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Preface

The main purpose of this book is to give a systematic treatment of singular
homology and cohomology theory. It is in some sense a sequel to the author’s
previous book in this Springer-Verlag series entitled Algebraic Topology :
An Introduction. This earlier book is definitely not a logical prerequisite for
the present volume. However, it would certainly be advantageous for a
prospective reader to have an acquaintance with some of the topics treated
in that earlier volume, such as 2-dimensional manifolds and the funda-
" mental group.

Singular homology and cohomology theory has been the subject of a
number of textbooks in the last couple of decades, so the basic outline of
the theory is fairly well established. Therefore, from the point of view of the
mathematics involved, there can be little that is new or original in a book such
as this. On the other hand, there is still room for a great deal of variety and
originality in the details of the exposition.

In this volume the author has tried to give a straightforward treatment
of the subject matter, stripped of all unnecessary definitions, terminology,
and technical machinery. He has also tried, wherever feasible, to emphasize
the geometric motivation behind the various concepts.

In line with these principles, the author has systematically used singular
cubes rather than singular simplexes throughout this book. This has several
advantages. To begin with, it is easier to describe an n-dimensional cube
than it is an n-dimensional simplex. Then since the product of a cube with
the unit interval is again a cube, the proof of the invariance of the induced
homomorphism under homotopies is very easy. Next, the subdivision of
an n-dimensional cube is very easy to describe explicitly, hence the proof of
the excision property is easier to motivate and explain than would be the case
using singular simplices. Of course, it is absolutely necessary to factor out

\%



Vi Preface

the degenerate singular cubes. However, even this is an advantage: it means
that certain singular cubes can be ignored or neglected in our calculations.

Chapter I is not logically necessary in order to understand the rest of
the book. It contains a summary of some of the basic properties of homology
theory, and a survey of some problems which originally motivated the
development of homology theory in the nineteenth century. Reading it
should help the student understand the background and motivation for
algebraic topology.

Chapters 11, III, and IV are concerned solely with singular homology with
integral coefficients, perhaps the most basic aspect of the whole subject.
Chapter II is concerned with the development of the fundamental properties,
Chapter III gives various examples and applications, and Chapter IV ex-
plains a systematic method of determining the integral homology groups of
certain spaces, namely, regular CW-complexes. Chapters IT and III could
very well serve as the basis for a brief one term or one semester course in
algebraic topology.

In Chapter V, the homology theory of these early chapters is generalized
to homology with an arbitrary coefficient group. This generalization is
carried out by a systematic use of tensor products. Tensor products also play
a significant role in Chapter VI, which is about the homology of product
spaces, i.e., the Kiinneth theorem and the Eilenberg—Zilber theorem.

Cohomology theory makes its first appearance in Chapter VII. Much of
this chapter of necessity depends on a systematic use of the Hom functor.
However, there is also a discussion of the geometric interpretation of
cochains and cocycles. Then Chapter VIII gives a systematic treatment of
the various products which occur in this subject: cup, cap, cross, and slant
products. The cap product is used in Chapter IX for the statement and proof
of the Poincaré duality theorem for manifolds. Because of the relations
between cup and cap products, the Poincaré duality theorem imposes certain
conditions on the cup products in a manifold. These conditions are used in
Chapter X to actually determine cup products in real, complex, and quater-
nionic projective spaces. The knowledge of these cup products in projective
spaces is then applied to prove some classical theorems.

The book ends with an appendix devoted to a proof of De Rham’s
theorem. It seemed appropriate to include it, because the methods used are
similar to those of Chapter IX.

Prerequisites. For most of the first four chapters, the only necessary
prerequisites are a basic knowledge of point set topology and the theory of
abelian groups. However, as mentioned earlier, it would be advantageous
to also know something about 2-dimensional manifolds and the theory of
the fundamental group as contained, for example, in the author’s earlier
book in this Springer-Verlag series. Then, starting in Chapter V, it is assumed
that the reader has a knowledge of tensor products. At this stage we also
begin using some of the language of category theory, mainly for the sake of
convenience. We do not use any of the results or theorems of category theory,
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however. In order to state and prove the so-called universal coefficient
theorem for homology we give a brief introduction to the Tor functor, and
references for further reading about it. Similarly, starting in Chapter VII
it is assumed that the reader is familiar with the Hom functor. For the pur-
poses of the universal coefficient theorem for cohomology we give a brief
introduction to the Ext functor, and references for additional information
about it. In order to be able to understand the appendix, the reader must
be familiar with differential forms and differentiable manifolds.

Notation and Terminology. We will follow the conventions regarding
terminology and notation that were outlined in the author’s earlier volume
in this Springer-Verlag series. Since most of these conventions are rather
standard nowadays, it is probably not necessary to repeat all of them again.

The symbols Z, Q, R, and C will be reserved for the set of all integers,
rational numbers, real numbers, and complex numbers respectively. R" and
C" will denote the space of all #-tuples of real and complex numbers respec-
tively, with their usual topology. The symbols RP", CP", and QP" are
introduced in Chapter IV to denote n-dimensional real, complex, and
quaternionic projective space respectively.

A homomorphism from one group to another is called an epimorphism
if it is onto, a monomorphism if it is one-to-one, and an isomorphism if it is
both one-to-one and onto. A sequence of groups and homomorphisms such
as

. P S R =N
is called exact if the kernel of each homomorphism is precisely the same as
the image of the preceding homomorphism. Such exact sequences play a
big role in this book.

A reference to Theorem or Lemma I11.8.4 indicates Theorem or Lemma 4
in Section 8 of Chapter III; if the reference is simply to Theorem 8.4, then
the theorem is in Section 8 of the same chapter in which the reference occurs.
At the end of each chapter is a brief bibliography ; numbers in square brackets
in the text refer to items in the bibliography. The author’s previous text,
Algebraic Topology : An Introduction is often referred to by title above.

Acknowledgments. Most of this text has gone through several versions.
The earlier versions were in the form of mimeographed or dittoed notes. The
author is grateful to the secretarial staff of the Yale mathematics department
for the careful typing of these various versions, and to the students who read
and studied them—their reactions and suggestions have been very helpful. He
is also grateful to his colleagues on the Yale faculty for many helpful dis-
cussions about various points in the book. Finally, thanks are due to the
editor and staff of Springer-Verlag New York for their care and assistance
in the production of this and the author’s previous volume in this series.

New Haven, Connecticut WILLIAM S. MASSEY
February, 1980
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CHAPTER 1

Background and Motivation
for Homology Theory

§1. Introduction

Homology theory is a subject whose development requires a long chain of
definitions, lemmas, and theorems before it arrives at any interesting results
or applications. A newcomer to the subject who plunges into a formal, logical
presentation of its ideas is likely to be somewhat puzzled because he will
probably have difficulty seeing any motivation for the various definitions and
theorems. It is the purpose of this'chapter to present some explanation, which
will help the reader to overcome this difficulty. We offer two different kinds
of material for background and motivation. First, there is a summary of some
of the most easily understood properties of homology theory, and a hint at
how it can be applied to specific problems. Secondly, there is a brief outline of
some of the problems and ideas which lead certain mathematicians of the
nineteenth century to develop homology theory.

It should be emphasized that the reading of this chapter is not a logical
prerequisite to the understanding of anything in later chapters of this book.

§2. Summary of Some of the Basic Properties
of Homology Theory

Homology theory assigns to any topological space X a sequence of abelian
groups Ho(X), H(X), Hy(X), ..., and to any continuous map f:X — Y a
sequence of homomorphisms

foH(X)>H(Y), n=0,12....
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H,(X) is called the n-dimensional homology group of X, and f, is called the
homomorphism induced by f. We will list in more or less random order some
of the principal properties of these groups and homomorphisms.

(a) If /:X — Y is a homeomorphism of X onto Y, then the induced
homomorphism f,:H,(X)— H,(Y) is an isomorphism for all n. Thus the
algebraic structure of the groups H(X), n=0,1,2,..., depends only on
the topological type of X. In fact, an even stronger statement holds: if f'is a
homotopy equivalence’, then f, is an isomorphism. Thus the structure of
H,(X) only depends on the homotopy type of X. Two spaces of the same
homotopy type have isomorphic homology groups (for the definition of these
terms, the reader is referred to Algebraic Topology: An Introduction, Chapter
2,84 and §8). '

(b) If two maps f,, f1:X — Y are homotopic?, then the induced homo-
morphisms f,, and fi,:H(X)— H,(Y) are the same for all n. Thus the
induced homomorphism f}, only depends on the homotopy class of f. By its
use, we can sometimes prove that certain maps are not homotopic.

(c) For any space X, the group Hy(X) is free abelian, and its rank is equal
to the number of arcwise connected components of X. In other words,
Hy(X) has a basis in 1-1 correspondence with the set of arc-components
of X. Thus the structure of Hy(X) has to do with the arcwise connectedness
of X. By analogy, the groups H (X), H,(X), ... have something to do with
some kind of higher connectivity of X. In fact, one can look on this as one
of the principal purposes for the introduction of the homology groups: to
express what may be called the higher connectivity properties of X.

(d) If X is an arcwise connected space, the 1-dimensional homology
group, H(X), is the abelianized fundamental group. In other words, H(X)
is isomorphic to n(X) modulo its commutator subgroup.

(e) If X is a compact, connected, orientable n-dimensional manifold,
then H,(X) is infinite cyclic, and H,(X) = {0} for all ¢ > n. In some vague
sense, such a manifold is a prototype or model for nonzero n-dimensional
homology groups.

(f) If X is an open subset of Euclidean n-space, then H,(X) = {0} for all
q=n.

We have already alluded to the fact that sometimes it is possible to use
homology theory to prove that two continuous maps are not homotopic.
Analogously, homology groups can sometimes be used to prove that two
spaces are not homeomorphic, or not even of the same homotopy type. These
are rather obvious applications. In other cases, homology theory is used in
less obvious ways to prove theorems. A nice example of this is the proof of the
Brouwer fixed point theorem in Chapter 111, §2. More subtle examples are the
Borsuk—Ulam theorem in Chapter X, §2 and the Jordan—Brouwer separation
theorem in Chapter III, §6.

! This term is defined in Chapter 11, §4.
2 For the definition, see Chapter 11, §4.
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§3. Some Examples of Problems which Motivated
the Development of Homology Theory in the
Nineteenth Century

The problems we are going to consider all have to do with line integrals,
surface integrals, etc., and theorems relating these integrals, such as the
well-known theorems of Green, Stokes, and Gauss. We assume the reader is
familiar with these topics.
As a first example, consider the following problem which is discussed in
most advanced calculus books. Let U be an open, connected set in the plane,
“and let V be a vector field in U (it is assumed that the components of V have
continuous partial derivatives in U). Under what conditions does there exist
a “potential function” for V, ie., a differentiable function F(x,y) such that
V is the gradient of F? Denote the x and y components of V by P(x,y) and
Q(x,y) respectively; then an obvious necessary condition is that
Y

5 T ox
at every point of U. If the set U is convex, then this necessary condition is

also sufficient. The standard proof of sufficiency is based on the use of
Green’s theorem, which asserts that

9€Cde +Qdy = ffn(f}% - g—i)dxdy.

Here D is a domain with piece-wise smooth boundary C (which may have
several components) such that D and C are both contained in U. By using
Green’s theorem, one can prove that the line integral on the left-hand side
vanishes if C is any closed curve in U. This implies that if (x4,y,) and (x,y)
are any two points of U, and L is any piece-wise smooth path in U joining
(x0,Vo) and (x,y), then the line integral

LPM+Q®

is independent of the choice of L; it only depends on the end points (xg,y,)
and (x,y). If we hold (x,,y,) fixed, and define F(x,y) to be the value of this
line integral for any point (x,y) in U, then F(x,y) is the desired potential
function.

On the other hand, if the open set U is more complicated, the necessary
condition 0P/dy = 0Q/0x may not be sufficient. Perhaps the simplest example
to illustrate this point is the following: Let U denote the plane with the
origin deleted,

x

P= .
x% +y?

and Q=

Y
x2 + y2
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Then the condition 0Q/0x = 0P/Cy is satisfied at each point of U. However,
if we compute the line integral

fCde+Qdy, (1)

where C is a circle with center at the origin, we obtain the value 2r. Since
27 # 0, there cannot be any potential function for the vector field V = (P,Q)
in the open set U. It is clear where the preceding proof breaks down in this
case: the circle C (with center at the origin) does not bound any domain D
such that D < U.

Since the line integral (1) may be nonzero in this case, we may ask, What
are all possible values of this line intégral as C ranges over all piece-wise
smooth closed curves in U? The answer is 2nx, where n ranges over all
integers, positive or negative. Indeed, any of these values may be obtained
by integrating around the unit circle with center at the origin an appropriate
number of times in the clockwise or counter-clockwise direction; and an
informal argument using Green’s theorem should convince the reader that
these are the only possible values.

We can ask the same question for any open, connected set U in the plane,
and any continuously differentiable vector field V = (P,Q) in U satisfying
the condition ¢P/0y = ¢Q/dx: What are all possible values of the line integral
(1) as C ranges over all piece-wise smooth closed curves in U? Anybody who
studies this problem will quickly come to the conclusion that the answer
depends on the number of “holes” in the set U. Let us associate with each
hole the value of the integral (1) in the case where C is a closed path which
goes around the given hole exactly once, and does- not encircle any other
hole (assuming such a path exists). By analogy with complex function theory,
we will call this number the residue associated with the given hole. The
answer to our problem then is that the value of the integral (1) is some finite,
integral linear combination of these residues, and any such finite integral
linear combination actually occurs as a value.

Next, let us consider the analogous problem in 3-space: we now assume
that U is an open, connected set in 3-space, and V is a vector field in U with
components P(x,y,z), Q(x,y,z), and R(x,y,z) (which are assumed to be con-
tinuously differentiable in U). Furthermore, we assume that curl V = 0. In
terms of the components, this means that the equations

R_og op_oR o0 o
dy oz’ 0z ox’ ox 0y

hold at each point of U. Once again it can be shown that if U is convex,
then there exists a function F(x,y,z) such that V is the gradient of F. The
proof is much the same as the previous case, except that now one must use
Stokes’s theorem rather than Green’s theorem to show that the line integral

fpdx+ Qdy + Rdz

is independent of the path.
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In case the domain U is not convex, this proof may break down, and it
can actually happen that the line integral

fﬁc Pdx + Qdy + Rd: )

is nonzero for some closed path C in U. Once again we can ask: What are
all possible values of the line integral (2) for all possible closed paths in U?
The “holes” in U are again what makes the problem interesting; however,
in this case there seem to be different kinds of holes. Let us consider some
examples:

(a) Let U = {(x,y,2)|x* + y* > 0}, i.e, U is the complement of the z-axis.
This example is similar to the 2-dimensional case treated earlier. If C denotes
a circle in the xy-plane with center at the origin, we could call the value of the
integral (2) with this choice of C the residue corresponding to the hole in U.
Then the value of the integral (2) for any other choice of C in U would be
some integral multiple of this residue; the reader should be able to convince
himself of this in any particular case by using Stokes’s theorem.

(b) Let U be the complement of the origin in R3. If X is any piece-wise
smooth orientable surface in U with boundary C consisting of one or more
piece-wise smooth curves, then according to Stokes’s theorem,

fﬁ de+Qdy+Rdz—ff<(£{—?—‘—0’>dyd

)

0P OR 0Q op

We leave it to the reader to convince himself that any piece-wise smooth
closed curve ¢ in U is the boundary of such a surface Z, hence by Stokes’s
theorem, the integral around such a curve is zero (the integral on the right-
hand side is identically zero). Thus the same argument applies as in the case
where U is convex to show that any vector field V in U such that curl V = 0
in U is of the form V = grad F for some function F. The existence of the
hole in U does not matter in this case.

(c) It is easy to give other examples of domains in 3-space with holes in
them such that the hole does not matter. The following are such examples:
let U, = {(x,5,2)|x* + y* + z* > 1} let U, be the complement of the upper
half (z > 0) of the z-axis; and let U, be the complement of a finite set of
points in 3-space. In each case, if V is a vector field in U, such that curl V = 0,
then V = grad F for some function F. The basic reason is that any closed
curve C in U; is the boundary of some oriented surface X in U, in each of
the cases i = 1, 2, or 3.

There is another problem for 3-dimensional space which involves closed
surfaces rather than closed curves. It may be phrased as follows: Let U be a
connected open set in R? and let V be a continuously differentiable vector
field in U such that div V = 0. Is the integral of (the normal component of)
V over any closed, orientable piece-wise smooth surface 2 in U equal to 0?
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If not, what are the possible values of the integral of V over any such closed
surface? If U is a convex open set, then any such integral of 0. One proves
this by the use of Gauss’s theorem (also called the divergence theorem):

ffv = fff(div V)dxdydz.

Here D is a domain in U with piece-wise smooth boundary X (the boundary
may have several components). The main point is that a closed orientable
surface X contained in a convex open set U is always the boundary of a
domain D contained in U. However, if the open set U has holes in it, this
may not be true, and the situation is more complicated. For example,
suppose that U is the complement of the origin in 3-space, and V is the
vector field in U with components P = x/r3, Q = y/r®, and R = z/r>, where
r = (x? + y? + z%)}/2 is the distance from the origin. It is readily verified that
div V = 0; on the other hand, the integral of V over any sphere with center
at the origin is readily calculated to be +4x; the sign depends on the orienta-
tion conventions. The set of all possible values of the surface integral [{; V
for all closed, orientable surfaces X in U is precisely the set of all integral
multiples of 47.

On the other hand, if U is the complement of the z-axis in 3-space, then
the situation is exactly the same as in the case where U is convex. The reason
is that any closed, orientable surface in U bounds a domain D in U; the
existence of the hole in U does not matter.

There is a whole series of analogous problems in Euclidean spaces of
dimension four or more. Also, one could consider similar problems on
curved submanifolds of Euclidean space. Although there would doubtless
be interesting new complications, we have already presented enough exam-
ples to give the flavor of the subject.

At some point in the nineteenth century certain mathematicians tried to
set up general procedures to handle problems such as these. This led them
to introduce the following terminology and definitions. The closed curves,
surfaces, and higher dimensional manifolds over which one integrates vector
fields, etc. were called cycles. In particular, a closed curve is a 1-dimensional
cycle, a closed surface is a 2-dimensional cycle, and so on. To complete the
picture, a 0-dimensional cycle is a point. It is understood, of course, that
cycles of dimension >0 always have a definite orientation, i.e., a 2-cycle is
an oriented closed surface. Moreover, it is convenient to attach to each cycle
a certain integer which may be thought of as its “multiplicity.” To integrate a
vector field over a 1-dimensional cycle or closed curve with multiplicity +3
means to integrate it over a path going around the curve 3 times; the result
will be 3 times the value of the integral going around it once. If the mul-
tiplicity is —3, then one integrates 3 times around the curve in the op-
posite direction. If the symbol ¢ denotes a 1-dimensional cycle, then the
symbol 3¢ denotes this cycle with the mulitiplicity +3, and — 3¢ denotes
the same cycle with multiplicity — 3. It is also convenient to allow formal
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sums and linear combinations of cycles (all of the same dimension), that is,
expressions like 3¢; + 5S¢, — 10c;, where ¢,. c,, and c; are cycles. With this
definition of addition, the set of all n dimensional cycles in an open set U
of Euclidean space becomes an abelian group: in fact it is a free abelian
group. It is customary to denote this group by Z,(U). There is one further
convention that is understood here: If ¢ is the 1-dimensional cycle deter-
mined by a certain oriented closed curve, and ¢’ denotes the cycle determined
by the same curve with the opposite orientation, then ¢ = —c’. This is
consistent with the fact that the integral of a vector field over ¢’ is the negative
of the integral over c¢. Of course, the same convention also holds for higher
dimensional cycles.

It is important to point out that 1-dimensional cycles are only assumed
to be closed curves, they are not assumed to be simple closed curves. Thus
they may have various self-intersections or singularities. Similarly, a 2-
dimensional cycle in U is an oriented surface in U which is allowed to have
various self-intersections or singularities. It is really a continuous (or differ-
entiable) mapping of a compact, connected, oriented 2-manifold into U. On
account of the possible existence of self-intersections or singularities, these
cycles are often called singular cycles.

Once one knows how to define the integral of a vector field (or differential
form) over a cycle, it is obvious how to define the integral over a formal
linear combination of cycles. If ¢y, . . ., ¢, are cycles in U and

Z=n1C1+“'+nka

where ny, n,, . . ., n, are integers, then

LV=_§n,~LV

i=1
for any vector field V in U.

The next step is to define an equivalence relation between cycles. This
equivalence relation is motivated by the following considerations. Assume
that U is an open set in 3-space.

(a) Let u and w be 1-dimensional cycles in U, ie., u and w are elements
of the group Z,(U). Then we wish to define u ~ w so that this implies

Lv=Lv

for any vector field V in U such that curl V = 0.
(b) Let u and w be elements of the group Z,(U). Then we wish to define
u ~ w so that this implies
Lv=1v

for any vector field V in U such that divV = 0.
Note that the condition
Lv=1v
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can be rewritten as follows, in view of our conventions:

[ v=o

Thus u ~ wif and only ifu — w ~ 0.

In Case (a), Stokes’s theorem suggests the proper definition, while in
Case (b) the divergence theorem points the way.

We will discuss Case (a) first. Suppose we have an oriented surface in U
whose boundary consists of the oriented closed curves ¢y, ¢, ..., ¢. The
orientations of the boundary curves are determined according to the con-
ventions used in the statement of Stokes’s theorem. Then the 1-dimensional
cycle

z=C +Cy+ -+

is defined to be homologous to zero, written
z~0.

More generally, any linear combination of cycles homologous to zero is also
defined to be homologous to zero. The set of all cycles homologous to zero
is a subgroup of Z,(U) which is denoted by B,(U). We define z and z' to be
homologous (written z ~ z') if and only if z — z’ ~ 0. Thus the set of equiva-
lence classes of cycles, called homology classes, is nothing other than the
quotient group

H,(U) = 2,(U)/By(U)

which is called the 1-dimensional homology group of U.

Analogous definitions apply to Case (b). Let D be a domain in U whose
boundary consists of the connected oriented surfaces s, s,,...,s,. The
orientation of the boundary surfaces is determined by the conventions used
for the divergence theorem. Then the 2-dimensional cycle

z=8;+ S+ +5

is by definition homologous to zero, written z ~ 0. As before, any linear
combination of cycles homologous to zero is also defined to be homologous
to 0, and the set of cycles homologous to 0 constitutes a subgroup, B,(U),
of Z,(U). The quotient group

Hy(U) = Z,(U)/B,(U)

is called the 2-dimensional homology group of U.

Let us consider some examples. If U is an open subset of the plane, then
H,(U)is a free abelian group, and it has a basis (or minimal set of generators)
in 1-1 correspondence with the holes in U. If U is an open subset of 3-space
then both H,(U) and H,(U) are free abelian groups, and each hole in U
contributes generators to H,(U) or H,(U), or perhaps to both. This helps
explain the different kinds of holes in this case.
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In principle, there is nothing to stop us from generalizing this procedure,
and defining for any topological space X and nonnegative integer n the
group Z,(X) of n-dimensional cycles in X, the subgroup B,(X) consisting of
cycles which are homologous to zero, and the quotient group

H,(X) = Z,(X) B,(X),

called the n-dimensional homology group of X. However, there are difficulties
in formulating the definitions rigorously in this generality; the reader may
have noticed that some of the definitions in the preceding pages were lacking
in precision. Actually, it took mathematicians some years to surmount these
difficulties. The key idea was to think of an n-dimensional cycle as made up
of small n-dimensional pieces which fit together in the right way, in much
the same way that bricks fit together to make a wall. In this book, we will
use n-dimensional cycles that consist of n-dimensional cubes which fit
together in a nice way. To be more precise, the “singular” cycles will be
built from “singular” cubes; a singular n-cube in a topological space X is
simply a continuous map T:I" — X, where I" denotes the unit n-cube in
Euclidean n-space.

There is another complication which should be pointed out. We men-
tioned in connection with the examples above that if U is an open subset of
the plane or 3-space, then the homology groups of U are free abelian groups.
However, there exist open subsets U of Euclidean n-space for all n > 3 such
that the group H,(U) contains elements of finite order (compare the discus-
sion of the homology groups of nonorientable surfaces in §I11.4). Suppose
that u € H,(U) is a homology class of order k # 0. Let z be a 1-dimensional
cycle in the homology class u. Then z is not homologous to 0, but k- z is
homologous to 0. This implies that if V is any vector field in U such that
curl V =0, then

[v=o

To see this, let [, V.= r. Then ,. V = k- r; but {,, V = 0 since kz ~ 0. There-
fore r = 0. It is not clear that this phenomenon was understood in the
nineteenth century; at least there seems to have been some confusion in
Poincaré’s early papers on topology about this point. Of course one source
of difficulty is the fact that this phenomenon eludes our ordinary geometric
intuition, since it does not occur in 3-dimensional space. Nevertheless it is
a phenomenon of importance in algebraic topology.

Before ending this account, we should make clear that we do not claim
that the nineteenth century development of homology theory actually pro-
ceeded along the lines we have just described. For one thing, the nineteenth
century mathematicians involved in this development were more interested
in complex analysis than real analysis. Moreover, many of their false starts
and tentative attempts to establish the subject can only be surmised from
reading the published papers which have survived to the present. The reader
who wants to go back to the original sources is referred to the papers by
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Riemann [7], E. Betti [1], and Poincaré [6]. Betti was a professor at the
University of Pisa who became acquainted with Riemann in the last years
of the latter’s life. Presumably he was strongly influenced by Riemann’s
ideas on this subject.

§4. References to Further Articles on the Background
and Motivation for Homology Theory

The student will probably find it helpful to read further articles on this
subject. The following are recommended (most of them are easy reading):
Seifert and Threlfall [8], Massey [ 5], Wallace [9], and Hocking and Young
[4]. The bibliographies in Blackett [2] and Frechet and Fan [3] list many
additional articles which are helpful and interesting.
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CHAPTER 11

Definitions and Basic Properties
of Homology Theory

§1. Introduction

This chapter gives formal definitions of the basic concepts of homology
theory, and rigorous proofs of their basic properties. For the most part,
examples and applications are postponed to Chapter Il and subsequent
chapters.

§2. Definition of Cubical Singular
Homology Groups

First, we list some terminology and notation which will be used from here on:

R = real line.

I = closed unit interval, [0,1].

R"=R x R x -+ x R (n factors, n > 0) Euclidean n-space.
I"=1x1x---x I(nfactors, n > 0) unit n-cube.

By definition, 1 is a space consisting of a single point.
Any topological space homeomorphic to I" may be called an n-dimen-
sional cube.

Definition 2.1. A singular n-cube in a topological space X is a continuous
map T:1"—> X (n > 0).

Note the special cases n = 0 and n = 1.

11
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0,(X) denotes the free abelian group generated by the set of all singular
n-cubes in X. Any element of Q,(X) has a unique expression as a finite linear
combination with integral coefficients of n-cubes in X.

Definition 2.2. A singular n-cube T:I" — X is degenerate if there exists an
integer i, 1 < i < n, such that T(x,x,, . . . ,x,) does not depend on x;.

Note that a singular O-cube is never degenerate; a singular 1-cube T:1 —
X is degenerate if and only if T is a constant map.

Let D,(X) denote the subgroup of Q,(X) generated by the degenerate
singular n-cubes, and let C,(X) denote the quotient group Q,(X)/D,(X). The
latter is called the group of cubical singular n-chains in X, or just n-chains
in X for simplicity.

Remarks. If X = (, the empty set, then Q,(X) = D (X) = C,(X) = {0}
foralln = 0.

If X is a space consisting of a single point, then there is a unique singular
n-cube in X for all n > 0; this unique n-cube is degenerate if n > 1. Hence
Co(X) is an infinite cyclic group and C,(X) = {0} for n > 0 in this case.

For any space X, Do(X) = {0}, hence Co(X) = Qo(X).

For any space X, it is readily verified that for n > 1, C,(X) is a free abelian
group on the set of all nondegenerate n-cubes in X (or, more precisely, their
cosets mod D,(X)).

The Faces of a Singular n-cube (n > 0)

Let T:I" - X be a singular n-cube in X. Fori=1,2, ..., n, we will define
singular (n — 1)-cubes
AT BT:I" ' > X
by the formulas
A,‘T(xl, “ee ,xn_l) = T(xl, “ee ,x,'_l,o,xi, .« ,xn_l),
BiT(xl, e ,xn_l) = T(xl, ‘e ,xi_l,l,xi, . ,xn_l).
A,T is called the front i-face and B,T is called the back i-face of T.
These face operators satisfy the following identities, where T:1" —» X is
ann-cube,n> l,and 1 <i<j<n:
AiAj(T) = Aj— 1Ai(T)»
BiBj(T) = Bj— lBi(T)a
AiBj(T) = Bj—lAi(T),
BiAj(T) = Aj—lBi(T)‘

2.1)

We now define the boundary operator; it is a homomorphism 0,: Q,(X) —
Q,_(X), n > 1. To define such a homomorphism, it is only necessary to
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define it on the basis elements, the singular cubes, by the basic property of
free abelian groups. Usually we will write ¢ rather than 0, for brevity.

Definition 2.3. For any n-cube T, n > 0,

2T) = ¥ (~D{AT - BT}

The reader should write out this formula explicitly for the cases n = 1, 2,
and 3, and by drawing pictures convince himself that it does in some sense
represent the oriented boundary of an n-cube T. The following are the two
most important properties of the boundary operator:

00T =0 (n>1) (22)
0,(D,(X)) < D,_ ,(X) m>ﬁ 23)

The proof of (2.2) depends on Identities (2.1); the proof of (2.3) is easy.

As a consequence of (2.3), 0, induces a homomorphism C,(X) - C,_ ,(X),
which we denote by the same symbol, d,. Note that this new sequence of
homomorphisms 0, 0,,...,4,, ..., satisfies Equation (2.2): ,_,0, = 0.

We now define

Z(X) = kernel 8, = {u e C(X)|0(u) = 0} (n>0)
B,(X) =image 0,1 = 0,4 1(Co+1(X))  (n=0).

Note that as a consequence of the equation 9,_,8, = 0, it follows that
B(X)< Z(X) forn> 0.
Hence we can define
H,(X)= Z(X)/B(X) forn> 0.

It remains to define H(X) and H,(X) for n < 0, which we will do in a minute.
H,(X) is called the n-dimensional singular homology group of X, or the n-
dimensional homology group of X for short. These groups H,(X) will be our
main object of study. The groups C,(X), Z,(X), and B,(X) are only of second-
ary importance. More terminology: Z,(X) is called the group of n-dimensional
singular cycles of X, or group of n-cycles. B,(X) is called the group of n-
dimensional boundaries or group of n-dimensional bounding cycles.

To define Hy(X), we will first define Z (X)), then set Hy(X) = Z(X)/By(X)
as before. It turns out that there are actually two slightly different candidates
for Zy(X), which give rise to slightly different groups Hy(X). In some situa-
tions one definition is more advantageous, while in other situations the
other is better. Hence we will use both. The difference between the two is
of such a simple nature that no trouble will result.
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First Definition of Hy(X)

This definition is very simple. We define Z,(X) = C,(X) and
H(Z) = Zy(X)/Bo(X) = Co(X)/Bo(X).

There is another way we could achieve the same result: we could define
C(X) = {0} for n < 0, define 0,:C,(X)— C,_,(X) in the only possible way
for n <0 (ie, 8, =0 for n < 0), and then define Z,(X) = kernel J,. More
generally, we could then define Z,(X) = kernel ¢, for all integers n, positive
or negative, B(X) = 0,,1(C,+ (X)) = Z,(X), and H(X) = Z,(X)/B,(X) for
all n. Of course we then obtain H,(X) = {0} for n < 0.

Note that H(X) is defined even in case X is empty.

Second Definition—The Reduced 0-dimensional
Homology Group, Hy(X)

For this purpose, we define a homomorphism ¢: Co(X) — Z, where Z denotes
the ring of integers. This homomorphism is often called the augmentation.
Since Co(X) = Qy(X) is a free group on the set of O-cubes, it suffices to
define ¢(T) for any O-cube T in X. The definition is made in the simplest
possible nontrivial way: &(T) = 1. It then follows that if u = ), n,7; is any
0O-chain, &(u) = Y ; n; is just the sum of the coefficients. One now proves the
following important formula:

g0d, =0. 2.4)

To prove this formula, it suffices to verify that for any singular 1-cube T
in X, &(04(T)) =0, and this is a triviality.

We now define Z,(X) = kernel &. Formula (2.4) assures us that By(X) <
Z o(X), hence we can define

Ho(X) = Zo(X)/Bo(X).

H(X) is called the reduced O-dimensional homology group of X. To avoid
some unpleasantness later, we agree to only consider the reduced group
Hy(X) in case the space X is nonempty. It is often convenient to set H,(X) =
H,(X) forn > 0.

We will now discuss the relation between the groups Hy(X) and Ho(X).
First of all, note that Zy(X) is a subgroup of Zy(X) = Cy(X), hence Hy(X)
is a subgroup of H(X). Let &: Hy(X) — Hy(X) denote the inclusion homo-
morphism. Secondly, from Formula (2.4), it follows that (By(X)) = 0, hence
the augmentation ¢ induces a homomorphism.

e Ho(X) - Z.
Proposition 2.1. The following sequence of groups and homomorphisms

0 Ho(X) S Hy(X) > Z -0
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is exact. Thus we may identify Hy(X) with the kernel of ¢,. (The space X is
assumed nonempty.)

The proof is easy. It follows that H(X) is the direct sum of Hy(X) and an
infinite cyclic subgroup; however, this direct sum decomposition is not

natural or canonical; the infinite cyclic summand can often be chosen in
many different ways.

Some Examples

ExaMpLE 2.1. X = space consisting of a single point. Then we find that

HoX)~ Z
H,(X)={0} forn#0
HO(X) = {0}

e, Hy(X) — Z is an isomorphism.

ExampLE 2.2. 0-dimensional homology group of an arcwise connected space,
X. We then see that &:Co(X) — Z is an epimorphism, and By(X) = kernel ¢
(proof left to reader). It follows that ¢,: H(X) — Z is an isomorphism, and
H(X) = {0}. (Note: X is assumed nonempty.)

ExampLE 2.3. Let X be a space with many arc-components; denote the arc-
components by X, y € I'. Note that each singular n-cube lies entirely in one
of the arc-components. Hence Q,(X) breaks up naturally into a direct sum,

0.X) = 3 OX,).

yel

Similarly, with D (X):
D,(X)= ) D4X),),

vel
hence on passing to quotient groups we see that
C(X)= ) CJX, (directsum).

yel
Next, note that if a singular n-cube is entirely contained in the arc-component
X ,, then its faces are also entirely contained in X ,. It follows that the bound-
ary 0,:C(X) —» C,_(X) maps C,(X,) into C,_(X,). Therefore we have the
following direct sum decompositions
Z(X)= 3} Z(X,)

yel

B,(X)= } BJX)),

yel
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and hence
Hn(X) = Z Hn(Xy)
yel
In words, the nth homology group of X is the direct sum of the nth homology
groups of its arc-components.

We can apply this last result and Example 2.2 to determine the structure
of Hy(X) for any space X. The result is that Hy(X) is a direct sum of infinite
cyclic groups, with one summand for each arc-component of X.

Note that such a simple direct sum theorem does not hold for Hy(X).
For example, if X has exactly two arcwise connected components, what is
the structure of H,(X)?

EXERCISE

2.1. Determine the structure of the homology group H,(X), n > 0, if X is (a) the set
of rational numbers with their usual topology. (b) a countable, discrete space.

These examples show the relation between the structure of Hy(X) and
certain topological properties of X (the number of arcwise connected
components). In an analogous way, the algebraic structure of the groups
H,(X) for n> 0 express certain topological properties of the space X.
Naturally, these will be properties of a more subtle nature. One of our
principal aims will be to develop methods of determining the structure of
the groups H,(X) for various spaces X.

§3. The Homomorphism Induced by
a Continuous Map

Homology theory associates with every topological space X the sequence
of groups H,(X),n =0, 1, 2,.... Equally important, it associates with every
continuous map f:X — Y between spaces a sequence of homomorphisms
feH(X)—> H(Y), n=0, 1, 2,.... Certain topological properties of the
continuous map f are reflected in algebraic properties of the homomor-
phisms f,,. We will now give the definition of f,,, which is very simple.

First of all, we define homomorphisms f,:Q,(X) — 0,(Y) by the simple
rule

fu(T)y=foT
for any singular n-cube T:I" - X, n=0, 1, 2,.... We now list the main
properties of this homomorphism f:

(3.1) If T is a degenerate singular n-cube, so is f.(7). Hence f, maps
D,(X) into D,(Y), and induces a homomorphism of C,(X) into C,(Y). We
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will denote this induced homomorphism by the same symbol,
f#:CX) > C(Y), n=0,12,...
to avoid an undue proliferation of notation.

(3.2) The following diagram is commutative forn =1,2,3, .. .:

0,0X) —— 1)

F J

Iv
Q- 1(X) — Qu_i(Y).

This fact can also be expressed by the equation 0, © f, = f, ° J,, or by the
statement that f, commutes with the boundary operator. [ To prove this,
one observes that f,(A;T) = A,(f,T) and f,(B;T) = B;(f,(T)).] It follows
that the following diagram is commutative forn =1, 2,3, .. .:

Ci(X) S CAY)
o
fﬂ
Cn—l(X) - Cn—l(Y)‘

Hence f, maps Z,(X) into Z,(Y) and B,(X) into B,(Y) for all n > 0 and
induces a homomorphism of quotient groups, denoted by

foH (X) > H(Y) n=0,1,2....

This is our desired definition.
(3.3) The following diagram is also readily seen to be commutative:

Co(X)

o
|

<

Z.

ColY)

Hence f, also maps Zo(X) into Zo(Y) and induces a homomorphism of
Hy(X) into Hy(Y) which is denoted by the same symbol:

fyiHo(X) - Hy(Y).

The student should verify that the following two diagrams are also com-
mutative:

~ 14
Hy(X) — Hy(X) HoX)
lf* l,; l Z
. e
Hy(Y) — Hy(Y) Hy(Y)

Here the notation is that of Proposition 2.1.
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(34) Let f:X — X denote the identity map. It is easy to verify succes-
sively that the following homomorphisms are identity maps:

f4:04X) = QX),

fo:CAX) - CX),

[t H(X) > H(X),
and

frtHo(X) — Ho(X).

Of course, the real interest lies in the fact that f, is the identity.

(3.5) Let X, Y, and Z be topological spaces, and g: X - Y, f:Y > Z
continuous maps. We will denote by fg: X — Z the composition of the two
maps. Under these conditions, we have the homomorphisms f, g, and (fg),
from H,(X) to H,(Z) for all n > 0, and from H,(X) to Hy(Z). We assert that
these two homomorphisms are the same in all cases:

(fD)s = [ 94

To prove this assertion, one verifies first that (fg). and f.g, are the same
homomorphisms from Q,(X) to Q,(Z), then that (fg), and f,g, are the same
homomorphisms from C,(X) to C,(Z). From this the assertion follows.
Since Properties (3.4) and (3.5) are so obvious, the reader may wonder
why we even bothered to mention them explicitly. These properties will be
used innumerable times in the future, and it is in keeping with the customs
of modern mathematics to make explicit any axiom or theorem that one uses.

CAUTION: If f:X — Y is a 1-1 map, it does not necessarily follow that
JSo i H(X) > H,(Y) is 1-1; similarly, the fact that f is onto does not imply
that f, is onto. There will be plenty of examples to illustrate this point
later on.

EXERCISES

3.1. Let X and Y be spaces having a finite number of arcwise connected com-
ponents, and f:X — Y a continuous map. Describe the induced homomorphism
St Ho(X) = Hy(Y). Generalize to the case where X or Y have an infinite number
of arc-components.

3.2. Let X, be an arc-component of X, and f:X,— X the inclusion map. Prove that
Sy H(X,) = H,(X) is a monomorphism, and the image is the direct summand of
H,(X) corresponding to X, as described in Example 2.3. Consequence: the direct
sum decomposition of Example 2.3 can be described completely in terms of such
homomorphisms which are induced by inclusion maps.

3.3. (Application to Retracts) A subset A of a topological space X is called a retract
of X if there exists a continuous map r: X — A such that r(a) = a for any a e A.
This is a rather strong condition on the subspace A. (a) Construct examples of
pairs (X,A4) such that A_is a retract of X, and such that A4 is not a retract of X.

(b) Let 4 be a retract of X with retracting map r:X — A4, and let i:4 - X
denote thé\inclusion map. Prove that r :H,/(X)- H,(A) is an epimorphism,
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i:H,(A)— H,/(X) is a monomorphism, and that H,X) is the direct sum of the
image of i, and the kernel of r,.

§4. The Homotopy Property of
the Induced Homomorphisms

In this section we will prove a basic property of the homomorphism induced
by a continuous map. This property is to a large extent responsible for the
distinctive character of a homology theory, and is one of the factors making
possible the computation of the homology groups H,(X) for many spaces X.

Definition 4.1. Two continuous maps f, g:X — Y are homotopic (notation:
f =~ g) if there exists a continuous map F:I x X — Y such that F(0,x) = f(x)
and F(1,x) = g(x) for any x € X.

Intuitively speaking, f ~ ¢ if and only if it is possible to “continuously
deform” the map f into the map g. The reader should prove that ~ is an
equivalence relation on the set of all continuous maps from X into Y. The
equivalence classes are called homotopy classes. The classification of contin-
uous maps into homotopy classes is often very convenient; for example,
usually there will be uncountably many continuous maps from X into Y,
but if X and Y are reasonable spaces, there will often only be finitely many
or countably many homotopy classes.

Theorem 4.1. Let f and g be continuous maps of X into Y. If f and g are homo-
topic, then the induced homomorphisms, f, and g, of H,(X) into H,(Y) are
the same. Also, f, = g,.:Hy(X) > Hy(Y).

Proor: Let F:I x X - Y be a continuous map such that F(0,x) = f(x)
and F(1,x) = g(x). We will use the continuous map F to construct a sequence
of homomorphisms

@n:C"(.X)_’Cn+1(Y), n=07 17 2’
such that the following relation holds:
—f#+g#=(7,,+10§0,,+(0,,-100,,, n=051,2’~~~~ (41)
[For n = 0, we will interpret this equation as follows: C_(X) = C_,(Y) =
{0}, 8, is the 0 homomorphism, and ¢_,:C_(X) - C(Y) is (of necessity)
the 0 homomorphism.] We assert that the theorem follows immediately
from Equation (4.1). To see this, let u € H,(X); choose a representative cycle

u' € Z,(X) for the homology class u. Since d,(u’) = 0, it follows from Equation
(4.1) that

—[5W) + g4 () = 0y 1(@,(U)).

Hence —f,() + g,)e B,(Y), and therefore f,(u) = g,(w). The proof in
case u € Hy(X) is left to the student.
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This is a typical procedure in algebraic topology; from the continuous
map F we construct homomorphisms (algebraic maps) ¢, which reflect
properties of F.

To construct the homomorphisms ¢,, we define a sequence of homo-
morphisms

D,:0,X) - Q,.,(Y), n=0,1,2,...

as follows. For any singular n-cube T:I" — X, define a singular (n + 1)-cube
@,(T):I""! - Y by the formula

(B, T)(xy, - Xy g) = Fx, T(Xg, .- X4 1)) 4.2)
We wish to compute é,,, ;D,(T). For this purpose, observe that

A @,(T) = f«(T),

B ®,(T) = g,(T),

A (T) =@, A;_(T) 2<i<n+ 1),

B®,(T)=®,_B;,_{(T) 2<i<n+1).
We now compute:

Ore 1 ®T) = 3 (— Y[ ADT) — BoYT)]
i=1

13

n+1

= _[f#(T) - g#(T)] + 'Zz (— 1)i¢n— 1(4;(T) — B; ((T))

1

~SAT)+ g (T)+ 3 (=1/"'®,_((A(T) — B(T))

i=1
Therefore we conclude that for any u € Q(X),
—[#W) + g, (W) = 0, P(u) + P, 10,(u). (4.3)

Next, observe that if T is a degenerate singular n-cube, n > 0, then @,(T) is
a degenerate (n + 1)-cube. Hence

?,(D,(X)) = D,y 4(Y)
and therefore @, induces a homomorphism
(P,,:C"(X) - Cn+ I(Y)
From (4.3) it follows that ¢, satisfies Equation (4.1), as desired. Q.E.D.
Some terminology. The function F above is called a homotopy between the
continuous maps f and g. The homomorphisms ¢,, n =0, 1, 2, . . ., consti-

tute a chain homotopy or algebraic homotopy between the chain maps f,
and g,.
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We will now discuss some applications of this theorem. Later on when
we are able to actually determine the structure of some homology groups
and compute some induced homomorphisms, we will be able to use it to
prove that certain maps are not homotopic. For example, it can be shown
that there are infinitely many homotopy classes of maps of an n-sphere onto
itself if n > 0.

Homotopy Type of Spaces

Definition 4.2. Two spaces X and Y are of the same homotopy type if there
exist continuous maps f:X — Y and g:Y — X such that gf is homotopic
to the identity map X — X, and fy is homotopic to the identity map Y — Y.
The maps f and g occurring in this definition are called homotopy equiva-
lences.

For example, if X and Y are homomorphic, then they are of the same
homotopy type (but not conversely).

Theorem 4.2. If f:X — Y is a homotopy equivalence, then f,: H,(X) — H(Y),
n=0,1,2,...,and f,.: Hy(X) > Hy(Y) are isomorphisms.

The proof, which is simple, is left to the reader.

Definition 4.3. A space X is contractible to a point if there exists a continuous
map F:I x X — X such that F(0,x) = x and F(1,x) = x, for any x € X (here
X, is a fixed point of X).

For example, any convex subset of Euclidean n-space is contractible to
a point (proof to be supplied by the reader). If a space X is contractible to a
point, then it has the same homotopy type as a space consisting of a single
point, and its homology groups are as follows:

Hy(X)~Z, HyX)=0,
H(X)=0 forn#0.

Definition 4.4. A subset A of a space X is a deformation retract of X if there
exists a retraction r: X — 4 (i.e.,, 4 is a retract of X) and a continuous map
F:I x X — X such that F(0,x) = x, F(1,x) = r(x) for any x € X.

For example, in Definition 4.3, the set {x,} is a deformation retract of X.

If A is a deformation retract of X, then the inclusion map i:4 - X is a
homotopy equivalence; the proof is left to the reader. Hence the induced
homomorphismi,:H (A) - H,(X)is an isomorphism. This is a useful princi-
ple to remember when trying to determine the homology groups of a space.
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§5. The Exact Homology Sequence of a Pair

In order to be able to use homology groups effectively, it is necessary to
be able to determine their structure for various spaces; so far we can only
do this for a few spaces, such as those which are contractible. In most cases,
the definition of H,(X) is useless as a means of computing its structure.
In order to make further progress, it seems to be necessary to have some
general theorems which give relations between the homology groups of a
space X and those of any subspace 4 contained in X. If i:4 — X denotes
the inclusion map, then there is defined the induced homomorphism
i,:H,(A) - H/(X) for n=0,1,2,.... As was mentioned earlier, i, need
not be either an epimorphism or monomorphism.

In this section we will generalize our earlier definition of homology
groups, by defining relative homology groups for any pair (X,4) consisting
of a topological space X and a subspace A; these groups are denoted by
H,(X,A),wheren =0, 1, 2, . ... There is a nice relation between these relative
homology groups and the homomorphisms i, :H,(4) - H,(X), which is ex-
pressed by something called the homology sequence of the pair (X,A). Thus
it will turn out that knowledge of the structure of the groups H,(X,A4) will
give rise to information about the homomorphisms i :H (4) - H,(X) and
vice-versa. In the next section we will take up various properties of the relative
homology groups, such as the excision property; this will enable us to
actually determine these relative homology groups in certain cases.

The relative homology groups are true generalizations of the homology
groups defined earlier in the sense that if 4 is the empty set, then H, (X ,A4) =
H,(X). Nevertheless, the primary interest in algebraic topology centers on
the nonrelative homology groups H,(X) for any space X. Our point of
view is that the relative groups H,(X,A) are introduced mainly for the pur-
pose of making possible the computation of the “absolute” homology groups
H, (X), even though in certain circumstances the relative groups are of
independent interest.

The Definition of Relative Homology Groups

Let A be a subspace of the topological space X, and let i:4 — X denote
the inclusion map. It is readily verified that the induced homomorphism
iy:C(4) - C(X) is a monomorphism, hence we can consider C,(4) to be
a subgroup of C,(X); it is the subgroup generated by all nondegenerate
singular cubes in 4. We will use the notation C,(X,A4) to denote the quotient
group C,(X)/C,(A); it is called the group of n-dimensional chains of the pair
(X,A). The boundary operator é,:C,(X) — C,_,(X) has the property that
0,(C(A)) = C,_(A), hence it induces a homomorphism of quotient groups

6;,C,,(X,A) g Cn— I(XaA)
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which we will usually denote by d,, or ¢, for simplicity. In analogy with the
definitions in §2, we define the group of n-dimensional cycles of (X,A) for
n > 0 by

Z,(X,4) = kernel 3, = {ue C,(X,A)|d(u) = 0}
and for n > 0 the group of n-dimensional bounding cycles by
B,(X,A) = image 0,1 = 0p4,(Cp11(X,A)).
Since 0,0, = 0, it follows that

B,(X,A) = Z(X,A)
and hence we can define
H,(X,4) = Z,(X,A)/B(X,A).

Incase n = 0, we define Z ((X,A4) = Cy(X,4)and Hy(X,4) = Cy(X,A4)/By(X,A).

Intuitively speaking, the relative homology group H,(X,A) is defined in
the same way as H,(X), except that one neglects anything in the subspace
A. For example, let u e C,(X); then the coset of u in the quotient group,
C,(X,A), is a cycle mod A if and only if o(u) € C,(A4), i.e., d(u) is a chain in
the subspace of 4. o

EXERCISE
5.1. Prove that C,(X,A) is a free abelian group generated by the (cosets of) the non-

degenerate singular n-cubes of X which are not contained in A.

It is convenient to display the chain groups C,(4), C,(X), and C,(X,A)
together with their boundary operators in one large diagram as follows:

V v
iy Jx
Coes(A) — Cpii(X) — Cpuy(X,4)

v v X v
CA) —2— C(X) ——— C/X,A) (5.1)

Cos(d) —2> C,_(X) = C,-1(X,A)

|
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Here the vertical arrows denote the appropriate boundary operator, @, and
Jj # denotes the natural epimorphism of C,(X) onto its quotient group C,(X,A).
It is clear that each square in this diagram is commutative. In order to avoid
having to consider the case n =0 as exceptional, we will define for any
integer n < 0,

Ci(4) = C(X) = C(X,4) = {0}.

Thus this diagram extends infinitely far upwards and downwards.

As was pointed out in §3, the homomorphisms i, induce homomorphisms
i, of H,(A) into H,(X) for all n. Similarly, the homomorphisms j, induce
homomorphisms

Je H(X) - H(X,A), n=0,1,2,....
We will now define a third sequence of homomorphisms
a*:Hn(X’A) - Hn—l(A)

for all integral values of n by a somewhat more elaborate procedure, as
follows. Let u € H,(X,4); we wish to define d,(u) € H,_ ,(A). Choose a repre-
sentative n-dimensional cycle «’' € C,(X,A) for the homology class u. Because
J# 18 an epimorphism, we can choose a chain u” € C,(X) such that j.(u") = v'.
Consider the chain d(u”) € C,_ (X); using the commutativity of Diagram
(5.1) and the fact that u' is a cycle, we see that j.d(u”') = 0; hence é(u”) actually
belongs to the subgroup C,_,(4) of C,_ ,(X). Also d(u”) is easily seen to be
a cycle; we define 0,(u) to be the homology class of the cycle d(u”).

To justify this definition of ¢,, one must verify that it does not depend
on the choice of the representative cycle u' or of the chain «” such that
j#W") =u". In addition, it must be proved that d, is a homomorphism,
i, Oy (u + v) = 0,(u) + 0,(v). These verifications should be carried out by
the reader.

The homomorphism &, is called the boundary operator of the pair (X,A).

It is natural to consider the following infinite sequence of groups and
homomorphisms for any pair (X,A4):

B H, (A5 H4) S HX) S H X A5 -

This sequence will be called the homology sequence of the pair (X,A). Once
again, in order to avoid having to consider the case n = 0 as exceptional,
we will make the convention that for n < 0, H(A) = H,(X) = H,(X,A4) = {0}.
Thus the homology sequence of a pair extends to infinity in both the right
and left directions.

The following is the main theorem of this section:

Theorem 5.1. The homology sequence of any pair (X,A4) is exact.
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In order to prove this theorem, it obviously suffices to prove the following
six inclusion relations:

image i, < kernel j, image i, o kernel j,,
image j, < kernel ¢, image j, o kernel 0,
image 0, < kernel i, image 0, o kernel i,.

We strongly urge the reader to carry out these six proofs, none of which is
difficult. It is only by working through such details that one can acquire
familiarity with the techniques of this subject.

EXERCISES

5.1. For any pair (X,A4), prove the following assertions:
(a) i, :H,(A)— H,(X) is an isomorphism for all » if and only if H,(X,4) =0 for
all n.
(b) ju:H(X)— H,(X,A) is an isomorphism for all # if and only if H,(A4) =0 for
all n.
(¢) H (X,A)=0 for n < q if and only if i,:H,(A) — H,(X) is an isomorphism for
n < q and an epimorphism for n = g.

5.2. Let X, y e I', denote the arcwise connected components of X. Prove that H,(X,A)
is isomorphic to the direct sum of the groups H,(X,, X, n A4) for all y e I'. Also,
determine the structure of Hy(X,, X, n A). (Hint: There are two cases to consider.)

5.3. For any pair (X,A), prove there are natural isomorphisms, as follows: Let
Z(X mod A) = {x € C,(X)|2(x) € C,(A)}. Then

Z(X.A) ~ Z,(X mod A)/C,(A),
B,(X,A) = [B,(X) + C,(4)]/C(4)

~ B(X)/[B/X) n C(A)],
H,(X,A) ~ Z,(X mod A)/[B,(X) + C,(4)].

[Note: The notation B,(X) + C,(A4) denotes the least subgroup of C,(X) which
contains both B,(X) and C,(A); it need not be isomorphic to their direct sum.]

5.4. Give a discussion of the exact sequence of a pair (X,A4) in case the subspace A4
is empty.

5.5. Let (X,4) be a pair with A nonempty, and let us agree to consider the reduced
homology groups H(A4) and Hy(X) as subgroups of H(A4) and Ho(X) respectively
(cf. Proposition 2.1). Show that the boundary operator é,.: H(X,A) » Hy(A) sends
H,(X,4) into the subgroup H(4), and that the following sequence is exact :

B H(XA4) S HoA) D H(X) S Ho(X,A4) — 0.

(This result may be paraphrased as follows: If A+# &, we may replace Hy(A)
and Hy(X) by Hy(A) and H ((X) in the homology sequence of (X,A4), and the resulting
sequence will still be exact.)
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5.6. Let X be a totally disconnected topological space, and let A be an arbitrary subset
of X. Determine the various groups and homomorphisms in the homology sequence
of (X,A4). :

§6. The Main Properties of Relative
Homology Groups

In order to determine the structure of the relative homology groups of a
pair, we need to know the general properties of these newly defined homology
groups. First we will consider some properties that are strictly analogous
to those discussed in §3 and 4 for “absolute” homology groups.

Let (X,4) and (Y,B) be pairs consisting of a topological space and a
subspace. We will say that a continuous function f mapping X into Y is
a map of the pair (X,A) into the pair (Y,B) if f(A) = B; we will use the notation
fi(X,A) — (Y,B) to indicate that f is such a map.

Our first observation is that any map of pairs f:(X,A) — (Y,B) induces a
homomorphism f,:H,(X,A) — H,Y,B) of the corresponding relative homology
groups. This induced homomorphism is defined as follows.

The continuous map f induces a homomorphism f,:C,(X) —» C,(Y) for
all n, as described in §3. Since f(A4) < B, it follows that f, sends the subgroup
C,(A) into the subgroup C,(B), and hence there is induced a homomorphism
of quotient groups C,(X,4) » C,(Y,B) which we will also denote by f,.
These induced homomorphisms commute with the boundary operators, in
the sense that the following diagram is commutative for each n:

fo
C(X,4) — C[Y.B)

L

I
Cpor(X,4) — C,_4(Y,B).

It now follows exactly as in §3 that f, induces a homomorphism f:
H,(X,A) - H,/(Y,B) of the corresponding homology groups for all n.

The reader should formulate and verify the analogs for maps of pairs
of the properties described in (3.4) and (3.5) for maps of spaces.

Note that the homomorphism j,: H(X) — H,(X,A4) which is part of the
homology sequence of the pair (X,4) (as explained in the preceding section)
is actually a homomorphism of the kind we have just described. For, we
can consider that the identity map of X into itself defines a map j:(X,&) —
(X,A) of pairs, and then it is easily checked that the homomorphism
Je:H(X) - H,(X,A) defined in the preceding section is the homomorphism
induced by j.

Next, we will consider the homotopy relation for maps of pairs. The
appropriate generalization of Definition 4.1 is the following: Two maps
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f, g:(X,4) — (Y,B) are homotopic (as maps of pairs) if there exists a con-
tinuous map F:(I x X,I x A) — (Y,B) such that F(0,x) = f(x) and F(1,x) =
¢g(x) for any x € X. The point is that we are requiring that F(I x 4) = B
in addition to the conditions of Definition 4.1. This additional condition
enables one to prove the following result:

Theorem 6.1. Let f, g:(X,A) — (Y,B) be maps of pairs. If f and g are homotopic
(as maps of pairs), then the induced homomorphisms f, and g, of H,(X,A)
into H,(Y,B) are the same.

The proof proceeds along the same lines as that of Theorem 4.1. Because
of the stronger hypothesis on the homotopy F, it follows that the homo-
morphisms ¢, constructed in the proof of 4.1 satisfy the following condition:

¢ Cy(A)) = C, 4 1(B).
Hence ¢, induces a homomorphism of quotient groups
(pn: Cn(XaA) - Cn+ I(Y,B)

The details are left to the reader.

EXERCISE

6.1. Formulate the appropriate definition of two pairs, (X,A4) and (Y,B), being of the
same homotopy type, and prove an analog of Theorem 4.2 for such pairs. Similarly,
generalize the concepts of retract and deformation retract from spaces to pairs
of spaces, and prove the analogs of the properties stated in §§3 and 4 for these
concepts.

Next, we will consider the effect of a map f:(X,4) — (Y,B) on the exact
homology sequences of the pairs (X,4) and (Y,B). We can conveniently
arrange the two exact sequences and the homomorphisms induced by f in
a ladderlike diagram, as follows:

Hd) —— H(X) —2 HXA) —2> H, (4) —>

T T T e

s H(B) — H(Y) —P (VB T H, B ——

We assert that each square of this diagram is commutative. For the left-hand
square and the middle square, this assertion is a consequence of Property
(3.5) and its analog for pairs. For the right-hand square, which involves @
and &'y, the asertion of commutativity is the statement of a new property of
the homology of pairs. To prove it, one must go back to the basic definitions
of the concepts involved. Since the proof is absolutely straightforward, the
details are best left to the reader.
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The commutativity of Diagram (6.1) helps to give us new insight into the
significance of the relative homology groups. From a strictly algebraic point
of view, there are usually many different ways that we could define groups
H,(X,A) for each integer n in such a way that we would obtain an exact
sequence involving the homomorphism i,:H,(4) - H,(X) at every third
step. The fact that Diagram (6.1) is commutative for any map f of pairs means
that we have chosen a natural way to define the groups H,(X,4) and the
exact homology sequence of a pair.

EXERCISE

6.2. Let 4 be an infinite cyclic group and let B be a cyclic group of order n, n > 1.
How many solutions are there to the following algebraic problem (up to
isomorphism): Determine an abelian group G and homomorphisms ¢: A4 — G and
¥ :G — B such that the following sequence is exact:

0-4%6% B0

We now come to what is perhaps the most important and at the same time
the most subtle property of the relative homology groups, called the excision
property. There is no analogue of this property for absolute homology
groups. It will give us some indication as to what the relative homology
groups depend on. Ideally, we would like to be able to say that H,(X,A4)
depends only on X — A, the complement of A in X. While this statement is
true under certain rather restrictive hypotheses, in general it is false. Another
rough way of describing the situation is to say that under certain hypotheses,
H,(X,A)is isomorphic to H,(X/A) for n > 0, and Hy(X,A) ~ Hy(X/A), where
X/A denotes the quotient space obtained from X by shrinking the subset
A to a point. In any case, the true statement is somewhat weaker.

Theorem 6.2. Let (X,A) be a pair, and let W be a subset of A such that W is
contained in the interior of A. Then the inclusion map (X — W, A — W) —
(X,A) induces an isomorphism of relative homology groups:

H(X —W,A— W)~ H(X,4, n=0,12,....

The statement of this theorem can be paraphrased as follows: Under the
given hypotheses, we can excise the set W without affecting the relative
homology groups.

The proof of this theorem depends on the fact that in the definition of
homology groups we can restrict our consideration to singular cubes which
are arbitrarily small, and this will not change anything. For example, if
X is a metric space, and ¢ is a small positive number, we can insist that only
singular cubes of diameter less than ¢ be used in the definition of H,(X,A4)
if we wish. If X is not a metric space, we can prescribe an “order of smallness”
by choosing an open covering of X, and then using only singular cubes
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which are small enough to be contained in a single set of the given open
covering. For technical reasons, it is convenient to allow a slightly more
general type of covering of X in our definition.

Definition 6.1. Let % = {U, |4 € A} be a family of subsets of the topological
space X such that the interiors of the set U; cover X (we may think of such
a family as a generalization of the notion of an open covering of X). A
singular n-cube T:I" — X is said to be small of order % if there exists an
index A € A such that T(I") < U,.

For example, if X is a metric space and ¢ is small positive number, we
could choose # to be the covering of X by all spheres of radius e.

We can now go through our preceding definitions and systematically
modify them by allowing only singular cubes which are small of order %.
This procedure works, because if T:I" — X is a singular n-cube which is
small of order %, then 0,(T) is a linear combination of singular (n — 1)-cubes,
all of which are also small of order %.

Notation. Q,(X,%) denotes the subgroup of Q,(X) generated by the singular
n-cubes” which are small of order %, D (X, %)= Q. X, %) ~ D,X), and
CX, %) = Q,(X,%)/D (X, %). Similarly, for any subspace 4 of X, Q,(A,%) =
04A) N QX ), D,(A%) = DfA) n Q(A%), and C,AU)= Q(A%)
D,(A,%). Finally, for the relative chain groups we let C(X,A,%) = C (X, %)/
C(A).

Note that &, maps Q,(X,%) into Q,_(X,%), and hence induces homo-
‘morphisms
CAX, ) - C,_ (X ),

CAu) -~ Cn—l(A’UZl)’

and
Cn(X’A9%) - Cn— I(XaAa%),

all of which we will continue to denote by the same symbol, d,. Thus we can
define exactly as before

Z(X,A%) = {u e C,(X.A2)|0,u) = O},
B(X,AU) = 0y 1(Cps (X, AU)).
Then since B (X,A,%) < Z(X,A%), we can define the homology group
H,(X,A%) = Z(X,A,%)/BAX,A%U).
Notice what happens for n = 0: Qo(X,%) = Qo(X), and hence it follows that
Co(X,A,%) = Cy(X,A),
ZoX,A%) = Co(X,A4),
H(X,A,%) = Co(X,A)/Bo(X,A%).
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Next, note that the inclusion Q, (X, %)< QX ) induces homomorphisms
0,:C (X, 4,%) - C,(X,A)

(actually, ¢, is a monomorphism, although this fact seems to be of no great
importance). Obviously, the homomorphism ¢ commutes with the boundary
operator 0, i.e., the following diagram is commutative:

CAX AM) ——> Cp_ (X, A0)

CAXA) —— = €, (X.A).

Hence ¢ maps Z,(X,4,%) into Z (X ,A) and B,(X,A4,%) into B,(X,A), and thus
induces a homomorphism

0 H(X,A%) — H,(X,A)
for all n.

Theorem 6.3. Assume that U satisfies the above hypotheses. Then the induced
homomorphisms o.:H (X ,A,%) - H,(X,A) are isomorphisms for all n.

This theorem is the precise formulation of the assertion made earlier that
we can restrict our consideration to singular cubes which are small of order
4 in defining H,(X,A). The proof, which is rather long, is given in the next
section.

We will now give the proof of Theorem 6.2, the excision property, using
Theorem 6.3.

Let (X,4) and W satisfy the conditions of Theorem 6.2. The hypotheses
imply that

Interior (4) v Interior (X — W) =X,

hence % = {A, X — W) is a generalized open covering of the kind that
occurs in Theorem 6.3. Note that for each n,

Cn(XaOZ/) = Cn(A) + Cn(X - W)

by the definition of C,(X,%) (N.B,, this is nor a direct sum).
To prove the excision property, consider the following commutative
diagram for each integer n:

CX ~ W, A~ W) —— C,(X.4)
IG" 6.2)

CX,A).
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Each of the homomorphisms indicated in this diagram is induced by an
inclusion relation. On passing to homology groups, we obtain the following
commutative diagram:

HyX — W, A — W) —— H,(X.4)
I”* (63)
H (X, A%).

We wish to prove that the homomorphism indicated by arrow 3 is an
isomorphism. Since g, is an isomorphism (by Theorem 6.3), it suffices to
prove that arrow 4 is an isomorphism. Now the homomorphism designated
by arrow 4 is induced by homomorphism designated by arrow 2; therefore
let us consider this homomorphism in more detail. By definition,

CAX —W,A—W)=Cy(X — W)/C (A = W)

since C(4 — W) = C(X — W) n C,(A). Similarly,

CX,A) = C(X.A)/C(A)
= [CAX = W) + C,(A)]/CA).

Thus the homomorphism denoted by arrow 2 consists of homomorphisms

CAX — W) CAX — W)+ C(A)
. (6.4)
CX — W) n C(4) CA4)
forn=0, 1, 2,..., which are induced by the obvious inclusion relations.

But according to the first isomorphism theorem a homomorphism such as
that in (6.4) is an isomorphism. Hence arrow 2 in (6.2) designates an iso-
morphism, and it follows that the induced homomorphism, arrow 4 in (6.3),
is also an isomorphism. This completes the proof of Theorem 6.2.

We will give examples of the use of the excision property and other
properties of relative homology groups in the next chapter.

§7. The Subdivision of Singular Cubes and
the Proof of Theorem 6.3

In this section, we introduce the technique of subdivision of singular cubes
and use it to prove Theorem 6.3. Although this technique is based on a rather
simple and natural geometric idea, the actual proof is rather long and in-
volved. For that reason it may be advisable to skip this section on a first
reading and return to it later.
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Actually, we will first prove Theorem 6.3 for the easier case of absolute
homology groups (the case where 4 = ¢J in the statement of the theorem).
The general case will then follow by an easy argument using a purely algebraic
proposition called the five-lemma.

The first step in the proof of Theorem 6.3 is to introduce the so-called
subdivision operator, and prove its properties. This will involve some lengthy
formulas, tedious verifications, etc. The reader must not let those obscure
the essentially simple geometric ideas behind the proof.

First, we will consider the process of subdividing a (singular) cube. Prob-
ably the simplest way to subdivide the cube I" is to divide it into 2" cubes
each of side 4, by means of the hyperplanes x; = 3,i =1, 2, . .., n. This leads
to the following definitions. Let &, denote the set of all vertices of the cube
I"; an n-tuple of real numbers e = (eq,e,, . . . ,e,) belong to &, if and only if
e; = 0or 1 for all i. For any singular n-cube T:I" — X and any e € &,, define

F(T):I" > X
by
(F.T)x) = T(z(x + ¢)) (7.1)
for all x = (x4, ...,x,) € I". Then define Sd,:Q,(X) - Q0,(X) by
Sd(T) = ZE F(T). (7.2)

All this is for n > 1; if T is a singular 0-cube, we define
Sdo(T)=T.

We will now list some properties of the homomorphism Sd,,.
(a) If T is a degenerate cube, then so is F,(T). Hence Sd, maps D,(X)
into D,(X) and induces a homomorphism

sd,:C(X) = C(X).
(b) The homomorphisms Sd, commute with the boundary operator, i.e.,
0,°8d,=Sd,_ °d,.

In order to prove this, one verifies the following three identities regarding
the operators F,.
(b.1) Assume e and e’ € &, are such that ¢; = ¢; for i # j, ¢; = 1, ¢; = 0.
Then
A;F, = BJF,.

(b.2) Assume e€ &, e;=0,and ¢ € &, is defined by

e =(ey... €= 15€ 4 15 -« - 5€n)-
Then

Aer = FelAj.



§7. The Subdivision of Singular Cubes and the Proof of Theorem 6.3 33

(b.3) Assume ee &,, ¢;=1, and €' € &,_, is defined by

el = (el, e eey j_l,ej+ fs v - ,e")‘
Then
BjF€=Fe'Bj’

These thre= identities are exactly what one needs to verify that
an Sdn(T) = Sdn—lan(T)'

Naturally, it follows that the induced homomorphism sd,:C,(X) - C(X)
also commutes with the boundary operator.

(c) fue Co(X) = Qy(X), then &(Sdy(u)) = e(u), This is a triviality, since
Sd, = sd,, is the identity map. We can summarize this property by stating
that the operator Sd, is augmentation preserving.

(d) For any n-chain ue C,(X), there exists an integer ¢ > 0 such that

sdi(u) e C(X,U),

where sd? denotes the homomorphism obtained by g-fold iteration of sd,.
In order to prove this assertion, it suffices to prove that for each singular
n-cube T:I" — X, there exists an integer ¢(T) such that Sd4™(T) is a sum
of cubes which are small of order %, ie., such that Sd*™(T)e Q. (X, %).
Then if u is a linear combination of the singular n-cubes T, T,, ..., T}, it
suffices to choose g to be the largest of the integers ¢(T,), g(T,), . . ., q(T,).

To prove that such an integer ¢(7) exists, consider the open covering of
the compact metric space I" by the inverse images under T of the interiors
of the sets of the covering %; let ¢ denote the Lebesgue number’ of this
covering. Then if we choose ¢(T'), so that

24T - 8/\/;,

the required condition will be satisfied (the /n occurs in the denominator
because that is the ratio of the length of the diagonal to the length of the side
for an n-dimensional cube).

Next, we are going to define homomorphisms

(P,,ZC,,(X)—’ Cn+1(X)> n=0,1,...
such that for any ue C(X),
sd(u) — u = Cps10,(U) + @y 104u). (7.3)

In the terminology of §4, the ¢,’s are a chain homotopy between the sub-
division operator, sd, and the identity map. In order to define ¢,, we first

! We say ¢ is a Lebesgue number of a covering of a metric space S if the following condition
holds: any subset of S of diameter <e¢ is contained in some set of the covering. It is a theorem
that any open covering of a compact metric space has a Lebesgue number. The reader may
either prove this as an exercise or look up a proof in a general topology book.
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define two auxiliary functions #,, ,:1> = I' by the formulas

No(X1,%3) = 2—x,
X1 +1 .
ifx; +x,<1,
N1(x1,Xz) = 2=X;
1 if x; +x,>1.

To gain a better understanding of 5, and 7,, note that 5, maps the square
I? onto the interval [0,3] and that the curves

No(x1,X,) = constant

are straight lines through the point (0,2). Also, n, maps the square I onto the
interval [4,1], and the curves

11(x1,X,) = constant

are straight lines through the point (— 1,2), provided x, + x, < 1.

Now for any e € &, and any singular n-cube T:I" — X, n > 0, define a
singular (n 4 1)-cube G(T): I"*! - X by the formula (G, T)(xy, . . . ,Xp+1) =
T(”el(xl’xn+ 1)’ "ez(xbxn+ l)’ R ’1e,, Xns X+ l)) Define
b an:Qn(X)_’ Qn+1(X)a n>0

y
O(T)=(-=1)""" ¥ GJT).

eeéy,

We will complete the definition by defining @4:04(X) — Q,(X) to be the
zero map. The motivation for the definition of @, is indicated in Figure 1 for
the case n = 1. We will now prove some properties of the homomorphisms
@,

X2

T Degenerate

I— faces of G, T
1 N J
GOT\

Xy
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(e) If T is a degenerate cube, then so is G,(T). Hence &, maps D, (X) into
D, . (X) and induces the desired homomorphism

(pn:cn(X)_’Cn+1(X), l’l=0, l,
(f) For any singular n-cube T:I1" — X, we have
0w+ 19(T)=Sd(T) - T — @,_,0,(T) + degenerate cubes. (7.4)

Equation (7.3) follows from this. Of course Formula (7.4) is a triviality
if n =0. Therefore we will concentrate on the case n > 0. To compute
Ow+19,(T), one needs the following identities:

(1) Ay11G(T) = F[T)

(£2) B,+1G(T) = Tife=(00,...,0)and B, G.(T)is a degenerate cube
otherwise.

(£3) Assume e, e'€é,,j<n,e;=1,¢;=0,and e; = ¢; for all i # j. Then

A,G(T) = B;G.(T)

for any n-cube T.
(f4) Assumeee &,,n>2,and ¢’ € §,_, is defined by

’ .
e =(e1,...,ej_1,ej+1,...,en), JS”,

Ife; = 0, then

AGAT) = G A/T),
while if ¢; = 1, then

B;G(T) = G,By(T).

Incasen =1, A;GyT and B,G, T are degenerate.

By using Identities (f.1)—(f4), it is a straightforward matter to verify
Formula (7.4) and hence (7.3).

(g) Ifue C (X, %),then ¢,{u) € C,, (X, %)also. To prove this, observe that
if a cube T is small of order %, then so is G(T). Hence ®(T) € Q,. (X, %),
and ¢, has the required property.

We have now defined the operators sd, and ¢,,, and proved their principal
properties. For the sake of simplicity, we will write sd rather than sd, and ¢
rather than ¢, from now on.

We also need the following formulas. For any integer ¢ > 0, define

Y CX) > Coir(X), n=0,1,2,...

by q-1
V) = Y. sdi(ep(w).

i=0
The following equation now readily follows from Equation (7.3):
sd¥(u) — u = o, (u) + Y, 0(u). (7.5)

Note that Statement (g) above leads to the following:
(g) fue C(X, %), then Y, (u) € C, (X, %) for any integer g > 0.
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With these preliminaries out of the way, we can now prove directly that

0 H(X %) - H/(X)
is an isomorphism.

First, we prove that o, is an epimorphism. Let x € H,(X ); we will prove
there exists an element y € H (X,%) such that g,(y) = x. Letue C(X) be a
representative cycle for x. By Statement (d) above, there exists an integer g
such that

sd¥(u) e C(X, ).

Since u is a cycle and sd commutes with the boundary operator, it follows
that sd?(u) is also a cycle. If we apply Equation (7.5), we see that u and sd¥(u)
belong to the same homology class. Let y be the homology class of sd%(u)
in H,(X,%). Then o ,(y) = x, as desired.

Next, we will prove that ¢, is a monomorphism. Assume x € H (X, %)
and o,(x) = 0. We will show that x = 0. Let v e C,(X,%) be a representative
cycle for x. Since o,(x) = 0, there exists an element u € C,, (X)) such that

o(u) = v.
Apply Statement (d) above to obtain an integer ¢ such that
sdiu) e C,, (X, %).
Now apply Equation (7.5),
sdf(u) — u = Oy, (u) + Y, (v).

Apply the boundary operator to both sides to obtain

0(sd? u) — v = Y ,(v)

or
v = 0(sd? u — Y (v)).

Since ve C(X, %), Y,(v) € C, (X, %) by (¢9') above. Thus
sd?u — y,(v) e C, (X, %)
and hence v is the boundary of a chain which is small of order %. Therefore
x = 0.
This completes the proof of Theorem 6.3 in the case 4 = .
Next, we will prove Theorem 6.3 in the general case, where A is an arbitrary

subset of X. Observe that for each integer n we have the following commuta-
tive diagram:

0 — Cn(A$0”) — Cn(X’U”) — C,,(X,A,%) — 0

0 ClA) —s CfX) ——> C(X,A) ——> 0.

Both of the rows in this diagram are exact sequences of chain groups. On
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passing to the corresponding homology groups, we obtain the following
ladder-like diagram involving two long exact sequences:

— H,(X,A%) —> H(A%) — H(X %) —— H(X A% — -

N S

3 Jx
——— H,,(X,4) ——> H(4) —— H(X) H(X,4) ——>--.

Each square in this diagram is commutative; the proof of this fact is exactly
the same as the proof of the commutativity of Diagram (6.1). By what we have
already proved, the homomorphisms ¢/, and ¢}, are isomorphisms. It now
follows from the so-called five-lemma that the homomorphism ¢, is also an
isomorphism, as was to be proved.

It remains to state and prove the five-lemma:

Lemma 7.1. Consider the following diagram of abelian groups and homo-
morphisms.

4, A, > A, > A, As

lf, Pz Jf, jf, lfs
By =—— B, —— By —— B, —— B;
J1 2 3 4
Assume that each row is exact, that each square is commutative, that f, is an
epimorphism, f, and f, are isomorphisms, and fs is a monomorphism. Then f5 is

also an isomorphism.

PROOF: It suffices to prove the following two assertions:

(a) For any x € A3, if f5(x) = 0 then x = 0.

(b) Given any x € B;, there exists an element y € 45 such that f3(y) = x.

The proof of each of these two assertions is carried out by a technique
called “diagram chasing.” For the reader who has seen this technique used
before, the proof of this lemma will be very easy. For those who are unfamiliar
with the technique, the proof of this lemma is an ideal exercise, and such
readers are urged to work out the details of the proof. The proof of a proposi-
tion such as the five-lemma by diagram chasing requires practically no
cleverness or ingenuity. At each stage of the proof there is only one possible
“move”; one does not have to make any choices.



CHAPTER I1I

Determination of the Homology Groups
of Certain Spaces: Applications and
Further Properties of Homology Theory

§1. Introduction

In this chapter, we will actually determine the homology groups of various
spaces: the n-dimensional sphere, finite graphs, and compact 2-dimensional
manifolds. We also use homology theory to prove some classical theorems
of topology, most of which are due to L. E. J. Brouwer. In addition, we prove
some more basic properties of homology groups.

§2. Homology Groups of Cells and
Spheres—Applications

We will now use the exact homology sequence and the excision property to
determine the homology groups of a noncontractible space, namely, the
n-sphere

§"={xeR"™!|[x| =1}.

This example is not only interesting in its own right; it is also basic to
much that follows.

Theorem 2.1. For any integer n > 0,

s~ oom )L ifi=n,
H"(S"{{O} ifi#n
Hence
w JZ®Z ifn=0,
H°(S)'{z if n> 0.

38
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It is clear that the second statement is equivalent to the first statement
for i = 0, in view of the relation between reduced and nonreduced homology
groups.

PROOF OF THEOREM 2.1. The proof is by induction on n. The theorem is true
for n = 0, because S° is a space consisting of exactly two points. In order to
make the inductive step, we will identify S” with the “equator” of $"*1, ie.,

={x=(xg, ..., Xp42) € 5" x5, =0}
We also need to consider the following two subsets of S"**:

E'-l++l = {(xl’ e ,x,,+2)€ S"+1|X,,+2 z 0}’
En_+1 = {(xh e ’xn+2)E S"+1 |x"+2 = 0}

These may be referred to as the upper and lower hemispheres of S"**. These
hemispheres are obviously homeomorphic to the set

E™' = {(xy, ... Xpsz) € R"?||x| < 1 and x,,, = 0},

hence they are contractible. The reader should draw a picture illustrating
these sets for the case n = 1. Now consider the following diagram of homol-
ogy groups:

H(S") & Hyo (B 48" 5 Hyy (S LEY Y & B, (570,

In this diagram, j:$"*!' — (S"*LE"™!) and k:(E"*1,8") —» (S"* L E"* 1) de-
note inclusion maps. Consideration of the homology sequence of the pair
(E™*1,5") shows that 0, is an isomorphism, because E"*! is contractible;
similarly, it follows from the exactness of the homology sequence of the pair
(8"**,E%*') and the contractibility of E%*! that j, is an isomorphism. To
complete the proof, it suffices to prove that k, is an isomorphism. Now the
pair (E""1,8") is obtained from the pair (S"*!,E%*!) by excising the set
E'*' — S". However, we can not invoke the excision property (Theorem
I1.6.2) because the closure of E%*! — S" is not contained in the interior of
E""'. There is a way around this difficulty, however. Let

W = {(xla s 9xn+2)e S”+1]xn+2 = %}

Now consider the following diagram:

kt
H,~+1(E"+’S") _— H,+1(Sn+l En++l)

N7

H[+1(Sn+l — W En+l

Here the symbols e and h denote inclusion maps. This diagram is obviously
commutative. Now we can invoke the excision property to conclude that e,
is an isomorphism. Moreover, h, is also an isomorphism, because the map h
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is a homotopy equivalence of pairs; there is an obvious deformation retrac-
tion of the pair (S"*! — W,E""* — W) onto the pair (E""!,5"). 1t follows
from the commutativity of the diagram that k,, is also an isomorphism, as
desired. Q.E.D.

This proof illustrates the strategy that frequently has to be employed in
applying the excision property. The situation is reminiscent of that often
encountered in trying to apply the Seifert-Van Kampen theorem to deter-
mine the structure of the fundamental group of a space.

In §5 we will indicate an alternative proof of this theorem using the
Mayer—Vietoris sequence.

We will now st>te some applications and corollaries of this result.

P: mositica 2.2. The sphere S" is not contractible to a point.

For the statement of the next two propositions, we will use the notation
E" to denote the set {x € R"||x| < 1}, called the unit disc or ball in R" (the
proofs are left to the reader).

Proposition 2.3. S" is not a retract of E"*1.

Proposition 2.4. The relative homology groups of the pair (E",S"™') are as
Jollows (for n > 1)
H(ES") = {0 .
Z i=n.
Proposition 2.5 (Brouwer fixed point theorem). Any continuous map f:E" — E"
has at least one fixed point, i.e., a point x such that f(x) = x.

PrOOF: Assume to the contrary that f(x) # x for all x € E". Then the two
distinct points x and f(x) determine a unique straight line which intersects
S"1 in two points. Let v(x) denote that point of the intersection which is
such that x is between v(x) and f(x), or x is equal to v(x). Then v is a map
of E" onto $"~ . It is a nice technical exercise for the student to prove that v
is continuous. It is obvious from the definition that v is a retraction. But this
contradicts Proposition 8.3. Q.E.D.

For a discussion of the significance of the Brouwer fixed point theorem,
see Algebraic Topology: An Introduction, Chapter 2, §6.

We will use the knowledge we have gained about the homology groups
of $" to study continuous maps of S" into itself. Let f:S” — S" be such a
continuous map; consider the induced homomorphism

fuH(S") - H,(S").
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Since H,(S") is an infinite cyclic group, there exists a unique integer d such
that f,(u) = du for any u e H,(S"). This integer d is called the degree of f.
It has the following basic properties:

(a) It is a homotopy invariant, i.e., if f, and f; are homotopic maps of
S" into itself, then f; and f; have the same degree. This fact is a direct con-
sequence of the homotopy property of the induced homomorphism. It is
proved in books on homotopy theory that the converse statement is also
true, i.e., if f, and f; have the same degree, then they are homotopic.

(b) The degree of the composition of two maps is the product of the
degrees. To be precise, if f and g are continuous maps S" — S”, then

degree (gf') = (degree g)(degree f).

Given any map f:S" — S", we will define a new map Xf:S"*! — §"*1,
called the suspension of f by the following formula:

0, ...,0,x,42) if lx,,+2| =1,
2 X2y v e 5 Xy = .
(302 - <tf<%,...,x"+l>, Xn+2> lf|xn+2| <1

t

where t = (1 — x2,,)!/2. The geometric idea behind this formula may be
described as follows: Zf maps the north pole of S**! to the north pole,
the south pole of $"**! to the south pole, and the equator into the equator
according to the given map f. The meridian of $"** through the point x on
the equator is mapped homeomorphically onto the meridian through the
point f(x).

(c) The degree of the suspension, 2f, is the same as that of the original
map f. The proof of this property is left to the reader; it depends on the
diagram used to prove Theorem 2.1 and the following two inclusions:

(EMEY) < BV and  (2f)(E"Y) < ETL

In order to make use of this notion of degree, it is necessary to know the
degree of certain explicit maps. The following are some propositions along
this line. The proofs are left to the reader as exercises for the most part.

(d) The degree of the identity map is + 1.

(e) The degree of a constant map is O.

(f) Any map f:S° — S° has degree +1 or 0.

(g) Let v:8" — S" denote the map which is reflection in a hyperplane
through the origin of R"*!; then v has degree — 1. To prove this, note first
of all that we may choose our coordinate system so that the hyperplane in
question has the equation x,,, = 0. Then it is an easy task to prove this
formula by induction on n, starting with the case n = 0.

(h) Let f:S" —» S" denote the antipodal map, defined by f(x)= —x.
Then the degree of f is (—1)"*!. (Hint: Represent f as a composition of
reflections.)
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(i) Let f:S8" — S" be a map which is fixed point free, i.e., f(x) # x for all x.
Then f is homotopic to the antipodal map, and hence has degree (—1)"*1.

We will now use these facts to discuss the existence of continuous tangent
vector fields on S". By a tangent vector field on S* we mean a function v
which assigns to each point x € $” a vector v(x) which is tangent to S" at the
point x. The tangency condition means that the vector v(x) must be per-
pendicular to the unit vector x for all x € §". The vector field v is said to be
continuous (or differentiable) if the components of v are continuous (or
differentiable) real-valued functions. When we speak of a nonzero vector
field v, we mean that v(x) # O for all x € S". The main theorem about such
vector fields is the following:

Theorem 2.6. There exists a continuous nonzero tangent vector field on S"
if and only if n is odd.

It is easy to give an example of a continuous nonzero tangent vector field
on S" for n odd: One defines

V(X1y v o Xpa1) = (— XX 1= X45X35 + -+ 5= Xt 1,Xp)-

To prove that such a vector field does not exist on S” for n even, one proves
the following statement: If there exists a continuous nonzero tangent vector
field v on S”, then the identity map of S" onto itself is homotopic to a fixed-
point-free map f:S" — S". In fact, one may define f by the formula

X+ u(x)
S = Ix + v(x)|
and the homotopy by
_x + to(x)
filx) = T o0 0<t<l.

Theorem 2.6 now follows from this statement and Property (i) above.

Later on we will prove that there exist maps S" — S” of every possible
degree provided n > 1.

The discussion of the degree of a map that we have just given applies
only to maps of " into itself. These considerations may be extended to a
slightly more general situation as follows. Let X and Y be topological spaces
which are homeomorphic to S” (n > 1) or more generally, have the same
homotopy type as S". Then H,(X) and H (Y) are infinite cyclic groups, hence
there are two different choices possible for a generator of each of these
groups. If definite choices of a generator have been made in each case, we
will say that the spaces X and Y have been oriented. Assume that the chosen
generators are denoted by x € H,(X) and y e H,(Y) respectively. Let f: X — Y
be a continuous map; then there exists a unique integer d such that f,(x) =
dy. This integer d is called the degree of f. Note that changing the orientation
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of either X or Y changes the sign of the degree. It is a homotopy invariant
of f, and has properties analogous to those discussed above.

ExaMpPLE 2.1. Let X = S' and Y = R? — {0}. We leave it to the reader to
prove that S' is a deformation retract of R? — {0}. A continuous map
S' —» R? — {0} may be interpreted as a closed, continuous curve in the
plane R? which does not pass through the origin. The degree of such a map
is essentially the same thing as the winding number of the closed path around
the origin, as described in books on analysis.

EXERCISES
2.1. Prove that $"" ' is a deformation retract of R" — {0}.

2.2. Prove that the complement of a point in $" is homeomorphic to R" (stereographic
projection).

2.3. Prove by two different methods that R” and R” are not homeomorphic if m # n:
(a) Prove that their Alexandroff 1-point compactifications are not homeomorphic,
and (b) Prove that the complement of a point in R™ is not homeomorphic to the
complement of a point in R".

2.4. Prove that any homeomorphism 4 of E" onto itself maps S"~ ! onto $"™!. (Hint:
Consider the complement of a point.)

2.5. Let f:S" — §” be a continuous map whose degree is nonzero. Prove that f maps
S" onto S™.

2.6. If X isa Hausdorff space and x € X, then H,(X, X — {x}) is called the n-dimensional
local homology group of X at x. Justify this name by showing that it only depends
on arbitrarily small neighborhoods of x in X.

2.7. Determine the local homology groups at various points of the closed n-dimensional
ball, E". Use this computation to give another solution of Exercise 2.4.

2.8. Use local homology groups to prove that an n-dimensional and an m-dimensional
manifold are not homeomorphic if m # n.

2.9. Prove that a Mbius strip is not homeomorphic to the annulus {x € R*|1 < |x| < 2},
although they have the same homotopy type and both are compact. (Suggestion:
As a first step, determine local homology groups at various points of both spaces.)

§3. Homology of Finite Graphs

In this section we will use the properties of relative homology groups to
develop a systematic procedure for computing the homology groups of a
rather simple type of topological space called a graph. The results obtained
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are not very profound; however, they are illustrative of the techniques we
will use later to determine the homology groups of more general spaces.

Definition 3.1. A finite, regular graph (or just a graph for short) is a pair
consisting of a Hausdorff space X and a finite subspace X° (points of X°
are called vertices) such that the following conditions hold:

(a) X — X° is the disjoint union of a finite number of open subsets e,
ey, ..., e, called edges. Each ¢; is homeomorphic to an open interval of
the real line.

(b) The point set boundary, e; — e;, of the edge e; consists of two distinct
vertices, and the pair (¢;,e;) is homeomorphic to the pair ([0,1],(0,1)).

One could also consider infinite graphs, and nonregular graphs, i.e., those
for which ¢; — e; may consist of one or two vertices; (cf. Algebraic Topology:
An Introduction, Chapter VI). However, we will not do this for the present.

Note that a graph is compact, since it is the union of a finite number of
compact subsets (the closed edges e; and the vertices). It may be either
connected or disconnected, and it may have isolated vertices. If a vertex v
belongs to the closure of an edge e;, it is customary to say that e; and v are
incident.

It is easy to give many examples of graphs. It can be shown that every
graph, as defined here, can be embedded homeomorphically in Euclidean
3-space, and many can be embedded in the plane. A famous theorem of
Kuratowski (1920) gives necessary and sufficient conditions for a graph to be
embedded in the plane.

If a space X can be given a structure of a graph by specifying a set of
vertices X° then we can specify additional graph structures on X by sub-
dividing, ie., inserting additional vertices (provided the set of edges is
nonempty).

We will now show how to determine the structure of the homology
groups of a graph X. First, we will determine the relative homology groups
of the pair (X,X°) and then use the exact homology sequence of (X,X°) to
achieve our goal. Let ey, e,, ..., ¢, denote the edges of the given graph
(X,X°). We will consistently use the notation é;, =, — e; to denote the
boundary of the edge ;. It follows from Proposition 2.4 and the definition
of a graph that

Z forg=1,

3.1
0 forg#1.

H,(e.¢;) = {

Theorem 3.1. Let (X,X°) be a finite, reqular graph with edges e, e,, . . ., e;.
Then the inclusion map (€,,¢;) — (X,X°) induces a monomorphism H (e;.¢é;) —
H,(X,X% for i=1,2,...,k and H/(X,X°) is the direct sum of the image
subgroups. It follows that H,(X,X°) is a free abelian group of rank k, and
H/(X,X°) =0 for q # 1.
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(Note: The rank of a free abelian group is the number of elements in a basis;
it is proved in books on linear algebra that it is an invariant of the group).

PrOOF: The third sentence of the theorem is a consequence of the two
preceding sentences, in view of Equation (3.1) above. Therefore we will
concentrate our attention on the first two sentences of the theorem.

According to the definition of a graph, the set €; is homeomorphic to the
unit interval I = [0,1]; choose a definite homeomorphism of ¢, with I for
i=1,2,...,kand let a; denote the point which corresponds to 1 e I; it is
the midpoint of the edge e;. Similarly, let d; denote the subset of e; which
corresponds to the closed subinterval [+,32], and D=d, ud, U --- U d,,
A ={aya,,....a} Ourproof of the theorem is based on the consideration
of the following diagram:

1 2
HD,D — A) —— H/X, X — A) «—— H,(X,X")

I | |
H(d;, d; — {a) —3’ H(e, e — {a}) — H,(2;,¢).

All homomorphisms in this diagram are induced by inclusion maps of the
corresponding pairs. It follows that each square of this diagram is commuta-
tive. We assert that all four horizontal arrows in this diagram denote iso-
morphisms. For arrow 4, this follows from the fact that ¢; is a deformation
retract of g; — {q;}, together with the five-lemma (Lemma I1.7.1). Exactly the
same kind of argument shows that Arrow 2 is an isomorphism. It follows
from the excision property that Arrows 1 and 3 are isomorphisms.

The theorem now follows from the fact that the space D is disconnected
and its components are d,, d,,...,d;, and d; — {a;} =d; n (D — A) (cf.
Exercise I1.5.2). Q.E.D.

We will now consider the exact homology sequence of the pair (X,X°).
The structure of the relative homology groups H,(X,X°) is described by
the theorem just proved. Since X is a finite space with the discrete topology,
H,(X°) = 0for g # 0, and Hy(X°) is a free abelian group whose rank is equal
to the number of vertices. From this it follows easily that H,(X) = Oforg > 1,
and the only nontrivial portion of the homology sequence of the pair (X,X°)
is the following:

0 Hy(X) 5 H(X,X% 5 Hy(X%) 5 Hy(X) > 0. (3.2)

We already know that Hy(X) is a free abelian group whose rank is equal to
the number of arc-components of the topological space X. For a finite,
regular graph, it is readily proved that the components and arc-components
are the same.

Thus we know the structure of all the groups in the homology sequence
of the pair (X,X°), with the exception of H,(X). To determine the structure
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of this one remaining group, we need the following two results from linear
algebra:

(A) Any subgroup of a free abelian group is also free_abelian.

(B) Let f:A — F be an epimorphism of an abelian group A onto the free
abelian group F. Then the kernel of f is a direct summand of A; the other
summand is isomorphic to F.

The proofs of these propositions may be found in textbooks on linear
algebra. The proof of (B) is especially simple.

Definition 3.2. The Euler characteristic of a graph is the number of vertices
minus the number of edges.

We can now state the main theorem about the homology groups of a
graph:

Theorem 3.2. Let (X,X°) be a finite, regular graph. Then H (X) = 0 for q > 1,
H{(X) is a free abelian group, and

rank(H o(X)) — rank(H (X)) = Euler characteristic.

We leave it to the reader to prove this theorem, using the homology
sequence of the pair (X,X°) and the two results from linear algebra stated
above.

This theorem gives a simple method for determining the structure for
H,(X). For we can determine the rank of Hy(X) by counting the number
of components, and we can determine the Euler characteristic by counting
the number of vertices and edges. For certain purposes it is necessary to go
more deeply into the structure of H,(X), and actually give some sort of
concrete representation of the elements of this group. This we will now
proceed to do.

The exact sequence (3.2) shows that H,(X) and H,(X) are the kernel and
cokernel respectively of the homomorphism 0,:H,(X,X°) — Hy(X°). Our
procedure will be to choose convenient bases for the free abelian groups
H(X,X°) and Hy(X°), and then express 0, in terms of these bases. The edges
of the graph X will be denoted by ey, .. ., e, and the vertices by vy, . . ., v,,.

It is easy to choose a natural basis for the group Hy(X?°). Since X° is a
discrete space, H o(X°) is naturally isomorphic to the direct sum of the groups
Hyv) fori=1,2,..., m. The augmentation homomorphism &: Hy(v;) > Z
is an isomorphism; therefore it is natural to choose as a generator of Hy(v;)
the element q; such that ¢(a;) = 1. Then {ay,...,a,} is a basis for Hy(X°).
To avoid proliferation of notation, it is convenient to use the same symbol
v; for the basis element a; € Hy(v;). This abuse of notation will hardly ever
lead to confusion, and it is sanctioned by many decades of use. Thus we will
denote our basis of Ho(X%) by {vy, ... ,0,}.

Choosing a basis for H,(X,X°) is only slightly more complicated.

According to Theorem 3.1, H,(X,X°) decomposes into the direct sum of
infinite cyclic subgroups, which correspond to the edges e, . . ., e,. Thus to
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choose a basis for H,(X,X°) it suffices to choose a generator for the infinite
cyclic group H,(e;,¢;) for i=1,2,..., m. It turns out that such a choice is
purely arbitrary; there is no natural or preferred choice of a generator. In
order to understand the meaning of such a choice, consider the following
commutative diagram (cf. Exercise 11.5.5):

H(e;,é) — H(é)

&
v

VA

J
0

The homomorphism ¢, is an isomorphism; thus choosing a generator for
H (e,,¢;) is equivalent to choosing a generator for H,(é,). The set ¢; consists
of two vertices; let us denote them by v, and v;. Using the convention
introduced in the preceding paragraph, we may use the same symbols, v,
and vy, to denote a basis for Hy(¢é;). With this convention, the two possible
choices of a generator for the infinite cyclic subgroup Hy(¢;) are v, — vz and
vy — v,. Thus we see that a choice of basis for H,(e;,¢;) corresponds to an
ordering of the vertices of the edge ¢;. For this reason, we will say that we
orient the edge e; when we make such a choice. To make things precise, we
lay down the following rule: Orient the edge e; by choosing an ordering of
its two vertices. If vy > v,, then this ordering of vertices corresponds to the
generator 07 '(vy — v,) of the group H (2,,é)).

We can now give the following recipe for the homomorphism &,:
H{(X,X%) - Hy(X°):

(a) A basis for Hy(X°) consists of the set of vertices.

(b) Orient the edges by choosing an order for the vertices of each edge. On
a diagram or drawing of the given graph, it is convenient to indicate the
orientation by an arrow on each edge pointing from the first vertex to
the second.

(c) A basis for H,(X,X?°) consists of the set of oriented edges.

(d) If e; is any edge, with vertices v, and vz and orientation determined by
the relation v; > v,, then

O4le) = vg — v,
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ExampLE 3.1. Figure 2 shows a graph with six vertices and nine edges which
can not be imbedded in the plane. (This graph comes up in the well-known
problem of the three houses and the three utilities). We have oriented all the
edges by placing arrows on them which point upwards. According to the
preceding rules, the homomorphism ¢, is given by the following formulas:

O4(e1) = v, — U4

Oy(es) = U2 —Us

04(e3) = U3 — Ve

O4les) = Uz — U4

O4(es) = Us —Us

O4(es) = v, —Us

O4leq) = U2 —Us

O4(es) = U —U4

Oxleq) = v, —Us-

In other words, 0, is represented by the following matrix:

"1 0 0-1 0 O]
0 1 0 0-1 0
0 0 1 0 0-1
0 1 0-1 0 O
0 0 1 0-1 0
1 0 0 0-1 0
0 1 0 0-0-1
0 0 1-1 0 O
(1 0 0 0 O —IJ

There remains the problem of determining the kernel and cokernel of 4, In
books on linear algebra there is an algorithm described for introducing new

Uy

€y
€4

€g

Vs

Us

Figure 2
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bases in the domain and range of such a homomorphism so that the cor-
responding matrix is a diagonal matrix. Then generators of the kernel and
cokernel can be read off with ease. Unfortunately, this algorithm is rather
lengthy and tedious. As a practical alternative. one can proceed as follows.

The Euler characteristic of this graph is 6 — 9 = — 3. Since it is connected,
Hy(X) has rank 1. Hence H(X) has rank 4, by Theorem 3.2. Therefore we
should be able to find four linearly independent elements in the kernel of
0, and then hope to prove that they form a basis for the kernel of d,,. Con-
sider the following four elements of H ,(X,X°):

Iy =€ —eg+ e, — ey,

Z;=€; —e4+eg—es,

Zy=2¢€3 — €5+ €g — €y,
and

Zy=eq— ey + es — e;.

These four elements (which we may as well call cycles) were determined by
inspection of the above diagram. They correspond in an obvious way to
certain oriented closed paths in the diagram. It is readily verified that all
four of these cycles actually belong to the kernel of é,, and that they are
linearly independent. Finally, it is a nice exercise in linear algebra to check
that the set {e,.e,.¢3,€4.€5.21,25,23,24} is also a basis for H,(X,X°). These
facts suffice to prove that {z;,z,,z5,z,} is actually a basis for the kernel of
0, or what is equivalent, for the homology group H,(X). We leave it to the
reader to carry through the details of the proof. The reader is strongly urged
to make diagrams of several graphs and determine a set of linearly indepen-
dent cycles which constitute a basis for the 1-dimensional homology group
of each graph. It is only by such exercises that one can gain an adequate
understanding and intuitive feeling for homology theory. The idea that a
1-dimensional homology class is represented by a linear combination of
cycles is very important.

Next we will discuss the problem of determining the homomorphism
induced on the 1-dimensional homology groups by a continuous map from
one graph to another. This problem is probably just as important as the
problem of determining the structure of the 1-dimensional homology groups.
Let (X,X°) and (Y,Y°) be finite regular graphs and f:X — Y a continuous
map. In order to have an effective procedure for determining the induced
homomorphism f,.: H,(X) - H(Y), it is necessary to impose some condi-
tions of f. The following will be convenient for our purposes:

(A) f(X° < YO ie., f maps vertices into vertices.

(B) Given any edge e; of X, either f maps ¢; homeomorphically onto
some closed edge €; of Y, or f maps ¢, onto a vertex of Y.

Of course most continuous maps f do not satisfy these conditions. How-
ever, it can be shown that one can deform any map f homotopically into
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one which does satisfy them, provided one subdivides (X,X°) first. In view of
the invariance of f, under homotopies, this is allowable for our purposes.

Since f(X°) < Y°, we may consider f as a map of pairs: (X,X°) — (Y,Y°).
Hence we obtain the following commutative diagram involving the exact
homology sequences of the pairs (X,X°) and (Y,Y°):

]

Jx Cx i
0 — H,(X) — H,(X,X°) —— Hy(X°) — Hy(X) —— 0

bk

Jx Oy T
0 — Hy(Y) — H,(Y,Y) — Hy(Y%) —— HY) — 0.

From this diagram, it is clear that the homomorphism f,.: H,(X) - H,(Y)
is completely determined by the homomorphism labelled f;. To determine
the homomorphism fi, it suffices to describe its effect on the basis we have
chosen for H,(X,X°), ie., on the oriented edges. Suppose first that f maps
¢; homeomorphically onto the closed edge €; of Y, as stated in condition B
above. We assume that the edges e; and e have both been oriented by
choosing an order of their vertices. Then two cases arise, according as the
map f is orientation preserving, or orientation reversing (the meaning of
these terms is obvious). We leave it to the reader to prove that

file) = +ej if f preserves orientation,
T —e!if f reverses orientation.
Here f, denotes the homomorphism H(X,X°) - H,(Y,Y°) induced by f,
while e; € H,(X,X°) and ¢} € H,(Y,Y°) denote the basis elements represented

by the corresponding oriented edges. Suppose next that f maps the edge e;
of X onto the vertex v} of Y. Then

file) = 0.

To prove this equation, consider the following commutative diagram:

N
Hy(X,X%) —— H(Y,Y°)

I |

Hy(e,6) ——> H,(v)v)).

The vertical arrows denote homomorphisms induced by inclusion maps.
Since H(v},v}) = 0, the assertion follows.

ExAMPLE 3.2. By subdividing into short arcs, the circle S* may be considered
as a graph in various different ways. Let us consider S as the unit circle in
the complex plane, C:

St={zeC|||=1}.
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Let f:S' — S* be the continuous map defined by f(z) = z>. We wish to
determine the induced homomorphism f,:H (S') -» H,(S'). In order to
solve this problem, we need to subdivide S' into a regular graph in two
different ways. The first subdivision is into 6 equal arcs by means of the

vertices
i/ —1

vj=exp<j 3 ), j=0,1,...,5.

The corresponding (oriented) edges e, ¢y, ..., es are shown in Figure 3.
The second subdivision is into two semicircles by the vertices uy = +1 and
u; = —1; the corresponding (oriented)-edges, denoted by e, and ¢ are also
shown in the diagram. Let X° = {vo,0,,...,05} and Y° = {ug,u,}. Then we
can consider f as a map of pairs, (S',X°% — (§',Y°), and the conditions
A and B above are fulfilled, with X = Y = S'. The induced homomorphism
f1:H(S1,X°% — H,(5',Y?) is described by the following equation,

—¢, ifj=0,2, o0r4,

33
—ey ifj=1,30rS5, (3:3)

fl(ej)={

in view of our choice of orientations. The kernels of the homomorphisms
6*3H1(SI,X0) - Ho(XO)’
0, H,(SL,Y®) —» H(Y?)

are both of rank 1, and they are generated by the cycles
5
x=) ¢ and y=e,+ € (3.4)
=

respectively. We can consider each of these cycles as a representative of a
generator of the infinite cyclic group H,(S'); in view of the way the orienta-
tions of the edges were chosen, it seems likely that the generators so repre-
sented are the negatives of each other. It follows readily from Equations

iy Uy

Figure 3
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(3.3) and (3.4) that
filx) = =3y;

thus the map f has degree + 3. Actually, its degree is + 3.

ExaMpLE 3.3. The preceding example raises the following question: suppose
we subdivide a given space X into a finite regular graph in two different ways.
Using each of these subdivision, we can determine cycles which represent
elements of the homology group H,(X ). How can we compare representative
cycles from the two different subdivisions? The following example shows how
this problem can be solved. Consider two different subdivisions of the unit
circle S* in the complex plane; for example, consider the two subdivisions
considered in the previous example with vertex sets

X%={vy,...,0s} and Y°= {ugu,}

respectively. We will define a continuous map g:S! — S! such that g is
homotopic to the identity map, and so that g is a map of pairs (S*,X°) —
(5,Y°) such that conditions 4 and B above hold. The easiest way to define
g is to define it separately on each closed cell €;, taking care that the various
mappings so defined agree on the end points of the cells. We list the definitions
as follows:

(a) g shall map 2, homeomorphically onto &, with g(v,) = u, and g(v,) = u;.
(b) g(€,) = g(e,) = u,.

(¢) g maps 23 homeomorphically onto ¢} with g(v;) = u; and g(v,) = U.
(d) g(ey) = g(es) = u,.

We leave it to the reader to verify that g is actually homotopic to the identity
map of S' onto itself. The induced homomorphism g¢,:H,(S',X°) —
H (S*,Y)is described by the following equations, using the same orientations
of edges as in the preceding example:

gileo) = —ep
giles) = —e)
giley =0 forj=1,24 orS5.

From this it follows that
gi1(x) = —,

where x and y are the cycles defined in the previous example. Since g is
homotopic to the identity map, we know that the induced homomorphism
gy H(S") —» H,(S")is the identity homomorphism. From this it follows that
the cycles x and — y represent the same homology class.

The point of this example is not so much to prove rigorously what is
intuitively obvious, as it is to illustrate a general procedure for handling
questions of this kind.
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EXERCISES

3.1. Determine the degree of the mapping f:S' — S* defined by f(z) = z* for any
integer k.

3.2. Prove that for any integer k and any positive integer n there exists a continuous
map f:S" — S" of degree k.

3.3. Identify S? with the Alexandroff 1-point compactification of the complex plane C,
obtained by adjoining a point to C, called the point at infinity. Let f(z) be a poly-
nomial of positive degree with complex coefficients; we may consider f to be a
continuous nonconstant map f:C — C. Prove that we may extend f to a continuous
map f:S? — S? by mapping the point at infinity onto itself.

34 Let f(z) = z*, k > 0. Determine the degree of the extension f:S? — $2 of f defined
according to the procedure of the preceding exercise.

3.5. Let f(x) be a polynomial of degree k > 0 with complex coefficients. Determine the
degree of the extension f:S% — S? of f defined as above.

3.6. Let f(z) be a polynomial of degree k > 0 with complex coefficients. Prove that the
equation f(z) = 0 has at least one root in the field of complex numbers, C (this is
the so-called fundamental theorem of algebra).

37. Let X = {(x,5,2) € R®|xyz = 0} ie., X is the union of the three coordinate planes.
Prove that any homeomorphism of X onto itself must have the origin, (0,0,0), as a
fixed point. (Suggestion: Determine the local homology groups at various points.)

§4. Homology of Compact Surfaces

A compact surface is homeomorphic to one of the following: the 2-sphere,
S%; the torus, S x S!; the real projective plane; a connected sum of tori:
or, a connected sum of projective planes. For a description of these various
surfaces, see Algebraic Topology: An Introduction, Chapter I. The main fact
that we will use is that every connected surface can be obtained from some
polygonal disc by identifying the edges in pairs according to a certain scheme.

ExAMPLE 4.1 (The torus). We can think of a torus as obtained from a rectangle
by identification of the opposite edges, as shown in Figure 4. Under the

B B

Figure 4
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identification, each pair of edges becomes a circle, and the two circles,
labelled A and B in the diagram, intersect in a single point. We will use the
following notation:

E? = the rectangle

X = the torus

f:E? — X, the identification map,
E? = boundary of the rectangle
X'=f(E*)=A U B.

The homology groups of X! can be determined by the methods of the
preceding section. If we knew the relative homology groups H,(X,X "), then
we could hope to determine the homology groups of X by studying the exact
homology sequence of the pair (X,X*).

Proposition 4.1. The identification map f (E%E*) - (X,X) induces an iso-
morphism f,:H(E*,E*) » H (X,X") of relative homology groups for all q.
Hence H (X, X') = 0 for q # 2, and H,(X,X") is infinite cyclic.

Proor: The last sentence is a consequence of the first senténce and Proposi-
tion 2.4. The pattern of proof of the first sentence of the proposition, using the
excision property, deformation retracts, etc., is one that we have used before
a couple of times.

Let x denote the center point of the rectangle EZ, and let D? denote a closed
disc with center at the point x whose radius is small enough so that it is
contained entirely in the interior of the rectangle E2. Consider the following
diagram of relative homology groups:

. 1 3
H,(E*E?) — H,(E% E? — {x}) «——— H/D* D?> - {x})

J- | b

H (XX —— H(X, X — {fx}) —— H,(fD fD* - { fx)).

In this diagram the horizontal arrows all denote homomorphisms induced by
inclusion maps, and the vertical arrows denote homomorphisms induced by
f. Bach square in the diagram is commutative.

We assert that the four homomorphisms denoted by horizontal arrows
are all isomorphisms. For arrows 3 and 4 this assertion follows from the
excision property. For arrow 1, it follows from the fact that E? is a deforma-
‘tion retract of E? — {x}; one must also use the five-lemma. By a similar
argument, the assertion can be proved for arrow 2.

To complete the proof, observe that arrow 5 is an isomorphism, because
f maps D? homeomorphically onto f(D?). It now follows from the com-
mutativity of the diagram that f, is also an isomorphism. Q.E.D.
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The subset X' of X can be subdivided so as to be a finite, regular graph;
it is obviously connected, and its Euler characteristic is — 1. Therefore
HoX")=Z, H(X")=Z@®Z, and H,(X"')=0 for ¢ > 1. If we put this
information about the homology groups of (X,X!) and X! into the exact
homology sequence of the pair (X,X*), we see that H,(X) = 0 for g > 2, and
the only nontrivial part of this homology sequence is the following:

0 - HyX) 5 Hy(x.xH) 3 Hy(X") S H(X) - 0. 1)

From this sequence, we see that H,(X ) and H,(X ) are the kernel and cokernel
respectively of the homomorphism d,,.. Thus it is necessary to determine d,.
For this purpose consider the following commutative diagram:

Hy(X,X') —= H,(X")

Hy(E2 B —— H,(E),

By the proposition just proved, f,, is an isomorphism. It follows from con-
sideration of the homology sequence of the pair (E%E?) that &, is an iso-
morphism. The homomorphism f},, is induced by the identification maps
fi:E* > X'; this is a map of finite, regular graphs of the type discussed in
Section 3. Using the techniques of that section, it is a routine matter to
calculate that f, is the zero homomorphism; we leave the details to the
reader. From this it follows that ¢, is also the zero homomorphism.
Going back to the exact sequence (4.1) we see that both j, and i, are
isomorphisms. Thus we have completely determined the structure of the

homology groups of the torus, as follows:

Hy(X)=1Z (X is connected),
H(X)=Z®Z,
HyX)=1Z,

and
H/(X)=0 forg>2.

The fact that the inclusion map i:X* — X induces an isomorphism
i,:H{(X') > H(X) is also significant. This means that elements of H(X)
can be represented by cycles on the graph X*. Note also that this statement
is still true if the inclusion map i: X' — X is deformed homotopically into
some other map.

ExaMPLE 4.2 (The connected sum of » tori, n > 1 (an orientable surface of
genus n)). This example is completely analogous to the torus. Such a surface
can be obtained from a polygonal disc having 4n edges by identifying the
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edges of pairs according to the scheme shown in Figure 5. Under the identifi-
cation, each pair of edges becomes a circle on the surface X, and these 2n
circles, which may be denoted A,, 4,,..., 4,, B;, B,, ..., B, all intersect
in a single point. The union of these circles may be denoted by the symbol
X!, by analogy with the case of the torus. Let (E%E?) denote the pair
consisting of the polygonal disc and its boundary circle. One can prove
that the identification map f:(E%E?) — (X,X') induces isomorphisms
fwtH(E*E*) — H,(X,X") for all g; the proof of Proposition 4.1 applies
without any essential change. Then one completes the determination of the
homology groups of X by studying the homology sequence of the pair
(X,X"). The final results are the following:

H (X) and H,(X) are infinite cyclic,
H (X)) is free abelian of rank 2n,

and
H(X)=0 forqg>2.

Exactly as in the case of the torus, the inclusion map i:X! — X induces
an isomorphism i :H,(X') > H(X).

A, B,
Figure 5

ExaMPpLE 4.3 (The projective plane). The projective plane may be obtained
from a circular disc by identifying diametrically opposite points on the
boundary. It is harder to visualize than the surfaces we have considered
so far because it can not be imbedded homeomorphically in Euclidean 3-
space. It is a nonorientable surface, and this results in a somewhat different
structure for its homology groups, as we shall see.

As in the previous cases, denote the disc by E?2, the projective plane by X,
and let f:(E%,E?) — (X,X1) be the identification map. Here E2 denotes the
boundary circle of E2, and X! = f(E?) is also a circle. The induced map
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fiE? > X'isa 2-to-1 map, e, it has degree + 2. Exactly as before, we can
prove that f,:H (E*,E®) > H,(X,X") is an isomorphism for all 4. The only
nontrivial part of the homology sequence of the pair (X,X?) is the following:

i» Ax .*
0 —— HyX) —— H,(X.X') —— H,X') —*— H,(X) — 0

]f* B

H,(E%LE?) —*— H,(E?)

Since f, and 0}, are isomorphisms, and f;, has degree +2, we conclude
that ¢, also has degree +2. It now follows from exactness of the homology
sequence of (X,X1) that

Hy(X) =0,
and
H,(X) is cyclic of order 2.

Of course Hy(X)=Z and H (X) = 0 for g > 2 exactly as before.

This is our first example of a space whose homology groups have an
element of finite order; in fact it is probably the simplest example of such a
space. It can be proved that if X is any reasonable subset of Euclidean 3-
space, its homology groups have no elements of finite order.

ExAMPLE 4.4 (The Klein bottle, K). We have two different ways of obtaining
a Klein bottle by identifying edges of a square: That indicated on the left
in Figure 6, in which opposite edges are to be identified, or that indicated
on the right in Figure 6, in which adjacent edges are to be identified. It is
interesting to use both representations to compute the homology groups
of K, and then compare the results. The details are left to the reader. In
either case, it is readily seen that H,(K) = 0. What is the structure of H,(K)?
How can one prove algebraically that both methods lead to the same result?

b/

NN
N\N

SN
A

Figure 6

ExAMPLE 4.5 (An arbitrary nonorientable compact surface). An arbitrary
nonorientable surface X is the connected sum of n projective planes, n > 1.
If n is odd, it can be considered as the connected sum of a projective plane
and an orientable surface, while if n is even, it can be considered as the
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connected sum of a Klein bottle and an orientable surface. The integer # is
sometimes called the genus of the nonorientable surface. Whether »n is odd
or even, we obtain two distinct ways of representing X as the quotient
space of disc; for details, see Algebraic Topology: An Introduction, Chapter
IV, Example 5.4. The reader should use at least one of these ways (and
preferably both) to determine the homology groups of X. The final result
is that H,(X) =0, and H,(X) is the direct sum of a free abelian group of
rank n — 1 and a cyclic group of order 2.

Note that for the orientable surfaces, H,(X) is infinite cyclic and H,(X)
is a free abelian group, while for nonorientable surfaces H,(X) =0 and
H,(X) has a subgroup which is cyclic of order 2. Later on we will see that
analogous results hold for compact, connected n-dimensional manifolds for
any positive integer n.

EXERCISES

4.1. Compute the homology groups of a space obtained by identifying the three edges
of a triangle to a single edge as shown in Figure 7. (Note: This space is not a mani-
fold.)

////////

Figure 7

4.2. Given any integer n > 1, show how to construct a space X such that H(X) is
cyclic of order n.

§5. The Mayer—Vietoris Exact Sequence

In this section we will be concerned with the following question: Suppose
the space X is the union of two subspaces,

X=A4uUB.

What relations hold between the homology groups of the three subspaces
A, B, A n B and the homology groups of the whole space? If we make
certain rather mild assumptions on the subspaces involved, we can give a
rather nice answer to this question in the form of an exact sequence, called
the Mayer—Vietoris sequence. This exact sequence plays the same role in
homology theory that the Seifert—Van Kampen theorem plays in the study
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of the fundamental group (see Algebraic Topology: An Introduction,
Chapter IV).

In order to describe this exact sequence, let
i,:H(A n B) = H,(A),
Jx:H,(A n B) > H/(B),
ky:H,(A) » H,(X),
and
l,:H,(B) > H,(X)
denote homomorphisms induced by inclusion maps. Using these homomor-
phisms, we define homomorphisms
¢:H, (A ~ B) > H,(A)® H,B),
¥:H,(A) @ H,(B) - H,(X)
by the formulas

(P(x) = (l*(X),j*(X)), X € Hn(A N B),
Y(up) = ky(u) — 1 (v), ue H(A), ve H,(B).

Theorem 5.1. Let A and B be subsets of the topological space X such that
X = (interior A) v (interior B). Then it is possible to define natural homo-
morphisms

A:H(X)—> H,_,(An B)

for all values of n such that the following sequence is exact:
-5 H(ANB)5 H(A) @ H(B) 5> H(X) > H, ((AnB) 5.
If A N B # (J, the sequence remains exact if we substitute reduced homology

groups for ordinary homology groups in dimension 0.

This sequence is called the Mayer—Vietoris sequence. The statement that
the homomorphism 4 is natural has the following precise technical meaning:
Assume that the subspaces A’ and B’ of X' are such that

X' = (interior A') U (interior B')

and that f:X — X' is a continuous map such that f(4) = A" and f(B) < B
Then the following diagram is commutative for all n:

H(X) —> H, (A~ B)

Je g

A
H(X) —== H,_ (A" B).
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PROOF OF THEOREM 5.1. Let % = {A,B}; in view of the hypotheses assumed
on A and B we can apply Theorem 11.6.3 to conclude that the inclusion homo-
morphisms ¢:C(X,%) - C,(X) induces isomorphisms o,.: H (X, %) — H,(X)
for all n. Note that

CAX ) = C,(A) + C\(B),

where the group on the right is the least subgroup of C,(X) containing C,(A)
and C,(B) (it is not a direct sum). Therefore the homomorphisms k, : C,(4) —
C,X) and l,:C,(B) » C,(X) have the property that their images are con-
tained in the subgroup C,(X,%) in each case. Hence we have commutative
diagrams as follows:

o ClX) . GXxa
C,(A) la C.B) Ja
C(X) CX).

Our strategy will be to replace the group H,(X) by H,(X,%) in proving
Theorem 5.1; when we do this, we must systematically replace k by k' and
I by I'. We will assume this has been done, and from now on will drop the
primes from the notation for these homomorphisms.

By analogy with the definition of the homomorphisms ¢ and ¥ above,
we define homomorphisms

®:.C (AN B)—> C(A)® C/B),
¥:C(A) @ C(B) - C(X. %)
by the following formulas:

D(x) = (I4X,j£X)
Y(u,v) = ku(u) — 1, (v).

Now consider the following diagram of chain groups and homomorphisms:

0 —— Cois(d  B) —— Cpas()® Cyo((B) —— Cpor(X) — 0
0 —— CyA A B) ——— CA)® C,(B) ~———— CAXA) ——— 0

0 — C, (AN B) —2 Coe(A)® Cyy(B) —— C (X, U) — 0
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The vertical arrows denote the appropriate boundary operator in each case.
In the case of the vertical arrows in the middle column, this means the direct
sum of the boundary operators for 4 and B. The two most important facts
about this diagram are the following:

(1) Each square of this diagram is commutative. This is practically
obvious, in view of the way the homomorphisms @ and ¥ were defined.

(2) Each horizontal line in this diagram is exact. The verification of this
fact is left to the reader; it should not present any real difficulty.

The reader should now compare this diagram with Diagram (I1.5.1) which
was used to set up the exact homology sequence of a pair. The essential
properties of the two diagrams are the same. By the same process that was
used in IL5 to define the boundary operator of a pair, one can now define
the homomorphisms

A:H(X) — H,_(A  B)

for all values of n. Moreover, the methods used to prove the exactness of
the homology sequence of a pair apply without change to give the exact-
ness of the following sequence of groups and homomorphisms:

4 H A~ B) % H(A)® H,(B) LA H (X, %) 4.

All that remains is to substitute H,(X) for H,(X,%), and.we have proved
the exactness of the Mayer—Vietoris sequence.

We leave it to the reader to verify that the homomorphism 4 is natural
and to investigate what happens when one uses reduced homology groups
in dimension zero (provided 4 N B # ). Q.E.D.

ExAMPLE 5.1. We will show how the Mayer—Vietoris sequence can be used
to make the inductive step in the proof of Theorem 2.1. As the inductive
hypothesis, assume that H,(S") = Z, and H,(S") = 0 for i # n. We wish to
determine H,(S"*1). Let A be the complement of the point (0, . ..,0,— 1) in
S"*1 and let B be the complement of the point (0, . ..,0,+1) in S”**. Then
A and B are open subsets of S”*!, and 4 U B = S"*!'. Therefore we can
apply the Mayer—Vietoris sequence; in this case 4 N B # (J, and it is con-
* venient to used reduced homology groups in dimension 0. Consider the
following portion of the sequence:

A (A@H, (B> H, (S"*") 5 H(A ~ B) > H,(4) ® HB).

One proves by stereographic projection that 4 and B are both homeomor-
phic to R""', hence they are contractible. Therefore H(A4)= H{(B) =0 for
all i. It follows by exactness that 4 is an isomorphism. Now A n B is homeo-
morphic to R"*! minus a point, and therefore it contains S” as a deforma-
tion retract. Hence by the inductive hypothesis H/(A n B)=Z, and
H(ANB)=0 for i#n Since A4 is an isomorphism, it follows that
H,,}(S"")=17Z,and H(S""') =0 for i # n + 1, as was to be proved.
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One final comment about the Mayer—Vietoris sequence: we could weaken
the hypotheses of Theorem 5.1 to read X = A U B, provided we knew that
the inclusion homomorphism C,(4) + C,(B) — C,(X)induced isomorphisms
on homology groups; this was the purpose of the assumption that the
interiors of A and B cover X. We will come back to this point later.

EXERCISES

5.1. Assume that X = U u V, where U and V are open subsets of X, and U n V is
nonempty and contractible. Express the homology groups of X in terms of those
of U and V.

5.2. Assumethat X = 4 U B, where A and B are closed subsets of X, and 4 n B = {x,}.
Assume further that x, has an open neighborhood N in X such that N n 4 and
N n B are both contractible, and that during the contraction the point x, remains
fixed. Express the homology groups of X in terms of those of A and B.

5.3. Assume that the space X and the subspaces 4 and B satisfy the hypotheses of The-
orem 5.1. (a) Prove that the inclusion maps (4,4 n B) - (X,B) and (B,A N B) —
(X,A4) induce isomorphisms on homology. (b) Show that the homomorphism
A:H(X) — H,_ (4 n B)is the composition of the following homorphisms:

H(X) 5 H(X.B)~ H(A, A~ B) 5 H,_,(A ~ B).

5.4. Use the result of Part (b) of the preceding exercise to define the homomorphism
4:H(X) — H,_(A n B). Then prove directly (by diagram chasing, without going
back to chain groups) that the Mayer—Vietoris sequence is exact (cf. Eilenberg and
Steenrod, [2], Chapter I).

§6. The Jordan—Brouwer Separation Theorem
and Invariance of Domain

The classical Jordan curve theorem may be stated as follows: Let C be a
simple closed curve in the plane R?, i.e., C is a subset of R? which is homeo-
morphic to S*. Then R? — C has exactly two components, and C is the
boundary of each component (in the sense of point set topology). It is our
object in this section to prove a generalization of this theorem to R”, and
derive various consequences. Most of the results of this section were first
proved by the Dutch mathematician L. E. J. Brouwer.

The Mayer—Vietoris sequence will play an essential role in the proof.
We will also need another general property of singular homology theory,
which may be stated as follows:

Proposition 6.1. Let (X,A) be a pair consisting of a topological space X and
subspace A. (a) Given any homology class u € H,(X,A), there exists a compact
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pair (C,D) = (X,A) and a homology class u' € H,(C,D) such that i, (u') = u,
where i:(C,D) — (X,A) is the inclusion map. (b) Let (C,D) be any compact
pair such that (C,D) < (X,A), and ve H,(C.D) a homology class such that
i (v) = 0. Then there exists a compact pair (C'.D’) such that (C,D) < (C',D') =
(X.A4) and j(v) = 0, where j:(C,D) — (C'",D') is the inclusion map.

In the statement of this proposition, “a compact pair (C,D)” means a
pair such that P is compact and &is a compact subset of §. An inclusion
relation between pairs, such as (C,D) = (X,4), means that C = X and D < A.
For the reader who is familiar with the concept of direct limit, this proposi-
tion may be restated as follows: H,(X,A) is the direct limit of the groups
H,(C,D), where (C,D) ranges over all compact pairs contained in (X,A4).

The proof of this proposition depends on the following fact: If a € Q,(X),
then there exists a compact set C = X such that a e Q,(C). In fact, if a is a
linear combination of the singular n-cubes Ty, T,,..., T}, then we may
choose C =T, (I") u T,(I") U + - - U T,(I"). The proposition follows readily
from this fact by choosing representative cycles for the homology classes
involved, etc. The details can be easily worked out by the reader. We also
leave it to the reader to verify that this proposition remains true if we replace
ordinary homology groups by reduced homology groups everywhere in the
statement.

In order to prove the Jordan—Brouwer separation theorem, we need the
following lemma, which is of some interest in its own right:

Lemma 6.2. Let Y be a subset of S™ which is homeomorphic to 1*, where
0<k<n Then H(S" — Y) =0 for all i.

ProOOF: The proof is by induction on k. For k = 0, I* is a single point (by
definition), and S" — I* is homeomorphic to R”, which is contractible.

In order to make the inductive step it is convenient to assume we have
chosen a definite homeomorphism of Y with I*; then we may as well identify
Y with I* by means of this homeomorphism. Let

Yo={(xy,....x))eY|x; <%
Yy = {(xg,...,x) € Y|x12% )

Then
YO v Yl = Yv,

S"=(Yon Y =(§"-Yo)u(S" =Yy,
and we may apply the Mayer—Vietoris sequence to this representation of

S" — (Y, n Y,) as the union of two open subsets. Note that Y, n Y, is
homeomorphic to I* !, hence by the inductive hypothesis

H(S"—(Y,n Y;))=0

for all i. Therefore we conclude from the exactness of the Mayer—Vietoris
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sequence that
@:H(S"— Y) » H(S" — Yo) @ H{(S" - V)

is an isomorphism for all i.
Now recall the definition of the homomorphism ¢ from the preceding
section:

(,D(X) = (iO*(x),il *(X) )’

where iy:S" — Y - §"— Yyand i, :S" — Y — §" — Y, are inclusion maps. In
order to complete the proof of the inductive step, we will assume that for
some integer i, H(S" — Y) # 0, and show that this assumption leads to a
contradiction. As a first consequence of the assumption that H,(S" — Y) # 0,
we see that we can find an element a, € H,/(S" — Y) such that igglag) # 0, or
i14(ao) # 0.

Let us first take up the case where a, = iy, (a,) # 0. Let

Yoo = {(x1, .. .)€ Yo[0 < xy <3},
Yor = {(x1,....x ) e Yoli<x, <}}.
Then
Yy = Yoo U Yo,
Let

ioo:Sn - YO g Sn - Yoo,
iOIZS" _ YO d Sn - YOl'

Then by a repetition of the above argument using the Mayer—Vietoris
sequence and the inductive hypothesis, we may prove that iyg,(a,) # 0 or
io14(a;y) # 0. In the other case where i, ,(ao) # 0, we may represent Y; as the
union of two subsets,

Yi =Y, Y,

such that i;.(a,) # 0, or i,4,(a,) # 0 where now a, = i, (a,) # 0.

The reader will immediately see that we may continue this process ad
infinitum. The net result is that we can construct an infinite decreasing
sequence of subsets of Y each homeomorphic to I* and denoted by

YoV>SY' 5 oYM

such that the following two properties hold:

(a) Let Y denote the intersection of all the sets of this sequence; then
Y® is homeomorphic to I* . Hence H(S" — Y*) =0 for all j by our in-
ductive hypothesis.

(b) Let us denote the complementary sets and their inclusion maps as
follows: . 3

S"— Y S8 - LS -y S

Using the element a, € H,(S* — Y), we may construct an infinite sequence

(ag,ay,a,, . . .)
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of elements such that a,, € H,(S" — Y™) and a,, # 0 as follows:

ay = i,(ao)
a, = i:k(al)’
ay = iy(a,), etc.

We will complete the proof by showing that the existence of such an
infinite sequence of nonzero elements contradicts Proposition 6.1. Apply
Proposition 6.1(a) to obtain a compact set C = §" — Y and a homology
class ay € Hy(C) such that a; — a, under the inclusion map C — (S" — Y).
Since H,(S" — Y*) =0, we may apply Proposition 6.1(b) to the inclusion
C < §" — Y™ to conclude that there exists a compact set C’ such that

CclCc§"—-Y®

and a; — 0 under the homomorphism induced by the inclusion map C — C'.
Since C' is compact, there exists an integer m such that C' = S" — Y™. Now
consider the following diagram of reduced homology groups:

H(C) ———— H(C)

l l

A(S"—Y) — H(S"— Y™).

All homomorphisms in this diagram are induced by inclusion maps, hence
the diagram is commutative. If we consider the element aj, € H,(C) and chase
it both ways around this diagram, we see that it must go to zero one way,
while the other way it goes to a,, # 0. This is the desired contradiction, and
hence the proof of the inductive step is complete. Q.E.D.

Perhaps the reader wonders who concocted such a complicated proof as
this. The answer is that it is the work of many mathematicians; it has evolved
over a relatively long portion of the history of algebraic topology. In order
to appreciate why the proof of this lemma might have to be so complicated,
the reader should consider some examples of subsets Y of §* which are
homeomorphic to I' and such that S* — I' has a nontrivial fundamental
group (cf. Artin and Fox, [1]).

Theorem 6.3. Let A be a subset of S" which is homeomorphic to S0<k<
n—1ThenH, , (S"— Ay=Z,and H(S" — A)=0fori#n—k— 1.

PRrOOF: Once again the proof is by induction on k, using the Mayer—Vietoris
sequence. If k = 0, then A consists of two points and S" — A is homeomorphic
to R” with one point removed. Hence S" — 4 has the homotopy type of
S"~1, and the theorem is true for this case.

Now we will make the inductive step. Since 4 is homeomorphic to S¥
it follows that 4 = 4; U A4,, where 4, and A4, are subsets of 4 which are
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homeomorphic to I¥, and 4, N A, is homeomorphic $*~! (cf. the proof of
Theorem 2.1). Therefore,

S"—(A; N Ay) =(§"— A U (§" — A4y),

and we may apply the Mayer—Vietoris sequence to this representation of
§" — (A, N A,) as the union of two open subsets. By the lemma just proved,

ﬁi(S" —A4)= Hi(sn —A;)=0
for all i. It follows from the exactness of the Mayer—Vietoris sequence that
A:H; (8"~ (4; 0 A) » H(S" — 4))

is an isomorphism for all i. Since 4; N A, is homeomorphic to §*~!, this
isomorphism suffices to prove the inductive step. Q.E.D.

ExaMPLE 6.1. Suppose that A4 is a subset of S* which is homeomorphic to
S, ie., A is a simple closed curve in S3. It follows from the theorem just
proved that H,(S* — A) is infinite cyclic, and H,(S® — A) =0 for i # 1. It
is well known that a simple closed curve in R* or S® can be “knotted” in
various different ways, or left unknotted. Thus the homology groups of
§3 — A in this case are independent of how 4 is knotted. On the other hand,
it may be shown that the fundamental group of S* — A does depend on how
A is knotted; cf. Algebraic Topology: An Introduction, Chapter IV, §6, and
the references given there. The fact that the homology groups of §* — 4
are independent of how A is knotted can be an advantage or a disadvantage,
depending on what one is trying to do.

Corollary 6.4 (Jordan—-Brouwer theorem). Let A be a subset of S" which is
homeomorphic to S*~*. Then S" — A has exactly two components.

PRrOOF: Apply the case k = n — 1 of the preceding theorem to conclude that
Ho(S" — A) has rank 2; hence S" — A has exactly two arc components. But
it is readily seen that " — A4 is locally arcwise connected, hence the com-
ponents and arc-components are the same.

Proposition 6.5. Let A be a subset of S™ which is homeomorphic to S"~ . Then
A is the boundary of each component of S" — A.

In order to better appreciate this proposition, consider the case where A
is a subset of $? which is homeomorphic to S! x I (instead of S'). Then
S? — A4 has two components, but the boundary of either component is a
proper subset of A.

PROOF OF PROPOSITION 6.5. Since S" — A is locally connected, each com-
ponent of S" — A is an open subset of $” — A4, and hence an open subset
of S". Therefore the boundary of each component must be a subset of 4.
To complete the proof of the proposition, we must show that any point
a € A is a boundary point of each component of S” — A4. Denote the compo-
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nents of " — 4 by C, and C,. Let N be any open neighborhood of a in §";
we must show that N n C; # ¢ fori =0 and 1.

Note that N n A is an open neighborhood of a in A. Since A4 is homeo-
morphic to $"7!, we can find a decomposition

A=A1UA2,

as in the proof of Theorem 6.3, such that 4, and A, are homeomorphic to
I"', A, n A, is homeomorphic to $" "2, and 4, = N n A. It follows from
Lemma 6.2 that S" — A, is arcwise connected. Let pye Cy, and p; € Cy;
choose an arc in §" — A, joining p, to p,, ie., a continuous map f:I —
§" — A, such that f(0) = p,, and f(1) = p,. It follows from what we have
already proved that f(I) n A # &, and hence f(I) N A, # . Consider the
subset f !(4,) < I; this is a compact subset of I, and hence it must have a
least point ¢, and a greatest point t,. Obviously ¢, and t, are boundary
points of f ~*(4,), and f ~!(N) is an open subset of I which contains both ¢,
and t,. From this it follows by an easy argument that f ~*(N) n £~ }(C,) and
[ YN) n f~YC,) are both nonempty. Hence N n C; # @ and N n C, #
5, as desired. Q.E.D.

Note that essential role that Lemma 6.2 plays in this proof.

In order to better appreciate the significance of Corollary 6.4 and Prop-
osition 6.5, the reader should study the Alexander horned sphere or other
wild imbeddings of S? in S3, ¢f. Hocking and Young, [3] p. 176. For the
case of imbeddings of S! in S?, there is the so-called Schonflies theorem,
which is stronger than the Jordan curve theorem (see E. Moise, [4]).

Next, we will prove another of L. E. J. Brouwer’s theorems, usually
referred to as “the theorem on invariance of domain.”

Theorem 6.6. Let U and V be homeomorphic subsets of S™. If U is open, then
so is V (and conversely).

Proor: Let h:U — V be a homeomorphism. For any point x € U we can
find a closed neighborhood N of x in U such that N is homeomorphic to I"
and its boundary, N, is homeomorphic to $"~*. Let y = h(x); then N’ = h(N)
is a closed neighborhood of y in ¥ with boundary N’ = i(N). It follows from
Lemma 6.2 that §” — N’ is connected, and from Theorem 6.4 that S" — N’ has
exactly two components. Note that S” — N’ is the disjoint union of N' — N’
and S" — N’; since both of these sets are connected, they are the components
of S" — N'. Therefore both of them are open subsets of $” — N’ and hence
of 8". In particular, N’ — N’ is an open neighborhood of y which is entirely
contained in V. Therefore y is an interior point of V. Since this argument
obviously applies to any point y € V, the proof is complete. Q.E.D.

Brouwer’s theorem on invariance of domain is a powerful theorem, and
it deserves to be better known. It should be looked on as a very special
topological property of S"; or more generally, of n-dimensional manifolds.
(See the exercises below.)
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Corollary 6.7. Let A and B be arbitrary subsets of S", and let h:A — B be a
homeomorphism. Then h maps interior points onto interior points, and boundary
points onto boundary points.

This corollary shows that the property of being an interior or boundary
point of a subset 4 = S§" is an intrinsic property, independent of the im-
bedding.

EXERCISES

6.1. Let Y be a subset of R* which is homeomorphic to I*, 0 < k < n. Determine the
homology groups of R" — Y. (Hint: Consider R" as the complement of a point
in §".)

6.2. Let A4 be a subset of R* which is homeomorphic to $*, 0 < k < n — 1. Determine
the homology groups of R" — 4. How many components does R" — 4 have?

6.3. Does the analogue of Proposition 6.5 hold true for subsets of R* which are
homeomorphic to §*~1?

6.4. Let A bea closed subset of R” which is homeomorphic to R* . Prove that R” — 4
has exactly two components.

6.5. Prove that Theorem 6.6 and Corollary 6.7 hold for subsets of R". Then prove the
following more general form of Brouwer’s theorem. Assume M and N are n-
dimensional manifolds; let U and V be subsets of M and N respectively such that
U and V are homeomorphic. If U is an open subset of M, then V' is an open subset
of N.(Note: An n-dimensional manifold is a Hausdorff space such that each point
has an open neighborhood which is homeomorphic to R".)

6.6. Use Brouwer’s theorem on invariance of domain to prove that R” and R” are not
homeomorphic if m # n (it is not necessary to use homology theory in this proof).

6.7. Prove that if m > n, then there is no subset of $” which is homeomorphic to I".

6.8. Let U be an open subset of R”, and let f: U — R” be a map which is continuous
and one-to-one. Prove that f is a homeomorphism of U onto f(U).

6.9. Prove that no proper subset of $” can be homeomorphic to S".
6.10. Prove that a continuous map f:S" — R" cannot be one-to-one.

6.11. Let U be an open subset of R™. Prove that if m > n, there is no continuous, one-to-
one map of U into R". Generalize this statement by replacing R™ and R" by
manifolds of dimension m and n respectively.

6.12. Let 4 and B be subsets of S” which are homeomorphic to S” and $? respectively,
where 0 < p < g < n. Determine the homology groups of §" — (4 U B) in the
following two cases:

(a) A and B are disjoint subsets of S".
(b) A N B consists of exactly one point.

In case p = q = n — 1, determine the number of components of S” — (4 U B).
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6.13. Let A and B be homeomorphic subsets of R™. If A is closed, does it follow that B
is closed?

6.14. Let X be a connected regular, finite graph and let A4 and B be subsets of S* which
are homeomorphic to X. Prove that the (reduced) homology groups of S® — 4

and S* — B are isomorphic (Hint: Use induction on the number of edges of X.
Any finite, connected graph has some edge whose removal does not disconnect it.)

§7. The Relation between the Fundamental Group
and the First Homology Group*

The main theorem of this section asserts that for an arcwise connected space,
the fundamental group completely determines the first homology group. The
precise statement will be given after some preliminary definitions. It is as-
sumed that the reader is familiar with the basic properties of the fundamental
group; cf. Algebraic Topology: An Introduction, Chapter II.

First of all, for any topological space X and any base point x,€ X we
define a homomorphism

hy:m(X,x0) = H,(X)

as follows. Let o € n(X,x,); choose a closed path f:I — X belonging to the
equivalence class «. We can think of f as a singular 1-cube, and hence as
determining an element of the chain group C,(X). Since f(0) = f(1) = x,,
0,(f) = 0; in other words, f is a cycle. We define h,(x) to be the homology
class of the cycle f. To see that hy(x) is well defined, one must verify that
if g:I — X is another closed path in the equivalence class a, then the cycles
f and g belong to the same homology class. We leave this verification to the
reader. Next, one should check that hy is a homomorphism, i.e., hy(x - ff) =
hx(o) + hy(f). This may be done as follows. Choose representatives f:1 > X
and g:1 — X for o and f respectively. Then f - g:1 - X is a representative
for a - 5, where

121 0<t<3
Ot =

/-9 {g(Zt—l) l<t<l.

Now define a singular 2-cube T:1? — X by the formula
Sxy + 2x,) Xy +2x, <1,

T(x1,x5) = Xy +2x, — 1

—_— > 1.
< — > Xy +2x,>1

* This section may be omitted by readers who are not familiar with the properties of the funda-
mental group.
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The function T was chosen so that it is constant along the straight lines
shown in Figure 8. It is readily checked that

WM=f+9—-f9-c
where ¢ is a degenerate singular 1-cube. But this equation clearly implies
that hy(x - ) = hx(o) + hy(f), as required. In order to better understand the

definition of the function T, it is suggested that the reader try to work out the
formula for T(x,,x,) himself so that it will have the required properties.

———
——
—
——

Figure 8

The homomorphism we have just defined satisfies the following obvious
naturality condition. Let ¢: X — Y be a continuous map such that ¢(x,) =
Vo. Then the following diagram is commutative:

2(XXo) —— (Y. o)

Px 1”’

Hy(X) —— Hy(Y).

In addition, the following two rather obvious remarks apply to the homo-
morphism h.

(a) If the space X is not arcwise connected, H,(X) is the direct sum of the
groups H,(X;), where {X A|). € A} denotes the set of arc components of X. It
is obvious that the image of the homomorphism &y is entirely contained in
the 1-dimensional homology group of the arccomponent of X which con-
tains the basepoint x,. Therefore the homomorphism hy is mainly of interest
in the case of arcwise connected spaces.

(b) Since H,(X) is abelian, the commutator subgroup of n(X,x,) is
contained in the kernel of hy. Let us use the notation n'(X,x,) to denote the
“abelianized” fundamental group, i.e., the quotient group of n(X,x,) modulo
its commutator subgroup. Then hy induces a homomorphism n'(X,x,) —
H (X), which we will denote by the same symbol, hy, or h for short.
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With these properties out of the way, we can state the main resuit of this
section:

Theorem 7.1. Let X be an arcwise connected space. Then h is an isomorphism
of the abelianized fundamental group n'(X,x,) onto H (X).

PROOF: In order to carry out the proof, it is convenient to show that one
can compute the singular homology groups of an arcwise connected space
X using only those singular cubes which have all their vertices mapped into
the basepoint x,. There is a certain analogy here with Theorem I1.6.3.

Let Q,(X/x,) denote the subgroup of Q,(X) generated by all singular »-
cubes T:I" —» X such that T(v) = x,, for any vertex v of the cube I". Define
D,(X/xo) = D,(X) 0 Q,(X/x,) and C(X/x,) = Q,(X/x0)/D,(X/x,). Note that
the boundary operator d,:Q,(X) — Q,_{(X) obviously maps the subgroup
0.X/x,) into Q, ,(X/x,), and hence it induces a boundary operator
0,:CfX/xg) = C,_1(X/xo). As usual, we define the group of n-cycles,
Z,(X/x,), to be the kernel of 7,,,

Z(X/xo) = {ue C(X/xo)|0,(u) = 0}

and the group of bounding cycles B,(X/x,) to be 8,.(C,+ 1(X/x,)). Then
B.(X/x,) = Z,(X/x,) and we define

H(X[xo) = Z,(X[X0)/B,(X/xo).
The inclusion Q,(X/x,) < Q,(X) induces homomorphisms

Tt Ci X /x0) = C(X)
and
T Ho(X/xo) = H(X).

Lemma 7.2. If the space X is arcwise connected, then the homomorphism T
is an isomorphism for all n.

ProOF OF LEMMA. The strategy of the proof is to show that the system of
subgroups C,(X/x,), n=0, 1, 2,... is a “deformation retract” of the full
chain groups C(X), n =0, 1, 2,... in some algebraic sense. To be precise,
we will define a sequence of homomorphisms p,:C(X) - C,(X/x,) such
that the p,’s commute with the boundary operators and hence induce
homomorphisms p,:H(X) - H(X/x,). It will turn out that p,z, is the
identity map of C,(X/x,) for each n, hence p,t, is the identity map of
H,(X/x,). Finally we will define a sequence of homomorphisms @,:C,(X) —
C,+1(X) which will be a chain homotopy between the chain map t,p, and
the identity map of C,(X). Hence 7,p, is the identity map of H,(X), and the
proof will be complete. Actually, we will only carry out this program for
small values of n, because we only need to know that 7,: H,(X/x,) — H(X)
is an isomorphism. The rest of the proof will be left as an exercise. Also, it
turns out to be easiest to define the homomorphisms @, first, and then
define the homomorphisms p,, afterwards.
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In order to define @,, we will define homomorphisms ¢,:Q,(X) = Q,, . (X)
such that ¢,(D,(X)) < D, . (X). We will do this in succession for n = 0, 1, 2.
In each case, if T is a singular n-cube, ¢,T will be a singular n + 1 cube.
We proceed as follows:

Case n = 0. We can identify the singular 0-cubes with the points of X.
For each x € X such that x # x,, choose a path T:I — X such that T(0) =
X, and T(1) = x, and then define ¢(x) = T. Complete the definition by de-
fining ¢(x,) to be the degenerate singular 1-cube at x,. Note that

01¢0(x) = x — xq
for any singular 0-cube x.

Case n=1. Let T:1 - X be a singular l-cube; we have to define a
singular 2-cube ¢, T:1> — X. We have already defined the chain homotopy
@, on the two faces 4, T and B, T, and we want the new definition to be
consistent with what we have already defined. Therefore we impose the
following three conditions on ¢, T:

Bip,T =T,
A0, T = ¢oA T,
By, T = ¢oB,T.

Note that these conditions imply that 4,¢,T € Q,(X/x,). Given a singular
I-cube T, there always exist singular 2-cubes ¢, T satisfying these three
conditions, because the subset of I? consisting of the union of any three edges
is a retract of I2. Therefore we may define ¢, by choosing for each singular
I-cube T a singular 2-cube ¢, T satisfying these three conditions. We wish
also to impose the following two additional conditions, which are consistent
with the three we have already imposed, and with each other:

(@) If Te Q,(X/x,), ie, if T maps both the vertices of I into x,, define
¢, T by

(@1 T)(x1,X5) = T(x,).

Then ¢, T is degenerate.
(b) If T is a degenerate 1-cube, i.e., T(x) = constant, define

(@1 T)(x1,x3) = (9oA; T)xy) = (9B T)(xy).
Then ¢, T is also degenerate.
Case n=2. Given a singular 2-cube T:I> - X we wish to define

¢, T:I* > X so that the definition is consistent with the definition of ¢, on
the four faces of T. Therefore we impose the following conditions on ¢, T

B, T=T,
Aip, T =14, 4T =23,
Bi(p2T=(p1Bi-—lT i=2, 3.



§7. The Relation between the Fundamental Group and the First Homology Group 73

Given T, there will always exist singular 3-cubes ¢, T satisfying these five
conditions, because the union of any five faces of I° is a retract of I®. Define
¢, by choosing for each 2-cube T a 3-cube ¢, T satisfying these five condi-
tions: Note that 4,0,T € Q,(X/x,). We also impose the following two
additional conditions, which are consistent with the previous five conditions
and with each other:

(@) If T e Q,(X/x,), define ¢, T by

(@2 THx1:X2.x3) = T(x5.,X3).

Then ¢, T is degenerate in this case.
(b) If T'is a degenerate 2-cube define ¢, T as follows. Since T is degenerate,

T(x1,x,) = A T(x,) = B, T(x,)

or
T(xp,x;5) = A, T(xy) = B,T(x,).

In the first case, define

©:T(x1,x,5,X3) = ((PlAlT)’(prz.)
= (@B T)(x1,X3)
while in the second case let
@5 T(x1.X2,x3) = (@ A, T)(x1,X5)
= (@B, T)(x,x,).

In either case, ¢, T is also degenerate.

The reader who so desires can define ¢, inductively, following the same
pattern for the cases n = 1 and n = 2.

For n =1 or 2 it'is a routine matter to verify the following formula for
any singular n-cube T '

Cos10T) =T — A10,(T) — @, 10(T);
while for n = 0 we have the simpler formula
01¢o(x) = x — Xo.
Therefore we define p,:Q.(X) — 0. (X/x,) as follows: For n =0,
polx) = Xo
for any singular 0-cube x. For n = 1 or 2,
Pl T) = A10,(T).
With this notation, the preceding formulas can be written as follows:
0190(u) = u — po(u),  ue Qo(X) (7.1)
Ops10nW) + @y 0yw) =u — p,(u), ueQ X)n="1or2. (72
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Note that p, restricted to the subgroup Q,(X/x,) is the identity map, and
both ¢, and p, map degenerate chains into degenerate chains. Therefore they
define homomorphisms

Pn:Cn(X) - Cn(X/xo)a
cpnzcn(X) - Cn+1(X),

and analogues of Equations (7.1) and (7.2) hold. It remains to prove that p
commutes with the boundary operator, i.e.,

anpn(u) = Pn- lan(u)'

This equation is an easy consequence of Equations (7.1) and (7.2): Apply 9,
to both sides of Equation (7.2), and also substitute J,.(u) for u in this
equation, and compare the results.

This completes the proof of Lemma 7.2. This proof is conceptually quite
simple, but the many details which need to be checked make it rather
long. Q.E.D.

We can now proceed with the proof of Theorem 7.1. First of all, note that
Z (X /xq) = C{(X/x,); hence there is a natural epimorphism k:C(X/x,) =
H (X /x,) and the kernel of k is B{(X/x,).

Next, we will define a homomorphism [:Q,(X/x,) — n'(X/x,) in a rather
obvious way. Since Q,(X/x,) is a free abelian group and 7'(X,x,) is abelian,
it suffices to define [ on a basis for Q,(X/x,), namely, on the singular 1-cubes.
But each such basis element T:I — X with vertices at x, is a closed path
and hence determines a unique element of n(X,x,). Note that I maps D (X /x,)
trivially, and therefore induces a homomorphism [":C,(X/x,) — 7'(X,x),
which is obviously an epimorphism. Also, the following diagram is clearly
commutative:

ColX/xg) —— T(X,xg)

lk lh (1.3)

H,(X/x0) —— Hy(X),
Since 7, is an isomorphism it follows from this diagram that
kernel I’ = kernel k = B,(X/x,).
We will next show that
B,(X/x,) = kernel I'; (7.4)
from this it will follow that
kernel ' = kernel k,

and since both k and I’ are epimorphisms, and Diagram (7.3) is commutative,
h must be an isomorphism as desired.
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To prove Inclusion (7.4), consider the following sequence of homomoz-
phisms.

04(X/x0) 3 Q1(X/x0) = T(X,X0).

By using a basic property of the fundamental group (cf. Lemma 8.1 in
Chapter II of Algebraic Topology: An Introduction) it is easy to prove that
the composition 0, = 0. From this fact Inclusion (7.4) follows. Q.E.D.

This theorem should help to develop one’s intuition about the first
homology group H,(X).

EXERCISES

7.1. Assume that G is an arcwise connected topological space, e € G, and there exists
a continuous map u:G x G — G such that u(ex) = u(x,e) = x for any xeG.
[Example: G is a topological group and e is the identity.] Prove that n(X,e) is
isomorphic to H(X) (cf. Exercise 7.5 of Chapter Il of Algebraic Topology: An
Introduction).

7.2. (a) Provethat the fundamental group ofa graph is determined by the first homology
group. (See Theorem 5.1 of Chapter VI of Algebraic Topology: An Introduction.)
(b) Prove that the fundamental group of a noncompact surface is determined by
the first homology group. (See Exercise 5.6 of Chapter VI of Algebraic Topology:
An Introduction.)
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CHAPTER 1V
Homology of CW-complexes

§1. Introduction

The purpose of this chapter is to develop a systematic procedure for deter-
mining the homology groups of a certain class of topological spaces. The
class of topological spaces chosen consists of the CW-complexes of J. H. C.
Whitehead. The procedure developed is a natural generalization and exten-
sion of the method used in the preceding chapter to determine the homology
groups of graphs and compact 2-manifolds.

§2. Adjoining Celis to a Space

The reader may have noticed that there was an analogy in the way the exact
homology sequence and Excision property were applied in §111.3 to determine
the homology groups of a graph, and the way they were applied in §I11.4 to
determine the homology groups of a compact surface. The reason behind this
analogy may be stated as follows: A graph may be obtained by adjoining the
edges to the vertices, and each edge is homeomorphic to R'. A compact
surface may be obtained by adjoining an open disc (which is homeomorphic
to R?) to a certain graph (which is a union of one or more circles with a single
point in common).

It is natural to expect there would be a higher-dimensional analogy of
these two cases, in which one considers spaces which are obtained by adjoin-
ing higher-dimensional open “discs” or “open solid balls” to a given space,
and then uses the Excision property, etc. in an analogous way to compute the
homology groups of the resulting space. In this section we will study such a

76



§2. Adjoining Cells to a Space 77

higher-dimensional analogue. We will even consider the case where an
infinite number of n-dimensional “discs” or “balls” are all attached at once.
In the next section, we will consider spaces that are built up one dimension
at a time by first attaching open 2-dimensional discs to a graph (as in the case
of a surface), then open 3-dimensional balls to the resulting space, etc.
In this and the following sections, we will use the following terminology
and notation for any integer n > 1:

E"={xeR"||x| <1} (closed n-dimensional disc or ball),
U"={xeR"||x| <1} (open n-dimensional disc or ball),
S""'={xeR"|x] =1} ((n— 1)-dimensional sphere).

The sphere S" ! is called the “boundary” of E". Note that U" is homeo-
morphic to R”, and that it is contractible.

In this section we assume that X* is a Hausdorff space, and that X is a
closed subset of X* such that X* — X is the disjoint union of open subsets
e, A€ A; each ¢} is assumed to be homeomorphic to U”, and is called an
n-cell or open n-cell. Finally, it is assumed that each n-cell € is “attached” to
X by means of a so-called characteristic map. This means that for each index
A € A there exists a continuous map

JiE' > e

such that f; maps U" homeomorphically onto ¢} and f,(S"™!) = X.

If there are only a finite number of n-cells, then we need impose no other
conditions. However, if the number of n-cells is infinite, then we must impose
the following further condition in order to avoid various pathological situa-
tions: It is assumed that a subset 4 of X* is closed if and only if 4 n X and
fi71(A) are closed for all A € A. This last condition is often expressed by saying
that “X* has the weak topology determined by the maps f; and the inclusion
map X — X* Note that this condition is automatically satisfied in case
the number of cells is finite (since the finite union of closed sets is closed in any
topological space and a compact subset of a Hausdorff space is closed).

Intuitively speaking, we can think of the space X* as obtained from X by
the “pasting on” of the n-cells ¢}}. The characteristic map f; describes precisely
how the cell ¢} is pasted onto X. In Chapter III there were examples of the
cases where n = 1 or 2 and the number of cells attached is finite. The student
should construct other examples to illustrate some of the various possibilities
inherent in this definition.

In this section, we wish to consider the following problem. Suppose X is a
space whose homology groups are known. Let X* be a space obtained from
X by adjoining n-cells so that the above conditions hold. How are the
homology groups of X* related to those of X ? The obvious way to attack
this problem is to consider the exact sequence of the pair (X*,X). This
requires that we determine the homology groups of the pair (X*,X). This we
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can do by application of the techniques of the last section. The result may be
stated as follows: :

Theorem 2.1. Let X* be a space obtained by attaching a collection of n-cells
(n>0) {eij|ie A} to X so that the hypotheses listed above hold. Then
H/(X*,X) =0 for all q # n. For each index A € A, the characteristic map f,
induces a monomorphism of relative homology groups f,,:H,(E"S""!) —>
H,(X*X) and H,(X* X) is the direct sum of the image subgroups. Thus
H(X*,X) is a free abelian group with basis in 1-1 correspondence with the set
of cells {e3| 1 e A}.

Corollary 2.2. The homomorphism i,:H/(X) — H,(X*) is an isomorphism
except possibly for ¢ = n and q = n — 1; the only nontrivial part of the homol-
ogy sequence of the pair (X*,X ) is the following:

0 —» H(X) 5 H(X*) > Hy(X*X) > H,_(X) 5> H,_,(X*) - 0.

PROOF OF THEOREM 2.1. The closed ball E"” and the sphere $"~! both have
center at the origin, 0, and radius 1. We also need to consider the closed ball
of radius $ with center at the origin:

D" = {xeR"||x| < }}.

Let
D; = f(D"),
a; = f3(0),
9= U D;,
JeA
A ={a;|le 4},
X' =X*—A.

Note that f; maps the pair (D", D" — {0}) homeomorphically onto (D,,
D, — {a,;}), and that the subsets D,, 1 € A, are pairwise disjoint. Consider
the following diagram,

H (2.9 — A) > H(X*X') & H(X*X),

where both arrows denote homomorphisms induced by inclusion maps. We
assert that both homomorphisms in this diagram are isomorphisms for all g.
For the homomorphism represented by arrow 2, this follows from the fact
that X is a deformation retract of X, and by using the five-lemma. For the
homomorphism represented by arrow 1, it is a consequence of the excision
property.

Next, note that the arcwise connected components of & are obviously the
sets D,. Hence H, (2, 2 — A) is the direct sum of the groups H,(D,, D; —
{a;}) for all . € A. Moreover,

0 for n,
Hq(D;., D, — {a;.}) = {Z for Z j n
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From this it follows that H (X*,X) = 0 for ¢ # n, and that H,(X*,X) is a free
abelian group with basis in 1-1 correspondence with the set of n-cells {e}}.
To complete the proof, consider the following commutative diagram:

1 2
H(D,D — A) ——— H(X*X') e———— H(X*X)

P;* L,f; ]

H(D", D" — {0)) —— Hy(E" E"— {0}) “—— HE"S"1).

The vertical arrows denote homomorphisms induced by f;. Since f; maps
(D", D" — {0}) homeomorphically onto (D;, D; — {a,}), it follows that f},
maps H/D", D" — {0}) isomorphically onto the direct summand H,(D,,
D, — {a,}) of H(2,2 — A). We have already proved that arrows 1 and 2
are isomorphisms; by exactly the same method, one can prove that arrows 3
and 4 are isomorphisms. Putting all these facts together suffices to prove that
San HJE", S"" 1Y) — H,(X* X) has the desired properties. Q.E.D

To close this section, we call the reader’s attention to the naturality of the
exact sequence of the pair (X*,X). Thus if X* is obtained from X by the
adjunction of n-cells, and Y* is similarly obtained from Y by the adjunction
of n-cells, and ¢:(X*,X) — (Y*,Y) is a continuous map of pairs, then we get
a ladderlike commutative diagram of maps of the homology sequence of
(X*,X)into that of (Y*,Y). Of course this is a special case of naturality of the
exact sequence of a pair, but it is important and we will make use of it.

§3. CW-complexes

One of the problems encountered in a systematic exposition of algebraic
topology is deciding on a suitable category of spaces to be studied. If the
category chosen is too narrow and restricted, the theorems are not likely to
be applicable in other parts of mathematics. On the other hand, if the category
chosen is too broad and inclusive, many of the theorems one desires to prove
will become very difficult or false (algebraic topology is mainly concerned
with topological spaces which are sufficiently nice locally so as to be non-
pathological). The category of CW-complexes (introduced by J. H. C.
Whitehead in 1949) has proven to be a reasonable compromise between the
various extremes. Roughly speaking, a CW-complex is built up by the suc-
cessive adjunction of cells of dimensions 1, 2, 3, . . ., etc,, as described in the
preceding section. Our treatment of this topic is rather brief; hence it may be
advisable for the student to read further on this topic. The original paper on
the subject is by J. H. C. Whitehead [ 10]. The book by Lundell and Weingram
[5]is rather complete. Other references are Cooke and Finney [2, Chapter I],
Hilton [3], Hu [4], and Massey [6].
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The original reason for the term “CW-complex” may be explained as
follows: The letter C stands for closure-finite and W stands for weak topology.

Definition 3.1. A structure of CW-complex is prescribed on a space X
(which is always assumed to be Hausdorff) by the prescription of an ascending
sequence of closed subspaces

XcX'cX?c
which satisfy the following conditions:

(i) X° has the discrete topology.
(i) Forn > 0, X" is obtained from X"~ ! by adjoining a collection of n- cells
so that the conditions explained in §2 hold.
(iii) X is the union of the subspaces X' for i > 0.
(iv) The space X and the subspaces X all have the weak topology: 4 subset
A s closedif and only if A ne"is closed for all n-cells, e”, n =0,1,2,....

The subset X" is called the n-skeleton. The points of X ° are called vertices
or O-cells. A CW-complex is finite or infinite according as the number of cells
is finite or infinite. If X = X" for some integer n, the CW-complex is called
finite-dimensional, and the least such integer n is called the dimension.

Note that for finite CW-complexes, Condition (iv) is superfluous. This fact
greatly simplifies the theory in the finite case, which will be our main interest.

"ExampLE 3.1.The n-sphere, S”, can be given a CW-complex structure such
that there are only two cells, a 0-cell and an n-cell. In other words, the k-
skeleton is a single point for 0 < k < n, and the n-skeleton is S". The charac-
teristic map, by which the n-cell is attached, maps the boundary of E" to a
single point.

ExampLE 3.2. A finite graph, as defined in I11.3, is a finite, 1-dimensional
CW-complex with an additional condition imposed on the characteristic
maps by which the 1-cells are attached.

ExAMPLE 3.3. In §I11.3 we determined the homology groups of a compact,
orientable surface of genus g > 0 (i.e., the connected sum of g tori). This
amounted to prescribing a finite, 2-dimensional CW-complex structure on
each of these surfaces, such that there is a single O-cell, 2g 1-cells, and a
single 2-cell. In the case of a nonorientable surface of genus ¢ (i.e., the con-
nected sum of g projective planes) we used a CW-complex having a single
0-cell, g 1-cells, and a single 2-cell.

ExampLE 3.4. To triangulate a compact 2-manifold, as explained in Chapter
I of Algebraic Topology: An Introduction, gives it the structure of a finite,
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2-dimensional CW-complex. The vertices are the 0-cells, the edges are the
1-cells, and the triangles are the 2-cells. Similarly, the more general sub-
division of a compact 2-manifold discussed in Section 8 of Chapter I, loc. cit.,
also gives rise to a CW-complex.

ExaMPLE 3.5. Suppose that X and Y are finite CW-complexes with skeletons
{X*} and {Y*} respectively. Then one can specify a CW-complex on the
product space X x Y such that the n-skeieton is the union of the subspaces
XOx Y, X' x Y"1 X2 x Y"2 .. .,X" x Y° The product of a p-cell of
X and a g-cell of Y is a p + g-cell of X x Y, the attaching map of such a
product cell is the product of the attaching maps. The details of this con-
struction will be described in §VI.2.

ExaMPLE 3.6. A more subtle and interesting example is a real, complex, or
quaternionic projective space. Given any field F, an n-dimensional projective
space over F is defined to be the set of all 1-dimensional subspaces in an
(n + 1)-dimensional vector space over F. This definition is valid even if the
field F is noncommutative (although then one should distinguish between
right and left vector spaces over F). Since any (n + 1)-dimensional vector
space over F is isomorphic to the space F" "1 of all (n 4 1)-tuples of elements
of F, we may as well restrict ourselves to consideration of F"*!. Any point

(X1, .Xp4q) of F"*! different from (0,....,0) determines a unique 1I-
dimensional subspace, and hence a unique point of the corresponding pro-
jective space. Two such (n + 1)-tuples, (xy,...,X,+1) and (Vg .- sVpe1)

determine the same point of projective space if and only if there exists a
nonzero element A of F such that y, = Ax; for 1 <i<n + 1. In books on
projective geometry, such an (n + 1)-tuple is referred to as a set of homo-
geneous coordinates for the corresponding point in projective space.

We will only be interested in the cases where F is the field of real numbers,
complex numbers, or quaternions. In each of these cases the field F has a
standard topology, and the vector space F" ! is given the product topology.
The corresponding projective space can be looked on as a quotient space of
F'*1 — {0}, and it is customary to give it the quotient space topology.
Alternatively, the projective space can be topologized as a quotient space
of the unit sphere with center at the origin in F"* 1.

There is an obvious imbedding of F" in F"*!, defined by (x,, ....x,) —
(xy5 .. .»x,,0). This leads to a corresponding imbedding of the (n — 1)-
dimensional projective space into the n-dimensional projective space over
F. This kind of imbedding will define the skeletons of a CW-complex on
these projective spaces. We will now discuss in more detail each of the cases:

Case 1: F = real numbers. The n-dimensional real projective space, de-
noted by RP", is the set of all 1-dimensional subspaces of R"*!. It may be
topologized as a quotient space of R""! — {0}, or of the unit sphere, S".
Each 1-dimensional subspace of R**! intersects S" in a pair of antipodal
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points. Hence S is a 2-sheeted covering space of RP" (see Algebraic Topology:
An Introduction, Example 8.2 on p. 166). The inclusions R' c R’ c -+ - <«
R"*! give rise to corresponding inclusions of real projective spaces:

P° < RP! « RP?><--- < RP".

It is clear that RP° is a single point, and easy to verify that RP! is a circle.
We will take these subspaces as the skeletons of a CW-complex. We assert
that RP* is obtained from RP*~! by the adjunction of a single cell of dimen-
sion k. Using homogeneous coordinates in RP¥, the characteristic map

fi:E¥ — RP*
is defined by the formula

Silxg, oox) = (g X1 = X)),

where x = (xy,...,x;). We leave it to the reader to verify that f, maps
E¥ — §¥~1 homeomorphically onto RP*¥ — RP*~ ! and S*~! onto RP*"!
(but not homeomorphically).

Case 2: F = complex numbers. The n-dimensional complex projective
space, denoted by CP”, is the set of all 1-dimensional subspaces of the
complex vector space C"*!. The inclusions

CICCZC"’CC"+1

give rise to corresponding inclusions of complex projective spaces,
CPPc CP'c---cCP"

Once again, CP is a single point, and it may be shown without too much
difficulty that CP' is homeomorphic to S2. In this case, CP* is obtained from |
CP*™ ! by the adjunction of a single cell of dimension 2k. The adjunction map

fuE*™ > CpP*
is defined by the formula

f;c(zls~'-9zk)— Zys e e \/1_|Z|)

Here we are using the following notational conventions: z = (z,, .. .,z)is a
point of C*¥= R?* On the right-hand side of this formula we are using
homogeneous coordinates in CP*. The norm of z is defined by

= (e e+ [

E?* is the unit ball in C¥ = R?*. Once again, it can be verified that f; maps
S2k~1 onto CP*~?, and E?* — §%*~! homeomorphically onto CP* — CP*~!
Hence we can take CP* as the 2k-skeleton of CP" for k=0, 1,...,n. The
2k + 1-dimensional skeleton is the same as the 2k-dimensional skeleton.
There are cells of dimensions 0, 2, 4, . . ., 2n.
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Case 3: F = quaternions. This case is very similar to the preceding. The
n-dimensional quaternionic projective space is denoted by QP". We have
inclusions,

QP°c QP c--- < QP".

QP is a single point and QP! is homeomorphic to S*. QP* is obtained from
QP* ! by adjunction of a single cell of dimension 4k. The formula for the
characteristic map is the same as in the two preceding cases, using quater-
nions in place of real or complex numbers. QP" is a CW-complex having a
single cell in each of the dimensions 0, 4, 8, .. ., 4n.

For further details about these projective spaces, the reader is referred to
Bourbaki [ 1] or Porteous [8].

Not every Hausdorff space admits a CW-complex structure. If it does
admit such a structure, then usually it admits infinitely many different such
structures (e.g., consider a finite regular graph as a CW-complex, and consider
all its subdivisions).

Among the nice properties of a CW-complex, we list the following without
proof:

(i) A CW-complex is paracompact, and hence normal.

(i) A CW-complex is locally contractible, i.e., every point has a basic family
of contractible neighborhoods.

(i) A compact subset of a CW-complex meets only a finite number of cells.
A CW-complex is compact if and only if it is finite.

(iv) A function f defined on a CW-complex is continuous if and only if the
restriction of f to the closure @" of every n-cell is continuous (n =
0,1,2,...).

A subset 4 of a CW-complex is called a subcomplex if A is a union of cells
of X, and if for any cell ¢,
"c A=—=7¢" < A
If this is the case, it may be shown that the sets
A=A n X", n=0,1,2,...,

define a CW-complex structure on A.
For example, the skeletons X" are subcomplexes.

Definition 3.2. A continuous map of f:X — Y of one CW-complex into
another is called cellular if f(X")< Y"for n=0,1,2,... (here X" and Y"
denote the n-skeletons of X and Y).

In [10] J. H. C. Whitehead proves that any continuous map X — Y is
homotopic to a cellular map.
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§4. The Homology Groups of a CW-complex

The purpose of this section is to apply the results of §2 to CW-complexes
in a systematic way.

Let K = {K"|n=0,1,2,...} denote a structure of CW-complex on the
topological space X (each K" is a closed subset of X). We will define K" = &
for n < 0. Since K" is obtained from K" ! by the adjunction of n-cells (by
definition), we can apply the results of Theorem 2.1 to conclude that

H(K"K"")=0

for ¢ # n and that H,(K",K"™') is a free abelian group with basis in 1-1
correspondence with the n-cells of K.

Lemma 4.1. H,(K") = 0 for all ¢ > n.

The proof is by induction on n. For n = 0, the lemma is trivial, since K°
is a discrete space (by definition). The inductive step is proved by using the
homology sequence of the pair (K",K"™1).

We will now associate with the CW-complex K certain “chain groups”
C(K),n=0,1,2,...and then we will prove that the nth homology group
obtained from these chain groups is naturally isomorphic to H,(X). The
definitions are as follows:

CJ(K) = H,(K"K"™1),
and
dn:Cn(K) - Cn—l(K)

is defined to be the composition of homomorphisms,
H(K"K"™) 3 H,_(K"™Y) 255 H,_ (K"~ 1,K")

where 0, is the boundary operator of the pair (K",K"~') and j,_, is the
homomorphism induced by the inclusion map. Of course one must verify
that d,_,d, = 0, but this is easy. We will find it convenient to denote the
n-dimensional groups of cycles, bounding cycles, and homology classes
derived from these chain groups by the notations

Z,(K), B,K) and H,/(K)
respectively; here Z,(K) = kernel d,, B,(K)=image d,,;, and H(K) =

Z,(K)/B,(K).
For the statement of the main theorem, consider the following diagram:

H,(X) < H(K" 3 H(K"K"™") = C,(K).

Here j, and k, are homomorphisms induced by inclusion maps.
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Theorem 4.2. In the above diagram:

k, is an epimorphism.
Jpisa monomorphism.
image j, = Z,(K).
kernel k, = j; Y(B,(K)).

Thus j, © k, ! defines an isomorphism
0, H,(X) - H,(K).

This theorem asserts that H,(X) ~ H,(K); however, it says even more, in
that a certain composition of maps is asserted to be an isomorphism. This
additional information is important in certain cases.

ProOOF OF THEOREM 4.2. First of all, note that for n > 1 the only nontrivial
part of the homology sequence of the pair (K",K" 1) is the following:

0— H(K" 3 H(K" K" Y5 H, (K"™Y)53 H, (K" >0 (1)

This is a consequence of Theorem 2.1 and Lemma 4.1. It follows that the
homomorphism

H, (K" ') > H, (K"
is an isomorphism except for ¢ = n and g = n — 1; in particular it is an
isomorphism for g < n — 1, ie., for n > g + 1. Thus we have the following
commutative diagram for each integer g > 0:

Hy(K*Y) SLEEN H,(K**?) SO H,(K™) e

\\j / “2

The horizontal arrows are all 1somorph1sms from what we have just said.
In case X is finite dimensional, K™ = X for some sufficiently large integer
m, and it follows from this diagram that

ky:H,(K*) - H(X)

is an isomorphism for any integer « > g. We wish to derive this same con-
clusion in case X is infinite dimensional. For this purpose, recall Property
(i) of CW-complexes mentioned in the preceding section: Any compact
subset of a CW-complex meets only a finite number of cells. It follows that
any compact subset C of X is contained in some skeleton K™. If one now
applies Proposition II1.6.1, the desired conclusion follows quite easily. The
details are left to the reader. Note the particular case « = g + 1: the homo-
morphism
ks 1 H(KTH1) = H(X)

is an isomorphism.
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Next, we consider the exact sequence (4.1). It follows from exactness that
JntH(K") > H(K"K""1)
is a monomorphism for all integers n, and
in:Hy— (K" 1) — H,_(K")
is an epimorphism for all n. In view of the commutativity of the diagram

H,,(K") .L.) H"(K"+1)

N e

H,(X)

and the fact that k, . , is an isomorphism, it follows that k, is onto, and kernel
k, = kernel i, , ;. Thus we may replace exact sequence (4.1) by the following:
0 > H(K") 3 H K" K1) S H,_ (K1) 223 g, (X) > 0. (43)
Since d, = j,- 10, and j,_, is a monomorphism, we see that
Z,(K) = kernel d, = kernel 0,,
= 1mage j,.
Next, we see that
kernel k,_, = image 0,

= ju-y (image j, - 10,)

= j-'1 (image d,)

= j':—ll (B, -1(K))

as required.
This completes the proof of Theorem 4.2. Q.E.D.

We will now consider some applications of this theorem:
(1) Suppose X is a CW-complex which is n-dimensional. Then

H(X)=0 forg>n.

(2) Suppose X is a CW-complex with only a finite number of n-dimen-
sional cells. Then H,(X) is a finitely generated abelian group (hence it is a
direct sum of cyclic groups).

(3) Suppose X is a CW-complex with no n-dimensional cells. Then
H,(X)=0.

(4) The Euler characteristic. Let K = {K"} be a structure of finite CW-
complex on the space X (hence X is compact). Denote the number of n-cells
of K by a,. The Euler characteristic of K is defined to be the integer

w(K) =Y (=1 e,

n=0
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We will now outline a proof that y(K) is actually a homotopy type invariant
of the space X; it does not depend on K.

Define a subset of an abelian group to be linearly independent if it satisfies
the usual condition with integer coefficients. Then define the rank of an
abelian group to be the cardinal number of a maximal linearly independent
subset. Earlier, we defined the rank of a free abelian group to be the cardinal
number of a basis; it is an exercise in matrix theory to prove that the two
definitions are equivalent in the case of free abelian groups.

For any abelian group A, let r(4) denote the rank of A. One can now
prove the following facts about the rank of abelian groups:

(a) If B is a subgroup or quotient group of A, then r(B) < r(A4). Hence
any finitely generated abelian group has finite rank.

(b) Let 0 > 4 - B — C — 0 be a short exact sequence abelian groups
with B of finite rank. Then

r(B) = r(4) + r(C).

The proofs are left to the reader.
The proof of invariance of the Euler characteristic of a finite CW-complex
depends on the following lemma:

Lemma 4.3. Let K be a finite CW-complex on the space X. Then
2(=1'r(C(K)) = Y (= 1)'r(H,(K)).

We leave the proof, which depends on Statements (a) and (b) above, to
the reader.

Corollary 4.4. Let K = {K"} be a finite CW-complex on the space X. Then
the Euler characteristic satisfies the following equation:

2(K) = Y (= 1)'r(H,(X)).
Hence y(K) is independent of the choice of the CW-complex K on the space X.

(5) The homology groups of n-dimensional projective space. Using the
CW-complexes on CP" and QP" described in the previous section, the

following results are immediate:
Z forgevenand 0 < g <2n,
P") =
Hy(CP") {0 otherwise,
Z forg=0mod4and0<q<4n,
0 otherwise.

H,(QP") = {

On the other hand, the methods we have developed do not suffice to deter-
mine the homology groups of RP". All one can prove using these methods is



88 IV Homology of CW-complexes

that H,(RP") is a cyclic group for 0 < ¢ < n and is 0 otherwise (of course
H(RP") is infinite cyclic).

Next, we will discuss the homomorphism induced by a cellular map of
one CW-complex into another. Let K = {K"} be a CW-complex on the
space X, and let L = {L"} be a CW-complex on the space Y, and let f: X —
Y be a cellular map, ie., f(K") < L" for all n. Then for each integer n, f
induces a homomorphism of the homology sequence of the pair (K",K" 1)
into the homology sequence of the pair (L",L"~!). Thus we have the fol-
lowing commutative diagram:

jll 6* ih
0 — H(K") — H(K"K" ') — H,_(K"™") — H,_(K") —— 0

fk

Cy iy
0 —— HL) —"— H(L\L"Y) —— H, (L") —— H, (L") —— 0.

Here f,:K" — L" is the map induced by f, as is ¢,:(K",K"™ 1) — (L",L""1).
In view of the definition of the boundary operator d,:C,(K) —» C,_,(K)
above, it follows that the following diagram is commutative for all n:

C(K) —2— (L)
| |+
Co oK) = C, (L),

Hence by exactly the same reasoning used in §II.3, we conclude that the
collection of homomorphisms {¢@,} induce homomorphisms

0 H(K) > H(L), n=012,....
Theorem 4.5. The induced homomorphisms f,:H,(X)—H (Y)and ¢,:H (K)—

H (L) correspond under the isomorphisms 0, of Theorem 4.2; i.e., the following
diagram is commutative for all n:

HX) —— H,K)
L
9,

H(Y) —— H,(L).

Proor. This follows immediately from the fact that the following diagram
is commutative for all n, together with the definition of 6, contained in
Theorem 4.2:

ky i
HX) «—— H(K") —— H(K"K"")

CF Lk

n Jn
H(Y) «—— H,(L) —— H(L"L"™".
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We will conclude this section with a discussion of the effective com-
putability of the various concepts introduced in this section. First of all,
the groups C,(K), n=20, 1, 2,... are free groups with basis in 1-1 corre-
spondence with the set of n-cells of K, hence they may be considered to be
well determined. To compute the homology groups H,(K) =~ H,(X), we
must determine the homomorphisms

d;C(K)—> C,_(K), n=01,2,....

In general, these homomorphisms will depend on the choice of the char-
acteristic maps by which the various cells are attached, and there seems
to be no universal, simple, method for their determination. The following
simple example illustrates this point. Let X be a torus and Y a Klein bottle.
We may choose CW-complexes K and L on X and Y respectively each of
which has one vertex, two 1-cells, and one 2-cell. Thus C,(K) ~ C,(L) for
all n. However, since H,(K) # H,(L) for n = 1 or 2, it follows that the bound-
ary homomorphisms d, for K and L must be essentially different (compare
§I11.4). The reason, of course, lies in the fact that the 2-cell is attached by
different maps in the two cases.

The situation is even worse as regards the computation of the homo-
morphisms ¢,:C,(K) — C,(L) mentioned above. Here an example is fur-
nished by the case X = Y = §”, the n-sphere. We proved earlier (cf. Exercise
II1.3.2) that there exist continuous maps S” — S" of every possible degree.
If we take K = L to be a CW-complex with one vertex and one n-cell, then
a map S" - S" will be cellular if and only if the vertex is mapped onto the
vertex; and this can always be arranged by an appropriate homotopic
deformation of any given map. Thus it is clear that in such cases Theorem 4.6
is of no help in determining the homomorphism induced by a continuous
map.

One of our objectives will be to introduce a more restricted class of
CW-complexes and cellular maps such that the boundary operator and the
induced homomorphism are actually computable.

§5. Incidence Numbers and Orientations
of Cells

This section is devoted to some material of a more or less technical nature
which will be used in the computation of homology groups of CW-complexes.

As in the preceding section, let K = {K"} be a CW-complex on the
space X. For each n-cell, ¢}, there is a characteristic map,

f(E"S") - (K"K"™T)

and according to Theorem 2.1 the induced homomorphism on the n-dimen-
sional relative homology groups is a monomorphism, and H, (K", K" 1) is
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the direct sum of the image subgroups. The characteristic map f; corre-
sponding to the cell ¢} is by no means unique, and it is conceivable that this
direct sum decomposition of the group H,(K",K"~') depends on the choices
of the characteristic maps. Before proceeding further, it is important to
point out that this is not the case; the direct sum decomposition of
H, (K" K" ') is canonical, and independent of the choices of the charac-
teristic maps. This may be proved as follows. For any n-cell ¢}, n > 0, let

el =e;—éj.
We will call ¢} the boundary of ¢}, even though it need not coincide with

the boundary in the sense of point set topology. We can factor the charac-
teristic map f, through the pair (€},¢}), as follows:

9i
(E"s"~1) — (2.¢")

S

(KWK,

Here [, is an inclusion map. Passing to homology, we obtain the following
commutative diagram:

(7%
H,(E"S"™) — H,(e"¢")

m J"*

H,(K"K"™Y).

We can apply Theorem 2.1 with (X*,X) = (€},¢}) to conclude that g,, is
an isomorphism. Hence

image f;, = image [;,,

and therefore image f;, is independent of the choice of the characteristic
map f;, as was to be proved. Note that this also proves that /;, is a mono-
morphism, and H,(K"K" ') is the direct sum of the images for all /€ A.

Since the group H,(e},¢}) is infinite cyclic for n > 0, there are two ways to
choose a generator and the choices are negatives of each other. We will
call a generator of the group H,(e},6}) an orientation of the cell ¢j.

Assume we have chosen an orientation aj € H,(€},6}) for each n-cell
e let

b = L;(a3) € C(K).
Then the set {b}} is a basis for the chain group C,(K).

The foregoing remarks are only valid if n > 0; the case n = 0 must be
modified, as follows. By definition, Co(K) = H(K°), and

Ho(K%) = Y. Ho(el),

ied
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where {€?|1€ A} denotes the set of 0-cells (or vertices) of K. For each 2,
the augmentation homomorphism

e Ho(ed) — Z

is a natural isomorphism. We will always choose a? € H(e3) to be the unique
element such that ¢,(a?) = 1, and let b9 € Hy(K°) = Co(K) be the element
corresponding to aj. Thus {b3|Ae A, is a basis for Co(K).

The distinction between the cases n = 0 and n > 0 may be summarized
as follows: For n > 0, an n-cell has two orientations, and there is no reason
to prefer one orientation over the other. On the other hand, a 0-cell consists
of a single point, and the question of choice of orientation does not arise in
this case.

Assume, then, that the bases {b}|1 € A4,} have been chosen for the chain
groups C(K) forn =20, 1, 2, ..., as described above. The boundary homo-
morphisms

d,:C(K) - C,_{(K), n=123...

are completely determined by the value of d, on the basis elements; and
we may uniquely express d,(b}) as a linear combination of the b}~ '’s. It is
customary to use the following notation for this purpose:

d(b3) = 3 [Dh:b b
u

The integral coefficient [b}:b},™ '] is called the incidence number of the cells
; and €~ ! (with respect to the chosen orientations). Obviously, the homo-
morphism d, is completely determined by the incidence numbers, and
vice-versa. The most important properties of the incidence numbers are
summarized in the following two lemmas.

Lemma 5.1. The incidence numbers of a CW-complex have the following
properties:

(@) For any n-cell &5, [b3:b}" "] =0 for all but a finite number of (n — 1)-
cells & 1.
(b) For any n-cell &% and (n — 2)-cell "2,

Y [b5:by b by 2] =0.
m

(c) Forany l-cell e}, ,[b}:b2] = 0.

(@) [—bisby ] = (b by ] = ~[bieb 1]

Proo¥: The proof of (a) is a direct consequence of the definition of incidence
numbers, and the proof of (b) follows from the relation d,,_ ;d, = 0. To prove
(c), recall that C(K) = H(K',K°), Co(K)= Hy(K° K%)= H(K°), and
d;:C,(K) » Cy(K) is the homomorphism

0,:H{(K'K° — Hy(K?)
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in the homology sequence of the pair (K*,K°). Now consider the following
diagram, which is commutative:

H(K%

I

H(K'K%) —— Hy(K°)

J-

Z.

oy
*

The vertical line is exact by Proposition I1.2.1, hence &,¢ = 0. Therefore
€40, = £,80, = 0.
Hence we obtain
0 = £,0,(b3) = &,d,(b})
=g, %[b,{:bg]bg =Y [bi:b]ey(b?)

=2 [ba:by]

since b2 was chosen so that a*(bff) =1.
The proof of (d) is trivial. Q.E.D.

Lemma 5.2. If the cell ¢~' is not contained in the closure of the cell €},
then [b}:b}71] = 0.

ProoF: Earlier in this section, it was pointed out that the canonical direct
sum decomposition of the group C(K) = H,(K",K"™') is determined by the
monomorphisms

L H\(€5,€85) - H,(K"K"™1)

for all n-cells e} of K. Corresponding to this direct sum decomposition,
there are projections of C,(K) onto each of the summands. We assert that
these projections may be described in terms of the following commutative
diagram:

H,(@0¢))
IZ*
Ls* s HK" K" 1),
A/m“

H,(K", K" — &})

Here I} and m, are inclusion maps. We assert that [}, is an isomorphism
and m;,, composed with the inverse of [;, gives the projection of C,(K)
onto the direct summand corresponding to the cell ¢}. The proof that [},
is an isomorphism is based on Theorem 2.1, and is exactly the same as the
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proof that [,, is a monomorphism whose image is a direct summand. To
prove the assertion about m;, one must prove that if e} # €, then m, . [,, =
0; this is an easy consequence of Lemma 5.3 below.

In view of these facts, and the definition of incidence numbers, it is clear
that in order to prove [b},b} '] =0. we must prove that the following
composition of homomorphisms is zero:

lia é, Jn-1
H(@,¢;) — H(K,K"') —— H, y(K"') — H,_ (K" ,K"7?)

l Myx

H,,_I(K”—l, Kn—l __en—l)‘

n

We can imbed this sequence of homomorphisms in the following commuta-
tive diagram:

0‘ .n
H(K"K"™ ') — > H, (K"!) ——— H,_ (K" ,K""?
]’j* ] lmﬂ*
o Jx
H(@¢) —— H, (&) —— H, (K" L, K" —en ),

By commutativity of the squares in this diagram, we see that we must prove
Ju@ =0.
Since €}~ ! is not contained in ¢}, the inclusion map j:é} — (K"}, K"~ ! —

e"~ 1) is homotopic to a map of ¢ into K"~! — ¢"~! (to see this, choose a
u i u

point x, € ¢! such that x, ¢ @}; the required homotopy of the map j is
defined by means of a “radical projection” outward from the point x, to
the boundary of the cell ¢~ ). It follows from Lemma 5.3 below that j, = 0,
and the proof is complete. Q.E.D.

Lemma 5.3. Let f:(X,A) — (Y,B) be a map of pairs which is homotopic to a
map g:(X,A) = (Y,B) such that g(X) = B. Then the induced homomorphism

f*:Hn(X’A) - Hn(Y’B)
is zero for all n.

PrOOF. By the homotopy property, f, = g,., hence we must prove thatg, = 0.
The hypotheses imply that g can be factored, as follows:

(X,A) % (B,B) > (Y,B).
Passing to homology, we have
H,(X,A) % H,(B,B) > H,Y,B).
Since H,(B,B) = 0 for all n, the result follows.
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§6. Regular CW-complexes

We will now introduce a special category of CW-complexes which have the
property that their homology groups are effectively computable (at least in
case the complex is finite).

Definition 6.1. A CW-complex is regular if for each cell ", n > 0, there exists
a characteristic map f:E" — €" which is a homeomorphism.

We recall that previously we have only required that the characteristic
map be a homeomorphism of U" onto ¢", and map S" ! into the (n — 1)-
skeleton. We are now requiring in addition that the characteristic map be
a homeomorphism of $"~! into K"~ 1.

To clarify the definition, we present in Figure 9 an example of a CW-
complex on the closed 2-dimensional disc which is not regular. There are
three vertices, three edges, and one 2-cell:

Figure 9

We now list three basic geometric properties of regular CW-complexes:

(1) If m < n and €™ and ¢” are cells such that " N é" # ¢, then " < é".

(2) For any n-cell ", n > 0, " and ¢" are the underlying spaces of sub-
complexes. Also, ¢" is the union of closures of (n — 1)-cells.

Before stating the third property, we need a definition. We say €™ is a
face of €" if " = ¢", and denote this by e™ < ¢". Clearly, every cell is a face
of itself; we say €™ is a proper face of " if it is a face of €”, and ™ # €" (notation:
" < ¢"). This definition makes sense in a regular cell complex mainly because
of property (1).

(3) Let ¢" and ¢"*? be cells of a regular cell complex such that ¢" is a
face of e""2. Then there are exactly two (n + 1)-cells e"*' such that ¢" <
en+l < en+ 2.

It should be emphasized that (1), (2), and (3) need not be true for non-
regular CW-complexes. The proofs depend on Brouwer’s theorem on in-
variance of domain, Corollary 111.6.7.

The proofs of (1), (2), and (3) are given by Cooke and Finney [2] or
Massey [7]. We will not reproduce these proofs here. Actually, in any
specific case it will be clear that these properties hold.
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§7. Determination of Incidence Numbers
for a Regular Cell Complex

Let K be a regular cell complex on the space X. We will denote the n-cells
of K by the symbol ¢4, where the index A ranges over a certain set A4,, n =
0,1,2,.... We assume orientations b} have been chosen for each cell €] as
described in §5.

Lemma 7.1. The incidence numbers [b}:b3"'] in a regular cell complex K
satisfy the following four conditions:

(1) If €.~ ' is not a face of €}, then [b}:b," ] = 0.
(2) If e ' is a face of €}, then [b}:b}" '] = +1.
(3) If €0 and €? are the two vertices which are faces of the 1-cell e}, then

[b3:b%] + [bi:bY] =0.

(4) Let ¢} and €2 be cells such that €)% < €}; let €, " and €)™ ' denote the
unique (n — 1)-cells "~ * such that €}~ * < "~ ' < ¢}. Then

[b5:by 16 by 721 4 [B5:05 1 ][BY 1iby 2] = 0.

ProoF: Condition (1) is a consequence of Lemma 5.2 and the definition of
the term face.

In order to prove Statement (2), we will make use of Statement (2) of §6.
According to this statement, @} is a subcomplex of K which contains the cell
e, 1, and it is easy to see that it doesn’t matter whether we compute the
incidence number [b}:b}~ '] relative to the subcomplex €} or to the whole
complex K. Let L = {L?} denote this subcomplex on the space €. Then
L" =72 is a closed n-dimensional ball, and L"~' = ¢} is an (n — 1)-sphere.
We will use the method of proof of Lemma 5.2 to prove the present lemma.
Thus we see that in the following commutative diagram

[N Jn=1
H(L'L'™Y) = B, y(L"7Y) —— H, (L L")

N

H,,_l(Ln_l, Ln—l — e;l"l)

we must prove that k0, is an isomorphism. We will prove this by proving
that both @, and k,, are isomorphisms.

To prove that d,, is an isomorphism, one considers the homology sequence
of the pair (L",L""'). Since L" =7, is contractible, H (L") =0, and the
desired result follows.

To prove that k,, is an isomorphism, one considers the homology sequence
of the pair (L""',L""' — &}~ ); k, is one of the homomorphisms in this
exact sequence. We will prove that L"~! — ¢~ ! is contractible, from which
it will follow that

ﬁq(L"_l _ ez—l) =0



96 IV Homology of CW-complexes

n—1

for all g, and hence that k, is an isomorphism. To prove that L"~' — ¢,
is contractible, recall that L~ is an (n — 1)-sphere. Let x be a point of &} ';
then L" ' — ¢!~ " is obviously a deformation retract of L" ' — {x}; and
L"~' — {x} is homeomorphic to R"~*, hence contractible. Therefore L" ' —
€;” ! is also contractible.

Statement (3) is a consequence of Part (c) of Lemma 5.1 and Statement (1),
together with the obvious fact that any 1-cell in a regular CW-complex has
exactly two vertices which are faces.

Statement (4) follows from Part (b) of Lemma 5.1, Statement (1), and

Statement (3) of §6. Q.E.D.

Our main theorem now asserts that the four conditions of the lemma
just proved completely characterize the incidence numbers of a regular
CW-complex.

Theorem 7.2. Let K be a regular CW-complex on the topological space X.
For each pair (€},¢, ') consisting of an n-cell and an (n — 1)-cell of K, let
there be given an integer o, = 0 or + 1 such that the following four conditions
hold:

(1) If €.~ 'is not a face of €}, then oy, = 0.

(2) If i~ is a face of ¢}, then o}, = +1.

(3) If €2 and € are the two vertices of the 1-cell e, then
aiu + aiv = 0.

(4) Let € and e~ 2 be cells of K such that €~ < e3; let €)' and €~ " denote
the unique (n — 1)-cells &"~* such that €)% < "' < ¢j.

Then
n—1 n -1 __
o Oy~ + U500, T = 0.

Under these assumptions, it is possible to choose an orientation b’ for each
cell &} in one and only one way such that

[by:by ] = o,
for all pairs (¢},e} ™).

Proor: We will prove the existence of the required orientation b} on the cell
¢ by induction on n. For n = 0 there is no choice: a 0-cell has a unique
orientation, which we denote by b?.

Next, let e} be a 1-cell, and let ¢ and e} be the two vertices which are
faces of it, It is clear that one of the two possible orientations of e}, which
we will denote by b}, satisfies the equation

[b}:60] = o,
Then since
), +oi, =0

[b:b8] + [b:69] =0
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it follows that
[63:60] = ol
as required.

Now we make the inductive step. Assume that an orientation b4 for each
cell ef has been chosen for all ¢ < n such that the required conditions hold.
Let ¢} be an n-cell of K, and let ¢}, ! be an (n — 1)-cell which is a face of e%.
Once again, it is clear that we can choose one of the two possible orientations
of %, which we will denote by bf%, so that

[b3:050 1] = o (7.1)
We must prove that if ¢2~ ! is any other face of e, then
[65:657 1] = o, (7.2)

For this purpose, consider the subcomplex L of K consisting of all the cells
of ¢}. Then

z=3 b
v

where the summation is over all (n — 1)-cells of L, is a nonzero (n — 1)-chain
of L. A routine calculation using the properties of regular cell complexes
and the inductive hypothesis shows that

dy-1(2) = 0,

i.e., z is a cycle. A similar argument shows that

D A

s also a nonzero cycle. Since ¢% = L"~* is an (n — 1)-sphere, it follows that
H,_ (L)=Z,-4L)

is an infinite cyclic group. Therefore z and z’ are both multiples of a generator
of this group. Since {7~ !} is a basis for C,_ (L), and we are assuming that
Equation (7.1) holds, it follows that z and z’ must be the same multiple of a
generator of Z,_ (L), i.e., z = z'. By comparing coefficients of z and z, we
see that (7.2) holds for all v. This completes the proof of the existence of the
desired orientations.

The proof of uniqueness of orientations is also done by induction on n.
For n =0, orientations are unique by definition. Assume inductively that
orientations have been proven unique for all cells of dimension <n; let €}
be an n-cell. Choose an (n — 1)-dimensional face €}~ ! of ¢}. By Statement (d)
of Lemma 5.1, changing the orientation of e} would change the incidence
number [b5:55~ '], which is not allowed. Q.E.D.

Notational Convention. From now on, we will usually only need to con-
sider one choice of orientation for the cells of a regular CW-complex.
Therefore we will use the same symbol for a cell and its orientation. Thus
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[e5:€,7"] =0 or +1 denotes the incidence number of the oriented cells €}
and ¢}~ !. This calculated sloppiness in notation is customary and convenient.

The uniqueness statement of Theorem 7.2 is important, because it shows
that we can specify orientations for the cells of a regular CW-complex by
specifying a set of incidence numbers for the complex. This is one of the most
convenient ways of specifying orientations of cells. Regular CW-complexes
are often more convenient than other CW-complexes, because of this simple
method for specifying the orientation of cells.

The method of using this theorem is quite simple. We assume we have
given a list of cells of K together with the information as to whether ;! < ¢/,
for any two cells ¢}~ ! and e} For each 1-cell €', choose incidence numbers
between it and its two vertices so that Conditions (2) and (3) of Lemma 7.1
(or Theorem 7.2) hold. Define all other incidence numbers between vertices
and 1-cells to be 0 (Condition (1)).

Now assume, inductively, that incidence numbers have been chosen
between all cells of dimension <n. Let ¢" be an 1-cell. Choose a face ey~ !
of ¢", and choose [e":e" '] to be +1 or — 1. Using Condition (4), determine
[e™:e3~ 1] for all (n — 1)-cells ¢}~ which are faces of ¢" and have an (n — 2)-
face in common with ¢"~!. Spread out over the boundary e" by repeating
this process. Theorem 7.2 assures us that we will never reach a contradiction
by this process. Repeat this process for each n-cell of K, and then use Condi-
tion (1) to define all other incidence numbers between (n — 1)- and n-cells.

Here is a convenient way to indicate incidence relations between low-
dimensional cells on a diagram:

(a) Between O-cells and 1-cells. Let e* be a 1-cell with vertices €3 and ef.
Consider the two incidence numbers [e':e°] and [e':e{]; one of these is 1,
the otheris — 1. Draw an arrow on e' indicating the direction from the vertex
corresponding to —1 to the vertex corresponding to +1 as in Figure 10.

€y

Figure 10

(b) Between 1-cells and 2-cells. Let e? be a 2-cell and let ' be a face of €2,
as shown in Figure 11. We assume the orientation chosen for e! is indicated
by means of an arrow, as shown. Indicate the orientation of e? by indicating
a direction of rotation of e? about its center. This direction of rotation will

€y

Figure 11



§7. Determination of Incidence Numbers for a Regular Cell Complex 99

be the same as that indicated by the arrow on e' if [e?:e'] = +1, otherwise
it will be the opposite. Note that the resultant direction of rotation of e?
is independent of the choice of the face e'.

(c) Between 2-cells and 3-cells. We can indicate orientations of 3-cells by
assigning to them a right- or left-handed corkscrew. We assume that all the
faces of a given 3-cell e have their orientations indicated as described in the
preceding paragraph. Let e? be a face of 3. If [e*:e?] = +1, assign to €3

- the kind of corkscrew needed to bore into e from the outside, through the
face e?, rotating in the direction indicated by the orientation of ¢ If
[e3:e*] = —1, assign to e> the kind of corkscrew needed to bore out of &*
through the face €2, rotating in the direction indicated by the orientation of
. Note once again that the type of corkscrew assigned to e is independent
of the choice of the face €2.

EXERCISES

7.1. Divide an orientable surface of genus » into 4n quadrilaterals. There will be 2n + 2
vertices and 8n 1-cells. Figure 12 indicates the case n = 2:

Figure 12

Compute incidence numbers.

7.2. Consider real projective 3-space as obtained by identifying diametrically opposite
points on the boundary of the regular octahedron

{y2) e R[] + [y + || < 1.

Divide the octahedron into eight tetrahedra by means of the coordinate planes
(i.e., there is one tetrahedron in each octant). Compute incidence numbers. Note:
This process can be generalized to define a regular CW-complex on real projective
n-space.

7.3. Let K be a regular CW-complex on X. Define K to be an almost simplicial complex
if the following conditions hold for all n > 0:

(a) Each n-cell has exactly n + 1 vertices.
(b) Any set of n + 1 vertices is the set of vertices of at most one n-cell (it need not
be the set of vertices of any n-cell).



100 IV Homology of CW-complexes

Prove the following two facts about almost simplicial complexes:

1. An n-cell has exactly n + 1 faces of dimension n — 1.

2. Incidence numbers for an almost simplicial complex can be described explicitly
as follows: Each cell is uniquely described by listing its vertices. Linearly order
all the vertices (in any order whatsoever) and agree to always list vertices in the
given order. If ¢" has vertices vy, vy, . .., v, in the given order, and the face ¢" !
has only the vertex v; omitted, then set [e":e"™*] = (— 1)’

(Note: A simplicial complex, as defined in most books, is an almost simplicial
complex with certain additional geometric structure. This additional structure is
irrelevant as far as computing homology groups is concerned.)

§8. Homology Groups of a Pseudomanifold

In this section we apply the results of §7 to determine the structure of certain
homology groups of a special class of regular CW-complexes. This special
class is of fairly wide occurrence.

Definition 8.1. An n-dimensional pseudomanifold is an n-dimensional finite,
regular CW-complex which satisfies the following three conditions:

(1) Every cell is a face of some n-cell.
(2) Every (n — 1)-dimensional cell is a face of exactly two n-cells.
(3) Given any two n-cells, e” and e, there exists a sequence of n-cells

ey,el, ..., er

such that e = ¢", ¢} = ¢, and ¢} | and e} have a common (n — 1)-
dimensional face (i = 1,2,. .. ,k).

Some authors call an n-dimensional pseudomanifold a simple n-circuit.

A regular CW-complex on a compact connected 2-manifold is an example
of a 2-dimensional pseudomanifold. More generally it may be shown that a
regular CW-complex on a compact connected n-manifold is an n-dimensional
pseudomanifold. An example of a pseudomanifold which is not a manifold
may be constructed as follows: Let K be a regular CW-complex on a com-
pact, connected 2-manifold. Form the quotient by identifying two vertices
which are not both vertices of the same 2-cell. The quotient space has an
obvious structure of regular CW-complex, which may be shown to be a
2-dimensional pseudomanifold.

It may be proved that the above definition is “topologically invariant”
in the sense that it expresses a condition on the underlying space rather than
a condition on the particular regular CW-complex chosen on the space (a
proof of this fact is contained in the book by Seifert and Threlfall, [9],
Chapter 5).
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Let K be an n-dimensional pseudomanifold, and let ¢} and ¢ be n-cells
of K which have a common (n — 1)-dimensional face e"~!. We define orienta-
tions for e} and €} to be coherent (with respect to the common face "~ 1) if
the incidence numbers satisfy the following relation:

[el:e" ']+ [es:e" 1] =0

Note that this condition is independent of the choice of the orientation for
the cell "~ !. A set of orientations for all the n-cells of K is said to be coherent,
if it is coherent in the above sense for any pair of n-cells which have a common
face of dimension n — 1.

In connection with the above definition, it should be pointed out that a
pair of n-cells in an n-dimensional pseudomanifold may have more than one
common (n — 1)-dimensional face; in such a case it is essential to specify
the common face with respect to which given orientations are asserted to be
coherent. An example is the following subdivision of the projective plane
with four vertices, vy, . . ., vy, seven edges, ey, . . . , e,, and four 2-cells, A, B,
C, and D (see Figure 13). The 2-cells A and B have the edges e; and e; in
common; if 4 and B are oriented coherently with respect to the edges e, the
orientations are not coherent with respect to the edge e;, and vice-versa.

€3
C
e v e
v, a 3 5 v,
A €3 B €y
ey
v v
2 e va o 1
D
€
Figure 13

Given an n-dimensional pseudomanifold K, either all the n-cells of K can
be simultaneously oriented so any pair having a common (n — 1)-dimensional
face are oriented coherently, or they can not be so oriented. In the former
case, K is said to be orientable, in the latter case nonorientable.

Theorem 8.1. If K is an orientable n-dimensional pseudomanifold, then H,(K)
is infinite cyclic; if K is nonorientable then H,(K) = 0.
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The details of the proof are left to the reader. Note that since K is an
n-dimensional CW-complex, H,(K) = Z,(K). If K is orientable, and the n-
cells are oriented so that any pair having a common face of dimension n — 1
are coherently oriented, then the sum of all the n-cells (thus oriented) is an
n-cycle; moreover, any n-cycle is an integral multiple of this sum. If K is
nonorientable, then one proves that there are no nonzero n-cycles.

In view of the invariance of the homology groups of a regular CW-
complex K, this theorem shows that the concepts of orientability and
non-orientability really only depend on the underlying topological space in-
volved, and not on the choice of the regular cell complex K.

The next theorem describes the structure of the torsion subgroup of

Hn— I(K)

Theorem 8.2. Let K be an n-dimensional pseudomanifold. If K is orientable,
then H, _,(K) is torsion-free. If K is nonorientable, then the torsion subgroup
of K is cyclic of order two.

PRrOOF. Let k denote the number of n-cells of K. We assert that it is possible
to enumerate the n-cells of K in order e}, €3, . . ., €} and to choose (n — 1)-
cells e/ 71, 2 < i < k, of K such that the following condition holds: e/ ! is a
common face of ej and some n-cell e} with j < i. The proof of this assertion
is left to the reader.

Assume that the n-cells have been enumerated and the (n — 1)-cells
¢3!, ..., el have been chosen so the above conditions hold. Choose an
arbitrary orientation for the cell ¢}; then orient €} so that its orientation is
coherent to that of ¢ with respect to the face €3~ '. Next orient €3 so it is
coherent with respect to the face €3~ ! to either €} or €% as is relevant. Con-
tinue in this manner, orienting all the n-cells in succession, so each e? is
coherently oriented with some ¢}, j < i, with respect to €/~ '. Once the
orientation of ¢7 is chosen, this condition uniquely determines the orienta-
tions of the rest of the n-cells. It is easy to see that if K is orientable, then the
result is a coherent orientation of all the n-cells of K.

We next assert that any (n — 1)-cycle z of K is homologous to a cycle z’
such that the coefficient of each of the cells €57 !,...,ef " *in 2/ is 0. The
proof, which is easy, is left to the reader.

With these preparations out of the way, we can now prove the theorem.
Let u be a homology class of finite order of H,_,(K), i.e., ¢ - u = 0 for some
integer q. Let ze Z,_,(K) be a representative cycle for u. By the above
argument, we may assume that the coefficients of the cells ¢3!, ..., e} ! in
the cycle z are all 0. Since qu = 0, there exists an n-chain

such that
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In view of the way we have oriented the n-cells ¢}, and the fact that the
coefficients of €571, ..., ¢; ! are 0 in z, we conclude that

0(1 =a2="’=ak.
If K is orientable, we see that
d(c) =0,

hence q-z=0, z=0, and u =0, as required. In the nonorientable case,
consider the n-chain

i=1

Then d(c') is a nonzero (n — 1)-cycle which assigns the coefficient 0 or +2
to every (n — 1)-cell of K. Hence

y = 3d(c)
is an (n — 1)-dimensional cycle of K, and its homology class is an element
of order 2 in H,_,(K). Note that the coefficient of any (n — 1)-cell is 0 or

+1 in the expression for the cycle y. Since ¢ = ac’ for some integer o, we
see that

d(c) = ad(c),
q-z=2uy,
_ 20
z= ? Y

hence the homology class of z is a multiple of that of y. Thus the torsion
subgroup of H,_,(K) is the cyclic group generated by the homology class
of y. Q.E.D.

Since it may be shown that any regular CW-complex on a compact
connected n-manifold is an n-dimensional pseudomanifold, the above results
apply in particular to all compact n-manifolds which can be “subdivided”
so as to define a regular CW-complex structure. It is known that every
compact n-manifold admits such a subdivision if n < 3; the question is still
open for manifolds of dimension > 3.
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' CHAPTER V

Homology with
Arbitrary Coefficient Groups

§1. Introduction

This chapter is more algebraic in nature than the preceding chapters. In §2
we discuss chain complexes. This discussion mainly puts on a formal basis
many facts that the reader must know by now. Nevertheless, there is some
point to a systematic organization of the ideas involved, and certain new
ideas and techniques are introduced. The remainder of the chapter is con-
cerned with homology groups with arbitrary coefficients. These new homol-
ogy groups are a generalization of those we have considered up to now. In
the application of homology theory to certain problems they are often
convenient and sometimes necessary.

Starting in §2, we make systematic use of tensor products. It is assumed
that the reader knows the definition and basic properties of tensor products
of abelian groups.

§2. Chain Complexes

Much of this section consists of terminology and definitions which it will
be very convenient to use from now on.

Definition 2.1. A chain complex K = {K,.,d,} is a sequence of abelian groups

K,,n=0, £1, +2,..., and a sequence of homomorphisms J,:K, - K, _;
which are required to satisfy the condition

Op-10,=0
for all n.

105
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For any such chain complex K = {K,,0,} we define
Z(K) = kernel 0,,
B,(K) = image 0, . ;.
Then B(K) = Z,(K) = K,, and we can define
H,(K) = Z,(K)/B,(K),
called the nth homology group of K.

ExaMmpLE 2.1. For any space X, we have previously defined the chain com-

plexes
Q(X) = {Qu(X).0n}
D(X) = {D,(X),0,}
C(X) = {C\(X),0,}
and for any pair (X, A4),

C(X,4) = {C(X.A).C,}.

Definition 2.2. Let K = {K,,0,} and K' = {K,,0,} be chain complexes. A
chain map f:K — K’ consists of a sequence of homomorphisms f,: K, — K|,
such that the commutativity condition

fn— lan = a;lf;l
holds for all n.

EXAMPLE 2.2. A continuous map ¢:X — Y induces chain maps

¢%:0(X) - O(Y)
¢#:D(X) - D(Y)
@4:C(X)—> C(Y)
etc.
If f:K - K' is a chain map, then f,[Z(K)] = Z,(K') and f,[ B(K)] =
B,(K’), hence there is induced a homomorphism
S« H(K) - H,(K")
for all n.

Note that the set of all chain complexes and chain maps constitutes a
category, and that H, is a functor from this category to the category of
abelian groups and homomorphisms. Note also that if f and g: K — K’ are
chain maps, their sum,

f+g="{f+3
is also a chain map, and
(f + 9y = fi + 94 H(K) - H(K).
In other words, H, is an additive functor.
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Definition 2.3. Let f, g: K — K’ be chain maps. A chain homotopy D:K — K'
between f and g is a sequence of homomorphisms

D, K, - K,
such that
f;z —gn= a;:+1Dn + Dn—lan

for all n. Two chain maps are said to be chain homotopic if there exists a
chain homotopy between them (notation: f ~ g).

ExXAMPLE 2.3. If ¢y, ¢;: X — Y are continuous maps, any homotopy between
®o and ¢, gives rise to a chain homotopy between the induced chain maps
@04 and ¢ 4 on cubical singular chains (see §I1.4).

The reader should prove the following two facts for himself:

Proposition 2.1. Let f, g:K — K’ be chain maps. If f and g are chain homo-
topic, then

Jx =95 H(K) » H(K')
for all n.

Proposition 2.2. Chain homotopy is an equivalence relation on the set of all
chain maps from K to K'.

EXERCISES

2.1. By analogy with the category of topological spaces and continuous maps, complete
the following definitions:

(a) A chain map f:K — K’ is a chain homotopy equivalence if

(b) A chain complex K' is a subcomplex of the chain complex K if

(c) A subcomplex K’ of the chain complex K is a retract of K if

(d) A subcomplex K’ of the chain complex K is a deformation retract of K 1f

(e) IfK'isa subcomplex of K, the quotient complex K/K' is

In each case, what assertions can be made about the homology groups of the
various chain complexes involved, and about the homomorphisms induced by the
various chain maps?

22. Let f, g, [, and ¢’ be chain maps K — K'. If f is chain homotopic to f’, and g is
chain homotopic to ¢’, then prove that /' + g is chain homotopic to ' + ¢'.

23. Let f,g:K - K'and f", ¢: K’ > K" be chain maps, D a chain homotopy between
fand g, and D’ a chain homotopy between f” and g’. Using D and D', construct an
explicit chain homotopy between f'f and g'g: K — K".

24. Let D be a chain homotopy between the maps f and g:K — K (of K into itself).
Use D to construct an explicit chain homotopy between f* = fff -« - f and ¢g" =
gg - - - g (n-fold iterates).
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Definition 2.4. A sequence of chain complexes and chain maps
SKLK LK S
is exact if for each integer n the sequence of abelian groups
K, BKBK S
is exact in the usual sense.

We will be especially interested in short exact sequences of chain com-
plexes, i.e., those of the form

E0->K HK%K -0

This means that for each n, f, is an monomorphism, g, is an epimorphism,
and image f, = kernel g,. Given any such short exact sequence of chain
complexes, we can follow the procedure of §II.5 to define a connecting
homomorphism or boundary operator

0p:H,(K") » H,_,(K)
for all n, and then prove that the following sequence of abelian groups
-5 H(K) B H(K) S HK) 5 H, (K)o

is exact. One can also prove the following important naturality property of
this connecting homomorphism or boundary operator: Let

;

E: 0 3 KI 3 K g Y KII 0
\ .

F: 0 L L —— L” > 0

be a commutative diagram of chain complexes and chain maps. It is assumed
that the two rows, denoted by E and F, are short exact sequences. Then the
following diagram is commutative for each n:

H(K") —— H,_\(K)

¢
H(L") — H,_(L)

EXERCISES

2.5. Define the direct sum and direct product of an arbitrary family of chain complexes
in the obvious way. How is the homology of such a direct sum or product related
to the homology of the individual chain complexes of the family?
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26. Let E:0 - K’ L K % K" - 0beashort exact sequence of chain complexes. By a
splitting homomorphism for such a sequence we mean a sequence s = {s,} such that
for each n, s,:K}, —» K,, and g,s, = identity map of K onto itself. Note that we
do not demand that s should be a chain map. Assume that such a splitting homo-
morphism exists.

(a) Prove that there exist unique homomorphisms ¢,:K, — K),_, for all n such
that

j;v—l(pn = 3,,5,, - Sn—la:r"

(b) Prove that 0,_,¢, + ¢,_ 0, =0 for all n.

(c) Let s’ = {s,} be another sequence of splitting homomorphisms, and ¢,:K} —
K;_, the unique homomorphisms such that f,_,¢, = 0,s, — s,-,0,. Prove
that there exists a sequence of homomorphisms D,: K] — K, such that

@y — (P:r = 6::Dn - Dn— 16:1/
for all n.

(d) Prove that the connecting homomorphism 0g: H(K") — H,-4(K’) is induced
by the sequence of homomorphisms {¢,} in the same sense that a chain map
induces homomorphisms of homology groups. (Note: The sequence of homo-
morphisms {¢,} can be thought of as a “chain map of degree — 1.” The sequence
of homomorphisms {D,} in Part (c) is a chain homotopy between {¢,; and

{on})

We will conclude this section on chain complexes with a discussion of a
construction called the algebraic mapping cone of a chain map.

Definition 2.5. Let K = {K,,d,} and K’ = {K,,d,} be chain complexes and
f:K — K’ a chain map. The algebraic mapping cone of f, denoted by
M(f)= {M(f),.d,} is a chain complex defined as follows:

M(f),=K,-,® K, (direct sum).
The boundary operator d,,: M(f), = M(f),—, is defined by
dn(xsxl) = (_ an-— 1%, a;lx, + f;r— lx)

for any x € K,,_; and x’ € K, It is trivial to verify that d,_d, = 0.

Next, define i,:K, — M(f), by i(x") = (0,x'). The sequence of homo-
morphisms i = {i,} is easily seen to be a chain map K’ — M(f). Similarly,
the sequence of projections j,: M(f), - K,_; (defined by j(x,x) = x) is
almost a chain map. However, it reduces degrees by one, and instead of
commuting with the boundary operators, we have the relation

an— ljn = —jn— ldn'

It is a “chain map of degree — 1.” It induces a homomorphism of homology
groups which reduces degrees by one.
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The chain maps i and j define a short exact sequence of chain complexes:
0- K 5 M(f)> K —o0.

As usual, this short exact sequence of chain complexes gives rise to a long
exact homology sequence:

S HK) S HM(f) 5 H, o (K) S Hy (K >

Here d,, denotes the connecting homomorphism. It is now an easy matter
to check that

dy = f4:H,(K) > H(K’)

for all n. Thus we have imbedded the homomorphisms f, induced by the
given chain map in a long exact sequence; and this has been done in a
natural way. That is the whole point of introducing the algebraic mapping
cone. This long exact sequence will be called the exact homology sequence
of f.

Remark. The topological analog of this construction is described in §X.3.

Our first application of the algebraic mapping cone is to prove the
following basic theorem. We will see other applications later on.

Theorem 2.3. Let K = {K,.,0,} and K' = {K,,0,} be chain complexes such
that K, and K, are free abelian groups for all n. Then a chainmap f:K > K'
is a chain homotopy equivalence if and only if the induced homomorphism
Sy H(K) = H{(K') is an isomorphism for all n.

The only if part of this theorem is a triviality, hence we will be concerned
only with the if part. First, we need a couple of lemmas.

Recall that if the identity map and the zero map of a chain complex K
into itself are chain homotopic, then H,(K) = 0 for all n. The first lemma is
a partial converse of this statement.

Lemma 2.4. Let K be a chain complex such that Z (K) is a direct summand of
K, for all n, and H,(K) = O for all n. Then the identity map and the zero map
of K into itself are chain homotopic.

PRrOOF: For each n, choose a direct sum decomposition
K,=Z(K)® A,

Since H,(K) =0, B,(K) = Z(K) for all n. It follows that J, maps 4, iso-
morphically onto Z,_(K). We now define the chain homotopy D,:K, —
K, ., as follows: D, restricted to A, is the zero map, and D, restricted to
Z,(K) shall map Z,K) isomorphically onto 4,,, by the inverse of the
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isomorphism 0, ;. It is now easily verified that
Dy, 10,(x) + 0p+1D(x) = x

for any x € K,,. Q.E.D.

Lemma 2.5. Let K be a chain complex such that K, is a free abelian group.
Then Z,, (K) is a direct summand of K, . .

ProoF. Since K, is free abelian, it follows by a standard theorem of algebra
that the subgroup B,(K)is also free abelian. Because d, , ; is a homomorphism
of K, ,, onto the free group B,(K), we can conclude that Z, . ;(K) = kernel
0,41 1s a direct summand. Q.E.D.

PrROOF OF THEOREM 2.3. We assume that the induced homomorphism
fy:H(K) - H(K') is an isomorphism for all n, and will prove that f is
a chain homotopy equivalence. Let M(f) denote the algebraic mapping
cone of f; our assumption implies that H,(M(f)) =0 for all n. Since K
and K’ are both chain complexes of free abelian groups, it follows that
M(f) is also a chain complex of free abelian groups. Hence Z,(M(f)) is a
direct summand of M(f), for all n by Lemma 2.5. Therefore we can apply
Lemma 2.4 to M(f) to conclude that there exists a chain homotopy
D,:M(f), » M(f),+ such that

dp+1Dy@) + D, _1dfa) = a (2.1

for any a € M(f),. Making use of the fact that M(f), is a direct sum for any
n, we see that there exist unique homomorphisms
D;l:Kn-l - Kn,
D,*:K, - K,,
DI":K,_ , - Ky,
DK, — Kj iy,
such that
D,(x,x') = (D}'x + D!*x', D?'x + D?2x')

forany x € K,_; and x’ € K. With this notation, Equation (2.1) is equivalent
to the following four equations:

~0,DY — Do, + D2 fi_, =1, 22

—0,D}? + D128, =0, (2.3)

f,D} +8,,,D2' = D2 8, + D2, f_,=0 (2.4)
fiD}? + é,,,D** + D220, =1 (2.5)

In these equations, the symbols 1 and 1’ denote the identity maps of the
chain complexes K and K’ respectively. Equation (2.3) implies that the
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sequence of homomorphisms D*? = {D}?} is a chain map K’ — K. Similarly,
Equation (2.2) implies that
D2f ~ 1,
while Equation (2.5) implies that
fD'? ~ 1,
This completes the proof. Q.E.D.

EXERCISES

2.7. Assume we have given a commutative diagram
K
P
L
of chain complexes and chain maps. Show that the pair of chain maps (¢,)) induces
a chain map M(f) — M(g), and gives rise to a commutative diagram involving the

exact homology sequences of f and g (this is a naturality statement for the algebraic
mapping cone).

L, x

iw

’

g
_

2.8. Let f, g:K — K’ be chain maps. Show that any chain homotopy D between f
and g gives rise to a chain map M(f) — M(g) which induces isomorphisms
H,(M(f)) ~ H,(M(g)) for all n. What is the relation between the exact homology
sequences of f and g in this case?

2.9. Assume that
E0-KLK 5K -0
is a short exact sequence of chain complexes and chain maps. Prove that the exact

homology sequence of f and the exact homology sequence of g are both isomorphic
to the exact homology sequence of E.

§3. Definition and Basic Properties of
Homology with Arbitrary Coefficients

In IL.2 we defined an element of the group Q,(X) to be a finite linear com-
bination a;T; + a,T, + - - -+ a, T, of singular n-cubes with integral co-
efficients. As the reader may have already suspected, one could equally well
use linear combinations of n-cubes with coefficients in an arbitrary ring,
rather than the ring of integers. In fact, one can even go further, and allow
the coefficients ay, a,, . . . above to be elements of an arbitrary abelian group
(written additively). It turns out that the entire theory we have developed so
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far can be re-done with very little change with this added degree of generality.
For certain problems the resulting homology groups with other coefficients
are more convenient, or perhaps even essential. Examples to illustrate this
point will be given later.

For our purposes, it will be quicker and more convenient to develop the
properties of homology groups with arbitrary coefficients by using the theory
of tensor products. This we will now proceed to do. The motivation for this
approach is as follows: Recall that Q,(X) is a free abelian group with basis
consisting of the set of singular n-cubes in X. Let G be an abelian group.
It follows that any element of the group G ® Q,(X) has a unique expression
of the form

A ®Ti+a, T, + 4+ a,® Ty,

where Ty, T,, ... are singular n-cubes in X, and a,, a,, . . . are elements of
the given group G. We can look on this expression as a linear combination
of the singular n-cubes T, T,,... with coefficients in G, as desired. This
motivates the following definition.

Definition 3.1. Let K = {K,,¢,} be a chain complex and G an abelian group.
Then K ® G denotes the chain complex {K,® G,0,® 15}, where 1, de-
notes the identity map of G. If f = {f,} is a chain map K — L, then
f®1;:K® G — L ® G denotes the chain map { f, ® 15}. Finally,if D: K —
L is a chain homotopy between fand g:K — L, then D® 1;: K® G- L® G
denotes the chain homotopy {D, ® }} between f @ landg® 1.

Of course, in the above definition it is necessary to verify that K ® G is
actually a chain complex, that f ® 1 is a chain map, and that D ® 15 is a
chain homotopy between f ® 15 and g ® 1. However, these are trivialities.
A more serious problem is the following: Suppose that

0-KLKSK -0

is a short exact sequence of chain complexes and chain maps. We would
like to be able to conclude that for any abelian group G, the sequence

0-K®GLLKQGL2LK ®G -0

is also exact. Then we could define the corresponding long exact homology
sequence. Unfortunately, it is generally not true that Sequence (3.2) will be
exact; all we can expect is that the sequence

K®G LKL K ®G—0
will be exact (right exactness of the tensor product). Thus we will not be able

to define a long exact homology sequence without some further assumptions.
Experience has shown that the following assumption suffices for most of the
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applications we have in mind. Define a short exact sequence of chain com-
plexes
0-K LHLK5K -0

to be split, or split exact if for each integer n, image f, is a direct summand of
K,. Alternatively, we can require that for each integer n there exists a homo-
morphism s,:K; — K, such that g,s, = identity map of K, (such a homo-
morphism is called a splitting homomorphism). Note that we do not require
that the sequence of homomorphisms s, should be a chain map; such an
assumption would be far too strong for our purposes.

Lemma 3.1. If the sequence 0 — K’ LKSK 50is split exact, then so is

the sequence 0 — K’®G—fg+K®G‘q—®l>K”®G - 0.

In fact, if {s,} is a sequence of splitting homomorphisms for the original
short exact sequence, then {s, ® 1} is a sequence of splitting homomorphisms
for the second sequence.

Lemma 3.2. If K" is a chain complex of free abelian groups, then any short
exact sequence 0 - K' - K — K" — 0 is split exact.

The proof is casy.

Since most of the chain complexes we will encounter are composed of
free abelian groups, this lemma will find frequent application.

We will now apply these ideas to the homology groups of topological
spaces.

Given any topological space X, we have the following short exact sequence
of chain complexes:

0-D(X)- Q(X)—> C(X)—0.

All three of these chain complexes consist of free abelian groups, and the
sequence is split exact. Therefore if we define new chain complexes as follows:
D(X;G) = D(X)® G,
ox:l =0 ®6,

CX;6)=CX)®G,

then the resulting sequence
0 - D(X;6) - Q(X;6) » C(X;G6) > 0

is also split exact. Thus we can consider D, (X ;G) = D,(X) ® G as a subgroup
of 0(X;G)=0,(X)®G, and C(X;G) is the quotient group, Q,(X;G)/
D,(X;G). As was remarked above, an element of Q,(X;G) has a unique
expression as a linear combination of singular n-cubes in X with coefficients
in G; obviously, D,(X; G) is the subgroup consisting of linear combinations
of degenerate singular cubes.
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If 4 is any subspace of X, we have the short exact sequence of chain
complexes: ) )
0— C(4) > C(X) D C(X,4) - 0.

Once again each of the chain complexes consists of free abelian groups and
the sequence is split exact. Therefore if we define

C(X,4;6) = C(X,A)® G,

then the resulting sequence
0 - C(4;6) =5 c(x;6) 225 ¢(X,4;G) > 0

is also split exact. Thus we can regard C,(4;G) as a subgroup of C(X;G),
and C,(X,A4;G) is the quotient group C,(X;G)/C,(4;G). It is customary to
denote the group H,(C(X,A;G)) by the notation H,(X,4;G) and call it the
relative homology group of (X,A) with coefficient group G.

If p:(X,4) - (Y,B)is a continuous map of one pair of spaces into another,
then we have the induced chain map

@ 4:C(X,4) - C(Y,B).
Hence we get an induced chain map
Qs ®15:C(X,A;G) - C(Y,B;G)
and an induced homomorphism of homology groups, which we will denote by
¢4 H,(X,4;G) > H,(Y,B;G).

If two maps ¢@q, ¢,:(X,4) — (Y,B) are homotopic (as maps of pairs), then
any homotopy between them defines a chain homotopy D: C(X,4) — C(Y,B)
between the chain maps

Po#> P1# :C(XvA) - C(Y’B)

(see §I1.4). Hence D ® 1; is a chain homotopy between ¢, ® 1 and
@14 ® lg. It follows that the induced homomorphisms

Pos> Q1 HAX,A;G) > H(Y,B;G)
are the same.

It is now an easy matter to check that all the properties of homology
theory which were proved in §§11.2-11.5 remain true for homology theory
with coefficients in an abelian group G. In particular, given any pair (X,A4),
we have a natural exact homology sequence,

5% H(A4:6) S H(X:6) 5 H(X,A4;G) 3 ---.
Also, one can check by direct computation that if P is a space consisting of a
single point,
G for q= O,

Hy(P;G) = {{0} for g # 0.
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In order to define reduced homology groups in dimension 0, it is convenient
for any space X # (F to define the augmented chain complex C(X) as follows:
CX) = CX) ifqg# —1,
C,(X)=2,
0,=0, ifg#0or —1,
0o =¢ (see§IL2),
d_,=0.
Then H,(X) = H,(C(X)). We next define
C(X;6)=CX)®G
H,X;6) = H(C(X;G)).
One readily verifies that
H(X;G)=H/(X;G) ifq#0,

while for ¢ = O there is a split exact sequence
0 HyX;G) » HfX,6) 3 G -0

relating the reduced and unreduced 0-dimensional homology groups.
In order to prove the excision property for homology with arbitrary
coefficients, it is convenient to have the following lemma.

Lemma 3.3. Let K and K’ be chain complexes of free abelian groups, and let
f:K — K' be a chain map such that the induced homomorphism f,:H,(K) —
H(K') is an isomorphism for all n. Then for any coefficient group G, the chain
map f® 1;:K® G - K'® G also induces isomorphisms

for al (f® 1) H(K® G) ~ H(K' ® G)
or aitt n.

PrOOF: By Theorem 2.3, f is a chain homotopy equivalence. It follows readily
that f ® 1;: K ® G - K’ ® G is also a chain homotopy equivalence. Hence
(f ® 15), is an isomorphism, as required, Q.E.D

Now suppose that the hypotheses of the excision property hold as stated
in Theorem I1.6.2, i.e., (X,A4) is a pair and W is a subset of 4 such that W is
contained in the interior of 4. Then it should be clear how to apply the lemma
we have just proved in order to conclude that the inclusion map
(X —W,A - W) - (X,A) induces an isomorphism H(X — W, 4 — W;G) ~
H,(X,A;G)for any n. Thus the excision property also holds true for homology
with coefficients in any group G.

In a similar way, one can use Lemma 3.3 above to prove that Theorem
I1.6.3 holds true for homology with coefficients in an arbitrary group G:
If % is a generalized open covering of C, then the chain map

o®15:CXAU)RGCG - CX,AHA®G
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induces isomorphisms on homology groups. This result can then be used
to prove the exactness of the Mayer—Vietoris sequence (Theorem IIL.5.1)
for homology with coefficient group G. The details are left to the reader.

Later on in this chapter, we will indicate an alternative method of proving
the excision property and exactness of the Mayer—Vietoris sequence without
using Theorem 2.3.

§4. Intuitive Geometric Picture of a Cycle
with Coefficients in G

In Chapter I we emphasized the intuitive picture of a 1-cycle as a collection
of oriented closed curves with integral “multiplicities” attached to each, a
2-cycle as a collection of oriented closed surfaces, etc. The intuitive picture of
a cycle with coefficients in a group G is basically similar, except now the
multiplicity assigned to each closed curve or closed surface must be an
element of G rather than an integer.

If the group G has elements of finite order, then certain new possibilities
arise. For example, suppose G is a cyclic group of order n generated by an
element of g € G. Let x and y be distinct points in the space X, and suppose
we have n distinct oriented curves in X, starting at x and ending at y. If the
element g is assigned as the multiplicity of each curve, then the “sum” of all
these oriented curves is a 1-cycle, because n-g = 0.

If the group G is infinitely divisible, certain other new phenomena occur.
Consider, for example, the case where G is the additive group of rational
numbers. Suppose that z is an n-dimensional cycle in X with coefficient
group G, and that gz is homologous to 0 for some integer g # 0. Since we can
divide by q in this case, we can conclude that z is homologous to 0.

The above are just examples of two of the many things that can occur.
The reader will undoubtedly encounter other examples as he proceeds in the
study of this subject.

§5. Coefficient Homomorphisms and
Coefficient Exact Sequences

Let h:G, - G, be a homomorphism of abelian groups. Then we get an
obvious homomorphism

1 ®hcn(X’A’Gl) - Cn(X9A9GZ)

for any pair (X,4) and all integers n. These homomorphisms fit together to
define a chain map C(X,4;G,) —» C(X,4;G,) which we may as well continue
to denote by the same symbol, 1 ® h, and hence there is an induced homo-
morphism

h, H(X,A;G,) > H(X,A;G,).
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The reader should verify the following two naturality properties of this
induced homomorphism:

(a) For any continuous map f:(X,4) — (Y,B), the following diagram is
commutative:

f*
H,(X,4;G,) — H,(Y,B:G,)

lhﬂ vlhw
Ix
H,(X,A;G;) —— H,(Y,B;G,).

(b) For any pair (X,A), the following diagram is commutative:

(:’K
H{(X,A;G) — H,_((4:G))

lh,‘ lh,
s
H,(Y,B;Gy) — > H,_.(B:G)).

The induced homomorphism /4 is important in the further development
of homology theory. As an example, we give the following application. Let
R be an arbitrary ring, and assume that the abelian group G is also a left
R-module, ie., R operates on the left on G as a set of endomorphisms,
satisfying the usual conditions. Any element r € R defines an endomorphism
G — G by the rule x — rx for x € G. There is an induced endomorphism of
H,(X,A;G) according to the procedure developed in the preceding para-
graphs. Thus for each element r € R we have defined an endomorphism of
H,(X,A;G). We leave it to the reader to verify that these induced endo-
morphisms define on H,(X,A4;G) a structure of left R-module. The naturality
properties (a) and (b) above show that f, and 4, respectively are homo-
morphisms of left R-modules.

An especially important case occurs when R is a commutative field and
G is a vector space over R. Then H,(X,4;G) is also a vector space over R,
and the induced homomorphisms f,, and d,, are R-linear. In this case all the
machinery of vector space theory and linear algebra can be applied to
problems arising in homology theory, which is often a substantial advantage.

Next, suppose that

0-G 565G >0
is a short exact sequence of abelian groups. This gives rise to the following
sequence of chain maps and chain complexes for any pair, (X,4):
0 - C(X,4;G) 25 C(X,4:G) 25 ¢(X,4:6") - 0.

We assert that this sequence of chain complexes is exact. This assertion
is an easy consequence of the fact that C(X,4) is a chain complex of free
abelian groups. As a consequence, we get a corresponding long exact homol-
ogy sequence:
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L H(X,A4;6) 5 H(X,4;6)5 H(X.A4:G") 5 H,_(X,4;6)
The connecting homomorphism S of this exact sequence is called the
Bockstein operator corresponding to the given short exact sequence of
coefficient groups. As is so often the case, this label is a misnomer, because
this homomorphism was introduced by other mathematicians before
Bockstein.

The reader should formulate and prove the naturality properties of the
Bockstein operator vis-a-vis homomorphisms induced by continuous maps
and the boundary homomorphism of the exact sequence of a pair (X,A4):

B
H(X,A;G") — H,_(X,4;G)

B
H,_((A;G") — H,_,(4;G).

cAUTION. The question as to whether or not this diagram is commutative
is a bit subtle.)

EXERCISE

5.1. Using the methods of §111.4, determine the homology groups of the real projective
plane for the case where the coefficient group G is cyclic of order 2. Then determine
the long exact homology sequence corresponding to the following short exact
sequence of coefficient groups:

0-25%25%z,->0
Here h(n) = 2n for any ne Z.

The coefficient homomorphism and Bockstein operator are additional
elements of structure on the homology groups of a space. The fact that
homomorphisms induced by continuous maps must commute with them
places a definite limitation on such induced homomorphisms.

§6. The Universal Coefficient Theorem

We will next take up the relation between integral homology groups and
homology groups with various coefficients.
Let K ={K,,0,} be an arbitrary chain complex. There is a natural

homomorphism
w:H(K)®G - H(K® G)
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defined as follows. Let u € H,(K) and x € G. Choose a representative cycle
u' € Z,(K) for u. Then it is immediate that v’ ® x € K, ® G is a cycle; define
a(u ® x) to be the homology class of u’ ® x. Of course it must be verified that
this definition is independent of the choice of v/, and that « is a homo-
morphism.

As usual, a is natural in several different senses:

(a) If f:K — K’ is a chain map, then the following diagram is commuta-
tive:

H(K)®G — H,(K®G)

l&@ lg J(/’@ Loy

HK)® G — H,(K ®OG)

(b) If E:0 - K’ - K - K” — 0 s a split exact sequence of chain com-
plexes, then the following diagram is commutative:

H(K")® G —— H,K"®G)

1‘7: ®1g lf};@a

Hy(K)®G —— H,_,(K'®G).

(Note: The fact that E is split exact assures exactness on tensoring with G.)
(¢) If h:G, - G, is a homomorphism of coefficient groups, then the
following diagram is commutative:

H(K)® G, —— H,(K®G,)

Jret 1

H(K)® G, — H(K®G,).

If 0> G —» G- G”"— 0is a short exact sequence of abelian groups,
and K is a chain complex of free abelian groups, then we might expect a
commutative diagram involving the Bockstein operator, but such does not
exist.

For our purposes, the most important case of the homomorphism is
where K = C(X,A); then we obtain a homomorphism

w:H(X,A)® G - H(X,A;G)

with all the above naturality properties.

Lemma 6.1. If G is a free abelian group, then the homomorphism o:H,(K) ®
G - H,(K ® G) is an isomorphism.
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Proor: First, one considers the case where G = Z, which is trivial. In the
general case, G is a direct sum of infinite cyclic groups, and « obviously
“respects” such direct sum decompositions (because of Property (c) above).

Q.E.D.

In order to make further progress, we must make use of the Tor functor
(the first derived functor of the tensor product). For any two abelian groups A
and B, we will use the notation Tor(4,B) to denote Tor%(4,B). The definition
and properties of this functor are given in most books on homological
algebra, e.g, Cartan and Eilenberg [1], Hilton and Stammbach [2] or
Mac Lane [ 3]. Here is a list of some of the principal properties of this functor:

(1) (Symmetry) Tor(A4,B) and Tor(B,A) are naturally isomorphic.

(2) If either A or B is torsion-free, then Tor(A4,B) = 0.

(3) Let 0 —» F, LF o % A - 0 be a short exact sequence with F, a free
abelian group; it follows that F is also free. Then there is an exact sequence,
as follows:

0> Tor(4,B) » F,® B2 Fo@B 2% A®B - 0.
Since any abelian group A is the homomorphic image of some free abelian
group F,, we can use this property to define Tor(4,B), or to determine it
in specific cases.

(4) For any abelian group G, Tor(Z,,G) is isomorphic to the subgroup
of G consisting of all x € G such that nx = 0 (this may be proved by use of
(3)). In particular, Tor(Z,,Z,,) is a cyclic group whose order is the g.c.d.
of m and n.

(5) Tor is an additive functor in each variable, i.e., for direct sums

Tor(Z A,~,B> x Z Tor(4,;,B).

(6) Let 0 > A" > A4 5 A” —» 0 be a short exact sequence of abelian
groups; then we have the following long exact sequence:

Tor(h,1) Tor(k,1)
e ——

0 — Tor(4',B) Tor(A4,B) Tor(A4",B)

S A®B G AQB P AT®B ~ 0

(this is a generalization of (3)).
With these preliminaries out of the way, we can state and prove the
universal coefficient theorem:

Theorem 6.2. Let K be a chain complex of free abelian groups, and let G be
an arbitrary abelian group. Then there exists a split short exact sequence

0> H(K)® G 5 H(K ® G) > Tor(H,,(K).G) - 0.
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The homomorphism f is natural vis-a-vis chain maps and coefficient homo-
morphisms. The splitting is natural vis-a-vis coefficient homomorphisms, but
it is not natural with respect to chain mappings.

Proor. As mentioned in (3) above, we may choose a free abelian group
F, such that there is an epimorphism k:Fy, — G; let F, denote the kernel
of k. Then F, is free, and we have the following short exact sequence:

0-F, 5F, 560
Now consider the following commutative diagram:

H(K®F)) —*> H(K®F,) —— H(K®G) —>> H, (K®F),)

1®h 1®k
HEK)®F, — H(K)®F, — H(K)®G ——— 0.
The top line is part of the long exact sequence corresponding to the given
short exact sequence of coefficients, with Bockstein operator 5. The bottom
line is exact, and both «, and o, are isomorphisms by Lemma 6.1. From
this diagram it readily follows that o is a monomorphism, and image « =
image k, = kernel f,.
Next, consider the following somewhat analogous diagram:

}
0 — Tor(H,_,(K).G) — H,_(K)® F, ~25 H,_(K)® Fo 2 H,_,(K)® G —> 0

Hn(K®G) 7 Hn—l(K®Fl) 71:’ Hn—l(K®FO) k_: Hn—l(K®G)

The top line of this diagram is the exact sequence mentioned in Property
(3) above. Once again, a; and «, are isomorphisms, and the diagram is
commutative. It follows easily from this diagram that there exists a unique
homomorphism

ﬁ:Hn(K ® G) - TOI'(H,,_ I(K)aG)

which makes the left-hand square (labelled 1 ) of this diagram commutative.
Furthermore, f is an epimorphism, and kernel = kernel f,.

Thus we have defined the homomorphism f, and proved the exactness
of the sequence mentioned in the theorem. We leave it to the reader to
prove that f is natural vis-a-vis chain maps and coefficient homomorphisms.
It remains to prove that the sequence splits. For this purpose, we will use
the following trick. We may consider the sequence of abelian groups {H (K)}
as a chain complex with @, = 0 for all n; we will denote this chain complex
by H(K). With this notation, it is clear that H,(H(K)) = H(K). We assert
that there exists a chainmap f : K — H(K) such that the induced homomorphism
fv H(K) » H,(H(K)) is the identity map of H,(K) onto itself. To prove this
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assertion, note that our hypothesis that K, is a free abelian group for each
n implies that Z,(K) is a direct summand of K,. Hence we may choose a
direct sum decomposition

K,=Z(K)®L,

for each n. Define f,:K, —» H,(K) by f,|Z(K) = natural homomorphisms
of Z,(K) onto H,(K), and f,|L, = 0. It is readily verified that the sequence
of homomorphisms f = {f,} is a chain map with the required properties.
The definition of f obviously depends on the choice of the direct sum
decomposition.

Next, by the naturality of «, we have the following commutative diagram:

H(K)®G ——— H,(K® G)

1]; ®lg l(/’@ 1o«

H(HK)®G —— H,HK)® G).

However, it is readily checked that H,(H(K)) ® G=H(K)® G=H,(H(K)®
G) and that f, ® 1; and o' are both the identity maps. Hence it follows
from the commutativity of the diagram that image o is a direct summand
of H (K ® G), as required. Incidentally, this furnishes an alternative proof
that « is a monomorphism.

Using this procedure, it is easy to prove that the direct sum decomposition
is natural vis-a-vis coefficient homomorphisms. Q.E.D

We will give an example later to prove that it is impossible to choose the
direct sum decomposition so it is natural with respect to chain maps.

Corollary 6.3. For any pair (X,A) and any abelian group G there exists a split
short exact sequence:

0 - H(X,A)® G > H(X.A;G) 5 Tor(H,_ (X,4).G) - 0.

The homomorphisms o and B are natural with respect to homomorphisms
induced by continuous maps of pairs and coefficient homomorphisms. The
splitting can be chosen to be natural with respect to coefficient homomorphisms,
but not with respect to homomorphisms induced by continuous maps.

These results show that the structure of the homology group H,(X,A4;G)
is completely determined by the structure of the integral homology groups
H,(X,A) and H, ,(X,A). However, this does not imply that the homomor-
phism f,:H/(X,A;G) -» H/(Y,B;G) is determined by the homomorphisms
S H(X,A) > H(Y,B) and f,:H, (X,4) > H,_,(Y,B) (here f:(X,A) -
(Y,B) denotes a continuous maps of pairs). A convincing example will be
given later.
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EXERCISES

6.1. Decide whether or not the following diagram is commutative for any pair (X,A)
and any abelian group G:

H(X,A:G) —— Tor(H,_,(X,4),6)

l&, JTO:‘(O*,I e)

H, (4:G)—L> Tor(H,_,(4)G).

6.2. Prove that a: H{(X,4) ® G — H,(X,A4;G) is an isomorphism for any pair (X,4) and
any group G fori=0or 1.

6.3. Let X be a finite regular graph. Express the structure of the homology groups
H,(X;G) in terms of the Euler characteristic and number of components of X.

6.4. Describe the structure of the homology groups H,(X;G) for any group G in the
following cases:
(@ X =35"
(b) X is a compact orientable 2-manifold.
(c) X is a compact nonorientable 2-manifold.

6.5. Let X be an n-dimensional pseudomanifold in the sense of §IV.8. Determine ihe
structure of H,(X,G) in case X is (a) orientable and (b) nonorientable.

We will conclude this section by giving another proof of the excision
property for homology with arbitrary coefficient groups. Let (X,4) be a
pair, and W a subset of 4 such that W is contained in the interior of A.
Then the inclusion map i:(X — W, 4 — W) — (X,A) induces a chain map

ig:C(X —W,A— W) - C(X,A).
It is easy to verify that i, is a monomorphism; thus we can consider

C(X — W, A — W) as a subcomplex of C(X,4). Hence we have the following
short exact sequence of chain complexes:

C(X,4)
CX—-W,A-W)
This short exact sequence of chain complexes gives rise to a long exact

homology sequence, as usual. Because the excision property is true for in-
tegral homology, we can conclude that

Hn( C(X,A) >= 0

0> C(X —W,A—W)% C(X,4) - - 0.

CX-—W,A-W)
for all n. Next, one must verify that the quotient complex

C(X,A)
CX —W,A—W)

is a chain complex of free abelian groups, and that the short exact sequence
above is split exact. This is not difficult, and is left to the reader. One now
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completes the proof by tensoring the short exact sequence with G, and
considering the resulting long exact homology sequence. By using Theorem

6.2, one proves that
C(X,A
H,,( (X,4) ) ® G) —0

CX-WA-W
for all n. It follows from exactness that
i, H(X —W,A— W;G) - H(X,A;G)

is an isomorphism for all », as desired.
This technique can also be used to prove that the chain map

0®1:CX A% QG - C(X,A)® G

induces isomorphisms in homology in all dimensions (here % is a generalized
open covering of X).

§7. Further Properties of Homology with
Arbitrary Coeflicients

Practically all the properties we have proved for integral homology have
analogs for homology with arbitrary coefficients. For example, the reader
should have no difficulty verifying that Proposition IIL.6.1 is true for ho-
mology with coefficients in any group G.

The material in Chapter IV on the homology of CW-complexes readily
generalizes to the case of an arbitrary coefficient group. We will quickly
indicate how this goes.

Let K = {K"} be a CW-complex on the space X. Using the universal
coefficient theorem (Corollary 6.3) it is readily shown that H (K", K"~ ';G) =0
for q # n, and that

wH(K"K"")® G - H(K"K""';G)
is an isomorphism. Thus if we define
CJ{K;G) = H(K"K""';G),

then
C(K;G)=C(K)®G.

Next, we define a boundary operator C(K;G) — C,_,(K;G) as the com-
position of the homomorphisms

H(K"K""1;G) % H,_ (K"~ *;G) % H,_ (K"~ ',K""%;G)

by analogy with that defined in §IV.4. It is then true that this boundary
operator is d, ® 15, where d,:C(K) — C,_(K) is defined in §IV 4. In other
words,

C(K;G)=C(K)® G.
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One can now prove an analog of Theorem 1V.4.2 for the case of an arbitrary
coefficient group G. Essentially this analog says that H,(X;G) is naturally
isomorphic to H,(C(K;G)). Similarly, there is an analog of Theorem 1V .4.6
for homomorphisms induced by cellular maps: Assume K = {K"} is a CW-
complex on X, L = {L"} is a CW-complex on Y, and f:X — Y is a cellular
map, ie., f(K") < L". Then f induces a chain map ¢:C(K) — C(L), and
we have a commutative diagram:

H,(X:G)~ H,(C(K)® G)

Jf* J'w ® Lol

H(Y;G) ~ H,(C(L)® G).

These results can be summarized as follows: To extend the results of
§IV.4 from integral homology to homology with arbitrary coefficient group
G, simply tensor all chain complexes and chain maps with G. In particular,
this applies to the computation of the homology of regular CW-complexes
as described in §IV.7.

There is one case where the computation of the homology of regular
cell complexes becomes greatly simplified, namely, the case where G = Z,.
In this case every incidence number must be 0 or 1, and we see that
[e":e" '] =1 or 0 according as ¢"~* is or is not a face of ¢". Thus the four
rules given in Theorem IV.7.2 for determining incidence numbers reduce
to two rules, and it is not necessary to use an inductive procedure. Of course
mod 2 homology ignores much of the structure of integral homology, but
for some problems it is more appropriate than integral homology.

ExaMpLE 7.1. Let P? denote the real projective plane. In I11.4 we found that
the only nonzero homology groups of P? were

Hy(P?) =1Z,
H(P*) =1Z,.
Thus if f:P? — S? is any continuous map, then
fxiHo(P?) — Ho(S?)
is an isomorphism (both are connected spaces), while for g # 0,
f*:Hq(Pz) — Hq(SZ)

must be the zero map. Hence there is no possibility of distinguishing between
different homotopy classes of such maps using integral homology. We will
now show that one can distinguish two different homotopy classes using
mod 2 homology. To prove this, recall that there is a CW-complex, K, on
P? having a single cell in dimensions 0, 1, and 2; this was used to compute
the homology of P? in Example I11.4.3, although it was not called a CW-
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complex at that time. Thus C(K), C(K), and C,(K) are infinite cyclic groups,

d,:CH(K) — C(K)
has degree +2, and
d;:Cy(K) = Co(K)

has degree 0. Analogously, there is a CW-complex L on S? having a single
vertex, a single 2-cell, and no 1-cells. There is an obvious cellular map

fiP? > 8%

defined by shrinking the 1-skeleton, K, to a point, namely, L°. The open
2-cell of K is mapped homomorphically onto the open 2-cell of L. We
wish to compute the induced homomorphism on mod 2 homology. To this
end, we determine the chain transformation

f:C(K) - C(L)

induced by the cellular map f. The only nontrivial problem is to determine
the homomorphism C,(K) — C,(L). But this is easily settled by Theorem
IV.2.1. Let g:(E*%S') - (K%,K?) be the characteristic map for the unique
2-cell of K. In view of the way the map f: P> — S? was defined, it is clear that

h= fg:(E*S") — (L?,L")
is a characteristic map for the only 2-cell of L. Thus we have the following

commutative diagram:
(E2S) —— (K%K")

\ l.f
(L%,L1).

Hence we have the following commutative diagram:

Hy(E2S') —— H,(K2K')

T b

H,(L2,LY).

By Theorem IV.2.1, g, and h, are isomorphisms; it follows that f, is also
an isomorphism. Therefore the chain map f':C(K) - C(L) is completely
determined. All that remains is to tensor with Z, and then pass to homology.
The end result is that

f*3H2(P2§Z2) - Hy(8*;Z,)

is an isomorphism. On the other hand, if ¢:P? — $? is the constant map,
then
¢ Hy(P2Z,) » Hy(S?Z,)

is the 0 homomorphism. Thus f and ¢ are not homotopic.
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Note that f and ¢ must (of necessity) induce the same homomorphism
on integral homology groups. This proves our earlier assertion that the
induced homomorphisms on integral homology groups do not suffice to
determine the induced homomorphisms on homology groups with other
coefficients.

Finally, this example also show that the splitting of the short exact
sequence of the universal coefficient theorem (Corollary 6.3) can not be
chosen to be natural. Consider the following commutative diagram involving
the universal coefficient theorems for H,(P?Z,) and H,(S%Z,) and the
homomorphism induced by the map f:P? — S? described above:

1 ﬂl
0 —— Hy(P)®Z, —> Hy(P2Z,) —— Tor(H,(P?.Z,) — 0

Jf; ®l lf,, lTor{f,,,l)

0 —— H(S)®Z, —2 Hy($22,) —2 Tor(H,(S),Z,) —— 0.

In the top line, H,(P?*)® Z, = 0 and f, is an isomorphism. In the bottom
line, Tor(H(S?),Z,) = 0 and «, is an isomorphism. As we have just proved,
the vertical arrow labelled f, is an isomorphism; however, this fact con-
tradicts the possibility of any splitting of these two short exact sequences
which is natural with respect to homomorphisms induced by continuous
maps.

We will conclude this section with a brief consideration of the mod 2
homology of a pseudomanifold.

Let K be an n-dimensional nonorientable pseudomanifold; by Theorem
IvV.8.1, H(K) = 0. For some purposes, this is a defect in the theory; we
need a nonzero homology class in the top dimension. This matter is partially
remedied by using mod 2 homology. Indeed we find that H(K,Z,) = Z,
(use the universal coefficient theorem and Theorems 1V.8.1 and 1V.8.2). A
representative cycle for the nonzero element of H,(K,Z,) is obtained by
taking the sum of all the n-cells of K. Since we are using Z, as coefficient
group, we do not need to worry about orientations. '
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CHAPTER VI
The Homology of Product Spaces

§1. Introduction

If two or more spaces are related to each other in some way, we would
naturally expect that their homology groups should also be related in some
way. Some of the most important theorems in the preceding chapters bear
out this expectation: If 4 is a subspace of X, the exact homology sequence
of the pair (X,A) describes the relations between the homology groups of 4
and the homology groups of X. If the space X is the union of two subspaces
U and V, then the Mayer—Vietoris sequence gives relations between the
homology groups of U,V, U n V, and X.

The main theorems of this chapter are of this same general nature. The
Eilenberg—Zilber theorem asserts that the singular chain complex of the
product of two spaces, C(X x Y),is chain homotopy equivalent to the tensor
product of the chain complexes of the two factors denoted by C(X) ® C(Y).
The Kiinneth theorem expresses the homology groups of the product space
X x Y in terms of the homology groups of X and the homology groups of
Y. The derivation of the Kiinneth theorem from the Eilenberg—Zilber
theorem is purely algebraic.

These theorems are somewhat more complicated than most of our
previous theorems, such as the exactness of the Mayer-Vietoris sequence.
Nevertheless, they are of basic importance in homology theory.

The material on CW-complexes in §2 is not essential for most of the rest
of the chapter. It is introduced mainly to motivate the definition of the tensor
product of chain complexes.

129
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§2. The Product of CW-complexes and
the Tensor Product of Chain Complexes

Let K = {K"} be a CW-complex on the space X, and L= {L"} a CW-
complex on the space Y. We wish to prove that X x Y is a CW-complex in
a natural way. In order to understand this situation better, we need the
following basic facts about open and closed cells; our notation is that of
§IV.2.

(a) E™ x E"is homeomorphic to E™*"; under any such homeomorphism,
(E™ x §" 1) U (S™! x E") corresponds to the boundary S™*"~ 1,

(b) U™ x-U" is homeomorphic to U™*", '

In view of Statement (b), it is natural to demand that an open cell of a
CW-complex on X x Y should be the product of an open cell of K with an
open cell of L. Therefore we define the n-skeleton of a CW-structure on
X x Y by

M"= |) KPxLf
p+q=n
for n=0,1,2,.... Then the subsets M" = X x Y are closed, M" = M"*!
for all n > 0, M? is discrete (because it is the product of discrete spaces) and

XxY= ) M
n=0

If &" is an m-cell of K with characteristic map f:E™ — €”, and if " is an
n-cell of L with characteristic map g:E" — ¢", then f x g:E™ x E" —
@" x 2" has all the required properties for a characteristic map of the product
cell e x ¢". Thus it only remains to check that the product topology on
X x Y is the same as the weak topology determined by the closed cells. If
both K and L are finite CW-complexes, then M will also have only a finite
number of cells, and there is nothing to prove. J. H. C. Whitehead proved that
if one of the factors is locally compact then the product topology agrees with
the weak topology. However, Dowker gave an example to show that in the
general case, the two topologies on X x Y do not agree. See Lundell and
Weingram [5] for details. Fortunately, there is an easy way out of this
difficulty; one can agree to give X x Y the weak topology, so that it is a
CW-complex. The weak topology will be larger than the product topology
in general (i.e., it will have more open (or closed) sets), but the compact sets
will be the same in both topologies. Therefore the identity map,

X x Kweaktop.)_’ X x Y(prod. top.)

is a continuous map, and induces an isomorphism on singular homology
groups. See N. E. Steenrod [8] for details.

However, we do not want to get involved with these fine points now. The
reader can restrict his attention to finite CW-complexes, knowing full well
that the generalization to infinite CW-complexes is not difficult.
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Next, let us assume that K and L are regular CW-complexes. Then it is
readily seen that M = {M"} (as defined above) is a regular CW-complex on
X x Y (provided X x Y is given the weak topology). As usual, there are
many choices for orientations of the cells of X x Y, and hence of incidence
numbers. Let us assume that orientations (and hence incidence numbers)
have been chosen for the cells of K and L. It seems plausible to expect that
there should be a way to use these chosen orientations of the cells of K and
L to define canonical orientations of the cells of M. The following theorem
shows that this expectation is justified. The actual result is stated in terms of
incidence numbers rather than orientations. However, this does not matter
from a logical point of view, since there is a 1-1 correspondence between
incidence numbers and orientations of cells in any regular CW-complex.

Theorem 2.1. Let K be a regular CW-complex on X with cells e, and let L be a
regular CW-complex on Y with cells ¢’}. Assume that the incidence numbers
have been chosen for both K and L. Then incidence numbers are defined for
the product cells on X x Y by the following rules:

[e" x a":e" "' x g"] = [e™:em ]
[em x o":e™ x 6" 1] = (=1)"[0":0" 1]
[er x o7:ef x af] =0 if el # ef and o7 # of.

To prove this theorem, we must verify that Statements (1)—(4) of Theorem
IV.7.2 are true with the stated choices of incidence numbers. This we leave to
the reader as a nontrivial exercise.

Obviously one could establish other conventions for the incidence num-
bers of a product complex, but the one given by this theorem is universally
accepted.

Now let us consider the group of n-chains, C,(M) of the regular CW-
complex M on X x Y. It has as basis the oriented product cells e/ x ¢4, p +
g = n. This suggests that we should identify C,(M) with the direct sum of
tensor products,

Y C(K)® Cy(L).

pt+tq=n

Using the formulas for incidence numbers in the theorem, we see that
a(ef x 6%) = (0el) x a% + (—1)Pef x (0a9),

where the right-hand side of this equation is to be interpreted in an obvious

way. Since this formula holds true for the basis elements, we can extend it

to linear combinations of the basis elements, obtaining the formula
u®v)=(0u)®v+ (—1)’u® (dv)

for any ue C,(K)and ve C,(L).
This suggests the following definition.
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Definition 2.1. Let C' = {C,,¢,; and C"" = {C,,0, } be chain complexes. Their
tensor product C = C' ® C" is the chain complex defined as follows: The
groups are

C,= ) C,®C],

ptg=n

and the homomorphisms é,:C, — C,_, are defined by
O @ v) = (Opu) ® v + (— 1)Pu @ (J;v)

foranyue C,,veC/,p+qg=n.

Of course, one must verify that 0,0, = 0.

In view of this definition, we can assert that the chain complex C(M) is
isomorphic to C(K) ® C(L), where K, L, and M are regular CW-complexes
on X, Y, and X x Y, as described above. Of course it remains to determine
the relation between the homology groups of the tensor product of two
chain complexes and the homology of each of the factors. We will describe
the solution to this problem in §4. This result shows that the algebraic
operation of taking the tensor product of chain complexes corresponds to
the topological operation of taking the cartesian product of two spaces.
Soon we will see another example of this process.

EXERCISES

2.1. Let K and L be finite CW-complexes on X and Y respectively. What is the relation
between the Euler characteristics of X, Y, and X x Y?

2.2. Let K and L be regular CW-complexes on X and Y respectively. Assume that
orientations and incidence numbers have been chosen for the cells of K and L.
Consider the canonical homeomorphism f:X X Y - Y x X defined by f(x,y) =
(y,x). Then f maps the oriented cell ¢” x ¢” homeomorphically onto ¢" x ™
and induces an isomorphism

SoiHp i [€" X 0™ (e x 6")]. > H, 4 ,[6" x €™, (c" x )]

Show that f, (€™ x ¢") = (—1)""a¢" x €”. (Hint: Use induction on the dimension
of the cell.)

§3. The Singular Chain Complex of a
Product Space

Our immediate objective is to define a natural chain map
(CX)RC(Y)-> C(X xY)

for any topological spaces X and Y. Then later on we will show that {
induces an isomorphism of homology groups. The definition of { is very
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simple; however, the proof that the induced homomorphism on homology
groups is an isomorphism will be somewhat more involved.

It will be convenient to use the following notation, which is now standard:
Iff:A > Band g:C — D are continuous maps, then f x g:4 x C - B x D
denotes the map defined by (f* x g)(a,c) = ( fa,gc). We will also find it con-
venient to identify I"™ x I" with I"™ ™" in the obvious way. With these conven-
tions, if S:I™ — X and T:I" — Y are singular cubes in X and Y respectively,
then § x T:I"*" - X x Y is a singular cube in the product space. Thus
we can define a homomorphism

gm,n:Qm(X) ® Qn(Y) g Qm+n(X ® Y)

by the formula
(S®T)=Sx T.

We assert that the homomorphisms {,,, for all values of m and n define a
chain map

GOX)®O(Y) —» QX x Y).
To verify that { is a chain map, one must compute 6(S x T). This is not
difficult, if one uses the following formulas:
(AS)x T=ASxT) 1<i<m,
(BSS)yx T=B,S xT) 1<i<m,
Sx(A;T)=A,+[(SxT) 1<j<n
S x (B;T) =B, (S x T) 1<j<

It is clear that if S or T is a degenerate singular cube, then so is § x T.
Hence

Cnn@n(X) @ DY) = Dy f X X Y)
Cm,n(Dm(X) ® Qn(Y)) <« Dm+n(X X Y)

and therefore {,, , induces a homomorphism of quotient groups,
CnniCaX) ® C(Y) = Cpp X x Y)
and the homomorphisms {,, , for all m and n obviously define a chain map
(CX)®C(Y)— C(X x Y).

Next, we point out that the chain map { has the following very important
naturality property: Let f:X — X' and ¢g:Y — Y’ be continuous maps.
Then the following diagram is obviously commutative:

0u(X)® QY) —> @, (X X Y)

J.f«@ya‘ 1(f>< [P

Cnn
X))@ QLY) = QuufX' x Y)).
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Hence on passing to quotient groups, etc., we obtain the following commuta-
tive diagram:

CX)® C(Y) —— C(X x Y)

Jf#@gﬂ I(/X{I)n

CX)® C(Y) — C(X' x Y').

Theorem 3.1 (Eilenberg-Zilber theorem). The chain map {:C(X)® C(X) —
C(X x Y) is a chain homotopy equivalence, and hence induces isomorphisms

(e HACX)@C(Y)) = Hy(X x Y).

We will postpone the proof of this theorem until later. For the time being,
we point out that

{0,0:CoX)® Co(Y) = Co(X x Y)

is an isomorphism for any spaces X and Y. However, in higher degrees, {
is only a monomorphism, not an isomorphism.

§4. The Homology of the Tensor Product
of Chain Complexes (The Kiinneth Theorem)

The preceding paragraphs should convince the reader of the importance of
the following problem: Let K and L be chain complexes. Is the homology
of the tensor product, K ® L, determined by the homology of K and L? If
so, how? The answer to the first question is affirmative. We will now proceed
to describe the details. First of all, there is a natural homomorphism

a:H,(K)® H{(L) > H,,. (K ® L)

which is defined as follows. Let u € H,(K) and v € H,(L); choose representa-
tive cycles ' € Z,(K) for u and v’ € Z,(L) for v. It is immediate that v’ ®
veK,®L,is a cycle; its homology class is, by definition, a(u ® v). Of
course it is necessary to check that this definition is independent of the
choices of the cycles ' and v, and that « is actually a homomorphism. The
reader will note that this definition is a slight generalization of that given
in §V.6.

The homomorphism o has various naturality properties. For example:

(a) If /:K > K’ and g:L — L’ are chain maps, then the following
diagram is commutative:

H,(K)® H,(L) —> H,,(K®L)

1&@.‘1* l(!@y),,

H(K)® H(L) —— H, . (K'®L).
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(b) Assume that
E0->K SK5K" -0
is a short exact sequence of chain complexes, and that L is a chain complex
such that the following sequence is exact:
EQLO-»>K ®LH5KQL-2H K'@L—0

(sufficient conditions for E ® L to be exact are that E be split exact, or that
L be a chain complex of torsion-free abelian groups). Then the following
diagram is commutative:

H,(K")® H(L) — H, (K" ®L)

Jvc"g ®1 lazm

Hy oK) @ HL) —— Hpop 1(K' @ L).
(c) There is an obvious symmetric situation: Assume that
EO0->L SL5L 0
is a short exact sequence of chain complexes, and that K is a chain complex

such that the sequence

K®EO->K®L 2LKQ®L-2LK®L' -0
is exact. The reader should investigate the question of the commutativity
of the following diagram:

H(K)® H(L") —— H,,(K®L"

ll ® [,JO lam

H (K)® H, (L) — Hy\n (K®L).
N
With these preliminaries taken care of, we can now state our main theorem,
the so-called Kiinneth theorem:

Theorem 4.1. Let K and L be chain complexes, at least one of which consists
of free abelian groups. Then there exists a split exact sequence:

0- Y H(K)®H,L)>H{(KQL) LY Tor(H(K)H/L)) - 0.
i+j=n i+j=n—1

The homomorphisms « and B are natural with respect to chain maps but the
splitting is not natural.

The proof of this important theorem is not difficult; it may be found in
various books on homological algebra and algebraic topology, e.g., Vick
[9], Hilton and Stammbach [4], Mac Lane [6], Cartan and Eilenberg [1],
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or Dold [2]. Actually, the theorem can be proved under slightly more general
hypotheses than we have stated it, but we will have no use for such greater
generality.

This theorem can be combined with our previous results on the product
of regular CW-complexes and the singular chain complex of a product
space to obtain significant results on the homology of product spaces. We
will state the precise results later. In the meantime, we note the following
corollary for future reference:

Corollary 4.2. Suppose that K and L are chain complexes of free abelian
groups which have the homology of a point, i.e.,

H,(K)=H,(L)=0 forq#0
Hy(K) = Hy(L) = Z.

Then K ® L also has the homology of a point, and
a:Ho(K) ® Ho(L) > Ho(K ® L)

is an isomorphism.

§5. Proof of the Eilenberg—Zilber Theorem

We must define a chain map #:C(X x Y) - C(X)® C(Y) such that 5{ is
chain homotopic to the identity map of C(X) ® C(Y), and {5 is chain homo-
topic to the identity map of C(X x Y). One way to proceed is by brute
force, relying on our geometric intuition to lead us to the correct formulas.
We will indicate the first few steps in such a procedure, by defining homo-
morphisms

N QX x Y) = 37 0i(X)® Q,(Y)

i+j=g

such that on passing to the quotient groups modulo degenerate singular
chains we obtain the desired chain map #.

Note that a singular n-cube I* — X x Y in the product space corresponds
in an obvious way to a pair of singular n-cubes S:I" - X and T:I" - Y in
each of the factors. It will be convenient to let the notation (S,T) denote
the corresponding singular n-cube in the product space X x Y.

It is obvious that we should define #7,:Qo(X X Y) = Qo(X) ® Q(Y) by
the formula

for any singular O-cubes S:1° - X and T:I° - Y. This makes 75, the
inverse of {, (which is an isomorphism).
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Next, one defines #7,:Q (X x Y) = Qo(X) @ Q1(Y) + Q1(X) ® Qo(Y) by
the formula
nS,T)=(A,8)@T + S®(B,T)

for any singular 1-cubes §:1* — X and T:I' - Y.

To define 5, in general, we need a generalization of the face operators
A; and B;. Let H be any subset of {1.2,...,n}, and let K denote the com-
plementary subset. If H has p elements and K has g clements, p + g = n,
we will let

ox:K - {12,....q}

denote the unique bijective, order-preserving map. If T:I" — X is any
singular n-cube, let
AyT, ByT: 1 - X

denote the following maps:

(AHT)(xb e ,Xq) = T(yl’ e ayn),

where
{0 ifie H,
”_ﬂ%miﬁe&
and
(BuT)xys .o xg) = T(yy, ...,
where

o ifie H,
T e i€k

ExampLE 5.1. If H = (J, then AT = BT =T.
ExampLE 5.2. If H = {i}, then A4T = A;T and B4T = B;T.

ExampLe 5.3. If H = {1,2,... ,n}, then A, T and ByT are singular O-cubes
represented by T(0, ... ,0) and T(1,...,1) respectively.

We can now define 1,:Q,(X x Y) = >, ;_, 0(X) ® Q;(Y) by the magic
formula

'Iq(SaT) = ZPH.KAH(S) ® B(T),

where S:I9 - X and T:I¢ —» Y are singular g-cubes, H ranges over all
subsets of {1,2, ... .,q} and K denotes the complementary set, and py x = +1
denotes the signature of the permutation HK of {1,...,q}. (If H or K is
empty, then py x = +1.)

The student who has sufficient stamina and enthusiasm for calculating
can now verify the following assertions:

(a) If (5,T) is a degenerate singular cube, then n,(S,T) belongs to
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Yi+i=a[Di(X)® Q,(Y) + Q(X) ® D{Y)]. Hence 1, induces a homomor-
phism
MG X x Y) = 3 CX)® Cy(Y).
i+j=gq

(b) The sequence of homomorphismsy = {5,} isa chainmap C(X x Y) -
C(X)® C(Y).

(c) n¢ = identity map of C(X) ® C(Y).

(d) Itis possible to define a chain homotopy between {5 and the identity
map of C(X x Y), but the formulas are somewhat complicated.

Rather than go through the details of these lengthy calculations, it seems
preferable to use a more conceptual method due to Eilenberg and Mac Lane,
called the method of acyclic models. This method makes strong use of the
naturality of the chain maps { and » which we have defined. By making full
use of this naturality, it is possible to avoid the necessity of having explicit
formulas. First, however, we have to make two brief digressions in prepara-
tion for this proof.

DIGRESSION 1: Some more generalities on chain complexes
Definition 5.1. A chain complex K = {K,} is positive if K, = {0} for ¢ < 0.

Most of the chain complexes we have considered so far have been positive.
Note that the tensor product of two positive chain complexes is again a
positive chain complex.

Definition 5.2. An augmentation of a positive chain complex {K,0,} = Kisa
homomorphism ¢: K, — Z such that ¢d, = 0.
Observe that an augmentation ¢ induces a homomorphism e, : Ho(K) — Z.

Definition 5.3. A positive chain complex K with augmentation is acyclic if
H,(K) = 0for g # 0 and ¢,:Hy(K) — Z is an isomorphism.

For example, if X is a contractible space, then the chain complex C(X)
is acyclic.

Let K and L be positive chain complexes with augmentations. It should
be clear what we mean when we say a chain map f:K — L “preserves the
augmentation.” For example, if ¢p: X — Y is a continuous map, the induced
chain map ¢ ,:C(X) — C(Y) obviously preserves the augmentation. In the
rest of this chapter, we will be mainly concerned with chain complexes which
have an augmentation, and chain maps which preserve the augmentation.

Let K' = {K},0,} and K" = {K},0;} be positive chain complexes with
augmentation &¢: K, — Z and ¢":K{j — Z respectively. It is customary to
define an augmentation & on the tensor product K = K’ ® K" by the simple
formula

e(u®v)=2¢) &'
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for any u e K, and v e K§. With this definition, the following diagram is
obviously commutative:

Ho(K)® Ho(K") —— HyK'® K")

107 —<— 7

Proposition 5.1. The tensor product of two free acyclic chain complexes (with
augmentations) is again acyclic.

This follows from the Corollary 4.2 to the Kiinneth theorem and the
commutative diagram above.

DIGRESSION 2. Let us denote by u,:0,(X) - C,(X) the natural homomor-
phism of Q,(X) onto its quotient group. It is obvious that D,(X) is a direct
summand of Q,(X), hence we can choose (for each space X)a homomorphism
v,:C(X) = Q,(X) such that u,v, = identity map of C,(X). What is surprising
is that we can do this in a natural way. To be precise:

Lemma 5.2. There exist homomorphisms v} :C(X) = Q,(X), defined for each
space X and each integer n > 0 such that u,v¥ = identity, and for any con-
tinuous map f:X — Y, the following diagram is commutative:

CX) = 0UX)

|- |

CAY) — Q).

PrOOF: In order to save words, in the rest of this section we will call a homo-
morphism, such as v¥ or u¥, which is defined for each space X and commutes
with the homomorphism f, induced by any continuous map f, a natural
homomorphism. As examples, we have the face operators

Ai,Bi:Qn(X) - Qn—l(X) 1 < i < n,

which were (almost) defined in §I1.2; they satisfy the identities listed in TL.2.
Another important example is the family of degeneracy operators

E:Q)X) » Qpiy(X), 1<i<n+l1
defined by
(E,-T)(xl, e ,Xn+1) = T(xl, BN ,.)?,-, e ,x”+1)

for any singular n-cube T:I" — X; the circumflex over x; means that it is
to be omitted. Note that image E; = D, {(X), and every degenerate singular
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(n + 1)-cube is of the form E;T for some i and some n-cube T. It is a routine
matter to verify the following list of identities:

EiEj=Ej+lEi iS],
AE;=E; 14, BE;=E; B, i<},
AiEj=Ein_1, B,‘Ej=EjBi_1, l>j.
Now consider the natural homomorphism
(I - EjA)(1 — E;A43) - (1 = E,A4,):0,4(X) — Q(X).

We assert that this homomorphism annihilates D,(X), and hence defines a
natural homomorphism

Va: Ci(X) = Qi X).
To prove this assertion, it helps to first prove the following identities:
(1—-E;A)E; =0
(1 -EA)E;=E(1—-E;_;A;_,) ifi<j.

It remains to verify that p,v, = identity. This follows from the fact that for
any u € Q,(X),

(1 — EjA))(1 — EA;) -~ (1 — E,A,)(u)
belongs to the same coset modulo D,(X) as u. Q.E.D.
With these digressions out of the way, we can proceed with our proof that
(:C(X)® C(Y) - C(X x Y) is a chain homotopy equivalence. The proof
depends on the following three lemmas:
Lemma 5.3. For every ordered pair of spaces (X,Y) we can choose a chain map
EYC(X x Y) - C(X)® C(Y)

(which commutes with augmentations) such that the following naturality con-
dition holds: For any continuous maps f:X — X' and g:Y — Y’, the following
diagram is commutative:

CX x ¥) ——— c(x)® C(Y)

l(fx 9)« Jvfﬂ ®ygu

C(X'xY) T CX)® C(Y).

Lemma 5.4. Let o7, y*¥:C(X) ® C(Y) - C(X) ® C(Y) be a natural collec-
tion of chain maps. Then there exists a natural collection of chain homotopies

D¥Y:.C(X)® C(Y) - C(X)® C(Y)
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such that
¢X,Y . l//,\’,Y — aDX,Y + DX,Ya

for every ordered pair (X,Y) of spaces.

Lemma 5.5 Let oY, y*V:C(X x Y) - C(X x Y) be a natural collection
of chain maps. Then there exists a natural collection of chain homotopies
D¥Y:C(X x Y) —» C(X x Y) such that

(PX,Y _ ll/X’Y — aDX,Y + DX’Yé.

In regard to the statements of these lemmas, the following points should
be emphasized:

(a) All chain maps are assumed to preserve the augmentation.

(b) In each case, the adjective “natural” has the following technical
meaning: Any pair of continuous maps f: X - X’ and g:Y — Y’ gives rise
to a certain square diagram, which is required to be commutative.

It should be clear that these three lemmas imply the truth of the assertion
that {:C(X) ® C(Y) - C(X x Y)is achain homotopy equivalence. For, let
£:C(X x Y) > C(X)® C(Y) be the chain map whose existence is guaran-
teed by Lemma 5.3. Then & and the identity are natural chain maps
C(X)®C(Y) » C(X)®C(Y), and hence they are chain homotopic by
Lemma 5.4. Similarly, {& and the identity C(X x Y) - C(X x Y) are chain
homotopic by Lemma 5.5. This result is known as the Eilenberg—Zilber
theorem.

ProoF OF LEMMA 5.3. We will use induction on n to define homomorphisms
XTCX x Y) > [C(X) ® C(V)],

for all spaces X and Y, which will be natural, and will define the required
chain map (i.e., will commute with the boundary operator).

Case n = 0. Define
EPTCo(X X Y) = Co(X) ® Co(Y)
by
C(ST)=8S®T
for any singular 0-cubes S:1° — X and T:1° — Y (recall that Qo(W) = Co(W)

for any space W). Then it is trivial to check that &, is natural, and that it
preserves the augmentation.

Casen=1.Let 1:1' - I' denote the identity map. Then (1,1):1* — (I* x I')
is a singular 1-cube, ie., (1,1) € Q,(I* x I'), and
0,(1,1) € Qo(I* x 1Y)y = Co(I* x IY)

&0, e CoIM @ ColIY)
and

8661’“61(1,1) = 861(1,1) =0
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since &, preserves augmentation. By Proposition 5.1, the chain complex
C(IY) ® C(I') is acyclic. Hence we can choose an element

ele [C(I’)® C(Il)]l
such that
dy(ey) = £o04(1,0).

Define a homomorphism
X x Y) - [C(X)® C(Y)],
for any spaces X and Y by the formula
Ei(S,T) = (S4 ® Ty)ley),

where S:1' — X and T:I' — Y are arbitrary singular 1-cubes. We now have
to check two things:

(a) Naturality. If f:X —» X’ and g:Y — Y’ are continuous maps, the
following diagram is commutative:

I3
0,(X xY) — [C(X)® C(Y)],

l(f X g)s lfﬁ ®@Ye

QX" x Y) —5 [Cx)® C(Y)]:.

This is an easy calculation:

(fs ®gLEST)=(f ®gs)S+ ® T ,)ey)
=((fS)x ®@@T)4)ey)
Ei(f x @9)4(8.T) = E,(fS,gT)
=((fS)x ®@T)s)ey).

(b) Commutativity with d,, i.e., the following diagram is commutative:

QX X ¥) —— [C(X)® C(Y)],

F

)
QX x Y) — [C(X)® C(Y)]o.

Here the computation proceeds as follows:

08,(S,T) = 0(S 4 ® Ty)(er)
= (S ® Ty)(e,)
= (8% ® T)Eo0(1,1)
= &o(S X T)40(1,1)
= £o0(S x T)y(1,1)
= £o0(S,T).
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Now define é17:C,(X x Y) - [C(X)® C(Y)], by

XY _ EXY XY
1 17Vl

Then ¢, is natural, because it is the composition of natural homomorphisms.
It remains to check that &; commutes with d,. Consider the following
diagram:

0,(X x Y)

L S

CiX xY) — [cx)y® ()],

[
o o

&
ColX x Y) — [Co(X)® Co(Y)].
We wish to prove that

aTél = 5061-
We have
01¢, = 0% 51"1 $o01V1,
€001 = Col1141v1 = £o01V1,
as desired.

Inductive step. Assume that n > 1 and homomorphisms
ETCX x Y) > [C(X)® C(Y)],

have been defined for all spaces X and Y and all ¢ < n so that naturality
holds and the homomorphisms commute with the boundary operator.
Define homomorphisms

ET0,X x Y) - [C(X)® C(Y)],
for all X, Y and ¢ < n by the formula
Y _ éz)f'y“z}; Y

Note that &, is a natural homomorphism and that the various zq’s commute
with the boundary operators 0,, since they are the composition of homo-
morphisms having these two properties. Let 1:I" — I" denote the identity
map. Then (1,1):I" - I" x I" is a singular n-cube, and (1,1) € Q,(I" x I"),

o) e [CUIM® C(UIM], -y
an— lén-— 16,,(1,1) - én—lan— 16,,(1,1) - '

Therefore &,_,0,(1,1) is a cycle, and since C(I") ® C(I") is acyclic, we can
choose e, € [C(I") ® C(I")], such that

a(en) = En— lan(l’l)‘
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Forany S:I" - X and T:I" — Y, define

én(SaT) = (S# ® T#)(en)

Then &, defines a homomorphism Q,(X x Y) = [C(X) ® C(Y)],. Exactly
as for the case n = 1, we can prove that &, is natural; Also, the following
diagram is commutative:

0,(X x ¥) —— [C(X)® C(Y)],

F

04 (X x ¥) = [CX)® C(Y)], s
In fact, we have
0,8, T) = 0S4 ® Ty )le)
=(84 ® Ty)ien)
=S, ® T#)f..- 104(151)
& 1048 T) =&, 10,8 x T)4(11) -
=& (S X T),0,(1)
=(S4 ® Ty)E,u104(1,0).
Next, define
ETCX x Y) - [C(X)® C(Y)],
by

XY _ EX.Y XY
‘:n - ﬁn vn M

Then ¢, is natural, since it is the composition of natural homomorphisms.
Also,

anén = én— 10ns
for, we have,
6nén = aninvn = én— lanvn
= én— 1Hn lanvn
= én— 10nlnVn = én— lan
as desired. Q.E.D.

PROOF OF LEMMA 5.4. Once again we will use induction on » to difine homo-
morphisms
Dy [C(X)® C(Y)], » [C(X)® C(Y)],+ 4
for all integers n and all spaces X, Y, such that
OXT WY = 0, DI + DI,
and such that naturality holds.

Case n = 0. We assert that the condition on ¢ and y imply that ¢3¥ =
Y& for any spaces X and Y. The assertion is true for X = Y = I° (a single
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point) because &:Co(I°) ® Cy(I°) — Z is an isomorphism, and ¢ and y are
assumed to be augmentation preserving. For arbitrary spaces X and Y, let
S:1° —» X and T:1° — Y be singular O-cubes. Then

SOT=(S,®Tx)1®@1)e Co(X)® Co(Y),

where 1:1° - I° is the identity map. Hence it follows by naturality that

o = U
Since 3" =YX we may define D¥¥ = 0 and all conditions will be
satisfied.

For the remainder of the proof, it will be convenient to define homo-
morphisms
ol [0(X) ® O(Y)], — [C(X) ® C(Y)],
by the formulas
o' = ol (W ®u)
Ut = (u* @ u).
Then @ and ¥ are natural chain mappings, since they are the composition
of natural chain mappings. Also, for any integer g > 0 we let

11t -
denote the identity map.
Case n = 1. Consider
o ® 15 € QoI ® Qy(I")
and
1 ® 10 € (1" ® Qo(I°).

We now compute
01(p, — ‘/71)(10 ® 1) =(Po — ‘Zo)al(lo ® 1)
=0
Since (ﬁo = Q)O = on = lpo. Simllal‘ly, al(¢1 - '/_/1)(11 ® lo) = O. SinCC the
chain complexes C(I°) ® C(I') and C(I*) ® C(I°) are acyclic, we can choose
elements
e €[CIO)® C(Il)]z
eoe[CUN® CUI],
such that
0x(eg1) = (@1 — '/71)(10 ® 1),
0y(e10) = (@1 — ‘Zl)(ll ® 1)

Define D;:[Q(X) ® Q(Y)], - [C(X) ® C(Y)], by

(S4®Tyleoy) HS:I°— X, T:I' > Y,

neet = {(S#@ Tellero) ST = X, T:0% > Y.
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Then D, is natural in the sense that the following diagram is commutative:

[0(X) ® Q(V)]; —2— [C(X)®C(Y)],

l/t@fh lft@g#

[Q(X) ® Q(Y)], —2— [C(X)® C(Y')],.

The verification of naturality should present no difficulty to the reader who
has already gone through the details of such verifications earlier.
Next, if $:1° — X and T:I' — Y are singular cubes, we compute

6’251(5 ®T)=0,(Sx ® Ty)eor)
= (54 ® T4)0s(e01)
=8 @ Ty)p;, — ‘px)(lo ®1y)
= (P, — wl)(S# T )o@ 1)
=@ —¥)S®T)
Similarly, we can prove that 0,D,(S® T)=(p, — ¥ )S® T) in case
S:I' - X and T:1° — Y. Thus we see that
0Dy =3, — ¥y,
in all cases.
Now define

. DY [C(X) @ C(Y)], - [C(X) @ C(Y)],
y
DI7 = DI @ v

Then D, is natural because it is the composition of natural homomorphisms,
and
0,017 = 3, DTV ® V")
=@ =N @ V)
= (1" — YN @ 1)V @ V)
= (7" =YY @ (k')
= g} -y
as required.
Inductive step. Assume that n > 1 and

D,:[C(X)® C(Y)], » [C(X)® C(Y)],+4
is defined for all r < n, that D, is natural, and
¢, —¥,=0,+,D, + D,_,0,.
Define D,:[Q(X) ® Q(Y)], = [C(X)® C(Y)],+, for all r < n by
DY = DEY (i @ ).
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Then D, is natural, and

Oy l[_)r = ar+1Dr(,uX ® ,UY)
= (@, =¥ = D,_,0,)(1* ® 1)
= (¢, — ¥)(* @ u") = D, _ (¥ ® u")o,
=, — Y, — D,0,.
Next, we define D,. Let (p,q) range over all pairs of nonnegative integers

such that p + g = n, and for each such pair consider 1, ® 1, € [Q(I") ® Q(I%)],
and

[(T’n - tpn - Dn— lén](lp ® lq) € [C(Ip) ® C(Iq)]n
We now compute as follows:

an[(ﬁn - ‘/_/n - Dn— lan](lp ® lq)
= [@n— lan - l/_/n— lan - anl—)n—lan](lp ® lq)
= [anDn— lan - anDn—lan](lp ® lq) =0.
Since C(I?) ® C(I%) is acyclic, there exists e, , € [C(I") ® C(I9)],, such that

0(ep,g) = [@n — ¥y — Dy-10,](1, ® 1,).
IfS:I" -» X and T:I9 - Y are singular cubes, define
D D(S®T)=(S,® T#)(ep q)~
Then D} is a homomorphism of [Q(X) ® Q(Y)], into [C(X)® C(Y)],+ 1.
As before, we can easily prove that D, is a natural homomorphism, and
Ons1DAS®T)=0,,:1(S, @ T) (ep.q)
=S4 ®T4)0n+ l(ep,q)
=S4 @ T )Py — Yn— Dn—lan)(lp® 1)
= (Pn— Yn — _n 108 @ Ty)1,®1,)
=(Pn—Yn—Dy-13)S®T).
We now define
DY [C(X)® C(Y)], — [C(X)® C(Y)]+4
by
DXY = DXY( X @ vY),
Then D, is natural, and
Ons 1 DT = 00 DYV R V)
=@ = Yu— D,-10)("* ® V")
= (@ — ¥ — D, 18)(1* @ )V ® V)
Y=yt - Do)

as required.
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The reader should have no trouble by now proving Lemma 5.5 for him-
self, hence we will not go through the details.

The reader should reflect on the essentials of these proofs. They were
concerned with certain chain complexes defined on ordered pairs (X,Y) of
topological spaces, namely, Q(X x Y), C(X xY), Q(X)® Q(Y) and
C(X)® C(Y). There were certain models at hand: for Q(X x Y) they were
the pairs (I",I") and the singular cube (1,1): 1" — I" x I", (1,1) € Q,(I" x I"),
while for Q(X) ® Q(Y) they were the pairs (I7,/%) and the elements 1, ® 1, €
Q,(I") ® Q,(I%). The important thing about the models is that Q,(X x Y)
has a basis composed of the elements (S,T) = (S x T)4(1,1), while Q,(X) ®
Q,(Y) has a basis composed of the elements S® T = (Sx ® T4)(1, ® 1,).
Finally these models are acyclic, in the sense that the chain complexes
C(I" x I") and C(I?) ® C(I?) are acyclic. The whole procedure is explained
is complete generality in the original paper of Eilenberg and Mac Lane
[3]- However, such a general treatment is so abstract that it is difficult to
follow; moreover, the reader who has used the method in a few specific
cases should have no difficulty in applying it to new cases.

This method of acyclic models is applicable to many problems involving
singular homology groups. For example, singular homology groups can be
defined using singular simplexes rather than singular cubes. Then one can
use the method of acyclic models to define a natural chain homotopy
equivalence between cubical singular chains and simplicial singular chains.
This is explained in detail in the paper of Eilenberg and Mac Lane [3]
mentioned above.

EXERCISES
5.1. Prove that any two natural chain maps
P*TY*TC(X)® C(Y) - C(X x Y)

are chain homotopic (by a natural chain homotopy). [Note: This applies, in
particular, to the natural chain map { defined in §3.]

5.2. Prove that there exist natural chain maps
A4%:C(X) » C(X)® C(X)

and that any two such natural chain maps are chain homotopic (by a natural
chain homotopy). Such a natural chain map is sometimes called a diagonal map.

5.3. Prove that there is a 1-1 correspondence between diagonal maps
4%:C(X) - C(X)® C(X)
as defined in the preceding exercise and natural chain maps
EYC(X x Y) - C(X)® C(Y)

as described in Lemma 5.3. This 1-1 correspondence is defined as follows:
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(a) Given any such diagonal map 4, define a natural chain map

AXT:C(X x Y) » C(X)® C(Y)
by the formula
AT = (1) 4 @ mpp) A¥Y,

where 7,: X x Y - X and n,: X x Y — Y denote projections on the first and

second factors respectively.
(b) Given a natural chainmap £:C(X x Y) —» C(X)® C(Y), define a diagonal map

&.c(x) - C(X) ® C(X)
by the formula
EX = éX,Xd#,

where d: X — X x X denotes the “diagonal” map defined by d(x) = (x,x) for
any x € X. [Note: When we study cohomology theory, we will see the real
importance of such diagonal maps.]

5.4. Let 4%:C(X) » C(X) ® C(X) be a diagonal map, as defined in Exercise 5.2, and
let t*:C(X)® C(X) —» C(X)® C(X) be the natural chain map defined by

w@v) = (=D @u,

where ue C,(X), and ve C(X). By Exercise 5.2, there exists a natural chain
homotopy D*: C(X) - C(X) ® C(X) between 4 and 74, i.e.,

4 — 14 = 0D + Do.
Prove by the method of acyclic models that there exist natural homomorphisms

D,:Cy(X) = [C(X) ® C(X)]+2
such that
D+ 1D =D —D'd.
(Note that t* = identity. One can think of D’ as a “second-order chain homotopy”
between the “first-order” chain homotopies D and —1D’. One could then consider
third-order chain homotopies between D' and D', etc. This procedure leads to

one method of constructing the Steenrod squaring operations in cohomology
theory; see E. Spanier [7], pp. 271-276.)

§6. Formulas for the Homology Groups
of Product Spaces

Our objective is to combine the Kiinneth theorem for chain complexes
(Theorem 4.1) with the existence of the natural chain homotopy equivalences
(Eilenberg—Zilber theorem)

C(X)® C(Y) —é_» C(X x Y)

to express the homology groups of X x Y in terms of those of X and Y.
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By this method, we obviously obtain a split exact sequence:

0- Y HXQH(Y)SHXxY)L Y Tor(H,(X)H(Y)) - 0.
ptqg=n ptgq=n—1
The homomorphisms « and f are natural, but the splitting is not natural.
One way to generalize this theorem is the following: Let G be an abelian
group. Then we have the following natural chain homotopy equivalences:

CX)®C(Y)® G % C(X x Y)®G.

In the Kiinneth theorem we only needed to assume that one of the chain
complexes K and L was free. Hence we obtain the following split exact
sequence:

0-> Y HX)®H,UY;G) > H(X x Y;G)
ptq=n

L Y Tor(H,(X)H,Y;G)) - 0.

ptg=n—1
Once again, the homomorphisms « and § are natural, but the splitting is
not natural.

We will now generalize these theorems to include relative homology
groups. If (X,A) is a pair, then

C(X,A4) = C(X)/C(4)
by definition; also, the sequence
0->CA)—-CX)->CX,4A) -0

is split exact. Using these facts, plus basic properties of tensor products, it
is easy to see that there is a natural isomorphism of chain complexes

CX) o () C(X)® C(Y)
C(4) ~ C(B) ~ C(X)® C(B) + C(4)® C(Y)

for any pairs (X,4) and (Y,B). In the denominator on the right-hand side of
this equation, the plus sign does not mean direct sum; it refers to the least
subgroup containing the two terms.

Due to the naturality of the chain maps { and ¢ with respect to the chain
maps iy:C(A) » C(X) and j,:C(B) — C(Y) induced by inclusion maps i
and j, we conclude that we have chain homotopy equivalences

CX)® C(Y) C(X x Y)
C(X)®C(B)+ C(A)®C(Y) e C(X x B+ C(A x Y)

The inclusion maps X x B> X xBuAdxY and AxY—-> X xBu
A x Y induce an obvious chain map

C(X xB)+CAxY)>C(X xBuUAxY)

¢
2
¢
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Under certain circumstances, this chain map will be a chain homotopy
equivalence; for example, this will be the case if either 4 or B is empty
(trivially). More generally, it will be the case if the interiors of X x B and
A Xx Y cover X x Bu A x Y (cf. Theorem I1.6.3) in the relative topology
of(X x Bju (4 x Y).

Definition 6.1. Let X, and X, be subspaces of some topological space X.
We say {X,, X,} is an excisive couple if the obvious chain map C(X,) +
C(X,) » C(X, v X,) (induced by inclusion) induces isomorphisms on
homology groups.

The term “excisive” is used here because of its obvious connection with
the excision property.

We note the following two sufficient conditions for {X,,X,} to be an
excisive couple:

(a) If X; u X, = (Interior X,) u (Interior X,) in the relative topology
of X; U X,, then {X,X,} is an excisive couple. This is a consequence of
Theorem I1.6.3.

(b) If X isa CW-complex and X, and X, are subcomplexes, then {X,X,}
is an excisive couple. This is a consequence of the theorems of §IV.4.

EXERCISES

6.1. Prove that the following conditions are equivalent to {X,X,} being an excisive
couple in X:

(a) HAC(X; u X )(C(X,) + C(X,))) =0 forall g.

(b) The obvious chain map C(X)/(C(X,)+ C(X,)) - C(X)/C(X; u X,) induces
isomorphisms on homology groups.

(c¢) The inclusion map (X, X; N X,) » (X; v X,, X,) induces isomorphisms on
homology groups.

6.2. If {X1,X,} is an excisive couple, prove that the chain map C(X,;G) + C(X,;G) -
C(X, U X,;G) induces an isomorphism on homology groups for any coefficient
group G. Then deduce that the analogues of Conditions (a), (b), and (c) of Exercise
6.1 hold for homology with coefficient group G.

In view of the above discussion, we see that if {4 x Y, X x B} is an ex-
cisive couple in X x Y, then the composition of the Eilenberg—Zilber chain
homotopy equivalence

C(X xY)
C(X xB)+ C(AxY)

C(X,4)® C(Y,B) >

and the chain map

C(X x Y) C(X x Y)
CXxB +CAxY) CXxBuAxY)
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induces an isomorphism
H(CX,AR@C(Y,B)~ H(X x Y, X x BUuAXY)

for all q. Hence we have the following:

Theorem 6.1. Let (X,A4) and (Y,B) be pairs such that {A x Y, X x B} is an
excisive couple in X x Y. Then there exists a split exact sequence

0~ Y H,(X,A®H(Y,B;G)> H(X x Y,Ax YU X x B;G)

ptg=n

LY Tor(H,(X,4),H,Y,B;G))

ptq=n—1

-0

T he homomorphisms o and 8 are natural, but the splitting is not.

ExaMPLE 6.1. Let K = {K"} and L = {L"} be finite CW-complexes on the
spaces X and Y respectively. Then

a:H(KP,KP™ Y@ HALLLA ™) > H ,, (KP x L4, K? x L1™1 U KP™1 x L9)
is an isomorphism by the above theorem. Let
M= () KPxL%, n=012...

ptq=n

denote the CW-complex on X x Y. Then composing the isomorphism « with
the homomorphism induced by the inclusion map

(KP x L9, KP™t x LT U KP x L4 Y) - (M"M"™ 1)
gives rise to a natural homomorphism
C,(K)® Cy(L) - C,(M).
It may be shown that this agrees with the identification
CM)= Y CUK)®C/L)

ptq=n

we made in §2 for the case where K and L are regular CW-complexes.

EXERCISES

6.3. Let K and L be pseudomanifolds of dimensions m and n respectively. (a) Prove
that K x L is a pseudomanifold of dimension m + n. (b) Prove that K x L is
orientable if and only if both K and L are orientable.

6.4. Let P? denote the real projective plane. Compute the integral and mod 2 homology
groups of P? x P2,

6.5. Let Rbearing, and let K = {K,,3,} and L = {L,.d,} be chain complexes such that
each K, is a right R-module, each 0, is a homomorphism of right R-modules, each
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6.6.

6.7.

6.8.

L, is a left R-module, and each d, is a homomorphism of left R-modules (we can
express these conditions more briefly by saying that K is a chain complex of right
R-modules and L is a chain complex of left R-modules.) The definition of K ®g L
should be obvious; it is a chain complex of abelian groups. Define a natural
homomorphism «:H ,(K) ®g H(L) - H,, (K ® L) by analogy with our earlier
definition.

Let F be a commutative field, and let K and L be chain complexes of vector spaces
over F. Prove that
o Z H,(K)®rH,(L) > H(K QL)

ptq=n
is an isomorphism.

Let (X,4) and (Y,B) be pairs such that {4 x Y,X x B} is an excisive couple in
X x Y, and let F be a commutative field. Prove that there exists a natural iso-
morphism
ar Y Hy(X,A;F)®pH(Y,B;F) » H(X x Y,A x Y U X x B;F).
ptg=n
Let F be a commutative field and (X,4) a pair such that for all g, H,(X,4;F) has
finite rank r, over F. Define the Poincare series of (X,A) (over F) to be the formal
power series
P(X,A;0) = Y rtt
q=0
Give aformula for P(X x Y; X x Bu A x Y;t)in terms of P(X,A4;t) and P(Y,B;t),
assuming that {4 x Y, X x B} is an excisive couple.
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CHAPTER VII
Cohomology Theory

§1. Introduction

Recall that one obtains homology groups with coefficient group G by the
following process:

(a) Start with the chain complex C(X,4) = {C,(X,A).0,}.
(b) Apply the functor ®G to obtain the new chain complex

C(X,A)® G = C(X,4;G).
(c) Take the homology groups of the resulting chain complex:
H,(X,4;G) = H,(C(X,4;G)).

We could go through the same procedure, only at Step (b), apply the functor
Hom( ,G) instead of ®G, and obtain what are called the cohomology groups
of (X,A) with coefficient group G. Much of the resulting theory parallels that of
Chapter V. However, the geometric interpretation of cycles (or cocycles), etc.
is somewhat different, and perhaps a bit more obscure. More importantly,
it is possible to introduce additional operations into cohomology theory,
most notably, what are called cup products and Steenrod squares. These new
operations are additional invariants of homotopy type, and enable us to
distinguish between spaces that we could not tell apart otherwise. Cup
products are explained in the next chapter.

154
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§2. Definition of Cohomology Groups—Proofs
of the Basic Properties

For any pair (X,A4) and any abelian group G, define
CiX,A;G) = Hom(C,(X,A),G),
and
8,:CHX,A;G) » C1"(X,4;G)
by é, = Hom(d, . ,,1¢). Then
C*X,A;G) = {CYX,A;G),0,}

is a cochain complex, in accordance with the following definition:

Definition 2.1. A cochain complex K consists of a sequence of abelian groups
{K%} and homomorphisms §,:K? — K*! defined for all g and subject to
the condition that 6, , é, = 0 for all g. The homomorphism §, is called a
coboundary operator. ‘

An important example of a cochain complex is the following: Let C =
{C,0,} be a chain complex; define K¢ = Hom(C,,G) and §,: K - K?*! by
0,= Hom(0, . 1,1), where 1 denotes the identity homomorphism G — G.
Then K = {K%4,} is a cochain complex; we will denote this cochain com-
plex by

K = Hom(C,G).

On the other hand, if K is a cochain complex, then an analogous definition
leads to a chain complex Hom(K,G).

Obviously, the theory of chain complexes and the theory of cochain
complexes are isomorphic; to get from one to the other, change the sign
of all the indices. The distinction between the two is made partly for tradition,
and partly for convenience in the applications we have in mind. Correspond-
ing to the notions of chain map and chain homotopy we have cochain maps and
cochain homotopies: Let K and L be cochain complexes. A cochain map
f:K — L is a sequence of isomorphisms

f9:Ke — LA

which commute with the coboundary operators. If f,g: K — L are cochain
maps, then a cochain homotopy D between f and g is a sequence of homo-
morphisms D?: K% — L~ ! such that

f" _ gq =54 1pe + pet 154
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We leave it to the reader to define the following two concepts:
(a) Suppose C and C’ are chain complexes and f:C — C’ is a chain map.
Then a cochain map

Hom(f,1): Hom(C",G) - Hom(C,G)
is defined.

(b) Assume C and C’ are chain complexes, f,g:C — C’ are chain maps,
and D:C — C'is a chain homotopy between f and g. Then a cochain homo-
topy Hom(D,1) is defined between the cochain maps Hom( f,1) and Hom(g,1).

If K = {K% is a cochain complex with coboundary operator §%: K% —
K?*1, then the following notation and terminology is standard:

ZYK) = kernel 6%, the g-dimensional cocycles,
BY(K) = image 6*” !, the g-dimensional coboundaries,
HY(K) = Z%K)/B%K), the g-dimensional cohomology group.

Thus for any pair (X,4) and abelian group G, we have the cochain complex
C*(X,4;G) = Hom(C(X,A),G)

and the associated cohomology groups
HYX,A;G) = H(C*X,A4;G)).

Let f:(X,4) — (Y,B) be a continuous map of pairs; then we have the induced
chain map,
» f# : C(XaA) - C( Y,B)’

which gives rise to a cochain map
/7% = Hom(f,,1):C*Y,B;G) - C*X,A;G)
and hence to an induced homomorphism on cohomology groups
f*:HYY,B;G) » HY(X,A4;G)

for all g. Note that the induced homomorphism in cohomology goes the
opposite way from that in homology; we are dealing with a contravariant
functor.

If two maps f,,f;:(X,4) — (Y,B) are homotopic, then any homotopy
(X x 1,4 xI)— (Y,B) gives rise to a chain homotopy D:C(X,4) —
C(Y,B) between the chain maps f;, and f; .. Hence Hom(D,1) is a cochain
homotopy between f;* = Hom(fy4,1) and f;* = Hom(f, «,1); it follows
that the induced homomorphisms

fd' fi*:HAY.B; G) > HY(X,4;G)

are the same.
Next, we will discuss exact sequences. Let

EO0-CHCcha -0
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be a short exact sequence of chain complexes and chain maps. If we apply the
functor Hom( ,G), we do not obtain a short exact sequence of cochain
complexes, in general. All we can be certain of is that the following sequence
is exact:

Hom(C',G) 2 Hom(C,G) — " Hom(C",G) « 0.
In general, Hom(i,1) will not be an epimorphism. However, if the sequence
E is split exact, then the sequence

0 <« Hom(C',G) <~ Hom(C,G) « Hom(C",G) < 0

will also be split exact, and we will get a corresponding long exact sequence
of cohomology groups.

We can apply these considerations to the short exact sequence of chain
complexes

0 - C(4) -2 C(X) 2% C(X,4) - 0

for any pair (X,A). This is a split exact sequence of chain complexes, hence
we obtain a corresponding split exact sequence of cochain complexes

0 « C*A;G) < C*X;G) <X C*(X,4;G) < 0
for any abelian group G. It follows that there is a long exact sequence of
cohomology groups:
& HY4:6) & HY(X;G) £ HY(X,4:6) & H1(4;6)

with all the usual properties.

For some purposes it is convenient to define reduced cohomology groups
H°(X;G) in dimension 0. For this purpose, one uses the augmented chain
complex C(X) that is defined in §V.3. We define the augmented cochain
complex

C*X;G) = Hom(C(X),G)
and the reduced cohomology groups
HYX ;G) = H{C*(X;G)).
One readily proves that for any nonempty space X and abelian group G,
HY(X;G)= HYX:;G) for q#0
while for ¢ = 0 we have a split short exact sequence,
0> G3 HYX;G) > HYX;G) - 0.

We leave it for the reader to check that if P is a space consisting of a single
point, then

HYP;G)=0 forall q.
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From this it follows that

£*:G - H(P;G)
is an isomorphism.
We will discuss the excision property and the Mayer—Vietoris sequence
in cohomology later in this chapter.

§3. Coefficient Homomorphisms and
the Bockstein Operator in Cohomology

Let h:G; — G, be a homomorphism of abelian groups. Then for any chain
complex C, we get an obvious cochain map

Hom(1,h):Hom(C,G,) - Hom(C,G,)

and an induced map on cohomology groups. In particular, for any pair
(X,A), we have the cochain map

Hom(1,h): C*(X,A4;G,) » C*X,A4;G,)
and the induced homomorphism
hy:HYX,A;G,) > HY(X,A;G,)

on cohomology groups. The reader should state and prove naturality
properties of the coefficient homomorphism h, analogous to Properties
(a) and (b) of §V.5. In addition, he should prove that if G is a left module
over some ring R, then HY X ,A4; G) inherits a natural left R-module structure;
in that case, the homomorphisms f* and J, are homomorphisms of left
R-modules.
Next, let , .
0-G->G->G" >0

be a short exact sequence of abelian groups. From this, we get the following
sequence of cochain complexes:

Hom(1,h) Hom(1,k)

0 - C¥X,4;G) —— C*X,4;G) — C*(X,A4;G") - 0.

Since C(X,A) is a chain complex of free abelian groups, it follows easily that
this sequence of cochain complexes is exact. By the usual procedure, we get
the following long exact sequence of cohomology groups:

5 HYX,A:6) 15 HYX,A:6) 15 HYX,A;G7) L HO (X,4;G).

Here f is the Bockstein operator in cohomology. It has naturality properties
similar to that of the Bockstein operator in homology.
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§4. The Universal Coeflicient Theorem
for Cohomology Groups

The object of this theorem is to express HYX,4;G) in terms of integral
homology groups of (X,A4); it is analogous to Corollary V.6.3.

Let K = {K,,0,} be an arbitrary chain complex, G an abelian group,
x € H(K), and u € H'(Hom(K,G)). The inner product {u,x) of u and x is the
element of G obtained according to the following simple prescription:
Choose a representative cocycle u’ € Hom(K,,,G) for u, and a representative
cycle x' € K, for x. Then

{uxy =u'(x) e G.

It is easy to verify that this definition is independent of the choice of the
representatives ¥’ and x’, and that the inner product is additive in each
variable separately, i.e.,

uy + tz, x) = uy,x) + {uy,x),
Quy xq + x50 = Qx> + {Ux5).

This inner product is one of the basic ideas of cohomology theory.
Using this inner product, we define a homomorphism

o:H"(Hom(K,G)) - Hom(H (K),G)
by the following rule: for any u € H"(Hom(K,G)) and x € H,(K),
(ou)(x) = {u,x).

The homomorphism « has the following three naturality properties (cf. §V.6):
(a) If f: K — K’ is a chain map, then the following diagram is commuta-
tive:

HY(Hom(K,G)) ———> Hom(H,(K),G)
IHom(f,l)* IHom(f*,l)

HYHom(K’,G)) — Hom(H (K'),G).

(b) Let E:0 > K’ > K - K" — 0 be a split exact sequence of chain
complexes. Then the following sequence of cochain complexes is also exact,

0 <« Hom(K',G) « Hom(K,G) « Hom(K",G) « 0,
and the following diagram is commutative:
H(Hom(K',G)) ———> Hom(H(K),G)

lé* lHom(éE,l)

H**'(Hom(K",G)) —— Hom(H,,(K"),G).
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(c) If h:G; - G, is a homomorphism of coefficient groups, then the
following diagram is commutative:

HYHom(K,G,)) —— Hom(H,(K),G,)

J;,,, lHom(l,h)

HYHom(K,G,)) —— Hom(H,(K’),G,).

Of course, we will mainly be interested in the homomorphism in case
K = C(X,A):
o:HY(X,A4;G) - Hom(H (X,A4);G).

We leave it to the reader to reformulate the naturality Properties (a), (b),
and (c) above in an appropriate way for the cohomology of spaces.

In order to further investigate the properties of the homomorphism a,
it is best to use homological algebra; in particular, it is necessary to make use
of the functor Ext(A,B). To be concise, Ext(A4,B) bears the same relation to
Hom(A,B) that Tor(A,B) does to 4 ® B (these are both examples of first
derived functors). Although Tor(A4,B) is symmetric in the two variables, there
can be no question of Ext(4,B) being symmetrical, since it is contravariant in
the first variable and covariant in the second variable.

In order to make use of the functor Ext, it is convenient to have available
certain basic properties of divisible abelian groups.

Definition 4.1. An abelian group A is divisible if given any a € A and any
nonzero integer n, there exists an element x € 4 such that nx = a.

ExAMPLE 4.1. The additive group of rational numbers is divisible. It is easily
proved that any quotient group of a divisible group is divisible, and any
direct sum of divisible groups is divisible. Thus we could construct many
more examples.

In a certain sense, divisible groups have properties which are dual to those
of free abelian groups. For example, any subgroup of a free abelian group is
also free abelian, while any quotient group of a divisible group is divisible.
Any free group F is projective (in the category of abelian groups), in the sense
that given any epimorphism h:4 — B and any homomorphism ¢g:F — B,
there exists a homomorphism f:F — A such that the following diagram is
commutative:

(the proof is easy).
Dually, an abelian group G is called injective if given any monomorphism
h:B — A and any homomorphism g:B — G, there exists a homomorphism



§4. The Universal Coefficient Theorem for Cohomology Groups 161

f:A — G such that the following diagram is commutative:

/Ig
A‘—'h—B"—O.

Note that this diagram is obtained from the previous one by reversing all the
arrows.

Theorem 4.1. An abelian group is injective if and only if it is divisible.

The proof that an injective group is divisible is easy, and is left to the
reader.

Assume that G is divisible; we will prove that it is injective. Let 4,B,h,
and g be as in the diagram above. We may as well assume that B is a subgroup
of 4, and h is the inclusion map. Consider all pairs (G;,h;) where G; is a sub-
group of A which contains B, and h;:G; — G is a homomorphism such that
h;|B =g. This family of pairs is nonvacuous, because (B,g) obviously
satisfies the required conditions. Define (G;h;) <(Gh)) if G; = G; and
h;| G; = h;. Apply Zorn’s lemma to this family with this ordering to conclude
there exists a maximal pair (G,,.h,,). We assert G,, = 4; for if G, # A, let
a e A — G,,; using the fact that G is divisible, it is easily shown that A, can
be extended to the subgroup generated by G,, and a. But this contradicts
maximality of G,,.

It is well known that every abelian group is isomorphic to a quotient of a
free abelian group. The following is the dual property:

Proposition 4.2. Any group is isomorphic to a subgroup of a divisible group.
PRrOOF. There are various ways to prove this. One way is to express the given
group G as the quotient group of a free group F:

G ~ F/R.

Obviously F can be considered as a subgroup of a divisible group D; for

if {b;} is a basis for F, then we may take D as a rational vector space on the

same basis. Then G is isomorphic to a subgroup of the divisible group D/R.
Q.E.D.

We will now list the basic properties of Ext(A4,B). For any abelian groups
A and B, Ext(A4,B) is also an abelian group. If f:4' - A and g:B — B’
are homomorphisms, then

Ext(f.g): Ext(4,B) — Ext(4’,B))

is a homomorphism with the usual functorial properties.



162 VII Cohomology Theory

There are two ways to define or construct Ext(4,B):
(a) By means of a free or projective resolution of A. Choose a short exact

sequence 0 — F, LF o - A — 0 with F, (and hence F 1) free abelian. Then
the following sequence is exact:

Hom(d, 1) Hom(e, 1)
e —

0 « Ext(4,B) < Hom(F,B) Hom(F,,B) Hom(A,B) « 0.

In other words, Ext(A4,B) is the cokernel of the homomorphism Hom(d,1).
(b) By means of an injective resolution of B. Choose a short exact sequence

0> B5D, 4 D, — Owith D, (and hence D, ) divisible. (By the proposition

above, such a sequence always exists.) Then the following sequence is exact:

Hom(1,¢) Hom(1,d)
——

0 — Hom(A4,B) Hom(A4,D,) Hom(A4,D,) - Ext(A4,B) — 0.
Thus Ext(4,B) is the cokernel of the homomorphism Hom(1,d).

Naturally, one must prove that the group Ext(4,B) is independent of
the projective resolution in (a), and of the injective resolution in (b). Also,
it must be proved that the two definitions give rise to the same group. For
information on these matters, the reader is referred to books on homological
algebra (see the bibliography for Chapter V).

The definition of the induced homomorphism Ext( f,g) is left to the reader.

From these definitions, the following two statements are obvious
consequences:

(1) If A is a free abelian group, then Ext(4,B) = 0 for any group B.

(2) If B is a divisible group, then Ext(4,B) = 0 for any group A.

Using the definition (a) above, one readily shows that:

(3) Ext(Z,,B) ~ B/nB,

Hom(Z,,B) ~ {x € B|nx = 0}.

By means of (1) and (3), the structure of Ext(4,B) can be determined in
case A is a finitely generated abelian group.

We conclude this summary of the principal properties of the functor Ext
by mentioning the following two exact sequences. Let

0-A5BECo0

be a short exact sequence of abelian groups, and let G be an arbitrary abelian
group. Then the following two sequences are exact:

Hom(k,1) Hom(h,1)
—_— ——

0 - Hom(C,G) Hom(B,G) Hom(A4,G)
Ext(k,1) Ext(h,1) @1
s

- Ext(C,G) %1, Ext(B,G) Ext(4,G) — 0,

Hom(1,h) Hom(1,k)
0 - Hom(G,A) Hom(G,B) ————

Ext(1,h) Ext(1,k)
——

Ext(G,B) =Y, Ext(G,C) — 0.

Hom(G,C) 42)

— Ext(G,A4)

In these exact sequences, the connecting homomorphisms, Hom(A4,G) —
Ext(C,G) and Hom(G,C) — Ext(G,A) have all the naturality properties that
one might expect.
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With these preliminaries out of the way, we can now state the main result
in this area:

Theorem 4.3 (Universal coefficient theorem for cohomology). Let K be a chain
complex of free abelian groups, and let G be an arbitrary abelian group. Then
there exists a split exact sequence

0 — Ext(H,_,(K),G) 5> H'(Hom(K,G)) > Hom(H (K),G) — .

The homomorphism B is natural, with respect to coefficient homomorphisms
and chain maps. The splitting is natural with respect to coefficient homomor-
phisms but not with respect to chain maps.

PrOOF. The proof we present is dual to that given in §V.6. For the reader
who has some feeling for this duality, it is a purely mechanical exercise to
transpose the previous proof to the present one.

First we need a lemma, which is the dual of Lemma V.6.1.

Lemma 4.4. If G is a divisible group, then the homomorphism
o: H(Hom(K,G)) - Hom(H (K),G)
is an isomorphism for any chain complex K.

The proof of this lemma is a nice exercise, involving the various definitions
and the fact that divisible groups are injective.
Now we will prove the theorem. Let

05G5Dy5D, -0

be a short exact sequence with D, and D, divisible (see Property (b) above).
Consider the corresponding long exact sequence in cohomology, and the
following commutative diagram:

# di d
Loy HMHOm(K,G)) —2— H'(Hom(K,D,)) —=— H'Hom(K.D,)) SELIEN

0 —— Hom(H,(K).G) o= Hom(H,(K).Do) o= Hom(H,(K).D,).
The bottom lime is exact by the standard properties of the functor Hom,
and the diagram is commutative by the naturality properties of a. Also, ag
and a, are isomorphisms, since D, and D, are divisible groups. From this
diagram one deduces that o is an epimorphism, and kernel & = kernel €.
Next, one considers the following similar diagram:

e H""Y(Hom(K,D,)) L, H""'(Hom(K,D,)) SN H"(Hom(K,G)) —s

Jao l n

“r—— Hom(H,,(K).Do) j=—3 Hom(H,,(K)D;) — Ext(H,(K).G) — 0.
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Once again the bottom line is exact, and the diagram is commutative; as
before, o, and o, are isomorphisms. One now proves that there is a unique
homomorphism

B:Ext(H,-(K),G) » H'(Hom(K,G))

which makes the square labelled 1 commutative. Then one proves that f
is a monomorphism, and image = image f8,. Since image B, = kernel ¢,
it follows that image § = kernel a.

It remains to prove that the short exact sequence of the theorem splits.
This can be done by the method used in the proof of Theorem V.6.2, modified
to cover the case at hand. The details are left to the reader.

Corollary 4.5. For any pair (X,A) and any abelian group G there exists a
split short exact sequence:

0 — Ext(H,_,(X,4),G) &> H"(X,4;G) > Hom(H{(X,4),G) — 0.

The homomorphisms o and B are natural with respect to homomorphisms
induced by continuous maps of pairs and coefficient homomorphisms. The
splitting can be chosen to be natural with respect to coefficient homomorphisms,
but not with respect to homomorphisms induced by continuous maps.

EXERCISES

4.1. Let (X,A4) be a pair such that H,(X,A) is a finitely generated abelian group for
all n. Prove that H%(X,A;Z) is also finitely generated for all »n, and that

rank(H"(X,A;Z)) = rank(H (X,A)),
Torsion(H"(X,A;Z)) ~ Torsion(H,_ (X,A4)).
4.2. Prove that a:H"(X,4;G) > Hom(H,(X,A4),G) is an isomorphism for n=0, 1
(for any pair (X,A4) and any group G).
4.3. For any pair (X,A4), prove that H(X,4;Z) is a torsion-free abelian group.

4.4. Let X be a finite regular graph. Express the structure of the cohomology groups
H"(X,G) in terms of the Euler characteristic and number of components of X.

4.5. Describe the structure of the cohomology groups HY(S";G) and HYE",S"™!;G)
for all g, n, and G.

4.6. Let X be an n-dimensional pseudomanifold as defined in §IV.8. Determine the
structure of H"(X; G).

4.7. Let X be a compact connected 2-dimensional manifold. Determine the structure
of H*(X ;G) for all n and G (use the classification theorem for such manifolds to
express your final result).

48. Let K = {K"} be a finite dimensional CW-complex on the space X. Prove that
there is an isomorphism H™*(X;G) ~ H(Hom(C(K),G)) for all n and G (here
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C(K) = {H (K%K ")} is a chain complex described in §V.7. Prove also that this
isomorphism has the following naturality property: Let L be a CW-complex on
Y and f:X — Y a continuous map which is cellular, ie., f(K") = L" for all n.
Then there is an induced chain map f,:C(K) — C(L), and the following diagram
is commutative:

H"(X;G) ~ H"(Hom(C(K),G))

1f" Iﬂom(f‘.l)*

HYY:G) ~ H"(Hom(C(L),G)).

49. Consider continuous maps f:P? — S?, where P? denotes the real projective
plane. By considering the induced homomorphism f*:H*S?;Z) —» H*(P*;Z),
show that there are at least two homotopy classes of such maps (cf. the example
in §V.7. Use the results of Exercise 4.8).

4.10. Show that the homomorphism f*:H"Y,B;G) - H"(X,A4;G) induced by a con-
tinuous map f:(X,4) — (Y,B) is not determined by knowledge of the homomor-
phisms on homology

fy:H(X,4) > H/(Y,B)
for all g.

4.11. Prove that the splitting of the short exact sequence of Corollary 4.5 can not
be chosen to be natural with respect to homomorphisms induced by continuous
maps.

§5. Geometric Interpretation of
Cochains, Cocycles, etc.

In homology theory it is not difficult to have socme geometric intuition
about chains, cycles, bounding cycles, etc. This geometric intuition is often
of assistance in leading one to the correct solution of problems. Unfor-
tunately, these things are more complicated for cohomology theory.

In order to understand the situation better, let us first reconsider ho-
mology theory. Let K = {K"} be a CW-complex on the space X, and let
u € C,(K,G); then u has a unique expression of the form

u= Z gie?’

where g; € G and the ¢ are oriented n-cells of K. It is natural to associate
with the chain u the subset

ul = 7,
1

where the union is over all cells ¢/ such that the corresponding coefficient
gi # 0. If u =0, we define |u| = &. The set |u] is called the support of u. It
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has the following properties:

(a) |u|is a compact subset of X.
(b) |u| = & if and only if u = 0.
(© |ut o< uf vy

(d) |dau| = |u].

Of course the chain u is not determined by the set |u| = X (except in the case
where G = Z,), but the structure of the set |u] is a vital piece of information
about u. One thinks of u as determined by |u| and the coefficients g; which
are assigned to various oriented subsets of [u]

There is also a natural way to define the support of a singular chain u
in an arbitrary topological space X. Let ue C,(X,G); if u =0, we define
|u] = &. If u # 0, then u has a unique expression as a finite linear combina-
tion of nondegenerate singular n-cubes with nonzero coefficients,

“=ZgiTi g:€G
1

and it is natural to define
|u| = U T.(I".

It is clear that Properties (a)—(d) above continue to hold. However, it is
also clear that in this situation |u| does not give as much information about
u as it did in the previous situation. The reason is that two quite different
nondegenerate n-cubes may have the same image set, i.e., we may have n-cubes

T, Tyl > X

such that T,(I") = T,(I"),yet T, # T,.

We will now try to define the support of a cochain so that Properties
(a)—(d) will hold. First of all, it is convenient to formulate the definition of
a cochain in a slightly different, but equivalent, way. This alternate definition
is based on the following principle: Let F be a free abelian group with basis
B c F, and let G be an arbitrary abelian group. Then there is a natural 1-1
correspondence between homomorphisms u:F — G and arbitrary functions
f:B — G. This correspondence is established by assigning to each such
homomorphism u the function f = u|B, the restriction of u to B, and to
each such function f its unique linear extension u.

Let us apply this principle to the n-cochains of a CW-complex K on the
space X. Let u e C(K,G) = Hom(C,(K),G). The chain group C,(K) has as
natural basis the set of n-cells {e}}, where a definite orientation has been
chosen for each such cell. Thus we can think of u as a function which assigns
to each such oriented n-cell ¢! an element u(e}) € G. In view of the previous
definition for support of a chain, it seems natural to define |u| to be the union
of all closed n-cells 2, such that u(e}) # 0. However, experience has shown
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that this definition definitely does not work! The main trouble is that the
analogue of Condition (d) above does not hold.

We will indicate a way to correct this deficiency for the case of cochains
in a regular CW-complex. Recall that given a regular CW-complex, for each
cell ¢} there exists a characteristic map

Si(E"S"TY) - (@.¢)

which is a homeomorphism. Of course, if n > 0, there will exist for each cell
¢! infinitely many such maps which are homeomorphisms, and there is no
reason to prefer one over another. We will assume that for each e} one such
characteristic map has been chosen, and call it the preferred characteristic
map. By means of this preferred characteristic map, geometric concepts
which are valid for E" can be carried over to €!. In particular, we wish to
carry over the following two concepts from E” to €}:

(1) The center of the cell E" is the origin, (0,0, . .. ,0). By definition, the
center of e is the image of the center of E" under the preferred characteristic
map.

(2) If A is any subset of S"~ !, the cone over A, denoted by I'(4), is the
following subset of E":

I'(A)={t-alac Aand 0 <t <1},

i.e., I'(A) is the union of all straight line segments joining the origin to points
a € A. Analogously, if A is any subset of 7, then I'(A4) is a subset of &}, defined
using the preferred characteristic map for the cell ¢}. Note that if A is a closed
set, then so is I'(4). More generally, if 4 is a subset of the (n — 1)-skeleton
K"~ then we define I'(4) to be the union of 4 and the sets I'(4  ¢é7) for all
n-cells ef. I'(A4) is a subset of K", and if A4 is closed, so is I'(A) because of the
weak topology. We can iterate this procedure, defining

Ir*(A) = I (I'(A4)),
I"(A4) = [(I"~'(4)),
I'°(4) = U I'"(A).
n=1
We will mainly be interested in this operation for the case of a finite-
dimensional CW-complex. Then I"°(A) is attained after a finite number of
iterations.

Now let u € C(K,G); consider u as a function defined on oriented n-cells
¢} with values in G. Define A to the set of all center points of all cells €} such
that u(el) # 0. Then A is a closed, discrete subset of X; however, it is not
compact, in general. We define

[u] = I'*(A4).
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If K is finite dimensional, it is clear that |u| is a closed subset of X. One can
also verify the analogue of Conditions (b), (c), and (d) above:

lu| = ifandonlyif u=0,
w0l < [uf U o,
|6(u)| = |ul-

Although rather complicated, this seems to be the proper definition. The
fact that |u| is noncompact in general is not a defect in our definition, it is an
inherent property of the cohomology theory we are using. It is possible to
define a cohomology theory based on cochains with “compact supports,”
but we will not do this for the present.

Note that if K is a CW-complex of dimension N, and u € CXK,G), then
|u| is a set of dimension < N — k. Thus as k increases, the dimension of |u|
decreases. This is just the opposite of what happens with chains.

There is also a definition of support of singular cochains in a general
space which we will now consider, although it is less satisfactory than that
we have just given.

If ue C*(X,G) = Hom(C,(X),G), then u is a homomorphism of C,(X) =
0.X)/D(X) into G. Hence we can regard u as a function which is defined
on singular n-cubes with values in G, and vanishes on all degenerate singular
n-cubes. Rather than defining |u|, it will be more convenient to define the
complementary set: A point x does not belong to |u| if and only if there is an
open neighborhood U of x such that u(T) =0 for all singular n-cubes
T:I" — U. From this definition it is clear that the complementary set is open,
hence |u| is closed. We also have the following properties:

u=0 implies |u =,
it o] < uf o

v,
|ou| = |ul.
Unfortunately, we can have nonzero cochains u such that |u| = &. This
defect can be remedied by factoring out all such cochains (i.e., passing to a
quotient group). By using Theorem I1.6.3 it can be proved that this process

does not change the resulting cohomology theory. However, we will have no
need to pursue this matter further, (cf. Massey, [1], Lemma 8.16, p. 260).

§6. Proof of the Excision Property;
The Mayer—Vietoris Sequence

Let (X,A4) be a pair and let I¥ be a subset of A. We then have the following
split exact sequence of chain complexes (cf. §V.6):
C(X,A)

- 0.
CX-W,A—-W)

0 CX =W, A—W)-% C(X,4) >
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Note that these are all chain complexes of free abelian groups. By passing to
the long exact homology sequence, we see that i, :H(X — W, A — W) -
H/(X,A) is an isomorphism for all ¢ if and only if H(C(X,4)/C(X — W,
A —W)) =0 for all q.

We may also apply the functor Hom( ,G) to the above split exact sequence
of chain complexes, obtaining the following exact sequence:

0« CHX — W, A — W;G) <~ C*X,A:G)

C(X,A)
Hom(C(X_ WA W)’G> «~ 0.

Passing to cohomology, we see that i*: H{(X,4;G) - H{X — W,A— W;G)is
an isomorphism for all g ifand only if H{Hom(C(X,4)/C(X — W, A— W), G))
= 0 for all g. Making use of Theorem 4.3, one concludes that the excision
property for integral homology implies a corresponding property for coho-
mology: If W is a subset of A such that W < interior A, then i*: HY(X,A;G) —
HYX — W, A — W;G) is an isomorphism for all q.

Let % be an open covering of X, or more generally, a family of sets whose
interiors cover X. It is known that the inclusion

0:C(X,A%) - C(X,A)
induces an isomorphism on homology (Theorem I11.6.3). By the same type

of argument as that just given, it can be shown that the induced homomor-
phism on cochain complexes

Hom(o,1):C*(X,A4;G) - CHX,A,%;G)
also induces an isomorphism on passage to cohomology. This fact can be

used to prove the existence of the Mayer—Vietoris sequence for cohomology
as follows. Let 4 and B be subsets of X such that

X = (interior A) v (interior B).
Then we may take % = {A,B}, and ¢:C(X,%) — C(X) will have the proper-

ties described above. In §II1.5 we introduced the commutative diagram of
chain complexes

C(A)

)

C(B)

C(AnB C(X, )

and the following short exact sequence

0 C(4nB)S CA)@®CB) - C(X,2) — 0
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in order to prove the Mayer—Vietoris sequence for homology theory. Recall
that @ and ¥ are defined by

P(x) = (px,]ex),  P(up) = ky(u) — L4(v).

Also, C(X,%) is a chain complex of free abelian groups, hence the short exact
sequence splits. Therefore we may apply the functor Hom( ,G) to obtain the
following short exact sequence of cochain complexes:

0 « C*(4 N B;G) « C*(A;G)® CXB;G) « CXX.U;G) « 0.

It is readily verified that homomorphisms Hom(®,1) and Hom(',1) have
the following expression in terms of i*, j*, k* and I*:

Hom(?,1)(x) = (k*(x), —I*(x)),
Hom(®,1)(u,0) = i*u + j*v.

Therefore we may pass to the corresponding long exact sequence of co-
homology groups, and make use of the isomorphism HYX,% ; G) ~ HY(X ; G)
to obtain the Mayer-Vietoris sequence in cohomology:
- L HY(X;G) & HY(A  B;G) & HY(A4;G)@® HYB;G) & HY(X;G) & - -+
Here
Y (x) = (k*(x),— I*(x)),
@(u,p) = *(u) + j*(v).

It should be remarked that there are other ways of deriving the Mayer—
Vietoris sequence for cohomology.

EXERCISES

6.1. Let K = {K_,,0,} be a chain complex such that each K, is a vector space over a
commutative field F, and each 9, is linear over F. Define the cochain complex
Homy(K,V), where V is a vector space over F, and the natural homomorphism

o: H{(Homg(K,V)) - Homy(HYK),V).
Prove that « is an isomorphism.

6.2. Let {X,X,} be an excisive couple in the space X, as defined in §IV.6. Prove that
the inclusion map i:(X, X; N X,) - (X1 v X,, X,) induces an isomorphism

*:HYX, U X5,X,;G) > HY(X,X, n X,;0)
for all g and all groups G.

We will conclude this chapter by pointing out one basic property of
homology theory which does not have an obvious analog for cohomology.
The property we have in mind was stated earlier as Proposition II1.6.1. This
proposition says, in essence, that for any pair (X,4), the homology group
H,(X,A) is the direct limit of the groups H,(C,D), where (C,D) ranges over all
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compact pairs contained in (X,A4). It is tempting to conjecture that the
cohomology group H*(X,A;G) is the inverse limit of the groups H"(C,D;G).
However, counterexamples can be given to show that this is false. A special
case of this question comes up in §3 of the Appendix.
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Alexander—Spanier Cochains, Marcel Dekker, Inc., New York, 1978, Chapter 8, §8.



CHAPTER VIII

Products in Homology
and Cohomology

§1. Introduction

The most important product is undoubtedly the so-called cup product:
It assigns to any elements ue H?(X;G,) and ve H{X;G,) an element
uuve H"*YX;G,; ® G,). This product is bilinear (or distributive), and is
natural with respect to homomorphisms induced by continuous maps. It is
an additional element of structure on the cohomology groups that often
allows one to distinguish between spaces of different homotopy types, even
though they have isomorphic homology and cohomology groups. This
additional structure also imposes restrictions on the possible homomor-
phisms which can be induced by continuous maps.

Another product we shall consider is called the cap product. It assigns
to elements u € H?(X;G,) and ve H,(X;G,) an element u nve H,_ ,(X;
G, ® G,). It is also bilinear and natural. While the cap product is not as
important as the cup product, it is needed for the statement and proof
of the Poincaré duality theorem in the next chapter.

We will also consider two other products: A cross product which is
closely related to the cup product, and a slant product, which has strong
connections with the cap product. The main reasons for considering these
two additional products is for the light they throw on the cup and cap
product.

In order to make effective use of cup products, it is necessary to have
ways of computing them for various spaces. Unfortunately, this is a rather
difficult topic; any systematic discussion of it would be rather lengthy. In
Chapter X we will use the Poincaré duality theorem to determine cup
products in projective spaces; then we can use these products to prove

172
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some interesting theorems (Borsuk—Ulam theorem, nontriviality of the Hopf
maps, etc.). In the present chapter we will mainly be concerned with a
systematic discussion of the basic properties of these various products.
Because this chapter is rather long and does not have many examples,
it may be best to skim throught it on a first reading. Then the reader can
return to it later to study more carefully the various details as they are needed.

§2. The Inner Product

In §VIL.4 we defined the so-called inner product, and used it to define a
natural homomorphism «:H"(Hom(K,G)) -» Hom(H (K),G). The various
naturality properties of the homomorphism « could also be interpreted as
naturality properties of the inner product.

It will be convenient to generalize the definition of the inner product
slightly for later use in this chapter. Let G, and G, be arbitrary abelian groups,
and let K be a chain complex. Then for any elements u € H{Hom(K,G,))
and v € H (K ® G,), the inner product {u,x) € G; ® G, is defined as follows.
Choose a representative cocycle u’ € Hom(K,,G,) for u, and a representative

cycle
k

xX'=3Y x®g, x; €K, g:,€G,
i=1
for x. Then
K

{uxy = Z U(x)®gi€ G ® G
i=1
This more general version of the inner product has essentially the same
properties as the original version.

§3. An Overall View of the Various Products

To define products, one needs to make use of the natural chain homotopy
equivalences of Chapter VI,

(:CX)®C(Y)»C(X xY)
ECX xY)-C(X)® C(Y),

especially the later. We will continue to use the above notation for these
chain maps, as in Chapter VL.

First, we introduce the cross product. Recall thatif f:G — G’andg: H - H’
are homomorphisms of abelian groups, then f ® g:G® H —» G’ ® H' denotes
the tensor product of the two homomorphisms. Using this notation, if
ue C’(X,G;) = Hom(C,(X),G;) and ve CYY,G,) = Hom(C,(Y),G,), then
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u® ve Hom(C p(X )® Cy(Y),G; ® G,). We may consider u @ vas an element
of Hom((C(X) ® C(Y)),+4 G1 ® G,) if we understand that u ® v is the zero
homomorphism on C(X) ® C,(Y), except when i = p and j = q. Let

&* = Hom(¢,1):Hom(C(X) ® C(Y),G, ® G,) - Hom(C(X x Y),G, ® G,)
=C*X x Y;G, ® G,).

Then we define u x ve CP"4X x Y;G,; ® G,) by
uxv=:*u®u).
It is readily verified that
o(u x v) = (6u) x v + (—1)u x dv.

From this coboundary formula, the following facts follow:

(1) If u and v are cocycles, then so is u X v.

(2) If u; and u, are cocycles which are cohomologous, then u; x v and
u, x v are cohomologous for any cocycle v.

(3) Similarly, if v, and v, are cohomologous cocycles, then u x v, and
u X v, are cohomologous for any cocycle u.

From these three statements it is clear that we can pass to coho-
mology classes, and thus define a cross product which assigns to any
cohomology class x € H?(X;G,) and ye H{Y;G,) a cohomology class
x x ye HP*4X x Y;G, ® G,). The two most important properties of this
cross product are the following:

(1) Bilinearity. (x; + X3) X y=Xx; X y+ X, Xy and x X (y; + y,) = x X
Vit XXy,

(2) Naturality If f: X' —> X and g: Y’ — Y are continuous maps, x € H?(X ;G,)
and y € HYY;G,), then

(f*x) x (g*y) = (f x g)*(x x ).

Later on we will generalize the definition of the cross product to relative
cohomology groups, and prove various additional properties.

Next, we will define the cup product in terms of the cross product. For
any space X, let dy or d for short, denote the diagonal map X —» X x X
defined by d(x) = (x,x). If ue H?(X,G,) and ve HYX,G,), define u v ve
HP™%(X,G, ® G,) by

uuv=d*u xv).

We see immediately that the cup product has the following two basic
properties:

(1) Bilinearity. (u; +u)uv=u;, Vv+u,vv and uu (v; +v,)=uuv
v+ UV,
(2) Naturality. If f:X'—> X is a continuous map, u e H?(X,G,) and ve
HYX,G,), then
SHu o v)=(f*u) v (f*v).
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We have just defined the cup product in terms of the cross product,
using the diagonal map d. Conversely, it is possible to derive the cross
product from the cup product. To clarify this point, let us assume that the
cup product is given, which is bilinear and natural as just described. Define
a new cross product, u # v by the formula

u# v =(piu) v (p3v)

foranyue H?(X,G,)andve HY(Y,G,). Herep,: X x Y>Xandp,: X x Y->Y
are the projections. Then it follows easily that this new cross product is
also bilinear and natural, in the same sense as the original cross product.
If we use this new cross product to define a new cup product by the formula

UV v=d*u# v)

for any u e H?(X,G,) and v e HYX,G,), then we find that u V' v =u U v,
i.e., the new cup product is the same as the old. This may be proved by the
following computation:

uv' v=d*u#v)=d*((pfu) U (p3v))
= (d*pTu) v (d*p3v)
= (pyd)*u v (pd)*v =u v v.

Similarly, we find that

u # v=(pfu) v (p3v)
= d¥«y((pTu) x (p3v))
= d§«y(py X p2)*(u x v)
=[(p1 X p)dyxy]*(u x v) =u x v

for any u € H(X,G,) and v e H(Y,G,).
We can reformulate what we have just proved as follows: the formulas

uvuv=d¥u x v),

u x v = (pfu) v (p3v)

establish a 1-1 correspondence between cross products and cup products
(which are required to be bilinear and natural).

From this point of view, the theory of cup products and the theory of
cross products are logically equivalent. However, cup products are more
useful, while cross products have a more direct and simpler definition. Later
on we will consider other properties of cross and cup products, such as
associativity, commutativity, and existence of a unit. We will also extend
the definitions to relative cohomology groups, and consider their behavior
under the coboundary operator of the exact cohomology sequence of a
pair (X,A). Naturally, the exposition of the properties of cup products will
parallel that of cross products.
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Remark on Terminology. Cross products are sometimes called exterior
cohomology products and cup products are then called interior cohomology
products.

Next, we will discuss slant products, and cap products, which are derived
from slant products by means of the diagonal map.
First we define a homomorphism

Hom(C*(Y),G) ® [C(X)® C(Y)],® G, = C,_ (X)) ® G, ® G,,
denoted by ¢ ® u — ¢\\u, as follows:
P\a®b®g=(—D"a®ob)®g

for any ¢ €e Hom(C?(Y),G,), ae C(X), be C(Y) and ge G,. Here the
notation | ¢| means the degree of ¢, |a| means the degree of a, etc., and we
make the convention that ¢(b) =0 unless be CP(Y). We can verify the
formula

AP\a®b®g) =09\ a®b®g +(—1)?p\\(a® b® g)

provided we follow the convention that
(69)(b) = (—1)"?lep(0b).
We next define a homomorphism
Hom(C?(Y),G,) ® C,(X x Y,G,) = C,_,(X,G; ® G,),
denoted by u ® v — u\v, by using the Eilenberg—Zilber chain map ¢&:
u\v = u\&(v).
Once again we have the formula
ou\v) = (du)\v + (— 1)u\d(v).
Hence we can pass to homology classes and get a homomorphism
HP(Y,G)® H (X x Y,G,)— H,_ (X,G, ® Gy),

denoted by u ® v — u\v, which is called the slant product. In addition to
the obvious bilinearity of the slant product, it satisfies the following naturality
condition: Let f: X — X" and g: Y — Y’ be continuous maps. Then for any
ue H(Y',G)and ve H(X x Y,G,) we have
Jllg*u)o) = u\(f x g)yv.
This naturality relation can be indicated by the following diagram:
HA(Y)® HX x Y) — H,_(X)

b o |+

HA(Y)QH (X' x Y) —> H, (X))

although this is not a commutative diagram in the conventional sense.
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Remark: One can reformulate the slant product so as to obtain com-
mutative diagrams in the usual sense. Recall that there is a natural adjoint
associativity isomorphism

Hom(B® A4,C) ~ Hom(A4, Hom(B,C))

for any abelian groups 4, B, and C. Thus we can consider the slant product
as a homomorphism

Hy(X x Y)— Hom(H?(Y),H,_,(X)).

Then the naturality condition gives rise to the following diagram, which is
commutative in the usual sense:

H,(X x Y) —> Hom(H*(Y),H, ,(X))

l(./ X Gy lHom(f*,y*)

Hy(X' x Y’y — Hom(H"(Y'),H, ,(X)).

However, most people find this formulation of the slant product rather
awkward to work with.

We can now define the cap product. It is a homomorphism
HY(X,G1) ® H,(X,G,) » H,_,(X.G, ® Gy),
denoted by u ® v — u n v, and defined by
unv=u\dy o)

where d: X — X x X is the diagonal map. It is bilinear, and natural in
the following sense. Let f:X — X’ be a continuous map. Then for any
ue€ HP(X'), ve H,(X) we have

JL(f*u) nv)=un foo.
The corresponding diagram is the following:
H(X)® H(X) —— H, ,(X)

I Iz
n 1
HYX')® Hy(X') — H, ,(X)).

Once again, this could be made into a conventional commutative diagram
by using the Hom functor rather than ®.

We have just shown how to derive the cap product from the slant product.
Conversely, the slant product can be derived from the cap product, as
follows. For any u € HX(Y,G,) and v € Hy(X x Y, G,), define

u\v = pr((p3uw) N v),

where p, and p, are the projections of X x Y on the first and second factors
respectively. By the same methods used in the discussion of cross and cup
products, one can prove that our formulas establish a 1-1 correspondence
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between slant and cap products (which are required to be natural and to
be bilinear). Thus the theories of these two different kinds of products should
be logically equivalent. Actually, cap products will be needed in our dis-
cussion of the Poincaré duality theorem for manifolds; however, the
definition of slant products is a bit simpler.

Remark. We have based our discussion of the cup and cap product on
the use of the Filenberg—Zilber natural chain homotopy equivalence

E:C(X x Y) = C(X)® C(Y)

together with the diagonal map d:X — X ® X. An alternative procedure
would be to use natural diagonal maps 4*: C(X) — C(X) ® C(X) as described
in Exercise VI.5.2. For the connection between ¢ and 4, see Exercise VI.5.3.
The choice of which method to use is largely a matter of taste. However,
there is some advantage to having both cross and cup products, and the
relationship between them.

§4. Extension of the Definition of the Various
Products to Relative Homology
and Cohomology Groups

The main difficulty in extending cross and slant products to relative coho-
mology and homology groups is the problem of extending the Eilenberg—
Zilber chain homotopy equivalence & to relative groups; this problem was
already encountered in the discussion in §VI.6 of the homology groups
of product spaces. The main result of that discussion may be summarized
as follows: Let (X,4) and (Y,B) be pairs. Then the chain map ¢ induces a
chain homotopy equivalence
C(X) C(Y)(g_ C(X xY)

C(A)® CB) C(X xB)+C(AxY)

If we assume that {X x B,4 x Y} is an excisive couple in X x Y, then
the homomorphism

C(X x Y) C(X x Y)

N X xB tCAxY) CEXXxBUAXTY)

induces isomorphisms on homology and cohomology with any coefficients.

In view of this, when we want to define cross or slant products in the
homology and/or cohomology of pairs (X,4) and (Y,B), we will always
assume that {X x B,4 x Y} is an excisive couple in X x Y. With this
added assumption, our previous definitions generalize very easily. The
details are as follows.
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Cross Product. If ue CY(X,A;G;)=Hom(C,(X)/C,(A4).G;) and ve
C4Y,B;G,) = Hom(C,(Y)/C,(B),G,), then

C(X) _C(Y)
“®”6H°m<<am®7m)pfl®62>

- C(X)® C(Y)
- Hom(<C(X) ®C(B)+ C(A® C(Y)>p+q’ G ® G;)

and

% C(X xY)
Su®oe Hom<(C(X x B) + C(A x Y)),,+,,’G‘ ®Gz)'

Passing to cohomology groups, and applying the isomorphism (k*)™!, we

obtain the cross product in cohomology, which is a homomorphism
H"(X,A;G,)@H‘I(Y,B;Gz)—X»HP*"(X xY;Ax YU X x B;G, ® Gy).

The naturality condition now reads as follows: Let f:(X,4) —» (X",4") and

g:(Y,B) — (Y',B) be continuous maps of pairs. Then the following diagram
is commutative:

HY(X',A) @ HU(Y'B) —— HP* (X' x Y, A’ x Y' U X' x B)
| l/* ®4 lu x g*
HP(X,A)® H{Y,B) ———> HP*X x Y,Ax YU X x B).
In symbols,
(f*u) x (g*v) = (f % g)*(u x v)

for any u e H/(X',A';G,) and v € HYY',B’;G,). It is assumed, of course, that
{A x Y, X x B} and {4’ x Y, X' x B’} are excisive couples.

Slant product. First, one defines the homomorphism

cry) C(X) _ C(Y) C,(X)
H0m<CP(B)’ G1> ® [C(A) ®aB—)]q ® G, > Cq_l;(A) ® G, ®G,,

denoted by ¢ ® u — ¢\\u, by the formula
Pa®b®g= (-1 epb)®g

exactly as in §3. Then one defines a homomorphism

cr(y) C(X x Y) . .
HOIn(C"(B)’ G‘>® CAx+CxxB® G2 = (X461 © Go),

denoted by ¢ ® u — ¢\u, by the formula
P\u = P\\E(u).
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Passing to homology and cohomology, and using the isomorphism (k,) ",
we obtain the slant product, a homomorphism

HY(Y,B;G))@H(X x Y;AXx YU X x B;G,) > H,_(X,4;G, ® G,)

which is denoted by u ® v — u\v. The naturality condition is expressed by the
following diagram:

HXY',BY® HJ(X' x Y, A’ x Y U X' x B) — H,_,(X'.4)

jg* Lf X ) If*

HYY,B)@ H(X x Y, A x YU X x B) —> H,_,(X,A).

Here f:(X,4) - (X',A’) and g:(Y,B) — (Y',B’) are continuous maps of pairs,
and it is assumed that {4 x Y, X x B} and {4’ x Y', X' x B’} are excisive
couples.

We will now take up the problem of defining the cup and cap product
for relative cohomology and homology groups. Here the situation is slightly
different. For the cup product, the object is to define a homomorphism

H"(X,A;G,)® HYX,B;G,) > H**YX, AU B; G, ® G,)
under a reasonable set of assumptions; and for the cap product, one wishes
to define a homomorphism

HY(X,A:G,)® H(X, A U B; G;) > H,_,(X, B; G, ® G,)
under minimal hypotheses. The cup product will be defined from the cross

product, and the cap product will be defined from the slant product by use
of the diagonal map d: X — X x X.

Cup Products. Let us consider a triad (X ; A,B) consisting of a topological
space X and arbitrary subspaces 4 and B. We have the following two chain
maps, induced by obvious inclusions:

, C(X x X) C(X x X)
CAXX)+CXxB) CAxXUX xB)
C(X) C(X)

l

“CA) + CB)  C(Au By

If we attempt to define the cup product using the cross product and the
diagonal map, we are led to the following commutative diagram:

HY(X,4) @ HYX,B)

X

H”+‘1<H0m( CX x X) G,®G )) _a H”*"(Hom(—& G,®G ))
CAxX)+CX x By 1272 cay+cmy T

L. %

d#
HP* (X x X, X x BUA X X; G, ® G,) ———————— HP*X, AU B; G, ® G,).
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Here d¥ and d¥ are induced by the diagonal map d: X — X x X. From this
diagram it is clear that to define cup products, we may either assume that
{A x X, X x B} is an excisive couple, in which case k* will be an isomor-
phism, or we may assume that {4,B} is an excisive couple in X, in which case
I* will be an isomorphism. It is preferable and customary to make the latter
assumption for a couple of reasons. First of all in the important special case
A = B, {A,B} is always an excisive couple, while {4 x X, X x B} need not be
excisive (as far as is known). Secondly, for some of our later results about
cup products, we will need to assume that {4,B} is an excisive couple in X
for other reasons. Thus we may as well assume it is excisive at the beginning.
Therefore in order to define cup products

H?(X,4) ® HYX,B) > H?*%(X, A U B)

we will always assume that {A,B} is an excisive couple in X. This has the
following slight disadvantage: In order to have the relation

uvuv=d*u x o)

hold true, it is necessary to assume that both {A4,B} and {X x B, A x X} are
excisive couples.

Cap Product. The discussion is analogous to that just given for the cup
product. Let A and B be arbitrary subsets of X ; then we have the following
commutative diagram:

C(X x X)

m(XA~c)®H(___®G) b H,,(XA,G)M( c(x) ®G>
EERN cx xBuAxX) T VGV EVY TR

Il@k* L@l,

. C(X x X) 184, . _ )
HP(X,A,Gl)®H,,<C(X < B) + C(A x X)®GZ> — HP(X,A,Gl)®Hq(C(A)+ C(B)®GZ)

slant

product cap product

H, (X.B; G, ®G,)

This diagram is entirely analogous to the preceding one, and the symbols
for the various maps have the same meaning. In order to define the cap
product, we will assume that {A,B} is an excisive couple in X. Then the cap
product is a homomorphism

HY(X,A;G,)® H(X, AU B;G,) 5 H,_(X,B; G, ® G,)

which is the composition of (1 ® [,) ™', 1 ® d ., and the slant product in the
above diagram. If in addition we assume that {X x B, A x X} is an excisive
couple in X x X, then the following relation holds between the slant and
cap products:

u N U= u\(d,,0).
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§5. Associativity, Commutativity, and Existence
of a Unit for the Various Products

In order to discuss these questions, it i$ necessary to discuss the associativity,
commutativity, and existence of a unit for the Eilenberg—Zilber chain
homotopy equivalence &:C(X x Y) - C(X)® C(Y). In order to discuss the
associativity of &, consider the following diagram:

EXXY.Z

CXxY¥YxZ) — CX x Y)®C(Z)

16X‘YXZ jéX.Y@I

CX)®C(Y x Z) ;—@? CX)® C(Y)® C(Z).

Recall that the proof of the existence of the chain map & required the choice of
a certain chain e, e [ C(I") ® C(I")], for each positive integer n. It is too much to
expect that the above diagram would be commutative for an arbitrarily con-
structed chain map &. However, using the method of acyclic models, it is easy
to prove that the two different chain maps in this diagram from C(X x Y x Z)
to C(X)® C(Y)® C(Z) are chain homotopic, (in fact, by a natural chain
homotopy). Hence on passage to homology we do obtain a commutative
diagram.

EXERCISES

5.1. Prove that the natural chain map 7:C(X x Y)— C(X)® C(Y) (explicitly defined
in §VL5) is associative, i.e., if it is substituted for ¢ in the diagram above, one obtains
a commutative diagram.

5.2. Prove that the natural chain map {:C(X)® C(Y)— C(X x Y) defined in §V1.3
is associative (in the sense discussed above).

In order to discuss the commutativity of &, consider the following diagram:

XY

C(X x Y) — C(X)® C(Y)

bk
C(Y x X) ;—x> C(Y)® C(X).

In this diagram, t:X x Y - Y x X is defined by #(x,y) = (y,x), and T is

defined by

T@a®b) =(~1)"b®a

for any a e C,(X) and b € C,(Y). It is readily checked that T is a chain map.
Therefore TEXY and &Y-Xt, are both natural chain maps C(X x Y) —
C(Y)® C(X), and by the method of acyclic models they can be proven chain
homotopic (by a natural chain homotopy). It is interesting to note that
there is one rather important difference between the question of the as-
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sociativity and the question of the commutativity of ¢: As we saw in Exer-
cise 5.1, it is possible to choose & so that it will be associative. However, it is
known that it is not possible to choose a natural chain map ¢ which is
commutative. This follows from the fact that the Steenrod squaring opera-
tions exist and are nonzero (see Exercise V1.5.4 and the reference to Spanier’s
book given there). This is one of the mysterious “facts of life” in algebraic
topology.

Next we will discuss the property of the Eilenberg-Zilber map & that
guarantees the existence of units for cross and cup products. For this purpose,
let us regard the additive group of integers Z as a chain complex which is
“concentrated in degree 0,” i.e., as a chain complex C such that C, = Z, and
C, = 0for g # 0. Then the augmentation &: Co(X) — Z can be looked on as
a chain map ¢:C(X) — Z. With these conventions, consider the following
two diagrams:

CX x ¥) —2— cx) CX x ¥) —2— (1)
ngw I lg“ I
CX)®C(Y) YT CX)®zZ C(X)® C(Y) YN Z® C(Y).

Once again, by the use of acyclic models it can be proved that these two
diagrams are homotopy commutative, (In these diagrams, p;: X x Y - X
and p,:X x Y —» Y denote projections on the first and second factors
respectively.)

EXERCISE

5.3 Verify that if we substitute the explicit map # defined in §VI.5 for £ in the above
diagrams, they become commutative.

With these preliminaries out of the way, we can state our various associa-
tive laws, commutative laws, etc. The verifications of these properties will be
left to the reader for the most part. First we will list the various associative
laws.

Associative law for cross products. Let ue H?(X,A;G,), ve HYY,B;G,),
and w e H'(Z,C;G;). Then

ux(@xw=uxv)xw

provided enough couples are assumed excisive to insure that all x-products
are defined.

Associative law for cup products. Let u e H*(X,A;G,), ve H(X,B;G,) and
we H'(X,C;G3). Then

uvpuw=Wuur)uw

provided enough couples in X are assumed excisive for everything to be
well defined.
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Associative law for slant products. Let ue H*(Y,B;G,), ve HYZ,C;G,)
and w e H,((X,A) x (Y,B) x (Z,C);G,), where we set

(X, A) x (Y,B)=(X x ,XxBU A x Y)

etc., for the sake of brevity. Then
(u x v)\w = u\(v\w),

provided enough couples in the various product spaces are assumed excisive
so that everything is well defined.

Associative law for cap products. Assume that u e H?(X,A4;G,), ve
HYX,B;G,),and we H,(X,A U B u C;G;). Then

wovynw=un(®nw)

in H,_, (X,C;G;® G, ® G,), provided {4,B}, {B,Au C}, {4y B,C},
and {A4,C} are excisive couples in X.

The fact that one has to make so many awkward assumptions about
excisive couples in order to state an associative law must be considered a
defect of singular homology and cohomology theory. Fortunately, in practice
one does not usually have trouble about this, because it will be clear from
the context in many cases, that all the couples involved are automatically
excisive. This will be true if all the subspaces are open sets, or if all are
subcomplexes of CW-complexes, for example.

Next, we will take up the commutative laws.

Commutative law for cross products. Let ue H(X,A;G,) and ve
HYY,B;G,). Then
t*(u x v) = (—1)" x u,
where 1:(Y,B) x (X,4) - (X,4) x (Y,B) is defined by t(y,x)=(x,y). Of
course one must assume that {X x B,A x Y} is an excisive couple.

Commutative law for cup products. Letu e H?(X,A;G,)and ve HY(X,B;G,).
Then
uvv=(—DMMpuu
provided {4,B} is an excisive couple.

There is no commutative law for slant or cap products; they do not lend
themselves to any such law. This is not to say that the homotopy commuta-
tivity of the Eilenberg—Zilber chain homotopy equivalence ¢ does not affect
these products, however.

Existence of Units. For any space X, the augmentation ¢: Co(X) — Z may
be considered to be a 0-cochain, which is a cocycle. We will denote its
cohomology class by 1€ H%X;Z), or 1y to be more explicit. For cross
products, we have the following equations:

uxly=piu), ueH!XA;G),
1x x v = p3(v), ve HYY,B;G).
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In these equations, p, and p, denote the projections on the first and second
factors of the product space, as usual.
For cup products, the equations are even simpler: for any u € H?(X,A4;G),
Iyvu=uuly=u
For slant products, we have

Ly\v = py,4(v)
forany ve H (X x Y;A4 x Y;G), while for cap products,
Iynv=v
for any v e H/(X,B;G).
Note that 1y acts as both a left and right unit for cross and cup products,

while for slant and cap products, we have only a left unit. Also note that
there is no unit in H°(X,A4) if 4 is nonempty.

§6. Digression: The Exact Sequence of
a Triple or a Triad

In order to describe in a most concise way the behavior of the various
products with respect to the boundary operator d,: H,(X,4) - H,_(A) or
the coboundary operator §*: H?(4) — H? (X ,A), it is convenient to make
use of the exact homology (or cohomology) sequence of a triad.

First of all, let (X,A,B) be a triple, 1.e., X is a topological space, and X >
A o B. Then we have the following split exact sequence of chain complexes:

0> C(4.B) 5 C(X.B) 55 C(X,4) - 0.

Since this sequence is split exact, if we apply the functor ® G or Hom( ,G),
we again obtain a short exact sequence of chain or cochain complexes. We
may then pass to the corresponding long exact homology and cohomology
sequences:

-5 H,(A.B;G) > H,(X.B;G) 5 H,(X.4:G) 5 H,_(4,B;G) - - -,
- & HYA,B;G) < HYX,B;G) L HYX,4;G) & H*" Y(A,B;G) «— - --.

Note: The exact homology or cohomology sequence of a triple can also
be derived directly from the basic concepts of singular homology theory,
without going back to chain complexes; cf. Eilenberg and Steenrod, [2],
Chapter I, §10.

Next, let (X;A4,B) be a triad, i.e., A and B are arbitrary subsets of X (no
inclusion relations are assumed between A and B). Assume that {4,B} is an
excisive couple in X; it follows that the inclusion maps

ki:(A,A n B) -» (A v B,B)
ky:(B,An B) > (A u B,A)
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induce isomorphisms on homology and cohomology groups with any co-
efficients. If we substitute the (co-) homology groups of (4, 4 n B) for those
of (4 U B, B) in the exact (co-) homology sequence of the triple (X, 4 U B, B),
(using the isomorphism induced by k,), we obtain one of the (co-} homology
sequences of the triad (X ; A,B). To obtain the other (co-) homology sequence
of this triad, use the isomorphism induced by k, to substitute the (co-)
homology groups of (B, A n B) for those of (4 v B, A) in the exact (co-)
homology sequence of the triple (X, A4 v B, A). The resulting homology
sequences are as follows:

Ax

“ 5 HA,AB) > H(X.B) > H(X.AUB) 5 H, (A ANB)...
-3 H(B,AnB) > H/(X,A) > H(X,AUB) 5 H, (BAnB)...

The coeflicient group has been omitted from the notation. The homomor-
phisms 4, will be referred to as the boundary operators of the triad (X ; A,B);
they are defined so as to make the following two diagrams commutative:

. H,_{(AUB,B)

Ox

H(X,A U B) L
A*
Hn— l(A’ An B)
2 H,_ (AU B, A)
H,(X, 40 B) Ikz*
A*
H,_,(B, A A B).

Analogously, we will denote the coboundary operators of the exact co-
homology sequences of this triad as follows:

A*:H""Y(A,A n B) » HY(X,A U B),
A*:H""YB,A n B) - H"(X,A U B).

We have introduced the exact homology and cohomology sequences of a
triad for a very specific purpose in connection with the various products.
However these exact sequences, and the exact sequence of a triple, are of
interest in their own right.

There is one other exact sequence which it is convenient to introduce now,
known as the relative Mayer—Vietoris sequence. It will be needed in Chapter
IX. Let (X;A,B) be a triad, and assume that {4,B} is an excisive couple in X.
We will use the following notation for inclusion maps:

i:(X,A N B) - (X,A),

Ji(X,A n B) - (X,B),
k:(X,4) - (X,A v B),
I:(X,B) - (X, 4 U B).
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Consider the following sequence of chain complexes and chain maps:

Cx)

0~ COX,ANB) % CXM@CUB) S o =

Here the chain maps @ and s are defined as follows:

D(x) = (i 4X.] £ X),
P(uv) = ky(u) — L4(v).
It is not difficult to prove that this sequence is exact; in fact, it is even split
exact, because all the chain complexes consist of free abelian groups. If we
pass to the corresponding long exact homology sequence, and substitute

C(X,A v B)for C(X)/[C(A) + C(B)], we obtain the relative Mayer—Vietoris
sequence of the triad (X ; A,B):

> H(X,A " B) S H(X,A)® H(X,B) % H,(X,4 U B)
LH, (X,AnB 5.

Of course there is a dual exact sequence of cohomology groups.

§7. Behavior of Products with Respect to
the Boundary and Coboundary Operator
of a Pair

We will content ourselves with stating the main properties involved, leaving
the proofs to the reader.

(a) Cross Products. Assume that (X,4) and (Y,B) are pairs such that
{A x Y, X x B} is an excisive couple. Then the following two diagrams are
commutative:

HY(A) ® H{Y,B) ———————> HP* A x Y, A x B)

lé*@l 14*

H?*Y(X,4) ® HY(Y,B) —— HPY* X x Y, X x BuAxY)

HP(X,A) @ HY(B) ———————> H?*%X x B, A x B)

l(_np@é* lm‘

HY(X,A)® H* {(Y,B) ——> HP" "X x Y, X x BUA x Y).
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These two relations may also be expressed by equations, as follows: For
any u € H?(A) and v € HY(Y,B),

(6*u) x v = A*(u x v).
For any u € H?(X,A) and v e H4B),
(= 1)P(u x 6*v) = 4*(u x v).

Obviously, the second relation can be derived from the first by use of the
commutative law.

(b) Cup Products. Assume that {A4,B} is an excisive couple in X. Then we
have the following two diagrams to describe the relations involved (they are
not commutative diagrams in the usual sense; cf. the discussion of naturality
of the slant and cap products).

H?(A)® HYA, A A B) ——> H?*94, A ~ B)

HP+I(X,A)®Hq(X,B) __U__) Hp+q+](X’A UB)

H?(B, A ~ B)® HY(B) ———— H"*YB, A ~ B)

Il* Jé* (=P lA'

HY(X,4)® H'* }(X,B) —— HP*4* (X, A U B).

These relations may also be stated in equations, as follows. If u € H?(A4) and
ve HYX,B), then

(6%u) U v = A*(u U k*v).
For the second relation, if u € H?(X,A) and v € H4B), then
(= 1D)Pu v o6*v = A*((I*u) L v).

EXERCISE

7.1. Under the above assumptions, prove that we have the following commutative
diagram:
HP(X,d) ————— H’(X) ’ HP(A) d > HPP(X,A)

HP*%X, A U B) ——> HP*(X,B) ——> HP™A, A~ B) ——— HP*9*\(X, A U B).
Here v € HY(X,B).

(c) Slant products. Assume, as in (a), that (X,4) and (Y,B) are pairs such
that {X x B, A x Y} is an excisive couple. Then the relations are expressed
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by the following two diagrams of which the first is a commutative diagram
in the usual sense:

slant

HAYB)® Hy(X x Y,Ax YU X x B) ——> H,_,(X,A)

l(—”"@d* Je*

slant

HAYB)® H, (A x Y, A x By —— H,_,_(A)

H(YB)QH/(X x Y, Ax YU X x B)

slant
{é* ld: (0" H,_(X,A).
slant

H? '(B)® H,_,(X x B, A x B)

The second diagram expresses the fact that the homomorphisms 6* and 4,
are adjoint in a certain sense. These relations may be expressed in equations
as follows: Letue H(Y,B)and ve Hy(X x Y,A x Y U X x B). Then

0, (u\v) = (—1)Pu\d .

For the second relation, let u € H? " '(B)and v e H(X xY,AxYuUX xB).
Then

(*u)\v + (= 1) 1w\ 4,v=0

(d) Cap Products. Assume that {A4,B} is an excisive couple in X. Then the
following diagram is commutative, up to the sign (—1)?:

HYX,A)® Hy(X, A 0 B) ———— H, (X.B)

PW, l

H?B,A~B)®H, (B,An) —— H, , (B).
This relation may be expressed by the following equation:
(= D?(k*u) N (4,0) = 0, (u N v)

for any u e H(X,A) and v e H (X, A U B). A second relation is indicated by
the following diagram:

H?(X,A)® HYX, A U B) ————— H,_,(X.B)

I&* 14* (=1 [k*

H""YA)® H, (A, A~ B) —— H, (A, A~ B).

Equivalently,
*u)nv+ (=1 kund)=0

for any u e H?~'(A) and any ve H (X, A U B).



190 VIIT Products in Homology and Cohomology

EXERCISES

7.2. Prove that the following diagram is commutative:

4
H(B,A B) ——— HyX,A) — H,(X, AU B) — H, (B, 4~ B)

l(k‘u)m lur\ luﬁ (—1)” l(k*u)r\

H, ,(B) ——> H,_,X) —> H, (X.B) ——— H, , \(B)
Here u e H(X,A).

7.3. Prove that corresponding homomorphisms in the following two exact sequences
are “adjoints” of each other, with respect to the indicated cap product:

*

H"(A) < H(X) H”(X,A) — H?P " Y(4)

® ® ® ®
H A, AnB) — H,X,B) —— H.(X,AUB) — H, (4, An B

H, (4, AnB) — H, (X,B) = H, (X.B) «——— H, (A, A~ B).

§8. Relations Involving the Inner Product

These relations involve the inner product, which was defined in §2, and the
cross, slant, cup, and cap products.

(a) Assume that (X,4) and (Y,B) are pairs such that {4 x Y,X x B} isan
excisive couple in X x Y. In Chapter VI we defined the homomorphism

a:H,(X,A) @ H(Y,B) - H,, ((X,4) x (Y.,B)).
Letae H,(X,4),be H(Y,B),ue H'(X,A;G,), and v € H(Y,B;G,). Then
(= DPu x v,o(a @ b))y = {u,ay @ {v,b).

The proof of this relation is easy.

(b) Assume,asin(a)that {4 x Y, X x B} isanexcisive couplein X x Y. Let
ue H(X,A:G,),ve H(Y,B:G,),andwe H,, (X x Y, A x YU X X B;G,;).
Then

lu x v,w)y = {u, v\w).

(c) Assume that {4,B} is an excisive couple in X. Let ue HY(X,A;G,),
ve HY(X,B;G,),and we H,, (X, A U B;Gj;). Then

<u v o,w)y =<u,v N w).
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A noteworthy special case of this relation occurs when 4 =¢J, p=0,
G, =7Z,and u= 1€ H°X;Z). Then 1 U v = v, and it is easily verified that
{1,v N w) =g (v n w). Thus under these hypotheses, we obtain the relation

{o,w) =g, (v Ow)

which expresses the inner product in terms of the cap product and the
augmentation.

The proof of Relations (b) and (c) are easy. In the case where G; = G, =
G5 = F, where F is a field, and all the homology and cohomology groups
involved are finite-dimensional vector spaces over F, Relation (b) shows that
cross products are determined by slant products, and vice-versa. Similarly,
Relation (c) shows that under these hypotheses, cup products are determined
by cap products, and vice-versa (cf. Exercise VIL6.1).

§9. Cup and Cap Products in a Product Space

Let u e HY(X,A), ve HYX,B), we H"(Y,C), and x € H(Y,D) (the coefficient
groups are omitted from the notation). Then

uxwou@xx)=(—Dwuov ) x(wu x) 9.1)

provided we assume enough couples are excisive so that everything is well
defined. In particular, this would be the case if 4, B, C, and D were all empty.

Probably the easiest way to prove Equation (9.1) is to make use of the
relation between cup and cross products explained in §3. If everything is
expressed in terms of cup products, this relation becomes almost obvious.
Therefore the details are left to the reader.

To state an analogous relation for cap products, we must use the
homomorphism

2:Hy(X,A)® H,(Y,B) > H,, (X x Y,Ax YU X x B)

defined in §§VI.4 and IV.6. This can be extended in an obvious way to a
homomorphism
o:H(X,A;G) @ H(Y,B;G,) - H,. (X x Y, AxYuUX x B,G, ® G,)
with arbitrary coefficients G, and G,. Assume thatu € H?(X,A,),ve HYY,B,),
ae H(X,A, v A,)and be H(Y,B, U B,). Then
wuxv)na@®b)=(—1)"a((u N a)® (v N b)) 9.2)
provided enough couples are assumed excisive. A detailed proof of this

relation is written out in Dold [1], pp. 240-241.
This completes our survey of the main properties of the four products.
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§10. Remarks on the Coefficients for the Various
Products—The Cohomology Ring

In all four products, we started out with homology or cohomology classes u
and v with coefficient groups G, and G, respectively, and the product always
had coefficient group G, ® G,. Sometimes it is convenient to assume given
a homomorphism h:G; ® G, — G and to systematically apply the coeffi-
cient homomorphism &, to the resulting product. For example, if R is a
ring;and h:R ® R — Ris the homomorphism induced by the multiplication,
then we get a cup product which assigns to elements u e HP(X;R) and
ve HYX;R) an element u U v e H? 74X ;R). With this multiplication, the
direct sum
H*(X;R) =) H"(X;R)

becomes a kind of ring which is called a graded ring, because the underlying
additive group is the direct sum of a sequence of subgroups, indexed by the
integers. In fact, H*(X ;R) is the prototype of a graded ring. If R has a unit
1 € R, then H*(X ;R) has a unit 1, € H%X;R); it is represented by the cocycle

Co(X) > Z SR,

where ¢ is the augmentation and e is the unique ring homomorphism defined
by e(1) = 1. If the ring R is commutative, then H*(X ;R) is commutative in
the graded sense (sometimes called skew-commutative or anticommutative):

uvv=(—1)Mfruu

for any ue HP(X;R) and v e HYX;R). In this case, H¥(X;R) is a graded
algebra over the commutative ring R.

We mention two more examples like this, leaving the reader to fill in
the details of the definitions, etc. For both examples, let R be a ring with
unit, M a left R-module, and i:R ® M — M the homomorphism defining
the module structure.

ExampLE 10.1. The cap product assigns to any elements u € H?(X;R) and
ve H(X;M) an element u N ve H,_,(X;M). Using this cap product, the
direct sum

becomes a graded left module over the graded ring H*(X ; R).

ExampLE 10.2. Let (X,4) be an arbitrary pair. The cup product assigns to
elements u € H?(X;R)and v e HYX,A;M) an elementu U v e H? T4 X,A; M).
This makes

H*(X,A:M) =} H"X,A;M)
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into a graded left module over H*(X ;R). Moreover, each of the homomor-
phisms of the exact sequence of the pair (X,A4),

J¥:H*X,A;M) - H*X; M),
i*: H¥(X ;M) - H¥(A; M),
and
o*:H¥(A; M) - H*X,A; M)

are homomorphisms of graded left H*(X ; R)-modules (the definition of the
module structure on H*(X ;M) and H*(4;M) is left to the reader). In this
example, the homomorphisms j* and i* have degree 0, while §* has degree
+1.

§11. The Cohomology of Product Spaces
(The Kiinneth Theorem for Cohomology)

By combining the Kiinneth Theorem of §V1.6 with the universal coefficient
theorem for cohomology of §VIL4, one can express the cohomology groups
of a product space, H{X x Y;G) in terms of the homology groups of the
factors, H,(X) and H,(Y), (in principle, at least). What we are now interested
in is the expression of H(X x Y;G) in terms of the cohomology groups of
the factors, H?(X) and HY(Y). The point is that we can use such an expression
together with the relations given in §9 to obtain information about cup and
cap products in X x Y terms of these products in the factors, X and Y.
The cross product defines a homomorphism

H"(X,2)® H(Y,Z) -» H?*4X x Y;Z).
This definition can be extended in an obvious way to a homomorphism

Y HAX;Z)® HYY;Z) - HYX x Y;Z).
ptqg=n
One would then hope to prove that this homomorphism is a monomorphism,
and that the cokernel is isomorphic to something of the form

Y Tor(HP(X;Z),HY(Y;Z))

p.q

just as in the case of homology. Unfortunately, simple examples show that
this is too much to hope for: If X and Y are discrete spaces having infinitely
many points, no such theorem holds. However, if X or Y is a finite discrete
space, then there is no problem.

This is the key to the situation: one must impose some sort of finiteness
condition on at least one of the factors.
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Before we can state and prove such a theorem, we need some algebraic
preliminaries. First of all, recall that if F is a free abelian group of finite
rank then Hom(F,Z) is also a free abelian group (of the same rank). It may
be proved that if F is a free abelian of infinite rank, then Hom(F,Z) is not
free. However, we will have no need for this result. It follows that if K =
{K,,0,} is a chain complex such that K, is free abelian of finite rank for each
g, then Hom(K,Z) is a cochain complex of free abelian groups.

Secondly, recall that we introduced earlier the natural homomorphism
Hom(A4,4) ® Hom(B,B') - Hom(4 ® B, A’ ® B’) which assigns to homo-
morphisms f: 4 — A’ and g: B — B’ the tensor product of the two homomor-
phisms, f® g:A ® B - A’ ® B'. In general, the abelian groups Hom(4,4') ®
Hom(B,B’) and Hom(A4 ® B, A’ ® B’) are not isomorphic. However, in the
special case where A is free abelian of finite rank and A’ = Z, it is readily
verified that the natural homomorphism is an isomorphism of Hom(4,Z) ®
Hom(B,B') onto Hom(4 ® B, B’). We can now extend this result to chain
complexes. Suppose that K = {K,,d,} is a positive chain complex such that
each K, is free abelian of finite rank, that C = {C,,d,} is another positive
chain complex, and G is an abelian group. Then the natural chain map

Hom(K,Z) ® Hom(C,G) - Hom(K ® C, G)

is an isomorphism of chain complexes.
Finally, we need the following lemma of a rather technical nature:

Lemma 11.1. Let (X,A4) be a pair such that H(X,A) is finitely generated
Jor all q. Then there exists a chain complex K = {K,,0,} such that each K,
is a free abelian group of finite rank, and a chain homotopy equivalence
f:K = C(X,A).

PrOOF. For each g, choose an epimorphism e, of a finitely generated free
abelian group F, onto H,X,A); denote the kernel by R,.;, and let
dg+1:Ry41 = F, denote the inclusion homomorphism. Then

0 H(X,A) & F,& R, <0

is a short exact sequence, and both F, and R, are free abelian of finite
rank. Define K, = F,® R, for all ¢, and 0,:K, - K,_, by

aqu =0

0,|R, = d,.
Then K = {K,,0,} is a chain complex such that each K, is free abelian of
finite rank. It is an easy exercise to prove that there exist homomorphisms

@ F, = Z,(X,A)

l/1q+ 1:Rq+ 1 Bq(X,A)



§11. The Cohomology of Product Spaces (The Kiinneth Theorem for Cohomology) 195

for all g such that the following diagram is commutative:

a dyvy
0 ¢—— H(X.d) «——— F : R, 0

s

0 e H/(X,A) «—— Z/X,A) <—— B,(X,d) «— 0.

Next, we may choose a homomorphism 0, :R,.; = C,.(X,A) such that
the following diagram is commutative:

0 " Cq+1(X7A)
R,y Cq
L 9
B,(X,A4)
0
Now define f,: K, — C,(X,4) by
fol Fq= g,
fquq = 0,.

It is readily checked that f = {f,} is a chain map, and that the induced
homomorphism
Sy Hy(K) - H(X,4)

is an isomorphism for all g. Therefore f is a chain homotopy equivalence,
by Theorem V.2.3. Q.E.D.

Now that we have these technical details behind us, we can state the
desired theorem:

Theorem 11.2. Let (X,A) and (Y,B) be pairs such that the following two con-
ditions hold: H (X ,A) is finitely generated for all g, and {X x B,A x Y} is an
excisive couple in X x Y. Then the cross product defines a homomorphism
1Y ig=n HAX,A;Z)@ H(Y,B;G) > H(X x Y;Ax Y U X x B;G) which
is a monomorphism onto a direct summand and the cokernel is naturally
isomorphic to Zp+q=,,+ 1 Tor(H?(X,A;Z), H(Y,B;G)).

We will indicate the main steps in the proof, leaving the verification of
details to the reader. ’

By Lemma 11.1, there exists a chain complex K of finitely generated free
abelian groups and a chain homotopy equivalence f:K — C(X,4). It
follows that Hom(K,Z) is a cochain complex of free abelian groups, and
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Hom(f,1):Hom(C(X,A),Z) - Hom(K,Z) is also a chain homotopy equiva-
lence. Now consider the following commutative diagram of cochain com-
plexes and cochain maps:

Hom(K ® C(Y,B),G) — Hom(C(X,4) ® C(Y,B),G)

1 I

Hom(K,Z) ® Hom(C(Y,B),G) W Hom(C(X,A4),Z) ® Hom(C(Y,B),G).

In this diagram, the symbol 1 refers to an appropriate identity map. By the
discussion preceding Lemma 11.1, the arrow labelled a denotes an isomor-
phism. Since f is a chain homotopy equivalence, it follows that the horizontal
arrows denote cochain homotopy equivalences. Hence on passage to co-
homology, all four arrows in this diagram would induce isomorphisms. To
complete the proof, one applies the Kiinneth theorem to the tensor product
Hom(K,Z) ® Hom(C(Y,B),G). This is legitimate, since Hom(K,Z) is a co-
chain complex of free abelian groups. The remaining details may be left to
the reader. Q.E.D.

Corollary 11.3. Let X and Y be topological spaces such that H (X) is finitely
generated for all q and such that at least one of the two spaces has all co-
homology groups torsion-free. Then
a: Y HAX;Z)® HYY;Z) > H'(X x Y;Z)
ptg=n

is an isomorphism for all n. In this case the cohomology ring H¥*(X x Y;Z)
is completely determined by H*(X ;Z) and H*(Y ;7).

The last sentence of this corollary follows from the relations for cup
products in a product space given in §9. It also inspires the following
definition.

Definition 11.1. Let A* = ), A" and B* = ) ; B/ be graded rings. The tensor
product A* ® B* is the graded ring defined as follows:

(A*®@B*)"= > A'®B’ (direct sum).
i+j=n
The multiplication is defined as follows:
(u; ® vy) * (uz ® v3) = (— 1)U u,) ® (v10,),

where u; € A and v; € B% for i, j = 1, 2. With this structure 4* ® B* is also a
graded ring.

Using this definition, the corollary above can be restated as follows:
Let X and Y be topological spaces such that H (X ) is finitely generated for all g,
and at least one of the two spaces has all cohomology groups torsion-free. Then
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the cohomology ring H¥(X x Y, Z)is naturally isomorphic to the tensor product
of the cohomology rings of the factors:

o H¥X,Z)® H¥Y;Z) ~ H¥X x Y; Z).

ExAMPLE 11.1. The cohomology ring of an n-sphere, H*(S"; Z) is easily deter-
mined. We know that H°(S";Z) is an infinite cyclic group generated by the
unit, 1 € H%(S";Z), and H"(S";Z) is also infinite cyclic with generator u; all
other cohomology groups are 0. The cup products are completely determined
by the equations

uul=1luu=u

We can now use the above rules to determine the cohomology ring
H*(S™ x S";Z). Let ue H™(S™;Z) and ve H(S";Z) denote generators of
these infinite cyclic groups. Then H*(S™ x S";Z) is the direct sum of four
infinite cyclic groups, with generators 1 x 1 (the unit),u x 1,1 x v,andu x v.
There is one nontrivial product:

wuxlh)ou(l xv)=uxno.

EXERCISES

11.1. Let A be a retract of X with retraction r:X — A and inclusion map i:4 — X.
Consider the induced homomorphisms
r*:H*(A;2)—» H¥X;Z)
i*:H¥*(X;Z)—> H%A;Z).
Prove that kernel i* is an ideal in the graded ring H*(X;Z), and image r* is a
subring.
11.2. Let X and Y be spaces with chosen basepoints, x, € X and y, € Y. Define
XvY=(X x{yo}) v ({xo} x Y).

It is sometimes called the 1-point union of X and Y. Assuming that X and Y are
arcwise connected, express the structure of the cohomology ring H¥(X v Y;Z)
in terms of H¥*(X;Z) and H*(Y;Z). (Assume that also x, and y, have “nice”
neighborhoods in X and Y respectively, as described in Problem II1.5.2.)

11.3. Let m and n be positive integers, X = S™ x §", and Y = §" v $"v S"*". Prove
that H,(X;G) ~ H(Y;G) and HYX;G) ~ HYY;G) for any abelian group G and
integer g; then prove that X and Y are not of the same homotopy type.

We conclude this lengthy chapter with an analogue of Corollary 11.3 for
the case where we use cohomology with coefficients in a commutative field F.
The result is easy to state, and of rather wide generality.

Theorem 11.4. Let (X,A) and (Y,B) be pairs such that {X x B, A x Y} is an
excisive couple, and H (X ,A;F) is a finite-dimensional vector space over F for
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all q. Then the x-product defines a natural isomorphism
a: Yy HAX,A;F)®@ H{(Y,B;F) > H'(X x Y,Ax YU X x B; F).
F

p+tq=n

Corollary 11.5. Let X be a space such that H (X ; F) has finite rank over F for
all q. Then for any space Y, the cohomology algebra H¥*(X x Y; F) is naturally
isomorphic to the tensor product:

w:H*X;F) ® H¥Y;F)~ H¥X x Y, F).
<
The proof of this theorem and corollary is actually somewhat simpler than
the proof of Theorem 11.2 and Corollary 11.3 because one has to deal with

vector spaces over F rather than abelian groups. It is also necessary to use
relations such as the following:

CX)I®C(Y)®F ~ C(X.F) ® C(Y,F)

Hom(C(X),F) ~ Homg(C(X,F),F).

Once again, the details are left to the reader.
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CHAPTER IX

Duality Theorems for
the Homology of Manifolds

§1. Introduction

An n-dimensional manifold is a Hausdorff space such that every point has
an open neighborhood which is homeomorphic to Euclidean n-space, R"
(see Massey, [6], Chapter I). One of the main goals of this chapter will be to
prove one of the oldest results of algebraic topology, the famous Poincaré
duality theorem for compact, orientable manifolds. It is easy to state the
Poincaré duality theorem but the proof is lengthy.

If a compact connected n-dimensional manifold M can be subdivided
into cells so as to be a regular cell complex, then it is a pseudomanifold, and
the results of §IV.8 are applicable. Thus if it is orientable, H,(M,Z) will be
an infinite cyclic group. One of our first goals will be to prove that this
result is still true even if the manifold is not a regular cell complex. To
“orient” such a manifold means to choose a generator p of the group
H,(M,Z). The Poincaré duality theorem then asserts that the homomorphism
of HYM",G) into H,,_ (M",G), defined by x — x 0 p for any x € H{(M",G), is
an isomorphism for all integers q and all coefficient groups G! This is a rather
severe restriction on the homology and cohomology groups of a compact,
orientable manifold. By using the relation (x U y) nu=xnN(y N pu), we
will be able to show that the Poincaré duality theorem has strong implications
for cup products in a manifold.

" We will also prove a duality theorem relating the homology and coho-
mology groups of a manifold with boundary. Finally, we will discuss the
famous Alexander duality theorem. This relates the cohomology groups of
a closed subset X of Euclidean n-space, R”, and the homology groups of the
complementary set R" — X. It is a far-reaching generalization of the results
proved in TIL6 (i.e., the Jordan—-Brouwer separation theorem, etc).
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The méthod of proof we use for the Poincaré duality theorem was first
described by J. Milnor in some mimeographed lecture notes in 1964; see
also the appendix to [8]. The basic idea of Milnor’s proof is very natural
and may be explained as follows. It follows from the definition that any n-
manifold is a union of certain open subsets, each of which is homeomorphic
to R". Thus it seems natural to try to prove the theorem first for R”, and then
to use Mayer—Vietoris sequences to extend to the case of a finite union of
open subsets, each of which is homeomorphic to R”. Finally we can extend
to the case of an infinite union of such open sets by a direct limit argument.
The only trouble with this idea is that the Poincaré duality theorem as
formulated above applies only to compact manifolds. Thus it will be neces-
sary to state and prove a more general version of the Poincaré duality
theorem which is also applicable to noncompact manifolds. The reader must
not let the technical complications involved in stating and proving this more
general version obscure the basic ideas involved.

§2. Orientability and the Existence of
Orientations for Manifolds

Let M be an arbitrary n-dimensional manifold; we emphasize that M need
not be compact or connected; in fact we do not even need to assume that M
is paracompact! For any point x € M, consider the local homology groups
H{(M,M — {x}) (cf. the exercises in §II1.2). Using the fact that x has a
neighborhood homeomorphic to R" and the excision property, we see that

H(M,M — {x}) ~ HR", R" — {x}).

Hence if we use integer coefficients, H/(M,M — {x}) is infinite cyclic for
i = n, and zero for i # n. A choice of a generator for the infinite cyclic group
H, (M, M — {x};Z) will be referred to as a local orientation of M at x.

Definition 2.1. An orientation of an n-dimensional manifold M is a function u
which assigns to each point x € M a local orientation u, € H,(M,M — {x};Z)
subject to the following continuity condition: Given any point x € M, there
exists a neighborhood N of x and an element uy € H,(M,M — N} such that
i (uy) = p, for any y e N, where i,:H,(M,M — N) - H,(M,M — {y}) de-
notes the homomorphism induced by inclusion.

In order to better understand this continuity condition, recall that any
point x € M has an open neighborhood U which is homeomorphic to R".
By the excision property, for any y € U,
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However, if x and y are any two points of R”, there is a canonical isomorphism
H,(R"R" — {x})~ H(R",R" — {y}) defined by choosing a closed ball
E" = R” large enough so that x and y are both in the interior of E", and
noting that in the following diagram,

H,R,R" — {x}) «—— H/(R"R"—E)

|
H,(R" R" — {y})

both i, and j, are isomorphisms. Moreover, the isomorphism between
H,(R"R" — {x}) and H,(R",R" — {y}) that we thus obtain is independent
of the choice of the ball E".

Terminology. The manifold M is said to be orientable if it admits at least
one orientation; otherwise, it is called nonorientable. A pair consisting of a
manifold M and an orientation is called an oriented manifold.

ExampLE 2.1. (a) Euclidean n-space, R", is orientable (use the fact men-
tioned above that there exists a canonical isomorphism H,(R",R" — {x})
H,(R"R" — {y}) for any two point x, y € R"). (b) Similarly, the n-sphere, S",
is orientable according to our definition. (c) If M is an n-manifold, x is an
orientation fof M, and N is an open subset of M, then p restricted to N is
an orientation of the n-manifold N. (d) Let M be an n-dimensional manifold
with orientation u and N and n-dimensional manifold with orientation v.
Let u x v denote the function which assigns to each point (x,y)e M x N
the homology class

Hy X vye Hm+n(M X N9M x N — {(X,y)})

Using the Kiinneth theorem, it is seen that p, x v, is a generator of the
homology group in question. It is also easy to verify that the required
continuity condition holds, and thus u x v is an orientation for M x N.
Thus the product of two orientable manifolds is orientable.

In dealing with questions such as these, we will need to frequently con-
sider for any subset 4 of the manifold M, the homology groups H,(M, M — A).
If B = A, it will be convenient to denote the corresponding homomorphism
H,(M,M — A) - H{(M, M — B) by the symbol pg; for any homology class
ue H(M,M — A), pg(u) can be thought of as the “restriction” of u to a
homology group associated with B.

Let M be an n-dimensional manifold with orientation p; it would be
advantageous if there were a global homology class u,, € H,(M,Z) such that
forany xe M,

Uy = px(:uM)
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Unfortunately, this can not be true if M is noncompact, as the reader can
easily verify by using Proposition 1IL6.1. The closest possible approximation
to such a result is the following theorem. It will play a crucial role in the
statement and proof of the Poincaré duality theorem:

Theorem 2.1. Let M be an n-manifold with orientation u. Then for each com-
pact set K = M there exists a unique homology class ux e H (M, M — K)

such that
px(/"'K) = Hx

for each x € K.

Note that if M is a compact manifold, this theorem assures us of the
existence of a unique global homology class u,, € H,(M,Z) such that for any
point x € M, '

Uy = pi(fing)-

ProoF. The uniqueness of uy is a direct consequence of a more general
lemma below (Lemma 2.2). Therefore we will concentrate on the existence
proof. Obviously, if the compact set K is contained in a sufficiently small
neighborhood of some point, the continuity condition in the definition of p
assures us of the existence of ug. Next, suppose that K = K, u K,, where
K, and K, are compact subsets of M, and both ux, and py, are assumed to
exist. Then {M — K;,M — K,} is an excisive couple, and hence we have a
relative Mayer—Vietoris sequence (cf. §VIIL6):

H,..(M,M — K, n K;) > H(M,M — K)

5 H(M,M — K)@® H,(M,M — K5)

L HM,M—K, nK,)
Recall that the homomorphisms ¢ and y are defined by

() = (pk,(U),px,(w)
Y(v1,02) = P, nko(01) — Pr,nks(V2)

for any ue H(M,M — K), v, € H(M,M — K,), and v, € H(M,M — K,).
By the uniqueness of ux, . x,, we see that

PK,nKZ(#K,) = mexz(ﬂkz)

= /'I'Kl ﬁKz’
and hence

Wtk otik,) = 0.
It follows from Lemma 2.2 below that H,,, (M,M — (K, n K,)) = 0; hence
by exactness there is a unique homology class ux € H,(M, M — K) such that
@) = (Mx ol ‘

It is readily verified that this homology class py satisfies the desired condition
px(AuK) = Ux fOI' any x € K.
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Next, assume that K = K| u K, U --- = K,, where each K is a compact
subset of M, and . exists. By an obvious induction on r, using what we
have just proved, we can conclude that u; exists. But any compact subset
K of M can obviously be expressed as a finite union of subsets K;, each of
which is sufficiently small so that the corresponding homology class gy,
exists. Hence yy exists, as was to be proved. Q.E.D.

It remains to state and prove Lemma 2.2.
Lemma 2.2. Let M be an n-dimensional manifold and G an abelian group.
(a) For any compact set K = M and all i > n,
H,M,M — K;G)=0.
(b)Ifue H(M,M — K;G) and p(u) =0 for all x € K, then u = 0.

Proor. The method of proof is to start with the case M = R" and then to
progress to successively more complicated cases, ending with the general case.

Case 1: M = R" and K is a compact, convex subset of R”. To prove this
case, choose a large ball E" = R" such that K is contained in the interior of
E". For any x € K, consider the following commutative diagram :

H{M,M — K) —=— H(M. M — {x})

N A
H(E", $"" 1)

Then it is readily proved that Arrows 1 and 2 are isomorphisms. Hence p, is
an isomorphism for all i which suffices to prove the lemma in this case.

Case 2: K = K, u K,, where K, K,, and K, are compact subsets of M
and it is assumed that the lemma is true for K, K,, and K; n K. In order
to prove this case, we will again use the relative Mayer—Vietoris sequence
of the triad (M; M — K,, M — K,). The proof of this case is based on the
following portion of this Mayer—Vietoris sequence:

Hi (MM — K, nK,) > H(M, M — K)
5 H(M, M — K;) ® H{(M, M — K,).
The proof of Parts (a) and (b) of the lemma for this case is quite easy, and may
be left to the reader.

Case 3: M =R"and K =K, u K, U -+ U K,, where each K; is com-
pact and convex. This case is proved by induction on r, using cases 1 and 2
(the fact that the intersection of convex sets is convex is used).

Case 4: M = R”", and K is an arbitrary compact subset. We assert that for
any u e H{(R", R" — K), there exists an open set N containing K and an
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element ' € Hy(R", R" — N) such that k() = u, where
k:(R",R" — N) - (R, R" — K)

is the inclusion map. To prove this assertion, recall that there exists a compact
pair (X,4) = (R", R" — K), and a homology class v € H;(X,A) such that the
inclusion homomorphism H;(X,4) - H;(R", R" — K) maps v onto u (see
Proposition I11.6.1). Now we may choose N to be any open neighborhood of
K which is disjoint from A, and the assertion will certainly be true.

Given the open neighborhood N of K, we may find a finite collection
{B1,B,, ... ,B,} of closed balls such that B; = N for 1 < j < r, and the union
of the B;’s covers K. We may also assume that K n B; # Jfor 1 <j<r.
Now consider the following commutative diagram:

l*
HRL R = N) — Hi<R”, R | B,)

i
\ l my

H;(R",R" — K).

We will use this diagram to prove the lemma for this case. The proof of Part
(a) for this case is very easy: If i > n, then H,(R", R" — U ; Bj) = 0 by Case 3,
and hence the given element k,(u) = u € H;(R", R" — K) must be zero also.
The proof of Part (b) is only slightly more difficult. Assume u € H,(R",R" — K),
p-(u) = Oforall x € K, and that N and «’ € H,(R", R" — N) have been chosen
so that u = k,(u). Let u” = I, (u) € H,(R", R" — | J; B;) in the above diagram.
We assert that p (u”’) =0 for each ye By U B, U ---uU B,. To see this,
assume that y € B;; choose a point x € B; n K. Consider the following com-
mutative diagram:

H,,(R",R"—UB,) —— H,(R"R"—B)

v N

H, (R" R"—{y}) H,(R" R" — {x})
/

All homomorphisms in this diagram are induced by inclusion maps, and the
homomorphisms denoted by Arrows 1 and 2 are isomorphisms, (by Case 1).
Since m,(u") = u, and p,(u) = 0, it readily follows that p,(u”) = 0 as desired.
Therefore we can conclude by Case 3 that ¥’ = 0, and hence u = m(u") is
also zero.

H,(R" R" - K)

Case 5: M is arbitrary, but the compact set K is assumed to be “small”
enough so that there exists an open set U which is homeomorphic to R”
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and U o K. In this case H{(M. M — K)~ H,(U, U — K) by the excision
property; hence we can apply Case 4 to reach the desired conclusion.

Case 6: The general case. In this case, K is a finite union of compact
subsets,
K=K,uK,u- vk,

where each K is small enough so that Case 5 applies. Hence we can make an
induction on r, using Case 2, to compute the proof of the lemma. Q.E.D.

In order to study the homology of arbitrary manifolds (i.e., orientable or
nonorientable) it is desirable to go through similar considerations with Z,
coefficients. Let M be an arbitrary n-dimensional manifold, and x € M. The
local homology group H (M, M — {x};Z,) is cyclic of order 2, hence it has a
unique generator pu, € H, (M, M — {x}; Z,) (no choice is involved). It is
readily seen that the function p which assigns to each x € M the element pu,
satisfies the continuity condition occurring in the definition of an orientation:
Each point x € M has a neighborhood N for which there exists an element
un € H(M, M — N; Z,) such that p,(uy) = p, for all y e N. It is convenient
to refer to u as the “mod 2 orientation of M.”

Theorem 2.3. Let M be an arbitrary n-dimensional manifold (i.e., M need not
be orientable). Then for each compact set K — M there exists a unique homology
class uyx € H(M, M — K; Z,) such that

Px(ﬂx) = Hx

for any x € K, where i, denotes the unique nonzero element of the local homol-
ogy group H(M, M — {x}; Z,).

The proof may be patterned on that of Theorem 2.1; the details are left
to the reader.

EXERCISES

In these exercises, it is assumed that the reader is familiar with the theory of covering
spaces; see Massey [6], Chapter V.

2.1. Let (X,p) be a covering space of X, where X and X are both locally arcwise con-
nected Hausdorff spaces. Prove that X is an n-dimensional manifold if and only
if X is an n-dimensional manifold.

2.2. Let (M, p) be a covering space of M, where M and M are both connected n-manifolds.
Assume that M is orientable. Prove that M is orientable, and that every covering
transformation (i.e., automorphism) of (M, p) is orientation preserving (the definition
of orientation preserving is the obvious one).

2.3. Let (M,p) be a regular covering space of M. Assume M is a connected, orientable
n-manifold, and that every covering transformation of (M,p) is orientation pre-
serving. Prove that M is orientable.
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2.4. Let M" be a compact connected orientable n-manifold and let T:M" - M" be
a homeomorphism. How can one determine whether or not T is orientation
preserving, in terms of knowledge about the induced homomorphism 7', : H (M") —
H,(M")?

2.5. For which integers n is real projective n-space, RP", orientable, and for which n
is it nonorientable? (For the definition of RP", see §IV.3 or Massey [6], p. 216;
see also Statement (h) in §1I1.2.)

§3. Cohomology with Compact Supports

In order to state and prove the Poincaré duality theorem for noncompact
manifolds, it is necessary to use a new kind of cohomology theory, called
cohomology with compact supports. On compact spaces, this new cohomology
theory reduces to the usual kind of cohomology.

Recall that C*(X,4;G) is a subcomplex of C*(X;G); it is (by definition)
the kernel of the cochain map

i* :C* X ;G) - C*A4;G).

Definition 3.1. A cochain u € C%X,G) has compact support if and only if there
exists a compact set K = X such that ue C{(X, X — K; G).

Note that the set of cochains u € C4 X ; G) which have compact support is
a subgroup of C%X;G), which we will denote by C4X;G). Also, if u has
compact support, so does its coboundary, é(u), hence we obtain the cochain
complex

We denote the g-dimensional cohomology group of this complex by H4( X ; G);
it is called the g-dimensional cohomology group of X with compact supports.

Obviously, if X is compact, C¥*(X) = C*X), and H{X) = HYX). If X is
noncompact, H4X,G) is obviously a topological invariant of the space X;
however, it is definitely not a homotopy type invariant of X. We will have
examples to illustrate this point later. It is only an invariant of what is called
the proper homotopy type of X ; see Massey [ 7], p. 38.

One could now systematically develop the various properties of co-
homology with compact supports. The reader who is interested in seeing this
done is referred to the 1948/49 Cartan seminar notes [2], Exposé V, §6,
Exposé VIII, §4 and 5, and Exposé 1X, §4; see also various books on sheaf
theory. We will not do this, because the singular cohomology theory with
compact supports does not have such nice properties; the Cech—Alexander—
Spanier cohomology with compact supports is a much more elegant theory;
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cf. Massey [ 7]. We will confine ourselves to elaborating those properties of
cohomology with compact supports that are actually needed in this chapter.

There is an alternative definition of cohomology with compact supports,
based on the notion of direct limit; the reader who is not already familiar
with direct limits can quickly learn all that is needed from the Appendix to
[7]. We will now proceed to explain this alternative definition.

First of all, note that the compact subsets of any topological space X are
partially ordered by inclusion; even more, they are directed by the inclusion
relation, because the union of any two compact subsets is compact.

Next, observe that the cochain group C4X) may be looked on as the union
of the subgroups C4 X, X — K), where K ranges over all compact subsets of
X. In other words,

CYX;G) = dir lim CYX, X — K; G),

where the direct limit is taken over the above mentioned directed set, con-
sisting of all compact subsets K = X. Now the operation of taking homology
groups of a cochain complex commutes with the passage to the direct limit;
therefore

HYX;G)=dir lim HYX, X — K; G),

where again the direct limit is taken over all compact subsets K < X. This is
the definition that we will actually use for H4( X,G).

EXERCISES

3.1. Determine the structure of the groups H:(R";G) for all i. (Caution: Even though
R" is contractible, these cohomology groups are not all trivial. Note also the
structure of H(R").)

3.2. Let X be an arcwise connected Hausdorff space which is noncompact. What is
the structure of H(X ;G) for any coefficient group G?

3.3. A continuous map f:X — Y is said to be proper if the inverse image under f
of any compact subset of Y is compact. Let f:X — Y be a proper continuous
map, and let f*:C?Y,G) —» C’(X,G) denote the induced homomorphism on
cochains. Prove that f#(C?(Y)) = C?(X), and hence f induces a homomorphism
of H?(Y) into H(X).

§4. Statement and Proof of the
Poincaré Duality Theorem

Let M be an n-dimensional manifold with orientation u; we stress that we
do not need to assume that M is compact, connected, or even paracompact.
Moreover, we do not need to make any hypotheses of triangulability or
differentiability.
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Because of the choice of orientation pu, there is singled out a unique
homology class uxe H (M, M — K; Z) for each compact subset K (see
Theorem 2.1). Hence the cap product with py defines a homomorphism

HYM,M — K;G) - H,_,(M;G)
by the formula
X = XN g

for any x e HY{(M, M — K; G). Here the coefficient group G is arbitrary, and

the cap product is defined using the natural isomorphism G® Z ~ G.

Because of the naturality of the cap product, the homomorphisms thus

defined for different compact sets are compatible in the following sense: if

K and L are compact, and K < L, then the following diagram is commuta-
tive:

HYM, M — K)
s
o

H,_4(M)

HYM,M — L)

(here the homomorphism denoted by the vertical arrow is induced by
inclusion). Now it is a basic property of direct limits that any such compatible
family of homomorphisms induces a homomorphism of the direct limit;
thus we have a well defined homomorphism

P:HYM;G) - H,_(M;G)

(the letter P stands for Poincaré).

Theorem 4.1 (Poincaré duality). Let M be an oriented n-dimensional manifold
and G an arbitrary abelian group. Then the homomorphism

P:HYM:G) - H,_ (M;G)

is an isomorphism for all q.

We will give the proof of this theorem now, postponing the discussion of
examples, special cases, and applications to later. As in the proof of Lemma
2.2, there are several cases, starting with M = R", and ending with the general
case.

Case 1: M =R". Let B, denote the closed ball in R” with center at the
origin and radius k. Clearly, the sequence of closed balls

B17 B2, B3,.. .
is cofinal in the directed set of all compact subsets of R". It follows that
HYR";G) = dir lim HYR",R" — B,; G).
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Note also that the homomorphism
HYR",R" — B,) - HYR", R" — By ,)
is an isomorphism for all k and g; hence it follows that
G forg=mn,
9YR"- —
HiR';G) {0 for g # n.

In view of the known structure of H,_,(R";G), we see that it is indeed true
that the groups H,_,(R";G) and H4R";G) are isomorphic for all G and g¢.
It only remains to prove that

P:H)R";G) — HyR";G)

is an isomorphism; in view of the definition of P, it suffices to prove that for
any closed n-dimensional ball B < R”, the homomorphism

H"(R",R" — B; G) » HyR";G)

defined by x — x n pp is an isomorphism. Now g is a generator of the
infinite cyclic group H,(R”, R" — B; Z). We will complete the proof by using
the following relation:
ex(X N pp) = {X,pup)
(see §VIIL.8). Since R" is arcwise connected, the homomorphism
e H(R";G) - G

is an isomorphism. Moreover, by the universal coefficient theorem for
cohomology (see §VIL.4), the homomorphism

a:H"(R", R" — B; G) - Hom(H,(R", R" — B); G)

is also an isomorphism. Using the definition of o in terms of the scalar
product, the desired conclusion follows.

Case 2: Assume M = U v V, where U and V are open subsets, of M, and
that Poincaré¢ duality holds for U, V, and U n V (it is assumed, of course,
that the orientation for U is the restriction of  to U, and similarly for V and
U n V). In this situation, we can construct a Mayer—Vietoris exact sequence
for cohomology with compact supports:

“—= HY M) > H(U n V) > H(U)@® HYV) - H(M) - - - - .

To construct this sequence, let K < U and L < V be compact sets; we then
have the following relative Mayer—Vietoris sequence, which is exact:

S H(M,M~K A L)% H(M,M~K)®H(M,M—-L)% H(M,M-K U L)

(we have used this Mayer—Vietoris sequence a couple of times previously
in this chapter). Now by the excision property, we have the following
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isomorphisms:

HY{M,M —Kn Ly~ H(UNV,UNnV —Kn L),
HYM,M — K)~ H{U,U — K),
and
HY(M,M — L)~ HYV,V — L).

Next, note that as K ranges over all compact subsets of U and L ranges over
all compact subsets of V, K n L ranges over all compact subsets of U n V
and K U L ranges over all compact subsets of M. Hence as we pass to the
direct limit over all such ordered pairs (K,L), the direct limit of the relative
Mayer—Vietoris sequences gives the desired result.

We now have the following diagram:

> H{U V) ———— HYU)@ HY(V) — H{M) —> -

o Hy (Un V) — H, J(U)@ H,— (V) —> H,_ (M) —
The top line of this diagram is the Mayer—Vietoris sequence we have just
constructed, and the bottom line is the usual Mayer—Vietoris sequence in
homology. The vertical arrows are the Poincaré duality homomorphisms
for UnV, U, V, and M respectively. We assert that every square of this
diagram is commutative. As a general rule, it is fairly easy to check whether
or not a diagram such as this is commutative. But this seems to be an excep-
tion to the general rule! The proof of commutativity is lengthy, to say the
least. The complete details are given in the appendix to this chapter (see
Lemma 8.2).

In any event, once we have proved commutativity for this diagram, the

proof that M satisfies Poincaré duality in this case is an obvious consequence
of the five-lemma.

Case 3: M is the union of a nested family of open subsets {U,} and it is
assumed that the Poincaré duality theorem holds for each of the U,. In
order to prove this case, it is necessary to make use of a natural
homomorphism

T:HYU;G) > H{X;G)

which is defined as follows for any open subset U of the Hausdorff space
X. If K is any compact subset of U, then the excision property guarantees
us an isomorphism

HYU,U — K)~ HY(X, X — K).

Passing to the direct limit over all compact sets K «— U, we obtain the desired
homomorphism (it is not an isomorphism in general, because not every
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compact subset of X is contained in U). Two of the most important properties
of 7 are the following:

(a) If U = X, then 7 is the identity homomorphism.

(b) If U =« V < X, and U and V are open subsets of X, then the following
diagram is commutative:

Hi{U) — HYV)

N

Hi(X)

In addition, if U is an open subset of the oriented n-manifold M, then the
following diagram is commutative:

HYU) ———— HYM)

P
H,_(U) i H,_ (M)

Here i:U — M denotes the inclusion homomorphism, and as usual, the
orientation of U is assumed to be the restriction of the orientation of M.
The proof of the commutativity of this diagram is an easy consequence of
the definition of P and the naturality of the cap product.

With these preliminaries taken care of, we can now easily prove Case 3.
Because the open subsets U, are nested, we can form the direct limits,

dir im HYU ),
and
dir lim H, (U )).

In the first case, it is understood that the homomorphisms in the direct
system of groups {H4U,)} are the 7’s corresponding to any inclusion, while
in the second case, they are the i,’s corresponding to any inclusion. Next,
observe that the homomorphisms
1, H{U,) » H{(M)

il*:Hn—q(Ul) - Hn—q(M)
(which are defined for all A) constitute a compatible collection of homomor-
phisms, and hence define homomorphisms of the direct limit groups:

dir lim H{U,) - H{M)

dir lim H, _(U;) = H,_(M).

We assert that these homomorphisms are both isomorphisms; this is a

consequence of the fact that any compact subset of M is contained in some
U,. Finally, the Poincaré duality homomorphism P:HXU;) - H,_,(U)) is
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assumed to be an isomorphism for each 4; it follows by passage to the direct
limit that P: H(M) — H,_,(M) is also an isomorphism.

Case 4: M is an open subset of R". If M is convex, then it is homeomorphic
to R", and Case 1 applies. If M is not convex, then we make use of the fact
that the topology of R" has a countable basis consisting of open n-
dimensional balls. Hence M is a countable union of open balls:

M = U Bi'
i=1

Let

The theorem must be true for each M,, by an obvious induction on k (use
Case 2). Then we can apply Case 3 to conclude that the theorem is true for

M = U Mk'
k=1

Case 5: The general case. Let M be an arbitrary oriented n-manifold.
Consider the family of all open subsets U of M such that Poincaré duality
holds for U. This family is obviously nonempty. In view of Case 3, we can
apply Zorn’s lemma to this family to conclude that there exists a maximal
open set V' belonging to it. If ¥V # M, then there is an open subset B = M
such that B is homeomorphic to R”, and B is not contained to V. We could
then apply Cases 2 and 4 to conclude that Poincaré duality also holds
for V U B, contradicting the maximality of V. Thus V = M, and we are
through. Q.E.D.

Next we will take up the mod 2 version of the Poincaré duality theorem.
While this version is weaker in that it only applies to homology and co-
homology groups with Z, coefficients, it has the advantage that it applies
to all manifolds, whether orientable or not.

We will use the hypotheses and notation of Theorem 2.3: M is an arbitrary
n-dimensional manifold; for each point x € M, u, denotes the unique non-
zero element of the local homology group H (M, M — {x};Z,), and for each
compact subset K, ux denotes the unique element of H (M, M — K;Z,) such
that p,(ux) = . for all x € K. Let G be a vector space over Z,. Define a
homomorphism

HYM,M — K;G) - H,_,(M,G)
by the formula
X = XN g

for any x € H{M, M — K; G) (use the natural isomorphism G ® Z, = G to
define this cap product). The homomorphisms thus defined for all compact
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sets K — M are compatible, and hence define a homomorphism of the direct
limit group,
P,:HYM:G) - H,_,(M;G)

which we will refer to as the mod 2 Poincaré duality homomorphism.

Theorem 4.2. For any n-dimensional manifold M and any Z,-vector space G,
the mod 2 Poincaré duality homomorphism P, is an isomorphism of HY(M ;G)
onto H,_ (M ;G).

The proof is almost word for word the same as that of Theorem 4.1; the
necessary modifications are rather obvious.

EXERCISES

4.1. Let K be a compact, connected subset of M, and u € H (M,M — K;Z). Prove that
if p(w)=0for some x € K, then p(v)=0forall x € K. Deduce that H (M,M — K;Z)
is either infinite cyclic or 0.

42. Let K be a compact, connected subset of M, ue H(M,M — K;Z) and let xe K
be such that p,(u) is k times a generator of H,(M,M — {x}). Prove that for any
ye K, p,(u) is also k times a generator of H,(M,M — {y}).

4.3. Assume that M is connected, and that for each compact K = M, H (M, M — K;Z) #
{0}. Prove that M is orientable.

4.4. Let M be a compact, connected, nonorientable manifold. Prove that H (M ;Z) = 0.

4.5. Use the Poincaré duality theorem to prove that if M is a connected, noncompact
orientable n-dimensional manifold, then H,(M,G) = 0 for all g > n and all coeffi-
cient groups G.

4.6. For any abelian group G, let ,G = {g € G|2g = 0}. Recall that there is a natural
isomorphism a:H (M, M — {x};Z)® G - H,(M,M — {x};G) for any point x of
the n-manifold M (see §V.6). Show that if g € ,G, the element g, = a(pu, ® g) €
H(M,M — {x};G) is independent of the choice of the local orientation u, €
H,(M,M — {x};Z). Then prove that for each compact set K < M and g € ,G,
there exists a unique homology class gx € H, (M, M — K; G) such that p.(gx) = gx
for any x € K.

4.7. Let M be an n-dimensional manifold. Assume that for each compact set K =« M
there is chosen an element hy € H,(M,M — K;G) such that p,(hg) = h, for any
x € K, and that 2h, # 0 for all x e M. Prove that the manifold M is orientable.
(Hint: Show that there exists a fixed element & € G and unique local orientations
uy for all x e M such that h, = a(u, ® h). Note that h can not be an element of ,G.)

4.8. Let M be a compact, connected n-manifold and G an abelian group. Prove that
H,(M;G) is isomorphic to G if M is orientable, and is isomorphic to ,G if M is
nonorientable. (Use the results of the preceding exercises.)
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4.9. Let M be a compact, connected n-manifold. Prove that H,_ ,(M;Z) is torsion-free
if M is orientable, and that the torsion subgroup of H,_(M;Z) is cyclic of order
2 if M is nonorientable. (Use Exercise 4.8 and the universal coefficient theorem.
You may make use of the fact that all the integral homology groups of M are
finitely generated; see Lemma 5.2 of the next section.)

§5. Applications of the Poincaré Duality Theorem
to Compact Manifolds

Let M be a compact manifold with orientation y; in this case, by Theorem
2.3, there exists a unique homology class uy, € H,(M;Z) such that p.(u,) =
u, for all x e M; p,, is often referred to as the fundamental homology class
of the oriented manifold M. The Poincaré duality isomorphism

P:HYM;G) » H,_,(M;G)
is defined by
P(x) = x N py

for any x € HY(M ;G).

We can draw some immediate conclusions from this. For example, if M
is assumed to be connected, then H,(M;G) is isomorphic to G. Similarly,
H,_ (M;Z)~ H(M;Z) ~ Hom(H (M ;Z),Z) is a torsion-free group.

In case M is compact but not necessarily orientable, we can obtain similar
results with Z, coefficients. There is a unique mod 2 fundamental class,
uy € H,(M;Z,) and the mod 2 Poincaré duality isomorphism

Py HYM;Zy) - H,_(M;Z,)
is defined by
Py(x) = x 0 py.

From this isomorphism, we deduce that the rank of the vector space
H,(M;Z,) (over Z,) is equal to the number of components of M.

We will now use the Poincaré duality theorem to deduce some restrictions
on cup products in the cohomology of a manifold.

Theorem 5.1. Let M be a compact oriented n-manifold and F a field. Then the
bilinear form
HYM;F)® H* M ;F) - F
defined by
U@ v — {u U, Uy

for any ue HY(M ;F) and ve H" %M ;F) is nonsingular.

Proor. The relation

Cu U o,y = U0 0l
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can be interpreted as a commutativity relation, as indicated by the following
diagram:
HYM ;F)® H" %(M,F)
1
Jl ® P \
5

F.

HYM;F)® H,(M,F)

In this diagram, arrow 1 denotes the bilinear form of the theorem, arrow 2
denotes the bilinear form defined by x ® y — {x,y) for any x € H{M;F)
and y € H,(M,F), I denotes the identity map, and P the Poincaré duality
isomorphism. The bilinear form denoted by arrow 2 is nonsingular, because
of the isomorphism

HYM;F) ~ Homg(H (M,F),F).

Since P is an isomorphism, it follows that the bilinear form denoted by
arrow 1 is also nonsingular. Q.E.D.

If the manifold M is nonorientable, this theorem will still be true provided
we assume that F is a field of characteristic two, e.g., F = Z,.

It would be nice to have an analogue of Theorem 5.1 for the case of
cohomology with integer coefficients, rather than coefficients in a field.
Since the groups HYM;Z) and Hom(H, (M,Z),Z) are not isomorphic in
general, some modifications are necessary in order to obtain a valid theorem.
One way to proceed is the following: For any space X, define B,(X), the
g-dimensional Betti group of X, to be the quotient group of H (X ; Z) modulo
its torsion subgroup. Similarly, define B4 X) to be the quotient group of
HYX;Z) modulo its torsion subgroup. If H,_ (X ;Z) is a finitely generated
abelian group, then

BYX) ~ Hom(B,(X),Z);

this is a direct consequence of the short exact sequence

0 — Ext(H,-(X),Z) - HY(X;Z) > Hom(H (X),Z) — O.

Lemma 5.2. Let M be a compact manifold; then the integral homology group
H (M) is finitely generated for all q.

If M could be given the structure of a CW-complex, then compactness
would imply that this CW-complex was finite, and the theorem would
follow. However it is not known at present whether or not all compact
manifolds are CW-complexes. Fortunately, there is a way to avoid this
difficulty. By results in Chapter IV, §8 of Dold, [4], a compact manifold is
what is called an ENR (short for Euclidean neighborhood retract). Then
proposition V.4.11 on p. 103 of Dold [4] asserts that the homology groups
of an ENR are finitely generated. Q.E.D.
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Note: This follows from Poincaré duality in case M is orientable; cf.
Spanier, [9] Corollary 11 at bottom of p. 298.

As a consequence of this lemma, we see that for any compact manifold
M, we have a natural isomorphism

BYM) ~ Hom(B,(M),Z).

This isomorphism is defined as follows. Let H{(M;Z) ® H,(M,Z) — Z be a
bilinear form defined by x ® y — {x,y) for x € HY(M;Z) and y € Hy(M;Z).
It is obvious that if either x or y has finite order, then {x,y) = 0. Hence there
is an induced bilinear form on quotient groups:

BYM) ® B,(M) — Z.

This bilinear form defines the desired isomorphism.
Now let us consider the bilinear form

HYM;Z)@ H" YM;Z) > Z
defined by
U v UV, iy

(this is similar to the bilinear form defined in Theorem 5.1). Once again, if
u or v has finite order, then {u U v,u,> = 0. Hence there is an induced
bilinear form

B{M)® B" M) — Z.

Theorem 5.3. Let M be a compact, connected, oriented n-manifold. Then the
bilinear form
B{M)® B""YM) - Z

defined above is nonsingular, and induces an isomorphism of BYM) onto
Hom(B"~4M),Z) for all q.

The proof is very similar to that of Theorem 5.1, and may be left to the
reader.

For the present, we will given one application of these theorems. Further
applications will be found in the next chapter.

Proposition 5.4. Let M be a compact, orientable manifold of dimension n =
4k + 2, and let F be a field of characteristic #2. Then H*** (M ;F) is a vector
space over F whose dimension is even.

Proor. By Theorem $.1, the bilinear form

H2k+l(M;F)®H2k+l(M;F) > F
defined by
U v = UV, Uy
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is nonsingular. Moreover, by the commutative law for cup products,
U= —-vuu

for any u, v e H**Y(M;F). It follows that the bilinear form is skew-symme-
tric; but it is a standard theorem of algebra that nonsingular skew-symmetric
bilinear forms can only exist on vector spaces of even dimension (over a
field of characteristic #2). For a proof of this theorem, see Jacobson, [5],
Section 6.2.

As an example of this proposition, consider compact orientable 2-
manifolds.

EXERCISES

5.1. Let M be a compact, orientable n-manifold. Prove that the homology groups
H(M:Z) and H,_,(M;Z) have the same ranks. Also, show that the torsion sub-
group of H,(M;Z) is isomorphic to the torsion subgroup of H,_,_;(M;Z).

5.2. Prove that the Euler characteristic of a compact n-manifold is 0 for n odd.

5.3. Prove that the Euler characteristic of a compact orientable manifold of dimension
4k + 2 is even.

5.4. Let M, and M, be compact, orientable n-manifolds, and let f:M,; —» M, be a
continuous map such that the induced homomorphism

JoHy(M3Z) - H(M,;Z)
is an isomorphism. Prove that for any coefficient group G the induced homomor-
phism

Sy HyM;6) > H(M;;G)

is an epimorphism and the kernel of £, is a direct summand of H (M ; G). Similarly,
prove that

f*:HYM3;G) — HY(M;G)
is a monomorphism, and the image is a direct summand of H4M ;G).

5.5. Let M be a compact, connected, orientable n-manifold and f:M — M a con-
tinuous map such that f,:H,(M,Z) > H(M;Z) is an isomorphism. Prove that
the induced homomorphisms f,: H(M,G) - H(M,G) and f*:HYM,G)—> H{M,G)
are isomorphisms for all g and any group G. (Hint: Do the case G = Z first.)

5.6. Given any even integer n, show how to construct a compact connected, orientable
manifold M of dimension 4k + 2 such that the rank of the vector space H*** (M ; F)
is n. (Hint: Consider first the case of 2-manifolds, i.e., k = 0. For larger values of
k, proceed by analogy with the case k = 0, recalling the classification theorem for
2-manifolds.)

5.7. Let X be a Hausdorff space, and let K be a compact subset of X. Consider the
cup product:

H"(X;G,)® HUX,X — K;G,) > H** (X, X — K;G, ® G,).
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Prove that passing to the direct limit over all compact subsets K of X, defines
a homomorphism

HA(X;G,) ® HIX:G,) » HIY(X; G ® G)).
(This is called the cup product homomorphism.)

5.8. (a) Let M be an oriented n-manifold. For any compact set K = M, let uxe
H,(M,M — K) denote the unique homology class such that p.(ux) = u, for
any x € K. Given u e HYM ;G), choose a compact set K < M such that there
exists a representative ' € H'(M,M — K; G) for u. Show that the element

iy € G

is independent of the choice of the representative u' for u, and that this process
defines a homomorphism HXM ;G) — G, sometimes called integration over M.
(b) Show that the following diagram is commutative

H{M;G)

lr \
Ho(M;G) —— G.
Here arrow 1 denotes integration over M.

(c) Prove that for any elements u € H(M;G,) and v e HYM;G,), the following
equation holds:

un Pv)=Puuvv).

Here the cup product is that defined in Exercise 5.7, and P denotes the Poincaré
duality isomorphism.
(d) Let F be a field. Define a bilinear form

@:H"""M;F)® H{M;F) - F

by setting ¢@(u ® v) = the integral of u U v over M. Prove that this bilinear
form is nonsingular and that it defines an isomorphism

H""P(M;F) ~ Homg(H¥M, F),F).

§6. The Alexander Duality Theorem

Let 4 be a subset of a topological space X ; by a neighborhood N of A in X,
we mean a subset N of X which contains A in its interior. The neighborhoods
of A (ordered by inclusion) constitute a directed set, since the intersection of
any two neighborhoods of A is again a neighborhood of A. Consider the
direct system of groups {HYN)}, where N ranges over all neighborhoods
of 4 in X (the homomorphisms are those induced by the inclusion relations,
of course). For each such N, the inclusion A < N induces a homomorphism
HYN) - H%A), and the collection of all such homomorphisms is obviously
compatible. Hence there is induced a homomorphism

dir lim HY(N) - H4(A).
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The subspace 4 is said to be tautly imbedded in X (or simply taut in X) with
respect to singular cohomology if this homomorphism is an isomorphism
for all ¢ and all coefficient groups. This concept was introduced by Spanier
[9], p. 189. We need it for our discussion of the Alexander duality theorem.

EXAMPLE 6.1. Let A denote the subset of the plane R? consisting of the union
of the graph of the function y = sin(1/x) (for x # 0) and the y-axis. We
assert that A is not taut in R%. In order to prove this, note that the open
neighborhoods of A are cofinal in the family of all neighborhoods of A.
Furthermore, the open, arcwise connected neighborhoods are cofinal in
the family of all open neighborhoods. It follows that the direct limit,
dir lim H%(N;Z), is infinite cyclic. On the other hand, H%(A4;Z) is free abelian
of rank 3 (there are three arc-components).

As another example, let P denote the subset of 4 consisting of one point,
the origin. Then it is readily verified that P is not taut in A4.

In some sense, these two examples are rather pathological. We will see
shortly that any “nice” subset of a nice space is tautly imbedded. We will
be mainly interested in the case where X is a manifold. Then it will turn
out that the question of whether or not a subset 4 of X is taut or not depends
only on A! Obviously, the question only depends on arbitrarily small
neighborhoods of 4 in X, but we are asserting something stronger than this.

The situation may be explained in more detail as follows. This book
has been concerned exclusively with singular homology and cohomology
theory. However, there is also another type of cohomology theory, called
Cech—Alexander—Spanier cohomology theory. For any pair (X,A4), any
integer ¢ and any abelian group G, there is defined the g-dimensional Cech—
Alexander—Spanier cohomology group, which we denote by HYX,4:G).
Just as for the singular cohomology theory, a continuous map f:(X,4) —
(Y,B) induces homomorphisms f*:HYY,B;G)— HYX,4;G) for all q. The
basic properties of the Cech-Alexander—Spanier cohomology theory are
exactly the same as those of the singular cohomology theory; the reader
may find more details in Spanier, [9], Chapter 6, Sections 4 and 5, or Massey
[7], Chapter 8.

One of the major differences between singular and Alexander—Spanier
cohomology is this matter of tautness. In general, tautness is more likely
to hold with respect to the Alexander—Spanier cohomology theory than
with respect to the singular theory. In fact, the following theorem holds:

Theorem 6.1. In each of the following four cases A is taut in X with respect
to the Alexander—Spanier cohomology theory:

(1) A is compact and X is Hausdorff.

(2) A is closed and X is paracompact Hausdorff.

(3) A is arbitrary and every open subset of X is paracompact Hausdorff.
(4) A is a retract of some open subset of X.
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This theorem is due to Spanier [10]; for a proof, see Massey, [7], pp.
238-241. One case of this theorem is proved in Spanier [9], pp. 316-317.

A more precise comparison of singular and Alexander—Spanier coho-
mology is possible, because there is defined for any pair (X,A4), any coefficient
group G, and any integer ¢ a homomorphism

2:HYX,A;G) - HYX,A4;G).

This homomorphism is natural, in the sense that it commutes with homo-
morphisms induced by continuous maps. There are various theorems which
assert that for certain classes of nice topological spaces, 4 is an isomorphism
for all G and q. For a discussion of this question, see Spanier, 9], Chapter 6,
Section 9, or Massey, [7], §8.8. For our purposes, the following are the two
most important cases in which 1:H4X;G) - HYX ;G) is known to be an
isomorphism for all G and g:

(a) X a paracompact n-manifold.
(b) X is a CW-complex, or a space which has the homotopy type of a
CW-complex.

Using these properties of the homomorphism A, we can easily prove the
following propositions:

Proposition 6.2. Let M be a paracompact n-manifold, and let A be a closed
subset of M. Then A is taut in M (with respect to singular cohomology) if and
only if 2:HYA;G)— H%A;G) is an isomorphism for all q and G.

Thus in this case, the question of tautness depends only on A.

Proposition 6.3. Let M be a paracompact n-manifold, and let A be a closed
subset of M. Then

dir lim HYN;G) ~ HY(4;0),

where the direct limit is taken over all neighborhoods N of A in M.

The proof of both of these propositions depends on the naturality of the
homomorphism 4. The open neighborhoods of 4 are cofinal in the family
of all neighborhoods of A; and every open neighborhgod N of A4 is also
a paracompact manifold. Therefore A: HYN)— H%N) is an isomorphism.
The rest of the details of the proofs may be left to the reader.

Remark: In Dold [4], the conclusion of Proposition 6.3 is taken as the
definition of the Cech—Alexander—Spanier cohomology groups HY(A).

We will now use these results to derive important relations between
the homology groups of an open subset of a compact manifold and the
cohomology groups of its complement. Let M be a compact, oriented
n-manifold, U an open subset of M, and 4 = M — U the closed complement.
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For any compact set K = U, consider the following diagram:

HYM, M - K) > HYM) HYM — K) 2, H"Y M, M — K)
HYU, U - K) P H, M—-K,U-K) H"YU,U - K)

| Lo
H,_ (U) — > H,_ (M) SELEN H,_(M,U) ——> H,_,_\(U).

In this diagram, the top line is the cohomology sequence of the pair
(M,M — K), the bottom line is the homology sequence of the pair (M,U),
and k:(U,U - K)->(M,M — K) and I:(M — K,U — K) - (M,U) are in-
clusion maps which induce isomorphisms by the excision property. The
homomorphisms denoted by Arrows 1 and 2 are defined by

x = x N (kg pg)
y—oy oy u,)

forany x e H(U,U — K)and y e H{(M — K); here ux € H(M,M — K) and
uqa€ H(M,M — A) have the same meaning as in the definition of the
Poincaré duality isomorphism. In addition, each square of this diagram is
commutative; this is a consequence of Lemma 8.1 in the appendix to this
chapter.

Now pass to the direct limit as K ranges over all compact subsets of
U. Note that

dir lim HYM — K) = H%(A)

since as K ranges over all compact subsets of U, M — K ranges over all
open neighborhoods of 4 (see Proposition 6.3). Hence we obtain the following
commutative diagram:

HYU) ———— HYM) ———> Hi(4) ——— HI*'(U)

| I I e
Hy (U) — Hy (M) —2> H, (M.U) —— H,_, (V).

Each square of this diagram is commutative, and the top line is exact,
since direct limits preserve exactness. The vertical arrows labelled P are
the Poincaré duality isomorphisms for M and U. It follows from the five-
lemma that the homomorphism labelled P’ is also an isomorphism. For future
reference, we state this as follows:

Proposition 6.4. Let M be a compact orientable n-manifold, A a closed subset
of M, and U = M — A the complementary set. Then the relative homology
group H,_(M,U;G) is isomorphic to the Cech—Alexander—Spanier coho-
mology group H(A;G).
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Of course the most interesting cases of Diagram (6.1) and Proposition 6.4
are those cases where the Alexander—Spanier cohomology group, H%(A),
and the singular cohomology group, H%A), are isomorphic. In that case,
it is easily verified that h* is the homomorphism induced by the inclusion
of A in M. However, the reader must not lose sight of the fact that it is
absolutely necessary to use Alexander—Spanier cohomology for the correct
statement of this proposition. The following example illustrates this point:
Consider the 2-sphere, S, as the compactification of the plane R?, obtained
by adjoining to it a point labelled oo. Let 4 be the closed subset of S which
is the union of the graph of the equation y = sin(1/x) (x # 0), the segment
—1 <y < +1 of the y-axis, and the point co. As above, let U =S5? — 4 =
R? — A. Then U has two components, and it may be shown that each
component is homeomorphic to an open disc. Consider the following
portion of the reduced homology sequence of (S2,U):

H,($) B H\(S2U) S H(U) 5 Hy(S?)

Since H o(U) is infinite cyclic, we deduce that H,(S?,U) is also infinite cyclic.
Hence by Proposition 6.4, H'(A) is infinite cyclic. On the other hand, the
singular cohomology group H'(A) is zero. The set 4 has the same Alexander—
Spanier cohomology groups as a circle, while its singular cohomology
groups are the same as a space consisting of two points. However, the
complement of 4 in S? is homeomorphic to the complement of a circle
imbedded in S2.

Proposition 6.5. Let A be a closed, proper subset of a compact, connected,
orientable n-manifold. Then HYA:G) =0 for all g >n and all coefficient
groups G.

This is a direct consequence of Proposition 6.4. It is of interest to note
that this proposition is false in general for the singular cohomology groups
HY(A;G); for a spectacular counterexample, see Barrett and Milnor, [1].

Theorem 6.6 (Alexander duality theorem). Let M be a compact, connected,
orientable n-manifold and q an integer such that H [M.G)=H,, (M,G)=0.
Then for any closed subset A = M,

9" Y(4) ~ H,(M — A).

The most important example of a manifold satisfying the hypotheses
of this theorem is the n-sphere, S". Obviously, we must have 0 < g <n — 1,
because, Ho(M,G) and H,(M,G) are always nonzero for a compact, connected,
orientable n-manifold. However, there is no difficulty in stating versions
of this theorem corresponding to the cases ¢ =0 and g = n — 1; this we
will now do.
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Theorem 6.6, continued. Let M be a compact connected orientable n-manifold,
and let A be a closed, proper subset of M.

(a) If H,(M;G) =0, then H" Y(A;G) ~ Hy(M — A4;G).

(b) H%A;G) always contains a direct summand isomorphic to G; if
H,_,(M;G) =0, then the quotient group of H°(A) modulo this summand
is isomorphic to H,_ (M — A;G).

This direct summand of H%A;G) can be more precisely described as
follows: let P denote a space consisting of one point, and let f:4 — P be
the unique map. Then the subgroup in question is f*(H°(P;G)). The cor-
responding quotient group is the “reduced” 0O-dimensional Alexander—
Spanier cohomology group.

The proof of the Alexander duality theorem follows immediately from
Diagram (6.1); the details are left to the reader. The theorem can be considered
a far-reaching generalization of the Jordan—Brouwer separation theorem
and the other theorems which were proved in §II1.6. Various applications
of it are given in the exercises below. One of the main consequences is that
if A is a closed subset of §”, the homology groups of $” — A are independent
of how A4 is imbedded in $". We have already seen special examples of this
phenomenon in §I11.6.

EXERCISES

6.1. Let 4 be a compact connected orientable (n — 1)-manifold imbedded in S". Prove
that S" — A has exactly two components.

6.2. Prove that a nonorientable compact (n — 1)-manifold can not be imbedded in
S™ [Hint: If M is such a manifold, prove first that H"~'(M;Z) is a finite group
of order 2. Then apply the Alexander duality theorem.]

6.3. Let A be a compact subset of R". Derive a relation between the Alexander—Spanier
cohomology groups of 4 and the singular homology groups of R* — A.

6.4. Let M be a compact, connected, orientable 2-manifold. We say a homology class
u € H,(M;Z)can be represented by an inbedded circle if there exists a subset A = M
such that 4 is homeomorphic to a circle, and the obvious homomorphism H ,(A4) —
H,(M) sends a generator of H,(4;Z) onto u. Prove that if u # 0 and u can be
represented by an imbedded circle, then u is not divisible (i.e., there does not exist
an integer d > 1 and a homology class v such that u = dv; an equivalent condition
is that the subgroup of H (M) generated by u should be a direct summand). Prove
also that if M is a torus, every nondivisible homology class can be represented by an
imbedded circle.

6.5. State and prove the analogues of the theorems of this section for nonorientable
manifolds, using Z, coefficients for all homology and cohomology groups.

6.6. Let A be a compact subset of Euclidean 3-space R® which is tautly imbedded and
has finitely generated integral homology groups. Prove that the integral homology
and cohomology groups of A are torsion-free.
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§7. Duality Theorems for Manifolds
with Boundary

We recall the definition: An n-dimensional manifold with boundary M is a
Hausdorff space such that each point has an open neighborhood homo-
morphic to R”, or to R% = {(x,, .. .,x,) € R"|x, > 0}. For simple examples
of manifolds with boundary, and for the classification of compact, connected
2-dimensional manifolds with boundary, the reader is referred to Massey
[6], Chapter I, Sections 9—-12. The set of all points of M having an open
neighborhood homomorphic to R" is called the interior of M, and the
complementary set is called the boundary of M. Whether a point x belongs
to the interior or boundary of M can be determined by means of the local
homology groups of M at x (cf. the exercises to §IIL.2). The interior is an
open, everywhere dense subset of M, which is an n-dimensional manifold;
the boundary is a closed subset which is an (n — 1)-dimensional manifold.
Our main objective is to state and prove an analog of the Poincare
duality theorem for manifolds with boundary. For this purpose, it will be
convenient to use the following fundamental theorem of Morton Brown:

Theorem 7.1. Let M be a compact n-dimensional manifold with boundary B.
Then there exists an open neighborhood V of B and a homeomorphism g of
B x [0,1) onto V such that g(b,0) = b for any b e B.

For a short proof of this theorem, see R. Connelly [3]. Connelly’s proof
is reproduced in the appendix to Vick [11].

This theorem has many consequences; among them are the following:

Corollary 7.2. The inclusion map of M — B into M is a homotopy equivalence.

Corollary 7.3. Let V, =g(B x [0)) for 0 <t <1, and K, =M — V,. Then
V, is an open neighborhood of B in M, B is a deformation retract of V,, and the
collection {K,|0 <t <1} is cofinal in the family of all compact subsets of
M — B.

Next, for 0 <t <1 let i,:(M,B) » (M,M — K,) = (M,V)) denote the in-
clusion map. It follows that the induced homomorphisms
iw: H,(M,B) > H(M,M — K,),
i*:H{(M,M — K,) - HYM,B)

are isomorphisms.

Corollary 7.4. H(M — B; G) is naturally isomorphic to H{(M,B; G).

This corollary follows from the definition of H4M — B) as a direct limit,
the fact that HYM — B,(M — B) — K) ~ HYM,M — K) for any compact
set K © M — B, and the cofinality of the family {K,}.



§7. Duality Theorems for Manifolds with Boundary 225

We will define a manifold M with boundary B to be oriented if the manifold
M — B is oriented in the sense defined in §2. This implies that for each
compact set K <« M — B, there is a unique homology class ux € H,(M — B,
M — B — K;Z) such that p,(ug) is the local orientation of M — B at x.
But as was observed above,

H(M — B,M — B— K)~ H(M,M — K),

by the excision property. In addition, if M is compact and K = K,,
H,(M,M — K) ~ H,(M,B). Thus the fact that M is oriented and compact
implies the existence of a unique homology class u,, € H,(M,B;Z) such that
for any x e M — B, the homomorphism H,(M,B) - H(M,M — {x}) maps
uy onto the local orientation . u,, is called the fundamental homology
class of M.

Theorem 7.5. Let M be a compact orientable n-dimensional manifold with
boundary B. Then the homomorphism

HYM.B;G) > H,_ [(M;G),
(defined by x — x N py for any x € H{M,B;G)) is an isomorphism.

Proor. We already know that H%M,B;G) is isomorphic to H,_,(M;G). For,
by Corollary 7.4, H{M,B) ~ H{M — B); then we have the Poincare duality
isomorphism P: H{M — B) = H,_ (M — B). Finally, by Corollary 7.2, there
is an isomorphism H,_,(M — B) ~ H,_,(M) induced by inclusion. Thus it
suffices to prove that the composition of these three isomorphisms is the
same as the homomorphism HYM,B) — H, _ (M) occurring in the statement
of the theorem. In order to prove this, consider the following commutative
diagram:

HYSM, $M — K) ¢ HYM,M — K) —> H%M,B)
® ® ®

H(SM, M — K) —> H,M, M - K) «—— H,(M,B)

l 1 i

H,_(#M) ————— H,_ (M) < H,_ (M)

In this diagram, #M = M — B denotes the interior of M, K = K,, all three
vertical arrows denote cap products, and all horizontal arrows denote
isomorphisms which are induced by inclusion maps. The left-hand vertical
arrow defines the Poincaré duality isomorphism P:HX#M) — H,_ (S M),
and the right-hand vertical arrow denotes the cap product occurring in the
statement of the theorem. Putting all these facts together, the reader should
have no difficulty deducing the theorem. Q.E.D.

The isomorphism of the theorem just proved is one-half of the Lefschetz—
Poincaré duality theorem for manifolds with boundary. As a preliminary
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to the other half of this duality theorem, we need the following important
result:

Theorem 7.6. Let M be a compact, oriented, n-dimensional manifold with
boundary B, and let 0,.:H (M ,B;Z) - H,_(B,Z) denote the boundary opera-
tor of the pair (M,B). Then 0,(1) is a fundamental homology class for some
orientation of B; in particular, B is orientable.

ProOF. In order to prove this theorem, it is necessary to show that for any
b e B, jo,(u) is a generator of the infinite cyclic group H, - (B, B — {b}; Z).
Here j denotes the homomorphism H,_(B) — H,_(B,B — {b}) induced
by inclusion. Note that jd, = ¢’ is the boundary operator of the exact
homology sequence of the triple (M, B, B — {b}).

By the definition of a manifold with boundary, there exists an open
neighborhood U of b and a homeomorphism h of U onto R%. Since b is
a boundary point of M, h(b) must lie in the subspace of R". defined by the
equation x, = 0. Obviously, we can assume that h is chosen so that h(b) =
(0,0, ... ,0). We may as well identify each point x € U with its image h(x) €
R’ ; thus the coordinates x, . . ., x, in R% are actually coordinate functions
in U. Then B n U is the subset of U defined by the equation x, = 0. Let
ae U be the point with coordinates (0, ...,0,1), and let N and W be the
following subsets of U:

N={xy,....x)eU|Y x}<4
W= {(x1,....x,) € N|Y x} <4and x, > 0},
E=NnB.

Now consider the following commutative diagram:

H((M,B) ———— H,_\(B, B — {b}) “———— H, ,(E,E — {b})

N b

H(M, M~ {a} «—— HM,M~W) —> H, (M~ W,(M~W)-{b))

i I |
HN, N = {a}) «——— H,N,N = W) —2 H,_ (N~ W,(N - W) (b))

In this dlagram, the arrows labelled ¢, ¢,, and ¢, denote the boundary
operators of certain triples; all other arrows denote homomorphisms in-
duced by inclusion maps. It is a routine matter to prove that d, and the
homomorphisms numbered 1 through 6 are isomorphisms. Thus all the
groups in the diagram, except possibly H,(M,B), are infinite cyclic, and are
related by a unique isomorphism. We know that p(u,,) is a generator of
the infinite cyclic group H, (M, M — {a}). It therefore follows that d'(uy,) is
a generator of the infinite cyclic group H,_ (B, B — {b}), as was to be proved.

Q.E.D.
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We can now derive the remaining half of the Lefschetz—Poincaré duality
theorem for manifolds with boundary. Let M be a compact, oriented n-
dimensional manifold with boundary B, and let u, € H,(M,B;Z) denote
the fundamental homology class of M. Consider the following diagram
involving the exact homology and cohomology sequences of the pair (M, B):

* * 6
HY(M,B;G) —— Hi(M;G) — HY(B;G) ————> H"(M,B;G)

o I b |

Hn~q(M;G) _i*—-) Hn—q(M,B;G) _-F__) Hn-—q—l(B;G) _l*_> Hn—q—l(M;G)‘
In this diagram, homomorphisms denoted by arrows 1 and 2 are cap product
with the fundamental class, i€, x = x N py. Arrow number 3 denotes the
Poincaré duality isomorphism for B, defined by y — y n (dpy). On account
of the basic properties of cap products, each square in this diagram is com-
mutative up to a + sign. We have already proved that arrows 1 and 3 are
isomorphisms. It follows from the five-lemma that arrow 2 is also an isomor-
phism. Thus we have proved the following result:

Theorem 7.7. Let M be a compact, oriented n-dimensional manifold with
boundary B and fundamental class py € H (M, M — B;Z). Then there are
Lefschetz—Poincaré duality isomorphisms

HYM,B;G) - H, ,M;G)
and
HYM;G) - H,_,(M,B;G)

defined by cap product with py,. In addition the homology sequence of (M,B)
and the cohomology sequence of (M,B) are isomorphic as indicated in Diagram
(D) above.

EXERCISES

7.1. Let M be a compact, connected, orientable n-manifold with nonempty boundary
B (B need not be connected). Prove the following relations for any abelian group G:
H,(M;G)=0.
H(M,B;G) ~ G.
H,_,(M;Z)and H,~ (M,B;Z) are torsion-free abelian groups.
7.2. State and prove analogues of the theorems of this section for nonorientable mani-
folds with boundary, using Z, coefficients.

7.3. Let M be a compact n-dimensional manifold with boundary B. If nis odd, prove that
x(B) = 2y(M) = —2x(M,B),

where y denotes the Euler characteristic. (Note: It may be proved that the integral
homology groups of a compact manifold with boundary are all finitely generated.
Hence the Euler characteristic x(M) and x(M,B) are well defined.)
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7.4. Let M be a compact, oriented n-dimensional manifold with boundary B. (a) For
any field F, prove that the bilinear form

HYM,B;F)® H""(M;F) > F,

defined by u ® v — {u U v, p,>, is nonsingular (cf. Theorem 5.1). (b) By analogy
with Theorem 5.2, prove that the bilinear form

BY{M,BY® B" M) - Z,
defined by u ® v — {u U v, ), is nonsingular.

7.5. Prove that the integral homology groups H,(M,B) and H,_,(M) have the same
rank, and that the torsion subgroups of H,(M,B) and H,_,_ ;(M) are isomorphic,
where (M,B) is as in the preceding exercise.

7.6. Let M be a compact, orientable 2g-dimensional manifold with boundary B, where ¢
is odd, and let F be a field of characteristic #2. Prove that the homomorphism
Jj*¥:HYM,B;F) - HYM_F) has even rank. (Hint: See the proof of Proposition 5.3.)

7.7. Let M; be a manifold with boundary B; for i = 1, 2. Prove that M, x M, is a
manifold with boundary. What is the boundary of M, x M,?

§8. Appendix: Proof of Two Lemmas
about Cap Products

For the statement of the first lemma, assume that {4,B} is an excisive
couple in the space X, and X = 4 U B. We then have the following diagram
of homology groups and homomorphisms:

H,(A,A n B) - H(X,B) < Hy(X) 5 H,(X,4) < H(B,A r B).

All homomorphisms are induced by inclusion maps; e, and e,, are iso-
morphisms because {4,B} is excisive. Assume that v € H,(X) is given; let
vy = (ey,) ' (v)e H(A,A N B),
vy = (e24)” ju(v) € H(B,A N B).

Now consider the following diagram:

¥ i% o*
HYX,A) — HYX) —— HY4) —> H* Y(X,A)
leg lnvl le:
HYB, A n B) nv H, A, 4~ B) H'"YB,An B)

lmvz 181. lnvz

H, (B) — H, (X) — 5 H,(X.B) —— H, , (B).



§8. Appendix: Proof of Two Lemmas about Cap Products 229

The top line is the exact cohomology sequence of the pair (X,A4), the bottom
line is the exact homology sequence of the pair (X,B), and the vertical arrows
are induced either by the inclusion maps e, or e,, or else by cap product
with the indicated homology class.

Lemma 8.1. Each square in the above diagram is commutative.
Proor. In §VIIL.3, we defined a slant product

CrY,G ) ® Cy(X x Y;Gy) = €y ,(X;G, ® G,)

by the formula
u\v = u\{(v)
foranyu e CP(Y)and v e C,(X x Y). This slant product satisfies the following

formula:
Au\v) = (du)\v + (— 1)Pu\(0v).

On passing to homology and cohomology classes, it determines a
homomorphism

H(Y)® H(X x Y) > H,_,(X),

which is also called the slant product.
For the purposes of this appendix, it is convenient to define in a similar
way, a cap product on the chain-cochain level. This will be a homomorphism

CP(X;G)® C(X;G,) 5 C,o (X6, ® Gy)

defined by
unv=u\dy{),

where d,:C,(X) - C,(X x X) is the chain map induced by the diagonal
map d. It satisfies the following boundary-coboundary formula,

du N v) = (ou) N v+ (—1)’u N (0v), 8.1)

for any u € C?(X) and v € C (X). On passage to cohomology and homology
classes, it gives rise to the cap product defined in §VIIL.3. The naturality
condition

S((fFu) nv)=un (fgv)

obviously holds for any continuous map f: X — X’,ue C?’(X")andv € C,(X).
Moreover, this definition can be generalized easily to cover the case of relative
chain and cochain groups which we need below.

Since {A4,B} is excisive and X = A U B, the inclusion map

C(A4) + C(B) —» C(X)

induces isomorphisms on homology groups. Therefore we can choose a
representative cycle z for the homology class v € H,(X) such that z € C,(A) +
C,(B). In other words,

z=12z;,+ 2z,
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where z; € C,(A) and z, € C,(B). Although z is a cycle, i.e., d(z) = 0, it does
not follow that z, and z, are cycles. All we can conclude is that

d(zy) = —d(zy) € C,— (A N B).
Let 2z, € C(A,A n B) and 25, € C,(B, A n B) denote the images of z, and z,
respectively in these quotient groups. Then
dzy) =0d(z) =0
and
e14(21) = 14(2), €3 4(25) = j4(2).

Therefore z| and z), are representative cycles for v, and v, respectively.
Now consider the following diagram of chain and cochain complexes, and
chain-cochain maps:

# #

0 —— CHX.A) ——s CHX) —— C*A) > 0
C*B, A n B) nz C(4, A N B) (8.2)
0 C(B) —5—> C(X) —— C(X,B) — 0.

Although the homomorphisms denoted by the vertical arrows do not have
degree 0, they commute with the boundary and coboundary operators
because z, z}, and z, are cycles, and because of Formula (8.1) above. The
top and bottom lines of this diagram are exact. We assert that each square of
this diagram is commutative. This is a consequence of the “commutativity”
of the following diagram:

*

CHB, A A B) «—2— CHX.A) —— CHX) = CHX) ———— C*4)
® ® ® ® ®

CiB, An B) —7— C(X,4) < CX) = C(X.B) . — (4,41 B)

F O I
CB) ——— CX) = C(X) = CX.B) < — C(4,4An B
The “commutativity” of each of the four squares of this diagram expresses
a naturality relation for cap products.
The proof of the lemma may now be completed by passing from Diagram
(8.2) to the corresponding diagram of homology and cohomology groups,
induced homomorphisms, etc. Q.E.D.

The statement and proof of the second lemma are somewhat longer.
Assume that M is an oriented n-manifold and that M = U U V, where U
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and V are open subsets of M. Let K and L be compact subsets of U and V
respectively. Since M is oriented, by Theorem 2.1, there exist unique ho-
mology classes
HgoL € Hn(M7M - Kv L),
Uk € Hn(M’M - K),
UL € Hn(M9M - L)a
and
Hg~L € Hn(MaM -Kn L)

which restrict to the chosen local orientations at each point. Consider the
following diagram:

L HM, M — K A L) — HY{M,M — K)® H(M, M — L) — H{M — K U L) —2>---

lp" lkf D k3

HUNV,UNnV—-KnL) HYU,U - K)® HY(V,V — L) Ntigor.
Jﬁ“l(nl, l(ﬁvk)@(f“’t,}
a* . A%
s H (U V) —————— H, (V)@ H, (V) Hy_ (M) —2— .

In the top line of this diagram, we have the relative Mayer—Vietoris co-
homology sequence of the triad (M; M — K, M — L), while the bottom line
is the usual Mayer—Vietoris homology sequence. The maps

p(UnV,UNV—-KnNnL)->(MM-—Kn L),
ki :(U,U-K)—> (M,M - K),
ky:(V,V—-L) > (M,M — L),

are inclusion maps which induce isomorphisms on homology and co-
homology by the excision property; also,

VKAL = Dx 1(#KnL)a
vK = k;*l(.uK)a
Vp = kzi;f(l&)

Lemma 8.2. Each square of the above diagram is commutative.

It is understood that the diagram is extended to the right and left in-
definitely, and that the lemma applies to each square of the extended diagram.
If we pass to the direct limit over all such compactsets K «c Uand L < V,
we obtain a commutative diagram involving two exact sequences which
played a crucial role in the proof of the Poincaré duality theorem in §4.
Lemma 8.2 is a special case of a more general lemma which we will now
state. Let X, X ,, Y;, and Y, be subspaces of a topological space X such that
X = (Interior X ;) v (Interior X,) and {Y},Y,} is an excisive couple. Assume
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we have given homology classes

peH(X, Yy nY)
vaeHn(Xa, Xam Ya)v CZ=1, 2,

and
vEH (X, n X5, XinX,n(Y;UuYy)
such that
ia*(/-‘) = ka*(va)»
and

qaz*(va) = ma*(v)

for « = 1, 2, where
ia:(Xa Yl N YZ) - (X’ Ya)a

ky:(Xa Xo 0 Y) = (X,Y)),
qa:(Xa’ Xa N Y:z) - (Xaw Xaz @ (Yl o Y2))>
and
miX;n X, Xi 0 X, n(YU L)X, X,n (Y0 Y)

are all inclusion maps. Consider the following diagram:

@ v 4*
HYX, Y, uY,) — HYX, Y)@HIX,Y,) — HYX,Y,nY,) — H"Y(X, Y, uY)

la 1 lﬁ 2 l}' 3 lﬂ
Hy X1 A Xo) = Ho (X))@ Hyo (Xs) —— Hy ((X) —= H,_,(X, n X,).
The top line is the relative Mayer—Vietoris cohomology sequence of the
triad (X ; Y;,Y,), while the bottom line is the usual Mayer—Vietoris homology
sequence. The homomorphisms «, f, and y are defined as follows:
a(x) = (p*x) N, X€ H*(X’ Yl Y YZ),
Bup) = ((kfw) N vy, (k3v) N vy),  ue HYNX,Y)), ve H¥X,Y))
yw) =w N L, we H¥X, Y, n Y,).
Here p:(X; n X5, X n X, n(Y; U Y,) = (X,Y; U Y, is an inclusion.
From the basic properties of cap products, it is easy to check that the squares

1 and 2 in the above diagram are commutative. However, square 3 need
not be commutative. In fact, we have the following precise statement:

Lemma 8.3. There exists a homology class ye H,, (X, Yy U Y,) such that
for any integer g and any we HYX, Y, n Y,),

A,y (w) — ad¥(w) = 4,((4%w) 0 y)

(the homology class y is not unique, in general).
Before proving this lemma, we will indicate how it implies Lemma 8.2.
Let
X=M’ X1=U’ X2=V9
Y=M-K, and Y, =M — L.
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Then H,, (X, Y;u Y,)=H,, (MM —-KnL)=0 since M is an n-
dimensional manifold. Hence y = 0 in this case, and Lemma 8.2 follows.

PROOF OF LEMMA 8.3. The standard situation which leads to a commutative
diagram of exact sequences is the following:

i J
0 K’ K K" > 0
qu l’p lw” (8.3)
k !
0 L L - L 0.

In this diagram, the following two hypotheses are assumed:

(i) The top and bottom lines are short exact sequences of chain complexes
and chain maps.
(i) The chain maps ¢', ¢, and ¢" satisfy the following commutativity
relations:
pi=ke', and ¢@"j=lo.
Unfortunately, this situation does not apply to the case at hand, because
neither of these two hypotheses holds when we go back to chains and
cochains. In order to prove Lemma 8.3, it is necessary to investigate what
happens when we relax these hypotheses. The first (and more interesting) step
is to relax the commutativity condition (ii), and require only commutativity
up to a chain homotopy. To be precise, assume that the following chain
homotopy relations hold in the above diagram:

@i — ko' = 0D + DO,
¢@"j—lp =0"E + E0,

where D:K’ — L and E:K — L” are homomorphisms of degree +1. An
easy calculation then shows that

0"(Ei + ID) = —(Ei + ID)?',

i, the homomorphism Ei + [D:K’ — L” commutes with the boundary
operator (up to a minus sign). Therefore it induces homomorphisms

(Ei + ID):H,_(K') —» H, (L")
for all g. We assert that this homomorphism gives us a measure of the lack

of commutativity of the following diagram:

Ju Ok i
" Hq(K") L SN Hq—l(Kl) —te

lw; llp;
‘.‘;) Hq(L”) __._al—) Hq—’(L’) L}....
In fact, the following equation holds:

OLpx — 90k = Ou(Ei + ID), 0. (8.4)
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To prove this equation, one must prove that for any u € H,(K"),
¢ 0k(u) = 0L(@%(u) — (Ei + ID), Ok (u)).

Choose a representative cycle for the homology class u, and then compute
representative cycles for the left- and right-hand side of this equation. We
leave it to the reader to verify that the two representative cycles are homolo-
gous.

Next, we will consider relaxing Hypothesis (i), the exactness hypothesis.
We will assume given a diagram

K 5KK

of chain complexes and chain maps such that i is a monomorphism, j is an
epimorphism, and image i is contained in kernel j. However, we do not
assume that image i = kernel j; this is the assumption we have to avoid.
We also have to consider the following two additional chain complexes:

A'(j) = kernel j,
%(i) = cokernel i.

We then have the following commutative diagram of chain complexes and
chain maps:

0 K’ K %(i) 0
Pk
0 — 4 (j) — K R K" 0.

Each row of this diagram is exact. Using the five-lemma, it is readily seen
that o,:H,(K') — H,(A'(j)) is an isomorphism for all ¢ if and only if
By Hy(%(i)) - H,(K")is an isomorphism for all g. If that is the case, we can
define a long exact homology sequence

co Hy(K') 5 Hy(K) 5 H(K") 5 H,_ (K') > -+ -

in a natural way.
Let us agree to say that the sequence of chain complexes and chain maps

K 5Kk

is almost exact if all the assumptions listed in the preceding paragraph
(including that «, and f, are isomorphisms) hold. The point is that almost
exact sequences are just as good as short exact sequences when it comes to
defining long exact homology sequences.

ExampLE 8.1. Assume that {4,B} is an excisive couple in the space X. We
then have the following almost exact sequence of chain complexes,

C(X,An B) > C(X,4)® C(X,B) » C(X, A L B)
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which gives rise to the relative Mayer—Vietoris homology sequence (cf.
§VIIL6). The dual sequence of cochain complexes,

C*X,A U B; G) » C¥X,A4;G)® C*X,B;G) »> C*X, A n B)

is also almost exact, and gives rise to the relative Mayer—Vietoris sequence
in cohomology.

We will now apply these ideas to generalize Diagram (8.3) and Equation
(8.4) above. Assume we have given the following diagram of chain complexes
and chain maps:

K'._i_.)K—j)Kn

FFF

L —— L —7— L"

It is assumed that both rows of this diagram are almost exact (instead of
exact), and that each square is chain-homotopy commutative; in other
words, there exist chain homotopies D:K’ — L and E:K — L” such that

@i — ko' = 0D + D@,

@' — lp = 0"E + E0.
Then exactly as before, we can verify that the homomorphism

Ei+ID:K' - L"
commutes with the boundary operators (up to a minus sign) and induces
homomorphisms
(Ei + D), :H,_(K') = H(L").

Then this homomorphism suffices to describe the lack of commutativity in
the following diagram:

H(K") —=— H,_,(K)
PZ l
H(L) —%> H, (L)
by means of the following equation:
OL@y — @40k = 0r(Ei + D), 0, (8.6)
PRrOOF OF EQUATION (8.6): Consider the following diagram:

K ——— K — %(i)

H() —— L —— 1.
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1t follows that we can write down the analog of Equation (8.4) for the follow-
ing diagram:

K K > %(i)

1 1 F

H() — L —— 1.

Since o, and 8, are isomorphisms, Equation (8.6) is then an easy consequence.
Q.E.D.

We are now ready to apply these ideas to prove Lemma 8.3. Choose
representative cycles

,U/ € Cn(X$ Yl Y YZ)
V2 € G Xy, Xy 0 1), x=12,
vVeC(XinX, X nX,n(Y;UY,))

for the homology classes , v,, and v respectively. Now consider the following
diagram of chain and cochain complexes, and chain maps:

[ ¥
CHX, LuY,) — CHX V)@ CHX)Y,) — CHX, Y, n Y))

T

CXy A X)) ——— CX,)® C(Xy) ———> C(X,) + C(X).

The homomorphisms in this diagram are defined as follows (see the diagram
at the end of the proof):

p(x)=(j{xj3x) xeC¥X,YuY,)
oa(x) = (p*x) NV xeCHX, YU Y,)
Ylup) = ifu—ifv  ue CHX.Y)),ve CXX,Y,)
Bu,p) = (k{u) N vi(k3v) N vh) ue C¥X,Y,), ve C¥X,Y,)
yw)y=wn u, weC*X,Y, nY,)
o(x) = (myx,m,x), xe C(X, N X,)
Y'(up) = k'iu — kb, ue C(X,),ve C(X,).

The top line is almost exact; on passage to cohomology, one obtains the
relative Mayer—Vietoris sequence. The bottom line is exact; on passage to
homology, it gives the usual Mayer—Vietoris sequence. At the right end of
the bottom line, C(X ;) + C(X,) denotes the chain subcomplex of C(X)
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generated by C(X ) and C(X,). In order that the image of y’ should lie in this
subcomplex, we assume that the representative cycle g’ is a linear combina-
tion of singular cubes which are “small of order #,” where % = {X,, X,}.

It is readily verified that o/, ', and ;" are chain maps. Moreover, both
squares of this diagram are chain homotopy commutative. Explicit chain
homotopies may be defined as follows. The hypothesis that i, (u) = k,u(v,)
implies the existence of chains

4,€C,(X)Y),  a=12
such that
0a, = T (1) — kaz (V).
Similarly, the hypothesis that g,,(v,) = m,,(v) implies the existence of chains
bye Cpi1(X, Xo 0 (Y U Y3))
such that
0b, = qu5(vy) — M4 (V).
Then one defines chain homotopies
D:C¥X,Y,u Y, - C(X,)®C(X,)
E:C¥*X,Y;) ® C*X.,Y,) - C(X,) + C(X>5)
by the formulas
D(x) = (= D)™((nfx) N by, (3 x) N by))
E(u,p) = (—1D)"u na, — v~ ay).
It is then easy to verify that
B'o—@'a =0dD + Do,
Y¥ — ' =0E + Ed
as required. Thus we are in the situation described in Diagram (8.5) above,
and Formula (8.6) is applicable. Using the definition of D and E above,

and the naturality properties of the cap product, an easy computation gives
the following formula:

(Ep + y'D)(x) =(—1)*x n y
for any x € C*(X, Y; u Y,), where
V' = ji#ay + nypby — jruas — nyubs.

In view of the way the chains a,, a,, b,, and b, were chosen, it is easy to check
that 0y’ = 0,1i.e. y' isacycle. Let ye H,, (X, Y; U Y;) denote the homology
class of y’; then it follows from Formula (8.6) that +y has the properties
stated in Lemma 8.3; this completes the proof. To assist the reader in follow-
ing the above proof, we offer the following commutative diagram of the chain
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complexes and chain maps which occur in the above proof:

CX,Y,nYy)
C(X,1) C(X,Y,)
CX, X, N Yy \ / CXy, X, A Y)
q1s CX,Y,uY) G224
Nyy Byy
CX, Xin(Y,u ) P CXpXon(Yyuly))
Myz M2y

CX, "X, X nX,n(Y;uY,)
All chain maps in this diagram are induced by inclusion maps.

Remark: The homology class y is not unique; for, the chains a4, a,, b,, and
b, can each be changed by adding a cycle from the chain group to which it
belongs. We leave it to the interested reader to investigate in more detail the
indeterminancy of the homology class y.
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CHAPTER X

Cup Products in Projective Spaces
and Applications of Cup Products

§1. Introduction

In this chapter we will determine cup products in the cohomology of the
real, complex, and quaternionic projective spaces. The cup products (mod 2)
in real projective spaces will be used to prove the famous Borsuk-Ulam
theorem. Then we will introduce the mapping cone of a continuous map,
and use it to define the Hopf invariant of a map f:S*"~! — §". The proof
of existence of maps of Hopf invariant 1 will depend on our determination
of cup products in the complex and quaternionic projective plane.

§2. The Projective Spaces

We defined the n-dimensional real, complex, and quaternionic projective
spaces (denoted by RP", CP", and QP" respectively) in §IV.3. We also defined
CW-complex structures on them, and then determined the homology groups
of CP"and QP". Now we are going to prove that they are compact, connected
manifolds, and then use the Poincaré duality theorem to determine the cup
products in their cohomology.

Since the universal covering space of RP" is S", it is clear that RP" is a
compact, connected manifold (see Exercise 2.1 in the preceding chapter).

Next, we will prove that CP" is a 2n-dimensional manifold. Let (z,,
zy, ... ,2,) denote homogeneous coordinates in CP" (see IV.3), and let

Ui={(zo.- .- ,2) € CP"|z, # 0}

239
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fori=0,1,...,n Then U, is an open subset of CP". We may “normalize”
the homogeneous coordinates of a point in U, by requiring that z; = 1. With
this normalization, each point of U; has unique homogeneous coordinates.
These unique coordinates define an obvious homomorphism of U; with
C" = R*". Since the collection of sets {U,|i = 0,1, ... ,n} is clearly a covering
of CP", this suffices to prove that CP" is a 2n-manifold.

Remark: In the preceding paragraph, we have neglected various details of
point set topology which arise because of the fact that CP" is defined as a
quotient space. The reader can either work these details out for himself, or
consult some reference such as Bourbaki [3].

That CP"is compact and connected follows from the CW-complex defined
on it in §IV.3.

An analogous proof, using quaternions instead of complex numbers,
shows that QP" is a compact, connected manifold of dimension 4n.

A method of proving that RP" is orientable for n odd and nonorientable
for neven is outlined in Exercises 2.2 to 2.5, of Chapter IX. We will not make
use of this result in this chapter, except in the exercises. In §1V.4, we proved
that the integral homology groups H,,(CP") and H ,,(QP") are infinite cyclic.
This implies that CP" and QP" are orientable for all n.

We will now discuss cup products in these projective spaces. For the sake
of brevity, it will be convenient to write uv instead of u U v. For any integer
n > 1, u" will denote the product uu - - - u (n factors), while u° = 1.

In order to describe cup products in the cohomology of CP" and QP",
note that
Z forievenand 0<i<2n,

Hi pr- ~
(CP2) {0 otherwise.

This follows from determination of the homology of CP" in §IV.4 and the
universal coefficient theorem. Similarly,

. Z fori=0mod4and0<i<4n
Hz Pn. ~ i 4

(QP2) {O otherwise.
Theorem 2.1. Let u be a generator of the infinite cyclic group H*(CP";Z).
Then u* is a generator of H*(CP";Z) for 0 < k < n.

Theorem 2.2. Let v be a generator of H¥QP";Z). Then v* is a generator of
the infinite cyclic group H**(QP";Z) for 0 < k < n.

ProoF OF THEOREM 2.1. The proof is by induction on #, using Theorem 5.2
of the preceding chapter. For n = 1, the theorem is a triviality, while for
n = 2, it follows directly from Theorem IX.5.2. Assume that the theorem is
true for CP", n > 2; we will show this implies the theorem for CP"*1!,

In §IV.3, we defined a structure of CW-complex on CP"*!, such that the
skeleton of dimension 2k is CP* for 0 < k < n + 1. From this it follows that
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we may consider CP" as a closed subspace of CP"*!, and the relative co-
homology groups of the pair (CP"**,CP") are given by

Z fork=2n+2,
HYCP™,cPiz) =1%o T T

0 otherwise.
Let i:CP* — CP"*! denote the inclusion map; from the exact cohomology
sequence we deduce that

i*: H{CP"*1;Z) - HYCP";Z)

is an isomorphism for all k+# 2n+ 2. Let u denote a generator of HA(CP"*1;Z);
by the inductive hypothesis, (i*u)* is a generator of H2X(CP";Z) for 0 < k < n;
it follows that u* is a generator of H*(CP"*!;Z) for the same values of k.
By applying Theorem IX.5.2 to the cup product

HZ"(CP”+1;Z)®H2(CP”+1;Z) — H2n+2(CP"+1;Z)

we conclude that u"*! is a generator of H*"*}(CP"*'), completing the
inductive step. Q.E.D.

The proof of Theorem 2.2 is similar, and is left to the reader. To obtain
an analogous result for real projective space, RP", it is necessary to use
mod 2 cohomology.

Theorem 2.3, The mod 2 cohomology group HYRP";Z.,) is cyclic of order 2
for 0 < k <n. Ifwis a generator of H'(RP";Z,), then w* is a generator of
HYRP",Z,) for0< k < n.

ProoF. Once again the proof is by induction on n, using the CW-complex
structure on RP" which is given in §IV.3. The theorem is true for n =1,
because RP! is homomorphic to S!. We determined the integral homology
groups of RP? in I1L.4; from this one can show that H*(RP?;Z,) = Z, for
k =0, 1, 2. Determination of the cup products in H*(RP?;Z,) then follows
from the analog for nonorientable manifolds of Theorem 5.1 of the preceding
chapter.

The inductive step is slightly more complicated than that in the proof of
Theorem 2.1. Recall that RP" is a CW-complex with one cell in each dimen-
sion <n, and the k-skeleton is RP* for 0 < k < n. It follows that

Z, fork=n,

k n n—1. —
HYRP".RP"™":Z,) {O for k # n.

From this it follows that
i*:H"(RP";Z,) - H*(RP""';Z,)

is an isomorphism for k < n — 1. We will prove that it is also an isomorphism
fork = n — 1. Consider the following portion of the mod 2 exact cohomology
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sequence of the pair (RP",RP" ™ 1):
0— H""YRP" 5 = '(RP1) 5 HYRP,RP*™ Y L HYRPY) & HYRP' 1),

First of all, H(RP"™';Z,) = 0 because RP"~! is only (n — 1)-dimensional.
Therefore j*:H"(RP";RP""') - HYRP") is an epimorphism. Next,
H"RP";Z,) is cyclic of order 2, because RP" is a compact, connected n-
manifold. Since j* is an epimorphism of a group of order 2 onto a group
of order 2, it must be an isomorphism. It follows by exactness that
8*:H" Y(RP"') » HY(RP"RP" ') is the zero homomorphism. Hence
i*:H" Y(RP") - H" Y(RP"" 1) is an isomorphism, as was asserted.

The remainder of the inductive step is similar to that in the proof of
Theorem 2.1, and may be left to the reader. The only difference is that one
uses the analog for nonorientable manifolds of Theorem 5.1 rather than
Theorem 5.2 of Chapter IX.

One can express Theorem 2.1 by means of the following ring isomorphism:

HXCP";Z) ~ Z[u] /" 1);

in other words, the integral cohomology ring H*(CP";Z) is isomorphic to
the integral polynomial ring Z[u] modulo the ideal generated by u"*!.
Similarly,
H*QP";Z) ~ Z[v] /(v"* "),
H¥RPY,Z,) =~ Z,[w]/(w"*?).

Rings with this type of structure are often called truncated polynomial rings.

We will now use this result on the structure of H¥(RP";Z,) to prove the
famous Borsuk—-Ulam theorem (for a discussion of some of the interesting
consequences of this theorem, the reader is referred to Algebraic Topology :
An Introduction, Chapter 5, Section 9). Recall that a map f:S™ — §"is called
antipode preserving in case f(—x) = — f(x) for any x € S™.

Theorem 2.4. There does not exist any continuous antipode preserving map
fist— s

Proor. We will only give the proof for n > 2; the proof for n < 2 is contained
in Algebraic Topology: An Introduction (loc. cit.) The proof is by contradic-
tion. Assume that f:S" — S""! is an antipode preserving map. Hence f
induces a map g:RP" — RP""!, since RP" is the quotient space obtained by
identifying antipodal points of S". Thus we get a commutative diagram

s —f) Sn—l

RP" —— RP™ 1,

where p and g are the projections of $” and $"~! onto their quotient spaces.
Because n > 2, both §" and S"~! are simply connected. Thus they are the
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universal covering spaces of RP" and RP"~' respectively and the funda-
mental groups, 7(RP") and n(RP" " '). are both cyclic of order 2. The induced
homomorphism

gy :T(RP") - n(RP"™ 1)
must be an isomorphism; this may be proved by an easy argument which
is given on p. 172 of Algebraic Topology : An Introduction. Now consider the
following commutative diagram:

9x
W(RP") ——— n(RP"-1)

| |
H,(RP") SELLEN H,(RP" 1),

The homomorphisms denoted by h are the natural homomorphisms of the
fundamental group onto the first homology group which were defined in
IIL.7. Since the fundamental groups involved are abelian, these homo-
morphisms are both isomorphisms (cf. Theorem II1.7.1). It follows that
gy H (RP") > H{(RP"') is an isomorphism.

Next, consider the following commutative diagram:

HYRP";Z,) ———— Hom(H,(RP");Z,)

Iy* ]Hom(g*,l)

HY(RP"™';Z,) —— Hom(H,(RP""'),Z,).

The homomorphisms labelled « are those which occur in the universal co-
efficient theorem (§VI1.4); in this case they are both isomorphisms. It follows
from this that

g*:H (RP""';Z,) —» H'(RP";Z,)

is also an isomorphism. Let w be a generator of H'(RP" *;Z,); then g*(w)
is a generator of H'(RP";Z,). By Theorem 2.3, (g*w)" # 0. However, this is
a contradiction, since

(g*w)" = g*(w")

and w" = 0. Q.E.D.

EXERCISES

2.1. For k < n, consider CP* as the 2k-skeleton of CP". Prove that CP* is not a retract
of CP". Similarly, prove that for k < n, QP*is not a retract of QP", and RP¥is not a
retract of RP",

2.2. Determine the integral homology groups of RP" by induction on n. Use the fact
that RP" is a CW-complex, as described in §IV.3, and that it is orientable for n odd,
and nonorientable for n even.

2.3. Use the results of the preceding exercise and the universal coefficient theorem to
determine the structure of the integral cohomology groups HYRP";Z). Then
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determine the cup products in the integral cohomology of RP". (Hint: Use the
homomorphism H¥RP";Z) - HXRP";Z,) induced by reduction mod 2 of the
integer.)

§3. The Mapping Cylinder and Mapping Cone

The techniques developed in this section will be used in the next section to
define certain homotopy invariants of continuous maps.

Let f:X — Y be a continuous map. The mapping cylinder of f, denoted
by M(f), is the topological space defined as follows: Assume that X x I and
Y are disjoint; if they are not, take disjoint copies. Then form the quotient
space of the disjoint union of X x I and Y by identifying the points (x,0)
and f(x) for each x € X.

The mapping cylinder M(f) can be visualized as a space which contains
a copy of X (namely, X x {1}),a copy of Y, and corresponding to each x € X
a copy of the unit interval connecting the points x and f(x). This space is
topologized so that if x, and x, are points in X, that are close to each other,
then the corresponding segments from x; to f(x;) and from x, to f(x,) are
also close to each other.

The obvious deformation retraction of X x I onto X x {0} gives rise to
a deformation retraction of M(f) onto Y. If we denote by i: X — M(f) the
inclusion map (defined by i(x) = (x,0)) and by r:M(f) — Y the retraction,
then the following diagram is commutative:

M(f)

.

Thus an arbitrary continuous map f is the composition of an inclusion
map i and a homotopy equivalence r.

The mapping cone of f: X — Y, denoted by C(f), is the quotient space of
the mapping cylinder M( f) obtained by identifying the subset X x {1} to a
single point. Alternatively, the mapping cone can be constructed as follows:
let C(X), called the cone over X, denote the quotient space of X x I obtained
by identifying all of X x {1} to a single point. Then C(f) is the quotient
space of the (disjoint) union of Y and C(X) obtained by identifying the point
(x,0) € C(X) with the point f(x) e Y for all x € X.

ExampLE 3.1. If X = §" the n-sphere, then it is easily seen that C(X) is
homomorphic to the (n + 1)-dimensional ball E"*. In this case, C(f) is
the same as the space X* = X U ¢"*! obtained by adjoining an (n + 1)-cell
to the space X by means of the map f, as described in §IV.2. In particular,
if K™ denotes the m-dimensional skeleton of a CW-complex, then we can
regard K"*! as the mapping cone of a certain map f: X — K", where X is a
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disjoint union of n-spheres (assuming that the number of (n + 1)-cells is
finite).

One of the basic facts about the spaces M( f) and C(f) is that they satisfy
certain naturality conditions. Let

f

X — Y

X — y

be a commutative diagram of topological spaces and continuous maps. Then
it is readily seen that ¢, and ¢, induce continuous maps of quotient spaces,
M(f) - M(f') and C(f) —» C(f"); let us agree to denote both of these in-
duced maps by the symbol ¢. Then it follows that the following two diagrams
are commutative:

i

X M(f) — Y

X/ _") M(f') _i_> Y',

v — c)
1‘/’2 1(0
Yy —L c(f).
In the second diagram, the symbols j and j* denote obvious inclusion maps.

Lemma 3.1. Let p: M(f) — C(f) denote the natural map which identifies the
subset X = X x {1} of M(f) to a single point P of C(f). Then the induced
homomorphism of relative cohomology groups

p*:HIC(f),P) - HYM(f),X)
is an isomorphism for all q.

ProoOF. Let X denote the subset X x [3,1] of M(f), and let P denote the
image of X under p. Consider the following commutative diagram:

HAM(/),X) +—— HYM(f).X) — 5 BYM(f) - X, X - X)

In* LT Ipé‘
HYC(f)P) «—— HY(C(f).P) —> HUC(f)— P,P — P).

In this diagram, the horizontal arrows denote homomorphisms induced
by inclusion maps, and the vertical arrows denote homomorphisms induced
by p. Arrows 1 and 2 are isomorphisms because X is a deformation retract
of X and P is a deformation retract of P. Arrows 3 and 4 are isomorphisms by
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the excision property; and p% is an isomorphism, because p maps M(f) — X
and X — X homomorphically onto C(f) — P and P — P respectively. It
follows that p* is an isomorphism, as desired. Q.E.D.

Now let k: Y — M(f) denote the inclusion map; k is a homotopy equi-
valence because Y is a deformation retract of M(f). Consider the following
diagram:

HY(C(/)P) ——— HY(Y)

FN

HOYX) ——= H(M(f),X) — HYM(f)) — > HYX).

The bottom line is the cohomology sequence of the pair (M(f),X). All the
vertical arrows are isomorphisms, and k* and r* are inverses of each other.
Finally, the diagram is readily seen to be commutative. As a consequence
of these facts, we see that the following sequence of cohomology groups
and homomorphisms is exact:

- H™Y(X) 5 HY(C(f),P) 5 HY(Y) 5 HyX) —.

Here A = (p*)™ 4. This exact sequence will be called the cohomology sequence
of the map f. Observe that a commutative diagram

/
X — Y

prl 1‘4’2

x —t y
gives rise to an induced map of the cohomology sequence of f into the
cohomology sequence of f’; that is, we get a ladder-like diagram involving
the two exact sequences, and every square in the diagram is commutative.

Now let us apply these ideas to study the cohomology sequences of

two maps which are homotopic. Let f,, f;: X — Y be continuous maps, and
let f:X x I - Y be a homotopy between f, and f}, i.e., fo(x) = f(x,0) and
f1(x) = f(x,1). This gives rise to the following commutative diagram:

Jo
X — Y

.

I
Xx] — Y

-

Ji
X — Y

Here hy(x) = (x,i) for i = 0 or 1. Corresponding to this diagram, we get a
bigger diagram involving the cohomology sequences of f,, f, and f, together
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with homomorphisms between them. By making use of the five-lemma
together with the fact that h, and h; are homotopy equivalences, we easily
deduce that the cohomology sequences of the maps f, and f, are isomorphic.
To be precise, any homotopy between f, and f; gives rise to an isomorphism
between the corresponding cohomology sequences. Presumably different
homotopies could give rise to different isomorphisms.

We could also word this conclusion as follows: the cohomology sequence
of amap f is a homotopy invariant of f.

ExaMpLE 3.2. Suppose f:X — Y is a constant map. Then it is clear that
Y is a retract of C(f). Hence there exists a homomorphism r*: H(Y) —
HYC(f)) such that j*r* is the identity map of H4Y). Moreover, r* preserves
cup products, i.e., r*(x U y) = (r*x) U (r*y). Because of the invariance of the
cohomology sequence of f under homotopies, we can conclude that this
same result is true in case f:X — Y is only assumed to be homotopic to a
constant map. As a matter of fact, it is easy to prove directly that f is
homotopic to a constant map if and only if Y is a retract of C(f).

EXERCISE

3.1. As in the above discussion, let f: X x I — Y be a continuous map, and let f,,f;:
X — Y be defined by fi(x) = f(x,i), i =0, 1. Prove that M(f;) is a deformation
retract of M(f), and C(f;) is a deformation retract of C(f) for i = 0, 1. Then deduce
that the pairs (C(fp),Y) and (C(f;),Y) are of the same homotopy type.

§4. The Hopf Invariant

The Hopf invariant associates with each map f:5%"~' — $" an integer that
is a homotopy invariant of f. Using it, we will be able to prove that for
n even and >2, there are infinitely many different homotopy classes of
such maps.

In order to define the Hopf invariant, we will assume that the spheres
§?"=1 and S" are “oriented,” in the sense that definite generators ae
H*"~ 1§71 Z) and b € H"(S"*;Z) have been chosen for these infinite cyclic
groups. We will also assume that n > 2. As in the preceding section, let
C(f) denote the mapping cone of f. It follows from the exactness of the
cohomology sequence of the map f that the following two homomorphisms

A :H2n— 1(S2n-— 1) s HZ”(C(f))
J*HYC(f)) - H"(S")
are both isomorphisms. Let a’ = A(a) € H*(C(f);Z), and let b’ € H(C(f),Z)

be the unique element such that j*(b') = b. Since H*(C(f);Z) is infinite
cyclic, there exists a unique integer H(f) such that

boub=H(f)d.
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In view of the homotopy invariance of the cohomology sequence of f, the
integer H(f) depends only on the homotopy class of f.

We will now list some of the principal properties of the Hopf invariant:

(1) If n is odd and >1 then H(f) =0 for any map f:5"~! — §". This
follows from the anti-commutative law for cup products. As a consequence,
the Hopf invariant is useless in this case.

(2) If n =2, 4, or 8, there exist maps f:$2"~! — §" such that H(f) = +1.
For n = 2 we may choose f such that C(f) = CP?, the complex projective
plane; while for n = 4, we may choose f such that C(f) = QP2 The case
n = 8 is more complicated; in essence, we must choose f so that C(f) is
the so-called Cayley projective plane. An explicit description of such a map
f is given by Steenrod [5], pp. 109-110. A complete discussion of the Cayley
projective plane is given by H. Freudenthal, [4].

(3) For any even integer n > 2, there exist maps f such that H(f) = +2.
To prove this, recall that S" may be considered as a CW-complex with a
single vertex, €°, a single n-cell ¢”, and no cells of any other dimension.
Hence S" x §" may be represented as a CW-complex with one vertex,
e® x €% two n-cells, €® x " and ¢" x ¢, and one 2n-cell, " x ¢". The n-
skeleton of this CW-complex is the subspace

S"v 8" = (8" x €% u(e® x §")

of §” x S". Let g:5?"~! — §"v §" denote the attaching map for the single
2n-cell of this CW-complex, and let h:S"v S" — S" be defined by h(x,e) =
h(e®x) = x for x e S" (h is sometimes called the folding map). We assert
that if we define

f=hg:$*"" 1 > 8",

then (for n even), H(f) = +2. To prove this assertion, consider the following
commutative diagram:

SZn—l __g_., N ._Il_.) C(g)

bk
SZn—l S > S i — C(f)

Here k' is induced by h. By definition, C(g) = §" x S". Let b denote the
chosen generator of H*(S";Z). Then {b x 1,1 x b} is a basis for H'(S" x S")
and (b x 1) U (1 x b) =b x b is a generator of H*(S" x S"), (cf. §VIIL.11).
Now, consider the following commutative diagram:

HY(S" v §7) «—— H"(S" x §")

I,,. [,,,.

*

H'(S") «——— H'(C(f)).
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Both j¥ and j% are isomorphisms, and j¥(b') = b. We leave it to the reader
to convince himself that

W*(b)= (b x 1)+ (1 x b).
We also have the following commutative diagram:
H2n(sn X S")
4,
Ih'* HZ"_I(SZ"_I).

H™C(f))

Both A, and 4, are isomorphisms, hence h'* is an isomorphism. Let us
assume that the generator a € H>"~1(§?"~!) is chosen so that 4,(a) = b x b;
hence hW'*(a’) = b x b. To prove our assertion, apply the homomorphism
h'* to the equation

bub =H(f)d.
The result is

(bx1+1xb)u(bx1+1xb)=H)b x b),

hence H(f) = 2. If we had used the orientation of $2"~! determined by the
generator —a, we would have obtained H(f) = —2.

(4) Let f:S?" ' -5 $" be a continuous map, and h:S" — S" a map of
degree k (i.c., h*(b) = kb). Then

H(hf) = K*H(f).

(5) Let h:S?"" ' 5 §2""1 be a map of degree k (i.e., h*(a) = ka) and
f:82"~1 5 §" a continuous map. Then

H(fh) = k- H(f).
The proof of Assertions (4) and (5) are left to the reader as exercises.

Remarks. Assume that n is even and >2. It follows from the preceding
paragraphs that given any integer 2m, there exists a map f:S>"~! — §" such
that H(f) = 2m. It is known that H(f) is of necessity an even integer, except
when n = 2, 4, or 8. This was proved by José Adem [2] for n # 2% and by
J.F. Adams [1] for n = 2% k > 3.

It is also known that two maps f;, f,:S° — S are homotopic if and only
if H(f,) = H(f,). In general, such a statement is not true for maps of $>"~!
into ", n > 2. However, it is known that there are only a finite number of
homotopy classes of such maps having a given integer as Hopf invariant.

EXERCISES

4.1. Given any space X, define the suspension of X, denoted S(X), to be the quotient
space of X x I obtained by identifying each of the subsets X x 0 and X x 1 toa
point; it is a sort of “double cone” over X. Similarly, if f:X — Y is a continuous
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map, define S(f):S(X) — S(Y) to be the map induced on quotient spaces by the

map of X x I into Y x I which sends (x,t) to (fx,t).

(a) If X = 8", prove that S(X) is homeomorphic to $"*!,

(b) What is the relation between the homology groups of X and those of §(X)?

(c) Ifu e HY(S(X)) and v € HY{S(X)), where p > 0 and g > 0, prove that u U v = 0.

(d) If fo,f1: X — Y,and fyishomotopic to f;, prove that S( f,) is homotopic to S(f; ).

(e) Let f:X — Y; we would like to prove that C(Sf) = S(Cf). Unfortunately, this
is not quite true. Prove that there is a natural map S(Cf) — C(Sf) which induces
isomorphisms of homology and cohomology groups.

(f) Let f:8%""2 —> $""! be a continuous map; in view of (a), the Hopf invariant
H(Sf) is defined. Prove that H(Sf) = 0. Remark: The converse of this last
statement is true “up to homotopy.” To be more explicit, let g:$"~* — S" be
a map such that H(g) = 0. Then there exists a map f:5%"~2 — $"~! such that
g is homotopic to S(f); see G. W. Whitehead, [6].
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Appendix:
A Proof of De Rham’s Theorem

§1. Introduction

In Chapter I we mentioned that some of the motivating ideas for the develop-
ment of homology theory in the Nineteenth century arose in connection
with such topics as Stokes’s theorem, Green’s theorem, Gauss’s divergence
theorem, and the Cauchy integral theorem. De Rham’s theorem may be
looked on as the modern culmination of this particular line of thought.
It relates the homology and cohomology of a differentiable manifold to
the exterior differential forms on the manifold. Exterior differential forms
are objects which can serve as integrands of line integrals, surface integrals,
etc., such as occur in the statement of the classical Green’s theorem and
Stokes’s theorem. De Rham’s theorem is of obvious importance, because
it is a connecting link between analysis on manifolds and the topological
properties of manifolds.

In this appendix we will assume that the reader is familiar with the
basic properties of differentiable manifolds, differential forms on manifolds,
and the integration of differential forms over (differentiable) singular cubes.
These topics are explained in many current textbooks, and there would be
little point in our repeating such an exposition here. As examples of such
texts, we list the following: M. Spivak [6], Flanders [3], Warner [9], and
Whitney [ 10].

The first part of this chapter is devoted to using differentiable singular
cubes to define the homology and cohomology groups of a differentiable
manifold. We prove that in studying the homology and cohomology groups
of such a manifold, it suffices to consider only differentiable singular cubes;
the nondifferentiable ones can be ignored.

251
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Next, we introduce what may be called the De Rham cochain complex
of a differentiable manifold. This cochain complex consists of the exterior
differential forms, with the exterior derivative serving as the coboundary
operator. There is a natural homomorphism from this De Rham complex
to the cochain complex (with coefficient group R, the real numbers) based
on differentiable singular cubes. This homomorphism is defined on any
exterior differential form of degree p by integrating that form over differ-
entiable singular p-cubes. The general form of Stokes’s theorem is precisely
the assertion that this natural homomorphism is a cochain map. De Rham’s
theorem asserts that this natural cochain map induces an isomorphism
on cohomology.

The proof we give of De Rham’s theorem is modelled on Milnor’s proof
of the Poincar¢ duality theorem in Chapter IX. The reader who has worked
through that proof should have no trouble grasping the structure of our
proof of De Rham’s theorem. Curtis and Dugundji [11] have also given
a proof of De Rham’s theorem along somewhat similar lines.

§2. Differentiable Singular Chains

Let M be an n-dimensional differentiable manifold of class C* (we assume
the reader is familiar with this concept). In order to define a differentiable
singular cube, we must make use of the fact that the standard unit p-cube,

IP={(x,...x,)eRP|0< x, < 1,i=12,....p)

is a subset of Euclidean space R?. For p > 0, a singular p-cube T:I” - M
will be called differentiable if there exists an open neighborhood U of I?
in R? and an extension 7": U — M of T such that T is differentiable (of class
C”). We complete this definition by defining any singular 0-cube to be
differentiable.

Remark: If a singular p-cube T:I? — M is differentiable, there will, in
general, be many different choices for the open neighborhood U and the
extension 7°:U — M.

We now introduce the following notation:
Q5(M) = subgroup of Q,(M) generated by the
differentiable singular p-cubes,
D5(M) = D,(M) n Q§(M),
CS(M) = QS(M)/D(M).
The superscript S in the above notation is intended to suggest the word

“smooth.” We will refer to C5(M) as the group of differentiable or smooth
p-chains of M. Note that C{(M) = Q§(M) = Qo(M) = Cy(M).
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Next, observe that if T:I? - M is a differentiable singular p-cube, then
the faces 4;T and B;T, 1 < i < p, are all obviously differentiable singular
(p — 1)-cubes. It follows that ,(T)e Q5_,(M). Thus Q5(M) = {Q5(M),0,}
is a subcomplex of Q(M), and C5(M) = {C3(M)} is a subcomplex of C(M).
We will also introduce the following notation: for any abelian group G,

CS(M;6) = CS(M) ® G,
C¥M ;G) = Hom(C5(M),G),
HYM;G) = H,(CS(M;G)),
HY(M;G) = HY(CE(M;G)).

We can now state the main theorem of this section:

Theorem 2.1. Let M be a differentiable manifold. The inclusion map of chain

complexes,
CS(M) - C(M)

induces an isomorphism of homology groups,

HS(M) ~ H,(M).

Corollary 2.2. For any abelian group G, we have the following isomorphisms
of homology and cohomology groups:

HYM;G) ~ H,(M;G),
HE(M;G) ~ H (M ;G).

The corollary follows from the theorem by use of standard techniques
(cf. Theorem V.2.3). Before we can prove the theorem, it is necessary to
discuss to what extent the methods and results of Chapters II and III on
homology theory carry over to the homology groups H}M;G) for any
differentiable manifold M. We will now do this in a brief but systematic
fashion.

(a) Let M; and M, be differentiable manifolds, and let f: M, - M, be
a differentiable maps of class C*. If T:I" - M, is a differentiable singular
p cube, in M,, then fT:I* - M, is also differentiable. Hence we get an
induced chain map

f#:C3(M ) - C3 (M)

with all the usual properties.

(b) Two differentiable maps f,, f;: M, — M, will be called differentiably
homotopic if there exists a map f:I x M; — M, such that fy(x) = f(0,x)
and fi(x) = f(1,x) for any x € M, and in addition, there exists an open
neighborhood U of I x M, in R x M and a map f’:U — M, which is an
extension of f, and is differentiable of class C. The technique of §IL.4
can now be applied verbatim to prove that the induced chain maps f;,
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fi#:C5(M,) — C5(M,) are chain homotopic. This has all the usual conse-
quences; in particular, the induced homomorphisms on homology and
cohomology groups are the same. )

(c) An open, convex subset if R” is differentiably contractible to a point;
in fact, the standard formulas for proving that such a subset is contractible
are differentiable homotopies in the sense of the preceding definition. From
this it follows that if U is an open, convex subset of R”, then

srr. o JG forp=0,
Hy{U;6) = {0 for p # 0,
with similar formulas for H{(U ; G).

(d) Let M be a differentiable manifold, and let A be a subspace of M
which is a differentiable submanifold. For example, A could be an arbitrary
open subset of M, or 4 could be a closed submanifold of M. Then we can
consider C5(4) as a subcomplex of CS(M); hence we can consider the quotient
complex C5(M)/CS(A) = C5(M,A) and we obtain exact homology and coho-
mology sequences for the pair (M,A) using differentiable singular cubes.

(e) If T:1I" - M 1is a differentiable singular cube, the subdivision of T,
Sd(T) as defined in §I1.7, is readily seen to be a linear combination of
differentiable singular cubes. Hence the subdivision operator defines a
chain map

sd: C5(M) - CS(M)

just as in §I1.7. Unfortunately, the chain homotopy ¢,:C (M) - C, . (M)
defined in §11.7 does not map C3(M)into CS, ,(M). This is because the function
n,:I* - [4,1] is not differentiable (the function 5,:1* — I is differentiable).
However, it is not difficult to get around this obstacle. Consider the real-
valued function #; defined by

14+ x; —x1x,

n1(x1,%2) = 2-x,

It is readily verified that n} maps I? into the interval [$,1], and that #,
and 7, are equal along the boundary of the square I2. Obviously, #} is
differentiable in a neighborhood of I2. Thus if we substitute ) for 5, in
the formula for G,(T) in §IL7, then G(T) will be a linear combination of
differentiable singular cubes whenever T is a differentiable singular cube.
Moreover, the operator G, will continue to satisfy identities (f.1) to (f4)
of §I1.7. Thus we can define a chain homotopy ¢,:C3(M) - CS, ,(M) using
the modified definition of G,. From this point on, everything proceeds
exactly as in §II.7. The net result is that we can prove an analog of
Theorem I1.6.3 for singular homology based on differentiable singular cubes,
and the excision property (Theorem 11.6.2) holds for this kind of homology

theory.
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(f) Suppose that the differentiable manifold M is the union of two open
subsets,
M=UvuV.

Then we can obtain an exact Mayer—Vietoris sequence for this situation
by the method described in §III.5.

(g) Finally, we note that an analog of Proposition I11.6.1 must hold for
homology groups based on differentiable singular cubes; this is practically
obvious.

With these preparations out of the way, we can now prove Theorem 2.1.
The pattern of proof is similar to Milnor’s proof of the Poincaré duality
theorem in §4 of Chapter IX, only this proof is much easier. We prove the
theorem for the easiest cases first, and then proceed to successively more
general cases.

Case 1: M is a single point. This case is completely trivial.

Case 2: M is an open convex subset of Euclidean n-space, R”". This follows
easily from Case 1, since M is differentiably contractible to a point in this case.

Case 3: M =U u V, where U and V are open subsets of M, and the
theorem is assumed to be true for U, V, and U n V. This case is proved
by use of the Mayer—Vietoris sequence and the five-lemma.

Case 4: M is the union of a nested family of open sets, and the theorem
is assumed to be true for each set of the family. Then the theorem is true
for M. The proof is by an easy argument using direct limits, and Proposition
IIL6.1.

Case 5: M is an open subset of R". Every open subset of R" is a countable
union of convex open subsets,

@
M=) U.
i=1
For each U; the theorem is true by Case 2. For any finite union, | J{-; U;
the theorem is true by induction on n, using Case 3 and the basic properties
of convex sets. Then one uses Case 4 to prove the theorem for M.

Case 6: The general case. Any differentiable manifold can be covered
by coordinate neighborhoods, each of which is diffeomorphic to an open
subset of Euclidean space. Using Case 4, Case 5, and Zorn’s lemma, we see
that there must exist a nonempty open subset U = M such that the theorem
is true for U, and U is maximal among all open sets for which the theorem is
true. If U # M, then we can find a coordinate neighborhood V such that
V is not contained in U. By Case 3, the theorem is true for U u V, con-
tradicting the maximality of U. Hence U = M, and the proof is complete.
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§3. Statement and Proof of
De Rham’s Theorem

For any differentiable manifold M, we will denote by DY M) the set of C*
differential forms on M of degree gq. DYM) is a vector space over the field
of real numbers. As usual, d:DYM)— D?*}(M) will denote the exterior
differential. Since d? = 0,

D*(M) = {DY(M).d}

is a cochain complex, which will be referred to as the De Rham complex
of M. If f:M, - M, is a differentiable map (or class C*), then there is
defined in a well-known way a homomorphism f*:D%M,) — D%M,). The
homomorphism f* commutes with the exterior differential d, and hence
it is a cochain map of D*(M,) into D*(M,).

Given any differentiable singular n-cube T:I" — M, and any differential
form o € D*(M), there is defined the integral of w over T, denoted by

[re

(cf. Spivak, [6], p. 100ff.). The basic idea of the definition is quite simple:
T*(w) is a differential form of degree n on the cube I”, hence it can be written

T*(w) = fdx,dx, - - dx,

in terms of the usual coordinate system (x,.x,,...,x,) in I". Then jT w is
defined to be the n-fold integral of the C* real-valued function f over the
cube I". Actually, the preceding definition only makes sense if n > 0; in
case n =0, w is a real-valued function, and I" = I° is a point. In this case
{7 @ is defined to be the value of the function w at the point T(I°) € M.
More generally, if
u=7yaT,

is a linear combination of differentiable singular n-cubes, then we define

La) =Yg fn w.

With this notation, we can write the generalized Stokes’s theorem as follows:
For any u € Q5(M) and any w € D"~ Y(M),

J;dco =J;u .

For the proof, see Spivak [6], p. 102-104.

At this stage, we should mention three formal properties of the integral
of a differential form over a singular chain. The proofs are more or less
obvious.

(a) The integral {,  is a bilinear function

03(M) x D"(M) - R.
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In other words, for each u it is a linear function of w, and for each w it is

a linear function of u.
(b) Let f:M; — M, be a differentiable map, u € Q5(M,), and w € D"(M,).

Then
J;f M) = ff#(u) @

(c) If u is a degenerate singular n-chain, i.e., u € DS(M), then

Lw=0

for any differential form w of degree n.
In view of Property (a), we can define a homomorphism

¢:D"(M) — Hom(Q5(M),R)
by the formula
{pwu) = f »

for any w € D (M) and any u € Q3(M). The generalized Stokes’s theorem now
translates into the assertion that ¢ is a cochain map

D¥M) —» Hom(Q(M),R)
and Property (c) translates into the assertion that the image of ¢ is contained

in the subcomplex Hom(C5(M),R) = C#(M;R); thus we can (and will) look
on ¢ as a cochain map

@:D¥(M) - C¥M;R).

Finally, Property (b) is equivalent to the assertion that the cochain map ¢
is natural vis-a-vis differentiable maps of manifolds.

Theorem 3.1 (De Rham’s theorem). For any paracompact differentiable mani-
fold M, the cochain map ¢ induces a natural isomorphism @*:H"(D*(M)) ~
5(M;R) of cohomology groups.

If we combine this result with Corollary 2.2, we see that H"(D*(M)) is
naturally isomorphic to H"(M;R) for any paracompact differentiable
manifold M.

Proor oF DE RuaM’s THEOREM. The proof proceeds according to the same
basic pattern as Milnor’s proof of the Poincaré duality theorem in Chapter IX.

Case 1: M is an open, convex subset of Euclidean n-space, R". In this
case, we know from the results of §2 that

R ifn=0
S, . _ ’
HM:R) = {0 ifn #0.
Similarly,
R ifn=0,

H(D*(M)) = {0 ifn # 0.
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This is essentially the content of the so-called Poincare lemma (see Spivak,
[6], p- 94). Thus to prove the theorem in this case, we only have to worry
about what happens in degree 0. This is made easier by the fact that in
degree 0, every cohomology class contains exactly one cocycle. The details
of the proof-are simple, and may be left to the reader.

Case 2: M is the union of two open subsets, U and V, and De Rham’s
theorem is assumed to hold for U, V, and U ~n V. Then De Rham’s theorem
holds for M.

To prove the theorem in this case we use Mayer—Vietoris sequences. We
already have a Mayer-Vietoris sequence for cohomology based on differen-
tiable singular cubes; we will now derive such a sequence for the De Rham
cohomology. Let i:U NV - U, j:UNnV >V, kU—->M,and .V - M
denote inclusion maps. Define cochain maps

a:D*(M) — D*(U) @ D*(V),
B:D¥U)® D¥(V) - D¥U v V)
by
a(w) = (K*w,l*w),

Blwy,w;) = i*(wy) — j*(w»).

We assert that the following sequence
0 — D¥(M) 5 D*U)@® D*(V) 5 D*U A V) > 0 (3.1)

is exact. The only part of this assertion which is not easy to prove is the fact
that B is an epimorphism. This may be proved as follows. Let {g,h} be a C*
partition of unity subordinate to the open covering {U,V'} of M. This means
that g and h are C® real-valued functions defined on M such that the
following conditions hold: g + h = 1,0 < g(x) < 1 and 0 < h(x) < 1 for any
x € M, the closure of the set {x € M|g(x) # 0} is contained in U, and the
closure of the set {x € M|h(x) # 0} is contained in V. The hypothesis that
M is paracompact implies the existence of such a partition of unity. The
proof is given in many textbooks, e.g., De Rham [2], p. 4, Sternberg, [8],
Chapter II, §4, Auslander and MacKenzie, [1], §5—6. Now let o be a differ-
ential form on U N V. Then gw can be extended to C* differential form wy,
on V by defining wy(x) = 0 at any point x € V — U. Similarly, hw can be
extended to a C*® differential form wy on U by defining wy(y) = 0 at any
point y € U — V. Then it is easily verified that

Bloy — wy) =
as desired.
On passage to cohomology, the short exact sequence (1) gives rise to a
Mayer—Vietoris sequence for De Rham cohomology.
Similarly, the Mayer—Vietoris sequence for cohomology based on differ-
entiable singular cubes is a consequence of the following short exact sequence
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of cochain complexes (cf. §III.5):

0 - CE M) 5 CHU)® Cx(V) 5 csun V) > 0. (3.2)

Here % = {U,V} is an open covering of M, and the definition of the cochain
maps o' and f’ is similar to that of « and f above.

Finally, we may put these two short exact sequences together in a com-
mutative diagram as follows:

0 ——— D*M) —2—> D¥U)@® D*V) —— DHU A V) — 0

lw

C3(M) ¢ ¢

0 —— CHMa) —— CHU)® CHV) —— CHUn V) — 0.
The cochain map labelled a is induced by the inclusion of the subcomplex
CS(M, %) in C5(M); it induces an isomorphism on cohomology. Clearly, each

square of this diagram is commutative. On passage to cohomology we obtain
the diagram we need to prove this case of De Rham’s theorem.

Case 3: M =}z, U,, where UycUyc - clc Uj,c--isa
nested sequence of open sets, and for each i, U, is compact. It is assumed that
De Rham’s theorem holds for each U;; we will show that it holds for M.
To carry out the proof in this case, we need to make use of inverse limits.
The reader can find all the required material on inverse limits in the appendix,
pp. 381410 of Massey [5].

First of all, for each index i there is a cochain map D*(M) — D*(U))
induced by inclusion of U; in M. This is a compatible family of maps, and
D*(M) s the inverse limit of the inverse system of cochain complexes { D*(U;)}
(this is practically obvious from the definitions of inverse limit and differential
form). Moreover, for each g, the inverse sequence or tower {D%U )} satisfies
the Mittag-Leffler condition; this is an easy consequence of the assumption
that each U, is compact. It follows that the first derived functor

lim! DYU) =0

for all q. Hence we can apply Theorem A.19 on pp. 407-408 of Massey [5] to
conclude that there exists a natural short exact sequence

0 — lim" H2~Y(D*(U,)) » HYD*(M)) — lim inv H{D*(U}))) » 0. (3.3)

Next, we will prove similar facts about the cochain complexes C#(U;;R)
and C*(M;R). We know that the chain complex CS(M) is the direct limit of
the chain complexes CS(U)),

CS(M) = dir lim CS(U)).
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Applying the functor Hom( ,R), we see that

C¥M;R) = Hom(C5(M):R)
= inv lim Hom(C5%(U));R)
= inv lim C¥(U;;R);

(compare Exercise 2 on p. 397 of Massey [5]). Moreover, for each index i,
the homomorphism

C3(Ui+13R) » C3(UsR)

is obviously an epimorphism. Therefore the Mittag-Leffler condition holds
for the inverse sequence of cochain complexes {C¥U;;R)}. Applying
Theorem A.19 of Massey [5] to this situation, we obtain the following
natural short exact sequence:

0 — lim! H{"Y(U;;R) - HYM;R) - lim inv HY(U;;R) = 0. (3.4

We may now apply the cochain map ¢ to obtain a homomorphism from
Sequence (3.3) into the Sequence (3.4). This homomorphism enables one to
easily complete the proof in this case.

Case 4: M is an open subset of Euclidean space. Every such M is obviously
the union of a countable family of convex open subsets {U;} having the
property that each U, is compact and U; = M. Then one proves that De
Rham’s theorem holds true for finite unions

U U
i=1

by an induction on n, using Case 2 and the basic properties of convex sets.
Next one passes to the limit as n — oo, using Case 3.

Case 5: M is a connected paracompact manifold. It is known that any
connected paracompact manifold has a countable basis of open sets (for a
thorough discussion of the topology of paracompact manifolds, see the
appendix to Volume I of Spivak [7]). It follows that M is the union of a
countable family of open sets {U;} such that each U; is a coordinate neigh-
borhood (and hence diffeomorphic to an open subset of Euclidean space)
and U, is compact. Let V,= U, u U, u -+ u U,. Using Cases 2 and 4,
we can prove by induction on n that De Rham’s theorem is true for each
V,. Note that 7, is compact, and M = ( J;=; V,. Hence it follows from Case 3
that De Rham’s theorem holds for M.

Case 6: The general case. By Case 5, De Rham’s theorem is true for each
component of M. It follows easily that it is true for M.

This completes the proof of De Rham’s theorem. We conclude by pointing
out two directions in which De Rham’s theorem can be extended:

(a) One of the basic operations on differential forms is the product: if
o and 0 are differential forms of degree p and g respectively, then their
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product, o A 6, is a differential form of degree p + ¢g. Moreover, the differen-
tial of such a product is given by the standard formula:

d(w A 0) = (dw) A0 + (—1)Pw A (d6).

It follows that this product in the De Rham complex D*(M) gives rise to a
product in H*(D*(M)), just as the cup product in the cochain complex
C¥(M;R) gives rise to cup products in H¥(M,R). It can then be proved that
the De Rham isomorphism,

¢*:H*(D*(M)) » H§(M;R)

preserves products. However, the proof is of necessity rather roundabout,
since the cochain map ¢:D*(M) —» C¥(M;R) definitely is not a ring homo-
morphism. For a discussion and proof of these matters in a context somewhat
similar to that of this appendix, see V. Gugenheim [4]. Gugenheim’s paper
makes heavy use of the technique of acyclic models.

(b) Given any differential form @ on M, we define the support of w to
be the closure of the set {x € M|w(x) # 0}. With this definition, it is readily
seen that the set of all differential forms of degree p which have compact
support is a vector subspace of DP(M), which we will denote by D?(M).
Moreover, if the support of w is compact, then so is the support of d(w).
Hence D}(M) = {D?(M),d} is a cochain subcomplex of D*(M).

Now consider the cochain map ¢:D*(M) - C¥M;R). It is clear that if
o is a differential form with compact support, then ¢(w) is a cochain with
compact support in accordance with the definition in §IX.3 (to be precise,
that definition has to be modified slightly because we are using cochains
which are defined only on differentiable singular cubes). It can now be proved
that ¢ induces an isomorphism of HYD¥(D¥(M)) onto the g-dimensional
cohomology group of M with compact supports and real coefficients. The
details are too lengthy to include in this appendix. Such a theorem is usually
proven in books on sheaf theory.
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