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Preface

This book is based on a course given at Cornell University and intended
primarily for second-year graduate students. The purpose of the course was
to introduce students who knew a little algebra and topology to a subject in
which there is a very rich interplay between the two. Thus I take neither a
purely algebraic nor a purely topological approach, but rather I use both
algebraic and topological techniques as they seem appropriate.

The first six chapters contain what I consider to be the basics of the subject.
The remaining four chapters are somewhat more specialized and reflect my
own research interests. For the most part, the only prerequisites for reading
the book are the elements of algebra (groups, rings, and modules, including
tensor products over non-commutative rings) and the elements of algebraic
topology (fundamental group, covering spaces, simplicial and CW-com-
plexes, and homology). There are, however, a few theorems, especially in
the later chapters, whose proofs use slightly more topology (such as the
Hurewicz theorem or Poincaré duality). The reader who does not have the
required background in topology can simply take these theorems on faith.

There are a number of exercises, some of which contain results which are
referred to in the text. A few of the exercises are marked with an asterisk to
warn the reader that they are more difficult than the others or that they require
more background.

I am very grateful to R. Bieri, J-P. Serre, U. Stammbach, R. Strebel, and
C.T. C. Wall for helpful comments on a preliminary version of this book.



Notational Conventions

Allrings (including graded rings) are assumed to be associative and to have an
identity. The latter is required to be preserved by ring homomorphisms.
Modules are understood to be left modules, unless the contrary is explicitly
stated. Similarly, group actions are generally understood to be left actions.

If a group G acts on a set X, I will usually write X/G instead of G\X for the
orbit set, even if G is acting on the left. One exception to this concerns the
notation for the set of cosets of a subgroup Hina group G. Here we are talking
about the left or right translation action of H on G, and I will always be
careful to put the H on the appropriate side. Thus G/H = {gH:g € G} and
H\G = {Hg:g € G}.

A symbol such as

Y f@)

ge G/H

indicates that f'is a function on G such that f(g) depends only on the coset gH
of g; the sum is then taken over a set of coset representatives.
Finally, I use the ““topologists’ notation”

Z, =12Z|nZ,

in particular, Z, denotes the integers mod p, not the p-adic integers.

vi
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Introduction

The cohomology theory of groups arose from both topological and algebraic
sources. The starting point for the topological aspect of the theory was the
work of Hurewicz [1936] on “aspherical spaces.” About a year earlier,
Hurewicz had introduced the higher homotopy groups n,X of a space X
(n > 2). He now singled out for study those path-connected spaces X whose
higher homotopy groups are all trivial, but whose fundamental group
= = m, X need not be trivial. Such spaces are called aspherical.

Hurewicz proved, among other things, that the homotopy type of an
aspherical space X is completely determined by its fundamental group =. In
particular, the homology groups of X depend only on =; it is therefore reason-
able to think of them as homology groups of =. [ This terminology, however, was
not introduced until the 1940’s.] Throughout the remainder of this introduc-
tion, then, we will write H, = for the homology of any aspherical space with
fundamental group . (Similarly, we could define homology and cohomology
groups of m with arbitrary coefficients.) As a simple example, note that
H,(Z ® Z) = Z. [Take X to be the torus.] Although Hurewicz considered
only the uniqueness and not the existence of aspherical spaces, there does in
fact exist an aspherical space with any given group as fundamental group.
Thus our topological definition of group homology applies to all groups

For any group n we obviously have Hyn = Z and H,n = =, the latter
being the abelianization of =, i.e., # modulo its commutator subgroup. For
n > 2, however, it is by no means clear how to describe H,n algebraically.
The first progress in this direction was made by Hopf [1942], who expressed
H, 7 in purely algebraic terms, and who gave further evidence of its impor-
tance in topology by proving the following theorem: for any path-connected
space X with fundamental group =, there is an exact sequence

©.1) n,X > H,X > H,n—0.



2 Introduction

[To put this result in perspective, one should recall that Hurewicz had
introduced homomorphisms h,: n,X — H,X (n > 2) and had shown that
h, is an isomorphism if n; X = Ofori < n. In particular, h, is an isomorphism
if m = m;X = 0. When = is non-trivial, however, h, is in general neither in-
jective nor surjective, and Hopf’s theorem gives a precise description, in
terms of 7, of the extent to which surjectivity fails.]

Hopf’s description of H, r, incidentally, went as follows: Choose a presen-
tation of = as F/R, where F is free and R < F; then

(0.2) H,n = Rn[F, FY[R, F),

where [4, B] for A, B < F denotes the subgroup generated by the com-
mutators [a, b] = aba™'b~! (a€ A, beB).

Following Hopf’s paper there was a rapid development of the subject by
Eckmann, Eilenberg-MacLane, Freudenthal, and Hopf. (See MacLane
[1978] for some comments about this development.) In particular, one had
by the mid-1940’s a purely algebraic definition of group homology and
cohomology, from which it became clear that the subject was of interest to
algebraists as well as topologists. Indeed, the low-dimensional cohomology
groups were seen to coincide with groups which had been introduced much
earlier in connection with various algebraic problems. H', for instance,
consists of equivalence classes of “crossed homomorphisms” or “deriva-
tions.” And H? consists of equivalence classes of “factor sets,” the study of
which goes back to Schur [1904], Schreier [1926], and Brauer [1926]. Even
H? had appeared in an algebraic context (Teichmiiller [1940]). These are
the algebraic sources of group cohomology referred to at the beginning of
this introduction. (Of course, there had been nothing in this algebraic work
to suggest that there was an underlying “homology theory ”; this had to wait
for the impetus from topology.)

It is not surprising, in view of this history, that the subject of group co-
homology offers possibilities for a great deal of interaction between algebra
and topology. For instance a “transfer map,” motivated by a classical
group-theoretic construction due to Schur [1902], was introduced into group
cohomology (Eckmann [1953], Artin-Tate [unpublished]) and from there
into topology, where it has become an important tool. Another example is
the theory of Euler characteristics of groups. This theory was motivated by
topology, but it has applications to group theory and number theory.

Our approach to the subject will be as follows: We begin in Chapters I
and II by defining H, n from the point of view of “homological algebra.”
This is the point of view which had evolved by the end of the 1940’s. The
topological motivation, however, will always be kept in sight, and we will
immediately obtain the topological interpretation of H,n in terms of
aspherical spaces. In particular, we will prove 0.1 and 0.2.

Chapter III contains more homological algebra, involving homology and
cohomology with coefficients. These arise naturally in applications, both in
algebra and topology. They are also an important technical tool, since they
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make it possible to prove theorems by “dimension-shifting.” In Chapter IV
we treat the theory of group extensions, which involves the crossed homo-
morphisms and factor sets mentioned above.

Chapter V introduces cup and cap products (motivated by topology), and
these are then used in Chapter VI in the study of the cohomology of finite
groups. Much of the material in Chapter VI (such as the “Tate cohomology
theory”) was originally motivated by algebra (class field theory), but it
turns out to be related to topological questions as well, such as the study of
groups acting freely on spheres.

In Chapter VII we introduce spectral sequence techniques, which are
used extensively in the remaining chapters. The reader is not expected to
have previously seen spectral sequences; I give a reasonably self-contained
treatment, omitting only some routine (but tedious) verifications.

Beginning with Chapter VIII the emphasis is on infinite groups, with the
most interesting examples being groups of integral matrices. In Chapter VIII
we discuss various finiteness conditions which can be imposed on such a
group to guarantee that the homology has nice properties. Chapter IX
treats Euler characteristics, which can be defined under suitable finiteness
hypotheses. This theory, as we mentioned above, has interesting connections
with number theory. Finally, Chapter X develops the “Farrell cohomology
theory,” which is a generalization to infinite groups of the Tate cohomology
theory for finite groups.



CHAPTER 1
Some Homological Algebra

0 Review of Chain Complexes

We collect here for ease of reference some terminology and results concerning
chain complexes. Much of this will be well-known to anyone who has studied
algebraic topology. The reader is advised to skip this section (or skim it
lightly) and refer back to it as necessary. We will omit some of the proofs;
these are either easy or else can be found in standard texts, such as Dold
[1972], Spanier [1966], or MacLane [1963].

Let R be an arbitrary ring. By a graded R-module we mean a sequence
C = (C,)nez of R-modules. If x € C,, then we say x has degree n and we write
deg x = n. A map of degree p from a graded R-module C to a graded R-
module C'is a family f = (f,: C, = C, ),z of R-module homomorphisms;
thus deg(f(x)) = deg f + deg x. A chain complex over R is a pair (C, d)
where C is a graded R-module and d: C — C is a map of degree — 1 such that
d* = 0. The map d is called the differential or boundary operator of C. We
often suppress d from the notation and simply say that C is a chain complex.
We define the cycles Z(C), boundaries B(C), and homology H(C) by Z(C) =
ker d, B(C) = im d, and H(C) = Z(C)/B(C). These are all graded modules.

One often comes across graded modules C with an endomorphism d of
square zero such that 4 has degree + 1 instead of — 1. In this case it is custom-
ary to use superscripts instead of subscripts to denote the grading, so that
C =(C"),z and d = (d": C" - C"*'). Such a pair (C, d) is called a cochain
complex. There is no essential difference between chain complexes and
cochain complexes, since we can always convert one to the other by setting
C, = C~". We will therefore confine ourselves, for the most part, to discussing
chain complexes, it being understood that everything applies to cochain
complexes by reindexing as above. [Note, however, that there is a difference
when we consider non-negative complexes, i.e., complexes such that C,

4
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[or C"] = O for n < 0; if the differential is thought of as going from left to
right, then a non-negative chain complex extends indefinitely to the left,
whereas a non-negative cochain complex extends indefinitely to the right.] In
discussing cochain complexes, one often prefixes “co” to much of the ter-
minology; thus d may be called a coboundary operator, and we have co-
cycles Z(C), coboundaries B(C), and cohomology H(C) = (H"(C))nez-

If (C,d) and (C', d') are chain complexes, then a chain map from Cto C'isa
graded module homomorphism f: C - C’ of degree 0 such that d'f = fd. A
homotopy h from a chain map f'to a chain map g is a graded module homo-
morphism h:C — C' of degree 1 such that dh + hd = f — g. We write
f ~ g and say that f'is homotopic to g if there is a homotopy from f'to g.

(0.1) Proposition. A chainmap f: C — C' induces amap H(f): H(C) - H(C"),
and H(f) = H(g) if f ~ g. )

The abelian group of homotopy classes of chain maps C —» C’ will be
denoted [C, C']. It is often useful to interpret [C, C’] as the 0-th homology
group of a certain “function complex” Homg(C, C’), defined as follows:
Homg(C, C), is the set of graded module homomorphisms of degree n from
C to C' [thus H#omg(C, C"), = [lsez Homg(C,, C,.,)], and the boundary
operator D,: #omg(C, C'), = Homg(C, C'),-, is defined by D,(f)=
d'f — (—1)"fd. [The sign here makes D? = 0. It is also consistent with other
standard sign conventions, cf. exercise 3 below.] Note that the O-cycles are
precisely the chain maps C — C’, and the 0-boundaries are the null-homo-
topic chain maps. Thus Hy(#emg(C, C')) = [C, C']. More generally, there
is an interpretation of H,(#omg(C, C’)) in terms of chain maps. Consider
the complex (Z"C, Zd) defined by (£"C), = C,_,, Z'd = (—1)"d; this
complex is called the n-fold suspension of C. [If n = 1, we write ZC instead
of T!C] Let [C,C1], =[Z"C,C]. Then we have H,(H#omg(C,C)) =
[C,C,. Theelementsof [ , 1], are called homotopy classes of chain maps
of degree n.

A chain map f : C — C'is called a homotopy equivalence if there is a chain
mapf’: C' —» Csuchthatf’f ~ idcandff’ ~ id... And a chain mapfis called
a weak equivalence if H(f): H(C) - H(C') is an isomorphism.

(0.2) Proposition. Any homotopy equivalence is a weak equivalence. O

A chain complex C is called contractible if it is homotopy equivalent to
the zero complex, or, equivalently, if idc =~ 0. A homotopy from id to 0 is
called a contracting homotopy. Any contractible chain complex is acyclic, i.e.,
H(C)=0.

(0.3) Proposition. C is contractible_if and only if it is acyclic and each short
exact sequence0 - Z, ., ¢ C,yy 4, Z, — 0 splits, where d is induced by d.

ProoOF. If his a contracting homotopy, then (k| Z): Z — C splits the surjection
d: C — Z. Conversely, suppose we have a splitting s: Z — C, whence a
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graded module decomposition C = kerd ® ims = Z @ im 5. We then get
a contracting homotopy h: C — C by setting h|Z = sand h|ims=0. O

(0.4) Proposition. A short exact sequence 0 - C' > C 5 C" = 0 of chain
complexes gives rise to a long exact sequence in homology:
- H(C) S H(C) 25 H(C") B H, - ((C)) — -

The “connecting homomorphism™ @ is natural, in the sense that a commuta-
tive diagram

0 C —C - C" >0
0 » E' - E »E"' —0

with exact rows yields a commutative square
H(C")——H,_,(C)

.

H,(E") —— H,_ (E). g

(0.5) Corollary. The inclusion i: C' = C is a weak equivalence if and only if
C" is acyclic. O

This shows that the cokernel C” of i is the appropriate object to consider
if we want to measure the “difference” between H(C) and H(C’). We now
wish to define a “homotopy-theoretic” cokernel for an arbitrary chain map
f:C" > C, which plays the same role as the cokernel in the case of an
inclusion: The mapping cone of f : (C',d") — (C, d) is defined to be the complex
(C",d") with C" = C @ ZC’ (as a graded module) and d"(c, ¢') = (dc + fc',
—d’'c’). In matrix notation, we have

o_(4 S
4 '(o 24’)‘

See exercise 2 below for the motivation for this definition.

(0.6) Proposition. Let f: C' — C be a chain map with mapping cone C". There
is a long exact homology sequence

- = H(C) " H(C) » H(C") = H,1(C) > -+
In particular, f is a weak equivalence if and only if C" is acyclic.

PROOF. There is a short exact sequence 0 = C - C” — C' — 0; now apply
(0.4). By checking the definition of the connecting homomorphism H,(XC’)
— H,_,(C), one finds that it equals H,_,(f): H,-,(C") = H,-,(C). O
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The mapping cone is also useful for studying homotopy equivalences, not
Jjust weak equivalences:

(0.7) Proposition. A chainmapf : C' - C is a homotopy equivalence if and only
if its mapping cone C" is contractible.

PROOF. A straightforward computational proof can be found in the standard
references (or can be supplied by the reader). For the sake of variety, we will
sketch a conceptual proof. Suppose first that C” is contractible. One then
checks easily that the function complex S#smg(D, C”) is contractible for any
complex D; in particular, it is acyclic. One also checks that J#omeg(D, C”) is
isomorphic to the mapping cone of #omeg(D, f ): Homg(D, C') — Homg(D, C).
It therefore follows from (0.6) that #om (D, f ) is a weak equivalence. Looking
at H,, we deduce that finduces an isomorphism [D, C'] - [D, C] for any D;
hence f is a homotopy equivalence by a standard argument. Conversely,
suppose f'is a homotopy equivalence. Then one shows easily that #omg(D,f):
Homg(D, C") - Homg(D, C) is a homotopy equivalence, so its mapping cone
Homg(D, C") is acyclic by 0.6. In particular, [D, C"] = 0 for any D, and this
implies that C” is contractible. O

Finally, we recall briefly the Kiinneth and universal coefficient theorems.
If (C, d) (resp. (C’, d')) is a chain complex of right (resp. left) R-modules, then
we define their tensor product C ® g C' by (C ®r C')p = P, +4=0 C, ®r Cy»
with differential D given by D(c ® ¢) = dc ® ¢’ + (—1)**c ® d'c’force C,
¢’ € C'. The sign here can be remembered by means of the following sign
convention: When something of degree p is moved past something of degree g,
the sign (— 1) is introduced. [In the present case, the differential, which is of
degree — 1, is moved past c, so we get the sign (—1) ~95¢ = (—1)?*#“.] Note
that C ® C' is simply a complex of abelian groups for general R, but it is a
complex of R-modules if R is commutative.

(0.8) Proposition (Kiinneth Formula). Let R be a principal ideal domain and
let C and C’ be chain complexes such that C is dimension-wise free. There are
natural exact sequences

0> @ H(C)®r Ha- (C) = H,(C ®r c)

pel

- @ TOT’:(HP(C), Hn-p— l(c')) -0

pel
and

0 = [1EXHLC), Hysns 1(C) > Hy(Homg(C, C)

pel

- l_l HomR(Hp(C)’ Hp+n(cl)) g 0’

pel

and these sequences split. ]
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We will not recall the definitions of Tor and Ext at this point, since we will be
defining them in much greater generality in §II1.2.

An important special case of 0.8 is that where C’' consists of a single
module M, regarded as a complex concentrated in dimension 0 (i.e. Co = M,
C, = 0 for n # 0). In this case 0.8 is called the universal coefficient theorem,
and the exact sequences take the following form:

0—>H,(C) ®x M - H,(C ®g M) - Tor{(H,_(C), M) - 0
and
0 — Extp(H,_,(C), M) » H"(H2mg(C, M)) - Homg(H,(C), M) - 0.

[Here we are following standard conventions in regarding #omzz(C, M)
as a cochain complex, with #omx(C, M)" = Homp(C, M)_,, = Homg(C,, M);
the last equality comes from the fact that the only non-zero component of a
graded map f:C — M of degree —nis f,:C, - M.]

EXERCISES

1. Let T:(R-modules) — (S-modules) be a covariant functor which takes the zero
module to the zero module (or, equivalently, which takes zero maps to zero maps).
For any chain complex (C, d) over R, there is then a chain complex (TC, Td) over S.
If T is an exact functor, show that H(TC) ~ TH(C). [Recall that T is exact if it
carries exact sequences to exact sequences. It follows that T preserves injections,
surjections, kernels, cokernels, etc.]

2. (Motivation for the definition of the mapping cone) Given a chain map f: C' - C,
the “homotopy theoretic cokernel” of f should fit into a diagram C’ 4 ¢ % c” with
gf =~ 0. Thus C" must receive a chain map g [of degree 0] from C and a homotopy
h [of degree 1] from C’; this suggests setting C” = C @ ZC’ as a graded module, and
taking g and h to be inclusions. Show that the definition of the boundary operator d”
is now forced on us by the requirement that g be a chain map and that h be a homotopy
from gf to 0. [Using matrix notation, set

()
() 2-()

Now write out the matrix equations d"g = gd and d"h + hd’ = gf and selve for
o, f,5,6.]

and note that

The remaining exercises are designed to illustrate various compatibility properties
of our sign conventions in #om(—, —) and — ® —. Few readers will have the patience
to do all of them, but you should at least do enough to convince yourself that all reason-
able identities involving #s» and @ are true, provided one follows the sign convention
stated above.
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3. Given u € Fomg(C, C),and x e C,, set (u, x) = u(x)e C,+q- Letd, d', and D be the
differentials in C, C’, and #omg(C, C'), respectively. Verify that d'(u, x) = (Du,x) +
(—1)?Cu, dx). [In fact, this is nothing but a restatement of the definition of D, but it
is a convenient form in which to remember that definition.] In other words, the
evaluation map #omg(C,C') ® C —» C', given by u ® x  {u, x), is a chain map.

4. Given v € Homp(C, C'), and u € Hom(C', C"),, their composite u o v is in
Homg(C, C")psq-

Verify that D(uov) = Duov + (—1)’uc Dv, where D denotes the differential
in any of the three #om complexes; in other words, composition of graded maps
defines a chain map #omg(C', C") @ Homg(C, C') — Home(C, C"). [Hint: This and
the remaining exercises are most conveniently done by taking the definition of D
in the form given in exercise 3. From this point of view, one starts with the equation
{uov, x) = <u, (v, x)) (x €C), which is the definition of composition, and one
applies d” to both sides. Applying exercise 3 several times, one obtains

{D(uov), x) + (= 1)P*%uov,dx) = {Du, (v, x>> + (—1)?¢u, {Dv, x>
+ (= 1)**%u, (v, dx))
which simplifies to

{D(uov), x) = {(Ducwv,x) + (—1)P{u° Dy, x),
as required.]

5. If C and C' are chain complexes over a commutative ring R, there is an isomorphism
of graded modules C ®xC 5 C' ®xC given by ¢ ® ¢’ (— )8 98’ @ ¢,
Prove that this isomorphism is a chain map.

6. Let C be a complex of right R-modules, C’' a complex of left R-modules, and C” a
complex of Z-modules.

(a) There is a canonical isomorphism of graded abelian groups
@©: Homg(C @ C', C") D Homp(C, Homy(C', C")),

given by {({e(u), ¢, ¢'> =<u, c® ¢’y for ueHomz(C ®zC’, C"), ceC, c€C.
[Sketch of proof: An element of #22,(C ® C', C"), is a family of Z-module maps
C,®rCy— Cpiqsn In view of the universal mapping property of the tensor
product, this is the same as a family of R-module maps C, —» Hom,(C;, Cp 4 ,+) i€,
asagraded R-module map C — #%m,(C’, C") of degree n. Note here that #o»#:,(C’',C")
is indeed a complex of right R-modules via the left action of R on C’ and the con-
travariance of Hom in the first variable: (ur)c') = u(rc’) for u € #omy(C', C"), r e R,
¢’ € C'.] Show that ¢ is a chain map. [Hint: Let d, &', and d” be the differentials in C,
C',and C”",and let D be the differential in any of the #»» complexes under considera-
tion. Apply d” to both sides of the equation defining ¢; using exercise 3 several times,
you should obtain

KD(@)), €, €'y + (= 1)<L@(u), dcy, ¢’y + (= 1)L p(u), €3, d’c")
on the left, where p = deg « and g = deg ¢, and
Du,c@c> + (— 1P ude® D> + (=1 Ku,c@dc
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on the right. Remembering the definition of ¢, you can conclude that
(D)), ¢, ¢’y = Du,c @ ¢’y
and hence that {{D(p(u)), c), ¢') = {{@p(Du), c), c'>.]
(b) Deduce from (a) [or check directly] that a map u: C ® g C' — C" of degree Ois a
chain map iff the corresponding map C — #%s,(C’, C”) is a chain map.
7. Let C and C’ (resp. E and E’) be complexes of right (resp. left) R-modules. Given
u € Homg(C, C') and v € #omg(E, E'), their tensor product
u® veHomy(C QrE,C' ®rE')
is defined by
u®v,c®e) = (=180 d<(y > ®R(v,e) for ceC,eekE.

(a) Let D be the differential in any of the three #»~ complexes under consideration.
Verify that D(u ® v) = Du ® v + (—1)®“y ® Dv. In other words, the operation
*“tensor product of graded maps” defines a chain map

Homg(C, C') @ Homp(E, E) = Homy(C ®gE, C' @R E).

[Hint: Once again, you are advised to do this by differentiating both sides of the
equation defining u ® v.]

(b) Deduce from (a) (or check directly) that if u:C — C’ is a chain map (of degree 0),
then there is a chain map #omg(E, E') - Homy(C QR E, C' ®g E') given by vi—
u®v.

(c) Deduce from (a) (or check directly) that the tensor product of chain maps is
compatible with homotopy, in the following sense: Given chain maps and homo-
topies ug ~ u;:C - C'and vy >~ v,: E - E',onehasuo @ vy >~ u, @ v,:C Qg E —
C' ®g E'. [Hint: uy and u, are homologous 0-cycles in H#zm,(C, C'), and similarly
for vy and v, ; it now follows from the boundary formula in (a) that u, ® v, and
u; ® v, are homologous 0-cycles in #omtz(C ®g E, C' @ E').]

8. Prove that the tensor product operation of the previous exercise is compatible with
composition of graded maps, i.e., that

U@ v)o (W @ V)= (—1)**" 9% (uou) @ (vov)

whenever the composites are defined.

1 Free Resolutions
Let R be a ring (associative, with identity) and M a (left) R-module. A
resolution of M is an exact sequence of R-modules

i F, B F B F 5 M 0.

If each F; is free, then this is called a free resolution. Free resolutions exist
for any module M and can be constructed by an obvious step-by-step
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procedure: Choose a surjection ¢: F, - M with F free, then choose a sur-
Jection F; — ker ¢ with F | free, etc. Note that the initial segment F; — Fo —
M — 0 of a free resolution is simply a presentation of M by generators and
relations.

There are two useful ways to interpret a resolution in terms of chain
complexes.! The first is to regard the resolution itself as an acyclic chain
complex, with M in degree — 1. We will refer to this as the augmented chain
complex associated to the resolution. The second way is to consider the non-
negative chain complex F = (F;, d;);» and to view ¢: F — M as a chain map,
where M is regarded as a chain complex concentrated in dimension 0. The
exactness hypothesis, from this point of view, simply says that ¢ is a weak
equivalence.

In case there is an integer n such that F; = 0 for i > n, we will say that the
resolution has length < n. In this case we will simply write

0-F,—»---2F,>M->0,

it being understood that the resolution continues to the left with zeroes.

EXAMPLES
1. A free module F admits the free resolution
0-F3F-0
of length 0.

2. If R = Z (or any principal ideal domain) then submodules of a free
module are free, hence any module M admits a free resolution

0-F,5Fy->M->0
of length <1. For example, the Z-module Z, = Z/2Z admits the resolution
0-Z2372-2,-0.

3. Let M again be Z,, regarded now as a module over the polynomial ring
R = Z[T), with T acting as 0 (i.e., f(T) acts as multiplication by f(0)). Then
M can be regarded as the quotient of R by the ideal generated by T and 2.
Using unique factorization in R and the fact that T and 2 are relatively
prime, one easily obtains the free resolution of length 2

0-RBRORBRS5Z,-0
where &(f) = f(0) mod 2, and 8, and 9, are given by the matrices (T 2) and
(_3), respectively.

4.Let R = Z[T)/(T? — 1) and let ¢t be the image of T in R. Let M be the
R-module R/(t — 1). (Equivalently, M = Z, with t acting as the identity.)

' See §0 for terminology and basic facts concerning chain complexes.
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Since T?> — 1 = (T — 1XT + 1),itisclear that an element of R is annihilated
by t — 1 (resp. t + 1) if and only if it is divisible by ¢t + 1 (resp. t — 1). One
therefore has a free resolution

RELRULRIEELR O M SO

Note that, unlike the previous examples, this resolution is of infinite length.
We will see, in fact, that M admits no free resolution of finite length, cf. §I1.3,
exercise 2.

In this book we will be primarily interested in the case where R is a
group ring, so we digress now to recall what a group ring is.

2 Group Rings

Let G be a group, written multiplicatively. Let ZG (or Z[G]) be the free
Z-module generated by the elements of G. Thus an element of ZG is uniquely
expressible in the form ), a(g)g, where a(g) € Z and a(g) = O for almost
all g. The multiplication in G extends uniquely to a Z-bilinear product
ZG x ZG — ZG; this makes ZG a ring, called the integral group ring of G.

Note that G is a subgroup of the group (ZG)* of units of ZG and that we
have the following universal mapping property:

(2.1) Given aring R and a group homomorphism f: G — R*, there is a unique
extension of f to a ring homomorphism ZG — R. Thus we have the “ad-
junction formula”

Hom;ng(ZG, R) & Hom g,ups(G, R*).

EXAMPLES

1. Let G be cyclic of order n and let t be a generator. Then the powers t'
(0 <i<n-—1)form a Z-basis for ZG, and one has " = 1. It follows that
2G = Z[TIAT" - 1).

2. If G is infinite cyclic with generator t, then ZG has a Z-basis {t'};.,.
Hence ZG can be identified with the ring (usually denoted Z[t,t!']) of
Laurent polynomials ). a;t' (a;€ Z, a; = 0 for almost all i).

EXERCISES

1. For any group G we define the augmentation map to be the ring homomorphism
£:ZG — Z such that ¢(g) = 1 for all g € G. The kernel of ¢ is called the augmentation
ideal of ZG and is denoted I or IG.

(a) Show that the elements g — 1 (9 € G, g # 1) form a basis for I as a Z-module.

(b) If S is a set of generators for G, show that the elements s — 1 (s € S) generate [ as
a left ideal.
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(c) Conversely, if S is a set of elements of G such that the elements s — 1 (s€ S)
generate I as a left ideal, show that S generates G. [Hint: The hypothesis on S implies
that every element of I is a sum of elements of the form g — g', where g = g's*! for
some s € S. Writing g — 1 in this way, where g € G is arbitrary, deduce that there is a
sequence g,, gs, - . ., g, such that g, = g, g, = 1, and g; = g;, s for some s;€ S.
See exercise 2 of §3 below for an alternative proof.]

(d) Show that G is a finitely generated group if and only if I is finitely generated as a
left ideal.

2. Let G be cyclic with generator ¢ and let M be the G-module Z, with ¢ acting as the
identity. (Equivalently, M = ZG/I = ZG/(t — 1).) Write down a free resolution of
M. [See §1, example 4, for the case where |G| = 2.]

3 G-modules

A (left) ZG-module, also called a G-module, consists of an abelian group 4
together with a homomorphism from ZG to the ring of endomorphisms of A.
In view of 2.1, such a ring homomorphism corresponds to a group homo-
morphism from G to the group of automorphisms of A. Thus a G-module is
simply an abelian group A together with an action of G on A. For example,
one has for any A the trivial module structure, with ga = a for ge G, a€ A.
(Thus ra = &(r)- a for r e ZG, where ¢: ZG — Z is the augmentation map
discussed in §2, exercise 1.)

One way of constructing G-modules is by linearizing permutation repre-
sentations. More precisely, if X is a G-set (i.e., a set with G-action), then one
forms the free abelian group ZX (also denoted Z[ X]) generated by X and
one extends the action of G on X to a Z-linear action of G on ZX. The re-
sulting G-module is called a permutation module. In particular, one has a
permutation module Z[G/H] for every subgroup H of G, where G/H is the
set of cosets gH and G acts on G/H by left translation.

The operation of disjoint union in the category of G-sets corresponds to
the direct sum operation in the category of G-modules:

Z[]_I X,] = @ZX;.
It follows that every permutation module ZX admits a decomposition
ZX ~ ®Z[G/G,],

where x ranges over a set of representatives for the G-orbits in X and G, is
the isotropy subgroup of G at x. In particular, if X is a free G-set (i.e., if all
isotropy groups are trivial), then G/G, = G, and we obtain:

(3.1) Proposition. Let X be a free G-set and let E be a set of representatives for
the G-orbits in X.Then Z X is a free ZG-module with basis E.
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Remark. If k is an arbitrary commutative ring, then one can form the group
algebra kG of G over k. This is the free k-module generated by G, with the
unique k-bilinear product extending the group multiplication on G. Every-
thing we have done in this section generalizes in an obvious way to this
situation. For example, a kG-module is simply a k-module A4 together with
a (k-linear) action of G on A.

EXERCISES

1. Let H be a subgroup of G and let E be a set of representatives for the right cosets Hg.
Show that ZG, regarded as a left-module over its subring ZH, is free with basis E.

2. Use permutation modules to give a non-computational solution of exercise 1c of §2.
[Let H be the subgroup of G generated by S and consider Z[G/H]. It has an element
fixed by H and hence annihilated by /. But then the element is fixed by G.]

4 Resolutions of Z over ZG via Topology

In this section we will consider Z as a G-module with trivial G-action, and we
will see that free resolutions of this module arise from free actions of G on
contractible complexes.

By a G-complex we will mean a CW-complex X together with an action
of G on X which permutes the cells. Thus we have for each g € G a homeo-
morphism x — gx of X such that the image go of any cell ¢ of X is again a
cell. For example, if X is a simplicial complex on which G acts simplicially,
then X is a G-complex.

If X is a G-complex then the action of G on X induces an action of G on
the cellular chain complex C,(X), which thereby becomes a chain complex of
G-modules. Moreover, the canonical augmentation ¢: Co(X) — Z (defined
by &(v) = 1 for every O-cell v of X) is a map of G-modules.

We will say that X is a free G-complex if the action of G freely permutes
the cells of X (i.., go # g for all g if g # 1). In this case each chain module
C.(X) has a Z-basis which is freely permuted by G, hence by 3.1 C,(X) is a
free ZG-module with one basis element for every G-orbit of cells. (Note that
to obtain a specific basis we must choose a representative cell from each orbit
and we must choose an orientation of each such representative.)

Finally, if X is contractible, then H,_(X) =~ H (pt.); in other words, the
sequence

= CX) B Coy(X) > > Co(X) HZ 0

is exact. We have, therefore:

(4.1) Proposition. Let X be a contractible free G-complex. T hen the augmented
cellular chain complex of X is a free resolution of Z over ZG.
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The reader who has studied covering spaces has, of course, seen many
examples of free G-complexes. Indeed, suppose p: ¥ — Y is a regular covering
map with G as group of deck transformations. (See the appendix to this
chapter for a review of regular covers.) If Y is a CW-complex, then it is an
elementary fact that ¥ inherits a CW-structure such that the G-action per-
mutes the cells, cf. Schubert [1968], 111.6.9. Explicitly, the open cells of ¥
lying over an open cell g of Y are simply the connected components of p~ 'a;
these cells are permuted freely and transitively by G, and each is mapped
homeomorphically onto ¢ under p. Thus ¥ is a free G-complex and C, ¥
is a complex of free ZG-modules with one basis element for each cell of Y.

In view of 4.1, it is natural now to consider CW-complexes Y satisfying
the following three conditions:

(i) Y is connected.
(i) n,Y = G.
(iii)) The universal cover X of Y is contractible.

Such a Y is called an Eilenberg—MacLane complex of type (G, 1), or simply a
K(G, 1)-complex. Condition (ii) above is to be interpreted as meaning that
we are given a basepoint y € Y and a specific isomorphism 7,(Y, y) > G by
which we identify =,(Y, y) with G.

It is sometimes convenient to note that condition (iii) above can be
replaced by:

(iii') H,X = Ofori > 2.

Indeed, we clearly have (iii) = (iii’). Conversely, (iii’) implies that X is acyclic,
ie, that H X ~ H_(pt.); and it is shown in elementary homotopy theory
that simply-connected acyclic CW-complexes are contractible. [The reader
who is not familiar with this fact can simply take (i), (ii), and (iii’) as the
definition of a K(G, 1)-complex, since we will never make serious use of the
fact that X is contractible. Note, for instance, that 4.1 remains true if “con-
tractible” is replaced by “acyclic.”]

It also follows from elementary homotopy theory that (iii) can be replaced
by

@iii") n;Y = Ofori > 2.

Thus the Eilenberg-MacLane complexes are precisely the aspherical com-
plexes studied by Hurewicz (cf. Introduction). Once again, we will not need
to use this fact.

If Y is a K(G, 1) then the universal cover p: X — Y is a regular cover whose
group is isomorphic to n, Y = G. [This depends on a choice of basepoint in
X, cf. Appendix.] We therefore obtain from 4.1:

(4.2) Proposition. If Y is a K(G, 1) then the augmented cellular chain complex
of the universal cover of Y is a free resolution of Z over ZG.
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We now give one example. There will be many other examples in Chapter
II and later in the book.

(4.3) EXAMPLE. Let G = F(S), the free group generated by a set S. Let Y =
Vses Si, a bouquet of circles S} in 1-1 correspondence with S. Thus Y is a
1-dimensional CW-complex with exactly one vertex and with one 1-cell for
each element of S. One knows that n, Y = F(S). Moreover, Y is a K(F(S), 1)
since condition (iii") above holds for trivial reasons. [ X is 1-dimensional.]
As basepoint in X we take a vertex x,; this then represents the unique G-orbit
of vertices of X and hence generates the free ZG-module Cy(X). As basis for
C,(X) we take, for each s € S, an oriented 1-cell e, of X which lies over S!
(traversed in the positive sense). Replacing e, by ge, for suitable g € G, we
can assume that the initial vertex of e, is the basepoint x,; the endpoint of e,
is then sxo (cf. Appendix, Al) so that de;, = sxo — xo = (s — 1)xo. We
obtain, therefore, the free resolution

4.9 052693726520

where ZG" is a free ZG-module with basis (e,);c s, de; = s — 1, and &(g) = 1
forallgeG.

Remarks

1. Note that ¢ coincides with the natural augmentation of the group ring
ZG, as defined in §2, exercise 1. The exactness of 4.4 says, therefore, that the
augmentation ideal of Z[F(S)] is a free left Z[F(S)]-module with basis
(s — Dses. [We will later indicate a purely algebraic proof of this fact, cf.
§IV.2, exercise 3b.] The reader who is not used to working with modules
over non-commutative rings may find it surprising that ZG, the free module
of rank 1, can contain a submodule which is free of rank > 1; this sort of thing
cannot happen over a commutative ring R, since then any two elements
a, b e R are linearly dependent: (—b)-a + a-b = 0.

2. If S contains a single element ¢ (i.e., G is infinite cyclic) then (4.4) reduces
to the “obvious” resolution which the reader probably wrote down in §2,
exercise 2:

4.5) 0-26=45%2G657-0.

Note that X, in this case, is simply R, with ¢ acting by x— x + 1:

t™2x, t™x Xo txo t2xo

3. The contractible free F(S)-complex X, and hence the resolution 4.4,
can easily be constructed directly, without appeal to the theory of covering
complexes, or to the fact that n,(\/ S') ~ F(S). Namely, X can be defined
as the 1-dimensional simplicial complex whose vertices are the elements of
G = F(S) and whose 1-simplices are the pairs {g, gs} (g € G, s € S). The action
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of G on itself by left translation induces a simplicial action of G on X, which
is easily seen to be free. Finally, one can construct an explicit contracting
homotopy which contracts X to the vertex 1 along paths of the form

o e 0

g =0Gn Gn-1 9 go=1

where g = 5§ - - si* is a reduced word of length n (s;€ S, ¢, = £1,¢ = &4,
if s; =s;4,) and g; =55 ---sf (0 <i < n). In case S is a two-element set
{s, t}, for example, X is the tree pictured below:

EXERCISES

1. If X is an arbitrary G-complex, is C,(X) necessarily a permutation module?

*2. Let X be a free G-complex, where G is an arbitrary group. Show that every point
of X has a neighborhood U such that gU n U =  for allg # 1in G. Deduce that
X — X/G is a regular covering map with G as group of covering transformations.
In particular, if X is contractible then X/G is a K(G, 1) and X is its universal cover.
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[Hint: A CW-complex X, with explicitly given characteristic maps (B", $""!) -
(7, do) for its cells, admits a canonical open cover {U,} indexed by the cells, such that
U,nU,= Jif o and 7 are distinct cells of the same dimension. If X is simplicial,
for example, we can take U, to be the open star of the barycenter of ¢ in the bary-
centric subdivision of X.]

3. Let G be a [ree abelian group of rank 2. Use the methods of this section to construct
a free resolution of Z over ZG.

*4. (This exercise requires some homotopy theory.)

(a) For any group G, show that there exists a K(G, 1). [Start with a connected 2-
complex with 7, = G; then attach cells to kill the higher homotopy.]

(b) Show that the construction in (a) can be made functorial in G. [Given the
(n — 1)-skeleton Y"~!, attach an n-cell for every possible map $"~' — Y"~!]

5 The Standard Resolution

Let X be a contractible simplicial complex on which a group G acts simplici-
ally. It may happen that the G-action is free on the vertices but not on the
higher-dimensional simplices. [Note: This cannot happen if G is torsion-
free.] In this case we can still obtain a free resolution of Z over ZG by using,
instead of the usual chain complex C,(X), the ordered chain complex C,(X)
(cf. Spanier [1966], ch. 4, §3). Thus C,(X) has a Z-basis consisting of the
ordered (n + 1)-tuples (v, - .., v,) of vertices of X such that {v,y,...,v,} isa
simplex of X (of dimension <n if the v; are not all distinct). Since G clearly
acts freely on these (n + 1)-tuples, we obtain a free resolution of Z over ZG.
The most obvious example of such an X is the “simplex” spanned by G;
i.e., the vertices of X are the elements of G (with G acting by left translation),
and every finite subset of G is a simplex of X. [If G is finite, this really is a
simplex; otherwise it is an infinite dimensional analogue. In any case it is
contractible by a straight-line contracting homotopy.] The corresponding
free resolution F, = C,(X) is called the standard resolution of Z over ZG.
Explicitly, F, is the free Z-module generated by the (n + 1)-tuples (g, . . ..g,)
of elements of G, with the G-action given by g - (go, - - -, gn) = (990, - - - » 9gn)-
The boundary operator 3: F, - F,_, is given by 0 = Y 7_,(— 1)'d;, where

(51) di(gOr""gn)=(go""’gl’""’gn)'

The augmentation ¢: F, — Z is given by &(go) = 1. Note that the acyclicity
(i.e., exactness) of this augmented complex has been deduced from the
contractibility of X, but one can also verify it directly by writing down a
contracting homotopy h: F, — F,,, for the underlying augmented complex
of Z-modules (i.e., h will not be a map of G-modules). Namely, we define h
by h(go,---»9) = (1,4g0,---,gn)ifn >0and h(l) = (1) ifn = — L
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As basis for the free ZG-module F, we may take the (n + 1)-tuples whose
first element is 1, since these represent the G-orbits of (n + 1)-tuples. It is
often convenient to write such an (n + 1)-tuple in the form (1, g, 9,9, . . .
919+ gn) and to introduce the “bar notation”

(91192119, = (1, 91,9192, ..., 9192 *** Ga)-

(If n = O there is only one such basis element, denoted [ ]; if we identify
F¢ with ZG in the obvious way, then [ ] = 1.) It is easy to compute : F,, —
F,_, in terms of this ZG-basis {[g,|---|g,]}; one finds 8 = Y 7, (—1)d,,
where d; is the ZG-homomorphism given by

910921 -19.] i=0
(5.2) dilgil---1g9.) = [gll"'Igi—llgigi+l|gi+2|"'|gn] O0<i<n
(g1l 19n-1] i=n

This standard resolution F, is often called the bar resolution. In low di-
mensions it has the form

F,3F, 37657 -0,

where 3,([g|h]) = g[h] — [gh] + [g]. &,([gD =gl 1-[ 1=g-1,
and ¢(1) = 1.

Finally, we mention the normalized standard (or bar) resolution F, =
F,/D,, where D, the “degenerate” subcomplex of F, is generated by the
elements (go, ..., g,) such that g; = g;,, for some i. In terms of the bar
notation, D, can be described as the G-subcomplex of F, generated by the
elements [g,]---|g,] such that g; = 1 for some i. Thus F, is a free ZG-
module with one basis element (still denoted [g, |- - - |g,]) for every n-tuple of
non-trivial elements of G. The fact that F, is acyclic over Z, and hence a
resolution, follows from general facts about normalization (cf. MacLane
[1963], VIIL6); alternatively, one can simply observe that the contracting
homotopy h defined above carries D, into itself and hence induces a con-
tracting homotopy of the quotient F.

EXERCISES

1. Write down the homotopy operator h in terms of the Z-basis g[g, |- - - |g,] for F,,.

2. Write out the normalized bar resolution in case G is the group of order 2; compare
it with the resolution given in §1, example 4.

*3. (a) Show that the standard resolution is the cellular chain complex of a free con-
tractible G-complex X. Note that this reproves the result of exercises 4a and 4b
of §4. [For each (n + 1)-tuple ¢ = (go, - ., ga), let A, be a copy of the standard
n-simplex with vertices vy, . ..,v,. Letd;oc = (gq,---,4,,-.-,g)and let6,: A, , = A,

be the linear embedding which sends vg, ..., v,_, 0 vg, ..., D, ..., U,. Form the
disjoint union X, = ||, A, and obtain X by identifying A, , with its image under é,



20 I Some Homological Algebra

for all ¢ and all i. Use the quotient map C(X,) — C(X) to compute the boundary
operator on C(X) and see that C(X) ~ F. To prove X contractible, consider
he = (1, go, .--, gs) for each o, and use the straight-line homotopy between d,:
A, = A,, and the constant map A, — A,, at v,.]

(b) Do the same for the normalized standard resolution. [Use the same method as in
(a), but make further identifications in X, to collapse degenerate simplices. Explicitly,
foreach o = (go,...,g,) let s;0 = (gq,- .-, i, gi»- - -»gn) and collapse A, , to A, via
the linear map which sends vy, ..., 0,4, 0 Vg, ..., U;, Uiy o .ty U]

6 Periodic Resolutions via Free Actions on Spheres

Let X be a free G-complex which is homeomorphic to an odd dimensional
sphere $2*~!, (G is then necessarily finite since X is compact.) By an easy
special case of the Lefschetz fixed-point theorem (cf. exercise 1 below), G
acts trivially on H,,_; X = Z. Writing C, = C,(X), we have then an exact
sequence of G-modules

(6.1) 0—’Z—W*C2k_l—*"‘—’Cl—‘*Coi—t’Z:—’O,

where each C; is free. Splicing together an infinite number of copies of 6.1,
we obtain a free resolution of Z over ZG which is periodic of period 2k:

(6.2) "‘—'Cl—’Co'"‘s’cZk_l—""—’Cl—’Co—c*Z—’O.
EXAMPLE. Let G be a finite cyclic group of order n with generator t. Then G

acts freely as a group of rotations of S!, regarded as a CW-complex with n
vertices and n 1-cells:

Note that H,S' is generated by the cycle e + te + t?¢ + --- + t" 'e = Ne,
where N is the “norm element” 1 + ¢t + --- + t"~! of ZG, so 6.1 takes the
form

0725726572652 -0,
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where ¢(1) = 1 and n(1) = N. We therefore obtain the following periodic
resolution of period 2, which the reader has probably already seen (§2,
exercise 2):

6.3) 26457268 26125726 52 > 0.

We will see other examples of groups with periodic resolutions in Chapter
VL

EXERCISES

1. Prove the following special case of the Lefschetz fixed-point theorem: Let X be a
finite CW-complex and f: X — X a map such that, for every cell g,

f(o) U 1.

t#0
dimt<dimo
(In particular, f has no fixed-points.) Then the Lefschetz number Z (—1) trace f;
is zero, where f; is the endomorphism induced by f on the free abelian group
H, X /torsion. [Hint: The Lefschetz number can be computed on the chain level, where
the matrix of f has zeroes on the diagonal.] If H (X) ~ H,(S?"""), deduce that f,:
H,,_ X — H,,_, X must be the identity.

2. Prove that the group of order 2 is the only non-trivial group which can act freely on
an even-dimensional sphere.

7 Uniqueness of Resolutions

We return to the generality of §1, i.e., we work over an arbitrary ring R. It is
obvious that a given R-module M admits many different free resolutions;
the purpose of this section is to show that all such resolutions are homotopy
equivalent. In the course of proving this we will be faced with mapping
problems which can be put in the form

P
A w Jw \
M' l' > M j o M"’

where the solid arrows represent given maps (with jo = 0) and the dotted
arrow represents a map we would like to construct. A solution to this problem,
then, consists of a map ¥: P - M’ such that iy = ¢. A module P is called
projective if a solution exists for every mapping problem 7.1 in which the
row is exact. More concisely, P is projective if the functor Homg(P, —) is
exact.
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For our present purposes, the main interest in projectivity is provided by:

(7.2) Lemma. Free modules are projective.

PROOF. Let F be free with basis (e,), and consider a mapping problem

F
" lw \
MI i M j N Ml!

with exact row. Then ¢(e,) eker j = im i, so we can choose x, e M’ with
i(x,) = ¢(e,). Now let § be the unique R-module map with y(e,) = x,. O

The next lemma treats the particular mapping problems which one has
to solve in trying to construct chain maps and homotopies inductively:
(7.3) Lemma. (a) Suppose given a diagram

P49

l,
v

M ——M

”
@ M",

whered, fd = O and it is desired to find a g such that d,g = fd. If P is projective
and the bottom row is exact, then such a g exists.
(b) Suppose given a diagram (not necessarily commutative)

p.__d_,Q

M' d, M dz » M"’

where d,hd = d, fand it is desired to find a k such that dk + hd = f If P is
projective and the bottom row is exact, then such a k exists.

PROOF. (a) is obvious, since the given mapping problem is of the form 7.1
with ¢ = fd. Similarly, (b) is a problem of the form 7.1 with ¢ = f — hd. O

We can now prove the “fundamental lemma of homological algebra,”
which says, roughly speaking, that it is easy to construct chain maps and
homotopies from a projective complex to an acyclic one:

(7.4) Lemma. Let (C, 3) and (C', 3') be chain complexes and let r be an integer.
Let (f;: C; = Ci);<, be a family of maps such that J; f; = fi_10; for i < r. If
C; is projective for i > r and H(C') = O for i > r, then (f);<, extends to a
chain map f: C — C', and f is unique up to homotopy. More precisely, any two
extensions are homotopic by a homotopy h such that h; = 0 for i < r.
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PROOF. Assume inductively that f; has been defined for i < n, where n > r,
and that 9; f; = f;_,0, for i < n. We then have a mapping problem

Cn+l 2 Acn 2 Cn-l

f....:’ [f.. jf..-l
H

’ ’ ’
n+1 FQ Cn R n—1»

where 0'f,0 = f,_,00 = 0. The desired £, , , therefore exists by 7.3a.

Suppose now that g is a second extension of (f;);.,. We wish to find a
homotopy h between f and g. Assume inductively that h;: C; —» Ci,, has
been defined for i < n, where n > r, and that d'h; + h;_,0 = f; — g;. (Note
that we can start the induction by setting h; = Ofori < r.)Settingt, = f; — g,,
we then have a mapping problem

cn+l 2 ¢Cn z ﬁ‘cn-l

4 Wal ’
n+2 F3 ’Cn+l F3 Cn

with

o'h,0 = (1, — h,_,0)0 by the inductive hypothesis
=1,0 since 32 = 0
=0"Ty4y since 7 is a chain map.

The desired h, ., with &'h,,, + h,d = 1, , therefore exists by 7.3b. 4
Remark. The proof of 7.4 should have looked familiar to anyone who has seen

the method of acyclic models in algebraic topology. We will explain this
“similarity” in exercise 3 below.

Now let ¢: F - M and ¢': F' — M be two free (or projective) resolutions
of a module M. We can then form the augmented chain complexes with M

in dimension —1 and apply 7.4 withr = —1:
=F! #FO L] »M —0 IO
H H ‘
> Fy »Fo——M »0—— -

We conclude that there is a chain map f: F — F’ which is augmentation-
preserving, i.e., which satisfies ¢f = ¢. Moreover, f is unique up to homotopy.
(Note that the homotopy h given by 7.4 on the level of augmented chain
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complexes yields a homotopy F — F', because h_, = 0.) Similarly, there is
an augmentation-preserving map f': F' - F, and we have f'f ~ id; and
[’ ~ id., again by the uniqueness part of 7.4. This proves:

(7.5) Theorem. Given projective resolutions F and F' of a module M, there is an
augmentation-preserving chain map f: F — F', unique up to homotopy, and f
is a homotopy equivalence.

We will express this informally by saying that projective resolutions are
“unique up to canonical homotopy equivalence.” At the moment, of course,
we are mainly interested in free resolutions, but later (beginning in Chapter
VIII) we will need to consider projective resolutions which are not known to
be free.

For future reference we record two special cases of 7.5:

(7.6) Corollary. Let ¢: F — Z be a free resolution of Z as a Z-module. Then ¢
is a homotopy equivalence.

PROOF. id,: Z — Z is also a free resolution, and ¢: F — Z can be viewed as an
augmentation-preserving chain map from one resolution to another. a

(7.7) Corollary. If F is a non-negative acyclic chain complex of projective
modules (over an arbitrary ring R), then F is contractible.

PROOF. F and the zero complex are projective resolutions of 0, so they are
homotopy equivalent. See also exercise 3 of §8 for an alternative proof. [J

Remarks

1. In practice, a free resolution usually comes equipped with an explicit
basis in each dimension, and one usually proves that it is a resolution by
exhibiting a contracting homotopy for the underlying augmented chain
complex of Z-modules. In this case, the proof of 7.5 yields a specific map
f:F > F'. Namely, if k is a contracting homotopy for the augmented
complex associated to F’, then f is determined inductively by f,. (e,) =
k, f,0e,, where (e,) is a basis for F,, ,.

2. The uniqueness theorem 7.5 can be thought of as the algebraic analogue
of Hurewicz’s theorem, which we quoted in the introduction, asserting the
uniqueness up to homotopy of an aspherical space with a given fundamental

group.

EXERCISES

1. Let G be a finite cyclic group. Let F be the free resolution of Z over ZG given in 6.3
and let F’ be the bar resolution. Write down an augmentation preserving chain map
fF—F.



7 Uniqueness of Resolutions 25

2. The method of proof of 7.4 applies to many situations, some of which will arise later
in this book. It is therefore useful to axiomatize 7.4, as follows. By an additive category
we mean a category &/ in which Hom(A4, B) is endowed with an abelian group struc-
ture for any two objects A, B, in such a way that the composition law Hom(B, C) x
Hom(A4, B) - Hom(A, C) is Z-bilinear. In particular, since we have a zero element
0 € Hom(4, B)it is clear what we mean by a chain complex in /. The usual definitions
of chain map and homotopy also go through with no change. [Note that additivity is
needed to define “homotopy.”] Suppose now that we are given a class & of sequences
M’ > M - M” in o called exact sequences. We then say that an object P of < is
projective relative to & if every mapping problem 7.1 whose row is in & admits a
solution. Verify that the proof of 7.4 is valid in this situation and leads to an analogue
of 7.4 for chain complexes in &. [Note: In the statement of this analogue, the “acy-
clicity” hypothesis on C’ should be replaced by the assumption that C;,, —» C; —
C;i_, isin & for i > r.] Deduce an analogue of 7.5.

3. Let € be an arbitrary category and let & be the additive category whose objects are
covariant functors ¢ — (abelian groups) and whose maps are natural transforma-
tions of functors. Fix a subclass # of the class of objects of €. A sequence T' - T — T"
in & will be called .#-exact if the resulting sequence T'(M) - T(M) — T"(M) of
abelian groups is exact for all M € .#. The purpose of this exercise is to show that
when exercise 2 is applied to & (with & equal to the class of .#-exact sequences), the
result is the acyclic models theorem as given, for instance, in Spanier [1966], FTheorem
4.2.8, or Dold [1972], Proposition VI.11.7. The crucial step is to prove an analogue in
&/ of Lemma 7.2; this is done in (a) and (b) below.

(a) (Yoneda’s lemma) Let 4 be an object of € and let h,: € — (sets) be the covariant
functor represented by A, ie., h, = Homg(A4, —). Let u,€h,(A) be the identity
map A — A. Let T: ¥ — (sets) be an arbitrary covariant functor. For any v e T(4),
show that there is a unique natural transformation ¢: h, — T such that ¢(u,) = v.
Thus Homg(h,, T) =~ T(A), where & is the category of functors € — (sets). [This
can be thought of as saying that h,, is “ freely generated ” by u,. The proof is straight-
forward definition-checking. To prove uniqueness, for example, note that we must
have @(f) = T(f)v) for any f € h(B) = Hom¢(A, B), in view of the diagram

h(A) =225 b (B)
[ [

T(4) —L— T(B).
To prove existence, take this equation as a definition and check that it works.]

(b) Let Zh,: € — (abelian groups) be the composite of h, with the functor (sets) —
(abelian groups) which associates to a set the free abelian group it generates. A functor
F: % — (abelian groups) will be called .#-free if it is isomorphic to a direct sum
@, Zh apWhere A, € # for all . Deduce from (a) that .#-free functors are projective
relative to the class of .#-exact sequences.

(c) Using (b) and exercise 2, state a theorem about chain maps in &/ from .#-free
complexes to *.#-acyclic” complexes. [Note: This theorem is precisely the acyclic
models theorem cited above.]
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4, Another important example of exercise 2 is obtained by taking . to be the dual of the
category of R-modules. Thus &/ has one object M° for every R-module M and one
map f°: M$ — M3 for every R-module map f: M, — M,. Composition is defined
by f°g° = (qf)°. As exact sequences in &/ we take those sequences M{ - M5 — M3
such that the corresponding sequence My — M, - M, of R-modules is exact.
Applying exercise 2, we get an analogue of 7.4 for chain complexes in &/, which can
obviously be restated as a theorem about cochain complexes of R-modules. Explicitly
state this theorem, as well as the theorem corresponding to 7.5. [Note: An R-module
Qiscalled injective if Q° is projective in 2, or, equivalently, if the functor Homg(—, Q)
is exact. Your theorem should therefore be stated in terms of maps of an acyclic
cochain complex into a cochain complex of injectives. To give this theorem substance,
of course, we should have an analogue of 7.2, so that we will have examples of in-
jectives. We will provide such an analogue later, in §I11.4.]

8 Projective Modules

The reader may be curious at this point to know more about projective
modules, other than the fact that free modules are projective. We give in this
section, therefore, some miscellaneous results and examples concerning
projective modules and complexes. We will not make serious use of these
results (except as they apply to free modules) until Chapter VIII. One may
therefore skip this section now and return to it later.

The first observation is that to prove a module P is projective one need
only consider mapping problems 7.1 in which M” = 0; for 7.1 can be replaced
by

M’ » ker j » 0.

Thus we have:

(8.1) Proposition. P is projective if and only if for every surjection n: M — M
and every map ¢: P — M there is a map y: P — M such that ¢ = ny:



8 Projective Modules 27

One also has the following characterization of projectivity:

(8.2) Propesition. T he following conditions on an R-module P are equivalent:

(i) P is projective.
(ii) Every exact sequence 0 - M’ - M — P — 0 splits.
(iii) P is a direct summand of a free module.
(iv) There are elements e; € P and f; € Homg(P, R) (where i ranges over some
index set I) such that for every x € P, f(x) = 0 for almost all i and x =

Zl’el fix)e;.

ProoF. If P is projective and we are given an exact sequence as in (ii), then we
can split the sequence by lifting id: P — P to a map P — M. Hence (i) = (ii).
Choosing such an exact sequence with M free, we see that (ii) = (iii). It is
immediate from the definitions that any direct summand of a projective is
projective; so (iii) = (i). Finally, (iv) is simply a restatement of (iii). O

EXAMPLES

1. Let e € R be idempotent, i.e., e* = e. Then right multiplication by e is a
projection operator of R onto the direct summand Re. So the left ideal Re is
projective.

2. Let R be a (commutative) integral domain and I an invertible ideal.
[This means that there is an R-submodule J of the field of fractions of R
such that IJ = R, where IJ is the set of finite sums )_ a;b;,a;€1,b;€ J.] Then
I is a projective module. For if we write 1 = Z e; f; where e; € I, f;€ J, then
the criterion of 8.4(iv) is satisfied. [Each f; gives rise, by multiplication, to a
homomorphism I — R which plays the role of the f; in 8.4(iv).] On the other
hand, I is free only if it is a principal ideal, since any two elements a, be [
are linearly dependent.

3. Let R = Z[{], where { is a primitive twenty-third root of unity. It is
known from algebraic number theory that R has an ideal I which is not
principal and that every non-zero ideal in R is invertible. Hence I is projective
but not free.

4. Let G be a cyclic group of prime order p. There is a theorem due to
Rim which relates projective modules over ZG to projective modules over
Z[(], where { is a primitive p-th root of unity, cf. Milnor [1971], §3. In particu-
lar, if p = 23, we deduce from example 3 that ZG has non-free projectives.

5. If R is the rational group algebra QG of a finite group G, then one can
show that every R-module is projective, cf. exercise 5 below. As an illustration
we will prove that @, with trivial G-action, is projective. Note first that the
functor Homgg(Q, —) is simply the “invariants” functor M — M€, where

M¢ = {me M:gm = mforallg € G}.
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Thus we need to show that any surjection M - M of QG-modules gives
rise to a surjection M¢ - MS. This is shown by averaging: if m € MC, lift
i to me M; then (1/|G|) Y, gm is also a lifting of 7 and is in MS.

We turn now to the duality theory for finitely generated projectives,
analogous to that for finite dimensional vector spaces over a field. For any
left R-module M, let M* = Homg(M, R). Here R is regarded as a left R-
module in forming Hom, but it also has a right R-module structure which
we can use to make M* a right R-module; namely, we set (ur)(m) = u(m)r for
u € M*, r e R, me M. Similarly, we can define the dual of a right module,
and it is a left module.

The main facts about duality are given in the following proposition.
Parts (b) and (c) are the most important ones for our purposes; they allow
one to use duality to convert Hom to ® and vice-versa.

(8.3) Proposition. Let P be a finitely generated projective left R-module.
(a) P* is a finitely generated projective right R-module.
(b) For any left R-module M, there is an isomor phism

¢: P* ® g M 5 Homg(P, M)

of abelian groups, given by ¢(u ® m)(x) = u(x)-m forue P*,me M, x € P.
(c) For any right R-module M, there is an isomorphism

@': M ®g P S Homg(P*, M),

given by ¢'(m ® x)u) = m- u(x) for me M, x € P, u € P*.
(d) There is an isomorphism

@": P35 p*s
of left R-modules, given by ¢"(x)(u) = u(x) for x € P, u € P*.

(In connection with (b) and (c), the reader should recall that one can form
M ®pg N whenever M is a right module and N is a left module; the tensor
products written down above therefore make sense.)

PROOF. It is clear from the proof of 8.2 that P can be written as a direct sum-
mand of a finitely generated free module F. By additivity, then, it suffices
to prove the proposition for F. In more detail: If F = P @ Q, then
F* = P*® Q* F*@gM = (P* @ M) ® (Q* ®x M), etc., and the maps
¢, ¢', and ¢" preserve these decompositions. So (a)-(d) for P will follow
from (a)-(d) for F. [In order to use this argument, of course, one must first
check that ¢ and ¢’ are well-defined.] By additivity again, it suffices to con-
sider the case where F is free of rank 1, i.e., we may assume F = R. In this
case R* ~ R, whence (a), and it is easy to verify (b)-(d). To prove (b), for
instance, one need only check that ¢ is the composite of the canonical
isomorphisms R* ®x M 5 M 5 Hompg(R, M). O
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Next we give some properties of chain complexes of projectives.

(8.4) Theorem. If f:P' - P is a weak equivalence between non-negative
complexes of projectives, then f is a homotopy equivalence.

ProOF. The mapping cone of f is non-negative, projective, and acyclic
(cf. 0.6). It is therefore contractible by 7.7, so f'is a homotopy equivalence by
0.7. O

Using similar methods, we will prove a closely related mapping property
of projective complexes, from which we could have deduced 8.4:

(8.5) Theorem. Let f: C' — C be a weak equivalence between arbitrary com-
plexes. If P is a non-negative complex of projectives, then

HKHomg(P, [): Homp(P, C') = Homg(P, C)

is a weak equivalence. In particular, the map [P, C] — [P, C'] induced by f is
an isomorphism.

PRrOOF. Let C” be the mapping cone of f. It is acyclic, and the mapping cone
of Homp(P,f) is Homg(P, C"); so it suffices to show that H#omg(P, C") is
acyclic, i.e., that [P, C"], = Oforallne Z Now [P, C"], = [P, £7"C"], and
the latter is zero by the uniqueness part of the fundamental lemma 7.4, since
any map on P is zero in negative dimensions. a

Finally, we prove an analogue of 8.5 for tensor products. Projectivity is
unnecessarily strong for this purpose and can be replaced by a “flatness”
hypothesis. Recall that a (left) R-module F is flat if the functor —®p, F is
exact. Free modules are flat, for example, and hence projectives are flat by
8.2(iii).

(8.6) Theorem. Let f: C' — C be a weak equivalence between complexes of
right R-modules. If P is a non-negative complex of flat left R-modules, then
f®rP:C' ®gr P — C ®p P is a weak equivalence.

PROOF. Let C” be the mapping cone of f. It is acyclic, and C” ®g P is the
mapping cone of f® P; so it suffices to show that C” ®p P is acyclic. Let
P™ be the n-skeleton of P, i.e., the truncation (P;);<,.- We will show induc-
tively that C” ® P is acyclic. Note first that C” @y F is acyclic for any
complex F consisting of a flat module concentrated in a single dimension,
since the exact sequences C;,; — C{ — C;_, remain exact when tensored
with F. But P"/P"~1 is such a complex F. So if we assume inductively
that C”" ®z P"~ 1 is acyclic, it follows from the exact sequence 0 —
C'"®g P" Vo5 C" @ P - C" @ (P™/P"" ) 50 that C" @z P" is
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acyclic. Finally, C” ®; P is the increasing union of the acyclic complexes
C” ®g P™, hence it is acyclic. a

EXERCISES

1. For what groups G is Z a projective ZG-module? [Hint: When does ¢: ZG — Z split
as a map of G-modules?]

2. If P is a projective ZG-module, show that P is also projective as ZH-module for any
H < G. [Use criterion 8.2(iii).]

3. (a) Use 8.2 to give another proof of 7.7. [According to 0.3, it suffices to show that
the surjection d,: P, —» Z,_, induced by 9, splits for all n. Assuming inductively that
.- splits, Z,_, = ker 8,_, is a direct summand of P,_,, hence it'is projective.
Therefore 9, splits.]

(b) Use the same method to show that the non-negativity hypothesis in 7.7 can be
dropped for certain rings R, e.g., for principal ideal domains. [If R is a principal ideal
domain, then submodules of a projective module are projective (in fact, free). So
Z,_, above is automatically projective and we do not need to use induction.]

4. If G is a group and X is a G-set such that all isotropy groups G, are finite, show that
the permutation module QX is a projective QG-module.

S. If G is finite and k is a field of characteristic zero, show that every kG-module is pro-
jective. [Given an exact sequence as in 8.2(ii), choose a splitting f: P — M for the
underlying sequence of k-vector spaces. Then x> (1/|G|) Z,ec @@ 'x) is a
kG-splitting.]

6. Prove the following converse of 8.3b: If P is a module such that ¢: P* ®z P —
Homg(P, P) is surjective, then P is finitely generated and projective. [Write idp =
@} f; ® e,) and show that 8.2(iv) is satisfied.]

7. Let P be finitely generated and projective. For any z € P* ®¢ P and any module M
there is a map y,: Homg(P, M) - P* ®, M, defined as follows: y,(f) is the image of
z under P*®f: P* ®z P - P* ®z M. Show that the inverse of the canonical
isomorphism ¢: P* ®z M = Homg(P, M) of 8.3b is a map of the form ¥, for some
fixed z (independent of M). [Method 1: View ¢~ ' as a natural transformation
Homg(P, —) - P* ®; —. By Yoneda’s lemma (exercise 3a of §7), ¢~ ' is uniquely
determined by what it does to id,. Moreover, the proof of Yoneda’s lemma tells you
how to describe ¢ ™! in terms of z = ¢~ !(id,), and this description says precisely that
@~ ' = y,. Method 2: Choose (e;) and (f;) as in 8.2(iv) and set z = ) f, ® e,. By
directly checking definitions, verify that . - ¢ = id and/or that ¢ - . = id.]

8. If P is finitely presented and flat, show that P is projective. [Take a finite presentation
F, - Fy > P -0 with Fy and F, free of finite rank. This gives an exact sequence
0 — P* — F* > F* of right R-modules. Tensor with P and deduce that P* ® ; P 5
Homg(P, P). Now apply exercise 6.]
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Appendix. Review of Regular Coverings

The material summarized in this appendix can be found in many algebraic
topology texts, such as Massey [1967] or Spanier [1966].

Let p: X - X be a covering map of connected, locally path-connected
spaces. A deck transformation of p is a homeomorphism g: X — X such that
pg = p- The group G of all deck transformations acts freely on X, in the sense
that g% # %forall e X and g # 1in G.

The cover p is said to be regular if it satisfies the following conditions,
which are equivalent:

(i) G acts transitively on p~'x for all x € X. [Hence X ~ X/G.]
(i) The image of n, X — m, X is normal in , X for some (and hence every)
choice of basepoints.
(iii) For any closed loop w in X, if one lift of w to X is closed, then all lifts
of w are closed.

In this case we have G ~ =, X/n, X. In particular, if X is simply connected
(so that p is the universal cover of X), then G ~ n, X.

To get an explicit isomorphism G =~ n,X/rn, X above, we must choose
basepoints x € X and % € p~'x. We then have a homomorphism ¢: n,(X, x)
— G, defined as follows: Let w: [0, 1] — X represent [w] € n,(X, x) and let
@:[0, 1] » X be the lift of w with &(0) = % Then @(1)ep~'x,and o([w]) is
defined to be the unique element of G such that

(AD) o([wDx = a(1).

One verifies that ¢ is a homomorphism, is surjective, and has kernel n, X, soit
induces the required isomorphism.

Finally, we mention a slightly different point of view which is sometimes
useful. [For our purposes this will be needed only in exercise 2 of §11.7.] Fix
an abstract group G and a connected, locally path-connected space X. By a
regular G-cover of X (also called a principal G-bundle over X) we mean a
covering map p: X — X, where X is not necessarily connected, together with
a free G-action on X satisfying condition (i) above.

In case X is connected, such a p is simply a regular cover in the usual
sense, together with an isomorphism of G with the group of deck trans-
formations.

We will assume that a basepoint x € X has been chosen and that all
covering spaces X come equipped with a basepoint X € p~ 'x. We can then
define a homomorphism ¢: 7, X — G exactly as in Al above, the only
difference being that ¢ will not be surjective if X is disconnected. In fact, one
checks easily that G/im ¢ = m, X (isomorphism of G-sets).

The main theorem on regular G-covers (with basepoint) says that they are
completely classified by ¢ € Hom(n, X, G):
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(A2) Theorem. Let €;(X) be the set of isomorphism classes of pointed, regular
G-covers of X. The assignment of ¢ to p gives a bijection

€s(X) =~ Hom(n, X, G).

(Note: Isomorphisms are required to preserve basepoints, commute with
the G action, and commute with the projection onto X.)

SKETCH OF PROOF. Using the usual classification of connected covering
spaces in terms of subgroups of n, X, one easily sees that connected, pointed,
regular G-covers correspond to surjections ¢:7, X — G. The study of
disconnected covers is easily reduced to the connected case by considering
the connected components of X. O



CHAPTER II
The Homology of a Group

1 Generalities

In homological algebra one constructs homological invariants of algebraic
objects by the following process, or some variant of it:

Let R be a ring and T a covariant additive functor from R-modules to
abelian groups. Thus the map Homg(M, N) - Hom,(TM, TN)defined by T
is a homomorphism of abelian groups for all R-modules M, N. For any R-
module M, choose a free (or projective) resolution ¢: F — M and consider the
chain complex TF of abelian groups obtained by applying T to F termwise.
Now T, being additive, preserves chain homotopies; so we can apply the
uniqueness theorem for resolutions (I.7.5) to deduce that the complex TF is
independent, up to canonical homotopy equivalence, of the choice of resolu-
tion. Passing to homology, we obtain groups H,(T F) which depend only on
T and M (up to canonical isomorphism).

This construction is of no interest, of course, if T is an exact functor; for
then the augmented complex

-+ TF; > TFy, > TM >0

is acyclic, so that H,(TF) = 0 for n > 0 and H,(TF) = TM. Thus we can
regard the groups H,(TF) in the general case as a measure of the failure of T
to be exact.

In this chapter we will apply this construction with R = ZG,M = Z, and
T equal to the “co-invariants” functor which we will describe in §2 below.
This particular choice of R, M, and T is not arbitrary, as we will see, but
rather it is a reflection of the topology which motivates the homology theory
of groups.

33



34 II The Homology of a Group

2 Co-invariants

If G is a group and M is a G-module, then the group of co-invariants of M,
denoted Mg, is defined to be the quotient of M by the additive subgroup
generated by the elements of the form gm — m (g € G, m € M). Thus M is
obtained from M by “dividing out” by the G-action. (The name “co-in-
variants” comes from the fact that M; is the largest quotient of M on which G
acts trivially, whereas M, the group of invariants, is the largest submodule of
M on which G acts trivially.) In view of exercise 1a of §1.2, we can also describe
M as M/IM, where I is the augmentation ideal of ZG and IM denotes the
set of all finite sums Y a;b; (a; € I, b, € M).
Still another description of M is given by:

@1 M = Z ®6 M.

Here, in order for the tensor product to make sense, we regard Z as a right
ZG-module (with trivial G-action). To prove 2.1, note that in Z ®z; M we
have the identity ] ® gm = 1-g ® m = 1 ® m; hence there is a map M; —
Z ®z6 M given by m— 1 ® m, where m denotes the image in Mg of an
element m € M. On the other hand, using the universal property of the tensor
product, we can define a map Z ®,; M —» Mg by a ® m— am. These two
maps are inverses of one another.

In view of 2.1 and standard properties of the tensor product, we im-
mediately obtain the following two properties of the co-invariants functor:

(2.2) Right-exactness: Given an exact sequence M'-> M —» M" -0 of
G-modules, the induced sequence M; - M; — M¢ — 0 is exact.

(2.3) If Fis a free ZG-module with basis (¢;), then F is a free Z-module with
basis (¢;).

Finally, we note that the co-invariants functor arises naturally in the
topological setting of §1.4:

(2.4) Proposition. Let X be a free G-complex and let Y be the orbit complex
X/G. Then C (Y) = C(X)g-

PrOOF. The projection C,(X) —» C,(Y) induces by passage to the quotient
amap ¢: C (X)g = C,(Y). Now C,(X)¢ has (by 2.3 and the observations in
§1.4) a Z-basis with one basis element for each G-orbit of cells of X. But C(Y)
also has a Z-basis with one element for each G-orbit of cells of X, and it is
clear that ¢ maps a basis element of C,(X)s to the corresponding basis
element of C,(Y), hence ¢ is an isomorphism.

EXERCISES
1. If S is an arbitrary G-set, show that (ZS); ~ Z[S/G].

2. The freeness hypothesis in 2.4 is unnecessarily strong. Find a weaker hypothesis under
which the conclusion remains true. [Hint: Use exercise 1.]
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3. Let H be a normal subgroup of G and let M be a G-module.
(a) Show that the action of G on M induces an action of G/H on M,,.
(b) Show that M ~ (My)gn-

(c) Show that My ~ Z[G/H] ®,c M as G/H-modules. (Here the right-translation
action of G on Z[G/H] is used to form the tensor product, and the left-translation
action of G/H on Z[G/H] is used to give the tensor product a G/H-module structure.)

3 The Definition of H,G

Let Gbeagroupand e: F — Z a projective resolution of Z over ZG. We define
the homology groups of G by

H,G = H(F).

As we explained in §1, the right-hand side is independent of the choice of
resolution, up to canonical isomorphism. For example, suppose G is a finite
cyclic group of order n. Using the resolution

8726526552620

of 1.6.3, we obtain for F; the complex

. 5z5725%72
Thus
Z i=0
3.1
(3-1) H,Gx~{Z, iodd
0 ieven,i>0.

The reader is invited to similarly compute the homology of a free group (cf.
1.4.3) or a free abelian group of rank 2 (cf. §1.4, exercise 3). We will treat these
examples topologically in the next section.

For any group G we can always take F to be the standard resolution
(§L.5), in which case we write C,(G) for the chain complex F. Using 2.3 and
the formula 1.5.1, we can describe C,(G) explicitly, as follows: Define an
equivalence relation on the (n + 1)-tuples (go, ..., g, (9, € G) by setting
(9os---+9n) ~ (9o, - --»99gs) for all geG, and let [gg,...,g,] denote the
equivalence class of (g, - . ., g,). Then C,(G) has a Z-basis consisting of the
equivalence classes [go,...,d,), and 0:C,(G)— C,_,(G) is given by
0= Y10 (—1)d;, where

dilgo,---»9a) = [90> -+ Gis---» gu):

C.(G), when described in this way, is often called the homogeneous chain
complex of G, because of the analogy with homogeneous coordinates for
projective space.
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The non-homogeneous description of C,(G) is obtained by using the bar
notation and the formula 1.5.2. From this point of view C,(G) has a Z-basis
consisting of n-tuples [g,|---|g,), and 8 = Y-, (—1)'d;, where

[g21---1ga] i=0
dilg.|---19.) = 10911 - 19igi+1]---1ga] O <i<n
(911 1gn-1] i=n

Note that the symbol [g,]:--|g,], which previously was used to denote a
typical ZG-basis element of F,,, now denotes the image of that basis element in
(F,)¢ = C,(G). This abuse of notation, which is standard, might occasionally
causeconfusion. Thereader is alsowarned that some authors write[g,, . . . , g,]

or (gh R gn) instead of [gl l e Ign]
In low dimensions C,(G) has the form

C,(G) 3 C,(G) > Z,

where d[g|h] = [h] — [gh] + [g]. Consequently, H,G = Z and H,G is
isomorphic to the abelianization G,, = G/[G, G]. (Explicitly, if we denote by
g the homology class of the cycle [g], the reader can easily check that there is
an isomorphism H,G — G,, such that g — g mod [G, G].)

EXERCISES
1. Letg,,..., g, be nelements of G which pairwise commute, and let
2= (=" [gory] - |9om]
in C,(G), where o ranges over all permutations of {1, ..., n}. (If n = 2, for example,

2z = [g,192] — [921g9,].) Verify that z s a cycle. [Such cycles play an important role in
the homology theory of abelian groups, as we will see in Chapter V.]

2. If G is a non-trivial finite cyclic group, show that Z does not admit a projective resolu-
tion of finite length over ZG.

3. If G has torsion (i.e., non-trivial elements of finite order), show that Z does not admit a
projective resolution of finite length over ZG. [Hint: This follows from exercise 2.]

4 Topological Interpretation

If Y is a K(G, 1)-complex with universal cover X, then we know (1.4.2) that
C.(X)is a free resolution of Z over ZG. Since C(X)g = C,(Y) by 2.4 above,
we obtain:

(4.1) Proposition. If Y is a K(G, 1)-complex then H,G ~ H, Y.
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[In some treatments of the homology theory of groups, this result is taken
as the definition of H, G, as we indicated in the introduction.]

EXAMPLES

1. Let Y be a bouquet of circles, indexed by a set S. Then, as we saw in
14.3, Y is a K(F(S), 1). Hence

z i=0
H(F(S)) = H;Y = {ZS(=F(S)p) i=1
0 i>1

2.Letgbeaninteger >1andletG = (a,, ..., a,,b,, ..., b, [[¢=, [a:, b,
ie,Gisthegroup with generatorsa,, ..., a,, by, . .., b,and the single defining
relation [[f-, [a;, b;] = 1. Thus G is the fundamental group of the closed
orientable surface Y of genus g (cf. Massey [1967], ch. 4, §5), and I claim that
Y is a K(G, 1). To see this, we need only note that the universal cover X of Y
is a non-compact surface, since G is infinite. Consequently, one knows from
the homology theory of manifolds (cf. Dold [1972], ch. VIIL, §3) that H, X = 0
fori > 2,50 Y is a K(G, 1). [Alternatively, one can explicitly exhibit X as the
hyperbolic plane tiled by 4g-sided polygons (cf. Siegel [1971], ch. 3, §9), hence
X is contractible.] Thus

z i=0,2
HG=HyY={z% i=1
) 0 i>2
The interested reader can similarly treat the group {c,, ..., ¢; [[=; ¢?>

(k = 2), which is the fundamental group of the non-orientable closed surface
with k crosscaps. Finally, we remark that non-compact surfaces and surfaces
with boundary are also easily seen to be K(G, 1)’s, but we obtain no new
examples in this way since the fundamental groups are free.

3. The surface groups just considered are examples of one-relator groups.
Suppose now that G = {S; r) is an arbitrary one-relator group, i.e., G is the
quotient of a free group F(S) by the normal closure of a single element r. Let Y
be the 2-complex (\/,s Si) |, e* obtained from the bouquet of circles \/S;
by attaching a 2-cell via the map S' — \/S! corresponding to r. Then
n,Y = G (cf. Massey [1967], ch. 7, §2). If r is not a power u”" (n > 1) in F(S),
then a deep theorem of Lyndon implies that Y is a K(G, 1); proofs can be
found in Lyndon [1950], Dyer-Vasquez [1973], and Lyndon-Schupp [1977]
(ch. I1I, §§9-11). (If r is a power, on the other hand, then one can show that G
has torsion, so that there cannot exist a finite-dimensional K(G, 1), cf.
exercise 3 of §3 above.) The chain complex C, Y is easily seen to have the form

23725372
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where (1) is the image of r in ZS = F(S),,. Hence H,G = Z, H,G = G,

_Jz ifre[F(S), F(S)]
H,G = {0 otherwise,

and H;G =0fori > 2.

4.1f G = Z", the free abelian group of rank n, then the n-dimensional torus
Y = S! x --- x S (n factors) is a K(G, 1) since its universal cover R" is
contractible. Hence H;G is a free abelian group of rank (}) = n!/i!(n — i)'

Example 4 can be described in terms of the embedding of the group G = 2"
as a discrete subgroup of the Lie group L = R". Indeed, the K(G, 1) Y =
S' x -+ x §' is simply the quotient L/G. Our remaining examples will
further illustrate this method of constructing K(G, 1)’s. These examples will
require somewhat more effort to read than the previous ones, and they will
not be referred to again until Chapter VIII; the reader may therefore want to
simply glance at them now and read them more carefully later.

5. Let G be the n x n strict upper triangular group over Z, i.e., G is the
group of n x n integral matrices with 1’s on the diagonal and 0’s below the
diagonal. Let L be the n x n strict upper triangular group over R. Then G isa
discrete subgroup of L, and we can form the coset space L/G. Since G is
discrete, the projection L — L/G is a covering map. Indeed, let U be a neigh-
borhood of 1 in L such that U n G = {1}, and let V be a neighborhood of 1
such that ¥ ="'V < U. Then for any [ € L, the neighborhood W = [V of | has
the property that its transforms Wy (g € G) are disjoint; our assertion follows
at once. Finally, L is obviously homeomorphic to Euclidean space R?,
d = n(n — 1)/2, so the manifold L/G is a K(G,1) and H,G =~ H_(L/G).
[Strictly speaking, we should verify that L/G admits a CW-structure, since
4.1 was proved only for K(G, 1)-complexes. This is in fact true by Whitehead’s
triangulation theorem for smooth manifolds (cf. Munkres [1966], ch. II), but
an easier way to deal with the problem is to simply observe that the proof of
4.1 goes through with no difficulty in the context of singular homology theory;
see exercise 1 below.]

6. Let L be the Lie group GL,(R). In contrast to the Lie groups considered
in examples 4 and 5, L is not contractible. Nevertheless, there is a contractible
manifold X associated to L which can be used to study the homology of
discrete subgroups of L. In order to describe X, we need to recall some ele-
mentary linear algebra.

Recall that a quadratic form on R" is a function Q: R" — R of the form

Q(xl, ceey x,,) = Z a;jXiXj.
i,j=1
The matrix 4 = (a;;) can be taken to be symmetric, and it is then uniquely
determined by Q. We will often identify Q with A. The form Q and the matrix
A are called positive definite if Q(x) > 0 for all x # 0in R". The set of positive
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definite symmetric matrices is a convex open subset of the space of all
symmetric n X n matrices.

We now define X to be the space of positive definite quadratic forms on R",
topologized as a subspace of the space of symmetric n x n matrices. It is clear
from what we have said above that X is a contractible manifold of dimension
d = n(n + 1)/2.[Infact, X ~ R%]Thereisarightactionof L = GL,(R)on R"
by right matrix multiplication (where an element of R" is thought of as a row

vector), and this induces a left action of L on X, said to be given by “change of
variable”:

9Q)(x) = Q(xg)

forQ e X,g € L, x € R". [In terms of symmetric matrices, this action takes the
form

g-A=gAg,

where g' is the transpose of g.] It is well-known that any Q € X is equivalent
under change of variable to the standard form @, = )’ x7, so the action of L
on X is transitive. Moreover, the isotropy group Ly is the orthogonal group
K = 0,(R). We therefore have a bijection

X =L/K

of left L-spaces, which can be shown to be a homeomorphism.

Since K is compact, it follows that the action of L on X is proper, i.e., that
the following condition is satisfied: For every compact set C < X, {geL:
gC n C # &} is acompact subset of L. [This says, roughly speaking, that the
transforms gC of any compact set C tend to co in X as g — oo in L.]

Suppose now that G is a discrete subgroup of L. Then for any compact
Cc X,{geG:gC n C +# &} is finite. One deduces easily that the isotropy
group G, of any x € X is finite and that x has a neighborhood U such that
gUnNnU=gforgeG — G,.

Finally, suppose further that G is torsion-free. Then the finite isotropy
groups G, must be trivial, and it follows at once that the projection X — X/G
is a regular covering map with group G. Thus X/G is a K(G, 1) and H,G ~
H (X/G).

This discussion does not apply to GL,(Z), the most obvious discrete sub-
group of GL,(R), because it is not torsion-free. But GL,(Z) does have torsion-
free subgroups G of finite index (cf. exercise 3 below), and our discussion
applies to them. Unfortunately, it is extremely difficult in practice to actually
compute H (X/G).

7.Consider now the special linear group SL,(R) = {g e GL,(R):detg = 1}.
We can then replace the space X of example 6 by a contractible manifold X,
on which SL,(R) acts properly, with dim X, = dim X — 1. Namely, we take
X, to be the quotient space of X obtained by identifying two quadratic forms
which are (positive) scalar multiples of one another. One can verify that

XO X SL,,(R)/SO,,(R),
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so that the SL (R)-action on X, is proper, SO,(R) being compact. Moreover,
X, is a contractible manifold; in fact, the interested reader can verify that X,
is diffeomorphic to Euclidean space of dimension n(n + 1)/2 — 1. As in
example 6, then, we have H,G ~ H (X,/G) for any discrete, torsion-free
subgroup G = SL,(R). We note that if n = 2 the space X, can be identified
with the upper half plane # < C, with SL,(R) acting by linear fractional

transformations:
a b ;= az+b
c d° cz+d

Indeed, one checks that this defines a transitive action of SL,(R) on 5# and
that the isotropy group at z = i is SO,(R); this leads easily to the desired
homeomorphism

# ~ SLy(R)/SO5(R) ~ X,.

8. Finally, we state the general facts which were illustrated in the previous
examples. Let L be a Lie group with only finitely many connected components.
Then L has a maximal compact subgroup K (unique up to conjugacy), and
the homogeneous space X = L/K is diffeomorphic to R%,d = dim L — dim K.
(Proofs can be found, for example, in Hochschild [1965], ch. XV.) Con-
sequently, if G = L is a discrete, torsion-free subgroup, then the quotient
manifold X/G is a K(G, 1) and H,G = H_(X/G).

EXERCISES

1. Let Y be a path-connected space. If Y has a contractible, regular covering space X with
covering group G, show that H,Y ~ H,G. [Hint: The singular chain complex
C:i"(X) provides a free resolution of Z over ZG and Ci"(X); =~ Ci"(Y).]

2. (This exercise requires some elementary homotopy theory.) Let Y be a K(G, 1)-space,
i.e., a path-connected space withn,Y = Gandn;Y = Ofori > 1. ProvethatH, Y =
H,G. [Hint: This is clear if Y is a CW-complex; in the general case, replace Y by a
CW-complex which is weakly homotopy equivalent to Y, cf. Spanier [1966], §7.8.
Alternatively, one can directly construct a chain homotopy equivalence C5"(Y) ~
C, G, cf. Eilenberg-MacLane [1945].] Note that exercise 1 is a special case of the
present exercise.

3. Fix an integer n > 1. For any integer N > 2, let I'(N) be the kernel of the canonical
map GL,(Z) - GL(Z/NZ),i.e,I'(N) = {ge GL(Z): g = 1 mod N}, where | denotes
the identity matrix. The group I'(N) is called the principal congruence subgroup of
GL,(Z) of level N. Note that I'(N) has finite index in GL(Z), since GL(Z/NZ) is
finite. The purpose of this exercise is to prove that ['(N) is torsion-free for N > 3.

(a) Let p be a fixed prime and let A be an n x n matrix of integers such that 4 =
1 mod p. If 4 # 1, then there is a unique positive integer d = d(A) such that

A=1modp’ and A # 1 modp'*'.
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Show that d(A4%) = d(A) for any prime g # p. If p is odd or d(A) > 2, show that
d(A?) = d(A) + 1. [Hint: Write A = 1 + p’B with B # 0 mod p, and look at the
binomial expansion of (1 + p’B), | = por q.]

(b) Deduce that I'(N) is torsion-free for N > 3 and that I'(2) has only 2-torsion.
[Hint: Suppose A € I'(N) has prime order, and apply (a) with p a prime divisor of N.]

5 Hopf’s Theorems

The purpose of this section is to prove the results stated as 0.1 and 0.2 in the
introduction. We will need to use the Hurewicz theorem (cf. Spanier [1966],
ch. 7, §5), which says that if 7; X = O for i < n (where n > 2), then H;X =0
for 0 < i < n and the Hurewicz map h: n, X — H, X is an isomorphism. (In
fact, an examination of our proofs will show that we only need the surjectivity
of h, which is considerably easier to prove; indeed, it follows directly from
Spanier’s Thm. 7.4.8.)

We begin by observing that for any group G and integer n one can com-
pute H;G for i < n + 1 from a partial projective resolution of length n:

(5.1) Lemma. Let F,—»---— F,— Z — 0 be an exact sequence of ZG-
modules where each F is projective. Then H;G ~ H{Fg) for i < nand there is
an exact sequence

0 - Hn+l(G) - (HnF)G i Hn(FG) g Hn(G) i 0

ProOF. Extend F to a full resolution F* by choosing a projective module
F, ., mapping onto H,F, etc.:
oo F o> F > F,>F,_ > -5 F,»>Z-0.
Y S
H,F

It is easy to see (either by direct inspection or by considering the homology
exact sequence associated to the exact sequence 0 » Fg —» F¢ = F¢/Fg — 0
of chain complexes) that H{F¢) = H(F;) for i < n and that there is an
exact sequence

0 - Hn+l(F$) g A i Hn(FG) e Hn(FE) - 05
where A = coker {(F,, ;)¢ = (Fi.1)c}- By 2.2 this cokernel can be identified
with (H, F)g, whence the lemma. O

(5.2) Theorem. For any connected CW-complex Y there is a canonical map

Yy:H,Y->Ha(n=mnY) If ;Y =0 for 1 <i<n (for some n>2)

then y is an isomorphism H;Y > H;= for i < n, and the sequence
n,YSHYSYHn-0

is exact.
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(Note that the hypothesis always holds with n = 2, so 5.2 yields the result
0.1 stated in the introduction.)

PROOE. Let X be the universal cover of Y and let F be a projective resolution of
Z over Zn. Since C,(X) is a complex of free Zz-modules augmented over Z,
the fundamental lemma (1.7.4) gives us a chain map (over Z=n) C,(X) — F,
well-defined up to homotopy. Taking co-invariants we obtain a map C,(Y)
— F,, which induces the desired map y: H,Y — H,n. One knows that
;X 5 n; Y fori > 1(cf. Spanier [1966], 7.3.7), so our hypothesis implies that
n; X = 0 for i < n. Hence H;X = 0 for 0 <i < n and the Hurewicz map
h: n,X — H, X is an isomorphism. We therefore have a partial free resolution

Ci(X) = -+ = Co(X) > Z -0,

whose n-th homology group is the group Z, X of n-cycles of X. Lemma 5.1
now implies that H;Y = H;n for i < n and that there is an exact sequence

Z,X->Z,Y% H,n—0.

The map ¥ which arises here is easily seen to be the composite Z,Y —
H,Y A H,n. Consequently the sequence

HX-H,Y%Hn-0
is exact, and the desired exact sequence

Y SHYSHn-0
now follows from the diagram

n,X—— H,X

1

n,Y —— H,Y. O
We turn now to formula 0.2 of the introduction.

(5.3) Theorem. If G = F/R where F is free, then H,G ~ R n [F, F)/[F, R].

PROOF. Let F = F(S), let Y be a bouquet of circles indexed by S, and let ¥ be
the connected regular covering space of Y corresponding to the normal sub-
group R of F(S) = n, Y. Choosing a basepoint i in ¥ lying over the vertex of
Y, we identify G = F/R with the group of covering transformations of ¥ asin
Chapter I, Appendix, Al. For any f € F we regard f as a combinatorial path
in Y and we denote by f the lifting of f to ¥ starting at #. [By a combinatorial
path in a CW-complex we mean a sequence ey, .. ., e, of oriented 1-cells such
that the initial vertex of e;, , is equal to the final vertex of ¢; fori = 1,...,
n — 1.] This path f; then, ends at the vertex /5, where f is the image of f in G.
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The complex C, ¥ is a complex of free ZG-modules, and it provides a
partial resolution C,¥ - Co¥ — Z — 0. We can therefore apply 5.1 to
obtain H,G = ker{(H,Y); - H,Y}. Now H,Y = (n,¥),, ~ R, and I
claim that the composite isomorphism H, ¥ ~ R, is an isomorphism of G-
modules, where the G-action on R, is induced by the conjugation action of F
on R. [This makes sense because the conjugation action of R on itself induces
the trivial action of R on R,,.] To verify the claim, one checks the definitions
and finds that the isomorphism R, = H, ¥ is induced by amapd:R — H,Y
defined as follows: For any r € R the lifting 7 is a closed path in ¥; taking the
sum of the oriented 1-cells which occur in 7, we obtain a 1-cycle in ¥, hence an
element of H, ¥, and this element is by definition dr. Now if f € F and r e R,
the lifting of frf ~! is the path

f VG [

o —0 9
5 fo fo 5

hence d(frf ') = fdr. This shows that the isomorphism R,, 3 H,¥ is an
isomorphism of G-modules, as claimed.
We therefore have a diagram

(H,¥)¢ = (Rw)s = R/[F,R]

]

HlY X Fnb =F/[F’F]

where the second and third vertical arrows are induced by theinclusionR ¢ F.
Hence H,G = ker{R/[F, R] - F/[F, F1} = Rn [F, F]/[F, R]. a

(The G-module R,, which occurred in the above proof is called the
relation module associated to the presentation of G as F/R.)

Note that the chain complex C, ¥ can be described explicitly, exactly as in
1.4.3. We therefore obtain, as a corollary of the above proof, the following
result:

(5.4) Proposition. If G = F(S)/R then there is an exact sequence
0-5R, 2269526520

of G-modules, where ZG' is free with basis (e)ses, and de; = § — 1.

(Here 5, as usual, denotes the image of s in G.)

The map 6 which occurs here has been described explicitly in the proof of
5.3 in terms of path lifting. We will see in exercise 3d below that 8 can also be
described purely algebraically, in terms of the “free differential calculus.”
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Remarks

1. It is possible to give an algebraic proof of 5.4 (see exercise 4d of §IV.2)
and then deduce Hopf’s formula 5.3 directly from 5.4.

2. Hopf’s formula suggests that, roughly speaking, H,G consists of
commutator relations [] [a;, b] = 1 in G, modulo those relations that hold
trivially. See C. Miller [1952] for a precise formulation and proof of this
statement.

EXERCISES

1. Inthesituation of 5.2, suppose in addition that Y is n-dimensional; prove that there is
an exact sequence

O-H,,y;n—>(n,Y),—»HY->Hrn-0.

Here (n, Y), makes sense because = acts on =, Y, cf. Spanier [1966], ch. 7, sec. 3; this
action corresponds to the obvious action of = on H, X (X = universal cover of Y)
under the isomorphism n,Y & n, X 5 H,X. [Remark: Without any dimension
restrictions on Y one can prove that there is an exact sequence

Hn+ly—'Hn+l7t—’(7tnY)x—'HnY_'Hnn_'o'

This will be proved in exercise 6 of §VIL.7 by a spectral sequence argument; the
reader may want to try to give a direct proof now.]

2. Let G =(S;r,ry,...0, 16, G = F(S)/R where R is the normal closure in F(S) of
rypra,....

(a) Show that the relation module R, is generated (as G-module) by the images of
ryyra,ee..

(b) Show that these elements freely generate R,, as ZG-module if and only if the 2-
complex associated to the given presentation of G is a K(G, 1). (By the 2-complex
associated to the presentation we mean the complex (\/,s S )., e} (), 30 -+,
where the 2-cell ef is attached to \/S! by the map S' — \/S; corresponding to
riem,(\/S:) = F(S).) Thus, for example, Lyndon’s theorem about one-relator
groups G = (S; r) which we stated in example 3 of §4 can be interpreted as saying
that R, is freely generated by the image of r, provided r is not a power. (It is in this
form, in fact, that Lyndon stated and proved his theorem.)

*(c) Let G = (S; r) be an arbitrary one-relator group and write r = u" in F(S),
where n > 1 is maximal. One can show (cf. Lyndon-Schupp [1977],1V.5.2) that the
image t of u in G has order exactly n, and we denote by C the cyclic group of order n
generated by ¢. If n > 1 then R,, is not freely generated by r mod [R, R], since this
generator is clearly fixed by C. But Lyndon [1950] proved that no other relations
hold, i.e., that the obvious surjection Z[G/C] — R,, is an isomorphism. Show that
this result can be interpreted topologically, as follows. Let ¥, ¥, and & be as in the
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proof of 5.3 and consider the lifting 7 of the loop r in Y. Since r = u" and i ends at
ti, 7 is the composite path pictured schematically as follows:

Thus the map S* — ¥ corresponding to 7 is compatible with the action of the cyclic
group C, where C acts on S! as a group of rotations as in §1.6. Deduce that we can
form a 2-dimensional G-complex X by attaching 2-cells to ¥ along the loops gF,
where g ranges over a set of representatives for the cosets G/C; if o is the 2-cell
attached along 7, then the isotropy group G, is equal to C, with C acting on g as a
group of rotations. Show that Lyndon’s theorem about R, stated above is equivalent
to the statement that X is contractible. [Note: In the terminology of Lyndon-Schupp
[1977], ch. 111, X is the Cayley complex associated to the presentation {S; r).]

3. In this exercise you will construct the Fox “free derivatives” by using the ideas
introduced in the proof of 5.3. See the exercises in §IV.2 for a purely algebraic treat-
ment of the same results. If G is a group and M a G-module, then a derivation (or
crossed homomorphism) from G to M is a function d: G - M such that d(gh) =
dg + gdhfor allg, heG.

(a) Let the notation be as in 5.3 and its proof. Show that the definition of dr given in
that proof can be used (almost verbatim) to define a function d: F — C, ¥ which
satisfies d(f, /) = df, + fidf,forall f,, f, € F. Thus if we regard the G-module C, ¥
as an F-module via the canonical homomorphism F — G, then d: F—» C,Y is a
derivation.

(b) For any free group F = F(S), show that there is an F-module Q which admits a
derivationd: F — Q such that Qis a free ZF-module with basis (ds),.s. [Hint: Apply
(a) with R = {1}.] We call df for f € F the total (free) derivative of f. The coefficient
of ds when df is expressed in terms of the basis (ds) is called the partial derivative of f
with respect to s and is denoted 9f /ds; thus df = Y, (9f/0s)ds, where df /0s € ZF.
Show that 8/ds: F — ZF is a derivation and satisfies dt/ds = d, , (t € S). These
properties completely characterize d/0s. (For example, if S = {s, t}, you should be
able to use these properties to compute d(ts ™ 'ts2)/s.)

(c) With F as in (b), show that any derivation d: F — M, where M is an F-module,
satisfies df = Y, . 5 (9f /0s)ds.

(d) Show that the map 0: R,, » ZG* in 5.4 is induced by the map R — ZG* given
by r— Y s (3r/0s)e, where 0r/ds is the image of dr/0s under the canonical map
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ZF — ZG. If R is the normal closure of a subset T < F, deduce that there is a partial
free resolution

26" 32694826520

such that the matrix of 9, is the “Jacobian matrix” (9t/3s),c 1 ses-

. Let G = F/R asin 5.3. The purpose of this exercise is to establish explicit formulas for

the isomorphism ¢: H,G 3 R n [F, F]/[F, R] and its inverse, where we view H, G
as the second homology group of the standard chain complex C,(G).

(a) Exhibit a specific chain map in dimensions <2 from the bar resolution to the
partial resolution

) ZG® - C, ¥ > Co ¥ -7 -0,

where Y is as in the proof of 5.3. (Here ZG'® is a free module with basis (e,), ¢ x; it
maps onto R,, = H, ¥ = C, ¥in the obvious way.) Deduce that ¢ can be computed
as follows: Choose for each g € G an element f(g) € F such that f(g) = g. Given
g, he G, write f(g)f(h) = f(gh)r(g, h) where r(g, h) € R. Then there is an abelian
group homomorphism C,(G) — R,, given by [g|h] s r(g, h) mod [R, R], and this
induces the isomorphism ¢: H,G — R n [F, F]/[F, R] by passage to subquotients.

(b) Exhibit a chain map from (*) to the bar resolution, and deduce that ¢ ™' can be
computed as follows: Let D: F — C,(G) be the unique derivation such that Ds =
[1]5] for each free generator s € S, where the group C,(G) is regarded as an F-module
by f - [g|h] = [fg|h]. (Explicitly, Df = Y ,.s [/s|5], where the symbol [-|-] is
understood to be Z-bilinear.) Then (D|R): R — C,(G) is a homomorphism which
induces ¢ ~! by passage to subquotients.

(c)Letay,...,a,,by,..., b,beelements of F such that the element r = []f-, [a;, b
is in R. Then ¢~ !(r mod [F, R]) is represented by the cycle
[
Z {[1;-,1a] + [1;-,a|b] — [1;-,a;b,a; '1a;] — 1151},
i=1

where I, = [a,,b,]---[a;, b;]. [Hint: It suffices to prove this in the universal
example where F is thefree grouponay, ..., a,,b,, .. ., byand R is the normal closure
of r. In this case, ¢~ !(r mod [F, R]) is easily computed by the formula of (b).]

. (a) Let G be a group which admits a presentation with n generators and m relations.

Let r =rkz(G,) = dimg(Q ® G,,). Prove that the abelian group H,G can be
generated by m — n + r elements. [Hint: Let Y be the 2-complex associated to the
presentation. Computing the Euler characteristic Z(Y) in two different ways, one
findsl —n+m=1-rk(H,Y) + tk(H,Y) =1 — r + rk(H, Y),whencerk(H, Y)
=m —n + r. Now H, Y is a free abelian group, being a subgroup of the group of
cellular 2-chains of Y, and we have a surjection H,Y —» H,G.]

Parts (b) and (c) below illustrate typical applications of (a).

(b) Let G be a perfect group (i.e., a group such that G,, = 0) which admits a finite
presentation with the same number of generators as relations. Prove that H, G = 0.

(c) Let G be a perfect group such that H,G = Z, @ Z,. Show that any n-generator
presentation of G must involve at least n + 2 relations.
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6.

*71.

(a) By a group extension we mean a short exact sequence 1 + N - G - Q — 1 of
groups. Deduce from Hopf’s formula that such an extension gives rise to a 5-term
exact sequence

HzG:‘HzQ—”(HtN)Q‘Z’HnG—o'HlQ"'O,

where the Q-action on H;N = N, is induced by the conjugation action of G on N,
and y and é are induced by the maps N & G - Q. [Hint: Write G = F/Rand Q =
F/S, where R < S < F. The desired sequence is then

Rn[F,F]1 Sn[F,F] N G G
- e - - e
which is easily proved to be exact.] Remark: We will give another derivation of this
5-term exact sequence, and a generalization of it, in §VIL.6. It has interesting applica-
tions to the study of the lower central series, due independently to Stallings [1965a]

and Stammbach [1966]. See also Stammbach [1973], Chapter IV, for further develop-
ments along these lines. :

01

(b) Conversely, show that Hopf’s formula can be deduced from the 5-term exact
sequence. [Apply (a)to 1 = R =+ F = G — 1 and recall that H,F = 0.]

(a) Recall that the 3-sphere S* has a group structure. [It is the multiplicative group of
quaternions of norm 1.] If G is a finite subgroup of S*, deduce from the results of this
section that H,G = 0. [Hint: $3/G is a closed, orientable 3-manifold with finite
fundamental group, hence H,(S3/G) = 0.] Remark: A list of the groups G to which
this applies is given in Wolf [1974] and recalled briefly in example 2 of VI.9.2 below.
We will also be able to give there a more elementary solution of the present exercise,
cf. exercise 3 of §VI.9.

(b) One of the most interesting groups to which (a) applies is the “ binary icosahedral
group.” This is a group G of order 120 which maps onto A4, the alternating group on
5 letters, with central kernel of order 2. Moreover, G is perfect. Using these facts, the
result of (a), and the 5-term exact sequence, deduce that H,(A4s) = Z,.

() (R. Strebel) It is known that A admits the presentation {x, y,z;x? = y? = z° =
xyz = 1).Consider now the abstract group G = (x, y, z; x* = y> = z* = xyz),and
let C be the cyclic subgroup of G generated by the central element x2 = y* = 2% =
xyz of G. Thus G/C = As. Determine the order of C and hence that of G. [Hint:
From the given presentation of G you can show that G is perfect, hence H, G = 0 by
exercise 5b above. The 5-term exact sequence now yields H,(4s) 3 H,(C) = C,s0C
has order 2 and hence G has order 120. In fact, with a little more work you can show
that G is the binary icosahedral group.] Similar methods can be used to analyze
other abstract groups defined by presentations closely related to presentations of
known groups. You might look, for instance, at some of the examples in Coxeter-
Moser [1980] in connection with Miller’s generalization of the polyhedral groups;
the treatment there can be simplified by the use of the method of the present exercise.

Remark. It is clear from this exercise that H, is closely related to the theory of central
extensions. It would be possible to develop this connection systematically on the
basis of Hopf’s formula and the 5-term exact sequence, but we will instead deduce it
from the general theory of group extensions, to be discussed in Chapter IV. See
exercise 7 in §IV.3.
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6 Functoriality

The standard chain complex C,(G) is clearly functorial in G, hence H G is a
(covariant) functor of G. This functoriality can also be described in terms of
arbitrary resolutions, as follows: Given a homomorphism «: G - G’ and
projective resolutions F and F’ of Z over ZG and ZG', respectively, we can
regard F’ as a complex of G-modules via a. Then F’ is acyclic (although not
projective, in general, over ZG), so the fundamental lemma (1.7.4) gives us an
augmentation-preserving G-chain map t: F — F’, well-defined up to homo-
topy. The condition that 7 be a G-map is expressed by the formula

6.1 (gx) = a(g)t(x)

for g € G, x € F. Clearly t induces a map F; — Fg., well-defined up to homo-
topy, hence we obtain a well-defined map o,: H,G - H,G'.

(6.2) Proposition. Fix go€ G and let a: G — G be given by a(g) = go995 '
Thena,: H,G - H,G is the identity.

PROOF. Let F be a projective resolution of Z over ZG and define 7: F — F by
1(x) = gox. Then T commutes with the boundary operator and satisfies 6.1, so
7 can be used to compute «, . But clearly T induces the identity map on Fjg,
whence the proposition. O

(6.3) Corollary. If G isa group and N is a normal subgroup, then the conjugation
action of G on N induces an action of G/N on H_N.

EXERCISES

1. Given N< G asin 6.3, let F be a projective resolution of Z over ZG and consider the
complex Fy. Then Fy is a complex of G/N-modules (§2, exercise 3a), hence H (Fy)
inherits an action of G/N. Show that H (Fy) = H,N and that the resulting G/N-
action on H, N agrees with that defined in 6.3. [Hint: Given g € G, the action of g on
H N can be computed via the map t: F — F given by 1(x) = gx.]

2. For any finite set A let Z(A4) be the group of permutations of 4. If | 4| < | B| (Where ||
denotes cardinality), choose an injection i: A & B and consider the injection £(A4) &
Z(B) obtained by extending a permutation of 4 to be the identity on B — i4. Show
that the induced map H,X(4) - H_X(B) is independent of the choice of i. In
particular, if | 4| = | B|, then H, Z(A) is canonically isomorphic to H, Z(B).

3. (a) Under the isomorphism H,( ) =~ ( ), of §3, show that H,(a): H,(G) » H,(G")
corresponds to the map G,, — G, obtained from a by passage to the quotient;in other
words, the isomorphism H,( ) = ( ), is natural. In particular, the action of G/N on
H,(N) in 6.3 above agrees with that defined in exercise 6 of §5. [Hint: Use the bar
resolution to compute H,(«).]
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(b) Prove the following naturality property of Hopf’s isomorphism 5.3: Suppose
G = F/Rand G' = F'/R’ with F and F' free, and suppose a: G — G’ liftsto&: F — F'.
Then the diagram

Hy(G) = R n[F, FY/[F,R]

4

H,(G) ~ R n[F, F)/[F,R]
commutes, where the right-hand vertical arrow is induced by &. [Hint: Let Y and ¥ be
associated to the presentation G = F/R as in the proof of 5.3, and similarly let Y’ and
¥’ correspond to G’ = F'/R". Thendyieldsamap Y — Y’, which yieldsa map C,(¥)—

C,(Y"), which can be extended to a map t of resolutions, which can be used to compute
Hy(«).]

Remark. This exercise allows one to interpret in terms of the functoriality of H, and H,
three of the four maps which occur in the 5-term exact sequence of exercise 6 of §5.

7 The Homology of Amalgamated Free Products

As an illustration of the topological interpretation of group homology, we
will derive in this section a Mayer-Vietoris sequence for computing the
homology of an amalgamated free product. We begin by reviewing the
necessary group theory.

Suppose we are given groups G,, G,, and A and homomorphisms «,:
A - G,and a,: A — G,. Eventually we will assume further that «, and «, are
injective, so that A can be viewed as a common subgroup of G, and G,,
but for the moment we do not make this assumption. By the amalgamated
free product (or amalgamated sum, or amalgam) of G, and G, along A we mean
a group G which fits into a commutative square

A'L’Gz

(Y u.l Jﬂz

G—5— G

with the following universal mapping property: Given a group H and homo-
morphisms y;: G; = H (i = 1,2) with y,a, = y,a,, there is a unique map
@: G — H such that ¢f; = y;. We write G = G, , G, and we say that the
square 7.1 is an amalgamation diagram.

The universal property above shows that amalgamation is the group-
theoretic analogue of pasting two topological spaces together along a com-
mon subspace. The Seifert-van Kampen theorem, which the reader has
probably seen in some form, makes the analogy precise via the n, -functor. We
will need the following simple version of that theorem:
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(7.2) Theorem. Let X be a CW-complex which is the union of two connected
subcomplexes X, and X, whose intersection Y is connected and non-empty.
Then the square

Y — 1 X,

]

an, —_— T[lX

is an amalgamation diagram, where all fundamental groups are computed at a
fixed vertex y € Y and all maps are induced by inclusions. Thus

X = mX, 4,y 11 X5

This is an easy consequence of the usual combinatorial description of the
fundamental group of a CW-complex. Details can be found in Schubert
[1968], I11.5.8, or Cohen [1978], 11.2.3. See also exercise 2 below for a proof
based on covering space theory.

We can express this theorem more concisely by saying that the functor

7, : (connected, pointed complexes) — (groups)

preserves amalgamations. In order to study the homology of amalgamations
of groups, we would like to have a result going in the other direction, saying
that the “functor” K(—, 1): (groups) — (complexes) preserves amalgama-
tions. This turns out to be true as long as the maps «, and «, of 7.1 are injective:

(7.3) Theorem (Whitehead). Any amalgamation diagram 7.1 with a, and a,
injective can be realized by a diagram
Y Xz

|

Xl — X
of K(n, 1)-complexes such that X = X, u X,and Y = X, n X,.

The proof will require three elementary lemmas:

(7.4) Lemma. If «, and a, are injective then so are B, and B,.Thus G,, G,, and
A can be regarded as subgroups of G.

This is part of the “normal form theorem” for amalgamations. See, for
instance, Serre [1977a], Lyndon-Schupp [1977], or Cohen [1978].

(7.5) Lemma. Let X’ ¢, X be an inclusion of connected CW-complexes such
that the induced map ' — n of fundamental groups is injective. Let p: X — X be
the universal cover of X. Then each connected component of p~' X' is simply
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connected (hence it is a copy of the universal cover of X'). Moreover, these
"omponents are permuted transitively by the action of n on X, and n' is the
sotropy group of one of them; in other words, ny,(p~ ' X') =~ n/n’.

Proor. For any basepoint in p~ !X’ we have a diagram
n(p ' X)—— n, X

L

' — 1,

where the vertical maps are induced by p and the horizontal maps by in-
clusions. Since n, X = {1}, the first assertion follows at once. The second
assertion, which we will not make serious use of, is left as an exercise for the
interested reader. O

(7.6) Lemma. Any diagram G, «— A — G, of groups can be realized by a
diagram X, « Y o X, of K(n, 1)-complexes.

PROOE. According to exercise 4 of §1.4 or exercise 3 of §1.5, K(n, 1)-complexes
can be constructed functorially. We can therefore realize the group homo-
morphisms by cellular maps X, « Y — X, of K(=, 1)’s. Taking mapping
cylinders if necessary (cf. Spanier [1966], 1.4), we can make these maps
inclusions. a

PROOF OF 7.3. Start with X, © Y ¢, X, as in 7.6 and form the adjunction
space X = X, Uy X,,i.e., X is obtained from the disjoint union X, [ [ X, by
identifying the two copies of Y. Then n, X = G, *, G, = G by 7.2, s0 we need
only show that the universal cover X satisfies H; X = Ofori > 1.Let X, X,
and Y be the inverse images of X, X,,and Y in X. Since X, X,,and Y have
acyclic universal covers, it follows from 7.4 and 7.5 that X, X,,and ¥ have
trivial homology in positive dimensions. The Mayer-Vietoris sequence
associated to the square

«— X
X

therefore shows that H; X = 0 fori > 1. O

— =
~

2

—

(7.7) Corollary. Given G = G, %, G, where A< G, and A ¢ G,, there is a
“Mayer—Vietoris” sequence

> H,A- H,G, ® H,G, > H,G~>H,_A—>---.

This is immediate from 7.3.



52 II The Homology of a Group

Remark. As a bi-product of the proof of 7.3 we obtain an exact sequence of
permutation modules

(7.8) 0 - Z[G/A] - Z[G/G,] ® Z[G/G,] - Z - 0.

Indeed, this is just the low-dimensional part of the Mayer—Vietoris sequence
which we used in the proof of 7.3. (The second part of 7.5 allaws one to identify
Hy(Y),Hy(X,),and Hy(X,) with permutation modules.) We will give another
derivation of 7.8, again based on topological ideas, in an appendix to this
chapter. It is also possible to prove 7.8 algebraically, cf. Bieri [1976], Prop. 2.8,
or Swan [1969], Lemma 2.1. Moreover, it is possible to give a purely alge-
braic proof of 7.7, using 7.8 as the starting point. We will explain this in the
exercise of §II1.6 below.

EXERCISES

1. LetG = G, %, G, with A - G, and 4 — G, not necessarily injective. Let G,, G, and
A be the images of G,, G,, and 4 in G. Show that G = G, * ; G,. Thus any amalgam
as defined at the beginning of this section is isomorphic to one in which the maps
A — G, and A — G, are injective.

*2. Give a proof of 7.2 based on the classification of regular covering spaces, as stated in
the appendix to Chapter I, A2. [Hint: For any group H, a pointed regular H-covering
X of X is specified by giving pointed regular H-coverings X, of X, and X, of X,
such that the induced coverings of Y are isomorphic (as pointed regular H-cover-

ings).]

3. Itis aclassical fact that SL(Z) = Z, %, Z,. (See Serre [1977a] for an indication of
an easy proof of this; see also example 3 of §VIIL.9 below.) Use the Mayer- Vietoris
sequence to calculate H,(SL,(Z)). [Suggestion: You can save a lot of work by.
considering separately the 2-torsion and the 3-torsion in the Mayer-Vietoris
sequence. As far as 2-torsion is concerned, SL,(Z) behaves like Z, %, Z, = Z,,
whereas it behaves like {1} *,, Z; = Z, with respect to 3-torsion.]

Appendix. Trees and Amalgamations

The results of §7 were based on a topological interpretation of amalgamated
free productsin terms of “amalgamations” of topological spaces. The purpose
of this appendix is to describe a different topological interpretation of am-
algamated free products, due to Serre [1977a]. In particular, we will obtain
another proof of 7.8.

Recall that a graph is a 1-dimensional CW-complex and that a path in a
graph is a sequencee,, .. ., e, of oriented edges such that the final vertex of ¢;
equals the initial vertex of ¢;,, for 1 < i < n. The path is a loop if the final
vertex of e, equals the initial vertex of e,. We allow the case n = 0, in which
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case the path is called trivial. Finally, the path is called reduced if e;, , # é&;
for 0 < i < n, where ¢; is the same geometric edge as e; but with the opposite
orientation.

The graph X is called a tree if it satisfies the following conditions, which are
easily seen to be equivalent:

(1) X is contractible.
(ii) X is simply connected.
(iii) X is acyclic.
(iv) X is connected and contains no non-trivial reduced loops.

Suppose a group G acts as a group of automorphisms of a tree X, and let e
be an edge of X with vertices v and w. We will say that e is a fundamental
domain for the G-action if every edge of X is equivalent to e mod G and every
vertex of X is equivalent to either v or w but not both. In other words, we
require that the subgraph

v

w
[ — —0

e

map isomorphically onto the orbit graph X/G. Note, in this case, that the
isotropy groups G,, G,, and G, satisfy

G, =G,nG,.

Indeed, we have G, =2 G, n G,, since e is the only edge with vertices » and
w [X is a tree]; and the opposite inclusion holds since no element of G can
interchange v and w [they are inequivalent mod GJ.

The theorem of Serre that we wish to state says that actions of G of this
type (i.e., with an edge as fundamental domain) are essentially the same as
decompositions of G as an amalgamated free product:

(A1) Theorem. Let agroup G act on a tree X. Suppose e is an edge with vertices v
and w such that e is a fundamental domain for the action. Then G = G, %z, G,,.
Conversely, given an amalgamationG = G, *, G,(where A & Gand A ¢ G,),
there exists a tree on which G acts as above, with G, G,, and A as the isotropy
groups G, G,,, and G,.

SKETCH OF PROOF. Note that two edges g,e and g,e of X (g; € G) have a
vertex in common if and only if g; g, € G, or G,,. This allows one to relate
reduced paths in X to reduced words (“normal forms”) in G, %, G.,.
Consider, for example, a reduced path of length 4 starting with e, oriented so
that v is its first vertex. Such a path must have the form

v w gv ghw gikv

O

e ge ghe ahke

where g, k € G,, and h € G,. Moreover, g, h, k ¢ G,. Thus the path gives rise to
the reduced word ghk in G, %, G,,. Since X has no loops, we must have
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ghk # 1 in G. Generalizing this argument, one sees that the canonical map
¢: G, %, G,, — G is injective. Similarly, it follows from the connectivity of X
that ¢ is surjective. [Given g € G, consider a path ending at gv, with e as its
first edge.] This proves the first part of the theorem.

Conversely, given G = G, *, G,, we have no choice as to how to con-
struct X. Namely, we must take G/G, | | G/G, as the set of vertices of X and
G/A as the set of edges. There are canonical maps a: G/A = G/G, and
B: G/A - G/G,, by which we attach the edges to the vertices, i.e., an edge
e € G/A joins the vertices a(e) and f(e). In this way we obtain a graph X on
which G acts with an edge as fundamental domain and with G, G,,and A as
the isotropy groups. Since G = G, %, G,, the first part of the proof shows that
X is connected and has no non-trivial reduced loops, so that it is a tree. []

It is apparent from this sketch of the proof that the theorem is not partic-
ularly deep; indeed, the existence of the tree X associated to G, x, G, is little
more than a reformulation of the normal form theorem for amalgamated free
products. Nevertheless, the tree is a very convenient tool for keeping track of
the combinatorics of normal forms. It is often considerably easier to prove
things about G by using X than it is to work directly with normal forms.

For example, we obtain the promised proof of 7.8 by noting that the
sequence in 7.8 is simply the augmented chain complex of X. Its exactness
therefore follows from the acyclicity of X.

Here are two other applications of Al:

(A2) Corollary. Let F = G, *, G, be a subgroup which intersects every con-
Jjugate of G, and G, trivially. Then F is a free group.

ProoF. The hypothesis implies that F acts freely on X. The latter being simply
connected, it follows that X is the universal cover of the orbit graph X /F and
F ~ mn,(X/F). But it is well-known that the fundamental group of a graph is
free.

(A3) Corollary. Let H = G, *, G, be afinite subgroup. Then H is conjugate to a
subgroup of G, or G,.

PROOF. We must show that H fixes some vertex of X. But this follows from the
elementary fact that every finite group of automorphisms of a tree has a fixed
point. See Serre [1977a], 1.4.3, for more details. O



CHAPTER III

Homology and Cohomology with
Coefficients

0 Preliminaries on ®; and Homg

Recall that the tensor product M ®g N is defined whenever M is a right
R-module and N is a left R-module. It is the quotient of M ®; N (which we
denote M ® N) obtained by introducing the relations mr@n=m@® rn
(meM,reR,neN).

In case R is a group ring ZG, we can avoid having to consider both left and
right modules by using the anti-automorphism g+ g~! of G. Thus we can
regard any left G-module M as a right G-module by setting mg = g~ 'm
(m € M, g € G), and in this way we can make sense out of the tensor product
M ®;¢ N (also denoted M ®; N) of two left G-modules.

Note that M ®; N is obtained from M ® N by introducing the relations
g 'm® n = m @ gn. If we replace m by gm, these relations take the form
m® n = gm ® gn, and we see that

(0.1) M ®GN = (M ® N)G,

where G acts “diagonally”on M ® N:g-(m ® n) = gm ® gn. In particular,
this shows that — ®; — is commutative:

M ® N ~ N ® M.

Warning. The passage between left and right modules as above is convenient,
but it can sometimes be confusing, for instance if M naturally admits both
a left and a right G-action (e.g, M = ZG', where G <= G’). In such cases we
will revert to the standard notation M ®,¢ N if we want to indicate that the
tensor product is to be formed with respect to the given right action of G on
M rather than the right action obtained from the left action.

55
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The diagonal G-action used above is quite general and can be used when-
ever a functor of one or several abelian groups is applied to G-modules.
Consider, for example, the functor Hom( , )= Homy,( , ). IfMandN
are G-modules, then the action of G on M and N induces by functoriality a
“diagonal” action of G on Hom(M, N), given by

(gu)(m) = g -u(g™'m)

for g € G,u € Hom(M, N), me M. [The use of g~ ' here is needed because of
the contravariance of Hom in the first variable. In effect, we compensate for
the contravariance by converting M to a right module.]

Note that gu = u if and only if ¥ commutes with the action of g. Thus

0.2) Homg(M, N) = Hom(M, N)°.

This observation has already occurred implicitly in exercise 5 of §1.8, where
we used an averaging procedure to convert an arbitrary element of Hom(M, N)
to an element of Hom(M, N)¢ = Homg(M, N).

EXERCISES

1. Let F be a flat ZG-module and M a G-module which is Z-torsion-free (i.., Z-flat).
Show that F ® M (with diagonal G-action) is ZG-flat. [Hint: (F @ M) ®; — =
FOM® —)¢ =F ®; (M ® —), which is an exact functor.]

2. Let F be a projective ZG-module and M a Z-free G-module. Show that F @ M (with
diagonal G-action) is projective. [Hint: Homg(F ® M, —) = Hom(F @ M, —)¢ =
Hom(F, Hom(M, —))¢ = Homg(F, Hom(M, —)), which is an exact functor. See
exercise 3 of §5 below for an alternative proof.]

1 Definition of H,(G, M) and H*(G, M)

Let F be a projective resolution of Z over ZG and let M be a G-module. We
define the homology of G with coefficients in M by

(1.1) H (G, M) = H (F ®; M).

Here F ®¢ M can be thought of as the complex obtained from F by applying
the functor — ®; M. Thus 1.1 is a natural generalization of the definition
of H, G in Chapter II; indeed, we recover the latter by taking M = Z:

(12) H,G,2) = H,G.

As in Chapter 11, H (G, M) is well-defined up to canonical isomorphism.
The complex F ®; M can also be thought of as the tensor product of

chain complexes (cf. §1.0), where M is regarded as a chain complex con-

centrated in dimension 0. From this point of view there is a certain asymmetry
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in 1.1 which did not appear in the context of Chapter II. A more symmetric
looking definition is obtained by choosing projective resolutions of both
Z and M, say &: F — Z and n: P - M, and setting

(1.3) H,(G, M) = H,(F & P).

Fortunately, 1.3 is consistent with 1.1; for n induces a weak equivalence
F®n:F®P - F®; Mbyl86.

Note that 1.8.6 also gives us a weak equivalencee ® P: F @ P = Z ®¢ P.
Thus

(14) H,(G, M) = H,(Pg).

Clearly, then, we have considerable flexibility in the choice of a chain complex
from which to compute H (G, M). For the moment we content ourselves with
a trivial example of such a computation:

(1.5) H(G, M) ~ M,.

This follows from the right exactness of the tensor product. [Apply — ®; M
to Fy>Fy—2Z—-0 and use 1.1, or apply ( ) to P, > Py - M -0
and use 1.4.]

We turn now to cohomology with coefficients, which is defined via o
rather than ®. Choose a projective resolution F — Z as above and consider
the complex Hosmg(F, M), where M is again regarded as a chain complex
concentrated in dimension 0. Checking the definition of #4 in §1.0, we see
that #omg(F, M), = Homg(F _,, M). It is therefore reasonable to regard
Homg(F, M) as a cochain complex by the usual indexing conventions, i.e.,
by setting

Homg(F, MY' = Homg(F, M)_, = Homg(F,, M).

It is then a non-negative cochain complex with coboundary operator
given by
(Bu)(x) = (= 1)"* 'u(dx)

for u € #omg(F, M)", x € F,, . This formula is most easily remembered in
the form

(1.6) {(Ou, x) + (—1)*8“Cu, dx) = 0,

cf. exercise 3 of §1.0.
We now define

rmn H*(G, M) = H*(Homs(F, M)).

Remark. Because of the sign in the definition of & above, #omg(F, M) is
not the same as the complex Homg(F, M) obtained from F by applying the
contravariant functor Homg(—, M) dimension-wise. This somewhat annoy-
ing fact of nature is not serious, for changing the sign of a coboundary



58 111 Homology and Cohomology with Coefficients

operator does not change cocycles, coboundaries, or cohomology. Our
convention of using #s instead of Hom is dictated by our desire to be able
to use the properties of #%» developed systematically in the exercises of §1.0.
The reader is warned, however, that H*(G, M) is often defined in the litera-
ture by means of Hom instead of #2s.

Note that the exact sequence F, — F, = Z — 0 yields an exact sequence
0 - Homg(Z, M) - Homg(F,, M) - Homg(F,, M). Since Homg(Z, M) =
M¢, this gives

(1.8) H(G, M) = M°€.

There exist analogues for H*(G, —) of 1.3 and 1.4, but these involve the
notion of injective resolution, which we have only mentioned briefly (cf.
exercise 4 of §1.7). The interested reader can find these analogues in exercise
4b below, which will not be needed elsewhere in this book.

EXAMPLES

1. Suppose G is infinite cyclic with generator t. Then we have a resolution
14.5)

0-2G—>2G-»Z -0,
hence H (G, M) is the homology of
o 0oME M
and H*(G, M) is the cohomology of
MELM S0,

Thus Ho(G, M) = H'(G, M) = Mg, H,(G, M) = H°G, M) = M®, and
H{(G, M) = H(G,M) = Ofori > 1.

2. Suppose G is cyclic of finite order n with generator t. Then we have a
resolution (1.6.3)

52655726 5262526 -2 -0,
where N = Y 72}¢'. Hence H (G, M) is the homology of
CAMELMEMELM
and H¥(G, M) is the cohomology of
MESMAMEimS .

Note that N: M — M satisfies Ngm=Nm (g € G, m ¢ M) and that NM < M¢;
thus N induces a map N: Mg —» M, called the norm map. [This is, in fact,

true for any finite group G, where N = ) ;. g.] We can now read off from
the above that

H(G, M) = H"* (G, M) = M/NM = coker N
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for i odd (i > 1) and that

H(G,M) = H~Y(G,M) =ker N
for i even (i > 2).

3. For any group G we can always take our resolution F to be the bar
resolution. In this case we write C, (G, M) for F ®; M [=M ®; F] and
C*(G, M) for Homg(F, M). Thus an element of C,(G, M) can be uniquely
expressed as a finite sum of elements of the form m ® [g,]...1g.), .., as a
formal linear combination with coefficients in M of the symbols [g,|...|g.).
Theboundary operator d: C,(G, M) —» C,_,(G, M) is given by

_m®[g192||gn]++(_1)nm®[gl|lgn-l]

Similarly, an element of C*(G, M) can be regarded as a function f: G" - M,
i.e., as a function of n variables from G to M. The coboundary operator
8: C"" (G, M) - C(G, M) is given, up to sign, by

(5f)(gl7"'*gn) = glf(QZ!---ign)
= f@192:---sg) + - + (=) @Gy, -1 Gn-1):

(Note: If n =0 then G" is, by convention, a one-element set, so that
C%G, M) ~ M.) We could also use the normalized bar resolution here; the
resulting normalized cochain complex C¥{G, M) = C*(G, M) is the sub-
complex consisting of those cochains f such that f(g,, ..., g,) = 0 whenever
some g; = 1.

Finally, we remark that H,(G, M) and H*(G, M) have a topological
interpretation analogous to that of H, G:

H,(G, M) = H(K(G, 1); )
H*(G, M) = H*(K(G, 1); ),

where .# is the local coefficient system on K(G, 1) associated to the G-module
M. (See Eilenberg [1947], Chapter V, for the relevant facts about local
coefficient systems.) We will not make use of these isomorphisms, so we leave
the details to the interested reader. [Hint: Let F be the chain complex of the
universal cover of a K(G, 1) Y. Then C (Y ; #) = F ®; M and C¥(Y; #) =
Homg(F, M).]

EXERCISES
1. Let G be a finite group, M a G-module, and N: Mg — M the norm map defined in
Example 2 above.

(a) Show that ker N and coker N are annihilated by | G|. [Hint: Consider the obvious
map MS - M;.]
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(b) Suppose M isa module of theform M = ZG ® A, where A isan abelian groupand
Gacts by g- (r ® a) = gr ® a. [Such a module M is said to be induced.] Show that
N: Mg — M€ is an isomorphism.

(c) Show that N is an isomorphism if M is a projective ZG-module.

. Use the standard cochain complex C*(G, M) to show that H'(G, M) is isomorphic

to the group of derivations from G to M (§IL.5, exercise 3) modulo the subgroup of
principal derivations. (A principal derivation is one of the form dg = gm — m, where
m is a fixed element of M.) In particular, if G acts trivially on M then H'(G, M) ~
Hom(G, M) = Hom(G,,, M) = Hom(H,G, M).

. Let A be an abelian group with trivial G-action. Show that F ®; 4 =~ Fc ® A and

that Hom(F, A) =~ H#om(F, A). Deduce universal coefficient sequences
0 — H,(G) ® A - H,(G, A) - Tor{(H,_,(G), A) » 0
and

0 - Exty(H,_ (G), A) » H"(G, A) » Hom(H,(G), A) = 0.

(a) State and prove an analogue of 1.8.5 for maps into a non-negative cochain
complex of injectives.

(b) Lete: F — Zbea projective resolutionand let n: M — Q bean injective resolution.
Prove that ¢ and n induce weak equivalences

Homg(F, M) = Hom(F, Q) — Heme(Z, Q),
so any of these three complexes can be used to compute H*(G, M). In particular,

H*G, M) = H*(Q°).

Tor and Ext

There are obvious generalizations of H,(G,—) and H*(G,—), called
Tor%(—, —) and Ext§(—, —), obtained by removing the restriction in 1.1
and 1.7 that F be a resolution of the particular module Z. For Tor, we take
projective resolutions F — M and P — N of two arbitrary G-modules M and
N and set

Tor§(M, N) = H (F ®; N) = H,(F ® P) = H (M ®¢ P).

We recover H, (G, —) as Tor$(z, —).

Similarly,if F — M is again a projective resolution, then we set

Ext¢(M, N) = H*(#omg(F, N)).
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We recover H*(G, —) as Ext%(Z, —). The reader who has done exercise 4
of §1 will note that we could also take an injective resolution N — Q and
write

Ext§(M, N) = H¥(Homg(F, Q)) = H*(Homg(M, Q)).

We do not intend to systematically develop the properties of Tor and Ext,
but it will be useful to record a few results about them for future reference.
The first shows that one has considerably more flexibility in the choice of
resolutions for computing Tor than is apparent from the definition.

(2.1) Proposition. Let e: F - M and n: P — N be resolutions, not necessarily
projective. If either F or P is a complex of flat modules, then Tor$(M, N) ~
H (F ®¢ P).

PROOF. Suppose, for instance, that F is flat, and let j: P - N be a projective
resolution. By the fundamental lemma 1.7.4, there is an augmentation-
preserving chainmapf: P — P. Two applications of 1.8.6 now yield

H (F ® P)<H (F ®¢ P) > H (M ® P) = Tor$(M, N),
where the first map is induced by f and the second by e. O
One way to construct a resolution of a module M is to start with a resolu-
tione: F — Zand tensor it with M toobtane @ M. FOM -Z Q@M = M.
This will be a resolution under mild hypotheses on F and/or M. Suppose,
for instance, that F is Z-free; then ¢ is a homotopy equivalence if we ignore

the G-action (cf. 1.7.6), so the same is true of ¢ ® M. [Alternatively, use the
universal coefficient theorem to compute that

H(F®M) = H(F)®M = M]

This method will be used now to show that Tor§ and Extg can often be
computed in terms of H, (G, —) and H¥(G, —).

(2.2) Proposition. Let M and N be G-modules. If M is Z-torsion-free then
Tor$(M, N) ~ H, (G, M ® N),
where G acts diagonally on M @ N. If M is Z-free, then
Ext§(M, N) ~ H¥%(G, Hom(M, N)),
where G acts diagonally on Hom(M, N).

PROOF. Let &: F — Z be a projective resolution, and consider the resolution
e® M:F® M — M. This is a flat resolution if M is Z-torsion-free and a
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projective resolution if M is Z-free, by exercises 1 and 2 of §0. So if M is
Z-torsion-free, then we have

Tor$(M, N) ~ H, (F @ M) ®; N)  by2l
= H((F® M ® N)g)

= H (F ®(M ® N))
= H(G,M @ N).

And if M is Z-free, then

- Ext¥(M, N) = H¥(Homc(F ® M, N)) by definition of Ext
= H*(H#o»AF ® M, N)°)
= H*(#m(F, Hom(M, N))%)
= H*(#omg(F, Hom(M, N))
= H*(G, Hom(M, N)). O

We will outline alternative proofs of this proposition in exercise 2 of
§7 below.

Finally, we remark that Tor and Ext can be defined over an arbitrary ring
R, using the same definitions as we gave for G-modules. One need only be
careful about which modules are left modules and which are right ones.
Thus TorR(M, N) is defined when M is a right module and N is a left module,
whereas Ext%(M, N) is defined when M and N are either both left modules or
both right modules.

EXERCISE

Show that Tor§(M, N) ~ Tor$(N, M). [Hint: See exercise 5 of §1.0.]

3 Extension and Co-extension of Scalars

Before proceeding further with the study of H, (G, M) and H*(G, M), we
digress to discuss, in this and the next two sections, some module-theoretic
constructions which play a fundamental role in the homology and cohomology
theory of groups. Let : R — S be a ring homomorphism. Then any S-module
can be regarded as an R-module via «, and we obtain in this way a functor
from S-modules to R-modules, called restriction of scalars. The purpose of
this section is to study two constructions which go in the opposite direction,
from R-modules to S-modules.

For any (left) R-module M, consider the tensor product S ®g M, where S
is regarded as a right R-module by s - r = sa(r). Since the natural left action
of S on itself commutes with this right action of R on S, we can make S @z M
a (left) S-module by setting s - (s ® m) = s’ ® m. This S-module is said to
be obtained from M by extension of scalars from R to S.
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Note that there is a natural map i: M — S ®g M given by i(m) = 1 @ m.
Since l ® rm = a(r) ® m = a(r)- (1 ® m) for r € R, we have

3.1 i(rm) = a(r)i(m);

in other words, i is an R-module map, where the S-module S ®y M is re-
garded as an R-module by restriction of scalars. Moreover, the following
universal mapping property holds:

3.2) Given an S-module N and an R-module map f : M —» N,
there is a unique S-module map g: S ®zx M — N such

that gi = f:
M——S@M
s g
N
[Thus we have
3.3) Homg(S ®x M, N) ~ Homg(M, N),

showing that the extension of scalars functor (R-modules) — (S-modules)
is left adjoint to the restriction of scalars functor (S-modules) — (R-modules).]
Heuristically, 3.2 says that S ®g M is the smallest S-module which receives
an R-module map from M. To prove 3.2 we need only note that g, if it exists,
must satisfy g(s ® m) = sg(1 ® m) = sg(i(m)) = sf(m). This proves unique-
ness and tells us how to define g in order to prove existence; the remaining
details are left to the reader.

Note that 3.2 can be applied, in particular, with M = N (regarded as an
R-module by restriction of scalars) and f = idy. We obtain, then, for any
S-module N, a canonical S-module map

(3.4) S®wN - N,

given by s ® n+— sn. This map is surjective; moreover, as an R-module map
it is a split surjection.

We now consider a dual construction, which uses Hom instead of ®.
Given a (left) R-module M, consider the abelian group Homg(S, M), where S
is regarded as a left R-module by r - s = a(r)s. Since the natural right action
of S onitself commutes with this left action of R on S, we can make Homg(S, M)
a left S-module by setting (sf}(s) = f(s's) for f € Homg(S, M). [Note: It is
because of the contravariance of Hom in the first variable that the right
action of S on itself induces a left action of S on Homg(S, M).] This S-module
is said to be obtained from M by co-extension of scalars from R to S.

There is a natural map n:Homg(S, M) - M, given by =n(f) = f(1).

Note that n(a(r)f) = (r)f)(1) = f(a(r) = rf(1) = ra(f), so = is an
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R-module map if the S-module Homg(S, M) is regarded as an R-module by
restriction of scalars. Moreover, we have:

(3.5) Given an S-module N and an R-module map f: N — M, there
isa unique S-module map g: N - Homg(S, M)suchthat ng = f:

Homg(S, M)
9 ,," x ’
N —I—’ M
[Thus )
(3.6) Homg(N, Homg(S, M)) ~ Homg(N, M),

so that co-extension of scalars is right adjoint to restriction of scalars.]
Heuristically, 3.5 says that Homg(S, M) is the smallest S-module which maps
to M by an R-module map. To prove 3.5, note that g must satisfy sg(n) = g(sn)
for s €S, ne N; evaluating both sides at 1, we find g(n)s) = g(sn)1) =
n(g(sn)) = f(sn); existence and uniqueness of g follow easily.

Taking M = N (regarded as an R-module) and f = idy, we obtain
from 3.5 a canonical S-module map

3.7 N — Homg(S, N),

given by n— (s — sn). This map is injective; moreover, as an R-module map
it is a split injection.

Examples of extension and co-extension of scalars have already occurred
in these notes. Namely, if « is the augmentation map ¢: ZG — Z, then the
“extension of scalars” functor (ZG-modules) — (Z-modules) is simply
M- Mg, and the “co-extension of scalars” functor is M+— M€, More
generally, exercise 3 of §I1.2 treated the extension of scalars relative to a
surjection ZG — Z[G/H], where H < G. What we are primarily interested
in, however, is the case where a is an inclusion of the form ZH <, ZG, where
H < G. This case will be discussed in detail in §5 below.

EXERCISES

1. Show that extension of scalars takes projective R-modules to projective S-modules.
[Hint: If P is a projective R-module, 3.3 shows that Homg(S ®g P, —) is an exact
functor.]

2. Recall from exercise 4 of §1.7 that an R-module Q is called injective if the functor
Homg(—, Q) is exact. Show that co-extension of scalars takes injective R-modules to
injective S-modules. [Hint: If Q is an injective R-module, 3.6 shows that
Homg(—, Homg(S, Q)) is an exact functor.]

3. If Sis flat as a right R-module (i.e.,if S ®z — is an exact functor), show that restriction
of scalars takes injective S-modules to injective R-modules. [Similar hint.]
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4. If S is projective as a left R-module, show that restriction of scalars takes projective
S-modules to projective R-modules. [Similar hint.]

The reader familiar with adjoint functors may wish to formulate a general state-
ment of which 1-4 are special cases. [Note: Exercises 1 and 4 can also be done in a
more concrete way, using the fact that a projective module is a direct summand of a
free module. A special case of exercise 4 was already done in this way in exercise 2 of

§1.8.]

4 Injective Modules

Recall from exercise 4 of §1.7 that an R-module Q is called injective if it
satisfies the following equivalent conditions, dual to those by which we
defined “projective”:

(i) Homg(—, Q) is exact.
(ii) Every mapping problem

with exact row can be solved.
(iii) For any inclusion M’ ¢, M, every map M’ — Q can be extended to a
mapM - Q:

Mc——M

.
,
.
’
’
.
.
[ 4

0.

The purpose of this section is to prove that every module can be embedded
in an injective module; this is analogous to the (obvious) fact that every
module is a quotient of a projective module.

(4.1) Proposition. An R-module Q is injective if and only if every map 1 — Q,
where 1 is a left ideal of R, extends to amap R — Q.

PRrOOF. The “only if ” part i$ trivial. To prove the “if ” part, suppose that every
map I — Q extends to R for all ideals I < R. It follows at once thatif C' = C,
where C is a cyclic R-module, then every map C' — Q extends to a map
C - Q. Now let M’ = M be an arbitrary inclusion. Given f: M’ — Q, there
exists by Zorn’s lemma a maximal extension F: M” — Q of f, where M’ <
M" < M.If M" # M then there is a cyclic module C = M such that C ¢ M".
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But we know that F|C n M" extends to C, so F extends to M” + C, contra-
dicting the maximality of F. Thus M” = M and Q is injective. O

(4.2) Corollary. If R is a principal ideal domain, then an R-module Q is injective
if and only if it is divisible, i.e., if and only if rQ = Q for everyr # 0in R.

The proof is immediate.

As an example of the corollary, the Z-module Q is divisible and hence
injective. Similarly, @Q/Z is injective. The latter module is particularly
interesting, because of the following result:

(4.3) Proposition. If A is a Z-module and 0 # a € A, then there is a map
f:A— Q/Z such that f(a) # 0.

PRrOOF. Since Q/Z contains (1/n)Z/Z ~ Z/nZ for every n # 0, it is clear that
there is a map f,: Za — Q/Z such that fy(a) # 0. But Q/Z is lnjecnve o fo
extends toa map f: 4 —» Q/Z. O

This shows that Q/Z plays arole in abelian group theory dual to that played
by Z; for the latter admits non-zero maps to every non-zero abelian group.

Returningnow toanarbitrary ring R, let R’ be the R-module Hom,(R, Q/Z)
obtained from Q/Z by co-extension of scalars with respect to the ring homo-
morphism Z — R. It is injective by exercise 2 of §3. As we will see, it plays the
role in the theory of injectives that R = R ®; Z plays in the theory of pro-
jectives. By a co-free module we mean an arbitrary direct product of copies
of R'. The following result is the analogue of 1.7.2:

(4.4) Lemma. Co-free modules are injective.

PrOOF. It is immediate from the definition of “injective” that an arbitrary
direct product of injectives is injective. O

Recall now the standard proof that every module M is a quotient of a free
module F; one takes F = @ R, where there is one summand for each element
of M, ie., for each R-module map R — M. Dually, we can consider Q =
[lses R, where # = Homg(M, R’). There is an obvious map i:M — Q,
whose f-component for f € & is the map .

(4.5) Theorem. T he map i is a monomorphism. Consequently, any R-module can
be embedded in an injective module.

Proor. If 0 # m e M, there is by 4.3 a Z-module map f,: M — Q/Z with
fo(m) # 0. By 3.5, f, factors through an R-module map f: M — R’. It follows
that f(m) # 0, and hence that i(m) # 0. O

See Cartan-Eilenberg [1956], 1.3.3, for a different proof of the second
assertion of 4.5, based directly on 4.1.
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EXERCISE

Let R = Z/nZ. Show that R is an injective R-module. Deduce:

(a) I 4 is an abelian group such that n4 = 0,and C < A is a cyclic subgroup of order n,
then C is a direct summand of A.

(b) If 4 is as in (a), then A is a direct sum of cyclic groups.

5 Induced and Co-induced Modules

In this section we apply the constructions of §3 to ring homomorphisms of
the form ZH < ZG, where H — G. In this case extension of scalars (resp.

co-extension of scalars) is called induction (resp. co-induction) from H to G.
We will often write

and
Hom,,4(ZG, M) = Coindj M

for an H-module M. Note that a module of the form Ind{}, M is precisely what
we called an induced module in exercise 1b of §1 above. Similarly, a module of
the form Coind{j, M will be called co-induced.

Since the right translation action of H on G is free, ZG is a free right
ZH-module; as basis we can take any set E of representatives for the left
cosets gH. It follows that ZG ®,4 M, as abelian group, admits a decompo-
sition

2G @M = PDg® M,
geE
where g M ={g@®m:meM} and g@M ==~ M via g®@mem. In
particular, since we can take | as the representative of its coset, it follows that
the canonical H-map i: M — ZG ®zy M defined in§3 maps M isomorphically
onto itsimage 1 ® M. We can therefore use i to regard M as an H-submodule
of Ind§; M. Moreover, the summand g ® M which occurs above is simply the
transform of this submodule under the action of g, since g-(1 @ m) =
g ® m. We have therefore established:

(5.1) Proposition. The G-module Ind§ M contains M as an H-submodule and
is the direct sum of the transforms gM, where g ranges over any set of representa-
tives for the left cosets of H in G.

More briefly, the second assertion of the proposition says:
(52 IndfM = P gM.

geG/H
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This makes sense because M is mapped onto itself by the action of H, so that
the subgroup gM of Ind§ M depends only on the class of g in G/H.

The description 5.2 completely characterizes G-modules of the form
Ind§ M. More precisely, suppose N is a G-module whose underlying abelian
group is a direct sum P;.; M;. Assume that the G-action transitively
permutes the summands, in the sense that there is a transitive action of G on [
such that gM; = M, forallg € Gand i € I. Then we have:

(5.3) Proposition. Let N be a G-module as above, let M be one of the summands
M;, and let H = G be the isotropy group of i. Then M is an H-module and
N = Ind§ M.

PROOF. It is obvious that M is an H-submodule of N, and 3.2 implies that the
inclusion M ¢, N extends to a G-map Ind§ M — N. Clearly ¢ maps the
summand gM of Ind§; M isomorphically onto the corresponding summand
M,; of N, so ¢ is an isomorphism. O

(5.4) Corollary. Let N be a G-module whose underlying abelian group is of the
Jorm @1 M;. Assume that the G-action permutes the summands according to
some action of G on I. Let G; be the isotropy group of i and let E be a set of
representatives for I mod G. Then M; is a G;-module and there is a G-iso-
morphism N ~ @; g Ind§ M;.

Proor. We have I =],z Gi,so N = @ @jcc:i M; now apply 5.3 to the
inner sum. O

(5.5) ExaMpLES. (a) The permutation module Z[G/H] is isomorphic to
Ind§; Z, with H acting trivially on Z. This can be seen directly from the
definition of Ind§ Z, or, alternatively, by writing Z[G/H] as a direct sum of
copies of Z and applying 5.3.

(b) Let X be a G-CW-complex and consider the G-module C,(X). This is a
direct sum of copits of Z, one for each n-cell of X, and the summands are
permuted by the G-action. Hence 5.4 gives

CdX) ~ @ 1Indg, Z,,

oceX,

where Z, is a set of representatives for the G-orbits of n-cells,
G,={geG:go = g},

and Z, is the “orientation module” associated to o, i.e., Z, is an infinite
cyclic group whose two generators correspond to the two orientations of .
(Thus g € G, acts on Z, as +1 if g preserves the orientation of ¢ and —1
otherwise.) Note that if G acts freely on X, then the isomorphism above
simply reduces to our observation in §l.4 that C,(X) is a free ZG-module
with one basis element for eachoc e Z,.
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Before stating our next result we remark that the summand gM of Ind§; M
is closed under the action of gHg ™!, hence gM is a gHg ™ !-module. Note
that the action of g~! gives a bijection f:gM % M such that f(kn) =
g 'kg- f(n) for kegHg™ ', ne gM. Hence gM can be identified with the
gHg™'-module obtained from the H-module M by “restriction of scalars”
via the conjugation isomorphism gHg~! 3 H.

For any G-module N we denote by Res$ N the H-module obtained by
restriction of scalars from G to H.

(5.6) Proposition. (a) Let N be a G-module. T hen
Ind§ Res§; N ~ Z[G/H] ® N,

where G acts diagonally on the tensor product.

(b) Let H and K be subgroups of G and let E be a set of representatives for
the double cosets KgH. For any H-module M, there is a K-isomorphism

Res§ Ind§ M ~ @ Indf, 5, Resfio . . gM.

geE

In particular, if H < G, then there is an H-isomorphism

Res§ Ind§j M =~ @ gM.

geG/H

Remark. In view of the observations preceding the statement of the proposi-
tion, we can identify the module Res’, ;.- gM which occurs above with
the module Res} . ,4,-1 M, where the latter restriction is with respect to the
conjugation map K ngHg™! = H, ks g~ 'kg.

PROOF OF 5.6. (a) will be left to the reader; it is the special case M = Z of
exercise 2a below. For (b) we note that the summands of Indfj M =
@y <6 gM are permuted by the action of K according to the natural action
of K on G/H. Since the K-orbits in G/H correspond to double cosets KgH
and the isotropy group in K of the coset gH is K n gHg™ ', (b) follows from
54. O

We will have several occasions to use 5.6a in the special case H = {1}.
The content of the result in this case is:

(5.7) Corollary. Let M be a G-module and let M be its underlying abelian
group. Then ZG ® M (with diagonal G-action) is canonically isomorphic
to the induced module ZG ® M. In particular, ZG ® M is a free ZG-module
if M is free as a Z-module.

The interested reader can verify that the proof of 5.6a yields the s:peciﬁc
isomorphism ZG ® M, — ZG ® M given by g ® m+— g ® gm, with inverse
gRm—g®g 'm
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Co-induction has properties analogous to the properties of induction
given above, but with @ replaced by []. The precise statements, however,
are somewhat more awkward and require some notation: If n,: N » M,
and n,: N - M, are surjections of abelian groups, then we write n, ~ n,
if there is an isomorphism h: M, 5 M, such that hr, = =,, or, equivalently,
if ker n; = ker ny. If n: N> M is a surjection and N has a G-module
structure, then we denote by ng for g € G the surjection N » M defined by
(ng)(x) = n(gx). Finally, by a direct product decomposition of N we mean a
family of surjections (m;: N » M,);, such that the corresponding map
N - []ier M; is an isomorphism. It is now easy to state and prove analogues
for co-induction of 5.1, 5.3, 5.4, and 5.6. For example, the analogue of 5.1
is that the underlying abelian group of Coind§; M admits a direct product
decomposition (ng),e\g, Where n:Coindfj M — M is the canonical
H-module map defined in §3. (Note that nh ~ = for h € H, so the equivalence
class of the surjection ng depends only on the class of g in H\G.) Similarly,
the analogue of 5.3 is:

(5.8) Proposition. Let N be a G-module which, as an abelian group, admits a
direct product decomposition (n;: N » M,);.;. Assume that there is a transi-
tive right action of G on I such that n;g ~ m, for all il and g€ G. Let
n: N — M be one of the n; and let H = G be the isotropy group of i. Then M
inherits an H-module structure from N, and N ~ Coind§ M.

The reader can similarly formulate the analogues of 5.4 and 5.6.
Finally, since a direct product indexed by a finite set can be identified with
the corresponding direct sum, the following result is not surprising:

(5.9) Proposition. If (G: H) < oo then Ind§ M ~ Coind§ M.
Proor. There is an H-map ¢o: M — Homy(ZG, M) given by
gm geH

@o(m)g) = {0 g4 H.

This extends to a G-map ¢: ZG ®;4 M - Homy(ZG, M) by 3.2. Choosing
coset representatives and expressing ZG ®,5 M (resp. Homy(ZG, M)) as a
direct sum (resp. direct product) of copies of M, one sees that ¢ can be
identified with the canonical inclusion of the sum into the product. Con-
sequently, ¢ is an isomorphism if (G: H) < co. Alternatively, one can set

V() = Yoeamg ® f(g™") and verify that y = ¢~ . O

EXERCISES

1. Prove that induction is “invariant under conjugation,” in the sense that Ind§ M =~
Indy,-1gM for any H-module M. Deduce that the K-module

Indk . gu,-+ Reste - gM

which occurs in 5.6b depends (up to isomorphism) only on the class of g in K\ G/H.
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2. (a) For any H-module M and G-module N prove that
N ® Ind§M = Ind§(Res§N @ M),

where the tensor product on the left has the diagonal G-action and that on the right
has the diagonal H-action. [Hint: Write the left side as @ (N ® gM) and apply 5.3.]

(b) State and prove similar results for Hom(Ind§ M, N) and Hom(N, Coind§ M).
3. Use 5.7 to give a new proof of the result of exercise 2 of §0.

4. (a) If (G: H) = oc, prove that (Ind§ M)® = 0 for any H-module M.

*(b) If G is finitely generated and (G: H) = oo, prove that (Coind§ M); = 0 for
any H-module M. [See Strebel [1977] for an algebraic proof of this. A topological
proof can be given as follows. We may assume that G is a free group. In this case let Y
be a finite, connected 1-complex with n, Y = G and let Y be the covering complex
corresponding to H. Then M (resp. Coind§ M) can be regarded as a local coefficient
system on ¥ (resp. Y), and it is easy to see that (Coind$ M); = Ho(Y, Coind§ M) =
H{(Y, M), where H{® denotes homology based on infinite chains. The result now
follows from the following elementary fact: If X is an infinite, locally finite, con-
nected complex, then H§®'(X, M) = 0 for any local coefficient system M.]

*(c) Given H < G, prove that the following conditions are equivalent:
(i) Thereisa finitely generated subgroup G’ < Gsuch that(G': G'ngHg™')= 0
for all g€ G. [If H < G, for example, this just says that the group G/H
contains a finitely generated infinite subgroup, i.e., G/H is not locally finite.]
(i1) (Coind§ M); = O for all H-modules M.
(iii) The element of (Coind§ Z); represented by the augmentation map ¢e
Hom,(ZG, Z) = Coind§Z is zero. [Hint: Use (b) and the double-coset
formula.]

*5. If G is finite and k is a field, show that a kG-module is projective iff it is injective.
[Hint: Start by showing that the free module kG is injective; this follows from the
analogue over k of 5.9, which implies that Hom,5(—, kG) = Hom,(—, k).]

6 H, and H* as Functors of the Coefficient Module

Since F ®; — and H#omg(F,—) are covariant functors, it is clear that
H,(G,—) and H*(G, —) are covariant functors of the coefficient module.
The following proposition gives the basic properties of these functors.

(6.1) Proposition. (i) There is a natural isomorphism Hy(G, M) =~ M.

(i) There is a natural isomorphism H°(G, M) ~ ME.

(ii) For any exact sequence 0 - M’ 5> M - M” — 0 of G-modules and any
integer n there is a natural map 9: H,(G, M") - H,_ (G, M’) such that the
sequence
.-« = Hy(G, M) > H,(G, M") > Hy(G, M’) > Ho(G, M) > Ho(G, M") = 0

is exact. (The unlabelled arrows here represent the maps induced by i and j.)
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(i1") For any exact sequence as in (ii) and any integer n there is a natural map
8: H'(G, M") - H"* (G, M) such that the sequence
0 - H°(G, M) > H%(G, M) » H%(G, M") > H (G, M) » H'(G, M) — - --

is exact.
(iii) If P is a projective ZG-module then H,(G, P) = 0 for n > 0.
(i1i') If Q is an injective ZG-module then H'(G, Q) = 0 forn > 0.

Note: The naturality assertion in (ii) means that for any commutative
diagram

0 > M’ M *M"—— 0
1 ! l
0 >N’ » N > N” >0

with exact rows, the square
HJ(G,M")—"—H,_,(G, M)

| |

H(G,N")—2— H,_,(G, N")
is commutative.

PROOF OF 6.1. (i) and (i’) were proved in §1. Given an exact sequence as in (ii)
and a projective resolution of Z over ZG, we have an exact sequence of chain
complexes

0O-M@F--M@F->M QF->0

since projectives are flat; the corresponding long exact homology sequence
yields (ii). Similarly, (ii") follows from the sequence of cochain complexes

0 = Homg(F, M) = Homg(F, M) = Homg(F, M") - 0,

which is exact by the definition of “projective.” Finally, (iii) and (iii") are
immediate consequences of the definitions of H (G, —) and H*(G, —) and
the exactness of —®¢ P and Homg(—, Q). O

Properties (iii) and (iii') are usually expressed by saying that projective
modules are H ,-acyclic and injective modules are H*-acyclic.

A functor T (say from R-modules to abelian groups) is said to be efface-
able if every module M is a quotient of a module M such that T(M) = 0.
Clearly T is effaceable if T(P) = 0 for every projective P. Conversely, if T
is effaceable then T(P) = O for every projective P. For let n: P—» P be a
surjection with T(P) = 0;since P is projective, = must split, hence T(x): T(P)
— T(P) is a split surjection and T(P) = 0. Thus the content of (iii) above is
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that H (G, —) is effaceable for n > 0. Similarly, (iii’) says that H"(G, —) is co-

effaceable for n > 0,_i.e., that every module M can be embedded in a module
M such that HY(G, M) = 0.

(6.2) Proposition (“Shapiro’s lemma”). If H < G and M is an H-module, then
H,(H, M) ~ H (G, Ind§; M)
and
H*(H, M) ~ H*(G, Coind§, M).
[Note: After we have discussed the functoriality of H, and H* with respect
to group homomorphisms, we will be able to make 6.2 more precise by show-

ing that the isomorphisms are induced by the inclusion H ¢, G and the
canonical H-maps M — Ind§ M and Coind§ M — M. See exercise 2 of §8.]

PROOF. Let F be a projective resolution of Z over ZG. Then F can also be
regarded as a projective resolution of Z over ZH, so

H (H, M) =~ H (F @z M).

But F®zy M ~ F ®26 (ZG ®z4 M) =~ F ®; (Ind§ M), whence the first
isomorphism. The second isomorphism follows from the universal property
of co-induction, which implies #omey(F, M) ~ Hom(F, Coind§; M), cf. 3.6.

O

Taking M = Z, for example, we conclude from 6.2 that
6.3 H,(H) ~ H (G, Z[G/H)).

(This shows that homology with coefficients is of interest even if one is
primarily interested in ordinary integral homology). In case (G: H) < oo,
Coind§ M = Ind§; M by 5.9, so we also have

(6.4) H*(H, Z) ~ H*(G, Z[G/H)).
Similarly, still assuming (G: H) < oo, we find
6.5) H*(H, ZH) ~ H*(G, ZG),

since ZG ®z4 ZH ~ ZG. (It is also true, of course, that H, (H, ZH) =
H (G, ZG), but this is of no interest in view of 6.1(iii).) Finally, we remark that
Shapiro’s lemma can be applied with H = {1} to yield:

(6.6) Corollary. Induced modules ZG ® A are H ,-acyclic. Co-induced modules
Hom(ZG, A) are H*-acyclic.

Note that 6.6 yields another proof that H,(G, —)is effaceable and H"(G, —)
is co-effaceable for n > 0; for we have seen (3.4 and 3.7) that every moduleisa
quotient of an induced module and that every module can be embedded in a
co-induced module.
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EXERCISE

(a) Show that the Mayer- Vietoris sequence I1.7.7 can be deduced from the short exact
sequence I1.7.8 of permutation modules. [Hint: Use 6.1(ii) and 6.3.]

(b) More generally, derive in this way a Mayer-Vietoris sequence for homology and
cohomology with coefficients. [Apply — ® M andHom(—, M) to 11.7.8; use 5.6a and
6.2.]

7 Dimension Shifting

We saw in §6 that H,(G, —) is effaceable and H"(G, —) is co-effaceable for
n > 0. The significance of this is that it allows us to use the following di-
mension-shifting technique: Givern a module M, choose an H-acyclic
module M which maps onto M (e.g., take M = ZG ® M), and let

K = ker{M - M}.
Then the long exact sequence of 6.1(ii) yields

H,_ (G, K) n>1
7.1 H(G, M)~ —
. ( ) {ker{HO(G, K) - Hy(G, M)} n=1.
Thus a question about H, can, in principle, be reduced to a question about
H,_,, provided we are willing to change the coefficient module. Iterating this
procedure, we are ultimately reduced to Ho. Similarly, embedding M in an
H*-acyclic module M (e.g., M = Hom(ZG, M)) and letting

C = coker(M — 1\='I},
we find

. _JH"YG, 0 n>1
-2 H'(G, M) = {coker{H°(G, M)-> H%G,C)} n=1

This argument shows, at least heuristically, that a “homology theory”
H having properties analogous to (ii) and (iii) of 6.1 is completely determined
by H,. Similarly, a “cohomology theory” H* satisfying (i) and (iii’) is
determined by H®. The rest of this section will be devoted to a precise
formulation and proof of these assertions.

Let R be an arbitrary ring and T = (T,),.z a family of covariant functors
from R-modules to abelian groups. Assume that we are given “connecting
homomorphisms” d: T,(M") - T,_,(M’) for every short exact sequence
0->M - M- M" - 0of R-modules. We require that 4 be natural (in the
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sense explained after the statement of Proposition 5.1) and that all com-
posites be zero in the sequence

(1) o T (M) S TM) > T(M) - M) S T, (M) >+

We will then say that T (or, more precisely, (T, d)) is a d-functor. If, in addition,
T,=0 for n<0 and (f) is exact for every short exact sequence
0-M - M- M"—0, then we will say that T is a homological functor.
Thus, for example, the content of 6.1(ii) is that H,(G, —) is a homological
functor on the category of G-modules.

If S and T are d-functors, then a map from S to T is a family ¢ of natural
transformations ¢,: S, — T, such that the square

SAM") —2—5,_ (M)

¢.(M')l ‘wh (M)

T(M") ——T,_ (M)

commutes for every short exact sequence 0 - M' > M - M" -0 and
every n.

(7.3) Theorem. Let H be a homological functor such that H, is effaceable for
n > 0. If T is an arbitrary d-functor and ¢q: Ty — H, is a natural transforma-
tion, then @, extends uniquely to a map ¢: T — H of d-functors. This map ¢
is an isomorphism if and only if the following three conditions hold

(1) @¢ is an isomorphism.
(i1) T is homological.
(i) T, is effaceable for n > 0.

Thus a homological functor H which is effaceable in positive dimensions is
uniquely determined (up to canonical isomorphism of d-functors) by Ho.
In particular, it follows that H (G, —) is uniquely determined by the proper-
ties (i)—(iii) of 6.1.

PrOOF OF 7.3. We wish to construct ¢,: T, — H, so that

T(M") —2—T,_,(M")

(*) ¢.(M')l l.p.- (M)

HM")—— H,_ (M)

commutes for every short exact sequence 0 > M’ > M - M” - 0.Forn <0
there is no choice and all diagrams (*) commute automatically. Assume,
then, that n > O and that ¢, _ , has been defined. For any module M choose a
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short exact sequence 0 - K — P - M — 0 with P projective, and consider
the diagram

T(M) —2— T,_(K) —— T,_+(P)

(%) PuM) j @u-i(K) J @a-1(P)

v

0 —— H(M) —"— H,_(K) —— H,_(P)

where the dotted arrow represents the map we want to define. Note that the
composite on the top row is zero, that the bottom row is exact (because
H,(P) = 0),and that the right-hand square commutes (by naturality of ¢, _ ;).
Consequently, there is a unique map ¢,(M) which makes (x+) commute.
Since this definition of ¢, was forced on us by (*), the uniqueness assertion of
the theorem is clear. It is also clear from (*#) that if conditions (i)—(iii) hold
then we can prove inductively that ¢, is an isomorphism. It remains, therefore,
to complete the proof of the existence of ¢, by proving that ¢, is well-defined
and natural and that all squares of the form (*) commute. We will need the
following lemma.

(7.4) Lemma. Let ¢, (M) be defined as above by means of a short exact sequence
0—- K —>P—> M- 0. For any diagram

0 N——N » N -0

with exact row, the diagram
T(M) 2 T(N") —2— T,_,(\)
PuM) lw.-.w')

H M) g Ny —2 S H,_ (N

commutes.

PRrOOF. Since P is projective, the given diagram can be completed to a
commutative diagram

0 — K — P > M +0

|

0——N ~N - N" - 0.

!
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Consider now the diagram

T(M) d T._(K)

MM) ) w.-V :

Hn(M) __6_’ Hn—l(K)

) Hml @ ln.-.@) B [rw@

H,(N") —— H,_(N)

¢-—|(N\

F) JI;:—!(N')7

T.(N")

where the maps labelled d in (D are the “d-maps” associated to 0 - K —
P -+ M — 0. Then @ commutes by (++), @ commutes because H is a -
functor, and @ commutes by naturality of ¢,_ ,. Moreover, the outer square
commutes because T is a d-functor. The lemma follows at once. O

Returning now to the proof of the theorem, letf : M; — M, be an arbitrary
map of R-modules. Choose exact sequences 0 — K; —» P; - M; — 0 with P;
projective (i = 1, 2), and use them to define ¢, (M,): T,(M;) - H, (M) as in
(*+). Applying the lemma to the diagram

M,

1,

0 K, P, > M, ——0,

we conclude that the outer rectangle is commutative in the diagram
T(M,) =L~ T(M;) —— T,1(K))
W.(M.)l lv.(M;) [w.- W(K3)
HM,) 2> H (M) ——H,_(K)).
Now the right-hand square is commutative by (++), and
0:H,M;) - H,_(K,)
is injective; hence the left-hand square commutes. This shows that ¢,

is natural. It also shows that ¢,(M) is well-defined, independent of the
choice of exact sequence 0 - K - P - M — 0. [Take f = idy,.] Finally,
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if0 > M’ - M - M” - 0is an arbitrary exact sequence, then we can apply
the lemma to the diagram

M"

|

0 ——M ——M——M ——0

to conclude that (*) commutes. O

Similarly one can define the notations of d-functor and cohomological
functor in the obvious way, and one can prove:

(7.5) Theorem. Let H be a cohomological functor such that H" is co-effaceable
for n > 0. If T is an arbitrary 5-functor and ¢°: H® — T? is a natural trans-
formation, then @° extends uniquely to a map @: H —» T of é-functors. This
map @ is an isomorphism if and only if the following three conditions hold:

(i) ¢° is an isomorphism.
(ii) T is cohomological.
(iii) T" is co-effaceable for n > 0.

EXERCISES

1. (a) Prove the following generalization of 1.4: Let --- » C; % Co & M — 0 be exact,
where each C, is H,-acyclic; then H (G, M) = H,(C¢). [Hint: Apply the dimension-
shifting argument using the exact sequences 0 — ker ¢ - Co - M — 0,0 — ker 0 —
C, > kert—0,etc.]

(b) Similarly. let 0 - M — C° - C! — --- be exact, where each C' is H*-acyclic.
Prove that H*(G, M) = H*(C°).

2. Use the results of this section to give a new proof of Proposition 2.2. [Method 1: If M
is Z-torsion-free, then Tor$(M, —) and H (G, M ® —) are homological functors
which agree in dimension 0 and are effaceable in positive dimensions. A similar
argument applies to Ext% M, —) and H*(G, Hom(M, —-)). Method 2: Compute
Tor§(M, N) in terms of a projective resolution of M. Express this computation in the

form Tor$(M, N) = H(C) and apply exercise la. Similarly, deduce the result on
Ext from 1b.]

3. Inthediscussion at Ehe beginning of this section, show that the surjection M » M and
the injection M & M can always be taken to be Z-split [Hint: Use 3.4 and 3.7.]

8 H, and H* as Functors of Two Variables

Let € be the following category: An object of ¥ is a pair (G, M), where G is a
group and M is a G-module; a map in € from (G, M) to (G', M’) is a pair
(a, f), wherea: G —» G’ is amap of groups and f: M — M’ is a map of abelian
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groups such that f(gm) = a(g) f(m) for g € G, m € M. (In other words, f'is a
G-module homomorphism if M’ is regarded as a G-module via a.) Given
(o, f), let F (resp. F') be a projective resolution of Z over ZG (resp. ZG'),
and let 7: F — F’ be a chain map compatible with a as in §I1.6. Then there isa
chainmapt1® f: F®; M - F' ®; M’, and 1 ® f induces a well-defined
map (a, f),: H (G, M) - H (G, M’). In this way H, becomes a covariant
functor on 4. In case M = M’ and f = id,,., we will simply write a, for
(@, f)e: H(G, M) > H (G, M’). Note that the general map (a, f), can
always be written as the composite

H (G, M) 2%D, | (G, M") 33 H (G, M),

where H (G, f) makes sense because f is a map of G-modules.

As an example of this functoriality we consider the maps induced by
conjugation. Given H = G, a G-module M, and an element g € G, we denote
by c(9): (H, M) - (gHg ™', M) the isomorphism in % given by

1

(h+—ghg™', m> gm).

To compute c(g),: H, (H, M) » H (gHg ™', M) on the chain level, we choose
a projective resolution F of Z over ZG and use F to compute the homology
of H and gHg™'. We can take t: F — F to be multiplication by g as in the
proof of 11.6.2, and we then find that c(g), is induced by the chain map
F ®y M - F®,y,-1 M given by x ® m— gx @ gm. Note that this is just the
map obtained from the usual diagonal action of g on F ® M by passage to
quotients.

For z e H (H, M) we set gz = c(g),z € H,(gHg™ ', M). In view of the
above description of ¢(g), on the chain level, we have:

(8.1) Proposition. If h € H then hz = zfor all z € H (H, M).

(8.2) Corollary. If H <1 G and M is a G-module, then the conjugation action of
G on (H, M) induces an action of G/H on H (H, M).

The situation for cohomology is similar. Let 2 be the category with the
same objects as %, but where a map (G, M) — (G’, M’) is now a pair

@G- G, f: M - M);

as before we require that f be a G-module map, i.e., that f(a(g)m’) = gf (m’)
forge G,m e M'. If F and F’ are resolutions for G and G'and : F — F' is
a chain map compatible with a, then there is a chain map

Hondt, [): Homg(F'y M') = Hong(F, M),

which induces («, f)*: H*(G', M) - H*(G, M). Thus H* is a contravariant
functor on 2. Incase M = M’ andf = id,,., we will write o* for (o, )*; note
that the general map (z, f)* is the composite

H*G', M") 5 H*G, M") 22C-2, g+(G, M).
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Let €, be the subcategory of ¢ consisting of all the objects (G, M) and of
those maps (a, ) such that f is bijective. Then %, is isomorphic to a sub-
category of 2 by («, ) (a, f ~!), so H* can be regarded as a contravariant
functor on €,. In particular, the conjugation maps c(g) discussed above are in
%,, so we have an isomorphism c(g)*: H*(gHg ™', M) - H*(H, M) for any
g € G, H< G,and G-module M. If z € H*(H, M) then we set

gz = (c(9)*)” '(2)e H*(gHg™ ', M).

In terms of a projective resolution F of Z over ZG, the map z — gz is induced
by the cochain map #o»ey(F, M) — oHg-1(F, M) given by

[ x—af(g™ %)

Note that this is just the usual diagonal action of g on #.(F, M), restricted
to the subcomplex #my(F, M). In case g € H we clearly obtain the identity
map, hence:

(8.3) Proposition. If he H then hz = z for all z€ H¥*(H, M).

(8.4) Corollary. If H< G and M is a G-module, then the conjugation action
of G on (H, M) induces an action of G/H on H*(H, M).

EXERCISES

|. If His central in G and M is an abelian group with trivial G-action, show that G/H acts
trivially on H_(H, M) and H*(H, M).

2. Leta: H & G be an inclusion, let M be an H-module, and let i: M — Ind§ M and =:
Coind$M — M be the canonical H-maps. Show that the isomorphisms of Shapiro’s
lemma (6.2) are given by ( i),: H,(H, M) > H/(G, IndjM) and (a, n)*:
H*(G, Coind§ M) - H*(H, M). [Hint: You can take T to be the identity map.]

9 The Transfer Map

Given an inclusion a: H ¢, G and a G-module M, we have seen that there are
maps o*: H*(G, M) - H*(H, M) and o,: H (H, M) - H (G, M). We will
often write a* = resfj and call it a restriction map. Similarly, we write a, =
cor§ and call it a corestriction map. The purpose of this section is to show that
if (G: H) < oo then there are maps going in the other direction, called transfer
maps. This extremely useful observation is due to Eckmann [1953] and
Artin-Tate [unpublished]. The existence of the transfer maps is somewhat
more subtle than that of «, and «*; in particular, they are not induced by
maps in the categories € and 2 of §8. [The name “transfer map” comes from
the fact that on H, it coincides with the transfer map of classical group
theory, due to Schur [1902]; see exercise 2 below.]
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We will explain the transfer maps from five different points of view, all of
which are useful:

(A) For any G-module M and any H = G we have a canonical surjection
of G-modules

(9~l) ZG ®ZH M b d M
and a canonical injection
9.2) M — Hom,4(ZG, M),

cf. 3.4 and 3.7. Applying H,(G, —) to 9.1 and using Shapiro’s lemma, we
obtain a map H,(H, M) - H (G, M); this is easily seen to coincide with a,.
[Useexercise 2 of §8.] Similarly, applying H*(G, —) to 9.2 and using Shapiro’s
lemma we obtain o*: H*(G, M) - H*(H, M). If we assume now that
(G:H) < o0, then ZG ®z5y M =~ Hom,,(ZG, M) by 5.9. Consequently, we
can apply H*(G, —) to 9.1 and H (G, —) to 9.2 to obtain the transfer maps
going in the other direction. These maps are often denoted

cor§y: H*(H, M) » H¥(G, M)
and

resfy: H (G, M) - H (H, M)

or simply trf if it is clear from the context whether we are talking about H,
or H*.

(B) For any H = G we can regard both H (G, —) and H (H,—) as
homological functors on the category of G-modules, and both are easily seen
to be effaceable in positive dimensions. Assuming now that (G: H) < oo,
wedefinetr: Mg - My by tr(m) = ), u\ gm, where i (resp. m) denotes the
image of m in M (resp. M ). (The sum makes sense because gm depends only
on the class of g in H\G.) We now define res: H (G,—) = H (H,—) to
be the unique extension of tr to a map of homological functors, cf. Theorem
7.3. To see that this agrees with the map defined in (A), one need only verify
that the latter is compatible with d and equals tr in dimension zero. Details
are left to the reader. Similarly, cor: H*(H, —) — H*(G, —) can be defined
as the unique map of cohomological functors which in dimension zero is the
map tr: M" — MS defined by tr(m) = Y ,.gu gm. [To verify co-efface-
ability of H"(H, —) on the category of G-modules, use exercise 3 of §3;
alternatively, note that a co-induced G-module is also co-induced as an
H-module.]

(C) Let F be a projective resolution of Z over ZG. Then F @y M =
(F® M)y and F ®; M = (F ® M);. We can now define res: H (G, M) —»
H (H, M)tobethe map induced by thechainmaptr: (F ® M) —» (F @ M)y,
where tr is as in (B). This defines a map of homological functors which equals
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tr on H,, hence it agrees with definition (B). Similarly, #%x»c(F,M) =
Hom(F, M)® and Homy(F, M) = Hom(F, M)¥, where G acts diagonally on
Hom (cf. §0). Hence there is a cochain map tr: #om(F, M)¥ - Hom(F, M)°
which induces cor: H*(H, M) - H*(G, M).

(D) If we wish to compute the transfer maps of (C) using one resolution
F(G) for G and a different one F(H) for H, then we need an (augmentation-
preserving) H-chain map t: F(G) —» F(H) in order to realize the canonical
isomorphism H,(F(G) ®yM) > H (F(H) ®y M). The transfer maps will
then be induced by the composites

9.3) F(G)®sM 5 F(G) @y M —2Y F(H) @y M
and
94)  Houy(F(H), M) Z“My inigy(F(G), M) 5 Houeg(F(G), M).

Taking F(G) and F(H) to be the standard resolutions, for example, we can
easily write down such a map t as follows. Choose a set of representatives
for the right cosets Hg. Then there is a unique map p: G — H of left H-sets
which sends every coset representative to 1; explicitly, if § denotes the
representative of Hg, then pg = gg~'. Using the “homogeneous” de-
scription of the standard resolutions, we can now define t: F(G) —» F(H)
by t(ggs---»9n) = (Pdo,- -, Pgs). The interested reader can translate this
into the bar notation and can write out the corresponding transfer maps
C.(G, M) - C (H, M) and C*(H, M) - C*G, M) given by 9.3 and 9.4.

(E) If ¥ - Y is a covering map of finite degree, then there are transfer
maps H (Y, M) » H (Y, M) and H*(¥, M) - H*(Y, M) for any coefficient
system M on Y. In terms of cellular chain complexes, the homology transfer
is induced by ¢ ® m— Y ; & ® m, where ¢ is an oriented cell of Y and &
ranges over the oriented cells of ¥ lying over . Similarly, the cohomology
transfer is induced by the cochain map f — [0+ ) ; f(8)). If Y is a K(G, 1)
and ¥ is the covering space corresponding to H < G, then ¥ is a K(H, 1)
and these transfer maps agree with the transfer maps H (G, M) - H (H, M)
and H*(H, M) - H*(G, M). To see this, one need only apply definition (C)
with F equal to the chain complex of the universal cover of Y.

We now give some properties of the transfer maps. Let H(—, —) denote
either H, or H*.
(9.5) Propeosition. (i) Giren K € H < G with(G: K) < o0,
cor§ = corfocor and res§ = resk ores§.

(i1) Given (G: H) < o and z € H(G, M), cor$, res§; z = (G: H)z.
(iii) Given H, K = G with(G: H) < w0 if H—, —) = H* and (G: K) < o©
if H—, —) = H,, we have

-1
res§ Corfyz = ) COrK gng-1 1€SK %0 1g-1 92
geE
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for any ze H(H, M), where E is a set of representatives for the double
cosets KgH. In particular, if H <G and (G: H) < oo, then res§ corl z =
Y scGn 92 = Nz, where N is the norm element of Z[G/H].

(See §8 for the definition of gz. Note that in the cohomology case we can
write resf('f,’,',;,-l gz = res§ ~guy-1 2, Where the “restriction map” on the right
is with respect to the conjugation map (k — g~ 'kg, m+» g~ 'm), regarded as a
map (K ngHg™!', M) » (H, M) in %,.)

PROOF OF 9.5: (i) and (ii) follow easily from the definitions and will be left to
the reader. (ii)«can -be deduced from the double coset formula 5.6b and
definition (A) of the transfer, but it is easier to work directly with definition
(C). We will give the proof in the case H(—, —) = H*; the homology case is
similar. Let u € #%#:/(F, M)" represent z. Then resg cor, z is represented by
Y gc6n gu € Homd F, M)® = Hond F, M)X. Grouping together those terms
gu corresponding to a given K-orbit in G/H, we find

Ygu=173 Y kgu

9eG/H geE keK/Kg
where K, = {ke K: kgH = gH} = K n gHg ™. Since the inner sum on the
right clearly represents cork, res{i¢ " gz, this proves (iii). O

EXERCISES

1. Show that res$: H(G, M) - H(H, M) and cor$: H(H, M) - H(G, M) are “invariant
under conjugation,” in the sense that g - resgw = resly,,- w for we H(G, M) and
corly, -1z = corf = for ze H(H, M).

2. The transfer map H,(G) — H,(H) can be regarded as a map G,, — H,,. Using defini-
tion (D), show that this map is given by

g mod [G, G]— []g'gg'y" mod [H. H],
g'eE

where E is a set of representatives for the right cosets Hg and X is the representative of
Hx. This formula is usually taken as the definition of the transfer map in group theory
texts, cf. Hall [1959], formula (14.2.4).

10 Applications of the Transfer

To simplify the notation we will state the results of this section only for
cohomology; similar results hold for homology.

(10.1) Proposition. Let M be a G-module and H < G a subgroup of finite index
such that H"(H, M) = 0 for some n. Then H"(G, M) is annihilated by (G: H).
In particular, if (G: H) is invertible in M (i.e., if multiplication by (G: H) is an
isomorphl;sm), then H'(G, M) = 0.
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PROOF. The first assertion follows immediately from 9.5(ii). The second
follows from the first, since (G: H) is invertible in H*(G, M) if it is invertible
in M. O

Note that 10.1 applies to any n > 0if G is finite and H = {1}. Hence:

(10.2) Corollary. If G is finite, then H"(G, M) is annihilated by | G| for alln > 0.
If |G| is invertible in M (e.g., if M is a QG-module), then H(G, M) = 0 for
alln> 0.

It follows that H"(G, M) admits a primary decomposition
H"(G, M) = @ H"(G, M),

4
where p ranges over the primes dividing | G| and H"(G, M), is the p-primary
component of H"(G, M). Now fix a prime p and let H be a p-Sylow subgroup
of G. Since (G: H) is relatively prime to p, 9.5(ii) implies that cor{ res§ is an
isomorphism on H"(G, M),,,. In particular, the restriction map induces a
monomorphism H"(G, M),,, & H"(H, M). In order to describe the image of
this monomorphism, we need some terminology.

If G is an arbitrary group, H < Gisa subgroup, and Misa G module, we
will say that an element z € H*(H, M) is G-invariant if res,,n,,,g 12 =
resﬂ,n,,,y-l gz for allg € G.In case H < G, this just says that z € H*(H, M)%/H,
Note that if z = res§ w for some w e H*(G, M) then z is G-invariant; for
gz = res,,,,-| w by exercise 1 of §9, hence res§/™¢ ,,,, 1 gz = res,,na,,, W=
T€SH g1 Z-

We can now state:

(10.3) Theorem. Let G be a finite group and H a p-Sylow subgroup. For any
G-module M and any n > 0, res§; maps H(G, M), isomorphically onto the
set of G-invariant elements of H'(H, M). In particular,if H < G then

H™(G, M), ~ H"(H, M)/¥.

PrOOF. We have already shown that res§; maps H*(G, M), monomorphlcally
into the G-invariants, so it remains to show that any invariant z is in the image.
Consider the element w = cor§ z e H*(G, M). Since H"(H, M) is annihilated
by |H|, we H(G, M),,. We now compute res§ w by the double coset
formula 9.5(iii); since z is invariant, we obtain

-1
TESEW = ) COIffomg-1 TESHE p -1 g2

ge H\G/H

— H H

= Y COrpngng-1 TESH \ong-1 2
ge H\G/H

= Y (H:HngHg™ )z
geH\G/H

= (G: H)z.
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(The last equality is obtained by decomposing the set G/H into H-orbits and
noting that (H: H n gHg™ ') is the cardinality of the H-orbit of gH.) Since
(G: H) is prime to p, it follows that z = res§ w’, where

w' = w/(G: H) € HY(G, M),. a

This proof, which should be thought of as an averaging argument, can be
used in other situations where division by (G: H) is possible. For example, one
proves in the same way:

(10.4) Proposition. Let G be arbitrary, M a G-module, and H = G a subgroup
of finite index. If (G: H) is invertible in M then res$ maps H*(G, M) iso-
morphically onto the set of G-invariants in H*(H, M). In particular,if H << G
then H*(G, M) ~ H*(H, M)%/4,

EXERCISES

1. Use 10.3 to compute H*(G, Z), where G is the symmetric group on three letters. [This
will be easier after we have cup products available, cf. exercise 5 of §V.3, but it is do-
able now.]

2. Let H < G be a subgroup of finite index. For any G-module M and any H-H double
coset C, define a G-endomorphism f(C) of ZG @uMby L@ m— Y ;. cyg ® g~ 'm.
Using Shapiro’s lemma, we can view the map H*(G, f(C)) as an endomorphism
T(C) of H*(H, M).

(a) If C = HgH, show that T(C)z = cOrfjzug- res,‘:f,‘;;'g—.gz. [Hint: It suffices to
check this in dimension 0.]

(b) If z € H*(H, M) is G-invariant, show that T(C)z = a(C)z, where a(C) = |C/H| =
(H:H ngHg™").

(c) In the situation of 10.3 and 10.4, show that the image of res; is the set of z such that
T(C)z = a(C)z for all double cosets C.



CHAPTER IV

Low-Dimensional Cohomology and
Group Extensions

1 Introduction

An extension of a group G by a group N is a short exact sequence of groups
(*) l1-NoE->G- 1

[Warning: Some people call this an extension of N by G.] A second extension
15 N->E - G- 1o0of Gby N is said to be equivalent to (*) if there is a
map E — E’ making the diagram

e
T

commute. Note that such a map is necessarily an isomorphism.

The main problem in the subject of group extensions is to classify the
extensions of G by N up to equivalence. Roughly speaking, then, we are
trying to understand all possible ways of building a group E with N as a
normal subgroup and G as the quotient. This problem turns out to involve
the cohomology functors H(G,—) for i = 1,2, 3.

For a while we will consider only the case where the kernel N is an abelian
group A (written additively). A special feature of this case is that an extension

0-ASESG1

1 1

gives rise to an action of G on A, making A a G-module. For E acts on A by
conjugation since 4 is embedded as a normal subgroup of E; and the conjuga-
tion action of A on itself is trivial, so there is an induced action of E/4 = G

86
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on A. Explicitly, given g e G we choose § € E such that n(§) = g, and the
action of g on A is then characterized by

(1.1 i(ga) = gi(a)j~! (aeA).
It is often convenient to rewrite 1.1 as a commutation rule
12 gi(a) = i(ga)g.

In particular, this shows that i(4) is central in E if and only if the G-action
is trivial. In this case the extension is called a central extension.

In view of the G-module structure on A4, we can refine the classification
problem by fixing a G-module 4 and trying to classify the extensions of G
by 4 which give rise-to the given action of G on A. As we will see in §3, this
problem has a very simple solution: The equivalence classes of such extensions
are in 1-1 correspondence with the elements of H*(G, A).

We begin by reviewing the simplest class of extensions, namely, the split
extensions.

2 Split Extensions

Fix a G-module A and let
(% 0-AS5ESGo1

be an extension which gives rise to the given action of G on 4. We say that
(+) splits if there is a homomorphism s: G — E such that ns = idg. The
following characterization of split extensions is probably well-known to
the reader, but we will write out the proof in detail since it motivates the
proof of the main result of the next section.

(2.1) Proposition. The following conditions on the extension (*) are equivalent

(i) (*) splits.
(ii) E has a subgroup G which is mapped by n isomorphically onto G, i.e.,
which satisfies E = i(A) - G and i(4) n G = {1}.
(iii) E has a subgroup G such that every element e € E is uniquely expressible
inthe forme = i(a)j (a€ A, j € G).
(iv) (*) is equivalent to the extension

0-AL A~GE G,

where A>< G is the semi-direct product of G and A relative to the given
action, and i’ and ' are the canonical inclusion and projection maps.

(The definition of A >a G will be recalled in the course of the proof of
2.1)
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ProoF. Clearly (i) < (ii) <> (iii). To prove that these conditions imply (iv),
let s:G — E be a splitting and note that we have a set-theoretic bijection
A x G =~ E, given by (a,g)— i(a)s(g). There is therefore a unique group
law on the set A x G such that this bijection is an isomorphism. To calculate
this group law, we must express a typical product [i(a)s(g)] - [i(b)s(h)] in E
in the form i( —)s(—). Using the commutation rule 1.2, we find

i(a)s(9)i(b)s(h) = i(a)i(gb)s(g)s(h)
= i(a + gb)s(gh).

Thus the group lawon A x G is given by
(a’ g) : (b’ h) = (a + gb’ gh)

The set A x G with this group law is, by definition, the semi-direct product
A >a G, and (iv) follows at once. Finally, it is trivial that (iv) = (i). O

Proposition 2.1 says that there is only one split extension of G by 4
(up to equivalence) associated to the given action of G on A. Nevertheless,
there is an interesting “classification” problem involving split extensions:
Given that an extension (*) splits, classify all possible splittings.

In case G acts trivially on A4, for example, so that the group E is iso-
morphic to the direct product A x G, then the splittings are obviously in
1-1 correspondence with homomorphisms G — A. In the general case,
I claim that splittings correspond to derivations (also called crossed homo-
morphisms). These are functions d: G — A satisfying

2.2 d(gh) = dg + g -dh

for all g, he G. To see this we may assume that () is the canonical split
extension

00oA-5A><G-G— 1.

A function s:G - A>a G with ns = id then has the form s(g) = (dg, g),
where d is a function G - 4. We have

s(g)s(h) = (dg + g - dh, gh),
so s will be a homomorphism if and only if d is a derivation. This proves the

claim.

Remark. The term “derivation” seems more reasonable if we think of G
as acting on A on the right by the trivial action, in addition to the given left
action of G on A. The equation 2.2 then takes the familiar form

d(gh) =dg-h + g-dh,

as in the product rule for derivatives.
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Two splittings s,, s, will be said to be A-conjugate if there is an element
a € A such that s,(g) = i(a)s,(g)i(a)” ! for all g € G. Since

(a,1)b,g)a, )" =(a+b—gazg

in A >a G, this conjugacy relation becomes
dig=a+dyg—ga

in terms of the derivations d,,d, corresponding to s,,s,. Thus d, and d,
correspond to A-conjugate splittings if and only if their difference d, — d,
is a function G — A of the form g+ ga — a for some fixed ae A. Such a
function is said to be a principal derivation.

We can summarize the preceding paragraph by saying that the A-con-
Jjugacy classes of splittings of a split extension of G by A correspond to the
elements of the quotient group Der(G, A)/P(G, A), where Der(G, A) is the
abelian group of derivations G — A4 and P(G, A) is the group of principal
derivations. On the other hand, a glance at the standard cochain complex
C*(G, A) shows that Der(G, A) is the group of 1-cocycles and P(G, A) is
the group of 1-coboundaries (cf. exercise 2 of §III.1). We have therefore
established:

(2.3) Proposition. For any G-module A, the A-conjugacy classes of splittings
of the split extension

0545 A><G-G-1

are in 1-1 correspondence with the elements of H'(G, A).

EXERCISES

The purpose of these exercises is to develop the theory of derivations and to give alge-
braic proofs of some results that were proved topologically in Chapters I and I1.

1. Ifd is a derivation, show that d(1) = 0.

2. Let I be the augmentation ideal of ZG and let D: G — I be the derivation defined by
Dg = g — 1for g € G. [Regarded as a derivation G — ZG, this is simply the principal
derivation corresponding to 1 € ZG.] Show that D is the universal derivation on G,
in the following sense. Given any G-module 4 and any derivationd: G — 4, thereisa
unique G-module map f: I — A such thatd = fD:

D

G—I



90 IV Low-Dimensional Cohomology and Group Extensions

Thus Der(G, A) & Homgg(1, A). [Hint: A derivationd:G — A extends to an additive
map d: ZG - A such that

d(rs) = dr-&(s) + r-ds
for all r, se ZG, where ¢: ZG — Z is the augmentation. The restriction of d to [ is a
module homomorphism such that d(g — 1) = dg for all ge G.]
3. Let F = F(S) be the free group generated by a set S.

(a) If A is an F-module and (a,),.s is a family of elements of 4, show that there is a
unique derivation d:F — A such that ds = a, for all seS. [Hint: Derivations
F — A correspond to splittings of 0 » 4 - A>aF —» F — 1; now use the universal

mapping property of F.]

(b) Deduce from (a) and exercise 2 that the augmentation ideal of ZF is a free ZF-
module with basis (Ds),s. Thus we have reproved 1.4.4 as well as exercise 3b of
§I1.5. As in the latter, we can now define the partial derivatives d/ds: F — ZF by

Df =Y ,.s(0f/0s)Dsfor f € F.

(c) Reprove, from the present point of view, exercise 3c of §I1.5. [Hint: The formula to
be proved is true for the universal derivation, hence for any derivation.]

4. Let G = F/R, where F = F(S) and R is the normal closure of a subset T< F.

(a) For any G-module 4, show that derivations G — A4 correspond to derivations
d: F— A such that d(T)=0. [Hint: A splitting of 0~ A4 — A>G—>G—1 can be
defined by constructing a suitable map F - 4><G.]

(b) Using exercise 3, restate (a) as follows Derivations G - A correspond to families
(a,),e s of elements of A such that ) ,, s (0t/3s)a, = O for all t € T, where d1/ds is the
image of 0t/0s under the quotient map ZF — ZG.

(c) Using exercise 2, restate (b) as follows: Let I be the augmentation ideal of ZG.
Then there is an exact sequence

26 3269 % 10,

where d,e, =5 — 1 and d,¢, = Y ,.5(0t/ds)e,. (This reproves the second part of
exercise 3d of §IL.5.)

(d) Make (c) more precise by proving that there is an exact sequence

(*) 0-R, %269 %2652 -0,

where de, = 5§ — 1 and 6(r mod [R, R]) = Y, 5(dr/ds)e,. (This reproves 11.5.4 and
the first part of exercise 3d of §I1.5.) [Hint: We have a free resolution

(%) 0-1-2ZF57Z 50

of Z over ZF, where I now denotes the augmentation ideal of ZF. Taking R-coin-
variants, we obtain a complex whose homology is H, R. Since I ~ ZF®, this yields
an exact sequence

0-HR5ZGD->2G-Z 0.
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On the other hand, we can calculate H, R from the standard (bar) resolution of Z
over ZR, and this is what we used to show H,R = R,,. Now it is easy to map the
standard resolution to (), by [ ]~ 1 in dimension O, [r]—r — 1 = Dr in
dimension 1, and [r,|---|r,J++0 for n > 1. Deduce that there is a commutative
diagram

R —2%

|

H, R—2 7™

where the vertical arrows are quotient maps. Since the composite F = I — ZG
is a derivation such that s e,, the exactness of (+) follows easily.]

3 The Classification of Extensions with
Abelian Kernel

Let A be a fixed G-module. All extensions of G by A4 to be considered in this
section will be assumed to give rise to the given action of G on A. To analyze
an extension

3.1) 0-ASESG-1,

we choose a set-theoretic cross-section of =, i.e., a function s: G — E such
that ns = id. For simplicity, we will assume that s satisfies the normalization
condition

(3.2) s(1) = 1.

If s is a homomorphism, then the extension splits and we know its structure
by 2.1. In the general case, however, there is a functionf : G x G — A4 which
measures the failure of s to be a homomorphism. Indeed, for any g,h e G,
the elements s(gh) and s(g)s(h) of E both map to gh in G, so they differ by an
element of i(4). Thus we can define f by the equation

(33 s(g)s(h) = i(f(g, h)s(gh).
Note that 3.2 implies that f is normalized, in the sense that
(34) fg.)=0=71(1,9)

for all g € G. The function f is often called the factor set associated to 3.1 and s.

I claim now that the extension 3.1 can be completely recovered from the
G-module structure on A and the function f. Indeed. since s(G) is a set of
coset representatives for i(A4) in E, we have a bijection A x G— E given by
(a, 9)— i(a)s(g). To compute the group law on 4 x G which makes this
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bijection an isomorphism of groups, consider two elements (a, g), (b, h) in
A x G. Using the commutation rule 1.2, we find

i(a)s(g)i(b)s(h) = i(a)i(gb)s(g)s(h)
= i(a + gb)i(f(g, h))s(gh)
= i(a + gb + f(g, h))s(gh).

Thus the group law on A x G is given by

(3.5) (a, g)b, h) = (a + gb + f(g, h), gh).

We will denote by E the set A x G with the product 3.5. Note that 3.5 looks
like the product in 4 > G, “perturbed” by f. _

Since i(a) = i(a)s(1) for any ae A, the composite A > E ~ E, is the
canonical inclusion

(3.6) a— (a,l).

And the composite E; =~ E 5 G is obviously the canonical projection
3.7 @g9)—g.

Thus the original extension 3.1 is equivalent to the extension

(3.8) 0-A-E, -G-1

defined by 3.5, 3.6, and 3.7 entirely in terms of G, 4, and f.

It is natural to ask at this point whether we could start with an arbitrary
function f: G x G — A satisfying 3.4 and define a group E, by means of
3.5. The answer is no. Indeed, if we define a product by 3.5 and compute the
triple products [(a, g)b, h)1(c, k) and (a, g)[(b, h)(c, k)], we find that 3.5 is
associative if and only if f satisfies the identity

(3.9 S(g, k) + f(gh, k) = gf (h, k) + f(g, hk)

for all g, h, k € G. If 3.9 holds, however, then we do in fact have a group. For
(3.4) implies that (0, 1) is a 2-sided identity, and it is easy to prove the exis-
tence of inverses. [Given (g, g) € E, solve the equations (a, gX(b, g~ Hh=(@,1)
and (b', g~ "Xa, g) = (0, 1) for b and b". One finds that (a, g) has left inverse
(—97'a—f(g7",9),97") and right inverse (—g~'a — ¢~ 'f(g,9" ") g™ ")
These two inverses are necessarily equal because of associativity.] Moreover,
one checks easily that 3.6 and 3.7 define homomorphisms making the resulting
sequence 3.8 exact, that 3.8 gives rise to the given action of G on A, and that
the factor set associated to 3.8 (with the canonical cross-section g — (0, g)) is
the original function f.
What we have established, then, is essentially a 1-1 correspondence

extensions 3.1 with - functions G x G— 4
a normalized section satisfying 3.4 and 3.9/
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Now the identity 3.9 can be rewritten in a form which should look familiar:

(3.10) af (h, k) — f(gh, k) + f(g, hk) — (g, h) = 0.

Indeed, f can be regarded as a 2-cochain of the standard complex C*(G, A)
for computing H*(G, A) (cf. §I11.1), and 3.10 says precisely that f is a cocycle.
Moreover, 3.4 simply says that f is in the normalized cochain complex
C¥G, A) = C*(G, A). Thus

extensions 3.1 with - normalized 2-cocycles of
a normalized section G with coefficients in A4

Finally, I claim that changing the choice of the section in 3.1 corresponds
precisely to modifying the cocycle f in C¥(G, A) by a coboundary. In fact,
an arbitrary normalized section of 3.1 is given by

3.11) g i(c(9))s(g),

where c: G — A is a function such that ¢(1) = 0, i.e., ¢ is an arbitrary element
of CMG, A). And we can easily compute the factor set associated to 3.11;
for we have

i(c(9))s(9)i(c(h))s(h)

i(c(g))i(gc(h))s(g)s(h)
i(c(g) + ge(h))i(f (g, h))s(gh)
i(c(g) + gc(h) + f(g, h) — c(gh))i(c(gh))s(gh).

Thus the new factor set is

(g, ) c(g) + gc(h) + f(g, h) — c(gh),

which is equal to f + dc, as claimed.
We have therefore proved:

(3.12) Theorem. Let A be a G-module and let £(G, A) be the set of equivalence
classes of extensions of G by A giving rise to the given action of G on A. Then
there is a bijection

&(G, A) ~ H*(G, A).

As a simple application of 3.12 and 2.3 we will prove the following theorem
of group theory:

(3.13) Corollary. Let E be afinite group of order mn, where m and n are relatively
prime, and suppose that E contains an abelian normal subgroup A of order m.
Then E contains subgroups of order n, and any two such subgroups are con-
Jugate.

PROOF. Let G = E/A and consider the extension
0-A-E->G-1.
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Since |A| and |G| are relatively prime, H*(G, A) = 0 (cf. I11.10.2). Thus
&(G, A) contains a single element and hence the extension splits. This proves
the existence part of the corollary. The uniqueness (up to conjugacy) follows
similarly from 2.3, once one notes that any G < E of order n must map
isomorphically onto G and hence split the extension. O

Remark. The corollary can be generalized to the case where A is non-abelian,
cf. Zassenhaus [1958], IV.7. The existence part of this generalization, as
well as the uniqueness if either 4 or E/A is assumed to be solvable, is proved
by a straightforward inductive argument based on 3.13 and the Sylow
theorems. One then completes the uniqueness proof by appealing to the
Feit-Thompson theorem, which says that every group of odd order is sol-
vable and hence that either A4 or E/A is solvable.

Further group-theoretic applications of 3.12 wnll be given in exercises
3-7 below and in §4.

EXERCISES

1. (Functorial properties of £(G, A))

(a) Givenanextension0 - A — E — G — 1and a group homomorphisma: G' = G,
show that there is an extension 0 - 4 —» E' - G’ — 1, characterized up to equi-
valence by the fact that it fits into a commutative diagram

00— 4 > E * G > 1
0 > A — E' - G’ > 1.

Deduce that a induces a map &(G, A) » &(G’, A), which corresponds under the
bijection of 3.12 to H%(a, A): H¥(G, A) - H¥G', A). [Hint: Take E' to be the
fiber-product (or “pull-back”) E x ; G', which by definition is the set of pairs
(e,g') € E x G'such that eand g’ have the same image in G.]

(b) Given an extension 0 - A - E— G — 1 and a homomorphism f:4 — A’
of G-modules, show that there is an extension 0 - A’ - E' —» G — 1, characterized
up to equivalence by the fact that it fits into a commutative diagram

0 ~ 4 E > G 1
0 > A - E »G — 1.

Deduce that f induces a map &(G, A) » &(G, A’), which corresponds under the
bijection of 3.12 to H%(G, f): H¥G, A) » H*(G, A’). [Hint: Take E' to be the
largest quotient of A’ >a E such that the left-hand square above commutes.]
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2. (Interpretation of 6: H' — H?)

(@) Let 0> A" A — A" — 0 be a short exact sequence of G-modules. Given a
derivation d: G — A", show that there is an extension 0 » A’ > E —» G — 1,
characterized by the fact that it fits into a commutative diagram

0 > A’ > 4 — 4" > 0
[E ‘[‘:
0 > A’ »E —G — 1

with d a derivation. (The latter makes sense because A4 is an E-module via E — G.)
[Hint: Take E to be the set-theoretic pull-back, as in exercise la, regarded as a
subgroup of 4> G.]

(b) The construction in (a) gives a map Der(G, A”) » &(G, A’). Show that the
diagram

Der(G, A") — &£(G, A')

HY(G, A") —>— H*(G, A')

commutes. [Hint: A (set-theoretic) lifting of d to a function G — A yields a (set-
theoretic) cross-section of E — G. Now check definitions.]

3. Let G be a finite group. For any homomorphism G — Q/Z we can construct a
central extension of G by Z by pulling back the canonical extension0 » Z - Q —»
Q/Z - 0:

0 > 7 Q * Q/Z 0
0 + Z — E — G 1.

Thus we have a map ¢: Hom(G, Q/Z) — &(G, Z), where G acts trivially on Z. Prove
that ¢ is a bijection. [Hint: By exercise 2, ¢ can be identified with

8: HY(G, Q/Z) » H¥G,2)]

4. (a) Let E be a group which contains a central subgroup C of finite index n. Prove
that there is a homomorphism E — C whose restriction to C is the n-th power map.
[Method 1: We have a central extension 1 - C — E — G — 1 with |G| = n. Since n
annihilates H3(G, C), the n-th power map C — C induces the zero-map on H*(G, C).
Exercise 1b now implies that there is a diagram

1 » C » E — G ——1

|

1 > C — CxG » G — 1.
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Take the C-component of E - C x G. Method 2: Use the transfer map H,E —
H1C = C-]

(b) Deduce that the following two conditions on a finitely generated group E are
equivalent:

(i) The center C of E has finite index.
(it) The commutator subgroup [E, E] of E is finite.

(Both of these conditions say, heuristically, that E is “almost abelian.”) [Hint:
For (i) = (ii), note that the map E — C of (a) has finite kernel. Conversely, (ii)
implies that every generator of E has only finitely many conjugates, hence its centra-
lizer has finite index.]

. (a) Let E be a group which contains an infinite cyclic central subgroup of finite

index. Prove that E is isomorphic to a semi-direct product F > Z with F finite.
[Hint: Using either exercise 3 or exercise 4a, we can find a surjection £-—Z with
finite kernel. This surjection must split since Z is free.]

(b) Deduce the following theorem of group theory: If E is a torsion-free group
which has an infinite cyclic subgroup of finite index, then E is infinite cyclic. [Hint:
Let A < E be an infinite cyclic normal subgroup of finite index. Then E has a sub-
group E’ of index 1 or 2 such that A is central in E'. It follows from (a) that E' = Z,
so we have an extension 0 — Z — E — G — 1 with |G| < 2. If G acts non-trivially on
Z then H*(G,Z) = 0 by direct computation. But then the extension splits, con-
tradicting the assumption that E is torsion-free. Hence G acts triviallyand E ~ Z by

a).]

Let E be a finitely generated torsion-free group which contains an abelian subgroup
of finite index. Prove that E can be embedded as a discrete, co-compact subgroup
of the group R" >a 0, of isometries of R" for some n. [Hint: We have an extension
0— Z" - E - G — | with G finite. Now argue as in the hint to exercise 4a.]

. (Universal central extensions). In this exercise all extensions will be assumed to

be central and all coefficient modules for cohomology will be assumed to have
trivial G-action. We will assume further that G is perfect, ie., that G = [G, G],
or, equivalently, that H;G = 0. All (non-abelian) simple groups are perfect, for
example.

(a) Show that there is a universal coefficient isomorphism
H*G,; Ay &~ Hom(H,G, A)
f<;r any abelian group 4.

(b) Deduce that there is a “universal” cohomology class u € H*(G, H, G), with the
following property: For any abelian group 4 and any v € H*(G, A), there is a unique
map f:H,G — A such that v = H*(G, f)u. [Hint: Yoneda’s lemma (exercise 3a
of §1.7) tells you how to describe the natural map Hom(H,G,—) 3 H*G,—) of
(a) in terms of its effect on idy, G € Hom(H, G, H,G).]
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(c) In view of 3.12 and exercise 1b, reinterpret (b) as saying that G admits a “ universal
central extension”

0-H,G-E—->G—1,

characterized by the following property: Given any abelian group 4 and any
central extension ‘

0-A-E G-,

there is a unique map E — E' making

commute. [Hint: To prove uniqueness, note that two such maps E 3 E' which
induce the same map H,G — A must differ by a homomorphism E —+ A which
factors through G. But G is perfect, so there are no non-trivial maps G — A4.]

Remark. In practice one often uses (c) to compute H,G. Namely, one produces a
central extension of G with the universal property described in (c), and it then
follows that the kernel of this extension is isomorphic to H,G. See Milnor [1971]
for an interesting example of this (G = SL,(k)) and further information about
universal central extensions.

8. Let 0 » 4 5 E — G — 1 be a central extension with G abelian. The commutator
pairing associated to the extension is the map c: G x G — A defined by c(g, h) =
i"N([g,k]) = i~ Y(Ghg~*h~ '), where g and h are lifts of g and h to E.

(a) Show that c is well-defined, Z-bilinear, and alternating. (The latter means that
(g, g) = 0; this implies, in view of bilinearity, that c(g, h) = —c(h, g).) Thus c can
be viewed as a map /\2G — 4, where /\*G, the second exterior power of G, is the
quotient of G ® G by the subgroup generated by the elements g ® g.

(b) If f'is a factor set associated to the extension, show that c(g, h) = f(g,h) — f(h,g).

(c)Let6:H 2(&, A) - Hom(/\?G, A) be the map which sends the class of a cocycle f
to the alternating map f (g, h) — f(h, g). Deduce from (b) that there is a bijection
ker 8 = &,,(G, A), where £,(G, A) is the set of equivalence classes of abelian
extensions of G by 4.

See exercise 5 of §V.6 below for further results about 6.

4 Application: p-groups with a Cyclic
Subgroup of Index p
As an illustratiom of the theory of group extensions, we will give in this

section a classification of p-groups which contain a cyclic subgroup of index
p, where p is a prime. (Such a subgroup is necessarily normal; cf. Hall [1959],



98 IV Low-Dimensional Cohomology and Group Extensions

§4.2.) We will then use this classification to prove a theorem of Burnside
(Theorem 4.3 below) which will be needed in §VL.9. )

We begin by listing some examples of p-groups with a cyclic subgroup of
index p:

A) Z,@=p'n = 1).

B)Z,xZ,(qg=p"n=1).

(C) z,>~1Z,(q = p", n > 2), where the canonical generator of Z, acts on
Z, as multiplication by 1 + p"~'. (This makes sense because (1 + p"~ ')y =
1 mod p" by the binomial theorem.)

If p = 2, there are three additional families:

(D) Dihedral 2-groups: Recall that for any integer m > 2, the dihedral
group D,,, is defined to be Z,,><Z,, where the generator of Z, acts on Z,,
as multiplication by — 1. If m is a power of 2, D,,, is a 2-group. Note that D,
is of type (B) and Dy is of type (C). For m > 4, however, D,,, is not isomorphic
to any of the previous examples; this can be seen by computing abelianiza-
tions.

(E) Generalized quaternion 2-groups: Let H be the quaternion algebra
R® Ri ® Rj ® Rk. For any integer m > 2, the generalized quaternion
group Q,,, is defined to be the subgroup of the multiplicative group H*
generated by x = "™ and y = j. For example, Qg is simply the usual
quaternion group {+1, +i, +j, +k}. Note that x is of order 2m and that
we have the relations y*> = x™ and yxy~! = x~'. It follows that the cyclic
subgroup C generated by x is normal and of index 2 and hence that Q,,,
has order 4m. If m is a power of 2, Q,,, is a 2-group. For future reference we
record some properties of Q,,,: (a) In the extension0 - C — Q,,, = Z, —» 0,
the generator of Z, acts as —1 on C. (b) Every element of Q,,, — C is of
order 4. (c) Qg has exactly three cyclic subgroups of index 2; Q,,, for m > 2
has a unique cyclic subgroup of index 2. [This follows from (b).] (d) Q4.
has a unique element of order 2. (¢) The extension 0 C—Q,,,—»Z,—0
does not split.

(F) Z,>~1Z, (g = 2", n > 3), where the generator of Z, acts on Z, as
multiplication by —1 + 2"~ 1,

We now prove that this list is complete:

(4.1) Theorem. If G is a p-group with a cyclic subgroup of index p, then G is
isomorphic to one of the groups listed in (A)-(F) above.

The proof will use the following lemma from elementary number theory:

(4.2) Lemma. Let a be an integer such that a® = 1 mod p" for some n > 2.
Ifpisoddthena = 1modp" . If p = 2thena= +1mod 2"~ .

PROOF. Assuming, as we may, that a # 1, let d(a) be the largest integer d
such that a = 1 mod p?. Note that d(a) > 1 since a = a® = 1 mod p, where
the first congruence is by Fermat’s little theorem. If p is odd or d(a) > 2,
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then exercise 3a of §I1.4 is applicable and gives d(a?) = d(a) + 1. Thus
d(@) = n — 1 in this case, as required. If p = 2 and d(a) = 1, then a =
—1mod 4. We can therefore apply the previous argument to —a to conclude
that —a = 1 mod 2"~ !, O

PROOF OF THEOREM 4.1. By hypothesis we have an extension 0 —» Z, - G —
H — 1, where q = p" for some n > 0 and |H| = p. If H acts trivially on Z,
then G is abelian, being generated by two commuting elements. It then
follows from the theory of finite abelian groups that G is of type (A) or (B).
Assume now that H acts non-trivially on Z,. We will use example 2 of
§IIL.1 to compute H*(H, Z,). The action of H on Z_ is given by an embedding
H o Z7, where Z} is the group of units of the ring Z, = Z/p"Z, and clearly
we must have n > 2. Suppose first that p is odd. Then Lemma 4.2 implies
that the image of this embedding is {1 + b: b € p"~'Z/p"Z}, which is a group
of order p, generated by 1 + p"~'. In particular, H must have a generator
which acts as 1 + p"~ ', as in (C). Under this action of H on Z,, we have
7! = {xe Z,:p""'x = 0} = pZ/p"Z. On the other hand, the norm operator
%e g hon Z_ is multiplication by ) (1 + b) (b € p"~ 'Z/p"Z), which equals p.
[>.b = 0 because p is odd.] Thus the image of the norm operator is also
equal to pZ/p"Z. We conclude that H*(H,Z,) = 0, so the extension splits
and G is of type (C). Suppose now that p = 2. By Lemma 4.2 again, the
image of H ¢, Z¢ is a subgroup of {+1 + b:be2""'Z/2"Z}. There are
therefore three possibilities for the image a € Z¥ of the generator of H:

Case I: a = —1. In this case Z}' = 2"~ 'Z/2"Z and the norm operator is
zero,so H*(H, Z,) ~ Z,. Thus there are precisely two inequivalent extensions
of H by Z, corresponding to this action of H on Z,. Since we have already
produced two such extensions in (D) and (E), it follows that G is either of
type (D) or type (E).

Case2: a=1+2""'. Then Z = 2Z/2"Z and the norm operator is
multiplication by 2 + 2"~ = 2(1 + 2"~%). We may assume n > 3, since
otherwise we are in case 1. Thus 1 + 2"~ 2 € Z} and the image of the norm
map is 2Z/2"Z. We therefore have H*(H,Z,) = 0, so the extension splits
and G is of type (C).

Case3: a= —1+2""', n>3. Then Z! = 2""'Z/2"Z and the norm
operator is multiplication by 2"~ !. Thus H %(H, Z,) = 0, the extension splits,
and G is of type (F). O

Using this theorem, we can prove the following result (cf. Burnside
[1911], §§104 and 105):

(4.3) Theorem. If G is a p-group which has a unique subgroup of order p, then
G is either a cyclic group or a generalized quaternion group.

PROOF. Arguing by induction on |G|, we may assume that every proper
subgroup of G is cyclic or generalized quaternion. Choose H < G of index p.
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[Such an H always exists, cf. Hall [1959], §4.2.] If H is cyclic, then we are
done by Theorem 4.1; for the only groups in the list (A)-(F) which have a
unique subgroup of order p are the cyclic groups and the generalized quater-
nion groups. Suppose, then, that H is generalized quaternion (and hence
that p = 2). 1 claim that H has a cyclic subgroup N of index 2 which is normal
in G. Indeed, if & is the set of cyclic subgroups of H of index 2, then we know
that card(%) is odd (cf. statement (c) in the discussion of type (E) above);
the conjugation action of the 2-group G on & must therefore fix some
N € &, as claimed. Consider now the action of G/N on N. It is given by a
homomorphism G/N — Z}, where q = |[N| > 4. Composing with the
canonical projection Z} — Z}¥ = {+ 1}, we obtain a surjection G/N — {+ 1},
whose kernel is a group K/N of order 2. Since the generator of K/N does
not act as — 1 on N, K cannot be generalized quaternion. Thus K is a cyclic
subgroup of G of index 2, and we are done as before. O

Remark. Itis instructive to look at Burnside’s proof of this theorem. Although
neither cohomology theory nor the classification of group extensions had
yet been developed, Burnside’s proof contains, essentially, a direct proof
that £(G, A) ~ A°/NA for G finite cyclic, where N is the norm operator.
[Explicitly, given an extension 0 - 4 - E - G — 1, where G is cyclic of
order n with generator t, Burnside lifts ¢ to € E and considers a = "€ A.
Then a is in A and a mod NA is the element of A°/NA which classifies
the extension.]

Finally, as one further illustration of the use of cohomology in group
theory, we will determine all subgroups of a non-dihedral group of type
©):

(4.4) Proposition. Let G = Z,>Z,(q = p",n > 2)asin(C).If p = 2, assume
2 3. Let A = Z, be the subgroup pZ/p"Z of index p.

(@) A>Z, = A x Z,is a non-cyclic abelian subgroup of G of index p.

(b) Every element of G which is not in A x Z, generates a cyclic subgroup
of index p. There are precisely p distinct such cyclic subgroups of index p.

(c) Every proper subgroup H of G is either a subgroup of A x Z, or a cyclic
subgroup of index p as in (b). In particular, H is abelian.

PROOF. (a) is obvious, since Z,, acts trivially on A. It is possible to prove (b)
by a direct (and tedious) computation, but it is easier to proceed as follows.
First, note that any homomorphism G — Z, must factor through the
quotient Z, x Z, of G. It follows that the subgroups of G of index p cor-
respond to the subgroups of Z, x Z, of index p, and there are precisely
p + 1ofthese. [They are the points of the projective line over the field with p
elements.] Of these p + 1 subgroups of G of index p, oneis A x Z, and I
claim that the other p are all cyclic. Accepting this for the moment, we can
easily prove (b) by a counting argument. For the p cyclic subgroups of
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index p contain a total of p(p" — p"~!) generators, and none of these gen-
erators can be in 4 x Z,. But card(G — (4 x Z,)) = p"*! — p" = p(p" —
p"~ 1Y), so (b) follows at once. Since (c) is an immediate consequence of (b),
it remains only to prove the claim.

In the proof of 4.1 we calculated the norm operator for the action of Z,
on Z,, and it follows from this computation that H'(Z,, Z,) = 0. In view of
Proposition 2.3, this means that the extension

0-2,-6-2,-0

has a unique splitting (up to conjugacy) and hence that G contains only two
conjugacy classes of subgroups of order p. Suppose now that H is a non-
cyclic subgroup of G of index p. Then we have an extension

0-A-H-Z,-0

with Z, acting trivially on A4 (because 1 + p"~' = 1 mod |4|). Thus H is
abelian and non-cyclic, so H contains at least two subgroups of order p.
Since H is normal in G, it follows that H contains both conjugacy classes of
subgroups of G of order p. In particular,0 x Z, < Handhence H = A x Z,,
as claimed. O

EXERCISES

1. If G is a generalized quaternion group, show that every subgroup of G is either
cyclic or a generalized quaternion group. [This follows from Theorem 4.3, of course,
but you can also check it directly.]

2. If G is a dihedral group, show that every subgroup of G is either cyclic or dihedral.
[Hint: Every element of G = Z,>a Z, which is not in Z_ is of order 2.] If |G| > 8,
show further that the non-cyclic abelian subgroups of G (i.e., the subgroups iso-
morphic to Z, x Z, = D,) are not normal. Dg, on the other hand, contains two
non-cyclic abelian normal subgroups.

3. Let G=2Z,>aZ,(q=2"n2=3)asin (F). Let A = Z_ be the subgroup of order 2.
Show that the only non-cyclic abelian subgroups of G are A x Z, and its conjugates.
Show further that 4 x Z, is not normal in G. [Hint: If H is a non-cyclic proper
subgroup of G, then we have an extension 0 - HNZ, —» H — Z, — 0 with the
generator of Z, acting as —1 on H n Z,. This can only be abelian if H N Z, = A.
Now calculate H'(Z,, Z,) and use this information as in the proof of 4.4.]

4. If G is a p-group such that every abelian normal subgroup is cyclic, show that G is of
type (A), (D), (E), or (F), with |G| > 16 if G is of type (D). [Hint: Choose a maximal
abelian normal subgroup of G, and consider the corresponding extension 0 — Z, —
G- H-1,q=p.1f|H| < p then we are done by Theorem 4.1, since groups of
type (B) and (C) have non-cyclic abelian normal subgroups. Suppose, then, that
|H| = p? and consider the normal subgroups H' < H of order p. Such an H’ cannot
act trivially on Z,, since the inverse image G’ of H' in G would be an abelian normal
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subgroup bigger than Z,. And H’ cannot act as in (C) unless p = 2 and n = 2, since
the non-cyclic subgroup of G’ of index p (cf. 4.4) would be normal in G. So the only
possibility is that p = 2 and that the non-trivial element of H' actsas —1 or —1 +
2"~ ! (with n > 3 in the latter case). But this is absurd, for the composite H — Z¥ —
{£1} has a non-trivial kernel and we could take H’' to be contained in this kernel.]

5 Crossed Modules and H® (Sketch)

We have seen in §§2 and 3 that H! and H? have concrete group-theoretic
interpretations. It turns out that there are also group-theoretic interpreta-
tions of the functors H" for n > 3, discovered independently by several
people. (Many of the relevant references can be found in MacLane [1979].)
We will confine ourselves here to a sketch of the theory in the case of H>.
The essential ideas in this case go back to MacLane [1949], although he
did not give the precise classification theorem 5.4 below.

Let E and N be groups. Suppose we are given an action of E on N, denoted
(e, n) — “n, as well as a homomorphism a: N — E satisfying

5.1) “y' = pn'n~ 1 (n,n’ € N)
and
(5.2) a(°n) = ea(n)e” ' (e€ E,ne N)

We then say that N (together with a and the action) is a crossed module
over E.

The canonical example of a crossed module is that where E is the full
automorphism group Aut N and a(n) is the inner automorphism associated
to n. Thus 5.1 is true by definition, and 5.2 is easily verified. Crossed modules
also arise naturally in topology, and it is in this context that they were
first introduced (Whitehead [1949]). Namely, if X is a topological space and
Y is a subspace, then the relative homotopy group n,(X, Y) is a crossed
module over =, Y, with a being the boundary map d:n,(X,Y) - =, Y.
For another example, suppose E is the total space of a fibration with fiber F;
then one can make =, F a crossed module over =, E.

Note that any ordinary (abelian) E-module can be viewed as a crossed
module, with o being the trivial map. At the other extreme, any normal
subgroup of E is a crossed module with E acting by conjugation and a being
the inclusion.

Let N be a crossed module over E. We set A = ker « and G = coker a;
the latter makes sense because im a is normal in E by 5.2. Note that A4 is
central in N (by 5.1) and that the action of E on N induces an action of G
on A. Thus we have a 4-term exact sequence

(5.3) 0-ALSNSESGoI,
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where A4 is a G-module. It turns out that exact sequences of this form are
classified (up to a suitable equivalence relation) by H3(G, A).

More precisely, suppose we start with an arbitrary group G and an
arbitrary G-module A. Consider all possible exact sequences of the form
5.3, where N is a crossed module over E such that the action of E on N
induces the given action of G on 4. We impose on these exact sequences the
smallest equivalence relation such that

0-A-N-E-G-1
is equivalent to

0-A-N-SE-G-1
whenever there is a commutative diagram

/]’_"[\
b L

in which the vertical arrows are compatible with the actions of E and E’
on N and N'. [Warning: The vertical arrows need not be isomorphisms.]
We then have:

_— —

(5.4) Theorem. There is a 1-1 correspondence between equivalence classes as
above and elements of H3(G, A).

We omit the proof, which can be found in the references cited in MacLane
[1979]. We will, however, explain how an exact sequence 5.3 gives rise to an
element of H3(G, A). Choose a set-theoretic cross-section s: G — E of .
Its failure to be multiplicative is measured by a function f: G X G — kern
such that

(5.5) s(g)s(h) = f(g, b)s(gh).

As in §3, the associativity of the product in E forces a “cocycle condition”
on f, which takes the form

(5.6) f(g, W) f(gh, k) = *®f(h, k)f (g, hk),

where “@f (h, k) = s(g) f(h, k)s(g)~*. [5.6 is a non-abelian analogue of 3.9;
it is proved by computing the triple product s(g)s(h)s(k) in two different
ways.]

Since ker # = im a, we can lift f to a function F:G x G — N, and we
can ask whether F satisfies the analogue of 5.6 (which now involves the
crossed-module action of E on N). The failure of F to do so is measured by a
function ¢:G x G x G — A such that

(CN)) SOF(h, k)F(g, hk) = i(c(g, h, k))F(g, h)F(gh, k).
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One then shows that ¢ is a 3-cocycle, whose cohomology class is independent
of the choices of s and F, and this cohomology class is the desired element of
H3(G, A).

6 Extensions with Non-Abelian Kernel (Sketch)

The main references for this section are MacLane [1963] and Eilenberg-
MacLane [1947].

Let N be a group and recall from §5 that N is an Aut(N)-crossed module
via the canonical map a: N — Aut(N) and the canonical action of Aut(N)
on N. The kernel of « is the center C of N, and the cokernel of « is, by definition,
the group Out(N) of outer automorphisms of N. The resulting exact sequence

6.1) 0— C— N5 Aut(N) - Out(N) - 1
plays a fundamental role in the study of extensions

(6.2) 1-NSESG-1

with kernel N.

The first observation to make is that such an extension gives rise not to
an action of G on N, but only to an “outer action,” i.e., a homomorphism
¥: G - Out(N). This is induced by the conjugation action of Eon N:

N— E — G

_—

N —— Aut(N) —— Out(N).

We therefore fix a homomorphism : G — Out(N) and try to understand
the set £(G, N, ) of equivalence classes of extensions giving rise to . Note
that it is not even obvious, for a given y, whether or not &(G, N, ¢) is non-
empty. In particular, we do not have a semi-direct product N >a G in
&(G, N, ) unless ¢ lifts to a homomorphism G — Aut(N).

Suppose now that an extension 6.2 is given. As in §3, choose a set-theoretic
cross-section s: G — E of n. This determines, as usual, a function f: G x G
— N measuring the failure of s to be a homomorphism. In addition, it
determines a set-theoretic lifting ¢: G — Aut(N) of y; namely, ¢(g) is
conjugation by s(g). The functions f and ¢ are related by

(6.3) @(g)e(h) = o(f(g, h))o(gh)

where a is as in 6.1. Moreover, f satisfies a “cocycle condition” (cf. 5.6)

(6.4) f(g. W) f(gh, k) = *@f(h, k) f (g, hk).
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Conversely, given f and ¢ satisfying 6.3 and 6.4, one can construct an
extension

6.5) l>N->E;, -G,

where E, , is N x G with a product that can be written down explicitly in
terms of f and ¢. One sees in this way that extensions are classified by pairs
(f, o) as above, subject to some equivalence relation.

This description of &(G, N, y) can be drastically simplified once we
observe that the lifting ¢ of  can be taken to be the same in all extensions
under consideration; for by changing the choice of s, we can change our
lifting ¢ to any other lifting. Thus we can fix ¢ and just consider the extensions
E, ,, where f ranges over all “cocycles” relative to ¢. It follows from 6.3
that any two such f’s will differ by a function G x G — C, and the latter is
an honest 2-cocycle of G with coefficients in C, where C is a G-module
via . One shows in this way that any two elements of &(G, N, y) have a
well-defined “difference” in H*(G, C). This leads to:

(6.6) Theorem. The set &(G, N, Y) admits a free, transitive action by the
abelian group H*(G, C). Hence either &(G, N, ) = & or else there is a
bijection &£(G, N, y) ~ H*(G, C). This bijection depends on the choice of a
particular element of £(G, N, ).

To complete the classification, we must say when &(G, N, V) # .
Recall from §5 that the sequence 6.1 yields an element u € H*(Out(N), C).
Applying the cohomology map y* = H*(y, C), we obtain an element
Y*ue H3G, C). I claim that y*u is the “obstruction” to the existence of an
element of &(G, N, y). To see this, we need the following explicit description
of y*u, which is easily deduced from §5: Choose a set-theoretic lifting
©:G - Aut(N) of ¢, and choose a function f:G x G — N such that 6.3
holds. Then the failure of f to satisfy 6.4 is measured by a function G x G x G
— C which is a 3-cocycle representing y*u.

In particular, if &G, N, §) # &, then we have already seen that ¢ and f
can be chosen to satisfy 6.4, so the 3-cocycle is zero. Conversely, if y*u = 0,
then we can change the choice of f so that 6.4 holds, and we can then construct
an extension 6.5. This proves:

(6.7) Theorem. A homomorphism : G — Out(N) gives rise to an “obstruc-
tion” in H*(G, C), which vanishes if and only if £(G,N,y) # &.

This obstruction, incidentally, does not always vanish. Indeed, for any
group G, any G-module C, and any element v € H3(G, C), one can construct
a group N with center C and a map y: G — Out(N) whose obstruction is
equal to v.
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Finally, we mention one special case where the theory of extensions is
particularly simple:

(6.8) Corollary. If N has a trivial center then there is exactly one extension
of G by N (up to equivalence) corresponding to any homomorphism G — Out(N).

This, of course, is an immediate consequence of 6.6 and 6.7, but it also

admits an easy direct proof which uses no cohomology theory (cf. exercise 1
below).

EXERCISES

1. Give a direct proof of 6.8. [Hint: If N has trivial center then any extension of G by N
fits into a diagram

1 — N > E — G — 1
1 > N > Aut(N) — Out(N) —— 1

with exact rows. Such a diagram is necessarily a pull-back diagram (cf. §3, exercise 1a).]

2. Let 1 = N = E - G — 1 be an extension of finite groups such that |N| and |G| are
relatively prime. We proved in 3.13 that such an extension must split if N if abelian,
and we remarked that this result could be generalized to the non-abelian case. One
might hope to deduce this generalization directly from 6.6 in view of the vanishing
of H*(G, C). Why doesn’t this work ?



CHAPTER V
Products

1 The Tensor Product of Resolutions

If G and G’ are groups and M (resp. M’) is a G-module (resp. G'-module),
then M @ M’ is a G x G'-module in an obvious way: (g,g")-(m ® m’) =
gm ® g'm’. Note that if M is projective over ZG and M’ is projective over
ZG' then M ® M’ is projective over Z[G x G']. In fact, it suffices to verify
this in the case where M = ZG and M’ = ZG/, in which case the assertion
follows from the obvious isomorphism Z2G ® ZG' ~ Z[G x G'].

Now let ¢: F — Z (resp. ¢': F' — Z) be a projective resolution of Z over
ZG (resp. ZG'), and consider the complex F ® F'. This is a complex of
projective Z[G x G'}-modules, and it is augmented over Z by ¢ ® ¢':
F®F - Z®Z = Z Moreover, ¢ ® ¢ is a weak equivalence. This follows,
for instance, from 1.7.6; for the latter shows that e:F - Z and ¢: F' > Z
are homotopy equivalences if we ignore the G-action, so the same is true of
£ ® ¢ (cf. exercise 7c of §1.0). [Alternatively, use the Kiinneth formula.]

We have therefore established:

(1.1) Proposition. If ¢:F — Z and ¢':F' — Z are projective resolutions of
Z over ZG and ZG', respectively, then e @ ¢:F @ F' — Z is a projective
resolution of Z over Z[G x G'].

This result should be thought of as the algebraic analogue of the obvious
fact that the cartesian product of a K(G, 1) and a K(G', 1) is a K(G x G', 1).

(1.2) Corollary. If ¢:F - Z and ¢:F' — Z are projective resolutions of Z
over ZG, then so is e ® ¢: F ® F' — Z, where G acts diagonally on F ® F'.

107
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This follows from 1.1 by restriction of scalars with respect to the “ diagonal”
embedding G - G x G, given by g (g, g).

Note that if F = F’' in 1.2 then we have two obvious maps F® F - F
of resolutions, namely, F® e: F® F>F® Z=F and e@F:FQF —»
Z ® F = F. There is no obvious map in the other direction, but we know
from L7.5 that there exist augmentation-preserving G-chain maps A:
F - F ® F, and that any two are homotopic. Any such map A will be called
a diagonal approximation. In case F is the standard resolution, for example,
there is a well-known diagonal approximation, called the Alexander-
Whitney map. In terms of the homogeneous description of F, this map is
given by

(13) A(QO’ R gn) = Zo(g05 R} gp) ® (gp! e gn)'
p=

Translating this into the bar notation, we find

(14) A[glllgn] = zo[glllgp] ®gl "'gp[gp-rll"'lgn]'
p=

EXERCISE

Let G be a finite cyclic group of order m with generator ¢ and let F be the resolution
1.6.3. In particular, F, = ZG for all n > 0. Let A: F - F ® F be the map whose (p, q)-
component A, : F,,, — F, ® F_is given by

I1®1 peven
A (D)=11@¢ podd, g even
e podd, g odd.
0<i<)sm-1

Verify that A is a diagénal approximation.

2 Cross-products

Let G, G, F, and F’, be as in the previous section. For any G-module M
and G'-module M’ there is an obvious map

@n (F®sM)®(F ®¢ M)~ (F®F)®gxe (M M),

given by (x@m) ® (x' @ m) i~ (x ® x') ® (m ® m’). [One justifies this
rigorously by noting that

(F ®G M)@(F' ®c' M') = (F®M)G ®(F' ®M')G',

which is a certain quotient of F® M ® F' ® M’; making this quotient
explicit, one can even see that the map 2.1 is an isomorphism.] If ze F ® ¢ M
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and z' € F' ®; M’, then we will denote by z x 2’ the image of z ® z’ under
this map. Clearly we have d(z x 2') = 8z x z' + (—1)?z x 9z if deg z = p;
hence the product of two cycles is a cycle, whose homology class depends
only on the classes of the given cycles. We therefore obtain, in view of 1.1, an
induced product

H,(G, M) ® H{(G', M)~ H,, (G x G,M ® M),

called the homology cross-product and still denoted z ® z'+— z x z'. This
product is well-defined, independent of the choice of the resolutions F and
F'.

Similarly, given cochains u € #omg(F, M) and u' e¥omg(F',M’), we
define u x u' € Momgyc(F ® F, M ® M’) to be the tensor product of the
maps u and u’ as defined in exercise 7 of §I1.0; thus u x u',x ® x') =
(—1)tesv dex(y x> @ ', x'). It is easy to verify that &(u x ') =
ou x u' + (—1)’u x 6u’ if deg u = p. [This is a special case of exercise 7a
of 1.0.] There is therefore an induced cohomology cross-product

H?(G, M) ® HY(G',M’) - H?*%(G x G',M @ M’).
EXERCISES

1. Show that the map 2.1 is an isomorphism. Deduce, under suitable hypotheses,
that there is a Kiinneth formula for computing H (G x G', M ® M’) in terms of
H,(G,M)and H (G, M’).

*2. Give hypotheses under which the cochain cross-product
Hom(F, M) @ Homg(F', M') — Homg xc(F @ F,M @ M’)

is an isomorphism, and deduce a cohomology Kiinneth formula.

3 Cup and Cap Products

The previous section dealt with “external” products, involving three groups
G,G',and G x G'. In this section we will discuss internal products, involving
the homology and/or cohomology of a single group G.

Given u € H?(G, M) and v € H*(G, N), we define the cup product of u and v
(denoted uuU v or uv) to be the element d*(u x v)e H?*%G,M ® N),
where d: G = G x G is the diagonal map. Here M ® N has the diagonal
G-action (as it must if d*: H*(G x G, M ® N)—» H*(G, M ® N) is to make
sense).

Checking the definitions, we see that the cup product is induced by the
following cochain cup product: Let F and F’ be projective resolutions of Z
over ZG, and recall (1.2) that F ® F’ with diagonal G-action is also a pro-
jective resolution of Z over ZG. Given u € #2mg(F, M) and v € #omg(F', N),
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define u U v to be u x v as defined in §2, but now regarded as an element of
Homg(F ® F', M ® N). Alternatively, if we prefer to use a single resolution
F, then we choose a diagonal approximation A: F - F ® F (cf. §1) and
set uUv= (U X v)oAeHmzg(F,M ® N) for ue Homs(F,M) and ve
Homg(F, N). For example, if F is the bar resolution and A is the Alexander-
Whitney map (1.4), then the product of u € C?(G, M) and v € C¥G, N) is the
element u U ¢ € C°* %G, M ® N) given by

(“ v v)(gl’ ) gp+q) = (_ l)pqu@l! SRR gp) ® g1 gpv(gp+h ceey gp+q)'
We now list some formal properties of the cup product.

(3.1) Dimension 0: The cup product H%(G, M) ® H%(G, N) - H%(G,M ® N)
is the map M® ® N° - (M ® N)¢ induced by the inclusions M ¢, M
and N® ¢, N.

(3.2) Naturality with respect to coefficient homomorphisms: Given G-module
mapsf: M - M'andg: N — N'and elements u € H*(G, M) and v € H¥(G, N),
we have

(f®guuv)=fiuug,v
in H¥(G, M’ ® N'), where f, = H*(G, f), etc.

3.1 and 3.2 are immediate from the definitions.

(3.3) Compatibility with 6: Let 0 > M' - M — M” - 0 be a short exact
sequence of G-modules and let N be a G-module such that the sequence
0-MRN->-MQE®N->M"®N -0 is exact. (For example, this holds
forany Nif0 - M’ - M — M” - 0 is split exact as a sequence of Z-mod-
ules.) Then we have 6(u U v) = éu LU vfor anyu € H?(G, M")and v € HYG, N).
In other words, the square

H?(G,M") —>— H?* (G, M")

H?*9G,M" ® N) —2— HP*9*Y(G, M’ ® N).

commutes.

PRrOOF. Consider the commutative diagram

0 —— C¥%G, M')— C*(G,M) —— C*(G,M")——0

o

0 — CYG,M'® N) — C*G,M ® N) — C*G,M" ® N) — 0,
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where the vertical arrows are given by cup product on the right with a
fixed cocycle in C%(G, N) representing v. These vertical maps commute with
the coboundary operators 6 in C*(G,—); for the formula é(au b) =
daub + (—1)%8% U b reduces to Saub) =daub if b is a cocycle.
The result now follows from the naturality of connecting homomorphisms
with respect to maps of short exact sequences (1.0.4). O

Similarly, one proves:

(33)If 0> N ->N-—>N"->0is a short exact sequence such that 0 —»
M@N  ->-M®N-M®N" -0 is exact, then d(u U v) = (—1)’uudv
in H?*9*Y(G, M ® N’) for any u € H*(G, M), ve HYG, N").

3.3 and 3.3’ allow one to use dimension-shifting arguments in the study
of cup products. For we have seen (cf. exercise 3 of §II1.7) that we can use a
Z-split injection M — M for the dimension-shifting argument.

(3.4) Existence of identity: The element 1 € H%(G, Z) = Z satisfies 1l vu =
u=uu 1 for all ue H¥(G, M), where we make the obvious identifications
Z®M =M = M ® Z of coefficient modules.

This follows from the definitions together with the following two observa-
tions: (a) 1 € H%(G, Z) is represented by the augmentation map ¢, regarded as
a O-cocycle in #omg(F, Z); and (b) the maps F ® ¢ and ¢ ® F are maps of
resolutions F ® F — F (cf. §1) and hence induce the “identity map” on
cohomology. Alternatively, use the Alexander-Whitney formula.

(3.5) Associativity: Given u; € H¥(G, M,) (i = 1, 2, 3), we have (u,uy)u; =
uy(uau3)in H¥(G,M, ® M, ® M,).

Indeed, associativity holds on the cochain level as an identity in
Homg(FQ FQ®F, M, ® M, ® M;). Alternatively, use the Alexander-
Whitney formula.

(3.6) Commutativity: For any ue H?(G, M), ve H(G, N), we have uv =
(—1)"t,(vu), wheret: N @ M - M ® N is the canonical isomorphism.

PROOF. Let 1: FQ F - F ® F be the chain automorphism such that
(x ® y) = (—1)38*98Yy @ x, cf. exercise 5 of §1.0. We have a commutative
diagram

Homg(F, M) ® Hom(F, N) —— Homg(F ® F,M ® N)
Homg(t. 1)

Hom(F, N) ® Homg(F, M) —— Homg(F ® F,N ® M)

where the vertical arrow on the left is given by u ® v+ (—1)%5*" 46y @ u.
[When you check the commutativity of this square, the signs may seem to
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come out wrong at first; but don’t forget that (u,x) = 0 unless degu =
deg x.] Since 7 is an augmentation-preserving chain map, it induces the
identity in cohomology. Hence the vertical arrow on the right induces ¢, in
cohomology, and this yields 3.6. O

It follows from 3.4-3.6 that H*(G, Z) is an anti-commutative graded
ring and that H*(G, M) is a graded module over this ring. More generally,
if k is an arbitrary commutative ring (with trivial G-action, for simplicity),
then we have a product

H*(G, k) ® H*(G, k) > H*(G, k ® k) - H*(G, k)

which makes H*(G,k) a graded anti-commutative k-algebra. (The un-
labelled arrow above is induced by the multiplication map k ® k — k.)
Similarly, H*(G, M) is an H*(G, k)-module if M is a kG-module.

(3.7) Naturality with respect to group homomorphisms: Given a: H — G,
we have a*(u U v) = a*u U a*v for any u € H*(G, M), ve H*(G, N).

This is immediate from the definitions.
As a special case of 3.7, a*: H*(G, k) - H*(H, k) is a ring homomorphism.

(3.8) Transfer formula: Suppose H < G is a subgroup of finite index. For
any u € H*(G, M) and ve H*(H, N), we have

corfj(resfi(u) U v) = u U corfjv.

This says, in particular, that the transfer map H*(H, k) - H*(G, k) is a
homomorphism of H*(G, k)-modules, where H*(H, k) is regarded as an
H*(G, k)-module via the restriction homomorphism H*(G, k) - H*(H, k).

PrOOF OF 3.8. Let F be a projective resolution of Z over ZG; we will prove
the stated formula on the cochain level. Given u e #om(F, M)¢ and
v € Hom(F, N), we have, in #om(F ® F, M ® N)¢:

corf(resfu)uv) = Y g-(u @)
geG/H

= Y u®gv [becauseuis G-invariant]
9€G/H

u Y gv

geG/H

= u U cor§v. O

There is a second internal product, called the cap product, which is useful
in the study of duality (cf. §V1.7 and VIIL.10). If F is a projective resolution
of Z over ZG, then there is a chain map

y:Home(F, M) @ (F @ F) ® N) = F ®c (M ® N)
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given by u® (x ® y ® n)—> (—1)*8* 98%x @ y(y) ® n. [The reader can
check directly that y is well-defined and is a chain map. Alternatively, we
can appeal to the exercises of §1.0: According to exercise 7b of the latter,
we have a chain map Homg(F, M) = H#om((F @ N) ®cF, (F®N)®qM)
given by u+ idr gy ® u. This corresponds by exercise 6b of §1.0 to a chain
map

Homg(F, M) ® (F ® N) ® F) = (F ® N) ® M,

which is precisely y, modulo the identifications (F ® N) ®¢ F =
F®F)®gN and (F® N)®cM = F ®; (M ® N). These identifica-
tions can be derived by manipulating triple tensor products as in the proof
of I11.2.2.]

For u € #oms(F, M)? = Homg(F,M)_, and ze(F ® F), ®¢ N, y(u ® 2)
isanelementof F,_ , ®; (M ® N), denoted u N z and called the cap product
of u and z. The same notation and terminology are used for the induced
product

H?(G, M) ® H(G,N) - H,_(G,M ® N).

As with the cup product, one can use a diagonal approximation A: F —
F ® F to compute the cap product in terms of a single resolution F. Namely,
one composes y with the map

id ® (A @ id): H#oma(F, M) ® (F ® N) — Homg(F, M) ® (F ® F) ® N).

The cap product, which may seem strange at first, can be motivated by
the fact that it is adjoint to the cup product, in a sense which we now explain.
Consider the “evaluation map”

Homg(F,M) @ (F®¢N) > M ®¢ N,

given by u ® (x ® n) — u(x) ® n. We denote by {u, z) the image of u ® z
under this map. [Except for the fact that we are carrying along the factor
N, this is the same as the evaluation map introduced in exercise 3 of §1.0.]
The evaluation map is a chain map, ie., {du,z) + (—1)***(u,dz) = 0;
so there is an induced pairing

H?(G,M) ® H,(G,N) > M ®¢ N,

still denoted (-, -), which is independent of the choice of resolution. One
now checks, directly from the definitions, that the following adjunction
formula holds for any u € H?(G, M,),ve HY(G, M,),ze H,, (G, M3):

(3.9) uun,z)={u,vNz).

(Note: Both sides of this equation are in (M; ® M, ® M,);.) In particular,
taking u = 1 € H%(G, Z), we find:

(3.10) For any ve H%G, M) and ze H,(G, N), we have vnz =v,z) in
Hy(GCM ® N)=M @®¢N.
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The cap product has properties analogous to 3.1-3.8. We leave it to the
interested reader to write these down.

EXERCISES

1. Given me H%(G, M) = M® and ue H%G, N), show that m U u = f,(u), where
Sm:H*(G,N) = H*(G,M ® N) is induced by the coefficient homomorphism
n—m @ n. [Hint: Use 3.2 and 3.4.] State and prove a similar interpretation of the
cap product H%(G, M) @ H(G, N) - H(G,M @ N).

2. Using the diagonal approximation given in the exercise of §1, compute all cup
products in H*(G, —) if G is finite cyclic.

3. Let G be a finite group which acts freely on S2*~! as in §1.6.

(a) For any G-module M, show that there is an iterated coboundary map d:
HY(G, M) - H'* %G, M) which is an isomorphism for i > 0 and an epimorphism
for i = 0. [Hint: Tensor the sequence 1.6.1 with M, break it up into short exact
sequences, and use the dimension-shifting argument.]

(b) Show that there is an element u € H**(G, Z) such that the “periodicity map”
d of (a) is given by d(v) = uu v for all ve H*(G, M). [Hint: By 3.3, dwuv) =
d(w) v vfor any we H*(G, Z), ve H*(G, M);now set w = 1.]

(c) Using (b), calculate the ring structure on H*(G, Z) for G finite cyclic.

4. Let G be cyclic of order n. For any me Z, there is an endormorphism a(m) of G,
given by a(m)g = g™. Calculate a(m)*: H*(G, Z) - H*(G, Z). [Hint: In view of
what you know about the ring structure on H*(G, Z) from exercise 2 and/or 3c,
it suffices to calculate a(m)* on H*(G, Z). This can be done non-computationally
by using the universal coefficient isomorphism H*(G, Z) ~ Ext(H,G,Z) or by
using the interpretation of H? in terms of group extensions.]

5. Using exercise 4 and Theorem I11.10.3, calculate the integral cohomology of the
symmetric group on 3 letters.

4 Composition Products

We observed several times in Chapter III that there are a number of chain
complexes that can be used to compute H,(G,—) and H*(G, —). Here is
one more example of this:

(4.1) Lemma. Let ¢: F > Z and €': F' — Z be resolutions of Z over ZG such
that F is projective and F' is Z-free. For any G-module M, the map ¢ ® M:
F@®M->Z®M =M induces weak equivalences F ®; (FF ® M)—> F ®; M
and Homg(F, F' @ M) » Homg(F, M). Hence

H (G, M) = H (F ® (F ® M))
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and
H*(G, M) ~ H*(M#oms(F, F' ® M)).

PROOF. We already noted in §IIL.2 that ¢ ® M:F' @ M - M is a weak
equivalence. The lemma therefore follows from 1.8.5 and 1.8.6. O

Note that the last isomorphism in 4.1 can be written in the form
H*G,M) ~ [F,F @ M]*, where [F,FF® M]"=[F,F ® M]_, is the
group of homotopy classes of chain maps of degree —n from F'to FF @ M
(cf. §1.0). The significance of this is that it allows us to construct products by
composition of chain maps. Taking M = Z and F = F’, for instance, the
isomorphism takes the form H*(G, Z) ~ [F, F]*. Since homotopy classes of
chain maps can be composed, we obtain a composition product

H*(G, Z) ® H%(G, Z) - H*(G, Z).

More generally, let ¢: F —» Z, ¢': F' = Z, and ¢": F" — Z be resolutions
of Z over ZG such that F and F’ are projective and F” is Z-free. [In practice,
we will either take F” projective or F” = Z.] For any G-modules M, N,
there is a cochain product

4.2) Homg(F,F' @ M) ® Homg(F,F' ® N) - Homs(F,F" ® M ® N)
given by u®vr—5(u®idN)ov for u e Homg(F', F" @ M), v € #omg(F, F'® N):
FSFON4 FFQMQ®N.

One easily verifies that 4.2 is a chain map (cf. exercise 4 of §1.0); in view of
4.1, there is an induced cohomology product

4.3) H*(G, M) ® H*(G, N) - H*(G,M ® N),

called the composition product. It is well-defined, independent of the choices
of resolution.
Similarly, there is a product

(4.4) Homg(F,F" @ M) ® (F® o(FF @ N)) » F @ (F"® M ®N)

given by
UR X @ X @ ni(—1)3s 98 @ u(x)@n

forue Homg(F,F" @ M), xe F,x'e F,ne N One verifies as in the defini-
tion of the cap product that 4.4 is chain map; in view of 4.1, there is an induced
product

4.5) H*G, M) ® H,(G,N) - H,(G,M ® N).

The following result, although not unexpected, is useful:

(4.6) Theorem. T he products 4.3 and 4.5 coincide with the cup and cap products.
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ProoOF. Consider the cochain composition product 4.2 with F = F’ and
F'=127:
(*) Homg(F, M) @ Homg(F,F @ N) - Homs(F,M ® N).

This induces the product 4.3 via the weak equivalence a = H#oms(F,e ® N):
Hom(F, F @ N) - Homg(F, N) of 4.1. In order to compare 4.3 to the cup
product, we would like to find a weak inverse of a, i.e.,a map ' : #osmg(F, N) —
Homg(F, F ® N) which induces in cohomology the isomorphism inverse to
that induced by a. This would allow us to convert (x) to a cochain product

(x%) Home(F, M) ® Homg(F, N) - Home(F,M ® N)
by composing (*) with
id ® o' : Homg(F, M) @ Homg(F, N) > Homg(F, M) @ Homs(F,F ® N).

It turns out that a diagonal approximation A: F — F ® F gives rise to

such an a'. Namely, we take o to be the composite
Hom(F, N) 2" Hom(F ® F, F ® N)—"— Homg(F,F ® N),
ie., @'(u) = (idr ® u) o A. Computing aa’: H#omg(F, N) = H#oms(F, N), one
finds that it is the map
ur (e®idy) e (idr @ u)oe A= (e @ u)o A.

But this is simply u+ ¢ U u; since the cocycle ¢ represents 1€ H%(G, Z),
it follows that o’ is indeed a weak inverse of a.

We now have a cochain product (+x) which induces the composition
product in cohomology, and it is given explicitly by

U v (u®idy) o d'(v) = (u ® idy)(idr ® V)A
=u®vA

=uuv,

where the latter is the cochain cup product defined via A. Thus the composi-
tion product in cohomology equals the cup product.

The proof that 4.5 equals the cap product is similar, and even easier.
This time we consider the map 4.4, with F = F' and F” = Z, and we seek a
weak inverse f':F ®¢ N = F ®; (F ® N) of the weak equivalence f =
F®eR@N:FQgF® N)—> F®gNofd.l.Iclaimwecantakeff = A® N.
For the composite (F® e ® N)c(A® N):F®;N - F @ N is a map
of the form t ® N, where ©: F — F is an augmentation-preserving chain
map, hence it is homotopic to the identity. We now use ' to convert 44 to a
product

Home(F, M) ® (F @6 N) > F ®¢ (M ® N),

and it is transparent that this map coincides with the chain level cap product
defined by A. O
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We close by remarking that the methods of this section can be used to
define composition products

4.7 Ext§(M’', M") ® Ext&(M, M') - Ext¥(M, M")
and
4.8) Ext¢(M', M") ® Tor$(M, M’).— Tor$(M, M")

for any G-modules M, M’, M". One uses suitable resolutions F, F’, F” of
the three modules and one defines maps Homg(F', F") ® #Homg(F, F') —
Homg(F, F") and Hom(F',F") ® (F ®¢ F') = F ®¢ F" similar to 4.2 and
4.4. The products 4.7 and 4.8 are obviously closely related to 4.3 and 4.5,
but it does not seem that either type is a special case of the other. For instance
4.3, which we now know is the same as the cup product, can be written in the
form

Ext&(Z, M) ® Ext&(Z, N) - Ext§(Z, M ® N).

This fits into the framework of 4.7 in the important special case where
N = Z, but not in general. In the other direction, we know that the Ext
groups in 4.7 can be expressed as cohomology groups if M and M’ are Z-free
(cf. I11.2.2), so we expect 4.7 to be describable in terms of cup products in
this case, but not in general.

Note, incidentally, that 4.7 and 4.8 can be defined for Ext and Tor over
arbitrary rings, not just group rings. One need only be careful about which
modules are left modules and which are right modules.

EXERCISES

1. Carry out the details of the definitions of 4.7 and 4.8.

2. Describe 4.7 in terms of cup products if M and M’ are Z-free. Describe 4.8 in terms of
cap products if M’ is Z-free and M is Z-torsion-free. [Hint: Use Theorem 4.6.]

5 The Pontryagin Product

If G is an abelian group then the multiplication map G x G — G is a group
homomorphism. Using this map, we will define an internal homology
product, called the Pontryagin product. For simplicity, we will take the
coefficient module to be a commutative ring k, with trivial G-action. See
exercise 1 below for a more general product.

The Pontryagin product on H (G, k) for G abelian is defined to be the
composite

H (G, k) ® H(G,k) > H(G x G, k® k)5 H,(G, k),
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where u:(G x G,k ® k) = (G, k) is the multiplication map ((g,g')~ gg’,
A ® A+ AX). To compute this product in terms of a projective resolution
F of Z over ZG, we need to choose an augmentation-preserving chain map
1. F ® F - F compatible with the multiplication map G x G - G, i.e,
satisfying 17(gx ® ¢'y) = gg't(x ® y). In other words, writing xy = 1(x ® y)
for x, y € F, what we have is a ZG-bilinear product on F such that (a) &(xy) =
e(x)e(y) and (b) d(xy) = dx oy + (—1)8*x o dy. (For brevity, we will call a
ZG-bilinear product on F satisfying (a) and (b) an admissible product.)
Such a product induces a k-bilinear product on F ® k, which in turn induces
the Pontryagin product on H (G, k). As in 3.4-3.6, one verifies that this
product makes H (G, k) an associative, anti-commutative, graded k-algebra
with identity.

In case F is the standard resolution, there is a canonical product on F,
called the shuffle product. This has its origins in the Eilenberg-Zilber theorem
of algebraic topology (cf. MacLane [1963], VIIL8, X.12), and in the present
context it takes the following form. Let &, be the group of permutations of
{1,..., n}, and let &, act ZG-linearly on F, by

olg.l---19.) = (_l)sg"[ga-l(nl‘ : 'lgv"(n)]'

If n = p + q then an element ¢ € &, is said to be a (p, q)-shuffle if a(i) < a(j)
fort <i<j<pandforp+1<i<j<p+ q [Sucha permutation can
be viewed as a way of shuffling a deck of p cards with a deck of g cards.] The
shuffle product on F is now defined to be the ZG-bilinear product such that

(911 -+19,] - [gps1l - 19p+g) = X olgul--"1gp+a);

o

where ¢ ranges over all (p, g)-shuffles. One can verify that, in addition to
being admissible, this product is associative, anti-commutative, and has an
identity. Since F is Z-torsion-free, anti-commutativity implies strict anti-
commutativity, i.e., x2 = 0 if deg x is odd. It follows easily that F ®g k is
strictly anti-commutative. Consequently:

(5.1) Proposition. For any abelian group G and commutative ring k, the ring
H (G, k) is strictly anti-commutative.

(By contrast, the cohomology ring H*(G, k) is not strictly anti-commuta-
tive in general. An attempt to prove strict anti-commutativity by the method
used above fails because the Alexander-Whitney cochain product is only
anti-commutative up to homotopy.)

We now give some other examples of resolutions with admissible products.

(5.2) Let G be infinite cyclic and let F be the resolution of 1.4.5. Let 1 and x
denote the ZG-basis elements in dimensions 0 and 1, respectively. We set
1-1=1,1-x=x-1= x,and x?= 0, and it is trivial to verify admissibility.
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(Note that F, as a ZG-algebra, is the exterior algebra /\(x) with one generator
x of degree 1.)

Our next example will use the notion of divided polynomial algebra,
which is defined as follows: Consider the elements y® = y¥/i! (i > 0) in
the polynomial ring Q[y]. We have y@y@ = (i, j)y“*?, where (i, j) is the
binomial coefficient (‘}%) = (i + j)!/i!j!, so the Z-submodule of Q[y]
generated by the y® is a subring. This ring is denoted I'(y) or I'p(y) and is
called the divided polynomial ring (over Z) in one variable y. More generally,
if R is an arbitrary ring, then the R-algebra R ® I'(y) is called the divided
polynomial algebra over R in one variable y and is denoted I'(y) or I'g(y).
We will regard I'(y) as a graded ring, with deg y = 2.

(5.3) Let G be a finite cyclic group and let F be the resolution 1.6.3 with one
ZG-basis element ¢; in dimension i, 0e,; = Ne,;_, (i > 0), and de,;_, =
(t — 1)e,;-,. Define a ZG-bilinear product on F by:

@ eziez; = (i, )ezi+2;
(i1) €32i€2j41 = (i,j)e2i+2]+l = €2j4+1€2;
(iii) €2i+1€2j+1 = 0.

Thus F, as a ZG-algebra, is simply /\(e,) ®z I'(e;). [Recall that if 4 and B
are graded algebras over a commutative ring R, then their graded tensor
product A ®p B is a graded algebra, with

(a ® bYd @ b) = (—1)sbds9qy' ® bb'.]

One can check that this product on F is admissible; it is also associative and
anti-commutative and has an identity.

Remark. The motivation for the definition above of the product in F is as
follows: Let x = e, and y = e,. Suppose we want our product to be associa-
tive and anti-commutative, to have e, as identity, and to satisfy (iv) xe,; =
€24 1. Let ' = c;e,;, where c; is an element of ZG to be determined. Then
3()') = ¢;0(e2)) = c;Ney—y. On the other hand, admissibility and (iv)
imply that

a(y) = iy'"'dy = ic;~ 1e3i-2 Nx = ic;— | Neyi— .
So we must have ¢;N = ic;_,N. The most obvious way to satisfy this is to
take ¢; = i!, so that e,; = y'/i!. Formulas (i)—(iii) now follow at once.

(5.4) Suppose F and F’ are resolutions with admissible product for G and
G'. Then it is easily verified that F ® F’ is a resolution with admissible
product for G x G, where, as usual,

(x ® X}y ® ) = (— )+ 4wxy @ xy.
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Combining examples 5.2-5.4, one can write down a resolution with
admissible product for any finitely generated abelian group G.

Finally, we use 5.4 to relate the cross-product to the Pontryagin product.
If F and F’ are as in 5.4, there is a chain isomorphism

(55 (F ®c k) @ (F ®g k) = (F ® F') ®g g ki

given by @)@ (X' ®A)—(x ® x)® AL. For ze F®¢k and 2'€
F’ ®¢ k we denote by z x 2z’ the image of z ® z’ under this map. As in §2,
there is an induced homology cross-product

(5.6) H,(G,k) ®, H(G,k)> H/(G x G,k).

(5.7) Proposition. If G and G’ are abelian, then the cross-product 5.6 is a
k-algebra homomorphism. Moreover, z x 2’ =i,z - i;,z’ for any z€ H (G, k)
and z' € H (G', k), wherei:G - G x G'andi':G' - G x G'are the inclusions.

PrOOF. The first assertion is an easy consequence of 5.4. Since z® z' =
z®1)-(1® 2), it now follows that z x 2 = (z x 1) (1 x 2'). I claim
that z x 1 =i z; indeed, by naturality of the cross-product it suffices to
check this for G’ = 1, in which case it is obvious. Similarly, 1 x 2’ = i, 2/,
whence the proposition. O

We can now state the following Kiinneth formula:

(5.8) Corollary. If G and G’ are abelian and k is a principal ideal domain, then
there is a split-exact sequence
0- @ H (G, k) ® H(G', k) 4 H,(G x G,k)

ptq=n

- @ Tork(H,(G, k), H(G, k) - 0,

p+q=n-1
where p(z ® 2') = i z-i, 2.

PROOF. In view of the isomorphism 5.5 and the Kiinneth theorem for chain
complexes, we have a split-exact sequence as above with u equal to the
cross-product map 5.6. [This is true even if G and G’ are non-abelian.] Now
apply 5.7. (]

EXERCISES

1. Recall that if R is a commutative ring, then M ®x N has an R-module structure for
any two R-modules M and N, defined by r-(m®n) =rm®n=m® rn. This
appliesin particularif R = ZG with G abelian. The resulting tensor product M ® ;6 N
should not be confused with the tensor product M ®; N = (M ® N); which we
introduced in §111.0 for arbitrary G. (By contrast, the present tensor product M ®z¢ N,
as an abelian group, is equal to (M ® N); where G acts anti-diagonallyon M ® N:
g-m®n) =g 'm®gn)



6 Application: Calculation of the Homology of an Abelian Group 121

(a) If G is abelian, show that there is a Pontryagin product H,(G, M) ® H (G, N)—
H (G, M @4, N).

(b) Give an example where M @, N # M ®; N. [Hint: Take G cyclic of order 3
and M = N = Z,, with non-trivial G-action.]

2. State and prove a result analogous to 5.7, expressing the cohomology cross-product
in terms of the cup product.

3. (a) Prove that homology commutes with direct limits. More precisely, let (G,),p
be a direct system of groups, where D is a directed set, and let G = lim G,. For any
G-module M, we have a compatible family of maps H,(G,, M) - H (G, M) (x€ D),
hence a map ¢: h_nE H,(G,, M) —» H (G, M). Prove that ¢ is an isomorphism. [Hint:
Use the standard resolution.]

(b) Prove 5.1 without using the shuffle product. [Hint: Use (a) to reduce to the case
where G is finitely generated.]

4. Let n = p + q + r. Define the notion of (p, g, r)-shuffle and prove that the 3-fold
shuffle product in the bar resolution is given by

[gll" |gp] ) [gp+l|' : ‘lgp+q] : [gp+q+l|" 'Igp+q+r] = Za[gll "lgp+q+r]v

-4

where o ranges over the (p, g, r)-shuffles. Generalize.

6 ‘Application: Calculation of the Homology of an
Abelian Group

For any abelian group G we have H,(G,k) = H,(G) ® k = G ® k. We can
therefore construct elements of H (G, k) by taking products in the sense of
§5 of elements of G ® k. (If k = Z, for example, the reader has already seen
this construction in exercise 1 of §I1.3.) Our first goal in this section is to
show (at least if k is a principal ideal domain) that there are no relations
among these products other than the relations imposed by the fact that
H (G, k) is a strictly anti:commutative k-algebra. We begin by reviewing
the notion of exterior algebra, so that we can state this result precisely.

Let k be an arbitrary commutative ring, let V be a k-module, and let
TP(V) =V ®:---®V (p copies of V), where ® = ®,. (By convention,
T°(V) = k.) There is an obvious k-bilinear product on T*(V) given by
Jjuxtaposition of tensors, making T*(V) a graded k-algebra. We define the
exterior algebra of V, denoted A\*(V) or /\#(V), to be the quotient of T*(V)
by the two-sided ideal generated by the elements v ® ve T(V). Explicitly,
then, AP(V) is the quotient of T?(V) by the k-submodule generated by the
elements v, ® --- ® v, such that v; = v;,, for some i. The product in
/\*(V) is sometimes denoted x A y.
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We have A%V)=k and A!'V)=V; moreover, /\'(V) generates
/\*(V) as a k-algebra. Since the generators ve V = A\'(V) satisfy v> =0
by construction, it follows easily that A\*(V) is strictly anti-commutative.
Moreover, it is immediate from the definition that /\ *(V) has the following
universal property:

(6.1) If A* is a strictly anti-commutative graded k-algebra, then any k-
module map V — A' extends uniquely to a k-algebra map A*(V) — 4*:

V —— 4*

J‘ »
Lo
.
.
.

A*(V)
Thus A*(V) is the strictly anti-commutative k-algebra “freely generated ”

by V. The following two properties of the exterior algebra functor will be
crucial in our study of homology:

6.2) A\*(V, ® V) = A*(V)) ® A*(V,). More precisely, let iy: A*(V,) -
A*(V, @ V,) and iy: A*(Vy) > \*(V, @ V3) be induced by the inclusions
Vio Vi@V, and V6 V, @ Vs, and let o: A*(V) ® A\*(Vy) -
A\*(V, ® V,) be defined by ¢(x ® y) = i,x - i,y. Then ¢ is an isomorphism.

Proor. There is a k-map V, @ V, - A*(V,) ® A*(V>) given by v, —
v, ® 1,v,~ 1 ® v, (v, € V). By 6.1 this extends to an algebra map

A* Vi @ V) > A*(V) ® A*(Va),

which is the inverse of ¢. O

(6.3) Let (V,).p be a direct system of k-modules, where D is a directed set.
Then A*(lim V,) ~ lim /A\*(V,). More precisely, the canonical maps V, —
lim ¥, induce a compatible family of maps /\*(V,) - /\*(lim ¥,) and hence
amap ¢:lim A*(V,) - A*(lim V,); this map ¢ is an isomorphism.

PrOOF. The inclusions ¥, ¢, A\*(V,) induce a k-map lim V, - lim A*(V,).
This extends by 6.1 to an algebra map /\*(lim V,) - lim /\*(V,), which is
the inverse of ¢. O

Using 6.2 and 6.3, one can give the following concrete description of
A*(V)if V is a free k-module: Choose a basis (x;);; with I simply ordered;
then AP(V) has a k-basis consisting of the monomials x; <+ x;, with
iy <.+ < i, One often writes A\*(V) = A*(x))ic;-

Returning now to the study of H (G, k) for G abelian, the isomorphism
G®k - H(G, k) extends by 6.1 to a k-algebra map y: A*(G® k) -
H (G, k), which is an isomorphism in dimensions 0 and 1. It is an obvious
but important fact that y is a natural map of functors of G.
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(6.4) Theorem. Assume that k is a principal ideal domain.

(i) The map y: \*(G ® k) » H (G, k) is injective for every abelian group
G and is a split injection if G is finitely generated.
(i) Suppose that every prime p such that G has p-torsion is invertible in k;
then y is an isomorphism.
(iii) If k has characteristic zero (e.g., if k = Z) then \ is an isomorphism in
dimension 2.

Note that the hypothesis of (ii) holds, in particular, if k = Q,orifk = Z,,
and G is p-torsion-free, or if k = Z and G is torsion-free.

PROOF OF 6.4. Suppose first that G is cyclic. Then A\P(G @ k) = O for p > 1,
so (i) holds trivially. Under the hypothesis of (ii) we also have H,(G, k) = 0
for p > 1 by the computation in §IIL1, so ¥ is an isomorphism. The same
computation shows that H,(G, k) = 0 if char k = 0, so (iii) holds.

Now suppose G is finitely generated and hence a finite direct product of
cyclic groups. Arguing by induction on the number of cyclic factors, we may
assume that G = G, x G, and that the theorem is known for G, and G,.
Consider the diagram

A*G1 ® k) ® \*(G, ® k) —E— A\*G ® k)
VG ® ¥(Gy) ¥G)

H (G, k) ®, H(G,,k)—*— H (G, k),

where ¢ is the isomorphism of 6.2 and u is the split injection of 5.8. Looking
at the definitions of ¢ and u and using the naturality of ), we see that this
diagram commutes. Since (G, ) and Y(G,) are split injections by hypothesis,
it now follows that y(G) is a split injection, whence (i). Now assume that the
hypothesis of (ii) holds. Then it also holds for G, and G,, so ¥(G,) and
¥(G,) are isomorphisms. Since G; ® k is a free k-module (with one basis
element for every infinite cyclic factor of G)), it follows that H (G, k) is
k-free. Therefore the Tor term in the Kiinneth formula vanishes, so u is an
isomorphism and (ii) follows at once. Similarly, 4 is always an isomorphism
in dimension 2 because the Tor term involves H,(—, k) = k. Assuming
now that char k = 0, we know that {(G,) and ¥(G,) are isomorphisms in
dimensions < 2, whence (iii).

Finally, any group G is the direct limit of its finitely generated subgroups
G,. We therefore have a diagram

lim A*(G, ® k) —2— A*G ® k)

l_ig,w(o.)l lw(c)

li_'m Ht(Gaa k) - H.(G’ k);
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where ¢ is the isomorphism of 6.3 and the unlabelled isomorphism is that of
exercise 3a of §5. As above, this diagram commutes because ¥ is natural,
and the theorem follows at once. O

If G has p-torsion and p is not invertible in k, then the situation is more
complicated. For simplicity we will confine ourselves to the case k = Z,,,
and even in this case we will be somewhat sketchy. See Cartan [1954/55] for
more details and for the calculation of H (G, Z).

Recall from 5.3 that if G is a finite cyclic group with generator ¢ then there
is a free resolution F of the form /\(x) ® z¢ I'(y), wheredeg x = 1,degy = 2,
0x = (t — 1)-1,and dy = Nx. If p is a prime dividing |G|, then F ® Z, =
/A ® I'(y) with dx = 0 and dy = 0, where /\, ®, and I are now over
Z,; hence H,(G,Z,) ~ /\(x) ® T'(y). Thus we have, in addition to the
exterior algebra part of H,(G, Z,) which we understand via 6.4, a 2-dimen-
sional generator y and its divided powers y®. This suggests that the homology
of an abelian group should have, in addition to its ring structure, a “divided
power ” structure. We now make this precise.

Let A = (A,),»0 be a strictly anti-commutative graded ring. By a system
of divided powers on A we mean a family of functions A,, —» A,,; forn > 0
and i > 0, denoted x — x, with the following properties:

(@ x©9 =1,xV = x.
(b) xOx = (i, j)x4*, where (i, j) = (i + j)!/i!j.
© (x+yP= ¥ xWy®

jtk=i

0 ifdeg x and deg y are odd and i > 2

M = RN
@ ) {x'y"’ if deg x and deg y are even and deg y > 0.

(&) (x)V = g;x® if i, j > 0, where
g = (i — 1)Q2i,i—1)---((j — Di,i — 1).

If A has a differential ¢ (which is always assumed to satisfy d(xy) =
dx -y + (—1)8*x. dy), then we require also:

) ox® = x~Yoxfori > 0.

Note that this implies that x is a cycle if x is a cycle. But there is not
necessarily an induced system of divided powers on H,A; see exercise 3
below.

In working with divided powers it is often convenient to introduce the
formal power series e'* = Y ;. o xt', where ¢ is an indeterminate. Formula
() then takes the form '**? = ¢'¢", 50 x - €' is a homomorphism from
the additive group 4,, (n > 0) to the multiplicative group of formal power
series 1 + y,t + y,t2 + --- with y,€ A,,;.
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(6.5) EXAMPLES

1. If A is a strictly anti-commutative graded Q-algebra, then 4 admits a
system of divided powers with x® = x'/i!. Moreover, this is the unique
system of divided powers on A; for (a) and (b) imply that, in any algebra with
divided powers, xxU~ ! = jxU and hence x' = i!x®.

2. Let a: R —» S be a homomorphism of commutative rings and let A
be a (strictly anti-commutative) graded R-algebra with a system of divided
powers. Then the S-algebra S ® z 4 obtained by extension of scalars admits
a unique system of divided powers such that (1 ® x)® = 1 ® x. Indeed,
we must have (s ® x)© = s' ® x? by (d), so uniqueness follows from (c).
To prove existence, one can use the universal mapping property of the
tensor product to define & for ze€S ®z A, by €¢®? =Y, (s' @ x)';
details are left to the reader.

3. The divided polynomial algebra I'x(y) defined in §5 admits a system of
divided powers. Indeed, in view of example 2, it suffices to check this if
R = Z, in which case the assertion follows from the fact that I'(y) = Q[y]
is closed under the divided power operations [cf. identity (e)]. In exactly the
same way we can construct a divided polynomial algebra I'g(y:);e; in
several variables; if I is simply ordered, then this has an R-basis consisting
of the “monomials” y- .. y" with i, < --- < i, and n; > 0. If V is a free
R-module with basis (y,);c s, then we set I'(V) = I'g(y;); this has V in dimen-
sion 2 and has a universal mapping property (in the category of R-algebras
with divided powers) analogous to 6.1. It follows, in particular, that I'(V) is
well-defined up to canonical isomorphism, independent of the choice of
basis.

4. The Pontryagin ring H (G, k) of an abelian group G admits a natural
system of divided powers. To see this, consider the bar resolution F with the
shuffle product. If x = [g,]---|g2.] (n > 0), then we have (cf. §5, exercise 4)

xi = z olgy1---1g2al - 1911 1924,

ceSh
where the “block” g, |- - - |g2a is repeated i times and ¥4 < &, is the set
of (2n, ...,2n)-shuffles. Now there is an obvious embedding &; & &2,
obtained by letting &; permute i sets of 2n elements blockwise. Since &; <
& ,qi is a group of even permutations, it is clear that & fixes

(g1l 1924l -lgu - 192}

Moreover, %4 is closed under right multiplication by elements of &;;
the above formula for x can therefore be written

f=il ) algill1gaal - 190l 1g2a)-

ce ShS,

It follows at once (via identity (c)) that F =« Q ® F is closed under the
divided power operations and hence admits a system of divided powers.

X
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This yields (cf. example 2) a system of divided powers on k ®¢ F, and I
claim that there is an induced system of divided powers on H (G, k). To
prove this, it suffices (cf. exercise 3 below) to show that z¥ is a boundary if
zek ®¢ F,, is a boundary. For this purpose we view k ®; F as (k ® F)¢
and note that k ® F is acyclic in positive dimensions (because e: F — Z is a
homotopy equivalence if we forget the G-action). Now any boundary
zek ®¢ F is the image of a boundary wek ® F, and w® is a cycle by
identity (f). But then w® is a boundary by acyclicity, and hence its image
z¥ is also a boundary.

Returning now to the study of H (G, Z,), consider the split-exact universal
coefficient sequence

0 - H,G ® Z, + Hy(G, Z,) » Tor(H,G, Z,) - 0.

We have H,G ~ /\*(G) by 6.4(iii), and it is easily seen that A*(G) ® Z, ~
/\%p(G,,), where G, = G ® Z, = G/pG. Also, Tor(H,G, Z,) = Tor(G, Z,) =
»G, where the latter denotes {g € G: pg = 0}. The sequence above therefore
takes the form

0 - AXG,) - Hy(G,Z,) » ,G 0.

Choose a splitting ,G - H,(G, Z,) of this sequence. (If p is odd, we may use
the canonical splitting given in exercise 4b below.) This extends to a Z,-
algebra homomorphism ¢:I'(,G) - H,(G,Z,) compatible with divided
powers, cf. example 3 above. Combining ¢ with the map y: A(G,) -
H (G, Z,) studied in 6.4, we obtain an algebra map p: /\(G,) ® I'(,G) »
H (G, Z,) given by p(x ® y) = Y(x)¢(y). We can now state:

(6.6) Theorem. The map p: /\(G,) ® I'(,G) = H,(G, Z,) is an isomorphism.
It is natural if p # 2.

If G is cyclic, this follows easily from our earlier computations. The
general case can now be deduced by using the Kiinneth formula and direct
limits as in the proof of 6.4. See Cartan [1954/55] for more details.

EXERCISES

1. If G is an abelian group (written additively) and n € Z, compute the endomorphism of
H (G, Q) induced by the endomorphism g +— ng of G.

2. Let 4 and B be strictly anti-commutative graded k-algebras. Show that A ®, B is
the sum of A and B in the category of strictly anti-commutative graded k-algebras,
via the maps a—a® 1, b~ 1 ® b (ae A, be B). Thus 6.2 can be interpreted as
saying that the exterior algebra functor preserves sums.
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3. Let A be a strictly anti-commutative graded ring with a differential 3 and a system
of divided powers.

(a) Suppose that x is a boundary whenever x is a boundary. Show that there is an
induced system of divided powers on H, A.

(b) Give an example to show that the hypothesis of (a) need not hold.

4. (a) Show that the injection y: A*(G ® k) — H,(G, k) of 6.4 takes (g ® 1) A (1 ® 1)
to the class of [g|h] — [h]g].

(b) If 2 is invertible in k, show that the map C,(G, k) - /\*(G ® k) given by [g|h] —
(g®1) A (h® 1)/2 induces a map H,(G, k) -+ A*G ® k) which is a left inverse
of y.

5. Let G be abelian and let 4 be a G-module with trivial G-action. In view of the iso-
morphism H,G =~ /\?G, the universal coefficient theorem (cf. exercise 3 of §IIL.1)
gives us a split exact sequence

0 - Ext(G, A) = H*(G, A) A Hom(/\%G, 4) - 0.

Deduce from exercise 4a that  coincides with the map called  in exercise 8 of
§IV.3, hence the latter is a (split) surjection. Thus every alternating map comes from
a 2-cocycle. (A non-cohomological proof of this surprising fact can be found in
Hughes [1951], proof of Theorem 2.) Incidentally, it also follows that Ext(G, A) ~
£.,(G, A). [More generally, it is known for any ring R that Exth(M, N) is isomorphic
to the set of equivalence classes of R-module extensions of M by N, whence the
name “ Ext.” A proof of this can be found in almost any book on homological algebra.]



CHAPTER VI
Cohomology Theory of Finite Groups

1 Introduction

Homology and cohomology are usually thought of as dual to one another.
We have seen in Chapter III, for example, that homology has a number of
formal properties and that cohomology has “dual” properties. If G is finite,
however, then homology and cohomology seem to have similar properties
rather than dual ones. For example, since every subgroup H of a finite group
G has finite index, we have restriction and corestriction maps for arbitrary
subgroups, in both homology and cohomology. For another example, the
distinction between induced modules and co-induced modules disappears,
so we have a single class S of G-modules (namely, the induced modules
ZG ® A) with the following properties: (a) Every M € £ is acyclic for both
homology and cohomology. (b) For every G-module M there is a module
M € # such that M is a quotient of M and M can be embedded in M.

Tate discovered an ingenious way to exploit these similarities between H,
and H* for G finite. Namely, he showed that there is a quotient A° of H® and a
sub-functor A, < H, such that the functors ..., H,, H,, H,, A°, H', H?, . ..
fit together to form a “cohomology theory” A*, involving functors A’ for all
ieZ:

“H, H, B, A H' H*.
e
..A=* A A A A A

The purpose of this chapter is to develop this Tate cohomology theory and to
illustrate its usefulness by discussing (a) the Nakayama-Rim theory of co-

128
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homologically trivial modules (§8) and (b) the theory of groups with periodic
cohomology (§9).

2 Relative Homological Algebra

We indicated in exercise 2 of §1.7 that the fundamental lemma 1.7.4 and its
corollaries could be generalized in various ways. In particular, we will need in
this chapter a “relative-dual” version of those results, which we work out in
the present section.

Throughout the section, G will be a fixed group (not necessarily finite) and
H a fixed subgroup. For the purposes of the present chapter, the case of
interest will be that where G is finite and H = {1}. But the general case will be
needed later, in Chapter X.

An injection i: M’ ¢, M of G-modules will be called admissible if it is a
split injection when regarded as an injection of H-modules, i.e., if there is an
H-map n: M —» M’ such that ni = id,.. An exact sequence M’ > M 4 M”
will be called admissible if the inclusion im j ¢, M” is admissible. An acyclic
chain complex C of G-modules will be called admissible if each exact sequence
C;+, = C; » C,_, is admissible; in view of 1.0.3, this is equivalent to saying
that C is contractible when regarded as a complex of H-modules. Finally, a
G-module Q is relatively injective if it satisfies the following equivalent
conditions:

(i) Every mapping problem

with admissible exact row can be solved.
(ii) Every mapping problem

M";—’M

.
.
.
.
,
x

Q

with i an admissible injection can be solved.
(iii) The contravariant functor Homg(—, Q) takes admissible injections of
G-modules to surjections of abelian groups.
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In particular, every injective module is certainly relatively injective. But
there are many relative injectives which are not injective:

(2.1) Proposition. For any H-module N, the G-module Coind$ N is relatively
injective.

PROOF. By the universal property of co-induction (II1.3.6), we have
Homg(—, Coind§ N) ~ Homy(Res§(—), N).

The functor on the right clearly takes any admissible injection of G-modules
to a surjection of abelian groups. O

(2.2) Corollary. For any G-module M there is a canonical admissible injection
M ¢, M, where M is relatively injective. If (G: H) < oo, then this construction
has the following properties: (a) If M is free (resp. projective) as a ZH-module,
then M is free (resp. projective) over ZG. (b) If M is finitely generated as a G-
module, then so is M.

PRrOOF. Take M = Coind§ Res% M and use the canonical H-split injection
M ¢, M of 111.3.7.If (G: H) < oo, then we have Coind§(—) = Ind§(—), and
(a) and (b) follow easily. O

(2.3) Corollary. Suppose (G: H) < c0. Then any ZG-projective module is
relatively injective.

PROOE. It is easy to see that a direct summand of a relative injective is relatively
injective, so it suffices to consider free modules. Now if F is a free ZG-module,
then clearly F &~ ZG ®,, F' = Ind§ F’, where F’ is a free ZH-module of the
same rank. But Ind§; F’ ~ Coind§ F’, which is relatively injective by 2.1. O

We now record the “relative dual” of Lemma 1.7.4, in the form in which we
will need it:

(2.4) Proposition. Let C and C' be chain complexes of G-modules and let r be an
integer. Suppose that C; is relatively injective for i <r and that C;,, - C; >
C;_, is exact and admissible for i < r.

(a) Any family (f;: C; > C);», of maps commuting with boundary operators
extends to a chain map C - C'.

(b) Let f,g: C — C’ be chain maps and let (h;: C; = Ci,,)i»,—1 be a family of
maps such that 0;, (h; + h;_ 0; = f; — g; fori > r. Then (h;);»,-, extends
to a homotopy from f to g.

The proof is virtually identical to that of 1.7.4, except that all arrows are
reversed. O
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By a relative injective resolution of a G-module M we mean a non-negative
cochain complex Q of relative injectives, together with a weak equivalence
n: M — Q such that the augmented complex

0—>M—>Q°—>Ql—>---

is admissible. As an immediate corollary of 2.4, we have:

(2.5) Corollary. Any two relative injective resolutions of M are canonically
homotopy equivalent.

It is clear that relative injective resolutions exist for any M ; indeed, we can
take n: M — QO to be the canonical admissible injection of 2.2, then apply 2.2
again to get an admissible injection coker ¢, Q',etc. Moreover, if(G: H) <o
and M is projective as a ZH-module, then I claim that the modules Q" which
occur in this resolution will be projective over ZG. This is clear for Q°, by
2.2a. Since n is H-split, it follows that coker # is projective as a ZH-module,
hence 2.2 implies that Q! is projective over ZG. Continuing in this way, one
proves the claim. Similarly, if M is finitely generated, then so is each Q"
Summarizing, we have shown:

(2.6) Proposition. Suppose (G: H) < co. If M is a ZG-module which is pro-
jective (resp. finitely generated and projective) as a ZH-module, then M admits a
relative injective resolution n: M — Q such that each Q" is a projective (resp.
finitely generated projective) ZG-module.

EXERCISE

Show that the resolution Q obtained in the proof of 2.6 is a complex of free ZG-modules
if M is free as a ZH-module.

3 Complete Resolutions

We now specialize the relative homological algebra of §2 to the case where G is
finite and H = {1}. As a consequence of 2.6 we obtain the perhaps surprising
result that the G-module Z admits a “backwards” resolution 0 —» Z —
Q% —» Q! - ---, where each Q' is finitely generated and projective. [This
becomes less surprising, however, when one realizes that such a backwards
resolution can be obtained by taking the dual of an ordinary projective
resolution of finite type; cf. 3.5 below.] Setting F; = Q~i~?, this takes the
form

@3.1) 0-Z3F_>F_,—---.
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Now splice 3.1 onto an ordinary projective resolution &: (F,),» — Z, to
obtain an acyclic complex

»F, - F, —

Fo - F—l > F—Z — oo
\ 4
z
A complex of this type is called a complete resolution for G. More precisely,
a complete resolution is an acyclic complex F = (F;);cz of projective ZG-
modules, together withamap e: F, — Z suchthate: F, — Zis aresolution in
the usual sense, where F, = (F;);»,- It follows from the definition that
0: Fy = F_, factors uniquely as d = ne, where n: Z —» F_, is a monomor-
phism. It also follows that the resulting complex 3.1 is a relative injective

resolution of Z. In fact, we know from 2.3 that each F, is relatively injective,
and admissibility follows from exercise 3b of §1.8, which we repeat here:

(3.2) Lemma. Any acyclic chain complex C of free abelian groups is con-
tractible.

PRrOOF. The abelian group Z, of n-cycles is free, being a subgroup of a free
abelian group, so the sequence 0 - Z,,, = C,+, — Z, — 0 splits. O

We do not require in the definition of complete resolution that F be of
finite type, i.e., that each F; be finitely generated, but we saw at the beginning
of this section that there do exist complete resolutions of finite type.

As with ordinary resolutions, we may view the map ¢ in a complete resolu-
tion as a chain map F — Z. (Note, however, that it is not a weak equivalence.)
Given complete resolutions ¢: F - Z and ¢'; F' = Z, achainmap 7: F - F’
is augmentation-preserving if €1 = €.

(3.3) Proposition. Ife: F — Zand ¢': F' — Z are complete resolutions, then there
exists a unique homotopy class of augmentation-preserving maps from F to F'.
These maps are homotopy equivalences.

ProOF. By 1.7.4 we can find an augmentation-preserving chain map z,:
F, — F', . Since F is acyclic and admissible (by 3.2) and F’ is dimension-wise
relatively injective, 7, can be extended to negative dimensions by 2.4.
Similarly, given two augmentation-preserving maps 1, t': F — F', 1.7.4 gives
us a homotopy between 1, and 7', , which can then be extended to negative
dimensions by 2.4. It is clear from the uniqueness that any map of complete
resolutions is a homotopy equivalence. a

Finally, we want to show that the negative part of a complete resolution of
finite type is the dual of an ordinary projective resolution of Z over ZG.
Recall that a G-module M has a dual M* = Homg(M, ZG), which we studied
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in 1.8.3 for finitely generated projective modules. [Note that M* is naturally a
right G-module if M is a left G-module, but we can convert it to a left module
as in §II1.0. Thus (gu)(m) = u(m)g ™! for g € G, u € M*, m e M.] On the other
hand, one can also consider the dual Hom(M, Z) of M as a Z-module. Thisisa
G-module via the diagonal action (cf. §111.0), where G acts trivially on Z.
Thus (gu)(m) = u(g~'m) for g € G, u € Hom(M, Z), m € M. It turns out that
Hom(M, Z) coincides with the dual M* when G is finite:

(3.4) Proposition. For any finite group G and any (left) G-module M, there is a
G-module isomorphism

¥ :Hom(M, Z) - M* = Hom4(M, ZG),
given by Y(u)(m) = Y . u(g™"m)g for u € Hom(M, Z), me M.

PROOF. One can simply verify this by straightforward definition-checking, but
in fact it follows from things we have already done. Namely, ZG is the induced
module ZG ® Z, so it is isomorphic to the co-induced module Hom(ZG, Z) by
ITI1.5.9. The universal property II1.3.6 of co-induction therefore implies that
Homg(M, ZG) ~ Hom(M, Z) (as abelian groups), and an examination of the
proofs of II1.3.6 and IIL.5.9 yields the specific isomorphism . It is easy to
verify that ¢ is compatible with the G-action. O

As an application of this, we will give a concrete interpretation of the
“backwards projective resolution” Z — Q discussed at the beginning of this
section. By the dual of a chain complex F (over an arbitrary ring R) we mean
the complex F = 5#%mg(F, R). Thus F" = F_, = Homg(F,, R) = (F,)*

(3.5) Proposition. If¢: P — Z is a finite type projective resolution of Z over ZG
(G finite), then e*: Z* = Z — P is a backwards projective resolution; moreover,
up to isomorphism every finite type backwards projective resolution is obtained
in this way. Consequently, any finite type complete resolution is obtained from
two ordinary finite type projective resolutions P’ - Z and P — Z by splicing
together P’ and TP, where XP is the suspension of P (§1.0).

PROOF. The augmented chain complex associated to &: P — Z is contractible
as a complex of abelian groups (by 3.2, for instance). It therefore remains
contractible when the duality functor ( )*  Hom(—, Z) is applied, so
¢*:Z7* = Z — P is a backwards projective resolution. This proves the first
assertion. Similarly, given any finite type backwards projective resolution
Z - Q, its dual § — Z is an ordinary projective resolution, and Q can be
identified with the dual of Q by 1.8.3d. The remaining assertion is clear. [J

EXERCISE

If G acts freely on $2*~ ! as in §1.6, show that there is a complete resolution F for G which
is periodic of period 2k. Write this out explicitly if G is finite cyclic.
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.. A
4 Definition of H*
The Tate cohomology of a finite group G with coefficients in a G-module M is
defined by
A{(G, M) = H'(omg(F, M))
for alli € Z, where F is a complete resolution for G. By 3.3, H' is well-defined up
to canonical isomorphism.

Let F, = (F)i»oand F_ = (F;);<o,and let C* (resp. C ) be the complex
Homg(F , , M) (resp. #oomg(F _, M)). Then we have (cf. proof of I1.5.1)

; _ [H(CY) i>0
RG M) = {H‘(C’) i< -1
and there is an exact sequence
0- A Y(G,M) > H Y(C™) 5 HYC*) - A°(G, M) - 0,

where a is induced by the coboundary operator : C~! — C°. More precisely,
o is determined by the diagram

ct —-

o

H™Y(C~)—2— H°(C*).

Nowe: F, — Zisa projective resolution of Z,so H(C*) ~ H'(G, M). And
if we assume (as we may) that F is of finite type, then 3.5 implies that F_ = TP
for some projective resolution P — Z of finite type. The duality isomorphism
1.8.3c now yields

C™ = Homg(F_, M) = Homg(EP, M) ~ TP @ M,

so H(C™) ~ H_(EP ®; M) = H_,_,(P ®; M) = H_,_,(G, M). We there-
fore have

; _JH'G M) i>0
ﬂ(G’M)—{H_,-_,(G,M) i<-—1

and there is an exact sequence
0 - A~Y(G, M) - H\(G, M) 5 HG, M) - B°(G, M) - 0.

I claim that « is the norm map N : M; - M€ defined in §II1.1. To prove
this, it is convenient to assume that the projective resolutions F , and P above
both have ZG in dimension 0 and both start with the canonical augmentation
ZG — Z.[We can certainly assume this, since the resolutions can be taken to
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bg arbitrary finite type projective resolutions.] Then 5 = ¢*: Z — ZG is
given by n(1) = Y, ¢ g. Since Homg(ZG, M) = M, the diagram (x) becomes

M —N M
HO(G) M) _a*Ho(G’ M)’

and it is easy to check that the vertical maps are the canonical maps M -» M
and M ¢, M. This proves the claim.
We have now proved

A~Y(G, M) = ker N < H,(G, M)
and
A%(G, M) = coker N « H°(G, M).

For example, A~ (G, Z) = 0 and A°(G, Z) = Z/|G|- Z.
We can summarize the results above by means of the following diagram:

Ho }Il H2
..A-* pA-:r g/ ;lo gl: 0z...
-~ H, H, H,

One can also define Tate homology groups, by A (G, M) = H (F ®; M),
where F is a complete resolution. Arguments analogous to those above show
that

H; i>0
ker N i=0
B, = coker N  i=—1

H™! i< -1

Inother words, A; = A~ '.Inview of this, it may seem pointless to introduce
A, since it, like A*, just consists of the functors H; and H' for i > 0 together
with modifications of H? and H,,. As we will see in §7, however, the “equality”
A; = A ' should really be viewed as a duality theorem, and, as such, it has
important consequences.
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5 Properties of a*

Because Tate cohomology was defined in terms of resolutions, it is easy to
prove that many of the formal properties of H* hold also for A*.For example,
one proves as in ITL6.1(ii):

(5.1) A short exact sequence 0 - M’ - M — M” — 0 of G-modules gives rise
to a long exact sequence

-4 A6, M) » AYG, M) > B{(G, M") S B+ (G, M) > --- .

Similarly, the proof of Shapiro’s lemma (II1.6.2) goes through in the
present context, since a complete resolution for G can also be regarded as a
complete resolution for any H € G. Since co-induction is the same as induc-
tion (because G is finite), Shapiro’s lemma takes the form:

(5.2)If H = Gand M is an H-module, then A*(H, M) ~ A*(G, ZG ®4 M).
Taking H = {1} and noting that A*({1}, —) = 0, we obtain:

(5.3) A*%(G, ZG ® A) = 0 for any abelian group A. Consequently, each Aiis
both effaceable and co-effaceable.

Note that 5.1 and 5.3 allow one to use dimension-shifting. Namely, given a
G-module M we can find G-modules K and C (as in II1.7.1 and I11.7.2) such
that:

(5.4) (G, M) ~ A** (G, K) and A(G, M) ~ B~ (G, C)for allie Z.

This shows, at least heuristically, that the Tate cohomology theory is
completely determined by any one of the functors A'. The interested reader
can make this statement precise, as in II1.7.3 and IIL.7.5.

Given H < G, a complete resolution F for G, and a G-module M, we have
cochain maps #os5(F, M) ¢, #pmy(F, M) and #omy(F, M) — Homg(F, M),
where the second map is a transfer map, defined as in definition (C) of §IIL.9.
Consequently:

(5.5) For any H < G and any G-module M, one has a restriction map
A*(G, M) » A*(H, M) and a corestriction map A*(H, M) - A*(G, M).
These maps have formal properties analogous to those stated in ITL.9.5.

It follows, in particular, that the analogues of II1.10.2 and II1.10.3 hold
for A*.

Finally, we will show that the theory of cup products extends to A*:

(5.6) There is a cup product A%(G, M) ® A%G, N) - A?*%(G, M ® N), with
formal properties analogous to 3.1-3.8 of Chapter V.
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(Note: To state the analogue of V.3.7,onehastoassumethata: H - Gisan
inclusion, since that is the only case where we have a map o*: A*(G) —
A*(H))

In particular, A*(G, Z) is an anti-commutative graded ring with identity
element 1 € Z/|G|- Z = A%G, Z), and A*(G, M) is a module over A*(G, Z)
for any M.

The construction of the cup product requires some work. Recall that we
based our treatment of cup products in ordinary cohomology on the fact that
the tensor product of resolutions is a resolution. On the cochain level, then,
the cup product was simply the map

5.7 Hom(F, M) ® Home(F, N) - Homg(F Q@ F,M ® N)

given by tensor product of graded maps. We pointed out that one could also
define the cup product in terms of a single resolution F by choosing a diagonal
approximation A: F - F ® F and composing the product above with

Homg(A, M @ N): Home(F @ F,M @ N) - Homg(F, M ® N).
Note that, from this point of view, the cup product
Hom(F, M)? @ Homg(F, N = Homg(F, M ® N)P*4

depends only on the (p, g)-component A,.: F,,, - F, ® F, of A.

Now suppose F is a complete resolution. The first difficulty in trying to
imitate the procedure above is that F ® F does not appear to be a complete
resolution. In particular, (F ® F), is not equal to the resolution F, @ F . .
Consequently, a definition of the form (5.7) would not in any obvious way
inducea cohomology product A? ® A? — A?*9,s0 a diagonal approximation
now appears to be crucial, rather than a mere convenience. Secondly, a
moment’s thought shows that F ® F is not really the appropriate target for a
diagonal approximation. Indeed, for any n € Z there are infinitely many (p, q)
such that p + ¢ = n, and dimension-shifting considerations suggest that the
corresponding cup products should all be non-trivial. Thus A should have a
non-trivial component A, for all (p, g), so the target of A should be the
graded module which in dimension n is ]_[,+ o=n Fp ® F, rather than
@, +q=n F, ® F,. This discussion motivates the followmg deﬁnmons

IfC and C’ are graded modules, their completed tensor product C ® C' is
defined by

(C® C’),, = l—[ Cp®c,¢

ptq=n

Given two other graded modules D, D’ and maps u: C — D of degree r and
v: C' = D’ of degree s, there is a map u® v:C® C' » D ® D’ of degree
r + s defined by

@®v= [1 (-0 [[ G®C;~ [ Dyer®Dyus:

p+q=n p+q=n ptq=n
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Now lete: F — Z be a complete resolution, and let d be the differential in F.
Then F @ F has the “partial differentials” d ® id; and id; ® d; these are of
square zero and anti-commute, since (d ® id;)(id; ® d) = d ® d whereas
(idr & d)(d ® idf) = —d ® d(cf. exercise 8 of §1.0). So the “ total differential”
d =d® idr + id; ® d is of square zero and makes F @ F a chain complex.
Moreover, we have the “augmentation” e ® e: FQ F » Z ®Z=7ZBya
complete diagonal approximation we mean an augmentation-preserving chain
map A: F - F®F. It is by no means obvious that complete diagonal
approximations exist, but we will prove below that they do. Accepting this for
the moment, we can define a cochain cup product

Homg(F, M) @ Hom(F, N) = Homg(F, M ® N)

byuuv=@u®uv)A.
One verifies the usual coboundary formula

uuvv)=duvv+ (—1)Puu dy,

and it follows that there is an induced product A?(G, M) ® A%G, N) »
A?*9G, M ® N). It is immediate that this product is natural with respect to
coefficient homomorphisms (as in V.3.2), and one proves exactly as in V.3.3
and V.3.3' that it is compatible with connecting homomorphisms ¢ in long
exact cohomology sequences. Moreover, the fact that A is augmentation-
preserving allows us to calculate the cup product A° ® A° - A°, and we
find as in V.3.1 that it is induced by the obvious map M¢ ® N¢ - (M ® N)C.
[This makes sense because A%(G, —) is a quotient of (—)°.]

We can now use dimension-shifting to prove that the cup product is
independent of the choice of F and A. More precisely:

(5.8) Lemma. There is at most one cup product on A*(G, —) satisfying the
analogues of V.3.1, V.3.3, and V.3.3'.

ProOF. Given a module M, let M be the induced module ZG ® M and let
0— K— M- M -0 be the canonical Z-split exact sequence. For any
G-module N the sequence 0 > K@ N ->M® N - M ® N - 0 is exact,
and the module M ® N is induced (cf. §IIL5, exercise 2a). We therefore have
dimension-shifting isomorphisms

6: AG, M) > A'*(G,K) and 6: RYG,M ® N) > A'*(G,K ® N);

moreover, any cup product satisfying the analogue of V.3.3 is compatible with
these isomorphisms, in the sense that

A*G,M) =~ A**Y(G,K)

-V l—un

HP*9(G,M ® N) ~ A**** (G, K ® N)

R
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commutes for any ve A%G, N). Now suppose we have two cup products
A? ® A - AP*9as in the statement of the lemma. By hypothesis they agree
when p = q = 0, so the square above allows us to prove by descending
induction on p that they agree for p < 0 and g = 0. Similarly, writing N as a
quotient of an induced module, we can extend this by descending induction
on g to the case p < 0, g < 0. Next we embed M in an induced module and
prove inductively that the cup products agree for p arbitrary and g < 0, and
finally we embed N in an induced module to prove that they agree for all p
and q. O

Still assuming the existence of A, we can now easily prove the remaining
properties of the cup product: The fact that 1e€2/|G|-Z = A%(G, Z) is an
identity is proved as in V.3.4 or by dimension-shifting [it is obviously true in
dimension 0]; associativity is proved by dimension-shifting [it is obviously
true in dimension 0]; commutativity can be deduced from 5.8 [u U v and
(= 1)t (v U u) are two cup products with the required properties] or,
alternatively, there is a direct proof analogous to that of V.3.6; finally, the fact
that the cup product behaves properly with respect to restriction and co-
restriction follows directly from the definition as in V.3.7 and V.3.8, or by
dimension-shifting.

To complete the construction of the cup product, we must prove the
existence of a complete diagonal approximation A. We will use the following
three lemmas:

(5.9) Lemma. F & F is acyclic and dimension-wise relatively injective.

Proor. Relative injectivity follows from the fact that an arbitrary direct pro-
duct of relative injectives is relatively injective. To prove acyclicity, let
h: F — F be a contracting homotopy for F, regarded as a complex of abelian
groups (cf.3.2),and let H = h & id.Iclaim that H is a contracting homotopy
for F ® F (regarded as a complex of abelian groups). Indeed, recalling the
definition of the differential 4 in F @ F, we have

OH + Ho = d ® id; + id; ® d)o(h & idf)
+(h®idp)o(d ® idf + id; ® d)
=dh®idp —h®d+hd®id; + h®d (cf. exercise 8 of §1.0)
= (dh + hd) ® id;
= id; ® idp
= idmp,

whence the claim. O

(5.10) Lemma. Let (C, 0) and (C', 9') be two acyclic chain complexes of ZG-
modules. Assume that each C, is projective and each C; is relatively injective. If
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19: Co = Cy is a map such that 351,0, = 0, then 1, extends to a chain map
:C-C.

Proor. Since C is projective and C' is acyclic, we can construct (1;);» ¢ as in
the proof of the fundamental lemma 1.7.4 so as to commute with boundary
operators; indeed, the condition dy1,0, = 0 is exactly what is needed to
start the inductive construction, cf. 1.7.3a. Similarly, since C is acyclic and
admissible (by 3.2) and C’ is relatively injective, (z;);», can be extended to
negative dimensions by 2.4. O

(5.11) Lemma. Let C be an admissible acyclic complex of ZG-modules. For any
projective ZG-module P, the complex P ® C (with diagonal G-action) is con-
tractible as a complex of ZG-modules.

Proor. It suffices to prove this for P = ZG.' By IIL.5.7, we have ZG ® C
isomorphic to the induced complex ZG ® C', where C' is C regarded as a
complex of abelian groups. Since C’ is contractible by hypothesis, it follows
that ZG ® C is contractible. O

In view of 5.9 and 5.10, the construction of A: F - F ® F is reduced to the
construction of a map a = (,): Fo —» [,z F, ® F-, such that (i) dx|B, = 0
and (ii) (¢ ® €)ap = ¢, where B, c F, is the module of boundaries. Let
Opg=d,®F;:F,® F,»F,_,®F,and let 0, = (—1)’F,®4d,:F,®F,
- F,®F,_,.Thenda: Fy = [[,cz F,-1 ® F_,hascomponents d,, _,a, +
0p-1,1-p%—1- S0 (i) is equivalent to (i’) (9'x, + 9"a,_)| By = 0, where we
have omitted the subscripts on ¢’ and 8" to simplify the notation. We now
start constructing a by taking ay: Fg - Fo ® F, to be any map satisfying (ii);
this is possible because F, is projective. Assuming that p > 0 and that «,_,
has been defined, we wish to define a,: Fo -+ F, ® F_, so that the diagram

—Bo

B1B,

a,|By ,.'"

v’

Fp@F-p_a’Fp-l®F-p_L*Fp-2®F-r

commutes, where f = —9"a,_,.Iclaim that &'8| B, = 0.Infact,if p > 1then
we can assume inductively that (d'a,_, + 0"«,_,)| B, = 0, so that on B, we
have

B = —00"a,_, by definition of #
=0"d'a,_, because 9’ and ¢” anti-commute
= —0"0"a,_, by the inductive hypothesis
= 0;
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and if p = 1 then on B, we have

0B = —0d"2 by definition of g
= —(do ® do)g by definition of ¢’ and 9"
= —(n®n)(® &), because dy = ne
= —-(n®nk by (ii)
=0 because ¢| By = 0.

This proves the claim. By 5.11 the complex (F « ® F_,, @) is contractible. We
can therefore choose a contracting homotopy h and set a, = hf to complete
the inductive step. A similar argument constructs a, for p < 0 by descending
induction, and the proof of 5.6 is complete. O

Finally, we remark that there are also cap products in the Tate theory. No
new difficulties arise here, so we confine ourselves to a brief discussion. There
is a map

Hom(F, M) — Hond(F ® F) @ N, F ® (M ® N))
given by u—id ® u ® idy. This corresponds to a map
y: Home(F, M) @ (F ® F) ® N) - F ®; (M ® N).
We now define the cap product
Homg(F, M) ® (F @ N) > F ®; (M ® N)
to be y composed with
id @ (A ® id): H#omg(F, M) ® (F @ N) = Homg(F, M) ® (F ® F) ® N),

where A: F — F ® F is any complete diagonal approximation. This induces a
well-defined cap product

A*®A, A,

with the usual properties.

EXERCISES

1. Show that the cup product on A* is compatible with that defined in Chapter V on
H*. More precisely, we have a natural map H* — A* which is an isomorphism in
positive dimensions and an epimorphism in dimension 0; show that this map preserves
products.

2. Let A*(G),,, be the p-primary component of A*(G) = A*(G, Z), so that we have
A*(G) = @,/ A*(G), by the analogue of 111.10.2.

(a) Show that each A*(G),,, is an ideal in A*(G), hence so is @), , , H*(G),)- Conse-
quently, A*(G),, is a quotient ring of A*(G) via the projection A*(G) » A*(G),,.
[Note: A*(G),,, is not a subring of A*(G); indeed, although the inclusion A*(G), &

A*(G) does preserve products, it does not preserve identity elements.]
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(b) Show that there is a ring isomorphism A*(G) 3 [],6/A*(G),, Where each
factor on the right is a ring via (a), and multiplication in the product is done com-
ponentwise.

6 Composition Products

As in ordinary cohomology (§V.4) there is a second method of defining
products, based on composition of chaip maps. We begin with the analogue
of V4.1:

(6.1) Proposition. Let G be a finite group, let F be an acyclic chain complex of
projective ZG-modules, and let ¢': F' — Z be a complete resolution.

(a) For any G-module M, the map ¢ @ M: F' ® M — M induces a weak
equivalence #psmg(F, F' @ M) — Homg(F, M). In particular, if F is a complete
resolution then A*(G, M) = H*(domq(F, F' ® M)) = [F, F ® M]*.

(b) If F is of finite type then ¢ ® M induces a weak equivalence

In particular, if F is a complete resolution then
ARG, M)~ H(F & (F ® M)).

ProoF. For (a) we must prove [F, F' @ M], » [F, M],foralln € Z. Replacing
F by its n-fold suspension Z"F, we reduce to the case n = 0; thus it suffices to
show [F, ' ® M] > [F, M]. Letu: F - M be a chain map. This means that
uisamap F, —» M such that ud, = 0, where d is the boundary operator in F.
Since F, is projective, we can lift u to a map 14: Fy = Fo ® M such that
(¢ ® M)ty = u. Recall that the boundary operator di,: Fo — F_, admits a
factorization dy, = n'¢’, and consider (dy ® M)tod,:

F,—%F,

Fo@M-=8¥, M18M . 0 @M.

| GOM )
We have
(do ® M)tod, = ("' @ M)(¢' ® M)1od,
= (1" ® M)ud,

so we may apply lemma 5.10 to conclude that 7, extends to a chain map
7. F - F' @ M.[Note that F; ® M is relatively injective; indeed, it suffices to
observe that if L is a free ZG-module then L ® M is an induced module by
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I11.5.7.] This proves the surjectivity of [F, F’ ® M] — [F, M]. Now suppose
1. F - F' ® Misachain mapsuchthat (¢’ ® M)z: F - M is null-homotopic,
i.e., such that (¢ ® M)z, = sd, for some s: F_, - M. Lift s to a map h_,:
F_, = Fy ® M satisfying (¢ ® M)h_, = s, and consider (dy ® M)h_ d,:

Fo _A_,F_l

[

M- M <= F_ @M.

cOM "M
do®M
We have
(do ® M)h_,do = (n' ® M)(¢ ® M)h_d,
= (n' ® M)sd,
=" ® M)(¢ ® M)z,
= (do ® M)z,.

As in the proof of the fundamental lemma 1.7.4, this is precisely what is
needed to extend h_, to (h;);, -, satisfying hd + (&' ® M)h = 1,cf. 1.7.3b. We
can now use Proposition 2.4b to extend (h;);, -, to a null-homotopy h of .
Thus [F, F’ ® M] — [F, M] is injective, whence (a). To prove (b), consider
the dual F = #%smq(F, ZG). This is again projective and acyclic (cf. proof of
3.5), and we have a duality isomorphism F ®; — ~ #m(F, —) by exercise
1 below. So (b) follows from (a). O

Remark. It is perhaps surprising at first that we obtain the same conclusion
here as in 1.8.5 and 1.8.6, since our map ¢ ® M is not a weak equivalence. On
the other hand, we have a very strong hypothesis on F (acyclicity), and this
compensates for the failure of ¢ ® M to be a weak equivalence.

It is now a routine matter to imitate the definitions in §V.4: Lete: F - Z
and ¢': F' - Z be complete resolutions, and let ¢”": F” — Z be either a com-
plete resolution or the identity map Z — Z. Then there are chain maps

Hom(F', F” @ M) @ #om(F, F' ® N) - Hom(F,F" @ M ® N)
and
Homo(F',F' @ M) ® (F ® (F @ N)) » F & (F"® M ® N),
defined as in V.4.2 and V.4.4. These induce composition products
A*G, M) ® A%*(G, N) - A*(G,M ® N)
and
A*G, M)® A,(G,N) - A, (G,M ® N).
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The proof of V.4.6 now goes through, essentially verbatim, and yields:

(6.2) Theorem. The composition products defined above coincide with the cup
and cap products.

EXERCISES

1. Let R be aring, let C be a chain complex of finitely generated projective R-modules,
and let C be the dual complex #%.(C, R) of finitely generated projective right
R-modules. Prove the following analogue of 1.8.3b:

For any chain complex C’ of left R-modules, there is a chain isomorphism
¢©:C @ C' > Hong(C, C’). [Hint: Define ¢,: C, ®g C, = Homg(C_,.C;) by
CPpgltt @ X) x> = (= 1)"Cu, x)x’ for ue C, = Homg(C_,, R). X' € C;.xeC_,,.
It is an isomorphism by 1.8.3b. Now set @, = [,+,=n®py: [[p+4=0C»r ®r C,
n,,+,=,, Homg(C_ . C;) = Hewmg(C, C’),.] Similarly prove analogues of 1.8.3c and
1.8.3d.

2. Let C and C be as in exercise 1. For any z € (C ®; C), and any chain complex C’,
there is a graded map Y. : #%.x(C, C') » C @4 C' of degree n, given by y.(u) =
(idz ® u)(z). Show that there is a cycle z € (C ® g C), such that for any C; y. is the
inverse of the isomorphism ¢: C @z C' % #.x(C, C') of exercise 1. [Hint: Let
z2€(C®r C)o correspond to ide under ¢: C @z C > Houg(C,C). Then z =
(2p)pez» Where z, € C_,, ®r C, = (C,)* ®& C, corresponds to (—1)?idc, under
the canonical isomorphism (C,)* ®¢ C, * Homg(C,, C,). Checking the definition
of ., you should find that y. is induced by maps ¥,.: Homg(C _,. C}) — C,®:C,
given by Y, (u) = (—1)**P?(idg, ® ulz_,). Exercise 7 of §1.8 now shows that
Yoy = 0pg']

*3. Is the finiteness hypothesis in 6.1b necessary?

*4. Let F be a complete resolution, let n be an arbitrary integer, and let Z be the module
Z,(F) of n-cycles. Show that there is a ring homomorphism Homg(Z, Z) — [F, F]
which is surjective and has as its kernel the group / of maps Z — Z which extend to
maps F, = Z. Deduce that [ is a 2-sided ideal in Homg(Z, Z) and that there is a ring
isomorphism Homg(Z, Z)/l = A%G, Z) = Z/|G|- Z. [Hint: Use the techniques of
the proof of 6.1.]

7 A Duality Theorem

It follows from the existence of finite type complete resolutions that the
groups A'(G, Z) are finitely generated. On the other hand, they are annihilated
by |G|, so they are finite. The main purpose of this section is to show that
A'(G, Z)and A~ (G, Z) are dual finite abelian groups; more precisely, we will
show that the duality between them is given by the cup product

AG,2)® A7'(G,Z) » A%G, Z) = Z/|G| - Z.
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We will give a proof which uses Tate homology theory and the cap product;
adifferent proof, which uses only cup products and dimension-shifting, can be
found in Cartan-Eilenberg [1956], XIL.6. We begin by reviewing the rele-
vant duality theory for abelian groups.

For any abelian group 4 we set A’ = Hom(A4, Q/Z). Since Q/Z is injective,
the (contravariant) functor ()’ is exact. In case n4 = 0 for some n > 0, we
have Hom(4, Q/Z) = Hom(A4, n~'Z/Z) ~ Hom(A4, Z/nZ); hence we can
identify A’ with Hom(A4, Z,). In particular, if A is cyclic of order nthensois A".
Consequently, A’ ~ A (non-canonically) for any finite abelian group A. As
usual, we must pass to the double dual to get a canonical isomorphism: There
is a natural map 4 — A4” given by a+— (f +— f(a)), which is an isomorphism
if A is finite.

Amapp: A ® B —-Q/Z givesrisetoamap 5: A - B’; we will say that p is
a duality pairing if p is an isomorphism. Of course p also gives rise to a map
p: B — A’,which is equal to the composite B —» B” & A’.It follows easily that,
if A and B are finite, p is a duality pairing if and only if 5 is an isomorphism.
Thus a duality pairing between finite abelian groups provides an isomorphism
of each one with the dual of the other. The canonical example of a duality
pairing is, of course, the evaluation map A’ ® 4 — Q/Z, where A is arbitrary.
Finally,ifn4 = 0and nB = 0, then we can similarly speak of duality pairings
A®B-Z,.

If G is a group and M is a G-module, then M’ = Hom(M, Q/Z) inherits a
G-action in the usual way: (gu)(m) = u(g~'m)forg € G,u € M’,m € M. There
is an evaluation pairing p: H(G, M') ® H{(G, M) —» Q/Z, obtained by
composing the pairing (-, -> of §V.3 with the evaluation map M’ ®; M —
Q/Z.Similarly, if G is finite, thereis a pairing p: A'(G, M’) @ B(G, M) - Q/Z.

(7.1) Proposition. The pairings p and p are duality pairings. Thus H(G, M") =~
H{(G, MY for any G and M, and A (G, M") ~ A(G, M) if G is finite.

PROOF. Let F be a projective resolution of Z over ZG. Then #om:q(F, M’) =
Homg(F, Hom(M, Q/Z)) = Homg(F @ M, Q/Z) = Hom(F @c M, Q/Z) =
(F ® M)'. Since ()’ is exact, we can pass to homology to obtain H*(G, M’)
~ H,(G, M). It is easy to check that this isomorphism corresponds to the
pairing p. The argument for p is the same. O

Assume now that G is finite. As we remarked briefly at the end of §4, there is
an isomorphism A'(G, M) ~ A_,_(G, M). We wish to make this more
precise by showing that there is an isomorphism of this type given by cap
product with a “fundamental class”:

(7.2) Proposition. There is an element z € A _ (G, Z) such that the cap product
map N z: H(G, M) » A _,_(G, M) is an isomorphism for any G-module M.

PROOF. Let (F, d) be a complete resolution of finite type, withd, = neasin§3,
and let F be the dual complex #%mg(F, ZG). Thus F; = (F_,)*. Then F is still
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projective and acyclic (cf. proof of 3.5), and the boundary operator F, — F,
is the composite

(F_)*% 28 (Fo)~

Except for indexing, then, F is a complete resolution; more precisely, F is the
suspension ZE of a complete resolution E. We now apply the duality isomor-
phism #%sg(F, M) ~ F ®; M of 1.8.3b. This yields

A(G,M) ~ H_.(F ®; M) = H_,_,(E ®; M) = A_,_ (G, M).

I claim that this isomorphism is given, up to sign, by cap product with a
universal element ze A _,(G, Z). There is an easy abstract proof of this,
outlined in exercise 1 below. We will give here a direct but somewhat tedious
proof, based on the composition product and the exercises of §6.

Let w, be the O-cycle in F ®; F which corresponds to id; under the
canonical isomorphism F ®; F ~ H#owmg(F, F) of exercise 1 of §6. Using the
notation and result of exercise 2 of §6, we find that the isomorphism

Homg(F, M) > F @ M

used above is the map y,,,. Now F ®; F = ZE ®; F, so w, can also be
regarded as a (—1)-cycle w_, in E ®; F. Moreover, one discovers by
checking definitions that y,,_,: #mg(F, M); > (E ®¢ M);_, is equal to
(= 1)y py: Hom(F, M); - (F ® M);. Thus the 1somorph|sm AiG, M)
A_;_ (G, M) of the previous paragraph is induced, up to sign, by ¥, _,.

the other hand, ¢, _, is precisely the composition product with w_, as
defined in §6; it therefore induces the cap product with the class z € H _ (G, Z)
represented by w_ . This proves the claim and the proposition. O

Remark. The element z above is necessarily a generator of the cyclic group
A_,(G, Z) = Z/|G|Z; for the cap product isomorphism N z: A%G, Z) »
A_,(G,Z)takes 1€ A%G,Z) = Z/|G|Zto 1 Az = 2.
(7.3) Corollary. For any G-module M, the composite
ARG, M)Y® A~ '7(G,M) S H™'(G, M’ ® M) > A~ (G, Q/2)
is a duality pairing, where a,, is induced by the canonical pairing a: M' @ M
- Q/zZ.
(Note that the statement makes sense because
A™Y(G, Q/Z) = ker{N :(Q/Z)s - (Q/2)°} = |G|"'Z/z
and A*(G, —) is annihilated by |G|.)

PROOF. By 7.1 and 7.2 we have (G, M") % A(G, M) % A~'~{(G, M) The
composite isomorphism is given explicitly by u+ (v+— alu, v N z)), where
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@M ®; M- Q/Z is induced by a. Since a{u,vNz) =@ (uuv,z) =
&, (u L), 2), it follows that the composite

AGM)®A (G, M)S A 'G,M M) A~'(G, Q/2)<=2 q/z

is a duality pairing. To complete the proof, we need only note that { —, z)
maps A~%(G, Q/Z) isomorphically onto |G|~ 'Z/Z. Indeed, < —, z) is the
composite v

A~'G,Q/z)>» A_,(G, 2y - Q/z,

where the first map is given by 7.1 and the second is evaluation at the generator
ze A_ (G, Z). And it is obvious that if 4 is a finite cyclic group, then evalua-
tion at a generator of 4 gives an isomorphism A’ % |A4|~!Z/Z. O

We can now prove our main result:

(7.4) Theorem. The cup product A'G, Z) ® A~Y(G, z) » A%G, Z) =
Z/|G|- Z is a duality pairing.

ProoF. Since A*(G, @) = 0, the coefficient sequence 0 > Z —» Q — Q/Z — 0
yields an isomorphism : A%G, Q/Z) = A* (G, Z) for all j. Moreover, we
have (cf. V.3.3) a commutative diagram

A'-YG,Q/2) ® A7(G, 7) —— A~ \(G, Q/2)

‘®d|z 8=

ARG, 2@ 76,7y —— A°G,2).

Since the top row is a duality pairing by 7.3 (with M = Z), so is the bottom
row. O

Remark. The fact that A%(G, Z) and A ~¥(G, Z) are dual to one another can be
proved quite easily by means of the universal coefficient theorem and the
interpretation of A* in terms of H* and H,,. [Recall that Ext(4, Z) ~ 4’ if A
is finite, cf. exercise 2 below.] What is not obvious, however, is that the cup
product provides a duality pairing. This is the essential content of 7.4.

EXERCISES

1. The purpose of this exercise is to give an alternate proof that the isomorphism
AYG, M) = A_,_(G, M) established in the first part of the proof of 7.2 is given, up
to sign, by cap product with a fixed element z € H_,(G, Z). Call that isomorphism ¢
and let z = ¢(1).

(a) Show that ¢ is natural and that it is compatible with connecting homomorphisms
in long exact sequences.
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(b) Show that ¢: A%G, M) — A_,(G, M) is given by cap product with z. [By
definition of z, ¢ and A z agree on 1 € A%G, Z). If now M and ue A°(G, M) are
arbitrary, there is a coefficient homomorphism Z — M such that 1 u under the
induced map A%G, Z) - A%G, M), so ¢(u) = u N z by naturality.]

(c) Now use dimension-shifting to show that ¢ and N z agree in all dimensions, up to
sign.

2. For any abelian torsion group 4, prove that Ext(4, Z) ~ A'. [Hint: Look at the long
exact Ext*(4, —)-sequence associated to the short exact sequence 0 -7 —» Q —
Q/Z — 0. Equivalently, compute Ext(4, Z) by means of the injective resolution
0-Z-Q-Q/Z—-00fZ]

3. If M is a G-module which is free as an abelian group, show that
A'G, M*) ® A™'(G, M) % A°G, M* ® M) - A°(G, 2)

is a duality pairing.

4. Let k be an arbitrary commutative ring and Q an injective k-module. Let 4’ =
Hom,(A, Q) for any k-module A. If M is a kG-module, show that the pairing

AGM)RA (G MS A (GMOM) - A G Qo Q
induces an isomorphism AYG, M’) 5 A~'~{(G, M).

8 Cohomologically Trivial Modules

The theory to be presented in this section is due to Nakayama and Rim. Our
treatment is based on Serre [1968].

A G-module M (where G is finite) is said to be cohomologically trivial if
A'(H, M)=0for all i € Z and all H < G. For example, any induced module
ZG ® A is cohomologically trivial by 5.3, since ZG ® A is still induced when
regarded as an H-module for any H < G. [This is an easy special case of the
double-coset formula IT1.5.6b.] In particular, if k is an arbitrary commutative
ring, it follows that any free kG-module is cohomologically trivial and hence
that any projective kG-module is cohomologically trivial. Our goals in this
section are (a) to prove that, conversely, under suitable hypotheses cohomo-
logically trivial kG-modules are projective; and (b) to find simple criteria for
checking that a module is cohomologically trivial. These results have applica-
tions to class field theory (cf. Serre [1968]) as well as to algebraic K-theory
and homotopy theory.

We begin with the case where G is a p-group for some prime p. In this case
everything will be deduced from the following simple result:

(8.1) Proposition. If G is a p-group and M is a G-module in which every element
has order a power of p, then M€ # 0.
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PROOF.We may assume that M is finitely generated as a G-module, hence also
as an abelian group. But then M is finite, of order a power of p. Since every
G-orbit in M has order p® for some a > 0, it follows that [M%| = |[M| =0
(mod p), so that MC # 0.

(8.2) Corollary. Ifk is a field of characteristic p, G is a p-group,and M is a simple
kG-module, then M =~ k, with trivial G-action.

(Recall that a simple module is a non-zero module which contains no
proper non-zero submodule.)

PROOF. Since M® 3 0 by 8.1, we must have M® = M, so G acts trivially on M.
Simplicity now implies that dim, M = 1. O

Let I be the augmentation ideal of kG, i.e., the kernel of the k-algebra
homomorphism ¢: kG — k such that &(g) = 1 for all ge G. We can also
describe I as the annihilator of the kG-module k.

(8.3) Corollary. If G is a p-group and k is a field of characteristic p, then the
augmentation ideal I of kG is nilpotent.

ProoOF. Choose a composition series 0 = J, < J, = --- = J, = kG for kG,
regarded as a left kG-module. Thus each J; is a left ideal and J;/J;_, is simple
for 1 < i < n. [The existence of a composition series follows from the finite-
dimensionality of kG over k.] By 8.2, I annihilates J;/J;_,, hence IJ; = J;_,.
Consequently, I" = I"J, < J, = 0. O

If G is cyclic of order g = p® for example, we can easily see directly that [ is
nilpotent; for I is generated by t — 1 where ¢ is a generator of G (cf. §1.2,
exercise 1b), and (¢t — 1)? = t# — 1 = O since char k = p.

(8.4) Corollary. Let G be a p-group and k a field of characteristic p. If M is a
kG-module such that Hy(G, M) = 0, then M = 0.

PROOF. It is easy to see that Hy(G, M) = M/IM (cf. first paragraph of §I1.2).
Thus Hy(G, M) =0=M = IM =M = I"M for all n. In view of 8.3, this im-
plies that M = 0. O

We can now achieve, for kG-modules as above, the two goals (a) and (b)
stated at the beginning of this section:

(8.5) Theorem. Let G be a p-group and k a field of characteristic p. The following
conditions on a kG-module M are equivalent:

(1) M is free.
(i) M is projective.
(iii) M is cohomologically trivial.
(iv) H,(G, M) = 0.
(v) A(G, M) = 0 for some i€ Z.
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PROOF. Clearly (i) = (ii) = (iii) = (iv) = (v). To complete the proof we will
show (iv) = (i) and (v) = (iv). Choose a k-basis for the vector space M, and
lift the basis elements to elements m; (j € J) in M. Let F be a free kG-module
with basis (¢,);¢; and define f: F - M by f(e;) = m;. By construction, then,
Hy(G, f): Hy(G, F) - Hyo(G, M) is an isomorphism. By right exactness of
Hy(G, =), it follows that Hy(G, coker f) = 0, and 8.4 now implies that
coker f = 0. Consider now the long exact homology sequence associated to
0> ker f - F > M - 0.1f H(G, M) = 0, then the fact that Hy(G, f) is an
isomorphism implies that Hy(G, ker f) = 0. Applying 8.4 again, we conclude
that ker f = 0, so f is an isomorphism. Thus M is free and we have proven
@iv) = (i).
Assume now that (v) holds. By dimension-shifting we can find a kG-module
N suchthat A%(G, N) ~ A"****(G, M)foralln € Z.[Note that the dimension-
shifting argument does not take us out of the category of kG-modules, because
ZG® A is a kG-module if 4 is a k-module.] In particular, H,(G, N) =
A~%G, N) = B'(G, M) = 0,s0 N is free by the previous paragraph. But then
A*(G, N) = 0, hence A*(G, M) = 0, hence H,(G, M) = 0. Thus (v) = (iv).
O

Note that the theorem implies, in particular, that H{(G, Z,) # Oforalli > 0
if G is a (non-trivial) p-group.

Remarks

1. Corollary 8.2 can be interpreted as saying that I is the Jacobson radical
of kG. From this point of view, 8.3 is simply the well-known result that the
Jacobson radical of an Artin ring is nilpotent, and 8.4 is a special case of
“Nakayama’s lemma.” The equivalence of (i), (ii), and (iv) in 8.5 could also be
stated in a more general context, as a theorem about modules over a local
ring. [It follows from 8.3 that kG is a (non-commutative) local ring, with I as
its unique maximal ideal.]

2. The proof above yields the following more precise version of the
implication (iv) = (i): For any kG-module M, dim, Hy(G, M) is the minimal
number of generators of M and dim, H,(G, M) is the minimal number of
defining relations among any minimal set of generators.

Next we will consider more general G-modules M, still assuming that Gisa
p-group. Let M, = M ® Z, = M/pM.

(8.6) Lemma. Let G be a p-group and M a G-module which is p-torsion-free. For
any ieZ, A(G, M,) = 0 if and only if AY(G, M) = A'* (G, M) = 0.

PRrOOF. From the short exact sequence 0 » M & M - M » — 0 we obtain an
exact sequence

A(G, M) 5 A(G, M) - A'(G, M,) » A'* (G, M) > A** (G, M).
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If (G, M) = A'* (G, M) = 0, then clearly this implies that Ai(G, M ) =0.
Conversely, if (G, M,) = 0, then we conclude that B'(G, M) is p-divisible
and A'* (G, M) is p-torsion-free. But A*(G, M) is annihilated by | G|, which
is a power of p, so AY(G, M) = A** (G, M) = 0. O

(8.7) Theorem. If G is a p-group, then the following two conditions are equivalent
for any G-module M :

(i) M is cohomologically trivial.
(i) A(G, M) =0 Jor two consecutive integers i.

If M is p-torsion-free, then (i) and (ii) are also equivalent to:

(iii)y A'(G, M,) = 0 for some i.
(iv) M, is cohomologically trivial.
(V) M, is free over Z [ G].

PROOF. Suppose first that M is p-torsion-free. Then (i) = (ii) trivially;
(ii) = (iii) by 8.6, (iii) <> (iv) <> (v) by 8.5;and (iv) = (i) by 8.6 applied to G and
all of its subgroups. If M is now arbitrary, then we can prove the equivalence
of (i) and (ii) by using dimension-shifting to reduce to the previous case; for
we can choose an exact sequence 0 - M’ — F - M — 0 with F free over ZG
and then apply the previous case to M'. O

An important consequence of 8.7 is that cohomological triviality can be
checked (if G is a p-group) by looking only at A*(G, M), even though the
definition involves A*(H, M) for arbitrary subgroups H < G.

We turn now to the case where G is an arbitrary finite group. For each
prime p dividing |G|, choose a p-Sylow subgroup G(p).

(8.8) Proposition. A G-module M is cohomologically trivial if and only if its
restriction to G(p) is cohomologically trivial for each p.

ProoF. The “only if” part is trivial. To prove the “if ” part, note first that if the
restriction of M to G(p) is cohomologically trivial, then A*(P, M) = 0 for
any p-group P = G. For we know that gPg~! = G(p) for some g € G, so there
is a conjugation isomorphism A*(P, M) ~ A*(gPg ', M)=0. Il HS G
is now an arbitrary subgroup, then we know from transfer theory (cf. §I11.10)
that A*(H, M) = @, A*(H, M), o @, A*(H(p), M) = 0, where p ranges
over the primes dividing | H| and H(p) is a p-Sylow subgroup of H. Thus M is
cohomologically trivial. O

Combining 8.8 with our previous results on cohomological triviality over
p-groups, we obtain a solution to problem (b) stated at the beginning of the
section. In particular, we have:

(8.9) Theorem. A G-module M is cohomologically trivial if and only if for each
prime p there are two consecutive integers i such that A(G(p), M) = 0.
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The solution to problem (a) (with k = Z) is given by the following theorem
of Rim:

(8.10) Theorem. If M is a G-module which is Z-free and cohomologically trivial,
then M is ZG-projective.

Proor. Choose a short exact sequence 0 - K - F - M — 0 with F ZG-
free. We will prove that this sequence splits, so that M is a direct summand of
F and hence is projective. I claim that the obstruction to splitting the sequence
lies in H(G, Hom(M, K)). More precisely, we have a short exact sequence of
G-modules 0 - Hom(M, K) - Hom(M, F) - Hom(M, M) - 0 since M is
Z-free, and this yields an exaci sequence Homg(M, F) - Homg(M, M) 5
H'(G, Hom(M, K)). [Recall that

Homg(—, —) = Hom(—, —)¢ = H%G, Hom(—, -)).]

Hence the extension splits if and only if §(id,,) = 0. It will therefore suffice to
prove:

(8.11) Lemma. Let M and K be G-modules which are Z-free. If M is cohomo-
logically trivial then so is Hom(M, K).

Proor. By 8.8 we need only consider the case where G is a p-group, in which
case it suffices by 8.7 to prove that Hom(M, K), is cohomologically trivial.
From the exact sequence 0 - K & K — K, — 0 we get (since M is Z-free)
an exact sequence 0 - Hom(M, K) & Hom(M, K) - Hom(M, K ) — 0. Thus
Hom(M, K), ~ Hom(M, K,) = Hom(M,, K,). But M, is Z [G]-free by 8.7,
so Hom(M ,, K ) is induced (cf. §111.5, exercise 2b) and hence cohomologically
trivial. O

Remark. The group H!(G, Hom(M, K)) which arose in the proof of 8.10 is
isomorphic to Ext}z(M, K) by I11.2.2. The reader familiar with the theory of
extensions of modules will therefore not be surprised that this group contains
the obstruction to splitting the extension0 - K - F - M — 0.

Finally, we will deduce from 8.10 a characterization (also due to Rim) of
cohomologically trivial modules which are not necessarily Z-free. If Ris aring
and M is an R-module, the projective dimension of M, denoted proj dim M or
proj dimg M, is defined to be the infimum of the set of integers n such that M
admits a projective resolution 0 » P, —» --- - Py - M — 0 of length n. (In
particular, proj dim M = oo if M does not admit a projective resolution of
finite length.)

(8.12) Theorem. The following conditions on a ZG-module M are equivalent:

(i) M is cohomologically trivial.
(ii) projdim M < 1.
(iii) projdim M < oo.
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PROOF. (i) = (ii): Suppose M is cohomologically trivial, and choose a short
exact sequence 0 - P; -+ P, > M — 0 with P, ZG-projective. Then P, is
cohomologically trivial and Z-free, so P, is projective by 8.10 and (ii) holds.
(i1) = (iii) trivially. (iii) = (i): Suppose projdim M < oo andlet0 - P, — - - -
— Py - M — 0 be a projective resolution of finite length. Breaking up this
resolution into short exact sequences 0 - Z; - P, » Z;_, — 0, one sees by
descending induction on i that Z; is cohomologically trivial. In particular,
M = Z_ is cohomologically trivial. O

Rim’s results can be used to provide examples of projective modules over
ZG. For example, suppose J < ZG is a left ideal of finite index m, where m is
relatively prime to |G|. Then |G| is invertible in M = ZG/J, so M is co-
homologically trivial. It now follows as in the proof of (i) = (ii) above that
J is projective. (See also exercise 7 of §VIIL.2 for an alternative proof that
projdim M < | when |G| is invertible in M.)

EXERCISES

1. Give an example where A*(G, M) = 0 but M is not cohomologically trivial. [Hint:
Take G to be cyclic.]

2. Prove the following improvement of 8.11: If M is cohomologically trivial and Z-free,
then Hom(M, K) is cohomologically trivial for any G-module K. [Use 8.10. Alter-
natively, choose an exact sequence 0 - L — F — K — Owith F free, and apply 8.11 to
Hom(M, L) and Hom(M, F).]

3. (a) If M and P are ZG-modules such that M is Z-free and P is ZG-projective, show
that any exact sequence 0 — P — E — M — 0 splits. [Hint: Argue as in the proof of
8.10, or, more simply, use the fact that P is relatively injective.]

(b) Using (a), give a direct proof (without using the results of this section) that
(iii) = (ii) in 8.12.

4. Let G be a group such that there exists a free, finite G-CW- complex X with H,(X) =
H ,(Sz"' 1). Prove that G admits a complete resolution which is periodic of period 2k.
[Hint: If B is the module of (2k — 1)-boundaries of C,(X), then Cy,_,(X)/B is
Z-free and has finite projective dimension.]

9 Groups with Periodic Cohomology

A finite group G is said to have periodic cohomology if for some d # 0 there is
an element u € A%G, Z) which is invertible in the ring A*(G, Z). Cup product
with u then gives a periodicity isomorphism

uu —: AYG, M) > A**%G, M)
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for all n € Z and all G-modules M. In particular, takingn = 0and M = Z, we
see that A%G, Z) ~ Z/|G|- Z and that u generates A%(G, Z).

If we know that a group G has periodic cohomology, then the task of
computing A*(G) is obviously enormously simplified. It is therefore of
interest to find criteria for deciding whether G has periodic cohomology, and
that is what we will do in this section.

(9.1) Theorem. The following conditions are equivalent:

(i) G has periodic cohomology.
(ii) Thereexistintegersnandd,withd # 0, suchthat AYG, M) =~ A"4G, M)
for all G-modules M.
(iii) For somed # 0, A%G, Z) ~ Z/|G|- Z.
(iv) For some d # 0, A%G, Z) contains an element u of order |G|.

PROOF. (i) = (i) trivially. If (ii) holds then we have A%G, M) ~ A"*%(G, M)
for all n € Z by dimension-shifting; taking n = 0 and M = Z, we obtain (iii).
(iii) = (iv) trivially. Finally, suppose (iv) holds. Then there is a map A4G, Z) —»
Q/Z such that u+— 1/]G| mod Z (cf. proof of 111.4.3). By the duality theorem
7.4, this map is given by

AYG,7) =% A°G, Z) ~ |G|~'Z/Z «, Q/Z
for some v € A~%G, Z). Thus uv = 1, whence (i). |

For example, if G acts freely on $2*~! as in §1.6, then G obviously admits a
periodic complete resolution of period d = 2k, so 9.1(ii) holds and G has
periodic cohomology. [Alternatively, one can show directly, without using
9.1, that A4G, Z) contains an invertible element; cf. §V.3, exercise 3.]

One way to obtain examples of this is to start with a linear action of a finite
group G on an even-dimensional real vector space V, such that G acts freely on
V — {0} (i.e., such that 1 is not an eigenvalue of any non-trivial element
g € G); such an action is called a fixed-point-free representation of G. By
choosing a G-invariant sphere S = V — {0} (e.g., the unit sphere relative to a
G-invariant inner product on V), we obtain a free action of G on an odd-
dimensional sphere. In order to apply §1.6, of course, we must verify that S can
be chosen to have a G-equivariant CW -structure. This follows from a general
triangulation theorem, but in the present case there is a much more elementary
argument, due to Illman [1978]: Let (e;), <;<2x be a basis for ¥ and let C be
the convex hull of the finite set {+ ge;: g € G, 1 < i < 2k}. Then C is a convex
cell containing O as an interior point, hence its boundary S is a topological
spherein V — {0}, with a CW-structure given by the natural (rectilinear) faces
of C (see, for example, Hudson [1969], Chapter I). Since G acts linearly on V
and maps C into itself, it is clear that S is a G-complex.

Remark. The question of the existence of an equivariant CW-structure is
actually a red herring. For one can show, without assuming an equivariant
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CW-structure, that if G acts freely on $2*~! then H*(G) is periodic of period
2k. A proof will be outlined in exercise 4c of §VIL7.

We can now give some specific examples of groups with periodic co-
homology:

(9.2) EXAMPLES

1. Any finite cyclic group G admits a 2-dimensional fixed-point-free
representation as a group of rotations, hence A*(G) is periodic of period 2.

2. Let H be the quaternion algebra R @ Ri @ Rj @ Rk. If G is a finite
subgroup of the multiplicative group H*, then the multiplication action of G
on H yields a 4-dimensional fixed-point-free representation of G, since H is a
division algebra. Thus A*(G) is periodic of period 4. The most obvious
examples of finite subgroups of H* are the generalized quaternion groups
Q4m (m > 2) which we studied in §IV.4. In addition to these (and, of course,
the cyclic groups), there are precisely three finite subgroups of H*, up to
conjugacy (cf. Wolf [1974], §2.6): the binary tetrahedral group (of order 24),
the binary octahedral group (of order 48), and the binary icosahedral group
(of order 120). The latter group G is particularly interesting because it is a
perfect group, i.e., G, = 0. Using Poincaré duality, one can deduce from this
that the quotient manifold S3/G has the same homology as S°. This was
discovered by Poincaré [1904]; it was the first example of a 3-manifold
homologically equivalent to S* but not homeomorphic to S*.? Another
interesting fact about the binary icosahedral group G is given in the following
surprising theorem of Zassenhaus (cf. Wolf [1974], 6.2): Up to isomorphism,
G is the unique perfect group which admits a fixed-point-free representation.

3. Let m, n, and r be positive integers such that r* = 1 mod m. Assume that
the following two conditions hold: (a) m and n are relatively prime; (b) if k is
the multiplicative order of r mod m (so necessarily k|n), then every prime
divisor of n divides n/k. Let G be the semi-direct product Z,, > Z,,, where the
generator of Z, acts on Z,, by multiplication by r. I claim that G admits a 2k-
dimensional fixed-point-free representation and hence A*(G) is periodic of
period 2k. To see this, note first that the subgroup 4 = Z, of index k acts
trivially on Z,,,so G contains C = Z,, x A, which is cyclic by (a). From (b) we
see that A contains every subgroup of Z, of prime order, and it follows easily
that C contains every subgroup of G of prime order. Choose a fixed-point-free
representation of C on a 2-dimensional vector space W, and form the induced

2 poincaré had asked in an earlier paper whether such a 3-manifold could exist. In view of this
example. Poincaré reformulated his question, adding the condition that the manifold be simply-
connected. This question, or rather the assertion that there can be no such manifold, has since
become known as the Poincaré conjecture.
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module V = ZG ®;c W = RG ®g¢ W. Since C < G, we have Resg V =
®gecic gW by IILS.6b, and each gW is clearly a fixed-point-free representa-
tion of C. Consequently, V is a fixed-point-free representation of C. But then
V is also fixed-point-free as a representation of G, for a non-trivial isotropy
group G, (ve V — {0}) would contain a subgroup of prime order and hence
would meet C nontrivially.

See Wolf [1974] for a complete classification of groups which admit a
fixed-point-free representation.

Remarks

1. If G has periodic cohomology then so does any subgroup H. This follows
from the fact that the restriction map A*(G, Z) - A*(H, Z), being a ring
homomorphism, must take invertible elements to invertible elements.
[Alternatively, use Shapiro’s lemma.]

2.If G is abelian but not cyclic, then G does not have periodic cohomology.
For G must contain a subgroup isomorphicto Z, x Z,for some prime p, and
direct calculation (using the Kiinneth formula, for example) shows that
A"z, x Z,,;Z,) has Z,-dimension n + 1 for n > 0 and hence is not periodic.

We return now to the general question of finding criteria for a group to
have periodic cohomology. In case G is a p-group, the question is completely
settled by the following result. Recall that an elementary abelian p-group of
rank r > 0 is a group isomorphic to Z, = Z, x --- x Z, (r factors).

(9.3) Proposition. If G is a p-group for some prime p, then the following con-
ditions are equivalent:

(i) G has periodic cohomology.

(i1) Every abelian subgroup of G is cyclic.
(iii) Every elementary abelian p-subgroup of G has rank <1.
(iv) G has a unique subgroup of order p.

(v) G is a cyclic or generalized quaternion group.

(The generalized quaternion groups, of course, can only occur if p = 2.)

ProOF. We have (v) = (i) = (ii) = (iii) by the examples and remarks above.
(iii)=(iv): Since G is a p-group, one knows that G contains a central subgroup
of order p (cf. Hall [1959], Theorem 4.3.1). If there were any other subgroup of
order p, the two would generate an elementary abelian p-group of rank 2,
contrary to (iii). Finally, the implication (iv) = (v) is Theorem IV4.3. O

To pass from the p-group case to the general case, we have:

(9.4) Proposition. A finite group G has periodic cohomology if and only if every
Sylow subgroup has periodic cohomology.
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ProOF. The “only if” part follows from Remark 1 above. To prove the “if”
part, fix a prime p and let H < G be a p-Sylow subgroup. By hypothesis,
A*(H, Z) contains an invertible element u of degree d # 0, and 1 claim that
some power of u is G-invariant in the sense of §II1.10. In fact, let e > 0 be an
integer such that a* = 1 for all a e (Z/|H| - Z)*, the latter being the group of
units n;n Z/|H|-Z. For any g € G, the elements v = resjj, ,y,-+ 4 and w =
resfi?,ny-+ gu are invertible in A*(H n gHg™!, Z) and hence generate the
cyclic group A%H ngHg™!, Z). We therefore have v = aw for some a€
(Z/|H| - Z)*, since the map (Z/|H|- Z)* — (Z/|H'| - Z)* is surjective for any
H' < H.Thusv® = wf,and itfollowsthatu® € A%(H, Z)isinvariant. Similarly,
u~¢is invariant. In view of the Tate cohomology version of Theorem I11.10.3,
this proves that the ring A*(G, Z),,, has an invertible element u(p) of non-zero
degree d(p). Finally, replacing u(p) by a suitable power u(p)*”, we may assume
that d(p) is the same for all primes p|| G| ; since A*(G, Z) is the direct product
of the rings A*(G, Z),,) (cf. exercise 2 of §5), it follows that A*(G, Z) contains
an invertible element of positive degree. O

Combining 9.3 and 9.4, we have:

(9.5) Theorem. The following conditions are equivalent for a finite group G:

(i) G has periodic cohomology.
(ii) Every abelian subgroup of G is cyclic.
(iii) Every elementary abelian p-subgroup of G (p prime) has rank <1.
(iv) The Sylow subgroups of G are cyclic or generalized quaternion groups.

Using the criterion (iv) of this theorem, we can now give some examples of
groups with periodic cohomology, beyond those of 9.2.

(9.6) EXAMPLES

1. If m and n are relatively prime integers, then any semi-direct product
Z,,>a Z, (arbitrary action) has cyclic Sylow subgroups and hence has periodic
cohomology. [Conversely, a theorem of Burnside (cf. Wolf [1974], 5.4) implies
that any group with cyclic Sylow subgroups is a semi-direct product of this
type.] This generalizes example 3 of 9.2.

2. Let p be a prime and let G = SLy(F,), the group of 2 x 2 matrices of
determinant 1 over the prime field F,. Then G has periodic cohomology. To
see this, note first that |G| = p(p? — 1). [There are p? — 1 possibilities for the
first column of a matrix in G; given the first column, the number of possibilities
for the second is (p2 — p)/(p — 1) = p.] Thus a p-Sylow subgroup of G is of
order p and hence is cyclic. Now let | be a prime # p. Then the polynomial
x' — 1 is separable over F,, so a matrix of order [ is diagonalizable over the
finite extension k obtained from F, by adjoining the I-th roots of unity. Two
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commuting elements of G of order ! are then simultaneously diagonalizable
and hence generate a group isomorphic to

(6 2Jnei

which is of order I. Thus G does not contain a subgroup isomorphic to
Z, x Z, and hence G has periodic cohomology. [See exercise 8 below for a
different proof, which consists of explicitly exhibiting cyclic or quaternionic
Sylow subgroups.]

Remarks

1. The groups SL,(F,) for p = 2, 3, § have occurred earlier in our examples.
Namely, SL,(F,) ® Zy>Z,, SL,(F,) is isomorphic to the binary tetra-
hedral group, and SL,(F) is isomorphic to the binary icosahedral group.

2. A complete classification of the groups with periodic cohomology has
been obtained by Suzuki [1955], extending earlier work of Zassenhaus. (See
also Wolf[1974], 6.1 and 6.3.) Not all of these groups can act freely on a sphere.
In fact, Milnor [1957a] showed that a group which acts freely on a sphere has
at most one element of order 2. (Thus, for example, the dihedral group D,,
for n odd cannot act freely on a sphere, although all of its Sylow subgroups are
cyclic.) Conversely, Madsen, Thomas, and Wall [1976] have proven that if G
has periodic cohomology and at most one element of order 2 then G acts
freely on a sphere. This applies, for example, to the groups SL,(F,)Xp odd)

since
-1 0
0 -1
is the only element of order 2. These groups do not, however, admit a free

orthogonal action on a sphere (i.e., a fixed-point-free representation), except
forp=3andp=>5.

The condition that all Sylow subgroups of a group G be cyclic or generalized
quaternion is obviously very restrictive. What is much more common,
however, is for there to be at least one prime p such that the p-Sylow subgroups
are cyclic or generalized quaternion. It is therefore of interest to observe that
the results of this section can be “localized ” at a single prime p. Thus we say
that G has p-periodic cohomology if the ring A*(G, Z),,) contains an invertible
element of non-zero degree d. Cup product with such an element then gives
periodicity isomorphisms A%(G, M),,) ~ A"*%(G, M), for any G-module M.
The reader can easily state and prove analogues of 9.1, 9.4, and 9.5 for this
situation. In particular, one can prove:

(9.7) Theorem. For any finite group G and prime p dividing |G|, the following
conditions are equivalent:
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(i) G has p-periodic cohomology.

(ii) The ring A*(G, Z,) contains an invertible element of non-zero degree.
(iii) Every elementary abelian p-subgroup of G has rank < 1.
(iv) The p-Sylow subgroups of G are cyclic or generalized quaternion.

We close this section by stating without proof a beautiful generalization
of this theorem, which was conjectured by Atiyah and Swan and proved by
Quillen [1971]. Fix a prime p and let H(G) denote the commutative Z ,-algebra
@0 H*(G, Z,). If the maximal rank of an elementary abelian p-subgroup
of G is 1, then 9.7 implies that H(G) is a finitely generated module over a
polynomial subalgebra Z,[u]. Consequently, H(G) has Krull dimension 1.
(See, for example, Serre [1965] for a treatment of dimension theory of
commutative rings.) Quillen’s generalization is:

(9.8) Theorem. For any finite group G, the Krull dimension of H(G) is equal to
the maximal rank of an elementary abelian p-subgroup of G.

Roughly speaking, then, the complexity of the ring H*(G, Z,) is determined
by the complexity of the p-subgroups of G.

EXERCISES

1. If G is non-trivial and has periodic cohomology of period d, prove that d is even.
[Hint: Use anti-commutativity.]

2. Prove that G has periodic cohomology of period 2 if and only if G is cyclic. [Hint:
What can you say about H,G if A*(G) has period 27]

3. Compute H'(G, Z) and H,(G, Z) for all n if H*(G) is periodic of period 4. Note, in
particular, that H,(G) = A~*G) = A'(G) = Hom(G, Z) = 0, so we obtain a new
proof of the result of exercise 7a of §IL5.

4. 1 G has periodic cohomology, show that H'(G, Z) = 0 for i odd. [Hint: It suffices to
do this when G is a p-group.]

5. Give a direct proof that (iv) = (i) in 9.3. [Hint: Use induced representations as in
example 3 0f 9.2.]

6. Let G = Z,,>aZ,, where m and n are relatively prime and Z, acts on Z,, via a
homomorphism Z,, — Z* whose image has order k. Prove that the minimal period
of A*(G) is 2k. [Hint: If p| n then A*(G, Z),,, = A*(Z,, Z),,.1f p|mthen A*(G),,, =
A*Z.)%]

7. Let F, be a field with g elements, where g is a prime power. Show that SL,(F,) does
not have periodic cohomology if n > 3 or if ¢ is not prime.



160 VI Cohomology Theory of Finite Groups

8.

10.

Let k = F,, where q is an odd prime power.

(a) Let M be the subgroup of SL,(k) consisting of the monomial matrices

_q-1
(; }.(‘)‘) and (()), g ), Aek*.

Show that M = Q,,_,,if ¢ # 3.

(b) Let K > k bea quadratic extension (so K = F ). Weregard K as a 2-dimensional
vector space over k and denote by GL(K) (resp. SL(K)) the group of vector space
automorphisms of K (resp. the group of automorphisms of determinant 1). Thus
GL(K) =~ GL,(k) and SL(K) ~ SL,(k). We have Gal(K/k) = GL(K) and K* ¢,
GL(K), where the latter embedding corresponds to the multiplication action of K*
on K. Show that Gal(K/k) and K* generate a subgroup of GL(K) of order 2(q> — 1),
whose intersection with SL(K) is isomorphic to Q,+,. [Hint: The composite
K* ¢ GL(K) % k* is simply the norm map of Galois theory, which in this case is
given by 1+ A9* !, Also, if ¢ € Gal(K/k) is the non-trivial element, thendet o = —1.]

(c) Using (a) and (b) and the fact that | SL,(k)| = g(q*> — 1), show that SL,(k) has a
quaternionic 2-Sylow subgroup and a cyclic I-Sylow subgroup for any odd prime
I # char k.

. Suppose that G has p-periodic cohomology. Let P € G be a subgroup of order p,

let N(P) (resp. C(P)) be the normalizer (resp. centralizer) of P in G, and let W =
N(P)/C(P). Prove that A*G, M), ~ A*(N(P), M), ~ A*(C(P), M),. [Hint:
For the first isomorphism, choose a p-Sylow subgroup H 2 P and show that every
N(P)-invariant in A*(H) is G-invariant. For the second isomorphism, note that

pYIWL]

For any finite group G, show that the augmentation ideal I = ZG is a cyclic G-
module iff G is a cyclic group. [Hint: If I is cyclic, then G admits a periodic resolution
of period 2.]



CHAPTER VII

Equivariant Homology and Spectral
Sequences

1 Introduction

If a group G operates on a topological space X, then one can define equi-
variant homology and cohomology groups, which can be thought of heuristic-
ally as a “mixture” of H(G) and H(X). This equivariant theory provides a
powerful tool for extracting homological information about G from the
action of G on X. It is in this way, for example, that Quillen proved his
theorem about the Krull dimension of H*(G, Z,) for G finite (V1.9.8).

The main purpose of this chapter is to construct the equivariant homology
theory and give its basic properties, including two spectral sequences. This
theory will play a crucial role in the remaining chapters of this book. For
simplicity, we will confine ourselves to the case where X is a G-complex in the
sense of §I.4. See Grothendieck [1957] or Quillen [1971] for a more general
point of view.

We begin with a brief treatment of the theory of spectral sequences.

2 The Spectral Sequence of a Filtered Complex

If C is a chain complex and C’ is a subcomplex, then there is a long exact
sequence which gives information about H,(C) in terms of H,(C’) and
H,(C/C’). Now suppose we are given, instead of a single subcomplex C’,
a sequence of subcomplexes {F,C} .z, with F,_,C < F,C. It is reasonable,
then, to try to get information about H,(C) in terms of the groups
H,(F,C/F,_,C). In this section, we will describe a method for doing this.

161
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What one obtains, roughly speaking, is a sequence of successive approxima-
tions E" (r > 0)to H (C), such that E' consists of the groups H ,(F »C/F -1 C).

We will omit most of the proofs in this section. The reader can either supply
the missing proofs (which are routine) or consult any text which treats
spectral sequences, e.g., Spanier [1966] or MacLane [1963].

Let R bean arbitrary ring. (In our applications, we will usually take R = Z.)
By an increasing filtration on an R-module M we mean a family of sub-
modules F,M (p € Z) such that F,M < F,, M. The filtration is said to be
finite if F,M = 0 for p sufficiently small and F,M = M for p sufficiently
large. Given a filtration on M, the associated graded module Gr M is defined
by Gr,M = F,M/F,_, M. One thinks of M, then, as being built up from the
“pieces” Gr, M. The following elementary lemma shows that, in some sense,

14
we do not lose too much information by passing from M to Gr M:

(2.1) Lemma. Let f : M — M’ be a filtration-preserving map, where M and M’
are modules with finite filtrations. If Gr f: Gr M — Gr M’ is an isomorphism,
then f is an isomorphism.

Another elementary (but important) observation is that if we have a
notion of “rank” for R-modules (e.g., if R is a field or R = Z), such that
rtk M =rk M’ + rk M" for every short exact sequence 0 > M' - M —
M" — 0, then the rank of a finitely-filtered module can be computed from the
associated graded module:

22) rk M = Y rk Gr, M.

pel

If the filtered module M is itself graded (and each F,M is a graded sub-
module), then we have for each n € Z a filtration {F,M,} on M,, and hence
there is an obvious way of associating a bigraded module to M. The usual
notational convention in this case is to set Grp, M = F, M, /F,_ M, .
An element of Gr,, M is said to have filtration degree p, complementary
degree g, and total degree p + q. To simplify the notation, we will sometimes
suppress the second subscript and simply write Gr, M = F,M/F ,_ M.

Now let C = (C,),¢2 be a filtered chain complex (with each F,C a sub-
complex). For simplicity, we will always assume that the filtration is di-
mension-wise finite, i.e., that {F,C,} .z is a finite filtration of C, for each n.
There is an induced filtration on the homology H(C), defined by F,H(C) =
Im{H(F,C)— H(C)}. We can identify F,H(C) with (F,C n Z)/(F,C n B),
where Z (resp. B) is the module of cycles (resp. boundaries) of C. The associated
bigraded module Gr H(C) is given by

23)  Gr, H(C) = (F,C n Z)((F,C N B) + (F,_,C N Z)).

We now describe the spectral sequence associated to the filtered complex
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C. This is a sequence {E'}, » o of “successive approximations” to Gr H(C).
Let Z, = F,C n 07 'F,_, C. (More precisely,

Zy = F,Cpign 0 'Fp,Cprg1)

Let Zy=F,CnZ. We have F,C=2522Z}2---2Z2. Since the
filtration {F,C} is dimension-wise finite, this sequence of inclusions stabil-
izes dimension-wise to a sequence of equalities, i.e., for fixed (p, q) we have
Z,=2Zg' = = Zg for r sufficiently large. Let B, = F,C 0F ,,,-,C
= 0Z,,,_,and let BY = F,C~ B. Then BY = B} < --- < BY, and again
this stabilizes dimension-wise to a sequence of equalities. We now have

BicB,c---cBycZyc---cZ)csZ)=F,C,
and we set
E,=Z /B, + Z,_}) = Z},/(B, + (F,—,C n Z}))
and
Ep = Zp/(By + Z;-,) = Gr, H(C)
(cf. 2.3). For fixed (p, q), we have
B=Eg' = =Eg

for r sufficiently large, so the sequence {E"} “converges”toGr H(C)asr — co.
(One often suppresses the “Gr” here and simply says that the spectral se-
quence converges to H(C) or that H(C) is the abutment of the spectral se-
quence.)

The modules E" are particularly easy to describe for r = Oand 1:

24) ES = F,C/F,_,C = Gr,C
25 E.=(F,Cn 8 'F,_,C)/(9F,C + F,_,C) = H(F,C/F,_,C).

(More precisely, EX, ~ H,. (F,C/F,-,C).) Thus E" is the homology of E°,
relative to the differential induced on E° by 3. More generally, one can show
that d induces a differential d" on E" of bidegree (—r,r — 1) (ie., d": Ej; —
E,_, .+r-1) and that E'*! ~ H(E"). An important consequence of this is:
(2.6) Proposition. Let 1: C — C’ be a filtration-preserving chain map, where C
and C' have dimension-wise finite filtrations. If the induced map E'(z): E'(C) —
E'(C) of spectral sequences is an isomorphism for some r, then H(z): H(C) -
H(C’) is an isomorphism.

ProoF. If E'(7) is an isomorphism then so is E*(z) for s > r, since E° =
H(E*~!'). Hence E*(t) = Gr H(z) is an isomorphism, and the proposition
now follows from 2.1.

Another important fact is that spectral sequences can be used to compute
Euler characteristics. Suppose, for example, that R = Z or R is a field. For
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any graded R-module 4 = (4,) (resp. bigraded module 4 = (4,,)), let
x(A) =Y, (—1)"rk A, (resp. x(4) = Y, , (—1)?* 91k A,,), provided all the
ranks are finite and almost all of them are zero. In case 4 has a differential,
it is well-known that y(A) = y(H(A)) (cf. Spanier [1966], 4.3.14). In par-
ticular, if C is a filtered complex as above and if y(E") is defined for some r, then
it follows that

) WET) = y(ET*') = --- = ((E®) = y(H(C)),

the last equality being a consequence of 2.2.

Finally, we briefly describe the notational conventions in case C is
indexed as a cochain complex (C"), .z, with differential of degree + 1. In this
case the filtration is denoted {F?C} and is assumed to be decreasing (i.e.,
FPC 2 FP*!'C). The terms of the resulting cohomology spectral sequence are
denoted E™, and one has E% = Gr?? H(C) = FPH?*9(C)/FP*'H?*%(C). The
differential d, is of bidegree (r, —r + 1), so that d,: EM — EP*"97"*1 If we
think of EM as sitting on the lattice point (p, q) of the plane, then d, can be
visualized as an arrow pointing to the right and downward for r > 2. By
contrast, the differentials d" in a homology spectral sequence point to the
left and upward.

The canonical example of a filtered cochain complex is H#o»/{C, M),
where C is a filtered chain complex. One sets

F*#HomlC, M) = HondC/F ,_,C, M).
EXERCISE

Let 0 » C' - C - C" - 0 be a short exact sequence of chain complexes. Let {F,C} be
the filtration such that F,C = 0, F,C = C’, and F,C = C. Describe the modules E},
and deduce from the spectral sequence the familiar long exact homology sequence.
[Thus the spectral sequence of a filtered complex can be regarded as a generalization of
the long exact sequence associated to a chain complex and a subcomplex, as we implied
in the introductory paragraph of this section.]

3 Double Complexes

By a double complex we mean a bigraded module C = (C,,),.;ez With a
“horizontal” differential &' of bidegree (— 1, 0) and a “vertical” differential
0" of bidegree (0, — 1), such that §'9"” = 9"9'":

&
Cp-l.q ¢ Cpq

7
Cp-1,g-1+—Cp g-1.



3 Double Complexes 165

Note that a double complex can be regarded, in two different ways, as a
“chain complex in the category of chain complexes.” Thus for each g we have
a horizontal chain complex C, , with differential 9, and we are given chain
maps 0": C, o — C, .- such that 0" = 0. Similarly, for each p we have a
vertical chain complex C,, , with differential 8”, and we are given chain maps
0:Cpy—=Cpy,,Withdd =0.

A double complex C gives rise to an ordinary chain complex TC, called
the total complex, as follows: (TC), =@, + .= Cpq» With differential d given
by 0| C,, = 0 + (—1)P9". The tensor product of two chain complexes C’' and
C" provides a familiar example of this construction. Indeed, we have a
double complex C with C,, = C, ® C;, and TC is simply the usual tensor
product C' ® C” of chain complexes.

We now filter TC by setting F (TC), = @, C; ,-;- This is a dimension-
wise finite filtration provided C has only finitely many non-zero modules
C,, in any given total degree p + g. (This holds automatically, for example,
if C is a first quadrant double complex, i.e., if C,, = Owhen p < 0or g < 0.
Thus we have a spectral sequence {E"} converging to H (T C). It is immediate
from the definitions that E3, = C,, and that d° = * §”. Consequently, E*
is the vertical homology of C, i.e., Ep, = H/(C, ). The differential d': E,, —
E,_, . is easily seen to be the map induced by the chain map ¢':C, , -
C,-1.; for an element of E}, is represented by an element ¢ € C,, such that
d"c = 0, and for such a c one has dc = d'c. Thus E? can be described as the
horizontal homology of the vertical homology of C.

One could equally well filter TC by F(TC), = @<, C.-j,;- We obtain,
then, a second spectral sequence converging to H(TC), this time with
ES, =C,, E},=H(C,,,),andd": E,, » E,_, , equal (up to sign) to the
map induced by 0":Cy.p = Cy.p-1

[Warning: Even though the two spectral sequences have the same
abutment H(TC), they do not in general have the same E®-term; for we
have two different filtrations on H(TC) and hence two different E®-terms
Gr H(TC).]

A similar discussion applies to double cochain complexes C = C.Onehas
a total cochain complex T'C with two decreasing filtrations, and hence two
spectral sequences of cohomological type converging to H*(TC) (provided
that C has only finitely many non-zero modules in any given total degree).
Details are left to the reader.

EXERCISE

Let C be a first-quadrant double complex such that one of the associated spectral
sequences (the first one, say) has E,, 1 =0 for g # 0. Let D be the chain complex Ei,
with differential d'.

(a) Show that there is an isomorphism ¢: H (TC) 5 H (D).
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(b) Make this result more precise by showing that there is a weak equivalence t: TC — D.
[Hint: Take t to be the canonical surjection which comes from the fact that D is the
vertical O-dimensional homology of C. Show that t, = ¢ by directly examining the
definitions in the construction of the spectral sequence. Alternatively, you can avoid
getting your hands dirty by observing that  can be viewed as a map of double complexes
C — D (where D is regarded as a double complex concentrated on the line g = 0); the
induced map of spectral sequences is an isomorphism at the E!-level, so t induces an
isomorphism H,(TC) - H (TD) = H,(D).]

4 Example: The Homology of a Union

Let X be a CW-complex which is the union of a family of non-empty sub-
complexes X,, where a ranges over some totally ordered index set J. In case
J = {1, 2}, one has a short exact sequence of chain complexes

0 C(X, n X;) - C(X,) ® C(X3) —» C(X) -0

(where C( ) denotes the cellular chain complex), from which one obtains
the familiar Mayer-Vietoris sequence. In the general case, we will show that
the exact sequence above is replaced by an exact sequence

o P X nXpn X)) PDCX, N X)) > PCX,) - C(X)—-0
a<f<, a<p a

and that the Mayer-Vietoris sequence is replaced by a spectral sequence.

The details are as follows.

Let K be the abstract simplicial complex whose vertex set is J and whose
simplices are the non-empty finite subsets ¢ of J such that the intersection
X, = N «ca X4 1S non-empty; K is called the nerve of the covering {X,}.
For p > 0 let C, be the chain complex @), . x» C(X,), where K is the set
of p-simplices of K. If ¢ has vertices ag <--- <a,, we denote by
0,06 (0<i<p) the (p — 1)-simplex {ay,...,&;,...,a,}. The inclusions
C(X,) o C(X,;,,,) induce a chain map 9;:C, —» C,_, for p > 1, and we set
d = ) P_o (—1)'0;.Similarly, theinclusions C(X,) ¢» C(X)induceachainmap
€: Cy — C(X). We have, then, an augmented chain complex

@.1) e Cp B Cyy o Cp B O(X) 5 0

in the category of chain complexes, and hence a double complex C with C,,
equal to the group of g-chains of C,,, i.e., Cpy = @, e ko Co(X,)-

I claim now that 4.1 is exact. To see this, we give an alternative description
of C,,. For any cell e of X, let K, be the subcomplex of K consisting of the
simplices o such that e £ X,. Then C,, has one basis element for every
pair (g, e) such that e is a g-cell of X and ¢ is a p-simplex of K,. In other
words, Cpy & @.c x» C(K.), where X' is the set of g-cells of X. Moreover,
an examination of the definitions of the maps dand ¢in 4.1 shows that : C,, -
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Cp-1,q is equal to @,y {0: CK,) = C,_((K,)}, and similarly for &
Thus the g-dimensional part of 4.1,

v Cpg =+ = Coq = C(X) - 0,

is isomorphic to @), x@ C(K,), where C(K,) is the augmented simplicial
chain complex of K,. But K, is acyclic. Indeed, its simplices are all of the
finite subsets of the non-emptyset J, = {a € J: e = X,},50 K, isthe “simplex”

spanned by the (possibly infinite) set J,. Thus @, C(K,) is acyclic, which
proves the claim.

Consider, now, the two spectral sequences of the double complex (C
In view of the exactness of 4.1, the second spectral sequence has

0 ifg#0
C(X) ifg=0.

Taking the homology with respect to p, we obtain

0 ifg#0
H(X) ifg=0.

)

E,,=H(C,,) = {

E%, =

2]

The spectral sequence therefore “collapses” to yield:

4.2 H (TC) ~ H (X).
The first spectral sequence, on the other hand, has
4.3) E), =H/(C) = @ H/(X,).
ae kP

Moreover, in view of the isomorphism 4.2, we can regard H,(X) as the
abutment of the spectral sequence, ie., E* ~ Gr H (X) relative to some
filtration on H_(X). This first spectral sequence, then, is our desired general-
ization of the Mayer-Vietoris sequence. It approximates H, X in terms of
the homology of the X, and their intersections.

To describe the E2-term, we need the notion of “coefficient system” on a
simplicial complex K. By this we will mean a family o/ = {4,} of abelian
groups, where g ranges over the simplices of K, together withamapf,.: A,— 4,
whenever t is a face of g (written © < o), such thatf,, f,. = f,,ifpc 1 <0
There is an obvious way to construct a chain complex C(K, &), with C (K, &)
=@,ckm A,, and one therefore has homology groups H (K, #). (See
Godement [1958], 1.3.3, for a detailed treatment of the cohomological
version of this.)

Returning now to the situation where K is the nerve of the covering {X,},
we have for each g > 0 a coefficient system J, = {H,(X,)} on K, where
Joet H(X,) > H(X,) is induced by the inclusion X, ¢, X.. It is immediate
from the definition that the E'-term in 4.3 is equal to C,(K, ), hence
E2, = H,(K, 5,). We summarize this discussion by writing

Pq
E:q = Hp(K’ )r;) = Hp+q(x)’
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where the symbol “=" indicates that the spectral sequence converges to
what appears on the right-hand side.

In case each X, is acyclic, we have #;, = Z and 5, = 0 for g # 0. The
spectral sequence therefore collapses at E? to yield the following result,
which seems to be essentially due to Leray:

(4.4) Theorem. Suppose X is the union of subcomplexes X, such that every
non-empty intersection X,, N --- 0 X, (p 2 0) is acyclic. Then H (X) =~
H (K), where K is the nerve of the cover.

EXERCISES

1. Make 4.4 more precise by showing that, under the given hypotheses, there is a chain
complex T which admits weak equivalences T — C(X) and T — C(K). [Take
T = TC, where C is the double complex used in this section, and use part (b) of the
exercise of §3.]

*2. Make 4.4 still more precise by showing that there is a CW-complex Y which maps to
both K and X by maps inducing homology isomorphisms. [Hint: Let Y be the
union of the cells ¢ x ein K x X such that e € X, (or, equivalently, such that ¢ is
in K,); note that C(Y) can be identified with the complex T of exercise 1.]

Remark. The map Y — X is in fact a homotopy equivalence. This can be seen, for
example, by an inductive argument over the skeleta of X, using the fact that each
complex K, is contractible. Consequently, one obtains a canonical homotopy class
of maps X — K inducing a homology isomorphism. In case each X, is contractible
(and not just acyclic), one can similarly show that the map Y — K is a homotopy
equivalence, so that X and K are homotopy equivalent. This sort of result was first
proved by Weil [1952], §5; see also Borel-Serre [1974], §8, and Quillen [1978],
1.6-1.8.

5 Homology of a Group with Coefficients in a Chain
Complex

Recall that H (G, M) is defined to be H, (F ®; M), where F is a projective
resolution of Z over ZG. It is useful to generalize this by allowing a non-
negative chain complex C = (C,),» o of coefficients. Thus we set

H,(G, C) = H(F ®; C);

as usual, this is well-defined up to canonical isomorphism. If C consists of a
single module M concentrated in dimension 0, then H (G, C) reduces to
H (G, M).
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Since F ®¢ C is the total complex of the double complex of abelian
groups (F, ®; C,), we have by §3 two spectral sequences converging to
H (G, C). The first of these has E},q = H(F,®C,) = F, ® H,(C) since
F, ®;— is an exact functor. Taking now the homology with respect to p, we
obtain E2, = H,(G, H,C). Thus the spectral sequence has the form

(5.1) E%, = H(G, H,C) = H,,, (G, C).

An important consequence of this is that H (G, C) is an invariant of the
“weak homotopy type” of C:

(5.2) Proposition. If 1: C — C’ is a weak equivalence of G-chain complexes,
then t induces an isomorphism H (G, C) > H (G, C').

PROOF. T induces a map of spectral sequences which is an isomorphism at the
E2-level, hence 7 induces an isomorphism on the abutments by 2.6. O

[This result also follows, of course, from 1.8.6, but it still provides a nice
illustration of spectral sequence techniques.]

The second spectral sequence has E,, = H(F, ®; C,) = H (G, C)).
Thus we have:

(53) EY, = H(G,C,) = H,. (G, C).

The group EZ, can therefore be described as the p-th homology group of the
complex obtained from C by applying the functor H (G, —) dimension-wise.
Both spectral sequences, then, can be thought of as giving approximations
to H (G, C) in terms of ordinary homology groups H (G, M).

To get a better feeling for H,(G, C), let’s look at some special cases. Sup-
pose, first, that G acts trivially on C. Then F ®; C = F; ® C, so there is a
Kiinneth formula

0- @ H,G®H,C—>H(G,C~ @ Tor(H,G H,C)—0

p+qg=n p+q=n—-1
expressing H,(G, C)in terms of H,G and H,, C. Similarly, if k is a field and C
is a complex of k-vector spaces (with trivial G-action), then

(54) H(G,C) ~ H,(G, k) & H,C.

At the other extreme, suppose that each C, is a free ZG-module, or, more
generally, an H -acyclic G-module (e.g., projective or induced). The E'-
term in 5.3 is then concentrated on the line g = 0, and E} o = (C,)g- The
spectral sequence therefore collapses at E?toyield:

(5.5) H,(G,C) ~ H,(Cq).
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The abutment of the spectral sequence (5.1) can therefore be identified with
H _(C¢); this proves:

(5.6) Proposition. Let C be a non-negative chain complex of G-modules such
that each C, is H ,-acyclic. Then there is a spectral sequence of the form

E2, = H/(G, H,C) = H, . (Cq).

Remark. This spectral sequence is a special case of the “universal coefficient
spectral sequence,” cf. Godement [1958], 1.5.5.1.

We can also define cohomology groups H*(G, C), where C = (C"),»o is a
non-negative cochain complex; namely, we set

H*(G, C) = H*(H#omg(F, C)),

where F is a projective resolution of Z over ZG. Now H#sx»:(F, C) is in fact
the total complex associated to a double complex with C = Homg(F,, C?).
Indeed, we have #omg(F, C)' = Homg(F, C)_p = [],+4=aHomg(F,,C_,) =
@, + = Homg(F,, C?). And if we take &' to be the coboundary operator in
Homg(Fy, C) [where q is fixed and the module F, is regarded as a chain
complex concentrated in dimension 0] and é” to be the coboundary operator
in #smg(F, CP), then the resulting total coboundary operator is the same as
that in #%wmg(F, C). One can now easily deduce cohomology analogues of
5.1-5.6.

Similarly, if G is finite, one can define Tate cohomology groups A*(G, C)
by using a complete resolution F. We assume, here, that C" = 0 for n>>0,
so that the double complex Homg(F,, C%) has only finitely many non-zero
groups in each total degree.

Finally, we remark that all of the formal properties of homology and
cohomology given in Chapters III and V extend without difficulty to homol-
ogy and cohomology with coefficients in a (co-) chain complex. In particular,
one has long exact sequences, Shapiro’s lemma, restriction and corestriction
maps, cup products, etc. Moreover, the cohomology spectral sequences
analogous to 5.1 and 5.3 are compatible with the cup products. More pre-
cisely, suppose C and D are G-cochain complexes, and consider the cochain
cup product

Homg(F, C) @ Homg(F, D) - Hom(F, C ® D)

defined via some diagonal approximation F — F ® F. One checks easily
that this cup product is compatible with the filtrations defining the two
spectral sequences, i.e., that it induces a product

FP#omg(F, C) x FPHomg(F, D) = FP*? Homg(F, C ® D).
It follows that there is an induced cup product

EP*(C) ® EF (D)~ EI****9(C ® D),
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where {E,( )} denotes the cohomology version of either 5.1 or 5.3. We will
see applications of this product structure in Chapter X.

6 Example: The Hochschild-Serre Spectral Sequence

Let1 - H - G —» Q — 1 be a group extension. If F is a projective resolution
of Z over ZG and M is a G-module, then F ®; M = (F ® M); can be
computed in two steps (cf. §I1.2, exercise 3), by first dividing out by the action
of H on F ® M and then dividing out by the action of Q:

F®M = ((F® M)y)g = (F ®y4 M),.

Thus

6.1) H,(G, M) = H_(Cy),

where C = F ®, M. Note also that we have a Q-module isomorphism
6.2) H,(H, M)~ H,(C),

where the Q-action on H_(H, M) is that of II1.8.2. Finally, I claim that the
Q-modules C, = (F, ® M), are H -acyclic. In fact, it suffices to show that
(ZG ® M)y is H-acyclic; and for this one need only observe (by using
I11.5.7, for example) that (ZG ® M)y is an induced Q-module ZQ ® A.

We are now in a position to apply 5.6 to the Q-complex C. In view of 6.1
and 6.2 we obtain:

(6.3) Theorem (Hochschild-Serre [1953]). For any group extension1 - H —
G — Q — 1and any G-module M, there is a spectral sequence of the form
E:q = Hp(Q’ Hq(H’ M)) = Hp+q(G’ M)'

(There is, of course, an analogous spectral sequence in cohomology, de-
rived from the observation that #%w.g(F, M) = (#omy(F, M))<)

An important consequence of 6.3 is the following 5-term exact sequence
of low-dimensional homology groups, generalizing the 5-term exact sequence
of exercise 6 of §IL.5:

(6.4) Corollary. Under the hypotheses of 6.3 there is an exact sequence
Hy(G, M) > Hy(Q, My) - H\(H, M)g - Hy(G, M) - H\(Q, Mp) > 0.
PrOOF. Since E® = Gr H(G, M), we have a short exact sequence
0- E$, » H(G, M) - E}, —»0.
Now there are no non-zero differentials involving E} o (r > 2), s0

o _ E2
El.o - El.O'



172 VII Equivariant Homology and Spectral Sequences

And the only possible non-zero differential involving Ej , or E} 4 is
d*: E%.o - E(Z),h
so there is an exact sequence
0 E3— E%,o %4 E(2).1 - Eg, 0.
The short-exact sequence above now yields an exact sequence
0— Eo— E}o— E3y = Hy(G, M) > Ef o > 0.

Since EZ, = H,(Q, H(H, M)) and E%, is a quotient of H,(G, M), this yields
the desired 5-term exact sequence. O

7 Equivariant Homology

We now specialize the theory of §5 to the case where the chain complex C
is the cellular chain complex C(X) of a G-complex X (cf. §1.4). The resulting
homology groups H,(G, C(X)) are denoted H$(X) and called the equivariant
homology groups of (G, X). More generally, if M is a G-module, then thereis a
diagonal G-action on C(X, M) = C(X) ® M, and we set

HY(X, M) = H (G, C(X, M)).
Similarly, the equivariant cohomology groups are defined by
H¥(X, M) = H¥*(G, C*(X, M)).

In case X is finite dimensional and G is finite, we can also define equivariant
Tate cohomology groups by

A¥X, M) = A%G, C*(X, M)).

Finally, if Y € X is a G-invariant subcomplex, then there are relative equi-
variant homology and cohomology groups, defined by means of the relative
complex C(X, Y) = C(X)/C(Y).

For simplicity, we will confine ourselves in this section to a discussion of
the (absolute) homology groups HS(X, M). There are, of course, relative
versions, as well as cohomology analogues, of all the results.

Note first that HS(pt., M) = H,(G, M). Since any G-complex X admits
a (unique) G-map to a point, we deduce that there is a canonical map

71.1) HS$(X, M) - H,(G, M).
Next we record the spectral sequence 5.1 in the present context:
(7.2) EZ = H, (G, H(X, M)) = HS, (X, M).

(Note that the E2-term here involves the diagonal action of G on H (X, M),
induced by the action of Gon X and M.)
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As a consequence of 7.2, we have (cf. 5.2):

(7.3) Proposition. If f: X — Y is a cellular map of G-complexes such that
fo:H,X > H_Y is an isomorphism, then f induces an isomorphism H3(X, M)
% HY(Y, M) for any G-module M. In particular, if X is acyclic then the
canonical map 7.1 is an isomorphism HS(X, M) = H (G, M).

To analyze the second spectral sequence (5.3), we decompose C,(X) ® M
as in IIL5.5b. For each p-cell ¢ of X we have a G,-module Z, which is ad-
ditively isomorphic to Z, on which G, operates by the “orientation character”
Xo: G = {+1}. Let

M,=27,3M,;

thus M, is a G,-module which is additively isomorphic to M, with the G,-
action “twisted” by x,. Let X, be the set of p-cells of X and let Z,, be a set of
representatives for X ,/G. We then have an additive decomposition

74 CX,M)=C,(X)®M = P M,,
oceXp
from which we obtain a G-module decomposition
7.5) C(X, M) ~ @ Ind§ M,.
oeX,

Shapiro’s lemma now yields
(7.6) Hy(G, C(X, M)) =~ 6-2 H(G,, M,),
so that 5.3 takes the form:
(7.7 El, = @ H/(G,, M,) = HS, (X, M).

oeX,
Suppose, for example, that the G-action is free, so that each G, = {1}, and

assume for simplicity that M = Z. The spectral sequence then collapses at
E? to yield (cf. 5.5):

(7.8) H{(X) =~ H(C(X)g) = H(X/G).
Combining 7.8 and 7.2, we conclude (cf. 5.6):

(7.9) Theorem. If X is a free G-complex, then there is a spectral sequence of
the form

EZ = H,(G, H,X) = H,+ (X/G).
Remark. This spectral sequence is called the Cartan-Leray spectral sequence
associated to the regular covering map X — X/G. Theorem 7.9 remains
true if we introduce an arbitrary G-module M of coefficients, but the resulting

homology groups H,(X/G, M) have to be interpreted as homology groups
with local coefficients if G acts non-trivially on M.
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Consider now the situation where X is acyclic (but the action of G is not
necessarily free), so that

HS(X, M) ~ H (G, M)
by 7.3. The spectral sequence 7.7 can then be rewritten:

(7.10) El= @ H(G,, M,)= H,. (G, M).

gelp
This is an important computational tool in the homology theory of groups.
To use it, of course, one must find an interesting acyclic space X on which G
acts. If G is an amalgamated free product, for example, we will see in §9 thata
suitable choice of X leads to the Mayer-Vietoris sequence which we derived
earlier from a different point of view (I1.7.7 and the exercise of §IIL6).

EXERCISES

1. Consider the “left-hand edge” E}, , of the spectral sequence 7.7. Since d” is zero on
this edge for r > 1, the spectral sequence gives us maps

@ HG,, M) = E} , » E?, =GroH3(X, M) o HY(X, M).

reXp
[We have written H,(G,, M) here instead of H,(G,, M,) because a zero-cell has a
unique orientation, so that M, is canonically isomorphic to M as a G,-module.] The
composite

@ Hu(G,, M) - HY(X, M)
velo
is one of the two “edge homomorphisms” associated to the spectral sequence. Show
that its restriction to H ,(G,, M) is the map
H,(G,, M) = H{*(v, M) » H{(X, M)

induced by the inclusion (G,, t) & (G, X). [Hint: This can be done by straightforward
(but tedious) definition-checking. It is easier, however, to use a naturality argument

toreducetothecasewhere X consists of the single vertex v, in which case the definition-
checking is trivial.]

2. Let X be a G-complex such that for each cell o of X, the isotropy group G, fixes ¢
pointwise. In this case it is easy to see that the orbit space X /G inherits a C W-structure.
If, in addition, each G, is finite, show that

Hé(X, Q) = H(X/G, Q).
Deduce, in particular, that
H,(G, Q) ~ H(X/G, Q)

if X is contractible. [Remark: The hypothesis that G, fixes ¢ pointwise is not very
restrictive in practice. In the case of a simplicial action, for example, it can always be
achieved by passage to the barycentric subdivision.]
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3. Show that H{(X) ~ H,(X x ¢ E), where E is a free, contractible G-complex (i.e., the
universal cover of a K(G, 1)) and X x ¢ E denotes X x E modulo the diagonal
G-action. [Hint: There is a G-map X x E — X which is a homotopy equivalence,
and G acts freely on X x E.]

Remark. The isomorphism of exercise 3 is often taken as a definition. From this point
of view one obtains a spectral sequence of the form 7.2 by noting that there is a fiber
bundle X x¢E — K(G, 1) with fiber X.

4. (a) Let X be a G-space (not necessarily a G-complex). Use singular chains to define

equivariant singular homology H$(X) and construct a spectral sequence of the form
7.2

(b) Suppose that G acts freely on X and that the projection X — X/G is a covering
map. (It is then a regular G-cover in the sense of the appendix to Chapter 1.) Prove
that H$(X) ~ H,(X/G). [Hint: 5.5.] Deduce that there is a Cartan-Leray spectral
sequence (as in 7.9) in singular homology.

*(c) Suppose X = S2*~ ! in (b). Prove that G has periodic cohomology of period 2k.
[Method 1: X/G is a finite dimensional manifold and hence has vanishing homology
in high dimensions. with arbitrary local coefficients. The differential in the spectral
sequence therefore yields H(G, M) = H;, ,(G, M) for i>0. Method 2: We have a
sphere bundle S2*~! x“ E - K(G, 1) (with E as in exercise 3) whose total space is
homotopy equivalent to $2*~'/G. Up to homotopy, then, the inclusion of the fiber
in the total space is a map of degree | G| of orientable (2k — 1)-manifolds. The Gysin
sequence now shows that the Euler class of the sphere bundle is an element of order
|G| in H**(G, Z), so the result follows from VI.9.1(iv). See Jackowski [1978] for
further results obtainable from the study of sphere bundles over K(G, 1).]

5. Let X be a G-complex. If N is a normal subgroup of G which acts freely on X, show
that HS(X) ~ H™(X/N) with any G/N-module of coefficients. [Hint: Apply 7.7 to
(G, X) and (G/N, X/N).]

6. Let Y be a connected CW-complex with ;Y = O for 1 < i < nas in I1.5.2. Deduce
from the Cartan-Leray spectral sequence of the universal cover of Y that there is a
5-term exact sequence

Hn+ly—' H,,,,,n—-»(n,,Y),,—» HnY_’ H,,n—-»O,

where n = n, Y.

8 Computation of d*

Let X be a G-complex and M a G-module. In this section we will compute
the differential d! in the spectral sequence 7.7.

If o is a p-cell of X and tis a (p — 1)-cell, we denote by d,,: M, = M, the
(o, 1)-component of the boundary operator 0: C(X, M) - C,_ (X, M)
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(cf. 7.4). Let & = {1:d,, # 0}. This is a finite set of (p — 1)-cells and is
G,-invariant. Writing G,, = G, n G,, we conclude that (G,: G,,) < o for
1 € &%,. There is therefore a transfer map

tﬂt: H‘(GG’ Mﬂ) g H‘(Gdl” Mﬂ)'

Next, note that d,.: M, - M, is a G,.-map, since 0 is a G-map; SO 0,
and the inclusion G,, ¢ G, induce a map

uﬂt: H*(GU!’ Mﬂ) i H‘(Gt’ M!)'

Finally, let 75 € Z,_ be the representative of the G-orbit of 7, and choose
g(7) € G such that g(1)r = 74. Then the action of g(z) on C,_ (X, M) gives
an isomorphism M, - M, compatible with the conjugation isomorphism
G, - G,, given by g — g(1)gg(t)™!; thus there is an induced isomorphism

v:H, (G, M)~ H(G,, M,).

[As the notation suggests, one can show that v, depends only on 7, and not on
the choice of g(t); but we will not need to know this].
We can now define a map

¢: D H G, M))» @D H,(G,, M)

6eZp telp-

by

(le‘(G,, M,) = Z Uelgeloes
teF,

where &, is a set of representatives for £,/G,.

(8.1) Proposition. Up to sign, the map ¢ is the differential d*:E, , - E}_, ,
in7.7.

PROOF. What we must prove is that the diagram

@ H*(Gm Ma) —— @ Hg(Gn Mr)

cel, telp-

= =

H,(G, C,(X, M)) &L H (G, C,- (X, M))

commutes, where the vertical isomorphisms come from 7.6. We will in fact
prove commutativity of the corresponding diagram of chain complexes.
More precisely, if F is a projective resolution of Z over ZG, we will compute
¢ on the chain level as a map (still denoted ¢)

®F®GaM¢—' C_B F®G'Mn

geX, t€elp-
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and we will prove that the diagram

DF®. M,—— @ F& M,

oelp teZp-,
0 v

F ®; C,(X, M) 8% F ®; C,_ (X, M)

commutes. Here 6 and ¢ are the chain isomorphisms underlying 7.6; ex-
plicitly, a glance at the proof of Shapiro’s lemma (II1.6.2) shows that 8 and ¥
are simply the maps induced by the inclusions M, ¢, C,(X)®M and
M. o C,_(X)® M.

We begin by computing the transfer map t,, on the chain level by means of
Definition (C) of §I11.9. For x € F and m € M, we find

tx@®@m) = Y g 'x®g " 'meF ®, M,.
9€G,/G,y

Next, the map u,, is given on the chain level by F® d,,: F ®¢, M, >
F ®;, M,. Thus

uartat(x ®m) = z g x ® aat(g- lm)

9€G4/Ggyy

= Y 97'x®g7'0,..(m),
9€G4/Ggy
where the second equality comes from the fact that d is a G-map. We apply
now the map v,, which can be computed via the “diagonal action” of g()
(cf. §II1.8, paragraph preceding II1.8.1), and we sum over t € #; this gives
Px@m =3 ¥ 9(0)g 'x® g(1)g ™ ,,dm).
1€ %5 9€G4/Ggy

We can now establish the desired commutative diagram of chain com-
plexes. Using the tensor product relations gu @ gv = u ® v in —®g—, we
deduce from the formula for ¢ above that

Vo(x@m)= 3 Y x® 3, 4(m).
te ¥; 9€G4/Ggy
But it is clear from the definition of #, that the right-hand side of this equa-
tion is simply
Y x®d,{(m) = x® om.

tEF,

Thus y¢ = (F ® 0)0, as required. O

The description of E! and d* simplifies greatly if X has the property that
G, fixes o pointwise for every cell g, as in exercise 2 of §7. Indeed, one can
then orient each cell of X in such a way that the G-action preserves orienta-
tions, and such a choice of orientations determines for each ¢ an isomorphism
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M, ~ M of G,-modules. We can therefore write H(G,, M) instead of
H(G,, M,). More significantly, we have G, = G, for 1 € Z,, since such a 7
is necessarily in the closure of ¢ and hence is fixed by G,. Thus the transfer
map t,, is the identity map, and also &, = Z,.

Roughly speaking, then, we have a “coefficient system”

Hy = {H(G,, M)}

on the orbit complex X/G, and (E', d*) is the chain complex of X/G with
coefficients in this system. The E2-term of the spectral sequence can therefore
be thought of as H,(X/G, #,). We will not attempt to make these remarks
precise.

9 Example: Amalgamations

Consider an amalgamation G = H *, K, where A ¢, Hand A ¢, K. Let X
be the tree associated to G (cf. appendix to Chapter II), and recall that G
acts on X with no “inversions,” i.e., no element of G interchanges the vertices
of a 1-simplex of X. [Thus we are in the situation described at the end of §8.]
There is a single 1-simplex e which maps isomorphically onto the quotient
graph X/G, and the isotropy groups of e and its vertices v and w are given by

G,=H, G,=K, and G, = A.

We therefore have, for any G-module M, a spectral sequence converging
to H (G, M) (cf. 7.10), with

HMHM®HK M) if p=0
E,,=3{H/ (A, M) if p=1
0 if p>1.

(We have taken, here, £, = {v, w} and X, = {e}.) The spectral sequence
therefore collapses at E? to yield a Mayer-Vietoris sequence

9.1 o> H(A, M) S H(H, M) ® H(K, M) 5 H (G, M)
- H,_ (A, M)~ ---.

The map B here is the edge homomorphism discussed in exercise 1 of
§7, and hence it is the map induced by the inclusions H ¢, G and K ¢, G.
The map a is the differential d* given by 8.1. The latter is particularly easy
to apply here because the maps t,, and v, of §8 are identity maps. Since
Oe,w: M = Misidy and ¢, ,: M - M is —id,;, we conclude that a is simply
the difference of the maps H,(4) - H (H) and H (A) - H(K) induced by
the inclusions A ¢, Hand 4 ¢, K.
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Next we wish to briefly describe a generalization of the notion of amalga-
mation, for which one can also construct a Mayer-Vietoris sequence. By a
graph of groups we mean a connected graph Y together with (a) groups G,
and G,, where v (resp. €) ranges over the vertices (resp. edges) of Y, and (b)
monomorphisms 6,: G, < G,and 0,: G, <, G, for every edge e, where v and
w are the vertices of e. [Note: We allow the possibility that v = w, but 8,
and 6, may still differ.] One can then define the fundamental group G of the
graph of groups by using a suitable notion of “path”: one regards an element
of G, as a path from v to v, and one imposes the relations

Bo(a)e = eb,(a)

for every a € G., i.e., one identifies the composite paths

from v to w. (See Serre [1977a] for more details.)
For example, the amalgam H =, K is the fundamental group of the graph

A

H K

where we have labelled the vertices and edge with the associated groups. (In
this case 0, and 6, are the inclusions A ¢, H,4 ¢, K.)

Another important group theoretic construction which fits into this
framework is the HNN extension H *,. Here we are given a group H, a
subgroup 4, and a monomorphism 6: A - H, and H =, is obtained by ad-
joining an element ¢t to H subject to the relations ¢t~ 'at = 6(a) (a € A). This
group can be realized as the fundamental group of the graph

1Sk

with one vertex and one edge, where 6, and 6, are the inclusion i: 4 ¢ H and
the given map 0: A — H.

Just as in the case of amalgamation, there is a tree X associated to a graph
of groups, and the fundamental group G acts on X without inversion. The
original graph Y is the orbit graph X/G, and the groups G, and G, are the
isotropy subgroups of G at suitable liftings to X of the vertices and edges of Y.
Consequently, one obtains from 7.10 a Mayer-Vietoris sequence
(9'2) i @Hn(Gei M)_' @Hn(Gv’ M)—'HJI(G’ M)

eeY, veYo
- @Hn-'l(Gel M) e,

¢EY|

generalizing 9.1 (Here Y, is the set of i-cells of Y.) This exact sequence was first
written down explicitly by Chiswell [1976a].
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[This exact sequence can, of course, be derived without the use of spectral
sequences. Namely, one argues as in the exercise of §II1.6, using the exact
sequence of G-modules
9.3) 0- PZ[G/G] - PZI[G/G]-Z -0

eeY, veYo
given by the augmented chain complex of the tree X.]

Consider, for example, the HNN extension G = H =, described above.

The sequence 9.2 then has the form

(94) -~ - H(A,M)S H(H M) 5 H(G,M) > H, (A, M) > ---.

Asin 9.1, B is induced by the inclusion H - G. To evaluate a = d', we need
to know the following fact about the tree X : the unique edge of Y lifts to an
edge e of X whose vertices have the form v, tv. Taking Zy = {v}and Z, = {e}
in the notation of §8, we find that v, (t = tv) is the conjugation isomorphism
c(t™ "), H (tHt ™', M) - H (H, M). Since the composite

(4, M) - (tHt ™', M) <L (H, M)
is equal to (6, t "), it follows that « = (6, t™ "), — i,.

10 Equivariant Tate Cohomology

Recall from §7 that A%(X, M) is defined if G is finite and the G-complex X
is finite dimensional. This theory was introduced by Swan [1960a], who in
fact constructed a topological version of the theory (i.e., X is not required to
be a CW-complex).

The usefulness of equivariant Tate cohomology comes from the fact that
it provides a machine for systematically ignoring free actions:

(10.1) Proposition. Let Y be a G-invariant subcomplex of X such that the
isotropy group G, is trivial for every cell o of X that is not in Y. Then the
inclusion Y < X induces an isomorphism A%(X, M) 5 A%(Y, M).

PRrOOF. Consider the Tate cohomology version of the spectral sequence 7.7
for (G, X) and (G, Y). By hypothesis, A*(G,, M) = 0 if g is cell of X — Y.
Thus the inclusion Y ¢, X induces an isomorphism of spectral sequences
and hence an isomorphism of the abutments A%(X, M) and A%(Y, M). O

As a simple illustration of 10.1, we prove the following result (cf. §VLS,
exercise 4):

(10.2) Proposition. Let G be a finite group which admits a finite dimensional
free G-complex X such that H (X) ~ H,(S*'). Then G has periodic co-
homology of period 2k.
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Proor. By 10.1 (with Y = &), A%(X, M) = 0. On the other hand, we have a
spectral sequence (cf. 7.2)

(10.3) E8 = A%(G, HY(X, M)) = A2*Y(X, M).

Since the spectral sequence is concentrated on the horizontal lines ¢ = 0 and
q = 2k — 1, it follows that the differential d,, is an isomorphism

(10.4) A7(G, H*~ (X, M)) > A?* %G, M).
In view of the universal coefficient isomorphism
H?*~Y(X, M) ~ Hom(H,, _, X, M),

which is natural and hence an isomorphism of G-modules, the proof will be
complete if we show that G acts trivially on the infinite cyclic group H,,_; X.
This can be deduced from a general Lefschetz fixed-point theorem (cf.
§IX.5, exercise 1), but in the present situation there is a much easier proof.
It suffices to prove that every cyclic subgroup of G acts trivially on H,,_, X,
so we are immediately reduced to the case where G is cyclic (and non-trivial).
In this case we apply 10.4 with M = Z and p = 0 to conclude that

A°G, H* (X, 2)) ~ A*(G,Z) ~ Z/|G|- Z.

But this implies that H?*~!(X, Z)¢ # 0, which can only happen if G acts
trivially on H,, _, X. O

Remark. The advantage of this spectral sequence proof of 10.2 is that it
applies verbatim to the topological situation, where X is not assumed to be a
CW-complex, cf. Swan [1960a].

As another application of equivariant Tate cohomology theory (also due
to Swan), we will prove some classical results of fixed-point theory. (See
Bredon [1972] or Borel et al [1960] for the standard proofs of these results,
based on “Smith theory.”)

(10.5) Theorem. Let X be a finite-dimensional G-complex, where G has prime
order p. Assume that the fixed-point set X€ is a subcomplex.

(a) If H*(X, Z,) is finitely generated, then so is H*(X°, Z,,).

(b) If X is acyclic mod p (i.e, H*(X, Z,) ~ H*(pt., Z,)), then so is X G,

(c) If X is a cohomology sphere mod p (i.e, H*(X, Z,) ~ H*(S", Z,) for some
n > 0), then so is X¢, provided X° # .

(The hypothesis that X€ is a subcomplex holds, for example, if X satisfies
the hypothesis of exercise 2 of §7.)

PrOOF. We have
A%X,Z,) ~ AYX°, Z,)
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by 10.1. On the other hand, since G acts trivially on X¢, we have a Kiinneth
isomorphism

AYX°, Z,) ~ A%G, Z,) @, H*(X°, Z,),
cf. 5.4.Sincedimz, A%(G, Z,) = 1for all n € Z, it follows that
(10.6) dimg, AYX,z,)= Y dimz, H (X%, 2,)

iz0

for all n. Assuming now that H¥(X, Z,) is finitely generated, the spectral
sequence 10.3 (with M = Z,) implies that Aaxx, Z,) is finitely generated, so
(a) follows from 10.6. Similarly, if X is acyclic mod p then the left side of 10.6
is equal to 1, hence so is the right side; this proves (b). The proof of (c) is

identical to that of (b), except that one uses relative cohomology groups of
the pair (X, v), where v is some vertex of X¢.

EXERCISES

1. Where did the proof of 10.5 use the assumption that |G| = p? [There are two places.]

2. Extend 10.5 to the case where G is an arbitrary p-group and X* is a subcomplex of
X for every H < G. [Hint: Use induction on |G|, noting that X¢ = (XM if
N<G.]

3. Using the method of proof of 10.2, show that if X is a finite-dimensional free G-
complex (G finite) with H (X) ~ H,(S%*), then every non-trivial element of G acts
non-trivially on H,,(X), and hence |G| < 2.



CHAPTER VIII
Finiteness Conditions

1 Introduction

Recall that the definition of H (G, M) and H*(G, M) allows us to choose an
arbitrary projective resolution P = (P,);,, of Z over ZG. Similarly, if we
wish to take the topological point of view, then we can compute H (G, M)
and H*(G, M) in terms of an arbitrary K(G, 1)-complex Y. Since we have this
freedom of choice, it is reasonable to try to choose P (or Y) to be as “small”
as possible, and this leads to various finiteness conditions on G.

For example, if we interpret “small” in terms of the length of P (or the
dimension of Y), then we are led to the notion of cohomological dimension.
Or if we interpret small to mean that each P; should be finitely generated (or
that Y should have only finitely many cells), then we are led to the so-called
“FP” and “FL” conditions.

Our goal in this chapter is to introduce these and related finiteness
conditions and to give some examples. Our treatment will by no means be
complete; for the most part we will give complete proofs only for those
results which will be needed in Chapters IX and X. See Bieri [1976] and
Serre [1971, 1979] for a much more thorough treatment of the subject and a
guide to the literature. See also Wall [1979] for a list of open questions
concerning finiteness conditions.

Finally, a word about notation: In the theory of discrete subgroups of Lie
groups, which is the source of many of our examples, it is customary to
denote the Lie group by G and the discrete subgroup by I'. In order to be
consistent with this, we will use the letter “I"” from now on (instead of “G”)
to denote a typical abstract group.

183
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2 Cohomological Dimension

We begin with a basic lemma which characterizes projective dimension in
terms of the vanishing of cohomology functors. Recall first (cf. §V1.8) that
if R is a ring, M is an R-module, and n is a non-negative integer, then
proj dimg M < n if and only if M admits a projective resolution

0P, —>--->P,->M-0
of length n. Recall also (cf. §II1.2) that the Ext functors are defined by
Exty(M, —) = H'(Homg(P, —)),
where P is a projective resolution of M. In particular,
Exty(Z, —) = H(T, —).

(2.1) Lemma. The following conditions are equivalent:

(i) projdimg M < n.
(i) Exti(M, —) =0 fori > n.
(iii) Extx"'(M, —) = 0.
@iv) f 0K —>P,_,—---— Py— M —0is any exact sequence of R-modules
with each P; projective, then K is projective.

PrOOF. It is obvious that (iv)=(i)=>(ii) = (iii), so we need only prove
(iii) = (iv). Given a partial resolution as in (iv), complete it arbitrarily to a
projective resolution

"'—'Pn+l_'Pn—'Pn—l_'"'—'PO—’M—’O'
L K

For any R-module N, an (n + 1)-cocycle in #2smg(P, N)isamap P,.; = N
whose composition with P,,, — P,,, is zero. Such a cocycle, therefore, can
be regarded as a map ¢: L — N. The cocycle is a coboundary if and only if ¢
extends to a map P, — N. Thus (iii) implies that every map on L extends to
P,. In particular, the identity map on L extends to P,, so P, * L® K
and hence K is projective. O

The implication (i) = (iv) of 2.1 is very useful. It shows that if there exist
projective resolutions of length n, then we don’t have to be clever to find one—
any partial resolution of length n — 1 can be completed to a projective
resolution of length n. We will give another proof of this important fact later
(remark 3 following Lemma 4.4).

We now specialize to the case R = ZI', M = Z. The cohomological
dimension of I', denoted cd T, is defined to be the smallest integer n such that
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the conditions of the lemma hold, provided there exist such integers n;
otherwise we set cd I' = oo. Thus

cd I' = proj dimyZ

inf{n: Z admits a projective resolution of length n}
= inf{n: H(I', —) = 0fori > n

= sup{n: H(I", M) # 0 for some I'-module M}.

There is an obvious topological analogue of cd I': The geometric dimension
of I', denoted geom dim I, is defined to be the minimal dimension of a
K(T", 1)-complex. Since the cellular chain complex of the universal cover of a

K(T, 1) complex Y yields a free resolution of Z over ZI" (of length equal to the
dimension of Y), we clearly have:

(2.2) Proposition. cd I" < geom dim I.

We will return to this in §7, where we will prove that equality usually
holds.

EXAMPLES

l.cd I = 0if and only if I is the trivial group (cf. exercise 1 below).

2. If T is free and non-trivial then cd I = 1 (cf. 1.4.3). Conversely, a deep
theorem of Stallings [1968] and Swan [1969] says that every group of
cohomological dimension 1 is free. In view of Chapter IV, this result can be
restated as follows: If I' is a group which admits no non-split extension with
abelian kernel, then I" admits no non-split extension at all.

3. Let T be the fundamental group of a connected closed surface Y other
than S2? or P2. Then Y is a 2-dimensional K(T, 1) (cf. §I1.4, example 2), so
cd " < 2. And HXT', Z,) ~ H*(Y,Z,) # 0,s0¢cd " = 2.

4. More generally, suppose I' is a one-relator group whose relator is not
a proper power. Then cd I' < 2 by Lyndon’s theorem which we quoted in
§I1.4, example 3.

5.If I’ = Z" then the n-dimensional torus Y = S* x --- x S'isa K(T', 1)
with H(Y, Z) ~Z # 0,hencecd I' = n.

6. Let T be the group of 3 x 3 strictly upper triangular matrices with

integral entries:
1 = =
I= (0 1 =
0 01
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We will show that cd I' = 3. Let I'’ be the central subgroup

1 0 =
010
0 01

of T, and note that the quotient I'” = I'/T" is free abelian of rank 2. Consider
the Hochschild-Serre spectral sequence

EZ1 = HP(I™, HY(T", M)) = H?*4(T, M),

where M is an arbitrary I'-module. Example 5 shows that this spectral
sequence is concentrated in the rectangle 0 < p <2, 0 < g < 1. Conse-
quently, H(T", M) = Ofori > 3,socd I' < 3. Moreover, since the differential
d, maps EP¥to EP*"97"*! there can be no non-zero differentials involving
the upper right-hand corner E2'!. This being the only non-trivial term of total
degree 3, it follows that

H¥T, M) = E%! = E3! = HYI", H\(T", M)).

In particular, taking M = Z and recalling that I"" is central in I', we see that
H3T', Z) = Z (cf. exercise 1 of §I11.8); hence cd I = 3.

7. More generally, let I' be an arbitrary finitely generated, torsion-free,
nilpotent group. One can show that I" admits a central series
F=Tp>T, > 2T, =1

with free abelian quotients I';/T;, ,. The sum of the ranks of these quotients
is independent of the choice of central series and is called the rank (or Hirsch
number) of T'. Arguing as in example 6, one finds

cd I’ = rank I".

Details are omitted. See Bieri [1976], §7.3, and Gruenberg [1970], §8.8, for
more details and for further results of this type. See also example 2 of §9
below for an indication of a different proof of this resuit.

The rest of this section will be devoted to some elementary properties of
cohomological dimension.

(2.3) Proposition. Ifcd I' < oo then

cd I' = sup{n: HY(T', F) # O for some free ZI'-module F}.

PROOF. Let n = cd I'. In view of the long exact cohomology sequence
(I11.6.1(ii")), the functor H(I', —) is right exact. Since H(I', M) # 0 for
some M, it follows that H(T', F) # O for any free module F which maps
onto M. O
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(2.4) Proposition.
(@) IfT" = T then
cdlM<cdT;

equality holds ifcd ' < o0 and (T': T) < 0.
(b) If1 > T" > T > I’ > 1is a short exact sequence of groups, then

cddl<cdI" +cdI™
() IfT =T, %, ', (where A & T')), then
cdI <max{cdI',cd I, 1 + cd A}.

ProOF. The inequality in (a) follows immediately from Shapiro’s lemma or,
alternatively, from the fact that a projective resolution of Z over ZI" can
also be regarded as a projective resolution of Z over ZI"'. To prove the second
part of (a), suppose cd I' = n < oo. By 2.3 there is a free ZI'-module F with
H™(T, F)# 0. If F' is a free ZI"-module of the same rank, then F =~ IndL. F’,
so Shapiro’s lemma yields HYI", F') x H(I', F) # 0. Thus cdI" > n,
whence (a). [Exercise: Where did we use the hypothesis that (I': I'") < 00 ?]
(b) is an immediate consequence of the Hochschild-Serre spectral sequence,
as in Example 6 above. Finally, (c) follows from the cohomology version of
the Mayer-Vietoris sequence (VIL9.1 or exercise of §I11.6). O

(2.5) Corollary. If cd I' < oo then I is torsion-free.

Proor. If T is not torsion-free then I' contains a nontrivial finite cyclic sub-
group I". Such a I has ¢cd I" = oo, since H?(I", Z) # 0 for all k (cf.
§II1.1, Example 2) so 2.4a implies that cd I" = co. O

If I" =« Tand (I': ") < oo, then 2.4a shows that cd I" = cd I' unless the
following occurs:

(*) cdl'=0 and cdI” < oo.

Easy examples show that () can in fact occur; e.g., take I" of order 2 and
I" = {1}. More generally, if " is any group with torsion, then cd I' = o
by 2.5, but T may very well have torsion-free subgroups I'"" of finite index
with cd I < o0. We will prove in the next section a theorem of Serre which
says that all examples of (*) are of this type, i.e., that («) cannot occur if I' is
torsion-free.

Our last result shows that, as far as cohomological dimension is concerned,
we never need to use projective resolutions which are not free:

(2.6) Proposition. For any group T there is a free resolution of Z over ZT" of
length equal to cd T".

The proof requires the following “Eilenberg trick ”:
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(2.7) Lemma. If P is a projective module over an arbitrary ring R, then there is a
free module F such that P@ F =~ F.

(Warning: F will be of infinite rank, in general, even if Pis finitely generated.)

PROOF. Since P is projective there is a module Q such that P® Q is free. Let
F be the countable direct sum

PRQO®PDAD .

Then F is free, being a direct sum of free modules. But F can also be described
as the sum of a countable number of copies of P and a countable number of
copies of Q. Adding one more copy of P does not change this,soP @ F = F.

O

PROOF OF 2.6. Let n=cd I' We may assume 0 < n < oco. Choose a partial
free resolution

F,,-l—a>---—+Fo—>Z—>0

of length n — 1 and let P = ker{0: F,_, = F,_,}. (Here we set F_, =Z
if n = 1.) Then P is projective by 2.1, so 2.7 gives us a free module F such that
P @ Fisfree. Thusif wereplace F,_, by F,_, @ Fandsetd|F = 0, we obtain
a partial free resolution of length n — 1 with ker d free, whence the pro-
position. O

EXERCISES

1. Prove that the trivial group is the only group of cohomological dimension zero.
[Hint: cdI' =0<2Z is a projective ZI'-module <>the canonical surjection
e: ZI' - Z splits.]

2. Give an example to show that the hypothesis cd I' < oo is necessary in 2.3.

3. (a) Show that geom dim I, x, I, < max{geom dim I';, geom dim I,, 1 +
geom dim A4}.
*WIf1-TI">T>TI"->1is exact, show that geom dim I' < geom dim I’ +
geom dim I'".

4. Prove the following generalization of 2.4c: If I is an arbitrary group and X is an
acyclic I'-complex, then

dl < sup{cd I, + dim o},

where o ranges over a set of representatives for the cells of X mod I'. (Taking X to
be the tree associated to an amalgam, we recover 2.4c.) [Hint: Use the cohomology

version of the spectral sequence VIL7.10. Or see Serre [1971] for an alternative
proof.]
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5.

*6.

7.

The purpose of this exercise is to give a cohomological criterion for finite-
dimensionality (up to homotopy) of an arbitrary chain complex. In case the chain
complex is a projective resolution, this result ((b) below) reduces to the equivalence
(i)<>(ii)=>(iv) of Lemma 2.1. Let C be a chain complex over an arbitrary ring R.

(a) For any integer n, prove that the following two conditions are equivalent:

(i) H"* {(Homg(C, M)) = 0 for all R-modules M.
(ii) H,,,C = 0 and the module B, of n-boundaries is a direct summand of C,.

[Hint: Examine cocycles and coboundaries in #%sx(C, M) as in the proof of 2.1.]
(b) For any integer n, prove that the following three conditions are equivalent:

(i) C is homotopy equivalent to a complex C’ such that C; = 0 fori > n.
(ii) H'(3#omg(C, M)) = Ofor all i > n and all R-modules M.
(iii) If C’ is the quotient of C defined by

(of if i<n
C:=4C,/B, if i=n
0 if i>n,

then the quotient map C — C' is a homotopy equivalence.

If these conditions hold and C is a complex of projective R-modules, prove that the
complex C' in (iii) is also a complex of projectives.

[Hint for (ii) = (iii): If (ii) holds, deduce from (a) that C =~ C' @ C”, where C" is
contractible.]

Supposecd I' = n < o0, and let I'" = T be a subgroup of finite index.

(a) For any I"-module M, show that the transfer map tr: H'(I", M) - H(I', M) is
surjective. [Hint: Compute tr on the chain level, using a projective resolution of
Z over ZT of length n; note that the chain map is surjective. Alternatively, see Serre
[1971], 1.3, Lemme 2.]

(b) Suppose that I"" is normal in I'. If M is a I'-module and d is an integer such that
H'I™, M) = 0 for i > d, show that H(I', M) = 0 for i > d and that tr induces an
isomorphism

HYT", M), 3 HYT, M).

In particular, this holds withd = nfor any M. [See Brown-Kahn [1977], Prop. 1.2.]

(a) Show that induced I'-modules ZI' ® A have projective dimension < 1.

(b) If proj dimg M < n, show that proj dimg M’ < n for any direct summand M’
of M. [Hint: 2.1.]

(c) Deduce from (a) and (b) the following result (which is also an immediate conse-
quence of V1.8.12): If I is finite and M is a ['-module in which | I'| is invertible, then
proj dimgr M < 1. [Hint: M is a direct summand of an induced module.]
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3 Serre’s Theorem

(3.1) Theorem (Serre [1971]). If T is a torsion-free group and I" is a subgroup
of finite index, thencd I" = cd T'.

PROOF. In view of 2.4a, we need only show that if cd I" < oo thencd I" < co.
It is possible, as we will indicate below, to give a purely algebraic proof of
this result; but we will give instead a topological proof, when will yield
important information that will be needed in Chapters IX and X. This
topological proof requires the following result of Eilenberg and Ganea
[1957], which we will prove later as part of Theorem 7.1: If I is a group
such that cd I' < oo, then there exists a finite dimensional K(I", 1)-complex.

Returning now to the proof of 3.1, we are given that cd I < oo, so there
is a finite-dimensional K(I”, 1). Its universal cover X’ is then a finite di-
mensional, contractible, free I''-complex. To prove cd I' < 0o, we will
construct from X’ a finite dimensional, contractible, free I'-<complex X. The
construction, which is a straightforward analogue of the co-induction
construction for modules, goes as follows:

The underlying set of X is defined by X = Hom(I', X’), where I'"" acts
on I' by left translation and Homp( , ) denotes maps in the category of
left I""-sets. Since the right action of I' on itself commutes with the left action
of I'" on T, there is an induced (left) action of I on X, given by (7, f)(y) =
S(yvo) for fe X, y,p0€T.

If we choose a set of coset representatives y,, ..., y, for I"\I', then we
obtain a bijection

given by evaluationat y,, ..., y,. Since the product on the right has a natural
CW-structure (with the cells being the products of the cells of the factors), we
can use ¢ to give X a topology and a CW-structure. [Note: The product is to
be given the CW-topology, i.e., the “weak topology ™ with respect to the cells;
this agrees with the usual product topology if X' is countable or locally
compact, cf. Lundell-Weingram [1969], §11.5. In any case, the two topologies
agree on all compact subsets.]

This structure is independent of the choice of coset representatives; for if
we replace 95, ..., ¥, BY 71715 - - -5 Vu¥a (7 € T7), then the new ¢ is obtained
from the old one by composition with the CW-isomorphism

i

i
i
>
l
=
>

The structure is also independent of the ordering of the cosets.
It now follows that the I'-action on X preserves the CW-structure.
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Indeed, for any y e I" we have a commutative diagram

X——x

\ !

i=l

where ¢ is defined via coset representatives (3;), <;<, and ¢’ is defined via
(7:7)1 <i<a- Thus X is a well-defined I'-complex, which is clearly contractible
and finite dimensional.

To complete the proof that cd I' < oo, we will show that I acts freely on
X. There is a canonical map X — X', given by evaluation at 1 € I'. This map
is I"-equivariant and takes cells to cells. Since I acts freely on X', it follows
that I acts freely on X. For any cell ¢ of X, then, we have I', n " = {1},
hence T, is finite. But I is torsion-free, so these finite isotropy groups I, are
trivial.

Remark. The interested reader can translate the proof above into a purely
algebraic proof. One works directly with projective resolutions, and one does
the “co-induction” construction using tensor products of chain complexes
rather than cartesian products of CW-complexes. More details can be found
in Swan [1969], Theorem 9.2.

EXERCISE

Note that the proof of 3.1 is valid even if I" has torsion, except for the last sentence of the
proof. Consequently, if I" is a group which contains a subgroup I'" of finite index such
that cd I'" < oo, then we can construct a contractible, finite dimensional I'-complex X,
with finite isotropy groups I',. Show that this complex has the following additional
property: For every finite subgroup H < T, the fixed-point set X¥ is contractible.
[Hint: Show that X, as an H-complex, is isomorphic to the product of (I': I'") copies of
the complex X', with H acting by permuting the factors according to the (free) right
action of H on I'"\ I'. One can see this either by using the double coset formula for co-
induction or simply by direct inspection, using coset representatives of the form
{yih}1 <i<a.nenr» where d = (T': I")/|H|. Hence X" is homeomorphic to the product of
d copies of X".]

4 Resolutions of Finite Type

Our next goal is to study a different sort of finiteness condition, where we
require that there be a projective resolution P with each P; finitely generated.
In this section we collect some general facts about such resolutions over an
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arbitrary ring R. Then in the next two sections we specialize to resolutions of
Z over ZT.

We begin by reviewing the theory of finitely presented modules:

(4.1) Proposition. The following conditions on an R-module M are equivalent :

(i) There is an exact sequence R™ - R" — M — 0 for some integers m, n.
(ii) There is an exact sequence P, - P, — M — 0 for some finitely generated
projectives Py, P,.
(iii) M is finitely generated, and for every surjection s: P -» M with P finitely
generated and projective, Ker ¢ is finitely generated.

The proof is based on “Schanuel’s lemma”:
(42) Lemma. Let 0> K—+P—-M —>0and 0—» K' > P - M — 0 be exact
sequences with P and P’ projective. Then P ® K’' ~ P' ® K.
PROOF. Let Q be the pullback of the given maps
Tl
P——M,

ie., Q is the submodule of P x P’ consisting of those pairs (x, x') such that
n(x) = n'(x’). One then verifies easily that there is a commutative diagram

0
with exact rows and columns. Since P and P’ are projective, the two exact
sequences involving Q must split, yieldingP@ K' *Q =~ P @ K. O

ProoF OF 4.1. Clearly (iii) = (i) = (ii). To prove (ii)= (iii), note first that M
is certainly finitely generated if (ii) holds, since P, is finitely generated. Now
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apply Schanuel to get P @ ker{P, = M} = P, @ ker &. The lefthand side
being finitely generated by hypothesis, it follows that P, @ ker ¢ is finitely
generated, hence so is ker ¢. O

M is said to be finitely presented if the conditions of 4.1 hold. An exact
sequence as in (i) is said to give a finite presentation of M with n generators
and m relations. Note that the implication (i) = (iii), applied when P is free,
reduces to the following well-known fact: If M admits some finite presenta-
tion, then every finite set x,, .. ., x; of generators of M has the property that
the relations among them (i.e., the k-tuples (r4, . .., r;) such that Z r;x; =0)
form a finitely generated submodule of R*.

It is natural to generalize finite presentation as follows: A resolution or
partial resolution (P;) is said to be of finite type if each P; is finitely generated.
A module M is said to be of type FP, (n = 0) if there is a partial projective
resolution P, — --- —» P, = M — 0 of finite type. Thus the FP, condition is
simply finite generation, FP, is finite presentation, and the conditions
FP,, FP,, ... are successive strengthenings of finite presentation.

Generalizing 4.1, we have:

(4.3) Proposition. For any module M and integer n > 0 the following con-
ditions are equivalent: .

(i) There is a partial resolution F,—---— Fy— M —0 with each F; free
of finite rank.
(ii) M is of type FP,.
(iii) M is finitely generated, and for every partial projective resolution
P,—---— Py — M >0 of finite type with k < n, ker{P, = P,_,} is
finitely generated.

For the proof we will need the following generalization of Schanuel’s
lemma:

(4.4) Lemma. Let
0O->P,»P,_,—>-->P,>M->0
and
0O->P,»P,_,—>-->P,->M-0
be exact sequences with P; and P; projective for i < n — 1. Then
P,®P,®P,®P,®D -~ P ®@P,®OP,OP;D .

Consequently, if P, and P; are finitely generated fori < n — 1,then P,is finitely
generated if and only if P, is finitely generated.
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ProoF. We argue by induction on n. Let K (resp. K') be the kernel of P,_, —
P,_, (resp. P,_, — P,_,). By the induction hypothesis we have

KeQ*Ke/Q,
where ‘
Q=P, ,®P,_;®--
and
Q=P 0P, @ .
On the other hand, we have exact sequences
0-P,»P,_,®0 -K ®Q —0
0—-P,-P,_, @Q’—>K'E%Q'—'0-
Since P,_, ® Q and P,_, @ Q' are projective, 4.2 implies that

P,®P,_,®Q =P, ®P,-,®Q,
which is the desired isomorphism. 0O

PROOF OF 4.3. (i) = (ii) trivially. (i1) = (iii): If M is of type FP,, then for any
k < n there is a partial projective resolution Py —--- —» Po— M — 0 of
finite type with ker{P, — P,_,} finitely generated. It follows from 4.4
that any other partial projective resolution Py —---—> P> M — 0 of
finite type (and the same length k) has ker{P, — P;_,} finitely generated,
so (iii) holds. (iii) = (i): If (iii) holds then we can construct the desired
F,—---— Fy— M - 0 step by step. 0O

Remarks

1. One can remember the isomorphism of 4.4 by formally “transposing”
terms to obtain an “Euler characteristic” equality

Po—Pl+P2—"'=P’0"‘P’1+P’2—"'.

2. If we regard 4.4 as a comparison theorem for resolutions, it is natural
to ask if it can be deduced from the results of §1.7. This can in fact be done;
here is an outline: By 1.7.4 we can choose an augmentation-preserving chain
map P’ — P;let C be its mapping cone. Then C is acyclic and hence breaks up
into short exact sequences. Using the fact that C is projective except in the
top two dimensions, one can prove inductively that these short exact
sequences split (cf. exercise 3a of §1.8). ThusC, * Co® Z,,C, = Z, ® Z,,
Cy = Z,® Z,, etc,, whence

Co®C, - xC,DC3D---.
Recalling that C; = P; @ P;_,. we obtain the desired isomorphism.
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3. It follows from the isomorphism of 4.4 that P,, is projective if and only if
P, is projective. Thus 4.4 yields an alternative proof of the implication
(i) = (iv) of 2.1.

We will be primarily interested in the case where the conditions of 4.3
hold for all integers n > 0. This situation is characterized as follows:

(4.5) Proposition. The following conditions on a module M are equivalent :

(i) M admits a free resolution of finite type.
(ii) M admits a projective resolution of finite type.
(iii) M is of type FP, for all integers n > 0.

PRrOOF. (i) = (ii) = (iii) trivially. If (iii) holds then we can use 4.3(iii) to
construct a free resolution of finite type step by step, so (iii) = (i). O

We say that M is of type FP,, if these conditions hold.

We close this section by mentioning some useful formal properties which
the homology and cohomology functors Tor%(M, —) and Exti(M, —)
satisfy when M is of type FP,. (The reader should keep in mind, during this
discussion, the main case of interest: R = ZI', M = Z. In this case the Tor
and Ext functors are simply H (I, —) and H*(T', —).)

Note first that the homology functors Torf(M, —) always commute
with direct limits, in the following sense: Let {N};.; be a direct system of R-
modules, where I is a directed set,and let N = lim;., N;. Thus N is the univer-
sal target of a compatible family of maps N; — N (i € I). These maps induce a
compatible family of abelian group homomorphisms TorX(M, N;) —
Torf(M, N), from which we obtain a map

(p:m Tor (M, N;) - Tor (M, N);
iel
the assertion, then, is that ¢ is an isomorphism. This follows directly from the

definition of Tor{(M, —) as H (P ®x —), where P is a projective resolution
of M, together with the following two facts:

(a) P ®x — commutes with direct limits (cf. Spanier [1966], 5.1.9);
(b) H,(—) commutes with direct limits (cf. Spanier [1966], 4.1.7).

Functors of the form J#om (P, —), however, do not in general commute
with direct limits, so we cannot expect Ext§(M, —) to commute with direct
limits. But we can prove that this does hold under suitable FP, hypotheses.
For simplicity, we will confine ourselves to the case n = oo.

(4.6) Proposition. If M is of type FP, then Ext}(M, —) commutes with direct
limits.

This follows immediately from:
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(4.7) Lemma. If P isa finitely generated projective R-module then Homg(P, —)
commutes with direct limits.

PROOF. The duality isomorphism 1.8.3b shows that the functor Homg(P, —)
is equivalent to the functor P* ® x —, and we know that the latter commutes
with direct limits. O

(See Exercise 4 below for a generalization of 4.7 and an indication of an
alternative proof.)

Similarly, one can show that Tor®(M, —) commutes with direct products
if M is of type F P (whereas Ext¥(M, —) commutes with products for any M).

Surprisingly, these formal properties of Ext%(M, —) and Torf(M, —)
characterize the FP_ property. In fact, one can prove:

(4.8) Theorem. The following conditions are equivalent:

(i) M is of type FP,.
(i) Extk(M, —) commutes with direct limits.
(iii) Tor®(M, —) commutes with direct products.

We omit the proof, since we will not be making serious use of this result.
The equivalence of (i) and (iii) was first proved by Bieri and Eckmann [1974].
See Brown [1975a] for the equivalence of (i) and (ii), as well as for a general-
ization of 4.8. See also Strebel [1976] for further results of this type.

EXERCISES

1. Let I" be a group. Show that Z is finitely presented as a ZI'-module if and only if I’
is a finitely generated group. [Hint: Use Exercise 1d of §1.2.]

2. Let M’ and M” be modules and let M = M’ @ M". Show that M is of type FP, if and
only if M’ and M” are of type FP,. [Hint: Suppose P’ and P" are finite type partial
resolutions of M’ and M" of length k, and let P = P’ @ P”. Note that P has finitely
generated kernel if and only if P’ and P” do.]

3. Let C and C’ be non-negative chain complexes of projective modules. If C and C'
are homotopy equivalent, show that

CoDCIDC, D xCoDC,DC,D---.
[Hint: Imitate the alternative proof of 4.4 outlined in Remark 2 following 4.4.]
4. If M is a finitely presented R-module, show that Homg(M, —) commutes with direct
limits. [Hint: This can be deduced from 4.7. Alternatively, give a direct proof based

on the fact that a map from M to any other module can be specified by giving a finite
set of elements of the target module which satisfy a certain finite set of relations.]
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5 Groups of Type FP,

We now specialize the theory of §4 to the case R = ZI', M = Z. We will say
that I is of type FP, (0 <n < ) if Z is of type FP, as a ZI'-module. Thus
every group is of type F P, and it is easy to see that I is of type FP, if and
only if it is finitely generated (cf. Exercise 1 of §4). The FP, condition is less
well-understood, however. One knows that finitely presented groups I' are of
type FP,, for if Y is a finite 2-complex with =, Y =T then the cellular chain
complex of the universal cover of Y is a partial free resolution of Z over ZI"
of length 2 and of finite type. [See also exercise 4c of §IV.2 for an algebraic
proof.] But it is not known whether the converse is true. See Exercise 3 below
for a reformulation of the problem.?

We will not pause now to discuss examples, since there will be plenty of
examples of groups of type FP, in §§6, 9, and 11. The reader who wants to
see examples for n < oo of groups of type FP, but not of type FP,,, should
consult Bieri [1976], §2.6, and Stuhler [1980]; see also Exercise 2 below for
the case n = 1 and Stallings [1963] for the case n = 2.

The FP, conditions behave nicely with respect to subgroups of finite
index:

(5.1) Proposition. Let I'' = T be a subgroup of finite index. Then I is of type
FP,(0 <n < )ifand only if T is of type FP,.

PROOF. Any (partial) projective resolution of Z over ZI of finite type can also
be regarded as a (partial) projective resolution of Z over ZI', and as such it is
still of finite type since (I': I') < co. This proves the “only if” part. Con-
versely, suppose I" is of type FP,. We will show that the ZI'-module Z
satisfies condition 4.3(iii). Let P be a partial projective resolution of Z over
ZT of finite type and of length k < n. Regarding P as a partial resolution of
Z over ZI"', we can apply 4.3(iii) to conclude that ker{P, — P,_,} is finitely
generated over ZI". But then ker{P, — P,_,} is certainly finitely generated
over ZT', so 4.3(iii) holds for Z over ZT.

Takingn = 1, for example, we recover the well-known (but not completely
obvious) fact that I' is finitely generated if and only if I" is finitely generated.
Finally, we record for future reference an important consequence of 4.6:

(5.2) Proposition. Let " be a group of type FP, and let n be an integer such
that HXT, ZI') = 0. Then H(T, F) = 0 for all free ZI"-modules F.

Prootr. If F is of finite rank then the result follows from the additivity
of HYI', —). In the general case, choose a basis (¢;),c; for F and note
that F = lim F,, where J ranges over the finite subsets of I and F, is the

3 For solvable I', substantial progress on this question has been made by Bieri and Strebel. For
references, see the appendix to the forthcoming second edition of Bieri [1976].
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submodule of F generated by the e; for i € J. Then F, is free of finite rank;
using 4.6 we conclude that HY(T, F) = lim HYT, F,) = 0. O

EXERCISES

1. Let I' be a group of type FP, and let M be a '-module which is finitely generated as
an abelian group. Show that H(I', M) and H(I', M) are finitely generated abelian
groups fori < n.

2. Let I be an amalgamation I'; », I', where I'; and I, are free of finite rank and A is
free of infinite rank. Show that I is finitely generated but not of type FP, . In particular,
I is not finitely presented. [Hint: Use the Mayer-Vietoris sequence to show that H,I"
is not finitely generated.]

3. (@) If " is of type FP, and N is a perfect normal subgroup (i.e., a normal subgroup
such that N = [N, NJ), prove that I'/N is of type FP,. [Hint: Apply the functor
(' )w to a partial resolution of Z over ZI" of length 2 and finite type; the resulting
complex will still be acyclic in dimension one because its one-dimensional homology
isHN =0.]

(b) Let ' = F/R where F is a finitely generated free group. Prove that the following
conditions are equivalent:

(1) Tis of type FP,.
(ii) The rglation modPle R, is a finitely generated '-module.
(ii)) I' ~ I'/N, where I is finitely presented and N is a perfect normal subgroup.

[Hint: For (i) = (ii) use 11.5.4.]

Remark. In view of the equivalence of (i) and (iii), we can reformulate as follows the
question as to whether every group of type FP, is finitely presented: Is a perfect
normal subgroup of a finitely presented group necessarily finitely generated as a
normal subgroup?

4. For any group I', note that the cohomology groups H*(I', ZI') have a canonical
structure of right I'-module. Indeed, the coefficient module ZI, which is thought of
as a left module for the purpose of defining H*(I', ZI'), also admits a right I"-action
(by right translation) which commutes with the left action; this right action induces a
right action of I' on the cohomology groups H*([', ZI'). In this exercise you will
prove two “universal coefficient” formulas involving these right '-modules.

(a) If T is a group of type FP_, prove that
H*(, F) = H*(I, ZI') @ar F

for any flat ZI'-module F.[Hint: Use 1.8.3b to rewrite #»:{ P, F) as a tensor product,
where P is a projective resolution of finite type.]

(b) If T is of type FP_ and Q is an injective ZI'-module, prove that
H (T, Q) * Hom{(H*(T, ZTI'), Q).

[Here we should take Q to be a right I'-module so that the Hom makes sense.]
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S. Let l“ be a free product I', + I',, where I', and I, are infinite and of.type FP_. For
any integer i show that there is a map of (right) -modules

Hi(T, ZT) - Ind} H(T,, ZT")) ® Indf, Hi(T,, ZT',)

which is an isomorphism if i > 1 and an epimorphism if i = 1 with kernel a free
ZT-module of rank 1. [Hint: Use the Mayer-Vietoris sequence, and apply exercise
4a to compute H*T;,ZIN),j =1,2]

6 Groups of Type FP and FL

We now combine the two types of finiteness conditions which we have
considered in this chapter. A resolution is said to be finite if it is both of finite
type and of finite length. A group T is said to be of type FP if Z admits a
finite projective resolution over ZT.

(6.1) Proposition. I is of type FP if and only if (i) cd T < oo and (ii) T is of type
FP_.

PrROOF. The “only if ” part is obvious. Conversely, ifcd I' < oo and I"is of type
FP,, then we can construct a finite resolution as follows: Take a partial
resolution P,_; —--- - Py — Z — 0 of finite type, where n = cdT, and
let P, = ker{P,_;, - P,_,}. Then P, is projective (2.1(iv)) and finitely
generated (4.3(iii)), so we have a finite projective resolution

0-P,»-- 5P, >Z-0. O

Note that it would have been enough in the proof above to assume that I'
was of type FP, instead of FP_, where n = cd I'. It follows, for instance,
that a finitely presented group I' with cd I' = 2 is of type FP. Note also
that the partial resolution (P;);.,-, above could have been taken free.
Hence if " is of type FP then there is a finite projective resolution

6.2) O0-P->F,_ - o5F,»Z-0

with each F; free. (See also exercise 2 below.) But there is no reason to
expect to be able to take P free. Thus, for the first time in this book there
really seems to be a difference between what can be done with projective
resolutions and what can be done using only free resolutions.

We are therefore led to introduce a still stronger finiteness condition:
I' is of type FL if Z admits a finite free resolution over ZI'. [Warning: It is
a common mistake to assume that “FL” stands for “finite length,” and
thereby to confuse the FL property with the much weaker property of having
finite cohomological dimension. In fact, the “L” in “ FL” stands for “libre,”
not for “length.” One also finds “FF” (‘“finite free resolution”) in the
literature instead of “FL.”]
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It is obvious how to use topology to obtain examples of groups of type
FL:

(6.3) Proposition. If there exists a K(I', 1) which is a finite complex, then
I'is of type FL.

(We will see in §7 that the converse of this is also true, at least if we assume
that I is finitely presented.)

Looking at the examples in §2, we immediately deduce the following
examples of groups of type FL: free groups of finite rank; surface groups;
finitely generated one-relator groups whose relator is not a power; and free
abelian groups of finite rank. With a little more work (cf. exercise 8 below),
one can also show that torsion-free, finitely generated, nilpotent groups are
of type FL. We will reprove this result and give many additional examples of
groups of type FL in §9.

The FP property also admits a topological interpretation, for which we
need the following notion: A space Y is finitely dominated if there is a finite
complex K such that Y is a retract of K in the homotopy category (i.e., we
require mapsi: Y - Kand r: K - Y with ri ~ idy).

(6.4) Proposition. If there exists a finitely dominated K(T', 1), then I is of
type FP.

(Again the converse is also true, and will be proved in §7, provided I is
finitely presented.)

We will not be making any use of this result, so we confine ourselves to a
brief sketch of the proof:

Let Y be a K(I', 1)-complex dominated by a finite complex K. One can
choose K so that the maps Y s K induce n,-isomorphisms. Letting ¥ and
K be the universal covers, one deduces that the cellular chain complex
C(Y) is a retract of C(K) in the homotopy category of chain complexes over
ZT. Since C(¥) is a free resolution of Z and C(K) is a finite free complex, it
follows that H¥*(I', —) commutes with direct limits and that H(I, —) = 0
for i > dim K. In view of 4.8, this implies that I is of type FP. O

Remark. Propositions 6.3 and 6.4 and their converses are special cases of the
following result due to Wall [1965, 1966]: Let Y be a connected C W-complex
whose fundamental group = is finitely presented, and let C be the chain
complex of the universal cover of Y, regarded as a complex of n-modules.
Then (a) Y is homotopy equivalent to a finite CW-complex if and only if C
is homotopy equivalent to a finite free chain complex; and (b) Y is finitely
dominated if and only if C is homotopy equivalent to a finite projective chain
complex.

Having carefully explained the difference between the FP condition and
the FL condition, we are now forced to admit that there are no known
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examples of groups of type FP which are not of type FL. [From the topo-
logical point of view, we have the following situation: Although there are
plenty of known examples of finitely dominated spaces which do not have
the homotopy type of a finite complex, none of these known examples are
K(T, 1)s.]

In order to better appreciate the problem, let’s see what the obstruction
is to proving that a group of type FP is of type FL. Suppose I' is of type FP,
and choose a finite projective resolution as in 6.2 which is free except in the
top dimension. The projective P which occurs in the top dimension might
have the property that P @ F is free for some free module F of finite rank.
In this case P is said to be stably free, and we can modify 6.2 exactly as in
the proof of 2.6 to obtain a finite free resolution. Conversely, if there exists
a finite free resolution, then we can compare it to 6.2 via 4.4 to deduce that
P is stably free. [Note: The two resolutions might not have the same length,
but 4.4 is still applicable; for we can extend the shorter resolution by zeroes.]
Thus we have:

(6.5) Proposition. Let T be a group of type FP and let 0> P —>F,_; —---
— Fy = Z - 0 be a finite projective resolution of Z over ZI" with each F;
free. Then T is of type FL if and only if P is stably free.

Thus the question as to whether there exist groups of type FP which are
not of type FL has led to a more fundamental question: Do there exist
finitely generated projectives which are not stably free? Over a general ring
the answer is certainly “yes,” and there are even known examples over
integral group rings ZI', the simplest example being with I' = Z,; (cf.
Milnor [1971], §3). The surprising fact, however, is that there are no known
examples with I torsion-free, and a group of type FP is necessarily torsion-
free by 2.5.

We remark, finally, that there do exist resolutions as in 6.2 in which P is
not free. The first such example was given by Dunwoody [1972], with T"
equal to the trefoil group. In all of the known examples, however, the group I
is known to be of type FL (and hence P is stably free).

In spite of this lack of examples, we will see later (cf. IX.6.4 and Remark 1
following its proof) that there are concrete results whose proofs require that
we consider the FP property, and not just the FL property. One reason for
this is that we can prove the following result about groups of type FP, the
analogue of which for groups of type FL is not known:

(6.6) Proposition. Let T be a torsion-free group and T' a subgroup of finite
index. Then T is of type FP if and only if T" is of type FP.

Proor. This follows from 3.1 and 5.1. O
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In particular, if I" is a torsion-free group which contains a subgroup of
finite index which is of type FL, then we know from 6.6 that I is of type FP,
even though we don’t know that I is of type FL.

We close this section by discussing some special features of the top-
dimensional cohomology of a group of type FP. First we note the following
improvement of 2.3:

(6.7) Proposition. If T is of type FP then cd I = max{n: HY(T, ZI') # 0}.
PrOOF. This follows from 2.3 and 5.2. O

Recall that the cohomology groups HY(I', ZI') admit a canonical right
I'-module structure (cf. exercise 4 of §5). For any (left) I'-module M, we can
therefore form the tensor product HY(T", ZI') ® ;r M, and there is a canonical
map

@: H¥T, ZT') @zr M - H*(T', M),

defined as follows on the cochain level: Let P be a projective resolution of
Z over ZT'; given a cochain u € ¥ (P, ZI') and an element me M, we
send u @ m to the cochain x — u(x)m (x € P) in #om (P, M).

We can now prove the following “universal coefficient theorem” for the
top-dimensional cohomology of a group of type FP:

(6.8) Proposition. If I' is of type FP and n = cd T, then
@: H(I', ZT') ® ;r M - H'(T', M)
is an isomor phism for all I'-modules M.

PROOF. We will give two proofs, both of which are instructive.

Proof 1: Regard ¢ as a natural transformation between functors of M.
Since both functors are right exact, it suffices to prove that ¢ is an iso-
morphism when M is free. [The general case is then obtained by considering
an exact sequence F' - F - M — 0 with F and F’ free.] Since both functors
are additive and commute with direct limits, it suffices to consider the case
where M is free of rank 1, i.e.,, we may assume M = ZI'. But in this case
¢: H(T', ZT') @ ZT" - H(T, ZT) is simply the well-known isomorphism
u ® r—>ur (with inverse u— u ® 1).

Proof 2: Let P be a finite projective resolution of Z over ZI" of length n
and let P be the dual complex H#osm (P, ZT') of right I'-modules. Then
H*(T, ZT') ~ H*(P). In particular, we have an exact sequence

P! P> HYI,ZI) -0

for the top-dimensional cohomology module. Tensoring with M and
applying the duality isomorphism 1.8.3b, we obtain the diagram
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Pn_l®lrM——’P"®lrM_—’Hn(r,Zr)®lrM_—’0

Hom(P,_,,M) —— Hom(P,, M) —— HT, M) ——— 0.

which commutes and has exact rows. It follows that ¢ is an isomorphism.

O

The isomorphism of 6.8 can be written in the following suggestive way:
Let D be the I'-module HY(T', ZT), so that HT', ZI') @ ;r M = D ®@;r M
=(D® M)r = Hy(I', D ® M), where D ® M = D ®, M with the diagonal
I"-action. [Note: Since D is a right module and M is a left module, the diagonal
action is defined by y-(d®m)=dy ' ® ym for yeTl, deD, meM.]
Consequently, 6.8 can be viewed as an isomorphism

(6.9) H"T, M) =~ Hy(T, D ® M).

We will return to this point of view in §10.

EXERCISES

1. IfTis of type FL and cd I' = n, show that Z admits a finite free resolution over ZI"
of length n.

2. Let I be of type FP and let m be an arbitrary integer >0. Prove that Z admits a
finite projective resolution P over ZI" such that P; is free for i # m. Moreover, P
can be taken to have length equal to max{m, cd I'}. [Hint: Given a resolution, you
can modify it by taking the direct sum with a complex of the form0 — Q % Q0 — 0.]

3. If T is of type FP and n = cd I, show that H*I, ZI') is a finitely generated I'-
module.

*4. Let I' be of type FP, let n = cd I, and suppose H*(I', ZI') is finitely generated as an
abelian group. If I" < T is a subgroup of infinite index, show that cd I'" < n. [Hint:
For any I"-module M’, HT", M’) = H*(T, Coind}. M"). Now apply 6.9 and exercise
4b of §I11.5.] Give an example to show that the hypothesis on H(I", ZI') cannot be
dropped.

5. In this exercise it will be convenient to think of coefficient modules for homology as
being right I'-modules and coefficient modules for cohomology as left modules.
Recall from §V.3 that there is an evaluation pairing

H{(T, M) ® H'([', N) » M ® N.
In particular, taking N = ZI', we obtain a map

*) H{(T, M) ® H(T, ZT') » M @y 2T = M.
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(a) Show that this map is a homomorphism of right I'-modules, where I" acts on the
domain via its action on H(I", ZI"). Deduce a map

Y: H(T', M) - Hom(H'(T, ZI'), M).

[Hint: Use the naturality of the evaluation pairing with respect to module homo-
morphisms. Alternatively, simply check definitions on the chain level.]

(b) If " is of type FP and n = cd I', show that y is an isomorphism in dimension n.
Thus

(6.10) H,(T, M) = Hom(D, M) = H(T', Hom(D, M)),

where D = H(I', ZI') as in 6.9. [Hint: Consider the natural map M ®g-P —
Hom{(P, M), where P = Hom (P, ZT").]

(c) Under the hypotheses of (b). let z € H,(I', D) correspond under 6.10 to id, €
Hom(D, D). We call z the fundamental class of T'. By definition, it is characterized by
the equation

{(z,u) =u

for every u € H'(I', ZI') = D, where { , ) denotes the evaluation pairing given
by (*) above. Show for any module M that
¥~ ': Homg(D, M) > H (T, M)

is given by Y~ '(f) = f,z for f e Hom(D, M), where f, = H(T. /): H(I", D) -
H (T, M). [Hint: This is true by the definition of zif M = D andf = id: the general
case follows from the naturality of y ="', cf. exercise 3a of §1.7.] Deduce that the
isomorphism

H(I', Hom(D, M)) > HT, M)

of 6.10 is given by cap product with z; more precisely, it is the composite
H°(I", Hom(D, M)) 5 H (. Hom(D, M) ® D) — H (T, M),

where the second map is induced by the obvious coefficient homomorphism
Hom(D, M) ® D — M. [Hint: Use the description of the cap product H* ® H, - H,
given in exercise 1 of §V.3.]

(d) Show that the isomorphism
@ “:H[,M)35 D @;r M

of 6.8 is given by evaluation on the fundamental class z. [Hint: This is true by the
definition of z if M = ZI'; the general case follows by general nonsense, as in the
first proof of 6.8.] Deduce that the isomorphism

HYI,M)> Hy(T, D ®@ M)
of 6.9 is given by cap product with z. [Hint: Use V.3.10.]

6. (a) Let I be of type FP and let D and n be as above. Show that H,(I', D) # 0 and
deduce that cd I' = hd I', where hd I, the homological dimension of I' is defined by

hd I' = sup{n: H(I', M) # O for some '-module M.}
*(b) Give an example of a group I (necessarily not of type FP)suchthathd I’ < cd T
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*7. If T is of type FP and cd I' = n, show that there are spectral sequences
E2, = Torj(H""%(T, ZT'), M) = H"~**9(T, M)
and
E% = Ext(H"" YT, ZI'), M) = H,_ ;..o (T, M).

By considering the corner p = q = 0, recover the isomorphisms H, (', M) =
Hom (D, M) and H"(I', M) = D ®,r M. [Hint: Use the universal coefficient
spectral sequences, cf. Godement [1958], 1.5.4.1 and 1.5.5.1.]

*8. Prove that the FP and FL properties behave well with respect to extensions,
amalgamations, etc. More precisely:

(@) Suppose 1 = I" - ' - I'" — 1 is exact. If I and I'” are of type FP (resp. FL),
thensois I'.

(b) Let X be an acyclic '-<complex such that X has only finitely many cells mod I.

If each isotropy group I, is of type FP (resp. FL), then so is I'. In particular, an

amalgamation ", =, I, is of type FP (or FL)ifI",,I";, and A are of type FP (or FL).
[Hint: See Serre [1971] or Bieri [1976].]

7 Topological Interpretation

We have seen (cf. 2.2) that the existence of a finite dimensional K(I, 1)
implies that I" has finite cohomological dimension. Similarly, 6.3 and 6.4
show that the existence of a finite (resp. finitely dominated) K(I, 1) implies
that I is of type FL (resp. FP). The purpose of this section is to consider
the converse implications. We also want to give a topological interpretation
of the I'-modules H*(I', ZI') which arose in §6. We will require a tiny bit of
homotopy theory, namely, the Hurewicz theorem (which we quoted in
§ILS).

The following theorem is due to Eilenberg-Ganea [1957] and Wall [1965,
1966]:

(7.1) Theorem. Let I be an arbitrary group and let n = max{cd I', 3}. Then
there exists an n-dimensional K(T', 1)-complex Y. If T is finitely presented
and of type FL (resp. FP) then Y can be taken to be finite (resp. finitely
dominated).

(We allow here the possibility that cd I' = oo, in which case the theorem

simply asserts the existence of a K(I', 1)-complex.)
As an immediate consequence of 7.1 we have:

(7.2) Corollary (Eilenberg-Ganea). [fcd I" > 3 thencd I' = geom dim I.
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Of course we also have cd I' = geom dim I' if cd I = O (since I is then
trivial) or if cd " = 1 (by the Stallings—Swan theorem which we quoted in
Example 2 of §2). In view of Theorem 7.1, then, we always have cd I' =
geom dim " except possibly if cd ' = 2 and geomdim I' = 3. It is not
known whether this possibility can actually occur.

PrOOF OF 7.1. We will construct the skeleta Y* of the desired Y inductively. To
start the induction, let Y2 be the 2-complex associated to some presentation of
I" (cf. §ILS, Exercise 2); thus n, Y2~ I If " is finitely presented, Y2 can
be taken to be finite. Note that its universal cover X>has H; = 0for0 < i < 2.
Now assume inductively that Y*~! has been constructed and that its uni-
versal cover X*~! has H; = 0for 0 <i < k— 1. If T is finitely presented
and of type FP, assume further that Y*~! is finite. Choose a set of generators
(z,) for the I'-module H,_,X*~'. By the Hurewicz theorem we can find for
each « a map f,: S*”! - X*~! which represents z,, in the sense that
H,_ (f):H._,S*' > H,_,X*! sends a generator of H,_,S*"! to z,.
We now set
Ye=Ytu e,

where the k-cell e is attached to Y*~! via the composite
skt &, Xk o, Ykt
Letting X* be the universal cover of Y*, we must verify that H;X* = 0
for 0 < i < k. Note first that we can view X*~! as the (k — 1)-skeleton of
X*; indeed, X* is obtained from X*~! by attaching k-cells via the maps f,

and their transforms under the action of I' on X*~!. It is clear, then, that
H;X*= H;X*!' =0for0 < i < k — 1 and that we have an exact sequence

H(X, X3 H,_ X*'>H_,X*>0.

It will therefore suffice to show that @ is surjective.

Recall that H,(X* X*~!') (which is simply C,(X*), the k-th cellular chain
group) is a free ZI'-module with one basis element for each k-cell of Y*,
i.e,, for each index a. Explicitly, there is a basis (v,) obtained as follows: if
Xa: (E*, S*71) - (X* X*~') is a characteristic map for the cell attached via
fo» then v, € H(X*, X*~ 1) is defined to be the image under

Hy(x.): H(E* §*7 ") - H(X* X*° 1)
of a generator of H,(E*, S*~') = Z. In view of the diagram
H(E, §*" ') ——H,_,§8*"!
Hy(zs) He ()
Hk(Xk, Xk—l)_ﬂ_'Hk_’Xk— l’

it follows that dv, = z, (assuming that the generators of H,(E*, S*~') and
H,_,S*"! have been chosen compatibly), so that g is indeed surjective.



7 Topological Interpretation 207

(Note for future reference that if H,_,X*~! happens to be a free ZI'-
module with basis (z,), thend: H(X*, X*~') - H,_,X*" 'isanisomorphism.
It then follows from the long exact homology sequence of the pair (X*, X*~ 1)
that H; X* = 0 for all i > 0, so that Y*is a K(T", 1).)

To complete the inductive step, we must show that Y* can be taken to be
finite if I is finitely presented and of type FP, i.e., we must show in this case
that H,_,X* ! is a finitely generated I'-module. To see this, we need only
note that the cellular chain complex

Cioy =2 Co—>2Z-0

of X*~! is a partial free resolution of finite type, since Y*~! was assumed to
be finite. Therefore H,_, = ker{C,_, = C,_,} is finitely generated by 4.3
since I is of type FP.

If n = 00, we now continue this inductive process indefinitely, and
Y = (J, Y* is the desired K(T', 1). If n < oo, consider X"~ *. (This makes
sense because n — 1 > 2.) Its cellular chain complex

Cicy o> Co—>Z-0

is a partial free resolution of length n — 1. Hence 2.1 implies that H, _, X"~ !
is a projective ZI'-module. By the Eilenberg trick (2.7) there is a free module
F such that H,_, X" '@ F is free. We now replace Y""!' by Y" ! =
Y"~! v S" ! v §"! v ... where there is one copy of "~ ! for each basis
element of F. The effect of this on C(X"~ ') is simply to add F to C,_,, with
0|F = 0. The universal cover X"~ ! now has H,_, free. We may therefore
attach n-cells " to Y"~! corresponding to basis elements z, of H,_ X" !;
as remarked above, the resulting Y" = Y"~'u/( J €} will then be an n-dimen-
sional K(T, 1).

Suppose now that I' is finitely presented and of type FL. Then Y"! is
finite and the projective H,_, X"~ ! is finitely generated. We know from 6.5
that H,_, X"~ ! is stably free, so that there is a free module F of finite rank
such that H,_, X"~ ! @ F is free of finite rank. We now proceed as in the
previous paragraph, and the resulting Y" will be a finite K(T, 1).

Finally, suppose that I" is finitely presented but only of type FP instead of
FL. On the one hand, the general inductive step above gives us a finite
complex

Y'=Y"'ueu---ue
whose universal cover has H; = 0 for 0 < i < n. Hence n;Y"~ ;X" =0
for 1 <i < n. On the other hand, we know that there is a K(TI', 1) of the
form

Y'=Y"!vS§S!lv...uevu---,
so that m; ¥" = O for all i > 1. I claim that Y" dominates Y". Indeed, the
required maps
7;: __'} Y" _” Yn
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with ri ~ id are easily constructed as follows: i and r are both defined to be
the identity on the common subcomplex Y"~!, and they are extended arbi-
trarily to the cells that were attached. (These extensions exist trivially for
each S"~! that was wedged onto Y"~! in forming Y", and they exist for
each ¢" because n,_,Y"=0 and n,_,Y" = 0.) Finally, the homotopy
ri ~ id is defined to be the constant homotopy on Y"~! and is extended to
all of Y" by means of the vanishing of z,_, ¥* and =, Y". O

For future reference we mention the following refinement of 7.1:

(7.3) Addendum. The complex Y in 7.1 can be taken to be a simplicial
complex.

PrOOF. Assume inductively that Y*~! is simplicial, where the notation is
that of the proof above. By the simplicial approximation theorem, we may
then take each attaching map f,: S*~! — Y*~! to be simplicial relative to
some triangulation of S*~!. The resulting space Y* is then triangulable by
Whitehead [1949], §9, Lemma 2. a

Finally, we give a topological interpretation of the right I'-modules
H¥(I', ZT), assuming that I is finitely presented and of type FL. We will
need the following observation:

(7.4) Lemma. Let I be a group and M a left T-module. Let Hom (M, Z)
€ Hom(M, Z) consist of all abelian group homomorphisms f: M — Z such
that, for every me M, f(ym) = O for all but finitely many y € I'. Then there is a
natural isomorphism

Hom{M, ZTI') * Hom (M, Z).
Moreover, this is an isomorphism of right T-modules, where T acts on

Hom{(M, ZT') via its right action on ZT" and T acts on Hom (M, Z) via its left
action on M (i.e., (fym) = f(ym) for fe Hom(M, Z),ye T, me M).

PROOF. A Z-module map F: M — ZTI has the form
F(m) = Y f(m)y,

yel
where f,: M — Z and, for each me M, f(m) = O for almost all yeT. One
checks that such an F is a I'-module homomorphism if and only if f,(m)

= fi(y 'm) for all ye . We therefore have a map HomM, ZI) —»
Hom/(M, Z) given by F +- f,, and this map is an isomorphism with inverse

f'—'{m - er(}"‘M)V}-

The reader can easily verify that this isomorphism is natural and compatible
with the right -actions. a
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Suppose now that I is finitely presented and of type FL. By 7.1 there is a
contractible, free I'-complex X with X/I" finite. Then C(X) is a finite free
resolution of Z over ZI", and H*(T", ZT') is the cohomology of

Hom(C(X), ZT).
In view of the lemma, we have
Hom(C(X), ZT') = Hom (C(X), Z) = Hom(C(X), Z),

this isomorphism being compatible with the right I-action and the co-
boundary operators (the latter because of the naturality assertion in 7.4).

Recall that C(X) has a Z-basis with one element for each cell ¢ of X.
These basis elements are freely permuted by I' and fall into finitely many
orbits. It follows easily that H#om (C(X), Z) consists of those cochains
[ € #om(C(X), Z) such that f(c) = 0 for all but finitely many cells o. The
cohomology of this complex is called the cohomology of X with compact
supports, and is denoted H*(X; Z). We have now established:

(7.5) Proposition. If X is a contractible, free I'-complex with compact quotient
X/T, then there is an isomorphism
H%{, ZI") ~ H¥(X; 2)
of right T'-modules, where the right action of T on H¥(X ; Z) is induced by the
left action of T on X.
In view of 6.7, this yields:

(7.6) Corollary. If X is as in 1.5, then
cd I' = max{n: H(X; Z) # 0}.
EXERCISES
1. If T is a countable group, show that there exists a countable K(I', 1)-complex.

2. Give a topological interpretation of the FP, conditions (3 < n < o) assuming I is
finitely presented.

3. Suppose cd I' = 2. Show that there exists a 2-dimensional, acyclic, free I'-complex.
[Hint: Write I' = F/R, where F is free and R< F. Let Y' be a 1-complex with
n, = F, let X! be the covering space corresponding to R, and argue as in the proof
of 7.1.] Thus for any I' we can characterize cd I' topologically as the minimal
dimension of a free, acyclic '-complex.

*4. Prove the following generalization of 7.5: Let X be a contractible I'-complex with
finite isotropy groups I', and with only finitely many cells mod I'. Then H*(I', ZI') =
H*(X; Z). [Hint: First show, by a spectral sequence argument for instance, that
H*(T", ZI') can be computed from #om{C(X), ZT').]
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8 Further Topological Results

The purpose of this section is to see what finiteness properties of I can be
deduced if we are given a K(T, 1) which is a manifold. We will see many
examples of this situation in the next section. The proofs to be given in this
section require more background in topology than we have assumed else-
where in this book. The reader without this background, however, can still
read and understand the statements of all the results.

We begin by noting the analogues of 2.2 and 6.3 for K(I", 1)-manifolds:

(8.1) Proposition. Suppose Y is a d-dimensional K(I', 1)-manifold (possibly with
boundary).

(a) cd I' < d, with equality if and only if Y is closed (i.e., compact and without
boundary).
(b) If'Y is compact then I is of type FL.

ProoF. (a) If Y is smooth, as it will be in all of our examples, then there are
several ways to show that Y has the homotopy type of a CW-complex Y’ of
dimension <d (so that cd I' < d by 2.2): one can use Whitehead’s triangula-
tion theorem (cf. Munkres [1966], Ch. II), or Morse theory (cf. Milnor
[1963]), or the theory of nerves of coverings (cf. Weil [1952]). An alternative,
which works even if Y is not smooth, is to deduce from Poincaré duality
with local coefficients that HY(I', M) = H(Y; M) =0 for i > d and all
I'-modules M. This proves the first part of (a). If Y is closed, then we have
HYT,Z,)~ H(Y;Z,) = Z, # 0,50 cd I" = d. If Y is not closed, then one
can deduce from Poincaré duality with local coefficients that H4T, M) =
HYY; M) = 0 for all I-modules M, so that cd I' < d; we omit the details
since we will not make serious use of this strict inequality. [Alternatively, if
Y is assumed to be triangulated, then there is a geometric proof that
cd I' < d: one shows that Y admits a deformation retraction onto a sub-
complex of dimension <d. We will describe such a deformation retraction
explicitly in an interesting example in §9, Example 3.]

(b) Suppose Y is compact. In the smooth case, the complex Y’ in the proof
of (a) can be taken to be finite, so I' is of type FL by 6.3. In the general case
it is still true, but considerably harder to prove, that Y has the homotopy
type of a finite complex (cf. Kirby-Siebenmann [1969] or West [1977]), so
(b) is proved. [It is worth noting here that if we are content to prove that I'
is of type FP, then there is a quite elementary proof: we need only embed Y
in Euclidean space and note that it is a retract of a compact polyhedral
neighborhood (cf. Dold [1972], proof of V.4.11); thus I' is of type FP by
6.4.] O

Next we wish to reinterpret H*(I", ZI') (cf. 7.5) in case there is a compact
K(T', 1)-manifold Y. Let X be the universal cover of Y. Since X is simply-
connected, it is certainly orientable, and we denote by Q its “orientation
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module.” Thus Q is an infinite cyclic group whose two generators correspond
to the two orientations of X. The action of I' on X induces an action of I on
Q, with an element y € I acting as + 1 according as the action of y on X is
orientation-preserving or orientation-reversing. Note that I acts trivially
on Q if and only if Y is orientable. Finally, we make the convention that the
reduced homology of a space Z, denoted ﬁ,(Z), is the homology of the

augmented chain complex of Z. In particular, A _,(&) = Z. We can now
state:

(8.2) Proposition. Let Y be a compact d-dimensional K(T', 1)-manifold (possibly
with boundary). Let X be its universal cover and let Q be the corresponding
orientation module. Then there are I'-module isomorphisms

H{(T,Z0) ~ ;- (0X) ® Q
for all i. In particular, if Y is a closed manifold, then

) 0 i#d
H'(F,ZF):{Q icd

(8.3) Corollary. Under the hypotheses of 8.2, there exists at least one integer k
such that H(8X) # 0. Moreover, letting
I =1 + min{k: H,(0X) # 0},
we have
oddll=d-1
The corollary is immediate from 8.2 and 6.7. Note that I > 0 if oY # .
Thus 8.3 makes more precise the inequality cd I' < d of 8.1a in this case.

PROOF OF 8.2. Since Y is compact and has the homotopy type of a finite
complex, we have

H{(T, ZI') ~ H{(X)
by 7.5. On the other hand, there is a Poincaré-Lefschetz duality isomorphism
H!(X) = H,_ (X, 0X).

This, however, is not canonical; it depends on a choice of orientation of X.
In particular, it commutes or anti-commutes with the action of an element
y € I according as y preserves or reverses the orientation of X. Consequently,
we have a I'-module isomorphism

H(X) =~ Hy_(X,X) ® Q.
Finally, since # (X) = 0,
H,_(X,0X) ~ H,_;_(6X).

The proposition follows at once. O
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Remark. The reader who is uncomfortable with Poincaré-Lefschetz duality
for non-compact manifolds with boundary might prefer the following
alternative proof, which uses the duality theorem only for the compact
manifold Y (but with local coefficients) and which does not use the fact that
Y has the homotopy type of a finite complex:

Regarding ZI" and Q as local coefficient systems on Y, we have

H{(T, ZT) =~ H(Y;ZT) = H,_(Y,dY; ZT ® Q).

Now ZI' ® Q, with diagonal I-action, is an induced module (cf. IIL.5.7),
and homology with coefficients in an induced module is easily seen to be
ordinary homology of the universal cover. One deduces

Hy (Y,3Y;ZT ® Q) = H,_(X, 0X; Q) =~ H,_(X,0X) ® Q,

and the result now follows as above.

EXERCISE

Let I be a group such that there exists a closed K(I', 1)-manifold. If I < T is a subgroup
of infinite index, deduce from 8.1a that cd I'" < cd I'. [Hint: If p: ¥ — Y is a covering
map of infinite degree, then ¥ cannot be compact.] See Exercise 6 of §10 below for a
generalization of this result.

9 Further Examples

We saw a few examples in §2 of groups I' with cd I' < 00, and we noted in
§6 that some of those examples were of type FL. We now want to introduce
some additional families of examples, the most interesting of which are the
“arithmetic” groups. The study of such examples leads, as we will see in the
next chapter, to some remarkable connections between group cohomology
theory and number theory. Unfortunately, the assertions which we will make
about the examples in this section are considerably less elementary than the
corresponding assertions concerning our previous examples, and we will not
be able to give the proofs. The reader is therefore advised to casually read
through this section, taking on faith a number of deep results which we will
have to state without proof.

1. Let T be a classical knot group (i.e., the fundamental group of the
complement of a non-trivial knot K & §3). Then I is of type FL and
cd I' = 2. To see this, let Y = S — T, where T is an open tubular neighbor-
hood of K. Then Y is a compact 3-manifold whose boundary is a torus, and
a deep theorem of Papakyriakopoulos [1957] says that Y is a K(T, 1). It
now follows from 8.1 that I is of type FL. To calculate cd I', we use another
result from knot theory, namely, that n,(dY) injects into =, Y as a subgroup
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of infinite index. If X is the universal cover of Y, it Tollows that 4X is the
disjoint union of countably many copies of the universal cover R? of 3Y.
Thus the integer ! in 8.3 is 1, and we have cd " = 3 — 1 = 2, as claimed.
Furthermore, we can use 8.2 to compute H*(T', ZI'). In particular, we see
that H(T', ZT") = 0 for i # 2 and that H*(T, Z') is a free abelian group of
countable rank.

2. Let T be the n x n strict upper triangular group over Z. We saw in
Example 5 of §I1.4 how to construct a K(I', 1)-manifold (without boundary).
Namely, take Y = I'\G where G is the n x n strict upper triangular group
over R. It is easy to see that Y is compact (see the exercise below), so 8.1
implies that I is of type FL and that

cdI''=dim Y = n(n — 1)/2.

(In particular, if n = 3, we recover the result of Example 6 of §2.) Moreover,
8.2 shows that

n(n — 1)
2

. _n(n—1)
==,
where I' acts trivially on Z. More generally, one can prove analogous results
for an arbitrary finitely generated, torsion-free, nilpotent group I'. For
Malcev [1949] proved that I" can be embedded as a discrete subgroup with
compact quotient in a nilpotent Lie group G which is homeomorphic to

Euclidean space of dimension d = rank I'. [One can view G as a “tensor
product” R ® I, cf. Bourbaki, LIE II, pp. 82-83, and LIE III, pp. 283-284.]

0 i #

H(T,ZI) =
YA

3. Consider now the group SL,(Z), n > 2. This group has torsion, hence
cd(SL(Z)) = . We know, however, that it has torsion-free subgroups I'
of finite index, cf. Exercise 3 of §I1.4. The intersection of I" with the strict upper
triangular group U has finite index in U and hence has cd = n(n — 1)/2 by
Example 2 and Prop. 2.4a. Thus

©.1) «dl > "("2' D

We will now outline a proof, based on the reduction theory of quadratic
forms, that I is of type FL and that equality holds in 9.1. A different proof
of these results will be discussed in Example 5 below.

Let X be the space which we called X, in Example 7 of §I1.4; thus X is
the space of positive definite quadratic forms on R", modulo multiplication
by positive scalars. Recall that X is a contractible manifold (without
boundary) of dimension n(n + 1)/2 — 1, that SL,(R) (hence also I') acts on
X, and that X/T" is a K(T, 1). Recall also that if n = 2 then we can identify
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X with the upper half plane (or, equivalently, with the open unit disk), with
SL,(R) acting by linear fractional transformations.
In view of 8.1a we have
dT < n(n + 1) _

1.
2

Moreover, one can show that X/I" is non-compact, so that 8.1a implies that
strict inequality holds above. But we can do substantially better than this by
giving a direct geometric construction instead of relying on the generalities
given in 8.1. Namely, we will show that X/I" admits a deformation retraction
onto a subspace which is a CW-complex of dimension n(n — 1)/2. This will
show that cd I' < n(n — 1)/2 and hence will prove our claim that equality
holds in 9.1.

We begin by describing how this is done for n = 2, using the open unit
disk as our model for X. There is a tiling of X by “ideal hyperbolic triangles,”
which is compatible with the action of SL,(Z), and which is well-known in
the theory of modular forms (see, for instance, Lehner [1964]). It is obtained
by starting with a single ideal triangle (i.e., a hyperbolic triangle with vertices
on the unit circle) and generating further triangles by successive reflections
across the sides. This is illustrated in Fig. 9.2a, where alternate triangles of the
tiling are shaded. The vertices of the triangles of the tiling are called cusps,
and we denote by X* the space obtained from X by adjoining the cusps; it
can be viewed as a simplicial complex with a simplicial SL,(Z)-action. [Note:
We give X * the usual simplicial topology, rather than the topology it inherits
as a subset of the plane. In particular, the set X* of cusps is a discrete set in

Figure 9.2a
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Figure 9.2¢

(Figures 9.2a and 9.2c are reproduced from F. Klein and R. Fricke, Vorlesungen iiber
die Theorie der elliptischen Modulfunctionen, Band I, B. G. Teubner, Leipzig, 1890, by
permission of the publisher.)

the simplicial topology. It can be shown, however, that the simplicial topology
agrees with the usual topology on the open subspace X of X*.]

Now let T be the simplicial complement of X* in the barycentric sub-
division K of X*, i.e,, T is the largest subcomplex of K disjoint from 9.¥*.
(Explicitly, T consists of all simplices of K none of whose vertices are in
0X*.) The subcomplex T is shown in Fig. 9.2b. See also Fig. 9.2c, where the
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entire barycentric subdivision K is shown in the upper half plane model for
X. The reader is invited to trace out the subcomplex T in this picture. [Note:
The vertices of the large triangle in Fig. 9.2a correspond to the points —1,
0, o in Fig. 9.2c; the barycenter of this triangle corresponds to the point
(=1 + iy/3)/2 in Fig. 9.2¢.]

I claim that this simplicial complement T is, in a canonical way, a de-
formation retract of the geometric complement X = X* — dX*. Indeed, one
deforms X to T by pushing away from'9X* along straight lines (in the
hyperbolic or simplicial sense). More precisely, any x € X lies in a closed
2-simplex o of K with one vertex v in dX* and the opposite face 7 in T. Since
x # v, there is a well-defined ray from v to x, and the deformation moves x
along this ray away from v until it hits 7.

Note that T and the deformation are described purely in terms of the
simplicial structure on X*, so they are compatible with the action of SL,(Z)
and its subgroup I". It follows that T/I" is a deformation retract of X/I', and
it has dimension 1 = 2(2 — 1)/2, as required.

Before proceeding to the general case, we make some remarks about the
construction above. Let K be a simplicial complex. A subcomplex L is said
to be full if every simplex of K having all of its vertices in L is itself in L. For
example, the subcomplex 0X* above is not full in X*, but it is full in the
barycentric subdivision of X*. (More generally, if K is an arbitrary complex
and L an arbitrary subcomplex, then the barycentric subdivision of L is a
full subcomplex of the barycentric subdivision of K.) Let T be the simplicial
complement of L in K; this is defined, as above, to be the subcomplex con-
sisting of all simplices of K which have no vertices in L. If L is full in K, then
every simplex of K which is not in L has a non-empty face in T such that the
opposite face (possibly empty) is in L. It follows easily that the geometric
complement K — L admits a deformation retraction onto the simplicial
complement T ; one simply pushes along straight lines from the L-face of any
simplex to the T-face.

What we did above, then, can now be explained as follows: We first passed
to the barycentric subdivision so that X* would become full, and we then
had a deformation retraction of the geometric complement of dX* onto the
simplicial complement.

The generalization to SL,(Z) for arbitrary n is based on a theory due to
Voronoi [1907]. Voronoi constructs an enlargement X* of X, obtained by
adjoining certain positive semi-definite quadratic forms, namely, those whose
nullspace admits a basis consisting of vectors in Q". He gives X* an explicit
decomposition into convex cells which are permuted by the action of
SL,(Z). The subspace dX* = X* — X is a subcomplex. The cells of X are
not necessarily simplices, but X* admits a barycentric subdivision K which
is simplicial and which inherits a simplicial action of SL,(Z). It follows, as
above, that X = X* — 9X* admits a deformation retraction (compatible
with the SL,(Z)-action) onto the simplicial complement T of X* in K. One
sees by looking at Voronoi’s construction that dX* contains the entire
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(n — 2)-skeleton of X*, and it follows easily that T has codimension >
n — 1. Thus

_n(n-1)
==
as required. Finally, Voronoi proves in addition that X* has only finitely

many cells mod the SL (Z)-action, so T/I is in fact a finite complex and I"
is of type FL.

dm T/ =dimT <

1—(n-1)

nn + 1)
>~

Remark. In case n = 2, the subcomplex T is a tree, being a 1-dimensional
deformation retract of the contractible space X. This tree was first introduced
by Serre [1977a], 1.4.2, who used it to give an easy proof of the classical
theorem expressing SL,(Z) as an amalgamation Z 4 «z,Z¢. The existence of
an analogue of T for n > 2 (i.e, a I'-invariant, contractible subcomplex of
X of dimension n(n — 1)/2 with T/T" compact) was proved by Soulé [1978]
for n = 3 and by Ash [1977] in general. Ash, in fact, proved an analogous
result for a more general class of groups, using a generalization of Voronoi’s
theory. The cohomological dimension of such groups had previously been
computed by Borel and Serre [1974], using different methods which we will
describe in Example 5 below.

The groups in Examples 2 and 3 are examples of “arithmetic” groups.
Before looking at general arithmetic groups, let’s see what can be said about
arbitrary discrete subgroups of Lie groups.

4. Let G be a Lie group with only finitely many connected components,
let K be a maximal compact subgroup, and let d = dim G — dim K. If I' is
any torsion-free discrete subgroup of G, I claim that

odI' <d,

with equality if and only if I is co-compact in G, i.e., if and only if G/T is
compact. Moreover, in the co-compact case I is of type FL and one has
HY(,ZT) =0 for i #d and HYT,ZI) = Z (possibly with non-trivial
I'-action). To prove these assertions we need only recall (cf. §11.4, Example 8)
that '\ G/K is a K(T", 1)-manifold (without boundary) of dimension d; more-
over, '\ G/K is compact if and only if I' is co-compact. The assertions now
follow at once from 8.1 and 8.2.

5. We now specialize Example 4 to the “arithmetic” case. We will confine
ourselves to a brief outline of this theory, referring to the survey paper of
Serre [1979] for more details and further references. Let G be a linear alge-
braic group defined over Q. In concrete terms, this simply means that G is
a subgroup of some general linear group GL,, defined by polynomial
equations (with rational coefficients) in the n> matrix entries. For example,
G could be the group SL, (defined by the single equation det(a;;) = 1) or the
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strict upper triangular group (defined by the equations a;; = 1, a;; = 0 for
i > j). The real matrices satisfying the given polynomial equations then form
a Lie group G(R) (e.g., SL,(R)), which is known to have only finitely many
components; and the integral matrices satisfying the equations form a
discrete subgroup G(Z) = G(R) (e.g., SL,(Z) = SL,(R)). The group G(Z) is
said to be an arithmetic group. More generally, if I' = G(Q) is a subgroup
commensurable with G(Z), i.e., such that I' n G(Z) is of finite index in both
I" and G(Z), then I is said to be an arithmetic subgroup of G(Q). In particular,
any subgroup of G(Z) of finite index is arithmetic.

Suppose now that I' is a torsion-free arithmetic group. As in Example 4,
we have a contractible manifold X = G(R)/K on which I acts freely, so
that X/I" is a K(I', 1)-manifold. It turns out, however, that I' is usually not
co-compact in G(R), and hence that X/I" is non-compact. In fact, there is a
“Q-rank” | > 0 attached to the algebraic group G, and I' is co-compact in
G(R) if and only if | = 0.

[Here is the precise definition of /, for the benefit of the reader familiar
with algebraic groups: / is the rank of a maximal Q-split torus in G/RG,
where RG is the radical of G. If G is the strict upper triangular group, for
example, then RG = G,so! = 0and I is co-compact, as we saw in Example 2.
If G = SL, (n = 2), on the other hand, then RG = {1} and a maximal split
torus in G/RG = G is given by the diagonal matrices; thus /I=n—1>0
and I' is not co-compact, as we saw in Example 3.]

In spite of this failure of I" to be co-compact, however, Borel and Serre
[1974] show that I' is of type FL and compute H*(I', ZI"). Their method is to
replace X by a contractible manifold X with boundary (with X as its interior
if G is semi-simple) on which G(Q) operates. They show that the action of I'
is free and proper and that the quotient X/I" is compact. Thus X/T is a com-
pact K(T', 1)-manifold, so that I' is of type FL by 8.1b. Moreover, the con-
struction of X is explicit enough that Borel and Serre are able to identify the
homotopy type of the boundary: namely, dX has the homotopy type of a
countable bouquet of (I — 1)-spheres, where [ is the Q-rank mentioned above.
[If I = O, this simply means that X = .] Lettingd = dim X, we conclude
from 8.2 that H(I', ZI') = 0 for i # d — [, and that H*~!(T', ZT) is a free
abelian group of countable rank if / > 0 and of rank 1 if | = 0. In particular,

odl=d-1

If G=SL,, for example, then d=n(n +1)/2—-1 and I=n-1, so
cd'=d — | = n(n — 1)/2, as we saw in Example 3.

6. Let S be a finite set of prime numbers and let Zg = Q be the localization
of Z obtained by inverting the elements of S. If G is as in example 5, then a
subgroup of G(Q) is called S-arithmetic if it is commensurable with G(Zj).
Borel and Serre [1976] have shown that the results of example S extend to
torsion-free S-arithmetic groups, provided G is reductive.
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7. Serre [1971] noted the following remarkable consequence of example 6:
IfT is any finitely generated torsion-free subgroup of GL,(Q), thencd I' < 0.
[Sketch of proof: Note that I' = GL(Z;) for some S, and apply example 6 to
the S-arithmetic group GL,(Zs) to conclude that any torsion-free subgroup
of the latter has finite cohomological dimension.]

8. The result of example 7 is no longer true if Q is replaced by a field K of
transcendence degree > 1 over Q. For one can find finitely generated torsion-
free subgroups of GL,(K) which contain unipotent subgroups that are free
abelian of infinite rank. [A subgroup U of GL,(K) is unipotent if every
element of U has all n of its eigenvalues equal to 1. According to a famous
theorem of Kolchin, this holds iff U is conjugate to a subgroup of the strict
upper triangular group.] But Alperin and Shalen [1982] have shown that
this is essentially the only type of counter-example. More precisely, they
show that if I' is a finitely generated torsion-free subgroup of GL,(K), where
K is an arbitrary field of characteristic 0, then cd I’ < oo iff there is a finite
upper bound on the Hirsch ranks of the finitely generated unipotent sub-
groups of I'.

Remark. The reader may have noticed that all of the examples of groups of
type FL which we gave in this section have the following remarkable property:
There is an integer n (necessarily equal to cd I') such that H{(T', ZI') = 0 for
i # nand H"(T, ZT') is free abelian. The significance of this, as we will see in
the next section, is that it implies that these groups satisfy a duality relation,
somewhat analogous to Poincaré duality for manifolds.

EXERCISE

Let G and I be as in Example 2. Let C = {(a;) € G: |a;;| < 1 for all i, j}. Show that
G = I' - Cand deduce that I" is co-compact in G. [Hint: Consider the elementary matrices
in I, and interpret left multiplication by such a matrix as an elementary row operation.]

10 Duality Groups

For any group I of type FP, we have seen (6.9) that there is an isomorphism
H' T, M)~ H(I', D ® M)

for any I'-module M, where n = cd T, D is the right I'-module H(T, ZTI'),
and D ® M = D ®; M with the diagonal I-action. In this section we will
study those groups I' for which the isomorphism above extends to iso-
morphisms

Hi(ro M) X Hn—i(r’ D ® M)
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for all i. These groups were first considered by Bieri and Eckmann [1973],
who proved the following characterization of them:

(10.1) Theorem. T he following conditions are equivalent for a group I of type
FP:

(i) There exist an integer n and a I'-module D such that
Hi(ra M) = Hn—i(r, D ® M)

for all T-modules M and all integers i.

(ii) There is an integer n such that H(T', ZTI' ® A) = O for all i # n and all
abelian groups A.

(iii) There is an integer n such that H(T', ZI") = Ofor all i # nand H'(T', ZI")
is torsion-free (as an abelian group).

(iv) There are natural isomorphisms

Hi(r’ '—) =X Hn—i(r’ D ® —)’

where n=cd I and D = H"(T', ZI"), which are compatible with the
connecting homomorphisms in the long exact homology and cohomology
sequences associated to a short exact sequence of modules.

PROOF. (i) = (ii): Apply (i) with M an induced module ZI" ® A. It is easy to
see that D ® M is also induced (cf. I11.5.7). Since induced modules are
H ,-acyclic, it follows from (i) that H(I', M) ~ H,_(I', D ® M) = 0 for
i#n

(ii) = (iii): Applying (ii) with A = Z, we find HY(I", ZI') = 0 for i # n.
Now apply (ii) with A = Z, (k > 0), and use the cohomology exact sequence
associated to the short exact sequence

0-Zr 5 7Zr - Zr ® Z, - 0.
This yields

0= H"\(T', ZI ® Z,) » HYT, ZI") % HYT, Z),

showing that H(T', ZI') has no k-torsion.
(iii) = (iv): Note first that the integer n in (iii) is necessarily equal to
cd I' by 6.7. We now give three different proofs that (iii) = (iv).

First proof: We will use the general nonsense of §II1.7, which the reader
may want to review before proceeding further. Consider the cohomological
functor H*(I', —). Since ¢cdI"' = n < o0, we can re-index and regard
H*(I', —) as a homological functor; indeed, an exact sequence 0 - M’ —
M — M” - 0 of I'-modules yields an exact sequence

-++—= H"" YT, M") - HYT, M") - H"(', M) > H"(T', M") - 0,

so we obtain a homological functor T by setting T, = H"{I", —). The
hypothesis (iii) implies (via 5.2) that H'(T', F) = O for all i # n and all free
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ZT-modules F. Consequently, T; is effaceable for i > 0. Now consider the
functor H(I', D ® —), where D = H(T', ZI). This is also a homological
functor. For if 0 » M’ - M - M” - 0 is exact, then sois0 - D® M’ -
D®M - D® M" -0 (since D is torsion-free by hypothesis), hence we
obtain a long exact homology sequence. Moreover, H(I', D ® —) is efface-
able for i > 0 because D ® M is induced if M is induced. Since T, =
Hy(I',D® —) by 6.9, Theorem IIL.7.3 yields an isomorphism T =
H (', D ® —) of homological functors, whence (iv).

Second proof: This is similar to the first proof, except that we will use cap
products instead of general nonsense to get the map T - H, (I', D ® —).
By exercise 5d of §6, there is a “fundamental class” z € H,(I', D) such that
cap product with z gives an isomorphism H"(I', —) > Ho(I, D ® —).
Since the cap product map

Nnz:T,=H"T,—)-> H(,D® —)

is compatible (up to sign) with connecting homomorphisms in long exact
sequences, it follows by dimension-shifting that this map is an isomorphism
for all i.

Third proof : Let P = (P;)o <i<» be a finite projective resolution of Z over
ZT of length n, and consider the dual complex P = #%sm{(P, ZT"). Since
H(T', ZT') = Ofor i # n, P provides a projective resolution of D = H'(T'", ZT"):

oo P15 P" 5 D0

more precisely, the n-th suspension X"P is a projective resolution of D. In
view of the duality isomorphism

Hom{(P,M) =~ P@-M
of 1.8.3, it follows that
(¢  HT, M)~ H_{P® M) = H,_(Z"P ® M) = Tor!_{D, M)

for any I'-module M. Since D is torsion free, we can now apply II1.2.2 to
obtain

(%) Tor;_(D, M) = H,_(T', D ® M).

The reader can easily verify that (*) and (**) are natural and compatible with
connecting homomorphisms, whence (iv).

(iv) = (i): Trivial. O

If T satisfies the conditions of the theorem then I is said to be a duality
group and the I'-module D = H™(T', ZT) is called the dualizing module of T'.
If, in addition, D is infinite cyclic (as an abelian group), then I' is said to be a
Poincaré duality group, and in this case I is said to be orientable if I' acts
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trivially on D and non-orientable otherwise. Note that if " is an orientable
Poincaré duality group then (iv) takes the familiar form

Hi(l"’ M) ~ Hn—i(r’ M)a
as in Poincaré duality for closed, orientable manifolds.

Remarks

1. It is sometimes useful to note that if I' is a duality group, then there are
duality isomorphisms HY(I, M) 3 H,_(T", D ® M) given by cap product
with a fixed element z € H,(I", D). This was made explicit in the second proof
above, and it also follows from the third proof, exactly as in the proof of
VL.7.2.

2. Bieri and Eckmann originally defined a duality group to be a group I,
not necessarily of type FP, such that there are cap product isomorphisms

nz: H(T,M) > H,_(T, D ® M)

for all i and M, where n is a fixed integer, D a fixed I'-module, and z a fixed
element of H,(TI', D). It is clear from the previous remark that a duality group
in our sense is also one in theirs. Conversely, if I' is a duality group in their
sense, then naturality of the cap product implies that there are natural
isomorphisms

Hi(r’ _) = Hn—i(r9 D ® —)

Since D ® — and H (I, —) commute with direct limits, it follows that
H*(I', —) commutes with direct limits. It also follows that cd I’ < n < 0.
Thus I is of type FP by 4.8, and hence I is a duality group in our sense. It is
also worth noting that the integer n which occurs in the Bieri-Eckmann
definition is necessarily equal to cd I (this is clear from the proof of 10.1)
and that the module D is necessarily isomorphic to H'(T", ZI'). Indeed, the
given duality isomorphism with i = n and M = ZT gives

HY(T, ZT') = H(T', D @ ZT') = D @, ZI" = D,

and this is compatible with the I'-action by naturality of the duality iso-
morphism.

EXAMPLES

1. If T is a group such that there exists a closed K(I", 1)-manifold Y, then,
as one would expect, I is a Poincaré duality group and is orientable if and
only if Y is orientable. This follows immediately from 8.1b, 8.2, and the
criterion 10.1(iii) for duality. [Alternatively, use Poincaré duality in Y, with
local coefficients, to verify directly that I' satisfies the Bieri-Eckmann
definition of duality group which we quoted above, with D equal to the
orientation module Q associated to Y.] For example, the free abelian group
Z" is an orientable Poincaré duality group. [Take Y to be the n-dimensional
torus.] More generally, any finitely generated, torsion-free, nilpotent group
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is an orientable Poincaré duality group by example 2 of §9. [Alternatively,
one can give a purely algebraic proof, cf. Bieri [1976], Theorem 9.10.] Still
more generally, if G is an arbitrary Lie group with only finitely many con-
nected components and I is a discrete, co-compact, torsion-free subgroup,
then I is a Poincaré duality group and is orientable if G is connected (cf.
example 4 of §9).

Remark. It is not known whether every Poincaré duality group admits a
closed K(I', 1)-manifold. This is even unknown in the 2-dimensional case.
But Eckmann and Miiller [1980] have shown that every 2-dimensional
Poincaré duality group I" which has the homology of a surface other than
52 or P? is in fact isomorphic to the fundamental group of that surface. It
follows that if there is a 2-dimensional counter-example (i.e., a 2-dimensional
Poincaré duality group I for which there is no closed K(I", 1)-manifold, then
there is even a counter-example I' such that H (I') =~ H,(S?). Such a T’
would be very interesting indeed. In particular, the method of J. Cohen [1972]
shows that I" would not be of type FL.

2.IfT"is afree group on k generators, 1 < k < oo, then T isa 1-dimensional
duality group. Indeed, we know that cd I' = 1 and that I is of type FL, so we
need only check that HY(I',ZI" ® A) = 0 for any A4; but this is easily seen to
hold for any infinite group T, cf. §IIL5, exercise 4a. If k = 1, then I' is an
orientable Poincaré duality group by example 1 (or by directly computing
H*, ZI') from the resolution 1.4.5). If k > 1, however, then I is not a
Poincareé duality group; for we have

Z*~ H\T', Z) ~ Hy(T, D ® Z) = H,(T, D),

so D cannot be infinite cyclic. (In fact, it is not hard to show that D is a free
abelian group of countable rank, cf. exercise 2 below.)

3. The results stated in example 1 of §9 show that knot groups are 2-
dimensional duality groups (but not Poincaré duality groups).

4. The results of Borel and Serre quoted in example 5 of §9 show that
torsion-free arithmetic groups are duality groups (but not Poincaré duality
groups except in the rank 0 case.)

5. If T is a finitely presented group of cohomological dimension 2 which
cannot be decomposed as a free product, then I is a duality group. Indeed, I is
of type FP by the comments following 6.1, so it suffices to show that
H{(I", ZI' ® A) = O for i < 2 and all A. This is clear for i = 0. For i = 1, it
is not hard to see (cf. Swan [1969], §3) that H'(T", ZT') is a free abelian group
of rank e — 1, where e is the number of “ends” of I', and that H'(T', ZI' ® A)
~ H'(I', ZI') ® A. But e = 1 (and hence H'(I', ZI' ® A) = 0) under our
hypotheses, because of the following theorem of Stallings [1968]: A finitely
generated, torsion-free group with more than one end is either infinite cyclic
or a free product. (See also Scott—Wall [1979] for the theory of ends and a
proof of Stallings’s theorem.)
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6. Further examples of duality groups can be constructed from known
examples by forming extensions and amalgamations. The precise results are
somewhat complicated, and we refer to Bieri [1976] for details. [Warning:
These group theoretic constructions do not always preserve the property of
being a duality group. For example, a free product of duality groups is not a
duality group unless the groups are free, cf. exercise 3 below.]

Remark. The examples above suggest that if I is a duality group then the
dualizing module D is either infinite cyclic (in which case I' is a Poincaré
duality group) or free abelian of infinite rank. It is not known whether this is
true, the problem being the freeness of D. It is known, however, as a con-
sequence of results of Farrell [1975], that if D is not infinite cyclic then D has
infinite rank (i.e., dimg(D ® Q) = o0). A proof can be found in Bieri [1976],
§9.5, along with other interesting properties of D.

We close this section by proving one useful property of duality groups:

(10.2) Proposition. Let I be a torsion-free group and T a subgroup of finite
index. Then T is a duality group if and only if " is a duality group. Moreover, if
I" and T are duality groups then they have the same dualizing module. (More
precisely, if D is the dualizing module for T, then the dualizing module for I" is
isomorphic to the module ResF. D obtained by restricting the action of T to T".)

PRrROOF. By 6.6, T"is of type FP if and only if "' is of type FP. Since H*(T", ZI") ~
H*(I'"", ZT"") by Shapiro’s lemma, the first part of the proposition follows from
the criterion 10.1(lii) for duality. To prove the second part, we must check that
the isomorphism H(T", ZI') * H(I”, ZI"') is an isomorphism of right I"-
modules. By straightforward definition-checking (cf. §II1.8, exercise 2), one
sees that this isomorphism is the composite

H(T, ZT")—" H"(I"", ZT") - H"(I", ZT"),
where the second map is induced by the coefficient homomorphism
ZT =~ ZT ®qr ZI" —=— Hom.(ZT, ZI") =, 777,

(i s9)
One checks that this homomorphism is given explicitly by
y yel”
Yy .
0 otherwise,

and this is clearly compatible with the right I"-action. Since res: H*(T", ZI') —
H™(I”, ZT") is obviously compatible with the right I"-action (in fact, with the
right I'-action), the proof is complete. a

EXERCISES

1. If T is an n-dimensional duality group with dualizing module D, prove that D is a
ZT-module of type FP (i.e., it admits a finite projective resolution) and of projective
dimension n. [Hint: Look at the third proof of (iii) = (iv) in 10.1.]
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2. Let T bea free group of finite rank > 1. Prove that the dualizing module H'(T, ZTI')
is a free abelian group of infinite rank. [Hint: Use exercise 5 of §5 and argue by
induction on the rank of I". Alternatively, use the theory of ends.]

3. Show that a duality group of cohomological dimension > 1 cannot be decomposed
as a free product. [Hint: Exercise 5 of §5.]

4. If T is an n-dimensional duality group whose dualizing module D is Z-free, prove
that

H(T, M) ~ H*"(T", Hom(D, M))

for any '-module M. [Hint: The starting point is exercise 5b of §6. Now imitate any
of the three proofs that (jii) = (iv) in 10.1. If you imitate the first or second proof, you
will need to use exercise 4b of §5.]

5. Show that if we are willing to use chain complex coefficients (cf. §VI1.5) then every
group of type FP behaves like a duality group. Namely, there is a “ dualizing com-
plex™ 2 such that

H(T., %)~ H,-(T,¢® 92)
and
H(T, %) = H" (", #om(9D, €))

for every complex ¢ of I'-modules. [Hint: Let 2 be the dual (suitably re-indexed)
of a finite projective resolution of Z over ZI'. Look at the definitions of H{(T", %)
and H(T", ), and apply exercise | of §V1.6.]

*6. (a) Prove the following result of Strebel [1977]: If T is a Poincaré duality group and
I = I is a subgroup of infinite index, then cd I'" < cd I'. [Hint: Use exercise 4 of
§6.] This result is motivated by the special case (which may in fact be the general
case) given in the exercise of §8.

(b) Give an example which shows that the result of (a) does not hold for arbitrary
duality groups.

11 Virtual Notions

Up to now this chapter has been concerned primarily with torsion-free
groups. Indeed, we observed in §2 that groups with torsion necessarily have
cd = o0, and hence they certainly cannot satisfy the FL or FP conditions or
be duality groups. On the other hand, we have seen examples of groups
with torsion (such as SL,(Z)) which have torsion-free subgroups of finite
index that satisfy these finiteness conditions. The purpose of this section
is to introduce a convenient language for describing this situation.

In general we will say that a group virtually has a given property if some
subgroup of finite index has that property. For instance, I is virtually torsion-
free if T has a torsion-free subgroup of finite index. In this case it follows from
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Serre’s theorem (3.1) that all such subgroups have the same cohomological
dimension (which may be finite or infinite); for if I" and I'” are two torsion-
free subgroups of finite index, then I'" ~ I'” has finite index in both I'" and I,
so Serre’s theorem gives cd I = cd(I" A I'™) = ¢d I'". The common co-
homological dimension of the torsion-free subgroups of finite index is called
the virtual cohomological dimension of T and is denoted ved I.

Similarly, T is said to be of type VFP (resp. VFL) if some subgroup of
finite index is of type FP (resp. FL). If T" is of type VFP then it follows from 6.6
that every torsion-free subgroup of finite index is of type FP. The correspond-
ing statement for groups of type VFL is not known, so one is led to introduce
the following apparently stronger condition: I" is said to be of type WFL if I’
is virtually torsion-free and every torsion-free subgroup of finite index is of
type FL.

To summarize, we have introduced four “virtual” finiteness conditions in
this section, which are related as follows:

WFL = VFL = VFP = (ved < o).

It is not known whether the first two implications are reversible. Note also
that VFP = FP_ by 5.1.

We saw in §7 thatcd I' < oo if and only if there exists a finite dimensional,
contractible, free '-CW-complex. To state the “virtual” analogue of this, we
introduce the following weakening of the notion of “free action”: We say that
a I'-complex is proper if the isotropy group I, is finite for every cell o. (This is
consistent with the notion of “ proper action ” introduced in §I1.4, Example 6,
but we will not need to know this.) Note that a proper I'-complex is I"'-free for
every torsion-free subgroup I'' < T'. Conversely, if X is a '-complex which is
I"-free for some subgroup I'"’ of finite index (i.e., if X is virtually free), then X is
proper. Thus, if " is virtually torsion-free, a I'-complex is proper if and only
if it is virtually free.

We can now state the topological interpretation of finite virtual cohomo-
logical dimension:

(11.1) Theorem. Let T be a virtually torsion-free group. Then ved T < oo if
and only if there exists a finite dimensional, contractible, proper T'-complex X . If
there exists such an X which has only finitely many cells mod T, then T is of
type WFL.

ProOOF. The second assertion and the “if” part of the first assertion are
obvious from the remarks above. The “only if ” part follows from the proof of
Serre’s theorem (3.1). Indeed, the entire proof of that theorem, except for the
last sentence, is valid for any group I' with ved I' < oo, and it yields the
desired X. O

There remain several open questions in connection with this theorem. It is
not known, for example, whether X can be taken to have dimension equal to
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ved I. Clearly we have ved I' < dim X for any X as in 11.1; but the proof
above always yields an X withdim X > ved T, except in the trivial case where
I" is finite and X is a point. It is also not known whether the converse of the
second assertion of 11.1 is true. In particular, the proof above will always yield
an X with infinitely many cells mod I', unless I is finite. Thus we are very far
from understanding the relation between our algebraically defined finiteness
conditions and the analogous topologically defined conditions.

For future reference, we record now some facts which can be deduced from
the proof of 11.1:

(11.2) Addendum. If ved I” < o0 then the complex X in 11.1 can be taken to be
simplicial (with simplicial T-action) and to have the following property: For
every finite subgroup H < T, the fixed-point set X" is non-empty and con-
tractible.

PROOF. The assertion about the fixed-point sets follows easily from the proof
of 11.1, cf. §3, exercise. The fact that X can be taken to be simplicial requires
some preliminaries concerning ordered simplicial complexes.

An ordered simplicial complex is a simplicial complex together with a
partial ordering on its vertices, such that the vertices of any simplex are linearly
ordered: vy < vy < --- < v,. The canonical example of an ordered simplicial
complex is the barycentric subdivision K’ of an arbitrary simplicial complex
K.To see that K' is ordered, recall that the vertices of K’ are the barycenters of
the simplices of K, hence there is an ordering on the vertices of K’ cor-
responding to the obvious ordering (by the face relation) on the simplices of K ;
moreover, the simplices of K’ are precisely the finite sets of barycenters which
are linearly ordered (cf. Spanier [1966], 3.3, or Schubert [1968], I11.2.6), so
K' is indeed an ordered simplicial complex.

Next we recall the definition of the simplicial product K x L of two
ordered simplicial complexes K and L. The set of vertices vert(K x L) is
defined by vert(K x L) = vert(K) x vert(L), with the product ordering:
(v,w) < (V,w)<>v<vandw < w'. A simplex of K x L is defined to be a
linearly ordered set of vertices (vy, wo) < - - - < (v,, w,) such that {v,, ..., v,}
is a simplex of K (possibly of dimension < n)and {wy, ..., w,} is a simplex of
L. It is a classical fact (cf. Eilenberg-Steenrod [1952], I1.8.9, or Milnor
[1957b]) that this abstract product complex K x L provides a triangulation
of the geometric product of K and L, i.e, that |[K x L| = |K| x |L|, where
| | denotes geometric realization. [Here, as in the proof of 3.1, some care
needs to be taken in topologizing | K| x |L|.]

Look now at the proof of 3.1. The K(I'", 1)-complex Y’ can be taken to be
simplicial by 7.3. Its universal cover X’ is then simplicial (with simplicial I'""-
action), cf. Spanier [1966], Theorem 3.8.3, or Schubert [1968], §I11.6.9. Passing
to the barycentric subdivision if necessary, we can assume that X’ is an
ordered simplicial complex and that the I"-action preserves the ordering. The
co-induction construction given in the proof of 3.1 can therefore be done in the
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category of ordered simplicial complexes using the product described above,
and the resulting X will then be simplicial. O

EXAMPLES
1. ved I = 0 if and only if " is finite.

2.IfT =T, , T, where I, and I, are finite, then I is of type WFL and
ved T < 1. More generally, the same results are true whenever I' is the
fundamental group of a finite graph of finite groups, cf. §VIL.9. This is an easy
consequence of Serre’s theory of groups acting on trees, which provides a
contractible 1-complex on which I' acts properly and with finite quotient. For
details see Serre [1977a], 11.2.6, Prop. 11. [Note: If we drop the requirement
that the graph of finite groups be finite and require instead that there be a
bound on the orders of the finite groups, then itis still true thatved I' < 1, but
I' will not necessarily be of type WFL.] Conversely, if I' is a group such that
ved ' < 1, then the Stallings—-Swan theorem (§2, Example 2) shows that I" has
a free subgroup of finite index, and it is then known that I' is the fundamental
group of a graph of finite groups. This is due to Karrass—Pietrowski-Solitar
[1973] in case I' is finitely generated (in which case the graph can be taken to
be finite) and to D. E. Cohen [1972] and Scott [1974] in the general case.
Proofs can also be found in Dunwoody [1979] and Scott-Wall [1979].

3.IfI' is a finitely generated one-relator group, then I is of type WFL and
vedI' < 2. Indeed, T is virtually torsion-free by Fischer-Karrass-Solitar
[1972]. And Lyndon [1950] established an exact sequence

0-Z[T/C]>F—-2ZI'-Z -0,

where F is a free ZI"-module of finite rank and C is a finite cyclic subgroup of T".
Our assertions follow at once, since Z[T'/C] is clearly a free ZI"-module of
finite rank for every torsion-free subgroup I'" = T of finite index. [Note that
we have in this case a contractible, proper, 2-dimensional I'-complex with
finite quotient. This follows from the topological version of Lyndon’s theorem,
which we stated in Exercise 2c of §I1.5.]

4. Let G be a Lie group and let X be the associated homogeneous space
G/K, where K is a maximal compact subgroup. Let I' be a discrete subgroup
of G, and assume that I is virtually torsion-free. [This is automatic if, for
instance, I' is a subgroup of some GL,(Z), cf. §I1.4, Exercise 3.] Then it follows
from Example 4 of §9 that

ved I' < dim X,

with equality if and only if " is co-compact in G. In the latter case, I is of type
WFL. More interestingly, I' is of type W F L in the arithmetic case discussed in
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Example 5 of §9, even though I' is usually not co-compact, and the Borel-
Serre results which we stated there give a precise formula for ved I. For
instance

ved SL(Z) = "("—2'9

Finally, a group I is said to be a virtual duality group if some subgroup of
finite index is a duality group. The arithmetic groups provide a large and
interesting class of virtual duality groups.

(11.3) Proposition. A group I' is a virtual duality group if and only if the following
two conditions are satisfied:

(@) T'is of type VFP.
(b) There is an integer n such that H(T', ZT') = O for i # n and H'(T', ZT') is
torsion-free.

In this case every torsion-free subgroup of finite index is a duality group with
dualizing module H'(T, ZI").

This is an easy consequence of Shapiro’s lemma, as in the proof of 10.2.

EXERCISES

1. Suppose I is virtually torsion-free and let I'” be an arbitrary subgroup. Show that
ved I < ved T, with equality if (I': T'') < oo.

*2. Study the behavior of the virtual finiteness properties with respect to extensions,
amalgamations, etc. [Hint: Choose a torsion-free subgroup of finite index and
apply 2.4b, Exercise 4 of §2, and Exercise 8 of §6.] Warning: These group-theoretic
constructions do not preserve the property of being virtually torsion-free, cf.
Schneebeli [1978]. So the results you state will have to include a hypothesis that
the group under consideration is virtually torsion-free.



CHAPTER IX
Euler Characteristics

1 Ranks of Projective Modules: Introduction

Let T be a finite group and P a finitely generated projective ZI'-module.
There are several ways that one might try to associate a “rank” to P. One
candidate for this, which we will denote by &P) or e(P), is defined via
extension of scalars with respect to the augmentation map ZI' - Z. Namely,
we consider P = Z ® ;r P, whichisa finitely generated projective Z-module;
since projective Z-modules are free, we can set

(1.1 &(P) = rkg(Py),

the right hand side being the rank in the naive sense (i.e., the cardinality of a
basis). Note that 1.1 makes sense even if I is infinite.

Our second definition of a “rank ” of P, which we will denote p(P) or p(P),
is based on the fact that P itself is finitely generated and projective as a
Z-module; hence we can set

1.2 p(P) = rkz(P)/|T|.

Here, of course, we do need I' to be finite.

Both ¢ and p give the “right” answer n if P is the free module ZI"™". Other
than that, however, it is not obvious that they have anything to do with one
another. In fact, it is not even obvious that the rational number p(P) is an
integer. But it turns out that ¢ = p for all finite groups I" and all finitely
generated projectives P. This fact, which is due to Swan, plays a crucial role
in our theory of Euler characteristics. We will therefore devote the first few
sections of the chapter to a proof of this equality.

Following Bass [1976, 1979], our proof will go as follows: In §2 we will
introduce a third notion of rank, due to Hattori and Stallings and defined for
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2 The Hattori- Stallings Rank 231

finitely generated projectives over an arbitrary ring. In §3 we will use standard
commutative algebra to give a concrete interpretation of the Hattori-
Stallings rank in case the ring is commutative. This interpretation, together
with formal properties of the Hattori-Stallings rank over group rings, will
lead in §4 to a proof that ¢ = p.

EXERCISE

The purpose of this exercise is to show that some restriction on a ring A is needed if
there is to be a “reasonable” Z-valued rank for finitely generated projective A-modules.
Suppose there is a Z-valued function r on finitely -generated projective A-modules,
satisfying:

(@) (P ® Q) = r(P) + HQ).
(i) (P) > 0if P # 0.
(iii) H(A) = 1.

Prove then that A is indecomposable, i.e., that A cannot be decomposed as the direct
sum of two non-zero left ideals. [Hint: A decomposition A = I @ J yields an equation
1=rl)+nrJ)inZ]

2 The Hattori-Stallings Rank

If F is a finitely generated free Z-module, then the rank of F is equal to the
trace of the identity endomorphism of F; indeed, this is just a restatement of
the obvious fact that the trace of the n x n identity matrix is n. With this as
motivation, Hattori [1965] and Stallings [1965b] defined the “rank” of an
arbitrary finitely generated projective module over an arbitrary ring to be
the trace of the identity map. In order to make sense out of this, we need to
begin by developing a theory of traces for endomorphisms of projectives
which are not necessarily free over rings which are not necessarily com-
mutative.

Let A be an arbitrary ring, F a finitely generated free A-module, and
a: F —» F an endomorphism. One would like to define tr(a) as the sum of
the diagonal entries of the matrix of « relative to a basis for F. Unfortunately,
this sum is not in general independent of the choice of basis for F, unless 4 is
commutative. (One can already see this for 1 x 1 matrices.)

There is, however, a well-defined trace in the quotient T(A4) = A/[A4, A],
where [A4, A] is the additive subgroup of 4 generated by all commutators
ab — ba, a, be A. [Warning: [A, A] is not an ideal, in general, so T(4) is
simply an abelian group, not a ring.] Namely, we define tr(«) € T(A4) for « an
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n x nmatrix to be Y7, &;, where @ is the image of «;; in T(4). It is trivial
to verify that

2.1 tr(af) = tr(fa)

whenever a is an m x n matrix and f is an n x m matrix (so that «ff and fa
are both square); and from this it follows that tr(faf ') = tr(f~ ! fa) = tr(x)
for any invertible B, so the trace of an endomorphism is indeed a well-defined
element of T(A), independent of the choice of basis.

We would like now to extend the trace to endomorphisms of finitely
generated projective modules. I claim that there is a unique way to do this
so that 2.1 continues to hold for maps P ﬂ_‘% P'. For let a: P — P be an endo-
morphism of a finitely generated projective, and express P as a direct
summand of a finitely generated free module F viamaps P & F withm: = id,.
Then a gives rise to an endomorphism 1an of F. [In concrete terms, this is
simply « on the summand P and 0 on the complementary summand
ker 1n.] If we want 2.1 to hold, then we are forced to define

2.2) tr(a) = tr(aan);

for 2.1 would imply tr(zan) = tr(an) = tr(xcid).
It remains to show that the right side of 2.2 is independent of the choice of
P s F and that 2.1 continues to hold. Suppose we have maps

F&PSPEF,

[ 3
where F and F' are free, m1 = idp, and n't' = idp.. Then we can apply 2.1 to
matrices representing the composites

F an’ F'

"B
to conclude that tr(ian’s’fn) = tr()'Brian’). Since 7'y’ and 1 are identity maps,
this yields

tr(iefn) = tr(s' far’).

Taking P’ = P and B = id, we conclude that the right side of 2.2 is indeed
independent of the choice of P & F. And taking P’ and B arbitrary, we
conclude that 2.1 holds for arbitrary P <& P'. This proves the claim. The
resulting trace tr(a) will sometimes be derfoted tr ().

Next we discuss the behavior of traces with respect to extension and
restriction of scalars.

(2.3) Proposition. Let ¢: A — B be a ring homomorphism and let T(p): T(A)
— T(B) be the induced map. If «: P — P is an endomorphism of a finitely
generated projective A-module, then B® 4a:B® 4P - B® 4 P is an endo-
morphism of a finitely generated projective B-module, and we have

trp(B ® 4 @) = T(p)tru(a)).
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PRroor. It suffices to consider the case where P is free. Then B ® , P is also

free, and a matrix representing B ® , « is obtained by applying ¢ to the
entries of a matrix representing a.

(2.4) Proposition. Let ¢: A — B be a ring homomor phism such that B is finitely
generated and projective as a left A-module. Then there is a map

tI‘BMZ T(B) d T(A)

with the following property: Let a: P — P be an endomorphism of a finitely
generated projective B-module; then P is also finitely generated and projective
as an A-module, and

tr (a) = trp (trg(a)).

The proof will use:

(2.5) Lemma. Let A be an arbitrary ring and let P be a finitely generated
projective A-module which is a direct sum P, @ --- @ P,. Let a: P — P be an
endomorphism with components a;;: P; = P;. Then tr(a) = 37 tr(e).

PrOOF. This reduces easily to the case where each P, is free, in which case the
result follows from an examination of the matrix of a. O

PROOF OF 2.4. For any b € B, the right multiplication map u,: B — B is an
endomorphism of the left A-module B, so it has a trace tr,(u;) € T(A).
Consider the additive map B — T(A) given by b tr4(i,). Since pp,5, =
Us, Mo, » this map annihilates commutators b,b, — b, b,. There is therefore
an induced map T(B) — T(A), which is the desired trg,,. To prove the for-
mula tr(a) = trg (trg(a)), note first that it holds if P = B (in which case «
is necessarily of the form ;). In view of Lemma 2.5, it continues to hold if P
is a direct sum of copies of B, i.e., if P is a free B-module. In the general case,
choose P & F with mi = idp, where F is free over B. Then tr(ian) = tr(ani) =
tr(e) over both A and B, so the formula for «: P — P follows from the formula
for ian: F — F. O

We can now define the Hattori-Stallings rank of P, denoted R(P) or
RA(P)’ by

R(P) = tr(idp).

Note that R(P) is not a number, but rather an element of the somewhat
mysterious abelian group T(4). In the next two sections, however, we will
give concrete interpretations of R(P) for some interesting classes of rings.
Before proceeding to this, the reader is strongly urged to look at the exercises
below; the results of exercises 5, 6, and 7 will be needed in §4.
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EXERCISES

1. Let P be a finitely generated projective (left) A-module and let P* be its dual. Then P*
is a right A-module and we have P* ®, P ~ Hom (P, P) by 1.8.3b. Prove that there
is a commutative diagram

P*®, P =~ Hom(P, P)

T(A)

where ev, the “evaluation map,” is given by ev(u ® x) = u(x). In some treatments of
the theory of traces, this diagram is used to define tr, cf. Bass [1976, 1979]. [Hint:
Consider P <5 A.]

2. (a) Let C be a finite projective chain complex over 4 and let t: C — C be a chain map
with components 1;: C, » C,. Define the “Lefschetz number™ L(t) e T(A) by L(r)
=Y (=1)tr(z). Prove that L(zo) = L(t,) if 7, ~ 7,. [Hint: Write down the
definition of homotopy and use 2.1.]

(b) Deduce that one can define a trace map tr: Hom (M, M) — T(A4) whenever M
is an A-module of type F P by setting tr(a) = L(7), where t is any lifting of « to a finite
projective resolution of M.

3. Suppose A4 is an algebra over a commutative ring k (e.g., 4 is always an algebra
over its center). Show that Hom,(P, P) and T(A) are k-modules and that
tr: Hom (P, P) —» T(A) is k-linear. More generally, show that the same is true if P
is replaced by a module M of type FP as in exercise 2b.

4. Show by checking definitions that R(P) is equal to the trace of an idempotent matrix
defining P. More precisely, let F be a finitely generated free module and e: F — F an
(idempotent) projection operator of F onto a direct summand isomorphic to P;
then R(P) = tr(e).

5. Let T be a group and ¢: ZI' — Z the augmentation map. Show that the numerical
“rank” ¢ ) defined in §1 can be obtained from the Hattori-Stallings rank Rz( )
by the formula

er(P) = T(@)(Rz(P)).

[Apply 2.3 with « = id, and note that T(¢p) takes values in Z because T(Z) = Z.]

6. Let I' be a finite group.

(a) Look at the definition of trzg,z: T(ZI') » T(Z) = Z in the proof of 2.4 and deduce
that trzr,z(T) = |T'| and that tryp,(7) = O for 1 # yeT. Here ¥ is the image of y in
T(ZT). Consequently, there is a well-defined homomorphism t: T(ZI') » Z such
that 7(1) = 1 and 7(7) = Ofor 1 # yeT, and one has trg; = |T|- 1.

(b) Deduce from 2.4 applied to the inclusion Z & ZI' (with a = idp) that rkz(P)
= |I'|- (Rz(P)) for any finitely generated projective ZI'-module P. Hence the
“rank” p defined in §1 is given by

pr(P) = ©(Rgp(P)).
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7. Exercise 6b shows that p(P) € Z. On the other hand, it is obvious from the definition
of p that p(P) > 0 if P 3 0. Show, therefore, that ZI" is indecomposable when I" is
finite. [Use the exercise of §1.]

8. Show that the definition of t in exercise 6a makes sense even if I is infinite, i.e., there
is a well-defined homomorphism t: T(ZI') » Z such that ¢(T) = 1 and () = 0
for 1 # yeT. We can therefore define a Z-valued “rank” p over ZI' by p(P) =
T(R(P)). In view of exercise 6b, this agrees with the p of §1 if I is finite. Moreover, it
turns out for arbitrary I" that p(P) > 0 if P # 0. [This non-trivial result is due to
Kaplansky; proofs can be found in Montgomery [1969] and in Passman [1977],
Theorem 1.8 and Exercise 9 of Chapter 1.] Consequently, you can show as in exercise
7 that ZI is indecomposable for any group I'.

3 Ranks over Commutative Rings

If A is an integral domain with field of fractions K, then there is an easy way
to define a Z-valued rank for finitely generated projective 4A-modules. Namely,
we set

l‘kA(P) = dimx(K ®A P).
Moreover, the Hattori-Stallings rank R ,(P) is simply given by
@G.1) R4(P) = tk(P)- 1,

where 1 € 4 = T(A) is the identity element. [To prove this, we may regard
both sides of the equation as elements of K. The left hand side is then equal
to Rx(K ® 4, P) by the compatibility of traces with extension of scalars (2.3),
and this in turn is equal to dimy(K ®, P)-1 =1k (P)-1since K®, Pisa
free K-module.]

Our goal in this section is to prove a generalization of 3.1 to indecom-
posable commutative rings which are not necessarily domains. [This restric-
tion to indecomposable rings should not surprise the reader in view of the
exercise of §1. There are, however, interesting results along these lines for
decomposable rings; see the exercises below.]

Since A is no longer assumed to be a domain, we do not have a field of
fractions to work with. We do, however, have a localization A4, for every
prime ideal p, and we can use this instead. [See Atiyah—Macdonald [1969],
Chapter 3, for the definitions and elementary facts concerning localization.]
The ring A, is a local ring (it has a unique maximal ideal), and we will prove:

(3.2) Proposition. Any finitely generated projective over a local ring is free.

We can therefore define the rank of P at p to be the rank in the naive sense
of the free A,-module P, = A, ® , P. Let Spec A be the set of prime ideals
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of A. Then what we have, so far, is a function #£ ,(P): Spec A — Z whose
value at p is the rank of P at p.

Spec A has a well-known topology (the “Zariski topology”), whose
definition we will recall below, and we will prove:

(3.3) Proposition. The function £ ,(P) is locally constant.

Finally, we will establish the (not surprising) geometric interpretation of
indecomposability:

(3.4) Proposition. If A is indecomposable then Spec A is connected.

The function &4 ,(P) is therefore constant if A is indecomposable, and
we set rk ,(P) equal to its constant value.

Accepting all this for the moment, we can prove the desired generalization
of 3.1:

(3.5) Theorem. Let A be a commutative indecomposable ring, let P be a finitely
generated projective A-module, and let tk ,(P) be the rank of P at any prime ideal
p. Then the Hattori-Stallings rank R ,(P) is given by R ,(P) = rk ,(P)- 1.

PROOF. The compatibility of traces with extension of scalars implies, as in
the proof of 3.1, that R ,(P) and rk (P)- 1 have the same image in A, for
every p; hence they are equal.

It remains to prove 3.2, 3.3, and 3.4. For 3.2 we will need “Nakayama’s
lemma™:

(3.6) Lemma. Let A be a local ring with maximal ideal m and residue field
k = A/m, and let M be a finitely generated A-module. If k ® , M = O then
M=0.

(Note the similarity between this and V1.8.4. Both results are special cases
of a general “Nakayama’s lemma.”)

PROOF. Let my, ..., m, be a minimal set of generators of M, and suppose
r > 1. Since k ® ,M = M/mM, our hypothesis says that M = mM. In
particular, we can write m; = Y ; a;m; witha,e m,so (1 — a,)m, = Y5 a;m,.
But 1 — g, is invertible since it is not in the unique maximal ideal of A; thus
M is generated by m,, ..., m,. This contradicts the minimality of m,, ..., m,,
so r must be 0. O

PROOF OF 3.2. This is similar to the proof of VI.8.5. Let A be local with residue
field k, let P be a finitely generated projective A-module, and let

r = dim,(k ® , P).
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Then we can find a map f: A" - P such that
k®@f:k"=k®@A">k®P

is an isomorphism. Then k ® coker f = coker(k ® f) =0, so coker f = 0 by
3.6. We now have a short exact sequence

O-kerf-A"L P,

which splits because P is projective. The sequence therefore remains exact
after being tensored with k, so k ® ker f = 0. Now ker fis finitely generated,
being a direct summand of A4, so we can apply 3.6 again to conclude that
ker f = 0. Thus f'is an isomorphism. O

The next step is to topologize Spec A. For any subset S < A4, we define a
subset V(S) < Spec A by

V(S) = {p:p2S}.

(3.7) Lemma.

(i) If I is the ideal generated by S, then V(S) = V(I).

(ii) V(S) = Spec A if and only if every element of S is nilpotent.
(iii) If I is an ideal, then V(I) = & if and only if I = A.
(iv) If I and J are ideals, then V(1J) = V(I) L V(J).

(v) If{1,} is a family of ideals and I is their sum, then V(I) = (), V(I,).

Proor. The proofs are routine verifications which are left for the reader,
except for the “only if ” part of (ii), which is proved as follows: Suppose
a € S and a is not nilpotent. Then the localization A[a~ '] is not the zero ring
and hence contains a maximal ideal m. The contraction of m to A is then a
prime ideal not containing a, so V(S) # Spec A. O

It follows from (ii)—(v) that we can topologize Spec A by declaring that
the closed sets are the sets of the form V(I), where I is an ideal of A4. In view
of (i), every V(S) is then closed.

PROOF OF 3.3. Suppose P, is free of rank r over 4,. We must show that P, is
free of rank r over A, for all q in some neighborhood of p. It is easy to see that
we can find r elements of P whose images in P, form a basis for P,. In other
words, we can find a map f: F — P, where F is a free A-module of rank r,
such that f,: F, - P, is an isomorphism. Therefore (coker f), = 0, so every
element of coker fis annihilated by an element of A — p. But coker fis finitely
generated, so there is a single element s € A — p such that s - coker f = 0. Thus
if we localize A by inverting s, we obtain a surjection f[s~!]: F[s™'] —
P[s™ '] which becomes an isomorphism when localized at p. (This makes
sense since A, can be viewed as a localization of A[s™'].)

P[s™ '] being projective over A[s™ ], this surjection splits, and ker f[s~ ']
is therefore finitely generated. Since it becomes zero when localized at p,
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it is annihilated by some element of A[s~!] — p[s~'] and hence by some
te A — p. Letting u = st, we conclude that F[u~*] 5 P[u~']. But then
F,5 P, forall qsuch that u ¢ g, since A, is a localization of A[u~ '] for such q.
Thus P, is free of rank r for all q in the neighborhood Spec 4 — V(u) of p.

PROOF OF 3.4. Note first that a ring A is decomposable if and only if it contains
an idempotent element e #0, 1; for direct sum decompositions of the A-
module A correspond to 1 x 1 idempotent matrices, which are the same as
idempotent elements. What we must prove, then, is that if Spec 4 is discon-
nected then A4 contains an idempotent e # 0, 1.

Suppose Spec A is disconnected, say Spec A = V(I) || V(J) where I and
J are proper ideals. Since an element e is idempotent if and only if e(1 — e)
= 0, what we are looking for is a decomposition of 1 as e + f, where ef = 0
and e, f # 1. Now we know (cf. 3.7(v)) that V(I + J) = V() n V({J) = &,
so I + J = A by 3.7(iii). Thus e, + f; = 1 for some e, € I, f; € J. We also
know (3.7(iv)) that V(1J) = V(I) u V(J) = Spec A, so every element of IJ
is nilpotent by 3.7(ii). In particular, e, f; is nilpotent. I claim now that we
can get our desired decomposition e + f = 1 by raising both sides of the
equation e; + f; = 1 to a high enough power. Indeed, for any integer n > 0,
we can group the terms in the binomial expansion of (e, + f;)2"~! to obtain
l=(e; +f1)" '=e+f, where ecAde} =1 and fe Af} = J (hence
e, f # 1). Since e, f| is nilpotent, we will then have ef = 0 for large enough n.

EXERCISES

*1. Generalize 3.4 as follows: For any commutative ring A, the idempotents of A4 are in
1-1 correspondence with the subsets of Spec 4 which are both open and closed.

*2. Generalize 3.5 as follows: Let 4 be an arbitrary commutative ring and let P be a
finitely generated projective A-module. For any integer i > 0 let U; < Spec 4 be
R4 ((P)”'(i). Let ¢; € A be the idempotent corresponding to U; (cf. exercise 1). Then
e; = 0 for all but finitely many i and R ((P) = Y, ie;.

*3. In view of exercise 4 of §2, the result of exercise 2 can be stated in the following
concrete terms: Let E be an idempotent matrix over a commutative ring 4; then
there are idempotent elements e; € A such that tr(E) = z,}o ie,. It is natural to
ask whether the e; can be computed explicitly in terms of the entries of the matrix E.
The purpose of this exercise is to give an affirmative answer, due to Goldman
[1961] (see also Almkvist [1973]), which gives a formula for e; in terms of the co-
efficients of the characteristic polynomial of E.

(a) Let E be an idempotent n x n matrix and let ¢(t) = det(1 + tE) = 1 + tr(E}t
+ --- + det(E}". Let P be the corresponding projective module Im(E), and let
(e)i>0 be as in exercise 2. Show that ¢(r — 1) = z,»zo e;t'. [Hint: At a prime ideal
where P has rank i, both sides of this equation are equal to ¢'.]



4 Ranks over Group Rings; Swan's Theorem 239

(b) Writing ¢(t) = Y, a;t', deduce that

fi+]
€ = Z(—l)’( . )ai+j~
j 1
If n = 2, for example, then e, = det(E), e, = tr(E) — 2 det(E), and e, = 1 — tr(E)
+ det(E).

4 Ranks over Group Rings; Swan’s Theorem

For simplicity we will confine ourselves to integral group rings ZT', although
it will be obvious that some of what we do in this section extends to more
general group rings kT

In order to understand the Hattori-Stallings rank R(P) (also denoted
R(P)) over ZTI", we must first understand the group T(ZI"). This group is
the quotient of the additive group of ZI" by the subgroup generated by the
commutators [y, ¥'] = vy’ — ¥y (3, ¥ €). Now the commutators of this
form are precisely the elements yy,y~! — 3, (3, y, € I); for we have [y, y] =
Yy~ = @'y and yy,y" ! — . =[7 7177 ']. It follows easily that T(ZT)
can be identified with the free abelian group on the conjugacy classes of
elements of I'. Thus any element of T(ZI') has the form

z t(}’) * [7]’
ye€
where € is a set of representatives for the conjugacy classes in I', [y] denotes
the conjugacy class of y,and t: I" — Z is a function which is constant on each
conjugacy class and is zero for almost all conjugacy classes. In concrete
terms, then, the trace of a matrix over ZI" is obtained by summing the
diagonal elements and grouping together the terms corresponding to
conjugate group elements.
Now let P be a finitely generated projective ZI'-module. Its Hattori-
Stallings rank R{(P) € T(ZI') has an expansion
R{(P) = Z“Rr(P)(v) -7
ye
Thus R{(P) can be viewed as a family of integers R{(PXy) (y € ¥) associated
to P. From this point of view, the restriction formula 2.4 takes the following
form:

(4.1) Proposition. Let T be a group and I a subgroup of finite index. For any
ye T there is an integer n(y) > O such that for every finitely generated pro-
Jjective ZT'-module P,

Rp(P)Xy) = n(y) - R{P)().
Moreover, n(1) = (I': I").
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(See exercise 2 below for a precise formula for n(y).)

ProoF. We need to compute tr = tryppp: T(ZI) - T(ZI). Fix y €T, and
recall that tr([y]) is the trace over ZI" of the right multiplication map
Uy ZT — ZT (cf. proof of 2.4). Let S be a set of coset representatives for
I"\T. Then § is a basis for ZI" as a left ZI"-module, and , can be described
as follows in terms of this basis: Given s € S, we have p,(s) = sy = y't, where
t € S is the representative of the coset I"sy and y' = syt~! e I". Thus we get a
non-zero contribution to the trace of y, if and only if t = s, i.e., if and only if
sys~ ! eI”, and this contribution is then y’ = sys~!. We therefore have

t([y]) = Y [sys™'1rs

seS

where

the IM-conjugacy class of sys™ ' if sys ' eI”
0 otherwise.

[sys™ '] = {

For any y € I, let n(y) be the number of cosets I''s such that [sys™ ']
= [y]r . Note that n(y) > 1 and that n(1) = (I": T"'). Let € (resp. €’) be a set
of representatives for the I'-conjugacy classes (resp. I"-conjugacy classes).
Then the formula of the previous paragraph yields the following formula
for tr: T(ZT") - T(ZI'"):

tr( Zgr(v)[w]) = Y. Myl

ye¥’

The proposition is now immediate from 2.4. O

For example, if we take I' finite and I'" = {1}, 4.1 simply says rk,(P) =
|| - R{(PX1); thus the “rank” p(P) introduced in §1 satisfies

@2 pr{P) = R{(PX1).

[Note: We have just rederived the result of exercise 6 of §2.] On the other
hand, our other “rank” e(P) can also be expressed in terms of R(P).
Indeed, we have already done this in exercise 5 of §2, and the result of that
exercise, when translated into the notation of the present section, is

@3) eP) = Y, Re(P)).
ye¥
We can now prove our main result, which can be viewed as saying that the

three “ranks” ¢, p, and R that we have been talking about for finite I are all
essentially the same:

(4.4) Theorem (Swan [1960b]). If T is finite and P is a finitely generated
projective ZI'-module, then R(P)(y) = O for y # 1. Thus there is an integer
r such that R(P) = r-[1], and one has e(P) = p{(P) =r.
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PRoOF. The second assertion follows from the first in view of 4.2 and 4.3. To
prove the first assertion, we may replace I" by the cyclic subgroup generated
by y; for the restriction formula 4.1 shows that this does not change the
question as to whether R(PXy) = 0. In particular, we may assume that ZI" is
commutative. Also, as we pointed out in exercise 7 of §2, it follows from formal
properties of p{ ) that ZT is indecomposable. Theorem 3.5 is therefore
applicable and shows that R(P) is an integral multiple of [1], as required.

For emphasis, we go back to the definitions of p and ¢ and state explicitly
what it means for them to be equal:

(4.5) Corollary. Let I be a finite group and P a finitely generated projective
ZI'-module. Then

rkz(P) = |T'|- rkz(Py).

Remark. Using some elementary representation theory (cf. exercise 3 below),
one can restate Swan’s theorem as follows: If I is finite and P is a finitely
generated projective ZI'-module, then Q ®; P is a free QI'-module. It is
in this form that Swan stated and proved the theorem. The formulation and
proof in terms of Hattori-Stallings ranks are due to Bass [1976, 1979].
Bass went on to conjecture that 4.4 remains valid for arbitrary groups I'.
[To make sense out of the second assertion of 4.4 for arbitrary I', one should
take 4.2 as a definition when I’ is infinite, as we essentially did in exercise 8
of §2.] He proved the conjecture for a large class of torsion-free groups I'. For
infinite groups with torsion, however, the conjecture is still completely open.

EXERCISES

1. Where did the proof of 4.4 use the assumption that I' was finite?

2. Show that the integer n(y) in 4.1 is equal to (C{y): Cr(7)), where C(y) (resp. Cr())
is the centralizer of y in I (resp. I'").

3. Let I' be finite, let k be a field of characteristic zero, and let V be a kI'-module which is
finite dimensional over k. Then V is finitely generated and projective (cf. §1.8, exercise
5), hence it has a Hattori-Stallings rank ) R(y)-[v], where R: T — k is a central
function, i.e., a function which is constant on conjugacy classes. On the other hand,
there is a classical way to use traces to associate a central function y:I" — ktoV,
called the character of V. Namely, x(y) is the trace over k of the action of y on V. The
purpose of this exercise is to relate y and R and to draw some consequences from
this.

(a) Show that the Hattori-Stallings rank of V is equal to

1 - e XY
AR M rewey

(v
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ie. that R(y) = 7(y~')/IC{y)|. [Method 1: There is a canonical way of writing V
as a direct summand of an induced module; namely, we have kI' ®, VSV, where
n(y ® v) = yv and

1
w)y=— 7Yy r®y ‘v
T &
Choose a basis (e;) for V over k, so that (1 ® e;) is a basis for kI ® V over kI. You
can now write down the matrix of ix in terms of the matrices a;{y) of the elements of I
acting on V. Method 2: It’s enough to prove this when k is algebraically closed and V
is irreducible. In this case, the element

n
e

— vy~ 1)

i EZF A~

where n = dim, V, is the idempotent of kI" which projects kI" onto its summand of
type V (cf. Serre [1977b], 2.6). Since V occurs n times in kT, the image of e in T(kI")
is the Hattori-Stallings rank of the sum of n copies of V. Method 3: By the restriction
formula (in the precise form provided by exercise 2), we may assume I is cyclic, so
that the map p,: V — V given by the action of y is kI-linear for each y €I'. Then
try (i) = 7 tryp(id) = y- R,{V) by exercise 3 of §2. In particular, the coefficient
try (s X1) of [1] is equal to Ry(V )y~ !). On the other hand, the analogue of 4.1 for

traces gives 7(y) = try(,) = |T|-try(,)(1).]

(b) Using the fact (known from representation theory) that the module V is determined
up to isomorphism by its character, show that two finitely generated kI"-modules are
isomorphic if and only if they have the same Hattori-Stallings rank.

(c) Deduce the reformulation of 4.4 given in the remark above.

4. Take 4.2 as a definition, and prove that pp(P) = (I': I")p(P) for any group I,
subgroup I'" of finite index, and finitely generated projective ZI'-module P.

5. With I', I, and P as in exercise 4, prove that er.(P) = (I': I")e(P). [Hint: Suppose
first that I is normal in I". Let T = I'/I” and let P = Py = ZT" ®r P (cf. §11.2,
exercise 3). P is a finitely generated projective ZI'-module, and the desired result
is obtained by applying 4.5 to it. In the general case, choose a subgroup I'" < I
of finite index such that I'" is normal in I; this is possible because I'’ has only finitely
many conjugates in I', so their intersection is still of finite index and is normal.
Now compare ¢ to both &r. and &r.]

5 Consequences of Swan’s Theorem

In this section, finally, the reader will begin to see some Euler characteristics.
We will then be ready in §6 to discuss Euler characteristics of groups.

For any finitely generated abelian group A4, we define the rank of A
(sometimes called the torsion-free rank of A) by

rkz(A) = dimQ(Q ®l A).
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If A is free this obviously agrees with the naive rank [cardinality of a basis]
which we have been using throughout this chapter for free modules; in
general, rk;(A) as defined above is equal to the rank in this naive sense of
the “free part” of A, i.e., of the quotient of 4 by its torsion subgroup. In
particular, rk;(4) = 0 if and only if A is finite.

Let C be a non-negative chain complex of abelian groups. We say that C
is finite dimensional if C; = 0 for sufficiently large i. If, in addition, each C;
is finitely generated, then C is called finite. Suppose that C is finite dimensional
and that H,C is finitely generated; then we define the Euler characteristic
x(C) by

2C) = Y (— 1) tko(H;C).
iz0
In case C is the cellular chain complex C(X) of a finite dimensional CW-
complex X, we write y(X) instead of y(C(X)). Thus

20 = T (= 1) tkl X0,

If X is actually finite, then y(X) is equal to the classical Euler characteristic
Y (—1)'n;, where n; is the number of i-cells of X. This follows from:

(5.1) Proposition. If C is a finite chain complex, then
X(C) = ¥ (1) tke(C).

See, for instance, Spanier [1966], 4.3.14, or Dold [1972], V.5.2, for the
(easy) proof.

It is also convenient sometimes to compute Euler characteristics using
“mod p” homology. This is justified by:

(5.2) Proposition. Let C be a finite dimensional free chain complex over Z
with H, C finitely generated. Let p be a prime number. Then

X(C)= Y. (= 1) dimg (H(C ® Z,)).

PROOE. Let r; = dimg ((H;C),) and s; = dimg (,(H;C)). [Recall that 4, =
A®Z,= A/pA and that A = {ae A:pa= 0} = Tor(4, Z,) for any
abelian group A.] Using the universal coefficient theorem (or the long exact
homology sequence associated to the short exact sequence 0 — C HC—
C®Z,—0), one finds that dim; (H(C ® Z,)) = r; + 5;-1. On the other
hand, since H,C is a direct sum of cyclic groups, one sees easily that r; =
tkz(H;C) + s;. Thus dimz (H{(C ® Z,)) = tko(H;C) + s; + si—y, and the
proposition follows at once. O

We now prove the main result of this section:
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(5.3) Theorem. Let G be a finite group and let C be a finite dimensional chain
complex of projective ZG-modules. If H,(C) is finitely generated then so is
H ,(Cq), and

x(C) = |G|~ x(Cq)-

(In other words, C behaves like a finite free complex as far as Euler
characteristics are concerned.)

ProOF. In case C is a finite projective complex, this is immediate from 4.5,
since y can then be computed on the chain level (5.1). The general case is
reduced to the finite case by means of Lemma 5.4 below. O

Recall that a ring R is noetherian if every submodule of a finitely generated
module is finitely generated. For example, ZG is noetherian if G is finite,
since a finitely generated ZG-module is finitely generated as a Z-module.

(5.4) Lemma. Let R be a noetherian ring and C a finite dimensional chain
complex of projective R-modules. If H, C is finitely generated over R, then C
is homotopy equivalent to a finite projective complex.

PROOF. First we construct, step-by-step, a free complex F of finite type which
admits a weak equivalence t: F — C. The inductive step is carried out as
follows: Suppose we have constructed the n-skeleton of F together with a
chain map

F,—--- s Fo
» Cay —2—s Cy——+-:—— Gy

such that H;t is an isomorphism for i < n and an epimorphism for i = n.
Then ker(H, ) is finitely generated since F, is finitely generated and R is
noetherian. Let x,, ..., x, € F, be cycles representing generators of ker(H, 1),
let y, ..., y,€C,,, be chains such that dy; = tx;,and let z,, ..., z,€ C,,,
be cycles representing generators of the finitely generated module H,, ,C.
Then we can take F,,, to be free with basis ey, ..., ¢,, f;, ..., f; and set
Oe; = x;, df; = 0, te; = y;, and tf; = z;. The resulting chain map

[ —
Cn+l :Cn RO

induces an H;-isomorphism for i < n + 1 and an H,, ,-epimorphism. This
completes the inductive construction of F and . Note that the weak equiva-
lence 7 is actually a homotopy equivalence by 1.8.4.
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Now let n be an integer such that C; = 0 for i > n, and consider the
quotient F of F defined by

F; i<n
F,~= F,l/Bn i=n
0 i>n,

B, being the module of n-boundaries. Then we still have a weak equivalence
F - C, and the lemma will clearly follow if we can show that F /B, i pro-
jective. For any R-module M, we have

H"* Y(Homg(F, M)) = H"*'(Homg(C, M)) = 0

since F~ C and C,,, = 0. Examining cocycles and coboundaries in
Homg(F, M) as in the proof of VIIL.2.1, we conclude easily that B, is a direct
summand of F,, and hence that F,/B, is projective. O

To illustrate the significance of Theorem 5.3, we give two special cases.

(5.5) Corollary. Let G be a finite group and let X be a finite dimensional free
G-CW-complex with H, X finitely generated. Then H (X/G) is finitely gener-
ated and y(X) = |G| y(X/G).

PROOF. Apply 5.3 to the cellular chain complex of X. a

This result is obvious, of course, if X is finite, since we can then compute
Euler characteristics by counting cells.

The second special case involves group cohomology. If T is a group such
that H;T is finitely generated for all i and finite for sufficiently large i, then
we set

i) = ;(— 1) tk(H,T).

[The notation j here is intended to suggest that this is not always the “right”
Euler characteristic. We will explain this in §7.]

(5.6) Corollary. Let I be a group with cd I' < o0 and let I be a normal sub-
group of finite index. If H,T" is finitely generated then so is H, T, and }(I") =
(r:1)-x(I).

PrOOF. Let P be a projective resolution of finite length of Z over ZT, let
G =T/I', and let C = Pr. = ZG ®yr P (cf. §I1.2, exercise 3). Then C is a
finite dimensional complex of projective ZG-modules with H,C = H,I"
and H,(C¢) = H,T'; now apply 5.3. a

Finally, we will need a mod p analogue of 5.3:
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(5.7) Theorem. Let G be a finite p-group for some prime p, let k be a field of
characteristic p, and let C be a finite dimensional complex of projective
kG-modules. If H,C is of finite rank over k, then so is H.(Cg), and x(C)
=|G|-x(Cg), where x( ) now denotes Y (—1)' dim(H{ )).

Proor. This is identical to that of 5.3, with one major simplification; namely,
the mod p analogue of 4.5 is now true for trivial reasons, since all projective
kG-modules are free (VL.8.5). O

One also has, obviously, mod p analogues of the corollaries 5.5 and 5.6
of 5.3.

EXERCISES

1. Let C and G be as in 5.3. For each g € G, let L(g) be the Lefschetz number of g acting
onC,ie.,

L(g) = ¥ (= 1) trg (g acting on H;C ® Q).

Prove that L(g) = O for g # 1, and state a topological corollary analogous to 5.5.
[Hint: We may assume C is finite, so that L(g) can be computed on the chain level.
Exercise 3 of §4 now describes L(g) in terms of Hattori-Stallings ranks, and the
latter are computed by Swan’s theorem (4.4).]

2. Let I and I"" be as in 5.6. Let y; be the character associated to the representation of
the finite group I'/I" acting on H(I", Q). Show that Y ; (— 1), is an integral multiple
of the character of the regular representation of I'/I". [The regular representation,
by definition, is the free Q[I'/T""]-module of rank 1; its character takes the value 0 on
all non-identity elements of I'/I"".]

6 Euler Characteristics of Groups:
The Torsion-Free Case

Euler characteristics of groups have been defined by a number of people
under a number of different finiteness conditions. For our purposes the
following condition is the most convenient one to impose: A group I' is said
to be of finite homological type if (i) ved I’ < oo and (ii) for every I'-module
M which is finitely generated as an abelian group, H(I', M) is finitely gen-
erated for all i. [Warning: This definition differs slightly from that given in
Brown [1974].] Note that if I is torsion-free, then (i) implies thatcd I’ < o0
(cf. §VIIL3).

Remark. The main examples of groups of finite homological type are the
groups of type VF P, and the reader may prefer to replace “finite homological
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type” by “type VFP” in what follows; this results in occasional simplifica-
tions of the proofs. On the other hand, we will see that one cannot restrict
attention to groups of type VFL, even though all known examples of groups
of type VFP are in fact of type VFL.

(6.1) Lemma. If T is a group and I" is a subgroup of finite index, then I is of
finite homological type if and only if T is of finite homological type.

PROOF. It is obvious that ved I' < oo if and only if ved I'" < o0, so we need
only check that (ii) holds for I' if and only if it holds for I'". The “only if ”
part follows from Shapiro’s lemma, since coind}. M is finitely generated over
Z if M is. Conversely, suppose I"" satisfies (ii). We know that I'"" has a subgroup
I of finite index which is normal in I (cf. §4, hint to exercise 5), and I'” still
satisfies (ii) by what we have just proved. Replacing I’ by I'”, then, we may
assume I'"" is normal in I". For any I'-module M which is finitely generated
over Z, the Hochschild-Serre spectral sequence

EZ = H,(T/I", H(T", M)) = H, . (T, M)
now shows that H(T", M) is finitely generated for all i, as required. O

Suppose now that I' is of finite homological type and torsion-free. We then
define the Euler characteristic x(I') by

AD) = X (= 1)rky(H;T).

[Thus x(I') = #(T) in this case, where J is as in §5.] In case I is of type FP,
one has an analogue of the combinatorial formula for the Euler character-
istic of a finite CW-complex. Namely, if P is a finite projective resolution of
Z over Z, then

(62) 1) = 3 (—1'e(P),

where ¢ is the “rank ” defined in §1. [To prove this, we need only note that
H, T can be computed from the finite chain complex Pr; the assertion now
follows from 5.1.] We also have, trivially, the topological interpretation

() = x(K(, 1)). '
Here are a few examples where x(I") can easily be computed.

EXAMPLES
1. If T is a free group of rank n > 0, then there is a K(T', 1) with one vertex
and n 1-cells, hence y(I') = 1 — n.

2. IfTisafree abelian group of rank n > 1, then the n-torus St x...x 8!
is a K(T, 1) with Euler characteristic x(S") --- (§*) = 0, hence ¢(I') = 0.
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3. Let I be the commutator subgroup of SL,(Z). The latter is well-known
to be an amalgamation Z, *,, Z. (See Serre [1977a], 1.4.2, for an indication
of an easy proof of this; see also example 3 of §VIIL9 above.) In particular, it
follows that SL,(Z),, is of order 4-6/2 = 12, so that I is of index 12 in
SL,(Z). One can also check, using the normal form for words in an amalga-
mated free product, that I is free of rank 2 (cf. Serre [1977a], 1.1.3, proof of
Prop. 4). Hence y(I') = 1 — 2 = —1 by example 1.

We will see more examples later.
The following property of y( ) is fundamental:

(6.3) Theorem. If T is torsion-free and of finite homological type and T is a
subgroup of finite index, then

() = (I:T) - ().

Proor. It suffices to prove this when I'"” is normal in T, in which case it follows
from Corollary 5.6. O

The proof of 6.3 simplifies slightly if I' is of type FP; in this case we can
use 6.2 and exercise 5 of §4 instead of 5.6. And the proof simplifies drastically
if " is of type FL, since exercise 5 of §4 is trivial for free modules.

Theorem 6.3 has an interesting application to the theory of group exten-
sions:

(6.4) Corollary. Let 1 5T — E— G — 1 be a group extension such that T is
torsion-free and of finite homological type and G is of prime order p. If p ¥ x(T),
then the extension splits.

(If T is free on n generators, for instance, then such an extension must
split whenever p ¥ (n — 1).)

PRrOOF. The group E necessarily has torsion; for if it were torsion-free, then
6.3 would be applicable and would yield p|x(I'), contrary to our hypothesis.
Let G be a non-trivial finite subgroup of E. Since I is torsion-free, G A I’
= {1}; thus G maps injectively to G. But |G| is prime, so G maps isomorphi-
cally and provides a splitting. O

Remarks

1. Even if we are interested in 6.4 only for groups I' of type FL, the proof
still requires a theory of Euler characteristics for groups of type FP. For we
need to apply 6.3 to E in the first part of the proof (assuming E is torsion-free);
and all we know about E, given that I is of type FL, is that it is of type FP
if it is torsion-free.

2. We will give a substantial improvement of 6.4 later (cf. 9.4).
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7 Extension to Groups with Torsion

From the topological point of view, it may seem very reasonable to restrict
attention to torsion-free groups. Indeed, topologists usually consider Euler
characteristics only for finite dimensional complexes, and we know that I’
must be torsion-free if there is a finite dimensional K(T", 1). From the algebraic
point of view, however, this seems less reasonable; for it forces us to exclude
certain groups I' (like SL,(Z)) just because they have torsion, even though I'
may have subgroups of finite index for which y is defined.

There is a simple solution to this problem, based on an idea due to Wall
[1961]. Namely, if I is an arbitrary group of finite homological type, then
we choose a torsion-free subgroup I'” of finite index and set

xI)
() = T € Q.
This is motivated by 6.3, and, in fact, 6.3 is precisely what is needed to justify
this definition, i.e., to show that the right-hand side is independent of the
choice of I'". For suppose I'” is another such subgroupand letI'y = I" " I'";
then

AT) 6.3 XT)(T:To) _ 1(To)
r:r r:m . Ty

and similarly y(I'")/(T": T") = y(F)/(T: T,), which proves our assertion.
If T is finite, for instance, then we can take I" = {1} and we find

1
(7.1 N=—.
) (1) T
Or if I' = SLy(Z), then we can take I'" to be the commutator subgroup
(cf. example 3 of §6), and we find

(.2 HSLD) = — 35

These examples show that the rational number x(I') is not generally an
integer. In particular, y(I') need not be equal to the naive Euler characteristic
() defined in §5, which is always an integer. [Note that ¥(I') is indeed
defined if Tis of finite homological type. For weknow H, I"is finitely generated
for all i, and a transfer argument (I11.10.1) shows that rk,(H;TI') = 0 for
i > ved I.] This failure of x(T) to be integral raises a number of interesting
questions, which we will take up in §9.

In our study of Euler characteristics, we will attempt to get information
about y(I') by studying actions of I on CW-complexes. For this purpose,
the equivariant Euler characteristic x(X) is a fundamental tool. It is defined
as follows: Suppose X is a I'-complex such that (i) every isotropy group I,
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is of finite homological type and (ii) X has only finitely many cells mod I';
then we set

(X)) = L (=1)*™7y(T,),

cel

where & is a set of representatives for the cells of X mod I'. Note that y(I') =
xr{pt.), so the equivariant Euler characteristic can be viewed as a generaliza-
tion of the ordinary Euler characteristic.

We now close this section by listing some useful properties of x( ) and

xe( )

(7.3) Proposition. (a) If I is torsion-free and of finite homological type then
D) = Y1) = ¥ (—1) dimg (H(T, Z,))

for any prime p.
(b) If T is of finite homological type and T is a subgroup of finite index, then

(M) = (1) - x(I).
(b) More generally, if xy{X) is defined and T" = T is a subgroup of finite
index, then yr(X) is defined and
(X)) = (T:T7) -y X).
(c) Suppose that x{(X) is defined and that each T, is torsion-free. Then the
equivariant homology H%(X) is finitely generated and
(X)) = (X)),

where 3(X) = Y; (—1)' tkp(HT(X)).

(d) Let 1 > T" > T > I'" = 1 be a short exact sequence of groups with T”
and T of finite homological type. If T is virtually torsion-free, then I is of
finite homological type and

() = (") - x(T™).
() LeeI' =T, %,T,, where I}, T',, and A are of finite homological type.
If T is virtually torsion-free then T is of finite homological type and
x(I) = x(Ty) + x(T3) — x(A).

(e’) More generally, suppose X is a contractible T'-complex such that y{(X)
is defined. If T is virtually torsion-free, then T is of finite homological type and

AT) = x{(X).

PrOOF. The first equality of (a) is true by definition, and the second follows
from 5.2. (b) is immediate from the definition of y. To prove (b’), fix a cell ¢
of X and consider the set I'o of cells which are equivalent to ¢ mod T. Since
I'e is in 1-1 correspondence with I'/T’,, it decomposes into finitely many
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I"-orbits, represented by the cells yo where y ranges over a set S of representa-
tives for I"\I'/T,. Note that T, = I" A T,, = I" A y[,y~!, which is con-
jugate in T to y~'I"y A T,. The contribution of I's to the sum defining
1r(X) is therefore

L (=D ATy~ = (= D)*™ Y 43" Ty A T,)

yeS yeS

= (=" Y (T ' Ty A ) - x(T,)

yeS
= (=D¥m(r:1) - x(T,).

(The last equality here is obtained by decomposing I'"\I" into orbits under
the right action of I',.) (b") now follows at once.

To prove (c), consider the equivariant homology spectral sequence
(VIL7.7)

Ejy = @ HyTo 2)) = H}. (X),
ceép
where &, is a set of representatives for the p-cells of X mod I. Since T, is
torsion-free and of finite homological type, we know that H,(T,) is finitely
generated. Hence HY(X) is finitely generated, and we can compute 7{X)
from the E'-term of the spectral sequence (cf. VIL.2.7). Assuming for the
moment that I', acts trivially on Z, for all g, we find

WX =3 Y (17" rk(H T,))

p.q oeép

=Y ¥ (-1)PuT,)

p oeép
= xr(X).

In the general case, we need only note that all Euler characteristics can be
computed from homology with Z,-coefficients (cf. (a) above). Since I, acts
trivially on (Z,),, the result follows as above from the equivariant homology
spectral sequence with Z,-coefficients.
(d) Let ', = T be a torsion-free subgroup of finite index whose image
% in I is torsion-free, and let 'y =Ty AT, I claim that (I':T,) =
(I:Tp) - (I:Tg); for (T:Ty) = (T:T'Ty)-(I'Ty: Typ), and the well-known
isomorphism laws of group theory imply that (I': I'Ty) = (I'": I'g) and
(I'Ty: Tp) = (I': T'p). We may therefore replace the given exact sequence by
15Ty —»Ty—T§—1,ie, we may assume that I'", T, and I'” are torsion-
free. Then cd ' < oo by VIIL.2.4b, and the Hochschild-Serre spectral
sequence

E}, = H(I",H(T",M)) = H,, (T, M)
shows that I' is of finite homological type. Now take M = Z,.Since H (I, Z,)

is finite, there is a subgroup I'y = I'” of finite index which acts trivially on it.
Replacing I'” by I'g and I by the inverse image of I'g, we may assume that I'”

ptq
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acts trivially on H(I", Z,). Then E, = H(I™", Z,) ®,, H(T", Z,). Comput-
ing Euler characteristics from this spectral sequence, we conclude that
xT) = x(I7)- x(T).

Finally, (e) follows from (e’) applied to the tree associated to I'y *, T,
(cf. appendix to Chapter II), so it remains only to prove (¢'). In view of (b’),
it suffices to prove (e’) when I is torsion-free. Since X is contractible, we have
H (T, M) ~ HY(X, M) for any I'-module M (VIL7.3), and similarly for
cohomology. A spectral sequence argument (cf. proof of (c)) then shows
that H(T', M) = Ofori > dim X + max{cd I',} and that H (', M) is finitely
generated if M is. Hence F is of finite homological type. Moreover,

D) = YI) because I' is torsion-free
= (X) because H,I' =~ H(X)

=x(X)  by(c). O
As an example of (e), consider SL,(Z) = Z, *2, Zs- Then (¢) gives
ASLAZ) =t +¢—%=—15,

in agreement with 7.2.

EXERCISES

1. The purpose of this exercise is to outline an alternative method of defining a
“rational Euler characteristic” under suitable finiteness hypotheses. This is due to
Bass [1976], Chiswell [1976b] and Stallings [unpublished]. For any group I'
and any finitely generated projective QI'-module P, we can define a “rational rank "
p(P) [or p{P)] by p(P) = Rq(P)(1) € Q. [This is motivated by 4.2.] Note that
pr(P) = (F:IMpAP) if I" < T is a subgroup of finite index (cf. 4.1).

(a) I' is said to be of type FP over Q if Q admits a finite projective resolution over
QT.. In this case we choose such a resolution P and set e(I') = Y (—1)'p(P;). Show
that e(I') is well-defined and that e(I'") = (I': I)e(I") if I = T is a subgroup of
finite index.

(b) Show that any group of type VFP is of type FP over Q. [Hint: If P is a QI-
module which is projective over QI", where (I': ") < oo, then P is projective. This
can be proved by an averaging argument.]

(c) If T is of type VFL, show that &(I') = x(I").

[Remark. It is not known whether ¢(I') = y(I') for arbitrary groups I' of type
VFP.]

2. (a) If &T") # 0, show that C(I'), the center of T, is finite. [Consider the “complete
Euler characteristic” E(I') e T(QT), defined by E(I') = Y (—1)'Rqr(P;), where (P))
is a finite projective resolution of @ over QI". Note that E(T') is simply trgr(idg), as
defined in exercise 2 of §2, and that E(I')(1) = &(I). If y € C(I'), then we find (using
exercise 3 of §2) that E(I) = tr(idg) = tr(y-idg) = y - tr(idg) = y - E(T). Hence
el = EN)(™").]

(b) Deduce the following theorem of Gottlieb [1965]: If Y is a finite K(I, 1)-
complex with x(Y) # 0, then C(I') = {1}.
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Remark. This proof of Gottlieb’s theorem is due to Stallings [1965b], as reformulated
by Bass [1976].

*3. Suppose I is torsion-free and of finite homological type and let M be a I'-module
which is finitely generated as an abelian group. Show that

Z (= 1) tkzg(H{(T, M)) = x(I') - rkz(M).

*4. If T is of finite homological type and M is a I'-module which is finitely generated as
an abelian group, show that H(I', M) is finitely generated for all i. [Hint: Reduce
to the case where M is Z-free. In this case let M* = Hom(M, Z) and note that
Hom{(P, M) = Hom(P @ M*, Z).]

*S. Let I' = SL,(Z) be a torsion-free subgroup of finite index k. Prove that I is a free
groupon 1 + k/12 generators. Example: The principal congruence subgroup of level
3 has index 24 = |SL,(Z,)|, hence it is free on 3 generators.

8 Euler Characteristics and Number Theory

The study of groups of integral matrices is intimately related to algebraic
number theory. For example, if one tries to classify elements of order p in
GL(Z) up to conjugacy, one quickly finds that ideal classes of the p-th
cyclotomic field come into play. Recall now that many integral matrix
groups are of type VFL (cf. §VIIL.11). We therefore have rational numbers
x(I") associated to such groups, and it is natural to ask whether these numbers
have any number-theoretic significance. The remarkable answer is that y(I'),
for many arithmetic groups I', can be expressed in terms of values of zeta-
functions. In this section we will give a brief survey of results of this type. See
Serre [1971, 1979] for more details and a guide to the literature.

The starting point for the computation of y(I') is the Gauss-Bonnet
theorem of differential geometry, which says the following: Suppose Y is a
closed Riemannian manifold. Then there is a measure u on Y, constructed
canonically from the curvature associated to the Riemannian metric, such
that

2(Y) = u(Y).

[Note: u is not in general a positive measure. If Y is a surface, for example,
then u = K -dA/2n, where K is the Gaussian curvature function and dA4
is the canonical “area” measure on Y.] We call u the Gauss—Bonnet measure
onY.

If Yisa K(I', 1) and X is its universal cover, then we can rewrite this
formula as

@.1) x(T) = p(X/T).
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Moreover, we can interpret the right-hand side as the measure of a funda-
mental domain for the action of I' on X, relative to the Gauss—-Bonnet
measure on X.

We now specialize to the arithmetic case. Suppose G is a semi-simple
algebraic group defined over Q and I is a torsion-free arithmetic subgroup
of G(Q) < G(R). Let K be a maximal compact subgroup of G(R) and let
X = G(R)/K. Since K is compact, it is easy to see that X admits a Riemannian
metric invariant under the action of G(R); hence there is a G(R)-invariant
Gauss-Bonnet measure x on X, and 8.1 holds if I is co-compact in G(R).
Using the compactness of K again, we can lift u to a left-invariant measure
(still called u) on G(R); 8.1 then takes the form

(8.2) A(T) = p(I\G(R)).

The advantage of this formulation is that it remains valid even if I' has tor-
sion. For both sides of 8.2 get multiplied by (I": I'") if we replace I" by a torsion-
free subgroup I'' of finite index.

We derived 8.2 under the assumption that I" was co-compact in G(R), and,
as we saw in §VIIL9, this situation is far from typical. A remarkable theorem
of Harder [1971], however, says that 8.2 remains valid even if I' is not co-
compact. Harder went on to explicitly calculate the measure u for an inter-
esting family of groups G, the so-called “Chevalley groups.” [There is one
such group for every simple Lie algebra over C. Thus we have the special
linear groups SL,, the symplectic groups Sp,,, the special orthogonal groups
S0,, and five exceptional groups G,, F,, E¢, E;, and E4.]

For such G there is a canonical Haar measure (i.e., positive invariant
measure) u, on G(R), called the arithmetic measure, with the property that
U, (G(R)/G(2Z)) is expressible in terms of values of the zeta-function. On the
other hand the Gauss-Bonnet measure u, being invariant, must have the
form u = cp, for some ¢ € R. What Harder did was to calculate the scalar c,
so that 8.2 would yield an explicit formula for x(G(Z)) in terms of values of
the zeta-function. We will give some examples of this formula below, follow-
ing a brief review of the Riemann zeta-function.

Recall that {(s) is defined for Re(s) > 1 by

©=% =T ;=

pprime 1 - 14

-5

Thus {(s) is an analytic function in the half-plane Re(s) > 1, and one extends
it to a meromorphic function in the entire complex plane. Moreover, the
function &(s) = n~*2I'(s/2){(s) satisfies the functional equation &(s) =
&(1 — s). We will be interested in the values of {(s) at negative integers. At
even negative integers, this is trivial to compute:

{(-2k)y=0 if k=1

For &(s) is holomorphic at s = 2k + 1, hence also at s =1 — (2k + 1) =
—2k. But I'(s/2) has a pole at s = —2k, so {(s) must have a zero there. At
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odd negative integers, on the other hand, {(s) is non-zero and can be described
in terms of the Bernoulli numbers, whose definition we now recall.

The function z/(e* — 1) has a power series expansion of the form

z z it sz
- =1-= %k 2%
1 2t X @it

where B,, € Q. The numbers B,, which arise in this way are called the
Bernoulli numbers. Here are the first few of them, with their numerators and
denominators factored into primes:

1 1 1
B, = — —_— -
27 2.3 Bs 2.3.5 Bs=337
1 5 691
By = — ——— - S
8 2-3.5 Bio=73 Bi2 2-3.-5-7-13
7 3617 43867
Biu=353 Bie=-333517 Bis=33719
g, _ _ 283-617 g, _ 11-131.593 B _ 103-2294797
207 203,511 227 72.3.23 4= 7 2.3.5.7-13

It is well-known that the Bernoulli numbers arise when one computes
{(2k) for an integer k > 1:

_1}kH2k-1
( 1)2 BZk 7'[2".

§2k) = - (2k)!

Using the functional equation to rewrite this as a formula for {(1 — 2k), we
find that the factorial and the powers of — 1, 2, and = disappear; the result is

_ _ Bx
8.3) {1 — 2k) = e

We can now state a few examples of Harder’s formula for y(G(Z)). First,
taking G = SL,, we have

(84) X(SLy(2)) = {(=1).

Since {(—1) = —B,/2 = — 5, this agrees with 7.2. The group SL, is part
of two infinite families of groups, namely, the special linear groups SL, and
the symplectic groups Sp,,. [One has Sp, = SL,.] The generalizations of
8.4 to these families are

(8.5) ASL2) = [] {1 = k)

k=2
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and

(8.6) x(Sp24(2)) = kl_ll {1 — 2k).

Of course 8.5 involves the factor {(—2) as soon as n > 3, so it simply says
x(SL,(Z)) = 0 for n > 3. But 8.6 involves only non-zero values of {(s) and
hence is more interesting.

For our last example we take G to be the exceptional Chevalley group
E,. Harder’s formula in this case turns out to involve { at —1, =5, —7, -9,
—11, —13, and —17, hence it involves B, for k = 2, 6, 8, 10, 12, 14, and 18.
The precise formula turns out to be

~ 691-43867
2P 1319

Finally, we mention that Harder’s formulas (such as 8.5 and 8.6) are
valid with Z replaced by the ring of integers in a number field F and { replaced
by the Dedekind {-function { associated to F. And Serre has shown that one
can generalize even further, namely, to rings s of “S-integers”. Here S
is a finite set of primes of F and @5 < F is the subring consisting of the elements
of F which are integral at all primes not in S. One then uses the {-function
{r.s obtained from {; by omitting from its infinite product expansion the
factors corresponding to the primes in S. If F = Q and S consists of a single
prime p, for example, then {r s(s) = {(s)(1 — p~*) and the generalization of
8.4 gives

8.7 WE-(2)) =

-1
ASLAZLL/PD) = Crs(=1) = P

9 Integrality Properties of x(I")

Let I' be a group of finite homological type (e.g., a group of type VFP).
We know that x(I') = %(I')e Z if T is torsion-free, so the non-integrality of
x(T') in general is somehow due to the presence of torsion in I'. The rest of
this chapter will be devoted to proving various precise versions of this vague
statement.

The most obvious integrality statement that one can make in general is
that (I':I")- y(I") e Z if I is a torsion-free subgroup of finite index; for
I:T) - y(I') = x(I'") = ¥(I"") € Z. Consequently,

o.1) d-yNez,

where d = ged{(I': I"): I"" is torsion-free and of finite index}. This simple
observation, in conjunction with Harder’s deep results (§8), already has non-
trivial applications. For example, Serre [1971] used it to prove integrality
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results about values of the zeta-function of a number field. Another applica-
tion (also due to Serre) concerns the torsion in the exceptional Chevalley
groups. It is based on:

(9.2) Lemma. The prime divisors of d are precisely the primes p such that T
has p-torsion.

PRrOOF. Let H be a finite subgroup of I'. If I" = T is a torsion-free subgroup,
then H acts freely on I'/T”, so (I": I'), if finite, is divisible by |H|. Hence
|H| divides d. In particular, it follows that d is divisible by any prime p
such that I" has p-torsion. Conversely, suppose p is a prime such that I" has no
p-torsion. Let I'y = I' be a torsion-free normal subgroup of finite index
and let I'"" be an intermediate subgroup (I'y & I" < I") such that I"/T is a
p-Sylow subgroup of I'/Ty. Then (I'": T,) is a power of p and (I':T") is
relatively prime to p. By the first part of the proof, any finite subgroup of I
must be a p-group, so I is torsion-free. But then d|(I": "), so p ¥ d. O

Looking at formula 8.7 for x(E,(Z)), for example, we conclude from 9.1
and 9.2 that E,(Z) must have p-torsion for p = 2, 3, 5,7, 11, 13, 19.

The proof of 9.2 shows that d is divisible by the order of every finite
subgroup of I', hence d is divisible by the least common multiple m of the
orders of the finite subgroups. Moreover, it is clear from 9.2 that d and m
have the same prime divisors. But in general d # m. If I' = SL;(Z), for
instance, it can be shown that d = 2%- 3 whereas m = 23.3.

It is reasonable to ask, then, whether 9.1 can be improved to the statement
m- x(I') € Z. This question was raised by Serre, and it turns out to have an
affirmative answer:

(9.3) Theorem (Brown [1974]). Let T be a group of finite homological type
and let m be the least common multiple of the orders of the finite subgroups of T
Then m- y(I') € Z. Consequently, if a prime power p° divides the denominator
of x(T'), then T has a subgroup of order p°.

The second assertion follows easily from the first and the Sylow theorems.
The proof of the first assertion requires some topological ideas involving
finite group actions; it will be given in the next section.

Using 9.3 one can improve Serre’s integrality results on the values of the
zeta function (cf. Brown [1974], §9). One can also obtain good estimates of
the amount of torsion in some of the exceptional Chevalley groups. For
instance, 9.3 and 8.7 show that E,(Z) has subgroups of order 22!, 3% etc.
See Serre [1979] for more information on this. A third application is the
following improvement of 6.4:

(9.4) Corollary. Let 1 -+ T = E - G — 1 be a group extension such that
T is torsion-free and of finite homological type and G is a p-group for some
prime p. If p ¥ x(I), then the extension splits.
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ProOF. We have y(E) = x(T')/| G|, and this fraction is in lowest terms since
plx(l). Theorem 9.3 therefore implies that E has a finite subgroup G
with |G| = |G|. Since T is torsion-free, G maps isomorphically to G and
provides a splitting. O

10 Proof of Theorem 9.3; Finite Group Actions

We begin by interpreting Theorem 9.3 topologically. Since ved I' < o0, we
know from VIII.11.1 that there is a finite dimensional contractible I'-complex
X with finite isotropy groups. Moreover, I claim that X can be taken to be an
admissible T-complex, in the sense that the following condition holds: For
each cell g of X, the isotropy group T, fixes ¢ pointwise. To see this, we need
only recall that X can be taken to be simplicial (VIIL.11.2); passing to the
barycentric subdivision if necessary, we can assume that X is an ordered
simplicial complex and that I' is order-preserving. Then clearly no element
of I can permute the vertices of a simplex non-trivially, so the admissibility
condition holds.

Let I" = T be a torsion-free normal subgroup of finite index. Then I
acts freely on X and the quotient Y = X/I" is a K(I"", 1). Thus

_ Iy o oy
M =FFH =Ty

where x(Y) = Y (—1) rk,(H;Y). What we are trying to prove, then, is that

m
o xY)eZz,
where m = lcm{|H|: H is a finite subgroup of I'}. In other words, we want
to prove that

kix(Y),

where k is the integer (I': I')/m.

Let G be the finite quotient I'/I". Note that the action of I on X induces
an action of G on Y. Moreover, I claim that the isotropy group G, of any cell
t of Y is simply n(T,), where o is any cell of X lyingover tand n: I’ > G
is the quotient map. For suppose gt = 1 and choose y € I such that n(y) = g.
Then yo and ¢ both lie over 1, so y'yo = ¢ for some y' € I"'. Since n(y'y) = g,
this shows that G, < n(I',). The opposite inclusion is trivially true, whence
the claim. (Incidentally, = actually maps I', isomorphically onto G,; for
I', n T is finite and torsion-free, hence trivial.)

Two facts follow from this. First, the action of G on Y is admissible.
Second, every isotropy group G, has order dividing m, hence the cardinality
|G1/|G,| of the orbit of 7 is divisible by k = |G|/m.
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Theorem 9.3 now follows from:

(10.1) Theorem. Let G be a finite group and let Y be a finite dimensional
admissible G-complex such that H, Y is finitely generated. If k is an integer
which divides the cardinality of every G-orbit, then k| y(Y).

Note that it does not matter whether we interpret G-orbit to mean G-
orbit of cells or G-orbit of points; for the admissibility condition implies
that G, = G, for any interior point y of .

Note also that the theorem is trivially true if Y is finite, since y(Y) can
then be computed by counting cells. The point of 10.1 is that it is true under
fairly mild homological finiteness hypotheses on Y. In fact, one can even prove
a version of 10.1 for spaces Y which are not C W-complexes (cf. Brown [1979],
Theorem 7.4), but the proof then requires more machinery than is needed
for 10.1.

ProoF OF 10.1. For any subgroup H < G, let Y, = {ye Y:G, = H}. The
admissibility condition implies that Yy is a union of (open) cells, namely,
those cells 7 such that G, = H. Note that g- Yy = Y,4,-: for any g€ G. In
particular, Y; is stable under the action of the normalizer N(H) of H in G.
Moreover, N(H)/H acts freely on Y. We can now easily explain the idea of the
proof. Y is the disjoint union (set-theoretically) of the subspaces Yy, so
one might expect

(%) XY)= Y x(Yn)
HEG
Now Y,4,-1 =g- Yy ~ Yy, so we can group together the terms in (*)

corresponding to conjugate subgroups H, and we obtain

(**) A(Y) = Y (G: N(H)x(Ya),

He¥¢

where ¢ is a set of representatives for the conjugacy classes of subgroups of G
which occur as isotropy groups in Y. [We have used the elementary fact that
(G: N(H)) is the number of conjugates of H in G.] Since N(H)/H acts freely
on Yy, 5.5 should now imply that y(Yy) is divisible by (N(H): H), so that
(G: N(H))x(Yy) is divisible by (G: H). But (G: H) is the cardinality of an
orbit, so every term on the right-hand side of (+#) is divisible by k; hence
k| x(Y).

We now must clarify and justify the steps in this “proof.” In the first
place, Yy is not in general a subcomplex of Y, since it need not be closed. (A
boundary point of a cell can have a bigger isotropy group than the interior
points.) But each fixed-point set Y¥ is a subcomplex, and hence Yy is a
difference of subcomplexes:

YH = YH - Y>H,
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where Y>H = ( ) ;.54 Y. Let’s assume temporarily that each YH has finitely
generated homology. Then the same is true of Y>H by a Mayer-Vietoris
argument, since the family {Y#:H' 2 H} is closed under intersection.
Hence H,(Y", Y>") is finitely generated, and I claim that («) becomes true
if we replace x(Yy) by x(Y¥, Y>¥).

To prove this, let H,, ..., H, be the subgroups of G, ordered so that
|H;| = |H;.|. We filter Y by subcomplexes

F=Yctc--ct=Y,
defined inductively by
Y,=Y,_,u YH
Note that Y,_, n Y = Y>H: We therefore have an excision isomorphism
H (Y, Yi_,) = H, (" Y>™).

[Note that, because we are dealing with subcomplexes, there is no problem
justifying the excision. Indeed, we already have an excision isomorphism on
the level of cellular chain complexes.] Hence

2Y) = 3 26 %)

Y (YR, Y,
i=1

as claimed.

The remainder of our initial heuristic proof is now valid, with Yy re-
placed everywhere by (Y#, Y>#). One needs, of course, to apply a relative
version of 5.5 to N(H)/H actingon (Y, Y>#), but this presents no problem—
simply apply 5.3 to the cellular chain complex C(Y¥, Y>*), which is a
finite dimensional complex of free Z[ N(H)/H]-modules.

If we now drop the assumption that H (Y") is finitely generated for
each H, then we can argue as follows. Suppose first that G is a p-group for
some prime p. Since H, Y is finitely generated, we can compute x(Y) from
H,(Y; Z,). We now repeat the argument above using H,( ;Z,) and using
5.7 instead of 5.3. This time, however, we have a theorem (VIL.10.5 and
exercise 2 of §VII.10) which says that H (Y"; Z,) is finitely generated, so we
do not need to assume this.

Finally, we can easily reduce the general case to the p-group case: To
prove 10.1, it suffices to show that if p® is a prime power which divides k
then p?| x(Y). Let G(p) be a p-Sylow subgroup of G. By hypothesis p°|(G: G,)
= |G|/|G,| for any cell 7 of Y. Looking at the p-part of |G| and |G, |, we
conclude that p? divides |G(p)|/| P|, where P is any p-subgroup of G.. In
particular, p® divides |G(p)|/|G(p).|, which is the cardinality of a typical
G(p)-orbit. It now follows from the p-group case that p*| x(Y). O
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EXERCISE

Use the method of proof of 10.1 to prove the following “ Lefschetz fixed-point theorem ”:
Let G be a finite group and Y an admissible finite dimensional G-complex. Assume that
each fixed-point set Y (g € G) has finitely generated homology. Prove that the Lefschetz
number L(g) is given by

L(g) = x(Y?).

[Hint: You may assume G is cyclic, generated by g. Then g is non-trivial in N(H)/H
= G/H for every H & G, so L(g|Yy) = O by exercise 1 of §5. Now use the Lefschetz
number analogue of () and note that every term is zero except the one corresponding
toH = G.]

Remark. One can use this theorem to prove the following theorem about Euler charac-
teristics of groups (cf. Brown [1982]): Let I' be a group such that the centralizer
C(y) is of finite homological type for every y € I' of finite order (including y = 1). Let ¢
be a set of representatives for the conjugacy classes of elements of finite order. Then €
is finite, and

1N =¥ wCH)).

123 4

Consequently, we have the following formula, which expresses the deviation between
x(I) and 3(I') in terms of the torsion in I':

(D) = D)+ Y xMCH),

ye¥€’

where ¢’ = ¢ — {1}.

11 The Fractional Part of y(I')

Under suitable hypotheses on I" it is possible to deduce from the proof of 9.3
precise formulas expressing y(I') — %(I') in terms of the torsion in I'. Since
#(T) e Z, such a formula can be regarded as a formula for the “fractional
part” of the rational number x(I"). One formula of this type was just written
down, following the exercise of §10. Another formula, which can be found in
Brown [1974], has the form

20 = 30 + 5D,
" |H|

where H ranges over the non-trivial finite subgroups of I" (up to conjugacy)
and c(H) is an integer whose definition is too complicated to repeat here.

Rather than state and prove this formula, we will use similar methods to
prove some formulas which are less precise but easier to prove and apply.

If S is a partially ordered set, then there is an obvious way to construct
from S an ordered simplicial complex |S|. Namely, the vertices of |S| are
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the elements of S, and the simplices of |S| are the linearly ordered finite
subsets 5o < --- < s, of S. [We have already seen one example of this con-
struction: If K is any simplicial complex and S is the set of simplices of K,
ordered by the face relation, then |S| is simply the barycentric subdivision
of K, cf. §VIIL11.] If T" acts on S (and preserves the ordering), then there is
an induced action of I" on | S|, and we set

xr(S) = x(IS])

if the equivariant Euler characteristic on the right-hand side is defined. More
generally, we will use the functor S+ |S| to assign arbitrary topological
concepts to partially ordered sets. For instance we will write C,(S) and
H (S) instead of C(|S|) and H (|S]), and we will say that § is contractible
or acyclic if | S| is.

(11.1) Theorem. Let I be a group of finite homological type. Assume that T
has only finitely many finite subgroups (up to conjugacy) and that the normalizer
N(H) of each finite subgroup H has finite homological type. Let S be the set of
non-trivial finite subgroups of T, regarded as a partially ordered set under
inclusion, with T-action by conjugation. Then x{(S) is defined and

() = y«(S) mod Z.

(In concrete terms, this gives the fractional part of y(I") in terms of the
Euler characteristics of subgroups of I' of the form N(Hy) n---n N(H,),
where H, = --- < H, is a chain of non-trivial finite subgroups.)

PrOOF. To show y(S) is defined, we must show that | S | has only finitely many
simplices ¢ mod I'" and that each I', has finite homological type. Let & be a
(finite) set of representatives for the conjugacy classes of finite subgroups of I".
Then any simplex H,  --- = H, of |S| is equivalent mod I" to one such
that H,e #. But there are clearly only finitely many such simplices, since
H, is finite. To prove the assertion about the isotropy groups, note that
N(H) for any H € S permutes the simplices H, = --- = H, with H, = H.
Since there are only finitely many such simplices, it follows that each such
simplex o has (N(H): N(H),) < oo, hence N(H), is of finite homological
type. But N(H), = I',, so the first part of the theorem is proved.

Now let X, I'", G, and Y be as in the proof of Theorem 9.3. By VIIL.11.2
we may assume that X¥ is contractible for each H € S. Let X, be the part of
X where the action of T is not free, i.e.

Xo = U X”,
HeS
and let Y, = X,/T" < Y. The analysis of the isotropy groups G, that we
gave in the proof of 9.3 shows that Yj is the part of Y where the G-action is

not free. [ Y, is in fact equal to the subcomplex called Y,_, in the proof of
10.1.]
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I claim now that H (Y,) is finitely generated, and hence so is H (Y, Y,).
Accepting this for the moment, we can apply 5.3 to C(Y, Y,) since G acts
freely in Y — Y,. It follows that x(Y, Y;) is divisible by |G|. Thus

_xy)
xI) = iG]
— x(Yo) + x(Y, Yo)
|G| G|
__,X(Yo)
=61 mod Z.

To complete the proof, then, we will prove that H ,(Y,) is finitely generated
and that x(Y,)/IG| = x{(S). Note first that H (Y,) ~ HI'(X,) since I acts
freely on X, (cf. VIL.7.8). Next, we apply the following observation to X,:

(11.2) Lemma. Let Z be an admissible proper T'-complex such that each T,
is non-trivial and each Z" (H € S) is acyclic, where S is the set of non-trivial
finite subgroups of T'. Then Z is homologically equivalent to S, in the following
sense: There is a chain complex C of T-modules which admits T'-maps
C(Z) « C — C(S) inducing homology isomorphisms.

(Note: By “acyclic” we mean “having the homology of a point.” In
particular, acyclic = non-empty.)

The proof is a straightforward analogue of that of VIL.4.4. Details will
be given in the next section. [The intuitive idea is as follows: We have
Z = (Jyes Z¥, and the order relation on the index set S completely deter-
mines the intersection pattern of the acyclic complexes Z¥. Namely,
ZH"' ~ ZH2 % X if and only if H, and H, have a least upper bound H in S,
in which case Z#1 n ZH: = ZH, It is not surprising, then that we can use
| S| instead of the nerve of the covering in VIL.4.4.]

Returning to the proof of 11.1, we conclude (cf. VIL5.2) that H (Y,) =
HT'(X,) ~ HE'(S). In view of 7.3c and b, it follows that H,(Y,) is finitely
generated and that

o= S = alS). O

With very little effort, we can generalize 11.1 to the following result:

(11.3) Proposition. Let I" and S be as in 11.1. Let Z be an admissible T'-complex
such that y{(Z) is defined. If Z is acyclic for each H € S, then

1{(Z) = 1r(S) mod Z.

(This reduces to 11.1 if Z is a point.)
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PrOOF. Let X and I'" be as above, and apply the proof of 11.1 with X replaced
by X x Z. Note that the latter is finite dimensional, admissible, and proper,
and that (X x Z)¥ = X¥ x ZH is acyclic for each H € S. Moreover,

H (X x Z2)[T") = HE'(X x Z) = Hf'(Z)
since X is contractible. We therefore obtain, as in the proof of 11.1,

_ Ir(2)
T(r:m)

(X x Z)[T)
T

_ A(X x Z)y/T")
- ITr:rm

= ¥ {(S). O

x{(Z)

mod Z

Combining 11.1 and 11.3, we see that
(11.9) () = y(Z) mod Z

under the hypotheses of 11.3.

Finally, we will need the following “local” version of 11.4, for which the
hypotheses on I" can be weakened.

For any prime p, let Z,, = {a/b:a,be Z, p t b}.

(11.5) Proposition. Let T" be a group of finite homological type and let Z be
an admissible T-complex such that y(Z) is defined. If p is a prime such that Z"
is acyclic for every non-trivial finite p-subgroup of T, then

) = y(Z) mod Z,,,.

PROOF. We continue to use the notation of the proof of 11.1. Assume first that
I'/T" is a p-group. Then every finite subgroup of I is a p-group, so our hypo-
thesis says that ZH is acyclic for every H € S. We now repeat the proofs of 11.1
and 11.3, but taking all homology groups to have Z coefficients. We no
longer have hypotheses to guarantee that y(S) is defined, but instead we can
use VIL10.5 as in the proof of 10.1 to conclude that H,(Y,; Z,) is finitely
generated. Arguing as in the proof of 11.1 (and using 5.7 instead of 5.3), we
find that H{'(S; Z,) is finitely generated and that

r(S)

*0) =5

mod Z,
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where the equivariant Euler characteristic on the right is now understood to
be defined in terms of H{'(S; Z,). Similarly,

Xr(S)

w2) =T

mod Z,

SO
x(I) = xr(Z) mod Z.

In the general case, where I'/I” is not necessarily a p-group choose a
subgroup I', 2 I such that I' /T is a p-Sylow subgroup of I'/I". By what
we have just proved,

xT',) = xr,(Z) mod Z,
so that
(T:T,)-xT) =(':T,)- x{(Z) mod Z.

Since (I'": ")) is relatively prime to p, this proves the proposition. O

Knowing x(I") mod Z,, is equivalent to knowing the “ p-fractional part”
of y(I'), ie., that part of the partial fractions decomposition of x(I') with
denominator a power of p. Thus 11.5 says that y(I') and y{(Z) have the same
p-fractional part. We will give some substance to this result in §13 by giving
an interesting example of a complex Z satisfying the hypotheses of 11.5.

12 Acyclic Covers; Proof of Lemma 11.2
The proof of Lemma 11.2 will be based on the following variant of VI1.4.4:

(12.1) Proposition. Let X be a CW-complex and (X,);cs a family of sub-
complexes indexed by a partially ordered set S. Assume that X; = X, whenever
s<t Foreachcelleof X let S, = {s€S:e < X,}. If each subcomplex X is
acyclic and each partially ordered set S, is acyclic, then H(X) ~ H(S).
More precisely, there is a chain complex C, constructed canonically from the
given data, which admits canonical weak equivalences C(X) « C — C(S).

PRrOOF. We will construct a double complex analogous to that used in §VI1.4.
Let | S| be the set of p-simplices of | S|. For each simplex 6 = (so < -+ < 5,)
in |S|®, let X, = X,,. Then X, < X, if 7 is a face of o. In particular, we
have inclusion maps

0;:C(X,) = C(X,,) (i=0,...,p),
where 0,0 = (5o < -+ < §; <--- <s,). Let

C,= @ cx,.

aelSIP
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Letting d = ) (—1)'9;: C, —» C,_,, we obtain a chain complex

9
...—;Cp—;Cp_l_Q...

in the category of chain complexes, and hence a double complex. The
acyclicity of each X, implies that one of the spectral sequences of the double
complex collapses, yielding

H,(C) = H,(S),

where C is the total .complex associated to the double complex. On the
other hand, exactly as in §VIL4, the acyclicity of each S, implies that the
other spectral sequence also collapses and yields

H,(C) ~ H(X).

It is easy to check that these isomorphisms are induced by canonical chain
maps C(X) « C — C(S), cf. exercise 1 of §VIL4. O

We will also need the following simple observation:

(12.2) Lemma. If S is a partially ordered set with a largest or smallest element,
then S is contractible.

PROOF. If s€ S is the extreme element and S’ = S — {s}, then | S| is the cone
over |S’|, with s as the cone vertex. O

PROOF OF LEMMA 11.2. We have Z = Jy.5 Z", where S is the set of non-
trivial finite subgroups of I'. For each cell e of Z, the set S, defined in 12.1 is
simply the set of all non-trivial finite subgroups of the isotropy group I,.
Since T, is a non-trivial finite group, S, has a largest element and hence is
contractible by 12.2. The hypotheses of 12.1 are therefore satisfied, and we
obtain a complex C and weak equivalences C(Z) « C — C(S). Since I acts
on Z and permutes the subcomplexes Z¥ according to the conjugation
action of I" on §, it is clear that the complex C inherits a I'-action and that the
weak equivalences above are compatible with the I'-action. O

13 The p-Fractional Part of y(I')

Theorem 11.1 is not very useful in practice because the computation of x(S)
tends to be extremely tedious. If we fix a prime p, however, and replace S
by the set of non-trivial finite subgroups which are p-groups, then the compu-
tation often simplifies drastically. Moreover, it turns out that this gives the
p-fractional part of y(I'). In fact, we can even compute the latter by looking
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only at the elementary abelian p-subgroups of T, i.e., the subgroups isomorphic
to a finite direct product of copies of Z,,:

(13.1) Theorem. Let I" be a group of finite homological type and let o/ be the
partially ordered set of non-trivial elementary abelian p-subgroups of T,
where p is a fixed prime. Assume that the normalizer N(A) is of finite homo-
logical type for every A € of. Then y{(f) is defined and ~

() = () mod 2.

(This is an improvement due to Quillen [1978] of the main result of
Brown [1975b].)
The proof will use:

(13.2) Lemma. Let I be a group such that ved I’ < oo and let p be a prime. If
I" has a torsion-free normal subgroup I of finite index such that H (I", Z,) is
finitely generated, then T has only finitely many p-subgroups, up to conjugacy.

PROOF. Let X be a finite dimensional, contractible, proper, admissible I'-
complex such that X# # ¥ for every finite H < I. Let Y = X/I"” and let
G = I'/T". By hypothesis H,(Y; Z,) is finitely generated, so we know that
H (Y Z,) is finitely generated for every p-subgroup P = G (§VIL10,
Theorem 10.5 and exercise 2). In particular, Y” has only finitely many con-
nected components.
On the other hand, I claim that

Y? = [I X¥/T" o N(H)),
He¢

where % is a set of representatives for the I-conjugacy classes of finite
subgroups of I' whose image in G is P. To see this, consider the inverse
image YFof YPin X, ,and let € be the set of finite subgroups of I whose image
in G is P. For any x e ?F, we know from §10 that the isotropy group I',
maps isomorphically to G, & G, where y € Y is the image of x. Since P < G,,
it follows that there is a unique H < I', whose image in G is P. In other
words, there is a unique H €@ such that xe X®. Thus Y? =[] yee X".
Since I'" permutes the X according to its conjugation action on €, it
follows that

Yf = (U X") / I'= [] X" A N(H)),
He¥ He¥¢
as claimed.

Since Y” has only finitely many components and each X" is non-empty,
we conclude that € is finite, i.e., that the finite subgroups of I lying over P
fall into finitely many conjugacy classes. Finally, there are only finitely
many possibilities for P, so the lemma follows. O
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We also need:

(13.3) Lemma. Let S and T be partially ordered sets and let f,, f,:S — T be
order-preserving maps such that fo(s) < f(s) for all s€S. Then |fo| ~
FAHN VAR

[Note that this reduces to 12.2 if S = T and either f; or f; is ids while
the other is a constant map.]

Proor. Heuristically, the desired homotopy moves fy(s) to f,(s) along the 1-
simplex { fo(s), f,(s)} of | T|. Unfortunately, this only defines the homotopy
on vertices of | S|, so we instead proceed as follows. Let J be the ordered set
{0, 1} with 0 < 1. Note that | J| is the unit interval. Consider S x J with the
product ordering: (s, i) < (s, i') if and only if s<s" and i <i'. Let F:§ x J
— Tbedefined by F(s, i) = f(s). The hypothesis that fo(s) < f,(s) guarantees
that F is order-preserving, so we have an induced map |F|:|S x J| = |T]|.
Now it is immediate from the definitions that |S; x S,| = |S,| x |S,| for
any two partially ordered sets S,, S,, where the product on the right is the
simplicial product defined in §VIIL.11. Thus |F| can be viewed as a map
|S| x }J| = | T, and this is the required homotopy. O

PrROOF OF THEOREM 13.1. By Lemma 13.2, ' has only finitely many p-
subgroups, up to conjugacy. It now follows exactly as in the first part of the
proof of 11.1 that y (%) is defined. We now wish to apply 11.5 to the I'-
complex |.%/|, so we must verify that |« |? is acyclic for each non-trivial
p-subgroup H = I'. Now || = | /¥ |, where o/ is the set of non-trivial
elementary abelian p-groups normalized by H, and I claim that this is in
fact contractible. For let C = H be a central subgroup of order p, and con-
sider for any A € /¥ the chain of inequalities

A= A°<C-A=cC

in o/H. (Note that A€, C, and C- A€ are indeed all in &#¥; in the case of A,
this follows from V1.8.1.) This yields, via 13.3, a homotopy from the identity
map of 2/ to the constant map A — C, since the intermediate maps 4 — A€
and A+ C- A€ are order-preserving maps &/ — &/. Thus 11.5 is applicable
and yields the desired congruence.

In the next section we will show that y (/) admits an explicit computation
in terms of the normalizers of the elements 4 € &. For the moment, we just
mention one case where this is obvious. Suppose that every A € s is of rank
<1. [This is equivalent to saying that the finite subgroups of I" have p-
periodic cohomology, cf. VI.9.7. It is also equivalent, as we will see in the
next chapter, to saying that I' itself has p-periodic cohomology in high
dimensions.] In this case |&/| is discrete and we obviously have

() = Y, ((N(P)),
Pe?
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where £ is a set of representatives for the conjugacy classes of subgroups of
I' of order p. Thus

(13.4) (1) =Y x(N(P)) mod Z,,,
Pe2?

in this case.

For computational purposes, it is often more convenient to work with
elements of order p and their centralizers, rather than subgroups of order p
and their normalizers. It is easy to rewrite 13.4 in these terms:

(13.5) Corollary. Let I" be a group of finite homological type and assume that
every elementary abelian p-subgroup of T has rank < 1. Suppose further
that the centralizer C(y) is of finite homological type for every y € I of order p,
and let € be a set of representatives for the conjugacy classes of elements of T’
of order p. Then € is finite and

1
AT) = ——= 3 x(C(y)) mod Z,.
p— 1 ye¥€

PROOF. For each P € 2 choose a set €, of representatives for the non-trivial
elements of P under the conjugation action of N(P)/C(P). Then[] pc» ¢»
is a set of representatives for the conjugacy classes of elements of I' of order p,
so we may assume that € is equal to this union. Since C(P) = C(y) for every
nontrivial y € P, the action of N(P)/C(P) on P — {1} is free. Thus

card(€,) - (N(P): C(P)) = p — 1.

Consequently,
Y X(C®) = ), card(¥p)- ((C(P))
ye€ Pe?

= ). card(€p)- (N(P): C(P)) - ((N(P))

Pe2

=@ - 1Y x(N(P)).
Pe2
The corollary now follows from 13.4. O

We mention briefly one interesting application of 13.5 to number theory.
(This application is due to Serre, and a detailed treatment is given in Brown
[1974, 1975b].) Fix an odd prime p and let I" be the symplectic group Sp,,(Z),
where2n = p — 1.

On the one hand, we have Harder’s formula (8.6) which gives x(I') in
terms of {(—1), ..., {(1 — 2n), and hence in terms of the Bernoulli numbers
B,,..., B,_,. Using known facts about Bernoulli numbers (“von Staudt’s
Theorem ™) one concludes that y(I') = 0 mod Z,, if and only if p divides the
numerator of one of the numbers B,, ..., B,_3.
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On the other hand, it is not hard to classify the elements of I" of order p
up to conjugacy and to compute their centralizers. One finds (i) that the
hypotheses of 13.5 are satisfied; (ii) that the number of conjugacy classes of
elements of order p is closely related to the class number h of the p-th cyclo-
tomic number field; and (iii) that the centralizer of any element y of order p
is finite and of order 2p, so that y(C(y)) = 1/2p. It then follows from 13.5 that
x(I') = 0 mod Z,,,, if and only if h/2p = 0 mod Z,,, i.e., if and only if p|h.
(The prime p is then said to be irregular.)

Combining the results of the last two paragraphs, we have: A prime p is
irregular if and only if p divides the numerator of one of the Bernoulli
numbers B,, ..., B,_;. Thisresult is not new; indeed, it is known as Kummer’s
criterion for regularity. But our method of proof via Euler characteristics
generalizes to rings of integers other than Z and yields number-theoretic
results which were not previously known.

14 A Formula for yp(&/)

The formula to be given in this section is essentially due to Quillen [private
communication]. It is based on:

(14.1) Proposition. Let V be a vector space of dimension r > 1 over the field
F, with q elements, and let S = S(V) be the partially ordered set of non-trivial
proper subspaces of V. Then

AS) ~ {Z""’ ifi=r-2

0 ifi#r—2,

where n(r) = q""~ 12,

(This is a special case of the so-called “Solomon-Tits theorem.” The
proof that we will give is due to Quillen [1973]. It will follow easily from the
proof that | S| in fact has the homotopy type of a bouquet of n(r) spheres of
dimension r — 2, but we will not need to know this.)

PRrOOF. The proposition is trivially trueif r = 1, since S is then empty. Assume
now that r > 1 and that the proposition is known for vector spaces of
dimension r — 1. Let L = V be a fixed 1-dimensional subspace and let
§’ = § be the set of non-trivial subspaces V' = Vsuch that V' + L # V(ie.,
such that V' + L e S). For any V' € §', we have relations

V<V +L=L
in §, and it follows easily that S’ is contractible (cf. proof of 13.1). Thus
H(S) ~ HS, S").
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Let »# be the set of hyperplanes H in V which are complementary to L
(i.e., such that V = L @ H). Let S(H) (resp. S(H)) be the set of non-trivial
subspaces (resp. non-trivial proper subspaces) of H. Note that every simplex
g of | S| which is not in |S’| has the form

V0<"'<Vm

where V, € #. Hence ¢ is a simplex of |S(H)| but not |S(H)| for a unique
H e »#. Consequently, there is an excision isomorphism (already on the
level of simplicial chain complexes)

H,(S,8) < @ H,(S(H), S(H)).

Hexwn

Now S(H) is contractible since it has a largest element, so

- ey fi=r—2
H{(S(H), S<H»zHi-1(S(H»z{O iz

by the induction hypothesis. Thus
A(S) = {

To compute card(s¢), note that the elements of ) correspond to
splittings of the exact sequence

anrd(.ﬂ’)-n(r— 1) lfl =r - 2
0 ifi#r—2

0-L->V->V/L->0,

so there is a bijection # =~ Homg (V/L, L). The latter being a vector space
of dimension r — 1, it follows that card(#) = ¢"~!. One now completes
the proof by verifying that the function n(r) = ¢~ "2 satisfies n(r) =
q 'n(r —1). O

(14.2) Theorem. Let T be a group and p a prime such that y () is defined,
where of is the set of non-trivial elementary abelian p-subgroups of T'. Let
oy be a set of representatives for &/ mod I'. Then

() = Y (=11 prDy(N(4)),

Aesdo

where r(A) is the rank of A and n(A) = r(A)(r(A) — 1)/2. Consequently,
WD) =Y (-1 1p"“y(N(4)) mod Z,,

Aesdo
under the hypotheses of 13.1.

PrOOF. For each A € o, let S(A) (resp. S(A)) be the set of non-trivial subgroups
(resp. non-trivial proper subgroups) of A. Let &(4) be a set of representatives
mod N(A) for the simplices of [S(A)| which are not in |S(A)|. Then
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1ie w0 L (A) is a set of representatives for the simplices of |#/|mod T'. It
therefore follows from the definition of y (=) that

i) = Y naS(A), S(4)),
Aesdo

where the relative equivariant Euler characteristic on the right is equal, by
definition, to Y 5 #(4) (— D*™X(N(A),).

I claim that yy.4,(S(4), S(4)) = x(N(A)) - 2(S(A4), S(4)). For let C = N(A)
be a torsion-free subgroup of finite index which centralizes 4. Then C
acts trivially on S(A), so we have a spectral sequence (cf. VIL.7.2)

E2, = H,(C, Q) ® q H(5(4), S(4); Q) = H{, (5(A4), S(4); Q).

Therefore 7(S(A), S(A)) = #(C) - x(S(A), S(A)). The claim now follows at
once from 7.3a and b and from relative versions of 7.3b’ and c.
Thus
) = Zd A(N(A)) - x(S(A), S(A)).
Aeddo
Now A can be regarded as a vector space of dimension r = r(4) over [,

so we can apply 14.1. Since 3(A) is contractible, we conclude that
x(5(A), S(A)) = (—=1) " !p"*~1/2 whence the theorem. O

Remark. Let p® be the maximal order of a p-subgroup of I'. Then the
denominators of the y(N(A)) which occur in the theorem involve p to at
most the a-th power by 9.3. Since r(r — 1)/2 > 1 if r > 2, it follows from
14.2 that

AD) = THNP) mod p” "2,

where 2 is a set of representatives for the subgroups of I' of order p. Thus
we can compute the “leading term” of the partial fractions decomposition
of y(I') (i.e., the term involving p? in the denominator) by considering only
the subgroups of order p and their normalizers.

EXERCiSVS

1. Extract from the proof of 14.2 the following fact: Let S be a partially ordered I'-set
such that x{(S) is defined. Foreach s € S, let S _, (resp. S.,) be the set of t € S such that
t < s(resp. t < s). If each S, is finite, then

Xl‘(s) = z X(rs) . X(Ssn S<s)1
where s ranges over a set of representatives for S mod I
2. Show that the hypothesis that each S_ is finite in exercise 1 can be replaced by the

weaker hypothesis that H (S_,) is finitely generated for each s. [Hint: I', has a
subgroup of finite index which acts trivially on H (S, S.,; Z,).]



CHAPTER X
Farrell Cohomology Theory

1 Introduction -

Let I" be a group such that ved I' < oo. If T is torsion-free, then we know
from Chapter VIII that cd I' < o0, so that ' has no high-dimensional
cohomology. In the general case, one might hope to “explain” the high-
dimensional cohomology of I' in terms of the torsion in I'. (This is analogous
to the situation of Chapter IX, where we tried to explain the non-integrality
of x(I') in terms of the torsion in I'.)

For this purpose it is convenient to use modified cohomology groups
A%, M), first introduced by Farrell [1977). Farrell’s theory generalizes
the Tate cohomology theory for finite groups (Chapter VI), and it has the
following two properties which make it appropriate for our present purposes:
(i) A* = H'for i > ved T and (ii) A* = 0 if T is torsion-free.

The next three sections will be devoted to the foundations of the Farrell
cohomology theory. Then in §§5 and 6 we will generalize to the Farrell
theory some of the results of §§VI.8 and VL9 on cohomological triviality
and periodicity. Finally, §7 will contain the main results of the chapter,
relating A*(T) to the torsion in I".

2 Complete Resolutions

Let ved I = n < c0. By a complete resolution for I’ we mean an acyclic
chain complex F of projective ZI'-modules, together with an ordinary
projective resolution &: P — Z of Z over ZI" such that F and P coincide
in sufficiently high dimensions. (As in Chapter VI, F is not in general
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nonnegative.) If I is finite, for example, then any complete resolution in the
sense of §VI.3 is also a complete resolution in the present sense. In §VIL.3,
however, we required F and P to agree in all non-negative dimensions, so
the present notion of complete resolution is more general. (It might seem
reasonable, by analogy with §VI.3, to require F and P to agree in dimensions
>n = vcd I, Indeed, we will see below that complete resolutions of this
type always exist. Our reason for not requiring this is that we want a complete
resolution for I' to also be a complete resolution for any subgroup of I'.)

If (F, P,¢) and (F', P', &) are complete resolutions, then a chain map
7: F - F' will be called a map of complete resolutions if there is an augmenta-
tion-preserving map P — P’ which agrees with 7 in sufficiently high dimen-
sions.

(2.1) Proposition (a) There exist complete resolutions (F, P, £) such that F
coincides with P in dimensions >n = vedT. If T is of type VFP, then F
can be taken to be of finite type.

(b) If (F, P, &) and (F', P', ¢') are complete resolutions, then there is a unique
homotopy class of maps from (F, P, €) to (F', P', €'), and these maps are homo-
topy equivalences.

Proor. Choose a torsion-free subgroup I'' = I' of finite index. We will
apply the relative homological algebra of §VI.2 to (T, I'"). Thus we have a
notion of admissible short exact sequence of I'-modules and a corresponding
notion of relative injective I -module. Let £: P — Z be a projective resolution
of Z over ZT" and let K = ker{P,_, —» P,_,}. Then (P;);>, provides a pro-
jective resolution

<+ Py o Py K0

of K.Sincecd I" = n,weknow (VIIL.2.1) that K is ZI"-projective. Proposition
VI.2.6 therefore gives us a relative injective resolution -,

0—»K—>Q°—>Ql—>

with each Q' projective. Splicing together (P;);,, and (Q');» o, We obtain the
desired complete resolution. Note that P and Q can be taken to be of finite
type if I is of type VFP, whence (a).

The proof of (b) will require the following generalization of VI.3.2:

(2.2) Lemma. If cd ' < oo then any acyclic chain complex of projective
ZT-modules is contractible.

PROOF. Note first that any I'-module M which is Z-free has proj dimprM < n
= cd I'. For if P is a projective resolution of Z of length n, then P ® M (with
diagonal I'-action) is a projective resolution of Z® M = M of length n.
[Why?] Suppose now that F is an acyclic complex of projectives and let Z,
for any k be the module of k-cycles. Then we have an exact sequence

022, 5Fi» -2 Fps1 22,0
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with each F; projective. Since proj dimzrZ, _, < n, it follows (VIIL.2.1) that
Z, is projective. Hence Fy ., » Z, splits for all k and F is contractible. [

Returning now to the proof of 2.1b, the lemma shows that any complete
resolution F is I"-contractible, hence it is admissible. Also, each projective
module F; is relatively injective by V1.2.3. Given two complete resolutions as
in (b), we use ordinary homological algebra to construct an augmentation-
preserving map P — P’; this defines a chain map t: F - F’ in high dimen-
sions. Since F is acyclic and admissible and F' is relatively injective, relative
homological algebra (VI.2.4) now allows us to extend t to all dimensions.
Similarly, any two such maps afe homotopic in high dimensions by ordinary
homological algebra applied to P and P’, and the homotopy can be extended
to all dimensions by relative homological algebra. It is clear from the unique-
ness that all maps of complete resolutions are homotopy equivalences. [J

Various other chain maps can be constructed by the same technique.
For instance:

(2.3) Proposition. If (F, P, €) is a complete resolution, then there is a unique
homotopy class of chain maps t: F — P such that t is the identity in sufficiently
high dimensions.

PROOF. F is acyclic and admissible and each P; is relatively injective. O

In addition, one can construct a “diagonal map,” which will be needed
for the theory of cup products:

(2.4) Proposition. Let (F, P, ¢) be a complete resolution and let t: P—-PQ® P
be a dtagonal approximation (§V.1) with components t,:P,.,— P, ® P,.
Let F ® F be the completed tensor product as in §V1.5. f m is an integer such
that F and P agree in dimensions > m — 1, then there is a chain map A: F —
F ® F whose (m, m)-component A,,,,: F,,, —; F,, ® F,, is equal to t,,,.

ProOOF. This is almost identical to the proof of the corresponding result for
finite groups (end of §VI.5). As in that case, it suffices to define A in dimension
2m, in such a way that dA|B,,, = 0 and A,,, = T,.,. This reduces to the
construction of a family of maps a,: F,,, = Fp4, ® F,,_, (p € Z) satisfying
(i) (0'a, + 0"a,_,)|B,, = 0 and (ii) a = ,,,. (Here &', ", and B,,, are as
in §VL5.) Let ay = 1,,, and a; = 7,4, n—; this makes sense because F = P
in dimensions >m — 1. Since 7: P - P ® P is a chain map, condition (i)
(with p = 1) is satisfied. We can therefore define «, inductively for all p,
exactly as in §VLS. O

Finally, recall that in the finite group case it is possible to construct a
complete resolution by splicing together an ordinary resolution and its dual.
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It turns out that there is an analogous (but more complicated) construction
whenever I is of type VFP. For simplicity we will treat here only the case
where I is a virtual duality group, referring to the exercises below for the
general case.

Let I' be a virtual duality group with “dualizing module” D = H'(T', ZI')
(cf. VIII.11.3). I claim that D is of type FP, as a ZI'-module. For letI" = T’
be a torsion-free subgroup of finite index and recall that D is of type FP as a
ZT"-module (§VIIL.10, exercise 1); it now follows as in the proof of VIIL5.1
that D is of type FP,, over ZT.

(2.5) Proposition. Let T be a virtual duality group with dualizing module D,
let :P— Z be a finite type projective resolution of Z over ZI', and let
n:Q — D be a finite type projective resolution of D over ZI'. Then there is a
complete resolution F such that the dual complex F = Homy(F, ZT) is the
mapping cone of a chain map £~"Q — P. In particular, F; = P; for i > n and
Fi=(Qu-y-)* fori< -1

Proor Consider the n-th suspension X"P of the dual P of P. Then
H{(Z"P) = H;_(P) = H* (T, ZI"), which is 0 for i # 0 and D for i = 0. It
follows easily that there is a weak equivalence Q — X"P. [Start by lifting
n: Qo — D to a map to the zero-cycles of Z"P; now extend this to a chain map
by the fundamental lemma 1.7.4.] This map can also be viewed as a weak
equivalence f: £7"Q — P, and the mapping cone C of fis an acyclic complex
of finitely generated projectives. Let F be the dual complex C. Thus
Fi=(C_)*=(P_®E7"Q)-i-)* =P*®(Qu-i-1)* = Pi® (Qu-i-1)*;
in particular, F; = P; for i > n. Checking the definition of the differential in
F, one finds that it agrees with that in P in dimensions >n, up to sign. The
proposition will be proved, then, if we verify that F is acyclic. Let " = T
be a torsion-free subgroup of finite index. Then we have F = #2s5(C, ZI')
& Homyr(C, ZI™). [This follows from the theory of induced and coinduced
modules, exactly as in the proof of V1.3.4; alternatively, use Lemma VII1.7.4.]
But C is ["-contractible (by 2.2 for instance), so its I"-dual #om,(C, ZI)
is also I'"-contractible and hence acyclic. O

Remark. Consider the complex C = F of this proof. It coincides with
Z!'""Q in dimensions >1, so " 'C coincides with Q in dimensions
> n. Thus 2" !C = " !'F is what one would reasonably call a complete
resolution of D.

EXERCISES

1. LetI' =T, x I';,wherecd I'; < o0 and ved I', < o0. Show that one can construct
a complete resolution for I' by taking the tensor product of a finite length projective
resolution of Z over ZI'; and a complete resolution for I',.
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*2. A non-negative chain complex C is said to be of type FP, if it admits a weak
equivalence P — C, where P is a non-negative chain complex of finitely generated
projectives. (If C consists of a single module M concentrated in dimension 0, for
example, this just means that M is of type FP,,.) If " is a group and I'"' is a subgroup of
finite index, prove that a chain complex of ZI'-modules is of type FP, over ZI'
if and only if it is of type FP, over ZI". [This is proved in Brown [1982]. All
the essential ideas can be found in Brown [1975a], and one can even deduce the
result from Theorem 2 of the latter by a “Shapiro’s lemma™ argument.]

*3. Suppose I is of type VFP and let P be as in 2.5. Let 2 be the subcomplex
0P ... pt 5250

of P, where Z" is the module of n-cocycles. Note that the inclusion 2 < P is a weak
equivalence. Show that 9 is of type FP_, and deduce that 2.5 extends to groups of
type VFP, with Q now taken to be a finite type “ projective resolution” of "9, i.e.,
a finite type complex of projectives such that there is a weak equivalence Q — Z"9.

3 Definition and Properties of A *D)

We continue to assume that I" is a group such that ved I' = n < 00. We
can then choose a complete resolution (F, P, ¢) and set

A%, M) = H*(om(F, M))

for any '-module M. By 2.1, A* is well-defined up to canonical isomorphism.
If T is finite, the present definition is obviously consistent with that of
Chapter VI. For simplicity we will often write A*(T") or even A* instead of
A%, M). It will always be understood, however, that there is an arbitrary
I'-module of coefficients.

The cohomology theory A*(T", —) will be called the Farrell cohomology
theory. It has formal properties analogous to those of the Tate theory for
finite groups (in which case n = 0):

(3.1) A% = 0if I is torsion-free.

For in this case we can take F = 0.

(3.2) A%(I', —) has all the “usual” cohomological properties: long exact
sequences, Shapiro’s lemma, restriction and transfer maps, and cup products.

This is proved exactly as in ordinary cohomology theory, except for the
construction of cup products. We will discuss the latter below, after stating
two more properties. -

(3.3) A%, M) = 0 if M is an induced module ZI" ® ;- M’, where I" is a
torsion-free subgroup of finite index and M’ is an arbitrary I"-module.
Consequently, the functors A‘(I", —) are effaceable and coeffaceable.



278 X Farrell Cohomology Theory

This follows from 3.1 and 3.2 (Shapiro’s lemma). Note that 3.2 and 3.3
allow us to shift dimensions in both directions, as in VI.5.4. In view of the
next property, this means that questions about Farrell cohomology can often
be reduced to questions about (high-dimensional) ordinary cohomology.

(3.4) There is a canonical map H' — A’ which is an isomorphism for i > n
and an epimorphism for i = n. Moreover, the sequence

H"(I'") —~— H"(I") » AYI) >0

is exact for any torsion-free subgroup I'" € I of finite index, where tr is the
transfer map.

The map H' — A' is induced by the chain map F — P of 2.3. Since the
latter can be taken to be the identity in dimensions >n (cf. 2.1), the first
assertion of 3.4 is clear. To prove the second assertion, one could simply
directly examine the n-coboundaries in #2#»{(F, M), where F is assumed
to be constructed from P as in the proof of 2.1. It is easier, however, to proceed
as follows: Consider the “dimension-shifting” exact sequence

0 K- ZT @ M - M - 0.

This gives rise to a long exact sequence in ordinary cohomology which maps
to the corresponding sequence in Farrell cohomology. Using Shapiro’s
lemma and definition (A) of the transfer map (§II1.9), we deduce a diagram

HY(I", M) —*— H"(I', M) —— H"* (', K) —— 0

<

0 —— A", M) —=— A"* (T, K) —— 0

with exact rows. (The zero in the top row is H"* (I, M), which vanishes
because cd I'" = n.) The second assertion of 3.4 follows at once.

Remarks

1. If T is finite, 3.4 reduces to the statement that H' = A’ for i > 0 and
that H® is the cokernel of the norm map M — M.

2. It follows from 3.4 that the image of tr: H*(I"") - H"(I') is independent
of the choice of I"". This should not surprise the reader who has done exercise
6 of §VIIL2.

We can now explain the construction of cup products. Let (F, P, ¢) be a
complete resolution and choose A: F - F ® F as in 2.4. Using A we can
construct cup products )

A", M) ® A%T, N) - A**YT,M ® N)

in the usual way, and these will be compatible with coboundary maps in
long exact sequences. Moreover, we have by 2.4 an integer m, such that
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H'> A for i > m and such that the cup product A" ® A™ — A>™ agrees
with the ordinary cup product H™ ® H™ - H?™. The standard dimension-
shifting arguments (cf. proof of VI.5.8) now show that the cup product in A*
is compatible with that in H*, in the sense that the diagram

HP ® HY —Y— HP*4

A*® AT —<, fArte

commutes for all p, q. [Assuming this for (p, g), use the coeffaceability of H*
to deduce it for (p + 1, q) and (p, ¢ + 1), and use the effaceability of A* to
deduce it for (p — 1,9) and (p,q — 1).]

It is now clear that our cup product is independent of the choice of F
and A. For any two choices would give the same product in high dimensions
by what we have just done, and hence they would agree in all dimensions by
dimension-shifting. Finally, one uses dimension-shifting once again to estab-
lish the usual properties of the cup product (associativity, commutativity,
unit); for these properties are known to hold in high dimensions. [Note: The
unit for the cup product is the image in AT, Z) of 1 e HY(T, Z) = Z.]

Recall that the Tate group A’ for i > 0 could be interpreted in terms of
homology. This resulted from the duality theory which allowed us to inter-
pret the negative part of a complete resolution as the dual of an ordinary
resolution. We can generalize this to Farrell cohomology, provided I' is of
type VFP. For simplicity we will assume that T is a virtual duality group,
but the reader who has done exercises 2 and 3 of §2 should be able to treat the
general case. [See also exercise 5 of §VIII.10.]

(3.5) Suppose that I' is a virtual duality group with dualizing module D,
and set H (T, M) = H,(T,D ® M). Then there is an isomorphism A
~H,_,_, for i < —1 and a monomorphism A~' — H,. Moreover, the
sequence

0—— A7) /) —"— A"

is exact for any torsion-free subgroup I < T of finite index.

For let F be as in 2.5, and let E = "' F (cf. remark at the end of §2).
Then we have

A(T, —) = Htom(F, —)) = H_(F ®r —) = Hy,—, -(E ®r —).

Now the construction of E shows that there is a projective resolution Q of D
which receives a chain map E — Q which is the identity in dimensions >n.
Hence we have a map H{E ® —) — Tor}(D, —) which is an isomorphism
for j > n and a monomorphism for j = n. Since Tor}(D, —) = A(T, —) by
I11.2.2, this proves the first assertion of 3.5. The second assertion follows by a
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dimension-shifting argument analogous to that used in 3.4; details are left to
the reader.

We have not yet said anything about H for 0 < i < n — 1. This range of
dimensions, which is vacuous if I is finite, is harder to understand than
those treated in 3.4 and 3.5. We can say something about it, however, in
view of the mapping cone construction in 2.5. For #om(F, M) = F @+ M
is the mapping cone of a map X "Q ® M — P ® M = Hom(P, M). We
therefore have a long exact homology sequence, which takes the form

oo By s H S A s A o H e
Since H™! = 0 and A_, = 0, we conclude:

(3.6) With the hypotheses and notation of 3.5, there is an exact sequence
0-A's5H -H -A°>H,_ >H' - -5 Hy,>H' - A" 0.
We can summarize 3.4-3.6 as follows. If T is a virtual duality group, then
the Farrell cohomology functors A' include: the cohomology functors H’
for i > n; the homology functors H; for i > n; a certain quotient of H"; a

certain subfunctor of H,; and n additional functors A°, ..., A"~ !, which
are some sort of mixture of {H'},_;., and {H;}o<;cn

HO eeo HnU H" H"*? n+2
. H—J -2 H[tl HJO }Jﬂ-l lqln Hnd»l Hn+2
n+2 Huiy Hn n-1 " 0

EXERCISES

1. LetI' = Z x Z,. Construct an explicit complete resolution and use it to compute
A%T, 2). [Cf. exercise 1 of §2.]

2. Prove that the groups A*(I") are torsion-groups. More precisely, they are annihilated
by the integer d of IX.9.1. [Hint: Transfer.]

Remark. It is not known whether A*(I) is annihilated by the integer m of 1X.9.3.
In view of the cup product structure on H*(I'), it would be enough to show that m
annihilates the identity element 1 e AT, Z).

3. (a) Define Farrell homology groups Aa,n).

(b) IF I is a virtual duality group with dualizing module D, show that AT, M)
x~H,.,_ (I,D® M) for all i. More precisely, show there is an element
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zeH,_ (T, D) such that cap product with z is an isomorphism. [Hint: To construct
anisomorphism y: A", M) » A,_,_,(T, D ® M), use 3.5 and dimension-shifting;
alternatively, take F and E as in the proof of 3.5 and show by homological algebra
that there is a map E — F ® D which induces the desired isomorphism. Now let
zeﬁ,,_ (T, D) be the image of 1 € A°(r, Z) under . Show that ¢ is given by cap
product with z (up to sign) as follows. The two composites

H(T,M)—> A, M) 2 A,_,_{I'.D® M)

agree when i = 0 by Paturality, hgnce they agree for all i by dimension-shifting. But
then the two maps H(I', M) 3 H,_, _{T', D ® M) agree for large i and hence for
all i]

*(c) If D is Z-free in (b), show that cap product with the same z € FI,,_ (T, D) gives
isomorphisms A", M) ~ A"~ ~/(I', Hom(D. M)).

*(d) State and prove analogues of (b) and (c) for arbitrary groups I" of type VFP.

*4. LetI' =T', x I', asin exercise 1 of §2. Derive, under suitable hypotheses, Kiinneth
formulas relating ﬁ,(l") to H(I",) and A (T",) and similarly for cohomology.

S.Let 1 »I">T = TI" -1 be a short exact sequence of groups of finite virtual
cohomological dimension.

(a) If I'" is torsion-free, show that there is a Hochschild-Serre spectral sequence
(derived as in ordinary cohomology) of the form

E% = H/(I", A(T")) = A7*(I).
*(b) If I"" is torsion-free, show that there is a spectral sequence
E% = Ao, HY(I")) = A?* ().

[Method 1: Use the ordinary Hochschild-Serre spectral sequence and dimension-
shifting. Method 2: Use a complete resolution of the form F = F” @ C, where
C is a finite dimensional complex of I'-modules which is a I"-projective resolution
of Z.]

*6. Define and study composition products A* ® A* — A* analogous to those of
§VL.6. [The only tricky thing here is to prove the analogue of VI1.6.1a. This is true,
but the proof requires more work than in the case of finite groups.]

4 Equivariant Farrell Cohomology

Let T be a group of finite virtual cohomological dimension and let X be a
finite dimensional T-CW-complex. As in Chapter VII, we then choose a
complete resolution F for I and we set

AX(X; M) = H*Oom(F, CH(X; M)))
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for any -module M. These equivariant Farrell cohomology groups have
properties analogous to those of the ordinary equivariant cohomology groups
(spectral sequences, etc.).

An important special case is that where X is taken to be proper and
contractible (cf. VIIL.11.1). We then obtain as in VII.7.10 a spectral sequence

@4.1) E% = [] BYT,, M,) = A?* (T, M),
oelp

where Z, is a set of representatives for the p-cells of X mod I'. This spectral
sequence relates the Farrell cohomology of I' to the Tate cohomology of its
finite subgroups. Note that the spectral sequence lives in the first and fourth
quadrants, but there is no problem with convergence because dim X < co.
Indeed, the spectral sequence is concentrated in the vertical strip 0 < p
< dim X,so E, = E_ as soon as r > dim X.

The rest of this section will be devoted to establishing some properties of
the spectral sequence 4.1 which will be needed in §6. For simplicity we will
assume that X is an ordered simplicial complex with order preserving sim-
plicial T-action. In addition we will assume that X¥ is non-empty and
connected for every finite subgroup H < I'; we saw in §VIIL.11 that such an
X exists.

Note that the “order preserving” assumption implies that M, = M, i.e.,
that Z, = Z with trivial I',-action, for each simplex 6. We may therefore
suppress M from the notation in what follows.

Our first goal is to give a purely algebraic description of the left-hand
edge EJ'% For this we will need to compute the differential d%9. Recall
that for any simplex ¢ of X and any y € I" we have a conjugation isomorphism

c(y™")*: A%(T,) > A%T,,),
denoted u > yu (cf. §II1.8).

(4.2) Lemma. Let X, be the set of p-simplices of X. Then E® can be identified
with the subgroup of ]-[,,E X, A%T,) consisting of those families (u,),cx
such that yu, = u,, forallyeT,0ce X p- The differential d is the restriction
to this subgroup of the map

d: [1 By~ [] AT

oeXp t€Xp+1

defined asfollows: Forany t = (vy,...,0,4,) € X, Withvy <--- <v,,,,

let 7, = (vo, ..., Dis .-y 0pyy), i=0,...,p + 1, and let p;: AYT,) - AYT,)
be the restriction map. Then d is given by

+1
() (r ~T (- 1)"p.<u,.)).

(Note that I', = ', because of the assumption that the I'-action is order-
preserving. Thus the definition of d makes sense.)
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PrOOF. Note first that

[TAT)=T1] [I A4,

geXp o€X, yel/lo
Since the conjugation action of I', on A%(T,) is trivial (cf. I11.8.3), it follows
that there is a well-defined injection

a: ER = [ AY(T,) - [] A«T,)
oeXp oeXp
given by (4,)scz, — (YUs)oes,, yerir,- The image of a is clearly equal to the
set of families (u,),cx, satisfying yu, = u,, for all g€ X, and yeT’, whence
the first part of the proposition. The description of d, follows from the
cohomology analogue of VIL.8.1. For the convenience of the reader, however,
we will give a direct proof.
Let F be a complete resolution for I'. Then the injection

a: EF - ] A«T,)

geXp
is given in terms of cochains as follows: We have
Ef = AY(T, C7(X; M)

= H‘(.}fomlr(F, Hom(Xp’ M)))

= HY(Hom(X ,, #om,y(F, M))),
where the second equality comes from the ordering on X. An element
u€ E, is therefore represented by a family (c,),¢x, such that ¢, € #om,(F, M)
and yc, =c,, for all yeI" and o€ X,. Taking yeT,, it follows that

¢, € Homyr (F, M). Hence c, represents an element u, € H%(T’,, M), and one
checks that a(u) = (u,)scx, - The differential d, is simply the map

A4, 8): AYT, C7(X; M)) - AT, C** (X ; M),

where 6: CP(X; M) - CP*'(X; M) is the coboundary operator. The lemma
now follows at once from the definition of é in terms of the face maps
X,+1 = X, and from the fact that the restriction map p,: A9(T",) - A%(T,) is
induced by the inclusion #omzr (F, M) & Homyr (F, M).

In particular, we can now easily calculate E2'? = ker d9-9, and we obtain:
(4.3) Lemma. E3'¢ can be identified with the subgroup of [ ],ex,A%T,) consist-
ing of those families (u,),¢x, satisfying the following two conditions:

(i) yu, = u,, forany yel',ve X,.
(i) if eis a 1-simplex of X with vertices vy, vy, then u,, and u,, restrict to the
same element of AY(T,).

Using now our hypothesis that X* is non-empty and connected for H
finite, we will deduce the desired algebraic description of E29:
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(4.4) Proposition. Let § be the set of finite subgroups of T. Then E3'9 is iso-
morphic to the subgroup $UT) S [|ueg A%H) consisting of those families
(Up)neg Satisfying the following two conditions:

(i) yuy = uyy,- forallye,He .
(ii) If H' < H then resp.uy = uy,..

(Note: Conditions (i) and (ii) could be combined into the single condition
that the uy are compatible with respect to “restriction maps” AYH,) -
A%H,) induced by embeddings H, & H, given by conjugation by elements
of I')

ProoF. Using the description of E3'9 given in 4.3, we have an obvious map
¢: HUT) — E3 given by (up)yeg— (ur.)vex,- Since every H € & is contained
in some I', [because X" # (7], it follows from condition (ii) above that ¢ is
injective. To prove that ¢ is surjective suppose (u,),¢x, satisfies conditions
(i) and (ii) of 4.3. Given H € &, choose a vertex v such that H < T, and set
wy = resy u,. Since X" is connected, condition (ii) of 4.3 shows that wy,
is independent of the choice of v. It is easy to check that the resulting family
(Wineg is in 4T and that its image under @ is (u,). O

Next we wish to introduce a multiplicative structure into the spectral
sequence 4.1. To simplify the notation, we will assume that the coefficient
module M is a commutative ring R with trivial I'-action. The simplicial
cochain complex C*(X) = C*(X; R) then has a cup product

C*(X) ® C*(X) - C¥(X)

which is strictly associative and is commutative (in the graded sense) up to
homotopy. Moreover, the product and the homotopy are defined chnonically
in terms of the structure of X as an ordered simplicial complex. [See the
exercise below for a review of these facts.] They are therefore compatible
with the I'-action.

Now choose a complete resolution F with a diagonal map A: F - F ® F.
We then have a product

Homr(F, C*(X)) ® Hom(F, C*(X)) » Hom(F, C*(X) ® C*(X))
— Homi(F, C*(X)),

where the first map is induced by A and the second map is induced by the
cochain cup product C*(X) ® C*(X) — C*(X). As we explained at the end
of §VILS, this product is compatible with the filtration defining the spectral
sequence 4.1, hence there is an induced product

Er®Er_'Er
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for r > 1. The following proposition summarizes the properties of this
product which we will need:

(4.5) Proposition. (i) The differential d, is a derivation with respect to the
producton E,, i.e.,

d,(uv) = d(u) - v + (—1)%%" u-d,(v).
(i) The product on E,,, = H(E,) is obtained from the product on E, by

passage to homology.
(iii) The product on E, is the composite

AT, C7(X)) ® A(T, C7(X)) - A**¥(T, C*(X) ® C”(X))
- A 9(T, CP*7(X)

where the first map is the usual cup product in A*(T", —) and the second map is
induced by the cup product in C*(X).

(iv) The product on E, is associative for r > 1 and commutative for r > 2.

(v) The product on E, is compatible with the usual product on B*(T', R)
under the identification of E ., with Gr A*(T, R).

(vi) The isomorphism E3* ~ $*(T') of 4.4 is a ring isomorphism.

PRrOOF. (i) and (ii) follow from the fact that the product on E, is induced by
the product on #2m{(F, C*(X)). (iii) is immediate from the definitions. In
view of (iii) and properties of the ordinary cup product, the product on E; is
associativeand is commutative up to homotopy (with respect to the differential
d,). (iv) now follows from (ii). The product on E is obviously compatible
with the product on the abutment H*(#2s»(F, C*(X)). But the identifica-
tion of the abutment with A*(T") is induced by a chain map H#m{(F, R) =
Hom(F, C*(X)) which is easily seen to be a ring homomorphism, whence (v).
Finally, to prove (vi) it suffices to show that the map «: E3* — [],ex, A*(T",)
defined in the proof of 4.2 is a ring homomorphism. Consider the v-compo-
-nent of a,

E3-* = A%(T, C°(X)) —» A(T)).
It is given on the cochain level by a map
Hom{(F, C°(X)) - Homr (F, R),

which in turn is induced by the ring homomorphism C°(X) = Hom(X,, R)
— R given by evaluation at v. This cochain map is easily seen to be a ring
homomorphism, so (vi) is proved. O

As a simple application of this multiplicative structure we will prove a
result due to Quillen [1971]. Fix a prime p and consider the ring $*(T, Z,)
defined in 4.4. There is an obvious homomorphism

p: A%, Z,) - $*(T, Z,)
given by the restriction maps H*(I") —» A*(H) (H € §).
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(4.6) Proposition. The map p has the following two properties:

(i) Every element of ker p is nilpotent.
(i) For any ue $*(T', Z,) there is an integer k > O such that u” €im p.

(Thus p is an isomorphism “up to p-th powers.” Following Quillen, we
say that p is an F-isomorphism.)

PrOOF. Note first that p is simply the edge homomorphism
AY(D) =+ E%* & E3* ~ 5X(T)

associated to the spectral sequence 4.1. This is easily seen by direct definition-
checking (see also exercise 1 of §VIL.7). Recall that the construction of the
spectral sequence gives us a filtration

A% = FPAXT) 2 F'A*I) 2 -

which is compatible with the cup product (i.e., F°F* = F**"). Since the kernel
of the edge homomorphism above is precisely F*A*(T'), it follows that any
zeker p satisfies z*e F*A%(). But FA*() =0 for k > dim X, so z is
nilpotent. Next let u € EY'*. I claim that d,(u?) = 0. This follows from anti-
commutativity if p and deg u are both odd (in which case u? = 0); otherwise,
it follows from (i) and (iv) of 4.5, which give

dy(u?) = puP~'d,(u) = 0

since the coefficient module is Z,. Thus u” € E3'*. Iterating this argument,
we find that u” € EQ;%, hence u” € E%* = im p as soon as k + 2 > dim X.

O

Remark. Quillen actually proved a much stronger result. Namely, he proved
the analogue of 4.6 with $*(I') defined in terms of the finite subgroups of I'
which are elementary abelian p-groups.

<
EXERCISE

Let K be an ordered simplicial complex and let C(K) be its chain complex, with one
basis element for every (n + 1)-tuple (v, . ., , v,) of vertices such that {v,, ..., v,} is an
n-simplex with v, < --- < v,. The Alexander-Whitney diagonal map A: C(K)—
C(K) ® C(K) is defined by

Ay, ---,0,) = Z(vo,...,v,)®(vp,...,v,,).
p=0
Verify that A is a chain map and that the induced cochain cup product is associative
and is commutative up to (canonical) homotopy. [Hint: The homotopy commutativity
can be proved by an acyclic models argument, which is most easily carried out as follows:
Because of the ordering on the vertices of K, a simplex of K can be regarded as a singular
simplex in the geometric realization of K. Thus C(K) is a subcomplex of the singular
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chain complex C*""%(K). Now look at the standard proof via acyclic models that the
Alexander-Whitney map on C*"%(K) is naturally homotopy commutative, and observe
that the homotopy can be taken to map C(K) into C(K) ® C(K).]

5 Cohomologically Trivial Modules
We continue to assume that ved I' = n < 0.

(5.1) Lemma. If M is a T-module such that H*(G, M) = 0 for every finite
subgroup G < T, then A*(T", M) = 0.

Proor. Consider the spectral sequence 4.1, and recall that X can be chosen
so that M, = M for all g. Our hypothesis implies that E, = 0, hence the
abutment A*(T", M) is also zero. O

We will say that M is cohomologically trivial if A*(I"", M) = 0 for every
subgroup I'" = I'. Applying 5.1 to each I'’, we obtain:

(5.2) Proposition. A I'-module is cohomologically trivial if and only if it is
cohomologically trivial as a G-module for every finite subgroup G < T.

Thus the theory of cohomologically trivial modules is reduced to the case
where I' is finite. In particular, we can use this to prove the following general-
ization of Rim’s theorems V1.8.10 and VI.8.12:

(5.3) Theorem. The following conditions on a I'-module M are equivalent:

(i) M is cohomologically trivial.
(ii) projdimz;r M <n + 1.
(iii) proj dimzr M < co.

If these conditions hold and M is Z-free, then proj dimzr M < n.

PRrROOFE. We have (ii) = (iii) trivially, and (iii) = (i) exactly as in the proof of
VI1.8.12. To prove (i) = (ii), assume first that M is Z-free, in which case we
will prove that proj dimyr M < n. According to VIIL.2.1, it will suffice to
show that Ext}* }(M, N) = 0 for every I'-module N. Moreover, a glance at
the proof of VIII.2.1 shows that we only need to consider modules N which
are Z-free. In this case we know from VI1.8.11 that the I"-module Hom(M, N)
is cohomologically trivial over every finite subgroup of I', hence Hom(M, N)
is cohomologically trivial by 5.2. We therefore have

Ext;* (M, N) = H"* (T, Hom(M, N)) by II1.2.2
= A"*Y(I', Hom(M, N)) by 34
=0. ,
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If M is now cohomologically trivial but not Z-free, choose a short exact
sequence 0 = M’ —» P » M — 0 with P projective. Then M’ is cohomologic-
ally trivial and Z-free, so proj dim M’ < n by what we just proved. Therefore
projdimM <n + 1. O

EXERCISE

Show that the following conditions are equivalent:

(i) M is cohomologically trivial.

(ii) For every subgroup I’ < I there is an integer m such that H{(I", M) = Ofori > m.
(i) A,(I", M) = O for every subgroup I" < I.
(iv) For every subgroup I'" < I  there is an integer m such that H(I"', M) = Ofori > m.

6 Groups with Periodic Cohomology

A group I' of finite virtual cohomological dimension is said to have periodic
cohomology if for some d # 0 there is an element u e AYT, Z) which is
invertible in the ring A*(T, Z). Cup product with u then gives a periodicity
isomorphism

AT, M) ~ A+4T, M)

for any I'-module M and any i € Z. Similarly, we say that I has p-periodic
cohomology (where p is a prime) if the p-primary component A*(T, Z) ),
which is itself a ring (cf. exercise 2a of §VL.5), contains an invertible element
of non-zero degree d. We then have

AT, M), ~ A"*4T, M),
As in exercise 2b of §VI.5 (see also exercise 2 of §3), we have

A%, 2) ~ [ B%T, Z),
1 4

where p ranges over the primes such that I' has p-torsion. Since this is a
finite direct product of rings, it is clear that ' has periodic cohomology if
and only if I" has p-periodic cohomology for every prime p. We will therefore
restrict our attention to p-periodicity. Our goal, as in the previous section,
will be to reduce to the case where I is finite, which we already understand
by §VI.9. First of all, it is sometimes convenient to use A*(T, Z,) instead of
A%, Z),,,. This is justified by:

(6.1) Proposition. T has p-periodic cohomology if and only if A¥(T, Z,)
contains an invertible element of non-zero degree.
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The proof will be based on"a “Bockstein” argument. Let H(k) =
A%, Z,.). For any k, I there is a canonical short exact sequence 0 = 7, —
Z j+1 = Z i — 0, which yields a cohomology exact sequence

(6.2) < H() - H(k + [) 2% H(k) 24 H() - -
(6.3) Lemma. Ifk > Ithen B, , is a derivation, i.e.,

Bi.(uv) = By (u)- v + (—1)*%%u- B, (v).

(The right-hand side makes sense and is in H(l) because we have a cup
product H(k) ® H(l) - H(l)for k > 1)

ProOF. Choose a complete resolution F and a diagonal map F - F ® F.
It is easy to see that f, , can be computed as follows: Given u € H(k), choose
a cochain ¢ € #%sm{(F, Z) whose reduction mod p* is a cocycle representing
u; then dc is divisible by p*, and éc/p* is a cocycle whose reduction mod p'
represents B, (u). The derivation property of B, , now follows from the
corresponding property of 4. O

(6.4) Lemma. For anyue H(1) and any k > 1, u”* € im oy, , , = ker f; ;.

PROOF. I claim first that for any u € H(k), we have u? eker B, ; = im a4y 4.
This follows from the fact that B, , is a derivation whose target H(1) is
annihilated by p (cf. proof of 4.6). Thus a,,, , is the composite of ring
homomorphisms )

Hk + 1) 2% H(k) > --- - H(1),

each of which has the property that p-th powers are in the image. The lemma
follows at once. O

Let H(w) = A%, Z).,- Note that we still have an exact sequence of
the form 6.2 if | = oo (and k < o0); this is obtained by taking p-primary
components in the cohomology exact sequence associated to

025 22,0

(6.5) Lemma. For sufficiently large k, im &, ; = im a, ;.

PrOOE. We know (exercise 2 of §3) that H(co) is annihilated by p* for some k.
The sequence 6.2 with | = oo therefore yields an injection a, ,: H(c0) & H(k)
for large k. Now it is easy to see that B, , = a 4B}, o, s0OKker B, , = ker B o
for large k. But ker 8, , = im o, , and ker B, , = imag ;.

(6.6) Lemma. The map o = a, ,: H(c0) - H(1) has the following two
properties:

(i) Every element of ker « is nilpotent.
(ii) For any ue H(1) there is an integer k such that u™ € im a.
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(Thus « is an F-isomorphism in the sense of §4.)

ProoF. If u e ker a, then 6.2 with [ = co and k = 1 shows that u = pv for
some v € H(). Hence u* = p*v* = 0 for large k, since H(c0) is annihilated
by some p*. This proves (i), and (ii) follows from 6.4 and 6.5.

PROOF OF 6.1. The map a: H(co) — H(1) is a ring homomorphism (taking 1
to 1). This follows from the fact that the map A*(,Z) —» A%, Z,) is a
ring homomorphism which maps all primary components to zero except
A*(T, Z),,,. Thus « takes invertible elements to invertible elements, whence
the “only if” part of the proposition. Conversely, suppose H(1) contains an
invertible element u of non-zero degree. Raising u to a power if necessary, we
can assume (6.6(ii)) that u,u~ ' €im a. Let u = o() and u~! = (D). Then
a(iid) = 1, so 6.6(i) implies that @i = 1 — x with x nilpotent. But then
1 — x is invertible, with inverse 1 + x + x? + ---, so @ is invertible and I’
has p-periodic cohomology. O

We now give the main result of this section:

(6.7) Theorem. The following conditions are equivalent:

(i) T has p-periodic cohomology.
(ii) There exist integers i and d with d # O such that AT, M), =
A*4(T, M), for all T-modules M.
(iii) Every finite subgroup of I has p-periodic cohomology.
(iv) Every elementary abelian p-subgroup of " has rank <1.

PROOF: (i) = (ii) trivially. If (i) holds, then (ii) holds for every finite subgroup
of I' by Shapiro’s lemma. But this implies (iii) by the analogue of V1.9.1 for
p-periodicity. Since (iii) <> (iv) by V1.9.7, it remains to prove (iii) = (i).

Let § and $*(I') be as in 4.4, with Z,, as coefficient module. If (iii) holds,
then I claim that we can find a family u = (uy)y g of invertible elements
uy € A%H) = A%H, Z,) such that u € $YT). To see this, note first that the
elements of & fall into finitely many isomorphism classes; for if I"' = I
is a torsion-free normal subgroup of finite index, then every H € § is iso-
morphic to a subgroup of the finite group I'/T". Now choose for each H € §
an invertible element v, € A*(H) of degree d,, # 0. By what we have just
observed, we can certainly assume that only finitely many distinct degrees
dy occur. Raising each vy to a suitable power, if necessary, we can then
arrange that all the d,; are equal to a single integer d.

Now let c: H; & H, be an embedding of finite subgroups given by
conjugation by some element of I'. Then vy, and c*vy, are two generators
of A%H,) ~ A%H,), hence c*vy, = Avy, for some non-zero scalar 1€ Z,.
Since A7~ ! = 1, it follows that v§;, ! = (c*vgy,)’ ™" = c*(v§;"). Thus if we set
uy = vl !, we have (uy) € $*(I). Clearly (ug; ') is also in §*(T), so $*(I") con-
tains an invertible element of non-zero degree. In view of the F-isomorphism
A% - $*(I) of 4.6, it follows exactly as in the proof of 6.1 that A*(I")
= A¥T, Z,) contains an invertible element of non-zero degree. O
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Remark. A weaker version of the implication (iii) = (i) was proved by
Venkov [1965], but not in the language of Farrell cohomology—he spoke
instead of the ordinary cohomology being periodic in sufficiently high
dimensions. Restated in terms of Farrell cohomology, his result said: if
AYT) contains an element u whose restriction to A*(H) is invertible for every
H € §, then u is invertible. (His proof, like ours, was based on the multi-
plicative structure in the spectral sequence 4.1.) The missing ingredient
which was needed to go from Venkov’s result to Theorem 6.7 was Quillen’s
observation 4.6.

EXERCISE

If6.7(ii) holds and the isomorphism is natural, show that Axr ,Z), containsan invertible
element of degree d. [Hint: By dimension-shifting, 6.7(ii) holds for all i, with isomorph-
isms that are compatible with connecting homomorphisms. Show that the composite
H'— Ai, - Ai}? is necessarily given (up to sign) by cup product with the image of
1e H]

7 A*(') and the Ordered Set of Finite
Subgroups of T’

In this section we will prove analogues for Farrell cohomology of Theorems
IX.11.1 and IX.13.1.

IfT operates on a partially ordered set S such that | S| is finite dimensional,
then we set

r(S) = HE(|S)).
As usual, it is understood here that there is an arbitrary I'-module of co-
efficients. Recall that for any finite dimensional I'-complex X there is a
canonical map

A% = Axpt) - AXX),

induced by the map X — pt.

(7.1) Theorem. Let T be a group such that ved T’ < oo, and let S be the set of
non-trivial finite subgroups of I'. Then the canonical map

A% - AXS)

is an isomorphism.
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PROOF. As in the proof of IX.11.1, let X be a finite dimensional, contractible,
admissible, proper I'-complex with contractible fixed-point sets X" (H € S),
and let Xy = | Jys X*". Then we have
A% =~ A¥X) because X is contractible

~ A¥X,)  because I' acts freely in X — X, (cf. VIL10.1)

~ AXS) by IX.11.2.
To see that the composite isomorphism is given by the canonical map
A%(") - AX(S), consider the diagram.

A%(I)

(+) b l N
HX) > Ax(Xo) ~ AKS),
where all maps coming from A*(I') are the canonical ones. The left-hand

triangle obviously commutes. For the right-hand triangle, we must go back
to IX.11.2 and note that, in the notation of the latter, the square

cC —— C(S)

|

C(Z) —— C(pt)

commutes. This is easily verified. Thus () commutes, whence the theorem.

O

As in Chapter IX, there is a p-local version of 7.1 which is more useful. Its
proof will be based on the following analogue of IX.11.5:

(7.2) Proposition. Let Z be a finite dimensional admissible T'-complex and
let p be a prime such that Z" is acyclic for every non-trivial finite p-subgroup of
I". Then the canonical map

AY D)y - A 2)

is an isomorphism.

PROOF. Assume first that every finite subgroup of I is a p-group. We can
then apply the method of proof of 7.1 to I' acting on X x Z (with X as

above), and we obtain an isomorphism A¥(X x Z) ~ A¥(S) such that the
triangle

A%

/N

1(X x Z) = HKS)
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commutes. On the other hand, the projection X x Z — Z yields

A%(I)

/N

XZ) —— A¥X x Z).
We therefore have
A%T) —— A¥Z)

in this case.

In the general case, choose a subgroup I'" = T of finite index such that
(I': T") is relatively prime to p and every finite subgroup of I'' is a p-group
(cf. proof of IX.9.2). Using restriction and transfer maps in the usual way (cf.
§I11.10), we have a natural embedding of A¥(W), (for any W) as a direct
summand of A%(W). In particular, taking W = Z and W = pt., we see that
the canonical map

A*()) — BYZ)
is a direct summand of the canonical map
A*I) - AL(2).
The latter being an isomorphism by the previous paragraph, it follows
that the former is also an isomorphism. O

We can now prove the main result of this section:

(7.3) Theorem. Let T be a group such that ved I’ < 0, let p be a prime, and
let o be the ordered set of non-trivial elementary abelian p-subgroups of T.
Then

A¥T),, —— A¥),)-
PrOOE. Apply 7.2 with Z = || (cf. proof of IX.13.1). O

One special case where A#(s#) can be easily understood is that where o/
is discrete. In that case 7.3 yields:

(7.4) Corollary. Suppose that every elementary abelian p-subgroup of T has
rank < 1. Then

H‘(r)(p) — Pl:[? H‘(N(P))(p) N

where 2 is a set of representatives for the conjugacy classes of subgroups of T’
of order p.
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For a concrete example where 7.4 leads to explicit cohomology calcula-
tions, see Brown [1976]. (These calculations, however, which involve
I' = SL4(Z), have been superseded by the calculations of Soulé [1978].)
For an example of 7.3 with dim &/ > 0, see Brown [1979]. This time
I' = SLy(Z[1/2]), p = 2,and dim & = 1.

Remark. Since A(I") = H'(T") for i > ved T, the canonical map
Hi(r)(p) - n HY(N(P))

Pe?
is an isomorphism for i > vcd I' under the hypotheses of 7.4. It is natural
to ask, by analogy with similar situations in algebraic topology, whether the
map is surjective for i = ved I'. It can be shown that this question, whose
answer is not known, is closely related to the question asked in §VIIL11 as
to whether one can always find a proper, contractible I'-complex of di-
mension equal to ved T

EXERCISE

Show that the components of the map in 7.4 are restriction maps

A%, — A*(N(P)),,).-
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Hom [homomorphism module with
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Hom, 208
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complex] 5

H+, [HNN extension] 179

Ind§ M [induced module] 67

K(G, 1) [Eilenberg-MacLane space]
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AL A% A(x), AR(V), AYY)
[exterior powers or algebra] 97,
119, 121

M* [dual of a module M] 28

MS [invariants] 27

Mg [co-invariants] 34

N,N [norm] 20,58

N(H) [normalizer] 259

Out N [outer automorphism group
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P(G, A) [principal derivations] 89

proj dim M, proj dim xkM [projective
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Q4m [quaternion group] 98
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Notation Index

R(P), R,(P) [Hattori-Stallings rank]
233

RH{(P), R{PXy) [Hattori-Stallings
rank over a group ring] 239

tk (P) 235,236
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res§ [restriction map] 80

|S| 261-262

Z(A) [symmetric group] 48

IC [suspension] S

SL, [special linear group] 39

Sp,, [symplectic group] 255

Spec A 235

Tor§ (M, N) 60
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tr(a), tr(a), trg,, [trace] 231-232

tr, tr§ [transfer maps] 81-82

ved [virtual cohomological dimension]
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VFP,VFL, WFL —see “finiteness
conditions” in the index of
terminology below
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r) 24s

x(I') [Euler characteristic of a group I']
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homology theory) 72
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Alexander-Whitney map 108, 286
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tree associated to 53
anti-commutativity 111, 118
arithmetic groups 217-218
Euler characteristic of 254ff
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“Eilenberg-MacLane space™)
associated graded module 162
augmentation ideal and map 12
augmentation-preserving chain map
23,132
automorphism group 102
outer 104

bar resolution 19

Bernoulli numbers 255

binary icosahedral group 47, 155
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boundary operator 4
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Cartan-Leray spectral sequence 173
chain complex 4
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Chevalley group 254
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co-compact 217
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co-effaceable 73
coefficient system 167
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virtual 226
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complete resolution 132,273
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conjugation action 48, 79, 80

connecting homomorphism 6, 71, 75

interpretation in terms of group

extensions 95

contractible, contracting homotopy 5
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convergence of a spectral sequence 163

corestriction map 80, 136
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crossed module 102

cross product 109

cup product 109, 130ff, 278

in cyclic groups 114
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cyclic group (resolution, homology, etc.)
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derivation 45, 88
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o-functor 75
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diagonal action 55, 56

diagonal approximation (or map) 108,
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differential 4

dihedral group 98

dimension
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dimension-shifting 74, 136
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discrete subgroups of Lie groups  38ff,
2176

divided polynomial algebra

divided powers 124

divisible module 66
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Gottlieb’s theorem 252
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indecomposable 231, 235, 236
induced module 60, 67F
injective module 26, 65ff
invariants 27

invariant cohomology class 84
invertible ideal 27
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K(G, 1)-complex 15 (see also
“Eilenberg-MacLane complex”)

knot groups 212

Krull dimension of H*(G) 159

Kummer’s criterion 270

Kiinneth formula 7, 109, 120

Lefschetz fixed-point theorem 21, 246,
261

length of a resolution 11

Lie groups (discrete subgroups of) 38,
2177

long exact homology sequence 6, 71, 75

Lyndon’s theorem 37, 44, 185, 228

mapping cone 6
Mayer-Vietoris sequence 51, 74, 178fT

Nakayama'’s lemma 150, 236

nerve of a covering 166

nilpotent group (cohomological
dimension of) 186, 213

norm element 20, 58

norm map 58

normalized bar resolution 19

one-relator group 37, 44, 185, 228
ordered simplicial complex 227
outer automorphism group 104

partially ordered set (topological
concepts applied to) 261, 262, 291
perfect group 46, 96, 198
periodic cohomology and resolution 20,
133, 153, 158, 180, 288
permutation module 13
p-groups
calculation of homology via 84
with a cyclic subgroup of index p
97ff
with a unique subgroup of order p 99
with every abelian normal subgroup
cyclic 101
Poincaré duality group 222
Pontryagin product 117
primary decomposition of homology
groups 84, 141
principal derivation 60, 89



306

product

cap 112-113, 141
composition 115, 143
cross 109

cup 109, 130ff, 278
of ordered simplicial complexes 227
shuffle 118
tensor 7, 10, 55, 107, 137
projective dimension 152, 184, 287
projective module 21, 26ff, 56
over a group ring 27, 149, 152, 201
over a local ring 235
rank of 230ff
stably free 201
proper action 39
proper I'-complex 226
pull-back 94

quaternion group 98, 155
Quillen’s theorem 159

rank
of a finitely generated abelian group
242
of a nilpotent group 186
of a projective module 230ff
reduced homology 211
regular cover 31
spectral sequence of 173
relation module 43, 44, 90, 198
relative homological algebra 25, 129ff
relative injective module 129
relative injective resolution 131
representable factor 25
resolution 10
bar 19
complete
finite 199
of finite type 193
periodic 20, 133, 153
standard 18
uniqueness of 24
via topology 14ff
restriction map 80, 136
restriction of scalars 62, 69
Rim’s theorem 152, 287

132,273

Schanuel’s lemma 192, 193
semi-direct product 87
Serre’s theorem 190
Shapiro’s lemma 73, 136

Subject Index

shuffle product 118

simple module 149

simplicial complex (ordered) 227

associated to a partially ordered set

261-262

simplicial product 227

Solomon-Tits theorem 270

Spec 4 235

special linear group 39, 157ff, 213ff,
229, 255

spectral sequence 162fT

split extension 87

stably free 201

Stallings-Swan theorem

standard resolution 18

strict anti-commutativity 118

strict upper triangular group 38, 185,
213

suspension 5

Swan’s theorem 240-241

Sylow subgroups (calculation of
homology via) 84

symmetric group 48, 85, 114

symplectic group 258, 269

185, 223

Tate homology and cohomology 134ff,
170, 180ff

tensor product

Tor 60

trace 231-232

transfer map 80, 83ff

tree 53

type FL, FP, etc.—see “finiteness
conditions”

7, 10, 55, 107, 137

universal central extension 96

universal coefficient theorem 8, 127,
170, 198, 202

upper triangular group 38, 185, 213

virtual notions 225

weak equivalence 5ff, 29

Yoneda's lemma 25

Zariski topology 236-237
zeta function 254



