker notion and arguing
that both of them, each having its own role, should be considered in accounting for
the relation between those notions and mathematically formalized articulations of
logical consequence. To depict the relation, I will offer a very programmatic outline
according to which a formal logician is in the position of the translator in analogy
with Quine’s translation schema. The general structure of the idea will be given
in the short indication of the research program based on a variant of Putnamian
theory.

Contemporary formal logical theory characterizes logical consequence (above
all in its formal guise) in two different, sometimes competing ways, the proof-
theoretical and the model-theoretical one. The model-theoretic approach, on the
one hand, focuses upon interpretations of forms of statements. In terms of valid-
ity, a formula is model-theoretically valid just in case it is true in all structures
for (or satisfied by) its language, and this reading then generalizes up to the con-
sequence relation. On the other hand, in the proof-theoretic approach the formal
consequence relation is seen as explicable in terms of inferential rules. It could be
said that a sentence A is inferable (or provable) from (set of sentences) X by means
of the collection R of inference rules if there is a proof of A from X . Also, on the
contemporary scene the model-theoretic approach is most frequently embedded in
classical logic while the proof-theoretic approach is mostly based on constructive
and intuitionist logic.

The logical theory, setting aside diversities, as a mathematical formalized lan-
guage and calculus seems to be expert logicians’ concern, whose scientific discourse
is over and above the ordinary inferential practice. This appearance is misleading.
Tarski, who first introduced the semantic, model-theoretic account of logical conse-
quence in the field, strongly emphasized that his (and, probably, any other) account
should correspond, remain faithful to the intuitive, ordinary conception “from which
we borrow the name,” as Etchemendy [4, p. 2] puts it. Tarski does not specify
whether it is our second, sophisticated pre-formal, or third, hypothetically ordinary
conception. In his seminal paper “On the Concept of Logical Consequence,” he
wrote:

The concept of logical consequence is one of those whose introduction into the field of
strict formal investigation was not a matter of arbitrary decision on the part of this or that
investigator; in defining this concept, efforts were made to adhere to the common usage of
the language of everyday life.

The idea that the formalized, theoretical articulation of the logical consequence
should correspond, or in mathematical terms, model the ordinary, pre-theoretic
conception of logical consequence (the one taken from “the common usage of
the language of everyday life”) has become rather prevalent among contemporary
logicians and philosophers of logic.1 Thus, the prevailing view is that theoretical

1 A distinguished representative of the opposite view is Michael Resnik who denies any relevant
connection between formal logic and pre-theoretic inferential practice [16].
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articulations of logical consequence are significantly determined by and answer-
able to its pre-theoretic notion, in either of the two senses we distinguished. Some,
notably Shapiro, holds that they are mutually co-determined [18, p. 155]. Even those
who otherwise criticize Tarski’s approach, most radically Etchemendy [4] and Field
[5] take his aiming at ordinary concept of logical consequence at face value, and
only object that his account failed because of its alleged inability to stay true to this
ordinary concept. Similarly, Gómez-Torrente, talking of logical truth and, deriva-
tively, of logical consequence, says in the footsteps of Tarski:

On most views, with a mathematical characterization of logical truth we attempt to delineate
a set of formulae possessing a number of non-mathematical properties. Which properties
these are vary depending on our pre-theoretic conception of, for example, the features of
modality and formality.

One of the most influential authors in the field, Stewart Shapiro, commenting the
relation between great fields of mathematical logic (proof theory, model theory, set
theory and computability) and its philosophical ramification, says in the same vein:

Our main question here concerns how that wonderful mathematics relates to the philosoph-
ical targets: correct reasoning, valid thought, inference. [19, p. 651]

The underlying idea behind those considerations is that “logic is the study of cor-
rect reasoning” [18, p. 135]. Correct reasoning is carried out in natural languages
(or, alternatively, in a “language of thought”) as its vehicle, and indeed by ordinary
reasoners. The term covers a broad range of logically naïve thinkers that are never-
theless engaged in making inferences, from those without any particular theoretical
knowledge to experts in a particular scientific domain (but without special (meta-)
logical training), economists, lawyers, even practicing mathematicians. What makes
their reasoning patterns correct is presumably an intuitively, pre-theoretically acces-
sible consequence relation obtaining among natural language sentences (or, for that
matter, propositions of the language of thought). On the other hand, a theoretical
(formal, i.e. model-theoretic or proof-theoretic) logical consequence is “rigorously
defined only for formal languages” [18, p. 135]. Given this dual allegiance of the
logical consequence relation, poised between the formal and the pre-formal, the
question arises how to account for the relationship between those of its aspects that
are expressed in formal language, on one side, and those pertaining to the natural
language(s) on the other.

Accordingly, the program, of the kind I am myself also interested in, having
a goal of connecting the theoretical logical consequence with the intuitive or pre-
theoretic logical consequence in the way that former models or captures the later,
could be confirmed if there is a kind of correlation between the formal language
and the natural language (or language of thought), most plausibly a fragment of it
(say, declarative sentences) that comes closest to the formal logical discourse. Let
me name this kind of program the modeling program.

Unfortunately, in spite of taking the relation between two concepts of logical con-
sequence, the ordinary and the mathematically formulated one, to be crucial to the
philosophy of logic, theoreticians, including prominently Tarski himself, followed
by the contemporary proponents of his kind of approach (as well as his opponents,
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accusing him for not capturing the ordinary notion of logical consequence), do not
say much about the real nature of the pre-theoretic, ordinary or intuitive conception
of logical consequence.2 Their use of the expression “pre-theoretic notion of logical
consequence” remains vague and in need of further clarification. This is strange
given the importance they ascribe to the latter.

The ambiguity to be mentioned first is that it is not clear whether the discus-
sion about intuitive or pre-theoretic notion of logical consequence concerns theo-
retician’s notion previous to formal, mathematical formulations of logical conse-
quence (our number two, sophisticated pre-formal notion), or the ordinary, naïve
thinker’s concept(ion) or even faculties (that she has independently of any theoret-
ical activity) needed for her mastering of characteristic ingredients of the logical
consequence relation, i.e. the items embraced by our third category. Let me illus-
trate the ambiguities in the otherwise inspiring and interesting literature. Gómez-
Torrente in his fine Stanford encyclopedia article on logical truth [6] addresses the
problem and offers the solution in favor of the former aspect, riding roughshod
over the Tarskian concerns about “the common usage of the language of everyday
life”:

By “pre-theoretic” it’s not meant “previous to any theoretical activity;” there could hardly
be a “pre-theoretic” conception of logical truth in this sense. In this context what’s meant is
“previous to the theoretical activity of mathematical characterization.” [6]

For him, the pre-theoretical concept as “previous to the theoretical activity of
mathematical characterization” is a concept one possesses previous to the formal-
ization of the logical theory. Accordingly, even Aristotle’s concept of the logical
consequence falls into the category. Keeping the taxonomy in the frame of these two
broad categories: “previous to any theoretical activity” and “previous to the theoret-
ical activity of mathematical characterization,” we have expert logicians engage in
doing formalized theory, on one side, and expert logicians engaged in not yet for-
malized logical theory, on the other. All other people, according to such taxonomy,
do not have access to any conception of logical consequence whatsoever. It seems
that thus connecting the theoretical, fully formalized concept, merely to the one
immediately preceding the formalization (our number two, sophisticated pre-formal
notion) is not such a great theoretical gain for at least two reasons.

The first one concerns the programmatic view that formal characterization of
logical consequence should model an ordinary, and thereby strongly pre-theoretic
notion. If the point is simply that formalized mathematical theory should correspond
to not-yet-formalized logical theory leaving aside any interest in ordinary inferential
practice, and ordinary incipient reflections about it, the proposal seems to fall short
of an account of ordinary correct reasoning that proceeds roughly but reliably in
accordance with what formalized as well as not-yet-formalized but sophisticated
theoretical characterization prescribe. This leaves the sophisticated theory and its

2 Exemptions are Robert Hanna [7] and Jodi Azzouni [1], although their concerns are logical abil-
ities in general.
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formalization in an epistemic vacuum, depriving it from connections that Tarski and
others have wisely insisted upon.

The other reason is related to the fact that ordinary people also have certain
logical abilities and a kind of logical knowledge that enables them to recognize the
instances of the consequence relation, possibly, even more specifically, the instances
of the logical consequence relation as well. At least, taking into account that the
expression “logical consequence” is a term of art we should ascribe to them the
ability to recognize that “something implies something” or that “something follows
from something”. It is not to say that ordinary thinkers, being able to recognize that
“something follows from something,” ipso facto are in the possession of the notion
of logical consequence (ordinary or some other). The focus is on the claim that
ordinary thinker’s logical capacities might be a resource rich enough for grasping a
logical consequence relation. As we pointed out the term “ordinary thinker” covers a
broad spectrum, from people without any particular theoretical knowledge to experts
in a particular scientific domain who are, without any doubt, able to recognize (more
or less correctly) that a conclusion follows from particular set of sentences. If only
the highly sophisticated logical practices were the subject matter of the theoretical
activity, a theoretician embracing the modeling program could simply list various
plausible not-yet-formalized characterizations of the logical consequence and inves-
tigate the relation between them and theoretical articulations, honoring them with
the epithet of “pre-theoretical,” emptied from any connection with ordinary practices
(as some logician actually do). So, we need the strongly pre-theoretical, i.e. ordinary
items to guide our thinking about logical consequence.

In Section 7.2 I will present those two aspects, the weakly and the strongly pre-
theoretical one in some more details.

7.2 How Should the Pre-theoretic Conception of Logical
Consequence Be Understood?

As I said, my approach to the pre-theoretic conception of the logical consequence
will suggest holding unavoidable both its aspects. The first one is concerned with
determining plausible standards, given by the pre-formal, but sophisticated and pro-
fessional characterizations of the logical consequence relation, according to which
something could count as an inference token satisfying the (logical) consequence
relation.

Starting from Aristotle, the concept of the pre-theoretic logical consequence has
been formulated in various ways. Most often, these ways appeal to the categories
such as modality, formality, or to some epistemic requirements. Whatever the basic
category chosen, it is almost universally accepted that a minimal requirement on
pre-theoretic or ordinary correct reasoning should be truth-preservation. It is equally
universal that truth preservation could be considered either in terms of modality
(strengthening it up to the necessary preservation), or of the form (limiting it to the
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cases of a particular logical kind). As Shapiro sums it up talking about the slogan of
truth-preservation:

The slogan could reflect the modal component (my italics) of logical consequence, in the
sense that if the premises of the good argument were true, then the conclusion would have to
be. Or it could reflect an intuition that the argument has a valid form (my italics), assuming
that one can delimit the form-content distinction in natural language, or whatever the vehicle
of reasoning is. [18, p. 153]

To sort out the positions and rehearse them let me remind you of the general distinc-
tion between metaphysic or ontic and epistemic approaches to the characterization
of the logical consequence. The former approach aims to determine what is for two
sentences to stay in the logical consequence relation. Inside this category, formu-
lations differ regarding different general categories that are supposed to basically
characterize the reasoning in the natural language or the language of thought. Those
categories are modality, formality and semanticity (as a sub-species of formality).
The epistemic approach shifts the focus from the question about the nature of the
logical consequence to the question of “how we come to know” that particular
relation is a logical consequence relation. In the terms of justified believes, if we
believe the premises, we must believe the conclusion on the pain of contradiction,
or on the pain of irrationality. The taxonomy follows up Shapiro’s exhaustive list of
characterizations.

Ontic Formulations The most usual way to determine the logical consequence is
modal characterization:

(1) If � is a logical consequence of set of the sentences � [19, p. 655], it is not
possible for every member of � to be true and yet � false.

In terms of possible worlds, characterization states:

(2) If� is a logical consequence of set of the sentences �,� holds in every possible
world in which every member of � holds.

Traditional but in the contemporary discourse contentious formulation is in terms of
formality.

It is usual to hold that an argument is valid iff every argument with the same
(logical) form is valid. The answer of how to characterize the logical form turns out
to be the answer to the question of logical terms, since logical form is characterized
as containing only logical terms. In this way, the issue of formality is sorted out in
terms of the truth and the meaning of “logical terms”.

Semantic Characterization

(3) The truth of the members of � guarantees the truth of � in virtue of the mean-
ings of a special collection of the terms, the “logical terminology.”

Neither of these two modes of characterizing the pre-theoretical notion of logical
consequence, taken separately, is entirely satisfactory. The problem with the modal
characterization is that it is too broad to specifically delineate logical consequence
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relation. Namely, according to this formulation, (taken together with the very wide
semantic formulation, according to which the truth of the members of � guarantees
the truth of � in virtue of the meanings of the terms in those sentences) analytic
or conceptual consequence relation could satisfy it. For example, the sentence “Jim
is shorter than Bill” is a necessary consequence of the sentence “Bill is taller than
Jim”. Nevertheless, the argument

“Bill is taller than Jim; therefore Jim is shorter than Bill”

does not expresses a logical consequence relation because its validity depends on the
meaning of non-logical terms, namely on the converse meaning of the expressions
“to be taller then” and “to be shorter then”. The strengthened semantic formulation
(3) requires exact characterization of the terms that could count as logical terms.
Logicians disagree on such characterization, but I will hold that Tarskian model-
theoretic criterion for logical terms (the term is logical if its extension is invariant
under any permutation of the domain) is a necessary condition on this terms.

On the other hand, here are the most usual epistemic articulations of logical con-
sequence.

Epistemic Aspect

(4) There is a deduction of � from � by a chain of legitimate, gap-free (self-
evident) rules of inference.

(5) It is irrational to maintain that every member of � is true and � is false.
(more specifically, “The truth of � follows by necessity of thought from the
truth of all the sentences of �”).

The epistemic aspect shifts the perspective in the sense that it transforms the
modal and semantic statements of what the logical consequence is into the state-
ments of how one comes to know that things are as modal and semantic formu-
lations state. A central account for the grasping of logical consequence in those
formulations is given in terms of “necessity of thought,” “having it on the pain
of irrationality,” “legitimate, gap-free (self-evident) rules of inferences,” and sim-
ilar. The problem with epistemic characterization is that it, stating the normative
conditions on an epistemic agent considers agent’s epistemic capacities as ideal.
Concerning normative conditions, the formulation (5) demands that a rational agent
should “maintain that every member of � is true and � is false,” otherwise, the
agent is irrational. Rationality of the agent consists in his ability to recognize and/or
perform “a deduction of � from � by a chain of legitimate, gap-free (self-evident)
rules of inference.” Of course, such demands on rationality are highly idealized.
This negligence of actual, more limited cognitive faculties leaves the possibility that
the set of rational human beings be empty.

Shapiro’s answer to the problem is a “blended sense” formulation of the logical
consequence. Binding together characterizations (1) and (3), “blended sense” gives
a highly plausible notion of the pre-theoretic model of correct reasoning. Here is the
formulation:
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(BS) “Let us say that a sentence � (in natural language) is a consequence of a set
� of sentences in a blended sense if it is not possible for every member of �
to be true and� false, and this impossibility holds in virtue of the meaning of
the logical terms.” [19, p. 663]

All these formulations (from (1) to (3) and (BS)) concern our second item, the
sophisticated pre-formal (and only in this weak sense pre-theoretical) notion of
logical consequence. This brings us to the leading idea of the paper, namely that
all such pre-formal articulations of the logical consequence should in one way or
another concern themselves with ordinary thinker’s inferential behavior. The nice
way to establish the connection between sophisticated pre-formal characterizations
of logical consequence and naïve thinker’s abilities to manage those characteriza-
tions is to bring into discussion Robert Hanna’s notion of “proto-logic” [7]. Namely,
he formulates four meta-logical principles that, among other things, underline the
ordinary logical capacity. As Hanna said:

I now want to propose that the protologic is innately contained in a cognitive faculty for
logical representation, namely, the logic faculty. [7, p. 45]

What is interesting enough is that two (first and third ones) of those four principles
correspond to Shapiro’s “blended sense” formulation. I am presenting here those
corresponding principles:

1. The weak principle of validity: An argument is valid if it is impossible for all of
its premises to be true and its conclusion false.

2. The weak principle of logical truth: A sentence is logically true if it comes out
true under every possible uniform reinterpretation of its non-logical terms.

The “validity of the argument” in the weak principle 1 is synonymous with “. . . is
a logical consequence of . . . ”. Regarding the second part of (BS) formulation, I
hold that the principle 2 corresponds to it and also expresses a weak and informal
version of Tarski’s criterion for logical terms, which possibly corresponds to ordi-
nary thinker’s actual logical faculties. In this way, the link between sophisticated,
pre-formal aspect of pre-theoretic notion of logical consequence and the ordinary
one concerning naïve thinker’s inferential practices and their cognitive abilities is
indicated.

7.3 The Program: From Theoretical Through Pre-formal
to the Ordinary

To determine the relation between theoretical formulations of logical consequence
and what those formulations are aiming to capture, the outline of the research pro-
gram for finding “this something” that we named with the term pre-theoretic notion,
(both in the stronger and in the weaker sense) of logical consequence should be
indicate. Succinctly formulating in an illuminating way the program that connects
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formal language articulation of logical consequence and natural language deduc-
tions, S. Shapiro says:

. . . models correspond to something concerning correct reasoning, and this something is
related to whatever it is that natural language deductions must answer to. [18, p. 141]

And adds in the footnote:

A programme is confirmed if “intuitive consequence” relations among the natural lan-
guage sentences are translated (my italic) as model-theoretic consequences in the formal
language. [18, fn. 3]

A program Shapiro is talking about is a realist program, which, to be confirmed,
at least some features of the mathematical model must correspond to features of
the reality. Such features Shapiro calls “representors”, in contrast to artifacts that
are theoretical constructs that not correspond to anything in the reality. The way I
read him he enjoins us to bind the theoretical concept through pre-formal one to
the ordinary conception or epistemic kind, the last two being the two kinds of the
pre-theoretical item. This ordinary pre-theoretic logical consequence is precisely the
(somewhat idealized) aspect of reality, i.e. of our ordinary inferential practices that
the mathematical theory of logical consequence is aiming to model.

I will argue that there is something like the pre-theoretical conception of logical
consequence instantiated in ordinary inferential practice. To start explaining this
“something” I will take translation as a “key word.”

Namely, the analogy of the above Shapiro’s quotation with Quine’s translation
schema irresistibly comes to one’s mind. The relation that holds between the formal,
Frege’s pure language, and the natural language conceived as a medium for correct
reasoning is much the same as the relation between the translator’s language and an
unknown language. Quine’s famous formulation is this:

Take the . . . case of trying to construe some unknown language on the strength of observ-
able behavior. If a native is prepared to assent to some compound sentence but not to a
constituent, this is a reason not to construe the construction as conjunction. If a native is
prepared to assent to a constituent but not the compound, this is a reason not to construe
the construction as alternation. We impute our orthodox logic to him, or impose it on him,
by translating his language to suit. We build the logic into our manual of translation. Nor
is there cause here for apology. We have to base translation on some kind of evidence, and
what better? [15, p. 82]

We now introduce our crucial analogy, applying the translation schema to our ques-
tion at hand. According to it, our formal logician is in the position of the translator
looking at the naïve inferential practice expressed in a natural language (observ-
able behavior in Quine’s case). As the Quine’s translator reads off the correctness
of her translation from the native’s behavior, so the logician seeks to confirm her
mathematical theory finding “representors” in reality, i.e. in the natural language
deductions (where deduction, I think, should be understood both, as an inferential
form and as an act of reasoning). Also, as the Quine’s translator imputes his own
logic to the native, so the formal logician measures naïve thinker’s correctness in
reasoning imputing him her preferred logic.
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Remember that according to Quine, in order to check whether her translation
is correct, the translator should obtain strong evidence that the native understands
the sentence of the form “p&q”. She understands the sentence if she, assenting to
the conjunction, assents to (all) conjuncts (or, in negative, does not understand the
sentence, if assenting to the compound sentence, she is not prepared to assent to
some of the conjuncts). Imputing his own logic to the native, the translator finds on
the native’s part the (implicit) understanding of the truth conditions. At this stage
of Quine’s translation schema the sameness of underlying logical principles in the
translator’s and in the native’s language, based on the native’s observable behavior,
is established. The successful translation can go on when the native is recognized as
a competent reasoner having the same pre-theoretic conception of logical connec-
tives as the translator has.

In the case of logical consequence, the program of “translation” is vindicated if
there is (in the naïve inferential practice) something that “is related to whatever it
is that natural language deductions must answer to.” Whether there is something
in the ordinary inferential practice that corresponds to the theoretician-translator’s
required standard for correct reasoning is an empirical question (as it is in the
Quine’s case as well, since the translator is looking for the evidence in native’s
behavior). In the case of logical consequence the logician should rely on the work
of the cognitive scientist to obtain the required evidence. Therefore, the program of
“translation” would be confirmed if we were to obtain the evidence that basically
there is the same set of fundamental logical principles present in “pure” logical
language as it is in the natural language, where it plays the role of foundations
underlying the logical formalization.

Let me now briefly formulate a tentative idea concerning the generalization of the
above sketched outlook. I want to appeal to Putnam’s famous theory of reference.
Criticizing Russell’s theory and offering a new theory of reference and meaning for
general terms (kinds terms in his theory, which is more appropriate in the context of
our discussion), Putnam says (taking the example of the kind term “gold”):

The use of a word such as “gold” depends on our possessing paradigms, standard examples
that are agreed to be model members of the kind . . . What makes something gold is having
the same nature as the paradigms.

And several lines above it:

A term refers to something if it stands in the right relation to . . . sameness of “nature” in the
case of kind words. [14, p. 73]

Due to the limited length of the paper, I will only indicate the plausible route of
investigation.

I am inclined to read Shapiro’s formulation of the program in a Putnamian way.
The elements of Shapiro’s program read in my proposed way are: (a) something
in the human world answerable to the natural language deductions; (b) our sophis-
ticated pre-formal characterization of a logical consequence that states criteria for
correct reasoning, and (c) mathematically formulated logical consequence that aims
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to model or capture both ingredients, first, our (b), i.e. the standards for correct rea-
soning and second, our (a) i.e. what is supposed to correspond to those standards.
Of course, it is possible that there is nothing “in the human world” that fits the
theoretical requirements, that ordinary inferential practice simply does not corre-
spond to standards established by the pre-formal notion of a logical consequence.
In this way, the final answer relies on the empirical findings of cognitive science.
In the nutshell, according to our picture, the full theoretical and formal articula-
tion of a logical consequence would be achieved if it managed to model, as Put-
nam said, “existentially given things,” approaching it through, in Putnam’s words,
a paradigm that directs us to the referent, while the paradigm itself is successful
if it has the same nature as the referent. This element “in the human world,” that
is responsible for the ordinary inferential practice, should be “observed” through
the pre-formal articulation of a logical consequence. In this way, in the Putnamian
spirit if not the letter, the program does not determine the extension of the term
in question in advance, dictating the set of necessary and sufficient conditions, but
leaving that the extension be partly fixed by the world. Viewed in this way, the
theoretical articulation of the logical consequence would be achieved in the best
way by establishing a fruitful and firm collaboration between logic and cognitive
science.

What is supposed to be the contribution of cognitive science? Shapiro’s blended
sense formulation of the pre-formal notion of logical consequence, gives us a clear
standard for counting an instance of ordinary deduction as an instance of logical
consequence relation, if we take it to be our appropriate “paradigm.” On the other
hand, Hanna’s weakened version of the “proto-logic” principles, gives us the criteria
for finding required logical faculties that might meet the standard. Remember, he
claims “that the protologic is innately contained in a cognitive faculty for logical
representation, namely, the logic faculty.” These criteria clearly point to at least two
cognitive capacities: the capacity for recognizing modal terms and their role as well
as to the capacity for distinguishing those terms in natural language that correspond
to logical terms in formal language, from non-logical terms. The first capacity, the
one concerning modality, is relatively unproblematic. The claim that the ordinary
thinker will find the sentence “Jim is shorter than Bill” as a necessary consequence
of “Bill is taller than Jim,” is fairly uncontentious, and this kind of reasoning of
course falls into conceptual or analytic consequence relation, not the strictly logical
one. So, since modal characterization of consequence does not uniquely determine
logical consequence relation, further empirical evidence that would witness for the
possession of the other capacity by ordinary thinkers, namely the one for distin-
guishing those terms in natural language that correspond to logical terms in formal
language, should be searched for, and if found added to the one concerning the first
capacity.

Within a broad area of rationality theory, which is also in the business of offering
an account of the capacities we are looking for, and can and should be harnessed
for our logical purposes, two general theoretical outlooks have been at the center of
the debate in the last two or three decades. Those well-known theories are mental
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logic theory,3 and mental models theory.4 Both turn to be unsatisfactory for the task
at hand. My modest alternative proposal would be to rely on the relatively new and
promising theory developed by K. Stenning and M. van Lambalgen in their book
“Human Reasoning and Cognitive Science” [20]. In the nutshell, the idea is that
the reasoning process is initiated by interpretation of the (non-logical and logical)
expressions based on the understanding of the expression. The reasoning process
inevitably contains understanding-based interpretation of these expressions (or, in
the more complex case, the scenario), and once their meaning is fixed, the interpre-
tation determines the reasoning process. Those statements provide a good basis for
promising investigation of the ordinary thinker’s capacity for discriminating non-
logical terms from logical ones. The development of this idea is a task for another
paper.
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Chapter 8
Logic, Indispensability and Aposteriority

Nenad Miščević

8.1 Introduction

Logic is the heart of rational thinking. But how can and should one justify logical
reasoning and logical intuitions? Can it be done at all, and if yes, can it be done
purely a priori, or is there an important a posteriori aspect to the justification? The
issue has been very much alive in contemporary analytic debate at least since Quine,
who embraced the answer fully in favor of the a posteriori alternative and argued for
it on the grounds that “logic is handmaiden of all the sciences, including mathemat-
ics” [31, p. 98]. The two sides in the debate, the apriorist and the aposteriorist one,
are still at loggerheads.1 In this paper I want to propose and briefly argue for a more
moderate and “centrist” answer, combining the two extremes: the full justification
cannot be had on purely a priori grounds, since there is an important a posteriori
element characterizing it, derived from the unavoidability and indispensability of
logic for any kind of cognitive project. This a posteriori justification is best located
at the internal but reflective, second level: in spontaneous correct reasoning one is
justified at the first level both internally by the obviousness and compelling nature of
one’s inferential steps and externally by their ultra-reliability, but once the skeptical
doubts set in and the philosophical questioning begins, one needs to appeal to the
evidence that lies at least partly outside of the narrow circle of purely logical consid-
erations. It is this appeal at the reflective level that introduces logic-external, more
holistic considerations, and “infects” the justification (and the reasoner’s ultimate
entitlement) with an a posteriori component, distantly reminding one of the original
Quinean approach.

1 A terminological note: since the considerations to be adduced are only distantly related to the
traditional empiricism(s), and since the issue is purely normative epistemic, I will call the two
opposing camps “apriorists” and “aposteriorists” (instead of rationalists and empiricists, to avoid
terms charged with ambiguities).
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Appeals to unavoidability and indispensability have been extremely prominent in
the revival of interest for a priori justification in the last decade, most prominently in
the work of Paul Boghossian, Crispin Wright and, to a lesser extent, Paul Horwich
(see references). The appeals combine in an interesting way ideas from Quine and
late(r) Wittgenstein. My strategy in arguing will be to join these apriorist-rationalist
(potential) opponents in their appeals and then briefly try to show that the appeals
lead outside of the circle of the a priori. The intended conclusion is that unavoid-
ability and indispensability of logic for any kind of cognitive project are important
reflective justifiers of logical and inferential propensities, perhaps the most impor-
tant one, and that they are a posteriori.

Let me now set the stage for the main argument. What does typical simple logical
reasoning look like? Consider conjunction elimination. Suppose a person, call her
Thinker, receives a piece of information about some particular conjunction, of the
form p ∧ q, being true. She quickly passes from this information to the decision to
act upon one of the conjuncts, for instance q. Her implicit handling of elimination of
conjunction can be brought to light by explicitly asking her a question, e.g. whether
is it possible that p and q but not q. The “Of course, not” answer would confirm
the impression that she does have a mastery of the rule governing conjunction. Call
this knowledge instance-knowledge. It seems that knowledge manifested in such
spontaneous inferences is knowledge how. However, when a naïve thinker begins to
reflect, the inferential step seems obvious. This story which is to follow is neutral
between various explanatory proposals, proof-theoretic, model theoretic, mental-
model centered etc.

The typical inference pattern of conjunction, encompassing its introduction and
elimination rules is critical for it. Being able to follow the rules, and finding them
compelling just is to posses the concept ∧ (conjuction).2 Now, the sense, captured
by rules, determines reference or semantic value, in this case truth value. Nothing
else counts. So, once the Thinker has the concept ∧, she will find the transition
from particular instances of p plus q to “the p ∧ q” unproblematic and compelling.
Consider now the semantic values, i.e. truth or falsity of these sentences. The truth-
table for ∧ tells us, in complete harmony with the introduction rule, that the later
sentence is true iff the two former ones are. So, there is a simple determination
principle, going from the sense of ∧ to the truth-value (reference) of the composed
sentence, as captured by the truth table. Now, being able to follow the rules, and
finding them compelling entails believing the truth of the compound sentence if you
believe that its constituents are true. This is knowable from the armchair, so to speak.

Not everybody agrees that naïve reasoners use logic; the relevant literature is
rife with proposals of heuristics that are meant to replace all or some of logical
rules (Gigerenzer et al. [19], also Bishop and Trout [6], and the excellent reader by
Adler and Rips [1]). Anti-logicism sees the standard logic is an artificial invention
almost unrelated to our natural cognitive system. This entails separate justificatory
accounts for logic and for ordinary reasoning strategies. For the view we might

2 The relevant rules are, of course, the familiar ones: P,Q
P∧Q and P∧Q

P , P∧Q
Q
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call minimal logicism the standard logic is part of our cognitive system but not its
core. Finally, full logicism (Rips [33]) sees the standard logic is the core of our
natural cognitive system. Unfortunately, I have to set this disagreement aside, since
arguing for the logic-focused picture is a long and arduous task given the richness
of alternative proposals. I shall therefore proceed dogmatically, assuming that some
form of elementary logic (rule or model-based, including mental-model based) is
being used in naïve reasoning; for a defense of the dogma see for instance (Rips
[33]).

Another question naturally arises: which logic do people use, if any? I will not
address it here, and assume instead some minimal set of rules, common to various
logical systems. A few words about justification. I shall use the term in the most
general way to indicate the positive epistemic status of a belief, and the conse-
quent blamelessness of the believer. Traditional internal(ist) justification, together
with externalist justification and/or warrant and entitlement should be taken as sub-
species of this most general normative kind.3 I will here formulate our question in
terms of justifying as doing, and ask whether it is purely a priori, or is there an
important a posteriori aspect to the justification? Alternatively, for those who think
of justifiedness as the property of beliefs or inferences independent of one’s reflec-
tive doings, we may rephrase the question: are justifiedness and/or entitlement just
had by the given act of reasoning, are they purely a priori, or is there an important a
posteriori aspect to them?

Here is the plan. The next section introduces the issue of apriority, and rehearses
the skeptical doubts about immediate justifiers for logical practice and beliefs. The
third section is the heart of the paper, and is dedicated to indispensability argu-
ment. Its first sub-section looks at naturalistic variant, and the second, most impor-
tant, to the neo-Wittgensteinian appeal to hinges and “cornerstones”. The strategy
is endorsed, and then turned against its usual apriorist reading. The final brief

3 The literature abounds with proposals. Boghossian [10], in his paper says he will “use the terms
‘justification’, ‘warrant’ and ‘entitlement’ interchangeably.” (p. 236). Peacocke in his “The Realm
of Reason” writes: “The notion of entitlement also conforms to the following principles. A tran-
sition to which a thinker is entitled is a rational transition. A judgment is knowledge only if it is
reached by a transition to which the judger is entitled. A thinker may be entitled to make a judgment
without having the capacity to think about the states which entitle him to make the judgment. A
child may be entitled to make an observational judgment by his perceptual experience without his
having the concept of perceptual states.” [10, p. 7]. And he offers a largely reliability account for
the case of logic:

PRINCIPLE I: The Special Truth-Conduciveness Thesis
A fundamental and irreducible part of what makes a transition one to which a thinker is
entitled is that the transition tends to lead to true judgements (or, in case the transition relies
on premisses, tends to do so when its premisses are true) in a distinctive way characteristic
of rational transitions. [10, p. 11]

Burge defines entitlement as an epistemic warrant to accept something and adds the crucial waiver:
“Entitlements are epistemic rights or warrants that need not be understood nor even accessible to
the subject.” [15, p. 458] C. Wright follows the suggestion that warrant is that property, whatever
it is, that makes the difference between knowledge and mere true belief.
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sub-section is a short appendix, in which we apply the result to yet another attempt
to justify logic, the one due to Paul Boghossian. The Conclusion suggests that the
justification of our logical intuitional beliefs and practices (and perhaps other arm-
chair beliefs in) is plural and structured, with a priori and a posteriori elements
combined in a complex way.

8.2 The A Priori and the Beautiful Mind

Let us return to our Thinker, who finds the transition from an instance of p ∧ q to q
obvious and compelling. One important epistemological question is the following:
is she justified in trusting their otherwise compelling intuitions? Are reasoners in
general thus justified? This is the common ground shared among philosophers of
various persuasions. My take here is to propose a distinction of levels (in fact, joint
various authors who propose such a move, see below): place upon the first level
the source of beliefs in question, e.g. intuition. Place upon a second, meta-cognitive
level thinker’s reflective awareness about the quality of her first-level source, e.g.
one’s reflective questioning of or trust in one’s intuitions. Such a two-level view of
justification has been probably implicit in classical epistemology (Plato, Descartes,
and Spinoza), and is nowadays proposed by various authors, most prominently
E. Sosa [34, 35] but also W. Alston [2, 3] and J. van Cleve (with a lot of difference
of detail). It can therefore serve as a suitable common ground between the expla-
nationist and the anti-explanationist (the naturalist-explanationist will do well to
present the epistemic rules as goal-based, grounded in the naturalistically acceptable
truth-goal). I shall follow the most generous variant (of the kind favored by Sosa):
the thinker may on the second level of reflexive questioning use all the available
sources in order to assess the reliability (and other virtues) of a given first-order
source, in this case of intuition or reason.

Within such a picture one can distinguish degrees of reflective, meta-cognitive
achievement on the second, reflective level. The lowest degree is guaranteed by the
immediate compellingness of contents, i.e. of intuitional propositions. If the thinker
psychologically cannot doubt some such proposition, then she is prima facie allowed
to believe it: epistemic ought implies epistemic can. Still, a more conscientious
thinker would want to have a coherent meta-cognitive perspective on deliverances
of her cognitive abilities, and an explanatory view on functioning of abilities. Again,
we may distinguish immediate or folk view (of e.g. perception or intuition ability)
from theoretical perspective on these abilities.

Finally, let us distinguish two directions of reflection: 1st person type and 3rd
person type. Call the person doing first level logical reasoning Thinker, and the
philosopher judging it Epistemologist. In the first direction, the Thinker is reflect-
ing about her own first-level moves, whereas in the second, the Epistemologist is
reflecting about Thinker’s moves. My own view is that 1st person reflective jus-
tifiedness is necessary for being completely justified; the Thinker has to philoso-
phize at least a bit about her own spontaneous practice in order to become fully
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justified in accepting its results. However, even if you disagree, you might think that
completely blind spontaneous thinking is not sufficient for justification. Only most
simple reliabilists think it is. Others, for instance, think that some sort of availability
of the 3rd person type justification is needed. Peacocke and Boghossian might be
among them.

Let us start from the first level. Externally, we may hope that logic is ultra-
reliable, and this would yield externalist justification. On the internal side, most
thinkers, including ourselves, spontaneously find their intuitions obviously true in
very compelling manner, and those among them who reach the reflexive level, con-
sider their intuition-capacity and their reason generally de facto reliable. Nowadays,
clarity and distinctness is mostly associated with obviousness in the sense of subjec-
tive obviousness, where the notion of obviousness is characterized thus “Proposition
p is obvious to agent A at time t if and only if solely in virtue of grasping p at t , p
seems to be true to A” (Jeshion [26, p. 955]). Subjective obviousness is a descrip-
tive property. We obtain the corresponding normative concept by demanding that
grasping p yield actual justification: “Clear grasp of a self-evident proposition is
sufficient and compelling basis for justified recognition of the proposition’s truth
by a rational agent” (Jeshion [26, p. 956]). More optimistic and more normative
account of self-evidence add that understanding a self-evident proposition reveals
its truth. “p is self-evident provided an adequate understanding of it is sufficient for
being justified in believing it and for knowing it if one believes it on the basis of that
understanding” (Audi [4, p. 208]).

The reliability of first-order source, if available, yields an external, 3rd person
justifiedness. In contrast, the reflexive or meta-cognitive, second-order trust in one’s
own reliability, if justified, would make us, the thinkers, reflectively justified on
the second level. As reflective creatures aiming at truth, we need both levels of
justification.

What kind of justification can we have? Traditionally, logic has been firmly asso-
ciated with apriority: the kind of justification available for logical practices and
intuitions is a priori. So, let me say a few words about the a priori/ a posteriori
contrast. Here is Lawrence BonJour, joining and explicating the classical view of it:

In summation, I propose to count a proposition P as being justified a priori (for a particular
person, at a particular time) if and only if that person has a reason for thinking P to be
true that does not depend on any positive appeal to experience or other causally mediated,
quasi-perceptual contact with contingent features of the world, but only on pure thought or
reason, even if the persons ability to understand P in question derives, in whole or in part,
from experience. [14, p. 11].

And he continues:

it is apparent rational insight (and, correlatively, apparent self evidence, that provides the
basis for a priori epistemic justification. (p. 113)

. . . a priori justification, if we set aside the rare or non-existent case of direct experiential
challenge, is incapable of being undermined or overridden by experience alone. [14, p. 123]

Similar views have been expressed by others, prominently G. Bealer [5]. I think
the traditional view is the best option for the apriorist. However, I don’t want to
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beg the question against those more modest recent proposals that see a priori as
being compatible with empirical revisability. (D. Summerfield [36] thus stressed the
irrelevance of immunity). Let me quote B. Hale’s formulation of the same moderate
stance:

we know a priori that p if our true belief that p is justified, and our justification makes
no appeal to empirical evidence. Justified belief can be open to revision without thereby
forfeiting its claim to amount to knowledge a priori—what is needed to defeat that claim is
. . . argument that it is revisable in response to empirical evidence. [21, p. 147]

Back to the logical matters. On purely externalist grounds logic is justified since
it is ultra-reliable. But let us also allow for a first-level internal justification: obvi-
ousness and immediate compellingness does provide some good reason Intuition is
prima facie a priori justified, period; why is this not enough? J. Pust [30] has been
asking. Well, because many beliefs that are prima facie justified (virtuous) turn out
to be unjustified (virtuous) on closer reflection. To return to our initial example, our
unsophisticated Thinker is to a large extent justified in trusting the obviousness of
her intuition. But sophisticated, reflective justification cries for more: how does she,
or how do we, epistemologists know that she is not being eccentric in performing
her reasoning step?

Not all obvious and compelling beliefs and procedures are justified. Some people
are eccentric. The famous mathematician Nash once explained that he is receiving
messages from extraterrestrials which come to him with the same degree of per-
suasiveness (and he probably meant obviousness and immediate compellingness)
as his mathematical theorems. Since this phrase is printed on the cover of the
paperback edition of the “Beautiful mind”, let me call the problem The Beauti-
ful mind problem. It introduces the need for second level, reflective justification:
why do I trust my use of Conjunction elimination, if geniuses like Nash found
their logical reasoning as persuasive as messages from extraterrestrials? It is a
more moderate problem than the related extreme Cartesian problem of madness
which C. Wright uses as part of the motivation for his proposal for the appeal
to indispensability, to be discussed in the next part of the paper. In short, if a
Nash could fall in for extraterrestrials, obviousness and compellingness are not
enough.

In a discussion of an early version of this paper in Dubrovnik Tim Williamson
has remarked that taking the Beautiful mind or madness problem concedes too much
to the skeptic. Don’t even start such a discussion with the skeptic, otherwise you
will loose it. Well, discussion with the skeptic has been essential for epistemology.
Logical practice and beliefs stand in need of entitlement and justification. And in the
particular case, to stay for the moment with Williamson’s views, the ultimate result
of refusing to discuss with the skeptic demands stressing not only the unassailability
of the main body of our beliefs, but also the role reasoning plays in obtaining it.
Logic beliefs are not merely one area of one’s doxastic structure which can be to
a large extent isolated from the rest, like, for instance, religious convictions. But
this line is almost a replay of the indispensability argument, which is our main
topic here, only it would use indispensability in order to silence the skeptic, not



8 Logic, Indispensability and Aposteriority 141

to try to convince him.4 In short, and with apologies for brevity, there is a need for
second level, reflective justification at which obviousness itself is being questioned
and discussed. What is left, if ultra-reliability is too external, and obviousness is
questioned? This is the topic of our next section.

8.3 Logic as Unavoidable and Indispensable

As we said at the beginning, the remaining and central family of arguments for
ultimate justification of our logical practice(s) and intuitions concerns the following
facts: simple rules of logic are compelling and unavoidable for humans, they enable
the very having of beliefs and constitute the rationality of reasoning. Because of
this, they are both unavoidable and indispensable for our thinking, and for any sort of
cognitive projects we might engage in. This unavoidability and global indispensabil-
ity secure the third-person justification (sometimes, as we mentioned, called warrant
or entitlement) for the naïve reasoner, and justification for sophisticated, reflective

4 There is an alternative way to save apriority, by redefining it in a more modest manner: neither
reflective “purity” nor immunity to empirical refutation are necessary for apriority, the recipe goes.
We mentioned the later change, and here we document the attempts to the former. Albert Casullo
[16] and G. Rey [32] concentrate on sufficiency of spontaneous level and allow for a posteriori
justification on reflective level. To illustrate, Casullo has raised the issue of reflective access: how
can we come to be informed about the status of our beliefs? Casullo proposes an a posteriori
inquiry at the second level: it is empirical research that will tell us which, if any, of our beliefs
are justified a priori. The main line of Casullo’s final overall picture has quite a lot in common
with the naturalistic picture sketched by G. Rey in his papers on a priori, but arrived at from the
opposite direction (e.g. Rey [32]). Rey starts from a naturalist computationalist account of roughly
analytic a priori beliefs, and then looks for a way to make the notion of a priori precise. He ends up
by denying immunity, immediate second level access, and by insisting on an a posteriori account
of the a priori. Rey’s account is very sketchy on analysis of a priori, but it nicely supplements
Casullo’s in matters of cognitive psychological account, on which Casullo is practically silent, in
spite of recommending it in principle.

In fact, such minimalistic views like Casullo’s finely illustrate the progressive weakening of
the idea of pure apriority. First, the immunity from empirical refutation is gone. This adds weight
to the a posteriori considerations: if one believes that p on a priori grounds, one’s belief is still
threatened by potential a posteriori defeaters. The originally a priori glass is getting filled with a
posteriori liquid. Step two. You wonder if your belief that two plus three equals five is a priori?
Well, consult your cognitive psychologist. Gone is the second level a priori accessibility. This adds
another sip of a posteriori liquid into the glass. And here is the last drop, but not the least one:
you may not rest content with your candidate a priori belief, say about two plus three, before you
have an explanation of your hoped for reliability! And the explanation will be an a posteriori one,
since the identification of the belief as a priori is already an a posteriori one. If Casullo is right,
not much is left of apriority indeed. The most we can have is justification that has its source in
a non-experiential natural cognitive capacity, but that itself stands in need of a lot of a posteriori
support and underpinning. This line yields a less then minimal apriority. If a belief is justified
(virtuous) partly because it has not been empirically defeated, then it automatically has some a
posteriori negative justification. Add the empirical support it can get from reflective explanation
and it will have a structured justification with a strong a posteriori component, not very different
from the view we are proposing.
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thinker. The apriorists add that these two, entitlement and justification, are a priori.
I shall argue that they are, on the contrary, a posteriori.

Let me put my cards on the table, in the form of a schema for my strat-
egy. I want to go along with the apriorist in agreeing about the following initial
claims:

(0) Logical practice and beliefs stand in need of entitlement and justification.
(1) Simple rules of logic are compelling and unavoidable for humans, therefore
(2) they are both unavoidable and indispensable for our thinking, and for any sort

of cognitive projects we might engage in.

However, I would proceed by arguing the following:

(3) The use of unavoidable and indispensable tools can derive its justification from
projects whenever the projects are themselves meaningful.

If the argument is successful, as I hope it is, it brings in a posteriori considerations:

(4) Our most general cognitive project has been at least minimally successful, and
therefore, it is meaningful and we are justified in believing that it is, and the
naïve thinker is entitled to her logical reasoning.

(5) This justification and entitlement are to a large extent a posteriori.
(6) The meaningfulness of our general cognitive project(s), guaranteed by our suc-

cess up to now, secures the entitlement for the naïve reasoner, and justification
for sophisticated, reflective thinker.

(7) Because of (5), these are both a posteriori.
(8) The reflective justification of logical beliefs and the entitlement to naïve logical

reasoning have at least one strong a posteriori component. (from (7))

Our proposal is distantly inspired by Quine, but it differs essentially from
his view. Quine simply dismisses obviousness, to which many practitioners—
mathematicians and logicians—are happy to appeal. Our proposal allows for apri-
ority at immediate, non-reflective level, and is thus not open to charges for implau-
sibility and self-defeating disdain for the actual practice. It is moderately holistic,
and this only on the second, reflective level, so it does not import implausible and
uncontrollable holism into the first level.

In reality, (1) fuses together some ideas that have been separately stressed and
developed by various authors, so we have to address them separately. Some of the
authors stress that compellingness of simple rules of logic, and then disagree about
its nature. P. Horwich has been stressing a kind of naturalistic inevitability, Boghos-
sian a more transcendental kind. Finally, C. Wright offers a Wittgenstein-inspired
account of their indispensability. We shall briefly summarize and comment the first
approach, then concentrate upon the Wittgensteian line; finally we briefly, all to
briefly, apply the results from the discussion of it to Boghossian’s project. Again,
apologies for brevity; I discuss Horwich and Boghossian in more detail elsewhere
(Miščević [27, 28]).

Before proceeding further, let me distinguish the issue of a particular episode of
the use of logic from the more general issue of justification of logic as such. If a
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mathematician uses a logical strategy for finding out about a theorem, and we are
asked whether she is justified in doing so, on the natural reading of the question the
focus is on a particular strategy. If it is logically impeccable, and this is relevant
at this juncture, she is thereby justified; we do not need any more general story
(thanks go to Nenad Smokrović for pressing the point). The context of the discus-
sion changes if our interlocutor raises a more general question: well, her strategy is
logically correct, but why rely on logic at all? Here, a different kind of answer is
needed, and the proposals which we will discuss now attempt to come to grips with
the task.

8.3.1 Naturalistic Inevitability (P. Horwich)

Paul Horwich has proposed a naturalistic computationalist argument for a priori jus-
tification of the use of classical logic in reasoning, that combines in an original way
considerations from Quine and post-Tractatus Wittgensein (later he backed from it,
and didn’t include it in reprint in the book [25]; in a discussion of my objections
at a conference in Pecs he told the audience that he has some reservations about
his proposal). I find the proposal worthy of discussion, so I proceed with a short
reconstruction of it (from Horwich [24, p. 168]). Horwich starts with the contrast
between science and ordinary assertoric practices. He renders unto Quine what he
thinks belongs to him: the logic, arithmetic, and geometry of science are a poste-
riori. But the ordinary assertoric practices are less subject to revisability. Take the
sentence: “If London is larger than Paris, then Paris is not larger than London”. It
is unthinkable for us that it does not hold. So, in non-scientific assertoric practices
“we will continue to rely on classical logic, on standard arithmetic, and on Euclidean
geometry”. “They are a priori”, he adds. The result: there are two logics, an a priori
one and an a posteriori one. Presumably also two epistemically disparate kinds of
arithmetic, one a priori and the other a posteriori. Here is his story about the a
priori part.

Suppose that each human being is born with, and stuck with, a simple language
of thought (i.e. mentalese) containing, amongst other things, certain symbols whose
intrinsic nature is such that the principles of classical logic are obeyed. (A scientifi-
cally plausible assumption, that can be extended to arithmetic, geometry, and innate
concepts in many areas). This commits humans to classical logic as their natural rea-
soning system underpinning their rationality. This commitment derives neither from
experience nor is revisable in light of it. This commitment is inevitable, humans
cannot get rid of it. Call this Inevitability Claim. Now, norms are constrained by pos-
sibilities: ought implies can, so if one cannot believe p one is not rationally required
to believe it (Impossibility implies lack of obligation). Therefore, (under assumption
that it is the case that certain beliefs are innate and irremovable) we can understand
why they would be amongst those beliefs that we treat as unconditionally rational.
Therefore, we have an a priori commitment to classical logic. The final conclusion
follows: Therefore, the innate structure of our minds is a potential source of a priori
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knowledge. Before starting the discussion, let me mention that Horwich accepts the
truth-goal as the main epistemic goal: the revisions aim at capturing truth.

Now the discussion. The crucial problem is posed by the Inevitability Claim and
the bipartite picture, separating science and commonsense. Innate beliefs seem to be
inevitable in a weak sense: we find them natural, we normally don’t question them
and we find it very difficult to doubt them. Naïve physics and Euclidean geometry
are very good examples. But also some reasoning heuristics seem compelling to
most people. Unfortunately for the argument, this weak sense is not sufficient. The
idea that impossibility implies lack of obligation (converse of the Ought-implies-can
principle) and takes “cannot” and “inevitable” in a much stronger sense of “being
humanly impossible”. However, Euclidean geometry is not any more firmly and
literally believed by educated people. A good high-school student can get rid of her
innate naïve physics with the help of a good teacher. Scientific revision of ordinary
beliefs usually trickles down into commonsense, this is what science classes and
“Scientific American” are here for. In short, if humans can revise their innate beliefs
when it comes to science, then they can revise them simpliciter. If Quine can demand
so much of scientist, he can demand something similar from those acquainted with
the results of science. The bipartite picture, separating science from all other asser-
toric practices is false.

Science-driven reflective revisability gives some assurance against blind epis-
temic luck. It is a matter of such luck that some of our innate beliefs are true
and reasoning strategies correct. But we should not rely on luck if we don’t have
to. And the fact that we indeed can revise our native frames of mind is a great
asset: it reduces the power of blind luck. Just consider the problem posed by innate
“garbage”, the realistic possibility of their being innate material that is cognitively
pathological. Some of us believe that racist or religious beliefs can be a case in
point, others that some possibly innate reasoning heuristics are one. Again, such a
“garbage” might be weakly inevitable, in the sense of requiring a lot of effort even
to get rid of in some people for some time, but being ineradicable in general, for
most people and forever. The justification bestowed by such circumstances is not
what we would like to have as a rational justification for a priori beliefs.

Science-driven reflective revisability therefore has an enormous normative sig-
nificance. So, if humans can revise their innate beliefs when it comes to science,
then they can revise them simpliciter, and if they can revise them, they should do so.

All this brings us back to the truth-goal. Since the relevant practices are asser-
toric, they produce truth-evaluable, true or false items. Truth is an important goal
in production of most such items. Therefore, the relevant practices have truth as
an important goal, so truth is an important common goal of science and of the
relevant assertoric practices. Now, if a “theory” that has been innate is revised in
and by science in search of truth, it is reasonable to inform other practices about
this rejection. Further, it seems that innate beliefs are de facto revisable. And it is
hard to live with double epistemic standards. So, if humans can revise their innate
beliefs when it comes to science, then the revision should influence all the assertoric
practices in which they play a role. Then, the beliefs would stop being a priori. The
same would be reasonable in the case of logic, should the need arise. In short, if
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humans can revise their innate beliefs when it comes to science, then they can revise
them simpliciter, so they ought to do so.

Suppose that we have accepted the conclusion: innate beliefs are difficult to
revise, but can be revised if the need arises. Second, science is much more into
the kind of business that can lead to revision, ordinary assertoric practices are not.
So, there is a duality, but much weaker than needed for Horwich’s strategy. We
also retain Horwich’s partly internalist idea of justification with which we have
been implicitly working until now. What are the alternatives for accounting for
candidate a priori beliefs? We might then assume that two sorts of justification are
better than two mutually isolated (kinds of) belief systems. So our candidate a priori
beliefs could enjoy prima facie spontaneous justification from their obviousness and
immediate compellingness, i.e. from “can’t do otherwise” considerations, featuring
the weak and ordinary meaning of “can’t”. In this sense, I can’t imagine logic and
arithmetic to go wrong. Similarly with ordinary analytic claims: I can’t imagine that
spinsters are married (though I can think of two “classical” spinsters united in a mar-
riage, namely a homosexual one). I can’t conceive of state of affairs where London
is larger than Paris, and Paris is also larger than London (Unless “larger” means “has
more inhabitants” in the antecedent, and “has a bigger area” in the consequent of
our sentence). I believe that if John persuaded Mary to go, then Mary intended to go.
(Unless Marry only thought she formed an intention, but self-deceived herself. Some
people would still say John was successful in persuasion, only Mary spoilt things
by self-deception.) But my inability to conceive otherwise is still hostage to what
one day we can discover. So, my relevant beliefs are weakly a priori, not immune to
empirical revision. Where does the threat of aposteriority come in? Maybe in a sec-
ond order, reflective coherentist justification which has an a posteriori component,
namely that science has until now lived happily with classical logic and arithmetic,
and that there is no known counterinstance of the non-symmetry of “larger than” and
so on. I would be quite happy with such an alternative, and I think it would preserve
much that is valuable in Horwich’s original proposal. I now proceed to argue for it in
a dialogue with the Wittgensteinian tradition, bringing in the global indispensability
of logic.

8.3.2 The Global Indispensability Argument (The Wittgensteinian
Tradition)

Let me now, for our next step, borrow one central element from the Wittgensteinian
tradition, namely the idea of hinges or cornerstones. I will take it in the form devel-
oped in one of Crispin Wright’s answers to the problem of warrant (as he puts it)
of logical practices and beliefs, with apology for using it against aprioristic inten-
tions of Wittgenstein and his followers.5 It is the idea of the unearned warrant;

5 In fact, we can distinguish two components in Wrigth’s discussion. First, in his earlier work he
brilliantly shows that the Madmen (and for that matter also Dreamers) Argument in a way destroys
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logic is presupposed in every cognitive activity. Wright revives the Wittgensteinian
conception of hinges and enriches it with his own idea of “cornerstones”:

Call a proposition a cornerstone for a given region of thought just in case it would follow
from a lack of warrant for it that one could not rationally claim warrant for any belief in
the region. The best—most challenging, most interesting—sceptical paradoxes work in two
steps: by (i) making a case that a certain proposition (or restricted type of proposition) that
we characteristically accept is indeed such a cornerstone for a much wider class of beliefs,
and then (ii) arguing that we have no warrant for it. [39, pp. 167–68]

If a cognitive project is “rationally non-optional”, i.e. indispensable in rational
enquiry and in deliberation, then we may rationally take for granted the original pre-
suppositions of such a project without specific evidence in their favor. The absence
of defeating information is sufficient. So, Wright proposes to combine two warrant
providers: the first is a rule-circular justification, reminiscent of justification from
constitutiveness, that answers the first order question: how might the knowledge of
the validity of basic logical laws be arrived at? The second-order problem about
such knowledge is “that of explaining with what right we claim it?” [39, p. 174].
This “second-order problem has a chance of being addressed by invoking the notion
of entitlement of cognitive project” (Ibid.).

Wright claims that our acceptance of hinges and cornerstones is warranted by
cognitive projects they enable. But this seems to take us from Wittgenstein to Quine
and Putnam. If one’s early encounter with philosophy of logic was through Quine’s
“Philosophy of Logic,” one would probably be reminded of the famous passages
on universal use of logic. For Wright the acceptance of logic is warranted by its
being indispensable to each and every cognitive project, each and every “region of
thought.” Quine, for his part, famously speaks of “lack of special subject matter:
logic favors no distinctive portion of the lexicon, and neither does it favor one sub-
domain of values of variables over another.” And then passes to “the ubiquity of the
use of logic. It is a handmaiden of all the sciences, including mathematics . . . We
might say at the risk of marring the figure that it is their promiscuity, in this regard,

or “implodes” itself. For the Madman’s (our Beautiful Mind person’s) thinking he uses the word
“maundering”. If the reasoner in the scenario is “maundering”, she cannot be correctly inferring
from her maunderings. So, the skeptical argument does not show that the thinker has no warrant.

If, as I earlier suggested, an effective argument from Dreaming, or from Brain-in-a-Vathood,
etc., cannot proceed without all these elements—if our analysis does indeed capture the
essential implicit detail of this kind of sceptical train of thought—then we may indeed draw
a large but negative conclusion: that there is actually no method of sceptically undermining
our right to rely on any of our cognitive faculties using a fantasy, whatever its exact nature,
of first-personally undetectable impairment. [37, p. 116]

We thereby conclude that . . . it is not true that x has no warrant at t to believe that she is
not then dreaming, and hence that the impossibility of earning a warrant to believe that one
is not now dreaming—if that is what . . . argument showed—does not imply that no such
warrant is ever possessed. (pp. 107–8)

However, and this is the crucial point, the Argument does suggest that the warrant cannot be earned
by any kind of reasoning. The solution is to accept the possibility of an unearned warrant.
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that goes far to distinguish logic and mathematics from other sciences. Because of
these last two traits of logic and mathematics—their relevance to all science and
their partiality toward none—it is customary to draw an emphatic boundary sep-
arating them from the natural sciences” [31, p. 98]. I recommend to take Quine’s
quote with a Putnamian grain of salt, as supporting a realist reading. Then, we seem
to be back to indispensability argument: logic and mathematics are to be accepted
because they are indispensable to our widest cognitive projects in virtue of their
admirable “versatile ancillarity.” The general background suggested by ancillarity
and indispensability seems to be a means-end framework: logic and its acceptance
are warranted as means for an end, not as valid in themselves, in stark contrast to
the usual apriorist claims about autonomy.

Now, Cartesian skepticism “challenges knowledge of any external domain,
whether abstract or spatiotemporal,” as Novak and Simony friendly suggested to
me. Indeed, in the debate with the absolute skeptic no-one has a good chance, as
Williamson has been pointing out in his remark discussed above. But the present
point is different: if, instead of wanting to refute the skeptic in his own terms,
you are involved in a “modest anti-skeptical project that just aims to set our own
minds at ease,” then the question of the comparative value of various indispens-
ability considerations becomes interesting. And here the Quine-Putnamian ones
seem to be in better shape than Wittgensteinian ones, simple because of being less
restrictive.

However, this is only the beginning. There is an important contrast: in Wittgen-
stein-inspired views the justification is fully antecedent to the project, and this seems
to guarantee apriority to logic. Along the same lines, Tom Stoneham has objected
at the presentation of an early version of this paper in the conference in Dubrovnik
that in the project under considerations it is the generality of logic that saves it from
the need of empirical confirmation.

But does it really do it? Let us approach the answer in a series of steps. First, is
indispensability for any kind of large cognitive project by itself warrant-bestowing?
To see that it is not, consider the following piece of reasoning. Belief in extrater-
restrials is needed in order to embark upon a mega-project of re-interpreting a huge
mass of recorded emission from outer space as their messages. Therefore, if one
has the project, one is warranted to believe in extraterrestrials. If you don’t find the
reasoning convincing, this suggests that the acceptance of hinges and cornerstones
is justified by the meaningfulness of cognitive projects they enable, and is sensitive
to it. The acceptance of logic is warranted by its being indispensable to each and
every cognitive project, and is thus sensitive at least to the meaningfulness of major
cognitive projects, and to the totality, say, “total inquiry” into what the world is like.
Now, clearly impossible, stupid and bad goals do not justify the use of means. “If we
want to square the circle, we need theorem �; therefore �.” is not a piece of good
reasoning. Of course, the epistemic situation has parallels elsewhere, for example
in prudential considerations and in ethics. Impossible whole-life projects do not
justify dramatic decisions that would further them if they were possible. Morally
bad projects don’t contribute to justification. A means (an electric device, a supply
of chemicals) can be indispensable for a very bad project (torturing, massive killing
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by poisoning), but his would not make the procurement of it permissible; the end
has to be independently acceptable for the means even to come into consideration.

To return to epistemic issues, consider the following scenario and its conse-
quences, that could be called “Mr. Magoo argument.” Mr. Magoo has a very defec-
tive cognitive apparatus. His inductive propensities are idiotic, to use politically
incorrect vocabulary, his senses most often deceive him, and his “heuristics” are
ridiculous. (He lives in a super-hospitable environment, but hardly manages to sur-
vive). His idiotic inductive propensities and ridiculous “heuristics,” plus his mis-
placed uncritical trust in his senses are indispensable for his ever forming any belief.
Therefore, he is warranted in taking them as unquestioned and unquestionable start-
ing points. If you don’t find the reasoning convincing, this suggests that the accep-
tance of hinges and cornerstones is justified by the quality of cognitive projects
they enable, and is sensitive to the chances of their success. But these chances are
revealed by trying. Therefore, our best access to our own warrant involves infor-
mation about the chances success of the relevant cognitive project. Of course, what
counts as success should be made clear (thanks go to David Davies, who in dis-
cussion in Rijeka reminded me of this); otherwise the considerations would seem
to make the final justification just pragmatic. (Wright has already been accused
of smuggling in pragmatic considerations.)6 In contrast to all this, by “success”
we mean purely epistemic success, not merely and not at all the pragmatic one. It
doesn’t matter how the epistemic success is spelled out in detail, for instance in
terms of reaching important truths, that enable explanation and understanding, and
of avoiding error; other versions will do as well. It is the rational possibility of purely
epistemic success that is a reasonable or perhaps even a necessary condition for the
means for it being warranted.

I am saying “a reasonable or perhaps even a necessary condition,” because I want
to point out two lines of argument for my claims stated above:

(3) The use of unavoidable and indispensable tools can derive its justification from
projects whenever the projects are themselves meaningful.

If the argument is successful, as I hope it is, it brings in a posteriori considerations:

(4) Our most general cognitive project has been at least minimally successful, and
therefore, it is meaningful and we are justified in believing that it is, and the
naïve thinker is entitled to her logical reasoning.

One line is a more radical one, claiming that a project is meaningful only if it has
a reasonable chance for success, the other is less radical, but acceptable to a wider
audience: if a project is successful, then it is meaningful; our most general cognitive
project is to an impressive extent successful, so it is meaningful.

Let me first remind you that even the more radical line is quite plausible. I
will introduce two actual opponents, both of them my friends and colleagues, in
the discussion. First, David Davies once pointed to the possibility that a project

6 For instance, by Duncan Prichard in section 3 of chapter 9 of his [29].
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can be meaningful without having a chance of success. This can be taken in two
ways, objective and subjective. Indeed, some epistemic project might be objectively
doomed to failure, but this does not make one’s trying irrational, as long as one
has some ground to be optimistic. But it the project is due to failure in one’s best
judgment, one is not warranted in trying to implement it. The two interact in a
complicated way, but we need not worry about this here.

What about daring projects? Majda Trobok has in the discussion pointed to a
fine and amusing example from Apostolos Doxiadis’s novel “Uncle Petros and
Goldbach’s Conjecture.” So, let us enjoy a bit this witty fiction. In the story, uncle
Petros is courageously trying to prove Goldbach’s conjecture, but the father of the
main character warns his son that one should not aim for what is not attainable:
“The Secret of Life is always to set yourself attainable goals. They may be easy or
difficult, depending on the circumstances and your character and abilities, but they
should always be at-tai-na-ble! In fact, I think I’ll hang your Uncle Petros’ portrait
in your room, with a caption: EXAMPLE TO BE AVOIDED!” (Doxiadis [17, 18],
p. 21). And of course, the warning seems opportunistic and narrow minded.
Although this consideration is in itself quite important, it does not threaten our line
of thought; it concerns criteria of what is reasonably to be expected, and encourages
taking a more risky attitude. Our line does not forbid this; as long as there is a
reasonable chance, one may be justified in procuring oneself the means needed.
Things get more difficult with the next relevant episode in the book, as Trobok has
pointed out to me. The friend of the hero, Sammy, has discouraging news:

So, you think it’s impossible that Goldbach’s Conjecture is unprovable?
‘Man, what does “impossible” mean in this context?’ Sammy sneered. ‘As your uncle cor-
rectly told you, there is, thanks to Turing, no way of telling with certainty that a statement
is a priori unprovable . . . ’ (p. 157)

Of course, the challenge rests on the possibility of actual, objective unprovability.
Mere knowledge that “no way of telling with certainty that a statement is a priori
unprovable” does not make the attempt to prove it or disprove it irrational. And
Sammy takes exactly this line:

But if mathematicians involved in advanced research started invoking Gödel, no one would
ever go near the interesting problems . . . ‘Why, it’s like not going out in the street for fear
that a brick might fall on your head and kill you!’ (pp. 157–58)

No terrible threat after all. One might disagree with Sammy, but I hope to have made
plausible the useful radical claim that meaningfulness is not independent of chances
of success.

Now, what about an epistemic romantic, who disagrees with Sammy and claims
that odds against the mathematician are in this case much greater than the odds of
a brick falling on one’s head, and that the mathematician is still reasonable in his
endeavor? That meaningfulness is independent of chances of success?

Well, the radical claim of non-independence is not strictly necessary for our
argument. If you are an epistemic romantic, like Uncle Petros is depicted to be,
you might still agree with the following two claims: first, that our general cogni-
tive project has de facto been quite successful, and second, that this success is a
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reasonable device for justifying the means used for implementing the project. In
other words, why take heroic line and claim that the project is only a “romantically”
meaningful one, if one has enough evidence that it is successful-meaningful? On
this second line, the success is a handy and welcome device for justifying our epis-
temic project, and logic as it means; in line with the claim (3) to the effect that “the
use of unavoidable and indispensable tools can derive its justification from projects
whenever the projects are themselves meaningful.”

Let me then conclude the discussion of meaningfulness-success link. On the one
hand, the more radical claim that a project is meaningful only if it has a reasonable
chance for success seems plausible to many. On the other hand, even if does not
hold, a weaker claim does: if a project is successful, the success can be used for
justifying it. In the case of our general cognitive project, the romantic alternative of
success-independent justification is too problematic to overweight the availability
of the impressive success-linked alternative: it is eminently reasonable for the epis-
temologist to justify our general cognitive project by its very probable up-to date
success.

We can now pass to a slightly more specific issue. It is not clear that success-
meaningfulness is completely independent of empirical considerations. Think of
projects that would have sounded meaningful to an educated and intelligent Greek,
or an Indian from the time of Mahabharata, and that do not sound meaningful to
us any more. This brings us back to the main issue of the epistemic point of our
cognitive project and the role of logic in it. The warrant for logic is sensitive at least
to the chances of success of our “total inquiry,” and our awareness of it depends on
the information about the success. Now, success of our total inquiry is to a large
extent an empirical matter. Therefore, our awareness of it depends in the large mea-
sure empirical information. Such information is a posteriori, which to the rationalist
looks like a threat. How serious is it? On the aposteriorist line, some assumptions
may be pragmatically antecedent to a cognitive project, but they are, firstly, justified
by the success of the project, and secondly, revisable in the light of some advanced
stage of the project. So, is the epistemic status of logic a priori, and can logic be
revised on a posteriori grounds? First question first. We have seen that there is a
touch of aposteriority present in the considerations of meaningfulness, and much
more in our coming to know about our warrant. Now, officially, Wright can be
unconcerned about it. It is the having of the warrant that is a priori, not knowing
about it. But things are not that clear. First, this view seems to come very close to
the aposteriorist view just mentioned: both theorists, our apriorist and our aposteri-
orist, accept a kind of warrant antecedent to the project, only give different names
to the antecedence: the first takes it as bestowing serious apriority, the second, as
bestowing only a kind of “vanilla” apriority, to use Harman’s ironical idiom (“The
Future of the A priori,” title of section 1). Further, there is a problem about full
reflective justification that goes beyond entitlement-warrant. How does the cognizer
arrive at justified beliefs about herself being warranted? Well, partly by relying on
relative success of her total project. And this reflective justification might there-
fore be seriously a posteriori, in a way that precludes purely a priori justification
of logic.
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What about a scenario that is a converse of the Mr. Magoo one, call it
Egghead scenario? In it, our hero, Egghead, with his impeccable logic, is
extremely successful in abstract reasoning but hopeless in the real world down-
to-earth issues. Well, cognitive success in abstract reasoning might be enough;
remember we are not pragmatist here, but interested in truth and avoidance of
error.

One might accuse us of circularity. After all, we need logic in order to judge
the cognitive success of our total inquiry. And a skeptic might go even further,
and question our ability to do the judging. This last point is the least worrisome:
normally, in discussing armchair matters, we assume that its empirical counterpart
is relatively reliable. The circularity issue is a bit worse, but the standard reply here
is the only one available: the circle is big enough, huge in fact. We work with the
widest possible reflective equilibrium, in which we consider, of course using logic,
the harmony between logic and the rest of our belief or, hopefully, knowledge sys-
tem. If this is not allowed, nothing is.

But is such full reflective justification really needed? Notice that Wright is in no
position to deny the need for it, so we have at least an ad hominem argument, if
not also an appeal to authority. Here is his suggestion about the role of intellectual
integrity and good conscience, which point precisely in the direction of reflective
thought:

Descartes’ project in the Meditations was one of harmonisation of his beliefs with the
requirements of rational conscience and its timeless appeal is testimony to the deep
entrenchment of virtues of intellectual integrity in our cognitive lives. The right to claim
knowledge, as challenged by scepticism, is something to be understood in terms of—and to
be settled by—canons of intellectual integrity. The paradoxes of scepticism are paradoxes
for the attempt at a systematic respect of those canons. They cannot be addressed by a
position which allows that in the end thoroughgoing intellectual integrity is unobtainable,
that all we can hope for is fortunate cognitive situation. When good conscience fails, there
are still, indeed, other good-circumstantial-qualities which our beliefs may have. But what
is wanted is good conscience for the claim that this possibi1ity is realised on the grand scale
we customarily assume. [39, p. 211]

So, for Wright, the right to claim knowledge is inseparable from having good
conscience for the claim that there is a realized possibility of knowledge on the
grand scale (compare also Wright [38, p. 70]). And this claim is clearly reflective.
Now, if reflection on warrant involves important a posteriori elements, having to
do with success of our cognitive project, than our full reflective justification is a
posteriori.

Can one avoid aposteriority by making less demands on the logical reasoner?
We have distinguished two directions of reflection: 1st person type and 3rd per-
son type. Calling the person doing first level logical reasoning Thinker, and the
philosopher judging it Epistemologist. I have proceeded here assuming that 1st
person reflective justifiedness is necessary for Thinker being completely justified.
However, this is not essential. Even if you go with extreme externalist, and allow
the Thinker justification-warrant from ultra-reliability, you would want to have some
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assurance as Epistemologist that logic is justified, and for this assurance you would,
in the present context, appeal to indispensability. The formulation would then be:
the Thinker is externalistically justified a priori, but the assurance that this is so
comes from global indispensability and is a posteriori. The whole story would still
be to a large extent a posteriori. We thus conclude with our

(8) The reflective justification of logical beliefs and the entitlement to naïve logical
reasoning have at least one strong a posteriori component.

The remaining question is one of a posteriori revisability, but we have to be
brief. How much is written into the warrant? Does it preclude revision? Consider the
analogy with the beliefs into the Material world. Here is what we are antecedently
entitled to in the case of beliefs about material world, according to Wright: There
is a material world, broadly in keeping with the way in which sense-experience
represents it [39, p. 187]. Now, this material-world hinge, as we might call it, is
very vague. And it imposes very, very weak constraints. For instance, our sense-
experience represents the material world as being to a large extent composed of
solid, dense matter. But, if we discovered that the ultimate stuff were just “atoms and
void,” this would not unhinge our sense-experience; nor would a still more dramatic
revision, namely the discovery that it is fields of forces, very much unlike ordinary
matter, that ultimately make up “material world.” In other words, the material-world
hinge is minimal, it offers a broad umbrella statement, qualified with the clause
“broadly in keeping,” that allows for dramatic revisions in interpretation. Exactly
what one would expect from an antecedent assumption, open to all sorts of modifi-
cations.

Is there any reason built into the nature of entitlement why the logic-hinge should
be any different? If its only raison d’être is indispensability for the cognitive project,
then it is in the same boat with the material-world hinge. If not even less secure.
Logic is needed for every “region of thought,” so it should be adaptable to each
one of them as well. Is there any reason to think at this stage that our initial logic,
the one we find natural and obvious, is so universally applicable without a least
revision? Of course not. Antecedently to experience, there is no reason to think that
the initial logic, and our initial inability to imagine counterexamples to it, will be
that successful. Our final rational confidence in logic might derive partly from the
fact that it has never let us down, and this would be in keeping with its ancillary
role, stressed by both Wright and Quine.7 The success of our “total inquiry” is thus
to a large extent an empirical matter. Therefore, our awareness of it depends in
the large measure on empirical information. Such information is a posteriori. On the
aposteriorist line, some assumptions may be pragmatically antecedent to a cognitive
project, but they are, firstly, justified by the success of the project, and secondly,
revisable in the light of some advanced stage of the project.

7 I am leaving aside a related line that denies the need for justification or warrant, since it has not
been prominent in accounting for apriority.
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8.3.3 Appendix: The Constitutiveness Argument—A Brief Remark

Let me now briefly apply our conclusion to another prominent attempt to justify
logic; we shall not go into details, but just reiterate the main morals of the story told
so far. Boghossian’s attempt and his line of defense, which we may call The Consti-
tutiveness Argument is that logic can be justified in a rule-circular manner, due to its
indispensability for thinking almost any contents whatsoever. Without dispositions
to reason in accordance with logic we could not even have the general belief whose
justification is supposed to be in question, i.e. the belief about inferential potentials
of a given logical constant. The crucial point for him is that the mere fact that the
thinker grasps S’s meaning entails that the thinker is justified in holding S to be
true. (The epistemological consequences of the proposal are developed in “How are
objective epistemic reasons possible?” reprinted as a chapter in Boghossian’s [11].)
Take conditionals. If I don’t follow Modus Ponendo Ponens, I can’t have if-thought
at all. So, if I do follow it, with “p” and “if p, then q” as my premises, I cannot be
blamed, so, I am entitled to follow it.

If inferring from those premises to that conclusion is required, if I am to have the ingredient
propositions, then, as a matter of metaphysical necessity, I cannot so much as consider the
question whether the inference is justified without being disposed to reason in that way.
Under those circumstances, then, it looks as though inferring according to MPP cannot be
held against me, even if the inference is, as I shall put it, blind—unsupported by any positive
warrant. (Boghossian [12, p. 230])

The chapter concludes by stressing that according to the “Constitutive model” the
most fundamental relation between grasp of meaning and entitlement occurs when a
thinker is entitled to reason in accord with a certain rule simply by virtue of the fact
that this rule is constitutive of a concept of his. The author expresses his hope that the
model can be extended from reasoning to beliefs, if they are similarly constitutive
of the possession of a concept (which has to be non-defective, and we shall come
to this in a moment). He proposes that this will solve the issue, famously raised
by Aristotle (in Metaphysics �), about our entitlement to accept the principle of
non-contradiction. Argument. Here is his argument in a nutshell:

1. Certain of our inferential dispositions fix what we mean by our logical words
(in the language of thought), therefore

2. without those dispositions there is nothing about whose justification we can intel-
ligibly raise a question about.

3. Moreover, without those dispositions we could not even have the general belief
whose justification is supposed to be in question. Therefore

4. We are entitled to act on those inferential dispositions prior to, and independently
of, having supplied an explicit justification for the general claim that they are
truth-preserving. (Boghossian [8, p. 250])

Boghossian has been developing the first line, on meaning-constitutiveness as a
priori justifier, combined in his “Knowledge of Logic,” with occasional remarks
on compellingness, i.e. on the alleged fact that “it is not open to us to regard
our fundamental logical beliefs as unjustifiable” (in Boghossian and Peacocke
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[13, p. 253]). For instance, in the same paper Boghossian argues for the warrant-
edness of logical rules mainly from negative compulsion, i.e. from deeply felt
unacceptability and inconceivability. He does not offer any causal or psychologi-
cal explanation of compulsion, which is, after all, a felt item. Here is the relevant
quote:

. . . we cannot accept the claim that we have no warrant whatsoever for the core logical
principles. We cannot conceive what such a warrant could consist in . . . if not in some sort
of inference using those very core logical principles’, and further: It is not open to us to
regard our fundamental logical beliefs as unjustifiable. [13, p. 253])

I agree that the argument is persuasive: no general beliefs unless we use logic, so,
nothing much to justify. And we need general beliefs, need reasoning and cannot
do without it if we want to come to know about the world. Logic is unavoidable,
and also indispensable for our most general project of coming to know. However,
this line again raises the same issue: the use of unavoidable and indispensable
tools can derive its justification from projects whenever the projects are themselves
meaningful.

However, we are justified to think that our most general cognitive project is
meaningful, and justified partly of the basis of its up to date success; and this basis
is a posteriori. Therefore, the whole reflective justification from compellingness and
unavoidability is a posteriori, whereas the more immediate one is a priori. This
suggests that the justification of our intuitional armchair beliefs and practices in
general is plural and structured, with a priori and a posteriori elements combined in
a complex way. It seems thus that a priori/ a posteriori distinction is useful and to
the point. What is needed is refinement and respect for structure, not rejection of the
distinction. This brings us to our conclusion.

8.4 Conclusion: The Structured Justification

In this paper I have joined philosophers who claim that unavoidability and
indispensability of logic are its important justifiers, but have diverged from the
recent mainstream, which finds the justification or warrant from unavoidability
and indispensability to be a priori. I have argued briefly (all too briefly) for the
first, shared claim, and in more details for the presently unorthodox claim for
aposteriority.

To summarize the main line once more, I started from the idea that logical prac-
tice and beliefs stand in need of entitlement and justification. For various reasons
internal obviousness and external ultra-reliability are not sufficient for full reflective
justification. Fortunately, simple rules of logic are compelling and unavoidable for
humans, therefore they are both unavoidable and indispensable for our thinking,
and for any sort of cognitive projects we might engage in. However, the use of
unavoidable and indispensable tools also has to be further justified, otherwise the
use of such tools for meaningless or abominable projects would be automatically
justified. Since our general cognitive project of coming to know about the world
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is in itself quite valuable, and has been at least minimally successful, it is in the
clear and meaningful and we are justified in believing that it is. So, the naïve thinker
is entitled to her logical reasoning, and the more sophisticated one can come to
know reflectively that she is justified. This justification and entitlement are to a
large extent a posteriori. The meaningfulness of our general cognitive project(s),
guaranteed by our success up to now, secures the entitlement for the naïve reasoner,
and justification for sophisticated, reflective thinker. Because of the importance of
empirical element, these are both a posteriori. Therefore, the reflective justification
of logical beliefs and the entitlement to naïve logical reasoning have at least one
strong a posteriori component.

I have spent less time arguing for the initial moves and for the need of justifica-
tion for unavoidability and indispensability, assuming that it is widely recognized
in the literature. None of the arguments is final, as no philosophical argument is.
But all of them converge on unavoidability and indispensability. If you are more
of a naturalist, Horwich’s computationalist argument might seem more attractive,
if anti-naturalist, then the Consitutivity Argument might appeal to you. And if you
find Wittgenstein most congenial, on some of many readings of his text, then the
Global Indispensability Argument will probably convince you. So, there are good
reasons to accept the line. If you disagree, then I hope at least to have established
the conditional thesis: if logic is justified by being unavoidable and indispensable
than it is to a large extent justified a posteriori. If you agree with the antecedent,
as I hope you do, you can detach the conclusion: the final, reflective justification of
logic is to a large extent a posteriori.

This would then lead to a picture of structured justification and structured apos-
teriority. Warrant is just a complex and multi-dimensional affair, says A. Gold-
man [20, p. 48], and then proceeds to criticize the a priori/ a posteriori contrast.
It is a bad idea, I think: we need to distinguish and recognize structure. For
instance, our Thinker’s immediate justification is certainly a priori. But the reflec-
tive is not since there is more than a touch of aposteriority present in the con-
siderations of meaningfulness, and much more in our coming to know about our
warrant.

How should we then characterize the structured whole? Is justification of ordi-
nary logical reasoning more a priori or more a posteriori? At least since Kant many
philosophers thought of the a priori in a rather purist manner: a drop of aposteriority
infects any available a priori justification. We may call the idea “The Traditional
Principle”: If justification (or entitlement) contains a posteriori elements, then it is
ultimately a posteriori (e.g. if it is mixed and contains one a posteriori element, it is
ultimately a posteriori).

If you accept the Traditional Principle, you might talk about structured aposteri-
ority. If not, just about structured justification and entitlement with a priori elements
at the first level, and a powerful a posteriori component on the second, reflective
level. I leave the choice open, since it seems more verbal than substantial. Finally, a
suggestion: given that logic is a central and paradigmatic candidate a priori field, the
idea of structured justification can be generalized from it to the whole of armchair
knowledge. But this is the task for future.
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Chapter 9
Extended Game-Theoretical Semantics

Manuel Rebuschi

9.1 Introduction

Game-theoretical semantics (hereafter, GTS) was created by Hintikka during the
1960s and intended as a formalization of Wittgenstein’s remarks on language games.
Like other formal connections drawn between logic and game theory, it embodies
several philosophically relevant features into semantics: the dynamics of language,
language as an activity, language as a collective matter. A specific insight is offered
by GTS through the notion of strategic meaning. I will propose to use this notion in
order to account for linguistic interpretation, to be contrasted with meaning consti-
tution. It will yield solutions to several issues every theory of linguistic meaning is
confronted with, especially those involving an epistemic dimension.

My proposal will be based on two moves: (1) the extension of semantic games
to the subatomic components of sentences, and (2) a shift in our usual criteria of
individuation of functions. The resulting conception of meaning is a two-component
theory, but it does not use entities such as Frege’s senses or Montague’s functions
defined on possible worlds. The main idea can be summed up as follows: in addition
to the truth-conditions of a sentence, which are given by the existence of a winning
strategy for the initial verifier of some semantic game, one should also consider the
particular (implemented) strategies employed by concrete speakers. Such strategies
correlated with the non-logical expressions of a given natural language consist in
functions that pick up their extension relative to a given context.1 However, they
need not realize winning strategies in every context, what is required being that
they reach socially acceptable approximations of the extension at stake. Sets of such
functions are what is mastered by the agents to understand linguistic expressions.
This informal account of truth-conditional meaning and strategy-based interpreta-
tion will get a more precise working out within the framework of GTS.

1 Like Fodor’s [5] narrow content. See [17] for an elaboration of the connection between narrow
content and the conception developed in the present paper.
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In the next section I will briefly sketch the required technical apparatus: standard
and extended GTS for first-order formal languages, and the conception of Skolem
functions as components of winning strategies. In Section 9.3 I will look into the
application of GTS to natural language, and deal with the question of how to use
and individuate Skolem functions in extended GTS. Two notions will be defined:
that of eGTS meaning, as a set of implemented Skolem functions, and that of eGTS
stereotype (more or less regimenting Putnam’s idea of idiolectal meaning) as a set of
implemented (but not always winning) strategies. Next, Section 9.4 will be devoted
to examining a few puzzles of the philosophy of language.

9.2 Game-Theoretical Semantics and Skolemization

Semantic games are here introduced both in their standard and extended versions.
Standard GTS games are played on complex formulas, assuming that atomic truths
are already given. By contrast, eGTS games go on with atomic formulas.

9.2.1 Usual GTS in a Nutshell

Semantic Games The general idea of GTS2 is to associate to each first-order (FO)
sentence ϕ evaluated relative to some structure M = 〈D, I 〉 a semantic game,
denoted by G(ϕ,M) and played between two abstract players, the initial verifier
∃loise and the initial falsifier ∀belard , s.t. the first player (resp. the second one) has
a uniform winning strategy iff the formula is true (resp. false) in M. Such evaluation
games are played according to the following rules:

(R.At) If α is a true atomic sentence (or identity) in M, then the verifier wins
G(α,M), and the falsifier loses. If α is a false atomic sentence (or identity),
the reverse obtains.

(R.∨) In the game G(ϕ1∨ϕ2,M) the verifier picks out an index i ∈ {1, 2}. The
rest of the game is as in G(ϕi ,M).

(R.∧) In the game G(ϕ1 ∧ ϕ2,M) the falsifier picks out an index i ∈ {1, 2}.
The rest of the game is as in G(ϕi ,M).

(R.∃) The game G(∃xϕ(x),M) starts with the verifier choosing a member d ∈
D and a new name c to designate it; the rest of the game is as in G(ϕ(c),M).

(R.∀) The game G(∀xϕ(x),M) is similar, except that the choice is made by the
falsifier.

(R.¬) The game G(¬ϕ,M) is like G(ϕ,M), except that the roles of the two
players (as defined by the rules) are interchanged.

2 See [11] for an overview.
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With such rules, one can define truth and falsity according to GTS:

M �+GTS ϕ (ϕ is GTS-true in M) iff there is a winning strategy for the initial
verifier (∃loise) in G(ϕ,M).

M �−GTS ϕ (ϕ is GTS-false in M) iff there is a winning strategy for the initial
falsifier (∀belard) in G(ϕ,M).

Skolemization Assertion of the GTS truth-conditions for a sentence, i.e. of the
existence of a winning strategy for ∃loise in the associated game, is expressible
in the �1

1 fragment of second-order logic. Each strategy can be represented by
a finite sequence of Skolem functions corresponding to the moves made by the
verifier (rules (R.∃) and (R.∨)) relative to those played by the falsifier. This will
yield e.g.:

M �+GTS ∀x∃y R(x, y)⇐⇒ M � ∃ f ∀x R(x, f (x))
M �+GTS ∀x(ϕ1 ∨ ϕ2) ⇐⇒ M � ∃ f ∀x(( f (x) = 0 ∧ ϕ1)∨

( f (x) �= 0 ∧ ϕ2))

(9.1)

(In the second example one assumes that the model contains at least two elements,
and that one of them is denoted by “0”.)

Skolemization is in fact a well-known transformation of FO formulas: In a for-
mula in prenex normal form, replace each existential quantifier ∃xi by a (new)
function symbol fi whose variables are those bound by the universal quanti-
fiers of which ∃xi is within the scope. Following Hintikka, extend the introduc-
tion of function symbols to disjunctions (for models with at least two elements.)
In what follows, Sk[ϕ] will denote a formula resulting from ϕ through such a
transformation3:

Sk[∀x∃y R(x, y)] = ∀x R(x, f(x))
Sk[∀x∃y∀z∃uϕ(x, y, z, u)] = ∀x∀zϕ[x, f1(x), z, f2(x, z)]

Sk[∀x (ϕ1 ∨ ϕ2)] = ∀x ((f(x) = 0 ∧ ϕ1) ∨ (f(x) �= 0 ∧ ϕ2))

(9.2)

A second-order Skolem form of a given formula ϕ, hereafter symbolized by 2Sk[ϕ],
obtains from a (first-order) Skolem form of ϕ in which each Skolem function symbol
is replaced by an existentially quantified functional variable:

2Sk[∀x∃y R(x, y)] = ∃ f ∀x R(x, f (x)) (9.3)

3 Starting with a given FO formula there is no unicity in the upshot in the general case since
several prenex normal forms can sometimes be available. This is the case with ∃x Ax → ∃y By
which leads us to two prenex forms, ∀x∃y(Ax → By) and ∃y∀x(Ax → By), thus to two distinct
skolemizations: respectively ∀x(¬Ax∨Bf(x)) and ∀x(¬Ax∨Ba), where a is a constant (function)
symbol.
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Assuming the Axiom of Choice and the standard “full” semantics of second-order
logic, ϕ and Sk[ϕ] are equisatisfiable, and ϕ and 2Sk[ϕ] are equivalent.

Truth-Conditions Assuming the Axiom of choice and the standard interpretation
of second-order logic, the GTS truth-definition is equivalent to the standard one:

M �+GTS ϕ ⇐⇒ M � ϕ. (9.4)

The equivalence between GTS and Tarski-like semantics leads to the inescapable
fact that for any FO sentence there is always a winning strategy for one of the
players: bivalence corresponds to the determination of the semantic games.

GTS provides a nice and intuitive interpretation of Skolemization: the Skolem
functions occurring in Sk[ϕ] are conceived of as the components of ∃loise’s win-
ning strategies in G(ϕ,M). For example in M = 〈D, I 〉, where D = N and “<”
gets its usual interpretation, the formula ϕ = ∀x∃y(x < y) is obviously true. It
admits of one skolemization, Sk[ϕ] = ∀x(x < f(x)), where the newly introduced
symbol f can receive several values, each of which corresponds to a winning strategy
available to ∃loise: f1(x) = x + 1, f2(x) = 2x + 1, etc. The GTS-truth-conditions
of ϕ are given by 2Sk[ϕ] = ∃ f ∀x(x < f (x)).

9.2.2 Extending GTS to Non-logical Constants

In standard GTS, Skolem functions replace existential quantifiers and disjunctions.
From a meta-semantic point of view, they correspond to what is taken into account
by the assignments in Tarski-like semantics. What I will put forward now is extend-
ing such a role of Skolem functions to what is dealt with by the interpretation
function I of the model-theoretic structure M = 〈D, I 〉. To put it in another per-
spective: whereas GTS game rules are associated with logical constants, extended
GTS (eGTS hereafter) will associate new rules with the non-logical vocabulary.4

The notion of semantic game is thus extended to atomic sentences (and identities).

Atomic Games In eGTS, every sentence ϕ evaluated relative to a structure M is
associated to a game eG(ϕ,M). This new game is identical to the game G(ϕ,M)

played according to the standard GTS rules when it is a molecular game, i.e. when ϕ
is a complex formula. If ϕ is an atomic formula or an identity, one reaches an atomic
game. The original game rule for atomic sentences (R.At) must then be replaced by
four new rules (see Appendix 1.)

First of all, if either ∃loise is the current verifier and the atomic sentence is false,
or she is the current falsifier and the sentence is true, then ∀belard wins and ∃loise

4 Such an extension is actually suggested by Hintikka himself, see [9, p. 51]. However, this sug-
gestion is essentially connected with applications in first-order epistemic logic, and no extended
version of GTS is provided. Already in 1985 Hintikka and Kulas [10] argued that game rules must
be associated with NL individual constants.
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loses. If it is not the case,5 then ∀belard chooses one of its non-logical constants, an
individual constant ai , a function symbol f j or a relation symbol Rk , and the game
goes on.6 When ∀belard chooses an individual constant ai , ∃loise has to pick out
an object in the domain; if she has selected the right value, i.e. the very extension
of ai , then she wins the play and ∀belard loses. When ∀belard chooses a n-ary
function symbol f j , he furthermore picks out a n-tuple of objects in the domain and
∃loise must select an object in the domain: if it is identical to the value of f j for
the given tuple then ∃loise wins and ∀belard loses. When ∀belard chooses a n-ary
relation symbol Rk , he furthermore picks out a n-tuple of objects in the domain and
∃loise must check whether Rk applies to this tuple; if ∃loise succeeds, i.e. if she
answers “yes” when Rk applies to the tuple and “no” when it doesn’t, then she wins
the play and ∀belard loses.

In eGTS, we thus have new truth and falsity definitions relative to a structure
M = 〈D, I 〉:

M �+eGTS ϕ (ϕ is eGTS-true in M) iff there is a winning strategy for the initial
verifier (∃loise) in eG(ϕ,M) played according to the eGTS-rules.

M �−eGTS ϕ (ϕ is eGTS-false in M) iff there is a winning strategy for the initial
falsifier (∀belard) in eG(ϕ,M) played according to the eGTS-rules.

It is worth noticing that according to the eGTS game rules, only individual objects
are handled by the players—i.e., no higher-order entity is involved. The situation
would have turned out differently if ∃loise were required to pick out the very exten-
sions of function and relation symbols.

Extending Skolemization to Non-logical Constants An extended version of
skolemization which matches eGTS is straightforwardly definable: not only exis-
tentially quantified variables and disjunctions, but now individual constants ai as
well as relation symbols R j can be replaced by existentially quantified functions
(for simplification I will no longer consider function symbols at the object language
level.) In what follows we will consider a simple example—a precise definition is
given in an appendix. Let us recall what are the first- and second-order Skolem
forms Sk[ϕ] and 2Sk[ϕ]:

5 Atomic game rules could be formulated independently from the atom truth-value: atomic games
would thus be played according to the other rules, and the winner would be the player winning both
molecular and atomic game. The outcome regarding ∃loise’s winning strategies would be exactly
the same.
6 When an atomic game is reached there is no residual individual variable in the formula: as
eGTS games are played for sentences only, every variable is bound and next replaced by a new
constant during the molecular game. GTS could of course be defined for open formulas with a
slight complication—games relative to a formula, a model and an assignment. However it is not
necessary for the objectives of this paper.
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ϕ = ∀x∃y R4(x, y, a2)

Sk[ϕ] = ∀x R4(x, f(x), a2)

2Sk[ϕ] = ∃ f ∀x R4(x, f (x), a2)

(9.5)

Let’s now introduce some new notations. In eSk[ϕ] the non-logical constants are
replaced by function symbols: one corresponding to a choice function g for the indi-
vidual constant a2, and another, h, for the indicator function7of the relation symbol
R4; since we want eSk[ϕ] to be equivalent to Sk[ϕ], the newly introduced symbols
are equated with their intended values8:

eSk[ϕ] = ∀x[h(x, f(x), g) = 1] ∧ [g = a2] ∧ [h = 1R4 ] (9.6)

Then in 2eSk[ϕ] the new function symbols are existentially quantified:

2eSk[ϕ] = ∃g∃h∃ f [∀x[h(x, f (x), g) = 1] ∧ [g = a2] ∧ [h = 1R4 ]] (9.7)

Assuming the standard semantics for second-order logic any first-order formula
ϕ = Φ(R1, . . . , Rk, a1, . . . , al , x1, . . . , xm) is equivalent to 2eSk[ϕ]. (For more
details, see Appendix 2.)

Truth-Conditions Prima facie the new game rules do not add any interesting
moves to the plays since they say that a play should end in the same manner as was
indicated in the original rule (R.At): the verifier wins if the atom is true, while the
falsifier wins if it is false. And in fact the following equivalence is trivially inferred
from the truth-definitions:

M �+eGTS ϕ ⇐⇒ M �+GTS ϕ. (9.8)

However the specific benefits of GTS were not obvious either since it was shown
to be equivalent to Tarski-like semantics. Regarding eGTS, relevant differences will
appear at the level of the initial verifier’s power, since mastering a winning strategy
is now a more complex task than it was in standard GTS. The underlying intuition
of atomic games is an extra requirement for ∃loise: she must be able to determinate

7 Here again, one has to assume that the domain contains at least two elements, one of which
is denoted by 1. As was suggested by a referee, using relations symbols and predicate variables
rather than indicator functions and function symbols would provide much more readable Skolem
forms. However, the uniform use of (Skolem-like) functions at a metalinguistic level appears to
be consistent with the fact that games are played with no higher-order entities. Incidentally, this
uniform treatment would allow us to translate the resulting �1

1 formulas into IF logic in the usual
way.
8 Both kinds of functions are linked to choice functions in the strict sense: the individual constant
functions gai could be defined relative to a domain D s.t. gai (D) ∈ D; the indicator functions for
relations hR j completely determine functions h′R j

s.t. h′R j
(Dn) ∈ Dn .
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the semantic values of the expressions involved in the assertions she argues for. This
is made clear if we are to describe her winning strategies9:

A winning strategy for ∃loise in some (unextended) GTS game G(ϕ) is an
array of Skolem functions related to each choice to be made by her through the
game fϕ = 〈f1

ϕ, f2
ϕ, . . . f

n
ϕ〉; correspondingly, a winning strategy for ∃loise in

the eGTS game eG(ϕ) is an array efϕ = 〈f1
ϕ, f2

ϕ, . . . f
n
ϕ, [fatom]〉where [fatom] is

the set of Skolem functions correlated with the individual constants and relation
symbols occurring in ϕ: [fatom] = {ga1, . . . , gak ,hR1 , . . . ,hRl }.

Considering formula ϕ of example (9.5), its eGTS truth-conditions are given by
(9.7) whereas the winning strategies for ∃loise are provided by each interpretation
of the function variables f, g and h in (9.6). Of course, as long as the players of
semantic games are ideal, infinitary and omniscient agents the requirement cannot
trigger any fatal issue: the extensional constraint occurring onto the functions of
[fatom] is that their values coincide with those of the interpretation function I of
the structure. More accurately, each function hRi ∈ [fatom] must be extensionally
equivalent to 1Ri , so hRi is completely determined by I |{Ri }; and similarly each
(constant) function ga j ∈ [fatom] must be completely determined by I |{a j }. The
union of the elements of [fatom] thus gives exactly the same values as the restriction
of the interpretation function I to the non-logical constants involved in ϕ.

The particular insight offered by Skolem functions will then be to provide a new
point of view on the interpretation of a language. Whereas I is a static mapping
given once and for all, the Skolem functions of [fatom] are expected to encode the
devices used by the initial verifier to reach the semantic values of the language
constants. The specific contribution of eGTS will thus be made apparent when some
restrictions on the agents’ powers are introduced. The situation is analogous to that
of (unextended) GTS, which gives rise to a genuine account when imperfect infor-
mation comes into play.10,11

9 In what follows I do not give any strict definition. However strategies are recursively definable:
the syntax of a given formula completely determines the set of possible plays or histories, which in
turn determines the set of strategies for ∃loise. Hence the arrays of functions here mentioned are
expected to be structured. See [15] for an exact definition.
10 Imperfect information semantic games provide a new logic which has been developed by Hin-
tikka and Sandu since the 1980s, independence-friendly logic (IF logic for short). It is a slight
extension of first-order logic equivalent to the �1

1 fragment of second-order logic.
11 Jackson [12] provides another extension of GTS to atomic formulas in the context of knowledge-
base management: new game rules are introduced to check whether the atom in question is a
proof-theoretic consequence of the knowledge base under consideration. The theory departs from
the model-theoretic ground and admits of indeterminate formulas. Such an account can be seen as
an implementation of non-omniscient players, where the initial verifier’s knowledge is restricted
to the content of the knowledge base.
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9.3 An Account of Meaning and Interpretation Based on Game
Strategies

I define two semantic values for each linguistic expression E in terms of game strate-
gies. The first one is the eGTS meaning ||E ||, which is a set of Skolem functions;
the second one is the eGTS stereotype, †E†i , which is a set of Dig functions.

9.3.1 Meaning: Implemented Skolem Functions

Using Strategies to Refine Meaning It has been suggested by van Benthem [1]
to use game-semantics in order to account for (hyper)fine-grained meanings: two
logically equivalent sentences in FOL can diverge in their syntactic structure so that
the corresponding evaluation games require different strategies. It would thus be
possible to define the meaning of a sentence ϕ not only as the set of possible worlds
where ϕ is true, but as the set of pairs 〈M, ws〉 such that M is a possible world where
ϕ is true, and ws is the set of winning strategies for ∃loise in G(ϕ,M).

However, whereas the situation is fine with logical constants and unextended
GTS, it is different with non-logical constants and eGTS atomic games: now, every
component of the winning strategies should coincide with the interpretation func-
tion. Then if two predicates (or individual constants) are coextensive in every pos-
sible world, adding their eGTS correlated winning strategies cannot add any dis-
tinctive information. So no straightforward refinement of meanings can be expected
from these strategies.

How to Individuate Skolem Functions? What is required is an intensional char-
acterization of functions. This is the first issue eGTS has to face in order to avoid
collapsing into standard GTS. Coextensive functions will be considered distinct
whenever they are associated with different processes to determine their values.
Of course, the identity conditions of processes are worth defining,12 but what is
required here is only the possibility of an intensional characterization of functions
based on the idea of process, whatever it is.

The idea meets Moschovakis’ [13] conception of Fregean sense as an algorithm,
which is also elaborated by Muskens in [14]. What is specific here is the nature of the
functions, which are winning strategies in games. However, we are not committed
to sticking to the algorithm or program approach. Skolem functions are what is
expected to be at least partially mastered by competent speakers and they can be
realized by many distinct devices. We will be concerned with implemented Skolem
functions in general—even though I might speak of “algorithms” in a loose way.

Let us introduce a new symbol for extensional identity— f ≡ g for ∀�x f (�x) =
g(�x)—and retain the identity symbol for intensional identity between functions, i.e.
for identity between implemented functions. The truth-conditions of a sentence ϕ
would be now expressed by the formula coming from 2eSk[ϕ] after a shift of the

12 And this is not an easy task, see [2].
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identity statements into coextensivity statements, for the Skolem functions corre-
lated with constants ([gi ≡ ai ]) as well as for those linked to relations ([hi ≡ 1Ri ]).
Such a requirement is weaker than that of identity of implemented functions.

eGTS Meaning Why not simply endorse Musken’s theory and get rid of atomic
games? But we would then lose the unifying framework of semantic games and of
Skolem functions. Several NL semantic theories employ choice and Skolem func-
tions to account for indefinites or anaphoric pronouns [19, 23]. Schlenker [21] and
Clark [4] even provide explicit connections between choice or Skolem functions
uses in NL semantics and GTS. In fact the very idea was already developed by
Hintikka with branching quantifiers. The proposal in this paper is then to extend the
use of Skolem functions to NL semantics—and of the correlative GTS games—to
the vocabulary, i.e. to names and predicates. It entails that Musken’s intensionally
characterized functions correlated with names and predicates are naturally inter-
preted as implemented strategies or Skolem functions.

Since in general linguistic expressions E are correlated with many such imple-
mented functions, I will denote by ||E || the set of implemented Skolem functions
associated with E , and I will call it the eGTS meaning of E . For example, if there
were two mechanisms (i.e., concrete devices) to identify dogs, the corresponding
functions h1 and h2 would be elements of ||Dog||. The concept of eGTS meaning
so defined is model relative, and it will be used as implicitly relative to the actual
world.

9.3.2 Interpretation: Implemented Dig Functions

“Strategic Meaning” As was said above, for any FO formula ϕ there is an equiv-
alence between 2eSk[ϕ] and 2Sk[ϕ] and this implies that no specific insight on the
truth-conditions can be given by our new (atomic) games. A new perspective obtains
if we examine closer what is expected from the initial verifier. Her winning strategies
for molecular games are now enriched with functions for the atomic games involved.
As was already noticed, there is no change of the conditions for her to have such
strategies: there is a winning strategy for ∃loise in the molecular game iff there is a
winning strategy for her in the whole (including the atomic) game.

Atomic games are relevant insofar as one wants to know which particular func-
tions are involved in a winning strategy. This is the case when bounded players are
assumed to play the semantic games or, better, when some (human, concrete) agent
is expected to know something about, or to use part of the winning strategy of one
(abstract) player. Roughly said the issue is then no longer to know de dicto whether
there is a winning strategy but to know de re which strategy will be a winning one.

Such knowledge is that of what Hintikka [8] labelled “strategic meaning.” It is
involved in semantic analysis when the “abstract meaning” (i.e., the truth-condition)
is no longer enough, such as in cases of ambiguity resolution, or in anaphora res-
olution. According to Hintikka, many features can play a role in the determina-
tion of the winning strategies: contextual data, background knowledge, syntactical
clues, etc. Strategic meaning is a free extra offered by GTS, beyond the more usual
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truth-conditional content. It can sometimes be handled by speakers for the inter-
pretation of particular occurrences of sentences in discourse or conversation. Hence
strategic meaning can be considered as belonging to the pragmatic side of language.
However, as Hintikka deservedly insists, strategic meaning is just a by-product of a
semantic theory and must be considered as such.

Adding One Dimension: Interpretation The idea of strategic meaning sug-
gests making a move from meaning constitution to linguistic interpretation
(or understanding), not only at the level of complex sentences but also at the level
of atomic ones. Meaning constitution is accounted for by semantic games played
by the abstract players in a model-theoretic structure. Linguistic interpretation is
another type of game: it is concerned with real, limited speakers in concrete con-
texts. This will lead us to a relativization of the notions of eGTS to contexts and to
approximations of Skolem functions. As requiring a total grasp of meaning (hence
of extensions) by competent speakers is not realistic, it is necessary to modify the
theory developed up to now, and regiment the following three ideas about linguistic
knowledge: (i) It is contextual knowledge: there is an elimination of algorithms
in the general case; (i i) It is partial knowledge: there is a specific elimination
of algorithms relatively to the agent; (i i i) It is approximate knowledge: linguistic
knowledge might involve functions which are not always winning strategies, i.e. not
always Skolem functions.

(i) Contextual Knowledge The ability to determine the extension of expressions in
order to understand an utterance is relative to its context. Both the way the context
is modeled, and the question why what in the context that counts as important does
the job in the interpretation process, are issues that go beyond the purpose of this
section. I will rather claim in a very general manner that contexts are expected to
play a specific role regarding Skolem functions: contexts should restrict the class of
the relevant, hence available, Skolem functions.

Indeed, my claim highlights a role of contexts which is very often emphasized in
the literature, namely quantifier domain restriction (see [22] for a general overview.)
Semantic theories more specifically employing Skolem functions usually also take
contextual restrictions into account. This is the case of Hintikka’s [8] conception of
strategic meaning according to which the context restricts the set of available win-
ning strategies. Von Heusinger [6] provides a uniform semantic representation for
pronouns: “Pronouns are understood as referring to the most salient individual in the
context so far, and are represented as indexed epsilon terms that are interpreted by
a choice function [which] reconstructs the salience structure of the context.” There-
fore, the role played by the context in the setting of the relevant choice functions
appears to be a pervarsive feature of NL semantic theories involving such functions.

(ii) Partial Knowledge There are in general connections linking the speaker to the
individuals and properties she refers to in her utterance. In eGTS, these connections
correspond to the Skolem functions of [fatom]. If such connections are individuated
at the level of their implementations, they may become dependent of the context:
some algorithm or other is available in such or such a context, but not in another. For
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instance, as the speaker is an element of the context, complexity considerations can
occur and imply some restriction on the available devices. More generally speaking
the location of the utterance can play an important role on the selection of a device to
determine the extension of an expression. One can ponder over the calculation of the
extension of “Water” in a desert hc1

water which may diverge from the corresponding
calculation in a kitchen hc2

water.
For the framework of eGTS, what all this means is that relative to a given con-

text c, there are contextual restrictions ||E ||c on the set of (implemented) winning
strategies of the initial verifier ||E || generally available for a given concrete speaker.
Some of these restrictions are due to the location of the speaker, but not necessarily
all of them. For some utterances of a sentence, there might be no available Skolem
function at all even though the sentence is true in the model—i.e. even though there
actually are such functions for the initial verifier of the corresponding semantic
game.

(iii) Approximate Knowledge Speakers are far from omniscient. In his well-known
paper [16] Putnam argued that a speaker who could not discriminate between
“Elms” and “Beeches” might nonetheless be considered a competent English
speaker. A fixed amount of approximation is indeed acceptable according to the lin-
guistic community—the exact amount being of course conventionally determined.
For instance, a speaker who could not discriminate between “Snowball” and “Tiger”
would not be considered competent.

So competent speakers can employ implemented functions (i.e., concrete
devices) to determine the extension of predicates that do not necessarily coincide
with the interpretation function of the underlying model. Consequently such func-
tions are not necessarily Skolem functions of eGTS, even though some of them can
be. I will call these functions Dig functions. They are those strategies used by con-
crete speakers if they were to calculate the extensions of the predicates and names
they employ, sometimes winning, sometimes losing.

eGTS Stereotype The set of Dig functions eventually associated with an expres-
sion E by a competent speaker i can thus strongly diverge from the eGTS meaning
||E ||: it can come from both a contraction of the set of Skolem functions, and an
enlargement to many losing strategies. Following Putnam’s ideas let us call this set
the stereotype of E for i and denote it by †E†i . As for the corresponding set of
Skolem functions, we must use the restriction †E†c

i to model the stereotype of an
agent i in a context c. Stereotypes are specific to the agents’ idiolects. Some of
them are acceptable, others not, depending on social conventions. What counts as a
socially acceptable stereotype is a matter of empirical research.

We finally reached a two-dimensional account of “meaning” (in a broad sense),
eGTS meaning and eGTS stereotype, with no resort to possible-world semantics.
Intensionality intervenes at the level of the individuation of functions, and a second
refinement comes from the interpretation level. In the next section, I will give a few
applications of the two notions.
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9.4 Application and Philosophical Consequences

This section is devoted to applications. I first consider the eGTS meaning and the
eGTS stereotype of NL sentences taken from a concrete example. Distinctions will
be introduced regarding the minimal requirement for a speaker to be competent,
depending on the syntactic categories of expressions at stake. My GTS-based frame-
work will then be confronted to some classical philosophical puzzles.

9.4.1 Contrasting Meaning and Interpretation

Meaning It is now time to consider how eGTS handles concrete cases. Let us con-
sider a simple discourse:

A man walks. He kicks Nicolas

Its analysis according to GTS is quite standard (see [4, 10, 20]); according to eGTS,
the game should go deeper. It is roughly played as follows:

Example 1 The whole game eG is played relative to a given model M = 〈D, I 〉. It is
cut into two subgames, one for each sentence—i.e., eG = eG(S1,M); eG(S2,M),
where S1 stands for “A man walks”, and S2 for “He kicks Nicolas.” In eG(S1,M)

∃loise chooses an individual in D for the initial indefinite “A”, say b, and puts
it in the choice set C S; then the game goes on as eG(b is a man and b walks,M).
∀belard chooses a conjunct, say b is a man, and the game continues as eG(b is
a man, M). We have now reached an atomic formula: if it is true, i.e., if ∃loise
actually chose a man with b, then ∀belard cannot do anything clever13 but choose
the predicate “man”, and pick out an arbitrary individual, say b′, from the domain
D; ∃loise answers yes if b′ is a man, and no if it isn’t—a task she can successfully
achieve since she is omniscient. Moving to eG(S2,M), ∃loise chooses an individual
in the choice set C S to process the anaphoric pronoun “He”. So she picks out b, and
the game goes on as eG(b kicks Nicolas, M). This is an atomic formula. If it is
true, i.e. if the individual chosen by ∃loise in the previous subgame actually kicks
Nicolas, then ∀belard chooses one of its two non-logical constants, say Nicolas.
∃loise must then find the bearer of the name in D, a job she easily does as an
omniscient player.

Assuming that the above discourse is true, there is a winning strategy for ∃loise
in eG. What would such a strategy look like? It is a sequence of (sets of) imple-
mented Skolem functions:

〈f1, {h1,h2}, f2, {h3, g1}〉

13 Strictly speaking, ∀belard could also choose the individual constant b and lose immediately.
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where: f1 ≡ f2 pick out a man walking and kicking Nicolas, h1 ∈ ||Man||, h2 ∈
||Walk||, h3 ∈ ||Kick||, and g1 ∈ ||Nicolas||. Hence, ∃loise’s winning strategies
directly rely on the eGTS-meanings of the predicates and proper name. The target
array for ∃loise actually is

〈f1, {||Man||, ||Walk||}, f2, {||Kick||, ||Nicolas||}〉.

This array provides a basis to construe the eGTS-meaning of the whole discourse.
Such an analysis requires adding specific rules to combine elementary meanings
(those occurring in the array) in a more subtle, syntax-sensitive way than it is in a
mere sequence. But that would lead us beyond the scope of the present paper.

Interpretation While shifting from meaning to interpretation, contexts of utter-
ance, limitations of the agents and approximation enter the scene. As an immediate
consequence, one has to address the issue of what minimal amount of linguistic
knowledge is expected to be mastered by any competent speaker.

Let us consider the interpretation of the above discourse by an agent i hearing it:
differently from ∃loise, i need not master any winning strategy of the corresponding
eGTS game. Her target array looks like

〈fi
1, {†Man†i , †Walk†i }, fi

2, {†Kick†i , †Nicolas†i }〉.

where ∃loise’s implemented functions f1 and f2 have been replaced by a couple
of others, fi

1 and fi
2 respectively, and the elementary meanings have been changed

into the corresponding stereotypes for agent i . Roughly said, i must know that the
value produced by fi

2 should be the same as that selected by fi
1, i.e. fi

2 ≡ fi
1, which

corresponds to the understanding of the anaphoric pronoun—but she need not know
anything about the function fi

1 itself, except that it should take its values among male
human beings. Furthermore, a competent hearer must have some socially acceptable
stereotype †Man†i , but nothing is required about “Nicolas”, i.e. †Nicolas†i can be
empty.

It means that the minimal knowledge required of a competent speaker can vary
between grammatical categories. Of course, an agent can have more than such a
minimal knowledge and use strategic meaning to interpret a discourse. In the exam-
ple, the agent can know the functions’ value (i.e., who the man kicking Nicolas is),
and her stereotype †Nicolas†i can be a proper part of the corresponding GTS-
meaning (i.e., it can involve implemented functions that actually pick out the bearer
of the name.)

In the remainder of the subsection I will check three categories, namely proper
names, relations, and definite descriptions, and examine what corresponding knowl-
edge competent speakers are supposed to possess.

Names An implemented Skolem function correlated to a name a is a mechanism
ga which produces the referent of the name. It represents any mode of identification
of its bearer. However, an assertion making use of a proper name can refer to the
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bearer of the name even though the speaker who utters it does not master any of the
corresponding Skolem functions in ||a||. For a competent speaker i to successfully
assert: “He kicks Nicolas”—and to successfully refer to Nicolas—it is only required
that the truth condition of the statement be realized, namely that the ordered pair
made of the individual picked out by he, and of the bearer of the name I (Nicolas),
whoever they are, be in the extension I (Kick) of the kicking relation, whatever this
extension is. If the speaker has no idea who is the bearer of the name, †Nicolas†i
is simply empty.14 Of course, the knowledge of the bearer of a name would increase
one’s understanding of the sentence where the name occurs, but it is not required.

The semantics based on Skolem and Dig functions is perfectly compatible with
the Kripkean theory of direct reference for proper names—as well as for natural kind
predicates and other relation symbols. Whereas the interpretation function I inter-
venes at the level of meaning constitution, implemented Skolem and Dig functions
play an epistemic role: they encode the mode of recognition of the independently
given extension of expressions. Hence different speakers knowing the individual
that is the bearer of a proper name usually do not share the same Dig functions.
The contrast is exactly the one which holds between abstract meaning and strategic
meaning.

Predicates (and Other Relation Symbols) In the actual world, one can have two
or more functions to determine the extension of “Elm”. This is the main reason why
stereotypes were defined as sets of Dig functions. For instance one function will be
based on the agent’s knowledge and educated ability to recognize species of trees;
another one will consist in asking to an expert what this extension is. For sure, these
functions are distinct at an implementation level even though they provide the same
values.

The functions involved in the stereotype are clearly distinct from intensions. The
latter are usually modelled as functions from possible worlds to extensions. By con-
trast, Dig functions are defined in one (actual) world, with no a priori idea about
their applicability in other possible worlds. Nevertheless, Dig functions can model
concepts expressed by predicates. Coextensive predicates, such as Creature owning
a heart (H x) and Creature owning a kidney (K x), will obviously give rise to two
distinct sets of implemented Skolem functions (or eGTS meanings) ||H || and ||K ||.
Each function is then expected to encode an operating way to produce the extension,
i.e. to determine whether any given object belongs to it or not. They can naturally be
conceived of as encoding the correlated concepts of Owning a heart and Owning a
kidney, which play an essential role in the speaker’s ability to produce the extension
of the predicates. And of course, this distinction between two coextensive predicates
is made with no resort to any possible-world based device.

As was said before, a competent speaker is expected to possess a stereotype
composed of Dig functions which yield a socially acceptable approximation of
the extension. For instance a speaker i who cannot discriminate between “Elms”

14 If the reader doesn’t share my intuition, successful reference is more obvious in cases such as
the speaker’s assertion: “I do not know who Nicolas is”.
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and “Beeches”, i.e. such that †Elm†i = †Beech†i can nonetheless be considered a
competent English speaker although of course, †Elm†Expert ∩ †Beech†Expert = Ø.
By contrast, a speaker j who could not discriminate between “Elms” and “Tigers”,
would not be considered a competent speaker, a minimal requirement being
that: †Elm† j ∩ †Tiger† j = Ø.15 Beyond the minimal requirement of the
possession of at least one Dig function, the understanding of a predicate will be
more acute if the speaker has several Dig functions, if many of them are Skolem
functions, if she can use them successfully in many counterfactual situations, and
so forth.

Definite Descriptions With definite descriptions we are led back to a case sim-
ilar to non-extended GTS since quantifiers occur in their formalization. How-
ever, the interaction between quantifiers and atomic games deserves careful
examination.

Considering a sentence such as “The 2009 French president is bald”, the descrip-
tion ı x Px (“The 2009 French president”) is paraphrased by an existential statement
and the whole sentence is formalized as follows:

ϕ : ∃x(Px ∧ ∀y(Py → y = x) ∧ Bx) (9.9)

Here the GTS truth-conditions rely on the existence of a winning strategy
for the initial verifier, i.e. of a constant Skolem function fx = a such that
∃loise yields a winning strategy in any of the three games correlated to the
conjuncts:

Pa ∧ ∀y(Py → y = a) ∧ Ba (9.10)

∃loise has thus to hold two Skolem functions associated with the predicates and
coinciding with the interpretation function, hP and hB , so that she is able to win the
atomic games Pa and Ba, as well as the game associated with ∀y(Py → y = a).16

Once again, the existence of a winning strategy for the initial verifier of a semantic
game—abstract meaning—is independent from the knowledge of any strategy by
the speaker—strategic meaning.

A complete knowledge of the strategy corresponding to the definite description
in the aforementioned example involves knowledge of the two functions fx (= a)

15 To be more precise in the writing down of the constraints, we should relativize the stereotypes
to usual contexts, in order to avoid situations where, e.g., an elm and a tiger were both boiled,
ground, then mixed with flour and black ink, so that the agent can no longer distinguish them. This
relativization is here left implicit.
16 This subformula is equivalent to ∀y(¬Py ∨ y = a), so that ∃loise has a winning strat-
egy if, for any value chosen for y by ∀belard , she can select one of the disjuncts, i.e. either
deny P of this value or identify it to a; it is of course assumed that the function hP does not
change during the game. Finally, a winning strategy for the initial verifier in the whole game
associated with ϕ is a tuple where hP occurs twice—one time for each occurrence of P in ϕ:
fϕ = 〈fx , 〈{hP }, 〈f∨, {hP }〉, {hB}〉〉.
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and hP . However a competent speaker is not expected to master both functions:
having a function that enables one to approximately determine the denotation of the
description (hP )—i.e. possessing an acceptable stereotype †P†i —is enough; know-
ing who the individual fitting the description (fx ) is increases the understanding of
the sentence, although not being absolutely essential. The case is partly similar to
that of proper names. As a definite description involves a combination of predicates
and quantified variables, the minimal requirements for a competent speaker fol-
low those of its components: no strategic meaning is required regarding quantifiers,
whereas a conventionally determined stereotype is expected to be used in the case
of predicates.

9.4.2 Philosophical Puzzles

With eGTS meanings and stereotypes, we possess two levers to get solutions to
the classical semantic puzzles about informative identities, conceivability of impos-
sibilities, and so forth. In this last subsection, I will briefly survey some of these
puzzles.

Informative Identities They can be carried using eGTS meanings. For instance,
||Hesperus|| �= ||Phosphorus|| since the implemented Skolem functions corre-
sponding to each proper name are not the same, even though they are extensionally
equivalent: if gH ∈ ||Hesperus|| and gP ∈ ||Phosphorus||, then gH ≡ gP but
gH �= gP . Skolem and Dig functions can be understood as carrying a part of
the Fregean notion of sense: they represent the devices employed respectively by
∃loise and by ordinary speakers to find the extension. Of course, Dig functions are
not Frege’s senses: they do not determine the extension per se, at the semantic or
constitutive level.

The informativeness of the identity is due to the fact that speakers are not
expected to know anything about the bearers of the names they employ. Learn-
ing an identity is consequently learning a fact about Dig functions and, more
basically, about the bearers of the names: learning that Hesperus is identical with
Phosphorus leads an agent i to correlate functions g ∈ †Hesperus†i to functions
g′ ∈ †Phosphorus†i : g ≡ g′. By contrast, stating that Hesperus is identical with
Hesperus doesn’t supply any new information.

Rigid Designation Going into modal matters and following Kripke, we can con-
sider the proper names “Hesperus” and “Phosphorus” as rigid designators, i.e. as
names referring to the same entity in every possible world. How are we then to
account for the conceivability of impossible situations where the two names do
not refer to the same entity? This puzzle gave rise to several strategies, like two-
dimensional semantics (2DS) or rescourse to impossible worlds. On the present
account, the structure of possible worlds itself is left intact with no ad hoc supple-
mentary component, and Skolem (or dig) functions suffice to account for conceiv-
able impossible situations.
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Let us consider the two implemented functions mentioned above, gH and gP . As
Skolem functions, they can occur in winning strategies for ∃loise in semantic games
G(ϕ,M), where ϕ is replaced by sentences involving the proper names “Hesperus”
and “Phosphorus”, and M is a first-order model corresponding to the actual world.
Recall that such functions can diverge in another model N corresponding to another
possible world, i.e. gH �≡ gP in N, even though the proper names still refer to the
same individual in N.

In this respect, Skolem functions behave like Hintikka’s world-lines [7] or like
individual concepts: they link individuals from world to world according to specific
viewpoints, and independently from the very nature of the individuals at stake.17

This is made possible by the general fact that a winning strategy in a game G(ψ,M)

need not be winning in the game G(ψ,M′), i.e. in the game correlated to the same
sentence but played in another model.

Empty Names Stereotypes and Dig functions provide a nice solution to the usual
puzzles since there is now a way to make a difference between two empty names
(e.g. Shrek and Pinocchio), and a means to designate entities in other possible
worlds. What is required is only to allow Dig functions to be partial, i.e. to be
possibly undefined in some possible worlds. Alternatively, it can be postulated that
the gaps are filled in with a null individual. There is no prima facie objection to the
consideration of two distinct Dig functions, gp for Pinocchio and gs for Shrek, such
that they be empty in some worlds and their values coincide in no world in which
they are defined: such functions thus account for the meaningfulness of fictional
discourse in a natural way.

Synonymy Cases The well-known cases of the ignorance of synonymous predi-
cates and, as a consequence, of the equivalence of sentences involving them, are
handled in the present framework in a way similar to that of coreferent proper
names: even though their extensions coincide in every possible world, the eGTS
meanings for e.g. “Ophthalmologist” (O) and “Eye doctor” (E), which are sets of
implemented Skolem functions, do not: ||O|| �= ||E ||; and the corresponding stereo-
types of course do not either: †O† �= †E†. This is enough to account for possible
distinctive attitudes towards sentences whose equivalence is due to synonymy. Ralph
can believe that George is an eye doctor and simultaneously believe that George is
not an ophthalmologist, without being inconsistent: Ralph’s first belief involves a
device—i.e., an implemented function—from †E†R , whilst the second one involves
one from †O†R . Hence the contents of the attitudes are not the same.

Twin-Earth The present conception enables one to deal with cases like Putnam’s
Twin-Earth [16]. E-Oscar and TE-Oscar, the microphysical twins living on Earth
and Twin-Earth, are supposed to share the same (narrow) mental state as they think
about “Water”, even though E-Oscar refers to H2O whereas TE-Oscar refers to

17 This means that in a standard Kripkean structure, the accessibility relation between possible
worlds is doubled over by world-lines between entities. However, Hintikka does not agree with
such a combination of his own ideas with that of rigid designation. See [18].
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XYZ. It can be assumed that the twins share their stereotypes: †water†E−Oscar =
†water†TE−Oscar. The Dig functions of E-Oscar enable him to determine the exten-
sion of “Water” on Earth. They are not necessarily Skolem functions, i.e. functions
picking out water in every context, but they do so in terrestrial contexts: it is only
their restriction to terrestrial contexts which coincides with that of Skolem functions,
i.e. †water†EarthE−Oscar ⊆ ||water||Earth. Using the same stereotype on Twin-Earth,
TE-Oscar will select another type of extension, namely XYZ. So the extensions
depend on the environment—it is the assumption—whereas the stereotype is shared
by the twins.

What’s New? Most of the puzzles just presented are handled by competing the-
ories like two-dimensional semantics [3]. However, the advantages of the present
frameword are worth noticing:

(i) it is non-modal: eGTS meanings as well as eGTS stereotypes are defined in the
actual world, with no resort to possible-world structure;

(ii) it does not idealize competent speakers: language users need not master inten-
sions; what they need are conventionally acceptable stereotypes, i.e., sets of
concrete devices leading them to calculate approximate extensions of expres-
sions.

(iii) it takes into account idiolectal variations and inter-individual variations of lin-
guistic competence, thanks to the indeterminate character of stereotypes.

These are not technical advantages, but philosophical insights not accounted for
by 2DS. These are indirect benefits coming from Putnam’s ideas about meaning.

9.5 Conclusion

I have shown that a slight extension of GTS could yield interesting results for
the theory of meaning. This can be done provided that one does not stick to the
usual static and extensional conception of functions as mappings but adopts some
fine-grained criterion of individuation of functions—namely, one must move at the
implementation level. Here, concrete devices must be introduced in order to account
for interpretation by limited agents to be contrasted with the semantic games played
by unlimited players. Hence after meaning constitution through eGTS comes the
step of linguistic understanding, where context, approximation, and other epistemic
issues enter the stage.

The conception put forward in this paper can be viewed as an elaboration on
Putnam’s ideas about meaning. The key is in the strict separation between meaning
constitution and language understanding. Putnam appended the notion of stereotype
to that of meaning. In our framework, there is a shift from sets of Skolem functions
to sets of Dig functions: limited agents are fallible—as they interpret language, they
do not automatically grasp functions that yield the appropriate extensions. This is
why the devices are not Fregean senses, but rather make up Putnamian stereotypes.
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The resulting conception is a non-modal account of meaning and interpretation:
Skolem and Dig functions are defined in one single world. The fine-grained individ-
uation of such functions certainly require intensionality, but it is limited to the met-
alinguistic level. Moreover, the whole conception is based on an informal interpreta-
tion of functions as concrete devices which is a long shot from usual possible-world
semantics: here competent speakers are not expected to grasp functions defined on
sets of possible worlds, let alone two-dimensional functions.

Appendix 1: eGTS Rules

In eGTS, every FO sentence ϕ evaluated relative to a structure M = 〈D, I 〉 is
associated to a game eG(ϕ,M). This new game is identical to the game G(ϕ,M)

played according to the standard GTS rules when it is a molecular game, i.e. when ϕ
is a complex formula. If ϕ is an atomic formula or an identity, one reaches an atomic
game. The original game rule for atomic sentences in GTS, (R.At), is replaced by
the following specific four rules:

(R.At∗) In the atomic game eG(α,M), if either ∃loise is the current verifier
and α is false in M, or she is the current falsifier and α is true, then ∀belard
wins and ∃loise loses; else there are two cases:

(i) α is of the form Rt1 . . . tn , R being a n-ary relation symbol and the
ti s being terms: ∀belard picks out an index i ∈ {0, 1, . . . , n}; if
i = 0 then the rest of the game is as in eG(R,M), else it is as in
eG(ti ,M).

(ii) α is of the form (t1 = t2), the ti s being terms: ∀belard picks out an
index i ∈ {1, 2}; the rest of the game is as in eG(ti ,M).

(R.Rel) In the relation game eG(R,M), where R is a n-ary relation symbol,
∀belard chooses a n-tuple 〈d1, . . . , dn〉 ∈ Dn , and ∃loise answers yes or
no. If she answers yes and 〈d1, . . . , dn〉 ∈ I (R), or she answers no and
〈d1, . . . , dn〉 /∈ I (R) then ∃loise wins and ∀belard loses; else ∀belard wins
and ∃loise loses.

(R.Term) In the term game eG(t,M), where t is a term, one of the following
three cases occurs:

(i) t is a new constant previously introduced through the play i.e. not
occurring in the original formula; then ∃loise wins and ∀belard
loses;

(ii) t is an individual constant; then ∃loise chooses an object d ∈ D;
if d = I (t) then ∃loise wins and ∀belard loses; if d �= I (t) vice
versa;
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(iii) t is a complex term involving a n-ary function symbol: t =
f (t1, . . . , tn); then ∀belard picks out an index i ∈ {0, 1, . . . , n}. If
i > 0 then rest of the game is as in eG(ti ,M), and if i = 0 it is as in
eG( f,M).

(R.Fun) In the function game eG( f,M), f being a n-ary function symbol,
∀belard chooses a n-tuple 〈d1, . . . , dn〉 ∈ Dn , then ∃loise chooses an object
d ∈ D. If d = I ( f )(d1, . . . , dn) then ∃loise wins and ∀belard loses; else
vice versa.

Appendix 2: Second-Order Skolem Forms

There is a simple device to yield a result equivalent to extended GTS with no resort
to (sub)atomic games, but only to skolemization. In what follows we will assume
that the models under consideration contain at least two distinct elements, and that
second-order formulas get a standard (full) semantic interpretation. Let:

�(a1, . . . , ak, R1, . . . , Rl , x1, . . . , xm) (9.11)

be a first-order sentence, where a1, . . . , ak are the k individual constant symbols,
R1, . . . , Rl the l relation symbols, and x1, . . . , xm the m variables occurring inside
�. Being first-order � can be put into prenex normal form:

Q1x1 . . . Qm xm�
⊗(a1, . . . , ak, R1, . . . , Rl , x1, . . . , xm) (9.12)

with Qi ∈ {∃,∀}. � can also be skolemized, and is equivalent to:

2Sk[�] = ∃ f1 . . . ∃ fn∀t1 . . . ∀tp

�◦(a1, . . . , ak, R1, . . . , Rl , f1(�t1), . . . , fn( �tn), t1, . . . , tp)
(9.13)

where {t1, . . . , tp} ⊆ {x1, . . . , xm} is the subset of the universally quantified vari-
ables of �⊗, �ti ⊆ {t1, . . . , tp} is the set of the universally quantified variables of
�⊗ on which the existentially quantified variable replaced by fi depends, and �◦
results from�⊗ by a mere permutation of its arguments so that the Skolem functions
appear first.

Now we can replace the relation and individual constant symbols in� by second-
order quantified variables. So � is equivalent to the following formula:

∃g1 . . . ∃gk∃X1 . . . ∃Xl [�(g1, . . . , gk, X1, . . . , Xl , x1, . . . , xm)

∧[g1 = a1] ∧ . . . ∧ [gk = ak] ∧ [X1 = R1] ∧ . . . ∧ [Xl = Rl ]](9.14)

The same existential generalization can be done within 2Sk�, reaching the follow-
ing formula:
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∃g1 . . . ∃gk∃X1 . . . ∃Xl∃ f1 . . . ∃ fn∀t1 . . . ∀tp

[�◦(g1, . . . , gk, X1, . . . , Xl , f1(�t1), . . . , fn( �tn), t1, . . . , tp)

∧[g1 = a1] ∧ . . . ∧ [gk = ak] ∧ [X1 = R1] ∧ . . . ∧ [Xl = Rl ]]
(9.15)

Furthermore, let us change each relation variable Xi into a corresponding (indicator)
function variable hi and correlatively modify �◦ into ��—so that each token of
Xi t1 . . . tni be replaced by one of hi (t1 . . . tni ) = 1. Hence � is equivalent to its
extended second-order Skolem form:

2eSk[�]1 = ∃g1 . . . ∃gk∃h1 . . . ∃hl∃ f1 . . . ∃ fn∀t1 . . . ∀tp

[��(g1, . . . , gk, h1, . . . , hl , f1(�t1), . . . , fn( �tn), t1, . . . , tp)

∧[g1 = a1] ∧ . . . ∧ [gk = ak] ∧ [h1 = 1R1 ] ∧ . . . ∧ [hl = 1Rl ]]
(9.16)

A similar first-order skolemization is then given by:

eSk[�] = ∀t1 . . . ∀tp

[��(g1, . . . , gk,h1, . . . ,hl , f1(�t1), . . . , fn( �tn), t1, . . . , tp)

∧[g1 = a1] ∧ . . . ∧ [gk = ak] ∧ [h1 = 1R1 ] ∧ . . . ∧ [hl = 1Rl ]]
(9.17)

Another second-order Skolem form, equivalent to (9.16), obtains if we restore the
original constants in ��:

2eSk[�]2 = ∃g1 . . . ∃gk∃h1 . . . ∃hl∃ f1 . . . ∃ fn∀t1 . . . ∀tp

[�◦(a1, . . . , ak, R1, . . . , Rl , f1(�t1), . . . , fn( �tn), t1, . . . , tp)

∧[g1 = a1] ∧ . . . ∧ [gk = ak]
∧[h1 = 1R1 ] ∧ . . . ∧ [hl = 1Rl ]]

(9.18)

which can be written in a condensed form as:

2eSk[�]2 = ∃g1 . . . ∃gk∃h1 . . . ∃hl

[2Sk[�] ∧ [g1 = a1] ∧ . . . ∧ [gk = ak]∧
[h1 = 1R1 ] ∧ . . . ∧ [hl = 1Rl ]]

(9.19)
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Chapter 10
Dynamic Logic of Propositional Commitments

Tomoyuki Yamada

10.1 Introduction

A number of systems of dynamic epistemic logic have been developed recently as
extensions of static epistemic logic by Plaza [11], Gerbrandy and Groeneveld [5],
Gerbrandy [4], Baltag, Moss and Solecki [2], and Kooi and van Benthem [7] among
others.1 In these systems, dynamic changes brought about by various kinds of infor-
mation transmission including public announcements as well as private communica-
tions are studied, and these communicative acts are interpreted as events that update
epistemic states of some or all of the agents involved. More recently, inspired by
these developments, acts of commanding and acts of promising have been modeled
as updators of deontic statuses of various alternative courses of actions available to
agents involved in social interactions, and “dynamified” deontic logics have been
developed as extensions of multi-agent variants of static deontic logic by Yamada in
[16–19]. The same strategy has also been applied in developing dynamic logics of
preference change by van Benthem and Liu [13] and Liu [9].

These developments suggest the following general recipe for developing various
logics that deal with particular kinds of speech acts:

• first, carefully identify the aspects of the situations affected by the speech acts
that you want to study, and find or develop a static modal logic that characterizes
the aspects identified,

• next, add dynamic modal operators that stand for the types of the speech acts
being studied, and define model updating operations that interpret these speech
acts as what update the very aspects,

1 A detailed, state-of-the-art textbook exposition of dynamic epistemic logic can be found in van
Ditmarsch, van der Hoek and Kooi [14].
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• and then finally, if possible, find a complete set of reduction axioms which
enables you to derive the completeness of the dynamified logic from the com-
pleteness of the static logic.

The purpose of this paper is to describe how the effects of acts of making assertions,
acts of making concessions, and acts of withdrawing assertions and concessions can
be captured by developing dynamic logics according to this recipe.2

As the recipe dictates, our first task is to identify the aspects affected by
these speech acts, and find a modal logic that characterizes these aspects. We
do this in Section 10.2. Our working hypothesis is that these acts update the
sets of so called “propositional commitments” the agents bear, and we develop a
static logic, MPCL, which deals with propositional commitments in a multi-agent
environment.

According to the above recipe, our next task is to “dynamify” MPCL in order
to characterize the logical dynamics of changing propositional commitments. For
technical reasons, we do this in two steps. First, in Section 10.3 we extend MPCL
into DMPCL, dynamified MPCL, by adding two kinds of modal operators standing
for acts of asserting and acts of conceding respectively, and present a complete set of
reduction axioms for it. Then, in Section 10.4, we further extend it into DMPCL+,
by adding another two kinds of modal operators standing for acts of withdrawing
assertions and acts of withdrawing concessions respectively. As may be expected,
the effects of acts of withdrawing turn out to be very difficult to capture, and the
completeness problem for DMPCL+ is still open. Yet the possibility of withdrawal
seems to be a distinguishing characteristic common to a wide range of acts whose
effects are conventional or institutional, and so the logical dynamics of withdrawal
seem to be of considerable significance to the study of social interactions among
rational agents. We make a brief comparison with the AGM approach to belief
revision in the same section. And finally, in Section 10.5, we briefly consider an
application of DMPCL+ to scorekeeping for argumentation games.

10.2 The Static Base Logic MPCL

In the literature on speech act theory, agents who make assertions are usually said
to be committed to the truth of their assertions (for example, see [12]). The kind of
commitments incurred are sometimes called “propositional commitments” in argu-
mentation theory. The notion of propositional commitment is introduced into the
study of dialogue by Hamblin in [6], and is further studied by Walton and Krabbe
in [15] with reference to a particular kind of dialogue called “persuasion dialogue”.
Walton and Krabbe recognize three types of commitment, namely, (1) commitments
incurred by making concessions, (2) commitments called assertions, and (3) par-
ticipants’ dark-side commitments ([15], pp. 186–87). In this paper, we treat acts of

2 This recipe was presented at the XXII World Congress of Philosophy, 30 July–5 August, 2008,
Seoul, Korea.
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asserting and conceding as updators of the sets of propositional commitments agents
bear following Walton and Krabbe, but only consider the first two types of “com-
mitments” as commitments. Since “dark-side commitments” are “hidden or veiled
commitments” that are supposed to be fixed, they will not be affected by the kinds
of speech acts to be studied; they can be modeled as hidden beliefs. We refer to the
first type of commitments as “c-commitments” and the second type of commitments
as “a-commitments”, reserving the term “assertion” for acts of asserting.

According to Walton and Krabbe ([15], p. 8), propositional commitments con-
stitute a special case of commitment to a course of action. The main difference
between c-commitments and a-commitments lies in the fact that an agent who has
an a-commitment to the proposition p is obliged to defend it if the other party in
the dialogue requires her to justify it, while an agent who has a c-commitment to
the proposition p is only obliged to allow the other party to use it in the arguments
([15], p. 186). As anyone who asserts that p will be obliged to allow the other party
to use it in the arguments, a-commitments imply c-commitments.

Our next task is to develop a static modal logic that deals with a-commitments
and c-commitments. First, we define the language.

Definition 1 Take a countably infinite set Aprop of proposition letters, and a finite
set I of agents, with p ranging over Aprop, and i over I . The language LMPCL of
the multi-agent propositional commitment logic MPCL is given by:

ϕ ::= " | p | ¬ϕ | (ϕ ∧ ψ) | [a-cmt]iϕ | [c-cmt]iϕ.

Intuitively, a formula of the form [a-cmt]iϕ means that the agent i has an a-
commitment to the proposition ϕ, and a formula of the form [c-cmt]iϕ means
that i has a c-commitment to ϕ. We will also say that the agent i is a-committed
and c-committed to ϕ when we have [a-cmt]iϕ and [c-cmt]iϕ respectively. We use
〈a-cmt〉iϕ and 〈c-cmt〉iϕ as the abbreviations of ¬[a-cmt]i¬ϕ and ¬[c-cmt]i¬ϕ
respectively, in addition to the standard abbreviations such as ∨,→, etc.

Next we examine some general principles captured in the language just defined.
As anyone who asserts that p will be expected to believe or know that p, and anyone
who concedes that p will be expected not to know or believe that ¬p, the logic of
propositional commitments may be expected to be similar to epistemic logic and
doxastic logic. But there are some differences. First, unlike the knowledge that p
(but similar to the belief that p), one’s propositional commitment to p does not
entail p. Propositional commitments are not veridical. Thus the following formulas
are not valid:

[a-cmt]iϕ → ϕ

[c-cmt]iϕ → ϕ.

This means that when we build possible worlds models for interpreting sentences of
this language, we should not assume that the accessibility relations for propositional
commitments are reflexive. Second, although one’s beliefs are often supposed to be
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consistent in doxastic logic, one’s set of propositional commitments can be incon-
sistent. Thus the following formulas are not valid:

¬[a-cmt]i⊥
¬[c-cmt]i⊥.

This means that we should not assume that the accessibility relations for propo-
sitional commitments are serial. Moreover, it is not clear whether the following
analogues of the so-called positive and negative introspection axioms of epistemic
and doxastic logics are valid or not:

[a-cmt]iϕ → [a-cmt]i [a-cmt]iϕ
¬[a-cmt]iϕ → [a-cmt]i¬[a-cmt]iϕ
[c-cmt]iϕ → [c-cmt]i [c-cmt]iϕ
¬[c-cmt]iϕ → [c-cmt]i¬[c-cmt]iϕ.

Leaving the discussion of these introspection principles for further research,
we will only assume K-axioms and necessitation rules for a-commitments and
c-commitments in addition to the assumption that each a-commitment implies its
corresponding c-commitment.

Thus, we define:

Definition 2 An LMPCL-model is a tuple M = 〈W M , {�M
i | i ∈ I }, {�M

i | i ∈
I }, V M 〉 satisfying the following conditions:

(i) W M is a non-empty set (heuristically, of “possible worlds”),
(ii) �M

i ⊆ W M ×W M for each i ∈ I ,
(iii) �M

i ⊆�M
i for each i ∈ I ,

(iv) V M is a function that assigns a subset V M (p) of W M to each proposition letter
p ∈ Aprop.

We sometimes refer to a possible world w ∈ W M as a point in W M or in M as well.

A truth definition for LMPCL can be given in a standard way by associating the
modal operators [a-cmt]i and [c-cmt]i with �M

i and �M
i respectively. Thus:

Definition 3 Let M be an LMPCL-model and w a point in W M . If p ∈ Aprop, and
i ∈ I , then:

(a) M, w |�MPCL p iff w ∈ V M (p)
(b) M, w |�MPCL "
(c) M, w |�MPCL ¬ϕ iff it is not the case that M, w |�MPCL ϕ

(d) M, w |�MPCL (ϕ ∧ ψ) iff M, w |�MPCL ϕ and M, w |�MPCL ψ

(e) M, w |�MPCL [a-cmt]iϕ iff for every v such that 〈w, v〉 ∈�M
i , M, v |�MPCL ϕ

(f) M, w |�MPCL [c-cmt]iϕ iff for every v such that 〈w, v〉 ∈�M
i , M, v |�MPCL ϕ.
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A formula ϕ is true in an LMPCL-model M at a point w of W M if M, w |�MPCL ϕ.
The semantic consequence relation and the notion of validity can also be defined in
the standard way.

Now we define the proof system for MPCL.

Definition 4 The proof system for MPCL consists of the following axioms and
rules:

(i) all instantiations of propositional tautologies over the present language,
(ii) K-axioms for the commitment modalities [a-cmt]i and [c-cmt]i for each i ∈ I ,

(iii) modus ponens,
(iv) necessitation rules for the commitment modalities [a-cmt]i and [c-cmt]i for

each i ∈ I ,
(v) the axiom of the following form for each i ∈ I :

(Mix) [a-cmt]iϕ→ [c-cmt]iϕ.

This proof system is easily seen to be sound, and its completeness can be proved in
an entirely standard way.3

Theorem 1 (Completeness of MPCL) The above proof system completely axioma-
tizes MPCL.

Note that our minimal set of assumptions involves the assumption that the fol-
lowing proposition is true:

Proposition 1 The set of a-commitments and the set of c-commitments of an agent
are both closed under logical consequences.

The epistemic analogue of this feature is usually called “logical omniscience”, and
is sometimes criticized as unrealistic. In the case of propositional commitments,
however, we find the closure under logical consequences non-problematic. Ratio-
nal agents should withdraw at least one of their assertions or concessions if some
unwanted consequences are derived from what they have explicitly asserted or con-
ceded. They are taken to be responsible for the logical consequences of what they
have said at least to this extent.

10.3 The Logic of Acts of Asserting and Conceding DMPCL

The formulas of MPCL can be used to talk about the situations before and after
the performance of an act of asserting, an act of conceding, or an act of withdraw-
ing by modeling relevant situations using LMPCL-models. For example, let 〈M, w〉

3 Strictly speaking, the necessitation rule for c-commitment is redundant since Mix Axiom enables
us to derive it from the necessitation rule for a-commitment. We list it here in order to record the
fact that MPCL is normal.
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and 〈N , w〉 be the situations before and after an agent i’s act of asserting that p
respectively. If i has never committed to the truth of p before, then we have:

M, w �|�MPCL [a-cmt]i p

N , w |�MPCL [a-cmt]i p.

Thus MPCL can be used to characterize the sets of propositions to which agents
are committed with respect to each stage of their interactions. But in the above
example, neither the difference between the stages before and after i’s act of assert-
ing nor i’s act of asserting that links them can be talked about in MPCL; they
are talked about in the metalanguage. Thus our next task is to dynamify MPCL
in order to have an object language that can be used to characterize the logical
dynamics of changing propositional commitments. As was said before, we do this
in two steps for technical reasons. First, we extend MPCL into DMPCL, dynamified
MPCL, by adding dynamic modal operators standing for acts of asserting and acts
of conceding in this section. Then, in the next section, we further extend it into
DMPCL+, by adding another set of dynamic modal operators standing for acts of
withdrawing.

Now we extend the language:

Definition 5 Take the same countably infinite set Aprop of proposition letters and
the same finite set I of agents as before, with p ranging over Aprop, and i over I .
The language LDMPCL of dynamified multi-agent propositional commitment logic
DMPCL is given by:

ϕ ::= " | p | ¬ϕ | (ϕ ∧ ψ) | [a-cmt]iϕ | [c-cmt]iϕ | [π ]ϕ
π ::= assertiϕ | concedeiϕ.

Note that all the formulas of LMPCL are also formulas of LDMPCL.
A truth definition for this language can be given with reference to LMPCL-models

by expanding the truth definition for LMPCL with two additional clauses for the new
kinds of formulas as follows:

Definition 6 Let M be an LMPCL-model and w a point in W M . If p ∈ Aprop, and
i ∈ I , then:

(a) M, w |�DMPCL p iff w ∈ V M (p)
(b) M, w |�DMPCL "
(c) M, w |�DMPCL ¬ϕ iff it is not the case thatM, w |�DMPCL ϕ

(d) M, w |�DMPCL (ϕ ∧ ψ) iff M, w |�DMPCL ϕ and M, w |�DMPCL ψ

(e) M, w |�DMPCL [a-cmt]iϕ iff for every v such that 〈w, v〉 ∈�M
i , M, v |�DMPCL ϕ

(f) M, w |�DMPCL [c-cmt]iϕ iff for every v such that 〈w, v〉 ∈�M
i , M, v |�DMPCL ϕ

(g) M, w |�DMPCL [assertiχ]ϕ iff Massertiχ ,w |�DMPCL ϕ

(h) M, w |�DMPCL [concedeiχ]ϕ iff Mconcedeiχ ,w |�DMPCL ϕ,
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where Massertiχ is the LMPCL-model obtained from M by replacing �M
i and

�M
i with their subsets {〈x, y〉 ∈�M

i |M, y |�DMPCL χ} and {〈x, y〉 ∈�M
i|M, y |�DMPCL χ} respectively, and Mconcedeiχ is the LMPCL-model obtained from

M by replacing �M
i with its subset {〈x, y〉 ∈�M

i |M, y |�DMPCL χ}. A formula
ϕ is true in an LMPCL-model M at a point w of W M if M, w |�DMPCL ϕ. The
semantic consequence relation and the notion of validity can also be defined in the
standard way.

Note that the truth of the formula of the form [assertiχ ]ϕ and that of the formula
of the form [concedeiχ ]ϕ at w in M are defined in terms of the truth of the formula
of the form ϕ at w in the updated models Massertiχ and Mconcedeiχ respectively.
Intuitively, the update by assertiχ cuts every accessibility link 〈x, y〉 of �M

i and �M
i

if χ doesn’t hold at y in M , and the update by concedeiχ cuts every accessibility
link 〈x, y〉 of �M

i if χ doesn’t hold at y in M . This guarantees that the accessibility
relation associated with c-commitments of any agent i ∈ I will always be a subset
of the accessibility relation associated with i’s a-commitments, and so the updated
models Massertiχ and Mconcedeiχ will also be LMPCL-models.

Note also that the first six clauses reproduce the corresponding clauses in the
truth definition for LMPCL faithfully. Thus we have:

Corollary 1 Let M be an LMPCL-model and w a point in M. Then for any ϕ ∈
LMPCL, we have:

M, w |�DMPCL ϕ iff M, w |�MPCL ϕ.

For each i ∈ I , a formula ϕ ∈ LMPCL is said to be i-free if neither the operator
[a-cmt]i nor the operator [c-cmt]i occurs in it. The following corollary can be proved
by induction on the length of ψ :

Corollary 2 If ψ ∈ LMPCL is i -free, then for any ϕ ∈ LMPCL, we have:

M, w |�DMPCL ψ iff Massertiϕ,w |�DMPCL ψ

M, w |�DMPCL ψ iff Mconcedeiϕ,w |�DMPCL ψ.

We also have:

Proposition 2 If ϕ ∈ LMPCL is i -free, the following three principles are valid:

[assertiϕ][a-cmt]iϕ
[assertiϕ][c-cmt]iϕ
[concedeiϕ][c-cmt]iϕ.
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These restricted principles partially characterize the workings of acts of asserting
and acts of conceding: though not without exceptions, they usually generate corre-
sponding propositional commitments.4

If ϕ ∈ LMPCL is both i-free and j-free, we have

[assertiϕ][assert j¬ϕ]([a-cmt]iϕ ∧ [a-cmt] j¬ϕ).

This means that if an agent i asserts ϕ in 〈M, w〉, and another agent j asserts ¬ϕ
after that, we have

(Massertiϕ)assert j¬ϕ,w |�DMPCL ([a-cmt]iϕ ∧ [a-cmt] j¬ϕ).

Thus, even if two agents jointly make mutually incompatible assertions, we can
use DMPCL to represent the resulting situation without falling into a contradiction.
While (ϕ∧¬ϕ) is a contradiction, ([a-cmt]iϕ∧[a-cmt] j¬ϕ) is not. This feature can
be important when we design information systems which have to deal with possibly
conflicting inputs from multiple agents. We have to be able to accommodate differ-
ences of opinions among agents without making the whole system inconsistent.5

Note also that even [a-cmt]i (ϕ ∧ ¬ϕ) is not by itself a contradiction, although
it ascribes a contradictory a-commitment to the agent i . Such commitment will be
generated if i asserts both ϕ and ¬ϕ, for example. In such a situation, accessibil-
ity relations associated with i’s a-commitments and c-commitments will become
empty, and i will be both a-committed and c-committed to every proposition. Since
a set of propositional commitments an agent has can be inconsistent, we find it
important for us to be able to talk about speech acts that lead to such inconsistencies.
As the so-called D Axiom would preclude the very possibility of such situations, we
have avoided including it in our proof system for MPCL.

The proof system for DMPCL is given by expanding that for MPCL.

Definition 7 The proof system for DMPCL comprises all the axioms and rules of
the proof system for MPCL, the necessitation rules for assertion modality [assertiϕ]
and concession modality [concedeiϕ], and the following axioms:

(A1) [assertiϕ]p ↔ p

(A2) [assertiϕ]" ↔ "
(A3) [assertiϕ]¬ψ ↔ ¬[assertiϕ]ψ
(A4) [assertiϕ](ψ ∧ χ) ↔ [assertiϕ]ψ ∧ [assertiϕ]χ
(A5) [assertiϕ][a-cmt] jψ ↔ [a-cmt] j [assertiϕ]ψ (i �= j)

4 The restriction on ϕ is motivated by the fact that the truth of ϕ at w in M does not guarantee the
truth of ϕ at w in Massertiϕ or the truth of ϕ at w in Mconcedeiϕ if ϕ is not i-free. For more on this
point, see [16, p. 9].
5 An interesting discussion of the usefulness of explicit treatment of speech acts in such a system
can be found in [10].
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(A6) [assertiϕ][a-cmt]iψ ↔ [a-cmt]i (ϕ→ [assertiϕ]ψ)
(A7) [assertiϕ][c-cmt] jψ ↔ [c-cmt] j [assertiϕ]ψ (i �= j)

(A8) [assertiϕ][c-cmt]iψ ↔ [c-cmt]i (ϕ→ [assertiϕ]ψ)
(C1) [concedeiϕ]p ↔ p

(C2) [concedeiϕ]" ↔ "
(C3) [concedeiϕ]¬ψ ↔ ¬[concedeiϕ]ψ
(C4) [concedeiϕ](ψ ∧ χ) ↔ [concedeiϕ]ψ ∧ [concedeiϕ]χ
(C5) [concedeiϕ][a-cmt] jψ ↔ [a-cmt] j [concedeiϕ]ψ (for any j)

(C6) [concedeiϕ][c-cmt] jψ ↔ [c-cmt] j [concedeiϕ]ψ (i �= j)

(C7) [concedeiϕ][c-cmt]iψ ↔ [c-cmt]i (ϕ→ [concedeiϕ]ψ).

Axioms (A6), (A8) and (C7) are crucial here. They capture how the acts of asserting
and conceding update the model. Consider (A6). The left-hand side of it says that
[a-cmt]iψ holds after the update by assertiϕ. The right-hand side of it specifies
the necessary and sufficient conditions for this in terms of the conditions that hold
before the update. Take an arbitrary LMPCL-model M and an arbitrary world w of
M . [a-cmt]iψ holds at w in the updated model Massertiϕ iff ψ holds at every world v
that is accessible with respect to i’s a-commitment ([a-cmt]i -accessible, hereafter)
from w in Massertiϕ . Since the update by assertiϕ cuts every [a-cmt]i -arrow arriving
in non-ϕ-worlds in M , only the ϕ-worlds [a-cmt]i -accessible from w in M remain
[a-cmt]i -accessible from w in Massertiϕ . But ψ holds at such world v in the updated
model Massertiϕ iff [assertiϕ]ψ holds at v in M . Hence [a-cmt]iψ holds at w in the
updated model Massertiϕ iff [a-cmt]i (ϕ → [assertiϕ]ψ) holds at w in M before the
update. Thus (A6) says that the necessary and sufficient condition for [a-cmt]iψ
to hold at w in Massertiϕ is that every ϕ world [a-cmt]i -accessible from w in M is
a world where [assertiϕ]ψ holds in M . Axioms (A8) and (C7) can be understood
similarly.

Note that Axioms (A1), (A2), (C1), and (C2) enable us to eliminate each occur-
rence of assertion modalities and concession modalities prefixed to a proposition
letter or the constant ". The other axioms enable us to reduce the length of the
subformula to which an assertion modality or a concession modality is prefixed.
Thus, these axioms, sometimes called “reduction axioms”, enable us to define a
translation function that takes a formula of LDMPCL and yields a formula of LMPCL
that is provably equivalent to the original formula.
Definition 8 The translation function that takes a formula of LDMPCL and yields a
formula of LMPCL is defined as follows:

t (p) =p

t (") ="
t (¬ϕ) =¬t (ϕ)

t (ϕ ∧ ψ) =t (ϕ) ∧ t (ψ)
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t ([a-cmt]iϕ) =[a-cmt]i t (ϕ)
t ([c-cmt]iϕ) =[c-cmt]i t (ϕ)
t ([assertiϕ]p) =p

t ([assertiϕ]") ="
t ([assertiϕ]¬ψ) =¬t ([assertiϕ]ψ)
t ([assertiϕ](ψ ∧ χ)) =t ([assertiϕ]ψ) ∧ t ([assertiϕ]χ)
t ([assertiϕ][a-cmt] jψ) =[a-cmt] j t ([assertiϕ]ψ) (i �= j)

t ([assertiϕ][a-cmt]iψ) =[a-cmt]i t (ϕ→ [assertiϕ]ψ)
t ([assertiϕ][c-cmt] jψ) =[c-cmt] j t ([assertiϕ]ψ) (i �= j)

t ([assertiϕ][c-cmt]iψ) =[c-cmt]i t (ϕ→ [assertiϕ]ψ)
t ([assertiϕ][assert jψ]χ) =t ([assertiϕ]t ([assert jψ]χ))
t ([assertiϕ][concede jψ]χ) =t ([assertiϕ]t ([concede jψ]χ))
t ([concedeiϕ]p) =p

t ([concedeiϕ]") ="
t ([concedeiϕ]¬ψ) =¬t ([concedeiϕ]ψ)
t ([concedeiϕ](ψ ∧ χ)) =t ([concedeiϕ]ψ) ∧ t ([concedeiϕ]χ)
t ([concedeiϕ][a-cmt] jψ) =[a-cmt] j t ([concedeiϕ]ψ)
t ([concedeiϕ][c-cmt] jψ) =[c-cmt] j t ([concedeiϕ]ψ) (i �= j)

t ([concedeiϕ][c-cmt]iψ) =[c-cmt]i t (ϕ→ [concedeiϕ]ψ)
t ([concedeiϕ][assert jψ]χ) =t ([concedeiϕ]t ([assert jψ]χ))
t ([concedeiϕ][concede jψ]χ) =t ([concedeiϕ]t ([concede jψ]χ)).

This translation enables us to derive the completeness of DMPCL from the com-
pleteness of LMPCL.6 Thus,

Theorem 2 (Completeness of DMPCL) There is a complete axiomatization of
DMPCL.

10.4 A Further Extension DMPCL+

Consider a formula of the form [assertiχ ][assert jξ ][assertiη]ϕ. It means that ϕ
holds after i asserts η after j asserts ξ after i asserts χ , and it is true at w in M
if and only if ϕ is true at w in the updated model ((Massertiχ )assert j ξ )assertiη. Let an
expression of the form � assertiχ and � concedeiχ represent the type of i’s acts of
withdrawing i’s own assertion that χ and i’s acts of withdrawing i’s own concession
that χ respectively. Then what will we get if we update ((Massertiχ )assert j ξ )assertiη

6 The outline of the derivation is completely similar to that of the completeness of ECL given in
[16].
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with � assertiχ , for example? We suggest that what we will get in that situation
should be calculated by calculating what we would have in (Massert j ξ )assertiη, as far
as propositional commitments are concerned.

This is not meant to imply that the act of withdrawing could affect the past
history. What we are proposing is that the set of propositional commitments an
agent i will bear after withdrawing i’s own act of asserting that χ in the situation
〈((Massertiχ )assert j ξ )assertiη, w〉, for example, should be the same as the set of propo-
sitional commitments i would bear in the situation 〈(Massert j ξ )assertiη, w〉. Intu-
itively, the set of propositional commitments an agent i will bear after withdrawing
her own assertion that χ will be the same as the set of propositional commitments
she would bear if she had not asserted that χ but had made all the other assertions
and concessions she actually made. We develop a formal treatment of withdrawals
which incorporates this intuitive idea as faithfully as possible in this section.

First, we extend the language.

Definition 9 Take the same countably infinite set Aprop of proposition letters and
the same finite set I of agents as before, with p ranging over Aprop, and i over I .
The language LDMPCL+ of dynamified multi-agent propositional commitment logic
with withdrawals DMPCL+ is given by:

ϕ ::= " | p | ¬ϕ | (ϕ ∧ ψ) | [a-cmt]iϕ | [c-cmt]iϕ | [π ]ϕ
π ::= assertiϕ | concedeiϕ |� assertiϕ |� concedeiϕ.

Note that withdrawals are allowed only for assertions and concessions; we have not
allowed withdrawals of withdrawals here. Instead of withdrawals of withdrawals, an
agent can assert or concede again the same propositions which she once asserted or
conceded but has subsequently withdrawn.7

Note also that we only allow agents to withdraw their own assertions or conces-
sions. Although there may be agents who have the authority to withdraw certain
speech acts performed by other agents in hierarchical organizations, we leave such
complexity for further research.

In order to give a truth definition for the above language, we need to consider
the effects of acts of withdrawing performed at the stages we will be in after going

7 Strictly speaking, such acts of re-asserting and re-conceding do not always have the same effects
as acts of withdrawals of withdrawals. The effect of the act of withdrawing the act of withdrawing
of the form � assertiϕ, for example, can be different from the effects of re-asserting ϕ. Consider
a case where ϕ is asserted at stage si , withdrawn at a later stage s j , and re-asserted at a still later
stage sk by an agent. What would happen if, instead of re-asserting ϕ at sk , the agent withdrew at
sk her earlier withdrawal of ϕ at s j ? Her earlier assertion of ϕ at si would become effective again.
Now, the effects of re-asserting ϕ at sk can be different from the effects of asserting ϕ at si as the
former depend on the things said during the discourse between si and sk . To be sure the things said
during the discourse between si and sk would also affect the states after her “resurrected” assertion
of ϕ at Si . But there is no guarantee that they would “neutralize”, so to speak, the difference in
such a way that the state after the withdrawal at sK of her earlier withdrawal would be exactly the
same as the actual state after her re-asserting of ϕ at sK .



194 T. Yamada

through various arbitrary sequences of relevant speech acts involving acts of with-
drawing as well as acts of asserting and conceding. We call such sequences com-
mitment affecting act sequences, or caa-sequences for short. Before examining the
effects of acts of withdrawing with reference to arbitrary caa-sequences, however,
we will consider their effects with reference to somewhat simpler sequences con-
sisting of only acts of asserting and conceding. We call such a sequence a posi-
tive commitment act sequence, or a pca-sequence for short. Then the above exam-
ple suggests that the effects of an act of withdrawing performed at the stage we
will be in after going through an arbitrary pca-sequence σ starting from 〈M, w〉
can be captured by considering the model obtained from M by updating M with
another pca-sequence obtained from σ by deleting from σ the assertion or the
concession that was withdrawn. Thus, in the above example, we considered the
model (Massert j ξ )assertiη in order to examine the effects of the act of withdrawing
of the form � assertiχ performed in the situation 〈((Massert jχ )assert j ξ )assertiη, w〉,
and the pca-sequence 〈assert jξ, assertiη〉 is exactly what we get by delet-
ing the occurrence of assertiχ from the pca-sequence 〈assertiχ, assert jξ,

assertiη〉.
Note that an arbitrary pca-sequence σ might include two or more occurrences

of a given assertion or concession, or might include none of them. For the sake of
generality, we will also talk of σ as a sequence even if σ is empty or σ consists of
only one speech act. Thus we define:

Definition 10 Let σ = 〈π1, · · · , πn〉 be a (possibly empty) pca-sequence. We define
the reduced pca-sequences σ �� assertiϕ and σ �� concedeiϕ, to be obtained by
deleting from σ every occurrence of the act of type assertiϕ and every occurrence
of the act of type concedeiϕ respectively, as follows:

σ �� assertiϕ

=
⎧
⎨

⎩

σ if σ is empty
〈π1, · · · , πn−1〉�� assertiϕ if σ = 〈π1, · · · , πn〉, and πn = assertiϕ
〈〈π1, · · · , πn−1〉�� assertiϕ, πn〉 if σ = 〈π1, · · · , πn〉, and πn �= assertiϕ

and

σ �� concedeiϕ

=
⎧
⎨

⎩

σ if σ is empty
〈π1, · · · , πn−1〉�� concedeiϕ if σ = 〈π1, · · · , πn〉, and πn = concedeiϕ

〈〈π1, · · · , πn−1〉�� concedeiϕ, πn〉 if σ = 〈π1, · · · , πn〉, and πn �= concedeiϕ.

Note that σ �� assertiϕ and σ �� concedeiϕ are pca-sequences. Note also that we
allow acts of withdrawing to withdraw repeated assertions or repeated concessions
in one go, so to speak. For example, we have:

〈assertiχ, assert jξ, assertkη, assertiχ〉�� assertiχ = 〈assert jξ, assertkη〉.
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If an agent who insisted that ϕ by repeatedly asserting that ϕ comes to wish to
withdraw her assertion that ϕ, it would be strange if she wished to withdraw only
some of her acts of asserting ϕ while keeping others untouched. She would still be
a-committed to ϕ.

We are now in a position to define a special pca-sequence σ ∗ that can be used to
calculate the propositional commitments agents bear after going through an arbitrary
caa-sequence σ . We get σ ∗ from σ by applying the procedures we have just intro-
duced to the occurrences of withdrawals in σ according to the order they occur in σ .

Definition 11 Given an arbitrary caa-sequence σ possibly involving acts of with-
drawing as well as acts of asserting and acts of conceding, we define its correspond-
ing pca-sequence σ ∗ as follows:

σ ∗=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σ if σ is empty
〈〈π1, · · · , πn−1〉∗, assertiϕ〉 if σ = 〈π1, · · · , πn〉, and πn = assertiϕ
〈〈π1, · · · , πn−1〉∗, concedeiϕ〉 if σ = 〈π1, · · · , πn〉, and πn = concedeiϕ

〈π1, · · · , πn−1〉∗ �� assertiϕ if σ = 〈π1, · · · , πn〉, and πn =� assertiϕ
〈π1, · · · , πn−1〉∗ �� concedeiϕ if σ = 〈π1, · · · , πn〉, and πn =� concedeiϕ.

This definition enables us to deal with the effects of an act of withdrawing performed
at the stage we will be in after going through an arbitrary caa-sequence σ . We just
have to work with the reduced pca-sequences σ ∗ �� assertiϕ and σ ∗ �� concedeiϕ.

In order to give a truth definition for DMPCL+ with the help of these definitions,
however, we have to exercise due care. In the notation used in the truth definition for
DMPCL, (· · · ((Mπ1)π2) · · · )πn represents the model obtained from M by updating
it successively with the sequence of speech acts 〈π1, π2, · · · , πn〉, which is a pca-
sequence in our current terminology. If σ = 〈π1, π2, · · · , πn〉, we may wish to
abbreviate (· · · ((Mπ1)π2) · · · )πn as Mσ , and talk of it as the model obtained from
M by updating it with σ . Then the model world pair 〈Mσ , w〉 will represent the
situation we will be in after going through the whole pca-sequence σ of assertions
and concessions starting from 〈M, w〉. But there can be another LMPCL-model N
and another pca-sequence τ such that M = Nτ . Thus σ can be considered as a
partial representation of the whole discourse that leads to 〈Mσ , w〉.

This is unsurprising since agents involved may have non-trivial propositional
commitments even in the situation 〈M, w〉; such commitments can be considered
as the products of previous discourse that led to 〈M, w〉. If we only deal with acts
of asserting and conceding, there is nothing problematic about this. But it can lead
to a contradiction when we take acts of withdrawing into consideration. The result
of updating Mσ with � assertiχ might not be identical with the result of updating
(Nτ )σ with � assertiχ since assertiχ might occur in τ . Such a discrepancy is inad-
missible since M = Nτ . In order to avoid this problem, we will keep models and
sequences of speech acts separate as you will see in the truth definition below.

Definition 12 Let M be an LMPCL-model, σ an arbitrary caa-sequence, σ ∗ the cor-
responding pca-sequence of σ , and w a point in M . If p ∈ Aprop, and i ∈ I , then:
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(a) M, σ,w |�DMPCL+ p iff w ∈ V M (p)
(b) M, σ,w |�DMPCL+ "
(c) M, σ,w |�DMPCL+ ¬ϕ iff it is not the case thatM, σ,w |�DMPCL+ ϕ
(d) M, σ,w |�DMPCL+ (ϕ ∧ ψ) iff M, σ,w |�DMPCL+ ϕ and

M, σ,w |�DMPCL+ ψ
(e) M, σ,w |�DMPCL+ [a-cmt]iϕ iff for all v such that 〈w, v〉 ∈�M

i �σ ∗,
M, σ ∗, v |�DMPCL+ ϕ

(f) M, σ,w |�DMPCL+ [c-cmt]iϕ iff for all v such that 〈w, v〉 ∈�M
i �σ ∗,

M, σ ∗, v |�DMPCL+ ϕ
(g) M, σ,w |�DMPCL+ [assertiχ]ϕ iff M, 〈σ, assertiχ〉, w |�DMPCL+ ϕ
(h) M, σ,w |�DMPCL+ [concedeiχ]ϕ iff M, 〈σ, concedeiχ〉, w |�DMPCL+ ϕ
(i) M, σ,w |�DMPCL+ [� assertiχ]ϕ iff M, σ ∗�� assertiχ,w |�DMPCL+ ϕ
(j) M, σ,w |�DMPCL+ [� concedeiχ]ϕ iff M, σ ∗�� concedeiχ,w |�DMPCL+ ϕ,

where

�M
i �σ ∗ =

⎧
⎪⎪⎨

⎪⎪⎩

�M
i if σ ∗ is empty,
{〈x, y〉 ∈�M

i � 〈π1, . . . , πn−1〉|M, 〈π1, . . . , πn−1〉, y |�DMPCL+ ψ}
if σ ∗ = 〈π1, . . . , πn〉 and πn = assertiψ ,

�M
i � 〈π1, . . . , πn−1〉 if σ ∗ = 〈π1, . . . , πn〉 and πn �= assertiψ ,

and

�M
i �σ ∗ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�M
i if σ ∗ is empty,
{〈x, y〉 ∈�M

i � 〈π1, . . . , πn−1〉|M, 〈π1, . . . , πn−1〉, y |�DMPCL+ ψ}
if σ ∗ = 〈π1, . . . , πn〉 and πn = assertiψ or πn = concedeiψ,

�M
i � 〈π1, . . . , πn−1〉

if σ ∗ = 〈π1, . . . , πn〉, πn �= assertiψ and πn �= concedeiψ .

A formula ϕ is true in an LMPCL-model M with respect to an arbitrary caa-sequence
σ at a point w of M if M, σ,w |�DMPCL+ ϕ. The semantic consequence relation
and the notion of validity can also be defined in the obvious way.

Note that acts of withdrawing behave very differently from what theorists of
belief revision call “contraction”. Let B be the set of beliefs of an agent, say a. Then
in the AGM approach, contraction $ is supposed to satisfy the postulate that ϕ �∈
B $ ϕ if � ϕ, but we have M, σ�� asserta p, w |�DMPCL+ [a-cmt]a p if σ includes
assertaq and asserta(q → p), for example. Thus, even if a withdraws a’s own acts
of the form asserta p (or of the form concedea p), if there is a set of propositions
jointly implying p in the set of propositions a has asserted (or conceded), a is still
a-committed (or c-committed) to p. Acts of withdrawing do not directly nullify
propositional commitments but do so only indirectly; we can only withdraw actually
performed acts of asserting and conceding. We record this fact as a proposition.

Proposition 3 Acts of withdrawing do not satisfy the AGM postulates for contrac-
tion.
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The AGM postulates, when considered as postulates for theory revision, character-
ize the desirable properties the revised theory has to have. But in order to have a
theory which has such desirable properties, we have to restate the theory explicitly,
and the task of restatement might not be so straightforward in some cases. DMPCL+
seems to reflect this difficulty correctly.

10.5 Scorekeeping for Argumentation Games

In DMPCL and in DMPCL+, we have characterized propositional commitments as
products of various courses of discourse. This suggests an interesting possibility of
applying DMPCL+ to scorekeeping for debates or argumentation games. The notion
of scorekeeping is introduced into the discussion of language by Lewis in [8], and
used by Brandom in [3] in his attempt to develop a theory of meaning based on
Wittgenstein’s notion of meaning as use. In Brandom’s version, each agent is con-
sidered as a deontic scorekeeper, and “the significance of an assertion of p” is con-
sidered as “a mapping that associates with one social deontic score—characterizing
the stage before that speech act is performed, according to some scorekeeper—the
set of scores for the conversational stage that results from the assertion, according
to the same scorekeeper” ([3], p. 190). In this paper, however, we will only consider
“the official score” kept by an idealized scorekeeper, and examine how DMPCL+
can be applied to such official scorekeeping.

In order to do so, we need to take account of the fact that we may have var-
ious propositional commitments in 〈M, σ,w〉 even if σ is empty. Some of them
are merely unavoidable commitments; for example, if ϕ is a tautology, we have
M, σ,w |�DMPCL+ [a-cmt]iϕ and M, σ,w |�DMPCL+ [c-cmt]iϕ. But there may be
other contingent commitments in 〈M, σ,w〉 as well, and, as we have seen, we can
think of them as products of the discourse that precedes 〈M, σ,w〉.

This means that only certain special LMPCL-models can be used to represent
the initial stage of a piece of discourse in which no speech acts have been made
yet. In order to apply DMPCL+ to scorekeeping for an argumentation game played
by two players, for example, we have to define a special model that represents the
initial stage of the game, where both players have neither a-commitments nor c-
commitments other than the unavoidable ones. Thus we define:

Definition 13 Given a countably infinite set Aprop of proposition letters, and the set
I = {a, b} of players a and b, with p ranging over Aprop, and i over I . Then, the
initial stage model is the tuple M0 = 〈W 0, {�0

i | i ∈ I }, {�0
i | i ∈ I }, V 0〉, where:

(i) W 0 is the power set P(Aprop) of Aprop,
(ii) �0

i= W 0 ×W 0 for each i ∈ I ,
(iii) �0

i= W 0 ×W 0 for each i ∈ I ,
(iv) V 0 is the function that assigns a subset V 0(p) = {w ∈ W 0 | p ∈ w } of W 0 to

each proposition letter p ∈ Aprop.
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Note that M0 is an LMPCL-model, and that, if σ is empty, for any proposition let-
ter p, any world w, and any agent i , we have (¬[a-cmt]i p ∧ ¬[a-cmt]i¬p) and
(¬[c-cmt]i p ∧ ¬[c-cmt]i¬p) in M0 at w with respect to σ .

Thus, if σ is empty andw is the actual world, 〈M0, σ,w〉 can be used to represent
the initial stage of an argumentation game. The scores for subsequent stages can
then be calculated according to the updating procedures defined for interpreting
assertions, concessions, and their withdrawals, as far as propositional commitments
are concerned.

Of course, there must be many other features that the scorekeeper has to record,
such as penalties for withdrawing, for example.8 It should be clear that DMPCL+
only gives us a partial characterization of the scorekeeping function. But the fact that
it gives us a partial characterization shows that records of changing propositional
commitments belong to the public score that characterizes conversational stages.
Thus propositional commitments belong to the dynamic social reality.

10.6 Conclusion

We have shown that acts of asserting and acts of conceding can be modeled as
updators of propositional commitments in DMPCL, and presented a complete set
of reduction axioms for it. Since the acts of asserting and conceding are exactly
the kind of acts with respect to which Austin’s notion of conventional effect ([1])
may seem most dubious, having a sound and complete logic that deals with their
objective or public effects can be of considerable significance.

We have also given a truth definition for the language of DMPCL+, Dynamified
Multi-agent Propositional Commitment Logic With withdrawals. Having formu-
lated the truth definition, the obvious next step is to examine what principles are
valid, and whether there can be a complete axiomatization of it or not. Since the
effects of an act of withdrawing depend not only on the conditions that hold in the
directly preceding situation but also on the earlier updating history, no complete set
of reduction axioms seems to be forthcoming. But even the mere truth definition for
the formulas with modalities standing for acts of withdrawing assertions and con-
cessions may be said to provide the notion of conventional effects of illocutionary
acts of asserting and conceding with further support, as the possibility of withdrawal
seems to be a distinguishing characteristic common to a wide range of acts whose
effects are conventional or institutional. As we have seen, changing propositional
commitments that agents bear are part of the public social reality.9

8 Such a feature may require very careful treatment. For example, if an agent a in an argumentation
game has withdrawn her earlier assertion or concession after many things have said by her opponent
b as well as by her, some of the things said by b may be the kind of things which b would not have
said if a had not made the very assertion or concession a has just withdrawn. Should we allow
b to withdraw some of his own assertions or concessions for free? And how about a’s further
withdrawals motivated by b’s withdrawals?
9 For more on Austin’s notion of conventional effect, see [18, 19].
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Chapter 11
Is Unsaying Polite?

Berislav Žarnić

‘Have some wine,’ the March Hare said in an encouraging tone.
Alice looked all round the table, but there was nothing on it but
tea. ‘I don’t see any wine,’ she remarked.
‘There isn’t any,’ said the March Hare.
‘Then it wasn’t very civil of you to offer it,’ said Alice angrily.
‘It wasn’t very civil of you to sit down without being invited,’
said the March Hare.
—Alice’s Adventures in the Wonderland [6, p. 96]

11.1 Two Ways of Negating a Sentence

Wittgenstein and Stenius According to the influential tradition in philosophy of
language, advocated inter alios by Erik Stenius [23] in 1967, there are three logico-
semantic moods: indicative, imperative and interrogative, and there are two main
components in natural language sentences: modal element, which determines sen-
tence’s mood, and sentence radical, which carries the descriptive content. Although
Wittgenstein had more permissive attitude regarding the number of sentence moods,
still the conception of the twofold sentence structure, consisting in use of a picture,
prevails in the later Wittgenstein’s philosophy.

But how many kinds of sentence are there? Say assertion, question, and command?—There
are countless kinds: countless different kinds of use of what we call “symbols,” “words,”
“sentences.” And this multiplicity is not something fixed, given once for all; but new types
of language, new language-games, as we may say, come into existence, and others become
obsolete and get forgotten. (We can get a rough picture of this from the changes in mathe-
matics.) . . .

Imagine a picture representing a boxer in a particular stance. Now, this picture can be used
to tell someone how he should stand, should hold himself; or how a particular man did stand
in such-and-such situation; and so on. One might (using the language of chemistry) call that
picture a proposition-radical. [28, p. 11]

Two Negation Positions The two-part sentence structure offers two options for
placement of negation. First, it is the modal element that may be negated: negation
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[modal element] [radical]. I call this position “external negation position.” Second,
it is the sentence radical that may be negated: [modal element] negation [radical]. I
call this position “internal negation position.”

Ross Alf Ross, one of the founders of imperative logic, drew a parallel distinc-
tion in 1941 [18]. According to Ross, there are imperatives with “negated theme of
demand” (i.e. with negated radical) and there are imperatives with “negated factor
of demand” (i.e. with negated modal element).

[This] means that it is necessary to use linguistic expressions which distinguish between
negative imperatives in two different senses, i.e. 1) imperatives with a negative theme of
demand (I (x) = you are (not to close the door) = you are to leave it open) and 2)
imperatives with a negative factor of demand, expressing that a positive imperative with
an identical theme of demand is not valid (I (x) = (you are not to) close the door = the
imperative “you are to close the door” is not valid).

The use of the imperative mood in colloquial language does not allow this important differ-
ence between I (x) and I (x) to be clearly marked. All imperative in the grammatical sense
are positive in the sense that they posses a positive factor of demand. For example, “Do not
close the door!” can only mean I (x) not I (x). Only by using linguistically indicative mood
the difference becomes apparent. For example, “It is your duty not to close the door” (I (x)),
and “It is not your duty to close the door” (I (x)). [18, p. 63]

Ross includes “imperatives with a negative factor of demand” among imperatives,
understood in a broad, nongrammatical sense. The difference between externally
and internally negated imperatives is clearly visible, since their grammatical forms
differ.

Searle Later, the same distinction was made in Searle’s speech act theory, where
illocutionary force indicator has the role similar to the role of modal element, while
propositional indicator corresponds to sentence radical. Searle used the term “illo-
cutionary negation” for external negation, and he classified permissions as directives
alongside other speech acts typically performed by uttering an imperative.

“Permit” also has the syntax of directives, though giving permission is not strictly speaking
trying to get someone to do something, rather it consists in removing antecedently existing
restrictions on his doing it, and is therefore the illocutionary negation of a directive with a
negative propositional content, its logical form is∼!(∼ p). [20, p. 22]

It seems that Searle needlessly narrows down permissions to those having “negative
propositional content.” In my opinion, the expression “a negative propositional con-
tent” should be replaced with “an opposite propositional content.” Then the citation
could be interpreted as stating that

(i) ∼!(∼ p) is illocutionary negation of !(p), and
(ii) ∼!(p) is illocutionary negation of !(∼ p).

An example for relation (ii) is given by the pair (iii)–(iv), below.

(iii) You may close the door.
(iv) Don’t close the door!
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It should be noted here that “illocutionary negation” operates simultaneously at two
negation positions: external negation includes internal negation.

Grice Grice proclaimed the principles of cooperative communication. If a principle
is violated, an utterance becomes inappropriate for reasons other than their “truth
conditions.”

In my eyes the most promising line of answer lies in building up a theory which will enable
one to distinguish between the case in which an utterance is inappropriate because it is false
or fails to be true, or more generally fails to correspond with the world in some favored way,
and the case in which it is inappropriate for reasons of a different kind. [10, p. 4]

Horn and Tappenden Horn and Tappenden (inter alios) have discussed the dif-
ference between the two ways of negation in the special case of indicatives. Horn
[13] has pointed out that external, i.e. metalinguistic negation erases some part of
the semantic field, like presuppositions, implicatures, points of view, etc.

I discuss the two uses of negation (descriptive and metalinguistic) in terms of what they
generally negate: truth (of a proposition) vs. assertability (of an utterance). [13, p. 122]

Metalinguistic negation, as we have seen, is used to deny or object to any aspect of a pre-
vious utterance—from the conventional or conversational implicata that may be associated
with it, to its syntactic, morphological, or phonetic form. [13, p. 144]

In Horn’s conception, the external negation takes some previous speech act as its
object. Hence, new questions come to fore. Is external negation capable of erasing
or canceling the joint effect of two or more previously performed speech acts? Can
external negation also take as its object the propositional part of the negated speech
act, and, in that way, incorporate internal negation?

I will argue that negation has both a speech-act indicating and a content-modifying function,
and puzzles can be generated by running them together. [24, p. 263]

[. . . ] how are we to theoretically classify two distinct patterns of use exhibited by sentences
containing negation? One of the uses is to be construed in terms of a speech act of denial, the
other in terms of asserting a content, [. . . ] So understood, the semantic (content modifying)
function is given by the truth table for internal negation if it is given by a truth table at all.
The speech act of denial is the commitment to the failure to obtain of the conditions that
would have to obtain for S to be true. Though this speech act is correct or incorrect in just
the conditions that the assertion of an external negation of S would be correct the speech
act differs from the assertion of an external negation in that it bears different relations to
embedded sentences. Though one can deny S, it need not be possible to define an external
negation operator over the whole language. [24, p. 282]

According to Tappenden [24], the use of the word “deny” is ambiguous. There is
a use of the word which covers the cases in which “denying that S” brings in the
commitment to “asserting (claiming) that ¬S.” In the other sense, which Tappenden
calls “non-derivative” sense because of its irreducibility to assertion, denial is “the
commitment to the failure to obtain of the conditions that would have to obtain for
S to be true.”

The Problem The concept of the twofold sentence structure is challenged by the fact
that external, metalinguistic negation cannot be formalized if the scope of negation
is restricted to sentence radical since in this way only speech acts with negated
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content can be expressed. There is or there should be a logical operator that acts
upon the whole “[modal element][radical]” thus producing negated speech act, dif-
ferent from the speech act with negated content. Questions arise: Does (or would)
external negation increase the pragmatic power of a language to effect changes in
the mind and in the group of minds? Does external negation violate some principles
of cooperative communication? The answer to these questions requires a general
formal semantic model for positive speech act and its opposite speech acts. It is our
thesis that within dynamic logic there are resources to build a variety of explanatory
models that are able to cover the basic aspects of logical relations occurring within
and between the three broad categories of speech acts: asserting, requesting and ask-
ing, which roughly correspond to the three main categories of moods: indicatives,
imperatives and interrogatives.

11.1.1 Modeling Two Kinds of Negation in Dynamic Semantics

The second type of negation (e.g. the imperative with negated “factor of demand”,
the denial as irreducible speech act) is what I call “negated speech act.” Within
the framework of the dynamic semantics, negated speech act can be modeled as
a semantic action that makes it logically or conversationally possible to perform
the speech act of the same type but with opposite content. In the simple case, to
externally negate speech act δϕ with radical ϕ means to enable the speech act δ∼ϕ
with the opposite radical∼ϕ.

The language of dynamic modal logic [3, 17] provides a rich vocabulary that can
be used for distinguishing types of speech acts in the way that Speaker’s speech act
affects Hearer’s mental state.

Let � be a set of proposition letters. We define the dynamic modal language DML(Φ)
[. . . ] Its formulas and procedures (typically denoted by ϕ and α, respectively) are built up
from proposition letters (p ∈ �) according to the following rules

ϕ ::= p | ⊥ | " | ¬ϕ | ϕ1 ∧ ϕ2 | do(α) | ra(α) | fix(α),

α ::= exp(ϕ) | con(ϕ) | α1 ∩ α2 | α1;α2 | −α | α� | ϕ?.

[17, p. 111]

The underlying idea of dynamic modal logic is to interpret procedures α as relations
between valuation points, where formulas ϕ hold (or, in the approach of that will be
followed here, relations between structures where formulas are valid or satisfiable).
In this way sentences become treated as speech acts: as procedures resulting in a
mental state describable by a formula. The question that interests us here is “Which
set of speech act types is expressively complete for the language of imperatives and
indicatives?” Later, it will be proved that the operational part of rich vocabulary
of dynamic modal logic can be reduced to few operations: testing a property of
a mental state, moving towards a more informative information state, sequential
composition of moves, and indeterministic choice: ϕ?, exp(ϕ), α1;α2, α1 ∪ α2.

Using dynamic modal language negated speech act could be provisionally
described as
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[[con1(δϕ)]] = {〈x, y〉 | y ' x ∧M, y �|� δϕ ∧ ¬∃z(y � z ' x ∧M, z �|� δϕ)}
(con1)

i.e. as a backward motion along the ' ordering towards the nearest point y in the
structure M = 〈W,', [[·]], V 〉 where δϕ does not hold. The provisional descrip-
tion is too broad since the fact that δϕ is not accepted in y need not guarantee the
acceptability of δ∼ϕ there.

Example 1 According to con1 the sentence “It is not your duty to open the door”
if used to perform negation of the directive “Open the door” could lead to different
mental states. In some of these the addressee may believe that the door has already
been open or that her duty is to prevent the door from closing. Such states will
neither validate the permission “You may keep the door closed” nor the suggestion
“It might be good to keep the door closed.”

The phenomenon of contradictory relations cannot be found among imperatives
since it is not the case for any future state of affairs that some imperative holds for
it. A lot of future state of affairs are “imperative indifferent” and we are not obliged
either to produce, sustain, destroy, or prevent them. On the other hand, no imperative
holds for the state of affairs that cannot be brought about. Therefore, another type
of logical opposition should be brought into the picture. The contrariety seems to
be fit for the role. On the one hand, both imperatives “Let it be the case that ϕ”
and “Let it be the case that ¬ϕ” cannot be jointly satisfied. On the other hand,
it is not the case that one of them must be in force. In my pre-understanding of the
matter, the abandonment of imperative opens up a logical space for another, contrary
imperative. Let us denote by δϕ and δ ∼ ϕ the speech acts of the same type but
with contrary content. Using the notion of contrariety, a more precise description
of negated speech act can be given in terms of relation con2 relying on: test (?),
sequential composition (;), and con1.

[[(δ∼ϕ)?]] = {〈x, x〉 | x |� δ∼ϕ)} (?)

[[α1]]; [[α2]] = {〈x, y〉 | ∃z(〈x, z〉 ∈ [[α1]] ∧ 〈z, y〉 ∈ [[α2]])} (;)
[[con2(δϕ)]] = [[con1(δϕ)]]; [[(δ∼ϕ)?]] (con2)

Another but equivalent way to define negated speech act of the specific type is to
define it as a retreat to a mental state upon which the contrary speech act of the same
type can be performed (formally, to a point in the domain do of the corresponding
relation).

[[con2(δϕ)]] = [[con1(⊥)]]; [[(do(δ∼ϕ))?]]

Example 2 Denial of an indicative ·P (where · denotes indicative mood and P is
propositional content) as a “non-derivative” act receives the following dynamic
interpretation: it is a token of the relation type where the second members of the
relation enable update with ·¬P .
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The proposed downdate modeling for negated speech act shows that its notion
depends on the notion of speech act with negated or, for the case of imperatives,
with contrary content.

For the purpose of modeling denial, as negated speech act of assertion, we will
introduce downdate function into Veltman’s update semantics [8, 25].1 Dynamic
modal logic takes the relational approach while update semantics narrows it down
to the functional one. A preliminary loose connection between dynamic modal logic
and update-downdate variant of Veltman’s system can be established by the fol-
lowing propositions: 〈x, x[ϕ+]〉 ∈ [[ex(ϕ)]], 〈x, x[ϕ−]〉 ∈ [[con(ϕ)]], 〈x, x[ϕ?]〉 ∈
[[ϕ?]].

A token of contractive relation must be chosen in order to apply the functional
approach of update/downdate semantics. In the next section I will introduce seman-
tic reformulation of the principles of AGM contraction and define the preferred
contraction type on that basis.

11.2 Contraction Types?

In AGM theory [1, 12] the operation of contraction of set A by a sentence x , A÷x
results in maximal subset of A that does not entail x . In general there will be more
than one maximal subset of A of the kind, and the set of these is called the remainder
set of A by x , A⊥x . The remainder set A⊥x contains all and only those sets B such
that

(i) B ⊆ A,
(ii) x /∈ Cn(B), and

(iii) there is no B ′ such that B ⊂ B ′ ⊆ A and x /∈ Cn(B ′).

One of the ways to define contraction A÷ x is to say that it is a choice operation
γ picking a member of the remainder set: A÷ x ∈ A⊥x or A÷ x = γ (A⊥x).
This function is called maxichoice contraction. The definition of the contraction
operation is given in syntactic terms and it has three elements:

1. preservation condition—contracted set is a subset of the original set,
2. not-entailment condition—contracted set does not entail contracted sentence,
3. maximality condition—contracted set retains the maximal number of sentences

from the original set.

Note that the definition of the maximality condition invokes the other two condi-
tions, as in (iii).

1 In [26] Veltman develops a semantics for counterfactuals and introduces “retraction function”
that shares the same traits as the function presented here. They differ only in technical sense: since
Veltman relies on use of partial valuations (“situations”) while I use relation of minimal difference
between full valuations.
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The contraction operation can be defined in semantic terms.2 First let us recur-
sively define truth-valuation h as a binary function taking a sentence ϕ and a valua-
tion w and delivering truth-value t or f.

Definition 1 For a propositional language L built over a finite base set A of propo-
sitional letters, a set w ⊆ A is a valuation point for all ϕ ∈ L.

Remark 1 The set of all valuation points for a propositional language L built over
the finite set A of propositional letters will be denoted by W = ℘A.

Definition 2 Truth valuation is a two-place function h : L × W → {t, f}. Truth
equals membership for atoms: h(A, w) = t iff A ∈ w. Compounds are standardly
defined: h(¬ϕ,w) = t iff h(ϕ,w) = f; h(ϕ ∧ ψ,w) = t iff h(ϕ,w) = t and
h(ψ,w) = t, and so on as in classical propositional logic.

Definition 3 Truth set trX (T ) ⊆ W for a set of sentences T ⊆ L with respect to the
set X of valuation points is the set trX (T ) = {w ∈ X | ∀ϕ(ϕ ∈ T → h(ϕ,w) = t)}.
Notation For the ease of reading, two notational conventions will be adopted: (i)
truth set function will be written down as a one-place function whenever it takes the
entire set W of valuation points as its argument, i.e. instead of trW (·) I will write
tr(·); and (ii) the valuation points will be indexed by a string of its elements, e.g.
wpq for {p, q}, w∅ for ∅, etc.

11.2.1 Contraction Defined Semantically

There is a compelling way to think about contraction operation in semantic terms.
First, identify each proposition x with its singleton’s truth set trW ({x}) within an
exhaustive valuation space W , with the understanding that the division between truth
set and its relative complement reflects the informational content of the proposition.
Then, identify the fact of proposition being a member in a theory, x ∈ T with
the fact that truth-set of the theory is included in the truth-set of the proposition,
tr(T ) ⊆ tr({x}). The syntactic requirement that a theory is deductively closed set,
T = Cn(T ) is generally satisfied in the truth-set-semantics translation since for any
T it holds that tr(T ) = tr(Cn(T )). Therefore, the semantic variant of the condition
(1) is tr(T ) ⊆ tr(T ÷x). Not-entailment condition (2) becomes tr(T ÷x) �⊆ Tr({x}).
For any set (T ) that entails x , x ∈ Cn(T ), it holds that: if there is a valuation
w /∈ tr(x), then a minimal extension tr(T )∪{w} will meet not-entailment condition.
Any valuation point v can be characterized by a conjunction of literals nf({v}) (see
Definition 22 below), so the set tr(T ∪ {nf({w})} will satisfy not entailment condi-
tion. But the choice should not be made in an arbitrary manner if the conservative
requirement is to be met: it may well be the case that nf({w}) /∈ Cn(T ), violating
the condition (1).

2 A more advanced semantics for AGM theory, but without contraction, is given in [22].
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Example 3 Let h(p, w1) = h(q, w1) = h(r, w1) = t, h(p, w2) = h(q, w2) =
h(r, w2) = f, W = ℘{p, q, r}, and T = Cn({p, q, r}). Then tr(T ) = {w1}, and
{w1, w2} �⊆ (tr({p})∪ tr({q})∪ tr({r})). Hence, there is no subset T ′ of T such that
tr(T ′) = {w1, w2}. Therefore, an arbitrary enlargement of the truth set, as a seman-
tic counterpart for syntactic contraction, cannot satisfy preservation condition (1).

The preservation condition (1) and, consequently, the maximality condition (3) can-
not be given a direct semantic translation. In the syntactic version, the “size” of all
theories is the same, |T | = ℵ0: being a deductively closed set, T = Cn(T ), the
cardinality of the theory T is infinite. Still the relation of proper inclusion of the
theory T in T ′, T ⊂ T ′, is informative enough, showing that there is, so to speak,
more knowledge in T ′ than in T . Maximal membership condition (3) thus meets
the conservative requirement of parsimonious epistemology to preserve as much as
possible of the previous knowledge content in the contracted set. On the semantic
side, equinumerous truth sets are equally informative, they have the same “degree
of uncertainty” but there is an important relation besides inclusion: the degree of
similarity between valuations. Valuation points can assign the same truth value to
some of the propositional letters: the larger the set of coincident assignments, the
greater the similarity of valuations.

Definition 4 “One-way” difference relation df between members of X and Y with
respect to proposition ϕ:

df(ϕ, X, Y ) = {〈w, v〉 ∈ X × Y | h(ϕ,w) = f ∧ h(ϕ, v) = t}.

Notation The cardinality of a set X is denoted by |X |. The symbol * stands for
operation of symmetric difference between sets: a*b = (a − b) ∪ (b − a).

Definition 5 The relationμdf of minimal one-way difference between X and Y with
respect to proposition ϕ:

μdf(ϕ, X,Y ) =
= {〈w, v〉 ∈ df(ϕ, X,Y ) | ∀z∀u(〈z, u〉 ∈ df(ϕ, X,Y )→ |w*v| ≤ |z*u|)}.

Example 4 For all X and Y it holds that μdf(", X,Y ) = μdf(⊥, X,Y ) = ∅.

Example 5 Let W = ℘{p, q}. Then μdf(p ∨ q,W,W ) = {〈w∅, wp〉, 〈w∅, wq〉}.
Notation Expressions mem1 and mem2 stand for functions that deliver first and
second members of a binary relation R, respectively; i.e. mem1(R) = {x | ∃y Rxy}
and mem2(R) = {y | ∃x Rxy}.
Definition 6 Set of “the closest antipodes” of X in Y with respect to ϕ:

ca(ϕ, X,Y ) = {v | ∃w(w ∈ X ∧ 〈w, v〉 ∈ μdf(ϕ, X,Y ))}
= mem2(μdf(ϕ, X,Y )).
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Semantic Interpretation of AGM Contraction Now we can give a semantic inter-
pretation for AGM principles of contraction by using the notion of truth set and
notion of closest antipodes.

1. Preservation condition: tr(T ) ⊆ tr(T ÷x) corresponds to T ÷x ⊆ T .
2. Not-entailment condition: tr(T ÷x) �⊆ tr(x) corresponds to x /∈ Cn(T ÷x).
3. Maximality condition: tr(T ÷ x) = tr(T ) ∪ ca(¬x, tr(T ),W ) corresponds to

T ÷x ∈ T ⊥x (where T ⊆ L and W is the set of all valuation points for L).

Example 6 Let A = {p, q} be the base set of propositional letters. Then
tr({p, q}÷ p) = tr({p, q}) ∪ ca(¬p, tr({p, q}),W ) = {wpq} ∪ {wq} = {wpq , wq}.
Example 7 Some vacuous contractions: tr({p ∨ q}÷ p) = tr({p ∨ q}÷¬p) =
tr({p ∨ q}).

The family of contraction operations in this semantic version is reduced to a
single case, and thus underdetermination is gone. This is not to say that this image of
an informational contraction is the correct one. Rather, the semantic interpretation
of AGM notion of syntactic contraction unexpectedly forces upon us one instead
of many candidate operations. The semantically defined operation gives preference
to the most informative truth set. The semantic operation differs from Yamada’s
approach3 in which contraction of truth set generated by a sequence of sentences
ϕ1; . . . ;ϕn with a sentence x would be equated with the truth set generated by a
sequence ϕ1/x; . . . ;ϕn/x (where ϕi/x = " if ϕi = x , and ϕi/x = ϕi otherwise)
in which all occurrences of x have been erased. The operation of adding “closest
antipodes” may explicate the cancelation of the sentence that has only been implied
although never actually uttered.

Definition 7 If ϕ is a sentence of a propositional language L, then ϕ+, ϕ− and ϕ?

are sentences of Lact .

Definition 8 Function ·[·] : ℘W ×Lact → ℘W takes a state σ ⊆ W and a sentence
ϕ ∈ Lact and delivers a state σ ′:

σ [ϕ+]=σ ∩ tr(ϕ) (update)

σ [ϕ?] =
{
σ if σ [ϕ+] �= ∅,
∅ otherwise.

(test)

σ [ϕ−]=
{
σ ∪ ca(ϕ, σ,W ) if σ [ϕ+] = σ ,
σ otherwise.

(downdate)

The intended interpretation for functional expressions σ [ϕ◦] (◦ = +,−, ?) is as
follows: Speaker utters a sentence ϕ◦ thereby changing Hearer’s mental state σ into
σ [ϕ◦]. In this perspective, semantics cannot be divorced from pragmatics: the func-
tion ·[·] can be thought of as a “speech act function” or as “pragmatic interpretation
function.” The natural language counterparts for speech act function presumably can

3 See Yamada, Chapter 10, this volume.
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be found among constatives: update and test correspond to reporting—typically
performed by uttering “It is the case that ϕ” and “It might be the case that ϕ”,
respectively; downdate corresponds to an act of withdrawing a report that has been
previously stated or implied—there does not seem to be a typical sentence that can
be used to perform withdrawal, albeit perhaps “It is not the case that ϕ” understood
in the non-derivative sense. It is possible to conceptualize a speech act type that uses
sentence ϕ◦ as one place function ·[ϕ◦] thus assigning its pragmatic function to each
sentence. The output of pragmatic sentence function depends on the context and is
a fixed point (see Proposition 1 below).4

Proposition 1 For ◦ = +,−, ?,

If � ϕ, then ∃σ∃σ ′σ [ϕ◦] �= σ ′[ϕ◦]. (context)

σ [ϕ◦] = (σ [ϕ◦])[ϕ◦] (fixed)

Proof Routine.

Downdate gains success by enabling update by contradictory sentence in a way that
makes recovery possible. In this way the notion of non-derivative denial as a speech
act of “the commitment to the failure to obtain of the conditions that would have
to obtain” [24, p. 282] for ϕ to be true has been captured. Proposition 2 shows that
upon Speaker’s non-derivative denial the Hearer’s state σ changes into state σ [ϕ−]
in which ϕ+ is not accepted (cancelation), but in which both ¬ϕ+ (success) and ϕ+
are acceptable (recovery).5

Proposition 2

σ [ϕ−] �=(σ [ϕ−])[ϕ+] (cancelation)

σ [ϕ−]=(σ [ϕ−])[¬ϕ?] (success)

σ =(σ [ϕ−])[¬ϕ+] (recovery)

Proof Routine.

11.3 Imperatives, Commands and Permissions

Compared to the language of indicative sentences, imperative language shows in
a more transparent way the distinction between directive speech act with positive
content, directive speech act with negated content and negated directive speech act.
While the first two create obligations, the third gives permission. In order to examine
the possibility of dynamic modeling of the distinction, we will follow the tradition

4 The unbound variables are assumed to be universally quantified in all the formulas.
5 Proposition on recovery is stronger than acceptability claim: it shows that what has been
“undone” can also be “redone.”
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that connects the imperative semantics with action semantics. In particular, we will
rely on the following ideas:

• the “propositional content” of an imperative should be syntactically represented
by change expression, Lemmon [15]6;

• the content of imperative is a prescribed action, Belnap [2], Segerberg [21];
• the semantics of action requires existence of negative condition (counter-state,

“null-point,” avoidability), Kanger [14], Belnap [2], Von Wright [29].

According to Von Wright [29], a minimal semantics of action should capture the
following three elements:

1. initial state, which the agent changes or which would have changed if the agent
had not been active,

2. end-state, which results from the action, and
3. counter-state, which would have resulted from agent’s passivity.

On these grounds Von Wright developed the fourfold classification of action types:
producing (¬ϕ/ϕ), destroying (ϕ/¬ϕ), sustaining (ϕ/ϕ) and suppressing (¬ϕ/¬ϕ)
state of affairs ϕ. The classification of actions can be used as the basis of the
twofold classification of imperatives: 1. complementary imperative, which is used
for requesting production or destruction of the state of affairs: !(¬ϕ/ϕ), !(ϕ/¬ϕ),
2. symmetric imperative, which is used for requesting maintenance or suppression
of the state of affairs: !(ϕ/ϕ), !(¬ϕ/¬ϕ). To those two, a third type of imperative
should be added: “one-sided” imperative !("/ϕ), !("/¬ϕ), which has drawn much
attention in the literature, e.g. [7].

Example 8 Let C stand for “The door is closed”. (i) “Close the door!” and
(ii) “Don’t close the door!” are complementary !(¬C/C) and symmetric imperatives
!(¬C/¬C), respectively. Pre-theoretically speaking, they are used for the same kind
of speech act, for directives or requests. Their contents differ, and the aforemen-
tioned imperatives may be understood as having negated content with respect to the
other. On the other hand, permission expressed by (iii) “You don’t have to close the
door” or “You may leave the door open” relate to imperative (i) as a negation of the
speech act performed by uttering it.

Example 9 The meaning of complementary imperative “Close the door!” can be
depicted by its implications: (initial state) “The door is open at the moment before;”
(end-state) “The door shall (ought to) be closed at the moment after;” (negative
condition) “It is possible that the door will not be closed at the moment after;”
(positive condition) “It is possible that the door will be closed at the moment after.”7

According to the proposed approach, the speech act ϕ− negates ϕ+. The former
is conceived as a token of semantic relation con2(ϕ) which enables the acceptance

6 Change expression syntax for imperatives was re-introduced in [31].
7 The March Hare’s suggestion in the motto violates positive condition.
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before after

Initial
state

End
state

Counter
state

possibilities

Fig. 11.1 Following Von Wright’s action semantics, the semantics for imperatives as commanded
actions should include: three valuation points—initial, end, and counter state; two moments—
before and after; relation of commanded change (here represented by arrow); and set of possible
after situations (here denoted by “possibilities”).

of the speech act with the opposite content (∼ ϕ)+. In other words, downdate with
ϕ enables update with∼ ϕ. In order to apply this approach to the case of speech
acts performed by uttering imperatives, one must define the relevant opposition for
imperatives. As I have argued elsewhere [32],8 a pair of imperative contraries con-
sists of a complementary and a symmetric imperative; e.g. contrariety of !(¬C/C)
is !(¬C/¬C) and vice versa (see Example 8).

I will formalize imperatives as change expressions [15] having peculiar phe-
nomenology concerning their “direction of fit with the world;” the left part should
fit the world while it is the world that should fit the right part:

imperative

!(word to world fit
A

initial state
/

world to word fit
B

end state
)

commanded change

11.3.1 Language Lact
imp

11.3.1.1 Syntax

Definition 9 Let language LP L of classical propositional logic built over finite set
A of propositional letters be given. If ϕ ∈ LP L , then ·(ϕ/") is indicative before-
sentence in Limp and ·("/� ϕ), ·("/♦ϕ) are indicative after-sentences in Limp. If
ϕ ∈ LP L and ψ ∈ L P L , then !(ϕ/ψ) and !("/ϕ) are imperative sentences in Limp.
If ϕ is indicative before-sentence in Limp and if ψ is imperative sentence on Limp,

8 In [32] contrariety of imperative is called “negative imperative.”



11 Is Unsaying Polite? 213

then (ϕ→ ψ) and (ψ → ϕ) are conditional imperative sentences in Limp. Nothing
else is a sentence in Limp .

Definition 10 If ϕ ∈ Limp , then ϕ+, ϕ−, ϕ? are sentences in the language Lact
imp.

11.3.1.2 Semantics

Definition 11 Set � of cognitive motivational states is the set constructed in the
following way:

• A is a finite set of propositional letters,
• W = ℘A is the set of state descriptions (valuation points),
• Moments = {before,after} is the set of moments,
• I ni t = W × {before} is the set of initial situations,
• Res = W × {after} is the set of resulting situations,
• Changes = I ni t × Res is the set of changes,
• � = ℘(Changes × Res) is the set of cognitive-motivational states.

Definition 12 For ϕ ∈ L P L , X ⊆ W or X ⊆ (W ×Moments), t ∈ Moments, |ϕ|tX
is set of ϕ-state descriptions of X coupled with moment t :

|ϕ|tX =
{

trX ({ϕ})× {t} if X ⊆ W ,
X ∩ (trW ({ϕ})× {t}) if X ⊆ (W ×Moments).

Definition 13 Intension [[ϕ/ψ]] of a change expression (ϕ/ψ) is the set

[[ϕ/ψ]] = |ϕ|before
W × |ψ |after

W .

Definition 14 Set� ⊆ � of absurd states:� = {〈ρ, π〉 | ρ = ∅∨¬mem2(ρ) ⊆ π}.
1 = 〈∅,∅〉 is a distinguished element in �.

Definition 15 For 〈ρ1, π1〉 ∈ � and 〈ρ2, π2〉 ∈ �, operation 
 of merging struc-
tures is defined as: 〈ρ1, π1〉 
 〈ρ2, π2〉 = 〈ρ1 ∪ ρ2, π1 ∪ π2〉.

Interpretation function ·[·] for the language Lact
imp is function from � × Lact

imp
into �. Some of the interpretations turn out to be rather complex and not reducible
to basic cases. Therefore, the definition of interpretation function will be split
into several cases: text interpretation (Definition 16), interpretation of updates
(Definition 17), interpretation of tests (Definition 18), interpretation of downdates
(Definition 19). In the end definitions will be given for sentences definable in terms
of others (Definition 20).

Definition 16

〈ρ, π〉[ϕ1] . . . [ϕn] = 〈ρ, π〉[ϕ1; . . . ;ϕn] = (((〈ρ, π〉[ϕ1]) . . .)[ϕn−1])[ϕn],
for ϕ1, . . . , ϕn−1, ϕn ∈ Lact

imp .
(11.1)
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Definition 17

〈ρ, π〉[!("/ϕ)+] =
{ 〈ρ ∩ [["/ϕ]], π〉 if |ϕ|after

π �= ∅ and |ϕ|after
π ⊂ π ,

1 otherwise.
(11.2)

〈ρ, π〉[·(ϕ/")+] = 〈ρ ∩ [[ϕ/"]], π〉 (11.3)

〈ρ, π〉[·("/� ϕ)+] = 〈ρ ∩ [["/ϕ]], π ∩ |ϕ|after
Res 〉 (11.4)

〈ρ, π〉[(·(ϕ/")→!("/ψ))+] =
=

{ 〈ρ, π〉[!("/ψ)+] if 〈ρ, π〉[·(ϕ/")+] = 〈ρ, π〉,
〈ρ, π〉[·(¬ϕ/")+] 
 〈ρ, π〉[·(ϕ/")+][!("/ψ)+] otherwise.

(11.5)

The Intended Interpretation 〈ρ, π〉 is Hearer’s cognitive-motivational state,
mem1(ρ) is the truth set for her beliefs about the facts at moment before, mem2(ρ)

is the truth set for her goals at moment after, π is the truth set for her beliefs
about possible facts at moment after. Regarding imperative update in clause (11.2),
Hearer’s mental state may be receptive or not for the directive or the request
!("/ϕ)+. If the first is the case, she restricts her goals to ϕ situations, leaving her
beliefs unchanged. Hearer is not receptive to directives or requests requiring either
the impossible, |ϕ|after

π = ∅, or the inevitable, |ϕ|after
π = π . Receptiveness does not

guarantee success since it might be the case that new goals cannot be consistently
added, i.e. if ρ ∩ [["/ϕ]] = ∅. In the clause (11.3), constative ·(ϕ/")+ changes
beliefs about the facts at moment before; while in (11.4), constantive ·("/ � ϕ)+
changes beliefs about possible facts at moment after. Conditional imperative in
the clause (11.5) shows that the desired semantics cannot be reduced to three
sets: mem1(ρ), mem2(ρ), π . If the indicative antecedent is already accepted, the
goals will change. But if not, the conditional may still have an effect on cognitive-
motivational state. There are two possible cases. First, if antecedent is believed not
to be the case, no goal change will occur. But, if the antecedent is neither believed
nor disbelieved, the conditional imperative will be “memorized:” beliefs remain
the same, but the relations between situations change. Among the relations starting
with a ϕ-situation, i.e. those from mem1(ρ) ∩ |ϕ|before

W , only the ones pointing to a
ψ-situation, i.e. those from mem2(ρ)∩ |ψ |after

W , will persist. Therefore, if sometime
later Hearer learns that ϕ is the case at moment before, thenψ will become her goal.

Von Wright’s “three points of action semantics” can be built in the update seman-
tics for complementary and symmetric imperatives. Information on initial state is
encoded into the set mem1(ρ), information on end-state is encoded into the set
mem2(ρ), information on counter-state (which would have or could have resulted if
the agent had refrained from performing commanded action) is encoded in the set
π , which also encodes information on the possibility of end-state (π represents both
avoidability and possibility of end-state).

Definition 18 For ϕ ∈ Limp,

σ [ϕ?] =
{
σ if σ [(ϕ)+] /∈ �,
1 otherwise.

(11.6)
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Remark 2 The natural language expressions corresponding to test sentences, the
clause (11.6), are those used for making suggestions: “It might be good that you
see to it that ϕ will be the case” for !("/ϕ)?; “It might be that ϕ is the case” for
·(ϕ/")?; “It might be that ϕ will be the case” for ·("/� ϕ)?. In this approach, sug-
gestions are seen as consistency or—using the terminology of update semantics—
acceptability testing: is it so that ϕ ∈ Lact

imp can be “processed” without landing into
absurd cognitive-motivational state σ ∈ �? Extending the line of thought, the use of
“therefore” belongs to the same type of operations on mental states; the difference
being now that it is validity or acceptance that is being tested. Let us use the symbol
∴ for this type of testing. Then, e.g. the speech act performed upon Hearer’s mental
state σ by Speaker uttering the sentence “Therefore, ϕ” would be formalized as:

σ [ϕ∴] =
{
σ if σ [ϕ] = σ ,
1 otherwise.

Notation The following equations hold:

|ϕ|before
ca(ϕ,mem1(mem1(ρ)),W ) = ca(ϕ,mem1(mem1(ρ)),W )× {before}

|ϕ|after
ca(ϕ,mem1(mem2(ρ)),W ) = ca(ϕ,mem1(mem2(ρ)),W )× {after}

For the ease of reading, the shorthand notation [[ϕ/"]]ρ1
ca will be used for “inten-

sion of change expression restricted to time-designated closest antipodes of first
members of ρ with respect to ϕ, and to second members of ρ,” and [["/ϕ]]ρ2

ca will
be used for “intension of change expression restricted first members of ρ, and to
time-designated closest antipodes of second members of ρ with respect to ϕ:”

[[ϕ/"]]ρ1
ca = |ϕ|before

ca(ϕ,mem1(mem1(ρ)),W ) × mem2(ρ)

[["/ϕ]]ρ2
ca = mem1(ρ)× |ϕ|after

ca(ϕ,mem1(mem2(ρ)),W ).

Example 10 Let C stand for “The window is closed” and B for “The window is
broken,” and let

σ = 〈{〈〈w∅,before〉, 〈wC ,after〉〉}︸ ︷︷ ︸
ρ

, Res〉

be cognitive-motivational state built over the “two-letter” base, A = {B,C},
W = ℘A, etc. Agent i in the mental state σ intends to close the window without
breaking it, or, in other words, i believes that the window is closed and unbroken at
the moment before, wants it to be the case that the window is closed and unbroken
at the moment after, and believes that the latter state of affairs is both possible, and
avoidable in all respects. Now, the mental state

〈ρ ∪ [["/¬C]]ρ2
ca , Res〉 = 〈{〈〈w∅, before〉, 〈wC , after〉〉, 〈〈w∅, before〉, 〈w∅,after〉〉}, Res〉
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shows that i’s mind has been minimally changed with respect to his wants regarding
the window: no longer i wants to close the window, but i still wants to keep it
unbroken.

Definition 19

〈ρ, π〉[!("/ϕ)−] =
=

{ 〈ρ ∪ [["/¬ϕ]]ρ2
ca , π〉 if 〈ρ, π〉[!("/ϕ)+] = 〈ρ, π〉,

σ otherwise.

(11.7)

〈ρ, π〉[·(ϕ/")−] =
{ 〈ρ ∪ [[¬ϕ/"]]ρ1

ca , π〉 if 〈ρ, π〉[·(ϕ/")+] = 〈ρ, π〉,
σ otherwise.

(11.8)

〈ρ, π〉[·("/� ϕ)−] =
=

{ 〈ρ, π ∪ mem2([["/¬ϕ]]ρ2
ca )〉 if 〈ρ, π〉[·("/� ϕ)+] = 〈ρ, π〉,

σ otherwise.

(11.9)

σ [(·(ϕ/")→!("/ψ))−] =
=

{
σ [!("/ψ)−] if σ [(·(ϕ/")→!("/ψ))+][·(ϕ/")+] = σ ,
σ otherwise.

(11.10)

Justification The acceptance test in downdate semantic clauses shows that “only
what is done can be undone,” i.e. for a speech act to be undone it must have
been previously, either explicitly or implicitly effected. Semantic clauses determine
the minimal modifications needed for enabling of update by a speech act having
an opposite content with respect to the speech act that is downdated. The clause
(11.7) is the most interesting one. Downdating by !("/ϕ) must make updating
by !("/¬ϕ) feasible. For that to happen: (i) there must be a ¬ϕ situation in the
goal set, which is therefore minimally expanded, (ii) the future possibility, and
(iii) the existence of counter-point are already secured by the fact that !("/ϕ)+
is accepted in 〈ρ, π〉 since positive condition (possibility) for !("/ϕ)+ is nega-
tive condition (avoidability) for !("/¬ϕ)+ and vice versa. In the clause (11.10)
downdate of conditional presupposes pre-theoretical determination of the oppo-
site sentence that is to be enabled. The act-conditional (i) (·(ϕ/") →!("/ψ))+
blocks ¬ψ goals for ϕ situations. So I take (ii) (·(ϕ/") →!("/¬ψ))+ as the
opposite act-sentence. The acceptance test breaks in two subcases: if ·(¬ϕ/")+
is accepted in σ [(·(ϕ/")→!("/ψ))+], then there is nothing to do since then (ii) is
accepted as well (second line in (11.10)); otherwise, downdate with !("/¬ψ)− will
suffice.

Finally, the “reducible” sentences will be defined, but, due to the limitations of
space, their informal meaning or justification will be omitted.
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Definition 20

σ [!(ϕ/ψ)+] = σ [·(ϕ/")+][!("/ψ)+] (11.11)

σ [!(ϕ/ψ)−] = σ [·(ϕ/")−][!("/ψ)−] (11.12)

σ [·("/♦ϕ)+] = σ [·("/� ϕ)?] (11.13)

σ [·("/♦ϕ)−] = σ [·("/� ϕ)−] (11.14)

σ [(!("/ϕ)→ ·(ψ/"))+] = σ [(·(¬ψ/")→!("/¬ϕ))+] (11.15)

σ [(!("/ϕ)→ ·(ψ/"))−] = σ [(·(¬ψ/")→!("/¬ϕ))−] (11.16)

Example 11 Implications listed in Example 9 hold9:

σ [!(¬C/C)+] = (σ [!(¬C/C)+])[·(¬C/")+; !("/C)+; ·("/♦C)+; ·("/♦¬C)+].

The language Lact
imp and interpretation function ·[·] provide an uncommon approach

which drags the pragmatics into the syntax of the formal language and, conse-
quently, it equates pragmatic effects with semantic actions. It is speech act that gets
a formal translation, and not the sentence by whose utterance it is performed. If this
approach is sound, then logic permeates all three branches of semiotics. Pragmatics
might lie within the scope of logic.

Example 12 Command “Close the door!” is formalized as !(¬C/C)+; permission
“You don’t have to close the door” (“You may leave the door open”) as !(¬C/C)−;
suggestion “Maybe you should close the door” as !(¬C/C)?.

11.3.1.3 The Puzzle of Permission Distribution

According to Searle, permission “consists in removing antecedently existing restric-
tions [on] doing” [20, p. 22]. Command !("/ϕ)+ restricts Hearer’s action by making
a change "/¬ϕ forbidden for her. Downdate !("/ϕ)− enables update !("/¬ϕ)+
and, therefore, it may serve as a formal explication for “restrictions removing”
notion of permission.

The puzzle of distribution of permission over disjunction has been much dis-
cussed in the literature: (i) “You may see to it that A or B” pre-theoretically implies
(ii) “You may see to it that A,” and (iii) “You may see to it that B.” On the proposed
approach (i) is translated as !("/(¬A ∧ ¬B))− and interpreted as cancelation of
(iv) “See to it that ¬A and ¬B.” Similarly, (ii) and (iii) are translated as !("/¬A)−
and !("/¬B)−, respectively. Proposition 3 shows that if there is a restriction to
be removed, then by removing the whole of restriction, all of its “parts” will be
removed.

9 For discussion on varieties of relations of meaning inclusion that can be distinguished within
dynamic semantics see [4].
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Proposition 3 Let σ [!("/(¬A ∧ ¬B))−] �= σ . Then

σ [!("/(¬A ∧ ¬B))−] =σ [!("/(¬A ∧ ¬B))−][!("/¬A)−]
=σ [!("/(¬A ∧ ¬B))−][!("/¬B)−]

Proof The proof relies on the fact that for any x such that x ∩ tr({¬A ∧ ¬B}) �= ∅,
ca(A ∨ B, x,W ) ∩ tr({A}) �= ∅ and ca(A ∨ B, x,W ) ∩ tr({B}) �= ∅.

11.4 Expressive Completeness

There are several interesting questions that arise at the interface between natural
language and its logical formalization. In the natural language there are three kinds
of imperatives: complementary or produce imperative, symmetric or sustain imper-
ative, and “right-side” or see-to-it-that imperative. Since the syntax of natural lan-
guage restricts the range of change expressions to contradictory, identical and “trun-
cated” pairs, the translation of natural language sentences will yield only a proper
subset of imperative sentences in Limp . Namely, we find only !(¬ϕ/ϕ), !(ϕ/ϕ) and
!("/ϕ) types of sentences in the subset.

1. Is the subset strong enough to generate each non-absurd cognitive-motivational
state? If not, what are obstacles to communication that are inherent in the lan-
guage itself?

2. Further, do negated speech acts add expressive power to the language?

Within the framework of language Lact
imp and its semantics, the answer to the first

question is affirmative (Corollary 1) and, therefore, negative to the second. Theo-
rem 1 shows that each non-absurd cognitive-motivational state σ ∈ � − � can be
generated using a proper subset of language Lact

imp in which only “positive (i.e. non-
negated) speech acts” occur.

Theorem 1 For each σ ∈ � −� there are ϕ1, . . . , ϕn ∈ Limp such that

〈Changes, Res〉[ϕ+1 ; . . . ;ϕ+n ] = σ .

Proof Proof is given by construction of the required text.
Let mem1(mem1(ρ)) = {w1, . . . , wn}. The construction takes three steps. First, the
first members of ρ are cut out of 〈Changes, Res〉 using the sentence

·(nf(mem1(mem1(ρ)))/")+

and thus obtaining 〈mem1(ρ)× Res, Res〉 (see Proposition 5). Second, a sequence
of sentences s(w1)

+; . . . ; s(wn)
+ is applied to 〈mem1(ρ)× Res, Res〉 (where each

sentence s(wi ) is either a conditional imperative or a tautology) yielding (Proposi-
tion 6):

〈mem1(ρ)× Res, Res〉[s(w1)
+] . . . [s(wn)

+] = 〈ρ, Res〉.
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Third, application of ·("/�nf(mem1(π)))
+ gives the desired result (Proposition 7):

〈ρ, Res〉[·("/� nf(mem1(π)))
+] = 〈ρ, π〉.

The text

·(nf((mem1(mem1(ρ)))/")+; s(w1)
+; . . . ; s(wn)

+; ·("/� nf(mem1(π)))
+

is an instance that proves that each non-absurd state can be generated by a text of
Lact

imp. ,-
Corollary 1 Let Lact

→sti t ⊂ Lact
imp be a language comprising only sentences of the

form: ·(ϕ/")+, (·(ϕ/")→!("/ψ))+, ·("/�ϕ)+ . Language Lact
→sti t is expressively

complete with respect to the set � −� of non-absurd states.

Proof Note that text construction in the proof of Theorem 1 uses only the sentences
from Lact

→sti t .
10 ,-

Definition 21 (Literals λ) Given l1, . . . , ln list of all propositional letters in A,
w1, . . . , wm list of all valuation points in X ⊆ W ,℘A = W , 1 ≤ i ≤ n, 1 ≤ j ≤ m,
literals λi

j are defined by:

λ
w j
li
=

{
li if li ∈ w j ,
¬li if li /∈ w j .

Definition 22 (Adequate description) Function nf delivers a disjunctive normal
form for the set X ⊆ W with respect to given lists of letters l1, . . . , ln and valuation
points w1, . . . , wm in X11:

nf(X) = ((λw1
l1
∧ . . . ∧ λw1

ln
) ∨ . . . ∨ (λwm

l1
∧ . . . ∧ λwm

ln
))

= nf({w1}) ∨ . . . ∨ nf({wm}).

Proposition 4 For X ⊆ W , |nf(X)|tW = X × {t}.
Proof The proof is straightforward and only right to left direction will be shown.
Suppose for some arbitrary v that 〈v, t〉 ∈ X ×{t}. Obviously, h(nf({v}), v) = t. By
Definition 2, h(nf(X), v) = t. By Definition 12, 〈v, t〉 ∈ |nf(X)|tW . ,-

10 Note that a translation for the conditional imperative in dynamic modal language can be given
by:

((·(ϕ/")) ?; ex (!("/ψ)))
∪
((do(ex(·(¬ϕ/")) ∨ do(ex(!("/¬ψ))))) ?; ex (do(!(ϕ/ψ)) ∧ ¬do(!(ϕ/¬ψ)))) .

Therefore, the claim put forward in Section 11.1.1 has been proved as well.
11 For this idea I am indebt to Vukičević, Damir. 2001. Digraph Representation of a Model of
Dynamic Semantics. Unpublished manuscript.
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Proposition 5

〈Changes, Res〉[·(nf(mem1(mem1(ρ)))/")+] = 〈mem1(ρ)× Res, Res〉

Proof By Definition 13,

[[nf(mem1(mem1(ρ)))/"]] = |nf(mem1(mem1(ρ)))|before
W × |"|a f ter

W .

The fact that |"|a f ter
W = Res together with an application of Proposition 4, i.e.

|nf(mem1(mem1(ρ)))|before
W = mem1(ρ), gives the desired result.

Definition 23 Function ex 〈w,before〉
ρ delivers set of resulting situations “visible”

from situation 〈w,before〉: ex 〈w,before〉
ρ = mem2(({〈w,before〉} × Res) ∩ ρ).

Definition 24 Let mem2(ρ) ⊆ π . For each situation 〈w,before〉 ∈ mem1(ρ), func-
tion s delivers a sentence from Limp:

s(w) =
{
·("/") if ex 〈w,before〉

ρ = π ,

(·(nf({w})/")→!("/nf(mem1(ex 〈w,before〉
ρ )))) otherwise.

Proposition 6 Let {w1, . . . , wn} = mem1(ρ). Then

〈Changes, Res〉[·(nf(mem1(mem1(ρ)))/")+; s(w1)
+; . . . ; s(wn)

+] = 〈ρ, Res〉.

Proof By Proposition 5,

〈Changes, Res〉[·(nf(mem1(mem1(ρ)))/")+; s(w1)
+; . . . ; s(wn)

+] =
= 〈mem1(ρ)× Res, Res〉[s(w1)

+; . . . ; s(wn)
+].

There are two cases to examine concerning the number of situations in mem1(ρ).

1. First, for |mem1(ρ)| = 1 let mem1(ρ) = {〈w,before〉}. Therefore,

ρ = {〈w,before〉} × mem2(ρ).

There are two subcases.

a. If ex 〈w,before〉
ρ = Res, then s(w1) = ·("/") and obviously

〈mem1(ρ)× Res, Res〉[·("/")+] = 〈ρ, Res〉.

b. In the second subcase, ex 〈w,before〉
ρ ⊂ Res. Then

s(w) = (·(nf({w})/")→!("/nf(mem1(ex 〈w,before〉
ρ )))).
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Since |nf({w})|before
W = {〈w,before〉} = mem1(ρ),the conditional has the

following impact:

σ [(·(nf({w})/")→!("/nf(mem1(ex 〈w,before〉
ρ ))))+] =

= σ [!("/nf(mem1(ex 〈w,before〉
ρ )))+],

where σ = 〈{〈w,before〉} × Res, Res〉. Since

|nf(mem1(ex 〈w,before〉
ρ ))|after

W = mem2(ρ),

we get the required result.

2. For the second case, when |mem1(ρ)| > 1 we have to show that semantic impact
(if any) of s(wi ), 1 ≤ i ≤ n is localized to 〈wi ,before〉 generating

{〈wi ,before〉} × ex 〈wi ,before〉
ρ

and leaving everything else as it is. In other words, we have to show that for each
wi ∈ mem1(ρ),

〈mem1(ρ)× Res, Res〉[s(wi )
+] =

= 〈((mem1(ρ)− {〈wi ,before〉})× Res) ∪ ({〈wi ,before〉} × ex 〈wi ,before〉
ρ ), Res〉.

There are two subcases to examine. For typographic reasons symbol b will be
used instead of before.

a. First, if ex 〈wi ,b〉
ρ = Res, then s(wi ) = ·("/") and

〈mem1(ρ)× Res, Res〉[·("/")+] = 〈mem1(ρ)× Res, Res〉.

b. In the second subcase: ex 〈wi ,b〉
ρ ⊂ Res. The assumption |mem1(ρ)| > 1

guarantees that

〈mem1(ρ)× Res, Res〉[·(nf({wi })/")+] �= 〈mem1(ρ)× Res, Res〉

since |nf({wi })|bW �= mem1(ρ). Let σ stand for 〈mem1(ρ)× Res, Res〉. Then
the update by conditional

s(wi ) = (·(nf({wi })/")→!("/nf(mem1(ex 〈wi ,b〉
ρ ))))

has the following impact:
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σ [(·(nf({wi })/")→!("/nf(mem1(ex 〈wi ,b〉
ρ ))))+] =

= σ [·(¬nf({wi })/")+] 
 σ [·(nf({wi })/")+][!("/nf(mem1(ex 〈wi ,b〉
ρ )))+]

= 〈(mem1(ρ)− {〈wi ,b〉})× Res, Res〉 
 〈{〈wi ,b〉} × ex 〈wi ,b〉
ρ , Res〉

= 〈((mem1(ρ)− {〈wi ,b〉})× Res) ∪ ({〈wi ,b〉} × ex 〈wi ,b〉
ρ ), Res〉.

The sequence s(w1)
+; . . . ; s(wn)

+ of update functions generates the desired:

〈
⋂

1≤i≤n

(((mem1(ρ)− {〈wi ,b〉})× Res) ∪ ({〈wi ,b〉} × ex 〈wi ,b〉
ρ )), Res〉 =

= 〈ρ, Res〉.
,-

Proposition 7 〈ρ, Res〉[·("/� nf(mem1(π)))
+] = 〈ρ, π〉.

Proof Routine.

11.5 Concluding Remarks

AGM theory of contraction together with hereby proposed downdate semantics
entails the fact that external denial, instead of reducing, increases the degree of
uncertainty. After a sentence has been withdrawn (canceled, externally negated,
unsaid, . . . ), Hearer’s mental state not only becomes less determinate but also the
path of change itself is under-determinate. It may turn out that the requirement of
maximal preservation springs from the normative source of cooperative communi-
cation, but it might be just one among other admissible types of contraction. The
negated speech acts do not make natural language more expressive, as Theorem 1
shows. Unsaying increases “communicative entropy” and is avoidable. Therefore,
we should apologize if we negate a speech act. And not for the sake of cultural
convention, but for the sake of logic.

Related Research Directive speech acts have been analyzed in terms of changing
preferences [5] and obligation patterns [30] within the framework of “dynamic epis-
temic logic.” The foundation for “shifting the logical perspective from valid argu-
mentation to cooperative communication” has been laid down in [11]. A dynamic
modal logic for imperatives is given in [9]; a variant of update semantics for imper-
atives has been developed in [16]. There is renewed interest in imperative logic in
philosophy, e.g. [27] and linguistics, e.g. [19].
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Chapter 12
Towards a Formal Account of Identity Criteria

Massimiliano Carrara and Silvia Gaio

12.1 Introduction

Consider the following thesis characterizing a strong ontological realism (for an
overview on this topic see Devitt [5]):

(SOR) There is a mind-independent world and it is structured: there are distinct
objects, properties, etc.

If an ontological realist adopts (SOR), there is a problem of selecting, from among
the many entities such as objects, properties, events, facts, etc., the real entities i.e.
those entities existing independently of our mental states. Hence, with respect to
objects of a specific kind, one can be a realist, if one takes them to be real entities,
or an antirealist, if one takes them to be mere projections of one’s thoughts.

Adopting a different jargon, we can say that the problem for ontological realists is
selecting those objects that have ontological respectability. One standard (Quinian)
solution in analytic philosophy is to argue that identity criteria are required for
ontological respectability: only entities that have clearly determined identity criteria
are ontologically respectable, i.e. acceptable. Think, for example, of the case of
properties: following Quine [12], properties would not be ontologically acceptable
because they do not have any no suitable identity criterion.

Question: are there general constraints to identity criteria for the individuation of
real substances?

We distinguish between two kinds of constraints: formal constraints and meta-
physical constraints. Metaphysical constraints normally derive from the theses of
the general framework adopted, for example absolute identity vs. relative identity or
four-dimensionalism vs. three-dimensionalism. Conversely, formal constraints are
specified on the basis of the logical form of the identity criteria and some properties
induced by it.

M. Carrara (B)
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In the present work we focus only on formal constraints, or requirements on
identity criteria; more specifically, we focus on a specific formal constraint: equiv-
alence. The main goal in our paper is to make some steps towards a formal charac-
terization of identity criteria.

The paper is divided into four sections. In the first section we present the prob-
lem at issue, that is, the logical requirements that identity criteria are supposed to
meet and some, commonly used identity criteria which fail to meet one of those
requirements. In the second section, we will present Williamson’s and De Clerq and
Horsten’s treatment (in [4, 13]) of logically inadequate identity criteria. In the third
section, we will try to embody De Clercq and Horsten’s proposal in an enlarged
framework that takes into account contexts and levels of granularity too. In the
fourth section we then conclude with some general remarks.

12.2 Logical Adequacy of Identity Criteria

The credit for introducing the notion of an identity criterion (from now on, IC)
is usually attributed to Frege. In his Foundations of Arithmetic Frege introduces the
idea of IC in a context where he wonders how we can grasp or formulate the concept
of numbers (see [6, §62]):

If we are to use the symbol a to signify an object, we must have a criterion for deciding
in all cases whether b is the same as a, even if it is not always in our power to apply this
criterion.

Even if it is not completely clear whether or not Frege thought of ICs as related
only to abstract entities, his considerations about ICs seem to adapt both for concrete
and abstract objects. He suggests that an IC has the function of providing a general
way of answering the following question, with a and b objects in a given domain:

Fregean Question: How can we know whether a is identical to b?

Consider two famous examples of ICs provided by Frege in [6]:

• IC for directions: if a and b are lines, then the direction of line a is identical to
the direction of line b if and only if a is parallel to b;

• Hume’s principle: for any concepts F and G, the number of F-things is equal
to the number of G-things if and only if there is a one-to-one correspondence
between the F-things and the G-things.

In the philosophical literature, the Fregean question has been reformulated in the
following ways:

Ontological Question (OQ): If a and b are Ks, what is it for the object a to be
identical to b

Epistemic Question (EQ): If a and b are Ks, how can we know that a is the
same as b?

Semantic Question (SQ): If a and b are Ks, when do “a” and “b” refer to the
same object?
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The difference between an answer to (EQ) and an answer to (OQ) is not purely
formal. When answering (EQ), you think of conditions associated with a procedure
for deciding the identity questions concerning objects of some kind K . In answering
(OQ), you think of conditions which are meant to provide an ontological analysis of
the identity between objects of kind K . Finally, an answer to (SQ) concerns same-
ness and difference of reference of simple or complex names.

It is worthwhile considering what the logical form of ICs looks like even if dif-
ferent ways of conceiving the form have been proposed. The reason is that there are
some requirements that ICs must satisfy to provide acceptable identity conditions,
and part of those requirements are formal, i.e. given by their logical form. Among
various formulations of IC, we consider the following ones:

∀x∀y((x ∈ K ∧ y ∈ K )→ ( f (x) = f (y)↔ R(x, y))), (IC*)

and:

∀x∀y((x ∈ K ∧ y ∈ K )→ (x = y ↔ R(x, y))), (IC)

where R constitutes the identity condition for f (x)s or for xs and is a relation hold-
ing between objects belonging to some kind K , and, in the (IC*) case, f is a function
whose domain is K itself and the range is a set of elements which constitutes a
different set, f (K ). The intuitive reading of (IC*) is the following: if x and y are
K , then x is the same f as y if and only if R holds between x and y.1 Sometime,
(IC*) is formulated in the following way (without any reference to K):

∀x∀y(x ′ = y′ ↔ R(x, y)), (IC**)

where “x ′” and “y′” are terms representing entities of the kind K suitably connected
with x and y.

For Williamson (IC*), or (IC**), is the logical form of a two-level identity crite-
rion (see [14, pp. 145–46]). Frege’s criterion of identity for directions is an example
of a two-level identity criterion:

∀x∀y(o(x) = o(y)↔ P(x, y)) (O)

where x and y range over lines, o is a letter for “the direction of” and P for “is
parallel to”. In (O) the identity sign is flanked by terms constructed with a functional
letter, and the right-hand side of the biconditional introduces a relation among enti-
ties different from the entities for which the criterion is formulated. On the contrary,
the Axiom of extensionality for sets:

∀x∀y(x = y ↔ ∀z(z ∈ x ↔ z ∈ y)) (A)

1 Brand [1] has given a different characterization for the logical form of ICs in terms of second
order modal logic: ∃F∀x∀y(if x and y are φs then �(x = y ↔ F(x, y)))
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is an example of one-level identity criterion. In (A) the identity sign is flanked by
terms for sets, and the right-hand side states a relation equivalent to identity between
sets. In the case of two-level ICs the conditions of identity concern objects which
are not of the same kind of objects for which the IC is provided. On the contrary, in
the case of one-level ICs the conditions of identity concern objects which are of the
same kind of objects for which the identity criterion is provided.

Williamson ([14, p. 147]) points out that

The idea of a two-level criterion of identity has an obvious advantage. No formula could
be more basic (in any relevant sense) than “x = y”, but some might be more basic than
“ox = oy”, by removing the symbol “o” and inserting something more basic than it.

In such cases one can speak of a reductivist conception of identity criteria
because identity among objects of a certain kind depends on relations among more
basic objects.2

In the next section of our paper we limit our analysis to the formal constraints on
the relation R in (IC).

12.2.1 Requirements for R

In this section, some constraints for the relation R are listed and discussed. The rela-
tion R is what the identity condition consists of or, put otherwise, given an identity
statement a = b, R is a relation that holds between a and b, is other than identity
and analyzes what it is for the referents of a and b to be identical (See Linnebo
in [8, p. 206]). How should R look to be a good candidate for being the identity
condition of objects of some kind K ? To answer this question, we take into account
three contributions: Carrara and Giaretta [2], Brand [1] and Lombard [9].

Non-vacuousness The identity condition cannot have parts that are vacuously sat-
isfiable. Consider the following example (see [9, pp. 32–33]). Let P O be the set
of physical objects, S the set of sets, R(x, y) the identity condition for P O and
R′(x, y) the identity condition for S:

∀x∀y(((x ∈ P O∨x ∈ S)∧(y ∈ P O∨y ∈ S))→ (x = y ↔ (R(x, y)∨R′(x, y)))).

The condition given above for the identity of x and y is not associated with a kind of
entities in a metaphysically interesting sense, since the members of the alleged kind
do not share an essence. The identity condition must specify a relation that holds
between elements of a certain kind such that all of them are alike with respect to

2 It is debatable if there is a real distinction between two-level and one-level ICs. J. Lowe has
suggested that a two-level IC can be recast as one-level. For example (O) can be so reformulated:

∀x∀y((Direction(x)∧Direction(y))→ (x = y ↔ ∃w∃z(L(w)∧L(z)∧O f (x, w)∧O f (y, z)∧P(w, z))))

where “Direction” is “to be a direction”, “L” “to be a line”, and “Of” “to be of” (Lowe discusses
one-level and two-level identity criteria in [10, 11]).
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the properties associated to that kind. In such a perspective, the identity condition
supplies a property of properties. Lombard calls this property determinable since it
determines a class of properties, called determinates, having that property.

Informativeness R should contribute to specify the nature of the kind K of objects
for which R acts as an identity condition. If the role of an IC is to specify some
non-trivial essential properties for objects of kind K the form of the relation cannot
be tautological, for instance, it cannot have the following form:

R(x, y) ∨ ¬R(x, y)

Unfortunately, the identity condition does not completely characterize the nature
of instances of K : to decide about identity questions concerning a K we need the
concept of K , that is not provided by the ICs. The above observation is due to Frege.
He argues that in:

“the direction of line a is identical to the direction of line b” the direction of a plays the part
of an object, and our definition affords us a means of recognising this object as the same
again, in case it should happen to crop up in some other guise, say as the direction of b. But
this means does not provide for all cases. . . That says nothing as to whether the proposition:
the direction of line a is identical to q should be affirmed or denied, except for the one case
where q is given in the form of the direction of b. (see [6, §66])

According to Frege, the nature of certain objects is entirely clarified only if one
can find a way to refer to them such that it would determine the truth-value of any
identity sentence concerning the given objects, without any restriction. What do
we need to obtain the universal definiteness of identity questions concerning a K?
Frege is absolutely clear about this: we need the concept of K (“What we lack is the
concept of direction”(Frege [6, §66])).

Partial Exclusivity An identity condition for a kind K of objects cannot be so
general that it can be applied to other kinds of objects. The example provided by
Lombard is the following:

If x and y are both non-physical objects, x and y are identical iff they have the same indi-
vidual essence ([9, p. 36]).

Now, the properties falling under the “large” property “having an individual
essence” do not apply only to non-physical objects and can be part of the identity
conditions for many kinds of objects.

Minimality The identity condition for K -objects is required to specify the smallest
number of determinables such that the determinates falling under them turn out to
be necessary and sufficient to ensure identity between two objects of kind K . The
determinables specified in the identity condition cannot be superfluous.

Non-circularity The identity condition for K -objects cannot make use of the con-
cept of K itself, otherwise it is circular. There has been a long debate about the
circularity of the IC for events proposed by Davidson (see [3]):
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If x and y are events, x = y iff x and y have the same causes and effects.

Since some causes and effects are events, the identity condition for events involves
identity between events: in fact, to determine whether two events are the same we
are required to determine, first, the identity of events taken as their causes or effects.

Non-tautologicity R cannot be a property that every two objects of kind K share.
Formally:

R ⊂ K × K

The formula says that the relation R is a proper subset of the set K × K , that is,
there is some pair of objects that are K such that the objects of the pair are not in
the extension of R.

K-Maximality R must be maximal with respect to K . In other words, R is required
to be the widest dyadic property that makes an identity condition true. A dyadic
property G is wider than a property G ′ iff for any x and y, if G ′(x, y), then G(x, y),
but not vice versa. That means that the ordered pairs of G ′ are a subset of the set of
ordered pairs of G. Formally, for all the relations R′ that are possible candidates for
the identity condition Φ:

R′ ⊆ R

Uniqueness R is unique with respect to K . That means, if there are
R1, R2, . . . , Rn , such that (i) each Ri satisfies IC and (ii) each Rk is independent
of each R j (that is, every Rk is neither narrower nor wider than each R j ), then at
most one of R1, R2, . . . , Rn provides a correct identity criterion for K -objects.

Equivalence R must be an equivalence relation. In the left side of the biconditional
in (IC), there is an identity relation, which is an equivalence relation. Consequently,
the relation R on the right side of the biconditional must be an equivalence relation,
too. In order to be logically adequate, then, an identity criterion is required to exhibit
an equivalence relation as identity condition.

In this paper we want to focus on identity criteria which fail to meet the equiva-
lence constraint and show how this problem can be overcome by logical means.

12.2.2 Failure of Transitivity

As has been observed in the philosophical debate about identity criteria, some rela-
tions considered as intuitively good candidates for R often fail to be transitive. Con-
sider some examples offered by Williamson [13]:

Example 1 Let x, y, z, . . . range over color samples and f be the function that maps
color samples to perceived colors. A plausible candidate for R might be the relation
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of indistinguishability. It is easy to verify, though, that such an R is not necessarily
transitive: it might happen that x is indistinguishable from y and y from z, but x and
z can be perceived different in color.

Example 2 If f (x) is a physical magnitude, to determine f (x) = f (y) you measure
x and y. If x and y differed by little, the measurement operation could give the
identity of the physical magnitudes as a result. If R were defined on the basis of
the measurement operations, it would turn out to be not transitive, since the sum of
many little differences is not itself little.

The examples above show how some relations that are intuitively plausible candi-
dates to be identity conditions do not meet the logical constraint of Equivalence
that IC demands. However, instead of refusing this kind of plausible but inadequate
identity criteria, it has been suggested to approximate the relation R whenever it is
not transitive. That means that, given a non-transitive R, we can obtain equivalence
relations that approximate R by some operations. Some approaches have been sug-
gested: two of them are due to (Williamson [13, 14]), while a third approach is due
to (De Clercq and Horsten [4]).

12.3 Approximations of Identity Conditions

12.3.1 Williamson’s Approaches

Williamson’s suggestion about the best approximation to a non transitive relation
consists in giving up the requirement for the identity condition to be both necessary
and sufficient. Consider R a non transitive relation that we take to be the best candi-
date for being the identity condition, for some kind of objects f (x)s. Consider such
an R a constant. Consider then variables on relations R′, R′′, . . . as possible approx-
imations to R. To determine the best approximation R′ to R Williamson suggests
two constraints that R′ must meet:

Weak constraint: no candidate relation R′′ should approximate R better than R′.
Strong constraint: R′ should approximate R better than any other candidate R′′.

Williamson proposes two ways to find an adequate equivalence relation to substitute
a non transitive R: an approach form above and an approach from below.

The approach from above seeks the smallest equivalence relation R+ such that
R ⊆ R+. That means, some f (x) and f (y) that are not identical under R turn out to
be identical under R+ or, equivalently, R+ is a super-relation of R. The equivalence
classes given by R+ are numerically more than the equivalence classes given by R.
R+ always exists and is unique. The identity criterion of this form

∀x∀y( f (x) = f (y)↔ R+(x, y)) (IC+)

provides a sufficient, but not necessary, condition for the identity of f (x)s.
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The approach from below seeks the largest equivalence relation R− such that
R− ⊆ R. That means, R− is a sub-relation of R since not all the ordered pairs in R
are ordered pairs in R−. R− always exists on the assumption of the Axiom of Choice
but it is not unique. To decide which relation can be preferable over others, some
constraints can be put. One of it is what Williamson calls Minimality Constraint.
According to it the relation R− to be preferred is the one with the minimum number
of equivalence classes. The identity criterion of this form

∀x∀y( f (x) = f (y)↔ R−(x, y)) (IC−)

provides a necessary, but not sufficient, condition for the identity of f (x)s.
There are cases where a proposed identity condition is necessary for some kind of

entities. For instance, the condition of being perceptually indistinguishable is a plau-
sible identity condition for colors. On the contrary, there are other kinds of entities
for which a good identity criterion is sufficient: certain forms of mental continuity
can be considered as a sufficient condition for personal identity. But this is not so
obviously sufficient. There are not always good reasons to consider a condition as
obviously necessary or sufficient for the identity of some kinds of entities. There
is a third option that is worthy to be considered: to regard the condition as neither
necessary nor sufficient for the identity of the f (x)s.

12.3.2 De Clercq and Horsten’s Approach

De Clercq and Horsten [4] suggest an approach to find approximating relations that
is alternative to the one proposed by Williamson and is called overlapping approach:
the equivalence relation that is sought partially overlaps R, instead of being a sub-
or a super-relation with respect to R.

The advantages of such an approach are: (i) it can be used for cases where the
most plausible identity condition is neither sufficient not necessary and (ii) it can
generate closer approximations than Williamson’s approach.

The proposal is based on the assumption that R is not indeterminate: any two
objects either stand in the relation R or they do not. This assumption serves the
scope to avoid difficulties that are not necessary to face, but it can be given up in
case of a refinement of the approach.

The authors propose to define an equivalence relation R± that closely approxi-
mates R and achieves that task better that R+ or R−. For the sake of clarity, consider
an example.

Example 3 Given a function f , let the domain of objects for f be the following:

D = {a, b, c, d, e}

Assume there is a candidate relation R, reflexive and symmetric, for the identity
condition for f (x)s. When R holds between two objects x and y we denote this as
xy (as De Clercq and Horsten do). Put otherwise, xy means R(x, y) and R(y, x).
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Let R on D be the following:

R = {ac, ad, bc, bd, cd, de}

R is not an equivalence relation. In fact, it fails to be transitive. For instance, R holds
between a and d and between d and e, but it does not hold between a and e.

Consider now how R+ looks like in this case. It is unique and it is the smallest
equivalence relation that is a superset of R, that is:

R = {ab, ac, ad, ae, bc, bd, be, cd, ce, de}

On the contrary, R− is not unique. For instance, one of the largest equivalence rela-
tions included in R is the following:

R− = {bc, bd, cd}

To determine whether R+ or R− is the best approximation to R, first you measure
the degree of unfaithfulness of R+ and R− with respect to R. Such a degree is the
number of revisions you make to get R+, R− from R. A revision is any adding or
removing of an ordered pair to or from R. In the example considered above, R+
is obtained by adding four ordered pairs to R and R− by removing three ordered
pairs. The degree of unfaithfulness of R+ is 4 and the degree of R− is 3. Thus,
R− is closer to R than R+. That means, with R− you stay closer to your intuitive
identity condition R because R− modifies R less than R+ does.

Consider now the following equivalence relation:

R± = {ab, ac, ad, bc, bd, cd}

With respect to R, R± adds one ordered pair and takes off another one. So the degree
of unfaithfulness of R± is 2, that is, less than both R+ and R−. Formally, the degree
of unfaithfulness (DOU) is given by the symmetric difference *:

(R±, R) = |R*R±| (DOU)

How does R± look like? It is an overlapping relation with respect to R and it is
a kind of hybrid relation between R+ and R−, since it both adds and removes one
ordered pair. An overlapping relation can be closer to R than the relations obtained
with the approach from below and from above.

12.4 Contexts and Levels of Granularity

Let us consider and revise the example about phenomenal colors given by
Williamson. The case of colors is a well-known example of failure of transitivity
and it has been discussed also in other places in the philosophical literature. Some
observations by Hardin [7] on this issue are remarkable.
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Hardin observes that many philosophers endorse a view according to which the
following principle (that we will call NT from now on) holds:

There exist triples of phenomenal colors x , y and z, such that x is indiscriminable from y
and y is indiscriminable from z, but x is discriminable from z.

By “indiscriminability between colors” Hardin means “perceptual indistinguisha-
bility”. By NT the relation of perceptual indistinguishability fails to be transitive;
therefore, the IC for colors based on the relation of indistinguishability is incoherent:
on the left side of the biconditional there is a necessarily equivalent relation (iden-
tity), on the right side a not necessarily equivalent relation. This problem seems
to affect any semantic account of color terms relying on everyday uses of color
predicates. Hardin argues that phenomenal colors are themselves indeterminate, that
is, there is no sharp color-discrimination threshold; since the truth of NT is based
on the assumption that there is a discrimination threshold, refusing this assumption
implies refusing NT too.

In non problematic cases, that is, when we have to make judgments on very
different colors, we report our observations using coarse-grained predicates because
we do not need to express shade differences. When we have to deal with borderline
cases of colors, we tend to be more precise in using color predicates. More fine-
grained color predicates are used in color science and technology, but in everyday
life people do not use them; that is not just because there are limits of hue discrim-
inability, but because of “something like the limit of useful naming of phenomenal
hues for the purposes of communicating between people” ([7, p. 221]). Put other-
wise, the number of possible color discriminations is much higher than the number
of color terms normally used. Why? First of all, there is a variability in discrimi-
nation between observers; second, people observe colors under normal conditions
such as changing light, contrast, shadows, and not under standard conditions, and
normal conditions make color comparisons problematic; third, it is more difficult to
compare a color with a mental standard (like the standard of “red” that one could
have seen in the Munsell Chart) than with another color perceived at the same time.

So, color perception is influenced by many factors and the use of color predicates
is somewhat sloppy. Hardin suggests that to answer a question like “What are the
boundaries of red?” we must first

specify, explicitly or tacitly, a context and a level of precision and [. . . ] realize the margin
of error or indeterminacy which that context and level carry with them ([7, p. 230]).

In the following analysis, we wish to show that De Clercq and Horsten’s framework
can be improved if you consider the use of ICs in a context and in a level of precision.
Moreover, we agree with Hardin’s belief that the nature of our purposes imposes
limits on the precision of our utterances: a too large set of color predicates would
make our judgments more precise, but would also hinder a profitable communica-
tion among agents.

The IC for phenomenal colors is an example of an IC that has mostly an epistemic
function: we do not know precisely whether two colors are identical. We only rely
on our perception which is fallible. So, we express an IC for colors in a logically



12 Towards a Formal Account of Identity Criteria 237

inadequate way. Williamson and De Clercq and Horsten believe that there are log-
ically adequate ICs and try to capture them by approximating our intuitively good,
but logically inadequate ICs.

Consider now the following variations of the example of IC for perceived colors:

Example 4 You see two monochromatic spots, A and B, and you do not detect any
difference with respect to their color. Following Williamson, you claim that they
have the same color, because they are perceptually indistinguishable. Now, suppose
you add two further monochromatic spots, C and D, such that they are perceptually
distinguishable. However, A is indistinguishable from C and B from D. In such a
scenario, you can accept to revise your previous judgement and say that A and B are
distinct.

Example 5 You see two color samples A and B from a distant point of view such
that you are not able to distinguish A-color from B-color. You say that A and B have
the same color. Now, you get closer to them and detect a difference between them.
So, you revise your previous judgement and say that A and B are distinct.

Example 6 You see two monochromatic spots again, A and B. You perceive them
as equally, say, orange. Nevertheless a friend of yours, who is a painter, tells you
that she perceives them actually different: B is more yellowish than A. According to
her color perception, which is more refined than yours, there are more differences
among color samples than you detect.

Example 4 shows how our perception of colors can be different, depending on the
range of colors we see at the same moment. Better said, comparing a color sample
with one or more color samples makes our judgements about colors differ. Thus, a
relation R expressed by a criterion of identity can vary across contexts of judgment.
For instance, consider a domain D = {a, b, c, d, e} and a context o, that is a subset
of D: o = {a, b}. Suppose R = {ab} in the context o. Consider now an enlarged
context, o′ containing a and b plus other elements, c and d: o′ = {a, b, c, d}. In o′
you may have the following R-pairs: ac, ad , but not ab.

Example 5 and 6 present a different issue than 4. Given the same context, R
varies along different granular levels of observation. When you are distant from
the objects for which you have to make an identity statement, you are looking at
them from a coarse point of view. Anyway, you make an identity statement. Getting
closer to the elements of the context, you reach a more fine-grained observational
level and so you can make a different identity statement. The point of view of the
painter can be seen as well as a fine-grained observational level. In short, you can
look at the elements of a context under different standards of precision, each of
them corresponding to a granular level of observation. The finer the level is, the
more differences between the individuals are detected.

In the following paragraph we try to formalise the notions of contexts and gran-
ular levels and integrate them with De Clercq and Horsten’s formal treatment of
approximate relations.
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12.4.1 Granular Models

Let L be a formal language through which we can represent English expressions. L
consists of:

• individual constant symbols: a, b, . . . (there is a constant symbol for each ele-
ment of the domain);

• individual variables: x0, x1, x2, . . . (countably many);
• 2-arity predicate symbols P1, P2, . . .;
• usual logical connectives with identity, quantifiers.

The set of terms consists of individual constant and individual variable symbols.
Formulas are defined as follows:

1. If t1, t2 are terms, then P1(t1, t2), P2(t1, t2), . . . are formulas;
2. If t1, t2 are terms, then t1 = t2 is a formula;
3. If φ, ψ are formulas, then φ�ψ is a formula, where � is one of the usual logical

connectives;
4. If φ is a formula, then ¬φ is a formula;
5. If φ is a formula, then ∀xiφ, ∃xiφ are formulas.

Let us give now an interpretation to L. Let D be a fixed non empty domain of
objects. We define a context o as a subset of domain D. So, the set of all contexts O
in D is the powerset of D:

Definition 1 O = ℘(D).
We interpret, then, R as a binary relation, which is reflexive and symmetric, but

not necessarily transitive. Moreover, R is a primitive relation and pairs the ele-
ments that are indistinguishable according to the identity condition it represents.
For instance, in the case of color samples R gives rise to a set of ordered pairs,
each of them consisting of elements that are indistinguishable with regard to their
(perceived) color. R is then the relation that makes identity statements about the
elements of the domain possible, according to IC.

Let M = 〈D, R〉 be a granular structure. Put otherwise, M is a structure con-
sisting of the domain D, together with all the contexts in D, and a binary relation R
(a two-arity predicate).

To account for Example 1 formulated above, we postulate that R varies across
contexts. Before providing a formal definition, let us consider a further example.
Given a certain domain D, let us isolate three subsets of it, i.e. three contexts:

• o1 = {a, b}
• o2 = {a, b, c}
• o3 = {a, b, c, d}

Observe that some elements, namely a and b, are in all the contexts, while c is
in two of them. Consider now a granular structure M1 = 〈D, R〉 and assume it not
be a very fine structure; suppose that R come out with the following sets—each of
them corresponding to one context:
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• RM1
o1 = {ab}

• RM1
o2 = {ab}

• RM1
o3 = {ac, bd}

The relation R in the granular structure M1 holds between a and b in contexts
o1 and o2, but not in context o3. This means that, given a certain granular structure
Mi , R can vary across contexts. Formally:

Definition 2 Given a granular structure Mi and given two contexts ol and ok , R
varies across ol and ok iff there is a non empty intersection o∗ = ol ∩ ok �= ∅ such

that ∃x ∈ o∗∃y ∈ o∗
(
(xy ∈ RMi

ol ∧ xy /∈ RMi
ok ) ∨ (xy ∈ RMi

ok ∧ xy /∈ RMi
ol )

)
.

If in a granular structure Mi the relation R fails to be transitive with respect to
some (if not all) contexts o ⊆ O , then the formal framework given by De Clercq
and Horsten is applied. That means, for each R in each context o an equivalence
overlapping relation R± can be defined.3 If a relation R is transitive in a context
o, then in that case R± coincides with the given R. In contexts where R is not
transitive, R± denote a relation that differs from R in the fact that it adds and/or
remove some ordered pairs from R, as described by De Clercq and Horsten.

R does not vary only across contexts. As the Examples 2 and 3 above show, R
also varies across granular levels. While the notion of context refers to the number
of elements considered and can be extensionally characterized, as proposed, we
characterize the epistemic notion of granular level in an indirect way. Each granular
structure belongs to a certain granular level, which corresponds to the level of preci-
sion of R in ordinating elements in contexts. Put otherwise, given the same context
o ⊆ O , different granular structures can give different sets of ordered pairs gener-
ated by R with respect to o. If the relation R of a certain granular structure holds
among all the elements of the context considered, no difference is detected among
them (with respect to some property), so all of them are considered indistinguishable
and at the same level. The granular structure is then considered coarse-grained. On
the contrary, a more fine-grained granular structure shall have a relation R holding
between a less number of elements of o.

Consider a further example. Fix the context o2 = {a, b, c} as above. The rela-
tion R in the granular structure M1 only holds between a and b. Consider now
another granular structure, M2 = {D, R}.4 The relation R in M2 does not hold
between any elements in the context o2, and so neither between a and b. This means
that the granular structure M2 is more fine-grained, since it is able to detect more
differences among elements in contexts.

To determine whether two or more granular structures belong to different granu-
lar levels you apply the following definition:

3 If you prefer to maintain Williamson’s approaches, instead of R± you can get R+ or R−.
4 Note that the domain D remains fixed in all the granular structures, and so the set of contexts O .
The relation R also is the same—for example, perceptual indiscriminability—but its interpretation
can differ along the grain size of the structure, as we see in the example.
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Definition 3 Given a context oi and two granular structures Ml and Mk , Ml

and Mk belong to different granular levels iff ∃x ∈ oi∃y ∈ oi

(
(xy ∈ RMl

oi

∧ xy /∈ RMk
oi ) ∨ (xy ∈ RMk

oi ∧ xy /∈ RMl
oi )

)
.

Finally, let us define the relation to be at least as fine as between granular struc-
tures. First, we define the relation, formally: ≤c, between cardinality of sets:

Definition 4 Given an o ∈ O , for all the pairs xy in M and xy in M ′, |{xyM ′ }| ≤c

|{xyM }| iff the number of xyM ′
is less than or equal to the number of xyM in o.

Then, we define the relation between granular structures with respect to some
context o ∈ O:

Definition 5 Given a context o ∈ O , M ′ is at least as fine as M iff the number of
xyM ′

is less than or equal to the number of xyM , that is:

M ′ ≤∗ M iff |{xyM ′ }| ≤c |{xyM }|.
Example 7 Let o = {a, b, c, d, e} a given context. Consider two granular structures,
M1 = 〈D, R〉, M2 = 〈D, R〉. According to M1, we have: Ro = {ab, bc, de}.
It is not transitive (a is indistinguishable from b and b from c, but a is not
indistinguishable from c). The best overlapping approximations is the following:
R± = {ab, bc, ac}. The pair ac has been added. The degree of unfaithfulness of
R± is 1. According to M2, we have: Ro = {ab, bc, cd, de, ce}. In this case R it is
not transitive either. The best overlapping approximation removes the pairs ab, bc
and it is the following: R± = {cd, de, ce}. According to Definitions 4 and 5 and
given the context o, M1 is finer than M2 because its relation R gives a less number
of pairs than the relation R in M2.

12.4.2 Objections and Replies

Some objections can be raised against the proposed formal characterization of ICs,
as well as some problems in the account are to be underlined. We try to outline here
some objections and problems, and sketch a reply to them.

ICs are usually associated with sortal concepts, that is, with concepts that answer
the question “What is x?”. The examples of non-transitive ICs considered are associ-
ated to kinds of objects like colors and physical magnitudes. It is not clear, though,
whether colors or physical magnitudes are to be considered sortal concepts. For
instance, the adjective “red” does not correspond to a sortal concept: we do not
individuate an object x saying “x is a red”.

This first objection seems to attack the notion of IC itself or, better said, the
thesis that ICs are necessarily associated with sortal concepts. We accepted the
standard thesis according to which only concepts associated with ICs are sortals.
Being associated with an IC is a necessary condition for concepts to be sortals, but
not a sufficient one. The possibility for some concepts to be associated with ICs
without being sortals is not excluded.
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Moreover, what happens if we consider “red” as a substantive standing for the
color red, e.g. “Red suits you”? In this case, “red” can be considered as a sortal noun
and, therefore, it would be easy to accommodate the problem via a revision of the
formulation of the IC. We can formulate a one-level IC for colors as follows: given
two perceived colors x and y, x is identical to y iff x is indistinguishable from y.

A second objection runs as follows: what changes from context to context or
from granular level to granular level is the extension of the relation. But you are
also dealing with epistemic issues: In a certain context and granular level you make
an identity judgment according to a certain relation R. When the context or the
granular level changes you make a sort of revision of our previous identity judgment.
So, if you want to be faithful to our intuitions and account for epistemic issues, an
intensional treatment is more appropriate.

We decided to provide an extensional model following Williamson’s and De
Clercq and Horsten’s approaches. However, this second objection is very important.
An intensional treatment of ICs would be interesting to be provided especially if
you consider not only the ontological function of ICs, but also the epistemic one. If
the goal is to model how we know and use ICs, we should think of an intensional
formal framework. That is a possible further development of the account.

The proposed model for accounting for ICs is not suitable for an infinite domain.
The domain of objects must be finite. The applicability of the model is then reduced
to some specific cases, while it should be generalized.

As has already mentioned, the model for approximating ICs has been developed
to face logical problems arising from the intuitive use of ICs for everyday prob-
lems (color comparisons and the like). De Clercq and Horsten too are aware of
the problem that their approach is applicable only to finite domains. However, they
attempt to accommodate the problem and suggest reducing infinite graphs to finite
graphs. In a nutshell, it is worthwhile considering infinite graphs because we deal
with relations that are potentially infinite, for instance the relations underlying the
Sorites paradox. However, the transitivity failure of some relations is here at con-
cern. Such a problem is shown by finite graphs, so there is nothing bad to represent
the problem and the solution only using finite graphs. Moreover, it is rare that people
in ordinary life make inferences with a great (even infinite) number of steps. Since
we are dealing with ICs as they are commonly used by people and not by logicians,
the infinity issue does not play a relevant role in the treatment of ICs.

Consider the following problem: If ICs have the function of answering questions
(EQ), (OQ), and (SQ), which of those questions is answered by an intuitive IC that
contains a non-transitive relation R? Moreover, does an IC with an approximated
relation like R± answer the same question or a different one?

It seems plausible to claim that an IC containing a non-transitive relation R
answers (EQ). Consider the IC for phenomenal colors: as we have seen, we do
not know precisely whether two perceived colors are identical. We only rely on
our perception, which is fallible. Therefore, the IC for colors we express is not
logically adequate, but is sufficient for our pragmatic or epistemic purposes of color
comparison.
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Which question does an IC containing an approximated relation such as R±
answer? The relation R± is logically adequate; therefore, thank to it we can deter-
mine whether or not two items are actually identical in reality. So, it is plausible to
think that an IC containing an approximating relation answers (OQ).

12.5 Conclusion

ICs are very often matter of philosophical discussion. However, the formal require-
ments that they must meet to be acceptable are rarely taken into account. In this
paper we listed some formal requirements and focused on some ICs that fail to meet
one of them: transitivity. Instead of giving up ICs failing to meet the transitivity
requirement, we considered the approaches proposed by Williamson and De Clercq
and Horsten, by means of which transitive approximations to non-transitive ICs are
defined.

Our purpose has been to improve De Clercq and Horsten’s formal framework.
Given a non transitive relation R, standing for an identity condition for some objects,
we suggest fixing a context and a granular level of observation (a granular structure).
We allow R varying across contexts and granular levels. If in a context and accord-
ing to some level R fails to be transitive, you can apply De Clercq and Horsten’s
approach and build the closest approximation to R for that context and that level.

By the framework developed in this paper, we wish to have been able to make a
short step towards a formal account of identity criteria.
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Chapter 13
A Mereology for the Change of Parts

Pierdaniele Giaretta and Giuseppe Spolaore

13.1 Introduction

Mereology is not logic, and neither is it a part of logic. However, mereology is
endowed with such wide generality that it might be taken as a slight extension of
logic. Its relevance for the description of reality is generally acknowledged, but also
heavily debated.

Some people hold that mereology cannot represent the general features of the
material world without conflicting with an intuitive pre-scientific view. A reaction
to the conflict is to restrict the generality of some of its principles. Wiggins thought
of restricting the validity of mereological extensionality, also called Uniqueness of
Composition. Van Inwagen rejected the general existence of sums, that is, Existence
of Composition. In both cases the restrictions can be seen as a way of solving some
well known ontological puzzles without abandoning a three-dimensionalist ontol-
ogy. Indeed, the solution of such puzzles was a major motivation for the introduction
of restrictions. However, it may be questioned as to whether it is really necessary
to restrict or to give up some mereological principles to solve those puzzles in a
three-dimensionalist perspective.

There seems to be a way of solving ontological puzzles that allows keeping all
mereological principles in their generality, without adopting a four-dimensionalist
space-time ontology. This solution appears to be possible only if mereological sums
are not taken as set-like, that is, as such that they never change parts. Van Inwagen
[25] admits that sums can change their parts but does not accept the existence of
arbitrary sums. In the present paper, we agree with van Inwagen in regarding sums
as composite entities that can change their parts, but we accept the existence of
arbitrary sums in the context of a temporal version of mereology. The temporal
mereology we state here is shown to be consistent with the change of parts.
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The solution of ontological puzzles is achieved by denying the persistence of
some of the entities involved, as in [6, 18]. Although good reasons for this move are
provided, some difficult aspects of the solution are also highlighted and tentatively
answered.

13.2 Temporal Mereology

It is usually assumed that sums are set-like entities not only in the sense that if they
have the same parts, they are the same but also in the sense that they cannot change
their parts from time to time.1 The two assumptions are not equivalent. Indeed,
according to van Inwagen [25], sums are composite objects that can have different
parts at different times. Van Inwagen’s view may seem paradoxical to some mere-
ology theorists, those who regard sums as entities that cannot lose or acquire parts.
Van Inwagen argues for this thesis by emphasizing that a mereological sum is a sum
of certain things already given and taking parthood as a temporally relativized rela-
tionship: a is a part of b at t . Therefore a mereological sum is composed of certain
things at one time and of possibly different things at a different time. Furthermore,
according to van Inwagen, to block certain arguments against the possibility that
mereological sums change their parts we should give up the general existence of
sums. However, this move, as van Inwagen acknowledges, is not the only possible
one.

In what follows, we shall describe a theory of temporal mereology consistent
both with the view that sums can change their parts and with the general existence
of sums.

Let us adopt a mereological language based on the logical vocabulary of second
order logic, identity, a binary predicate of temporally relativized existence, and a
ternary predicate of temporally relativized parthood.2

There are two sorts of first order variables: x, y, z, . . . , x1, x2, . . . , intended
to range over material entities and t, t ′, t ′′, . . . , intended to range over temporal
instants.

The second order variables X,Y, . . . are plural variables as indicated by
Boolos [3], that is, variables ranging over all pluralities of entities of the domain,
each one to be simply understood as some (one or more) entities of the domain.

A mereological theory can be stated in such a formal language, but here we
shall use translations of the formal sentences into a suitable portion of natural lan-
guage integrated with first and second order variables. The quantification of plural

1 Sums may be taken to exist in time, even if they are conceived as set-like, while existence in time
for (certain) sets is not so clear. It is clear instead that if sets do not exist in time, it does not make
sense to speak of their change of elements.
2 As in, for example, [22]. Relativization to time is not always a natural move. We do not claim
that a temporal parameter should be introduced for all predicates.



13 A Mereology for the Change of Parts 245

variables might be expressed by the clauses: “There are certain Xs such that”, “For
any Y s”, namely “For Y s whatever they are”. However, as in [3], we shall omit the
final “s”—grammatically indicating the plural form—in any later use of the plural
variables.

Plural interpretation of second order variables allows to take the values of first
and second order variables as belonging to the same domain. The values of temporal
variables belong to a disjoint domain.

We shall also use sentential forms such as “x is one of the X”, or “a is one of
the X”, which may be considered as a way of translating X x and Xa respectively.3

(Bearing this convention in mind should clarify what further expressions used in
this paper are short for.)

Individuals, including sums of individuals among them, exist at some times and
may not exist at other times. To express such facts, a predicate E of existence at t is
employed without making any special assumption about its nature.

Identity, expressed by “=”, is absolute. In this language, it is not even possible to
say that individuals are identical or distinct at a given moment: they are just identical
or distinct. Usual rules are adopted for “=”.

Let us remark that being (existence in the domain, here called “logical exis-
tence”) does not entail temporal existence: E(a, t) (i.e., a exists at t) does not follow
from ∃x(x = a) (i.e., there is something identical to a).

The relationship between temporal existence and parthood satisfies the following
constraints, taken as axioms:

Axiom 1 If x exists at t , then x is a part of x at t .

Axiom 2 If x is a part of y at t , x exists at t and y exists at t .

Furthermore, temporally relativized parthood is anti-symmetric and transitive, as
specified by the following axioms:

Axiom 3 If x is a part of y at t and y is a part of x at t , then x is identical to y.4

3 Alternatively, “x is one of the X”/“a is one of the X” can be taken as the result of applying the
predicate “is one of” to an individual variable/individual constant and to a plural variable. In this
case “is one of” expresses a multigrade relation between one entity and one or more entities. The
introduction of the predicate “is one of” enables us to adopt the expressions “each one of the X”
as an abbreviation for “each entity x that is one of the X”, “some of the X” as an abbreviation of
“some entity x that is one of the X”, and “at least one of the X” as an abbreviation of “at least an
entity x that is one of the X”.
4 Assuming the following form of the second order comprehension:

If there is an x such that Φ(x), there are X such that x is one of the X if and only if Φ(x).

whereΦ(x) is a well formed formula and X does not occur in it, and taking the temporal parameter
as fixed, anti-symmetry of parthood does not need to be explicitly stated. It follows from Axioms 1,
2 and Axiom 6 below.
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Axiom 4 If x is a part of y at t and y is a part of z at t , then x is a part of z at t .

From Axioms 1 and 2 it follows that:

Theorem 1 x exists at t if, and only if, x is a part of x at t .

Theorem 1 says that, as far as material objects are concerned, temporally existing
is tantamount to being a part of oneself.5

We shall remain neutral as to the logical and temporal existence of atoms, that
is, of entities having no proper part. (Of course, this does not exclude that some
models of the theory involve atoms.) Overlapping-at-t and being-a-sum-of-at-t are
introduced and defined as follows:

Definition 1 x overlaps y at t =df There is a z that is part of x and of y at t .

Definition 2 x is a sum of the Y at t =df Each one of the Y is a part of x at t and
every part of x at t overlaps at least one of the Y at t .

Then it is possible to define composition as a multigrade relationship between
one or more entities and an entity in the following way:

Definition 3 The X compose y at t =df y is a sum of the X at t .6

The two usual basic axioms of mereology, that is, Existence of Composition and
Uniqueness of Composition, can be respectively stated as:

Axiom 5 If the X exist at t , then there is a y such that y exists at t and is a sum of
the X at t .

Axiom 6 If the X compose y at t and the X compose z at t , then y is identical
to z.7

If some of the X do not exist at t , from Axiom 5 it does not follow either that
there is a sum of the X at t or that there is no such sum. We shall remain neutral
on this issue. On the other hand, Axiom 6 excludes that the same entities have two
distinct sums at the same time.

5 This is a common thesis in the framework of temporal mereology (see e.g., [22, p. 215]). It
entails that Caesar (assuming that he does not exist anymore) is presently not a part of itself. This
consequence might sound odd, but it immediately follows from the plausible view that no material
object is now a part of a presently non-existing object.
6 Van Inwagen requires that composing entities do not overlap. Such a constraint avoids what
Lewis [11] and Varzi [26] would call “double counting”, that is, counting a part more than once
when overlapping among the composing entities is allowed.
7 There are various versions of Uniqueness of Composition, or mereological extensionality. Their
relations are highlighted by Varzi [27]. We state here the most standard version.
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13.3 The Mereological Consistency of the Change of Parts

A set-theoretical model of classical second order mereology, as stated, by example,
in [11], can be easily transformed into a model of temporal mereology.

Let us start from a very simple model, where the domain D of individuals is the
set {a, b, c,m1,m2,m3, n} such that: a, b and c are atoms; a and b compose m1;
b and c compose m2; a and c compose m3; a, b and c compose n. The values of
second order variables are subsets of D.8 The predicate of identity has the standard
extensional interpretation relative to D. Parthood is interpreted on D in accordance
with the above constraints on the objects of D. This array of objects is sketched in
Fig. 13.1, left side.

To get a model of temporal mereology take 1 as the only temporal instant. Add
the pair 〈1, 1〉 to the extension of the identity predicate. The extension of existence-
at-t is provided by all pairs 〈e, 1〉 such that e belongs to D. The triples of the
extension of ternary parthood are obtained as follows: every pair belonging to the
extension of the binary parthood of the previous model is transformed into a triple
by adding 1 as third element (see Fig. 13.1, left side). It is easy to see that all axioms
of temporal mereology are true in the derived model.

If temporal mereology has to describe the actual world, it should be consistent to
take as an axiom the existence of entities changing their parts in time9:

Axiom 7 There are distinct times t and t ′ and entities x and y such that x and y
exist both at t and t ′ and x is a part of y at t but not at t ′.

It is easy to modify the above model of temporal mereology in order to make
Axiom 7 true. Let us proceed as follows. Another instant, say 2, is added. Extensions
of identity and of binary existence are modified to (also) include, respectively, the

Fig. 13.1 Time 1: a + b = m1, b + c = m2, a + c = m3. Time 2: a + b = m3, b + c = m2,
a + c = m1

8 For the sake of simplicity, we take subsets of the domain, not pluralities of entities of the domain,
as values of the second order variables. It would be possible, but much more complicated, to
provide a full plural semantics for a second order language.
9 It is an apparent empirical truth that some things change their parts. However, taking this truth as
empirical does not imply that it cannot be contested. Here it will be assumed as an axiom, without
dealing with the question of its justification.
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pair 〈2, 2〉 and all pairs 〈e, 2〉 such that e belongs to D. To get the extension of ternary
parthood, add all the triples obtained by replacing 1 with 2, with two exceptions:
〈b,m1, 1〉 is replaced with 〈b,m3, 2〉 (instead of 〈b,m1, 2〉), and 〈c,m3, 1〉 with
〈c,m1, 2〉 (instead of 〈c,m3, 2〉). In the resulting model (see Fig. 13.1), two objects
have different parts at distinct times: m1 has a and b as parts at 1 and a and c at 2,
while m3 has a and c as parts at 1 and a and b at 2. No other object changes its parts.

It is easy to see that both Axiom 7 and the above theory of temporal mereology
are satisfied by the envisaged model. So Axiom 7 is consistent with temporal mere-
ology. Let us label as T the theory obtained by adding Axiom 7 to the above theory
of temporal mereology.

Some theorems of T are interesting and easily proven. In the first place:

Theorem 2 There are X, y, z, and distinct t , t ′ such that y is not identical to z and
the X compose both y at t and z at t ′.

Theorem 2 can be proved in a very quick informal way by making an implicit
appeal to the second order comprehension.

Proof Let us assume, by absurd:

(*) For every t and every t ′, if the X compose y at t and compose z at t ′, then
y = z.

By Axiom 7 suppose that m and n exist both at t and t ′ (t �= t ′) and are such that

n is a part of m at t .
n is not a part of m at t ′.

By Axiom 5 there is an x , say m′, such that m′ exists at t ′ and is a sum of m and n
at t ′. Thus

m and n compose m at t .
m and n compose m′ at t ′.

and m �= m′, since n is a part of m′ at t ′, and is not a part of m at t ′, but by (*)
m = m′. Thus (*) is to be denied and its denial is equivalent to:

There are X , y, z, t and t ′ such that y �= z and the X compose both y at t and z
at t ′.

Identity of t and t ′ contradicts Axiom 6. Thus t and t ′ are distinct. �
The provability of Theorem 2 on the basis of very general principles may appear

surprising, for, even if the change of parts is granted, whether or not some entities
compose distinct objects at distinct times seems like a purely empirical and contin-
gent issue.
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From Theorem 2 it immediately follows that:

Theorem 3 There are at least four material objects.

Proof By Theorem 2, some X compose distinct objects y and z at distinct times,
and obviously y and z cannot be atoms; thus at least two entities compose both
y and z, and no one is identical either to y or to z. �

We shall neither derive other deductive consequences of the theory T, nor inte-
grate T with an axiomatic specification of the relevant principles concerning the
change of parts or structure. First, we need to have an idea of how to solve certain
basic problems in accordance with the theory (and, of course, in a plausible way).
Thus in what follows we shall focus on such basic problems and their solutions. We
shall first consider puzzles whose main feature is the loss or acquisition of parts, and
then turn to puzzles mainly involving the rearrangement of (certain) parts.

13.4 Puzzles of the Change of Parts

Mereological axioms seem to be intuitively involved in the derivation of ontological
puzzles. In a number of puzzles, entities a and b are supposed to be such that:

(1) a is a proper part of b at t1.
(2) a and b fully overlap at t2.

where (2) amounts to saying that there are entities that compose both a and b at t2.
It follows from (1) that:

a �= b.

Yet, from (2) it follows, by Uniqueness of Composition (Axiom 6), that:

a = b.

If besides a and b, taken as above, there is an entity c such that:

c is a proper part of b at t1.
b = a + c at t1.
c is not a proper part of b at t2.

where + is the mereological operation of summation, it follows that

b �= a + c at t2.

If it is taken for granted that a + c at t2 exists (at t2) and is the same as a + c
at t1, a contradiction arises. Existence of Composition is involved in the use of +,
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while Uniqueness of Composition is the basis on which the problematic identities
are stated.

The famous story of the cat Tibbles10 can be read in both the shorter and the
longer version of the puzzle, by assuming that

a is Tib, the body of Tibbles, i.e., Tibbles minus her tail.
b is Tibbles.
c is Tail, the tail of Tibbles.

Solutions for the two versions of the puzzle in the context of the outlined theory
T are the following.

Concerning the first version, it can be claimed that a does not exist at t2. So
nothing is part of it at t2 and Axiom 6 cannot be applied to derive that a = b.

Concerning the latter version, a+ c, taken as the entity individuated with respect
to t1 by virtue of Axioms 5 and 6, is just b and does not have c as a part at t2. So
a+c, taken as the entity individuated with respect to t2 by virtue of Axioms 5 and 6,
is a “new” entity not existing at t1. Shortly, “a + c”—with no explicit temporal
specification—is ambiguous or context-dependent and no contradiction arises.

These solutions amount to denying the existence of certain entities at a certain
time t , but it might appear arbitrary as to which ones are to be taken as non-existent
at t . There should be a motivation for denying persistence (or pre-existence) and
the motivation should be provided in a general way. An idea which appears to be
worth pursuing ties the persistence of an entity after the change and its pre-existence
before the change with the kind of structure the entity is endowed with.11

Usually, when we individuate an object through its components, we indirectly
refer to a certain kind of organization of such components. This organization can
be more or less cohesive and more or less intrinsically modifiable, depending on
what sort of entities is at stake. In general we grasp an (ordinary) object as having
the possibility of persisting through a range of changes. For instance, any animal,
independent of the entities it is taken to be composed of, has an internal unity that
allows it to persist through changes in composition and in spatial dislocation. Any-
way, there are certain (more or less blurred) limits in the structural changes the
object may undergo without passing out of existence, and knowing these limits is
part of our common understanding of what such an object is.

If Axiom 5 is true, for any existing entities X , including arbitrarily chosen parts
of (ordinary) objects, there exists a sum of the X .

Now it appears that many such composite entities are temporally very fragile,
for it is reasonable to deny any kind of persistence when no kind of organization is

10 The story is really an adaptation of a medieval puzzle, Animal est pars animalis (see [28]), but
analogous puzzles have haunted philosophers at least since Plato. A cat, Tibbles, her tail, Tail, and
the rest of her body, Tib, are considered at a certain time, say t1. Later on, Tibbles’s tail is cut. Soon
after, say at t2, it appears that Tibbles has the same parts, and so is the same, as Tib.
11 For other approaches to this problem, see [5, 6, 18]. Here we shall not compare the view outlined
below with these alternative proposals.
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recognizable. If so, then strange, non-ordinary entities such as the sum of your index
finger, the flower on the table, a match and the Moon—let us call it “Moof”12—have
no significant internal unity such that they can survive change of parts or structure.
Thus, an entity like Moof would not survive the loss or the displacement of parts,
as it may happen, for instance, if the match is burned down or the flower is put on
the chair. In these cases, we should say that Moof has been replaced, as it were, by
a different albeit partially similar entity. Arguably, we may count among strange,
non ordinary entities even Tib before Tail is cut, and the sum of Tibbles’ tail and
Tibbles after the cutting time. Accordingly, we may conclude that they are not so
temporally robust as ordinary, paradigmatic material entities, for they lack a similar
internal unity. (See below in this section for a tentative specification of this idea.)

A different way—more quantitative than qualitative—of accounting for the dif-
ference between the kind of unity Tibbles and Tib have might be provided by an
analogy with geometrical entities. Tibbles can look like a segment and Tib like a
segment minus a point, or minus a subsegment, which is itself a segment. Let us
identify segments with closed intervals of real numbers. Then, according to this
picture, Tib is not a closed interval since it lacks an endpoint or a subsegment, as it
were.13

These considerations strongly suggest an ontological view that agrees with the-
ory T in that:

(i) A composed entity is individuated by the composing entities.
(ii) Any statement of composition implies reference to time since composition can

change in time.

and is characterized by the following further theses:

(iii) No composed entity is without unity of some kind; so reference to the compos-
ing entities at a time implies an indirect reference to the kind of unity of the
composed entity.

(iv) The specific kind of unity of the composed entity grounds the (correct) judge-
ment about the persistence (or the pre-existence) of such entity.

To further illustrate this point of view, let us apply it to the puzzle of the trunk
and the tree (the so called growing argument). A tree b has some branches at a time
t1, so it is not identical to its trunk a. Let us assume, as can happen, that at a previous
time t2 the tree has no branches. Looking at the tree at t2, we might be willing to say
that the tree is identical to its trunk. If the trunk, taken at t2, is identical to b, then we

12 Thanks to an anonymous referee for this example.
13 The analogy is partial because of the set-theoretical nature of geometrical entities. Moreover,
the alleged vagueness of boundaries, which also affects fully integrated wholes, might make this
analogy to appear too strong a simplification of the difference between Tibbles and Tib. However,
it might be claimed that the degree of vagueness of entities that are not fully integrated wholes is
higher in a quite intuitive sense, which could probably be further specified in some way.



252 P. Giaretta and G. Spolaore

have both a �= b and a = b. From the point of view we have outlined, the argument
for identity can be blocked by claiming that there is no single (temporally) existing
entity which “the trunk” picks out at t2 and at t1. The entity we may refer to as “the
trunk” at t1 (i.e., b) does not exist at t2, and it is not the same as the entity we may
refer to as “the trunk” at t2 (i.e., a).

The kind of account provided here might be challenged by devising cases where
the “whole” entity is compared with the entity minus a very small part. For example,
let us suppose that Tib is identified at t as Tibbles minus a hair. Can we really say that
the kind of unity displayed by Tib is different from that displayed by Tibbles? Tib
appears to be like an open-structured entity, where the forces tying the lacking hair
to the rest of it are still active. These forces cannot be active any longer, or should
be active in a different way, when the hair is lost or separated. This remark might
be enough to suggest, at an intuitive informal level, that Tib is an open unstable
entity, which cannot become closed and stable without passing out of existence.
To state this view in less intuitive terms, it could be useful to resort to the notion
of wholeness proposed by Simons [20], according to which a whole satisfies the
following condition:

Every member of some division of the object stands in a certain relation to every other
member, and no member bears the same relation to anything other than members of the
division. (p. 327)14

According to this idea, Tib, taken as Tibbles minus a hair, is not a whole, while
Tibbles and the hair Tib lacks are wholes. For, on one hand, the relation which
grounds Tibbles’s unity would link Tib with the lacking hair, external to Tib, and
so cannot ground Tib’s unity. On the other hand, it is difficult to think of a similar
structuring relation tying only Tib’s parts. There is surely a way in which Tib’s
parts, and only Tib’s parts, are related to each other, but their natural links with
the excluded hair do not appear to be essentially different from the natural links
they have to each other. We might say that to conceive Tib as an (integral) entity, we
have to think of it as endowed with a minor degree of integrity. However, speaking of
degrees suggests a linear order and—it might be objected—that appears inadequate
to represent the varieties of ways in which unity can be realised. It seems better to
speak of kinds of unity, which might be taken to correspond to kinds of wholes.
In this perspective one might, on the one hand, work out a general frame in which
kinds of unity can be dealt with, and, on the other hand, look for examples having a
paradigmatic value.15

14 Other more or less formal ideas concerning unity and its ground are expressed in recent lit-
erature. See, for example, [8, 9, 13, 14, 21, 24]. In contrast to what was done in these writings,
we pursue the idea that no entity is devoid of unity, while accepting the mereological axiom of
Existence of Composition and avoiding to choose among the main ontological options.
15 Simons [21] provides some case studies of natural wholes. However, he argues against the use
of the notion of a kind of whole in the explication of what a whole is and prefers to raise the general
question of what requirements a relation must satisfy in order to give rise to wholes. It should be
said that Simons does not accept Existence of Composition in its full generality.
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A more serious challenge to the above ontological view is the following puzzle
proposed by Noonan [15] (and based on a similar case sketched in [6]). This time,
Tib is the brain of Tibbles at t1. Later on, so the story goes, Tibbles loses everything
except his brain, but is kept alive by scientists. At t2, Tibbles is still alive and alert.
It appears that Tib is a proper part of Tibbles at t1, while at t2 Tibbles is the same as
her brain, that is, Tib. Again, by Axiom 6, we obtain a contradiction.

If survival as a mere brain is accepted as possible,16 there seems to be no direct
and convincing answer to this puzzle in the theoretical framework outlined above.
It is hard to deny that Tibbles’s brain exists at t2 and is the same at t1 and at t2. If
a cat, identified with Tibbles’s brain, exists at t2, it also is difficult to deny that we
have the same cat at t1 and at t2, since it is implicitly supposed that the previous
“content” of Tibble’s brain is preserved at t2.

However this is a special difficulty, for it involves independent and obviously
delicate issues concerning the relationships between minds, brains, and bodies. For
instance, we are prone to say that Tibbles survives the loss of any part except its
brain because we recognize both a physical and a psychological continuity between
the cat and the brain. Yet, it might be objected that the physical continuity is too
partial, and the view that psychological continuity alone is sufficient for identity
across time is notoriously problematic (see, e.g., [16] for a survey). Furthermore,
suppose that Tibbles’s body is kept alive as well. What reasons are there, psycho-
logical continuity aside, to deny that Tibbles, qua organism, is the body rather than
the brain at t2? Or should we say that neither is? Hence, it might be objected, what
the puzzle shows is that our common criteria of persistence for cats (dogs, persons,
etc.)—rather than the metaphysical picture and the mereological theory outlined
above—are ultimately problematic.

13.5 Puzzles of the Change of Structure

It should be clear that in our theoretical framework it is not possible that an entity a
intuitively constitutes—and thus fully overlaps—an entity b at a time and a distinct
entity c at another time, for full overlapping implies identity of composition and
identity of composition implies identity by Uniqueness of Composition (Axiom 2).
However, some cases seem to support the possibility of constitution without identity.
Here we shall focus on a couple of such cases.17

16 Survival as a mere brain appears to be physiologically impossible or, at least, highly unlikely,
since to survive a brain needs a continuous exchange with the body at a chemical level (see e.g.,
[2]). But even if it were possible to simulate this exchange by employing a suitably designed device,
it might be argued that, after the device is in function, the whole organism persists at least in part
as (a certain portion of) such a device.
17 The source of the former case is [7], but here we follow the formulation provided in [23]. The
latter was stated in [19]. The literature concerning the notion of constitution is very wide. Let us
mention, as some significant examples, [1, 10, 17, 20, 29, 30].
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The most natural solution to this sort of puzzles in the above outlined ontologi-
cal framework is denying that what constitutes distinct material entities at different
times is itself a material entity.

1. A portion of clay (LUMPL) is bought at 9 am. A statue (GOLIATH) is made
out of LUMPL and put on the table at 2 pm. Later on, the left hand of GOLIATH
is replaced with a new one made out of a portion of clay different from LUMPL.
At 3 pm GOLIATH has the new hand and the old hand is in the dustbin. It seems
that (see e.g., [23]):

(I) LUMPL exists at 9 am, but GOLIATH does not.
(II) At 3 pm GOLIATH is wholly present on the table, but LUMPL is not wholly

present on the table, since GOLIATH is a statue and a statue can undergo
replacements of certain parts (not all parts of a statue are essential), but LUMPL
is a portion of matter and no part of a portion of matter can be lost or changed.

It appears that at 2 pm, LUMPL shares all parts with the statue GOLIATH.
According to Uniqueness of Composition, as expressed by Axiom 6, they are the
same entity, against the reasons provided by (I)–(II) for taking them as distinct
entities.

Assuming, as it is implicit in the above formulation, that portions of clay are
sums of certain clay parts (at a certain time), this puzzle is to be solved along the
same lines as the previous ones. Namely, if LUMPL is the object that, as a matter
of fact, is the sum of certain clay parts C at 9 am, then it does not exist anymore
at 2 pm. If, on the other hand, “LUMPL” is regarded as designating the sum of the
C both at 9 am and at any following times, then there is no single material object
“LUMPL” stands for. Either way, no contradiction arises.

However there is a problem here, for it may be argued that such entities as
portions of stuff—regarded independently of time, shape, etc.—are convenient for
many purposes, and are not to be dismissed so quickly. Consider for instance the
following statement, which is (prima facie) true in the envisaged scenario:

(III) GOLIATH is made of a certain portion of clay at 2 pm, and that very portion
of clay does not constitute GOLIATH at 3 pm.

Statement (III) strongly suggests that a single entity e, what was above called
“LUMPL”, fully overlaps GOLIATH at 2 pm and does not fully overlap GOLIATH
at 3 pm. But by Axiom 6 this cannot be the case, at least insofar as e is taken to be
a material object.

There are many possible answers to this objection, and we shall explore just one
of them here, by claiming that when we speak of such objects as portions of stuff,
qua entities that are identical across time if and only if they share certain composing
parts across time, we are covertly making a plural reference to the composing parts,
collectively taken. So, for instance, what would be meant by (III) is just that certain
C compose GOLIATH at 2 pm, but not at 3 pm. The rationale behind this view is that
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reference to what composes is reference to some appropriate composing entities. If
what these entities compose at a time goes out of existence, they end up composing
a different material object provided with a different kind of unity.18

In general, for any composed material entity existing at t , there is a way in which
its component parts P are organized at t . Of course, we may abstract away from
such an organization and speak accordingly, which is what happens when we use
“LUMPL” to designate the entity that fully overlaps GOLIATH at 2 pm but not at
3 pm. However, in this way, we are just making one of many or reifying what is
common to a class of material objects.19

For making this view more plausible, it may be observed that, pace Wiggins, it is
not so wrong to say that a statue of clay is a portion of clay with some extra-features
(a certain organization, shape, history, etc.). To the contrary, describing a statue as a
portion (period) is offering an obviously under-informative characterization. What
is left out are exactly those features—organization, shape, history, etc.—that are
usually taken to ground the persistence of statues.

2. A piece of yarn is knitted into a sweater at one time t1, unravelled, and then
knitted into a hat at t2. It appears that the sweater is not the same as the hat. Yet,
intuitively enough, the piece of yarn fully overlaps both the sweater (at t1) and the
hat (at t2). Since fully overlapping at a time entails (absolute) identity by Axiom 6,
we have a contradiction, that is, that the sweater is, and is not, identical with the hat.

It might appear that the kind of solution devised for the first case is quite unnat-
ural for this one, in which we have a specific, well individuated piece of yarn first
used to make a sweater and then a hat.

However, let us see how it is possible to apply here the same solution as above.
We must deny that the piece of yarn knitted into a sweater is the same material object
as the piece of yarn knitted into a hat. Again, when the same entity (the piece of yarn)
seems to fully overlap two distinct objects at different times (the sweater at t1 and the

18 Alternatively, the portion of clay might be thought of as an entity obtained by means of an
equivalence relation. The portion of clay just bought and the statue are both composed, respectively
at 9 am and at 2 pm, by the same disjoint minimal parts of clay. The corresponding equivalence
class could be identified with the portion of clay regarded as an amount without any qualification.
From this point of view the portion of clay might be conceived as the materialization of an abstract
entity.
19 See note 18 above. It might be objected that, intuitively enough, portions of stuff may lose a
minimal amount of matter without passing out of existence. And this entails—so the objection
goes—that singular reference to portions, as ordinarily understood, is never eliminable in favor of
plural reference to their components. We are not too impressed by this objection. Of course, we
may speak of “the same portion” even if what we have is not, strictly speaking, the same portion.
Like many empirical notions, our usual concept of a portion is vague. For instance, the view that
portions survive the lost of a minimal part is obviously the first step of a soritical series. But in the
same vein, we may also speak of the “same components” at different times even if the components
have not, strictly speaking, remained the same. As far as ordinary understanding is concerned, it
appears that vagueness affects both the singular reference to a portion and the plural reference to its
components, contrary to what the objection assumes. Moreover, vagueness is a notoriously delicate
issue, and not specifically involved in the puzzles we are discussing.
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hat at t2), no such entity exists and plural reference is made to certain appropriate
parts of those objects. However, this time, the plural reference is to be qualified.
Intuitively enough, a piece of yarn exists at time t only if certain composing parts W
exists at t and are related one another in a certain ordered structure. So conceived,
reference to a piece of yarn, qua object that remains the same even when knitted
into a sweater (or a hat), would be reference to certain component parts under the
constraint that they be organized in the manner of a thread. So, for instance, by:

The same piece of yarn constitute a sweater at t1 and a hat at t2.

what is meant is that certain entities, say the P , compose a sweater at t1 and a hat at
t2, and the P are connected together as a piece of yarn, and in the same order, both
at t1 and t2.20

It might be objected that even the sweater and the hat can be dispensed with in
the same way, that is, by referring to the same components of the piece of yarn and
considering different higher levels of their organization. What reason is there—so
the objection goes—to regard the sweater (hat), and not the piece of yarn, as existing
at t1 (t2)?

A possible reply is the following. Consider the view that, by suitably knitting a
piece of yarn into a sweater (hat), we make a novel entity, distinct from the original
piece of yarn, come into existence. Such a view is natural and commonsensical
enough to be taken for granted, but it does not follow from the above outlined onto-
logical perspective. If it is false, that is, if by knitting a piece of yarn into a sweater
(hat) we do not obtain a novel entity, then no problem arises in our ontological
framework. So, the objection makes sense only under the assumption that such a
view is correct. And if it is, then there is no denial that the sweater (hat) exists at
t1 (t2). Thus, if there is any problem here, it concerns the claim that the piece of
yarn goes out of existence when knitted into a sweater (hat). Such a claim is usually
deemed as counterintuitive. However, this is not so clear.

First observe that it is fully consistent both with common beliefs and practices
and with the present ontological framework to say that the piece of yarn becomes
another thing (a sweater, or a hat) through a certain change (being knitted).

To put this view in philosophically more respectable terms, we may say that,
when we knit a piece of yarn into a sweater (hat), what we have is a change of
entity, rather than a change affecting a single entity. And, whenever there is a change
of entity, the original entity goes out of existence. So, the claim that the piece of
yarn goes out of existence when knitted into a sweater (hat) is not inconsistent with

20 Something similar to what was said above (note 18) of the portion of clay could be said of
the piece of yarn, even though in a somewhat more complex manner. The piece of yarn might be
thought of as an entity got by means of an equivalence relation. The unraveled piece of yarn, the
sweater, and the hat are all composed, at the appropriate times, by the same disjoint connected
parts linearly ordered. The corresponding equivalence class could be identified with the piece of
yarn. From this point of view also the piece of yarn (without any qualification) might be conceived
as the materialization of an abstract entity.
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some intuitions (assuming that they are coherent). We suspect that, if it appears
counterintuitive, this is because the notion of going out of (temporal) existence is
conflated with that of being destroyed (or disintegrated etc.).

In the present framework, a thing may go out of existence without being
destroyed, if being destroyed entails being unrecoverable, or at least extremely hard
to recover.21 Consider for instance a very simple, two-piece, Tinkertoy house. Most
philosophers would agree that the house goes out of (temporal) existence when
turned into a two-piece Tinkertoy car. Yet, in this scenario, we would not say that
the Tinkertoy house has been destroyed (unless it is part of a make-believe game to
so saying). And plausibly, the reason is that the house is easily recoverable: turn the
car into a house, and you have it back.

There is another, more theoretical reply to the objection concerning the (tem-
poral) co-existence of the piece of yarn and the sweater (hat). It could be claimed
that an entity composed of certain other disjoint entities at a given time presents a
maximal level of structuring at that time. That would distinguish the sweater (the
hat) from what is regarded as the piece of yarn at a time in which the sweater (the
hat) exists. A possible evidence for this perspective stems from the anti-symmetry
of the intuitive relation of constitution. We may say that the piece of yarn constitutes
the sweater at t1, but not vice versa. A plausible explanation is that the sweater is
structurally richer than what is regarded as the piece of yarn. The piece of yarn—qua
object that remains the same no matter if knitted into a sweater, unravelled or knitted
into a hat—may be seen as a lower level, non-maximally structured entity, and thus
not as a single material entity at all.

Of course, to make this idea precise, and hence more acceptable, would not be
an easy job, for it is difficult to specify which changes in the relations among the
(relevant) parts affect the persistence of the entity. It is quite obvious, for instance,
that the sweater worn and the sweater folded are the same entity, and this appears
to entail that the preservation of the maximal level of structuring of the relevant
existing parts is too strong a condition for persistence. In the cases we are discussing,
where the entities in question are wholes (in Simon’s sense) and all their composing
parts are preserved, the level of structuring should be qualified as maximal up to
certain mathematical transformations, including by example a limited variation of
the distance among parts.

13.6 Conclusion

Clearly some work is still to be done to transform the outlined view into a fully
developed theory. However, we think we have achieved some results. We proved
that mereology is formally consistent with the statement that there are entities that

21 Of course, this view presupposes that intermittent (temporal) existence is allowed. However,
we know of no convincing objection to intermittent (temporal) existence, and of many reasons to
endorse it. Anyway, see [4, 12] for a couple of contrasting views on this matter.
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persist while changing some of their parts. We also indicated how puzzles can be
accordingly solved and how two main kinds of change concerning parts might be
accounted for, by providing a partially new analysis of some classical problems
involving persistence through time.
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Chapter 14
Russell Versus Frege

Imre Rusza

Bertrand Russell’s “On Denoting”, published in 1905, has inspired lively debates,
particularly among philosophers studying natural languages. The primary target of
their criticism was Russell’s proposal about the logical analysis of definite descrip-
tions. At one point in the article, Russell explains that by distinguishing between
meaning and denotation we are headed for confusion. Here, the basic target is
Frege’s “two-dimensional” semantics, the Fregean distinction between meaning
(Sinn) and reference (Bedeutung). As far as I know, Russell’s critics did not pick
up on this particular line of reasoning, concentrating on others instead. The aim
of the present article is to fill this gap and to take a close look at the Russellian
argument in question.

An overview of Russell’s overall line of thought in “On Denoting” will be helpful
in clarifying how the parts fit together. According to him, the following types of
expressions are denoting phrases:

(1) one man, some man, any man, every man, all men
(2) the present King of England, the present King of France, the center of mass of

the Solar System at the first instant of the twentieth century, the revolution of
the earth around the sun, the revolution of the sun around the earth.

Russell observes that there are three possibilities:

a. the denoting phrase does not denote anything, for example, “the present King of
France”;

b. the expression denotes a definite object, for example, “the present King of
England”;

c. the expression denotes ambiguously, for example, “a man” denotes an ambiguous
man. (One might doubt whether this classification is exhaustive.)

Russell’s thesis is as follows: denoting phrases do not have any meaning in isola-
tion, but whenever they occur as parts of propositions, we can assign exact meanings
to the propositions. He first focuses on assigning logical structures to sentences
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containing quantified expressions like those in (1) above (in effect, he demonstrates
how universal and existential quantification works). He then goes on to consider the
definite descriptions exemplified in (2). If C(x) is an open sentence and “the F” is a
definite description, then the logical structure of “C(the F)”, according to Russell,
is as follows:

∃x(∀y(F(y) ≡ y = x) ∧ C(x))

The Russellian reconstruction of “the King of France is bald” therefore becomes:
“There is exactly one thing x that is King of France and this x is bald.” This formu-
lation no longer contains the expression “the King of France” (according to Russell,
this shows that the expression by itself does not have a meaning of its own). And
this sentence is bound to be false if France does not have a king (or if it has several
kings).

According to Russell, if we were to assign meaning as well as denotation to
definite descriptions, then the first complication would arise in those cases when
the denotation is in fact missing (for example, if we state something now about
the [present] King of France). Russell criticizes Meinong, who assumes that the
denoting phrase still picks out an object, albeit one that is not included among the
things that exist. Russell also rejects Frege’s solution in the context of formalized
languages: when there is no actual denotation, Frege posits an artificial one. We
need not contest the validity of Russell’s objections in order to criticize the solu-
tion he proposes. It is well to note, however, that—unlike for Russell—for Frege,
atomic sentences containing non-denoting descriptions lack truth value, so they are
not false (Frege [1, pp. 214–16, 221–23]). Admittedly, Frege did think that in a
logically perfect language there is always a denotation (the trick of assigning an
artificial denotation is related to this point), but in the context of natural languages,
he conceded the possibility that denotation and truth value may go missing. (We
might wonder whether Frege’s opinion about a logically perfect language would
remain standing in the light of what we know today. But that is a different issue that
would lead us off track.)

Russell describes Frege’s theory as follows:

In this theory, we shall say that the denoting phrase expresses a meaning; and we shall
say both of the phrase and of the meaning that they denote a denotation. In the other the-
ory, which I advocate, there is no meaning, and only sometimes a denotation. (Russell
[2, p. 483, fn. 10])

Frege has never claimed that the meaning denotes a denotation (only the sign
does, the expression itself). Later on, we will see that Russell is attempting to iden-
tify linguistic expressions with their meaning.

We have now arrived at the part of “On Denoting” on which (as far as I am aware)
hardly any attention was lavished by Russell’s critics. This passage opens with the
following:
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The relation of the meaning to the denotation involves certain rather curious difficulties,
which seem in themselves sufficient to prove that the theory which leads to such difficulties
must be wrong. (Russell [2, p. 485])

In order to demonstrate these difficulties, Russell introduces the following con-
vention: if we want to talk about the meaning of a denoting expression, then we
should put quotation marks around it.

This notational convention is objectionable because quotation marks are com-
monly used to name or denote the expression, to talk about the expression itself.
The next example of Russell’s immediately demonstrates the kind of confusion that
ensues as a result:

(3) The center of mass of the Solar System is a point, not a denoting expression.
(4) “The center of mass of the Solar System” is a denoting expression, not a point.

The statement in (3) is unproblematic; but the only way to accept (4) without
reservation is if the part enclosed in quotes serves to denote the expression. But if
we were to use quotation to denote the meaning instead, then we would start having
doubts: about the meaning of the expression appearing in quotes within (4), we
would be reluctant to say that it was a denoting expression.

The Russellian notation therefore identifies an expression with its meaning. This
is hardly consistent with Frege’s conception, according to whom

A proper name (word, sign, sign combination, expression) expresses its sense, refers to or
designates its referent. By means of a sign we express its sense and designate its referent.
(Frege ([1, p. 214])

In addition, Frege carefully distinguishes talk about words from talk about their
meanings. He considers the possibility that . . .

. . . one wishes to talk about the words themselves or [about] their sense. This happens, for
instance, when the words of another are quoted. . . . In writing, the words are in this case
enclosed in quotation marks. . . . In order to speak of the sense of an expression “A” one
may simply use the phrase “the sense of the expression ‘A’”. In reported speech one talks
about the sense, e.g., of another person’s remarks. (Frege ([1, p. 211])

For the sake of exposition, let us introduce some useful notation. For any expres-
sion C, we use the schema

(5) MEAN(C)

to denote its meaning, and use the schema

(6) DEN(C)

to denote its denotation. Here, I use the letter “C” as a variable for linguistic expres-
sions; in other words: the permissible values of this variable are linguistic expres-
sions. In schemata that contain free variables, variables can be replaced by names
that denote one of the permissible values of the variable. This way, for the variable
“C” we may substitute the name of some expression. We may use a definite descrip-
tion as a name denoting a linguistic expression, or we may quote the expression.
Let us agree to use single quotes to denote an expression whenever we do not know
or do not want to denote it using a definite description. But this sort of quotation
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makes no attempt to denote the meaning, unlike the quotation Russell suggested.
In accordance with this, we can give a concrete example of how the schemata in
(5) and (6) can be used:

(7) MEAN (‘the French President’), DEN (‘the French President’).

The quotes cannot be omitted; the substitution instances below are incorrect:

(8) MEAN (the French President), DEN (the French President).

Explanation: the French President is no linguistic expression and hence has nei-
ther meaning, nor denotation. By contrast, ‘the French President’ can have both.

Insisting on the quotation marks perhaps seems like unnecessary fussiness: we
could just agree to omit them and use (8) instead of (7). But this would be a
hasty move; for in the schemata in (5) and (6), for C we may also substitute a
description that denotes an expression. Let us consider the following example from
Russell:

(9) The first line of Gray’s poem entitled Elegy = ‘The curfew tolls the knell of
parting day’ (Russell [2, p. 486]).

The description on the left side of the identity denotes a linguistic expression
(an English expression), whereas the right side quotes the same expression. We
therefore have a true identity statement. Consequently:

(10) DEN (the first line of Gray’s Elegy) = DEN (‘The curfew tolls the knell of
parting day’),1

but also

(11) DEN (‘the first line of Gray’s Elegy’) = ‘The curfew tolls the knell of parting
day’.

The meaning of an expression is independent of how we denote that meaning.
From the identity in (9) we therefore get:

(12) MEAN (the first line of Gray’s Elegy) = MEAN (‘The curfew tolls the knell of
parting day’).

By contrast:

(13) MEAN (‘the first line of Gray’s Elegy’) �= MEAN (the first line of Gray’s
Elegy).

Let us keep in mind that based on the identity in (11), we can make a substitution
on the right side of (12) to get the following:

(14) MEAN (the first line of Gray’s Elegy) = MEAN [DEN (‘the first line of Gray’s
Elegy’)].

1 The first line of the poem in question is a declarative sentence. Therefore the identity in (10)
makes sense only if declarative sentences have denotations. (Frege thinks they do: declarative
sentences denote their truth value.) But in this paper, we need not take a stand on this.
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Russell says the following about the relation of (12) and (13):

“The meaning of the first line of Gray’s Elegy” is the same as “The meaning of ‘The curfew
tolls the knell of parting day’,” and is not the same as “The meaning of ‘the first line of
Gray’s Elegy’”. (Russell [2, p. 486])

Russell finds it problematic that when we want to talk about the meaning of an
expression C we end up with the meaning of C’s denotation, as shown in (14).
But this way of putting the matter is inaccurate. In fact, the relation consists in the
following.

Let C be a name denoting a linguistic expression by means of a description, and
let C* be the quoted version of this description. We then get:

(15) MEAN (C) = MEAN [DEN (C*)].

In this schema, for a change, we substitute for C the description directly (without
any quotation marks), and we can substitute for C* the description in quotes. The
identity in (14) is an instance of this relationship. Russell should have stressed the
fact that this sort of case arises only when C itself is a linguistic expression denoted
by means of a description. Instead, all he did was to warn us that the denotation of
C might not have a meaning:

But if we speak of “the meaning of C,” that gives us the meaning (if any) of the denotation.
(Russell [2, p. 486])

Indeed, if C denotes something other than a linguistic expression, then the denota-
tion of C lacks meaning (as we have seen in the example about the French President).

The identity in (15) is meaningless if we fail to substitute C in accordance with
our specifications. But with proper substitution, we do not get a paradox of any
kind. The apparent paradox arises from Russell’s failure to distinguish between the
denotation of C and the denotation of C in quotation marks; and this difference is
clearly marked in the identity statements in (10) and (11).

Russell continues:

Similarly ‘the denotation of C’ does not mean the denotation we want, but means something
which, if it denotes at all, denotes what is denoted by the denotation we want. (Russell
[2, p. 486])

Again, this criterion is fulfilled only in those cases when C denotes a linguistic
expression by means of a description. Russell gives the following example:

C = ‘the first line of Gray’s Elegy’, and

(16) the denotation of C = The curfew tolls the knell of parting day.

But what we meant to have as the denotation was ‘the first line of Gray’s Elegy’. (Russell
[2, p. 486])2

2 The unitalicized schematic letter “C” was Russell’s choice. The numbering was added to the
original.
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The apparent trouble is again due to a mix-up between the expression and its quoted
version. In the identity below, we can substitute for C any name with a denotation,
and for C*, the name in quotation.

DEN (C*) = C.

For example:

DEN (‘the French President’) = the French President.

It is trivially true that the description ‘the French President’ denotes the French
President (if it denotes anything at all). In the same way:

(17) DEN (‘the first line of Gray’s Elegy’) = the first line of Gray’s Elegy = ‘The
curfew tolls the knell of parting day’.

[See (11).] But the first line of Gray’s Elegy denotes something different, as shown in
(10): the denotation of the first sentence featured in the poem’s first line (if sentences
have a denotation at all).

In the identity statement in (16), Russell presumably intended to have for the
left-side C the definite description enclosed in quotes [this is also suggested by the
identity in the line preceding (16)]. But then the line of the poem appearing on the
right side of the identity should have been enclosed in quotes, as demonstrated in
(17). But this move provides us with the desired denotation, as shown, again, in (17).
But if the role of C were played by an unquoted description, then the appropriate
identity statement would be (10) (if the statement made any sense at all). We see
then that the confusion has been due to the omission of one pair of parentheses.
Accordingly, distinguishing meaning and reference in Russell’s examples would
cause no trouble, provided we play close attention to the parentheses.

In his subsequent reasoning, Russell explicitly says that he wants to identify an
expression and its meaning:

. . . suppose C is our complex,3 then we are to say that C is the meaning of the complex.
Nevertheless, whenever C occurs without inverted commas, what is said is not true of the
meaning, but only of the denotation, as when we say: The centre of mass of the Solar System
is a point. Thus to speak of C itself, i.e. to make a proposition about the meaning, our subject
must not be C, but something which denotes C. Thus “C,” which is what we use when we
want to speak of the meaning, must be not the meaning, but something which denotes the
meaning. And C must not be a constituent of this complex (as it is of “the meaning of C”);
for if C occurs in the complex, it will be its denotation, not its meaning, that will occur
and there is no backward road from denotations to meanings, because every object can be
denoted by an infinite number of different denoting phrases. (Russell [2, p. 487]) (emphasis
in original)

3 Complexes are complex linguistic expressions. Again, the unitalicized schematic letter “C” was
Russell’s choice.
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Syntactic and semantic terms are tangled up throughout this passage, in just about
every sentence. (For example, how could the denotation of a constituent expression
occur within the whole expression, when a denotation is not a grammatical entity but
a physical object, say?) But let us graciously set aside this aspect (similar confusion
is common in the writings of Russell’s contemporaries as well), in the hope that
the reader can figure out the intended message. The genuinely interesting remark
to make about this passage is that it does not fit with Frege’s theory of meaning.
Frege does not identify an expression with its meaning, and does not claim that “the
meaning denotes the denotation” [Russell [2, p. 486]]. Let us consider the following
passage from Frege:

The regular connection between a sign, its sense, and its referent is of such a kind that to
the sign there corresponds a definite sense and to that in turn a definite referent . . . The same
sense has different expressions in different languages or even in the same language. (Frege
[1, p. 211])

The second sentence of the passage makes clear that Frege does not identify the
expression (the sign) with its meaning. The first sentence says (among other things)
that a determinate reference corresponds to a determinate meaning. But to read
this as claiming that the meaning denotes the denotation is possible only under the
assumption that the sign is identical with its meaning.

Russell recognizes that there is a difference between the meaning of an expres-
sion and positing a name to denote that expression. But this much is trivially true:
names that denote are grammatical entities; meanings, by contrast are not—even
though according to Russell they are. Thus for Russell, the claim is not a trivial one
but the basis for an argument to discredit the notion of meaning. Even though “C”
denotes C, C cannot be a component of “C”, making the relation between “C” and
C seem mysterious.

Russell continues with this objection: if C is featured in a statement, then it is
not just its denotation that matters; its meaning, too, will become relevant. Let us
compare the following two statements:

(18) Scott is the author of Waverley.
(19) Scott is Scott.

(18) has a property that (19) lacks, namely that King George IV inquired about its
truth [but did not ask about the truth of (19)]. Consequently, (18) and (19) do not
express the same proposition, even though

(20) DEN (‘the author of Waverley’) = DEN(‘Scott’) = Scott.

Consider the denoting expression ‘the author of Waverley’ within (18): in addition
to its denotation, its meaning is also relevant. But Russell contends that according to
advocates of a theory of meaning, the denotation remains the only relevant feature
of a denoting expression until we enclose it in quotes (Russell [2, p. 488]).

Russell’s solution to the “paradox” is familiar: just like descriptive phrases
in general, descriptions featuring the definite article lack meaning in isolation,
although meanings are assigned to each proposition in which the descriptions occur.



268 I. Rusza

In the Russellian logical reconstruction of the sentence in (18), the definite descrip-
tion ‘the author of Waverley’ disappears, thus confirming the claim that there is no
need to assign any meaning to the definite description.

The Fregean solution to the Scott-problem is also familiar; I will repeat it here
for the sake of completeness. Based on the identity in (20), we have to admit that
(18) and (19) have the same truth value.4 By contrast:

MEAN (‘the author of Waverley’) �=MEAN (‘Scott’)

Therefore the meanings of (18) and (19) may be different (indeed they are). There
is no need to give up the Fregean theory in order to reflect the difference in meaning
between the two sentences.

To summarize: In the part of “On Denoting” discussed here, Russell attempts to
discredit Frege’s theory of meaning by first identifying denoting expressions with
their meanings and then by deriving paradoxes involving definite descriptions that
denote linguistic expressions (for example, ‘the first line of Gray’s Elegy’). These
paradoxes disappear once we distinguish expressions from their meanings and han-
dle our quotation marks with care.
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Chapter 15
Goodman’s Only World

Vladan Djordjević

Having realized that he was not able to finish his project, Goodman abandoned
his theory of counterfactuals and left it in quite a mess. That left room for dif-
ferent interpretations. Goodman’s paper is famous and has been cited, mentioned,
or interpreted thousands of times (as can be seen on Google Scholar). Very often,
these interpretations are imprecise, incorrect, or wrong, in a strange way—the incor-
rectness is obvious, or at least can be shown very easily. This also holds for what
we can call “standard interpretations” of Goodman’s theory, by which I mean sim-
ilar interpretations written by some authors influential in the field of conditional
logic, or written in some survey articles on conditionals. My goal in this paper is to
investigate how this highly unlikely situation came about. Something went wrong,
and I will argue that it is worthwhile to figure out what that is. First I will try to
explain what Goodman did say, which of his claims are usually ignored, and what
he did not say but is sometimes ascribed to him. I will emphasize one of the reasons
why correcting the wrong interpretations is significant: because these interpretations
give counterfactuals some formal properties that neither Goodman nor (usually) the
interpreter would accept. At the end, I will give a brief comment on my motives to
deal with Goodman’s theory, since one might ask why bother with some old theory
now that we have much more advanced theories? My answer will be that we need
some intuitions from the old theory to test the new ones.

A counterfactual A → C (if it had been the case that A, it would have been the
case that C) is true according to Goodman [8],1iff there is an argument of the form

(1) A,B1,B2, . . . ,Bn

C

1 Goodman 1947 [8], which is the subject of this paper, was reprinted in 1954 [9] and 1983 [11]
and elsewhere. References here are to [11], where some changes have been made to the original
1947 paper.
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which is valid by the laws of logic and nature, and the B’s are some true contingent
propositions (usually called background facts) that satisfy certain conditions. Laws
of nature played an important role in Goodman’s paper, but will play none in mine.
I will assume that natural laws could be among the B’s. That way, a counterfactual
is true iff there is a corresponding argument of the form (1) that is logically valid.
This will make things simpler for us, and, having noticed the simplification, we will
be in no further danger of misinterpreting Goodman because of that.

The main task and a difficult problem is to determine which propositions are
allowed to be included among the B’s. Since the antecedent is typically false, obvi-
ously not just any truths could come in. Otherwise, the negation of the antecedent
would be among these truths, and (1) would be trivially valid, which would make too
many counterfactuals true. After examining and rejecting many possible answers,
Goodman came up with the following tentative definition:

. . . a counterfactual is true if and only if there is some set S of true sentences such that S is
compatible with C and ¬C, and such that A ∧ S is self-compatible and leads by law to C;
while there is no set S′ compatible with C and C, and such that A ∧ S′ is self-compatible
and leads by law to ¬C. [11, p. 13]

The “law” mentioned is logical or natural, which I just commented on. Goodman
never bothered to tell us what a conjunction of a proposition and a set is, and what
it means that a set is compatible with a proposition, namely whether C has to be
compatible with each member of S or with their conjunction; as we will see later,
that might turn out to be important for the formal properties of “→”. Let us for the
time being formulate the tentative definition in the following way, emphasizing the
positive and the negative requirement:

(TD) A → C is true iff: (α) there is some set S of true sentences such that both
S∪ {C} and S∪ {¬C} are consistent, and such that {A} ∪S is consistent and
entails C; while (β) there is no set S′ such that both S′ ∪ {C} and S′ ∪ {¬C}
are consistent, and such that {A} ∪ S′ is consistent and entails ¬C.

Let A = the match m is struck, C = the match m lights, and let both A and C be false.
Let the elements of the set S of true relevant propositions be: B1 = m is dry, B2 = m
is well made, B3 = oxygen enough is present. This is the example Goodman used
to test TD. To make things simpler we can suppose that S contains the relevant law
of nature, e.g. B4 = All dry, well made matches light when struck in the presence
of oxygen. Then S = {B1,B2,B3,B4}. That way the corresponding argument (1) is
valid only in virtue of the laws of logic. We want (2) to come up true according to
our definition:

(2) Had m been struck, it would have lit. (A → C)

At first sight, (2) seems to satisfy TD. However, Goodman points to the problem
that A → ¬Bi , for some i , also seems to satisfy TD. For example

(3) Had m been struck, it would have been wet. (A → ¬B1) [11, p. 14]
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The set of true relevant propositions for this conditional is {¬C,B2,B3,B4} (call
it S1). S1 and A together entail ¬B1. Thus TD is wrong, because intuitively it is
obvious that (2) is true and (3) false. We need a definition that would make the right
choice between (2) and (3).

Although this is not part of Goodman’s argumentation, it is worth noting here
that the choice between (2) and (3) is related to another feature of counterfactu-
als, taken by many theorists to be essential, namely that counterfactuals should be
distinguished from indicative conditionals. (2) is true and each of A → ¬Bi is
false for any i , while for their corresponding indicative versions it should be the
opposite—(2i) should be false and at least one of A → ¬Bi should be true:

(2i) If m was struck, it lighted.
(3i) If m was struck, then it was wet (or not well made, or there was not enough

oxygen, or. . . ).

We see a new match m that never lighted, so it did not light even if it was struck.
Thus (2i) is false. And since it never lighted, then if it was struck, it must be that it
didn’t light either because it was wet or not well made or . . . etc., as (3i) says.

Therefore, beside the obvious reason that intuitively (2) is true and (3) false,
there might be another theoretical reason to reject TD, since it does not distin-
guish indicative and counterfactual conditionals. However, Goodman’s immediate
reason to reject TD was not correct. It is not the case that both (2) and (3) come
out true according to TD. In fact, TD makes them both false. Take {A ⊃ C} to be
the set of background propositions from the positive requirement (α) from TD and
{A ⊃ ¬ C} to be the set from the negative requirement (β) for conditional (2),
and take {A ⊃ ¬ B1} and {A ⊃ B1} to be the sets from (α) and (β) respectively
for conditional (3) (“⊃” is the material implication). Neither (2) nor (3) will be true
according to TD. This problem was discovered by Parry [18]. Goodman admitted
that Parry was right [10], and in later reprints of his 1947 essay we can see the
footnote:

Since this essay was first published, W.T. Parry has pointed out that no counterfactual sat-
isfies this formula [TD]; for one could always take ¬(A ∧ ¬C) as S, and take ¬(A ∧ C)
as S′. Thus we must add the requirement that neither S nor S′ follows by law from ¬A.
[11, footnote 7, p. 13]

(Note that ¬(A ∧ ¬C) is equivalent to A ⊃ C and ¬(A ∧ C) to A ⊃ ¬C. Good-
man apparently had in mind only the “real” counterfactuals, i.e. those with a false
antecedent.)

Goodman never bothered to include this improvement in TD, probably because
he was too worried about his main problem. That problem is related to the following
observation: ¬C would not have been true had A been true, which means that the set
S1 = {¬C,B2,B3,B4} mentioned above would not have been a set of true propo-
sitions had A been true. In other words, ¬C is not cotenable with A. It is implicit
(but still very clear) in Goodman’s paper that he would define cotenability thus: B
is cotenable with A iff ¬(A → ¬B). To improve TD, Goodman suggested that
A∧ S should not only be self-compatible, but S should be cotenable with A as well
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[11, p. 15]. As I mentioned above, there was a dilemma how to interpret compatibil-
ity of a set with a proposition. Now we have the analogous problem to understand
cotenability of a set with a proposition—is it the conjunction of the members of the
set that is cotenable with the proposition, or each member separately?. Goodman
never felt a need to be more precise on this point. This distinction should be made
because it is possible that each member of a set is cotenable with a proposition,
but their conjunction is not. Both propositions that it is and that it is not raining
are cotenable with you reading my paper, but their conjunction is not. Or, to use an
example from Goodman’s paper [11, p. 11], each of the propositions (4)–(6)

(4) Jones is not in South Carolina
(5) Jones is not in North Carolina
(6) North Carolina plus South Carolina is identical with Carolina

is cotenable with the antecedent in a counterfactual beginning

If Jones were in Carolina . . .

but the conjunction of (4)–(6) is not.
What are the final truth conditions Goodman proposed? We cannot tell. Instead

of putting them explicitly, Goodman said (square brackets are mine):

Returning now to the proposed rule [TD], I shall neither offer further corrections of detail
nor discuss whether the requirement that S be cotenable with A makes superfluous some
other provisions of the criterion; for such matters become rather unimportant besides the
really serious difficulty that now confronts us. [11, p. 16]

The difficulty is that he could not define counterfactuals without the notion of coten-
ability, while cotenability is defined in terms of counterfactuals. Being unable to
avoid circularity or infinite regress, Goodman thought that his whole project was a
failure, and wouldn’t bother any more with technical details. Even more so since
Goodman found the problem of defining the relevant background propositions only
one of two major problems. The other problem that must be solved to define truth
conditions for counterfactuals Goodman found in defining the notion of natural law,
which is “even more serious” [11, p. 17]

Today we do not believe that Goodman’s project was a total failure. He did fail
to provide a reductive definition of counterfactuals, that is, a definition of truth
conditions in terms of well-defined and precise logical notions that do not pre-
suppose counterfactuals. However, even the most popular contemporary theories
of counterfactuals fail to do that. Goodman’s project was very ambitious, and the
disappointment of not fulfilling the main ambition prevented him from looking for
another useful thing he could have done with his theory. That useful thing could
have been a logical system for counterfactuals. Stalnaker, who made the first such
system, used the notions of possible worlds and a selection function which for any
given antecedent picks up the closest world in which the antecedent is true [21, 23].
If the consequent as well is true in that world, the conditional is true. But Stalnaker
never attempted a reductive definition of “closeness” of worlds. Nevertheless, that
was not an obstacle to make a formal semantics that determined rules of inference,
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to find axioms and prove consistency and completeness. And, as shown by Loewer
[15], the same can be done using Goodman’s notion of cotenability as a primitive.

The facts that Goodman did not offer final formulation of the truth conditions,
that TD is quite long, that it would be even longer with the addition of Parry’s
improvements and the notion of cotenability, that those additions might make parts
of TD redundant, and that the background propositions might be considered coten-
able either separately or as a conjunction, left room for different interpretations.
Very often Goodman’s theory is presented with most parts of his definition ignored,
and the rest slightly changed. The reasons for that are often not given. Authors do
that probably thinking that the ignored parts are redundant or even wrong, and that
the changes they made either improve Goodman’s definition, or express explicitly
what they take was only implicit in Goodman’s paper. Some of those interpretations
are simply too inaccurate to be ascribed to Goodman. For example:

Intuitively, S is to consist of sentences which (i) are true and (ii) would also have been true,
if contrary to fact, φ [the antecedent] had been true. The second condition, . . . , Goodman
referred to as the cotenability of S with φ. [24, p. 453]

According to this definition, B being cotenable with A means A → B, which is dif-
ferent from Goodman’s definition¬(A → ¬B). The difference is important because
Goodman thought that in general A → B and A → ¬B are not contradictory but
contrary propositions and could both be false [11, cf. footnote 2, p. 6, and footnote 9,
p. 15]. A → B is therefore not equivalent to ¬(A → ¬B). What also follows from
the claim that A → B and A → ¬B are only contraries is that Goodman rejects
the so-called law of conditional excluded middle: (A → B) ∨ (A → ¬B), a con-
troversial formula, which is a distinctive feature of Stalnaker’s semantics. Despite
Stalnaker’s elaborated and very interesting defense of the law [22], it seems that
philosophers more often reject it than accept it.

Today the usual interpretation of Goodman says that

(UI) A → C is true iff A, together with a set S of true premises, each of them
cotenable with A, entail C.

Cotenability thus becomes sufficient instead of necessary condition for a truth to be
among the B’s. Cotenability/compatibility with C and ¬C is dropped; no mention
of Parry’s requirement; the negative condition (β) disappears; the B’s are coten-
able with the antecedent separately, not as a conjunction. Obviously, (UI) cannot be
ascribed to Goodman. Nevertheless, (UI) or a similar or equivalent formulation can
easily be found in the literature. Talking of theories similar to Goodman’s, Arlo-
Costa [1] said:

The basic idea of this view is that a conditional is assertable if its antecedent, together with
suitable (co-tenable) premises, entails its consequent. . . . In fact, one can also evaluate the
truth conditions of conditionals under this point of view by saying that a conditional is true
if an argument from the antecedent and suitable co-tenable premises to the conditional’s
conclusion exists. . . . The type of analysis of conditionals a la Goodman, for example, pro-
vides truth conditions for conditionals in terms of the following test: a → b is true if b
follows by law from a together with the set Γ of true sentences c such that it is not the case
that a → ¬c.
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In a survey article on conditionals one might want to point to the main problem and
omit what might look like technical details, as Arlo-Costa did here. The “techni-
cal details”, however, deserve more attention, as I will try to show. Arlo-Costa, of
course, did not ascribe (UI) to Goodman, since he speaks of the “basic idea” and the
“type of analysis a la Goodman”. But sometimes (UI) or something very similar is
explicitly ascribed to Goodman, as we can see from Nute’s explanation:

So Goodman’s ultimate position is that φ → ψ is true just in case ψ is entailed by φ
together with the set of all physical laws and the set of all true propositions cotenable with
φ, i.e. with the set of all true propositions such that no member of that set counterfactually
implies the negation of φ and the negation of no member of that set is counterfactually
implied by φ. [17, p. 5]

Defining S as a set of cotenable truths means that S contains all such truths.
Therefore S is an infinite set, of a cardinality as big as our supposed formal language
permits it. This is one more point that Goodman is silent about. Do we include in S
all the truths that do not make troubles? Or only the relevant ones? Or something in
between? Goodman’s subtitle “The problem of relevant conditions” suggests only
the relevant B’s. In the match example, S would then contain only the four proposi-
tions B1−B4. The fact that he speaks of a conjunction A ∧ S suggests that S should
be finite, since he relies on classical logic where formulae are finite by definition. On
the other hand, at the beginning of his section on relevant background propositions
Goodman said:

It might seem natural to propose that the consequent follows by law from the antecedent and
a description of the actual state-of-affairs of the world, that we need hardly define relevant
conditions because it will do no harm to include irrelevant ones. But . . . [11, p. 9]

. . . but then he goes on to reject this proposal, and never goes back to tell us clearly
whether his ultimate goal was to define a set of good propositions, or a set that
excludes bad propositions. The former might be finite. The latter is likely to be
infinite. When Lewis mentions theories of Goodman’s type, he talks about a finite
number of auxiliary premises [13, sections 2.6, 3.1, 3.2]. However, Lewis is not
primarily interested in presenting such theories, but rather in making a point about
his own theory. The S according to (UI) and the above citations from Arlo-Costa
and Nute is infinite. The interpretation from another survey paper, by Dorothy
Edgington, is, like Goodman’s paper, also not clear at this point, for the similar
reasons—she gives a version of (UI) as an interpretation of Goodman and mentions
cotenability as the condition for a truth to be among the B’s (which suggests that
there are infinitely many of them), but instead of a set S she mentions a conjunction
of B’s (which suggests a finite number).2 Thus we have another reason to think
of (UI) as an interpretation that adds things that cannot be found in Goodman—it
requires an infinite number of B’s, while he didn’t say if it was finite or infinite.

2 Edgington [6, p. 248]. The interpretation says: “A counterfactual conditional ‘A → C’ is true if
and only if there is a conjunction of truths T which include a law of nature [and satisfy condition X ]
such that A&T entails C .” And a bit later on the same page: “Then the square bracket reads ‘and
are cotenable with A’.”
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Goodman didn’t care about such details, probably because he was concentrated on
his main project—providing a reductive analysis, and didn’t think of the less ambi-
tious project of making a formal system with the “useless” circular truth conditions.
Otherwise, he might have noticed that the number of the B’s is important for the
formal properties of counterfactuals (to be shown later).

It has been noticed early that there is some tension between (UI) (with an infin-
ity of B’s) and the conditional excluded middle (CEM), which Goodman rejects
as mentioned above. Pollock claimed that Goodman’s theory validated CEM for
conditionals with false antecedents, and used that as an argument against Goodman.
He provided the following proof for the claim [19, p. 11] (text in the square brackets
is mine; the funny brackets “/, 0” are apparently Quine’s quotes [20, pp. 33–37]):

Given this difference [between ¬(P → ¬Q) and P → Q, which are not equivalent for
Pollock because he rejects CEM] I think it is clear that Goodman’s requirement of coten-
ability is too weak. This is demonstrated by seeing that it would lead right back to a special
case of the principle that if /¬(P → ¬Q)0 is true then /P → Q0 is true. More precisely,
Goodman’s proposal implies that whenever P is false and /¬(P → ¬Q)0 is true, then
/P → Q0 is true. This implication is established as follows. First, we need two obvious
principles regarding subjunctive conditionals:

(a) If /P → Q0 is true and Q entails R, then /P → R0 is true.
(b) If /P → (P ⊃ Q)0 is true, then /P → Q0 is true.

(a) is so obvious as to need no defence. (b) holds because if /P ⊃ Q0 would be true if P
were true, then both P and /P ⊃ Q0 would be true if P were true, and hence Q would have
to be true if P were true. Given these principles, let us suppose, with Goodman, that truth
and cotenability are all that is required for inclusion in C [Pollock uses “C” for the set of
background propositions that Goodman called S]. Suppose P is false and /¬(P → ¬Q)0 is
true. Then by (a) /¬(P → (P ∧¬Q))0 is true and so /¬(P → ¬(P ⊃ Q))0 is true. But as
P is false, /P ⊃ Q0 is true, and if follows from Goodman’s proposal that /P → (P ⊃ Q)0
is true. Then from (b) it follows that /P → Q0 is true.

From the citation we can see that Pollock reads Goodman the same way as stated
in (UI) (“truth and cotenability are all that is required for inclusion in C”), so Pol-
lock’s conclusion holds for (UI) and the similar versions we mentioned above, like
Nute’s, Edgington’s and Arlo-Costa’s. Note that the principles (a) and (b) are “safe”,
that is, they can easily be derived from (UI).

Bennett would agree with Pollock that a theory is to be rejected if it implies
CEM [2, p. 308], but he came closer to a more general result about (UI). Bennett
didn’t explicitly ascribe (UI) to Goodman, but he did analyze it and claimed that
“surprisingly” [2, p. 233] (UI) implies CEM without any restriction [2, p. 308].
Here is why: (UI) implies what Bennett called (PF*)[2, p. 233]:

(PF*) C ∧ ¬(A → ¬C) entails A → C.

In yet another context Cross proved that (PF*) entails CEM [3]. This can be proven
as follows.

Theorem 1 If (PF*) is valid, so is CEM.
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Proof Suppose the negation of CEM:

¬(A → C) ∧ ¬(A → ¬C).

Then suppose C. Together with the right conjunct ¬(A → ¬C), C implies A → C
by (PF*). But this contradicts the left conjunct¬(A → C). Now suppose¬C. Given
that A → C is equivalent to A → ¬¬C, ¬C and the left conjunct ¬(A → C) by
(PF*) imply A → ¬C. But A → ¬C contradicts the right conjunct. Therefore
CEM. ,-
Therefore, if PF* is valid, so is CEM. This proof shows that (UI) validates CEM,
because PF* is obviously implied by (UI): PF* says that A → C is true whenever
C is true and cotenable with A, and A → C is true according to (UI) iff A and all
cotenable truths entail C. If C is true and cotenable with A, then it is already in S,
so, trivially, it is entailed by {A} ∪ S, and A → C follows.

It should be noted that two more people came to the same result that (UI) val-
idates CEM. Barry Loewer mentioned it, but only as a by-the-way notice, without
proof or a further comment. In that paper he was not interested in the background
facts being cotenable with the antecedent separately (as it is assumed in (UI)), but as
a conjunction.3 The simplest proof I found is by Johan Mårtensson [16, section 2.8
“Cotenability”, p. 125]4:

If the requirement of cotenability is understood to present not only necessary but also a
sufficient condition on inclusion in the contracted set of true sentences S then it seems the
resulting facts revision semantics will validate the principle CEM: If A → ¬C is not true
and C is true then C is cotenable with A and so should be included in the contracted set
S, but then obviously S ∪ {A} |� C and hence A → C is true. If on the other hand ¬C is
true then ¬C is not cotenable with A since otherwise it would be included in S (and hence
A → ¬C would be true after all) and hence A → ¬¬C is true, so (by RCK) A → C is true
in either case.

The mentioned arguments that show the connections between (UI) and CEM
were not enough for broader audience to realize that (UI) is not a good interpretation
of Goodman (even for Pollock who gave one of these arguments). Beside the fact
that Goodman explicitly claimed that A → C and A → ¬C are not contradictory
but contrary propositions, there is his famous Carolina-example that should cast
some doubt that he would accept (UI). The example was Goodman’s immediate
reason to introduce the negative condition (β) in TD. Since each of (4), (5) and (6)
might be cotenable with the antecedent “Jones is in Carolina”, if we put them all in
S, {A} ∪ S would be inconsistent. If we drop (β), it seems that we have to assume
CEM in order to avoid inconsistency: CEM would not allow both (4) and (5) to

3 Loewer [15, p. 106]: “It is interesting to note that had we construed Goodman’s definition of
cotenability as requiring that A be cotenable with each member of S rather than with the conjunc-
tion of the members of S we would have obtained a system in which CEM is valid.”
4 The rule RCK that allows the last step need not concerns us here. The book used to be avail-
able on-line at http://www.phil.gu.se/johan/johan.html and the page number refers to the
version downloaded from that site.

http://www.phil.gu.se/johan/johan.html
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be cotenable with the antecedent. Had Goodman ever assumed CEM, the Carolina-
example would not have been enough for him to introduce (β). He would have
needed a different argument.

Now, there is another way to prove that (UI) implies CEM, a way which is not
simpler than Mårtensson’s, but I prefer it for the following two reasons. First, it is a
semantic proof that might offer also an intuitive explanation of what is going on. One
may be aware of a technical result without having an intuitive grasp of why the result
holds; it seems to me that this is the case with Bennett, who is aware of Theorem
1 above, but, as I will try to show a bit later, has a wrong opinion about the things
that make the theorem right. Second, it is expressed in terms of possible worlds, and
gives us an opportunity to make a point not only about Goodman’s theory, but about
the possible worlds semantics for counterfactuals as well. The letter reason will be
more significant by the end of this paper, where I will give, as promised, an answer
to the question why bother with such an old theory as Goodman’s?

It is possible that (UI) has been formulated under the influence of the idea of
minimal change. The idea is very popular, since the most popular theories of coun-
terfactuals, like Stalnaker’s and Lewis’s, are minimal change theories.5 However,
the idea is not to be found in Goodman’s paper. So it seems that (UI) smuggles the
idea of minimal change. What has (UI) to do with minimal change? The set S, it
seems, contains propositions that depict our world, minus only the propositions that
do not go together with the antecedent. That is, the full description of our world is
changed minimally, only to allow for the antecedent. Now, be my guess about the
influence of the idea of minimal change right or not, once we add the antecedent to
the background propositions, it seems that the hole is filled in and that we have again
a full description of a world. That is, the antecedent A and the set S of background
propositions as described by (UI) determine uniquely one world. That means that
{A} ∪ S is a subset of only one maximal possible set. In that world where all the
members from {A} ∪ S hold, either C is true or ¬C is. Thus either A → C or
A → ¬C must be true, because {A} ∪ S entails either C or ¬C. So CEM follows
from (UI).

Theorem 2 The set {A} ∪ S determines uniquely one world.

Proof Suppose there are two different worlds j and k such that every proposition
from {A} ∪ S holds at both j and k. S is a set of truths from the actual world i that
are cotenable with A. Since j �= k there is a proposition D true at the actual world
such that j |� D and k |� ¬D.

D is either cotenable with A or not. If not, then i |� A → ¬D, which means that
{A} ∪ S entails ¬D, and j is then an impossible world. If D is cotenable with A,
then D is in S and then k is an impossible world. Therefore j = k. ,-

Why is (UI) persistently being offered as Goodman’s theory? Beside the possible
reasons mentioned so far, the main reason might be the following opinion, advocated
and very nicely explained in details by Bennett, but wrong as I believe. It is essential

5 See Nute’s classification of minimal, small, and maximal change theories in Nute and Cross [17].
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for this view that the classical logic is monotonic, and the validity of (1) is defined
in classical logic. Bennett explains (italics and square brackets are mine; “Support”
is Bennett’s name for Goodman’s set S):

What constraints must a truth satisfy to qualify as a conjunct in a value of Support? Good-
man (1947) approached this under the heading “The problem of Relevant Conditions”, but
this is a misnomer. If C can be law-derived from (A&Support) for a value of Support that
contains irrelevant material, then it can also be law-derived from (A&Support∗) where this
is what remains of Support after its irrelevant content has been removed. Irrelevant con-
juncts are mere clutter: they cannot lead to any conditional’s being accorded a truth value
that it does not deserve. [Possible] Worlds analysis [of counterfactuals] take in vast amounts
of irrelevant materials, and clearly get away with it. A Worlds theorist will say that the truth
value of “If you had unplugged the computer, it would not have been damaged by lightning”
depends upon what obtains at certain worlds that are just like [the actual world] α up to a
certain moment . . . Just like α? Worlds resembling α in respect of the number of sardines in
the Atlantic, the average colour of alpine lilies in Tibet, and the salinity of the smallest rock
pool in Iceland? What have those to do with the conditional about the computer? Nothing,
but Worlds theories bring them in because they are too much trouble to keep out, and—the
main point—they do no harm. Irrelevance is harmless. [2, pp. 307–8]

If we put in S all the irrelevant truths we can, that would suffice to determine a
single world and make CEM valid, which Bennett finds harmful enough. This is
the first point where he is wrong, because irrelevant background propositions have
influence on the formal properties of “→”. A further point: these formal properties
would eventually lead to a “conditional being accorded a truth value that it does not
deserve”, namely they force us to consider one of A → B and A → ¬B true even
when we or Bennett think that both are false. Different restrictions on the irrelevant
load may give us different logical systems. Say we let some, but not all, irrelevant
propositions in the set S, for example all such propositions that hold throughout the
closest antecedent worlds according to Lewis’s system VC + limit assumption6; then
{A}∪S would not determine one but lots of worlds, and the resulting system (which
would be VC of course) is different from the system determined by (UI). Suppose
now we allow only the relevant facts to be included in S. The conditional (2) from
the match example would then require the set S = {B1,B2,B3,B4}. Which proposi-
tions are relevant in such cases depends both on the antecedent and the consequent.
Another counterfactual with the same antecedent and a different consequent would
require different background propositions, for example: “Had I struck m, you would
have heard the typical sound of a match being struck”. For this conditional, some
of the Bs from S are irrelevant, and some others that are not in S become relevant,
like those pertaining to your hearing abilities, laws of acoustics, etc. If we wanted
to translate such truth conditions to a possible worlds semantics, we would need
a selection function that is relative to both antecedents and consequents (or takes
them both as arguments), and that leads us to the idea that Gabbay [7] wanted to
capture in his system. Gabbay’s system is the weakest proposed for counterfactuals.
So, roughly speaking, the more irrelevance, the stronger the logic.

6 This system is the same as Stalnaker’s minus CEM. Cf. Lewis [13, chapter 6].
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We might never be able to define a set S containing only relevant stuff. Still, when
we go from case to case, in the situations where we have a satisfactory explanation
of why a particular conditional is true, we can use that explanation to determine the
relevant background facts without much trouble. This was the case with the match
conditional (2). Why is it true? Because the match is dry and well made and all such
matches light when struck in the presence of enough oxygen. That is, because the
four B’s from S hold. If I am right about that, we can use this point to answer the
question posed at the beginning of this paper: why bother with the old theories like
Goodman’s and other of that type?7 Because our intuitions about the background
facts are useful for testing the adequacy of our possible worlds semantics. All such
semantics have the basic task to somehow separate important from unimportant
worlds. Obviously, when evaluating a conditional, we do not need all the possible
worlds. When evaluating (2), we are not interested in worlds with different laws of
nature, for example those where we light matches by putting them into water. Each
such semantics is interested in what happens with the consequent in the important
antecedent-worlds only. There are lots of answers to the question which worlds are
important. Every different system for counterfactuals has a different answer. But
for that answer to make sense, to be adequate, the following interpretation must be
possible:

(*) All the relevant background propositions must hold in each important world.

Different theories of counterfactuals might include more propositions besides the
relevant ones, i.e. some irrelevant propositions might hold in each relevant world
(this is the “vast amount of irrelevant materials” that Bennett mentioned, that possi-
ble worlds theories “get away with”). But they mustn’t exclude any of the relevant
propositions if they are to be adequate.8 If a theory says that (2) is true because the
match lights in the important-according-to-the-theory worlds where it was struck,
and at the same time we cannot know whether the match is dry in these worlds,
we wouldn’t call these worlds “important”, and would not think that the theory is
adequate.
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