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Preface to the Second Edition

It is now 10 years since the first edition of this book appeared in 1980. The
intervening decade has seen tremendous advances take place in mathe-
matics generally, and in number theory in particular. It would seem desir-
able to treat some of these advances, and with the addition of two new
chapters, we are able to cover some portion of this new material.

As examples of important new work that we have not included, we
mention the following two results:

(1) The first case of Fermat’s last theorem is true for infinitely many
prime exponents p. This means that, for infinitely many primes p, the
equation x? + y? = z? has no solutions in nonzero integers with p [
xyz. This was proved by L.M. Adelman and D.R. Heath-Brown and
independently by E. Fouvry. An overview of the proof is given by
Heath-Brown in the Mathematical Intelligencer (Vol. 7, No. 6, 1985).

(2) Let p,, p2, and p; be three distinct primes. Then at least one of them is
a primitive root for infinitely many primes q. Recall that E. Artin
conjectured that, if a € Z is not 0, 1, —1, or a square, then there are
infinitely many primes g such that a is a primitive root modulo g. The
theorem we have stated was proved in a weaker form by R. Gupta and
M.R. Murty, and then strengthened by the combined efforts of R.
Gupta, M.R. Murty, V.K. Murty, and D.R. Heath-Brown. An exposi-
tion of this result, as well as an analogue on elliptic curves, is given by
M.R. Murty in the Mathematical Intelligencer (Vol. 10, No. 4, 1988).

The new material that we have added falls principally within the frame-
work of arithmetic geometry. In Chapter 19 we give a complete proof of
L.J. Mordell’s fundamental theorem, which asserts that the group of ra-
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tional points on an elliptic curve, defined over the rational numbers, is
finitely generated. In keeping with the spirit of the book, the proof (due in
essence to A. Weil) is elementary. It makes no use of cohomology groups
or any other advanced machinery. It does use finiteness of class number
and a weak form of the Dirichlet unit theorem; both results are proved in
the text.

The second new chapter, Chapter 20, is an overview of G. Faltings’s
proof of the Mordell conjecture and recent progress on the arithmetic of
elliptic curves, especially the work of B. Gross, V.A. Kolyvagin, K.
Rubin, and D. Zagier. Some of this work has surprising applications to
other areas of number theory. We discuss one application to Fermat’s last
theorem, due to G. Frey, J.P. Serre, and K. Ribet. Another important
application is the solution of an old problem due to K.F. Gauss about
class numbers of imaginary quadratic number fields. This comes about by
combining the work of B. Gross and D. Zagier with a result of D. Gold-
feld. This chapter contains few proofs. Its main purpose is to give an
informative survey in the hope that the reader will be inspired to learn the
background necessary to a better understanding and appreciation of these
important new developments.

The rest of the book is essentially. unchanged. An attempt has been
made to correct errors and misprints. In an effort to keep confusion to a
minimum, we have not changed the bibliography at the end of the book.
New references for the two new chapters, Chapters 19 and 20, will be
found at the end of those chapters. We would like to thank Toru Nakahara
and others for submitting a list of misprints from the first edition. Also, we
thank Linda Guthrie for typing portions of the final chapters.

We have both been very pleased with the warm reception that the first
edition of this book received. It is our hope that the new edition will
continue to entice readers to delve deeper into the mysteries of this an-
cient, beautiful, and still vital subject.

February 1990 Kenneth Ireland
Michael Rosen

Addendum to Second Edition, Second Corrected Printing

The.second printing of the second edition is unchanged except for correc-
tions and the addition of a few clarifying comments. I would like to thank
K. Conrad, M. Jastrzebski, F. Lemmermeyer and others who took the
trouble to send us detailed lists of misprints.

November 1992 Michael Rosen



Preface

This book is a revised and greatly expanded version of our book Elements of
Number Theory published in 1972. As with the first book the primary audience
we envisage consists of upper level undergraduate mathematics majors and
graduate students. We have assumed some familiarity with the material in a
standard undergraduate course in abstract algebra. A large portion of
Chapters 1-11 can be read even without such background with the aid of a
small amount of supplementary reading. The later chapters assume some
knowledge of Galois theory, and in Chapters 16 and 18 an acquaintance with
the theory of complex variables is necessary.

Number theory is an ancient subject and its content is vast. Any intro-
ductory book must, of necessity, make a very limited selection from the
fascinating array of possible topics. Our focus is on topics which point in the
direction of algebraic number theory and arithmetic algebraic geometry. By a
careful selection of subject matter we have found it possible to exposit some
rather advanced material without requiring very much in the way of technical
background. Most of this material is classical in the sense that is was dis-
covered during the nineteenth century and earlier, but it is also modern
because it is intimately related to important research going on at the present
time.

In Chapters 1-5 we discuss prime numbers, unique factorization, arith-
metic functions, congruences, and the law of quadratic reciprocity. Very little
is demanded in the way of background. Nevertheless it is remarkable how a
modicum of group and ring theory introduces unexpected order into the
subject. For example, many scattered results turn out to be parts of the answer
to a natural question: What is the structure of the group of units in the ring
Z/nZ?
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Reciprocity laws constitute a major theme in the later chapters. The law
of quadratic reciprocity, beautiful in itself, is the first of a series of reciprocity
laws which lead ultimately to the Artin reciprocity law, one of the major
achievements of algebraic number theory. We travel along the road beyond
quadratic reciprocity by formulating and proving the laws of cubic and
biquadratic reciprocity. In preparation for this many of the techniques of
algebraic number theory are introduced; algebraic numbers and algebraic
integers, finite fields, splitting of primes, etc. Another important tool in this
investigation (and in others!) is the theory of Gauss and Jacobi sums. This
material is covered in Chapters 6-9. Later in the book we formulate and prove
the more advanced partial generalization of these results, the Eisenstein
reciprocity law.,

A second major theme is that of diophantine equations, at first over finite
fields and later over the rational numbers. The discussion of polynomial
equations over finite fields is begun in Chapters 8 and 10 and culminates in
Chapter 11 with an exposition of a portion of the paper “Number of solutions
of equations over finite fields” by A. Weil. This paper, published in 1948, has
been very influential in the recent development of both algebraic geometry
and number theory. In Chapters 17 and 18 we consider diophantine equations
over the rational numbers. Chapter 17 covers many standard topics from
sums of squares to Fermat’s Last Theorem. However, because of material
developed earlier we are able to treat a number of these topics from a novel
point of view. Chapter 18 is about the arithmetic of elliptic curves. It dif-
fers from the earlier chapters in that it is primarily an overview with many
definitions and statements of results but few proofs. Nevertheless, by con-
centrating on some important special cases we hope to convey to the reader
something of the beauty of the accomplishments in this area where much work
is being done and many mysteries remain.

The third, and final, major theme is that of zeta functions. In Chapter 11 we
discuss the congruence zeta function associated to varieties defined over finite
fields. In Chapter 16 we discuss the Riemann zeta function and the Dirichlet
L-functions. In Chapter 18 we discuss the zeta function associated to an
algebraic curve defined over the rational numbers and Hecke L-functions.
Zeta functions compress a large amount of arithmetic information into a
single function and make possible the application of the powerful methods of
analysis to number theory.

Throughout the book we place considerable emphasis on the history of
our subject. In the notes at the end of each chapter we give a brief historical
sketch and provide references to the literature. The bibliography is extensive
containing many items both classical and modern. Our aim has been to
provide the reader with a wealth of material for further study.

There are many exercises, some routine, some challenging. Some of the
exercises supplement the text by providing a step by step guide through the
proofs of important results. In the later chapters a number of exercises have
been adapted from results which have appeared in the recent literature. We
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hope that working through the exercises will be a source of enjoyment as well
as instruction.

In the writing of this book we have been helped immensely by the interest
and assistance of many mathem:atical friends and acquaintances. We thank
them all. In particular we would like to thank Henry Pohlmann who insisted
we follow certain themes to their logical conclusion, David Goss for allowing
us to incorporate some of his work into Chapter 16, and Oisin McGuiness
for his invaluable assistance in the preparation of Chapter 18. We would
like to thank Dale Cavanaugh, Janice Phillips, and especially Carol Ferreira,
for their patience and expertise in typing large portions of the manuscript.
Finally, the second author wishes to express his gratitude to the Vaughn
Foundation Fund for financial support during his sabbatical year in
Berkeley, California (1979/80).

July 25, 1981 Kenneth Ireland
Michael Rosen
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Chapter 1

Unique Factorization

The notion of prime number is fundamental in number
theory. The first part of this chapter is devoted to proving
that every integer can be written as a product of primes
in an essentially unique way.

After that, we shall prove an analogous theorem in the
ring of polynomials over a field.

On a more abstract plane, the general idea of unique
factorization is treated for principal ideal domains.

Finally, returning from the abstract to the concrete, the
general theory is applied to two special rings that will be
important later in the book.

§1 Unique Factorization in Z

As a first approximation, number theory may be defined as the study of the
natural numbers 1, 2, 3, 4, . . . . L. Kronecker once remarked (speaking of
mathematics generally) that God made the natural numbers and all the rest
is the work of man. Although the natural numbers constitute, in some sense,
the most elementary mathematical system, the study of their properties has
provided generations of mathematicians with problems of unending fascina-
tion.

We say that a number a divides a number b if there is a number ¢ such
that b = ac. If a divides b, we use the notation a|b. For example, 2|8, 3|15,
but 6,21. If we are given a number, it is tempting to factor it again and
again until further factorization is impossible. For example, 180 = 18 x 10
=2x9x2x5=2x3x3x 2 x5 Numbers that cannot be factored
further are called primes. To be more precise, we say that a number p is a
prime if its only divisors are 1 and p. Prime numbers are very important
because every number can be written as a product of primes. Moreover,
primes are of great interest because there are many problems about them
that are easy to state but very hard to prove. Indeed many old problems
about primes are unsolved to this day.

The first prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,
43, ....One may ask if there are infinitely many prime numbers. The answer
is yes. Euclid gave an elegant proof of this fact over 2000 years ago. We shall
give his proof and several others in Chapter 2. One can ask other questions
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of this nature. Let 7(x) be the number of primes between 1 and x. What can
be said about the function 7(x) ? Several mathematicians found by experiment
that for large x the function n(x) was approximately equal to x/In(x). This
assertion, known as the prime number theorem, was proved toward the end
of the nineteenth century by J. Hadamard and independently by Ch.-J. de la
Vallé Poussin. More precisely, they proved

nx)
v X/0(X)

Even from a small list of primes one can notice that they have a tendency
to occur in pairs, for example, 3 and 5, 5 and 7, 11 and 13, 17 and 19. Do
there exist infinitely many prime pairs? The answer is unknown.

Another famous unsolved problem is known as the Goldbach conjecture
(C. H. Goldbach). Can every even number be written as the sum of two
primes? Goldbach came to this conjecture experimentally. Nowadays
electronic computers make it possible to experiment with very large numbers.
No counterexample to Goldbach’s conjecture has ever been found. Great
progress toward a proof has been given by I. M. Vinogradov and L. Schnirel-
mann. In 1937 Vinogradov was able to show that every sufficiently large odd
number is the sum of three odd primes.

In this book we shall not study in depth the distribution of prime numbers
or “additive” problems about them (such as the Goldbach conjecture).
Rather our concern will be about the way primes enter into the multiplicative
structure of numbers. The main theorem along these lines goes back essen-
tially to Euclid. It is the theorem of unique factorization. This theorem is
sometimes referred to as the fundamental theorem of arithmetic. It deserves
the title. In one way or another almost all the results we shall discuss depend
on it. The theorem states that every number can be factored into a product of
primes in a unique way. What uniqueness means will be explained below.

As an illustration consider the number 180. We have seen that 180 =
2 x2x3x3x5=2%x 3% x 5 Uniqueness in this case means that
the only primes dividing 180 are 2, 3, and 5 and that the exponents 2, 2, and
1 are uniquely determined by 180.

Z will denote the ring of integers, i.e., theset 0, +1, +2, +3, ..., together
with the usual definition of sum and product. It will be more convenient to
work with Z rather than restricting ourselves to the positive integers. The
notion of divisibility carries over with no difficulty to Z. If p is a positive
prime, —p will also be a prime. We shall not consider 1 or — 1 as primes even
though they fit the definition. This is simply a useful convention. Note that
1 and —1 divide everything and that they are the only integers with this
property. They are called the units of Z. Notice also that every nonzero
integer divides zero. As is usual we shall exclude division by zero.

There are a number of simple properties of division that we shall simply
list. The reader may wish to supply the proofs.
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(1) ala,a # 0.

(2) If a|b and b|a, thena = +b.
(3) If a|b and b|c, then a|c.

(4) If a|b and a|c, then a|b + c.

Let n € Z and let p be a prime. Then if » is not zero, there is a nonnegative
integer a such that p®|n but p**! ¥ n. This is easy to see if both p and n are
positive for then the powers of p get larger and larger and eventually exceed n.
The other cases are easily reduced to this one. The number a is called the
order of n at p and is denoted by ord, n. Roughly speaking ord, n is the
number of times p divides n. If n = 0, we set ord, 0 = oo. Notice that
ord, n = 0if and only if (iff) p ¥ n.

Lemma 1. Every nonzero integer can be written as a product of primes.

PRrOOF. Assume that there is an integer that cannot be written as a product of
primes. Let N be the smallest positive integer with this property. Since N
cannot itself be prime we must have N = mmn, where 1 < m, n < N. How-
ever, since m and n are positive and smaller than N they must each be a
product of primes. But then so is N = mn. This is a contradiction.

The proof can be given in a more positive way by using mathematical
induction. It is enough to prove the result for all positive integers. 2 is a
prime. Suppose that 2 < N and that we have proved the result for all
numbers m such that 2 < m < N. We wish to show that N is a product of
primes. If N is a prime, there is nothing to do. If N is not a prime, then
N = mn, where 2 < m, n < N. By induction both m and » are products of
primes and thus so is N. O

By collecting terms we can write » = p{'p% - - - py, where the p; are
primes and the a; are nonnegative integers. We shall use the following
notation:

n= (_ 1)£(n) l’[ pa(p),
P

where ¢(n) = 0 or 1 depending on whether n is positive or negative and
where the product is over all positive primes. The exponents a(p) are non-
negative integers and, of course, a(p) = 0 for all but finitely many primes.
Forexample, ifn = 180, we have e(n) = 0,a(2) = 2,a(3) = 2,and a(5) = 1,
and all other a(p) = 0.

We can now state the main theorem.

Theorem 1. For every nonzero integer n there is a prime factorization
n= (_ l)s(n) l_[pa(p)
b
p

with the exponents uniquely determined by n. In fact, we have a(p) = ord, n.
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The proof of this theorem is not as easy as it may seem. We shall postpone
the proof until we have established a few preliminary results.

Lemma 2. If a,b e Z and b > 0, there exist q,r € Z such that a = gb + r
with 0 < r < b.

Proor. Consider the set of all integers of the form a — xb with x € Z. This set
includes positive elements. Let r = a — g¢b be the least nonnegative element
in this set. Weclaimthat0 < r < b.Ifnot,r = a — gb > bandso0 < a —
(g + )b < r, which contradicts the minimality of r. 0O

Definition. If a,, a,, ..., a, € Z, we define (a,, a,, ..., a,) to be the set of
all integers of the form a;x; + a,x, + --- + a,x, with x, x,, ..., x, € Z.

Let A = (a;, a,, ...,a,). Notice that the sum and difference of two
elements in A4 are again in 4. Also, if a € 4 and r € Z, then ra € A. In ring-
theoretic language, 4 is an ideal in the ring Z.

Lemma 3. If a, b € Z, then there is a d € Z such that (a, b) = (d).

PrROOF. We may assume that not both a and b are zero so that there are
positive elements in (a, b). Let d be the smallest positive element in (a, b).
Clearly (d) < (a, b). We shall show that the reverse inclusion also holds.
Suppose that ¢ € (a, b). By Lemma 2 there exist integers ¢ and r such that
¢ = qd + rwith 0 < r < d. Since both ¢ and d are in (g, b) it follows that
r = c¢ — qd is also in (a, b). Since 0 < r < d we must have r = 0. Thus
¢ =qde(d). O

Definition. Let a, b € Z. An integer d is called a greatest common divisor of
a and b if d is a divisor of both a and 4 and if every other common divisor of
a and b divides d.

Notice that if ¢ is another greatest common divisor of a and b, then we
must have ¢|dand d|cand so ¢ = +d. Thus the greatest common divisor of
two numbers, if it exists, is determined up to sign.

As an example, one may check that 14 is a greatest common divisor of
42 and 196. The following lemma will establish the existence of the greatest
common divisor, but it will not give a method for computing it. In the
Exercises we shall outline an efficient method of computation known as the
Euclidean algorithm.

Lemma 4. Let a, b € Z. If (a, b) = (d) then d is a greatest common divisor of
a and b.

PrOOF. Since a € (d) and b e (d) we see that d is a common divisor of a and b.
Suppose that ¢ is a common divisor. Then ¢ divides every number of the form
ax + by. In particular ¢|d. O
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Definition. We say that two integers a and b are relatively prime if the only
common divisors are + 1, the units.

It is fairly standard to use the notation (a, b) for the greatest common
divisor of a and b. The way we have defined things, (a, b) is a set. However,
since (a, b) = (d) and d is a greatest common divisor (if we require d to be
positive, we may use the article the) it will not be too confusing to use the
symbol (a, b) for both meanings. With this convention we can say that @ and
b are relatively prime if (a, b) = 1.

Proposition 1.1.1. Suppose that a|bc and that (a, b) = 1. Then a|c.

PRrOOF. Since (a, b) = 1 there exist integers r and s such that ra + sb = 1.
Therefore, rac + sbc = c. Since a divides the left-hand side of this equation
we have a|c. (]

This proposition is false if (a, b)) # 1. For example, 6|24 but 6 3 and
648.
Corollary 1. If p is a prime and p|bc, then either p|b or p|c.

ProOF. The only divisors of pare +1and +p. Thus(p, b) = 1orp;i.e.,either
p|bor pand b are relatively prime. If p| b, we are done. If not, (p, ) = 1 and
so0, by the proposition, p|c. O

We can state the corollary in a slightly different form that is often useful:
If p is a prime and p ¥ b and p t ¢, then p ¥ bc.

Corollary 2. Suppose that p is a prime and that a,b € Z. Then ord,ab = ord, a
+ ord, b.

PrOOF. Let « = ord, a and B = ord, b. Then a = p*c and b = p’d, where
p ¥candp ¥ d. Thenab = p**fcd and by Corollary 1 p 4 cd. Thusord, ab =
a+ f =ord,a + ord, b. U

We are now in a position to prove the main theorem.
Apply the function ord, to both sides of the equation

n= (_ l)s(n) l_[pa(p)
p
and use the property of ord, given by Corollary 2. The result is
ord, n = gn) ord,(—1) + Y. a(p) ord,(p).
p

Now, from the definition of ord, we have ord,(—1) = 0 and ord,(p) = 0
ifp # gand 1if p = q. Thus the right-hand side collapses to the single term
a(q), i.e., ord, n = a(g), which is what we wanted to prove.
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It is to be emphasized that the key step in the proof is Corollary 1: namely,
if p|ab, then p|a or p|b. Whatever difficulty there is in the proof is centered
about this fact.

§2 Unique Factorization in k[ x]

The theorem of unique factorization can be formulated and proved in more
general contexts than that of Section 1. In this section we shall consider the
ring k[x] of polynomials with coefficients in a field k. In Section 3 we shall
consider principal ideal domains. It will turn out that the analysis of these
situations will prove useful in the study of the integers.

If f, g € k[x], we say that f divides g if there is an A € k[x] such that
g = fh

If deg f denotes the degree of f, we have deg fg = deg / + degg. Also,
remember that deg f = 0 iff f is a nonzero constant. It follows that f'|g and
g|fiff f = cg, where c is a nonzero constant. It also follows that the only
polynomials that divide all the others are the nonzero constants. These are
the units of [x]. A nonconstant polynomial p is said to be irreducible if
q|p implies that q is either a constant or a constant times p. Irreducible
polynomials are the analog of prime numbers.

Lemma 1. Every nonconstant polynomial is the product of irreducible poly-
nomials.

PrOOF. The proof is by induction on the degree. It is easy to see that poly-
nomials of degree 1 are irreducible. Assume that we have proved the result
for all polynomials of degree less than nand that deg f = n. If fisirreducible,
we are done. Otherwise f = gh, where 1 < deg g, deg & < n. By the induc-
tion assumption both g and 4 are products of irreducible polynomials. Thus
sois f = gh. O

It is convenient to define monic polynomial. A polynomial f'is called monic
if its leading coefficient is 1. For example, x2 + x — 3and x> — x* + 3x +
17 are monic but 2x* — 5 and 3x* + 2x? — 1 are not. Every polynomial
(except zero) is a constant times a monic polynomial.

Let p be a monic irreducible polynomial. We define ord, f to be the
integer a defined by the property that p®| f but that p**! y f. Such an integer
mus. exist since the degree of the powers of p gets larger and larger. Notice
thatord, f = 0iff p ¥ f.

Theorem 2. Let f € k[x]. Then we can write

f=c[lpr?,
p



§2 Unique Factorization in k[x] 7

where the product is over all monic irreducible polynomials and c is a constant.
The constant ¢ and the exponents a(p) are uniquely determined by f; in fact,

a(p) = ord, f.

The existence of such a product follows immediately from Lemma 1. As
before, the uniqueness is more difficult and the proof will be postponed until
we develop a few tools.

Lemma 2. Let f, g € k[x]). If g # 0, there exist polynomials h, r € k[x] such
that = hg + r, where eitherr = Oorr # Oanddegr < degg.

Proor. If g| f, simply set h= f/g and r=0. If g ¥ f, let r = f — hg be the
polynomial of least degree among all polynomials of the form f — lg with
[ € k[x]. We claim that deg r < degg. If not, let the leading term of r be
ax® and that of g be bx™. Thenr — ab™'x*"™g = f — (h + ab™'x*"™)g has
smaller degree than r and is of the given form. This is a contradiction. [

Definition. If f,, f,, ..., f, € k[x], then (f}, f5, ..., f,) is the set of all
polynomials of the form fih, + fh, + - - + f,h,, where hy, h,, ..., h,
€ k[x].

In ring-theoretic language (f}, f5,...,f,) is the ideal generated by
flafZa [ afn'

Lemma 3. Given f, g € k[x] there is a d € k[ x] such that (f, g) = (d).

PrOOF. In the set (f, g) let d be an element of least degree. We have (d) < (f, g)
and we want to prove the reverse inclusion. Let ¢ € (f, g). If d ¥ ¢, then there
exist polynomials # and r such that ¢ = Ad + r with deg r < deg d. Since
cand dare in (f, g) we have r = ¢ — hd < (f, g). Since r has smaller degree
than d this is a contradiction. Therefore, d|c¢ and ¢ € (d). O

Definition. Let f, g € k[x]. Then d ek[x] is said to be a greatest common
divisor of f and g if d divides f and g and every common divisor of f and g
divides d.

Notice that the greatest common divisor of two polynomials is determined
up to multiplication by a constant. If we require it to be monic, it is uniquely
determined and we may speak of the greatest common divisor.

Lemma 4. Let f, g € k[x]. By Lemma 3 there is a d € k[x] such that (f, g) =
(d). d is a greatest common divisor of f and g.

PRrOOF. Since f e (d) and g € (d) we have d|f and d|g. Suppose that A|f and
thatA|g. Then A divides every polynomial of the form f7 + gm with [,m e k[ x].
In particular 4|d, and we are done. O
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Definition. Two polynomials f'and g are said to be relatively prime if the only
common divisors of f'and g are constants. In other words, (f, g) = (1).

Proposition 1.2.1. If f and g are relatively prime and f |gh, then f | h.

Proor. If fand g are relatively prime, we have (f, g) = (1) so there are poly-
nomials / and m such that If + mg = 1. Thus Ifh + mgh = h. Since f
divides the left-hand side of this equation f must divide A. O

Corollary 1. If p is an irreducible polynomial and p|fg, then p|f or p|g.

PROOF. Since p is irreducible (p, /) = (p) or (1). In the first case p|f and we
are done. In the second case p and f are relatively prime and the result
follows from the proposition. O

Corollary 2. If p is a monic irreducible polynomial and f, g € k[x], we have
ord, fg = ord, f + ord, g.

PRrOOF. The proof is almost word for word the same as the proof to Corollary
2 to Proposition 1.1.1. O

The proof of Theorem 2 is now easy. Apply the function ord, to both sides
of the relation

f=c[]p™.
p
We find that
ord, f = ord, ¢ + ) a(p) ord, p.
p

Now, since c is a constant ¢t ¢ and ord, ¢ = 0. Moreover, ord, p = 0 if
q # p and 1 if ¢ = p. Thus the above relation yields ord, f = a(g). This
shows that the exponents are uniquely determined. It is clear that if the
exponents are uniquely determined by f, then so is ¢. This completes the
proof. O

§3 Unique Factorization in a Principal Ideal Domain

The reader will not have failed to notice the great similarity in the methods
of proof in Sections 1 and 2. In this section we shall prove an abstract theorem
that includes the previous results as special cases.

Throughout this section R will denote an integral domain.

Definition 1. R is said to be a Euclidean domain if there is a function A from the
nonzero elements of R to the set {0, 1,2, 3,...} such thatifa,be R, b # 0,
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there exists ¢, d € R with the property a = ¢b + d and either d = 0 or
Ad) < Ab).

The rings Z and k[x] are both Euclidean domains. In Z we can take
ordinary absolute value as the function 4; in the ring k[ x] the function that
assigns to every polynomial its degree will serve the purpose.

Proposition 1.3.1. If R is a Euclidean domain and I = R is an ideal, then there
is an element a € R such that [ = Ra = {ra|r e R}.

Proor. Consider the set of nonnegative integers {A(b)|b € I, b # 0). Since
every set of nonnegative integers has a least element thereisana e I, a # 0,
such that A(a) < A(b) for all be I, b # 0. We claim that 7 = Ra. Clearly,
Ra < I Suppose that b € I; then we know that there are elements ¢, d e R
such that b = ca + d, where either d = 0 or A(d) < A(a). Since d = b —
ca € I we cannot have A(d) < A(a). Thusd = 0 and b = ca € Ra. Therefore,

I = Ra and we are done. a

For elements ay, ..., a, € R, define (a,,a,,...,a,) = Ra; + Ra, +.
<<+ + Ra, = {dI- ria|r,€eR}. (ay,a,,...,a, is an ideal. If an ideal /
is equal to (ay, ..., a,) for some elements a; € I, we say that [ is finitely

generated. If 7 = (a) for some a € I, we say that [ is a principal ideal.

Definition 2. R is said to be a principal ideal domain (PID) if every ideal of R is
principal.

Proposition 1.3.1 asserts that every Euclidean domain is a PID. The con-
verse of this statement is false, although it is somewhat hard to provide
examples.

The remaining discussion in this section is about PID’s. The notion of
Euclidean domain is useful because in practice one can show that many
rings are PID’s by first establishing that they are Euclidean domains. We
shall give two further examples in Section 4.

We introduce some more terminology. If a, b ¢ R, b # 0, we say that b
divides a if a = bc for some ¢ € R. Notation: b|a. An element u € R is
called a unit if u divides 1. Two elements a, b € R are said to be associates if
a = bu for some unit u. An element p € R is said to be irreducible if a|p
implies that a is either a unit or an associate of p. A nonunit p € Ris said to be
prime if p # 0 and p|ab implies that p|a or p|b.

The distinction between irreducible element and prime element is new.
In general these notions do not coincide. As we have seen they do coincide
in Z and k[x], and we shall prove shortly that they coincide in a PID.

Some of the notions we are discussing can be translated into the language
of ideals. Thus a|b iff (b) < (@). u €R is a unit iff (u) = R. a and b are
associate iff (@) = (b). p is prime iff ab € (p) implies that either a € (p) or
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b e(p). All these assertions are easy exercises. The notion of irreducible
element can be formulated in terms of ideals, but we will not need it.

Definition. d € R is said to be a greatest common divisor (gcd) of two elements
a,beRif

(a) d|laand d|b.
(b) d’|a and d’|b implies that d’|d.

It is easy to see that if both d and d” are gcd’s of @ and b, then d is associate
tod’.

The gcd of two elements need not exist in a general ring. However,

Proposition 1.3.2. Let R be a PID and a, b € R. Then a and b have a greatest
common divisor d and (a, b) = (d).

ProoF. Form the ideal (a, b). Since R is a PID there is an element d such that
(a, b) = (d). Since (a) < (d) and (b) = (d) we have d|a and d|b. If d’|a
and d’|b, then (@) = (d") and (b) = (d’). Thus (d) = (a, b) = (d")and d’|d.
We have proved that d is a gcd of @ and b and that (a, b) = (d). O

Two elements a and b are said to be relatively prime if the only common
divisors are units.

Corollary 1. If R is a PID and a, b € R are relatively prime, then (a, b) = R.

Corollary 2. If R is a PID and p € R is irreducible, then p is prime.

PROOF. Suppose that p|ab and that p ¥ a. Since p f a it follows that the only
common divisors are units. By Corollary 1 (a, p) = R. Thus (ab, pb) = (b).
Since ab € (p) and pb € (p) we have (b) < (p). Thus p|b.

It is easy to see that a prime is irreducible. ]

From now on R will be a PID and we shall use the words prime and
irreducible interchangeably.

We want to show that every nonzero element of R is a product of irredu-
cible elements. The proof is in two steps. First one shows that if a € R,
a # 0, there is an irreducible dividing a. Then we show that a is a product of
irreducibles.

Lemma 1. Let (a,) < (a,) < (a3) S - - - be an ascending chain of ideals. Then
there is an integer k such that (a,) = (a, ) for 1 =0, 1,2, ... . In other words,
the chain breaks off in finitely many steps.

PrOOF. Let I = ( {2 ,(a;). It is easy to see that / is an ideal. Thus / = (a) for
some g€ R. Butae U;"’: 1(a;) implies that a € (@) for some k, which shows
that I = (@) < (a,). It follows that I = (@) = (ax+1) = - - - - (]
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Proposition 1.3.3. Every nonzero nonunit of R is a product of irreducibles.

PROOF. Leta € R, a # 0, a not a unit. We wish to show, to begin with, that a
is divisible by an irreducible element. If a is irreducible, we are done. Other-
wisea = a,b,, where a; and b, are nonunits. If a, is irreducible, we are done.
Otherwise a, = a,b,, where a, and b, are nonunits. If a, is irreducible, we
are done. Otherwise continue as before. Notice that (a) < (a,) < (a,) < ---
By Lemma 1 this chain cannot go on indefinitely. Thus for some k, a, is
irreducible.

We now show that a is a product of irreducibles. If a is irreducible, we are
done. Otherwise let p; be an irreducible such that p,|a. Then a = p;c,. If
¢, is a unit, we are done. Otherwise let p, be an irreducible such that p,|c;.
Then a = p,p, c,. If ¢, is a unit, we are done. Otherwise continue as before.

Notice that (@) < (¢;) < (¢;) < - - -. This chain cannot go on indefinitely
by Lemma 1. Thus for some &, a = pp, - - - py ¢, Where ¢, is a unit. Since
Di € 1s irreducible, we are done. (|

We now want to define an ord function as we have done in Sections 1
and 2.

Lemma 2. Let p be a prime and a # C. Then there is an integer n such that p"|a
but p"*t ya.

ProoFr. If the lemma were false, then for each integer m > 0 there would be
an element b,, such that a = p™b,,. Then pb,,,, = b, so that (b,) < (b,) =
(b3) = - - - would be an infinite ascending chain of ideals that does not
break off. This contradicts Lemma 1. O

The integer n, which is defined in Lemma 2, is uniquely determined by
pand a. Wesetn = ord, a.

Lemma 3. If a, b € Rwitha, b # 0, then ord, ab = ord, a + ord, b.

PRrOOF. Let o = ord,a and B = ord, b. Then a = pc and b = p”d with
pXcand ptd Thus ab = p**Pcd. Since p is prime p 4 cd. Consequently,
ord,ab = o + f = ord,a + ord, b. O

We are now in a position to formulate and prove the main theorem of this
section.
Let S be a set of primes in R with the following two properties:

(a) Every prime in R is associate to a prime in S.
(b) No two primes in S are associate.

To obtain such a set choose one prime out of each class of associate
primes. There is clearly a great deal of arbitrariness in this choice. In Z
and k[x] there were natural ways to make the choice. In Z we chose S to be
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the set of positive primes. In k[ x] we chose S to be the set of monic irreducible
polynomials. In general there is no neat way to make the choice and this
occasionally leads to complications (see Chapter 9).

Theorem 3. Let R be aPID and S a set of primes with the properties given above.
Then if a € R, a # 0, we can write

a=ul]p®, )
p

where u is a unit and the product is over all p € S. The unit u and the exponents
e(p) are uniquely determined by a. In fact, e(p) = ord, a.

Proor. The existence of such a decomposition follows immediately from
Proposition 1.3.3.

To prove the uniqueness, let ¢ be a prime in S and apply ord, to both
sides of Equation (1). Using Lemma 3 we get

ord,a = ord, u + ) e(p) ord, p.
p

Now, from the definition of ord, we see that ord, # = O and thatord, p =
0ifg # pand 1 if g = p. Thus ord, a = e(q). Since the exponents e(q) are
uniquely determined so is the unit ». This completes the proof. O

§4 The Rings Z[i] and Z[w]

As an application of the results in Section 3 we shall consider two examples
that will be useful to us in later chapters.

Let i = \/—-’1 and consider the set of complex numbers Z[i] defined
by {a + bila, b € Z}. This set is clearly closed under addition and subtrac-
tion. Moreover, if a + bi, ¢ + di € Z[i], then (a + bi)(c + di) = ac +
adi + bci + bdi* = (ac — bd) + (ad + bc)i e Z[{]. Thus Z[i] is closed
under multiplication and is a ring. Since Z[i] is contained in the complex
numbers it is an integral domain.

Proposition 1.4.1. Z[{] is a Fuclidean domain.

ProoF. For a + bi e Q[i] define A(a + bi) = a* + b2

Let « = a + bi and y = ¢ + di and suppose that y # 0. a/y = r + si,
where r and s are real numbers (they are, in fact, rational). Choose integers
m,n e Z such that |r — m| < % and |s — n| < 4. Set & = m + ni. Then
deZ[i] and A(afy) =& =(r—m?> + (s —n?<i+i=14% Set p=
o — y5. Then peZ[i] and either p =0 or A(p) = A(y((¢/y) — 9)) =
ANA(@fy) — 0) < 3A(H) < Ap).

It follows that A makes Z[{] into a Euclidean domain. O
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The ring Z[7] is called the ring of Gaussian integers after C. F. Gauss,
who first studied its arithmetic properties in detail.

The numbers + 1, +i are the roots of x* = 1 over the complex numbers.
Consider the equation x*® =1. Since x* —1=(x — D(x*+ x + 1)
the roots of this equationare 1, (—1 + \/—3)/2. Letw = (—1 + / —3)/2.
Then it is easy to check that w? = (—1 — \/—3)/2 and that | + o + o?
=0.

Consider the set Z[w] = {a + bw|a, b e Z}. Z[w] is closed under
addition and subtraction. Moreover, (a + bw)(c + dw) = ac + (ad + bc)w
+ bdw? = (ac — bd) + (ad + bc — bd)w. Thus Z[w] is a ring. Again,
since Z[w] is a subset of the complex numbers it is an integral domain.

We remark that Z[w] is closed under complex conjugation. In fact, since

=3 =\/§i= —\/§i= —/—3 we see that @ = w? Thus if a =

a+bweZ[w],thend =a+ bd = a + bw? = (a — b) — bw € Z[w)].

Proposition 1.4.2. Z[w] is a Euclidean domain.

ProoF. For a = a + bw € Z[w] define A(a) = a®> — ab + b*. A simple
calculation shows that A(a) = ag.

Now, let a, f € Z[w] and suppose that B # 0. Then a/f = aB/fB =
r + sw, where r and s are rational numbers. We have used the fact that
BB = A(P) is a positive integer and that af € Z[w] since « and f € Z[w].

Find integers m and n such that |[r — m| < } and |s — n| < . Then
put y =m+ nw. M@/B) —y) = —m? —(r— m)s —n) + (s — n)?
<i+i+i<l

Let p=oa— 798 Then either p=0 or Ap) = AB(x/f)— 7v)) =
AB)A(/B) — ) < MB). O

From the analysis of Section 3 we know that the theorem of unique
factorization is true in both Z[i{] and Z[w]. To go further with the analysis
of these rings we would have to investigate the units and the prime elements.
There are some results of this nature in the exercises.

NoTES

Rings for which the theorem of unique factorization into irreducibles holds
are called unique factorization domains (UFD). The fact that Z is a UFD
is already implicit in Euclid, but the first explicit and clear statement of the
result seems to be in C. F. Gauss’ masterpiece Disquisitiones Arithmeticae
(available in English translation by A. A. Clark, Yale University Press,
New Haven, Conn., 1966). Zermelo gave a clever proof by contradiction,
which is reproduced in the excellent book of G. H. Hardy and Wright
[40]. See also Davis and Shisha [120].

We have shown that every PID is a UFD. The converse is not true. For
example, the ring of polynomials over a field in more than one variable is a
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UFD but not a PID. P. Samuel has an excellent expository article on UFD’s
in [67]. A more elementary introduction may be found in the book of H.
Rademacher and O. Toeplitz [65].

The reader may find it profitable to read the introductory material in
several books on number theory. Chapter 3 of A. Frankel [32] and the
introduction to H. Stark [73] are particularly good. There is also an early
lecture by Hardy [39] that is highly recommended.

The ring Z[7] was introduced by Gauss in his second memoir on biquad-
ratic reciprocity [34]. G. Eisenstein considered the ring Z[w] in connection
with his work on cubic reciprocity. He mentions that to investigate the
properties of this ring one need only consult Gauss’ work on Z[i] and
modify the proofs [28]. A thorough treatment of these two rings is given in
Chapter 12 of Hardy and Wright [40]. In Chapter 14 they treat a generaliza-
tion, namely, rings of integers in quadratic number fields. Stark’s Chapter 8
deals with the same subject [73]. In 1966 Stark resolved a long-outstanding
problem in the theory of numbers by showing that the ring of integers (see
Chapter 6 of this book) in the field @(\/;1), with d negative, is a UFD when
d=—-1,-2,-3, -7, —11, —19, —43, —67, and — 163 and for no other
values of d.

The student who is familiar with a little algebra will notice that a *“ generic”’
non-UFD is given by the ring k[x, y, z, w], with xy = zw, where k is a
field. Another example of a non-UFD is C[x,y,z], with x* + y* +
z2 = 1, where C is the field of complex numbers. To see this notice that

x+px—-—iy)=>10—-2)1 + 2).

EXERCISES

1. Let a and b be nonzero integers. We can find nonzero integers g and r such that
a = gb + r,where 0 < r < b. Prove that (a, b) = (b, r).

2. (continuation) If r # 0, we can find ¢, and r such that b = q,r + r; with 0 <
r, < r.Show that (a, b) = (r, r,). This process can be repeated. Show that it must end
in finitely many steps. Show that the last nonzero remainder must equal (a, b). The
process looks like

a=gqgb+r, 0<r<b,

b=gqur+ry, O0<r, <r,

r=gq,ry +r,, 0<r,<ry,
Tim1 = Q1T+ Tir s 0<r <r,

e = G+ 2Tk+1-
Thenr,,, = (a, b). This process of finding (a, b) is known as the Euclidean algorithm.

3. Calculate (187, 221), (6188, 4709), and (314, 159).
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4.

10.
1L
12.

13.

14.

15.

16.
17.

18.
19.

20.

21.

22.

Let d = (a, b). Show how one can use the Euclidean algorithm to find numbers m
and n such that am + bn = d. (Hint: In Exercise 2 we have that d = r,, ;. Express
e+ in terms of r, and r,_, then in terms of r,_, and r,_,, etc.)

. Find m and n for the pairs a and b given in Exercise 3.

. Let a, b, ce Z. Show that the equation ax + by = ¢ has solutions in integers iff

(a, b)lc.

. Letd = (a, b) and a = da’ and b = db’. Show that (a, b') = 1.

. Let x4 and y, be a solution to ax + by = c. Show that all solutions have the form

x = Xxo + t(b/d), y = y, — t(a/d), where d = (a,b) and t € Z.

. Suppose thatu,v € Z and that (u, v) = 1.Ifu|nand v|n, show that uv|n. Show that this

is false if (u, v) # 1.
Suppose that (4, v) = 1. Show that (u + v, u — v) is either 1 or 2.
Show that (a, a + k)|k.

Suppose that we take several copies of a regular polygon and try to fit them evenly
about acommon vertex. Prove that the only possibilities are six equilateral triangles,
four squares, and three hexagons.

Let ny, n,,...,n,eZ. Define the greatest common divisor d of ny, n,, ..., n; and
prove that there exist integers m,, m,, ..., m; such that nym, + nym, + --- +
ngmg = d.

Discuss the solvability of a;x, + a;x;, + --- + a,x, = ¢ in integers. (Hint: Use
Exercise 13 to extend the reasoning behind Exercise 6.)

Prove that a € Z is the square of another integer iff ord,a is even for all primes p.
Give a generalization.

If (u, v) = 1 and uv = a?, show that both u and v are squares.

Prove that the square root of 2 is irrational, i.e., that there is no rational number
r = a/b such that r? = 2.

Prove that \'/r; is irrational if m is not the nth power of an integer.

Define the least common multiple of two integers a and b to be an integer m such that
a|m, b|m, and m divides every common multiple of a and b. Show that such an m
exists. It is determined up to sign. We shall denote it by [a, b].

Prove the following:

(a) ord,[a, b] = max(ord,a, ord,b).
(b) (a, b)[a, b] = ab.

(c) (a + b, [a, b]) = (a, b).

Prove that ord,(a + b) > min(ord,a, ord,b) with equality holding if ord,a #
ord,b.

Almost all the previous exercises remain valid if instead of the ring Z we consider
the ring k[x]. Indeed, in most we can consider any Euclidean domain. Convince
yourself of this fact. For simplicity we shall continue to work in Z.
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24.

25.

26.

27.
28.
29.

30.
31.
32.

33.

34.
35.

36.

37.
38.

39.

1 Unique Factorization

. Suppose that a® + b2 = ¢ with a, b, ce Z. For example, 32 + 4> = 5% and 5% +

12% = 132. Assume that (a, b) = (b, ¢) = (c, a) = 1. Prove that there exist integers u
and v such that ¢ — b = 2u? and ¢ + b = 20? and (4, v) = 1 (there is no loss in
generality in assuming that b and c are odd and that a is even). Consequently a = 2uv,
b = v? — u? and ¢ = v? 4 u?. Conversely show that if u and v are given, then the
three numbers a, b, and c given by these formulas satisfy a> + b2 = c2.

Prove the identities
@ x" =y =@x-pNE""+x"y 4+ Y.
(b) Fornodd, x" + )" = (x + y)(x" "' — x" "%y + x" 32 — ... + " ).

Ifa" — 1isa prime, show that a = 2 and that n is a prime. Primes of the form 27 — 1
are called Mersenne primes. For example, 2° — 1 = 7 and 2° — 1 = 31. It is not
known if there are infinitely many Mersenne primes.

If a” + 1 is a prime, show that a is even and that n is a power of 2. Primes of the
form 2% 4+ 1are called Fermat primes. For example, 2%' + 1 = Sand 2" + 1 = 17.
It is not known if there are infinitely many Fermat primes.

For all odd n show that 8|n? — 1. If 3 ¥ n, show that 6|n? — 1.
For all n show that 30{n* — n and that 42|n” — n.

Suppose that a, b, ¢, d < Z and that (a, b) = (¢, d) = 1.1f(a/b) + (c/d) = an integer,
show that b = +d.

Prove that$ + 4+ +--- + }1 is not an integer.
Show that 2 is divisible by (1 + i)? in Z[i].

For o = a + bi € Z[i] we defined A(«) = a® + b*. From the properties of A deduce the
identity (a® + b?)(c? + d*) = (ac — bd)* + (ad + bc)>.

Show that a € Z[i] is a unit iff A(«) = 1. Deduce that 1, —1, i, and —i are the only
units in Z[i].

Show that 3 is divisible by (1 — w)? in Z[w].

For a = a + bw e Z[w] we defined A(x) = a®> — ab + b?%. Show that o is a unit iff
M) = 1. Deduce that 1, —1, ®, —w, w?, and —w? are the only units in Z[w].

Define Z[/ —2] as the set of all complex numbers of the form a + b,/ —2, where
a, be Z, Show that Z[,/ —2] is a ring. Define A(«) = a®> 4+ 2b*fora = a + b/ —2.
Use A to show that Z[,/—2] is a Euclidean domain.

Show that the only units in Z[,/ —2] are 1 and —1.

Suppose that n € Z[i] and that A(n) = p is a prime in Z. Show that = is a prime in
Z[i]. Show that the corresponding result holds in Z[w] and Z[\/ —2].

Show that in any integral domain a prime element is irreducible.



Chapter 2

Applications of Unique
Factorization

The importance of the notion of prime number should be
evident from the results of Chapter 1.

In this chapter we shall give several proofs of the fact
that there are infinitely many primes in Z. We shall also
consider the analogous question for the ring k[ x].

The theorem of unique prime decomposition is some-
times referred to as the fundamental theorem of arith-
metic. We shall begin to demonstrate its usefulness by
using it to investigate the properties of some natural
number-theoretic functions.

§1 Infinitely Many Primes in Z

Theorem 1 (Euclid). In the ring Z there are infinitely many prime numbers.

PROOF. Let us consider positive primes. Label them in increasing order
P1> P2> P3s---- Thus p; = 2, p, =3, p; = 5, etc. Let N = (p,p,---p,) + 1.
N is greater than 1 and not divisible by any p;,i = 1, 2, ..., n. On the other
hand, N is divisible by some prime, p, and p must be greater than p,,.

We have shown that given any positive prime there is another prime that
is greater. It follows that the set of primes is infinite. O

The analogous theorem for k[x] is that there are infinitely many monic,
irreducible polynomials. If k is infinite, this is trivial since x — a is monic and
irreducible for all a € k. This proof does not work if k is finite, but Euclid’s
proof may easily be adapted to this case. We leave this as an exercise.

Recall that in an integral domain two elements are called associate if they
differ only by multiplication by a unit. We now know that in Z and k[x] there
are infinitely many nonassociate primes. It is instructive to consider a ring
where all primes are associate, so that in essence there is only one prime.

Let p € Z be a prime number and let Z,, be the set of all rational numbers
a/b, where p ¥ b. One easily checks using the remark following Corollary 1 to
Proposition 1.1.1 that Z, is a ring. a/beZ, is a unit if there is a ¢/d € Z,,
such that a/b-c¢/d = 1. Then ac = bd, which implies p } a since p ¥ b and
p  d. Conversely, any rational number a/b is a unit in Z,if p f a and p 4 b.

17
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Ifa/beZ,, writea = p'a’,where p ¥ a’. Thena/b = p'a’/b. Thus every element
of Z, is a power of p times a unit. From this it is easy to see that the only
primes in Z, have the form pc/d, where c/d is a unit. Thus all the primes of
Z , are associate.

EXERCISE

Ifa/b € Zisnot a unit, prove thata/b + 1is a unit. This phenomenon shows why Euclid’s
proof breaks down in general for integral domains.

§2 Some Arithmetic Functions

In the remainder of this chapter we shall give some applications of the unique
factorization theorem.

An integer a € Z is said to be square-free if it is not divisible by the square
of any other integer greater than 1.

Proposition 2.2.1. If n € Z, n can be written in the form n = ab®, where a,be Z
and a is square-free.

PROOF. Let n = p§'p3* - - - p{. One can write a; = 2b; + r;, where r; = O or 1
depending on whether a; is even or odd. Set a = py'p?---p* and b =
pip% - - pb. Then n = ab? and a is clearly square-free. O

This lemma can be used to give another proof that there are infinitely
many primes in Z. Assume that there are not, and let py, p,, ..., p, be acom-
plete list of positive primes. Consider the set of positive integers less than or
equal to N. If n < N, then n = ab?, where a is square-free and thus equal to
one of the 2 numbers p5'p% --- pi', where ¢;, =0 or 1, i = 1, ..., . Notice
that b < \/N . There are at most 2'\/N numbers satisfying these conditions

and so N < 2’\/N, or \/N < 2!, which is clearly false for N large enough.
This contradiction proves the result.

It is possible to give a similar proof that there are infinitely many monic
irreducibles in k[x], where k is a finite field.

There are a number of naturally defined functions on the integers. For
example, given a positive integer n let v(n) be the number of positive divisors
of n and o(i) the sum of the positive divisors of n. For example, v(3) = 2,
v(6) = 4, and v(12) = 6 and 6(3) = 4, ¢(6) = 12, and o(12) = 28. Using
unique factorization it is possible to obtain rather simple formulas for these
functions.
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Proposition 2.2.2. If n is a positive integer, let n = p{'p% - - - p{* be its prime
decomposition. Then

@) v(n) = (a; + I)a, + -~ (g, + 1)
(b) a(m) = ((P7*"! = DApy — DU = D/(p, = D) -+
(P = DAp — D)),

PRrOOF. To prove part (a) notice that m|n iff m = p§'p5 --- p*and 0 < b; < q;
fori =1,2,..., L Thus the positive divisors of n are one-to-one correspon-
dence with the n-tuples (by, by, ..., b)WithO < b; < g;fori=1,...,1 and
there are exactly (a; + )(a, + 1)---(a, + 1) such n-tuples.

To prove part (b) notice that o(n) = ) pi'p% - - pl*, where the sum is over
the above set of n-tuples. Thus, a(n) = Q5! _, P1')(Zb2 o P - Qo P
from which the result follows by use of the summation formula for the geo-
metric series. O

There is an interesting and unsolved problem connected with the function
a(n). A number n is said to be perfect if 6(n) = 2n. For example, 6 and 28 are
perfect. In general, if 2"*! — 1 is a prime, then n = 2"(2™*! — 1) is perfect,
as can be seen by applying part (b) of Proposition 2.2.2. This fact is already in
Euclid. L. Euler showed that any even perfect number has this form. Thus
the problem of even perfect numbers is reduced to that of finding primes of
the form 2™*! — 1. Such primes are called Mersenne primes. The two out-
standing problems involving perfect numbers are the following: Are there
infinitely many perfect numbers? Are there any odd perfect numbers?

The multiplicative analog of this problem is trivial. An integer n is called
multiplicatively perfect if the product of the positive divisors of n is n?. Such
a number cannot be a prime or a square of a prime. Thus there is a proper
divisor d such that d # n/d. The product of the divisors 1, d, n/d, and n is
already n?. Thus n is multiplicatively perfect iff there are exactly two proper
divisors. The only such numbers are cubes of primes or products of two
distinct primes. For example, 27 and 10 are multiplicatively perfect.

We now introduce a very important arithmetic function, the Mobius u
function. Forne Z*, u(1) = 1, u(n) = 0 if n is not square-free, and u(p,p, - -
p) = (—1)}, where the p; are distinct positive primes.

Proposition 2.2.3. If n > 1, ) 4, u(d) = 0.
PROOF. Ifn = pi{'p3 - - - pi, then Y gp i(d) = Y ,,.....cp H(PT - - P}"), where the
¢; are zero or 1. Thus

Zu(d)=1—l+<é)-(;)+---+(—1)'=(1—1)'=0. O

d|n

The full significance of the M&bius u function can be understood most
clearly when its connection with Dirichlet multiplication is brought to light.
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Let fand g be complex valued functions on Z*. The Dirichlet product of f
and g is defined by the formula fo g(n) = ) f(d,)g(d,), where the sum is over
all pairs (dy, d,) of positive integers such that d;d, = n. This product is
associative, as one can see by checking that fo (g o h)(n) = (fog)oh(n) =
Y f(dy)g(d)h(d5), where the sum is over all 3-tuples (d,, d,, d3) of positive
integers such that d,d,d; = n.

Define the function [ by I(1) = 1 and I(n) = 0 for n > 1. Then fol =
lof=f Define I by I(n)=1 for all neZ*. Then fol(n) = I-f(n) =
Yanf ().

Lemma. Jopu=pol =1

PROOE. g0 I(1) = u(DI(1) = 1. I n > 1, o I(n) = Ygpn p(d) = 0. The same
proof works for I o p. O

Theorem 2 (Mobius Inversion Theorem). Let F(n) = Y 4, f(d). Then f(n) =
Ydin W(d)F (n/d).

PROOF. F = fol. Thus Fou = (fol)ou = fo(Iopu) =fol = f. This shows
that f(n) = F o p(n) = Y4 p(d)F(n/d). O

Remark. We have considered complex-valued functions on the positive
integers. It is useful to notice that Theorem 2is valid whenever the functions
take their value in an abelian group. The proof goes through word for word.

If the group law in the abelian group is written multiplicatively, the
theorem takes the following form: If F(n) = [[4./(d), then f(n) = []an
F(n/dy"®,

The Mobius inversion theorem has many applications. We shall use it to
obtain a formula for yet another arithmetic function, the Euler ¢ function.
For ne Z*, ¢(n) is defined to be the number of integers between 1 and n
relatively prime to n. For example, ¢(1) =1, ¢(5) =4, ¢(6) = 2, and
¢(9) = 6. If p is a prime, it is clear that ¢(p) = p — 1.

Proposition 2.2.4. ), ¢(d) = n.

PrOOF. Consider the n rational numbers 1/n, 2/n, 3/n, ..., (n — 1)/n, n/n.
Reduce each to lowest terms; i.e., express each number as a quotient of
relatively prime integers. The denominators will all be divisors of n. If d|n,
exactly ¢(d) of our numbers will have d in the denominator after reducing to
lowest terms. Thus Y 4, ¢(d) = n. O

Proposition 2.2.5. If n = p{'p% - - - pi*, then

¢(n) = n(1 — (1/p))A = (1/p2)) - -- (1 — (1/py)).
PROOF. Since n=1 4, $(d) the Mobius inversion theorem implies that ¢(n) =
Yain WdInjd = n — 3 njp; + 3 n/pipy- - = n(l — (1/p))1 — (1/p2)) - -
(1 - /p)). a
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Later we shall give a more insightful proof of this formula. We shall also
use the Mobius function to determine the number of monic irreducible
polynomials of fixed degree in k[x], where k is a finite field.

§3 > 1/p Diverges

We began this chapter by proving that there are infinitely many prime
numbers in Z. We shall conclude by proving a somewhat stronger statement.
The proof will assume some elementary facts from the theory of infinite series.

Theorem 3. Z 1/p diverges, where the sum is over all positive primes in Z.

PROOF. Let py, p, ..., Dym be all the primes less than n and define A(n) =
[T, (1 = 1/p)~". Since (1 — 1/p)~" = Y% _ ,1/pi* we see that

Ay =Y (P3P - P,
where the sum is over all [-tuples of nonnegative integers (a,, d,, - .., @,).
In particular, we see that 1 + 3 + § + .-+ + 1/n < A(n). Thus A(n) - oo as

n — oo. This already gives a new proof that there are infinitely many primes.
Next, consider log A(n). We have

log A(n) = — Zlog(l -p )= Z Z(mp:”) !

i=1 m=1

B PR VR Z > (mpD) .
i=1 m=2
Now, Y .»_, (rnp.'")‘ t< Z;‘;z pim=p 2(1 - pf Y)™! < 2p; 2. Thus log A(n)
<pit4+pit++pt+2pTr+ 3 -+ pr Y. It is well known
that Y=, n~% converges. It follows that Z . i ? converges. Thus if
Y. p~ ' converged, there would be a constant M such that log A(n) < M, or
A(n) < eM™. This, however, is impossible since A(n) - oo as n — oco. Thus
Y p~ ! diverges. O

It is instructive to try to construct an analog of Theorem 3 for the ring
k[x], where k is a finite field with g elements. The role of the positive primes
p is taken by the monic irreducible polynomials p(x). The “size” of a monic
polynomial f(x) is given by the quantity g4°&/®),

This is reasonable because for a positive integer n, n is the number of
nonnegative integers less than n, i.e., the number of elements in the set
{0, 1, 2, ..., n — 1}. Analogously, g%¢/®™ is the number of polynomials of
degree less than deg f(x). This is easy to see. Any such polynomial has the
form apx™ + a;x" "' + --- + a,,, where m = degf(x) — 1 and a; € k. There
are g choices for a; and the choice for each index is independent of the others.
Thus there are g™*! = ¢#/™ such polynomials.
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Theorem 4. Y g~ 487 diverges, where the sum is over all monic irreducibles
p(x) in k[x].

PrOOF. We first show that Y g~%#/® diverges and that ) g~ 29¢8/® con-
verges, where both sums are over all monic polynomials f(x) in k[x]. Both
results follow from the fact that there are exactly ¢" monic polynomials of de-
gree nin k[x]. Consider ) goq rxy<n 4 %#/*. Thissumisequalto Y n_o g"q ™™
=n+ 1. Thus ) g %/ diverges. Similarly, ) geqr<nq 2%8/® =
Yr_oq"q ™ < (1 — 1/g)”*. Thus ) g~ 298/ converges.

The rest of the proof is an exact imitation of the proof of Theorem 2.
The reader should fill in the details. |

§4 The Growth of 7(x)

In the introduction to Chapter 1 we defined n(x) as the number of primes p,
1 < p < x. The study of the behavior of n(x) for large x involves analytic
techniques. We will prove in this section several results that require a mini-
mum of results from analysis. In fact only the simplest properties of the
logarithmic function are used.

We begin with the following simple consequence of Euclid’s argument
(Theorem 1) which gives a weak lower bound for n(x). Throughout log x
denotes the natural logarithm of x.

Proposition 2.4.1. n(x) > log(log x), x > 2.

PRrOOF. Let p, denote the nth prime. Then since any prime dividing p,p, - - - p,,
+ 1 is distinct from p,...., p, it follows that p,,, < p,---p, + 1. Now
Py <2@Y p, < 2?9 and if p, < 23" then p,,,; <229.2@9...2@" 4 | =
22172 41 < 2@"Y 1t follows that m(2?™) > n. For x > e choose an
integer n so that " ™" < x < ¢©”. If n > 3 then "~ ! > 2" 50 that

n(x) > n(e®" ) > n(e?”) > 7(2¥") > n > log(log x).
This proves the result for x > ¢°. If x < ¢ the inequality is obvious. (]
The method employed in the paragraph following Proposition 2.2.1 to
show that 7(x) — oo can also be used to obtain the following improvement
of the above proposition. If n is a positive integer let y(n) denote the set of
primes dividing n.
Proposition 2.4.2. n(x) > log x/2 log 2.

Proor. For any set of primes S define fy(x) to be the number of integers n,
1 < n < x, with y(n) = S. Suppose that S is a finite set with ¢ elements.
Writing such an n in the form n = m?s with s square free we see that m < \/;
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while s has at most 2* choices corresponding to the various subsets of S. Thus
fs(x) < 2. /x. Put n(x) = m so that p,,, > x. If S={p,, ..., p} then
clearly fg(x) = x which implies that x < 2’”\/; = 2""‘)\/;. The result follows
immediately. O

It is interesting to note that the above method can also be used to give
another proof to Theorem 2. For if ) 1/p, converged then there is an n such
that ., 1/p; <% If S={p,, ..., p,} then x — fy(x) is the number of
positive integers m < x with y(m) & S. That is, there exists a prime p;,j > n
such that p;|m. For such a prime there are [x/p;] multiples of p; not exceeding
x. Thus

x—fs(x)s_Z[i]SZ§<§,

so that fy(x) > x/2. On the other hand, fs(x) < 2"\/; These inequalities

imply 2" > \/;/2 which is false for n fixed and large x.

A function closely related to n(x) is defined by 6(x) = Y, log p, the
sum being over all primes at most x. We will use 6(x) to bound n(x) from
above. Put 6(1) = 0.

Proposition 2.4.3. 8(x) < (4 log 2)x.

ProOF. Consider the binomial coefficient
2n\ (n+1)---(2n)
n) 1.2-..n

Clearly this integer is divisible by all primes p, n < p < 2n. Furthermore,

since
2n (In 2n
2n __ 2n
1+ D" = E (j)’ 2 >(n).

i=o
Hence
2 p<2n
22" > ( n) > [Ir
n pon

and therefore

p<2n
2nlog2 > Y logp = 6(2n) — O(n).
p>n
Summing this relation forn = 1,2, 4, 8,...,2™ ! gives

02" < (log 2)2™*! — 2)
< (log 2)2"* 1.
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If2"" 1 < x < 2™ we obtain

0(x) < 62"™) < (log 22"+ = (4 log 22"~
< (4 log 2)x. O

Corollary 1. There is a positive constant ¢, such that n(x) < c,x/log x for
x =2

P<x
PROOF. 6(x) > Y logp
p>Jx

> (log /x)(n(x) — n(/x))
> (log \/x)n(x) — /x log \/x.

Thus
260(x)
<
n(x) < log x + \/;
X
2) —— .
< (8 log )logx +x
The result follows by noting that \/; < 2x/log x for x > 2. O

Corollary 2. n(x)/x — 0 as x — oo.

To bound n(x) from below we begin by examining further the binomial
coefficient (2"). First of all

B)-C1H8)- 29

On the other hand by Exercise 6 at the end of this chapter we have

2n @n)! =z ([2n n
°“‘P<n) =0y e = 2, (H - ZH)

where ¢, is the largest integer such that p'» < 2n. Thus ¢, = [log 2n/log p].
Now it is easy to see that [2x] — 2[x] is always 1 or 0. It follows that

ord 2n Slog2n'
P\n log p

Proposition 2.4.4. There is a positive constant c, such that n(x) > c,(x/log x).

ProoOF. By the above we have
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Thus

log 2n
nlog?2 < t,logp = [ ] lo

If log p > 4 log 2n, ie., p > /2n, then [log 2n/log p] = 1. Thus
1 2 p<2n
nlog2< Y [og n]logp+ Y logp
p</2n log p p>/2n
< /2nlog 2n + 6(2n).
Therefore 6(2n) > nlog?2 — ./2nlog 2n. But ./2n log 2n/n approaches 0
as n — oo, so that 6(2n) > Tn for some T > 0 and all n sufficiently large.
Writing, for large x, 2n < x <2n + 1 we have 0(x) > 6(2n) > Tn >

T(x — 1)/2 > Cx for a suitable constant C. Thus there is a constant ¢, > 0
such that 6(x) > ¢, x for all x > 2. To complete the proof we observe that

6(x) = ) logp < n(x) log x.

pP=<x
Thus
n(x) > ) > ¢, X O
log x log x

The preceding two propositions were first proven by Tchebychef in 1852.
These results are subsumed under the famous prime number theorem which
asserts that in fact n(x)(log x/x) — 1 as x — oo. It is not difficult to see that
this is equivalent to 6(x)/x — 1 as x — co. The prime number theorem was
conjectured, in a slightly different form by Gauss at the age of 15 or 16. The
proof of the conjecture was not achieved until 1896 when J. Hadamard and
Ch. de la Vallé¢ Poussin established the result independently. Their proofs
utilize complex analytic properties of the Riemann zeta function. In 1948
Atle Selberg was able to prove the result without the use of complex analysis.

NOTES

There are a multitude of unsolved problems in the theory of prime numbers.
For example, it is not known if there are infinitely many primes of the form
n? + 1. On the other hand we will prove in Chapter 16 that the linear poly-
nomialan + balways represents an infinite number of primes when (a,b) = 1.
This is the celebrated theorem of Dirichlet on primes in an arithmetic pro-
gression.

It is not known whether there exist infinitely many primes of the form
2% 4+ 1, the so-called Fermat primes, or if there are infinitely many primes of
the form 2¥ — 1, the Mersenne primes.

Another outstanding problem is to decide whether there are an infinite
number of primes p such that p + 2 is also prime. It is known that the sum



26 2 Applications of Unique Factorization

of the reciprocals of the set of such primes converges, a result due to Viggo
Brun [52].

Good discussions of unsolved problems about primes may be found in
W. Sierpinski [71] and Shanks [70]. Readers with a background in analysis
should read the paper by P. Erdés [31] as well as those of Hardy [38] and
[39].

The key idea behind the proof of Theorem 2 is due to L. Euler. A pleasant
account of this for the beginner is found in Rademacher and Toeplitz [65].

Theorem 3 gives a proof in the spirit of Euler that k[ x] contains infinitely
many irreducibles. This already suggests that many of the theorems in classical
number theory have analogs in the ring k[x]. This is indeed the case. An
interesting reference along these lines is L. Carlitz [10].

The theorem of Dirichlet mentioned above has been proved for k[x], k a
finite field, by H. Kornblum [50]. Kornblum had his promising career cut
short after he enlisted as Kriegsfreiwilliger in 1914. The prime number
theorem also has an analog in k[x]. This was proved by E. Artin in his
doctoral thesis [2].

A good introduction to analytic number theory is Chandrasekharan [112].
In the last chapter of this very readable text a proof of the prime number
theorem is given that uses complex analysis. Proofs that are free of complex
analysis (but not of subtlety) have been given by A. Selberg [215] and
P. Erd6s [133]. For an interesting account of the history of this theorem see
L. J. Goldstein [139]. Finally we recommend the remarkable tract Prim-
zahlen by E. Trost [229]; this 95 page book contains, in addition to many
elementary results concerning the distribution of primes, Selberg’s proof of
the prime number theorem as well as an “elementary” proof of Dirichlet’s
theorem mentioned above. See also D. J. Newman [198].

EXERCISES

1. Show that k[x], with k a finite field, has infinitely many irreducible polynomials.

2. Letpy, p3, - .-, P, € Z be primes and consider the set of all rational numbers r = a/b,
a,be Z, such that ord, a > ord, b fori=1,2,...,t Show that this set is a ring
and that up to taking associates p,, p,, ..., p, are the only primes.

3. Use the formula for ¢(n) to give a proof that there are infinitely many primes.
[Hint: If p, p,, ..., p, were all the primes, then ¢(n) = 1, where n = p,p,---p,.]

4. If a is a nonzero integer, then for n > m show that (a*" + 1, a*” + 1) = 1 or 2
depending on whether a is odd or even. (Hint: If p is an odd prime and p|a®™ + 1,
then p|a®” — 1 for n > m.)

5. Use the result of Exercise 4 to show that there are infinitely many primes. (This proof
is due to G. Polya.)

6. For a rational number r let [r] be the largest integer less than or equal to r, e.g.,
(3] =0, [2] = 2, and [35] = 3. Prove ord,, n! = [n/p] + [n/p*] + [n/p*] + ---.

7. Deduce from Exercise 6 that ord, n! < n/(p — 1) and that /n! < []mp"®".
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8.

10.

11.

12.
13.
14.
15.

16.
17.
18.
19.
20.
21.

22.
23.

24.
25.

26.

27.

Use Exercise 7 to show that there are infinitely many primes. [Hint: (n!)? > n"]
(This proof is due to Eckford Cohen.)

. A function on the integers is said to be multiplicative if f(ab) = f(a)f(b) whenever

(a, b) = 1. Show that a multiplicative function is completely determined by its value
on prime powers.

If f(n) is a multiplicative function, show that the function g(n) = ) 4, f(d) is also
multiplicative.

Show that ¢(n) = n Z,,‘,, 1(d)/d by first proving that u(d)/d is multiplicative and then
using Exercises 9 and 10.

Find formulas for ¥, u(d)$(d). Y 1(d)*$(d)?, and Y, u(d)/(d).

Let g,(n) = Y 4, d*. Show that g,(n) is multiplicative and find a formula for it.

If f(n) is multiplicative, show that h(n) = > 4, u(n/d) f(d) is also multiplicative.

Show that
(@) Yapn tn/d)v(d) = 1 for all n.
(b) Y4x p(n/d)o(d) = n for all n.

Show that v(n) is odd iff n is a square.

Show that a(n) is odd iff n is a square or twice a square.

Prove that ¢(n)p(m) = ¢((n, m))d([n, m]).

Prove that ¢(mn)d((m, n)) = (m, n)Pp(m)p(n).

Prove that [ [, d = n*"2.

Define A (n) = log pifnisa powerof pand zero otherwise. Prove that E,l,, u(n/d) log d

= A(n). [Hint: First calculate Zd,,, A(d) and then apply the Mobius inversion
formula.]

Show that the sum of all the integers ¢ such that 1 <t < nand (, n) = 1 is $nd(n).

Let f(x) € Z[x] and let y(n) be the number of f(j),j = 1, 2, ..., n, such that (f(j), n)
= 1. Show that y(n) is multiplicative and that y(p) = p*~ '¢(p). Conclude that

Y(m) = n [ Lo ¥(0)/p.
Supply the details to the proof of Theorem 3.

Consider the function {(s) = Y >, 1/n’. {(s) is called the Riemann zeta function. It
converges for s > 1. Prove the formal identity (Euler’s identity) {(s) = [, (1 —
(1/p%)) " L. If we let s assume complex values, it can be shown that {(s) has an analytic
continuation to the whole complex plane. The famous Riemann hypothesis states
that the only zeros of {(s) lying in the strip 0 < Re s < 1 lic on the line Re s = 3.

Verify the formal identities

@ Us)™" = 22, wnyn.

(b) L()* =Y. 2, v(m)/n".

(©) {6)s — 1) = Y2 a(n)/n’.

Show that Z 1/n, the sum being over square free integers, diverges. Conclude that

r[,KN (1 4+ 1/p) » o0 as N — oo. Since e* > 1 + x, conclude that Zp<~ 1/p — oo.
(This proof is due to I. Niven.)



Chapter 3

Congruence

Gauss first introduced the notion of congruence in Dis-
quisitiones Arithmeticae (see Notes in Chapter 1). It is
an extremely simple idea. Nevertheless, its importance
and usefulness in number theory cannot be exaggerated.

This chapter is devoted to an exposition of the simplest
properties of congruence. In Chapter 4, we shall go into
the subject in more depth.

§1 Elementary Observations

It is a simple observation that the product of two odd numbers is odd, the
product of two even numbers is even, and the product of an odd and even
number is even. Also, notice that an odd plus an odd is even, an even plus an
even is even, and an even plus an odd is odd. This information is summarized
in Tables 1 and 2. Table 1 is like a multiplication table and Table 2 like an
addition table.

Table 1 Table 2
€ (o] € [}
[ € € € €
€ (o] €

These observations are so elementary one might ask if anything interesting
can be deduced from them. The answer, surprisingly, is yes.

Many problems in number theory have the form; if fis a polynomial in
one or several variables with integer coefficients, does the equation f= 0
have integer solutions? Such questions were considered by the Greek
mathematician Diophantus and are called Diophantine problems in his
honor.

Consider the equation x> — 117x + 31 = 0. We claim that there is no
solution that is an integer. Let n be any integer. n is either even or odd. If n
is even, so is n? and 117n. Thus n? — 117n + 31 is odd. If n is odd, then n?

28
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and 117n are both odd. Thus n®> — 117n + 31 is odd in this case also. Since
every integer is even or odd, this shows that n2 — 117n + 31 is never zero.

In Chapter 2 we showed that there are infinitely many prime numbers.
We shall now show that there are infinitely many prime numbers that leave
a remainder of 3 when divided by 4. Examples of such primes are 3, 7, 19,
and 59.

An integer divided by 4 leaves a remainder of 0, 1, 2, or 3. Thus odd
numbers are either of the form 4k + 1 or 4/ + 3. The product of two numbers
of the form 4k + 1 is again of that form: (4k + 1)(4k’ + 1) = 4(4kk’ + k
+ k') + 1. It follows that an integer of the form 4/ + 3 must be divisible by
a prime of the form 4] + 3.

Now, suppose that there were only finitely many positive primes of the
form 41 + 3. This list begins 3,7,11,19,23,....Letp, = 7,p, = 11,p; = 19,
etc. Suppose that p,, is the largest prime of this form and set N = 4p,p, - --
Pm + 3. N is not divisible by any of the p;. However, N is of the form 4/ + 3
and so must be divisible by a prime p of the form 4/ + 3. We have p > p,,
which is a contradiction.

There is clearly some common principle underlying both arguments. We
explore this in Section 2.

§2 Congruence in Z

Definition. If a, b, me Z and m # 0, we say that a is congruent to b modulo m
if m divides b — a. This relation is written a = b (m).

Proposition 3.2.1.

(@) a = a(m).
(b) a = b (m) implies that b = a (m).
(¢) Ifa=b(m)and b = c (m), then a = ¢ (m).

PROOF.

(a) a — a = 0 and m|0.
(b) If m|b — a, then m|a — b.
(c) If m|b — aand m|c — b, then m|c — a = (c — b) + (b — a). O

Proposition 3.2.1 shows that congruence modulo m is an equivalence
relation on the set of integers. If a € Z, let a denote the set of integers congruent
to amodulo m, a = {ne Z|n = a (m)}. In other words a is the set of integers
of the form a + km.

If m = 2, then 0 is the set of even integers and 1 is the set of odd integers.

Definition. A set of the form a is called a congruence class modulo m.
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Proposition 3.2.2.

(@) a=Dbiffa=b(m).
(b) a # biffanbis empty.
(c) There are precisely m distinct congruence classes modulo m.

PROOF.

(a) If b = &, then aea = b. Thus a = b (m). Conversely, if a = b (m), then
aeb. If ¢ = a(m), then ¢ = b (m), which shows a < b. Since a = b (m)
implies that b = a (m), we also have b < a. Therefore a = b.

(b) Clearly,ifa n bis empty, thena # b. We shall show that a n b not empty
implies that @ = b. Let ceanb. Then c =a(m) and c = b (m). It
follows that a = b (m) and so by part (a) we have a = b.

(c) We shall show that 0, 1,2,..., m — 1 are all distinct and are a complete
set of congruence classes modulo m. Suppose that 0 < k <l <m. k=1
implies that k = [ (m) or that m divides | — k. Since 0 < [ — k < m this
is a contradiction. Therefore k # I. Now let ae Z. We can find integers
g and r such that a = gm + r, where 0 < r < m. It follows that a = r (m)
and thata = 7. O

Definition. The set of congruence classes modulo m is denoted by Z/mZ.
Ifa,,a,,..., a, are a complete set of congruence classes modulo m, then
{ay, a,,...,a,} is called a complete set of residues modulo m.
For example, {0, 1, 2, 3}, {4, 9, 14, —1}, and {0, 1, —2, — 1} are complete
sets of residues modulo 4.

The set Z/mZ can be made into a ring by defining in a natural way addition
and multiplication. This is accomplished by means of the following proposi-
tion.

Proposition 3.2.3. If a = ¢ (m) and b = d (m), then a + b = ¢ + d (m) and
ab = cd (m).

ProOOF. If m|c — a and m|d — b, then m|(c —a) + (d — b) = (c + d) —
(a+ b).Thusa + b =c + d (m).

Notice that ¢d — ab = ¢(d — b) + b(c — a). Thus m|cd — ab and ab =
cd (m). O

If @, b € Z/mZ, we define @ + b to be a + b and ab to be ab.

This definition seems to depend on a and b. We have to show that they
depend only on the congruence classes defined by a and b. This is easy.
Assume that ¢ = g and that d = b. We must show thata + b = ¢ + d and
that ab = cd, but this follows immediately from Propositions 3.2.2 and 3.2.3.

With these definitions Z/mZ becomes a ring. The verification of this fact is
left to the reader.
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Table 3 Table 4
Addition Multiplication
0 1 2 0 1 2
0 1 2 0o 0 0 o0
1 1 2 0 1 0 1 2
2 0 1 2 0 2 1

Tables 3 and 4 give explicitly the addition and multiplication in Z/3Z.
(Bars over the numbers are omitted.) The reader should construct similar
tables for m = 4, 5, and 6.

In discussing arithmetic problems it is sometimes more convenient to
work with the ring Z/mZ than with the notion of congruence modulo m. On
the other hand, it is sometimes more convenient the other way around. We
shall switch back and forth between the two viewpoints as the situation
demands.

We proved earlier that the polynomial x> — 117x + 31 has no integer
roots. It is possible to generalize this result using some of the material we
have developed.

If a = b (m), then a® = b2 (m), a®> = b® (m), and in general a" = b" (m).
It follows that if p(x) € Z[x], then p(a) = p(b) (m). All this is a consequence
of Proposition 3.2.3.

Take m = 2. Then a is congruent to either 0 or 1 modulo 2 and we have
p(a) = p(0) (2) or p(a) = p(1) (2).

If p(x) = @px" + a;x" ! + -+ + a,_,x + a,, then p(0) = a, and p(1) =
ay + a; + -+ + a,. Our calculations yield the following result: If p(x) e
Z[x] and p(0) and p(1) are both odd, then p(x) has no integer roots.

x? — 117x + 31 has constant term 31, and the sum of the coefficients is
— 85, both of which are odd. Other examples are 2x2 + 2x + 1 and 3x® +
2x% + x + 3.

§3 The Congruence ax = b (m)

The simplest congruence is ax = b (m). In this section we shall develop a
criterion to test this congruence for solvability, and if it is solvable, give a
formula for the number of solutions.

Before beginning we must give a definition of what we mean by the number
of solutions to a congruence. Quite generally, let f(x,, ..., X,) be a poly-
nomial in n variables with integer coefficients and consider the congruence
f(xy, ..., x,) = 0 (m). A solution is an n-tuple of integers (a,, ..., a,) such
that f(a,, a,, ..., a,) = 0(m). If (by, ..., b,) is another n-tuple such that
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b, = a;(m)fori = 1,...,n,thenitiseasy to see that f(by,...,b,) = 0 (m). We
do not want to consider these two solutions as being essentially different. Thus
two solutions (ay, ..., a,) and (b, ..., b,) are called equivalent if a; = b; for
i = 1,...,n The number of solutions to f (x4, . . ., x,) = 0 (m) is defined to be
the number of inequivalent solutions.

For example, 3, 8, and 13 are solutions to 6x = 3 (15). 18 is also a solution,
but the solution x = 18 is equivalent to the solution x = 3.

It is useful to consider the matter from another point of view. The map
from Z to Z/mZ given by a — ais a homomorphism. If f(ay, ..., a,) = 0 (m),
then f(@,,...,a, = 0. Here f(x,,...,x,) € Z/mZ[x,,...,x,] is the poly-
nomial obtained from f by putting a bar over each coefficient of f. One can
now see that equivalence classes of solutions to f(x;, ..., x,) = 0 are in one-
to-one correspondence with solutions to f(x;, ..., x,) = 0 in the ring
Z/mZ. This interpretation of the number of solutions arises frequently.

We now return to the number of solutions of the congruence ax = b (m).

Let d > 0 be the greatest common divisor of a and m. Set ' = a/d and
m’ = m/d. Then a’ and m’ are relatively prime.

Proposition 3.3.1. The congruence ax = b (m) has solutions iffd|b. Ifd|b, then
there are exactly d solutions. If x, is a solution, then the other solutions are
given by xo + m', xg + 2m', ..., xo + (d — D)m'.

Proor. If x, is a solution, then ax, — b = my, for some integer y,. Thus
axy — myy = b. Since d divides ax, — my,, we must have d|b.

Conversely, suppose that d|b. By Lemma 4 on page 4 there exist integers
Xy and y, such that axy; — my, = d. Let ¢ = b/d and multiply both sides of
the equation by c. Then a(xyc) — m(yoc) = b. Let xy = xyc. Then ax, =
b (m).

We have shown that ax = b (m) has a solution iff d|b.

Suppose that x, and x, are solutions. ax, = b (m) and ax, = b (m) imply
that a(x; — xo) = 0 (m). Thus m|a(x; — x,) and m'|a’(x; — x,), wWhich
implies that m'|x, — x, or x, = x, + km’' for some integer k. One easily
checks that any number of the form x, + km' is a solution and that the solu-
tions xq, Xg + m, ..., Xg + (d — 1)m’ are inequivalent. Let x, = x, + km’
be another solution. There are integers r and s such that k = rd + s and
0<s<d Thus x; = xy + sm' + rm and x, is equivalent to x, + sm'.
This completes the proof. O

As an example, let us consider the congruence 6x = 3 (15) once more. We
first solve 6x — 15y = 3. Dividing by 3, we have 2x — S5y = 1.x =3,y =1
is a solution. Thus x, = 3 is a solution to 6x = 3 (15). Now, m = 15 and
d = 3 so that m' = 5. The three inequivalent solutions are 3, 8, and 13.

We have two important corollaries.

Corollary 1. If a and m are relatively prime, then ax = b (m) has one and only
one solution.
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PrOOF. In this case d = 1 so clearly d|b, and there are d = 1 solutions. [

Corollary 2. If p is a prime and a % 0 (p), then ax = b (p) has one and only one
solution.

ProoOF. Immediate from Corollary 1. O

Corollaries 1 and 2 can be interpreted in terms of the ring Z/mZ. The
congruence ax = b (m) is equivalent to the equation ax = b over the ring
Z/mZ.

What are the units of Z/mZ? aeZ/mZ is a unit iff ax = 1 is solvable.
ax = 1 (m) is solvable iff d|1, i.e., iff a and m are relatively prime. Thus g is a
unit iff (¢, m) = 1, and it follows easily that there are exactly ¢(m) units in
Z/mZ [see page 20 for the definition of ¢(m)].

If p is a prime and a # 0 is in Z/pZ, then (a, p) = 1. Thus every nonzero
element of Z/pZ is a unit, which shows that Z/pZ is a field.

If m is not a prime, then m = m;m,, where 0 < m,,m, < m. Thus nir; # 0,
m, # 0, but m;m, = m;m, = m = 0. Therefore Z/mZ is not a field.

Summarizing we have

Proposition 3.3.2. An element a of Z/mZ is a unit iff (a, m) = 1. There are
exactly ¢(m) units in Z/mZ. Z/mZ is a field iff m is a prime.

Corollary 1 (Euler’s Theorem). If (a, m) = 1, then a®™ = 1 (m).

PrOOF. The units in Z/mZ form a group of order ¢(m). If (a, m) = 1,ais a
unit. Thus @*™ = T or a®™ = 1 (m). O

Corollary 2 (Fermat’s Little Theorem). If p is a prime and p } a, then a?~ ' =
1 (p).

ProoF. If p } a, then (a, p) = 1. Thus a®® = 1 (p). The result follows, since
for a prime p, ¢(p) = p — 1. O

It is possible to generalize many of the results in this section to principal
ideal domains.

The notions of congruence and residue class can be carried over to an
arbitrary commutative ring. The first part of Proposition 3.3.1 is valid in a
PID; ie., ax = b (m) has a solution iff d|b and the solution is unique iff a
and m are relatively prime. The only difference is that the number of solutions
need not be finite. In any case, using this result one proves in analogy to part
of Proposition 3.3.2 that if R is a PID and m € R is not zero or a unit, then
R/(m) is a field iff m is a prime.

In particular, if k is a field, then k[x]/(f(x)) is a field iff f (x) is irreducible.
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§4 The Chinese Remainder Theorem

When the modulus m of a congruence is composite it is sometimes possible
to reduce a congruence modulo m to a system of simpler congruences. The
main theorem of this type is the so-called Chinese remainder theorem
(Theorem 1), which we prove below. This theorem is valid for any PID (in
fact, even more generally). However, we shall continue to work in Z and leave
to the reader the relatively simple exercise of carrying over the proof for
PID’s.

Lemma 1. Ifa,, ..., a, are all relatively prime to m, then so is a,a, - - - q,.

PROOF. g; € Z/mZ is a unit. Thus sois a,a, - - - a, = a,a, - - - a;. By Proposition
3.3.2, aya, - - - g, is relatively prime to m. O

Another proof goes as follows. If a,a, --- a, was not prime to m, there
would be a prime p that divides them both. p|a,a, - - - a, implies that p|q; for
some i. It follows that (a;, m) # 1, which contradicts the hypothesis.

Lemma 2. Suppose that ay, ..., a, all divide n and that (a;, a;) = 1 for i # j.
Then a,a, - - - a, divides n.

PRrOOF. The proof is by induction on ¢t. If ¢ = 1, there is nothing to do. Sup-
pose that t > 1 and that the lemma is true for t — 1. Then aa, --- a,,
divides n. By Lemma 1, g, is prime to a,a, - - - a,_ ;. Thus there are integers r
and s such thatra, + sa,a, - -- a,_, = 1. Multiply both sides by n. Inspection

shows that the left-hand side is divisible by a,a, - - - a, and the result follows.
O

Theorem 1 (Chinese Remainder Theorem). Suppose that m = mym, ---m,
and that (m;, m;) = 1 for i # j. Let b,, b,, ..., b, be integers and consider the
system of congruences:

x = by (my), x = b,y (my), ..., x = b, (m).

This system always has solutions and any two solutions differ by a multiple
of m.

PRrROOF. Let n; = m/m;. By Lemma 1, (m;,n;) = 1. Thus there are integers r;and
s; such that r;m; + s;n; = 1. Let ¢; = s5;n;. Then ¢; = 1 (m;) and e; = 0 (m;)
forj # i.

Set xo = )i, b;e;. Then we have x, = bie; (m;) and consequently
Xo = b; (m;). x, is a solution.

Suppose that x; is another solution. Then x, — xo = 0(m,;) for i =
1, 2, ..., t. In other words, m, m,, ..., m, divide x; — x,. By Lemma 2,
m divides x; — x,. O
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We wish to interpret Theorem 1 from a ring-theoretic point of view. If
R, R,, ..., R, arerings, then R, ® R, ® --- ® R, = S, the direct sum of
the R;, is defined to be the set of n-tuples (ry, 75, ..., r,) with r; € R;. Addition

and multiplication are defined by (ry, 75, ..., 1) + (Fy, 15, ..., 1) = (ry +
Fioeoostptrand (ry, vy, ooy 1) (P 1y oo 1) = (FiF, Falay ooy Fulh)-
The zero element is (0, 0, . . ., 0) and the identity is (1, 1,..., 1). u € S is a unit
iff thereisaveSsuchthatuv = 1. If u = (uy, ..., u,) and v = (vq, ..., v,),

then uv = 1 implies that y;v; = 1fori = 1,..., n. Thus y; is a unit for each i.
Conversely, if ; is a unit for each i, then u = (u,, u,, ..., u,) is a unit. For a
ring R we denote the group of units by U(R). U(R;) x U(R;) x --- x U(R,)
is the set of n-tuples (uy, u,, ..., u,), where u; € R;. This is a group under
component-wise multiplication. We have shown

Proposition3.4.1. IfS =R, ® R, ® --- ® R,, then U(S) = U(R,) x U(R,)
x U(R3) x ---x U(R,).

Let my, m,, ..., m, be pairwise relatively prime integers. y; will denote the
natural homomorphism from Z to Z/m;Z. We construct a map  from Z to
ZimZ ®Zim,Z®---® Z/m,Z as follows: Y(n) = (Yi(n), ¥,(n), ...,
Y,(n)) for all ne Z. It is easy to check that y is a ring homomorphism. What
are the kernel and image of /?

(by, by,...,b) = Y(n) iff Yy(n) =b, for i = 1,...,¢t; ie, n = b; (m;) for
i=1,...,t The Chinese Remainder Theorem assures us that such an n
always exists. Thus i is onto.

Yn)=0iffn=0(m),i=1,...,t, iff nis divisible by m = mym, - - - m,.
This is immediate from Lemma 2. Thus the kernel of  is the ideal mZ.

We have shown

Theorem 1'. The map  induces an isomorphism between Z/mZ and Z/m\Z @
Z/m,2 @ --- @ Z/m,Z.

Corollary. U(Z/mZ) ~ U(Z/m,Z) x U(Z/m,Z) x --- x U(Z|m,Z).

PrOOF. Immediate from Theorem 1’ and Proposition 3.4.1. O

Both sides of the isomorphism in the above corollary are finite groups.
The order of the left-hand side is ¢(m) and the order of the right-hand side is
(m)p(my) - - - ¢(m,). Thus (m) = ¢(my)Pp(m,) - - - p(m,).

Let m = p{'p%* - - - p{* be the prime decomposition of m. We have ¢(m) =
d(P1DP(PF) - - - P(p). For a prime power, p° ¢(p°) = p* — p*~ ', because
the numbers less than p® and prime to p® are prime to p. Since p*/p = p*~!
numbers less than p? are divisible by p, p* — p*~ ! numbers are prime to p.
Notice that p* — p*~! = p*(1 — 1/p). It follows that ¢(m) = m [[ (1 — 1/p).
We proved this formula in Chapter 2 in a different manner.
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Let us summarize. In treating a number of arithmetical questions, the
notion of congruence is extremely useful. This notion led us to consider the
ring Z/mZ and its group of units U(Z/mZ). To go more deeply into the strue-
ture of these algebraic objects we write m = p{'p3? - - - pi* and are led, via the
Chinese Remainder Theorem, to the following isomorphisms:

Ziml ~ Z/pYZ @ Z/p52 & --- @ Z/pL,
U(Z/mZ) ~ UZ/p3Z) x U@Z/pPZ) x --- x UZ(pZ).

For prime powers it is possible to push the investigation much further.
This is the subject of Chapter 4.

NoOTES

It would be useful for the reader to consult other treatments of the basic
material given here. See, for example, the very readable book of Davenport
[22] and (again) Hardy and Wright [40]. See also Niven and Zuckerman
[61], T. Nagell [60], E. Landau [52] and Vinogradov [77].

An interesting discussion of the various possible ways of arranging this
material can be found in P. Samuel, “Sur lorganization d’un cours
d’arithmetique,” L’Enseignment Math., 13, (1967),223-231. A more advanced
discussion of congruences is given in the first chapter of Borevich and
Shafarevich [9]; this book also shows how the theory of congruences is
useful in determining whether equations can be solved in integers. We
mention also the beautiful treatment by J. P. Serre [69].

Historically the notion of congruences was first introduced and used
systematically in Gauss’ Disquisitiones Arithmeticae. The notion of con-
gruence is a wonderful example of the usefulness of employing the “right”
notation.

As far as the Chinese Remainder Theorem is concerned we note that
Hardy and Wright [40] note that R. Bachman [4] notes that Sun Tsu was
aware of this result in the first century A.D. The theorem is capable of vast
generalizations. Properly formulated it holds in any ring with identity.
Surprisingly it is no more difficult to prove in general than in the special
case we have given (see Proposition 12.3.1).

EXERCISES

1. Show that there are infinitely many primes congruent to — 1 modulo 6.
2. Construct addition and multiplication tables for Z/5Z, Z/8Z, and Z/10Z.

3. Let abc be the decimal representation for an integer between 1 and 1000. Show that
abc is divisible by 3 iffa + b + c is divisible by 3. Show that the same result is true if
we replace 3 by 9. Show that abc is divisible by 11 iff a — b + ¢ is divisible by 11.
Generalize to any number written in decimal notation.
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10.
11

12.

13.
14.

15.

16.

17.

18.

19.
20.

21.
22.
23.

24.

. Show that the equation 3x2 4+ 2 = y? has no solution in integers.
. Show that the equation 7x* + 2 = y> has no solution in integers.

. Let an integer n > 0 be given. A set of integers a,, a,, . . ., @y is called a reduced

residue system modulo n if they are pairwise incongruent modulo n and (g;, n) = 1
foralli.If (a, n) = 1, provethataa,, aa,, ..., aa,y is again a reduced residue system
modulo n.

. Use Exercise 6 to give another proof of Euler’s theorem, a*™ = 1 (n) for (a, n) = 1.

. Let p be an odd prime. If ke {1, 2, ..., p — 1}, show that there is a unique b, in this

set such that kb, = 1 (p). Show that k # b, unless k = 1ork =p — 1.

. Use Exercise 7 to prove that (p — 1)! = —1 (p). This is known as Wilson’s theorem.

If n is not a prime, show that (n — 1)! = 0 (n), except when n = 4.

Letay, a,, ..., aym beareduced residue system modulo n and let N be the number of
solutions to x* = 1 (n). Prove that a,a, - - - g = (—1)"'* (n).

Let (I;) = p!/(k!(p — k)!) be a binomial coefficient, and suppose that p is a prime.

If1<k<p~— 1, show that p divides (i ) Deduce (a + 1) = a® + 1 (p).

Use Exercise 12 to give another proof of Fermat’s theorem, a? "' =1 (p) if p ¥ a.

Let p and g be distinct odd primes such that p — 1 divides ¢ — 1. If (n, pg) = 1,
show that n~ ! = 1 (pg).

For any prime p show that the numerator of 1 + 3 + 4 + .-+ + 1/p — 1is divisible
by p. (Hint: Make use of Exercises 8 and 9.)

Use the proof of the Chinese Remainder Theorem to solve the system x = 1 (7),
x=4(9),x=3().

Let f(x)e Z[x] and n = p$'p% - -- p. Show that f(x) = 0(n) has a solution iff
f(x) = 0 (p¥) has a solution fori = 1,2, ..., ¢t

Let N be the number of solutions to f(x) = 0 (1) and N; be the number of solutions
to f(x) = 0 (p®). Prove that N = N,N,--- N,.

If p is an odd prime, show that 1 and —1 are the only solutions to x = 1 (p%).

Show that x? = 1 (2°) has one solution if b = 1, two solutions if b = 2, and four
solutions if b > 3.

Use Exercises 18-20 to find the number of solutions to x2 = 1 (n).
Formulate and prove the Chinese Remainder Theorem in a principal ideal domain.

Extend the notion of congruence to the ring Z[i] and prove that a + bi is always
congruent to 0 or 1 modulo 1 + i.

Extend the notion of congruence to the ring Z[w] and prove that a + bw is always
congruent to either —1, 1, or 0 modulo 1 — .
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25. LetA =1 — weZ[w]. Ifae Z[w] and « = 1 (A), prove that &® = 1 (9). (Hint: Show
first that 3 = —w?42)

26. Use Exercise 25 to show that if ¢, , { € Z[w] arenot zeroand &3 + 5* + {3 = 0, then
A divides at least one of the elements ¢, #, {.



Chapter 4
The Structure of U(Z/nZ)

Having introduced the notion of congruence and discussed
some of its properties and applications we shall now go
more deeply into the subject. The key result is the existence
of primitive roots modulo a prime. This theorem was used
by mathematicians before Gauss but he was the first to
give a proof. In the terminology introduced in Chapter 3
the existence of primitive roots is equivalent to the fact
that U(Z[pZ) is a cyclic group when p is a prime. Using
this fact we shall find an explicit description of the group
U(Z/nZ) for arbitrary n.

§1 Primitive Roots and the Group Structure
of U(Z/nZ)

If n = p{'p% - - - pf", then, as was shown in Chapter 3, U(Z/nZ) ~ U(Z/p3'Z)
x -+ x U(Z/p{'Z). Thus to determine the structure of U(Z/nZ) it is sufficient
to consider the case U(Z/p°Z), where p is a prime. We begin by considering
the simplest case, U(Z/pZ).

Since Z/pZ is a field, it will be helpful to have available the following
simple lemma about fields.

Lemma 1. Let f(x) € k[x], k a field. Suppose that deg f(x) = n. Then f has at
most n distinct roots.

Proor. The proof goes by induction on #n. For n = 1 the assertion is trivial.
Assume that the lemma is true for polynomials of degree n — 1. If f(x)
has no roots in k, we are done. If « is a root, f(x) = g(x)(x — a) + r, where r
is a constant. Setting x = o we see that r = 0. Thus f(x) = g(x)(x — @)
and deg g(x) = n — 1. If B # o is another root of f(x), then 0 = f(B) =
(B — a)q(B), which implies that g(f) = 0. Since by induction g(x) has at
most n — 1 distinct roots, (x) has at most n distinct roots. O

Corollary. Let f(x), g(x)ek[x] and degf(x) =degg(x) =n. If f(o;) =
g(a;) for n + 1 distinct elements oy, 05, . . ., 0y, %y, then f(x) = g(x).

PRrROOF. Apply the lemma to the polynomial f(x) — g(x). O

39
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Proposition 4.1.1. xP" ! —1=x - 1D)x—-2)---(x —p + 1) (p).

Proor. If a denotes the residue class of an integer a in Z/pZ, an equivalent
way of stating the propositionisx? ™! — T=(x — I)(x — 2)---(x — (p — 1))
in Z/pZ[x]. Let f(x) = (x*" ' =) = (x = D(x = 2)---(x = (p — 1)). f(x)
has degree less than p — 1 (the leading terms cancel}and has the p — 1 roots
1,2,...,p — 1 (Fermat’s Little Theorem). Thus f(x) is identically zero. O

Corollary. (p — 1)! = —1 (p).
PrOOF. Set x = 0 in Proposition 4.1.1. O

This result is known as Wilson’s theorem. It is not hard to prove that if
n > 4 is not prime, then (n — 1)! = 0 (n) (see Exercise 10 of Chapter 3).
Thus the congruence (n — 1)! = — 1 (n) is characteristic for primes. We shall
make use of Wilson’s theorem later when discussing quadratic residues.

Proposition 4.1.2. If d|p — 1, then x* = 1 (p) has exactly d solutions.
Proor. Let dd’ = p — 1. Then

7' —1 (x) -1
x—1  xi-1

=TT N T4 x 1= g(x).

Therefore

xP7l— 1 =(x— 1)g(x)
and

xP7— T = - 1)g(x).

If x* — T had less than d roots, then by Lemma 1 the right-hand side would
have less than p — 1 roots. However, the left-hand side has the p — 1 roots
1,2,...,p — 1. Thus x* = 1 (p) has exactly d roots as asserted. O

Theorem 1. U(Z/pZ) is a cyclic group.

Proor. For d|p — 1 let y/(d) be the number of elements in U(Z/pZ) of order
d. By Proposition 4.1.2 we see that the elements of U(Z/pZ) satisfying
x? =1 form a group of order d. Thus Y, Y(c) = d. Applying the M&bius
inversion theorem we obtain y(d) = Y, u(c)d/c. The right-hand side of this
equation is equal to ¢(d), as was seen in the proof of Proposition 2.2.5.
In particular, y(p — 1) = ¢(p — 1), which is greater than 1 if p> 2. Since
the case p = 2 is trivial, we have shown in all cases the existence of an element
[in fact, ¢(p — 1) elements] of order p — 1. O

Theorem 1 is of fundamental importance. It was first proved by Gauss.
After giving some new terminology we shall outline two more proofs.
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Definition. An integer a is called a primitive root mod p if a generates the
group U(Z/pZ). Equivalently, a is a primitive root mod p if p — 1 is the
smallest positive integer such that a?~! = 1 (p).

As an example, 2 is a primitive root mod 5, since the least positive residues
of 2,22,23 and 2* are 2,4, 3, and 1. Thus 4 = 5 — 1 is the smallest positive
integer such that 2" = 1 (5).

For p = 7, 2 is not a primitive root since 2° = 1 (7), but 3 is since 3, 32,
33, 3%, 35, and 3° are congruent to 3,2, 6, 4, 5, and 1 mod 7.

Although Theorem 1 shows the existence of primitive roots for a given
prime, there is no simple way of finding one. For small primes trial and error
is probably as good a method as any.

A celebrated conjecture of E. Artin states that if a > 1is not a square, then
there are infinitely many primes for which a is a primitive root. Some progress
has been made in recent years, but the conjecture still seems far from resolu-
tion. See [35].

Because of its importance, we outline two more proofs of Theorem 1. The
reader is invited to fill in the details.

Letp — 1 = q5'q% - - - q{* be the prime decomposition of p — 1. Consider
the congruences

1) x*7 =1 (p).
() x¥ = 1(p).

Every solution to congruence 1 is a solution of congruence 2. Moreover,
congruence 2 has more solutions than congruence 1. Let g; be a solution to
congruence 2 that is not a solution to congruence 1 and set g = ¢,¢g, - ¢;-
g; generates a subgroup of U(Z/pZ) of order g§-. It follows that g generates a
subgroup of U(Z/pZ) of order q5'q%*---q¢* = p — 1. Thus g is a primitive
root and U(Z/pZ) is cyclic.

Finally, on group-theoretic grounds we can see that y(d) < ¢(d) for
d|p — 1.Both ) 4,—; ¥(d)and } 4 ,_, $(d)areequaltop — 1.1t follows that
Y(d) = ¢(d) for all d|p — 1. In particular, Yy(p — 1) = ¢(p — 1). For p > 2,
¢(p — 1) > 1, implying that y(p — 1) > 1. The result follows.

The notion of primitive root can be generalized somewhat.

Definition. Let a,n € Z. ais said to be a primitive root mod n if the residue class
of a mod n generates U(Z/nZ). 1t is equivalent to require that a and n be
relatively prime and that ¢(n) be the smallest positive integer such that
a®™ =1 (n).

In general, it is not true that U(Z/nZ) is cyclic. For example, the elements
of U(Z/8Z) are 1, 3,5,7,and 1> =1, 32 = 1, 52 = 1, 72 = 1. Thus there is
no element of order 4 = ¢(8). It follows that not every integer possesses
primitive roots. We shall shortly determine those integers that do.
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Lemma 2. If p is a prime and 1 < k < p, then the binomial coefficient (}) is
divisible by p.

ProoF. We give two proofs.
(a) By definition

p\_ p! _ Ny
(k)_m so that p! = k! (p k)!(k).

Now, p divides p!, but p does not divide k! (p — k)! since this expression
is a product of integers less than, and thus relatively prime to p. Thus p
divides ().

(b) By Fermat’s Little Theorem a?~! = 1 (p) if p f a. It follows that af =
a (p) for all a. In particular, (1 + @)’ =1+ a=1+ a®(p) for all a.
Thus (1 + x)? — 1 — x? = 0 (p) has p solutions. Since the polynomial
has degree less than p it follows from the corollary to Lemma 1 that
(T + x)» — T — x? is identically zero in Z/pZ[x]

p—1
A+x—1-xr=Y) (p)x".
k=1 \k

Thus (}) = 0 for 1 < k < p — 1, implying that p|(?). The only interest
in this proof is that we do not assume any information on (§). O

Lemma 3. If| > 1 and a = b (p'), then a® = b? (p'*?).

ProoOF. We may write a = b + cp', ce Z. Thus a® = b? + (5)b? " cp' + A,
where A is an integer divisible by p'*2 The second term is clearly divisible
by p'*!. Thus a® = b? (p'*1). O

Corollary 1. If I > 2 and p # 2, then (1 + ap)*' > =1 + ap'~ ! (p") for all
ael.

PRrOOF. The proof is by induction on . For | = 2 the assertion is trivial.
Suppose that it is true for some I > 2. We show that it is then true for | + 1.
Applying Lemma 3 we obtain

A +apy”™ =1+ ap'~ 'y ('),

By the binomial theorem
A+ap =1+ (f)ap"l + B,

where Bis a sum of p — 2 terms. Using Lemma 2 it is easy to see that all these
terms are divisible by p' *2¢~1 except perhaps for the last term, a?p?¢~ 1,
Since I >2,14+2(l—1)>1+1,andsince alsop>3, pl—1)=>1+1.
Thus p'*'|Band (1 + ap) ™' =1 + ap' (p'*?'), which is as required. O
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Before starting a second corollary we need a definition.

Definition. Let a, n € Z and (a, n) = 1. We say a has order e mod n if e is the
smallest positive integer such that a° = 1 (n). This is equivalent to saying
that a has order e in the group U(Z/nZ).

Corollary 2. If p # 2 and p ) a, then p'~ ! is the order of 1 + ap mod p'.

PrROOF. By Corollary 1, (1 + ap)* ' =1 + ap' (p'*!), implying that (1 +
ap)’'”" = 1 (p') and thus that 1 + ap has order dividing p'~ 1. (1 + ap)?' " =
1 4 ap'~ ! (p') shows that p'~ 2 is not the order of 1 + ap (it is here we use the
hypothesis p t a). The result follows. O

We are now in a position to extend Theorem 1. It turns out that we shall
have to treat the prime 2 separately from the odd primes. The necessity of
treating 2 differently from the other primes occurs repeatedly in number
theory.

Theorem 2. If p is an odd prime and le Z*, then U(Z/p'Z) is cyclic; i.e., there
exist primitive roots mod p'.

PRrOOF. By Theorem 1 there exist primitive roots mod p. If g € Z is a primitive
root mod p, then sois g + p. If g?" ! = 1 (p?), then (g + pyP 1 =¢g* ' +
(p—1Dg?P ?p=1+(p— 1)g° *p(p?. Since p* does not divide (p — 1)
x g°~?p we may assume from the beginning that g is a primitive root mod p
and that g?~ ! # 1 (p?).

We claim that such a g is already a primitive root mod p'. To prove this it
is sufficient to prove that if g" = 1 (p"), then ¢(p") = p' ' (p — D)|n.

g?~' =1 + ap, where p } a. By Corollary 2 to Lemma 3, p'~ ! is the order
of 1 + ap mod p'. Since (1 + ap)" = 1 (p') we have p'!|n.

Let n = p'~'n. Then ¢" = (¢*' )" = g" (p), and therefore g" = 1 (p).
Since g is a primitive root mod p, p — 1|n’. We have proved that
p'~(p — 1)|n, as required. O

Theorem 2'. 2' has primitive roots for | = 1 or 2 but not for | > 3. If | > 3, then
{(=1)*5’la =0, 1 and 0 < b < 2'"?} constitutes a reduced residue system
mod 2'. It follows that for | > 3, U(Z/2Z) is the direct product of two cyclic
groups, one of order 2, the other of order 2'~ 2.

PROOF. 1 is a primitive root mod 2, and 3 is a primitive root mod 4. From now
on let us assume that [ > 3.

We claim that (1) 5%'7° = 1 + 2!~ (2'). This is true for | = 3. Assume that
it is true for I > 3 and we shall prove it is true for I + 1. First notice that
(1+4+2"H2 =14+2"4+2%"23nd that 21 — 2 > 1 + 1 for [ > 3. Applying
Lemma 3 to congruence (1), we get (2) 5> > =1 + 2' (2'*!). Our claim is
now established by induction.
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From (2) we see that 52'* = 1 (2'), whereas from (1) we see that 52'* #
1 (2"). Thus 2'~ 2 is the order of 5 mod 2".

Consider the set {(—1)?5’|la =1, 2 and 0 < b < 2'~2}. We claim that
these 2'"! numbers are incongruent mod 2'. Since ¢(2) = 2'~! this will
show that our set is in fact a reduced residue system mod 2".

If (= 1)°5° = (— 1)¥5* (2), | > 3, then (—1)° = (— 1) (4), implying that
a = a' (2). Thus a = a'. Going further, a = o’ implies that 5° = 5°'(2") or that
5b7%" = 1 (2"). Therefore, b = b’ (2'~2), which yields b = b'.

Finally, notice that (—1)?5® raised to the 2'~2 power is congruent to 1
mod 2", Thus 2' has no primitive roots if [ > 3. a

Consider the situation mod 8. 1, 3, 5, and 7 constitute a reduced residue
system. We have 5° = 1, 5! = 5, —5° = 7,and —5' = 3. Table 1 represents
the situation mod 16. The second row contains the least positive residues of
the powers of 5, and the third row those of the negative powers of 5.

Table 1

50 51 52 53

Theorems 2 and 2’ permit us to give a fairly complete description of the
group U(Z/nZ) for arbitrary n.

Theorem 3. Let n = 2°p%'p% - - - p{" be the prime decomposition of n. Then
U(Z/nZ) = U(Z/2°Z) x U(Z/p}'Z) x --- x U(Z/pZ).

U(Z/piZ) is a cyclic group of order p{i~(p; — 1). U(Z/2°Z) is cyclic of order
1 and 2 for a = 1 and 2, respectively. If a > 3, then it is the product of two
cyclic groups, one of order 2, the other of order 2°~2,

Proor. Theorems 2, 2’, and Theorem 1’ of Chapter 3. O

We conclude this section by giving an answer to the question of which
integers possess primitive roots.

Proposition 4.1.3. n possesses primitive roots iff n is of the form 2, 4, p°, or 2p°,
where p is an odd prime.

ProOF. By Theorem 2’ we can assume that n # 2%, 1 > 3.Ifnis not of the given
form, it is easy to see that n can be written as a product m;m,, where (m,, m,)
= 1 and m;, m, > 2. We then have that ¢(m,) and ¢(m,) are both even and
that U(Z/nZ) = U(Z/m\Z) x U(Z/m,Z). Both U(Z/m,Z) and U(Z/m,Z)
have elements of order 2, but this shows that U(Z/nZ) is not cyclic since a
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cyclic group contains at most one element of order 2. Thus n does not possess
primitive roots.

We already know that 2, 4, and p® possess primitive roots. Since U(Z/2p°Z)
=~ U(Z/2Z) x U(Z/p°Z) = U(Z/p°Z) it follows that U(Z/2p°Z) is cyclic;
i.e., 2p® possesses primitive roots. O

§2 nth Power Residues

Definition. If m, ne Z*, ae Z, and (a, m) = 1, then we say that a is an nth
power residue mod m if X" = a (m) is solvable.

Proposition 4.2.1. If me Z™ possesses primitive roots and (a, m) = 1, then a is
an nth power residue mod m iff a®™/* = 1 (m), where d = (n, p(m)).

PRrOOF. Let g be a primitive root mod m and a = g°, x = ¢*. Then the con-
gruence x" = a (m) is equivalent to g" = g® (m), which in turn is equivalent
to ny = b (¢ (m)). The latter congruence is solvable iff d|b. Moreover, it is
useful to notice that if there is one solution, there are exactly d solutions.

If d|b, then a®™/4 = g*®™/4 = | (m). Conversely, if a®™ = 1 (m), then
g"*™/4 = 1 (m), which implies that ¢(m) divides b¢(m)/d or d|b. This proves
the result. O

The proof yields the following additional information. If x" = a (m) is
solvable, there are exactly (n, ¢(m)) solutions.

Now suppose that m = 2°p§* - - - pi*. Then x" = a (m) is solvable iff the
system of congruences

"=a2°),x"=a(p?),....x"=a ()

is solvable. Since odd prime powers possess primitive roots we may apply
Proposition 4.2.1 to the last I congruences. We are reduced to a consideration
of the congruence x" = a (2°). Since 2 and 4 possess primitive roots we may
further assume that e > 3.

Proposition 4.2.2. Suppose that a is odd, e > 3, and consider the congruence
x" = a (2°). If nis odd, a solution always exists and it is unique.

If n is even, a solution exists iff a = 1(4), a** "% = 1 (2°), where d =
(n, 2°~2). When a solution exists there are exactly 2d solutions.

PRrOOF. We leave the proof as an exercise. One begins by writing a = (—1)*5*
(2°) and x = (—1)*5% (29).

Propositions 4.2.1 and 4.2.2 give a fairly satisfactory answer to the ques-
tion; When is an integer a an nth power residue mod m? It is possible to go
a bit further in some cases.
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Proposition 4.2.3. If p is an odd prime, p ¥ a, and p ¥ n, then if x" = a (p) is
solvable, so is x" = a (p°) for all e > 1. All these congruences have the same
number of solutions.

ProOF. If n = 1, the assertion is trivial, so we may assume n > 2. Suppose
that x" = a (p°) is solvable. Let x, be a solution and set x; = x, + bp®. A
short computation shows x} = x§ + nbp°xy™! (p°*!). We wish to solve
x" = a (p°*1). This is equivalent to finding an integer b such that nx}~'b =
((@a — x2)/p°) (p). Notice that (a — xp)/p° is an integer and that p ¥nx§ ™ .
Thus this congruence is uniquely solvable for b, and with this value of b,
xi=a@?h).

If x* = a (p) has no solutions, then x” = a (p°) has no solutions. On the
other hand, if x” = a (p) has a solution, so do all the congruences x" = a (p°),
as we have just seen. By the remark following Proposition 4.2.1 the number
of solutions to x" = a (p°) is (n, ¢ (p°)) provided one solution exists. If p / n, it
is easy to see that (n, ¢ (p)) = (n, ¢ (p°)) for all e > 1. This concludes the
proof. O

As usual the result for the powers of 2 is more complicated.

Proposition 4.2.4. Let 2' be the highest power of 2 dividing n. Suppose that a is
odd and that x" = a (2*'*") is solvable. Then x" = a (2°) is solvable for all
e > 2l + 1 (and consequently for all e > 1). Moreover, all these congruences
have the same number of solutions.

Proor. We leave the proof as an exercise. One begins by assuming that
x" = a (2™),m > 2l + 1, hasasolution x,. Let x, = x, + b2™"". One shows,
by an appropriate choice of b, that x| = a (2™*1). O

Notice that x* = 5(22) is solvable (for example, x = 1) but that x2 =
5(2%) is not. On the other hand, one can prove easily from the proposition
that if a = 1 (8), then x? = a (2°) is solvable for all e and conversely.

NOTES

Lemma 1 and its important consequence, Proposition 4.1.1, are due to
J. Lagrange (1768).

Fermat’s theorem [that a?~' = 1 (p) if p.¥a] was first proved by Euler.
Wilson’s theorem was stated by E. Waring and proved by Lagrange.

The important result on the existence of primitive roots modulo a prime
was asserted by Euler and, as we have mentioned, was first proved by Gauss.
The proofs of this result can be modified to prove the more general assertion
that a finite subgroup of the multiplicative group of a field is cyclic, i.e., is
generated by one element.



Notes 47

There are a number of interesting conjectures related to primitive roots.
The celebrated conjecture of E. Artin asserts that given an integer a that is
not a square, and not — 1, there are infinitely many primes for which a is a
primitive root. In the case a = 10 this goes back to Gauss and amounts to
asserting the existence of infinitely many primes p such that the period of the
decimal expansion of 1/p has length p — 1. (See Chapter 4 of Rademacher
[64] for an introduction to the theory of decimal expansions.) For an excellent
survey article devoted to the Artin conjecture and related questions, see
Goldstein [35].

Lehmer [54] discovered the following curious result. The first prime of
the form 326n® + 3 for which 326 is not a primitive root must be bigger
than 10 million. He mentions other results of the same nature. It would be
interesting to see what is responsible for this strange behavior.

Given a prime p, what can be said about the size of the smallest positive
integer that is a primitive root mod p? This problem has given rise to a lot
of research. One contribution, due to L. K. Hua, is that the number in ques-
tion is less than 2™* 'p'/2, where m is the number of distinct primes dividing
p — 1. For a discussion of this problem and a good bibliography, see Erdos
[31]. For other interesting results and problems see [76] and [12].

There exist many investigations into the existence of sequences of con-
secutive integers each of which is a kth power modulo p. Consider primes of
the form kt + 1. A basic result due to A. Brauer asserts that if m is a given
positive integer, then for all primes p sufficiently large there are m consecutive
integersr,r + 1,...,r + m — 1 all of which are kth powers modulo p. The
question of finding the least such r for given p and m is a problem of current
interest. For this, and a discussion of other open questions in this area, see
the article by Mills [59].

Given a prime p, what can be said about the size of the smallest positive
integer that is a nonsquare modulo p? An interesting conjecture is the
following: For a given n the integer in question is smaller than \’/; for all
sufficiently large p. For more discussion, see P. Erd6s [31] and Chapter 3
of Chowla [18].

Finally, we mention that an analog of the Artin conjecture on primitive
roots has actually been proved in the ring k[x] by H. Bilharz [8]. Bilharz
proved his theorem under the assumption that the Riemann hypothesis
holds for the so-called congruence zeta function (see Chapter 11). This was
actually proved several years later by A. Weil. In recent years C. Hooley was
able to prove that Artin’s orginal conjecture was correct under the assump-
tion that the extended Riemann hypothesis holds in algebraic number fields
[46]. For a discussion of the classical Riemann hypothesis and its conse-
quences, see Chowla [18]. No one at present seems to have the slightest idea
as to how to prove the Riemann hypothesis for number fields so that it seems
clear that Hooley is not about to have the same good luck that Bilharz
enjoyed.
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EXERCISES

1.
2.
3.

10.

11.
12.

13.

14.

15.

16.
17.

18.
19.
20.

21.

Show that 2 is a primitive root modulo 29.
Compute all primitive roots for p = 11, 13, 17, and 19.

Suppose that ais a primitive root modulo p”, pan odd prime. Show that ais a primitive
root modulo p.

. Consider a prime p of the form 4t + 1. Show that a is a primitive root modulo

p iff — a is a primitive root modulo p.

. Consider a prime p of the form 4r + 3. Show that a is a primitive root modulo

p iff — a has order (p — 1)/2.

. If p = 2" + 1 is a Fermat prime, show that 3 is a primitive root modulo p.

. Suppose that p is a prime of the form 8¢ + 3 and that g = (p — 1)/2 is also a prime.

Show that 2 is a primitive root modulo p.

. Let p be an odd prime. Show that a is a primitive root module p iff a?~ 4 1 (p) for

all prime divisors g of p — 1.

. Show that the product of all the primitive roots modulo p is congruent to (— 1)¢®~ 1

modulo p.

Show that the sum of all the primitive roots modulo p is congruent to u(p — 1)
modulo p.

Provethat1* + 2 + ... 4+ (p — 1)* =0 (p)ifp — L fkand —1 (p)if p — 1|k.
Use the existence of a primitive root to give another proof of Wilson’s theorem
(—-D!'=—-1(p).

Let G be a finite cyclic group and g € G a generator. Show that all the other generators
are of the form g*, where (k, n) = 1, n being the order of G.

Let A be a finite abelian group and a, b € A elements of order m and n, respectively.
If (m, n) = 1, prove that ab has order mn.

Let K be a field and G & K* a finite subgroup of the multiplicative group of K.
Extend the arguments used in the proof of Theorem 1 to show that G is cyclic.

Calculate the solutions to x> = 1 (19) and x* = 1 (17).

Use the fact that 2 is a primitive root modulo 29 to find the seven solutions to
x7=1(29).

Solve the congruence 1 + x + x2 + --- 4+ x5 = 0 (29).
Determine the numbers a such that x3 = a (p) is solvable for p = 7, 11, and 13.

Let p be a prime and d a divisor of p — 1. Show that the dth powers form a subgroup
of U(Z/pZ) of order (p — 1)/d. Calculate this subgroup for p = 11,d = 5; p = 17,
d=4;p=19,d=6.

Ifg is a primitive root modulo pand d|p — 1,show that g"?~ V¢ has order d. Show also
that ais adth power iffa = g* (p) for some k. Do Exercises 16-20 making use of these
observations.



Exercises 49

22. If a has order 3 modulo p, show that 1 + a has order 6.

23. Show that x> = —1 (p) has a solution iff p = 1 (4) and that x* = —1 (p) has a
solution iff p = 1 (8).

24. Show thatax™ + by" = c(p) has the same number of solutions as ax™ + by” = c(p),
where m’ = (m,p — 1) and n’ = (n,p — 1).

25. Prove Propositions 4.2.2 and 4.2.4.



Chapter 5

Quadratic Reciprocity

If p is a prime, the discussion of the congruence x* = a (p)
is fairly easy. It is solvable iff a?~V'? = 1 (p). With this
fact in hand a complete analysis is a simple matter.
However, if the question is turned around, the problem is
much more difficult. Suppose that a is an integer. For
which primes p is the congruence x* = a (p) solvable?
The answer is provided by the law of quadratic reciprocity.
This law was formulated by Euler and A. M. Legendre
but Gauss was the first to provide a complete proof.
Gauss was extremely proud of this result. He called it
the Theorema Aureum, the golden theorem.

§1 Quadratic Residues

If (@, m) = 1, a is called a quadratic residue mod m if the congruence x? =
a (m) has a solution. Otherwise a is called a quadratic nonresidue mod m.

For example, 2 is a quadratic residue mod 7, but 3 is not. In fact, 12, 22,
32,42, 52, and 62 are congruent to 1, 4, 2, 2, 4, and 1, respectively. Thus 1, 2,
and 4 are quadratic residues, and 3, 5, and 6 are not.

Given any fixed positive integer m it is possible to determine the quadratic
residues by simply listing the positive integers less than and prime to m,
squaring them, and reducing mod m. This is what we have just done for
m=7.

The following proposition gives a less tedious way of deciding when a
given integer is a quadratic residue mod m.

Proposition 5.1.1. Let m = 2°p$! - - - pj* be the prime decomposition of m, and
suppose that (a,m) = 1. Then x*> = a (m) is solvable iff the following conditions
are satisfied:

(@) Ife =2,thena =1 (4).
Ife > 3,thena =1(8).
(b) For each i we have a®~V'? = 1 (p)).

PrOOF. By the Chinese Remainder Theorem the congruence x? = a (m) is
equivalent to the system x? = a (29, x*> = a (p%), ..., x% = a (p").

50
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Consider x? = a (2°). 1 is the only quadratic residue mod 4, and 1 is the
only quadratic residue mod 8. Thus we have solvability iffa = 1 (4) ife = 2
and a = 1 (8) if e = 3. A direct application of Proposition 4.2.4 shows that
x% = a (8) is solvable iff x2 = a (2°) is solvable for all e > 3.

Now consider x? = a (pf?). Since (2, p;) = 1 it follows from Proposition
4.2.3 that this congruence is solvable iff x2 = a (p,) is solvable. To this
congruence apply Proposition 4.2.1 withn = 2,m = p,and d = (n, ¢ (m)) =
(2, p — 1) = 2. We obtain that x> = a (p;) is solvable iff a?~ V2 = 1 (p,).

This result reduces questions about quadratic residues to the correspond-
ing questions for prime moduli. In what follows p will denote an odd prime.

Definition. The symbol (a/p) will have the value 1 if a is a quadratic residue
mod p, —1if a is a quadratic nonresidue mod p, and zero if p|a. (a/p) is called
the Legendre symbol.

The Legendre symbol is an extremely convenient device for discussing
quadratic residues. We shall list some of its properties.

Proposition 5.1.2.

(a) "~V = (a/p) (p).
(b) (ab/p) = (a/p)(b/p).
(c) Ifa = b (p), then (a/p) = (b/p).
ProoF. If pdivides a or b, all three assertions are trivial. Assume that p 4 a and
that p t b.
We know that a?~ ! = 1 (p); thus (a?~ V2 4+ 1)@® V2 — 1) =ar™ ' -
= 0 (p). It follows that a®~ 12 = +1 (p). By Proposition 5.1.1, a?~ V% =
1 (p) iff a is a quadratic residue mod p. This proves part (a).
To prove part (b) we apply part (a). (ab)*~ "2 = (ab/p) (p) and (ab)?~ 12
= aP~ V2p®= 112 = (a/p)(b/p) (p). Thus (ab/p) = (a/p)(b/p) (p), which im-
plies that (ab/p) = (a/p)(b/p).
Part (c) is obvious from the definition. O

Corollary 1. There are as many residues as nonresidues mod p.*

PROOF. a'?~V/2 = 1 (p) has (p — 1)/2 solutions. Thus there are (p — 1)/2
residues and p — 1 — ((p — 1)/2) = (p — 1)/2 nonresidues. O

Corollary 2. The product of two residues is a residue, the product of two
nonresidues is a residue, and the product of a residue and a nonresidue is a
nonresidue.

PRrOOF. This all follows easily from part (b). O

* In the remainder of this chapter “residues” and “nonresidues” refer to quadratic residues and
quadratic nonresidues.
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Corollary 3. (— 1)?~ 12 = (—1/p).
PROOF. Substitute @ = —1 in part (a). O

Corollary 3 is particularly interesting. Every odd integer has the form
4k + 1 or 4k + 3. Using this one can restate Corollary 3 as follows: x* =
—1 (p) has a solution iff p is of the form 4k + 1. Thus —1 is a residue of the
primes 5, 13, 17, 29, ... and a nonresidue of the primes 3, 7, 11, 19, .... The
reader should check some of these assertions numerically.

One is led by this result to ask a more general question. If a is an integer,
for which primes p is a quadratic residue mod p? The answer to this question
is provided by the law of quadratic reciprocity to whose statement and proof
we shall soon devote a great deal of attention.

Corollary 3 enables us to prove that there are infinitely many primes of
the form 4k + 1. Suppose that py, p,, ..., p,, are a finite set of such primes and
consider (2p,p, - -- Pm)*> + 1. Suppose that p divides this integer. —1 will
then be a quadratic residue mod p and thus p will be of the form 4k + 1. pis
not among the p; since (2p,p, - -- pm)> + 1 leaves a remainder of 1 when
divided by p;. We have shown that every finite set of primes of the form
4k + 1 excludes some primes of that form. Thus the set of such primes is
infinite.

To return to the theory of quadratic residues, we are now going to intro-
duce another characterization of the symbol (a/p) due to Gauss.

Consider S={—-(p—-1/2, —(p—3)/2. ..., =1, 1,2, ..., (p — 1)/2}.
This is called the set of least residues mod p. If p ¥ q, let u be the number of
negative least residues of the integers a, 2a, 3a, ..., ((p — 1)/2)a. For example,
letp=7anda=4.Then (p — 1)/2=3,and 1-4, 2-4, and 3-4 are con-
gruent to —3, 1, and —2, respectively. Thus in this case u = 2.

Lemma (Gauss’ Lemma). (a/p) = (— D~

PROOF. Let +m, be the least residue of la, where m, is positive. As [ ranges
between 1 and (p — 1)/2, u is clearly the number of minus signs that occur in
this way. We claim that m; # m; if | # kand 1 < [, k < (p — 1)/2. For, if
m; = my, then la = +ka (p), and since p } a this implies that | + k = 0(p).
The latter congruence is impossible since | # k and |l + k| < |I| + |k] <
p — 1. It follows that the sets {1, 2, ..., (p — 1)/2} and {m;, m,, ..., m_y)5}
coincide. Multiply the congruences 1-a = +m, (p), 2-a= +m, (p), ...,
(p— 1D/2)a = +m,_,), (p). We obtain

(5ol

This yields a?~ 12 = (—1)* (p). By Proposition 5.1.2, a?~ "2 = (a/p) (p).
The result follows. O

Gauss’s lemma is an extremely powerful tool. We shall base our first
proof of the quadratic reciprocity law on it. Before getting to that, however,
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we can use it immediately to get a characterization of those primes for which
2 is a quadratic residue.

Proposition 5.1.3. 2 is a quadratic residue of primes of the form 8k + 1 and
8k + 7. 2 is a quadratic nonresidue of primes of the form 8k + 3 and 8k + 5.
T his information is summarized in the formula

g — (—1)P2—1)/8
(P) =D '

PrOOF. We leave to the reader the task of showing that the formula is equiva-
lent to the first two assertions.

Let p be an odd prime (as usual) and notice that the number u is equal to
the number of elements of the set 2-1,2-2, ..., 2-(p — 1)/2 that exceed
(p — 1)/2. Let m be determined by the two conditions 2m < (p — 1)/2 and
2m + 1) > (p — 1)/2. Then u = ((p — 1)/2) — m.

If p = 8k + 1, then (p — 1)/2 = 4k and m = 2k. Thus u = 4k — 2k = 2k
is even and (2/p) = 1.

Ifp=8k+ 7,then (p —1))2=4k +3,m=2k + l,and u = 4k + 3 —
(2k + 1) = 2k + 2 is even. Thus (2/p) = 1 in this case as well.

Ifp=8k + 3, then(p — 1)2=4k + I,m=2k,andu=4k+ 1 -2k =
2k + 11is odd. Thus 2/p) = — 1.

Finally, if p=8k + 5, then (p —1)2=4k+2, m =2k + 1, and
u=4k +2 — (2k + 1) = 2k + 1is odd. Thus (2/p) = —1 and we are done.

O

As an example, consider p = 7 and p = 17. These primes are congruent
to 7 and 1, respectively, mod 8, and indeed 32 = 2 (7) and 6> = 2 (17). On
the other hand, p = 19 and p = 5 are congruent to 3 and 5, respectively, and
it is easily checked numerically that 2 is a quadratic nonresidue for both
primes.

One can use Proposition 5.1.3 to prove that there are infinitely many
primes of the form 8k + 7. Let py, .. ., p,, be a finite collection of such primes,
and consider (4p;p, ‘- - pn)* — 2. The odd prime divisors of this number
have the form 8k + 1 or 8k + 7, since for such prime divisors 2 is a quadratic
residue. Not all the odd prime divisors can have the form 8k + 1 (prove it).
Let p be a prime divisor of the form 8k + 7. Then pis not in the set {p,, p,,...,
P} and we are done.

§2 Law of Quadratic Reciprocity

Theorem 1 (Law of Quadratic Reciprocity). Let p and q be odd primes. Then

@) (=1/p) = (—1)*~ 12
(b) 2/p) = (=1~ V8,
(© (p/a)afp) = (=)~ /2@,
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We are going to postpone the proof until Section 3. In Chapter 6 we shall
prove the theorem once again from a different standpoint, and also indicate
something of its history. It is among the deepest and most beautiful results of
elementary number theory and the beginning of a line of reciprocity theorems
that culminate in the very general Artin reciprocity law, perhaps the most
impressive theorem in all number theory. It would take us far outside the
compass of this book to even state the Artin reciprocity law, but in Chapter 9
we shall state and prove the laws of cubic and biquadratic reciprocity.

Parts (a) and (b) of Theorem 1 have already been proven and some of
their consequences discussed. Let us turn our attention to part (c).

If either p or q are of the form 4k + 1, then ((p — 1)/2)((q — 1)/2) = 0(2).
If both p and g are of the form 4k + 3, then (p — 1)/2)((q — 1)/2) =1 (2).
This permits us to restate part (c) as follows:

(1) If either p or q is of the form 4k + 1, then p is a quadratic residue mod g
iff g is a quadratic residue mod p.

(2) Ifboth p and q are of the form 4k + 3, then p is a quadratic residue mod ¢
iff ¢ is a quadratic nonresidue mod p.

As a first application of quadratic reciprocity we show how, in conjunction
with Proposition 5.1.2, it can be used in numerical computations of the
Legendre symbol. A single example should suffice to illustrate the method.

We propose to calculate (79/101). Since 101 = 1 (4) we have (79/101) =
(101/79) = (22/79). The last step follows from 101 = 22 (79). Further,
(22/79) = (2/79)(11/79). Now 79 = 7 (8). Thus (2/79) = 1. Since both 11
and 79 are congruent to 3 mod 4 we have (11/79) = —(79/11) = —(2/11).
Finally 11 = 3 (8) implies that (2/11) = — 1. Therefore (79/101) = 1;i.e., 79
is a quadratic residue mod 101. Indeed, 332 = 79 (101).

The next application is perhaps more significant. We noticed earlier that
—1 is a quadratic residue of primes of the form 4k + 1 and that 2 is a quad-
ratic residue of primes that are either of the form 8k + 1 or 8k + 7. If a is an
arbitrary integer, for what primes p is a a quadratic residue mod p? We are
now in a position to give an answer. To begin with, we consider the case
where a = ¢, an odd prime.

Theorem 2. Let q be an odd prime.

(a) If q = 1 (4), then q is a quadratic residue mod p iff p = r (q), whereris a
quadratic residue mod q.

(b) If q = 3 (4), then q is a quadratic residue mod p iff p = +b? (4q), where b
is an odd integer prime to q.

PROOF. If g = 1 (4), then by Theorem 1 we have (g/p) = (p/q). Part (a) is thus
clear.

If g = 3 (4), Theorem 1 yields (g/p) = (—1)®~2(p/q). Assume first that
p = +b? (4q), where b is odd. If we take the plus sign, we get p = b* = 1 (4)
and p = b? (). Thus (—=1)®~ 12 = 1 and (p/q) = 1, giving (g/p) = 1. If we
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take the minus sign, then p= —b>= —1 =3 (4) and p = —b? (¢). The
first congruence shows that (— 1)%?~ Y2 = — 1. Thesecond shows that (p/q) =
(—b%*/q9) = (—1/g)(b/q)* = (—1/q9) = —1 since q = 3 (4). Once again we
have (¢/p) = 1.

To go the other way, assume that (q/p) = 1. We have two cases to deal
with:

() (=1)®~2 = —1 and (p/g) = ~1.
@ (=2 = 1and (p/g) = 1.

In case 2 we have p = b? (q) and p = 1 (4). b can be assumed to be odd
since if it is even we can use b’ = b + q instead. If b is odd, then b2 = 1 (4)
and p = b? (4) and thus p = b? (49), as required.

In case 1 we have p = 3 (4) and p = —b? (g). The last congruence follows
since q = 3 (4) implies that every nonresidue is the negative of a residue
(prove it). Again, we may assume that b is odd. In that case —b* = 3 (4) so
p = —b? (4) and p = —b? (4q). This concludes the proof. O

Take g = 3 as a first illustration. By part (b) of Theorem 2 we must find
the residues mod 12 of the squares of odd integers prime to 3. 12, 52, 72, and
112 are all congruent to 1. Thus 3 is a quadratic residue of primes p congruent
to +1 (12) and a quadratic nonresidue of primes congruent to + 5 (12).

Next consider g = 5. Since 5 = 1 (4) we are in the simpler part (a) of
Theorem 2. 1 and 4 are the residues mod 5, and 2 and 3 the nonresidues. Thus
5is a residue of primes congruent to 1 or 4 mod 5 and a nonresidue of primes
congruent to 2 or 3 mod 5.

“Numbers congruent to b mod m” and “nmumbers of the form mk + b” are
shorthand expressions describing the set {b, b + m, b + 2m, ...}. This set is
an arithmetic progression with initial term b and difference m. In our in-
vestigations so far we have seen that the answer to the question for which
primes p is a a quadratic residue has been for those primes p that occur in a
certain fixed, finite number of arithmetic progressions. This situation is
entirely general. Instead of stating this result as a theorem (the statement
would be very complicated) we shall work out a few numerical examples.

For a = -3, (-3/p) = (—1/p)(3/p). Thus —3 is a quadratic residue
mod p if either (—1/p) = 1 and (3/p) = 1 or (—1/p) = —1and 3/p) = — 1.

By our previous results the first case obtains when p =1 (4) and p =
+1 (12). If p= —1 (12), then p = —1 (4). The only primes that satisfy
both congruences are = 1 (12).

In the second case p=3 (4)and p= +5(12). If p=5(12), then p=1 (4).
Thus the only primes that satisfy both these congruences are = —5(12).

Summarizing, — 3 is a quadratic residue mod p iff p is congruent to 1 or
—5mod 12.

Now consider a = 6. Since (6/p) = (2/p)(3/p) we again have two cases:
(2/p) = 1 and (3/p) = 1 or (2/p) = —1 and (3/p) = — 1. The first case holds
ifp=1,7(8)and p = 1, 11 (12). The only two pairs of congruences that are



56 5 Quadratic Reciprocity

compatible are p =1 (8)and p = 1 (12), and p = 7 (8) and p = 11 (12). By
standard techniques (see Chapter 3) the primes satisfying these congruences
are congruent to 1 or 23 mod 24.

In the second case we have to consider p =3, 5(8) and p = 5, 7 (12).
Separating these into four pairs of congruences we see that the only solutions
are congruent to 5 and 19 mod 24.

Summarizing, 6 is a quadratic residue mod piff p = 1, 5, 19, 23 (24).

As a numerical check we see for the primes 73, 5, 19, and 23 that 152 =
6(73),1%2 = 6(5), 5 = 6 (19), and 112 = 6 (23).

As a final application of the quadratic reciprocity law we investigate the
question; if a is a quadratic residue mod all primes p not dividing a, what
can be said about a? If a is a square, it is a residue for all primes not dividing a.
It turns out that the converse of this statement is true as well. In fact, we shall
soon prove an even stronger result. First, however, it is necessary to define
and investigate briefly a new symbol.

Definition. Let b be an odd, positive integer and a any integer. Let b =
P1D2 - - - Pm», Where the p; are (not necessarily distinct) primes. The symbol

() (1 )(‘2)...(1'")
= .

is called the Jacobi symbol.

The Jacobi symbol has properties that are remarkably similar to the
Legendre symbol, which it generalizes. A word of caution is useful. (a/b) may
equal 1 without a being a quadratic residue mod b. For example, (2/15) =
(2/3)(2/5) = (—1)(—1) = 1, but 2 is not a quadratic residue mod 15. It is
true, however, that if (a/b) = —1, then a is a quadratic nonresidue mod b.

Proposition 5.2.1.

(@) (ay/b) = (az/b) if ay = a, (b).

(b) (aya,/b) = (a/b)a,/b).

(¢) (a/byby) = (a/by)a/b,).

ProOF. Parts (a) and (b) are immediate from the corresponding properties

of the Legendre symbol. Part (c) is obvious from the definition.

Lemma. Let r and s be odd integers. Then

@) (rs — D2 = ((r = 1)/2) + (s — 1)/2) ().
(b) (s> — 1)/8 = ((* — 1)/8) + (5> — 1)/8) (D).

ProoF.Since (r — 1)(s —1)=0@)wehavers —1=(r - 1)+ (s - 1)(4).
Part (a) follows by dividing by 2.
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r? — 1 and s*> — 1 are both divisible by 4. Thus (r> — 1)(s> — 1) = 0 (16)
andr?s? — 1 = (r* — 1) + (s> — 1) (16). Part (b) follows upon dividing by 8.

O
Corollary. Let ry, r,, ..., r, be odd integers. Then
@) Yy (i = 12 =(ryry -1y — 1)/2(2).
(0) Yy (¢ = DB =(irs---rn — DB (2).
PRrOOF. The proof is a simple induction on m, using the lemma. 0

Proposition 5.2.2.

(@) (=1/b) = (—1)*~ V2,
(b) (2/b) = (—1)®* 715,
(c) If ais odd and positive as well as b, then

a\ (b

“VMZY = (1@ v2xe-1y2)

(5)(o) = oo
PROOF.

(=1/8) = (= 1/pi)(=1/p) -+ (= 1/p) = (= P72 (= 1yom= 12
= (__ I)Z(Pi_ /2

By the lemma ) (p; — 1)/2=(pipy-- Pm — 1)/2 = (b — 1)/2(2). This
proves part (a).

Part (b) is proved in exactly the same way.

Now ifa = q,9, - - - g, then

a\(b q:\(DP; Y (g — _
M) = V4 = (— 1)21 Yj((ai— 1)/2)((pj 1)/2).
5)(a) =1 () () =

The product and sum range over 1 < i < land 1 < j < m. Again using the
lemma we have

(p; — D\[(@ -1 @-D(p—1
ez (®50)(5 ) =2

_ (@—D\(®-1
()0)e

This proves part (c). O

The Jacobi symbol has many uses. For one thing, it is a convenient aid for
computing the Legendre symbol. We now use it to prove the following
theorem.

Theorem 3. Let a be a nonsquare integer. Then there are infinitely many
primes p for which a is a quadratic nonresidue.
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PROOE It is easily seen that we may assume that a is square-free. Leta = 2°q,q,
---¢,, Where the g; are distinct odd primes and e = 0 or 1. The case a = 2
has to be dealt with separately. We shall assume to begin with thatn > 1, i.e.,
that a is divisible by an odd prime.

Letl,,1,,..., |, be afinite set of odd primes not including any g;. Let s be
any nonresidue mod g,, and find a simultaneous solution to the congruences

x=1(), i=1,...,k

x=1(8),
x = 1(q), i=12,...,n— 1.
x = 5(4n),

Call the solution b. b is odd. Suppose that b = p,p, -- - p,, is its prime
decomposition. Since b = 1(8) we have (2/b) = 1 and (g,/b) = (b/q;) by
Proposition 5.2.2. Thus (a/b) = (2/b)*(q,/b) - - (gn- 1/b)(4a/b) = (b/g,)- -
(b/4n-1)(b/g,) = (1/q1) - - (1/gn-1)(s/g,) = — 1.

On the other hand, by the definition of (a/b), we have (a/b) = (a/p,)(a/p,)
-+ - (a/p,)- It follows that (a/p;) = —1 for some i.

Notice that [; does not divide b. Thus p; ¢ {I;, [, ..., L}

To summarize, if a is a nonsquare, divisible by an odd prime, we have
found a prime p, outside a given finite set of primes {2, I, I,, ..., I}, such
that (a/p) = — 1. This proves Theorem 3 in this case.

It remains to consider the case a = 2. Let I, ..., |, be a finite set of primes,
excluding 3, for which (2/;) = —1. Let b = 81,1, --- I, + 3. b is not divisible
by 3 or any ;. Since b = 3 (8) we have (2/b) = (—1)®*~ 18 = _1. Suppose
that b = p,p, - - - p,, is the prime decomposition of b. Then, as before, we see
that (2/p;) = —1 for some i. p;¢ {3, I, I,, ..., I}. This proves Theorem 3
fora = 2. O

§3 A Proof of the Law of Quadratic Reciprocity

Gauss found eight separate proofs for the law of quadratic reciprocity. There
are over a hundred now in existence. Of course, they are not all essentially
different. Many just differ in small details from others. We shall present an
ingenious proof due to Eisenstein. For a somewhat more elementary and
standard proof, see [61].

A complex number ( is called an nth root of unity if {" = 1 for some integer
n > 0. If n is the least integer with this property, then { is called a primitive
nth root of unity.

The nth roots of unity are 1, e2™/", 2mim2  oC2rime—1) Among these
the primitive nth roots of unity are e?*/™* where (k, n) = 1.

If { is an nth root of unity and m = [ (n), then {™ = ¢". If { is a primitive
nth root of unity and (™ = (!, then m = [ (n).



§3 A Proof of the Law of Quadratic Reciprocity 59

These elementary properties are easy to prove.

Consider the function f(z) = e?™? — e~ 2™% = 2j sin 2nz. This function
satisfies f(z + 1) = f(z) and f(—z) = —f(z). Also, its only real zeros are
the half integers. In other words, if r is a real number and 2r ¢ Z, thenf'(r) # 0.

We wish to prove an important identity involving f(z), but first we need
an algebraic lemma.

Lemma. If n > 0 is odd, we have
n—1
x"—y" = [[(** = {*y), where( = &*™".
k=0

PROOF. 1,{, (..., (" ! areall roots of the polynomial z* — 1. Since there are
n of them and they are all distinct we have z" — 1 = [[;2§ (z — {¥). Let
z = x/y and multiply both sides by y". We get x" — y" = [[¢Z4 (x — *).

Since n is odd as k runs over a complete system of residues mod n, so does
—2k. Thus

n—1
x" — yn — kI—[ (X _ C—Zky)
=0
n—1
— C—(l+2+-~+n—1)l’[(ckx _ C_k.V)
k=0

= TI@x = ().
k=0

In the last step we have used the factthat 1 + 2 + 3 +---+ (n— 1) =
n((n — 1)/2) is divisible by n. O

Proposition 5.3.1. If n is a positive odd integer and f(z) = e*™* — e™ *™= then
(n—1)/2
fnz) _ 1 f( k) (z 3 E)
f(@ k=1 n
PROOF. In the lemma, substitute x = "% and y = e~ 2", We see that
k
f(nz) = 1_[ flz +o

Notice that f(z + k/n) = f(z + k/n — 1) = f(z — (n — k)/n). As k goes
from (n + 1)/2ton — 1, n — k goes from (n — 1)/2 to 1. Thus

(n—1)/2 k k
P W r(evy) T a(e+3)

k=(n+1)/2

(n—1)/2 k —k

=1+ L)
N/ k=m+1)2

) D
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Proposition 5.3.2. If p is an odd prime, a€ Z, and p } a, then

-2 (1, a\ P72 /]
17 (z) - (,,) s (,,)

PRrOOF. Asin the lemma of Section 1,la = +m, (p),wherel < m, < (p — 1)/2.
Thus la/p and +m,/p differ by an integer. This implies that f (la/p) = f(+m,/p)

= +f(my/p).
The result now follows by taking the product of both sides as I goes from
1 to (p — 1)/2 and applying Gauss’ lemma. O

We are now in a position to prove the law of quadratic reciprocity. Let p
and g be odd primes. Then by Proposition 5.3.2

(=12 lq) <q) (= 1)2 (1)
,D, f<p \p II_—]lfp'
By Proposition 5.3.1

f(ql/p) _ q—1)/2 1 T) (l B T)
fapy mll f(p+q 4 p a)

Putting these two equations together we have

g _(41"1)/2 (p—1)/2 (i m) (i_m)
(p)_ ...Ul zl=_[1 fp+q fp q)

In the same way we find

B _ (@—1)/2 (p—1)/2 ﬂ _l (T B _l)
(‘1) B mljx 11=—[1 f(‘l * P)f q »p)

Since f(m/q — l/p) = —f(l/p — m/q) we see that

(_1)«1:—1)/2)«:;—1)/2)(@) = (E)
p q
(P_)(ﬂ) = (= )=/ 1/2),
q/\p

The proof is complete. O

and therefore that

We conclude this chapter by giving an equivalent formulation of the law
of quadratic reciprocity.

Proposition 5.3.3. Let p and q be distinct odd primes and a > 1 an integer.
Then the following assertions are equivalent:

(@ (plaXa/p) = (1)@~ Dr2xa—1r2,

(b) If p = tq (4a), p f a, then (a/p) = (a/q).
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PROOF. In order to show (a) implies (b) it is enough, by multiplicativity, to
show that (b) holds when a is prime. For a = 2 the result follows from Propo-
sition 5.1.3. If a is an odd prime then by (a) (a/p) = (—1){¢~ V2= 12y /)
If p = q (4a) then (p/a) = (q/a) so that

(E) = (= 1)~ V2@~ 1)&)(?) = (= 1)(P= /2@~ 12y _ 1)@= 1/2)(@~ 1)/2)<f)
p

a qd
= (=1)t 1)/2)«p+q—2)/2)<3)_
4q
But p = ¢ (4a) implies p + g — 2 = 0 (4) and the result follows. If, on the
other hand p = —q (4a), a similar calculation shows

(f) = (=1)e" 1)/2)«p+q)/2)(f)_
p q

Since p + g = 0 (4) the result also holds in this case.
To show that (b) implies (a) suppose first of all that p > g and p = q (4).
The p = q + 4a,a > 1. Thus

(-3 ( ()Z) ~6)=()-057)-)

If p = 1(4) then (p/q) = (q/p) which gives (a). If p = 3 (4) then g = 3 (4)
and we obtain (p/q) = —(q/p) which is part (a) in that case. Finally if p =
—q (4) then, p + q = 4a and

)= )= )= 6)- () (%) - 6)

Thus (p/q) = (g/p) which is the assertion of part (a) since in this case at least
one of p or g must be congruent to 1 modulo 4. The proof is complete. [

Note that by part (b) of the above proposition we see that if (r, 4a) = 1
the quadratic character of a is the same for all primes in the arithmetic
progression r + 4at, t € Z. In Chapter 16 we will see that infinitely many
such primes exist. Note also that the quadratic character of a prime of the
form r + 4at is the same as that for a prime of the form —r + 4at. It was in
this form that Euler first discovered this most remarkable law.

NOTES

Kronecker has pointed out that the law of quadratic reciprocity follows
immediately from a conjecture of Euler contained in the paper “Theoremata
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circa divisores numerorum in hac forma pa® + gb? contentorum” (1744—
1746). It also appears explicitly in a later paper of Euler entitled “Observa-
tiones circa divisionem quadratorum per numeros primos.” Using sufficient
conditions for the solvability of the equation ax? + by> + cz* = 0 (see
Proposition 17.3.2). Legendre (1785) was able to prove the result in special
cases. For example, the consideration of x> + py? = gz where p = 1 (4)
and q = 3 (4) leads to the conclusion that if g is a square modulo p then p
is a square modulo g. The first complete proof of the theorem is due to Gauss
who recorded the date of the proof in his diary on April 8, 1796. During his
lifetime Gauss published six proofs of this remarkable law. The proof we
have given in this chapter is taken from FEisenstein’s paper “Applications de
I’Algebre a ’Arithmetique transcendante.” Kummer in an historical study
of the laws of reciprocity, refers to this proof as one of the most beautiful of
all the proofs (“. .. einen der schonsten Beweise dieses von den ausgezeich-
netsten Mathematikern viel bewiesenen Theorems ...”). Replacing the
trigonometric function by certain elliptic functions FEisenstein was able,
without much more difficulty, to prove the laws of cubic and biquadratic
reciprocity as well.

Throughout the nineteenth century various mathematicians including
Cauchy, Eisenstein, Dirichlet, Dedekind, and Kronecker gave new proofs
to the law of quadratic reciprocity. By 1921 there were, according to P.
Bachman, 56 known proofs. Even in recent times new proofs continue to
appear. See, for example, the papers by M. Gerstenhaber [128] and R. Swan
[75]. On the other hand, the first proof of Gauss has been reconsidered
recently by E. Brown [99].

The Jacobi symbol is one generalization of the Legendre symbol. For an
interesting generalization in another direction, see the paper of P. Cartier
[14].

Quadratic reciprocity can be formulated in rings other than Z. Dirichlet
proved such a theorem for the ring of Gaussian integers Z[i]. D. Hilbert was
able to prove that quadratic reciprocity held for any algebraic number field,
aresult that was an important stepping stone to class field theory. In another
direction it can be shown that reciprocity holds for the ring k[ x], where k is a
finite field. See Artin [2] and Carlitz [ 10]. This result had already been stated
(though not proved) by Dedekind in 1857.

The generalization of Theorem 3 to higher powers was discovered first by
E. Trost in 1934.* Later it was stated as a conjecture by S. Chowla and sub-
sequently proven by N. C. Ankeny and C. A. Rogers.t They proved that if
x" = a (p) has a solution for all but a finite number of primes p, then either
a = b"or n|8 and a = 2"/8b". When n is square-free and (a, n) = 1, the result
can be shown to follow from the Eisenstein reciprocity law as was done by
J. Kraft and M. Rosen [211]. Their proof will be given in Chapter 14. See

* Zur Theorie der Potenzreste. Nieuw Arch. Wiskunde, 18, (1934), 15-61.
1 A conjecture of Chowla. Ann. Math., 53, No. 3 (1951), 541-550.
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also H. Flanders [134] where the result is generalized to the case of algebraic
number fields and algebraic function fields of one variable over a finite field.

EXERCISES

1.
2.
3.

11.

12.

13.
14.

1S.

16.

17.

Use Gauss’ lemma to determine (3), (%), (%), and (—1/p).
Show that the number of solutions to x? = a (p) is given by 1 + (a/p).

Suppose that p ¥ a. Show that the number of solutions to ax? + bx + ¢ = 0 (p) is
given by 1 + ((b* — 4ac)/p).

. Prove that Y?Z! (a/p) = O
. Prove that Y 224 ((ax + b)/p) = 0 provided that p ¥ a.

. Show that the number of solutions to x? — y* = a (p) is given by

p—1
Y L+ + a)p).
y=0

. By calculating directly show that the number of solutions to x> — y* = a (p) is

p—1if pya and 2p — 1 if pla. (Hint: Use the change of variables u = x + y,
v=x—y.)

. Combining the results of Exercises 6 and 7 show that

"i' (yz + a) B {—1, ifpta,
y=o \ P p—1, ifpla

. Prove that 12325%..-(p — 2)® = (— 1)»* 12 (p) by using Wilson’s theorem.
10.

Let ry, 7y, ..., Fp—1y2 be the quadratic residues between 1 and p. Show that their
product is congruent to 1 (p) if p = 3 (4) and congruent to —1 (p) if p = 1 (4).

Suppose that p = 3 (4) and that g = 2p + 1 is also prime. Prove that 2° — 1 is not
prime. (Hint: Use the quadratic character of 2 to show that ¢|2? — 1.) One must
assume that p > 3.

Let f(x) € Z[x]. We say that a prime p divides f(x) if there is an integer n such that
p| f(n). Describe the prime divisors of x> + 1 and x? — 2.

Show that any prime divisor of x* — x? + 1 is congruent to 1 modulo 12.

Use the fact that U(Z/pZ) is cyclic to give a direct proof that (—3/p) = 1 when
p = 1(3). [Hint: There is a p in U(Z/pZ) of order 3. Show that (2p + 1)> = —3.]

If p = 1 (5), show directly that (5/p) = 1 by the method of Exercise 14. [Hint: Let p
be an element of U(Z/pZ) or order 5. Show that (p + p*)? + (p + p*) — 1 =0,
etc.]

Using quadratic reciprocity find the primes for which 7 is a quadratic residue. Do the
same for 15.

Supply the details to the proof of Proposition 5.2.1 and to the corollary to the lemma
following it.



64

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

5 Quadratic Reciprocity

Let D be a square-free integer that is also odd and positive. Show that there is an
integer b prime to D such that (b/D) = —1.

Let D be as in Exercise 18. Show that Z (a/D) = 0, where the sum is over a reduced
residue system modulo D (see Exercise 6 of Chapter 3). Conclude that exactly one
half of the elements in U(Z/DZ) satisfy (a/D) = 1.

(continuation) Let a,,a,, ..., ayp,, be integers between 1 and D such that
(a;, D) = 1and (a;/D) = 1. Prove that D is a quadratic residue modulo a prime p ¥ D,
p = 1(4)iff p = q, (D) for some i.

Apply the method of Exercises 19 and 20 to find those primes for which 21 is a
quadratic residue. [Answer: Those p = 1, 4, 5, 16, 17, and 20 (21).]

Use the Jacobi symbol to determine (113/997), (215/761), (514/1093), and (401/757).

Suppose that p = 1 (4). Show that there exist integers s and ¢ such that pt = 1 + 5%
Conclude that p is not a prime in Z[i]. Remember that Z[i] has unique factorization.

If p = 1 (4), show that p is the sum of two squares; i.e., p = a* + b? with a, be Z.
(Hint: p = off with « and f being nonunits in Z[i]. Take the absolute value of both
sides and square the result.) This important result was discovered by Fermat.

An integer is called a biquadratic residue modulo p if it is congruent to a fourth
power. Using the identity x* + 4 = ((x + 1) + 1)((x — 1)* + 1)show that —4isa
biquadratic residue modulo p iff p = 1 (4).

This exercise and Exercises 27 and 28 give Dirichlet’s beautiful proof that 2 is a
biquadratic residue modulo p iff p can be written in the form 42 + 64B2, where
A, BeZ.Suppose that p = 1 (4). Then p = a? + b? by Exercise 24. Take a to be odd.
Prove the following statements:

(a) (a/p) = 1.

(b) ((a + b)/p) = (= 1)@~ 18,

©) (a + b)*> = 2ab (p).

(d) (@ + b~V = 2ab)?~ 1" (p).

[Hint:2p = (a + b)® + (a — b)*]

Suppose that f is such that b = af (p). Show that f2 = —1 (p) and that 27~ V/* =
12 (p).

Show that x* = 2 (p) has a solution for p = 1 (4) iff p is of the form A + 64B2.

Let (RR) be the number of pairs (n, n + 1)intheset1,2,3,..., p — 1 suchthatnand
n + 1 are both quadratic residues modulo p. Let (NR) be the number of pairs
(n,n + l)intheset1,2,3,..., p — 1 suchthat nisa quadratic nonresidue and n + 1
is a quadratic residue. Similarly, define (RN) and (NN). Determine the sums
(RR) + (RN), (NR) + (NN), (RR) + (NR), and (RN) + (NN).

Show that (RR) + (NN) — (RN) — (NR) = Y2 !(n(n + 1))/p. Evaluate this sum
and show that it is equal to — 1. (Hint: The result of Exercise 8 is useful.)

Use the results of Exercises 29 and 30 to show that (RR) = Xp — 4 — ¢), where
£ = (_ 1)(p- /2,

If p is an odd prime show that (2/p) = []%27"2 2 cos(2mj/p). Use this result to give
another proof to Proposition 5.1.3.
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33.
34.
35.

36.

37.
38.

Use Proposition 5.3.2 to derive the quadratic character of — 1.
If p is an odd prime distinct from 3 show that (3/p) = [[%"? (3 — 4sin?(2xj/p)).

Use the preceding exercise to show that 3 is a square modulo p iff p is congruent to 1
or —1 modulo 12.

Show that part (c) of Proposition 5.2.2 is true if a is negative and b is positive (both
still odd).

Show that if a is negative then p = ¢ (4a), p } a implies (a/p) = (a/q).

Let p be an odd prime. Derive the quadratic character of 2 modulo p by verifying the
following steps, involving the Jacobi symbol:

)05 -6 - 6=0) - 65)

Generalize the argument to show that

(-G oo




Chapter 6

Quadratic Gauss Sums

The method by which we proved the quadratic reciprocity
in Chapter 5 is ingenious but is not easy to use in more
general situations. We shall give a new proof in this chapter
that is based on methods that can be used to prove higher
reciprocity laws. In particular, we shall introduce the
notion of a Gauss sum, which will play an important role
in the latter part of this book.

Section 1 introduces algebraic numbers and algebraic
integers. The proofs are somewhat technical. The reader
may wish to simply skim this section on a first reading.

§1 Algebraic Numbers and Algebraic Integers

Definition. An algebraic number is a complex number « that is a root of a
polynomial aox" + a;x" ! + a,x""2 + --- +a, = 0, where a,, a, a, - . .,
a,€Q,and ay # 0.

An algebraic integer w is a complex number that is a root of a polynomial
X"+ bx""'4+... +b,=0,whereb,,b,,...,b,eZ.

Clearly every algebraic integer is an algebraic number. The converse is
false, as we shall see.

Proposition 6.1.1. A rational number r € Q is an algebraic integer iff r € Z.

PROOF. If r € Z, then ris aroot of x — r = 0. Thus r is an algebraic integer.

Suppose that r e Q and that r is an algebraic integer; i.e., r satisfies an
equation x" + b;x" ! +--- 4+ b, = 0 with by, ..., b,eZ. r = c/d, where
¢, d € Z and we may assume that ¢ and d are relatively prime. Substituting c/d
into the equation and multiplying both sides by 4" yields

" +byc"d+---+b,d"=0.
It follows that d divides ¢" and, since (d, c) = 1, that d|c. Again, since

(d,c) = 1litfollows thatd = +1,andsor = c¢/disin Z.
It follows, for example, that % is not an algebraic integer. O

The main results of this section are that the set of algebraic numbers forms
a field and that the set of algebraic integers forms a ring. We need some
preliminary work.

66
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Definition. A subset ¥V = C of the complex numbers is called a Q module if

(@) y,, y, €V implies that y; + y, e V.

(b) ye V and r € Q implies that rye V.

(c) There exist elements 7y, y,, ..., y;€ V such that every y € V has the form
Yoy withr,e Q.

More briefly, V < C is a Q module if it is a finite dimensional vector
space over Q.

If 4, y2, ..., 21 €C, the set of all expressions Y i_; r;y;, ry, Iz, ..., 1 €Q
is easily seen to be a @ module. We denote this @ module by [y, 75, .-, V)

Proposition 6.1.2. Let V = [y,, 7,, .-, 7], and suppose that o € C has the
property that ay € V for all y e V. Then o is an algebraic number.

PROOF. ay; e V for i =1, 2, ..., I. Thus ay; = }'}_, a;;y;, where a;;€Q. It
follows that 0 = )"_, (a;; — d;;a)y;, where 6,; =0 if i #j and 6; =1 if
i = j. By standard linear algebra we have that det(a;; — J;;0) = 0. Writing
out the determinant we see that « satisfies a polynomial of degree [ with
rational coefficients. Thus « is an algebraic number. O

Proposition 6.1.3. The set of algebraic numbers forms a field.

PROOF. Suppose that «; and a, are algebraic numbers. We shall show that
oo, and a; + a, are algebraic numbers.

Suppose that o} +roi ' +r,0i72+---+r,=0 and that of +
51037 + 5,082 + ... + 5, = 0, where r;, s;€Q. Let V be the Q@ module
obtained by forming all Q linear combinations of the elements o’ o, where
0<i<nand0<j<mForyeV wehave a,ye V and a,y € V (prove it).
Thus we also have (a; + a,)ye V and (x,a,)y € V. By Proposition 6.1.2 it
follows that both «, + «, and «,a, are algebraic numbers.

Finally, if « is an algebraic number, not zero, we must show that a™ ' is
an algebraic number. Suppose that a,a" + a;0"" ! + --- + a, = 0, where
the a;€ Q. Then a,a™" + a,_ 0~ "~V + ... + a4 = 0. The result follows.

O

1

To prove that the set of algebraic integers form a ring it is necessary only to
alter the above proofs slightly.

Definition. A subset W < C is called a Z module if

(@) 71, 7, € W implies that y, + y, e W.
(b) Thereexist elements y,,y,,...,7, € W such that every y € W is of the form
Yoy by, with b e Z

Proposition 6.1.4. Let W be a Z module and suppose that o € C is such that
wye W for all ye W. Then w is an algebraic integer.
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Proor.The proof proceeds exactly as in Proposition 6.1.2, except that now
the a;;€ Z. The equation det(a;; — J;;w0) = 0 when written out shows that
w satisfies a monic equation of degree [ with integer coefficients. Thus w is an
algebraic integer. O

Proposition 6.1.5. The set of algebraic integers forms a ring.

Proor. The proof follows from Proposition 6.1.4 in exactly the same way in
which Proposition 6.1.3 follows from Proposition 6.1.2. We leave the details
to the reader. O

Let Q denote the ring of algebraic integers. If w,, w,, y € Q, we say that
w; = 0, (y) (w, is congruent to w, modulo y) if w; — w, = ya with x € Q.
This notion of congruence satisfies all the formal properties of congruence
in Z.

Ifa,b,ce Z,c # 0,thena = b (c)is ambiguous since it denotes congruence
in Z and in Q. The ambiguity is only apparent, however. If a — b = ca with
o € Q, then a is both a rational number and an algebraic integer. Thus o is an
ordinary integer by Proposition 6.1.1.

The following proposition will be useful.

Proposition 6.1.6. If w,, w, € Q and p € Z is a prime, then
(01 + ) = 0} + @§ (p).

PROOF. (w; + ®,)" = Y F_o (Dofws ™ By Lemma 2, Chapter 4, we have
pl(®) for 1 < k < p — 1. The result follows from this and the fact that Q
is a ring. O

A root of unity is a solution to an equation of the form x" — 1 = 0. Thus
roots of unity are algebraic integers, and so are Z linear combinations of roots
of unity.

We conclude this section by presenting several important properties of
algebraic numbers. If « is an algebraic number then clearly any nonzero
polynomial f(x) in Q[x] of smallest degree for which f(x) = 0 must be
irreducible.

Proposition 6.1.7. If a is an algebraic number then o is the root of a unique
monic irreducible f(x) in Q[x]. Furthermore if g(x) e Q[x], g(a) = O then

f(®)19(x).

PROOF. Let f(x) be any monic irreducible with f(x) = 0. We prove the
second assertion first. If f(x) \ g(x) then (f(x), g(x)) = 1. By Lemma 4,
Section 2, Chapter 1 we may write f(x)h(x) + g(x)t(x) = 1 for polynomials
h(x), t(x) € Q[x]. Putting x = « gives a contradiction. Uniqueness now fol-
lows immediately. O
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The polynomial defined in Proposition 6.1.7 depends therefore only
upon a. It is called the minimal polynomial of o. If the degree of the minimal
polynomial is n, then « is called an algebraic number of degree n. If f(x) is
irreducible of degree n, then, using the fundamental theorem of algebra and
Exercise 16 we see that f(x) is the minimal polynomial for each of its n roots.
If a, f are roots of f(x) then « and B are said to be conjugate.

The set of complex numbers g(a)/h(a) where g(x), h(x) e Q[x], h(a) # 0
forms a field denoted by Q(a). Denote by Q[«] the ring of polynomials in «
with rational coefficients. Then one has the following important result.

Proposition 6.1.8. If o € Q then Q(a) = Q[o].

PrOOF. Clearly Q[a] < Q(a). If h(a) € Q[a], h(a) # 0, then by Proposition
6.1.7, f(x) % h(x), where f(x) is the minimal polynomial of a«. Thus (f(x),
h(x)) = 1 so that by Lemma 4, Section 2, Chapter 1, s(x) f(x) + t(x)h(x) = 1
for elements s(x), t(x) € Q[x]. Put x = « so that t(a)h(ax) = 1. Thus h(a) ' €
Q[«]. If pe Q(«) then B = g(a)h(ax)~* for g(x), h(x) e Q[x] and the above
shows that f e Q[a]. O

Corollary. If a is an algebraic number of degree n then [Q(e) : Q] = n.

ProoF. By the proposition it is enough to show [Q[a]:Q] = n. Since
f(a) = 0 it is easily seen that 1, ..., «"~ ! span Q[«]. If on the other hand
ag+ a0+ - +a,_0" =0, g;eQ, then g(a) =0 for g(x) =a, +
a;x + -++ + a,_,x"~ . Then, by Proposition 6.1.7, f (x)| g(x). But deg(g(x)) <
deg(f(x)) which implies that ay, = a; = a, = --- = a,-, = 0. Therefore
1,a,...,a" ! are linearly independent over Q. O

§2 The Quadratic Character of 2

Let { = ¢*"/® Then { is a primitive eighth root of unity. Thus 0 = (® — 1 =
(C* — 1)(C* + 1). Since ¢* # 1 we have {* = — 1. Multiplying by {~? and
then adding {2 to both sides yields (> + {~2 = 0. This equation is also
easily derived from the observation that {* = ¢™? = i.

The quadratic character of 2 will now be derived from the relation

C+?=0+2+%=2
Let t = { + {~! and notice that { and t are algebraic integers. We may
thus work with congruences in the ring of algebraic integers.
Let p be an odd prime in Z and notice that
7= ()T = 20702 = (2)p) ().

It follows that t? = (2/p)t (p). By Proposition 6.1.6, t* = ({ + (7')P =
&+ 77D
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Remembering that (® = 1 we have (P + (P =(+ ("' forp= +1(8)
and (P + {77 = (3 + {73 for p = +3 (8). The result in the latter case may
be simplified by observing that {* = —1 implies that (> = —{~!. Thus
P+ P=—(+ ¢ Yifp = +3(8). Summarizing,

o ifp= 1)
&+ p—{—‘c, ifp= +3(8).

Substituting this result into the relation t? = (2/p)t (p) yields

(—1)r = (g)r (p), wheree = Pl 2).
p 8

Multiply both sides of the congruence by 7. Then

(—1y2 = (3)2 ®)
14

2
(=1y= (1—)) (p)-

This last congruence implies that (2/p) = (—1)°, which is the desired
result.

Euler (1707-1783), in an early paper, proved that 2 is a quadratic residue
modulo primes p = 1 (8). His method contains the key idea of the above
proof.

Euler assumed that U(Z/pZ) is a cyclic group. Gauss was the first to give a
rigorous proof of this fact (see Theorem 1, Chapter 4). Let A be a generator of
U(Z/pZ) and set y = A?~ V8 Then y has order 8, so that y* = —T1 and y* +
9”2 = 0. Therefore, (y + y™*)*> = y> + 2 + y~2 = 2. This shows that 2is a
square in U(Z/pZ), which is equivalent to 2 being a quadratic residue
modulo p.

If p # 1 (8), this proof cannot get started. However, the theory of finite
fields enables us to carry through to a complete proof of quadratic reciprocity
using Euler’s idea. We shall develop the theory of finite fields in Chapter 7.

implying that

§3 Quadratic Gauss Sums

Given the relation ({ + {~')? = 2 of Section 2, one might ask if there is a
similar relation when 2 is replaced by an odd prime p. The answer is yes, and,
moreover, the full law of quadratic reciprocity follows from this new relation
by using the method of Section 2.

Throughout this section { will denote e2™/?, a primitive pth root of unity.
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Lemma 1. Y724 {* is equal to p if a = 0 (p). Otherwise it is zero.

PROOF. If a = 0 (p), then {* =1, and so Y=g (* = p. If a # 0 (p), then
(" land YP2g (" = (" — D/ — 1) = 0. =

Corollary. p~! Y72 {79 = §(x, y), where &(x, y) =1 if x =y (p) and
o(x,y) = 0ifx # y (p).

PROOF. The proof is immediate from Lemma 1. O

All summations for the remainder of this section will be over the range zero
to p — 1. It will simplify notation to avoid writing out this fact each time.

Lemma 2. Y, (t/p) = 0, where (t/p) is the Legendre symbol.

PROOF. By definition (0/p) = 0. Of the remaining p — 1 terms in the sum-
mation, half are +1 and half are —1, since by Corollary 1 to Proposition
5.1.2, there are as many quadratic residues as quadratic nonresidues mod p.

O

We are now in a position to introduce the notion of Gauss sum.
Definition. g, = Y, (¢/p)(* is called a quadratic Gauss sum.

Proposition 6.3.1. g, = (a/p)g,.

ProoOF. If a = 0 (p), then {* = 1 for all t,and g, = Y (t/p) = 0 by Lemma 2.
This gives the result in the case that a = 0 (p).
Now suppose that a # 0 (p). Then

(=5 ()= () -s

We have used the fact that at runs over a complete residue system mod p
when t does and that (x/p) and {* depend only on the residue class of x
modulo p.

Since (a/p)> = 1 when a # 0 (p) our result follows by multiplying the
equation (a/p)g, = ¢, on both sides by (a/p). (]

From now on we shall denote g, by g. It follows from Proposition 6.3.1
that g2 = g2 if a # 0 (p). We shall now deduce this common value.

Proposition 6.3.2. g> = (—1)*~V/2p,

Proor. The idea of the proof is to evaluate the sum Y, g,g_, in two ways.
If a # 0 (p), then g,g_, = (a/p)(—a/p)g* = (—1/p)g*. If follows that

Y Gaf-a = (71)(1) - g
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Now, notice that

9ad-0 = g; (%)(g)cm‘”.

Summing both sides over a and using the corollary to Lemma 1 yields

Y9d-a=2 (%)(%)5(& »p=(p— Dp.

Putting these results together we obtain (—1/p)(p — 1)g*> = (p — 1)p. There-
fore, g* = (—1/p)p.

Let p* = (= 1)~ Y2p The equation g*> = p* is the desired analog of the
equation 1> = 2. Let q # p be another odd prime. We proceed to prove the

law of quadratic reciprocity by working with congruences mod g in the ring
of algebraic integers:

_ _ - p*
gq 1 _ (g2)(q 12 p*(q n/2 — (;> (q)

Thus

Using Proposition 6.1.6 we see that

g' = <Z (g)@)g =) (2)44’"' = g, (9).

It follows that g? = g, = (9/p)g (q) and so

(e

Multiply both sides by g, and use g*> = p*:

9\« _ (P «
(p)p —(q)p (@),

which implies that

and finally



§4 The Sign of the Quadratic Gauss Sum 73

To see that this result is what we want simply notice that

12
(i) _ (:_1)(,, v (B) _ (_1)«q—1>/2)«p—1)/2)(3).
q q q q

The notion of quadratic Gauss sum that we have used can be considerably
generalized. We shall present some of these generalizations after developing
the theory of finite fields. Cubic Gauss sums will be used to prove the law
of cubic reciprocity, and quartic Gauss sums will be used to prove biquad-
ratic reciprocity.

§4 The Sign of the Quadratic Gauss Sum”

According to Proposition 6.3.2, the quadratic Gauss sum has value i\/E if
p =1(4)and ii\/ﬁ if p = 3 (4). Thus the value of g(x) is determined up to
sign. The determination of the sign is a much more difficult problem. The
conjecture that the plus sign holds in each case was made by Gauss and re-
corded in his diary in May 1801. It was not until four years later that he found
a proof. On August 30, 1805 Gauss recorded in his diary that a proof the
“very elegant theorem mentioned in 1801” had finally been achieved. He
wrote to his friend W. Olbers on September 3, 1805 that seldom had a week
passed for four years that he had not tried in vain to prove his conjecture.
Finally according to Gauss “Wie der Blitz einschlégt, hat sich das Réthsel
gelost ...~ (as lightning strikes was the puzzle solved).

Subsequently proofs were found by Dirichlet, Cauchy, Kronecker,
Mertens, Schur, and others. In this section we present one of Kronecker’s
proofs.

As in the previous section { = ¢*™/?. Then 1, {, ..., {?~! are the roots of
xP — 1.

Proposition 6.4.1. The polynomial 1 + x + --- + x*~! is irreducible in
Q[x].

PROOF. By Exercise 4 at the end of this chapter (“ Gauss’ lemma ™) it is enough
to show that 1 + x + --- 4+ x?~! has no nontrivial factorization in Z[x].
Suppose, on the contrary, that 1 + x + x% + --- + x?~! = f(x)g(x) where
f(x), g(x) € Z[x] and each has degree greater than one. Putting x = 1 gives
p = f(1)g(1). Therefore we may assume g(1) = 1. Using a bar to denote
reduction modulo p we conclude that g(I) # 0. On the other hand since
pl(®,j=1,...,p — 1, we have x* — 1 = (x — 1)” (p) and division of both
sides by x — 1 shows that 14+ x+---+x?"'=(x—1"'(p). By
Theorem 2, Chapter 1 and Proposition 3.3.2 it follows that g(x) = (x — 1)* (p)
for some positive integer s. However, this contradicts the fact that g(1) # (0),
and the proof is complete.

* In this section the Gauss sum g will be denoted by g(x) with x(t) = (t/p) by definition.
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Combining the above proposition with Proposition 6.1.7 we see that if
g(0) = 0 for g(x)e Q[x] then 1 + x + --- + x?~!|g(x). This observation
will be useful later.

Proposition 6.4.2. [[7,V/2 (%=1 — (T@ D)2 = (—1)®~ /2p,

PROOF. One has x? — 1 = (x — 1) [[?Z} (x — ¢). Divide by x — 1 and put
x = 1toobtain p = [], (1 — "), where the product is over any complete set
of representative of the nonzero cosets modulo p. The integers +(4k — 2),
k=1,2,...,(p — 1)/2 are easily seen to be such a system of residues. Thus

p=[10 =¥ [T -4
— l—[ (C_(Zk_l) _ CZk_ 1) 1—[ (CZk_l _ C—(Zk—l))
= (_1)(p—1)/2 H (CZk—l _ C—(Zk— 1))2,

all the products being over k = 1,2,...,(p — 1)/2. O

Proposition 6.4.3.

-z o Jp ifp=1(),
2-1 _ p-(2k-1)y _
kl;ll « ‘ ) { p, ifp=3(4).

PRrOOF. By Proposition 6.4.2 we have only to compute the sign of the product.
The product is

o= 12 I_xl)/zz (4k — 2)1:.

k=

But sin((4k — 2)/p)r < 0 if (p + 2)/4 < k < (p — 1)/2. It follows that the
product has (p — 1)/2 — [(p + 2)/4] negative terms and this is easily seen
tobe(p — 1)/4 or (p — 3)/4 according as p = 1 (4) or p = 3 (4), respectively.
The result follows immediately. O

By Proposition 6.3.2 and Proposition 6.4.2 we know that
(r=1)/2

9() = ¢ klj[I (@ = e, M

where ¢ = + 1. The evaluation of the Gauss sum is completed by Proposition
6.4.3 if we can show that ¢ = +1. The following argument of Kronecker
shows that this is the case. See also Exercise 22.

Proposition 6.4.4. ¢ = +1.

PrOOF. Consider the polynomial

(p—1)/2

f&) = ZJ((I)JC’—8 H (27— xPGRTD), @



Notes 75

Then f({) = 0 by (1) and (1) = 0 by Lemma 2. By the comment preceding
Proposition 6.4.2 and the fact that 1 + x + --- + x*~ ! and x — 1 are rela-
tively prime we conclude that x? — 1] f(x). Write f(x) = (x? — 1)h(x) and
replace x by e to obtain

p—1 . (p—1)/2
2ae —e [T (P07 — =) = (P — (). (3)
=1 k=1
The coefficient of zP~ 172 on the left-hand side of (3) is easily seen to be
5_!:—11 X(j)j(p—l)/Z (p—1)/2

G- ¢l Gk-r-2

On the other hand by Exercise 21 the coefficient of zP~ 172 on the right-hand
side of (3) is pA/B where p t B, A and B being integers. Equating coefficients,
multiplying by B((p — 1)/2)! and reducing modulo p shows that

— 1\ ®-v2
s(” . )! k]:[l 4k — 2) (p)

p—1
Y 1)
j=1

(p—1)/2

€2-4-6---(p—1) [] @Ck—=1)

e(p— 1!
= —¢(p)
using Wilson’s theorem (corollary to Proposition 4.1.1).
By Proposition 5.1.2 j*~ 12 = 4(j) (p) so one has

p—1
A= —1)=—ep)
j=1

and therefore

e=1(p).
Since ¢ = + 1 we conclude finally that ¢ = 1. This concludes the proof. []

The result may be stated as

Theorem 1. The value of the quadratic Gauss sum g(y) is given by

Jp ifp=1(),

g(X)z{i b, ifp=3(4).

NOTES

In the famous eleventh supplement to L. Dirichlet’s Vorlesungen iiber Zahlen-
theorie [127] (1893) R. Dedekind introduced the concept of an algebraic
number (§164) as well as that of an algebraic integer (§173). However the use
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of certain algebraic integers such as Gauss sums to prove the law of quadratic
reciprocity occurs much earlier with Eisenstein, Jacobi, and others. Among
the various proofs of this theorem given by Gauss, the fourth (1811) and the
sixth (1818) are of central importance. The fourth proof is a corollary to
Gauss’ remarkable calculation of the value of the classical Gauss sum.
While, as we mentioned in Section 6 he proved this result in 1805, it was not
until 1811 that he published the proof in his famous paper “Summierung
gewisser Reihen von besonderer Art” [34]. In this paper he shows more
generally that if n is any positive integer then Y7} " has the value \/r—z
or iy/n according as n = 1 (4) or n = 3 (4). Here { = ¢2"/". The argument
is quite ingenious. The proof can be found in English in Nagell [60], pp.
174-180. It is not difficult to derive quadratic reciprocity from this result
(see, for example, Dirichlet [125], pp. 253-256).

The sixth and last of Gauss’ published proofs of the law of quadratic
reciprocity was published in 1818 under the title “Neue Beweise und Er-
weiterungen des Fundamentalsatzes in der Lehre von den Quadratischen
Resten” [34], pp. 496-510. He mentions in the introduction to this paper that
for years he had searched for a method that would generalize to the cubic and
biquadratic case and that finally his untiring efforts were crowned with success
(“... die unermudliche Arbeit wurde endlich von gliicklichem Erfolge
gekront.”). The purpose of publishing this sixth proof, he states, was to bring
to a close that part of the higher arithmetic dealing with quadratic residues
and to say, in a sense, farewell (... und so diesem Teile der hoheren Arith-
metik gewissermassen Lebewohl zu sagen.”) In this proof Gauss considers
the polynomial fi(x) = Y 7= x(t)x* and proves, without using roots of
unity, that 1 + x + --- + x?~! divides f,(x)?> — (= 1)?"V2?p as well as
(%) = (g/p) f1(x). Reciprocity follows by noting that f(x) = f,(x)? (q). The
proof we have given in Section 3 amounts to putting x = {, in the above and
working with congruences in the ring of algebraic integers. This observation
was made (at least) by Cauchy, Eisenstein, and Jacobi (in alphabetical order)
and represents the stepping stone to the study of the higher reciprocity laws
via Gauss sums.

The beginning student will do well to study several of the classical intro-
ductions to the theory of algebraic numbers. Aside from Dirichlet and
Dedekind mentioned above, we cite E. Landau [165] and E. Hecke [44]. In
recent times there have appeared many texts of varying levels of difficulty.
We mention here W. Adams and L. Goldstein [84], LeVeque [180], and
H. Pollard and H. Diamond [63]. Hecke’s book has just appeared in English
(Algebraic Number Theory, Springer-Verlag, 1981).

EXERCISES

1. Show that \/5 + \/3 is an algebraic integer.

2. Let a be an algebraic number. Show that there is an integer n such that na is an
algebraic integer.
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10.
11.
12.

13.

14.
15.

16.

17.
18.

. If « and B are algebraic integers, prove that any solution to x? 4+ ax + f = Ois an

algebraic integer. Generalize this result.

. A polynomial f(x) € Z[x] is said to be primitive if the greatest common divisor of its

coefficients is 1. Prove that the product of primitive polynomials is again primitive.
[Hint:Letf(x) = aox" + a;x" ' + -+ + g,andg(x) = byx™ + b,x" ' + ... 4+ b,
be primitive. If pis a prime, let a; and b; be the coefficients with the smallest subscripts
such that p f a;and p ¥ b;. Show that the coefficient of x'*/ in f(x)g(x) is not divisible
by p.] This is one of the many results known as Gauss’ lemma.

. Let a be an algebraic integer and f(x) € Q[ x] be the monic polynomial of least degree

such that f(x) = 0. Use Exercise 4 to show that f(x) e Z[x].

. Let x* + mx + ne Z[x] be irreducible and « be a root. Show that Q[«] =

{r + sa|r, se Q} is a ring (in fact, it is a field). Let m*> — 4n = DZD, where D is
square-free. Show that Q[a] = @[\/5].

. (continuation) If D = 2,3 (4), show that all the algebraic integers in @[\/B]

have the form a + b\/T), where a,be Z. If D = 1 (4), show that all the algebraic
integers in @[\/B] have the forma + b((—1 + \/5)/2), wherea, be Z. [Hint: Show

that r + s./D satisfies x2 — 2rx + (r* — Ds?) = 0. Thus by Exercise 5, r + s\/B is
an algebraic integer iff 2r and r?> — Ds? are in Z].

. Let w = >3, w satisfies x> — 1 = 0. Show that 2w + 1) = —3 and use this to

determine (—3/p) by the method of Section 2.

. Verify Proposition 6.3.2 explicitly for p = 3 and p = S; i.e., write out the Gauss sum

longhand and square.
Whatis Y221 g,?
By evaluating Y, (1 + (¢/p))(" in two ways prove thatg = ¥, ("’

Write y/,(t) = {*. Show that

(a) I/I—a(_t) = lpa(_l‘) = l//—a(t)'

(b) (l/p) Za wa(t - S) = 6(1’ S)'

Let f be a function from Z to the complex numbers. Suppose that p is a prime and that
f(n+p)= f(n) for all neZ. Let f(a)=p~* Y. f(OY_(t). Prove that f(r) =
Za £ (@, (t). This result is directly analogous to a result in the theory of Fourier
series.

In Exercise 13 take f to be the Legendre symbol and show that f(a) = p~'g_,.

Show that |)7_,, (¢/p)| < \/; log p. The inequality holds for the sum over any range.
This remarkable inequality is associated with the names of Polya and Vinogradov.
[Hint: Use the relation (t/p)g = g, and sum. The inequality sin x > (2/n)x for any
acute angle x will be useful.]

Let a be an algebraic number with minimal polynomial f(x). Show that f(x) does
not have repeated roots in C.

Show that the minimal polynomial for \3/5 is x3 — 2.

Show that there exist algebraic numbers of arbitrarily high degree.
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19.
20.

21.

22.

23.

6 Quadratic Gauss Sums

Find the conjugates of cos 27/5.

Let F be a subfield of C which is a finite dimensional vector space over Q of degree n.
Show that every element of F is algebraic of degree at most n. [Note: That an element
exists with degree exactly n is more difficult to prove (see Exercise 17, Chapter 12).]

Let f(x) =Y 2 oa,x"/n! and g(x) = Y 2, b,x"/n! be power series with a, and
b, integers. If p is a prime such that p|a; for i=0, ..., p — 1 show that each
coefficient ¢, of the product f(x)g(x) =) oc,x" for t =0, ..., p— 1 may be
written in the form p(A4/B), p\. B.

Show that the relation ¢ = 1 (p) in Proposition 6.4.4 can also be achieved by replac-
ing x by 1 + ¢ instead of ¢°.

If f(x) =x"+ax""'+---4+a, a;eZ and p is a prime such that pla;, i =
1,...,n,p*Ya, show that f(x) is irreducible over Q (Eisenstein’s irreducibility
criterion).



Chapter 7
Finite Fields

We have already met with examples of finite fields,
namely, the fields Z/pZ, where p is a prime number.
In this chapter we shall prove that there are many more
finite fields and shall investigate their properties. This
theory is beautiful and interesting in itself and, moreover,
is a very useful tool in number-theoretic investigations.
As an illustration of the latter point, we shall supply yet
another proof of the law of quadratic reciprocity. Other
applications will come later.

One more comment. Up to now the great majority
of our proofs have used very few results from abstract
algebra. Although nowhere in this book will we use very
sophisticated results from algebra, from now on we shall
assume that the reader has some familiarity with the
material in a standard undergraduate course in the subject.

§1 Basic Properties of Finite Fields

In this section we shall discuss properties of finite fields without worrying
about questions of existence. The construction of finite fields will be taken
up in Section 2.

Let F be a finite field with g elements. The multiplicative group F* of F
has g — 1elements. Thus every element « € F* satisfies the equation x4~ ! = 1
(in this context 1 stands for the multiplicative identity of F and not the integer
1), and every element in F satisfies x? = x.

Proposition 7.1.1.
x1—x=[](x— o).
aeF

PrOOF. Both polynomials are to be considered as elements of F[x].
Every element a € F is a root of x? — x. Since F has g elements and since
the degree of x? — x is g, the result follows. O

Corollary 1. Let F = K, where K is a field. An element a e K isin F iff a? = a.

PROOF. a? = o iff « is a root of x? — x. By Proposition 7.1.1, the roots of
x? — x are precisely the elements of F. O

79
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Corollary 2. Iff(x) divides x* — x, then f(x) has d distinct roots, where d is the
degree of f (x).

PRrOOF. Let f(x)g(x) = x? — x. g(x) has degree g — d. If f(x) has fewer than
d distinct roots, then by Lemma 1 of Chapter 4, f(x)g(x) would have fewer
than d + (q¢ — d) = q distinct roots, which is not the case. O

Theorem 1. The multiplicative group of a finite field is cyclic.

PrOOF. This theorem is a generalization of Theorem 1 in Chapter 4. The proof
is almost identical.

Ifd|q — 1, then x* — 1 divides x?~! — 1 and it follows from Corollary 2
that x* — 1 had d distinct roots. Thus the subgroup of F* consisting of ele-
ments satisfying x* = 1 has order d.

Let y/(d) be the number of elements in F* of order d. Then Z,l,, Y(c) =d.
By the Mdbius inversion formula

Wd) = Y 402 = ¢(a).
cld 4

In particular, y(qg — 1) = ¢(g — 1) > 1, unless we are in the trivial case
g = 2. This concludes the proof. O

The fact that F* is cyclic when F is finite allows us to give the following
partial generalization of Proposition 4.2.1.

Proposition 7.1.2. Let a € F*. Then x" = « has solutions iff «@~ V% = 1, where
d = (n, q — 1). If there are solutions, then there are exactly d solutions.

PROOF. Let y be a generator of F* and set « = y* and x = »*. Then x" = a is
equivalent to the congruence ny = a (¢ — 1). The result now follows by
applying Proposition 3.3.1. O

It is worthwhile to examine what happens in the extreme cases n|qg — 1
and (n,q — 1) = L.

If n|qg — 1, then there are exactly (g — 1)/n elements of F* that are nth
powers, and if a is an nth power, then x" = « has n solutions.

If (n, g — 1) = 1, then every element is an nth power in a unique way;
i.e, for a € F*, x" = o has one and only one solution.

We have investigated the structure of F*. Now we turn our attention to
the additive group of F.

Lemma 1. Let F be a finite field. The integer multiples of the identity form a
subfield of F isomorphic to Z/pZ for some prime number p.

PRrOOF. To avoid confusion, let us temporarily call e the identity of F* instead
of 1. Map Z to F by taking n to ne. This is easily seen to be a ring homo-
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morphism. The image is a finite subring of F, and so in particular it is an
integral domain. The kernel is a nonzero prime ideal. Therefore, the image is
isomorphic to Z/pZ for some prime p. O

We shall identify Z/pZ with its image in F and think of F as a finite
dimensional vector space over Z/pZ. Let n denote that dimension and let
Wy, W,,. .., 0, beabasis. Then every element w € F can be expressed uniquely
in the form a,0, + a,w, + - + a,w,, Where a; € Z/pZ. It follows that F
has p" elements. We have proved

Proposition 7.1.3. The number of elements in a finite field is a power of a prime.
If e is the identity of the finite field F, let p be the smallest integer such that
pe = 0. We have seen that p must be a prime number. It is called the charac-

teristic of F. For a € F we have pa = p(ea) = (pe)a = 0-a = 0. This observa-
tion leads to the following very useful proposition.

Proposition 7.1.4. If F has characteristic p, then (o + B)** = «* + B? for all
o, B € F and all positive integers d.

PRrROOF. The proof is by induction on d. For d = 1, we have
p—1 p
(x+ By =a"+ ) (k)a"“‘ﬁ“ + BP = a? + B~
k=1

All the intermediate terms vanish because p[(§)for 1 < k < p — 1 by Lemma

2 of Chapter 4.
To passfromdtod + 1 justraise bothsidesof (@ + B)** = «?* + BP to the
pth power. O

Suppose that F is a finite field of dimension n over Z/pZ. We want to find
out which fields E lie between Z/pZ and F. If d is the dimension of E over
Z/pZ, then it follows by general field theory that d|n. We shall give another
proof below. It turns out that there is one and only one intermediate field
corresponding to every divisor d of n.

Lemma 2. Let F be a field. Then x' — 1 divides x™ — 1 in F[x] iff | divides m.
PRrOOF. Let m = gl + r, where 0 < r < I. Then we have

x" -1 -1 x"—1

P R R L &

Since (x* — 1)/x' =D =0GH""1+ D2+ -+ x' + 1, the right-
hand side of the above equation is a polynomial iff (x" — 1)/(x' — 1) is a
polynomial. This is easily seen to be the case iff r = 0. The result follows.
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Lemma 3. If a is a positive integer, then a' — 1 divides a™ — 1 iff | divides m.

ProoF. The proof is analogous to that of Lemma 2 with the number a playing
the role of x. We leave the details to the reader. O

Proposition 7.1.5. Let F be a finite field of dimension n over Z/pZ. The subfields
of F are in one-to-one correspondence with the divisors of n.

PRrOOF. Suppose that E is a subfield of F and let d be its dimension over Z/pZ.
We shall show that d|n.

Since E* has p? — 1 elements all satisfying x?*~! — 1, we have that
xP‘~1 — 1 divides x»"~! — 1. By Lemma 2, p* — 1 divides p" — 1 and con-
sequently, by Lemma 3, d divides n.

Now suppose that d|n. Let E = {a € F|a?* = «}. We claim that E is a
field. For if a, € E, then

@) (a+ Py =o' + B = a + B.
(b) (1) = a?’B%" = ap.
©) (@ Y =(@) ' =a fora#0.

In step (a) we made use of Proposition 7.1.4.

Now E is the set of solutions to x? — x = 0. Since d|n, we have p? —
1|p" — 1and x?*~! — 1|x?"~! — 1 by Lemmas 2 and 3. Thus x?* — x divides
x?" — x, and by Corollary 2 to Proposition 7.1.1, it follows that E has p¢
elements and so has dimension d over Z/pZ.

Finally, if E’ is another subfield of F of dimension d over Z/pZ, then the
elements of E’ must satisfy x?* — x = 0; i.e., E' must coincide with E. (]

Let F, denote a finite field with g elements. To illustrate Proposition 7.1.5,
consider F,4¢ (We shall show in Section 2 the existence of such a field).
Since 4096 = 2'? we have the following lattice diagram:

F, 4096

v
\ Fie

/ .
S

7/27
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§2 The Existence of Finite Fields

In Section 1 we proved that the number of elements in a finite field has the
form p", where p is a prime. We shall now show that given a number p”" there
exists a finite field with p" elements. To do this we shall need some results
from the theory of fields that connect our problem with the existence of
irreducible polynomials. Then we shall prove a theorem going back to
Gauss (again!) that shows that Z/pZ[x] contains irreducible polynomials
of every degree.

Let k be an arbitrary field and f(x) be an irreducible polynomial in k[x].
We then have

Proposition 7.2.1. There exists a field K containing k and an element o, € K such
that f(a) = 0.

Proor. We proved in Chapter 1 that k[x] is a principal ideal domain. It
follows that (f(x)) is a maximal ideal and thus k[x]/(f(x)) is a field. Let
K’ = k[x]/(f(x)) and let ¢ be the homomorphism that maps k[x] onto K’
by taking an element to its coset modulo (f(x)). We have the diagram

k[x] —*—> K’

)

¢(k) is a subfield of K'. We claim that it is isomorphic to k. It is enough to
show that ¢ restricted to k is one to one. Let a € k. If ¢(a) = 0, then a e (f(x)).
If a # 0, it is a unit and cannot be an element of a proper ideal. Thus a = 0,
as was to be shown.

Since ¢ is an isomorphism of k we may identify k with ¢(k). When this is
done we relabel K’ as K.

Let a be the coset of x in K. Then 0 = ¢(f(x)) = f(d(x)) = f(a); ie., a
is a root of f(x) in K. O

We denote the field K constructed in the proposition by k(). The following
proposition about k(e) will be useful.

Proposition 7.2.2. The elements 1, a, o>, ..., a" ! are a vector space basis for
k() over k, where n is the degree of f (x).

The proof of this proposition is the same as that of Proposition 6.1.8 and
its corollary. One replaces Q by k and the complex number o of that proposi-
tion by the above a.

To turn the matter around, the proposition shows that if we want to find
a field extension K of k of degree n, then it is enough to produce an irreducible
polynomial f(x) € k[ x] of degree n.
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In Z/pZ[x] there are finitely many polynomials of a given degree. Let Fy(x)
be the product of the monic irreducible polynomials in Z/pZ[x] of degree d.

Theorem 2
xP" — x =[] Fx).
d|n
ProoF. First notice that if f(x) divides x?" — x, then f(x)? does not divide
x?" — x. This follows since if x*" — x = f(x)?g(x) we obtain

=1 =21(x)f'(x)g(x) + f(x)*g'(x)

by formal differentiation. This is impossible since it implies that f (x) divides 1.

It remains to prove that if f (x) is a monic irreducible polynomial of degree
d, then f(x)|x*" — x iff d|n.

Consider K = Z/pZ(«x), where « is a root of f(x), as in Proposition 7.2.2.
It has dimension d over Z/pZ and thus p* elements. The elements of K satisfy
x? —x=0.

Assume that x?" — x = f(x)g(x). Then o = o If b,o®™ ! 4+ b,a?™2 +
--- + b, is an arbitrary element of K, then

(b 4+ b)) =by(@) 4o+ by =bya? "t + - + b,

Hence the elements of K satisfy x?" — x = 0. It follows that x?* — x divides
x?" — x, and by Lemmas 2 and 3 of Section 1 d divides n.

Assume now that d|n. Since «”* = a and f(x) is the monic irreducible
polynomial for a, we have f(x)|x?* — x. Since d|n we have x?* — x|x”" — x
again by Lemmas 2 and 3 of Section 1. Thus f(x)|x”" — x. O

Let N, be the number of monic irreducible polynomials of degree d in
Z/pZ[x]. Equating the degrees on both sides of the identity in the theorem
yields

Corollary 1. p" = ), dN,,.

Corollary 2. N, = n~' Y, u(n/d)p’.
PRrROOF. Apply the Mébius inversion formula (Theorem 2 of Chapter 2) to the
equation in Corollary 1. O

Corollary 3. For each integer n > 1, there exists an irreducible polynomial of
degree n in Z/pZ[x].

PROOF. N, = n~}(p" — --- + pu(n)) by Corollary 2. The term in parentheses
cannot be zero since it is the sum of distinct powers of p with coefficients 1
and —1. O

Summarizing, we have

Theorem 3. Let n > 1 be an integer and p be a prime. Then there exists a finite
field with p" elements.
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§3 An Application to Quadratic Residues

In Chapter 6 we proved the law of quadratic reciprocity using Gauss sums
and the elements of the theory of algebraic numbers. We shall now give an
exceptionally short proof along the same lines using the theory of finite fields.

Let p and g be distinct odd primes. Since (p, g) = 1 there is an integer
n (for example, p — 1) such that ¢" = 1 (p). Let F be a finite field of dimension
n over Z/qZ. Then F* is cyclic of order q" — 1. Let y be a generator of F*
and set A = 9"~ V'?. Then A has order p. Define 7, = Y ?-¢ (t/p)A*, where
a€ Z. The element 7, of F is an analog of the quadratic Gauss sums intro-
duced in Chapter 6. Set T, = 7. Then the proofs of Propositions 6.3.1 and
6.3.2 can be used to show that

(1) 7, = (a/p).
@ © = (-1,

In relation 2, p is the coset of p in Z/qZ. Let p* = (—1)®~"2p, Then
relation 2 can be written as t2 = p*. This relation implies that (p*/q) = 1
iff te Z/qZ. By Corollary 1 to Proposition 7.1.1, this is true iff 12 = 7. Now,

(L) -G

By relation 1 we have t, = (q/p)t. Thus ©* = 7 iff (¢/p) = 1.

We have proved that
Y
(”—) =1 iff <€) - 1.
q p

This is the law of quadratic reciprocity.

A proof that (2/q) = (—1)9"~ V'8 can be given using the same technique.
In Chapter 6 we gave Euler’s proof that (2/q) = 1if g = 1 (8). If g # 1 (8), it
is nevertheless true that g> = 1 (8). In this case one can carry through the
proof working in a finite field F of dimension 2 over Z/qZ. We leave the details
to the reader.

NoTES

The first systematic account of the theory of finite fields is found in Dickson
[25], although E. Galois had axiomatically developed a number of their
properties much earlier in his note “Sur la théorie des nombres” [33]. As
the existence of a finite field with p" elements is equivalent to the existence of
an irreducible polynomial of degree n in the ring F[x] we must include Gauss
once again as a founder. In his paper “Die Lehre von den Reste” he derives
the formula we have given for the number of irreducibles of degree n (see

[34]).
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The use of finite fields to give a proof of quadratic reciprocity has been
observed by a number of mathematicians, e.g., Hausner [43] and Holzer
[45, pp. 76-78].

Our treatment of finite fields throughout this book is much more elemen-
tary than is usual in modern times. Most treatments first develop the full
Galois theory of fields and apply the general results of that theory to the
special case of finite fields. This is done in A. Albert’s compact book [1].
The advantage of Albert’s book for those readers already familiar with the
theory of fields is that he discusses finite fields extensively in his last chapter
and provides a very long bibliography on the subject. Many interesting
references are provided.

EXERCISES

1. Use the method of Theorem 1 to show that a finite subgroup of the multiplicative
group of a field is cyclic.

2. Let R and C be the real and complex numbers, respectively. Find the finite subgroups
of R* and C* and show directly that they are cyclic.

3. Let F be a field with g elements and suppose that g = 1 (n). Show that for a € F*
the equation x" = « has either no solutions or n solutions.

4. (continuation) Show that the set of a € F* such that x" = « is solvable is a sub-
group with (g — 1)/n elements.

5. (continuation) Let K be a field containing F such that [K : F] = n. For alla e F*
show that the equation x" = o has n solutions in K. [Hint: Show that ¢" — 1 is
divisible by n(q — 1) and use the fact that «?~! = 1.]

6. Let K o F be finite fields with [K : F] = 3. Show that ifa € F is not a square in F, it is
not a square in K.

7. Generalize Exericse 6 by showing that if a is not a square in F, it is not a square in
any extension of odd degree and is a square in every extension of even degree.

8. In a field with 2" elements what is the subgroup of squares?

9. If K o F are finite fields, |F| = g, a€ F, g = 1 (n), and x" = « is not solvable in F,
show that x" = « is not solvable in K if (n, [K : F]) = 1.

10. Let K o F be finite fields and [K : F] = 2. For € K show that 8 *?€ F and more-
over that every element in F is of the form g* " for some f € K.

11. With the situation being that of Exercise 10 suppose that a € F has orderq — 1. Show
that there is a B € K with order g> — 1 such that ' *7 = q.

12. Use Proposition 7.2.1 to show that given a field k and a polynomial f'(x) € k[x] there
is a field K o k such that [K: k] is finite and f(x) = (x —o;)(x — ap)---(x — a,)
in K[x].

13. Apply Exercise 12 to k = Z/pZ and f(x) = x*" — x to obtain another proof of
Theorem 2.



Exercises 87

14.

15.

16.
17.

18.

19.

20.

21

22.

23.

24.

Let F be a field with g elements and n a positive integer. Show that there exist
irreducible polynomials in F[x] of degree n.

Let x" — 1 € F[x], where F is a finite field with g elements. Suppose that (g, n) = 1.
Show that x" — 1 splits into linear factors in some extension field and that the least
degree of such a field is the smallest integer f such that ¢/ = 1 (n).

Calculate the monic irreducible polynomials of degree 4 in Z/2Z[x].

Let g and p be distinct odd primes. Show that the number of monic irreducibles of
degree q in Z/pZ[x] is ¢~ *(p* — p).

Let p be a prime with p = 3 (4). Show that the residue classes modulo pin Z[i]form a
field with p? elements.

Let F be a finite field with g elements. If f (x) € F[x] has degree t, put | f | = ¢'. Verify
theformalidentity Y ;| f|™* = (1 — ¢*~*)™'. The sum s over all monic polynomials.

With the notation of Exercise 19 let d(f) be the number of monic divisors of f and
a(f) = Zal s 191, where the sum is over the monic divisors of f. Verify the following
identities:

@ Y, dNIfI =0 —-¢"752

®) YyoNIfI7=0~¢g""H7'0 -¢g*)7"

Let F be a field with g = p" elements. For a € F set f(x) = (x — a)(x — af) x
(x — o) --- (x — a”"").Show that f (x) € Z/pZ[x].Inparticular,o + o + - -+ 4 a”" '
and aofo?” - - a”" "' are in Z/pZ.

(continuation) Set tr(a) = a + a® + --- + "~ ". Prove that
(a) tr(a) + tr(p) = tr(a + f).

(b) tr(ax) = a tr(a) for ae Z/pZ.

(c) There is an a € F such that tr(a) # 0.

(continuation) For a e F consider the polynomial x? — x — a € F[x]. Show that
this polynomial is either irreducible or the product of linear factors. Prove that the
latter alternative holds iff tr(a) = 0.

Suppose that f(x)eZ/pZ[x] has the property that f(x +y)= f(x)+
f()€Z/pZ[x, y]. Show that f(x) must be of the form aox + a,x” + a,x?* +
< a, X7



Chapter 8
Gauss and Jacobi Sums

In Chapter 6 we introduced the notion of a quadratic
Gauss sum. In this chapter a more general notion of
Gauss sum will be introduced. These sums have many
applications. They will be used in Chapter 9 as a tool
in the proofs of the laws of cubic and biquadratic reci-
procity. Here we shall consider the problem of counting
the number of solutions of equations with coefficients in a
finite field. In this connection, the notion of a Jacobi sum
arises in a natural way. Jacobi sums are interesting in their
own right, and we shall develop some of their properties.

To keep matters as simple as possible, we shall confine
our attention to the finite field Z|pZ = F, and come back
later to the question of associating Gauss sums with an
arbitrary finite field.

§1 Multiplicative Characters

A multiplicative character on F, is a map y from F} to the nonzero complex

numbers that satisfies

x(ab) = x(a)y(b) foralla,beF;.

The Legendre symbol, (a/p), is an example of such a character if it is

regarded as a function of the coset of @ modulo p.

Another example is the trivial multiplicative character defined by the

relation g(a) = 1 for all a € F}.

It is often useful to extend to domain of definition of a multiplicative
character to all of F,. If y # ¢, we do this by defining x(0) = 0. For ¢ we
define £(0) = 1. The usefulness of these definitions will soon become ap-

parent.

Proposition 8.1.1. Let y be a multiplicative character and a € F};. Then

(@ (1) =1L
(b) x(a) is a (p — 1)st root of unity.
©) xa™ ") = xa)™ ' = .

88
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[In part (a) the 1 on the left-hand side is the unit of F,, whereas the 1 on
the right-hand side is the complex number 1. The bar in part (c) is complex
conjugation.]

PROOF. %(1) = %(1- 1) = x(1)x(1). Thus %(1) = 1, since y(1) # O.

To prove part (b), notice that a?~! = 1 implies that 1 = y(1) = y(a?™!) =
x(ay? .

To prove part (c), notice that 1 = y(1) = y(a”'a) = y(a~ ")x(a). This
shows that y(a™') = y(a)~'. The fact that y(a)~! = y(a) follows from the
fact that y(a) is a complex number of absolute value 1 by part (b). O

Proposition 8.1.2. Let y be a multiplicative character. If x # ¢,then ), x(t) = 0,
where the sumis over allt € F,. If y = &, the value of the sum s p.

PRrOOF. The last assertion is obvious, so we may assume that y # ¢. In this
case there is an a € Fy such that y(a) # 1. Let T = ), x(t). Then

1T =Y yax@®) = Y xat) = T.

The last equality follows since at runs over all elements of F, as t does.
Since y(a)T = T and y(a) # 1 it follows that T = 0. O

The multiplicative characters form a group by means of the following
definitions. (We shall drop the use of the word multiplicative for the re-
mainder of this chapter.)

(1) If x and A are characters, then yA is the map that takes a € F} to y(a)A(a).
(2) If x is a character, y~ ! is the map that takes a € F¥ to y(a)™ .

We leave it to the reader to verify that y4 and y~! are characters and
that these definitions make the set of characters into a group. The identity
of this group is, of course, the trivial character «.

Proposition 8.1.3. The group of characters is a cyclic group of order p — 1.
Ifa€ Fy and a # 1, then there is a character y such that y(a) # 1.

ProOF. We know that F} is cyclic (see Theorem 1 of Chapter 4). Let g € Fj
be a generator. Then every a € F¥ is equal to a power of g. If a = ¢' and y
is a character, then y(a) = x(g)". This shows that y is completely determined
by the value x(g). Since x(g) is a (p — 1)st root of unity, and since there are
exactly p — 1 of these, it follows that the character group has order at most
p—1

Now define a function A by the equation A(g*) = e*™®®~1) ]t is easy
to check that A is well defined and is a character. We claim that p — 1 is the
smallest integer n such that A" = &. If A" = ¢, then A"(g) = &(g) = 1. However,
(g) = Mg)" = e*™™/®=1) Tt follows that p — 1 divides n. Since A~ (a) =
Ma)?~ ' = M@’ ') = (1) = 1 we have A»~! = &. We have established that
the characters ¢, 4, A%,..., AP~ 2 are all distinct. Since by the first part of the
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proof there are at most p — 1 characters, we now have that there are exactly
p — 1 characters and that the group is cyclic with A as a generator.

If ae F¥ and a # 1, then a = ¢’ with p — 1.f1. Let us compute A(a).
Aa) = Ag)' = e*™W®=1) £ 1 This concludes the proof. a

Corollary. If ae Fy and a # 1, then Z L x(a) = 0, where the summation is
over all characters.

PRrOOF. Let S = )", x(a). Since a # 1 there is, by the theorem, a character 1
such that A(a) # 1. Then

A@)S =}, Ma)(a) = ) Ax(a) = S.

The final equality holds since Ay runs over all characters as y does. It follows
that (A(@) — 1)S = 0 and thus § = 0. O

Characters are useful in the study of equations. To illustrate this, con-
sider the equation x" = a for a € F}. By Proposition 4.2.1 we know that
solutions exist iff =14 = 1, where d = (n, p — 1), and that if a solution
exists, then there are exactly d solutions. For simplicity, we shall assume that
n divides p — 1. In thiscased = (n,p — 1) = n.

We shall now derive a criterion for the solution of x" = a using characters.

Proposition 8.1.4. Ifa € F},n|p — 1,and x" = ais not solvable, then there is a
character y such that

@ 7=
(b) 2(@) # 1.

PROOF. Let g and A be as in Proposition 8.1.3 and set y = A®~Y"". Then
x(g) = AP~ VM(g) = J(g)?~ V" = ¢2"" Now a = g' for some I, and since
x" = a is not solvable, we must have n 4. Then y(a) = x(g)' = e*™/™ # 1.
Finally, y" = 2»"! = &. O

Forae F,, let N(x" = a) denote the number of solutions of the equation
x"=a. Ifn|p — 1, we have

Proposition 8.1.5. N(x" = a) = ) ,»_, x(a) where the sum s over all characters
of order dividing n.

Proor. We claim first that there are exactly n characters of order dividing n.
Since the value of x(g) for such a character must be an nth root of unity, there
are at most n such characters. In Proposition 8.1.4, we found a character
x such that y(g) = e*™/". It follows that &, y, x%...,x" ' are n distinct
characters of order dividing n.

To prove the formula, notice that x" = 0 has one solution, namely,
x =0.Now Y ,n_, x(0) = 1, since &(0) = 1 and y(0) = O for y # &.
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Now suppose that a # 0 and that x" = a is solvable; i.e., there is an
element b such that b" = a. If ¥" = ¢, then y(a) = y(b") = y(b)" = x"(b) =
e(b) = 1. Thus ) ., x(a) = n, which is N(x" = a) in this case.

Finally, suppose that a # 0 and that x" = a is not solvable. We must
show that ) ,._, x(a) = 0. Call the sum T. By Proposition 8.1.4, there is a
character p such that p(a) # 1 and p" = . A simple calculation shows that
p(@)T = T (one uses the obvious fact that the characters of order dividing n
form a group). Thus (p(a) — 1)T = 0 and T = 0, as required. O

As a special case, suppose that p is odd and that n = 2. Then the theorem
says that N(x*> = a) = 1 + (a/p), where (a/p) is the Legendre symbol. This
equation is easy to check directly.

In Section 3 we shall return to equations over the field F,.

§2 Gauss Sums

In Chapter 6 we introduced quadratic Gauss sums. The following definition
generalizes that notion.

Definition. Let y be a character on Fand a € F,,. Set g,(x) = ), x(t);*, where
the sum is over all t in F,, and { = €*™/?. g (y) is called a Gauss sum on F,,
belonging to the character y.

Proposition 8.2.1. If a # 0 and y # ¢, we have g,(x) = x(a Yg(x). Ifa # 0
and y = ewe have g,(¢) = 0.If a = 0and y # ¢ we have go(y) = 0. If a =0
and x = &, we have g4(g) = p.

PROOF. Suppose that a # 0 and that y # & Then
1@)g.(0) = 1@ Y. 1@ = 3 x(at)™ = g,(x)-
t t

This proves the first assertion.
If a # 0, then
gae) = 2 ()" = Y. {* = 0.
t t
We have used Lemma 1 of Chapter 6.

To finish the proof notice that go(x) = Y, x(t)(% = Y, x(t). If x =¢,
the result is p; if y # ¢, the result is zero by Proposition 8.1.2. O

From now on we shall denote g,(x) by g(x). We wish to determine the
absolute value of g(y). This can be done fairly easily by imitating the proof
of Proposition 6.3.2.
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Proposition 8.2.2. If y # ¢, then |g(y)| = \/;

ProOF. The idea is to evaluate the sum Y , g (x)g.(x) in two ways.
If a # 0, then by Proposition 8.2.1, g.(x) = x(a~Dg(x) = x(a)g(y) and

940) = 2(a” Hg(x). Thus g, (9.0 = x(a™ Vx(@g(9(x) = 1g(0)|*. Since
go(x) = 0 our sum has the value (p — 1)|g(x)|*
On the other hand,

90090 = Y. Y. 1=

Summing both sides over a and using the corollary to Lemma 1 of
Chapter 6 yields

2 9409, = Y. Y. x(G(dCx, y)p = (p — Dp.
Thus (p — 1)|g(x)|*> = (p — 1)p and the result follows. O

The relation of the above result to Proposition 6.3.2 is made clearer by the
following considerations.

What is the relation between g(x) and g(7) (j is the character that takes a
to y(a); i.e., it coincide with the character y~')?

900 = X @0 = (=D Y (=" = x(— Dg(@)-

We have used the fact that y(—1) = y(—1), which is obvious since y(—1) =
+1. Thus the fact that |g(x)|*> = p can be written as g(x)g(¥) = x(— 1)p.
If x is the Legendre symbol, this relation is precisely the result in Proposition
6.3.2.

§3 Jacobi Sums

Consider the equation x? + y* = 1 over the field F,. Since F, is finite,
the equation has only finitely many solutions. Let N(x?> + y*? = 1) be that
number. We would like to determine this value explicitly.
Notice that
N2+ =1)= Y N&*=aNy* =b),
atb=1

where the sum is over all pairs a, b € F,such thata + b = 1. Since N(x*=a)
= 1 + (a/p), we obtain by substitution that

Nee 4y =) =p+ X (3) t <§) T <§)(§)
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The first two sums are zero, so we are left with the task of evaluating the
last sum. We shall see shortly that its value is —(—1)®~ 172 Thus
N(x*>*+y*=1)isp—1if p=1(4) and p + 1 if p = 3 (4). The reader is
invited to check this result numerically for the first few primes.

Let us go a step further and try to evaluate N(x*> + y* = 1). As before
we have

Nx*+y’=1= Y N(x*=aN(*=Db).
at+b=1

If p=2(3), then N(x*> = a) = 1 for all a since (3, p — 1) = 1. It follows
that N(x* 4+ y®> = 1) = p in this case. Assume now that p = 1(3). Let
x # ¢ be a character of order 3. Then y? is a character of order 3 and y? # e.
Thus &, x, and y? are all the characters of order 3, henceforth called cubic
characters. By Proposition 8.1.5 we have N(x® =a) = 1 + y(a) + x*(a).
Thus

2 2
N+ =D= §5 3A@F 1)

atb=1 i=

=ZZ(;;uw@)

The inner sums are similar to the sum that occurred in the analysis of
N2+ 2 =1).

Definition. Let y and A be characters of F, and set J(x, 1) = Y 44p=1 x(@)A(b).
J(x, A) is called a Jacobi sum.

To complete the analysis of N(x* + y*> = 1) and N(x* + y* = 1) we
need to obtain information on the value of Jacobi sums. The following
theorem not only supplies this information, but shows as well a surprising
connection between Jacobi sums and Gauss sums.

Theorem 1. Let y and A be nontrivial characters. Then

() J(e &) = p.
(b) J(&, ) = 0.

© JOx™H = —x(=1).

(d) If yA # &, then

9(0)g(A)
g(A) -

PRrOOF. Part (a) is immediate, and part (b) is an immediate consequence of
Proposition 8.1.2.

J(x )‘) =
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To prove part (c), notice that

Jpx )= Y ey ') = ¥ x(g)= Zx( £ )
a+b=1 a:izl b a1\l —a

Set a/(1 —a)=c. If ¢ # —1, then a = ¢/(1 + ¢). It follows that as a
varies over F, less the element 1, that ¢ varies over F, less the element — 1.
Thus

Jo ™Y = ;lx(C) = —x(=1).

To prove part (d), notice that
g(0g(A) = (Z x(X)C") (Z l(y)Cy)
DI (EIYIC) G

X

) ( ) x(x)x(y))c'. ¢)
x+y=t

If t =0, then )\ _0 X(X)AY) = Y x(IA—=X) = A~1) }, xAx) = O,
since yA # & by assumption.

If t #0, define x' and )’ by x =tx’ and y =ty If x + y = ¢, then
x" + y' = 1. It follows that

Y XA = Y x(tx)AY) = rAOI(, A).

x+y=t x'+y' =1

Substituting into Equation (1) yields
909D = X 1M (1, AL = J(t Hg(xA)- O

t

Corollary. If y, A, and yA are not equal to ¢, then | J(y, A)| = \/;)

PRrOOF. Take the absolute value of both sides of the equation in part (d) and
use Proposition 8.2.2.

We now return to the analysis of N(x? + y? = 1) and N(x3 + y* = 1).
In the former case, it was necessary to evaluate the sum ) .4, (a/p) x
(b/p). Case (c) of Theorem 1 is applicable and gives the result —(—1/p) =
—(—=1)?~ 12 35 was stated earlier.

In the case of N(x*+ y*=1) we had to evaluate the sums
Y a+b=1 X'(@)x’(b), where y is a cubic character. Applying the theorem leads
to the result

NP+ =D =p— (-1 = (=) + It 1) + I 1)
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Since —1 = (—1)*> we have y(—1) = ¥*(—1) = 1. Also notice that
2 =yx ! = j Thus

N>+ y*=1)=p—2+2ReJ(y 1)

This result is not as nice as the result for N(x? 4+ y? = 1), since we do
not know J(y, x) explicitly. Nevertheless, by the corollary to Theorem 1

we know that |J(x, x)| = \/1_) so we have the estimate

INGG + y =1) —p + 2| < 2\/p.

If we write N, for the number of solutions to x* + y* =1 in the field
F,, then the estimate says that N, is approximately equal to p — 2 with

an “error term” 2\/;. This shows that for large primes p there are always
many solutions.

If p=1(3), there are always at least six solutions since x> = 1 and
y* = 1 have three solutions each and we can write 1 + 0 = 1and0 + 1 = 1.
For p = 7 and 13 these are the only solutions. For p = 19 other solutions
exist; e.g, 3% + 10° = 1 (19). These “nontrivial” solutions exist for all
primes p > 19 since it follows from the estimate that N, > p — 2 — 2\/; >6
forp > 19.

Using Jacobi sums we can easily extend our analysis to equations of the
form ax" + by" = 1, but we shall not go more deeply into this matter now.

The corollary to Theorem 1 has two immediate consequences of con-
siderable interest.

Proposition 8.3.1. If p = 1 (4), then there exist integers a and b such that
a’> + b? =p.
If p = 1(3), then there exist integers a and b such that a*> — ab + b* = p.

ProoF. If p = 1 (4), there is a character y of order 4 (if Ahas order p — 1, let

x = A?~ V%), The values of y are in the set {1, —i}, where i = ./ —1.
Thus J(x, %) = D +e=1 x(8)x(t) € Z[i] (see Chapter 1 Sectlon 4). It follows
that J(x, ) = a + bi, where a, b € Z; thus p = |J(x, )()l2 = a® + b2

If p = 1(3), there is a character y of order 3. The values of y are in the
set {1, w, w?}, where w = e?>™3 = (=1 + / —3)/2. Thus J(y, ) € Z[w].
As above, we have J(x, ) = a + bw, where a, be Z and p = |J(3, Y)|* =
la + bw|* = a®> — ab + b2 O

The fact that primes p = 1 (4) can be written as the sum of two squares
was discovered by Fermat. It is not hard to prove that ifa, b > 0, ais odd and
b is even, then the representation p = a® + b? is unique.

If p = 1 (3), the representation p = a*> — ab + b? is not unique even if we
assume that a, b > 0. This can be seen from the equations

a* —ab+b*= (b —a)*—(b—ab + b*=a®>—ala—b)+ (a— b

However, we can reformulate things so that the result is unique. If p = a® —
ab + b?, then 4p = (2a — b)* + 3b*> = (2b — a)* + 3a® = (a + b)* + 3(a — b)*.
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We claim that 3 divides either a, b, or a — b. Suppose that 3 fa and that
3¢b.Ifa=1B)andb=2(3),ora=2(3)and b = 1(3), then a*> — ab +
b? = 0 (3), which implies that 3|p, a contradiction. Thus 3|a — b, and we
have

Proposition 8.3.2. If p =1 (3), then there are integers A and B such that
4p = A% + 27B2. In this representation of 4p, A and B are uniquely determined
up to sign.

PRrOOF. The proof of the uniqueness is left to the Exercises. O

Theorem 1 together with a simple argument leads to a further interesting
relation between Gauss sums and Jacobi sums.

Proposition 8.3.3. Suppose that p = 1 (n) and that x is a character of
order n > 2. Then
g0 = W(=DpJ (6 DI 1) -+ I £ 9)-
PrOOF. Using part (d) of Theorem 1 we have g(x)> = J(x, 1)g(x?)- Multiply
both sides by g(y) and we get g(x)* = J(x, I (1> x*)9(x*). Continuing in this
way shows that
g™t = J06 I 2D - I D9 ). )
Now y"~! = y~! = 7. Thus, as we have seen, g(x)g(x"~*) = g(x)9(}) =
x(—1)p. The result follows upon multiplying both sides of Equation (2)
by g(x)- O

Corollary. If y is a cubic character, then

9(0)°® = pJ(x, 1)-

ProOF. This is simply a special case of the proposition and the fact that
(=1 = (-1 =1 O

Using this corollary, we are in a position to analyze more fully the complex
number J(x, x) that occurred in the discussion of N(x* + y* =1). We
have seen that J(y,y) = a + bo, where a,beZ and w=e€*™? =

(-1 +./=3)2

Proposition 8.3.4. Suppose that p = 1 (3) and that y is a cubic character. Set
J(x, %) = a + bw as above. Then

@) b=0(@3).
(b) a= —103).

Proor. We shall work with congruences in the ring of algebraic integers as in
Chapter 6:

3
g(0)® = (Z x(t)C‘) =3 2’ 3).

t
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Since x(0) = 0 and x(t)* = 1 for ¢ # 0 we have ), x()3* = )40 **
= —1. Thus

9 =pJ ) =a+bo=-10).
Working with j instead of y and remembering that g(y) = g(¥) we find that

9@ =pJG D =a+ b= —-103).
Subtracting yields b(w — @) = 0(3), or b/—3 =0(3). Thus —3b> =
0 (9) and it follows that 3|b. Since 3|b and a + bw = —1 (3), we must have
a = —1 (3), which completes the proof. O

Corollary. Let A =2a — band B = b/3. Then A = 1 (3) and
4p = A% + 27B2.

PROOF. Since J(y, ) = a + bwand |J(y, y)|* = pwehave p = a*> — ab + b>.

Thus 4p = (2a — b)* + 3b* and 4p = A + 27B>
By Proposition 8.3.4,3|band a = —1 (3). Therefore,4 = 2a — b =1 (3).
O

We are now ready to prove the following beautiful theorem due to Gauss.

Theorem 2. Suppose that p = 1 (3). Then there are integers A and B such that
4p = A* + 27B>. If we require that A = 1(3), A is uniquely determined,
and

NP +y*=1)=p—-2+A.

PrOOF. We have already shown that N(x® + y*> = 1) = p — 2 + 2 Re J(%, %)-
Since J(y, x) = a + bw as above, we have Re J(y, ) = (2a — b)/2. Thus
2 Re J(, x) = 2a — b = A = 1 (3). Uniqueness is left as an exercise. O

Let us illustrate this result with two examples, p = 61 and p = 67.

4.61 = 12 4 27 - 32 Thus the number of solutions to x> + y* = 1in Fg,
is61 —2 + 1 = 60.

Now, 4-67 = 5% + 27-3%. We must be careful here; since 5 # 1 (3)
we must choose A = —5. The answer is thus 67 — 2 — 5 = 60, which by
coincidence (?) is the same as for p = 61.

§4 The Equation x" 4+ )" = 1in F,

We shall assume that p = 1 (n) and investigate the number of solutions to
the equation x" + y" = 1 over the field F,. The methods of Section 3 are
directly applicable.
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We have
Nx"+y"=1)= Y N(E"=a)N(y"=b).

atb=1

Let x be a character of order n. By Proposition 8.1.5
n—1
Nx"=a)= ) x(a)
i=0

Combining these results yields
n—1n-1

Nx"+y' =1 =Y » JO,x)
j=0 i=0
Theorem 1 can be used to estimate this sum. When i = j = 0 we have
J(° 1°) = J(e,e) = p. When j +i=n, x' = (¥)"! so that J(x ¥ =
—/(—1). The sum of these terms is — Y "_{ x’(— 1). Notice that ) 12§ x’(—1)
is n when —1 is an nth power and zero otherwise. Thus the contribution of
these terms is 1 — 6,(— 1)n, where §,(— 1) has the obvious meaning. Finally,
ifi=0andj#0ori##0andj=0,then J(',x’) = 0. Thus
N"+y'=1)=p+1-=6(—n+YJU 1)
ij
The sum is over indices i and j between 1 and n — 1 subject to the con-
dition that i + j # n. There are (n — 1)> — (n — 1) = (n — 1)(n — 2) such
terms and they all have absolute value \/E Thus

Proposition 8.4.1.
ING" + "= 1)+ 8,(~Dn — (p + DI < (n — D(n — /.

The term J,(— 1)n will be interpreted later as the number of points “at
infinity” on the curve x" + y" = 1.

For large p the above estimate shows the existence of many nontrivial
solutions.

§5 More on Jacobi Sums

Theorem 1 can be generalized in a very fruitful manner. First we need a
definition.

Definition. Let y,, 1, . .., x; be characters on F,. A Jacobi sum is defined by
the formula

JOs X250 ) = Y 0E)ra) ).

ti+e =1
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Notice that when [ = 2 this reduces to our former definition of Jacobi

sum.
It is useful to define another sum, which will be left unnamed:

Jo1s-->0) = Z x1(E)x2(t2) - - - 0t

ti++=0

Proposition 8.5.1.
@) Jolee,...,8) =J(E¢,...,8) =p'~ L
(b) If some but not all of the y; are trivial, then Jo(x1, X25--->X) = J(X1»

X29-'-9Xl) = 0.
(c) Assume that y, # ¢. Then

0 if xiXa - xi#&,

JoOlis Xz s ) =13 i
o 12 1) {x,(—l)(p = DJ(X1s x25--+> Xa-1), Otherwise.

PrOOF. If t, t,,...,t,_; are chosen (arbitrarily) in F,, then ¢, is uniquely
determined by the condition ¢, +,+ ---+¢t,_; +1,=0. Thus J(¢,¢,..., &)=
p'~ L. Similarly for J(e, ¢, . . ., €).

To prove part (b), assume that y,, x,,...,xs are nontrivial and that
Xs+1 = Xs+2 =+ =y = & Then

Y Dt )

ti++0=0
Z Xl(tl)XZ(tZ) e Xs(ts)

11,12, .t

= Pl—s_l<z Xl(tl))(z Xz(tz)) s (Z Xs(ts)) =0.

We have used Proposition 8.1.2. Thus Jo(xy, X2,---» %) = 0. Similarly for

‘](Xla seey Xl)
To prove part (c), notice that

Jols X255 1) = X, ( Y Xl(tl)"'Xl~1(tl~1))Xl(S)

s t1+-tfyg-1=—s

Since x, # ¢, 1(0) = 0, so we may assume that s # 0 in the above sum.
If s # 0, define ¢} by t; = —st;. Then

Y X1(t) - 0-1(t-y)

ti++to1=—s

= XXz L-1(—9) Z 1) - - 1(ti- 1)

ety =1
=YXz T—1 (=D X1 -+ -5 Ha-1)-
Combining these results yields

JoQs x2s-- >0 = Xaxz - - 1(=DIQt1s -5 Xa=1) Z X1Xz -+ Xi(S)-
s¥0
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The main result follows since the sum is zero if y,x,---x; # ¢eandp — 1
iz n=¢ o

Parts (a) and (b) of Proposition 8.5.1 generalize parts (a) and (b) of
Theorem 1. Part (d) of Theorem 1 can be generalized as follows.

Theorem 3. Assume that x,, X5, - - - , X, are nontrivial and also that y,x,- - - X, is
nontrivial. Then

9902 -+ 90 = It x25 -+ XIIWa X2+ Xe)-
PROOF. Let y: F, —» C be defined by y(t) = {". Then y(t; + t;) = Y(t ¥(t2),
and g(y) = Y, x()y(?). The introduction of y is for notational convenience.

90 )9(x2) -+ - 9(x)

= (Z Xl(tl)w(tl)) T (z Xr(tr)lll(tr))
=) ( > x1(E)x(t) -+ Xr(tr))‘//(s)~

s i+ttt =5
If s = 0, then by part (c) of Proposition 8.5.1 and the assumption that
X1 Xr # &

Z x1(ty) - x(t) = 0.

1+ +1,=0

If s # O, the substitution ¢; = st; shows that
Y ) xu) = xaxz BT A2s -5 X

ti+eHte=s

Putting these remarks together, we have

90 - 90 = I X2s -5 X) 2 Xakz*+ XASW(S)

s#0
=JO1 X2> -+ > I X2 *** Xe)- O
Corollary 1. Suppose that x, x,,---, X, are nontrivial and that .y, - ¥, is
trivial. Then
992 - 9() = x(= DI X25 -+ o5 Xr—1)-

PROOF.g(x1)9(x2) - 9t 1) = J(t1s -+ - Xr—1)9(X1X2 - - Xr—1) by Theorem 3.
Multiply both sides by g(x,). Since y %2 -+ X1 = ¥ ' we have

901 - 0906 = 906" D9(x) = x(—=Dp. O

Corollary 2. Let the hypotheses be as in Corollary 1. Then

J(Xl’ L) Xr) = —Xr(_ I)J(Xl’ X255 Xr— 1)‘
[fr=2,weset J(x;) = 1.]
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PROOF. If r = 2, this is the assertion of part (c) of Theorem 1.
Suppose that r > 2. In the proof of Theorem 3 use the hypothesis that
X1X2 - X = & This yields

990 - 90 = Jotas X2s -+ > 1) + Qw5 1) 2 Y(s).

s#0

Since Y, Y(s) = 0, the sum in the formula is equal to — 1. By part (c)
of Proposition 8.5.1, we have Jo(x1, ..., %) = 6 (=D@ — DIG1s- - Xo— 1)

By Corollary 1, g(xs)--- 9(x») = x(—1)pJ(x1, X2, - - -» X-—1)- Putting these
results together proves the corollary. O

Theorem 4. Assume that )1, X2, - .., X, are nontrivial.
@) If xixz2- " xr # ¢ then
Qs X255 ) =P
() If x1x2 - x» = &, then
[Joltis X2s---> x| = (p — DpTA~1

(r—1)/2

and

[Tl 25> 2| = p2~ L

PrOOF. If y is nontrivial, [g(x) | = \/1_7 Part (a) follows directly from Theorem 3.
Part (b) follows similarly from part (c) of Proposition 8.5.1 and from
Corollary 2 to Theorem 3. O

§6 Applications

Earlier in this chapter we investigated the number of solutions of the equation
x* + y* = 1 in the field F,. It is natural to ask the same question about the
equation x? + x2 + --- + x2 = 1. The answer can easily be found using the
results of Section 5.

Let x be a character of order 2 (y(a) = (a/p) in our earlier notation).
Then N(x? = a) = 1 + y(a). Thus

NG + o+ x2 = 1) = ¥ NGE = a)N(3 = ay) -+ N2 = a),

wherethesumisoverallr-tuples(a,, ..., a,)suchthata; + a, +--- +a, = 1.
Multiplying out, and using Proposition 8.5.1, yields

NP+ +x2=D)=p " ' +J0 %5 2)-

Ifrisodd, y" = x, and if r is even, " = &.
Suppose that r is odd. Then Theorem 3 applies and we have J(x, ..., ) =
g(x)y . Since g(x)* = x(— Dpit follows that J(x,..., x) = x(— 1)~ V2pr= 12,
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If r is even, we use Corollary 2 to Theorem 3 and find that J(y, x, ..., x) =
— x(—1)?p"~ /2 Finally, remember that y(—1) = (—1)*~ /2, Thus

Proposition 8.6.1. If r is odd, then
N(xf + x§ 4+ 4+ xr2 =1)= pr—l + (_1)«r—1)/2)((p—1)/2)p(r—1)/2.
If r is even, then

NG+ x2+ -+ x2=1)=p 1 = (=)@ D21

The most general equation that can be treated by these methods has
the form a,x} + a,x% + --- + a,x = b, where a,,...,q,, beF,, and
I, 1,,..., 1 are positive integers. We shall return to this subject in Section 7.
For now, we shall use Jacobi sums to give yet another proof of the law of
quadratic reciprocity.

Let g be an odd prime not equal to p, and x the character of order 2on F,,.
Then by Corollary 1 to Theorem 3

g(X)q+ 1= (_ 1)“,‘ 1)/2p‘](Xs Xovvos X);

where there are g components in the Jacobi sum.
Sinceq + 1 is even g(x)q+ 1 _ (g(x)Z)(«ﬁ 1)/2 _ (- 1)((p— D/2)a+1)/2), p(q‘F /2,
Substituting into the formula we find that

(= 1)@= D2~ DDpa=12 = J(y, y. ... 7).

Now, J(t, - --» %) = Y, x(t)x(t2) - - - x(t,), where the sum is over all
(ti,ty,.ty) with ey + 5+ +t, =1 If t =t, =t,=--- =1, then
t = 1/q, and the corresponding term of the sum has value y(1/9)? = x(q)™? =
1(g)- If not all the t; are equal, then there are q different g-tuples obtained from
(t1, ta,...,t,) by cyclic permutation. The corresponding terms of the sum
all have the same value. Thus

(- 1)((p— 1)/2)(g— 1)/2)p(q— N2 = 1@ (@)
Since x(q) = (q/p) and p“~ V% = (p/q) () we have

— 1)@= D123 12 E) = (ﬂ)
(=1) ( =\ @

(= 1)@= D/2)@- 1)/2)<E) - (ﬂ)
q p

§7 A General Theorem

and thus

All the equations we have considered up to now are special cases of

a;xy + a;x3 + -+ a,x; = b, ®
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where a,, a,, ..., a,,€ F} and b € F,. Let N be the number of solutions. Our
object is to give a formula for N and an estimate for N. The methods to be
used are identical with those already developed in the previous sections.

To begin with, we have

N =Y N(xi = u)N(xz = uy) - N(xy = u,), @

where the sum is over all r-tuples (uy, u,, ..., u,) such that '7_; a,u; = b.

We shall assume that [, I, ..., I, are divisors of p — 1, although this is
not necessary (see the Exercises). Let y; vary over the characters of order
dividing [;. Then

N(xt = u) =Y xuy).
Xi
Substituting into Equation (4) we get
N= ) Y W )ra(s) - xuy). )
X1s X2s ooy Xr Za,-u.- =b
The inner sum is closely related to the Jacobi sums that we have con-
sidered.

It is necessary to treat the cases b = 0 and b # 0 separately.
If b = 0, let t; = a;u;. Then the inner sum becomes

2@ Dxaaz ) - xa” Wo(as Xzs -+ - Xo)-

If b # 0, let t; = b~ 'a;u;. The inner sum becomes

XXz X Oxa@r ) - xa” DI xzs -5 Xp)-

In both cases, if y; = y, = -+ = x, = ¢, the term has the value p"~
since Jy(s,...,e) = J(&¢,...,6) = p"~ 1. If some but not all the y; are
equal to ¢, therr the term has the value zero. In the first case the value is zero
unless y,x, - - - %, = & All this is a consequence of Proposition 8.5.1.

Putting this together with Theorem 4 we obtain

1

Theorem 5. If b = O, then
N = pr—l + z Xl(al_ 1)X2(a2— l) e Xr(a: 1)‘]O(Xls X2s5-++> Xr)

The sum is over all r-tuples of characters x, Xa,---,X» Where yi = &,
xi#efori=1,...,r,and x1)5 - X = & If M is the number of such r-tuples,
then

IN = P71 < M@ — Dp>7 L,
If b # 0, then
N=p '+ Ytz 6®uiar - a7 W0 125> 1)-

The summation is over all r-tuples of characters ¥, ..., x,, where xi = €
and y; # ¢ fori = 1,...,r. If M, is the number of such r-tuples with y x, - - X,
= ¢, and M is the number of such r-tuples with y,x, - - - X, # & then

|N _ pr-ll < Mop(rll)—l + Mlp(r*-l)/Z‘
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An immediate consequence of Theorem 5 is worth noting. Letay, a,, ..., a,
and b € Z and consider the congruence

axy + a;x% + -+ + a,xr = b (p).

Then if p is sufficiently large, the congruence has many solutions. In
fact, the number of solutions tends to infinity as p is taken larger and larger.

NoOTES

The inspiration for this chapter is the famous paper of A. Weil [80]. The
basic relationship between Gauss sums, also known as Lagrange resolvents,
and Jacobi sums was known to Gauss [34] (unpublished), Jacobi [47],
Eisenstein [27], and Cauchy. Complete proofs of the fundamental relations
given in Proposition 8.3.3 and Theorem 1 were published by Eisenstein in
his paper “Beitrige zur Kreistheilung” in 1844. Eisenstein also introduced
generalized Jacobi sums (Section 5) to obtain a proof of the law of biquadratic
reciprocity (see Chapter 9).

Aside from its usefulness in obtaining the Weil-Riemann hypothesis for
certain hypersurfaces over finite fields (see Chapter 11), the generalized
Jacobi sum is of importance in the theory of cyclotomy and difference sets.
For an introduction to this material, see Storer [74]. See also the difficult
but important continuation of [80] by Weil [81].

Material on Gauss and Jacobi sums is scattered throughout the treatise
of Hasse [41]. He gives a systematic presentation in his last chapter where in
addition to developing many interesting results he shows how both types of
sum arise naturally in the theory of cyclotomic number fields. Much of the
theory in that chapter is distilled from the paper of Davenport and Hasse
[23]. The latter paper is well worth close study, but it is unfortunately of an
advanced nature and is probably inaccessible to a beginner. Somewhat less
difficult are the more recent papers of K. Yamamoto [82] and A. Yokoyama
[83]. One should also consult the classical treatise of P. Bachman [5].

More recently B. C. Berndt and R. J. Evans have studied Gauss, Jacobi,
and other classical character sums attached to characters of order 6, 8, 12, 24.
For their interesting results and extensive bibliography the reader should
consult [92] and [95]. See also Leonard and Williams [177].

Theorem 2 is proved by Gauss in §358 of Disquisitiones Arithmeticae. He
does not really state the theorem explicitly. It comes out as a by-product of
another investigation. What he does, in fact, is to use the theorem to help find
the algebraic equation satisfied by certain Gauss sums. We have done the
reverse, using the theory of Gauss sums to derive the theorem. Gauss
derived other results of this type in his first memoir on biquadratic reciprocity
[34]. For further historical remarks about this subject, see the introduction
to the paper of Weil [80].

The estimates given in Theorem 5 are derived in the first chapter of
Borevich and Shafarevich [9]. They use a somewhat different method which
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we have outlined in the Exercises. In the special case of quadratic forms, i.e.,
when all the | = 2, the result goes back at least to Dickson [25].

The technique of counting solutions by means of characters lends itself
naturally to the problem of finding sequences of integers of prescribed length
having prescribed kth power character modulo p. This problem is dealt with
to some extent in Hasse [41]. In an interesting, and elementary paper,
Davenport [21] shows that the number of sequences of four successive
quadratic residues between 1 and p satisfies the inequality |R — p/8| < Kp3/4,
where K is a constant independent of p. Better estimates can be obtained
using the results of Weil. For another paper along the same lines, see Graham
[36].

One final remark on Theorem 5. It is due originally to Weil and inde-
pendently (and almost simultaneously) to L. K. Hua and H. S. Vandiver
(Proc. Nat. Acad. Sci. U.S.A., 35 (1949), 94-99). With a few simplifications
and addenda we have essentially followed Weil’s presentation.

EXERCISES

1. Letpbeaprimeandd = (m, p — 1). Prove that N(x™ = a) = Y_ x(a), the sum being
over all y such that y¥ = e.

2. With the notation of Exercise 1 show that N(x™ = a) = N(x? = a) and conclude
that if d; = (m;, p — 1), then Y ; a;x™ = b and Y ; a;x* = b have the same number
of solutions.

3. Let y be a nontrivial multiplicative character of F, and p be the character of order 2.
Show that Y, x(1 — t*) = J(x, p). [Hint: Evaluate J(x, p) using the relation
Nx? =a) =1+ p(a)]

4. Show, if k € F,, k # 0, that ¥, x(t(k — 1)) = 1(k%/22)J (1, p).

5. If x* # ¢, show that g()* = x(2)~ 2J(x, p)g(x?). [Hint: Write out g(y)* explicitly
and use Exercise 4.]

6. (continuation) Show that J(x, x) = x(2)~2J(x, p).

7. Supposethat p = 1 (4)and that y is a character of order 4. Then y> = pand J(y, ) =
%(—=1DJ(x, p). [Hint: Evaluate g(y)* in two ways.]

8. Generalize Exercise 3 in the following way. Suppose that pisa prime, Y, x(1 — t™) =
Zl J(x, A), where A varies over all characters such that ™ = ¢. Conclude that

1Y x(1 = ™) < (m — Dp'2

9. Suppose that p = 1 (3) and that y is a character of order 3. Prove (using Exercise 5)
that g(x)* = pm, where © = x(2)J (%, p)-

10. (continuation) Show that yp is a character of order 6 and that g(yp)® =
(_1)(17—1)/2,”—[4.

11. Use Gauss’ theorem to find the number of solutions to x> + y* = lin F for p = 13,
19, 37, and 97.
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12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.
26.

If p = 1(4), then we have seen that p = a* + b* with a, b € Z. If we require that a
and b be positive, that a be odd, and that b be even, show that a and b are uniquely
determined. (Hint: Use the fact that unique factorization holds in Z[i] and that if
p = a* + b?thena + biis a prime in Z[i].)

If p = 1 (3), we have seen that 4p = A% + 27B? with A, B € Z. If we require that
A = 1(3), show that A4 is uniquely determined. (Hint: Use the fact that unique
factorization holds in Z[w]. This proof is a little trickier than that for Exercise 12.)

Suppose that p = 1 (n) and that y is a character of order n. Show that g(x)" € Z[{],
where { = 2™/,

Suppose that p = 1 (6) and let y and p be characters of order 3 and 2, respectively.
Show that the number of solutions to y> = x* + D in F is p + n + 7, where
n = yp(D)J(x, p). If ¥(2) = 1, show that the number of solutions to y? = x3 + 1
is p+ A, where dp = A> + 27B* and A = 1 (3). Verify this result numerically
when p = 31.

Suppose that p = 1 (4) and that y is a character of order 4. Let N be the number of
solutions to x* + y* = 1in F,.Showthat N = p + 1 — 6,(—1)4 + 2Re J(x, 1) +
4 Re J(x, p).

(continuation) By Exercise 7, J(x, x) = x(— 1)J(x, p). Let n = —J(x, p). Show that
(a) N=p—3—6Renifp=1(8).
(b) N=p+1—-2Renifp=5().

(continuation) Letn = a + bi. One can show (see Chapter 11, Section 5) that a is
odd, b is even, and a = 1 (4) if 4|b and a = —1 (4) if 4 4b. Let p = A*> + B? and
fix A by requiring that A = 1 (4). Then show that

(@ N=p—3—64ifp=1(8).

(b) N=p+1+4+24ifp=5(8).

Find a formula for the number of solutions to x3 + x3 + --- + x} =0in F,.

Generalize Proposition 8.6.1 by finding an explicit formula for the number of
solutions to a;x} + a,x3 + -+ + a,x} = 1in F,,.

Suppose that p = 1(d), { = ¢*™?, and consider Y, (***. Show that ), (™=
Y., m(r){*, where m(r) = N(x* = r).

(continuation) Prove that Y, {*** =Y, g,(x), where the sum is over all y such
that y? = &, ¥ # &. Assume that p fa.

Let f(xy, X;,...,%,) € F,[xy, X5,...,%,]. Let N be the number of zeros of f
in F,. Show that N = p"™ ' + p™' 3 16 Qs [oI Gt o)),

(continuation) Let f(xy, X5,...,X,) = a;xX7' + a, x5 + --- + a,xy~. Let d; =
(m;, p— 1).Showthat N = p"~ ' + p™ 1 ¥ o [ %=1 34, Gaa,(x:), Where y; runs over
all characters such that y% = ¢ and y; # ¢

Deduce from Exercise 24 that [N — p"~!| < (p — 1)(d, — 1)---(d, — )p™?~ L.

Let p be a prime, p = 1 (4), y a multiplicative character of order 4 on F,, and p the
Legendre symbol. Put J(x, p) = a + bi. Show

@ N +x*=1)=p—1+2a

() No* =1-xH)=p+ 3 p(l —x*.
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(c) 2a = —(—=1)®P~V42m) (p) where m = (p — 1)/4.
(d) Verify (c) for p = 13, 17, 29.

27. Let p = 1 (3), x a character of order 3, p the Legendre symbol. Show
(@) Np* =1 —x3)—p+ 2 (1 = xP).
(b) N(y* + x* = 1) = p + 2Re J(1, ).
(¢) 2a — b= —(Z1}3) (p) where J(x, p) = a + bo.

28. Let p = 3 (4) and y the quadratic character defined on Z/pZ. Show
(@) Y521 xx(0) = 2 3802 xx(x) — p YD x(x).
(b) YE21 xx(x) = 4x(2) Y8 xx(x) — px(2) YL ().
() Ifp = 3(8) then Y EZ] xx(x)/p = § Y827 x(x).
(d) If p = 7 (8) then Y B2} xx(x)/p = Y ¥V y(x).



Chapter 9

Cubic and Biquadratic
Reciprocity

In Chapter S we saw that the law of quadratic reciprocity
provided the answer to the question. For which primes p
is the congruence x* = a (p) solvable? Here a is a fixed
integer. If the same question is considered for congru-
ences x" = a (p), n a fixed positive integer, we are led into
the realm of the higher reciprocity laws. When n = 3 and
4 we speak of cubic and biquadratic reciprocity.

In the introduction to his famous pair of papers,
“Theorie der biquadratischen Reste I, 11” [34], Gauss
claims that the theory of quadratic residues had been
brought to such a state of perfection that nothing more
could be wished. On the other hand, ‘“The theory of
cubic and biquadratic residues is by far more difficult.”
He had only been able to deal with certain special cases
for which the proofs had been so difficult that he soon
came to the realization that *“. . . the previously accepted
principles of arithmetic are in no way sufficient for the
foundations of a general theory, that rather such a theory
necessarily demands that to a certain extent the domain
of higher arithmetic needs to be endlessly enlarged . . . .”
In modern language, he is calling for the establishment
of a theory of algebraic numbers. As a first step, because
this is what is needed for discussing biquadratic residues,

he investigated in detail the arithmetic of the ring Z [\/—‘l 1,
which we now refer to as the ring of Gaussian integers.

Curiously, although Gauss formulated and discovered
the law of biquadratic reciprocity, he did not prove it
completely. The first complete published proofs of cubic
and biquadratic reciprocity are due to G. Eisenstein.

In this chapter we shall formulate and prove the laws
of cubic and biquadratic reciprocity. We shall give two
proofs to the law of cubic reciprocity. The first is due to
Eisenstein and is similar in every way to the proof of the
law of quadratic reciprocity given in Chapter 6. The second
proof uses Jacobi sums and is analogous to the proof of
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quadratic reciprocity given in Chapter 8, Section 6. Our
proof of biquadratic reciprocity is also due to Eisenstein.

In Section 10 we establish a “rational” reciprocity law
for biquadratic residues. This elegant result, discovered
by K. Burde in 1969 answers the following problem. If
p=1(4) and g = 1(4) are primes and p is a fourth
power modulo q give necessary and sufficient conditions
that q is a fourth power modulo p.

In Section 11 we establish, with the use of Jacobi sums,
Gauss’ criterionfor the constructibility of aregular polygon.

The chapter concludes with a short discussion of
Kummer’s problem concerning the distribution of cubic
Gauss sums.

§1 The Ring Z[w]

Let w = (=1 + ./ —3)/2. The ring Z[w] was defined and discussed in
Chapter 1, Section 4. Its elements are complex numbers of the form a + bw,
a,beZ If o« = a + bw € Z[w], define the norm of a, Na, by the formula
No = a& = a*> — ab + b?. Here a@ means the complex conjugate of a.
In Chapter 1 we used the notation A(x) instead of Na. The change is merely
a matter of conforming to standard notation. For notational convenience
we shall set D = Z[w].

We have proved earlier that D is a unique factorization domain. Our

first task here is to discover the units and the prime elements in D.

Proposition 9.1.1. o € D is a unit iff No = 1. The units in D are 1, —1, o,
—o, w?, and — w2,

PROOF. If Na = 1, a& = 1, which implies that « is a unit since & € D.

If « is a unit, there is a f € D such that aff = 1. Thus NaNf = 1. Since Na
and Np are positive integers this implies that No = 1.

Now suppose that @ = a + bw is a unit. Then 1 = a? — ab + b* or
4 = (2a — b)? + 3b2. There are two possibilities:

(@ 2a—b=+1,b= +1.
(b) 2a—b=+2,b=0.
Solving these six pairs of equations yields the result 1, —1, o, —o,

~1—wand 1 + w. Since w?® + o + ] = 0 the last two elements are w?
and —w?2. We are done. O

To investigate primes in D it is important to realize that primes in Z
need not be prime in D. For example, 7 = (3 + w)(2 — w). For this reason
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we shall speak of primes in Z as rational primes and refer to primes in D
simply as primes.

Proposition 9.1.2. If 7 is a prime in D, then there is a rational prime p such that
Nn = p or p>. In the former case n is not associate to a rational prime; in the
latter case  is associate to p.

ProoF. We have Nn = n > 1, or nt = n. n is a product of rational primes.
Thus | p for some rational prime p. If p = ny, y € D, then NtNy = Np = p>.
Thus either Nn = p? and Ny = 1 or Nn = p. In the former case y is a unit
and therefore = is associate to p. In the latter case if # = ug, u a unit and q a
rational prime, then p = Nn = NuNgq = ¢*, which is nonsense. Thus =
is not associate to a rational prime. O

Proposition 9.1.3. If n € D is such that Nn = p, a rational prime, then 7 is a
prime in D.

Proor. If = were not prime in D, then we could write = = py with Np,
Ny > 1. Then p = Nn = NpNy, which cannot be true since p is prime in Z.
Thus = is a prime in D. O

The following result classifies primes in D.

Proposition 9.1.4. Suppose that p and q are rational primes. If g = 2 (3), then
q is prime in D. If p = 1 (3), then p = =7, where n is prime in D. Finally
3= —w*(1 — w)? and 1 — w is prime in D.

ProoF. Suppose that p were not a prime. Then p = ny, with Nn > 1, Ny > 1.
Thus p?> = NaNy and Nz = p. Let © = a + bw. Then p = a®> — ab + b?
or 4p = (2a — b)? + 3b?, yielding p = 2a — b)>*(3). If 3)p we have
= 1 (3) for 1 is the only nonzero square mod 3. It follows immediately that
if g =2 (3), it is a prime in D.
Now, suppose that p = 1 (3). By quadratic reciprocity we have

(i) = (—_1)(2) = (_1)(,,-1)/2(2)(_ 1)@= 2B -1/2)
p p/\p 3

p 1

=[|=-]=1=-]1= 1‘

(-G
Hence, there is an a € Z such that a®> = —3 (p) or pb = a*> + 3 for some
beZ. Thus pdivides (a+./—3)a—+/—3)=(@+1+2w) x (a—1 - 2w).
If p were a prime in D, it would have to divide one of the factors but this
cannot happen since p # 2 and 2/p ¢ Z. Thus p = =y with = and y nonunits.
Taking norms we see that p2 = NNy and that p = Nn = =7

The last case is handled as follows; x> — 1 = (x — I)(x — 0)(x — w?)
implies that x?> + x + 1 = (x — w)(x — w?). Setting x =1 yields 3 =
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(1 - o)1 - 0®) =1+ o)l —w)? = —w*(l — )’ Taking norms we see
that 9 = N(1 — w)*> and so 3 = N(1 — w). Thus 1 — w is a prime. a

As a matter of notation g will be a positive rational prime congruent to 2
modulo 3 and = a complex prime whose norm, Nz = p, is a rational prime
congruent to 1 modulo 3. Occasionally © will refer to an arbitrary prime of D.
The context should make the usage clear.

§2 Residue Class Rings

Just as in the ring Z and in the ring of all algebraic integers, the notion
of congruence is extremely useful in D. If a, §, y € D and y # 0 is a nonunit,
we say that o = f (y) if y divides o — f. Just as in Z the congruence classes
modulo y may be made into a ring D/yD, called the residue class ring modulo y.

Proposition 9.2.1. Let & € D be a prime. Then D/nD is a finite field with Nz
elements.

Proor. We first show that D/nD is a field. Let « € D be such that o # 0 (n). By
Corollary 1 to Proposition 1.3.2 there exist elements f, y € D such that
pa + yn = 1. Thus Po = 1 (n), which shows that the residue class of a
is a unit in D/nD.

To show that D/arD has Nn elements we must consider separately the
cases in Proposition 9.1.4.

Suppose that = = g is a rational prime congruent to 2 modulo 3. We
claim that {a + bw|0 < a < g and 0 < b < g} is a complete set of coset
representatives. This will show that D/gD has q*> = Ngq elements. Let u =
m+ nweD. Then m=gs +a and n = qt + b, where s, t, a, be Z and
0<a, b<gq Clearly p = a + bw (g). Next, suppose that a + bw = a' +
b'w (q), where 0 < a, b, a', b’ < q. Then ((a — a')/q) + (b — b")/q)w € D,
implying that (a — a')/q and (b — b')/q are in Z. This is possible only if
a=dandb=1".

Now suppose that p =1(3) is a rational prime and 77 = Nn = p.
We claim that {0, 1,...,p — 1} is a complete set of coset representatives.
This will show that D/nD has p = N= elements. Let = = a + bw. Since
p = a* — ab + b? it follows that p ¥ b. Let 4 = m + nw. There is an integer
¢ such that ¢b = n(p). Then 4 — ct = m — ca (p) and so u = m — ca (n).
Every element of D is congruent to a rational integer modulo . If [ € Z,
I=sp+r, where s, re Z and 0 <r < p. Thus | =r(p) and a fortiori
I = r (m). We have shown that every element of D is congruent to an element
of {0,1,2,...,p — 1} modulo n. If r = ¥ (n) withr, ¥ € Zand 0 < r,¥ < p,
then r — ¥ = ny and (r — r)> = pNy, implying that p|r — r. Thus r =
and we are done.

We leave the case of the prime 1 — w as an exercise. a
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§3 Cubic Residue Character

Let  be a prime. Then the multiplicative group of D/zD has order Nn — 1.
Hence we have an analog of Fermat’s Little Theorem.

Proposition 9.3.1. If nt a, then

oMl = 1 ().

If the norm of = is different from 3, then the residue classes of 1, w, and
w? are distinct in D/aD. To see this, suppose, for example, that w = 1 (n).
Then n|(1 — w), and since 1 — w is prime, = and 1 — w are associate.
Thus Nn = N(1 — ) = 3, a contradiction. The other cases are handled
in the same way.

Since {1, w, w?} is a cyclic group of order 3 it follows that 3 divides the
order of (D/nD)*; i.e, 3|Nrn — 1. This can be seen in another way using
Proposition 9.1.3. If = = ¢, a rational prime, then Nn = ¢> = 1 (3). If m is
such that Nz = p, then p = 1 (3).

Proposition 9.3.2. Suppose that n is a prime such that Nn # 3 and that n )t o.
Then there is a unique integer m = 0, 1, or 2 such that «®*~ V'3 = o™ (7).
Proor. We know that n divides a¥*~! — 1. Now,

aNu-—l —1= (a(Nn—l)/3 _ 1)((X(N"_1)/3 _ a))(a(Nu—l)/Z! _ (1)2).

Since 7 is prime it must divide one of the three factors on the right. By
the preceding remarks it can divide at most one factor, since if it divided two
factors it would divide the difference. This proves the proposition. O

On the basis of this result we can make the following definition.

Definition. If N7 # 3, the cubic residue character of & modulo 7 is given by

(a) (a/m); = 0if n|a.
(b) a™*~ V3 = (a/m); (m), with (a/); equal to 1, w, or w?.

This character plays the same role in the theory of cubic residues as the
Legendre symbol plays in the theory of quadratic residues.

Proposition 9.3.3.

(@) (a/m); = 1 iff x* = a(n) is solvable, i.e., iff o is a cubic residue.
(b) a3 = (a/m); (m).

() (af/m);3 = (a/m)3(B/m)s.

(d) If o = B (m), then (¢/m); = (B/m)3.

PRrOOF. Part (a) is a special case of Proposition 7.1.2. Take F = D/nD,q = N,
and n = 3 in that proposition.
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Part (b) is immediate from the definition.

Part (c): (af/n); = (af)N™~ 13 = N7 DRRN=DI = (q/m)3(B/m)5 (7).
The result follows.

Part (d): If « = B (n), then (a/n); = a®*~ V3 = gN*=DI3 = (B/m), (n),
and so (a/n); = (B/n)s. O

Since we shall be dealing only with cubic characters in this section the
notation y(a) = (a/n); will be convenient.
It is useful to study the behavior of characters under complex conjugation.

Proposition 9.3.4.

(@) 1:(0) = x(0)? = xo(a?).
(b) xa(®) = xa(®).

PRrROOF.

(a) yx(2) is by definition 1, w, or w?, and each of these numbers squared is
equal to its conjugate.

(b) o IR = y (o) (m),
we get
B = 1@ (),

Since N7 = Nn this shows that y.(&) = x.() (7) and thus that y(&) =
Xx()- a

Corollary. y,(5) = x,(«*) and Xq(n) = 1if nis arational integer prime to q.

PROOF. Since g = q we have x,(&) = 24(8) = x,(0) = x,(«?). This gives the
first relation.

Since i = n we have y,(n) = x,(n) = x,(n)*. Since y,(n) # 0 it follows
that y,(n) = L. O

The corollary states that n is a cubic residue modulo g. Thus, if g, # ¢,
are two primes congruent to 2 modulo 3, then we have (trivially) x,,(g;) =
X2.(q1)- This is a special case of the law of cubic reciprocity. To formulate
the general law we need to introduce the idea of a “primary” prime.

Definition. If 7 is a prime in D, we say that = is primary if x = 2 (3).

If = = q is rational, this is nothing new. If # = a + bw is a complex
prime, the definition is equivalent to a = 2 (3) and b = 0 (3).

We need a notion such as “primary” to eliminate the ambiguity caused
by the fact that every nonzero element of D has six associates.

Proposition 9.3.5. Suppose that Nn = p = 1 (3). Among the associates of
exactly one is primary.
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PrOOF. Write 1 = a + bw. The associates of 7 are 7, wn, w*n, —n, —wn, and
—w?n. In terms of a and b these elements can be expressed as

(@) a + bo.

(b) —b + (a — bo.
) (b—a)— ao.
(d) —a — bw.

() b+ (b — a)o.
) (a —b) + aw.

Since p = a®> — ab + b?, not both a and b are divisible by 3. By looking
at parts (a) and (b) it is clear that we can assume that 3 }a. Considering
parts (a) and (d) we can assume further that a = 2 (3). Under this assumption
p=a*—ab+b* leads to 1=4—-2b+b>(3) or bb-2)=0(3). If
3|b, then a + bw is primary. If b = 2 (3), then b + (b — a)w is primary.

To show uniqueness, assume that a + bw is primary. By considering the
congruence class of the first term in part (b) to part (¢) we see that none of
these expressions is primary. Neither is the expression in part (f) since the
coefficient of w, a, is not divisible by 3.

For example, 3 + o is prime since N3 + w) = 7, and —0*(3 + w) =
2 + 3w is the primary prime associated to it.
We can now state

Theorem 1 (The Law of Cubic Reciprocity). Let n, and n, be primary, Nz,
Nn, # 3,and Nn, # N=,. Then

Xn(M2) = Yy (71)-

A proof will be given in Section 4, but first a few remarks are in order.

(a) There are three cases to consider. Namely, both =, and =, are rational,
n, is rational and =, is complex, and both 7, and =, are complex. The
first case is, as we have seen, trivial.

(b) The cubic character of the units can be dealt with as follows. Since
—1 = (—1)® we have x,(—1) = 1for all primes =.

In Nz # 3, then it follows from Proposition 9.3.3, part (b), that
Yo(@) = @™ V3 Thus y(w) =1, o, or w? according to whether
N=n =1, 4, or 7 modulo 9.

(c) The prime 1 — w causes particular difficulty. If Nm # 3, we would like
to evaluate y,(1 — w). This is done by Eisenstein in [29] by a highly
ingenious argument. An elegant proof due to K. Williams is given in the
Exercises.

Theorem 1’ (Supplement to the Cubic Reciprocity Law). Suppose that Nnw # 3.
If © = q is rational, write ¢ = 3m — 1. If © = a + bw is a primary complex
prime, write a = 3m — 1. Then

11 — @) = ™.
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We give a proof for the case of a rational prime ¢q. Since (1 — w)? =
— 3w we have

Xq(l - ('O)2 = Xq(_3)Xq(w)

By the corollary to Proposition 9.3.4 we know that y,(—3)=1. By
remark (b) g () = 0™ V3 = @ VB3 Thus y,(1 — 0)? = 0@~ V53,
Squaring both sides yields

X1 — ) = oM@ -1

Now, ¢*> — 1 =9m*> — 6m so that ¥gq* — 1) = —4m = 2m (3). The
result follows. For extensions of these results to primary elements see
exercises 17 to 20 on page 135.

§4 Proof of the Law of Cubic Reciprocity

Let n be a complex prime such that No = p = 1 (3). Since D/nD is a finite
field of characteristic p it contains a copy of Z/pZ. Both D/nD and Z/pZ have
p elements. Thus we may identify the two fields. More explicitly the identifi-
cation is given by sending the coset of n in Z/pZ to the coset of nin D/nD.

This identification allows us to consider y, as a cubic character on Z/pZ
in the sense of Chapter 8 [see Proposition 9.3.3, parts (c) and (d)]. Thus we
may work with the Gauss sums g,(),) and the Jacobi sum J(x,, X.)-

If x is any cubic character, we have proved (see the corollary to Proposition
8.3.3 and Proposition 8.3.4) that

@) g(0* = (% 2)-
(b) If J(x, x) = a + bw, thena = —1(3)and b = 0 (3).

Since J(x, x)J(x, x) = p, the second assertion says that J(y, ) is a primary
prime in D of norm p.

We need a lemma. Assume 7 is primary.

Lemma 1. J(x,, x.) = 7.
ProoF. Let J(x,, x.) = ©'. Since nt = p = n'w we have n|n’ or n|7.

Since all the primes involved are primary we must have n = 7’ orn = @'
We wish to eliminate the latter possibility.

From the definitions,

J(Xn’ Xn) = Z Xn(x)Xn(l - x) = Z x(p— 1)/3(1 - x)(p—l)/S (7[),

where the sum is over Z/pZ. The polynomial x®~"/3(1 — x)®~ 73 is of
degree #(p — 1) < p — 1. By Exercise 11 of Chapter 4 it follows that
Y x®PTU3(1 — x)P~ D3 = (p). This shows that J(x., x.) =0 (n); ie,
n|7' and therefore n = n'. a

Coroliary. g(x,)* = pn.
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We can now prove the law of cubic reciprocity. We first consider the case
where n, = ¢ = 2 (3) and n, = n with Nz = p.

Raise both sides of the relation g(x,)® = pr to the (¢ — 1)/3 power. This
gives g(x)” ! = (pm)“@’~ /3, Taking congruences modulo g we see that

90" " = x4(0m) (@)-
Since x,(p) = 1 this leads to

90" = 1(Mg(x) (@)- (1

We now analyze the left-hand side:

q2
9" = (Z xn(t)C') =) 1077 (9).
Since ¢ = 1 (3) and y,(t) is a cube root of 1 we have

g(Xn)qz = ng(Xn) (‘1) (2)

By Proposition 8.2.1 goa(xx) = %x(q~9(xx) = xx(9)9(xx)- Thus, combining
Equations (1) and (2)

DI = 2(MYg (k) (D
Multiply both sides of this congruence by g(x,). Since g(x.)9(x) = P

X{@p = x(m)p (9)

or
X=(q) = x(7) (@),
implying that
1@ = x,(m).

It remains to consider the case of two complex primes n, and n,, where
Nn, = p, = 1(3)and Nrn, = p, = 1 (3). This case is handled by essentially
the same technique, but it is a little trickier.

Lety, = @, and y, = @,. Then y, and v, are primary and p, = n,y, and
P2 = M273.

Starting from the relation g(x,,)* = p,7;, raising to the (N=n, — 1)/3 =
(p, — 1)/3 power, and taking congruences modulo n,, we obtain by the same
method as above the relation

1,03 = Xey(P171)- 3)

Similarly, starting from g(x,,)® = p,n,, raising to the (p, — 1)/3 power,
and taking congruences modulo =, we obtain

Xa(PD) = Xey (P2 72). @
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Wealso need the relation x, (p3) = x.,(p,), which follows from Proposition
9.3.4 since y, = @, and p, = p,. Now we calculate

Y M)y (P171) = X, (R2)X,,(P3) by Equation (3)
= A (T2, (P2) = X, (P272) by above remark
= ZnoPD) = Xn(P17171) by Equation (4)
= X)X, (P171)-

Equating the first and last terms and canceling y,,(p,y;) gives the sought
for result:

Xu;(ﬂZ) = Xuz(ﬂl)'

§5 Another Proof of the Law of Cubic Reciprocity

We present a proof of cubic reciprocity using Jacobi sums. This proof is
somewhat shorter and more elegant than the one given in Section 4. It
should be noticed, however, that more background material is used.

Consider the case &, = ¢, 1, = . Let x, = x, and consider the Jacobi
sum J(y, x, ..., x) with ¢ terms. Since 3|q + 1 we have by Corollary 1 to
Theorem 3 of Chapter 8,

g =pIt k-5 0)- (5)
Since g(x)® = pr,
g()** ! = (pm)a* V3, (6)

Now, recall that

JO X5 0) = 22X )(X2) -+ 2(Xg)s

where the sum is over all x;, x,,...,x, € Z/pZ such that x; + x; + --- +
x, = 1. Consider the term for which x; = x, = --- = x,. Then gx, =1
and x(¢q)x(x,;) = 1. Raising both sides to the gth power, and recalling that
q = 2 (3), yields x(q)*x(x,)* = 1 and so x(x,)? = x(q). Thus the “diagonal”
term of J(y, , - . ., x) has the value x(q). If not all the x; are equal, there are g
different g-tuples obtained from (x,, x,, ..., x,) by cyclic permutation. The
corresponding terms of J(y, , . .., x) all have the same value. Thus

JOL -0 = 2(9) (@) @)
Combining Equations (5), (6), and (7) we obtain
(pm)* V" = px(q) (9)

or
p(q—l)/3n(q+ N3 — X(q) (q)
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Raising both sides to the ¢ — 1 power (remember that g — 1 = 1 (3))
p((q—Z)/3)(q-1)n(q2—l)/3 = X(q)q-l = x(q) (9)

Since p@~2/34~1 = { (¢) by Fermat’s theorem and n'"~ V3 = y (n) (¢)

it follows that
X(M) = 2:(9) (@)
and
Xo(m) = 2(9)-

Now consider the case of two primary complex primes =, and 7,. Let
Y1 = ®,¥2 = [y, py = Myyy,and p, = myy,. Thenp,, p, = 1(3). By Theorem
3 of Chapter 8 we have

906,07 = Ity - -5 %0905
There are p, terms in the Jacobi sum. Since p, = 1 (3), 5 = x,,- Thus

[906,)° 172792 = Tty - - - Xy)- (®)

By isolating the diagonal term of the Jacobi sum (as we have done a

number of times by now) we find that
Jyss -+ 5 %3) = %P2 1) = 1,,(P3) (2).

Using this and the fact that g(x,,)* = p,7,, we obtain from Equation (8)

the congruence
XeP171) = 1,,(P3) (m2)

and therefore

Xa(P171) = %,,(03)- ©

Similarly one proves that

Xu;(pZ 7[2) = an(pf) (10)

Equations (9) and (10) are the basic relations. From here on one proceeds
exactly as in Section 4 to the desired conclusion y,,(7;) = x,,(7,).

§6 The Cubic Character of 2

The law of cubic reciprocity can be used to develop the theory of cubic
residues in the same manner as the law of quadratic reciprocity led to the
results of Chapter 5, Section 2. We shall forego a development of the general
theory in favor of a discussion of an illuminating special case. Namely,
we shall ask for all primes n in D for which 2 is a cubic residue.

To begin with, notice that x> = 2 (n) is solvable iff x> = 2 (') is solvable
for any associate of . Thus we may assume that 7 is primary. If = g is a
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rational prime, then x,(2) = 1 and so 2 is a cubic residue for all such primes.
We assume from now on that 7 = a + bw is a primary complex prime. By
cubic reciprocity x.(2) = x,(n). The norm of 2 is 22 = 4. Thus

m =70 = yy(m) (2)
It follows that x,(2) = 1 iff # = 1 (2). We have proved

Proposition 9.6.1. x> = 2 (n) is solvable iff n = 1(2), ie., iff a = 1(2) and
b=0(Q).

It is possible to formulate this proposition in another way. Letn = a + bw
be a primary complex prime and p = Nn = a®> — ab + b% Then 4p =
(2a — b)* + 3b*. If we set A = 2a — b and B = b/3, then 4p = A + 27B>.
According to Proposition 8.3.2 the integers A and B are uniquely determined
up to sign.

Proposition 9.6.2. If p = 1 (3), then x> = 2 (p) is solvable iff there are integers
C and D such that p = C* + 27D>.

PrOOF. If x* = 2 (p) is solvable, so is x> =2 (n) and thus = = 1(2) by
Proposition 9.6.1. We have

4p = A% 4+ 27B*, where A =2a — b,B =

w| o

Since b is even, so are B and A. Let D = B/2 and C = A/2. Then p =
C? + 27D

Suppose, conversely, that p = C? + 27D?. Then 4p = (2C)* + 27(2D)>.
By uniqueness B = +2D;i.e, B is even and thus so is b. It follows that n =
a + bw = 1(2),and x* = 2 (n) is solvable. Since D/nD has p = N= elements
there is an integer hsuch that h* = 2 (). Itis now easy to show that h* = 2 (p).
If n|h® — 2, then %|h® — 2 and =7t = p|(h® — 2)% Consequently, p|h> — 2
and we are done. O

As an example take p = 7. Then x* = 2 (7) is not solvable since there are
clearly no integers C and D such that 7 = C? + 27D2.

On the other hand, p = 31 = 22 + 27-1% Thus x* = 2 (31) is solvable.
Indeed, 4° = 2 (31).

§7 Biquadratic Reciprocity: Preliminaries

In his second memoir (1832) on biquadratic residues, Gauss stated, without
proof, the law of biquadratic reciprocity. The proof, he asserted, belonged to
the mysteries of the higher arithmetic. The details were to be published in
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a third memoir, which unfortunately never appeared. Subsequently Eisenstein
published several proofs (1844), using Jacobi and Gauss sums. The basic
idea is the same as in the cubic case, although the details are more extensive.
The use of Gauss sums to prove reciprocity laws is due to Gauss himself,
who utilized them essentially in his sixth proof of quadratic reciprocity.
Throughout the following three sections D denotes the ring Z[i] of
Gaussian integers. If « € D then («) = aD is the principal ideal generated by
o. By a prime will always be meant a positive prime of Z. Recall from Chapter 1
that D is a Euclidean ring. Thus if 7 is irreducible and = |af then either 7 |o
or n|f. If N(a) = a& is the norm of a then by Exercise 32 of Chapter 1,
N(o) = 1iff & is a unit. From this, one sees that the units of D are +1, +i.

Lemma 1. If n is irreducible then there is a prime p € Z such that =|p.

PROOF. N(n) = nit = n = p, - - - p;, p; prime,p; € Z. Thus n|p; for some i. [J

Thus the irreducibles are found by decomposing in D all primes in Z. The
following lemma is useful.

Lemma 2. If o € D, and N(a) is prime then o is irreducible.

Proor. If o = pld then N(a) = N(u)N(L). Since N(o) is prime it follows
that N(u) = 1 or N(1) = 1. Thus either u or Ais a unit.

Lemma 3. 1 + iis irreducible and 2 = —i(1 + i)? is the prime factorization
of 2 in D.

Proor. N(1 + i) =2 and so the first assertion follows from Lemma 2.
The second assertion results from a direct calculation.

Lemma 4. If g = 3 (4) is a prime in Z, then g is irreducible considered as an
element of D.

Proor. If g were not irreducible in D, then g = o« with N(o) > 1 and N(f) > 1.
Taking norms we find g> = N(x)N(B). It follows that g = N(a). Ifx = a + bi
with a, b€ Z, then q = a* + b2 This is a contradiction since a sum of two
squares in Z is congruent to 0 or 1 modulo 4, and g is congruent to 3 modulo 4.

Lemma 5. If p is prime, p = 1 (4) then there is an irreducible 7 such that
p = ©i. Furthermore (%) # (7).

Proor. The first statement is part (a) of Proposition 8.3.1. Another proof not
using Jacobi sums is the following. Since p = 1 (4) there is, by Proposition
5.1.2, an integer a with a®> = —1(p). Thus pla®> + 1 = (a + i)(a —i). If p
were irreducible then p|a + i which is absurd. Thus p = aff, N(a) > 1,
N(B) > 1. Taking norms enables one to conclude that p = N(«). Since N(a)
is prime it follows by Lemma 2 that « is irreducible. The fact that (o) # (&)
is left as an exercise. U
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This completes the description of the irreducibles in D.
Definition. A nonunit « € D is primary if « = 1 (1 + i)*.
Lemma 6. A nonunit « is primary iff eithera=1@4),b=0@4) ora=3(4),
b=2(@4).
Proor. Since (1 + i)® = 2i(1 + i) it follows that a + bi is primary iff
(a—1)+bi_a+b—1+b—a+1,
2+2 4 & !

This is equivalent to the congruences a + b=1(4), a — b =1(4). The
result follows easily from this. O

e D.

We note that any nonunit « = 1 (4) in D is primary. Furthermore if «
is primary then (1 + i) ¥ a. If g is a real prime, g = 3 (4) then —q is a primary
irreducible. As for the irreducibles arising from primes p = 1 (4) one has the
following important result.

Lemma 7. Let o € D be a nonunit, (1 + i)t o Then there is a unique unit u
such that ua is primary.

ProoOF. There is a unit ¢ such that ex = a + bi where a is odd and b is even.
Multiplying if necessary by —1, Lemma 6 shows that o has a primary
associate. If u; and u, are units such that u,« and u, « are primary then since
(1 + i) f« it follows that u;, = u, (1 + i)’. An examination of cases shows
easily that this implies u; = u,.

Lemma 8. A primary element can be written as the product of primary ir-
reducibles.

ProOF. Let « € D be primary. Then there are rational primes g; = 3 (4),
primary irreducibles #;, N(n;) = 1 (4) and a unit u such that « = un, ---
n{—q,)---(—q,). Reduction modulo (1 + i)> shows that 1 = u (1 + i)
This implies that u = 1.

§8 The Quartic Residue Symbol

Consider an irreducible = in D.

Proposition 9.8.1. The residue class ring D/nD is a finite field with N(r)
elements.

Proor. The proof proceeds in exactly the same way as Proposition 9.2.1,
replacing the classification of irreducibles in Z[w] by the corresponding
classification in D = Z[i]. a
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Corollary. Ifn fothena® ! = 1 (n).

Proposition 9.8.2. If nta, (n) # (1 + i) there exists a unique integer j,
0 <j < 3 such that
qN@-1)/4 — i (71:)

PROOF. It is easy to see that the residue classes of 1, — 1, i, —i are distinct. They
are the roots of x* = 1 (n). However the residue class of «™¥™~1/4 is also a
solution to x* = 1 (n) by the above corollary. The result follows from this.

O

Definition.If 7 is an irreducible, N(n) # 2, then the bi_quadratic (or quartic)
residue character of o, for ¥ o, is defined by y,() = i/ where j is determined
by Proposition 9.8.2. If |« then y,(a) = 0.

Proposition 9.8.3.
(@) If nyothen y(x) = 1 < x* = «(n) has a solution in D.

() Xa(@B) = 2a(@) - Xa(B)-

(© xa(0) = Xa(3).

(d) If n is a primary irreducible then y,(—1) = (—1)""2 where & =
a + bi.

() Ifo = B(m) then x(0) = xa(B).

(0) xal) = xa(2) if (m) = ().

ProoF. Part (a) follows from Proposition 7.1.2. Parts (b), (c), (¢), and (f)

follow immediately from the definition. Part (d) follows from Lemma 6
(see Exercise 38). O

Proposition 9.8.4. Let q be prime, q = 3 (4). Then y,(a) = 1 forae Z,qa.
PrOOF. N(q) = ¢*. Thus
1@) = a7V = (@7t = 1 (g),

by Fermat’s Little Theorem. O

The quartic residue character is generalized as follows.

Definition. Let o € D be a nonunit such that (1 + i)f«, and f € D. Write
a = []; 4 where 4, is irreducible. If (o, B) = 1 define y,(B) by

1B = T ] 1(B).

This is well defined by Proposition 9.8.3(f). By part (e) of that proposition
one sees that if f = y () then x,(B) = x.(7).

Proposition 9.8.5. Let « € Z, o # 0, and a € Z be an odd nonunit. If (a, a) = 1,
then

Xa(®) = 1.
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PrROOF. We may assume a > 0. Write a = [ p; ﬂ q; where p;, q; are prime,
p; = 1(4) and g; = 3 (4). By Proposition 9.8.4 we need only verify that
Xp(®) = 1. If p; = nit where n is irreducible then yx,(x) = xu(@)xa(®) =
2()x(2) = 1 by Proposition 9.8.3(c).

Proposition 9.8.6. If n # 1isaninteger n = 1 (4), then y,(i) = (— 1)~ /4,

ProOF. Note that n may be negative. If n is a positive prime p = 1 (4) then
writing p = 77 one has

1) = 1(Dxz(0) = (P74 = (= 1)lr~ V4
If on the other hand n = —g, ¢ = 3 (4) and prime, then x_ (i) = j@* -4
({27 1e+ D4 = (~1)"9" V4 If n = 1 (4) is arbitrary then one may write
n=p - -p(—q) - (—q5), pi=1(4), ¢; = 3 (4). The result then follows
from Exercise 44. O

§9 The Law of Biquadratic Reciprocity

The general law of biquadratic reciprocity may be stated as follows. Let A
and 7 be relatively prime primary elements of D. Then

Theorem 2. y,(1) = xi(m)(— 1)((NU-)— D/4)((N(m) = 1)/4)

If A and = are primary, where 4 = ¢ + di and 7 = a + bj, it is simple to
see that (N(1) — 1)/4)((N(n) — 1)/4) and ((a — 1)/2)((c — 1)/2 have the
same parity, so one may write

%(A) = x(m)(—= 1)@ VD172,

In other words if either 7 or A is congruent to 1 modulo 4 then 7 and 4 have
the same biquadratic character. If however both are congruent to 3 + 2i
(see Lemma 6) then 7 and A have “opposite” character in the sense that
1D = —x(m).

Consider a primary irreducible = with N(n) = p = 1 (4) and let x, be the
associated quartic residue character. Then y, may be viewed as a multiplica-
tive character on the finite field D/nD = F. Recall that F is a finite field with p
elements consisting of the residue classes of 0, 1,...,p — 1. If { = ¢*™/7 let
9(0tx) = Yjer X(){’ be the Gauss sum belonging to x,. If Y = x2 then
is the nontrivial character of order 2 on F and thus is the Legendre symbol.

Proposition 9.9.1. J(x,., xx) = Xx:(— DI ¥)-
ProOF. By Theorem 1, Chapter 8, one has J(,, x.) = 9(x»)*/g(). Thus

4
J(Xn’ Xn)z = gg((xl;;Z = Xn(— I)J(Xiu XR)J(Xﬂ’ lp)

using Propositions 6.3.2 and 8.3.3. This gives the result. O
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Proposition 9.9.2. g(x,)* = PJ (x> X2)*.

Proor. This follows immediately from Propositions 9.9.1 and 8.3.3. O

Proposition 9.9.3. — x,.(—1)J(Xx, X) is primary.
Proor. Clearly

(p—1)/2 + 1\2
T 1) =2 L, 001 = 0 + X (pT) :
t=

But any unit in D is congruent to 1 modulo 1 + i. Also p=1(2 + 2i).
Finally x,(p + 1)/2)* = (tz(27")* = 1a(2)7? = 1a(2)* = xal =i(1 + D)*)* =
Xx(—)* = xa(—1). Thus

w20 = 2(252) + 2= @+ 20
= =24 x(—=1) 2 + 2i).
Thus
== DI 0) = 2¢(—1) — 1 (2 + 20)
=12 + 2),
since y(—1) = +1. a

The next proposition identifies the primary element — y,(— 1)J()z» Xz)-

Proposition 9.9.4. — x,.(— DJ () xz) = T

Proor. By Lemma 7 of Section 7 it is enough to show that the left- and right-
hand sides differ by a unit. Now J(x,, 1) = Y221 tP~ V41 — )®~ V% (7).
By Exercise 11 of Chapter 4 it follows that J(,, x.) = 0 (). By the corollary
to Theorem 1 of Chapter 8, N(J(X,, X)) = p- Thus J(x,, x.) is irreducible
and the proposition is complete. a

Combining Proposition 9.9.4 with Proposition 9.9.2 gives the factoriza-
tion of g(x)* in D.
Proposition 9.9.5. g(y,)* = n’x.

We will now prove two particular cases of the law of biquadratic re-
ciprocity. The general statement will then be a formal, if somewhat tedious,
consequence.

Proposition 9.9.6. Let g > 0 be a real irreducible in D. Then

Xa(—q) = x(70)-
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ProOF. Since g = 3 (4) one has
p—1

90" = X 1) = X0 @)

= 199X (@)

Thus
@GOHT " = g(x ) = xl(D9(X) - 9(Tr) (@)

By the observation following Proposition 8.2.2 and noting (see Exercise 45)
that &= = n? (q) one has, by Proposition 9.9.5

m@* DD = g (— D)t ()
or
n@ =D = . (- 9) (9)
But n'¢’~ /4 = y () (g). Thus
%M = 1(—9) (@),
which implies, since both sides are units, that
%M = x(—q)
This completes the proof. a
Notice that —gq is a primary irreducible and (N(q) — 1)/4 = (¢> — 1)/4 is
even. Thus Proposition 9.9.6 is indeed a special case of biquadratic re-
ciprocity.
Proposition 9.9.7. Let q be prime q = 1 (4). Then x,(q) = x,(n).
PRrOOF. Since g = 1 (4)
90" = X 1000 = X ()Y = 1 Dg(xx) @)-
Thus
90" = Tt (@)
By Proposition 9.9.5 this becomes
(@°m) I = y(Pn’7 (g).

Both sides of this congruence belong to D and (g, n) = (g, @) = 1. Thus we
may divide to obtain

(@)@~ V4@ = 1(g) @)

If ¢ = AZ where 4 is a irreducible in D then this implies

1)@ = 1(9) (A
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As in the previous case we conclude that
2T = X(9).
This may be written as
(M) = ¥x(9)
or
XM AT) = Xx()
which gives, by definition
%@ = X(9)-
Taking conjugates completes the proof. U
The reader should notice that in Proposition 9.9.7, g is not irreducible
and that the left-hand side is the generalized biquadratic residue symbol.

The following proposition is a formal exercise using Lemma 8 of Section 7,
and Propositions 9.8.6, 9.9.6, and 9.9.7.

Proposition 9.9.8. Let a be real and a = 1 (4) and A be primary, (4, a) = 1.
Then 1,(4) = xu(a).

Suppose now that = = a + bi and 1 = ¢ + di are primary and relatively
prime. We do not assume that N(n) # N(A), or that they are irreducible.
Proposition 9.9.9. If (a, b) = 1, (¢, d) = 1 then

1el) = ga(m)(— 1) V2,

Proor. The hypothesis implies that (a,n) = (b,n) = (c,4) = d,4) = 1.
The relation cr = ac + bd (1) implies (ac + bd, 1) = (ac + bd, n) = 1. Further-
more

x()xx(m) = xa(ac + bd). 1)
Similarly
1x(@2a(A) = xa(ac + bd). @
Taking the conjugate of (2) and multiplying by (1) one obtains the relation
2O @ (M) = Kaalac + bd).
Thus we have shown, using Proposition 9.8.3(c)
1(W1A) = 1t @xaalac + bd). 3

Assume that c, a, and ac + bd are nonunits. The three terms on the right-
hand side are easily computed. For an odd integer n put &n) = (— 1)~ /2,
Then e(nn =1(4) and e(ac + bd) = g(a)e(c) since bd = 0(4). Writing
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2(X) = x(e(x))x(e(x)x) for each term on the right-hand side of (3) one
obtains, noting that y,(e(x)) = xa(e(x)) and using Proposition 9.9.8 and
9.8.3(b)

AT = LD 4 0dAT). @
As for the last three terms one computes, using Proposition 9.8.5
2A) = xlc — di) = y(—di) = 1.0),
%) = xala + bi) = yx(bi) = 1a(i),
Xac+bd(TA) = Xac+ba((ad — DO = Yac+pa(i)-
Thus we have the relation

XA(’T)X,:(/D = X(ac+bd)ac(i)
— ( _ 1)((ac+ bd)ac— 1)/4

= (=1)@ De=12)  (Proposition 9.8.6) 5)

The last equality is a simple exercise using Lemma 6 of Section 7. We leave
to the reader the simple task of carrying through the situation in which one
of a, ¢, or ac + bd is a unit. O

The general law of biquadratic reciprocity follows easily from Proposition
9.9.9. For write t = m(a + bi), A = n(c + di),(n, 1) = lwherem=n=1(4),
(a,b) = 1, (c, d) = 1. By Proposition 9.9.8, x.(n) = x,(n) and x,(m) = x.(4)-
Also y,(n) = x,(m) = 1 by Proposition 9.8.5. Then, since a + bi and ¢ + di
are primary,

xa(m) = xa(m)yi(a + bi)
= AmADxu(@ + bi)x, +ala + bi)
= YL+ piM)Xa s pic + di)(— 1)@~ DE=1D

= g (A)(=1)E@™ 2= 1)/2)
= (D)= 1)N® = DIAN@D = 1)/4)

where in the last line we have used the fact that m = n = 1 (4). This completes
the proof, a monument to ingenuity and persistence!

§10 Rational Biquadratic Reciprocity

Throughout this section p and g denote distinct primes congruent to 1
modulo 4. Then the multiplicative group (Z/pZ)* has a unique subgroup
of order (p — 1)/4 consisting of the residues of fourth powers of integers.
Consider the biquadratic residue character y, defined by means of an
irreducible 7 in Z[i] dividing p. By Proposition 9.8.3 x,.(q) = 1iff x* = ¢ (n)
has a solution with x € Z[i].
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Lemma 1. x,(q) = 1 iff x* = q (p) has a solution with x € Z.

Proor. By Proposition 9.8.1 the integers 0, 1, 2,...,p — 1 form a complete
set of residues for the residue classes of Z[i] modulo n. Thus y,(q) = 1 iff
x* = q () has a solution with x € Z. It follows that x* = g (). However,
(n, ®) = 1. Thus p = n7|x* — q. O

Let ¥, denote the quadratic residue character.

Lemma 2. If y,(q) = 1 then x,(q) = +1.

PrOOF. Since ¢~ V/2 = 1 (p) it follows that y2(q) = (q®~/*)? = ¢q*~ 1 =
1 (n). Thus x2(q) = 1.

Thus, assuming that g is a square modulo p, x.(q) is +1 or —1 according
as q is or is not a fourth power modulo p. By the law of quadratic reciprocity
Y,(p) = +1. Notice that the value x,(q) depends only on p and g and not
on the choice of the irreducible 7. Contrary to what one might expect the
relationship between the two integers y,(q) and y,(p) where 1 is an irreducible
dividing ¢ is not a simple consequence of the law of biquadratic reciprocity.
In 1969 K. Burde [102] discovered the following remarkable reciprocity
law. Since p and g are congruent to 1 modulo 4 we may write p = a® + b?,
qg=c*+d* where a=c=1() and b =d =0(2). Throughout the
following we assume y/,(p) = 1.

Theorem 3. x(q)x:(p) = (— 1)~ *y (ad — bc).

The following elegant proof is due to K. Williams [244]. The law of
biquadratic reciprocity is not assumed. However the value of the quadratic
Gauss sum is used (Chapter 6, Section 4). The following proposition is of
interest in itself. (See the comment at the end of Section 12).

Proposition 9.10.1. Let n be the primary irreducible dividing p. Then
90 = —(=1)*~ V% /pn
where \/p denotes the positive square root.

PRrOOF. By Proposition 9.9.4 and Theorem 1, Chapter 8 we have

9(x)?
s Xn = — 2 ——1 = —)\
J(Ars ) XA(—Drm o)

The proposition follows from Theorem 1, Chapter 6 and the observation
that y(—1) = (—1)P- V4, a

Proposition 9.10.2. If © is a primary irreducible dividing p then x.(q)x\p) =
rla-1/2 (q)
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Proor. We have, in the ring of all algebraic integers,

90" = Q. 1N
=Y 1:0)Y (@)
= 1:(q” D9t (@)
= x(D)9(xx) (9)-

The last congruence follows because

1@ = 2@ = X2 @2 = 2:(a)-
Thus, multiplying by g(x,)*

9O @GN = 1D9(x)* (@)-

The two terms on the left-hand side are in Z[i] by Proposition 8.3.3; and
by Proposition 8.2.2 N(g(x,)*) = p*. Thus one may cancel g(x,)* to obtain

90" = 1a(a) (@).
Using Proposition 9.10.1 one obtains

(GO)H)™ D2 = pla™ Vil D2 = y.(q) (9).

But p“~ Y% = y.(p) (1) and since both sides of this congruence are real it
follows, taking conjugates and noting (4, 1) = 1, that this congruence holds
modulo g. This completes the proof. O

In the following proposition © is not assumed to be primary. Write
n=a+biand A = ¢ + di.
Proposition 9.10.3. 7@~ 1'% = y (dW (ad — bc) (q).
PRrOOF. Since dn = ad — bc (4) one has
(dm)4~ Y2 = (ad — bc)a™ V12 (Q).
Thus
Y (d)n~ 12 = Y (ad — bc) ().
Similarly dn = (ad + bc) (1) implies
Y (d)n=V'2 = (ad + be) (D).

The proof now follows from the following lemma. O

Lemma 3.y (ad — bc) = Y (ad + bc).
PRrOOF. Since c2 = —d? (q) one has
¥ (ad — be)y(ad + bc) = l//q(azd2 —b%?) = l//q(dzp) =y, p) =1 ]
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Note furthermore that since y,(—1) = 1 one has as a consequence of the
above lemma y(ad — bc) = Y (—ad + bc) = Y ,(—ad — bc). Thus in the
statement of Theorem 3 there is no loss of generality in assuming that = is
primary. With this assumption one concludes from Propositions 9.10.2
and 9.10.3 that

X @Xn(p) =y (d) (ad — bc).
The proof of Theorem 3 is completed by the following lemma.

Lemma 4. Ifqg = ¢ + d%,¢ > 0,c =1 (2)theny (d) = (—1)@" V4

PrOOF. Let . denote the Jacobi symbol. Then by Proposition 5.2.2 one has
Y (c) = YAq) = ¥.(d*) = 1. (Cf. Exercise 26, Chapter 5). But ¢ = —d? (q)
implies ¢4~ V2 = (—1)4~V4d@=1/2 (g) Thus Y, (c) = 1 = (— 1)~ V4 (d).

O

§11 The Constructibility of Regular Polygons

On March 30, 1796 C. Gauss, then almost 19 years old, began a diary in
which he recorded his mathematical discoveries. The first entry reads
“Principia quibus innitur sectio circuli, ac divisibilitas eiusdem geometrica
in septemdecim partes, etc.,” a rough translation of which is “ Principles upon
which the division of a circle into 17 parts depend, etc....”. More generally
in his Disquisitiones Arithmeticae, §365, Gauss proves, using “cyclotomic
periods™ that if p is a prime of the form 2" + 1 then a regular polygon with
p sides is constructible by ruler and compass.

In this section we give a short proof of this result using Gauss and Jacobi
sums.

Generally speaking the constructible complex numbers in our context
are those numbers that may be obtained from Q by a finite sequence of
rational operations and the formation of square roots. More precisely

Definition. A complex number « € C is constructible if there exist sub-
fields of C.Q = Ky C K, C K, C -+ C K, such that « € K, and K; =
Ki_i(Vaj-y) for some o; € K;, i =1,...,n.

Here K(\//_i) denotes the field of all complex numbers a + b\/B, a,beK
(see Exercise 6, Chapter 6). It is easy to see that « is constructible iff the real
and imaginary parts of a are constructible. Furthermore if « is constructible

then ./« is constructible. Let, as usual, {, = e>™/,
t

Lemma 1. {,. is constructible,n = 1,2,....
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PROOF. Since ({3n)*> = {,n-: the result follows by induction ({, is certainly
constructible!).

Lemma 2.

1, ift=0,
WOE {p —- 1, ift=1,
x 0, ift#0,1,
the sum being over all characters of Fy.

PrOOF. If y = ¢, the trivial character then ¢(0) = 1. Thus the result holds for
t = 0. It is true when ¢ = 1 by Proposition 8.1.3 while the remaining case is
the corollary to Proposition 8.1.3. O

Recall that a Fermat prime is a prime of the form 2" + 1.

Theorem 4. If p is a Fermat prime then {, is constructible.

Proor. If g(x) = Y=o x(t)} is the Gauss sum associated with y then

p—1
Y900 = =ZO (Z x(t))C;
=1+ (p — 1),

Thus{, = (p — 1)7'(—1 + Y, g(x)) and therefore {,, is constructible if each

g(x) is.

However p — 1 = 2" and since the characters form a group of order
p — 1 we see that the order of y is 2 for some m. Then using Proposition
8.3.3 we have g()*" = x(— DpJOt )OI x2) - .. J(0 1) where [ = 2™ — 2.
But J(x, ¥’) € Z[{,4] so that by Lemma 1 g(x)>” is constructible. It follows
that g(y) is constructible and the proof is complete. O

§12 Cubic Gauss Sums and the Problem of Kummer

If pis a prime p = 1 (4) then the simple argument of Proposition 6.3.2
showed that g(y)* = p where

Pl (g pct o pl 2nt?

9= X (*)CL =Yl=) cos—

=1 \P t=0 =0 14
is the classical quadratic Gauss sum. Thus with little effort g(y) was shown to
be one of the real roots of x2 — p = 0. Using a more sophisticated argument,
we have shown in Section 6, Chapter 6 that actually g(y) is always the largest
root, that is to say g(x) = \/;
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In the case of cubic Gauss sums the matter is more subtle. Let p be a
prime p = 1(3) and consider Zf; & cos(2nt3/p) = G. Write p = nt where 7
isacomplex primary prime in Z[w] and let x, be the cubic character associated
with = as defined in Section 3.

Lemma 1. G = g(x,) + 9(xx)-
PROOF. If { = e*™/? then since G is real, and —1 = (—1)?

p—1 p—-1
G= 30"= TU0+ 00+ 0

=0
= g(t) + 9(x2)
= g(xx) + 9(Xx)
= g(tx) + Xa(—Dg(tx)
= g(xx) + 90tx)- a

Notice that in the above proof y can be any character of order 3. However
in the following lemma the choice of y, is essential. Write 7 = a + bw.

Lemma 2. G is a real root of x> — 3px — (2a — b)p = 0.
Proor. By Lemma 1, writing y for y,,

G* =g(0* + 900> + 39090 + 9()
= pn + p% + 3pG
= 3pG + p(2a — b).

In the second step we have used the corollary to Lemma 1, Section 4. [

Corollary. G is a root of x> — 3px — Ap = 0 where 4p = A* + 27B?,
A=10)

ProoF. This is simply the corollary to Proposition 8.3.4. O

Thus G is twice the real part of g(x,) and is a root of the polynomial
x® — 3px — Ap. In the same manner as above we see that the other roots are
2 Re (wg(x,)) and 2 Re (w?g(x,)). Using the fact that |g(x,)| = p*/? it is a
simple matter to see that each of the intervals (—2\/;;, —\/;)), (—\/_ , \/1_)),
and (f , 2\/1_;) contains precisely one of the roots (see Exercise 43). By the
corollary to Lemma 1, Section 4, the value of g(,) is determined up to 1,
o, or w?. Unable to find an expression for this root of unity for general p,
Kummer proposed a statistical study of the distribution of those primes for
which G, say, is the largest root of x3 — 3px — Ap. He found, for example,
that among the primes less than 500, G was in the interval (\/;, 2\/1_7) for 24
primes. The interval (—2\/_ , —\/1;) contained 7 primes and the middle
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interval 14 primes. (See [164], Vol. 1, pp. 50, 296, 353.) Putting I, =
(=22, =) I = (=/p, /D), Is = (/p, 2/p) and letting N(B) be
the number of primes less than B such that G is in I; he noted that the ratio
N ,(500) : N,(500) : N3(500) is roughly 1:2:3.

However in 1953, J. von Neumann and H. H. Goldstine considering all
primes (=1 (3)) less than 9973 arrived at a ratio of roughly 2:3:4 [197].
They found N,(10*) = 138, N,(10%) = 201, N5(10*) = 272. They stated,
“These results would seem to indicate a significant departure from the
conjectured densities and a trend toward randomness.” Emma Lehmer ex-
tended the calculations to include the first 1000 primes, p = 1 (3), and dis-
covered a ratio approximately 3:4:5. [176]. Thus the suspicion arose that
indeed the values of G are asymptotically uniformly distributed in the three
intervals. That this is indeed the case was established in 1978 by D. R.
Heath-Brown and S. J. Patterson in their paper, “ The distribution of Kummer
sums at prime arguments” [147].

We mention that J. W. S. Cassels [108], conjectured a precise expression
for g(x,) involving elliptic functions. This conjecture was established by C. R.
Matthews [186]. Furthermore an explicit elementary expression has been
obtained for the biquadratic Gauss sum by Matthews [186]. The result of
Matthews is as follows. Let p be prime p = 1 (4) and write p = 77, © primary,
= a + bi.Define f = +iby((p — 1)/2)! = B (n). If g(x,) is the biquadratic
Gauss sum attached to y, then by Proposition 9.10.1,g(x,)?> = (— 1)®~ Yz /p.

Thus g(x,) = &/(—1)?~ Y4z, /p where the square root has positive real
part. Matthews proved that ¢ = — fBy.(2i)(2|b|/a) where (2|b|/a) is the

Jacobi symbol. See also J. H. Loxton [182], and B. C. Berndt and R. J. Evans
[93].

NOTES

For the early history of cubic and biquadratic reciprocity we note that Euler,
during the years 1748-1750, conjectured Proposition 9.6.2 concerning the
cubic character of 2, as well as similar results for the integers 3, 5, and 7.
He also conjectured that 2 is a fourth power modulo p, p=1@4) iff p =
a* + 64b? (Exercise 6, Chapter 5) and stated similar results for the primes 3
and 5. All of Euler’s conjectures concerning these special cases of reciprocity
were correct, a remarkable example of his “inductive” ability. The general
biquadratic character of 2 (Exercise 37) was established by Gauss in his first
memoir on biquadratic residues (1828) while the general law of biquadratic
reciprocity was stated in his second memoir on the same subject (1832).
For further historical comments on the history of these results see the
paper by M. J. Collision [116].

Gauss wrote to Alexander von Humboldt in 1846 that Eisenstein’s
mathematical talent was such as nature confers upon few in each century.
In 1844, at the age of twenty-one, Eisenstein published a total of 25 papers in
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Crelle’s journal. The proofs of cubic and biquadratic reciprocity given in
this chapter as well as the proofs of quadratic reciprocity given in Chapter 6
are among them (see [28], [130], [131]). The collected works of this re-
markable genius, dead at 29, are now available. An informative and charming
account of Eisenstein’s life and research has been given by A. Weil in his
review of the collected works [239]. One should also read the beautiful
paper by Weil, “La Cyclotomie, jadis et naguere” [238]. In a later chapter we
shall prove a generalization of these reciprocity laws, the celebrated Eisen-
stein reciprocity law. A discussion of Eisenstein’s other proofs of biquadratic
reciprocity is contained in H. Smith’s report [72]. As far as cubic reciprocity
is concerned Jacobi claims to have given the proof in his lectures of 1837
but the first published proof is definitely due to Eisenstein in 1844. The
dispute over priority appears to have been quite bitter.

For the actual construction of a 17-sided polygon see Hardy and Wright
[40], p. 61. Gauss’ treatment of cyclotomy is contained in §7 of his Dis-
quisitiones Arithmeticae [136]. In §335 he mentions that the techniques
developed there extend to other transcendental functions such as those

connected with [ dx/./1 — x*, the integral arising from arc length on a
lemniscate. Gauss recorded in his diary on March 21, 1797 that he has
succeeded in dividing the arc of the lemniscate into five equal parts. In 1827
Abel was able to show that, as in the case of a circle, the arc of a lemniscate
can be divided into p equal parts with ruler and compass when p is a Fermat
prime. For an examination of Abel’s proof from a modern point of view
see the article by M. Rosen [212].

In recent times there has been a renewed interest in rational reciprocity
laws. The interested reader should consult the survey article by E. Lehmer
[175] as well as the paper by H. von Lienen [181].

EXERCISES
1. If« € Z[w], show that « is congruent to either 0, 1, or —1 modulo 1 — w.

2. From now on we shall set D = Z[w] and A = 1 — w. For yu in D show that we can
write u = (—1)°w®A‘n%782 - - - 1%, where a, b, ¢, and the g; are nonnegative integers
and the #; are primary primes.

3. Let y be a primary prime. To evaluate y,(1) we see, by Exercise 2, that it is enough to
evaluate y,(— 1), (@), x,(A),and y,(n), where wis a primary prime. Since — 1 = (— 1)3
we have y,(—1) = 1. We now consider y,(w). Let y = a + bw and seta = 3m — 1
and b = 3n. Show that y(w) = @™*".

4. (continuation) Show that y,(w) = 1, w, or w* according to whether y is congruent
t0 8,2, or Smodulo 3A. In particular, if g is a rational prime, g = 2 (3), then y () = 1,
o, or w? according to whether g = 8, 2, or 5(9). [Hint: y=a + bw = —1 +
3(m + nw),andsoy = —1 + 3(m + n) (34).]

5. In the text we stated Eisenstein’s result ,(1) = w>™ Show that x,(3) = w?".
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6.

10.
11
12.

13.
14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

Prove that

@) 7,(4) = 1fory = 8,8 + 3w, 8 + 60 (9).
(b) 1, (D) =wfory=5,5+ 3w,5 + 6w (9).
© x,(A) = w?*fory =22+ 30,2 + 6w (9).

. Find primary primes associate to 1 — 2w, —7 — 3w, and 3 — .
. Factor the following numbers into primes in D: 7, 21, 45, 22, and 143.

. Show that &, the residue class of «, is a cube in the field D/zD iff a¥*~ V73 = 1 ().

Conclude that there are (Nm — 1)/3 cubes in D/zD.
What is the factorization of x2* — 1in D/5D?
How many cubes are there in D/5D?

Show that wA has order 8 in D/5D and that w?A has order 24. [Hint: Show first that
(wA)? has order 4.]

Show that zisacubein D/5D iffx = 1,2,3,4,1 + 20,2 + 40,3 + w,0or4 + 3w (5).
For which primes = € D is x> = 5 (n) solvable?

Suppose that p = 1 (3) and that p = =7, where = is a primary prime in D. Show that
x> = a (p) is solvable in Z iff y,(a) = 1. We assume that a € Z.

Is x> = 2 — 3w (11) solvable? Since D/11D has 121 elements this is hard to resolve
by straightforward checking. Fill in the details of the following proof that it is not
solvable. y,(2 — 3w) = x, _3,(11) and so we shall have a solution iff x*> = 11 (2 — 3w)
is solvable. This congruence is solvable iff x> = 11 (7) is solvable in Z. However,
x3 = a(7)is solvable in Z iffa = 1 or 6 (7).

An element y € D is called primary if y = 2 (3). If y and p are primary, show that
—yp is primary. If y is primary, show that y = 9,9, - - -y,, where the y; are (not
necessarily distinct) primary primes.

(continuation) If y = +v,y,---7, is a primary decomposition of the primary
element y, define y,(0) = £,,(2)1,,(2) - x,,(2). Prove that 1,(a) = x,(B) if 2 = B (7)
and y,(af) = x,(0)x,(B).If p is primary, show that y,(a)x,(@) = x-,,(a).

Suppose that y = 4 + Bw is primary and that A = 3M — | and B = 3N. Prove
that y,(w) = w™*" and that y,(4) = w*™.

If y and p are primary, show that y,(p) = (7).

If y is primary, show that there are infinitely many primary primes 7 such that
x® = y () is not solvable. Show also that there are infinitely many primary primes
7 such that x> = w () is not solvable and the same for x> = A (n). (Hint: Imitate
the proof of Theorem 3 of Chapter 5.)

(continuation) Show in general that if y € D and x* = y (n) is solvable for all but
finitely many primary primes =, then y is a cube in D.

Suppose that p = 1 (3). Use Exercise 5 to show that x> = 3 (p) is solvable in Z
iff p is of the form 4p = C? 4 243B2



136 9 Cubic and Biquadratic Reciprocity

The following three exercises give K. Williams’ elegant proof of the complex case of the
supplement to the law of cubic reciprocity [245]. The reader may wish to consult the
hints at the end of the book.

24. Let = = a + bw be a complex primary element of D = Z[w]. Put a = 3m — 1,
b = 3n,p = N(n).
@ (p-13=-2m+n(3).
(b) (@* — 1)/3=m((3).
(©) xa) = 0™
(d) xola + b) = ™11 — w).

25. Show that y,.,(n) may be computed as follows.

(a) Xa+b(n) = Xn+b(l - (1))
(b) Xary(m) = >N,

26. Combine the previous two exercises to conclude that y (1 — w) = @™
The following four exercises are taken from Matthews [186].

27. Let m = a + bi be a primary irreducible in Z[i], b # 0. Show
(@) a=(=1D)*"V"*@),p= Nn).
(b) b=1— (=1 D@4

I

28. The notation being as in Exercise 27 show x.(7) = x(2)x:(a)-

29. By Exercise 27, a(—1)?~Y* is primary. Use biquadratic reciprocity to show

Xn@(— P~V = (— )@=,
30. Use the preceding two exercises to show yu(%f) = xo(—2)(—1)@* 18,

31. Let p be prime, p = 1 (4). Show that p = a> + b*> where a and b are uniquely
determined by the conditionsa = 1(4),b = —((p — 1)/2)! a (p).

The following five exercises are taken from Eisenstein [130], §9.
32. Let p be prime, p = 1 (4) and write p = n&, & € Z[i]. Show x,(1 + i) = i?~ V4,

33. Let q be a positive prime, ¢ = 3 (4). Show y,(1 + i) = i V4 [Hint: (1 + i)*" ' =
—i(g)]

34. Let m = a + bi be a primary irreducible, (a, b) = 1. Show
(a) if = 1 (4) then y(a) = i~ V2,
(b) if # = 3 + 2i (4) then yu(a) = —iC"2~ 12,

35. If ®=a+ bi is as in Exercise 34 show y(a)x.(1 + i)=i®@*o~ V4 [Hins:
a(l +i)=a+ b + i(a + bi). Generalize Exercises 32 and 33 to any integer
=1 (4) and use Proposition 9.9.8. Note a + b = 1 (4).]

36. Remove the restriction (g, b) = 1 in Exercise 34.

37. Combine Exercises 32, 33, 34, and 35 to show y,(1 + i) = i@"®7%*~1/4 Show that
this result implies Exercise 26 of Chapter 5 (the “biquadratic character of 2”).

38. Prove part (d) of Proposition 9.8.3.

39. Let p=1(6) and write 4p = A% + 27B% A = 1(3). Put m = (p — 1)/6. Show
(™ = — A4 (p)=2|B.
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40.

41.

42.

43.

44.

45.

Let p = 1 (6), and put p = =7t where 7 is primary. Write 7 = a + bw and show

(@) Ifx.(2) = wthen2b — a = — (™) (p).

(b) If x.(2) = w? thena + b = ™) (p).

(©) If xo(2) = wput A = 2a — b, B = b/3. Show (4 — 9B)/2 = (3™ (p).

(d) If x.(2) = w? put 2a — b = A and B = —b/3. Show (4 — 9B)/2 = ™) (p).

(e) Show that the “normalization” of B in (c) and (d) is equivalent to 4 = B (4).
[Recall x,(2) = = (2) by cubic reciprocity.]

Let p=1(6), 4p = A> + 27B%, A=1(3), A and B odd. Put = = a + bw, 2a —

b = A,b = 3B. Let g, be the cubic residue character.

(@) Ifx.2) = wshow N(x3 +2y>=1)=p+1+2b—a=0(2).

(b) If x,2) = w?show N(x>* + 2y =1)=p+1—a—-b=0().

(c) Show that if A = B (4) then, assuming y,(2) # 1, one has x,(2) = w.

(d) Ify(2) # 1,A = B(4)then2?~ V3 = (— 4 — 3B)/6B = (A + 9B)/(A — 9B) (n).
(This generalization of Euler’s criterion is due to E. Lehmer [174]. See also
K. Williams [243].)

The notation being as in Section 12 show that the minimal polynomial of g(y,) is
x3 — 3px — Ap.

Find the local maxima and minima of x> — 3px — Ap and show that each of the

intervals (—2f , —\/E), (—\/_ , \[p), (f , 2\/;) contains exactly one of the

values 2 Re (o*g(x,)), k = 0, 1, 2.

Let neZ, n=s,---s,, n=1@4), s,=1@), i=1,...,t. Show (n—1)/4=
i=1 (i — D/4(4).

Let # = a + bi e Z[i] and q = 3(4) a rational prime. Show #n? = 7 (g).



Chapter 10
Equations over Finite Fields

In this chapter we shall introduce a new point of view.
Diophantine problems over finite fields will be put into the
context of elementary algebraic geometry. The notions of
affine space, projective space, and points at infinity will be
defined.

After these problems of language have been dealt with,
we shall prove a very general theorem due to C. Chevalley,
which states that a polynomial in several variables with
no constant term over a finite field always has nontrivial
zeros if the number of variables exceeds the degree.

Next, our interest turns to the problem of generalizing
the results of Chapter 8 to arbitrary finite fields. This
turns out to be relatively easy. These more general results
are of interest for their own sake and are crucial to the
discussion of the zeta function, which we shall take up in
Chapter 11.

§1 Affine Space, Projective Space, and Polynomials

Let F be a field and A"(F) the set of n-tuples (a;, a,,...,a,) with a; € F.
A"(F) can be considered as a vector space by defining addition and scalar
multiplication in the usual way. We shall be concerned principally with the
underlying set, which will be called affine n-space over F. As usual the point
(0,0,...,0) will be called the origin. If there is no chance of confusion we
shall denote the point (a,, a,, . .., a,) by the single letter a.

Projective n-space over F, P"(F), is a somewhat more difficult concept.
We first consider A"*!(F), denoting its points by (ag, d,- .-, a,)- On the
set A"*Y(F) — {(0,0,...,0)} (affine (n + 1)-space from which the origin
has been removed) we define an equivalence relation. (ao, 44, - - ., @,) is said
to be equivalent to (by, by,...,b,) if there is a y € F* such that a, = yb,,
a, = yby,...,a, = yb,. This is easily seen to be an equivalence relation.
The equivalence classes are called points of P"(F). If a € A"**(F) is distinct
from the origin, then [a] will denote the equivalence class containing a.
a will be called a representative of [a]. Geometrically, the points of P"(F)

138



§1 Affine Space, Projective Space, and Polynomials 139

are in one-to-one correspondence with the lines in 4"* }(F) that pass through
the origin.

If F is a finite field with g elements, then clearly A"(F) has ¢" elements.
P'F) has ¢"+q"" ' +---+q+ 1 elements. To see this, notice that
A" Y(F) — {(0,0,...,0)} has ¢"*! — 1 elements. Since F* has q — 1
elements each equivalence class has g — 1 elements. Thus P"(F) has
@' -DIg—D=q"+q¢" '+ -+ q+ | elements.

In general P"(F) has more points than A"(F). This is made more precise
as follows. If [x]e P"(F) and x, # 0, set ¢([x]) = (x;/Xg, X2/X0s---»
Xn/xo) € A"(F). This map is easily seen to be independent of the repre-
sentative x.

Lemma 1. Let H be the set of [x] € P(F) such that x, = 0. Then ¢ maps
P"(F) — H to A™(F) and this map is one to one and onto. (If S and T are sets, then
S — T is the set of elements in S but not in T.)

PROOF. If ¢([x]) = ¢([y]), then x;/xq = y;/yo fori=0,1,...,n Let y = yo/Xo-
Then yx; = y;fori =0, 1,...,nand so [x] = [y].

Ifv = (vy,v5,...,0,) € A"(F), setw = (1, vy, v5,...,0,). Then ¢([w]) = v.

O

The set H is called the hyperplane at infinity. It is easy to see that H
has the structure of P"~!(F). Thus P"(F) is made up of two pieces, one a
copy of A"(F), called the finite points, and the other a copy of P"~'(F),
called the points at infinity.

Notice that P°(F) consists of just one point. Thus P!(F) has only one
point at infinity. Similarly P?(F) has a (projective) line at infinity, etc.

Now that affine space and projective space have been defined we take
up the subject of polynomials and see how they determine sets called hyper-
surfaces.

Let F[x,, x,,...,x,] be the ring of polynomials in n variables over F.
If f e F[x,,...,Xx,], then

fx) = Z ai;i;---i,,xillxiZZ X
(1,02, ey in)

where the sum is over a finite set of n-tuples of nonnegative integers
(iy, 025 ..., 0,), Where a;;,..; # 0. A polynomial of the form x{x%---xj
is called a monomial. Its total degree is defined to be i; + i, + - + i,:
its degree in the variable x,, is defined as i,,. The degree of f(x) is the maximum
of the total degrees of monomials that occur in f(x) with nonzero coefficients.
The degree in x,, is the maximum of the degrees in x,, of monomials that
occur in f(x) with nonzero coefficients. Call these two numbers deg f(x) and
deg,, f(x). Then

(@) deg f(x)g(x) = deg f(x) + deg g(x).
(b) deg,, f(x)g(x) = deg,, f(x) + deg, g(x).
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If all the monomials that occur in f(x) have degree , then f(x) is said to
be homogeneous of degree [.

For example, if f(x) =1+ x;x, + x,x3 + x3, then deg f(x) =3,
deg, f(x) = deg, f(x) = deg; f(x) =1, and deg, f(x) = 3. f(x) is not
homogeneous, but h(x) = x; + x3 + x3 + x;x,x3 is homogeneous of
degree 3.

A homogeneous polynomial is sometimes called a form. A form of
degree 2 is called a quadratic form, and one of degree 3 is called a cubic
form, etc.

Suppose that K is a field containing F. If f(x) € F[x,, x,,...,X,] and
a € A"(K), we can substitute g; for x; and compute f(a).

This shows that f(x) defines a function from 4"(K) to K by sending a
to f(a). A point a € A"(K) such that f(a) = Ois called a zero of f(x).

If K is a finite field with g elements, then x? — x defines the zero function
on A'(K). Thus it may happen that a nonzero polynomial gives rise to the
zero function. This cannot happen when K is infinite (see the Exercises).

Letf (x) be anonzero polynomial and define H (K) = {a € A"(K)| f(a)=0}.
H /(K) is called the hypersurface defined by f'in A"(K). When K is a finite
field, H (K) is a finite set and it is natural to ask for the number of points in
H /(K). In Chapter 8 we dealt with a number of special cases of this problem.

We now wish to define a projective hypersurface. Let h(x)e
F[xq, X4,...,X,] be a nonzero homogeneous polynomial of degree d. As
before, K is a field containing F. For y € K* we have h(yx) = y°h(x). It
follows that if a € A"*}(K) and h(a) = 0, then h(ya) = 0. Thus we may
define H,(K) = {[a] € P"(K)|h(a) = 0}. This set is called the hypersurface
defined by hin P*(K). Again, if K is finite, we can ask for the number of points
in H,(K).

More generally if f,..., f,, are polynomials in F[x,,...,x,] define
V={@ay,....,a)la;eF,i=1,...,n flay,...,a,)=0,j=1,....m} Vis
called an algebraic set defined over F. If the ideal defined by fi,..., f,, in

F[xy,...,x,] is prime then V is called an algebraic variety. Similarly, the
common projective zeros of a finite set of homogeneous polynomials in
F[xy,...,x,] is called a projective algebraic set.

It turns out that working with projective space leads to more unified
results than working with affine space. We shall illustrate this point after
defining the projective closure of an affine hypersurface.

Let f(x) € F[x,, x,,...,Xx,], and define f(y) = f(yo, V1,---> V) bY

Y1 Y2 yn
f(y)=ydegf (_3'—9'--5_‘)-
e e e

We shall see in a moment that f'is a homogeneous polynomial. It will give
rise to a hypersurface in P"(K). Roughly speaking, the new hypersurface will
be obtained from H (K) by adding points at infinity.
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Lemma 2.7 (y) is a homogeneous polynomial of degree equal to deg f. Moreover,
f(l,)’n)’z,u-,yn) = f(yl’ y2,---ayn)'

PROOF. Set d = deg f and consider a monomial x{x% - - - xi» of degree | < d.

Then yo(y1/yo)* - - (/o)™ = Y6~ 'Viy% - - yir, which is of degree d. Thus

in f(y) all the monomials have degree d, which proves the first statement.
The second statement is immediate from the definition. O

As examples, if f(x) = x} + x3 — 1, then f(y) =y} + y3 — y3: if
f(x) = 1+ 2x3 — 3x3, then f(y) = y3 + 2y — 3yo)3.

Consider the hypersurface H (K) = A"(K). f(y) is homogeneous in
the variables y,, y;, ..., y, and so f defines a hypersurface ’—JT(K) in PY(K).
This projective hypersurface is called the projective closure of H«(K) in
P"(K).

Let A: A"(K) —» P(K) by May, a,,...,a,) =[1,a,,a,,...,a,]- A is one
to one and moreover the image of H (K) under 4 is contained in HxK)
since clearly f([1,ay,...,a,]) = f(ay,a;,...,a,) =0 for all aeH{K).
In general H {K) has more points than H (K), namely, the intersection of
H «K) with the hyperplane at infinity.

All this will become clearer by means of examples, but before giving
some we recall the definitions of the maps ¢ and A and give a diagrammatic
picture of P"(K):

A..A"(K)—')P"(K) by A'(alg a25"'aan) = [15 ai, az,..-,a,,],

by b, b,

¢: P(K) — H > A%K) by ¢([b°’b"""b"])=(b_o’b_o""’b_o)'

PY(K)

imi~x A"K) | H~ P"}K)
Finite points | Points at infinity

EXAMPLES

1. f(x) = x} + x3 — 1 over the field F = Z/pZ.

We have seen in Chapter 8, Section 3, that f(x) = 0 has p — 1 solutions
ifp=1(4)and p + 1 solutions if p = 3 (4).

f(») = y* + y3 — y2.Thesolutions [p,, py, p2], Where p, # 0corresponds
to the affine solution (p,/po, p2/Po)- Suppose that [0, p,, p,] is a solution.
Then p? + p2 =0 or (p,/p,)* = —1. If p = 1 (4), there is an a € F such
that a> = —1 and in this case there are two points at infinity, namely,
[0, 1, a] and [0, 1, —a]. If p = 3 (4), there is no a € F such that a*> = —1
and consequently there are no points at infinity. In both cases, then, the
hypersurface H {F) has exactly p + 1 points.
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2. f(x)=x} + x% — loverF = Z/pZ wherep = 1 (n).

We have f(y) = y} + 3 — ¥5. Thus the points at infinity on HAK)
are of the form [0, y,, y,], where y] + 5 = 0.If —1is not an nth powerin F,
then there are no points at infinity. If a" = — 1 for some a € F, then there are
n solutions to x" = —1 in F [this follows from Proposition 4.2.1 since
p=1(n)]. Call these solutions a, =a, a;,...,a,. Then [0, 1,a,],
...,[0,1,a,] are the points at infinity that are zeros of f(y). In the nota-
tion of Chapter 8, Section 4, the number of points at infinity is J,(— 1)n, and
N(x} + x5 = 1) + 6,(— n is the number of points on the projective hyper-
surface (curve) defined by y} + y5 — y§ = 0. Since the number of points in
P!(F) is p + 1 the formula in Proposition 8.4.1 can be interpreted in the
following way: The number of points on the projective curve y7 + y5 —
ys = 0 over Z/pZ differs from the number of points on the projective line by

an error term that does not exceed (n — 1)(n — 2)\/;.

This result is a special case of the so-called Riemann hypothesis for
finite fields, which states, roughly, that over a finite field with g elements,
the number of points on a projective curve differs from the number of points
on the projective line by an error term that does not exceed twice the genus

(a number associated with the curve) times \/a

Special cases of the result were proved by various authors: Gauss,
G. Herglotz, Hasse, and Davenport. The theorem was proved in full generality
by Weil.

3.f(x)=x}+x3 4+ +x2—1 over F=27/pZ, where m is even and
p#2

The number of finite points is given by p™~! — (— 1)@= 1/2) pm2)~1
(see Proposition 8.6.1). Since f(y) = y? + y3 + --- + y2 — y§ the number
of points at infinity is equal to the number of solutions to y? + y2 + --- +
y2 = 0in P"'(F). The number of affine solutions is given by N = p™~! +
(= D)m2@=D2)p — 1)pm2~1 (see Exercise 19 in Chapter 8) so the number
of projective solutions is

IZ_ 11 — pm—2 + pm—3 4ot p + 1+ (_1)(m/2)((p“1)/2p(m/2)—1'

Adding the number of finite solutions to the solutions at infinity yields

P+ pti4+ -+ p+ L

This result is rather remarkable. It says that the number of points on
the projective hypersurface given by y? 4+ y2 + .- 4+ y2 — y3 =0 is
exactly equal to the number of points in P™~1(Z/pZ).

There is a simpler way to achieve this result. Instead of considering
the finite and infinite points separately one simply counts the number M
of affine solutions to y? + y3 +--- + y2 — y3 =0 in A™*(F) and then
calculates (M — 1)/(p — 1). Since m + 1 is odd, the number M is equal
to p™ (see Exercise 19 in Chapter 8). Thus (M — 1)/(p — 1) = p™ ' +
PP+ L
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§2 Chevalley’s Theorem

In this section F will denote a finite field with q elements.

Ifgisaprime,ie., F = Z/qZ,theequationx{™' + x§™' +--- + x4} =0
has no solution except (0, 0, ...,0) because a?~ ! is equal to 1 or zero de-
pending on whether a # 0 or a = 0 for a € F. Thus the values taken on by
the above polynomialare0,1,2,...,9 — landitiszeroonlyifx; = x, = - --
= x,-; = 0. Notice that for this polynomial the number of variables is
equal to the degree.

In 1935 E. Artin conjectured the following theorem, which was proved
almost immediately by C. Chevalley [16].

Theorem 1. Let f(x) € F[x,, x,,. .., X,] and suppose that

(@ f(0,0,...,0)=0.
() n>d=degf.

Then f has at least two zeros in A"(F).
Before giving the proof we shall deduce an immediate corollary.

Corollary. Let h(y) € F[yo, y1,---,Vn] be a homogeneous polynomial of
degreed > 0. If n + 1 > d. then H,(F) is not empty.

PrOOF. Since h is homogeneous (0, 0, ..., 0) is a zero. By Theorem 1 h has
another zero, (a,, a,,. .., a,). Clearly [ay, a;, ..., a,] € H,(F). O

We shall need the following elementary lemmas.

Lemma 1. Let f(x,, X,,. .-, X,) be a polynomial that is of degree less than q in
each of its variables. Then if f vanishes on all of A"(F), it is the zero poly-
nomial.

PROOF. The proof is by induction on n. If n = 1, f(x) is a polynomial in one
variable of degree less than g with g distinct roots, namely, all the elements
of F. Thus fis identically zero.

Suppose that we have proved the result for n — 1 and consider

f(xls X2, L ’xn)'
We can write

q-1
f(xla .. .,X,,) = Z gi(xls cee ’xn—l)x:l'
i=0

Select ay, ay,...,a,-; € F. Then Y%2/ g(ay, a,, . .., a,—1)x; has g roots
and sog(a, a,, - - -, a,_,) = 0. By induction each polynomial g; is identically
zero and hence so is f. O
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Remember that f(x) = x? — x is a nonzero polynomial that vanishes
on all of 4!(F), so the hypothesis of the lemma is crucial.

If a polynomial is of degree less than ¢ in each variable, it is said to be
reduced. Two polynomials f, g are said to be equivalent if f(a) = g(a) for
all a € AY(F). We write f ~ g.

Lemma 2. Each polynomial f(x) € F[x,,...,X,] is equivalent to a reduced
polynomial.

Proor. Consider the case of one variable. Clearly x? ~ x. If m > 0 is an
integer, let [ be the least positive integer such that x™ ~ x'. We claim that
l<gq. If not, | =gs +r with 0 <r <gq and s # 0. Then x' = (x9)°x" ~
x**". Since s + r < [ this contradicts the minimality of I.

In the case of n variables consider the monomial x''x%--- xi»~. By what
has been said, x{'x% - - - xir ~ x\'xf ... xjr, where j, < g fork =1,2,...,n.
Lemma 2 follows directly from this remark. O

We are now in a position to prove Theorem 1. Suppose that (0, 0,...,0)
is the only zero of f. Then 1 — f97! has the value 1 at (0, 0,...,0) and the
value zero elsewhere. The same is true of the polynomial (1 — x4~ )(1 — x§™ %)
«++(1 — x4~ 1), Thus

L= o = (=X = x5 (- XY

vanishes on all of A"(F). Replace 1 — f9~! by an equivalent reduced poly-
nomial g. Then

g—(1—x-(1 -

is of degree less than g in each of its variables and vanishes on all of A"(F).
By Lemma 1 it vanishes identically. Thus deg g = n(q — 1). On the other
hand, degg < deg(l1 — f¥° ') =d(q — 1). Recall that d = deg f. This
implies that n < d, which is contrary to the hypothesis. Consequently f
must have more than one zero.

We shall give another proof due to Ax [3]. It is based on the following
lemma.

Lemma 3. Let iy, i,,...,i, be nonnegative integers. Then unless each i; is
nonzero and divisible by ¢ — 1 we have

Y dtag---ay=0.
ae A™(F)

PROOF. Suppose first that n = 1.1fi = 0,then ) ,.r a® = g = 0in F. Suppose
i # 0. F* is cyclic. Let b be a generator. If ¢ — 1.fi, then



§3 Gauss and Jacobi Sums over Finite Fields 145

In general

3 ataeoear = ( T ab)( T ak) oo T ab).
ae A™(F) ajeF azeF ancF

Lemma 3 is now clear. O

It should be remarked that if ¢ — 1]i; and i; # O for all j, then the value
of the above sum is (¢ — 1)".

To return to Theorem 1, let N, be the number of solutions of f(x) = 0
in A"(F). We shall show that p|N ,, where p is the characteristic of F. This
refinement of Chevalley’s theorem was first given by Warning [78].

As we have seen, 1 — f77! has the value 1 at a zero of f and the value
zero otherwise. Thus

Ny= Y (= f@h,
ae A*(F)

where N, is the residue class of N, mod p considered as an element of F.

Let x!'x%?---xi» be a monomial occurring in 1 — f(x)?”'. Since this
polynomial has degree d(q — 1) we must have i; < g — 1 for some j since
otherwise the degree of the monomial would exceed n(q — 1) and we have
assumed thatd < n.ByLemma3 ) ,. 4n, aid% - - - ai = 0.Sincel — f(x)?~*
is a linear combination of monomials it follows that N, = 0, or p|N .

Warning was able to prove that N, > ¢"~% In a somewhat different
direction Ax showed that ¢°| N, where b is the largest integer less than
n/d. See [78] and [3] for details.

§3 Gauss and Jacobi Sums over Finite Fields

Let {, = €*"/” and F, = Z/pZ. In Chapter 8 the function y: F, - C given
by ¥(t) = {}, played a crucial role. To carry over the principal results of
Chapter 8 to an arbitrary finite field F, we need an analog of y for F. This
is done by means of the trace.

Suppose that F has g = p" elements. For a € F define tr(x) = a + af +
a?* + .-+ + of" . tr(a) is called the trace of a.

Proposition 10.3.1. If o, Be F and a € F ,, then
(a) tr(a) e F).

(b) tr(e + B) = tr(e) + tr(p).

(c) tr(aax) = a tr(a).

(d) tr maps F onto F,,.
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PROOF.

(a) We have
@+aP+-+a" P=a? +a” -+ o
Since o?” = o = a we see that tr(a)? = tr(a). This proves property (a)
(see Proposition 7.1.1, Corollary 1).
b)) tf@+ P =@+h+@+p+ -+ @+ p""
=@+ )+ @+ )+ + @+ )
=(+of +---+ ap"") +B+p+ - +ﬂp"“)
= tr(a) + tr(f).
(c) tr(ax) = ao + aPa® + --- + a”" 'a?"!
=alec +o? + -+ aP"'l)
= atr(a).
We have used the fact that a? = aforae F,.
(d) The polynomial x + x? + --- + x?"~' has at most p"~! roots in F.
Since F has p" elements there is an « € F such that tr(a) = ¢ # 0. If
b e F,, then using property (c) we see that tr((b/c)x) = (b/c) tr(ax) = b.
Thus the trace is onto. O

We now define y: F —» C by the formula y(x) = {§@. If F = F,, this
coincides with the previous definition.

1

Proposition 10.3.2. The function s has the following properties:

(@) ¥(a + B) = () (p).
(b) There is an a € F such that y(x) # 1.

(C) ZaEF '//(d) =0.

PROOF.

@) Y(a+ p) = (5P = (F@Tb) = (FOE® = y(ay(p).
(b) tr is onto, so there is an a € F such that tr(a) = 1. Then y() = {, # L.
(¢) Let S=),.r¥(x). Choose B such that y(B) # 1. Then Y(f)S =

Yacr VBW(®) = Y, (B + a) = S. It follows that S = 0. O
Proposition 10.3.3. Let o, x, y€ F. Then

3 Y wlax — y)) = 8(x, »),

aeF

where 6(x, y) = 1 if x = y and zero otherwise.

PrOOF. Ifx = Y, then ZaEF l//(d(x - y)) = ZaeF VI(O) =4q.
If x # y, then x — y # 0 and a(x — y) ranges over all of F as a ranges

over all of F. Thus ), .r y(a(x — )) = Y g5 ¥(B) = 0 by property (c) of
Proposition 10.3.2. O
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Proposition 10.3.3 generalizes the corollary to Lemma 1 of Chapter 6.

In Chapter 7 we proved that the multiplicative group of a finite field is
cyclic. On the basis of this fact, one easily see that all the definitions and
propositions of Chapter 8, Section 1, can be applied to F as well as to F,.
It is only necessary to replace p by q whenever it occurs. Thus we may
assume that the theory of multiplicative characters for F is known.

We are now in a position to define Gauss sums on F.

Definition. Let y be a character of F and a € F*. Let g,(x) = Y cr x(O¥(at).
9,(x) is called a Gauss sum on F belonging to the character y.

If we replace p by g, Propositions 8.2.1 and 8.2.2 can now be proved for
the sums g,(x). In the proof of Proposition 8.2.2 one needs Proposition 10.3.3.

In particular, we have |g(x)| = ¢'/* and g,(x)g.(x" ') = x(—1)g for
X F &

The general theory of Jacobi sums and the interrelation between Gauss
sums and Jacobi sums that is developed in Chapter 8, Section 5, generalizes
with no difficulty (just replace p by g everywhere), and all the results of
Chapter 8, Section 7, also hold. The reader may wish to go back to these
sections to assure himself that there are indeed no difficulties in generalizing
the definitions and results.

As an exercise in working with these new tools, we present a theorem that
is really a reformulation of some of our earlier work. This theorem will also
be of use in Chapter 11.

Theorem 2. Suppose that F is a field with q elements and q = 1 (m). T he homo-
geneous equation ayyg + ay7 + -+ + a,yr =0, aq, ay, ..., a, € F*, defines
a hypersurface in P"(F). The number of points on this hypersurface is given by

g+ g+ L

+— Z Xo(ag 1) o Xn(an— 1)JO(XO, Xis---> Xn), (1)

4d—1 it n

where y' = & x; # &, and Yo X1 A = &
Moreover, under these conditions

1 1
=1 Jo(Xos X5+ -+ Xn) = ag(xo)g(xl) g0t 2
PrOOF. The number of points N on the hypersurface in 4"*!(F) defined by
ayy§ + ayt + -+ + a,yy = 0is given by
"+ X xoao Hxi@r) - xuan Wolxos Xas- -5 %),
X0s X155 Xn
where the characters y; are subject to the conditions stated in Theorem 2.

This follows from Theorem 5 of Chapter 8. The number we are looking for is
(N — 1)/(g — 1) and this yields Equation (1).
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By Proposition 8.5.1, part (c), we have

JO(XO’ Xla LR Xn) = XO(_ 1)(q - I)J(Xh XZ! LR Xn)' (3)
By Theorem 3 of Chapter 8
9()a(x2) - - - 9(xw)
J(1 Xas oo dn) = ~ C))
O 2o 20 = )

Multiply the numerator and denominator of the right-hand side by g(y,)-

Since o X1+ X = & We have g(xo)g(X1X2 - xn) = Xo( —1)g. Combining this
comment, Equations (3) and (4) yield Equation (2). O

NoOTES

There is a pleasant introduction to geometry over finite fields in the book
Excursions into Mathematics [7]. The authors discuss affine, projective,
and even hyperbolic geometry. There is also a short but useful bibliography.

Artin’s conjecture on polynomials over finite fields was made much
earlier by Dickson (On the Representations of Numbers by Modular
Forms, Bull. Am. Math. Soc., 15 (1909), 338-347). The first proof we gave is
the original proof of Chevally [16]. The second proof is due to J. Ax [3]
and is found in M. Greenberg [37] and Samuel [68]. E. Warning’s proof of a
sharper result can be found in his original paper [78] and in Borevich and
Shafarevich [9].

A. Meyer, in 1884, was able to prove that a quadratic form over the
rationals in five or more variables always has a rational zero if it has a
real zero. Hasse was able to prove that the same result, suitably generalized,
holds over any algebraic number field. E. Artin was led by this and other
considerations to conjecture that over a certain class of number fields a
form of degree d in n > d? variable always has a nontrivial zero. He also
made conjectures of this nature over other types of fields. For a discussion
of this area of research, see the paper of S. Lang [53], as well as the book of
Greenberg [37], which includes a counterexample to Artin’s conjecture for
p-adic fields, discovered in 1966 by G. Terjanian. Other counterexamples were
provided shortly thereafter by S. Shanuel. There is much left to discover in
this area, which is one of the most fascinating in modern number theory.

If one looks at the case where the ground field is the field of rational func-
tions over a finite field, then the Artin conjecture mentioned above has been
proved by Carlitz [11]. More precisely, let F be a finite field and K = F(x).
Then every form of degree d in more than d? variables has a nontrivial zero
in K. The proof makes ingenious use of the theorem of Chevalley proved in
this chapter. It is a special case of a general result of S. Lang.

Many of the most important advances in number theory demand an
extensive knowledge of modern algebraic geometry. For a readable and not
too sophisticated introduction to algebraic geometry see W. Fulton [135].
A more extensive introduction is contained in Shafarevich [219]. Finally,
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for a reader with more background in commutative algebra, see R. Hart-
shorne [144].

EXERCISES

1.

10.

11.

If K is an infinite field and f (x,, x,, ..., x,) isa non-zero polynomial with coefficients
in K, show that fis not identically zeéro on A"(K). (Hint: Imitate the proof of Lemma
1 in Section 2.)

. In Section 1 it was asserted that H, the hyperplane at infinity in P"(F), has the

structure of P""!(F). Verify this by constructing a one-to-one, onto map from
P Y(F)to H.

. Suppose that F has g elements. Use the decomposition of P"(F) into finite points and

points at infinity to give another proof of the formula for the number of points in
P"(F).

. The hypersurface defined by a homogeneous polynomial of degree 1, agx, +

ayx, +a,x, +--- + a,Xx,, is called a hyperplane. Show that any hyperplane in
P"(F) has the same number of elements as P"~ !(F).

. Let f(x, x;, x,) be a homogeneous polynomial of degree n in F[x,, x;, x,].

Suppose that not every zero of agx, + a;x; + a,x, is a zero of f. Prove that
there are at most n common zeros of f and agXxo + a,X; + a,x, in P*(F). In more
geometric language this says that a curve of degree n and a line have at most n
points in common unless the line is contained in the curve.

. Let F be a field with g elements. Let M,(F) be the set of n x n matrices with co-

efficients in F. Let SI,(F) be the subset of those matrices with determinant equal to
one. Show that SI,(F) can be considered as a hypersurface in A" (F). Find a formula
for the number of points on this hypersurface. [Answer: (g — )" '(¢" — 1)q" — q@) - -~
@ —-4qH]

. Let feF[xq,xy, X2,...,X,]- One can define the partial derivatives df/dx,,

df/0xy,...,0f/0x, in a formal way. Suppose that f is homogeneous of degree m.
Prove that Y "_, x(0f/dx;) = mf. This result is due to Euler. (Hint: Do it first for
the case that f is a monomial.)

. (continuation) If f is homogeneous, a point @ on the hypersurface defined by f

is said to be singular if it is simultaneously a zero of all the partial derivatives of f.
If the degree of f is prime to the characteristic, show that a common zero of all the
partial derivatives of f is automatically a zero of f.

. If m is prime to the characteristic of F, show that the hypersurface defined by

agxy + a;x7 + --- + a,x; has no singular points.

A point on an affine hypersurface is said to be singular if the corresponding point
on the projective closure is singular. Show that this is equivalent to the following
definition. Let f € F[x,, x5, ..., X,], not necessarily homogeneous, and a € H ;(F).
Then a is singular iff it is a common zero of df/dx; fori=1,2,..., n.

Show that the origin is a singular point on the curve defined by y* — x* = 0.
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12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

Show that the affine curve defined by x? + y*> + x?y*> = 0 has two points at
infinity and that both are singular.

Suppose that the characteristic of F is not 2, and consider the curve defined by
ax? + bxy + cy?* = 1, where a, b, c € F*. If b*> — 4ac ¢ F?, show that there are no
points at infinity in P3(F). If b> — 4ac € F?, show that there are one or two points
at infinity depending on whether b? — 4ac is zero. If b*> — 4ac = 0, show that the
point at infinity is singular.

Consider the curve defined by y* = x* + ax + b. Show that it has no singular
points (finite or infinite) if 4a® + 27b # 0.

Let @ be the field of rational numbers and p a prime. Show that the form x§*' +

pxitt 4 pixi*tt 4 ... 4 p"x"*! has no zeros in P"Q). (Hint: If @ is a zero, one
can assume that the components of a are integers and that they are not all divisible
by p)

Show by explicit calculation that every cubic form in two variables over Z/2Z has a
nontrivial zero.

Show that for each m > 0 and finite field F, there is a form of degree m in m variables

with no nontrivial zero. [Hint: Let w,, w,, ..., ®,, be a basis for F . over F, and
show that f(xi, xz,..., %) = [|"o (@9'x, + - + w¥%x,) has the required
properties. ]

Let gy, 92,...,9m€ F [x), X,,...,x,] be homogeneous polynomials of degree

d and assume that n > md. Prove that there is nontrivial common zero. [Hint:
Let f be as in Exercise 17 and consider the polynomial f(g,(x,...,X.),---»
In(X15 -5 X0).]

Characterize those extensions F . of F, that are such that the trace is identically
zeroon F,.

Show that if « € F, has trace zero, then a = f§ — B? for some f € F,.

Let y be a map from F, to C* such that y(«x + B) = Y(«)y(p) for all o, f € F,. Show
that there is a y € F, such that y(x) = (" for all x € F,, where { = *™/".

If g,(x) is a Gauss sum on F, defined in Section 3, show that
@) 9.0 = M0g(0). L

(®) g(x™") = 9(0) = 2(—Dg().

© 19001 = q"

(d) g(g(x™") = 2(=a.

Suppose that f'is a function mapping F to C. Define f(s) = (1/q) > f(OY(st) and
prove that f(t) = Y, f(s)y(st). The last sum is called the finite Fourier series
expansion of f.

In Exercise 23 take f to be a nontrivial character y and show that x(s) = (1/9)g - (0)-



Chapter 11
The Zeta Function

The zeta function of an algebraic variety has played a
major role in recent developments in diophantine geometry.

In 1924 E. Artin introduced the notion of a zeta function
for a certain class of curves defined over a finite field. By
analogy with the classical Riemann zeta function he con-
Jectured that the Riemann hypothesis was valid for the
Junctions he had defined. In special cases he was able to
prove this. Remarkably, results of this nature can already
be found in the work of Gauss (naturally, Gauss stated his
results differently from Artin). Weil was able to prove (in
1948) that the Riemann hypothesis for nonsingular curves
over a finite field was true in general.

In 1949 Weil published a paper in the Bulletin of the
American Mathematical Society entitled “Numbers
of Solutions of Equations over Finite Fields.” In this paper
he defined the zeta function of an algebraic variety and
announced a number of conjectures. Weil had already
proved the validity of his conjectures for curves. Here he
establishes the same results for a class of projective hyper-
surfaces. We shall give an exposition of part of this
material. Most of the necessary tools have already been
developed. The main new result that is needed is the
Hasse—Davenport relation between Gauss sums. Weil gave
a proof of this relation that is substantially simpler than
the original. We shall give a proof due to P. Monsky that
is even simpler than Weil’s, although it is far from trivial.

In 1973 Pierre Deligne succeeded in establishing the
validity of the Weil conjectures in all generality. The
proof utilizes the most advanced techniques of modern
algebraic geometry and represents one of the most re-
markable mathematical achievements of this century.

§1 The Zeta Function of a Projective Hypersurface

In Chapter 7, Section 2, we showed that if F = Z/pZ and s > 1 an integer,
then there exists a field K containing F with p® elements. The same result
holds true in general. Namely, if F is a finite field with g elements and s > 1

151
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an integer, then there exists a field F, containing F with ¢* elements (this is
Fg4 in our former terminology). The proof of the general case is almost
identical with that of the special case (see the Exercises to Chapter 7).

Now, let f(y) € F[yo,V1,---,V,] be a homogeneous polynomial and
let N, be the number of points on the projective hypersurface H (F;) <
P"(F,). In less fancy language, N, is the number of zeros of f in P"(F,). We
wish to investigate the way in which the numbers N, depend on s.

At the end of this section we shall prove that the number N, depends
only on s and not on the field F,. This will follow once we show that any
two fields containing F and of the same dimension over F are isomorphic.

To study the numbers N, we introduce the power series ) o2, N u".
In all that follows it is possible to deal only with formal power series and thus
to avoid all questions of convergence. To those who are uncomfortable with
that notion, notice that N, < (¢*"*? — 1)/(¢° — 1) < (n + 1)g™. It follows
that our series converges for all complex numbers u such that |u|<q™"
and defines an analytic function in that disc.

Letexpu = Y .o (1/s)u’.

Definition. The zeta function of the hypersurface defined by fiis the series given
by

e8]

N S
Z,(u) = exp( Y ;u )

s=1

It is possible to regard Z (u) either as a formal power series or as a function
of a complex variable defined and analytic on the disc {u € C||u| < ¢~ "}.

It may seem strange to deal with Z (u) instead of directly considering
the series ) &2, N,u’. The reasons are mainly historical, although as we shall
see the zeta function is, in fact, easier to handle. See the remarks at the end of
this section.

As a first example, consider the hyperplane at infinity. By definition
this is the set of points [aq, ..., a,] € P*(F) with a4 = 0. It is defined by the
equation x, = 0. As we pointed out in Chapter 10 it is easy to see that H, (F)
has the same number of points as P"~(F); that is,

Ns _ qs(n—l) + qS(H"Z) + e+ q" + 1.
It follows that

© N n— s n—1
L =1 (Z @ u)) = — 2 In(l - q") 1)

m=0\s=1

We have used the identity ) 2, w'/s = —In(1 — w). Exponentiating
Equation (1) yields

Z,w=0-q"'w 1 -g 2w (1 -qu 'l —w) "

In particular, we see that Z, (u) is a rational function of u.
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We shall now compute a somewhat more involved example. Consider
the hypersurface defined by —y3 + y7 + y3 + y3 = 0. To compute N,
we use Theorem 2 of Chapter 10. Specializing to our case we find that

1
Ni=g*+q+1+ x(—l)ag(x)“,
where y is the character of order 2 on F. We know that g(x)?> = y(—1)q.
Thus
Ny=q¢*+qg+ 1+ (-1

To compute N, we must replace g by ¢°* and y by g, the character of order 2
on F,. Then

Ny=¢"+ ¢ + 1 + x(- g~
If —1 is a square in F, then y(—1) = 1 for all s. If —1 is not a square
in F, it is not hard to see that y(—1) = —1 for s odd and y(—1) = 1 for s
even.
In the first case

i _ i (q*uy + 2i (qu)s i

s=1 S s=1 N s=1 s=1 S

us

and so
Zw)=(1-q*uw) "1 —qu) A —u) "

In the second case the last term gives rise to the sum

Z (= qu)‘ —In(1 + qu).

Thus in this case
Zwy=(1-quw "0 —q) '+ q) ' —uw "

Notice that in the first case the zeta function has a pole at u = g~
of order 2, whereas in the second case there is a pole at u = g~ ! of order 1.
This is in accordance with a conjecture of John Tate, which relates the order
of the pole at u = g~ ! to certain geometric properties of the hypersurface.
We cannot go more deeply into this here.

As a final example, consider the curve y3 + y» + y3 = O over F = Z/pZ,
p is a prime congruent to 1 modulo 3.

Specializing Theorem 2 of Chapter 10 once again we find that

1

1 1
Ny=p+1 +’79(x)3 +Eg(x2)3-

Here y is a cubic character on Z/pZ. We know that g(x)*> = pr, where
n = J(% x), and n = p. Thus

Ni=p+1l+n+m
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It will follow from the Hasse-Davenport relation, to be proved later,
that
Ny=p +1— (=1 — (7"
Calculation now shows that

(1 + mu)(1 + 7u)
(1 —u)(l —pu)

The numerator can be evaluated explicitly. In Chapter 8 we proved
that © + 7 = A, where A is uniquely determined by 4p = A + 27B?
and 4 = 1(3).

So our final expression is

Zf(u) =

1 + Au + pu?®
(1 —u)(l — pu)’

In this example Z (u) is a rational function; the numerator and de-
nominator are polynomials with integer coefficients. The roots of Z ((u),
—7n~Yand —7 !, both have absolute value p~ /2.

More generally, let f(x,, x;, X,) € F[xo, X;, X,] be a nonzero homo-
geneous polynomial that is nonsingular over every algebraic extension of F.
Then, Weil was able to prove that the zeta function of f has the form

Z(u) =

P(u)
(1 — u)(l — qu)’

where P(u) is a polynomial with integer coefficients of degree (d — 1)(d — 2),
d being the degree of f. Furthermore, if a is a root of P(u), then |a| = g~ /2.
The last statement is called the Riemann hypothesis for curves.

[To see the relation with the classical Riemann hypothesis, make the
change of variablesu = g~ *andset{ /(s) = Z (g™ °). { (s) is directly analogous
to the classical zeta function (see the end of this section). The condition that
the roots of Z (u) have absolute value g~ '/? is equivalent to the condition that
the roots of { /(s) have real part 3.]

In all our examples the zeta function is rational. In 1959 B. Dwork
proved that any algebraic set has a rational zeta function [26]. His proof is
extremely beautiful, but unfortunately it is based on methods that are
beyond the scope of this book.

Our examples suggest another characterization of the condition that the
zeta function is rational.

It is immediate from the definition of the zeta function that if it is ex-
panded in a power series about the origin, then the constant term is 1.
Consequently, if Z (u) = P(u)/Q(u), where P(u) and Q(u) are polynomials,
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we may assume that P(0) = Q(0) = 1 (prove it). With this assumption, the
zeta function can be factored as follows:

n(l o)

Zf(u) = n] (1 — ,BJu)

where «;, B; € C. We can now prove
Proposition 11.1.1. The zeta function is rational iff there exist complex numbers
a; and B; such that
N, = Z B — Y o
J i

PROOF. Suppose that the zeta function is rational. Then by the above remarks

I1: 4 = o)
Z(u) =
@ HJ a- 'Blu)
with a;, B; € C. Taking the logarithmic derivative of both sides:
Z'(u) _ —% —B;
Z(u) -gl—aiu ;l—ﬂju'

Multiply both sides by » and then use the geometric series to expand
in a power series. One finds finally that

uZ'(u)

2 ) (Z LR ) @

We now compute the left-hand side in a different way. From the definition

0 Nsus

Z(u)=-exp Y.
s=1
Differentiate logarithmically both sides and then multiply both sides by u.
We find that

wZ'u) &,
Zay = LN 3)

Comparing coefficients of #° in Equations (2) and (3) we have
Ns = Z ﬁj - Z df.
J i

The converse is an easy calculation that we have done in special cases.
We leave the details to the reader. O

It remains to prove that the number N is independent of the choice of
field F,. The reader may wish to simply accept this fact and proceed to
Section 2.

Suppose that E and E’ are two fields containing F both with ¢* elements.
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Proposition 11.1.2. E and E' are isomorphic over F; i.e., there exists a map
a: E - E such that

(a) o is one to one and onto.

(b) o(a) =aforallaeF.

() o(x + p) = a(a) + a(p) for all o, B € E.
(d) a(ap) = o(x)a(P) for all o, B € E.

Proor. We shall show that both E and E’ are isomorphic over F to F[x]/( f(x))
for some irreducible polynomial f(x) € F[x].

To begin with there is an o’ € E' such that E' = F(a') (for example, take
o' to be a primitive ¢° — 1 root of unity). Let f(x) e F[x] be the monic
irreducible polynomial for «'. Then E’ =~ F[x]/(f(x)). Since o satisfies
x?* — x = 0 we have f(x)|x* — x.

Since E has ¢° elements we have x?" — x = [ [,cg (x — «). It follows that
f(a) = 0 for some o € E.

Thus F(x) =~ F[x]/(f(x)) is a subfield of E with ¢°* elements. One con-
cludes that E = F(a) ~ F[x]/(f(x)) = F(&) = E'. O

We can now use the isomorphism ¢ to induce a map 6 from P*(E) to
P"(E"). Namely,

6([(10’ R an]) = [6(a0)3 L] a(an)]

g is one to one and onto. Moreover, if f(Vg, V1,---5Vn) € FLVos V1s- -+ 5 Vul
and we restrict & to the projective hypersurface H/(E), it maps onto the
projective hypersurface H ;(E’). This proves the independence of the numbers
N, from the choice of field F;. We leave the details to the reader.

We conclude this section with a discussion of the analogy between the
congruence zeta function and the Riemann zeta function.

The Riemann zeta function {(s) = ) >, n~° may be written, by the
fundamental theorem of arithmetic as an infinite product [[, (1 — p~%)~*
the product being over all prime numbers p (see Exercise 25, Chapter 2).
We will establish an analogous infinite product for Z /() the product being
over certain objects called the prime divisors of the underlying algebraic
set. This will be done with a minimum of technical language from algebraic
geometry.

If F is a finite field with g elements consider any algebraic set V in A"(F).
Then we may define as in Section 1 the zeta function of V over F as

exp( Y N.u )
s=1 N

where N, is the number of points in A"(F,<) satisfying the equations defining
V. We consider an affine algebraic set rather than a projective algebraic set to
simplify the discussion. Furthermore it is convenient to have a single field
K o F which is algebraic over F and contains an extension of degrees s
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over F for every integer s > 1. It follows easily from Proposition 7.1.1 that K
then contains precisely one field with ¢° elements. A simple construction for
such a field K is given in the Exercises. This field is uniquely determined up to
isomorphism and is called an algebraic closure of F. We may then consider
A"(K) and extend V to be an algebraic set still denoted by V' in 4"(K) with
N, points whose coordinates are in Fg-.

If o = (ay, a5,...,a,) € V let F . be the smallest field containing F and
a, as,...,a,. We say that « is a point of degree d. Since a? =aforae F it
follows that the points a, a4 a?,...,a? " are also in V where the exponent
denotes raising each coordinate to the indicated power. Furthermore these
points are distinct (by say, the corollary to Proposition 7.1.1).

Definition. A prime divisor on V is a set of the form {a”|j = 0, 1,2,...,d — 1}
where « is a point on V of degree d. This is somewhat at variance with
common usage. What we call a prime divisor is usually referred to as a prime
zero cycle defined over F.

Prime divisors are traditionally denoted by . The degree of B, deg B,
is d.

The prime divisors clearly partition ¥V < 4%(K). Furthermore if « is a
point on V' with coordinates in F,. then o defines a unique prime divisor P
of degree d for some d|s by Proposition 7.1.5. This prime divisor contains d
points on V each with coordinates in F,.. If we define g, to be the number of
prime divisors on V of degree d (a number which is finite) then we have by the
above the following important result.

Lemmal. N, =Y,  da,.
The main result of this section may now be stated.

Proposition 11.1.3. Z,(u) = [ (1/(1 — u®E¥)).

ProoF. The right-hand side is clearly

© 1 an
nl=_[1 (1 - un) .

The logarithmic derivative of this expression is

0 n
1 na,u

rE
un=11_u

Expanding the denominator into a geometric series and computing the
coeflicient of ™ we obtain

o 5 (L)
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which by Lemma 1 becomes
Y Nu™ '
m=1
Integrating and taking the exponential gives the result. O

This result shows that Z(x) has integral coefficients. The analogy with the
Riemann zeta function becomes even more striking if one introduces a new
variable s related to u by u = g °. Then we have

Zq) =1 (f?;}——m)

L J

1
B l;[ (1 - (l/N(?B)‘))

in perfect analogy with the Riemann zeta function.

§2 Trace and Norm in Finite Fields

In Chapter 10, Section 3, we introduce the notion of trace. Here we shall
generalize that notion and also define the norm in finite fields.

Let F be a finite field with g elements and E a field containing F with ¢°
elements.
Definition. If o € E, the trace of a from E to F is given by

trgp(e) = o + of + - 4 of
The norm of « from E to F is given by
NE/I.-(CZ) =0o- aq' . th’_l.

The following two propositions describe the basic properties of trace and
norm.

Proposition 11.2.1. If o, f € E and a € F, then

(@) trgp(x) € F.

(b) trgp(a + B) = trgp(®) + trgp(p).
(¢) trgp(an) = a trgp(e).

(d) trgr maps E onto F.

Proposition 11.2.2. If o, f € E and a€ F, then

(@) Ngp(x)eF.
(b) N E/F(“ﬁ) =N E/F(“)N E/F(ﬁ)'
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(¢) Ng(ax) = a°Ngg(e).
(d) Ngjr maps E* onto F*.

Proor. The proof of Proposition 11.2.1 is exactly analogous to that of
Proposition 10.3.1 and will be omitted.
To prove Proposition 11.2.2 notice that

NE/F(a)q =(a-al - .aq“‘)q =gl -l = Ngs(@).
Thus Nge(a) € F.
Now,
Nep@f) = @f) - @p) - --- - @B
= (a.aq.....aq‘“‘).(ﬁ,ﬁq_,,_,ﬁqs-‘)
= Ng/(@)Ng;r(B).
This proves step (b).
To prove step (c) notice that for ae F, Ngp(a) = a-a%----- ar =gt

since a? = a. Now apply the result of step (b).
Finally, consider the kernel of the homomorphism Ng, i.e., the set of all
o € E such that Ngg(a) = 1. a is in the kernel iff

1=l -qff ' = gltat =+t _ (@= D=1

Since (¢° — 1)/(q — 1)|¢° — 1 wehave by Proposition 7.1.2 that x@*~ 1/~ 1
=1has(¢° — 1)/(q — 1) solutions in E. By elementary group theory it follows
that the image, N, -(E*), has g — 1 elements, but this is exactly the number of
elements in F*. Thus N is onto. O

Given a tower of fields F <« E =« K we have the relation [K:F] =
[K: E][E: F]. This result is easy to prove in general. If all three fields are
finite, we can prove it as follows. Let g be the number of elements in F.
Then the number of elements in E and K are ¢q'¥:F! and ¢'%*F), respectively.
Considering K as an extension of E we can express the number of elements in
K as (q'E:FHK:El Thus

K:F E:F][K:E
q[ 1 — q[ 1 1

and therefore [K: F] = [E: F][K: E].
We can now prove another simple property of trace and norm that will
be useful.

Proposition 11.2.3. Let F < E < K be three finite fields and o. € K. Then

(a) trgp(0) = trgp(trge(e)).
(b) Ngr(®) = Ngp(Nge(@).

PRrROOF. We shall prove only property (a). The proof of property (b) is similar.
Letd =[E:F], m=[K:E], and n = [K: F]. As we have pointed out
above, n = dm.
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The number of elements in E is g, = ¢*. Thus

-1

trgp(e) = o + o + -+ odt
and

-1
trgp(trge(e) = Y trgg(e)”
=0

d—1m—-1

R

i=0 j=
d—1m-1

e

i=0 j=
= aqk
I

= trgp(a0).

We have used the fact that as j varies from zero to m — 1 and i varies
from zero to d — 1 the quantity dj + i varies from zerotomd — 1 =n — 1.

a

Suppose now that F = K are finite fields, n = [K: F], and « € K. Let
E = F(x) and f(x) e F[x] be the minimal polynomial for « over F. By
the Proposition 7.2.2 we have [E:F]=d, where d is the degree of

J(x).
Proposition 11.2.4. Write f(x) = x! — ¢;x*" ! + -+ + (= 1)’cy. Then

@) f(x)=(x—a)x —a-(x — )
(b) trgp(a) = (n/d)c,.
(©) Ngp(a) = cil?.

PRrOOF. Since the coefficients of f'satisfy a? = a we have

0= f(0)*= f(x).

Thus a7 is a root of f. Similarly,

0= f)' = f@*).

Thus o’ is a root of f. Continuing in this manner we see that «, o, a’, .. .,
«4“”" are all roots of f. If we can show that all these roots are distinct, assertion
(a) will follow.

Suppose that 0 < i <j < d and that o = a?. Set k = j — i. We shall
show that k = 0.

We have

II

ot = g = (aq“)q",
which implies that
(x — o) =0
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and so
o= ot

Since f(x) is the minimal polynomial for « it follows that f(x) divides
x? — x and so by Theorem 2 of Chapter 7 we have d|k. However, 0 < k < d
and so k = 0 and we are done.

It follows immediately from assertion (a) that c¢; = tryg(x) and that
¢a = Ngjp(®).

Since € E = F(x) we have tryg(x) = [K:E]a = (n/d)x and Ngg()
— an/d'

By Proposition 11.2.3,

n

n n
trg p(a) = trgp(trg p(a)) = trsm(a a) p) trg () = d Cy.

Similarly,

N K/F(a) =N E/F(N K/E(“)) =N E/F(“"/d) =N E/F(a)"/d = CZM- O

§3 The Rationality of the Zeta Function Associated to
agxo + a;xi + -+ a,x,

Let f(xq, x4,...,X,) be the polynomial given in the title of this section
[notice that this is not the f(x) of Section 2]. Suppose that the coefficients
are in F, a finite field, with g elements and that g = 1 (m). We have to in-
vestigate the number N of elements in H ;(F,), where [F,: F] = s. Theorem 2
of Chapter 10 shows that N, is given by

qs(n—l) + qs(n—2) + -+ qs +1

+ i Y @)@ D) - 9 (@)
q 2, x(®
where ¢° is the number of elements in F,, and the % are multiplicative
characters of F, such that y™ = ¢ ¥ # ¢, and y§y{ - & = &.
We must analyze the terms y(a; ') and g(x). To do this we first relate
characters of F, to characters of F.
Let x be a character of F and set ' = y o N ; i€, for a € F, x'(a) =
X(Ng,r(2)). Then one sees, using Proposition 11.2.2, that y is a character of
F,, and moreover that

(a) x # p implies that ' # p'.
(b) ™ = ¢ implies that y™ = e.
(¢) ¥(a) = y(ayforallaeF.
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It follows easily that as y varies over the characters of F of order dividing
m, x' varies over the characters of F of order dividing m.
The sum in Equation (4) can now be rewritten as

Y x0@g 'Y xaan ’9(xo) - - 90, &)
X0s -ees An
where xo, .. ., x, are characters of F satisfying y7" = ¢, x; # &, and xo X1 " X
=é.

It remains to analyze the Gauss sums g(x'). This is the content of the
following theorem of Hasse and Davenport (see [23]).

Theorem 1. (—g(x))’ = —g(x)-

We postpone the proof of this relation. Using Theorem 1 and Equations
(4) and (5) we see that N is given by

n—1 n+1 s
s n (-1 - _
DI CVALEED) [ Ko(ay") - xn(an )9(to) -+ 9Cta) | »
k=0 X04 X1 e X q
(6)
where the second sum is restricted by the same conditions as Equation (5).

Applying Proposition 11.1.1 gives us the main result of this chapter.

Theorem 2. Let ay, ay, . . ., a, € F*, where F is a finite field with q elements, and
q=1(m). Let f(Xg,...,X,) = Aoxg + a;x7 + -+ + a,xy. Then the zeta
function Z ((u) is a rational function of the form
P@u)="
(1 -—wd-qu--1-q""u’

where P(u) is the polynomial

1
I1 (1 - (—*! aXo(aE D xnlan ‘)g(xo)g(xl)'--g(x..)u),

X0s X1 005 Xn
the (n + 1)-tuples yq, X1, - - ., Xn being subject to the conditions ¥} = ¢, y; # &,
and JYoX1** An = &
A number of remarks are in order:
(1) The degree of P(u) can be computed explicitly. It is
m™[(m — 1" + (=1)""(m — 1)].

(2) Since |g(x)| = q*/? it follows from the explicit expression for P(u) that
the zeros of Z /(u) have absolute value g~ "~ 1”2, This is in accord with
the general Riemann hypothesis.
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(3) If we write P(u) = [] (1 — aw), then numbers o are algebraic integers.
This is not hard to see. Each « has the form

¢ 3 900 - - 90t

where { is a root of unity and xox,---x, = & Using Corollary 1 to
Theorem 3 of Chapter 8 we see that

1
ag(XO)g(xl)'--g(x") = xl(—=DIo> X1s -+ -5 Xn—1)-

The Jacobi sum is a sum of roots of unity and so is an algebraic integer.
Thus & = {x,(— 1)J(Xos X1, - - - » Xn—1) 1S an algebraic integer as well.

Let f(xq, X4, . - . , X,) be a homogeneous form of degree d with coefficients
in a finite field F. Assume furthermore that the partial derivatives f,, ..., f,
have no common projective zero in any algebraic extension of F. In this
case we say that the projective hypersurface defined by f is absolutely non-
singular. Then one may consider the zeta function Z(t) of the hypersurface,
f = 0. In this case the Weil conjectures (now theorems) state the following:

(a) Z(t)is a rational function which can be written as

P(t)(—l)"
Q-0 —-q)--(1-g"")

where P(t) is a polynomial with integer coefficients.

(b) Pt) =1 — a,t)(1 — ayt)---(1 — a,,t). The mapping a —¢" '/a is a
bijection of the set of reciprocal roots ay, .. ., a,,.

(© la;| =g~ "2

(d) The degree of P(t)isd '[(d — )" + (=1)"*!(d — 1)].

Z(t) =

The statement regarding the absolute value of the roots is known as the
Riemann hypothesis for the hypersurface. The proof of (a), (b), and (d) for a
general hypersurface is due to B. Dwork [26]. The proof of the Riemann
hypothesis is due to P. Deligne (1973). For the general statement of the Weil
conjectures we refer the reader to Weil [80] and Katz [161].

§4 A Proof of the Hasse-Davenport Relation

Let F be a finite field with g elements and F, be a field containing F such
that [F,: F] = s. Let x be a nontrivial multiplicative character of F and
X = x°Ngr. X' is a character of F;. We wish to compare the Gauss sums

g(x) and g(x").
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Let us recall the definition of g(y) (see Chapter 10, Section 3):
9(0) = 2 xOW (),

teF

where (1) is equal to (. The trace function in this definition coincides
with the function trg g, introduced in this chapter. Since we are considering
more than one field, it is important to attach subscripts to tr. Now,

g0) = X LY,

teFg

where Y/(t) = {"rs/m®. Since trpp (t) = trpp (trp, 6(1)) it follows that

Y' =y otrp .
For a monic polynomial f(x) = x" — ¢, x"~! + -+ + (—=1)"c, in F[x]

define A(f) = Y(c)x(cy)-
Lemma 1. A(fg) = A(f)A(g) for all monic f, g € F[x].

PROOF. If g(x) = x™ — b;x™ ! + --- + (=1)"b,,, then f(x)g(x) = x"*™" —
(by + c)x" ™" s 4 (= 1) by, Thus A(fg) = Y(by + ¢y). x(bme,) =
YO W (c)xbmx(c,) = Yb)xbu(c)r(c,) = AGMS). O

Lemma 2. Let o € F and f(x) be the monic irreducible polynomial for o over F.
Then

A = x()y' (), whered = deg f.

ProoF. This result follows easily from Proposition 11.2.4. Namely, if f(x) =
x? — ¢ x¥7 ' + ... 4 (=1)%,, then

s
trp, p(0) = 76 and  Ng p(a) = ¢

NOW, l(f) = lp(cl)X(cd)s By
Y = ey e’ = w(g cl)x@“)
= Y(tre, (XN g, (@) = Y'(@)x'(@). O

Lemma 3. g(x) = ), (deg f)A(f)*42/, where the sum is over all monic ir-
reducible polynomials of F[x] with degree dividing s.

PROOF. According to Theorem 1 of Chapter 7—generalized to F as base
field—x? — x is the product of all monic irreducible polynomials of degree
dividing s. It follows that every such irreducible polynomial has all its roots
in F, and conversely that every element in F| satisfies such a polynomial.
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Let f(x) be monic irreducible of degree d|s. Let ay, o,,..., 0, € F be 15
roots. Then by Lemma 2

d
2 X (W () = dACf ).
i=1
Summing over all polynomials of the required type yields the result. O

We are now in a position to prove the Hasse-Davenport relation. The
proof is based on the following identity:

;l(f)t“g’ = I;[ (1 = A(f )y, ™

where the sum is over all monic polynomials and the product is over all
monic irreducible polynomials in F[x].

The identity is proved by expanding each term (1 — A(f)t*t/) ! in a
geometric series and using the fact that every monic polynomial can be written
as the product of monic irreducible polynomials in a unique way. The
details are left as an exercise.

Now,

T A 5 ( 5 l(f))t‘-

s=0 \degf=s

We define A(1) = 1, as this is necessary for Equation (7) to hold. For s = 1
we have

Y Mf)= Y Mx—a) =Y xaW(a) = g(x).

deg f=1 aeF aeF

For s > 1 we have

Z l(f) = Z/‘L(xs — clx“‘ + -+ (_l)scs)

deg f=s c;eF

— ¢ T deler) = qH(Z x(cs))<z w(co) =o.

C1,Cs

Putting all this together we see that the left-hand side of Equation (7) reduces
to 1 + g(y)t. Using this, take the logarithm of both sides of Equation (7),
differentiate, and multiply both sides of the result by ¢. This yields

gl _ 5y A(f)(deg f)rde!
1+gG)t  F 1= Al

Expand the denominators in geometric series. Then

i(" DG =2, (;(deg f)/l(f)'t"‘°“f).
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Equating the coefficients of ¢* yields
(=179 = Y (deg HASf)/4s/.

deg f|s

By Lemma 3, the right-hand side is g(y'). This completes the proof. O

§5 The Last Entry

The last entry of Gauss’s mathematical diary is a statement of the following
remarkable conjecture:

Suppose that p = 1 (4). Then the number of solutions to the congruence
x2+ 3y +x2y2=1(p) is p+ 1 — 2a, where p=a®+ b% and a + bi
=1(2 + 2i).

Some explanation is in order. If p = 1 (4), then by Proposition 8.3.1
we know that p = a? + b? for some integers a and b. If we choose a odd and b
even, then a and b are uniquely determined up to sign. The congruence
a + bi = 1 (2 + 2i)determines the sign of a. We shall give a simpler formula-
tion of this.

Lemma. If p=1(4),p = a’> + b%, and a + bi = 1 (2 + 2i), then a is odd and
b is even. Moreover, if 4|b, thena = 1 (4), and if 4 kb, thena = —1 (4).

PROOF.a + bi = 1 (2 + 2i) implies that a + bi = 1(2) and so a is odd and b
even.

Since 4 = —2(i — 1)(i + 1) it follows that if 4|b, then a + bi=a = 1
(2 + 2i). Taking conjugates a = 1 (2 — 2i). Thus (2 + 2i)(2 — 2i) = 8|(a — 1)?
and a = 1 (4).

If 4)b, then b = 4k + 2 for some k. Thusa + bi=a + 2i =1 (2 + 2i).
Since 2i = —2 (2 + 2i) we havea = 3 = —1 (2 + 2i). As before 8|(a + 1)?
andsoa = —1(4). O

Theorem. Consider the curve C determined by x*t> + y*t* + x?y* — t*over F,,
where p = 1 (4). Write p = a* + b* with a odd and b even. If 4|b, choose
a=1@4); if 44b, choose a = —1 (4). Then the number of points on C in
P¥F)isp—1 - 2a.

The zeta function of C is

— 2au + pu?

Z(u)=1 = pu 1 —u).

Before giving the proof a few remarks are in order.

The answer p — 1 — 2a differs from Gauss’ p + 1 — 2a. The difficulty
is that Gauss counts four points at infinity, whereas a simple calculation
shows that [0, 1, 0] and [0, 0, 1] are the only points at infinity according to
our definition. Thus our answer differs from his by 2.
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Since there are two points at infinity independently of p it suffices to
count the number of finite points, i.e., the solutions to x + y? 4+ x?y? = 1.

As an example take p = 5. Since 5 = 12 + 22 we have 4 /b so we must
take a = —1. The formula p — 1 — 2a gives the answer 6 in this case.
Indeed, in addition to the two points at infinity, (1, 0), (—1, 0), (0, 1), and
(0, —1) are the other points on the curve in F,.

The form of the zeta function may be surprising. The explanation is that
the two points at infinity are singular. Thus the form of this zeta function is
not in contradiction to our earlier observations.

We now proceed to prove the theorem. Denote by C, the curve given by
x? 4+ y? 4+ x%y? = 1 and by C, the curve given by w? = 1 — z*. We shall
construct maps from C, to C, and from C, to C,.

Notice that

X2+ y* 4+ x3? =1
implies that
1+ xH)yr=1-x2
and
[A+xH)P?=1-x~
Thus, if (a, b) is on C,, then (a, (1 + a?)b) is on C,. Let
Ax, y) = (x, (1 + x?)y),

A maps C, to C,. It is easy to see that this map is one to one.
Now let

w
uz, w) = (z, 1—+—Z—2)
u is not always defined. If « € F, is such that «* = —1, then («,0) and
(—a, 0) are on C, but u is undefined at these points. u is defined at all other

points of C, and maps these points to C,. It is easy to check that u is inverse
to A where it is defined. Thus

Ny =N, - 2,
where N; and N, are the number of finite points in F, on C, and C,, re-
spectively.
We can compute N, by using Theorem 5 of Chapter 8. Specializing
Theorem 5 to w? + z* = 1 we see that

Ny =p+Jp, )+ Jp, 1*) + Jo, 1),

where p is the character of order 2 and y is a character of order 4.

Since 2 = p, we have J(p, ¥*) = J(p, p) = —p(—1) = —1. Also, since
x* = e we have ¥ = j so that J(p, ¥*) = J(p, ) = J(p, x).

Let m = —J(p, x). Then

N2=p—1—1t—ﬁ,
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p takes on the values +1 and y takes on the values +1, +i. Thus 7 = a + bi,
where a, be Z. Moreover |J(p, ¥)|> =p so that a> + b> = =p. It
followsthat N, = p — 1 — 2aand N; = p — 3 — 2a.Since C, hastwo points
at infinity, the total number of points on C, in F, is given by

N=p—-1-2a

By the lemma it suffices to prove that # = 1 (2 + 2i) in order to complete
the proof of the first part of the theorem. This is accomplished by means of
the following pretty calculation given in Hasse-Davenport [23].

Notice that p(a) — 1 = 0(2) and that y(a) — 1 =0(1 + i) foralla # 0
in F,. The first assertion is obvious; the second follows from 1 — 1 =0,
-1-1=-AQ-dA+i),—-i—1=—1+1i),andi — 1 =il + i). Thus
if a# 0 and b # 0, (p(a) — 1)(x(b) — 1) = 0 (2 + 2i). This congruence is
trivially true for the pairsa = 0,b = 1 and a = 1, b = 0. Therefore,

Y. (p(@) — D(x(b) — 1) = 0(2 + 2i).

a+b=1
Expanding we see that
—n =Y x(b) = Y p(a@) + p =02 + 2i).
b a

The second and third terms are zero. Thus
n=p=1(Q2+ 2i).

The last step follows because p = 1 (4) by hypothesis, and 2 + 2i divides 4;
indeed 4 = (1 — )2 + 2i).

To calculate the zeta function it suffices to notice that by the Hasse-
Davenport relation the number of points on x?t? + y*t* + x*y? — t* in
P*(F ) is given by

pPP—1—=(=J, 0y —(=Jp,0)yf=p—-1—-7 -7

Thus
(1 — mu)(1 — 7u)
20) === (=)
_1-2au+pu®
= ———————(1 i, 1 - u).
NOTES

As we have mentioned, in his thesis E. Artin [2] introduced the congruence
zeta function. In that work he establishes the analog of the Riemann hy-
pothesis for about 40 curves of the type y*> = f(x), where f is a cubic or
quartic polynomial. In 1934 Hasse proved that the result held in general for
nonsingular cubics (the case of elliptic curves). The Riemann hypothesis for
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arbitrary nonsingular curves was established in full generality by Weil in
1948. His proof is far from elementary and uses deep techniques in algebraic
geometry.

Weil’s conjecture that the zeta function of any algebraic set is rational was
proved in 1959 by B. Dwork using methods of p-adic analysis [26].

In 1969 S. A. Stepanov succeeded in giving an elementary proof of the
Riemann hypothesis for curves [222]. A complete account of Stepanov’s
method is given in the book by W. M. Schmidt, Equations over Finite Fields:
An Elementary Approach [218]. This method was simplified further by E.
Bombieri, who, using the Riemann-Roch theorem, gives a complete proof
in five pages [98]. Sharper estimates in special cases have been obtained by
H. Stark [221]. For an analysis of Deligne’s proof and an historical discussion
of the entire issue the reader should consult N. Katz’s “Overview of Deligne’s
proof...” [161]. This paper also contains an extensive bibliography of the
subject. See also the survey [248]. The discovery of these remarkable theorems
is discussed by Weil in the first volume of his Collected Papers, [241], pp.
568-569. Finally we mention the paper by J. R. Joly, “Equations et varietés
algébriques sur un corps fini” [160].

Section 5 on Gauss’ conjecture is logically out of place since it could have
been given in Chapter 8. We felt it was appropriate at this point since the
relation between this conjecture and Weil’s Riemann hypothesis reveals once
again the remarkable acuity of Gauss’ insight and how his imposing presence
continues to make itself felt to this very day.

A new edition of the mathematical journal of Gauss, translated from
Latin to German, with an historical review by K. Biermann and comments
by H. Wussing is now available [137]. This important historical document
records the major discoveries of Gauss between the years 1796 and 1814.
It is interesting to note that both the first entry (Section 11 of chapter 9)
and the last entry are concerned with cyclotomy. For more biographical
information on Gauss see T. Hall [143] and the recent biography by W. K.
Biihler [101].

EXERCISES

1. Suppose that we may write the power series 1 + a,u + a,u* + - - - as the quotient
of two polynomials P(u)/Q(u). Show that we may assume that P(0) = Q(0) = 1.

2. Prove the converse to Proposition 11.1.1.

3. Give the details of the proof that N, is independent of the field F, (see the concluding
paragraph to Section 1).

4. Calculate the zeta function of x,x; — x,x; = 0 over F,,.

5. Calculate as explicitly as possible the zeta function of agx3 + a;x3 + - + a,x}?
over F,, where g is odd. The answer will depend on whether n is odd or even and
whether g = 1 (4) or g = 3 (4).
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6.

1L

12.

13.

14.

15.

16.

11 The Zeta Function

Consider x3 + x3 + x3 = 0 as an equation over F, the field with four elements.
Show that there are nine points on the curve in P*(F,). Calculate the zeta function.
[Answer: (1 + 2u)?/((1 — u)(1 — 4u)).]

. Try this exercise if you know a little projective geometry. Let N be the number

of lines in P*(F ). Find N and calculate Y 2 ; N u/s. (The set of lines in projective
space form an algebraic variety called a Grassmannian variety. So do the set of
planes, three-dimensional linear subspaces, etc.)

. If fis a nonhomogeneous polynomial, we can consider the zeta function of the

projective closure of the hypersurface defined by f (see Chapter 10). One way to
calculate this is to count the number of points on H/(F,) and then add to it the
number of points at infinity. For example, consider y* = x* over F .. Show that
there is one point at infinity. The origin (0, 0) is clearly on this curve. If x # 0,
write (y/x)? = x and show that there are p* — 1 more points on this curve. Al-
together we have p* points and the zeta function over F, is (1 — pu)~".

. Calculate the zeta function of y> = x* + x? over F,.

10.

If 4 #0in F, and q = 1 (3), show that the zeta function of y?> = x> + 4 over F,
has the form Z(u) = (1 + au + qu?)/(1 — u)(1 — qu), where a € Z and |a| < 2q*/%

Consider the curve y* = x> — Dx over F,, where D # 0. Call this curve C,. Show
that the substitution x = Xu + v?)and y = Jv(u + v*) transforms C, into the curve
C, given by u? — v* = 4D. Show that in any given finite field the number of finite
points on C; is one more than the number of finite points on C,.

(continuation) If p = 3 (4), show that the number of projective points on C, is
justp + 1.1f p = 1 (4), show that the answeris p + 1 + x(D)J (¢, x*) + x(D)J (x, x2),
where y is a character of order 4 on F,.

(continuation) If p = 1 (4), calculate the zeta function of y* = x> — Dx over F
in terms of w and y(D), wheren = —J(¥, x*). This calculation in somewhat sharpened
form is contained in [23]. The result has played a key role in recent empirical work
of B.J. Birch and H. P. F. Swinnerton-Dyer on elliptic curves.

Suppose that p = 1(4) and consider the curve x* + y* =1 over F,. Let y be a
character of order 4 and n = —J(¥, x*). Give a formula for the number of projective
points over F, and calculate the zeta function. Both answers should depend only
on 7. (Hint: See Exercises 7 and 16 of Chapter 8, but be careful since there we were
counting only finite points.)

Find the number of points on x? + y* + x*y* = 1 for p = 13 and p = 17. Do it
both by means of the formula in Section 5 and by direct calculation.

Let F be a field with g elements and F, an extension of degree s. If y is a character of
F,let ' = xo Ng_g. Show that

(a) x'is a character of F,.

(b) x # p implies that y' # p'.

(c) x™ = ¢ implies that '™ = ¢.

(d) x'(a) = x(a)’for aeF.

(e) As y varies over all characters of F with dividing m, ' varies over all characters
of F, with order dividing m. Here we are assuming that ¢ = 1 (m).
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17.

18.

19.

20.

21.

22.

23.

In Theorem 2 show that the order of the numerator of the zeta function, P(u) has
degree m™!((m — 1)"*! 4+ (= 1)"*Y(m — 1)).

Let the notation be as in Exercise 16. Use the Hasse- Davenport relation to show that
JOs Kas -2 = (=D DJ(y vs, ..., %), where the y; are nontrivial
characters of F and y,x, - x. # &

Prove the identity Y A(f)t%8/ = [J(1 — A(f)t*#/) !, where the sum is over all
monic polynomials in F[t] and the product is over all monic irreducibles in F[t].
A is defined in Section 4.

If in Theorem 2 we keep f fixed but consider the base field to be F, instead of F,
we get a different zeta function, Z{”(u). Show that Z(u) and Z,(u) are related by
the equation Z{(u®) = Z,(w)Z,(pu) - Z;(p*"'u), where p = ™%,

In Exercise 6 we considered the equation x3 + x3 + x3 = 0 over the field with
four elements. Consider the same equation over the field with two elements. The
trouble here is that 2 # 1 (3) and so our usual calculations do not work. Prove that
in every extension of Z/2Z of odd degree every element is a cube and that in every
extension of even degree, 3 divides the order of the multiplicative group. Use this
information to calculate the zeta function over Z/2Z. [Answer: (1 + 2u?)/

(1= w1 — 2u).]

Use the ideas developed in Exercise 21 to show that Theorem 2 continues to hold
(in a suitable sense) even when the hypothesis ¢ = 1 (m) is removed.

Let p, < p, < p3 < --- denote the positive prime numbers arranged in order. Let
N,,=pip%---p™ and let E,, denote the field with ¢g*™ elements. Show that E,,
can be considered as a subfield of E,, , , and that E = | ) E,, is an extension of E, = F,
a finite field with g elements, with the following property; for every positive integer
n, E contains one and only one subfield F, with ¢" elements.



Chapter 12

Algebraic Number Theory

In this chapter we shall introduce the concept of an
algebraic number field and develop its basic properties.
Our treatment will be classical, developing directly only
those aspects that will be needed in subsequent chapters.
The study of these fields, and their interaction with other
branches of mathematics forms a vast area of current
research. Our objective is to develop as much of the
general theory as is needed to study higher-power recip-
rocity. The reader who is interested in a more systematic
treatment of these fields should consult any one of the
standard texts on this subject, e.g., Ribenboim [207],
Lang [168], Goldstein [140], Marcus [183].

We will assume that the reader has some familiarity
with the theory of separable field extensions as can be
found, for example, in Herstein’s Topics in Algebra [150].
Some of the results assumed are given in the Exercises.

§1 Algebraic Preliminaries

In this section we will recall some facts from field theory and prove some
results about discriminants.

Let L/K be a finite algebraic extension of fields. The dimension of L/K,
[L: K], will be denoted by n.

Suppose ay, @, ..., a, is a basis for L/K and o € L. Then aa; = ) ; a;;0;,
with a;; € K.

Definition. The norm of o, N («), is det(a;;). The trace of «, t; x(x), is a;, +
Az + o+ Ay

It is easy to check that this definition is independent of the choice of a
basis. In what follows, norm and trace will be denoted by N and t since the
extension L/K will be fixed.

If o, fe L and a€ K then N(af) = N(a)N(B), t(x + B) = t(«) + t(f),
N(aP) = a"N(PB), and t(ax) = at(x). If « # 0 then N(@)N(«~ ') = N(oa™ ) =
N(1) = 1.Thus,ifa # 0,N(x) # 0,and N(x~ ') = N(x)~*.If L/K is separable,
then t is not identically zero. If char K = 0 this is easy to see since then t(1) =

172
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n # 0. The only fields of characteristic p > 0 that we will consider are finite
fields and in this case the result follows from Proposition 11.2.1(d).

Suppose L/K isseparableand lets,,0,, .. ., g, bethedistinctisomorphisms
of L into a fixed algebraic closure of K which leave K fixed. For o € L denote
o(«) by a¥. The elements o are called the conjugates of a. Here o' is .

One can show using linear algebra (see Exercises 21-23). t(a) = o' +
a? 4 ... + o™ and that N(a) = a'Pa® ... 0™, If a € L consider f(x) =
(x — a)(x — o?)---(x — a™). Then f(x) € K[x]. The coefficient of x" !
is —t() and the constant term is (— 1)"N(o). The reader should verify that our
definitions of norm and trace generalize those of Chapter 11, Section 2.

Definition. If o, o,,...,a, is an n-tuple of elements of L we define the
discriminant A(a,, . . ., a,) to be det(#(e;a;)).

Proposition 12.1.1. If A(ay,...,a,) # O then ay,...,a, is a basis for L/K.
If L/K is separable and o1, . . . , ., is a basis for L/K then A(ay, ..., a,) # 0.

PrROOF. Suppose a;,...,o, are linearly dependent. Then there exist
a,...,a, € K, not all zero, such that ) a;o; = 0. Multiply this equation by
o; and take the trace. One finds

Yat(o) =0, j=1,2...,n

This shows that the matrix (t(x;;)) is singular and so its determinant is
zero.

Now suppose a4, ..., a, is a basis and A(ay, . .., ®,) = 0. Then the system
of linear equations

int(aiaj) = O, ] = 1,...,n,

has a nontrivial solution 'x; =a;€K, i=1,...,n Let a = Z aa; # 0.
Then, t(ax;) = 0 for j = 1,2,...,n, and since «,, ..., a, is a basis it follows
that t(aff) = O for all f € L. This implies ¢ is identically zero which it is not
since L/K is separable. This establishes the second assertion. O

Proposition 12.1.2. Suppose a4, ...,a, and B,,..., B, are bases for L/K. Let
o =3 ;a;B, a; € K. Then A(xy,...,a,) = det(a;)*A(By, ..., B,).

PrOOF. Take the trace of both sides of the identity o0 = Y; Y, a;;a 8,81
Let A = (t(o;2;)), B = (t(B;B)), and C = (a;;). Then we find the matrix
identity, 4 = C'BC, where C’ is the transpose of C. Taking the determinant
of both sides of this matrix identity and noting that det C = det C’ gives the
result.

Proposition 12.1.3. For a4, a,, ..., a, € L and L/K separable we have
Ay, . .., 0, = det(al?)?,
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ProoF. t(o;0) = ofPof + aPaf® + - + aof®. Let A4 = (¢(o;0;)) and
B = (a®). Then A = BB'. Taking determinants of both sides of this matrix
equation gives the result. O

Proposition 12.1.4. Suppose 1, B,..., " * are in L and linearly independent
over K. Let f(x) € K[x] be the minimal polynomial for B over K. If L/K is
separable then

AL B,.... 771 = (= )" DEN(f(B))
where ['(x) is the formal derivative of f(x).
PrOOF. The matrix ((BY)) where j=1,...,n and i =0,...,n—1 is of
Vandermonde type and so its determinant is

n (ﬁ(j) _ ﬂ‘”).

i<j
Thus we have

AL By, B71) = (=YD T (B9 — ).

i*j
Now, f(x) = []; (x = B?), so f'(B) = []; (B? — B¥) with i # j. Since
f'(B9) = (f'(B))Y the result follows by taking the product over j. O

§2 Unique Factorization in Algebraic Number Fields

Elementary number theory is concerned with the properties of the natural
numbers 1, 2, 3,.... In the course of studying these properties it became
necessary to take into account the ring of integers Z and then the field of
rational numbers Q. In his attempt to understand biquadratic reciprocity
Gauss introduced the ring Z[i]. Likewise to study higher reciprocity laws and
Fermat’s Last Theorem (see Chapter 14) other rings were introduced.
Eventually a general definition of an algebraic number fields and rings of
algebraic integers emerged, principally through the efforts of E. Kummer and
R. Dedekind.

Definition. A subfield F of the complex numbers is called an algebraic number
field if [F : @] is finite. If F is such a field, the subset of F consisting of algebraic
integers forms a ring D, called the ring of algebraic integers in F.

Proposition 6.1.2 shows that an algebraic number field consists of alge-
braic numbers (just take ¥V = F and choose y,,...,7, to be a basis for F
over Q).

Let Q be the set of all algebraic integers. Then Proposition 6.1.5 shows Q
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is a ring. Since D = Q N F, D is also a ring. We will often refer to D simply
as the ring of integers in F.

It turns out that in general D is not a unique factorization domain
(Exercise 7). However D does have a property which is almost as good.
Namely, every nonzero ideal can be written uniquely as a product of prime
ideals. An integral domain with this property is called a Dedekind ring.
In this section we will prove that D is a Dedekind ring following a method
due to A. Hurwitz [154] (pp. 236-243).

Throughout the discussion the word ideal will mean nonzero ideal.
Hopefully, this will not cause confusion.

Lemma 1. Suppose p€ F. Thereisa be Z,b # 0, such that bp € D.

PROOF. f satisfies an equation ayf" + a,f" '+ --- + a, =0 with the
a,€ Z,ay # 0. Multiply both sides by a,~ ! and notice that (a, B)" + a,(a, B)" !
+ -+ + a,al”' = 0. This shows a, f is an algebraic integer since for all i,
aai ‘e O

Proposition 12.2.1. Every ideal A of D contains a basis for F over Q.

PROOF. Let 84, .., B, be a basis for F over Q. By the preceding lemma there is
abeZ, b # 0, such that bf,,...,bp, € D. Choose a € A, a # 0. Then the
elements bf,a,...,bf,a are in A and are a basis for F over Q. O

In the first section we considered a field extension L/K and considered
the trace, norm, and discriminant of a basis. Here we fix the extension F/Q
and consider all these concepts with respect to this extension.

If « € D we claim N(«) and t(x) are in Z. To see this notice that if « satisfies
a monic polynomial with coefficients in Z so do the conjugates of . Thus
N(a) and t(x) which are respectively the product and sum of the conjugates
of o are algebraic integers. They are also in Q so by Proposition 6.1.1 they are
in Z. The fact that the trace has this property shows that if a,,...,a,is a
basis for F over Q and all the «a; € D then A(ay, ..., a,) € Z.

Before proceeding we remark that the discriminant of a basis can be

negative. For example, let i = ./ —1 and consider the basis 1, i for Q(i)/Q. A
simple calculation shows A(l, i) = —4.

Proposition 12.2.2. Let A be an ideal in D and suppose a4, . .., &, € A is a basis
for F/Q with |A(ay, . .., o,)| minimal. Then A = Za, + Zay + --- + Za,,.

PROOF. Since the absolute value of the discriminant of a basis in A4 is a positive
integer, there is such a basis with |A(e, . .., «,)| minimal.

Suppose a € A and write o« = yyo; + y,0, + -+ + .0, With vy, € Q.
We need to show that the y; are in Z. Suppose not. Then some y; ¢ Z and by
relabeling if necessary we can assume y, ¢ Z. Write y, = m + 0 where me Z
and 0<f <1l Let B, =a —may, B, = 5,...,0,=a,. Then B, B,,...,
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B, € A and is a basis for F/Q. Since f; = 0oy + y,0, + - -+ + y,a, the matrix
of transition between these two bases is

0 y2 y3 - n

01 0 0

o 0 1 --- 0

0 0 O 1
By Proposition 12.1.2 we find A(B,,...,B,) = 0*°A(2y,...,a,) which
contradicts the minimality of |A(a,, ..., a,)| since 0 < 8 < 1. Thus all the
y;€Zand A = Zoy + --- + Zo, as asserted. O

If ay, ay,...,4,€ A is a basis for F over Q and 4 = Zo; + --- + Za,
we say that ay, ..., a, is an integral basis for 4. It follows from Proposition
12.1.2 that the discriminants of any two integral bases for A4 are equal. This
common value is called the discriminant of A, written A(A). The discriminant
of D is particularly important and, by “abuse of language,” éy = A(D) is
called the discriminant of F/Q.

We now apply the last proposition to deduce some important properties
of the ring D. Recall our convention that all ideals are nonzero ideals.

Lemma 2. If A D is an ideal then A n Z # 0.

PrOOF. Let a € A, o # 0. There exist a;€ Z such that o™ + a,0™ ' + ---
+ a,, = 0. Since we are working in a field we may assume a,, # 0. But then,
0#a,eAn Z O

Proposition 12.2.3. For any ideal A, D/A is finite.

PrOOF. By the lemma there isan ae A N Z, a # 0. Let (a) be the principal
ideal generated by a in D. Since D/(a) maps onto D/A it is enough to show
D/(a) is finite. In fact we will show it has precisely a” elements.

By Proposition 12.2.2 we may write D = Zw, + Zw, + -+ + Zw,.
Let S = {3 7,w;/0 <y, < a}. We claim S is a set of coset representatives for
D/(a). Suppose w =Y m,w;€D. Write m; =gq;a+ 7y with 0<y, <a.
Then clearly w = ) y;; (a). Thus every coset of A contains an element of S.
If Z y;w; and Z yiw; are in § and in the same coset modulo (a) then using the
linear independence of the w; we see y; — 7} is divisible by a in Z. Since
0 < y;,7; < aitfollowsthaty, = y;. Thus S is a set of coset representatives and
D/(a) has a" elements as claimed. O

Corollary 1. D is a Noetherian ring, i.e., every ascending chain of ideals
A, c A, © A3 c --- terminates. In other words, there is an N > O such that
Ap = Apsiforallm > N.

PROOF. Since D/A; is finite there are only finitely many ideals containing
A, O
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Corollary 2. Every prime ideal of D is maximal.

PROOF. If P is a prime ideal then D/P is a finite integral domain. Such a ring
is necessarily a field (see Exercise 19). Thus D/P is a field and so P is maximal.

O

The ring D is also integrally closed. This means that if « € F satisfies a
monic polynomial with coefficients in D then « € D. This is not too hard to
establish using Proposition 6.1.4. In standard algebra texts it is shown that
if an integral domain is Noetherian, integrally closed, and every nonzero
prime ideal is maximal then every ideal is a product of prime ideals in a
unique way, i.e., such a ring is a Dedekind domain. We will establish the fact
that D is a Dedekind domain in a different way using a very important
property of number fields, namely that the class number of D is finite (see
below).

Our initial goal is to prove the following two results:

(i) If A, B,and C are ideals and AB = AC,then B = C.
(ii) If A and Bareidealsand A < B,then thereis anideal C suchthat 4 = BC.

These will be proved later. We begin by establishing a special case of (i).

Lemma 3. Let A = D be anideal. If B € F is such that fA < A then f € D.

PROOF. By Proposition 12.2.2 A is a finitely generated Z module so the result
follows from Proposition 6.1.4. O

Lemma 4. If A and B are ideals in D and A = AB then B = D.

ProOF. Let a,, a,,...,q, be an integral basis for A. Since 4 = AB we can
find elements b;; € B such that o; = ) ; b;;0;. It follows that the determinant
of the matrix (b;; — ¢,;) is zero. Writing this out shows 1 € B,i.e.,, B = D. [J

Proposition 12.2.4. Let A, B = D be ideals and suppose w € D is such that
(w)A = BA. Then (0w) = B.

Proor. If f € B we see (f/w)4 = A so by Lemma 3, f/w € D. It follows that
B c (w) and so ™ !B < D is an ideal. Since 4 = v~ !BA, Lemma 4 shows
®” !B = D and so B = (w) as required. O

The following definition plays a major role in algebraic number theory.

Definition. Two ideals A, B = D are said to be equivalent, 4 ~ B, if there
exist nonzero «, § € D such that (x)4 = (B)B. This is an equivalence relation.
The equivalence classes are called ideal classes. The number of ideal classes,
hg, is called the class number of F. (We will see that hy is finite.)

We leave the easy verification that A ~ B is an equivalence relation to
the reader.
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It is worthwhile to point out that hy = 1 if and only if D is a principal
ideal domain (PID). To see this suppose hy = 1 and let A be an ideal. Since
A ~ D there are nonzero a, f € D such that ()4 = (f)D = (). Thus f/ae A
and A = (B/x). Every ideal is principal. On the other hand it is obvious that
if D is a PID then Ap = 1.

Thus we see that the class number measures, in some sense, how far D is

from being a PID (see Exercises 15, 16 and Masley [184]).
The following lemma is due to A. Hurwitz [154], p. 237. We will use it to

show hy is finite. It is to be noticed that the lemma is a (weak) generalization
of the Euclidean algorithm to an arbitrary number field.

Lemma 5. There exists a positive integer M depending only on F with the
Jfollowing property. Given a, f € D, B # 0, there is an integer t, 1 <t < M,
and an element @ € D such that | N(ta — wp)| < |N(B)|.

PrOOF. We first reformulate the statement slightly. Let y = o/f € F. Then it is
sufficient to show that for all y € F there is an M such that |[N(ty — w)| < 1
forsome 1 <t < M and w e D.

Let w,, w,,...,w, be an integral basis for D. For ye F, y = Z}'zl Y 00;
with y; € Q. Notice that

INO)| =

()

<C (maxly,-) ,

where C = [[;(3.;|o!]). Choose an integer m > J/C and set M = m".

ForyeF,y = Y1, y;w;, writey, = a, + b, where ;e Zand 0 < b, < 1.
Let [3]= )", a0; and {} = Y, bw,. Then y=[y]+ {3} Where
[y] € D and {y} has coordinates between 0 and 1.

Map F to Euclidean n-space R" by ¢(Z;’=1 y:0;) = (Y1, V2,-- -5 Yn)- For
anyy € F, ¢({y}) lies in the unit cube. Partition the unit cube into m" subcubes
of side 1/m. Consider the points ¢({ky}) for 1 < k <m" + 1. By the pigeon-
hole principle two of them, at least, must lie in the same subcube, say those
corresponding to hy and Iy. If we write hy = [hy] + {hy}and Iy = [Iy] + {ly}
and subtract we find 1y = w + 6 where (assuming h > ) t=h—-1<m"
= M, w € D, and the coordinates of é have absolute value less than or equal
to 1/m.

By our previous remark, N(6) < C(1/m)" = C/m" < 1. O

Theorem 1. The class number of F is finite.

PROOF. Let 4 be an ideal in D. For a € 4, « # 0, | N(«)| is a positive integer.
Choose e A, f # 0, so that | N(f)| is minimal. For any « € 4 there is a t,
1 <t < M, such that | N(to. — wf)| < |N(B)| with w € D. Since ta — wfe A
we must have to — wf =0. It follows that M!A < (). Let B =
(1/p)M!'A < D. B is an ideal and M!A = (B)B. Since fe A, M!f e (B)B
and so M ! € B. By Proposition12.2.3 M ! can be contained in at most finitely
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many ideals. We have shown A ~ B where B is one of at most finitely many
ideals. Thus h is finite, as asserted. O

An interesting and significant application of this theorem is the following
proposition.

Proposition12.2.5. For any ideal A = D there is an integer k, 1 < k < hg,
such that A* is principal.

Proor. Consider the set of ideals {4|1 < i < hp + 1}. At least two of these
ideals must lie in the same class, say A’ ~ A/ with i < j. There exist «, f € D
such that (x)4’ = (B)A’. Let k = j — i and B = A*. We will show that B is

principal. ‘ ‘
Since, clearly, (0)A’ = (B)BA' we see (a/B)A' = A'so o/ € D.Letw = o/p.
Then (w)A° = BA'. By Proposition 12.2.4, (w) = B. O

We remark that the set of ideal classes can be made into a group. Let 4
denote the class of 4. We define the product of 4 and B to be AB. One can
check without trouble that this is well defined, i.e., if 4 = 4; and B = B,
then AB = A, B,. Associativity follows from the fact that ideal multiplication
is associative. The class of D serves as an identity element. Finally, the last
proposition shows that an inverse to A4 is the class 4*~ . The structure of the
class group has been a major research problem ever since the concept was
invented.

One consequence of the fact that the ideal classes form a group is that
A" is principal for all ideals A. This will not be needed in the remainder of
this chapter.

We can now give proofs for the two results mentioned earlier (before
Lemma 3).

Proposition 12.2.6. If A, B, and C are ideals, and AB = AC, then B = C.

PROOF. By the last proposition, there is a k > 0 such that A* = («). Multiply
AB = AC on both sides by 4*~'. We find («)B = (2)C. It follows that
B=_C. O

Proposition 12.2.7. If A and B are ideals, such that B > A, then there is an
ideal C such that A = BC.

PROOF. As above there is a k > 0such that B* = ().

Now, since A < B we have B '4 < B* = () so C = (1/f)B* 'A< D
is an ideal.

Thus, BC = (1/8)B*4 = (1/B)(B)A = A. O

This proposition can be phrased “to contain is to divide.”
We now have all the tools we need to establish unique factorization into
prime ideals.
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Proposition 12.2.8. Every ideal in D can be written as a product of prime ideals.

PROOF. Let A4 be a proper ideal. Since D/A is finite, 4 is contained in a maximal
ideal P, (using Zorn’s lemma one can show that in an arbitrary commutative
ring with identity a proper ideal is contained in a maximal ideal). By the last
proposition A = P, B, for some ideal B,. If B, # D then B, is contained in a
maximal ideal P, and so 4 = P,P,B,. If B, # D we can continue the
process. Notice that A < B; < B, -- - is a proper ascending chain of ideals.
By Corollary 1 to Proposition 12.2.3 we see that in finitely many steps B, = D.
Thus A = P,P,---P,. O

Let P be a prime ideal. The descending chain P > P? 5 P*- .- is proper
since if P'= P'*! for some i then PP’ = P’ and so P = D by Lemma 4.
This fact is the basis of the following definition.

Definition. Let P be a prime ideal and A an ideal. Then ord, 4 is defined to
be the unique nonnegative integer ¢ such that P > 4 and P'*! » A.

Proposition 12.2.9. Let P be a prime ideal and A and B ideals. Then

(i) ordp P =1
(ii) If P’ # P is prime ordp P' = 0
(iii) ordp AB = ordp A + ordp B

ProOF. The first assertion is clear. As for (ii) assume ordp P’ > 0. Then
P o P'. Since prime ideals are maximal P = P’ contradicting the assump-
tion.

Let t = ordp A and s = ordp B. By Proposition 12.2.7 we have 4 = P'4,
and B = P°B;. By the same proposition we must have P » 4, and P 2 B,.

Now, AB = P°*'4A B,. If P°*'*! 5 AB then AB = P**'*!C and so by
Proposition 12.2.6, PC = A,B,. This implies P > A, B, and since P is prime
that P > A, or P o B,. This is a contradiction.

Thus ordp AB =t + s = ordp A + ord, B. O

Theorem 2. Let A = D be an ideal. Then A = [| P*® where the product is
over the distinct prime ideals of D, and the a(P) are nonnegative integers all
but finitely many of which are zero. Finally, the integers a(P) are uniquely
determined by a(P) = ordp A.

PRrOOF. The product representation follows from Proposition 12.2.8.
Let P, be a prime ideal and apply ordp, to both sides of the product given
in the theorem. Using Proposition 12.2.9 we see

ordp, A = Y a(P) ordp(P) = a(P,). O
P
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Let P be a prime ideal of D. By Lemma 2, P n Z is not zero. Since it is clearly
a prime ideal of Z it must be generated by a prime number p.

Definition. The number e = ordy(p) is called the ramification index of P
(here (p) is the principal ideal generated by p in D).

D/P is a finite field containing Z/pZ. Thus the number of elements in D/P
is of the form p’ for some f > 1. The number fis called the degree of P.

Let p € Z be a prime number and let Py, P,, ..., P, be the primes in D
containing (p). Let e; and f; be ramification index and degree of P;. By
Theorem 2, (p) = P{'P% - - P;e.

There exists a remarkable relation among the numbers e;, f;, and n.

Theorem 3. Y%_, e, f; = n.

We postpone the proof until we have developed some necessary back-
ground.

Proposition 12.3.1. Let R be a commutative ring with identity. Suppose A,,
Ay,..., Ay are ideals such that A;+ A; = Rfor i #j Let A= A,A,--- A,.
Then

R/A~R/A, ® R/A, ® - ® R/A,.

PROOF. Let y; be the natural map from R to R/A; and define y:R —
R/A; @ --- ® R/A,; by Y(y) = (Y1(y), ¥2(3), -, ¥,(y))- We will show ¢ is
onto and the kernel is 4.

To show ¥ is onto, it is sufficient to show that for any y,, y,, ..., y,€ R
the set of simultaneous congruences x = y(4;),i = 1,..., g is solvable.

Expanding the product (4; + 4,)(A4; + 43)---(4; + 4A;) = R we see
that all the summands, except the last,arein 4,. Thus 4, + 4, 4;--- A, =R.
There exist elements v, € 4; and u; € A, --- A, such that u; + v, = 1. Then
u; = 1(A4,) and u; = 0(4,) for i # 1. Similarly, for each j there is a u;
such that u; = 1 (4) and u; = 0 (4;) for i # j. It is then clear that x =
Y1ty + YUy + -+ + y,u, is a solution to our set of congruences.

Having shown that i is onto, we now investigate the kernel. Clearly,
keryy = A, n A, n---n A,. We must show that under the hypotheses the
intersection is equal to the product. This can be done by induction on g.
Suppose g = 2. Then, since 4; + A, = R, there exist a; € A; and a, € 4,
suchthata, + a, = 1.Ifae A; n A, thena = aa, + aa, € A, A,. This shows
A; n A, € A A,. The reverse inclusion is obvious so the result follows for
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g = 2. Now suppose g > 2 and we know the result for g — 1. Then 4, N
Ayn---nA;=A;nAyA;--- A;. However, A; + A,A5--- A, = Rbythe
first part of the proof. Thus, 4, " 4,A43--- A, = AA,--- A, and the proof
is complete. O

This proposition is called the Chinese Remainder Theorem for rings. We
return from a general commutative ring R to D.

Proposition 12.3.2. Let P = D be a prime ideal and let p’ be the number of
elements in D/P. T he number of elements in D/P® is p*’.

PRrOOF. The assertion is true for e = 1. If e > 1 then D/P® has P~ 1/P¢ as a
subgroup and the quotient is isomorphic to D/P*~! (second law of isomor-
phism). If we can show P°~'/P° has p’ elements then the result will follow
by induction.

Since P¢ = P°~! properly we can find an « € P°~! such that a ¢ P°. We
claim (x) + P° = P°~ 1. Since P° = () + P* the latter ideal must be a power
of P. Since () + P° = P*~! we must have (a) + P¢ = P~ 1,

Map D to P°"!/P° by y — ya + P°. This is easily seen to be a homo-
morphism onto. An element y is in the kernel if and only if ya € P¢, i.e., iff
ordp(ya) > e. Now, ordp(ya) = ordp(y) + ordp o = ordp(y) + e — 1. Thus
y is in the kernel iff ordp(y) = 1 which is equivalent to saying y € P. Thus
D/P ~ P®~!/P° and so the latter group has p’ elements. O

We can now prove Theorem 3. Remember (p) = P{'P3* --- Pge. It is
not hard to see that P{* + P% = D for i # j (see Exercise 25). By Proposition
12.3.1

D/(p) ~ D/P{* ® D/P & --- & D/Pg.
The proof of Proposition 12.2.3 shows |D/(p)| = p". On the other hand
Proposition 12.3.2 shows | D/Pf| has p®/‘ elements. Thus

P = pelflperZ ... pegfg_
It follows thatn = e, f; + e, f, + --- + ¢, f, as asserted. O

When F/Q is a Galois, that is, when all the isomorphisms of F into C
are actually automorphisms, Theorem 3 can be strengthened. Suppose
F/Q is Galois and let G be the Galois group. If 4 is an ideal and ¢ € G let
0A = {oo|a € A}. One easily checks that 64 is again an ideal. Also, 6D = D.
Thus D/6A = cD/cA ~ D/A. In particular this shows that if P is a prime
ideal, then P is also a prime ideal.

Proposition 12.3.3. Let p € Z be a prime number. Suppose P; and P; are prime
ideals of D containing p. Then there is a o € G such that 6P, = P;.
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PROOF. Suppose there is a prime ideal P, containing p and not in the set
{gP;|o € G}. By Proposition 12.3.1 we can find an a € D such that « = 0 (P,)
anda = 1(oP;)for all 6 € G.

Then N(a) = [[,eq 6% € Py N Z = pZ. 1t follows that N(a) € P; and so
oo € P; for some o since P; is prime. But then o€ ¢~ 'P; contradicting
a=1("'P). O

Theorem 3'. Suppose F/Q is a Galois extension. Let p € Z be a prime number
and write(p) = P{'P%*--- P;e. Thene, = e, = --- = e andf, = f, =--- = f,. If
e and f denote these common values, then efg = n.

ProoF. For a given index i there is a ¢ € G such that 6P, = P,. Since D/P; ~
D/oP, = D/P, we find f; = f;. Thus all the f’s are equal.

Apply o to both sides of (p) = P{'P52-- P;s. Since pe Z it is clear that
a(p) = (p). Thus

(p) = (6P )} (0P2)%* - - - (aP,)*e.

In this product we see the exponent of P, = ¢P, is e,. In the first expression
the exponent of P; is e;. By uniqueness of prime factorization we must have
e, = e; and so all the ¢;’s are equal.

Finally, since Y e; f; = n we see immediately that efg = n. O

We conclude this section by discussing, without proofs, some important
facts about number fields. In our applications we will be able to do without
this general theory.

Let P < D be a prime ideal with ramification index e. Let P " Z = pZ.
We say that P is a ramified prime if e > 1. One can show that P is ramified
only if p divides 6, = A(D), the discriminant of F. In particular, only finitely
many primes are ramified. If p ¥ dr then (p) is a product of distinct prime
ideals in D. An important result of Minkowski asserts that if [F: Q] > 1
then |[0g| > 1. In fact Minkowski found a more precise result, namely an
explicit lower bound for |dr|. An important consequence is that every
number field strictly bigger than @ contains ramified primes.

Now suppose F/Q is a Galois extension with group G. Associate with a
prime ideal P the group G(P) = {6 € G|6P = P}. G(P) is called the de-
composition group of P. D/P is a finite field containing Z/pZ. The field
D/P is a Galois extension of Z/pZ. Call the Galois group G. There is a homo-
morphism from G(P) to G given as follows. If ¢ € G(P) and & denotes the
residue class of o in D/P define G by the equation a(a) = @a. This is well
defined, 6 € G, and ¢ — G is a homomorphism. One can show this homo-
morphism is onto (Exercise 26). Let T(P) be the kernel. T(P) is called the
inertia group of P. We have

G(P)/T(P) ~ G.

It is not hard to see that |G| = fand |G(P)| = n/g = ef. It follows that
| T(P)| = e. Thus, if P is unramified G(P) ~ G.
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From the theory of finite fields G is a cyclic group generated by the
automorphism ¢, which takes a to a”. If P is unramified there is a unique
op € G(P) such that 6p = ¢,. This automorphism op is called the Frobenius
automorphism associated to P. Notice that the order of g, is equal to the
order of ¢p which is f, the degree of P. As it turns out, a large part of the
arithmetic theory of algebraic number fields centers around the properties
of the Frobenius automorphism. We will see illustrations of this in the next
chapter.

NOTES

The fact that the ring of integers in an algebraic number field form a Dedekind
ring is due to R. Dedekind and appears in the eleventh supplement to
Dirichlet’s Vorlesungen uber Zahlentheorie [127]. This result was subse-
quently also proven by Kronecker, Hilbert, and Hurwitz. The inertia and
decomposition groups were introduced by Hilbert (1894) in his “ Grundziige
einer Theorie des Galoisschen Zahlkorpers” (see also §39 of Hilbert’s
“Zahlbericht” [151] and Dedekind [121], Vol. 2, pp. 43-49).

It can be shown more generally that if D is a Dedekind ring with field of
fractions k and K is a finite separable extension of k the integral closure of
D in K (Exercise 27) is a Dedekind ring. This follows from a theorem of E.
Noether characterizing Dedekind rings as Noetherian domains which are
integrally closed and in which every nonzero prime ideal is maximal. For this
approach see Samuel-Zariski [214]. In our approach, as in other classical
approaches, essential use is made of the fact that the residue class ring modulo
a nonzero ideal is finite. The idea of deriving the Dedekind property from the
finiteness of the class number is due to Hurwitz. It will be noticed that in our
approach no use is made of the fact that the number of elements in the residue
class ring is a multiplicative function of the ideal. Butts and Wade [103] have
shown that the multiplicativity of this map implies the Dedekind property.
The usual classical approach is to show by a suitable generalization of Gauss’
lemma (Exercise 4, Chapter 6) that the ideal classes form a group.

Recently the characterization of fields F with class number 2 due to
Carlitz (see Exercises 15 and 16) has been generalized by A. Czogala [117].
He proves, among other things, that a number field has an ideal class group
which is cyclic of order 2, cyclic of order 3, or the Klein four group iff the
product of two irreducibles may be rewritten as the product of at most three
other irreducibles.

A deep result conjectured by Hilbert and proved by Furtwéngler asserts
the existence, for each number field F, of an extension E satisfying the follow-
ing conditions. First of all the degree of E over F is equal to the class number of
F. Every prime ideal B of F decomposes into the product of hg/f distinct
prime ideals in E where f'is the order of the ideal class of B in the class group.
Every ideal of F becomes principal in E. Finally the ideal class group of F
is isomorphic to the Galois group of E over F. The field E is unique and is
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called the Hilbert class field of F. The existence of the Hilbert class field is a
valuable tool in studying the structure of the ideal class group.

The actual calculation of the class number is a difficult matter. Even for
quadratic number fields of small discriminant the calculation requires
estimates (due to Minkowski) which we have omitted. These matters are
discussed in most standard texts on algebraic number theory. We recommend
the treatment in D. Marcus [183]. This book contains a large number of
interesting exercises.

In more recent texts it is customary to describe the ideal class group in
terms of fractional ideals. If D is an integral domain with field of fractions F, a
fractional ideal 4 is a D submodule of F for which there exists an element d
in D with d4 < D. Fractional ideals can be multiplied in the obvious way.
It can be shown that D is a Dedekind ring iff the (nonzero) fractional ideals
form a group [214]. The subgroup of fractional ideals of the form f D with
fin F are the principal fractional ideals. It is not difficult to show that the
ideal class group of an algebraic number field is isomorphic to the quotient
group of the group of fractional ideals by the subgroup of principal fractional
ideals.

EXERCISES
1. Find the minimal polynomial for \/5 + ﬁ
2. Compute the discriminant of Q(\/i + \/5).
3. Describe the units in Q(\/g).
4

. Let D be the ring of integers in Q(\/E). Show that, given N > 0, there are at most
finitely many integers « € D with max(|«|, |«'|) < N, where o' is the conjugate of a.

W

. Generalize Exercise 4 to an arbitrary number field.

6. If D is the ring of integers in an algebraic number field and P is a prime ideal such
that P = («) then show that « is irreducible.

7. Show that the class number of Q(,/ —5) is greater than one.

8. Let F be a number field. Show that the discriminant 8 is congruent to 0 or 1 modulo
4. This is one of Stickelberger’s theorems. The proof is tricky (cf. [207], p. 97).

9. Compute the discriminant A(1, a, ?), relative to Q(a), where « is a root of the
reducible cubic x* + px + ¢, p, Q.

10. IfR < Sareintegral domains « € S is said to be integral over R if «™ + byo™ ™ + - -
+ b,, = Ofor suitable m; b, ..., b,, € R. S is called integral over R if every element of
S is integral over R. Prove that if S is integral over R then § is a field iff R is a field.

11. Let ay,...,a, € D, the ring of integers in a number field F, A(a4, . .., a,) # 0. Show
thatif Ay, . . ., o) is a product of distinct primes (i.e., A is square free) then ay, . . . , @,
is an integral basis. Conclude that if d is square free d = 1 (4) then (1 + \/E)/Z, 1

form an integral basis for the ring of integers in Q(ﬂ).
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12.
13.
14.
15.

17.

18.

19.
20.

21.

22,

23.

24.

25.

26.

27.

12 Algebraic Number Theory

Show that sin(n/12) is an algebraic number.
Show that (3, 1 + ./ —5) is a proper ideal in Z[,/ —5]. Is it prime?
Construct an irreducible cubic polynomial over Q with only real roots.

Let F be an algebraic number field, D its ring of integers. Suppose the class number
of F is 2. Show that if z is an irreducible such that (=) is not prime then (z) = B, B,
where B,, B, are (not necessarily distinct) prime ideals.

. (L. Carlitz) Let F, D be as in Exercise 15. Show that if xe D, a = n,..., 7w, =

As, ..., A are two decompositions of o into the product or irreducibles then s = ¢.
[Note: The converse is also true! (cf. Carlitz [106]).]

Let f(x), g(x) be the respective minimal polynomials of « and f of respective degrees

n and m. Let the roots in C of f(x) and g(x) respectively be o = oy, a5,..., %, and

B = Bi, B2, - .-, Bn- Recall by Exercise 16, Chapter 6, there are no repeated roots.

Choose t eQ so that a; + t; # o + tf,j # 1,all i. Puty = a + tB. Show that

(a) f(y — tx), g(x) have greatest common divisor (in C[x]) x — B.

(b) (on the other hand) the greatest common divisor of f(y — tx) and g(x) is in
Q(y)Ix].

(©) BeQ(y), xeQ(y).

(Theorem on the primitive element.) If F is an algebraic number field show that
there exists an element y € F such that Q(y) = F.

Show that a finite integral domain is a field.

LetK = Fy(x)and L = K(\/)_c). Show that the trace map is identically zero. (Recall,
F, is the finite field with two elements.)

Let F be an algebraic number field of degree n. If o« € F, let T be the linear transforma-
tion defined by T(y) = ay. Show that det(x] — T) = f(x)' where t = n/deg(f),
and f(x) is the minimal polynomial of a.

Let F < E be algebraic number fields. Show that any isomorphism of F into C
extends in exactly [E: F] ways to an isomorphism of E into C.

Let F be an algebraic number field of degree n and let o4,..., 0, be the distinct
isomorphisms of F into C. Show that, for « € F, the notation being as in Exercise 21,

fx) = H?=1 (x — a((a@)).

The notation being as in Exercise 23 show that

Npg@) = [Jo(@) and tpg(@) = Y 6;().
i=1 1

Let F be an algebraic number field with ring of integers D. Show that if P and Q are
distinct prime ideals then (P°, Q%) = D, where a and b are positive integers.

Let P be a prime ideal in the ring of integers D of an algebraic number field F.
If F is Galois show that the natural map from the decomposition group of P to
the Galois group of the residue class field is onto.

If k is a field containing a ring D the set of all elements in k which are integral over D
(Exercise 10) is called the integral closure of D in k. Show that the integral closure
is a ring and that it is integrally closed.
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28.

29.

30.

31

32.

33.

34.

Let D be the ring of integers in a number field F. Suppose (p) = P?A for p prime in
Z and a prime ideal P. Show

(a) There exists « € PA, « ¢ P?A.

(b) (xp)” € pD all B € D.

(©) (tr(@B)y” = tr((2B)”) (pD).

(d) pltr(ap) all B € D.

(e) plA, the discriminant of F.

(Be sure to use the fact that o ¢ pD.)

Let F be a Galois extension of Q with abelian Galois group. Show that if p e Q is
unramified in F then ¢p = op. for prime ideals P and P’ dividing p in F, where op
denotes the Frobenius automorphism.

Let p be an odd prime and consider @(\/1;). If g # p is prime show that aq(\/;) =

(p/q)\/; where g, is the Frobenius automorphism at a prime ideal in Q(\/z_)) lying
above g.

Let F be an algebraic number field and U an ideal in the ring of integers of F. Show
that there is a finite extension L of F with ring of integers S such that 2S is principal.

Let P be a prime ideal in the ring of integers D of a number field F. If a = b (P) and
ordp b < t show that ordp a = ordp b.

Let K < L be number fields with rings of integers R and S respectively. If 4 and B
are ideals in R such that A4S divides BS then show that A divides B.

The notation being as in Exercise 33 show that ASN R = A.



Chapter 13

Quadratic and Cyclotomic Fields

In the last chapter we discussed the general theory of
algebraic number fields and their rings of integers. We
now consider in greater detail two important classes of
these fields which were studied first in the nineteenth
century by Gauss, Eisenstein, Kummer, Dirichlet, and
others in connection with the theory of quadratic forms,
higher reciprocity laws and Fermat’s Last Theorem. The
reader who is interested in the historical development of
this subject should consult the book by H. Edwards [128]
as well as the classical treatise by H. Smith [72].

We will develop in this chapter only those results that
will be needed for the applications in later chapters. The
Sfundamental result describes the manner in which rational
primes decompose into a product of prime ideals. However,
we could not resist giving yet another proof of the law of
quadratic reciprocity based on the decomposition laws of
these fields.

§1 Quadratic Number Fields

An algebraic number field F will be called a quadratic number field if
[F: @] =2.Let D c F be, as usual, the rings of integers in F. Our first goal
will be to find an explicit integral basis for D.

Let F = Q(«). The element o must satisfy a quadratic equation ax* +
bx + ¢ = O with a, b, ce Z. Thus

—b + /b? — 4ac

2a

Let A4 = b®> — dac. Then, clearly, F = Q(./A). Let A4 = A?4, where
A,, A, € Z and A, is square-free. Then F = @(\/;E)‘ Changing notation, we
have shown that every quadratic number field has the form Q(\/Z) where d
is a square-free integer.

If ¢ is any isomorphism of F/Q into C we apply ¢ to (\/3)2 =d and
find (0,/d)* = d. Thus o./d = +./d. 1t follows that F/Q is a Galois

o =

188
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extension. The Galois group has two elements, the identity and an

automorphism taking \/E to —\/d—.

Every element of F has the formoa = r + s\/g with r, s € Q. The nontrivial
automorphism takes o to o =r — s\/c_i. Thus, t(a) = a + o« = 2r and
N(a) = oo’ = r* — ds*.

If y € D then ¢(y) and N(y) € Z. Conversely, if these conditions hold then y
satisfies 0 = (x — y)(x — 7)) = x? — t(y)x + N(y) € Z[x] showing thaty e D.
Thus y e D iff t(y) and N(y) € Z.

Proposition 13.1.1. Ifd = 2,3 (4) then D = Z + Z,/d.
Ifd=1@)thenD = Z + Z((—1 + \/d)/2).

PROOF. Suppose y = r + s,/d, r, s€ Q. Then ye D iff 2r and r* — s’d e Z.
Since 2re Z it follows from the second condition that 4s%d € Z. Since d is
square-free it follows that 2s € Z. Set 2r = m and 2s = n. Then, r? — ds*e Z
implies m?> — dn®> = 0 (4).

Recall that a square is congruent to either 0 or 1 modulo 4.

If d = 2,3 (4) then m?* — dn* = m* + 2n? or m*> + n? (4). The only way
that m* + 2n® or m* + n? can be divisible by 4 is for both m and n to be even.
This is the case iff r and s are in Z. This establishes the first assertion.

If d=1(4) then m* — dn? is congruent to m?> — n> modulo 4. But
m* — n* = 0 (4)iff m and n have the same parity, i.e., they are either both odd

or both even. Thus D = {(m + n\/c—l)/2lm = n (2)}. Notice
m + n\/a m+n -1+ \/3
3 = 3 +n 3 .

Since m=n(2), (m+n)2eZ Thus DcZ+ Z(—1 + Jd))2. To

establish the reverse inequality we simply notice that (— 1 + \/3)/2 € D since
d=1@4). O

We can now calculate the discriminant of quadratic number fields.

Proposition 13.1.2. Let op denote the discriminant of F.
Ifd = 2,3(4) then ép = 4d.
Ifd = 1(4) then 6p = d.

PrOOF. If d = 2,3 (4) set w, = 1 and w, = ./d. Then

2 0
(o) = (0 ) d).

Thus J,; = det(t(w,;w;)) = 4d.
Ifd =1(4)setw, = land w, = (=1 + /d)/2. Then

2 -
(o)) = <—1 a+adp)
Thus 6y = det(t(w;;) = d. 0
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Having investigated D and 6 we now want to determine how rational
primes p € Z split in D. From Theorem 3’ of Chapter 12 we know efg = 2,
so we have threecases;e =2, f = l,g=lore=1,f =1,g=2,0re =1,
f = 2,9 = 1. We say, respectively, that p ramifies, splits (decomposes), or is
inertial (remains prime).

If p is a prime in Z let P be a prime ideal in D containing p. Let P’ =
{y'lve P}.

Proposition 13.1.3. Suppose p is odd.

(i) If p¥ o and x* = d (p) is solvable in Z then (p) = PP', P # P'.
(ii) If p.¥ 6 and x* = d (p) is not solvable in Z then (p) = P.
(iii) If p|SF then (p) = P2

PrROOF. In case (i) suppose a® = d (p) with ae Z. We claim that (p) =
(v, a + /d)(p,a — \/d). In fact, (p,a + /D@, a — /d) = ), a + /4,
a-— \/E, (a* — d)/p). The latter ideal is D since it contains p and 2a and these
two numbers are relatively prime. We claim (p,a + /d) # (p,a — \/3).
If equality held then the ideal would contain p and 2a and so would equal D
and it would follow that (p) = D. Thus p splits as asserted.

In case (ii) we claim P has degree 2. If degree P is 1 then D/P has p elements.
Since Z/pZ injects into D/P it would follow that every coset of D/P is repre-
sented by a rational integer. Let a € Z be such that a = \/2 (P). Then a? =
d (P) and a® =d (p) contrary to assumption. Thus p remains prime as
asserted.

Finally, in case (i) we claim (p) = (p,/d)% In fact, (p,/d)* = (p)
o, \/3, d/p). The latter ideal is D since p and d/p are relatively prime (re-
member that d is square-free). Thus p ramifies as asserted. O

We now discuss the decomposition of the prime p = 2. Remember that by
Proposition 13.1.2 we have 2 tJy if and only if d = 1 (4).

Proposition 13.1.4. Suppose p = 2.

() If246pand d = 1 (8) then (2) = PP’ and P # P

(ii) If2 )8 and d = 5 (8) then (2) = P.
(iii) If 2|8y then (2) = P2.
PrOOF. If d = 1 (8) we claim that (2) = (2, (1 + \/d)/2) 2, (1 — \/d)/2). In
fact 2, (1+/2)Q 1 -/DD) =@ (1+/dp2 1-/de
(1 — d)/8). The latter ideal is D since it contains 1 = (1 + \/d)/2 +
(1 - \/E)/2. Moreover, (2, (1 + \/Z)/Z) #2,1- \/Z)/Z) since otherwise

the ideal contains 1 and it would follow that (2) = D.
If d = 5 (8) we claim P has degree 2. If not (as in part (ii) of the last pro-

position) there is an integer a € Z such that a = (1 + \/3)/2 (P). Since
1+ \/E)/Z satisfies x> — x + (1 — d)/4 =0 we would have a® — g +
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(1 —d)/4=0(P)andsoa® —a + (1 —d)/4 =0(2).ForallaeZ,a® — ais
even. It follows that (1 — d)/4 = 0 (2) or d = 1 (8) contrary to assumption.

Now suppose 2|6r. We must have d = 2,3 (4). If d = 2 (4) then (2) =
2, \/3)2 and if d =3(4) then 2) =(2,1 + \/c_i)z. We leave the simple
verification to the reader. O

We note that we can state the decomposition law for odd primes in a
succint manner using the Legendre symbol. Namely, if (dz/p) = 1 then p
splits, if (0g/p) = — 1 then p remains prime, and if (§5/p) = O then p ramifies.
Furthermore the decomposition of p, p odd, depends only on the residue
class of p modulo 6. For if d = 2 or 3 modulo 4 then 6 = 4d and the result
follows from Proposition 5.3.3 and Exercise 37 of Chapter 5. If d = 1 (4) then
we may argue as follows. Since d = 1 (4) we have 6 = d. Thus

5F) _ [P p
L (_1 ((p—1)/2)((0F 1)/2)<___) — <___ .
(,, ) 5) = 5,

The value of (p/6F) depends only on the residue class of p modulo .

Next we determine the structure of the group of units in D. It is simple to
see that « is a unit iff N(«) = +1. Consider first the case of an imaginary
quadratic field, so that d < 0. Let U, denote the group of units in D.

Proposition 13.1.5. If d < 0 and square free then

(@ U_, ={Li -1, —i}.

(b) U_3 = {+1, +to, +w?}, wherew = (=1 + \/ —3)/2.
) Uy={1, =1} ford < —3,0ord = —2.

Proor. If d = 2 or 3 (4) then any unit may be written in the form x + \/3 A
x,yeZ. Thus N(a) = +1 is equivalent to x*> + |d|y* = 1. If d = —1 we
obtain (a). If |d| > 1 thenclearly U, = {+1, —1}.

If d = 1 (4) write = (x + \/dy)/2 where x = y (2). Then N(&) = +1 is
equivalent to x> + |d|y* = 4. If d = —3 the solutions to x> + 3y* = 4 give
part (b) while if |d| > 3 the equation x2 + |d|y* = 4 clearly gives U, =
{+1, —1}. This completes the proof. O

Thus the determination of the unit group is quite simple in the imaginary
case. The case of a real quadratic field is considerably more difficult.

If d >0 and square-free the equation x*> —dy* =1 is called Pell’s
equation. In Chapter 17, Section S it is shown that this equation has a solution
in nonzero integers x, y. The proof is elementary. Assuming this result we
describe the units in D in the real quadratic case.

Proposition 13.1.6. If D is the ring of integers in Q(\/c_l), d > O then there exists
a unit u > 1 such that every unit is of the form tu™ meZ.

ProoF. By Proposition 17.5.2 there exist positive nonzero integers x, y such
that x> — dy? = +1. Thus x +\/2y=uisaunitinD,u> l.Let M bea
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fixed real number, M > u. By Exercise 4, Chapter 12 there are at most a
finite number of « € D with |a| < M, |o&/| < M where o' is the conjugate of o.
IfBisaunit]l < f < Mthen N(f) = fpf = +1.If ' = —1/Bthen — M <
—1/B < M and if ' = 1/p then also —M < 1/p < M. Thus here are only
finitely many units § with 1 < f# < M and there is at least one, viz., u. Let ¢
be the smallest positive unit ¢ > 1. If 7 is any positive unit then there is a
unique integer s (not necessarily positive) with ¢ <t < &*'. Then 1 <
1¢~° < ¢ and since t¢”° is a unit we have t¢~* = 1. If 7 is negative then — 1 is
positive and —t = ¢°. This completes the proof. O

The unique unit ¢ defined in Proposition 13.1.6 is called the fundamental

unit of Q(\/E). The set of d > 0 for which the norm of ¢ is — 1 has not been
determined. However there are many interesting results in that direction (see
[196], pp. 124-126). It has been conjectured that for d = p, p = 1 (4) and
prime, and ¢ = (u + vﬁ)/2 that p\.v [86]. The fundamental unit, even for
small discriminants, can be difficult to compute. For example, the fundamental

unit of Q(,/94) is 2143295 + 221064,/94.

These results on units are special cases of the important Dirichlet unit
theorem which gives the structure of the group of units in an arbitrary
number field. This theorem states that the group of units modulo the sub-
group of roots of unity in the field is a finitely generated group withr + s — 1
generators, where s is the number of pairs of complex conjugate roots and r is
the number of real roots of a generator for the field. In the case of quadratic
fields this number is clearly O or 1 according as the field is imaginary or real,
which agrees with the above results.

As regards the class number there is an exceedingly rich theory for quad-
ratic number fields. In fact there exist explicit formulas, discovered by
Dirichlet. We give a particularly elegant special case. Suppose ¢ > 3 is a

prime and g = 3 (4). Let F = Q(/ —q). Let V and R represent the sum of the
quadratic nonresidues and quadratic residues modulo g, respectively, among
the numbers 1,2, 3,..., ¢ — 1. Then hy = (1/q)(V — R).

For example, let g = 7. Then ¥V =3+ 5+ 6=14and R=1+2+4
=7 Thushy = {14 - 7) = 1.

If we restrict our attention to d < O then C. L. Siegel proved that In
hg/In|6g|"* - 1 as |6p| = oo. It follows that there are at most finitely many

d < 0 for which Q(,/ —d) has class number below a fixed bound.

Gauss conjectured that the only d for which the class number of Q(,/ —d)
islared=—1, =2, =3, -7, —11, —19, —43, —67, and — 163. The first
generally accepted proof was provided by H. Stark. In essence a proof had
been given earlier by K. Heegner, but because of obscurities in the exposition
his proof was at first not thought to be valid.

For positive d, Gauss conjectured that infinitely many of the fields Q(\/c?)
have class number 1. This, however, remains an open problem.

A beautiful formula that determines the class number of a real quadratic
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field of discriminant p, p a prime congruent to 1 modulo 4, is &" =
[ 1 (sin(mj/p))~*9 where ¢ is the fundamental unit, y is the Legendre symbol,
and the product is over the numbersj = 1, ..., (p — 1)/2. A similar formula
holds for arbitrary discriminant. For these results and their proofs see
Borevich and Shafarevich [9], Chapter 5.

We conclude this section by mentioning several other results whose proofs
are beyond the scope of an elementary treatment. Consider an imaginary
quadratic field of discriminant d. Then the class number of this field is
divisible by 2'~ ! where t is the number of distinct prime divisors of d. Thus the
class number of Q(,/—210) is divisible by 8. It turns out that the class
number is exactly 8. A similar result holds for real quadratic number fields.

The following most remarkable fact has been discovered by F. Hirzebruch.
Let p be a prime congruent to 3 modulo 4 and assume that the class number of
Q(\/E) is one. Then the class number of the imaginary quadratic field
@(\/t;)) is one third of the alternating sum a;, — a;,_; + a,_, — --- + ay,
where the continued fraction of \/[_) is, in the standard notation,
(aq, ay, a3, ..., a), (see Stark [73], Chapter 7). For example, both @(\/5)
and Q(\/—_67) have class number one and

V61=8,521,1,7,1,1,2,5,16).

§2 Cyclotomic Fields

Let m be a positive integer and {,, = ™™ The number {,, satisfied x™ — 1
= 0 as do all the powers of {,,. Thus, we have x™ — 1 = (x — 1)(x — (,,) - - -
(x — (™1, It follows that the field F = Q((,,) is the splitting field of the
polynomial x™ — 1. Thus F/Q is a Galois extension.

We call F = Q((,,) the cyclotomic field of mth roots of unity. It was first
studied by Gauss in connection with his investigations into the construct-
ability of regular polygons (see Chapter 9, Section 11).

Proposition 13.2.1. Let G be the Galois group of F /Q. There is a monomorphism
0: G » U(Z/mZ) such that for € G
ol = 13

PrOOF. Since {™ = 1 we have (¢(,)" = 1. Thus o{,, = (% where (o) is an
integer modulo m. If 1 = ¢! then {,, = 16(,, = ©((%?) = {47 Thus
0(t)0(c) = 1 (where 1 is the coset of 1 in Z/mZ). Thus 0: G —» U(Z/mZ). It is
easily checked that 0 is a homomorphism. Finally, if 8(¢) = 1 then 6{,, = {,,
implying o is the identity of G since {,, generates F over Q. O

Corollary. [Q({,,) : Q] divides ¢(m).

We will show later that in fact [Q({,,): Q] = ¢(m).
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Definition. Let @,,(x) = [ [ m-1 (x — (&) Where 1 < a < m.This polynomial
is called the mth cyclotomic polynomial.

The roots of ®,,(x) are precisely the primitive mth roots of unity, i.e., those
mth roots of unity of order m. Clearly the degree of @,,(x) is ¢(m).

Proposition 13.2.2. x™ — 1 = [y @s(x).

PRrROOF.

m—1

1=l =Gy=11 T =G
i= d/m (i,m)=d
We claim [, m=a (x — {,) = ®@,,4(x). The proposition will follow from
this.
If (i,m) = d, let i = dj. Then {}, = (¥ = (], ,. Moreover, (j,m/d) = 1. Thus
H x—=0)= l_[ (x — m/d) = @, (x). O

(i,m)=d (,m/d)=1

Corollary. ®,(x) € Z[x].

Proor. We proceed by induction on m. ®,(x) = x — 1. Now suppose the
corollary has been established for integers less than m. By the proposition,
®,(x) = (x™ — 1)/f(x), where f(x) is a monic polynomial which by the
induction hypothesis is in Z[x]. It follows by “long division” that ®,,(x) e
Z[x]. O

An alternate proof of the corollary goes as follows. Every o € G permutes
the primitive mth roots of unity. Thus the coefficients of @,,(x) are left fixed by
G and so are in Q. Since they are clearly algebraic integers they must be in Z.

Fromnow on we write {,, = {, F = Q({),and D for the ring of integersin F.

Proposition 13.2.3. Suppose p is a rational prime and p Y m. Let P be a prime
ideal in D containing p. Then the cosets of 1, {, {?,...,{™ ! in D/P are all
distinct. If f denotes the degree of P then p’ = 1 (m).

ProoOF. For w e D let w denote its coset in D/P.
Divide both sides of x™ — 1 = [] (x — {) by x — 1. We find

m—1

L+x+4+x" = T](x =)
i=1
Let x = 1 in this identity. We find m = [[(1 — {’) where | <i<m - L
Thus /= [] (1 — ). Since 7 # 0 it follows that {' # Tfor 1 <i<m -1,
andso 0’ # {for0 <i,j<m— 1.
The elements {{|0 <i < m — 1} form a subgroup of order m in the

multiplicative group of D/P. The latter group has order p’ — 1. Therefore
p’ =1(m). O
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Theorem 1. The mth cyclotomic polynomial, ®,(x), is irreducible in Z[x].

PrOOF. Let f(x) € Z[x] be the monic irreducible polynomial for {. The fact
that f(x) has coeflicients in Z follows from the fact that { is an algebraic
integer (Exercise 16, Chapter 6). If p  mis a prime we will show that {?is also a
root of f(x). If ae Z, and (a, m) = 1, then by factoring a into a product of
primes it will follow that {? is a root of f(x). Thus deg f(x) > ¢(m). On the
other hand, since ®,,({) = 0, f(x) divides ®,(x) which has degree ¢(m). It
will then follow that f(x) = ®,,(x).

Now, let p be a prime, p ¥ m, and let P be a prime ideal of D containing p. As
usual, if w € D then w will denote the residue class of w in D/P. We have x™ — 1
= f(x)g(x) and so x™ — 1 = f(x)g(x) in Z/pZ[x]. By the last proposition
x™ — 1 has distinct roots in D/P. It follows that f(x) and g(x) have no com-
mon root. Suppose f({?) # 0. Then g({?) = 0 and g({?) = 0. The coefficients
of g(x) are in Z/pZ and are thus equal to their own pth power. From this we
see 0 = g({?) = g({)” and so 0 = §({). It follows that f({) # 0 which is not
true because f({) = 0. One concludes f({¥) = 0 as asserted.. O

Corollary 1. [Q({,): Q] = ¢(m).

Corollary 2. The map 6 of Proposition 13.2.1 is an isomorphism of G onto
U(Z/mZ).

PRrOOF. Both G and U(Z/mZ) have ¢(m) elements. Since @ is one-to-one it must
be onto. O

By Corollary 2 we see that for every aeZ with (a, m) =1 there is a
0, € G such that ¢,{ = {*. The map a — o, gives rise to a homomorphism
from U(Z/mZ) to G which is inverse to 6.

If p is a prime, p } m, we wish to study more closely the automorphism o,.
Before we do so, some preliminary work is needed.

Lemma 1. Let F/Q be an algebraic number field of degree n. Let D < F be the
ring of integers and oy, a,,...,a,€ D a field basis for F/Q. Let A = Ax,
%y, ..., 0,) be the discriminant of this basis. Then AD < Za, + Zay + ---
+ Za,.

PrOOF. Let we D. We have w = ) r;a; with r; € Q. Multiply both sides by «;
and take the trace. We find t(wa;) = Y. r;t(o;;). The elements t(wa;) and
t(o;o;) are all in Z since they are traces of algebraic integers. Using Cramer’s
rule to solve for the r; we see that each r; is an integer divided by A. The
result follows. O

Lemma 2. The discriminant A = A(1, ¢, ..., (*™ 1) divides m*™.

ProoF. Differentiate both sides of x™ — 1 = ®,(x)g(x). We find mx™~! =
®@,,(x)g(x) + ®@,(x)g'(x). Substitute x = {. The result is m{™ "' = @, (0)g().
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Now take the norm of both sides. Using Proposition 12.1.4 and the fact that
N(@©) = +1 we find +m*™ = AN(g({)). We note by Theorem 1, that, 1,
(..., %™ 1 s a field basis for Q({)/Q so that A(1, ¢, ..., (%™ 1) #0. O

Proposition 13.2.4. Let p € Z be a prime such that p ¥ m. Let w € D the ring of
integers in Q({). There is an element Y, a;(' € Z[{] such that w =Y a;{(p).

PrOOF. Let A = A(1,¢,..., (%™ 1), By Lemma 2, pYA. Thus there is a
A’ € Z such that A’A = 1 (p). Thus w = A'Aw (p). By Lemma 1, Aw e Z[{].
Thus the result. O

We remark that in fact D = Z[{] but this is not so easy to prove for general
m. When m is a prime however, the proof is reasonably easy (see Proposition
13.2.10).

Corollary. Suppose p ¥ mand n > 0 is such that p" = 1 (m). Then, for we D we
have wP" = w (p).

PRrOOF. By the proposition,w = ) a,{’ (p) with the a; € Z. Since a? = a; (p) we
must have w? = ) a,{"" (p). Repeating this process n times and using the fact
that p" = 1 (m) implies {*" = { yields the result. O

Proposition 13.2.5. If p is a prime and pYm the every prime ideal P in D
containing p is unramified.

PROOF. Assume P is ramified. Then (p) = P2. Let w be an element of P not in
P2. By the above corollary w?" = w (p) and so wP" = w (P?). Since p" > 2 it
follows that w € P2, a contradiction. O

We will see later that the converse of this proposition is “almost” true.
See Proposition 13.2.8.
Recall that, for p prime, p ¥ m the automorphism o, sends { to (7.

Proposition 13.2.6. For all w e D we have o,w = w? (p).
PRrOOF. By Proposition 13.2.4 we have w = Y’ a;{* (p). Apply o, to both sides.
We find thato,w = ) a;{” (p). Since the a; € Z we have ) a;(% = Y af(¥
(& a;0) (p). Thus o,w = wP (p) as asserted.

O

Corollary. Let P be a prime ideal of D containing p. Then 6,P = P.
ProoF. If we P then o,w = w? = 0(P) and so ¢,P < P. Since ¢,P is a
maximal ideal we have equality. O

Theorem 2. Let p be a prime, p ¥ m. Let f be the smallest positive integer such
that p’ = 1 (m). Then in D = Q({) we have
(P)=P1P2"‘Pg,

where each P; has degree f and g = ¢p(m)/f.
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PrOOF. We first observe that it follows directly from the definition that f'is the
order of the automorphism o,,.

Now, p/* = |D/P,| where f; is the degree of P,. Since D/P, is a finite field
we have w”' = w (P,)for allw e D and f; is the smallest positive integer with
this property.

By the last proposition, we have w = o/(w) = w¥’/(P) for all we D. It
follows that f; < f.

On the other hand, {*"* = { (P,) implies {?" = { by Proposition 13.2.3.
Thus p/* = 1 (m) and it follows that f < f;.

We now see f = f; = degree of P,. All the P, have degree f. By Proposi-
tion 13.2.5 all the P; are unramified. Using the relation efg = ¢(m) we con-

clude g = ¢(m)/f.

Corollary. With the notation of the theorem, let P be one of the P;. Define
G(P) = {ce G|oP = P}. Then G(P) is a cyclic group generated by o ,.

PrOOF. By the corollary to Proposition 13.2.6 we know o, € G(P). Let {o,»>
be the cyclic group generated by o,. Then {s,> = G(P). By Proposition
12.3.3 we have g|G(P)| = ¢(m). Thus |G(P)| = ¢(m)/g = f = |{s,>| and
we are done. O

Theorem 2 is a very satisfactory result on the decomposition of primes
which do not divide m. One can also find the decomposition of those primes
which do divide m. We content ourselves with the following important special
case.

Proposition 13.2.7. Let | be a prime in Z. Then, in Q({)), | ramifies completely.
More precisely, let L = (1 —{,). Then L is a prime ideal and (I) = L'™*.
Moreover L has degree 1.

PROOF. As in the proof of Proposition 13.2.3 wehavel = [] (1 — {j) where the
productisover l <i</[— 1.

Letu; = (1 = )/(1 =) =1+ + -+ (' Weclaim that u; is a unit.
Since [ yi there is a j € Z such that ij = 1 (I). Thus,u; ' = (1 — /(1 = ) =
A=) -)=1++---+ )" is an algebraic integer which
proves the claim.

It followsthat I = [J(1 — ) = (1 — {)' ' [] wiand so (I) = L'~ *. Using
the relation efg = ¢(I) = | — 1 we see L must be prime, e =1—1,g =1,
and f = 1. O

Proposition 13.2.8. Let P be a prime ideal in Q({,,) and set P ~ Z = pZ.If pis
odd then P is ramified iff p|m. If p = 2 then P is ramified iff 4|m.

ProoF. By Proposition 13.2.5 we know that p /m implies P is unramified.

Suppose p is odd and p|m. Then Q({,) = Q({,,). Let D,and D,, be the rings
of integers in Q({,) and Q({,,) respectively. By the last proposition pD, =
(1 —¢,)P~ . Write(1 — {,)D,, = P\P, - - P, where the P; are, not necessarily
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distinct, prime ideals in D,,. Then pD,, = (P,P,---P,)’ . Sincep — 1 > 1
all the primes in D,, containing p are ramified.

Now suppose p = 2. If 2|m but 4 /' m then m = 2m,, with m, odd. In this
case, —{,, is a primitive mth root of unity so Q({,,) = Q({,,)- Since 2 m,,
P is unramified.

Finally, suppose p=2 and 4|m. Then {,=./—1=1ie Q(,). Since
(1 — i) = —2i we see 2D,, = ((1 — i)D,,)* and it follows, as before, that all
the primes in D,, containing 2 are ramified. O

Suppose p is a prime and p ¥ m. For later use (in the next chapter) we need
to know how p decomposes in the field Q((,, ().

Lemma 3. If (m, n) = 1 then Q({,,, () = QL)

Proor. Since (&, = {, and (%, = {,, we have Q((,,, {,) = QLpmn)-
On the other hand, since (m, n) = 1 there exist integers u and v such that
um + vn = 1. Thus {,,, = (umiom = (40 € Qo Cn)- O

Proposition 13.2.9. Let p be a prime such that pYm. Let D be the ring of
integers in Q({,, (). Then

D=(P1P2"'Pg)p_l,

where the P; are distinct prime ideals of degree f and g = ¢p(m)/ f. The integer f
is the least positive integer such that p’ = 1 (m).

Proor. Since Q({,) = Q({,, {,,) we see, as in the proof of the last proposition,
that all the ramification indices of primes in D containing p are divisible by
p — 1. Thus

D = (P,P, -+ P,V ®)

where the P; are distinct prime ideals of degree f', say, and ¢’ > 1 is some
integer.
Let D,, be the ring of integers in Q({,,). By Theorem 2

pD = I~) F 2" f’ g
where the P, are prime ideals in D,, of degree f and g = ¢(m)/f.
By considering the prime decomposmon of P,D and comparing with
equation (¥) we see f' > fand g’ > g.
From equation (*) and Lemma 3 we see

( — Dgm) = d(pm) = ¢(p — Df'g' = €(p — S 54%'"_)

It follows that ¢(m) > €'¢(m). Thus ¢ = 1 and all the inequalities are
equalities, i.e., f' = fand g’ = g = ¢(m)/f. This concludes the proof. [

We conclude this section by showing that D = Z[{,] when [ is prime. This
result holds even when [ is not prime but the proof is more difficult (see, for
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example, pp. 265-268, [207]). The case when [ is prime will be needed in
Chapter 17 where a special case of Fermat’s conjecture is discussed.

Proposition 13.2.10. If | is prime then D = Z[(,].

ProoF. Clearly Z[{,] = D. If a€ D there exist a,,ay,...,q,, rational
numbers such that « = a4 + a,{ + -+ + a;_,{' "2 We show first of all that
la;eZ,i=0,...,1 — 2. For if tr denotes the trace map from Q({) to Q then
one computes easily tr {/ = —1if [ \\ j, using say, Corollary 1 of Theorem 1.
Thus one sees that tr(a{™*) = —aq —a; — - —a,—1 + (I — Da, — a,4,
— -+ — a_,. Therefore tr(a{™* — af) = la;,,s =0,...,] — 2. Since a{ ™* —
af € D it follows that la,e Z. If A = 1 — { then by Proposition 13.2.7 one has
(A)'~' = (). By the above there exist bg,...,b,_, in Z such that lx =
by + byjA + --- + b,_,A'"2 Thus i|b, and taking norms shows that [|b,.
Thus 2'~1|b, and reduction modulo A2 given A2|b, 1 so that 1|b,. Again this
implies /| b,. Clearly, successive reduction modulo higher powers of 4 leads to
l|b;,j =0,...,1 — 2and division by [ then shows that « € Z[{;]. O

§3 Quadratic Reciprocity Revisited

As an application of some of the theory developed in this chapter we give yet
another proof of quadratic reciprocity. The idea for this proof goes back, in
essence, to Kronecker.

Let p be an odd prime and consider the field Q({,). We claim that this field
contains the square root of (—1)?~1/2p = p* This follows from Proposition
6.3.2. However, in order to make our present considerations independent of
the theory of Gauss sums, we give a direct proof using the relation

p—1

p=T10-0).

i=1
We combine the terms corresponding to i and p — i as follows
A=A =0 H=01-00 =)= -0%
Thus
(p=1)/2 ] -1
p=(=D®""2 TT (1 —-¢)* whereb=—-1-2— .- — 1 3 )
i=1

Let ce Z be such that 2c = 1 (p). Then {* = ({*)2. It follows that p* is a

square in Q({) as asserted. Let 12 = p*.
Now suppose g is an odd prime g # p. Consider the automorphism o,.

Then 0,7 = + 1 with the plus sign holding iff g, is in the Galois group of
Q(,)/Q(7). Since the Galois group G of Q({)/Q is isomorphic via 6 to
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U(Z/pZ) and the latter group is cyclic of order p — 1 we see g,7 = tiff g isa
square in G and this is so iff q is a square in U(Z/pZ). In other words

q
G'qT = (;)T

Let Q be a prime ideal in D = Q({) containing g. By Proposition 13.2.6 we
have

0,7 =1(0).

Thus (¢/p)t = 7% (Q) implying (p*/q) = p*“~ V"2 = =1 = (q/p) (Q).

This latter congruence implies (p*/q) = (g/p) since Q does not contain 2.

It may be thought that this proof, pretty as it is, is much more complicated
than the previous proofs and so does not add much. This is not the case,
because the ideas involved provide the key to studying higher reciprocity
laws.

NoTES

There is an introduction to the arithmetic of quadratic number fields in
J. Sommer’s Introduction a la Théorie des Nombres Algebriques (Hermann:
Paris, 1911). This book is based upon D. Hilbert’s lectures in 1897-1898. See
also F. Chatelet [111], W. Adams and L. Goldstein [84], and H. Stark [73].

As mentioned earlier all imaginary quadratic fields whose ring of integers
form a unique factorization domain have been determined. The imaginary
quadratic fields of class number two have also been determined. There are 18

such fields, the one with smallest discriminant being Q(,/ —427).

In the case of cyclotomic fields Masley has shown that if m is a positive
integer, m # 2 (4), then there are exactly 29 values of m for which Q(({,,) has
class number one. Furthermore, the prime cyclotomic fields Q((,) of class
number one are given by p = 3, 5, 7, 11, 13, 17, 19 a result due to Uchida and
Montgomery. For more details see the surveys by Masley [184], [185].

For a more thorough treatment of the arithmetic of quadratic and
cyclotomic number fields the reader should consult the treatise of Borevich
and Shafarevich [9].

In Section 3, we saw that Q(/(—1)"~/?p) is a subfield of Q({,). More
generally, according to a theorem of Kronecker and Weber any algebraic
number field which is Galois with an abelian Galois group is a subfield of
Q(¢,,,) for some m. For a proof of this difficult theorem see P. Ribenboim [207].

EXERCISES

1. Show that an algebraic number field of odd degree cannot contain a primitive nth
root of unity n > 2.

2. Let F be a real quadratic field. Show that if F has an element of norm — 1 then no
prime p = 3 (4) is ramified.
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3.

10.

11

12.
13.

14.

15.

16.

17.

18.

19.

Prove that if F is an algebraic number field such that e2™/" € F for some n > 3 then
the norm of any nonzero element of F is positive.

. Find the fundamental unit for @(\/5), @(\/15), @(,/2), @(,/3), Q(,/624).
. Show that a quadratic number field cannot contain \/E and \/¢; for two distinct

primes p and q.

. List the subfields of Q({s).

. Let F be a real quadratic field. Show that there are algebraic integers in F arbitrarily

close to 1 and distant from 1.

. Show that the class number of Q(,/10) is not 1.
. Let p be an odd prime and consider Q({,,).

(a) Show that N(1 + {) = 1 where N denotes the norm fromQ({,) to Q.
(b) Show that [] (1 + ) = 4, the product being over the squares modulo p, is in

/).
(¢) If p = 1 (4), show that 4 = (¢ + u/p)/2 with ¢ = u (2).
(d) Conclude from (a) that ((t> — pu?)/4)?~ V2 = 41 so that
(e) t* — pu? = +4.
(f) Show that 4 # —1 by showing that 4 > 0 (compare Exercise 3).
Now let p = 5(8).

(g) Show that A # 1 by considering the polynomial [], (1 + x%) — 1,
s=1%2%...,((p — 1)/2)% (See also Exercise 9, Chapter 16.) This exercise is
adapted from Hartung [145].

For which d does Q(\/;i) have an integral basis of the form o, o' where o' is the
conjugate of o?

Show that —({3 + ¢?)is a unit in Q({), { = e*"/>. What is the relation between this
unit and the units in Q(\/g)?
Show that sin(nj/p)/sin(n/p) is a unit in@Q({,), 1 <j < p— L

Show that if p = 1 (4), p prime, then the ring of integers in Q({,) always contains an
infinite number of units.

Let p be prime. Show that the discriminant A of Q({,) is [[;<; (¢ — )%, 1 <,
j<p-1

The notation being as in Exercise 14 show
@ —pl (1 =) =T] (¢ — ¢’), theproduct over all i,j,i # j,1 <ij<p— L
(b) Multiply forj = 1,2,...,p — 1 to obtain A = (—1)P~1/2pr=2,

Use Proposition 13.2.8 to show that i ¢ Q({,), p odd.

Use Propositions 13.2.7 and 13.2.8 to show that {, ¢ Q((,) if p and g are odd primes
p#q

Show that if p is a prime congruent to 3 modulo 4 then Q(\/;) is contained in the
cyclotomic field @({,,).

Show that any quadratic number field is contained in a cyclotomic field.
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20.

21

22.

23.

24.

25.

26.

27.

Show that the fundamental unit of the real quadratic field Q(,/10) is 3 + /10 and
using the formula given in the text determine the class number of the field.

Let a € Z, a not a square, a = 0 (4) or a = 1 (4). Define the Kronecker symbol y,
as follows: If p|a, x.(p) = 0.1f p} q, is an odd prime then y,(p) = (a/p) the Legendre
symbol; x(2) = lifa = 1(8), x(2) = — 1 if a = 5(8). Finally y,(b) = [ ['= xa(p:)
if +b = p,---p,. Show

(a) For b odd g, coincides with the Jacobi symbol.

(b) Ifb > 0,(a, b) = 1,a = 2'c withcodd then y,(b) = x,(b)"gp(c) — 1)~ VD= 1/2)
(© 1x) = 20 if x = y (a).

Let K be a quadratic number field with discriminant d, and let y, be the Kronecker
symbol. Show, for p any prime,

(a) psplitsin K iff y,(p) = 1.

(b) pis inertial iff y(p) = —1.

(c) p ramifies iff y,(p) = 0.

Using the table in Stark [73], p. 340, along with the tables in Borevich-Shafarevich
[9], pp. 422-425 verify the Hirzebruch formula stated at the end of Section 1 for
the primes 7, 19, 23, 31, 43, 47, 67, 83. Furthermore check the class numbers for the
imaginary quadratic fields using Dirichlet’s formula. Show that, knowing the class

number of Q(,/ —91) to be 2,Q(,/91) is not a principal ideal ring.

Let K be the field of pth roots of unity, p an odd prime. Show, without using Gauss
sums, that the unique quadratic subfield of K has discriminant (—1)®~1/2p,

The situation being as in the preceding problem, let f be the order of g modulo p,
p, for an odd prime g # p. If E denotes the quadratic subfield of K show that g
splits in E iff E is contained in the subfield D of degree (p — 1)/f. Show furthermore
that this is the case iff g is a square modulo p. Using the preceding exercise derive
a new proof of the law of quadratic reciprocity.

Count the number of proofs to the law of quadratic reciprocity given thus far in this
book and devise another one.

Show that there are no primes which remain prime in Q({s). Can you generalize?



Chapter 14

The Stickelberger Relation and
the Eisenstein Reciprocity Law

Having developed the basic properties of cyclotomic fields
we will prove two beautiful and important theorems which
play a fundamental role in the further development of the
theory of these fields.

The Eisenstein reciprocity law generalizes some of our
previous work on quadratic and cubic reciprocity. It lies
midway between these special cases and the more general
reciprocity laws investigated by Kummer and Hilbert,
proven first by Furtwiingler and then in full generality by
Artin and Hasse. In the last section of this chapter we will
give two interesting applications of Eisenstein’s result.
The first concerns Fermat’s Last Theorem and the second
the theory of power residues.

The Stickelberger relation is the basis for the proof
we give of Eisenstein reciprocity. Its importance goes far
beyond that. In recent years the theory of cyclotomic
fields has been dramatically advanced principally due to the
efforts of K. Iwasawa. In his work the Stickelberger
relation occupies a central position. It has also turned out
to be of importance in arithmetic algebraic geometry.

§1 The Norm of an Ideal

We will need a few more results from the general theory of algebraic number

fields.

Let K/Q be an algebraic number field, D the ring of integers in K, and
A an ideal. We define N(A), the norm of A4, to be the number of elements in
D/A. We continue to assume that ideals are nonzero.

Proposition 14.1.1. If A, B = D are ideals, then N(AB) = N(A)N(B).

PrOOF. If A and B are relatively prime, then D/AB ~ D/A @ D/B so the

assertion is clear in this case.
Let A = P$'P%---P* be the prime decomposition of 4. We claim

N(A4) = (N(P))"*(N(Py))*2---(N(Pp))*. On the basis of what has been

203
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said it will be sufficient to prove N(P*) = (N(P))* for any prime ideal P.
This, however, is just a reformulation of Proposition 12.3.2.

Now, in the general case, decompose 4 and B into a product of prime
ideals, multiply, apply the above result, and rearrange terms. The result
follows. O

Proposition 14.1.2. Suppose K/Q is a Galois extension with group G. Then
[1a(4) = (N(4)).

ceG
PROOF. Since both sides are multiplicative in A it suffices to prove the result
when A is a prime ideal P.

Let Py, P,, ..., P, be the distinct prime ideals in the set {¢(P)|o € G}.
Then |G| = g|G(P)| where G(P) = {6 € G|a(P) = P}. Since efg =n =
[K:Q] =|G|] we see |G(P)| =ef. Thus, using Proposition 12.3.3 and
Theorem 3', Chapter 12

[To(P) = (P,P,--- P = (p) = (p’), where P;nZ = pZ.

ceG

Since N(P) = |D/P| = p’, this completes the proof. (|

Proposition 14.1.3. Let K/Q be Galois with group G. Let a € D and let A = («)
be the principal ideal generated by o. Let No be the norm of . Then N(A) =
INQ@)].

PROOF. (N(4)) = []a(4) = [Jo((@) = [[(6w) = ([ Jo(x)) = (N(«)). Thus
N(A) and N(«) differ by a unit. Since they are both in Z they can differ
only by sign. Since N(A) is, by definition, positive, we have N(A4) = |N(«)|
as asserted. O

We remark that the above proposition is true even if K/Q is not a Galois
extension. The proof in the general case is somewhat more complicated.

§2 The Power Residue Symbol

Let m be a positive integer, and denote by D,, the ring of integers in @Q({,,).
Let P be a prime ideal in D, not containing m. Let ¢ = N(P) = |D,,/P|. By
Proposition 13.2.3 we know that the cosets of 1, {,,, ..., {*~! are distinct
and g = 1 (m).

Proposition 14.2.1. Let a € D,,, a ¢ P. There is an integer i, unique modulo m,
such that

24”0 = {1 (P).
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PRrOOF. Since the multiplicative group of D,,/P has g — 1 elements we have
a?™! = 1 (P). Thus

m—1

[T @™ =) =0(P).

i=0
~ Since P is a prime ideal there is an integer i,0 < i < msuch that «!4~ Him =
{8 (P).Ifi # j(m)then (i, # {4 (P),soiis unique modulo m. O

Definition. For a € D,, and P a prime ideal not containing m, define the

mth power residue symbol, (a/P),,, as follows:

@) (o/P), =0ifaeP.

(b) If a ¢ P, (2/P),, is the unique mth root of unity such that «¥?~/m =
(¢/P), (P).

Proposition 14.2.2.

@) (o/P),, = 1 iff x™ = o (P) is solvable in D,,.

(b) For all a€D,,, «V?~V/m = (o/P),, (P).

(©) @B/P)n = (2/P)p(B/P)m.-

(d) If « = B (P) then (¢/P),, = (B/P)y.

PRrOOF. Since the result has been proven earlier for m = 2, 3, and 4 we may
safely leave the details to the reader. O

Corollary. Suppose P is a prime ideal not containing m. Then

C_rg _ #(NP—1)/m
(P)m-c; m

PRrROOF. From part (b) of the proposition, both sides of the above equality
are congruent modulo P. Since they are both mth roots of unity and m ¢ P,
it follows that they are equal. O

It is important to extend the definition of (a/P),, in such a way that
(/B)., makes sense when S is prime to m. This is done as follows:

Definition. Suppose A = D,, is an ideal prime to m. Let A = P,P,--- P, be
the prime decomposition of A. For aeD,, define (a/A), = []: (@/P)m-
If € D,, and B is prime to m define (/B),, = (#/(B)) -

Proposition 14.2.3. Suppose A and B are ideals prime to (m). Then

@) @f/A)m = @/ A)m(B/A)m-
(0) (¢/AB)y = (&/A)n(®/B)pn-
(c) Ifais primeto A and x™ = o (A) is solvable in D,, then (¢/A),, = 1.

PRrROOF. All three assertions are straightforward to prove using the last
proposition and the above definition. We remark that the converse of part
(c) is not true. O



206 14 The Stickelberger Relation and the Eisenstein Reciprocity Law

We will need to see how the symbol («/A4),, behaves with respect to auto-
morphisms in the Galois group G of Q({,,)/Q.

From now on we will use exponential notation for automorphisms.
If 0 € G and o € Q(,,) we will write o’ instead of oo Similarly if 4 is an ideal,
we will write A7 instead of a(A). This notation is, in fact, more conventional
and it has certain advantages.

Proposition 14.2.4. Let A be an ideal prime to m and ¢ € G. Then

()= (%),

PRrOOF. Since both sides of the asserted equality are multiplicative in A4 it
will be enough to check the case where A = P is a prime ideal. By definition

QNP Dim = (%) (P).

Applying ¢ to this congruence we find

-4

a\(NP—1)/m — E G
()= = ( P)m P°).
It follows that (a°/P°),, = (a/P), (P°) and so («°/P°),, = (a/P);. Note
that we have used N(P°) = N(P). O

We end this section by stating the Eisenstein reciprocity law. We need an
important definition first.

Let I be an odd prime number. Recall that in D, we have (I) = (1 — ()" !
and (1 — {)) is a prime ideal of degree 1.

Definition. A nonzero element « € D, is called primary if it is not a unit and is
prime to [ and congruent to a rational integer modulo (1 — ;).

In the case | = 3 we demanded « = 2 (1 — {3)* so the above definition
is a bit weaker in this case. It is, however, sufficient for our purposes. The
following lemma shows that primary elements are plentiful.

Lemma. Suppose a € D, and a is prime to [. There is an integer ¢ € Z, unique
modulo [, such that {j a is primary.

PROOF. Let A = 1 — {,. Since the prime ideal (1) has degree 1 there is an
integer a€ Z such that a = a (A). Now, (x — a)/Ae D, so there is a beZ
such that (a — a)/4 = b (1). Consequently, « = a + bA (A?).

Since {; = 1 — A we have {§{ = 1 — cA (A%). It follows that

Ua=a+ (b — ac)k (A%).
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The integer a is not divisible by I since otherwise 4|« and we are assuming
a is prime to I. Choose ¢ to be a solution to ax = b (I). Then {{a = a (A?)
and so {§ « is primary.

The uniqueness of ¢ modulo ! is clear from the proof. O

Theorem 1 (The Eisenstein Reciprocity Law). Let | be an odd prime, ae Z
prime to l, and o€ D, a primary element. Suppose moreover that a and a are

prime to each other. Then
) _ (4
al, \a/,

The proof of this elegant theorem will be given in Section 5. It is a conse-
quence of the Stickelberger relation which will be stated in the next section
and proven in Section 4. Since this process is long, and somewhat involved,
the reader may wish to skip to the last part of the chapter, Section 6,
where three interesting applications of Eisenstein reciprocity are given.

§3 The Stickelberger Relation

From the very way they are defined Gauss sums are elements of cyclotomic
fields. We will investigate the prime ideal decomposition of Gauss sums
in these fields.

Let F be a finite field with p/ = g elements, y a multiplicative character
of order m, and ¥ a nontrivial additive character. Then the values of x are
mth roots of unity and the values of ¥ are pth roots of unity. Consequently,
9 W) = Yok XOY() € Q(,» £,). The arithmetic of this field was dealt
with in the last chapter.

Before beginning it is necessary to normalize matters by specifying the
characters y and y. This is done as follows.

Let P be a prime ideal in D,, = Q({,) and suppose m ¢ P. Let pZ =
P N Zand N(P) = q = p’. Finally set F = D,,/P. Recall that p/ = 1 (m).

We define a multiplicative character y, on F as follows. Let 0 # te F
and let y e D,, be such that 7 = t. Here 7 is the residue class of y modulo P.

Let
P P/, P).

By Proposition 14.2.2, x,(t) is well defined and is a multiplicative character.
The reason for taking the inverse of the power residue symbol instead of the
symbol itself will become apparent later.
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For the additive character we choose the character  defined in Chapter 10,
Section 3. We recall the definition. First one defines tr: F — Z/pZ by tr(t) =
t + 7+ 7" + .- + t?’"". Then y is defined by y(t) = {&".

With these choices we define g(P) = g(xp, ¥). We also define ®(P) =
g(Py™.

Proposition 14.3.1.

(@) g(P) e Q. C,).
(b) 1g(P)I* = q.
() ©(P)€e Q).

PROOF. (a) has already been discussed. (b) follows in the same way as when F
is the prime field. (c) follows from Proposition 8.3.3 which is stated over
Z/pZ but generalizes easily to F.

We will give another proof of (c) based on Galois theory. Consider the
diagram of fields

Qs &) = Ay

@(CM)\ /w(c,,)

Q

The Galois group of Q({,,,)/Q is given by the automorphisms o, where
(¢, pm) = 1. We remark

(i) o, leaves Q({,,) element-wise fixed iff ¢ = 1 (m).
(i1) o, leaves Q({,) element-wise fixed iff ¢ = 1 (p).

To show ®(P)e Q(¢{,,) it will suffice to show ®(P)° = ®(P) whenever
c=1(m).

Apply o, with ¢ = 1(m) to g(P) = Y xp(t)§(t). Since yp(t)° = yp(t) and
Y(8)° = Y(t) = y(ct) we have

g(P)ys =Y xp(OW(ct) = xp(c)” 'g(P).

Raising both sides to the mth power shows that ®(P) is invariant under g,
as asserted. O

Before proceeding to discuss the prime decomposition of g(P) and ®(P)
in the general case it is illuminating to review the situation when m = 2, 3,
and 4.

When m =2, Q({,) = Q. If p is the positive generator of P we have
9P = (— 1)~ 2p,

When m = 3, Q({;) = Q(/ —3). Suppose P has degree 1 and P = (n)
where & is primary. From the results of Chapter 9, Section 4, we may deduce
g(P)* = ®(P) = pr = nit? (bar denotes complex conjugation).
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For m = 4, Q({,) = Q(/ —1). Suppose P is a prime ideal of degree 1
and P = (n) where = is primary. From Chapter 9, Section 7, we may deduce
g(P)* = ®(P) = pn? = n® (again, bar denotes complex conjugation).

To see the pattern, and to state the generalization a notational device
known as “symbolic powers” is very useful. Suppose K/Q is a number
field, Galois over Q, with group G. The group ring Z[G] is defined as the
set of formal expressions ) , ¢ a(o)o where the coefficients a(o) € Z. Later,
we will show how to make this set into a ring. If « € K we define

aZa(a)a — l_[ O.(a)a(a)‘
If A is an ideal we define its symbolic power by an element of the group
ring in the same way.

Let o be the nontrivial automorphism of Q(,/—3)/Q. Our result for
m = 3 takes the form ®(P) = n'*27.

Similarly if © denotes the nontrivial automorphism of Q(,/ —1)/Q our
result is ®(P) = n!*3".

In general we cannot expect a factorization of ®(P) into irreducible
elements since D,, is not always a unique factorization domain. However,
these special cases generalize beautifully as follows.

Theorem 2 (The Stickelberger Relation). Let P be a prime ideal in D,, not
containing m. Then

(@(P)) = PHe.

The sum is over all 1 < t < m which are relatively prime to m.

The proof of Theorem 2 is long. It will occupy the next section entirely.

§4 The Proof of the Stickelberger Relation

We begin with three elementary results which will be needed later.

Lemma 1. Let p > 1 be a positive integer. Every positive integer can be
written uniquely in the form Y '_, a;p* where 0 < a; < p.

PROOF. Let a be a positive integer. There is a unique nonnegative integer n
such that p" < a < p"*!. By the division algorithm we have a = a,p" + r
where 0 < r < p". The number a, is less than p since otherwise a > p"*'.
Apply the same process to r, etc. In finitely many steps we have an expression
for a of the required form.

The uniqueness can be shown as follows. Suppose Y a;p' = Y b;p’ where
0 < a;,b; < p. Then pdivides a, — b,. Since |a, — by| < pwe haveay = by.
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Subtract a, from both sides, divide by p, and repeat the reasoning. This
yields a, = b,. In finitely many steps we see a; = b; for all i. O

Definition. Let g = p/. If0 < a < q — 1 writea = Y /- a;p'with0 < a; < p
and define S(a) = Y /¢ a;. For an arbitrary positive integer a define S(a) =
S(rywherea=r(q—1)and0 <r<gq— 1.

Definition. For a real number u define (u) as u — [u] where [u] is the largest
integer less than or equal to u. The number (u), which is in the interval
[0, 1), is called the fractional part of u.

Lemma 2. S(a) = (p — 1) Y/ <p'a/(q — 1))

PRrOOF. Both sides are unchanged if a multiple of ¢ — 1 is added to a. Thus
we may assume 1 <a<qg— 1.

Write a =ag + a;p + -+ + a;_,p’ "' where 0 < a4; < p. Since p/ =
q = 1(q — 1)we have

a=ay+ap+---+a_p’7t,
pa=a;y+app+--+a,,p " (g1,
p2a =dag_> + as_ 1D + -+ af_3pf—1 (q - 1),etC.

The right-hand sides of these congruences are all less than g — 1 so that
{p'a/(q — 1)) is equal to the right-hand side of the ith congruence divided
by g — 1. Thus

S-1 i
pa 1 _
=——S@l+p+--+p ")
i;0<q_1> Q“l()( P r)

This yields the lemma. O

Lemma 3. 3127 S(a) = (f(p — 1)(q — 2))/2.

ProOF. Write a =ay + a;p+ -+ + a,_,p/ ' with 0 < a; < p. Notice
that g - 1l=(p—-D+@-1p+---+ (@ — Dp/~ It follows that
g—l-a=@p-1-a)+@—-1-a)p+---+@—-1-a_)p/™"
and so '

S@+8q—-1-a=fp-1

Sum both sides from a =1 to a = g — 2. The result is ZZZ;fS(a) =
flp — (g - 2). 0

The Gauss sum g(P) considered in the last section is an element of
Q(Lm, £,)- The proof of Theorem 2 which we will give requires that we work
in the bigger field Q({,—,, {,). This has the advantage that all the (¢ — 1)st
roots of unity can be used freely. On the other hand, more fields means more
confusion. We will try to minimize the confusion by carefully keeping
track of which field we are working in.
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The following diagram will be useful in following the arguments.

2 < Dy-1yp = Dyg-1)/?
I I I
PBceD,oy —-D, /B

I I I

P <D, - D,/P

I I I f
pcZ - Z/pZ

In the above diagram P, B, and £ are prime ideals in the indicated ring
of integers. Recall from Section 3 that p \ m, f is the order of p modulo m,
sothat p’ = 1 (m),and g = p’. For the remainder of this section 4, = 1 — {,,.

Lemma 4.

(1) ords(pDy-1y,) = p — L.
(2) ords(4,) = 1.
(3) ordg(P)=p — 1.

ProOF. To prove (1) apply Proposition 13.2.9 with m (in the notation of
that proposition) replaced by q — 1. Since £ lies over p it appears in the
decomposition of pD and one has ords pD,_;), = p — 1. Again by the
same proposition and Proposition 13.2.7 one has pD ,,— ) = (pD,)D pg-1, =
A7ID gy = (P PP, where, say, 2, = 2. Hence A,D,,_;) =
P, --- P, and (2) follows. To prove (3) one sees easily using Theorem 2
of Chapter 13 and Proposition 13.2.9 that PP,--- Py D_,), = (2, --
2,0~ ! where all the primes are distinct and P, P,, ..., P, are pairwise
relatively prime. Thus PD,_,), = #?~' and the result follows. )

Lemmas. D, /P ~ D,_, /.

ProOF. There is a natural monomorphism from D,/P to D,_,/*8. To show
this is an isomorphism it suffices to show both fields have the same number
of elements. By Theorem 2 of Chapter 13 we have |D,_,/P| = p/" where
is the smallest positive integer such that p/ = 1(q — 1). Since q = p’ it
is clear that /* = fand so |D,_,/B| = p’ = |D,/P|.

By Proposition 13.2.3 we know that the elements 1, {,_,, ..., {a-% have
distinct images in D,_ /. The following definition imitates the definition
of the mth power residue symbol.

Definition. For a € D,_, define

(@) (,P)=0ifaeP.
(b) If a¢ B, (/P) is the unique (g — 1)st root of unity such that « =

(/) (B)-
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One easily checks that (xf/PB) = (¢/B)(B/PB) and « = B (P) implies
(/PB) = (B/B). The following lemma is also clear from the definitions.

Lemma 6. If x € D,,, (o/P)4~ V'™ = (a/P),,.
We now define a multiplicative character on F ~ D,_,/B as follows

o(t) = (%)

where y e D,_, is such that § = t. The proof that w is well defined and is a
multiplicative character is immediate from the previous remarks.

Lemma 7. o(l,_,) = {i_,.

ProOF. Immediate from the definition. O

Consequently, o has order ¢ — 1 and thus generates the group of multi-
plicative characters on F.

Definition. Let a be a nonnegative integer. Define g, = g(w ™% ¥).

We note that g(P), defined in the last section, is equal to g, for a =

(g — D/m.
Theorem 2 is a consequence of the following result.

Theorem 3. ord;(g,) = S(a), where 1 < a < q.

PrOOF. To begin with we show that ord,(g;) = 1. Recall
g1 = ), ()"0

teF

Using Lemma 7 we will convert this into a sum over the powers of {,_.
Let m; be a positive integer such that m; = tr((ff,_l) (p). Also recall that
{,=1~— 1, Then

q—2
g1 = ZOCq_—ll(l - lp)"“'
Using the binomial theorem we see (1 — 4,)™ = 1 — m;4, (#?) and so
q-2
9= - (.zomic;il)l,, 2.

Now, m;A, = ({ioy + {8y + -+ + (227")A, (#?). Substituting we find

q_z . . . -1
g1 = — Z Cgma(Cqmg + 082+ - + Cf,’il ‘)'lp(gz)‘
i=0
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All the sums Y422 (@Y, j=1,2,...,f — 1 are zero while j = 0 gives
the value g — 1. Since ¢ = p/ = 0 (2?) we have

gl = }“p (WZ)
By Lemma 4, part (2), we see 1, € 2 but A, ¢ 2> Thusord, g, = 1.

Let 3(a) = ords g,. We will establish a number of properties of the
function 3(a).

@) 3(a + b) < 3(a) + 5(b) providedl < a,b,a+ b <qg—1.

By Theorem 1 of Chapter 8 we have g,g, = J(w ™% @ %g,,,. Taking
ord, of both sides yields the result.

(ii) Sa + b) =3(a) +350b) (p — 1).

Notice that the Jacobi sum J(w ™", w™?) is in Q(,_,). It then follows
from the fact that BD,_,,, = 2~V that p — 1 divides ordz(J(w ™% w™?)).
The result is thus again an immediate consequence of the relation g,g, =
J(w_a7 CO_b)ga-f-b'

(ii1) 3(pa) = §(a).

To see this observe g,, = Y (1) "4(t) = ) w(t”) “Y(t*). We have
used the fact that tr(t) = tr(¢?) which is clear from the definition of trace.
Now t — t” is an automorphism of F. We conclude that g,, = g, and so
3(pa) = 3(a).

In the first part of the proof we found §(1) = 1. Using (i) and (ii) we see
3(a) =aforl <a<p.

For any a between 1 and ¢ — 1 write a = ag + a;p + -+ + a,_p’
0 < a; < p. Using (i) and (iii) we find

!

$(a) < Y Ka;p)) =) 3a) = ) a; = S(a).

j=0 i i
We now have 3(a) < S(a) for all a in the range under consideration. To
prove the theorem it will be enough, in the light of Lemma 3, to show
. -2 —1D(g—-2
(iv) Y sa) = LP = D@ =2 2)(‘1 )
1

In general, for Gauss sums, we have the relation g(y~ ') = x(—l)g(ﬁ

(here “bar” denotes complex conjugation). Thus g,g,— -, = o(—1)%q =
o(—1)p/. We know by Lemma 4 that ordz(p) = p — 1. It follows that

$a)+3(q—-1-a=f(p-1.

Sum both sides over a from 1 to q — 2. The result is 2) 427 3(a) =

S —1)g-2).
This completes the proof of Theorem 3. O
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Corollary. ordp(®(P)) = (m/(p — 1))S((q — 1)/m).

Proor. Using Lemma 4, part (3), we have (p — 1) ordp(@(P)) = ord z(®(P)).
Now, ord4(®(P)) = m ord4(g(P)) = mS((g — 1)/m) where the last equality
follows from the theorem because g(P) = g, witha = (g — 1)/m. O

This corollary gives the first step in deriving the full prime decomposition
of ®(P). To go further we first notice that the only prime ideals in D,, con-
taining ®(P) are those containing p. This follows from parts (b) and (c) of
Proposition 14.3.1 which show

|D(P)|* = g™ = p'™

If P’ is another prime ideal of D,, containing p then by Proposition 12.3.3
there is an automorphism g, of Q((,,)/Q such that P = P’ For1 <t <m
and (t, m) = 1 define P, = P°¢ ",

Lemma 8. ord, (®(P)) = (m/(p — 1))S(t((q — 1)/m)).
Proor. It follows quickly from the definitions that
ordp (®(P)) = ordp(®(P)*).
Choose an integer t’ such that t' = ¢ (m) and ¢’ = 1 (p). Then
9Py = (ZFxp(r)t//(r)> e ZFXp(r)‘l//(r)
Thus, we have
O(P)™ = (Zin’(r)t//(r)) .

The second term in the above equality is gat where a = t((q — 1)/m).
The proof of the lemma is now concluded by the same reasoning as in the
corollary to Theorem 3. O

We may now, finally, conclude the proof of Theorem 2.
By the corollary to Theorem 2 of Chapter 13 the group

G(P) = {0 € G(Q(,)/Q)|P° = P}

is the cyclic group generated by o,,.

Let t,, t,, ..., t, be a set of integers representing the cosets of U(Z/mZ)
modulo the cyclic subgroup generated by the image of p. In other words,
if 1 <t<m,(t,m)=1thent = t;p’ (m) for a unique pair {j, j), 0 <j < f,
1 < i < g. By Lemma 8 the prime decomposition of ®(P) is given by

. m qg-1\ _,
Y = t, —— .
P”  wherey b= i;S(, = )a,‘
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Using Lemma 2 we can write 7’ as follows

ey

The index i goes from 1 to g and the index j goes from O to f — 1. Since g,
leaves P fixed, 7’ has the same effect on P as

1= (%o o
-3 G

=Yts;' wherel<t<m and (t,m)=1.

This concludes the proof. U

For future reference we note
(@(P)) = P™

where 0 = Y, noam <t/mda; !, (t, m) = 1. The element 0 e Q[G] is called
the Stickelberger element.

§5 The Proof of the Eisenstein Reciprocity Law

We will need two results on roots of unity.

Lemma 1. The only roots of unity in Q({,,) are +{i=1,2,...,m

PROOF In the proof of Theorem 1 we only need this result when m is an odd
prime. We will leave the proof for general m as an exercise and assume
m = I, an odd prime.

Suppose {,€ Q). If 4|n then ./ —1 € Q({,). However, 2 is ramified in
Q(./ —1) and is not ramified in Q({,). Thus 4  n. If n = 2ny, ny odd, then
{ti} = {in;o}, we may assume that n is odd. If I is an odd prime dividing
n then {; € Q(¢,). However, ' is ramified in Q({;) and [ is the only prime
ramified in @(¢;). Thus | = I and n must be a power of [, [ say. Since ¢(I*) =
[*=1(1 — 1) is the dimension of @((,.) over @ and I — 1 is the dimension
of @(,) over @ we must have a = 1. The result follows from this. O

Lemma 2. Let K/Q be an algebraic number field and let 6, 05, ..., a, be the
n = [K : Q] isomorphisms of K into C. If a € K is such that |a°| < 1 for all
i=1,2,...,nthenais aroot of unity.
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PROOF. « is a root of
f@) = [](x = ey eZ[x].
i=1

The hypothesis of the lemma implies that the coefficient of x™ in f(x) is
an integer bounded by the binomial coefficient (). Thus only finitely many
polynomials of degree n is Z[x] can arise in this way.

If o satisfies the hypothesis of the lemma so do all the powers of «. Since
finitely many polynomials can have only finitely many roots it follows that
two distinct powers of « must be equal. Thus a is a root of unity. O

The next step is to define ®(A) for an arbitrary ideal of D,,, A prime to m,
and to investigate the properties of this function. In particular, it will be
important to determine ® on principal ideals.

Definition. Let A = D,, be an ideal and assume A is prime to m. Let 4 =
PP, --- P, be the prime decomposition of 4. Define

D(A) = O(P,)D(P,) - - - O(P,).

Proposition 14.5.1. Let A, B < D,, be ideals prime to m, a € D,, an element
prime to m, and recall y = Y to; ' 1 <t < mand (t, m) = 1. Then

(a) ®(A)D(B) = D(AB).

(b) |®(A)|* = (NA)™

() (B(4)) = A

(d) ®(«)) = () where &() is a unit in D,,.

PROOF. (a) is clear from the definition.

Since both sides of (b) are multiplicative in A we can assume A is a prime
ideal P. In that case |®(P)|*> = |g(P)|*" = (NP)" by Proposition 14.3.1,
part (b).

Both sides of (c) are multiplicative in A so again we may suppose A4 is a
prime ideal P. In this case the result is the assertion of Theorem 2.

To do part (d) notice

(@((@) = () = («)
by part (c). Thus ®((«)) and «” generate the same principal ideal. O
From now on we will write ®(«) instead of ®((x)).

It will be important to determine the unit &(a) more closely. In fact we
will show it is a root of unity.

Lemma 3. Suppose A = D,, is an ideal prime to m and let o be an automorphism
of Q({,,)/Q. Then

D(A)° = B(A°).
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PrOOF. To see this it is convenient to write g(P) in the following form

a\"t .
g(P) =} (ﬁ) {ye®,
where the sum is over a set of representatives for the cosets of D,,/P.
Let ¢ be an automorphism of Q({,,, {,)/Q which restricts to ¢ on Q((,,)

and the identity on Q({,) (see the proof to Lemma 8). By Proposition
14.2.4 we have

o\t
gPY =¥ (P—) 5.
Since tr(x) € Z/pZ we have tr(a°) = tr(a). It follows that g(P)° = g(P°).
Raising both sides to the mth power gives the result when A is a prime ideal.
By multiplicativity the result follows in general. |

Lemma 4. For e D,,, |o?|> = | Na|™.

ProOOF. The automorphism ¢ _, is complex conjugation on Q({,,) since it
takes {,, to {,,! = {,,. Thus

|a7|2 = "%t = q?(1 -1

Now, o_,y=0_, ) to; ' =) te-}. Clearly, 6,_,=0_,, and y =
Y. (m — t)o,,,. Thus, using t = m — (m — t) we find

Q+o_y=m)oao "
Since Na = [ a¢ " = 7" the result follows. O

Proposition 14.5.2. Let a€D,,, a prime to m. Then ®(x) = e(a)a” where
&) = + i for some i.

ProoF. In the light of part (d) of the last proposition it is enough to prove the
assertion about &(«). We have |®(x)|> = (N(«))™ by Proposition 14.5.1 and
|«’|* = |[Na|™ by Lemma 4. By Proposition 14.1.3, N(x) = | N«|.

Putting all this together we conclude that |¢(a)| = 1. Using Lemma 3
we find in the same way that |e(a)?| = 1 for all ¢ € G. It now follows from
Lemma 2 that &(«) is a root of unity. Finally since &(«) e Q({,,) we have
g(a) = +{¢¢, by Lemma 1.

We are now in a position to begin the proof of the Eisenstein reciprocity
law. The pattern of proof of the following proposition should be familiar
from our proofs of quadratic, cubic, and biquadratic reciprocity. It is itself
a “reciprocity” statement.

Proposition 14.5.3. Suppose P, P' = D,, are prime ideals both prime to m.
Suppose further that NP and NP’ are relatively prime. Then

®(P)\ _ (NP’
7). (7).
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Proor. Let ¢ = p/" = NP'. Recall ¢ = 1 (m). The following congruences
are taken modulo p’ in D,

g(P)Y =Y 2O Y
=Y xp(W(q't)

= (%) g(P).

gP) ! = Q(P)T I = (9f,—m) (P).

®(P)\ _ (NP )
(T)m = (T)m )

Since m ¢ P’ the two sides of this congruence must be equal. O

On the other hand

It follows that

Corollary 1. Suppose A, B = D,, are ideals prime to m and that NA and NB
are prime to each other. Then

(= ().

ProoF. As usual, the corollary follows from the proposition by multi-
plicativity. O

Corollary 2. Suppose A and B are as in Corollary 1 and moreover that A = (&)

is principal. Then
‘@) (=) _ (NB
B J.NB), \«),

()96,

Notice that (a'°*'/B),, = (a° '/B)., = (a° '/B)% = (a/B°),, by Proposi-
tion 14.2.4. Thus

(5,115 ). = 1), - (%),

To obtain the final equality we have used Proposition 14.1.2. O

PrOOF. To begin with

From now on we will assume m = [, an odd prime number.

Lemma S. If A < D, is an ideal prime to I, then ®(A) = +1 (I).
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PRrOOF. It is enough to show that ®(P) = —1 (I) where P = D, is a prime
ideal prime to l. Well,

O(P) = g(P)' = Y xp()W(2) (1)
= ;)lp(lt) = —1().

The last congruence follows from the fact that | — (lr) is a nontrivial
additive character on D;/P and so the sum of its values over all ¢ is zero.
Since (0) = 1 the result follows. O

Recall that a € D is called primary if « is prime to / and « = x (1 — {))%,
for some x € Z.

Lemma 6. If « € D is primary, then ¢(a) = + 1.

PRrOOF. Since (1 — {)) is the unique prime above [ in D, we have (1 — {,)° =
(1 — ¢) for all g € G. It follows that (1 — )’ = (1 — {).

Since ®(x) = &(a)a’ we have by Lemma 5 that eg(a)a?’ = +1 ()).

Since o = x (1 — {;)* with x € Z we find

ay = xv = x1+2+--~+(1—1)(1 _ CI)Z'
Now, x~ V2 = +1(I), so
o = (21 = £1(1 -4

It follows that &(x) = +1 (1 — {;)*. From Proposition 14.5.2 we know
&a) = +{i. To conclude the proof we must show that I divides i. This
follows from the uniqueness part of the lemma in Section 2, but it may be
worthwhile to do it directly.

We have {i = +1 (1 — {})*> Writing{, = 1 — (1 — {;) we find

-l -{)=+1(1— (1)2-

The plus sign must hold since otherwise 1 — {; would divide 2. But then,
subtracting 1 from both sides, we see 1 — {; divides i which implies |i. O

Proposition 14.5.4. If o € D, is primary, and B is an ideal prime to |, and NB

is prime to o, then
«\ _(NB
NB),” \ a )/

ProoF. By Corollary 2 to Proposition 14.5.3 we need only show (g()/B), = 1.
Since a is primary &(«) = + 1 by the above lemma. Since /is odd, (+ D=
+ 1 and we are done. O

We can now complete the proof of Theorem 1.
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Let pe Z be a prime, p # I, and p prime to a in D,. Let P be a prime ideal
in D, containing p. Then NP = p’. In the proposition we have just proven
we substitute P for B. The result is

o)~ G

Since f'|l — 1 = [Q({)): Q] we have (f, ]) = 1. Thus

()= C):

From this and (one last time) multiplicativity, we deduce (a/a), = (a/x),
for all a € Z prime to | and «a, provided o is primary.

§6 Three Applications

In Chapter 5 we proved that if a is an integer such that x? = a (p) is solvable
for all but finitely many primes then a is a square. This has been generalized
to nth powers by E. Trost. The result was later rediscovered by N. C. Ankeny
and C. A. Rogers. The result states that if x" = a (p) for all but finitely many
primes p thena = b"if 8 Y nand a = b" or a = 2"?b" if 8 |n. Using Eisenstein
reciprocity we will prove a portion of this when n = [ an odd prime. See
also [211], [134] and the Notes to Chapter 5.

Theorem 4. Suppose a € Z and that | ¥ a where | is an odd prime. If x' = a (p)
is solvable for all but finitely many primes p then a = b'.

PROOF. We can restate the theorem as follows. If g is not an Ith power then
there are infinitely many primes p such that x' = a (p) is not solvable.

Assume a is not an Ith power in Z. Let aD, = P{'P%> - -- P,~ be the prime
decomposition of a in D,. We claim that | } a; for at least one a;. To see
this, let p;,Z = P, n Z. Since | }/ a we have | # p; and so p; is unramified in
D,. Consequently ord,, a = ordp, a = a;. If l|a; for all i it would follow that
a is an [th power in Z. We may thus assume [ } a,.

Let {Q,,Q,, ..., @} be a finite set of primes Q; different from the P; and
from (1 — ).

Using the Chinese Remainder Theorem we can find an element 7€ D,
suchthatt =1(Q)fori=1,2,...,k,t=1(),t=1P)forj=1,2,...,
n — 1,and t = « (P,) where « is chosen so that (a/P,), = ;.

Since T = 1 (), 7 is primary. Thus, on the one hand

(g): B G), = ”(%) =L



§6 Three Applications 221

On the other hand, let (t) = R,R,--- R,, be the prime decomposition

of 7. Then
a a
(1')1 B l:[ (R,.),'

It follows that for some j, (a/R;); # 1.

From the congruences that t satisfies it follows immediately that R;¢
{Ql, QZ)"':Qk} Y {(1 - gl)} U{Pla""Pn}'

We have shown that there are infinitely many prime ideals Q such that
x' = a (Q) is not solvable. Let gZ = Q N Z. Then x' = a (g) is not solvable
and there are infinitely many such g since every rational prime is contained
in only finitely many prime ideals in D,. O

The second application of Eisenstein reciprocity we wish to make is to
Fermat’s conjecture. This states that if n > 2 is an integer there is no solution
to x" + y" + z" = 0 in non-zero integers. The fascinating history of this
conjecture will be sketched in a later chapter.

It is easy to see that if Fermat’s conjecture is true for n then it will be true
for any multiple of n. Since any integer bigger than 2 is either divisible by 4
or by an odd prime we may restrict our attention to the cases n = 4 or
n = lan odd prime. The case n = 4 was settled, affirmatively, by L. Euler.

When [ is an odd prime it is traditional to consider two cases. We say
we are in case one if x' + y' + z! = 0 and [ 4 xyz. Otherwise we are in case
two. In 1909 A. Wieferich published the following important result ([166],
Vol. 3).

Theorem 5. If x' + y' + z' = 0 is solvable in non-zero integers such that
LY xyz then 2!~ = 1 (I?).

It has been shown that the only two primes less than 3 x 10° which
satisfy 2!~ = 1 (I?) are 1093 and 3511. It is not known if there are infinitely
many primes of this type.

In 1912 Furtwingler proved a theorem which contains Theorem 5 as a
corollary. Namely,

Theorem 6. Let x, y, and z be non-zero integers, relatively prime in pairs, such
that x' + y' + z' = 0. Assume 1) yz. Let p be a prime factor of y. Then

Pl 1)

It is a simple exercise to see that the condition that x, y, and z be relatively
prime in pairs is no loss of generality.

To see how Theorem 5 follows from Theorem 6, assume ! } xyz. Since
x' + y' + z! = 0 not all three numbers x, y, and z can be odd. By symmetry
we can assume 2|y. By Theorem 6 we have 2! ! = 1 (1%).
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We proceed to prove Furtwingler’s theorem. Let { = {, be a primitive
Ith root of unity. We have

(c + P+ Ly) - (e + 71y = (=2). (*)

Lemma 1. Suppose i #j and 0 < i, j <l Then x + ('y and x + {’y are
relatively prime in D;.

PROOF. Suppose A < D, is an ideal containing x + {'y and x + {‘y. Then
(7 — ¢Hx and ({ — %)y are in A. Since x and y are relatively prime it follows
that {/ — (' is in A. It follows that A = 1 — { € A. Since (4) is a maximal
ideal, either (1) = 4 or A = D,. If (1) = A, then from equation (*) we see
(—2z)e(A) which implies ze(4) and [|z, contrary to assumption. Thus
A = D, and we are done. O

Corollary. The ideals (x + ('y) are perfect Ith powers.

Consider the element a = (x + y)'"%(x + {y). We claim

(i) The ideal () is a perfect Ith power.
(i) « = 1 — ud (A%) where u = (x + y)' " 2y.

Property (i) follows from the corollary to the lemma.
To prove property (ii) notice x + {y = x + y — yA. Thus,
a=(x+y"'-u
Now, x' + Y+ Z'=x+y+ z(). If I|(x + y) it would follow that I|z
contrary to assumption. Therefore It (x + y) and (x + y)'"! =1 (D).

Property (ii) follows.
Consider {™“o. We have

Fra=0 =D =1+ ul)1 —ud) =143

It follows that {~“a is primary. By Eisenstein reciprocity we have

(B0

Since the ideal ({™“x) = (a) is an Ith power, the left-hand side of () is
equalto 1.
Since ply, o = (x + y)'"! (p). Thus

()~ ()~ () -
P/ P D \&+nY

because the ideal (x + y) is an Ith power.

It now follows from () that ({/p); = 1. To conclude the proof we must
evaluate ({/p),.

Let pD, = PP, - -- P, be the prime decomposition of p in D,. We know
NP, =p’ and,sincep # e =1,andsogf = [ — 1.
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By the corollary to Proposition 14.2.2
(_{) = H (ﬁ) — l‘[ C(pf— nie _ Cy[(pf—l)/l]
D/ i \Pi/i i
The relation ({/p); = 1 now leads to the congruence

ugPII_IEO(l).

Since g|l — 1,1y g. Since u = (x + y)'~2y, L ¥ u. Thus

Ef—l'—lsou) or p/ =1(P).

The theorem is now immediate since f |/ — 1. O

We conclude with an application of Theorem 2 which concerns the struc-
ture of the ideal class group of Q(\/jl) where | > 3 is prime [ = 3 (4). Let
p be an odd prime p = 1(I). Then since p splits completely in Q((,) it also
splits in Q(\/?l) (why?). One can also see this by observing (—I/p) =
(=)= D2(p/I)(— 1)@~ 2W=12) = (p/y = 1 and applying Proposition
13.1.3. In the ring of integers D of @(,/—1I) write p = B%P. If D denotes the
ring of integers in Q((,) we have

Lemma 2. BD = H P where P is a prime ideal of D, P nD = B, and s runs
over the nonzero squares modulo 1.

ProoF. The set of o, in the statement of the lemma form the Galois group of
Q(¢,) over Q(/—1). Since pD = P¥:1% and ¢,(P) = P for a nonsquare n
modulo [ it follows that BD is divisible by precisely the a,(P), each with
exponent 1. O

By Theorem 2 we have (g(P)") = P*¢', t-=1, 2, ..., | — 1. Applying
Y 6,, s a square modulo I gives (¢)D = P=¢'. D = P**- P="- D where
a€ D and n runs over the nonsquares modulo [ in the interval [1, [ — 1].
Put R = Y's, N = ) n. By Exercise 34 of Chapter 12 it follows that aD =
BRPP. If [A] denotes the equivalence class of the ideal A and 1 is the unit
class then [P] ™! = [B]. Thus [B]" X = 1. On the other hand if 1 < r <
I — 1 by Exercise 6 (or Lemma 3, Section 3, Chapter 15), one hasg(P)”"~" = B
for some fe D. Raising to the Ith power, using Theorem 2, and applying
S o, gives, for r a square # 1, (BEPN)''D = (y)'D for some y € D. It
follows that ([BJV-RM)yr-1 = 1 (it is easy to show [|N and /|R). But from
the above ([BIV-P!") = 1. Since (r — 1, [) = 1 we have proven the
following result.

Proposition 14.6.1. Let B be a prime ideal of degree 1 in Q(\/ —1) for | = 3
a prime such that | = 3 (4). Then, [B]V P! = 1,
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While it is elementary that (N — R)/l is an integer it is by no means
obvious that it is positive. All known proofs of this fact use analysis. We
will give a short proof due to Moser in the Exercises to Chapter 16. For
other proofs of the positivity as well as many other interesting results of
this type see the paper by B. Berndt [94]. It turns out, as mentioned in Chapter
13 that (N — R)/l is indeed the class number of Q(\/j) but again the
proof is analytic. When, by direct calculation N — R = [ it follows that B
is a principal ideal. If one assumes, as can be shown, that each ideal class
contains a prime ideal of degree 1 then one can conclude that for such I,
@(\/——‘l) is a unique factorization domain. In this manner one checks that
the imaginary quadratic fields with discriminant —7, —11, —19, —43,
—67, —163 all have class number 1. Referring again to the proposition
PN-RI = (x) where a = (x + \/:—l y)/2; x, y € Z. Taking norms gives the
following interesting corollary.

Corollary. If p = 1(I),] = 3(4),] > 3,then 4p™ " = x% + Iy* withx, ye Z.

NoOTES

In his paper “Uber eine Verallgemeinerung der Kreistheilung” (1890) [224],
the Swiss mathematician Ludwig Stickelberger (1850-1936) (see [148])
succeeded in determining the prime decomposition of a Gauss sum attached
to an arbitrary multiplicative character defined on a finite field (Theorem 2
of this chapter). Actually he proved a more precise result. Namely, using the
notation of this chapter

—(=H@
- ao!al!"‘af_l!

I

. (gS(a) + 1)‘

This, of course, implies Theorem 2. The special case of this theorem when m
is prime and p = 1(m) had already been proven by Kummer in 1847. It
is interesting to note that Kummer derived the result by first determining
the decomposition in Q((,,) of certain Jacobi sums, which in turn was made
possible by the congruence J(@™, @") = — [(m + n)!/n! m!](P), known to
Jacobi, Eisenstein and Cauchy. (See Kummer [164], Vol. 1, pp. 361-364,
pp. 448-453, and Exercises 1 and 2). An elegant proof of Kummer’s result
can also be found in Hilbert’s “Zahlbericht” [151] (Theorem 135), where
the use of Jacobi sums is avoided by using an argument involving ramifi-
cation. This special case of Stickelberger’s theorem was the missing link in
the program initiated by Gauss, Eisenstein and Jacobi to establish higher
power reciprocity laws. Indeed, in 1850 [132] Eisenstein published his
proof of the reciprocity law bearing his name (Theorem 1), making use of the
then relatively new language of ideal numbers due to Kummer. A complete
proof can be found also in Vol. 3 of Landau [166] as well as in Hilbert’s
“Zahlbericht” (Theorem 140), where in order to overcome the restriction
that p = 1(I) he uses the finiteness of the class number for Q((;)! Hilbert
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views the Eisenstein law as an indispensible lemma for the Kummer reci-
procity law. The proof of Theorem 2 that we have given follows that found
in the important paper by Hasse and Davenport [23] (see also Chapter 7
of Joly [160]), while the derivation of Eisenstein’s law from Kummer’s
Theorem closely follows the treatment in Weil’s elegant historical study
“La cyclotomie jadis et naguére” [238]. This paper of Weil along with his
review of Eisenstein’s “Mathematische Werke” [239] and his introduction
to the collected papers of Kummer [164] provide a detailed and insightful
history of the efforts of Jacobi, Eisenstein, and Kummer to prove higher
power reciprocity laws with the use of Gauss sums. In this text we have
followed this development up to the work of Eisenstein. The subsequent
development leads to the research of Kummer, Hilbert, Furtwangler, and
Takagi, and eventually, to the celebrated Artin law of reciprocity. For the
history of these developments see Iyanaga [158] and Hasse [110]. For an
interesting, and perhaps more elementary, discussion of the nature of
reciprocity laws see Wyman’s paper “What is a reciprocity law?” [246].
The use of Theorem 2 to show that the ideal class group of Q(\/—_l),
I = 3(4) is annihilated by (1/]) Y} x(x/I) goes back to Kummer and
appears as Theorem 145 of Hilbert’s “Zahlbericht”. The corollary to
Proposition 14.6.1 was originally observed by Jacobi who, on its basis,

conjectured the class number formula for Q(,/ —1I). (See also the comment
of Weil [238], pp. 252-253.) Stickelberger, in the above-mentioned paper,
returns to this application of cyclotomy to the arithmetic of quadratic

forms and obtains similar results for Q(,/ —m), for general m.

There are other applications of Theorem 1 to Fermat’s Last Theorem.
For example, a well-known result of Mirimanoff states that if x, y, and z
are integers such that xP + y? + zF = 0, p\ xyz then 3?7 ! = 1(p?) (see
Theorem 1041, Landau [166]). Also Vandiver has shown, using similar
methods, that if x? + y? + 2z =0, (x, y, z) = 1, p > 3 then x? = x (p3),
y? = y(p?), z* = z(p?) (Landau [166], Theorem 1046). For further results
on Fermat’s Last Theorem that utilize Eisenstein reciprocity see Lecture 9
of the beautiful book by P. Ribenboim 13 Lectures on Fermat’s Last Theorem
[206].

EXERCISES
Throughout these exercises the notation is as in this chapter.

1. Show thatifl <n<qg—1,1 <m<q—1then
@) J™ o™ = —[m+ n)l/nim!] (B)
b)Ifl<a<q-—1,a=ay+ap+-—+a;_,p/ " then J ', 0™ V)=
—ao(*B).
2. In the proof to Theorem 2 we showed that g, = 4, (2?).
(@ If 1<a<p—1 show g, = (—1*""'Aa! (#°*") where o = f(£") means
ordy(a — f) > n.
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(b) If the Stickelberger congruence g, = (—1)' *5@3@/agla,!---a,_ (P *5@)
holds for some 1 < a < g — 1 and pa < ¢ — 1 then show it also holds for g,,.
(c) Establish the general Stickelberger congruence.

3. Show that if m > 2 then g(P)p~ /2 is not an algebraic integer (see also Chowla

[113]).

4. Let r and s be positive integers mY.r + s. Show that (J(xp, x3)) = P* where o =
Y rtfmy + (stymy — [(r + s)t]/md)s” ' the sum being over f, 1 <t <m,
(t,m) = 1.

5. Check that the argument in Section 4 showing g, = 4, (2?) is valid for p = 2,
m odd.

6. If (r, pm) = 1,1 < r < pm, then g(P)™ " € Q({,,)-
7. Verify Lemma 1 of Section 5.

8. Let p = 1 (m), where m is prime. Without using Exercise 4 show that J(x, ¥*),
1 <k <p-—2isa product of distinct prime ideals each with exponent 1. Use
Exercise 1 to determine the decomposition of J(x, ¥*) and use Proposition 8.3.3
to give a direct proof, in this case, of Theorem 2 (Kummer).

9. Let K/F be a Galois extension with cyclic Galois group of order p and generator o.
Define, for x € K, f(x) = 1 + x + xa(x) 4 - -+ + x0(x) - - - 6" 3(x). Let p be prime,
F=Q(,-1). K =Q(,.{,-1). Show that g(r) = Y22} 200G = (S Cpmrls™,
where ¢ is a primitive modulo p, x(t) = {,_, and ¢ is the automorphism of K/F
for which 6({,- ) = {,—; and o((,) = {,. Conclude that the Gauss sum is the great
grandfather of cohomology theory (Kummer [164], p. 10).

10. Use Theorem 2 to show that Q(g(P)™) is the fixed field of the decomposition group
of p, also known as the decomposition field of p.

11. For a prime / and positive integers r, s, and ¢ satisfyingr + s+ t=1[putH,, =
{h|h e F¥ hr + hs + At = I} where d denotes the smallest nonnegative residue of a
modulo /. Show that H,  , is a set of coset representatives for the subgroup of order
2in F}.

12. Consider the curve I' over F, defined by y' = x"(1 — x)’, the notation being as in

Exercise 11.

(a) Show that the zeta function of I' can be written z(u) = g(u)/(1 — u)(1 — pu),
where g(u) = [ ], (1 + J(¥p. ¥3)u’) where P ranges over the prime ideals in Q((;)
over p and the notation is as in the text; i.e., 7p is the Ith power residue symbol.

{b) Show that (Jj. i3)) = P*', where ke H, , ,.

(c) Show thatifthe order of pmodulo /(i.e.,f) is even, then complex conjugation is in
the decomposition group of P.

(d) If fis even, (J(z., 7)) = (p*12).

(e) J(7p, ) = up’’?, where u is an Ith root of unity.

(f) Show that u = 1.

(Exercises 11 and 12 are from a paper by B. H. Gross and D. E. Rohrlich [142].)

13. Let | be prime, y # ¢ a multiplicative character of F,. Put B, = (1/1) Y.~} ax(a).
Consider the elements of the group ring of the Galois group G of Q(,)/Q with
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14.
15.

16.
17.

coefficients in Q((;) defined by ¢, = (1/(I — 1) Y42 x(@ 7', 0 = (1/)Y 1210,

where o,((;) = {{. Show

(@) &8, (&) = (=1 = 172

(b) =I=(01-0)E + 2C:2 +o (= DU

©) e(=¢/1 =¢)) = (Cl)

(d) 0e,= —B,-1¢,, where one defines (3j21a,0)(Xizl bo)=Y!1co0, with
€= =y @by, 1 <u,v < L.

(This exercise is taken from Iwasawa [157], pp. 115-117.)
Let pand I be prime, ! > 3.Ifp # landa € Z[({,]isreal, (o, [) = 1showthat(a/p), = 1.

Let p # I be primes, | > 3. Show
@) (G/p), = - VNP = DI where fis the order of p modulo 1.

(b) (/p) = 1implies p'~! = 1 (1?).
Read Satz 1039 and Satz 1041 in Landau [166], Vol. 3.

Let m = [, an odd prime, and let . be a prime ideal in Q({,,) containing (1 — ().

Show

(@ gPr=-1(1-20)

(b) g(P) = —1 + c(1 = ) (£L?) withc e Z[{,].

©) (=g(P))° = (—g(P))' (£?) for (t,]) = 1 and o, the automorphism of Q({,)
such that 6,({,) = {, and o,({;) = {}.

@) g(Py ™" = (=" (1 = ).

(€) f1 <a,b<1IYa+bthenJ(y3, b)) = —1(1 — )2

This exercise is taken from Iwasawa [156].



Chapter 15

Bernoulli Numbers

In this chapter we will introduce an important sequence of
rational numbers discovered by Jacob Bernoulli (1654-
1705) and discussed by him in a posthumous work Ars
Conjectandi (1713). These numbers, now called Bernoulli
numbers, appear in many different areas of mathematics.
In the first section we give their definition and discuss their
connection with three different classical problems. In the
next section we discuss various arithmetical properties of
Bernoulli numbers including the Claussen—von Staudt
theorem and the Kummer congruences. The first of these
results determines the denominators of the Bernoulli
numbers, and the second gives information about their
numerators. In the last section we prove a theorem due to
J. Herbrand which relates Bernoulli numbers to the
structure of the ideal class group of Q((,). The material
in this section is somewhat sophisticated but we have in-
cluded it anyway because it provides a beautiful and
important application of the Stickelberger relation which
was proven in the last chapter.

§1 Bernoulli Numbers; Definitions and Applications

We begin by discussing three problems, each of historic interest.
The first concerns finding formulas for summing the kth powers of the
first n integers. Jacob Bernoulli was aware of the following facts

1
242434 pmo1p="02 D@D
6 b
2 2
3 3 3 _ 3__”("_1)
P42+ 34— 1) =

as well as corresponding, less well known, formulas for exponents up to 10.
For each exponent k the sum 1* + 2% + --- + (n — 1)* turned out to be a
polynomial in n of degree k + 1. In his efforts to determine the coefficients
of these polynomials for general k, Bernoulli was led to define the numbers

228
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which bear his name. He was completely successful in answering the original
problem and proudly remarks (in his book Ars Conjectandi) that in less
than a half of a quarter of an hour he was able to sum the tenth powers of
the first thousand integers [220].

Another outstanding problem of that period was to evaluate the sum

1 1 1 1
C(Z)-—1+4+ +16+ + -
and more generally {(2m) where ((s) = Z,‘f;, n~° is the Riemann zeta
function. After long effort L. Euler showed in 1734 that {(2) = n?/6.
Subsequently he determined {(2m) for all positive integers m.

The third problem is the celebrated Fermat’s Last Theorem. If n is an
integer greater than 2, Fermat asserted that x" + y" = z" has no solution
in positive integers. This assertion has never been proved in general. It is
easily seen that the conjecture is true if it is true whenever n = p, an odd
prime. In 1847 E. Kummer proved the conjecture is true for a certain set of
primes called regular primes. A prime p is called regular if it does not divide
the class number of Q({,). Furthermore, Kummer discovered a beautiful
and elementary criterion for regularity which involves divisibility properties
of the first (p — 3)/2 nonvanishing Bernoulli numbers.

We will discuss these three problems in turn.

Define S, (n) = 1" + 2" + --- + (n — 1)". We first give a simple in-
ductive method for evaluating these sums. The binomial theorem implies

(k + mtt —kmtt =1 +<m-1|' 1)k+ (m; 1)k2+---+<m':1)k”'.

Substitute k = 0, 1,2, ..., n — 1 and add. The result is

nm+1 =n+ <m —1*— 1>S1(n) + (m -2+- 1)S2(n) + -+ (m’:; I)Sm(n)- (1)

If one has formulas for S,(n), S,(n), ..., S,_(n) then Equation (1)
allows one to find a formula for S,,(n). Bernoulli observed that S,,(n) is a
polynomial of degree m + 1 in n with leading term n™*!/m + 1. This follows
easily by induction from Equation (1). Also, the constant term is always
zero. The value of the other coefficients is less obvious. By direct computa-
tion one finds the coefficient of n to be —1, L 0, —35, 0, 25, 0, — 35, 0, &%
for m =1, 2, ..., 10. Further empirical observation of the formulas led
Bernoulli to the following definition and theorem.

Definition. The sequence of numbers By, By, B,, ..., the Bernoulli numbers,
are defined inductively as follows. B, = 1 and if By, B,, ..., B, _, are already
determined then B,, is defined by

(m+ DB, = i ('" * 1) @
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Written out this becomes the sequence of linear equations
1+2B; =0
1+3B;+ 3B, =0
1+4B, + 6B, + 4B; =0
1 + 5B, + 10B, + 10B; + 5B, = 0.

OnefindsB, = —3,B, = ,B; = 0,B, = —35,Bs = 0,Bg = 35, ..., etc.
We shall prove later that the nonzero Bernoulli numbers alternate in sign.
Furthermore we shall see that the Bernoulli numbers with odd index bigger
than 1 vanish.

Lemma 1. Expand t/(e' — 1) in a power series about the origin as follows
tfe' — 1) = Y 2o b(t™/m!). Then for all m, b,, = B,,.

ProOF. Multiply both sides by ¢ — 1 to obtain
= ; Z
m* 1 gives 1 = b, for m = 0 and

e

k=0

3|'~»=
51”

Equating coefficients of ¢

in general. This is the same as the system of Equation (2) which defines the
Bernoulli numbers. Since B, = b, = 1 it follows that B,, = b, forallm. [J

We now give the answer obtained by Bernoulli to the question of eval-
uating the sums S,,(n).

Theorem 1. For m > 1 the sums S,(n) satisfy

(m + 1S, (n) = i (m + I)Bknm+l_k'

K=o\ k

PrOOF. In & = Y'%_, k™(t"/m!) substitute k =0, 1,2, ..., n — 1 and add.
This results in

l+e +e*+--- e = Z S,,,(n)—. 3)
The left-hand side is

e —1 e — 1 t © § ©
= ! _vypBl. '
¢ —1 t ¢ —1 k;n ! ,.;, i )

Equating the coefficients of ™ on the right-hand sides of Equations (3)
and (3') and multiplying by (m + 1)! gives the result. O
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We may reformulate the result of Theorem 1 by introducing an important
class of polynomials known as Bernoulli polynomials. Define

B, (x)= Y ('Z)kam-".
k=0
Thus B,(x) = x — 4§, By(x) = x> — x + &, etc. Then Theorem 1 may be
stated as

1
Su) =~ (B s() = By ).

We remark in passing that Lemma 1 yields an easy proof that B,,., = 0
for k > 1. Since B, = —% we have

£
Kkl

[ o]
e,_1+2_1+k§23k

The left-hand side is the same as (t/2)((¢' + 1)/(¢! — 1)) which is un-
changed if ¢ is replaced by —t, i.e., it is an even function of ¢. This implies the
coefficients of odd powers of ¢ on the right-hand side are zero.

We now turn to the relationship between Bernoulli numbers and the
numbers {(2m) for m = 1, 2, 3, ... . The following result is due to Euler and
constitutes one of his most remarkable calculations. For the history of this
result and its relation to the functional equation of the Riemann zeta function
the reader should consult the article of Raymond Ayoub [88].

Theorem 2. For m a positive integer

(2n)2m

22m) = (-nm*! @my1 Do

Proor. The proof of this result requires a fact from classical analysis. Namely,
we need the partial fraction expansion for cot x.

o x

“

tx = L 2
cotx = — P 2 e &

There are several ways to derive this expansion. Perhaps the simplest
way is to substitute ¢ = 1 in the Fourier expansion of cos at. Alternatively,
the result follows from taking the logarithmic derivative of the infinite
product expansion of sin x

0 x2
sinx = x 1—--==)
,,Ul ( n2n2>

This is a standard result in texts on complex variables but it is possible
to give a completely elementary proof (see Chapter 2 of Koblitz [162]).
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Using the formula for the geometric series we can expand the right-hand
side of (4) in a power series about 0. This yields
2m

xeotx=1-2% C(2m)%. (5)

m=1

We expand the left-hand side of Equation (5) in another way. Recall

eix + e—ix eix _ e—ix
cosX=——— and sinx =———.
2 2i
From these expressions we derive
) 2ix (2lx)"
XCOtX=lx+FC‘-_—— ZB (6)

Comparing coefficients of x>™ on the right-hand sides of Equations (5)
and (6) yields

2m
(2m )'
This is Euler’s result. O

- tem = (-

As examples, take m = 1,2 and 3. Since B, = {, B, = —35,and Bg = &%
we find {(2) = n%/6, {(4) = n*/90, and {(6) = n®/945.

A consequence of Theorem 2 is that (—1)"*!B,,, > 0 for m > 1. This is
because {(2m) is a positive real number for such m. Thus, the even indexed
Bernoulli numbers are not zero and alternate in sign.

Theorem 2 also enables one to estimate the growth of B,,. Namely,
one sees

2(2m)!
| Bm| > @

Here we have used the simple observation that {(2m) > 1. Using the
obvious inequality e" > n"/n! (look at the series expansion for ¢") we find

2m
| Byl > 2(ﬂ) . ®)
e

(M

This shows that the even indexed Bernoulli numbers grow at a very rapid
rate. A consequence which we will use later is | B,,/2n| — 00 as n — oo.

We summarize the above properties of Bernoulli numbers in the following
proposition.

Proposition 15.1.1

(a) Fork > 1 and odd, B, = 0.
() (=1)"*'B,, >0form=1,2,....
(©) |Byp/2m| = o0 asm — oo.
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The third problem that we discuss in this section deals with the relationship
between Bernoulli numbers and the Fermat equation x? + y? = z?. This
discussion will be purely expository for the result of Kummer is quite deep
and requires analytic techniques that we have not developed. However we
will introduce the important notion of a regular prime and state the Claussen—
von Staudt congruence which we will prove in the following section. First of
all we introduce the notion of a p-integer.

Let p be a prime number. A rational number r € Q is said to be a p-integer
if ord,(r) > 0. In other words r is a p-integer if r = a/b, a, be Z and p t b.
One also says with slight ambiguity that p does not divide the denominator
of r. It is an important observation that the set of p-integers forms a ring.
Denote this ring by Z,. If r and s belong to Z , write r = s (p")if ord ,(r — 5) >
n, or equivalently, if r — s = a/b, p ¥ b and p"|a, a, be Z. The following
theorem proved independently by T. Claussen and C. von Staudt describes
the denominator of B,,,. No such complete description of the prime divisors
of the numerator is known.

Theorem3. For m > 1, By, = Ay — D p—1|2m 1/p Where Ay, €Z and the
sum is over all primes p such that p — 1|2m.

Corollary. If p — 1 Y 2m then B,,, is a p-integer. If p — 1|2m then pB,,, + 1
is a p-integer. More precisely if p — 1|2m then

1 1
ord(pBy, + 1) = ord p(BZ,,, + I_?) =1+ ord<32m + ;) >1

so that pB,,, = — 1 (p). Finally we notice that 6 always divides the denominator
of By, m > 1,since2 — 1 and 3 — 1 divide 2.

Kummer introduced the notion of a regular prime as follows.

Definition. An odd prime number p e Z is said to be regular if p does not
divide the numerator of any of the numbers B,, B, ..., B,_3. If p is not
regular it is called irregular. The prime 3 is regular.

By the corollary to Theorem 3, B, By, ..., B, _; are p-integers. Therefore
pisregulariford, B,; = Ofori = 1,...,(p — 3)/2. It is easily seen that the
units in Z, are precisely the elements x with ord, x = 0. Thus p is regular
if B, By, ..., B,_3 are units in Z,. Equivalently p is irregular if some B,;,
1 <i < (p — 3)/2is a nonunit in Z,. The first irregular primes are 37 and
59 for it is known that ord,,(Bs,) = 1 and ordse(By,) = 1 [234]. The
first few irregular primes are 37, 59, 67, 101, 103, 149 and 157. It was proven
by Jensen in 1915 that there are infinitely many irregular primes of the form
4n + 3. In the next section we give a short proof due to L. Carlitz (1953)
that infinitely many irregular primes exist. It has not been proven that
infinitely many regular primes exist. This is somewhat unfortunate in view
of the following remarkable result of Kummer (1850).
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Theoremd. Let p be a regular prime. Then xP + y? = zP has no solution in
positive integers.

Actually Kummer proved that Fermat’s conjecture is true if p does not
divide the class number of Q({,). In other words the criterion is that for any
nonprincipal ideal 4 in Z[{,], A” is not principal. This condition is equivalent
to the regularity of p. We will not prove this, but the material in the third
section of this chapter is closely related.

C. L. Siegel has given a plausible argument to suggest that the density of
irregular primes is 1 — e~ /2 = 0.3935... W. Johnson has checked this for
primes less than 30,000 with good results [159]. S. Wagstaff has established
the validity of Fermat’s conjecture for all primes less than 125,000 [234].
Furthermore the information found by Johnson has now been extended by
him to all primes less than 125,000 [234].

If a prime p is irregular one can ask how many nonzero Bernoulli numbers
in the set {B,, By, ..., B,_3} are divisible by p. This number is called the
index of irregularity of p. The first prime of index 2 is 157. One of the most
remarkable discoveries made with the aid of the computer is the existence
of two primes of index 5 [234]. Finally we point out that thus far no pair p,
By, 1 <i < (p— 3)/2 has been found for which ord, B,; > 1. For the
above remarks and their relation to the celebrated Iwasawa invariants see
the paper by W. Johnson in the bibliography.

§2 Congruences Involving Bernoulli Numbers

We will now prove a number of arithmetic properties of the Bernoulli
numbers.

To begin with we direct our efforts toward proving Theorem 3 of the
preceding section. Notice that for m > k one has

m+1y  m+1 m
k ) m—k+1\k
as follows immediately from the definition of the binomial coefficients. Thus,
Theorem 1 of the last section becomes
m m nm+ 1-k
= _— 9
Sum = % (k)Bka_k ©)

Now, using (}) = (,,~ ) we see that

m m nk+l
S = B
m(n) kgo (k) m kk+1

m+ 1

2
=B,,,n+('1")3m_1"7+---+ 2 (10)

m+ 1

In addition to Equation (10) we need the following simple lemma.
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Lemma 1. Let p be a prime number and k > 1 an integer. Then

(@) p*/(k + 1) is p-integral.
) Pk +1)=0(p)ifk =2
(¢) p* %/(k + 1) is p-integral if k > 3 and p > 5.

PROOF. To prove (a) we show that k + 1 < p*for k > 1. Ifk = 1 the result is
true. Ifk + 1 < p*thenk + 2 < p* + 1 < 2p* < p**'. Now write k + 1 =
p°q where (g, p) = 1. Then p*/(k + 1) = p*~%/q. Since p*/(k + 1) > 1 we
conclude that k > q, i.e., we have proven (a). To prove (b) we notice that
k + 1 < p* for k > 2. The proof is the same as for (a). Therefore k > a
which proves (b).

As for part (c) use induction to show that k + 1 < p*~2 for k > 3 and
p = 5. This time one concludes that k — 2 > a, so that p* %/(k + 1) =
p*~279/q is p-integral (and in fact divisible by p). O

Proposition 15.2.1. Let p be a prime and m > 1 an integer. Then pB,, is p-
integral. If m > 2 is even then pB,, = S,.(p) (p).

PROOF. The first assertion states that if p divides the denominator of B,, then
p? does not. First of all, pB;, = —p/2 which is indeed p-integral for all p.
We proceed by induction.

Suppose m > 1. Applying Equation (10) with n = p we see that, since
S,.(p) € Z, it suffices to prove that

'm pk+1 m pk

kT = B, _«— 11

(k)B"' e+ (k)” "kl 1 (1

is p-integral for k = 1, 2, ..., m. By induction pB,,_, is p-integral for k > 1.

Also by Lemma 1, part (a), p*/(k + 1) is p-integral. It follows pB,, is p-integral.
To establish the congruence it is enough to show that

K
0rdp<rl:l)<p3m—k _k—l—j-—I) >1 fork>1.

By Lemma 1, part (b) this is true for k > 2. For k = 1 we need to show

m
Ordp(i (me-l)p) = 11

which is also true since m is even. Actually, for m even, B,,_, = 0 form > 4,
and so it is only necessary to check it for m = 2 where it is obvious. O

Lemma 2. Let p be a prime. Then if p— 1 /m, S,(p) =0(p). If p — 1|m
then S,(p) = —1(p).

PRrROOF. Let g be a primitive root modulo p. Then
Su) = 1"+ 2" 4 -+ (p = D"
= 1"+ g+ g 4+ g" T (p).
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Thus (g™ — 1)S,(p) = g™? "V — 1 =0(p). If p — 1 ¥ mthen g™ # 1 (p) and
S.(p) = 0(p). Ontheother hand,ifp — 1|mthenS, (p)=1+1+---+1=
p—1=—1(p). O

We are now in a position to prove Theorem 3. Assume m is even. Then by
Proposition 15.2.1 we know pB,, is p-integral and pB,, = S,,(p) (p). By the
lemma just proven it follows that B,, is a p-integer if p — 1 ¥ m and pB,, =
—1(p)if p — 1|m. Thus

A,=B,+ Y !
p—1|m 14
is a p-integer for all primes p. It follows that 4,, € Z and the proof is complete.

The reader may suspect by this time that the consequences of Equation
(10) have not been exhausted. The following proposition is another important
consequence of that equation. Write the mth Bernoulli number B,, = U,,/V,,
where (U, V,,) = 1 and V,, > 0. We are assuming m to be even.

Proposition 15.2.2. If m is even, m > 2 then for all n > 1 we have
V,S(n) = U,n(n?).

Proor. Consider the terms in Equation (10) for k > 1 and fixed n

k—1
(':)(Bm_k:—Jr—T)nz = AT, (12)

We will show that for p|nand p # 2, 3 ord (4}') > 0. Furthermore if 2|n
then ord,(4y) > —1 and if 3|n then ord;(A4f) > —1. This will imply that
the greatest common divisor of n and the denominator of Ay is a divisor of
6 and thus this will also be true of the sum of the A} . In other words one
can write

An?
Sm(n) - an + IB )
where (B, n) = 1 and 1|6. Multiplying by BYV,, and recalling that 6|V, by
Corollary to Theorem 3 the result follows immediately.

In order to prove the ord, estimates we use the Corollary of Theorem 3
which implies that ord,(B,,_,) = —1 for all m — k > 0 and all p. Assume
first of all that p # 2, 3, p|n. The cases k = 1, 2 are simple by inspection
using the fact that B, = 0 for t > 1 and odd, and that B, = —4, and that
ord,3 = 0.If k > 3, then

k=1

ord,,(B,,,_,‘ kn—_l_——l—) 2 -1+ (k—-1ord,n—ord,(k + 1)

2k—-2—ord(k+1)>0 (13)

by part (c) of Lemma 1.
Consider now p=2. If k =1 then B,,_; =0 for m > 2 (m is even)
while for m = 2, A} becomes 2- B, -1 = —4 which has ord —1. For k > 1
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we notice that B,,_, = 0 unless k is even or k = m — 1. But k even implies
ord,(k + 1) = 0 while for k =m — 1, A"_, = —4n™"? which has ord,
greater than or equal to — 1.

Finally consider thecase p = 3,3|n. Then ord;(4%) > —1and ord;(A4A%) >
1 as one easily checks. But for k > 4 one shows exactly as in the lemma that
ord;(3*7%/(k + 1)) > 0so that ord;(A[) > 0. This completes the proof. [J

As a simple numerical illustration of this proposition consider B, = 2,
U, =1, V, = 6 and let n = 6. The congruence reads
6(1% + 2% + 3% + 42 + 5%) = 6 (36)
and more generally

6(12 +22 4+ .-+ (n = 1)?) =n@n?.

Corollary. Let m be even and p a prime such that p — 1 f m. Then

S.(p) = B,.p (p?).

ProoF. By Theorem 3, p t V,,. In the proposition, put n = p, and divide
both sides of the resulting congruence by ¥, which is permissible since
p X V,,. The result follows. O

We are now in a position to prove the very useful congruences of G.
Voronoi. According to the book of Uspensky and Heaslet [230], Voronoi
discovered these congruences in 1889 while still a student.

Proposition 15.2.3. Let m > 2 be even and define U,, and V,, as in the last
proposition. Suppose a and n are positive integers with (a, n) = 1. Then

n—1 ja
(@ - 1)U, =ma"" 'V, > j~ 1[;] (n), (14)
j=1

where [a] is the unique integer k such that k < o < k + 1.

Proor. For 1 < j < n write ja = g;n + r; where 0 < r; < n. Then [ja/n] =
g;and since (a, n) = 1 the two sets {1,2,3,...,n — 1} and {r;,r;,..., 17—y}
are identical. By the binomial theorem

jma™ = 1 + mg;nr7 ! (n?).

Since r; = ja (n) we have
jlam =7+ ma""ln[%]j'"_1 (n?).
Summing overj = 1,2,...,n — 1 gives
n—1 ja
S(n)a™ = S,(n) + ma" " 'n), j”‘"‘[;:l (n?).
j=1

The result now follows from the congruence of Proposition 15.2.2. 4
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Corollary. Let p be a prime,p = 3 (4). Set m = (p + 1)/2. Then ifp > 3

h) m—1 <])
2(2 - (=} )Bn = — =] (p),
( <P>) j; p Y
where (x/p) denotes the Legendre symbol.

Proor. Notice m — 1 = (p — 1)/2 so by Euler’s criterion a™~! = (a/p) (p)
for all integers a.
In Voronoi’s congruence set a = 2 and n = p. Using the above remark

e ((2) - 1) =)z () HE

Now, [2j/p] =0 for 1 <j<m—1 and [2j/p] =1 for m <j < p. Also,
2m = 1(p) and p t V,, by Theorem 3. Thus

2 p_1 j)
2(2-{-)])B, = = .
=)= 20)o
Since Y 2= (j/p) = 0, the proof is complete. O

This corollary can be used to prove an interesting result relating class
numbers to Bernoulli numbers. Let p be a prime, p = 3 (4) and consider the

imaginary quadratic number field Q(,/ — p). Let h denote its class number.
It can be shown that if p > 3

C-Gr= 2.0

For a proof, see Chapter 5, Section 4 of the book by Borevich and
Shafarevich [9]. Combining the corollary with this formula for h gives the
following remarkable congruence.

h= —2B,,1)(p)

The Voronoi congruences lead to many properties of Bernoulli numbers.
The following proposition is often attributed to J. C. Adams. It gives some
information about the numerator of B,,.

Proposition 15.2.4. If p — 1 } m then B,,/m is a p-integer.

Proor. By Theorem 3, B,, is a p-integer. Write m = p‘m, where p \ my.
In the Voronoi congruence, Equation (14), put n = p'. Then (a™ — DU, =
0 (p"). Choose a to be a primitive root modulo p. Since p — 1./ m we have
p4a™ — 1. Thus, U, = 0(p'), and B,,/m = U,,/mV,, is a p-integer. O
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As a numerical illustration take m = 22 and p = 11. Then B,, =
11-131-593/2-3-23 so B,,/22 is integral at 11. Indeed it is a unit at 11.
As a further example take m = 50 and p = 5. One can factor B;, as follows

5-5-417202699 - 47464429777438199
2-3-11

Clearly, Bs,/50 is a unit at 5. Less clear is the fact that the 17 digit number
in the numerator is a prime!

The following theorem in the case e = 1 is due to Kummer. These con-
gruences are now referred to as the Kummer congruences.

Bso =

TheoremS. Suppose m > 2 is even, p a prime, and p — 1 ¥ m. Define C,, =
(1 = p" YHB,/m. If m' = m(¢(p®)) we have C,, = C,, (p°).

Proor. Write, as usual, B, = U,/V,,. Let t = ord, m. Proposition 15.2.4
shows p*|U,,. In Equation (14) set n = p**". Since p* divides both m and U,,
we may divide the resulting congruence throughout by p'. Since (m/p)V,,
is prime to p we arrive at the following congruence

am _ 1 Bm _ ps+t_1 - .a .
( ) ar 1 Z Jm l[p{zﬂ] (p ) (15)
i=1

m

This congruence will lead the way to a full proof of the theorem. We will
give the proof first in the case e = 1. This case reveals the main idea, which
is quite simple, and avoids a slightly messy calculation which is necessary
whene > 1.

In the above congruence assume e = 1. On the right-hand side we may
omit those j which are divisible by p. If p } j, then 7~ = 1(p). Also, since
pXa, a’ ' = 1(p). Thus modulo p the right-hand side is unchanged if
we replace m by m’ with m’ = m(p — 1). It follows that

(am’ — Il)Bm’ = (am - I)Bm (p)

m m

Choose a to be a primitive root modulo p. Since p — 1 y m we have
a” — 1 =a"— 1 # 0(p). Consequently,

B, B,
—=—(p).
m m
When e > 1 this procedure must be modified because the terms involving j
divisible by p are not so easily disposed of. What we do is to separate them
out and rewrite the corresponding sum. More precisely,

pe+t_l . pe+t_1 . pe+l—1_1 .
me1| Ja il Ja — mi| ia
Y 1[ m] =2 l[pm] +pmt Y i I[IFT——I]'

i=1 14 j=1 i=1
(p, )=1
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Consider the congruence (15) with e replaced by e — 1 and recall that
m— 1> 1. We find

m—1/ _m e+t-1_1 .
" (a" — 1)B,, P m— ia
__—m— pm lam 1 ._Zl i 1 pe+1—1 (pe).

Putting all this together, yields

1— m—1 m __ pe+t—1 ja )
(e A G ): MU by jm-l[ﬂ’ oo w9

m pe+t

(p, =1
If ptj, and m' = m(¢(p°)) then j” ! = j*~ ! (p°). Thus the right-hand
side of (16) is unchanged modulo p° if mis replaced by m’ with m’ = m (¢(p®)).
The proof now proceeds exactly as in the case e = 1 and yields the full
result. O

We make a short detour to indicate a modern interpretation of the
Kummer congruences.

Recall the Riemann zeta function {(s) = ) 2, n ° In Exercise 25 of
Chapter 2 we mentioned that {(s) can be extended to a function holomorphic
on the entire complex plane except at s = 1 where it has a simple pole with
residue 1. Moreover, it can be shown that {(s) satisfies the functional equation

(1 —s) = 2Qn)"° cos<”—;)r(s)c(s).

The I'-function is defined and discussed in Chapter 16, Section 6. All we
require here is the fact that I'(m) = (m — 1)! when m is a positive integer.

Assume m > 2 is an even integer. Combining the above functional
equation with Theorem 2 we find

(@=-m="1n

Define {*(s) = (1 — p~%){(s). Then {*(1 — m) = —(1 — p™~ !)B,,/m and
Theorem 5 states that if m" = m (¢(p°)) then

A = m) = 1 — m) (p°). (17

For a fixed prime p, the function d(n, m) = p~°%"~™ defines a metric
on Z, the p-adic metric. In this metric two integers are close if their difference
is divisible by a high power of p. The congruence (17) may be stated informally
as follows: if m’ and m are close p-adically,and m’ = m (p — 1), then {*(1 — m’)
and (*(1 — m) are close p-adically. This suggests the possibility of extending
{* to the metric completion of Z, the ring of p-adic integers. These ideas
were made precise by H. Leopoldt and T. Kubota who were the first to
construct p-adic zeta functions and investigate their properties. Since then
many other approaches have been devised. In the method due to B. Mazur
the Bernoulli numbers are expressed as a certain p-adic integral of the
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functions x™. The Kummer congruences have a very natural proof in this
context. For details the reader is referred to Chapter 2 of [162]. The truly
remarkable fact that properties of p-adic zeta functions (and p-adic L
functions) are intimately related to the structure of class groups of cyclo-
tomic fields is due to K. Iwasawa. Iwasawa gives a rather condensed and
austere account of his theory in his monograph [155]. Another exposition
of these matters is found in S. Lang [167].

We conclude this section with an application of Theorem S. Namely
we will prove that there exist infinitely many irregular primes. This proof
is due to L. Carlitz [105].

Theorem 6. The set of irregular primes is infinite.

PRrOOF. Let {p4, ..., p;} be a set of irregular primes. We will find an irregular
prime not in this set.

Let k > 2 be even and set n = k(p; — 1)---(p, — 1). If the set is empty
choose n = k. By Proposition 15.1.1, part (c), choose k so large that | B,/n| >
1. Choose a prime p with ord ,(B,/n) > 0. By Claussen-von Staudt p — 1  n.
Thusp # p;,i = 1,...,s. Also p # 2. We will show that p is irregular.

Let n=m(p — 1) where 0 < m < p — 1. Then. m is even and m # 0.
Thus 2 < m < p — 3. By the Kummer congruence

Bu 2B,
n m
Since ord (B,/n) > 0 and ord (B,/n — B,/m) > 0 it follows that

B
ordp<—m) =ord, B,, >0

m

which shows that p is irregular. O

§3 Herbrand’s Theorem

Let D,, be the ring of algebraic integers in the cyclotomic number field
Q(¢,,) and let P be a prime ideal of D,, not containing m. Thus if p is the
rational prime in P then p / m. In Section 3 of Chapter 14 we associated
to P a Gauss sum g(P) and showed g(P)" = ®(P)e D,,. The Stickelberger
relation proved in Theorem 2 of that section gave the prime ideal decomposi-
tion of ®(P) in D,,, namely

(®(P)) = PEroc’,

Here the exponent is an element of the integral group ring Z[G] of the
Galois group G of Q((,) and t ranges over the integers between 1 and m
which are relatively prime to m. The automorphism g, sends {,, to {,,. We
remind the reader that the above exponential notation is a shorthand for
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(®(P)) = [l¢.m=1(0;"(P))". If A is an ideal relatively prime to m then A

1<t<m
is a product of prime ideals not containing m. It follows that 4% is prin-

cipal. The following proposition will be needed. We postpone the proof
until later.

Proposition 15.3.1. Let K be an algebraic number field and let M be a fixed
ideal in the ring of integers of K. Then every ideal class of K contains an ideal
primeto M.

If & is in the group ring Z[G] where G is the Galois group of Q({,,) then a
operates in the obvious way on the ideal class group of Q({,,). The above
proposition implies that if « = ) ¢, ! then a sends every ideal class to the
identity class. One says that « annihilates the class group. It is natural to
ask if there are other such elements of the group ring. Further annihilating
elements are given below. First we need a definition.

Definition. The element § = ) {t/m)s,” ', where ¢ runs over a set of re-
presentatives for the residue classes relatively prime to m, is called the
Stickelberger element. Here {t/m) denotes the fractional part of t/m, which
depends only on the residue of t modulo m.  is an element of the rational
group ring Q[G]. If b is an integer prime to m let r, = (g, — b)6.

The following proposition, whose proof we will postpone, is very important.
Proposition 15.3.2. The elements r, are in Z[ G] and annihilate the class group.

We will see later that this proposition follows without much difficulty
from the Stickelberger relation.

With these preliminaries and assumed propositions in mind we proceed
to the principal goal of this section, the statement and proof of Herbrand’s
theorem.

Let m = [, an odd prime. Roughly speaking, Herbrand’s theorem states
that if / does not divide a certain Bernoulli number, then a piece of the class
group of Q({)) is missing. To make this statement precise we need a few
definitions.

Let o/ be the subgroup of the ideal class group of Q({,) consisting of
elements whose order divides I. In other words, an ideal class is in o if it
contains an ideal whose Ith power is principal.

Definition. Let 1 < i <[ — 1. Define
oA ={AeAd|A% = A1 <t < I}.

It is easily seen that each </, is a subgroup of «/. Also, since each element
of </ has order dividing [, the exponents can be computed modulo |, i.e.,
</ is acted on by the group ring Z/IZ[G]. If t € Z we denote by i its residue
class modulo [.
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Lemma 1. o/ is the direct product of the </;. In other words, of = oA (s , -
oy and ;N o ; = e (the identity class) if i # j.

ProOF. For each i with 1 < i <[ — 1 we define elements ¢ € Z/IZ[G] by
the formula

-1 .
g = — )1 o,
t=1
Replacing ¢ by ¢s in the formula leads to the relation o,¢; = §'¢; provided
that [ } s. It follows that /% = .o/;. On the other hand, if A € o; then
Af = A—Zi"'ag — A—(l—l) = A.

It follows that o7t = o/;.
By Lemma 2 of Section 2 we see that ¢; + ¢, +--- + ¢_; = g4, the
identity automorphism. Thus

.5% —_ 'Mtl+~~~+1;,_1
=02 =y
Suppose i # jand A€o, N .o/;. Then A** = A" = A". We can choose ¢

to be a primitive root modulo I. Then t' # ¢/ (I). Since A" ™" = e and A has
order dividing [ it follows that 4 = e. O

The following theorem of J. Herbrand [149] gives a Bernoulli criterion
for the triviality of .oZ;. The proof emerges from the interplay of the Stickel-
berger relation and the Voronoi congruences.

Theorem 7 (J. Herbrand). Let i be an odd integer 1 < i < | and define j by
i+j=1
Then o/ = (e). If i = 3 and | } B; then o/; = (e).

ProOF. Let 4 € o7 ,. Then, by Stickelberger’s relation
e = AE!o‘,“ — A):ii“ — Al—l — A_l.

This shows o/, = (e) as asserted.
Now suppose i is odd and 3 <i <[ — 2. Let A €.«/;. By Proposition
15.3.2 A™ = e where b is any integer prime to . We analyze this relation

more carefully.
By definition r, = (6, — b)f. Now,

00 = Y. (t/ayo; t = Y <t/lyoyh, = Y <by/lor .

(o= b= Y (<¥> - b<;>)a,“.

Thus
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Write bt = q,1 + s, with 0 < s, < . Then (bt/l) — b{t/l) = s/l — bt/l =
—q, = —[bt/1]. This shows r, = =) [bt/[Jo; ' € Z[G].

Suppose A € of;. Applying 6, ! to A has the effect of raising 4 to the
power t'~!7" = t/=1, Thus, applying r, to A has the effect of raising 4 to
the power — ) [bt/[J¢'~ 1.

Write B; = Uy/V; with (U;, V) = 1. The Voronoi congruence, Pro-
position 15.2.3, shows after some relabeling

-1
® - YU, = jb 1,y [?]ﬂ-l ).
t=1

By the previous observations the right-hand side of this congruence
annihilates any element 4 € .o/;. Thus, for such an element A%~ VVi = ¢,
Choosing b to be a primitive root modulo / we see [ /b’ — 1 and so AV = e.
If Iy B;,then | ¥ U;and so A = e. Thus | ¥ B; implies o/; = (e) as asserted.

O

We remark that the converse of Herbrand’s theorem was established by
K. Ribet in 1976 [208]. Namely, he showed that if j is even and 2 <j <
I — 3 then [|B; implies «/; # (e) for i = [ — j. This beautiful existence
theorem depends on subtle arithmetic properties of modular forms and is,
unfortunately, beyond the scope of this book.

Write of = o/ .o/~ where #* = A, o, - A,_,and L~ = 3.5 -
A—,. Then of = o o/~ and /% N4~ = (e) (see Exercise 23). The
theorem of Herbrand implies |/~ | =1 if [y Bjfor j=24,...,1-3.
This was already known to Kummer who also showed, in essence, that
|/~ | =1 implies |&/*| = 1. Thus, as we mentioned earlier, Kummer
showed that [ y Bjforj = 2,4,...,1 — 3 implies the class number of Q({,) is
not divisible by [.

One of the most famous open problems in algebraic number theory is
the conjecture of H. S. Vandiver. This states that the group /" of the
previous paragraph is always trivial. It is not too hard to show this is equi-
valent to the assertion that the class number of Q(, + {; ') = Q(cos(2n/l))
is not divisible by I Vandiver made this conjecture around 1920. See his
article on Fermat’s Last Theorem [231]. If true the conjecture has many
important consequences. S. Wagstaff has shown Vandiver’s conjecture
is true for all primes less than 125,000. This seems to be impressive evidence,
but Larry Washington has shown on probabilistic grounds that 125,000
is too small for the evidence to be convincing.

We conclude this chapter by giving proof of Propositions 15.3.1 and
15.3.2.

We begin with Proposition 15.3.1. Let K be an algebraic number field
and D its ring of integers. Let M < D be a fixed ideal. For any ideal A in D
let A denote its ideal class. Given 4 we will construct an ideal C such that
(C, M) =1and A~ ! = C. This shows the inverse of any class contains an
ideal prime to M. Thus every class contains an ideal prime to M. To construct
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C we proceed as follows. Let {P, P,, ..., P,} be the set of primes dividing
M which do not divide A. This set may be empty. If P| A4 let, as usual, a(P) =
ordp A denote the exponent of P in the prime decomposition of 4. Choose

n(P) e PP — paP+1
By the Chinese Remainder Theorem we can find an « € D such that
a = n(P)(P*P*1) for P|A

oa=1(P) fori=1,2,...,¢t
One checks easily that (o) = AC with (C, M) = 1. Thus A~ ! = C and
the proof is complete. O

Finally, we turn to the proof of Proposition 15.3.2. We will need the
following lemma which is proven in the same way as the special case m = |
done during the proof of Theorem 7.

Lemma 2. Let G denote the Galois group of Q((,,)/Q. The element r, =
(o5 — b)0 € Z[G]. Infact,r, = =) [bt/m]o, ' where the sum is over 1 <t <
m with (t, m) = 1.

Let P be a prime ideal in D,, the ring of integers in Q(({,,). Assume m ¢ P
and let P nZ = (p). As in Section 3 of Chapter 14 we associate a Gauss
sum g(P) to P. We know g(P) € Q({,,, £,) = QL ,m)-

Lemma 3. Let b be an integer prime to m. Determine b’ by the conditions
b =b(m) and b' = 1(p). Let o6, be the corresponding automorphism of
Q(Lym)- Then

g(Py =" € Q(L,).
ProOF. The automorphisms of Q({,,,) which leave {,, fixed are of the form
o, where (¢, pm) = 1 and ¢ = 1 (m). Let

Q,(P) = g(P)™".
We will show Q,(P)’ = Q,(P). This proves, by Galois theory, that Q,(P)e

Q(Cm)-
Recall that g(P) = Y. x,(t)y(¢) where the sum is over a reduced residue

system modulo m. Since y,(t) € Q({,,) and ¥ (t) € Q({,) we have
g(Py™ = 3 1,0

and
g(PY> % = Y xpo(OW(t)

=Y 1 (O"W(ct).
Thus
g(P)> = x,(c)~Pg(P)™". 1)
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Similarly, we find

g(P)™ = y,(c)” 'g(P). 2
Raising both sides of (2) to the bth power and dividing the result into
Equation (1) give Q,(P)°c = Q,(P) as asserted. O

We are now in a position to complete the proof of Proposition 15.3.2.
Let P = D,, be a prime ideal not containing m. Stickelberger’s relation
asserts that g(P)" e Q((,,) and (g(P)") = P™. Applying o,y — b to both
sides shows that (Q,(P)") = P™™®. By Lemmas 2 and 3 above, this becomes,
in D,,, the equation (Q,(P))" = (P™)™ It follows from unique factorization
for ideals that P = (Q,(P)). Thus P™ is a principal ideal and therefor