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Preface to the
Springer Edition

The reception given to the first edition of Algebra indicates that is has filled a
definite need: to provide a self-contained, one-volume, graduate level algebra text
that is readable by the average graduate student and flexible enough to accomodate
a wide variety of instructors and course contents. Since it has been so well re-
ceived, an extensive revision at this time does not seem warranted. Therefore,
no substantial changes have been made in the text for this revised printing. How-
ever, all known misprints and errors have been corrected and several proofs have
been rewritten.

I am grateful to Paul Halmos and F. W. Gehring, and the Springer staff, for
their encouragement and assistance in bringing out this edition. It is gratifying to
know that Algebra will continue to be available to the mathematical community.
Springer-Verlag is to be commended for its willingness to continue to produce
high quality mathematics texts at a time when many other publishers are looking
to less elegant but more lucrative ventures.

Seattle, Washington THOMAS W. HUNGERFORD
June, 1980

Note on the twelfth printing (2003): A number of corrections were incorporated in the fifth
printing, thanks to the sharp-eyed diligence of George Bergman and his students at Berkeley and
Keqin Feng of the Chinese University of Science and Technology. Additional corrections appear
in this printing, thanks to Victor Boyko, Bob Cacioppo, Joe L. Mott, Robert Joly, and Joe
Brody.
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Preface

Note: A complete discussion of possible
ways of using this text, including sug-
gested course outlines, is given on page Xv.

This book is intended to serve as a basic text for an algebra course at the beginning
graduate level. Its writing was begun several years ago when I was unable to find
a one-volume text which I considered suitable for such a course. My criteria for
“suitability,” which I hope are met in the present book, are as follows.

(i) A conscious effort has been made to produce a text which an average (but
reasonably prepared) graduate student might read by himself without undue diffi-
culty. The stress is on clarity rather than brevity.

(ii) For the reader’s convenience the book is essentially self-contained. Con-
sequently it includes much undergraduate level material which may be easily omitted
by the better prepared reader.

(iii) Since there is no universal agreement on the content of a first year graduate
algebra course we have included more material than could reasonably be covered in
a single year. The major areas covered are treated in sufficient breadth and depth
for the first year graduate level. Unfortunately reasons of space and economics have
forced the omission of certain topics, such as valuation theory. For the most part
these omitted subjects are those which seem to be least likely to be covered in a one
year course.

(iv) The text is arranged to provide the instructor with maximum flexibility in
the choice, order and degree of coverage of topics, without sacrificing readability
for the student.

(v) There is an unusually large number of exercises.

There are, in theory, no formal prerequisites other than some elementary facts
about sets, functions, the integers, and the real numbers, and a certain amount of
“mathematical maturity.” In actual practice, however, an undergraduate course in
modern algebra is probably a necessity for most students. Indeed the book is
written on this assumption, so that a number of concepts with which the typical
graduate student may be assumed to be acquainted (for example, matrices) are
presented in examples, exercises, and occasional proofs before they are formally
treated in the text.



X PREFACE

The guiding philosophical principle throughout the book is that the material
should be presented in the maximum useable generality consistent with good pedago-
gv. The principle is relatively easy to apply to various technical questions. It is more
difficult to apply to broader questions of conceptual organization. On the one hand,
for example, the student must be made aware of relatively recent insights into the
nature of algebra: the heart of the matter is the study of morphisms (maps); many
deep and important concepts are best viewed as universal mapping properties. On
the other hand, a high level of abstraction and generality is best appreciated and
fully understood only by those who have a firm grounding in the special situations
which motivated these abstractions. Consequently, concepts which can be character-
ized by a universal mapping property are not defined via this property if there is
available a definition which is more familiar to or comprehensible by the student.
In such cases the universal mapping property is then given in a theorem.

Categories are introduced early and some rerminology of category theory is used
frequently thereafter. However, the language of categories is employed chiefly as a
useful convenience. A reader who is unfamiliar with categories should have little
difficulty reading most of the book, even as a casual reference. Nevertheless, an
instructor who so desires may give a substantial categorical flavor to the entire course
without difficulty by treating Chapter X (Categories) at an early stage. Since 1t is
essentially independent of the rest of the book it may be read at any time.

Other features of the mathematical exposition are as follows.

Infinite sets, infinite cardinal numbers, and transfinite arguments are used routine-
ly. All of the necessary set theoretic prerequisites, including complete proofs of
the relevant facts of cardinal arithmetic, are given in the Introduction.

The proof of the Sylow Theorems suggested by R. J. Nunke seems to clarify an
area which is frequently confusing to many students.

Our treatment of Galois theory is based on that of Irving Kaplansky, who has
successfully extended certain ideas of Emil Artin. The Galois group and the basic
connection between subgroups and subfields are defined in the context of an ab-
solutely general pair of fields. Among other things this permits easy generalization of
various results to the infinite dimensional case. The Fundamental Theorem is proved
at the beginning, before splitting fields, normality, separability, etc. have been
introduced. Consequently the very real danger in many presentations, namely that
student will lose sight of the forest for the trees, is minimized and perhaps avoided
entirely.

In dealing with separable field extensions we distinguish the algebraic and the
transcendental cases. This seems to be far better from a pedogogical standpoint than
the Bourbaki method of presenting both cases simultaneously.

If one assumes that all rings have identities, all homomorphisms preserve identi-
ties and all modules are unitary, then a very quick treatment of semisimple rings
and modules is possible. Unfortunately such an approach does not adequately pre-
pare a student to read much of the literature in the theory of noncommutative rings.
Consequently the structure theory of rings (in particular, semisimple left Artinian
rings) is presented in a more general context. This treatment includes the situation
mentioned above, but also deals fully with rings without identity, the Jacobson
radical and related topics. In addition the prime radical and Goldie’s Theorem on
semiprime rings are discussed.

There are a large number of exercises of varying scope and difficulty. My experi-
ence in attempting to *‘star’ the more difficult ones has thoroughly convinced me of



PREFACE xi

the truth of the old adage: one man’s meat is another’s poison. Consequently no
exercises are starred. The exercises are important in that a student is unlikely to
appreciate or to master the material fully if he does not do a reasonable number of
exercises. But the exercises are not an integral part of the text in the sense that non-
trivial proofs of certain needed results are left entirely to the reader as exercises.

Nevertheless, most students are quite capable of proving nontrivial propositions
provided that they are given appropriate guidance. Consequently, some theorems
in the text are followed by a “‘sketch of proof™ rather than a complete proof. Some-
times such a sketch is no more than a reference to appropriate theorems. On other
occasions it may present the more difficult parts of a proof or a necessary “trick™
in full detail and omit the rest. Frequently all the major steps of a proof will be
stated, with the reasons or the routine calculational details left to the reader. Some
of these latter “sketches” would be considered complete proofs by many people. In
such cases the word “‘sketch” serves to warn the student that the proof in question
is somewhat more concise than and possibly not as easy to follow as some of the
“complete” proofs given elsewhere in the text.

Seartle, Washington THOMAS W. HUNGERFORD
September, 1973
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Suggestions
on the Use of this Book

GENERAL INFORMATION

Within a given section all definitions, lemmas, theorems, propositions and corol-
laries are numbered consecutively (for example, in section 3 of some chapter the
fourth numbered item is Item 3.4). The exercises in each section are numbered ina
separate system. Cross references are given in accordance with the following

scheme.

(i) Section 3 of Chapter V is referred to as section 3 throughout Chapter V and

as section V.3 elsewhere.
(i) Exercise 2 of section 3 of Chapter V is referred to as Exercise 2 throughout

section V.3, as Exercise 3.2 throughout the other sections of Chapter V, and as
Exercise V.3.2 elsewhere.

(iii) The fourth numbered item (Definition, Theorem, Corollary, Proposition,
or.Lemma) of section 3 of Chapter V is referred to as Item 3.4 throughout Chapter V

and as Item V.3.4 elsewhere.

The symbol m is used to denote the end of a proof. A complete list of mathematical
symbols precedes the index.

For those whose Latin is a bit rusty, the phrase muratis mutandis may be roughly
translated: **by changing the things which (obviously) must be changed (in order
that the argument will carry over and make sense in the present situation).™

The title “proposition™ is applied in this book only to those results which are nor
used in the sequel (except possibly in occasional exercises or in the proof of other
“‘propositions™). Consequently a reader who wishes to follow only the main line of
the development may omit all propositions (and their lemmas and corollaries) with-
out hindering his progress. Results labeled as lemmas or theorems are almost always
used at some point in the sequel. When a theorem is only needed in one or two
places after its initial appearance, this fact is usually noted. The few minor excep-
tions to this labeling scheme should cause little difficulty.

INTERDEPENDENCE OF CHAPTERS

The table on the next page shows chapter interdependence and should be read in
conjunction with the Table of Contents and the notes below (indicated by super-
scripts). In addition the reader should consult the introduction to each chapter for
information on the interdependence of the various sections of the chapter.

XV
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SUGGESTED COURSE OUTLINES xvii

NOTES

1. Sections 1-7 of the Introduction are essential and are used frequently in the
sequel. Except for Section 7 (Zorn’s Lemma) this material is almost all elementary.
The student should also know a definition of cardinal number (Section 8, through
Definition 8.4). The rest of Section 8 is needed only five times. (Theorems I1.1.2 and
1V.2.6; Lemma V.3.5; Theorems V.3.6 and VI.1.9). Unless one wants to spend a
considerable amount of time on cardinal arithmetic, this material may well be
postponed until needed or assigned as outside reading for those interested.

2. A student who has had an undergraduate modern algebra course (or its
equivalent) and is familiar with the contents of the Introduction can probably begin
reading immediately any one of Chapters I, ITI, IV, or V.

3. A reader who wishes to skip Chapter I is strongly advised to scan Section
1.7 to insure that he is familiar with the language of category theory introduced
there.

4. With one exception, the only things from Chapter III needed in Chapter IV
are the basic definitions of Section I11.1. However Section IIL.3 is a prerequisite for
Section 1V.6.

5. Some knowledge of solvable groups (Sections IL.7, I1.8) is needed for the
study of radical field extensions (Section V.9).

6. Chapter VI requires only the first six sections of Chapter V.

7. The proof of the Hilbert Nullstellensatz (Section VIIL.7) requires some
knowledge of transcendence degrees (Section VI.1) as well as material from Section
V.3.

8. Section VIIL.1 (Chain Conditions) is used extensively in Chapter IX, but
Chapter IX is independent of the rest of Chapter VIII.

9. The basic connection between matrices and endomorphisms of free modules
(Section VII.1, through Theorem VIL.1.4) is used in studying the structure of rings
(Chapter IX).

10. Section V.3 is a prerequisite for Section IX.6.

11. Sections 1.7, IV.4, and IV.5 are prerequisites for Chapter X; otherwise
Chapter X is essentially independent of the rest of the book.

SUGGESTED COURSE OUTLINES

The information given above, together with the introductions to the various chapters,
is sufficient for designing a wide variety of courses of varying content and length.
Here are some of the possible one quarter courses (30 class meetings) on specific
topics.

These descriptions are somewhat elastic depending on how much is assumed, the
level of the class, etc. Under the heading Review we list background material (often
of an elementary nature) which is frequently used in the course. This material may
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be assumed or covered briefly or assigned as outside reading or treated in detail if
necessary, depending on the background of the class. It is assumed without ex-
plicit mention that the student is familiar with the appropriate parts of the Intro-
duction (see note 1, p. xvii). Almost all of these courses can be shortened by omit-
ting all Propostions and their associated Lermmas and Corollaries (see page xv).

GROUP THEORY

Review: Introduction, omitting most of Section 8 (see note 1, p. xvii). Basic
Course: Chapters I and II, with the possible omission of Sections 1.9, I1.3 and the
last half of I1.7. It is also possible to omit Sections II.1 and I1.2 or at least postpone
them until after the Sylow Theorems (Section II.5).

MODULES AND THE STRUCTURE OF RINGS

Review: Sections III.1 and II1.2 (through Theorem III.2.13). Basic Course: the
rest of Section II1.2; Sections 1-5 of Chapter IV!; Section VII.1 (through Theorem
VII.1.4); Section VIII.1; Sections 1-4 of Chapter IX. Additional Topics: Sections
II1.4, IV.6,IV.7, IX.5; Section IV.5 if not covered earlier; Section IX.6; material
from Chapter VIII.

FIELDS AND GALOIS THEORY

Review: polynomials, modules, vector spaces (Sections III.5, III.6, IV.1, IV.2).
Solvable groups (Sections I1.7, I1.8) are used in Section V.9. Basic Course?: Sec-
tions 1-3 of Chapter V, omitting the appendices; Definition V.4.1 and Theorems
V.4.2 and V.4.12; Section V.5 (through Theorem 5.3); Theorem V.6.2; Section
V.7, omitting Proposition V.7.7—Corollary V.7.9; Theorem V.8.1; Section V.9
(through Corollary V.9.5); Section VI.1. Additional Topics: the rest of Sections
V.5 and V.6 (at least through Definition V.6.10); the appendices to Sections V.1-
V.3; the rest of Sections V.4, V.9, and V.7; Section V.8; Section VI.2.

LINEAR ALGEBRA

Review: Sections 3-6 of Chapter III and Section IV.1; selected parts of Section
IV.2 (finite dimensional vector spaces). Basic Course: structure of torsion mod-
ules over a PID (Section IV.6, omitting material on free modules); Sections 1-5 of
Chapter VII, omitting appendices and possibly the Propositions.

'If the stress is primarily on rings, one may omit most of Chapter IV. Specifically, one
need only cover Section IV.1; Section IV.2 (through Theorem IV.2.4); Definition IV.2.8;
and Section IV.3 (through Definition IV.3.6).

2The outline given here is designed so that the solvability of polynomial equations can be
discussed quickly after the Fundamental Theorem and splitting fields are presented; it re-
quires using Theorem V.7.2 as a definition, in place of Definition V.7.1. The discussion may
be further shortened if one considers only finite dimensional extensions and omits algebraic
closures, as indicated in the note preceding Theorem V.3.3.
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COMMUTATIVE ALGEBRA

Review: Sections II1.1, II1.2 (through Theorem I11.2.13). Basic Course: the rest of
Section I11.2; Sections I11.3 and II1.4; Section IV.1; Section IV.2 (through Corollary
1V.2.2); Section IV.3 (through Proposition IV.3.5); Sections 1-6 of Chapter VIII,
with the possible omission of Propositions. Additional topics: Section VIIIL.7
(which also requires background from Sections V.3 and VL.1).
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INTRODUCTION

PREREQUISITES AND
PRELIMINARIES

In Sections 1-6 we summarize for the reader’s convenience some basic material with
which he is assumed to be thoroughly familiar (with the possible exception of the dis-
tinction between sets and proper classes (Section 2), the characterization of the
Cartesian product by a universal mapping property (Theorem 5.2) and the Recursion
Theorem 6.2). The definition of cardinal number (first part of Section 8) will be used
frequently. The Axiom of Choice and its equivalents (Section 7) and cardinal arith-
metic (last part of Section 8) may be postponed until this information is actually
used. Finally the reader is presumed to have some familiarity with the fields Q, R,
and C of rational, real, and complex numbers respectively.

1. LOGIC

We adopt the usual logical conventions, and consider only statements that have a
truth value of either true or false (not both). If P and Q are statements, then the
statement “P and Q” is true if both P and Q are true and false otherwise. The state-
ment “P or Q is true in all cases except when both P and Q are false. An implication
is a statement of the form “P implies Q or “if P, then Q” (written symbolically as
P = Q). An implication is false if P is true and Q is false; it is true in all other cases.
In particular, an implication with a false premise is always a true implication. An
equivalence or biconditional is a statement of the form P implies Q and Q im-
plies P.” This is generally abbreviated to “P if and only if Q”’ (symbolically P <= Q).
The biconditional “P <= Q” is true exactly when P and Q are both true or both
false; otherwise it is false. The negation of the statement P is the statement it is not
the case that P.” It is true if and only if P is false.

2. SETS AND CLASSES

Our approach to the theory of sets will be quite informal. Nevertheless in order
to define adequately both cardinal numbers (Section 8) and categories (Section 1.7) it

1



2 PREREQUISITES AND PRELIMINARIES

will be necessary to introduce at least the rudiments of a formal axiomatization of
set theory. In fact the entire discussion may, if desired, be made rigorously precise;
see Eisenberg [8] or Suppes [10]. An axiomatic approach to set theory is also useful in
order to avoid certain paradoxes that are apt to cause difficulty in a purely intuitive
treatment of the subject. A paradox occurs in an axiom system when both a state-
ment and its negation are deducible from the axioms. This in turn implies (by an
exercise in elementary logic) that every statement in the system is true, which is
hardly a very desirable state of affairs.

In the Goédel-Bernays form of axiomatic set theory, which we shall follow, the
primitive (undefined) notions are class, membership, and equality. Intuitively we con-
sider a class to be a collection A of objects (elements) such that given any object x it
is possible to determine whether or not x is a member (or element) of 4. We write
x € A for “x is an element of 4>’ and x ¢ A for “x is not an element of A.”” The axioms
are formulated in terms of these primitive notions and the first-order predicate
calculus (that is, the language of sentences built up by using the connectives and,
or, not, implies and the quantifiers there exists and for all). For instance, equal-
ity is assumed to have the following properties for all classes A, B, C: A = A;
A=B—=B=A4A; A=Band B=C=A=C; A=B and xe A= xeB. The
axiom of extensionality asserts that two classes with the same elements are equal
(formally, [x e A < x e B|= A = B).

A class A is defined to be a set if and only if there exists a class B such that 4 ¢ B.
Thus a set is a particular kind of class. A class that is not a set is called a proper class.
Intuitively the distinction between sets and proper classes is not too clear. Roughly
speaking a set is a ““small” class and a proper class is exceptionally ‘‘large.” The
axiom of class formation asserts that for any statement P(y) in the first-order predi-
cate calculus involving a variable y, there exists a class 4 such that x € 4 if and only
if x is a set and the statement P(x) is true. We denote this class 4 by { x | P(x)}, and
refer to “the class of all x such that P(x).”” Sometimes a class is described simply by
listing its elements in brackets, for example, {a,b,c}.

EXAMPLE. Consider the class M = {X | X is a set and X ¢ X}. The statement
X ¢ X is not unreasonable since many sets satisfy it (for example, the set of all books is
not a book). M is a proper class. For if M were a set, then either M e Mor M ¢ M.
But by the definition of M, Me M implies M ¢ M and M ¢ M implies M ¢ M. Thus in
either case the assumption that M is a set leads to an untenable paradox: M e M
and M ¢ M. '

We shall now review a number of familiar topics (unions, intersections, functions,
relations, Cartesian products, etc.). The presentation will be informal with the men-
tion of axioms omitted for the most part. However, it is also to be understood that
there are sufficient axioms to guarantee that when one of these constructions is per-
formed on sets, the result is also a set (for example, the union of sets is a set; a sub-
class of a set is a set). The usual way of proving that a given class is a set is to show
that it may be obtained from a set by a sequence of these admissible constructions.

A class A is a subclass of a class B (written 4 C B) provided:

forallxe4d, xeA = xeB. Q)

IThis was first propounded (in somewhat different form) by Bertrand Russell in 1902 as
a paradox that indicated the necessity of a formal axiomatization of set theory.
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By the axioms of extensionality and the properties of equality:
A=B & ACB and B C A.

A subclass A of a class B that is itself a set is called a subset of B. There are axioms to
insure that a subclass of a set is a subset.

The empty set or null set (denoted &) is the set with no elements (that is, given
any x, x ¢ {J). Since the statement “x e J” is always false, the implication (1) is al-
ways true when A = (J. Therefore ¢f C B for every class B. A is said to be a proper
subclass of Bif A C Bbut 4 # (J and 4 > B.

The power axiom asserts that for every set A the class P(A) of all subsets of A4 is
itself a set. P(A) is called the power set of A4; it is also denoted 24.

A family of sets indexed by (the nonempty class) I is a collection of sets 4;, one
for each i e I (denoted { A; | i € I}). Given such a family, its union and intersection are
defined to be respectively the classes

U4 = {x|xeA; forsome iel};and

te]

NA: = {x|xeA; forevery icl}.

tel
If 1is a set, then suitable axioms insure that | JA4; and () A4; are actually sets. If

ief tef
I=1{12,...,n}onefrequently writes 4, U 4, U---U A4, in place of | J4; and
il
similarly for intersections. If 4 (1 B = J, 4 and B are said to be disjoint.
If A and B are classes, the relative complement of 4 in B is the following subclass

of B:

B—A={x|xeB and x¢A}.

If all the classes under discussion are subsets of some fixed set U (called the universe
of discussion), then U — A4 is denoted A4’ and called simply the complement of A.
The reader should verify the following statements.

AN (yIB.-) = H(A N B;) and )

AU (QB.—) . QI(A U B).
(BA.-)' = QA,-' and (QA,-)’ = HA,—’ (DeMorgan’s Laws). 3)
AUB=B & ACB < ANB-= A @

3. FUNCTIONS

Given classes 4 and B, a function (or map or mapping) f from A4 to B (written
f: A — B) assigns to each a e 4 exactly one element b € B; b is called the value of the
function at a or the image of a and is usually written f(a). A is the domain of the
function (sometimes written Dom f) and B is the range or codomain. Sometimes it is
convenient to denote the effect of the function fon an element of 4 by a}— f(a). Two
functions are equal if they have the same domain and range and have the same
value for each element of their common domain.
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If f: A— B is a function and S C A4, the function from S to B given by

ab> fla), for aeS

is called the restriction of fto S and is denoted f|S : S — B. If 4 is any class, the
identity function on A4 (denoted 1, : A — A)is the function given by a}— a. If S C A4,
the function 14 ]S : S — A is called the inclusion map of S into A4.

Let f: A— Band g : B— C be functions. The composite of fand g is the function
A — C given by

al> g(f@), acA.

The composite function is denoted g o for simply gf. If # : C — D is a third function,
it is easy to verify that #(gf) = (hg) f.If f: A—> B,thenfol, = f=1g0 f: A—> B.
A diagram of functions:

A_...B

h\
is said to be commutative if gf = 4. Similarly, the diagram:

A———f—rB

Ry I

C——»D

k

is commutative if k% = gf. Frequently we shall deal with more complicated diagrams
composed of a number of triangles and squares as above. Such a diagram is said to
be commutative if every triangle and square in it is commutative.

Let f: A — B be a function. If § C A, the image of S under f (denoted f(S)) is
the class

{beB|b = f(a) forsome acS}.

The class f(A) is called the image of f and is sometimes denoted Im f. If T C B, the
inverse image of T under f(denoted f~(7)) is the class

fae Al fla)eT}.

If T consists of a single element, T = {b}, we write f~%(b) in place of fYT). The
following facts can be easily verified:

forS C 4, f(f(S) DS; ®)
forTCB, f(fY(T)CT. (6)
For any family {7:|ie I} of subsets of B,
f “(UIT.-) = L{ fUT); @
SHUOT) = () fHTD ®

A function f: A — B is said to be injective (or one-to-one) provided

forallad e A, a=d = f(a)= f(a);
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alternatively, fis injective if and only if
forallaa’c A, f(a) = f(a") = a=da.
A function fis surjective (or onto) provided f(4) = B; in other words,
foreachbeB, b = f(a) for some ac A.

A function fis said to be bijective (or a bijection or a one-to-one correspondence) if it
is both injective and surjective. It follows immediately from these definitions that for
any class A, the identity map 1, : 4 — A is bijective. The reader should verify that
for maps f:A—Bandg:B— C,

f and g injective = gfis injective; (©)]
fand g surjective = gfis surjective; 10)
gfinjective = fis injective; 11)
gfsurjective = g is surjective. (12)

Theorem 3.1. Let f: A — B be a function, with A nonempty.

(i) f is injective if and only if there is a map g : B — A such that gf = 1,4.
(1) If A is a set, then f is surjective if and only if there is a map h : B — A such that
fh = 1g.

PROOF. Since every identity map is bijective, (11) and (12) prove the implica-
tions (<) in (i) and (ii). Conversely if fis injective, then for each b ¢ f(A) there is a
unique a ¢ A with f(a) = b. Choose a fixed a; ¢ 4 and verify that the map g : B— A4
defined by

g(b) = [a if bef(4) and f(a)=b
a if b4 f(A4)

is such that gf = 1,. For the converse of (ii) suppose fis surjective. Then f~%(b) C 4
is a nonempty set for every b e B. For each b ¢ B choose ay e f1(b) (Note: this re-
quires the Axiom of Choice; see Section 7). Verify that the map 4 : B — A defined by
h(b) = apissuch that fh = 15. =

The map g as in Theorem 3.1 is called a left inverse of fand # is called a right in-
verse of f. If a map f: A — B has both a left inverse g and a right inverse 4, then

g=glg=g(fR)=@QNh=1h=h

and the map g = 4 is called a two-sided inverse of f. This argument also shows that
the two-sided inverse of a map (if it has one) is unique. By Theorem 3.1 if A4 is a set
and f: A — B a function, then

fis bijective < fhas a two-sided inverse.2 (13)
The unique two-sided inverse of a bijection fis denoted f~; clearly fis a two-sided

‘inverse of f~! so that ! is also a bijection.

X13) is actually true even when A is a proper class; see Eisenberg [8; p. 146].
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4. RELATIONS AND PARTITIONS

The axiom of pair formation states that for any two sets [elements] a,b there is a
set P = {a,b} such that x ¢ P if and only if x = a or x = b; if a = b then P is the
singleton {a}. The ordered pair (a,b) is defined to be the set { {a}, {a,b} }; its first com-
ponent is a and its second component is b. It is easy to verify that (a,b) = (a’,0’) if and
only if @ = @’ and b = b’. The Cartesian product of classes 4 and B is the class

AXB = {(ab)|ac A, beB}.
Note that A X & = & = & X B.

A subclass R of A X B is called a relation on 4 X B. For example, if f: 4 — Bis
a function, the graph of fis the relation R = {(a,f(@)) | ac A}. Since fis a function,
R has the special property:

every element of A4 is the first component of (14)
one and only one ordered pair in R.

Conversely any relation R on 4 X B that satisfies (14), determines a unique function
f: A — B whose graph is R (simply define f(a) = b, where (a,b) is the unique
ordered pair in R with first component a). For this reason it is customary in a formal
axiomatic presentation of set theory to identify a function with its graph, that is, to
define a function to be a relation satisfying (14). This is necessary, for example, in
order to prove from the axioms that the image of a set under a function is in fact
a set.

Another advantage of this approach is that it permits us to define functions with
empty domain. For since & X B = J is the unique subset of ¢J X B and vacuously
satisfies (14), there is a unique function & — B. It is also clear from (14) that there
can be a function with empty range only if the domain is also empty. Whenever con-
venient we shall think of a function as a relation satisfying (14).

A relation R on 4 X A is an equivalence relation on A4 provided R is:

reflexive: (a,a)e R forall acA; 15)
symmetric: (a,b) e R = (b,a)eR; (16)
transitive: (a,b) e R and (b,c)e R = (a,c)eR. an

If R is an equivalence relation on 4 and (a,b) ¢ R, we say that a is equivalent to b
under R and write @ ~ b or aRb; in this notation (15)—(17) become:

a~ a; a1s)
a~b = bp~a; (16")
a~b and b~c = a~c. an»)

Let R (~) be an equivalence relation on A. If a ¢ 4, the equivalence class of a
(denoted a) is the class of all those elements of A4 that are equivalent to a; that is,
@ = {be A| b~ a}. The class of all equivalence classes in A4 is denoted 4/R and
called the quotient class of 4 by R. Since R is reflexive, a ¢ a for every a ¢ 4; hence

a»= J, forevery aeA; and if Aisa set (18)
Ua=4d= U a (19)

aeA aed/R
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Also observe that
a=5b & - -a~b; (20)

forifa = b,thenaca= aebh = a~ b. Conversely, if a~ bandcea, thenc ~a
anda~b=c~ b= ceb. Thus a C b; a symmetric argument shows that b6 C a
and therefore @ = b. Next we prove:

forabeA, either aNb= ¢ or a=A>. (21)

If a N b (&, then there is an element ce @ (1 b. Hence ¢ ~ a and ¢ ~ b. Using
symmetry, transitivity and (20) we have: a~c and c~b=a~b=a = b.
Let A be a nonempty class and {4, | i ¢ I} a family of subsets of 4 such that:

A; # F, foreach iel;

vel
AN A; = & forall i=jel;

then { 4; | i ¢ I} is said to be a partition of A.

Theorem 4.1. If A is a nonempty set, then the assignment R }— A/R defines a bijec-
tion from the set E(A) of all equivalence relations on A onto the set Q(A) of all parti-
tions of A.

SKETCH OF PROOF. If R is an equivalence relation on A, then the set 4/R
of equivalence classes is a partition of 4 by (18), (19), and (21) so that R}> 4/R de-
fines a function f: E(4) — Q(A). Define a function g : Q(A4) — E(A) as follows. If
S = {A.:|iel}is a partition of 4, let g(S) be the equivalence relation on 4 given by:

a~b & aeAdA; and beA; for some (unique)icl. (22)

Verify that g(S) is in fact an equivalence relation such that a = A4; for a € 4;. Com-
plete the proof by verifying that fg = 1) and gf = 1g). Then f is bijective
by (13). m

5. PRODUCTS

Note. In this section we deal only with sers. No proper classes are involved.

Consider the Cartesian product of two sets 4; X 4.. An element of 4, X A;isa
pair (a,,a;) with a; ¢ A;, i = 1,2, Thus the pair (a;,a;) determines a function f: {1,2}
— A1 U 4;by: f(1) = ay, f(2) = a.. Conversely, every function f: {1,2} — 4, U 4,
with the property that f(1) ¢ A4, and f(2) ¢ 4; determines an element (aj,az) =
(f(1),f(2)) of A, X A,. Therefore it is not difficult to see that there is a one-to-one
correspondence between the set of all functions of this kind and the set 4, X A,.
This fact leads us to generalize the notion of Cartesian product as follows.

Definition 5.1. Ler {A;|i¢ 1] bea family of sets indexed by a (nonempty) set 1. The
(Cartesian) product of the sets A; is the set of all functions f:1— | A; such that

vel
f(i) e A; for allie 1. It is denoted | I A;.
el
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If I={1,2,...,n), the product [] 4, is often denoted by 4, X 4, X - - - X A4,
iel

and is identified with the set of all ordered n-tuples (a,,a,, . . ., a,), where a; ¢ A, for
i=1,2,..., njust as in the case mentioned above, where I={1,2}. A similar
notation is often convenient when I is infinite. We shall sometimes denote the
function f & H A, by {a;},,; or simply {a;}, where f(i) = a; € A; for each i ¢ I.

If some A — &, then [ ] 4: = & since there can be no function f: I— U 4,

el
such that f(j) e 4;.
If {A4;|ieI} and {B;|iec I} are families of sets such that B; C A, for each i e I,
then every function I — {J B: may be considered to be a function I — {J 4.. There-

iel iel
fore we consider ] | B: to be a subset of [ ] 4..
1e] el
Let H A; be a Cartesian product. For each k ¢ I define a map = : H A; — A,
el el

by f f(k), or in the other notation, {a;} }— ai. 7 is called the (canonical) projec-
tion of the product onto its kth component (or factor). If every A, is nonempty, then each
T, is surjective (see Exercise 7.6).
The product H A; and its projections are precisely what we need in order
el
to prove:

Theorem 5.2. Let {A; | ie 1)} be a family of sets indexed by 1. Then there exists a set
D, together with a family of maps {m; : D — A; | i e I} with the following property: for
any set C and family ofmaps | ¢; : C — A; | i¢l1}, there exists a uniguemap ¢ : C— D
such that myp = ¢; for all i € L. Furthermore, D is uniquely determined up to a bijection.

The last sentence means that if D’ is a set and {n,’ : D' — A; | ie I} a family of
maps, which have the same property as D and { m;}, then there is a bijection D — D’.

PROOF OF 5.2. (Existence) Let D = H A; and let the maps m; be the projec-
el
tions onto the ith components. Given C and the maps ¢;, define ¢ : C — H A; by
1el
cb £, where £(i) = ¢i(c) € A4;. It follows immediately that m,o = ¢; forallie 1. To
show that ¢ is unique we assume that ¢’ : C — H A; is another map such that
tel
mp’ = ; for all i e I and prove that ¢ = ¢’. To do this we must show that for each
c e C, ¢(c), and ¢’(c) are the same element of H A; — that is, ¢(c) and ¢’(c) agree as
el

functions on I: (¢(c))i) = (¢'(c))(¥) for all i € I. But by hypothesis and the definition
of =; we have for every i ¢ I:

(@' (M) = mp'(c) = ¢ic) = fi) = (())Q).

(Uniqueness) Suppose D’ (with maps w;' : D’ — A;) has the same property as

D= H A;. If we apply this property (for D) to the family of maps {#,’ : D' — A}
iel

and also apply it (for D’) to the family {w; : D — A;}, we obtain (unique) maps
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¢ : D' — D and ¢ : D — D’ such that the following diagrams are commutative for
each ie I:

'4 )

D—» D' D— D

NJ{ ' m’ L /Ti

3 1
Combining these gives for each i e I a commutative diagram

2

D__"uD

Tf[\Ai/‘lT,‘

Thus ¢y : D — Dis a map such that m(¢y) = m; for all i e 1. But by the proof above,
there is a unique map with this property. Since the map 15 : D — D is also such that
mlp = m; for all ie I, we must have ¢y = 1, by uniqueness. A similar argument

shows that Yo = 15-. Therefore, ¢ is a bijection by (13) and D = H A; is uniquely
el
determined up to a bijection. m

Observe that the statement of Theorem 5.2 does not mention elements; it in-

volves only sets and maps. It says, in effect, that the product H A; is characterized
el

by a certain universal mapping property. We shall discuss this concept with more pre-

cision when we deal with categories and functors below.

6. THE INTEGERS

We do not intend to give an axiomatic development of the integers. Instead we
assume that the reader is thoroughly familiar with the set Z of integers, the set
N = {0,1,2, ...} of nonnegative integers (or natural numbers) the set N* = {1,2, ...}
of positive integers and the elementary properties of addition, multiplication, and
order. In particular, for all a,b,c € Z:

(@a+b)+c=a+ b+ ) and (ab)c = a(bc) (associative laws); (23)
a+b=>b+a and ab = ba (commutative laws); 2%

alb+ c) =ab+ac and (a + b)c = ac + bc (distributive laws);  (25)
a+0=a and al = a (identity elements); (26)

for each a ¢ Z there exists —a e Z such that a + (—a) = 0 (additive inverse); @7
we write a — b for a + (—b).

ab=0 & a=0 or b=0; (28)
a<b = atc<b+4c forall ceZ; (29)
a<b = ad < bd forall deN* (30)

We write a < b and b > a interchangeably and write a < bifa < hor a = b. The
absolute value |a| of a e Z is defined to be a if a > 0 and —a if a < 0. Finally we
assume as a basic axiom the
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Law of Well Ordering. Every nonempty subset S of N contains a least element (that
is, an element b € S such that b < c for all ce S).

In particular, O is the least element of N.
In addition to the above we require certain facts from elementary number theory,
some of which are briefly reviewed here.

Theorem 6.1. (Principle of Mathematical Induction) IfS is a subset of the set N of
natural numbers such that 0 ¢ S and either

() neS = n+1eS forall neN;
or

(i) meS forall 0<m<n = neS forallneN;
then S = N, '

PROOF. If N — S = (J, let n ¢ 0 be its least element. Then for every m < n,
we must have 7 ¢ N — S and hence m ¢.S. Consequently either (i) or (ii) implies
n e S, which is a contradiction. Therefore N — S = JandN=S. m

REMARK. Theorem 6.1 also holds with O, N replaced by ¢, M, = {xe Z | x > ¢}
forany ce Z.

In order to insure that various recursive or inductive definitions and proofs in the
sequel (for example, Theorems 8.8 and I11.3.7 below) are valid, we need a technical
result:

Theorem 6.2. (Recursion Theorem) IfS isa set,acS and foreachne N, f,:S—Ss
a function, then there is a unique function ¢ : N — S such that ¢(0) = a and p(n + 1) =
f.(p(n)) for every ne N.

SKETCH OF PROOF. We shall construct a relation R on N X S that is the
graph of a function ¢ : N — S with the desired properties. Let G be the set of all
subsets Y of N X S such that

0a)eY; and (Mx)eY = @+ 1,£,(x)eY forall neN.

Then G = ¥ since N X SeG. Let R= () Y; then ReG. Let M be the sub-
YeG

set of N consisting of all those n € N for which there exists a unigue x, €S such that
(n,x,) € R. We shall prove M = N by induction. If 0 § M, then there exists (0,) ¢ R

with b 5 a and the set R — {(0,))} C N X S is in G. Consequently R = () Y
YeG

< R — {(0,b)}, which is a contradiction. Therefore, 0 € M. Suppose inductively that
n € M (that is, (n,x,) € R for a unique x, € S). Then (n + 1,f(x.)) € R also. If
(n + l,c) € R with ¢ # f(x,) then R — {(n + 1,0)}e G (verify!), which leads to a
contradiction as above. Therefore, x,,, = f.(x,) is the unique element of S such
that (n + 1,x,41) ¢ R. Therefore by induction (Theorem 6.1) N = M, whence the
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assignment n|— x, defines a function ¢ : N— S with graph R. Since (0,a) ¢ R
we must have ¢(0) = a. For each n e N, (n,x;) = (n,¢(n)) ¢ R and hence
(7 4+ 1,£(o()) € R since ReG. But (n + 1,x,,1) ¢ R and the uniqueness of x,.1
imply that o(n + 1) = x,.1 = file()). B

If 4 is a nonempty set, then a sequence in A is a function N — A. A sequence is
usually denoted {qy,q,, ...} or {a,},~ or {a;}), where a; ¢ A is the image of i ¢ N.
Similarly a function N* — 4 is also called a sequence and denoted {¢,,q,, ...} or
{a;}ien» OT {a;}; this will cause no confusion in context.

Theorem 6.3. (Division Algorithm) If a,b, e Z and a 5= 0, then there exists unique
integers q and t such thatb = aq + r,and0 <r < |[a|.

SKETCH OF PROOF. Show thatthesetS = {b —ax | xeZ,b — ax > 0} is
a nonempty subset of N and therefore contains a least element r = b — ag (for some
g e Z). Thus b = aqg + r. Use the fact that r is the least element in S to show
0 < r < |a| and the uniqueness of g,r. W

We say that an integer a > 0 divides an integer b (written a | ) if there is an integer
k such that ak = b. If a does ot divide b we write a/ b.

Definition 6.4. The positive integer c is said to be the greatest common divisor of the
integers aj,a,, . . ., a, if:

M cla for 1<i<n
2)deZ and dla; for 1<i<n = djc

c is denoted (a,,a,, . . . , agy).

Theorem 6.5. If a,,a., ..., a, are integers, not all 0, then (aa., . .., ay) exists.
Furthermore there are integers ki X, . . . , k, such that

(aha'l: ooy an) a klal + k2a2 + st + knan-

SKETCH OF PROOF. Use the Division Algorithm to show that the least posi-
tive element of the nonempty set.S = {x;a; + xo02 + - - - + xnan | X € Z, Z xia; > 0}
is the greatest common divisor of ay, . . . , a.. For details see Shockley [51,p.10). m

The integers ay,a., . . . , a, are said to be relatively prime if (a,,a;, . .. ,a,) = 1. A

positive integer p > 1is said to be prime if its only divisors are =1 and = p. Thus if p
Is prime and a ¢ Z, either (a,p) = p (if p | a) or (a,p) = 1 (if p/ a).

Theorem 6.6. If a and b are relatively prime integers and a | be, thena | c. If p is
prime and p | a:a;- - -a,, then p | a; for some i.
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SKETCH OF PROOF¥. By Theorem 6.5 1 = ra + sb, whence ¢ = rac + sbc.
Therefore a | c. The second statement now follows by inductionon n. m

Theorem 6.7. (Fundamental Theorem of Arithmetic) Any positive integer n > 1 may
be written uniquely in the form n = p,Yp.t:- - -putk, where p) < p: <--- < px are
primes and t; > 0 for all i.

The proof, which proceeds by induction, may be found in Shockley [51, p.17].
Let m > 0 be a fixed integer. If a,b e Z and m | (a — b) then a is said to be con-
gruent to » modulo m. This is denoted by a = b (mod m).

Theorem 6.8. Ler m > 0 be an integer and a,b,c,d ¢ Z.

(1) Congruence rpodulo m is an equivalence relation on the set of integers Z., which
has precisely m equivalence classes.
(1) If a=b (mod m) and c=d (mod m), then a+c=b+d (mod m) and
ac = bd (mod m).
(iii) If ab = ac (mod m) and a and m are relatively prime, then b = ¢ (mod m).

PROOF. (i) The fact ttat congruence modulo m is an equivalence relation is an
easy consequence of the appropriate definitions. Denote the equivalence class of an
integer a by @ and recall property (20), which can be stated in this context as:

a=5b < a=b(modm). (20")

Given any a ¢ Z, there are integers g and r, with O < r < m, such thata = mq -} r.
Hence a — r = mq and a = r (mod m); therefore, @ = r by (20/). Since a was ar-
bitrary and 0 < r < m, it follows that every equivalence class must be one of
0,1,2,3,...,(0n — 1). However, these m equivalence classes are distinct: for if
0<i<j<mthen0 < (j— i) <mandm}(j — §). Thusi # j(mod m)and hence
i # j by (20). Therefore, there are exactly m equivalence classes.

(i) We are given m|a — band m | ¢ — d. Hence m divides (a — b) + (¢ — d)
= (a + ¢) — (b + d) and therefore a + ¢ = b 4+ d (mod m). Likewise, m divides
(a — b)c + (¢ — d)b and therefore divides ac — bc -+ ¢ch — db = ac — bd; thus
ac = bd (mod m). '

(iii) Since ab = ac (mod m), m | a(b — c). Since (m,@) = 1, m | b — ¢ by Theo-
rem 6.6, and thus p =c(mod m). B

7. THE AXIOM OF CHOICE, ORDER, AND ZORN’S LEMMA

Note. In this section we deal only with sers. No proper classes are involved.

IfI = 5 and { A4, | i € I} is a family of sets such that 4; = (J for all i € I, then we

would like to know that [ ] 4: » (. It has been proved that this apparently in-
sel

nocuous conclusion cannot be deduced from the usual axioms of set theory (al-

though it is not inconsistent with them — see P. J. Cohen [59]). Consequently we

shall assume
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The Axiom of Choice. The product of a family of nonempty sets indexed by a non-
empty set is nonempty.

See Exercise 4 for another version of the Axiom of Choice. There are two propo-
sitions equivalent to the Axiom of Choice that are essential in the proofs of a number
of important theorems. In order to state these equivalent propositions we must
introduce some additional concepts.

A partially ordered set is a nonempty set A4 together with a relation R on 4 X A
(called a partial ordering of 4) which is reflexive and transitive (see (15), (17) in
section 4) and

antisymmetric: (e,b) e R and (bja)e R = a = b. (31)

If R is a partial ordering of 4, then we usually write a < b in place of (a,b) ¢ R. In
this notation the conditions (15), (17), and (31) become (for all a,b,c € A):

a < a;
a<b and b<c¢c = a<yc;
a<b and b<a = a=A>.

We writea < bifa < band a # b.

Elements a,b ¢ 4 are said to be comparable, provided a < bor b < a. However,
two given elements of a partially ordered set need not be comparable. A partial
ordering of a set 4 such that any two elements are comparable is called a linear
(or total or simple) ordering.

EXAMPLE. Let 4 be the power set (set of all subsets) of {1,2,3,4,5}. Define
C < D ifand only if C C D. Then A4 is partially ordered, but not linearly ordered
(for example, {1,2} and {3,4} are not comparable).

Let (4,<) be a partially ordered set. An element a € 4 is maximal in A4 if for every
c € A which is comparable to a, ¢ < a; in other words, for allce 4, a < c=a = c.
Note that if a is maximal, it need not be the case that ¢ < a for all ¢ € A (there may
exist ¢ £ A that are not comparable to a). Furthermore, a given set may have many
maximal elements (Exercise 5) or none at all (for example, Z with its usual ordering).
An upper bound of a nonempty subset B of 4 is an element d € 4 such that b < d for
every b e B. A nonempty subset B of A that is linearly ordered by < is called a chain
in 4.

Zorn’s Lemma. / 'f A is a nonempty partially ordered set such that every chain in A
has an upper bound in A, then A contains a maximal element.

Assuming that all the other usual axioms of set theory hold, it can be proved that
Zorn’s Lemma is true if and only if the Axiom of Choice holds; that is, the two are
equivalent — see E. Hewitt and K. Stromberg [57; p. 14]. Zorn’s Lemma is a power-
ful tool and will be used frequently in the sequel.

Let B be a nonempty subset of a partially ordered set (4,<). An element c ¢ Bis a
least (or minimum) element of B provided ¢ < b for every b ¢ B. If every nonempty
subset of 4 has a least element, then A is said to be well ordered. Every well-ordered
set is linearly ordered (but not vice versa) since for all a,b € A the subset {a,b} must
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have a least element; that is, a < b or b < a. Here is another statement that can be
proved to be equivalent to the Axiom of Choice (see E. Hewitt and K. Stromberg
[57; p.14]).

The Well Ordering Principle. If A is a nonempty set, then there exists a linear
ordering < of A such that (A,<) is well ordered.

EXAMPLES. We have already assumed (Section 6) that the set N of natural
numbers is well ordered. The set Z of all integers with the usual ordering by magni-
tude is linearly ordered but nor well ordered (for example, the subset of negative
integers has no least element). However, each of the following is a well ordering of Z
(where by definition a < b < a is to the left of b):

(i) 0,1,_1’2’—2,39—3) NP (S (T
Gi) 0,1,3,5,7,...,2,4,68,...,—1,—-2,—3,—4,...;
(iii) 0,34,56,..., —1,—2,—3,—4,...,1,2

These orderings are quite different from one another. Every nonzero element a in
ordering (i) has an immediate predecessor (that is an element ¢ such that a is the least
element in the subset {x | ¢ < x}). But the elements —1 and 2 in ordering (i1) and —1
and 1 in ordering (iii) have no immediate predecessors. There are no maximal ele-
ments in orderings (i) and (ii), but 2 is a maximal element in ordering (iii). The
element O is the least element in all three orderings.

The chief advantage of the well-ordering principle is that it enables us to extend
the principle of mathematical induction for positive integers (Theorem 6.1) to any
well ordered set.

Theorem 7.1. (Principle of Transfinite Induction) If B is a subset of a well-ordered
set (A, <) such that for every ae A,

{ceAlc<alCB = aeB,
then B = A.

PROOF. If A — B (7, then there is a least element a ¢ 4 — B. By the defini-
tions of least element and 4 — B we must have {c e 4 | ¢ < a} C B. By hypothesis
then, aeB so that ae B N (A — B) = (¢, which is a contradiction. Therefore,
A—B=and A=B. n

EXERCISES

1. Let (4,<) be a partially ordered set and B a nonempty subset. A lower bound of B
is an element d ¢ A4 such that 4 < b for every b € B. A greatest lower bound (g.1.b.)
of Bis a lower bound d; of B such that d < d, for every other lower bound d of B.
A least upper bound (l.u.b.) of B is an upper bound 1, of B such that ¢, < ¢ for
every other upper bound ¢ of B. (4,<) is a lattice if for all a,b ¢ A the set {a,b}
has both a greatest lower bound and a least upper bound.
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(a) If S = (F, then the power set P(S) ordered by set-theoretic inclusion is a
lattice, which has a unique maximal element.

(b) Give an example of a partially ordered set which is nor a lattice.

(c) Give an example of a lattice with no maximal element and an example of
a partially ordered set with two maximal elements.

. Alattice (4, <) (see Exercise 1) is said to be complete if every nonempty subset of
A has both a least upper bound and a greatest lower bound. A map of partially
ordered sets f: A — Bis said to preserve order if a < a’ in 4 implies f(a) < f(a’)
in B. Prove that an order-preserving map fof a complete lattice 4 into itself has
at least one fixed element (that is, an a € 4 such that f(a) = a).

. Exhibit a well ordering of the set Q of rational numbers.

. Let S be a set. A choice function for S is a function f from the set of all nonempty
subsets of S to S such that f(4) e Aforall 4 = &, 4 C S. Show that the Axiom
of Choice is equivalent to the statement that every set S has a choice function.

. Let S be the set of all points (x,y) in the plane with y < 0. Define an ordering
by (x1,y1) < (x2,)%) & x1 = x;and y; < y,. Show that this is a partial ordering
of S, and that S has infinitely many maximal elements.

. Prove that if all the sets in the family {4, | ie I # &} are nonempty, then each
of the projections m; : H A; — A; is surjective.
el

. Let (4,<) be a linearly ordered set. The immediate successor of a ¢ A4 (if it exists)
is the least element in the set {x € 4 | a < x}. Prove that if 4 is well ordered by
<, then at most one element of 4 has no immediate successor. Give an example
of a linearly ordered set in which precisely two elements have no immediate
SUCCESSOT.

8. CARDINAL NUMBERS

The definition and elementary properties of cardinal numbers will be needed fre-

quently in the sequel. The remainder of this section (beginning with Theorem 8.5),
however, will be used only occasionally (Theorems I1.1.2 and IV.2.6; Lemma V.3.5;
Theorems V.3.6 and VI.1.9). Tt may be omitted for the present, if desired.

Two sets, A and B, are said to be equipollent, if there exists a bijective map 4 — B;

in this case we write 4 ~ B.

Theorem 8.1. Equipollence is an equivalence relation on the class S of all sets.

PROOF. Exercise; note that (J ~ ¢f since J C ¢ X & is a relation that is

(vacuously) a bijective function.* m

Letl, = ¢ and foreachne N*let I, = {1,2,3, ..., n}. It is not difficult to prove

that 7,, and I, are equipollent if and only if m = n (Exercise 1). To say that a set A

3See page 6.
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has precisely » elements means that 4 and I, are equipollent, that is, that 4 and I, are
in the same equivalence class under the relation of equipollence. Such a set 4 (with
A ~ I, for some unique » > 0) is said to be finite; a set that is not finite is infinite.
Thus, for a finite set 4, the equivalence class of 4 under equipollence provides an
answer to the question: how many elements are contained in 4? These considerations
motivate

Definition 8.2. T#e cardinal number (or cardinality) of a set A, denoted |A|, is the
equivalence class of A under the equivalence relation of equipollence. |A| is an infinite or
finite cardinal according as A is an infinite or finite ser.

Cardinal numbers will also be denoted by lower case Greek letters: «,8,7, etc.
For the reasons indicated in the preceding paragraph we shall identify the integer
n > 0 with the cardinal number |.| and write |[I,| = n, so that the cardinal number
of a finite set is precisely the number of elements in the set.

Cardinal numbers are frequently defined somewhat differently than we have done
so that a cardinal number is in fact a set (instead of a proper class as in Definition 8.2).
We have chosen this definition both to save time and because it better reflects the
intuitive notion of “the number of elements in a set.”” No matter what definition of
cardinality is used, cardinal numbers possess the following properties (the first two
of which are, in our case, immediate consequences of Theorem 8.1 and Defini-
tion 8.2).

(i) Every set has a unique cardinal number;

(ii) rwo sets have the same cardinal number if and only if they are equipollent
(4] = |B| < 4 ~ B);

(iii) the cardinal number of a finite set is the number of elements in the set.

Therefore statements about cardinal numbers are simply statements about equipol-
lence of sets.

EXAMPLE. The cardinal number of the set N of natural numbers is customarily
denoted N, (read “aleph-naught’’). A set 4 of cardinality N, (that is, one which is
equipollent to N) is said to be denumerable. The set N*, the set Z of integers, and the
set Q of rational numbers are denumerable (Exercise 3), but the set R of real numbers
is not denumerable (Exercise 9).

Definition 8.3. Ler a and 3 be cardinal numbers. The sum o + (3 is defined to be the
cardinal number |A U B|, where A and B are disjoint sets such that |A| = a and
|B| = B. The product of is defined to be the cardinal number |A X B|.

It is not actually necessary for 4 and B to be disjoint in the definition of the
product o3 (Exercise 4). By the definition of a cardinal number o there always
exists a set 4 such that |4| = «. It is easy to verify that disjoint sets, as required for
the definition of o 4 3, always exist and that the sum « + 8 and product o are in-
dependent of the choice of the sets 4,B (Exercise 4). Addition and multiplication of
cardinals are associative and commutative, and the distributive laws hold (Exercise
5). Furthermore, addition and multiplication of finite cardinals agree with addition
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and multiplication of the nonnegative integers with which they are identified; for if
A has m elements, B has n elements and 4 N B = ¢, then A U B has m + n ele-
ments and 4 X B has mn elements (for more precision, see Exercise 6).

Definition 8.4. Ler o8 be cardinal numbers and A B sets such that |A| = a, |B| = B.
a is¥éss than or equal to 3, denoted oo < Borf3 > o, i fA is equipollent with a subset of
B (that is, there is an injective map A — B). « is strictly less than 38, denoted o < 3
orB>a,ifa<fand o # 0.

It is easy to verify that the definition of < does not depend on the choice of A4
and B (Exercise 7). It is shown in Theorem 8.7 that the class of all cardinal numbers
is linearly ordered by <. For finite cardinals < agrees with the usual ordering of the
nonnegative integers (Exercise 1). The fact that there is no largest cardinal number is
an immediate consequence of

Theorem 8.5. If A is a set and P(A) its power set, then |A| < |P(A)).

SKETCH OF PROOF. The assignment a}l- {a} defines an injective map
A — P(A) so that |4] < |P(A)|. If there were a bijective map f: A — P(A), then for
some ay e A, f(a)) = B, where B = {as A|a} f(a)} C A. But this yields a con-
tradiction: ao € B and a, ¢ B. Therefore | 4| # |P(A4)] and hence |[4]| < |[P(4)|. m

REMARK. By Theorem 8.5, 8, = |[N| < |[P(N)|. It can be shown that
|[P(N)| = |R|, where R is the set of real numbers. The conjecture that there is no
cardinal number 8 such that N, < 8 < |P(N)| = |R] is called the Continuum Hy-
pothesis. It has been proved to be independent of the Axiom of Choice and of the
other basic axioms of set theory; see P. J. Cohen [59].

The remainder of this section is devoted to developing certain facts that will be
needed at several points in the sequel (see the first paragraph of this section).

Theorem 8.6. (Schroeder-Bernstein) If A and B are sets such that |A| < |B| and
IB[ < |Al, then |A] = [B].

SKETCH OF PROOF. By hypothesis there are injective maps f: 4 — B and
g :B— A. We stall use fand g to construct a bijection # : A — B. This will imply
that 4 ~ B and hence |4| = |B|. If a ¢ A4, then since g is injective the set g~ (a) is
either empty (in which case we say that a is parentless) or consists of exactly one ele-
ment b e B (in which case we write g7(a@) = b and say that b is the parent of a).
Similarly for b e B, we have either f~Y(b) = & (b is parentless) or f~Y(b) = o’ € A
(o' is the parent of b). If we continue to trace back the “ancestry’’ of an element a ¢ A
in this manner, one of three things must happen. Either we reach a parentless ele-
ment in 4 (an ancestor of a e A), or we reach a parentless element in B (an ancestor
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of a), or the ancestry of a € A can be traced back forever (infinite ancestry). Now de-
fine three subsets of 4 [resp. B] as follows:

Ay = {ae A| ahas a parentless ancestor in A};
Az = {ae A| a has a parentless ancestor in B};
A; = {ae A| a has infinite ancestry};
B: = {be B| b has a parentless ancestor in A};
B; = {be B | b has a parentless ancestor in B};
B; = {b e B | b has infinite ancestry}.

Verify that the 4; [resp. B;] are pairwise disjoint, that their union is A4 [resp. B]; that
f| Ay is a bijection 4; — B; for i = 1, 3; and that g | B; is a bijection B; — A4,. Con-
sequently the map % : 4 — B given as follows is a well-defined bijection:

_[f@ if ae4 U As;
KR = {g“l(a) if acA,. ]

Theorem 8.7. The class of all cardinal numbers is linearly ordered by <. If o« and 3
are cardinal numbers, then exactly one of the following is true:

a<B; a=8; B8 <a (TrichotomyLaw).

SKETCH OF PROOF. It is easy to verify that < is a partial ordering. Let ,8
be cardinals and A4,B be sets such that | 4] = ¢, |B|] = (. We shall show that < is a
linear ordering (that is, either o < S or 8 < «) by applying Zorn’s Lemma to the set
F of all pairs (£,X), where X C 4 and f:X — B is an injective map. Verify that
F » (J and that the ordering of § given by ( £1,X1) < (f2,X5) if and only if X; C X,
and f;| X1 = f, is a partial ordering of F. If {(f,X))|iel} is a chain in &, let
X = | X; and define f: X — B by f(x) = fi(x) for x € X;. Show that fis a well-de-

el

fined injective map, and that ( £,X) is an upper bound in & of the given chain. There-
fore by Zorn’s Lemma there is a maximal element (g,X) of &. We claim that either
X = Aorlmg = B. For if both of these statements were false we could findac 4 — X
and b B — Im g and define an injective map # : X U {a} — B by A(x) = g(x) for
xeXand #(a) = b. Then (A, X U {a}) ¢ F and (g.X) < (h.X U {al), which contra-
dicts the maximality of (g,X). Therefore either X = A so that [4] < |BlorImg = B
in which case the injective map B SXC A shows that |B| < |A4|. Use these facts, the
Schroeder-Bernstein Theorem 8.6 and Definition 8.4 to prove the Trichotomy
Law. =

REMARKS. A family of functions partially ordered as in the proof of Theorem
8.7 is said to be ordered by extension. The proof of the theorem is a typical example
of the use of Zorn’s Lemma. The details of similar arguments in the sequel will fre-
quently be abbreviated.

Theorem 8.8. Every infinite set has a denumerable subset. In particular, Ny < « for
every infinite cardinal number c.
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SKETCH OF PROQOF. If B is a finite subset of the infinite set 4, then 4 — Bis
nonempty. For each finite subset B of 4, choose an element xz e 4 — B (Axiom of
Choice). Let F be the set of all finite subsets of 4 and define a map f: F — F by
f(B) = B U {xg}. Choose ae A. By the Recursion Theorem 6.2 (with f, = f for
all n) there exists a function ¢ : N — F such that

¢0) = {a} and o+ 1) = flem) = ¢(m) U [xp00} (1 > 0).
Let g : N — A be the function defined by
8(0) = a; g(1) = xp) = X(ay;-..;8n+ 1) = xpms .. ..
Use the order properties of N and the following facts to verify that g is injective:

() g(n) e ¢(n) for all n > 0;
(i) gn) ¢ ¢(n — 1) for all n > 1;
(iii) g(n) ¢ ©(m) for all m < n.

Therefore Im g is a subset of A such that [Img| = [N| = N,. =

Lemma 8.9. IfA isan infinite set and F a finite set then |A U F| = |Al. In particular,
o+ n = « for every infinite cardinal number o and every natural number (finite
cardinal) n.

SKETCH OF PROOF. It suffices to assume 4 1 F = (F (replace Fby F — A
if necessary). If F = {b1,bs, . ..,b,} and D = {x;|ie N*} is a denumerable subset of
A (Theorem 8.8), verify that f: 4 — A4 U F is a bijection, where fis given by

b; for x =x,1<i<mn;
Jx) = {x_, for x = x;i> n;
x for xe A — D. [

Theorem 8.10. If « and (3 are cardinal numbers such that B < o« and « is infinite,
then a + 8 = «a.

SKETCH OF PROOF. It suffices to prove a + o = « (simply verify that
afLa+pB<a+a=a«aand apply the Schroeder-Bernstein Theorem to conclude
a+ 3 = a). Let A4 be a set with |4] = « and let § be the set of all pairs ( £,X),
where X C 4 and f: X X {0,1} — X is a bijection. Partially order § by extension
(as in the proof of Theorem 8.7) and verify that the hypotheses of Zorn’s Lemma are
satisfied. The only difficulty is showing that & = . To do this note that the map
N X {0,1} — N given by (n,0) |- 21 and (n,1) }- 2n + 1 is a bijection. Use this fact
to construct a bijection f: D X {0,1} — D, where D is a denumerable subset of A4
(thatis, [D| = [N]; see Theorem 8.8). Therefore by Zorn’s Lemma there is a maximal
element (g,0) ¢ &.

Clearly C; = {(c,0)| ce C} and G, = {(c,1)| ce C} are disjoint sets such that
|Col = |C| = |Gi] and € X 10,1} = Co U C;. The map g : € X {0,1} — C is a bi-
Jection. Therefore by Definition 8.3,

ICl = |C X {0,1}] = |G U G = |G| + |G| = |C] + [C].
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To complete the proof we shall show that |C| = «. If A — C were infinite, it would
contain a denumerable subset B by Theorem 8.8, and as above, there would be a bi-
jection¢ : B X {0,1} — B. By combining { with g, we could then construct a bijec-
tion 4 :(C U B) X {0,1} — C U B so that (g,C) < (h,C U B)e ¥, which would
contradict the maximality of (g,C). Therefore A — C must be finite. Since A4 is in-
finite and A = C U (4 — ©), C must also be infinite. Thus by Lemma 8.9, |C| =
ICUMA-0O)) =4 =c. =

Theorem 8.11. If a and f are cardinal numbers such that 0 # <« and « is
infinite, then off = «; in particular, aXq = a and if B is finite RS = N, .

SKETCH OF PROQOF. Since a < off < ac it suffices (as in the proof of Theo-
rem 8.10) to prove aa = «. Let A4 be an infinite set with |4| = aand let & be the set
of all bjjections f: X X X — X, where X is an infinite subset of 4. To show that
F # (J, use the facts that 4 has a denumerable subset D (so that [D] = |[N| = [N*|)
and that the map N* X N* -> N* given by (m,n)|> 2~3(2n — 1) is a bijection.
Partially order § by extension and use Zorn’s Lemma to obtain a maximal element
g : B X B — B. By the definition of g, |B||B| = |B X B| = |B|. To complete the proof
we shall show that |B] = |4| = «a.

Suppose |4 — B| > |B|. Then by Definition 8.4 there is a subset C of A — B such
that |C| = |B|. Verify that |C| = |B| = |[BXB| =|B X C|=|C XB| =|CX (|
and that these sets are mutually disjoint. Consequently by Definition 8.3 and Theo-
rem 810 (BUOXBUO|=|BXBUBXC)U(CXxXxB) U(CXO)|
=|BXB|+ |[BX C|+ |CXB|+|CXC|=(B|+ |B)+ (IC| + IC]) = |B] +
|C] = |B U C} and there is a bijection (B U C) X (B U C) — (B U ), which con-
tradicts the maximality of g in &. Therefore, by Theorems 8.7 and 8.10|A — B|=< |B|
and |[Bl = |4 —B|+ |Bl=|{(4~B)UB|= |4 =a. =

Theorem 8.12. Letr A be a set and for each integern > 1let A» = A X A X--- X A
(n factors).

(1) If A is finite, then |A™| = |A|®, and if A is infinite, then |A®| = |A|.
G | U A" = RiA|.

neN*

SKETCH OF PROQOF. (1) is trivial if | 4| is finite and may be proved by induc-
tion on # if | 4| is infinite (the case » = 2 is given by Theorem 8.11). (ii) The sets
A" (n > 1) are mutually disjoint. If 4 is infinite, then by (i) there is for each n a bijec-
tion f, : A» — A. The map |J A" — N* X A, which sends u ¢ A onto (n,f,(1)), is a

neN*
bijection. Therefore | |J A" = |[N* X 4| = |N*||4| = NdlA4|. (ii) is obviously true
neN*
if A = . Suppose, therefore, that 4 is nonempty and finite. Then each A is non-
empty and it is easy to show that N, = [N*| < | |J A4~|. Furthermore each A~ is
neN*

finite and there is for each » an injective map g, : A — N*. The map |J 4" —
neN*

N* X N*, which sends u ¢ A" onto (n,g.(1)) is injective so that | U A" < |N* X N*|
nelN¥*

= |N*| = 8, by Theorem 8.11. Therefore by the Schroeder-Bernstein Theorem

[ U 47 = Ng. But Ny = N|4] since A4 is finite (Theorem 8.11). m

nelN¥
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Corollary 8.13. If A is an infinite set and F(A) the set of all finite subsets of A, then
[F(A)| = |Al

PROOF. The map 4 — F(A) given by a}- {a} is injective so that |4| < |F(A)).

For each n-element subset S of 4, choose (a, . . . @) e AnsuchthatS = {ay, ..., a,}.
This defines an injective map F(4) — |J A" so that |[F(4)| < | U A7 = Nol4] = |4]
neN* nelN*

by Theorems 8.11 and 8.12. Therefore, |A| = |F(A4)| by the Schroeder-Bernstein
Theorem 8.6. m

EXERCISES

1. Let I, = J and for each ne N* let I, = {1,2,3,..., n}.
(a) I, is not equipollent to any of its proper subsets [Hint : induction].
(b) I, and I, are equipollent if and only if m = n.
(¢) I..is equipollent to a subset of I, but 7, is not equipollent to any subset of I,,
if and only if m < n.

2. (a) Every infinite set is equipollent to one of its proper subsets.
(b) A set is finite if and only if it is not equipollent to one of its proper subsets
[see Exercise 1].

3. (a) Zis a denumerable set.
(b) The set Q of rational numbers is denumerable. [Hint: show that
1Z| < QI < [Z % Z| =|Z]]

4. If A,4’,B,B’ are sets such that |4| = | 4’| and |B] = |B’|,then [4 X B| = |4’ X B/|.
If in addition A N B = & = 4’ N B, then [4 U B| = |4’ U B’|. Therefore
multiplication and addition of cardinals is well defined.

5. For all cardinal numbers «,3,7:

@ a+B8=p+aandaf = Ba (commutative laws).

) (@a+B)+v=a+ @B+ v)and (aB)y = oAB7) (associative laws).

(©) a8+ v) = aB + ay and (« + Byy = ay + By (distributive laws).

d)a+0=caand al = «.

(e) If 5 0, then there is no 8 such that « + B = Oand if « # 1, then there is
no 3 such that o3 = 1. Therefore subtraction and division of cardinal num-
bers cannot be defined.

6. Let I, be as in Exercise 1. If A ~ I, and B~ I, and 4 N B = &, then(4 U B)
~ L.\n and 4 X B ~ L,,. Thus if we identify |A] with m and |B| with n, then
|A| + [B] = m + n and |4||B| = mn.

T IHA~A, B~B and f: A —B is injective, then there is an injective map
A’ — B’. Therefore the relation < on cardinal numbers is well defined.

8. An infinite subset of a denumerable set is denumerable.

9. The infinite set of real numbers R is not denumerable (that is, N, < RD). [Hinzt:
it suffices to show that the open interval (0,1) is not denumerable by Exercise 8.
Y ou may assume each real number can be written as an infinite decimal. If 0,1 is
denumerable there is a bijection JiIN*—(0,1). Construct an infinite decimal (real
number) .a,a,- - - in (0,1) such that a, is not the nth digit in the decimal expansion
of f(n). This number cannot be in Im £
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10. If a3 are cardinals, define o to be the cardinal number of the set of all functions
B — A, where A,B are sets such that |4| = «, |B| = 8.
(a) af is independent of the choice of A,B.
(b) af*r = () (a); (aB)Y = (aM)(B); afY = (cF).
() If a < B, then a7 < B,
(d) If o,f are finite with a > 1, #> 1 and y is infinite, then o = f7.
(e) For every finite cardinal n, o® = aa- - -a (n factors). Hence o = « if « is
infinite.
() If P(A) is the power set of a set A4, then |[P(4)] = 2!4l,

11. If 7 is an infinite set, and for each i e I 4; is a finite set, then {{J 4.| < |I].
el

12. Let « be a fixed cardinal number and suppose that for every i ¢ I, A4; is a set with
|4;] = . Then [ 4:] < |I]e.
(174




CHAPTER |

GROUPS

The concept of a group is of fundamental importance in the study of algebra. Groups
which are, from the point of view of algebraic structure, essentially the same are said
to be isomorphic. Ideally the goal in studying groups is to classify all groups up to
isomorphism, which in practice means finding necessary and sufficient conditions for
two groups to be isomorphic. At present there is little hope of classifying arbitrary
groups. But it is possible to obtain complete structure theorems for various restricted
classes of groups, such as cyclic groups (Section 3), finitely generated abelian
groups (Section [I1.2), groups satisfying chain conditions (Section I1.3) and finite
groups of small order (Section I1.6). In order to prove even these limited structure
theorems, it is necessary to develop a large amount of miscellaneous information
about the structure of (more or less) arbitrary groups (Sections 1, 2, 4, 5, and 8 of
Chapter I and Sections 4 and 5 of Chapter II). In addition we shall study some classes
of groups whose structure is known in large part and which have useful applications
in other areas of mathematics, such as symmetric groups (Section 6), free [abelian]
groups (Sections 9 and I1.1), nilpotent and solvable groups (Sections I1.7 and IL.8).

There is a basic truth that applies not only to groups but also to many other
algebraic objects (for example, rings, modules, vector spaces, fields): in order to
study effectively an object with a given algebraic structure, it is necessary to study as
well the functions that preserve the given algebraic structure (such functions are
called homomorphisms). Indeed a number of concepts that are common to the
theory of groups, rings, modules, etc. may be described completely in terms of ob-
jects and homomorphisms. In order to provide a convenient language and a useful
conceptual framework in which to view these common concepts, the notion of a
category is introduced in Section 7 and used frequently thereafter. Of course it is
quite possible to study groups, rings, etc. without ever mentioning categories. How-
ever, the small amount of effort needed to comprehend this notion now will pay large
dividends later in terms of increased understanding of the fundamental relationships
among the various algebraic structures to be encountered.

With occasional exceptions such as Section 7, each section in this chapter de-
pends on the sections preceding it.

23
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1. SEMIGROUPS, MONOIDS AND GROUPS

If G is a nonempty set, a binary operation on G is a function G X G — G. There
are several commonly used notations for the image of (a,b) under a binary operation:
ab (multiplicative notation), a + b (additive notation), a-b, a * b, etc. For con-
venience we shall generally use the multiplicative notation throughout this chapter
and refer to ab as the product of a and b. A set may have several binary operations
defined on it (for example, ordinary addition and multiplication on Z given by
(a,b) = a + b and (a,b) |- ab respectively).

Definition 1.1. A semigroup is a nonempty set G together with a binary operation
on G which is

(i) associative: a(bc) = (ab)c for all a, b, c e G;
a monoid is a semigroup G which contains a

(i) (rwo-sided) identity element € ¢ G such that ae = ea = a for all a e G.
A group is a monoid G such that

(iii) for every a € G there exists a (two-sided) inverse element a™' ¢ G such that
ala=aal=e.

A semigroup G is said to be abelian or commutative if its binary operation is
(iv) commuziative: ab = ba for all a,b ¢ G.

Our principal interest is in groups. However, semigroups and monoids are con-
venient for stating certain theorems in the greatest generality. Examples are given
below. The order of a group G is the cardinal number |G|. G is said to be finite
[resp. infinite] if |G| is finite [resp. infinite].

Theorem 1.2. If G is a monoid, then the identity element e is unique. If G is a group,
then :

()ceGandcc =c=c = ¢

(ii) for all a, b, ce G ab = ac=b = ¢ and ba = ca= b = ¢ (left and right-

cancellation);

(ii1) for each a € G, the inverse element a™! is unique;

(iv) for eachae G, (a™1) ! = a;

(v) fora,beG, (aby?! = b la’l;

(vi) for a, be G the equations ax = b and ya = b have unique solutions in
G:x=abandy = ba™.

SKETCH OF PROOF. If ¢ is also a two-sided identity, then e = ee’ = ¢'.
(i) cc = c=cYcc) = ¢ le = (¢ le)e = ¢le = ec = e=> ¢ = e; (ii), (iii) and (vi)
are proved similarly. (v) (ab)(b'a™) = a(bb™)a™ = (ae)a™ = aa™! = e = (ab)™!
= b1g71 by (iii); (iv) is proved similarly.

© e .

- ——— ———

T N
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If G 1s a monoid and the binary operation is written multiplicatively, then the
identity element of G will always be denoted e. If the binary operation is written
additively, then a + b (a, b < G) is called the sum of « and b, and the identity element
is denoted 0; if G is a group the inverse of « = G is denoted by —a. We write « — b
for a -+ (—5h). Abelian groups are frequently written additively.

The axioms used in Definition 1.1 to define a group can actually be weakened
considerably.

Proposition 1.3. Let G be a sentigroup. Then G is a group ifand only if the following
conditions hold:

(1) there exists an element € e G such that ea = a for all a e G (left identity
element);
(1) for each a < G, there exists an element a™' ¢ G such that a—'a = e (left inverse).

REMARK. Ananalogous result holds for “‘right inverses” and a “‘right identity.”

SKETCH OF PROOF OF 1.3. (=) Trivial. (<) Note that Theorem 1.2(i) is
true under these hypotheses. G > (& since ee G. If a e G, then by (ii) (aa Y aa )
= dla 'a)a " = alea) = aa and hence aa™ = e by Theorem 1.2(1). Thus ¢ 'is a
two-sided inverse of «. Since ae = ala 'a) = (aaV)a = ea = a foreveryae G,eisa
two-sided identity. Therefore G is a group by Definition 1.1. m

Proposition 1.4. Ler G be a semigroup. Then G is a group if and only if for all
a, be G the equations ax = b and ya = b have solutions in G.

PROOF. Exercise; use Proposition 1.3. m

EXAMPLES. The integers Z, the rational numbers Q, and the real numbers R
are each infinite abelian groups under ordinary addition. Each is a monoid under
ordinary multiplication. but not a group (0 has no inverse). However, the nonzero
elements of Q and R respectively form infinite abelian groups under multiplication.
The even integers under multiplication form a semigroup that is not a monoid.

EXAMPLE. Consider the square with vertices consecutively numbered 1,2,3,4,
center at the origin of the x-y plane, and sides parallel to the axes.

4 3

Let D.;* be the following set of ‘*‘transformations™ of the square. D,;* =
{R,R2R31.T,,T,, T, 5T, 4}, where R is a counterclockwise rotation about the center of
90°, R? a counterclockwise rotation of 180°, R3 a counterclockwise rotation of 270°
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and I a rotation of 360° (= 0°); T is a reflection about the x axis, 73,z a reflection
about the diagonal through vertices 1 and 3; similarly for 7, and 7;,. Note that
each Ue D,* is a bijection of the square onto itself. Define the binary operation in
D,* to be composition of functions: for U,V & D,*, U ° Vs the transformation V fol-
lowed by the transformation U. D,* is a nonabelian group of order 8 called the group
of symmetries of the square. Notice that each symmetry (element of D,*) is com-
pletely determined by its action on the vertices.

EXAMPLE. Let S be a nonempty set and A(S) the set of all bijections S — S.
Under the operation of composition of functions, fo g, A(S) is a group, since com-
position is associative, composition of bijections is a bijection, 15 is a bijection, and
every bijection has an inverse (see (13) of Introduction, Section 3). The elements of
A(S) are called permutations and A(S) is called the group of permutations on the
set S.If S = {1,2,3, ..., n}, then A(S) is called the symmetric group on n letters and
denoted S,. Verify that |S.| = n! (Exercise 5). The groups S, play an important
role in the theory of finite groups.

Since an element ¢ of S,, is a function on the finite set.S = {1,2,...,n},itcanbe
described by listing the elements of S on a line and the image of each element under o
directly below it: (1 ¢ 3 el

h Iy I3 in
composition function 7 followed by o; that is, the function on S given by k |- o(7(k)).!

5 (1 2 3 4 (1 2 3 4
For instance, let 0 = (3 1 2 4) and 7 = (4 1 2 3>beelementsofS4.Then

3 . . {1 2 3 4\(1 2 3 4
under o1, 1= o(r(1)) = o(4) = 4, etc.; thus ‘”“(3 1 2 4)(4 1 2 3)

=1234-simi1ar1m=1234(]234=]234
431 2) ¥ 41233124/ 2413

This example also shows that S, need not be abelian.

Another source of examples is the following method of constructing new groups
from old. Let G and H be groups with identities eg, en respectively, and define the
direct product of G and H to be the group whose underlying setis G X H and whose
binary operation is given by:

). The product o7 of two elements of S, is the

(a,b)(@' b") = (ad',bb’"), where a,a’e G;bb’' ¢ H.

Observe that there are three different operations in G, H and G X H involved in this
statement. It is easy to verify that G X H is, in fact, a group that is abelian if both G
and H are; (eg,en) is the identity and (¢ 1,67) the inverse of (a,b). Clearly |G X H|
= |G||H| (Introduction, Definition 8.3). If G and H are written additively, then we
write G P H in place of G X H.

Theorem 1.5. Ler R (~) be an equivalence relation on a monoid G such that a, ~ ax
and b, ~ b, imply ab, ~ ab, for all ai,bie G. Then the set G/R of all equivalence
classes of G under R is a monoid under the binary operation defined by (a)(b) = ab,
where X denotes the equivalence class of x € G. If G is an [abelian] group, then so is G/R.

IIn many books, however, the product o7 is defined to be *“‘o followed by 7.”
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An equivalence relation on a monoid G that satisfies the hypothesis of the theo-
rem is called a congruence relation on G.

PROOF OF 1.5. If a, = @, and b, = by (a;, b; ¢ G), then a; ~ a, and b, ~ b, by
(20) of Introduction, Section 4. Then by hypothesis a6, ~ a.b, so that @b, = azb,
by (20) again. Therefore the binary operation in G/R is well defined (that is, inde-
pendent of the choice of equivalence class representatives). It is associative since
ab &) = a(be) = albc) = (ab)e = (ab)c = (a b)e. & is the identity element since
(@)e) = ae = a = ea = (¢)@a). Therefore G/R is a monoid. If G is a group, then
a e G/R clearly has inverse ¢! so that G/R is also a group. Similarly, G abelian im-
plies G/R abelian. m

EXAMPLE. Let m be a fixed integer. Congruence modulo 7 is a congruence re-
lation on the additive group Z by Introduction, Theorem 6.8. Let Z,, denote the set
of equivalence classes of Z under congruence modulo m. By Theorem 1.5 (with addi-
tive notation) Z,, is an abelian group, with addition givenbya + & = a + b(a,b ¢ Z).
The proof of Introduction, Theorem 6.8 shows that Z,, = {0,1,...,m — 1} so that
Z,, is a finite group of order m under addition. Z,, is called the (additive) group of
integers modulo m. Similarly since Z is a commutative monoid under multiplication,
and congruence modulo m is also a congruence relation with respect to multiplica-
tion (Introduction, Theorem 6.8), Z,, is a commutative monoid, with multiplication
given by (a)(b) = ab (a,b € Z). Verify that for all G, b, ¢ Z,,:

a(b+¢) = ab+ ac and (a+ b)c = ac + be (distributivity).
Furthermore if p is prime, then the nonzero elements of Z, form a multiplicative
group of order p — 1 (Exercise 7). It is customary to denote the elements of Z,, as

0,1,...,m — 1 rather than 0,1,...,m — 1. In context this ambiguous notation
will cause no difficulty and will be used whenever convenient.

EXAMPLE. The following relation on the additive group Q of rational numbers
is a congruence relation (Exercise 8):

a~bosa— bel.

By Theorem 1.5 the set of equivalence classes (denoted Q/Z) is an (infinite) abelian
group, with addition given by @ + b = a + b. Q/Z is called the group of rationals
modulo one. }

Given ai, . .., a, ¢ G (n > 3) it is intuitively plausible that there are many ways
of inserting parentheses in the expression aias- - - a, so as to yield a “meaningful”
product in G of these n elements in this order. Furthermore it is plausible that any
two such products can be proved equal by repeated use of the associative law. A
necessary prerequisite for further study of groups and rings is a precise statement
and proof of these conjectures and related ones.

Given any sequence of elements of a semigroup G, {a,a; . . .} define inductively a
meaningful product of a,, . . ., a, (in this order) as follows. If n = 1, the only mean-
ingfui product is a,. If n > 1, then a meaningful product is defined to be any product
of the form (a:- - - @, )@mi1- - -an) where m < nand (a;- - -a,.) and (@41 - - @) are
meaningful products of m and » — m elements respectively.2 Note that for each

2To show that this definition is in fact well defined requires a stronger version of the
Recursion Theorem 6.2 of the Introduction; see C. W, Burrill [56; p. 57].
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n > 3 there may be many meaningful products of ay, . . ., a.. For each n e N* we
single out a particular meaningful product by defining inductively the standard n

n
product [ a; of a,, . . - , a, as follows:
i=1

1

n n—1
H a; = ai; and forn> 1, II a; = H a,—)an.
i=1 i=1 i=1
The fact that this definition defines for each n ¢ N* a unique element of G (which is
clearly a meaningful product) is a consequence of the Recursion Theorem 6.2 of the
Introduction (Exercise 16).

Theorem 1.6. (Generalized Associative Law) 1f G is a semigroup anda,, . . . ,a, e G,
then any two meaningful products of a,, . . . , a, in this order are equal.

PROOF. We use induction to show that for every n any meaningful product

a- - - a, is equal to the standard » product H a,. This is certainly true forn = 1, 2.
i=1

If n > 2, then by definition (a:---a.) = (1" - @ )(@my1- - -a,) for some m < n.

Therefore, by induction and associativity:

(a,---a,) 2(01"'am)(amu"'an)= Ha,-) Ham+i)

=1 =1

()R - ()T )

= (nH a,-)an = InI a.

1=1 =1

In view of Theorem 1.6 we can and do write any meaningful product of
a,...,a, e G (G a semigroup) as aia:- - -a, without parentheses or ambiguity.

Corollary 1.7. (Generalized Commutative Law) If G is a commutative semigroup and
a,...,a. e G, then for any permutation 1, ...,1, of 1, 2,...n, a;a,---a, =
a5aj,. - - ai

n*

PROOF. Exercise. m

Definition 1.8. Ler G be a semigroup, a e G andn e N*. The element a™ € G is defined

n
to be the standard n product H a; witha; = a for 1 <i < n. IfG is a monoid, a° is
i=1
defined 10 be the identity element €. If G is a group, then for each n e N*, a™™ is defined
10 be (@) e G.

The remarks preceding Theorem 1.6 and Exercise 16 show that exponentiation is
well defined. By definition, then, a! = a,a? = aa, @® = (aa)a = aaa, . . .,a" = a" 'a
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= aga- - -a (n factors). Note that we may have a™ = a" with m  n (for example, in
C, —1 ==/,

ADDITIVE NOTATION. If the binary operation in G is written additively,
then we write na in place of a”. Thus Oa = 0, la = a, na = (n — 1)a + a, etc.

Theorem 1.9. If G is a group [resp. semigroup, monoid] and a e G, then for all
m, ne Z [resp. N*, N]:

(i) a™ma" = a™*" (additive notation: ma + na = (m -+ n)a);
(i) (@™)" = a™® (additive notation: n(ma) = mna).

SKETCH OF PROOF. Verify that (a®)™! = ()" for all ne N and that
am” = (aV) for all neZ. (1) is true for m > 0 and » > 0 since the product of a
standard » product and a standard m product is a meaningful product equal to the
standard (m 4 ») product by Theorem 1.6. For m < 0, and » < O replace a, m, n by
a!, —m, —n and use the preceding argument. The case m = O or n = 0is trivial and
the cases m > 0, n < 0 and m < 0, n > 0 are handled by induction on » and » re-
spectively. (ii) is trivial if m = 0. The case when m > 0 and »n ¢ Z is proved by induc-
tion on m. Use this result to prove thecase m < Oand neZ. B

EXERCISES

1. Give examples other than those in the text of semigroups and monoids that are
not groups.

2. Let G be a group (written additively), S a nonempty set, and M(S,G) the set of
all functions f:S — G. Define addition in M(S,G) as follows: (f+ g):S— G
is given by s} f(s) + g(s) € G. Prove that M(S,G) is a group, which is abelian
if G is.

3. Is it true that a semigroup which has a /lef? identity element and in which every

element has a righr inverse (see Proposition 1.3) is a group?

Write out a multiplication table for the group D,*.

Prove that the symmetric group on n letters, S,,, has order n!.

Write out an addition table for Z, ) Z,. Z- @D Z, is called the Klein four group.

= @ e e

If p is prime, then the nonzero elements of Z, form a group of order p — 1 under
multiplication. [Hinr: a # 0 = (a,p) = 1; use Introduction, Theorem 6.5.]
Show that this statement is false if p is not prime.

8. (a) The relation given by a ~ b <> a — be Z is a congruence relation on the
additive group Q [see Theorem 1.5].
(b) The set Q/Z of equivalence classes is an infinite abelian group.

9. Let p be a fixed prime. Let R, be the set of all those rational numbers whose de-
nominator is relatively prime to p. Let R? be the set of rationals whose de-
nominator is a power of p (p?, i > 0). Prove that both R, and Rr are abelian
groups under ordinary addition of rationals.
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10. Let p be a prime and let Z(p™) be the following subset of the group Q/Z (see
pe. 27):

Z(p™) = {a/beQfZ|abeZ and b = p*for somei> 0}.
Show that Z(p™) is an infinite group under the addition operation of Q/Z.

11. The following conditions on a group G are equivalent: (i) G is abelian; (ii) (ab)?
= a?b? for all a,b e G; (iii) (ab)™! = a7 1b7! for all a,b e G; (iv) (ab)* = a"b" for
all ne Z and all a,b £ G; (v) (ab)r = a*b for three consecutive integers n and
all a,b ¢ G. Show that (v) = (i) is false if ““three” is replaced by “two.”

12. If G is a group, a,b e G and bab™ = a’ for some r ¢ N, then biab~7 = a' for all
jeN.
13. If a% = e for all elements a of a group G, then G is abelian.

14. If G is a finite group of even order, then G contains an element a e such that
a® = e.

15. Let G be a nonempty finite set with an associative binary operation such that
for all a,b,ce G ab = ac=b = ¢ and ba = ca=> b = ¢. Then G is a group.
Show that this conclusion may be false if G is infinite.

16. Let ay,a, . . . be a sequence of elements in a semigroup G. Then there exists a
unique function ¥ : N* — G such that Y(1) = a1, Y(2) = aaz, Y(3) = (mas)az
and for n > 1, Y(n + 1) = (Yn))a.,.. Note that (») is precisely the standard

n
n product H a;. |Hint: Applying the Recursion Theorem 6.2 of the Introduc-
i=1

tion with ¢ = a1, S = G and £, : G — G given by x| xa,,. yields a function
¢ :N— G. Lety = ¢f, where 6 : N* - Nis given by k|- k — 1]

2. HOMOMORPHISMS AND SUBGROUPS

Essential to the study of any class of algebraic objects are the functions that pre-
serve the given algebraic structure in the following sense.

Definition 2.1. Ler G and H be semigroups. A function f : G — H is a homomorphism
provided

fab) = f(a)f(b) forall abeG.

Iff is injective as a map of sets, f is said to be a monomorphism. Iff is surjective, f is
called an epimorphism. I fT is bijective, f is called an isomorphism. In this case G and H
are said to be isomorphic (written G = H). A homomorphism { : G — G is called an
endomorphism of G and an isomorphism f : G — G is called an automorphism of G.

If f: G— Hand g : H— K are homomorphisms of semigroups, it is easy to see
that g f: G — K is also a homomorphism. Likewise the composition of monomor-
phisms is a monomorphism; similarly for epimorphisms, isomorphisms and auto-
morphisms. If G and H are groups with identities ¢z and ey respectively and




2. HOMOMORPHISMS AND SUBGROUPS 31

f: G — Hisahomomorphism, then f(eg) = ex; however, this is not true for mon-
oids (Exercise 1). Furthermore f(a™) = f(a)! for all a ¢ G (Exercise 1).

EXAMPLE. The map f: Z — Z,, gtven by x |- x (that is, each integer is mapped
onto its equivalence class in Z,,) is an epimorphism of additive groups. fis called the
canonical epimorphism of Z onto Z,,. Similarly, the map g : Q — Q/Z given by
r |- 7 is also an epimorphism of additive groups.

EXAMPLE. If 4 is an abelian group, then the map given by a |- a™! is an auto-
morphism of A. The map given by a|— a? is an endomorphism of A.

EXAMPLE. Let 1 < m, ke N*. The map g : Z,, — Z,.» given by x}—»la is a
monomorphism.

EXAMPLE. Given groups G and H, there are four homomorphisms:
Ge2 G X H<s H, given by u(g) = (8,0); ulh) = (e,h); m(g,h) = g; mdg:h) = h.

m

t; 1s a monomorphism and 7; is an epimorphism (i,j = 1,2).

Definition 2.2. Ler f : G — H be a homomorphism of groups. The kernel of f (de-
noted Ker f) is {ae G | f(a) = ec H}. IfA is a subset of G, then f(A) = {be H|b = f(a)
Jor some a ¢ A} is the image of A. f(G) is called the image of f and denored Im f. If B is
a subset of H, f(B) = {a e G| f(a) € B} is the inverse image of B.

Theorem 2.3. Ler f : G — H be a homomorphism of groups. Then

(1) fis a monomorphism if and only if Ker f = {e};
(i) fis an isomorphism if and only if there is a homomorphism 7 : H — G such
that ff! = 1y and I1f = 1¢.

PROOF. (i) If f is a monomorphism and « ¢ Ker f, then f(a) = ex = f(e),
whencea = e and Ker f= {e}.If Ker f= {e} and f(a) = f(b), theney = f(a) f(B)?
= fl@) f(b™") = f(ab™")so that ab™! e Ker f. Therefore, ab™ = e (thatis,a = b) and
fis a monomorphism.

(i) If fis an isomorphism, then by (13) of Introduction, Section 3 there is a map
of sets /' : H— G such that f7'f = 1 and ff! = 1y. f! is easily seen to be a
homomorphism. The converse is an immediate consequence of (13) of Introduction,
Section 3 and Definition 2.1. m

Let G be a semigroup and H a nonempty subset of G. If for every a,b ¢ H we have
ab ¢ H, we say that H is closed under the product in G. This amounts to saying that
the binary operation on G, when restricted to H, is in fact a binary operation on H.

Definition 2.4. Ler G be a group and H a nonempty subset that is closed under the
product in G. If H is itself a group under the product in G, then H is said to be a sub-
group of G. This is denoted by H < G.
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Two examples of subgroups of a group G are G itself and the trivial subgroup {e)
consisting only of the identity element. A subgroup H such that H = G, H 5 (e) is
called a proper subgroup.

EXAMPLE. The set of all multiples of some fixed integer » is a subgroup of Z,
which is isomorphic to Z (Exercise 7).

EXAMPLE. In §,, the group of all permutations of {1,2, ..., n}, the set of all
permutations that leave » fixed forms a subgroup isomorphic to S,_, (Exercise 8).

EXAMPLE. InZ; = {0,1,2,3,4,5}, both {0,3} and {0,2,4} are subgroups under
addition. If p is prime, (Z,,+) has no proper subgroups.

EXAMPLE. If f: G — H is a homomorphism of groups, then Ker fis a sub-
group of G. If A4 is a subgroup of G, f(A) is a subgroup of H; in particular Im fis a
subgroup of H. If B is a subgroup of H, f~Y(B) is a subgroup of G (Exercise 9).

EXAMPLE. If G is a group, then the set Aut G of all automorphisms of G is a
group, with composition of functions as binary operation (Exercise 15).

By Theorem 1.2 the identity element of any subgroup H is the identity element of
G and the inverse of a ¢ H is the inverse a! of a in G.

Theorem 2.5. Let H be a nonempty subset of a group G. Then H is a subgroup of G
if and only ifab™ ¢ H for all a,b ¢ H.

PROOF. (<) There exists a ¢ Hand hence e = aa'¢ H. Thus forany b e H, b?
=ebte H If a,be H, then b ¢ H and hence ab = a(b™) ' ¢ H. The product in H
is associative since G is a group. Therefore H is a (sub)group. The converse is
trivial. m

Corollary 2.6. If G is agroup and {H; | i e 1} is a nonempty famtly of subgroups, then

() H; is a subgroup of G.
iel

PROOF. Exercise. m

Definition 2.7. Let G be a group and X a subset of G. Let {H; | 1 e 1} be the family of

all subgroups of G which contain X. Then () H; is called the subgroup of G generated
el
by the set X and denoted (X).

The elements of X are the generators of the subgroup (X), which may also be
generated by other subsets (that is, we may have (X) = (¥) with X = Y). If
X ={a,...,a,},wewrite{a,...,a,) inplace of (X).If G = (@, . . ., an), (a: e G),
G is said to be finitely generated. If a ¢ G, the subgroup (a) is called the cyclic (sub)-
group generated by a.
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Theorem 2.8. If G is agroup and X is anonempty subset of G, then the subgroup (X)
generated by X consists of all finite products a,™az":- - -a"t(a; e X; n; € Z). In particular
for every ae G, (a) = {a" | ne Z}.

SKETCH OF PROOF. Show that the set H of all such products is a subgroup
of G that contains X and is contained in every subgroup containing X. Therefore
H<{(X)<H mnm

EXAMPLES. The additive group Z is an infinite cyclic group with generator 1,
since by Definition 1.8 (additive notation), m1 = m for all me Z. Of course rhe
“powers” of the generating element need not all be distincr as they are in Z. The
trivial subgroup (e) of any group is cyclic; the multiplicative subgroup (i) in C is
cyclic of order 4 and for each m the additive group Z,, is cyclic of order m with
generator 1 e Z,,. In Section 3 we shall prove that every cyclic subgroup is isomorphic
either to Z or Z,, for some m. Also, see Exercise 12.

If { H: | i e I} is a family of subgroups of a group G, then | J H; is not a subgroup
el
of G in general. The subgroup (| J H;) generated by the set |J H; is called the sub-
el el
group generated by the groups {H;|icI}. If H and K are subgroups, the subgroup
(H U K) generated by H and K is called the join of H and K and is denoted H V K

(additive notation: H + K).

EXERCISES

1. If f: G — His a homomorphism of groups, then f(eg) = ey and f(a™) = f(a)!
for all @ € G. Show by example that the first conclusion may be false if G, H are
monoids that are not groups.

2. A group G is abelian if and only if the map G — G given by x |- x1is an auto-
morphism.

3. Let Qs be the group (under ordinary matrix multiplication) generated by the com-

plex matrices 4 = ( (1) (1)) and B = (0 6), where i2 = —1. Show that Qg
e 1l

is a nonabelian group of order 8. Qs is called the quaternion group. [Hint:

Observe that BA = A4°B, whence every element of Qs is of the form A°Bi. Note

also that 44 = B* = | where I = ((1) (1)) is the identity element of Qs.]

4. Let H be the group (under matrix multiplication) of real matrices generated by
0 i .
C= (_ 1 (1)) and D = ((1) (1)) Show that H is a nonabelian group of order 8
which is nor isomorphic to the quaternion group of Exercise 3, but is isomorphic
to the group D,*.

5. Let .S be a nonempty subset of a group G and define a relation on G by a ~ b if
and only if ab~* e S. Show that ~ is an equivalence relation if and only if S is a
subgroup of G.
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10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

A nonempty finite subset of a group is a subgroup if and only if it is closed under
the product in G.

. If nis a fixed integer, then {kn | k ¢ Z} C Zis an additive subgroup of Z, which

is isomorphic to Z.
The set {0 ¢S, | a(n) = n} is a subgroup of .S, which is isomorphic to S, _i-

Let f: G — H be a homomorphism of groups, 4 a subgroup of G, and B a sub-
group of H.

(a) Ker fand f~Y(B) are subgroups of G.

(b) f(A) is a subgroup of H.

List all subgroups of Z, P Z,. Is Z; @ Z. isomorphic to Z,?

If G is a group, then C = {ae G| ax = xafor all x ¢ G} is an abelian subgroup
of G. C is called the center of G.

The group Ds* is not cyclic, but can be generated by two elements. The same is
true of S, (nontrivial). What is the minimal number of generators of the additive

group Z P Z?

If G = {a) is a cyclic group and H is any group, then every homomorphism
f: G— His completely determined by the element f(a) € H.

The following cyclic subgroups are all isomorphic: the multiplicative group (i) in

C, the additive group Z, and the subgroup <(.’]Z g Z ?)> of S..
Let G be a group and Aut G the set of all automorphisms of G.

(a) Aut G is a group with composition of functions as binary operation. [ Hint :
1¢ ¢ Aut G is an identity; inverses exist by Theorem 2.3.]

(b) Aut ZgZQ and Aut Zﬁ =~ Zz; Aut Zs = 22 @ Zz; Aut Zp = Zp_l
(p prime).

(c) What is Aut Z,, for arbitrary n ¢ N*?

For each prime p the additive subgroup Z(p®) of Q/Z (Exercise 1.10) is generated
by the set {1/p™ | n e N*}.

Let G be an abelian group and let H,K be subgroups of G. Show that the join
H \/ Kis the set {ab|ae H, be K}. Extend this result to any finite number of
subgroups of G.

(a) Let G be a group and { H; | i e I} a family of subgroups. State and prove a
condition that will imply that {J H; is a subgroup, that is, that { ) H; = ({J H:).

iel el el
(b) Give an example of a group G and a family of subgroups { H: | i e I} such
that U H; (U H;).

iel iel
(a) The set of all subgroups of a group G, partially ordered by set theoretic in-
clusion, forms a complete lattice (Introduction, Exercises 7.1 and 7.2) in which
the g.l.b. of {H;|iel} is () H; and the Lu.b. is (U H;).
tel iel

(b) Exhibit the lattice of subgroups of the groups Ss, Ds*, Zs, Zo, and Zs.
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3. CYCLIC GROUPS

The structure of cyclic groups is relatively simple. We shall completely char-
acterize all cyclic groups (up to isomorphism),

Theorem 3.1. Every subgroup H o.fthe additive group Z. is cyclic. Either H = (0) or
H = (m), where m is the least positive integer in H. If H 5 {0), then H is infinite.

PROOF. Either H = (0) or H contains a least positive integer m. Clearly
{m) = {km| keZ} C H. Conversely if h ¢ H, then & = gm + r with g, re Z and
0 < r < m (division algorithm). Since r = A — gm ¢ H the minimality of » implies
r =0 and & = gm. Hence H C {m). If H 5 (0), it is clear that H = {(m) is in-
finite. W

Theorem 3.2. Every infinite cyclic group is isomorphic to the additive group Z. and
every finite cyclic group of order 1= is isomorphic 1o the additive group Z .

PROOF. If G = (a) is a cyclic group then the map « : Z — G given by k|- d*
is an epimorphism by Theorems 1.9 and 2.8. If Ker a = 0, then Z =2 G by Theorem
2.3 (1). Otherwise Ker « is a nontrivial subgroup of Z (Exercise 2.9) and hence
Ker a = {m), where m is the least positive integer such that a™ = ¢ (Theorem 3.1).
For allr,se Z,

ag=a & a*=e < r—seKera= (m)

= m|(r—s) & r=75inZ,,

(where k is the congruence class of k ¢ Z). Therefore the map 8 : Z,, — G given by
k| a* is a well-defined epimorphism. Since

Bk)=e¢e < a=e=a" < k=0inZ,,

£ is a monomorphism (Theorem 2.3(i)), and hence an isomorphismZ,, =~ G. m

Definition 3.3. Ler G be a group anda € G. The order of a is the order of the cyclic
subgroup {a) and is denoted |a|.

Theorem 3.4. Ler G be a group and a ¢ G. If a has infinite order, then

(i) ak = e ifand only ifk = 0;
(1) the elements a* (k € Z) are all distinct.

Ifa has finite order m > 0, then

(111) m is the least positive integer such that a™ = e;
(iv) ak = e ifand only ifm | k;
(v) a* = a®ifand only ifr = s (mod m);
(vi) {a) consists of the distinct elements a,a%, ..., a™ 1a™ = ¢;
(vii) for each k such that k | m, [a¥| = m/k.
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SKETCH OF PROOF. (i)—(vi) are immediate consequences of the proof of
Theorem 3.2. (vii) (@¥)™* = am = e and (a*)” = e for all 0 < r < m/k since other-
wise @ = e with kr < k(m/k) = m contradicting (iii). Therefore, |a*l = m/k
by (iii). =

Theorem 3.5. Every homomorphic image and every subgroup of a cyclic group G is
cyclic. In particular, if H is a nontrivial subgroup of G = (a) and m is the least positive
integer such that a™ ¢ H, then H = (a™).

SKETCH OF PROOF. If f: G— K is a homomorphism of groups, then
Im f = { f(a)). To prove the second statement simply translate the proof of Theorem
3.1 into multiplicative notation (that is, replace every 7 ¢ Z by a' throughout). This
proof works even if G is finite. 1

Recall that two distinct elements in a group may generate the same cyclic sub-
group.

Theorem 3.6. Let G = (a) be a cyclic group. If G is infinite, then a and a™ are the
only generators of G. If G is finite of order m, then a¥ is a generator of G if and only
if (km) = 1.

SKETCH OF PROOF. It suffices to assume either that G = Z, in which case
the conclusion is easy to prove, or that G = Z,,. If (k,m) = 1, there are ¢,d € Z such
that ck + dm = 1; use this fact to show that k generates Z,,. If (k,m) = r > 1, show
that forn = m/r < m,nk = nk = 0 and hence k cannot generate Z,.. W

A naive hope might be that the techniques used above could be extended to
groups with two generators and eventually to all finitely generated groups, and thus
provide a description of the structure of such groups. Unfortunately, however, even
groups with only two generators may have a very complex structure. (They need not
be abelian for one thing; see Exercises 2.3 and 2.4.) Eventually we shall be able to
characterize all finitely generated abelian groups, but even this will require a great
deal more machinery.

EXERCISES

1. Let a,b be elements of group G. Show that |a| = |a7Y|; |ab| = |ba], and
la] = |cac™!| for all c e G.

2. Let G be an abelian group containing elements a and b of orders m and n re-
spectively. Show that G contains an element whose order is the least common
multiple of m and n. [Hint: first try the case when (m,n) = 1.]

3. Let G be an abelian group of order pg, with (p,q) = 1. Assume there exist a,b e G
such that |a| = p, |b] = ¢ and show that G is cyclic.

4. If f: G — Hisahomomorphism, a ¢ G, and f(a) has finite order in H, then |a| is
infinite or | f(a)| divides |al.
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5. Let G be the multiplicative group of all nonsingular 2 X 2 matrices with rational

0 —1 0 1

1 O) has order 4 and b = (_1 _1) has order 3,
but ab has infinite order. Conversely, show that the additive group Z, G Z con-
tains nonzero elements a,b of infinite order such that a + b has finite order.

entries. Show that a = (

6. If G is a cyclic group of order » and k | n, then G has exactly one subgroup of
order k.

7. Let p be prime and H a subgroup of Z(p™) (Exercise 1.10).

(a) Every element of Z(p™) has finite order p* for some n > 0.

(b) If at least one element of H has order p* and no element of H has order
greater than p*, then H is the cyclic subgroup generated by 17}7", whence H==Z .

(c) If there is no upper bound on the orders of elements of H, then
H = Z(p®); [see Exercise 2.16].

(d) The only proper subgroups of Z(p™) are the finite cyclic groups
C. = (1/p™ (n = 1,2, .. ). Furthermore, {0) = C; < C; < C; < C; < -

(e) Let x1,xs5 ... be elements of an abelian group G such that |[x;| = p,
PX2 = X1, PX3 = Xz, ...,PXny1 = Xn,.... The subgroup generated by the
x; (i > 1) is isomorphic to Z(p™). [ Hint : Verify that the map induced by x;}—- 1/p*
is a well-defined isomorphism.]

8. A group that has only a finite number of subgroups must be finite.

9. If G is an abelian group, then the set 7 of all elements of G with finite order is a
subgroup of G. [Compare Exercise 5.]

10. An infinite group is cyclic if and only if it is isomorphic to each of its proper subgroups.

4. COSETS AND COUNTING

In this section we obtain the first significant theorems relating the structure of a
finite group G with the number theoretic properties of its order |G|. We begin by ex-
tending the concept of congruence modulo m in the group Z. By definition a = b
(mod m) if and only if m | a — b, that is, if and only if a — b is an element of the
subgroup {(m) = {mk | keZ}. More generally (and in multiplicative notation)
we have

Definition 4.1. Ler H be a subgroup of a group G and a,b € G. a is right congruent 7o
b modulo H, denoted a =, b (mod H) ifab=' ¢ H. a is left congruent r0 b modulo H,
denoted a =, b (mod H), ifa—'be H.

If G is abelian, then right and left congruence modulo H coincide (since ab™'e H
< (ab™ e H and (ab™)! = ba™! = a'b). There also exist nonabelian groups G
and subgroups H such that right and left congruence coincide (Section 5), but this is
not true in general.
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Theorem 4.2. Ler H be a subgroup of a group G.

(1) Right [resp. left] congruence modulo H is an equivalence relation on G.
(1) The equivalence class of a ¢ G under right [resp. left] congruence modulo H is
the set Ha = {ha | h e H} [resp. aH = {ah | he H}].
(iii) |[Ha| = |H| = |aH] for all a € G.

The set Ha is called a right coset of //in G and aH is called a left coset of Hin G.
In general it is nor the case that aright coset is also a left coset (Exercise 2).

PROOF OF 4.2. We write a = bfor a =, b (mod H) and prove the theorem for
right congruence and right cosets. Analogous arguments apply to left congruence.

(i) Let a,b,c e G. Then a = a since aa™! = e ¢ H; hence = is reflexive. = is
clearly symmetric (@ =b=ab'c H=(ab")'e H= ba'e H= b = a). Finally
a=b and b= c imply ab'e H and bc'e H. Thus ac™ = (ab™)(bc™) ¢ H and
a = c; hence = is transitive. Therefore, right congruence modulo H is an
equivalence relation.

(i) The equivalence class of a e G under right congruence is {xe G| x = a}
={xeG|xaleH = {xeG|xa'=heH| = {xe G| x=ha,he H}
= {ha| he H} = Ha.

(iii) The map Ha — H given by hal— #h is easily seen to be a bijection. m

Corvollary 4.3. Ler H be a subgroup of a group G.

(1) G is the union of the right [resp. left] cosets of H in G.
(1) Two right [resp. left] cosets of H in G are either disjoint or equal.
(i) For all abe G, Ha = Hb<> ab'e H and aH = bH < a'be H.
(iv) If R is the set of distinct right cosets of H in G and £ is the set of distinct left
cosets of H in G, then |R] = |L|.

PROOQOF. (i)(iii) are immediate consequences of the theorem and statements
(19)-(21) of Introduction, Section 4. (iv) The map ® — £ given by Hal>a 'H is a
bijection since Ha = Hh= ab'e He ()Y b le He»a'H =b'H. B

ADDITIVE NOTATION. If H is a subgroup of an additive group, then right
congruence modulo H is defined by: a =, b (mod H) < a — b e H. The equivalence
class of a e G is the right coset H + a = {h 4+ a | h ¢ H}; similarly for left congru-
ence and left cosets.

Definition 4.4. Ler H be a subgroup of a group G. The index of H in G, denoted
[G : H], is the cardinal number of the set ofdistinct right [resp. left] cosets of H in G.

In view of Corollary 4.3 (iv), |G : H] does not depend on whether right or left
cosets are used in the definition. Our principal interest is in the case when [G : H] is
finite, which can occur even when G and H are infinite groups (for example,
[Z. : (m)] = m by Introduction, Theorem 6.8(i)). Note that if H = {e), then Ha = {a]}
for every ae G and (G : H] = |G].
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A complete set of right coset representatives of a subgroup H ina group G is a
set {a;} consisting of precisely one element from each right coset of Hin G. Clearly
the set {a;} has cardinality [G : H]. Note that such a set contains exactly one element
of H since H = He is itself a right coset. Analogous statements apply to left cosets.

Theorem 4.5. If K ,H,G are groups withK < H < G, then |G : K] = [G : H][H : K].
If any two of these indices are finite, then so is the third.

PROOF. By Corollary 4.3 G = |J Ha; with a; ¢ G, |I| = [G : H] and the cosets
tel
Ha; mutually disjoint (that is, Ha;, = Ha; <> i = j). Similarly H = | J Kb; with b; ¢ H,
jeJ
|[J| = [H : K] and the cosets Kb; are mutually disjoint. Therefore G = |J Ha; =
iel

U WMJ Kbj)a; = U Kbja;. It suffices to show that the cosets Kb;a; are mutually
iel jeJ G)el > J
disjoint. For then by Corollary 4.3. we must have [G : K] = [I X J|, whence [G : K]
=|IXJ|=|l|lJ| =G :H|H:K]. If Kbja; = Kb,a;, then b;a; = kb,a, (k ¢ K).
Since b;,b.,k ¢ H we have Ha; = Hb;a; = Hkb,a; = Ha,; hence i = t and b; = kb,.
Thus Kb; = Kkb, = Kb, andj = r. Therefore, the cosets Kb;a; are mutually disjoint.
The last statement of the theorem is obvious. m

Corollary 4.6. (Lagrange). IfH is a subgroup of a group G, then |G| = [G : H][H|.
In particular if G is finite, the order |a| of a € G divides |G]|.

PROOF. Apply the theorem with K = {(e) for the first statement. The second is a
special case of the first with # = {(a). ®

A number of proofs in the theory of (finite) groups rely on various ““counting’
techniques, some of which we now introduce. If G is a group and H,K are subsets of
G, we denote by HK the set {ab | ae H, b ¢ K}; aright or left coset of a subgroup is a
special case. If H,K are subgroups, HK may not be a subgroup (Exercise 7).

Theorem 4.7. Letr H and K be finite subgroups of a group G. Then |HK| =
IH|IK|/[H N K]|.

SKETCH OF PROOF. C= H(1 K is a subgroup of K of index n =
|K|/|H N K|and K is the disjoint union of right cosets Ck; U Ck. U --- U Ck, for
some k; e K. Since HC = H, this implies that HK is the disjoint union Hk, U Hk, U
--- U Hk,. Therefore, |HK| = |H|-n = |H|{|IK|/|[H N K|. =

Proposition 4.8. If H and K are subgroups of a group G, then [H:H N K] <
[G :K]. If |G : K] is finite, then [H:H N K] = [G :K] if and only if G = KH.

SKETCH OF PROOF. Let A4 be the set of all right cosets of H 1 Kin Hand B
the set of all right cosets of K in G. The map ¢ : 4 — B given by (H (| K)h|- Kh
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(he H) is well defined since (H N K)#' = (H N K)h implies i le HN KC K
and hence K#’ = Kh. Show that ¢ is injective. Then [H : H N K] = |A4]| < |B]
= [G : K]. If [G : K] is finite, then show that [H : H (1 K] = [G : K] if and only if ¢
is surjective and that ¢ is surjective if and only if G = KH. Note that for 4 H,
keK, Kkh = Khsince (kh)hi ' = ke K. m

Proposition 4.9. Ler H and K be subgroups of finite index of a group G. Then
[G :H N K]isfiniteand |G : H N K] < [G : H|[G : K]. Furthermore,[G : H N K]
= [G : H][G : K] ifand only if G = HK.

PROOF. Exercise; use Theorem 4.5 and Proposition 4.8. m

EXERCISES

1. Let G be a group and { H;| i< 1} a family of subgroups. Then for any a¢ G,
(N Hya = () Ha.

21 3
Then no left coset of H (except H itself) is also a right coset. There exists a € S;
such that ai N Ha = {aj}.

(b) If K is the cyclic subgroup (of order 3) of .S; generated by (; ; 3), then

2. (a) Let H be the cyclic subgroup (of order 2) of S: generated by (l 2 3).

every left coset of K is also a right coset of K.

3. The following conditions on a finite group G are equivalent.
(i) |G| is prime.
(ii) G # (e) and G has no proper subgroups.
(iii)) G =~ Z, for some prime p.

4. (Euler-Fermat) Let a be an integer and p a prime such that p¥a. Then a?7! =
(mod p). [Hint: Consider a ¢ Z, and the multiplicative group of nonzero elements
of Z,; see Exercise 1.7.] It follows that a? = a (mod p) for any integer a.

5. Prove that there are only two distinct groups of order 4 (up to isomorphism),
namely Z, and Z; (P Z.. [Hint: By Lagrange’s Theorem 4.6 a group of order 4
that is not cyclic must consist of an identity and three elements of order 2.]

6. Let H,K be subgroups of 2 group G. Then HK is a subgroup of G if and only if
HK = KH.

7. Let G be a group of order p*m, with p prime and (p,m,) = 1. Let H be a subgroup
of order p* and K a subgroup of order p¢, with 0 < d < k and K & H. Show
that HK is not a subgroup of G.

8. If H and K are subgroups of finite index of a group G such that [G : H] and
[G : K] are relatively prime, then G = HK.

9. If H,K and N are subgroups of a group G such that H < N, then HK N N
= H(K N N).
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10. Let H,K,N be subgroups of a group G such that H < K, HN N =K (1 N,
and HN = KN. Show that H = K.

11. Let G be a group of order 2x; then G contains an element of order 2. If » is odd
and G abelian, there is only one element of order 2.

12. If H and K are subgroups of a group G, then [HV K:H] > [K:H N K].

13. If p > ¢ are primes, a group of order pg has at most one subgroup of order p.
[Hint : Suppose H,K are distinct subgroups of order p. Show H N K = {e); use
Exercise 12 to get a contradiction.]

14. Let G be a group and a,b e G such that (i) [a| = 4 = |b|; (ii) a% = b?; (iii) ba = a®b
= a'b; (iv) a = b; (V) G = {(a,b). Show that |G| = 8 and G == Qs (See
Exercise 2.3; observe that the generators 4,B of Qs also satisfy (i)~(v).)

5. NORMALITY, QUOTIENT GROUPS, AND HOMOMORPHISMS

We shall study those subgroups N of a group G such that left and right con-
gruence modulo N coincide. Such subgroups play an important role in determining
both the structure of a group G and the nature of homomorphisms with domain G.

Theorem 5.1. If N is a subgroup of a group G, then the following conditions are
equivalent.

(1) Left and right congruence modulo N coincide (that is, define the same equiva-
lence relation on G);
(i1) every left coset of N in G is a right coset of N in G;
(i) aN = Na for all a e G;
(iv) for all ae G, aNa™ C N, where aNa™ = {ana'| ne N};
(v) for all ae G, aNa™ = N.

PROOF. (i) < (iii) Two equivalence relations R and S are identical if and only if
the equivalence class of each element under R is equal to its equivalence class under
S. In this case the equivalence classes are the left and right cosets respectively of M.
(1) = (iii) If aN = Nb for some b ¢ G, then ae Nb [N Na, which implies Nb = Na
since two right cosets are either disjoint or equal. (iii) = (iv) is trivial. (iv) = (v)
We have aNa™ C N. Since (iv) also holds for a' ¢ G, a!Na C N. Therefore for
every ne N, n = a(@*na)a* e aNa* and N C aNa™. (v) = (ii) is immediate. B

Definition 5.2. A4 subgroup N of a group G which satisfies the equivalent conditions
of Theorem 5.1 is said to be normal ir G (or a normal subgroup of G); we write N <| G
if N is normal in G.

In view of Theorem 5.1 we may omit the subscripts *“/** and “I” when denoting
congruence modulo a normal subgroup.
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EXAMPLES. Every subgroup of an abelian group is trivially normal. The sub-
1 2 3
2 3 1
subgroup N of index 2 in a group G is normal (Exercise 1). The intersection of any
family of normal subgroups is a normal subgroup (Exercise 2).

group H generated by ( ) in S; is normal (Exercise 4.2). More generally any

If G is a group with subgroups N and M such that N << M and M < G, it does
not follow that N <{ G (Exercise 10). However, it is easy to see that if N is normal in
G, then N is normal in every subgroup of G containing N,

Recall that the join H \V K of two subgroups is the subgroup (H U K) generated
by H and K.

Theorem 5.3. Ler K and N be subgroups of a group G with N normal in G. Then

(i) N N K is a normal subgroup of K;
(ii)) N is a normal subgroup of N V K;
(i) NK = N V K = KN;
(iv) if K isnormal in G and K 1 N = (e), then nk = kn for allk e K andne N.

PROOF. () If ne NN Kandace K, thenana'e Nsince N <l Gand ana'e K
since K< G. Thus a(N N K)a ' C NN Kand N N K < K. (ii) is trivial since
N < N V K. (iii) Clearly NK C N V K. Anelement x of N VV Kis a product of the
form mknoks- - -nk,, with n; e N, k; e K (Theorem 2.8). Since N < G, n:k; = k;n/,
n ¢ N and therefore x can be written in the form n(k;---k,), n e N. Thus
N V K C NK. Similarly KN = NV K. (iv) Let ke K and ne N. Then nkn e K
since K <1 G and kn~% e N since N < G. Hence (nkn k™ = ntknk e N (N
K = {(e), which implies kn = nk. =

Theorem 5.4. If N is a normal subgroup of a group G and G/N is the set of all (left)
cosets of N in G, then G/N is a group of order |G : N] under the binary operation given
by (aN)}(bN) = abN.

PROOF. Since the coset aNN [resp. bN, abN] is simply the equivalence class of
ae G[resp. b e G, ab ¢ G] under the equivalence relation of congruence modulo ¥, it
suffices by Theorem 1.5 to show that congruence modulo N is a congruence relation,
that is, that a; = a (mod N) and b, = b (mod N) imply a:b, = ab (mod N). By
assumption aia? = me N and bb! = n,e N. Hence (aib)(ab)™ = abb™'a™
= (aimz)a™!. But since N is normal, ey N = Na, which implies that a\n, = nsa, for
some nz e N. Consequently (aibi)(ab)™! = (wmn)a™! = myaa™! = ngm e N, whence
ahy = ab(mod N). m

If N is a normal subgroup of a group G, then the group G/ N, as in Theorem 5.4,
is called the quotient group or factor group of G by N. If G is written additively, then
the group operation in G/N is given by (a+ N)+ (b+ N) = (a+ b) + N.

REMARK. If m > 1 is a (fixed) integer and k ¢ Z, then the remarks preceding
Definition 4.1 show that the equivalence class of k under congruence modulo m is
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precisely the coset of {m) in Z which contains k; that is, as sets, Z,, = Z/{m). Theo-
rems 1.5 and 5.4 show that the group operations coincide, whence Z,, = Z/{(m)

as groups.
We now explore the relationships between normal subgroups, quotient groups,

and homomorphisms.

Theorem 5.5. If f: G — H is a homomorphism of groups, then the kernel of f is a
normal subgroup of G. Conversely, if N is a normal subgroup of G, then the map
m : G — G/N given by w(a) = aN is an epimorphism with kernel N.

PROOF. If x ¢ Ker fand a ¢ G, then
flaxa™) = f(a) f(x) f(@™) = f(@)ef(a)™ = e

and axa e Ker f. Therefore a(Ker f)a C Ker f and Ker f<{ G. The map
m:G— G/N is clearly surjective and since n(ab) = abN = aNbN = n(a)n(b),
m is an epimorphism. Ker 7 = {ae G| m(a) = eN = N} = {ae G| aN = N}
={aeG|lae N} =N. m

The map = : G — G/N is called the canonical epimorphism or projection. Here-
after unless stated otherwise G — G/N (N < G) always denotes the canonical

epimorphism.

Theorem 5.6. Iff : G — H is a homomorphism ofgroups and N is a normal subgroup
of G contained in the kernel of f, then there is a uniqgue homomorphism f : G/N — H
such that f(aN) = f(a) forallae G. Im f = Im f and Ker T = (Ker f)/N. T is an iso-
morphism if and only iff is an epimorphism and N = Ker f.

The essential part of the conclusion may be rephrased: there exists a unique
homomorphism f: G/N — H such that the diagram:

f
G - H
l /
G/N

is commutative. Corollary 5.8 below may also be stated in terms of commutative
diagrams.

PROOF OF 5.6. If beaN, then b = an, ne N, and f(b) = f(an) = f(a) f(n)
= f(a)e = f(a), since N < Ker f. Therefore, f has the same effect on every element
of the coset aN and the map f: G/N — H given by f(aN) = f(a) is a well-defined
function. Since f(aNbN) = f(abN) = f(ab) = f(a) f(b) = f(aN)f(bN), fis a

homomorphism. Ciearly Im f= Im fand
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aNeKerf & f(a)=e < acKerf,

whence Ker f= {aN|acKer f} = (Ker f)/N. fis unique since it is completely
determined by f. Finally it is clear that fis an epimorphism if and only if fis. By
Theorem 2.3 fis a monomorphism if and only if Ker f = (Ker f)/ N is the trivial sub-
group of G/N. which occurs if and only if Ker f= N. =B

Corollary 5.7. (First Isomorphism Theorem) If f: G — H is a homomorphism of
groups, then f induces an isomorphism G/Ker f = Im {.

PROOF. f: G — Im fis an epimorphism. Apply Theorem 5.6 with N = Ker f. m

Corollary 5.8. If f : G — H is a homonorphism of groups, N < G, M < H, and
f(N) < M, then f induces a homomorphism T : G/N — H/M, given by aN |- f(a)M.

T is an isomorphism ifand only ifIm f V M = H and £ (M) C N. In particular
if fis an epimorphism stich that f{(N) = M and Ker f C N, then f is an isomorphism.

SKETCH OF PROOF. Consider the composition G > H = H/M and verify
that N C f~Y(M) = Ker =f. By Theorem 5.6 (applied to f) the map G/N — H/M
given by aN |- (zf)¥a) = f(a)M is a homomorphism that is an isomorphism if and
only if wfis an epimorphism and N = Ker =f. But the latter conditions hold if and
only if Im fVV M = H and f~(M) C N. If fis an epimorphism, then H# = Im f
=Im fV M. If f(N) = M and Ker fC N, then f7(M) C N, whence fis an
isomorphism. m

Corollary 5.9. (Second Isomorphism Theorem) IfK and N are subgroups of a group
G, with N normal in G, then K/(N N K) =~ NK/N.

PROOF. N <| NK = N V K by Theorem 5.3. The composition K= NK -
NK/N is a homomorphism fwith kernel K N N, whence f: K/K 1 N=1Im fby
Corollary 5.7. Every element in NK/N is of the form nkN (ne Nk € K). The normal-
ity of N implies that nk = km (in € N), whence nkN = kmN = kN = f(k). There-
fore fis an epimorphism and hence Im f= NK/N. =

Corollary 5.10. (Third Isomorphism Theorem). If H and K are normal subgroups
of a group G such that K < H, then H/K is a normal subgroup of G/K and
(G/K)/(H/K) == G/H.

PROOF. The identity map 1¢ : G — G has 14(K) < H and therefore induces an
epimorphism I : G/K — G/H, with I(aK) = aH. Since H = I(aK) if and only if
ae H, Ker I = {aK|ac H} = H/K. Hence H/K < G/K by Theorem 5.5 and
G/H = Im I = (G/K)/Ker I = (G/K)/(H/K) by Corollary 5.7. =
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Theorem 5.11. If £ : G — H is an epimorphism of groups, then the assignment
K i— f(K) defines a one-to-one correspondence between the set S{G) of all subgroups
K of G which contain Ker f and the set S(H) of all subgroups of H. Under this corre-
spondence normal subgroups correspond to normal subgroups.

SKETCH OF PROOF. By Exercise 2.9 the assignment K|— f(K) defines a
function ¢ : SA{G) — S(H) and f~'(J) is a subgroup of G for every subgroup J of H.
Since J < H implies Ker f < f(J) and f(f~(J)) = J, ¢ is surjective. Exercise 18
shows that f71( f(K)) = K if and only if Ker f < K. It follows that ¢ is injective. To
prove the last statement verify that K <{ G implies f(K) < H and J < H implies

N <CG6. =

Corollary 5.12. IfN is a normal subgroup of a group G, then every subgroup of G/N
is of the form K/N, where K is a subgroup of G that contains N. Furthermore, K/N
is normal in G/N if and only if K is normal in G.

PROOF. Apply Theorem 5.11 to the canonical epimorphism 7 : G — G/N. If
N< K< G,thenn(K) = K/N. m

EXERCISES

1. If N is a subgroup of index 2 in a group G, then N is normal in G.

2. If {N;|i<l} is a family of normal subgroups of a group G, then () N;is a
sel
normal subgroup of G.
3. Let /V be a subgroup of a group G. N is normal in G if and only if (right) con-
gruence modulo N is a congruence relation on G.

4. Let ~ be an equivalence relation on a group G and let N = {ae G| a ~e}.
Then ~ is a congruence relation on G if and only if & is a normal subgroup of G
and ~ is congruence modulo N.

5. Let N < S, consist of all those permutations ¢ such that ¢(4) = 4. Is N normal
in S4?

6. Let H < G; then the set aHa™ is a subgroup for each as G, and H =~ aHa™.

7. Let G be a finite group and H a subgroup of G of order n. If H is the only sub-
group of G of order n, then H is normal in G.

8. All subgroups of the quaternion group are normal (see Exercises 2.3 and 4.14).

9. (a) If G is a group, then the center of G is a normal subgroup of G (see Ex-
ercise 2.11);
(b) the center of S, is the identity subgroup for all » > 2.

10. Find subgroups H and K of D,* such that H q K and K< D,*, but H is not
normal in D,*.

11. If His a cyclic subgroup of a group G and H is normal in G, then every subgroup
of H is normal in G. [Compare Exercise 10.]
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12. If His a normal subgroup of a group G such that H and G/ H are finitely gen-
erated, then so is G.

13. (a) Let H< G, K < G. Show that H \/ K is normal in G.
(b) Prove that the set of all normal subgroups of G forms a complete lattice
under inclusion (Introduction, Exercise 7.2).

14. If N, < G, N, < G, then (M X Ny} < (G, X G) and (Gi X Go)/(N1 X Ny)
= (Gi/ N1) X (G2/ No).

15.Let NI Gand K< G. If NN K= (¢) and N V K = G, then G/N=K.

16. If f: G — H is a homomorphism, H is abelian and N is a subgroup of G con-
taining Ker £, then N is normal in G.

17. (a) Consider the subgroups (6) and (30) of Z and show that (6)/(30) == Z;.
(b) For any kyn > 0, (k)/{km)==Z,,; in particular, Z/(m) = {1)/{m) = Z,.

18. If f: G— H is a homomorphism with kernel N and K < G, then prove that
S f(K)) = KN. Hence f~(f(K)) = Kif and only if N < K.

19. If N < G, [G : N] finite, H < G, |H| finite, and [G : N] and |H| are relatively
prime, then H < N.

20. If N < G, |N| finite, H < G, |G : H] finite, and [G : H] and |N| are relatively
prime, then N < H,

21. If H is a subgroup of Z(p™) and H = Z(p®), then Z(p©)/H == Z(p*). [Hint: if
H = (1/p™), let x; = 1/p*** + H and apply Exercise 3.7(e).]

6. SYMMETRIC, ALTERNATING, AND DIHEDRAL GROUPS

In this section we shal} study in some detail the symmetric group .S, and certain
of its subgroups. By definition S, is the group of all bijections I, — I,, where I, =
{1,2,...,n}. The elements of S, are called permutations. In addition to the notation
given on page 26 for permutations in S,, there is another standard notation:

Definition 6.1. Ler iyis, . .., i, (r < n) be distinct elements of I, = {1,2,...n}.
Then (iisis- - i) denotes the permutation that maps hwb> iz, il ds, B3> . ..,
i1 ¥ ir, and i, > 11, and maps every other element of 1., onto itself. (- - - 1,) is called
a cycle of length r or an r-cycle; a 2-cycle is called a transposition.

The cycle notation is not unique (see below); indeed, strictly speaking, the cycle
notation is ambiguous since (i, - - - i,) may be an element of any S, n > r. In context,
however, this will cause no confusion. A 1-cycle (k) is the identity permutation.
Clearly, an r-cycle is an element of order r in S,.. Also observe that if 7 is a cycle and
7(x) # x for some x ¢ I,,, then 7 = (x7(x)7%(x)- - - 7%(x)) for some d > 1. The inverse
of the cycle (iaiy- - -4,) is the cycle (iviy_vi,_2- - - i2h) = (itdriyorir—2- - - i) (verify!).

EXAMPLES. The permutation 7 = (31 f ; g) is a 4-cycle: 7 = (1432)

= (4321) = (3214) = (2143).If ¢ is the 3-cycle (125), then o7 = (125)(1432) = (1435)
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(remember: permutations are functions and o7 means 7 followed by ¢); similarly
70 = (1432)(125) = (2543) so that o+  70. There is one case, however, when two
permutations do commute.

Definition 6.2. The permuzations 01,04, . . . , o 0f Sy are said to be disjoint provided
that for each 1 < i < r, and every k e 1, oi(k) # k implies oi(k) = k for all j # i.

In other words 01,05, . . . , o, are disjoint if and only if no element of 7, is moved
by more than one of o4, . . . , 0,. It is easy to see that 7¢ = o7 whenever ¢ and 7 are
disjoint.

Theorem 6.3. Every nonidentity permutation in S, is uniquely (up to the order of the
Jactors) a product of disjoint cycles, each of which has length at least 2.

SKETCH OF PROOF. Let ¢ ¢S, o # (1). Verify that the following is an
equivalence relationon I,.: for x,y e I, x ~ yifand only if y = ¢™(x) for somem ¢ Z.
The equivalence classes {B:|1 < i < s} of this equivalence relation are called the
orbits of ¢ and form a partition of I, (Introduction, Theorem 4.1). Note that if x ¢ B;,
then B; = {u|x ~u} = {o™(x)|meZ}. Let B,Bs,...,B, (1 <r <s) be those
orbits that contain more than one element each (r > 1 since ¢  (1)). For each
i < r define ¢; ¢ S, by:

(o _ Jo) if xeB;;
o) [x if xéB.
Each o; is a well-defined nonidentity permutation of 1, since ¢ | B; is a bijection
B; — B,. 01,09, . . ., 0, are disjoint permutations since the sets B, . .., B, are mu-
tually disjoint. Finally verify that ¢ = o, 02- - - 0,; (note that x ¢ B; implies o(x) = oi(x)
ifi < rand o(x) = xif i > r; use disjointness). We must show that each ¢; is a cycle.

If x e B; (i < r), then since B; is finite there is a least positive integer d such that
o¥(x) = oi(x) for some j (0 < j < d). Since ¢¢7i(x) = xand 0 < d — j < d, we must
have j = 0 and ¢4(x) = x. Hence (xo(x)o¥(x)- - -0%1(x)) is a well-defined cycle of
length at least 2. If ¢™(x) e B;, thenm = ad + b for some a,b = Z suchthat 0 < b < d.
Hence o™(x) = 0¥ 4(x) = oto(x) = o¥(x) e { x,0(x),0¥x), . . . , ¢ (x)} . Therefore
B; = {x,0(x),0%x), ..., 0% (x)} and it follows that ¢, is the cycle

. (xe(xX)e¥(x)- - - o4 Y(x)).

Suppose 7, . . ., 7, are disjoint cycles such that ¢ = 7,75- - - 74. Let x ¢ I, be such
that o(x) # x. By disjointness there exists a unique j (1 < j < r) with o(x) = 74{x).
Since o7; = 7,0, we have o*(x) = 7;4(x) for all k ¢ Z. Therefore, the orbit of x under
7, is precisely the orbit of x under o, say B;. Consequently, 7,(y) = o(y) for every
Yy e B; (since y = o"(x) = 7;4(x) for some n e Z). Since 7; is a cycle it has only one
nontrivial orbit (verify!), which must be B; since x # o(x) = 7i(x). Therefore
7{y) = y for all y ¢ B;, whence 7; = o¢:. A suitable inductive argument shows that
r = t and (after reindexing) s = 7: foreachi=12,...,r. m
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Corollary 6.4. The order of a permutation o € S, is the least common multiple of the
orders of its disjoint cycles.

PROOF. Let ¢ = o, - -0, with {o;} disjoint cycles. Since disjoint cycles com-
mute, ™ = oy™- - -o,™ for all me Z and o= = (1) if and only if ¢;» = (1) for all i.
Therefore o = (1) if and only if |o,| divides m for all i (Theorem 3.4). Since || is
the least such m, the conclusion follows. m

Corollary 6.5. Every permutation in S, can be written as a product of (not necessarily
disjoint) transpositions.

PROOF. Tt suffices by Theorem 6.3 to show that every cycle is a product
of transpositions. This is easy: (x1) = (xix2)(xixz) and for r > 1, (xixexs- - -xs)
= (xx)oxro1): - - (axgd)(xaxz). W

Definition 6.6. A permutation 7€ S, is said to be even [resp. odd] if T can be wrirten
as a product of an even [resp. odd] number of transpositions.

The sign of a permutation 7, denoted sgn 7, is 1 or —1 according as 7 is even or
odd. The fact that sgn 7 is well defined is an immediate consequence of

Theorem 6.7. A permutation in S, (n > 2) cannot be both even and odd.

PROOF. Let ii, . . ., i, be the integers 1,2, ..., n in some order and define
A, . . ., I,) to be the integer II (i; — ix), where the product is taken over all pairs
(j,k) such that 1 <j < k < n. Note that A(i, ..., i) # 0. We first compute
A(o(ir), . . . , o(i,)) when ¢ € S, is a transposition, say ¢ = (iis) with ¢ < d. We have
A, . .., 0,) = (i, — idd)ABCDEFG, where

A= JI G-i; B=IlG-i; c=11G-i)

7 <k j<c j<c
jtk #C,d
D= G-iy; E= II G.—io: F=1]]G—i);
c<j<d c<k<d d<k
G =[] G —in.
d<k
We write o(A) for [] (o)) — o(i)) and similarly for o(B), o(C), etc. Verify that
i<k
7.k #c,d

o(4) = A; o(B) = C and o(C) = B; o(D) = (—1)'E and o(E) = (—1)¢'D;
o(F) = G, and ¢(G) = F. Finally, o(i, — i) = o(i.) — o(ia) = ia — ic = —(i. — id).
Consequently,
Al (), . . ., 0(in)) = olic — io(A)o(B)- - -o(G) = (—1)**@ V(i — i) ABCDEFG
e —A(il, e s ey in).
Suppose for some 7¢S,, 7 = 711---7, and 7 = o - -0, With 7, o; transposi-

tions, r even and s odd. Then for (i, . . ., i) = (1,2, ..., n) the previous paragraph
implies A(7(1), ..., 7(n)) = A(ny-- -7 (1), ..., 71---7(n)) = —A(7e---7,(1), . . .,
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7o 1(n) = - - = (=1)A(,2,...,n) = A(1,2, ..., n). Similarly A(z(1), . . ., 7(n))
= (—1)A(1,2,...,n) = —A1,2,...,n),whence A(1,2,...,n) = —A(1,2, ..., n).
This is a contradiction since A(1,2,...,n) # 0.

Theorem 6.8. For each n > 2, let A, be the set of all even permutations of S,.
Then A, is a normal subgroup of S, of index 2 and order |S,|/2 = n!/2. Furthermore
Ay is the only subgroup of S, of index 2.

The group 4. is called the alternating group on n letters or the alternating group of
degree n.

SKETCH OF PROOF OF 6.8. Let C be the multiplicative subgroup {1,—1}
of the integers. Define a map f:.S5, — C by ¢ |- sgn ¢ and verify that fis an epimor-
phism of groups. Since the kernel of fis clearly A,, 4, is normal in S,.. By the First
Isomorphism Theorem S,/ A4, == C, which implies [S, : 4.] = 2 and [4,] = |S.|/2.
A, is the unique subgroup of S, of index 2 by Exercise 6. H

Definition 6.9. A4 group G is said 10 be simple if G has no proper normal subgroups.

The only simple abelian groups are the Z, with p prime (Exércise 4.3). There are a
number of nonabelian simple groups; in particular, we have

Theorem 6.10. The alternating group A, is simple if and only if n = 4.

The proof we shall give is quite elementary. It will be preceded by two lemmas.
Recall that if 7 is a 2-cycle, 72 = (1) and hence » = 771,

Lemma 6.11. Ler 1,5 be distinct elements of {1,2, ..., n}. Then A, (n > 3) is gen-
erated by the 3-cycles {(rsk) | 1 < k < n, k # 1,s}.

PROOF. Assume n > 3 (the case n = 3 is trivial). Every element of A4, is a
product of terms of the form (ab)(cd) or (ab)(ac), where a,b,c,d are distinct elements
of {1,2, ..., n}. Since (ab)(cd) = (acb)(acd) and (ab)(ac) = (acb), A, 1s generated by
the set of all 3-cycles. Any 3-cycle is of the form (rsa), (ras), (rab), (sab), or (abc),
where a,b,c are distinct and a,b,c # r,s. Since (ras) = (rsa)?, (rab) = (rsb)(rsa)?,
(sab) = (rsb)(rsa), and (abc) = (rsa)Xrsc)(rsb)Xrsa), A, is generated by

{rsk) |1 < k<mks>rs}. m

Lemma 6.12. If N is a normal subgroup of A, (n > 3) and N contains a 3-cycle, then
N = A,.

PROOF. If (rsc)e N, then for any k = r,s,c, (rsk) = (rs)(ck)(rsc)(ck)(rs)
= [(rs)(ck)](rsc)*(rs)(ck)] ' e N. Hence N = A, by Lemma 6.11. m



50 CHAPTER | GROUPS

PROOF OF THEOREM 6.10. 4A; = (1) and A4; is the simple cyclic group of
order 3. It is easy to verify that {(1),(12)(34),(13)(24),(14)(23)} is a normal subgroup
of A, (Exercise 7). If » > 5 and N is a nontrivial normal subgroup of A4, we shall
show N = A, by considering the possible cases.

CASE 1. N contains a 3-cycle; hence N = A, by Lemma 6.12.

CASE 2. N contains an element ¢, the product of disjoint cycles, at least one of
which has length r > 4. Thus ¢ = (aia2- - - a,)7 (disjoint). Let § = (a1a2a3) € A.. Then
o Y(6c6’) ¢ N by normality. But

o (806™) = T ma.a,-1- - - a)aaas)(mas- - - a,yr(aasas) = (awasa,) € N.

Hence N = A, by Lemma 6.12.

CASE 3. N contains an element ¢, the product of disjoint cycles, at least two of
which have length 3, so that ¢ = (aia:a3)(asasas)r-(disjoint). Let 6 = (aa2as) € A4,.
Then as above, N contains o~ (8c6™) = 7~ W asacasNaasa:X araas)(aa:a:)asasas)t
(aasaz) = (aiasaxasaz). Hence N = A, by case 2.

CASE 4. N contains an element ¢ that is the product of one 3-cycle and some
2-cycles, say ¢ = (ma.as)T (disjoint), with 7 a product of disjoint 2-cycles. Then
o2 e N and ¢? = (maaz)m(aa:a3)T = (aa:a:)’1? = (aaqa3)? = (aazas), whence N = A,
by Lemma 6.12.

CASE 5. Every element of N is the product of (an even number of) disjoint
2-cycles. Let o e N, with ¢ = (ma2)(azas)r (disjoint). Let § = (aaqas) € A,; then
oY (6cd ) e N as above. Now ¢ (6c67Y) = 7 Yaza)(aa)(masas)(aa:)(azas)r(arasas)
= (aa3)(azas). Since n > 5, there is an element be {1,2,...,n} distinct from
a1,a5,a3,a4. Since § = (awasb) € A, and ¢ = (mas)(azas) € N, ((EEE ) e N. But {(5¢EY)
= (amaz)(a.a)aiasb)(araz)(asaabaz) = (awazb) e N. Hence N = A, by Lemma 6.12.

Since the cases listed cover all the possibilities, A4, has no proper normal sub-
groups and hence is simple. m

Another important subgroup of S, (n > 3) is the subgroup D, generated by
a=(123---n) and

pa (iIV2 3 4 5 - i R
1l n n—1 n—2 n—3 -+ n42—i --- 3 2

= H (i n+ 2 — i). D, is called the dihedral group of degree n. The group
2<i<n+2—i
D,, is isomorphic to and usually identified with the group of allsymmetries of a regular
polygon with n sides (Exercise 13). In particular D, is (isomorphic to) the group D,*
of symmetries of the square (see pages 25-26).

Theorem 6.13. For each n > 3 the dihedral group D, is a group of order 2n whose
generators a and b satisfy:

(i) a*=A);b2=(1);a*= (1)if 0 < k < n;
(i1) ba = a'b.
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Any group G which is generated by elements a,be G satisfying (i) and (ii) for some
n > 3 (with e € G in place of (1)) is isomorphic to D.

SKETCH OF PROOF. Verify that a,b ¢ D, as defined above satisfy (i) and (ii),
whence D, = {a,b) = {a’b|0 < i < n; j = 0,1} (see Theorem 2.8). Then verify
that the 2» elements @'b? (0 < i < n;j = 0,1) are all distinct (just check their action
on 1 and 2), whence |D,| = 2n.

Suppose G is a group generated by a,b ¢ G and a,b satisfy (i) and (ii) for some
n > 3. By Theorem 2.8 every element of G is a finite product a™bmgmsbms. - . bmk (m; e Z.).
By repeated use of (i) and (ii) any such product may be written in the form a?b? with
0 <i<nandj= 0,1 (in particular note that 42 = e and (ii) imply » = b and
ab = ba™"). Denote the generators of D, by a,,b, to avoid confusion and verify that
the map /: D, — G given by a,’b/ — a’b/ is an epimorphism of groups. To complete
the proof we show that fis a monomorphism. Suppose f (ai’h,?) = a'b’ = e e G with
0<i<nandj=0,1. If j =1, then ¢ = b and by (i) a'*! = a'a = ba = a'b
= a'a' = a7, which implies a®> = e. This contradicts (i) since » > 3. Therefore
Jj=0ande = a'b® = a*with0 < i < n,which implies i = 0 by (i). Thus f(a’ty?) = e
implies a,’b,! = a,°h,® = (1). Therefore fis a monomorphism by Theorem 2.3. m

This theorem is an example of a characterization of a group in terms of “genera-
tors and relations.” A detailed discussion of this idea will be given in Section 9.

EXERCISES

1. Find four different subgroups of .S; that are isomorphic to S; and nine iso-
morphic to S..

2. (a) S, is generated by the » — 1 transpositions (12), (13), (14), . . ., (1n). [Hint:
A)()AH = (if).]
(b) S.. is generated by the n — 1 transpositions (12), (23), 34),...,(n — 1 n).

{Hint: (1)) = (1 j — 1)(j — 1 )1 j — 1); use (a).]
3. If ¢ = (irio- - -i) ¢S, and 7 ¢ S,, then 70771 is the r-cycle (7(i)7(iz)- - - 7(i,)).

4. (a) S, is generated by o, = (12) and 7 = (123 - - n). [Hint: Apply Exercise 3 to
01, 02 = 70177, 03 = 7077, ..., 0,1 = To._o7 ! and use Exercise 2(b).]
(b) S. is generated by (12) and (23- - - n).

5. Let 0,7 ¢ S,. If o is even (0odd), then so is 70771

6. A, is the only subgroup of S, of index 2. [Hinz: Show that a subgroup of index 2
must contain all 3-cycles of S, and apply Lemma 6.11.]

7. Show that N = {(1),(12)(34),(13)(24),(14)(23)} is a normal subgroup of S, con-
tained in A4, such that S,/N =~ S; and 4,/N = Z,.

8. The group A4, has no subgroup of order 6.

9. For n > 3 let G, be the multiplicative group of complex matrices generated by

X = 01 and y = e where 2 = —1. Show that G, 2>~ D
1 0 y = 0 e—twiln J? r= g Y n = &n-

(Hint: recall that e?™* = 1 and e**™ > 1, where £ is real, unless k ¢ Z.)
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10. Let a be the generator of order n of D,. Show that (a) < D, and D,/{a) = Z,.
11. Find all normal subgroups of D,.

12. The center (Exercise 2.11) of the group D, is {e) if n is odd and isomorphic to Z,
if n is even.

13. For each n > 3 let P, be aregular polygpn of » sides (for n = 3, P, is an equi-
lateral triangle; for n = 4, a square). A symmetry of P, is a bijection P, — P,
that preserves distances and maps adjacent vertices onto adjacent vertices.

(a) The set D,.* of all symmetries of P, is a group under the binary operation
of composition of functions.

(b) Every fe D,* is completely determined by its action on the vertices of P,.
Number the vertices consecutively 1,2, .. ., n; then each fe D,* determines a
unique permutation o, of {1,2, .. ., n}. The assignment f}- ¢, defines a mono-
morphism of groups ¢ : D, * — §..

(c) D.*is generated by fand g, where fis a rotation of 27/n degrees about the
center of P, and g is a reflection about the *“diameter’’ through the center and
vertex 1.

d o;,=(123---n) and o, = (
Im ¢ = D, and D,* = D,.

1 2 3 -« n—1 n

1 n n—-1 ... 3 2)’ wheree

7. CATEGORIES: PRODUCTS, COPRODUCTS, AND
FREE OBJECTS

Since we now have several examples at hand, this is an appropriate time to intro-
duce the concept of a category. Categories will serve as a useful language and provide
a general context for dealing with a number of different mathematical situations.
They are studied in more detail in Chapter X.

The intuitive idea underlying the definition of a category is that several of the
mathematical objects already introduced (sets, groups, monoids) or to be introduced
(rings, modules) together with the appropriate maps of these objects (functions for
sets; homomorphisms for groups, etc.) have a number of formal properties in com-
mon. For example, in each case composition of maps (when defined) is associative;
each object A4 has an identity map 1,4 : A — A with certain properties. These notions
are formalized in

Definition 7.1. A category is aclass C of objects (denoted A,B,C, . . .) together with

() aclass of disjoint sets, denoted hom(A,B), one for each pair of objects in C ;(an
element'f of hom(A,B) is called a morphism from A 1o B and is denoted f : A — B);
(i) for each triple (A,B,C) of objects of C a function
hom(B,C) X hom(A,B) — hom(AC);
(for morphisms f: A— B, g:B— C, this function is written (gf)l>gof and
gof:A— C is called the composite of f and g); all subject to the two axioms:

(I) Associativity. Iff : A— Bg:B — C,h : C — D are morphisms of @, then
ho(gof)=(hog)of.
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(I1) Identity. For each object B of @ there exists a morphism 1y : B — B such
that forany f :A—B,g:B—C,

lgof=f and golg=g.

In a category C a morphism f : 4 — B is called an equivalence if there is in C a
morphism g : B— A such that go f= 1, and fo g = 15. The composite of two
equivalences, when defined, is an equivalence. If f : 4 — B is an equivalence, 4 and
B are said to be equivalent.

EXAMPLE. Let 8 be the class of all sets; for 4,B ¢ 8, hom(A4,B) is the set of
all functions f : A — B. Then § is easily seen to be a category. By (13) of Introduc-
tion, Section 3, a morphism fof 8§ is an equivalence if and only if fis a bijection.

EXAMPLE. Let G be the category whose objects are all groups; hom(A4,B) is
the set of all group homomorphisms f : A — B. By Theorem 2.3, a morphism f is an
equivalence if and only if fis an isomorphism. The category @ of all abelian groups
is deflned similarly.

EXAMPLE. A (multiplicative) group G can be considered as a category with
one object, G. Let hom(G,G) be the set of elements of G; composition of morphisms
a,b is simply the composition ab given by the binary operation in G. Every morphism
is an equivalence (since every element of G has an inverse). 1¢ is the identity element
eof G.

EXAMPLE. Let the objects be all partially ordered sets (S,<). A morphism
(S,<) — (T,<) is a function f : S — T such that for x,y &S, x < y = f(x) < f(»).

EXAMPLE. Let C be any category and define the category © whose objects
are all morphisms of . If f : 4 —» B and g : C —» D are morphisms of C, then
hom(f,g) consists of all pairs («,8), where « : A — C, 8 : B — D are morphisms
of C such that the following diagram is commutative:

y f
ai )

Definition 7.2. Let @ be a category and {A;|icl} a family of objects of C. A
product for the family { A; | ie 1} is an object P of C together with a family of mor-
phisms {m; : P — A;|iel} such that for any object B and family of morphisms
{¢i :B— A;|iel}, there is a unique morphism ¢ : B — P such that m; o ¢ = ¢; for
all iel.

Y

Ot
™

Y

A product P of { 4; | i e I} is usually denoted H A;. It is sometimes helpful to de-
iel
scribe a product in terms of commutative diagrams, especially in the case I = {1,2}.
A product for { A4;,A4,} is a diagram (of objects and morphisms) A4, <~ P 5> A, such
that: for any other diagram of the form 4, & B % 4,, there is a unique morphism
¢ : B— P such that the following diagram is commutative:
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B

Al4——--P A,

A family of objects in a category need not have a product. In several familiar
categories, however, products always exist. For example, in the category of sets the

Cartesian product H A; is a product of the family {A4;|ielI} by Introduction,
iel
Theorem 5.2. In the next section we shall show that products exist in the category of

groups.

Theorem 7.3. If (P,{m;}) and (Q,{:}) are both products of the family {A;|iel} of
objects of a category C, then P and Q are equivalent.

PROOF. Since P and Q are both products, there exist morphisms f : P — Q and
g : Q — P such that the following diagrams are commutative for each i e I:

Q—»P

S oA

Composing these gives for each i e I a commutative diagram:

p_%8°F _p
w\ /m
A
Thus g o f : P— P is a morphism such that m; o (g o f) = m; for all i ¢ 1. But by the
definition of product there is a unique morphism with this property. Since the map
1p: P — P is also such that m; 0o 1p = m; for all i eI, we must have go f= 1p by

uniqueness. Similarly, using the fact that Q is a product, one shows that fo g = lq.
Hence f : P — Qis an equivalence. m

Since abstract categories involve only objects and morphisms (no elements),
every statement about them has a dual statement, obtained by reversing all the
arrows (morphisms) in the original statement. For example, the dual of Definition
7.2 is

Definition 7.4. A coproduct (or sum) for the family {A;|1el} of objects in a cate-
gory C is an object S of @, together with a family of morphisms {v : A;— S|iel}
such that for any object B and family of morphisms {Y; : Ai— B |icl}, there is a
unique morphism : S — B such thaty o ; = ¢; for all iel.
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There is no uniform notation for coproducts, although HA,- is sometimes used.

iel
In the next two sections we shall discuss coproducts in the category G of groups
and the category @ of abelian groups. The following theorem may be proved by

using the “dual argument” to the one used to prove Theorem 7.3 (do it!).

Theorem 7.5. If (S,{u}) and (S',{ \i}) are both coproducts for the family { A; | i1} of
objects of a category C, then S and S’ are equivalent.

In several of the categories mentioned above (for example, groups), every object
in the category is in fact a set (usually with some additional structure) and every
morphism f : A — B in the category is a function on the “‘underlying sets”’ (usually
with some other properties as well). We formalize this idea in

Definition 7.6. A4 concrete category is a category @ together with a function o that
assigns to each object A of C a set a(A) (called the underlying set of A) in such a way
that:

(1) every morphism A — B of C is a function on the underlying sets o(A) — o(B);
(1) the identity morphism of each object A of @ is the identity function on the
underlying set o(A);
(11i) composition of morphisms in C agrees with composition of functions on the
underlying sets.

EXAMPLES. The category of groups, equipped with the function that assigns to
each group its underlying set in the usual sense, is a concrete category. Similarly the
categories of abelian groups and partially ordered sets, with the obvious underlying
sets, are concrete categories. However, in the third example after Definition 7.1, if
the function ¢ assigns to the group G the usual underlying set G, then the categoty in
question is not a concrete category (since the morphisms are not functions on the
set G).

Concrete categories are frequently useful since one has available not only the
properties of a category, but also certain properties of sets, subsets, etc. Since in
virtually every concrete category we are interested in, the function ¢ assigns to an
object its underlying set in the usual sense (as in the examples above), we shall denote
both the object and its underlying set by the same symbol and omit any explicit refer-
ence to ¢. There is little chance of confusion since we shall be careful in a concrete
category € to distinguish morphisms of © (which are by definition also functions
on the underlying sets) and maps (functions on the underlying sets, which may not be
morphisms of @).

Definition 7.7. Ler F be an object in a concrete category @, X a nonempty set, and
i:X — F amap (of sets). F is free on the set X provided that for any object A of C
and map (of sets) f : X — A, there exists a unique morphism of @, f :F — A, such that
fi = f (as a map of sets X — A),
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The essential fact about a free object F is that in order to define a morphism with
domain F, it suffices to specify the image of the subset i(X) as is seen in the following
examples.

EXAMPLES. Let G be any group and g ¢ G. Then the map f : Z — G defined
by f(n) = g~ is easily seen to be the unique homomorphism Z — G such that 1 |- g.
Consequently, if X = {1} and i : X — Z is the inclusion map, then Z is free on X in
the category of groups; (given f : X — G, let g = f(1) and define f as above). In
other words, to determine a unique homomorphism from Z to G we need only
specify the image of 1 ¢ Z (that is, the image of i(X)). The (additive) group Q of ra-
tional numbers does nor have this property. It is not difficult to show that there is no
nontrivial homomorphism Q — S;. Thus for any set X, function i : X — Q and func-
tion f:X — S; with f(x;) # (1) for some x; ¢ X, there is no homomorphism

f:Q—)S;‘Wlthfl=f.

Theorem 7.8. If C is a concrete category, F and F’ are objects of C such that F is
free on the set X and F' is free on the set X' and |X| = |X’|, then F is equivalent 1o F'.

Note that the hypotheses are satisfied when F and F’ are both free on the same
set X.

PROOF OF 17.8. Since F, F' are free and |X]| = |X’|, there is a bijection
f:X—>X andmapsi:X — Fandj: X’ — F’. Consider themapj f : X — F’. Since
F is free, there is a morphism ¢ : F — F’ such that the diagram:

%]
F———»F'

4i ¥
X—»X

f

is commutative. Similarly, since the bijection f has an inverse f! : X’ — X and F’ is
free, there is a morphism ¢ : F — F such that:

2

F'——F
i b
X —X

f—l
is commutative. Combining these gives a commutative diagram:

Yoo

F————F

§i }i
X———X

fif=1x
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Hence (Y o ¢)i = ilx = i. But 1,7 = i. Thus by the uniqueness property of free ob-
jects we must have Y o ¢ = 15. A similar argument shows that ¢ oy = 1,.. There-
fore F is equivalent to F’. m

Products, coproducts,and free objects are all defined via universal mapping proper-
ties (that is, in terms of the existence of certain uniquely determined morphisms). We
have also seen that any two products (or coproducts) for a given family of objects are
actually equivalent (Theorems 7.3 and 7.5). Likewise two free objects on the same set
are equivalent (Theorem 7.8). Furthermore there is a distinct similarity between the
proofs of Theorems 7.3 and 7.8. Consequently it is not surprising that all of the no-
tions just mentioned are in fact special cases of a single concept.

Definition 7.9. An object 1 in a category Q is said to be universal (or initial) if for
each object C of @ there exists one and only one morphism 1 — C. A4n object T of C
is said 1o be couniversal (or terminal) if for each object C of © there exists one and
only one morphism C — T.

We shall show below that products, coproducts, and free objects may be con-
sidered as (co)universal objects in suitably chosen categories. However, this char-
acterization is not needed in the sequel. Since universal objects will not be mentioned
again (except in occasional exercises) until Sections II1.4, II1.5, and IV.5, the reader
may wish to omit the following material for the present.

Theorem 7.10. Any two universal [resp. couniversal] objects in a category © are
equivalent.

PROOF. Let I and J be universal objects in €. Since I is universal, there is a
unique morphism f : I — J. Similarly, since J is universal, there is a unique morphism
g :J— 1. The composition go f : I — I is a morphism of ©. But1;: J — Iisalsoa
morphism of €. The universality of I implies that there is a unique morphism 7 — I,
whence g o f = 1;. Similarly the universality of J implies that fo g = 1;. Therefore
f : I — Jisan equivalence. The proof for couniversal objects is analogous. B

EXAMPLE. The trivial group {e) is both universal and couniversal in the cate-
gory of groups.

EXAMPLE. Let F be a free object on the set X (with i : X — F) in a concrete
category C. Define a new category D as follows. The objects of D are all maps of sets
f : X — A, where A is (the underlying set of) an object of €. A morphism in D from
f:X—>Atog :X — B is defined to be a morphism # : 4 — B of € such that the
diagram:

L
™

-——
=~

o]
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is commutative (that is, #f = g). Verify that 1, : A — A4 is the identity morphism
from fto fin D and that / is an equivalence in D if and only if % is an equivalence
in @, Since F is free on the set X, there is for each map f : X — 4 a unique mor-
phism f : F— A such that fi = f. This is precisely the statement that i : X — F
is a universal object in the category D.

EXAMPLE. Let {A4;|ieI} be a family of objects in a category €. Define a
category & whose objects are all pairs (B,{ f; | i ¢ I}), where B is an object of € and
foreach i, f; : B— A; is a morphism of ©. A morphism in & from (B,{ f; | ie I}) to
(D,{g: | ieI})is defined to be a morphism /4 : B— D of @ such that g;o 4 = f; for
every i ¢ 1. Verify that 15 is the identity morphism from (B, {£;}) to (B, { f:})in & and
that / is an equivalence in § if and only if # is an equivalence in ©. If a product
exists in @ for the family { 4; | i ¢ I} (with maps m : HA,- — A, for each k ¢ I), then
for every (B,{ f:}) in & there exists a unique morphism f : B — HA,- such that m; o f
= f; for every i ¢ 1. But this says that (HA,-,{ m: | i e 1}) is a couniversal object in the
category &. Similarly the coproduct of a family of objects in € may be considered
as a universal object in an appropriately constructed category.

Since a product HA,— of a family { 4; | i e I} in a category may be considered as a
couniversal object in a suitable category, it follows immediately from Theorem 7.10
that HA,- is uniquely determined up to equivalence. Analogous results hold for co-
products and free objects.

EXERCISES

1. A pointed set is a pair (S,x) with S a set and x ¢ S. A morphism of pointed sets
(S,x) — (S8’ ,x")is a triple ( f,x,x"), where f:§ — .S’ is a function such that f(x) = x’.
Show that pointed sets form a category.

2. If f : A— Bis an equivalence in a category @ and g : B— A is the morphism
such that go f= 1,4, fo g = 1p, show that g is unique.

3. In the category G of groups, show that the group G, X G. together with the
homomorphisms m, : G, X G, — G, and m : G; X G: — G; (as in the Example
preceding Definition 2.2) is a product for {G;,G.}.

4. In the category & of abelian groups, show that the group 4, X 4., together with
the homomorphisms ¢; : 4; — 4; X Asand ; : A, — A; X A, (as in the Example
preceding Definition 2.2) is a coproduct for {4;,4,}.

5. Every family {4;| iz 1} in the category of sets has a coproduct. [Hint: consider
U 4; = {(a,i)e (U 4) X I|acA;} with A;— U 4, given by al- (a,i). U A4; is
called the disjoint union of the sets 4;.]

6. (a) Show that in the category 8, of pointed sets (see Exercise 1) products always
exist; describe them.
(b) Show that in 84 every family of objects has a coproduct (often called a
“wedge product’); describe this coproduct.

7. Let F be a free object on a set X (i : X — F) in a concrete category €. If C con-
tains an object whose underlying set has at least two elements in it, then / is an in-
Jjective map of sets.



8. DIRECT PRODUCTS AND DIRECT SUMS 59

8. Suppose X is a set and F is a free object on X (with i : X — F) in the category of
groups (the existence of F is proved in Section 9). Prove that i(X) is a set of
generators for the group F. [Hint: If G is the subgroup of F generated by i(X), then
there is a homomorphism ¢ : F — G such that ¢i = i. Show that F% G S F is
the identity map.]

8. DIRECT PRODUCTS AND DIRECT SUMS

In this section we study products in the category of groups and coproducts in the
category of abelian groups. These products and coproducts are important not only
as a means of constructing new groups from old, but also for describing the structure
of certain groups in terms of particular subgroups (whose structure, for instance,
may already be known).

We begin by extending the definition of the direct product G X H of groups G
and H (see page 26) to an arbitrary (possibly infinite) family of groups {G; | i¢ I}.
Define a binary operation on the Cartesian product (of sets) H G; as follows. If

iel
fge ]I G:i(thatis, f,g : I — U G:and f(i),g(i) ¢ G: for each i), then fg : [ — | Giis
tel el 1el
the function given by i — f(i)g(i). Since each G; is a group, f(i)g(i) ¢ G: for every i,
whence fg ¢ H G: by Introduction, Definition 5.1. If we identify fe H G;: with its
tel tel
image {a;}(a; = f(i) for each i e I) as is usually done in the case when ! is finite, then
the binary operation in H G; is the familiar component-wise multiplication: {a;} { b;}
iel
= {a:b;}. H G;, together with this binary operation, is called the direct product
qel

(or complete direct sum) of the family of groups {G; | ie¢l}. If I = {1,2,...,n},
H G:; is usually denoted G1 X G, X---X G, (or in additive notation, G, P G,
1el

@. 3 @ G,).

Theorem 8.1. If {G; | ic 1} is a family of groups, then

(1) rhe direct product H G; is a group;
ael
(ii) for each k 1, the map m : | | G: — Gugiven by f|- f(k) [or {ai} |- ai] is an
iel

epimorphism of groups.
PROOF. Exercise. B

The maps m; in Theorem 8.1 are called the canonical projections of the direct
product.

Theorem 8.2. Let {G; | ic I} be a family of groups and { ¢, : H — G; | i e 1} a family
of group homomorphisms. Then there is a unique homomorphism ¢ : H — H G; such
iel
that Ty = i for all i€ 1 and this property determines H G uniguely up 10 isomor-
iel
phism. In other words, H Gi is a product in the category of groups.
el
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PROOF. By Introduction, Theorem 5.2, the map of sets ¢ : H — H G, given by
el

ela) = {¢ga)liae H G; is the unique function such that m¢ = ¢; for all ie I. It is
tel
easy to verify that ¢ is a homomorphism. Hence H G:is a product (in the categorical
tel
sense) and therefore determined up to isomorphism (equivalence) by Theorem 7.3. m

Since the direct product of abelian groups is clearly abelian, it follows that the
direct product of abelian groups is a product in the category of abelian groups also.

Definition 8.3. 7he (external) weak direct product of a family of groups {G;|iel},
denoted [ [™ G, is the set of all e | | Gi such that 1G) = e;, the identity in G, for all
tel iel
but a finite number ofi e 1. If all the groups G; are (additive) abelian, Hw G; is usually
tel
called the (external) direct sum and is denoted Z Gi.
vel

If I is finite, the weak direct product coincides with the direct product. In any
case, we have

Theorem 8.4. If{G: |icl} is a family of groups, then
(i) H Gi is a normal subgroup of H Gi;

el

(1) for each k €1, the map 1y, : Gx. — H Gi given by ua) = {ai}iq, where a; = e
iel

for i 5= k and ax. = a, is a monomorphism of groups;

(i) for each iel, «(Gy) is a normal subgroup of H G..
tel

PROOF. Exercise. ®

The maps ¢, in Theorem 8.4 are called the canonical injections.

Theorem 8.5. Ler {A: | i< 1} be a fumily of abelian groups (written additively). If B is
an abelian group and {{; : A; — B | ie 1} a family of homomorphisms, then there is a

unique homomorphism - Z Ai — B such that Y, = ¥ forall i e 1 and this property
el
determines Z A; uniquely up 10 isomorphism. In other words, Z A is a coproduct in
tel el
the category of abelian groups.

REMARK. The theorem is false if the word abelian is omitted. The external
weak direct product is nor a coproduct in the category of all groups (Exercise 4).

PROOF OF 8.5. Throughout this proof all groups will be written additively. If
0 # {a;} € DA, then only finitely many of the a; are nOnzero, say @i,,Giy, - - - » Gi,.

Deﬁne l,b Z A — B by HL{O} = 0 and \L({a,}) = ¢11(a11) + "le(atz) + + ‘l/n(al,)
= Z Via), where I is the set {ii, ..., i} = {iel|a; # 0}. Since B is abelian,

telo
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it is readily verified that y is a homomorphism and that Y, = ; for all ie /. For
each {a;} EZA,, {a;} = Z wa;), I, finite as above. If £ : Z A; — Bis a homomor-

'lEo

phism such that £ = ; forall i then £({a;}) = g(Z (@) = Z fula;) = Z Vila)
= Z Yu(a) = 5&(2 w(a)) = Y({a;}); hence £ = ¢ and Y is umque Thereforez A;

is a coproduct in the category of abelian groups and hence is determined up to iso-
morphism (equivalence) by Theorem 7.5. m

Next we investigate conditions under which a group G is isomorphic to the weak
direct product of a family of its subgroups.

Theorem 8.6. Ler {N; | ic I} be a family of normal subgroups of a group G such thar
() G = (U Ny;

tel

(i) for each keI, N N (U N;) = (e).

i #k
Then G= [[" N
iel

Before proving the theorem we note a special case that is frequently used. Ob-
serve that for normal subgroups Ni,N,, . .., N,ofagroup G,(N, U N, U--. UN,)
= NiN:---N, = {mny- - -n, | n; ¢ N;} by an easily proved generalization of Theorem
5.3. In additive notation N;N;- - - N, is written N; + N; +-- -4 N,. It may be help-
ful for the reader to keep the following corollary in mind since the proof of the
general case is essentially the same.

Corollary 8.7. If N;,N,, . . ., N, are normal subgroups of a group G such that
G = NiN;- - -N; andfor each 1 < k < I, Ny n (N1 0 'Nk—lNk+1' 0 Nr) = (e), then
GEN]XNzX"‘XNr. ]

PROOF OF THEOREM 8.6. If {a;} ¢ | [“M:, then a; = e for all but a finite

number of / ¢ I. Let I, be the finite set {ic I | a; # e}. Then H a; 1s a well-defined ele-
ielo
ment of G, since for ae N; and be N;, (i # j), ab = ba by Theorem 5.3(iv). Conse-
quently the map ¢ : H“’Ni — G, given by |a:} > H a;e G (and {e} |- e), is a homo-
1elp

morphism such that ¢(a;) = a; for a; € N..

Since G is generated by the subgroups N,, every element a of G is a finite product
of elements from various N;. Since elements of &, and N, commute (for i 5 j), a can
be written as a product H a,, where a; ¢ N; and I, is some finite subset of 1. Hence

II @ e J]*N. and (,p(ﬁlo (a)) = H ¢w(@) = ] a: = a. Therefore, ¢ is an epi-
knﬁ)rphlsm - = e

Suppose ¢({a;}) = H a, = e ¢ G. Clearly we may assume for convenience of no-
tation that I, = {1,2, I.E.IU. ,n}. Then I; a; = a\ay- - -a, = e, with a; = N;.. Hence
a'=a--a,e Ny N { .U N,) = (e) e:;cﬂl therefore a, = e. Repetition of this argu-
ment shows that a; = elf:s):' all i e 1. Hence ¢ is a monomorphism. m
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Theorem 8.6 motivates

Definition 8.8. Let {N; | ice 1} be a family of normal subgroups of a group G such that

= (U Ni) and for each k e I, Ni. [N (U N;) = (e). Then G is said to be the internal
el 1#k

weak direct product of the family {N; | i e I} (or the internal direct sum if G is (additive)
abelian).

As an easy corollary of Theorem 8.6 we have the following characterization of
internal weak direct products.

Theorem 8.9. Ler {N; | ic 1} be a family of normal subgroups of a group G. G is the
internal weak direct product of the family {|N;|ie 1} if and only if every nonidentity
element of G is a unique product aas,- - - a;, with 1y, . . . , adistinct elements of 1 and
e# ai e N foreachk =12,...,n

PROOQOF. Exercise. ®m

There is a distinction between internal and external weak direct products. If a
group G is the internal weak direct product of groups N;, then by definition each N;
is actually a subgroup of G and G is isomorphic to the external weak direct product

T I”~.. However, the external weak direct product ] [*N;: does ror actually contain
iel iel

the groups N;, but only isomorphic copies of them (namely the ¢,(N;) — see Theorem
8.4 and Exercise 10). Practically speaking, this distinction is not very important and
the adjectives “internal” and “‘external’” will be omitted whenever no confusion is

possible. In fact we shall use the following notation.

NOTATION. We write G = | [N to indicate that the group G is the internal
iel
weak direct product of the family of its subgroups { N; | ie I}.

Theorem 8.10. Ler {f; : G; — H; |icl} be a family of homomorphisms of groups
and let f = Hfi be the map H G;— H H;, given by {a;} |- {fi(a))}. Thenf is a homo-
el el
morphism of groups such that f(Hw G) C Hw H;, Ker f = H Ker f; and Im f
zel el el
= H Im f;. Consequently f is a monomorphism [resp. epimorphism) if and only if each
(134
f i is.

PROOF. Exercise. ®m

Corollary 8.11. Let {G;|icl} and {N;|iz1} be families of groups such that N; is a
normal subgroup of G; for each i¢ 1.

() H N; is a normal subgroup of H G; and H G./H N; =~ H Gi/N;.

iel tel

(ii) H N; is a normal subgroup ofH G; and Hw ./IIw N; "’Hw Gi/N..

el 1el
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PROOF. (i) For each i, let 7; : G; — G;/N; be the canonical epimorphism. By

Theorem 8.10, the map [ [ : [] G:— II G./N: is an epimorphism with kernel

iel el

H N;. Therefore HG,-/HN,— =~ HG,—/ N; by the First Isomorphism Theorem. (ii)

iel

is similar. m

10.

11.

12.

EXERCISES

. S3 1s nor the direct product of any family of its proper subgroups. The same is

true of Z ., (p prime, n > 1) and Z.

Give an example of groups H;, K; such that H; X H, =~ K; X K, and no H; is
isomorphic to any K;.

. Let G be an (additive) abelian group with subgroups H and K. Show that

G = H@® K if and only if there are homomorphisms H S G Z—T—’;’- K such that

mu = ly, T2 = 1k, Tz = 0 and myy = 0, where 0 is the map sending every
element onto the zero (identity) element, and ,m(x) 4+ tm(x) = x forall x ¢ G.

. Give an example to show that the weak direct product is not a coproduct in the

category of all groups. (Hint: it suffices to consider the case of two factors
G X H)

. Let G, H be finite cyclic groups. Then G X His cyclic if and only if (|G|,|H]) = 1.

Every finitely generated abelian group G 5 (e) in which every element (except €)
has order p (p prime) is isomorphic to Z, P Z, - - -@ Z, (n summands) for
some n > 1. [Hint: Let A = {ai,...,a,} be a set of generators such that no
proper subset of 4 generates G. Show that (@) &= Z,and G = (&) X {a) X - -
X {a.).]

. Let H,K,N be nontrivial normal subgroups of a group G and suppose

G = H X K. Prove that N is in the center of G or N intersects one of H,K non-
trivially. Give examples to show that both possibilities can actually occur when
G is nonabelian.

. Corollary 8.7 is false if one of the N; is not normal.

. If a group G is the (internal) direct product of its subgroups H,K, then H =~ G/K

and G/H =K.

If { G; | i e I} is a family of groups, then H'”G,- is the internal weak direct product
its subgroups {t(G.) | ie I}.

Let {N;|ie I} be a family of subgroups of a group G. Then G is the internal
weak direct product of { N; | i ¢ I} if and only if: (i) a;a; = a;a; for all i # j and
a; e N;, a;e Nj; (ii) every nonidentity element of G is uniquely a product a;,- - - a;,,

where iy, . . ., i, are distinct elements of 7 and e == a;, € Ny, for each k. [Compare
Theorem 8.9.]

A normal subgroup H of a group G is said to be a direct factor (direct summand if
G is additive abelian) if there exists a (normal) subgroup K of G such that
G = HXK.
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(a) If H is a direct factor of K and K is a direct factor of G, then H is normal
in G. [Compare Exercise 5.10.]

(b) If H is a direct factor of G, then every homomorphism H — G may be ex-
tended to an endomorphism G — G. However, a monomorphism H — G need
not be extendible to an automorphism G — G.

13. Let {G; | ie I} be a family of groups and J C I. The map « :H G;,— H G;

G iel
given by {a;} t— {b:}, where b; = a;for jeJ and b; = e; (identity of G;) for i ¢ J,
is a monomorphism of groups and H G,-/a(H G;)= H G..
1el jedJ el —J

14. For i = 1,2 let H; < G; and give examples to show that each of the following
statements may be false: (@) Gi =~ G: and H, = H.= G,/H, = Gy/ H..
(b) Gl = Gg and Gl/Hl =~ G2/H2 = Hl = H2- (C) Hl = H2 and Gl/Hl =~ G2/H2
= G] = G2.

9. FREE GROUPS, FREE PRODUCTS, AND GENERATORS AND
RELATIONS

We shall show that free objects (free groups) exist in the (concrete) category of
groups, and we shall use these to develop a method of describing groups in terms of
“generators and relations.”” In addition, we indicate how to construct coproducts
(free products) in the category of groups.

Given a set X we shall construct a group F that is free on the set X in the sense of
Definition 7.7. If X = (J, Fis the trivial group {e). If X = (¥, let X! be a set disjoint
from X such that [X]=|X"!|. Choose a bijection X — X! and denote the image of
x € X by x~!. Finally choose a set that is disjoint from X U X! and has exactly one
element; denote this element by 1. A word on X is a sequence (a,,a,, . . .) with g; €
X U X' U {1) such that for some n ¢ N*, g, =1 for all k=n. The constant
sequence (1,1, ...) is called the empty word and is denoted 1. (This ambiguous
notation will cause no confusion.) A word (q,,a,, . ..) on X is said to be reduced
provided that

(i) for all xeX, x and x! are not adjacent (that is, a; = x = a, 1 ¥ x ' and
a; = x 1= a;,, # x for all i ¢ N*, xeX) and

(i) @, = 1 implies a;, = 1 forall i > A.
In particular, the empty word 1 is reduced.

Every nonempty reduced word is of the form (xi*,x.*, . . ., x,*,1,1,...), where
neN* x;eXand \; = +1 (and by convention x! denotes x for all x ¢ X). Hereafter
we shall denote this word by x,*x,% - - - x,%. This new notation is both more tractable'
and more suggestive. Observe that the definition of equality of sequences shows that
two reduced words x,M- - - x,,* and y,%t- - -y, (x;,37 2 X; N\;,6; = £1)areequal if and
onlyifbothare 1 orm = nand x; = y;, \; = &;foreachi = 1,2, ..., n. Consequently
the map from X into the set F(X) of all reduced words on X given by x [ x1 = xisin-
jective. We shall identify X with its image and consider X to be a subset of F(X).

Next we define a binary operation on the set F = F(X) of all reduced words on X.
The empty word 1 is to act as an identity element (w1l = 1w = w for all we F). In-
formally, we would like to have the product of nonempty reduced words to be given
by juxtaposition, that is,

(xlxl. . .xmxm)(ylal. . .ynén) — xlxl. . .xm)‘mylﬁl. . .ynan.
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Unfortunately the word on the right side of the equation may not be reduced (for
example, if x,,»» = y,;~%). Therefore, we define the product to be given by Juxtaposi-
tion and (if necessary) cancellation of adjacent terms of the form xx~! or x~x; for
example (a’xz ) (x5 x'x,") = xi'x,. More precisely, if x;- - - x> and y;%1- - - y,8n
are nonempty reduced words on X with m < n, let k be the largest integer
(0 < k < m) such that x -2 = y=*1 for j = 0,1,...,k — 1. Then define

xMe . -xm_k"'""‘yk+18"+’- ey Snif k< omg

QaM- - X ) (gt - -y, By = ymlﬁmu. sy if k=m < n
1 iff k=m=n.

If m > n, the product is defined analogously. The definition insures that the product
of reduced words is a reduced word.

Theorem 9.1. If X is a nonempty set and F = F(X) is the set o f all reduced words on
X, then ¥ is a group under the binary operation defined above and F = (X).

The group F = F(X) is called the free group on the set X. (The terminology “free”
is explained by Theorem 9.2 below.)

SKETCH OF PROOF OF 9.1. Since 1 is an identity element and x;%- - - x,,%»
has inverse x,~% - - - x;7%, we need only verify associativity. This may be done by in-
duction and a tedious examination of cases or by the following more elegant device.
Foreach x = X and § = +1 let x| be the map F — F given by 1}- x% and

N SUNNY IR xbxydee b if X0 x o
Xyt -0 R _ .
i xfax,bn i xX0=x"h(=1ifn=1).

Since [x|lx™!| = I = |x71|x|, every [x® is a permutation (bijection) of F (with in-
verse |x~?[) by (13) of Introduction, Section 3. Let A(F) be the group of all permuta-
tions of F (see page 26) and F; the subgroup generated by {|x| | x ¢ X}. The map
¢ 1 F— F; given by 1}— 1, and x,%- - - x5 |- |x]- - -|x,?| is clearly a surjection
such that p(wiwy) = p(wi)e(w,) for all w; e F. Since 1} x;- - - x,%» under the map
lx®1] - - - [x,84], it follows that ¢ is injective. The fact that F, is a group implies that
associativity holds in F and that ¢ is an isomorphism of groups. Obviously
F=(X). m

Certain properties of free groups are easily derived. For instance if |X| > 2,
then the free group on X is nonabelian (x,y ¢ X and x = y = x Yy 1xy is reduced
= x7ly7xy £ | = xy # yx). Similarly every element (except 1) in a free group has
infinite order (Exercise 1). If X = {a}, then the free group on X is the infinite cyclic
group (a) (Exercise 2). A decidedly nontrivial fact is that every subgroup of a free
group is itself a free group on some set (see J. Rotman [19]).

Theorem 9.2. Let F be the free group on a set X and « : X — F the inclusion map. If G
is a group and f : X — G a map of sets, then there exists a unique homomorphism of
groups £ : F — G such that f. = f. In other words, F is a free object on the set X in the
category of groups.
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REMARK. If F’is another free object on the set X in the category of groups (with
A : X — F’), then Theorems 7.8 and 9.2 imply that there is an isomorphism ¢ : F = F’
such that ¢« = A. In particular A\(X) is a set of generators of F’; this fact may also be
proved directly from the definition of a free object.

SKETCH OF PROOF OF 9.2. Define f(1) = e and if x,%- - - x,,% is a nonempty
reduced word on X, define f(x®---x,%%) = f(x1)f(x2)®- - - f(x,)®". Since G is a
group and &; = +1, the product f(x;)%- - - f(x,)’" is a well-defined element of G.
Verify that fis a homomorphism such that fi = f. If g : F— G is any homomor-
phism such that gt = f, then g(x- - -x,%%) = g(x;%)- - - g(x,tn) = glx)™- - -g(x,)n
= gilx)?- - -gulxn)?m = f(x)%- - - f(x,)8 = f(x1%- - - x,57). Therefore fis unique. m

Corollary 9.3. Every group G is the homomorphic image of a free group.

PROOF. Let X be a set of generators of G and let F be the free group on the set
X. By Theorem 9.2 the inclusicn map X — G induces a homomorphism f : F— G
such that x }» x ¢ G. Since G = {X), the proof of Theorem 9.2 shows that fis an
epimorphism. m

An immediate consequence of Corollary 9.3 and the First Isomorphism Theorem
is that any group G is isomorphic to a quotient group F/N, where G = (X)), Fis the
free group on X and N is the kernel of the epimorphism F — G of Corollary 9.3.
Therefore, in order to describe G up to isomorphism we need only specify X, F, and
N. But F is determined up to isomorphism by X (Theorem 7.8) and N is determined
by any subset that generates it as a subgroup of F. Now if w = x;%---x,%ne Fis a
generator of N, then under the epimorphism F— G, wpo x,%- - -x,%" = ec G.
The equation x,%- - - x,%» = e in G is called a relation on the generators x;. Clearly a
given group G may be completely described by specifying a set X of generators of G
and a suitable set R of relations on these generators. This description is not unique
since there are many possible choices of both X and R for a given group G (see
Exercises 6 and 9).

Conversely, suppose we are given a set X and a set Y of (reduced) words on the
elements of X. Question: does there exist a group G such that G is generated by X and
all the relations w = e (w ¢ Y) are valid (where w = x;%- - - x,,°» now denotes a product
in G)? We shall see that the answer is yes, providing one allows for the possibility
that in the group G the elements of X may not all be distinct. For instance, if a,b ¢ X
and @'b7! is a (reduced) word in Y, then any group containing a,b and satisfying
alhb™! = e must have @ = b.

Given a set of “generators” X and a set Y of (reduced) words on the elements of X,
we construct such a group as follows. Let F be the free group on X' and N the normal
subgroup of F generated by Y.3 Let G be the quotient group F/ N and identify X with
its image in F/ N under the map X C F— F/N; as noted above, this may involve
identifying some elements of X with one another. Then G is a group generated by X
(subject to identifications) and by construction all the relations w = e (we Y) are
satisfied (w = x®- - x,ne Y = ;% - - x,0n g N = x,>"N---x,®"N = N; that 1is,
x1¥t- x5 = ein G = F/N).

3The normal subgroup generated by a set. S C Fis the intersection of all normal subgroups
of F that contain S; see Exercise 5.2.
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Definition 9.4. Ler X be a set and Y a set of (reduced) words on X. A group G is said
to be the group defined by rhe generators x ¢ X and relations w = e (w ¢ Y) provided
G = F/N, where F is the free group on X and N the normal subgroup of F generated
by Y. One says that (X | Y) is a presentation of G.

The preceding discussion shows that the group defined by given generators and
relations always exists. Furthermore it is the largest possible such group in the
following sense.

Theorem 9.5. (Van Dyck) Let X be a set, Y a set of (reduced) words on X and G the
group defined by the generators x ¢ X and relations w = e (w ¢ Y). IfH is any group
such that H = (X) and H satisfies all the relations w = e (w ¢ Y), then there is an
epimorphism G — H.

REMARK. The elements of Y are being interpreted as words on X, products in
G, and products in H as the context indicates.

PROOF OF 9.5. If F is the free group on X then the inclusion map X — H in-
duces an epimorphism ¢ : F — H by Corollary 9.3. Since H satisfies the relations
w=e(weY), Y C Ker ¢. Consequently, the normal subgroup N generated by Yin
F is contained in Ker ¢. By Corollary 5.8 ¢ induces an epimorphism F/N — H/0.
Therefore the composition G = F/N — H/0 = H is an epimorphism. m

The following examples of groups defined by generators and relations illustrate
the sort of ad hoc arguments that are often the only way of investigating a given pre-
sentation. When convenient, we shall use exponential notation for words (for ex-
ample, x?y~3 in place of xixly—1y—1y-1),

EXAMPLE. Let G be the group defined by generators a,b and relations a* = e,
@*b™* = e and abab™! = e. Since Qs, the quaternion group of order 8, is generated by
elements q,b satisfying these relations (Exercise 4.14), there is an epimorphism
¢ : G — Qs by Theorem 9.5. Hence |G| > |Qs| = 8. Let F be the free group on {a,b}
and N the normal subgroup generated by {a%,a’h%,abab™1}. It is not difficult to show
that every element of F/N is of the form aibiN with 0 < i < 3 andj = 0,1, whence
|Gl = |[F/N| < 8. Therefore |G| = 8 and ¢ is an isomorphism. Thus the group de-
fined by the given generators and relations is (isomorphic to) Qs.

EXAMPLE. The group defined by the generators a,b and the relations a" = e
(3 <neN*), b* = eand abab = e (or ba = a~'b) is the dihedral group D, (Exercise 8).

EXAMPLE. The group defined by one generator b and the single relation
m = e (m e N¥) is Z,, (Exercise 9).

EXAMPLE. The free group F on a set X is the group defined by the generators
x e X and no relations (recall that (J) = (e) by Definition 2.7). The terminology
“free” arises from the fact that F is relation-free.
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We close this section with a brief discussion of coproducts (free products) in the
category of groups. Most of the details are left to the reader since the process is quite
similar to the construction of free groups.

Given a family of groups { G | i € I} we may assume (by relabeling if necessary)
that the G; are mutually disjoint sets. Let X = |J G, and let {1} be a one-element set

el

disjoint from X. A word on X is any sequence (a,a, . - .) such that a; e X U {1} and
for some ne N*, a; = 1 for all i > n. A word (a,a2, . . .) 1s reduced provided:

(i) no a; € X is the identity element in its group G;;

(ii) for all i,j > 1, a; and a.;, are nor in the same group G;;

(iii) @ = 1implies a; = 1 for alli > k.
In particular 1 = (1,1,...) is reduced. Every reduced word (1) may be written
uniquely as aias- - -a. = (an,a, - - -, an,l,1, .. .), where a; e X.

Let H*G,,- (or G, * Gy *- - -* G, if I is finite) be the set of all reduced words on X.
iel

H*G,- forms a group, called the free product of the family { G; | ie I}, under the
rel :
binary operation defined as follows. 1 is the identity element and the product of two
reduced words (54 1) essentially is to be given by juxtaposition. Since the juxtaposed
product of two reduced words may not be reduced, one must make the necessary
cancellations and contractions. For example, if a;,b; ¢ G; for i = 1,2,3, then
(ala:aaz)(az_lb-zblbs) = aicsbb; = (al,C-z,bl,bs,],l, 8 o .), where ¢, = asb: ¢ Gs. Finally,

for each k e I the map . : Gk—>H*G,- given by el—» 1 and al>a = (a,1,1,.. ) isa
zel

monomorphism of groups. Consequently, we sometimes identify G, with its iso-

morphic image in H*Gi (for example Exercise 15).
iel

Theorem 9.6. Ler {G; | i1} bea family of groups and H*Gi their free product. If
el
i : Gi— H |iel} is a family of group homomorphisms, then there exists a unique

homomorphism { : H*Gi — H such that Y = i for all i € 1 and this property deter-
1el
mines H*Gi uniquely up to isomorphism. In other words, H*Gi is a coproduct in the
iel vel
category of groups.

SKETCH OF PROOF. If a,a,- - -a, is a reduced word in | [ *G, with a, € G,
el
define Y(a: - - -a.) to be Yy (@Wifaz)- - - ¥ila)e H m

EXERCISES
1. Every nonidentity element in a free group F has infinite order.

2. Show that the free group on the set {a} is an infinite cyclic group, and hence
isomorphic to Z,

3. Let F be a free group and let N be the subgroup generated by the set {x" | x e F,
n a fixed integer}. Show that N < F.

4. Let F be the free group on the set X, and let Y C X. If H is the smallest normal
subgroup of F containing Y, then F/H is a free group.
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10.

11.
12.

13.
14.

15.

. The group defined by generators a,b and relations a® = b%a* = ab~'ab = e has

order at most 16.

. The cyclic group of order 6 is the group defined by generators a,b and relations

a® = b = ablab = e.

Show that the group defined by generators a,b and relations a2 = e, b® = e is in-
finite and nonabelian,

The group defined by generators a,b and relations a = e 3 < ne N*), b2 = e
and abab = e is the dihedral group D,. [See Theorem 6.13.]

. The group defined by the generator b and the relation 5™ = e (m ¢ N*) is the

cyclic group Z,,.

The operation of free product is commutative and associative: for any groups
ABC AxB=~BxAand A*(B*C)=(4*B)*C.

If N is the normal subgroup of 4 x B generated by 4, then (4 * B)/N = B.

If G and H each have more than one element, then G * H is an infinite group
with center (e).

A free group is a free product of infinite cyclic groups.

If G is the group defined by generators a,b and relations a*> = e, b* = e, then
G = Z, * Z;. [See Exercise 12 and compare Exercise 6.]

If f : G — G, and g : H — H, are homomorphisms of groups, then there is a
unique homomorphism # : Gy * Hy — Gy * Hysuchthath | G, = fandh | Hy = g.



cHAPTER ||

THE STRUCTURE
OF GROUPS

We continue our study of groups according to the plan outlined in the introduction
of Chapter I. The chief emphasis will be on obtaining structure theorems of some
depth for certain classes of abelian groups and for various classes of (possibly non-
abelian) groups that share some desirable properties with abelian groups. The
chapter has three main divisions which are essentially independent of one another,
except that results from one may be used as examples or motivation in the others.
The interdependence of the sections is as follows.

3 4
:
6/ \7————-8

Most of Section 8 is independent of the rest of the chapter.

DY g et

1. FREE ABELIAN GROUPS

We shall investigate free objects in the category of abelian groups. As is the usual
custom when dealing with abelian groups additive notation is used throughout this
section. The following dictionary may be helpful.

ab. . .. a+ b
7 —a

CRNE e A N - el - A 0

7 e U na
abrl. .. ..U e e e R a—b
HK. .. . e H+ K
aH . ... ... . ... e at+ H
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(R O - L GO H
HNV K.... .. ... . ... H+ K

| § 7 > G

sel [3 4

weak direct product .............. direct sum

For any group G in additive notation, (m + n)a = ma + na(ae G; mpn ¢ Z). If
the group is abelian, then m(a + b) = ma + mb. If X is a nonempty subset of G,
then by Theorem I.2.8 the subgroup (X) generated by X in additive notation consists
of all linear combinations n;x; + nyxs +- - - + mexs (s € Z, x; € X). In particular, the
cyclic group {(x) is {nx | ne Z}.

A basis of an abelian group F is a subset X of F such that 1) F = (X); and (ii) for
distinct x1,x2, ..., x,eX and n; e Z,

mxi +nexe +-- -+ mx, =0 = n = 0 for everyi.

The reader should not be misled by the tempting analogy with bases of vector spaces
(Exercise 2).

Theorem 1.1. The following conditions on an abelian group F are equivalent.

(1) F has a nonempty basis.
(i) F is the (internal) direct sum of a family of infinite cyclic subgroups.
(ii1) F is (isomorphic to) a direct sum of copies of the additive group Z of integers.
(iv) There exists a nonempty set X and a function « : X — F with the following
property: given an abelian group G and function f : X — G, there exists a unique homo-
morphism of groups f : F — G such that fu = . In other words, F is a free object in the
category of abelian groups.

An abelian group F that satisfies the conditions of Theorem 1.1 is called a free
abelian group (on the set X). By definition the trivial group 0 is the free abelian group
on the null set .

SKETCH OF PROOF OF 1.1. (i) = (ii) If X is a basis of F, then for each
xeX,nx = 0if and only if n = 0. Hence each subgroup {x) (x e X)is infinite cyclic
(and normal since F is abelian). Since F = (X), we also have F = ({J (x)). If for

zeX

some z ¢ X, (z) N (U (x)) > 0, then for some nonzero ne Z, nz = nux + - - - + mexs
zeX

x#z
with z,x,, . . ., x; distinct elements of X, which contradicts the fact that X is a basis.
Therefore (z) M (UJ (x)) = 0 and hence F = ) (x) by Definition .8.8.

reX reX

LFHEZ

(ii) = (iii) Theorems 1.3.2, 1.8.6, and 1.8.10.

(iii)) = (i) Suppose F =~ Z Z and the copies of Z are indexed by a set X. For each
x e X, let 6, be the element {u;} ofz Z, where u; = 0 for i * x, and u, = 1. Verify
that {6, | x e X} is a basis of Z Z and use the isomorphism F = Z Z to obtain a
basis of F.

(i) = (iv) Let X be a basis of F and ¢ : X — F the inclusion map. Suppose we are
given amap f: X — G. IfueF, then u = nmx; +- - - + muxa (n:e Z; x; ¢ X) since X

k

generates F. If u = muxy + - - - + myxy, (my e Z), then Z (n; — my)x; = 0, whence

i=1
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n; = m; for every i since X is a basis. Consequently the map f : F— G, given by
k

fw)=f (Z m—x,-) = m f(x) +- - -+ n f(x1), 1s a well-defined function such that
i=1
fi = f.Since G is abelian f is easily seen to be a homomorphism. Since X generates
F, any homomorphism F — G is completely detemined by its action on X. Thus
if g : F— G is a homomorphism such that g« = f, then for any x e X g(x) = g(«(x))
= f(x) = f(x), whence g = fand fis unique. Therefore, by Definition 1.7.7 F is
a free object on the set X in the category of abelian groups.

(iv) = (iii). Given ¢ : X — F, construct the direct sum Z Z with the copies of Z
indexedby X.Let Y = {6, ]| x e X} be a basis ofz Z as in the proof of (iii) = (i).
The proof of (iii) = (i) = (iv) shows that Z Z.is a free object on the set Y. Since we
clearly have [X| = |Y|, F~ ) Z by Theorem1.7.8. m

Given any set X, the proof of Theorem 1.1 indicates how to construct a free
abelian group F with basis X. Simply let F be the direct su_mZZ, with the copies of Z
indexed by X. As in the proof of (iii) = (i), {6. | x e X} isa basis of F = ZZ, and F is
free on the set {6, | x e X'}. Since the map « : X — F given by x |- 6. is injective it
follows easily that F is free on X in the sense of condition (iv) of Theorem 1.1. In this
situation we shall identify X with its image under ¢ so that X C F and the cyclic sub-

group {6,) = {nb, | nc Z} = Z6,is written (x) = Zx. In this notation F = Y _ (8,)is
zeX

written F = Z Zx, and a typical element of F has the form mx; +- - -+ mxy
zeX

(n. e Z, x; ¢ X). In particular, X = «(X) is a basis of F.

Theorem 1.2. Any two bases of a free abelian group ¥ have the same cardinality.

The cardinal number of any basis X of the free abelian group F is thus an invari-
ant of F; |X| is called the rank of F.

SKETCH OF PROOF OF 1.2. First suppose F has a basis X of finite cardinal-
ity nsothat F~Z @®- - - Z (n summands). For any subgroup G of F verify that
2G = {2u| u e G} is a subgroup of G. Verify that the restriction of the isomorphism
F=Z®---@Z to 2F is an isomorphism 2F = 2Z @---@ 2Z, whence
FRRF=Z2Z.P - - PZ/2Z>=7,&- --P Z, (n summands) by Corollary 1.8.11.
Therefore |[F/2F| = 2=. If Y is another basis of F and r any integer such that |Y| > r.
then a similar argument shows that [F/2F| > 27, whence 2 < 2»and r < »n. It follows
that |Y| = m < n and [F/2F| = 2™ Therefore 2" = 27 and |[X| = n=m = |Y|.

If one basis of F is infinite, then all bases are infinite by the previous paragraph.
Consequently, in order to complete the proof it suffices to show that |X| = [F], if X
is any infinite basis of F. Clearly [X] < |F|.LetS = |J X7, whereX™ = X X---X X

nelN*
(n factors). For each s = (xy, . . ., x,) €S let G, be the subgroup {xi, . . . , X»). Then
G.=Zy D --@ Zy, where y, ...,y (t < n) are the distinct elements of
{x1,...,x.}. Therefore, |Gs| = |Z! = |Z] =N o by Introduction, Theorem 8.12.
Since F = |J G., we have |F| = [U G, < [S|No by Introduction, Exercise 8.12.

se8 seS
But by Introduction, Theorems 8.11 and 8.12, |S| = | X|, whence |F| < |X[N, = |X].

Therefore |F| = | X| by the Schroeder-Bernstein Theorem. =
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Proposition 1.3. Let F, be the free abelian group on the set X, and F, the [free abelian
group on the set Xo. Then ¥\ = ¥, ifand only if ¥\ and F, have the same rank (that is,
[Xa| = [Xel).

REMARK. Proposition 1.3 is also true for arbitrary nonabelian free groups (as
in Section 1.9); see Exercise 12.

SKETCH OF PROOF OF 1.3. If a : F, == F,, then a(X)) is a basis of F.,
whence |Xi| = |a(X))| = |X:| by Theorem 1.2. The converse is Theorem 1.7.8. m

Theorem 1.4. Every abelian group G is the homomorphic image of a free abelian
group of rank |X|, where X is a set of generators of G.

PROOF. Let F be the free abelian group on the set X. Then F = Z Zx and rank
zeX

F = |X|. By Theorem 1.1 the inclusion map X — G induces a homomorphism
f : F— G such that 1x |- x ¢ G, whence X C Im f- Since X generates G we must
havelm f= G. m

We now prove a theorem that will be extremely useful in analyzing the structure
of finitely generated abelian groups (Section 2). We shall need

Lemma 1.5. If{x,, ..., xu} is a basis of a free abelian group F and a ¢ Z., then Jor all
15 ) {Xy, - oy X521,%; + @Xi,Xjp, - « -, Xn) is also a basis of F.

PROOF. Since x; = —ax; + (x; + ax)), it follows that F = (ery vo vy XX +
axXiXip1y - o, Xa)o If ko 4+ -+ kilx; + ax)) +-- -+ kuxn = 0 (k; e Z), then
k1X1 +---+ (k,' + k,-a)x,— + . + ij,' + .- + k,,Xn = 0, which 1mplles that ki = 0
forallz. m

Theorem 1.6. If F is a free abelian group of finite rank n and G is a nonzero subgroup

of F, then there exists a basis {xi, . .., %,} of F, anintegerr(1 <r < n) and positive
integers d, . . ., d; such that d,|d;|---|d, and G is free abelian with basis
{dixy, ..., dixe .

REMARKS. Every subgroup of a free abelian group of (possibly infinite) rank o
is free of rank at most «; see Theorem IV.6.1. The notation “d, |dy|...|d” means
“d, divides d,, d, divides d;, etc.”

PROOF OF 1.6. If n = 1,then F = (x) = Zand G = {dix,) = Z (d; e N*) by
Theorems 1.3.5, 1.3.1, and 1.3.2. Proceeding inductively, assume the theorem is true
for all free abelian groups of rank less than n. Let S be the set of all those integers s
such that there exists a basis {yi, ..., y.} of F and an element in G of the form
sy1 + koye + - - -+ knyn (ki € Z). Note that in this case {Vo,1,03, - . ., ¥} is also a
basis of F, whence k,e S; similarly k; ¢S for j = 3,4,...,n. Since G = 0, we have
S # (J. Hence S contains a least positive integer d, and for some basis {V1s -« vy ¥n)
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of F there exists ve G such that v = diy; + koys + - - -+ kny.. By the division
algorithm for each i=2,...,nk: =dg + r. with 0<r <d, whence
v=dOh+ @yt Goyn) Frave oo raya.Letxy = yi+ qaya + - - gnyn;
then by Lemma 1.5 W = {x1,)3, ..., )=} isabasisof F.Sincev e G,r; < diand Win
any order is a basis of F, the minimality of & in S impliesthat0 = ro = r; =---=r,
sothatdix; = ve G.

Let H = {y5,ys, - . ., y»). Then H is a free abelian group of rank n — 1 such that
F=(x) @ H. Furthermore we claim that G = (v) P (G N H) = {dx,) D(G N H).
Since {x1,z, . - ., ¥} isabasisof F, {v) N (G N H) = 0.Ifu = tix1 + toy2 +- -+
t.yn € G (t: ¢ Z), then by the division algorithm f = digy + n with 0 < n < d.
Thus G contains ¥ — qiv = rix1 + fy2 + -+ -+ t2)». The minimality of dy in S im-
plies that r, = 0, whence t,y> +- - -+ 1.y, € G N Handu = qivo + (t2y2 + - - - + tay)-
Hence G = (v) + (G N H), which proves our assertion (Definition 1.8.8).

Either G N H = 0, in which case G = {dix;) and the theorem is true or
G N H # 0. Then by the inductive assumption there is a basis {xs,x3, . . . , xn} Of H
and positive integers r,dsds, . . . ,d, such that d|d;|---|d, and G N H is free
abelian with basis {dyx,, . . . , d.x,}. Since F = {(x,) @ Hand G = (dix:) D (G N H),
it follows easily that {x1,xs, . . . , X»} is a basis of F and {dix, . . . , d-x.} is a basis of
G. To complete the inductive step of the proof we need only show that d, | d;. By the
division algorithm d:» = gdi + r, with 0 < ry < dh. Since {xg,x1 + gxo,xs, . .+, Xn}
is a basis of F by Lemma 1.5 and rexs + di(x; + gx2) = dixi + dox: € G, the mini-
mality of di in S implies that r, = 0, whence di | d>. ®

Corollary 1.7. IfG is afinitely generated abelian group generated by n elements, then
every subgroup H of G may be generated by m elements with m < n.

The corollary is false if the word abelian is omitted (Exercise 8).

PROOF OF 1.7. By Theorem 1.4 there is a free abelian group F of rank » and
an epimorphism = : F — G. = (H) is a subgroup of F, and therefore, free of rank
m < n by Theorem 1.6. The image under = of any basis of 77'(#) is a set of at most
m elements that generates m(7 Y(H)) = H. =B

EXERCISES

1. (@) If G is an abelian group and m¢Z, then mG = {mu|ue G} is a sub-

group of G.
(b) If G G, then mG == ) mG; and G/mG == ZI G./mG:.
iel iel ie
2. A subset X of an abelian group F is said to be linearly independent if n.x; +- - - +
nex. = 0always implies n; = O for all i (where n, ¢ Zand x, . . ., x, are distinct
elements of X).

(a) X is linearly independent if and only if every nonzero element of the sub-
group (X) may be written uniquely in the form nix; +- - - + mexx (ni & Zn; # 0,
X1, ..., Xx; distinct elements of X).

(b) If F is free abelian of finite rank n, it is nor true that every linearly
independent subset of # elements is a basis [Hint: consider F = Z|].
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10.

11.

12.

(c) If Fis free abelian, it is not true that every linearly independent subset of
F may be extended to a basis of F.

(d) If Fis free abelian, it is nor true that every generating set of F contains a
basis of F. However, if F is also finitely generated by n elements, F has rank
m < n.

. Let X = {a; | ie I} be a set. Then the free abelian group on X is (isomorphic to)

the group defined by the generators X and the relations (in multiplicative no-
tation) {aia,-ai"la,-‘l = e I i,je I} .

. A free abelian group is a free group (Section 1.9) if and only if it is cyclic.

. The direct sum of a family of free abelian groups is a free abelian group. (A

direct product of free abelian groups need not be free abelian; see L. Fuchs
(13, p. 168].)

.If F = Z Zx 1s a free abelian group, and G is the subgroup with basis

xeX
X' =X — {xo} for some x;¢ X, then F/G = Zx,. Generalize this result to ar-

bitrary subsets X’ of X.

. A nonzero free abelian group has a subgroup of index »n for every positive

integer .

. Let G be the multiplicative group generated by the real matrices a = ((2) (1))

1 1

nd b =
and ( 0 1
entries are 1, then H is a subgroup that is nor finitely generated.

). If H is the set of all matrices in G whose (main) diagonal

. Let G be a finitely generated abelian group in which no element (except 0) has

finite order. Then G is a free abelian group. [Hint: Theorem 1.6.]

(a) Show that the additive group of rationals Q is not finitely generated.

(b) Show that Q is not free.

(c¢) Conclude that Exercise 9 is false if the hypothesis “finitely generated” is
omitted.

(a) Let G be the additive group of all polynomials in x with integer coefficients.
Show that G is isomorphic to the group Q* of all positive rationals (under
multiplication). [Hinr: Use the Fundamental Theorem of Arithmetic to con-
struct an isomorphism.]

(b) The group Q* is free abelian with basis {p|p is prime in Z}.

Let F be the free (not necessarily abelian) group on a set X (as in Section 1.9) and
G the free group on a set Y. Let F’ be the subgroup of F generated by
{abab'|a,be F} and similarly for G'.

(@) FF A F, G’ G and F/F', G/G' are abelian [see Theorem 7.8 below].

(b) F/F' [resp. G/G'] is a free abelian group of rank |X] [resp. |Y]]. [Hint:
{xF' | xeX} is a basis of F/F'.]

(¢) F=~ G if and only if |X| = |Y|. [Hint: if ¢ : F = G, then ¢ induces an
isomorphism F/F' =~ G/G’. Apply Proposition 1.3 and (b). The converse
is Theorem 1.7.8.] .,
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2. FINITELY GENERATED ABELIAN GROUPS

We begin by proving two different structure theorems for finitely generated
abelian groups. A uniqueness theorem (2.6) then shows that each structure theorem
provides a set of numerical invariants for a given group (that is, two groups have the
same invariants if and only if they are isomorphic). Thus each structure theorem
leads to a complete classification (up to isomorphism) of all finitely generated abelian
groups. As in Section 1, all groups are written additively. Many of the results (though
not the proofs) in this section may be extended to certain abelian groups that are not
finitely generated; see L. Fuchs [13] or I. Kaplansky [17].

All of the structure theorems to be proved here are special cases of corresponding
theorems for finitely generated modules over a principal ideal domain (Section IV.6).
Some readers may prefer the method of proof used in Section IV.6 to the one used
here, which depends heavily on Theorem 1.6.

Theorem 2.1. Every finitely generated abelian group G is (isomorphic to) a finite
direct sum of cyclic groups in which the finite cyclic summands (if any) are of orders
my, ..., M, whereml >1 andml | m2|- "lmt-

PROOF. If G # 0 and G is generated by » elements, then there is a free abelian
group F of rank » and an epimorphism 7 : F — G by Theorem 1.4. If 7 is an iso-
morphism, then G =~ F~ Z - - - Z (n summands). If not, then by Theorem 1.6
there is a basis {x, . . ., x»} of Fand positive integers dy, . . . ,d, suchthat1 < r < n,
d|d.!|---|d and {dixi,...,dx} is a basis of K = Ker n. Now F = Z (x;) and

i=1

K = Z {dix;), where {x;)=Z and under the same isomorphism (d;x;) =~ diZ

i=1

— {du|ueZi. For i=r+1, r+2,...,nlet di=0 so that K = ) {dx:).

i=1

Then by Corollaries 1.5.7,1.5.8, and 1.8.11

G F/K =) {x:) [ 2 {dxsy = D (x)/{dixi) = D Z/diZ.
1i=1 i=1 i=1 1=1

If d =1, then Z/dZ = Z/Z = O; if d; > 1, then Z/dZ.==Z,; if d; = 0, then
Z/dZ = Z/0=Z.Letr,, ..., m bethosed;(in order) such thatd; # 0, 1 andlet s
be the number of d, such that d; = 0. Then

G=2,, @ ) '@th®(z®' ’ @Z)’

where m, > 1, m; | m, T - |myand (Z@---@ Z)hasrank s. =

Theorem 2.2. Every finitely generated abelian group G is (isomorphic to) a finite
direct sum ofcyclic groups, each o f which is either infinite or of order a power of a prime.

SKETCH OF PROOF. The theorem is an immediate consequence of Theorem
2.1 and the following lemma. Another proof is sketched in Exercise 4. =
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Lemma 2.3. If m is a positive integer and m = py™pg™- - -pt (py, . . . , Ps distinct
primes and each n; > 0), then Zm = Zym @ Zps @) - - - @ Zp,

SKETCH OF PROOF. Use induction on the number ¢ of primes in the prime
decomposition of / and the fact that

Z.,>=7Z,pZ, whenever (r,n) = 1,

which we now prove. The element n = nl € Z,, has order r (Theorem 1.3.4 (vii)),
whence Z, = (nl) < Z,, and the map ¢1: Z, — Z,, given by k }— nk is a monomor-
phism. Similarly the map ¢»: Z, — Z,, given by k |- rk is a monomorphism. By the
proof of Theorem 1.8.5 the map ¥ : Z, @ Z, — Z,, given by (x,y) = Y1(x) + Yoy) =
nx + ry is a well-defined homomorphism. Since (r,n) = 1, ra + nb = 1 for some
a,be Z (Introduction, Theorem 6.5). Hence k = rak 4 nbk = Y(bk,ak) for all
keZ,,andy is an epimorphism. Since |Z, P Z,| = rn = |Z,.|, ¥ must also be a
monomorphism. &

Corollary 2.4. IfG is a finite abelian group of order n, then G has a subgroup of order
m for every positive integer m that divides n.

k
SKETCH OF PROOF. Use Theorem 2.2 and observe that G 2= Y G; implies

i=1

that |G| = |G\||G,|- - -|Gi| and fori < r,piZ,, >~ Z ;by Lemma 2.5 (v) below. m
REMARK. Corollary 2.4 may be false if G is not abelian (Exercise 1.6.8).

In Theorem 2.6 below we shall show that the orders of the cyclic summands in the
decompositions of Theorems 2.1 and 2.2 are in fact uniquely determined by the group
G. First we collect a number of miscellaneous facts about abelian groups that will be
used in the proof.

Lemma 2.5. Let G be an abelian group, m an integer and p a prime integer. Then each
of the following is a subgroup of G:

() mG = {[mu|ueG};

(1) GIm] = {ue G| mu = 0};

(i) G(p) = {ue G| |u| = p" for some n > 0};

(iv) G, = {ue G| |u] is finite}.
In particular there are isomorphisms

W Z,.pl=2Z,(n>1)and P"Lyp =Z o (M < n).
Let H and G; (ieX) be abelian groups.

i) Ifg:G — ZI: Gi is an isomorphism, then the restrictions of g to mG and G[m]
respectively are isomorphisms mG = z;, mG; and G[m] =~ E Gi[m].

ie iel

(vii) Iff : G — H is an isomorphism, then the restrictions of f to G, and G(p) re-

spectively are isomorphisms G, = H, and G(p) = H(p).
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SKETCH OF PROOF. (i)—-(iv) are exercises; the hypothesis that G is abelian is
essential (S; provides counterexamples for (i)-(iii) and Exercise 1.3.5 for (iv)).
(v) p"'eZ,, has order p by Theorem 1.3.4 (vii), whence (pry=Z, and {(p")
< Z.[p). f ueZ,[p)], then pu = 0 in Z . so that pu = 0 (mod p™) in Z. But p* | pu
implies p~~1 | u. Therefore, inZ .., u e (p"™*) and Z .[p] < (p"*). For the second state-
ment note that p™ e Z,, has order p»™ by Theorem 1.3.4 (vii). Therefore pZ .
= (p") =Z n—m. (Vi) is an exercise. (vii) If /:G — H is a homomorphism and x ¢ G(p)
has order p», then p*f(x) = f(p"x) = f(0) = 0. Therefore f(x)e H(p). Hence
f : G(p) — H(p). If fis an isomorphism then the same argument shows that
f1: H(p) — G(p). Since ff 1 = 1y, and 7Y = 1o, G(p) = H(p). The other con-
clusion of (vii) is proved similarly. m

If G is an abelian group, then the subgroup G defined in Lemma 2.5 is called the
torsion subgroup of G. If G = G,, then G is said to be a torsion group. If G; = 0, then
G is said to be torsion-free. For a complete classification of all denumerable torsion
groups, see 1. Kaplansky [17]. ’

Theorem 2.6. Let G be a finitely generated abelian group.

(1) There is a unique nonnegative integer s such that the number of infinite cyclic
summands in any decomposition of G as a direct sum of cyclic groups is precisely s;

(ii) either G is free abelian or there is a unique list of (not necessarily distinct)
positive integers my, . . . ,my such that m; > 1, my | mg|- - -| my and

G2Zn®P - PZn,DF

with F free abelian;

(iii) either G is free abelian or there is a list of positive integers p\*, . . . , px*,
which is unique except for the order of its members, such that p, . . ., px are (not
necessarilv distinct) primes, s,, . . . , Sx are (not necessarily distinct) positive integers
and

G=72®..DZ,xDF

with F free abelian.

PROOF. (i) Any decomposition of G as a direct sum of cyclic groups (and there is
at least one by Theorem 2.1) yields an isomorphism G =~ H @ F, where H is a direct
sum of finite cyclic groups (possibly 0) and F is a free abelian group whose rank is
precisely the number s of infinite cyclic summands in the decomposition. If
« : H— H @ F is the canonical injection (A | (h,0)), then clearly «(H) is the torsion
subgroup of H@ F. By Lemma 2.5, G, = «(H) under the isomorphism G = H(P F.
Consequently by Corollary 1.5.8, G/G. =~ (F @ H)/(H) = F. Therefore, any
decomposition of G leads to the conclusion that G/G; is a free abelian group whose
rank is the number s of infinite cyclic summands in the decomposition. Since G/ G
does not depend on the particular decomposition and the rank of G/G; is an
invariant by Theorem 1.2, s is uniquely determined.

(iii) Suppose G has two decompositions, say

T d
ngznt®F and G=szj®F’,

i=1 i=1
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with each n;,k; a power of a prime (different primes may occur) and F,F’ free abelian;
(there is at least one such decomposition by Theorem 2.2). We must show that r = d
and (after reordering) n; = k, for every i. It is easy to see that the torsion subgroup of
Z Zy, @ Fis (1somorph1c to) Z Z,; and similarly for the other decomposition.

Hence Z 2, =0 = Z Z,; by Lemma 2.5. For each prime p, (Z Z,.X(p) is obvi-
i=1 7=1

ously (isomorphic to) the direct sum of those Z,,; such that »; is a power of p and sim-

ilarly for the other decomposition. Since (Z Z,Xp) = (Z Z.)(p) for each prime p

by Lemma 2.5, it suffices to assume that G = G, and each n;,k; is a power of a fixed

prime p (so that G = G(p)). Hence we have

d
ZZa,: gZZPCj(l Safal--La;1<afal---<c).
i=1 i=1

We first show that in any two such decompositions of a group we must have
r = d. Lemma 2.5 and the first decomposition of G show that

Glp)=Y  Zulpl =Z,®- - -@Z, (r ummands),
=1

whence |G[p]| = p’. A similar argument with the second decomposition shows that
|Glp)l = p?. Therefore, pr = p? and r = d.

Let v(1 < v < r) be the first integer such that a; = ¢; for alli < vand a, # c,.
We may assume that a. < c¢,. Since p®Z o, = 0 for a; < a,, the first decomposi-
tion and Lemma 2.5 imply that

a"’G NZ[)“"’Z a; == Z 4 i Cvs

=1 i=v+1

with a, s — a, < avy2 — a, < - - - < a, — a,. Clearly, there are at most r — (v + 1) +
1 = r — v nonzero summands. Similarly since a; = ¢; for i < v and a, < ¢, the
second decomposition implies that i

T
pavG = Z chi—av,

1=vp

withl < ¢, — a, < cpy1 — a, <- - - < ¢, — a,. Obviously there are at least r — v 4 1
nonzero summands. Therefore, we have two decompositions of the group p*G as a
direct sum of cyclic groups of prime power order and the number of summands in
the first decomposition is less than the number of summands in the second. This
contradicts the part of the Theorem proved in the previous paragraph (and applied
here to p**G). Hence we must have a; = ¢; for all /.

(ii) Suppose G has two decompositions, say

G=Z, O -®Z,.OFand G=Z,,P--- PZ.,DF

withm, > 1, my | mo |-« -|me, ks > 1, ki | ko |- - -| kqand F, F” free abelian; (one such
decomposition exists by Theorem 2.1). Each m,,k; has a prime decomposition and
by inserting factors of the form p°® we may assume that the same (distinct) primes
Py, ..., pr occur in all the factorizations, say
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— pllllll)gﬂ pglr kl . pll:ll €12, pfxr
m2 = pl p¢2122 p??r k —_ p¢1:21p622 p:Zr
m, = pipy®---pit kg = pipy*- - -pyr.
Since m1y | mg |- - - | m,, we must have for each j, 0 < a1; < az; <- - < ay;. Similarly
1 1 1

0 < ¢1; < €95 <+ -+ < ¢y; for each j. By Lemmas 2.3 and 2.5

Z Lpfii = Z Zn; = Ge = Z Ly = Z Ly fis,
iJ

i=1 1=1

where some summands may be zero. It follows that foreachj = 1,2,...,r

Z Z,0: 22 G(py) = Z Z, i

i=1
[ 4

Since 1, > 1, there is some p; such that 1 < ay; <+ -+ < a4, whence Z Z,ihas t
d i=1

nonzero summands. By (iii) ZZ,,;.,- has exactly r nonzero summands, whence
i=1

t < d. Similarly k, > 1implies thatd < tand hence d = t. By (iii) we now must have
a; = cy for all i,j, which implies that m; = k;fori=12,...,1 n

If G is a finitely generated abelian group, then the uniquely determined integers
m, . . ., m as in Theorem 2.6 (ii) are called the invariant factors of G. The uniquely
determined prime powers as in Theorem 2.6 (iii) are called the elementary divisors
of G.

Corollary 2.7. Two finitely generated abelian groups G and H are isomorphic if and
only if G/G, and H/H, have the same rank and G and H have the same invariant
factors [resp. elementary divisors).

PROOF. Exercise. ®

EXAMPLE. All finite abelian groups of order 1500 may be determined up to
isomorphism as follows. Since the product of the elementary divisors of a finite
group G must be |G| and 1500 = 22.-3-53, the only possible families of elementary di-
visors are {2,2,3,5%}, 12,2,3,5,5%}, {2,2,3,5,5,5}, {22,3,5%}, {223,5,5%} and {2%3,5,5,5}.
Each of these six families determines an abelian group of order 1500 (for example,
{2,2,3,5%} determines Z; P Z, P Z; @ Z.2s). By Theorem 2.2 every abelian group of
order 1500 is isomorphic to one of these six groups and no two of the six are iso-
morphic by Corollary 2.7.

If the invariant factors m, . .., m, of a finitely generated abelian group G are
known, then the proof of Theorem 2.6 shows that the elementary divisors of G are
the prime powers p* (n > 0) which appear in the prime factorizations of m,, . . . , m..
Conversely if the elementary divisors of G are known, they may be arranged in the
following way (after the insertion of some terms of the form p° if necessary):
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ni ,,n12 nir

Py sPg s« - o5 Dy

nir

pl'ln’p;.z” ... ’pr

N N2 Ner
Pi P2 -« sDr

where p,, . . ., pr are distinct primes; foreachj = 1,2,. .., r,0 < m; < ng; < - < myj
with some n;; % 0; and finally n,; # O for some j. By the definition of elementary

t r
divisors (Theorem 2.6 (iii)), G = Z Z Zymij @ F where F is free abelian (and some
i=15=1
finite summands are 0, namely those with p/*/ = p,* = 1). Foreach i = 1,2,...,¢
let m; = p"py@- - -pI' (that is, m; is the product of the ith row in the array above).

Since some m; # 0, rm > 1 and by construction m | mz |-+ -| m.. By Lemma 2.3

¢ 7 ¢
G =~ Z (Z ijn,-,-) P F= E Z,,; @ F. Therefore, m, . .. , m, are the invariant
i=1 \7=1 -

1=1

factors of G by Theorem 2.6 (ii).

EXAMPLE. If G is the group Zs B Zis B Zs P Zz E Zs, then by Lemma 2.3
CEZ:D(ZsPZ) D Zis D (Zs D Z) D (Zor @ Z). Hence the elementary divi-
sors of G are 2,2%,3,3%,3%5,5,52 which may be arranged as explained above:

2, 3, 5
2, W82 8S
22, 8% 5%

Consequently the invariant factors of G are 1-3-5 = 15, 2.32.5 = 90, and
22.33.52 = 2700 so that G EZH @Zgo @szo.

A topic that would fit naturally into this section is the determination of the struc-
ture of a finitely generated abelian group which is described by generators and rela-
tions. However, since certain matrix techniques are probably the best way to handle
this question, it will be treated in the Appendix to Section VII.2. The interested
reader should have little or no difficulty in reading that material at the present time.

EXERCISES

1. Show that a finite abelian group that is not cyclic contains a subgroup which is
isomorphic to Z, @ Z, for some prime p.

2. Let G be a finite abelian group and x an element of maximal order. Show that {x)
is a direct summand of G. Use this to obtain another proof of Theorem 2.1.

3. Suppose G is a finite abelian p-group (Exercise 7) and x e G has maximal order.
If y € G/(x) has order p, then there is a representative y £ G of the coset y such
that [y| = p". [Note that if |x| = p?, then p'G = 0.]

4. Use Exercises 3 and 7 to obtain a proof of Theorem 2.2 which is independent of
Theorem 2.1. [Hint: If G is a p-group, let x ¢ G have maximal order; G/{x) is a
direct sum of cyclics by induction, G/{x) = (¥,) @ - - - @ (x,), with |x| = p~
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10.

11.

12.

13.

14.

15.

and1 < r, < r, <--- < r,. Choose representatives x; of X; such that |x;| = [%.
Show that G = {(x;) P - - (xn) @ (x) is the desired decomposition.]

. If G is a finitely generated abelian group such that G/G, has rank n, and His a

subgroup of G such that H/H, has rank m, then m < n and (G/H)/(G/H), has
rank n — m.

. Letk,me N*.If (k,m) = 1,then kZ,, = Z,and Z,,[k] = 0.1f k | m,saym = kd,

then kZ,, = Z; and Z,.[k] = Z;.

. A (sub)group in which every element has order a power of a fixed prime p is

called a p-(sub)group (note: |0]= 1= p°). Let G be an abelian torsion group.

(@) G(p)is the unique maximum p-subgroup of G (that is, every p-subgroup of
G is contained in G(p)).

(b) G = E G(p), where the sum is over all primes p such that G(p) #= 0.
[Hint: If |u] = pi™- - - pet, let m; = |u|/p. There exist ¢; € Z such thatcumy +- - -
+ comn, = 1, whence u = cirmu + - - - + comeu;; but comsu e G(p)).]

(c) If H is another abelian torsion group, then G = H if and only if
G(p) == H(p) for all primes p.

A finite abelian p-group (Exercise 7) is generated by its elements of maximal
order.

How many subgroups of order p? does the abelian group Z 3 @sz have?

(a) Let G be a finite abelian p-group (Exercise 7). Show that for each n > 0,
p"H1G ) G[p] is a subgroup of p»G N G[p).

(b) Show that (p=G N G[p])/(p"1'G N G[p]) is a direct sum of copies of Z,; let
k be the number of copies.

(c) Write G as a direct sum of cyclics; show that the number & of part (b) is the
number of summands of order p™*.

Let G, H, and K be finitely generated abelian groups.

@ fGAHG=H@® H, then G = H.

G IfFGEH H=GP K, then H =K.

(c) If G, is a free abelian group of rank X,,then G, (P ZPZ=G D Z,
but ZADZEZ.
Note: there exists an infinitely generated denumerable torsion-free abelian group
Gsuchthat G=G@ G@ G, but G % G @ G, whence (a) fails to hold with
H= G@® G.See A.L.S. Corner [60]. Also see Exercises 3.11, 3.12, and IV.3.12.

(a) What are the elementary divisors of the group Z, @ Zy; (D Zs; what are its
invariant factors? Do the same for Zyx (P Zs; B Zis B Zoos @D Ziooo-

(b) Determine up to isomorphism all abelian groups of order 64; do the same for
order 96.

(c) Determine all abelian groups of order » for n < 20.

Show that the invariant factors of Z, @ Z, are (m,n) and [m,n] (the greatest
common divisor and the least common multiple) if (;2,#) > 1 andmn if (;m,n) = 1.

If H is a subgroup of a finite abelian group G, then G has a subgroup that is
isomorphic to G/H.

Every finite subgroup of Q/Z is cyclic [see Exercises 1.3.7 and 7].
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3. THE KRULL-SCHMIDT THEOREM

The groups Z and Z . (p prime) are indecomposable, in the sense that neither is a
direct sum of two of its proper subgroups (Exercise 1.8.1). Consequently, Theorems
2.2 and 2.6(iii) may be rephrased as: every finitely generated abelian group is the
direct sum of a finite number of indecomposable groups and these indecomposable
summands are uniquely determined up to isomorphism. We shall now extend this
result to a large class of (not necessarily abelian) groups.!

For the remainder of this chapter we return to the use of multiplicative notation
for an arbitrary group.

Definition 3.1. A4 group G issindecomposable if G > {(e) and G is not the (internal)
direct product of two of its proper subgroups.

Thus G is indecomposable if and only if G s {¢) and G == H X K implies
H = {e) or K = {e) (Exercise 1).

EXAMPLES. Every simple group (for example, 4,, n ¢ 4) is indecomposable.
However indecomposable groups need not be simple: Z, Z . (p prime) and S, are in-
decomposable but not simple (Exercises 2 and 1.8.1).

Definition 3.2. A group G is said 10 satisfy the ascending chain condition (ACC) on
[rormal] subgroups if for every chain Gy < Gy < - - - of [normal] subgroups of G there
is an integer n such that G; = Gyfor alli > n. G is said to satisfy the descending chain
condition (DCC) on [normal] subgroups if for every chain G, > G > - - - of [normal]
subgroups of G there is an integer n such that G; = G, for all i > n.

EXAMPLES. Every finite group satisfies both chain conditions. Z satisfies the
ascending but not the descending chain condition (Exercise 5) and Z(p™) satisfies
the descending but not the ascending chain condition (Exercise 13).

Theorem 3.3. Ifagroup G satisfies either the ascending or descending chain condition
on normal subgroups, then G is the direct product of a finite number o findecomposable
subgroups.

SKETCH OF PROOF. Suppose G is not a finite direct product of indecom-
posable subgroups. Let S be the set of all normal subgroups H of G such that His a
direct factor of G (that is, G = H X T for some subgroup Ty of G) and H is not a
finite direct product of indecomposable subgroups. Clearly G ¢ S. If He S ,then His
not indecomposable, whence there must exist proper subgroups K and Jy of H such
that H = Ky X Jy (= Ju X Ky). Furthermore, one of these groups, say Ky, must
lie in S (in particular, Ky is normal in G by Exercise 1.8.12). Let £:.S — S be the map

IThe results of this section are not needed in the sequel.
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defined by f(H) = Ky. By the Recursion Theorem 6.2 of the Introduction (with
Jf» = [ for all n) there exists a function ¢ : N — S such that

p(0) = G and o+ 1) = f(¢n)) = Koy (n 2> 0).

If we denote ¢(n) by G., then we have a sequence of subgroups G,,G,,Gs, . ..,0f G
(all of which are in S) such that

G = GO; Gl . KG’o; G2 = KG’l; P Gﬂ+l . KG’"; e
By construction each G; is normal in G and

G>G1>G:>Gs > --.
= # > -

If G satisfies the descendiné chain condition on normal subgroups, this is a con-
tradiction. Furthermore a routine inductive argument shows that for each n > 1,
G = G. X J¢,, XJg, , XX Jg, with each Jg; a proper subgroup of G. Conse-
quently, there is a properly ascending chain of normal subgroups:

Jeo < Joy X Jgg < Jay X Jay X Jgp < - -.
> # >
If G satisfies the ascending chain condition on normal subgroups, this is a con-
tradiction. m

In order to determine conditions under which the decomposition of Theorem 3.3
is unique, several definitions and lemmas are needed. An endomorphism fof a group
G 1s called a normal endomorphism if af(b)a™ = f(aba™) for all a,b e G.

Lemma 3.4. Let G be a group that satisfies the ascending [resp. descending] chain
condition on normal subgroups and { a [normal] endomorphism of G. Then f is an auto-
morphism if and only if f is an epimorphism [resp. monomorphism].

PROOF. Suppose G satisfies the ACC and fis an epimorphism. The ascending
chain of normal subgroups {e¢) < Ker f< Ker f2 <--- (where f* = ff-- - f) must
become constant, say Ker f = Ker f~*. Since fis an epimorphism, sois f*.Ifae G
and f(a) = e, then a = f*(b) for some be G and e = f(a) = f**(b). Consequently
b e Ker f~*' = Ker f~, which implies that a = f7(b) = e. Therefore, fis a monomor-
phism and hence an automorphism.

Suppose G satisfies the DCC and fis a monomorphism. For each £ > 1,Im f*is
normal in G since fis a normal endomorphism. Consequently, the descending chain
G > Im f> Im f? > - - - must become constant, say Im f» = Im f~*!. Thus for any
ace G, f(a) = f~*'(b) for some b ¢ G. Since fis a monomorphism, so is f” and hence
f™a) = f~*Y(b) = f( f(b)) implies a = f(b). Therefore fis an epimorphism, and
hence an automorphism. @

Lemma 3.5. (Fitting) If G is a group that satisfies both the ascending and descending
chain conditions on normal subgroups and f is a normal endomorphism of G, then for
somen > 1,G = Ker fr X Imfr,
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PROOF. Since fis a normal endomorphism each Im f* (k > 1) is normal in G.
Hence we have two chains of normal subgroups:

G>Imf>Imfz>--- and (e) < Ker f< Ker f2<---.

By hypothesis there is an » such that Im f* = Im f* and Ker f* = Ker f* for all
k > n. Suppose ae Ker f» [l Im f~ Then a = f*(b) for some bhe G and f(b)
= f fb)) = f(a) = e. Consequently, b ¢ Ker f?» = Ker f»so thata = f*(b) = e.
Therefore, Ker f~ (1 Im f» = {e). For any ce G, f"(c) e Im f» = Im f whence
f™c) = fd) for some de G. Thus f~cf*d™) = fr(e) f*(d™) = f(c) fr(d)™?
= f*(c) f"(c)™ = e and hence ¢f*(d™) € Ker f™ Since ¢ = (¢f(d™) f(d), we
conclude that G = (Ker f*)(Im f). Therefore G = Ker f» X Im f» by Definition
1.88. m

An endomorphism fof a group G is said to be nilpotent if there exists a positive
integer n such that f*(g) = efor all ge G.

Corollary 3.6. IfG is an indecomposable group that satisfies both the ascending and
descending chain conditions on normal subgroups and f is a normal endomorphism of G,
then either f is nilpotent or f is an automorphism.

PROOF. Forsomen > 1, G = Ker f* X Im f» by Fitting’s Lemma. Since G is
indecomposable either Ker f» = (e) or Im f* = {e). The latter implies that f is nil-
potent. If Ker f~ = {e), then Ker f = {e) and fis a monomorphism. Therefore, fis
an automorphism by Lemma 3.4. m

If G is a group and f, g are functions from G to G, then f + g denotes the function
G — G given by a |- f(a)g(a). Verify that the set of all functions from G to G is a group
under + (with identity the map 05,:G — G given by at— e for all a € G). When f and
g are endomorphisms of G, f + g need not be an endomorphism (Exercise 7). So the
subset of endomorphisms is not in general a subgroup.

Corollary 3.7. Let G (5 {e)) be an indecomposable group that satisfies both the as-
cending and descending chain conditions on normal subgroups. Iff\, . . . , f, are normal
nilpotent endomorphisms of G such that every f;, +- - -+ f; (1 < iy < i, <---<i_ < n)
is an endomorphism, then f, + f, 4 - - - 4 £, is nilpotent.

SKETCH OF PROOF. Since each f, +-- -+ f;, is an endomorphism that is
normal (Exercise 8(c)), the proof will follow by induction once the case n = 2 is
established. If fi + f: is not nilpotent, it is an automorphism by Corollary 3.6. Verify
that the inverse g of f; + f; is a normal automorphism. If g, = figand g, = f;g, then
lec = g1+ g and for all xe G, x' = (g, + g)x ) = g(xDg(x). Hence
x = [g(xMglx D! = gox)gr(x) = (g2 + g1)Xx) and 1g = g: + g1. Therefore,
&1+ g =g+ g and gi(g1 + &) = §1le = lgg = (g1 + g2)&1, which implies that
£182 = g:.81. A separate inductive argument now shows that for each m > 1,

m

(& + g™ = Z cigi'gy " (cie Z),

1=
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where the c¢; are the binomial coefficients (see Theorem III.1.6) and ¢;# means
h -+ h+---+ h(c;: summands). Since each f; is nilpotent, g; = f,g has a nontrivial
kernel, whence g; is nilpotent by Corollary 3.6. Therefore for large enough 7 and all

ae G, (g1 + g)(a) = Z cigigy (a) = H esi = e. But this contradicts the facts
i=0 i=0
that &1 -+ g2 = IG and G # (e) L]

The next theorem will make use of the following facts. If a group G is the internal
direct product of its subgroups G, . . . , G, then by the proof of Theorem 1.8.6 there
is an isomorphism ¢ : G; X--- X G, = G given by (g1, ..., &)} 2182 - - &. Con-
sequently, every element of G may be written uniquely as a product g.g:- - - g: (g: € G))-
For each i the map =, : G — G; given by gig:- - - g.} &: is a well-defined epimor-
phism; (it is the composition of ¢! with the canonical projection G; X--- X
G. — G;.) We shall refer to the maps ; as the canonical epimorphisms associated
with the internal direct product G = Gy X--- X G..

Theorem 3.8. (Krull-Schmidr) Let G be a group that satisfies both the ascending and
descending chain conditions on normal subgroups. If G = Gy X G2 X--- X G, and
G = H;, X H; X.-- X H; with each Gi,H; indecomposable, then s =t and after
reindexing G; == H; for every i1 and for eachr < t.

G=Gl><"'>< GTXHT+1><.--><Ht'

REMARKS. G has at least one such decomposition by Theorem 3.3. The unique-
ness statement here is stronger than simply saying that the indecomposable factors
are determined up to isomorphism.

SKETCH OF PROOF OF 3.8. Let P(0) be the statement G = H; X--- X H,.
For 1 < r < min (s,7) let P(r) be the statement: there is a reindexing of H,, ..., H;
suchthat G; =~ H;fori=12,...,rand G = Gy X---X G, X H,y X---X H,
(or G = Gy X---X G,if r = r). We shall show inductively that P(r) is true for all r
such that 0 < r < min (s,7). P(0) is true by hypothesis, and so we assume that
P(r — 1) is true: after some reindexing G~ H; for i=1,...,r — 1 and
G=G X---XG_1 X H, XX H, Let m, ..., [resp. =/, ..., '] be the
canonical epimorphisms associated with the internal direct product

G=G X---XG,resp. G = Gy X--- X G,_1 X H, X---X H|

as in the paragraph preceding the statement of the Theorem. Let X; [resp. \,/] be
the inclusion maps sending the ith factor into G. Foreach ilet ¢; = Ao : G— G
and let ¢; = N7’ : G — G. Verify that the following identities hold:

ei| Gi = 1g;; PiPi = @iy wip; = Og (i # j)%;
Uit e =lgs Yl = Y Y = Og (i # J);
Im ¢; = G; Imy; = GG <r); Imy:=H(@i=nr).

It follows that ¢; = Og for all i < r (since Yi(x) € G; so that ¢ ¢:(x) = ¢ Jgdx)
= @oi(x) = e).

2See the paragraph preceding Corollary 3.7.
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The preceding identities show that ¢, = ¢, 1¢ = o,y +---+ ) = oAby +-- -
+ ¢l Every “sum™ of distinct ¢4; is a normal endomorphism (Exercises 8, 9).
Since ¢, | G, = 1g, is a (normal) automorphism of G, and G, satisfies both chain con-
ditions on normal subgroups (Exercise 6), Corollaries 3.6 and 3.7 imply that ¢,¢; |G,
is an automorphism of G, # (e) for some j(r < j < 1). Therefore, for every n > 1
(¢f)"*1 is also an automorphism of G. Consequently, since G, = (e) and (¢;)"H
= ¢, (Y0, )¢ for alln > 1, the normal endomorphism ¢ ;¢, | H; : H;— H;cannot be
nilpotent. Since H; satisfies both chain conditions (Exercise 6), ¥;¢. | H; must be an
automorphism of H; by Corollary 3.7. Therefore ¢ ;| G, : G,— H; is an isomor-
phism and so is ¢, | H; : H; — G,. Reindex the H, so that we may assume j = r
and G, = H,. We have proved the first half of statement P(r).

Since G = Gy X---X G,y X H, X---X H; by the induction hypothesis the
subgroup GG, --G,_1H, ;- --H, is the internal direct product G, X-:-G,_; X
H,.pn X---X H,. Observe that for j < r, ¥(G;) = ¢.¢:(G) = (e) and for j > r,
¥.(H;) = ¢, ¥{(G) = (e), whence Y(G- - - G,_1H,,1- - - H) = {e). Since ¢, | G, is an
isomorphism, we must have G, N (Gi- - - G,_1H,,- - - H,) = {e). It follows that the
group G* = Gy -G,_1G,.H,,,- - - Hy is the internal direct product

G*=G1 X---XG X H X--- X H,

Define a map 6 : G — G as follows. Every element g ¢ G may be written g = g,- - -
g ah,---he with g e G; and h;e H;. Let 6(g) = g1+ - - gr1o-(h )iy~ - - by Clearly
Im 6 = G*. 6 is a monomorphism (see Theorem 1.8.10) that is easily seen to be nor-
mal. Therefore 6 is an automorphism by Lemma 3.4 so that G = Im 6 = G*
=Gy X---G, X H,y1 X--+X H,. This proves the second part of P(r) and com-
pletestheinductive argument. Therefore,after reindexing G; =<2 H;for0 < i < min(s,?).
If min (s,) =5, then G, X-- X G, =G =G, X---X Gy X Hyyy X---X H,,
and if min (s,/) = 7, then Gy X---X G, = G = G; X---X G,. Since G; = {e),
H; # (e) for all i,j, we must have s = ¢ in either case. m

EXERCISES

1. A group G is indecomposable if and only if G # (e) and G = H X K implies
H = (e) or K = (e).

2. S, isindecomposable for all n > 2. [Hint: If n > 5 Theorems 1.6.8 and 1.6.10 and
Exercise 1.8.7 may be helpful.]

3. The additive group Q is indecomposable.

4. A nontrivial homomorphic image of an indecomposable group need not be in-
decomposable.

5. (a) Z satisfies the ACC but not the DCC on subgroups.
(b) Every finitely generated abelian group satisfies the ACC on subgroups.

6. Let H,K be normal subgroups of a group G such that G = H X K.
(a) If Nis a normal subgroup of H, then N is normal in G (compare Exercise

1.5.10).
(b) If G satisfies the ACC or DCC on normal subgroups, then so do H and K.
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7. If fand g are endomorphisms of a group G, then f4 g need not be an endo-
morphism. [Hint: Let a = (123), b = (132)eS; and define f(x) = axa™,
g(x) = bxb™1.]

8. Let fand g be normal endomorphisms of a group G.
(a) fgis a normal endomorphism.
(b) H < G implies f(H) < G.
(c) If f+ gis an endomorphism, then it is normal.

9. Let G = G; X---X G,. For each i let \; : G; — G be the inclusion map and
m; + G — G; the canonical projection (see page 59). Let ¢; = M\mi. Then the
“sum” ¢y +- - -+ ¢y of any k(1 < k < n) distinct ¢; is a normal endomor-
phism of G.

10. Use the Krull-Schmidt Theorem to prove Theorems 2.2 and 2.6 (iii) for finite
abelian groups.

11. If G and H are groups such that G X G =~ H X H and G satisfies both the ACC
and DCC on normal subgroups, then G = H [see Exercise 2.11].

12. If G,H K and J are groups such that G =~ H X Kand G = H X J and G satis-
fies both the ACC and DCC on normal subgroups, then K =~ J [see Exercise 2.11]

13. For each prime p the group Z(p®) satisfies the descending but not the ascending
chain condition on subgroups [see Exercise 1.3.7].

4. THE ACTION OF A GROUP ON A SET

The techniques developed in this section will be used in the following sections to
develop structure theorems for (nonabelian finite) groups.

Definition 4.1. An action of a group G on a set S is a function G X § — §
(usually denoted by (g,X) |- gx) such that for all x €S and g.,8: ¢ G:

ex = X and (2:182)x = gi(g:x).
When such an action is given, we say that G acts on the set S.
Since there may be many different actions of a group G on a given set .S, the nota-
tion gx is ambiguous. In context, however, this will not cause any difficulty.

EXAMPLE. An action of the symmetric group S, on theset I, = {1,2...., n}
is given by (o,x) — a(x).

EXAMPLES. Let G be a group and H a subgroup. An action of the group H on
the set G is given by (4,x) - hx, where hx is the product in G. The action of /¢ H on
G is called a (left) translation. If K is another subgroup of G and S is the set of all left
cosets of K in G, then H acts on S by translation: (h,xK) |- hxK.

EXAMPLES. Let H be a subgroup of a group G. An action of H on the set G is
given by (h,x) |- Axk™1; to avoid confusion with the product in G, this actionof h e H
is always denoted AxhA—* and not hx. This action of # € H on G is called conjugation by
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h and the element Axkh™! is said to be a conjugate of x. If K is any subgroup of G and
h e H, then hKh™! is a subgroup of G isomorphic to K (Exercise 1.5.6). Hence H acts
on the set S of all subgroups of G by conjugation: (4,K)}— 2Kh™. The group hKh'is
said to be conjugate to K.

Theorem 4.2. Let G be a group that acts on a set S.
(i) The relation on S defined by
x~x'&gx =x" forsome geG

is an equivalence relation.
(ii) For each xS, Gx = {ge G| gx = x} is a subgroup of G.

PROOQOF. Exercise. =

The equivalence classes of the equivalence relation of Theorem 4.2(i) are called
the orbits® of G on S; the orbit of x € S is denoted x. The subgroup G, is called vari-
ously the subgroup fixing x, the isotropy group of x or the stabilizer of x.

EXAMPLES. If a group G acts on itself by conjugation, then the orbit
{gxg™' | ge G} of x ¢ G is called the conjugacy class of x. If a subgroup H acts on G
by conjugation the isotropy group H, = {he H|hxh™ = x} = {he H| hx = xh} is
called the centralizer of x in H and is denoted Cy(x). If H = G, Cg(x) is simply called
the centralizer of x. If H acts by conjugation on the set S of all subgroups of G, then
the subgroup of H fixing K ¢ S, namely {h e H| hKh™ = K}, is called the normalizer
of K in H and denoted N;(K). The group N¢(K) is simply called the normalizer of K.
Clearly every subgroup Kisnormalin Ng(K); Kisnormalin G ifand onlyif Ng(K) = G.

Theorem 4.3. Ifa group G acts on a set S, then the cardinal number of the orbit of
X e S is the index [G 1 Gyl.

PROOF. Let g,k ¢ G. Since
gx =hxegthx =xe=ghe G, = MG, = gG,,

it follows that the map given by gG, |- gx is a well-defined bijection of the set of co-
sets of G, in G onto the orbit x = {gx|ge G}. Hence [G : G.] = |X|. m

Corollary 4.4. Let G be a finite group and K a subgroup of G.

(i) The number of elements in the conjugacy class of x € G is [G : Ca(x)], which
divides |G|;
(1) if X, . .., X (x; € G) are the distinct conjugacy classes of G, then

3This agrees with our previous use of the term orbit in the proof of Theorem 1.6.3, where
the special case of a cyclic subgroup (a) of S, acting on the set I,, was considered.
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Gl = }:1 [G : Ca(x)];
(ii1) the number of subgroups of G conjugate to K is [G : Nc(K))}, which divides |G|.

PROOF. (i) and (iii) follow immediately from the preceding Theorem and
Lagrange’s Theorem 1.4.6. Since conjugacy is an equivalence relation on G (Theorem
4.2), G is the disjoint union of the conjugacy classes x, . . . , X,, whence (ii) follows
from (). m

The equation [G| = D [G : Ce(x:)] as in Corollary 4.4 (ii) is called the class
i=1

equation of the finite group G.

Theorem 4.5. Ifa group G acts on a set S, then this action induces a homomorphism
G — A(S), where A(S) is the group of all permutations of S.

PROOF. If g e G, define 7, : S — S by x| gx. Since x = g(g~x) for all x e S,
7, is surjective. Similarly gx = gy (x,y €¢S) implies x = g(gx) = g (gy) =y,
whence 7, is injective and therefore a bijection (permutation of S). Since 7,,» = 7,7, :
S — Sforallg,g’ ¢ G,the map G — A(S) given by g |- 7,is a homomorphism. m

Corollary 4.6. (Cayley) If G is a group, then there is a monomorphism G — A(G).
Hence every group is isomorphic to a group of permutations. In particular every finite
group is isomorphic to a subgroup of S, withn = |G]|.

PROOF. Let G act on itself by left translation and apply Theorem 4.5 to obtain a
homomorphism 7 : G — A(G).If (g) = 7, = 1g, then gx = 7,(x) = xforall xe G.
In particular ge = e, whence g = e and 7 is a monomorphism. To prove the last
statement note if |G| = n, then A(G) =S.. =®

Recall that if G is a group, then the set Aut G of all automorphisms of G is a
group with composition of functions as binary operation (Exercise 1.2.15).

Corollary 4.7. Let G be a group.

(i) For each g ¢ G, conjugation by g induces an automorphism of G.
(ii) There is a homomorphism G — Aut G whose kernel is C(G) = {ge G| gx =
xg for all x e G}.

PROOF. (1) If G acts on itself by conjugation, then for each g ¢ G, the map
7, : G — G given by 1,(x) = gxg™! is a bijection by the proof of Theorem 4.5. It is
easy to see that 7, is also a homomorphism and hence an automorphism. (ii) Let G
act on itself by conjugation. By (i) the image of the homomorphism 7 : G — A(G) of
Theorem 4.5 is contained in Aut G. Clearly

geKerre=r,=1lgegxgt =1(x) = x forall xegG.

But gxg ! = x if and only if gx = xg, whence Ker 7 = C((G). m
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The automorphism 7, of Corollary 4.7(i) is called the inner automorphism in-
duced by g. The normal subgroup C(G) = Ker 7 is called the center of G. An element
ge G is in C(G) if and only if the conjugacy class of g consists of g alone. Thus
if G is finite and x e C(G), then [G : Ce(x)] = 1 (Corollary 4.4). Consequently,
the class equation of G (Corollary 4.4(ii)) may be written

|G| = |C(G)} + }:l [G : Ce(x)],

where %,..., X%, (x;e G — C(G)) are distinct conjugacy classes of G and each
[G S Cg(x,')] > 1.

Proposition 4.8. Let H be a subgroup of a group G and let G act on the set S of all
left cosets of H in G by left translation. Then the kernel of the induced homomorphism
G — A(S) is contained in H.

PROOF. The induced homomorphism G — A(S) is given by g} 7,, where
7418 — S and 7 (xH) = gxH. If g is in the kernel, then 7, = 1sand gxH = xH for
all x e G; in particular for x = e,geH = eH = H,whichimpliesge H. m

Corollary 8.9. IfH is a subgroup of index n in a group G and no nontrivial normal
subgroup of G is contained in H, then G is isomorphic to a subgroup of S,.

PROOF. Apply Proposition 4.8 to H; the kernel of G — A(S) is a normal sub-
group of G contained in H and must therefore be (e) by hypothesis. Hence, G — A(S)
is a monomorphism. Therefore G is isomorphic to a subgroup of the group of all
permutations of the » left cosets of H, and this latter group is clearly isomorphic
toS,. m

Corollary 8.10. If H is a subgroup of a finite group G of index p, where p is the small-
est prime dividing the order of G, then H is normal in G.

PROQOF. Let S be the set of all left cosets of H in G. Then A(S) 2= S, since
[G : H] = p. If K is the kernel of the homomorphism G — A(S) of Proposition 4.8,
then K is normal in G and contained in H. Furthermore G/K is isomorphic to a sub-
group of S,. Hence |G/K]| divides |S,} = p! But every divisor of |G/K| = [G : K]
must divide |G| = |K| [G : K]. Since no number smaller than p (except 1) can divide
|G|, we must have |G/K| = p or 1. However |G/K| = [G : K] = [G : H][H : K]
= p[H : K] > p. Therefore |G/K| = pand [H : K] = 1, whence H = K. But K is
normalin G. m

EXERCISES

1. Let G be a group and A4 a normal abelian subgroup. Show that G/ A4 operates on
A by conjugation and obtain a homomorphism G/ 4 — Aut A.

2. If H,K are subgroups of G such that H < K, show that K < Ng(H).
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3. If a group G contains an element a having exactly two conjugates, then G has a
proper normal subgroup N # (e).

4. Let Hbea subgroup of G. Thecentralizer of Histheset Co(H) = {ge G| hg=ghfor
all # € H}. Show that Ce(H) is a subgroup of Ng(H).

5. If H is a subgroup of G, the factor group Ng(H)/Ce(H) (see Exercise 4) is iso-
morphic to a subgroup of Aut H.

6. Let G be a group acting on a set S containing at least two elements. Assume that
G is transitive; that is, given any x,y €S, there exists g ¢ G such that gx =y.
Prove

(a) for x e S, the orbit x of x is S;

(b) all the stabilizers G, (for x ¢ S) are conjugate;

(c) if G has the property: {ge G| gx = x for all x ¢S} = (e) (which is the
case if G < S, forsomenand S = {1,2,...,n})andif N ] Gand N < G, for
some x € S, then N = (e); :

(d) for x ¢ S, |S| = [G : G.]; hence |S]| divides |G].

7. Let G be a group and let In G be the set of all inner automorphisms of G. Show
that In G is a normal subgroup of Aut G.

8. Exhibit an automorphism of Z; that is not an inner automorphism.

9. If G/C(G) is cyclic, then G is abelian.

10. Show that the center of S; is {e); conclude that S, is isomorphic to the group of
all inner automorphisms of .S;.

11. Let G be a group containing an element a not of order 1 or 2. Show that G has a
nonidentity automorphism. [ Hint: Exercise 1.2.2 and Corollary 4.7.]

12. Any finite group is isomorphic to a subgroup of A, for some ».

13. If a group G contains a subgroup (# G) of finite index, it contains a normal sub-
group (# G) of finite index.

14. If |G| = pn, with p > n, p prime, and H is a subgroup of order p, then H is
normal in G.

15. If a normal subgroup N of order p (p prime) is contained in a group G of order
p*, then N is in the center of G.

5. THE SYLOW THEOREMS

Nonabelian finite groups are vastly more complicated than finite abelian groups,

which were completely classified (up to isomorphism) in Section 2. The Sylow Theo-
rems are a basic first step in understanding the structure of an arbitrary finite group.

Our motivation is the question: if a positive integer m divides the order of a group

G, does G have a subgroup of order m? This is the converse of Lagrange’s Theorem
1.4.6. Tt is true for abelian groups (Corollary 2.4) but may be false for arbitrary
groups (Exercise 1.6.8). We first consider the special case when m is prime (Theorem
5.2), and then proceed to the first Sylow Theorem which states that the answer to our
question is affirmative whenever m is a power of a prime. This leads naturally to a



5. THE SYLOW THEOREMS 93

discussion of subgroups of maximal prime power order (second and third Sylow
Theorems).

Lemma 5.1. If a group H of order p* (p prime) acts on a finite set S and if
Se = {xeS|hx = x for all h e H), then [S| = |Sy| (mod p).

REMARK. This lemma (and the notation S;) will be used frequently in the
sequel.4

PROOF OF 5.1. An orbit x contains exactly one element if and only if x & .S,.
Hence S can be written as a disjoint union S =S, U % U %, U... U x,, with
|%; > 1 for all i. Hence |S| = |So| + |%1| + |%| +- - - + |%.|. Now p | |x:| for each i
since |%;] > 1and |%]| = [H : H.]divides |H| = p". Therefore |S| = |So| (mod p). m

Theorem 5.2. (Cauchy) If G is a finite group whose order is divisible by a prime p,
then G contains an element of order p.

PROOF. (J. H. McKay) Let S be the set of p-tuples of group elements
{(a,az, . . .,a,) | aie G and aa,- - -a, = e}. Since a, is uniquely determined as
(mas- - -a,1) 7%, it follows that |S| = n# !, where |G| = n.Since p | n, |S] = 0 (mod p).
Let the group Z, act on S by cyclic permutation; that is, for k ¢ Z,, k(a,a., . . . , a,)
= (Qr41,Qk42y - - - » Apy01, - - - ax). Verify that (Gri1,ax49, - - -, ax) € S (use the fact that
ina group ab = eimplies ba = (a'a)(ba) = aYab)a = e). Verify that for 0,k,k’ ¢ Z,
and x .S, Ox = x and (k + k")x = k(k’x) (additive notation for a group action on
a set!). Therefore the action of Z, on S is well defined.

Now (a1, . ..,ap)eS if and only if a1 = a, =--- = a,; clearly (e,e, ..., e) eSo
and hence |So| 0. By Lemma 5.1, 0 = |S| = |So| (mod p). Since |S;| # 0 there
must be at least p elements in Sy; that is, there is a > e such that (a,a,...,a)eS,
and hence a? = e. Since p is prime, |a| = p. R

A group in which every element has order a power (> 0) of some fixed prime p is
called a p-group. If H is a subgroup of a group G and H is a p-group, H is said to be
a p-subgroup of G. In particular (e) is a p-subgroup of G for every prime p since

&) = 1 = po.

Corollary 5.3. A finite group G is a p-group if and only if |G| is a power of p.

PROOF. If G is a p-group and g a prime which divides |G|, then G contains an
element of order ¢ by Cauchy’s Theorem. Since every element of G has order a power
of p,q = p. Hence |G| is a power of p. The converse is an immediate consequence of
Lagrange’s Theorem 1.4.6. m

1 am indebted to R. J. Nunke for suggesting this line of proof.
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Corollary 5.4. The center C(G) of a nontrivial finite p-group G contains more than
one element.

PROOF. Consider the class equation of G (see page 91):
Gl = |C(G)] + 2. [G : Coxi)].

Since each [G : Cg(x:)] > 1 and divides |G| = p* (n > 1), p divides each [G : Ce(x)]
and |G| and therefore divides |C(G)|. Since |C(G)| > 1, C(G) has at least p ele-
ments. W

Lemma 5.5. If H is a p-subgroup of a finite group G, then [Ng(H) : H] = [G : H]
(mod p).

PROQOF. Let S be the set of left cosets of H in G and let H act on S by (left)
translation. Then [S| = [G : H]. Also,

xHeS, <= hxH = xH forall he H
> xWWxH=H forall he HS xhxeH forall he H
< x1Hx = He xHx' = H < x ¢ Neg(H).

Therefore |S,| is the number of cosets x H with x ¢ No(H); that is, |So| = [Ne(H) : H].
By Lemma 5.1 [Ng(H) : H] = |S| = |S| = [G: H](mod p). =

Corollary 5.6. If H is p-subgroup of a finite group G such that p divides |G : H], then
Ng(H) # H.

PROOF. 0 =[G : H] = [Ng(H) : H] (mod p). Since [Ng(H): H] > 1 in any
case, we must have [Ng(H) : H] > 1. Therefore N¢(H) # H. =

Theorem 5.7. (First Sylow Theorem) Let G be a group of order p°m, withn > 1, p
prime, and (p,m) = 1. Then G contains a subgroup of order p' for each1 < i < nand
every subgroup of G of order p' (i < n) is normal in some subgroup of order p***.

PROOF. Since p | |G|, G contains an element a, and therefore, a subgroup (a) of
order p by Cauchy’s Theorem. Proceeding by induction assume H is a subgroup of G
of order pi (1 < i < n). Then p | [G : H] and by Lemma 5.5 and Corollary 5.6 H is
normal in Ng(H), H # Ng(H) and 1 < [Ne(H)/H| = [N¢(H) : Hl=[G: H] =0
(mod p). Hence p | |No(H)/H| and Ng(H)/H contains a subgroup of order p as
above. By Corollary 1.5.12 this group is of the form Hi/H where H, is a subgroup of
N¢(H) containing H. Since H is normal in Ng(H), H is necessarily normal in Hi.
Finally |H\| = |H||Hi/H| = p'p = p'. =

A subgroup P of a group G is said to be a Sylow p-subgroup (p prime) if P is a
maximal p-subgroup of G (that is, P < H < G with H a p-group implies P = H).
Sylow p-subgroups always exist, though they may be trivial, and every p-subgroup
is contained in a Sylow p-subgroup (Zorn’s Lemma is needed to show this for infinite
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groups). Theorem 5.7 shows that a finite group G has a nontrivial Sylow p-subgroup
for every prime p that divides |G|. Furthermore, we have

Corollary 5.8. Let G be a group of order p*m with p prime,n > 1 and (m,p) = 1. Let
H be a p-subgroup of G.

(1) H is a Sylow p-subgroup of G if and only if |[H| = p~.
(i1) Every conjugate of a Sylow p-subgroup is a Sylow p-subgroup.
(1) If there is only one Sylow p-subgroup P, then P is normal in G.

SKETCH OF PROOF. (i) Corollaries 1.4.6 and 5.3 and Theorem 5.7. (ii) Exer-
cise 1.5.6 and (i). (iii) follows from (ii)). m

As a converse to Corollary 5.8 (ii) we have

Theorem 5.9. (Second Sylow Theorem) IfH is a p-subgroup of a finite group G, and
P is any Sylow p-subgroup of G, then there exists X € G such that H < xPx71. In par-
ticular, any two Sylow p-subgroups of G are conjugate.

PROQOF. Let S be the set of left cosets of P in G and let H act on S by (left) trans-
lation. [So] = |S| =[G :P] (mod p) by Lemma 5.1. But p}[G:P]; therefore
|So| # O and there exists xP €.S,.

xPeSy—= hxP = xP forall he H
S xhxP =P forall he He= x1Hx < P H < xPx1.

If His a Sylow p-subgroup |H| = |P| = |xPx!|and hence H = xPx™l. @

Theorem 5.10. (Third Sylow Theorem) If G is a finite group and p a prime, then the
number of Sylow p-subgroups of G divides |G| and is of the form kp -+ 1 for some
k>0.

PROOF. By the second Sylow Theorem the number of Sylow p-subgroups is the
number of conjugates of any one of them, say P. But this number is [G : Ng(P)), a
divisor of |G|, by Corollary 4.4. Let S be the set of all Sylow p-subgroups of G and let
P acton S by conjugation. Then Q ¢S, if and only if xQx™' = Q for all x ¢ P. The
latter condition holds if and only if P < Ng(Q). Both P and Q are Sylow p-subgroups
of G and hence of N¢(Q) and are therefore conjugate in Ng(Q). But since Q is normal
in Ne(Q), this can only occur if Q = P. Therefore, S; = {P} and by Lemma 5.1,
IS| = |So| = 1 (mod p). Hence S| = kp+ 1. m

Theorem5.11. If P is a Sylow p-subgroup of a finite group G, then Ng(Nc(P))
= Ng(P).

PROOF. Every conjugate of P is a Sylow p-subgroup of G and of any subgroup
of G that contains it. Since P is normalin N = Ng(P), P is the only Sylow p-subgroup
of N by Theorem 5.9. Therefore,
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XENG(N) > xNx 1= N=xPx1'< N=>xPx1=P=xeN.

Hence Ng(Ng(P)) < N; the other inclusion is obvious. =

SEREN

10.

11.
12.

13.

EXERCISES

. If N G and N, G/N are both p-groups, then G is a p-group.

If G is a finite p-group, H < G and H # (e), then H [N C(G) # {e).
Let |G| = p~. For each k, 0 < k < n, G has a normal subgroup of order p*.

If G is an infinite p-group (p prime), then either G has a subgroup of order p* for
each n > 1 or there exists m ¢ N* such that every finite subgroup of G has order
<pm

If P is a normal Sylow p-subgroup of a finite group G and f :G— Gisanendo-
morphism, then f(P) < P.

. If His a normal subgroup of order p* of a finite group G, then H is contained in

every Sylow p-subgroup of G.

. Find the Sylow 2-subgroups and Sylow 3-subgroups of S;, Sj, Ss.

If every Sylow p-subgroup of a finite group G is normal for every prime p, then G
is the direct product of its Sylow subgroups.

. If |G| = py, with p > ¢ primes, then G contains a unique normal subgroup of

index q.

Every group of order 12, 28, 56, and 200 must contain a normal Sylow subgroup,
and hence is not simple.

How many elements of order 7 are there in a simple group of order 1687

Show that every automorphism of S; is an inner automorphism, and hence
S: == Aut S,. [Hint: see Exercise 4.10. Every automorphism of S, induces a per-
mutation of the set { Py, Py, P3P} of Sylow 3-subgroups of S,. If fe Aut S, has
J(P) = P;for all i, then f= 1g,.]

Every group G of order p? (p prime) is abelian [Hinr: Exercise 4.9 and Corollary
54].

6.

CLASSIFICATION OF FINITE GROUPS
We shall classify up to isomorphism all groups of order pg (p,g primes) and all

groups of small order (» < 15). Admittedly, these are not very far reaching results;
but even the effort involved in doing this much will indicate the difficulty in deter-
mining the structure of an arbitrary (finite) group. The results of this section are not
needed in the sequel.

Proposition 6.1. Ler p and q be primes such that p > q. If q4p — 1, then every
group of order pq is isomorphic to the cyclic group Zq. 1fq | p — 1, then there are (up
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to isomorphism) exactly two distinct groups of order pq: the cyclic group Z, and a non-
abelian group K generated by elements ¢ and d such that

el = p; |d] = q; dc = c&d,
where s # 1 (mod p) and s@ = 1 (mod p).

SKETCH OF PROOF. A nonabelian group K of order pg as described in the
proposition does exist (Exercise 2). Given G of order pg, G contains elements a,b
with [a| = p, |[b| = g by Cauchy’s Theorem 5.2. Furthermore, S = {a)is normal in G
(by Corollary 4.10 or by counting Sylow p-subgroups, as below). The coset 4S has
order ¢ in the group G/S. Since |G/S| = q, G/S is cyclic with generator bS,
G/S = (bS). Therefore every element of G can be written in the form »’ai and
G = {(a,b).

The number of Sylow ¢-subgroups is kg 4+ 1 and divides pg. Hence it is 1 or p. If it
is 1 (as it must beifg4p — 1), then (b) is also normal in G. Lagrange’s Theorem 1.4.6
shows that {a) [ (b) = (e). Thus by Theorems 1.3.2,1.8.6,1.8.10 and Exercise 1.8.5,
G=(a) X{b)=Z,D Z,=Z,, If the number is p, (which can only occur if
plq — 1),then bab™ = &’ (since (a) < G) and r # 1 (mod p) (otherwise G would
be abelian by Theorem 1.3.4(v) and hence have a unique Sylow g-subgroup). Since
bab™! = a, it follows by induction that biab—7 = o, In particular forj = ¢, a = o',
which implies r¢ = 1 (mod p) by Theorem 1.3.4 (v).

In order to complete the proof we must show that if g | p — 1 and G is the non-
abelian group described in the preceding paragraph, then G is isomorphic to K. We
shall need some results from number theory. The congruence x? = 1 (mod p) has
exactly g distinct solutions modulo p (see J. E. Shockley [51; Corollary 6.1, p. 67)). If
r is a solution and k is the least positive integer such that #* = 1 (mod p), then k | ¢
(see J.E. Shockley [51; Theorem 8, p. 70]). In our case r # 1 (mod p), whence k =
q. It follows that 1,72, ..., r7 1 are all the distinct solutions modulo p of x?2 =1
(mod p). Consequently, s = »* (mod p) forsomet (1 <1< qg— 1.If b, = b'e G,
then [b| = g. Our work above (with b, in place of b) shows that G = {a,h); that
every element of G can be written b/‘ai; that |a] = p; and that bab,! = blab™
= a* = a* (Theorem 1.3.4(v)). Therefore, bha = a*h,. Verify that the map G — K
given by a}- ¢ and b, |- d is an isomorphism. m

Corollary 6.2. Ifp is an odd prime, then every group of order 2p is isomorphic either
to the cyclic group Zs, or the dihedral group D,,.
PROOF. Apply Proposition 6.1 withg = 2. If G is not cyclic, the conditions on s

imply s = —1 (mod p). Hence G = {c,d), |d| = 2, |c| = p, and dc = c'd by
Theorem 1.3.4(v). Therefore, G =~ D, by Theorem 1.6.13. m

Proposition 6.3. There are (up 10 isomorphism) exactly two distinct nonabelian
groups of order 8: the quaternion group Qs and the dihedral group D,.

REMARK. The quaternion group Qs is described in Exercise 1.2.3.
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SKETCH OF PROOF OF 6.3. Verify that D; % Os (Exercise 10). If a group G
of order 8 is nonabelian, then it cannot contain an element of order 8 or have every
nonidentity element of order 2 (Exercise 1.1.13). Hence G contains an element a of
order 4. The group {a) of index 2 is normal. Choose b ¢ (a). Then b*e {a) since
|G/{a)] = 2. Show that the only possibilities are b* = a? or b* = e. Since {(a) is nor-
mal in G, bab™ ¢ {a); the only possibility is bab™! = a® = a~. It follows that every
element of G can be written b'a’. Hence G = (a,b). In one case we have |a| =4,
b= &, ba = a'b, and G == Qs by Exercise 1.4.14.; in the other case, |a| = 4,
|b| = 2, ba = a'band G == D, by Theorem 1.6.13. =

Proposition 6.4. There are (up to isomorphism) exactly three distinct nonabelian
groups of order 12: the dihedral group D, the alternating group A4, and a group T
generated by elements a,b such that |a| = 6, b? = a, and ba = a™'b.

SKETCH OF PROOF. Verify that there is a group T of order 12 as stated
(Exercise 5) and that no two of Ds,A4,,T are isomorphic (Exercise 6). If G is a non-
abelian group of order 12, let P be a Sylow 3-subgroup of G. Then |P] = 3 and
[G : P] = 4. By Proposition 4.8 there is 2 homomorphism f : G — S, whose kernel
K is contained in P, whence K = P or {e). If K = (e), fis a monomorphism and G is
isomorphic to a subgroup of order 12 of S;, which must be 4, by Theorem 1.6.8.
Otherwise K = P and P is normal in G. In this case P is the unique Sylow 3-subgroup.
Hence G contains only two elements of order 3. If ¢ is one of these, then
[G : Cele)] = 1 or 2 since [G : Ce(c)] is the number of conjugates of ¢ and every con-
jugate of ¢ has order 3. Hence C¢(c) is a group of order 12 or 6. In either case there
is d e Cg(c) of order 2 by Cauchy’s Theorem. Verify that |cd| = 6.

Let a = cd; then {a) is normal in G and |G/{a)| = 2. Hence there is an element
be G such that b¢ {(a), b # e, b?¢ {a), and bab™' e (a). Since G is nonabelian and
la] = 6, bab™ = a® = a™! is the only possibility; that is, ba = a~'b. There are six
possibilities for 42 ¢ {a). b* = a? or b* = a* lead to contradictions; b* = a or b* = a°
imply |b| = 12 and G abelian. Therefore, the only possibilities are

() |al = 6; b2 = e; ba = a'b, whence G = D¢ by Theorem 1.6.13;

(ii) |a] = 6; b* = a; ba = a~'b, whence G = T by Exercise 5(b). =

The table below lists (up to isomorphism) all distinct groups of small order. There
are 14 distinct groups of order 16 and 51 of order 32; see M. Hall and J.K. Senior
[16]. There is no known formula giving the number of distinct groups of order »,
for every n.

Order Distinct Groups Reference
1 (e) .-
2 Z Exercise 1.4.3
3 Zs Exercise 1.4.3
4 Z, P Z,, Z, Exercise 1.4.5
5 Zs Exercise 1.4.3
6 Zs, Ds Corollary 6.2
7 Z; Exercise [.4.3
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Order Distinct Groups Reference
8 Zz @Zz @Zg, Zz ®Z4, Zg, Qs, D4 Theorem 2.1 and
Proposition 6.3
9 Z:PZ,, Z, Exercise 5.13 and
Theorem 2.1
10 Z, Ds Corollary 6.2
11 Zn Exercise 1.4.3
12 Zy B Zs, Z1y, Asy D, T Theorem 2.1 and
Proposition 6.4
13 Z; Exercise 1.4.3
14 Zys, D; Corollary 6.2
15 Zs Proposition 6.1
EXERCISES

. Let G and H be groups and 8 : H — Aut G a homomorphism. Let G X, H be the
set G X H with the following binary operation: (g,h)(g’ /") = (g[6(h)(gN),hH’).
Show that G X¢H is a group with identity element (e,e) and (g/h) ! =
A )(g™),h ). G Xg H is called the semidirect product of G and H.

. Let C, = {a) and C, = (b) be (multiplicative) cyclic groups of prime orders p and
g respectively such that p > gand g | p — 1. Let s be an integer such that s -% 1
(mod p) and s¢ = 1 (mod p), which implies s ;é 0 (mod p). Elementary number
theory shows that such an s exists (see J.E. Shockley [51; Corollary 6.1, p. 67]).

(a) The map « : C, — C, given by a* |- a* is an automorphism.

(b) The map 6:C, — Aut G, given by 8(b') = o' (« as in part (a)) is a homo-

morphism (a® = 1¢,).

(c) If we write a for (a,e) and b for (e,b), then the group C, X C, (see Fxer-
cise 1) is a group of order pq, generated by a and b subject to therelations:
la| = p, |b| = g, ba = a*b, where s 7é 1 (mod p), and 3¢ = 1 (mod p). The group
C, Xg C, is called the metacyclic group.

. Consider the set G = {#41,=4i,4j 4k} with multiplication given by i2 = j2 = k2
= —1; 0 = k; jk =i, ki =j;ji = —k, ki = —i, ik = —j, and the usual rules
for multiplying by +1. Show that G is a group isomorphic to the quaternion
group Qs.

. What is the center of the quaternion group Qs? Show that Qs/C(Qs) is abelian.

(@) Show that there is a nonabelian subgroup 7 of S; X Z, of order 12 generated
by elements a,b such that |a| = 6, a® = b2, ba = a'b.

(b) Any group of order 12 with generators a,b such that |a| = 6, a® = #2,
ba = a'b is isomorphic to T.

. No two of De, A4, and T are isomorphic, where 7 is the group of order 12 de-
scribed in Proposition 6.4 and Exercise 5.

. If G is a nonabelian group of order p? (p prime), then the center of G is the sub-
group generated by all elements of the form aba—'61 (a,b ¢ G).

. Let p be an odd prime. Prove that there are, at most, two nonabelian groups of
order p®. [One has generators a,b satisfying |a| = p?; [b]| = p; b'ab = a'*P;
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the other has generators a,b,c satisfying |a| = |b] = |¢| = p; ¢ = a'bab;
ca = ac; cb = bc.]

9. Classify up to isomorphism all groups of order 18. Do the same for orders 20
and 30.

10. Show that D, is not isomorphic to Qs. [Hint: Count elements of order 2.]

7. NILPOTENT AND SOLVABLE GROUPS
Consider the following conditions on a finite group G.

() G is the direct product of its Sylow subgroups.
(i1) If m divides |G|, then G has a subgroup of order m.
(iii) If |G| = mn with (m,n) = 1, then G has a subgroup of order m.

Conditions (ii) and (iii) may be considered as modifications of the First Sylow Theo-
rem. It is not difficult to show that (i) = (ii) and obviously (ii) = (iii). The fact that
every finite abelian group satisfies (i) is an easy corollary of Theorem 2.2. Every p-
group satisfies (i) trivially. On the other hand, A, satisfies (iii) but not (ii), and S;
satisfies (ii) but not (i) (Exercise 1). Given the rather striking results.achieved thus
far with finite abelian and p-groups, the classes of groups satisfying (i), (ii), and (iii)
respectively would appear to be excellent candidates for investigation. We shall re-
strict our attention to those groups that satisfy (i) or (iii).

We shall first define nilpotent and solvable groups in terms of certain “‘normal
series’’ of subgroups. In the case of finite groups, nilpotent groups are characterized
by condition (i) (Proposition 7.5) and solvable ones by condition (iii) (Proposition
7.14). This approach will also demonstrate that there is a connection between nil-
potent and solvable groups and commutativity. Other characterizations of nilpotent
and solvable groups are given in Section 8.

Our treatment of solvable groups is purely group theoretical. Historically, how-
ever, solvable groups first occurred in connection with the problem of determining
the roots of a polynomial with coefficients in a field (see Section V.9).

Let G be a group. The center C(G) of G is a normal subgroup (Corollary 4.7).
Let CXG) be the inverse image of C(G/C(G)) under the canonical projection
G — G/C(G). Then by (the proof of) Theorem 1.5.11 CG) is normal in G and con-
tains C(G). Continue this process by defining inductively: C.(G) = C(G) and C(G)
is the inverse image of C(G/C;_1(G)) under the canonical projection G — G/C;(G).
Thus we obtain a sequence of normal subgroups of G, called the ascending central
series of G: () < Ci(G) < CAG) <---.

Definition 7.1. A4 group G is nilpotent ifC.(G) = G for some n.

Every abelian group G is nilpotent since G = C(G) = C«(G).

Theorem 7.2. Every finite p-group is nilpotent.
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PROOF. G and all its nontrivial quotients are p-groups, and therefore, have non-
trivial centers by Corollary 5.4. This implies that if G = C(G), then C(G) is strictly
contained in C;4(G). Since G is finite, C,(G) must be G for somen. &

Theorem 7.3. The direct product of a finite number of nilpotent groups is nilpotent.

PROOF. Suppose for convenience that G = H X K, the proof for more than
two factors being similar. Assume inductively that C{G) = C(H) X CAK) (the
case i = 1 is obvious). Let = be the canonical epimorphism H — H/C(H) and
similarly for wx. Verify that the canonical epimorphism ¢ : G — G/C(G) is the
composition

H-X K _ _HX K
G(H) X C(K) C4{H X K)

where 7 = 7y X wx (Theorem 1.8.10), and v is the isomorphism of Corollary 1.8.11.
Consequently,

G=HXKS H/C(H) X K/C(K) % = G/C(G),

Cii(G) = ¢ '[C(G/CA(G))] = Y [C(G/CLG))]
= 7 [((H/C(H) X K/C(K))]
= 7 [C(H/C(H)) X C(K/CLK))]
= wy [C(H/C(H))] X mxC(K/CAK))]
= Giu(H) X Cip(K).

Thus the inductive step is proved and C(G) = C(H) X C(K) for all i. Since H,K
are nilpotent, there exists n e N* such that C.(H) = H and C,(K) = K, whence
C.(G) = H X K = G. Therefore, G is nilpotent. m

Lemma 7.4. If H is a proper subgroup of a nilpotent group G, then H is a proper sub-
group of its normalizer Ng(H).

PROOF. Let C(G) = {e) and let n be the largest index such that C.(G) < H;
(there is such an # since G is nilpotent and H a proper subgroup). Choose a ¢ C n1(G)
with a4 H. Then for every he H, C,ah = (C.a)(C.h) = (C,h)(Cna) = C.hu in
G/C.(G) since C,a is in the center by the definition of C,,,(G). Thus ak = k'ha,
where #’ ¢ C.(G) < H. Hence aha'¢c H and a ¢ N¢(H). Since a ¢ H, H is a proper
subgroup of Ng(H). m

Proposition 7.5. A finite group is nilpotent ifand only if'it is the direct product ofits
Sylow subgroups.

PROOF. If G is the direct product of its Sylow p-subgroups, then G is nilpotent
by Theorems 7.2 and 7.3. If G is nilpotent and Pis a Sylow p-subgroup of G for some
prime p, then either P = G (and we are done) or P is a proper subgroup of G. In the
latter case P is a proper subgroup of Ng(P) by Lemma 7.4. Since Ne(P) is its own
normalizer by Theorem 5.11, we must have Ng(P) = G by Lemma 7.4. Thus P is
normal in G, and hence the unique Sylow p-subgroup of G by Theorem 5.9. Let
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|G| = pi™- - -py™* (p; distinct primes, n; > 0) and let PP, ..., P; be the corre-
sponding (proper normal) Sylow subgroups of G. Since |P;| = p;"i for each i,
P; N P; = {e) for i # j. By Theorem 1.5.3 xy = yx for every x e P;, y ¢ P; (i # j).
It follows that for each i, P\P,- - - P;_,P,,,- - - P; is a subgroup in which every element
has order dividing p,™- - - piiiprist- - - pink. Consequently, P: 1 (Py- - - PiyPija- - - Pi)
= (e) and P1P2"'Pk =P1 XXPk Since lGI =p1’“---pk"’°= |P1 xkaI
= |Py---P:] we must have G = P\P;-- P, =P, X--- X P.. B

Corollary 7.6. If G is a finite nilpotent group and m divides |G|, then G has a sub-
group of order m.

PROOF. Exercise. B

Definition 7.7. Ler G be a group. The subgroup of ‘G generated by the set
{aba~1b! | a,b e G} is called the commutator subgroup of G and denored G’'.

The elements aba1b! (a,b ¢ G) are called commutators. The commutators only
generate G’, so that G’ may well contain elements that are not commutators. G is
abelian if and only if G’ = {e). In a sense, G’ provides a measure of how much G
differs from an abelian group.

Theorem 7.8. IfG is a group, then G’ is a normal subgroup of G and G/G’ is abelian.
If N is a normal subgroup of G, then G/N is abelian if and only if N contains G'.

PROOF. Let f : G — G be any automorphism. Then
flaba'b™) = f(a) f(b) fl@) ' f(D) e G .

It follows that f(G’) < G’. In particular, if fis the automorphism given by conjuga-
tionby a e G,then aG’a? = f(G’) < G’, whence G’ is normal in G by Theorem1.5.1.
Since (ab)(ba)™ = aba'b~'e¢ G’', abG’ = baG’ and hence G/G’ is abelian. If G/N is
abelian, then abN = baN for all a,b ¢ G, whence ab(ba)™ = aba™'b~'e N. There-
fore, N contains all commutators and G’ < N. The converseis easy. W

Let G be a group and let G be G’. Then for i > 1, define G2 by G® = (G“VY.
G is called ith derived subgroup of G. This gives a sequence of subgroups of G,

each normal in the preceding one: G > G® > G® > .-, Actually each G® is a
normal subgroup of G (Exercise 13).

Definition 7.9. A group G is said to be solvable if G™ = (e) for some n.

Every abelian group is trivially solvable. More generally, we have

Rroposition 7.10. Every nilpotent group is solvable.
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PROOF. Since by the definition of C{G) CAG)/C;«(G) = C(G/Ci_(G)) is
abelian, C(G)' < C;4(G) for all i > 1 and C(G)Y = C(G)Y = {e). For some n,
G = C.(G). Therefore, C(G/C,_(G)) = CAG)/C,_(G) = G/C,_(G) is abelian
and hence G® = G’ < C,_i«(G). Therefore, G® = GV < C,_(G) < C,—AG);
similarly G® < C,_(G)Y < Co_B); ..., G < CAGY < C(G); G® < c(GYy
= {e). Hence G is solvable. m

Theorem 7.11. (i) Every subgroup and every homomorphic image o fa solvable group
is solvable.

(i) ZfN is a normal subgroup of a group G such that N and G/N are solvable, then
G is solvable.

SKETCH OF PROOF. (i) If f: G — H is a homomorphism [epimorphism],
verify that f(G®) < H®[ f(G®) = H®] for all i. Suppose fis an epimorphism, and
G is solvable. Then for some n, {e) = f(e) = f(G™) = H™_ whence H is solvable.
The proof for a subgroup is similar.

(ii) Let f : G — G/ N be the canonical epimorphism. Since G/N is solvable, for
some n f(G™) = (G/N)™ = (e). Hence G™ < Ker f= N. Since G™ is solvable
by (i), there exists k e N* such that G®*» = (G™)® = (e). Therefore, G is
solvable. m

Corollary 7.12. Ifn > 5, then the symmetric group S, is not solvable.

PROOF. If S, were solvable, then A4, would be solvable. Since A4, is nonabelian,
A" # (1). Since A,’ is normal in A4, (Theorem 7.8) and A, is simple (Theorem
1.6.10), we must have 4,’ = A,. Therefore 4, = 4, = (1) for all i > 1, whence A,
is not solvable. m

NOTE. The remainder of this section is not needed in the sequel.

In order to prove a generalization of the Sylow theorems for finite solvable
groups (as mentioned in the first paragraph of this section) we need some definitions
and a lemma. A subgroup H of a group G is said to be characteristic [resp. fully in-
variant] if f(H) < H for every automorphism [resp. endomorphism] f : G — G.
Clearly every fully invariant subgroup is characteristic and every characteristic sub-
group is normal (since conjugation is an automorphism). A minimal normal subgroup
of a group G is a nontrivial normal subgroup that contains no proper subgroup
which is normal in G.

Lemma 7.13. Ler N be a normal subgroup of a Sfinite group G and H any sub-
group of G.

(i) IfH is a characteristic subgroup of N, then H is normal in G.



104 CHAPTER Il THE STRUCTURE OF GROUPS

(ii) Every normal Sylow p-subgroup of G is fully invariant.
(iii) IfG is solvable and N is a minimal normal subgroup, then N is an abelian p-
group for some prime p.

PROOF. (i) Since «Na = N for all a ¢ G, conjugation by « Is an automor-
phism of N. Since H is characteristic in N, alHa™ < H for all g ¢ G. Hence H is
normal in G by Theorem 1.5.1.

(ii) is an exercise. (iii) It is easy to see that N’ is fully invariant in V, whence N’ is
normal in G by (i). Since N is a minimal normal subgroup, either N’ = (e) or
N’ = N. Since N is solvable (Theorem 7.11), N’ % N. Hence N’ = (e¢) and N is a
nontrivial abelian group. Let P be a nontrivial Sylow p-subgroup of N for some
prime p. Since N is abelian, P is normal in N and hence fully invariant in N by (i1).
Consequently P is normal in G by (i). Since N is minimal and P nontrivial we must
have P=N. m

Proposition 7.14. (P. Hall) Letr G be a finite solvable group of order mn, with
(m,n) = 1. Then

(1) G contains a subgroup of order m;
(i) any two subgroups of G of order m are conjugate:
(iii) any subgroup of G of order k, where k | m, is contained in a subgroup of
order m,

REMARKS. If m is a prime power, this theorem merely restates several results
contained in the Sylow theorems. P. Hall has also proved the converse of (i): if G is a
finite group such that whenever | G| = mn with (m,n) = 1, G has a subgroup of order
m, then G is solvable. The proof is beyond the scope of this book (see M. Hall [15;
p. 143]).

PROOF OF 7.14. The proof proceeds by induction on |G|, the orders < 5
being trivial. There are two cases.

CASE 1. There is a proper normal subgroup H of G whose order is not divisible
by n.

(i) |H| = numy, where m, | m,ni | n,and ny < n. G/ H is a solvable group of order
(m/m)(n/ny) < mn, with (m/m,n/m) = 1. Therefore by induction G/H contains a
subgroup A/ H of order (y1/n,) (where A is a subgroup of G — see Corollary 1.5.12).
Then |A] = |H|[A : H] = (mum)(m/m) = mn; < mn. A is solvable (Theorem 7.11)
and by induction contains a subgroup of order .

(ii) Suppose B,C are subgroups of G of order m. Since H is normal in G, HB 1S a
subgroup (Theorem 1.5.3), whose order k necessarily divides |G| = mn. Since
k = |HB| = |H||B|/|H N B| = mmm/|H  B], we have k'H N B) = numm,
whence k | mymm. Since (m,n) = 1, there are integers x,y such that mx + ny = 1,
and hence mmnnx + mmny = mn,. Consequently k | mn,. By Lagrange’s Theorem
1.4.6 m = |B| and nuny, = |H| divide k. Thus (m,n) = 1 implies mn | k. Therefore
k = mm; similarly | HC| = mn,. Thus HB/H and HC/ H are subgroups of G/H of
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order m/nn. By induction they are conjugate: for some x ¢ G/ H (where x is the coset
of xe G), x(HB/H)x' = HC/H. It follows that xHBx™! = HC. Consequently
xBx™!and C are subgroups of HC of order m and are therefore conjugate in HC by
induction. Hence B and C are conjugate in G.

(iii) If a subgroup K of G has order k dividing m, then HK/H =~ K/H (1 K has
order dividing k. Since HK/H is a subgroup of G/H, its order also divides |G/ H|
= (m/m)(n/m). (k,n) = 1 implies that the order of HK/H divides m1/m;. By induc-
tion there is a subgroup A/ H of G/ H of order m/m: which contains HK/H (where
A < Gasabove). Clearly K is a subgroup of 4. Since |A| = |H||A/H| = mun(m/m))
= mn; < mn, K is contained in a subgroup of 4 (and hence of G) of order m by in-
duction.

CASE 2. Every proper normal subgroup of G has order divisible by n. If H is a
minimal normal subgroup (such groups exist since G is finite), then |H| = p* for
some prime p by Lemma 7.13 (iii). Since (m,n) = 1 and n | |H|, it follows that
n = p”and hence that His a Sylow p-subgroup of G. Since H is normal in G, H is the
unique Sylow p-subgroup of G. This argument shows that H is the only minimal
normal subgroup of G (otherwise n = p* and n = ¢° for distinct primes p,g). In par-
ticular, every nontrivial normal subgroup of G contains H.

(i) Let K be a normal subgroup of G such that K/H is a minimal normal sub-
group of G/ H (Corollary 1.5.12). By Lemma 7.13 (iii) |K/H| = ¢* (g prime, g # p),
so that |K| = p'g. Let S be a Sylow g-subgroup of K and let M be the normalizer of S
in G. We shall show that [M| = m. Since H is normal in K, HS is a subgroup of K.
Clearly H N S = (e)sothat |HS| = |H||S|/|H N S| = p'¢* = |K|, whence K = HS.

Since K is normal in G and S < K, every conjugate of S in G lies in K. Since
S is a Sylow subgroup of K, all these subgroups are already conjugate in K. Let
N = Nk(S); then the number ¢ of conjugates of S in G is [G : M] = [K: N] by
Corollary 4.4. Since S < N< K, K> HN > HS = K, so that K= HN and
c=[G:M]=[K:Nl=[HN:N]=[H:HN N] (Corollary 1.5.9). We shall
show that H [1 N = (e), which implies ¢ = |H| = p~ and hence |[M| = |G|/[G : M]
= mp’/p” = m. We do this by showing first that # [1 N < C(K) and second that
C(K) = (e).

Let xe H N and ke K. Since K = HS, k = hs (he H, seS). Since H is
abelian (Lemma 7.13 (iii)) and x ¢ H, we need only show xs = sx in order to have
xk = kx and x ¢ C(K). Now (xsx1)s1¢S since x e N = Nx(S). But x(sx s ) e H
since xe H and H is normal in G. Thus xsx%s'e H (1 § = (e), which implies
X§ = $X.

It is easy to see that C(K) is a characteristic subgroup of K. Since K is normal in
G, C(K)is normal in G by Lemma 7.13 (i). If C(K) 5= {e), then C(K) necessarily con-
contains H. This together with K = HS implies that S is normal in K. By Lemma
7.13 (ii) and (i) S is fully invariant in K and hence normal in G (since K < G). This
implies H < S which is a contradiction. Hence C(K) = {(e).

(i) Let M be as in (i) and suppose B is a subgroup of G of order m. Now |BK] is
divisible by {B| = m and |K| = p'¢°. Since (m,p) = 1, |BK]| is divisible by p'm = nm
= |G|. Hence G = BK. Consequently G/K = BK/K =~ B/B (1 K (Corollary 1.5.9),
which implies that |B N K| = [B|/|G/K| = ¢°*. By the Second Sylow Theorem
B N Kis conjugate to S in K. Furthermore B (1 K is normal in B (since K <! G) and
hence B is contained in Ng(B 1 K). Verify that conjugate subgroups have conjugate
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normalizers. Hence Ng(B N K) and Ng(S) = M are conjugate in G. Thus
INgB N K)| = [M| = m. But |B] = m; therefore B < Ng(B (1 K) implies
B = Ng(B N K). Hence B and M are conjugate.

(iii) Let D < G, where |D| = k and k | m. Let M (of order m) and H (of order
77, with (p,m) = 1) be as in (i). Then D N H = (e) and |DH| = |D||H|/|D N H]|
= kp. We also have |G| = mpr, M N H = (¢) and MH = G (since
IMH| = |[M||H|/|M N\ H| = mp” = |G]). Hence M(DH)= G and therefore
M N DH| = |M||DH|/|MDH| = m(kp)/mp" = k. Let M* = M [\ DH;then M*
and D are conjugate (by (ii) applied to the group DH). For some a € G, aM*a™* = D.
Since M* < M, D is contained in aMa™!, a conjugate of M, and thus a subgroup of
order m. ®

We close this section by mentioning a longstanding conjecture of Burnside: every
finite group of odd order is solvable. This remarkable result was first proved by
W. Feit and J. Thompson [61] in 1963.

EXERCISES

1. (a) A, is not the direct product of its Sylow subgroups, but 4, does have the
property: mn = 12 and (m,n) = 1 imply there is a subgroup of order m.
(b) S; has subgroups of orders 1, 2, 3, and 6 but is not the direct product of its
Sylow subgroups.

2. Let G be a group and a,b ¢ G. Denote the commutator aba'b~'e G by [a,b].
Show that for any a,b,c, € G, lab.c} = alb,cla™'la,c].

3. If H and K are subgroups of a group G, let (H,K) be the subgroup of G enerated
by the elements {hkhk™ | he H, k ¢ K}. Show that
(a) (H,K) is normal in H V K.
(b) If (H,G") = {e), then (H',G) = {e).
(¢) H< G if and only if (H,G) < H.
(d) Let K < G and K < H;then H/K < C(G/K) if and only if (H,G) < K.

4. Define a chain of subgroups 7:{(G) of a group G as follows: vi(G) = G,
v{G) = (G,G), v{G) = (vi-1(G),G) (see Exercise 3). Show that G is nilpotent if
and only if v..(G) = (e) for some m.

5. Every subgroup and every quotient group of a nilpotent group is nilpotent.
[Hint: Theorem 7.5 or Exercise 4.].

6. (Wielandt) Prove that a finite group G is nilpotent if and only if every maximal
proper subgroup of G is normal. Conclude that every maximal proper subgroup
has prime index. [Hint: if P is a Sylow p-subgroup of G, show that any subgroup
containing Ng(P) is its own normalizer; see Theorem 5.11.]

7. If Nisa nontrivial normal subgroup of a nilpotent group G, then N N C(G) = (e).

8. If D, is the dihedral group with generators a of order » and b of order 2, then
(@) a*c D,’.
(b) Ifnisodd, D, = Z,.
(c) Ifniseven, D, = Z,,, where 2m = n.
(d) D, is nilpotent if and only if # is a power of 2.
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9. Show that the commutator subgroup of S; is 4;. What is the commutator
group of A,?

10. S, is solvable for » < 4, but S; and S, are not nilpotent.

11. A nontrivial finite solvable group G contains a normal abelian subgroup
H # (e). If G is not solvable then G contains a normal subgroup H such that
H' = H.

12. There is no group G such that G’ = S,. [Hint: Exercises 9 and 5.12 may be
helpful.]

13. If G is a group, then the ith derived subgroup G™ is a fully invariant subgroup,
whence G is normal.

14. If N < Gand N N G’ = (), then N < C(G).

15. If His a maximal proper subgroup of a finite solvable group G, then (G : H]is a
prime power.

16. For any group G, C(G) is characteristic, but not necessarily fully invariant.

17. If G is an abelian p-group, then the subgroup G[p] (see Lemma 2.5) is fully in-
variant in G.

18. If G is a finite nilpotent group, then every minimal normal subgroup of G is con-
tained in C(G) and has prime order.

8. NORMAL AND SUBNORMAL SERIES

The usefulness of the ascending central series and the series of derived subgroups
of a group suggests that other such series of subgroups should be investigated. We do
this next and obtain still other characterizations of nilpotent and solvable groups, as
well as the famous theorem of Jordan-Holder.

Definition 8.1. A4 subnormal series of a group G is a chain of subgroups G = Gy >
Gy > - - - > G, such that Gy, is normal in G; for 0 < i < n. The factors of the series
are the quotient groups Gi/Gi1. The length of the series is the number of strict inclu-
sions (or alternatively, the number o fnonidentity factors). A subnormal series such that
G; is normal in G for all i is said to be normal.’

A subnormal series need not be normal (Exercise 1.5.10).
EXAMPLES. The derived series G > G® >---> G™ is a normal series for

any group G (see Exercise 7.13). If G is nilpotent, the ascending central series
C(G) <--- < CAG) = G is a normal series for G.

Definition 8.2. Ler G = Gy > G > - - > G, be a subnormal series. A one-step re-
[finement of this series is any series of the form G =Gy >---> Gi > N> Gy > ---

5Some authors use the terms “normal” where we use “subnormal.”
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> GoorG = Gy >---> G, > N, where N is anormal subgroup ofG; and (if1 < n)
Gi 1 is normal in N. A refinement of a subnormal series S is any subnormal series ob-
tained from S by a finite sequence of one-step refinements. A refinement of S is said ro
be proper if its length is larger than the length of S.

Definition 8.3. A4 subnormal series G = Gy > G, > ---> G, = (e) is a composi-
tion series ifeach factor G/ Gi,1 is simple. A subnormal series G = Gy > G, > - - >
G. = (e) is a solvable series if each factor is abelian.

The following fact is used frequently when dealing with composition series: if NV is
a normal subgroup of a group G, then every normal subgroup of G/ N is of the form
H/ N where H is a normal subgroup of G which contains N (Corollary 1.5.12). There-
fore, when G # N, G/N is simple if and only if N is a maximal in the set of all
normal subgroups M of G with M # G (such a subgroup N is called a maximal
normal subgroup of G). )

Theorem 8.4. (i) Every finite group G has a composition series.

(ii) Every refinement of a solvable series is a solvable series.

(iii) A subnormal series is a composition series if and only if it has no proper re-
finements.

PROOF. (i) Let G, be a maximal normal subgroup of G; then G/G, is simple by
Corollary 1.5.12. Let G, be a maximal normal subgroup of Gi, and so on. Since G is
finite, this process must end with G, = (e). Thus G > G, >---> G, = (e) is a
composition series.

(i) If G;/ G, is abelian and G, < H < G, then H/G,,, is abelian since it is a
subgroup of G;/G:.1 and G;/H is abelian since it is isomorphic to the quotient
(G:/Gi1)/(H/ Giya) by the Third Isomorphism Theorem 1.5.10. The conclusion now
follows immediately.

(i) If Gy i] H <;1 G; are groups, then H/G;,, is a proper normal subgroup of

G./ G4 and every proper normal subgroup of G;/G,,, has this form by Corollary
1.5.12. The conclusion now follows from the observation that a subnormal series
G = Gy > G, >---> G, = (e) has a proper refinement if -and only if there is a
subgroup H such that for some i, G;,, i H <;,1 G.. =

Theorem 8.5. A4 group G is solvable if and only if it has a solvable series.

PROOF. If G is solvable, then the derived series G > GV > G® >.--> ™
= (e) is a solvable series by Theorem 7.8. If G = Go > G, >---> G, = (e) is a
solvable series for G, then G/G, abelian implies that G, > G® by Theorem 7.8;
G,/ G, abelian implies G, > G, > G®, Continue by induction and conclude that
G, > G for all i; in particular (¢) = G, > G and G is solvable. m

EXAMPLES. The dihedral group D, is solvable since D, > (a) > (e) is a solv-
able series, where a is the generator of order » (so that D, /{a) == Z,). Similarly if
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|G| = pg (p > ¢ primes), then G contains an element a of order p and (a) is normal
in G (Corollary 4.10). Thus G > {a) > {e) is a solvable series and G is solvable.
More generally we have

Proposition 8.6. A finite group G is solvable if and only if G has a composition series
whose factors are cyclic of prime order.

PROOF. A (composition) series with cyclic factors i1s a solvable series. Con-
versely, assume G = G, > G, > ---> G, = (e) is a solvable series for G.If G, # G,,
let A, be a maximal normal subgroup of G = G, which contains G,. If H, » G, let
H, be a maximal normal subgroup of H, which contains G,, and so on. Since G is
finite, this gives a series G > H, > H, >---> H; > G, with each subgroup a maxi-
mal normal subgroup of the preceding, whence each factor is simple. Doing this for
each pair (G;,G:,,) gives a solvable refinement G = Ny > N, >---> N, = (e) of
the original series by Theorem 8.4 (ii). Each factor of this series is abelian and simple
and hence cyclic of prime order (Exercise 1.4.3). Therefore, G > N, >---> N, = (e)
is a composition series. W

A given group may have many subnormal or solvable series. Likewise it may have
several different composition series (Exercise 1). However we shall now show that
any two composition series of a group are equivalent in the following sense.

Definition 8.7. Two subnormal series S and T ofa group G are equivalent i fthere is a
one-to-one correspondence between the nontrivial factors of S and the nontrivial factors
of T such that corresponding factors are isomorphic groups.

Two subnormal series need not have the same number of terms in order to be
equivalent, but they must have the same length (that is, the same number of non-
trivial factors). Clearly, equivalence of subnormal series is an equivalence relation.

Lemma 8.8. IfS is a composition series of a group G, then any refinement of S is
equivalent 10 S.

PROOF. Let S be denoted G = Go > Gy >:--> G, = (¢). By Theorem
8.4 (iii) S has no proper refinements. This implies that the only possible refinements
of S are obtained by inserting additional copies of each G;. Consequently any re-
finement of S has exactly the same nontrivial factors as S and is therefore equivalent
toS. m

The next lemma is quite technical. Its value will be immediately apparent in the
proof of Theorem 8.10.

Lemma 8.9. (Zassenhaus) Let A*, A, B¥, B be subgroups of a group G such that A*
is normal in A and B* is normal in B.
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(i) A*(A N B*) is a normal subgroup of A*(A N B);
(i) B*(A* N B) is a normal subgroup of B*(A N B);
(iii) A*A N B)/A*A N B*) =~ B*(A N B)/B*(A* N B).

PROOF. Since B* is normal in B, A N B* = (4 N B) N B* is a normal sub-
group of A N B (Theorem 1.5.3 (i)); similarly 4* N B is normal in A4 M B. Con-
sequently D = (A* N BY(A N B* is a normal subgroup of A N B (Theorem
1.5.3 iii) and Exercise 1.5.13). Theorem 1.5.3 (iii) also implies that A4*(4 N B)
and B*(A N B) are subgroups of A4 and B respectively. We shall define an
epimorphism f : A*(A N B) — (4 N B)/D with kernel A%(4 (N B*). This will
imply that A*(4 N B*) is normal in A%(4 (N B) (Theorem 1.5.5) and that
A*A N B)/AXA N B¥) = (4 N B)/D (Corollary 1.5.7).

Define f: A*A N B) — (A N B)/D as follows. If ae A*, ce AN B, let
f(ac) = Dc. Then fis well defined since ac = aic1 (a,a1 € A*; ¢c,c1e A [N B) implies
acl' = ailae (A N B) N A* = A* N B < D, whence De, = De. fis clearly sur-
jective. f is an epimorphism since f[(aici)(ascs)] = flaascics) = Deca = DeiDe:
= f(aic)) faxcs), where a; € A*, c;e A N B, and cia: = asc: since A* is normal in 4.
Finally ac € Ker fifand only if c € D, that is, ifand only if ¢ = aic, witha e A* [ B
and ¢; ¢ A N B*. Hence ac ¢ Ker f if and only if ac = (aa)c1 € A*(A N B¥). There-
fore, Ker f= A*(A N B*),

A symmetric argument shows that B*(4* N B) is normal in B*(4 (] B) and
B*(A N B)/B*(A* N B) =~ (A4 N B)/D, whence (iii) follows immediately. m

Theorem 8.10. (Schreier) Any two subnormal [resp. normal) series of a group G have
subnormal [resp. normal] refinements that are equivalent.

PROOF. let G = Gy > Gy >--+> G,and G = Hy > H, >---> H, be sub-
normal [resp. normal] series. Let G.;1 = (¢) = H,,, and for each 0 < i < n con-
sider the groups

G: = Gin(G: N Hy) > Gip(G: N Hy) >---> Gip(Gi N H) > Giy(G: N Hyy)
> Gi+1(G;‘ n Hm) > GH_](G,' ﬂ Hm+1) = Gi+l-

For each 0 < j < m, the Zassenhaus Lemma (applied to -Gi1,Gi,H;1, and H))
shows that G;,(G; N H,,) is normal in G;,,(G; N H;). [If the original series were
both normal, then each G,.(G; N H,) is normal in G by Theorem 1.5.3 (i) and
Exercises 1.5.2 and 1.5.13.] Inserting these groups between each G; and G;;., and
denoting G:,«(G: N H,) by G(i,j) thus gives a subnormal [resp. normal] refinement
of the series Go > Gy > ---> Gy

G = G(0,0) > G(0,1) >---> GOm) > G(1,0) > G(1,1) >
G(1,2) >---> G(1,m) > G,0) >---> G(n — 1,m) > Gn,0) >---> G(nm),

where G(i,0) = G:. Note that this refinement has (» + 1)(m + 1) (not necessarily
distinct) terms. A symmetric argument shows that there is a refinement of G = H, >
H, >---> H, (where H(i,j) = H;«(G: N H;) and HQO,j) = H,):

G = H(0,0) > H(Q1,0) > ---> H»n,0) > H(0,1) > H(1,1) > H(2,1) >--->
H(n,1) > H(0,2) >---> H(n,m — 1) > HOm) >---> H(nm).
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This refinement also has (n + 1) (;m + 1) terms. For each pair (i,/) (0 < i < n,
0 < j < m)there is by the Zassenhaus Lemma 8.9 (applied to G.,1, G;, H;;1, and H,))
an isomorphism:
GGi) _ Gen(G: N H) _ Hi(G: N H) _ HG.J)
Glj+1) GG N Hiy) ™ Hin(Gin N H)  HG+ 1,j)

This provides the desired one-to-one correspondence of the factors and shows that
the refinements are equivalent. m

Theorem 8.11. (Jordan-Holder) Any two composition series of a group G are
equivalent. Therefore every group having a composition series determines a unique list
of simple groups.

REMARK. The theorem does nor state the existence of a composition series for a
given group.

PROOF OF 8.11. Since composition series are subnormal series, any two com-
position series have equivalent refinements by the Theorem 8.10. But every refine-
ment of a composition series S is equivalent to .S by Lemma 8.8. It follows that any
two composition series are equivalent. @

The Jordan-Hélder Theorem indicates that some knowledge of simple groups
might be useful. A major achievement in recent years has been the complete classifi-
cation of all finite simple groups. This remarkable result is based on the work of a
large number of group theorists. For an introduction to the problem and an outline
of the method of proof, see Finite Simple Groups by Daniel Gorenstein (Plenum
Publishing Corp., 1982). Nonabelian simple groups of small order are quite rare. It
can be proved that there are (up to isomorphism) only two nonabelian simple
groups of order less than 200, namely A5 and a subgroup of S; of order 168 (see
Exercises 13 -20).

EXERCISES

1. (a) Find a normal series of D, consisting of 4 subgroups.
(b) Find all composition series of the group D,.
(¢) Do part (b) for the group A,.
(d) Do part (b) for the group S; X Z..
(e) Find all composition factors of S; and De.

2 If G=Gy> G > --> G, is a subnormal series of a finite group G, then
n—1
G| = (II()IG,-/Gf+1|)|GnI.
=

3. If N is a simple normal subgroup of a group G and G/N has a composition
series, then G has a composition series.

4. A composition series of a group is a subnormal series of maximal (finite) length.
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10.

11.

12,

13.

14.

15.

. An abelian group has a composition series if and only if it is finite.

If H < G, where G has a composition series, then G has a composition series one
of whose terms is H.

. A solvable group with a composition series is finite.

If H and K are solvable subgroups of G with H <1 G, then HK is a solvable sub-
group of G.

Any group of order p% (p,g primes) is solvable.

A group G is nilpotent if and only if there is a normal series G = G, > G, > - - -
> G, = {e) such that G,/Gix < C(G/Giy) for every i.

(a) Show that the analogue of Theorem 7.11 is false for nilpotent groups
[Consider S3).
(b) If H < C(G) and G/H is nilpotent, then G is nilpotent.

Prove the Fundamental Theorem of Arithmetic, Introduction, Theorem 6.7, by
applying the Jordan-Holder Theorem to the group Z,..

Any simple group G of order 60 is isomorphic to As. [Hint: use Corollary 4.9; if
H < G, then [G: H] > 5 (since |S,| < 60 for n < 4); if [G: H] =5 then
G = As by Theorem 1.6.8. The assumption that there is no subgroup of index 5
leads to a contradiction.]

There are no nonabelian simple groups of order < 60.

Let G be the subgroup of S; generated by (1234567) and (26)(34). Show that
|G| = 168.

Exercises 16-20 outline a proof of the fact that the group G of Exercise 15 is

simple. We consider G as acting on the set.S = {1,2,3,4,5,6,7} as in the first example
after Definition 4.1 and make use of Exercise 4.6.

16.

17.

18.

The group G is transitive (see Exercise 4.6).

For each x €S, G, is a maximal (proper) subgroup of G. The proof of this fact
proceeds in several steps:

(a) A block of G is a subset T of S such that foreach g e GeithergT N T = (J
or gT = T, where gT = {gx | x e T}. Show that if T is a block, then |T| divides 7.
[Hint: let H= (g ¢ G|gT = T) and show that for x ¢ 7, G, < H and [H:G,]
= |T|. Hence |T| divides [G:G.] = [G: H|[H:G,]. But [G:G;] =7 by
Exercise 4.6(a) and Theorem 4.3.]

(b) If G. is not maximal, then there is a block T of G such that |T|.}7, con-
tradicting part (a). [Hint: If G, § H < G, show that H is not transitive on S

(since 1 < [H : G,] < |S], which contradicts Exercise 4.6.(d)). Let T = {hx | he H}.
Since H is not transitive, [7] < |S| = 7 and since H # G, |[T| > 1. Show that T
is a block.]

If (1) = N < G, then 7 divides |N|. [Hint: Exercise 4.6 (c) = G, § NG, for all

x eS = NG, = G for all x ¢ S by Exercise 17 = N is transitive on.S = 7 divides
|N| by Exercise 4.6 (d).]
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19. The group G contains a subgroup P of order 7 such that the smallest normal sub-
group of G containing P is G itself.

20. If (1) = N < G, then N = G; hence G is simple. [Use Exercise 1.5.19 and
Exercise 18 to show P < N; apply Exercise 19.]
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RINGS

Another fundamental concept in the study of algebra is that of a ring. The problem
of classifying all rings (in a given class) up to isomorphism is far more complicated
than the corresponding problem for groups. It will be partially deailt with in Chapter
IX. The present chapter is concerned, for the most part, with presenting those facts
in the theory of rings that are most frequently used in several areas of algebra. The
first two sections deal with rings, homomorphisms and ideals. Much (but not all) of
this material is simply a straightforward generalization to rings of concepts which
have proven useful in group theory. Sections 3 and 4 are concerned with commuta-
tive rings that resemble the ring of integers in various ways. Divisibility, factoriza-
tion, Euclidean rings, principal ideal domains, and unique factorization are studied
in Section 3. In Section 4 the familiar construction of the field of rational numbers
from the ring of integers is generalized and rings of quotients of an arbitrary com-
mutative ring are considered in some detail. In the last two sections the ring of poly-
nomials in » indeterminates over a ring R is studied. In particular, the concepts of
Section 3 are studied in the context of polynomial rings (Section 6).

The approximate interdependence of the sections of this chapter is as follows:

|
AN
l

Section 6 requires only certain parts of Sections 4 and 5.

114
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1. RINGS AND HOMOMORPHISMS

The basic concepts in the theory of rings are defined and numerous examples
given. Several frequently used calculational facts are presented. The only difficulty
with this material is the large quantity of terminology that must be absorbed in a
short period of time.

Definition 1.1. A4 ring is a nonempty set R together with two binary operations
(usually denoted as addition (+) and multiplication) such that:

(1) (R,+) is an abelian group;
(ii) (ab)c = a(bc) for all a,b,c e R (associative multiplication);
(ii)) a(b + ¢) = ab 4 ac and (a + b)c = ac + be (lefr and right distributive
laws).

Ifin addition:
(iv) ab = ba foralla,be R,

then R is said to be a commutative ring. If R contains an element 1g such that
(v) l1ga = alg = a forallacR,

then R is said 1o be a ring with identity.

REMARK. The symbol 1 is also used to denote the identity map R— R. In
context this usage will not be ambiguous.

The additive identity element of a ring is called the zero element and denoted O.
If Ris aring, ae R and ne Z, then na has its usual meaning for additive groups
(Definition 1.1.8); for example, na = a4+ a+---+ a (n summands) when » > 0.
Before giving examples of rings we record

Theorem 1.2. Let R be a ring. Then

(i) Oa = a0 =0 forallacR;
(ii) (—a)b = a(—b) = —(ab) for all a,be R;
(iii) (—a)(—b) = ab for alla,be R;
(iv) (na)b = a(nb) = n(ab) for all n e Z and all abeR;

v) (Z ai) (in: b,) = i f: a;b;  for all a;,b; e R.

i=1 Jj=1 i=15=1

SKETCH OF PROOF. (i) 0a = (0 + 0)a = Oa + Oa, whence Oa = 0.
(i) ab + (—a)b = (a + (—a))b = 0b = 0, whence (—a)b = —(ab) by Theorem
I.1.2(iii). (ii) implies (iii). (v) is proved by induction and includes (iv) as a special
case. W

The next two definitions introduce some more terminology; after which some
examples will be given.
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Definition 1.3. A4 nonzero element a in a ring R is said to be a left [resp. right) zero
divisor if there exists a nonzero b ¢ R such thar ab = 0 [resp. ba = 0]. A4 zero divisor
is an element of R which is both a left and a right zero divisor.

It is easy to verify that a ring R has no zero divisors if and only if the right and
left cancellation laws hold in R; that is, for ali a,b,c € R with a # 0,

ab = ac or ba = ca = b=c.

Definition 1.4. An element a in a ring R with identity is said to be left [resp. right] in-
vertible if there exists c e R [resp. b e R] such that ca = 1y [resp. ab = 1g]. The ele-
ment c [resp. b) is called a left [resp. right] inverse of a. An element a € R that is both
left and right invertible is said to be invertible or to be a unit.

REMARKS. (i) The left and right inverses of a unit a in a ring R with identity
necessarily coincide (since ab = 1 = caimplies b = 1gb = (ca)b = c(ab) = clg = ¢).
(ii) The set of units in a ring R with identity forms a group under multiplication.

Definition 1.5. A commuzrative ring R with identity 1z # 0 and no zero divisors is
called an integral domain. A ring D with identity 1p #~ O in which every nonzero ele-
ment is a unit is called a division ring. A4 field is a commutative division ring.

REMARKS. (i) Every integral domain and every division ring has at least two
elements (namely O and 1g). (ii) A ring R with identity is a division ring if and only if
the nonzero elements of R form a group under multiplication (see Remark (ii) after
Definition 1.4). (iii) Every field F is an integral domain since ab = 0 and a #~ 0
imply that b = 1pb = (a7'@)b = a W(ab) = a0 = 0.

EXAMPLES. The ring Z of integers is an integral domain. The set E of even
integers is a commutative ring without identity. Each of Q (rationals), R (real
numbers), and C (complex numbers) is a field under the usual operations of addition
and multiplication. The n X n matrices over Q (or R or C) form a noncommutative
ring with identity. The units in this ring are precisely the nonsingular matrices.

EXAMPLE. For each positive integer # the set Z, of integers modulo » is a ring.
See the example after Theorem 1.1.5 for details. If » is not prime, say n = kr with
k>1,r>1,thenk = 0,7 0and kf = kr = i = 0 in Z,, whence k and r are
zero divisors. If p is prime, then Z, is a field by Exercise 1.1.7.

EXAMPLE. Let 4 be an abelian group and let End A4 be the set of endomor-
phisms f : A-> A. Define addition in End 4 by (f+ g)a) = f(a) + g(a). Verify
that f-+ g = End A. Since A is abelian, this makes End 4 an abelian group. Let multi-
plication in End A4 be given by composition of functions. Then End A is a (possibly
noncommutative) ring with identity 1, : 4 — A.

EXAMPLE. Let G be a (multiplicative) group and R a ring. Let R(G) be the

additive abelian group Z R (one copy of R for each g = G). It will be convenient to
geG
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adopt a new notation for the elements of R(G). An element x = {ry} s of R(G) has
only finitely many nonzero coordinates, say r,,, . .., ry, (8¢ G). Denote x by the

n
formal sum r, g, + rg8 +-- -+ r, g, or E rq8:- We also allow the possibility that

1=1]
some of the r, are zero or that some g, are repeated, so that an element of R(G)
may be written in formally different ways (for example, rg +0g=rg or
ng& t $18 = (1 + 5,) &)- In this notation, addition in the group R(G) is given by:

n n n
eraigi + lenigi = Zl(rﬁ + 5,08:;
1= 1= 1=

(by inserting zero coefficients if necessary we can always assume that two formal
sums involve exactly the same indices gy, . . . , g,). Define multiplication in R(G) by

n m n m
(2 rigi) (2 thj) N 2 2 (r:5)(g:hy;
i=1 j=1 =1 j=1
this makes sense since there is a product defined in both R (7;5;) and G(g; ;) and thus
the expression on the right is a formal sum as desired. With these operations R(G) is
a ring, called the group ring of G over R. R(G) is commutative if and only if both R
and G are commutative. If R has an identity 15, and e is the identity element of G,
then 1ge is the identity element of R(G).

EXAMPLE. Let R be the field of real numbers and S the set of symbols 1,i,j,k.
Let K be the additive abelian group R @ R (® R @ R and write the elements of X as
formal sums (ao,a1,a2,a3) = aol + aii + asj + ask. Then al + aii + asj + ask =
bl + bii + byj + bsk if and only if a; = b; for every i. We adopt the conventions
that aol ¢ K is identified with a,¢ R and that terms with zero coefficients may be
omitted (for example, 4 + 2j = 4-1 +0i + 2j + Ok and i = 0 + 1/ + O + Ok).
Then addition in K is given by

(a0 + ai + azj + ask) + (bo + bii + b2j + bsk)
= (a0 + bo) + (an + bl)i + (a: + b2)j + (a3 + bs)k-

Define multiplication in K by

(@0 + aii + asj + ask)bo + bii + byj + bsk)
= (abo — aiby — ashy — asby) + (aoh: + arb, + ashs — asby)i
+ (aoh: + asby + asby — aibs)j + (aohs + asbo + aib, — ab)k.

This product formula is obtained by multiplying the formal sums term by term sub-
Ject to the following relations: (1) associativity; (ii) ri = ir; rj = jr, rk = kr (for all
reR); (i) 2 = j2 = k? = jjk = —1; jj = —Jji=k; jk = —kji =i ki= —ik =j.
Under this product K is a noncommutative division ring in which the multiplicative
inverse of ay + ai + a.j + ask is (a/d) — (a/d)i — (az/d)j — (as/d)k, where
d=a®+ a®+ a?+ a. K is called the division ring of real quaternions. The
quaternions may also be interpreted as a certain subring of the ring of all 2 X 2
matrices over the field C of complex numbers (Exercise 8).

Definition 1.1 shows that under multiplication the elements of a ring R form a
semigroup (a monoid if R has an identity). Consequently Definition 1.1.8 is appli-
cable and exponentiation is defined in R. We have for each a ¢ R and ne N*
a* = a---a(n factors) and a° = 1 if R has an identity. By Theorem 1.1.9

ama® = am+n and (am)n = q™"



118 CHAPTER Il RINGS

Subtraction in a ring R is defined in the usual way: a — b = a + (—b). Clearly
a(b — ¢) = ab — ac and (a — b)c = ac — bc for all a,b,c € R.
The next theorem is frequently useful in computations. Recall that if k and » are

integers with 0 < k < n, then the binomial coefficient (Z) is the number

n'/(n — k)'k!, where 0! = 1 and n! = n(n — 1)(n — 2)---2-1 for n > 1. (Z) is

actually an integer (Exercise 10).

Theorem 1.6. (Binomial Theorem). Let R be a ring with identity, n a positive integer,
and a,b,a;,as, ..., a8 ¢ R.

(i) Ifab = ba, then (a + b = 3. (E)akbn_k;
k=0
(i) Ifa;a; = aja; for alliandj, then
n!

where the sum is over all s-tuples (iy,1s, . . . , i) such thati, + 12 +-- -+ i, = n.

alilaziz. .. asiﬂ’

(al+a2+"'+as)n=z

SKETCH OF PROOF. (i) Use induction on n and the fact that (Z) + ( k—’ll— 1)

n (Zi}) for k < n (Exercise 10(c)); the distributive law and the commutativity of

a and b are essential. (ii) Use induction on s. The case s = 2 1s just part (i) since

n 1

n n! ) )

(a1 + a)™ = 120 (k)al’“a.’z‘“" = HZ W a®a,’. If the theorem is true for s, note
;= i +1=n g

that

n

(al +.-- + as + as+1)" . ((al +-- -+ as) + as-H)ﬂ = kz (Z)(al +--F as)ka::f
:=0
n! )
= Z ij' (as +- - -+ a.)*al,, by part (i). Apply the induction hypothesis and
ktj=n K-
compute. BN

Definition 1.7. Ler R and S be rings. A function f : R — S is a homomorphism of
rings provided that for all a,b e R:

fla + b) = f(a) + f(b) and f(ab) = f(a)f(b).

REMARK. It is easy to see that the class of all rings together with all ring homo-
morphisms forms a (concrete) category.

When the context is clear then we shall frequently write “homomorphism’ in
place of ‘“homomorphism of rings.” A homomorphism of rings is, in particular, a
homomorphism of the underlying additive groups. Consequently the same termi-
nology is used: a monomorphism [resp. epimorphism, isomorphism] of rings is a homo-
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morphism of rings which is an injective [resp. surjective, bijective] map. A mono-
morphism of rings R — S is sometimes called an embedding of R in S. An isomor-
phism R — R is called an automorphism of R.

The kernel of a homomorphism of rings f : R — S is its kernel as a map of addi-
tive groups; that is, Ker f= {re R| f(r) = 0}. Similarly the image of f, denoted
Im fis {seS | s = f(r) for some r e R}. If R and S both have identities 15 and 1s, we
do not require that a homomorphism of rings map 1z to 15 (see Exercises 15, 16).

EXAMPLES. The canonical map Z — »Z,, given by k|- k is an epimorphism of
rings. The map Z; — Z; given by k |- 4k is a well-defined monomorphism of
rings.

EXAMPLE. Let G and H be multiplicative groups and f : G — H a homomor-
phism of groups. Let R be a ring and define a map on the group rings S :R(G)— R(H)
by:

}_r( glrigi) = ; ri f(g).

Then f is a homomorphism of rings.

Definition 1.8. Ler R be a ring. Ifthere is a least positive integer n such thatna = Q
forallac R, then R is said to have characteristic n. If no such n exists R is said to
have characteristic zero. (Notation: char R = n).

Theorem 1.9. Ler R be a ring with identity 1g and characteristic n > 0.

() If ¢ : Z — R is the map given by m|— mlg, then ¢ is a homomorphism of
rings with kernel (n) = {kn | ke Z}.
(11) n is the least positive integer such that nly = 0.
(iii) 7f R has no zero divisors (in particular i f R is an integral domain), then n is
prime.

SKETCH OF PROOF. (i) If k is the least positive integer such that kl1z = 0,
then forall a £ R: ke = k(lga) = (klg)a = 0-a = 0 by Theorem 1.2. (iii) If n = kr
with 1 <k <n, 1 <r<n, then 0 = nl; = (kr)lplp = (k1g)(rlg) implies that
k1, = 0 or rlx = 0, which contradicts (i1). m

Theorem 1.10. Every ring R may be embedded in a ring S with identity. The ring S
(which is not unique) may be chosen to be either o f characteristic zero or of the same
characteristic as R.

SKETCH OF PROOF. Let S be the additive abelian group R @ Z and define
multiplication in S by

(ri,k)(r,ks) = (rirs + ko + kira,kiks), (ric R; ki e Z).
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Verify that S is a ring with identity (0,1) and characteristic zero and that the map
R — S given by r |- (r,0) is a ring monomorphism (embedding). If char R = n > 0,
use a similar proof with § = R @ Z, and multiplication defined by

(r l,l_cl)(r 2,E2) = (rre + kori + kx"z,E1/E2),

where r; ¢ R and k; ¢ Z, is the image of k; ¢ Z under the canonical map. Then
charS =n. m

EXERCISES

1. (a) Let G be an (additive) abelian group. Define an operation of multiplication
in G by ab = 0 (for all a,b € G). Then G is a ring.
(b) Let S be the set of all subsets of some fixed set U. For A,B¢ S, define
A+B=A—-B) U B - A and 4AB= AN B. ThenSlsa ring. Is § com-
mutative? Does it have an identity?

2. Let {R; | ie I} be a family of rings with identity. Make the direct sum of abelian
groups 2 R, into a ring by defining multiplication coordinatewise. Does 2 R;
iel iel

have an identity?

3. A ring R such that a® = afor all a € R is called a Boolean ring. Prove that every
Boolean ring R is commutative and a + a = Ofor all a ¢ R. [For an example of a
Boolean ring, see Exercise 1(b).]

4. Let R be aring and S a nonempty set. Then the group M(S,R) (Exercise 1.1.2) isa
ring with multiplication defined as follows: the product of f,g e M(S,R) is the
function S — R given by s} f(s)g(s).

5. If A is the abelian group Z @ Z, then End A is a noncommutative ring (see
page 116).

6. A finite ring with more than one element and no zero divisors is a division ring.
(Special case: a finite integral domain is a field.)

7. Let R be a ring with more than one element such that for each nonzero ae R
there is a unique b ¢ R such that aba = a. Prove:
(a) R has no zero divisors.
(b) bab = b.
(c) R has an identity.
(d) R is a division ring.

8. Let R be the set of all 2 X 2 matrices over the complex field C of the form

(=5 %)

where Z,w are the complex conjugates of z and w respectively (that is,
c=a-t+ b\f———l & & = a — b\—1). Then R is a division ring that is isomorphic
to the division ring K of real quaternions. [Hint: Define an isomorphism K — R
by letting the images of 1,i,j,k ¢ K be respectively the matrices

(0 -0 a2 o V)
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9.

1.

12.

14.

15.

16.

(a) The subset G = {1,—1,i,—i,j,—j,k,—k} of the division ring K of real
quaternions forms a group under multiplication.

(b) G is isomorphic to the quaternion group (Exercises 1.4.14 and 1.2.3).

(c) What is the difference between the ring K and the group ring R(G) (R the
field of real numbers)?

. Let k,n be integers such that 0 < k& < n and (Z) the binomial coefficient

n';(n — k)'k!, where 0! =1 and for n > 0, n! = n(n — 1)(n — 2)---2-1

n n
@ (2) = (.2)
(b)( (k-{—l) for k+1<n/2.

) <
© () (k-{—l)- (’Zii) for k <n.
)

(d) ( is an Integer.

(e) ifpisprimeand 1 < k < p” — 1, then (Zn) is divisible by p.

n

n\n — k. m\y _[(m\ _
[Hints: (b) observe that (k+1) (k)m’(d) note that (O) = (m) =1

and use induction on » in part (c).]

(The Freshman’s Dream'). Let R be a commutative ring with identity of prime
characteristic p. If a,b € R, then (a ++ b)"" = g & b*" for all integers n > O [see
Theorem 1.6 and Exercise 10; note that b = —p if p = 2].

An element of a ring is nilpotent if ¢ = 0 for some n. Prove that in a commuta-
tivering a + b is nilpotent if @ and b are. Show that this result may be false if R
IS not commutative.

. In aring R the following conditions are equivalent.

(a) R has no nonzero nilpotent elements (see Exercise 12).
(b) If ac R and a® = 0, then « = 0.

Let R be a commutative ring with identity and prime characteristic p. The map
R — R given by r |- r» is a homomorphism of rings called the Frobenius homo-
morphism [see Exercise 11].

(a) Give an example of a nonzero homomorphism f : R — S of rings with
identity such that f(1g) # 1s.

(b) It f:R— S is an epimorphism of rings with identity, then f(1z) = 1s.
(¢) If f: R— S is a homomorphism of rings with identity and « is a unit in R
such that f(«) is a unitin S, then f(1) = 1gand f(u ) = f(u)7. [Note: there are
easy examples which show that f(«) need not be a unit in .S even though u is a
unit in R.|

Let f : R —.S be a homomorphism of rings such that f(r) # 0 for some non-
zero r z R. If R has an identity and S has no zero divisors, then S is a ring with
identity f(1z).

'Terminology due to V. O. McBrien.
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17. (a) If R is a ring, then so is R*, where R is defined as follows. The underlying
set of R-7 is precisely R and addition in R coincides with addition in R. Multi-
plication in R°», denoted o, is defined by a © b = ba, where ba is the product in R.
R-» is called the opposite ring of R.

(b) R has an identity if and only if R does.

(¢) R s a division ring if and only if R is.

(d) (R»)» = R.

(e) If S is a ring, then R = S if and only if R» = S,

18. Let Q be the field of rational numbers and R any ring. If f,g : Q — R are homo-
morphisms of rings such that f| Z = g | Z, then f = g. [Hint: show that for
neZ (n# 0), f(1/mg(n) = g(1), whence f(1, n) = g(1/n).]

2. IDEALS

Just as normal subgroups played a crucial role in the theory of groups, so ideals
play an analogous role in the study of rings. The basic properties of ideals are de-
veloped, including a characterization of principal ideals (Theorem 2.5) and the vari-
ous isomorphism theorems (2.9-2.13; these correspond to the isomorphism theorems
for groups). Prime and maximal ideals are characterized in several ways. Direct
products in the category of rings are discussed and the Chinese Remainder Theorem
is proved.

Definition 2.1. Ler R be a ring and S a nonempty subset of R that is closed under the
operations of addition and multiplication in R. IfS is itself a ring under these operations
then S is called a subring of R. A subring I of a ring R is a left ideal provided

reR and xzl = rxel;
I is a right ideal provided

rsR and xcel = xrel;

I is anideal if i1 is both a left and right ideal.

Whenever a statement is made about left ideals it is to be understood that the
analogous statement holds for right ideals.

EXAMPLE. If R is any ring, then the center of Ristheset C = {ce R|cr = rc
for all r e R}. C is easily seen to be a subring of R, but may not be an ideal (Exer-
cise 6).

EXAMPLE. If f : R — Sis a homomorphism of rings, then Ker fisan ideal in R
(Theorem 2.8 below) and Im fis a subring of S. Im f need not be an ideal in S.

EXAMPLE. For each integer n the cyclic subgroup (n) = {kn|keZ} is an
ideal in Z.

EXAMPLE. In the ring R of » X n matrices over a division ring D, let I, be the
set of all matrices that have nonzero entries only in column k. Then I, is a left ideal,
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but not a right ideal. If J, consist of those matrices with nonzero entries only in row
k, then J; is a right ideal but not a left ideal.

EXANIPLE. Two ideals of a ring R are R itself and the trivial ideal (denoted 0),
which consists only of the zero element.

RENARKS. A [left] ideal I of R such that I > 0and I = R is called a proper [left]
ideal. Observe that if R has an identity 1, and I is a [left] ideal of R, thenI = R if and
only if 1. ¢ I. Consequently, a nonzero {left] ideal I of R is proper if and only if I con-
tains no units of R; (forif u ¢ Risa unitand u z I, then 1, = & 'u < I). In particular, a
division ring D has no proper left (or right) ideals since every nonzero element of D is
a unit. For the converse, see Exercise 7. The ring of n X n matrices over a division
ring has proper left and right ideals (see above), but no proper (two-sided) ideals
(Exercise 9).

Theorem 2.2. A nonempty subset 1 of a ring R is a left [resp. right) ideal if and only if
forallabel andrzR:

(i) a,bel = a—bel; and
(ii) ae,reR = racl [resp.arel].

PROOF. Exercise; see Theorem1.2.5. m

Corollary 2.3. Ler {A; iz} be a family of [left] ideals in a ring R. Then () A, is
tel
also a [left] ideal.

PROOF. Exercise. B

Definition 2.4. Let X be a subser of a ring R. Let {A;|iel} be the family of all

lleft] ideals in R which contain X. Then () A is called the [lefi] ideal generated by X.
iel
This ideal is denoted (X).

The elements of X are called generators of the ideal (X). If X = {xy, ..., xa},
then the ideal (X) is denoted by (xy,v,, . . ., x,) and said to be finitely generated. An
ideal () generated by a single element is called a principal ideal. A principal ideal ring
is a ring in which every ideal is principal. A principal ideal ring which is an integral
domain is called a principal ideal domain.>

Theorem 2.5. Let R be a ring a< R and X C R.
(i) The principal ideal (a) consists of all elements of the form ra+ as + na +

m
Y ras; (r,5,1;,5; € R; m e N* and n ¢ Z).

1=]

2The term *‘principal ideal ring™ is sometimes used in the literature to denote what we
have called a principal ideal domain.
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n
(ii) /f R has an identity, then (a) = {Z rias; | ri,sie Ry me N*}.
i=1
(iii) Ifa is in the center of R, then (a) = {ra + na|reR, neZ}.
(iv) Ra = {ra|reR} [resp. aR = {ar | re R}] is a left [resp. right] ideal in R
(which may not contain a). If R has an identity, then a € Ra and a € aR.
(v) IfR has an identity and a is in the center of R, then Ra = (a) = aR.
(vi) IfR has an identity and X is in the center of R, then the ideal (X) consists of
all finite sums nia; + - - - + rp,a, (ne N*; rie R; a; ¢ X).

REMARK. The hypothesis of (iii) is always satisfied in a commutative ring.
SKETCH OF PROOF OF 2.5. (i) Show that the set

m
I = {ra +as+na+ D rasi|rsrosie RpeZ;me N*}
i=1
is an ideal containing a and contained in every ideal containing a. Then I = (a).
(ii) follows from the facts that ra = ralg, as = lgas, and na = n(1ga) = (nlg)a,
with nl,«R. ®m

Let A4;,A,, ..., A, be nonempty subsets of aring R. Denoteby A, + A2 4---+ A,
the set {a1 + a:+---+ an|aie A; for i = 1,2,...,n}. If A and B are nonempty
subsets of R let AB denote the set of all finite sums {ah, + - - - + a.b. | n e N¥;
a;e A; b;e B}. If A consists of a single element a, we write aB for AB. Similarly
if B = {b}, we write Ab for AB. Observe that if B [resp. A] is closed under addition,
then aB = {ab| b e B} [resp. Ab = {ab|ae A}]. More generally let A;A4,---A,
denote the set of all finite sums of elements of the form aa:- - -a, (a:e A; for
i=12,...,n). In the special case when all 4; (1 < i < n) are the same set 4 we
denote A, 4z-- - An = AA--- A by A~

Theorem 2.6. Let A ALA,, ..., A, BandC be [left] ideals in a ring R.

() A1+ Ay +---+ A, and AA,- - - A, are [left] ideals;
i) A+B+C=A+B+O);
(1i1)) (AB)C = ABC = A(BO);
(iv) B(AA; + Ay +---4+ A) = BA 4+ BA:+---BA,; and (Ai+ A +---+
An)C b AIC + A2C + t + AnC.

SKETCH OF PROOF. Use Theorem 2.2 for (i). (iii) is a bit complicated but
straightforward argument using the definitions. Use induction to prove (iv) by first
showing that A(B+ C) = AB+ ACand (4 4+ B)C = AC+ BC. =

Ideals play approximately the same role in the theory of rings as normal sub-
groups do in the theory of groups. For instance, let R be a ring and 7 an ideal of R.
Since the additive group of R is abelian, I is a normal subgroup. Consequently, by
Theorem 1.5.4 there is a well-defined quotient group R/I in which addition is
given by:

a@a+D+@G+D=(@+hH+ L

R/I can in fact be made into a ring.




2. IDEALS 125

Theorem 2.7. Let R be a ring and 1 an ideal of R. Then the additive quotient group
R/1 is a ring with multiplication given by

@+Db+I)=ab+ 1

If R is commurative or has an identity, then the same is true of R/1.

SKETCH OF PROOF OF 2.7. Once we have shown that multiplication in
R/I is well defined, the proof that R/I is a ring is routine. (For example, if R has
identity 1g, then 1z 4+ I is the identity in R/1.) Suppose a + I = o’ + I and
b+ 1= +1 Wemust showthatab + I =a'’ + 1. Sincea’ea’ +1=a+ 1,
ad =a-+i for some icl Similarly & = b+ j with jel. Consequently
ab = (a+ Db+j)=ab+ ib+ aj + ij. Since I is an ideal,

ab —ab=ib+aj+ijcl.

Therefore a’b’ + I = ab + I by Corollary 1.4.3, whence multiplication in R/I is
well defined. m

As one might suspect from the analogy with groups, ideals and homomorphisms
of rings are closely related.

Theorem 2.8. Iff : R — S is a homomorphism ofrings, then the kernel off is an ideal
in R. Conversely if1 is an ideal in R, then the map m : R — R/I given by r}->r1 + Lis
an epimorphism of rings with kernel 1.

The map = is called the canonical epimorphism (or projection).

PROOF OF 2.8. Ker fis an additive subgroup of R. If x ¢ Ker fand r ¢ R, then
frx) = f(r) f(x) = f(r)0 = 0, whence rx ¢ Ker f. Similarly, xr ¢ Ker f. Therefore,
Ker fis an ideal. By Theorem 1.5.5 the map = is an epimorphism of groups with
kernel I. Since w(ab) = ab + 1 = (a + Db + I) = w(a)«(b) for all a,b € R, T is also
an epimorphism of rings. |

In view of the preceding results it is not surprising that the various isomorphism
theorems for groups (Theorems 1.5.6-1.5.12) carry over to rings with normal sub-
groups and groups replaced by ideals and rings respectively. In each case the desired
isomorphism is known to exist for additive abelian groups. If the groups involved
are, 1n fact, rings and the normal subgroups ideals, then one need only verify that
the known isomorphism of groups is also a homomorphism and hence an isomor-
phism of rings. Caution: in the proofs of the isomorphism theorems for groups all
groups and cosets are written multiplicatively, whereas the additive group of a ring
and the cosets of an ideal are written additively.

Theorem 2.9. Iff: R — S is a homomorphism of rings and1is anideal of R which is
contained in the kernel of f, then there is a uniqgue homomorphism of ringst : R/1 — S
such thatf(a + 1) = f(a) forallacR. Im T = Im f and Ker T = (Ker )/1. T is an iso-
morphism if and only if f is an epimorphism and 1 = Ker f.
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PROOF. Exercise; see Theorem 1.5.6. m

Corollary 2.10. (First Isomorphism Theorem) If f : R — S is a homomorphism of
rings, then f induces an isomorphism of rings R/Ker f = Im f.

PROOF. Exercise; see Corollary 1.5.7. m

Corollary 2.11. Iff:R — Sis a homomorphism of rings, lis an ideal in Rand Jis an
ideal in S such that f(1) C J, then f induces a homomorphism of rings T : R/1 — S/1,
given by a + It f(a) + J. £ is an isomorphism if and only if Im f+J = S and
1) C 1. In particular, iff is an epimorphism such that f(1) = J and Ker f C 1, then
f is an isomorphism.

PROOF. Exercise; see Corollary 1.58. m

Theorem 2.12. Ler 1 and J be ideals in a ring R.

(i) (Second Isomorphism Theorem) There is an isomorphisms ofrings 1/(1 N J) =~
I+ y»n/J;

(ii) (Third Isomorphism Theorem) if 1 C J, then J/1 is an ideal in R/1 and there is
an isomorphism of rings (R/1)/(J/I) = R/1J.

PROOF. Exercise; see Corollaries 1.5.9 and 1.5.10. m

Theorem 2.13. If 1 is an ideal in a ring R, then there is a one-to-one correspondence
between the set of all ideals of R which contain 1 and the set of all ideals of R /1, given
by Yt J/1. Hence every ideal in R/1 is of the form /1, where J is an ideal of R which
contains 1.

PROOF. Exercise; see Theorem1.5.11, Corollary 1.5.12 aﬁd Exercise 13. m

Next we shall characterize in several ways two kinds of ideals (prime and maxi-
mal), which are frequently of interest.

Definition 2.14. Anideal P in a ring R is said to be prime if P 5 R and for any ideals
ABinR

ABCP = ACP o BCP
The definition of prime ideal excludes the ideal R for both historical and technical

reasons. Here is a very useful characterization of prime ideals; other characteriza-
tions are given in Exercise 14.
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Theorem 2.15. If P is an ideal in a ring R such that P ¢ R and for all a,beR
abeP = acecP or beP, 1)

then P is prime. Conversely if P is prime and R is commutative, then P satisfies con-
dition (1).

REMARK. Commutativity is necessary for the converse (Exercise 9 (b)).

PROOF OF 2.15. If A and B are ideals such that AB C P and A & P, then
there exists an element ae A — P. For every be B, abe AB C P, whence ac P or
b e P. Since a ¢ P, we must have b ¢ P for all b e B; that is, B C P. Therefore, P is
prime. Conversely, if P is any ideal and ab ¢ P, then the principal ideal (ab) is con-
tained in P by Definition 2.4. If R is commutative, then Theorem 2.5 implies that
(a)(b) C (ab), whence (a)(b) C P. If P is prime, then either (@) C P or (b) C P,
whenceacsPorbeP. m

EXAMPLES. The zero ideal in any integral domain is prime since ab = 0 if and
only if a = 0 or b = 0. If p is a prime integer, then the principal ideal (p) in Z is
prime since

abe(p) = plab = pla or p|lb = ac(p) or be(p).

Theorem 2.16. In a commutative ring R with identity 1g % 0 an ideal P is prime
if and only if the quotient ring R/P is an integral domain.

PROOF. R/P is a commutative ring with identity 1z 4+ P and zero element
0 + P = P by Theorem 2.7. If P is prime, then 1z + P = P since P % R. Further-
more, R/P has no zero divisors since

a+P(b+P)=P = ab4+P=P = abecP = acP or
beP = a+P=P or b+P=P

Therefore, R/P is an integral domain. Conversely, if R/P is an integral domain, then
1x + P s 0 4 P, whence 1 #P. Therefore, P # R. Since R/P has no zero divisors,

abeP = ab+P=P = (a+4+Pb+P)=P = a+P=P or
b+P=P = aqcP or becP.

Therefore, P is prime by Theorem 2.15. m

Definition 2.17. Axn ideal [resp. left ideal] M in a ring R is said to be maximal if
M £ R and for every ideal [resp. left ideal] N such that M C N C R, either N = M
or N = R.
EXAMPLE. The ideal (3) is maximal in Z; but the ideal (4) is not since (4) E
() C Z
=
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REMARK. If R is aring and § is the set of all ideals  of R such that 7 > R, then
$is partially ordered by set-theoretic inclusion. M is a maximal ideal (Definition 2.17)
if and only if M is a maximal element in the partially ordered set $ in the sense of
Introduction, Section 7. More generally one sometimes speaks of an ideal 7 that is
maximal with respect 1o a given property, meaning that under the partial ordering of
set theoretic inclusion, 7 is maximal in the set of all ideals of R which have the given
property. In this case I need not be maximal in the sense of Definition 2.17.

Theorem 2.18. In a nonzero ring R with identity maximal [left) ideals always exist.
In fact every [left] ideal in R (except R itself) is contained in a maximal [lefi) ideal.

PROOF. Since 0 is an ideal and 0 ¢ R, it suffices to prove the second statement.
The proof is a straightforward application of Zorn’s Lemma. If A4 is a [left] ideal in R
such that 4 = R, let § be the set of all [left] ideals B in R such that A C B > R. 8 1s
nonempty since A e $. Partially order $ by set theoretic inclusion (that is,
B, < B, < B, C B,). In order to apply Zorn’s Lemma we must show that every
chain @ = {C; | i I} of [left] ideals in § has an upper bound in 8. Let C = |J C..

iel

We claim that C is a [left] ideal. If a,b € C, then for some i,jel, ae C; and he C,.
Since € is a chain, either C; C C;or C; C C;; say the latter. Hence a,b € C;. Since C;
is a left ideal, a — be C; and ra e C; for all re R (if C; is an ideal ar ¢ C; as well).
Therefore, a,b ¢ C imply a — band raare in C; C C. Consequently, Cis a [left] ideal
by Theorem 2.2. Since A C C; for every i, A C |J C; = C. Since each C;isin 8§,
C; = R for all ie I. Consequently, 1z ¢ C; for every i (otherwise C; = R), whence
1r 4 U C: = C. Therefore, C # R and hence, C ¢ 8. Clearly C is an upper bound of
the chain C. Thus the hypotheses of Zorn’s Lemma are satisfied and hence § contains
a maximal element. But a maximal element of § is obviously a maximal [left] ideal in
R that contains 4. m

Theorem 2.19. IfR is a commutative ring such that R* = R (in particular if R has an
identity), then every maximal ideal M in R is prime.

REMARK. The converse of Theorem 2.19 is false. For example, O is a prime
ideal in Z, but not a maximal ideal. See also Exercise 9.

PROOF OF 2.19. Supposeabe Mbutad¢ Mand b # M. Then each of the ideals
M + (a) and M + (b) properly contains M. By maximality M + (a) = R = M+ (b).
Since R is commutative and ab ¢ M, Theorem 2.5 implies that (a)(b) C (ab) C M.
Therefore, R = R? = (M + (@))(M + (b)) C M2+ (a)M + M(b) + (a)(b) C M.
This contradicts the fact that M % R (since M is maximal). Therefore, ae M or
b e M, whence M is prime by Theorem 2.15. m

Maximal ideals, like prime ideals, may be characterized in terms of their quotient
rings.

Theorem 2.20. Ler M be an ideal in a ring R with identity 1g = 0.
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(1) IfM is maximal and R is commutative, then the quotient ring R/M is a field.
(1) Ifthe quotient ring R/M is a division ring, then M is maximal.

REMARKS. (i) is false if R does not have an identity (Exercise 19). If M is maxi-
mal and R is not commutative, then R/M need not be a division ring (Exercise 9).

PROOF OF 2.20. (i) If M is maximal, then M is prime (Theorem 2.19), whence
R/M is an integral domain by Theorem 2.16. Thus we need only show that if
a+ M = M, then a + M has a multiplicative inverse in R/M. Now a + M = M
implies that a § M, whence M is properly contained in the ideal M + (a). Since M is
maximal, we must have M 4 (@) = R. Therefore, since R is commutative,
lg = m + raforsomeme Mandre R, by Theorem 2.5(v). Thus 1z — ra = me M,
whence

Ip+M=ra+ M= (r+ Ma+ M)

Thus r + M is a multiplicative inverse of a + M in R/M, whence R/M is a field.
(i) If R/M is a division ring, then 1 + M = 0 + M, whence 1z ¢ M and
M = R.If Nisanideal such that M g N,letae N — M. Then a + M has a multi-

plicative inverse in R/M, say (a + M)b + M) = 1 + M. Consequently, ab + M
=1g+Mandab — 1p = ce M. Butae Nand M C N imply that 1 e N. Thus
N = R. Therefore, M is maximal. m

Corollary 2.21. The following conditions on a commutative ring R with identity
Ir # O are equivalent.

(i) R is a field;
(1)) R has no proper ideals;
(iii) O is a maximal ideal in R;
(iv) every nonzero homomorphism of rings R — S is a monomorphism.

REMARK. The analogue of Corollary 2.21 for division rings is false (Exercise 9).

PROOF OF 2.21. This result may be proved directly (Exercise 7) or as follows.
R =~ R/0is a field if and only if 0 is maximal by Theorem 2.20. But clearly 0 is maxi-
mal if and only if R has no proper ideals. Finally, for every ideal /(< R) the canonical
map = : R — R/I is a nonzero homomorphism with kernel 7 (Theorem 2.8). Since
is a monomorphism if and only if 7 = 0, (iv) holds if and only if R has no proper
ideals. m

We now consider (direct) products in the category of rings. Their existence and
basic properties are easily proved, using the corresponding facts for groups. Co-
products of rings, however, are decidedly more complicated. Furthermore co-
products in the category of rings are of less use than, for example, coproducts (direct
sums) in the category of abelian groups.

Theorem 2.22. Ler {R;|ic1} be a nonempty family of rings and T1 R the direct
del

product of the additive abelian groups R;;
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(@) I Ri is a ring with multiplication defined by {ai}ix {bi}ix = {aibilir;
1el
(ii) if R; has an identity [resp. is commutative] for every iel, then H R; has an
el
identity [resp. is commutativel;
(iii) for each k e 1 the canonical projection wy: H R; — Ry given by {a;} |— ay, is
el
an epimorphism of rings;
(iv) for each k el the canonical injection v : Ry — H Ri, givten by ay}— {a;}
el
(where a; = 0 for i = K), is a monomorphism of rings.

PROOF. Exercise. M

H R; is called the (external) direct product of the family of rings {R: | i e I}. If the
iel
index set is finite, say I = {1, ..., n}, then we sometimes write Ry X Rz X--- X R,
instead of HR,—. :
If {R;|ic I} is a family of rings and for each i e I, A; is an ideal in R;, then it is
easy to see that H A; is an ideal in H R:. If A; = 0 for all i % k, then the ideal
iel iel
H A; is precisely (A4,). If the index set [ is finite and each R; has an identity, then
iel

every ideal in [ ] R: is of the form ] ] 4; with 4; an ideal in R; (Exercise 22).
iel el

Theorem 2.23. Ler {R;|icl} be a nonempty family of rings, S a ring and
{¢i S — R; | icl} a family of homomorphisms ofrings. Then there is a unique homo-

morphism of rings ¢ : S — H R; such that wi¢ = ¢; for all iel. The ring H R; is
vel iel

uniquely determined up to isomorphism by this property. In other words H Riisa
1el

product in the category of rings.

SKETCH OF PROOF. By Theorem 1.8.2 there is a unique homomorphism of
groups ¢ : S — H R; such that mp = ¢; for all iel. Verify that ¢ is also a ring
iel
homomorphism. Thus H R; is a product in the category of rings (Definition 1.7.2)
2el
and therefore determined up to isomorphism by Theorem 1.7.3. m

Theorem 2.24. Let AL A, . . ., A, beideals in a ring R such that () A1+ As +- - -+
A, = Rand (i) foreachk (1 <k < n), Ay N (Ar+- -+ Aca + Ak +- - -+ An)
= 0. Then there is a ring isomorphism R =% A; X Az X+ X A,.

PROOF. By the proof of Theorem 1.8.6 the map ¢ : A1 X Az X+ - X A — R
given by (a1, ....a)b> &+ a+---+ as is an isomorphism of additive abelian
groups. We need only verify that ¢ is a ring homomorphism. Observe that if i > j
and a; ¢ A;, a; ¢ A;, then by (ii) a.a; € A: N A; = 0. Consequently, for all a;,b; € A;:

(am+a+---+a)b+bat---+ b.) = abi +- - -+ a.bn,

whence ¢ is a homomorphism of rings. W
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If Risaringand A4, ..., A4, are ideals in R that satisfy the hypotheses of Theo-
rem 2.24, then R is said to be the (internal) direct product of the ideals A4;. As in the
case of groups, there is a distinction between internal and external direct products.
If a ring R is the internal direct product of ideals 4, . . ., A4,, then each of the A4; is
actually an ideal contained in R and R is isomorphic to the external direct product
A, X---X A,. However, the external direct product 4, X - - - X A, does not contain
the A;, but only isomorphic copies of them (namely the ¢,(A4;) — see Theorem 2.22).
Since this distinction is unimportant in practice, the adjectives “internal” and
“external” will be omitted whenever the context is clear and the following notation
will be used.

NOTATION. We write R = H Aijor R = A; X Az X- -+ X A, toindicate that
the ring R is the internal direct product of its ideals 4, . . ., A4,.

Other characterizations of finite direct products are given in Exercise 24.

We close this section with a result that will be needed in Chapters VIII and IX.
Let 4 be an ideal in a ring R and a,b ¢ R. The element a is said to be congruent to »
modulo A (denoted a = b (mod A)) if a — be.*. Thus

a=b(mod A & a—bed & a+ A=>b+ A
Since R/A is a ring by Theorem 2.7,

a =a;(mod A) and b = b, (mod 4) =
ar+ b = a; + b.(mod A) and ab, = a:b; (mod A).

Theorem 2.25. (Chinese Remainder Theorem) Let A,, . .., A, be ideals in a ring R
such that R2 + A; = R for all i and A; + A; = R for all i #j. Ifb,...,b,eR,
then there exists b e R such that

b = b; (mod A)) =1.2,...,n).
Furthermore b is uniguely determined up to congruence modulo the ideal

AANAN---N A,

REMARK. If R has an identity, then R = R, whence R? + 4 = R for every
ideal 4 of R.

SKETCH OF PROOF OF 2.25. Since 4, + A, = Rand A4, + A; = R,

R? = (A + A)( Ay + As) = A2 + AAs + AzA + AxA5
C A+ AA; C A+ (4. N A).

Consequently, since R = A4, + R?,
R=A44+RC A+ A+ (AN 4)) = A1+ (4, N 4;) C R.
Therefore, R = A, + (A4z N A3). Assume inductively that
R=A+ AN A40---N 4,.).
Then
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R2=(Al+(A2n"'nAk—l))(A1+Ak)CA1+(A2n As N---N A
and hence
R=R+A4CA+UAN---N 4)CR

Therefore, R = A; + (4, 1 --- N A4,) and the induction step is proved. Con-
sequently, R = A4 + (4, N---N A4,)= A+ () A). A similar argument
i1

shows that for each k = 1,2,...,n, R = A4A; + ([ A:). Consequently for each k
ik

there exist elements ax € A, and rre () A4; such that b, = ax + r. Furthermore
ik
rn=b,(mod A) and r.=0 '(mod A;) for i k.

Let b = ri + ry +- - - + r, and use the remarks preceding the theorem to verify that
b = b; (mod A,) for evegy i. Finally if ¢ € R is such that ¢ = b; (mod A;) for every i,

then b = ¢ (mod A;) for each i, whence b — c ¢ A; for all i. Therefore,b — ce () As

i=1

and b = ¢ (mod N Ai). ]

1=1

The Chinese Remainder Theorem is so named because it is a generalization of the
following fact from elementary number theory, which was known to Chinese mathe-
maticians in the first century A.D.

Corollary 2.26. Let m;,m,, . .., m, be positive integers such that (m;,m;) = 1 for
i # j. If by,bs, . . ., b, are any integers, then the system of congruences
x = by (mod my); x = by (mod my); - - -; x = b, (mod m,))

has an integral solution that is uniquely determined modulo m = mym,- - -my,.

SKETCH OF PROOF. Let A4; = (m); then () A: = (m). Show that
i=1

(m;;m;) = 1 implies A; + A; = Z and apply Theorem 2.25. =

Corollary 2.27. IfA,,. .., A, are ideals in a ring R, then there is a monomorphism
of rings

0:R/(A1 nn A,,)—)R/Al XR/A2 XX R/A...

IfR2 + A; =R forall i and A; + A, = R for all i # j, then 0 is an isomorphism
of rings.

SKETCH OF PROOF. By Theorem 2.23 the canonical epimorphisms 7, : R —
R/Avk=1,..., n) induce a homomorphismofrings 6, : R— R/A, X--- X R/A,
with 6:(r) = r + A4y, .. ., r + A,). Clearly ker 6; = A N --. N A,. Therefore, 6
induces a monomorphism of rings 6 : R/(A, N---N A)— R/A; X--+X R/A.
(Theorem 2.9). The map 6 need not be surjective (Exercise 26). However, if the
hypotheses of Theorem 2.25 are satisfied and (b1 + A4,,..., b, + A,) € R/A
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X -

-+ X R/A,, tuen there exists b& R such that b = b; (mod 4,) for all i. Thus

0(b+ﬂA,-)=(b—I—Al,...,b—I—Aﬂ)=(b1+A1,...,b,.—I—A,.), whence 6 is an

epimorphism. @

10.

EXERCISES

. The set of all nilpotent elements in a commutative ring forms an ideal [see

Exercise 1.12)].

. Let I be an ideal in a commutative ring R and let Rad I = {re R |r eI for

some n}. Show that Rad I is an ideal.

.If Ris a ring and ae R, then J = {reR|ra = 0} is a left ideal and

K = {re R|ar = 0} is a right ideal in R.
If 7is a left ideal of R, then A(J) = {re R | rx = Ofor every x ¢ I} isan ideal in R.

If Iisanideal inaring R, let [R : I] = {re R| xr e I for every x € R}. Prove that
[R :1I]is an ideal of R which contains I,

(a) The center of the ring S of all 2 X 2 matrices over a field F consists of all
matrices of the form (a 0).
0 a
(b) The center of S is not an ideal in S.
(c) What is the center of the ring of all n X n matrices over a division ring?

(a) A ring R with identity is a division ring if and only if R has no proper left
ideals. [Proposition 1.1.3 may be helpful.]

(b) If Sis a ring (possibly without identity) with no proper left ideals, then either
$% = 0 or S is a division ring. [Hint: show that {ae.S |Sa = 0} is an ideal. If
cd # 0, show that {reS|rd = 0} = 0. Find ee.S such that ed = d and show
that e is a (two-sided) identity.]

. Let R be a ring with identity and .S the ring of all » X » matrices over R. J is an

ideal of S if and only if J is the ring of all n X n matrices over I for some ideal I
in R. [Hint: Given J, let I be the set of all those elements of R that appear as the
row 1-column 1 entry of some matrix inJ. Use the matrices E, ,, where 1 <r <n,
1 < s < n,andE, , has 1 as the row r~column s entry and 0 elsewhere. Observe
that for a matrix 4 = (a;;), E, ,AE, , is the matrix with a,, in the row p-column
g entry and O elsewhere.]

. Let S be the ring of all n X n matrices over a division ring D.

(a) S has no proper ideals (that is, 0 is a maximal ideal). [ Hin: apply Exercise
8 or argue directly, using the matrices E, , mentioned there.]

(b) S has zero divisors. Consequently, (i) S =2 S/0 is not a division ring and
(i) 0 is a prime ideal which does not satisfy condition (1) of Theorem 2.15.

(a) Show that Z is a principal ideal ring [see Theorem 1.3.1].

(b) Every homomorphic image of a principal ideal ring is also a principal ideal
ring.

(c) Z., is a principal ideal ring for every m > (.



134

CHAPTER Il RINGS

11.

12,

13.

14.

15.

16.

17.

18.

19.

20.

21.

If N is the ideal of all nilpotent elements in a commutative ring R (see Exercise 1),
then R/N is a ring with no nonzero nilpotent elements.

Let R be a ring without identity and with no zero divisors. Let S be the ring
whose additive group is R X Z as in the proof of Theorem 1.10. Let
A= {(rm)eS|rx 4+ nx = 0forevery x e R}.

(a) Ais an ideal in S.

(b) S/A has an identity and contains a subring isomorphic to R.

(c) S/A has no zero divisors.

Let f : R — .S be a homomorphism of rings, I an idealin R, and J an ideal in S.
(a) fYJ)is an ideal in R that contains Ker f.
(b) If fis an epimorphism, then f(I) is an ideal in S. If fis not surjective, f(I)
need not be an ideal in §.

If P is an ideal in a not necessarily commutative ring R, then the following con-
ditions are equivalent.

(a) P is a prime ideal.

(b) If r,s € R are such that rRs C P, then r ¢ P or s € P. [Hint: If (a) holds and
rRs C P, then (RrR)(RsR) C P, whence RrR C Por RsR C P,say RrR C P.
If A = (r), then A* C RrR C P, whence re A C P.]

(c) If (r) and (s) are principal ideals of R such that (r)(s) C P, then re P or
se P,

(d) IfU and V are right ideals in R such that UV C P,thenU C Por V C P.

(e) If U and V are left ideals in R such that UV C P, then U C Por V C P.

The set consisting of zero and all zero divisors in a commutative ring with
identity contains at least one prime ideal.

Let R be a commutative ring with identity and suppose that the ideal 4 of R is
contained in a finite union of prime ideals P, U - - - U P,. Show that 4 C P; for
some i. [Hint: otherwise one may assume that A [ P; & | P; for all j. Let
177
aje(A N P) — (U P:). Then a; + axzs- - -a, isin Abutnotin P, U---U P, ]
i7#j
Let f : R — S be an epimorphism of rings with kernel K.
(a) If Pis a prime ideal in R that contains K, then f(P) is a prime ideal in S
[see Exercise 13].
(b) If Qis a prime ideal in S, then f~'(Q) is a prime ideal in R that contains K.
(c) There is a one-to-one correspondence between the set of all prime ideals
in R that contain K and the set of all prime ideals in S, given by P|— f(P).
(d) If I'is an ideal in a ring R, then every prime ideal in R/I is of the form P/I,
where P is a prime ideal in R that contains /.

An ideal M ¢ R in a commutative ring R with identity is maximal if and only if
for every r e R — M, there exists x € R such that 1z — rx e M.

The ring E of even integers contains a maximal ideal M such that E/M is not
a field.

In the ring Z the following conditions on a nonzero ideal I are equivalent: (i) I is
prime; (ii) I is maximal; (iii) I = (p) with p prime.

Determine all prime and maximal ideals in the ring Z,,.
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22, (a) If R, . .., R, arerings with identity and I is an ideal in R; X --- X R,, then
I = A1 X--- X A, where each 4; is an ideal in R;. [Hint: Given Ilet A, = m([),
where 7, : Ry X - - - X R, — Ry is the canonical epimorphism.]

(b) Show that the conclusion of (a) need not hold if the rings R; do not have
identities.

23. An element e in a ring R is said to be idempotent if ¢2 = e. An element of the
center of the ring R is said to be central. If ¢ is a central idempotent in a ring R
with identity, then

(a) 1g — e is a central idempotent;
(b) eR and (1 — e)R are ideals in R such that R = eR X (1 — €)R.

24. Idempotent elements ey, ..., e, in a ring R [see Exercise 23] are said to be
orthogonal if e;e; = Ofor i s« j. If R, R, . .., R, are rings with identity, then the
following conditions are equivalent:

(@ R=R, X---XR,.

(b) R contains a set of orthogonal central idempotents [Exercise 23]
ey, ...,e.} such that ey + e; +---+ e, = 1 and ;R = R; for each i.

(¢) R is the internal direct product R = A, X---X A, where each A4; is an
ideal of R such that 4; == R;.
[Hint: (a) = (b) The elements &, = (1g,,0,...,0), & = (0,1,0,...,0),...,é,
= (0,...,0,1g,) are orthogonal central idempotents in S = R, X---X R,
such that &, 4-- -+ &, = lgand &S5 == R;. (b) = (c) Note that 4, = e,R is the
principal ideal (ex) in R and that e,R is itself a ring with identity e;.]

25. If m ¢ Z has a prime decomposition m = pi#t- - - pt (k; > 0; p; distinct primes),
then there is an isomorphism of rings Z,, =~ Z, 11 X - - - X Z, . [Hint: Corollary
2.27.]

26. If R = Z, A, = (6)and 4, = (4), thenthe map § : R/A, N A, — R/A, X R/ A,
of Corollary 2.27 is not surjective.

3. FACTORIZATION IN COMMUTATIVE RINGS

In this section we extend the concepts of divisibility, greatest common divisor and
prime in the ring of integers to arbitrary commutative rings and study those integral
domains in which an analogue of the Fundamental Theorem of Arithmetic (Intro-
duction, Theorem 6.7) holds. The chief result is that every principal ideal domain is
such a unique factorization domain. In addition we study those commutative rings
in which an analogue of the division algorithm is valid (Euclidean rings).

Definition 3.1. A4 nonzero element a of a commurative ring R is said to divide an
element b € R (notation: a | b) ifthere exists x & R such that ax = b. Elements a,bofR
are said to be associates ifa |band b | a.

Virtually all statements about divisibility may be phrased in terms of principal
ideals as we now see.
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Theorem 3.2. Ler a,b and u be elements of a commutative ring R with identity.

(i) a| b ifand only if (b) C (a).
(ii) a and b are associates ifand only if(a) = (b).
(iii) u is a unit ifand only ifu|r for all r ¢ R.
(iv) v is a unit ifand only if(u) = R.
(v) The relation “‘a is an associate of b” is an equivalence relation on R.
(vi) Ifa = br with r € R a unit, then a and b are associates. If R is an integral
domain, the converse is true.

PROOF. Exercise; Theorem 2.5(v) may be hélpfu] for (i) and (i1). m

Definition 3.3. Ler R be a commutative ring with identity. An element ¢ of R is
irreducible provided that :

(i) ¢ is a nonzero nonunit;
(i) c =ab = aorbisaunit

An element p of R is prime provided that:

(i) p is a nonzero nonunit;
(i) plab = plaorp]|b.

EXAMPLES. If p is an ordinary prime integer, then both p and —p are irre-
ducible and prime in Z in the sense of Definition 3.3. In the ring Zs, 2 is easily seen to
be a prime. However 2 ¢ Z is not irreducible since 2 = 2-4 and neither 2 nor 4 are
units in Z¢ (indeed they are zero divisors). For an example of an irreducible element
which is not prime, see Exercise 3.

There is a close connection between prime [resp. irreducible] elements in a ring R
and prime [resp. maximal] principal ideals in R.

Theorem 3.4. Let p and ¢ be nonzero elements in an integral domain R.

(1) p is prime if and only if (p) is nonzero prime ideal;

(ii) c is irreducible if and only if(c) is maximal in the set' S of all proper principal
ideals of R.

(i) Every prime element of R is irreducible.

(iv) IfR is a principal ideal domain, then p is prime if and only ifp is irreducible.

(v) Every associate of an irreducible [resp. prime] element of R is irreducible
[resp. prime].

(vi) The only divisors of an irreducible element of R are -its associates and the
units of R.

REMARK. Several parts of Theorem 3.4 are true for any commutative ring with
identity, as is seen in the following proof.

SKETCH OF PROOF OF 3.4. (i) Use Definition 3.3 and Theorem 2.15. (ii) If
¢ is irreducible then (¢) is a proper ideal of R by Theorem 3.2. If (¢) C (d), then
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¢ = dx. Since c is irreducible either dis a unit (whence (d) = R) or x is a unit (whence
(c) = (d) by Theorem 3.2). Hence (c) is maximal in S. Conversely if (¢) is maximal in
S, then ¢ is a (nonzero) nonunit in R by Theorem 3.2. If ¢ = ab, then (¢) C (a),
whence (¢) = (a) or (@) = R.If (@) = R, then a is a unit (Theorem 3.2). If (¢) = (a),
then a = cy and hence ¢ = ab = cyb. Since R is an integral domain 1 = yb, whence
b is a unit. Therefore, ¢ is irreducible. (iii) If p = ab, then p|a or p | b; say p | a.
Then px = aand p = ab = pxb, which implies that 1 = xb. Therefore, b is a unit.
(iv) If p is irreducible, use (ii), Theorem 2.19 and (i) to show that p is prime. (v) If ¢ is
irreducible and d is an associate of ¢, then ¢ = du with u ¢ R a unit (Theorem 3.2). If
d = ab, then ¢ = abu, whence a is a unit or bu is a unit. But if bu is a unit, so is b.
Hence d is irreducible. (vi) If ¢ is irreducible and a | ¢, then (¢) C (a), whence
(c) = (a) or (@) = R by (ii). Therefore, a is either an associate of ¢ or a unit by
Theorem 3.2. =

We have now developed the analogues in an arbitrary integral domain of the
concepts of divisibility and prime integers in the ring Z. Recall that every element in
Z 1s a product of a finite number of irreducible elements (prime integers or their
negatives) according to the Fundamental Theorem of Arithmetic (Introduction,
Theorem 6.7). Furthermore this factorization is essentially unique (except for the
order of the irreducible factors). Consequently, Z is an example of:

Definition 3.5. An integral domain R is a unique factorization domain provided that :

(1) every nonzero nonunit element a of R can be written a = ciCy- - -Cp, With
Ci, - - . , Cn irreducible.

(1) Ifa = ¢i¢2 - ¢y and a = dyde- - - du, (i,d; irreducible), then n = m and for
some permutation o of {1,2, ..., n}, ¢; and d.y are associates for every i.

REMARK. Every irreducible element in a unique factorization domain is neces-
sarily prime by (ii). Consequently, irreducible and prime elements coincide by
Theorem 3.4 (ii).

Definition 3.5 is nontrivial in the sense that there are integral domains in which
every element is a finite product of irreducible elements, but this factorization is not
unique (that is, Definition 3.5 (ii) fails to hold); see Exercise 4. Indeed one of the
historical reasons for introducing the concept of ideal was to obtain some sort of
unique factorization theorems (for ideals) in rings of algebraic integers in which
factorization of elements was not necessarily unique; see Chapter VIII.

In view of the relationship between irreducible elements and principal ideals
(Theorem 3.4) and the example of the integers, it seems plausible that every principal
ideal domain is a unique factorization domain. In order to prove that this is indeed
the case we need:

Lemma 3.6. IfR is a principal ideal ring and (a\) C (a;) C - - - is a chain of ideals in
R, then for some positive integer n, (a;) = (a,) for all j > n.
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PROOF. Let 4 = U (a)). We claim that 4 is an ideal. If b,c € 4, then b & (a))
i>1

and c ¢ (a;). Either i < jor i > j;say i > j. Consequently (a;) C (a:;) and b,c ¢ (a:).
Since (a,) is an ideal b — ce(a;) C A. Similarly if r¢ R and b¢e A, then b e (a)),
whence rb e (a;) C A and br ¢ (a;) C A. Therefore, A is an ideal by Theorem 2.2.
By hypothesis 4 is principal, say 4 = (a). Since ae¢ 4 = |J(a.), a ¢ (a,) for some n.
By Definition 2.4 (a) C (a,)- Therefore, for every j = n, (a) C (a,) C(a;) CA =
(a), whence (q;) = (a,). B

Theorem 3.7. Every principal ideal domain R is a unique factorization domain.

REMARK. The converse of Theorem 3.7 is false. For example the polynomial
ring Z[x] can be shown to be a unique factorization domain (Theorem 6.14 below),
but Z[x] is not a principal ideal domain (Exercise 6.1). .

SKETCH OF PROOF OF 3.7. Let S be the set of all nonzero nonunit ele-
ments of R which cannot be factored as a finite product of irreducible elements.
We shall first show that S is empty, whence every nonzero nonunit element of R has
at least one factorization as a finite product of irreducibles. Suppose S is not empty
and a £ S. Then (a) is a proper ideal by Theorem 3.2(iv) and is contained in a maximal
ideal (c) by Theorem 2.18. The element ¢ ¢ R is irreducible by Theorem 3.4(ii). Since
(a) C (¢), c divides a. Therefore, it is possible to choose for each a €S an irreducible
divisor ¢, of a (Axiom of Choice). Since R is an integral domain, ¢, uniquely deter-
mines a nonzero- x, € R such that c.x, = a. We claim that x, ¢ S. For if x, were a
unit, then a = c,x, would be irreducible by Theorems 3.2(vi) and 3.4(v). If x,isa non-
unit and not in S, then x, has a factorization as a product of irreducibles, whence a
also does. Since a ¢S this is a contradiction. Hence x, ¢ S. Furthermore, we claim
that the ideal (a) is properly contained in the ideal (x,). Since x, | a, (a) C (x,) by
Theorem 3.2(i). But (a) = (x.,) implies that x, = ay for some y e R, whence
a = x.c, = ayc, and 1 = yc,. This contradicts the fact that ¢, is irreducible (and
hence a nonunit). Therefore (a) g (x.)-

The preceding remarks show that the function f : S — S given by f(a) = x, is
well defined. By the Recursion Theorem 6.2 of the Introduction (with £ = f, for all n)
there exists a function ¢ : N — S such that

¢0) =a and ¢n+ 1) = fle(n) = xpm (n > 0).
If we denote ¢(n) by a,, we thus have a sequence of elements of S:a,a1,a., . . . such that
a = Xa;a2 =i Xal; ...;an+1 = Xan; PR

Consequently, the preceding paragraph shows that there is an ascending chain
of ideals

() E (ar) E (a2) = (as) G

contradicting Lemma 3.6. Therefore, the set S must be empty, whence every nonzero
nonunit element in R has a factorization as a finite product of irreducibles.
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Finally if ¢\¢;s- - - ¢, = a = did,- - - d,, (¢i,d; irreducible), then ¢; divides some d; by
Theorem 3.4(iv). Since ¢; is a nonunit, it must be an associate of d; by Theorem 3.4
(vi). The proof of uniqueness is now completed by a routine inductive argument. &

Several important integral domains that we shall meet frequently have certain
properties not shared by all integral domains.

Definition 3.8. Ler N be the set of nonnegative integers and R a commutative ring.
R is a Euclidean ring if there is a function ¢ : R — {0} — N such that:

(i) ifa,b e R and ab # 0, then ¢g(a) < p(ab),
(i) ifa,be R andb # O, then there exist q,r ¢ R such thara = qb + r withr = 0,
orr # 0and o(r) < ¢(b).

A Euclidean -ing which is an integral domain is called a Euclidean domain.

EXAMPLE. The ring Z of integers with ¢(x) = [x| is a Euclidean domain.

EXAMPLE. If Fis a field, let o(x) = 1 forall xe F, x ¢ 0. Then F is a Euclidean
domain.

EXAMPLE. If F is a field, then the ring of polynomials in one variable F[x] is a
Euclidean domain with ¢( f) = degree of f; see Corollary 6.4 below.

EXAMPLE. Let Z[i/| be the following subset of the complex numbers
Z[i) = {a+ bi|a, be Z}. Z[i] is an integral domain called the domain of Gaussian
integers. Define ¢(a + bi) = a? + b2 Clearly ¢(a + bi) # 0if a + bi # 0; it is also
easy to show that condition (i) of the definition is satisfied. The proof that ¢ satisfies
condition (11) is left to the reader (Exercise 6).

Theorem 3.9. Every Euclidean ring R is a principal ideal ring with identity. Con-
sequently every Euclidean domain is a unique factorization domain.

REMARK. The converse of Theorem 3.9 is false since there are principal ideal
domains that are not Euclidean domains (Exercise 8).

PROOF OF 3.9. If I is a nonzero ideal in R, choose a ¢ I such that ¢(a) is the
least integer in the set of nonnegative integers {¢(x) | x = 0; x e I}. If be I, then
b=yga+ rwithr = 0orr 0and o(r) < ¢(a). Since be I and ga ¢ I, r is necessarily
in . Since ¢(r) < ¢(a) would contradict the choice of @, we must have r = 0, whence
b = ga. Consequently, by Theorem 2.5 C Ra C (a) C I. Therefore I = Ra = (a)
and R is a principal ideal ring.

Since R itself is an ideal, R = Ra for some a £ R. Consequently, a = ea = ae for
some ec R. If be R = Ra, then b = xa for some x ¢ R. Therefore, be = (xa)e
= x(ae) = xa = b, whence e is a multiplicative identity element for R. The last
statement of the theorem is now an immediate consequence of Theorem 3.7. @&

We close this section with some further observations on divisibility that will be
used occasionally in the sequel (Sections 5, 6 and 1V.6).
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Definition 3.10. Ler X be a nonempty subset of a commutative ring R. An element
d ¢ R is a greatest common divisor of X provided:

() d|a forallaeX;
Gi) claforallaeX = c|d.

Greatest common divisors do not always exist. For example, in the ring E of even
integers 2 has no divisors at all, whence 2 and 4 have no (greatest) common divisor.
Even when a greatest common divisor of a, . . ., a. exists, it need not be unique.
However, any two greatest common divisors of X are clearly associates by (i1).
Furthermore any associate of a greatest common divisor of X is easily seen to be a
greatest common divisor of X. If R has an identity and a,,a,, .. ., a, have lpas a
greatest common divisor, then a,,a,, - . . a, are said to be relatively prime.

Theorem 3.11. Ler a,, . . ., a, be elements of acommutative ring R with identity.

(i) de R is a greatest common divisor of {ai, ..., an} such thar d = na,
+- - -+ twan for some r;e R if and only if (d) = (a1) + (a2) +- - -+ (an);
(ii) if R is a principal ideal ring, then a greatest common divisor of ay, . . ., @n

exists and every one is of the form ria, + - - - + r,an (ri € R);
(iii) if R is a unique factorization domain, then there exists a greatest common

divisor of ay, . . ., @n.
REMARK. Theorem 3.11(i) does nor state that every greatest common divisor of

a, . . . , an is expressible as a linear combination of a, . . . , a,. In general this is not
the case (Exercise 6.15). See also Exercise 12.

SKETCH OF PROOF OF 3.11. (i) Use Definition 3.10 and Theorem 2.5.

(i) follows from (i). (iii) Each @; has a factorization: @, = cPc52 - - - cjwithcy, . . . ,¢

distinct irreducible elements and each m; > 0. Show that d = c/¥'¢i®2- - -cFt is a

greatest common divisor of a, . . . , a., Where k; = min {my;,my;msj, . . ., Mnj}. B
EXERCISES

1. A nonzero ideal in a principal ideal domain is maximal if and only if it is prime.

2. Anintegral domain R is a unique factorization domain if and only if every non-
zero prime ideal in R contains a nonzero principal ideal that is prime.

3. Let R be the subring {a + b\/l_O | a,b e Z} of the field of real numbers. -
(2) The map N:R—Z given by a+ b\10 (a + b\/10)(a — b/10)
= a2 — 10b% is such that N(uv) = N()N() for all u,v e R and N(u) = 0 if and
only if u = O.
(b) uis a unit in R if and only if N(u) = 1.
() 2,3,4 + 10 and 4 — /10 are irreducible elements of R.
d 2,3,4 + \/f(_) and 4 — \@ are not prime elements of R. [Hint:3-2 = 6

=(4 + \10)4 — \10)]

4. Show that in the integral domain of Exercise 3 every element can be factored
into a product of irreducibles, but this factorization need not be unique (in the
sense of Definition 3.5 (ii)).
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5.

10.

11.
12.

13.

Let R be a principal ideal domain.

(a) Every proper ideal is a product P\P;- - - P, of maximal ideals, which are
uniquely determined up to order.

(b) An ideal P in R is said to be primary if ab ¢ P and a ¢ P imply b" ¢ P for
some n. Show that P is primary if and only if for some n, P = (p™), where p ¢ Ris
prime (= irreducible) or p = 0.

(o) If P,,P,, . . ., P, are primary ideals such that P,=(p,~)and the p, are
distinct primes, then P,\P,---P, =P, N P, N---N P,.

(d) Every proper ideal in R can be expressed (uniquely up to order) as the
intersection of a finite number of primary ideals.

. (a) If a and n are integers, n > 0, then there exist integers ¢ and r such that

a = gn + r, where |r| < n/2.

(b) The Gaussian integers Z[i{] form a Euclidean domain with ¢(a + bi)
= a? + b% [Hint: to show that Definition 3.8(ii) holds, first let y = a + bi and
assume x 1s a positive integer. By part (a) there are integers such thata = gi.x + n,
and b = gox + ry, with || < x/2, |r| < x/2. Letq = g1 + quiand r = ry + ru;
then y = gx + r,with r = 0 or (r) < ¢(x). In the general case, observe that for
x=c+di>0 and x = ¢ — di, xx > 0. There are gq,ro ¢ Z[i] such that
yx = g(xx) + ro,withry = Oor ¢(r)) < ¢(xx).Letr =y — gx;theny = gx + r
and r = 0 or ¢(r) < ¢(x).]

. What are the units in the ring of Gaussian integers Z[i]?

Let R be the following subring of the complex numbers:
R = {a 4+ b(d + /19 i)/2 | a,b ¢ Z}. Then R is a principal ideal domain
that is not a Euclidean domain.

. Let R be a unique factorization domain and 4 a nonzero element of R. There are

only a finite number of distinct principal ideals that contain the ideal (d). [Hint:
(D C(k)=k|d]

If R is a unique factorization domain and a,b ¢ R are relatively prime and a | bc,
then a | c.

Let Rbea Euclideanringand a« R. Then aisa unit in Rif and only if ¢(a) = ¢(1z).

Every nonempty set of elements (possibly infinite) in a commutative principal
ideal ring with identity has a greatest common divisor.

(Euclidean algorithm). Let R be a Euclidean domain with associated function
¢: R — {0} > N.Ifa,be Rand b > 0, here is a method for finding the greatest
common divisor of a and b. By repeated use of Definition 3.8(ii) we have:

a=qb +n, with rn=0 or o) < ¢b);
b = qin + ra, with 12 0 or gO(rz) < <p(r1);
ry = qaqFs + rs, with r3 = 0 or go(ra) < <p(r2);

Y = Qryp1lpq1 + Fry2, with Fiyo = 0 or qo(rk+2) < <p(r,,+1);



142 CHAPTER Il RINGS

Let r, = b and let » be the least integer such that r,,,; = 0 (such an » exists since
the ¢(r,) form a strictly decreasing sequence of nonnegative integers). Show that
r, is the greatest common divisor a and b.

4. RINGS OF QUOTIENTS AND LOCALIZATION

In the first part of this section the familiar construction of the fiela of rational
numbers from the ring of integers is considerably generalized. The rings of quotients
so constructed from any commutative ring are characterized by a universal mapping
property (Theorem 4.5). The last part of this section, which is referred to only oc-
casionally in the sequel, deals with the (prime) ideal structure of rings of quotients
and introduces localization at a prime ideal.

Definition 4.1. A nonempty subset S of a ring R is multiplicative provided that

abeS = abes.

EXAMPLES. The set S of all elements in a nonzero ring with identity that are
not zero divisors is multiplicative. In particular, the set of all nonzero elements in an
integral domain is multiplicative. The set of units in any ring with identity is a
multiplicative set. If P is a prime ideal in a commutative ring R, then both P and
S = R — P are multiplicative sets by Theorem 2.15.

The motivation for what follows may be seen most easily in the ring Z of integers
and the field Q of rational numbers. The set S of all nonzero integers is clearly a
multiplicative subset of Z. Intuitively the field Q is thought of as consisting of all
fractions a/b with a ¢ Z and b ¢ S, subject to the requirement

a/b = c/d < ad = bc(or ad — bc = 0).

More precisely, Q may be constructed as follows (details of the proof will be
supplied later). The relation on the set Z X S defined by

(abp) ~(c,d) & ad—bc =0

is easily seen to be an equivalence relation. Q is defined to be the set of equivalence
classes of Z X S under this equivalence relation. The equivalence class of (a,b) is
denoted a/b and addition and multiplication are defined in the usual way. One
verifies that these operations are well defined and that Q is a field. The map Z — Q
given by at— a/1 is easily seen to be a monomorphism (embedding).

We shall now extend the construction just outlined to an arbitrary multiplicative
subset of any commutative ring R (possibly without identity). We shall construct a
commutative ring S~'R with identity and a homomorphism ¢s: R — S7'R. If S is
the set of all nonzero elements in an integral domain R, then S7'R will be a field
(S'R = Q if R =2Z) and ¢s will be a monomorphism embedding R in S7'R.

Theorem 4.2. Let S be a multiplicative subse: of a commutative ring R. The relation
defined on the set R X S by

(r,s) ~(r',s") < sias’ —r’'s) =0 for some s,e8
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is an equivalence relation. Furthermore if R has no zero divisors and O ¢ S, then

rs) ~(s) © rs'  —r's=0,
PROOF. Exercise. m

Let S be a multiplicative subset of a commutative ring R and ~ the equivalence
relation of Theorem 4.2. The equivalence class of (r,s) ¢ R X S will be denoted r/s.
The set of all equivalence classes of R X S under ~ will be denoted by S~1R. Verify
that

() r/s=r/s & si(rs’ — r's) = 0 for some s, ¢ S;
(i) tr/ts = r/sfor all re R and s, ¢ S;
(iii) If 0 ¢ S, then S71R consists of a single equivalence class.

Theorem 4.3. Ler S be a multiplicative subset of a commutative ring R and let SR
be the set o fequivalence classes of R X S under the equivalence relation of Theorem 4.2.

(1) S7'R is a commutative ring with identity, where addition and multiplication are
defined by

t/s +r'/s’ = (ts’ + r's)/ss’ and (r/s)r'/s") = rr’/ss’.

(1) IfR is a nonzero ring with no zero divisors and 0 ¢ S, then S7'R is an integral
domain.

(iii) IfR is a nonzero ring with no zero divisors and S is the set of all nonzero ele-
ments of R, then S7'R is a field.

SKETCH OF PROOF. (i) Once we know that addition and multiplication in
S7!R are well-defined binary operations (independent of the choice of 7,s,7,s’), the
rest of the proof of (i) is routine. In particular, for all 5,5’ ¢S, 0/s = 0/s’ and O/s is
the additive identity. The additive inverse of /s is —r/s. For any s,s’ €S, s/s = s'/s'
and s/s is the multiplicative identity in S~1R.

To show that addition is well defined, observe first that since .S is multiplicative
(rs’ + r’s)/ss’ is an element of S7'R. If r/s =r,/s, and r’/s’ = ri/sy, we must show
that (rs’ + r's)/ss’ = (rs’ + ri’s))/sis)’. By hypothesis there exist s,55 ¢ S such that

sors1 — ris) = 0,
S3("'S1’ — rl's') = (.

Multiply the first equation by s;5's;’ and the second by s,ss;. Add the resulting equa-
tions to obtain

5:83((rs” 4+ r's)sisi” — (ns)’ + r’s)ss’] = 0.

Therefore, (rs’ + r's)/ss’ = (ns’ + ris1)/sis’’ (since s.85¢S). The proof that
multiplication is independent of the choice of r,sr' s’ is similar.

(i1) If R has no zero divisors and 0 ¢ S, then r/s = 0/s if and only if r = 0 in R.
Consequently, (#/s)r’/s’) = 0in S7'R if and only if r’ = 0in R. Since rr’ = 0 if
andonly if r = Oor #’ = 0, it follows that S~'R is an integral domain. (iii) If r # 0,
then the multiplicative inverse of r/se SR 1s s/re S71R. m
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The ring SR in Theorem 4.3 is called the ring of quotients or ring of fractions or
quotient ring of R by S. An important special case occurs when S is the set of all non-
zero elements in an integral domain R. Then S7'R is a field (Theorem 4.3(iii)) which
is called the quotient field of the integral domain R. Thus if R = Z, the quotient field
is precisely the field Q of rational numbers. More generally suppose R is any non-
zero commutative ring and S is the set of all nonzero elements of R that are nor zero
divisors. If S is nonempty (as is always the case if R has anidentity), then S7'R is
called the complete (or full) ring of quotients (or fractions) of the ring R.2 Theorem 4.3
(iii) may be rephrased: if a nonzero ring R has no zero divisors, then the complete
ring of quotients of R is a field. Clearly the complete ring of quotients of an integral
domain is just its quotient field.

If ¢ : Z — Q is the map given by n|— n/1, then ¢ is clearly a monomorphism
that embeds Z in Q. Furthermore, for every nonzero n, ¢(#n) is a unit in Q. More
generally, we have:

Theorem 4.4. Let S be amultiplicative subset of a commutative ring R.

(1) The map ¢s : R — S7IR given by r1— rs/s (for any se8S) is a well-defined
homomorphism of rings such that ¢s(s) is a unit in S7'R for every s e S.
(i) 10 ¢S and S contains no zero divisors, then ¢s is a monomorphism. In par-
ticular, any integral domain may be embedded in its quotient field.
(iii) IfR has an identity and S consists of units, then ¢s is an isomorphism. In par-
ticular, the complete ring o fquotients (= quotient field) of a field F is isomorphic to F.

SKETCH OF PROOF. (i) If s,5' €S, then rs/s = rs’/s’, whence ¢s is well de-
fined. Verify that ¢s is a ring homomorphism and that foreach s¢ S, s/s?¢ S'R is
the multiplicative inverse of s%/s = ¢s(s). (ii) If ¢s(r) = rs/s = 0 in S7'R, then
rs/s = 0/s, whence rs2s, = 0 for some s, € S. Since s2s5, € S, s2s ¥ 0. Since S has no
zero divisors, we must have r = 0. (iii) ¢g is a monomorphism by (ii). If r/s e S7IR
with s a unit in R, then r/s = ¢s(rs™'), whence ¢s is an epimorphism. |

In view of Theorem 4.4 (ii) it is customary to identify an integral domain R with
its image under ¢s and to consider R as a subring of its quotient field. Since 1g €S in
this case, r € R is thus identified with r/1; e S7'R.

The next theorem shows that rings of quotients may be completely characterized
by a universal mapping property. This theorem is sometimes used as a definition of
the ring of quotients.

Theorem 4.5. Let S be a multiplicative subset of a commutative ring R and let T be
any commutative ring with identity. Iff : R — T is a homomorphism of rings such that
f(s) is a unit in T for all seS, then there exists a unique homomorphism of rings
f:S R — T such that fos = f. The ring SR is completely determined (up to iso-
morphism) by this property.

SKETCH OF PROOF. Verify that themap f:S7'R—T given by f(r/s)
= f(r) f(s)™ is a well-defined homomorphism of rings such that fos = f. If

3For the noncommutative analogue, see Definition 1X.4.7.
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g : SR — T is another homomorphism such that ges = f, then for every se S,
gles(s)) is a unit in 7. Consequently, g(es(s)™) = gles(s))™? for every seS by
Exercise 1.15. Now for each s¢ S, ¢s(s) = s2/s, whence ¢s(s)? = s/s2e S7IR. Thus
for each /s ¢ S71R:

g(r/s) = glos(Nes()™) = glos())gles(9)™) = gles(r))gles(s))™

_ = SO f6 = F/s).
Therefore, f = g.

To prove the last statement of the theorem let C be the category whose objects
are all ( f;T), where T is a commutative ring with identity and f : R — T a homomor-
phism of rings such that f(s) is a unit in 7 for every s € S. Define a morphism in C
from ( £1,77) to ( fo,T2) to be a homomorphism of rings g : 71 — T»such that g f; = fe.
Verify that € is a category and that a morphism g in € ( f;,71) — ( f2,72) is an equiv-
alence if and only if g : 71 — 7 is an isomorphism of rings. The preceding paragraph
shows that (¢5,S7'R) is a universal object in the category ©C, whence S'R is com-
pletely determined up to isomorphism by Theorem [.7.10. m

Corollary 4.6. Let R be an integral domain considered as a subring of its quotient
field F. IfE is a field and f : R — E a monomorphism of rings, then there is a unique
monomorphism of fields T : F — E such that ¥ | R = f. In particular any field E, con-
taining R contains an isomorphic copy ¥, of F with R C F; C E,.

SKETCH OF PROOF. Let S be the set of all nonzero elements of R and apply
Theorem 4.5 to f: R — E. Then there is a homomorphism f : S7'R = F — E such
that fos = f. Verify that fis a monomorphism. Since R is identified with ¢s(R), this
means that f | R = f. The last statement of the theorem is the special case when
f : R— E,is the inclusion map. m

Theorems 4.7-4.11 deal with the ideal structure of rings of quotients. This
material will be used only in Section VIIL.6. Theorem 4.13, which does not depend
on Theorems 4.7-4.11, will be referred to in the sequel.

Theorem 4.7. Let S be a multiplicative subset of a commutative ring R.

(1) If 1is an ideal in R, then S™1 = {a/s|a e I;s ¢ S} is an ideal in S™'R.
(11) IfJ)is another ideal in R, then
S + J) = S + S1J;
S7A)) = (STH(S);
SI N J =S8N S

REMARKS. S$71 is called the extension of I in S~'R. Note that r/se¢ S™'I need
not imply that r e I since it is possible to have a/s = r/s withac I, r ¢ I.

SKETCH OF PROOF OF 4.7. Use the facts that in SR, . (ci/s)
i=1

. (7: Cf)/s; 2 (@bi/s) = D, (ai/s)(bis/s); and
i=1 ]

i=1 ]=1
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¢ £
Z (cx/s1) = (Z CiS182° * *Sk_1Sky1- - St ) /5152 - Se. M
k=1 k=1

Theorem 4.8. Ler S be a multiplicative subser of a commutative ring R with identity
and let 1 be an ideal of R. Then S '1 = SR ifand only if S N 1 % (.

PROOF. If s¢S N I, then lg,, = s/s¢S7J and hence S~/ = S7'R. Con-
versely, if S~ = S71R, then s }(S~I) = Rwhence¢s(1g) = a/sforsomeac ], s S.
Since ¢s(1r) = 1gs/s we have s2s1 = ass; for some s;¢S. But 525, ¢S and assi e/
imply SN I & m

In order to characterize the prime ideals in a ring of quotients we need a lemma.
Recall that if J is an ideal in a ring of quotients S71R, then ¢s7'(J) is an ideal in R
(Exercise 2.13). ¢s(J) is sometimes called the contraction of J in R.

Lemma 4.9. Ler S be a multiplicative subset of a commutative ring R with identity
and let 1 be an ideal in R.

@) I C s (5.
(i) If1 = ¢s7¥() for some ideal ¥ in ST'R, then S~'1 = J. In other words every
ideal in SR is of the form S7'1 for some ideal 1 in R.
(iii) IfP is a prime ideal in R andS \ P = J, then S7'P is a prime ideal in S™'R
and ¢s7(S7P) = P.

PROOF. (i) Ifac I, then as ¢ I for every s ¢ S. Consequently, ¢s(a) = as/seS7,
whence ae s I(S7U). Therefore, I C s (SI). (3i) Since I = ¢sI(J) every ele-
ment of S is of the form r/s with ¢s(r) e J. Therefore, r/s = (1r/s)(rs/s)
= (1x/8)es(r) ¢ J, whence S~ C J. Conversely, if r/seJ, then ogs(r) = rs/s
= (r/s)(s%/s)e J, whence re¢s(J) =1 Thus r/seS'/ and hence J C S7'L
(iii) S7'P is an ideal such that S7'P > S~'R by Theorem 4.8. If (r/s)(r'/5") e S7'P,
then rr'/ss’ = a/t with a e P, t ¢ S. Consequently, sitrr’ = siss’a e P for some 5, ¢ S.
Since siteS and S N P = (&, Theorem 2.15 implies that rr' ¢ P, whence r e P or
r' ¢ P. Thus r/seS7'P or r'/s’ e S7'P. Therefore, S7'P is prime by Theorem 2.15.
Finally P C ¢s (S 'P) by (i). Conversely if r ¢ ¢s Y(S7'P), then ¢s(r) e S7'P. Thus
¢s(r) = rs/s = a/t with ae P and s, 1 ¢ S. Consequently, sistr = sisa € P for some
s1€S. Since sisteS and SN P= ¢, reP by Theorem 2.15. Therefore,
s (STP)CP. m

Theorem 4.10. LerS be a multiplicative subset ofa commutative ring R with identity.
Then there is a one-10-one correspondence between the set U of prime ideals of R which
are disjoint from S and the set U of prime ideals of SR, given by P} S7'P.

PROOF. By Lemma 4.9(iii) the assignment P}— S7'P defines an injective map
U — V. We need only show that it is surjective as well. Let J be a prime ideal of
S—'R and let P = ¢s(J). Since S7'P = J by Lemma 4.9(11), it suffices to show that
P is prime. If ab ¢ P, then ¢s(a)es(b) = ¢s(ab) € J since P = ¢g7(J). Since J is prime
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in S7IR, either ¢s(a) eJ or ¢s(b) e J by Theorem 2.15. Consequently, either
ae¢s W(J) = Por be P. Therefore, P is prime by Theorem 2.15. m

Let R be a commutative ring with identity and P a prime ideal of R. Then
S = R — Pis a multiplicative subset of R by Theorem 2.15. The ring of quotients
SR is called the localization of R at P and is denoted Rp. If I is an ideal in R, then
the ideal S~!7 in Rp is denoted Ip.

Theorem 4.11. Let P be a prime ideal in a commutative ring R with identity.

(1) There is a one-to-one correspondence between the set of prime ideals of R which
are contained in P and the set of prime ideals of Rp, given by Q |- Qp;
(i) the ideal Pp in Ry is the unique maximal ideal of Rp.

PROOF. Since the prime ideals of R contained in P are precisely those which are
disjoint fromS = R — P, (i) is an immediate consequence of Theorem 4.10. If M is a
maximal ideal of Rp, then M is prime by Theorem 2.19, whence M = Qp for some
prime ideal Q of R with Q0 C P. But Q C P implies Qp C Pp. Since Pp # Rp by
Theorem 4.8, we must have Qp = Pp. Therefore, Pp is the unique maximal ideal
in Rp. [ ]

Rings with a unique maximal ideal, such as Rp in Theorem 4.11, are of some
interest in their own right.

Definition 4.12. A local ring is a commutative ring with identity which has a unique
maximal ideal.

REMARK. Since every ideal in a ring with identity is contained in some maximal
ideal (Theorem 2.18), the unique maximal ideal of a local ring R must contain every
ideal of R (except of course R itself).

EXAMPLE. If p is prime and n > 1, thenZ . is a local ring with unique maxi-
mal ideal (p).

Theorem 4.13. If R is a commutative ring with identity then the following conditions
are equivalent.

() R is a local ring;
(1) all nonunits of R are contained in some ideal M # R;
(iii) the nonunits of R form an ideal.

SKETCH OF PROOF. If Iis anideal of Rand a ¢ I, then (@) C I by Theorem
2.5. Consequently, I R if and only if I consists only of nonunits (Theorem 3.2(iv)).
(i1) = (iii) and (iii) = (i) follow from this fact. (i) = (ii) If a ¢ R is a nonunit, then
(a) # R. Therefore, (a) (and hence a) is contained in the unique maximal ideal of R
by the remark after Definition 4.12. m
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10.
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13.

14.
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EXERCISES

. Determine the complete ring of quotients of the ring Z, for each n > 2.

Let.S be a multiplicative subset of a commutative ring R with identity and let 7 be a
multiplicative subset of the ring ST'R. Let Sy = {re R|r/seT for some s e S}.
Then Six is a multiplicative subset of R and there is a ring isomorphism
S+ R = TY(S'R).

. (2) The set E of positive even integers is a multiplicative subset of Z such that

E—(Z) is the field of rational numbers.
(b) State and prove condition(s) on a multiplicative subset S of Z which insure
that S7Z is the field of rationals.

. If S = {2,4} and R = Z, then S~'R is isomorphic to the field Z;. Consequently,

the converse of Theorem 4.3(ii) is false.

. Let R be an integral domain with quotient field F. If T is an integral domain such

that R C T C F, then F is (isomorphic to) the quotient field of 7.

. Let S be a multiplicative subset of an integral domain R such that 0 ¢ S.If Ris a

principal ideal domain [resp. unique factorization domain], then so is ST'R.

. Let R, and R; be integral domains with quotient fields F, and F; respectively. If

f:Ry— R; is an isomorphism, then f extends to an isomorphism F, = Fs.
[Hint: Corollary 4.6.]

. Let R be a commutative ring with identity, 7 an ideal of R and = : R — R/I the

canonical projection.

(a) If S is a multiplicative subset of R, then 7S = w(S) is a multiplicative
subset of R/I.

(b) The mapping 0 : S7'R — (xS)"'(R/I) given by r/st w(r)/m(s) is a well-
defined function.

(c) 6 is a ring epimorphism with kernel S7/ and hence induces a ring is0-
morphism S7'R/S™U = (mS) " (R/1).

. Let S be a multiplicative subset of a commutative ring R with identity. If I is an

ideal in R, then S~(Rad I) = Rad (S§71). [See Exercise 2.2.]

Let R be an integral domain and for each maximal ideal M (which is also prime,
of course), consider Ry as a subring of the quotient field of R. Show that
N Ry = R, where the intersection is taken over all maximal ideals M of R.

Let p be a prime in Z; then (p) is a prime ideal. What can be said about the rela-
tionship of Z, and the localization Z,,?

A commutative ring with identity is local ifand only if forallr,se R,r + 5 = 1z
implies r or s is a unit.

The ring R consisting of all rational numbers with denominators not divisible by
some (fixed) prime p is a local ring.

If M is a maximal ideal in a commutative ring R with identity and » is a positive
integer, then the ring R/M~ has a unique prime ideal and therefore is local.

In a commutative ring R with identity the following conditions are equivalent:
(i) R has a unique prime ideal; (ii) every nonunit is nilpotent (see Exercise 1.12);
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(111) R has a minimal prime ideal which contains all zero divisors, and all non-
units of R are zero divisors.

16. Every nonzero homomorphic image of a local ring is local.

5. RINGS OF POLYNOMIALS AND FORMAL POWER SERIES

We begin by defining and developing notation for polynomials in one indeter-
minate over a ring R. Next the ring of polynomials in » indeterminates over R is
defined and its basic properties are developed. The last part of the section, which is
not needed in the sequel, is a brief introduction to the ring of formal power series in
one indeterminate over R.

Theorem 5.1. Let R be a ring and let R[x] denote the set of all sequences of elements
of R (ao,ay, . . .) such that a; = O for all but a finite number of indices i.

(1) R[x] is a ring with addition and multiplication defined by :
(ao,al, - .) + (bo,b], . ) = (ao + bo,al + bl, . 8 .)

and
(aO,al, .- -)(boabl’ - ') . (Co,Cl, ; * ')7
where

n
Ch = Z an—ibi = anbO + an—lbl +--- +albn_1 + aobn = Z akbj-
i=0 kti=n
(1) If R is commutative [resp. a ring with identity or a ring with no zero divisors or
an integral domain), then so is R[X].
(1) The map R — R[x] given by r}- (r,0,0,...) is a monomorphism of rings.

PROOF. Exercise. If R has anidentity 1, then (1£,0,0, . . .) is an identity in R[x].
Observe that if (agay, . . .), (bo,by, . . .) e R[x] and k [resp. j] is the smallest index such
that a, = O [resp. b; # 0], then

(ao,al, - .)(bo,bl, )= (O, 5y - ,O,akb,,aHlb,- + akb,'_H, ... N

The ring R[x] of Theorem 5.1 is called the ring of polynomials over R. Its elements
are called polynomials. The notation R[x] is explained below. In view of Theorem
5.1(ii1) we shall identify R with its isomorphic image in R[x] and write (#,0,0, . . .)
simply as r. Note that r(ag,ai, . . .) = (rao,ras, . . .). We now develop a more familiar
notation for polynomials.

Theorem 5.2. Let R be a ring with identity and denote by x the element (0,1g,0,0, ...)
of R[x].

(i) x» = (0,0, ...,0,1x,0, .. .), where 1g is the (n + 1)st coordinate.
(ii) IfreR, then for eachn > 0, rx® = x*r = (0,...,0,1,0, .. .), where r is the
(n 4+ 1)st coordinate.



150 CHAPTER 11l RINGS

(iii) For every nonzero polynomial f in R[X] there exists an integer n e N and ele-
ments Qo ...,ane R such that f = ax®+ a;x' +- - -+ a.x*. The integer n and
elements a; are unigue in the sense that f = box® + bix! 4 - - - 4 bnx™ (b; € R) implies
m>na=bifori=12,...,n;andbi =0 forn <i<m.

SKETCH OF PROOF. Use induction for (i) and straightforward computation
for (ii). (iii) If f = (a0, . . .) € R[x], there must be a largest index n such that a, > 0.
Then ag,a, . . . , a. € R are the desired elements. W

If R has an identity, then x° = 1 (as in any ring with identity) and we write the
polynomial f= ax® + awx* +---+ anx™ as f= ao+ aix + - -+ a.x™. It will be
convenient to extend the notation of Theorem 5.2 to rings without identity as follows.
If R is a ring without identity, then R may be embedded in a ring S with identity by
Theorem 1.10. Identify R with its image under the embedding map so that R is a sub-
ring of S. Then R[x] is clearly a subring of S[x]. Consequently, every polynomial
f=(ay,a,, . . .) € R[x] may be written uniquely as f=a,+ ax' + - - - + a,x", where
aeRCS, a, # 0, and x = (0,15,0,0, . . .) e S[x]. The only important difference
between this and the case when R has an identity is that in this case the element x is
not in R[x].

Hereafter a polynomial fover a ring R (with or without identity) will always be
written in the form f= a, + aix + axx? + - - -+ a.x" (a; ¢ R). In this notation addi-
tion and multiplication in R[x] are given by the familiar rules:

n

> axi+ Z bixt = Z:,) (a; + b)xt

1=0
m m+n
a.x')(z ,X’) Z ax®, where ¢, = Z a:b;.
1=0 =0 iti=k

If f= Z a;x' ¢ R[x], then the elements a: € R are called the coefficients of f. The
i=0

element a, is called the “constant term. Elements of R, which all have the form

r=(r,0,0,...) = rx® are called constant polynomials. If f= Z a;xt = ap +
i=0

ax +--+ ax™ = ax® + - - -+ aix + ao has a, # 0, then a, is called the leading

coefficient of f. If R has an identity and leading coefficient -1, then f'is said to be a

monic polynomial.

Let R be a ring (with identity). For historical reasons the element x = (0,1#,0, . ..)
of R[x] is called an indeterminate. One speaks of polynomials in the indeterminate x.
If S is another ring (with identity), then the indeterminate x ¢ S[x] is not the same ele-
ment as x & R[x]. In context this ambiguous notation will cause no confusion.

If R is any ring, it is sometimes convenient to distinguish one copy of the poly-
nomial ring over R from another. In this situation the indeterminate in one copy is
denoted by one symbol, say x, and in the other copy by a different symbol, say y. In
the latter case the polynomial ring is denoted R[y] and its elements have the form
a + ay +-- -+ a.y™.

We shall now define polynomials in more than one indeterminate. For con-
venience the discussion here is restricted to the case of a finite number of indeter-
minates. For the general case see Exercise 4. The definition is motivated by the fact
that a polynomial in one indeterminate is by definition a particular kind of sequence,
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that is, a function N — R. For each positive integer n let N = N X:--- X N (n
factors). The elements of N* are ordered # tuples of elements of N. N* is clearly an
additive abelian monoid under coordinate-wise addition.

Theorem 5.3. Ler R be a ring and denote by R[x,, . .., X,] the set of all functions
f : N — R such that f(u) >4 0 for at most a finite number of elements u of N»,

() R[Xy, ..., Xa] is a ring with addition and multiplication defined by

(f + g)(u) = f(u) + g(u) and (f)u) = D f(VgW),

viw=u
v,welN»
where f,g2 e R[Xy, . .., Xn] and u e N,
(i) IfR is commutative [resp. a ring with identity or a ring without zero divisors or
an integral domain), then so is R[xy, . . . , Xn].
(i11) The map R — R[Xy, ..., X,] given by r|-f,, where £(0,...,0) =r and
f(u) = O for all other u ¢ N*, is a monomorphism of rings.

PROOF. Exercise. H

The ring R[xy, ..., x,] of Theorem 5.3 is called the ring of polynomials in n in-
determinates over R. R is identified with its isomorphic image under the map of
Theorem 5.3(iii) and considered as a subring of R[x,, . . ., x,]. If n = 1, then R[xi] is
precisely the ring of polynomials as in Theorem 5.1. As in the case of polynomials in
one indeterminate, there is a more convenient notation for elements of R[xi, . . ., x;].

Let n be a positive integer and for each i = 1,2,...,n, let

g =1(0,...,0,1,0,...,0) &N,

where 1 is the ith coordinate of ¢;. If ke N, let kg; = (0, ..., 0,k,0,...0). Then
every element of N» may be written in the form kis; + kogo + - - - + kugn.

Theorem 5.4. Let R be a ring with identity and n a positive integer. For each
1=12,...,nletx;eR[x,, ...,X,)be defined by xi(e;) = 1g and xi(u) = 0 for u # «;.

(i) For each integer k ¢ N, x;¥(ke;) = 1gr and x;¥(u) = 0 for u = ke;;

(i) for each (ki, ..., ky) e No xkixgke. . x ¥n(kie; +-- -+ kpen) = lg and
X1k1x2k" . 'Xnk“(U) = Ofor u # k151 +--- + knen;

(i) x®%;* = x;'*%;® forall sgpe Nand alli,j = 1,2, ..., n;

(v) xi'r = rx;* for all r e R and all t ¢ N;

(v) for every polynomial f in R[x,, ...,x,] there exist unique elements A, -, € R,
indexed by all (k,, ... .k,) € N" and nonzero for at most a finite number of k,,....k,) €
N", such that

— k k
f = 2 '/ SN CLE LN

where the sum is over all (k,, ...,k) € N".

SKETCH OF PROOF. (v) Let a,;,- - - 55, = flk;, ... k). A
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If R is a ring with identity, then the elements x;,xs, . . ., x, € R[x1, ..., x,]asin
Theorem 5.4 are called indeterminates. As in the case of one indeterminate symbols
different than x,, . . . , x, may be used to denote indeterminates whenever convenient.
The elements ao,ai, . . . , a. in Theorem 5.4(v) are called the coefficients of the poly-
nomial f. A polynomial of the form ax;*1x,**- - - x,* (a € R) is called a monomial in
X1,Xs, . . ., Xa. Theorem 5.4(v) shows that every polynomial is a sum of monomials. It
is customary to omit those x; that appear with exponent zero in a monomial. For ex-
ample, ap®x:2x® + axa?xx; + azxixs®xs is written ao + aixi?xs + a.xi1x*x;. The
notation and terminology of Theorem 5.4 is extended to polynomial ring
Rlxy, . .., x.], where R has no identity, just as in the-case of one indeterminate. The
ring R is embedded in a ring S with identity and R[x, . . ., x.] is considered as a sub-
ring of S[xi, . . ., x,]. If R has no identity then the indeterminates x;,x., . . . , X, and
the monomials x,*ux,*%2 - - - x,*» (k, ¢ N) are not elements of R[x,, .. ., x,].

m
If R is any ring, then the map R[x;] — R[xy, ..., x,] defined by Z ax' b
i=0

m m
Z aix'xPL- - - x,° = Z aixi'e R[xi, . . ., x,] is easily seen to be a monomorphism
i=0 i=0
of rings. Similarly, for any subset {i, ..., i} of {1,2,..., n} there is a monomor-
phism R[x;, ..., xi] = R[x1, ..., x.). Rlxi, ..., xy] is usually identified with its
isomorphic image and considered to be a subring of R[x, ..., x.).
Let ¢ : R — S be a homomorphism of rings, fe R[xi, . .., x.]) and 51,52, . .., S, €S.

By Theorem 5.4 f = Z ax¥t. .. x¥n with a; e R and k;; e N. Omit all x; that appear
i=0

m
with exponent zero. Then ¢f(s1,8s, . . ., s.) is defined to be Z Hla)st. - sk e S;
i=0
that is, ¢f(s, . . . , 5,) is obtained by substituting ¢(a;) for a; and %3 for x¥ (ki; > 0).
Since the a; and k;; are uniquely determined (Theorem 5.4), ¢f(sy, - . . , s,) is a well-
defined element of S. If R is a subring of S and ¢ is the inclusion map, we write
f(s1, ..., s,) instead of of(sy, . . ., $n).

As is the case with most interesting algebraic constructions, the polynomial ring
R[x, . .., x,] can be characterized by a universal mapping property. The following
Theorem and its corollaries are true in the noncommutative case if appropriate hy-
potheses are added (Exercise 5). They are also true for rings of polynomials in an in-
finite number of indeterminates (Exercise 4).

Theorem 5.5. Ler R and S be commutative rings with identity and ¢ : R — S a homo-

morphism of rings such that ¢(1g) = lg. If 81,82, ..., S0 €S, then there is a unique
homomorphism of rings @ :R[X1, ..., Xal — S such that ¢ |R = ¢ and (X;) = s;
for i=12,...,n. This property completely determines the polvnomial ring
R[Xy, ..., Xu] up to isomorphism.

SKETCH OF PROOF. If fe R[x, . . ., x.], then
=Y axto - - - xj=(a; € Rik; € N)
=0

by Theorem 5.4. The map & given by &(f) = ¢f(s1, - . . , 8,) is clearly a well-defined
map such that & | R = ¢ and &(x;) = s:. Use the fact that ¢ is a homomorphism, the
rules of exponentiation and the Binomial Theorem 1.6 to verify that & is a homomor-
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phism of rings. Suppose that ¢ : R[xi, ..., x,] =S is a homomorphism such that
¥ | R = ¢ and Y(x;) = s; for each i. Then

W f) = (Z aixka. .. 'f-") Z Y@ (Ey - - Yok

N Z PlappOa)Fi- - - Plx, )k

i=0
. Z ‘p(at)skﬂ : km . (pf(sl,sz, - .. ’sﬂ) o ¢(.f);

whence ¥ = & and & is unique. Finally in order to show that R[x, . . ., x,] is com-
pletely determined by this mapping property define a category € whose objects are
all (n 4+ 2)-tuples (¥,K,s1, . . ., 5,) where K is a commutative ring with identity, s; ¢ K
and ¢ : R — K is a homomorphism with y(1z) = lx. A morphism in € from
W,K.s1, ..., 8.) t0 (6,71, . .., 1) 1s a homomorphism of rings ¢ : K — T such that
t(x) = 17, 8¢ = 0and {(s;) = t.fori = 1,2, ..., n. Verify that { is an equivalence
in C if and only if { is an isomorphism of rings. If ¢ : R — R[x,, . .., x,] is the in-
clusion map, then the first part of the proof shows that (¢,R[x, . . ., xa],x1, - . . , X»)
1s a universal object in €. Therefore, R[x, . . ., x,] is completely determined up to
isomorphism by Theorem 1.7.10. m

Corollary 5.6. If ¢ :R — S is a homomorphism of commutative rings and
$1,82, - - - » Su €S, then the map R[xy, ...,%,]—S given by f}— of(sy,...,s.) is a
homomorphism of rings.

SKETCH OF PROOF OF 5.6. The proof of Theorem 5.5 showing that the
assignment f b ¢f(si. . - ., 5,) defines a homomorphism is valid even when R and S
do not have identities. |

REMARKS. The map R[x, . .., x,] — S of Corollary 5.6 is called the evaluation
or substitution homomorphism. Corollary 5.6 may be false if R and S are not commu-
tative. This is important since Corollary 5.6 is frequently used without explicit
mention. For example, the frequently seen argument that if f = gh ( f,g,h ¢ R[x]) and
c e R, then f(c) = g(c)h(c), need not be valid if R is not commutative (Exercise 6).

Another consequence of Theorem 5.5 can be illustrated by the following example.
Let R be a commutative ring with identity and consider the polynomial

S=x+xy + x*+ xy +y* + reRlxyl.

Observe that f= y2 4+ (x2 4+ x3 + x)y + (x* + r), whence fe R[x][y]. Similarly,
f=x+y A+ x4+ yx + 02+ e Rly][x]. This suggests that R[x,y] is iso-
morphic to both R[x][y] and R[y][x]). More generally we have:

Corollary 5.7. Let R be a commutative ring with identity and n a positive integer.
For each k (1 < k < n) there are isomorphisms of rings R[x, . . . , Xu)[Xxq1, - - - 5 Xn] =2
R[Xh s e ey xn] = R[Xk+l- .-y xn][xh LRI Y xk]-
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PROOF. The corollary may be proved by directly constructing the isomor-
phisms or by using the universal mapping property of Theorem 5.5 as follows.
Given a homomorphism ¢ : R — S of commutative rings with identity and
elements sy, ..., s, S, there exists a homomorphism & : R[xi, ..., xx] — S such
that | R = ¢ and @(x;) = s for i =1,2,...,k by Theorem 5.5. Applying
Theorem 5.5 with Rx;,...,xx] in place of R yields a homomorphism
@ R[x1, ..., xi] [Xps1, ..., xa] = S such that ¢ | R[xy,...,xi] = & and &(x;) =
s; for i=k+1,...,n By construction | R=@|R = ¢ and ¥(x;) = s; for
i=1,2,...,n Suppose that ¢ :R[xy,...,xilxi41,...,x.]—S is a homo-
morphism such thaty | R = ¢ and Y(x;) = s: for i = 1,2, . .., n. Then the same ar-
gument used in the proof of uniqueness in Theorem 5.5 shows thaty | R[x, . . ., xi]
= ¢. Therefore, the uniqueness statement of Theorem 5.5 (applied to R[xi, . . . , xi])
implies that y = &. Consequently, R[xi, ..., xi][Xis1, - - - , Xa] has the desired uni-
versal mapping property, whence R[xi, ..., xil[Xis1s - - -5 Xu] =2 R[x1, . . ., Xa] by
Theorem 5.5. The other isomorphism is proved similarly.

Since R[xy, . . ., xx] is usually considered as a subring of R[x,, ..., x.] (see page
152) it is customary to identify the various polynomial rings in Corollary 5.6 under
the isomorphisms stated there and write, for example, R[x, . . . , xi][Xk41s - - - 5 Xn]
= Rlxy, ..., xs].

We close this section with a brief introduction to rings of formal power series,
which is not needed in the sequel.

Proposition 5.8. Ler R be a ring and denore by R[|x]] the set of all sequences of ele-
ments of R (ag,ay, . . .).

(i) R[[x]] is a ring with addition and multiplication defined by: (as,ai, ...) +
(bo,br, . . ) = (@0 + bg,ai + by, .. ) and (ap,ai, . . )(bg,b, . ..) = (co,c, - . .), Where
Ch = Z a;bn_i = Z akb,-.

1=0 k+tj=n

(ii) The polynomial ring R[X] is a subring of R[[x]].

(iii) If R is commurative [resp. a ring with identity or a ring with no zero divisors or
an integral domain), then so is R[[x]].

PROOF. Exercise; see Theorem 5.1. m

The ring R[[x]] of Proposition 5.8 is called the ring of formal power series over the
ring R. Its elements are called power series. If R has an identity then the polynomial
x = (0,11,0, . ..) € R[[x]] is called an indeterminate. It is easy to verify that x'r = rx*
for all re R and i e N. If (ao,a, - . .) € R[[x]], then for each n, (av,ai, . - -, Gr,0,0, . . .)
is a polynomial, whence (aq, . .., a,0,0,...) = a + ax + ax® +-- -+ a,x™ by
Theorem 5.2. Consequently, we shall adopt the following notation. The power series

(ag,a, . . .) € R[[x]] is denoted by the formal sum Z a;x*. The elements q; are called
i=0

coefficients and ay is called the constant term. Just as in the case of polynomials this
notation is used even when R does not have an identity (in which case x ¢ R[[x]]).
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Proposition 5.9. Ler R be a ring with identity and f = Z a;x' e R[[x]].
i=0

(1) fis a unir in R([X]] if and only if its constant term a, is a unit in R.
(i1) Ifag is irreducible in R, then f is irreducible in R[[x]].

REMARK. If fe R[[x]] is actually a polynomial with irreducible [resp. unit] con-
stant term then fneed not be irreducible [resp. a unit] in the polynomial ring R[x]
(Exercise 8).

PROOF OF 5.9. (i) If there exists g = Y _bux‘ ¢ R[[x]] such that
f&e = gf= 1re R[[x]],

it follows immediately that aby = boao = 1k, whence ay <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>