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Preface

This textbook is designed to introduce advanced undergraduate or
beginning graduate students to algebraic topology as painlessly as pos-
sible. The principal topics treated are 2-dimensional manifolds, the
fundamental group, and covering spaces, plus the group theory needed
in these topics. The only prerequisites are some group theory, such as
that normally contained in an undergraduate algebra course on the
junior-senior level, and a one-semester undergraduate course in general
topology.

The topics discussed in this book are “standard” in the sense that
several well-known textbooks and treatises devote a fewr sections or a
chapter to them. This, I believe, is the first textbook giving a straight-
forward treatment of these topics, stripped of all unnecessary definitions,
terminology, etc., and with numerous examples and exercises, thus making
them intelligible to advanced undergraduate students.

The subject matter is used in several branches of mathematics other
than algebraic topology, such as differential geometry, the theory of Lie
groups, the theory of Riemann surfaces, or knot theory. In the develop-
ment of the theory, there is a nice interplay between algebra and topology
which causes each to reinforce interpretations of the other. Such an
interplay between different topics of mathematics breaks down the often
artificial subdivision of mathematics into different ‘branches” and
emphasizes the essential unity of all mathematics.

Undoubtedly some experts will be shocked that a textbook purporting
to be an introduction to algebraic topology does not even mention
homology theory. It is certainly true that homology and cohomology
theory form the core of algebraic topology. However, it is difficult to
motivate the student who is learning these subjects for the first time, and
their systematic treatment requires the patient development of a great
deal of machinery. Only after several months of classroom lectures and
study can interesting applications be given which show that the develop-
ment of all the machinery was worthwhile. For these reasons, I believe
that it is easier for the student to understand and appreciate homology

ix
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theory after he has studied the fundamental group and allied topics
presented in this book.

To those with a strictly logical mind, Chapter I, which discusses
2-dimensional manifolds, will perhaps seem the least rigorous part of the
book. There certainly would be no real problem in giving a strictly
rigorous treatment of this subject matter. However, such a treatment
would be rather dull and tedious, with long-winded proofs of facts that
are visually obvious. Moreover, the results of Chapter I are not basic to
the main theorems in the rest of the book; rather, they furnish examples,
illustrations, and applications of the results of the later chapters.

Chapter II gives the definition and basic properties of the fundamental
group and the homomorphism induced by a continuous map. General
methods for determining the structure of the fundamental group of a
space are developed later, in Chapter IV, after certain essential group-
theoretic notions have been introduced in Chapter III.

In Chapters III and IV the characterization’ of certain mathematical
structures as the solutions of ‘‘universal mapping problems’’ is emphasized
for two different reasons. First, it seems that the most efficient method
of determining the structure of the fundamental group of a wide variety
of spaces is by use of the Seifert-Van Kampen theorem (Chapter IV); the
best formulation of this essential theorem involves the notion of a uni-
versal mapping problem. Second, this method of characterizing various
mathematical structures as solutions to universal mapping problems
seems to be one of the truly unifying mathematical principles to have
emerged since 1945, and it should be brought into the mathematics
curriculum as early as possible.

Chapter V contains a rather thorough discussion of covering spaces.
The relationship between covering spaces and the fundamental group is
emphasized throughout.

In Chapters VI and VII are given topological proofs of several well-
known theorems of group theory, especially the Nielsen-Schreier theorem
on subgroups of a free group, the Kurosh theorem on subgroups of a free
product, and the Grushko theorem on the decomposition of a finitely
generated group as a free product. These theorems belong to a section of
group theory whose original development was largely motivated by
combinatorial topology. I believe that the proofs of these theorems using
the fundamental groups and covering spaces of certain low-dimensional
complexes are more easily comprehended than the purely algebraic proofs.
I hope the unified treatment of these theorems by these essentially
geometric methods will make this section of group theory less formidable
and more readily accessible.

Chapter VIII is rather brief and of a strictly descriptive nature; no
theorems are proved. Its purpose is to help the student make the transi-
tion to the study of more advanced topics in algebraic topology.
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Although triangulations of 2-manifolds are used in Chapter I, and the
CW-complexes of J. H. C. Whitehead are introduced in the last chapter,
there is no systematic treatment of simplicial complexes in this book.
This may surprise some readers in view of the fact that many treatises on
algebraic topology start off with just such a discussion. However, it is
difficult to see how it could have materially simplified the exposition.
Moreover, it is my personal opinion that any such discussion must of
necessity be rather dull. One of the tendencies of algebraic topology
during the last fifteen years or so has been the replacement of simplicial
complexes by CW-complexes as the main object of study.

The sections listed below are not absolutely necessary to the further
developments of the theory, and they can be omitted completely or given
less emphasis in a briefer course or on a first reading of the book:

Chapter I, Sections 9-13.
Chapter II, Sections 7 and 8.
Chapter 11I, Section 7.
Chapter IV, Section 6.
Chapter V, Sections 10-12.
Chapter VI, Section 8.
Chapter VII, Sections 5 and 6.

Also, a briefer course could be built around the material in the first five
chapters, omitting the same sections.

This book has developed from lectures given at Yale University to
both graduate and undergraduate students over a period of several years.
It is a pleasure to acknowledge my indebtedness to these students. Their
questions, criticisms, and suggestions have given me many insights. I am
also deeply indebted to my colleagues for many discussions of the ideas
presented in this book. Most of the theorems and definitions in this book
may be found in well-known textbooks or articles in mathematical
journals. In this regard, special mention must be made of the following
German textbooks: B. Kerekjarto, Topologie (Springer, 1923); K. Reide-
meister, Einfihrung in die Kombinatorische Topologie (Teubner, 1932),
H. Seifert and W. Threlfall, Lehrbuch der Topologie (Vieweg, 1934). In
many cases I have tried to indicate the person or persons to whom I
thought an idea or theorem should be credited. However, in a subject
such as this, whose development spans most of the past century and which
has been the joint work of many mathematicians in many countries, it is
inevitable that I have committed some errors in assigning credit. To
those whose names have been inadvertently omitted, I apologize; I trust
that they will be understanding.

W. 8. MASSEY
New Haven, Connecticut



Note to the Student

Prerequisites This book assumes that the student knows enough
group theory to understand such standard terms as group, subgroup,
normal subgroup, homomorphism, quotient group, coset, abelian group,
and cyclic group. Moreover, it is hoped that he has seen enough examples
and has worked enough exercises to have some feeling for the true
significance of these concepts. An appendix on permutation and trans-
formation groups is supplied for the benefit of those who are unfamiliar
with this topic. Most of the additional topics needed in group theory
are developed in the text, especially in Chapter III.

The necessary background in point set topology can be obtained from
a one-semester undergraduate course in the subject. Because most text-
books for such a course either treat the subject very briefly or omit it
entirely, a short discussion of quotient spaces is appended. No knowledge
of any branch of algebra other than group theory is needed; in particular,
nothing is used from the theory of rings, fields, modules, or vector spaces.

Terminology and notation Since most terminology and notation
is standard in contemporary mathematics books on this level, little
explanation is needed. In group theory, all groups (with a few standard
exceptions, such as the additive group of integers) are written multi-
plicatively, not additively. A homomorphism from one group to another
is called an epimorphism if it is onto, a monomorphism if it is one-to-one
(i.e., the kernel contains only the identity), and an isomorphism if it is
both one-to-one and onto. A diagram of groups and homomorphisms,
such as

/
A—B

¢———D
Id

xiii
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is said to be commutative if all possible homomorphisms from one group
to another in the diagram are equal. In the above diagram, there are two
homomorphisms from group A to group D, namely, gf (i.e., f followed by
g) and f’g’. Thus, requiring that this diagram be commutative is equiva-
lent to requiring that gf = f’g’. Note that the requirement that a diagram
be commutative has nothing to do with whether or not any of the groups
involved is commutative or abelian. For example, the above diagram
could be commutative even if A, B, C, and D were non-abelian groups.

In set theory, the notation

I8
i€l

denotes the product (or cartesian product) of the family of sets S;, ¢ € I.
An element x of the cartesian product is a function that assigns to each
index 7 € I an element z; € S;. The element x; € S; is also called the
coordinate of the element = corresponding to the index 7 € I.

If A is a subset of B, then there is a uniquely defined inclusion map of
A into B: It assigns to each element x € A the element z itself. In sym-
bols, if 7 : A — B denotes the inclusion map, then i(x) = z for any
z € A. If Cisanother set and f : B — C is any function from B to C, then
f| A denotes the restriction of f to the subset A; i.e., for any a € 4,
(f] 4)(@) = f(a) €C.

The following notation is fixed throughout the book:

Z = set of all integers, positive and negative.

Q = set of all rational numbers.

R = set of all real numbers.

C = set of all complex numbers.
The notation R* (respectively, C») for any integer n > 0 denotes the set
of all n-tuples (x1, ..., zx) of real (respectively, complex) numbers; R»
is the Euclidean n-space and has its usual topology. If z = (21, ... , Za)

is a point of R», then the norm or absolute value of z, denoted by |z|, is
defined as usual:

n
ol = ( 3 ahe
2

With this notation, we define the following standard subsets of Euclidean
n-space for any n > 0:

Er» = {z € R 2] £ 1Y,
Ur = {ze€Rr: (2| <1},
St = {z e Rn:|z| = 1}.
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These spaces are called the closed n-dimensional disc or ball, the open
n-dimensional disc or ball, and the (n — 1)-dimensional sphere, respectively.
Each is topologized as a subset of R*. The same names are sometimes
applied to any topological space homeomorphic to one of the spaces just
mentioned.

If a and b are real numbers such that a < b, then the following
standard notation is used for the open and closed intervals with ¢ and b
as end points:

(a,0) = {z€R:a <z <D},

[a,b] = {z€eR:a <z S b},
(a,b] ={z€eR:a <z =0}

We say two spaces are of the same topological type if they are homeo-
morphie.

References A reference to Theorem or Lemma III. 8.4 indicates
Theorem or Lemma 4 in Section 8 of Chapter III; if the reference is
simply to Theorem 8.4, then the theorem is in Section 8 of the same
chapter in which the reference occurs.

At the end of each chapter is a brief bibliography. Numbers in square
brackets in the text refer to items in the bibliography.

On studying this book The exercises and examples are an integral
part of the text; without them it would be much more difficult to gain an
understanding of the subject. Many assertions are made without proof,
and the details of certain proofs are omitted. Regard the filling in of the
missing details as an exercise that tests whether you really understand
the ideas involved.

Remember that the path from ignorance to knowledge in any subject
is not straight and true, but is almost always rather zigzagged. One seems
to learn things by a method of successive approximations to the truth.
Thus, the first attempt to master some of the more difficult theorems in
this book is not likely to be completely successful. However, do not give
up. Rather, proceed with the study of the exercises and examples and
some of the later material, confident that your perseverance will be
rewarded with a deeper understanding of the ideas involved.
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CHAPTER ONE

Two-Dimensional Manifolds

1 Introduction

The topological concept of a surface or 2-dimensional manifold is a
mathematical abstraction of the familiar concept of a surface made of
paper, sheet metal, plastic, or some other thin material. A surface or
2-dimensional manifold is a topological space with the same local prop-
erties as the familiar plane of Euclidean geometry. An intelligent bug
crawling on a surface could not distinguish it from a plane if he had a
limited range of visibility.

The natural, higher dimensional analog of a surface is an n-dimen-
sional manifold, which is a topological space with the same local prop-
erties as Euclidean n-space. Because they occur frequently and have
application in many other branches of mathematics, manifolds are cer-
tainly one of the most important classes of topological spaces. Although
we define and give some examples of n-dimensional manifolds for any
positive integer n, we devote most of this chapter to the case n = 2.
Because there is a classification theorem for compact 2-manifolds, our
knowledge of 2-dimensional manifolds is incomparably more complete
than our knowledge of the higher dimensional cases. This classification
theorem gives a simple procedure for obtaining all possible compact
2-manifolds. Moreover, there are simple computable invariants which
enable us to decide whether or not any two compact 2-manifolds are
homeomorphic. This may be considered an ideal theorem. Much research
in topology has been directed toward the development of analogous
classification theorems for other situations. Unfortunately, no such
theorem is known for compact 3-manifolds, and logicians have shown
that we cannot even hope for such a complete result for n-manifolds,
n = 4. Nevertheless, the theory of higher dimensional manifolds is cur-
rently a very active field of mathematical research, and will probably
continue to be so for a long time to come.

We shall use the material developed in this chapter, especially in
Sections 1-8, later in the book.
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2 Definition and examples of n-manifolds

Assume 7 is a positive integer. An n-dimensional manifold is a Hausdorff
space (i.e., a space that satisfies the T, separation axiom) such that each
point has an open neighborhood homeomorphic to the open n-dimensional
disc U ( = {z € R": |z| < 1}). Usually we shall say ‘“n-manifold” for
short.

Examples

2.1 Euclidean n-space R” is obviously an n-dimensional manifold. We can
easily prove that the unit n-dimensional sphere

S* = {z € R : 2| = 1}

is an n-manifold. For the point z = (1, 0, ..., 0), the set {(x), ..., ZToy1) €
8 : z; > 0} is a neighborhood with the required properties, as we see by orthogo-
nal projection on the hyperplane in R#+! defined by z; = 0. For any other point
z € 8¢, there is a rotation carrying x into the point (1,0, ..., 0). Such a rotation
is a homeomorphism of S* onto itself; hence, z also has the required kind of
neighborhood.

2.2 If M~ is any n-dimensional manifold, then any open subset of M" is also
an n-dimensional manifold. The proof is immediate.

2.3 If M is an m-dimensional manifold and N is an n-dimensional manifold,
then the product space M X N is an (m + n)-dimensional manifold. This
follows from the fact that Um™ X Ur is homeomorphic to Um+», To prove this,
note that, for any positive integer k, U* is homeomorphic to R¥, and R™ X R is
homeomorphic to Rm+n,

In addition to the 2-sphere S?, the reader can easily give examples
of many other subsets of Euclidean 3-space R3, which are 2-manifolds,
e.g., surfaces of revolution, etc.

As these examples show, an n-manifold may be either connected or
disconnected, compact or noncompact. In any case, an m-manifold is
always locally compact.

What is not so obvious is that a connected manifold need not satisfy
the second axiom of countability (i.e., it need not have a countable base).
The simplest example is the “long line.””* Such manifolds are usually
regarded as pathological, and we shall restrict our attention to manifolds
with a countable base.

Note that in our definition we required that a manifold satisfy the
Hausdorff separation axiom. We must make this requirement explicit

1 See General Topology by J. L. Kelley. Princeton, N.J.: Van Nostrand, 1955. Exer-
cise L, p. 164.
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in the definition because it is nof a consequence of the other conditions
imposed on a manifold. We leave it to the reader to construct examples
of non-Hausdorff spaces, such that each point has an open neighborhood
homeomorphic to U» for n = 1 or 2.

8 Orientable vs. nonorientable manifolds

Connected n-manifolds for n > 1 are divided into two kinds: orientable
and nonorientable. We will try to make the distinction clear without
striving for mathematical precision.

Consider first the case where n = 2. We can prescribe in various
ways an orientation for the Euclidean plane R? or, more generally, for a
small region in the plane. For example, we could designate which of the
two possible kinds of coordinate systems in the plane is to be considered
a right-handed coordinate system and which is to be considered a left-
handed coordinate system. Another way would be to prescribe which
direction of rotation in the plane about a point is to be considered the
positive direction and which is to be considered the negative direction.
Let us imagine an intelligent bug or some 2-dimensional being constrained
to move in the plane; once he decides on a choice of orientation at any
point in the plane, he can carry this choice with him as he moves about.
If two such bugs agree on an orientation at a given point in the plane,
and one of them travels on a long trip to some distant point in the plane
and eventually returns to his starting point, both bugs will still agree on
their choice of orientation.

Similar considerations apply to any connected 2-dimensional mani-
fold because each point has a neighborhood homeomorphic to a neighbor-
hood of a point in the plane. Here our two hypothetical bugs agree on a
choice of orientation at a given point. It is possible, however, that after
one of them returns from a long trip to some distant point on the mani-
fold, they may find they are no longer in agreement. This phenomenon
can occur even though both were meticulously careful about keeping an
accurate check of the positive orientation.

The simplest example of a 2-dimensional manifold exhibiting this
phenomenon is the well-known Mébius strip. As the reader probably
knows, we construct a model of a Mobius strip by taking a long, narrow
rectangular strip of paper and gluing the ends together with a half twist
(see Figure 1.1). Mathematically, a Mobius strip is a topological space
that is described as follows. Let X denote the following rectangle in
the plane:

X={@&yeR:-10=<z=<+10, -1 <y < +1}.
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Glue edge ABC to A’B’C’

FIGURE 1.1 Constructing a Mébius strip.

We then form a quotient space of X by identifying the points (10, y) and
(=10, —y) for —1 < y < +1. (See Appendix A for information on
quotient spaces.) Note that the two boundaries of the rectangle corre-
sponding toy = +1 and y = —1 were omitted. This omission is crucial;
otherwise the result would not be a manifold (it would be a ‘“manifold
with boundary,” a concept we will take up later in this chapter). Alter-
natively, we could specify a certain subset of R?® which is homeomorphic
to the quotient space just described.

However we define the Mébius strip, the center line of the rectangular
strip becomes a circle after the gluing or identification of the two ends.
We leave it to the reader to verify that if our imaginary bug started out
at any point on this circle with a definite choice of orientation and carried
this orientation with him around the circle once, he would come back
to his initial point with his original orientation reversed. We will call
such a path in a manifold an orientation-reversing path. A closed path
that does not have this property will be called an orientation-preserving
path. For example, any closed path in the plane is orientation preserving.

A connected 2-manifold is defined to be orientable if every closed path
is orientation preserving; a connected 2-manifold is nonorientable if there
is at least one orientation-reversing path.

We now consider the orientability of 3-manifolds. We can specify an
orientation of Euclidean 3-space or a small region thereof by designating
which type of coordinate system is to be considered right handed and
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which type is to be considered left handed. An alternative method would
be to specify which type of helix or screw thread is to be designated as
right handed and which kind is to be left handed. We can now describe
a closed path in a 3-manifold as orientation preserving or orientation
reversing, depending on whether or not a traveler who traverses the path
comes back to his initial point with his initial choice of right and left
unchanged. If our universe were nonorientable, then an astronaut who
made a journey along some orientation-reversing path would return to
earth with the right and left sides of his body interchanged: His heart
would now be on the right side of his chest, etc.

There is a 3-dimensional generalization of the Mébius strip which
furnishes a particularly simple example of a nonorientable 3-manifold.
Let

X={zy2ecR:—-105z=5 +10, -1 <y < +1],
—1<z< +41}.

Form a quotient space of X by identifying the points (10, y, z) and
(=10, —y, 2) for —1 <y < +1 and —1 < z < +1. This space may
also be considered the product of an ordinary 2-dimensional Moébius
strip with the open interval {z€ R: —1 < z < +1}. In any case, the
segment —10 < z < +10 of the z axis becomes a circle under the
identification, and we leave it to the reader to convince himself that this
circle is an orientation-reversing path in the resulting 3-manifold.

To make analogous definitions for n-dimensional manifolds, we must
first be able to distinguish between two kinds of coordinate systems in
Euclidean n-space. This distinction can be made as follows. If we have
given two coordinate systems, then any point z will have coordinates
(x1, ..., z,) and (!, ..., z.) in the two systems, and these coordinates
will be related by equations of the following type:

n
= 2 axi+b, i=12 ..., n (1.3-1)
i=1
Here the a;/’s and b/s are real numbers that do not depend on the choice
of the point z. Furthermore, it is well known that the determinant of
the a;’s,

a;y; Qa2 ... Q1n
asy Q2 ... QAon

’
An1 QAn2 ... Qpn

is nonzero. We call these two coordinate systems of the same class if this
determinant is >0. From standard properties of the determinant of a
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system of linear equations such 2c {1 2-1), it follows that the relation
being ‘““of the same class” is an equivalence relation between coordinate
systems in R®, and that there are exactly two equivalence classes. To
choose an orientation of R* is to choose one of these two equivalence
classes of coordinate systems as the preferred class. We may designate
such a preferred coordinate system by some adjective such as ‘“positive’”’
or “right handed.”

Once the preferred class of coordinate systems is chosen, an orienta-
tion-preserving or an orientation-reversing path in a connected n-dimen-
sional manifold is defined in essentially the same way as for 2- and
3-dimensional manifolds. The only difference is that we do not have
much geometric intuition to guide us in the higher dimensional cases. In
a complete mathematical development of the subject it is necessary to
go into much more detail to achieve mathematical rigor.

In any case, it is possible to define the concepts of orientability and
nonorientability for the case of connected n-dimensional manifolds.
Euclidean n-space R* and the n-sphere S* are examples of orientable
n-manifolds. We can easily define an n-dimensional generalization of the
Mébius strip, which is a nonorientable n-dimensional manifold. It is
homeomorphic to the product of an ordinary 2-dimensional Méhius strip
and an (n — 2)-dimensional open disc U"2.

In the remainder of this chapter, we shall be mainly concerned with
2-dimensional manifolds; hence, we shall not go any further into these
topics.

4 Examples of compact, connected 2-manifolds

To save words, from now on we shall refer to a connected 2-manifold as
a surface. The simplest example of a compact surface is the 2-sphere
S2; another important example is the torus. A torus may be roughly
described as any surface homeomorphic to the surface of a doughnut or
of a solid ring. It may be defined more precisely as

(a) Any topological space homeomorphic to the product of two circles,
St x St
(b) Any topological space homeomorphic to the following subset
of R3:
{@ y,2) R :[(a® + y)* — 2" + 2* = 1}.

[This is the set obtained by rotating the circle (z — 2)2 + 22 =1
in the zz plane about the z axis.]
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(¢) Let X denote the unit square in the plane R2:
{z, ) eR2:0=52x=<1,0=5y =<1}

Then, a torus is any space homeomorphic to the quotient space
of X obtained by identifying opposite sides of the square X accord-
ing to the following rules. The points (0, ) and (1, y) are to be
identified for 0 < y < 1, and the points (z, 0) and (z, 1) are to
be identified for 0 < 2 < 1.

We will find it convenient to indicate symbolically how such identifica-
tions are to be made by a diagram such as Figure 1.2. Sides that are to
be identified are labeled with the same letter of the alphabet, and the
identifications should be made so that the directions indicated by the
arrows agree.

We leave it to the reader to prove that the topological spaces described
in (a), (b), and (c) are actually homeomorphic. The reader should also
convince himself that a torus is orientable.

Our next example of a compact surface is the real projective plane
(referred to as the projective plane for short). It is a compact, nonorient-
able surface. Because it is not homeomorphic to any subset of Euclidean
3-space, the projective plane is much more difficult to visualize than the
2-sphere or the torus.

Definition The quotient space of the 2-sphere S? obtained by iden-
tifying every pair of diametrically opposite points is called a projective
plane. We shall also refer to any space homeomorphic to this quotient
space as a projective plane.

For readers who have studied projective geometry, we shall explain why this
surface is called the real projective plane. Such a reader will recall that, in the
study of projective plane geometry, a point has ‘“homogeneous’” coordinates
(z0, Z1, Z2), Where xo, 71, and z, are real numbers, at least one of which is 5 0. The
term “homogeneous’” means (zo, 1, zz) and (zg, 1, T3) represent the same point
if and only if there exists a real number A (of necessity # 0) such that

=\, 1=01,2

e
a

FIGURE 1.2 Construction of a torus.
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If we interpret (zo, i1, ) as the ordinary Euclidean coordinates of a point in R3,
then we see that (zo, z1, z2) and (xg, z1, 22) represent the same point in the projec-
tive plane if and only if they are on the same line through the origin. Thus, we
may reinterpret a point of the projective plane as a line through the origin in R3.
The next question is, how shall we topologize the set of all lines through the origin
in R3? Perhaps the easiest way is to note that each line through the origin in R3
intersects the unit sphere S? in a pair of diametrically opposite points. This leads
to the above definition.

Let H = {(z, y, 2) € 82:2 = 0} denote the closed upper hemisphere
of 82 It is clear that, of each diametrically opposite pair of points in S2,
at least one point lies in H. If both points lie in H, then they are on the
equator, which is the boundary of H. Thus, we could also define the
projective plane? as the quotient space of H obtained by identifying
diametrically opposite points on the boundary of H. As H is obviously
homeomorphic to the closed unit disc £2 in the plane,

E? = {(r,y) e R?2:x2+ y* < 1},

the quotient space of E? obtained by identifying diametrically opposite
points on the boundary is a projective plane. For E? we could substitute
any homeomorphic space, e.g., a square. Thus, a projective plane is
obtained by identifying the opposite sides of a square as indicated in
Figure 1.3. The reader should compare this with the construction of a
torus in Figure 1.2.

The projective plane is easily seen to be nonorientable; in fact, it
contains a subset homeomorphic to a Mébius strip.

We shall now describe how to give many additional examples of
compact surfaces by forming what are called connected sums. Let S,
and S be disjoint surfaces. Their connected sum, denoted by S, # S., is

FIGURE 1.3 Construction of a projective plane from a square.

t For a rigorous justification of this assertion, we must use Proposition 4.2 in Appen-
dix A, which is applicable because the natural map from S? to the projective plane
is a closed map, and H is a closed subset of S2.
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formed by cutting a small circular hole in each surface, and then gluing
the two surfaces together along the boundaries of the holes.” To be precise,
we choose subsets D, C 8; and D, C S; such that D, and D, are closed
discs (i.e., homeomorphic to E2). Let S; denote the complement of the
interior of D; in S; for z = 1 and 2. Choose a homeomorphism 4 of the
boundary circle of D; onto the boundary of D,. Then S;# 8, is the
quotient space of S; U S; obtained by identifying the points z and h(z)
for all points z in the boundary of D,. It is clear that S; # S; is a surface.
It seems plausible, and can be proved rigorously, that the topological
type of S;# S, does not depend on the choice of the discs D, and D, or
the choice of the homeomorphism h.

Examples

4.1 If S, is a 2-sphere, then 8, # S; is homeomorphic to S,.

4.2 If 8, and S, are both tori, then S, # S is homeomorphic to the surface of
a block that has two holes drilled through it. (It is assumed, of course, that the
holes are not so close together that their boundaries touch or intersect.)

4.3 If 8, and 8; are projective planes, then S! # S? is a “Klein Bottle,” i.e.,
homeomorphic to the surface obtained by identifying the opposite sides of a square
as shown in Figure 1.4. We may prove this by the ‘“cut and paste’’ technique, as
follows. If S;isa projective plane, and D; is a closed disc such that D; C S;, then
S;, the complement of the interior of D;, is homeomorphic to a Mgbius strip
(including the boundary). In fact, if we think of S; as the space obtained by iden-
tification of the diametrically opposite points on the boundary of the unit disc E?
in R?, then we can choose D; to be the image of the set {(z, y) € E?: |y| = %}
under the identification, and the truth of the assertion is clear. From this it
follows that S; # S. is obtained by gluing together two Mébius strips along their
boundaries. On the other hand, Figure 1.5 shows how to cut a Klein Bottle so as
to obtain two Mobius strips. We cut along the lines AB’ and BA’; under the
identification, this cut becomes a circle.

We will now consider some properties of this operation of forming
connected sums.

FIGURE 1.4 Construction of a Klein bottle from a square.
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c a c’ A B’
b
(a) (b)

FIGURE 1.5 The Klein bottle is the union of two Mgbius strips.

It is clear from our definitions that there is no distinction between
S1# 82 and 8. # 81; i.e., the operation is commutative. It is not difficult
to see that the manifolds (S, #S:) #.8; and S, # (S: # 8S;) are homeo-
morphic. Thus, we see that the connected sum is a commutative, asso-
ciative operation on the set of homeomorphism types of compact surfaces.
Moreover, Example 4.1 shows the sphere is a unit or neutral element for
this operation. We must not jump to the conclusion that the set of
homeomorphism classes of compact surfaces forms a group under this
operation: There are no inverses. It only formswhat is called a semigroup.

The connected sum of two orientable manifolds is again orientable.
On the other hand, if either S, or S, is nonorientable, then so is S, # S,.

5 Statement of the classification theorem
for compact surfaces

In the preceding section we have seen how examples of compact surfaces
can be constructed by forming connected sums of various numbers of
tori and/or projective planes. Our main theorem asserts that these
examples exhaust all the possibilities. In fact, it is even a slightly stronger
statement, in that we do not need to consider surfaces that are connected
sums of both tori and projective planes.

Theorem 5.1 Any compact surface is either homeomorphic to a sphere,
or to a connected sum of tori, or to a connected sum of projective planes.
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As preparation for the proof, we shall describe what might be called a
‘“‘canonical form’’ for a connected sum of tori or projective planes.

Recall our description of a torus as a square with the opposite sides
identified (see Figure 1.2). We can obtain an analogous description of the
connected sum of two tori as follows. Represent each of the tori 7', and T,
as a square with opposite sides identified as shown in Figure 1.6(a).
Note that all four vertices of eath square are identified to a single point
of the corresponding torus. To form their connected sum, we must first
cut out a circular hole in each torus, and we can do this in any way that

b a1 b2 a2
a b1 az b2
(b)
a1 b2
by a2
a be
by a2

(c)

FIGURE 1.6 (a) Two disjoint tori, T: and Ti. (b) Disjoint tori with holes cut
out. (c) After gluing together.
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we wish. It is convenient to cut out the regions shaded in the diagrams.
The boundaries of the holes are labeled ¢, and ¢,;, and they are to be
identified as indicated by the arrows. We can also represent the comple-
ment of the holes in the two tori by the pentagons shown in Figure 1.6(b),
because the indicated edge identifications imply that the two end points
of the segment c; are to be identified, 7 = 1, 2. We now identify the
segments ¢; and c,; the result is the octagon in Figure 1.6(c), in which the
sides are to be identified in pairs, as indicated. Note that all eight vertices
of this octagon are to be identified to a single point in T, # T,.

This octagon with the edges identified in pairs is our desired ‘canoni-
cal form” for the connected sum of two tori. By repeating this process,
we can show that the connected sum of three tori is the quotient space
of the 12-gon shown in Figure 1.7, where the edges are to be identified
in pairs as indicated. It should now be clear how to prove by induction
that the connected sum of n tori is homeomorphic to the quotient space
of a 4n-gon whose edges are to be identified in pairs according to a scheme,
the precise description of which is left to the reader.

Next, we must consider the analogous procedure for the connected
sum of projective planes. We have considered the projective plane as the
quotient space of a circular disc; diametrically opposite points on the
boundary are to be identified. By choosing a pair of diametrically
opposite points on the boundary as vertices, the circumference of the
disc is divided into two segments. Thus, we can regard the projective
plane as obtained from a 2-gon by identification of the two edges; see
Figure 1.8.

Figure 1.9 shows how to obtain a representation of the connected sum
of two projective planes as a square with the edges identified in pairs.

FIGURE 1.7 The connected sum of 3 tori is obtained by identifying the edges of a
12-gon in pairs as shown.
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FIGURE 1.8 The projective plane is obtained by identifying opposite edges of a

2-gon.
ai a2
ay a2
(2)
ai as
P C1 c2 P,
ai a2
(b)
ai az
~
ar a2

(e)

FIGURE 1.9 (a) Two disjoint projective planes, P, and P;. (b) Disjoint projec-
tive planes with holes cut out. (c) After gluing together.
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The method is basically the same as that used to obtain a representation
of the connected sum of two tori as a quotient space of an octagon
(Figure 1.6). By repeating this process, we see that the connected sum
of three projective planes is the quotient space of a hexagon with the
sides identified in pairs as indicated in Figure 1.10. By a rather obvious
induction, we can prove that, for any positive integer n, the connected
sum of n projective planes is the quotient space of a 2n-gon with the sides
identified in pairs according to a certain scheme. Note that all the vertices
of this polygon are identified to one point.

It remains to represent the sphere as the quotient space of a polygon
with the sides identified in pairs. We can do this as shown in Figure 1.11.
We can think of a sphere with a zipper on it, like a purse; when the zipper
is opened, the purse can be flattened out.

Thus, we have shown how each of the compact surfaces mentioned
in Theorem 5.1 can be considered as the quotient space of a polygon with

FIGURE 1.10 Construction of the connected sum of three projective planes by
identifying the sides of a hexagon in pairs.

FIGURE 1.11 The sphere is a quotient space of a 2-gon with edges identified as
shown.
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the edges identified in pairs. We now introduce a rather obvious and
convenient method of indicating precisely which paired edges are to be
identified in such a polygon. Consider the diagram which indicates how
the edges are identified; starting at a definite vertex, proceed around
the boundary of the polygon, recording the letters assigned to the different
sides in succession. If the arrow on a side points in the same direction
that we are going around the boundary, then we write the letter for that
side with no exponent (or the exponent +1). On the other hand, if the
arrow points in the opposite direction, then we write the letter for that
side with the exponent —1. For example, in Figures 1.7 and 1.10 the
identifications are precisely indicated by the symbols

10107 07 ash a5 b5  ashsas bt and  @,01a0020:5as.

In each case we started at the bottom vertex of the diagram and read
clockwise around the boundary. It is clear that such a symbol unam-
biguously describes the identifications; on the other hand, in writing the
symbol corresponding to a given diagram, we can start at any vertex,
and proceed either clockwise or counterclockwise around the boundary.

We summarize our results by writing the symbols corresponding to
each of the surfaces mentioned in Theorem 5.1.

(a) The sphere: aa™.
(b) The connected sum of n tori:

ab,a7 b ashaz '3t L .. asbaath .
(¢) The connected sum of n projective planes:

ai1a,1a2a2 ... AnQy.

Exercise

5.1 Let P be a polygon with an even number of sides. Suppose that the sides
are identified in pairs in accordance with any symbol whatsoever. Prove that the
quotient space is a compact surface.

6 Triangulations of compact surfaces

To prove Theorem 5.1, we must assume that the given surface is tri-
angulated, i.e., divided up into triangles which fit together nicely. We
can easily visualize the surface of the earth divided into triangular regions,
and such a subdivision is very useful in the study of compact surfaces
in general.
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w<‘¢

FIGURE 1.12 Some types of intersection forbidden in a triangulation.

Definition A triangulation of a compact surface S consists of a finite
family of closed subsets {T), Ts, ..., T} that cover S, and a family of
homeomorphisms ¢; : T; — T, ¢ = 1, ..., n, where each T’ is a triangle
in the plane R? (i.e., a compact subset of R2 bounded by three distinct
straight lines). The subsets T; are called ‘“triangles.” The subsets of T
that are the images of the vertices and edges of the triangle T'; under ¢;
are also called “vertices” and “‘edges,”” respectively. Finally, it is required
that any two distinct triangles, T; and T, either be disjoint, have a single
vertex in common, or have one entire edge in common.

Perhaps the conditions in the definition are clarified by Figure 1.12,
which shows three unallowable types of intersection of triangles.

Given any compact surface S, it seems plausible that there should
exist a triangulation of S. A rigorous proof of this fact (first given by
T. Radé6 in 1925) requires the use of a strong form of the Jordan curve
theorem. Although it is not difficult, the proof is tedious, and we will not
repeat it here.

We can regard a triangulated surface as having been constructed by
gluing together the various triangles in a certain way, much as we put
together a jigsaw puzzle or build a wall of bricks. Because two different
triangles cannot have the same vertices we can specify completely a
triangulation of a surface by numbering the vertices, and then listing
which triples of vertices are vertices of a triangle. Such a list of triangles
completely determines the surface together with the given triangulation
up to homeomorphism.

Examples

6.1 The surface of an ordinary tetrahedron in Euclidean 3-space is homeo-
morphic to the sphere S2; moreover, the four triangles satisfy all the conditions
for a triangulation of S2. In this case there are four vertices, and every triple of
vertices is the set of vertices of a triangle. No other triangulation of any surface
can have this property.

6.2 In Figure 1.13 we show a triangulation of the projective plane, considered
as the space obtained by identifying diametrically opposite points on the bound-
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3

FIGURE 1.13 A triangulation of the projective plane.

ary of a disc. The vertices are numbered from 1 to 6, and there are the following
10 triangles:

124 245
235 135
156 126
236 346
134 456

6.3 In Figure 1.14 we show a triangulation of a torus, regarded as a square

1 2 3 i
4 5 6 4
7 8 9 7

1 2 3 1

FIGURE 1.14 A triangulation of a torus.
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with the opposite sides identified. There are 9 vertices, and the following 18
triangles:

124 245 235

356 361 146

457 578 658

689 649 479

187 128 289

239 379 137

We conclude our discussion of triangulations by noting that any
triangulation of a compact surface satisfies the following two conditions:

(1) Each edge is an edge of exactly two triangles.

(2) Let v be a vertex of a triangulation. Then we may arrange the set
of all triangles with v as a vertex in cyclic order, To, Ty, T, .. .,
Tw_y, Ta = Ty, such that T; and Ti,, have an edge in common
for0=7=n-—1.

The truth of (1) follows from the fact that each point on the edge in
question must have an open neighborhood homeomorphic to the open
disc U2 If an edge were an edge of only one triangle or more than two
triangles, this would not be possible. The rigorous proof of this last
assertion would take us rather far afield; however, its plausibility cannot
be disputed.

Condition (2) can be demonstrated as follows. The fact that the set
of all the triangles with v as a vertex can be divided into several disjoint
subsets, such that the triangles in each subset can be arranged in cyclic
order as described, is an easy consequence of condition (1). However, if
there were more than one such subset, then the requirement that » have a
neighborhood homeomorphic to U? would be violated. We shall not
attempt a rigorous proof of this last assertion.

7 Proof of Theorem 5.1

Let S be a compact surface. We shall demonstrate Theorem 5.1 by prov-
ing that S is homeomorphic to a polygon with the edges identified in
pairs as indicated by one of the symbols listed at the end of Section 5.
First step. From the discussion in the preceding section, we may
assume that S is triangulated. Denote the number of triangles by n.
We assert that we can number the triangles Ty, T3, ..., T, so that the
triangle T'; has an edge e; in common with at least one of the triangles
Ty ..., Tsioy, 2 £ 7 £ n. To prove this assertion, label any of the tri-
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angles T,; for T, choose any triangle that has an edge in common with
T,, for T; choose any triangle that has an edge in common with T'; or
T, etc. If at any stage we could not continue this process, then we
would have two sets of triangles {T', ..., T«}, and {Tk41, ..., T} such
that no triangle in the first set would have an edge or vertex in common
with any triangle of the second set. But this would give a partition of S
into two disjoint nonempty closed sets, contrary to the assumption that
S was connected.

We now use this ordering of the triangles, T, T3, ..., T, together
with the choice of edges e; es, ..., €., to construct a “model” of the
surface S in the Euclidean plane; this model will be a polygon whose sides
are to be identified in pairs. Recall that for each triangle T there exists
an ordinary Euclidean triangle T} in R? and a homeomorphism ¢; of T’
onto T;. We can assume that the triangles T4, T, ..., T, are pairwise
disjoint; if they are not, we can translate some of them to various other
parts of the plane R2 Let

T =\ T
i=1

then 7" is a compact subset of R2. Defineamape¢ : 7" — Sby ¢ | T; = ¢;i;
the map ¢ is obviously continuous and onto. Because T" is compact and
S is a Hausdorff space, ¢ is a closed map, and hence S has the quotient
topology determined by ¢ (see Section 1 of Appendix A). This is a rigor-
ous mathematical statement of our intuitive idea that S is obtained by
gluing the triangles T, T, ... together along the appropriate edges.

The polygon we desire will be constructed as a quotient space of T".
Consider any of the edges e;, 2 < 7 < n. By assumption, e; is an edge
of the triangle T; and one other triangle T}, for which 1 < j < ¢. There-
fore, ¢~'(e;) consists of an edge of the triangle T and an edge of the
triangle T;. We identify these two edges of the triangles T'; and T; by
identifying points which map onto the same point of e; (speaking intui-
tively, we glue together the triangles T'; and 7). We make these identi-
fications for each of the edges e, €;, ..., e.. Let D denote the resulting
quotient space of T’. It is clear that the map ¢ : 7" — S induces a map
¥ of D onto S, and that S has the quotient topology induced by ¥ (because
D is compact and S is Hausdorff, ¢ is a closed map).

We now assert that topologically D is a closed disc. The proof depends
on two facts:

(a) Let E, and E, be disjoint spaces, which topologically are closed
discs (i.e., they are homeomorphic to E?). Let A, and A, be
subsets of the boundary of E, and E,, respectively, which are
homeomorphic to the closed interval [0, 1], and let A : A, — A.
be a definite homeomorphism. Form a quotient space of E, U E,
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by identifying points that correspond under A. Then, topologi-
cally, the quotient space is also a closed disc. The reader may
either take this very plausible fact for granted, or construct a
proof using the type of argument given in II.4. Intuitively, it
means that if we glue two discs together along a common segment
of their boundaries, the result is again a dise.

In forming the quotient space D of T, we may either make all
the identifications at once, or make the identifications correspond-
ing to ez, then those corresponding to e;, etc., in succession. This
is a consequence of Lemma 2.4 of Appendix A [see application
(a) of this lemma].

We now use these facts to prove that D is a disc as follows. T; and
T, are topologically equivalent to discs. Therefore, the quotient space
of T; U T, obtained by identifying points of ¢~!(es) is again a disc by
(a). Form a quotient space of this disc and T’y by making the identifica-
tions corresponding to the edge es, etc.

It is clear that S is obtained from D by identifying certain paired
edges on the boundary of D.

Example

7.1 Figure 1.15 shows an easily visualized example. The surface of a cube
has been triangulated by dividing each face by a diagonal into two triangles.

FIGURE 1.15 Example illustrating the first step of the proof of Theorem 5.1.

J
T{ /
2
a\ b
T4
& e3 b f
T¢ T4 Ty T
e () €4 ) €10 e12
\
€5 €9 €11
T¢ T Ty T1,
—~ P e
d er c 9
T/
7 4 .
dA
Ts
]
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FIGURE 1.16 Simplified version of polygon shown in Figure 1.15.

The resulting disc D might look like the diagram, depending, of course, on how
the triangles were enumerated, and how the edges e,, ..., e;; were chosen. The
edges of D that are to be identified are labeled in the usual way. At this stage, we
can forget about the edges es, €3, . . ., e12. Thus, instead of the polygon in Figure
1.15, we could work equally well with the one in Figure 1.16.

Exercises

Carry out the above process for each of the surfaces whose triangulations are
given below. (NOTE: these examples will be used later.)

7.1 124 236 134 246
367 347 469 459
698 678 457 259
289 578 358 125
238 135
7.2 123 234 341 412
7.3 123 234 345 451 512
136 246 356 416 526
7.4 124 235 346 457 561 672
713 134 245 356 467 571
126 237
7.5 123 256 341 451
156 268 357 468
167 275 374 476
172 283 385 485
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Second step. Elimination of adjacent edges of the first kind. We have
now obtained a polygon D whose edges have to be identified in pairs to
obtain the given surface S. These identifications may be indicated by
the appropriate symbol; e.g., in Figure 1.16, the identifications are
described by

aa~'fbb~Yfle~geclg—\dde.

If the letter designating a certain pair of edges occurs with both exponents,
+1 and —1, in the symbol, then we will call that pair of edges a pair of
the first kind; otherwise, the pair is of the second kind. For example, in
Figure 1.16, all seven pairs are of the first kind.

We wish to show that an adjacent pair of edges of the first kind can
be eliminated, provided there are at least four edges in all. This is easily
seen from the sequence of diagrams in Figure 1.17. We can continue this
process until all such pairs are eliminated, or until we obtain a polygon
with only two sides. In the latter case, this polygon, whose symbol will
be aa or aa~!, must be a projective plane or a sphere, and we have com-
pleted the proof. Otherwise, we proceed as follows.

Third step. Transformation to a polygon such that all vertices must be
identified to a single vertex. Although the edges of our polygon must be

(a) (b)

(o) (d)

FIGURE 1.17 Elimination of an adjacent pair of edges of the first kind.
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identified in pairs, the vertices may be identified in sets of one, two, three,
four, .... Let us call two vertices of the polygon equivalent if and only
if they are to be identified. For example, the reader can easily verify that
in Figure 1.16 there are eight different equivalence classes of vertices.
Some equivalence classes contain only one vertex, whereas other classes
contain two or three vertices.

Assume we have carried out step two as far as possible. We wish to
prove we can transform our polygon into another polygon with all its
vertices belonging to one equivalence class.

Suppose there are at least two different equivalence classes of vertices.
Then, the polygon must have an adjacent pair of vertices which are
nonequivalent. Label these vertices P and Q. Figure 1.18 shows how to
proceed. As P and Q are nonequivalent, and we have carried out step
two, it follows that sides a and b are not to be identified. Make a cut
along the line labeled ¢, from the vertex labeled Q to the other vertex
of the edge a (i.e., to the vertex of edge a, which is distinct from P).
Then, glue the two edges labeled a together. A new polygon with one
less vertex in the equivalence class of P and one more vertex in the equiva-
lence class of @ results. If possible, perform step two again. Then carry
out step three to reduce the number of vertices in the equivalence class
of P still further, then do step two again. Continue alternately doing
step three and step two until the equivalence class of P is eliminated
entirely. If more than one equivalence class of vertices remains, we can
repeat this procedure to reduce the number by one. If we continue in
this manner, we ultimately obtain a polygon such that all the vertices
are to be identified to a single vertex.

(a)

FIGURE 1.18 Third step in the proof of Theorem 5.1.
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(a) (b)

FIGURE 1.19 Fourth step in the proof of Theorem 5.1.

Fourth step. How to make any pair of edges of the second kind adjacent.
We wish to show that our surface can be transformed so that any pair
of edges of the second kind are adjacent to each other. Suppose we have
a pair of edges of the second kind which are nonadjacent, as in Figure
1.19(a). Cut along the dotted line labeled a and paste together along b.
As shown in Figure 1.19(b), the two edges are now adjacent.

Continue this process until all pairs of edges of the second kind are
adjacent. If there are no pairs of the first kind, we are finished, because
the symbol of the polygon must then be of the form a,a1a:as ... @nan,
and hence 8§ is the connected sum of n projective planes.

Assume to the contrary that at this stage there is at least one pair of
edges of the first kind, each of which is labeled with the letter c. Then we
assert that there is at least one other pair of edges of the first kind such
that these two pairs separate one another; i.e., edges from the two pairs
occur alternately as we proceed around the boundary of the polygon
(hence, the symbol must be of the forme ... d ... ¢ 1 ...d"!..., where
the dots denote the possible occurrence of other letters).

To prove this assertion, assume that the edges labeled ¢ are not sepa-
rated by any other pair of the first kind. Then our polygon has the
appearance indicated in Figure 1.20. Here A and B each designate a
whole sequence of edges. The important point is that any edge in A4
must be identified with another edge in A, and similarly for B. No
edge in A is to be identified with an edge in B. But this contradicts the
fact that the initial and final vertices of either edge labeled “c’’ are to be
identified, in view of step number three.

Fifth step. Pairs of the first kind. Suppose, then, that we have two
pairs of the first kind which separate each other as described (see Figure
1.21). We shall show that we can transform the polygon so that the four
sides in question are consecutive around the perimeter of the polygon.
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B

FIGURE 1.20 A pair of edges of the first kind.

First, cut along ¢ and paste together along b to obtain Figure 1.21(b).
Then, cut along d and paste together along a to obtain (c), as desired.
Continue this process until all pairs of the first kind are in adjacent
groups of four, as cdc~'d~! in Figure 1.21(c). If there are no pairs of the

(b) ()

FIGURE 1.21 Fifth step in the proof of Theorem 5.1.
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second kind, this leads to the desired result because, in that case, the
symbol must be of the form

a:b,a7 b7 ash.a7t;t . . . anbaa;'b;?
and the surface is the connected sum of n tori.
It remains to treat the case in which there are pairs of both the first

and second kind at this stage. The key to the situation is the following
rather surprising lemma:

Lemma 7.1 The connected sum of a torus and a projective plane s
homeomorphic to the connected sum of three projective planes.

PROOF: We have remarked that the connected sum of two projective
planes is homeomorphic to a Klein Bottle (see Example 4.3). Thus, we
must prove that the connected sum of a projective plane and a torus is
homeomorphic to the connected sum of a projective plane and a Klein
Bottle. To do this it will be convenient to give an alternative construc-
tion for a connected sum of any surface S with a torus or a Klein Bottle.
We can represent the torus and Klein Bottle as rectangles with opposite
sides identified as shown in Figure 1.22. To form the connected sum, we
first cut out the disc that is shaded in the diagrams, cut a similar hole
in 8, and glue the boundary of the hole in the torus or Klein Bottle to
the boundary of the hole in S. However, instead of gluing on the entire
torus or Klein Bottle in one step, we may do it in two stages: First, glue
on the part of the torus or Klein Bottle that is the image of the rectangle
ABB’A’ under the identification, and then glue on the rest of the torus
or Klein Bottle. In the first stage we form the connected sum of S with
an open tube or cylinder. Such an open tube or cylinder is homeomorphic
to a sphere with two holes cut in it, and forming the connected sum of S
with a sphere does not change anything. Thus, the space resulting from
the first stage is homeomorphic to the original surface S with two holes

an

Y

A’ B’
(a) (b)

S/

A B’

FIGURE 1.22 (a) Torus with hole. (b) Klein bottle with hole.



SECTION 7 Proof of Theorem 5.1 / 27

(b)

FIGURE 1.23 (a) Connected sum of a Mébius strip and a torus. (b) Connected
sum of a Mébius strip and a Klein bottle.

cut in it. In the second stage we then connect the boundaries of these
two holes with a tube that is the remainder of the torus or Klein Bottle.
The difference between the two cases depends on whether we connect
the boundaries so they will have the same or opposite orientations. This
is illustrated in Figure 1.23, where S is a Mébius strip.

We now assert that the two spaces shown in Figure 1.23(a) and (b)
(i.e., the connected sum of a Mébius strip with a torus and a Klein Bottle,
respectively) are homeomorphic. To see this, imagine that we cut each
of these topological spaces along the lines AB. In each case, the result
is the connected sum of a rectangle and a torus, with the two ends of the
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A B

FIGURE 1.24 The result of cutting the spaces shown in Figure 1.23 along the line
AB.

rectangle to be identified with a twist, as shown in Figure 1.24. Hence,
the two spaces are homeomorphic.

As stated previously, we obtain the projective plane by gluing the
boundary of a disc to the boundary of a Mébius strip. As the spaces
shown in Figure 1.23 are homeomorphic, so are the spaces obtained by
gluing a disc on the boundary of each. Thus, the connected sum of a
projective plane and a torus is homeomorphic to the connected sum of a
projective plane and a Klein Bottle, as was to be proved.

It should be clear that this lemma takes care of the remaining case.
For, assume that after the fifth step has been completed, the polygon
has m pairs (m > 0) of the second kind such that the two edges of each
pair are adjacent, and n quadruples (n > 0) of sides, each quadruple
consisting of two pairs of the first kind which separate each other. Then,
the surface is the connected sum of m projective planes and » tori, which
by the lemma is homeomorphic to the connected sum of m + 2n projec-
tive planes. This completes the proof of Theorem 5.1.

Exercises

7.6 Carry out each of the above steps for the examples given in Exercises
7.1-7.5.

It is clear that we can also work the process described above back-
wards; whenever there are three pairs of the second kind, we can replace
them by one pair of the second kind and two pairs of the first kind.
Alternatively, we can apply Lemma 7.1 to any connected sum of which
three or more of the summands are projective planes. The following
alternative form of Theorem 5.1, which may be preferable in some cases,
results.
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Theorem 7.2 Any compact, orientable surface ts homeomorphic to a
sphere or a connected sum of tori. Any compact, nonorientable surface is
homeomorphic to the connected sum of either a projective plane or Klein
Bottle and a compact, orientable surface.

8 The Euler characteristic of a surface

Although we have shown that any compact surface is homeomorphic to
a sphere, a sum of tori, or a sum of projective planes, we do not know
that all these are topologically different. It is conceivable that there
exist positive integers m and n, m # n, such that the sum of m tori is
homeomorphic to the sum of n tori. To show that this cannot happen,
we introduce a numerical invariant called the Euler characteristic.

First, we define the Euler characteristic of a triangulated surface.
Let M be a compact surface with triangulation {7, ..., Ta}. Let

v = total number of vertices of M,

total number of edges of M,

[

t

It

total number of triangles (in this case, t = n).
Then,
x(M) =v—e+t

is called the Euler characteristic of M.

Examples

8.1 Figure 1.25 suggests uniform methods of triangulating the sphere, torus,
and projective plane so that we may make the number of triangles as large as we
please. Using such triangulations, the reader should verify that the Euler char-
acteristics of the sphere, torus, and projective plane are 2, 0, and 1, respectively.
He should also verify that the Euler characteristics are independent of the num-
ber of vertical and horizontal dividing lines in the diagrams for the sphere and
torus, and of the number of radial lines or concentric circles in the case of the
diagram for the projective plane.

Consideration of these and other examples suggests that x(M) depends
only on M, not on the triangulation chosen. We wish to suggest a method
of proving this. To do this, we shall allow subdivisions of M into arbi-
trary polygons, not just triangles. These polygons may have any number
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N 4

()

FIGURE 1.25 Computing the Euler characteristic from a triangulation. (a)
Sphere. (b) Torus. (¢c) Projective plane.
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(b)

(c)

FIGURE 1.26 (a) A l1-gon. (b) A 2-gon. (c) A 3-gon.

FIGURE 1.27 An allowable kind of edge.

n of sides and vertices, n 2 1 (see Figure 1.26). We shall also allow for
the possibility of edges that do not subdivide a region, as in Figure 1.27.
In any case, the interior of each polygonal region is required to be homeo-
morphic to an open disc, and each edge is required to be homeomorphic
to an open interval of the real line, once the vertices are removed (the
closure of each edge shall be homeomorphic to a closed interval or a
circle). Finally, the number of vertices, edges, and polygonal regions
will be finite. As before, we define the Euler characteristic of such a
subdivision of a compact surface M to be

x(M) = (no. of vertices) — (no. of edges) + (no. of regions).
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It is now easily shown that the Euler characteristic is invariant under
the following processes:

(a) Subdividing an edge by adding a new vertex at an interior point
(or, inversely, if only two edges meet at a given vertex, we can
amalgamate the two edges into one and eliminate the vertex).

(b) Subdividing an n-gon, n = 1, by connecting two of the vertices
by a new edge (or, inversely, amalgamating two regions into one
by removing an edge).

(c) Introducing a new edge and vertex running into a region, as
shown in Figure 1.27 (or, inversely, eliminating such an edge
and vertex).

The invariance of the Euler characteristic would now follow if it
could be shown that we could get from any one triangulation (or sub-
division) to any other by a finite sequence of “moves”’ of types (a), (b),
and (c). Suppose we have two triangulations

J = {Tl, Tz, “eey Tm}

3= {T{y T;; RS T:»}

of a given surface. If the intersection of any edge of the triangulation
3 with any edge of the triangulation 3’ consists of a finite number of
points and a finite number of closed intervals, then it is easily seen that
we can get from the triangulation 3 to the triangulation 3’ in a finite
number of such moves; the details are left to the reader. However, it
may happen that an edge of J intersects an edge of 3’ in an infinite number
of points, like the following two curves in the zy plane:

{(z,y) :y=0 and —1=2= + 1},
{(x,y):y=xsini and 0 < |z| £ 1} U {(0, 0)}.

If this is the case, it is clearly impossible to get from the triangulation 3
to the triangulation 3’ by any finite number of moves. It appears plausi-
ble that we could always avoid such a situation by ‘“moving’” one of the
edges slightly. This is true, and can be proved rigorously. However, we
do not attempt such a proof here, for several reasons: (a) The details
are tedious and involved. (b) The Euler characteristic can be defined for
more general spaces than surfaces and its invariance can be proven by
the use of homology theory. In these more general circumstances, the
type of proof we have suggested is not possible. (c) We shall use the
Euler characteristic to distinguish between compact surfaces. We shall
achieve this purpose with complete rigor in a later chapter by the use
of the fundamental group.
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Proposition 8.1 Let S, and S be compact surfaces. The Euler charac-
teristics of S1 and S, and their connected sum, S, # S2, are related by the
formula

X(Sl #Sz) = X(Sl) + X(Sz) — 2.

PROOF: The proof is very simple; assume S; and S; are triangulated.
Form their connected sum by removing from each the interior of a
triangle, and then identifying edges and vertices of the boundaries of the
removed triangles. The formula then follows by counting vertices, edges,
and triangles before and after the formation of the connected sum.

Using this theorem, and an obvious induction, starting from the
known results for the sphere, torus, and projective plane, we obtain the
following values for the Euler characteristics of the various possible
compact surfaces:

Surface Euler characteristic
Sphere 2
Connected sum of n tori 2 —2n
Connected sum of n projective planes 2—n
Connected sum of projective plane and n tori 1—2n
Connected sum of Klein Bottle and n tori —2n

Note that the Euler characteristic of an orientable surface is always
even, whereas for a nonorientable surface it may be either odd or even.

Assuming the topological invariance of the Euler characteristic and
Theorem 5.1, we have the following important result:

Theorem 8.2 Let Sy and S, be compact surfaces. Then, Sy and S; are
homeomorphic if and only if their Euler characteristics are equal and both
are orientable or both are nonorientable.

This 1s a topological theorem par excellence; it reduces the classifica-
tion problem for compact surfaces to the determination of the orienta-
bility and Euler characteristic, both problems usually readily soluble.
Moreover, Theorem 5.1 makes clear what are all possible compact
surfaces.

Such a complete classification of any class of topological spaces is
very rare. No corresponding theorem is known for compact 3-manifolds,
and for 4-manifolds it has been proven (roughly speaking) that no such
result is possible.

We close this section by giving some standard terminology. A surface
that is the connected sum of » tori or n projective planes is said to be of
genus n, whereas a sphere is of genus 0. The following relation holds
between the genus g and the Euler characteristic x of a compact surface:

l 32 — %) in the orientable case,
g = . .
2 — x in the nonorientable case.
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Exercises

8.1 For over 2000 years it has been known that there are only five regular
polyhedra, namely, the regular tetrahedron, cube, octahedron, dodecahedron,
and icosahedron. Prove this by considering subdivisions of the sphere into n-gons
(n fixed) such that exactly m edges meet at each vertex (m fixed, m, n = 3).
Use the fact that x(S?) = 2.

8.2 For any triangulation of a compact surface, show that

3t = 2e
e=30—x
v = 37 + V49 — 24y).

In the case of the sphere, projective plane, and torus, what are the minimum
values of the numbers v, e, and ¢? (Here, ¢, ¢, and v denote the number of triangles,
edges, and vertices, respectively.)

8.3 In how many pieces do n great circles, no three of which pass through a
common point, dissect a sphere?

8.4 (a) The sides of a regular octagon are identified in pairs in such a way as

to obtain a compact surface. Prove that the Euler characteristic of
this surface is = —2.

(b) Prove that any surface (orientable or nonorientable) of Euler char-
acteristic = —2 can be obtained by suitably identifying in pairs the
sides of a regular octagon.

8.5 Prove that it is not possible to subdivide the surface of a sphere into
regions, each of which has 6 sides (i.e., it is a hexagon) and such that distinct
regions have no more than one side in common.

8.6 Let S, be a surface that is the sum of m tori, m = 1, and let S, be a sur-
face that is the sum of n projective planes, n = 1. Suppose two holes are cut in
each of these surfaces, and the two surfaces are then glued together along the
boundaries of the holes. What surface is obtained by this process?

8.7 What surface is represented by a regular 10-gon with edges identified in
pairs, as indicated by the symbol abcdec—'da~'b—le~'? (miNT: How are the
vertices identified around the boundary?)

8.8 What surface is represented by a 2n-gon with the edges identified in pairs
according to the symbol

-1 _—1 -1
a3 ... a.a7'a; ... a;la.?

8.9 What surface is represented by a 2n-gon with the edges identified in pairs
according to the symbol

-1 __1 -1 1
@182 ... a.a7 a5 ... @ ,a;t?
(a1NT: The cases where n is odd and where n is even are different.)

Remark: The results of Exercises 8.8 and 8.9 together give an alternative
‘“normal form” for the representation of a compact surface as a quotient space of
polygon.
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9 Manifolds with boundary

The concept of a manifold with boundary is a slight generalization of
that of a manifold.

Definition An n-dimensional manifold with boundary is a Hausdorff
space such that each point has an open neighborhood homeomorphic
either to the open disc U or to the space

{(x1, 3, ..., Ts) € U : 2, = 0}.

The set of all points that have an open neighborhood homeomorphic to
U™ is called the intertor of the manifold, and the set of those points p that
have an open neighborhood V such that there exists a homeomorphism A
of Vonto {z € U* : 2, = 0} withh(p) = (0,0, ..., 0) is called the bound-
ary of the manifold.

Examples
9.1 The closed disc or ball
Er={zecR :|z| =1}

is an n-dimensional manifold with boundary. The sphere S*! is the boundary,
and the open disc U" is the interior.

9.2 Another example is the ‘“half-space,” {z € R" : z; = 0}.

9.3 The Mabius strip, as it is usually defined, is a 2-dimensional manifold
with boundary.

9.4 Other examples of 2-dimensional manifolds with boundary may be
obtained by removing a collection of small, open discs from a 2-dimensional
manifold.

It is quite plausible and can be proved rigorously that the set of
boundary points and the set of interior points are mutually disjoint.
It is readily seen that the set of interior points is an open everywhere
dense subset; hence, the set of boundary points is a closed set. The set
of boundary points of an n-dimensional manifold is an (n — 1)-dimen-
sional manifold. The interior is a noncompact n-manifold.

The reader should note that the terms ‘‘interior” and ‘‘boundary”
were used in the preceding paragraphs in a sense different from that
which is usual in point set topology. However, this will seldom lead to
any confusion.

Examples show that a manifold with boundary may be compact or
noncompact, connected or not connected. A noncompact manifold with
boundary may or may not have a countable basis of open sets. In any
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case, it is always locally compact. We should note that the boundary of a
connected manifold may be disconnected; also, the boundary of a non-
compact manifold may be compact.

The concepts of orientability and nonorientability apply to manifolds
with boundary exactly as in the case of manifolds. For example, a Mabius
strip is a nonorientable manifold with boundary, whereas the cylinder

{(z,y,2) ER¥:22+y2=1,0< 2z £ 1}

is an orientable manifold with boundary.

The orientability of a manifold with boundary depends essentially
on the orientability of the interior considered as a noncompact manifold.
We should note that each boundary component of an n-manifold is an
(n — 1)-manifold, which may be either orientable or nonorientable. Both
cases may actually occur. It can be shown, though, that every boundary
component of an orientable manifold must be orientable. On the other
hand, a nonorientable manifold may have both orientable and non-
orientable boundary components. For example, if P? denotes the pro-
jective plane and I denotes the closed unit interval, then P2 X I is a
nonorientable 3-manifold with boundary. The boundary consists of two
components, P? X {0} and P? X {1}. If we remove a small open
3-dimensional disc from the interior of P? X I, then we obtain a mani-
fold with boundary such that the boundary has three components:
P? X {0}, P* X {1}, and a 2-sphere which is the boundary of the removed
disc. Thus, two of the boundary components are nonorientable, and
one of them is orientable.

Exercises

9.1 Prove that the product of a manifold and a manifold with boundary is a
manifold with boundary. What is the boundary of the product?

9.2 Let P be a polygon. Assume that certain paired edges of P are identified,
but not all edges of P are included among these pairs. Prove that the resulting
quotient space is a compact, connected 2-manifold with boundary.

Remark on Terminology: In view of our definitions, every n-manifold
(as defined in Section 1) is an n-manifold with boundary (as defined in
this section). For convenience, from now on we use the following con-
vention: When referring to a manifold with boundary, we shall mean
the boundary is nonempty; otherwise we shall use the single word “mani-
fold.” Because our main interest will be in the 2-dimensional case, we
shall call a connected 2-dimensional manifold with (nonempty) boundary
a bordered surface. The word ‘“surface” alone will continue to mean one
without boundary.
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10 The classification of compact, connected 2-manifolds
with boundary

We have alluded to the fact that, if we select a finite number of disjoint
closed discs in a compact surface and remove their interiors, we obtain a
bordered surface. The number of boundary components is equal to the
number of discs chosen.

Conversely, assume that M is a compact, bordered surface and that
the boundary has k components k¥ = 1. Each boundary component is a
compact, connected 1-manifold, i.e., a circle. It is clear that we obtain a
compact surface M* if we take k closed discs and glue the boundary of the
ith disc to the ¢th component of the boundary of M. The topological
type of the resulting surface M* obviously depends only on the topological
type of M. What is not so obvious is that a sort of converse statement is
true: The topological type of the bordered surface M depends only on
the number of its boundary components and the topological type of the
surface M* obtained by gluing a disc onto each boundary component.

We can state this in another way: If we start with a compact surface
M* and construct a bordered surface by removing the interiors of k
closed discs, which are pairwise disjoint, then the location of the discs
that are to be removed does not matter. The resulting manifold with
boundary will be topologically the same no matter how the position of
the discs is chosen. We will state this result formally as follows:

Theorem 10.1 Let M, and M, be compact bordered surfaces; assume
that their boundaries have the same number of components. Then, M, and
M, are homeomorphic if and only if the surfaces Mt and M (obtained by
gluing a disc to each boundary component) are homeomorphic.

PROOF: We will now outline a proof of the “if’’ part of this theorem.
It depends heavily on the classification theorem for compact surfaces.
As in the demonstration of Theorem 5.1, the proof is made by showing
that M, and M, are homeomorphic to a polygon with certain paired
edges identified, a so-called ‘“normal form.” First, we shall explain the
normal forms in detail.

(a) Normal form for a sphere with k holes. A sphere is represented by
a 2-sided polygon whose edges are identified according to the
symbol aa~!. Cut k holes in such a polygon as shown in Figure
1.28(a) for the case where k = 4. Then, from a vertex on the
boundary make cuts cy, c3, ..., ¢k to the corresponding boundary
components B, B,, ..., Bx. Open up each cut to obtain the
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()
FIGURE 1.28 A sphere with four holes.

polygon shown in Figure 1.28(b). In general, we obtain a polygon
whose edges are identified in accordance with the symbol

aa"clBlcl_lcszcz_l ‘e CkBkC;l.

(b) Normal form for the connected sum of n tort with k holes. The
diagrams in Figure 1.29(a) and (b) show how to proceed when
n = 2 and k = 4. It is entirely analogous to the case of a sphere
with holes cut in it. The result is a polygon with 4n + 3k sides,
which must be identified in accordance with the following symbol:

abiarh7t ... aabaa;'b'eiBicrt ... aBicil.

(¢) Normal form for the connected sum of n projective planes with k
holes. We leave it to the reader to see that in this case we obtain
a polygon with 2n + 3k sides, which are identified by the symbol

4181 . .. G.anc1BicT! ... cBicp.

Note that in the above constructions we were careful to cut the holes
in a straight line so that it was clear that we could make the cutsec, . . ., c
in such a way that they would be disjoint except for one end point.

Next, we consider triangulations of compact bordered surfaces. The
definition is exactly the same as that given in Section 6 for the case of
compact surfaces. There is, however, one difference between the two
cases which should be emphasized: In the case of a triangulation of a
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(b)

FIGURE 1.29 Orientable surface of genus 2 with four holes.

surface, every edge is an edge of exactly two triangles. However, if a
bordered surface is triangulated, some edges will be edges of only one
triangle. Such edges will be contained in the boundary. It is a theorem,
which we will assume without proof, that every compact bordered surface
may be triangulated (for a proof, see Ahlfors and Sario [1], Chapter I,
Section 8).

Let M be a compact bordered surface, with a given triangulation.
We assert that we may assume the triangulation satisfies the following
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FIGURE 1.30 Barycentric subdivision of a triangle.

conditions: No edge has both vertices contained in the boundary unless the
entire edge is contained in the boundary, and no triangle has more than one
edge contained in the boundary. For, if this condition does not hold, we
can achieve it by subdividing each edge into two edges and each triangle
into six triangles, as shown in Figure 1.30. This process is called bary-
centric subdivision. By barycentrically subdividing once more if neces-
sary, we may assume that our triangulation satisfies the following even
stronger condition: Let T; and T; be triangles each of which has one edge
contained in the boundary. Then, T; and T; are disjoint, or else have one
vertex in common, which 1s a vertex of the boundary.

Let B,, ..., By denote the components of the boundary. If T is a
triangle that meets one of the components B;, then T has exactly two
edges which have one vertex in B; but do not lie in B;. Similarly, if e is
an edge that has a vertex in B; but does lie in B;, then e is an edge of two
triangles, both of which meet B;. It follows that the edges and triangles
that meet B; but do not lie in B; can be arranged in one or more cycles of
alternating edges and triangles,

le (31 Tz, €2, ..., Tﬂy €n, Tn+1 = Tl)

such that each ¢; is an edge of T; and T4, whereas each T; has e;_, and
e; as edges. An easy argument shows that there can only be one such
cycle corresponding to each boundary component B;. From the condi-
tions imposed on the triangulation of M, it is clear that the union of the
triangles 7'y, Ty, . . ., T, that meet B;is homeomorphic to a polygonal region
in the plane with a hole in it; Figure 1.31 illustrates how such a region
might look when n = 17. There will be one such polygonal region P; for
each boundary component B;, 1 < 7 < k.

Let Ty, ..., T: denote the remaining triangles of the given triangula-
tion of M not contained in any of the polygons P;, 1 < ¢ < k. Using
these k polygons and [ triangles, we now perform the process described
in the first step of the proof of Theorem 5.1 (as described in Section 7).
A single polygon in the plane, which has k holes in its interior, and such
that the exterior edges of this polygon are to be identified in pairs [see,
e.g., Figure 1.29(a)] results.
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D
3

FIGURE '1.31 Triangles near the boundary component Bs.

We can now apply the remaining six steps of the proof of Theorem 5.1
to this polygon with holes. There is one proviso, however. Each of the
steps requires certain processes of cutting and pasting together again.
It is assumed that these cuts are made so as to avoid all of the holes.
It is clear that this can always be done. It is also clear that the-number
of holes remains unchanged throughout all these steps.

As a result we obtain one of the three types of polygons shown in
Figure 1.32. For convenience, we have taken k = 4 in each drawing.

(b) (e)

FIGURE 1.32 Possible types of bordered surfaces with k = 4.
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Diagram (a) corresponds to a sphere with holes in it, (b) corresponds to a
connected sum of projective planes with holes, and (¢) corresponds to a
connected sum of tori with holes. In each case, all vertices around the
edge of the polygon are to be identified to a single vertex.

To complete the proof, we must now make cuts e, ¢z, ..., ¢ from
the initial vertex on the boundary of the polygon to the boundary of
each of the holes, and open up each of the cuts to obtain a polygon in
the desired normal form. Of course, we must be sure that any two cuts
are pairwise disjoint except for the initial vertex. If k is very large (e.g.,
k = 10'°) and the holes are arranged in some peculiar way, it may not be
immediately obvious how to proceed. We can get around this difficulty
by an inductive procedure, as follows: Make a cut from the initial vertex
to the nearest hole. Open up the cut thus made to obtain a new polygon
with three more sides and one less hole. Again, make a cut from the
initial vertex to the nearest hole in this new polygon, and open up the
cut to obtain a polygon with three more sides and one less hole. Repeat
the process k times until the necessary number of cuts has been made.
It is clear that we obtain a polygon in one of the three possible normal
forms, and thus the proof of the theorem is complete.

1 1 The Euler characteristic of a bordered surface

The Euler characteristic of a triangulated bordered surface is defined
exactly the same as in the case of a surface without boundary. We can
give the same type of argument as in Section 8 to show that it is inde-
pendent of the triangulation. With the use of the Euler characteristic,
we can now give a complete set of invariants for the classification of
compact bordered surfaces:

Theorem 11.1 Two compact bordered surfaces are homeomorphic if
and only if they have the same number of boundary components, they are both
orientable or nonorientable, and they have the same Euler characteristic.

PROOF: Let M be a compact, connected 2-manifold, with or without
boundary. Assume that M is given a definite triangulation, and that we
form a new bordered surface M’ by removing the interior of one triangle,
which is contained entirely in the interior of M. It is clear that the
boundary of M’ has one more component than the boundary of M, and
that

x(M") = x(M) — 1;

i.e., the Euler characteristic is reduced by one.
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It follows that, if we start with a triangulated surface M* (without
boundary), and remove the interiors of k pairwise disjoint triangles,
we obtain a bordered surface, and

x(M) = x(M*) — k.

According to Theorem 5.1, we obtain in this way every bordered surface
M whose boundary has k components. Thus, we see that the Euler
characteristic of M uniquely determines that of M* and vice versa. It
is also clear that M and M* are both orientable or nonorientable. The
theorem now follows from Theorems 5.1 and 10.1. Q.E.D.

Definition The genus of a compact bordered surface M is defined to
be the genus of the compact surface M* obtained by attaching a disc to
each boundary component of M.

Exercises

11.1 Prove that the Euler characteristic of a compact bordered surface
having k¥ boundary components is < 2 — k.

11.2 Give a formula for the genus of a compact bordered surface in terms of
its Euler characteristic and the number of components of the boundary (treat
the orientable and nonorientable cases separately).

11.3 Make a table listing all compact surfaces M, with or without boundary,
such that —2 = x(M) = +2.

12 Models of compact bordered surfaces
in Euclidean 3-space

We can construct a variety of concrete models of bordered surfaces in
the following manner. Take a disc and several long rectangular strips
made of paper; then paste both ends of each strip to the boundary of the
disc. We can paste the ends of the strips around the boundary in various
orders, and if we desire, we can give some of the strips a half-twist. It
is understood, of course, that the ends of the strips do not overlap on the
boundary of the disc. Figures 1.34 through 1.36 illustrate the procedure.

We now assert that models of all compact bordered surfaces can be
constructed in this way. The relatively simple proof is as follows. If M
is any compact bordered surface, and M’ is constructed from M by gluing
the two ends of a rectangular strip to the boundary of M in any way
whatsoever, then

x(M') = x(M) — 1.
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FIGURE 1.33 A triangulated strip.

We can verify this by assuming that M has been suitably triangulated,
and that the strip has been triangulated as shown in Figure 1.33. We
identify the edges a and b with two edges of the triangulation of the
boundary of M, and count vertices, edges, and triangles before and after
the identification.

Now, we shall show how to construct any compact, orientable bordered
surface whose boundary has k components, k = 1. First, paste k — 1
strips to the boundary (without twisting) as shown in Figure 1.34 for
k = 4. An orientable bordered surface of Euler characteristic 2 — k
whose boundary has k components results. Note that the Euler charac-
teristic is the maximum possible for the given number of boundary
components.

We next attach pairs of strips so as to keep the number of boundary
components the same and reduce the Euler characteristic to the desired
value as shown in Figure 1.35. Here we have attached two more strips
to the model shown in Figure 1.34, in such a way as to reduce the Euler
characteristic by 2, but to keep the number of boundary components
fixed. We can repeatedly attach such “crossed” pairs of strips and reduce
the Euler characteristic by any even integer.

To construct a nonorientable bordered surface whose boundary has &
components, we begin in the same way: Attach (¢ — 1) strips (as shown
in Figure 1.34) to obtain an orientable surface of Euler characteristic
2 — k whose boundary has k components. If we attach a strip with a
half-twist as shown in Figure 1.36 we reduce the Euler characteristic
by one, keep the number of boundary components the same, and have a
nonorientable bordered surface. By attaching more such half-twisted
strips, we can reduce the Euler characteristic by any desired amount.

From these indications, it should be clear how to construct a model
of any compact bordered surface by this method. This shows that any
such surface, whether orientable or not, can be imbedded homeomor-
phically in Euclidean 3-space (recall that the corresponding statement
is not true for compact 2-manifolds without boundary).
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FIGURE 1.34 Method of pasting strips to a disc.

FIGURE 1.35 Method of pasting strips to a disc (orientable case, higher genus).

FIGURE 1.36 Method of pasting strips to a disc (nonorientable case).



46 / CHAPTER ONE Tuwo-Dimensional Manifolds

Exercises

12.1 Which compact bordered surfaces are homeomorphic to a subset of the
plane R?? Give your answer in terms of the Euler characteristic, number of
boundary components, and orientability.

12.2 Tell which compact bordered surfaces can be constructed as follows:
Choose a closed disc D, and a finite number of smaller closed discs which are
pairwise disjoint and contained in the interior of D. Cut holes in D by removing
the interiors of these smaller discs. Join the boundaries of certain pairs of holes
by a tube. These tubes may be attached in two different ways, as shown in
Figure 1.37.

12.3 If we go through the preceding construction, starting with a Mobius
strip instead of a disc, which compact bordered surfaces can be constructed?

12.4 Let M, and M, be compact bordered surfaces. Form a new bordered
surface, M, # M, called the boundary connected sum, as follows: Choose a subset
e; of the boundary of M; such that e; is homeomorphic to the closed interval
[0,1],7 = 1, 2. Glue M, and M, together by gluing e; to é,; i.e., choose a homeo-
morphism of e; onto e; and form a quotient space by identifying points of e; and
e2 which correspond under the chosen homeomorphism.

(a) Express the Euler characteristic of M, # M, in terms of that of M, and M,.

(b) How many components has the boundary of M, # M,?

(c) Prove that any compact bordered surface can be built up as an iterated
boundary connected sum of copies of the following four bordered surfaces:
(a) closed disc, (b) annulus (i.e., disc with a single hole), (¢) Mébius strip,
and (d) torus with a single hole.

FIGURE 1.37 Methods of attaching a tube to a disc D with two holes.
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13 Remarks on noncompact surfaces

Because there are so many different examples of noncompact surfaces,
and many of the theorems are rather complicated, we shall only give a
brief introduction to this topic.

First, we can divide noncompact surfaces into two broad classes: those
that have a countable basis for their topology, and those that do not.
The standard example of a connected surface that does not have a count-
able basis of open sets is due to Priifer (see Rad6 [9]; this example is also
reproduced in the following books: R. Nevanlinna, Uniformisierung.
Berlin-Géttingen-Heidelberg: Springer-Verlag, 1953, p. 51, and G.
Springer, Introduction to Riemann Surfaces. Reading: Addison-Wesley,
1957, p. 56). Such surfaces are usually regarded as pathological, and
ignored; in most work on the subject, it is assumed that there is a count-
able basis of open sets. A theorem of Radé [9] asserts that a surface can
be triangulated if and only if it has a countable basis for its topology
(the proof is reproduced in the book of Ahlfors and Sario [1]). Triangula-
tion of a noncompact surface means the same as triangulation of a com-
pact surface, except that the number of triangles is infinite, and it is
further required that each point have a neighborhood that meets only
finitely many triangles.

The existence of triangulations for surfaces having a countable basis
is very important, and many of the known results in the subject are only
proved by using this fact. For the remainder of this chapter we shall
only consider such surfaces.?

We now give some examples of noncompact surfaces:

(a) Any open subset of a compact surface. Already this gives a bewildering
variety of examples. Consider, for example, the complement of any finite
subset, or more generally, of any compact, totally disconnected subset
(e.g., a Cantor set) of a surface.

(b) The surface of a ladder of infinite length, with an infinite number of rungs.

(¢) Consider the following three families of parallel lines in Euclidean 3-space:
lines parallel to the z axis through the points with integral coordinates
in the yz plane; lines parallel to the y axis through the points with integral
coordinates in the zz plane; and lines parallel to the z axis through the
points with integral coordinates in the zy plane. Imagine all these lines
“thickened’ slightly, so that they are like solid rods; then the surface of the
resulting solid is a noncompact surface.

31t can be shown that a surface is metrizable if and only if it has a countable basis
of open sets. Similarly, paracompactness is equivalent to the existence of a countable
basis.



48 / CHAPTER ONE Two-Dimensional Manifolds

(d) We can vary the construction of the preceding two examples by taking
some other connected collection of lines and curves in R3, and then thicken
ing each line and curve slightly. The surface of the resulting solid is ofter
a 2-manifold.

(e) The process of forming the connected sum is also applicable to noncompact
surfaces, only the possibilities are much greater now because we can form
infinite connected sums. For example, we may start with the Euclidean
plane R? and remove a small circular hole about each point with integral
coordinates. Then, we fill in each hole with a Mébius strip, gluing the
boundary of the Mébius strip to the boundary of the hole. It is obvious
how this procedure could be varied: Instead of starting with the Euclidean
plane, we could start with some other noncompact surface. Instead of a
Moébius strip, we could use some other bordered surface with a connected
boundary.

(f) Let M be a compact surface, other than a sphere or projective plane, and
let (M, p) be a covering space of M (see Chapter 5) corresponding to a
subgroup of w(M) of infinite index. Then M is a noncompact surface.
Alternatively, if M is noncompact, then so is any covering space of M.

By combining these different methods of construction, still more examples can
be given. In any case, it is clear that the possibilities are enormous.

Because there is a classification theorem for compact surfaces, it is
natural to inquire whether or not there is a satisfactory classification
theorem for noncompact manifolds. Here the answer depends on our
interpretation of the word ‘“‘satisfactory”; there 7s a classification the-
orem, but it does not seem to be easily applicable to problems that
arise in the subject. Although it would take us too far afield to give all
the details, we can explain the idea behind this theorem.

Let M be a noncompact surface. As usual, by a compactification of M
we mean a compact Hausdorff space X, which contains M as an open,
everywhere dense subspace. Two compactifications, X and Y, are
regarded as equivalent if there exists a homeomorphism % of X onto Y
such that h | M is the identity map. Let us give some examples:

(1) Because M is locally compact, we can always form the Alexandroff
1-point compactification. This is the unique ‘“minimal”’ com-
pactification because only one point is added. Because M is com-
pletely regular, we can also form the Stone-Cech compactification.
In a certain sense, this is a maximal compactification.

(2) Supose that M is an open subset of a compact surface M’. Then
M, the closure of M in M’, is a compactification of M.

(3) Let M’ be a compact bordered surface, and let M be its interior.
Then M’ is a compactification of M.

To state our next theorem, we need one more definition. Let X be a
topological space and let A be a subspace. A is said to be nonseparatinag
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on X if, for any open connected subset U of X, .U — A is connected.
For example, any finite subset of a surface M is nonseparating on M ; any
curve in R? is nonseparating on R?.

Theorem 13.1 Let M be a noncompact surface. There exists a com-
pactification M* of M, which has the following three properties:

(1) M* 4s locally connected.
(2) B(M) = M* — M 1s totally disconnected.
(3) B(M) 7s nonseparating on M*.

Moreover, any two compactifications of M having these three properties are
equivalent.

The proof of the existence and uniqueness of M* is rather long; the
reader is referred to Ahlfors and Sario [1], Chapter I, Section 6, for the
proof and references to earlier work on this subject.

Example

13.1 Let X be a compact, connected 2-manifold, and let A be a closed, totally
disconnected subset of X. For example, A could be a finite subset, or A could be
homeomorphic to a closed subset of the Cantor set. Let M = X — A; then it is
plausible, and can be proved rigorously, that X is a compactification of M having
the three properties stated in Theorem 13.1. Hence, we may take M* = X and
B(M) = A. In general, however, M* will not be a surface.

The space B(M) is called the ideal boundary or set of ends of M; its
points are called boundary components or ends. It is a theorem that 8(M)
is a compact metric space.

We may get some hint as to how 8(M) is constructed by considering
the above example. Each point xr € A = S(M) has arbitrarily small open
connected neighborhoods U such that U is an open 2-dimensional disc
and the boundary of U is a circle that does not meet A. Consider the
subsets U N M for all such neighborhoods U of z in X. This is a family
of subsets of M which can be characterized intrinsically (i.e., without
reference to M* = X) by a few simple properties. Thus, a point of the
ideal boundary B(M) corresponds to each family of open connected sub-
sets of M having the required properties. In the example, U N\ M is
homeomorphic to a disc with points removed, and the boundary of
U N M is a circle; in general, these two properties will not hold; U N M
may or may not be homeomorphic to a subset of a disc, and it may or
may not be orientable. In general, we call a point x of 3(M) planar if
U N M is homeomorphic to a subset of the plane for all sufficiently small
open neighborhoods U of z; similarly, z is called orientable if U N\ M is
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orientable for all sufficiently small U. Let 8’(M) denote the subset of
orientable points of B(M), and let 8”/(M) denote the subset of planar
points of B(M). It can be shown that 8(M) is a compact, metric space
which is totally disconnected, and both g'(M) and g"/(M) are open sub-
sets of B(M). Obviously, (M) D 8" (M).

Because 3(M) and the subspaces 8'(M) and 8"/ (M) are defined intrin-
sically, they are topological invariants of the manifold M. The surprising
thing is that together with a few other simple properties they charac-
terize M. First, we have to describe the remaining properties needed.

Definitions (a) A noncompact surface M is of finite genus if there
exists a compact bordered surface A C M such that M — A is homeo-
morphic to a subset of the plane RZ In this case, the genus of M is
defined to the genus of A. In the contrary case, M is of infinite genus.
(See Section 8 for the definition of the genus of a bordered surface.)

(b) A noncompact, nonorientable surface M is finitely nonorientable
if there exists a compact subset A C M such that M — A is orientable;
in the contrary case, M is infinitely nonorientable.

Clearly, a nonorientable surface of finite genus is finitely nonorient-
able, but not conversely.

(c) Finitely nonorientable surfaces are said to be of even or odd non-
orientability type depending on whether every sufficiently large compact
subset A, which is a bordered surface, is of odd or even genus. (This
definition makes sense because the connected sum of a projective plane
and a torus is homeomorphic to the connected sum of th.ee projective
planes; more generally, if we “add’’ an orientable surface to a nonorient-
able surface, the genus is unchanged mod 2.)

The properties of a surface, which we have just defined, are obviously
topologically invariant.

Theorem 13.2 Let M, and M, be noncompact surfaces, which have the
syme genus and orientability type (in accordance with definitions (a), (),
and (c) just given). Then M, and M, are homeomorphic if and only if there
is @ homeomorphism of (M) onto B(M ), such that 8'(M,) and B (M,) are
mapped onto B'(Ms) and B’ (M), respectively.

This theorem is originally due to Kerekjarto; for a proof, we refer
the reader to I. Richards [10], who recently completed the theorem as
follows:

Theorem 13.3 Let X be a totally disconnected compact metric space,
and let U and V be open subsets of X such that U D V. Then there exists a
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noncompact surface M, such that 8(M) ts homeomorphic to X under a
homeomorphism which maps B'(M) onto U and B’ (M) onto V, respectively.

It is not hard to show that M may have any prescribed genus and
orientability type compatible with the requirement that g’(M) and
B" (M) be homeomorphic to U and V, respectively.

Finally, we consider some miscellaneous properties of noncompact
2-manifolds.

In the preceding section we proved that every compact bordered
surface is homeomorphic to a subset of Euclidean 3-space. The same
thing is true of noncompact surfaces.

Theorem 13.4 Every noncompact 2-manifold s homeomorphic to a
subset of R3.

Note that it is possible for a given noncompact 2-manifold to be
homeomorphic both to a closed and a nonclosed subset of R?: For exam-
ple, the zy plane in R? and the open unit disc in the xy plane are homeo-
morphic. It can be proved, however, that a nonorientable surface is not
homeomorphic to any closed subset of R3.

This theorem is a special case of a theorem of M. Hirsch ([8], Theorem
4.6). Hirsch’s work depends on results of J. H. C. Whitehead [11]. In
particular, J. H. C. Whitehead proved that every triangulated noncom-
pact surface M has a spine, i.e., a closed subset L C M such that L is a
union of edges of the triangulation, and there are arbitrarily small open
neighborhoods U of L, which are homeomorphic to M. Moreover, for
each such neighborhood U it is required that there exists a smaller
neighborhood V of L such that points of V are left fixed under such a
homeomorphism. In some cases the existence of a spine is almost obvious.
For example, in the case of an open Mébius strip, the center circle is a
spine. In other cases, the existence of a spine may not be so plausible.

NOTES

Definition of the connected sum of two manifolds

The definition of the connected sum given in Section 4 is adequate for 2-dimen-
sional manifolds, but more care is necessary when we define the connected sum
of two orientable n-manifolds for n > 2. We must worry about whether the
homeomorphism A in our definition preserves or reverses orientations. The
essential reason for this difference is that any orientable surface admits an
orientation-reversing self-homeomorphism, whereas there exist orientable mani-
folds in higher dimensions which do not admit such a self-homeomorphism.
Seifert and Threlfall [6], p. 280, give an example of a 3-dimensional manifold with
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this property. The complex projective plane is a 4-dimensional manifold having
the property in question.

Triangulation of manifolds

In the early days of topology, it was apparently taken for granted that all sur-
faces and all higher dimensional manifolds could be triangulated. The first
rigorous proof that surfaces can be triangulated was published by Tibor Radé
in a paper on Riemann surfaces [9]. Radé pointed out the necessity of assuming
the surface has a countable basis for its topology, and gave an example (due to
Priifer) of a surface that does not have such a countable basis. Radé’s proof,
given in Chapter I of the text by Ahlfors and Sario [1], makes essential use of a
strong form of the Jordan Curve Theorem. The triangulability of 3-manifolds
was proved by E. Moise (‘Affine Structures in 3-manifolds, V: The triangulation
theorem and Hauptvermutung.” Ann. Math., 66, 1952, pp. 96-114).

Recent results of A. Casson and M. Freedman show that some 4-dimensional
manifolds cannot be triangulated.

Models of nonorientable surfaces in Euclidean 3-space

No closed subset of Euclidean n-space is homeomorphic to a nonorientable
(n — 1)-manifold. This result, first proved by the Dutch mathematician L. E. J.
Brouwer in 1912, can nowadays be proved as an easy corollary of some general
theorems of homology theory. This fact seriously hampers the development of
our geometric intuition regarding compact, nonorientable surfaces, since they
cannot be imbedded homeomorphically in Euclidean 3-space. However, it is
possible to construct models of such surfaces in Euclidean 3-space provided we
allow ‘‘singularities” or ‘self-intersections.” We can even construct a mathe-
matical theory of such models by considering the concept of tmmerston of mani-
folds. We say thata continuous map f of & compact n-manifold M= into m-dimen-
sional Euclidean space R™ is a topological ymmersion if each point of M™ has a
neighborhood mapped homeomorphically onto its image by f. (The definition
of a differentiable immersion is analogous; f is required to be differentiable and
have a Jacobian everywhere of maximal rank.) The usual model of a Klein
bottle in R3? is an immersion of the Klein bottle in 3-space. Werner Boy, in his
thesis at the University of Gottingen in 1901 [““Uber die Abbildung der projektiven
Ebene auf eine im Endlichen geschlossene singularititenfreie Fliche.” Nach.
Konigl. Gesell. Wiss Gottingen (Math. Phys. K1.), 1901, pp. 20-33. See also Math.
Annalen, 67, 1903, pp. 173-184], constructed immersions of the projective plane
in R3. One of the immersions given by Boy is reproduced in Hilbert and Cohn-
Vossen [3]. Since any compact, nonorientable surface is homeomorphic to the
connected sum of an orientable surface and a projective plane or a Klein bottle,
it is now easy to construct immersions of the remaining compact, nonorientable
surfaces in R3,

The usual immersion of the Klein bottle in R? is much nicer than any of the
immersions of the projective plane given by Boy. The set of singular points for
the immersion of the Klein bottle consists of a circle of double points, whereas the
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set of singular points for Boy’s immersions of the projective plane is much more
complicated. This raises the question, does there exist an immersion of the projec-
tive plane in R? such that the set of singular points consists of disjoint circles of
double points? The answer to this question is negative, at least in the case of
differentiable immersions; for the proof, see the two papers by T. Banchoff in vol-
ume 46 (1974) of the Proc. Amer. Math. Soc., pp. 402-413.

For further information on the immersion of compact surfaces in R3, see the
interesting article entitled ‘“Turning a Surface Inside Out” by Anthony Phillips
in Scientific American, 214, 1966, pp. 112-120.

Bibliographical notes

The first proof of the classification theorem for compact surfaces is ascribed by
some to H. R. Brahana (Ann. Math. 23, 1922, pp. 144-68). However, Seifert and
Threlfall [6], p. 319, attribute it to Dehn and Heegard and do not even list
Brahana’s paper in their bibliography. The nonexistence of any algorithm for the
classification of compact triangulable 4-manifolds is a result of the Russian
mathematician A. A. Markov (Proceedings of the International Congress of Mathe-
matictans, 1958, pp. 300-306). For the use of the Euler characteristic to prove
the 5-color theorem for maps, see R. Courant and H. Robbins, What Is Mathe-
matics? (New York: Oxford University Press, 1941), pp. 264-267. We also refer
the student to excellent drawings in the books by Cairns (2], p. 28, and Hilbert
and Cohn-Vossen [3)], p. 265, illustrating how the connected sum of two or three

tori can be cut open to obtain a polygon whose opposite edges are to be identified
in pairs.
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CHAPTER TWO

The Fundamental Group

1 Introduction

For any topological space X and any point z, € X, we will define a group,
called the fundamental group of X, and denoted by = (X, zo). (Actually,
the choice of the point x, is usually of minor importance, and hence it is
often omitted from the notation.) We define this group by a very simple
and intuitive procedure involving the use of closed paths in X. From the
definition, it will be clear that the group is a topological invariant of X
i.e., if two spaces are homeomorphic, their fundamental groups are iso-
morphic. This gives us the possibility of proving that two spaces are not
homeomorphic by proving that their fundamental groups are noniso-
morphic. For example, this method suffices to distinguish between the
various compact surfaces and in many other cases.

Not only does the fundamental group give information about spaces,
but it also is often useful in studying continuous maps. As we shall see,
any continuous map from a space X into a space Y induces a homomor-
phism of the fundamental group of X into that of Y. Certain topological
properties of the continuous map will be reflected in the properties of
this induced homomorphism. Thus, we can prove facts about certain
continuous maps by studying the induced homomorphism of the funda-
mental groups.

We can summarize the above two paragraphs as follows: By using
the fundamental group, topological problems about spaces and continu-
ous maps can sometimes be reduced to purely algebraic problems about
groups and homomorphisms. This is the basic strategy of the entire
subject of algebraic topology: to find methods of reducing topological
problems to questions of pure algebra, and then hope that algebraists
can solve the latter.

This chapter will only give the basic definition and properties of the
fundamental group and induced homomorphism, and determine its
structure for a few very simple spaces. In later chapters we shall develop
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more general methods for determining the fundamental groups of some
more interesting spaces.

2 Basic notation and terminology

As usual, for any real numbers a and b such that a < b, [a, b] denotes the
closed interval of the real line with @ and b as end points. For conciseness,
we set I = [0, 1]. We note that, given any two closed intervals [a, b]
and [c, d], there exist unique linear homeomorphisms

hl; ho : [a; b] - [c’ d])
such that
ho(a) = ¢, ho(b) = d,

M) =d, ) =ec.

We distinguish between these two by calling ho orientation preserving
and h, orientation reversing.

A path or arc in a topological space X is a continuous map of some
closed interval into X. The images of the end points of the interval are
called the end points of the path or arc, and the path is said to join its
end points. One of the end points is called the initial point, the other is
called the terminal point (it is clear which is which).

A space X is called arcwise connected or pathwise connected if any two
points of X can be joined by an arc. An arcwise connected space is con-
nected, but the converse statement is not true. The arc components of X
are the maximal arcwise-connected subsets of X (by analogy with the
ordinary components of X). Note that the arc components of X need not
be closed sets. A space is locally arcwise connected if each point has a
basic family of arcwise-connected neighborhoods (by analogy with ordi-
nary local connectivity).

Exercise

2.1 Prove that a space which is connected and locally arcwise connected is
arcwise connected.

Definition Let fo, fi:[a, b — X be two paths in X such that
fola) = fi(a), fo(d) = f1(b) (i.e., the two paths have the same initial and
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terminal points). We say that these two paths are equivalent, denoted
by fo ~ f1, if and only if there exists a continuous map

fila, 0] X I— X,
such that

f(&, 0) = fo(?)
&4, 1) = £i(t)
f(a, 8) = fo(a) = fi(a) ]

sel
f(b, 8) = fo(b) = f1(b)

Note that in the above definition we could replace I by any other
closed interval if necessary. We leave it as an exercise to verify that this
relation is reflexive, symmetric, and transitive.

Intuitively we say that two paths are equivalent if one can be con-
tinuously deformed into the other in the space X. During the deforma-
tion, the end points must remain fixed.

Our second basic definition is that of the product of two paths. The
product of two paths is only defined if the terminal point of the first path
is the initial point of the second path. If this condition holds, the product
path is traversed by traversing the first path and then the second path,
in the given order. To be precise, assume

filag, b > X
g:bc— X

are paths such that f(b) = g(b) (here a < b < ¢). Then the product
S+ g is defined by
1@, t € la, b]

. = 2.2-1
- lg(t>, e, d @24

It is a map [a, c] —» X. In the above definition, we had the rather cumber-
some requirement that the domains of f and g had to be the intervals
[a, b] and [b, c], respectively. We can remove this requirement by chang-
ing the domain of f or g by means of an orientation-preserving linear
homeomorphism. Actually, in the future we shall only be interested in
equivalence classes of paths rather than the paths themselves. By
‘“equivalence class,”” we mean, with respect to the equivalence relation
defined above, and also with respect to the following obvious equivalence
relation: If f : [@, b] > X and g : [c, d] » X are paths such that g = fh,
where h : [¢, d] — [a, b] is an orientation-preserving linear homeomorphism,
then f and g are to be regarded as equivalent. Rather than considering
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paths whose domain is an arbitrary closed interval and allowing orienta-
tion-preserving linear homeomorphisms between any two such intervals,
we find it technically simpler to demand that all paths be functions
defined on one fixed interval, namely, the interval I = [0, 1]. As a result
of this simplification, the simple formula for the product of two paths,
(2.2-1), has to be replaced by a more complicated formula. Also, it will
not be immediately obvious that the multiplication of path classes is
associative. However, the reader should keep in mind that there are
various alternative ways of proceeding with this subject.

3 Definition of the fundamental group of a space

From now on, by a path in X we mean a continuous map I — X. If f and
g are paths in X such that the terminal point of f is the initial point of g,
then the product f - g is defined by

f20), 0=st=4

o= {g<2t— ), 4stsl

We say two paths, fo and fi, are equivalent (fo ~ f1) if the condition in
Section 2 is satisfied.

Lemma 3.1 The equivalence relation and the product we have defined
are compalible in the following sense: If fo ~ f1 and go ~ g1, then fo - go ~
1 g1 (it 7s assumed, of course, that the terminal point of fo is the initial
point of go).

The proof may be left to the reader. In proving lemmas such as this,
the following fact is often useful: Let A and B be closed subsets of the
topological space X such that X = A U B. If f is a function defined on X
such that the restrictions f| A and f| B are both continuous, then f is con-
tinuous. The proof, which is easy, is left to the reader. In the future,
we will use this fact without comment.

As a result of Lemma 3.1, the multiplication of paths defines a multi-
plication of equivalence classes of paths (provided the terminal point
of the first path and the initial point of the second path coincide). It is
this multiplication of equivalence classes with which we are primarily
concerned. Note that the multiplication of paths is not associative in
general, i.e., (f-g) - h = f- (g - h) (we assume both products are defined).
However, we have
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Lemma 3.2 The multiplication of equivalence classes of paths is
assoctative.

PROOF: It suffices to prove the following: Let f, g, and h be paths
such that the terminal point of f = initial point of g, and the terminal
point of g = initial point of A. Then

(f-9) -h~f-(g-h).
To prove this, consider the function F : I X I — X defined by

4t s+1
f(1+8)r 0=st=s 1 ’
F(t,s) = (g4t — 1 — ), stlétés:2’
4(1—t)) s+ 2
- y st=s1.
h(l 2 . ) sSt=s1

Then, F is continuous, F(¢, 0) = [(f- g) - Alt, and F(¢, 1) = [f- (g - h)]t.
The motivation for the definition of F is given in Figure 2.1.

For any point z € X, let us denote by &, the equivalence class of the
constant map of I into the point z of X. This path class has the following
fundamental property:

Lemma 3.3 Let a be an equivalence class of paths with initial point x
and terminal point y. Then &;:-a = aand a - &, = a.

&) Gn QD

I

FIGURE 2.1 Proof of associativity.
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PROOF: Let e: ] — X be the constant map such that e(I) = {z}
and let f : T — X be a representative of the path class a. To prove the
first relation, it suffices to prove that e - f ~ f. Define F : I X I —» X by

z, 0=t=<1is,

F(t,8)= 2t — s
f2

— s

)1 %S_S_tél

Then F(t, 0) = f(t) and F(t, 1) = (e - f)t as required. The motivation
for the definition of F is shown in Figure 2.2. The proof that « - g, = «
is similar, and is left to the reader. Q.E.D.

For any path f : I — X, let f denote the path defined by
jo=fa-v, tel

The path f is obtained by traversing the path f in the opposite
direction.

Lemma 3.4 Let o and & denote the equivalence classes of the paths f
and f, respectively. Then,

a‘*a = & a-a = §,

where x and y are the initial and terminal points of the path f.

S o

(,1) (1,1)

FIGURE 2.2 Proof of existence of units.



SECTION 3 Fundamental Group of a Space / 61

PrOOF: To prove the first equation, it suffices to show that f - ~ e,
where e is the constant path at the point z. Therefore, we define F : I X
I— X by

f20), 0 =t=3s

F(t, s) = < f(s), s <t=<1—1s
f2 — 21, 1—-3s=t<1.

We then see that F(t, 0) = z, whereas (f-f)t = F(t, 1). Figure 2.3
explains the choice of the function F. We can also motivate the deforma-
tion of the path f-J into the constant path e by a simple mechanical
analogy. Consider the path f as an elastic “thread’” in the space X from
the point z to y; then f is another “thread” in the opposite direction,
from y to z, and f-f is represented by joining the two threads at the
point y. We can now “pull in”’ the doubled thread to the point z, because
we do not need to keep it attached to the point y.

The proof that & - « = g, is similar, and is left to the reader. qQ.E.D.

In view of these properties of the path class & from now on we will
denote it by a~*. It is readily seen that the conditions of the lemma just
proved characterize o~ ! uniquely. Hence, if fo ~ f,, then fo ~ f..

We can summarize the lemmas just proved by saying that the set of
all path classes in X satisfies the axioms for a group, except that the
product of two paths is not always defined.

&1 1,1

FIGURE 2.3 Proof of existence of inverses.
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Definition A path, or path class, is called closed, or a loop, if the
initial and terminal points are the same. The loop is said to be based at
the common end point.

Let = be any point of X; it is readily seen that the set of all loops
based at r is a group. This group is called the fundamental group or
Poincaré group of X at the base point z, and denoted by = (X, z).

Next, we will investigate the dependence of the group =(X, z) on the
base point x. Let z and y be two points in X, and let ¥ be a path class
with initial point z and terminal point y (hence, z and y belong to the
same arc component of X). Using the path v, we define a mapping
u :7w(X, ) > v(X, y) by the formula a — vy lay. We see immediately
that this mapping is a homomorphism of 7 (X, z) into m(X, y). By using
the path y~! instead of v, we can define a homomorphism v : 7(X, y) —
7(X, z) in a similar manner. We immediately verify that the composed
homomorphisms vu and uv are the identity maps of #(X, z) and =(X, y),
respectively. Thus, « and v are isomorphisms, each of which is the inverse
of the other. Thus, we have proved

Theorem 3.5 If X is arcwise connected, the groups =(X, z) and (X, y)
are isomorphic for any two points z, y € X.

The importance of this theorem is obvious; e.g., the question as to
whether or not =(X, z) has any given group theoretic property (e.g., it is
abelian, finite, nilpotent, free, etc.) is independent of the point z, and
thus depends only on the space X, provided X is arcwise connected.

On the other hand, we must keep in mind that there is no canonical
or natural isomorphism between (X, z) and n(X, y); corresponding to
each choice of a path class from z to y there will be an isomorphism, from
m(X, z) to m(X, y), and, in general, different path classes will give rise
to different isomorphisms.

Exercises

3.1 TUnder what conditions will two path classes, v and 4’, from z to y give
rise to the same isomorphism of 7(X, z) onto v(X, y)?

3.2 Let X be an arcwise-connected space. Under what conditions is the
following statement true: For any two points z, y € X, all path classes from z
to y give rise to the same isomorphism of 7 (X, z) onto 7 (X, y)?

3.3 Letf, g:I— X be two paths with initial point z, and terminal point z,.
Prove that f ~ g if and only if f - g is equivalent to the constant path at z, (§ is
defined as in Lemma 3.4).

We will actually determine the structure of the fundamental group
of various spaces later in this chapter and in Chapter IV.
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4 The effect of a continuous mapping
on the fundamental group

Let ¢ : X — Y be a continuous mapping, and let fo, f; : I — X be paths
in X. It is readily seen that, if f, and f, are equivalent, then so are the
paths ¢fy and ¢f, represented by the composed functions. Thus, if «
denotes the path class that contains f, and f), it makes sense to denote
by ¢«(a) the path class that contains the paths ¢fy and ¢f1. ¢« () is the
image of the path class o in the space Y, and it is readily verified that the
mapping ¢« which sends o into ¢« (a) has the following properties:

(a) If a and B are path classes in X such that « - 8 is defined, then
px(a - B) = (exa) * (¢xB).

(b) For any point £ € X, ¢x(€z) = Epa)-

(€) ex(a™) = (pxa)™™

For these reasons, we shall call ¢« a “homomorphism,” or, the
“homomorphism induced by ¢.”

If ¢ : Y — Z is also a erntinuous map, then we can verify the follow-
ing property easily:

(d) We)x = ¥xex.
Finally, if ¢ : X — X is the identity map, then

(e) px(a) = a for any path class a in X; i.e., ¢« is the identity
homomorphism.

Note that, in view of these properties, a continuous map ¢ : X - Y
induces a homomorphism ¢« : 7(X, ) — 7(Y, ¢(z)); and, if ¢ is a nomeo-
morphism, then ¢« is an isomorphism. This induced homomorphism
will be extremely important in studying the fundamental group.

Caution: If ¢is a one-to-one map, it does not follow that ¢4 is one-to-one;
similarly, if ¢ is onto, it does not follow that ¢« is onto. We shall see
examples to illustrate this point later.

Exercise

4.1 Let ¢ : X — Y be a continuous map, and let v be a class of paths in X
from z, to z;. Prove that the following diagram is commutative:

(X, 20) — (Y, (o))

u

(X, 7)) = 7(Y, o(z1)).
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Here the isomorphism u is defined by u(a) = y 'ay, and v is defined similarly
using ¢« (7y) in place of . [NoTE: An important special case occurs if ¢(zo) =
¢(z1). Then, ¢« (v) is an element of the group w(Y, ¢(z0)).]

To make further progress in the study of the induced homomorphism
¢, we must introduce the important notion of homotopy of continuous
maps.

Definition Two continuous maps ¢o, ¢1 : X — Y are homotopic if
and only if there exists a continuous map ¢ : X X I — Y such that, for
re X,

e(z, 0) = ¢o(z),

e(z, 1) = o1(2).

If two maps ¢o and ¢; are homotopic, we shall denote this by ¢o = ¢;.
We leave it to the reader to verify that this is an equivalence relation on
the set of all continuous maps X — Y. The equivalence classes are called
homotopy classes of maps.

To better visualize the geometric content of the definition, let us
write ¢,(z) = ¢(z, t) for any (z, t) € X X I. Then, for any ¢t € I,

. X—>Y

is a continuous map. Think of the parameter { as representing time.
Then, at time t = 0, we have the map ¢o, and, as ¢ varies, the map ¢
varies continuously so that at time ¢t = 1 we have the map ¢,. For this
reason a homotopy is often spoken of as a continuous deformation
of a map.!

Definition Two maps ¢o, ¢1:X — Y are homotopic relative to the
subset A of X if and only if there exists a continuousmap ¢ : X X I - Y
such that

e(z,0) = ¢o(z), z€X,

ez, 1) = ¢1(2), z € X,

e(a, ) = po(a) = ¢1(a), a€A,tel
Note that this condition implies ¢o | A = ¢, | A.

1 The student who is familiar with the compact-open topology for function spaces
will recognize that two maps ¢, ¢: : X — Y are homotopic if and only if they can
be joined by an arc in the space of all continuous functions X — Y (provided X and Y
satisfy certain hypotheses). Indeed, the map ¢ — ¢ in the above notation is a path
from ¢, to ¢i.
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Theorem 4.1 Let ¢o, o1 : X — Y be maps that are homotopic relative
to the subset {x}. Then

eox = o1 1 m(X, z) > 7(Y, @0o(2)),
i.e., the tnduced homomorphisms are the same.

PROOF: The proof is immediate.

Unfortunately, the condition that the homotopy should be relative
to the base point z is too restrictive for many purposes. This condition
can be omitted, but we then complicate the statement of the theorem.
We shall, however, do this in Section 8.

We shall now apply some of these results.

Definition A subset A of a topological space X is called a retract of
X if there exists a continuous map r : X — A (called a retraction) such
that r(a) = a for any a € A.

As we shall see shortly, it is a rather strong condition to require that a
subset A be a retract of X. A simple example of a retract of a space is
the ‘““center circle’” of a Mébius strip. (What is the retraction in this
case?)

Now let r : X — A be a retraction, as in the above definition, and
7 : A — X the inclusion map. For any point @ € A, consider the induced
homomorphisms

ix :m(4, a) > 7(X, a),

r« :m(X, a) > w(4, a).

Because 7 = identity map, we conclude that r«ix = identity homomor-
phism of the group =(A, a), by properties (d) and (e) given previously.
From this we conclude that i« s a monomorphism and rs s an epimor-
phism. Moreover, the condition that r«ix = identity imposes strong
restrictions on the subgroup 7«7 (4, a) of #(X, a).

We shall actually use this result later to prove that certain subspaces
are not retracts.

Exercises

4.2 Show that a retract of a Hausdorff space must be a closed subset.

4.3 Prove that, if A is a retract of X, r : X — A is a retraction, ¢ : 4 — X is
the inclusion, and 7sxm(A) is a normal subgroup of 7(X), then w(X) is the direct
product of the subgroups image i« and kernel r« (see Section I11.2 for the defini-
tion of direct product of groups).
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4.4 Let A be a subspace of X, and let Y be a nonempty topological space.
Prove that A X Y is a retract of X X Y if and only if A is a retract of X.

4.5 Prove that the relation ‘is a retract of”’ is transitive, i.e., if 4 is a retract
of B and B is a retract of C, then A is a retract of C.

We now introduce the notion of deformation retract. The subspace A
is a deformation retract of X if there exists a retraction r : X — A homo-
topic to the identity map X — X. The precise definition is as follows:

Definition A subset A of X is a deformation retract? of X if there
exists a retraction r : X — A and a homotopy f: X X I — X such that

f(z,0) ==z

f(z, 1) = r(z)
f(a, t) = a, acA and tel.

}xeX,

Theorem 4.2 If A is a deformation retract of X, then the inclusion
map ¢ : A — X induces an tsomorphism of w(A, a) onto w(X, a) for any
a €A

PROOF: As above, ryiy is the identity map of (4, a). We will com-
plete the proof by showing that 747y is the identity map of #(X, a). This
follows because ir is homotopic to the identity map X — X (relative to
{a}); hence, Theorem 4.1 is applicable. Q.E.D.

We shall use this theorem in two different ways. On the one hand,
we shall use it throughout the rest of this book to prove that two spaces
have isomorphic fundamental groups. On the other hand, we can use it
to prove that a subspace is not a deformation retract by proving the
fundamental groups are not isomorphic. In particular, we shall be able
to prove that certain retracts are not deformation retracts.

Definition A topological space X is contractible to a point if there
exists a point 2o € X such that {z,} is a deformation retract of X.

Definition A topological space X is simply connected if it is arcwise
connected and 7(X, ) = {1} for some (and hence any) z € X.

Corollary 4.3 If X is contractible to a point, then X is sitmply connected.

? Some authors define this term in a slightly weaker fashion.
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Examples

4.1 A subset X of the plane or, more generally, of Euclidean n-space R» is
called convez if the line segment joining any two points of X lies entirely in X. We
assert that any conver subset X of R" is contractible to a point. To prove this,
choose an arbitrary point zo € X, and then define f : X X I — X by the formula

flxz, t) = (1 — )z + txo

forany (z,t) € X X I [i.e., f(z, t) is the point on the line segment joining z and z,
which divides it in the ratio (1 — ¢) : ¢]. Then f is continuous, f(z, 0) = z, and
f(z, 1) = x, as required. More generally, we may define a subset X of R" to be
starlike with respect to the point o € X provided the line segment joining z and z,
lies entirely in X for any z € X. Then, the same proof suffices to show that, if
X is starlike with respect to z,, it is contractible to the point z,.

4.2 We assert that the unit (n — 1)-sphere S»~! is a deformation retract of
E» — {0}, the closed unit n-dimensional disc minus the origin. To prove this,
define a map f : X X I — X, where

X=E—-{0} ={z€R":0 < |z| =1},

by the formula
fx, ) =0 — e+t —-

||

(The reader should draw a picture to show what happens here when n = 2 or
n = 3.) Then f is continuous, f(z, 0) = z, f(z, 1) = z/|z| € 8", and, if z €
S*1, then f(z, t) = z for all ¢ € I. In particular, for n = 2, we see that the
boundary circle is a deformation retract of a punctured dise.

Exercises

4.6 Let zo be any point in the plane R2. Find a circle C in R? which is a
deformation retract of R* — {z,}. What is the n-dimensional analog of this fact?

4.7 Find a circle C which is a deformation retract of the Mobius strip.

4.8 Let T be a torus, and let X be the complement of a point in 7. Find a
subset of X which is homeomorphic to a figure “8” curve (i.e., the union of two
circles with a single point in common) and which is a deformation retract of X.

4.9 Generalize Exercise 4.8 to arbitrary compact surfaces; i.e., let S be a
compact surface and let X be the complement of a point in S. Find a subset 4
of X such that (a) A is homeomorphic to the union of a finite number of circles,
and (b) 4 is a deformation retract of X. (miNT: Consider the representation of S
as the space obtained by identifying in pairs the edges of a certain polygon.)

4.10 Let z and y be distinct points of a simply connected space X. Prove that
there is a unique path class in X with initial point z and terminal point y.

4.11 Let X be a topological space, and for each positive integer » let X, be an
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arcwise-connected subspace containing the base point zo € X. Assume that the
subspaces X, are nested, i.e., X, C Xy, for all n, that

X= U X,
n=1

and that for any compact subset A of X there exists an integer n such that
A C X,.. (exampLE: Each X, is open.) Let ia : 7(X,) — m(X) and jma : 7(Xm) —
m(X,), m < n, denote homomorphisms induced by inclusion maps. Prove the
following two statements: (a) For any a € w(X), there exists an integer n and
an element o’ € 7(X,) such that i,(a’) = a. (b) If 8 € w(Xx) and tn(B) = 1,
then there exists an integer n = m such that j..(8) = 1. [REMARK: These two
statements imply that 7 (X) is the direct limit of the sequence of groups =(X,) and
homomorphisms j... We shall see examples later on where the hypotheses of this
exercise are valid.] If the homomorphisms jn,»41 are monomorphisms for all =,
prove that each 7, is also a monomorphism, and that w(X) is the union of the
subgroups t,m(X,).

5 The fundamental group of a circle is infinite cyclic

Let S! denote the unit circle in the Euclidean plane R?, S* = {(z, y) €
R2:22 4+ y2 = 1} (or, equivalently, in the complex plane C). Let
f:I— 8! denote the closed path that goes around the circle exactly
once, defined by

f(&) = (cos 2nt, sin 2xt), 0st=1],

and denote the equivalence class of f by the symbol a.

Theorem 5.1 The fundamental group =(S, (1, 0)) is an infinite cyclic
group generated by the path class .

PROOF: Let g : I — 8!, g(0) = g(1)- = (1, 0) be a closed path in S*.
We shall prove first that g belongs to the equivalence class a™ for some
integer m (m may be positive, negative, or zero).

Let

U= {(z,y) €8 :y > —7o},

U= {(z,y) €8 :y < +7o}
Then, U; and U, are connected open subsets of S!, each of which is
slightly larger than a semicircle, and U, U U, = S*. Obviously U, and
U, are each homeomorphic to an open interval of the real line, hence,

each is contractible. In the case where g(I) C U, or g(I) C U,, it is then
clear that g is equivalent to the constant path, and hence belongs to the



SEcTION & The Fundamental Group of a Circle / 69

equivalence class of «®. We put this case aside, and assume from now on
that g(I) ¢ U, and g(I) ¢ U..

We next assert that it is possible to divide the unit interval into sub-
intervals [0, &), [ty, La], ..., [tazy, 1], where 0 =ty < t; < -+ < 1 <
t, = 1, such that the following conditions hold:

(a) g(ltiy tiya]) C Uyor
g(t;, tia]) C U2 for 0 =7 <nm.
(b) g(lti-y, &) and  g([& L))
are not both contained in the same open set Uj;, j = 1 or 2.

This assertion may be proved as follows. {g~*(U,), g~*(U2)} is an open
covering of the compact metric space I; let € be a Lebesgue number? of
this covering.

Divide the unit interval in any way whatsoever into subintervals of
length < ¢. With this subdivision, condition (a) will hold; however,
condition (b) may not hold. If two consecutive subintervals are mapped
by g into the same set U;, then amalgamate these two subintervals into a
single subinterval by omitting the common end point. Continue this
process of amalgamation until condition (b) holds.

Let 8 denote the equivalence class of the path g, and let 8; denote the
equivalence class of g | [ticy, &] for 1 £ 7 < n. Then, obviously, 8 is a
product,

ﬁ:ﬁl.ﬂz-....ﬁn.

Each 8; is a path in U, or U,. Because of condition (b), it is clear that
gt) € Uy N U,y U,N U, has two components, one of which contains
the point (1, 0), and the other of which contains the point (—1, 0). For
each index 7, 0 <7 < n, choose a path class v; in U, N U, with initial
point g(#;) and terminal point (1, 0) or (—1, 0), depending on which
component of U; N U, contains g(&). Let

61 = ﬁl’yly
& = v 4By for 1 <7< n,
0 = ‘Y:ilﬂﬂ'

Then, it is clear that
B = 0162 - 6n (2.5-1)

3 We say ¢ is a Lebesgue number of a covering of a metric space X if the following con-
dition holds: Any subset of X of diameter < € is contained in some set of the cover-
ing. It is a theorem that any open covering of a compact metric space has a Lebesgue
number. The reader may either prove this as an exercise or look up the proof in a
textbook on general topology.
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where each §; is a path class in U, or U,, having its initial and terminal
points in the set {(1, 0), (—1, 0)}. For any index s, if §; is a closed path
class, then 8; = 1, because U, and U, are simply connected. We may
therefore assume that any such §; has been dropped from formula (2.5-1),
and, changing notation if necessary, that 8,, 8z, ..., and 8, are not closed
paths.

Because U, is simply connected, there is a unique path class 7, in U,
with initial point (1, 0) and terminal point (—1, 0) (see Exercise 4.10).
Also, 77! is the unique path class in U, with initial point (—1, 0) and
terminal point (1, 0). Analogously, we denote by 7. the unique path
class in U, with initial point (—1, 0) and terminal point (1, 0). Note
that 917 = a.

Thus, we see that, for each index ¢,

& =nf' or & =il

In view of condition (b) above, if §; = 7¥', then 8;11 = 73", whileif §; = 3,
then 8,4, = nf'. Therefore only the following possibilities remain:

B=1’

B = mnamnz - - MmN

or
—1_—1

B = my'nrmzart o mgnr

In the second case 8 = a™ for some m > 0, whereas in the third case
B = o™ for some integer m < 0. Thus, we have 8 = o™ in all cases.

From this it follows that (S?) is a cyclic group. However, this argu-
ment gives no hint as to the order of =(S'). To prove that =(S?) is not a
finite group, we now introduce the concept of the degree of a closed path
in #(S'). The degree is an integer which, roughly speaking, tells how
many times the path is wrapped around the circle.

To define the degree of a path, it will be convenient to regard S* as
the unit circle in the complex plane C,

S1={ze C:le| = 1}.

Because the product or quotient of any two complex numbers of absolute
value 1 again has absolute value 1, S! is a group under multiplication.
If z € 8!, we denote by a(z) the angle of z, i.e., the angle in radians from
the positive real axis to the segment with end points 0 and z (see Figure
2.4). Thus, for any z € S!, a(2) is a real number; however, it is not
uniquely determined. If 6 is a value of a(z), then  + 2kr is an equally
good value for any integer k. We may also state this as follows. If
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Y

a(z)

FIGURE 2.4 Definition of a(z).

2 = ¢* = cos 0 + 7 sin 6, then 6 is a determination of a(z). Note that if
6, and 6, are values for a(z;) and a(z.), then 8, + 6, is a value of a(z2,),
and 0, — 0 is a value of a(z,/z2).
Let h:I— S* be a closed path with h(0) = A(1) = 1. Choose a
subdivision
0=t <H < - <th =1

of the unit interval such that the following property holds: If ¢ and ¢’ both
belong to the same subinterval [¢;,_1, ¢;], then

[h(t) — R(®)| < 1. (2.5-2)

We can prove the existence of such a subdivision by using the fact
that h is uniformly continuous, or by the existence of a Lebesgue num-
ber of a certain covering of I. For each index 7, 1 < ¢ < n, let 6; be the
unique determination of the angle of A(t)/A(ti—;) which satisfies the
inequality

™

<6< 4=
g S 2

That 6; can be so chosen follows from the inequality |h(t;) — A(ti—1)| < 1,
1in view of (2.5-2). We now define

1 n
degree of h = o Z 6;.

t=1
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It is clear that the degree of h is an integer, since

n
2, b
i=1
is a determination of the angle of the complex number

n

h(t) k() 1
Il h(tic)  h(to) 1

i=1

To justify this definition, we must show that it is independent of the
choice of the subdivision of the interval I. Since any two subdivisions
of I into subintervals have a common refinement, it suffices to investigate
what happens when we refine the given subdivision. Any refinement
of a given subdivision may be obtained by a series of successive refine-
ments such that only one new point of subdivision is added at each stage.
Therefore we only need to investigate the case where we subdivide the
subinterval [¢;_,, &;] by a point s, such that &, < s < t.. We then have
to replace 6; by 6, + 6;’, where

. h(s)
bi=a (h(ti—l) ’

y_ (M@
“‘“Q@’

and |6} < /2, |6)'| < /2. It is now clear that both 6; and 6; + 6. are
determinations of the angle of the complex number h(t)/h(ti-1); hence,
they must differ by an integral multiple of 2r. But, because all are less
than /2 in absolute value, this is only possible if 8; = 6; + 6;". Thus,
the definition of the degree of h is independent of the choice of subdivision.
Next, we will prove that, if h ~ g, then degree of h = degree of g.
Since h ~ g, there exists a continuous map F : I X I — S! such that

F(t, 0) = h(?),
F(t, 1) = g(t),
FO,s) = FQ,s) = 1. (2.5-3)

We may now choose subdivisions % =0<# < --- <t, =1 and
80 =0 <8 < -+ <sm=1 of the unit interval such that F maps each
of the rectangles [ti_y, &:] X [s;_;, s;] into a subset of S! having diameter
< 1;i.e., if (¢, s) and (¢, s’) belong to [t;_;, &] X [s;_1, 8;], then

|F(t, s) — Ft, s")| < 1. (2.5-4)
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Now, let
’ F(t” sj—l) ) ’ ™
0, = al—2"") 0 < =
(F (ti1y 8i-1) 10 2
’ F(th SJ') ) 17 ™
6, = a(————— ) ;| < -
Fos ) %<2
We wish to prove that

i 6; = i 6; .
i=1 i=1

If we apply this argument for j = 1, 2, ..., m in succession, it will then
follow that degree of h = degree of g. For this purpose, let

F(, s)) ) T
= — <) i < =
e (F(t,», 5i-1) el <3

fori = 0,1, ..., n. We can choose ¢; to satisfy the inequality |¢:| < 7/2
because condition (2.5-4) holds. 6;' — 6; and ¢; — ¢;_, are both deter-
minations of the angle of the complex number

F(tn sf)F(ti—ly S]'—l),
F(tiy, s)F (i, si-1)
and hence they differ by an integral multiple of 2x. .But in view of the

restrictions on the absolute value of the numbers involved, we conclude
that

’’ ’
0.' —0; = ¢i — @i

Now sum from 7 =1to: = n:
20.{, - 29.{ = 2(991' - 9').'_1) = @1 T @o.

But, from condition (2.5-3), @0 = ¢» = 0. Therefore, Z6; = 26, as
desired.

Thus, we can assign to any element 8 € »(S!) a unique integer, the
degree of 3. We leave it to the reader to verify by direct computation
that, for any integer m, the map h, : I — 8! defined by

hm(t) = cos 2mwt + 7 sin 2 mmt
has degree m. Thus, the group »(S!) is of infinite order, and hence is

infinite cyclic. Q.E.D.

Remark: The basic idea involved in the above discussion of the degree
of an element of 7(S!) will be refined and generalized in the discussion
of the fundamental group of a covering space in Chapter V.
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As a corollary of Theorem 5.1, we see that the fundamental group
of any space with a circle as deformation retract is infinite cyclic. Exam-
ples of such spaces are the Mébius strip, a punctured dise, the punctured
plane, a region in the plane bounded by two concentric circles, etc. (see
the exercises in the preceding section).

Exercises

5.1 Prove from the definitions that the mapping #(S!) — Z defined by
B — (degree of B8) is a homomorphism of 7(8?) into the additive group of integers.

5.2 Give a direct proof (along the general lines of the first part of the proof of
Theorem 5.1) that if 8 € wv(S!) and the degree of 8 is 0, then 8 = 1. (NoTE: This
is an alternative way of proving Theorem 5.1.)

5.3 Let {U;} be an open covering of the space X having the following prop-
erties: (a) There exists a point z, such that z, € U; for all 7. (b) Each U; is
simply connected. (c) If ¢  j, then U; N U, is arcwise connected. Prove that X
is simply connected. [HINT: To prove any loop f: I — X based at z, is trivial,
first consider the open covering { f~1(U;)} of the compact metric space I, and make
use of the Lebesgue number of this covering.]

Remark: The two most important cases of this exercise are the following: (1) A
covering by two open sets, and (2) the sets U; are linearly ordered by inclusion.
The student should restate the exercise for these two special cases.

5.4 Use the result of Exercise 5.3, remark (1), to prove that the unit 2-sphere
S? or, more generally, the n-sphere S*, n > 2, is simply connected.

5.5 Prove that R? and R~ are not homeomorphic if n # 2. (HINT: Consider the
complement of a point in R? or R».)

5.6 Prove that any homeomorphism of the closed disc E? onto itself maps S*
onto S! and U? onto U2

6 Application: The Brouwer fixed-point theorem
in dimension 2

One of the best known theorems of topology is the following fixed-point
theorem of L. E. J. Brouwer. Let E® denote the closed unit ball in
Euclidean n-space R":

Er={zeRr:|z| £ 1}.

Theorem 6.1 Any continuous map f of E* into itself has at least one
fized point, i.e., a point x such that f(z) = z.

We shall only prove this theorem for n < 2. Before going into the
proof, it seems worthwhile to indicate why there should be interest in
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fixed-point theorems, such as this one.
Suppose we-have a system of n equations in n unknowns:

gi(xy, ..., z,) =0
ga(xy, ..., 2a) =0

(2.6-1)

g,.(xl, ceey x,.) = 0.

Here the g’s are assumed to be continuous real-valued functions of the
real variables z,, ..., z.. It is often an important problem to be able to
decide whether or not such a system of equations has a solution. We
can transform this problem into a fixed-point problem as follows. Let

hi(xy, ..., Ta) = gi(z1, ..., To) + T

fori = 1,2, ..., n. Then, for any point z = (z,, ..., Z.), we define
h(z) = (hi(2), ..., ha()).

Then, k is a continuous function mapping a certain subset of Euclidean
n-space (depending on the domain of definition of the functionsg, .. ., g»)
into Euclidean n-space. If we can find a subset X of Euclidean n-space
homeomorphic to E*, such that A is defined in X and A(X) C X, then
we can conclude by Brouwer’s theorem that the function & has a fixed
point in the set X; but any fixed point of the function A is readily seen
to be a common solution of equations (2.6-1).

Brouwer’s theorem has been extended from the subset E* of Euclidean
space to apply to certain subsets of function spaces. The resulting theo-
rem can then be used to prove existence theorems for ordinary and partial
differential equations; in fact, this is one of the most powerful methods
of proving existence theorems for certain types of nonlinear equations.

PROOF OF THEOREM 6.1: For n < 2: First we prove that, for any
integer n > 0, the existence of a continuous map f : E* — E*, which has
no fixed points, implies that the (n — 1)-sphere S*! = {z € R":
|z| = 1} is a retract of E». We do this by the following simple geometric
construction. For any point z € E*, let r(z) denote the point of inter-
section of S*—! and the ray starting at the point f(z) and going through
the point z. Figure 2.5 shows the situation for the case where n = 2.
Using vector notation, we can easily write a formula for r(z) in terms of
f(z). From this formula, we see that r is a continuous map of E* into
S*1, If z € 8, it is clear that r(z) = z. Therefore, r is the desired
retraction.

If we could prove that S*! is not a retract of E®, then we would
have a contradiction. For n = 1, this is clear, because E! is connected,
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FIGURE 2.5 Proof of the Brouwer Fixed-Point Theorem.

but S° is disconnected. For n = 2, we invoke what we have learned
about the fundamental groups of retracts. Because =(S?) is infinite cyclic,
whereas m(E?) is a trivial group, it easily follows that S! is not a retract
of E? (see the discussion of retracts in Section 4). Q.E.D.

7 The fundamental group of a product space

In this section, we shall prove that the fundamental group of the product
of two spaces is naturally isomorphic to the direct product of their funda-
mental groups; in symbols,

(X XY) =x(X) Xn((Y).

(For a review of the definition of the direct product of groups, see Sec-
tion I11.2.)

Let X, Y, and A be topological spaces. If f : A — X X Y is any map,
let us denote the coordinates of f(a) by (fi(a), f2(a)) for any point a € A.
Then, f, and f. are maps of A into X and Y, respectively, and it is well
known f is continuous if and only if both f, and f, are continuous. This
is a basic property of the product topology. Thus, a natural one-to-one
correspondence exists between continuous maps f: A — X X Y and
pairs of continuous maps f,: 4 — X, f,:4— Y. If we denote by
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p:X XY—Xandq:X X Y — Y the projection of the product space
onto its two factors, then fi = pf and f, = ¢f.

Let us apply these considerations to the case where A = I, the unit
interval. We see that there is a natural one-to-one correspondence between
paths f: I —» X X Y in the product space and pairs of pathsf, : I — X,
fe: I > Y in the factors. Note that f, = pf and f. = qf as before.
This natural correspondence has the following obvious but important
properties:

(@) If f, g : I —» X X Y are paths with the same initial and terminal
points, then f ~ g if and only if f, ~ g, and f2 ~ g, (here g, = pg
and g» = ¢g).

(b) Letf, g : I — X X Y be paths such that the terminal point of f is
the initial point of g, and let A = f-g. Then h, = f1- ¢, and
hs = fa2 - g, where hy = ph and hy = gh.

We can summarize these two statements by stating that the natural
correspondence f <> (fi, f2) is compatible with the equivalence relation
and product we have defined between paths. We leave the verification
of these statements to the reader.

Now let us apply these considerations to the study of the fundamental
group of the product space, 7(X X Y, (z, y)). Let px : 7(X X Y, (z, v))
- (X, z) and ¢« :7(X X Y, (2, y)) » 7(Y, y) denote the homomor-
phisms induced by the projections p and ¢q. From property (a), we see
that ‘the correspondence a — (pxc, gxa) establishes a one-to-one corre-
spondence between the sets =(X X Y, (z, y)) and (X, z) X n(Y, v).
Moreover, it follows from property (b) that this correspondence preserves
products, i.e., it is an isomorphism of groups. We summarize these
results as follows:

Theorem 7.1 The fundamental group of the product space, /(X X Y,
(z, v)), is naturally isomorphic to the direct product of fundamental groups,
m(X, ) X 7(Y,y). The isomorphism is defined by assigning to any element
acen(X XY, (z,y) the ordered pair (pxa, gxa), where p : X X Y > X
and q: X X Y — Y denote the projections of the product space onto its
factors.

Obviously, this theorem can be extended to the product of any finite
number of spaces.

Exercises

7.1 Describe the structure of the fundamental group of a torus.
7.2 Prove that the subset S! X {zo} is a retract of 8! X S?, but that it is not
a deformation retract of 8! X 8! for any point z, € S1.
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7.3 Generalize Theorem 7.1 to obtain a description of the fundamental group
of the product of an infinite collection of topological spaces.

74 Let 1:X—>X XY and j:Y— X XY be maps defined by i(z) =
(z, yo) and j(y) = (zo, y), where zo € X and y, € Y are base points which
are chosen once for all. Prove that the mapping of m(X, zo) X 7(Y, yo) into
m(X X Y, (zo, yo)) defined by (B8, ¥) — (¢x8) - () is an isomorphism of the
first group onto the second. (miNT: Prove it is the inverse of the isomorphism
described in Theorem 7.1.) Deduce as a corollary that the elements 748 and jx7y
commute, i.e., (iB)(jsv) = (jav)(ixh).

7.5 Assume that G is a topological space, 4 : G X G — @ is a continuous map,
and e € G is such that the following conditions hold: For any z € G, u(z, €) =
u(e, ) = z. [An important example: @ is a topological group, e is the identity
element, and u(z, y) = the product of z and y for any elements z, y € G.] Let
1:@— G XGandj:G@— G X G be defined as in Exercise 7.4: i(z) = (z, ) and
j() = (e, z) for any z € G. Prove that, for any elements 8, vy € n(G, e),
us[(£B)(J»v)] = B - . [HINT: Consider first the case where 8 or ¥ = 1.] Deduce
as a corollary that w(G, e) is an abelian group.

7.6 LetG, e, and u be as in Exercise 7.5. Assume in addition that there exists
a continuous map ¢ : G — G such that u(z, ¢(z)) = u(c(z), ) = e for any z €G.
[An important example: G is a topological group and ¢(z) = z~! for any z € G.)
Prove that, for any element 8 € 7 (G, ), ca(8) = 81

8 Homotopy type and homotopy equivalence of spaces

Before we can prove the next theorem, we need to develop some prelimi-
nary material about the topology of certain subsets of the plane. A
topological space will be called a closed disc if it is homeomorphic to the set

E? = {(z,y) e R?: 22 + 2 < 1};
it will be called an open disc if it is homeomorphic to the set
U= {(z,y) eR2:22 + y2 < 1}.

The boundary of a closed disc is the subset that corresponds to the circle
S! under a homeomorphism of the disc onto E?; it can be proved that
this subset is independent of the choice of the homeomorphism (see
exercise 5.6).

We shall now consider some elementary properties of discs.

(a) Any compact, convex subset E of the plane with nonempty
interior is a closed disc.

PROOF: We can set up a homeomorphism between E and E? as fol-
lows. Choose a point z, belonging to the interior of E. Consider any ray
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in the plane starting at the point zo; the intersection of this ray with E
must be a closed interval having z, as one end point. Map this interval
linearly onto the unit interval on the parallel ray through the origin. If
we do this for each ray through z,, we obtain a one-to-one correspondence
between the points of E and E? which can be proved to be continuous
in both directions.

(b) Let E, and E; be closed discs with boundaries B, and B,, respec-
tively. Then, any continuous map f : B, — B, can be extended
to a continuous map F : E; — E,. If fis a homeomorphism, then
we can choose F to be a homeomorphism also.

PROOF: In view of the definition of a closed dise, it suffices to prove
this statement in the case where E, = E; = E? and B, = B, = S.
We leave this proof to the reader.

(¢) Let E, be a closed disc. Let E, denote the quotient space of E,
obtained by identifying a closed segment of the boundary of E,
to a point. Then, this quotient space E. is again a closed disc.

PROOF: In view of property (b), it suffices to prove this assertion for
the case of a particular closed disc and a particular segment on the bound-
ary of that disc. We are at liberty to choose the particular disc and seg-
ment in any convenient way. We choose E; to be the trapezoid ABDE
in the xy plane shown in Figure 2.6, and E; to be the triangle ABC. We
shall define a map f : E; — E, such that the segment DE of the boundary
of E, is mapped onto the vertex C of E» but otherwise f is one-to-one.

A / B

FIGURE 2.6 Proof of Theorem (8.3).
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Then, we shall complete the proof by showing that E, has the quotient
topology determined by f.

We define f by the condition that, for any point P € E,, the points
P, P’ = f(P) and C = (0, 1) will lie on a straight line, and the y coordi-
nate of P’ will be twice that of P. If (z, y) are the coordinates of P and
(«/, y') are the coordinates of P/, then we find that

==(3=7)
X X
y—1 0=y=4

Yy =2y
or
x=x’(y,_2)
2y — 2 0y <1
y =3y

The first pair of formulas shows that f is continuous, whereas the second
pair of formulas shows that f is one-to-one except on the segment DE;
obviously the segment DE is all mapped into the point C. Because E,
i1s compact and E, is Hausdorff, f is a closed map, and hence E; has the
quotient topology. Q.E.D.

We are now ready to state and prove a key lemma. Let D denote a
closed disc, let B denote its boundary (which is a circle), and letg : I — B
denote a continuous map which wraps the interval exactly once around
the circle; i.e., g(0) = g(1) = dy € B, and g maps the open interval (0, 1)
homeomorphically onto B — {d,}. Let X be a topological space.

Lemma 8.1 A continuous map f : B— X can be extended to a map
D — X if and only if the closed loop fg : I — X is equivalent to the constant
loop at the base point f(d).

PROOF: First assume that f : B — X can be extended to a continuous
map F : D — X. Consider the unit square {(z, y) € R2:0 < r <1 and
0 = y £ 1}. Define a continuous map h of the boundary of this square
into B as follows:

h(z, 0) = g(x), 0<z=1,
h(x; 1) = h(oy y) = h(ly y) = dO

for x € I or y € I. By property (b), we can extend ~ to a continuous
map H of the unit square. Then, the existence of the composite map FH
proves the loop fg is equivalent to the constant path.

Next, assume the loop fg is equivalent to the constant path. By

(2.8-1)
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definition, this means there exists a continuous map G of the unit square
into X such that

G(z, 0) = f(g(x)),
G(z, 1) = G0, y) = G, y) = f(do).

Because G maps the top and the two sides of this square into the single
point f(do), it is clear that G induces a continuous map of the quotient
space of the square (cbtained by identifying the top and two sides of
the square to a single point) into X. By property (c), this quotient space
is a closed disc, which we may take to be D, and the natural map of the
boundary of the square onto the quotient space may be taken to be the
map h in equations (2.8-1). The induced map of the disc D into X is
clearly an extension of f, as desired. Q.E.D.

In applying this lemma, it is convenient to use the following “abuse
of language”’: We shall say that the map f:B— X ‘‘represents’ the
equivalence class of the loop fg.

To state the next theorem, let o, ¢; : X — Y be continuous maps,
and let ¢ : X X I — Y be a homotopy between ¢, and ¢} i.e., ¢(z, 0) =
eo(x) and ¢(z, 1) = ¢;(x). Choose a base point zo € X. Then, ¢y and
¢1 induce homomorphisms

eox 1 7(X, 20) = w(Y, po(20)),
o1x (X, zo) — ‘ll'(Y, (01(330))-

Let v denote the homotopy class of the path ¢ — ¢(xy, ), 0 <t < 1,
in Y. This defines an isomorphism u : 7(Y, ¢o(zo)) = 7(Y, 21(x0)) by the
formula

u(a) = v lay, a (Y, ¢o(zo)).

Theorem 8.2 Under the above hypotheses, the following diagram is
commutative:

yr(Y, ¢o(20))
(X, zo) u.
N, e
This theorem is the natural and full generalization of Theorem 4.1.

PROOF: Let a € 7(X, xo); we must prove that

e1x(a) = v Hpoxa)y.
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Choose a closed path f : I — X representing the path «. Consider the map
g:IXI->Y
defined by
9(z, y) = o(f(2), y).

Then, for z, y € I, we have
9(z, 0) = ¢o(f(2)),
9(z, 1) = o1(f(2)),
900, ¥) = g(1, ¥) = e(z0, ¥).

Hence, the map g of the bottom of the square represents ox(a), on the
top of the square it represents ¢.x(a), and on the two sides of the square
it represents v. If we read around the boundary of the square, the map
represents (poxa)y(p14a)~y"L. Now apply Lemma 8.1 to conclude that

(poxa)y(pr1xa) 2y~ = 1.

From this the desired equation follows [multiply on the right by v(¢.xa)
and then on the left by v1. Q.E.D.

Definition Two spaces X and Y are of the same homotopy type if
there exist continuous maps (called homotopy equivalences) f: X — Y,
g :Y — X such that gf ~identity: X —» X and fg ~identity: Y — Y.

Obviously, two homeomorphic spaces are of the same homotopy type,
but the converse is not true.

Exercise

8.1 Prove that, if A is a deformation retract of X, then the inclusion 7 : 4 —
X is a homotopy equivalence. (Actually, one of the conditions in the definition of
a deformation retract given in Section 4 is superfluous here; omission of this
condition leads to the notion of a ‘“deformation retract in the weak sense.” For
spaces which are sufficiently ‘“nice,” it can be proved that the two notions agree.)

Theorem 8.3 If f:X — Y is a homotopy equivalence, then fx :
(X, z) — =(Y, f(x)) is an isomorphism for any r € X.

PROOF: Because gf ~identity : X — X, we obtain the following
diagram (which is commutative by Theorem 8.2):
(X, 2) 5 x(¥, f())
l O

(X, gf(@))

“
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Here u is an isomorphism induced by a certain path from z to gf(x).
Therefore, we conclude fx is a monomorphism, and g« is an epimorphism.

If we apply the same argument to the homotopy fg ~ identity :
Y — Y, we obtain the following commutative diagram:

R ONS

(X, gf(z)) — (Y, fof(z))

Therefore, we conclude g4 is a monomorphism. Because gs is both an
epimorphism and a monomorphism, it is an isomorphism. Because

gufr = u

and both g+ and w are isomorphisms, we conclude that fx is also an
isomorphism. Q.E.D.

This theorem will be used as an aid in the determination of the
fundamental group of certain spaces, and as a method of proving that
certain spaces are not of the same homotopy type (and hence are not
homeomorphic).

Exercise

8.2 Assume that G, u, and e satisfy the hypotheses of Exercise 7.5. Use
Lemma 8.1 to prove directly that for any elements a, 8 € 7 (G, ¢), aBa™187! = 1.
(aINT: Choose D to be a square, and choose a map of B into G which represents
aBa~1B71. Use the existence of u to define the required extension.) Deduce that
m(G, e) is abelian.

NOTES

The fundamental group was introduced by the great French mathematician Henri
Poincaré in 1895 (‘‘Analysis Situs.” J. Ecole Polytechn., 1, 1895, pp. 1-121). The
notion of two spaces being of the same homotopy type was introduced by Witold
Hurewicz in a series of four papers, in 1935-36, which appeared in the Proceedings
of the Konminklijke Nederlandse Akademie van Wetenschapen. In these papers,
Hurewicz also introduced higher dimensional analogs of the fundamental group,
called homotopy groups. These ideas of Hurewicz have played a significant role in
algebraic topology since 1935.

The reader who is interested in the proof of existence theorems in analysis by
the use of fixed-point theorems is referred to the following book by Jane Cronin:
Mathematical Surveys. No. 11, Fized Points and Topological Degree in Non-
linear Analysis. Providence: American Mathematical Society, 1964.
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CHAPTER THREE

Free Groups and
Free Products of Groups

1 Introduction

In the preceding chapters we have introduced the fundamental group
of a space and actually determined its structure in some of the simplest
cases. In more complicated cases we need a larger vocabulary and a
greater knowledge of group theory to describe its structure and actually
to make use of its properties. The object of this chapter is to supply this
need. We first discuss the case of abelian groups, because this case is
simpler and more closely related to the student’s previous experience.
Then we discuss the general case of not necessarily abelian groups. Here
the results are entirely analogous to the abelian case, but the possibilities
are more varied and less intuitive.

The three main group theoretic concepts introduced in this chapter
are the following: free group, free product of groups, and presentation
of a group by generators and relations. These concepts will be used
throughout the rest of this book. The definition of a free group ora free
product of groups involves a mathematical concept of wide application,
the so-called ‘‘universal mapping problem,” which is also a basic concept
in Chapter IV.

2 The weak product of abelian groups

Possibly the student is already familiar with the concept of product, or
direct product, or cartesian product, of two groups; in any case the defini-
tion is very simple, and we repeat it here. Let G, and G be groups. Their
product, denoted by G; X G, is the set of all ordered pairs (g1, g2), 91 € G,
g2 € G5, with multiplication defined componentwise according to the
following rule:

(g3, 92) (g5, g2) = (9193, g2g2)-
85
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The verification that G, X G is actually a group is a simple routine
madtter.

For any positive integer n, we may define in a similar way the product
of n groups, Gy, ..., Gn; it is denoted by G; X G2 X -+ X G, or

n
II G..
i=1
In fact, we may even define in this way the product of an infinite sequence
of groups G4, Gy, G, ..., denoted by

II G.

i=1
In each case, the underlying set is the cartesian product of the underlying
sets of the groups involved, and the multiplication is defined component-
wise. At this stage, the reader will probably recall that in set theory the
cartesian product of any (nonempty) collection of sets is well defined; we
need not confine ourselves to the case of a countable collection of sets. In
a similar way, we can define the product of any (nonempty) collection of
groups {G;:7 € I}, where I denotes some index set, countable or not
(here I does not denote the unit interval). First we form the set-theoretic
product, and then we define multiplication componentwise: For any
elements

g, g’ € H Gi:
ier

and any index ¢ € I, the ¢th component of the product gg’ is given by
the formula

(99")i = (g:)(g7)-

In words, the 7th component of the product is the product of the 7th
components of the factors.
Let {G; : 7 € I'} be any collection of groups, and let

G=1II G
el
be their product.

Definition The weak product' of the collection {G;:7 € I} is the
subgroup of their product G consisting of all elements g € G such that
g: is the identity element of G; for all except a finite number of indices 1.

1 When each group @; is abelian and the group operation is addition, it is customary
to call the weak product the ‘‘direct sum.” In this definition, we do not require that
any two groups in the collection {G;} be nonisomorphic. In fact, it may even occur
that all of the groups of the collection are isomorphic to some given group.
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Obviously, if {G;:7 € I} is a finite collection of groups, then the
product and weak product are the same.

If G denotes either the product or weak product of the collection
{G: : © € I}, then, for each index ¢ € I, there is a natural monomorphism
@i : G;— G defined by the following rule: For any element r € G; and
any index j € I,

z if j =1,
(pix); = o
1 if j # 1.
In the case where each G; is an abelian group, the following theorem

gives an important characterization of their weak product G and the
monomorphisms ¢;.

Theorem 2.1 If {G::7 € I} is a collection of abelian groups and G
1s their weak product, then for any abelian group A and any collection of
homomorphisms

vi:Gi— A, t1el,

there exists a unique homomorphism f : G — A such that for any © € I the
following diagram vs commutative:

PROOF: Given the y,’s, define f by the following rule: For any z € G,
f(x) will be the product of the elements y:(x;) for all 7 € I. Because
z; = 1 for all except a finite number of indices 7, this product is really a
finite product; and because all the groups involved are abelian, the order
of multiplication is immaterial. Thus, f(z) is well defined, and it is readily
verified that f is a homomorphism, which renders the given diagram
commutative. It is easy to see that f is the unique homomorphism having
this property. Q.E.D.

Our next proposition states that this theorem actually characterizes
the weak product of abelian groups.

Proposition 2.2 Let {Gi}, G, and ¢; :G; — G be as in Theorem 2.1; let
G’ be any abelian group and let ¢, : G; — G’ be any collection of homomor-
phisms such that the conclusion of Theorem 2.1 holds with G' and ¢:~ sub-
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stituted for G and ¢, respectively. Then, there exists a unique isomorphism
h : G — G such that the following diagram is commutative for any i € I:

G
V/
G.’ h .
~L
prROOF: The existence of a homomorphism h : G — G’ making the
required diagram commutative is assured by Theorem 2.1. Because
Theorem 2.1 also applies to @’ and the ¢, (by hypothesis), there exists a

unique homomorphism k : G' —» G such that the following diagram is
commutative for any index 7 € I':

GI

From these facts, we readily conclude that the following two diagrams
are commutative for any 7 € I':

(¢ G
ot i’
G.-/ kh G; hk
Nk N4

However, these two diagrams would also be commutative if we replaced
kh by the identity map G — @G in the first, and hk by the identity map
@' — G’ in the second. We now invoke the uniqueness statement in the
conclusion of Theorem 2.1 to conclude that kh and hk are both identity
maps. Hence, & and k are inverse isomorphisms of zach other. Q.E.D.

The student should reflect on the significance of the characterization
of the weak product given by Theorem 2.1. We may consider any other
abelian group A with definite homomorphisms ¢; : G; — A as a candidate
for some kind of a ‘“product’’ of the abelian groups G;; then this theorem
asserts that the weak product G is the “freest’’ among all such candidates,
in the sense that there exists a homomorphism of G into A commuting
with ¢; and ¢; for all .. Here we use the word “freest” in the sense of
“fewest possible relations imposed,” and the general philosophy is that
if certain relations hold for the group @, they also hold for any homo-
morphic image of G; of course, additional relations may hold for the
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homomorphic image. This same philosophy also holds for other kinds of
algebraic objects, such as rings, etec.

As we shall see, the argument used to prove Proposition 2.2 applies
almost verbatim to many other cases.

Since the weak product @ of a collection {G:} of abelian groups is
completely characterized by the properties of the monomorphisms
@i : G; — G stated in Theorem 2.1, we could just as well ignore the fact
that G is a subgroup of the product

II G;

i€r
and focus our attention instead on the group G and the homomorphisms
@i. Furthermore, because each ¢; is a monomorphism, we can identify G;
with its image in G under ¢;, and consider ¢; as an inclusion map, if this
is convenient. In this case, we say that G is the weak product of the
subgroups G;, it being understood that each ¢; is an inclusion map.

8 Free abelian groups

We recall that, if S is a subset of a group G, then S is said to generate G
in case every element of G can be written as a product of positive and
negative powers of elements of S. (An equivalent condition is the follow-
ing: S is not contained in any proper subgroup of G.) For example, if G
is a cyclic group of order =,

G={z,z%z3 ...,2" = 1},

then the set S = {z} generates G.
If the set S generates the group G, certain products of elements of S
may be the identity element of G. For example,

(a) If z € 8§, then zz~1 = 1.
(b) If G is a cyclic group of order n generated by {z}, then z» = 1.

Any such product of elements of S that is equal to the identity is often
called a relation between the elements of the generating set S. Roughly
speaking, we may distinguish between two types of relations between
generators: trivial relations, as in example (a), which are a direct conse-
quence of the axioms for a group and thus hold no matter what the choice
of G and 8, and nonirivial relations, such as example (b), which are not a
consequence of the axioms for a group, but depend on the particular
choice of G and 8.
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These notions lead naturally to the following definition: Let S be a
set of generators for the group G. We say that G is freely generated by S
or a free group on S in case there are no nontrivial relations between the
elements of S. For example, if G is an infinite cyclic group consisting of
all positive and negative powers of the element z, then G is a free group
on the set S = {z}.

These notions also lead to the idea that we can completely prescribe
a group by listing the elements of a generating set S and listing the non-
trivial relations between them.

The ideas described in the preceding paragraphs have been current
among group theorists for a long time. Unfortunately, when stated
as above, these ideas are lacking in mathematical precision. For example,
what precisely is a nontrivial relation? It cannot be an element of G,
because considered as elements of G, all relations give the identity. Also,
under what conditions are two relations to be considered the same? For
example, in a cyclic group of order n, are the relations

=1
ztiz—l =1

to be considered the same or different?

We should emphasize that it was not an easy matter for mathemati-
cians to find an entirely satisfactory and precise way of treating these
questions. Fortunately, such a treatment has been found in recent years.
This treatment has the advantage that it applies not only to groups, but
also to other algebraic structures such as rings, and even to many situa-
tions in other branches of mathematics. As so often happens in mathe-
matics, the method of definition finally chosen seems rather roundabout
and nonobvious.? This method of definition depends on the following
rather simple observations:

(1) Let S be a set of generators for G, and let f : G — G’ be an epi-
morphism; i.e., G’ is a homomorphic image of G. Then, the set f(S) is a
set of generators for G’. Moreover, any relation which holds between the
elements of S also holds between the elements of f(S). Thus, the group G’
satisfies at least as many relations as or more relations than G.

(2) Let S be a set of generators for G, and let f : @ — G’ be an arbi-
trary homomorphism. Then, f is completely determined by its restriction
to the set S. However, we do not assert that any map g : S — G’ can be
extended to a homomorphism f:G — G’ (the student should give a

2 An analogous situation occurs in the problem of precisely defining limits in the
calculus. The € — & technique which is standard today seems rather far removed
from our intuitive notion of a variable quantity approaching a limit.
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counter-example). The intuitive reason for this is clear: Given a map
g : S — @ there may be nontrivial relations between the elements of S
which do not hold between the elements of g(S).

We shall now give a precise definition of a free abelian group on a given
set S; in Section 5 we shall discuss the case of general (i.e., not necessarily
abelian) groups. The case of abelian groups is discussed first because it
is simpler.

Definition Let S be an arbitrary set. A free abelian group on the
set S is an abelian group F together with a function ¢ : 8 — F such that
the following condition holds: For any abelian group A and any function
¢ :8— A, there exists a unique homomorphism f:F — A such that
the following diagram is commutative:

First, we show that this definition does indeed .characterize free
abelian groups on a given set S.

Proposition 3.1 Let F and F' be free abelian groups on the set S with
respect to the functions ¢ :S— F and ¢’ : S— F’, respéctively. Then,
there exists a unique tsomorphism h : F — F' such that the following diagram

18 commutative:
i
S A.

N

PROOF: The proof is completely analogous to that of Proposition 2.2,
and may be left to the reader.

F

Let us emphasize that all we have done so far is make a definition;
given the set S, it is not at all clear that there exists a free abelian group F
on the set S. Moreover, even if F exists, it is conceivable that the map ¢
need not be one-to-one, or that F may not be generated by the subset
#(S) in the sense of the definition at the beginning of this section. We
. shall clarify all these points by actually proving the existence of F and
elucidating its structure completely.
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Exercise

3.1 Prove directly from the definition that ¢(S) generates F. [HINT: Assume
not; consider the subgroup F’ generated by ¢(S).]

As a first step, we consider the following situation. Assume that
{S;:7 €I} is a family of nonempty subsets of S, which are pairwise
disjoint and such that

= uU S.
i€l
For each index 7 € I, let F; be a free abelian group on the set S; with
respect to a function ¢; : S; — F;. Let F denote the weak product of the
groups F; for all ¢ € I, and let #; : F; — F denote the natural monomor-
phism. Since the S; are pairwise disjoint, we can define a function
¢ : S — F by the rule

(4 | Si = nigi.

Proposition 3.2 Under the above hypotheses, F is a free abelian group
on the set S with respect to the function ¢ : S — F.

Roughly speaking, this proposition means that the weak product of
any collection of free abelian groups is a free abelian group.

PROOF: Let A be an abelian group and let ¢ : S — A be a function.
We have to prove the existence of a unique homomorphism f: F — 4
such that ¢y = fo. For each index 7, let ¢; : S; — A denote the restriction
of ¢ to the subset S;. Because F; is a free abelian group on the set S;,
there exists a unique homomorphism f; : F; — A such that the following
diagram is commutative:

F;

v B
N

We now invoke the fundamental property of the weak product of groups
contained in Theorem 2.1 to conclude that there exists a unique homo-
morphism f: F— A such that the following diagram is commutative
for any index 7:

(3.3-1)

A

F; 1 /- (3.3-2)
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We can put these two commutative diagrams together into a single
diagram as follows:

SRR

lf/ . (3.3-3)

Because ¢ | S; = ni¢i;, we conclude that the following diagram is com-

mutative for each index 7.
@il Si
Si—F

w\‘ / . (3.3-4)

A

Finally, because ¢; = ¢ | S; for each 7 and S = U S;, we conclude that
¥ = fo, as required.

To prove uniqueness, let f be any homomorphism F — A having the
required property. Define f; : F; — A by f; = fn;,. With this definition, it
follows that diagram (3.3-1) is commutative for each index 7; for,

Jioi = foioi = fle|8:) = (W |8)
= ¥

Because F; is the free abelian group on S; (with respect to ¢;), it follows
that each f; is unique. Then because (3.3-2) is commutative for each 7,
and F is the weak product of the F;, it follows that f is unique.  Q.E.D.

We now apply this theorem as follows: Suppose that
S = {z::7€l}.

For each index 7, let S; denote the subset {r;} having only one element,

and let F; be an infinite cyclic group consisting of all positive and nega-
tive powers of the element z;:

F; = {x}':nell.

Let ¢: : S; — F; denote the inclusion map, i.e., gi(z;) = z}. It is clear
that F; is a free abelian group on the set S;. Therefore, all the hypotheses
of Proposition 3.2 are satisfied. Thus, we conclude that a free abelian
group on any set S is a weak product of a collection of infinite cyclic
groups, with the cardinal number of the collection equal to that of S.
Because F is the weak product of the F;, any element g € F is of the
following form: For any index ¢, the ¢th component g; = z} where each
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n; € Z and n; = 0 for all but a finite number of indices 7. Moreover, the
function ¢ is defined by the following rule: For any index j € I,

r ifi=3j
(ez)i =1 o ... .
z; if 7 5 j.
From this formula, it is clear that ¢ is a one-to-one map.

As ¢ is a one-to-one map, if we wish, we can identify each z; € S with
its image ¢(x:;) € F. Then S becomes a subset of F, and it is clear that
we can express each element g # 1 of F uniquely in the following form:

g = Myt ... x?: (33_5)

[{Rad {1

where the indices 7), 72, ..., % are all distinct, and n,, n,, ..., n are
nonzero integers. This expression for the element g is unique except for
the order of the factors. Moreover, each such product of the z.’s repre-
sents a unique element g ¥ 1 of F. From this it is clear that F' is gen-
erated by the subset S = ¢(S).

This identification of S and ¢(8) is quite customary in the discussion
of free abelian groups. When this is done, ¢ : S — F becomes an inclusion
map, and often it is not even mentioned in the discussion.

An alternative approach to the topic of free abelian groups would be
to define an abelian group F to be free on the subset {z;:7 € I} C F if
every element g # 1 of F admits an expression of the form (3.3-5), which
is unique up to order of the factors. Actually, this procedure would be
somewhat quicker and easier than the one we have chosen. However,
it would suffer from the disadvantage that it could not be generalized
to non-abelian groups and other situations which will actually be our
main concern.

One reason for the importance of free abelian groups is the following
proposition.

Proposition 3.3 Any abelian group is the homomorphic image of a
free abelian group; i.e., given any abelian group A, there exists a free abelian
group F and an epimorphism f . F — A.

PROOF: The proof is very simple. Let S C A be a set of generators
for A (e.g., we could take S = A), and let F be a free group on the set S
with respect to a function ¢ : S — F. Let ¢ : S — A denote the inclusion
map. By definition, there exists a homomorphism f: F — A such that
fe = ¢. It is clear that f must be an epimorphism, since S was chosen
to be a set of generators for A. Q.E.D.

This proposition enables us to attach a precise meaning to the notion
“nontrivial relation between the generators S,” mentioned earlier. Let
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A, 8, F, and f have the meaning just described; then we define any
element r # 1 of kernel f to be a nontrivial relation between the set of
generators S. If {r; :7 € I} is any collection of such relations, and r is
an element of the subgroup of F generated by the r.’s, then the relation r
is said to be a consequence of the relations r;. This implies that r can be
expressed as a product of the r’s and their inverses. If the collection
{ri :7 € I} generates the kernel of f, then the group A is completely
determined up to isomorphism by the set of generators S and the set of
relations {r;:7 € I}; for, A is isomorphic to the quotient group of F
modulo the subgroup generated by the r/s.

It is clear that, if S and S’ are sets having the same cardinal number,
and F and F’ are free abelian groups on § and S’, respectively, then F
and F’ are isomorphic. We shall now show that the converse of this
statement is true, at least for the case of finite sets. For this purpose,
we make the following definition. If G is any group, and = is any positive
integer, then G* denotes the subgroup of G generated by the set

{g : g €G}.

If the group G is abelian, then the set {g" : g € G} is actually already a
subgroup.

Lemma 3.4 Let F be a free abelian group on a set consisting of k ele-
ments. Then, the quotient group F/F™ is a finite group of order nk.

PROOF: We leave the proof to the reader; it is not difficult if one
makes use of the explicit structure of free abelian groups described above.

Corollary 3.5 Let S and S’ be finite sets whose cardinals are not equal,
and let F and F’' be free abelian groups on S and S', respectively. Then, F
and F' are nonisomorphic.

PROOF: The proof is by contradiction. Any isomorphism between
F and F’ would induce an isomorphism between the quotient groups
F/F™ and F'/F’", which is impossible by the lemma.

Exercise

3.2 Prove that the statement of this corollary is still true if S is a finite set and
8’ is an infinite set.

Let F be a free abelian group on a set S. The cardinal number of the
set S is called the rank of F. We have proved that two free abelian groups
are isomorphic if and only if they have the same rank, at least in the case
where one of them has finite rank.
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We shall conclude this section on abelian groups with a brief discus-
sion of the structure of finitely generated abelian groups. Let A be an
abelian group; the set of all elements of A which have finite order is
readily seen to be a subgroup, called the torsion subgroup of A. When the
torsion subgroup consists of the element 1 alone, 4 is called a torsion-free
abelian group. On the other hand, if every element of A has finite order,
then A4 is called a torsion group. If we denote the torsion subgroup by
T, then the quotient group A/T is obviously torsion free. It is clear
that,if A and A’ are isomorphic, then so are their torsion subgroups, T and
T’, and their torsion-free quotient groups, A/T and A’/T’'. However, the
converse is not true in general; we cannot conclude that A is isomorphic
to A’if T~ T and A/T = A’/T'. However, for abelian groups which
are generated by a finite subset we have the following theorem which
describes their structure completely:

Theorem 3.6 (a) Let A be a finitely generated abelian group and let
T be its torsion subgroup. Then, T and A/T are also finitely generated,
and A s isomorphic to the direct product T X A/T. Hence, the structure
of A is completely determined by its torsion subgroup T and its torsion-free
quotient group A/T. (b) Every finitely generated torsion-free abelian group
is a free abelian group of finite rank. (c) Every finitely generated torsion
abelian group T is isomorphic to a product Cy X Ca X -+ X Cn, where
each C; is a finite cyclic group of order &; such that &; vs a divisor of iy, for
t=1,2 ..., n — 1. Moreover, the iniegers €,, €2, ..., €. are uniquely
determined by the torsion group T and they completely determine uts structure.

The numbers €, ..., €, are called the torsion coefficients of T, or more
generally, if T is the torsion subgroup of A, they are called the torsion
coefficients of A. Similarly, the rank of the free group A/T is called the
rank of A. With this terminology, we can summarize Theorem 3.6 by
stating that the rank and torsion coefficients are a complete set of invari-
ants of a finitely generated abelian group. Theorem 3.6 asserts that every
finitely generated abelian group is a direct product of cyclic groups, but
it also asserts much more. Note that a finitely generated torsion group
is actually of finite order.

A word of explanation about the various isomorphisms mentioned in
Theorem 3.6 seems in order here. These isomorphisms are not natural,
or uniquely determined in any way. In each case, there are usually many
different choices for the isomorphism in question and one choice is as
good as another.

Theorem 3.7 Let F be a free abelian group on a set S, and let F' be a
subgroup of F. Then, F’ is a free abelian group on a certain set S’, and the
cardinal of S’ is less than or equal to that of S.
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Although the proofs of Theorems 3.6 and 3.7 are not difficult, we
shall not give them here, because they properly belong in the study of
linear algebra and modules over a principal ideal domain.

Exercises

3.3 Give an example of a torsion-free abelian group which is not free.

3.4 Let A be an abelian group which is a direct product of two cyclic groups
of orders 12 and 18, respectively. What are the torsion coefficients of A? (Note
that the torsion coefficients are required to satisfy a divisibility condition.)

3.5 Give an example to show that in Theorem 3.7 the subset S C F and the
subgroup F’ C F may be disjoint, even in the case where the cardinals of S and S’
are equal.

4 Free products of groups

The free product of a collection of groups is the exact analog for arbitrary
(i.e., not necessarily abelian) groups of the weak product for abelian
groups. (It should be emphasized that any groups considered in this
section may be either abelian or non-abelian, unless the contrary is
explicitly stated.)

Definition Let {G; :7 € I} be a collection of groups, and assume
there is given for each index ¢ a homomorphism ¢; of G; into a fixed
group G. We say that G is the free product of the groups G; (with respect
to the homomorphisms ¢;) if and only if the following condition holds:
For any group H and any homomorphisms

W,’tG.‘—‘)H, 'iEI,

there exists a unique homomorphism f : G — H such that for any ¢ € I,
the following diagram is commutative:

First, we have the following uniqueness proposition about free
products:

Proposition 4.1 Assume that G and G’ are free products of a collection
{Gi:1 €I} of groups (with respect to homomorphisms ¢, :G;— G and
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@i : G;— G, respectively). Then, there exists a wunique isomorphism
h : G — G’ such that the following diagram is commutative for any i € I :

VG

G A

SN

PROOF: The proof is almost word for word that of Proposition 2.2.

Although we have defined free products of groups and proved their
uniqueness, it still remains to prove that they always exist. We shall
also show that each of the homomorphisms ¢; occurring in the definition
is a monomorphism, that the free product is generated by the union of
the images ¢:(G;), and get more detailed insight into the algebraic struc-
ture of a free product.

Theorem 4.2 Given any collection {G; :i € I} of groups, their free
product exists.

PROOF: We define a word in the Gy’s to be a finite sequence (z1, 2,
..., Z,) where each z; belongs to one of the groups G;, any two successive
terms in the sequence belong to different groups, and no term s the identity
element of any G;. The integer n is the length of the word. We also include
the empty word, i.e., the unique word of length 0. Let W denote the
set of all such words.

For each index 7, we now define left operations of the group G; on
the set W (see Appendix B). Let ¢ € G; and (z,, ..., z,) € W; we must
define g(z,, ..., z.).

Case 1: z, & Gi. Then, if g # 1,

g(xly <oy xn) = (g, L1y ooy x").
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