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Preface

I was stimulated by Göran Sundholm to collect some of my old papers on
Intuitionism, which turn back to the eightieths and the ninetieths of the past century.
In those years, there was a lively philosophical debate between classical and
intuitionistic logicians and mathematicians. I was especially interested in the works
of Dummett, Troelstra, van Dalen, Sundholm, Veldman and others.

A main peculiarity of my research is a deep analysis of the main tenets of the
pioneers of Intuitionism: Brouwer and Heyting. In particular, it is analysed
Heyting’s explanation of the intuitionistic meaning of logical constants and
Brouwer’s idealisation of the creative subject as grounds of intuitionistic truth.

Besides, it is upheld the importance of the role of certain imaginary acts of
choice performed by an ideal agent for explaining the notion of reference not only
in intuitionistic but also in classical logic.

A crucial question, discussed in the work, is the following: to what extent
succeeds the intuitionistic perspective to avoid the classical realistic notion of truth?
My answer is that a form of realism is hidden in the idealisation of Brouwer’s
creative subject. In fact, in order to exploit the role of the creative subject, we need
to think him as if he were a real being: the mere imagine of him in our mind would
not be able to perform the actions required by his role.

Some papers of the present collection are written together with Daniele Giaretta
and Gabriele Usberti.

I’m grateful to Göran Sundholm for his interest in my work on Intuitionism.
I thank the Springer editor Shahid Rahman. Besides of thank Ali Mohammed,
Stephen O’Reilly and Nisha Keeran. A particular thank to my colleague Vittorio
Morato for preparing the manuscript in LATEX.

Padua, Italy Enrico Martino
June 2017
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Chapter 1
Brouwer, Dummett and the Bar Theorem

with P. Giaretta

Abstract It is criticised Dummett’s refutation of Brouwer’s dogma. It is argued that
his criticism rests on an erroneous interpretation of Brouwer’s idea of “canonical
proof”.

1.1 Introduction

In Dummett (1977), Elements of Intuitionism, hereafter E I , Dummett gives a refuta-
tion of the “Brouwer’s dogma”, the famous assumption on which Brouwer based his
proof of the bar theorem, by means of an original argument involving the intuition-
istic notion of “proof containing inferences with infinitely many premisses”. In the
present article, we criticise Dummett’s argument, which rests on what seems to us
an incorrect interpretation of Brouwer’s idea of “canonical proof”, and we propose
an alternative interpretation of it. Notwithstanding our critique, we thank Dummett
for having stimulated our reflection on the foundation of Intuitionism.

1.2 Terminology and Symbolism

α, β, γ, . . . are variables for choice sequences. α(n) is the finite sequence of the first
n terms of α:

α(n) = 〈α(o), . . . , α(n − 1)〉 (α(0) = 〈〉)

�u, �v, �w, . . . are variables for finite sequences of natural numbers. If �u =
〈u0, . . . , un〉, the length of �u (the number of its terms), which we will denote by
l(�u), is n + 1. l(〈〉) = 0

If �u = 〈u0, . . . , un〉 and �v = 〈v0, . . . , vm〉, we let �u∗�v be 〈u0, . . . , un, v0, . . . , vm〉.
If n is a natural number, we let ˆ�u n be �u ∗ 〈n〉.

ˆ�u n, for any n, will be called a successor of �u and �u will be called the predecessor
of every ˆ�u n.

We will use “�u is extended by �v”, in symbols �u ≥ �v, to mean that ∃�w(�v = �u ∗ �w).
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Wewill use the term “spread” to refer to a function s defined on all finite sequences
and with values in {0, 1} such that:

s(〈〉) = 0, s(�u) = 0 → ∃ks(ˆ�u k) = 0, s(ˆ�u k) = 0 → s(�u) = 0

If s(�u) = 0, we say that �u is admissible for s, and s can be thought of as the
tree whose nodes are the admissible finite sequences. In the following we will write
indifferently s(�u) = 0 or �u ∈ s.

If ∀�us(�u) = 0, s is the universal spread.
We will say that a sequence α belongs to a spread s, α ∈ s, if ∀ns(α(n)) = 0.
A sequence α belongs to a finite sequence �u, α ∈ �u, if ∃nα(n) = �u.
Let �u ∈ s and R be a species of nodes of s. We say that R bars �u if every choice

sequence of s belonging to �u meets R, formally if ∀αα∈s(α ∈ �u → ∃nα(n) ∈ R).
We say that R is monotonic if �u ∈ R → ∀k(ˆ�u k ∈ s → ˆ�u k ∈ R).
We say that R is decidable if ∀�u �u∈s(�u ∈ R ∨ �u /∈ R).
Let R be a species of nodes of s. We call F -closure of R (in s) the species RF

inductively defined as follows:

(i) �u ∈ R → �u ∈ RF ;
(ii) ∀�u �u∈s(∀k˚�u k

Ù�u k∈s ∈ RF → �u ∈ RF ).

Following Kleene and Vesley (1965), hereafter referred to as FIM, we say that a node
�u, belonging to s, is inductively barred by R if �u ∈ RF . It is evident, by induction
on the construction of RF , that if R bars inductively �u, then R bars �u.

At this point bar theorem, more explicitly the bar-induction theorem (shortly BI ),
monotonic bar theorem, decidable bar theorem, with regard to a spread s and to a
species of nodes R, can be expressed as follows:

• BI (s, R): If R bars 〈〉, then R inductively bars 〈〉.
• BIM(s, R): If R is monotonic and R bars 〈〉, then R inductively bars 〈〉.
• BID(s, R): If R is decidable and R bars 〈〉, then R inductively bars 〈〉.

In the following, for simplicity, we will refer mostly to the universal spread and
simply say that R satisfies the bar theorem (and we will write BI (R)).

We will write simply BI instead of ∀RBI (R) (analogously for BIM and BID).
BIM and BID are usually assumed as axioms in treatments of intuitionistic analy-

sis. It is known that BIM → BID and that, under the hypothesis of ∀α∃x-continuity,
BID → BIM .

BI is instead certainly false, as the followingKleene counterexample (KC) shows.
Let P(x) be an arbitrary decidable predicate on the natural numbers and R be

the species of nodes defined by: 〈k〉 ∈ R ↔ P(k), 〈〉 ∈ R ↔ ¬∀x P(x). Obviously
R bars 〈〉, but until we have a proof of ∀x P(x) ∨ ¬∀x P(x), we cannot assert that
〈〉 ∈ RF .
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Brouwer gave various formulations and proofs of the bar theorem or of particular
cases of it in Brouwer (1924b, 1927, 1954), hereafter referred to as 1924b, 1927,
1954. The hypothesis of decidability or monotonicity of R never occurs explicitly in
Brouwer’s proofs. Yet the hypotheses of 1924b and of 1927 imply the decidability
of R. On the other hand, in the formulation of 1954, which seems to be the most
general, there is no hypothesis on the barring species and so, for KC , this formulation
is certainly wrong.

All three proofs are based on the assumption, which we will call “Brouwer’s
dogma” (BD), that a proof of a node being barred can always be reduced to a
“canonical proof” (c.p.), where only inferences of the following three forms occur:

• η-inferences: �u ∈ R
R bars �u

• ζ -inferences: R bars �u
R bars ˆ�u k

• F -inferences:
R bars ˆ�u 0, . . . , R bars ˆ�u k, . . .

R bars �u
(Indeed Brouwer does not mention explicitly the η-inferences.) Then the proof

proceeds by acknowledging the ‘eliminability of the ζ -inferences’, i.e. the possibility
of further reducing the canonical proof to one in which only η- and F -inferences
occur. Finally in Brouwer’s argument, translated into our notation, the conclusion is
obtained by observing that a so-reduced proof of ‘R bars 〈〉’ can be transformed into
a proof of ‘〈〉 ∈ RF ’ by a simple substitution of ‘�u ∈ RF ’ for every occurrence of
‘R bars �u’.

1.3 Dummett’s Argument

Dummett describes a c.p., to which BD refers, as a proof “expanded into its ‘fully
analysed’ form, that is, a form, in which every step has been broken down into a
sequence of steps each of which is as short as possible” (Dummett 1977, p. 94).
After he gives a more detailed description:

Brouwer’s notion of an analysis of a proof appears to be this: that whenever, in the course
of the proof, we appeal to some operation as yielding a result of a certain kind, then, in the
analysed form of the proof, that operation will actually be carried out. Thus the appearance
of a universally quantified statement in a proof, for instance the statement

∀k R bars ı�u k

signifies our recognition that a certain operation will, when applied to any element of the
domain (in this case, to any natural number k), yield a proof of the corresponding instance

(here, of the statement ‘R bars ı�u k’). In the fully analysed proof, therefore, the universal
quantification does not appear: the operation is actually applied to each element of the
domain, yielding a proof of the corresponding instance, and that which formerly was inferred
from the universally quantified statement now appears as following from the individual
instances taken together. (Dummett 1977, p. 96)
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The proofs, in which, according to Brouwer, only η-, ζ - and F -inferences occur,
should be of this type.After having considered a c.p. in the formof awell-founded tree
(i.e. of a finite paths tree), Dummett starts to expound Brouwer’s proof by describing
the process of elimination of the ζ -inferences. We quote here only the description of
the case of a ζ -inference which is preceded by a η-inference:

since this case, as we will see, turns out to be particularly critical.

[…] we consider that path in the proof-tree which leads from the conclusion ‘R bars ı�u k’
of our ζ -inference to the conclusion ‘R bars 〈〉’ of the whole proof. Each of the statements
occurring on this path is of the form ‘R bars �v’ for some finite sequence �v which is either
an initial segment or an extension of �u. Moreover, in the passage from one statement to the
next, the length of the finite sequence mentioned is either increased or diminished by 1, and
the length of the sequence mentioned at the end of the path is 0. Hence, somewhere along
the path there must occur the statement ‘R bars �u’. We accordingly replace the entire proof
of that occurrence of ‘R bars �u’ by a derivation of it by means of an η-inference. (Dummett
1977, pp. 97–98)

Finally, after having expounded the obvious conclusion of the proof (which we
mentioned at the end of the last paragraph), Dummett observes that since this proof
makes no reference either to the decidability or to themonotonicity of R, it is certainly
wrong because of KC . He concludes that what is wrong must be BD, the only
unjustified assumption of the proof, and he considers KC a refutation of it.

It comes as no surprise that consideration of this example shows that the flaw in Brouwer’s
proof lies in his unsupported assertion that any fully analysed proof that a species bars 〈〉 (or
any other finite sequence �u) can contain only η-, ζ - and F -inferences. (Dummett 1977, p.
98)

1.4 Critique of Dummett’s Argument

According toDummett’s conclusion, there should not be onlyη-, ζ - andF -inferences
in a c.p of ‘R bars 〈〉’, where R is the barring species of KC . On the other hand the
proof-tree:
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would seem to contain only inferences of the mentioned types. But Dummett rejects
this obvious objection on the basis of a strange principle of constructivity.

He says that, since an intuitionistic proof must be understood as a mere mental
act, “we cannot consider it as, so to speak, already having certain features, or dis-
playing certain patterns, which we have failed to notice” (Dummett 1977, p. 100).
He concludes that, with regard to the species R of KC , though it is obviously true
that for a fixed k we can decide whether P(k) or ¬P(k) and so deduce ‘R bars 〈k〉’
according to the case, from ‘〈k〉 ∈ R’ by means of an η-inference or from ‘R bars
〈〉’ by means of a ζ -inference, yet in the whole proof of ‘R bars 〈〉’, understood
as a unique global mental act, the various 〈k〉 have not been individually analysed
and therefore the various formulae ‘R bars 〈k〉’ are not deduced in it by Brouwer’s
inferences.

Dummett gives the name “Θ-inference” to the “analysed version” of an inference
of the type:

R bars �u ∨ R bars ˆ�u k

R bars ˆ�u k

that is the inferencewhichwe obtain from it by replacing the premiss by a determinate
one of the two disjoints, andmaintains that all that can be said about the c.p. of ‘R bars
〈〉’, considered as global mental act, is that the formulae ‘R bars 〈k〉’ are deduced
by means of Θ-inferences. Therefore the c.p. at issue would have, according to
Dummett, not the aspect of the proof-tree 2 but the aspect:

So the Θ-inferences would constitute a new type of inference which can occur in
a c.p., and, according to Dummett, they would not be reducible to those of Brouwer.
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We think, on the contrary, that the proof-tree 2 is intuitionistically no less correct
than proof-tree 3. Certainly, in the mental act constituting the proof 2, the various
〈k〉 are not completely analysed; what is present in that mental act is only the mere
possibility of analysing them and then of deducing ‘R bars 〈k〉’, according to the
case, by a suitable Brouwer inference. But this is the best we can demand from
an intuitionistic point of view! In accordance with the conception of the potential
infinite, the fact that the proof of ‘R bars 〈〉’ consists of the infinitely many proofs
of the various ‘R bars 〈k〉’ can only be understood in the sense that the knowledge
of a generative process of the infinitely many proofs of the premisses of the last
F -inference is a constituent of the proof. This can be said with reference to the
proof-tree 2 as well as to proof-tree 3.

Dummett himself explains very correctly the intuitionisticmeaningof an inference
with infinitely many premisses:

Thus the only way of understanding the idea of an inference from denumerably many pre-
misses A(0), A(1), . . . which is consistent with a constructivist outlook proves to coincide
exactly with the intuitionistic interpretation of an inference from ∀nA(n). (Dummett 1977,
pp. 96–97)

But then he goes on:

An intuitionistic proof involving inferences from universally quantified statements really is,
therefore, what Brouwer maintains, a representation of a more analysed proof containing
inferences from infinitely many premisses. (Dummett 1977, p. 97)

Now, it is not clear exactly what Dummett means. The expression “representation
of a more analysed proof containing inferences from infinitely many premisses” and
what he says about a “fully analysed proof” suggest the notion of a proof, where
the infinitely many premisses A(0), A(1), . . . are all visibly present. But this notion
does not have any sense from an intuitionistic point of view, according to which, as
Dummett himself recognises, to drawaconclusion from the infinitelymanypremisses
A(0), A(1), . . . can only mean to draw it from the premiss ∀nA(n). There is no way
in which a proof of ∀nA(n) can have a “fully analysed version” such that the various
proofs of the A(k) occur explicitly in it. It may be, of course, that the knowledge
of the generative process makes us a priori aware that the infinitely many proofs
are very similar, in which case the “generic” proof of A(k) would be visualisable,
or that, on the contrary, the form of a proof of A(k) essentially depends on k, in
which case it would be difficult to conceive the global configuration of the infinitely
many proofs. But this is a distinction which, though suggestive, rests on a concept of
“visualisability” which, in our view, cannot satisfactorily characterise the soundness
of an intuitionistic proof, both because it is too vague and, above all, because it seems
to concern the intuitability of the actual infinite rather of potential infinite.

However, even if someone wanted to adopt such a standard of evaluation, it would
not seem possible for him to consider the proof-tree 3 more acceptable than proof-
tree 2. The same argument used by Dummett against proof-tree 2 can be used against
proof-tree 3: in this proof, conceived as global mental act, it is not known what
the various �uk are. Only after having analysed a single k, it is possible to establish
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whether �uk = 〈k〉 or �uk = 〈〉 and so to execute the corresponding Θ-inference. But,
without such an analysis, all that can be said is that inferences of the type:

R bars 〈k〉 ∨ R bars 〈〉
R bars 〈k〉

and not their analysed forms, occur in that proof. It turns out that one can have a global
intuition of the proof in question only if one gives up demanding a representation of
its “fully analysed” form in the sense expounded by Dummett.

Dummett attributes to Brouwer the idea of “fully analysed proof” which he
expounds. We do not know to which of Brouwer’s articles he refers. However, it
seems to us that at least in the articles 1924b, 1927, 1954, in which he discusses
the bar theorem, Brouwer means by “analysis of a proof” something different. The
intuition on which the dogma rests seems to be the following: the knowledge of the
fact that a node �u is barred must, after all, either be reduced to the knowledge that
�u ∈ R or be obtained through the knowledge that its predecessor or all its successors
are barred. That is, it is always possible to transform any given proof P of‘R bars �u’
into a new proof P ′ of one of the following types:

P ′′ and P0, . . . , Pk, . . . are simpler proofs than P ′. The analysis of P in order to
obtain P ′ consists in explicating, by reflection on P , the implicit reference to the
nodes surrounding �u and not, as Dummett seems to believe, in actually carrying out
those constructions which had been acknowledged feasible in P . In case of proof-
tree 6 P ′ consists of a generative process of the proofs Pk , which are not necessarily
canonical, and of the final F -inference. In its turn, every Pk can be transformed into
a P ′

k which, if different from proof-tree 4, splits into simpler proofs, and so on.
These considerations suggest the following precise inductive definition of c.p.
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Definition 1.1 (a) �u ∈ R
R bars �u is a c.p. of ‘R bars �u’;

(b) If P is a c.p. of ‘R bars �u’, then for every k, P

R bars ˆ�u k
is a c.p. of ‘R bars

ˆ�u k’;

(c) If, for every k, Pk is a c.p. of ‘R bars ˆ�u k’, then
P0, . . . , Pk, . . .

R bars �u is a c.p. of

’R bars �u’.
By generalising the Definition1.1, it is possible to obtain the general concept of

an intuitionistic proof-tree. To be precise, we state first of all the following definition
of “inductively defined tree” (i.d.t.):

Definition 1.2 (a) {〈〉} is an i.d.t.
(b) If T0, . . . , Tn is a finite sequence of i.d.t., then the species formed by 〈〉 and by

〈k〉 ∗ �u, where �u ∈ Tk (0 ≤ k ≤ n), is an i.d.t.;
(c) If T0, . . . , Tk, . . . is an infinite sequence of i.d.t., then the species formed by 〈〉

and by 〈k〉 ∗ �u, where �u ∈ Tk (0 ≤ k), is an i.d.t.

Then the definition of “proof-tree” (p.t.) concerning a speciesA of axioms and a
species I of inference rules is as follows:

Definition 1.3 A p.t., concerning A and I, is a couple 〈T, c〉, where T is an i.d.t.
(called the support of the p.t.) and c is an application which associates a formula with
every node of T so that

(a) if �u is a terminal node, then c(�u) ∈ A;
(b) if �u is not terminal, then c(�u) is the conclusion and the various c(ˆ�u k), for all k

such that ˆ�u k ∈ T , are the premisses of an instance of one of the inference rules
of I.

We think that this is the precise and correct explication of the intuitionistic concept
of p.t. A confirmation that this was, in substance, the concept of c.p. which Brouwer
had in mind in his exposition of the bar theorem seems to be the fact that the Defi-
nition1.2 is quite analogous to Brouwer’s definition of well-ordered species and, in
a footnote in 1927, Brouwer mentions explicitly the analogy between mathematical
proofs and well-ordered species:

Just as, in general, well-ordered species are produced by means of the two generating oper-
ations from primitive species [cf. (Brouwer 1926, p. 451)], so, in particular, mathematical
proofs are produced by means of the two generating operations from null elements and ele-
mentary inferences that are immediately given in intuition (albeit subject to the restriction
that there always occurs a last elementary inference). (Brouwer 1927, p. 460)

An alternative way of characterising a p.t. is to take as support a barred spread
instead of an i.d.t. This is the way followed, in substance, by Kleene in FIM in the
formalisation of Brouwer’s proof of the bar theorem (FIM, pp. 65–67) and seems
to be implicitly adopted by Dummett in his informal description of p.t. In particular
Dummett does not care at all that the tree is inductively defined and demands only
that it is well-founded:
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To be a proof, it must be well-founded: if the proof is conceived as arranged in tree form,
every branch must be finite. (If it were possible to form an infinite sequence of propositions,
beginning with the conclusion of the proof, each subsequent proposition being one of the
premisses upon which the preceding one depended, then we should have no reason to accept
as true any proposition in the sequence, including the conclusion of the ‘proof’. This resem-
bles Aquinas’s denial of the possibility of an infinite regress in causes). (Dummett 1977, p.
95)

We want to point out a weak point of this approach. We define a barred spread
(b.s.) as a couple 〈s, R〉, where s is a spread and R a species of nodes of s barring
the vertex. We define a p.t. with support 〈s, R〉 in the following way:

Definition 1.4 A p.t. with support 〈s, R〉, concerning A and I, is a term 〈s, R, c〉,
where c is an application associating a formula with every node of s so that

(a) if �u ∈ R, then c(�u) ∈ R;
(b) c(�u) is the conclusion and the various c(ˆ�u k), for all k such that ˆ�u k ∈ s, are the

premisses of an instance of an inference rule I.
We say that a p.t. (both according to the Definition1.3 and the Definition1.4)

is sound if, whenever the axioms are true (under a certain interpretation) and the
inference rules are truth-preserving, the conclusion (formula at the vertex) is true.

We say that an i.d.t. (a b.s.) is sound if every p.t. having it as support is sound.
Now, it follows immediately, by induction on its construction, that every i.d.t. is

sound.
Is a b.s. always sound?
Let us suppose that 〈s, R〉 is sound. Then, if we take as A the species of the

formulae ‘�u ∈ RF ’, where �u ∈ R, as I the species of the F -inferences, as c the
application associating the formula ‘�u ∈ RF ’ with every �u ∈ s, the p.t. 〈s, R, c〉
turns out to be sound, from which follows 〈〉 ∈ RF . So BI (s, R).

Let us suppose, vice versa, BI (s, R). Let 〈s, R, c〉 be any p.t., with support 〈s, R〉,
concerning a setA of true axioms (under a certain interpretation) and a setI of truth-
preserving inference rules. Then, by induction on the construction of RF , it follows
that, for every �u ∈ RF , c(�u) is true (under the interpretation in question). Since
〈〉 ∈ RF by hypothesis, we conclude that c(〈〉) is true. So 〈s, R〉 is sound.

Therefore

Corollary 1.1 A b.s. 〈s, R〉 is sound if and only if B I (s, R).

Since, by KC, BI does not hold in general, it follows that a 〈s, R〉 is not generally
sound.

Of course, soundness can be obtained by imposing suitable conditions on 〈s, R〉,
but, by Corollary1.1, the problem of fixing such conditions is exactly equivalent
to the problem of determining the validity conditions of the bar theorem. Thus, in
order to prove the last one, to use the notion of proof based on a b.s. leads to a
petitio principii. In F I M it is explicitly demanded (translating into our terminology)
that 〈s, R〉 satisfies BI (s, R); equivalently, it is possible to consider a notion of p.t.
defined as in Definition1.4 but with reference to a support 〈s, R〉 inductively barred
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rather than simply barred. But then, because of the inductive definability of RF which
the notion of inductive barredness refers to, the notion of proof-tree according to the
Definition1.4 is essentially reduced to that of the Definition1.3.

Therefore, henceforth, a p.t. will always meant according to the Definition1.3 and
a c.p. according to theDefinition1.1. By assuming such references, Brouwer’s dogma

BD(R): if R bars 〈〉, there is a c.p. of ‘R bars 〈〉’

acquires a precise meaning.
For convenience of exposition, we will state BD(R) in a slightly different way.

Let us consider the species IndR inductively defined as follows:

Definition 1.5 (a) �u ∈ R → �u ∈ I ndR;
(b) �u ∈ R → ˆ�u k ∈ I ndR;
(c) ∀kˆ�u k ∈ I ndR → �u ∈ I ndR.

That is IndR is the closure of R by η-, ζ - and F -inferences. In other words, IndR
is the species of the nodes �u for which there exists a c.p. of ‘R bars �u’. Then BD(R)

can be expressed in the form:

BD(R): if R bars 〈〉, then 〈〉 ∈ I ndR.

Now, since, for the species R of KC , it is quite self-evident that 〈〉 ∈ I ndR (i.e.
that the proof-tree 2 is a c.p. in our sense), BD(R) holds and so, contrary to what
Dummett maintains, KC does not refute Brouwer’s dogma.

1.5 Limits of the Eliminability of ζ -inferences

Since, as we have seen, for the R of KC BD(R) holds, but BI (R) does not, the
ζ -inferences certainly cannot be eliminated from the c.p. of ‘R bars 〈〉’. In fact, the
proof-tree 2 clearly shows that the process for eliminating the ζ -inferences described
by Dummett (which we quoted in the Sect. 1.3) is not constructive: in order to apply
it, we should replace the whole c.p. by the proof

if ζ -inferences occur in the original proof-tree 2, and we should obtain as c.p of ‘R
bars 〈〉’
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if ζ -inferences do not occur in proof-tree 2. Since proof-trees 7 and 8 differ in all
nodes of length 1, it follows that, until we have proved ∀x P(x) ∨ ¬∀x P(x) and so
found out whether ζ -inferences occur in proof-tree 2, no node of length 1 of the c.p.
can be built.

Therefore KC does not refute BD but refutes the unconditional eliminability of
the ζ -inferences from a c.p.

The hypotheses of monotonicity or of decidability on R serve precisely to warrant
such eliminability. In fact we have:

Lemma 1.1 (a) �u ∈ I ndR ∧ R is monotonic → �u ∈ RF .
(b) 〈〉 ∈ I ndR ∧ R is decidable → 〈〉 ∈ RF .

Proof (a) It suffices to prove that RF is closed by ζ -inferences. In fact, by induction
on RF , we can show that if �u ∈ RF , then �u ∈ R or ∀kı�uk ∈ RF . So, because R
is monotonic, it follows in any case that ∀kˆ�u k ∈ RF .

(b) We say that �u is prebarred by R if there exists a �v ≥ �u such that �v ∈ R . Let us
prove, by induction on IndR, that

�u ∈ I ndR → �u ∈ RF ∨ �u is prebarred by R.

Let us suppose that �u ∈ I ndR. If �u ∈ R, the conclusion follows directly.
If �u = ˆ�u k and �v ∈ I ndR, then, by the inductive hypothesis, �v is prebarred, in

which case �u is too, or �v ∈ RF − R, in which case ∀kı�v k ∈ RF and so, in particular,
�u ∈ RF .

If, finally, ∀kˆ�u k ∈ I ndR, then we can decide, by virtue of the decidability of
R, whether �u is prebarred by R. In the positive case the conclusion follows directly.
In the negative case we can show, by the inductive hypothesis, that, for every k,
ˆ�u k ∈ RF or ˆ�u k is prebarred; in this last subcase, since �u is not prebarred, ˆ�u k ∈ R
and so, in every one of the two subcases, ˆ�u k ∈ RF whence �u ∈ RF .

It seems to us that this completely clarifies the relationship between KC and
Brouwer’s proof.
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1.6 Final Considerations

Of course, the fact that KC does not refute BD does not say anything about the
reliability of the latter. Yet it can easily be proved that BD is exactly equivalent to
BIM :

Theorem 1.1 BD ↔ BIM

(where BD = ∀RBD(R), BIM = ∀RBIM(R))

Proof Let us assume BD and let R be a monotonic barring species. By BD 〈〉 ∈
I ndR and so, by Lemma1.1a, 〈〉 ∈ RF . Vice versa, let us assume BIM . If R is a
species barring 〈〉, its monotonic closure Rζ bars 〈〉 too, and so 〈〉 ∈ RζF = I ndR.

Therefore, since BD and BIM are equally reliable, Dummett’s claim that it is
convenient to assume BIM directly as an axiom, in order to avoid the problematic
character of BD, turns out to be quite groundless. Dummett makes a further obser-
vation in favour of his claim. Referring to the formalisation of the dogma in F I M ,
he says:

In order to formalize it, it is necessary to assume, as an axiom, a formalization of the
statement ‘If R bars 〈〉, then there is a proof of “R bars 〈〉” which uses only η-, ζ - and
F -inferences’. Formalization of this statement is quite straightforward; a proof-tree can
obviously be represented as a dressed spread. However, standing on its own, such an axiom
appears quite ad hoc; especiallywhen, in order to be able to exploit thewell-founded character
of the proof-tree, we should also have to assume axiomatically a principle of transfinite
inductionwithin such proof-trees (the general principle of transfinite induction can be proved
equivalent to the principle of Bar Induction): it is therefore preferable to assume the principle
of Bar Induction at the outset as an axiom or axiom schema. (Dummett 1977, pp. 102–103)

However, the assumption that the p.t.’s satisfy a principle of transfinite induction,
which is essentially equivalent to the bar theorem, does not depend on the formali-
sation but on the notion of p.t. adopted by Kleene. This notion is explicitly intended
to satisfy the above-mentioned principle, but, as we have already noted, there is no
need to impose the same requirement on the notion of p.t. of Definition1.3, since it
is a natural consequence of its construction that the latter notion satisfies it.

We have two further remarks to make about the idea, suggested by Dummett, that
BD would be an ad hoc axiom. First of all BD seems to express correctly Brouwers
intuition, already mentioned above, that the knowledge that a node �u /∈ R is barred
must be based on an examination of its surrounding nodes. On the contrary, this
intuition is lost in the bar theorem, in which no explicit reference is made to the
predecessor of �u. In the second place, even if no more evidence is attributed to BD
than to BIM , or one prefers to ignore the problem of evidence, BD seems to us
interesting in itself. While, in fact, the bar definition involves the notion of infinite
sequence, this notion does not occur at all in the definition of IndR, which is stated
entirely in terms of finite sequences. Thus BD says, in effect, that the bar notion,
even for an R such that BI (R) does not hold, can be expressed in terms of finite
sequences. In this sense, BD can be regarded as a generalisation of BIM .
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We want in conclusion to make some comments on Brouwer’s original articles.
We shall consider first whether the mistaken idea that the ζ -inferences can, in

general, be eliminated goes back to Brouwer. Brouwer summarises the elimination
process in 1924a, and in 1954 without ever considering the case of a ζ -inference
preceded by an η-inference, that is, the following situation:

This case is not even considered in Heyting’s description, concerning a finitary
spread, in Heyting (1956, pp. 42–44). We can guess that in Brouwer (1924a, 1927)
and inHeyting (1956), its treatment has beenomitted because the implicit decidability
of the barring species (besides, in Heyting, the finitary character of the spread)
makes it obvious. But this is not so in Brouwer’s (1954) in which no hypothesis
on R occurs and thus, as we have seen, the elimination of the ζ -inferences is illicit.
Brouwer’s argument, paraphrased and translated into our terminology, is in substance
the following:

if in the given proof of ‘R bars 〈〉’ it has not been demonstrated that 〈〉 ∈ R, then ‘R bars 〈〉’
has been deduced by an F -inference; so, for every k, ‘R bars 〈k〉’ must have been proved
before ‘R bars 〈〉’ and thus cannot have been deduced by a ζ -inference.

Here Brouwer seems indeed to overlook, probably because of the lack of precision
of his statement, the possibility, pointed out by KC , that ‘〈〉 ∈ R’ is not known but
can nevertheless be used to construct, for some k, a proof of ‘R bars 〈k〉’.

Our last observation concernsBrouwer’s statement in 1954 that the barring species
R is “not necessarily predeterminate”. If, as we believe, this means that R can depend
onchoice sequenceparameters, it seems tous that this possibilitymakes the validity of
BD more problematical. Let us consider, in fact, the following example. We assume
that the universe of choice sequences is built by a “creative subject” who, at every
stage of knowledge n, conceives one and only one sequence αn (the supposition that
the creative subject conceives onlyone sequenceper stagewasput in questionbecause
of Troelstra’s paradox, but this can be avoided by means of a suitable distinction of
reference levels. Cf. Troelstra (1969)). Since such a universe, though numerable, is
potentially as rich as the universe of all sequences, we conjecture that the bar theorem
holds for it (within the limits within which it holds for the universe of all sequences).

Now, if R is the species of the nodes α(n + 1), for n ≥ 0, then R obviously bars
〈〉 and is decidable (because a node �u of length m belongs to R if and only if m �= 0
and �u = αm−1(m), and yet 〈〉 /∈ RF , since RF = R).
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In general, it seems to us that BD is fairly plausible, provided that R can be
defined without reference to the concept of infinite sequence. In fact, as we have
already noted, BD expresses the eliminability of this concept from the bar notion,
i.e. the possibility of describing the species of the nodes barred by R without using the
concept of infinite sequence. Now, this possibility seems to us rather unreliable (as
well as not very interesting) if the concept in question is already essentially involved
in the definition of R.
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Chapter 2
Creative Subject and Bar Theorem

Abstract In the present article, a reasonably precise description of Brouwer’s notion
of “creative subject” is proposed and an axiom is introduced which is conceptually
equivalent to the bar theorem.

2.1 The Creative Subject

The idea of the creative subject occurs in various writings of Brouwer in a somewhat
vague manner. Several logicians, among them Kreisel (1967), Troelstra (1969) and
Dummett (1977), have recently tried to analyse this concept by proposing some
axioms, which are however rather controversial, as Dummett’s discussion shows.

The creative subject, which wewill callΣ , carries out his mathematical activity in
time, which we assume divided inω distinct states of knowledge. Themain feature of
the theory of the creative subject consists in using the fact that knowledge increases in
time by explicitly referring to the stage inwhichΣ gets to know a certain proposition.
Such a reference is expressed by the propositional operator �n . If A is a formula,
�n A stands for: “at stage n, Σ has evidence for A”.

The kind of axioms for �n we put forward essentially depends on our idealisation
of Σ .

In the literature, two essentially different conceptions of �n A were proposed:
the strict one, according to which Σ can at any stage know only a finite number of
propositions, and the wider one, according to which at any stage Σ is allowed to
know infinitely many propositions.

The wider conception is proposed, among others things, by Troelstra (1969) as a
possible solution of a paradox of diagonalization in the strict theory (see Sect. 2.3),
which he pointed out.

We begin with some critical observations on the wider conception. The following
axioms are usually assumed both in the strict theory and in the wider one:

(1.1) ∀n(�n A ∨ ¬ �n A)

(1.2) ∀n∀m(�n A →�n+m A)

(1.3) ∃n �n A ↔ A
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These axioms are not sufficient to yield a precise conception of the creative sub-
ject, but they seem to be minimal requirements; they are implicitly used by Brouwer
himself in the well-known constructions of counterexamples for some classical the-
orems.

(1.1) is usually justified in the following manner: the predicate �n A is decidable
since at the stage n Σ knows whether he has evidence for A or not. We will shortly
discuss such a justification.

(1.2) says that the knowledge of Σ is cumulative: at every stage, he knows again
(or he maintains the knowledge of) what he knew at the preceding stages.

(1.3), from left to right, says that Σ reasons in an intuitionistically correct man-
ner, that is, he knows only intuitionistically true propositions. From right to left, it
seems to express the “solipsistic” conception of intuitionistic mathematics: the true
propositions are only those which are known to the creative subject. If one does not
want to commit oneself to this last statement, (1.3) can be weakened by replacing it
by:

(1.3′) ∃n �n A → A

and

(1.3′′) A → ¬¬∃n �n A

(1.3′′) (called by Kreisel the Principle of Christian Charity) says that if A is true, it
cannot be excluded that, in some stage, Σ comes to know it.

In the wider conception it is allowed that, if �n A and if B is a “immediate
consequence” of A, then �n B. Apart from the difficulty of generally characterising
in a sufficiently precise manner the vague notion of immediate consequence, it seems
that the following axioms for it are hardly objectionable (see Dummett 1977). Let
P(x) be a predicate on natural numbers:

(1.4) �n ∀x P(x) → ∀x �n P(x)
(1.5) �n P(m) →�n ∃x P(x)
(1.6) �n (A ∨ B) →�n A∨ �n B

In (1.6), it is understood that A and B do not contain choice parameters nor any
information which is not available at stage n (see Sect. 2.2).

Now, we see at once that from (1.1)–(1.6) we can deduce some intuitionistically
incorrect propositions.

In fact, let P(x) be a decidable predicate (without choice parameters), such that
∀x(P(x) ∨ ¬P(x)). From (1.3) it follows that, for some n,

�n ∀x(P(x) ∨ ¬P(x))

whence, by (1.4) and (1.6),

∀x(�n P(x)∨ �n ¬P(x)).
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It follows that, if ∃x P(x), then there exists a k such that �n P(k) and so, by 1.5,
�n ∃x P(x). Therefore, the following equivalence holds

∃x P(x) ↔ �n ∃x P(x).

Thus, since, by (1.1), �n ∃x P(x) ∨ ¬ �n ∃x P(x), we have ∃x P(x) ∨ ¬∃x P(x).
But this cannot be intuitionistically acceptable for an arbitrary P(x).

In my opinion this incoherence arises from the fact that (1.1) is acceptable only
if, in order to have �n A, it is required thatΣ is aware of having evidence of A. Now,
the evidence of ∀x P(x) does not involve (unless we greatly stress the idealisation
of Σ) the conscious evidence of all single instances P(k). Thus, (1.4) holds only
if evidence is meant as implicit, not necessarily conscious, evidence. Hence, the
incompatibility of (1.1) and (1.4) results.

SinceΣ is no real subject but an idealised subject, we could idealise him so that the
evidence of ∀x P(x) involves the conscious evidence of each single P(k). But such
an idealization would attribute to Σ superhuman powers which would allow him to
know some classically but not intuitionistically true propositions. Since intuitionistic
truths are to be humanly knowable, we must be very cautious in idealising Σ .

Therefore, since (1.4) seems to be aminimal requirement of the wider conception,
we hold that it forces the axiom (1.1) to be abandoned.

Then, at the same stage, Σ can implicitly know infinitely many propositions. If,
for instance, at stage n he knows the soundness of the axioms and of the inference
rules of a certain system F , then at the same stage n he has implicit evidence of all
theorems of F (but he is not necessarily able to decide whether a given formula is a
theorem, as (1.1) requires). Indeed, one could even assume that every stage is closed
with respect to “analytic” deductions and that the passage from one stage to another
is characterised by an increase of external information (see Posy 1977). But we think
that in that case �n A should be more properly be read: “At the stage n, Σ can
have evidence of A”. The potential interpretation serves the purpose of avoiding that
superhuman powers (as that one of deducing actually all what is deducible from the
available information) are attributed to Σ . The closure with respect to the analytic
deductions seems to be in agreementwithGrzegorczyk’s semantics, (cf. Grzegorczyk
1964).

Nevertheless, it seems to me that such a conception has not the effect of taking the
idea of the creative subject seriously, but rather of replacing it by other notions, such
as “deducibility (in an intuitive sense) from certain given information”, (Van Dalen,
1978). On the contrary, we believe that the originality and the strength of the theory
of the creative subject consist just in the possibility of exploiting the concept of
conscious evidence, which Brouwer has already partially exploited by his implicit
assumption of (1.1). We hold that new interesting results are obtainable not just
by suppressing (1.1) but rather by adding to it new axioms intended to exploit the
concept more deeply.

Therefore, we will abandon the wider conception in favour of the strict one,
according to which the request of the conscious evidence is certainly plausible. This
request can be made even more explicit by stating, for instance, that in order to
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have �n A, Σ has to write a proof of A at the stage n. We here obviously pass
over the inadequacy of natural language to express an intuitive proof; our statement
serves only the purpose of clarifying metaphorically the meaning of the adjective
“conscious”. What is of importance is that, proving only finitely many propositions
at each stage, Σ has the possibility of explicitly directing his attention at each one
of them.

The axiom (1.2) results to be obvious. Without committing ourselves to the solip-
sistic conception, we will accept (1.3) with the following justification: since A is
intuitionistically true, if it has been proved by someone, we suppose that, as soon as
a proof of A is found (by someone), it is communicated to Σ who includes it among
the propositions of which he has evidence (at the stage he is in at the moment of
communication).

We now intend to propose a modification of the strict conception in order to
obviate, at least in part, the drawback of the invalidity of (1.4) and of other axioms
which seem to hold only in the large conception.

We replace (1.4) with the scheme

(1.4′) ∀n(�n ∀x P(x) →�n P(k)).

If (1.4′) is understood in the sense that all its instances should be simultaneously
true, then it is certainly not acceptable in the strict conception, since it presents the
same difficulties as (1.4). Therefore, we propose to understand the validity of an
axiom scheme in the following sense: for each instance, it is possible “to programme
Σ” at the stage 0 so that the instance in question is true. By programming Σ we
mean “to instruct Σ so that if he happens to be in certain favourable conditions,
he performs certain deductions which interest us”. In this sense, (1.4′) is thoroughly
acceptable: whenever we have fixed P and k, we can instructΣ so that, if he deduces
∀x P(x) at some stage, he takes care of deducing P(k) at the same stage.

Similarly for (1.5), whenever P is fixed, Σ can be instructed to deduce ∃x P(x)
as soon as he has deduced P(m) for some m. Likewise for (1.6) (with the necessary
restrictions on the choice parameters).

In general, we admit the following principle:

(1.7) Whenever, for a fixed proposition A, we recognise that if we were in a certain
state of knowledge s we could prove A, we can suppose that, whenever Σ is
in the state s, he actually deduces A.

Some other axioms which turn out to be sound are the following:

(1.8) ∀n(�n (A → B) → (�n A →�n B)

(1.9) ∀n(�n (A ∧ B) →�n A∧ �n B)

On the contrary, we observe that

(1.8′) (A → B) → ∀n(�n A →�n B)

does not hold, since until we know a proof of A → B (or of ¬(A → B)) we cannot
instruct Σ to deduce B from A.
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But from (1.8) and (1.3), we get:

(1.8′′) (A → B) → ∃n(�n A →�n B).

We observe that a formula A(x) with a free variable x must be considered true if
it is possible to programme Σ so that all instances A(k) are simultaneously true. For
example, the formula �n x = x is not true: in fact, we deduce from it ∀x �n x = x
which would involve the evidence, at the stage n, of the infinitely many propositions
k = k. On the other hand, the formula ∀x �x x = x is true: Σ can be instructed so
that, at every stage n, he knows n = n.

Finally, we observe that, according to our concept of programming, Σ can be
given only positive instructions, i.e. instructions for performing (under favourable
conditions) certain deductions, and not negative instructions, i.e. instructions for not
performing certain deductions. At every stage, Σ must be free to perform at will
some other deductions, in addition to the ones which are imposed on him. This
guarantees that two programmings are always compatible. Therefore, if A and B are
instances of two sound axiom schemata, there is a programme which makes them
simultaneously true. It follows that since only a finite number of formulas occur in
a formal deduction, every formula which is deduced by use of some sound axiom
schemata is true with respect to a suitable programming. Thus, the usual axioms and
inference rules are in accordance with our concept of soundness of a scheme. This
would not be the case if we would admit negative instructions. Then, for instance,
both formulas

∀x(�x x = x) and ∀x(¬ �x x = x)

would be sound, sinceΣ could be instructed both to prove n = n at stage n for every
n and not to prove n = n at stage n for all n. Hence, syntactic inconsistency would
follow.

2.2 The Creative Subject and Existential Statements

The axiom

(2.1′) ∀n(�n ∃mP(m) → ∃m �n P(m))

is usually accepted with the following justification: an intuitionistic proof of ∃mP(n)

is a proof of some instance Pk of P(x).
But we observe that it is possible to have evidence for ∃mP(m) even if a proof

of an instance of P(x) is not available, but only a method for constructing such a
proof is available. Therefore if, at the stage n, Σ has evidence for ∃mP(m), it is the
case that at stage n Σ has a procedure π for determining an instance of P(x). The
execution of π must be feasible in a finite number of stages but not necessarily at
the same stage n, since the execution can require some information which can be
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obtained only at future stages. Thus, what holds in general is not the axiom (2.1′) but
the weaker axiom

(2.1) ∀n(�n ∃mP(m) → ∃p∃m �p P(m)).

For instance, let ρ be a free sequence such that the value ρ(n) of ρ has been
chosen (and known to Σ) at stage n. Then, if m > n

�n ∃xρ(m) = x but not ∃x �n ρ(m) = x .

Observe that in this example, even thoughΣ cannot determine an instance of P(x),
at stage n, yet, at stage n, he knows at which stage (at the stage m) the execution of
the procedure π will be completed.

But one sees at once that neither is this the general case, i.e. not always

�n ∃x P(x) → ∃y(�n ∃x �y P(x)).

For example, if P(x) is ρ(ρ(m)) = x (and n < m), at the stage n Σ knows only
at which stage (at the stage m) he can determine the stage (the maximum of m and
ρ(m)) at which π will be completed.

In general, what seems reasonable to admit as implicitly involved in the evidence
(of the fact) that the procedure π must terminate in a finite number of stages is that
if �n ∃x P(x), Σ should at least be able to point out, at the stage n, a stage at which
he can obtain an important piece of information concerning π , i.e. a stage at which
π is reduced to a procedure π ′, more elementary with respect to the complexity of
the required information.

For a precise statement of this idea, let us consider, for every sentence ∃x P(x), the
species S of the stages at which “Σ has inductive evidence of ∃x P(x)”. We define
S inductively:

(i) if for some m �n P(m), then n ∈ S;
(ii) if for some m �n m ∈ S, then n ∈ S.

Then the “principle of the inductive evidence” which we intend to propose can
be stated in the following way:

(PIE) For every sentence of the type ∃x P(x), S∃x P(x) = {n : �n ∃x P(x)}.
Therefore (PIE) says: “If Σ has, at the stage n, evidence of’ ∃x P(x), then he has

inductive evidence of ∃x P(x)”.
In particular, the above considerations can be extended to the axiom

�n (A ∨ B) → ∃m(�m A∨ �m B).
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2.3 Equivalence of (PIE) and (BIM)

Let α, β be variables for choice sequences, �u, �v variables for finite sequences (nodes
of the universal tree). The length of a sequence �u = 〈u0, . . . , un〉 is �(�u = n+1,where
the length of the empty sequence is �(〈〉) = 0. Initial segments of choice sequences
are denoted by α(n) = 〈α(0), . . . , a(n − 1)〉. We write α ∈ �u for α(�(�u)) = �u. For
a species of nodes R, we define inductively the F -closure RF of R by:

(a) ∀u(�u ∈ R → �u ∈ RF )

(b) ∀u(∀k �u ∗ 〈k〉 ∈ RF → �u ∈ RF )

A species of nodes R will be called monotone if ∀�u∀�v(�u ∈ R → �u ∗ �v ∈ R. We
now state the monotone bar theorem in the form:

(BIM ) If R is a monotone species of nodes and ∀α∃xα(x) ∈ R, then 〈〉 ∈ R.

Theorem 2.1 (BIM) ↔ (PIE)

Proof Let us assume (BIM ). For the sake of simplicity, we consider stage 0 and
suppose that

�0 ∃x P(x)

We assume that it is possible to represent the information, on which the procedure
π for determining an instance of P(x) rests, by means of a sequence σ such that, for
each n, σ(n) is a codification of the amount of information known to Σ at the stage
n and, for every k, σ(n) ∗ 〈k〉 is a value which is a priori possible (i.e. at the stage n)
for σ(n + 1).

Let R be the species of the pieces of information �u sufficient for the execution of
π . Then

∀α∃xα(x) ∈ R.

By induction on the construction of RF , let us prove that for each �u ∈ RF one can
programme Σ so that if �u ∈ RF , then �(�u) ∈ S:

(1) if �u ∈ R, then we instruct Σ so that if �u ∈ σ , at the stage �(�u) he performs π

and gets the required instance of P(x), hence �(�u) ∈ S by (i);
(2) if ∀k(�u ∗ 〈k〉 ∈ RF ) by the induction hypothesis one can instruct Σ so that if

�u ∗ 〈k〉 ∈ σ , then �(�u) + 1 ∈ S. Then we can instruct Σ so that if �u ∈ σ also
�(�u) + 1 ∈ S and Σ takes note of it at the stage �(�u), i.e. ��(�u) �(�u) + 1 ∈ S,
whence �(�u) ∈ S by (ii).

Since R is obviously monotone, 〈〉 ∈ R by BIM and so 0 ∈ S.
Conversely let us assume (PIE). Let R be a monotone species such that ∀α∃xα

(x) ∈ R.We programmeΣ as follows: after having introduced a free sequenceρ with
the property that ρ(n) is chosen at the stage n+ l, we get �0 ∃xρ(x) ∈ R and we put
S to be the species of the stages in which Σ has inductive evidence of ∃xρ(x) ∈ R.
Let us prove, by induction on the construction of S, that S ⊆ {n : ρ(n) ∈ R}.



22 2 Creative Subject and Bar Theorem

(i) If for somem �n ρ(m) ∈ R, then if n ≥ m, ρ(n) ∈ R because of themonotonic-
ity of R; if n < m then, since at the stage n Σ knows only the initial segment
ρ(n) of ρ, it must hold that ∀α(ρ(n) ∗ α(m − n) ∈ RF ), whence, by induction
on m − n, ρ(n) ∈ RF .

(ii) If, for some m, �n m ∈ S, then, by the induction hypothesis, ρ(m) ∈ RF and,
as in (i), we recognise that ρ(n) ∈ RF .

By (PIE) 0 ∈ S and so 〈〉 ∈ RF .
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Chapter 3
Natural Intuitionistic Semantics
and Generalized Beth Semantics

Abstract In this chapter, the connection between the notion of truth in a generalized
Beth model and the intuitive notion of truth according to the intuitionistic meaning
of logical constants is analysed.

3.1 Introduction

Beth and Kripke semantics for intuitionistic predicate calculus (IPC) have been gen-
eralised byVeldman and de Swart in such away to obtain completeness proofs within
an intuitionistic metamathematics (de Swart 1976; Veldman 1976). The aim of this
paper is to establish a connection between the notion of truth in a generalized Beth
model (GB-model) and the intuitive notion of truth according to the intuitionistic
meaning of logical symbols. It follows that “true in a GB-model” means “intuitively
true under certain hypotheses”, in a suitable understanding of such a locution.

3.2 Generalized Beth-Models and Natural Models

Include ⊥ (absurdity) among the atomic closed formulas of IPC and define nega-
tion by putting ¬A = A → ⊥. The whole exposition is to be understood within an
intuitionistic metamathematics.

AGB-modelM =< T, D, Φ > consists of a spread T (treewith infinite paths), of
a species D �= ∅ and a binary relation Φ between T-nodes (indicated with �u, �v, . . .)
and atomic closed formulas of the IPC-language extended with individual constants
for the members of D. We say that M explodes if there exists �u such that Φ(�u,⊥).
Extend Φ to the forcing relation �u � A between nodes and closed formulas with the
following inductive definition:

(i) for P atomic, �u � P iff there is a bar B of �u such that, for all �v ∈ B, either M
explodes or Φ(�v, P);

(ii) �u � A → B iff, for all �v ≥ �u, if �v � A then �v � B;
(iii) �u � ∀x A(x) iff, for all d ∈ D, �u � A(d) (similarly for A ∧ B);
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(iv) �u � ∃x A(x) iff there is a barB of �u such that, for all �v ∈ B, �v � A(d), for some
d ∈ D (similarly for A ∨ B).

A is true at M (M � A) if <>� A. A isGB-valid if it is true in every GB-model.
A Beth model (B-model)is a non-exploding GB-model.

A natural model (N-model)M =< D, V > consists of a species D �= ∅ (domain
of individuals) and a monadic relation V , defined on the closed atomic formulas of
the extended language (as above), such that not V (⊥) (⊥ is to be interpreted in a
false proposition!). V is then extended to a relation M � A on all closed formulas,
defined according to the intended meaning of logical constants.

The theory of free choice sequences yields a well-known relation between B-
models and N-models (Troelstra 1977, p. 118). Precisely, if M =< T, D, Φ > is
a B-model and α is a free choice sequence in T, one can associate to this an N-
model Mα =< D, V > by defining V as follows: V (P) ⇔ ∃nΦ(ᾱn, P) (where
ᾱn = 〈α0, α1, . . . , α(n−1)〉).
Theorem 3.1 Let M be a B-model and �u a node. �u � A iff, for all α ∈ �u, Mα � A.

It easily follows that a formula is B-valid iff it is N-valid. Now, while GB-
completeness is provable with the usual methods of intuitionistic analysis (Troelstra
1977, p. 177[3]), B-completeness (N-completeness) turns out to be intuitionistically
equivalent to a controversial instance of Markov principle (Kreisel 1962). Exclud-
ing the latter from the available intuitionistic methods of proof, we can say that
GB-validity fails to be intuitionistically equivalent to N-validity.

The problem arises to extend N-semantics to a GN-semantics corresponding to
GB-semantics, according to a suitable counterpart of Theorem3.1.

3.3 Generalized Natural Models

Call sequence of hypotheses a sequence 〈Qn〉n∈N of meaningful propositions (not
mere syntactical formulas).

A GN-model M = 〈D, V, 〈Qn〉n∈N〉 consists (besides D and V , as above) of a
sequence of hypotheses. The intention is that a formula A is true at M if it is true
at the N -model 〈D, V 〉 “under the hypotheses Qn”.This idea is made precise by
means of the following inductive definition of the relationM � A (whereMwill be
understood):

(i) if A is atomic and V (A), then |= A;
(ii) if |= A and |= B, then |= A ∧ B;
(iii) if A |= or |= B, then |= A ∨ B;
(iv) if |= A implies |= B, then |= A → B;
(v) if, for all d ∈ D, |= A(d), then |= ∀x A(x);
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(vi) if, for some d ∈ D, |= A(d), then |= ∃x A(x);
(vii) if, for some n ∈ N, Qn implies |= A, then |= A;
(viii) |= A only in virtue of (i) – (vii).

An N-model may be regarded as a GN-model at which all hypotheses are true.
For GN-semantics, soundness holds straightforwardly:

Theorem 3.2 If �I PC A, then A is GN-valid.

As to the connectionwithGB-semantics, letM = 〈T, D, Φ〉 be aGB-model. Assum-
ing Kripke scheme

∃χ(∃xχx �= 0 ↔ A)

(where χ is a choice sequence), one can find a sequence χ such that

(*) ∃xχ(x) �= 0 iff M explodes

Let us associate to any free choice sequence α in T the GN-modelMα = 〈D, V,<

Qn〉n∈N〉where Qn is the proposition χ(n) = 0 and V is defined by putting V (P) ⇔
∃nΦ(ᾱn, P) with P �= ⊥ (V (⊥) is false at all GN-models).

One can prove the analogous of Theorem3.1:

Theorem 3.3 Let M be a GB-model and �u a node. �u � A iff, for all α ∈ �u, Mα |= A.

It follows that every GN-valid formula is GB-valid. Therefore, GN-completeness
follows from GB-completeness:

Theorem 3.4 If A is GN-valid, then �I PC A.

From GB-completeness and Theorem3.2 it follows that, if A is GB-valid, then it
is GN-valid. So

Theorem 3.5 A is GB-valid iff it is GN-valid.

Observe that Theorem3.3 has been proved by using Kripke schema, a controver-
sial principle involving the problematic theory of the creative subject. However, the
proof of GB-completeness uses only GB-models withΦ decidable. For suchmodels,
a χ satisfying (*) can be defined without Kripke schema: namely, one can take an
enumeration 〈�un〉n∈N of nodes and put

χ(n) =
{
1 if Φ(�un,⊥)

0 otherwise.

Therefore, the Theorems3.4 and 3.5 are provable with usual intuitionistic meth-
ods.
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Chapter 4
Connection Between the Principle
of Inductive Evidence and the Bar Theorem

Abstract I introduced the “principle of inductive evidence” P I E in my paper “Cre-
ative subject and bar theorem” (Martino 1982). Because of a misunderstanding inmy
correspondence with the editors, the published version of the above paper is not the
final revised draft, but a first outline of the article which needs some corrections and
explications. I shall refer to the published version as CS. In CS, I asserted somewhat
rashly the absolute equivalence of P I E and the monotonic bar theorem BIM by
means of all too sketchy proof in the course of which I introduced in passing a rather
problematic assumption without explaining it properly. Therefore, I shall present
here a more adequate treatment of the connection between P I E and BIM . In fact,
I shall assume acquaintance with Sects. 4.1 and Theorem 4.1 of CS and provide a
revised version of Theorem 4.2.

4.1 Inductive Evidence

With respect to the activity of the creative subject � and an existential statement
∃x P(x), we inductively define the species S of the stages of “inductive evidence” of
∃x P(x):

(i) if, for some m, �n P(m), then n ∈ S;
(ii) if, for some m, �n m ∈ S, then n ∈ S.

P I E : S = {n | �n ∃x P(x)}.

(In words: if � has evidence of ∃x P(x), then he has inductive evidence of ∃x P(x)).
Let α, β, . . . be variables for choice sequences, u, v, . . . variables for finite

sequences (nodes of the universal tree). The length of a sequence

u = 〈u0, . . . , un〉 is l(u) = n + 1,

and the length of the empty sequence is l(〈〉) = 0. Initial segments of choice
sequences are denoted by α(n) = 〈α(0), . . . , α(n − 1)〉. We write α ∈ u for
α(l(u)) = u.
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For a species R of nodes, we inductively define the F-closure RF of R by:

(i) ∀u(u ∈ R → u ∈ RF )

(ii) ∀u(∀ku ∗ 〈k〉 ∈ RF → uRF ).

R will be called monotonic if ∀u∀v(u ∈ R → u ∗ v ∈ R). R is a bar of u if
∀αα∈u∃nα(n) ∈ R

We state the monotonic bar theorem in the form

BIM : if R is a monotonic bar of 〈〉, then 〈〉 ∈ RF .

Theorem 4.1 P I E → BIM

Proof Let R be a monotonic bar of 〈〉. We introduce a creative subject � and a
lawless sequence ρ whose value ρ(n) is chosen at the stage n+ 1. So � knows ρ(n)

at stage n + 1 and cannot know it before.
By particularizing the available proof of ∀α∃nα(n) ∈ R, we get a proof of

∃nρ(n) ∈ R which does not use any information on the values of ρ. Let us com-
municate such a proof to � and let him insert ∃nρ(n) ∈ R among his theorems at
stage 0. So �0 ∃nρ(n) ∈ R. Call S the species of stages of inductive evidence of
∃nρ(n) ∈ R.

By P I E , we have 0 ∈ S. According to the inductive definition of S, a proof of
0 ∈ S is built up from the following elementary inferences:

(a)
∃m �n ρ(m) ∈ R

n ∈ S

(b)
∃m �n m ∈ S

n ∈ S

Replacing every statement of the form x ∈ S by ρ(x) ∈ RF , we obtain the
inferences

(a′)
∃m �n ρ(m) ∈ R

ρ(n) ∈ RF

(b′)
∃m �n ρ(m) ∈ RF

ρ(n) ∈ RF

We prove the correctness of (a′), (b′).
Since R ⊆ RF , we may restrict ourselves to (b′). Suppose that, for some m,

�n ρ(m) ∈ RF .
If n ≥ m, observe that, since R is monotonic, RF is monotonic too (by induction

on the construction of RF ), whence ρ(n) ∈ RF .
If n < m, since at the stage n � knows only the initial segment ρ(n) of ρ, we get

∀α(ρ(n) ∗ α(m − n) ∈ RF ), whence, by induction on m − n, ρ(n) ∈ RF .
Thus, we can transform the available proof of 0 ∈ S into a proof of 〈〉 ∈ RF .
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Remark. In the above proof, we have used the following principle: if �n P(ρm)

with m > n, then �n ∀αP(ρ(n) ∗ α(m − n)), where λuP(u) is a property of nodes.
This principle is evident provided the definition of P does not involve ρ (e.g. it does
not hold for P : u ∈ ρ). In fact, we have tacitly assumed that, given the bar R, we
can find a ρ not involved by the definition of R.

The key of the above proof consists in transforming, by means of the lawless
sequence ρ, the bar statement into an existential statement. It does not seem quite
evident that, conversely, one could always transform an existential statement into a
bar statement. So, since P I E concerns all existential statements, it seems stronger
than BIM . In fact, I think that P I E cannot be logically reduced to other known
principles. Perhaps P I E provides for existential statements a strongly constructive
meaning which, though in accordance with the intuitionistic use of ∃, is not implicit
in the usual intuitionistic understanding of ∃.

To bring out how BIM helps to assert P I E , we introduce a further epistemic prin-
ciple (perhapsmore elementary thanPIE) underwhich the implication BIM → P I E
holds.

Suppose that �, at the stage 0, has evidence of ∃x P(x). Then he knows a pro-
cedure π to calculate an instance of P(x). Though, at the stage 0, such an instance,
because of a possible lack of information,may not yet be determined (seeCS Sect. 2),
nevertheless� knows a priori that certainly, at some future stage, the instance will be
determined, nomatter how the information proceeds. It seems to me quite reasonable
to interpret such a state of knowledge as a bar assertion according to the following
“principle of spreadlike information”:

PSI: Any proof, at the stage 0, of ∃x P(x) consists in

(a) arranging all a priori possible pieces of information (relevant forπ ) in a lawlike
spread s;

(b) recognizing that s is barred by the species R of those pieces of information
which are sufficient to execute π .

More explicitly, the above s represents the whole a priori possible information in
the following sense:

(i) 〈〉 represents the piece available at the stage 0;
(ii) if u ∈ s represents the piece at the stage n, then the successors u ∗ 〈k〉 of u in s

represent those pieces which, at the stage n, � knows as possible for the stage
n + 1.

Theorem 4.2 PSI ∧ BIM → PIE.

Proof According to our strict conception of creative subject (see CS, Sect. 2), we
intend the above assertion in the following sense: assuming PSI and BIM , we can
instruct � so that P I E holds.

Suppose �n ∃x P(x) and let s and R be as in PSI . Let σ ∈ s be the “sequence
of information”. This means that, for all n, σ(n) is the real piece of information
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available at the stage n. For the sake of simplicity, we assume s to be the universal
spread. To every u ∈ RF , we assign an instruction Iu. This will be executed by � at
the stage l(u) provided u ∈ σ and will have the effect that l(u) ∈ S.

We define Iu, by induction on the construction of RF :

(i) u ∈ R. Iu : if u ∈ σ, at the stage l(u):

(a) carry out the procedure π by means of u and determine an instance P(m)

of P(x);
(b) insert P(m) among your theorems.

Thus, if u ∈ σ , then �l(u) P(m), whence l(u) ∈ S.

(ii) u ∈ RF and all Iu∗〈k〉 are already defined.

Iu : if u ∈ σ at the stage l(u)

(a) observe that for some k (knowable at the stage l(u)+ 1) u ∗ 〈k〉 ∈ σ so that,
in virtue of lu∗〈k〉, l(u) + 1 ∈ S.

(b) Insert l(u) + 1 ∈ S among your theorems.

Thus �l(u) l(u) + 1 ∈ S whence l(u) ∈ S.
Since, by BIM , 〈〉 ∈ RF , the instruction I〈〉 makes the theorem true.
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Chapter 5
On the Brouwerian Concept of Negative
Continuity

Abstract In the present paper, wewill discuss some of the known reconstructions of
Brouwer’s theorem of negative continuity and contend that the theory of the creative
subject is the proper frame in which to understand Brouwer’s argument. We will also
point out a sense in which negative continuity is a cogent consequence of the general
intuitionistic tenets while positive continuity is not.

5.1 Introduction

In a famous paper of 1927, Brouwer introduces the notion of negative continuity for
real functions. At the end of Sect. 1, he proves the negative continuity theorem:

1.1 Every full function is negatively continuous (where a function is said to be full
if its domain is the unit continuum [0, 1]).

In Sect. 3 of the same paper, Brouwer proves a much stronger result, the well-
known uniform continuity theorem:

1.2 Every full function is uniformly continuous.

As a trivial consequence of this theorem, we get:

1.3 Every full function is (positively) continuous.

So at first sight Theorem 1.1 seems to be superseded by Theorem 1.3; in fact 1.1
does not occur in modern intuitionistic analysis.

However, we contend that Brouwer’s direct proof of 1.1 has a remarkable founda-
tional significance. Brouwer himself observes that 1.1 is an immediate consequence
of the intuitionistic point of view. This is not the case for 1.2. Brouwer says he had
knowledge of 1.1 since 1918 and though this result suggested to him the conjecture
of 1.2, nevertheless he did not succeed in proving 1.2 until much later.

Yet, in my opinion, Brouwer’s proof of 1.1 has not been fully understood, possibly
because of its rather informal and elliptical exposition. Recently, several authors tried
to reconstruct Brouwer’s argument: see (Parsons 1967; Posy 1976; Troelstra 1982;
Veldman 1982). Still, these reconstructions—though in some ways interesting—fail
to shed light on the sense of the immediacy of 1.1 claimed by Brouwer. For instance,
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this immediacy is completely obscured by Veldman. In fact his reconstruction rests
on a continuity principle for choice sequences from which 1.3 itself follows, so that
1.1 and 1.3 are placed on the same level of evidence. Furthermore, Veldman explicitly
opposes the contention that 1.1 is a more elementary result than 1.3.

Here we discuss some of such reconstructions of Brouwer’s argument.

5.2 The Negative Continuity Theorem

To begin, we give a reformulation of the negative continuity theorem for choice
sequences. From this Brouwer’s theorem for real functions follows straightforwardly.

Let α, β, . . . range over choice sequences, m, n, p, . . . over natural numbers. Let
f be a function from choice sequences to natural numbers. We indicate by D(f ) the
domain of f (a subset of the universe U of all choice sequences).

f is extensional if, for all α, β ∈ D(f ), α = β → f (α) = f (β), where the

“=” occurring between choice sequences means extensional equality (α = β
def←→

∀nα(n) = β(n)). From now on by “function” we always understand an extensional
function from choice sequences to natural numbers.

f is full if it is defined on all choice sequences:D(f ) = U . α ∈ D(f ) is a continuity
point for f if there is an n such that, for all β ∈ D(f ), αn = βn → f (α) = f (β)

(where αn = 〈α(0), . . . , α(n−1)〉). f is continuous if every α ∈ D(f ) is a continuity
point.

As observed by Veldman, Theorem 1.3 for real functions is derivable from the
corresponding continuity principle for choice sequences

CP: Every full function is continuous.

Similarly, Theorem 1.1 is derivable from a “negative continuity principle” NCP
for choice sequences which we are going to state.1

α ∈ D(f ) is a positive discontinuity point (p.d.p.) for f if there is a sequence
〈βn〉n∈N of choice sequences ∈ D(f ) such that, for all n, βn(n) = α(n) and f (βn) �=
f (α). f is negatively continuous if it has no p.d.p.

NCP: Every full function is negatively continuous.

1To derive 1.1 fromNCP, as well as 1.3 fromCP, one has to assume that any rational approximation
f of a real function is extensional on number generators. Though this fact is often accepted as
unproblematic (Veldman tacitly assumes nothing less than the extensionality of every function on
choice sequences!), it is far from being evident. All that follows from the definition of real function
is only that α = β → f (α) ≈ f (β)where≈ is the relation “m touches n” between rational segments
(coded by natural numbers) (see Veldman 1982, p. 14). However, replacing extensionality with the
latter condition, the proof of NCP, mutatis mutandis, holds again. So the above assumption of
extensionality is not needed.
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5.3 A Proof of NCP

We translate Brouwer’s proof of the negative continuity theorem into a proof of NCP.
Let f be a full function. Suppose α is a p.d.p. for f and let 〈βn〉n, be as above.

Define a choice sequence γ as follows. We temporarily choose, for every natural
number n that we have already considered, γ (n) = α(n), but reserve the right to
determine at any time after the first, second,…mth value has been chosen, the choice
of all further values (that is of the (m+ 1)th, (m+ 2)th and so on) in such a way that
either γ = α or γ = βn, for some n. Then the function f is not defined on γ , which
is absurd.

5.4 Weak and Strong Negation

The most controversial point of the above proof is the conclusion

4.1 The function f is not defined on γ .

The standard reading of intuitionistic negation confers to ¬A the “strong sense”:
a proof of A leads to a contradiction.

As Posy points out, sometimes Brouwer also used negation in the “weak sense”:
we have no evidence for A.

The problem arises whether the negation occurring in 4.1 is the strong or the
weak one and, in the latter case, whether Brouwer’s argument counts as an outright
mathematical proof or as a simple plausibility argument.

In his first reconstruction of Brouwer’s proof, Posy interprets negation in the
strong sense and concludes that Brouwer violates the “protochristian charity prin-
ciple” according to which, if A is a true proposition, then its truth must be known
at some stage. According to Posy, γ would be so defined that, as a matter of fact,
γ = α is a true proposition, but its knowledge is forever prevented by the virtual
eternal right of making γ = βn, at some future stage. So “f is defined on γ ” would be
absurd because at no stage could one have sufficient information to calculate f (γ ).

This interpretation seems to me untenable. For, if we cannot use the information
γ = α to calculate f (γ ) = f (α), then we cannot use it to derive a contradiction from
“f is defined on y” either. Besides, there is no way to derive such a contradiction. If
there were one, Brouwers argument would establish the following assertion:

4.2 If a function f has a p.d.p., then there is a point where f is not defined.

Now, 4.2 does not hold, as the following counterexample shows. Let f be defined
as follows:

f (ξ) =
{
0 if ξ = 0

1 if ξ �= 0
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so that D(f ) = {ξ |ξ = 0 ∨ ξ �= 0} and 0 is a p.d.p. Assuming 4.2 there is a
γ /∈ D(f ), so¬(γ = 0∨γ �= 0)which contradicts the general schema¬¬(A∨¬A).

We conclude that the negation occurring in 4.1 cannot be understood in the strong
sense. On the other hand, taking it in the weak sense, 4.2 says only that if f has a
p.d.p., then we can construct a γ for which we have no evidence whether f is defined
on it. So 4.2 is not a mathematical theorem but an assertion of the same kind as
Brouwer’s weak counterexamples.

Veldman reaches the same conclusion for NCP: taking 4.1 in the weak sense, we
must regard Brouwer’s argument as a mere plausibility argument for NCP. That is,
Brouwer’s argument would not lead to a contradiction the assumption that a full
function has a p.d.p., but it would only show that for such a function it is plausible
that a p.d.p. could be found.

A similar conclusion is reached by Troelstra (1982, p. 479) when he discusses
Heyting’s third interpretation of Brouwer’s argument.

On the contrary, in the next sectionwewill contend that, though—aswe showed—
4.1 has to be read in the weak sense, nevertheless Brouwer’s argument is an authentic
proof by contradiction.

5.5 The Role of Time in Brouwer’s Argument

To rightly understand Brouwer’s proof, we need to consider very carefully the role
of time in his argument.

In the course of the proof, Brouwer explicitly refers to time more than once (“we
temporarily choose …”, “at any time …”).

The role of time in intuitionistic proofs is pinpointed by the theory of the creative
subject. Therefore, this theory seems to me the proper setting for Brouwer’s proof.

In the theory of the creative subject, we divide time into countably many stages
of knowledge and introduce the usual epistemic operator �n: if A is a proposition,
�n A means that at stage n we have evidence for A. This device serves the purpose
of getting weak negation precise: statements of the form “we have no evidence for
A” implicitly refer to some stage of our knowledge; this is made explicit by the more
complete statement ¬ �n A.

Now, to interpret within this framework the weak negation occurring in 4.1, we
have to pinpoint a stage at which we cannot have evidence that f is defined by γ .
Well, we can get an outright contradiction by arranging the construction of γ so that
the stage at issue is one at which a proof of the fullness of f is available. This is
shown by our following reconstruction of Brouwer’s proof.

Suppose we have at some stage, say at stage 0, a proof of

5.1 “f is full and α is a p.d.p. for f ”.

At the same stage 0, we introduce a choice sequence γ whose nth value has to be
chosen at stage n + 1 according to the following instructions (given at stage 0):
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(1) Stage 0: choose no values and impose no restrictions.
(2) Stage n + 1:

(a) If γ has yet been restricted at some foregoing stage, calculate γ (n) according
to the imposed restrictions.

(b) If γ is as yet unrestricted, choose among the following alternatives:
(i) put γ (n) = α(n) and impose no restriction.
(ii) Impose the restriction γ = α and calculate γ (n) accordingly.
(iii) Impose the restriction γ = βn and calculate γ (n) accordingly.

The instructions above are so devised that at stage 0 we cannot prove that γ will
be at some later stage restricted, since they leave the possibility of indefinitely opting
for alternative (i). And since we cannot—by the extensionality of f—determine f (γ )

as long as γ is unrestricted, it follows that, at stage 0, we cannot prove that f (γ ) is
determinable in a finite number of stages, i.e. that f is defined on γ . On the other
hand, a proof that f is defined on γ is derivable, at stage 0, by particularising the
available proof that f is full.2 An absurdity arises.3

Our reconstruction points out how Brouwer’s argument essentially exploits the
hypothesis of fullness on f , and hence, why the same argument cannot be used for
proving the false statement 4.2.4

5.6 Brouwer’s Argument and Solipsism

We discuss here a delicate question concerning the theory of the creative subject. We
argued that this is the proper frame for Brouwer’s argument as a tool for exploiting
the time element. But the theory at issue is also regarded in the literature as a tool for
exploiting the so-called “solipsistic conception” of mathematics. In fact, (Troelstra
1982, p. 474) points out that the principal new element in creative subject arguments
is not so much the time element itself but the solipsistic exploitation, i.e. the use as a

2Perhaps it is worth noticing that a proof, at stage 0, that f is defined on γ does not necessarily
provide, at the same stage 0, the value of f (γ ) because this may depend on some future information
(see Martino 1982, p. 316). Such a proof gives only a method for calculating, in a finite number of
stages, f (γ ). And this is enough for our purposes.
3Our reconstruction is similar to the second one of (Posy 1976, p. 113) but the latter is contaminated
by misleading problems. In fact, Posy rightly recognises the possibility of getting an outright
absurdity by opposing ¬ �0 ∃nf (γ ) = n to �0 ∃nf (γ ) = n. Notwithstanding, he does not realise
that �0 ∃nf (γ ) = n straightforwardly follows from the a priori knowledge of the fullness of f .
So he tries to justify it by conjecturing certain hypotheses of determinateness on f which Brouwer
might have tacitly understood. By this way he goes off the rails and incurs Troelstra’s criticism (see
Troelstra 1982, note 10).
4The crucial importance in Brouwer’s argument of the fullness hypothesis was not realised by
Veldman. In fact, he “teases” Brouwer by remarking that, following the line of his reasoning, one
could construct a real number at which the characteristic function cQ of the set of rational numbers
is not defined (Veldman 1982, p. 13). But Brouwer could well reply: “according to my reasoning,
one could construct it if cQ were full! This leads only to the right conclusion that cQ fails to be full”.
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mathematical tool of the claim that all mathematical activity is the one carried out by
the creative subject. Later (p. 479) Troelstra observes that a reconstruction of NCP
based on the “solipsistic exploitation” would be somewhat anachronistic, because
this device appears in Brouwer’s writings only after 1948.

Let us examine the connection between solipsism and creative subject arguments.
This connection arises from a certain interpretation of the crucial principle

6.1 A → ∃n �n A.

Brouwer’s counterexamples to classicalmathematics based on the creative subject
do implicitly use 6.1 or a weaker version of it (see Troelstra 1969, p. 96). Our proof
of NCP uses the instance of 6.1 with A replaced by 5.1.

Identifying myself with the creative subject, I can read 6.1 as

6.2 If A is true, I will have evidence for it at some stage.

This may appear a solipsistic claim, since it seems to preclude that A might be
true in virtue of having been proved by some other mathematician not in relation
with me.

We want to argue, however, that, to justify 6.1 intuitionistically, we do not need
any solipsistic insight. In fact, after observing that a proposition is intuitionistically
true only when recognised as true by someone, the solipsistic claim arises by reading
6.2 in the more explicit form

6.3 If someone will have evidence for A, I myself will have evidence for it.

The point is that the very reason why 6.3 appears as a declaration of solipsism is
that even an intuitionist is accustomed to understand implication 6.3 in the classical
(realistic) sense in everyday life. This happens because 6.3 refers to empirical events
(as someone having evidence for something) that are usually regarded as free from
the intuitionistic criticism against realism. For this reason, an intuitionist may rea-
sonably agree to the classical reading of 6.3. Nevertheless, as far as he is dealing with
intuitionistic arguments, he has to read 6.1 within the intuitionistic framework. Now,
according to Heyting’s reading of implication, a proof of 6.1 consists in a method of
transforming any proof of A into a proof of ∃n �n A. Well, such a method is certainly
available to me trivially: if and when a proof of A will be given to me, I will have
evidence for A and get a proof of∃n �n A by simply taking into account the stage at
which I will be.5 So I can assert 6.1 independently of any solipsistic assumption.

To read 6.1 intuitionistically as a solipsistic claim, we should read �n A as

I myself have created a proof of A without any external information�. In this
way, by asserting 6.1, I would claim that if A will be proved, I will be the very artifi-
cer of such a proof. But this reading of�n is of no use for any mathematical issue. All
known applications of the creative subject need only the ordinary reading of �n A
as “I have evidence for A”, where the means by which I have got my evidence are
disregarded.

5Such a justification of 6.1, based on the mere time element, is also upheld by Dummett (1977, p.
349).



5.6 Brouwer’s Argument and Solipsism 37

Thus, in my opinion, no “solipsistic exploitation” is involved in creative sub-
ject arguments. These serve the mere purpose of making the time element much
more explicit than in usual intuitionistic arguments. In the case of NCP, this aspect
consists—as we saw—in the connection of the time at which a proof of “f is full” is
given with the stage of the construction of γ .

5.7 NCP and Lawless Sequences

Under the suggestion of Brouwer’s argument, even beyond Brouwer’s intentions, we
want to investigate the possibility of reducing NCP to more elementary principles.

Suppose that our universe of choice sequences includes lawless sequences which
will be indicated by ρ, σ, . . . Let u range over finite sequences and write ρ ∈ u for “u
is an initial segment of ρ”. Call CPl, the restriction of CP to the universe of lawless
sequences. For these we assume, besides CPl, the following principles:

7.1 ∀u∃ρ(ρ ∈ u),
7.2 ∀m¬∀ρ∃n(ρ(n) = m).

7.1 is the well-known density axiom: it expresses the genetic rule according to
which, in generating a lawless sequence, we are allowed to fix an initial segment in
advance (while the later values are to be chosen “at random”).

7.2 is not taken as an axiom in the literature because it is derivable from the
extension theorem or from the fan theorem (see Troelstra 1983, p. 211). But these
theorems rest on very problematic insights, while 7.2 is an obvious consequence
of the intended indeterminacy of lawless sequences. Thus, it is more convenient to
assume 7.2 as primitive, for our purposes.

We want to connect NCPwith the modern theory of lawless sequences by proving
that

NCP is derivable from CPl by means of 6.1 and 6.2, without the help of the
creative subject.

Let f be full and α, 〈βn〉n, as above. We associate with every lawless sequence and
ρ the choice sequence γρ defined as follows:

7.3 γρ(n) =
{

α(n) if pρ,n is even

βpρ,n(n) if ρρ,n is odd

where

pρ,n =
{
0 if {m ≤ n|ρm = 0} = φ

μ{m ≤ n|ρ(m) = 0} otherwise.

Suppose f (γρ) = f (α). By applyingCPl to the functionλσ.f (γσ ),weget anm such
that ∀σ(σm = ρ(m) → f (γσ ) = f (γρ) = f (α)). It follows, by the extensionality
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of f , that ∀σ(σ (m) = ρ(m) → ¬∃n(pσ,n is odd)). If ∀nn<mρ(n) �= 0, we could
construct by 7.1 a lawless sequence σ with σ(m) = ρ(m) and pσ,n odd, which is
absurd. So ∃nn<mρ(n) = 0.

Suppose f (γρ) �= f (α). By applying CPl to the function λσ.f (γσ ), we get an
m such that ∀σ(σ(m) = ρ(m) → f (γσ ) = f (γρ) �= f (α)). It follows, by the
extensionality of f , ∀σ(σ(m) = ρ(m) → ¬∃n(pσ,n is even > 0)). (For, from pσ,n

even and> 0 itwould follow, byDefinition7.3,α = γσ , and therefore f (γσ ) = f (α).)

If∀nn<mρ(n) �= 0,we could construct by 7.1 a lawless sequenceσ withσ(m) = ρ(m)

and pσ,n even > 0, which is absurd. So ∃nn<mρ(n) = 0 again.
Hence, every lawless sequence has a zero, which is absurd by 7.2 (takingm = 0).
This proof provides a first sense in which NCP is more evident than CP. In fact if,

as we believe, the evidence of 7.1 and 7.2 is unquestionable, we can say that NCP is
reducible to CPl. So, whoever judges CPl more evident than CP, as is usually done,
is compelled to judge NCP more evident than CP.

We can go further by analysing the intrinsic evidence of CP and CPl. CPl is
supported by the following argument:

at any stage of the construction of a lawless sequence ρ, the whole available
information on ρ consists in the knowledge of an initial segment, so that f (ρ)

must be computable by using only an initial segment of ρ.

We contend that the above argument for CPl is not so cogent as it seems at first
sight. We have to touch on a rather subtle question concerning the nature of choice
sequences. On the one hand, these are to be regarded as undetermined in the sense
that their extensions may be never completely given (and actually never completely
given in the case of lawless sequences).

On the other hand, if we want to deal with choice sequences as authentic entities
and to refer to some specific one of them unambiguously, we have to think of them
as well-determined objects perfectly distinguishable one from another. This second
aspect is made explicit in the literature by introducing the decidable relation of strict
or intensional identity.

Generally speaking, two objects are strictly identical if they are the same object
and the individuality of an object is what makes it distinguishable from any other
one.

Individuality is so basic a notion that it is hardly reducible to something more
elementary. We will therefore assume it as primitive. The following remarks will be
useful to properly understand the role of this notion in our context. First, we should
recall that, according to the general intuitionistic ontology, mathematical objects
exist only as mental constructions. Accordingly two objects can be the same only
insofar as they are thought of as the same. In particular, two choice sequences α, β

are strictly identical (α ≡ β) if they are thought of as the same process of choices.
In Troelstra’s words:

We shall regard two lawless sequences α, β, (strictly) identical (α ≡ β) if they are given
to us (we think of them) from the beginning as the same process. Thus, α ≡ β ∨ α /≡β.
(Troelstra 1983, p. 208)
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To save both determinacy and indeterminacy,we have to very carefully distinguish
individuality from extension. The very same mental act of conceiving a specific
choice sequence α confers on α its individuality. This is completely determined from
the outset quite independently of the extension of α, whose values may be chosen
step-by-step without any predetermination. Thus, the individuality of α counts as an
essential datum beyond any information about its extension (i.e. initial segments and
restrictions). Specifically, the data of a lawless sequence cannot merely consist in an
initial segment.

Let us imagine, for instance, that the lawless sequences α and β are displayed to
us step-by-step in such a way that at every stage n we know their initial segments αn
and βn. If this were the whole available information, then we could not judge at any
stage that α ≡ β and we could judge that α /≡β only if and when we reach a stage
n at which αn �= βn. So strict identity would fail to be decidable. We can therefore
decide whether α ≡ β or not only in virtue of some further information on α and β:
this is just the knowledge of their individualities.

Summing up, a lawless sequence is actually given only when all the following
data are available: (1) its individuality, (2) the initial segment of all its already chosen
values, (3) the initial segment specified in advance. (This third datum is needed to
justifying the density axiom, but it is not involved in our discussion).6

We can conclude that the above argument forCPl, as it stands, is incorrect, since it
neglects datum (1). Whenever α /≡β, in virtue of this very information f could assign
two different outputs to α and β. This possibility cannot be precluded, as we saw,
by the nature of lawless sequences. Nor it can be precluded by the extensionality
hypothesis on f , since, as it is well-known, any function on lawless sequences is
extensional.

Thus, the argument for CPl needs some stronger hypothesis on f to assure that
datum (1), though certainly available, cannot be exploited by f . It would be interesting
to look for some stronger notion of extensionality which would be adequate for this
purpose. Here we want to show only that, in contrast, no stronger hypothesis on f
than extensionality (in the usual sense) is required for establishing NCP, so that this
turns out to be even more general than CPl.

For, let us return to our deduction of NCP in the present section and observe that,
instead of CPl, we can use the axiom of open data

7.4 A(ρ) → ∃n∀σ(σ(n) = ρ(n) → A(σ ))

taking for A(ρ) the property ¬∃n(pρ,n is odd).
Of course, the general validity of Scheme 7.4 incurs the same difficulties as

CPl (which is derivable from 7.4). Nevertheless, our particular instance of 7.4 is
not problematic at all: for our A, in establishing A(ρ) no help can arise from the

6In Troelstra (1983), Troelstra is aware that the code of the initial segment specified in advance
occurs among the data of a lawless sequence (p. 212). As to individuality, he seems to disregard
it mostly. He is forced, however, to take it into account when formulating the general form of the
axiom of open data (Troelstra 1969, p. 36). In this context, he seems to believe that one can exploit
individuality only by means of the relation of equality. Perhaps he intends to restrict himself to
properties and functions for which this is the case.
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individuality of ρ, so that the only relevant datum is just an initial segment of ρ. So
NCP is shown to be more general than CPl.

Our argument against CPl cannot be brought forward against CP. Indeed, dealing
with the universe of all choice sequences, the extensionality hypothesis does certainly
help in limiting possible references to the individualities of the inputs. There is
no evidence, however, for concluding that such references are precluded at all by
extensionality. In Sect. 5.9, we will try to show by a counterexample that this is not
the case.

5.8 Revising NCP with the Help of the Creative Subject

The proof ofNCP in the foregoing section does not use the creative subject explicitly.
It may be interesting to revise that proof with the help of the operator �n. In this way,
we get our final reconstruction.

Suppose we have at some stage, say at stage 0, a proof of 5.1. At the same stage 0,
we introduce a lawless sequence ρ whose nth value will be chosen at stage n + 1.
The relevant feature of ρ is that, for all m ≥ n, ρ(m) is, at stage n, still completely
undetermined. This feature immediately assures the truth of the following principle:

8.1 ∀n∀a(an = ρ(n) → ¬ �n ∃mρ(m) �= a(m))

where a ranges over lawlike sequences.
For, as, at stage n, only the first n values of ρ are known and all possibilities are

open to future choices, it is impossible, at stage n, to prove that some future value of
ρ will be different from the corresponding value of a.

Define the choice sequence γ as in 7.3 (omitting the index ρ, since we are dealing
with only one ρ).

Let q be a stage, at which f (α) and f (γ ) are calculated. We have either �q f (α) =
f (γ ) or �q f (α) �= f (γ ).

In the first case, in virtue of extensionality, �q ¬∃n(pn is odd). It follows from
8.1 that μ{m < q|ρ(m) = 0} exists and is even. For, if ρ(m) �= 0, for all m < q, we
could construct a lawlike sequence a with aq = ρq and having the first zero odd. So
we would have, at stage q, a proof of ∃mρ(m) �= a(m), against 8.1.

Similarly, in the second case, μ{m < q | ρ(m) = 0} exists and is odd.
Therefore, since �0 (f (α) = f (γ ) ∨ f (α) �= f (γ )), we can conclude, at stage 0,

that ρ has at least one zero, �0 ∃mρ(m) = 0. By 8.1 again, taking for a a lawlike
sequence without zeroes, an absurdity arises.

Observe that the operator �n enables us to express the essential requisite of ρ, i.e.
its being still completely undetermined when a proof of 5.1 is available.

In the reconstruction in Sect. 5.6, wemade up for the lack of�n, by considering all
lawless sequences. In such way, some lawless sequence whose stages of construction
were ad hoc was automatically included. We can remark, however, that the evidence
of the principles involved rested again on�n-considerations. For instance, to convince
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ourselves of 7.2, we have to observe that at any stage of our activity we are able to
introduce some new lawless sequence as yet completely undetermined so that at that
stage we cannot know anything about its values. And this is just what we actually
did when the single ρ at the appropriate stage was introduced. In this respect, the
�n-argument is more straight and explicit.

It is also remarkable that the proof in Sect. 5.7 uses two distinct principles, 7.2
and 7.4, which—though both expressing undeterminacy of lawless sequences—are
logically independent. On the contrary, the �n-argument exploits indeterminacy by
means of the sole principle 8.1.

Summing up, we suggest that our final reconstruction is the most adequate to
indicate the insights involved by NCP.

5.9 Extensional Functions and Intensional Choice
Sequences

As we saw, the argument for NCP does not require any hypothesis on f except that
of extensionality, while it is not evident that extensionality is sufficient to guarantee
CP.

We are going to try to construct a model of choice sequences and an extensional
function for which NCP holds while CP fails. This construction will not count as a
disproof of CP since we do not claim that our models is the “intended” model of all
choice sequences. Nevertheless, we think it may be useful for illustrating how one
might find a strategy for exploiting the individuality of choice sequences, in spite of
the extensionality hypothesis.

LetU be a universe of countably many choice sequences, enumerated as follows:

9.1 α0, α1, . . . , αn, . . ..

Weassume that everyfinite segment occurs infinitelymany times as initial segment
of some choice sequences.

Let φ be a bijective map of U onto the set of ordinal numbers < ω2. We say that
a sequence 〈βn〉n of choice sequences is bounded if there is an ordinal τ < ω2 such
that φ(βn) < τ for all n. Let us restrict the notion of sequence of choice sequences to
bounded sequences. So the enumeration 9.1 of the whole universe is not a sequence
of our model.

We also impose the condition that any restriction on a choice sequenceα is allowed
to link α only to sequences of lower ordinal.

These conditions serve the purpose to assure that, for any sequence 〈βn〉n of
choice sequences, we can construct a “fresh” choice sequence not involved in the
construction of the βn’s. This is all that is required for the validity of Brouwer’s
argument.

So NCP holds in our model. However, CP fails, as the following example shows.
Let us define the function f step-by-step with reference to the enumeration 9.1:

• Step 0: put f (α0) = 0.
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• Step n > 0: suppose we have already defined f (α0), . . . , f (αn−1);

put f (αn) =
{
f (αm) if, for some m < n, αn(n) = αm(n)

max { f (α0), . . . , f (αn−1)} + 1 otherwise.

So f is extensional.
Now, it is easily proved that

9.2 ∀n∃β(βn = α0n ∧ f (β) �= f (α0))

For given n, let p be the least natural number > n+ 1 such that (1) αp(n) = α0(n)
and (2) αp(n + 1) �= αm(n + 1) for all m ≤ n + 1. Then 9.2 is satisfied by β ≡ αp.

Observe that 9.2 does not come into conflict with NCP because the function
mapping n into β is not a sequence of our model.

5.10 Troelstra’s Abstraction Process and NCP

In his discussion of NCP, Troelstra (1982, p. 478) declares himself favourable to a
reconstruction based on the concept of “abstraction process”. Inmy opinion, this is an
interesting but highly problematic device, which Troelstra uses on several occasions.
We devote the present section to discuss this reconstruction.

Following Troelstra (see, for instance, Troelstra 1983, p. 48), we describe the
abstraction operator (abstr) as follows.

Given any choice sequenceχ , abstr χ is the sequence obtained fromχ by abstract-
ing from (or forgetting) all restrictions on χ . More explicitly, abstr χ has the same
values as χ , but at every stage n we consider the knowledge of the initial segment
abstr χ(n) (= χn) as the sole available information about abstr χ : we pretend (1)
no restriction has yet been set and (2) any restriction is possible for the future. So,
though χ = abstr χ holds in a “metasense”, we are not allowed to regard it as a
mathematical assertion.

Now, returning to Brouwer’s proof of NCP (in our notations), let us interpret γ

as abstr α.
Since f is full, f (γ )will be calculable at some stage n. Thus, f (γ ) is determined by

the mere information γ n = αn. And as this does not preclude any of the restrictions
γ = α and γ = βm (for some m > n) for the future, an absurdity arises.

It would be very tempting to use the same argument for proving the false propo-
sition 4.2 and to conclude that abstr is a contradictory operator. But that would be
too ingenuous. I suppose Troelstra could easily defend his operator as follows.

Abstr has to be regarded not as amathematical operator but as a tool for describing
a “thought-experiment”. Therefore, abstrα fails to be an authentic choice sequence.
So from the failure of f being defined on abstrα, we cannot infer the existence of
a choice sequence not belonging to D( f ) (as it would required for proving 4.2). On
the other hand, as far as the calculation of f is concerned, abstrα is indistinguishable
from a genuine choice sequence. Thus, if we know a priori that f is defined on all
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choice sequences, then we must be able even to calculate f on abstr α (by using
the permitted pieces of information of abstr α as if they were those of an authentic
choice sequence).

This should explain why, by means of abstr, NCP can be deduced while 4.2
cannot.

However, the above charge against abstr, as well as the supposed reply, brings
out an intrinsic ambiguity of abstr: according to the context, one can use or not the
information α = abstr α and it is not clear whether such dealing is lawful. To escape
a contradiction, we were forced to maintain that abstr α is not an authentic choice
sequence; but this leads to question what kind of entity it is.

The “forgetting” element suggested by Troelstra is not so innocent as it may seem
at first sight. According to this suggestion, γ (≡ abstr α) would actually be subject
to the restriction γ = α but, when calculating f (γ ), we could forget such restriction.
However, observe that the computation procedure may explicitly ask whether any
possible restrictions have been imposed on the input. For this reason, forgetting the
restrictions cannot simply amount to not using them. Rather, it amounts to using the
false information that no restriction has been set; and false information may well
yield a wrong output. So, if γ has actually the restriction γ = α, we have no right to
forget it.

On the other hand, if γ has no restrictions, it is very hard to grasp in which sense
γ = α holds.

Troelstra (1983, p. 222) suggests that abstr describes a “thought-experiment”, but
he fails to enlighten the very sense of this expression.We could certainly imagine that
for some choice sequence γ , though constructed without any restriction, it might be,
as a matter of fact, γ n = αn, for all n. But this “thought-experiment” would intro-
duce a factual element which at no “metalevel” can be justified from an intuitionistic
viewpoint. That seems to me a classical (realistic) way of thinking about an intuition-
istic construction. It would also bring us close to Posy’s first reconstruction which
we discussed in Sect. 5.4.

We do not deny the possibility of exploiting the rough intuition (which seems
to be behind abstr) that some unrestricted choice sequence “might” be equal to α.
What we want to stress is the need of finding a clear—intuitionistically acceptable—
interpretation of “might”.

A possible way out would be that of understanding “might” in the sense that—as
long as for a choice sequence γ no value has been chosen and no restriction has been
imposed—we cannot have evidence that at some point γ will differ from α. But this
would lead us back to principle 8.1.

For these reasons, we cannot be satisfied with the abstraction process, as a foun-
dational support: as it stands, it still needs its own foundation.
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5.11 Conclusions

Some final words. We have tried to focus what, in our opinion, is a point of founda-
tional interest of NCP for the intuitionistic theory of real functions. In fact, a crucial
philosophical problem in this area is the question whether Brouwer’s main theorem
that asserts the continuity of all full real functions is a cogent consequence of the
general intuitionistic point of view on mathematics.

Well, our answer is that the general intuitionistic conception of mathematics leads
certainly towards continuity but is not sufficient for establishing it. More precisely,
the mere purpose of rendering real numbers and real functions intuitionistically
intelligible leads cogently to negative continuity, not to positive continuity.

Indeed, as we saw,NCP holds for themost general notions of choice sequence and
of extensional function in virtue of very elementary principles. On the contrary, the
evidence of CP presupposes some understood limitations on the notion of function,
such as that of prescinding from the individuality of inputs. Somebody might main-
tain that such a limitation is not substantial because no mathematically interesting
function exploits the individuality of its inputs. This position is, in my opinion, not
very convincing. After all, as already observed, the very importance of individuality
arises just from the introduction ofmathematical entities extensionally undetermined,
such as choice sequences. It is just such indeterminacy that imposes the presence of
individuality as something quite separate from extension. So upholding the mathe-
matical irrelevance of individuality seems to me somewhat paradoxical. On the one
hand, the universe of certain mathematical entities is so conceived that individual-
ity is an essential feature of them; on the other hand, the right of prescinding on
individuality, as mathematically irrelevant, is vindicated.

Even if there is no known example of a mathematically interesting function
exploiting individuality, nevertheless such functions can rightly have their influence
in establishing global mathematical properties of the universe of all functions.

In mathematics, this is a recurring situation. For instance, although most real
numbers, taken in themselves, are of no mathematical interest, they nevertheless
contribute to structuring the continuum as a whole, even from a classical point of
view.

Finally a word on the assumption, we made in our final reconstruction (Sect. 5.8),
of the controversial inclusion of lawless sequences in the universe of all choice
sequences.

First, independently of Brouwer’s opinion, I cannot see any good reason for
expelling lawless sequences from the general concept of choice sequence.

Second—though inessential for reconstructing Brouwer’s—argument the use of
lawless sequences is helpful for analysing the underlying insights. Indeed, an inter-
esting aspect of Brouwer’s argument consists in the suggestion that continuity is not a
mere consequence of freedom in choosing the values of choice sequences, but rather
a consequence of the combined play of freedom and constriction. This aspect is evi-
denced by our reference to lawless sequences. The freedom component is singled
out by principle 8.1. On the other hand, the failure of Brouwer’s argument for the
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universe of lawless sequences, where there is no room for bound choice sequences
such as γ , shows the importance of the constriction component.

As a third point, it seems to me that the rejection of lawless sequences would
not be in line with Brouwer’s reasoning. For, the refusal of lawless sequences falls
within a conception of choice sequence in which higher-order restrictions are not
allowed (one may regard lawlessness as the second-order restriction preventing any
restriction on values). Now observe that for his γ Brouwer “reserves the right” of
choosing only between two particular kinds of restrictions; doing that seems just
to impose a second-order restriction. I think therefore that, when he proved the
negative continuity theorem, Brouwer thought of a notion of choice sequence from
which lawlessness, though never mentioned, was not excluded.
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Chapter 6
Classical and Intuitionistic Semantical
Groundedness

Abstract Kripke’s notion of semantical groundedness for classical logic is devel-
oped in an intuitionistic framework. It is argued that semantical groundedness yields
the most natural solution of the semantical paradoxes.

6.1 Introduction

The classical notion of truth has, as intuitionistic counterpart, a notion of (informal)
provability. The latter fixes the intuitionistic meaning of logical constants, as the
former fixes their classical meaning.

With reference to a first-order language, the classical meaning of logical constants
is expressed by the Tarskian inductive clauses that fix the truth conditions of a
complex sentence in terms of those of its components. Similarly, the intuitionistic
meaning of logical constants is expressed by theHeyting inductive clauses that fix the
(informal) provability conditions of a complex sentence in terms of its components.

We will consider any first-order classical or intuitionistic theory, capable of
expressing first-order classical or intuitionistic arithmetic.With reference to an arith-
metical codification of the syntax, we will indicate by �φ� the code of a sentence
φ.

The predicate of (informal) intuitionistic provability meets problems analogous
to the classical truth predicate. In the sequel, we will indicate by T both the classical
truth predicate and the intuitionistic provability predicate. This is suitable, because
of the intuitionistic identification of truth with provability.

The Tarskian biconditional
φ ↔ T �φ�

holds also intuitionistically, as well as Tarski’s theorem, according to which no
(enough powerful) theory can express its own truth predicate. In fact, otherwise, one
could obtain the liar sentence χ of form ¬T �χ�, incompatible with the Tarskian
biconditional. Observe that, in the intuitionistic case, the liar paradox cannot be
avoided by the intuitionistic rejection of the excluded middle. For, the available
knowledge that any hypothetical proof ofχ , namely of¬T �χ�, leads to contradiction
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counts, in virtue of the intuitionistic meaning of negation, as a proof of ¬T �χ�, i.e.
of χ . So, both χ and ¬χ turn out to be provable.

Kripke’s notion of semantical groundedness (Kripke 1975) yields, in our opinion,
the most enlightening approach to the semantical paradoxes.

Assume that T is a predicate of the language. Intuitively, a sentence φ is grounded
if its truth conditions are inductively defined, starting from those of the basic sen-
tences (i.e. atomic and without T ), by using the Tarskian (or Heyting) clauses for the
logical constants and a suitable clause for T . The latter, suggested by the Tarskian
biconditional, defines the truth conditions of T �φ�, by identifying them with the
(already defined) ones of φ.

Now, the liar sentence χ is ungrounded, since the truth conditions of χ would
presuppose those of T �φ�.

So, semantical groundedness explains the reasons why T is inexpressible in the
object language and puts forward a suitable set of sentences, the grounded ones, for
which the truth predicate is expressible.

In Kripke’s original work, as well as in the subsequent literature, semantical
groundedness is treated only within a classical framework. The similar behaviour of
the classical and intuitionistic predicates suggests, however, an intuitionistic solution
of the liar paradox in terms of well-defined provability conditions.

Wewill sketch an approach, both classical and intuitionistic, to semantical ground-
edness.

Start from a model M0 of a (classical or intuitionistic) theory Θ0, relative to a
first-order language L0. Suppose, for the sake of simplicity, that L0 has individual
constants for all members of the domain D of M0. Put L = L0 ∪ {T }, where T is a
new monadic predicate constant, and extend the arithmetical codification to L . We
want to extend M0 to a model M of L , where T will be interpreted as the grounded
truth predicate. Finally, we will extend Θ0 to a theory Θ , conservative over Θ0, by
adding suitable axioms for T . M will be the intended model for T .

If Θ0 and M0 , as well as the metalanguage, are classical (intuitionistic), so are
Θ and M .

In the classical case, T will be equivalent to Kripke’s truth predicate, evaluated
according to the Kleene weak schema.

6.2 Construction of Model M

Let us inductively define, relative to M0, the grounded L-sentences and their truth
conditions (to be understood, in the intuitionistic case, as Heyting provability con-
ditions):

2.1

(i) If φ is an atomic L0-sentence (including the falsum ⊥), it is grounded. It is
M-true if it is M0-true.
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(ii) If φ and ψ are grounded, so is φ • ψ , where • is any binary connective. The
truth condition is defined according to the usual Tarski’s or Heyting’s clauses.
(The case of negation is included by defining ¬φ =d f. φ → ⊥.)

(iii) If φ(x) is a formula with the free variable x and, for all d ∈ D, φ(d) is grounded,
so are ∀xφ(x) and ∃xφ(x). ∀xφ(x) is M-true if, for all d ∈ D, φ(d) is M-true,
∃xφ(x) is M-true if, for some d ∈ D, φ(d) is M-true.

(iv) If φ is a grounded sentence, so is T �φ�. This is M-true if φ is M-true.

Extend M0 to the L-model M by the following truth conditions for T :

2.2 T �φ� is M-true if φ is grounded and M-true (briefly groundedly true).

Observe that the truth conditions for T �φ� are well-defined for all L-sentences φ,
since 2.2 presupposes the hole inductive definition of groundedness. It turns out that,
for all ungrounded φ, T �φ� is false. Observe that this is the case even intuitionisti-
cally. For, groundedness is decidable; so, if φ is ungrounded, the knowledge, by 2.2,
of the impossibility to prove T �φ� counts, according to the intuitionistic meaning
of negation, as a proof of ¬T �φ�.

One can easily verify the following propositions:

2.3 Any L0-sentence is M-true iff it is M0-true.
2.4 Any L-sentence φ is grounded iff T �φ → φ� is M-true.
2.5 If φ is grounded, then φ ↔ T �φ� is M-true (restricted Tarski’s biconditional).

Semantical groundednessmay suggest the adoption of a gap-semantics, according
to which ungrounded sentences are neither true nor false. But such a semantics does
not offer a satisfactory solution of the strengthened liar paradox, which distinguishes
falsity from failure of truth. In fact, if the liar sentence χ lacks any truth value, it is,
in particular, not true; but, if so, ¬T �χ�, seems to say just that is not true, so that,
after all, it should be true.

Our model M reconciles the intuition of the truth with that of the untruth of χ . By
2.2, since is ungrounded, T �χ� is false, so ¬T �χ�, i.e. χ is true. But remember that
T is the grounded truth predicate, so what¬T �χ� says is that fails to be groundedly
true. Thus, no contradiction arises: the liar sentence is true but not groundedly true.

6.3 Axiomatisation of T

In accordance with 2.4, the groundedness predicate G is expressible in L by defining

G�φ� =d f. T �φ → φ�.

The model M suggests the following axiomatisation:
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3.1 (a) G�φ�, for all atomic L0-formula φ.
(b) G�φ • ψ� ↔ G�φ� ∧ G�ψ�, where • is any propositional connective.
(c) G�Qxφx� ↔ ∀xG(φx)∗, where Q is any quantifier and (φx)∗ is a term

such that, for all d ∈ D, (φd)∗ = �φd�.
(d) G�T �φ�� ↔ G�φ�.
(e) T �φ� → G�φ�.
(f) G�φ� → (φ ↔ T �φ�).

Call Θ the theory obtained from Θ0 by adding the axioms 3.1. M turns out to be
a model of Θ .

3.2 Theorem. Θ is conservative over Θ0.

Since, as we saw, every model of Θ0 is extensible to a model of Θ , the theorem
follows immediately, in the classical case, from the completeness theorem. Intu-
itionistically, completeness fails for Heyting’s intended semantics. One can, how-
ever, recover intuitionistic completeness by adopting generalised Beth semantics or
negationless semantics (see Martino 1998).

6.4 The Aczel–Feferman Intensional Operator

Aczel and Feferman (1980) proposed an intensional set theory with a comprehension
principle of form:

4.1 y ∈ {x : φx} ≡ φy,

where≡ is a certain operator of intensional equivalence, introduced and axiomatized
by the authors. They propose to read φ ≡ ψ as “φ and ψ are equivalent in virtue of
given basic definitions” (see also Feferman 1984).

The operator≡ is interpretable through our grounded truth predicate T as follows:

φ ≡ ψ =d f. (G�φ� ↔ G�ψ�) ∧ (G�φ� → (φ ↔ ψ))

Let S(x, y) be a term such that, if d ∈ D, u is a variable and φ a formula, then
S(d, �〈u, φ(u)〉�) = �φ(d)�.

Put {x : φx} =d f. �〈x, φ(x)〉�, x ∈ y =d f. T (S(x, y)).
With these definitions, 4.1 holds.Besides, in the classical case, allAczel–Feferman

axioms hold in Aczel’s variant.
Our interpretation puts forward a precise meaning—both classical and

intuitionistic—of the operator ≡. It makes explicit the idea, suggested by Aczel,
of definitional equivalence. For, our definition of φ ≡ ψ can be read: clauses 2.1
define truth conditions for φ iff they define truth conditions for ψ and, if this is the
case, φ and ψ are logically equivalent.

In this way, we obtain a version of Aczel–Feferman theory that holds both clas-
sically and intuitionistically.
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Chapter 7
Brouwer’s Equivalence Between Virtual
and Inextensible Order

Abstract Brouwer’s theorem of 1927 on the equivalence between virtual and
inextensible order is discussed. Several commentators considered the theorem at
issue as problematic in various ways. Brouwer himself, at a certain time, believed
to have found a very simple counterexample to his theorem. In some later publica-
tions, however, he stated the theorem in the original form again. It is argued that the
source of all criticisms is Brouwer’s overly elliptical formulation of the definition
of inextensible order, as well as a certain ambiguity in his terminology. Once these
drawbacks are removed, his proof goes through.

7.1 Introduction

The purpose of this paper is to clarify some controversial matters concerning
Brouwer’s characterisation of virtual orders as inextensible orders. The equivalence
of the two notions of order was proved by Brouwer for the first time in the paper
(1927). It is also proved in the Cambridge lectures (1981, 52–54).

Heyting (1975, 569–597), Posy (1980), van Dalen (1981, note 34) find Brouwer’s
definitions and proofs problematic in various ways. Brouwer himself observes in an
unpublished note of 1933 that his 1927 proof that every virtual order is inextensible
is invalid and supplies a very simple counterexample.

From a note in the margin of Brouwer’s own copy of his 1927 paper, as well as
from Brouwer’s formulation of the matter in the Cambridge lectures, Heyting argues
that Brouwer tried to save his theorem by changing his definition of virtual order and
criticises the new definition as involving themetamathematical notion of derivability.
The same conclusion is upheld by Posy and van Dalen. Posy tries to disentangle the
matter by means of a suggestive reconstruction involving the creative subject. We
claim that:

(1) The paper 1927 is correct;
(2) Brouwer never changed his notion of virtual order. The treatment of the

topic is essentially the same in all Brouwer’s papers. However, the definition
of inextensible order in the Cambridge lectures needs a minor correction;

(3) Brouwer’s unpublished counterexample is wrong;
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(4) Nometamathematical notion of derivability is involved in Brouwer’s definitions;
(5) The creative subject is of no help for understanding Brouwer’s argument.

7.2 Reconstruction of Brouwer’s Paper of 1927

Brouwer’s original paper is essentially correct. All objections of the commentators
arise, in our opinion, from certain ambiguities in the symbolism and from the overly
elliptical formulation of the definition of inextensible order.

Here, we shall try to give a reconstruction of Brouwer’s paper free from these
drawbacks. Our exposition differs from Brouwer’s in the following aspects: we will
introduce a symbolismmore usual in today’s literature and free from the ambiguities
of the Brouwerian one; we will work out the notion of addable pair and will prove
it to be equivalent to its double negation.

A partial order (<,=) on a given species S consists of two binary predicates <,
= on S satisfying the following clauses:

2.1 x = x ,
2.2 x = y → y = x ,
2.3 x = y ∧ y = z → x = z,
2.4 x = y ∧ z = u ∧ x < z → y < u,
2.5 x < y ∧ y < z → x < z,
2.6 x < y → ¬y < x .

A partial order is virtual if moreover

2.7 ¬x < y ∧ ¬y < x → x = y,
2.8 ¬x < y ∧ ¬x = y → y < x .

A partial order (≺,≈) is an extension of a partial order (<,=) (on the same
species S) if x < y → x ≺ y and x = y → x ≈ y. The pair (x, y) is (positively)
addable to the predicate < (to the predicate =) if there is some extension (≺,≈)

of (<,=) such that x ≺ y(x ≈ y). (x, y) is negatively addable to < (to =) if its
addability to < (to =) is non-contradictory.

Lemma 7.1 Let (<,=) be a partial order on S and let (a, b) ∈ S×S. The following
statements are equivalent:

(i) ¬a < b ∧ ¬b < a (¬a < b ∧ ¬a = b);
(ii) (b, a) is addable to = (to <);
(iii) (b, a) is negatively addable to = (to <).

Proof
(i) → (ii). Suppose ¬a < b ∧ ¬b < a.
Define:

• x ≈ y := x = y ∨ (x = a ∧ y = b) ∨ (x = b ∧ y = a),
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• x ≺ y := x < y ∨ ((x < a ∨ x < b)∧ (y = a ∨ y = b ∨a < y ∨b < y))∨ ((x =
a ∨ x = b) ∧ (a < y ∨ b < y)).

A straightforward verification shows that (≺,≈) is an extension of (<,=) and
a ≈ b. Suppose ¬a < b ∧ ¬a = b. Define:

• x ≈ y := x = y,
• x ≺ y := x < y ∨ ((x < b ∨ x = b) ∧ (a < y ∨ y = a)).

A straightforward verification shows that (≺,≈) is an extension of (<,=) and
that b ≺ a.

(ii) → (iii). Trivial.
(iii) → (i). Suppose, by reduction, a < b. Then, for any extension (≺,≈) of
(<,=), a ≺ b and hence, by 2.4 and 2.6, ¬a ≈ b. This contradicts the negative

addability of (b, a) to =. Thus, ¬a < b. Similarly, we get ¬b < a and therefore
¬a < b ∧ ¬b < a.

A partial order (<,=) is inextensible if, for all x , y ∈ S, x < y(x = y), provided
(x, y) is addable to< (to=). The lemma immediately implies the following theorem:

Theorem 7.2 Any partial order is virtual if, and only if, it is inextensible.

7.3 Comment on Brouwer’s Text

For Brouwer “relations” are not the predicates < and = (subspecies of S × S), as
it is usual in today’s literature, but the formulas of type x < y and x = y, with x ,
y ∈ S. In this terminology, to give a partial order amounts to interpreting the above
formulas in such a way as to satisfy clauses 2.1–2.6.

The species of existing relations (“bestehenden Relationen”), which Posy finds
somewhat mysterious, is simply the species of formulas true in the given interpre-
tation. This species is perfectly defined, provided a specific partial order on S is
given.

With regard to the notion of inextensible order, Brouwer’s definition is the follow-
ing: a partial order is called inextensible if every relation p < q or p = q, which can
be added to the existing ones in a non-contradictory manner (“welche sich den beste-
henden Relationen…widerspruchsfrei hinzufügen lässt”), is an existing relation.

Brouwer does not explicitly define the meaning of the expression “addable in a
non-contradictory manner”. However, from the context there can be no doubt that it
is to be understood according to our definition of negative addability.

First of all, we observe that the alternative interpretation of “p < q(p = q) is
addable in a non-contradictory manner” as ¬¬p < q(¬¬p = q), which might
appear plausible at first sight, is certainly to be rejected. The terms “add” and “in-
extensible” seem to involve the idea of enlargement, whereas the interpretation at
issue is insensitive to this idea. For, since the assertion p < q certainly means “the
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relation p < q is an existing one”, the assertion ¬¬p < q must be understood as
“the existence of p < q is non-contradictory”. Thus, the interpretation in question
identifies “addable” with “existing”.

Besides, that interpretation trivially falsifies Brouwer’s theorem that every inex-
tensible order is virtual. For, let S be a specieswith at least two distinct elements, let=
be the real identity and define < by putting, for all p, q ∈ S, p < q if, and only if,
0 = 1, so that ¬p < q for all p, q ∈ S. (<,=) is obviously an inextensible order
which fails to be virtual.

On the contrary, our interpretation, as we saw in Sect. 7.2, underlies the idea of
enlargement and verifies the equivalence between virtual and inextensible orders.
Moreover, and more importantly for upholding its fidelity to Brouwer’s thought, it
is in perfect harmony with Brouwer’s argument.

For, in order to prove that any inextensible order satisfies clause 2.8, Brouwer
shows that from ¬s < r ∧ ¬s = r the possibility follows of adding the relation
r < s to the existing ones in a non-contradictory manner. To show that, Brouwer
constructs a species γ including the species a of existing relations and the relation
r < s; then he shows that γ satisfies the clauses of partial orders. This means just
that r < s holds in some partial order extending the given one, i.e. that the pair (r, s)
is addable to <, according to our definition of (positive) addability. Similarly for
Brouwer’s proof that any inextensible order satisfies clause 2.7.

Still there arises the question ofwhyBrouwer formulated his definition of inexten-
sible order in terms of negative addability. This may seem strange, since in the proof
that any inextensible order is virtual he actually uses the notion of positive addability,
as we have already seen. With regard to the converse, Brouwer’s reasoning holds a
fortiori for the positive notion.

Observe that the assertion that every virtual order is inextensible is (a priori)
stronger if inextensibility is formulated in terms of negative addability. On the other
hand, positive addability strengthens the converse assertion.

Now, in dealing with the virtual order of the continuum, Brouwer primarily con-
ceived of inextensibility as a property of virtual orders, rather than of virtuality as a
property of inextensible orders. So, in order to exhaustively express inextensibility
of virtual orders, he wanted to determine a minimal addability condition assuring
the existence of a given relation. This is, in our opinion, the reason of his option for
negative addability.

Finally, observe that the equivalence of the two notions of inextensibility follows
immediately from Brouwer’s proof. For call strong (weak) inextensibility the notion
expressed in terms of negative (positive) addability. Then, his arguments show that
every weakly inextensible order is virtual and that every virtual order is strongly
inextensible. Thus, every weakly inextensible order is strongly inextensible, whence
the claimed equivalence.
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7.4 How Brouwer Misinterpreted Himself

In a note on Brouwer (1927), Heyting tells us that, in a handwritten note of 1933,
Brouwer observed:

In [1927] it was proved that every inextensible order is a virtual order. But the proof of the
converse theorem found there is invalid. For the incompatibility of the simultaneous non-
contradictory existence of an arbitrary two of the relations r = s, r < s, s < r does not
entail the incompatibility of the simultaneous non-contradictory addability of an arbitrary
two of these relations. Indeed, the species consisting of the four elements a, b, c, d with the
order relations a < b, a < c, a < d, b < d, c < d is virtually but not inextensibly ordered.

However, Brouwer’s counterexample is patently wrong. Namely the order con-
cerned fails to be virtual, since ¬b < c, ¬c < b, ¬b = c simultaneously hold.
Strangely, the commentators do uphold Brouwer’s counterexample and regard it as
an authentic difficulty for the theorem in question. Van Dalen, in a note to the Cam-
bridge lectures, defends the counterexample as follows (in Brouwer 1981, note 34):

Classically, one could say b = c and b < c do not hold in the structure, so that b �= c and
¬b < c hold, hence by (8) [our 2.8] b > c should hold. However, intuitionistically b = c
cannot be claimed, as this would require enough information to reduce b = c ad absurdum.
So intuitionistically, (8) and (9) [our 2.8 and 2.7] are vacuously true, and hence the ordering
is virtual. But, as Brouwer observes, the order can consistently be extended, e.g. by adding
b < c.

Van Dalen’s argument is, however, fallacious.
First of all, it seems evident to me that the order described by Brouwer is to be

understood as completely given by the relations a < b, a < c, b < d, c < d,
a < d. In other words, we believe that the mentioned relations are to be considered,
by definition, as the only existing ones in the given order. If Brouwer had wanted to
leave the possibility of the existence of b < c or c < b, e.g. by making it depending
upon some unsolved problem, hewould certainly have said so explicitly, as he always
did in such cases. So, a proof of x <y consists in the trivial verification that x < y
occurs among the given relations. Hence, ¬b < c and ¬c < b.

Secondly, let us agree for a moment to van Dalen’s interpretation according to
which no information would be available about any possible relation between b and
c. The temporary lack of information to prove the antecedent of an implication cannot
assure, of course, the truth of the implication. To vacuously assert an implication,
one has to prove the absurdity of the antecedent. So, to vacuously assert

¬b < c ∧ ¬b = c → c < b,

wewould have to prove¬(¬b < c∧¬b = c), which in turnwould require some non-
available information. So in no way are the virtuality conditions vacuously satisfied.

Now, if, as wemaintained, Brouwer defined his counterexample with the intention
to preclude the existence of any relation between b and c, how could he believe that
order to be virtual? We think that the reason for Brouwer’s mistake is of a differ-
ent nature from van Dalen’s. It lies in Brouwer’s imprecise use of symbolism and
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terminology. In our symbolism of Sect. 7.2, where < and = are used to indicate the
given order, an assertion r < s (r = s) has the precisemeaning that the pair (r, s) falls
under the predicate< (=). In Brouwer’s symbolism, where r < s (r = s) is an unin-
terpreted formula, the same assertion should be expressed in the form “r < s(r = s)
holds in the given order” or, in Brouwer’s terminology, “r < s(r = s) is an existing
relation”. It is quite natural, however, to write simply r < s(r = s) as an abbre-
viation of the above assertion, relying upon the context for the distinction between
mentioning a relation and asserting its existence. Brouwer used this convention with-
out stating it explicitly. Unfortunately, he was working within a framework where
intuition is not very stable in governing that tacit convention. In fact, he stated clause
2.7 and 2.8 in the form:

4.1 From the simultaneous incompatibility of relations r < s and s < r follows
r = s.

4.2 From the simultaneous incompatibility of relations r < s and r = s follows
s < r .

In a context where there is an interplay between existence and addability of re-
lations, to say that a relation r < s is incompatible may be ambiguous, without the
specification of whether what is incompatible is the existence or the addability of
r < s.

According to the above convention, in 4.1 “incompatibility” refers to existence,
since r < s is short for “r < s is an existing relation”. Brouwer certainly understood
clauses 4.1 and 4.2 in this sense, when writing his paper. This is also confirmed by
the fact that Brouwer also formulated the virtuality clauses in earlier papers where
addability was not in question. But it happened that, when thinking his theorem over,
he confused existence with addability and referred to the latter the “incompatibil-
ity” in 4.1 and 4.2. In other words, Brouwer, when writing the unpublished note,
interpreted 4.1 as

4.3 From the simultaneous incompatibility of adding the relations r < s and s < r
(in a non-contradictory manner) follows r = s.

Similarly for the interpretation of 4.2.
Keeping in mind this misinterpretation, we are able to understand the content of

Brouwer’s note completely. Given any virtual order, try to prove it is inextensible.
Let r = s be addable in a non-contradictory manner. Then, we can suppose without
contradiction that r = s holds in some extension of the given order. From the
incompatibility of the simultaneous existence of an arbitrary two of relations r = s,
r < s, s < r it follows that neither r < s nor s < r can belong to such extension,
so that none of them can hold in the given order either. This is all that is needed for
concluding r = s by means of 4.1, in its correct interpretation. But, understanding
4.1 in the wrong form 4.3, we are not able to reach the desired conclusion. The reason
is expressed just in Brouwer’s remark that the incompatibility of the simultaneous
non- contradictory existence of an arbitrary two of the relations r = s, r < s, s < r
does not entail the incompatibility of the simultaneous non-contradictory addability
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of an arbitrary two of these relations, i.e. the antecedent of implication 4.3. This is
what is shown by Brouwer’s counterexample, where each of relations b = c, b < c,
c < b is addable in a non-contradictory manner.

If our reconstruction is correct,Brouwer’s error reduces itself to a trivial confusion.
So we should expect that Brouwer became aware of his error very soon. In fact, not
only did he never publish any correction to the incriminated theorem, he even asserted
it again in some later papers. This fact does not agree, however, with Heyting’s
conclusion in the above-mentioned note to Brouwer (1927). Indeed Heyting argues
that, in order to avoid the difficulty shown by his counterexample, Brouwer tried to
change the definition of virtual order.Heyting’s argumentwould seem to be supported
by another unpublished document. In the margin of his copy of 1927, Brouwer
reformulated the virtual clauses as follows:

4.4 “From the impossibility of deriving either one of the relations r < s and r > s
from the definition of the ordered [species], it follows r = s”.

4.5 “From the impossibility of deriving either one of the relations r < s and r = s
from the definition of the ordered [species], it follows r > s”.

He added the following remark:

4.6 “In this way is ruled out the circumstance in which, for some pair (a, b), it is
impossible to derive any of the three relations a = b, a < b and a > b from the
definition of the ordered [species]”.

According to Heyting, clauses 4.4 and 4.5 would constitute a new definition of
virtual order, in virtue of which Brouwer’s theorems hold. He criticizes, however,
the new definition, because it would seem to involve the metamathematical notion of
derivability. Heyting also observes that in the Cambridge lectures Brouwer explicitly
says that the virtuality conditions are to be interpreted according to 4.4 and 4.5.

Heyting’s comment, however, is wrong. It is clear from our analysis that 4.4 and
4.5 do not define any new notion of virtual order, but merely explain the old one.
When Brouwer realized his error, he tried to reformulate the virtuality clauses in such
a way to avoid that ambiguity which caused his error. Indeed, 4.4 and 4.5 amount just
to 4.1 and 4.2 with moreover the warning of referring incompatibility to existence.
For, the existence of a relation r < s, i.e. its holding in the given order, can be
established intuitionistically only by deducing r < s from the definition of the given
order, so that the impossibility of doing that amounts just to the incompatibility of
the existence of r < s. Our account is in accordance with Brouwer’s remark 4.6:
if 4.1, 4.2 are understood in the correct way, for any pair (a, b) the impossibility of
deducing a = b ∨ a < b ∨ b < a is contradictory.

Brouwer’s intention to stress the distinction between existence and addability is
even more clear in the Cambridge lectures. There Brouwer points out that to give an
order on a certain species means to create criteria for the relations =, < by virtue
of which the proper axioms hold. The validity of these is to be understood, Brouwer
continues, in the sense that “one or more possibilities or impossibilities of deducing
one of these relations from the criteria imply another possibility or impossibility of
deducing one of these relations from the criteria”.
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The possibility or impossibility of deducing a relation from the criteria expresses,
as already observed, the intuitionistic meaning of its existence or non-existence.
In contrast with existence, Brouwer also makes addability explicit. Indeed, after
defining a partial order to be inextensible if no further relations can be added to the
existing ones in a non-contradictory manner, he adds between brackets: “which in
this case means in such a way as to make it impossible to deduce contradictions from
the old and the new relations under application of the properties (1)–(9) [the axioms
of partial order]”.

Observe that this explanation is an explicit formulationof our definitionof negative
addability. For, the existence of an extension (≺,≈) of the given order (<,=) such
that r ≺ s is non-contradictory just when it is impossible to get a contradiction from
the assumption that, for some predicates ≺, ≈ extending < and = with r ≺ s the
axioms of partial orders hold.

We conclude that both in the pencil note 4.4–4.6 and in the Cambridge lectures
the notion of virtual order is the same as in the original paper 1927, but a few
remarks were added in the new formulation, for the sole purpose of avoiding possible
misunderstandings. Accordingly, these remarks, which were put in brackets in the
Cambridge lectures, were altogether removed from the later version of 1950.

At this point, it should be clear that, in spite of Heyting’s criticism, no meta-
mathematical or proof-theoretical notion of derivability is involved by Brouwer’s
explanations. The “deducibility” to which Brouwer refers is to be understood in the
sense of the intuitionistic concept of informal proof. This concept underlies any in-
tuitionistic mathematical notion and comes out explicitly whenever we try to fully
explicate that.

7.5 A Minor Mistake in the Cambridge Lectures

Weobserve inpassing thatBrouwer’s definitionof inextensible order in theCambridge
lectures is incorrect. In fact, an inextensible order is defined there as a partial order
to whose existing relations no further relations can be added in a non-contradictory
manner. Now,with respect to the existing relations, a further relation is a non-existing
one. And the impossibility of adding a non-existing relation means that any addable
relation cannot be a non-existing one. This does not entail the existence of any
addable relation, as would be required for proving the virtuality of any inextensible
order (take, e.g. a relation whose existence depends upon an unsolved problem).
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7.6 On Posy’s Reconstruction

Posy tries to reconstruct Brouwer’s (1927) bymeans of the notion of creative subject.
In fact, he proposes to consider “existing relations” of type p < q (or p = q) as
those relations for which

6.1 ∃n 
n p < q (or ∃n 
n p = q)

and “relations addable to the existing ones in a non-contradictory manner” as the
ones for which

6.2 ¬∃n 
n ¬p < q (or ¬∃n 
n ¬p = q)

In this way, inextensibility is expressed by the clauses

6.3 ¬∃n 
n ¬p < q → p < q, ¬∃n 
n ¬p = q → p = q.

By the principle of “christian charity” (accepted by Posy), 6.2 is equivalent to
¬¬p < q (or ¬¬p = q), whence those in 6.3 are equivalent to

6.4 ¬¬p < q → p < q, ¬¬p = q → p = q

6.4 are the so-called stability clauses of the order. Thus, according to Posy, a partial
order is inextensible if, and only if, it is stable.

Now, it is clear that a stable order is not necessarily virtual. (Take Brouwer’s
counterexample discussed above where the 6.4 vacuously holds for the pair (b, c)).
Thus, his equivalence between virtuality and inextensibility does not hold in Posy’s
interpretation. Posy tries to prove it, but his proof is wrong. In fact, he infers virtuality
from inextensibility by means of the following argument: The creative subject can
prove a negative statement ¬p < q or ¬p = q only by means of the axiom

p < q → ¬p = q ∧ ¬q < p

since this is the only axiom for partial orders which establishes a negation. However,
the possibility of deducing a relation or its negation depends not on the general
axioms of partial orders but on the definition of the given specific order (the criteria
of the Cambridge lectures). Posy himself explicitly assumes that such a definition
is known to the creative subject from the beginning (stage zero). Nor could it be
otherwise. If only the general axioms of order were available to the creative subject,
then, according to Posy’s definition of existing relation, no relation of type p < q
would be existing, since the only relations deducible from the axioms are those of
the form p = p.

It is true that in the Cambridge lectures Brouwer expresses addability in terms
of deducibility from the axioms (and not from the criteria). But, as we saw, the
reason of this is that Brouwer’s addability means existence in some extension of
the given order, while deducibility from criteria means existence in the given order
itself. Brouwer’s addability, however, is incompatible with Posy’s one which, as we
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observed, makes the addability of p < q equivalent to ¬¬p < q. Thus, Posy’s
argument is incorrect.

Posy also tries to distinguish two theories of order in Brouwer’s work, one tensed
(that of 1927 and of (1950) and the other intuitionistic (that of the Cambridge
lectures). But all his discussion rests on a misunderstanding. He interprets Brouwer’s
“deducibility from criteria” as deducibility at the stage 0 of the activity of the cre-
ative subject, in contrast with deducibility along the whole course of time. So the
version of the Cambridge lectures would be untensed, because of its reference to
one and the same stage (stage 0). But, as we have shown, the relevant distinction is
that between relations holding in the given order (deducible from the criteria) and
relations holding in some extension of it (deducible from the axioms and the exist-
ing relations). And this distinction is neutral with respect to the time element, since
it does not involve the very nature of such criteria. These may fully predetermine
the existing relations, or they may very well make them depend upon some as yet
unknown information. Brouwer himself gives in 1950 some examples of criteria
referring to future information.

We conclude that the notions of virtual and inextensible order are the same every-
where in Brouwer’s work. They are certainly tensed in Posy’s sense that the negation
occurring in all axioms is to be intended as strong negation and not as non-evidence
at the present. An untensed theory would be of no use and, as Posy himself observes,
would conflict with Brouwer’s weak counterexamples to the linearity of the order of
the continuum.

The time element is certainly present insofar as it is implicit in the intended mean-
ing of intuitionistic logical constants, in particular of negation (in the usual strong
sense). But it does not need any explication by means of the creative subject, neither
in the formulation of the two notions of order nor in the proof of their equivalence.
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Chapter 8
An Intuitionistic Notion of Hypothetical
Truth for Which Strong Completeness
Intuitionistically Holds

Abstract An intuitionistic notion of truth under a set of hypotheses is introduced in
this chapter. Bymeans of that, intuitionistic semantics is extended to a new semantics
for which validity turns out to be equivalent to generalized validity. Strong complete-
ness is proved intuitionistically.

8.1 Introduction

We call models natural intuitionistic models for IPC (intuitionistic predicate calcu-
lus) those formally defined as classical models, but interpreting logical constants
intuitionistically. In the literature, such models are also called intuitive models
(Troelstra 1977) or internal models (Dummett 1977).

Natural intuitionistic semantics is to be developed within an intuitionistic meta-
mathematics. In this framework, including lawless sequences, it is provable that any
formula of IPC is valid for natural semantics iff it is valid for Beth semantics. It
follows that the problem of natural completeness is equivalent to that of Beth com-
pleteness within intuitionistic metamathematics.

It is well known (see Dummett 1977 or Troelstra 1977) that natural (as well as
Beth) completeness is equivalent to Markov’s principle. And since the latter goes
beyond usual intuitionistic constructivism, natural completeness fails to hold intu-
itionistically. Furthermore, as we shall show, natural strong completeness is incom-
patible with the theory of lawless sequences.

However, Veldman and de Swart introduced certain generalizations of Kripke and
Beth semantics respectively, for which intuitionistic completeness holds (De Swart
1976a, b; Veldman 1976). The peculiarity of such generalized models consists in
allowing the absurdity ⊥ to be true at some node.

The question arises whether these completeness results are of some significance
for natural semantics. The problem is to give a plausible account for the possibility
of being ⊥ true is a natural model. Of course, an essential requirement for such
an account is agreement with the general conception of intuitionistic truth. And
since Intuitionism identifies truth with (informal) provability, the problem amounts
to explaining what a proof of the absurdity is.
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Now, there are two cases in which the working mathematician may prove the
absurdity: when his reasoning is erroneous or when he argues under some false
assumptions. The first case is of no theoretical interest, because the highly idealized
notion of proof, on which intuitionistic truth is based, is free of errors. The second
case, on the contrary, has a very important role also in the activity of the idealized
mathematician, whose hypothetical reasonings may well rest on some unproved
assumptions.

These considerations suggest the attempt to pursue the desired interpretation by
relativizing truth (in a natural model) to a certain set of hypotheses and defining
validity as truth in every model under every set of hypotheses.

At first sight, this way may seem to be inadequate to strengthening validity. For, if
a sentence is true tour court, it seems to be a fortiori true under any set of hypotheses.

However, the force of this objection depends upon the way of understanding the
notion of truth under a set H of hypotheses. Indeed, as we shall see, such a notion,
unless H is finite, is not fully determined by the usual intuitionistic acceptation of
the term hypothesis.

In the present paper, we will propose an intuitionistic definition of hypothetical
truth which escapes the above objection and succeeds to reach the desired goal. By
means of that we will strengthen the relation of semantical consequence for natural
semantics, so as to make it equivalent to the corresponding relation for generalized
Beth semantics.

8.2 Symbolism and Conventions

L is an intuitionistic first-order language without function symbols.
A, B, C are L-sentences (closed formulae), �, �, H sets of L-sentences. H will

be used when its members play the role of hypotheses (in the sense of this paper).
⊥ (absurdity) is included among logical constants and negation is defined by

¬A := A → ⊥.
All proof-theoretical terms and symbols as derivation, � · · · refer to IPC (intu-

itionistic predicate calculus) and all semantical terms and symbols, as model, truth,
validity, |= · · · , when lacking further specifications, refer to natural semantics.

We indicate byM (with possible subscripts) a naturalmodel and by |M| its domain.
L(M) is the language extended by individual constants for all members of |M|.

All our definitions, theorems, proofs are to be read intuitionistically.
Sets are understood according to the Brouwerian concept of species. In particular,

a set of sentences is given provided we know what counts as a proof that a sentence
belongs to it. So sets of sentences may fail to be decidable or even enumerable.

We use ⊂ for weak inclusion: � ⊂ � iffdf , for all A,A ∈ � ⇒ A ∈ �.
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A set is finite when there is a (constructive) map from an initial segment of ω (the
set of natural numbers) onto it. So, if � is finite, one has to be able to write down all
sentences belonging to it.

For finite �, we indicate by ∧� the conjunction of all its members, if any, and put
∧φ := ¬⊥.

u, v,w, . . . are used for finite sequences of natural numbers. If u =
〈u0, u1, . . . , un−1〉, lth u := n and, if k ∈ ω, u k := 〈u0, . . . , un−1, k〉

α, β, γ, . . . are used for lawless sequences with abbreviations αn :=
〈α0, α1, . . . , α(n−1), α ∈ u := α(lth u) = u.

We use ≡ for strict (intensional) equality.

8.3 The Failure of Strong Completeness for Natural
Semantics

We show that the compactness of relation � |= A of semantical consequence is
inconsistent with the theory of lawless sequences.

Theorem 8.1 Not for all �,A, if � |= A then, for some finite �′ ⊂ �, �′ |= A.

Proof For every lawless sequence α, define �α = {A : A ≡ ⊥ ∧ ∃xαx = 0}. Since
∀α¬¬∃xαx = 0, for all α, we have ¬¬(⊥ ∈ �α). So, for all α and all M, M � �α

and hence, vacuously, �α |= ⊥. But, since ¬∀α∃xαx = 0 and hence ¬∀α⊥ ∈ �α ,
not for every α there is a finite �′

α ⊂ �α such that �′ |= ⊥.1

Corollary 8.1 (Failure of strong completeness) Not for all �,A, if � |= A, then
� � A.

8.4 Hypothetical Truth

LetM be anL-model andH a set ofL(M)-sentences, whichwill be called hypotheses.
We define the main notion of the paper, i.e. the truth of an L(M)-sentence A in M
under the set H of hypotheses, briefly the H- truth of A in M, for which we use the
notation M |=H A.

Definition 8.1 M |=H A is defined by induction on A:

(a) for atomic A, M |=H A iff, for some finite H ′ ⊂ H, ifM |= ∧H ′ then M |= A;

1Prof. Troelstra suggested to me by letter the following interesting variant of the proof, which
shows how compactness for natural semantics would imply the validity of the excluded middle
principle. Given any sentence A and any model M, define �A = {B : B ≡ ⊥ and M |= A ∨ ¬A}.
Since M |= ¬¬(A ∨ ¬A) and hence not M � A ∨ ¬A, we have ¬¬(⊥ ∈ �A). Thus, for all model
M ′, M ′

� �A, whence vacuously, �A |= ⊥. Assuming compactness, we get ⊥ ∈ �A and therefore
M |= A ∨ ¬A.
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(b) M |=H A ∧ B iffM |=H A and M |=H B;
(c) M |=H A ∨ B iff, for some finiteH ′ ⊂ H, ifM |= ∧H ′, thenM |=H A orM |=H

B;
(d) M |=H A → B iffM |=H A ⇒ M |=H B;
(e) M |=H ∀xA(x) iff, for all d ∈ |M|,M |=H A(d);
(f) M |= ∃xA(x) iff, for some finite H ′ ⊂ H, if M |= ∧H ′, then for some d ∈ |M|,

M |=H A(d).

The intuitive idea underlying the above definition is that, when H-proving an
interpreted sentence A, at every stage we are allowed to assume finitely many sen-
tences of H. In clauses (b), (d), (e) explicit reference to H is omitted, since it would
be redundant.

Definition 8.2 Let H, � be sets of L-sentences and A an L-sentence.

(a) A isH-consequence of�,� |=H A, iffdf , for allM,M |=H A providedM |=H �

(i.e.M |=H B for all B ∈ �).
(b) A is H-valid, |=H A, iffdf φ |=H A.
(c) A is hypothetical consequence of �, � |=H A, iffdf , for all H, � |=H A.
(d) A is hypothetically valid, |=H A, iffdf φ |=H A.

When all hypotheses are decidable inM, the definition of H-truth can be simpli-
fied.

Definition 8.3 H is decidably built in M iff, for all A ∈ H, M |= A ∨ ¬A.

The following proposition is easily verified, by induction on A:

Proposition 8.1 Let H be decidably built in M.

(a) For atomic A, M |=H A iff either M |= A or, for some B ∈ H, M |= ¬B
(b) M |=H A ∧ B iff M |=H A and M |=H B;
(c) M |=H A ∨ B iff M |=H A or M |=H B;
(d) M |=H A → B iff M |=H A ⇒ M |=H B;
(e) M |=H ∀xA(x) iff, for all d ∈ |M|, M |=H A(d);
(f) M |=H ∃xA(x) iff, for some d ∈ |M|, M |=H A(d).

Corollary 8.2 If H is decidably built in M, there is a model M ′ such that, for all
⊥-free A, M |=H A iff M ′ |= A.

Proof DefineM ′ by |M ′| = |M| and, for all atomic A �= ⊥,M ′ |= A iffdf M |=H A.

Corollary 8.3 Let H be decidably built in all models and let A and all sentences of
� be ⊥-free. Then � |=H A iff � |= A.

Formal derivation in IPC respects hypothetical consequence:

Theorem 8.2 (Soundness) If � � A then � |=H A.
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Proof Let M be a model and H a set of L-sentences. If � is a set of L-formulae,
A an L-formula and a an assignment of elements of |M| to the free variables of �

and A, we indicate by �a and Aa the set of L(M)-sentences and the L(M)-sentence
obtained from � and A by means of a. It is easily verified that, if � � A, then, for
every assignment a, �a |=H Aa. The proof runs straightforwardly by induction on
the derivation of A from �.

8.5 Remarks on Hypothetical Truth

Some comments on our notion of hypothetical truth are in order. It is worthwhile to
compare |=H Awith the popular relationsH |= A andH � A, since all three express
some sort of deducibility of A from H.

Notation 8.1 [H |= A]M forM |= H ⇒ M |= A.

Lemma 8.1 If M |= H, then M |=H A iff M |= A.

Proof Since, for all finite H ′ ⊂ H, M |= H ′, the definition of M |=H A reduces to
that of M |= A.

Proposition 8.2 If H is finite, then M |=H A iff [H |= A]M.
Proof Take H ′ = H in the inductive definition of M |= A.

Proposition 8.3 If M |=H A, then [H |= A]M.
Proof Apply Lemma8.1.

Using lawless sequences, we can show that the converse fails in a very strong
form:

Proposition 8.4 There are A, H and M such that H |= A but not M |=H A.

Proof Suppose L has infinitely many individual constants, say numerals 0, 1, 2, . . .
Let α be a lawless sequence and P a unary predicate symbol. Define H = {P(n) :
n ∈ ω} ∪ {¬∀xP(x)} and A ≡ ¬∀xP(x), so that trivially H |= A.

LetM be a model, with domain ω, in which P is interpreted by:M |= P(n) iffdf .
∃x > n αx = 0.We have triviallyM |=H ∀xP(x). From¬∀x∃y > xαy = 0 it follows
M |= ¬∀xP(x) and, as ∀x¬¬∃y > x αy = 0, M |= ¬¬P(n), for all n.

Hence, for every finite H ′ ⊂ H, M |= ¬¬ ∧ H ′. Thus M �
H ⊥ and therefore

M �
H ¬∀xP(x).

We conclude that

Proposition 8.5 |=H A is strictly stronger than H |= A.
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For H,A as in the proof of Proposition8.4, it holds also H � A. It follows that
relation H � A is not stronger than |=H A. On the other hand, |=H A is not stronger
thanH � A, otherwise, forH = φ, it would hold completeness for natural semantics.
Thus

Proposition 8.6 Relations |=H A and H � A are incomparable.

In a certain sense, however, formal derivability may be regarded as the formal
counterpart of hypothetical truth. For, since H � A expresses the derivability of A
from some finite subset of H, from Proposition8.2 it follows that

Proposition 8.7 If H � A, then, for some finite H ′ ⊂ H, |=H ′
A.

The above propositions explain the main difference between the two concepts of
deducibility represented by

M |=H A (8.1)

and

[H |= A]M (8.2)

respectively.
For finite H, both relations express deducibility according to the usual intuition-

istic sense of implication: you can assert both M |=H A and [H |= A]M when you
have a method of transforming any proof of ∧H into a proof of A. This concept of
deducibility from a finite set of (interpreted) sentences is extrapolated for general
sets of sentences into different directions by the two relations.

(8.2) interprets deducibility of A from H as an implication whose antecedent
is the universal quantification on all sentences of H and whose subsequent is A.
Accordingly, you can assert [H |= A]M when you have a method of transforming
any proof of (∀B ∈ H)B into a proof of A.

In contrast, (8.1) does not involve the idea of simultaneous provability of all
sentences of H, but only of finitely many of them at a time. The H-truth of A is
conceived as the provability of A, when all provability conditions of A and of its
subsentences are relativized to suitable assumptions of the form ∧H ′, with finite
H ′ ⊂ H. In other words, the assumption of the whole H is not conceived as the
assumption of its sentences all at once, but rather as a (possibly infinite) process, in
the course of which some sentences from H may be assumed step by step.

This difference is quite remarkablewith respect to the twonotions of contradictory
set of (interpreted) sentences expressed by

(1′) [H |= ⊥]M
and

(2′) M |=H ⊥
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According to (1′), H is regarded as contradictory provided ¬∀B ∈ H(M |= B),
i.e. provided it is impossible to prove the sentences ofH all at once, even if we know
that no sentence ofH is refutable, as for theH andMα in the proof of Proposition 8.4.

In contrast, we can assert (2′) only after having found in H finitely many incom-
patible sentences.

On this respect, (8.1) seems to be more interesting than (8.2), especially when
dealing with undetermined sets of hypotheses.

For instance, if H is a lawless sequence of sentences, we can assert (1′) even
without knowing any sentence of H. So H |= A trivially holds for every A. On the
contrary, the set {A : M |=H A} is far from being trivial.

The example in the proof of Proposition8.4 points out also another peculiar aspect
of hypothetical truth: it may happen that �H A, even though A ∈ H. This feature may
seem an oddity, since one would expect A to be trivially deducible from itself. But,
on reflection, one should agree that this feature is in agreement with the intuitionistic
intended meaning of implication and, in particular, of negation.

For, the truth of ¬B expresses the absurdity of finding an absolute proof of B. But
by no means it entails the absurdity of finding a proof of B with the help of some
suitable set of hypotheses. Therefore you have no right to assert the H-truth of a
sentence on the basis of its mere truth. The more a set of hypotheses helps to prove
a sentence, the more it hampers to prove its negation. Now, the meaning of A ∈ H is
that, when proving H-truths, we are allowed to suppose to have an absolute proof of
A, but this supposition in general does not enable us to find an H-proof of A. What
the example in Proposition8.4 shows is just that, as a matter of fact, at least when
dealing with lawless parameters, such a situation can be realised.

These considerations also explain how our notion of hypothetical truth can escape
the initial objection, according to which true sentences would be a fortiori true under
any set of hypotheses.

Later on, we will be concerned with relation � |=H A. In Sect. 8.7, we will prove
it to be equivalent to the relation of semantical consequence for generalised Beth
semantics. Here we want to illustrate the action of the “understood hypotheses”, by
showing as our counterexample to compactness of � |= A, in the proof of Theo-
rem8.1, does not apply to � |=H A.

Take �α as in the proof of Theorem8.1. Suppose �α |=H ⊥. This means that, for
allM,H, ifM |=H �α thenM |= ⊥. Taking H = �α , we have triviallyM |=�α �α

and hence M |=�α ⊥. It follows that ⊥ ∈ �α , so that {⊥} is the finite subset of �α

required by compactness.

8.6 Generalized Beth Semantics

We recall here the main facts about generalised Beth models, for short GB-models.
A GB-model M = 〈D,T , I〉 consists of an inhabited set D, a spread T and a

binary relation I between nodes of T and atomic L(D)-sentences (⊥ included).
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We use u, v,w, . . . for nodes of T and write u ≤ v when u is an initial segment
of v.

Definition 8.4 The forcing relation between T -nodes and L(D)-sentences is induc-
tively defined as follows:

(a) for atomic A, u � A iffdf there is a bar B of u such that, for all v ∈ B, either
I(v,A) or I(v,⊥);

(b) u � ∀xA(x) iffdf , for all d ∈ D, u � A(d) (likewise for A ∧ B);
(c) u � ∃xA(x) iffdf there is a barB of u such that, for all v ∈ B, v � A(d), for some

d ∈ D depending on v (likewise for A ∨ B);
(d) u � A → B iffdf , for every v ≥ u, if v � A then v � B.

Definition 8.5 A node u of a GB-model explodes iffdf u � ⊥.

It is easily seen that if u explodes then u � A, for all A. A Beth model may be
viewed as a GB-model without exploding nodes.

Definition 8.6

(a) M � A iffdf 〈〉 � A (where 〈〉 is the top of M).
(b) � � A iffdf , for every M, ifM � � then M � A.
(c) � A iffdf φ � A.

Theorem 8.3 (Soundness) If � � A, then � � A.

Theorem 8.4 (Strong completeness) If � � A, then � � A

Soundness is verified straightforwardly. For enumerable �, strong completeness
has been proved by Veldman (1976), De Swart (1976a) and, in a simpler way, by
Friedman Troelstra and Van Dalen (1988). I do not know whether the general form
Theorem8.4 (without restrictions of�) is available in the literature. Anywaywe shall
prove it in Sect. 8.8.

8.7 Connection Between Hypothetical Semantics
and GB-Semantics

Hypothetical semantics is connected with GB-semantics in a similar way as natural
semantics is connected with Beth semantics.

Let M = 〈D,T , I〉 be a GB-model. We denote by α, β, γ, . . . lawless sequences
in T . With every α, we associate the natural model Mα , such that |Mα| = D and,
for every atomic sentence A /≡ ⊥, M |= A iffdf , for some n, I(αn,A). Besides, we
associate with α the set of hypotheses Hα = {A : A ≡ ⊥ and, for some n, I(αn,⊥)}.
Theorem 8.5 Let u be a node ofM. u � A iff, for all α ∈ u, Mα |=H A.

Proof By induction on A. We develop two cases (the others being similar):
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(a) A atomic. u � A ⇔ for all α ∈ u, there is n such that I(αn,A) or I(αn,⊥) ⇔
Mα |=H A for all α.

(b) A ≡ B → C. Suppose u � B → C. If α ∈ u and Mα |=H B, then there is m ≥
lth u such that Mβ |=H B, for all β ∈ αm (principle of open data). By the
induction hypothesis, αm � B and therefore αm � C whenceMα |=H C. Thus,
Mα |=H B → C.

Conversely, suppose Mα |=H B → C for all α ∈ u. If v ≥ u and v � B, then, by
the induction hypothesis, for all β ∈ v,Mβ |=H B and thereforeMβ |=H C, whence
v � C. Thus, u � B → C.

Corollary 8.4 If � |=H A then G � A.

The converse follows immediately from Theorems8.4 and 8.3. Thus

Theorem 8.6 � |=H A iff � � A.

From Theorems8.6 and 8.4, we get strong completeness for hypothetical
semantics:

Theorem 8.7 � |=H A iff � � A

Observe that Hα-s used in Theorem8.5 are decidably built, since their only pos-
sible member is ⊥. So Corollary8.4, Theorems8.6 and 8.7 follow also restricting
hypothetical semantics to decidably built set of hypotheses. Thus

Proposition 8.8 G |=H A iff, for all M and all M-decidably built H, if M |= �,
then M |= A.

From Proposition8.8 and Corollary8.3, it follows strong completeness for natural
semantics restricted to ⊥-free sentences:

Theorem 8.8 Let A and all sentences of � be ⊥-free. Then � |= A iff � � A.

8.8 A Strong Completeness Proof for GB-Semantics

We prove here strong completeness forGB-semantics, by refining Friedmans’s com-
pleteness proof presented by Troelstra and Van Dalen (1988, Chap.13, Sect. 2)

Let c1, c2, . . . , cn, . . . be a sequence of infinitely many individual constants not
occurring in L. Define the hierarchy of languages L0 = L, L1 = L0 ∪ {c1}, . . . ,
Ln+1 = Ln ∪ {cn}, . . .; Lω = ∪n∈ωLn.

Let A0,A1, . . . ,An, . . . be an enumeration of all disjunctive or existential
L-sentences such that, for all n, An is an Ln-sentence with infinitely many repeti-
tions.

We denote by T the full binary spread and by u, v,w, . . . its nodes (finite 0 − 1
sequences).

Let � be a given set of L-sentences. We will assign to every u a set of �u of
Ln-sentences, where n = lth u. �u is defined by induction on lth u, as follows:
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(i) �〈〉 = �

(ii) A ∈ �
uk
iffdf either

(a) A ∈ �u, or
(b) An ≡ ∃xB(x), �u � An and A ≡ B(cn+1); or

(c) An ≡ B ∨ C, �u � An and A = B if k = 0

C if k = 1

Lemma 8.2 Let A be an Ln-sentence, with n = lth u. If, for all k = 0, 1, �
u k

� A,
then �u � A.

Proof Suppose An ≡ ∃xb(x). By hypothesis, there are derivations D0,D1 of A from
�
u 0

and �
u 1

, respectively. If B(cn+1) does not occur among the assumptions of
D0, then D0 is a derivation of A from �u. Otherwise B(cn+1) ∈ �

u 0
, so that either

B(cn+1) ∈ �u and therefore �
u 0

= �u or �u � ∃xB(x). In the latter case, since cn+1

does not occur neither in �u nor in A, A is derivable from �u ∪ {∃xBx} and hence
from �u.

Similarly for An ≡ B ∨ C.

Corollary 8.5 Let A be an Ln-sentence with n = lth u. �u � A iff there is a bar B of
u such that, for all v ∈ B, A ∈ �v.

Proof If �u � A take m ≥ n such that Am = A ∨ A. For all v ≥ u, with lth v = m,
A ∈ �

v k
.

For the converse, apply the lemma and the fan theorem.
Define theGB-modelM = 〈D,T , I〉, whereD is the set of all individual constants

of L and, for every atomic Lω-sentence A, I(u,A) iffdf A ∈ �u.

Theorem 8.9 Let A be an Ln-sentence, with n = lth u. u � A iff �u � A.

Proof By induction on A:

(a) A atomic. Apply Corollary8.5.
(b) A ≡ ∃xB(x). Suppose u � A and letB be a bar of u such that, for all v ∈ B, there

is d ∈ D such that v � B(d). Then, for all w ≥ v with B(d) ∈ Llth w, w � B(d)

and, by the induction hypothesis, �w � B(d) and hence �w � ∃xB(x). Thus,
�u � ∃xB(x) by Corollary8.5.
Viceversa, suppose �u � A. Take m ≥ n such that Am ≡ ∃xB(x). If v ≥ u with
Ith v = m, then B(Cm+1) ∈ �

v k
for all k. By the induction hypothesis, v k �

B(cm+1), whence u � ∃xB(x).
(c) A ≡ B ∨ C. Similar to (b).
(d) A ≡ ∀xB(x). Suppose u � ∀xB(x). Let C be any L-tautology and take m ≥ n

such that Am ≡ C ∨ C. If v ≥ u with ltbv = m, we have v k |= ∀xB(x), from
which v k |= B(cm+1). By the induction hypothesis, �

v k
� B(cm+1) and, since

�
v k

= �v ∪ {C},�v � ∀xB(cm+1). Therefore, as cm+1 does not occur in�v,�v �
∀xB(x). By Corollary8.5, �u � ∀xB(x).
Viceversa, suppose �u � ∀xB(x). Given d ∈ D, for all v ≥ u with d ∈ Llth v, we
have �v � B(d) and hence v � B(d). Therefore u � B(d).
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(e) A ≡ B ∧ C. Similar to (d).
(f) A ≡ B → C. Suppose u � B → C. Take m ≥ n such that Am ≡ B ∨ E, where

E is an L-tautology. For all v > u, with lth v = m, B ∈ �
v 0

so that v 0 � B and

hence v 0 � C. By the induction hypothesis�
v 0

� C and, since�
v 0

= �v ∪ {B},
�v � B → C. Thus �u � B → C. The converse is trivial.

Corollary 8.6 For every L-sentence A, � � A iffM � A.
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Chapter 9
Propositions and Judgements in Martin-Löf

with G. Usberti

Abstract It is considered Martin-Löf’s distinction between propositions and judge-
ments. It is argued that propositions can be regarded as the only fundamental entities
of logic, since all mathematical activity may be analysed in terms of the creation and
demonstration of propositions.

9.1 Introduction

In a number of papers Martin-Löf argues that at the basis of an appropriate foun-
dation of logic a strong distinction should be made between two primitive notions:
the notion of proposition and the notion of judgement. These notions, which he uses
systematically in his intuitionistic type theory, are amply illustrated in Martin-Löf
(1985), where they are taken as fundamental to an intuitionistic explanation of the
logical constants, and in Martin-Löf (1987), where the distinction between proposi-
tion and judgement is given within as more general conceptual framework. We will
be considering only these two papers since it is here that Martin-Löf attempts to jus-
tify the distinction and to characterise the two notions philosophically, independently
of their role in any specific formal system.

9.2 Propositions and Judgements

At the beginning of Martin-Löf (1985), Martin-Löf expresses the need to distinguish
propositions from judgements in the following terms. If A and B are propositions,
an inference rule, for example the rule of conjunction introduction, is usually stated
in the form

A B
A ∧ B

(9.1)

However, this formulation is incorrect, says the author, since the rule does not
take us from the propositions A, B to the proposition A∧ B, but it takes us from the
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affirmations of A and of B to the affirmation of A∧ B. Using Frege’s assertion sign,
he continues, the rule is correctly stated as

� A � B
� A ∧ B

(9.2)

Thismeans that the rules of inference operate not on propositions but on assertions,
and this, according to Martin-Löf, necessitates a distinction being made between
entities which the logical operations operate on, i.e. propositions, and those which
inference rules apply to, i.e. assertions or judgements. However, he does not adhere
to Frege’s notation but prefers to write the conjunction introduction rule in the form

A true B true
A ∧ B true

(9.3)

where “A true” (short for “A is true”) is one of the fundamental forms of judgement.
It would seem at this point that the basic reason for the incorrectness of (1) and the

correctness of (2) or (3) rests, for Martin-Löf as for Frege, in that while judgements
have assertoric force, propositions do not, if we conceive them as mere thoughts
which, while they may be true or false, in themselves do not assert their own truth
or falsity. But this is not so. To see why let us take a closer look at Frege’s position.

To judge, for Frege, is to recognise a thought as true; the judgement is this act
of recognition. Frege distinguishes several different types of act having a thought as
their common (intentional) object (Fig. 9.1).

Note that Dummett insists that expressing is not a linguistic act, if by this wemean
the result of accompanying the utterance of a thought with a certain force (assertoric,
interrogative, imperative, etc.): to express a thought does not have any force (see
Dummett 1981, p. 494)

The act of recognising the truth of the thought that A is expressed in a natural
language by the act of asserting the sentence expressing it:

We express acknowledgement of truth in the form of an assertoric sentence (Frege 1984, p.
356).

Fig. 9.1 Acts not explicitly named by Frege are indicated in brackets
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In the ideographic language, this is indicated by the sign �, composed of the
content stroke − and the judgement stroke |. The content stroke applies to names
(remember that for Frege sentences too are names) and functions thus:

• if A is the name of a judgeable content (in practice, a sentence), then −A is true
iff A denotes the truth;

• if A is a different name, then −A is false.

The judgement stroke is a sui generis expression which applies to sentences and
indicates their assertoric use. It is important to appreciate the significance of this
Fregean choice, which at first sight might appear strange. What does it mean that
the judgement stroke is sui generis? Essentially that it is not a predicate. In this way,
Frege goes beyond the position he had previously taken in the Begriffsschrift, where
|was considered as “the common predicate of all judgements”; and the reason is that
if the judgement stroke is conceived as a predicate, then it can be used to construct
formulas which shall necessarily be able to be used without assertoric force (for
instance, as disjuncts in a disjunction or antecedents in an implication).

It is therefore the need to preserve the assertoric force of the verbal expression
of judgements which induces Frege not to allow that judgements be expressed by
formulas of the language which the propositions being judged belong to.

In conclusion, for Frege there is only one type of entities: thoughts or, in Russell’s
terminology, propositions. This, however, does not prevent him from retaining (9.2)
as the correct formulation of the inference rules, rather than (9.1), since the proposi-
tions which appear in the rules are asserted rather than simply expressed as when two
propositions are connected bymeans of a connective. On the other hand, not even the
style of (9.3) would be seen as correct by Frege, if “A true” is considered as a formula
of the object language. (The assertion stroke seems equivalent to a metalinguistic or
pragmatic predicate, although this is not said by Frege).

Let us now turn to Martin-Löf. Bearing in mind that in the Scholastic tradition
judgements were acts of judging and propositions the verbal expressions of judge-
ments, he observes that beginning with Kant and successively with Frege and Rus-
sell there have been considerable changes in terminology; the old propositions are
now called judgements. In this way, it happened that “the term judgement became
ambiguous between the act of judging and that which is judged, or the judgement
made […]” (Martin-Löf 1985, p. 207). And this is the use of the term “judgement”
which Martin-Löf essentially adheres to. For him judgements, in so far as they are
objects of knowledge, are not necessarily evident, but are only candidates for becom-
ing evident under favourable circumstances. Martin-Löf explicitly poses the problem
of whether a judgement is such even before it is recognised or proved. He answers
that there is a sense in which it is and offers the following example. Let G be Gold-
bach’s conjecture, according to which every even number greater than 2 is the sum
of two prime numbers. In this case, says Martin-Löf, “G true” is not a judgement
in the sense that we do not know if G is true, but it certainly is a judgement in the
sense that we understand perfectly what it means that G is true. Thus, Martin-Löf
explicitly admits the existence of judgements which are not evident and introduces
the term “evident judgement” for a judgement that has been proved.



78 9 Propositions and Judgements in Martin-Löf

It seems to us important to point out that the judgements of Martin-Löf, unlike
those of Frege, do not carry assertoric force by themselves but are only capable
to acquire it when they have been proved. This undermines Frege’s motivation for
distinguishing judgements from propositions as the appropriate objects of inference
in virtue of their assertoric force. Without this, judgements are reduced to Fregean
thoughtswhich in turn can be identified, presumably, withMartin-Löf’s propositions.
In the above example, if “G true” expresses a judgement for the mere reason that
we understand what it means that G is true, equally G itself must be considered a
judgement, since we can understand what it means that every even number greater
than 2 is the sum of two prime numbers. G does not seem to be an entity intrinsically
different from the judgement that G is true.

It is not clear how far Martin-Löf is aware of this considerable difference between
his conception of judgement and Frege’s. With regard to this, the following passage
is significant:

The closest possible correspondence between the analysis that I am giving and Frege’s
notation for a judgement

� A

is obtained by thinking of the vertical, judgement stroke as carrying the epistemic force

I know...

and the horizontal, content stroke as expressing the affirmation

...is true

Then it is the vertical stroke which is superfluous, whereas the horizontal stroke is needed
to show that the judgement has the form of an affirmation. But this can hardly be read out
of Frege’s own account of the assertion sign; you have to read it into his text (Martin-Löf
1985, pp. 226–227).

Here Martin-Löf suggests that his conception of judgement may be read between
the lines in the work of Frege. But from what we have said above it follows that for
Frege there is no sense in speaking of judgements which are not evident, and for him
the horizontal stroke alone does not express any judgement.

9.3 Truth and Evidence

Having seen that Martin-Löf’s judgements and propositions cannot be distinguished
in terms of assertoric force, let us try to find some other distinguishing characteristic.

Martin-Löf speaks of the truth of a proposition and the evidence of a judgement.
He seems to want to characterise propositions as entities which may be true and
judgements as entities which may be evident. The distinction between these two
types of entities thus takes us back to the distinction between truth and evidence.
Now what confers evidence on a judgement is a proof, while that which confers truth
on a proposition is a verification. So let us see howMartin-Löf defines these last two
notions.
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In Martin-Löf (1985), the assertability conditions of categoric judgements are
outlined in the following way (we should remember that Martin-Löf makes a dis-
tinction between two forms of categoric judgement: ‘A true’, which we have already
seen, and ‘A prop’, which asserts that A is a proposition).

“A prop” may be asserted when we know what to do to verify A, what counts
as a verification of A. (Using Dummett’s terminology, “A prop” may be asserted
whenever we know the meaning of A).

“A true”may be assertedwhenwe know how to verify A, whenwe know amethod
for the verification of A.

From this we can conclude that a proof of “A true” is a method of verification for
A. (This is explicitly stated in Martin-Löf 1985, p. 41.) The definition of the notion
of proof of a judgement thus presupposes the definition of the notion of verification
of a proposition. Prior to examining this, we should look at what constitutes a proof
of a hypothetical judgement, that is a judgement with hypotheses that have not been
discharged. In Martin-Löf (1985), only two forms of hypothetical judgement are
taken into consideration, which we can simplify (reducing the hypotheses to one) in
the following way:

A true/B prop

and
A true/B true

A proof of a judgement of the first form is a hypothetical proof of “B prop” from
the hypothesis “A true”.

The notion of hypothetical proof, […] which is a primitive notion, is explained by saying
that it is a proof which, when supplemented by proofs of the hypotheses, or antecedents,
becomes a proof of the thesis or consequent (Martin-Löf 1985, p. 252).

Such a hypothetical proof is symbolised:

A true

B prop

In the same way, a proof of the second form of hypothetical judgement will a
hypothetical proof of the type:

A true

B true

Let us now see how the notion of verification is defined:

A verification of is
A ∧ B a proof of “A true” and a proof of “B true”
A ∨ B a proof of “A true or a proof of “B true”
A ⊂ B a proof of “A true / B true”
⊥ Nothing
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It will be seen that the notions of proof of a judgement of the form “A true” and
of verification of the proposition A are defined with a simultaneous induction. (The
basis is missing, namely the definition of a verification for an atomic proposition;
the problem is open, but we are not concerned with this here.)

It should be noted that a proof of “A true” is nothing other than what would be, in
a traditional system interpreted intuitionistically, a proof of A; and that a verification
of the proposition A is what would be, in a traditional system, a canonical proof of
A.

But at this point it seems that, as both proofs and canonical proofs prove the same
entities, that is propositions, so the same entities, whether they are called propositions
or judgements, must be capable to be evident as much as verified.

Thus, we have not so far found any acceptable reasons for differentiating, from
an intuitionistic point of view, truth and evidence.

9.4 Metaphysical Realism

Martin-Löf appears however to firmly believe in the possibility of making a dis-
tinction between truth and evidence, for reasons which, although he connects them
closely to the proposition/judgement distinction, are in fact practically independent
of this. Let us look at the following passage:

There is absolutely no question of a judgement being evident in itself, independently of
us and our cognitive activity, That would be just as absurd as to speak of a judgement as
being known, not by somebody, you or me, but in itself. To be evident is to be evident to
somebody, as inevitably as to be known is to be known by somebody. That is what Brouwer
meant by saying, in Consciousness, Philosophy, and Mathematics, that there are no non-
experienced truths, a basic intuitionistic tenet. This has been puzzling, because it has been
understood as referring to the truth of a proposition, and clearly there are true propositions
whose truth has not been experienced, that is, propositions which can be shown to be true
in the future, although they have not been proved to be true now. But what Brouwer means
here is not that. He does not speak about propositions and truth: he speaks about judgements
and evidence, although he uses the term instead of the term evidence. And what he says is
then perfectly right: there is no evident judgement whose evidence has not been experienced,
and experience is what you do when you understand, comprehend, grasp, or see it. There is
no evidence outside our actual or possible experience of it. The notion of evidence is by its
very nature subject related, relative to the knowing subject, that is, in Kantian terminology.
(Martin-Löf 1985, pp. 223–224, ours italics)

Here it seems that the existence of true propositions, whose truth has not yet
been experienced, is not intended in the sense that for some propositions, although
a method of verification is known, the verification has in fact not been executed, as
might be the case for the infinite disjunctive instances A(n) ∨ B(n) of a verified
universal proposition of the type ∀x(A(x)∨ B(x)); for in Martin-Löf’s terminology
such instances, even though they are not verified, are recognised as true thanks to the
procedure of verification provided by the verification of the universal proposition.
It seems rather that he refers to propositions A for which the judgement “A true”,
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even though it is not at this moment evident, may become evident in the future.
But such a concept of possibility is unacceptable to an intuitionist. The same reasons
which lead him to deny propositions true in themselves lead him to deny possibilities
whose existence cannot be recognised through the actual possession of a method.
Such possibilities would lead to an intuitionistic modal justification of the principle
of the excluded middle; for example, if G is Goldbach’s conjecture, G ∨ ¬G could
be interpreted as “G is verifiable or G is not verifiable”. Anyhow, Martin-Löf’s
interpretation of the passage from Brouwer quoted above is certainly erroneous.
The fact that Brouwer uses the term “truth” in place of “evidence” is not due to an
improper terminological use, as Martin-Löf seems to suggest, but to the intentional
identification of truth and evidence. Brouwer in fact criticises the classical conception
of truth in the following words:

…classical mathematics […] believes in the existence of unknown truths, and in particular
applies the principle of the excluded third expressing that every mathematical assertion (i.e.
every assignment of a mathematical property to a mathematical entity) either is a truth or
cannot be a truth (Brouwer 1975, p. 488)

If truth and evidence were for Brouwer distinct notions and if he were referring to
evidence using incorrectly the term “truth”, his criticism would be expressed better
by substituting the word “truth” in this passage with the word “evidence”. On the
contrary, any such substitution completely falsifies the sense of Brouwer’s remarks,
making his criticism trivially unfounded. No classical mathematician believes in the
existence of unknown evidences nor interprets the principle of the excluded third
by saying that every mathematical assertion either is an evidence or cannot be an
evidence! What the classical conception admits is the existence of unknown truths,
clearly distinguishing truth from evidence. And precisely, this belief in a truth distinct
from evidence is what Brouwer criticises.

Besides it is not only in the interpretation of Brouwer’s passage quoted above
that Martin-Löf appears to rather yielding to a realist conception of truth. Against
Aristotelian truth he argues that a judgement of the type “A true” is not correctly
asserted if A is true but only provided that the truth of A is known. Regarding this
he notes that, even if Goldbach’s conjecture is true, it is an error to assert it until it
has been proved. In this way, he appears to implicitly accept the possibility that G
is true although it has not been proved: the lack of a proof prevents its assertability,
not its being true. His argument, rather than leading to the denial of classical logic in
favour of intuitionistic logic, is in fact in perfect agreement with classical logic. No
classical mathematician would claim that he could assert a truth which had not been
proved! The principle of the excluded middle is rightly assertible from a classical
point of view, since within a Platonistic perspective, it is evident. Nor, from the
classical point of view, does the evidence of A ∨ ¬A require the evidence of A or
the evidence of ¬A, if it is understood, as Martin-Löf says, that what are combined
with connectives are propositions and not judgements, so that to judge A∨¬A does
not mean at all to judge A or to judge ¬A; it only means to recognise the necessity
of the truth (not necessarily known) of A or of ¬A. Perhaps Martin-Löf, although he
insists that the notion of evidence conceptually precedes that of truth and that there
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is no truth independently of the knowledge of it, is afraid of the identification of truth
and evidence. The reason of this is presumably that he sees in such an identification
the danger of an incurably subjective conception of truth, which would destroy the
objectivity of mathematics, and render pointless any discussion about the correctness
of a proof, which would be intolerable even for an intuitionist. Concerning this point,
it is significant that, towards the end of Martin-Löf (1987), he attempts to delineate a
type of realism, that he calls metaphysical realism, which would be compatible with
Intuitionism:

…the knowledge theoretical idealism which is so characteristic of the explanation of the
notion of truth of a proposition, that is, the intuitionistic explanation of the notion of truth of
a proposition, is entirely compatible with realism, if by realism you mean the philosophical
position which takes the notion of truth or reality for granted, realism, of course, signifying
reality here. And what is the opposite of that position? That is a position for which the notion
of truth or reality in this sense does not exist, which means that the most that I can say about
a judgement, for instance, is that it is evident to me: it may not be evident to you, and to you
something may be evident which is perhaps even in conflict with what is evident to me, and
there is no way of resolving that conflict because there is no notion of correctness to appeal
to. So the ordinary discussion as to who is right that we mathematicians embark upon in that
situation simply cannot arise. […] Maybe this kind of realism could be called metaphysical
realism to distinguish it on the one hand from knowledge theoretical realism, that is, the view
that the world exists independently of us and our cognitive activity, which is the opposite of
the knowledge theoretical idealism characteristic of the intuitionistic analysis of the notion
of truth of a proposition, and on the other hand from the realism with respect to the existence
of universals which figured in the medieval debate about the nature of universals. If you
agree to use the word realism also for this third position, namely, the position which simply
takes the notion of truth or reality for granted, then we mathematicians, whether intuitionists
or not, all seem to be realists. […] (Martin-Löf 1987, pp. 419–420)

It may be that the identification of truth and evidence is incompatible with the
metaphysical realism which Martin-Löf speaks of, as this seems to attribute objec-
tivity to truth but not to evidence. However, if this is the case, we find it difficult to
understand where the objectivity of truth comes from, once truth is conceived as a
product of evidence.

Anyway, inBrouwer’s Intuitionism the objectivitywhichMartin-Löf takes to heart
pertains to the very notion of evidence. In fact, the evidence which Brouwer places
at the foundation of mathematics is not the evidence of the empirical mathematician
but of the creative subject, a highly idealised mathematician. The discussions of
empirical mathematicians on the correctness of deductions are therefore perfectly
meaningful since they can be interpreted in terms of the agreement or disagreement
of their deductions with the knowledge of the creative subject. The realist aspect of
Intuitionism lies precisely in the presence of the creative subject, who, although he
is obviously an imaginary character, is treated on the theoretic level as if he were
real.

Given the difficulty in distinguishing between truth and evidence, Martin-Löf’s
distinction between propositions and judgements seems to us intuitionistically unin-
telligible, whereas it is intelligible from a classical point of view, even if it is not in
agreement with Frege. We would also like to point out that if, in a classical frame-
work, a clear distinction between truth and evidence is necessary, it is certainly not
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necessary to distinguish things which may be true from things which may be evident.
The characteristic that propositions have of being true or false does not in any way
prevent them from becoming evident once they have been proved. The introduction
of special entities as candidates solely for being evident seems to us pointless and
artificial. As we have seen in illustrating Frege’s approach, what is important is to
distinguish different types of acts on propositions: these may be either asserted or
simply considered, or even be the objects ofmany othermental acts such as to believe,
to conjecture, to suppose. This is in perfect agreement with the use of propositions
in the Principia, where such entities as judgements do not appear, but the assertion
stroke is simply attached to a proposition when it is asserted by the authors. Russell’s
position on this subject is clearly expressed in his letter to Frege of 24 May 1903:

In all cases, both imagination and judgement have an object: what I call a “proposition” can
be the object of judgement, and it can be the object of imagination. There are therefore two
ways in which we can think of an object, in case this obiect is a complex: we can imagine
it, or we can judge it; yet the object is the same in both cases (e.g., when we say “the cold
wind” and when we say “the wind is cold”). To me, the judgement stroke therefore means a
different way of being directed towards an object. Complexes are true or false; in judging,
we aim at a true complex; but we may, of course, miss our aim (Frege 1980, p. 159).

Sharing Russell’s viewpoint, we are in a position to reinforce our criticism of
Martin-Löf’s argument that the appropriate objects of inference are judgements. We
have already seen that this argument presupposes that judgements carry assertoric
force, contrary toMartin-Löf’s conception. Nowwe can add that, even if judgements
are conceived as carrying assertoric force (i.e. even if only those which the author
calls “evident judgement” are taken into consideration), Martin-Löf’s criticism of
the use of propositions as objects of inference seems to be hardly convincing. The
thesis according to which the objects of inference are propositions in no way claims
that the conclusion of an inference is created by the inference itself. An inference
simply associates the conclusive propositions to the premised propositions, associ-
ating (provided it is correct) a true conclusion to true premises. In this sense, rules of
inference can perfectly well operate on entities without assertoric force. The activity
of proving is certainly creative, but it is not for this reason that it has to create its own
objects of proof. Its creativity consists in giving evidence to which have previously
been created, without transforming them by this into entities different from what
they previously were.

As for the mental acts which create propositions, it seems to us that they are
not properly part of the activity of judging (or of recognising as true), as Martin-
Löf, suggests by placing “A prop” among the fundamental forms of judgement.
The conception of a proposition, understood intuitionistically, does not consist in the
recognition of something; it consists rather in the formation of a concept: to conceive
the proposition A means to form the concept of proof of A. A mental act of this kind
does not recognise anything but is presupposed by acts of recognition, since the
evidence of a proposition consists in the knowledge that the concept of proof related
to it is not empty.
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It seems to us that it can be concluded that propositions can be regarded as the
only fundamental entities of logic, since all mathematical activity may be analysed
in terms of the creation and demonstration of propositions.
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Chapter 10
Negationless Intuitionism

Abstract The present paper deals with natural intuitionistic semantics for intu-
itionistic logic within an intuitionistic metamathematics. We show how strong com-
pleteness of full first-order logic fails. We then consider a negationless semantics à la
Henkin for second-order intuitionistic logic. By using the theory of lawless sequences
we prove that, for such semantics, strong completeness is restorable. We argue that
lawless negationless semantics is a suitable framework for a constructive structural-
ist interpretation of any second-order formalisable theory (classical or intuitionistic,
contradictory or not).

10.1 Natural Semantics

By a natural interpretation of intuitionistic logic we mean what in the literature is
also called an intuitive (Troelstra and Van Dalen 1988) or an internal (Dummett
1977) interpretation.

A natural interpretation I of first-order predicate logic (I PC) assigns to every
individual constant a member of a certain inhabitated domain D of individuals and
to every predicate letter a property or a relation on D of appropriate degree. Such an
interpretation provides proof-conditions for every atomic sentence (of the language
extended with constants for all members of D): assigning a property to the predicate
letter P amounts to giving proof-conditions for sentences of form P(d) (with d ∈ D).
Proof-conditions for compound sentences, as well as for absurdity ⊥ (which is taken
as a primitive logical constant), are determined according to Heyting’s explanation
of the intuitionistic meaning of logical constants.

(1) nothing is a proof of ⊥;
(2) a proof of ∀x A(x) is a method of proving all A(d)’s (d ∈ D) [likewise for

A ∧ B];
(3) a proof of ∃x A(x) is a method of proving some A(d) (d ∈ D) [likewise for

A ∨ B];
(4) a proof of A → B is a method of transforming every proof of A into a proof

of B;

Negation is defined by ¬A =d f. A → ⊥.
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A sentence A is true (in I) if there is a proof of A (where the existence of a
proof, as well as all metamathematical arguments and definitions, is to be understood
intuitionistically).

A sentence A is valid (with respect to natural semantics) (� A) if it is true in all
natural interpretations. A sentence A is a logical consequence of a set Γ of sentences
(Γ � A) if every (natural) model of Γ is a model of A.

I PC is complete if, for all sentences A,� A ⇒
 A. I PC is strongly complete
if, for all Γ and all A, Γ � A ⇒ Γ 
 A.

As it is well known, the completeness of I PC for natural semantics (within an
intuitionistic metamathematics) is equivalent to a certain form of Markov’s principle
(see Dummett 1977). Since the latter is far from being intuitionistically evident, this
result provides an argument against completeness. On the other hand, sinceMarkov’s
principle seems tobe compatiblewith thegeneral principles of Intuitionism, the above
argument for incompleteness is not conclusive.

What is cogent, however, is the failure of strong completeness, as we will show
in the next section.

10.2 Failure of Strong Completeness

Strong completeness for natural semantics can be rejected by using nothing beyond
the intuitionistic meaning of logical constants.

Theorem 10.1 Strong completeness is contradictory

Proof Assume, by way of reductio, strong completeness. Let M be an arbitrary
natural structure and A an arbitrary sentence. Consider the set of sentencesΓ = {⊥ :
M � A ∨ ¬A}. Since ¬¬(A ∨ ¬A) is logically valid, M � ¬¬(A ∨ ¬A) and hence
¬¬(M � A ∨ ¬A), so that ¬¬(⊥ ∈ Γ ). Since ⊥ cannot be true in any structure,
it follows that Γ has no models so that, vacuously, Γ � ⊥. By strong completeness
Γ 
 ⊥. As I PC is consistent andΓ cannot have any other members but⊥, it follows
that ⊥ ∈ Γ and hence that M � A ∨ ¬A. Since M and A are arbitrary, we get the
validity and, by the supposed completeness, the derivability of the excluded middle
principle, which is absurd.1

Observe that in the above proof an essential role is played by ⊥ (and hence by
negation). In fact, as we shall see, the negationless fragment of first-order logic
without identity turns out to be strongly complete. However, if identity occurs in the
language and is taken as a logical primitive constant to be interpreted as intensional
identity, then even the negationless fragment is incomplete.

Theorem 10.2 Strong completeness of the negationless fragment of I PC with in-
tensional identity is contradictory

1This proof was suggested to me by letter by prof. Troelstra.
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Proof Assume, by way of contradiction, strong completeness for the negationless
fragment. Define ⊥̂ =d f. ∀x∀y(x = y), ∼ A =d f. A → ⊥̂, E2 =d f. ∃x∃y ∼
(x = y).

Given an arbitrary structure M and an arbitrary sentence A, put Γ =d f. {⊥̂ : M �
A∨ ∼ A} ∪ {E2}. It is easily seen that ¬¬(M � A∨ ∼ A), so that ¬¬(⊥̂ ∈ Γ ). Let
N be a (possible) model ofΓ . Since N � E2, there are a, b ∈ N such that∼ (a = b).
If a 
= b, then ¬(N � ⊥̂), against ¬¬(⊥̂ ∈ Γ ). As intensional identity is decidable,
we get a = b and hence N � ⊥̂. Thus Γ � ⊥̂ and, by strong completeness, Γ 
 ⊥̂.
Since ¬(E2 
 ⊥̂), it follows that ⊥̂ ∈ Γ , from which M � A∨ ∼ A. We conclude
that � A∨ ∼ A and therefore 
 A∨ ∼ A, which is absurd.

The above proofs reject strong completeness merely in virtue of the intended
meaning of logical constants. They do not provide, however, any counterexample to
strong completeness, i.e. any Γ and A such that Γ � A but not Γ 
 A. We think
that no such counterexample could be found without exploiting deeper features of
Intuitionism. A counterexample to strong completeness has been found by Charles
McCarty (1991) under the assumption of Church’s thesis. But we are not inclined
to accept the intuitionistic version of Church’s thesis: it imposes excessively strong
limitations of a mechanistic nature on the intuitive notion of proof, which seem to
be inappropriate to Brouwerian Intuitionism. We prefer to use lawless sequences
and exploit Brouwer’s conception of a universe consisting of indeterminate entities.
We give here a counterexample to strong completeness by using a set of sentences
depending on a lawless parameter.

Let H A be Heyting’s arithmetic extended with a new 1-place predicate symbol
P and a new individual constant c. With reference to a lawless sequence α, define
the sets of sentences

• Γ = {P(n) : the least m > n such that α(m) = 0 exists and is odd}
∪{¬P(n) : the least m > n such that α(m) = 0 exists and is even},

• Δ = {c > n : n ∈ ω},
• Σ = H A ∪ Γ ∪ Δ.

Σ has no models:
By way of contradiction, let M be a model of Σ .
From the induction schema (extended to P), we get M � ¬¬∀x < c(P(x) ∨

¬P(x)). On the other hand, if M � ∀x < c(P(x)∨¬P(x)), then M � P(n)∨¬P(n)

for all n ∈ ω and it follows that ∀x∃y > xα(y) = 0, against lawlessness. Hence
M � ¬∀x < c(P(x) ∨ ¬P(x)), which is absurd. Thus Σ � ⊥.

On the other hand, every finite subset of Σ is interpretable in the standard model
of ω, therefore not Σ 
 ⊥.

Incompleteness for natural semantics shows that the formal inference rules are
inadequate for capturing the intended meaning of logical constants, as expressed by
Heyting’s explanation. The nature of this gap can be better understood in the light
of the completeness results with respect to so-called fallible models. As it is well
known, Veldman, de Swart and others of the Nijmegen school got, in the seventies,
intuitionistic completeness proofs for I PC with respect to modified versions of
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Kripke and Beth models (De Swart 1976; Troelstra and Van Dalen 1988). The main
feature of such models consists in allowing⊥ to be true at some node. For this reason
they are called sometimes falliblemodels. The simplest completeness proof for single
formulas with respect to fallible models was found by Friedman and rearranged by
Troelstra (Troelstra andVanDalen 1988). In that proof a universal fallibleBethmodel
is constructed, in which exactly the derivable sentences of IPC are true. In Martino
(1988), Friedman’s proof has been generalised to a strong completeness proof for
fallible Beth models.

Though Beth models are of no immediate significance for natural semantics,
the theory of lawless sequences provides an important connection between Beth
semantics and natural semantics: with every lawless path of a Beth model, it is
possible to associate a natural model in such a way that truth in the Beth model is
equivalent to truth in all its paths (see Dummett 1977). So Beth validity turns out to
be equivalent to natural validity.

The problem arises to seek an intuitive counterpart of fallible Beth semantics, so
as to recover strong completeness for some intuitionistically acceptable extension of
natural semantics. The difficulty is that allowing⊥ to be true in a natural interpretation
amounts to allowing its possible intuitive provability, in disagreement with Heyting’s
clause (1), which characterises⊥ as the unprovable par excellence. InMartino (1988)
the possibility of interpreting the truth of ⊥ as provability under a set of “hidden-
hypotheses”, which may turn out to be contradictory, is investigated.

Here we want to pursue the possibility of interpreting second-order intuitionistic
logic (with negation and identity) within a semantics without negation and without
intensional identity.

The fact that intuitionistic logic is sound with respect to fallible semantics shows
that formal deduction is inadequate to capturing the intended meaning of ⊥. In fact,
⊥ is characterised, in the intuitionistic system of natural deduction, by the single rule
‘ex falso quodlibet’

⊥
A

This rule states that a proof of ⊥ amounts to a proof of every proposition of the
language. So to prove ⊥ is absurd iff it is impossible to prove all propositions. Now,
if negation is taken as primitive, so that a proof of ¬A is nothing but the recognition
of the unprovability of A, then A ∧ ¬A is certainly unprovable and therefore not
all propositions are provable. But if negation is defined, as above, by means of ⊥,
then the unprovability of A ∧ ¬A rests in turn on the unprovability of ⊥. Formal
deduction seems therefore inadequate for capturing the intended falsehood (i.e. the
intuitive unprovability) of ⊥: it is not able to distinguish the authentic ⊥ from any
other proposition (provable or not) entailing all propositions of the language.

A similar situation occurs with identity. The formal rule of substitutivity of
identicals is inadequate to capturing the intended meaning of intensional identity,
understood as absolute sameness, since such rule holds also for the relation of indis-
cernibility with respect to the properties expressible in the language.
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On the other hand, formal deduction is adequate to formalise mathematics. This
suggests that the intended meaning of ⊥ is inessential to the development of math-
ematics and that any formalised theory is interpretable in a negationless semantics.
This is realisable in a perspicuous way within second-order predicate logic inter-
preted à la Henkin.

10.3 Second-Order Negationless Semantics

Consider second-order intuitionistic logic with full comprehension schema and in-
tensional identity.

We use x, y, . . . as individual variables, F, G, . . . as monadic second-order vari-
ables.

Observe that, by comprehension,

⊥ ↔ ∀F∀x F(x)

x = y ↔ ∀F(F(x) ↔ F(y)).

This suggests the possibility of adopting a semantics à la Henkin, in which⊥ and
= are not interpreted according to their intended meanings but are defined as

⊥ =d f. ∀F∀x F(x)

¬A =d f. A → ⊥
x = y =d f. ∀F(F(x) ↔ F(y)).

Precisely, a negationless interpretation (of the full second-order language) is
meant to interpret

(i) first-order variables (and constants) into an inhabitated domain D of individuals;
(ii) second-order variables (and constants) into any domain of (intensional) prop-

erties and relations on D such that, provided ⊥ and = are defined as above,
second-order intuitionistic logic is sound.

The soundness condition is satisfied, it should be noted, as soon as comprehension
and x = y ∨ ¬x = y hold.

In particular, the domain of properties may consist of the sole universal property
(under which every individual falls); in this case the model is said to be exploding.
In such a model every sentence, in particular ⊥, is true (intuitively provable). So,
with respect to negationless semantics, every set of sentences (even contradictory)
is satisfiable.
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We want to show that, if lawless models (i.e. models depending on lawless
parameters) are included in our negationless semantics, then strong completeness
is restorable.2

Let Γ be any set of sentences expressible in a language L of second-order intu-
itionistic logic. With every lawless sequence α of the full binary spread s, we will
associate a negationless model Mα of Γ .

Introduce infinitely many new constants c j
i (i = 1, 2, . . . ; j = 0, 1, . . .) for first-

and second-order entities: c0i is an individual constant while, for j > 0, c j
i is a

constant for relations of degree j . Define the hierarchy of languages

L0 = L , Ln+1 = Ln ∪ {c j
n+1 : j ∈ ω}, Lω =

⋃

n∈ω

Ln.

Let A0, A1, . . . , An, . . . be an enumeration of all disjunctive and existential Lω-
sentences, each of them occurring infinitely many times.

We indicate by u, v, w, . . . nodes of s (finite 0−1-sequences). If u = 〈u1, . . . , un〉,
n is the length of u (lth(u)). If u is as above and m is a natural number, u ˆm stands
for 〈u1, . . . , un, m〉.

α, β, γ, . . . indicate 0–1-lawless sequences. α(n) denotes the initial segment of α

of length n. If u is an initial segment of α, we write α ∈ u.
We shall use the following axioms for lawless sequences:

• Density: ∀u∃αα ∈ u.
• Open data: P(α) → ∃n∀ββ∈α(n) P(β)

(for any predicate P on lawless sequences).
A bar B of u is a set of nodes such that ∀αα∈u∃nα(n) ∈ B.

Fan Theorem: if B is a bar of u, then ∃m∀αα∈u ∃nn<mα(n) ∈ B.

Later on, ξ stands for a variable of any order and degree. If A is a formula,
A[ci/ξ ] is the result of replacing ξ in A by the constant c j

i (introduced above) of the
appropriate degree j .

To every node u of s we assign a set Γu of Ln-sentences, where n = lth(u), as
follows:

(i) Γ〈〉 = Γ ;
(ii) for every Ln+1-sentence A, A ∈ Γu ˆ k ifd f. either

(a) A ∈ Γu or
(b) An := ∃ξ B, Γu 
 An and A := B[cn+1/ξ ] or

2Observe that, if negationless semantics is adopted for classical second-order logic (within a clas-
sical metamathematics), the presence of exploding models shows that even classical logic is in-
adequate for capturing the classical meaning of ⊥, as false par excellence. The reason why this
inadequacy does not affect classical strong completeness, for usual Henkin semantics, is that usual
validity amounts to negationless validity restricted to non-exploding models and, classically, such
a restriction is immaterial, since every model is exploding or non-exploding and every sentence
holds in an exploding model.



10.3 Second-Order Negationless Semantics 91

(c) An = B ∨ C, Γu 
 An and A :=
{

B if k = 0.

C if k = 1

Lemma 10.3 Let A be an Ln-sentence, with n = lth(u). If, for all k = 0, 1,
Γu
k 
 A, then Γu 
 A.

Proof Suppose An := ∃ξ B. Let p0, p1 be formal proofs of A from Γu ˆ 0 and Γu ˆ 1
respectively. If B[cn+1/ξ ] does not occur among the assumptions of p0, then p0 is a
derivation of A fromΓu . Otherwise B[cn+1/ξ ] ∈ Γu ˆ 0, so that either B[cn+1/ξ ] ∈ Γu

and therefore Γu ˆ 0 = Γu or Γu 
 ∃ξ B. In the latter case, since cn+1 occurs neither
in Γu nor in A, A is derivable from Γu ∪ {∃ξ B} and hence from Γu .

Similarly for An := B ∨ C .

Theorem 10.4 Let A be an Ln-sentence, with n = lth(u). Γu 
 A iff there is a bar
B of u such that, for all v ∈ B, A ∈ Γv.

Proof IfΓu 
 A, takem ≥ n such that Am := A∨ A. For all v ≥ u, with lth(v) = m,
A ∈ Γv ˆ k . The converse immediately follows from the lemma and the fan theorem.

For every lawless sequence α, define the natural model Mα of L as follows:

(i) the domain D of individuals is the set of all individual constants of Lω;
(ii) for every second-order constant C of degree m of Lω, let Cα be the n-place

relation on D which holds among d1, . . . , dm ifd f. C(d1, . . . , dm) ∈ Γα(n), for
some n. Take the Cα’s as the properties and relations of the model.

Lω is interpreted in Mα by mapping every individual constant into itself and every
second-order constant C into Cα .

Theorem 10.5 Let A be an Ln-sentence and u be a node of length n. Γu 
 A iff, for
all α ∈ u, Mα � A.

Proof By induction on A:

(i) A atomic. The thesis follows immediately from Theorem 10.4.
(ii) A := ∃ξ B.

Suppose that, for all α ∈ u, Mα � A. Given α, there is a constant c such that
Mα � B[c/ξ ]. By open data there ism ≥ n such that, for allβ ∈ α(m), Mβ � B[c/ξ ]
and, by the induction hypothesis, Γα(m) 
 B[c/ξ ] and hence Γα(m) 
 ∃ξ B. It follows
that there is a bar B of u such that, for all v ∈ B, A ∈ Γv and, by Theorem 10.4,
Γu 
 A.

Conversely, suppose that Γu 
 A. Take m ≥ n such that Am := A. If v ≥ u and
lth(v) = m, then B[cm+1/ξ ] ∈ Γv ˆ k , for all k = 0, 1. By the induction hypothesis
B[cm+1/ξ ], and hence A, is true in Mα , for all α ∈ u.

Similarly for A := B ∨ C .

(iii) A := ∀ξ B.
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Suppose that, for all α ∈ u, Mα � A. Let T be any logically valid L-sentence
and take m ≥ n such that Am := T ∨ T . If v ≥ u and lth(v) = m, for all β ∈ v ˆk
(k = 0, 1), Mβ � B[cm+1/ξ ] so that, by the induction hypothesis,Γv ˆ k 
 B[cm+1/ξ ].
Since Γv ˆ k = Γv ∪ {T }, Γv 
 B[cm+1/ξ ]; and since cm+1 /∈ Γv, Γv 
 A.

Similarly for A := B ∧ C .

(iv) A := B → C .

Suppose that, for all α ∈ u, Mα � A. Take m ≥ n such that Am := B ∨ T , where
T is a logically valid L-sentence. If v ≥ u and lth(v) = m, then B ∈ Γv ˆ 0, so that,
for all β ∈ vˆ0, Mβ � B and hence Mβ � C . By the induction hypothesis, Γv ˆ 0 
 C ,
and since Γv ˆ 0 = Γv ∪ {B}, Γv 
 B → C . By Theorem 10.4 Γu 
 A.

Conversely, suppose that Γu 
 A. Let α ∈ u and assume that Mα � B. In virtue
of open data, there is m ≥ n such that Mβ � B, for all β ∈ α(m). By the induction
hypothesis, Γα(m) 
 B, from which Γα(m) 
 C and therefore Mα � C .

Call M(Γ ) the class of lawless models Mα’s of Γ defined above.

Theorem 10.6 (Strong Completeness) For every set Γ of sentences and every sen-
tence A, Γ 
 A iff, for all M ∈ M(Γ ), Mα � A.

A set Γ of sentences will be called classical ifd f. it contains the excluded middle
sentence

(EM) ∀F∀x(F(x) ∨ ¬F(x)).

Intuitionistic derivability from a classical set Γ amounts to classical derivability.
Thus Theorem 10.6 includes a theorem of strong completeness for classical logic
with respect to intuitionistic semantics. Concerning this, it is worth noticing that the
commitment to lawless sequences is inessential.

For, let C be any class of choice sequences (in particular of lawlike sequences)
satisfying the density principle and the fan theorem; letMC(Γ ) be the class ofmodels
defined as M(Γ ) but relative to C. By slightly modifying the above completeness
proof, we get the following theorem:

Theorem 10.7 (Intuitionistic strong completeness of classical logic) For every clas-
sical set Γ of sentences and every sentence A, Γ 
 A iff, for all M ∈ MC(Γ ),
M � A.

Proof One can rearrange the proof of Theorem 10.5 by using, instead of open data,
the fact that, for everyα ∈ C and every A, there isn such that A ∈ Γα(n) or¬A ∈ Γα(n).
One proves, by induction on A, that:

if Γu 
 A[Γu 
 ¬A] then, for all α ∈ u, Mα � A[Mα � ¬A].

As an example, we develop the case A := B → C .
Suppose that Γu 
 A, α ∈ u. Assume Mα � B and let m ≥ lth(u) be such

that B ∈ Γα(m) or ¬B ∈ Γα(m). In the first case Γα(m) 
 C and, by the induction
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hypothesis, Mα � C . In the second case Mα � ¬B, so that Mα is exploding. Thus,
in any case, Mα � A.

Suppose that Γu 
 ¬A and α ∈ u. Since Γ is classical, Γu 
 B and Γu 
 ¬C
and, by the induction hypothesis, Mα � B and Mα � ¬C , i.e. Mα � ¬A.

10.4 Concluding Remarks

It is often remarked that the models constructed in completeness proofs are ad hoc
and hence of little philosophical significance.

Of course none of the Mα’s is in itself of any mathematical interest, in the sense
that none of them is the intended model of a mathematical theory. However, lawless
semantics seems to be of remarkable interest from the structuralist point of view. Ac-
cording to this point of view, a mathematical theory does not describe any privileged
structure. Though a certain intended structuremay have an essential premathematical
role in suggesting and motivating the axioms, once the axiomatic system has been
built up, the mathematical discourse concerns any arbitrary structure satisfying the
axioms. So any class of models, for which soundness and strong completeness hold,
constitutes an appropriate semantics. The intuitionistic interest of our lawless models
is that they are intuitionistically intelligible and that one reasons about them accord-
ing to the intuitionistic meaning of the primitive logical constants. Soundness and
completeness assure that, by reasoning intuitionistically in any arbitrary Mα , one gets
exactly all logical consequences of Γ . In this sense, lawless semantics provides an
adequate characterisation of abstract intuitionistic negationless reasoning, of which
second-order intuitionistic logic turns out to be a formal adequate counterpart.

The possibility of defining ¬A as “A implies every proposition”, without loss of
any theorem provable by means of standard negation, was already noted by Russell
(1906).3 He failed however to realise that this means that the authentic notion of
falsehood is not needed for abstract mathematical reasoning. He rejected the defini-
tion by arguing that it would prevent to prove that anything is false. “If any man is so
credulous as to believe that anything is true”, Russell observes, “then the method in
question [i.e. the adoption of the above definition of negation] is powerless to refute
him” (p. 201). The quantification over all propositions was understood by Russell
in an absolute sense as referring to all possible propositions. Therefore, the impos-
sibility of proving that any proposition is false was rightly for him a symptom of
inadequacy, since it is plain that there are false propositions. Not so, however, in the
perspective of Henkin semantics, where, as we saw, there is room for interpretations
in which all propositions are actually true.

Independently of the purpose of recovering strong completeness, negationless
semantics is in itself of special significance for constructivism. Indeed the classical
notion of truth can be understood only together with its opposite notion of falsehood,
so that the two notions are conceptually inseparable. This is not the case, however,

3I am grateful to the referee for suggesting to me this reference to Russell.
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for their intuitionistic counterparts. In order to understand the intuitionistic notion
of truth of a proposition A, one has to grasp what a proof of A is, while, in order
to understand the intuitionistic notion of falsehood, one has to understand what it
means to say that a hypothetical proof of A leads to absurdity. So the intuitionistic
concept of falsehood of A rests on the primitive notion of absurdity (or of impossibil-
ity of constructing a proof of A), which is by no means involved in the mere concept
of proof of A (provided negation does not occur in A). Thus not even an implicit
understanding of intuitionistic falsehood is presupposed by intuitionistic negation-
less semantics. For this reason negationless Intuitionism expresses a more restrictive
conception of constructivism than traditional Brouwerian Intuitionism. Negationless
Intuitionism seems to be in agreement with Griss’ well-known criticism to intuition-
istic negation (see Franchella 1992; Griss 1946; Heyting 1956). According to Griss,
a proof by reductio ad absurdum is not in agreement with the general intuitionis-
tic perspective. If the assumption that a proof of A is given leads to contradiction,
then that assumption itself cannot be regarded as a clear mental act and is there-
fore inappropriate to intuitionistic reasoning; therefore absurd assumptions should
be banished from Intuitionism. Brouwer’s reply to Griss rests on the consideration
that negation is essential to the development of mathematics and that negative asser-
tions cannot be always rephrased in positive terms. However, though a structuralist
view of mathematics is certainly far from Griss’ (and Brouwer’s) conception, nega-
tionless semantics shows that structuralism, together with the indeterminateness of
lawless sequences, makes Griss’ ideal of a positive mathematics realisable in a very
general setting. Observe that, on this respect, the role of lawlessness is essential. In
fact, the mere lack of absurdity (and negation), as a primitive logical constant, does
not prevent, in itself, hypothetical arguments with arbitrary assumptions, in partic-
ular with absurd assumptions. For instance, in the standard model of negationless
arithmetic, 0 = 1 is certainly an absurd assumption. But any lawless model Mα has
the crucial feature of being “potentially” exploding, in the sense that, at every stage
of construction of α, the possibility is left that some future choices of values for α

make the model exploding. It follows that, as long as one reasons on Mα according
to the intuitionistic meaning of the primitive logical constants involved, it can never
happen that an assumption turns out to be absurd. To prove¬A amounts to recognis-
ing that every possible choice to the effect of rendering A true will make the model
exploding. So, since any sentence is always potentially capable of becoming true,
any assumption describes a state of knowledge about the model which is effectively
possible. Thus, within the framework of lawless semantics, hypothetical reasoning is
free of any danger of involving absurd assumptions. In this sense Griss’ requirement
is satisfied.

Besides, even the (non structuralist) intuitionisticmetamathematics, inwhich law-
less semantics is defined and strong completeness is proved, is negationless: in our
treatment no notion of absurdity or of impossibility (to carry out some construc-
tion) has been exploited. This suggests that negationless Intuitionism is a suitable
framework for the development of metamathematics.

Another remarkable aspect of negationless semantics is the intuitionistic inter-
pretability of classical logic. Negationless semantics provides an intuitionistic justi-
fication of classical reasoning, even within a lawlike conception of Intuitionism, as
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Theorem 10.7 shows. Though the excluded middle principle is not intuitionistically
acceptable as a logical principle, nevertheless classical reasoning is intuitionistically
intelligible: the classical consequences of Γ are the intuitionistic ones relative to a
suitable restricted stock of intuitionistic models.

Lawless semantics is also in agreement with predicativism. For, the theory of
lawless sequences, however problematic in some respects, is trivially predicative,
since the construction of any lawless sequence does not involve anything but free
choices of values (not so for the notion of lawlike sequence (and, more generally, of
choice sequence), which involves the highly impredicative notion of arbitrary law).
Furthermore, in any Mα the properties and relations, whose existence is asserted
by the comprehension principle, are not constructed by reference to the totality of
properties and relations; they are defined in terms of the syntactical notion of formal
derivability, which, from a logical point of view, can be thought of as pre-existent
to any interpretation of the language, so that no violation of Russell’s vicious circle
principle is involved. In this sense we get a predicativistic justification of the second-
order comprehension principle.4

As it is well known, Brouwer devised his theory of choice sequences for reject-
ing classical mathematics and constructing alternative mathematical theories, as the
intuitionistic continuum, in striking conflict with their classical counterparts. Be-
sides, he was a sworn enemy of formal logic, which he charged of rendering math-
ematics meaningless. In spite of that, the formal analysis of mathematical language
is just what opens the way towards exploiting Brouwer’s insights for guaranteeing
constructive and predicative meaning to any mathematical argument.
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Chapter 11
Temporal and Atemporal Truth
in Intuitionistic Mathematics

with G. Usberti

Abstract In Sect. 11.2, we argue that the adoption of a tenseless notion of truth
entails a realistic view of propositions and provability. This view, in turn, opens the
way to the intelligibility of the classical meaning of the logical constants and conse-
quently is incompatible with the antirealism of orthodox Intuitionism. In Sect. 11.3,
we show how what we call the “potential” intuitionistic meaning of the logical con-
stants can be defined, on the one hand, bymeans of the notion of atemporal provability
and, on the other hand, by means of the operator K of epistemic logic. Intuitionistic
logic, as reconstructed within this perspective, turns out to be a part of epistemic
logic, so that it loses its traditional foundational role, antithetic to that of classical
logic. In Sect. 11.4, we uphold the view that certain consequences of the adoption of
a temporal notion of truth, despite their apparent oddity, are quite acceptable from
an antirealist point of view.

11.1 Introduction

Nowadays, the most widespread view about constructive truth is that truth should be
conceived as a tenseless notion. Prawitz (1987, 153–154) writes:

[A] mathematical sentence is true if there exists a proof of it, in a tenseless or abstract sense
of exists […]. Or we may express the same idea by saying that a sentence A is true if ‘we can
prove A’ […]. That we can prove A is not to be understood as meaning that it is within our
practical reach to prove A, but only that it is possible in principle to prove A [...]. Similarly,
that there exists a proof of A does not mean that a proof of A will be constructed but only that
the possibility is there for constructing a proof of A. […] I see no objection to conceiving
the possibility that there is a specific method for curing cancer, which we may discover one
day, but which may also remain undiscovered.

Martin-Löf (1991) distinguishes between actual and potential truth of a proposi-
tion. These notions would be explained intuitionistically by the notions of actual and
potential existence of a proof. A proof of a proposition A exists actually if, as a matter
of fact, A has been proved; it exists potentially if A can be proved. Here possibility
is not understood in the traditional intuitionistic sense as knowledge of a method to
prove A, but as “knowledge-independent and tenseless” possibility. Accordingly, a
proposition that has been proved becomes actually true, but it was potentially true
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even before having been proved, and it would be true even if, in fact, it had never
been proved. In this way, according to Martin-Löf, the intuitionist can overcome
the well-known objection that saying that a proposition becomes true just when it is
proved is counterintuitive and in conflict with the standard use of the truth predicate:
potential truth is not open to that objection.

Dummett’s position on this point seems to be rather oscillating. On the one hand,
he argued for the need of a notion of truth—of some notion of truth—within the
constructivist conceptual framework and for some “necessary concession to real-
ism”, and he was probably the first who suggested conceiving intuitionistic truth
as tenseless. On the other hand, especially in recent years, he has manifested some
perplexities about the compatibility of a tenseless notion of truth with the antirealism
of the intuitionists.

11.2 Tenselessness and Classical Truth

As explained above, Martin-Löf (1991) maintains that potential truth is knowledge-
independent, in the sense that a proposition may be potentially true even if nobody
knows (nor will know) that it is. Nevertheless, he considers this notion intuitionisti-
cally meaningful for two reasons. First, it is conceptually dependent upon the notion
of knowledge; for “to say that A is potentially true is to say that A can be actually
true”, and to say that A is actually true is to say that A is known to be true. So potential
truth depends on knowledge in the sense that it is definable in terms of knowledge (in
conformity to the Aristotelian idea that actus est prior potentia). Second, potential
truth obviously satisfies the constructivist requirement that every true proposition
can be proved.

However, the definition of potential truth makes essential reference not only to
the notion of knowledge (or proof) but also to the notion of possibility. Therefore,
the mere conceptual priority of the notion of knowledge over that of potential truth
does not guarantee the definability of the latter in intuitionistic terms (or even its
intuitionistic acceptability). Analogously, the thesis that every true proposition can
be provedwill be an intuitionistic thesis only if themodality involved is intuitionistic.

Now, the concept of possibility, understood in the manner described above, is
undoubtedly extraneous to Brouwer and Heyting’s Intuitionism. According to this,
the possibility of a construction is always to be conceived as an epistemic state, i.e.
as a state in which the knowing subject acknowledges that he is able to perform
a certain construction. Prawitz and Martin-Löf’s possibility, on the contrary, is not
characterised as an epistemic state, but as merely factual accessibility to an epistemic
state.

A passage of Dummett (1977, p. 19) seems to be responsible for some confusion
on this point. Dummett writes:

It would be possible for a constructivist to agree with a Platonist that a mathematical state-
ment, if true, is timelessly true: when a statement is proved, then it is shown thereby to have
been true all along. To say this is, in effect, to equate “A is true” with “We can prove A”
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rather than with “A has been proved”, and “A is false” with “We cannot prove A”. Such an
interpretation of ‘true’ and ‘false’ remains faithful to the basic principles of Intuitionism
only if “We can prove A” (“A is provable”) is not interpreted to mean either, at one extreme,
that, independently of our knowledge, there exists something which, if we became aware of
it, we should recognise as a proof of A, nor, at the other, that as a matter of fact we either
have proved A or shall at some time prove it. In the former case, we should be appealing to
a platonistically conceived objective realm of proofs; in the latter, we should be entitled to
deny that A was provable on non-mathematical grounds (e.g. if the obliteration of the human
race were imminent). “We can prove A” must be understood as being rendered true only by
our actually proving A, but as being rendered false only by our finding a purely mathematical
obstacle to proving it.

But if “A is true” is equated with “We can prove A” and “We can prove A” is
rendered true only by our actually proving A, then A was not true before having been
proved, and the notion of truth is not tenseless. Therefore, if we want truth to be
tenseless, it is necessary that also the notion of possibility, in terms of which it is
defined, is conceived of as atemporal. So, as long as we identify truth with provability
and agree with traditional Intuitionism that the provability of A obtains only in virtue
of our actually proving A, we cannot agree with a Platonist that a mathematical
statement, if true, is timelessly true.

Prawitz and Martin-Löf want to reconcile Intuitionism with the belief that math-
ematical truths are eternal. Being aware of the above difficulty, they profess the
conviction that the provability of a proposition can be understood as tenseless even
within an intuitionistic perspective.

Prawitz (1987), referring to Dummett’s passage above, writes that he has no
objection to understanding “the existence of a proof with reference to an objective
realm of proofs”, since “in such an objective realm of proofs there can be no question
of the existence of a proof that is not in principle recognisable by us.” (p. 154).

Observe that the eternal actual existence of proofs is by no means in conflict
with their potentiality: the latter does not concern existence but the capacity of being
grasped by the (idealised) human mind: briefly, proofs are actually existent but only
potentially known.

Onhis part,Martin-Löf (1991) rejects any identification of provabilitywith knowl-
edge of a proof:

If something has been, is being or will be done, then it can be done, but not in the converse
direction. In the case of proving a proposition, this means that, if a proposition has been, is
being or will be proved, then certainly it can be proved, that is, it is potentially true, but there
is absolutely no reason to believe that we can go in the opposite direction. The principle
just spelled out is again a principle which had a succinct scholastic formulation: it is the
principle, Ab esse ad posse valet consequentia (illatio). (p. 193)

In other terms, from the availability of a proof of A we can of course infer the
provability of A, but not conversely, as it would be the case if the provability of A
subsisted only in virtue of our knowledge of a proof of A.

Martin-Löf does not commit himself to Prawitz’s position, which could be
called “proof platonism”. However, once a tenseless notion of provability has been
espoused, the commitment to an objective realm of propositions is unavoidable. For,
if the possibility to prove a proposition A is conceived as atemporal, then A itself
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becomes an atemporal entity. If a proposition existed only qua created by the mind of
the creative subject (as the orthodox intuitionist maintains), it would have an exclu-
sively temporal existence, so that, if it is provable, its provability would be temporal
as well, since it could not subsist before the very creation of the proposition. Thus,
potential truth presupposes at least the existence of an objective realm of proposi-
tions, and consequently, whether an objective realm of proofs is accepted or not, it
leads inevitably to a sort of realism.

Independently of the questions at issue, an ontology of proofs may be in some
respects problematic (especially for reasons of impredicativity). We are inclined
to believe that a commitment to such an ontology is not necessarily presupposed
by the intuitionistic conception of truth as (temporal or atemporal) provability: the
mathematical activity of proving does not seem to require any reification of proofs.
Therefore, in what follows we will not assume that the adoption of an atemporal
notion of provability entails an ontology of proof-objects.

Let us call “potential Intuitionism” the view described above, supporting an atem-
poral notion of possibility, and “orthodox Intuitionism” the original, Brouwerian con-
ception of mathematics. The following question arises: is the potential intuitionist
still in a position to reject classical logic in favour of intuitionistic logic?

Atemporal possibility is certainly incompatible with Brouwer’s theory of free
choice sequences. The tenselessness of provability presupposes that the objects of
discourse are well-determined. For example, if α is a lawless sequence the possibility
(or impossibility) of proving α(n) = m is determined when the nth choice is made.
Once this proposition has been proved, wemay certainly say that it had the possibility
of being proved even before the choice of its nth value, in the sense that nothing could
prevent that the nth choice was just m. But this is not the kind of possibility we are
concerned with here: it is a temporal possibility which would have been lost if a
number different from m had been chosen as α(n), so that in no sense could we
assert that α(n) = m was true before having been proved. Therefore, the potential
intuitionist must reject choice sequences and confine himself to a lawlike ontology.

In any case, choice sequences do not play a central role in the intuitionistic criti-
cism of classical logic. Brouwer’s rejection of the excluded middle does not rest on
any alleged indeterminateness of mathematical objects, but merely on his particular
conception of the link between truth and knowledge (although he exploited choice
sequences to give strong counterexamples to classical theorems). So our problem can
now be restated as follows: is the potential intuitionist still in a position to defend
Brouwer’s negative attitude about classical logic? The answer, we hold, is necessarily
negative. The reason can be found, in nuce, in a passage of Dummett (1987):

There is a well-known difficulty about thinking of mathematical proofs […] as existing
independently of our hitting on them, which insisting that they are proofs we are capable of
grasping or of giving fails to resolve. Namely, it is hard to see how the equation of the falsity
of a statement (the truth of its negation) with the non-existence of a proof or verification can
be resisted: but, then, it is equally hard to see how, on this conception of the existence of
proofs, we can resist supposing that a proof of a given statement either exists or fails to exist.
We shall then have driven ourselves into a realist position, with a justification of bivalence.
If we refuse to identify falsity with the non-existence of a proof, we shall be little better
off, because we shall find it hard to resist concluding that there are statements which are
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determinately neither true nor false, there being no proof of them or of their negations: we
shall then have a quasi-realist denial of bivalence. (p. 285)

Let us elaborate Dummett’s remark. From the fact that possibility is conceived as
tenseless it follows that the following principle of Potential Excluded Middle:

(PEM) A is potentially true or A is not potentially true

becomes intelligible, and valid, in its classical reading. For, on this reading, it simply
means that all propositions, as they are conceived by the potential intuitionist, are
atemporally determinate, and this is clearly true: if it were indeterminate whether A
is provable or not, the provability of A would be for ever prevented since, according
to the conception at issue, a proposition cannot become provable. Therefore, such
a hypothetical state of indeterminateness of A could be nothing but a state of well-
determined unprovability of A. Whether A is provable or not is a fact concerning
the immutable world of propositions, where there is no room for any indeterminate-
ness. Of course, the potential intuitionist might refrain from interpreting classically
the logical constants occurring in PEM; he could interpret them intuitionistically
and deny PEM consequently. But this move would not affect the fact that from his
point of view the classical interpretation of PEM is intelligible. While the orthodox
intuitionist can reject the classical interpretation of PEM because of his refusal of
certain categories involved (such as an objective realm of propositions), the potential
intuitionist must acknowledge that those categories are the ones which he himself is
committed to. If he insisted that the classical construal of PEM is meaningless, he
would simply renounce the possibility of expressing his own conviction that prov-
ability is atemporally determinate, but he would not have gained an argument against
the realist.1

The potential intuitionist is therefore forced to admit that the realist interpretation
of the logical constants is meaningful and appropriate for expressing certain facts
about potential truth.

Of course the potential truth of a sentence, interpreted according to the intuition-
istic meaning of the logical contents, does not coincide at all, in general, with its
classical truth. However, the potential intuitionist is able to reconstruct the notion of
classical truth within his own conceptual framework, at least in the case of a language
in which the classical and the intuitionistic meaning of atomic sentences is the same,
in particular when atomic sentences are decidable. In that case, Tarski’s inductive
definition of classical truth is perfectly intelligible to the potential intuitionist, since

1In some respects, this seems to be the move implicit in Martin-Löf’s type theory, in particular in
his distinction between propositions and judgements. According to it, “A is potentially true” is a
judgement, and a general feature of judgements is that the logical operations cannot be applied to
them; as a consequence, a judgement expressing the content of PEM does not exist. However, this
answer is acceptable only to someone who subscribes to (1) the distinction between judgements
and propositions, and (2) the reasonability of the interdiction to apply negation to a judgement. In
Martino and Usberti (1991), we stated some reasons not to accept either (1) or (2). Observe that if
PEMwere meaningless for the reason at issue, so would beMartin-Löf’s claim that “If A is actually
true, then it is potentially true”, where the inapplicability of the logical constants to judgements is
violated too.
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the Tarskian clauses are based on the notion of potential truth for atomic sentences,
and the classical meaning of the metalinguistic logical constants (involved in the
Tarskian clauses) is appropriate to the realistic objectivity of potential truth. Let us
illustrate this point in a particular case.

Let P(x) be a decidable predicate on natural numbers. Given a number n, P(n) is
classically (aswell as intuitionistically) true iff it is provable according to the decision
procedure. So the classical truth of ∀xP(x) is defined in terms of the potential truth
of all the P(n)’s and the classical metalinguistic quantifier “every”. Since, for every
n, it is objectively determined whether P(n) is provable or not, it is also objectively
determined whether every P(n) is provable or some is not. Therefore, the classical
meaning of the metalinguistic quantifier is accessible to the potential intuitionist and
he can understand perfectly well the Tarskian account of “∀xP(x) is true”.

In contrast, such an account is not available to the orthodox intuitionist. For
him, every P(n) is provable or not in the mere sense that, in virtue of the decision
procedure, given any n, he knows how to verify or falsify P(n). But from his point of
view verifiability or falsifiability are not intrinsic properties of the P(n)’s subsisting
independently of his knowledge. Consequently, the provability of all the P(n)’s is
not an objective fact that subsists or not in the realm of propositions; it is a fact that
comes to being only if and when the knowing subject becomes aware, through an
abstract reasoning, that the decision procedure, applied to an arbitrary n, will verify
P(n). This point of view is essential for the intuitionistic rejection of the principle of
excludedmiddle; this asserts, according to that view, that we know amethod to decide
every proposition, and it can therefore be criticised as a principle of omniscience.
But the potential intuitionist cannot refuse the classical interpretation of the excluded
middle, according to which ∀xP(x) ∨ ¬∀xP(x) expresses the obvious factual truth
that either all the P(n)’s are tenselessly provable or some of them are not, a truth that
has nothing to do with the human ability to decide which alternative holds.

As a consequence, the potential intuitionist, unlike the orthodox, is forced to
admit the intelligibility of classical logic. However, he can still defend intuitionistic
logic by arguing that it, unlike classical logic, satisfies certain desirable requisites, in
particular the basic constructivist requirement that every truth is provable in principle,
whereas classical truth, although definable in the framework of potential Intuitionism,
is irremediably separated from provability. In the next section, we examine this line
of argument.

11.3 Potential Intuitionism as a Subsystem of Epistemic
Mathematics

Consider a logically complex proposition, for instance ∀xA(x), and suppose we want
to explain itsmeaning in terms of some key notion such as truth or proof. The standard
format of the explanation is the following. If we choose truth as the key notion, we
assume that we know what the truth conditions of A are, and we define the truth
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conditions of ∀xA(x); in order to do this, we have to use the metalinguistic logical
constant “all” (or somemathematical notion in terms of which it is definable), whose
meaning we therefore assume as known. Analogously, if we choose proof as the key
notion, we assume that we know what a proof of A is, and we define what a proof
of ∀xA(x) is; in order to do this, we have to use the metalinguistic logical constant
“all” (or somemathematical notion in terms of which it is definable), whose meaning
we therefore assume as known. In any case, we must assume that we know, at the
metalinguistic level, themeaning of essentially the same constants we are explaining;
we seem to have fallen into an infinite regress. Does this compromise the efficacy of
our explanation? This is a very general and interesting problem we shall not discuss
here; we mentioned it only because an important difference between the orthodox
and the potential intuitionist concerns the answer they can give to it.

According to the naïve—realist—view, proofs are arguments to get evidence that
certain states of affairs obtain or that certain objective facts subsist. From this point
of view, it is quite natural to characterise proofs in terms of the facts they prove;
for instance, a proof of ∀xA(x) can be defined as a proof of the fact that all the facts
expressed byA(d1/x), A(d2/x), . . . subsist. Now, the potential intuitionist can under-
stand the naive notion of proof, since he can give sense to the notion of objective
fact: the objective fact that A is the fact that the proposition “A” is atemporally prov-
able. Consequently, he can inductively define conditions of a compound proposition
in terms of objective facts concerning the truth of the subpropositions. Precisely,
given provability conditions for atomic sentences (�= ⊥), the potential meaning of
the logical constants can be expressed as follows:

(1) ⊥ is not true;
(2) A ∧ B is true if both A and B are true;
(3) A ∨ B is true if either A is true or B is true;
(4) A ⊃ B is true if it is provable that B is true provided A is true;
(5) ∀xA(x) is true if it is provable that, for every individual d, A(d/x) is true;
(6) ∃xA is true if, for some individual d, A(d/x) is true.2

Observe that the logical constants occurring in the metalanguage are classically
interpreted in the world of propositions. Consequently, the potential intuitionist is
able to give an explanation of the potential meaning of the logical constants that
is really reductive, and he does not fall into the infinite regress mentioned above.
Moreover, the above clauses are equivalent, for him, to Heyting’s ones, in the sense
that, if a proposition A is true according to the potential interpretation, there is a proof
of A according to Heyting’s explanation. Compare for instance clause (4) above with
Heyting’s version:

(4′) A proof of A ⊃ B is a method to transform any proof of A into a proof of B.

Suppose that A ⊃ B is true according to (4). Given a proof of A, by using a proof
that B is true provided A is true, we come to know that B is provable, and this very

2A similar interpretation of the intuitionistic logical constants has been proposed by Carlo Dalla
Pozza (1991).
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knowledge must be the outcome of a proof of B (since to know that a proposition is
provable amounts to having proved it). So a proof of A ⊃ B provides a method to
transform any proof of A into a proof of B. Similar considerations hold for the other
clauses.

The orthodox intuitionist is in a completely different position since, owing to his
antirealistic conception of mathematics, he cannot understand the naïve notion of
proof. The raison d’être of Heyting’s revision of classical logic is not simply the
constructivist aim to stress the central role of provability in mathematical truth, but
the need to reform the very notion of intuitive proof. The lack of objective reference
forces him to abandon the usual realistic understanding of proofs and raises the
question of how intuitionistic proofs are to be understood. In the absence of objective
facts to prove, what do intuitionistic proofs prove? His explanation of the meaning
of the logical constants is just an attempt to answer this question. By inductively
defining what a proof of a compound sentence is in terms of what is a proof of its
components, Heyting tries to overcome the difficulty of explaining what an intuitive
proof of a proposition is, without saying which facts it has to prove.

Sometimes this aspect of Heyting’s explanation has not been adequately appreci-
ated in the literature. Consider for example Heyting’s clause for universal quantifi-
cation:

(5′) A proof of ∀xA(x) is a method to get, for every individual d, a proof of A(d/x).

Some commentators have proposed to add a “second clause” requiring a proof
that the method in question yields, for every d, a proof of A(d/x). The need of such
a proof is brought about by a misleading classical view of the matter. According to
this, it may happen that a method yields, as a matter of fact, a proof of A(d/x) for
all d, even if it is not known that it does. It follows that a proof of ∀xA(x), besides
giving the required method, must show that it works as desired. For instance, let G
be Goldbach’s conjecture that every even number > 2 is the sum of two primes. If G
is true, there is a trivial method satisfying (5’): calculate, for any even number n, all
the sums of pairs of primes ≤ n, until a pair is found whose sum is just n. Of course
this method is not itself a proof of G: in order to prove G, we must show that, by
applying the method to any even number, we will always reach the desired pair. But,
according to orthodox Intuitionism, there are no knowledge-independent facts, so
that there is no room for distinguishing between the mere fact that the method works
and a proof of this fact. Therefore, for the orthodox intuitionist the second clause is
utterly useless: its introduction is nothing but a misleading attempt to characterise a
proof of ∀xA(x) by saying what it has to prove.

Of course, since the metalanguage, in which Heyting’s clauses are formulated, is
to be understood intuitionistically, his explanation is not reductive, and it does fall
into the infinite regress mentioned above.

What an intuitionistic proof of a universal quantification really is, lies hidden in
the intuitionistic primitive notion of (general) method.

In sum, the potential intuitionist not only has at hand a notion of proofmore akin to
the ordinary use, but also can define the potential meaning of the logical constants,
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thereby overcoming an essential difficulty connected with Heyting’s explanation.
However, the price to pay for these advantages (maybe with no regret) is the impos-
sibility of criticising classical mathematics.

It may be instructive to compare potential Intuitionism with epistemic mathemat-
ics.3 Given a first-order language L, let Le be the epistemic language obtained by
adding an epistemic operator K with the formation clause: if A is a formula, then
KA is a formula. We shall read KA as “It is (atemporally) knowable (or provable)
that A”. The intuitionistic translation A∗ of a formula A of L is inductively defined
as follows:

(7) • A∗ = KA for A atomic �= ⊥
• ⊥∗ = ⊥
• (A ∧ B)∗ = (A∗ ∧ B∗)
• (A ⊃ B)∗ = K(A∗ ⊃ B∗)
• (∀xA(x))∗ = K(∀xA∗(x))
• (∃xA(x))∗ = ∃xA∗(x)

It is known that a formula is derivable in intuitionistic logic iff its intuitionistic
translation is derivable in epistemic logic (see Shapiro 1985). But we are concerned
here with meaning-theoretical considerations. Given a classical interpretation of L,
extend it to Le by interpreting KA as explained above. By speaking of the epistemic
meaning of a sentence of Le, we shall refer to this interpretation.

Now, suppose that the interpretation of the atomic sentences is intuitionistically
acceptable (i.e. that the meaning of such sentences is given by proof-conditions).
Then, as the argument developed in Sect. 11.2 shows, the whole interpretation of
Le (where the logical constants have their classical meanings) is accessible to the
potential intuitionist. Moreover, if A is a formula of L, the epistemic meaning of A∗ is
identical to the potential intuitionistic meaning of A (as shown by a straightforward
induction on the complexity of A). Thus, within the very framework of potential
Intuitionism, the potential meanings of the logical constants are definable, with the
help of the epistemic operator K , in terms of the classical meanings.

We can conclude that the potential interpretation of the logical constants is devoid
of any logical significance. It cannot be proposed as a basis for a logic alternative to
the classical one. Classical logic is not only intelligible to the potential intuitionist but
also perfectly adequate to treating his notion of knowability. Unlike the orthodox, the
potential intuitionist has no need to revise classical logic: as far as logic is concerned,
he reasons just as the classical mathematician does. Moreover, he has a very good
reason to use classical logic, since it enables him to give a reductive explanation of
the intuitionistic meaning of the logical constants. In general, what characterises his
position is his interest in certain propositions involving the notion of knowability,
realistically conceived as knowability of objective facts. This is the naïve notion of
intuitive provability, shared also by the classical mathematician, which has little to
do with the very sophisticated notion of provability of orthodox Intuitionism.

3For a nice introduction to this topic see (Shapiro 1985).
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11.4 Temporal Truth

In the preceding section, we reached the conclusion that potential Intuitionism is a
realistic position whose constructivist aim does not lead to the rejection of classical
logic but to an epistemic mathematics based on classical logic and naive provability.

It is certainly an interesting position as a way of reconciling, to some extent,
classical and intuitionistic mathematics. However, as our considerations should have
shown, the philosophical position of the potential intuitionist is very far fromBrouwer
and Heyting’s view of mathematics. The essential difference between orthodox Intu-
itionism and classicalmathematics turns out to lie in the opposition between temporal
and atemporal provability rather than in the opposition between transcendent truth
and provability. Epistemic logic, with the operator K interpreted as “atemporally
provable”, provides a very natural, but essentially classical, interpretation of intu-
itionistic logic. For these reasons, if one is interested in Intuitionism as an antirealistic
philosophy of mathematics and in intuitionistic logic as the basis of antirealistic rea-
soning, he must reject atemporal provability and resist the temptation of introducing
into Intuitionism any surrogate of classical truth. He must rather accept certain con-
sequences of his antirealistic view, even when they are not in agreement with the
naïve, realistic, attitude of the working mathematician. Temporal truth, the notion
according to which a proposition becomes true only when it is proved, is certainly
counterintuitive insofar as it conflicts with the usual naïve notion of proof as recog-
nition of preexistent facts. But that is as it should be, since the antirealist must, of
course, refuse any intuition of a realistic nature.Wewant to show now that, within the
framework of orthodox Intuitionism, certain recurrent objections against temporal
truth are groundless.

First of all, there is an important question about temporal truth which needs some
clarification. Sometimes it has been maintained that a proposition, in order to be
true, does not need to have been effectively proved; it needs only to be provable, in
the epistemic sense that a method is known to prove it. This notion of provability is
certainly congenial to an antirealistic view. However, it is quite natural to admit that
a method to prove A is itself a proof of A: we cannot know that we are able to know
A, unless we know A. For this reason, as far as temporal truth is concerned, there is
no room for distinguishing between potential and actual truth.

The first objection we want to discuss is the paradox of inference.4 As Dummett
writes, “The justifiability of deductive inference […] requires some gap between truth
and its recognition”. The validity of an inference rule is usually expressed by saying
that it preserves truth, in the sense that if the premises are true, so is the conclusion.
Thus, the objection goes, the identification of truth with its recognition entails that
if the premises of a valid inference are known, so is the conclusion. Consequently,
valid deduction cannot provide any increase of knowledge and is therefore useless.

However, the validity of an inference rule is to be interpreted, in the orthodox
perspective, according to Heyting’s meaning of implication: an inference rule is valid

4For a formulation of this paradox and the problems it raises see also the introduction to the present
issue.
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in so far as we know how to get from the knowledge of the premises to the knowledge
of the conclusion. This does not mean that the knowledge of the premises amounts to
the knowledge of the conclusion. In order to know the conclusion, we must perform
a further mental act consisting of putting together the knowledge of the premises
and that of the validity of the rule. Between the knowledge of the premises and
that of the conclusion there is always a (however small) epistemic distance. Observe
that this is not in conflict with our stipulation that the knowledge of a method to
prove a proposition counts itself as a proof of that proposition: the transition from
the knowledge of the premises to the knowledge of the conclusion is realised by the
mere recognition that the available method of transforming any proof of the premises
into a proof of the conclusion, together with a proof of the premises, yields a method
of proving the conclusion; no effective application of the method is required. For
example, once we have recognised the validity of the axioms and rules of Heyting’s
arithmetic, we can certainly claim that all theorems of Heyting’s arithmetic are true.
But by this claim, we do not mean the empirical (and obviously false) fact that we
have proved every arithmetical theorem. That claim is more appropriately expressed
by the (metalinguistic) assertion

(8) For every arithmetical sentence A, if A is a theorem, then A is true,

which is to be interpreted according to the intuitionistic meaning of implication and
universal quantification: we know that, given A and a formal proof of it, we are able
to come to know A. But such a specific A does not become true as soon as we get
evidence of (8). A becomes true if and when, having become acquainted with it and
with a proof of it, we explicitly realise that our knowledge of (8) confers evidence
to A.

Another objection is the following. Consider the propositions

(9) If somebody proved or will prove that there are infinitely many twin primes,
then he knows or will know a great deal about prime numbers;

(10) If there are infinitely many twin primes, then someone knows or will know a
great deal about prime numbers.

It is objected that (10) does not follow from (9), as it should be if their antecedents
had the same meaning. So, the argument goes, we need a notion of truth such that
“It is true that A” does not mean the same as “It has been or will be proved that A”.

But the reason why the argument seems compelling is that the above propositions
are read according to the classical meaning of implication. As far as (9) is concerned,
such a reading may be intelligible to the orthodox intuitionist. For, since both the
antecedent and the consequent of (9) are empirical assertions, theymaybeunderstood
as descriptions of certain (possible) events of the world where the knowing subject
lives, a world which can be thought of realistically even in the orthodox perspective.
The case of (10) is completely different; its antecedent describes, in the classical
reading, a (possible) fact of the objective world of numbers, which is refused by the
orthodox intuitionist. He can interpret (10) only according to Heyting’s meaning of
implication: a method is known to transform any proof that there are infinitely many
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twin primes into the knowledge of a great deal about prime numbers. Therefore, in
the antirealistic perspective, the objection vanishes.

Finally, we want to discuss the paradox of knowability. It arises from the verifi-
cationist thesis that every truth is knowable. The thesis can be formalised as

(VT) (A ⊃ ♦K0A)

where K0 is an epistemic operator to be read as “it is (or will be) known that”.
By using very weak principles concerning ♦ and K0, one can intuitionistically

derive from (VT) that there are no unknown truths:

(PK) ¬(A ∧ ¬K0A).

Informally, the argument runs as follows. Assume A ∧ ¬K0A; by applying (VT)
we get ♦K0(A ∧ ¬K0A) and therefore ♦(K0A ∧ ¬K0A), which is absurd.

The conclusion seems to be paradoxical since, intuitively, the mere possibility
that the truth of A becomes known does not seem to imply that as a matter of fact A
will be known. In the orthodox perspective what is problematic is how to interpret
the modal operator ♦, since the most natural interpretation as atemporal possibility
is, as we know, precluded. In any case, whatever the interpretation of ♦ may be,
the solution of the paradox is trivial: for the orthodox intuitionist (PK) is perfectly
acceptable. In fact, he can uphold even the (intuitionistically) stronger claim

(PK∗) A ⊃ K0A

For, as we have already argued with regard to (10), (PK∗) can be interpreted only
according to the intuitionistic meaning of implication, so that it expresses the trivial
observation that, as soon as a proof of A is given, A becomes known.

Williamson (1988) tries to reject the cogency of (PK∗), even from an antireal-
istic point of view. He proposes to think of intuitionistic proofs as types of mental
constructions and observes that, while we have a trivial method of transforming
a proof-token of A into a proof-token of K0A, there is no method, in general, of
transforming a proof-type of A into a proof-type of K0A.

The trouble is that a proof of (PK∗) cannot be understood as a method which
operates on types: from a constructive point of view it can be applied only to tokens.
Williamson seems to be aware of this difficulty and indicates a way to overcome it:

The notion of proof-type sounds suspiciously Platonist. Fortunately for intuitionists, all they
really need is the ontologically neutral concept of sameness in type, where two proof-tokens
of the same type are required to have identical conclusions and structure, but need not occur
at the same time. For a function from proof-types to proof-types need be nothing more than
a function f of a special kind from proof-tokens to proof-tokens: one that is unitype in the
sense that if p and q are proof-tokens of the same type then so are f (p) and f (q). To speak of
proof-types is then just to speak of proof-tokens in ways not sensitive to differences between
proof-tokens of the same type; there need be no suggestion that the existence of a type is
anything over and above the existence of tokens of that type. […] [T]he result is that a proof
of P ⊃ KP [A ⊃ K0A in our symbolism] is a unitype function that evidently takes any
proof-token of P to a proof-token, for some time t, of the proposition that P is proved at t.
Need there be such a function?

For any proof-token p ofP, let t(p) be the time at which p, as a particular mental construction,
was carried out; we can allow that reflection on p can yield a corresponding proof-token f (p)
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that p was proved at t(p) […] Now if we know of such a proof-token p, we can consider a
function fp which maps any proof-token q of P to a proof-token of KP of the same type as
f (p); fp is obviously unitype and thus constitutes a proof of P ⊃ KP. If P has not yet been
decided, however, the best we can do is to consider the function f itself, for the hypothetical
proof-token of P is the only one we have to play with in attempting to construct a proof-token
of KP. But f is not a unitype function: for there can be proof-tokens p and q of P of the
same type but carried out at different times, in which case f (p) and f (q) are proof-tokens of
distinct types, for their conclusions differ: f (p) is a proof that P is proved at t(p), f (q) is a
proof that P is proved at t(q), and t(p) �= (t(q). Thus if we have no decision procedure for
P, we have no way of constructing a proof of P ⊃ KP. (Williamson 1988, 430–431)

We do not believe that Williamson’s proposal is suitable for the orthodox con-
ception. The distinction between proof-types and proof-tokens may be appropriate if
proofs are conceived as outright objects, so that a proof of A ⊃ B is an outright math-
ematical function f from proofs of A to proofs of B (as in the case of Martin-Löf’s
type theory, where propositions are treated as sets of proofs). In such a framework,
it is certainly legitimate to question when two proofs are equal and to require that a
function from proofs to proofs preserves equality. But, according to orthodox Intu-
itionism, intuitive proofs are nothing but acts of knowing whose structures are of
no mathematical interest (in contrast with formal proofs, whose structures are the
subject matter of proof theory). Heyting’s explanation of logical constants does not
even require any reification of proofs: a proof of A ⊃ B consists in the conscious
knowledge of how to prove B as soon as Awill be proved, and such a knowledge does
not involve any function from proofs to proofs. This interpretation is also in agree-
ment with Kolmogorov’s interpretation of logical constants in terms of problems,
according to which A ⊃ B is the problem of reducing problem B to problem A. To
accept Williamson’s proposal would amount to denying that the knowledge of how
to prove B as soon as A is known counts as evidence for A ⊃ B; and this is highly
counterintuitive.

But let us concede, for the sake of argument, that a proof of an implication is an
outright function from proofs to proofs. Williamson’s argument still seems uncon-
vincing. For he admits that, if a proof p of A is known, then there is a unitype function
fp from proofs of A to proofs of K0A, i.e. the constant function which maps every
proof of A into the proof that A has been proved at time t(p). He claims, however,
that the situation is quite different if no proof of A is known, since in this case what is
available to us is only a hypothetical proof-token of A, with which no specific time is
associated. But the required function f is not expected to operate on the hypothetical
proof-token: such an object does not exist! Its arguments cannot be anything but
given proof-tokens; as long as no proof of A is known, f has nothing to map. So we
can still define f as the constant function which, once a proof p of A is known, maps
every proof q of A into the proof that K0A is known at time t(p).

We conclude that (KP∗) is a cogent consequence of the orthodox perspective, for
which the paradox of knowability is not at all paradoxical. The apparent paradoxical-
ity arises from the fact that the intuitionistic tenet that every truth is provable is often
misunderstood in terms of the usual, knowledge-independent, notion of possibility.
But the orthodox intuitionist refuses any metaphysical notion of possibility; for him
the possibility to do something is an epistemic state in which it is known how to
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do that. As soon as possibility is understood in this way, (VT) and (PK∗) become
indistinguishable.

The paradox is much more significant for potential Intuitionism, where there is no
identification between truth and knowledge of truth. In this framework, the truth of
A consists in the tenseless existence of a proof of A, and (VT) expresses an essential
peculiarity of proofs: they are capable of being grasped by the (idealised) human
mind. Of course this feature does not entail by itself the actual grasp of a proof by
the mind. So (PK∗) is certainly to be rejected. But what about (PK)?

According to the potential intuitionistic meaning of the logical constants, (PK)
says that there is a proof that there cannot be both a proof p of A and a proof q that
p will never be grasped. This is certainly correct. For, if both p and q existed, their
conjunction would not be capable of being grasped by the mind. The intuitionistic
reading of (PK) is by no means in conflict with the existence of unknown truths.
What the paradox shows is that the possibility of such existence cannot be expressed
intuitionistically. However, the classical meaning of the logical constants is accessi-
ble to the potential intuitionist, as we saw, and he can express his interpretation of
mathematical propositions within classical logic by means of the operator K . Con-
sequently, even if A is intended to be an intuitionistic proposition, he can understand
classically (VT), (PK) and the whole derivation of the latter from the former. And
since (PK) is classically equivalent to (PK∗), he can recognise a clear sense in which
(VT) entails the wrong conclusion (PK∗) and is therefore to be rejected, at least in
its whole generality. Indeed the paradox arises by applying (VT) to the proposition
A ∧ ¬K0A, which involves the factual operator K0 and is therefore to be regarded as
empirical.5 Now, the truth ofK0A cannot consist in the tenseless existence of a certain
proof; otherwise, for every proposition it would be completely determined whether
it will be known or not. But such a deterministic conception of factual knowledge
would not be compatible with the view that for no proof the possibility of being
grasped by the human mind is ever precluded: this view entails that for no provable
proposition it is determined that it will remain for ever unknown. Thus, a proposition
of the form K0A cannot be atemporally true: it becomes true just in the moment (if
any) in which a proof of A is grasped.

In conclusion, the potential intuitionist must distinguish carefully betweenmathe-
matical and factual propositions and restrict to the former (not involving the operator
K0) his conception of atemporal truth, as well as his verificationist thesis (VT). But,
as far as factual propositions are concerned, he cannot maintain the thesis that every
truth is knowable.

5Observe that, even if our epistemic operatorK may be analysed asK = ♦K0, it is not to be regarded
as empirical, because of the presence of the modal ingredient: the mere knowability of a proposition
holds quite independently of any empirical event of actual knowledge.
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Chapter 12
Arbitrary Reference in Mathematical
Reasoning

Abstract It is claimed that the ideal possibility of picking up any object of the
universe of discourse is essential not only in intuitionistic but also in classical logic
and mathematics.

12.1 Introduction

Mathematicians use very often in their reasoning expressions of the kind “let a be an
arbitrary object of the universe of discourse”, for instance “let a be an arbitrary real
number”. Observe that there is no link between the letter “a” and the number which
it is supposed to be indicating. Taking such expressions at face value, mathematical
reasoning would seem to presuppose, at least ideally, the possibility of indicating
any object of the universe of discourse, even when, as in the case of real numbers,
not every object has a name in the language. Within the intuitionistic conception of
mathematics, such a presupposition is made quite explicit by the doctrine according
to which an object exists only as a mental construction of an ideal mathematician, so
that any object is capable of being exhibited, and therefore indicated, by acquaintance
with it. The ideal mathematician can refer to any object, in virtue of his direct access
to his own mental constructions. In contrast, within the classical (realist) conception
ofmathematics, it would seem, from the literature, that themathematical treatment of
a domain of objects by no means requires the ideal possibility of individual reference
to every object of the domain. It seems to be a widespread opinion that, once the
objective existence of e.g. the real numbers has been accepted, the general theory of
real numbers is developable, by using the device of quantification, without any need
that each number be capable of individual reference.

On the contrary, we claim that the ideal possibility of referring individually to
any object of the universe of discourse is essential even in the realist perspective. We
will call this claim TAR (thesis of arbitrary reference).
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12.2 Some Objections to TAR

There are a number of arguments in the literature, which seem to be in disagreement
with our thesis. The most obvious is perhaps due to a misunderstanding of the notion
of arbitrariness. One can argue that considering an arbitrary number is nothing but a
way of speaking, which by no means involves the possibility of actually singling out
such a number, since, for the very same arbitrariness, it is irrelevant which number
one is speaking of. Indeed, when reasoning about an arbitrary number, there is no
need to know it. Furthermore, the argument goes, the ignorance of which number
one is referring to has the desired effect to grant generality to the reasoning: what
is provable for a completely unknown number holds necessarily for all numbers.
However, the lack of information about a cannot avoid the assumption that the letter
“a” designates a precise number: lacking that assumption, it would make no sense
talking about a, not even to say that it is unknown.

Some remarks on the notion of possibility involved by TAR are in order. Such a
possibility is not to be understood as the ability of the speaker to exhibit or describe
the arbitrary object he is referring to. Of course we do not need such ability in order to
speak of an arbitrary number or of an arbitrary (possibly extraterrestrial) living being.
What is needed is merely to imagine that the object in question has been in some
way fixed. The verb “to fix” often recurs in the course of informal mathematical talk.
For instance, the well-known ε − δ-definition of limit sounds: “however a positive
number ε has been fixed, you can find a positive number δ such that …”. In such a
context, you do not have to worry about how ε has been fixed, but you must imagine
that in some way it has been fixed and that it may be any positive number. We want
to hold that locutions of this kind are not to be regarded as a mere way of speaking,
but that they play an essential role in mathematical reasoning. The use in natural
language of the indefinite article “a” may erroneously suggest that, in order to talk
about an arbitrary object, there is no need to think of it as well-determined. You can
realise that this suggestion is deceptive by reflecting on the use of pronouns, which do
refer to awell-determined object, evenwhen this has been introduced bymeans of the
indefinite article. Consider e.g. the talk: “Take an arbitrary real number.…Suppose it
is irrational …” Which number does the pronoun “it” refer to? Of course the correct
answer is not “to any real number”, but “to the number under consideration”. In this
answer, the definite article is used just for referring to the number introduced by the
indefinite article. The puzzle “How can the definite article be appropriate, since, as a
matter of fact, no number has been fixed?” has, wemaintain, the answer: “To consider
an arbitrary number means to imagine that a number has been fixed. Imagination is
all is required for this kind of reference”. Arbitrary reference rests on our ability of
imagining that an object of the universe of discourse has been fixed.

The importance of imagination in the platonist conception of mathematics has
been emphasized by Bernays in his famous paper “On platonism in mathematics”:

The value of platonistically inspired mathematical conceptions is that they furnish models
of abstract imagination. These stand out by their simplicity and logical strength. They form
representations which extrapolate from certain regions of experience and intuition. (Bernays
1964)
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If, as we believe, TAR is correct, it is of remarkable interest for the philosophy of
mathematics. It poses the problem of supplying a more definite content to the act of
imagining involved by arbitrary reference, as a constituent of mathematical realism.
Before addressing this problem, we want to discuss some further possible objections
to our thesis.

An argument against TAR may contend that, though arbitrary reference occurs in
informal reasoning, it is not essential, since itmaybe avoided by the use of quantifiers,
which do not refer individually to any object of the quantification domain. This
argument rests on the confusion between the locutions “any” and “each”: talking
about any object may seem to amount to talking about each object. This is not the
case, however. Russell was clearly aware of the difference:

The general enunciation tells us something about (say) all triangles, while the particular
enunciation takes one triangle and asserts the same thing of this one triangle. But the triangle
taken is any triangle, not some one special triangle; and thus, although, throughout the
proof, only one triangle is dealt with, yet the proof retains its generality. If we say: “Let
ABC be a triangle, then the sides AB and AC are together greater than the side BC”, we are
saying something about one triangle, not about all triangles; but the one triangle concerned
is absolutely ambiguous, and our statement consequently is also absolutely ambiguous. We
do not affirm any one definite proposition, but an undetermined one of all the propositions
resulting from supposing ABC to be this or that triangle. This notion of ambiguous assertion
is very important, and it is vital not to confound an ambiguous assertion with the definite
assertion that the same thing holds in all cases.

The distinction between (1) asserting any value of a propositional function and (2) assert-
ing that the function is always true is present throughout mathematics, as it is in Euclid’s
distinction of general and particular enunciations. In any chain of mathematical reasoning,
the objects whose properties are being investigated are the arguments to any value of some
propositional function […] For this reason, when any value of a propositional function is
asserted, the argument […] is called a real variable, whereas, when a function is said to be
always true, or to be not always true, the argument is called an apparent variable […]

If φx is a propositional function, we will denote by “(x) · φx” the proposition “φx is always
true”. […] Then the distinction between the assertion of all values and the assertion of any is
the distinction between (1) asserting (x) · φx and (2) asserting φx where x is undetermined.
The latter differs from the former in that it cannot be treated as one determinate proposition.

The distinction between asserting φx and asserting (x) · φx was, I believe, first emphasised
by Frege (1893, 31). His reason for introducing the distinction explicitly was the same which
had caused it to be present in the practice of mathematicians, namely, that deduction can only
be effected with real variables, not with apparent variables. In the case of Euclid’s proofs,
this is evident: we need (say) some one triangle ABC to reason about, though it does not
matter what triangle it is. The triangle ABC is a real variable; and although it is any triangle,
it remains the same triangle throughout the argument. But in the general enunciation the
triangle is an apparent variable. If we adhere to the apparent variable, we cannot perform
any deduction, and this is why in all proofs real variables have to be used. (Russell 1908)

In today’s formal logic Russell’s distinction between real and apparent variables
is faithfully reproduced, with a sheer change in terminology, by the well-known dis-
tinction between free and quantified variables. Singular reference plays an essential
role in quantification theory. This fact is made quite perspicuous by the meaning
of the quantification rules in natural deduction. According to the elimination rule
for the existential quantifier, in order to derive a conclusion A from an existential
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assumption ∃xP(x), one has to assume P(a) (where a is a fresh free variable) and
derive A from P(a) (with the due restrictions). This rule is justifiable only if it is
granted that, under the existential assumption, one can consider an arbitrary object a
such that P(a). A similar observation holds for the introduction rule of the universal
quantifier. The soundness of classical natural deduction rests therefore on the hidden
assumption that every object of the domain is capable of being the referent of some
act of reference. Thus formal logic does justice to the informal locution “let a be
an object such that P(a)”. What the textbooks of logic fail to tell us is what the act
of referring to an arbitrary object consists in. About this issue, the formal theory is
silent and, as far as we know, the philosophical remarks in the literature seem to be
somewhat confusing. Even Russell’s passage, quoted above, though enlightening the
need of reasoning about single arbitrary objects, seems to give a rather misleading
explanation of the nature of arbitrary reference. To say that any triangle is not some
one special triangle, but that it is absolutely ambiguous, might erroneously suggest
that the triangle concerned is a strange object enjoying the strange property of being
absolutely ambiguous. But, of course, an ontology of ambiguous objects would be
far from desirable. Alternatively, Russell’s explanation might suggest that what is
ambiguous is the act of referring to any arbitrary triangle, in the sense that it is unde-
termined which triangle it refers to. Indeed Frege, after rejecting the first alternative,
seems to hold the second:

[Mr. E. Czuber] …defines a variable as an indefinite number. But are there indefinite num-
bers? Must numbers be divided into definite and indefinite? Are there indefinite men? Must
not every object be definite? ‘But is not the number n indefinite?’ I am not acquainted with
the number n. ‘n’ is not the proper name of any number, definite or indefinite. Nevertheless,
we do sometimes say’the number n’. How is this possible? Such an expression must be
considered in a context. Let us take an example. ‘If the number n is even, then cos nπ = 1’.
Here only the whole has a sense, not the antecedent by itself nor the consequent by itself.
The question whether the number n is even cannot be answered; no more can the question
whether cos nπ = 1. For an answer to be given, ‘n’ would have to be the proper name of
a number, and in that case this would necessarily be a definite one. We write the letter n in
order to achieve generality. This presupposes that, if we replace it by the name of a number,
both antecedent and consequent receive a sense.

Of course we may speak of indefiniteness here; but here the word ‘indefinite’ is not an
adjective of ‘number’, but ‘indefinitely’ is an adverb, e.g., of the verb ‘to indicate’. We
cannot say that ‘n’ designates an indefinite number, but we can say that it indicates numbers
indefinitely. (Frege 1904)

But, besides being quite obscure what an act of indicating indefinitely is, such
indefiniteness would be incompatible with the essential fact, clearly stressed by
Russell, that, in the whole course of the proof, the referent is always the same. This
means that the letter “a” indicates the same object in all its occurrences in the proof.
If the referents of such occurrences were not well-determined objects, it would be
meaningless to say that they are the same. Perhaps Frege believed this objection to
be superseded by his doctrine of functions as unsaturated entities. In “Function and
Concept”, he says:
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[…] people who use the word ‘function’ ordinarily have in mind expressions in which
a number is just indicated indefinitely by the letter x, e.g. ‘2x3 + x’ …[But] x must not
be considered as belonging to the function; this letter only serves to indicate the kind of
supplementation that is needed; it enables one to recognize the places where the sign for the
argument must go in. (Frege 1891)

It seems that, according to Frege, “to indicate indefinitely” really means “not
to indicate anything at all”. The variables occurring in a functional expression do
not denote anything; they are mere placeholders marking the gaps to be filled by
individual names. According to this view, a reasoning about an arbitrary object x
may be regarded as a schema of reasoning, i.e. as a function which maps every
object into the reasoning obtained from the schema by replacing “x” with a name of
such object. It is plain, however, that such a schema can have all the desired instances
only if every object is capable of being singled out and named. Thus regarding “x”
as a schematic letter is of no help to avoid TAR.

We think therefore that the ambiguity shown by Russell is to be understood in a
purely epistemic sense. Referring to an arbitrary object a amounts to supposing that
“a” designates an unknown, though well-determined, object. Being well-determined
justifies the behaviour of “a”, in the course of the reasoning, as a name designating
the same object in all its occurrences. On the other hand, being unknown guarantees
that all that is established for it holds as well for any other object of the domain.

12.3 TAR as Embodied in the Logical Concept of an Object

The foregoing considerations show that arbitrary reference is essential for the proof
theory of classical logic. Now, one can wonder if TAR is already implicit in the
semantics of classical logic. Of course, the answer is certainly affirmative if one
agrees that the meaning of logical constants is determined by the inference rules,
since, as we have seen, arbitrary reference is involved in the quantification rules.
We think, however, that such a thesis is not appropriate to mathematical realism.
We assume therefore that the understanding of the semantic notions is prior to that
of inference rules, which are justified a posteriori insofar as they are recognised as
truth preserving. Now, most working mathematicians do agree that the inference
rules are truth preserving. They are inclined to recognize as intuitively correct the
metamathematical formal proof of the soundness theorem. In particular they feel the
cogency of the argument that, after recognising P(a) for a certain object a, without
any assumption about a, one can rightfully conclude (x)P(x). But, since the proof of
P(a) clearly exploits the nameability of a, the generalisation is justified only under
the assumption that every object is nameable. The fact that no mathematician feels
the need of making this assumption explicit seems to suggest that the possibility in
principle of referring to any object individually is implicit in the very same general
concept of object.
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The involvement of TAR is not made explicit by Tarski’s definition of truth either.
In fact, this rests on the definitionof satisfactionof a formula, relative to anassignment
of arbitrarymembers of the universe of discourse to the free variables, an assignment
being understood as a set-theoretical function. So, it may seem that the task of
assigning arbitrary objects to the free variables is accomplished by a set-theoretical
function. But that is illusory, since the problem of referring to an arbitrary object of
the given domain shifts to that of referring to an arbitrary function from variables to
objects. Thus, in order to avoid a regress ad infinitum, one must take, at some stage,
arbitrary reference as primitive.

The commitment to TAR is quite evident in Hintikka’s game theoretical seman-
tics for first-order logic (Hintikka 1997). Here the meaning of logical constants is
explained in terms of acts of choice. With every sentence of a first-order language,
Hintikka associates a game between two ideal players, the verifier and the falsifier,
who are trying, respectively, to verify and to falsify the sentence. He then defines the
truth and the falsity of a sentence as the existence of a winning strategy, respectively,
for the verifier and for the falsifier. The game rules are defined in terms of arbitrary
choices of individuals by the players and introduction of names for the chosen indi-
viduals. The definition proceeds by induction on the complexity of the sentence. In
particular, the clause for the existential quantifier is the following:

A play relative to ∃xS(x) starts with a choice of an individual b by the verifier. Then
the plays continues as for S(b).

(The clause relative to the universal quantifier is similar, with the choice made by
the falsifier).

Hintikka observes that the name “b” does not necessarily belong to the given
language but that, since the length of a sentence is finite, any play requires only
finitely many new names. Hintikka takes for granted the ideal possibility of choos-
ing any individual and giving it a name. He stresses the constructive flavour of his
semantics, arising, in his view, from the fact that the meaning of logical constants is
grounded on the notion of action. He proves the soundness of classical logic for his
semantics and concludes that, in spite of the intuitionistic tenets, classical logic is
constructively justified. Indeed Hintikka’s game rules are perfectly intelligible from
the intuitionistic viewpoint. However, his proof of soundness rests on a tacit realistic
attitude concerning the existence of a winning strategy: once the game rules have
been established, he regards as a well-determined objective fact the existence or
non-existence of a winning strategy for the verifier or for the falsifier. So Hintikka’s
proof that for every game there is a winning strategy for one of the two players fails
intuitionistically. This explains why Hintikka’s semantics turns out to be equivalent
to the usual Tarskian semantics. Hintikka’s “constructivism”, based on the action of
choosing, has nothing to do with intuitionistic antirealism.

We think, however, that Hintikka’s philosophical perspective is coherent and that
it supplies a faithful analysis of the usual mathematical reasoning. It makes explicit
a “constructive” aspect hidden even behind the classical conception of mathematics.
In particular it seems to regard the possibility in principle of choosing any individual
as implicit in the logical concept of object.
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The idea of an act of choice seems to provide an appropriate framework for
understanding the notion of arbitrary reference.What is the content of the assumption
that an object has been arbitrarily assigned to letter “a”? Since, as a matter of fact,
neither the mathematician who makes the assumption nor any other real human
being has assigned any object to “a”, the assumption must concern an imaginary
assignment. The precise content of such an assumption might seem to be irrelevant,
since no mathematical reasoning about a needs taking into account the way the
supposed act of assigning has been done. Any talk about a does exploit, however,
the counterfactual possibility of such an assignment. Therefore, a careful analysis
of what is implicitly assumed in mathematical reasoning must face the problem of
explaining how to understand the possibility at issue. How can we imagine that a has
been fixed? At first glance, one could imagine that every object is capable of being
characterised by some property (possibly non-expressible in the formal language),
so that it would be fixed by means of a definite description. But then the describing
property should meet the condition of being satisfied by a unique object; and this
condition involves a quantification over all objects. Now, since, as we saw, the game-
theoretical explanation of the meaning of quantifiers rests on the assumption that
any object can be chosen, one can recognise that an object can be fixed by means
of a characterising property only under the assumption that it can be chosen. This
suggests that arbitrary reference is more primitive than reference by description. We
will pursue the idea that arbitrary reference is a sort of direct reference based on an
imaginary act of choice.

12.4 The Ideal Agent

Let us imagine that we have direct access to an ideal agent, who in turn has direct
access to every object: he can choose any object at will (here, we are identifying
ourselves with the workingmathematician carrying on the mathematical reasoning).
We can explain the locution “Let a be an arbitrary object” as follows: we ask the agent
to choose an object at his will (without communicating us anything about the chosen
object) and call it “a”. It is clear that the adjective “arbitrary” does not concern the
nature of the chosen object, but the freedom of the choice act. Accordingly, we will
assume the following choice act principle:

(CAP) Every object of the universe of discourse is capable of being chosen by the
ideal agent.

Of course,CAP faces the problemof providing an account ofwhat the act of choos-
ing a mathematical object consists in. What does it mean to choose an infinite entity
such as a real number or a set? It is hard to give a general answer, since any answer
depends essentially on how the entities in question are conceived. CAP is to be seen
as a constraint, which must be taken into account by any conception of mathematical
objects. The structuralist development of mathematics has shown that mathematical
theories do not determine the specific nature of the entities they are talking about.
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Therefore, given any mathematical theory, the possibility is left of searching for
models built up from objects whose accessibility to the ideal agent is perspicuous.
For first-order arithmetic, a suitable model is Hilbert’s model of numerals thought
of as finite strings of strokes. These are, in Charles Parsons’ words, quasi-concrete
objects, i.e. types of spatio-temporal objects, the accessibility to which requires only
aminimal idealisation of the agent, needed for dealingwith themathematical infinite.
All that the agent is expected to be able to do is to write down any finite (however
long) string of strokes. It is worth noticing that, at least from a logical point of view,
this idealisation is also sufficient for interpreting any mathematical theory. For, as is
well known, it follows from the Löwenheim–Skolem theorem that every consistent
theory is interpretable in first-order arithmetic. Although arithmetical models are, in
general, far from being the “intended” model of the given theory (say set theory), it
is surprising that, as soon as one has accepted the idealisation of natural numbers,
he can interpret within his framework any mathematical talk. Among other things,
arithmetical models assure that, as soon as a theory is consistent, CAP is certainly
satisfiable. Later, we will show how to use CAP for justifying the constraint of pred-
icativity for Russell’s intensional logic and for defending and developing Boolos’
interpretation of second-order logic based on plural quantification. For the moment,
we want to further explain some general aspects of CAP.

Our ideal agent, unlike the Brouwerian idealized mathematician, has no other
job than that of performing arbitrary acts of choice. He is not expected to have
the capacity of restricting his choices to objects satisfying some required condition.
The inferential step from ∃xF(x) to “let a be an arbitrary object such that F(a)” is
justified by referring to a completely arbitrary choice of the agent, calling “a” the
chosen object and assuming F(a). Though this assumption may certainly be false,
any logical consequence B we can draw from it must be true under the hypothesis
∃xF(x) (provided that a does not occur in B). For, the existential hypothesis andCAP
assure that the agent could have chosen (though unconsciously) an object satisfying
F; and since we do not know anything about a, even in that counterfactual case our
reasoning would be correct. And as the truth or falsity of B is quite independent of
the effective choice of the agent, B is true anyway (under the existential assumption).

It may be instructive to compare CAP with the celebrated set-theoretical axiom of
choice. CAP does not assert the existence of any mathematical object; it explains the
meaning of free variables and justifies their inferential role. In contrast, the axiom
of choice states that, given any set α of non-empty pairwise disjoint sets, there is
a set β (call it the choice set) sharing a unique element with each member of α.
From a logical point of view, no act of choice is involved in the understanding of
the content of this axiom (besides that, with which we are concerned, implicit in the
general concept of an object). It is a purely existential statement expressible in the
language of set theory: as all sets, a choice set exists, in a realistic perspective, quite
independently of any human action. On the other hand, the act of choice seems to
constitute the intuitive ground for the existence of a choice set. It is usually agreed
that the axiom serves the purpose of granting the existence of a choice set even when
its elements are not singled out by any propositional function. The existence of such a
set seems to be intuitively justified by thinking of its members as arbitrarily chosen.
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This aspect was just the main source of the well-known dogged opposition to the
axiom: it was charged of introducing into mathematics indefinable sets (a set being
definable if it is the extension of a propositional function without parameters). It may
be puzzling that, if α is finite, the axiom of choice is not needed for the existence of
α, even when it is indefinable. In particular, given any single non-empty set α, no
axiom of choice is needed in order to guarantee the existence of a subset β of α with
a unique member. The reason is to be found in a hidden application of CAP, implicit
in quantification theory. For, the proof runs as follows: let a be a member of α; by
the pairing axiom there is a set β whose unique member is a. It is clear that this kind
of reasoning (formalisable in axiomatic set theory) is correct only under the hidden
assumption that any object of the universe of sets is capable of being chosen.

The role of choice in mathematics, contrary to a widespread belief, is far from
being restricted to the use of the axiom of choice; it is pervasive of the whole math-
ematics and logic. The axiom of choice seems to exploit the idea of choice in a
more problematic way, since it involves the possibility of a simultaneous choice of
infinitely many objects. Later we will argue, however, that this possibility is already
implicit in the usual notion of a set as constituted by its members (in contrast to the
logical notion of a class as extension of a property).

One may object, against the need of CAP, that the mathematical language can
be understood by direct extrapolation from the ordinary talk about concrete objects
(for which reference is not problematic), so that, in particular, arbitrary reference
to mathematical objects would be immediately intelligible without any need of fur-
ther explanations. According to this objection, the familiar understanding of a talk
about any man, any horse or any pencil would make a talk about any real number
immediately meaningful. This opinion seems to be shared by Shapiro. He notes the
elusiveness of reference inmathematics, but does not seem to find it very problematic:

Probably the most baffling, and intriguing, semantic notion is that of reference. The under-
lying philosophical issue is sometimes called the “‘fido’-fido problem”. How does a term
come to denote a particular object? What is the nature of the relationship between a singular
term (“Fido”) and the object that it denotes (Fido), if it denotes anything? Notice that model
theory, by itself, has virtually nothing to say on this issue. In textbook developments of
model theory, reference is taken as an unexplicated primitive. It is simply stipulated that an
“interpretation” includes a function from the individual constants to the domain of discourse.
This is a mere shell of the reference relation.

[…] As far as the model-theoretic scheme goes, it does not matter how this reference is
to be accomplished or whether it can be accomplished in accordance with some theory or
other. There is nothing problematic in the abstract consideration of models whose domains
are beyond all causal contact. As far as model theory goes, reference can be any function
between the singular terms of the language and the ontology. […]

It is fair to say that when it comes to mathematics and theories of other abstracta, realism
in ontology often falters over reference (about as much as it falters over epistemology). If
we assume that ordinary languages are understood and if we accept the premise that model
theory captures the structure of ordinary interpreted languages, then we can do better. There
is, of course, no consensus on how reference to ordinary physical objects is accomplished.
The theories are legion. I do presume, however, that reference to proverbial medium-sized
physical objects is accomplished. […] Understanding how to use ordinary language involves
an understanding, at some level, of reference (however it works). (Shapiro 1997)
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Here Shapiro seems to hold that the comprehension of the notion of reference,
acquired from the use of natural language, is sufficient for understanding the ref-
erence to the objects of any abstract mathematical structure. Our reply is that the
understanding of the general notion of reference, “however it works”, rests necessar-
ily on the presupposition that in some way (though it does not matter which) it must
work. Therefore the question: is there any way of referring to an arbitrary real num-
ber? Shapiro is an upholder of the so-called realism ante rem, according to which
mathematical objects are conceived of as positions in abstract structures, whose
existence is prior to their possible specific instances. But, aside from the difficulty
of a non-metaphorical understanding of what such positions are, if they are to be
treated as objects of quantification, one cannot avoid the question: what does it mean
to single out an arbitrary position?

12.5 Arbitrary Reference and Impredicativity

In order to better enlighten the reasons thatmay have obscured the importance of TAR
and CAP, it is worthwhile to discuss certain observations by Ramsey and Gödel con-
cerningRussell’s ramified type theory. Ramsey criticises the doctrine of thePrincipia
Mathematica according to which every class is defined by a propositional function.
He observes that, since it is impossible to list all members of an infinite class, there
is no evidence that, in general, such a class is definable by a propositional function.
He continues:

To this it will be answered that a class can only be given by enumeration of its members,
in which case it must be finite, or by giving a propositional function which defines it. So
that we cannot be in any way concerned with infinite classes or aggregates, if such there
be, which are not defined by propositional functions. But this argument contains a common
mistake, for it supposes that, because we cannot consider a thing individually, we can have
no concern with it at all. Thus, though an infinite indefinable class cannot be mentioned by
itself, it is nevertheless involved in any statement beginning ‘All classes’ or ‘There is a class
such that’, and if indefinable classes are excluded the meaning of all such statements will be
fundamentally altered. (Ramsey 1925)

Clearly Ramsey does not take into account the problem of arbitrary reference, of
which, as we saw, Russell was aware.Wewant to suggest that one of Russell’s reason
for adopting the logicist notion of class as extension of a propositional function
arises from the question: how can one choose an infinite class? Russell’s answer
was: through the choice of a propositional function. Russell’s option seems to be
justifiedby the consideration that propositional functions, because of their intensional
nature, are, at least in principle, directly accessible to the human mind, whereas sets,
understood as entities built up by their members, are not. An alternative option is that
of fixing a set through a simultaneous choice of its elements. This will be considered
later.

Ramsey’s argument has been resumed by Gödel in his paper “Russell’s mathe-
matical logic”. Gödel criticises Russell’s vicious circle principle, according to which
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no totality can contain members definable only in terms of the totality itself. Gödel
observes that classical mathematics does not respect such a principle; and since clas-
sical mathematics can be reconstructed on the basis of Principia, this work itself
cannot respect that principle either “if ‘definable’ means ‘definable within the sys-
tem’ and no methods of defining outside the system (or outside other systems of
classical mathematics) are known except such as involve still more comprehensive
totalities than those occurring in the systems”. He adds:

I would consider this rather as a proof that the vicious circle principle is false than that
classical mathematics is false, and this is indeed plausible also on its own account. For,
first of all one may, on good grounds, deny that reference to a totality necessarily implies
reference to all single elements of it or, in other words, that “all” means the same as an
infinite logical conjunction. (Gödel 1984)

Then Gödel observes that, even if “all” were intended as an infinite conjunction,
the vicious circle principle would be tenable only within a constructive perspective:

In this case [i.e. if the entities in question are constructed by us] there must clearly exist a
definition (namely the description of the construction) which does not refer to a totality to
which the object defined belongs, because the construction of a thing can certainly not be
based on a totality of things to which the thing to be constructed itself belongs. If, however,
it is a question of objects that exist independently of our constructions, there is nothing in
the least absurd in the existence of totalities containing members, which can be described
(i.e., uniquely characterised) only by reference to this totality. (ibid)

In a note, he points out that “an object a is said to be described by a propositional
function φ(x) if φ(x) is true for x = a and no other object”.

Certainly by “definable” Russell does not mean “definable in the system”. For,
it is well known that those predicative propositional functions whose existence is
granted by the axiom of reducibility fail, in general, to be definable in the object
language of type theory: the range of the variables includes functions indefinable
in the object language. But, as we saw, the values of quantified variables must be
capable of singular reference. It would therefore be circular to accept as range of
quantification a universe with some members definable only by quantifying over the
universe itself. Gödel’s remarks do not take into account the sense of “definition”
as ideal singular reference. By contrast, TAR supplies a plausible justification of
the vicious circle principle, provided that “definable” is interpreted as “capable of
singular reference”. For, as we saw, quantification over a universe U presupposes
the possibility of arbitrary reference to any member of U . So an act of arbitrary
reference cannot involve in turn, on pain of vicious circularity, quantification over
U . Precisely, we can restate the vicious circle principle as follows:

(VCP) No universe of discourse can contain a member such that the agent can
refer to it only by means of quantification over the universe itself.

VCP leads to the rejection of the impredicative comprehension principle of
second-order (and higher-order) logic

(CP) ∃F∀x(F(x) ↔ A(x)),
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provided second-order entities are understood, à la Russell, as intensional entities.
For, let F be the property expressed by the propositional function A(x) (where x

is a free individual variable). Because of the intensionality of F, there is no access
to it but through its linguistic expression. In other words, a choice of F can be
understood only as the thought of the formula A(x) with its intended interpretation.
A second-order quantification occurring in A(x) would be therefore a violation of
VCP.

For instance, take for A(x) the propositional function

(*) ∀GG(x).

The property F, whose existence is assured byCP, is, according to the intensional
interpretation, the property of enjoying every property. There is no way of grasping
this property without using a quantification over all properties. But that presupposes,
as we saw, the a priori possibility of choosing any value of G. It follows that the
property at issue cannot be a value of second-order variables. So, CAP supplies an
explanation of why one cannot take the universe of all individual properties as the
range of second-order variables.

Besides, VCP is compatible with Russell’s reducibility axiom. For, one can imag-
ine that the agent has direct access to a certain universe of primitive properties (pos-
sibly non expressible in the formal language). If second-order variables are restricted
to such properties,CP can be accepted, without any circularity, as a richness assump-
tion: it says intuitively that the universe of primitive properties is so rich that every
extension of a second-order propositional function is the extension of some primitive
property.

Thus, our analysis supplies a new reason for adopting a ramified hierarchy, when
dealing with intensional properties and relations.

12.6 Plural Reference Versus Sets

Plural quantification is a reinterpretation of second-order monadic logic, proposed
by Boolos (1984, 1985). In Boolos’ perspective second-order monadic logic is onto-
logically innocent: contrary to the most accredited view, it does not entail any com-
mitment to classes or to properties but only to individuals. According to Boolos,
second-order quantification differs fromfirst-order quantification only in that it refers
to individuals plurally, while the latter refers to individuals singularly.

Boolos’ view, though very attractive, is highly controversial. It has met the crit-
icism of several philosophers of mathematics (see Resnik 1988 and Parsons 1990).
Quine’s old claim that second-order logic is “set theory in disguise” does not seem
to have lost its advocates.

We want to show how the theory of arbitrary reference can throw new light on
the theory of plural quantification.

Let us examine Resnik’s criticism of Boolos’ proposal.
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Boolos argues that Quine’s slogan “to be is to be the value of a variable” does
not entail that the value of a second-order variable must be a set (or a property) of
individuals. The slogan is compatible, Boolos claims, with the plural interpretation,
according to which the value of such a variable is a manifold of individuals. To the
purpose, he restates the Tarskian truth definition for second-order logic bymodifying
the notion of assignment.

Precisely, given a domainD of individuals, he defines as an assignment any binary
relation R between variables and individuals which correlates a unique individual
with every first-order variable, while it is subject to no constraint for second-order
variables. So R may correlate a second-order variable with no, one or (possibly infi-
nitely) many individuals. The satisfiability relation is inductively defined as usual,
with the following clauses for atomic formulas and second-order existential quan-
tification:

(1) R satisfies the atomic formula Fx iff the correlate of x is one of the correlates of
F;

(2) R satisfies ∃FA iff there is a relation R′, differing from R at most for the correlates
of F, such that R′ satisfies A. (The universal quantifier is defined in terms of the
existential one).

Truth is then defined as usual in terms of satisfaction. So, the set of the correlates
of F is not involved in the definition of truth.

This makes the notion of plural quantification precise and shows how it yields an
alternative semantics for second-order logic. This semantics turns out to be equivalent
to the usual one, according to which the values of second-order variables are all sets
of individuals. And since the notion of value of a variable can be made precise
only by the definition of assignment, the proposed reformulation shows that Quine’s
slogan does not commit second-order logic to any entities but individuals.

It is clear, however, that Boolos’ device is, in itself, inadequate for the conclusion
that plural quantification does not implicitly involve the notion of class. The problem
is simply turned into the following: does the new definition of assignment presuppose
the notion of set of individuals? The answer is certainly affirmative, of course, if
relations are understood set-theoretically. But a relation can in turn be understood in
terms of plural reference to certain ordered pairs (taking for granted the notion of
ordered pair). So the definition of assignment becomes: certain ordered pairs R are
an assignment if their first components are variables, their second components are
individuals and every first-order variable occurs in exactly one of the R’s. However,
the use of plural reference in the metalanguage begs the crucial question, whether
plural reference involves surreptitiously the notion of set. Boolos is aware of this
difficulty and does not attempt to convince the opponents that plural reference is
free of any commitment to sets. He only remarks that who is inclined to see plural
reference as a genuine alternative to classes will certainly appreciate the possibility
of recovering within his view the Tarskian definition of truth.

Indeed, several authors have raised some doubts about the alleged ontological
innocence of plural reference. Resnik observes that the use of plural reference in
natural language is ambiguous and that, at least in certain contexts, there is no
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evidence that it is free of any commitment to classes. The locution “there are some
objects such that …” sometimes simply means “there is at least an object such that
…”, so that it is expressible in first-order language. Sometimes, however, it has a
meaning which one can hardly make explicit without invoking the notion of class.
For instance, the famous Geach–Kaplan’s example “some critics admire only one
another” is paraphrased by Boolos as “there are some critics such that each of them
admires a critic only if the latter is one of them different from the former”. This
proposition, not formalizable in first-order language, seems, according to Resnik,
hardly interpretable without resorting to classes. How could we understand “one of
them” without referring to a certain class and agreeing that the referent of “one”
belongs to it? In general, while, according to Boolos, the use of plural reference in
natural language would testify to the ontological innocence of second-order logic,
according to Resnik the use of second-order logic for formalising those plural ref-
erences non-expressible in first-order logic would bring to light certain ontological
commitments hidden behind natural language. A similar criticism has been made by
Parsons, although he attributes to Boolos the merit of throwing new light on the old
notion of manifold:

Boolos has not, in my view, made a convincing case for the claim that his interpretation of
second-order logic is ontologically non-committal. The great interest of his reading, in my
view, is that he breathes new life into the older conception of pluralities or multiplicities.
As a source of second-order logical forms, the plural and plural quantification are rightly
distinguished from what was so much emphasized by Frege, predication and, more gener-
ally, expressions with argument places. In particular, if it is the idea of generalization of
predicate places that we appeal to in making sense of second-order logic, then the most
natural interpretations will be relative substitutional or by semantic ascent, and these will
not license impredicative comprehension, and it is hard to see how that will be justified. But
if one views examples such as Boolos’s as involving ‘pluralities’, they are more like sets as
understood in set theory in that no definition by a predicate is indicated, so that one need
not expect them to be definable at all. Thus no obstacle to the acceptance of impredicative
comprehension is removed.

An advocate of Boolos’ interpretation in an eliminative structuralist setting could grant my
claims about ontological commitment, but then take a position analogous to the Fregean:
second-order variables indeed have pluralities as their values, but these are not objects. It
does not seem to me to have the same intuitive force as Frege’s position, since there is no
analogue to the regress argument that can be made if one views the reference of a predicate
as an object. There will still be, just as with Frege’s concepts, the irresistible temptation to
talk of pluralities as if they were objects, as we have already noted above. The only gain this
interpretation offers over the Fregean is a more convincing motivation of impredicativity.
(Parsons 1990)

Certainly the use of plural reference in natural language does not guarantee, in
itself, its ontological innocence. Plural reference to individuals often seems nothing
but a sloppy reference to a class of individuals. The attempts to paraphrase the
language of classes by using locutions of natural language avoiding explicit reference
to singular values of second-order variables cannot dispel the doubt that classes
are only concealed. We believe, however, that the theory of arbitrary reference can
support the claim that the role of classes as referents of second-order variables is
inessential.
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Parsons observes, in the quoted passage, that, though Boolos’ interpretation does
not reach the goal of ridding second-order logic of any commitment to classes, nev-
ertheless it gives new evidence that classes can be thought of as pluralities in the
set-theoretical sense, in contrast to classes in the logicist sense as extensions of pred-
icates. This interpretation would have, according to Parsons, the merit of justifying
the impredicative comprehension principle. For, a set as a plurality of individuals
exists quite independently of any description of its members and, therefore, describ-
ing it by quantifying over all sets by no means yields any circularity.

We want to argue, however, that, in virtue of the doctrine of arbitrary reference,
the very same notion of a set as constituted by its members rests on the notion of
plural reference, so that the latter turns out to be more fundamental than the former.

Assume that second-order variables range over sets of individuals. According to
CAP, every such setmust be capable of being chosen by the agent. The problem arises
how to conceive the act of choosing such a set (taking for granted the accessibility
to any individual). Now, all we know about sets is that they are entities determined
by their members. Although we regard a set as a single object, we lack any insight
about its individuality. Once the logicist notion of a class as extension of a concept
has been rejected, one has no longer any intuition of what should keep together the
members of a set. This fact has been clearly pointed out by Black in his famous paper
“The elusiveness of sets”:

[…] Cantor’s formula, stripped to essential, runs quite simply: “A set is an assembly into a
whole of (well-defined) objects”. Here, the phrase “assembly into awhole” certainly suggests
that something is to be done to the elements, in order for the “whole” or “the unified thing”,
which is the set to result. But what is to be done, if not merely thinking about, the set? . . .
What kind of unification is in point? …The truth is that once the elements of a set have been
identified, nothing needs or can be done to produce the corresponding set. (Black 1971)

But then it seems that there is no other way of access to a set than through its mem-
bers. So a choice of a set must consist in the choice of its members. Now, the choice of
infinitelymany individualsmay be thought of either as an infinite process of choosing
a single individual at a time or as a simultaneous choice of all the individuals in ques-
tion. The first alternative would allow the choice of only countably many individuals,
whose totality would be undetermined (an infinite process of choices being forever
in fieri). In this perspective, a set could be thought of as a well-determined entity
only by identifying it intensionally with the process itself of choosing its members.
But the introduction of entities with an undetermined extension would be highly
problematic (as it is the case for intuitionistic lawless sequences) and incompatible
with the extensional conception of a set. So, we are led to the second alternative of
the simultaneous choice. The idea is expressed by Bernays in the already mentioned
essay:

[Platonism] abstracts from the possibility of giving definitions of sets, sequences, and func-
tions. These notions are used in a “quasi-combinatorial” sense, by which I mean: in the sense
of analogy of the infinite to the finite …we imagine functions engendered by an infinity of
independent determinations which assign to each integer an integer, and we reason about
the totality of these functions. In the same way, one views a set of integers as the result of
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infinitely many independent acts deciding for each number whether it should be included or
excluded. (Bernays 1964)

Now, the simultaneous choice of certain individuals is precisely what serves the
purpose of plurally referring to such individuals. It follows that the arbitrary refer-
ence implicit in second-order quantification involves the same choice acts, whether
second-order variables range singularly over sets or plurally over individuals.

In the plural interpretation, the locution “let A be arbitrary individuals” means
“choose at will some individuals simultaneously and call them ‘A’ ”. In the set-
theoretical interpretation, the locution “letA be an arbitrary set of individuals” means
“choose at will some individuals simultaneously and call ‘A’ their set”. At this point,
it is plain that sets are inessential. The alleged role of sets of collecting individuals
turns out to be illusory: what selects themembers of a set is not the set itself but the act
of choosing them simultaneously. Thus, the arbitrary reference to certain individuals
by no means presupposes the existence of their set; it merely presupposes the act of
choosing them simultaneously. So, the ontological innocence of plural reference is
vindicated.

We can conclude that the plural interpretation of second-order logic is less onto-
logically committal than the set-theoretical one: both involve the same acts of choice,
but the plural interpretation does not involve any second-order entities (acts, unlike
sets, being no entities). The doubts raised by Resnik position on this subject is clearly
and Parsons are therefore superseded.

This conclusion does not entail, however, that second-order logic, in the plural
interpretation, is no more problematic than first-order logic. Certainly it is, but not
for ontological reasons. What is more problematic is the conception of simultaneous
choice of (possibly infinitely) many individuals, compared with that of choice of a
single individual involved in first-order logic. The question arises: given a suitable
idealisation of singular choice (depending on the nature of the individuals we are
dealing with), how can we idealise a simultaneous choice? Though he does not
explicitly talk about choices, Black suggests that one can easily conceive the act of
indicating several things at once:

The notion of “plural” or simultaneous reference to several things at once is really not
at all mysterious. Just as I can point to a single thing, I can point to two things at once,
using two hands, if necessary; pointing to two things at once need be no more perplexing
than touching two things at once. Of course it would be a mistake to think that the rules for
“multiple pointing” follow automatically from the rules for pointing proper; but the requisite
conventions are almost too obvious to need specification. The rules for “plural reference”
are no harder to elaborate. (Black 1971)

Let us try to propose a suitable ideal picture of a simultaneous choice. Imagine
that, instead of a unique agent, infinitely many agents are available. More precisely,
imagine a leader agent at the head of a team of subagents, one for every individual
of the universe of discourse. When the leader orders “choose!”, each subagent shows
ad libitum one of the signs 0, 1, say by lifting a shovel with the signs printed each
in one of its faces. Relative to a simultaneous choice, an individual is designated
if the corresponding agent shows 1. So, a simultaneous choice plays the role of the
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characteristic function of the set of the designated individuals. In contrast, a singular
choice simply consists in a choice of a single individual by the leader. Again such
individual is said to be designated by the singular choice.

Now, if one accepts the ontology of sets of individuals, then he can regard a
simultaneous choice as a device for arbitrarily referring to sets. But what is important
is that, once this device has been introduced, sets, understood as genuine entities,
becomequite inessential for interpreting second-ordermonadic logic. In fact, second-
order truth can be directly defined in terms of choices as follows.

Let φ be a second-order monadic formula whose free first-order variables are
among x1, . . . , xm and free second-order variables among X1, . . . ,Xn. Consider for
each variable xi a singular choice x∗

i (i = 1, . . . ,m) and for each variable Xj a simul-
taneous choice X∗

j (j = 1, . . . , n). We will inductively define the truth value of φ

relative to the choices x∗
1, . . . , x

∗
m; X

∗
1 , . . . ,X

∗
n . We will state only the clauses for

atomic formulas and for second-order quantifiers, the others being as usual:

(1) if φ ≡ Xjxi, it is true if the individual designated by choice x∗
i is designated by

choice X∗
j ;

(2) if φ ≡ ∀Yψ , it is true if, however a plural choice Y∗ is performed, ψ is true
relative to choices x∗

1, . . . , x
∗
m, X

∗
1 , . . . ,X

∗
n ,Y

∗;
(3) if φ ≡ ∃Yψ , it is true if it is possible to perform a plural choice Y∗ in such a

way that ψ turns out to be true relative to choices x∗
1, . . . , x

∗
m, X

∗
1 , . . . ,X

∗
n ,Y

∗.

Observe that, while Boolos’ truth definition explains plural quantification in the
object language by assuming plural quantification in the metalanguage, the present
approach explains singular and plural quantification in the object language assuming
the notion of quantification over choices in the metalanguage. Such explanation
avoids any circularity and its importance rests on the fact that choices are not objects
but acts. Any talk which reifies acts treating them as objects is to be paraphrasable,
in principle, so to avoid any reification. In particular, quantification over acts is to be
understood in a purely potential sense. Clause (2) does not quantify over amysterious
realm of all acts of choice; what it requires for the truth of φ is that, if the leader
orders a simultaneous choice relative to variable Y , then, independently of what each
subagent chooses,ψ turns out to be true. Besides, such independence is to be thought
of as an objective fact, which obtains or not quite independently of the knowledge,
even on the part of the leader, of which is the case. Similarly for the possibility
involved at clause (3): the possibility that the subagents make their choices so as
to verify ψ is an objective fact which obtains or not quite independently of their
knowledge. This guarantees the validity of classical logic. Accordingly, one could
take only one of the two quantifiers as primitive and define the other in terms of that.
The truth of ∀Yψ can be understood as the impossibility of a simultaneous choice
falsifyingψ ; the truth of ∃Yψ as denying thatψ turns out to be false, independently of
what the subagents choose. We prefer, however, to take both quantifiers as primitive,
since none of them seems more elementary than the other; we believe that each of
them can help to clarify the other.

So far our semantics has been concerned with monadic second-order logic.
Boolos’ treatment extends plural quantification to full second-order logic by tak-
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ing the notion of ordered pair as primitive. Lewis has proposed a codification of a
pairing function by combining plural reference with mereology. Within our frame-
work, even ordered pairs can be introduced by means of simultaneous choices, as
follows.

Call a binary choice an act consisting in the choice by every subagent of two
(not necessarily distinct) individuals in a certain order. A binary choice is a pairing
choice if, for all individuals x, y, a unique subagent chooses them orderwise. We will
assume the possibility of a pairing choice (the notion of possibility being explained
as above) and we will speak of (ordered) pairs understanding the reference to such
a choice. In this way, our semantics extends to full (poliadic) second-order logic. As
we have already observed, our notion of choice can be viewed as an extension to the
plural case of that used by Hintikka in his game-theoretical semantics.

In fact, you could further stress the analogy with Hintikka’s semantics by refor-
mulating our semantics game theoretically. For, with every sentence of second-order
logic you can associate a game played by two teams, the team of verifiers and that
of falsifiers. Each team consists of a leader and of one player for every individual. A
move of a team consists of a singular choice by the leader or of a simultaneous choice
by his players. The game rules are then defined as in Hintikka’s theory, the moves rel-
ative to second-order quantifiers being simultaneous choices. The truth of a sentence
is defined as the existence of a winning strategy for the team of the verifiers. The
problem of the ontological commitment to sets shifts to that of the ontological com-
mitment to strategies. Of course, if these are understood as set-theoretical functions,
no step forward has been taken. But a winning strategy can be understood, without
any reification, in terms of the notions of possibility and independence explained
above. To say that there is a winning strategy for a team means that this team can
win any play, quite independently of the moves of the opposing team. To prefer the
formulation à la Tarski or that à la Hintikka is a matter of taste. Both exploit the
same primitives: choice acts, possibility and independence.
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Chapter 13
The Priority of Arithmetical Truth over
Arithmetical Provability

Abstract It is claimed that the idea of grounding truth on provability perverts the
very nature of the intuitive notion of proof and that the possibility of grasping proof-
conditions without presupposing some realist notion of truth is illusory.

13.1 Introduction

As is well known, Intuitionism identifiesmathematical truth with provability. A basic
philosophical tenet of Intuitionism is that mathematical entities exist only as mental
constructions and that, in the absence of a reality determining mathematical truth, a
mathematical proposition can be true only in virtue of a proof, whence the rejection
of Tarski’s semantics and classical logic. Therefore, Intuitionism regards the notion
of intuitive proof as the fundamental semantic notion on which the meaning of a
proposition is founded: to know the meaning of a proposition is exactly to know its
proof-conditions, that is to grasp what counts as a proof of it. This position faces a
major difficulty: for aworkingmathematician a proof is an argumentwhich shows the
truth of a proposition; so if propositions cannot be true independently of being proved,
one wonders what a proof has to prove. I think that this obvious general objection
to any proof-theoretical semantics has never received a satisfactory answer from
the constructivist. For a formal language, the best answer is supplied, prima facie,
by Heyting’s inductive explanation of the proof-conditions of a compound sentence
in function of the proof-conditions of its components. I will argue, however, that
Heyting’s strategy does not succeed in avoiding a realist notion of truth. I think that,
in general, the idea of grounding truth on provability perverts the very nature of the
intuitive notion of proof and that the possibility of grasping proof-conditions without
presupposing some realist notion of truth is illusory. When discussing some of the
difficulties of constructivism, this objection was expressed, though only in passing,
by Gödel (1995, pp. 312–313):

Onemay […] object that themeaning of a proposition about all integers, since it is impossible
to verify it for all integers one by one, can consists only in the existence of a general proof.
Therefore, in the case of an undecidable proposition about all integers, neither itself nor its
negation is true. Hence neither expresses an objectively existing but unknown property of
the integers. I am not in a position now to discuss the epistemological question as to whether
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this opinion is at all consistent. It certainly looks as if one must first understand the meaning
of a proposition before he can understand a proof of it, so that the meaning of “all” could not
be defined in terms of the meaning of “proof”. But independently of this epistemological
investigation, I wish to point out that one may conjecture the truth of a universal proposition
(for example that I shall be able to verify a certain property for any integer given to me) and
at the same time conjecture that no general proof for this fact exists. It is easy to imagine
situations in which both these conjectures would be very well founded.

A similar observation has been expressed by Hintikka (for instance in Hintikka
(1997)). He criticises the intuitionistic standpoint as resting on a confusion between
determining and recognising the truth of a proposition. Hintikka discusses the matter
within the framework of his game-theoretical semantics. He defends the priority of
truth over provability by emphasising that “to seek truth, one has to know what truth
is” and stresses the fact that his semantical games are truth-constituting and are to be
well distinguished from truth-seeking games, the latter being parasitic on the former.
Furthermore, he stresses that semantical games have a constructive character, so that
the notion of truth determined by means of them should be accepted by the intuition-
ists. If this were the case, since, for a standard first-order language, game-theoretical
truth turns out to be equivalent to Tarski’s classical truth, the intuitionistic accept-
ability of classical logic would follow. The rules governing the moves of semantical
games are certainly intuitionistically unobjectionable. However, Hintikka’s defini-
tion of truth also involves the highly problematic notion of a winning strategy, the
truth of a proposition being defined, with reference to the corresponding game, as the
existence of awinning strategy for the verifier. Hintikka treats this notion realistically,
a winning strategy being thought of as something whose existence or non-existence
is well determined by the rules of the game. On the other hand, such a winning
strategy exists for an intuitionist only insofar as it is known (or at least knowable1),
and fails to exist only insofar as the impossibility is known (or at least knowable) to
find one. So an intuitionist can immediately reject Hintikka’s argument (see Tennant
1998). I think, however, that Hintikka’s argument is essentially correct and can be
defended by holding that a suitable amount of realism should be accepted even by
the most radical constructivist.

Here, I will try to defend the priority of truth over provability, restricting myself
to the special case of first-order arithmetic.

The intuitionistic identification of truth with provability involves a modal notion,
which can be understood in two essentially different ways. Accordingly, in Martino
and Usberti (1994) a distinction was made between orthodox and non-orthodox
Intuitionism. To begin with, I shall recall this distinction, which will be useful for
the discussion at issue.

1For the modality involved in the word “knowable” see the distinction (discussed later) between
orthodox and potential Intuitionism.
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13.2 Orthodox Versus Non-orthodox Intuitionism

By orthodox Intuitionism, Imean the traditional Brouwerian Intuitionism.According
to this, the equation truth = provability is intended in the sense that a mathematical
proposition becomes true (or false) as soon as it (or its negation) has been proved.
Until a proposition (or its negation) is proved, it has no truth value. According to
this conception, the notion of possibility implicit in the word “provability” has a
distinctively epistemic character. A proposition is provable insofar as we know how
to prove it; there is no room for a realist notion of provability according to which a
proposition would be provable or not independently of our knowledge.

The dependence of truth on the temporal elementmay seem somewhat strange to a
workingmathematician, who is used to regardingmathematical truth as objective and
eternal. Some of today’s constructivists, aiming to make Intuitionism more fitting to
the common sense of theworkingmathematician, have tried to understand provability
in the realist sense of the objective, knowledge-independent existence of a proof.
According to this view, call it non-orthodox Intuitionism,2 a proposition may be
provable even if, as a matter of fact, nobody will ever prove it. An upholder of
this view is Dag Prawitz (1987, 1998). He agrees with the intuitionistic tenet that
identifies mathematical truth with provability, but contends that provability is to be
understood as atemporal existence of a proof:

…in pure mathematics there are phenomena that seem difficult to account for without such
an objective notion of truth which does not refer to properties belonging to the speaker. We
do not only assert sentences in mathematics, we also make conjectures and ask questions to
ourselves. If we wonder whether there are infinitely many twin primes, we do not wonder
whether this has been proved, but a verificationist must be allowed to wonder not only that,
but also whether it can be proved. Similarly, he may conjecture that there are infinitely
many twin primes, and normally he is then not making the conjecture that it will be proved
that there are infinitely many twin primes, which is a conjecture about future history. From a
verificationist point of view the natural way to take the conjecture is to understand it as saying
that it is provable that there are infinitely many twin primes. This may also be expressed by
saying that there exists a proof of the proposition that there are infinitely many twin primes,
where ‘exists’ is to be taken in a tenseless sense, not as implying that a proof has already
been constructed by us.

I am thus arguing that even within a theory of meaning in terms of proofs (or verifications)
we must make room for the possibility of entertaining ideas of provability or of abstract
existence of proofs; it would be too narrow to construe our speech to be only about what
is proved or about actual existence of proofs. Once we accept the notion of provability as
legitimate, it is hardly controversial within verificationism that the truth of a proposition is
to be identified with provability or existence of proofs (Prawitz 1998, pp. 47–48).

As observed by Dummett, Prawitz’s view leads to a shift into a realist position,
which justifies bivalence. For, if the truth of a proposition A consists in the existence
of a proof of A and such a proof does or does not exist quite independently of
our knowledge, it is natural to identify the falsity of A with the non-existence of a

2InMartino and Usberti (1994) this viewwas called “potential Intuitionism”. Here, in order to avoid
a possible confusion with the conception of potential infinite, which is espoused by both sorts of
intuitionists, I prefer the locution “non-orthodox Intuitionism”.
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proof of it, so that A turns out to be determinately true or false independently of
our knowledge. Prawitz seems to be aware of this objection and, in the sequel of the
above-mentioned passage, replies:

Although the idea of proofs existing independently of our hitting upon themcertainly contains
a flavour of realism, I do not think that it amounts to a full step to realism. I want to give two
reasons for thinking so. Firstly, proofs as here understood are something that in principle can
be known by us, and hence there is no talk about in principle unknowable proofs. Secondly,
I do not see why the disjunction ‘either there exists a proof of A or there does not exist a
proof of A’ must be taken in a classical way. Although we think of the proofs as having
some kind of existence even before we find them, an intuitionist may still maintain that to
assert the disjunction that either there is or there is not a proof of A requires that we find a
verification either of the existence or of the non-existence of a proof of A. For an arbitrary
A we do not know how to find such a verification, and we should then have no difficulty in
resisting the thought that the disjunction in question is true (Prawitz 1998, p. 48).

Concerning the first reason, we observe that even classical proofs are knowable
in principle, so that this feature of proofs does not characterise constructivism at all.

As to the second, the reason why the disjunction that there is or there is not a proof
of A is to be understood classically lies precisely in the realist existence of proofs. If
the non-orthodox intuitionist insisted that we are allowed to assert the disjunction in
question only when we know how to verify the existence or how to verify the non-
existence of a proof of A, he would prevent the possibility of asserting in his language
his own thesis that a proof of A exists or not independently of any verification. He
would clearly be incoherent if he denied the intelligibility of the classical reading of
“there is or there is not a proof of A”.

The matter is quite different for the orthodox intuitionist. Having rejected any
knowledge-independent existence of proofs, he is forced to understand the existence
of a proof of A as the knowledge of such a proof. Accordingly, the non-existence
should be understood, at first sight, as a mental state in which no proof of A is
known. But since such a state may be transitory, it fails to be a suitable candidate to
establish the falsity of A, i.e. the truth of¬A. That has led the orthodox intuitionist to
interpreting the non-existence of a proof of A as the knowledge of the impossibility
of proving A and to regarding such a knowledge as a proof of ¬A. It is important
to realise that such impossibility cannot be understood, according to the orthodox
intuitionist, as an objective (possibly unknown) state of affairs, in virtue of which
a proof of A will never be found. Antirealism concerns not only the existence of
mathematical objects but also modality. The impossibility of proving A is to be
understood as the knowledge of how to reject any alleged proof of A. This justifies
the rejection of bivalence, since, according to this conception, given any proposition
A, we are not in a position in general, not even in principle, to prove A or to prove
¬A.

On the other hand, this motivation for a revision of classical logic is not available
to the non-orthodox intuitionist. Having identified the truth of A with the objective
(knowledge-independent) existence of a proof of A, he can well identify the falsity of
A (i.e. the truth of ¬A) with the objective non-existence of a proof of A. No reason
of non-intelligibility can force him to reject this interpretation, which is the most
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natural, the one in accordance with the usual understanding of negation in natural
language.

In particular, given any decidable arithmetical predicate P(x), the non-orthodox
intuitionist can reconstruct the classical meaning of (x)P(x) by interpreting the
truth of this as the objective existence, for every number n, of a proof of P(n),
the falsity (i.e. the truth of its negation) as the objective existence, for some n, of
a proof of ¬P(n). Since, for decidable sentences, classical truth and intuitionistic
provability are equivalent, the interpretation in question of (x)P(x) is equivalent to
the classical one. More generally, the non-orthodox intuitionist can understand the
classical Tarskian inductive definition of truth for the whole first-order arithmetic in
terms of the objective existence of proofs of atomic sentences.

Prawitz could certainly reply that, though the realist interpretation is intelligible
to the non-orthodox intuitionist, he is by no means compelled to adopt it. Indeed, the
non-orthodox intuitionist, as a constructivist, might argue that the realist interpreta-
tion, even if intelligible, is unsatisfactory. A constructive interpretationmust grant the
knowability, in principle, of every mathematical truth; and this fundamental require-
ment is not fulfilled by the realist interpretation. That motivates the adoption of
intuitionistic logic.

I think, however, that the requirement of knowability is inadequate to motivate
a revision of classical logic. For, once the intelligibility of classical logic has been
recognised, that requirement can be appropriately fulfilled by introducing an epis-
temic operator K , to be read as “it is knowable that…”, where the modality is under-
stood in the realist sense. We thus obtain epistemic arithmetic, in which, as is well
known, intuitionistic arithmetic is interpretable (see Shapiro 1985). This interpre-
tation meets the requirement of knowability, leaving the classical meaning of logi-
cal constants unaltered. For instance, the intuitionistic rejection of the principle of
excluded middle is interpreted as the fact that sentences of the form K A ∨ K¬A
(where disjunction and negation retain their classical meaning) are not logically
valid.

I conclude that the epistemic flavour of the non-orthodox intuitionist is not able to
supply philosophical reasons supporting the intuitionistic revision of classical logic.
For a more detailed discussion, we refer the reader to Martino and Usberti (1994).

Here, I want to argue that a more subtle form of realism lies behind the conception
of mathematics of the Brouwerian Intuitionism, so that even the orthodox intuitionist
has no right, at least as far as first-order arithmetic is concerned, to reject classical
logic. Indeed, I think that this conclusion holds far beyond first-order arithmetic.
But the intuitionistic reconstruction of higher mathematics, as the continuum and
set theory, uses undetermined universes and even undetermined objects as choice
sequences. So my claim for higher mathematics would need a discussion, which I
do not wish to pursue here, of how such highly problematic entities affect the notion
of truth.
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13.3 The Constructive Notion of a Process

According to the constructive conception, the set N of natural numbers is generated
step by step by iterating the successor operation. I think that the most perspicuous
model of N , the best representative of the conception of potential infinite, is Hilbert’s
model of finite strings of strokes. I shall refer to that as the intended model of con-
structive arithmetic. In his famous paper “On the infinite” Hilbert (1926) observes
that although the infinite does not exist in reality “it may still be the case that the
infinite occupies a justified place in our thinking that it plays the role of an indispens-
able concept”. Then, he describes the pre-mathematical concept of a finite string of
signs as the most elementary notion of potential infinity, which the mathematician
can rightfully exploit in a finitary reasoning:

As a further precondition for using logical deduction and carrying out logical operations,
something must be given in conception, viz., certain extralogical concrete objects which are
intuited as directly experienced prior to all thinking. For logical deduction to be certain, we
must be able to see every aspect of these objects, and their properties, differences, sequences,
and contiguities must be given, together with the objects themselves, as something which
cannot be reduced to something else and which requires no reduction. This is the basic
philosophy which I find necessary, not just for mathematics, but for all scientific thinking,
understanding and communicating. The subject matter of mathematics is, in accordance
with this theory, the concrete symbols themselves whose structure is immediately clear and
recognisable.

Hilbert’s numerals can be inductively defined by clauses

N1 “|” is a numeral.
N2 If n is a numeral, then n∗ “|” is a numeral (where ∗ is the concatenation symbol).

As is well known, inductive definitions are pseudo-definitions. In fact the above
definition is circular, since the second clause presupposes the notion of numeral.
But, according to Finitism, the above clauses are to be understood as a synthetic
description of the intuitive process by which numerals are constructed step by step,
starting with a single stroke and reiterating indefinitely the action of producing a new
string by adjoining a new stroke to the last string already obtained. Grasping such a
process is the very foundation of the conception of potential infinite.

Consider the language of first-order arithmetic. The quantifier-free sentences are
finitary inHilbert’s sense: they are decidable and are regarded as unproblematic, since
they can be interpreted as stating the result of a finite calculation. Hilbert recognises,
however, a finitary meaning also to quantifier-free formulas with free variables:
these are interpreted as hypothetical judgements asserting that every finitary sentence
obtained by replacing the free variables by numerals is true. In this sense the universal
closure of a quantifier-free formula has a finitary meaning, I shall call a sentence
of this form a universal finitary sentence (for short, u.f.-sentence).3 I shall refer
to the fragment of first-order arithmetical language consisting of the quantifier-free
formulas and their universal quantifications as the finitary fragment of number theory.

3Such sentences are usually called Π1-sentences.
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Constructivism denies an intrinsic truth value to u.f.-sentences; the intuitionistic
meaning of such a sentence is determined by grasping the problem of searching for
a proof that each of its instances is true. Similarly for the finitistic meaning, with
the restriction to finitary proofs. What is the boundary of finitistic methods of proof
is a highly controversial matter, but there is general agreement that finitary proofs
include at least the ones formalisable in the system of primitive recursive arithmetic.
As to the other quantified formulas of first-order arithmetic, they are, according to
Hilbert, ideal elements, lacking any finitary meaning. The use of these in a formal
system is to be justified by showing finitistically its consistency with the finitary
fragment of the theory. Intuitionistically, they are to be reinterpreted in terms of
proof-conditions, according to Heyting’s explanation. Their classical meaning, in
terms of truth conditions, is to be rejected, so the intuitionists claim, since it would
rest on a realist conception of numbers, thought of as an actual infinity of entities,
living in a platonic realm, existing quite independently of the human knowledge.

Classical mathematics has mostly been defended by stressing its utility, simplicity
and beauty, as well as by questioning the cogency of the intuitionistic arguments
against classical logic. Intuitionism, on the other hand, has often been appreciated
as a legitimate and interesting philosophical position, though perhaps inadequate
for a satisfactory reconstruction of mathematics. Sometimes, a moderate acceptance
of classical logic has been proposed as a plausible extension of the intuitionistic
conception, as a liberalisation of the too severe constraints imposed by traditional
Intuitionism. In his “Constructivism liberalised”, Velleman (1993), after discussing
Dummett’s thesis that, when dealing with quantification over an infinite domain, the
appropriate logic is the intuitionistic one (see, for instance, Dummett 1994), proposes
a more “liberal constructivism”, which allows classical logic for first-order number
theory:

Constructive mathematics is sometimes described as being about the mental constructions
that could be carried out by an “idealmathematician”who can performanyfinite computation
but can never complete a computation involving an infinite number of steps. If we regard the
impossibility of completing an infinite sequence of computational steps as merely “medical”
then we are led to a more liberal conception of the “ideal mathematician”, according to
which infinite sequences of computations can be completed. Liberal constructivism could be
thought of as being about the mental computations of this more capable ideal mathematician.
Such an ideal mathematician could determine the truth value of any statement of first order
number theory by simply checking all of the (infinitely many) cases involved. But note that
even this ideal mathematician cannot check every case of a general statement about the
real numbers, not because of a lack of time or computational speed, but simply because the
question of what real numbers there are has not been adequately settled, so it is not clear
precisely what computation must be done to check that some property holds for “all real
numbers”. Thus we are led to accept classical logic, and in particular the law of excluded
middle, for quantificational over the natural numbers, but to reject it for quantification over
the real numbers. Liberal constructivism adds only a small amount of realism to ordinary
constructivism. Even many who today call themselves formalists seem to accept this amount
of realism (Velleman 1993, p. 79).

I want to hold the stronger claim that, in order to accept classical logic for first-
order number theory, there is no need to add any amount of realism to ordinary
constructivism. In fact the amount of realism needed for the purpose lies already
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hidden behind the intuitionistic idealisation of number theory. More precisely, I
claim that

(i) Heyting’s semantics, even restricted to the finitary fragment of number theory,
involves a commitment to a certain form of realism, in virtue of which the whole
classical first-order arithmetic is fully justified;

(ii) the intuitionistic proof-conditions of a sentence are much more problematic than
its truth conditions and are intelligible only through the latter.

13.4 Computational Realism

Let (x)P(x) be an u.f.-sentence. According to the constructivist idealisation, natural
numbers are constructed step by step by an ideal agent in the course of an infinite
process. For every number n, the agent is able to test P(n) bymeans of the appropriate
algorithm; and we can imagine that he carries out effectively the infinite process of
testing one P(n) at a time. Then, it is perfectly determined whether in the course of
the process he will always find, for every P(n), the value “true” or, for some, the
value “false”; so the truth value of the sentence (x)P(x) is perfectly determined.

This argument is trivial, but I find it very cogent. Neither the actual infinity of
numbers nor the capacity of the agent to complete infinitely many computations is
involved by this argument. What I claim to be well determined is a fact concerning
the spatio-temporal activity of the agent.

An intuitionist might certainly object that I’m reasoning about the process in
question as if it were a real process, while it is a purely ideal process, which does
not take place outside of our mind, so that there is no reality which could determine
the truth or falsity of a sentence concerning it. Such a sentence, the objection goes,
can have a truth value only insofar as we succeed in recognising its truth or falsity.

Indeed, what leads an intuitionist to reject classical logic is not the mere thesis
that mathematical entities are nothing but mental constructions, but rather his belief
that our reasoning about mental constructions has to take into account that no reality
can determine the truth or falsity of propositions about such constructions. My main
claim is precisely that such a belief is wrong and in disagreement with the very
intuitionistic perspective.

I must certainly agree that I refer to the ideal agent and his activity as if they
were real; but that is in order. The mere idea of an agent free of empirical spatio-
temporal limitations does not help me to decide, e.g., whether a very large number
is prime or not. That could be decided by the ideal agent if he really existed. So the
decidability of P(n) for all n, accepted by a constructivist, refers to a counterfactual
world where the agent exists and carries out his constructions. The fact that the ideal
agent is a creation of our mind by no means prevents us from reasoning about him
as if he were real. Moreover, we are compelled to do so, if we want to exploit our
idealisation which, otherwise, would be of no use. The intuition of the decidability
in principle of a recursive predicate P is based on our capacity of imagining the
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process of testing the infinitely many P(n)’s as a real one, taking place in space and
time. Therefore, if the device of the idealised mathematician is taken seriously, it
commits the intuitionist to a form of semantic realism, since, in order to exploit what
the idealised agent can do, he must refer to him as to an existing being. Thus, as far
as the activity of the ideal agent is concerned, to deny the intelligibility of a realist
semantics is inconsistent with the very same intuitionistic treatment of the theory of
the ideal agent.

At this point, the intuitionist, even if he conceded to be committed to realism
about the ideal mathematician, might object that Intuitionism is interested in what
such an ideal mathematician can know. Now, his argument goes, there is an essential
difference between testing P(n), for any given n, and testing (x)P(x). While the
former is tested bymeans of a finite computation, in order to test the latter, by applying
the computing procedure, the agent should be able to perform in a finite time all the
infinitely many computations for all P(n)’s; and such ability goes far beyond the
constructivist idealisation. Lacking that, the agent can decide the sentence only by
searching for an abstract proof of it or for some false P(n), but, in general, there is
no guarantee that such research will be successful, whence the rejection, from the
constructivist standpoint, of the general validity of the principle of excluded middle.

I reply that, in order to search for a proof of (x)P(x), the ideal mathematician
must know themeaning of (x)P(x). And my point is that neither the ideal possibility
of performing infinitely many computations in a finite time nor the abstract notion of
a mathematical proof is involved in the meaning of (x)P(x), such a meaning arising
straightforwardly from the computational meaning of the instances P(n)’s. What
(x)P(x) says is that, in the course of the endless process of testing, one at a time, the
infinitely many P(n)’s, the agent will always find the value “true”. The realism of
this interpretation, as a mere description of the outcomes produced along the process,
is in agreement with the realist nature of the intuitionistic conception of an infinite
process. Once the value “true” of each P(n) has been defined as one of the two
possible outcomes of the nth computation, performed by the ideal agent at stage n, it
is straightforwardly determined whether, as a matter of fact, each computation yields
the outcome “true” or some yields the outcome “false”. The problem of knowing
what is the case is not involved in the understanding of the meaning of (x)P(x), but
presupposes such a meaning. The intuitionistic objection that the alleged fact that
every computation yields the outcome “true” can never obtain, because at no finite
stage can all the infinitely many computations be performed, is very poor. Such a
fact is to be understood as an infinite sequence of component facts: its obtaining is
nothing but the obtaining, at each stage n, of the nth fact that the nth computation
yields the outcome “true”.

At this point, the intuitionist may invoke aDummettian argument and hold that the
alleged truth conditions, determined by the realist interpretation, are transcending the
use of language. A mathematician, the argument goes, can manifest his understand-
ing of the meaning of a proposition only through his capacity of deciding whether
any proposed argument is a proof or not of that proposition. And what this capac-
ity shows is merely the knowledge of the proof-conditions of the proposition. By
no means can he manifest a knowledge of truth conditions. So, according to the
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Wittgensteinian thesis that meaning is determined by use, the realist truth conditions
would be extraneous to meaning.

My reply is that, first of all, there is no evidence that, in general, the knowledge of
the proof-conditions of a proposition is manifestable. Until a proposition A has been
decided, there seems to be no other way of manifesting the ability of recognising a
proof of it than that of rejecting any alleged proof. So, until A is decided, there is
no way of manifesting any ability to distinguish its meaning from that of any other
undecided proposition. And since a proposition may remain forever undecided, there
is no guarantee that such ability can ever be manifested.

Secondly, what is more important, I think that, manifestability aside, the ability
of grasping the proof-conditions of a proposition without involving the notion of
truth is illusory. When dealing with formalised proofs, such ability is granted by the
mere knowledge of the axioms and the inference rules of the formal system. But
intuitionistic semantics is grounded on an informal notion of proof. And it is hard to
imagine what could provide the ability of recognising an informal proof of a propo-
sition, if not the knowledge of its truth conditions. At first sight, the difficulty may
seem to be superseded by Heyting’s inductive explanation of the proof-conditions of
a sentence in function of the proof-conditions of its components. Heyting’s expla-
nation certainly supplies a precious criterion for testing whether something is an
intuitionistically acceptable proof. I shall argue, however, that, though Heyting care-
fully avoids any appeal to truth, one can hardly maintain that the intelligibility of
Heyting’s clauses does not involve an implicit grasp of realist truth conditions.

Let P(x) be a decidable predicate again. According to Heyting’s explanation, a
proof of (x)P(x) is a method of producing, for every number n, a proof of P(n).
At first glance, the clause seems to explain what a proof of the universal sentence is,
provided it is known what is a proof of any of its instances, without any appeal to
truth. Several of today’s intuitionists have tried to improve Heyting’s semantics by
introducing a distinction between canonical and non-canonical proofs. They have
observed that Heyting’s original explanation of the proof-conditions of a compound
sentence, in terms of the proof-conditions of its components, is circular. Since, e.g.,
P(n) may be derived from (x)P(x), a proof of the former may involve a proof of
the latter. They have tried to remove the circularity by calling such a proof “non-
canonical” and holding that to know the intuitionistic meaning of a proposition
amounts to knowingwhat a “canonical” proof of it is. A canonical proof of a sentence
should be a direct proof, which does not involve any concept of proof of a more
complex sentence. A general proof of a sentence A is then defined as any method
of finding a canonical proof of A. So Heyting’s revised clauses should explain what
a canonical proof of a sentence is in terms of the notions of the canonical proofs
of its components. Now, a canonical proof of P(n) consists in applying to P(n) the
decision procedure and obtaining the value “true”. A canonical proof of (x)P(x) is
understood as any method of finding, for any given n, a canonical proof of P(n).
So, what such a method has to yield is nothing but the knowledge that the deciding
procedure, applied to any P(n), always gives the value “true”. And since (x)P(x) is
classically true precisely if the decision procedure always gives the value “true”, a
canonical proof of (x)P(x) cannot be anything else than an argument to show that the



13.4 Computational Realism 143

classical truth conditions obtain. So, one cannot understand what such an argument
has to show, if he does not understand the truth conditions of the universal proposition.
If the understanding of the locution “the deciding procedure gives always the outcome
‘true”’ amounted, in turn, to understanding what a proof of (x)P(x) is, Heyting’s
explanation would fail to explain anything. The deciding procedure for the predicate
must be determined and understood before putting the problem of searching for a
proof of the universal sentence. To give the output “true” for every input is a feature
of the algorithm that holds, when it does, quite independently of the existence of such
a proof. The task of the latter cannot be anything else than to bring to knowledge
an objective state of affairs. But that is the task of any classical proof of (x)P(x)
as well. This does not mean, of course, that any classical proof of the proposition in
question must be an intuitionistic proof. But the difference between an intuitionistic
and a classical proof of our universal sentence lies in the difference between the
intuitionistic and the classical notion of a method. And Heyting’s explanation fails to
give any account of the notion of a method: this is merely presupposed as a primitive
notion, in terms of which even the notion of canonical proof is explained. Thus, the
distinction between canonical and non-canonical proofs is of no help for avoiding
any circularity. I conclude that all that is said by Heyting’s clause about a proof
(canonical or not) of (x)P(x) is that, by means of it, we have to come to know that
the Tarskian truth conditions for the universal sentence are satisfied.

Moreover, the intuitionistic claim that the proposition “the computing procedure,
applied to whatever P(n), will give always the value ‘true”’ can be true only in virtue
of a proof of (x)P(x) is in disagreement with the intuitionistic knowledge that the
predicate P(x) is decidable, expressed by asserting (x)(P(x) ∨ ¬P(x)). By means
of an intuitionistic proof of this, one recognises that the procedure, applied to any n,
yields, in afinite time, the value “true” or the value “false”. The intuitionist is therefore
compelled to agree that the truth values of the various P(n)’s, whatever they are,
depend solely on the computational procedure, so that what they are, in particular
if they are all “true”, by no means can depend upon a proof of (x)P(x). Thus,
the understanding of the truth conditions of (x)P(x) is implicit in the intuitionistic
knowledge that the predicate P(x) is decidable. The understanding of the proof-
conditions of (x)P(x), on the other hand, is a much more complicated matter, just
because the agent cannot verify all the infinitely many instances, one at a time,
by applying the computing procedure. A proof of the universal sentence consists
of an abstract reflection on the decisional procedure, which may involve a great
unsurveyable variety of considerations. In order to understand the proof-conditions,
one needs to grasp some essential feature shared by all possible proofs of (x)P(x).
But such proofs do not share anything except the common purpose of showing that
the testing procedure will verify all instances, i.e. that the truth conditions obtain.

The same considerations hold for the finitary doctrine relative to Hilbert’s real
part of mathematics, in particular to u.f.-sentences. In fact, according to Hilbert, such
sentences, unlike the ideal ones, are to be interpreted contentually and, if true, are to
be proved by means of a finitary reasoning. The main feature of such a reasoning is
that it is grounded on the basic intuition of the generative process of finitary numbers,
so that its conclusions should be certain beyond any doubt. Now, it is clear that the
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very notion of reliable reasoning presupposes the pre-existing truth values of the
conclusions: a reasoning is reliable insofar as the truth of its conclusion is granted.
The u.f.-sentences of special interest for Hilbert’s programme are the (arithmetical
translations of the) metamathematical propositions expressing the consistency of a
formal theory. Hilbert’s proposal to search for finitary proofs of such propositions
is motivated by the aim of guaranteeing the consistency, understood as an objective
syntactical feature of a formal system.The programme rests on the view that, however
uncertain and problematic the contentual intended interpretation of a mathematical
theory may be, as is the case, in particular, whenever the actual infinite is involved,
nevertheless, once a theory has been formalised, the metamathematical assertion
of its syntactical consistency has a precise objective meaning, in virtue of which its
truth or falsity is well determined. The constructive aspect of a consistency statement
has nothing to do with the perverse idea according to which to be consistent would
amount to the existence of a consistency proof. Themajority of mathematicians, even
if they believe, after the failure of Hilbert’s programme, that the consistency of set
theory is unprovable, nevertheless reasonably hope that set theory is consistent. The
finitary flavour of a consistency statement is to be seen in its content which describes
an elementary feature of the concrete sign-figures representative of formalisable
proofs, i.e. the fact that the sentence “0 = 1” never occurs as an end-formula in
any of such figures. These figures are constructed by the ideal agent, step by step,
following a mechanical procedure, whether in the course of this process “0 = 1”
occurs or not as the end-formula of some proof-figure is an objective fact, quite
independent of any consistency proof.

Once the above realist interpretation has been accepted for the u.f.-sentences,
one can easily extend it, by means of a straightforward inductive procedure, to all
sentences of first-order arithmetic, in such a way that every arithmetical sentence
describes an objective feature of some computational process. Take, e.g., a sentence
of the form (x)∃yP(x, y), where P(x, y) is a decidable predicate, and consider
the mechanical process of listing all ordered pairs which satisfy the predicate. The
formula describes an objective fact about this list, precisely the fact that every number
occurs in the list as the first component of some ordered pair.

Thus, the finitistic conception of the real part of arithmetic and, a fortiori, the
intuitionistic conception of numbers, entail the adoption of a sort of realism, call it
computational realism, which provides an interpretation of first-order arithmetic in
terms of the computational activity of the ideal agent.According to this interpretation,
the arithmetical truths are exactly the classical ones. This conclusion does not entail,
it should be noted, that any classical proof of an arithmetical sentence be justifiable
according to computational realism, the possibility of such a justification depending
upon the notions involved. A classical proof of a first-order sentence might use
some higher-order notions not available in the perspective at issue, and it might
involve, e.g., an essential use of the notion of actual infinity. But, as far as classical
derivability from first-order Peano’s axioms is concerned, computational realism
can validate any classical proof, formalisable in first-order arithmetic. For, within
the framework of computational realism, one can straightforwardly recognise that
Peano’s axioms are true and that the classical inference rules are truth-preserving; so,
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within that framework, one can prove the soundness metatheorem for classical first-
order arithmetic. On the other hand, the informal notion of arithmetical proof, correct
according to computational realism, transcends Peano’s first-order axiomatisation,
nor can it be formalised in any extension of that. For, as soon as a computational
realist recognises the truth of a decidable set of arithmetical axioms, he is able to
recognise the truth of Gödel’s undecidable sentence as well. This conclusion is in
agreement with the fact that the computational framework allows any reasoning
based on the intuition of a computational process. In fact, any axiomatisation of
arithmetic allows an interpretation in some non-standard model, where the finite
computability of arithmetical operations is lost. It follows that no axiomatisation
can fully catch the intuition of a finite computation. This is the fundamental reason
why constructive reasoning, as understood in the present paper, is incapable of any
axiomatic characterisation.

Summing up, the so-called notion of constructive mathematical truth, grounded
on some alleged truth-independent notion of proof, as received from traditional con-
structivism, is the outcome of the perverse attempt to reverse the natural priority of
truth over provability. This attempt, contrary to its aim of focusing the central role
of proof in mathematics, destroys the very nature of mathematical proof, understood
as a compelling argument to bring to knowledge a certain objective state of affairs.
It is not motivated by the rejection of the actual infinite in favour of the potential
infinite. Such a rejection by no means leads from realism to antirealism, but rather
from realism about mathematical objects, thought of as simultaneously existing in a
static realm, to realism about infinite computational processes, thought of as carried
on by an ideal agent in an ideal spatio-temporal world. The fact that such a world
is merely imaginary does not prevent the working mathematician from reasoning
about it as if it were real. On the contrary, the use of classical logic is compelled
by this very idealisation, according to which computational processes are conceived
of as well determined by their generating rules. To think otherwise is confusing the
act of imagining with the content of the act: an imaginary computational process
is imagined as well determined, while it is not imagined as imaginary. That is the
reason why the fact that a process is imaginary cannot affect our reasoning about it.
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Chapter 14
The Impredicativity of the Intuitionistic
Meaning of Logical Constants

with G. Usberti

Abstract Dummett’s thesis that Heyting’s explanation of the meaning of logical
constants is circular is discussed in this chapter. We defend Dummett’s position.

In his book Elements of Intuitionism, Dummett discusses at length the intuitionistic
notion of proof and argues that Heyting’s explanation of the meaning of the logical
constants is circular:

The principal reason for suspecting these explanations of incoherence is their apparently
highly impredicative character [...] [T]he explanations require us, in determining whether
or not a construction is a proof of a conditional or of a negation, to consider its effect when
applied to an arbitrary proof of the antecedent or of the negated statement, so that we must,
in some sense, be able to survey or grasp some totality of constructions which will include
all possible proofs of a given statement. The question is whether such a set of explanations
can be acquitted with the charge of vicious circularity (Dummett 1977, p. 390).

Dummett’s answer is that Heyting’s explanation, so as it stands, is certainly cir-
cular, because of the impossibility to grasp the general concept of proof of a given
proposition. When Heyting says that a proof of A ⊃ B, for instance, is a method of
transforming every proof of A into a proof of B, he cannot be referring—Dummett
argues—to ordinary informal proofs. The reason is the following: an ordinary infor-
mal proof can use elimination rules, in particularmodus ponens, so whatever we were
previously ready to accept as being an informal proof of A ⊃ B, it would supply us
with a method of transforming any proof of A into a proof of B: it would be suffi-
cient to take an arbitrary proof of A, to annex to it the given proof of A ⊃ B and to
append a single application ofmodus ponens. In other words—Dummett concludes—
Heyting’s explanation of the meaning of ⊃ does not restrict at all the class of entities
we were previously disposed to consider as ordinary informal proofs; consequently,
it has no explicative power, unless it is referred to a class of proofs smaller than the
class of ordinary informal proofs. Then, he urges a suitable distinction between gen-
eral proofs, also called demonstrations, and restricted proofs, also called canonical
proofs. These should satisfy the requirement that a canonical proof of a proposition
A does not involve any proof of a proposition of which A is a component, while a
demonstration of A should be an effective method of finding a canonical proof of
A. The meaning of the logical constants should be given only in terms of canonical
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proofs. In particular, the meaning of implication would be explained by saying that
a canonical proof of A ⊃ B is a method of transforming any canonical proof of A
into a canonical proof of B, with a predicative quantification on all canonical proofs
of A.

At first sight, Dummett’s project seems to be realised by Prawitz’s definition of
valid argument and Martin-Löf’s type theory (which we will call ITT), where the
distinction between canonical and non-canonical proofs is treated in a systematic
way and the meaning of a proposition is given just by explaining what its canonical
proofs are.

However, Dummett himself, just after stressing the importance of the notion of
canonical proof as a means for avoiding the impredicativity in question, calls our
attention to a hidden difficulty, which seems to make the notion of canonical proof
useless. The explanations of implication, negation and universal quantification, even
reformulated in terms of canonical proofs, involve the primitive general notion of
method which, in turn, involves the general notion of proof. For instance, a method
for transforming any proof of A into a proof of B, intuitionistically understood, is
given only when it is recognised that it works as desired, i.e. when an intuitionistic
proof is given that, by applying it to an arbitrary proof of A, one gets a proof of
B. No restriction on such a proof is imposed by the condition that the method be
applied only to canonical proofs of A in order to get canonical proofs of B. And
since the antecedent of an implication may in turn be an implication, it follows
that the restriction to canonical proofs of A (of the quantification occurring in the
explanation of what a canonical proof of A ⊃ B is) cannot serve the purpose of
avoiding impredicativity.

We want to discuss the questions: (i) Is Dummett’s criticism of Heyting’s explana-
tion cogent? (ii) Are the difficulties of Heyting’s explanation superseded by Prawitz’s
or Martin-Löf’s notions of canonical proof?

Certainly, Heyting’s explanations are not able to explain to a non-intuitionist what
an intuitionist proof is. Their intended meaning can be understood only if they are
read intuitionistically, in particular only if the intuitionistic notion of method, with
its implicit notion of evidence, is a priori understood. What they try to show is just
how the intuitionistic meaning of the logical constants is reducible to the basic con-
cept of effective method. The problem is whether, taking for granted an appropriate
understanding of this primitive concept, Heyting’s explanations are correct.

A crucial feature of the intuitive notion of proof is that it is an open notion: the
totality of methods of proof acceptable as correct is indefinitely extensible. This is
not a trouble in itself: it is a sign of the continual process of evolution of mathematics
and it is in accordance with the impossibility, shown by the incompleteness theorem,
of representing all correct reasonings about a given mathematical theory in a single
formal system. What is problematic is whether it is correct to quantify over all
methods of proof. According to Dummett, to give the meaning of a proposition by
means of such a quantification makes the very meaning of propositions unstable:

On the intuitionistic view, this evolution creates a special danger. If we look on the appeal to
the full intuitionistic meaning of ⊃, in proving a statement of the form A ⊃ B, as mediated
by the invocation of a principle of the form ‘A ⊃ there is a proof of A’, an advance in our
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apprehension of the available modes of proof may lead us to weaken such principles, because
restrictions on the means whereby A could be proved which formerly seemed reasonable
no longer appear so. When this happens, some proof, involving a conditional A ⊃ B, that
had formerly seemed acceptable, may be invalidated. Hence, because of the peculiarities of
the intuitionistic interpretation of ⊃, provability is not a stable property: we cannot think of
an addition to our stock of methods of proof as merely allowing us to prove more than we
could before, while all proofs we had already given remain intact, since such an addition
may lead to a rejection of certain earlier proofs. The intuitionistic interpretation of ⊃ does,
indeed, give to the notion of proof a self-reflexive or impredicative character and to some
degree weakens the conclusive and irreversible nature of mathematical results; mathematics
becomes a subject whose results are fallible and liable to revision, like those of other sciences
(Dummett 1977, pp. 401–402).

Dummett’s argument may not seem to be very cogent. An intuitionist might try to
defend the quantification over an undetermined domain of entities by arguing that the
constructive interpretation of the universal quantifier is innocent. The impossibility,
at any stage of knowledge, of surveying all possible proofs of a proposition A—he
might argue—does not prevent the possibility of grasping the general concept of
proof of A: knowledge of a concept by no means entails knowledge of all the objects
that fall under it, and the quantification over such objects by no means presupposes
that they are given all at once: it exploits only some very general features, which
must be shared by any object, present or future, in order to fall under the concept
in question. So, in order to possess a method of transforming any proof of A into a
proof of B, one has to recognise that, whenever he will find a proof of A, he will be
able to produce a proof of B; and this knowledge is to be reached from the analysis
of the mere concepts of proof of A and of proof of B. If, because of what Dummett
calls (with Wittgenstein) the “motley” of possible proofs of A, the general concept
of proof of A is not able to guarantee the applicability of the method in question
to any proof of A, one has no right to claim to have a proof of A ⊃ B. So, once a
proposition has been proved, there is no danger that it will be disproved when new
methods of proof are invented.

It is difficult to see why this argument is fallacious, but we think it is deceptive. The
impossibility of surveying all possible proofs of A—it is argued—does not prevent
the possibility of grasping the general concept of proof of A, i.e. of having a criterion
to establish whether something is a proof of A. But what is necessary to have in
order to have a criterion to establish whether something is a proof of A? Since a
proof of A is by definition something that confers evidence to A, in order to be able
to recognise it, we must know how something conferring evidence to A must be; and
how it must be depends partly on how A is, partly on what we mean as evidence,
that is on the standard of evidence we employ. Well, this standard of evidence may
change through time. It is true that it is the fact of having a certain standard that
permits us to establish whether something is or not a method of proof; but this
does not prevent the possibility that the discovery of new methods of proof affects
the standard itself. For example, before Gentzen’s consistency proof of arithmetic,
elementary number theory was reasonably held to formalise all the methods of proof
concerning natural numbers intuitively acceptable from a finitist point of view. After
the proof, induction up to ε0, which is not formalisable in elementary number theory,
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was added to the list of acceptable methods; that is to say, the standard of evidence
has been modified so as to include as finitistically evident propositions proved by the
new type of construction. Consequently, some constructions that before Gentzen’s
proof fell out of the domain of the possible proofs of a proposition, after the proof
belong to that domain, that is to say, for some numerical proposition it is not possible
to quantify over the totality of its possible proofs. Perhaps the following paradox
may shed some light on the phenomenon.

Among the effective methods, let us call first-level method a method of computing
a function fromN (the set of natural numbers) toN, and second-levelmethod a method
of mapping every first-level method into a natural number.

Let us associate with every second-level method F a first-level method F∗ as
follows:

1. F∗(n) =de f F([n]), where [n] is the constant first-level method whose value is n.

F∗ is to be identified with the following procedure: “In order to compute the
output of F∗ for the input n, apply F to [n] and take the result as F∗(n)”. So, given
any first-level method f , it is decidable whether it is of the form F∗, for some F
uniquely determined by f . We can then define the second-level method K by putting

2. K ( f ) =de f

{
F(F∗) + 1 if f ◦ F∗ for some F

0 otherwise

Here ◦ must be understood as sameness (intensional equality). K seems to be a
well-defined effective method: given any first-level method f , check whether it is of
the form F∗, for some F : in the affirmative case compute F( f ) + 1 and take it as
K ( f ), in the negative case take 0 as K ( f ). But we get the contradiction K (K ∗) =
K (K ∗) + 1.

The paradox seems to show that the notion of second-level method, defined over
all possible first-level methods, is contradictory. A natural way to escape the contra-
diction would be to restrict the domain of second-level methods to first-level methods
whose constructions do not involve second-level methods. However, once a second-
level method has been introduced, it generates new well-defined first-level methods
not belonging to its domain. So we would be led to split the first-level methods into
a ramified hierarchy.

We think that these considerations support Dummett’s criticism to the explanation
of implication: a proof of A ⊃ B should be a method applicable only to proofs of A
not involving proofs of more complex propositions. We conclude that Dummett is
right in claiming that Heyting’ s clauses are impredicative.

Let us turn to the questions: are Prawitz’ definition of canonical argument and
Martin-Löf’s reformulation of Heyting’s clauses still impredicative?

Here is how Prawitz sums up his notion of canonical proof:

To be in possession of a canonical proof of A ⊃ B […] we must be in possession of a proof
of B from the hypothesis A […], which in turn means that we must be in possession of
an argument for B from A[…] together with procedures associated with each line of the
argument for which we recognize that when the hypothesis A is replaced by a proof of A
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[…], the composition of all the procedures associated with the steps of the resulting argument
constitute a method for finding a canonical proof of B […] (Prawitz 1987, pp. 160–161).

Since “what counts as a canonical proof of a compound sentence is […] deter-
mined in terms of proofs of the subsentences, which are in turn defined in terms of
canonical proofs of the same sentences” (p. 161), the requirement of molecularity
is satisfied. But since “we cannot assume that the immediate subproof of a canon-
ical proof is again canonical” (ibidem), the complexity of the method in question
is not bounded by the fact that the requirement of molecularity is satisfied; as a
consequence, a proof of the fact that the method has the required properties will be
necessary in general, and no bound is placed on the complexity of that proof, so that
the problem of impredicativity is not avoided.

Moreover, the definition of validity of an open argument makes reference to the
extensions of the set J of justifying procedures. The reason for this is that otherwise
there might be an (open) argument for B from A as assumption, valid relative to a
set J of justifying procedures but not to an extension J ′ of J , namely if J ′ contained
new justifying procedures from which methods could be constructed for finding
valid arguments for A not capable to be transformed (by the procedures in J ) into
methods for finding valid arguments for B. Although Prawitz’s manoeuvre solves
this difficulty, it renders the definition highly impredicative in character.

Let us pass to Martin-Löf. Martin-Löf’s types are simple (i.e. not ramified); so, for
instance, the functions from N to N constitute a single type, as well as the functions
from N

N to N. However, an essential feature of the functions of ITT is that they are
extensional, so that apparently they can escape the above paradox, which exploits
intensional identity. Similarly, the proposition A ⊃ B is a type whose elements are
the extensional functions from proofs of A to proofs of B: so Heyting’s quantification
over all possible methods of carrying any proof of A into a proof of B becomes a
quantification over all extensional functions from A to B, which, at first sight, does
not seem to be paradoxical.

The problem, however, is how to understand extensional functions intuitionis-
tically: from an intuitionistic point of view, a function is nothing but a method of
computation. A first possible answer seems to be the following. One might draw
inspiration from Frege’s distinction between propositional functions and their exten-
sions and try to hold that canonical functions, as mathematical objects, are not to be
identified with the very methods by means of which they are calculated, but rather
with the extensions of those methods. So coextensive methods would yield the same
canonical function and the extensional equality of a type of functions would be
authentic sameness. In this way, the quantification on a type would not involve any
impredicative quantification over all possible methods of proof. This interpretation
of Martin-Löf’s type theory seems to be suggested by Beeson:

λ( f ) is thought of as the extension of f [where f is the function in intension]. Note that
λ( f ) is not the set of values of f , since it is not a set. But it is “the values of f ”, or “ f with
everything but the values abstracted away (Beeson 1985, p. 253).

We think, however, that this notion of extension would be appropriate from a
platonistic point of view, but that it is unintelligible in the intuitionistic perspective.
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Within the conception of potential infinity, there is no room for an entity made of the
infinitely many values of a function. Such values cannot build up any object, since
they do not exist all together; and their potential existence is nothing but the existence
of a method for computing them. The attempt to single out the pure extension of a
function by abstracting the method of computation away is hopeless: it would have
the opposite effect of destroying their potential existence.

A second possible answer can be extracted from Martin-Löf (1984) and the unpub-
lished Martin-Löf (1987a). A mathematical object, according to Martin-Löf, is noth-
ing but a mathematical expression endowed with meaning,1 as the following scheme
suggests:

object

expression typeAct of meaning

Here is how Martin-Löf explains his idea:

The expression which stands for a mathematical object is the matter out of which it is made,
and the type of the object is its form. In this sense, a mathematical object is a composite of
matter and form. But one component has been forgotten, namely, the act of understanding
through which the matter receives its form. It is through this act that the object comes into
being (Martin-Löf 1987a, p. 57).

This view is in turn based on some general principles, some of which are stated
below.

3. a. Although syntactical and semantical categories are distinct, a syntactical
entity (an expression) can become a semantical entity (an object) through
an act of knowledge. Indeed, it is only through this process that mathemati-
cal objects come into being.2

b. An entity is not an object unless it is sorted into a semantical category, i.e.
unless one knows (i) what its category is, and (ii) at which conditions two
objects of that category are the same object.3

c. Between objects and acts, there is an essential difference: while an object
is necessarily an object of a certain category, an act does not belong to any
category.

1“A mathematical object is the same as a meaningful mathematical expression” (Martin-Löf 1987a,
p. 17).
2“The mathematical objects are the meanings of the mathematical expressions” (Martin-Löf 1987a,
p. 49). “A meaning is always the meaning of an expression. We cannot say that the mathematical
objects are meanings tout court, only that they are the meanings of the mathematical expressions”
(Ibid., pp. 60–61). “There is no other way of getting to the mathematical objects than by making
sense of the mathematical symbols” (Ibid., p. 17.).
3In this sense “[T]he type precedes the object” (Martin-Löf 1987a, p. 53).
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d. A particular category of mathematical objects is the category of sets.4 “To
know a set, you must know the rules for forming or constructing the elements
of the set as well as the rules for forming identical elements of the set. […]
A set is defined by its constructors, that is, the primitive operations whose
values are elements of the set5” (Martin-Löf 1987a, p. 90).

Let us consider for instance the functions from N to N, whose type is conceived
by Martin-Löf as a set. According to (3)(d), we must give the rules for forming the
canonical elements of NN and the rules for forming identical canonical elements of
the set. Here are the rules:

(x : N)
b(x) : N

λxb(x) : NN (14.1)

(x : N)
b(x) = c(x) : N

λxb(x) = λxc(x) : NN (14.2)

In the conclusion of rule (14.1) the expression “λxb(x)” is sorted into the type
of functions from N to N through the act of understanding that confers evidence to
the premise. Since the premise is a hypothetical judgement, what confers evidence
to it is a hypothetical proof of b(x) : N from the hypothesis x : N6; it is through this
proof that we become aware of the functional dependence of b(n) on n, for every n.7

In the conclusion of rule (14.2), two canonical elements of the type NN are declared
to be identical provided they yield the same values for the same arguments.

What kind of object is λxb(x)? Perhaps it is convenient to keep two possible ways
to conceive it. According to the former the premise of the rule guarantees that we
know a method m for associating to every number n a number b(n), and “λxb(x)” is
nothing but a name ofm; the canonical element ofNN is thereforem itself. According
to the latter, it is the very expression “λxb(x)” that becomes a canonical element of
the typeNN when it is accompanied by the hypothetical proof of b(x) : N from x : N.
The former seems to fit well with what Martin-Löf writes in Martin-Löf (1984), and

4As is clear from the quotation that follows in the text, every set is a category, but not vice versa.
Within the terminological framework of type theory, “type” is systematically ambiguous between
“category” and “set”.
5Primitive elements are also, and more frequently, called “canonical”.
6“The notion of hypothetical proof, […] which is a primitive notion, is explained by saying that it
is a proof which, when supplemented by proofs of the hypotheses, becomes a proof of the thesis or
consequent” (Martin-Löf 1985, p. 252).
7The essential characteristic of a proof of a judgement is just that it is an act of knowledge. It is
this act that legitimates the introduction of the expression “λxb(x)” and that transforms it into a
true mathematical object. “[A] proof of a judgement is an act of knowing” (Martin-Löf 1987b,
p. 417); “[T]he proof of a judgement is nothing but the act of knowing, or, perhaps better, the act
of understanding or grasping” (Ibidem).
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the latter seems to be the only plausible interpretation of Martin-Löf (1987a). So let
us discuss the two interpretations separately.

Since methods are certainly not extensional entities, the same holds for the canon-
ical elements of NN: they are essentially the intensional functions from N to N. This
is perfectly compatible with the extensionality expressed by the rule (14.2). This is
a mere stipulation, by which we decide to call “equality” the relation of coexten-
siveness; it is perfectly legitimate and motivated by the fact that in mathematics we
are not interested in distinguishing coextensive functions. But it has nothing to do
with the nature of the objects in question, which are what they are quite indepen-
dently of any stipulation. In other words, to say that the equality of type N

N is the
extensional one does not mean that two canonical elements are the same provided
they are coextensive: it means only that two coextensive elements, as mathematical
objects, play the same role.8 Thus the quantification over the type N

N amounts to
the quantification over all first-order methods. Not so, however, for the type N

N
N

,
on which the condition of extensionality imposes an effective constraint. In fact a
canonical element of this type must satisfy the condition of respecting equality, i.e.
of mapping equal canonical elements of NN into the same natural number, so that not
every second-level method is a canonical element of NN

N

. Nevertheless, the notion
of canonical element of NN

N

presupposes the general notion of second-level method,
for, in order to introduce such a canonical element, one can take any second-level
method and try to show that it respects extensionality; so any second-level method
is a legitimate candidate for the test of respecting extensionality. In particular, the
above paradoxical method K is a good candidate for the test; moreover, just because
it is paradoxical, it passes the test in virtue of the ex falso quodlibet principle and the
paradox follows. We conclude that, on the first of the two interpretations we have
distinguished above, the impredicativity of the intuitionistic meaning of the logical
constants is not superseded.

Let us pass to the second interpretation. According to it, meaning does not pre-
exist to the sign, but it is the sign itself, provided it is associated with the act of
understanding it. From this point of view, reference to methods is still present, indeed,
but they are no longer conceived as objects, but as acts: it is the hypothetical proof of
the premise of (14.1), as an act, that constitutes the method of computation. Since,
according to principle (3)(c), an act does not belong to any category, reference to
methods does not affect the category of the objects we know through them; the
only objects we are dealing with are linguistic expressions. As a matter of fact,
this seems not to solve but to make more evident the problem of impredicativity:
if a function is conceived as a name plus an act of understanding, when we have
two different canonical names we have two distinct functions, even if they associate
the same values with the same arguments. However, an answer9 to this difficulty can
perhaps be found in the way identity is dealt with within ITT. The idea is that identity

8This point deserves a closer analysis. We will come back to it after having discussed the second
interpretation.
9This answer has never been explicitly formulated by Martin-Löf in his writings; our discussion is
then merely speculative.
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conditions between objects cannot be stated in an absolute way, but are necessarily
restricted to the type which the objects belong to; when this condition is respected,
however, identity must be interpreted as sameness. Well, in the case of type N

N the
identity condition is, as we know, that two functions are the same function if they
associate the same values with the same arguments; consequently, two expressions
that, within the category of names, are different may be the same object within the
category of the functions from N to N, into which they are sorted by the acts of
understanding them. In this way, we arrive at a purely extensional view of functions,
and the paradox seems to have been avoided.

However, we hold that this solution is illusory. It is an undeniable matter of fact that
in mathematics functions are individuated through methods of computation rather
than through names.10 So let us consider two methods m1 and m2 such that they
associate the same values to the same arguments; even accepting the idea that they,
as acts, do not belong to any semantical category, there is a clear intuitive sense
according to which we can assert that m1 and m2 are different, if they are different.11

Let us suppose that they are in fact different; it is then legitimate to denote them by
two different names that, when they will be understood as names of the two different
methods, become two different mathematical objects. Of course, as we noticed when
discussing the first interpretation, this is perfectly compatible with the extensionality
expressed by the rule (14.2), but the identity sign in the conclusion of (14.2) could not
plausibly be interpreted as denoting sameness in such a situation: we have generated
two different canonical functions with the same extension, and functions will be
non-extensional entities again.
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Chapter 15
The Intuitionistic Meaning of Logical
Constants and Fallible Models

Abstract In this chapter, the problem of the failure of completeness of first-order
predicate logic in an intuitionistic metamathematics is discussed and the philosoph-
ical significance of fallible models is analysed.

15.1 Introduction

I’ll be concerned with the problem of intuitionistic first-order predicate logic IPC
within an intuitionistic metamathematics.

By a natural interpretation of IPC, we mean what in the literature is often called
an intuitive interpretation or, in Dummet’s terminology, an internal interpretation
(Dummett 1977)

Given Heyting’s explanation of logical constants, natural models are the natural
counterparts of classical models. More explicitly, a natural model is obtained by
interpreting individual variables and constants in an inhabited domain D, by as-
signing, by means of an interpreting function I , to every atomic sentence A (in the
language extended by constants for all members ofD) a meaningful proposition I(A)

(what amounts to supplying proof-conditions for all atomic sentences). The proof-
conditions for the compound sentences and for absurdity (⊥) (which counts as a
primitive logical constant) are then supplied by Heyting’s clauses.

Here is a formulation of Heyting’s proof-conditions (Heyting 1956):

(1) For A atomic �= ⊥, a proof of A is a proof of I(A);
(2) a proof of ∀xA(x) is a method of proving all A(d) (d ∈ D) [likewise for A∧ B];
(3) a proof of ∃xA(x) is a method of some A(d) (d ∈ D)[likewise for A ∨ B];
(4) a proof of A → B is a method of transforming every proof of A into a proof

of B;
(5) Nothing is a proof of ⊥.

Negation is defined by ¬A =df . A → ⊥.
As it is well known, the completeness of IPC for natural semantics (within an in-

tuitionistic metamathematics) is equivalent to a certain form of Markov’s principle.
Since the latter is far from being intuitionistically evident, this result provides an
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argument against completeness. On the other hand, since Markov’s principle seems
to be compatible with the general principles of Intuitionism, this argument for in-
completeness is not a conclusive one.

What is cogent, however, is the failure of strong completeness (i.e. of � � A ⇒
� � A, where � is any set of sentences and A any sentence). A very simple proof of
that, which does not exploit anything beyond standard Intuitionism, was suggested
to me by Troelstra. Here is the proof:

Proof Assume, by reduction, strong completeness. Let M be an arbitrary natural
model and A an arbitrary sentence. Consider the set of sentences � = {⊥ : M �
A∨ ¬A}. Since ¬¬M � A∨ ¬A, we have ¬¬(⊥ ∈ �) and hence � � ⊥. By strong
completeness� � ⊥ so that⊥ ∈ � and thereforeM � A∨¬A. It follows that A∨¬A
is logically valid and hence derivable, which is absurd.

This proof rejects strong completeness in virtue of the mere intended meaning
of logical constants. It does not provide, however, any counterexample to strong
completeness. I think that no such counterexample is achievable without exploiting
deeper features of Intuitionism. In a recent paper, Charles McCarty (1991) gives a
counterexample to strong completeness under the assumption of Church’s thesis. But
I am not very sympathetic for the intuitionistic version of Church’s thesis: it imposes
to the intuitive notion of proof too strong limitations of a mechanicalistic nature,
which seem to me inappropriate. I prefer to use lawless sequences and exploit the
indeterminateness of the universe of constructions. I have here a counterexample to
strong completeness using a lawless sequence.

Let HA be Heyting’s arithmetic extended with a new 1-place predicate symbol P
and a new individual constant c. With reference to a lawless sequence α, define the
sets of sentences:

� = {P(n): the least m > n such that α(m) = 0 exists and is odd} ∪ {¬P(n): the
least m > n such that α(m) = 0 exists and is even},

� = {c > n : n ∈ ω},
� = HA ∪ � ∪ �.

� has no models.

Proof By way of contradiction, let M be a model of �. From the induction schema
(extended to P), we get M � ¬¬∀x < c(P(x) ∨ ¬P(x)). On the other hand, if
M � ∀x < c(P(x)∨¬P(x)), thenM � P(n)∨¬P(n) for all n ∈ ω and it follows that
∀x∃y > xα(y) = 0, against lawlessness. HenceM � ¬∀x < c(P(x)∨¬P(x)), which
is absurd. Thus � � ⊥. On the Other hand, every finite subset of � is interpretable
in the standard model of ω, and therefore not � � ⊥.

Incompleteness for natural semantics shows that the formal inference rules are
inadequate to capturing the intended meaning of logical constants, as expressed by
Heyting’s explanation.

The nature of this gap can be better understood in the light of the completeness
results with respect to the so-called fallible models. As it is well known, Veldman
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(1976), de Swart (1976) and others of the Nijmegen school reached in the seventies
intuitionistic completeness proofs of IPC with respect to a modified type of Kripke
andBethmodels. Themain feature of suchmodels consists in allowing⊥ to be true at
some node. For this reason, they are called sometimes fallible models. The simplest
completeness proof for single formulas with respect to fallible models was found
by Friedman, rearranged by Troelstra and published in the book Constructivism in
Mathematics by Troelstra and Van Dalen (1988). In that proof it is constructed a
universal fallible Beth model, in which are true exactly all derivable sentences of
IPC.

Though Beth models are of no immediate significance for natural semantics, it
is known that with every lawless path of a Beth model it is possible to associate a
natural model in such a way that truth in the Beth model is equivalent to truth in all
its paths. So, in virtue of the theory of lawless sequences, Beth validity turns out to
be equivalent to natural validity.

By means of this connection between Beth models and natural models, one can
translate the notion of fallible Beth model into a notion of fallible natural model,
which appears as a direct generalisationof naturalmodel. Sticking to this latter notion,
by a fallible model tout court I shall mean a model defined as a natural model, except
that Heyting’s clause for ⊥ is given up and the interpreting function I assigns to ⊥
any proposition I(⊥) implying (the interpretations of) all atomic sentences.

Soundness for fallible models is trivially verified. As to strong completeness,
by generalising Friedman’s completeness proof for single formulas, one can easily
prove the following theorem:

Theorem 15.1 Let � be any set of sentences. For every lawless 0 − 1-sequence α

there is a fallible model Mα such that the sentences derivable from � are just those
true in all Mα’s.

Observe that, taking for � the set of our counterexample to natural strong
completeness, we have that not all Mα’s are contradictory, while no Mα is non-
contradictory.

It is a general feature of all Mα’s (relative to any �) that no one of them is non-
contradictory.

I’ll try to draw some philosophical implications of this theorem.
First of all, as already observed by Dummett, completeness for fallible semantics

shows that the only logical constant responsible of natural incompleteness is negation
(or absurdity). In fact, for the ⊥-free fragment of IPC, fallible models are natural
models and strong completeness holds. Natural incompleteness of the whole IPC
shows that the formal system of inference rules is inadequate to catch Heyting’s
clause for ⊥; i.e.: nothing is a proof of ⊥. Indeed, this is the only Heyting’s clause
not respected by fallible models. The only rule governing ⊥ is the elimination rule,
i.e. ex falso quodlibet, which expresses just the peculiarity of absurdity preserved by
fallible models. The lack of introduction rules for ⊥, on the other hand, is not itself
an inference rule, so that no rule can guarantee the unprovability of ⊥.

Perhaps it is worth noting that the formal system of classical predicate logic CPC
is as well inadequate to catch the intended falsity of ⊥. Indeed also classical logic
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is sound for fallible models. The reason why this fact does not prevent classical
completeness is that, classically, validity for natural models is sufficient to assure
validity for all fallible models. In other words, both classical and intuitionistic logics
are inadequate to capture the intended meaning of ⊥, though only intuitionistically
such inadequacy affects the notion of validity.

But, apart from its role in analysing the source of natural incompleteness, is fallible
semantics in itself of any intuitive significance for the intuitionistic conception of
truth?

First of all, observe that in fallible models, so as they are defined, ⊥ not only has
a non-standard interpretation, but, strictly speaking, is not even a logical constant,
its interpretation varying from model to model arbitrarily (subject only to the clause
of implying all atomic sentences). In order to remedy for this shortcoming, we can
restrict the class of fallible models by requiring ⊥ to be exactly the conjunction of
all non-logical atomic sentences. More precisely, define a positive model as a natural
model, except that Heyting’s clause for ⊥ is to be replaced by the following:

(5′) A proof of ⊥ is a method of proving (the interpretations of) all non-logical
atomic sentences.

The constance of ⊥ is so recovered, in the sense that, once fixed the language,
the interpretation of ⊥ is determined by those of non-logical symbols. It should be
noted, however, that, in a positive model, the meaning of a sentence containing ⊥
is not merely determined by the meaning of its own symbols, the meanings of all
non-logical atomic sentences of the language being involved by ⊥. This behaviour
is similar to that of equality: interpreting it as indiscernibility makes its meaning
depending on all non-logical predicates of the language.

Theorem15.1, so as it stands, fails for positive semantics. For, if � is the set
of universal quantifications of all non-logic atomic formulas, then � � ⊥, but not
� � ⊥.

The theorem holds, however, with a slight modification:

Theorem 15.2 Given a language L for IPC, extend it to L′ = L ∪ {P}, where P is a
new predicate letter (of arbitrary degree). Let � be any set of L-sentences. For every
lawless 0 − 1-sequence α there is a positive L′-model Mα such that the L-sentences
derivable from � are just those true in all Mα’s.

So, strong completeness is restored and⊥ is treated as an outright logical constant.
Such a logical constant, of course, after having lost its main feature of unprovability,
cannot anymore be regarded as the authentic absurdity. Nevertheless, I think that pos-
itive semantics is of a remarkable significance for natural semantics. For, the positive
interpretation of⊥, as conjunction of all non-logical atomic sentences, not only does
not involve any notion extraneous to Intuitionism, but it is explained in terms of the
intended meaning of the other logical constants. Moreover, the recognition of sound-
ness for fallible semantics does not seem to presuppose the usual notion of negation.
This means that, as far as abstract deduction is concerned, Heyting’s meaning of
negation, understood as recognition of the impossibility to prove something, plays
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no essential role in informal intuitionistic reasoning. In other words, soundness and
strong completeness for positive semantics assure that, in order to draw the logical
consequences of certain assumptions about an abstract structure, an intuitionist never
needs to use the concept of unprovability. Therefore, from a logical point of view,
Heyting’s negation seems to be redundant and positive semantics may be regarded
as a natural negation-free semantics for the whole IPC.

Not so for classical logic. The positive interpretation of A ∨ ¬A says that either
A is true or it implies all non-logical atomic sentences. The classical justification of
this principle seems to presuppose the standard classical notion of falsity in order to
distinguish two cases according to whether A is true or false.

There is another approach to fallible semantics, which exploits some different
insights: it preserves the intended meaning of ⊥ and relativises the general notion of
proof. The basic idea is suggested by the question: howmay it happen that a working
mathematician proves an absurdity? This happens in two recurring cases: when his
reasonings are incorrect or when he is arguing under some false assumptions.

The first case is of no theoretical interest, since the highly idealised notion of
proof, on which intuitionistic truth is based, is free of errors. In spite of its name,
fallible semantics cannot be justified by invoking any fallibilistic conception of proof.

The second case, on the contrary, plays a very important role even in the activity of
the idealised mathematician, whose hypothetical reasonings may well rest on some
false assumptions. This observation suggests the attempt to generalise the notion of
natural model by including, as an ingredient of a model, a set of hypotheses. Truth
in a model should then be interpreted as informal provability under the given set
of hypotheses and, in particular, the truth of ⊥ as a reductio ad absurdum of the
hypotheses.

The success of this idea depends on how the notion of proof of a proposition A
under a set S of hypotheses is understood. The orthodox intuitionistic meaning of
this notion is immediately given by combining Heyting’s explanation of universal
quantification and of implication: a proof of A under S is a method of transforming a
method of proving every proposition of S into a proof of A. So understood, however,
the notion of proof under hypotheses is of no help for strengthening natural validity
and reaching completeness. For, if a proposition is provable tout court, it is provable a
fortiori under any set of hypotheses. Validity so generalised would then be equivalent
to natural validity.

It is possible, however, to modify the orthodox notion of truth under hypotheses
into one that, without loss of intuitionistic intelligibility, serves the purpose of strong
completeness.

Roughly speaking, according to the modified notion I am proposing, to prove
A under S means that, when carrying on the constructions required from the proof
condition of A, we are allowed to assume, step by step, some propositions of S.
Unlike for the orthodox notion, no hypothetical method of proving all propositions
of S is involved.

Precisely, let M be a natural model and S a set of (meaningful) propositions (not
necessarily expressible in the language of IPC). Call hypotheses the members of S
and hypothetical model the pair 〈M, S〉. Truth in 〈M, S〉 is defined in Heyting’s style
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by modifying the proof-conditions according to the following generalised inductive
definition:

(1) for A atomic �= ⊥, a proof of I(A) is a proof of A;
(2) a method of proving all A(d) (d ∈ D) is a proof of ∀xA(x) [likewise for A∧ B];
(3) a method of proving some A(d) (d ∈ D) is a proof of ∃xA(x) [likewise for A∨B];
(4) a method of transforming every proof of A into a proof of B is a proof of A → B;
(5) if H ∈ S, a method of transforming every proof of H into a proof of A is a proof

of A;
(6) nothing is a proof of A but in virtue of clauses (1)–(5).

According to this definition, it may well happen that a sentence true in M (i.e.
provable tout court) fails to be true in 〈M, S〉 (i.e. provable under S). Example:

Let α be a lawless sequence and P a 1-place predicate letter. Interpret P on ω by
taking α(n) = 0 as interpretation of P(n). So ¬∀xP(x) is true. Now take as set of
hypotheses S = {α(n) = 0 : n ∈ ω}. Then ∀xPx is trivially true under S so that,
unless we know an m such that α(m) �= 0, we cannot prove ¬∀xP(x).

Soundness for hypothetical semantics is straightforwardly verified: the inference
rules are insensitive to hypotheses.

Now, a fallible model may be reinterpreted as a special hypothetical model. In
fact, with every fallible model M we can associate the hypothetical model 〈M ′, S′〉
as follows: M ′ is the natural model obtained from M by restricting the interpreting
function I of M to the non-logical atomic sentences; S = {0 �= 0 : I(⊥)}. M and
〈M ′, S′〉 are easily seen to be equivalent.

It follows that Theorem15.1 can be reformulated for hypothetical models and
strong completeness holds.

In this way, we can preserve the intended meaning of all logical constants and
exploit the intuition that a proof of ⊥ is nothing but a reductio ad absurdum.

Summing up, I have indicated two possible intuitionistic accounts of fallible mod-
els, which try to exploit two different intuitions, respectively : the reinterpretability
of negation in positive terms, and the relativisation of informal provability to a certain
hidden set of assumptions.

In both positive and hypothetical models,

(i) truth is definable intuitionistically in Heyting’s style in terms of the general
intuitionistic notion of proof; and

(ii) the modifications, with respect to natural models, preserve, to a large extent, the
intuitionistic intended meaning of logical constants.

I do not claim that these are the only possible intuitionistic accounts of fallible
semantics.My point is that intuitionistically plausible reformulations of falliblemod-
els are possible and that, therefore, fallible models are of remarkable interest for the
intuitionistic theory of meaning.

Theorem15.1 (and its reformulations) shows that, using intuitionistic categories,
one can construct a surprisingly wide variety of interpretations of predicate logic.
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In fact, every set of sentences, closed under intuitionistic derivability, can be char-
acterised as the set of sentences true in all members of a certain class of models. If,
in particular, a set of sentences contains the universal closures of all instances of the
excluded middle, its intuitionistic closure is a classical theory. Thus every classical
theory is intuitionistically interpretable. So, in spite of the often claimed unintelligi-
bility, from the intuitionistic point of view, of classical reasoning, there is a sense in
which every classical reasoning is capable of intuitionistic meaningfullness. Namely,
the classical logical consequences of any set � of sentences are just the intuitionistic
logical consequences of �, relative to a suitably restricted class of fallible models. It
seems therefore that, within the intuitionistic perspective, classical reasoning cannot
rightfully be charged with unintelligibility, but rather with lack of generality.

Of course, an intuitionist may rightfully maintain, from his viewpoint, that clas-
sical mathematics is unintelligible, in the sense that the alleged intended structures,
which certain classical theorieswould pretend to describe, are intuitionisticallymean-
ingless. For instance, an intuitionist may reject the classical theory of real numbers,
for the reason that he does not know any privileged intuitionistic structure, of specific
mathematical interest, satisfying all theorems of that theory. Of course, no one of
the models provided by the strong completeness theorem is a good candidate for an
intuitionistic counterpart of classical continuum (at least because all thosemodels are
potentially contradictory). Nevertheless, regarded as an abstract theory, whose aim
is to study the features common to all structures satisfying certain axioms, the theory
of classical continuum, as any axiomatic theory, is capable, in the sense explained,
of intuitionistic reinterpretation.

In spite of Brouwer’s aversion to formal logic, it is just the formal analysis of
mathematical language, together with the abstract notion of mathematical structure,
what confers to classical reasoning intuitionistic intelligibility.
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