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PREFACE

The present volume is the second in the author’s series of
three dealing with abstract algebra. For an understanding of
this volume a certain familiarity with the basic concepts treated
in Volume I: groups, rings, fields, homomorphisms, is presup-
posed. However, we have tried to make this account of linear
algebra independent of a detailed knowledge of our first volume.
References to specific results are given occasionally but some of
the fundamental concepts needed have been treated again. In
short, it is hoped that this volume can be read with complete
understanding by any student who is mathematically sufficiently
mature and who has a familiarity with the standard notions of
modern algebra.

Our point of view in the present volume is basically the abstract
conceptual one. However, from time to time we have deviated
somewhat from this. Occasionally formal calculational methods
yield sharper results. Moreover, the results of linear algebra are
not an end in themselves but are essential tools for use in other
branches of mathematics and its applications. It is therefore
useful to have at hand methods which are constructive and which
can be applied in numerical problems. These methods sometimes
necessitate a somewhat lengthier discussion but we have felt that
their presentation is justified on the grounds indicated. A stu-
dent well versed in abstract algebra will undoubtedly observe
short cuts. Some of these have been indicated in footnotes.

We have included a large number of exercises in the text.
Many of these are simple numerical illustrations of the theory.
Others should be difficult enough to test the better students. At
any rate a diligent study of these is essential for a thorough un-

derstanding of the text.
vii
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Chapter

FINITE DIMENSIONAL VECTOR SPACES

In three-dimensional analytic geometry, vectors are defined geo-
metrically. The definition need not be recalled here. The im-
portant fact from the algebraic point of view is that a vector v
is completely determined by its three coordinates (£, 4, ¢) (rela-
tive to a definite coordinate system). It is customary to indi-
cate this by writing v = (&, 7, {), meaning thereby that v is the
vector whose x-, y-, and z-coordinates are, respectively, £, », and
¢. Conversely, any ordered triple of real numbers (&, 9, {) de-
termines a definite vector. Thus there is a 1-1 correspondence
between vectors in 3-space and ordered triples of real numbers.

There are three fundamental operations on vectors in geometry:
addition of vectors, multiplication of vectors by scalars (numbers)
and the scalar product of vectors. Again, we need not recall the
geometric definitions of these compositions. It will suffice for our
purposes to describe the algebraic processes on the triples that
correspond to these geometric operations. If v = (&, 9, {) and
v = (&, v, ¢), then the sum

vt =E+ 8+, 0+
The product pv of the vector v by the real number p is the vector
pv = (pt, p, pY)
and the scalar product (v, v') of v and v’ is the real number
(0, V) = & +m' + ¢¢".
A substantial part-of analytic geometry—the theory of linear

dependence and of linear transformations—depends only on the
1



2 FINITE DIMENSIONAL VECTOR SPACES

first two of these concepts. It is this part (in a generalized form)
which constitutes the main topic of discussion in these Lectures.
The concept of scalar product is a metric one, and this will be
relegated to a relatively minor role in our discussion.

The study of vectors relative to addition and multiplication
by numbers can be generalized in two directions. First, it is not
necessary to restrict oneself to the consideration of triples; in-
stead, one may consider n-tuples for any positive integer 7.
Second, it is not necessary to assume that the coordinates £, 7,

are real numbers. To insure the validity of the theory of
linear dependence we need suppose only that it is possible to
perform rational operations. Thus any field can be used in place
of the field of real numbers. It is fairly easy to go one step fur-
ther, namely, to drop the assumption of commutativity of the
basic number system.

We therefore begin our discussion with a given division ring A.
For example, A may be taken to be any one of the following sys-
tems: 1) the field of real numbers, 2) the field of complex num-
bers, 3) the field of rational numbers, 4) the field of residues
modulo p, or 5) the division ring of real quaternions.

Let 7 be a fixed positive integer and let A™ denote the to-
tality of n-tuples (¢1, &2, - - -, £.) with the & in A. We call these
n-tuples vectors, and we call A™ the vector space of n-tuples over
A. If y = (g1, 12, * -+, 7a), we regard x = y if and only if & = #;
for i =1,2, ---, n. Following the pattern of the three-dimen-
sional real case, we introduce two compositions in A™: addition
of vectors and multiplication of vectors by elements of A. First,
if x and y are arbitrary vectors, we define their sum x + y to be
the vector

x4y =(E F+ 1, E+ 02, En o)

As regards to multiplication by elements of A there are two possi-
bilities: Jeft multiplication defined by

px = (pk1, pkay -+, pkn)

and right multiplication defined by

xXp = (ElP) §a0y " 0 Enp)
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Either of these can be used. Parallel theories will result from the
two choices. In the sequel we give preference to left multiplica-
tion. It goes without saying that all of our results may be trans-
ferred to results on right multiplication.

The first eight chapters of this volume will be devoted to the
study of the systems A relative to the compositions we have
just defined. The treatment which we shall give will be an axio-
matic one in the sense that our results will all be derived from a
list of simple properties of the systems A®™ that will serve as
axioms. These axioms define the concept of a finite dimensional
(abstract) vector space and the systems A™ are instances of such
spaces. Moreover, as we shall see, any other instance of a finite
dimensional vector space is essentially equivalent to one of the
systems A,

Thus the shift to the axiomatic point of view is not motivated
by the desire to gain generality. Its purposes are rather to clar-
ify the discussion by focusing attention on the essential proper-
ties of our systems, and to make it easier to apply the results to
other concrete instances. Finally, the broadening of the point
of view leads naturally to the consideration of other, more gen-
eral, concepts which will be useful in studying vector spaces.
The most important of these is the concept of a module which
will be our main tool in the theory of a single linear transforma-
tion (Chapter III). In order to prepare the ground for this ap-
plication we shall consider this concept from the beginning of our
discussion.

The present chapter will be devoted to laying the foundations
of the theory of vector spaces. The principal concepts that we
shall consider are those of basis, linear dependence, subspace,
factor space and the lattice of subspaces.

1. Abstract vector spaces. We now list the properties of the
compositions in A™ from which the whole theory of these sys-
tems will be derived. These are as follows:

Al 4y +z=x4+ (O +2).
A2 x+y=y+x

A3 There exists an element 0 such that ¥ + 0 = « for all «.
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A4 For any vector ¥ there exists a vector —x such that x +

(—x) = 0.
S1 alx +y) = ax + ay.
S2 (@ + B)x = ax + Bx.
S3 (aB)x = a(Bx).
S4 1y = x.
F  There exist a finite number of vectors ey, €3, -+, ¢, such

that every vector can be written in one and only one way

in the form £1e; + &2e0 +- - -+ £,0,.

The verifications of Al, A2, S1-S4 are immediate. We can
prove A3 by observing that (0, 0, -- -, 0) has the required prop-
erty and A4 by noting that, if ¥ = (&, ---, £,.), then we can
take —x = (=&, -+, —£.). To prove F we choose for ¢,

i
(1) €¢=(0,0,"',0,1,0,'-',0), i=1)2>"'>7l'

Then &e; has £ in its ith place, 0’s elsewhere. Hence Y £ =
1

(&1, &, -+, &,). Hence if x = (&, &, -+, £,), then x can be
written as the “linear combination” 2£.e; of the vectors ¢;. Also
our relation shows that, if Z&e; = Zn.e;, then (&, &, -+, &,) =
(M1, M2, +**, M,) so that & = g for i = 1,2, -+, n. This is what
is meant by the uniqueness assertion in F.

The properties Al-A4 state that A™ is a commutative group
under the composition of addition. The properties S1-S4 are
properties of the multiplication by elements of A and relations
between this composition and the addition composition. Prop-
erty F is the fundamental finiteness condition.

We shall now use these properties to define an aébstract vector
space. By this we mean a system consisting of 1) a commutative
group R (composition written as +), 2) a division ring A, 3) a
function defined for all the pairs (p, %), p in A, ¥ in R, having values
px in R such that S1-S4 hold. In analogy with the geometric
case of n-tuples we call the elements of R vectors and the elements
of A scalars. In our discussion the emphasis will usually be placed
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on R. For this reason we shall also refer to ® somewhat inex-
actly as a ““vector space over the division ring A.” (Strictly
speaking R is only the group part of the vector space.) If F holds
in addition to the other assumptions, then we say that R is finite
dimensional, or that R possesses a finite basis over A.

The system consisting of A, A, and the multiplication px de-
fined above is an example of a finite dimensional vector space.
We shall describe next a situation in the theory of rings which
gives rise to vector spaces. Let ® be an arbitrary ring with an
identity element 1 and suppose that ® contains a division sub-
ring A that contains 1. For the product px, p in A, and ¥ in R
we take the ring product px. Then S1-S3 are consequences of
the distributive and associative laws of multiplication, and S4
holds since the identity element of A is the identity of ®. Hence
the additive group R, the division ring A and the multiplication
px constitute a vector space. This space may or may not be
finite dimensional. For example, if R is the field of complex
numbers and A is the subfield of real numbers, then % is finite
dimensional; for any complex number can be written in one and
only one way as £ + n\/—l in terms of the “vectors” 1, V —1.
Another example of this type is % = A[A], the polynomial ring
in the transcendental element (indeterminate) N with coefficients
in the division ring A. We shall see that this vector space is not
finite dimensional (see Exercise 1, p. 13). Similarly we can re-
gard the polynomial ring A[\;, Az, - - -, N\,] where the \; are alge-
braically independent (independent indeterminates) as a vector
space over A,

Other examples of vector spaces can be obtained as subspaces
of the spaces defined thus far. Let % be any vector space over
A and let & be a subset of R that is a subgroup and that 1s closed
under multiplication by elements of A. By this we mean that if
Y €@ and p is arbitrary in A then py € &. Then it is clear that
the trio consisting of &, A and the multiplication py is a vector
space; for, since S1-S4 hold in R, it is obvious that they hold
also in the subset ©. We call this a subspace of the given vector
space, and also we shall call & a subspace of ®. As an example,
let ® = A[\] and let & be the subset of polynomials of degree
<n. It is immediate that & is a subspace. Moreover, it is
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finite dimensional since any polynomial of degree <# can be ex-
pressed in one and only one way as a linear combination of the
polynomials 1, A, - -, A* 7L,

EXERCISE

1. Show that the totality & of homogeneous quadratic polynomials
2o aiihi\j, o in A, is a finite dimensional subspace of A[Ay, As].

=

2. Right vector spaces. As we have pointed out at the begin-
ning the system A of n-tuples can also be studied relative to
addition and to right multiplication by scalars. This leads us to
define the concept of a right vector space. By this we mean a
system consisting of a commutative group %', a division ring A
and a function of pairs (p, x"), pin A, x" in R’, having values x'p
in R’ and satisfying:

S’1 & 4+ y)a=5a+ ya.

N ¥(a+ B) = x'a + x'B.

S’3 %' (af) = (¥’ a)B.

S’4 %'l = &' for all ¥" in R".

Obviously the theory based on this definition will parallel that
of left vector spaces. It should be noted, however, that a right
space over A cannot be regarded as a left space over A if this
division ring is not commutative. For if we write ax’ for xa,
then we have by S'3

(aB)x’ = x'(afB) = (¥'a)B = Blax’).
Hence S3: (Ba)x’ = B(ax’) holds only if
[(aB) — (Ba)]x" = 0

for all ’. This together with S4 implies that o8 = Ba for all «, 8.

On the other hand, let A’ be a division ring anti-isomorphic to
A and let & — o' be any anti-isomorphism of A onto A’. Then
if %’ is a right vector space over A, ®’ may be considered a left
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vector space over A’. This can be done by defining a’x" to be
x'a. Then

(/8% = (Ba)'s" = &'(Ba) = (¥'B)a = (B'%")a = o'(B'%"),

so that S3 is now satisfied. The verification of the other rules is
also immediate.

3. o-modules. Before embarking on the systematic study of
finite dimensional vector spaces we shall consider briefly the gen-
eralization to modules which will be very useful later on. This
generalization is obtained by replacing in our definition the divi-
sion ring A by any ring o that has an identity. Thus we define a
(left) o-module to be a system consisting of a commutative group
%, a ring o with an identity and a function of pairs (p, ¥), p in o
and x in R with values px in R satisfying S1-S4.* It is evident
from our definitions that a vector space 1s simply a A-module
where A is a division ring.

Besides the special case of a vector space we note the following
important instance of an o-module: Let % be any commutative
group written additively and let o be the ring of integers. If
x e R and « &0, we define

x+x4+--+x atimesif a>0
ax =10 if a=0
—(x+x+---+x), —atimesif a<O.

Then S1-S4 are the well-known laws of multiples in ®.

We note also that any ring with an identity o can be regarded
as an o-module. As the group part & we take the additive group
of 0 and we define ax for 2 in 0 and x in ® to be the ring product.
Properties S1-54 are immediate consequences of the associative,
distributive and identity laws for multiplication.

As in the case of vector spaces a subset & of a module % de-
termines a submodule if & is a subgroup of R that is closed rela-
tive to the multiplication by arbitrary elements of 0. Now let

* This definition is a slight departure from the usual one in which 0 need not have an
identity and only S1-S3 are assumed. We make this change here since we shall be in-

terested only in rings with identities in this volume. Right 0-modules are obtained in the
obvious way by replacing S1-S4 by §'1-S'4.
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§ = (x,) be an arbitrary subset of % and let [§] denote the to-
tality of sums of the form

) E1%ay + Ea¥ay + 1 T Em¥,

where the £; are arbitrary in o and the x,, are arbitrary in §. We
assert that [§] is a submodule. Clearly [§] is closed under addi-
tion and under multiplication by elements of 0. Also it is easy
to see (Exercise 1, below) that Ox = 0 and (—&)x = —&x hold
in any module, and these imply that [S] contains 0 and the nega-
tive of any element in [S]. Hence [§] is a submodule of . We
note also that [§] contains the elements x, = 1%, of § and that
[8] is contained in every submodule of 9 that contains §. Be-
cause of these properties we shall say that [S] is the submodule
generated by the set S.

If [S] = R, then the set S is said to be a set of generators for
R, IR = [e1, €3 -, ¢,) for some finite set § = (eq, €2, - -, €n),
then we say that R is finitely generated. 1f there exists a set of
generators § such that every x can be written in one and only
one way in the form Z&e,, ¢, in S, then R is called a free module
and the set § is called a dasis. Thus condition F states that a
finite dimensional vector space i1s a free A-module with a finite
basis.

It is easy to construct, for any 7, a free o-module with » base
elements. The construction is the same as that of A™. We let
o™ denote the totality of n-tuples (¢, &, - -, £,) with compo-
nents & in 0. Addition and multiplication by elements of o are
defined as before. If the ¢; are defined by (1), it can be seen as
in the case of A™ that these elements serve as a basis for 0™,

We consider now the fundamental concept of equivalence for
o-modules. Let ® and R be two o-modules defined with respect
to the same ring 0. We shall say that ® and R are o-isomorphic
or simply equivalent if there is a 1-1 correspondence, ¥ — ¥ of
R onto R such that

3) x+y=%+3, ax=adk

Thus ¥ — % is an isomorphism between the groups ® and %

satisfying ax = oF for all « and ». Such a mapping will be called
an o-isomorphism or an equivalénce.
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If x = Zaye;, then by (3) ¥ = Jayes = Jage; = Zaye;. Hence
if the elements ¢; are generators for R, then the corresponding
elements ¢; are generators for ®. If Zeye; = 26,2, then Zaye; =
2B;e.. It follows from this that, if % is a free module with basis
¢i, then R is free with basis ¢;. These remarks illustrate the gen-
eral principle that equivalent modules have the same properties,
and need not be distinguished in our discussion.

Suppose now that ® and R are two free o-modules and sup-
pose that both of these modules have bases of # elements. Let
the basis for R be e, €2, - - -, €, and that for & be &, &, - - -, ..
Then if x is any element of &R, we write ¥ = Z§;¢;, and we asso-
ciate with this element the element ¥ = 2&7; of R. Since the ¢;
and the ¢; are bases, this correspondence is 1-1 of ® onto &.
Moreover, if y = Znqe;, theny = Zné; whilex + y = Z(&; + n.)es
and -

x +y =2+ n)e; = &g, + Znés = X + 3.
Also —
ax = E(a&)gf = aE&Ei = aX.

Hence &% and & are equivalent. This proves the following

Theorem 1. .Iny two free o-modules which have bases of n ele-
ments are equivalent,

In particular we see that any finite dimensional vector space
with a basis of # elements is equivalent to the space A™ of #n-
tuples. This substantiates the assertion made before that the
study of finite dimensional vector spaces is equivalent to the
study of the concrete systems A *

EXERCISES
1. Prove the following rules for any 0-module: 1) a0 = 0, 2) a(—x) = —ax,
3)0x =0,4) (—a)x = —aw.
2. Show that any subset of an 0-module which is closed relative to addition

and to multiplication by elements of 0 is a submodule.
3. If R is a vector space, then ax = 0 only ifa = 0 or x = 0.

4. Linear dependence. From now on, unless otherwise stated,
3t will be a finite dimensional vector space over A with basis ¢y,

* A fuller account of the theory of modules can be found in Chapter VI of Volume I of
these Lectures. However, the present discussion should be adequate for our purposes.
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€2, ***, €q. It 1s easy to see that this basis is not uniquely de-
termined. For example, the set ¢; + ¢z, €2, €3, « - +, ¢, 1s a second
basis and, if @ 5 0, the set aeq, €3, - - -, ¢, 1s also a basis. A fun-
damental theorem we shall prove in the next section is that the
number of vectors in any basis is the same. Hence the number 7,
which we shall call the dimensionality of ® over A, is an invariant.
As a necessary preliminary to the proof of this theorem we in-
vestigate now the fundamental concept of linear dependence of
vectors.

We say that a vector x is /inearly dependent on a set of vectors

S if xe[S]. This is equivalent to saying that x = Y £w,; for
1

suitable £; in A and suitable x; in §. This proves the first of the
following obvious properties of linear dependence: 1) If x is lin-
early dependent on a set §, then x is linearly dependent on a
finite subset of §; 2) & 1s linearly dependent on the set § = (x);
3) if x is linearly dependent on § and T is a set containing &,
then x is linearly dependent on T 4) if x is linearly dependent on
§ and if every %, e § is linearly dependent on the set T, then x is
linearly dependent on T.

The vectors xy, ¥a, -+, ¥, are linearly dependent if there exist
B; not all 0 in A such that 81x; + Baxe + -+ Bwxm = 0. Since
Bx = 0 if and only if either 8 = 0 or x = 0, a set consisting of a
single vector x is linearly dependent if and only if x = 0. If
m > 0 and the x; are linearly dependent, then we can suppose
that, say, 8. # 0. Then

m—1

Xm = =Bt D Bixi = Z(—Bn")Bix;
1

so that x, is linearly dependent on (x;, %3, -+, #n_1). Con-
versely if x, is linearly dependent on (x1, x2, '+, ¥n_1), then
the vectors ¥y, ¥a, -+, ¥, are linearly dependent. Thus a set of
more than one vector is a linearly dependent set if and only if
one of the vectors in the set is linearly dependent on the remain-
ing ones. If r < m and #y, - -+, %, is a dependent set, then so is

X1, +++, ¥ms for if O Bax; = 0, then Y Bx; = 0 if we take 8,41
1 1
== s e ¢ — Bm = O.
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If x4, -+, % are not linearly dependent, then these vectors
are said to be /inearly independent. The last property noted for
dependent sets may also be stated in the following way: Any
non-vacuous subset of a linearly independent set is a linearly in-
dependent set. In particular, every vector in a linearly independ-
ent set must be # 0.

The following property will be used a number of times. Hence
we state it formally as

Lemma 1. If xy, %2, -+, Xn are linearly independent and x1, x2,
ey Xy Xmyy ave linearly dependent, then xmy1 15 linearly depend-
ent on X1, * 'y Xm.

Proof. We have Bix; + Baxe + -+ + Bu¥m + Bmg1¥myr = 0
where some B # 0. If B,y = O, this implies that x1, -+, ¥
are linearly dependent contrary to assumption. Hence 8,41 # 0.
We may therefore solve for x, ., obtaining an expression for it
in terms of x1, - -+, Xp.

We shall also require the following

Lemma 2. Let xy1, X2, * -+, X¥m be a set of m > 1 vectors and de-
Sine x{ = x;fori=1,2, -+ .m—1 and x/ = xm + px1. Then
the x; are linearly independent if and only if the x; are linearly in-
dependent.

Proof. Suppose that the x; are linearly independent and let 8;
be elements of A such that Z8;x,” = 0. Then

lel + Bzxz +--- + Bm—lxm—l + Bm(xm + le) =0
so that
B1 + Bup)x1 + Baxz + -+ Bukm = O.

Hence 81 4+ Bwp = B2 =+ = Bn» = 0, and this implies that all
the 8; = 0. This proves that the x, are linearly independent.
Noww, = x/fori=1,2, -+, m — land x,, = %,/ — px,"; hence
the relation between the two sets of vectors is a symmetric one.
We can conclude therefore that if the x;” are linearly independ-
ent, then so are the x;.

Evidently we can generalize this lemma to prove that the two
sets X1, Xa, ‘-, Xn and x1', x2/, -+ -, ¥, where ¥’ = x; and x;/
= ¥; + pi¥1,j = 2, -+ -, m are either both dependent or both in-
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dependent; for we can obtain the second set from the first by a
sequence of replacements of the type given in Lemma 2.

We come now to one of the fundamental results of the theory
of vector spaces.

Theorem 2. If R has a basis of n vectors, then any n + 1 vec-
tors in R are lincarly dependent.

Proof. We prove the theorem by induction on n. Let ey, €3,

-+, ¢, be a basis and let x;, %2, + - -, ¥,41 be vectors in R. The
theorem is clear for » = 1; for, in this case, ¥; = aje1, ¥2 = age;
and either x; = 0 or x; = ase; "'x;. We assume now that the
result has already been established for spaces that have bases of
n — 1 vectors. Suppose that the vectors xy, X3, -, ¥,,; are
linearly independent and let

X1 = o111 + oeé2 + -+ ainln

X2 = 09161 T 9262+ @2abn

4)

Xn41 = Opq1,1€1 + Oy 41,262 +--- 4+ Op41,n6n

be the expressions for the &’s in terms of the basis. Now we may
assume x; # 0. Hence we can suppose that one of the ay;, say
a1n, 18 # 0. Then the set x,/, x5/, -+ -, ¥,41" where x;” = x; and
xi/ = x; — ajpa1n w1, 7 > 1, is a linearly independent set. It
follows that the vectors xy/, x3', - - -, x,4," are linearly independ-
ent. But by (4) these x;/ do not involve ¢,, that is, x/ e & =
ler, €2, -+, €n_1]. Since the ¢;, i <n — 1, form a basis for &,
this contradicts the fact that the theorem holds for » — 1, and
the proof is complete.

Remarks. 1) Since any non-vacuous subset of a linearly inde-
pendent set of vectors is a linearly independent set, Theorem 2
evidently implies that any » > # vectors in a space with a basis
of n vectors are linearly dependent.

2) Let § be a set of vectors and let xy, x2, -+, ¥, be linearly
independent vectors in §. FEither every set (x1, xa2, * -+, %, %),
¥ in §, 1s linearly dependent or there exists an x,,; € § such that
(%1, %2, **+, x,41) Is independent. Similarly either every set
(%1, ¥2, =+, ¥, 41, X), ¥ in §, is dependent or there is an x, 45 in §
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such that (x1, s, - -+, ¥,42) is independent. After a finite num-
ber of steps we obtain (x1, X2, - -+, ¥u), #; in &, a linearly inde-
pendent subset of § such that any larger subset of § is linearly
dependent. Thus any linearly independent subset of a set of
vectors § can be imbedded in a maximal linearly independent
subset of §.

3) The method of proof of Theorem 2 can be used to test a
given finite set x1, Xg, * + +, ¥ for linear dependence. If x; = 0
the set is certainly dependent. Otherwise, we can replace this
set by x1, x2’, -+ -, x,’ where x; involves, say e,, but the x;” do
not, and such that the second set is linearly independent if and
only if the original set is linearly independent. Now it is easy
to see that since x, involves ¢, while the x;” do not, then x1, x2/,
-+, %, 1s linearly independent if and only if x5/, x3', -+, x4 is
linearly independent. This reduces the problem to one of test-
ing m — 1 vectors in a space with a basis of # — 1 vectors.

EXERCISES

1. Prove that the vector space A[A] of polynomials in A is infinite dimensional.
2. Test for linear dependence:

(a) (2) _5) 2) _3); (_1) _3) 3) _1)) (1) 1) _1) 0)) (_1) 1) 0) 1)
(b) (2) _3’ 0) 4)) (6) _7) _4) 10)) (0) _1) 2) 1)
(© (1,1,1,1),(1,2,3,4), (1,4, 9, 16), (1, 8, 27, 64).

n
3. Show that the vectors »; = 3 aujej, 1 = 1,2, - -+, m, are linearly dependent
=1
if and only if the system of equations
fion + Evoy e Emttpn =0
Siong + Esroe ++ 0 ot = 0
Elaln -+ E2a2n +eeet Emamn =0

has a non-trivial solution (£, &, -+, &m) = B1, B2, +++, Bm) # (0,0, -+, 0),
Use this to prove that any system (5) whose coefficients a; are in a division ring
A has a non-trivial solution in A, provided the number m of unknowns exceeds
the number 7 of equations.

(A similar result can be proved for “right-handed” systems Zayf; = 0 by
using right vector spaces.)

)

5. Invariance of dimensionality. A set of vectors (f) has been
called a set of generators for % if every x can be expressed in the
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form 2¢,f; for suitable f; in (f) and suitable £ in A. If ¢;, ¢,
-+, e, 18 a basis, these elements are, of course, generators. More-
over, they are linearly independent; for if Z8,e; = 0, then

Bie1 + B2e2 4+ - -+ Bnen = Oy + 02 4+ - -+ Oe,.

Hence by the uniqueness of the representation, each 8; = 0.
Conversely, any finite set of generators fy, fa, * -+, fn Which are
linearly independent form a basis. Thus if 2&f; = Zq.f;, then
Z(¢ —n:)fs = 0. Hence & — 9 =0 and & = #; for i =1, 2,

-+, m. It follows from Theorem 2 that the number 7 of vec-
tors in any basis fi, f2, * *, fm does not exceed #. By reversing
the roles of the ¢’s and the f’s, we obtain # < m. Hence m = n.
This proves the following fundamental

Theorem 3. Any basis of R contains n vectors.

The number 7 of elements in a basis is therefore uniquely de-
termined. We shall call this number the dimensionality of %
over A,

We have seen that if % and R are equivalent free o-modules,
then any basis ¢, ¢z, -+, ¢, for % yields a basis &, &, -, &,
for ®. It follows that equivalent vector spaces have the same
dimensionality. In particular we see that the spaces A and
A™ are not equivalent if m # .

We prove next the following

Theorem 4. If f1, fa, * -, fr are linearly independent, then we
can supplement these vectors with n — r vectors chosen from a basis
€1, €2, =+ €y L0 0Btain a basis.

Proof. We consider the set (f1, f2, * -, fr; €1, €2, ** , €n), and
we choose in this set a maximum linearly independent set (fi,
Sfos vty frs iy €4y -0 05 ) Including the f;. If we add any of the
¢’s to this set, we obtain a dependent set. Hence by Lemma 1
of §4 every ¢, 1s linearly dependent on the set (f1, -, fr; €y

-, ¢,). Hence any x is dependent on this set, and the set is a
basis.

The number % of ¢’s that are added is, of course, » — 7. In
particular we see that, if » = #, then the f; constitute a basis.
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Suppose next that the vectors fi, fa, -+, fm are generators.
We select from this set a maximal linearly independent subset,
and we assume that the notation has been chosen so that fq, fs,
++«, fr 1s such a subset. Then for any 7, (f1, fa, -, fr f3) 15 2
linearly dependent set. Hence f; and consequently every « is
linearly dependent on fy, f2, - -+, fr. The latter set is therefore a
basis, and, by Theorem 3, r = #n. Thus we see that any set of
generators contains at least n elements and contains a subset of n
elements that forms a basis.

EXERCISES

1. If A=(1,—1,2,3) and f2 = (3,0, 4, —2), find vectors f3 and f4 so that
f15 foy fa, fa1s a basis.

2. Find a maximum linearly independent subset in the following set of vectors:
(2) -3,0, 4‘)) (-1, %) 0) ._2)) (1, —1, 2) 1)) (6) _7) 8, 8)' L. . . .

3. Prove that any finitely generated A-module, A a division ring, is a finite
dimensional vector space.

6. Bases and matrices. In considering finite sets of vectors,
we shall now regard the order of these vectors as material. Thus
we consider ordered sets. In particular we distinguish between
the basis ey, €2, * -, ¢, and the basis ¢;, ¢;, + -+, ¢; where the 7’s
form a permutation of 1,2, «-+, n. Let (1, €3, « - -, €,) be a par-
ticular ordered set which forms a basis and let (xy, x5, * -+, %,)

n
be an ordered set of arbitrary vectors. We write x; = 2. agej,
1

i=1,2, --+, r. The elements a;; are uniquely determined.
Hence the matrix

®11 Q13 On

021 Ogg ***  Oap
(6) () =

Qry Oy i Clpp

is uniquely determined by the ordered set (x;, x», - -+, &,) and
the ordered basis (e, €3, -+ -, ¢,). We call this matrix the matrix
of (%1, X9, **+, Xr) relative to (g1, €3, ~**, €5).

It will be well to recall at this point the basic facts concerning
matrix multiplication.* Let (@) be an » X # matrix (» rows, 7

* Cf. § 4, Chapter IT of Volume I of these Lectures.
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columns) with elements in A. As above we denote the element in
the (¢, j)-position, that is, in the intersection of the 7/th row and
jth column by ay;. Similarly let (8) be an # X m matrix with
elements B;; in A. We define the product (a)(8) to be the » X m
matrix whose element in the (7, k) position is

(7 i = anfir + Bk + -+ -+ 2inBrr.

If (v) is an m X ¢ matrix with elements in A, then the products
[(a)(®)](y) and ()[(B)(v)] are defined as » X ¢ matrices. The
(1, /) elements of these products are respectively

2 (aeBip)vin 2 cui(Binvar).

Ik ik
Thus we have the associative law: [(@) (8)]1(7) = ()[(8) (¥)].

If we stick to square matrices of a definite size, say # X 7,
then the product is again a matrix of the same type. Since the
associative law holds, we can say that the totality A, of these
matrices is a semi-group. Also it is immediate that the matrix

1 0

0 1

is the identity in A, in the sense that (@)1 = () = 1(@) for all
(a) € A,. As usual for semi-groups we call a matrix (a) a unit
if there exists a (8) such that (a)(8) = 1 = (8)(e). These ma-
trices are also called non-singular or regular matrices in A,. It
is easy to verify that the totality of units of any semi-group with
an identity constitutes a group In particular the totality
L(A n) of non-singular matrices is a group relative to multipli-
cation. As in any group the inverse (8) of () is uniquely de-
termined. As usual we write (8) = (a) 7L

We return now to the consideration of finite dimensional vec-
tor spaces. Let (eq, ¢, - -+, €4) and (f1, fa, -+, fa) be ordered
bases for the vector space ® over A and, as before, let (@) be the

* See, for example, these Lectures, Volume I, p. 24.
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matrix of (f;) relative to (¢;). Next let (g1, g2, ---, g») be a
third ordered basis and let

Bii Biz -+ Bin
®) = 5:021 5:022 ‘327}
Bnl an M Bnn

be the matrix of (g1, g2, - - -, £n) relative to (f1, f2, -+, fa). Then
g = 2B fr- Since fr = Zoges,

&= EBJ'kfk = EBJ'kakief = E'ine’:
where v;; = D, Bjwors.  This shows that the matrix of (g, go,
%

-+ -, gn) relative to (ey, €y, - -+, e,) is the product (8)(e) of the
matrices (8) and (). If, in particular, g; = ¢;, then (8)(a) is
the matrix of the (ey, ey, ---, ¢,) relative to (ey, €a, -+, €n).
Since ¢; = ¢, it is evident that this matrix must be the identity
matrix 1. Hence (8)(e) = 1. By reversing the roles of (e;, ¢,
-+, e,) and (f1, fo, +-+, fn), we obtain also (a)(8) = 1. Thus

we have proved

Theorem 5. The matrix of any ordered basis (fi, fa, * 5 fn)
relative to the ordered basis (eq, €y, « * -, €,) 15 non-singular.

Conversely, let (o) be an element of L(A, ). Let (8) = (a) %
Define f; by fi = Zaye;. Then we assert that (f1, fo, -+ -, fa) 18
a basis for i over A. Thus the elements

(8) 2o Brifi = 2 Bricuje; = 2 Busej

where 8;; is the Kronecker “delta,” that is, 8;; = 0 if £ % j and
= 1if k£ = 4. Thus ZBy:f; = ¢ and the ¢, are dependent on the
f’s. Hence every x is dependent on the f’s. Thus the f’s are gen-
erators. Since their number is 7, they form a basis.

We have therefore established a 1-1 correspondence between
the different ordered bases and the unitsin A,: If (ey, ez, -, €,)
is a particular ordered basis, then every ordered basis is obtained
by taking a unit (@) in A, and defining f; = Zayje;.

There is no difficulty, of course, in duplicating the above re-
sults for right vector spaces. We need only to settle on the defi-
nition of the matrix of (%', %', ---, x,”) relative to the basis
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(e, €2’y -+, ¢,)) for the right space ®. We do this by writing
x;/ = Zej/ay; and by defining the matrix of (v, %2/, ---, &)
relative to (ey/, e’y -+, ¢,’) to be (@). Thus in this case the
matrix is the transposed * of the matrix which appears in the
equations x;/ = Z¢;/a;;. As before we obtain a 1-1 correspond-
ence between the various ordered bases and the elements of
L(A, n).
EXERCISES

1. Prove that, if (o, 019y ** +y Q1n), (@21, @22, =+ 0y Q2n)y ==y (Qr1y Qpay =+ +y Opp)
are (left) linearly independent, then there exist ays; i = r+ 1, <+, 7,7 = 1,2,
«++, n, such that (@)= (o) is 2 unit.

2. Let A be a finite division ring containing ¢ elements. Show that the num-
ber of units in A, is

N=@g'—-1)(@g'—¢q - @ —q¢")

7. Applications to matrix theory. The correspondence between
bases and units in A, enables us to apply our results on bases to
obtain some simple but non-trivial theorems on matrices with
elements in a division ring. We prove first the following

Theorem 6. If (a) and (B) e A, and (B)(a) = 1, then also
()(B) = 1 50 that (a) and (B) e L(A, n).

Proof. If (8)(a) = 1, the equation (8) shows that if f; =
Zauje;, then the ¢, are dependent on the f’s. The argument given
above then shows that the f’s form a basis. Hence the matrix
() of (f1, fa, *+, fn) relative to (e, €2, -+, ¢,) is a unit. Since
the inverse is unique, it follows that (8) = (a) 7L

Theorem 7. If () is not a right (left) zero divisor in A, then
(@) e L(A, n).

Proof. We have to show that the vectors f; = Zayje; form a
basis. By Theorem 4 it suffices to show that the f’s are linearly
independent. Suppose therefore that 28;f; = 0. Then ZB;ae;
= 0 and hence X Biaz;; = O forj =1,2, -+, n. Thusif

Bi B2 -+ B
0 0 - 0
(B)= . . . e .

* The transposed of the matrix (o4;) is the matrix with element o; in its (J, #)-position.
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then (8)(«) = 0. Since (@) is not a right zero divisor, this im-
plies that (8) = 0. Hence each B; = 0. This proves that the
fi are linearly independent and completes the proof for the case
in which (a) is not a right zero divisor. The proof for the case
(a) not a left zero divisor can be obtained in the same way by
using right vector spaces. The details are left to the reader.

We shall obtain next a set of generators for the group L(A, #).
Consider the matrices of the form

q
1
1 B ?
qu(B) =
1
1)
?
rl
1 -
Dy(y) = " vy #0
1
L 1J



20 FINITE DIMENSIONAL VECTOR SPACES

1 ? q
1
0 1 ?
1
qu =
1
1 0 q
1
1)

in which the elements not indicated are 0. We call these matrices
elementary matrices of respective types I, II and I1II. These ma-
trices belong to L(A, n); for Tpe(B)™! = Tpo(—8B), Dp(y) ™! =
Dy(y™Y) and P,y = P,,. We shall now prove the following

Theorem 8. .Iny matrix (o) in L(A, n) is a product of elemen-
tary matrices.

Proof. We note first that, if (f1, fo, ---, f,) is an ordered
basis, then so are the following sets:

v fo 5 So—vfolsfovrs o5 fa)s o' =fotBf g5
S Sfos 5 So—vs fols Fovts =25 fa)s So' = Ufps ¥ #O0
(f1 5 Somts fo's fotts 005 famts fos fans =5 o),
fo' =fo S = /o

Moreover, the matrices of these bases relative to (f1, f2, ***, fn)
are elementary matrices of types I, I1, or III.

Now let (a) be any matrix in L(A, #) and define f; = Zouje;
where the ¢’s constitute a basis for an #» dimensional vector space.
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Then (f1, f2, * -, fa) 1s an ordered basis. We wish to show that
we can go from this basis to the basis (e, ¢4, * - -, ¢,) by a sequence
of “elementary replacements” of the types indicated above.
This is trivial if » = 1, and we can suppose that it has already
been proved for (# — 1) dimensional vector spaces. Now the f;
cannot all belong to [es, €3, - -, e4]. Hence one of the oy, say
ap1, 1s % 0. We interchange f1, f, to obtain the basis (f1/, fa,
ooy foe1y fo's fos * 5 fu) in which f;” has a non-zero coefficient
for ¢ in its expression in terms of the ¢;. Next we replace f» by
fo* = fo + Bf1’ where B is chosen so that fo* e ea, €3, -+, e
A sequence of such elementary replacements yields the basis
(f1)s fo*, fa*, -+, fo*) where the f* e [es, €3, -+ -, e,]. The vec-
tors fo*, f3*, « -, fa* are linearly independent so that they con-
stitute a basis for [es, ¢3, -+, ¢,]. Hence by the induction as-
sumption we can pass by a finite sequence of elementary replace-
ments to the basis (f/, ¢, €3, * -+, €,). Next we obtain (f1”, es,
es, +*+, €,) in which 1" = f1’ + ue, does not involve ¢,. A finite
sequence of such replacements yields (yey, €2, -+, ¢,) and then
(e1, €3, =+ -, €,). We can now conclude the proof; for the ma-
trix (a) of the basis (f1, f2, - -, fu) relative to the basis (ey, e,
-+, €,) 1s the product of the matrices of successive bases in our
sequence, and these are elementary matrices.

EXERCISES
1. Express the following matrix as a product of elementary matrices

2 —~1 1 -1
-5 =3 1 1
2 3 —1 0

-3 -1 0 1
2. Verify that

Go=lo o G J 05 )

Generalize this result and use the generalization to prove that the elementary
matrices of types I and II suffice to generate L(A, #).
. § 0
3. Prove that, if § # 0, [0 51
1. Hence prove that any matrix in Z(A, #) has the form (8)D,(y) where (8) is a
product of elementary matrices of type I and D.(y) is defined above.

] is a product of elementary matrices of type
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8. Rank of a set of vectors. Determinantal rank. Let § =
(%) be an arbitrary subset of the vector space % and as before
let [S] denote the subspace spanned by §. If (x1, xg, ++-, x,) 15 a
maximal linearly independent set of vectors chosen from the set
S, then every vector in § and hence in [S] is linearly dependent
on the x;. Hence (xq, x5, -+, %,) is a basis for [§]. The theorem
on invariance of dimensionality now shows that 7 is uniquely de-
termined by §, that is, any two maximal linearly independent
subsets of a set § have the same cardinal number. We call this
number the rank of the set §. Of course, the rank r is < 7 and
r = n if and only if [S] = R. These remarks show in particular
that, if § = & is a subspace, then & = [S] is finite dimensional
with dimensionality < #. Moreover dim & = # only if & = R.

We shall now apply the concept of rank of a set of vectors to
the study of matrices with elements in a division ring A. Let
(a) be an arbitrary » X 7 matrix with elements in A and let (e,
€s, - -, €n) be an arbitrary ordered basis for ®. We introduce

n
the row vectors x; = Y, aze;, i = 1,2, -+, r, of ® and we define
j=1

the row rank of (&) to be the rank of the set (x1, xg, -+, ). A
different choice of basis yields the same result. For, if (fi, f,
-+, fa) is a second basis for ® (or for another n-dimensional
space), then the mapping Z&,e; — 2&:f; is an equivalence which
maps ¥; into y; = Zay;f;. Hence dim [xq, x5, - -+, x,] = dim [y1,
Yoy s il

In a similar fashion we define the column rank of («). Here
we introduce a right vector space R’ of » dimensions with basis
(e, €3’y -+, &). Then we define the column rank of (a) to be
the rank of the set (x,/, x,’, ---, x,") where x;/ = Ze¢/ay;. The
x; are called column vectors of (). We shall prove in the next
chapter that the two ranks of a matrix are always equal. In
the special case A = ® a field (commutative) this equality can
be established by showing that these ranks coincide with still an-
other rank which can be defined in terms of determinants.

We recall first that a minor of the matrix (@), a;; in ®, is a de-
terminant of a square matrix that is obtained by striking out a
certain number of rows and columns from the matrix (). For
Qpr aps] .

example, the minors of second order have the form [
Qgr Qg
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We say that () has determinantal rank p if every (p + 1)-rowed
minor has the value 0, but there exists a p-rowed minor 5 0 in
(a). The following theorem will enable us to prove the equality
of row rank and determinantal rank. The proof will make use
of well-known theorems on determinants.

Theorem 9. The vectors x; = Zaye;, 1 = 1,2, «+-, 7, are lin-
early independent if and only if (@) is of determinantal rank r.

Proof. Evidently the determinantal rank p < n. Also the ¥’s
are linearly independent only if » < n. Hence we may assume
that » < #. Suppose first that the x’s are dependent, so that,
say, ¥1 = Boxs +-+ -+ B Then ay; = Bacs; + Bsag; +-- -+

Brar; forj = 1,2, ---  n. Hence

T T T
D Brarr 2 Brrz e 2 Brltin

2 2 2
(CV) = 21 227 R 2379
Oy Olro R [o 2

Since the first row of any r~rowed minor is a linear combination
of the other rows, each r-rowed minor vanishes. Hence p < 7.
Conversely, suppose that p < r. It is clear that the determinan-
tal rank is unaltered when the rows or the columns of (a) are
permuted. Such permutations give matrices of the x’s in some
other order relative to the ¢’s in some other order. Hence there
is no loss in generality in assuming that

®11 *12 T Oy
021 Q29 "+ Qg

B = # 0.
Q1 Gy "t Opy

Now let 8;, 7 = 1,2, ---, p 4+ 1, be the cofactor of a;, 41 in

11 x12 R 25 PR |

X2 Qo2 trr Ogpqg

Qpt1,1 Upt1,2 " Optl,p+1
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Then Bot1 = B < 0 and Bronj + Beas; +- -+ + Bo+10p 41,5 = 0 for
j =172, ---,n HenceBix1 + Ba¥2 + -+ -+ Bo 11,41 = 0 where
Bo+1 # 0. Thus the #’s are dependent. This completes the proof.

Again let » be arbitrary and assume that the vectors x, ¥,
- -+, x, form a basis for the set of ¥’s. Then by the above theo-
rem there exists a non-vanishing p-rowed minor in the first p
rows of (a). Moreover, since any p + 1 #’s are linearly depend-
ent, every p 4+ l-rowed minor in («) vanishes. Hence the de-
terminantal rank equals the row rank p. If we apply the same
arguments to right vector spaces, we can show that the column
rank and the determinantal rank are equal. As a consequence,
we see that in the commutative case the two ranks (row and
column) of a matrix are equal.

We have seen that the matrix () e L(®, #) if and only if the
row vectors (¥, ¥a, * * +, X,), ¥; = Zayje;, form a basis for ®. The
latter condition is equivalent to the statement that the row rank
of (a) is n. Hence the above result shows that (&) e L(®, #) if
and only if the determinant of this matrix is not zero in ®. This
result can also be proved directly (cf. these Lectures, Volume I,
p. 59). As a matter of fact, the inverse of (&) can be expressed
in a simple fashion by means of determinants in the following
way. Let A;; be the cofactor of the element aj; in (a) and set
Bij = Ay[det (@)]”'. Then (8;) = (a)~!. This follows easily
from the expansion theorems for determinants. A proof is given
in Volume I, p. 59.

EXERCISES

1. Prove that if A = ® is commutative and the elements ; are all different,
then

1 o 0!12 B Pk -1
1 o 0[22 0[2"_1

2 —_
1 a, a2 -+ a,*!

isin L(®, n). (Hint: The determinant of this matrix is a so-called Vandermonde
determinant. Prove that its value is [J(a: — o;).)

1>
2. Prove thatif A = ® is a field and (&) € L(®, n), then the transposed matrix
(@) e L(®, n).
3. Prove the following converse of Ex. 2: If (@)’ € L(4, 2) for every (o) £ L(4A, 2),
then A is a field.
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4. Calculate the inverse of

1 -1 2 3
0 1 -1 1
2 1 10
3 - 1 7

9. Factor spaces. Any subspace & of R is, of course, a sub-
group of the additive group ®. Since R is commutative, we can
define the factor group ® = R/S. The elements of this group
are the cosets ¥ = x¥ + &, and the composition in } is given by

X+5y=x4y.

Now let « be any element of A. Then if x = y (mod &), that is,
x —y =2ze®, also az e &; hence ax = ay (mod &). Thus the
coset ax is uniquely determined by the coset ¥ and by the ele-
ment ae A. We now define this coset to be the product oF,
and we can verify without difficulty that ®, A and the composi-
tion (a, ¥) — aX constitute a vector space. We shall call this
vector space the factor space of R relative to the subspace &.
Now let (f1, f2, -, f») be a basis for &. We extend this to
a basis (f1, fa, =« s Srs Sra1, =5 fn) for R, and we shall now show
that the cosets fr11, =+, fn form a basis for f = ®/&. Let ®

n n

be any coset and write x = ), a;f;; then ® =2 a;fs =2, aifs
1 1 1

n

= En a;fs = X a;f; since f; = 0 for i < 7. Thus (frpy, -+, fn)
1

r+1

is a set of generators for . On the other hand, if > 8;/; = 0,
r+1

then Y B;f;e ©and so 2 B;f; = 2 vufe. Thisimplies that all
r+1 r+1 1

the 8; = 0. Thus (frq1, -+ -, fn) is a basis. We have therefore
proved that the dimensionality of &% is the difference of the di-
mensionalities of Rand of &.

10. Algebra of subspaces. The totality L of subspaces of a
vector space R over a division ring A constitutes an interesting
type of algebraic system with respect to two compositions which
we proceed to define. We consider first the system L relative to
the relation of set inclusion. With respect to this relation L is a
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partially ordered set.* By this we mean that the relation &, 2 &,
is defined for some pairs in L and that

1. 826,
2. 1f G D &y and CoT) @1, then @1 = @2,
3. lf @1 > @2 and @2 ) @3, then @1 = @3.

Thus the relation is reflexive, asymmetric and transitive.

Consider now any two subspaces &; and &,. The logical in-
tersection &; N &; is also a subspace, and this space acts as a
greatest lower bound relative to the inclusion relation. By this
we mean that &; N &, is contained in &; and &,, and &; N &,
contains every & which is contained in &, and &,. The set
theoretic sum &; U &; of two spaces need not be a subspace.
As a substitute for this set we therefore take the space [&; U &,]
spanned by the set &; U &,. We denote this space by &, + &,
and we call it #he join of &; and &,. It has the properties of a
least upper bound: &; + &, D &; and &,, and &; + &; is con-
tained in every subspace & which contains &; and &,. It is
immediate that these properties characterize &; + &,, that is,
any subspace that has these properties coincides with &; + &..
Also it 1s immediate from this characterization or from the defi-
nition of &; + &, as [&; U &,] that this space is the set of vec-
tors of the form y; + y, where the y; ¢ &;.

A partially ordered set in which any two elements have a
greatest lower bound and a least upper bound is called a Jattice.
Hence we call L the lattice of subspaces of the space R. In this
section we derive the basic properties of this lattice. First we
note the following properties that hold in any lattice.

1. The associative and commutative laws hold for the compo-
sitions N and +.

These follow easily from the definitions. The rules for N are,
of course, familiar to the reader.
We note next some special properties of the lattice L.

2. There exists a zero element in L, that is, an element 0 such

that
&N0=0 and &4+0=6&
for all &.

* Cf. Volume I, Chapter VII, for the concepts considered in this section.
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The subspace consisting of the O vector only has these proper-
ties. Dually the whole space R acts as an “all” element in the
sense that

E+R=R and SNR=6
for all &.

The distributive law &, N (&, + &3) = &, N S, + &, N S;
does not hold without restriction in L. For example, let x; and
xs be independent vectors and set &; = [¥;], @2 = [x,] and S;
= [%; + %2]. Then &, 4+ S3 = [x1, #2] so that &; N (S, + S3)
= &;. On the other hand, &; N &, and &, N &; = 0 so that
&N & +6,N & =0, We shall show that a certain weak-
ening of the distributive law does hold in L. This is the follow-
ing rule:

3. If @12@2, then @1“ (@2+@3) =@lﬂ@2+@1ﬂ@3
=@2+@1ﬂ@3.

Proof. We note first that &, N €, C &; N (&, + &3) and
S N & C & N (S + S3). Hence

GIN&G+6 N&C & N (S + &)

Next let ze &; N (&, + &3). Then z = y; in &; and z = y, +
ys where y, and y; are in &, and &; respectively. Hence y; =
Y1 — 5,3+ S, =&;. Thusy;e@, N Szandz =y, + yze
S, + & N &3. This proves that @1 N (@2 + @3) C &, + &;
N &3;. Hence 3. holds.

A lattice in which 3. holds is called a modular (or Dedekind)
lattice. We shall show next that L is a complemented lattice in
the sense that the following property holds:

4. For any & in L there exists an &* in L such that
S+G* =%, &N &*=0.

Proof. 1If (f1, fs, -+, fr) is a basis for &, these vectors are
linearly independent and can therefore be supplemented by vec-
tors f, .1, *++, fa to give a basis (f1, fo, < - -, fu) for R. We set
e&* = [f7‘+1) r42y " ° ')fn]' Then@ + e* = [fl)f2) o )fn] =R
Moreover, any vector y in & N &* is linearly dependent on fy,

JSoy -+, frand on fr 41, fria, + ¢, fae Since fi, fo, -+, fa are lin-
early independent, this implies that y = 0. Hence & N &* = 0.
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A subspace &* satisfying the above condition is called a com-
plement of the subspace & in ®. We note finally that the follow-
ing chain conditions hold in L:

5. If &, 2 &,D --- is an infinite descending chain of sub-
spaces, then there exists an integer » such that &, = &,,; =---.

If &, C &, C --- is an infinite ascending chain of subspaces
then there exists an integer » such that &, = &, =---.

Both of these are clear since the dimensionality of a subspace
is a non-negative integer * and since @ D &’ implies that dim &
> dim &'.

EXERCISES
1. Prove that, if §; U &; = &, 4+ &,, then either & 2O &, or &; D &,
2. Prove that, if dim & = r, then the dimensionality of any complement is

n—r
3. Prove the general dimensionality relation:

dim (&, + &) = dim &, + dim &; — dim (&, N S,).

4. Show that if & is any subspace # 0 and # R, then & has more than one
complement.

11. Independent subspaces, direct sums. We consider next a
concept which we shall see is a generalization of the notion of
linear independence of vectors. Let &, &;, -+, &, be a finite
set of subspaces of ®. Then we say that these subspaces are in-
dependent if

(9) eNE&+ - +8.+Gu+--+6,) =0

fori=1,2, -+, r. If x;, x5, -+, %, are vectors in R, then
necessary and sufficient conditions that linear independence holds
for these are: 1) x; % 0 for i = 1,2, - -+, r; 2) the spaces [x;] are
independent. Thus suppose that 1) and 2) hold and let Z8x; = 0.
Then —Bix; = ;5;‘9@ efxd] O ([xa] +- -+ [xima] + [x50] +- -
R
+ [x]). Hence by 2), —Bx; = 0. Since x; % 0, this implies
that each 8; = 0. Next assume that the x; are linearly independ-
ent. Then certainly each x; % 0. Furthermore, if x¢e[x]N

([o1] 44 [xia] + [x41] +---+ [%]), then x = Bx; =

* We assign to the space O the dimensionality O.
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> Bix;. Hence by the linear independence of the x’s, 8; = 0
=i
Jand sox = 0.

Let &;, &3, -+, &, be arbitrary independent subspaces and
set @=@1+@2++@r Ifys@,y=y1+yz+---+
y, where y; e &;. We assert that this representation is unique,
that is, if y = y," + o’ + -+ -+ v,/ where y/ ¢ &;, then y; = y/,
i=1,2---,r. ThusifZy; = 2y, thenZz; = Oforz; = y; — y/
in &;. Then

—2; = ZZjS@in (@1 + 4+ 8+ @z‘+1 +---+ @r)-
FE
Hence z; = 0 and y; = y;/. The converse of this result holds
also; for if (9) fails for some 7, then there is a vector z; % 0 in

this intersection. Thus z; = 2 z;, and we have two distinct
D

representations of this element as a sum of elements out of the

spaces &;. We have therefore proved

Theorem 10. A necessary and sufficient condition that the spaces
Sy, &g, + -+, &, be independent is that every vector in & = &, +
Sy 4+ - -+ &, have a unique representation in the form Zy;, y; in
S..

A second important characterization of independence of sub-
spaces is furnished by

Theorem 11. The spaces &; are independent if and only if
dim (S, + S, +- -+ &) = 2 dim &,

Proof. Suppose first that the &; are independent and let
(fli)fzi, . ‘,fm,') be a basis fOI‘ @i- Then ifEB“f“ = O, E_y, =0
where y; = E Biifi: € ©;. Hence for each 7, 0 = y; = 28;; fis.

2
Then B;; = 0 since the f;j; for a fixed 7 are linearly independent.
This proves that all the f’s are linearly independent. Hence the
f’s form a basis for & = & + &, +---+ &,. Their number
Zn;, where n; = dim &,, is the dimensionality of &. Thus
dim @ = 2 dim &;. Conversely suppose that this dimensionality
relation holds and, as before, let the f;; form a basis for &;. The
number of these f’s is 2 dim &; = dim &. On the other hand,
these f;; are generators for &. It follows that they form a basis,



30 FINITE DIMENSIONAL VECTOR SPACES

and consequently they are linearly independent. It follows di-
rectly from this that, if 2y, = 2y, v, v/ in &;, then y; = y/.
Hence the &; are independent.

If R1, Rz, -+, R, are independent subspaces and R = Ry +
Ry + -+ -+ R,, then we say that R is a direct sum of the subspaces
R:. We indicate this by writing R = R OR.® --- D R,. If
this is the case, every vector of ® can be written in one and only
one way as a sum of vectors in the subspace ®,.

EXERCISES

1. Prove that the following are necessary and sufficient conditions that the
subspaces &; be independent.

S NS =0, (& +8) NS;=0,
(@1+@2+@3)ﬂ@4=0,

2. Prove that if R =R O R2D--- P Rrand each K = Ro @ - -+ D Kooy
thenR=RuD - - DR DR @ -+ D RNony @ - - - D Rrm,.



Chapter 11

LINEAR TRANSFORMATIONS

In this chapter we discuss the simplest properties of linear
transformations and of certain algebraic systems determined by
these mappings. Two particular types of linear transformations
are of special interest, namely, the linear transformations of a
vector space into itself and the linear transformations of a space
into the one-dimensional space A. The former type constitute
a ring while the latter, called linear functions, form a right vec-
tor space. There is a natural way of associating with a linear
transformation of the vector space &, into the vector space R,
a transposed linear transformation of the conjugate space of linear
functions on R, into the conjugate space of ;. We consider
the properties of the transposition mapping. The relation between
linear transformations and matrices is discussed. Also we de-
fine rank and nullity for arbitrary linear transformations. Finally
we study a special type of linear transformation called a projec-
tion, and we establish a connection between transformations of
this type and direct decompositions of the vector space.

1. Definition and examples. The differentiation mapping
¢(\) — ¢’(\) in the vector space ®[\] of polynomials with real
coefficients has the properties

[6) + ¥ N = ¢’ +¥'(N),  [as(N)]" = ap’(N).

This is an example of a linear transformation. Another example
is the mapping of A® defined by

Emn) > EN+au+ v
31
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where \, u, » are fixed elements of the basic division ring A. In
general, let ®; and R, be vector spaces over the same division
ring A. Then we call a mapping 4 of R, into R, a linear trans-
Sformation if

(1) x4+ NA =54+ yA4, (ax)d = a(xA)

for all x, y in ®; and all a in A. As usual x4 denotes the image
in R, of the element x. We shall also denote the image set, that
is, the set of images x4, by R14. The statement that ./ is a
mapping into R, allows the possibility that ®,4 c R, (i.e. R1A4
is a proper subset of R,).

The concept of linear transformation is a special case of that
of o-homomorphism of one o-module %, into a second one. The
generalization is obtained by replacing “a in A” by “a in 0” in
the above definition. It may be recalled that s-homomorphisms
which are 1-1 have been introduced in Chapter I. Such mappings
have been called equivalences or o-isomorphisms. The existence
of an o-isomorphism of R; onto RN, is our criterion for equivalence
of the modules R;.

The first condition in (1) states that .4 is a homomorphism of
the additive group &, into the additive group R, while the sec-
ond can be interpreted as a type of commutativity of 4 with a.
This is strictly the case when ®; = R, = N; for we can introduce
for each @ the mapping «; which sends x into ax. We call o; the
scalar multiplication determined by a. It is clear that o; is an
endomorphism of ®, that is, a homomorphism of ®, regarded as
a group, into itself. Now x(a;d) = (ax)A and x(Aa;) = a(xAd);
hence A is a linear transformation in the vector space & if and
only if A4 is an endomorphism of ® which commutes with all the
endomorphisms ay.

Besides the linear transformations of a vector space into itself
a second noteworthy type of linear transformation is a /inear
Sunction. This is defined to be a mapping ¥ — f(x) of a vector
space % into the division ring A such that

(2) S+ ) = fx) + /), Sflax) = af(x).

It is clear that a mapping of this type can be regarded as a linear
transformation of ® into the one-dimensional vector space A.
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The latter is obtained by using the additive group of A as group,
A as division ring and left multiplication «f as multiplication by
scalars. The element 1 (or any non-zero element) is a basis for
A over A. The second example considered above is an instance
of a linear function on A®.

EXERCISES

1. Show that the differentiation mapping $(A) — @'(A) is a linear transforma-
tion in the vector space & of polynomials of degree <.

2. Show that the difference operator p(A) — ¢\ + 1) — d(A) is a linear trans-
formation in ®[A].

2. Compositions of linear transformations. We consider now
ways of combining linear transformations. It should be remarked
that all the results of this section apply equally well to the more
general case of o-homomorphisms of modules. However, for the
sake of simplicity we shall state the results only for the special
case that is of primary interest in the sequel.

Suppose first that ./ and B are linear transformations of a vec-
tor space ®; into the same space R;. We define a mapping
A 4+ B of ®; into R, by the equation

3) x(A+ B) = x4+ xB
for any x in ®;. Thus to obtain the effect of .4/ + B on x we add

the images x4 and xB. Clearly 4 4+ B is a (single-valued) trans-
formation of R, into Ke. Since

x+)(A+B)=x+Nd+ x+y)B=x4d+y4A+xB+yB
=xAd+xB+yAd+yB=x(A4d+B)+y(A4+B)

(ax)(A + B) = (ax)A + (ax)B = a(xA) + a(xB)
= a(wd + xB) = a(x(4 + B)),

A + B is a linear transformation of ®; into R,.

We now denote the totality of linear transformations of %,
into R, by &(R1, Ra), and we shall show that this set, together
with the addition composition just introduced, is a commutative
group. We note first that the associative and commutative laws
hold; for we have the following relations:

and
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¥[(4d+ B)+ C] = (4 + B) + xC = x4 + xB + xC,
¥[4A+ (B+C)] =54+ x(B+ C) = x4+ xB 4+ xC,
x(A+ B) = x4+ xB, x(B+ A) = xB + x4.
Thus (4 + B) + C and 4 + (B 4+ C) have the same effect on

any x in ®;, and this is what is meant by saying that the trans-
formations 4 + (B + C) and (4 + B) + C are equal. Simi-
larly 4 + B = B+ 4. Next we define the mapping 0 by the
condition x0 = 0, the zero vector in R,. It is immediate that
this mapping is in (R, R2) and that 4 +0= 4 =0+ 4 for
all 4 in ¢(Ry, N2). Hence 0 acts as identity element for the ad-
ditive composition. Finally, if 4 is any member of 2(R;, R2)
we define — A4 to be the mapping such that x(—4) = —xA4. It
is easy to verify that —.4 e @(R,, N2). Moreover, — 4 acts as
the inverse of A4 since x(A4 + (—A4)) = xA — x4 = 0 for all x.
This completes the verification that 2(R;, R,), + is a commuta-
tive group.

We introduce next a second composition for linear transforma-
tions. This is defined for any A4 in R, R,) and any B in
2(Rs, N3), and it is taken to be the resultant of A followed by B.
As usual, we denote the resultant as 4/B. Hence by definition
x(AB) = (xA)B. Consequently

(¢ +3)(4B) = (x +y)A4)B = (x4 + yA)B = (xA)B + (yA)B
= x(4B) + y(4B)

and
(ax)(AB) = ((ax)A)B = (a(x4))B = a((xA4)B) = a(x(4B)).

This shows that 4B & &(R;, Ra).
As is well known, the product #ZB is an associative one, that
is, if 4 € 2(R1, R2), B £ RNz, N3) and C e YRz, R4), then

(4) (AB)C = A(BC);

for
x((4B)C) = (x(4B))C = ((xA)B)C
and

x(A(BC)) = (x4)(BC) = ((x4)B)C.
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We prove next the important distributive laws: If .7 e (R, R2),
B, 082(9{2, SR3) and D 82(%3, 5R4), then

(5 AB+C) =4B+ 4AC, (B+ C)D = BD + CD.

These follow from the following equations:

x(AB+ Q) = (xA)(B+ C) = (xA)B + (xA)C
= x(AB) + x(AC) = x(AB + AC)
x((B+ C)D) = (xB + xC)D = (xB)D + (xC)D

= x(BD) + x(CD) = x(BD + CD).

We now specialize the foregoing results to the case of the linear
transformations in a single vector space R. It is clear that
g =R, R), +, - is a ring; for YR, R), + is a commutative
group, (RN, R) is closed under -, and this composition is associa-
tive and distributive with respect to addition. It is evident also
that ¢ contains the identity mapping ¥ — x and that this map-
ping, denoted as 1, is the identity in thering ¢ (l.e. A1 = 4 = 14
for all A).*

Suppose next that ® is the center of the ring A. Of course, ®
is a subfield of A. We observe that the scalar multiplications
v: determined by the elements 4 e ® are linear transformations;
for, 4; is an endomorphism and (ax)y; = v(ax) = (ya)x = (ay)x
= a(yx) = a(xy:). Thus if ®; denotes the set of multiplications
by the elements v of ®, then € © &;. In particular if A = & is
commutative, then ¢ contains all the scalar multiplications. We
now show that any of the groups (%, Rz) can be regarded as a
vector space over the field ®. For this purpose we define v.4
for ¥ in ® and A in 2Ry, R2) to be the mapping x — y(vA) =
(yx)A4. Since this is the resultant of 4 and v; (in ®,) or of v,
(in Ry) with 4 and each of these is linear, v is in (R, Ro). It

* A reader familiar with the theory of endomorphisms of a commutative group such as is
givenin Volume I, pp. 78-82, will note that these results can also be obtained by the follow-
ing reasoning: The set € of endomorphisms of R, + is a ring relative to the addition com-
position #(4 + B) = x4 + xB and the multiplication composition as resultant. The set
X = R, N) is the subset of § of elements commuting with the scalar multiplication a;.

Since the totality of elements of a ring commuting with the elements of a given subset
form a subring, it is clear that & is a subring of €.
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is easy to verify that the function yA satisfies the rules for mul-
tiplication by scalars in a vector space. In this way we can re-
gard (1, N2) as a vector space over P.

If we combine the results of the last two paragraphs, we see
that the set @ = (R, N) is at the same time a ring and a vector
space over a field ®. The ring addition is the same as the vector
space addition. Moreover, we have the following relations con-
necting multiplication and scalar multiplication:

(6) v(4B) = (yA)B = A(vB).

A system having these properties is called an algebra (or hyper-
complex number system) over the field ®. Hence when we wish to
study £ relative to all three operations at the same time, we shall
refer to this system as the algebra of linear transformations in R.

EXERCISES

1. Show that (N1, RNy) is an WK1, Ry)-module relative to the composition £X,
Ain YRy, Ry), Xin YRy, Ra) as the resultant linear transformation. Similarly
show that Ry, Rs) can be regarded as a right YRz, Re) module.

2. Prove that if a; is a linear transformation, then « is in the center ® of A.

3. Verify that, if C £ (Re, R2) and X e YRy, Ro), then the mapping X — XC
is an (N1, K1) endomorphism of YRy, Ra).

3. The matrix of a linear transformation. We shall now show
that a linear transformation of one finite dimensional vector space
R, into a second finite dimensional space R, can be completely
described by means of a finite matrix with elements in the under-
lying division ring A.

Let ®;, 7 = 1, 2, be #; dimensional, let (¢4, ¢z, -+, ¢,,) be an
ordered basis for R1, (f1, /2, * * , fn) an ordered basis for R, and
let A4 e (R, N2). We note first that the action of 4 on any « is
determined by the images ¢,4,i = 1,2, ---, n;. Thus » can be

written as E £ier. Hence xA = (Zke;) A = Z(&e)A = Z&i(e;A).

Thus x4 1s determmed by the expression for x and by the images
e;4. Now write

(7) e;4 = 0tz'1f1 + Otizfz +---+ aimfm, i= 1, 2, coty M.
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Then we obtain the matrix

o112 Tt Opy
(8) Qa1 Oa2 et Oy
Ol Qpg2  ° " Oppy

as the matrix of (e,4, - - -, e,,A4) relative to (f1, -, f,,). Clearly
if the two ordered bases and the matrix (8) are known, then the
effect of A4 on any x can be deduced; for (7) holds and as we
have seen x4 = 3 & fi-

()

This connection can be expressed in terms of matrix multipli-
cation as follows. Write x = Z&e; as a row (&, &, ---, ,) and
similarly y = 2Zu; f; as (1, 72, ***, 7,,)- Then the “row vector”
associated with y = x4 is obtained by performing the matrix
multiplication:

11 (12 trt Qg

021 Oa2 Tt Qg
(9) (El) 52) ) Em)

Opjl CQpa2 " Qppy

Thus x4 = y = 2Zy; f; where 9; = 2§04, and this is what we ob-
tain from (9).

It should be emphasized that the matrix (o) depends on the
choice of bases in the two spaces. For this reason we call («)
the matrix of A relative to the ordered bases (e1, ¢s, -, €,,) and
(f1, fos o5 fa). If B = Ry = R, then it is natural to use just
one ordered basis, that is, to take the f; = ¢,, In this case we
refer to (@) as the matrix of A relative to (eq, ez, -, €,).

The result that we have obtained is that any A e @Ry, Rz) de-
termines an 7, X #, matrix with elements in A. We now note
the converse: that any #; X #, matrix defines a linear transfor-
mation of R into R,. We note first that, if (er, ¢, -~ , ¢,) is a
basis in R; and (uy, us, - -, u,,) is an arbitrary ordered set of 7,
vectors in Ry, then there exists a linear transformation .4 map-
ping e; into #; for i = 1,2, -+, n;. Thus consider the mapping
2&e; — 2Ewm;. Since there is only one way of writing a vector
x e Ry as Zfe;, this mapping is single-valued and, since any
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x € R, can be written in the form Z£.e;, the mapping is defined on
the whole of ®,. If y = Znse; 1s a second vector in Ry, y —
Znu;and x +y = 2(& + n)es — Z(& + n)us = ZEus + L,
Hence the transformation is a homomorphism. Moreover, ax =
Z(at)e; — Z(at)u; = a(ZEu;) so that the mapping is linear.
Clearly ¢; = le; — lu; = u; as required. Now let (a) be any
ny X ny matrix and let (f1, fo, * * +, f,,) be a basis in ;. Then we
define u; = Zay;f;, i =1, 2, -+, n;, and we can determine a
linear transformation .7 such that ¢;4 = u;. Evidently the ma-
trix of A relative to (e1, €2, * - -, €,), (f1, /2, **, fa,) 18 the given
matrix (). We have, therefore, shown that the correspondence
A — (a) is 1-1 between (R, N2) and the set of #; X 7, ma-
trices with elements in A.

EXERCISES

1. Let R be the vector space of polynomials of degree <# with real coefficients
and let D denote the differentiation operator. Show that D is #ilpotent in the
sense that D = 0, Determine the matrix of D relative to (1, A, -+, A*7!) and
also relative to (1, A/1l, - -« , A"} /(n — 1)}).

2. Let N be as in 1. and let U be the linear operator fA) — f(\ + 1). Prove

that
pn-t
=D
3. Determine the matrix of 8 = U — 1 relative to the basis (eo, €1, * * *, €n—1)

where
CMA=D A=A
= 7 .

D D
U=1+5+57++

eo=1, e

4. Let <N be the set of complex numbers regarded as a vector space over the
subfield of real numbers. Show that the mapping ¥ — % (complex conjugate) is
linear and determine its matrix relative to the basis (1, 7).

4, Compositions of matrices. As before, let R;, i = 1, 2, be
n; dimensional vector spaces over A and let (e1, €2, * -, €,),
(f1, f2y *++, f,y) be bases for these two spaces. Let . and B be
linear transformations of R into Ry, (a) and (B), respectively,
their matrices relative to the given bases. Then

(10) (,’,'/f = Eaﬁf,-, é’,'B = Eﬁijfj.
Hence

(11) ei(d + B) = ;4 + e;B = Z(ais + Bij)fs.
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This shows that the matrix of 4/ 4+ B is obtained from the mat-
rices (o) and (B8) by adding elements in the same position. Ac-
cordingly we define the sum of two #; X n, matrices («) and (B)
as the matrix whose (7, j)-element 1s ay; + B;;. It is easy to
verify that the set of 7, X #; matrices is a commutative group
relative to this addition. As a matter of fact, except for a differ-
ence of notation, this is a special case of the result noted in Chap-
ter I that the set of #-tuples form a group under addition as
addition of components. The O matrix is the matrix that has 0
in every place, and —(a) has the element —ay; in its (7, j) posi-
tion. Now the result that we established in (11)—namely, that
if 4 — (&) and B — (B) in the correspondence between linear
transformations and matrices, then A4 + B — (a) + (8)—is
equivalent to the statement that 4 — (a) is a group isomor-
phism.

We consider next a third vector space Rz with basis (g;, g2,
-+, £,.).- Let C be a linear transformation of R, into N3 and let
(v) be the matrix of C relative to ([f1, fa, s fus)> (&1, &2, **°»
). Then

(12) ij = E'Yikgk
so that

(13)  e(AC) = (; om'fj)c = ;aii(ffc) = ;aiﬂikgk-

This shows that the matrix of AC has the element 3 aiys in

2
its (i, k)-position; hence this matrix is the product (a)(y) as de-
fined in Chapter I.

The associative law for matrix multiplication has been estab-
lished before (p. 16). We now prove distributivity. The (i, k)
element of [() + (8)](¥) 1s

Z (es; + Bap)vsn
while the (i, k) element of (a)(y) + (B)(7) is
Z oiYie + E BiiYik-
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Hence by the distributive law in A,

[(e) + (B)](y) = (@ () + B ().

Similarly we can verify that

(@)[(B) + (] = (@)(B) + () (7).

We remark also that it is easy to deduce the associative and dis-
tributive laws for matrices from the corresponding laws for linear
transformations (cf. Exercise 1 below).

We note next that the set of #; X #, matrices with elements in
A can be regarded as a vector space (or a right vector space)
over A. This is clear since the set of matrices is essentially the
same as the set of #;7,-tuples over A. As before, we define p(a)
to be the #; X n, matrix whose elements are p times the corre-
sponding elements of A. Clearly the vector space that we ob-
tain in this way is #;#, dimensional. If we use our correspond-
ence between matrices and linear transformations, we can carry
over this discussion to the set (R;, R,) of linear transformations
of R, into R,. However, unless A = & is commutative, the sca-
lar multiplication in &(R;, R2) obtained in this way depends on
the choice of the bases in ®; and R,.

On theother hand, let A = ®. Then, as wesawin § 2, thereisa
way of defining a multiplication of linear transformations by ele-
ments of ® which is independent of the choice of bases. The prod-
uct vA4, v in ®, is taken to be the resultant v;4. Relative to this
composition (R, Ra) 1s a vector space over . We now note
that, if (e1, €2, - -+, €,,) is a basis for R, then e;y; = ye;. Hence
the matrix of v; relative to this basis is the diagonal matrix

% 0
(14) diag {v, v, -+, v} =

0 Y
Consequently if (@) is the matrix of A4 relative to (e, €2, - - -, €,,),
(f1y fas =+ fny), then y(a) is the matrix of vA4 relative to this
pair of bases. This means that the scalar multiplication ()
corresponds to yA.
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Another way of stating this result is the following. Let 4 —
(a) be the correspondence which associates with a linear trans-
formation A e 2(R;, N2) its matrix («) relative to the bases (e,
€25 "y €n)s (f1, fo, *++y fm). Then this correspondence is an
equivalence of the vector space 2(R1, N2) onto the vector space
of ny X ny matrices with elements in ®; for we have seen that
A — () is a group isomorphism and we have just verified that
vA — v(a). Since the matrix space is #;7,-dimensional, it fol-
lows from this that (R, Rz) 1s 7;#z-dimensional. This proves
the following

Theorem 1. Let Ry i =1, 2, be np-dimensional vector spaces
over a field ® and let QRy, RN2) be the set of linear transformations
of Ry into Ny. Define A + B, and vA for v in & as above. Then
LRy, Rao) 15 an mina-dimensional vector space relative to these
compositions.

We return now to the case of an arbitrary A, but we specialize
by taking ®; = R, = R. Also we take the f; = ¢; so that (@)
is now the matrix of 7 relative to the single basis (e, ¢z, - - -, €n).
In this case we have a correspondence 4 — (a) of the ring
g = R, R) onto the set A, of #» X n matrices. The addition
and multiplication compositions introduced in A, turn this set
into a ring. Also our results show that, if 4/ — (a), B — (8),
then 4+ B — (a) + (8) and 4B — (a)(B). Hence we have

the important

Theorem 2. Let R be an n-dimensional vector space with the
basis (e1, ez, * -+, €n) over A. If Ais a linear transformation in
R, we associate with A its matrix (a) relative to the basis (eq, é2,y -+ -,
en). Then A — (a) is an isomorphism of the ring L of linear
transformations in R onto the matrix ring A,.

EXERCISE

1. Prove associativity and distributivity of matrix multiplication by using the
corresponding properties of multiplication of linear transformations.

5. Change of basis. Equivalence and similarity of matrices.
Let («) be the matrix of A4 & (R;, Ra) relative to the bases (e,
€2, ** s en)y (f1y fo, 5 fu). We now change the bases in &
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and R, and we shall calculate the matrix of £ relative to the new
bases. Thus let (u;, #s, - -+, u,) be a second basis in R; where
u; = Zuge; and let (v, 02, - -+, v,,) be a second basis in R» where
vp = Zvpefy- The matrices (u) and (v) are non-singular, and we
write their inverses as (u) ™! = (ui%), () 7! = (1p,*). Now we
have

usd = (Zpge))d = Zpie;d) = Zpsiosm fp

— N * = e
= 2pijQpPpe*Vq = Zliglq

where

s = oo Vs *
Qg = Zﬂwam”pq .
ip

Hence the new matrix of A is

(15) (@ = W)™

where (u) gives the change of basis in ®; and where (») gives the
change of basis in R,.

Now we shall call two 7; X 7, matrices («) and (&) equivalent
(or associates) if there exist matrices (u) and (») in L(A, n,) and
L(A, ny) respectively such that

(16) (@) = (W) () ().

Thus we see that any two matrices of the linear transformation
A relative to different bases in the two spaces are equivalent.
The converse is also clear. For let (o) and (&) be related as in
(16) and let A be the linear transformation whose matrix is ()
relative to (ey, €, - -, €,,) and (f1, f2, * -+, fu)- Then this linear
transformation has the matrix (&) relative to (uq, us, -+, u,),
(w1, wa, -+, w,,) where

us = Zpgies, Wp = Zvpg*fy, (v) = (vpg™).

Assume next that ®; = R, = R and that (e;, €3, -+, ¢,) is a

basis. Let (a) be the matrix of A relative to (e1, €2, -+, €,).
Then ¢;4 = Zay,e;, and our computation shows that the matrix
of A relative to (uy, us, -~ -, #,), #; = Zusje; 1s

(17) (@ = (W@



LINEAR TRANSFORMATIONS 43

Two matrices in A, that are related in this way are said to be
stmilar. As in the case of equivalence it is clear that two ma-
trices in A, are similar if and only if both are matrices of the same
linear transformation relative to (single) bases for i over A.

As we shall see in the next section, it is easy to give necessary
and sufficient conditions for equivalence of matrices. On the
other hand, the problem of similarity requires a fairly elaborate
analysis, which we shall undertake in the next chapter. At this
point we illustrate the method that we shall use to handle this
problem.

Example. We wish to prove that the matrices

010 0 I 0
00 1 --- 01 &2

@= |-« « o« -|s B)=
100 --- 0 0 tn

where the {; are the # distinct #th roots of unity, are similar in C,, C the field of

complex numbers. We use (@) to determine a linear transformation 4 in an #

dimensional vector space R over C. This is done by choosing a basis

(e1, €2, "+ +, €n) in N and defining ¢;4 = Z oyje; = eiyy for i < nand = ¢ for
j

i = n. Then in order to prove our assertion, we must find a basis (e, ua, * * *, #n)
such that u;4 = u.{; for the 4 that we have just defined. Without giving the
details as to how one goes about finding such u;, we shall show that the following
u; satisfy the requirements.

wi=e 4+ filea+ it 0§ Ve,
uwid =es+ files +o o §T Ve = Fau,

Thus

and the u#; form a basis since the matrix of (u1, us, -+, #,) relative to
(e1, €3, ** *, €n) is the Vandermonde matrix

| UL ORI S U

1 {2—1 {2 —2 ces {2—(" -1
w=1 " Coee

1 g-n—l g‘n—2 {n_(n_l)

in which the ¢; 71 are distinct (cf. Exercise 1, p. 24). This proves the similarity
and shows in fact that (8) = (u)(@)(u) ~* where (u) is the above matrix.
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EXERCISES

1. Prove that the relations of equivalence and of similarity are reflexive, sym-
metric and transitive.

2. Prove that, if A has characteristic 0, then the following two matrices are
similar in A,

1 oo 1 70 - 0

11 -0 1 0 0 .- 0
@=L @=L
11 --- 1 00 -+ 0

6. Rank space and null space of a linear transformation. If
A is a linear transformation of ®; into Ry, and S, is a subspace of
%R,, then the image &,4 consisting of all vectors of the form x4,
x; in &4, is a subspace of Ra. If x1, ¥, € Sy, then x; + y, £ Sy,
and so x14 + y14 = (v + y1)4 e &, 4. Also, if x1 ¢ Sy, ax; e
©:; hence a(x14) = (ax1)A4 e &, 4. 1f the vectors f1, fa, ** ) fm
are generators for &, any x; € &, has the form 2Z¢; ;. Hence any
x14 = 2Z&(fid). Thus the image vectors f1.4, fod, - - -, fud are
generators for &,4. If the f; form a basis for &;, m = dim &,.
The images f;.4 need not form a basis for &,.4, but since they are,
in any case, generators, their number m > dim &,4. Hence we
see that the dimensionality of the image space never exceeds
that of the original space.

We shall call the subspace ®,4 of R, the rank space of A; its
dimensionality the rank of 4. 1If (e, €5, - -+, €,) is a basis for
Ry, WA = [e1d, ey A4, ---, e, ], the space spanned by the vec-
tors ¢;4. Hence the rank of A is the rank of the set (¢;4, ¢34,

oy emd)e I (f1,f2, + 5 fop) 15 a basis for Ry and e, = 3 ayi fs,

2
i =1,2, -+, ny, then the rank of the set (e;4, e24, - - -, ¢, 4) is
the same as the row rank of the matrix (@) of 4 determined by
the bases (e, €2, * -+, €,,), (f1, /25 = **, fnp). This proves the fol-

lowing

Theorem 3. The rank of a linear transformation A of a vector
space equals the row rank of any matrix of A.

We consider next the totality R of vectors 2 in ®; such that
24 = 0. It is readily verified that ® is a subspace of ®;. We
call it the null space of A and its dimensionality the nullity of A.
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We prove now the main theorem relating the rank and the nul-
lity of A.

Theorem 4. Rank of A + nullity of 4 = ny, the dimensionality
of the space R;.

Proof. Let (21, 22, - -+, 2,) be a basis for ®. We can supple-
ment this basis by #; — » vectors x; to obtain the basis (xq, - -,
Xni—ui 21y 22, -, 2,) for R;. The vectors

1Ay %oy -y %, A 214, -0 24

are generators for the rank space ®,4 C R,. Since the 2,4 = 0,
the vectors w14, - -, x,,_,4 are also generators for #;4. But
these vectors are linearly independent. Thus if

Bi(w1Ad) + Ba(x2A) 4+ -+ By —, (%, 4) = 0,

then (2Bx,)A4 =0 and ZBwx; e N = [21, 29, - -, z]. Since the
set (W1, **, ¥n_p» 21, * ' %) 18 an independent set, this implies
that the 8; are all 0. Hence if we set y; = x:4, (y1, Yo, -,
Y- is a basis for ®;.4. Thus dim #,4 = #; — v = n; — nul-
lity of A4 and this proves the theorem.

We now supplement the basis (y1, y2, ***5 Yn_.) Of R1A4 to a
basis ()’1, Y2y "ty Fny—ss Wiy, Way =00y wnz-m-{-v) for 2. Then we
have the relations

ny—v

xAd =9y 1=12 - p=n—v»
224 =0, j=1, -+,

These show that the matrix of £ relative to the bases (xy, - -,
Xps 21y *° Z,,), (_yh oty Ve Wiy ey wnz—p) 18

—pP—

(18) diag {1, ---, 1,0, ---, 0}.*

If the matrices of these bases relative to the original bases (e,
€2, """y em) and (f1, J2s fnz) are l‘eSPeCtiVeIY (w) and (»),
then, as we have seen in the preceding section, (u)(a)(»)~!is the
matrix (18). The number p is the row rank of the matrix (o).
This proves the following

* We use this notation, introduced in (14), for a matrix whose non-zero entries occur
only in the (1,1), (2,2), etc., positions.
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Theorem 5. If (@) is an ny X ny matrix with elements in a
division ring A and if (o) has row rank p, then (a) is equivalent to
the matrix given in equation (18).

If (o) and (&) are equivalent matrices, then we know that these
can be taken to be matrices of the same linear transformation 4.
The row ranks of (@) and of (&) coincide with the rank of 4.
Hence equivalent matrices have the same row rank. Conversely
if (o) and (&) have the same row rank p, then both of these ma-
trices are equivalent to the same matrix (18). Hence they are
equivalent.

Theorem 6. Two ny, X ny matrices with elements in a division
ring A are equivalent if and only if they have the same row rank.

We consider now the conditions that a linear transformation A4
of R, into R, be an equivalence. Since A4 is a homomorphism,
A is 1-1 if and only if its kernel :# = 0. Clearly R is the null-
space of 4. Hence A is a 1-1 transformation of ®; onto Ry if
and only if: (1) Rt = 0; (2) R4 = R,. In the special case in
which R, = R, = R either of these conditions is sufficient; for if
N =0, rank 4/ = dim R = n. Hence R4 = R. On the other
hand, if R4 = R, rank 4 = » and nullity 4 = 0. Hence # = 0.

It should be noted here, too, that, if 4 is an equivalence, then
its inverse 47! is also an equivalence. The verification is left
to the reader. The equivalences of a vector space onto itself
constitute a group relative to the resultant operation. If 4 is a
linear transformation in ® and (a) 1s its matrix relative to the
basis (ey, €3, - -+, €s), then A is an equivalence in R if and only
if (@) is a unit. Hence we see that the group of equivalences in
R is isomorphic to the group L(A, #) of non-singular matrices in
A,. The former group is called the full linear group in the vector
space H.

EXERCISES

1. Prove that, if 4 & YR, Ro) and &S, and U, are subspaces of Ry, then
G +WL=4+W4and (&, N W4 C &4 N N1 4.

2. Prove that, if (@) and (3) are 7 X # matrices with elements in 4, then (row)
rank [(@) + (8)] < rank (@) + rank (3).

3. Prove that, if (@) is an m X # matrix and (3) is an # X p matrix with ele-
ments in A, then rank (@)(8) < min (rank (@), rank (3)).
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_[1 -2 3
@ =1, 01]

find units (u) and () such that (u)(e)(¥) has the form (18).

5. (Fitting). If A is alinear transformation in &, let B be the set of vectors z
such that 24™ = 0 for some 7 and let & be the intersection of all the rank spaces
RA k= 1,2, ---. Show that B and & are subspaces and prove that f =
3D .

6. Show that 4 maps the two spaces 3 and & of Ex. 5 into themselves; that
A4 1s nilpotent in B and an equivalence in &. Use this result to prove that any
matrix in A, is similar to a matrix of the form

([ o)

where (8) is nilpotent and where (y) is non-singular.

7. Systems of linear equations. We consider the left-handed
system of linear equations

fia11 + By -+ Enam = &

fra1e + Escrae -+ Enam = 0,
(19)

Sro01m + br0om + -+ £nltnm = Om.

Here the a;; and 8; are given elements of the division ring A, and
we seek solutions & = B; in A, If & = B; satisfies these equa-
tions, then we say that the #-tuple (81, B2, - -, B,) is a solution.
If (81, B2, -+, Bx) and (By, B2/, -+, Bx') are two solutions of
(19), then (y1, Y2, -+, ¥») Where v; = 8/ — B; is a solution of
the system of Aomogeneous equations obtained by taking the
8; = 01in (19). Conversely if (81, Bz, * - -, Bn) 1s a solution of (19)
and (y1, Y2, -+ ¥n) 1s a solution of the homogeneous system,
then (8,/, Bs’, - - -, B,") where 8,/ = B: + v: is another solution of
(19). This shows that in order to obtain the solutions, if any, of
(19) we have to find a particular solution of this system and all
solutions of the corresponding homogeneous system. We will
then obtain all solutions of (19) by adding to the particular solu-
tion all solutions of the homogeneous system.

We therefore consider first the question of the existence of
solutions for (19). We introduce the vectors u; = Za;;f;, i = 1,
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2, -+, n, v = 28;f; where (f1, fo, **, fm) Is a basis for the m
dimensional space &. Then it is immediate that (8, B2, -+, Bn)
is a solution of (19) if and only if the B; satisfy

(20) v = Biur + Bothta + -+ Botty.

Hence (20) is solvable if and only if v is linearly dependent on
Uy, Uy, ++*y Un. On the other hand, v is linearly dependent on
the u; if and only if

rank (uh Uy * un) = rank (uh Ugy ** vy Unp,y U),

and this in turn holds if and only if the row rank of the matrix
(a) is the same as that of the augmented matrix

a11 Q12 Tt Om
Qa1 Oz Tt Oy
(21) .
tanl Op2 e Cpm
01 8 I

In particular, if A = & is commutative, then we have the fol-
lowing

Theorem 7. A system of linear equations (19) with a;; and §;
in a field ® has a solution & = B; in ® if and only if the matrix (o)
of the coefficients and the augmented matrix (21) have the same de-
terminantal ranks.

We consider next the homogeneous system obtained by setting
8; = 0. To study this system we introduce also an # dimensional
vector space R with the basis (e, ¢z, - -+, ¢,), and we let 4 be
the linear transformation whose matrix is («) relative to the bases
(€1, €25 =5 €n)y (f1,f25 * 5 fm). Then in the above notation the
vectors u; = ¢;4 and (By, Bs, -+ -, B,) constitute a solution of the
homogeneous system if and only if ZB,u; = 0. Since u; = ¢;4,
this amounts to the condition (Zgs:)A4 = 0. Thus (81, B2, -,
B,) is a solution if and only if Z8;e; is in the null space %t of 4.
If » is the nullity of A4, we have a basis (24, 22, - - -, %) for % and,
if 2 = 2B:Me;, k=1,2, ---, », then

(:31(‘1)> 182(1)> Y :Bn(l))> T (:81(y)> '32(,,)’ ST ,Bn(y))
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is a set of (left) linearly independent solutions of the homogeneous
system. Moreover, any solution (81, B2, - - -, B,) is a linear com-
bination of these solutions. Because of the relation between
rank and nullity, we know that » = #» — p where p is the row
rank of the matrix (a). We therefore have the following result:

Theorem 8. Let 3 Ey; = 0,7 = 1,2, -+, m, be a left-handed
=1

system of homogeneous equations and let the row rank of (o) be p.
Then there exist n — p linearly independent solutions (8;®, By ¥,
ey BNk =1,2, -, m — p, such that any solution of the sys-
tem is a left linear combination of these solutions.

An immediate consequence of this theorem is the result, noted
previously in an exercise (p. 13), that a system of m homo-
geneous equations in more than m unknowns has a non-trivial
solution. We remark also that in the commutative case we can
drop the modifier “left” in the above statement and replace rank
by determinantal rank.

EXERCISE

Find all the solutions of the following system

26~ b+ 8 —36=0

b+ & —§&+24=0

4t b &+ =0,
A, the field of rational numbers.

8. Linear transformations in right vector spaces. If ®;" and
Ry’ are right vector spaces, a /linear transformation of R, into
R, is defined to be a mapping of R,’ into Ry’ such that
(22) "+ VA =x'A+yA4, (¥a)d = (x4

for all ¥/, y’ in ;" and all « in A. The discussion for left vector
spaces can be carried over to the present situation with one or
two notational changes. If (ey/, €2’ - -+, ¢,/) and (A, fo/s s
fa)) are bases in R,” and R, respectively, we write

(23) 6’7,"4 = Ef]'/a]'i) i = 1’ 2’ ey ny

j=1
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and we call

011 Q1z Tt Ogp,

Qg1 Ogg  **°  Qoyy
(24)

Opil QGpiz " Opng

the matrix of the linear transformation A relative to the given bases.
It should be noted that (24) is the transposed of the matrix of
the coefficients on the right-hand side of (23). As before, to the
sum of linear transformations corresponds the sum of matrices.
The situation for the product is, however, different from that of left
vector spaces. Suppose that (g1/, g2’y = - -, £,,) is a basis for Ry’
and let B be a linear transformation of R, into Kz’. Let (8) be
the matrix of B relative to the bases (fi/, fa', *+, fa))s (g15 &2,
) gna/)' Then

fi/B = Egk,ﬁki) ] = 1) 2) T, R
Hence
e/AB = (Zfi,aii)B =2 (fiB)ay = Zkgk/ﬁkiaii
2 2 2y

= 2g1 Yri

where vi; = 2 Brja;i. Thus the matrix of C = 4B is the prod-
7

uct (8)(a) and not («){B) as before.

If ¥ = ¢ (R, ®") denotes the ring of linear transformations of
R’ into itself, then the correspondence 4 — (a) between the
linear transformations and their matrices relative to a definite
basis (e,/, €5’y -+, ¢,’) 1s now an anti-automorphism. Thus it is
1-1, and to the sum of linear transformations corresponds the
sum of the matrices, and to the product of linear transformations
corresponds the product of the corresponding matrices taken in
reverse order. The ring ¥’ is anti-isomorphic to the matrix ring
A, and hence also to the ring € of linear transformations in an
n-dimensional left vector space over A.

A change of basis from (e, e/, -, €,/) to (ur/, us'y -+, uy,))
where u;/ = Ze;/u;; and a change of basis from (fi/, /o', ++, fu)
to (v1/, vay -+, v,) where v,/ = Zf/vy, is now reflected in a
change of the matrix of 4 from (a) to

(@ = () ") (u).
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If a single basis is used in ®;" = R,’ = R, the matrix (a) of 4
is replaced on changing the basis by the similar one (1) () (u)
where (u) gives the change of basis.

Our discussion of rank and nullity may be carried over with-
out change. The rank of 4 now turns out to be the column rank
of its matrices. This implies that equivalent matrices have the
same column rank as well as the same row rank. Now we have
seen that any matrix (@) i1s equivalent to one in the “normal”
form (18). Also it is immediate from the definition that a matrix
in normal form has the same row rank and column rank. It fol-
lows that the arbitrary matrix («) has the same row rank and
column rank. We state this result as

Theorem 9. The row rank and the column rank of any matrix
are the same.

A second, and somewhat more geometric, proof of this result
will be given in § 12. We note finally that the theory of right-
handed systems of linear equations can be developed in a man-
ner completely analogous to that of left-handed systems con-
sidered above. We have only to replace left vector spaces by
right vector spaces.

EXERCISE

1. State and prove the analogue of Theorem 7 for right-handed systems.

9. Linear functions. We have defined a linear function on a
vector space R to be a mapping ¥ — f(x) of R into A such that

S+ ) = f(x) + 1), flax) = af(x).

If we define the sum of two such mappings in the usual way by

(f + &) =fx) + &)
and the product fu for u in A by

(fw(x) = f(®)u,

then we obtain a right vector space R* over A. This can be
verified directly. However, it may be more illuminating to in-
tegrate this result into the general theory of linear transformations
developed in § 2.
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For this purpose we recall that a linear function is just a linear
transformation of R into the one-dimensional vector space A.
Now the right multiplication p,: £ — £u is a linear transforma-
tion in the vector space A, since

E+ur=E+ o= Eu+ 9p = &+ np,
(a®)pr = (ab)p = a(tu) = altu,).

Also we know that the set of linear transformations of & into A
is a commutative group under addition and that the resultant of
a linear transformation of ® into A and a linear transformation
of A into itself is a linear transformation of % into A. Hence if
f and g e (R, A), then f + g and fu, e ¥(R, A). Since the defini-
tion of fu given above is simply the resultant fu,,

(f+u=(~+QDu = fur+ gur = fu + gu
S+ v) = flw+9)r = flur +v0) = fur + frr = fu+ fo
Sw) = f(w), = furs) = (fu)vr = (fu)r
A==

This establishes the assertion made above that the set ®* of
linear functions is a right vector space over A. We call this
space the conjugate space of the vector space ®.

Now suppose R is finite dimensional with the basis (e, e,,

-+, ). A linear function f is completely determined by the
values f(e;) = a;. Moreover, for arbitrary a; e A there exists a
linear function such that f(e;) = as. If x = Z&e;, then f(w) =
Z¢,0;. We can also state these simple results in terms of matrices
as follows. If fis a linear function and f(¢;) = a;, then we can
use the basis 1 in A and write f(¢;) = a;1. Then we see that the
matrix of f relative to (eq, €2, **, €,), (1) is

(23]
(23

(25)

228
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We obtain in this way a 1-1 correspondence between R* and the
set of # X 1 matrices with elements in A. Sums correspond
under this correspondence. Also it is immediate that, if f has
the matrix (25), then fu has the matrix

(2372

Cg b

Opfh

From this it is clear that ®* is equivalent to the right vector
space of n-tuples (now written as columns). Evidently this im-
plies that ®* is # dimensional over A.

The last result can be made somewhat more transparent in
the following way. If (ey, €2, -« -, €,) is a basis for i over A, we
define a set (e1*, 2™, - - -, ¢,*) of linear functions by the equations

(26) 61’*(67) = 51']’ i’j = 1, 2’ SN n’

where 8;; = 0if i 2 7 and = 1 if i = j. Then the value of the
linear function Ze¢;*a; for e; is

Z ei*ae;) = E ei*(eos = a5, j=1,2,--+,m

and this implies that the ¢;* form a basis for ®* over A. Thus if
f1s any linear function and f(e;) = ay, then f and Ze;*a; have the
same values at the ¢;. Hence f = Z¢;*a;.  Also the ¢;* are lin-
early independent; for if Ze;*a; = 0, then the displayed equa-
tions show that every a; = 0. We shall call the basis (¢, %, ¢,*,
-, e, %) the complementary basis to (e, eay -+, €,). Such bases
will play an important role in the sequel.

EXERCISE

1. Prove that the right multiplications are the only linear transformations in
the vector space A.

10. Duality between a finite dimensional space and its con-
jugate space. Let x be a fixed vector in the space ® and let f
range over the conjugate space R* of ®. Then the mapping
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f — f(x) appears to be a mapping of ®* into A. To emphasize
that we are now dealing with a function of f e R* we write x(f)
for f(x). We assert that x(f) is linear; for

x(f+8) =+ k) =fx) + glx) = x(f) + x(g)
x(fa) = (fa)(x) = f(x)a = x(f)a.

Thus we see that every vector x ¢ & determines an element x(f)
of the (left) vector space R** of linear functions defined on R*.

We consider next the properties of the mapping x — x(f) of
R into R**. We note first that this mapping is a linear transfor-
mation of R into RN**; for

x +0) = fle +3) = fx) + /) = %(f) +3()

and this means that the function associated with x + y is the
sum of the function x(f) and y(f). Also

(ax)(f) = flaw) = af(x) = ax(f),

so that the linear function associated with ax is @ times the linear
function associated with x. We prove next that ¥ — x(f) is
1-1. For this it suffices to show that, if x(f) = 0 for all £, then

= 0. Now this is clear; for if ¥ % 0, we can take x as the first
vector ¢, of a basis (e, €2, -+, ¢,). We have seen that there
exists a linear function f such that f(e;) = a; for any given a,.
In particular, we can find an f such that f(x) = f(e;) # 0.

We have now established that the mapping x — x(f) is a 1-1
linear transformation of R into N**. Hence if & denotes the
image space, dim & = dim ® = #. On the other hand, we know
that dim ® = dim ®* = dim ®**. Hence dim & = dim R**.
This, of course, implies that & = R**. We are now led to the
striking conclusion that every linear function on R* can be ob-
tained as an x(f) for some vector x e ®. This is the important
principle of duality that ® can be identified with the conjugate
space of (the space of linear functions on) R*. As a first applica-
tion of this result we prove the following

Theorem 10. [f (e1*, e2*, - -+, e,*) is a basis for R*, then there
exists a basis (ey, <« -, €n) for R such that e;*(e;) = 8.
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Proof. We know that we can find in ®** a basis (e;**, ¢,**,
<oy e,¥%) that is complementary to the given basis (e1*, e5*,
<o+, e,%), that is, ¢;**(e;*) = 6,;;. But there exist vectors ¢y, ey,
<+, e, iIn R such that e;%(e,) = e,*¥(e;*), ¢, 7 =1,2, -+, n
These vectors satisfy the conditions of the theorem.

We shall establish next a reciprocal relationship between the
subspaces of ® and the subspaces of its conjugate space R*. If
& is a subspace of R, we let j(&) be the totality of vectors g ¢ R*
such that g(y) = O forally e &. Theset j(&) is clearly a subspace
of ®* and we shall call it the subspace of R* incident with &.
Similarly if &* is a subspace of ®*, we obtain the subspace 7(&*)
incident with &*. This consists of the vectors y such that g(y)
= 0 for all ge &*, Evidently if &, 2 @2, then ](@1) g](@z),
that is, the correspondence & — ;j(©) is an order reversing cor-
respondence of the lattice L(R) of subspaces of R into the lattice
L(%*) of subspaces of ®*. It is clear also that j(j(®)) 2 &.
We prove next the following

Lemma. For any & C R, dim j(8) = n — dim & and for any
S* C R*, dim j(&%) = n — dim S*.

Proof. Because of the duality between % and R*, it suffices to
prove one of these statements. We choose the first. Let & be a
subspace of % and let (1, uy, - -+, u,) be a basis for ® such that
(41, w9, -+, u,) is a basis for &. Let (u*, us*, - -+, u,*) be the
complementary basis for #*. Suppose now that g = Zu,*B; € /().
Then (Zu;*8:)(u;) = Oforj = 1,2, ---,r. But (2u;*8;)(u;) = B;.
Hence g = ; u;*8;. Conversely, any linear form g = Y u;*8;

r+1
satisfies g(u;) = 0 for j = 1,2, -+, ». Hence also g(y) = 0 for

every ye®. Thus (&) = [#p1*, #ris* -+, #,*]. Hence
dim & = r while dim j(&) = n — .

An immediate consequence of this lemma is that j(;(&)) = &
and j(;(&*)) = &* for any & and &*. Thus we have seen that
J(j(®&)) 2 & Moreover, dim j(j(&)) =n — (n — r) if dim & =
r. Hence dimj(j(®)) = dim &, and this implies that & =
7(7(&)).

We now see that the mapping & — (&) is a 1-1 mapping of
L(R) onto L(®*. If j(&,) = j(&y), then &; = j(j(&,)) =
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7(j(&)) = &,. Moreover, if &* is any element of L(R*), then
&* = j(®) where & = j(&%*).

EXERCISES

1. Prove that, if & — &is a 1-1 order reversing correspondence of one lattice

onto a second one, then &, + &, = &, N &; and &, N &, = &, + S..

2. Let f be a linear function on & and let f denote its contraction on the sub-
space & of R, that is, 7 is the mapping y — Ay) for y in &. Show that the
mappmgf —> fisalinear transformation of F* into the space S* of linear func-
tions on &. Show that j(&) is the null-space of this transformation. Prove
that f - F is 2 mapping of :* onto &*,

3. Prove that, if e*, eg*, -+, e.* are linearly independent linear functions
then there exist vectors ey, €3, * **, ¢, such that e;*(e;) = 645,74,/ = 1,2, +++, 1.

11. Transpose of a linear transformation. Let A4 be a linear
transformation of ®; into R, and let f be a linear function de-
fined on R,. Then the mappmg x1 — f(x1A4) is a linear function
defined on $,;; for this mapping is simply the resultant A4f of
A and f, that is,

(27) (Af)(x1) = flx1 ).

We now let f vary over the conjugate space R,* of R,. Then we
obtain a mapping f — Af of R* into RN, *. We assert that it is
linear. By the distributive law

A(f+g) = 4f + dg
and by the associative law

A(fw) = A(fur) = (Afur = (Af)u

and these are the defining conditions. We shall call the linear
transformation f — Af of Ry* into N, * the transpose of A and we
denote it as A*. Hence fA4* = Af where on the right Af is the
resultant of 4 and /.

We consider next the properties of the mapping 4 — A*.
First, if B is a second member of (R;, N2), then 4 + B e (R4, Ry),

fA4d+ BY* = (4 + B)f = Af + Bf = f4* + fB* = f(4* + B*).
Hence
(28) (4 + B)* = A4* + B*,
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Now let ®; be a third vector space and let C be a linear transfor-
mation of Ry into Rz. Then AC e (R, N3). Hence if £ e Rs*,
MACY* = (ACYh e Ry*. Moreover,

WACY* = (ACYh = A(Ch) = A(hC*) = (hC*A* = h(C*A4¥)
and this proves the rule
(29) (ACY* = C*4*,

Our results also apply, of course, to right vector spaces. In
particular, if 4* is a linear transformation of the right vector
space of linear functions R>* into the right vector space ®,%,
then we can associate with it a transpose transformation of ®,**
into Ro**, where R,** is the left vector space of linear functions
on R;*. On the other hand, we have the natural equivalences of
R, *¥* onto R; and these enable us to define a linear transformation
of R, into R, corresponding to the transpose of 4*. We shall call
this transformation the transpose A** of A* in R, to Ry, We
now determine the transformation A** for the given linear trans-
formation A* of R,* into R, *. Let f vary over Ro* and let x;
be a definite vector in ®;. Then the mapping

S = o (f4*) = (f4*) (%) e A

is a linear function on R,*. Hence there is a uniquely determined
vector ¥, € R such that

(30) (fA®) (1) = x:1(fA*) = x2(f) = f(x2)

holds for all fe R,*. We now have a mapping 4** sending x,
into x,. The argument given above shows that this mapping is
linear. This can also be verified directly.

We shall now show that the two correspondences A4 — A*
and A* — A** are inverses of each other, that is, if 4* is the
transpose of 4 & ¥(RN;, N2), then the transpose of £* in N; to RNy 1s
A and, if A** is the transpose in ®; to Ry of £* & YRy *, R1*), then
the transpose of 4** is 4*. To see the first of these statements
we note that (fA4*)(x1) = f(x14*%) by the definition of A**,
Hence f(x14) = f(x14**) and f(x14 — %1 4**) = 0 holds for all
f. As we have seen (p. 54) this implies that x;4 = x,4** for
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all x; so that 4/ = A** The second statement is proved by
using the relation

(fA®) (1) = flerd*¥) = (fA***) (%)

Since this holds for all x,, fA* = fA*** and A* = A*** It is
now immediate that the mapping 4 — A* is 1-1 of R, Ry)
onto 8(%2*, SRl*)

In the particular case of @ = (R, R) and * = YR*, R*) the
mapping 4 — A* is an anti-isomorphism between these two
rings. This is clear from the 1-1-ness and equations (28) and
(29).

12. Matrices of the transpose. Again let A be alinear transfor-
mation of ®; into R, and let (e1, ez, < -, €,), (1, f25 = s fnp) DE
bases in these spaces. We choose complementary bases (¢, *, e2*,
sy el ™, (A% f2F, oo, f¥) 1n the spaces R *, Rp*. Hence

e*(e;) = 8s5, [*(fd) = Opq-

Suppose now that (@) and (B), respectively, are the matrices of
A and of its transpose relative to these bases. Then

e;:d = E aipfp: JFA* = Zej*Biq.
Since f *(e;4) = fo*A*(es),
JSd* (E aipfz:) = E (€6;*Biq) (€:)-

Hence a;y = Biy and (o) = (8). In other words, if complementary
bases are used in R;, and in R;*, i = 1, 2, then the matrices of A
and of its transpose are equal.

This result i1s perhaps a little unexpected. Its explanation lies
in our definitions of matrices of linear transformations in left
vector spaces and in right vector spaces. In the special case in
which A = & is a field the result usually appears in a somewhat
different form. Here it is customary to consider all spaces as
left vector spaces, as can be done by writing ax for xa. Then
the relations f,*A* = E ¢;*a;, that we have just derived may
be written as

JFA* = E ¥, = E Qjeti* = E agi'es*
i ] i



LINEAR TRANSFORMATIONS 59

where oy = ;. Thus the matrix of 4* considering the R;* as
left vector spaces is the transposed matrix ()’ of the matrix («)
of 4. If ®; = Ry = R we have the isomorphisms 4/ — (a) and
A* — (a) of the rings of linear transformations € = (R, R) and
LR*, N¥) respectively onto the matrix ring ,. Since 4 — A*
is an anti-isomorphism we see that the mapping (e) — ()’ is an
anti-isomorphism in ®,, that is, (&) — (a)’ i1s 1-1 and

[(e) + B = (@ + B, [(a)B)] = B)(x)"

This, of course, can also be verified directly.

We return now to the general case of an arbitrary division ring,
and we shall establish the following relation between rank spaces
and null spaces of a linear transformation and its transpose.

Theorem 11. The null space of A is the subspace incident with
the rank space of the transpose A* of A. The rank space of A is the
subspace incident with the null space of A*.

Proof. It is sufficient to prove the first of these statements.
Hence let z be a vector such that 24 = 0. Then f(24) = 0 and
(fA4%)(z) = 0 for all f. Hence z e j(R2*4*). The converse fol-
lows by retracing the steps.

We can now prove

Theorem 12. Rank A = Rank A*.

Proof. Rank #* = dim (R,*4*) = dim j(N) where N is the null
space of 4. Also dim j(R) = n; — dim N where n; = dim R, =
dim ®,*. On the other hand, rank 4 = #; — dim N. Hence
rank 4 = rank A%

If (@) is any matrix, (a) can serve as the matrix of a linear
transformation A and also of the transpose 4* of 4. Then, as we
have seen, rank A is the row rank of («) while rank .4* is the
column rank of (a). Theorem 12 therefore gives a geometric
proof of the theorem that the two ranks of any matrix are equal.

13. Projections. We conclude this chapter by considering a
type of linear transformation of a vector space that is intimately
connected with direct decompositions of the space into subspaces.
Suppose that R = R1 DR @D -+ - ® R,, that is, R is a direct sum



60 LINEAR TRANSFORMATIONS

of the subspaces R; in the sense of § 11, Chapter 1. Then if x is
any vector in R, x may be written as

(31) x=x1tx2+--+ x,

where x; e R;. We know also that for a given 7 the component x;
of x in ®; 1s unique. Hence the mapping E; that sends x into x;
is single-valued. We wish to investigate the properties of these
mappings. Lety = y; + v + -+ y., v: e Ry; then

x+y=(1+y)+ &+ y) +oF (% + )

where x; + y; e ®i. Thus the component in R; of x + y is x; +
y;. Hence we have the following condition on E;:

(¥ +9)E; = xE; + yE:.
Also by (31)
ax = ax; + axe +++++ ax,.

Hence the component in ®; of ax is ax;. In other words, we have
the relation
(ax)E; = a(xE;).
We therefore see that E; is a linear transformation in & over A.
We consider next the relations that hold among the E,, We
note first that (31) may be rewritten as

(32) x =xE;+ xEy +- -+ xE,.
Hence
(33) Es.+ E,+---4+E, = 1.

If x; e R;, the representation (31) of x = x; reads x; = x;. Thus
willy = x5, x;E; =0 if 7% i. Now for any x, xE; = x; e R
Hence we see that xE.2 = x,E; = x, = xE; and xE;E; = x.E; =
0. We therefore have the following equations.

Now, in general, we shall call a linear transformation E that
is idempotent in the sense that it is equal to its square (E? = E)
a projection. A set of projections will be called orthogonal if the
product of any two distinct ones in the set is 0. Finally we shall
say that the set of orthogonal projections Ey, Ey, -+, E, is sup-
plementary if their sum is the identity mapping. Then the re-
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sults that we have just obtained concerning the mappings E; de-
termined by the decomposition ® = R, R @D - - - ® R, are that
these mappings form a supplementary set of orthogonal projec-
tions. We shall now show that every finite supplementary set of
orthogonal projections is obtained in this way. Thus let E;, E,,
+++, E, be such a set. Let ®;, = RE;, the rank space of E..
Then if x is any vector in ®

x =x1 = x(ZE;) = xEy + xE; +- -+ + xE,
eRE, +RE, +-- -+ RE,.
Hence R = R; + Ky +-- -+ R,. Next let

(35) Zi =21 4+ 21 +zigr o+ 2

where 2; e ;. Since z; has the form v,E;, 2,E; = y;E? = y,F; =
2. Similarly if 7 £ 7, 2;E; = y;E;E; = 0. Hence if we operate
on the left-hand side of (35) with E;, we obtain z; and, if we oper-
ate on the right-hand side, we obtain 0. Hence z; = 0. This
proves that %, N (%1 +- -+ Riy + Rigr +- -+ R,) = 0 for
i=1,2-+-,r. Thus R=R, OR.D- - - D R,. Since x = ZxE;
and xE; = x; e R;, the projections determined by this decomposi-
tion are the mappings ¥ — wxE;, that is, the given linear transfor-
mations £;. We have therefore established a 1-1 correspondence
between direct decomposition of the vector space and finite sets
of supplementary orthogonal projections.

We obtain next canonical bases for the set of supplementary
orthogonal projections Ey, Eyy -+, E,. Let R =%, - O R~
as above. Then we can obtain a basis (f1, f2, ** *, fa) for % such
that (fi, - -+, f,) is a basis for R, (o141, ** *5 for4s) 18 @ basis for
R, etc. Thus p; = rank E,. Since F;E; = 0 forj 5 i, the linear
transformation E; annihilates all the s outside the i-th subset
(St dpiaats s forronnas)- Since E2 = E; any vector in ®;
= RE; is sent into itself by E, It follows that the matrix of
E; relative to the basis (f1, f2, * -+, fa) is the diagonal matrix

(36) (8:) = dlag {O> 501, ---,1,0, -, 0}

in which all elements are O except those in p; ++++ p,_; + Ist
to p; + -+ -+ p;th rows.
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We now drop the assumption that ZE; = 1. Thus we suppose
that E,, E,, ---, E, is any finite set of orthogonal projections.
Set E = 2E;and E,,; =1 — E. Since E;E; = Ofori 5% j, <r,
E? =3E?=2E;=E. Hence also E,;*=(1 —-E?=1—
2QE+E2=1—-2E4+E=1—-E=E,,,. Moreover, ifj <7,
E;E = E;ZE; = E? = E; and similarly EE; = E;. This implies
EE,py = E1 —E)=E;— E,E=E; — E; =0 and E, ,E;
= 0. We have therefore shown that the set £, Ey, -+, E,,; is
a supplementary orthogonal set of projections. Our discussion
shows that there exists a basis (fq, f2, * -+, fn) of R such that the
matrix of E; relative to this basis has the form (36), i =1, 2,

T

These remarks apply in particular to a single idempotent lin-
ear transformation. If E; is of this type, then £; and E, = 1
— E, are orthogonal and supplementary. Relative to a suitable
basis the matrix of E; has the form diag {1, 1, ---, 1,0, - -+, 0}.
The number of 1’s is the rank of E;.

EXERCISES

1. Prove the following theorem on matrices: If (1), (e2), -+, (&) is a set of
matrices such that

Q7 () = (&), (e)(e) =0 if i,
then there exists a matrix (u) in L(A, #) such that (u)(e)(u) 7 has the form (36).

2. Prove that two projections E and F have the same rank spaces if and only
if EF = E and FE = F. Prove that they have the same null spaces if and only
if EF = F, FE = E.

3. Show that, if £y, E, -+ +, Ey are projections with the same rank spaces and
oy, g, + -+, oy are elements of A such that Za; = 1, then ZoyE; is a projection
with the same rank space as the E,.

4, Assume that the characteristic of A is not 2. (This means that, if a 0,
then2a = @ + a # 0in A.) Prove that, if E; and E; are projections whose sum
is a projection, then E; and Ej are orthogonal.

5. Show that, if E; and E; are commutative projections, then E;E and
E, + E; — E\E; are projections.



Chapter TII

THE THEORY OF A SINGLE
LINEAR TRANSFORMATION

This chapter is devoted to the study of a single linear transfor-
mation in a vector space over a field. We shall obtain a decompo-
sition of the vector spaces into so-called cyclic subspaces relative
to a given linear transformation. By choosing appropriate bases
in these spaces we obtain certain canonical matrices for the trans-
formation. These results yield necessary and sufficient condi-
tions for similarity of matrices. Following Krull we shall derive
the fundamental decomposition theorems by making use of the
theory of finitely generated o-modules, o a principal ideal domain.
We shall also prove in this chapter the Hamilton-Cayley-Fro-
benius theorems on the characteristic and minimum polynomials
of a matrix. Finally we study the algebra of linear transforma-
tions that commute with a given transformation.

1. The minimum polynomial of a linear transformation.
Throughout this chapter we assume that the underlying division
ring is a field. We use the notation ® for this field. Let % be a
vector space over ® and let = (R, R) be the set of linear trans-
formations of ® into itself. We recall that € can be regarded as
an algebra over ®: that is, 1) ® is a ring; 2) € is a vector space
over & with addition the same as the ring addition; and 3)

v(AB) = (yA)B = A(yB)

holds for 4, B in ® and v in ®. The product v4 is by definition
the resultant ;.4 = Av,. We recall also that  is #2 dimensional
over &.

63
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Now let 4 be an arbitrary linear transformation in ® and let
[1, 4, A%, - --] be the subspace of € spanned by the powers of 4.
If A4 is not a multiple of 1, the pair (1, 4) is a linearly independent
set. Again if 4% is not linearly dependent on (1, 4), then, since
(1, A4) 1s an independent set, so also is (1, 4, 4?). Continuing
in this way we obtain the linearly independent sets (1), (1, 4),
(1, 4, /{2)> (1, 4, /{2> /{3)> .

Since ¢ is finite dimensional, this process must break off after
a finite number of steps. This, of course, occurs when we reach
the first power 4™ of A which is linearly dependent on preceding
powers. Then (1, 4, 42, ---, A™™') is linearly independent,
but Ame[l, A, A2, ---, A"']. Hence we have a relation of the
form

(1) A™ = pol + pd +-+ -+ pm_y 4™

where the p; e ®. Multiplication of (1) by A yields, in virtue of
the distributive law and the algebra condition 3) above, the
equation

At = mod + ,U'11{2 +oit pmrd™

Since A™e[1, A4, A%, ---, A™71], this shows that 4"t ¢[1, A4,
A% -+, A™71). Similarly we can prove that A™*2, Am+3 ...
are in [1, 4, A2, ---, A™~']. Hence

[1> d) /{2> ] = [1> d) /{2> "')dm_lL

and since the displayed set of A4* is a linearly independent one,
we see that [1, 4, 4%, - - -] has the basis (1, 4, 42, ---, A™71).

The relation (1) has an important interpretation which we shall
now examine. We note first that the mapping

(2) a — al = o
is an isomorphism of ® into . Thus
(@+ Bl =al +51

(@B)1 = (ef) (1) = a(8(1%)) = a(1(81)) = (al)(81)

and al # 0if a # 0 so that the mapping is 1-1. It follows that
the image set ®1 is a subfield of ¢ isomorphic to &.

3)
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Now let ®[\] denote the integral domain of polynomials in the
transcendental element (indeterminate) N with coefficients in ®.
The linear transformation A4 commutes with every element
al(= o). It follows from this that the mapping

) fON) = a0+ N+ ad -+ o f(A)
=agl + oy d + apAd? +---

is a homomorphism of ®[A] into & This homomorphism is an ex-
tension of the isomorphism (2), and it is characterized by the
property that it maps A into 4. Let & be the kernel of our homo-
morphism, that is, & is the ideal of polynomials »(\) such that
v(A4) = 0. Now it is known that ®[\] is a principal ideal domain.*
By this we mean that every ideal in ®[A] consists of the multiples
of a particular polynomial. In particular & = (u(N\)) is the set
of multiples of u(\). The generator p(\) is uniquely determined
if we specify that its leading coefficient 1s 1. By the relation (1)

A™ — ,“'m—llfm—_l - ,Ufm-—2/{m—2 — ,U'OI = 0.
Hence we see that the polynomial
(5) A" = PN = g AT — e — g

which is # Oisin & The result that we established before there-
fore shows that & %2 0. We now note that the polynomial (5)
as determined by (1) is the generator u(\) of &; for otherwise
there exists a polynomial of degree lower than = such that
A"+ vy A7 + - -+ yy = 0, and this contradicts the linear in-
dependence of 1, 4, ---, A4".

We shall call the polynomial p(N) the minimum polynomial of
the linear transformation 4. It is characterized by the following
properties: 1) leading coefficient = 1; 2) u(A4) = 0; 3) if »(N) is
any polynomial such that »(4) = O, then »(A) is a multiple of
B(N).

The isomorphism between £ and the matrix ring ®, enables
us to carry over to matrices the results that we have just de-
rived. Let (a) be the matrix of A relative to (ey, €2, -+ -, €,).
Then we know that the matrix of B¢l + 814 + - - - + By A* rela-

* See, for instance, Volume I, p. 100, of these Lectures.
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tive to this basis is 8o1 + B1(a) +- -+ + Br(a)*. It follows that,
if the polynomial u(\) given by (5) is the minimum polynomial
of A, then

(@) = (@™ — pm_1(@™ 1 — -+ =yl = 0.

Conversely, a relation in («) implies a corresponding relation for
A. This implies that p(\) is the polynomial of least degree that
has (@) as a root. For this reason we shall also call u(\) the mini-
mum polynomial of the matrix (o).

EXERCISES

1. Prove the rule (aB8)(xy) = (ax)(By) for any algebra.
2. What is the minimum polynomial of an idempotent linear transformation

#= 0?

3. Let R be the vector space of polynomials of degree < » — 1 with real co-
efficients. Find the minimum polynomials of the differentiation operator D and
of the linear transformation A such that fA\)A4 = fQA + 1).

2. Cyclic subspaces. Of special interest in the study of a
linear transformation A is the discovery of subspaces & that are
invariant relative to A in the sense that they are mapped into
themselves by 4. If & is such a subspace, then 4 induces a
mapping in & and it is obvious that this mapping is a linear trans-
formation.

The simplest type of invariant subspace is an invariant sub-
space that is generated by a single vector. Let # be a particular
vector in ® and let & denote the smallest invariant subspace
containing . Since # € &, so is uA; hence also u4? = (uAd)A4,
ud® = (uA>)A4, ---. Thus

lu, ud, uAd?, ---1C .

On the other hand, if v is any vector in the space [u, u4, - -],
then
v = oot + ayud +-- -+ ouAd’

= uf(4)

where f(\) = ag + )\ +-+ -+ a,\". Hence v4 = uf(A)A ¢ [u,
ud, ---]. Thus this space is invariant, and [u, ud, uA?, -] 1s
therefore the smallest invariant subspace of % containing the vec-



THE THEORY OF A SINGLE LINEAR TRANSFORMATION 67

tor u. We now denote [u, uA, - --] by {«}, and we call this space
the cyclic space (relative to A) generated by the vector u.

Suppose now that # £ 0, and let uA4", r > 1, be the first vec-
tor in the sequence u, ud, uA?, - - - that is linearly dependent on
the preceding. Then, as in the above discussion of the powers of
A, we can conclude that

(6) {u} = [u> ud) ) udr—l]

and that (u, ud, -+, ud™"") is a basis for this space. Also we
have a relation of the form

uAd™ = vou + viud +-- -+ v,_qudr1
or, what is the same thing, #u,(4) = 0 where
@) pa(N) = N — p N — e — g,

From the definition of r it is clear that u,(M\) is a polynomial = 0
of least degree having the property up.(A4) = 0. We shall call
ue(N) the order of the vector u.

Consider now the totality &, of polynomials »(\) such that
uv(A) = 0. It is readily seen that &, is an ideal in ®[A\]. The
polynomial u,(A) of positive degree is in &, and is a non-zero
polynomial of least degree in this ideal. It follows that &, =
(ue(N)). We observe finally that u,(\) is the minimum polyno-
mial @A) of the linear transformation induced by A in {«}. For
if v is any vector in {«}, v = uf(A) so that

opu(A) = uf(Dpu(d) = upu(4) f(A) = 0f(4) = 0.

Hence p,(4) = 0in {«} and therefore g(A) | u,(A). On the other
hand, #a(4) = 0. Hence g(\) €S, and so w,(A) | G(A). These
two relations imply that g(A) = u, ().

If u =0, {u} =0. In this case S, = (1), and we shall say
that the order is 1.

If u(\) is the minimum polynomial of 4, then u(4) = 0 and
uu(A4) = 0. It follows that the minimum polynomial of A is a
multiple of every order u,(\).

3. Existence of a vector whose order is the minimum poly-
nomial. Let ¢, ¢2, - -+, & be a set of vectors that generate R
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relative to A4 in the sense that every vector x can be written in

r

the form x = Y expi(A), for suitable ¢;(\) in ®[A]. Such finite

1
sets exist; for any ordinary basis (ey, €2, * - -, €,) has this property.
Let 4(\) be the least common multiple [, (A), pe,(N)5 <+ 5 1, (W]
of the orders g, (\). Since each p,(N) is a factor of the minimum
polynomial p(\) of 4, @A) | u(A\). On the other hand, if x =
26’,'(#),'(1{), then

*i(d) = Zep(A)i(4) = Zew(A)pi(4) = 0.

Hence a(A4) = 0 and this implies that u(\) | Z(A). Hence u(\) =
Z(N). Thus the minimum polynomial of A is the least common
multiple of the orders of any set of generators. This generalizes
the result established above in the cyclic case.

We now write the p,(\) in terms of the same primes, say

Meg()‘) = ()\)kuﬂ_2()\)kzi . ﬂ_s()\)ku'

where the 7’s are distinct and k;; > 0. We may also suppose that
the leading coefficients of the #’s are all 1. Then if k; = max (k;1,
kj2y + 5 kjr), the polynomial

TN W - )" = B0 = u(N).

Now, in general, if the order u,(\) = u;(N)u2(N), then the order
of y = xu1(A4) is u2(A\). The proof is immediate. Applying this
fact we see that, if £; = ky;,, then the order of

fr = esmo( D) mg(A) - ()

is m;(\)*. Similarly, we can find a vector fj, j =2, ---, 5, of
order m;(\)®. We shall now show that the vector

f=f1 +f2 ++fs

has order us(\) = u(N). This will follow from the following more
general result:

Lemma. I[f the orders us(\) of fioy i = 1,2, - - -, s, are relatively
prime in pairs, then the order of f = f1 + fo +- - -+ fs is the prod-
uct v(\) = Hu;(\).
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Proof. Since fiu(4) = 0 for each i, fy(A) = Zfw(A4) = 0.
Hence u;(\) | »(A). We note next that if p;(A\) = p;N)ua(Nus(N)
<o us(N), then fpl(/{) =0 andfjpl(/{) =0 fOI‘j =2,3, -, 5
Hence, also fip1(A4) = 0. This implies that u;(A) | py(A). Since
pi(N) is prime to us(N), - -+, us(N), it follows that u;(\) | wy(N).
Similarly us(N) | s (N, #s) | ps(N), -+ -, Hence »(\) = Hus(N) is
a factor of u;(\). Thus u;(\) = »(A). This completes the proof.

The above discussion now gives the following

Theorem 1. There exists a vector in R whose order is the mini-
mum polynomial of A.

We know that the degree of the order of any vector « is the
dimensionality of the space {#}. Hence deg u,(\) < n. Thus
we have the

Corollary. The degree of the minimum polynomial of A is < n.

EXERCISE

1. Use the method of this section to prove that, if » is the maximum order
of the elements of a finite commutative group G, then ™ = 1 for all ¥ in G.

4. Cyclic linear transformations. The space R is called cyclic
(relative to A) and A is called ¢yc/ic (sometimes non-derogatory)
if there exists a single vector ¢ that generates R, that is, & = {¢}.
We know that in this case u(\) = p.(\), and this shows that the
orders of any two generators of a cyclic space are the same. It
shows also that the minimum polynomial of a cyclic linear trans-
formation has degree #; for if ® = {¢}, deg u.(\) = dim ® = n.
Hence deg u(\) = #n.

Conversely, suppose 4 is any linear transformation whose min-
imum polynomial has degree »n. Then by Theorem 1 there exists
a vector ¢ such that p,(A\) = u(\). Then deg u.(A\) = # and so
dim {e} = ». This, of course, means that {¢} = ®. We there-
fore have the following criterion.

Theorem 2. A linear transformation is cyclic if and only if its
minimum polynomial has degree n.

Suppose now that ® = {¢} and let
BO) = weQ) =N — pp A7 — - — g
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We know that the vectors (e, e4, - -+, eA" ) constitute a basis.
We wish to determine the matrix of A4 relative to this basis.

Since
ed = eA

(ed)A = eA?
(ed" A = eA"™1
(edn—l)/{ = woe + wi(ed) +---+ :U'n—-l(e/{n_l)>

the matrix we seek is

e 1 o - - - 0
o o1 0 . -0
(8)
o - . . .01
‘Mo M1 M2 0 Hpal
If u) = N — g, A" — -+« — ug is any polynomial, then the

n X n matrix given in (8) is called the companion matrix of u(X\).
If, as in the present case, A is cyclic with minimum polynomial
u(N), then (8) is called the Jordan canonical matrix of A. Clearly
the minimum polynomial may be read off from this matrix.

We proceed now to derive a canonical matrix that displays the
prime powers of u(\). We prove first

Theorem 3. Let ® = {e} and u(\) = uwi(N) -+ - us(\) where the
wi(N) are relatively prime in pairs. Then R = {e1} @ {ea} @ - -
© {e} where p,(\) = w:().

Let v;(\) = u(\)(u:(N\)) ™! and let ¢; = evi(4). Then p,(\) =
u:(\). We know also that the order of ¢/ = ¢; + €3 +-- -+ ¢, 1s
u(A). Hence {¢'} = ®. On the other hand, {¢'} C {e;} + {ea}
+---+ {es} sothat ® = {e;} + {ea} +-- -+ {eo}. Since dim R
= deg p(\) = = deg u;(\) = Z dim {e;}, the subspaces {e;} are
independent. Hence t = {e:;} @ {e2} @ -+ - @ {eo}.

Now let u(A) = w1, (N) e (W) - - - 7,(\)* where the 7, are distinct
primes. Then by Theorem 3, ® = {e;} @ {e2} @ - © {es}
where p,,(A\) = (N,
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For the sake of simplicity of notation we assume for the mo-
ment that s = 1. Then u(A) = #(A\)* where 7w(\) is prime, and if

T(N) = N — pg N TH — - — pg,
n = deg u(N\) = kg. We introduce the vectors
fi=en(A)*, fo = en(A)A, ---, fo= en(A)r1A497L;

Fuss = exldl % foys = en(d)72d, -y fog = en(d)F240Y

fo—a+1 = & fa—ngre = ed, -+, fog = ed?T

Thus each fis of the form e¢(A4) where deg ¢(\) < kg. Moreover,
the degree of the ¢(\)’s associated with distinct f’s are different.
It follows that the f’s are linearly independent, since a non-trivial
relation of the form Z§;f; = 0 entails the existence of a polyno-
mial »(A) # 0 of degree < kg such that ev(A4) = 0. This contra-
dicts the fact that deg u(\) = k¢ and establishes the linear inde-
pendence of the f’s. Since there are altogether kg f’s, (f1, f2, -,
Jfrq) 1s a basis for i over ®.

What is the matrix of A4 relative to (fy, f2, ** *, fxe)! We have
the following relations:

fid = fo
fod = [
fq—ld =fq

fod = en(A)71 4 = en(A) A — w(A)]
= er(A)* Yool + prd +- -+ pg_1477"]

pof1 + prfo+ -+ pe_ife

Jord = foy2

f4+21{ = f4+3
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f2q—1/{ =f2q
faqd = en(A)r 247 = en(A)* 2[4 — w(A)]

+ em(A)*1
= Pofq+1 + Plfq+2 +- 4+ p4—1f2q + /1

..........................

f(k—l)q+q—1/{ =fkq
fquf = pof(k_l)q+1 + Plf(k—l)q+2 +- 4 pq—-lfkq
+ fv—2rg41-

Hence the matrix of A relative to the basis (fy, f2, - - -, frxg) has
the form

[P
N P
) B = N

N P
where P is the companion matrix of #(A\) and N is the ¢ X ¢
matrix

00 0

00 0
(10) N = .

10 --- 0

We return now to the general case in which u(\) = 7, (\)Fr, (V)
coem W and R = {1} @ {ea} @ -+ D {ea}. We choose in each
{e:} a basis of the type just indicated. Together these bases
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give a basis for ®. The matrix of A4 relative to this basis is
B,
B,
(11)

B,

where each B; is determined by x,(\)* in the same way that B is
determined by 7w(N\)*%.

We shall call (11) the classical canonical matrix of the cyclic
linear transformation 4. The prime powers =;(\)* that occur in
the factorization of the minimum polynomial will be called the
elementary divisors of the cyclic linear transformation. To the
elementary divisor m;(\)* is associated the block B; in the classi-
cal canonical form. As an example, let ® be the field of rational
numbers, and let u(\) = (A — 1)3(A\2 — 2)2. The classical ca-
nonical matrix of the cyclic linear transformation with minimum
polynomial u(\) is

1 00
110
011
0 110 O
2 0100
0 0(0 1
1 02 0O
EXERCISES

1. Show that, if u(A) is any polynomial with leading coefficient 1, then there
exists a matrix (o) that has u(A) as its minimum polynomial.
2. Show that, if 4 is a linear transformation that has the diagonal matrix
diag {ay, ag, - -+, an}

where the a; are distinct, then the minimum polynomial of 4 is II(A — o). Hence
prove A cyclic.
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3. Use 2 to prove that, if C is the field of complex numbers and {1, oy ++ ¢, ¢n
are the » distinct roots of unity, then

o 010 0
¢ 001 - 0
and |- ves
000 -0 1
tn 100

are similar in C,.
4. Show that, if 4 is a linear transformation with matrix

01 oz -+ - ain
0 01 oo+ - aze
000 - - 01
000 00

then A is cyclic. Use this to prove that the given matrix is similar to

010 .- 0
001 ... 0
000 .01
000 .00

5. What is the classical canonical matrix of the cyclic linear transformation
whose minimum polynomial is A\ — 1)3A% + 1)\ + 1)2? Assume P to be the
field of real numbers.

6. Prove that,if R = {e1] D {2} @ --- @ {es} and the orders ug,(A) are rela-
tively prime in pairs, then & is cyclic.

5. The ®[\]-module determined by a linear transformation.
For the further study of a linear transformation we shall make
use of another idea, namely, that the homomorphism between
®[\] and the ring A = [1, A4, 42, - - -] can be used to turn the vector
space R into a $[\]-module. For this purpose we define the prod-
uct ¢(N\)x, x in R, to be the vector x¥¢(A4). Then

e x +5) = (¢ + y)¢(4) = xp(4) + y¢(A) = ¢(N)x + ¢ (\)y,

and since the linear transformations corresponding to ¢(\) + ¢(\)
and ¢(W\)Y(N) are respectively ¢(A) + ¢(A4) and (ALY (A) =
Y(A)e(A),
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[6(N) + ¢N)]x = x(¢(4) + ¥(A)] = x¢(A) + x¢(A)
e(N)x + (N
[eM¥WN]x = xW(Dd(A)] = (W ())p(A4) = s\ (¥ N)x)

1l = x1 = x.

Hence the basic module conditions hold.* There are several ad-
vantages to be gained in adopting the module point of view. In
the first place we replace the ring % by the ring ®[\]. The for-
mer may have quite a complicated algebraic structure; it may
contain nilpotent elements and it may have zero divisors. On
the other hand, we know that the polynomial ring ®[\] is an in-
tegral domain, and we have available the arithmetic theory of
this ring. The basic arithmetic fact concerning ®[\] is that every
ideal in this ring is a principal ideal.

A second advantage of the module point of view is that it
leads us to the consideration of other ®[A\]-modules that are of a
simpler structure than R and that can be used to study ®. In
fact we shall reduce our study of ® to that of free modules and
of submodules of free modules. This is accomplished in the fol-
lowing way: Let (e, €3, - - -, €,) be a basis for ® over ®. Then,
of course, the ¢; form a set of generators for R relative to ®[\].
The ®[\]-module R is not a free module since for any ¢ ¢ R there
exists a non-zero polynomial u.(\) such that u,(N\)e = eu.(4) = 0.

Hence there exist relations of the form D_ y;(\)e; = 0in which the
1

v:(\) are not all 0. In order to study these relations it is natural
to introduce the free ®[A\]-module § with basis (¢, %5, - - -, £,).
If v = 2¢;(\)#; is an element of §, then we associate with v the
element o7 = Z¢;(N)e; in R. This correspondence is a P[N]-
homomorphism of § on R. Let N denote the kernel of this homo-
morphism. It is immediate that 9 is a submodule of §. By defi-
nition Zv;(N\)#; € 9N if and only if the relation Zv;(\)e; = 0 holds

* 1t should be noted that the commutativity of multiplication in % was used in the
verification of the third axiom. We can also regard R as a right ®\]-module. Here
x¢(\) = x¢(A4). This is probably the more natural point of view. However, we have

adopted the above method in order to be consistent with our previous emphasis on left
modules.
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among the generators ¢;. Thus in a sense 9t corresponds to the
set of relations that obtain among the e;.

We can easily determine the submodule %. Let ¢,4 = Zayje;
so that () is the matrix of A relative to the given basis. Then
it is clear that the elements

01 = (N — o)ty — anals — - — auaty
vg = —agti + (N — aga)ly — - — aggt
Uy = _anltl - an2t2 - + ()‘ - ann)tn

are in . We shall now show that % is free and that the ¢’s form
a basis for this module. The definition v; = M; — Za;t; gives
M; = v; + Zayt;. These relations can be used to express any
element v = Z¢;(N)#; in the form Zy¢;(\)v;, + Zpi#; where the
ps e®. Clearly if ve M, then Zps; e M. Hence Zpe; = Cpit) T
= 0. But the ¢; are ®-independent, and this implies that every
p: = 0. Hence v = Zy.(N)v;, which shows that the v; are genera-
tors for M. Suppose next that Zy;(N\)o; = 0. Then

2%‘ ()\) N; = Ekbi()‘)aiftf
and

YN = ; ¥i(N) ey

If any ¢; # 0, let ¢, be one of maximum degree. Then clearly
the relation ¢, (\)\ = E ¥;(N) ey, is impossible. This proves that

the v; form a basis for 9.

6. Finitely generated p-modules, o, a principal ideal domain.
There is still another advantage of the module theoretic method:
It is easily generalized. In place of ®[\] we can consider any
principal ideal domain o and any finitely generated o-module ®.*
With a slight increase in difficulty we shall obtain in this way
other important applications. The most noteworthy of these is
the theory of ordinary finitely generated commutative groups.

* A good deal of what we shall do can also be done for 0-modules for which 0 is a non-
commutative principal ideal domain. This theory can be applied to the theory of a single
linear transformation in a vector space over a division ring. See the author’s Theory of
Rings, New York, 1943, Chapter 3.
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As we have noted in Chapter 1, this theory can be obtained by
regarding commutative groups as o-modules for o, the ring of
rational integers.

Hence let & be any finitely generated o-module and let (ey, ¢,

-+, ¢,) be a set of generators. Following the procedure that we
used above we introduce the free module § with basis (¢, £, - - -,
t,) and the mapping T: Z¢#; — Z¢se;. The mapping T is an
o-homomorphism. Hence the kernel % is a submodule of §. We
shall now show that any submodule of a free o-module, o princi-
pal, is free. It is convenient to use the convention that the mod-
ule 0 is a free module with a vacuous basis.

Thus let %t be any submodule of the free module § with the
basis (#1, 3, +* -, £,). We shall show by induction on # that % is
free and has a basis of m < » elements. This is clear if # = 0.
Hence we assume it true for modules § with bases of 7 — 1 ele-
ments. We consider now the totality & of elements 8; of o such
that Bif1 4 Bats +- - -+ Bat, e N. It is immediate that & 1s an
ideal; hence & = (8;). If & = O every element of M is of the
form Baf; + -+ - + Bats, and therefore it belongs to the free mod-
ule §’ with the basis (¢, #3, - -+, #,). In this case the result is

clear. Now assume that &; 5 0 and let v; = 8,4 + 2 8;'¢; be
2

an element of N that has the “leading coefficient” §;. Then if
v is any element of N, v = ZB#; and B; = u16;. Hence ¢/ =
v — uo; e F’. Of course this element also belongs to 9t. Now the
intersection ' = NN § is a submodule of §’, and so we can
assume that it is a free module with the basis v, vz, -+, U,

m
m < n. Then v/ = D wr and v = uyo; + Susvr. Hence (vy,
=2

m
U, ++ -, Um) 18 a set of generators for N. Suppose next that 3 po;
1

= 0. Then if we replace v; by 8,4, + Z8,#; and the other v’s by
their expressions in terms of 4, #3, * -+, £, We obtain

P16ty + po'ts ++ -+ pu't, = 0.

Since 8; 5 0, this implies that p; = 0. Hence we have D pix
2

= 0 from which we conclude that all the p’s are O since the ele-
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ments (vs, vg, ***, Uy) form a basis for ’. This concludes the
proof of the following

Theorem 4. If § is a free o-module with a basis of n elements
and o is a principal ideal domain, then any submodule of § is free
and has a basis of m < n elements.

7. Normalization of the generators of § and of %. We shall
suppose now that the elements (vy, vs, - -+, ) are merely genera-
tors for the submodule % of the free o-module § with basis (¢,
tyy <y t,). We write

U1 = o11f1 + O12fs -+ 014ty

(13) Vg = 021f1 + Gagfs + -+ 09ty

Um = Omit1 + Omabe + -+ + Opily.

The matrix (o) with elements o¢;; in o is uniquely determined by
the ordered sets (vy, 03, - -, Um) and (¢, 2o, *« -, £4).

Let (u:;) be a unit in the matrix ring and let the inverse matrix
be (u:;*). Define ¢/ = Zust;. Then we assert that the ¢/ con-
stitute another basis for §. In the first place we have the relations

Zur*t! = E prituit; = 2oty = by
%

Hence any element Z¢#; may be written in the form Zy#/ and
the ¢/ are generators. Next suppose that Zy#/ = 0. Then
2 vatiit; = 0. Hence ) yauy; = 0. But this implies that

%7 %

e = E] yasug* = 0,

and this proves that the #/ form a basis.

In a similar fashion we see that if (»,,) is a unit in o,,, then the
elements v, = Zy,.v, constitute a second set of generators of N.

Suppose now that the basis (¢, £, - - -, #,) is replaced by (¢,
ty'y ooy t))) where t/ = Zu;t;, (u) a unit, and that the set of
generators (o1, 02, * - -, 0n) of N is replaced by (v, v5/y -, vw’)
where v, = Zv,q0,. What is the matrix of (v,/, 05/, -+, ')
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relative to (¢4, &/, -+, #,")? We have the relations

r _ _ %yt
Up = E Vpelqg = E VpeOgit: = Z.quo'qiﬂii 4
q % 829

= Zrpif,
where 7,; = 3 vpeogins*.  Thus the new matrix is related to
@by
(14) (1) = W (@wW™

We are now led to the problem of making the “right’” choices for
the units (v) and (u) ™! so that the matrix (7) has a simple “nor-
mal” form.

8. Equivalence of matrices with elements in a principal ideal
domain. Two m X » matrices with elements in o are said to be
equivalent if there exist a unit (u) in o, and a unit (») in o, such

that
() = ()(@)(w).

This relation is an equivalence. The special case in which o is a
field has been considered previously. Here we learned that a
necessary and sufficient condition that (¢) and (7) be equivalent
is that they have the same determinantal rank. A consequence
of this result for the general case of an arbitrary principal ideal
domain is that a necessary condition for equivalence is equality
of ranks. For let () = (»)(¢)(u), where (u) and () are units.
Then if P is the quotient field of o, then the given equation may
be regarded as a relation between matrices with elements in P.
Clearly (u) e L(P, #) and (») € L(P, m). Hence by the result in
the field case (7) and (o) have the same determinantal ranks.
We consider now the problem of selecting among the matrices
equivalent to a given m X # matrix (o) one that has a particularly
simple form. The result that we wish to obtain is the following

Theorem 5. If (o) is an m X n matrix with elements in a prin-
cipal ideal domain o, there exists a matrix equivalent to (o) which
has the “diagonal” form (c¢f. (18), p. 45)

diag {61> 0oy - ‘s 67) O) Ty O}
where the 8; are % 0 and 8;| 8; (8: is a factor of 8;) if i < J.
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(a) We give first a constructive proof of this theorem which is
valid for the case where o is Euclidean. We recall that a commu-
tative integral domain is called Euclidean if there is defined a
degree 8(a) for every a in the domain, such that 8(4) is a non-
negative integer and such that

1. 8(a) =0 ifand onlyif 4 =0.
2. 8(ab) = 8(a)d(b).

3. If a is arbitrary and & s O, then there exist elements ¢ and
r with 8(r) < 8(¢) such that a = bg + 7.

We refer the reader to Volume I, p. 123, for the proof of the fact
that any ideal in a Euclidean domain is principal. We proceed
now with the proof of the theorem.

We note first that the square matrices

j
1
1 8 - 1
T45B) =
1
L 1
i
r1
1
Di(v) = Y T i
1
1]
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where 7 5 j and v is a unit in o and

i 1

1)

are units; for T;;(8) 7! = Ty(—B), Di(v) ™' = Di(y ") and P;;7 =
P;;. It is easy to verify that

I. Left multiplication of (¢) by an m X m matrix T,;(8) gives
a matrix whose ith row is obtained by multiplying the jth row of
(0) by B and adding it to the 7th row and whose other rows are
the same as in (o).

Right multiplication of (¢) by an # X # matrix T;;(8) gives a
matrix whose jth column is 8 times the 7th column of (o) plus the
jth column of (¢) and whose other columns are as in (o).

I1. Left multiplication of (¢) by an m X m matrix D.(v)
amounts to the operation of multiplying the ith row of (¢) by v
and leaving the other rows unchanged.

Right multiplication of (¢) by an # X # matrix D;(y) amounts
to the operation of multiplying the ith column of (¢) by y and
leaving the other columns unchanged.

ITI. Left multiplication of (¢) by an m X m matrix P,; amounts
to interchanging the ith and jth rows of (¢) and leaving the re-
maining rows unchanged.

Multiplication of (¢) on the right by an #n X #» matrix Py
amounts to the interchange of the ith and jth columns of (o).
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We refer to the matrices Ty, D,, P.; as elementary matrices,
and multiplication by these matrices as elementary transformations
of the respective types I, II and III. Any matrix that is ob-
tained from (o) by a finite sequence of elementary operations is
equivalent to (¢). We now proceed to the main part of the proof.

If (¢) = 0, we have nothing to prove. Otherwise let a;; be a
non-zero element of least degree in (¢). Elementary transforma-
tions of type III will move this element to the (1,1) position. If
o1x = 0118, + p1x where the degree 8(p1) < 8(s11), then we may
use an elementary transformation of type I to replace o1z by py;.
If p1x, ¥ 0, we have a new matrix equivalent to (o) in which there
are non-zero elements of degree less than the minimum non-zero
degree in (¢). We repeat the original process with this new ma-
trix. Similarly if ax; = ¢118:" + pr1 where 8(pz1) < 8(o11), then
either px; = 0 or we obtain a matrix equivalent to (¢) that has a
non-zero element of degree less than the minimum §(a;;) < 0.
Since the minimum degree # 0 is constantly decreasing, we even-
tually reach a matrix in which a3 = ¢,;8: and ox; = 7118 for
all k = 1,2, ---; n. Then elementary transformations of type I
yield an equivalent matrix of the form

P11 0 I |
0 P ceo Pan

(15) . 2.2 L 2 ' P11 = 011
0 Pm2 " Pmn

This process can now be applied to the submatrix (p;;) i = 2,

-y my j =2, ---, n. The necessary transformations do not
affect the first row or column, and yield an equivalent matrix of
the form

71 O . e 0
0 3 0 - 0

0 0 733 T3n
0 0 T™Tm3d " Tmn

Continuing in this way we obtain finally an equivalent matrix of
diagonal form, say diag {e;, €2, - * *, €, 0, - - -, 0} where the ¢; 5 0.
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If &; = e1B + ps with 8(p;) < 8(e;) and p; 5~ 0, then we may re-
place our diagonal matrix by the equivalent matrix

rel LY ei

€;

€41

This is equivalent to a matrix in which the element in the (1, 7)
position is p;. We then repeat our earlier process to “‘diagonalize”
this matrix. We obtain a new matrix diag {71, 92, - - *, 7, 0, - - -, 0}
in which 8(;) < 8(e;). A number of repetitions of this process
leads eventually to an equivalent diagonal matrix, diag {8;, 65,
.+, 8,0, ---, 0} in which the non-zero elements §; satisfy the
required divisibility conditions.

(b) The argument in the general case is similar to this. Here
we use the Jength of an element, that is, the number » of primes
m; that occur on a factorization of the element as mymy - m,
as a substitute for the degree used above. This number is an
invariant because of the unique factorization theorem in o (cf.
Volume I, p. 122). Suppose that ¢;; has smallest length for the
non-zero elements and suppose that o, /I/ o1z Write a = gy,
B8 = o1x and let § be a highest common factor of @ and 8. Then
there exist elements &, 5 such that af + 87 = 8. Set ¢ = 8571,
6 = —ad!. Then we have the matrix relation

N R R P

Thus these matrices are units; consequently

* 2 ) & means “a is not a factor of 4.”
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k
£ 0 0 ¢ 0
0 1

U= 1
n 0 0 9 k

1)

is a unit. The matrix (o) U has as its first row the vector (8, a2,
T135 ** %5 O1k—1)s Oy Trean)s * 7y T1in)- Since a/l/ B, the length
of 8 is less than that of & = ¢;;. Eventually this process and a
similar one applied to the first column yield a matrix equivalent
to (o) in which oy, is a factor of each oy; and of each ay;. As
before, this leads to a matrix of the form (15). The remainder
of the argument is a repetition of the one given above.

A matrix equivalent to (¢) that has the form given in Theorem 5
is called a normal form for the matrix (¢). The diagonal elements
of a normal form are called invariant factors of (¢). We shall
show in § 10 that they are, in fact, invariants of the given matrix.

EXERCISES
1. Obtain a normal form for the matrix
6 2 30
23 —4 1
-3 3 1 2|
-1 2 -3 5§
0 = I the ring of integers.
2. Obtain a normal form for the matrix
A—17 8 12 —14
(0) = —46 A+ 22 35 —41
7= 2 —1 A—+4 4|’

—4 2 2 A=3
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0 = Ry[A], Ry the field of rational numbers. Also find units (1) and (¥) such that
(»)(6)(u) = normal form.

3. Prove that a diagonal square matrix, diag {81, 82, -+ -, 0,} is a unit if and
only if every §; is a unit,

4. Use 3. to prove that, if o is Euclidean, then any unit in 9, is a product of
elementary matrices.

5. Show that, if 4 is a greatest common divisor of the elements a1, @2, * -, an,
then there exists a unit (u) in 0, such that (a1, - -+, a.)() = (4,0, - -+, 0).

6. Show that, if the elements @y, @13, -+, a1n are relatively prime (have
greatest common divisor = 1), then there exist elements a;;, 1 = 2, «+-, n,j =
1,2, -+, n, such that (@) is a unit.

9. Structure of finitely generated o-modules. In order to state
the structure theorems it will be well to introduce some general
concepts concerning o-modules. Some of these have already been
encountered in the special case of modules determined by a linear
transformation.

Let x be any element of the o-module . Then the set &, of
elements 8 e o such that 8x = 0 is an ideal. We call this ideal
the order ideal of the element x. If o is a principal ideal domain,
S, = (uz). Moreover, if o = ®[A\] and I, < (0), then we may
normalize u, to have leading coefficient 1. The u, thus obtained
is the order that we have considered before.

The totality {x} of multiples ax of the fixed element x in % is
a submodule. We call {x} the cyclic submodule generated by x
and we call ® cyclic if there exists an e such that ® = {¢}. If
&, = (0), the submodule {x} is a free module. In the contrary
case &, # (0) we say that x is of finite order.

If y=ax and Be S, then By = Bax = afx = 0. Hence
Be8,andso §, C 8,. Ifyisasecond generator of {x}, then also
3, C .. Hence &, = §,. Thus the order ideal depends only
on the cyclic submodule and not on the particular generator of
this submodule.

A module ® 1s said to be a direct sum of the submodules ®;,
§R2) Y gRza if

(16) R =% + R+ + R

in the sense that R is the smallest submodule containing all of
the R, and

(17) ReOP+--F+Ra+ R +---+R) =0
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for i = 1,2, ---, 5. If these conditions hold, we write ® = ®;
AR D - DRs. As in the case of a vector space R = R D R,
@ -+ @R, 1f and only if every x in R may be represented in one
and only one way in the form x; + x; +- - -+ x, where x; ¢ R..

We may now state the following fundamental structure theo-
rem for o-modules, o a principal ideal domain.

Theorem 6. If o is a principal ideal domain, any finitely gener-
ated o-module is a direct sum of cyclic submodules.

Proof. Let (ey, €5, -+, €,) be a set of generators for . As
above, we introduce the free module § with basis (¢, 25, -« -, #,)
and the o-homomorphism T: Z¢i2; — Z¢ie; of § onto R. Let N
be the kernel. Then we have seen that 9% has a basisof m < #
elements. For our purpose here we shall require only the weaker
result that 9N is finitely generated. Let (05, 05, - - -, vm) be a set

n
of generators and let v; = > a4t;, 1 = 1, 2, - -+, m, be the rela-
=1

tions connecting the v’s and the £’s as before. We now replace
the £s by (4, £/, -+, #,) and the v’s by (v, vo/, - -, v,,") where
t{ = Zuijty, v, = Zvpeve and (u) and (v) are units. Then the
matrix of the new set of generators (v,/, 05/, - - -, v5”) of N relative
to the new basis (4, #’, ---, £./) of § i1s (»)(¢)(u) L. We choose
the units (u) and (») so that (»)(¢)(u) ! has the normal form
diag {8y, 82, -+ +, 8,, 0, 0, - -+, 0}. The relations connecting the
new generators now read

(18) 01, = 61!1’, 02, = 62!2,, cety UT, = 6,!,',
Urg1’ =0, -+, v, =0.

Now define ¢/ = Zuie;.. Then since (u) is a unit these elements
are also generators of ®. We assert that

(19) ®={ald{al® o la}

and that the order ideal of {¢;/} for i < ris (8;), while for i > r
it is (0). Since the ¢;” are generators, (16) holds. To prove (17)

n
we must show that, if D B/ = 0, then each B’ = 0. Since
1

t{ = Zwiity, t/T = ¢/. Hence 28/ = 0 implies that 28/ ¢ N.
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a3 r
Since the v,/ are generators of 9, this means that >, 8 = 2 v;v;.
1 1

Hence
Bitr' + Bots” + -4 But’ = viditt' + yadats’ + -+ 4.0,
Since the ¢ form a basis for §, this implies that
B:=v:; fori <r and B:;=0 for:>r

Thus certainly B;e;/ = 0 for i > r. Moreover, since v/ ¢ i and
v = 8z fori <r,0/T = 8;¢;/ = 0. Hence also B:¢;/ = v:d:¢ =
0 for i <r. This proves our first assertion and completes the
proof of Theorem 6.

We have also shown that 8;e;/ = 0 for i > r implies that 8; = 0.
Hence the order ideal &, = (0). Moreover, we saw that, if
i <r, then B/ = 0 if and only if 8; is a multiple of §;. Hence
for these 7’s, &, = (8;). This proves the second assertion made
above.

There is another interpretation of our results that we now give.
We observe first that a direct sum of cyclic submodules such as
{e, 11’} {erqe’}y -+ -5 e’} in which the generators ¢;” have order
ideal = (0) is a free module. For if 8,116, 11 + Bryseras’ +- -+
+ Bnén” = 0, then each B/ =0 and since §,, = (0), 8; = 0.
We note next that the subset & of R of elements of finite order
is a submodule. For if y;, ¥, € & and Biy; = 0 for B; % 0, then
B1B82(y1 — y2) = 0 and B:8: = 0. Also if y ¢ &, then ay e & for
any a. We shall now prove that the submodule & = {e,’'} @
{e’} @ --- @ {e.’} that consists of all linear combinations a;e;’
+ asey’ + -+ -+ aye,’ is precisely the submodule & of elements of
finite order in ®. Sinceeache/,i =1,2, ---,r,isin &, & C &.
On the other hand, let y = aje;” + ages’ +- -+ @6, € &.
Then there exists a 8 5% 0 such that

Bouer” + Bagey’ + -+ -+ Baye,” = 0.

We have seen that this implies that Ba; = 0 for j > . Hence
a; =0forj>rand ye&S. Thus @ = &. Now it is clear that
R=6 {e,+1'} @B {en'} = &SPE where € = {e,+1'} @---
@ {e.’} is free. This proves the following
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Theorem 7. If ois a principal ideal domain, any finitely gener-
ated v-module is a direct sum of the submodule of elements of finite
order and a free module.

We note finally that in the decomposition R = {¢,"} @ {e.’'}
@ - @ {e.’} we may drop the terms {e;/} whose order ideals
are (8;) = (1). If there are 4 such terms, we write ¢y, = f;,
J=12,--- ¢ wheret = n — A, We shall also denote the num-
ber » — % of f’s of finite order by « and the number # — r of the

remaining f’s by v. Finally we change the notation 8., to ;.
Then

(20) g={flo{fle - alf

where

(21) S(fi = (61')> .7 =1, -, uy Jp = (O)>
k=u+1,---,¢ and &|6p if j<j.

For the case of an ordinary commutative group our results
specialize to the following theorems.

Theorem 8. Any finitely generated commutative group is a di-
rect sum of cyclic groups.

Theorem 9. Any finitely generated commutative group is a di-
rect sum of a finite group and a free group.

The finite group is & = {fi} @ {fo} @ -+ ® {fu}. Its order
is 8;83 - -+ 8, if §; is normalized to be positive.

10. Invariance theorems. In this section we prove that the
order ideals (8;), (82), -+, (8,) and the number v = # — u of f’s
in the free part {fui1} ® {fus2l ® - - @ {f:} are invariants.
We discuss first some more ideas concerning o-modules which
will be needed for the proof.

Let % be an o-module and let & be a submodule and %/& the
factor group of cosets ¥ + &. If aeo and x + & e R/S, we de-
fine a(x + &) = ax + &. Then since & is closed under scalar
multiplication, the result axwx + & given here does not depend on
the choice of the representative x in the coset » + &. It is
readily seen that %/& becomes an o-module relative to this defi-
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nition of scalar multiplication. The proof is the same as for vec-
tor spaces (cf. § 9, Chapter I). We note also that, if R is finitely
generated with generators ¢;, €s, -+, €,, then R/ is finitely gen-
erated with generators e; + &, ¢, + &, -+, ¢, + ©.

We suppose next that 9 is an ideal in o having the property
that Bx = 0 for all Be®B and all xeR. let@a=a+ B be a
coset in the difference ring & = 0/8. Then we define ax = ax.
If & = &, then @« — a; = BeB. Hence ax = (a; + Bx = ayx.
Thus @ 1s a single-valued function of & in 5 and ¥ in ®. It is
easy to verify that ® is an 5-module relative to this function.

We give now the invariance proof which we shall break up into
several stages. First let ® = § be a free module with basis (4,
tay +++y t,). Let M be a submodule and suppose now that (v,
s, +°, Um) represents a basis for 9. Then the new elements
t{, v," used in the proof of Theorem 6 form bases for § and N
respectively. We have the relations (18) connecting these ele-
ments. Now since no element of a basis can be 0, clearly » = m
in (18). Hence the number of #’s is not less than the number of
v’s. Consequently m < n. If %t = §, we may reverse the roles
of the ¢’ and the v" and prove that m = #. This proves that the
number of elements in any basis of a free 0-module, o a principal
ideal domain is an invariant. As for vector spaces we call this
number the dimensionality of the free module.

Assume next that every element of ® = & has finite order.

Let
e={flol{fle et}

be a second decomposition into cyclic submodules such that
Sy = (87) # (0) and 8, | 8’ for j < k. We wish to prove that

= ¢ and that (8;) = (&) for j = 1,2, ---, t. We define the
length of a decomposition & = { i} @ {fo} ® - - @ {f} to be
Zsi, where s; is the length of 8, We suppose that the first de-
composition has minimum length, and we shall prove the theo-
rem by induction on this minimum length.

Let 7 be a fixed prime and let & denote the subset of elements
y in & such that my = 0. &’ is a submodule of &. Suppose that
y = 2Zvifie©. Then Znv;f; = 0. Hence 7y, is divisible by §..
This implies that either 8;| v; or 7| 8;. In the former case v f;
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= 0, and in the latter v, is a multiple of ¢; = §;#—!. Thus y
11

has the form ) pse; f;, where 4 is the smallest integer such that
B

8 1s divisible by w. This shows that
@, = {ehfh} @ {eh-l—lfh_’_l} @ crr @ {etft}'

Similarly,

& ={e'f’} @ - ®{efu'}.

Since every element of &' satisfies the equation 7y = 0, & may
be regarded as an #-module, 5 = o/(x). Since 7 is prime, we
know that 7 is a field. (Vol. I, Ex. 2, p. 122.) Hence &’ is a
vector space over . Hence by the theorem on invariance of
dimensionality (or by the above result for free modules) the num-
ber of base elements in the two decompositions is the same.
Thus t — A=+ — 4.

Now choose 7 to be a divisor of §;. Then 2 = 1 and the equa-
tion t — & = ¢ — /' shows that # > ¢ Similarly if 7 is chosen
to be a divisor of §,’, then we obtain ¢ > #. Hencet =+¢. We
now see that, if = is chosen to be a divisor of 8;, then 2 = 1 im-
plies that A/ = 1. Thus = is also a divisor of §,".

We consider next the submodule #&. The argument just used
shows that

(22) 7S = {afie} @ {1fisr} @ -+ D {fs}
= {nf'} ® {nfo 1} ® - @ {nf}

where k& and %’ are respectively the smallest integers such that
0r and & are not associates of w. Then the order ideals of =f;
are (¢) and those of nfi’ are (e’), and the ¢ and the ¢ satisfy
the divisibility conditions. We can now use the induction hy-
pothesis on the length of the module to conclude that # — & =
t — k" and that (&) = (ex’), (ex41) = (exr41’), -+ These rela-
tions imply that also (8;) = (8,"), (8) = (8y'), - --. This proves
the invariance of the (8;) for the module &.

We consider finally the general case. Then if & is the sub-
module of elements of finite order, the result just proved shows
that the number # of f; of finite order is the same as the number
u’ of fi of finite order. Moreover, we have (8;) = (8;) for the
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corresponding order ideals. Now consider the module ®/&. It
is easy to see that this module is free with basis f, 1, + &, -+,
ft+ + © and also with basis f,.," + &, -+, fv’ + &. Hence by
the result proved for free modules, # — # = # — u. This com-
pletes the proof of the following

Theorem 10. Let R ={fil @ --- @ {f) ={fi'} D - @
{fo'} be two decompositions of an o-module, v a principal ideal
domain, into cyclic modules # 0. Assume that the order ideals
satisfy conditions (21) and analogous ones for the f'. Then t = ¢t
and Sy, = Sy i = 1,2, -+, L.

The module theorem just proved can be used to prove the
uniqueness up to unit factors of the invariant factors of a matrix.
Thus we have the following

Theorem 11. If diag {8,, 83, -+, 8,, 0, -+, O} and diag {8/,
85’y + vy 8.7, 0, -+, 0} are equivalent m X n matrices with elements
in a principal ideal domain o and 8; | 8; for i < j, &/ | &' for k <1,
then r = r' and §; is an associate of 8] for i = 1,2, -+, r.

Proof. Let § be a free module with basis (¢4, %5, - - -, £,), and
let 9% be the submodule generated by v; = 8:4, -+, v, = 841,
vrg1 =0, -++, 0, = 0. Then §/N is a direct sum of cyclic mod-
ules whose order ideals are (38,), (35), - - -, (8,) and a free module
of n — r dimensions. On the other hand, the assumption of
equivalence implies that we can find a new basis (¢//, £,’, - -+, £./)
for 9t and new generators v’ = 8,'t)’, vy’ = 8’8, -+, v =
8p'tpy Uy iy’ =0, «-+, v," = 0 for N. This gives a decomposi-
tion of §/9 as a direct sum of cyclic modules with order ideals
(8,"), (82", ---, (8.') and a free module of # — #’ dimensions.
Since the divisibility conditions hold, we conclude from Theo-
rem 10 that » = 7’ and (§,) = (8;) for the (§;) % (1). This im-
plies (8;) = (8;) for all ;.

We shall give next a second and purely matrix proof of this
result. At the same time we shall obtain some useful formulas
for calculating the invariant factors.

We observe first that, if () is any m X # matrix, then the rows
of (v)(o) are linear combinations of the rows of (¢). Hence for
any j, the j-rowed minors of (v)(s) are linear combinations of the
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j-rowed minors of (g). Similarly the j-rowed minors of (a)(u)
are linear combinations of those of (s). Combining these two
results we see that the j-rowed minors of (¥)(¢)(u) are linear
combinations of those of (). Now let A;(¢) be a highest com-
mon factor of the j-rowed minors of (¢). Then our result shows
that, if (r) = (#)(e)(u), then A;(e) | A;(r). If (u) and (») are
units, then also A;(7) | Aj(¢). Hence A;(r) and A;(¢) are asso-
ciates. We apply this now to the equivalent normal forms

diag {51> By * vy Ory 0y < -y O}
diag {61’, 62’, cery 61',) O) Ty O}‘

Denote the A; for these matrices by A; and A, respectively.
Then because of the divisibility conditions on the &’s and the
8”s, we may take

A]' = 5152 te 5]' and A]‘, = 51,52, te 5]',.

Since A; is an associate of A; for each j, it follows that » = 7.
Also A; = 8, is an associate of A,” = §,". Since 8,8, is an asso-
ciate of 8,'8y" we also have that 8, and §,” are associates. Con-
tinuing in this way we see that §; and 8, are associates for each
i. We have also proved the following

Theorem 12. Let A;(a) be a highest common factor of the j-rowed
minors of (o) and suppose that Aj(a) % O for j < r. Then the
elements 8 = Al(O'), 8y = Ag(O’)Al(O') —1, ey 8, = AT(O')AT_l(O') -1
constitute a set of invariant factors for (a).

11. Decomposition of a vector space relative to a linear trans-
formation. We return now to the consideration of a linear trans-
formation A in a vector space R over . We apply the above
results to the ®[A]-module R determined by 4. Since every vec-
tor ¥ has an order w,(\) #0, R={fi}D{fo}® - D{fe}
where 3y, = (8;) 5 (0), = (1) and ;| 8 if j < A The invariant
factor ideals (8;) are uniquely determined.

If (eq, €3, -+, €,) is a basis for ® over ® and e, 4 = 2aye;,
then (a) is the matrix of A relative to this basis, and the elements
v; = Zaut; — M; form a basis for the kernel  of the homomor-
phism T between the free module § and ®. Hence the matrix
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that must be normalized to obtain the invariant factor ideals is

AN—ap —ayp —xin
- N — - —agn

23) @=M-(@=| %22 .
—Qpn —Qpy N — apn

The normal form of this matrix is
(24) diag {1, 1) Ty 1) 51) 62) Y 6'3}

where it is assumed that the leading coefficient of §; = §;(\) is 1.
Our results show us also how to obtain a set of f’s such that ® =
{(file{fel® - @®{f}. If () and () are units such that
(»)(¢)(u) is the normal form, and e/ = Zui*e;, (W*) = (w) 7,
then we may take f; = ¢, ;..

We obtain a ®-basis for ® by stringing together ®-bases in the
cyclic subspaces { f;}. If the degree of 8; is #; then (fi, fid,
oo, fid"7Y) is a basis for {f;}. Hence

(fl)fld, "')fldm_l; f2>f2/{> "'>f2/fn2_l; R ftdnt_l)

is a basis for & over ®. The matrix of A relative to this basis
has the form

B,
B,
(25)

B,

where the diagonal block B; is the companion matrix of §;(\).
The matrix (25), which is completely determined by the invariant
factor ideals, is called the Jordan canonical matrix of A.

A more refined canonical form can be obtained by applying
the following considerations. Let

8:N) = (N (N5 - (V)5

be the factorization of §; into powers of distinct prime factors.

Then by Theorem 3, p. 70, {fi} = {fu} @ {fl ® - @ { fiod}
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where the order of f;; is m;;(\)*. We choose now a basis in each
{ fi;} of the type given on p. 71. These bases together give a
basis for & and the matrix of A relative to this basis is

¢
Cy
(26)

C

where C; has the same dimensions as B; in (25) and

C;
Ci,
(27) C; =
Cis;
where
[ Piyj
Ny Py
Ny;
(28) Ci; = ! ki; blocks
Nij Pi]u

and P,; is the companion matrix of m;(\) and N;; has the form
(10). The matrix thus obtained will be called a c/assical canonical
matrix of A. It displays the prime factors m;;(A) and the expo-
nents of these primes in the factorization of the 8;(\). The ideals
(m5;(N*7) will be called the elementary divisor ideals of A. Also
the polynomials 7;;(\)* will be called the elementary divisors of
(6) = A — (o).

For example, suppose that theinvariant factors 5 1 of A\l — (a)
areN3 = N2 = A+ 1=A=1D20N+1)and N — 3N* + 322 — 1
= (A — 1)3(A 4+ 1)3. Then the Jordan canonical matrix is
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010 1

0 01

-1 11
01 0O0O0O
00 10O0O0
0 0 0100
0 0 0 010
0 0 0 0 01
IO_SOSOJ

The elementary divisors here are (A — 1)2, A\ + 1), (A — 1)3,
(A 4+ 1)3. Hence a classical canonical matrix is

1 0
11
-1
1 00
110
011
-1 0 O
1 -1 O
o 1 -1
L ]

To illustrate the method of obtaining the canonical matrices,
let 4 be the linear transformation such that

611{ = -7 — 262 + 66’3
6’21{ = - + 363
esd = —e, — ey + 4es.
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The matrix () here is

[——1 -2 6J N+1 2 —6
-1 0 3| and M — (o) = 1 X -3
L—l -1 4 1 1 )\——‘J
We have
0 1 0 1 3 ——3—|—)\]
[O -1 IJ A — ()] [O 0 -1
1 -x+2 -3 01 -1 j
1 0 0
=[0 rm1 o J
0 0 (N—1)2
Thus 1 3 =342 1 A =3
(W) = [0 0 -1 v (W)= [0 -1 1}
01 -1 0 -1 0
and
e/ = e+ Neyg —3e3 =¢; + e0d — 3¢5 =0
e = —e3 + €3
ey = —es.

To obtain the Jordan matrix we use the basis /1 = ¢/, fo = ¢5/,
fs = es’4 = ¢; — 3¢3. Hence the Jordan matrix is

1

0 1|
-1 2
The matrix that transforms (a) to this matrix is the matrix of
(f1, f2, f3) relative to (ey, €3, €3) and this matrix is

0 -1 1
[O -1 O} .

1 0 -3
We can check that

0 -1 -1 -2 60 -1 Nt qn OO]
[O -1 O] [——1 0 SJ {O -1 OJ =[O 0 IJ-

1 0 -3)(~1 -1 4511 0 -3 0 -1 2
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We consider now the classical canonical matrices for the case
where ® 1s the field of complex numbers, or, more generally, any
algebraically closed field.* Here the only irreducible polynomials
of positive degree are the linear ones. Hence the elementary di-
visors have the form (A — p)®. The block (C;; in (28)) corre-
sponding to this elementary divisor is

p
1 » l
(29) C k.

I »p

The classical canonical form has blocks of this type strung down
the main diagonal.

Suppose next that ® is the field of real numbers. In this
case the irreducible polynomials of positive degree are the linear
ones and the quadratic ones A2 — S\ — v where 8% + 4y < 0.
The elementary divisors are of the forms (A — p)*, (A2 — gA— ).
The block corresponding to (A — p)* is (29) and that correspond-
ing to A% — BN — y)*1s

o 1
8
00lo 1
1 0]y 8
(30) i % blocks.

0 0|0
1 0|«

1
B

* A field is said to be algebraically closed if every polynomial with coefficients in the
field has a root in the field. An equivalent definition is that every polynomial with co-
efficients in the field factors into linear factors.
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EXERCISES
1. Find a classical canonical matrix similar to

17 -8 —-12 14
46 —22 =35 41
-2 1 4 —4

4 -2 =2 3

and find a matrix that transforms this matrix into the canonical matrix,

2. Prove the following theorem:

A necessary and sufficient condition that two matrices (o) and (B) in ®,, be similar
is that A\l — («) and N1 — (B) have the same invariant factors in P[A],.

3. Prove that any matrix is similar to its transposed.

4, Given the following elementary divisors: A — 1), (A — 1), A% + 1)4,
A2 4 1% (A2 + 1), (A + 2), what are the invariant factors?

5. Prove that if f is any vector whose order is the minimum polynomial of 4,
then there exists an invariant subspace & (&4 C &) such that R = {f} D &.

6. Let & be an invariant subspace such that the invariant factors of the trans-
formations induced by 4 in & and in /S together give all the invariant fac-
tors of 4. Prove that there exists a second invariant subspace U such that

R=Gpl

12. The characteristic and minimum polynomials. Again let
R={filD{fe}® - ®{f:} where the order ideals of the f;
are the invariant factor ideals (8;). Thus the order of f; is §;
and 8| 8; if i <j. We know that the minimum polynomial
u(\) of A4 is the least common multiple of the orders of the gen-
erators f;. By the divisibility conditions this lLe.m. is &;(M).
Hence p(\) = §:(M).

Now let (a) be any matrix of 4. We know that, if A,(\) =
det (\1 — (@)) and A,_;(7) is the highest common factor of the
(n — 1)-rowed minors of A\l — (), then the following relations

hold
1) Ax(N) = 3:(M8(N) - -+ 8:(N)
(32) p(N) = 8:(N) = A N)[Ana(N)]

Il

The polynomial A,(N) is called the characteristic polynomial of ()
(or of A4). If we refer to (23) we can see that

(33) A,(N) =N — oA\ N2 — 4 (= 1),

where o; is the sum of the diagonal minors of order i in («).
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Of particular importance are the first and last o’s. These are
(34) o = ai; + ags + 0 dun, an = det ().

The former is called the trace of (a). The main properties of this
function of () will be considered in § 14.

Now we know that, if »(A) is any polynomial such that »(4)
= 0, then »((e)) = 0. Also if y(A\) is the minimum polynomial
of A, then u(\) is the minimum polynomial of («). Hence our
results may be stated as the following theorem on matrices.

Theorem 13. Let (a) be a matrix in®, and let A,(N) = det (A1 —
(@) and p(\) = A.N)[A,_1(N)]7 where A,_1(\) is the highest
common factor of the (n — 1)-rowed minors of N\l — («). Then 1)
A, ((«)) = u((@)) = 05 2) if v(N\) is any polynomial such that
»((@)) = 0, then u(N) | v(N); 3) u(\) and An(N) have the same prime
Jfactors.

The first two statements are clear from what we have proved
about 4. The last statement follows from (31) and the fact that
all the 6;(\) are factors of 8;:(A) = u(N).

Theorem 13 is a composite of the theorem of Hamilton-Cayley
on the characteristic polynomial and Frobenius’ theorem on the
minimum polynomial. Direct matrix proofs of these results will
be given in the next section.

EXERCISES

1. Prove that A is cyclic if and only if Al — (c) has only one invariant factor
# 1.

2. Prove that, if (@) is nilpotent, then the invariant factors of A1 — () all have
the form A™. Hence prove that any nilpotent matrix is similar to a matrix of

the form N
N

Ng
where N; has the form

N;
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3. Prove that a matrix with elements in the field of complex numbers is simi-
lar to a diagonal matrix if and only if its minimum polynomial has no multiple
roots.

4. Show that, if () is idempotent, then the elementary divisors of Al — ()
are either A or A — 1. Use this to prove the result on p. 62 for the case A a
field.

5. Show that, if « is a vector 5 O such that u4 = pu, then p is a root of the
characteristic polynomial, Conversely, show that, if p is a root belonging to ®
of the characteristic polynomial, then there exists a vector # ¢ 0 such that u4
= pu.

6. A vector # 7% 0 such that ud = pu is called a characteristic vector of A.
Prove that such vectors always exist if ® is an algebraically closed field. Prove
also that, if @ is the field of real numbers, then any linear transformation in an
odd dimensional space i over ® possesses characteristic vectors.

13. Direct proof of Theorem 13. From the point of view of
matrix theory the proof that we have given of Theorem 13 is
somewhat roundabout. In this section we shall generalize the
results contained in this theorem, and we shall give direct proofs
of these results. We suppose first that o is any commutative
ring with an identity. Let o[A] be the polynomial ring in the in-
determinate N and consider the matrix ring o[A],. This ring con-
tains the subring o, of matrices with elements in 0. Also it con-
tains the matrix

A = diag {\, A, - - A}

which evidently belongs to the center. Now the essential ob-
servation for our purposes is that o[A], = 0,[A1] and Al is tran-
scendental relative to 0,. To see this, let («(\)) be an arbitrary
matrix in o[\], and write

(35) ai(N) = agjo + aijiN + apph? -

Then if we recall that the product (@)A1 is obtained by multiplying
all of the elements of («) by A, we see that

(36) (a(N) = (@)o + ()M + ()2(A1)? +- - -

where (@) is the matrix that has oy in its (7, f) position. Next
suppose that (@)o + ()Nl + (@)s(M\1)2 +---= 0. Then the
(4, j) element of the left-hand side is given by (35). Since this
element is 0, a;, = 0. Hence every (a)r = 0, and this proves
the transcendency of Al relative to o,.
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If
d¢\) = Bo + BN + BN - - -

is a polynomial in o[A], then by ¢((e)) we shall understand as usual
the matrix

301 + 31(01) + 32(01)2 + .-

where in general B8;(v) is obtained by multiplying all the elements
of (v) by Bi. Thus ¢((«)) is obtained by replacing Al by («) in
d(M1 = Bol 4+ B1(A1) 4 B2(N1)? +- - .

If () e 0, we define the characteristic polynomial A,(N) to be
the polynomial det (\1 — («)) belonging to o[A]. We shall now
prove the following

Theorem 14. (Hamilton-Cayley) If (a) € 0,, 0 @ commutative
ring with an identity, and A,(N) is the characteristic polynomial,
then An((@)) = 0.

Proof. We recall the identity (Vol. I, p. 59)
(37) I\ — (@)]adj Ml — ()] = det A1 — (@)1 = A, (W)1.

The matrix adj A\l — (a)] € o[A], = 0,[A1], and the degrees of its
elements are <# — 1. Hence

adj A\l = (@)] = (B + B2 4+ -+ (B)n_1.
Also if A,(\) = A" — a\"" 1 4+-.- 4+ (=1)"a,, then
A,(N1 = D™ = ax(\D)" 7 4o (= 1)7a, L.
Hence the identity (37) is equivalent to
(38) I = (@][B o) + (BN 2 + -+ -+ (B)n—il
=AD" —a:(AD)" 71 - (= 1)l

Thus we see that Al — (@) is a factor of A,(A\)1 in o,[A1]. By
the factor theorem (Volume I, p. 99) this implies that

(@" = cy(@" P+ (=)l =0
as required.

We suppose next that o is a Gaussian integral domain, that is,
a commutative integral domain with an identity in which the
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unique factorization theorem holds. For such domains we have
the following

Theorem 15. (Frobenius) Let (o) e0,, 0 a Gaussian domain,
and let A,(\) = det A\l — (&) and u(\) = A,(N)[ON)] ! where
O(N) is the highest common factor of the (n — 1)-rowed minors of N\
— (@). Then 1) p((e)) = 0, 2) if v(A) e o[\] and v((«)) = O, then
u(N) | »(N) in o[\], 3) any irreducible factor of A,(N) is a factor of
u(N).

Proof. The existence of §(\) is assured by the fact that o[A] is
a Gaussian domain. Since some of the (# — 1)-rowed minors
(e.g., the diagonal minors) have leading coefficient 1, we may
suppose that (A) has leading coefficient 1. Clearly 8(2) is a fac-
tor of A,(N) since it is a factor of all the (# — 1)-rowed minors.
The quotient u(\) has leading coefficient 1. Now let (y(\)) de-
note the matrix in o[\], that is obtained by dividing out the ele-
ments of adj [\l — («)] by 6(\). Then by (37) we have

(39) N = (@](y(N) = ML

By the argument used in the preceding proof, this relation im-
plies that u((e)) = 0. This proves 1).

Now let u*(\) be a polynomial s O of least degree such that
p*((e)) = 0. We may assume that p*(\) is primitive. Suppose
that »(\) is any polynomial such that »((«)) = 0. If P is the
quotient field of o, we may write

y(\) = gWe*(N) + (V)

in P[\] where deg »(A\) < deg u*(\). Multiplication by a suitable
element n £ 0 in o gives a relation

) = (M) p*(N\) 4+ (V)

where ¢;(\) = ng(\) and ;(\) = 77(\) e o[\]. Substitution of («)
in this relation gives r;((a)) = 0. Hence by assumption of mini-
mality for the degree of u*(\), ;(\) = 0. Thus u*(\) | 7(N).
Since u*(\) is primitive, u*(\) | (A). In particular, u*(\) | u(N),
and so, since the leading coefficient of u(A) is 1, we may suppose
that u*(\) has this property too.
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We now write u(A) = u*(N\)p(\). Since u*((«)) = 0, by re-
versing the argument used to prove 1), we see that

p*)L = A1 — (9](6(V))
where (8(A\)) e o[A],. Hence

A,(MN1 = w*N)pMEMT = A1 — ()](3(A)p(NI(M1.

If we compare this with (37) and use the fact that A1 — () is
not a zero-divisor * in o[\],, we obtain

adj (A1 — (a)] = (3(A\)e(MIM1.

Thus all the (# — 1)-rowed minors of A1 — («) are divisible by
p(M\)8(N). Since 8(\) was assumed to be the highest common fac-
tor of the (# — 1)-rowed minors, it follows that p(A) = 1. Thus
w(N) = u*(\). Statement 2) now follows from what we proved
above.

To prove 3) we take the determinants of both sides of (39).
This gives

An(N) det (y(N) = [u(N)]™

Statement 3) is an immediate consequence.

EXERCISE

1. Show that the characteristic and minimum polynomials of

[21)) (23] [24)] [24:)

[ — o] oy —O3 [24)]
L — 0y 241 oy oy
—0y —oo 25} 241}

are, respectively,

(A% — 200) + (o + 0 + a® + ag?))?
and

A2 — 2a0M + (o® + on® + o + ag?).

14. Formal properties of the trace and the characteristic poly-
nomial. We have defined the trace of (a), tr (a), to be the nega-

* Its determinant is Az[A] # 0.
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tive of the coefficient of A*~! in the characteristic polynomial of
(). From this it follows that

(40) tr (@) = ain + az2 ++ -+ aune

If the characteristic polynomial A,(A) = II(A — p;) in some ex-
tension field, then the p; are called the characteristic roots of (c)
in this field. The coeficients of A,(\) are the so-called elementary
symmetric functions of the p;. In particular

(41) tr(a) = p1+ p2 + ps +- -+ pu
From (40) it is clear that the trace function is linear:
(42) tr [(@) + ()] = tr (&) + tr (B).

tr (o(@)) = p tr (a).
We can also verify the following property
(43) tr (@)(8) = tr (8)(a0).
For the (4, i) element of (a)(B) is ; a;B8; Hence

tr (0)(8) = ; i

and this is symmetric in (@) and (8).

The result we have just noted holds also for the other coeffi-
cients of the characteristic polynomial. Thus («)(8) and (8)(a)
have the same characteristic polynomials. This, too, can be
verified directly. However, the following indirect proof has some
elements of interest of its own.

We shall suppose more generally that () is an m X # matrix
and (B) an # X m matrix with elements in a field. Then multi-
plication in either order is possible, and the resulting matrices
(a)(B) and (B)() are respectively m X m and » X »n matrices.
Assuming that #» > m, we shall show that the characteristic
polynomial of (8)(a) = A\*~™ times the characteristic polynomial
of (a)(B). We assume first that (&) has the following form

——F

(44) (a) = dlag {1> Y 1) O) Y O}



THE THEORY OF A SINGLE LINEAR TRANSFORMATION 105
Then if

Bll 312 ot Blm
s
Bnl Bn2 o Bnm
B11 Bz -+ Bim|
(a)(IB) = Brl 372 e Brm
O 0 --- 0
0 O0 0
Bi1 -+ By O -+ O
Bor -+ B2 O - O
B)(e) = : '
Bai v+ Bar O - O
Hence if g(\) denotes the characteristic polynomial of
Bii Biz -+ Bir
Br1i Bra - Brr

then the characteristic polynomials of («)(8) and of (8)(«) are
respectively A" ~"g(X) and N*~"g(\). This proves our assertion.
We suppose now that () is arbitrary. There exists a matrix
(v) in L(®, m) and a matrix (») in L(®, #) such that (u)(a)(»)
= (a); has the form (44). Set (») *(8)(w) ™' = (8)1- Then by
what we have just proved, the characteristic polynomial of
(8)1(a); is A*~™ times that of («);(8);. On the other hand,

(@1(8)1 = W) @) 7B (W ™ = (W()(B) (W)™

is similar to (a)(8) and

B)1(e)1 = M) 7HB) (W) M) ()(») = () 7B () ()
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is similar to (8)(«). Hence (@)(8) and («);(8); have the same
characteristic polynomials, and (8)(«) and (8);(«); have the same
characteristic polynomials. The asserted result therefore holds

for (a)(B) and (B)(«). This proves the following

Theorem 16. Let () be an m X n matrix and (8) an n X m
matrix with elements in a field. Then if n > m, the characteris-
tic polynomial of (B)(c) is N*~™ times the characteristic polyno-
mial of (c)(B).

EXERCISE

1. (Flanders) Show that the elementary divisors not divisible by X of (e)(8)
and (B)(a) are the same. Also obtain a relation for the elementary divisors
which are powers of A.

15. The ring of p-endomorphisms of a cyclic p-module. In
the remainder of this chapter we shall consider the problem of
determining the linear transformations that commute with a
given linear transformation and the generalization of this prob-
lem to modules.

If A is a linear transformation in R over &, the totality 8 of
linear transformations that commute with A4 is a subalgebra of
g If Be®, then yB = Ba; and 4B = BA. Hence B com-
mutes with every linear transformation 8o; + 8114 + Ba1A4? + - -
belonging to the subalgebra A = &,[.4] generated by 1 and A.
Conversely, if B is any endomorphism in the group % that com-
mutes with every element in %, then B e®; for ;B = Ba; for
all « so that B is a linear transformation and B4 = A4B.

If % is regarded as a ®[\]-module as before, then

x(Bot + Bud +--) = ¢\«

where ¢(\) = Bo + 1A +-+-. Hence, an endomorphism B com-
mutes with every linear transformation belonging to ¥ if and
only if (¢(N\)x)B = ¢(\)(*B). Hence B coincides with the set of
®[A\]-endomorphisms of ®. We are therefore led again to adopt
the module point of view, and to consider the problem of deter-
mining the set B of s-endomorphisms of any finitely generated
o-module, o a principal ideal domain. It is evident that B is a
subring of the ring of endomorphisms of the group ®.
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As usual we denote the ring of the endomorphisms ag: ¥ — ax,
« in o, by 0;. This ring is a homomorphic image of o and so it is
commutative. It follows that 0, & 8B the ring of o-endomor-
phisms. It is also clear that p; is contained in the center of 8.
It should be remarked that in the special case of the ®\]-module
determined by a linear transformation A, the ring ®[\]; is just
the ring % = &,[4].

We consider first the problem of determining 8 in the special
case of a cyclic o-module. It is not necessary to assume here
that o is a principal ideal domain, but only that o is a commuta-
tive ring with an identity. We have the following

Theorem 17. If o is a commutative ring with an identity and
R i5s a cyclic o-module, then the only v-endomorphisms of R are the
Mappings ¥ — ox.

Proof. Let % = {¢} and let B be an p-endomorphism of ®.
Suppose that eB = Be. Then if ¥ = ae, ¥B = (ae)B = a(eB)
= B(ae) = Bx. Thus B = 8.

Corollary. If A is a cyclic linear transformation in a vector
space over a field, the only linear transformations that commute with
A are the polynomials in A (with coefficients in &y).

EXERCISE
1. Show that the matrices that commute with
0
10
1
. 10
are given by
(21 0
[2 511}
[2 5 1)}
Ol —1 e [2 ST 4]

where the «; are arbitrary in .
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16. Determination of the ring of o-endomorphisms of a finitely
generated o-module, o principal. We suppose now that ® is a
finitely generated o-module, o a principal ideal domain. We know
that R = {1} @ {fo} ® -+ @ {fi} where, if the order ideal &,
= (8;),71=1,2, -+, ¢ then

(45) 8 =01f 7 > uand §;] §;if i < jfor all 4, 5.

Let B e® the ring of s-endomorphisms of R, and suppose that
fiB=g,i=1,2, .-, ¢ Then if x is any element of R, x =
2&fi, £ 1n 0. Hence

xB = (2&f)B = Z(&:f)B = 2&(f:B) = Z&ig..

Thus B is completely determined by its effect on the generators
fi: of ®. We note next that since &, f; = 0, &5 = 8,(f:B) =
(8;f:)B = 0. Hence if (¢;) is the order ideal of g;, then ¢ | 8.

Conversely, suppose that for each i, g; is an element of R
whose order ideal (e;) satisfies the condition ¢; | §;. Define B to
be the mapping 2¢; f; — 2&;g;. Then we assert that Be®8. We
show first that B is single-valued. For suppose that Z&,f; = 29, f;
are two representations of the same element. Then 2(& — ) fi
= 0. Hence §;| (& — n:). Consequently e | (& — 7:), and this
implies that 2(& — n;)g; = 0, or 2&,g; = 2n.g:.  This shows that
the results obtained from the two representations are equal.
The verification that B is an p-endomorphism is now immediate.

Our result is the following: There is a 1-1 correspondence be-
tween the elements B 98 and the ordered sets (g1, g2, - - -, g¢) Of
elements g; whose order ideals (¢;) satisfy the condition e; | 8.
We now set g; = 28 f;, B:; € 0, and we associate with the ordered
set (g1, g2, * * -, &) the matrix

Bll 312 e Blt
Btl Bt2 e Btt

in the ring o, of # X ¢ matrices with elements in o. This matrix
is not uniquely determined. For any B:;; may be replaced by a
B.; such that B8;;/ = B;;(mod 8;). This is the only alteration that
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can be made without changing the g;, Hence we may say that
the elements of the j-th column of (8) are determined modulo 3;.
The condition ;| 8; or what is the same thing, 8;g; = 0, is
equivalent to the equations

(47) 8:8:;; = 0 (mod §;).

This, of course, means that there exist v;; such that 8;8;; = v.;9;.
Hence (47) is equivalent to the following condition on the matrix
(8) of (46). There exists a matrix (y) such that

01
5 Bi1 Bz -+ Bue
2
(48) B21 B22 -+ Ba
Bex B2z 0 Bue
0
01
Y11 Yz Yt
02
Y21 Y22 o Y2
Yo Y2 v Yt

d¢

The totality M of matrices (8) which satisfy this condition is a
subring of the matrix ring 0;. The matrix (8) determines an ele-
ment B of ¥ such that ;B = 28;;f;. Itiseasy to verify that the
correspondence (8) — B is a homomorphism between 9% and ¥.
Now the endomorphism B determined by (8) is 0 if and only if
Bi; = O(mod §;). Hence the kernel of our homomorphism is the
set ¢ of matrices (») in which »;; is a multiple p;;8;, Thus Be N
if and only if there exists a (u) in o, such that

(49) () = (u)(3)

where (8) = diag {8, 82, -, 8&}. The ring 8 is isomorphic to
the difference ring M/N.

Theorem 18. Lot R = {fi}®{fo} @ - @ {f.] where the
order ideal of f; is (8:;). Then the ring B of v-endomorphisms of R
is isomorphic to the difference ring WM/N where M is the subring of
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o; of matrices (B) for which a (v) exists such that (48) holds and N
is the ideal of matrices (v) for which a (u) exists such that (49) holds.

An explicit determination of the matrices of M can be made if
use is made of the conditions (45) on the &'s. We note the fol-
lowing cases of (47):

1. i > 5. Here §; = 0(mod §;). Hence these g;; are arbitrary.

2.1 <u, ;7> u Here (47) and (45) imply that these 8;; = 0.

3. 4,7 > u. Hered; = §; = 0 and the B’s are arbitrary.

4. i <j<u Let ;= 8. Then (47) is equivalent to
the condition B;; = 0(mod 7).

Thus (B8) has the following form:

(B11 Bi2 coo Bra ]
B21 Ba2 coe o Bou
0
Bul Bu2 ct Buu
(50)
Bu+l,l Bu+l,2 ct Bu+l,u Bu+l,u+l cre Bu+l,t
LB Be2 e B Bru+1 v B

where all the 8’s are arbitrary except above the main diagonal in
the upper left-hand block. Here B:; = usni; where uy; 1s arbi-
trary and 7;; = 8;7%8;. The condition 8;; = 0(mod §;) for these
B’s is equivalent to u;; = 0(mod §;).

17. The linear transformations which commute with a given
linear transformation. We specialize Rt to be the ®[A\]-module
determined by the linear transformation 4. Here every 8; # 0
so that # = ¢. The ring M now consists of all the matrices (8)
in which the 8;; are arbitrary if 7 > j and B85 = winag, e = 87185
for i <j. Any B;; may be replaced by B;;/ in the same coset
(mod §;). Consequently u;; may be replaced by u;;’ in the same
coset (mod 8;). Thus if n, = deg 8; then we may suppose that

degﬂij<n]~ if 12]
degmj<m lf l<]
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A matrix in M that satisfies these conditions will be called a
normalized matrix. It is clear that two normalized matrices de-
termine the same B in the ring 8 of v-endomorphisms if and only
if they are identical. Hence the correspondence (8) — B deter-
mined before is 1-1 between the set Ul of normalized matrices and
the ring ®B.

We know that 82 % = &[4] D &%;. It follows that B is a
subspace of the vector space & over . We wish now to compute
the dimensionality of 8 over ®.

We note first that the normalized matrix corresponding to the
scalar multiplication o is the scalar matrix ol = diag {e, @, - -,
o} of ¢ rows and columns; for we have the relations fa; = of:.
Also it is clear that the set Ul of normalized matrices is closed
under addition and under multiplication by scalar matrices. It
follows that 1 may be regarded as a vector space over ®. Here
a(B) for (B) in U is defined to be the matrix «1(8). If B,,i = 1,2,
is in 8 and B; — (B;) ell, then clearly B, + By — (B81) + (82)
and aB; — «(B;). Since our correspondence is 1-1, this shows
that 8 over ® is equivalent to 1 over ®, We now determine the
dimensionality of U.

Let U;; denote the subspace of Ul of normalized matrices in
which B = 0 for all (&, /) # (i,7). It is easy to see that if
i > j, dim U, the dimensionality of the space of polynomials of
degree < n; is n;. Similarly if 7 < j; dim W;; = #;. Since U is a
direct sum of the subspaces U,

t—1

t
dmlU=0¢—j+Dn+ 3¢ —im
j=1 =1

12
=3 @t — 2 + Dus.

j=1

This proves the following
Theorem 19. (Frobenius) Let (o) e®,, and let §:(N), ds(N\), « - -,
8:(\) be the invariant factors £ 1 of N\l — (). Then if the degree

of 8:(N) is ns, the maximum number of linearly independent matrices
commutative with (a) is given by the formula

¢
N =3 (2t -2+ n,.
J=1
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12
Clearly, if # > 1, then N > >  n; = n > n,. Since the dimen-
izt
sionality of A = &;[A4] over &; is 7, this shows that, in this case,
B DU If we recall that # = 1 is the condition that A4 be cyclic,

we obtain the following converse of the corollary to Theorem 17,

Corollary. If A is a linear transformation which is not cyclic,
then there exist linear transformations that commute with A which
are not polynomials in A.

Example. Let rl 0 0
() = {0 0 1} :
0 —1 2

Here, if 4 is the corresponding linear transformation, then R = {fi} D {f}.
The invariant factors are 8 = A — 1 and 8 = (A — 1)2. The general form of a

normalized matrix (B) is [511 BiaA — 1) ] )

Bo1 B2z + BN
Since M1 = fiand Ao = (A — 1)fe = —f2 4+ 20\fa),
AB = Bufi — Bufe + BMe)
feB = Bafi + Bufe + B/ Vfe)
(Af2)B = Berfi — Barfe + (Baz + 2822 ) (Nfe) -
It follows that the general form of a matrix commutative with (a) is

Buu —PBr P
Ba B2 Bad .
Bar —B2’ Baz + 282

EXERCISES

1. Let R be a finite commutative group and suppose that &R is a direct sum of
cyclic groups of orders 1, ms, - - -, s where #; | n; for i < j. Prove that the num-
ber of elements in the ring of endomorphisms of % is

¢
20—2j+1
N=1IIw I+
i=1

2. Determine the matrices that commute with

0 0 00O

[ en R an I an

0
0
1
0

—= O O ©

0
0l-
0
0

OO O =
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3. Determine the matrices which commute with

10 00
00 10
60 0 1}
01 -3 3

18. The center of the ring 8. We return to the general case
where R is a finitely generated o-module, o a principal i1deal do-
main. As before, let ® = {fi} @ {/fo} ® - - @ {f} where the
orders (9§;) satisfy (45). We shall prove the following

Theorem 20. The center of the ring of v-endomorphisms of R
consists of the scalar multiplications.

Let 8 be the ring of s-endomorphisms, € its center and o; the
ring of scalar multiplications ¥ — ax. We have seen that o, C 6.
Now let C be any element of €. Let £, k = 1,2, -, #, be the
o-endomorphism such that f;E, = 81fi, j = 1,2, - -+, £. By the
considerations of section 16, such endomorphisms exist in %B.
Also there exists p-endomorphisms E;; such that fiEu = 8;f%.
Since € commutes with these endomorphisms, we have the fol-
lowing equations

ftC = (ftEt)C = (ftC)Et = ’th> Yeo
fi€C = (fiEw)C = (fQ)Ew = (V) Eu = v(fiEw) = 7 [

Thus C coincides with the mapping ¥ — yx. Hence € = o,

If Cis any endomorphism in ®® commuting with every element
of ¥, then, in particular, C commutes with every element of o;.
Hence Ce®B. Thus C is in the center of 8. The converse is
clear. This remark enables us to state Theorem 20 in the follow-
ing alternative form:

Theorem 20’. The only endomorphisms of R which commute
with every o-endomorphism are the scalar multiplications.

This specializes to the

Corollary 1. If C is a linear transformation that commutes with
every linear transformation which commutes with A, then C is a
polynomial in A.

This corollary enables us to determine the center of the com-
plete ring 2 of linear transformations. For let 4 = 1. Then the
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ring B of linear transformations that commute with 4 is the com-
plete ring . Hence Corollary 1 states that the only linear trans-
formations that commute with every linear transformation are
the polynomials in 1. Since a linear transformation is expressible
as a polynomial in 1 if and only if it is a scalar multiplication,
this gives the important

Corollary 2. The center of the ring of linear transformations of
a vector space over a field ® is the set ®; of scalar multiplications.

A slightly more direct proof of this result will be given later
(Chapter VIII, p. 229).

EXERCISES

1. Prove that the center of the ring of endomorphisms of a finite group con-
sists of the endomorphisms ¥ — mx, m an integer.

2. Prove that a linear transformation A is cyclic if and only if the ring B of
linear transformations commutative with 4 is commutative.

3. Prove the following extension of Theorem 20’: The only endomorphisms of
R which commute with every idempotent p-endomorphism are the scalar mul-
tiplications.



Chapter 1V

SETS OF LINEAR TRANSFORMATIONS

In this chapter we shall introduce some general concepts which
are fundamental in the study of arbitrary sets of linear transfor-
mations. A deeper study of these notions belongs more properly
to the so-called theory of representations of rings and is beyond
the scope of the present volume. An introduction to these notions
will serve to put into better perspective the results of the pre-
ceding chapter. We shall also be able to extend some of these
results to sets of commutative linear transformations.

1. Invariant subspaces. For the most part we shall be concerned
in this chapter with the general case of a vector space over a
division ring A. Let & be a finite dimensional vector space over
A and let Q be a set of linear transformations in ® over A. If
(61, €3, “ -+, €,) is a basis for R and A4 ¢ Q, then ¢;4 = Zay;e; and
(a) is the matrix of A relative to the given basis. The matrices
(a) determined in this way by the A e Q constitute a set w that
we shall call the set of matrices of Q relative to (eq, €5, - - -, ). If
(f1,f2, 5 [fa) is a second basis and f; = Zuse;, then the matrices
of @ relative to this new basis is the set {(u)()(w) 7!}, (@) in w.
We denote this set as (w)w(u) 1.

From the geometric point of view a fundamental problem in
the study of a set of linear transformations is that of determining
the invariant subspaces relative to this set. As in the case of a
single linear transformation a subspace & is called invariant under
Qif 84 C & for every 4 e Q. If Q consists of a single transfor-
mation A, then the cyclic subspaces {x} are examples of invariant
subspaces. Other simple examples are the following:

1. @ consists of the linear transformation 0. Here any sub-

space is invariant since @0 = 0 C & for any &.
115
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2. @ = ¢ the complete set of linear transformations. Here the
only invariant subspaces are the zero space 0 and the whole
space ®. Thus let & be an invariant subspace 5 0 and let y
be a non-zero vector in &. Then if x is any vector in R, there
exists a linear transformation A4 such that y4 = x. Since & is
invariant x = y4 e @4 C &. Hence ¥ ¢ & and since «x is arbi-
trary & = R.

Obviously the whole space ® is an invariant subspace relative
to any set €. Also the 0 space is invariant since 04 = 0 for any
linear transformation 4. The second example above shows that
there exist sets @ for which these two “trivial” subspaces are the
only invariant subspaces. Such a set is called an irreducible set.
It is also convenient at times to say that R is irreducible relative
to the set Q.

Reducibility, or the existence of a proper (5 0, 5 R) invariant
subspace manifests itself as a simple condition on the sets of
matrices of 2. Suppose & is a proper invariant subspace and let
(f1, /25 * - *5[fa) be a basis for % such that (fy, fo, + - -, f+) is a basis
for . Since & is invariant, f;4 ¢ & for each i =1, 2, -+, 7
and each 4 eQ. Hence the relations that give the matrix 4
relative to (f1, fa, ** -, fa) are

fi/{=zﬁiifi> i=1>2>"'>r
J=1

(1)
fid = X Bufi, k=r+1,r+2, -, n
I=1

Hence the matrix (8) of 4 has the form

(811 Bi2 <o Bir 0 o --- 0 ]
B21 B22 <o PBar 0 o --- 0

(2) Brl Br2 o Brr 0 O - 0
Bre11 Brtnz  Brtir Brtie+r 0 0 Brtim
~Bn1 Bn2 co Bnr Bn,r-{-l : te Bn,n J
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A matrix that has an » X # — r block of 0’s in its upper right-
hand corner is said to have reduced form. Hence the existence of
a proper invariant subspace implies the existence of a basis rela-
tive to which the matrices of € all have reduced form. Another
way of putting this is that, if w is the set of matrices of @ relative
to some basis (ey, es, - -+, €,), then the existence of a proper in-
variant subspace implies that there exists a non-singular matrix
(w) such that all the matrices of (u)w(u) ~! have the same reduced
form (that is, with the same r for all).

The converse is valid, too. For suppose that all of the ma-
trices of (u)w(u)~! have the reduced form (2). Then, if f; =
Zuize;, the matrices of @ relative to (fy, fs, - -, fx) constitute the
set (wWw(u) !, Because of the form of these matrices, relations
(1) hold, and these show that the space & = [fy, fa, - -+, fi] is

invariant under .
EXERCISES

1. Let © be a set of linear transformations, and let B be a linear transformation
that commutes with every 4 e . Show that if & is an invariant subspace rela-
tive to 2, then @B is also invariant. Also, show that the subset i of vectors
y € & such that yB = 0 is invariant relative to Q.

2. Prove that a subspace & is invariant relative to a set Q if and only if the
following operator condition holds: The relation EAE = EA holds for every
projection E onto & and every A e Q.

2. Induced linear transformations. If & is a subspace invar-
iant under Q, then the linear transformations A ¢ £ induce trans-
formations in &. It is evident that these transformations are
linear. We shall now show that in a certain sense the 4 ¢ Q also
induce linear transformations in the factor space # = R/&. We
recall that a vector ¥ of & is a coset consisting of the vectors of
the form x 4+ y where x is fixed and y ranges over &. If 4 ¢,
(¢ +y)4d = x4+ y4d =x4+y where y = y4e&. Hence
the image of any vector in the coset ¥ is a vector in the coset
xA determined by x4. Thus the mapping A4 that associates

with % the vector x4 of % is single-valued. We call 4 the trans-
formation induced by 4 in ®. This mapping is linear, since

(%1 + 9_62)1? = (% + xz)j = ((x1 4 x9)4) = (%14 + x2A)
(01d) + (wad) = 514 + %od
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and

(o)A = (ax)d = (ax)d) = (a(xd)) = a(xd) = a(Z).

When there is no risk of confusion, we shall simplify matters by
denoting the induced transformation by A also.

On the other hand, it is sometimes necessary to distinguish
carefully between the transformations 4 and 4. The precise re-
lation between these can be made explicit in the following way:

Consider the mapping P: ¥ — ¥ = ¥ + & of ® onto ®. It
is immediate from the definitions of the compositions in & that
P is a linear transformation of % onto %t. We shall refer to P as
the natural mapping of ® onto f. Now we have defined A by
the rule that ¥4 = 4. Thus we have the relation P4 = AP
connecting A4 and A.

Now suppose the basis (f1, f2, - - -, fx) is chosen as in the pre-
ceding section so that (fi, fa, -+, fr) is a basis for &. Then it
is clear from the first set of relations in (1) that the matrix

Bll 312 te BIT
Ba1 B2z - Por
Brl Br2 te Brr

is a matrix of the linear transformation induced by A in the in-
variant subspace &. Moreover, by the second set of equations
in (1) we have

fid = (fed) = (Z Bklfz> = iﬂklfl = iﬂklﬁ-

r+41

Now we know that the vectors (fri1, frq2, = /n) form a basis
for & Hence these relations show that the matrix of A relative
to this basis is the lower diagonal block which appears in (2):

Br+1,r+l e :Br‘i‘l,n
Br+2,r+l cet BT+2,n

Bn,r—i—l e Bnn
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We have now found interpretations for the two diagonal blocks
which occur in (2). It is natural to ask for the meaning of the
remaining block, appearing in the lower left-hand corner. To ob-
tain the significance of this block we observe first that [f, 1, - - -,
fa] is a complement U of the space &. The decomposition
R = S@U defines a projection E of R onto &. Since & is in-
variant relative to @, EAE = EA holds for every 4 ¢Q (Ex. 2,
p. 117). We consider now the linear transformation /E — EA
= AE — EAE. This transformation sends R into & More-
over, if ye®, then y(AdE — EA) = y4 — y4 = 0. It follows
from this that #E — EA defines a linear transformation Ay of
R = R/S into &. Thus we define

%dp = x(AE — EA),

and, by the remark that we have made, we see that 4 is single-
valued. One verifies directly that 4g is a linear transformation
of ®/S into &. Moreover, by definition we have the relation
AE — EA = PAg.

We shall now show that the matrix

Br-{-l,l e Br-i—l,r

:Bn,l et Bn,r
is the matrix of Ay relative to the bases (Fry1, -+, fa), (f1, ** +)
f.) for & and &. We have the relations

fkdE = fi,(AE — EA) = [, AE
= E:Bkifb k=r-+ 1) Tty N,
1=1

which prove our assertion.

EXERCISES

1. Prove that a relation such as 4 + B = Cor 4B = C for 4, B, Cin  im-
plies a corresponding relation 4 + B = C, AB = C for the induced linear trans-
formation in $R. _

2. S%ow that 4 is 1-1 in R if and only if 4 is 1-1 in & and is 1-1 in R
= RN/&.



120 SETS OF LINEAR TRANSFORMATIONS

3. Composition series. Let & and U be invariant subspaces
such that RD2 U2 &. Then l = U/S is a subspace of & =
®/&. Ifiell, # =u + & where u ell. Hence for any 4 in Q,
#A = uAd ¢Ti. This shows that {i is invariant relative to the set
& of the induced linear transformations 4 in &.

We shall now show that the converse holds, namely, any in-
variant subspace of & has the form {i = 1/& where U is an in-
variant subspace of ® containing &. Thus let 1l be a subspace of
R invariant relative to Q. Let Il be the totality of vectors con-
tained in the cosets that belong to Tl. If #; and e e, i, = u,
+ & and @y = uys + & are in fl. Hence #; + iy = (47 + us)
+ &is in . Hence #; 4+ u; e . Similarly au ell for any « in
A and any «# in U. Since (u# + &)A = ud + S e, ud el
Thus U is an invariant subspace of ®. Clearly i = 1/&.

A sequence of invariant subspaces

(3) OC@1C@2C"'C@t=§R

is called a composition series for R relative to Q if each &; is irre-
ducible over &;_; in the sense that there exists no invariant &’
such that &; 25 &’'D &;_;. By what we have shown it is clear
that &; is irreducible over &;_; if and only if &;/&;_; is irre-
ducible relative to the set of linear transformations induced by
the 4 € 2. The irreducible spaces

4) S, S2/Sy, -, &1/Bs

are called the composition factors of the series (3).

We now choose a basis (fi, fo, -, f,) for &;. This can be
supplemented to a basis (f1, fa, -+, fa,4ny) for &5 Continuing
in this way we obtain finally a basis (fy, fo, - -, fa) for & such
that (f1, fa, 5 fays-..4+n) 1S @ basis for &;. Then if 4¢Q

fi/{=ZBiffi> i=1>2>"'>n1
1
ni+ng
(5) ka{:ZBklfl) k=n1—|—1,---,n1—|—n2
1
b

fod = 22 Broafas p=m—+--+ma+1 -
1 mot = n
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Consequently the matrix of A relative to our basis has the form

(81) 0

* (B2)
(6)

* o (B
in which the “blocks” above the main diagonal are all 0. The
cosets (fn1+...+m_1+1, fn1+~-~+n_1+2) Ty fn1+~--+n.-) form a basis

for the factor space &;/&;_,, and by (5) we have

_ mtiotm
]-rd = Z Brs_?s
nydee e nio1 41
if 4 denotes the transformation induced by A in the factor space
©:/&;_;. The matrix of A4 relative to this basis is therefore the
diagonal block (B;) that appears in (6). Our assumption that
©; is irreducible over &;_; means that it is impossible to find a
matrix (u;) such that all of the matrices (u;)(8:)(u;) ™! all have
the same reduced form.

It is easy to prove the existence of a composition series for any
set Q. First, if R is irreducible, then 0 C R is such a series.
Otherwise let © be a proper invariant subspace. If & is irre-
ducible relative to the set of induced linear transformations, we
take ©; = &. Otherwise we let & be a proper invariant sub-
space of &. Now dim ® > dim & > dim &'. Hence this proc-
ess cannot be continued indefinitely. Eventually we get an irre-
ducible invariant subspace &; ¢ 0. We repeat this argument
with f = R/S; and the set & of induced transformations. Then
we see that, if ® = 0 (that is, ® = &), 9 contains an irreducible
invariant subspace &, ¢ 0. This space has the form &,/&,, and
&, 1s invariant relative to & and is irreducible over &;. We con-
sider next 3/&,. If this space is # 0, we obtain in the same way
a subspace &; invariant under © and irreducible over &,. Since
dim &; < dim &, < dim &3 <---, this process, too, breaks off
after, say, ¢ steps, with the space 8. Then 0 Cc &, c &, ---
C &; = R 1s a composition series.



122 SETS OF LINEAR TRANSFORMATIONS

4. Decomposability of a set of linear transformations. We
consider now a decomposition of the space R as

(7) R=RPR2D - DRy

a direct sum of the subspaces ®; that are assumed to be invariant
relative to ©. Such a decomposition is called proper if each
R: % 0and s > 1. If R has a proper decomposition, we say that
R is decomposable relative to @ and that Q is a decomposable set of
linear transformations.

Clearly, a set of linear transformations which is irreducible is
indecomposable. On the other hand, there exist reducible sets
which are indecomposable. Hence decomposability is an essen-
tially stronger condition than reducibility. We prove this asser-
tion by citing the following

Example. Let Q consist of the linear transformation 4 with matrix

0
10
1

10
relative to the basis (e1, e3, < ++, én). Then e1d = 0 and e, = e;_1if 1 > 1.
Hence the subspaces &; = [e1, €2, -+, ¢, i = 1,2, +++, n, are invariant. We
shall show that these are the only non-zero invariant subspaces relative to A4.

For let & be such a subspace. Let % be the smallest integer such that & & &,
Then & contains a vector

Yier + yeez - 4 vaen
with 45 £ 0. We may assume that v; = 1 so that

y=mea+-+vaaa+teacd
Then the vectors
yd =vyeer+- -+ Yhoren—2 + en1

yA? = vse1+- -+ yrten—3 + er—2

arein &. Evidently ey, es, - - -, es are linearly dependent on these vectors, Hence
&, C S and so & = &, Since &; € &, if i < j, it is clear that no two of
these spaces are independent, Hence R cannot be written as a direct sum of
these invariant subspaces.
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If % is a direct sum of the invariant subspaces Ri, i = 1,2, -+,
5, § > 1, we may choose a basis (f1, f2, **+, fx) for R such that

(8) (fnx-i----+m-1+l>fn1+--~+n4_1+2> vt ')fn1+---+n¢)
is a basis for ®;. Since R; is invariant, any vector in (8) is trans-
formed into a linear combination of these vectors by any A4 ¢ Q.
Hence the matrix of A4 has the form
(81)
(B2)
©)

(Bs)

Here the diagonal block is the matrix of the transformations in-
duced by A in R; relative to the basis (8). Conversely, if @ is
any set of linear transformations and there exists a basis (fy, f3,
«++, fx) such that all the matrices relative to this basis have the
form (9), then % is a direct sum of the invariant subspaces

R; = [fn1+~~-+n¢—1+l> v ')fn1+-‘-+n-.']'

Suppose now that E; i = 1,2, -+, s, are the projections de-
termined by our decomposition. We recall that, if
(10) ¥ =%+ X+ X

where x; e R;, then E; is the mapping ¥ — x;. We have also
seen (p. 60) that the following relations hold:

(11) E,;2=E,;, EiEj=O, i#j, E1+E2+"'+E3=1.

The space R; = RE;. Hence each E; is # 0. Now let 4 ¢eQ.

Then )
xAd = x14 + xod +--+ x4

and, since ®; is invariant, ¥;4 ¢ R;. Thus the component in R;
of x4 is x:4, or,

This shows that the projections E; commute with every A e Q.
Conversely suppose the E; are linear transformations s 0 which
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satisfy (11) and which commute with every 4 eQ. Then we
know that R =R D R2D -+ - DR, where R; = RE;. More-
over, if 4 e and x;e Ry, then x; = xE; and x4 = xE;4 =
(xA)E; e ®;. Hence R; is invariant relative to Q.

If s > 1 in our discussion, each R; is a proper subspace and
each E; ¢ 1. Hence we see that, if @ is a decomposable set of
linear transformations, then there exist projections = 0, 1
which commute with every 4 in 2. Conversely, if E; is a pro-
jection # 0, ¢ 1 which commutes with every 4 in @, then E,
= 1 — E; has these properties also. Moreover, £, and E, are
orthogonal. Hence ® = RE; @ RE, and the RE; are proper in-
variant subspaces. This proves the following important criterion.

Theorem 1. A set Q of linear transformations is decomposable
if and only if there exist projections E £ 0, £ 1 which commute
with every transformation in Q.

EXERCISE

1. Show that, if &R is irreducible (indecomposable) relative to a subset of €,
then it is irreducible (indecomposable) relative to 2. Use this to prove that the
set of linear transformations corresponding to the set of triangular matrices

11 0
g1 g2
Opl Qp2 Cpn

is an indecomposable set.

5. Complete reducibility. If &; and &, are invariant sub-
spaces under @, then so is &; N &, and &; + S,. Hence the
totality of invariant subspaces is a sublattice L, of the complete
lattice L of subspaces of ®. It is natural to apply lattice-theo-
retic ideas in the study of the set L, and this is, in fact, what we
have done in the foregoing discussion. Thus the statement that
Q is irreducible amounts to saying that L, contains just two ele-
ments. Also the statement that @ is decomposable may be for-
mulated as a property of the lattice L,. Of the properties of L
we singled out in Chapter I, it is clear that the chain conditions
and the Dedekind law are preserved in passing to the sublattice
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Lgo. The complementation property of L, however, may or may
not be valid in L,. It certainly holds if @ consists of the identity
1 only, for then Lo = L. Also, if € is irreducible, then L, is com-
plemented, and there are other less trivial examples which will be
encountered later.

If L, is complemented, we say that @ is a completely reducible
set of linear transformations. This, of course, means that, if
& is any invariant subspace relative to @, then there exists a
second invariant subspace & such that ® = @ &’. This con-
dition is admittedly rather elusive since it applies to every in-
variant subspace &. It is therefore remarkable that this (pos-
sibly infinite) set of conditions can be replaced by the single con-
dition given in the following

Theorem 2. A set Q of linear transformations is completely re-
ducible if and only if R can be expressed as a direct sum of sub-
spaces R; that are invariant and irreducible relative to Q.

Sufficiency. Let R = R, R @ -+ - ® R, where the R; are ir-
reducible invariant subspaces. If & is any invariant subspace,
either & = R or there exists an Ry, say Ry, such that R, & &.
Then weset &; = & + R;. Now & N Ry £ L, and since & N R,
is contained in the irreducible invariant subspace ®;, either
GNR;, =R, 0or SN R, =0. Since &N R, = R, is equivalent
to @ 2 Ry, we must have SN R; = 0. Hence &, =S + R, =
S @ Ri. We now repeat the argument with &,; in place of &.
Then either &; = R, in which case ®; is a complement of &, or
there exists an R;, say R, such that G, = &; + Ry, = S, D Ro.-
Then &, = SP R, D R,. Eventually we obtain for a suitable
choice of the notation that R =S PR, PR D - @ Ru. Then
' =RDRPD - - DRy is a complement of & in R.

Necessity. Suppose that R, is an irreducible invariant subspace
of ®. Then either ® = R, is irreducible or & = RN, ® R, where
R, is an invariant subspace ¢ 0. Next let R, be an irreducible
invariant subspace of ®,". If ®, = R, we have R = R, D R,,
R; irreducible invariant as required. Otherwise, ; + R, has a
complement Ry’, Ry’ invariant. Then R = R DR D R'. We
repeat the argument with R,’. This leads finally to ® = R, ®
Ro @ -+ @R, where the R; are invariant and irreducible.
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EXERCISES

1. Use the argument in the first part of Theorem 2 to show that, if & is a sum
(not necessarily direct) of the irreducible invariant subspaces $; then Ris
completely reducible relative to £2.

2. Show that, if w is any set of diagonal matrices, then the corresponding set
Q of linear transformations is completely reducible.

3. Let G = {81, S2, -+ -, Sm} be a finite group of linear transformations, that
is, a subgroup of the group of 1-1 linear transformations of 3 over A, Assume
that the order m of G is not divisible by the characteristic of A, Show that, if
& is an invariant subspace relative to G and E is a projection onto &, then

1/ .
E, = — < > S@-ES@-_1> is a projection on & which commutes with the §;. Hence
=1

prove the important theorem:

Any finite group of linear transformations whose order is not divisible by the
characteristic of the division ring is completely reducible.

4. Let Q be an arbitrary set of linear transformations and let £ be any projec-
tion such that E4 = EAE holds for every 4 in Q. Asin § 2 define the linear
transformation 4z of B = R/RE into & = RE by #4dg = x(4E — EA).
Prove that, if there exists a linear transformation D of R into & such that
Ay = AD — DA holds for all 4, then & has a complementary invariant sub-
space.

5. Prove that if Q is completely reducible, and & is an invariant subspace,
then the set of linear transformations induced in & is completely reducible.

*6. Relation to the theory of operator groups and the theory
of modules. The theory of sets of linear transformations that
we are considering here can be regarded as a specialization of
the theory of groups with operators (M-groups).* A reader who
is familiar with the latter concept will observe that we are deal-
ing here with the additive group R considered as a group with
operator set M = A, U Q, A; the set of scalar multiplications.
The concept of M-subgroup evidently coincides with that of in-
variant subspace relative to the set of linear transformations Q.
Hence the concepts of reducibility, decomposability, composition
series coincide with these concepts for the M-group R.

The theory of M-groups also suggests the introduction of the
following concept of homomorphism between invariant subspaces
or factor spaces relative to the set Q. A mapping 9 is said to be
an Q-linear transformation of one such space into a second one if
@ is a linear transformation and (x4)6 = (x8)A4 holds for all the
induced transformations 4 ¢ Q. Similarly we say that two sub-

* See Volume I, Chapters V and VL.
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spaces R, 1 = 1, 2, are Q-isomorphic or equivalent if there exists
a 1-1 Qlinear transformation 6 of R, onto Ry. If (e1, €2, - -, &)
is a basis for R, then (e16, €26, - - -, ¢,0) 1s a basis for Ry, and it
is immediately verifiable that every 4 has the same matrix rela-
tive to (ey, -+, ;) and to (e:6, - - -, ¢,8). It follows that for arbi-
trary choice of bases in %; and R, the matrices («;) and (as) of
any A4 eQ are related by (as) = (u)(a;)(r) ™! where the non-
singular matrix (u) is independent of 4.

We can now state the following two fundamental theorems
which are taken from the theory of M-groups.

Jordan-Holder theorem. [fOC R, C Ry -+ C Ry = R and
0CcB,CByC -+ C By = R are two composition series for a set
Q of linear transformations, then t = u and the factors of composition
Ri/Ri1, S;/S;_1 can be put into 1-1 correspondence in such a
way that corresponding pairs are Q-isomorphic.

Krull-Schmidt theorem. If R = R, DR - D Rw = S, D
G2 @ -+ D Sy are two decompositions of R into non-zero invariant
and indecomposable subspaces relative to Q, then h = k and, if the
&; are suitably ordered, R; and S; are Q-isomorphic.

We refer the reader to Volume I, Chapter V, for the proofs of
these theorems.

We can also absorb the present theory into the theory of mod-
ules. This comes about from the fact that R is commutative.
Hence the endomorphisms of % form a ring and the set M =
A; U @ generates a subring o(M) of the ring of endomorphisms of
R. We call o = o(M) the enveloping ring of M. Now if S is a
subgroup of the additive group R, then the set of endomorphisms
of R that map & into itself is a subring of the ring of endomor-
phisms. Hence if & is an Q-subspace, this subring contains M
and consequently it also contains o(M). Thus we see that any
Q-subspace of R is an o(M)-subgroup. The converse is, of course,
clear. In a similar manner we see that, if 6 is an Q-linear trans-
formation, then 8 is an o(M)-homomorphism, and generally speak-
ing nothing is changed in shifting from the set M to its envelop-
ing ring. We have seen that in dealing with a ring of endomor-
phisms it is often convenient to regard the underlying group as
a module.
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It is usually difficult to obtain the structure of the enveloping
ring o(M) and, when this is the case, there is no particular gain
in shifting from the point of view of sets of linear transformations
to that of modules. If A = @ is a field, the problem of determin-
ing the structure of o is easier than in the general case. Here we
note also that &; is contained in the ring of linear transformations
and o can be regarded as an algebra over ®. Consequently in
this case one speaks of the enveloping algebra of the set Q.

7. Reducibility, decomposability, complete reducibility for a
single linear transformation. We adopt again the original point
of view and we consider in this section the special case in which
Q consists of a single linear transformation and A = & is a field.

If f is a non-zero vector in R, then the cyclic subspace { f} is
an invariant subspace £ 0. Let uy(A\) be the order of f and sup-
pose that us(N\) = w(A\)»(\) where x(\) is irreducible and has posi-
tive degree and leading coefficient = 1. Then g = fv(4) has
order #(\). Thus ® contains a vector whose order is a prime.
Suppose now that A is irreducible. In this case we have % = {g}
where p,(\) = m#(\) a prime. Conversely suppose that ® has
this form and let & be a subspace ¢ 0 invariant under 4. If 4
is a vector in &, the order us(\) is a factor of #(\). Hence if
h %0, un(\) = #(\). Hence dim {#} = deg #(\) = dim {g}. It
follows that {4} = {g}. We have therefore proved the following

Theorem 3. A linear transformation A in R over ® is irreducible
if and only if it is cyclic and has prime minimum polynomial.

We consider next the question of decomposability of a single
linear transformation. We know that ® = { i} @ {fo} @ - - @
{f:}. Hence a necessary condition for indecomposability is that
t =1, that is, ® = {f} is cyclic. We have also seen that, if the
minimum polynomial of a cyclic linear transformation can be
expressed as p;(Mue(N) where (ui(N), po(N)) = 1, then ® = {g,}
@ {g2} where p,(\) = w(\). Hence a cyclic linear transforma-
tion is decomposable unless its minimum polynomial has the
form w(\)*, w(\) prime. Conversely, these conditions are suffi-
cient; for suppose that A is cyclic with w(A)* as its minimum
polynomial. Assume that ® = R; ® R, where R; is invariant
under 4. Let u;(\) be the minimum polynomial of the transfor-
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mation induced by A in ®;. Then since x;w(A4)* = 0 for all x;
in Ri, w\) | #(\)% Hence u;(\) = #(\¥, k: < k. Now war(A)"
=0 for all x; in R;, and this implies that, if % = max(ky, k),
then #(A4)* = 0. Thus ¥ = k and so we may suppose that k,
= k. This means that the minimum polynomial of 4 in &, is
w(N\)k. Consequently there exists a vector f; in ®; whose order
isw(N)* Thendim { fi} = deg 7(\)* = dim ®. Hence { fi} = &
and since { fi} € R, R; = K. Thus the decomposition ® = R,
@ R is not proper.

Theorem 4. A linear transformation A in R over ® is inde-
composable if and only if it is cyclic and its minimum polynomial
is a power of a prime.

We suppose next that A4 is completely reducible. Then % =
RiPR D -+ AR, where the R; are invariant and irreducible.
By Theorem 3 the minimum polynomial of 4 in ®; is a prime
m:(N). It follows that the minimum polynomial u(\) of 4 in R
is the least common multiple of the 7;(\). Hence u(M) is a product
of distinct primes. Conversely, let 4 be a linear transformation
whose minimum polynomial u(M) is a product of distinct primes.
Then each invariant factor has this form too. Hence the ele-
mentary divisor ideals are of the form (m:(\)), m:(\) a prime.
Now, we know that this implies that % is a direct sum of cyclic
subspaces %; = {g:;} where the order p,(N) = m:(A\). By Theo-
rem 3 each ®; is irreducible. Hence % is completely reducible.
This proves the following

Theorem 5. A linear transformation A in R over ® is completely
reducible if and only if its minimum polynomial is a product of
distinct primes.

EXERCISES

1. Let A be cyclic with minimum polynomial u(A). Show that, if & is in-
variant under A4, then & is a cyclic subspace. Show that the invariant subspaces
of R can be put into 1-1 correspondence with the factors having leading co-
efficient 1 of u(A).

2. Let ® be infinite and let R = {1} @ {f2} be a decomposition of R relative
to A such that uy(A\) = up(\) = 7(\) a prime. Show that & has an infinite
number of subspaces invariant under A.

3. Prove that, if ® is infinite, then the number of invariant subspaces relative
to A is finite if and only if 4 is cyclic.
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8. The primary components of a space relative to a linear
transformation. The decomposition of a vector space into inde-
composable subspaces relative to a linear transformation is not
uniquely determined. On the other hand, as we shall show in
this section, there is a decomposition which is not as refined as
the one into indecomposable components but which has the im-
portant advantage of uniqueness.

Let u(\) be the minimum polynomial of 4 and let

(13) p(A) = w3 () ra N - m (V)

be the factorization of u(N\) into powers of distinct irreducible
polynomials having leading coefficients equal 1. Let ®; be the
subspace of vectors x; € % such that

(14) xai(A)% = 0.

Then we assert that the spaces ®; are invariant relative to 4 and
that

(15) R=RDRD -+ DR

The invariance of the ®; is an immediate consequence of the fact
that 7(A4)% commutes with 4 (cf. Ex. 1, p. 117). The proof of
(15) can be obtained by using the results of the preceding sec-
tion; however, we shall give an independent discussion that has
some points of interest of its own.

We note first that the polynomials

(16)  wN) = p(\) /7, (W" =
(N - Wi—l()\)k‘_lﬂ-l—l()\)km coem(NE i =1,2, 00,8

are relatively prime. Hence there exist polynomials ¢;(7),

d2(N), -+, ds(N) such that
17) o1 (NN + d2Mu2N) +- -+ d:(Ms(N) = 1.
We can substitute 4 in this relation and obtain
(18)  ¢1(Dui(A) + ¢o(Ape(d) +- -+ + da(Aua(4) = 1.
Since u;(M)u;(N) 1s divisible by u(N) if 7 5 4,

bi( A ni(d)e;(A)u;(A4) = 0.
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We set E; = ¢,(A)pi(A). Then this relation reads

(19) EE; =0, is]J

and (18) becomes

(20) Eix+E,+ - -+ E, =1

If we multiply this relation by E; and use (19), we obtain
(21) Ef = E.

Thus the E; are orthogonal projections with sum 1 and therefore
R=RE,DRE,D --- D RE..

Since the E; are polynomials in A4, they commute with 4; hence
the spaces RE; are invariant relative to 4. We shall now show
that RE, coincides with the space ®; of vectors x; such that
x,ﬂ',(d)h = 0. First lety,- SQRE,:. Theny,- = LtEi = uqS,(d),u,(d).
Since p:(\)7w:(\)% = u(\), this gives

Yyl A = ubi( Dui D)l A" = up(A)w(4) = 0.
Hence y; e ®;. Conversely, let
X=X+ %+ K,
where x; e RE;, be a vector in ®;. Then
0 = wri(d) = xrmi( )™ + xami( )™ + -+ + wewi( )N
and since x;m:(4)" ¢ RE; each
x5 = 0.

On the other hand, x;m;(4)* = 0, and since m;(\), m;(\) are dis-
tinct if 7 5 7, this implies that x; = 0 for j ¢ i. Hence ¥ = x; ¢
RE;. This completes the proof that %; = RE;.

It is clear that the minimum polynomial of 4 acting in ®; is
of the form m,(N)%, /; < ki Moreover, if x = x; + %2 +- -+ 4
where x; € Ri, and p*(\) = 7, (W) ra (V)™ - -+ 7, ()", then wp*(4)
= 0 for all ;. Hence xu*(4) = 0 and u*(4) = 0. Consequently
p(N) | p*(N). Evidently this implies that u(\) = p*(\) and that
Iy = ki for i =1, 2, -+, s. This completes the proof of the
following



132 SETS OF LINEAR TRANSFORMATIONS

Theorem 6. Let u(N\) be the minimum polynomial of the linear
transformation A in R over ® and let (13) be the factorization of
rw(N) into prime powers. Then, if R; is defined to be the subspace of
vectors %; such that xa(A)% = 0,

R=RDRD--- DR,

and the minimum polynomial of the induced transformation in R;
is 71',;()\)]“.

We shall call the spaces R, the primary components of R rela-
tive to 4. The projections E; determined by the decomposition
(15) will be called the principal idempotent elements of A.

We specialize now by assuming that & is algebraically closed.

In this case the m;(\) are of first degree, say, m;(A) = N — p..
We set

so that
(22) A =AdE,+ 4AE; +---+ AE, = (0E, + Ny)

+ (poEa + Ni) +- -+ (psEs + N).

Evidently

(23) Nz]V] =0, E,-N]- =0= NiEi
if { % 7 and

(24) EN; = N; = N:E..

Also N = (4 — p;1)5E; = Ei(A — p;1)¥ and if x is any vector
then xE; e R;. Furthermore x,(A4 — pil)k‘ = 0. This proves that

(25) NF =o.

The nilpotent linear transformations N; will be called the prin-
cipal nilpotent elements of 4. Like the E; these linear transfor-
mations are polynomials in A.

EXERCISE

1. Let ® be algebraically closed of characteristic 0 and suppose that E; IV, ¢
=1,2, .-+, s, are the principal idempotent and principal nilpotent elements of
A and that 4 = Z(p;E; + N;). Show that, if ¢(\) is a polynomial, then

_ P 870 a L BB PR T
#(d) = 2[plo0 Bs + T2 N L3P NE o4 T e Nk |
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9. Sets of commutative linear transformations. We suppose
now that Q is a set of commutative linear transformations in R
over ®. Assume first that Q is indecomposable. Then we shall
show that the minimum polynomial of any 4 e Qis a prime power.
For otherwise we can obtain a proper decomposition of R as
RDRD -+ - DR, where the R; are the primary components
relative to 4. Now it is clear that if B is a linear transformation
that commutes with 4 then R.B S R;. Hence the ®; are in-
variant relative to Q, and this contradicts the indecomposability
of Q.

Assume next that % is irreducible. Then we assert that the
minimum polynomial p(\) of every A is irreducible. For if ()
is an irreducible factor of p(\), then the space & of vectors y such
that yr(A4) = 0 is # 0. Evidently & is invariant relative to €.
Hence & = ® and #(A) = u(M).

Now let @ be an arbitrary commutative set of linear transfor-
mations. We first decompose R as

R = QR(I)(_BQR@)@.,.@?R(M

where the R are indecomposable. It is clear that the transfor-
mations induced by the £ € @ in any invariant subspace and in
any factor space commute. This holds in particular for the .
Our result in the indecomposable case, therefore, shows that the
minimum polynomial of any A4 acting in R is a prime power
m:(\)*. We now choose a composition series

(26) 0C R D RP - C R, ® = RO

for each ®®. Then each factor space R;¥/R;_;# is irreducible
relative to the induced transformations. Hence the minimum
polynomial of the transformation 4 induced by A in %, /%;_,®
is irreducible. On the other hand, =;(4)* = 0. Hence the mini-
mum polynomial of 4 is m;,(\).

We now choose a basis for R corresponding to (26), that is,
the first group of vectors is a basis for ®;”, the second group
supplement these to give a basis for R, etc. The bases thus
determined for the different R constitute a basis for ®. With
respect to this basis the matrix of 4 has the block form
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(e1)
(e2)
(27)
(o)
where the block (e;) that goes with ®? has the form
(81) 0
(B2)
(28)
* (Bs)

The matrix (8;) is a matrix of the induced linear transformation
A. Hence its minimum polynomial is m;(\).

Suppose now that ® is algebraically closed. Then =,(\) =
A — pi. Hence 4 = p;l is a scalar multiplication in %, /%;_,;®.
Since any subspace is invariant relative to a scalar multiplication,
it follows that ®;?/R;_; is one dimensional. Hence the ma-
trices (8;) are one-rowed. Our final result can therefore be stated
as the following theorem on matrices:

Theorem 7. Let ® be an algebraically closed field and let w be
a set of commutative matrices belonging to ®,. Then there exists a
non-singular matrix (u) in ®, such that

[(c)
(042) ]
()W)~ = - J
(on)
where i 0
pPi
() =

Sfor all (). - pi
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EXERCISES
1. Let ® be the field of complex numbers and let
10 O 01 1
(o) = [O 0 —1} B) = [—1 1 —1]-
01 2 11 3

Verify that (@)(8) = (8)(@) and illustrate Theorem 7 with this pair of matrices.
2. (Ingraham) Let 4 be a matrix in the block form

An A 0 A
An Ay o Aom

Aml Am? i Amm
where the A4;; are » X r matrices with elements in an algebraically closed field.
Assume that the 4;; commute with each other and define
detg 4 = 2 &= A3, Aoiy + -+ Ay,

where the sum is taken over all permutations 11, s2, **+, imof 1,2, -+, m and
the sign is 4 or — according as the permutation is even or odd. Use Theorem 7
to prove the following transitivity property of determinants

det(detr 4) = det 4.
(This holds for arbitrary base fields. Compare Sec, 9, Chapter VII.)

3. (Schur) Show that the maximum number of linearly independent commu-
2
tative matrices which can be chosen in @, is [%] 4 1, where, in general, [a]

denotes the greatest integer in the real number a.



Chapter V

BILINEAR FORMS

This chapter is devoted to the study of certain types of func-
tions, called bilinear, which are defined for pairs of vectors (x, y')
where ¥ is in a left vector space % and y’ is in a right vector space
®’. The values of g(x, y') are assumed to belong to A, and the
functions of one variable g,(y") = g(x, ") and g, (x) = g(x, ¥")
obtained by fixing the other variable are linear. Of particular
interest are the non-degenerate bilinear forms. These determine
1-1 linear transformations of %’ onto the space of linear functions
on R. Consequently, if 4 is a linear transformation in R, there
is a natural way of associating with it a transposed linear trans-
formation in &',

If the division ring A possesses an anti-automorphism, then
any left vector space % over A can also be regarded as a right
vector space over A. Hence in this case one has the possibility
of defining bilinear forms connecting the space with itself. Such
forms are called scalar products. Their study is equivalent to
the study of a certain type of equivalence for matrices called co-
gredience. The most important types of scalar products are the
hermitian, symmetric and alternate scalar products. We shall
obtain canonical matrices for such forms, and, in certain special
cases that are of interest in elementary geometry, complete solu-
tions of the cogredience problem will be given. We shall also
prove Witt’s theorem for hermitian forms and apply it to de-
fine the concept of signature for such forms over an arbitrary

division ring of characteristic 5 2.
136
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1. Bilinear forms. If R is a (left) vector space over A, we have
defined a linear function as a mapping x — f{x) € A such that

1) S+ 9) = f0) +/0), flax) = af(%).

These mappings form a right vector space %* relative to the com-
positions

@) (f + 2x) = flx) + g(x), (fa)(x) = f(x)ex.

As we have seen, these definitions imply that, for each fixed vec-
tor x ¢ %, the mapping f — x(f) = f(x) is a linear function in
R*. Because of this symmetry it is natural to regard f(x) =
x(f) as a function of the pair x e R, f e R*. We therefore denote
the value f(x) as s(x, f), and the above equations now read

@) ste+2,0) =506, 0) + 50, f), slax, f) = as(x, f)
@) s, f+ 8 = 506f) +5(x 8, sl fa) = s(x, )

We shall now generalize this situation by assuming that ®’ is
any right vector space over A. Then a function g(x, y") defined
for all pairs (x, ¥’), » in R, ¥’ in R’, with values g(x, y’) in A 1s
called a bilinear form if

) g1 + x2,5") = glx1, ¥) + glx2, ¥),
glax, ) = aglx, y'),

(6) g, 31" +32") = g%, y1) + &%, y2'),
g%, y'a) = glx, y")a.

Clearly s(x, f) is a bilinear form for the space % and its conjugate
space R*.

On the other hand, as we proceed to show, the conjugate space
R* can be used to give an alternative definition of a bilinear form.
First, let g(x, ') be a bilinear form connecting the left vector
space i and the right vector space ®’. We fix the vector ¥’ and
regard g(x, ¥') as a function of x. Accordingly we write g(x, y')
= g,(x). Then, by (5), g,-(x) is linear, that is, it belongs to the
conjugate space i*. Now let y’ vary and consider the mapping
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¥y — g, eR* We denote this mapping as R and we observe
that, by (6), R is linear, since

Gur+ur(®) = gle, 1" + 32) = glx, y1') + glx, ¥2)
= gyl’(x) + gyz'(x)>
Zra(¥) = glx, y'a) = glx, y)a = gy (#)a

In a similar manner, if we fix x, then the function g,(y") = g(x, y)
is linear in y’. Hence g, is in the conjugate space (R')* of R,
The mapping L: x — g, 1s a linear transformation of &% into (R')*.

Conversely, suppose that we are given a linear transformation
R:y" — g,(x) of the right vector space %’ into the space R* of
linear functions on ®. Then we can regard g,.(x) as g(x, '), a
function of (x, ¥'), x in R, ¥’ in R’, and we can verify that this
function is a bilinear form. Thus we see that an equivalent defi-
nition for the concept of a bilinear form is that of a linear trans-
formation of the right vector space R’ into the conjugate R* of
R. Similarly, we could also say that a bilinear form is a linear
transformation of ® into the conjugate space (R)* of ®’. The
original definition, however, has the advantage of symmetry over
the present formulations, and it will be given preference in the
sequel.

EXERCISE

1. Show that, if g(x, ») is a bilinear form and 4 is a linear transformation in
R, then g(x4, ¥') is a bilinear form.

2. Matrices of a bilinear form. Suppose now that ® and &’
are finite dimensional and that (e, ez, -~ -, ), (/') fo's ~ -,
Jfar"), respectively, are bases for these spaces. We shall call the

matrix
g(ebfl’) g(€1>f2’) e g(ebfn',)

) glea, /1) glea, f2) o glen, fur')

g(5n>fl,) g(5n>f2,) g(emfn’,)

the matrix of the bilinear form g relative to the given bases. The
form is completely determined by this matrix; for if » and y’
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n n
are arbitrary in % and R, we can write x = 2. £iee, ¥ = 2 fi'nj,
1 1

and we obtain
gle, y) = gCties, Zfi'n;) = Ztigles, fi ;.

Hence g(x, ¥') is known from the representations of ¥ and ¥’ and
from the entries g(es, fi) of (7). Also it is clear that, if (8;;) is
any # X n’ matrix with elements in A, then there exists a bi-
linear form A(x, y’) which has this matrix as its matrix relative
to (e1, eg, =y €n), (/1’5 f2)s +++y fu'); for we can define

g(x, ") = ZEBim;

and it is easy to verify that this function is bilinear. Since
gles, fi’) = Bi; the matrix of g 1s the given one.

We consider now the effect on the matrix (8) of g(x, ¥') of
changes of bases in the two spaces. Let (w1, #s, -, #,) be a
second basis in R, u; = Zuse; where (u) e L(A, n), and let (vy/,
vy, +++, v,”) be a second basis in R, v’ = Zfi'vir, (v) € L{A, ).
Then

glus, vi') = g(Zuije;, Zfi'vie) = ZpaiBivue

so that the new matrix is (u)(8)(») a matrix equivalent to (8).
We remark that in the commutative case this relation is usually
encountered in a slightly different form. Here one generally con-
siders all vector spaces as left vector spaces. Then the change of
basis in R’ reads v’ = Zviifi’, and the new matrix of the bilinear
form is (u)(B)(»)’ where (v)’ is the transpose of the matrix
() = (wa)-

We return now to the general case of an arbitrary A. We have
proved in Chapter I (p. 45) in connection with the theory of
linear transformations that, if (8) is any rectangular matrix with
elements in A, then there exist non-singular square matrices (u)
and (v) such that

(8) (V’)(B)(V) = dlag {1> ) 1) 0) ) 0}-

This matrix result yields the following fundamental theorem on
bilinear forms.
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Theorem 1. If g(x,y") is a bilinear form connecting the vector
spaces R and R, then there exist bases (uy, ug, -+ -, u,), (v1', v/,
<« vn) for these spaces such that
) glus, v") 8s5 . if .1>] 1, 2>' s ¥

gusm vy =0 if i>r or j>r.

Evidently the number » is the rank (row or column) of the
matrix (8) of g(x, ¥'). An abstract characterization of this num-
ber will be given in the next section.

3. Non-degenerate forms. If g(x,y’) is a bilinear form, the
totality of vectors z ¢ i such that g(z,y") = 0 for all y' e R’ is
a subspace Nt which we shall call the /eft radical of g. Similarly
we define the right radical % as the subspace of R’ of vectors 2’
such that g(x, 2’) = 0 for all x. It is clear from the definition
that the left (right) radical is just the null space of the linear
transformation L (R) of R (R’) into the space of linear functions
on R (R). If (fi, fo!y -, fa') 1s a basis for R’ and z &N, then
g, fi") =0 for j=1,2, .-+, . Moreover the #' equations
£(2, f) = 0 imply that g(z, ') = 0 for all . Hence these con-
ditions are also sufficient that z e . Now let (e, €2, - - -, €,) be

a basis for % and write z = Y {ye;. Then
1

(10) 0= g(z>fj, = g(zfi5i>ff,) = Zflﬂu: .7 = 1) 2, -0 71',

are the conditions that z = Z¢e; e M. It follows that dim % is
the maximum number of linearly independent solutions of (10).
Hence dim % = # — r where 7 is the rank of (8). Similarly we
see that dim %' = »’ — r. We remark also that, if we use the
normalized bases given in Theorem 1, then we see that % =
[#r 415 #rqo, <5 uy) and N = [v, 11/, 0040, -+, va/]. For it is
clear that the #; with 7 > » are in 2. Moreover, if Syu; e N,
then, in particular, for £ < 7,

0 = v, ') = e
Hence the vector has the form Y v;u;, and therefore it belongs
r+1

to [#,.41, #r 49, -+, t,). This proves the assertion about %. A
similar argument applies to %'.
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We know that dim RL + dim % = # and dim ®'R + dim N’
= n'. It follows that dim RL = » = dim ®'R.

The bilinear form g is said to be non-degenerate if # = 0 and
R’ = 0. Thus g is non-degenerate if the only vector z in i such
that g(z, ") = 0 for all ¥’ is 2 = 0 and the only vector 2’ in %’
such that g(x, 2’) = 0 for all x is 2/ = 0. If g is non-degenerate,
then the mappings L and R are 1-1. Also since dim %t = 0 =
dim %, then » = » = n’. Thus we see that, if ® and R’ are con-
nected by a non-degenerate bilinear form, then these spaces have
the same dimensionality n. We recall also that a space and its
space of linear functions have the same dimensionality. Hence
the mappings L and R are 1-1 linear transformations of vector
spaces into vector spaces of the same dimension. It follows that
these are mappings onfo the corresponding spaces. The relations
n = r = n’ are also sufficient that the bilinear form be non-de-
generate; for they clearly imply that dim®% =# —» =0 and
dim %W = »" — r = 0. Our results can be summarized in the fol-
lowing

Theorem 2. Necessary and sufficient conditions that a bilinear
form g(x, y') connecting R and R’ be non-degenerate are: 1) R and
R’ have the same dimensionality; 2) the matrix of the form relative
to any pair of bases is non-singular. If g is non-degenerate and
F1(¥") is a linear function on R, then there exists one and only one
vector x in R such that g(x, y') = f1(y") holds for all y'. Also if
folx) is any linear function on R, then there is a unique vector y’
in R such that g(x, y") = fo(x) holds for all x.

If two vector spaces Rt-and R’ are connected by a non-degenerate
bilinear form g, then we shall say that these spaces are dua/ rela-
tive to g. Suppose that this is the case and let (e1, €3, <+, €,)
be a given basis in ®. We choose a basis (fy’, fo/, -+, fa') for
%', and we obtain the non-singular matrix (8) where 8;; = g(e;,
fi). Now let (v) be any non-singular matrix in A, and let v’ =
Zfi'vix, be the corresponding new basis in ®’. Then we have seen
that the matrix of g(x, y’) relative to the pair of bases (¢, ¢s,
ceeyen), (01, vy o+, 0a") 1s (B)(»). Thus there exists a uniquely
determined basis (¢,/, e2’, « -+, €,”) for %’ such that the matrix of
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g relative to (ey, s, -+, €n), (e1/, €', ---, €,’) 1s the identity
matrix, that is,
(11) g(é’i, 6’]") = 51;]', 1,] = 1, 2, e, R,

The e/ are obtained by taking (v) = (8)~'. We call the bases
(1, €2, =+, en), (1), €0 <+ 5 €,) complementary bases for the dual
spaces. Our argument shows that any basis in & (R") determines
a unique complementary basis in R’ (R).

Complementary bases have been used in our study of the no-
tion of incidence between subspaces of ® and of its conjugate
space ®*. These spaces are dual relative to the fundamental bi-
linear form s(x, f) = f(x); for if f(x) = 0 for all x, then f =0
by definition, and if ¥ # 0, then there exists a linear function f
such that f(x) £ 0. We can carry over to the general case the
results on incident spaces. Thus let % and %’ be dual relative to
£(x,%"). Then if & is a subspace of i, we define the space (&)
incident to & to be the subspace of ®’ of vectors y’ such that
g(x,9) =0 for all xe&. In a similar manner we define j(&")
for a subspace & of ®’. We can prove as in the special case of
R and R* (p. 55) that dim (&) = #» — dim & and dim j(&') =
n — dim &'. These relations, together with the obvious rela-
tions j(j(©)) 2 &, j(j(&") 2 &, imply that

@) = &, (@) =
Also, as in the special case of the space of linear functions we can
prove that the mapping & — j(&) is an anti-automorphism of
the lattice of subspaces of % onto the lattice of subspaces of %’
The inverse of this anti-automorphism is, of course, the mapping

& — j(&'). We leave it as an exercise to the reader to fill in
the details of this discussion.

EXERCISE

1. Let R and R’ be connected by the bilinear form g(x, ¥) and let 9t and N’ be
the radicals determined by this form. Ifx + e R/Nand y' + N e R/, set
glx + N, 5" + N = g(x, ¥"). Show that this defines a non-degenerate bilinear
form for the factor spaces /N, RN'/.

4. Transpose of a linear transformation relative to a pair of
bilinear forms. Let ®;, i = 1, 2, be a left vector space and let
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%R be dual to R; relative to the bilinear form g;(xs, vi'). If 4 is
a linear transformation of %, into Rs, then we know how to de-
fine the transpose 4* as a linear transformation of the conjugate
space Ro* into the conjugate space R,*. If fe Ro*, then fA* is,
by definition, the resultant 4f. We can now make use of the
equivalences R; of i, onto R;* to define a linear transformation
of Ry’ into RN,’, namely, we set

(12) A4 = RyA*R,~%.

Clearly this product can be defined since we have the following
scheme of linear mappings:

R2: 9?.2' —d 31‘.2*
A*: R* — RN *
Rl_I: ERI* b ml’-

Also it is clear that 4’ is a linear transformation of %2’ into R;'.
We shall call this transformation the transpose of A (relative to the
bilinear forms g, and g2).

We determine next the form of 4. Let y5,' e %y’. Then y,'R,
is the linear function go(xs, y2') on the space Ry Moreover,
yo'RoA* is the linear function f; on R, such that

(13) S1le1) = ga(x1 4, y2').
Finally y,'Ro4*R, 7! is the vector y,” of ®,’ such that
(14) fl(xl) = gz(xlzf, yz') = gl(xb yl’)

holds for all »; in ;. The mapping 4’ sends y," into ¥, and,
according to the above equation, y,” = y,’4’ is the uniquely de-
termined vector of ®;’ such that

(15) g1(x1, y2'A") = go(x14, y2')

holds for all x; in R;.

Since the notion of duality is a symmetric one, we can inter-
change the roles of ®; and R, in the foregoing discussion. Thus
if 4’ is a linear transformation of &%y’ into RN,’, then we define its
transpose (relative to the given forms) to be the mapping 4" =
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L, A'*L,~ where L, is the fundamental equivalence of ®; onto
Ry'*, A'* is the transpose of 4’, and L, is the equivalence of
Ry onto RNy’*. In analogy with (15) we can verify that x,. 4"
is the uniquely determined vector such that

(16) g2(x1d”, 32) = g1(x1, yo'A')

holds for all y,’ in %y’. Now it is clear from (15) and (16) that,
if 4’ is the transpose of 4, then A is the transpose of 4. Also if
A" is the transpose of 4’, then A4’ is the transpose of 4”". Thus the
two correspondences 4 — A’'y, 4" — A" are inverses of each
other. Hence 4 — A’ is a 1-1 mapping of the set 2(R;, Ry) of
linear transformations R, into Ry onto the set LR, R,’) of
linear transformations of Ry’ into R,’. Of course, this can also
be seen directly from the definition of the transpose and the
properties of the mapping 4 — A'.

The algebraic properties of the mapping 4 — A4’ can also be
deduced from the previously established properties of the map-
ping 4 — A*. We state these without proofs: 1) If B is a sec-
ond linear transformation of ®; into Ry, then

17) (4+ BY = 4+ B.

2) If ®3 and R’ are dual relative to the non-degenerate form
g3(x3, y3') and C is a linear transformation of R, into Rz, then
we denote the transpose of C relative to go, g3 by C’. Also we de-
note the transpose of 4C relative to gy, gz by (4C)’. Then we
have the relation

(18) (AC) = C' 4"

3) As usual if we deal with a single vector space % and its dual
relative to g(x, ¥'), then 1) and 2) show that the mapping 4 —
A', the transpose of A4 relative to g, is an anti-isomorphism of the
ring of linear transformations in ® onto the ring of linear trans-
formations in %',

Finally, we wish to determine the relation between the ma-
trices of a linear transformation and its transpose. Again let A4 be
a linear transformation of R, into R, and let R;” and RNy’ be the
duals relative to the forms g; and g, respectively. Let (e, e,
-+, ¢,) be a basis for Ry; (e1/, €2’y - -+, €,,”), the complementary
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basis in ®,’. Similarly let (f1, f2, * -+, fs,) be a basis for R, and
(f1s f2s +++, fn') the complementary basis. Suppose that

72

€i1f=zaikfk, i=1,2, -, m

k=1

ni1
fd =3 efay/, 1=1,2,- - n,.

i1
Then the conditions

i

g2leid, /1) = gles, fi' A7)

yield the relations

o = o’
for the matrices. Thus as in the special case of spaces and the
dual spaces of linear functions, we have the rule: If complementary
bases are used in the dual spaces, then the matrix of a transformation
A and of its transpose A’ are equal.

EXERCISE
1. Supply proofs of statements 1), 2) and 3) above.

5. Another relation between linear transformations and bi-
linear forms. We assume again that the spaces ®; and R/, i =
1, 2, are dual relative to g;. Let #” and v be fixed vectors in %,’
and R, respectively. Then if x» ranges over R, the mapping

(19) x — g1lx, u')v

is a linear transformation of %, into R,. This is clear from the
properties of the bilinear form. Since our transformation is de-
termined by the pair #’, v, we shall denote it as the “product”
u’ X v. More generally if u,’, us’, -+, u,” are in R;’ and vy, v,,

-+, U, are in Ry, then the mapping u,” X v; + uy’ X vy +---
+ #, X vy 1s the linear transformation

x — gilx, u)or + gilx, uvs ++ - -+ g1(x, un Yo

We show next that any linear transformation of %, into Rs
has this form. For let 4 e &R, R2) and let (v, vy, -+, v,) be a
basis for the rank space R14. Then if x is any vector in Ry, x4
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can be written in one and only one way in the form

(20) x4 = ¢101 + ¢tz + -+ -+ @0,

where the coefficients ¢; are in A. Since these coefficients are
uniquely determined by x, we may consider them as functions of
x, and accordingly we write ¢; = ¢i(x). Thus (20) can be re-
written as

(20" xd = ¢1(x)vy + da(x)v2 + -+ -+ ¢,(x)v,.
If y 1s a second vector in %,, then
Zoilx + y)vi = (x + )4 = xd + y4 = Z¢i(x)v; + Zdi(y)v..
Hence ¢;(x + y) = ¢i(x) + ¢:(v). Also by (20’), if a € A, then
(ax)Ad = a(xd) = ap1(x)v; + aga(¥)v2 + - -+ + ag.(x)v,,

and this implies that ¢,(ax) = agp:(x). Hence the functions ¢;{x)
are linear. Since gi(x, y’) is a non-degenerate form, it follows
that there exist vectors #;” in ®," such that ¢;(x) = g1(x, ©)
holds for all x. Thus

xd = g1(x, w1 o1 + g1(x, u2")o2 + - -+ gilx, u')o,

and 4 = u," X vy + u2’ X vy +-+-+ u,” X v, as required.
The pairs of vectors (u,/, v1), (#2', v2), * + +, (tn’, vm) also define

a linear transformation 4’ of Ry’ into R,’. If x" e RNy, then we
define

' A" = uygo(v1, &) + ux'go(v2, ¥7) 0o F 1 go(m, X7).
We shall denote this transformation as
) X' vy uy’ X vy oo 1y X o

As is indicated by our notation the transformations 4 and 4’
are transposes relative to the bilinear forms g; and gy; for if x
1s any vector in 9%; and &’ is any vector in Ry, then

gulx, x'd') = gi(x, 2 ui'ge(vs, 27)) = 32 g, ui)ga(vs; x)
and ' '

g2(x/{> x,) = &2 (Z gl(x) ”i,)vi) x,) = Z:gl(x) ”i,)g2(vi) x,)'

Hence g,(x, x’A") = g2(x4, x"), and this proves our assertion.
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We consider again the representation of the linear transforma-
tion 4 as »_ u; X v;. Itisclear from the definition of the product
[

#’ X v that

(21) () + Yy Xv=wu/ Xv+u'Xou,
' X (4 v) =" Xog+u X

(22) o Xv=1u X a

Hence if we express the #; as u; = Z¢;/B;;, then Zu/ X v; =
ZeiBis X v; = Zei X Bjws = Ze;/ X w; where w; = Z6;v;. Thus
if we can write the »/, 7 = 1,2, ---, m, in terms of fewer than m
vectors ¢;/, then we can obtain expressions for 4 = Zu;” X v; as
a sum of fewer than m products ¢/ X w;. Similarly if we can
write the v; as v; = Zay; f; where the number of s is less than m,
then we can obtain an expression for 4 as a sum of less than m
products.

Now let 4 = > u;/ X v; be an expression for A4 for which 7 is
1

minimal. Then our remarks show that the sets (u,’, uy/, -+ -, u,’)
and (vy, vs, -+, v,) are linearly independent. Now there exist
vectors (uy, #g, -+, #,) in R, such that

gl(”b Zl]") = 513]') 1)] = 1) 2) P A
ud = Zgl(ui, uYv; = v;
M

and [v1, v2, ** -, v,] € R14. On the other hand, for any x

Then

xd = Zgl(x) ”i,)vf € [2)1, U2y "y Z),].
J

Hence %4 = [vy, v3, - -+, v,], and 7 is the rank of 4. If we use
the form of the transpose determined above, we see that the rank
space Ro' A" = [uy', us’y -+, u,/]. We remark that this gives still
another proof of the theorem that rank 4 = rank 4’

6. Scalar products. We know that, if R is a left vector space
over a field ®, then % can also be regarded as a right vector space
over ®. Hence we have the possibility of defining bilinear forms
connecting % with itself and of regarding ® as a dual of itself.
These considerations can also be applied to the division ring case,
provided that A possesses an anti-automorphism.



148 BILINEAR FORMS

Thus suppose that A is a division ring in which there is defined
an anti-automorphism o« — & The defining properties of such
a mapping are that it is 1-1 of A onto itself and that it satisfies
the conditions

(23) a+B=a+p of=pa

Thus, for example, A can be taken to be the division ring of
Hamilton’s quaternions and & — & the mapping of a quaternion
onto its conjugate. We remark also that, if A = ® is a field,
then an anti-automorphism is just an automorphism in &, Hence
in this case @ — & can be taken to be any automorphism of ®.
In particular, we can take & = «, that is, the mapping is the
identity automorphism. This is the classical case, and it will re-
ceive special emphasis in our discussion.

Let % be a (left) vector space over A, By using the given anti-
automorphism a — & it is easy to turn % into a right vector
space over A. We have merely to set x& = ax, or, in other words,
if @ — a?is the inverse of « — &, then xa = o*x. One verifies
that this definition of right multiplication by scalars satisfies the
basic requirement (cf. p. 6). Hence ® becomes, in this way, a
right vector space over A. The two dimensionalities, left and
right, of % over A are equal. In fact, it is clear that, if (e, e,

-+, es) 1s a left (right) basis for &, then it is also a right (left)
basis; for, if x = Z&e;, then ¥ = ZeE;. Moreover, if Ze;8; = 0,
then Z8;4¢; = 0, ;4 = 0 and §; = 0. We remark also that any
left subspace of % is a right subspace and conversely.

We can now consider bilinear forms connecting the left vector
space ® and the right vector space ®. Such forms will be called
scalar products. 'Thus by definition a scalar product is a function
g(x, y) defined for pairs of vectors (x, y) belonging to %, having
values in A, and satisfying the equations

(24) glx1 + 22, ) = gler, ) + glxa, 3),  glaw, ¥) = oaglx, y)

(25) gl 31+ y2) = glo, y1) + g%, ¥2), glx, ay) = glx, y)a;

for since ay = y&, the second condition in (25) is equivalent to
the second part of (6).
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If (e, €5, + -+, €n) is a basis for % over A, the matrix (8), Bi; =
gles, ;) is called the matrix of the scalar product relative to this
basis. Evidently this concept is a specialization of our former
one of the matrix of a bilinear form determined by bases in the
spaces connected by the form. As in the general case, the matrix
and the basis completely determine the function g(x, y); for if
x = ZEe; and y = Zque,, then by (24) and (25)

(26) glx, y) = %: £:Bush;.
Conversely, if (¢, €3, « -+, €,) and () are given, then the equation
can be used to define a scalar product in R.

We consider now the effect of a change of basis on the matrix
of a scalar product. Let (fy, fo, -+, fn) be a second basis of &
and suppose that f; = Zuze;. Then if we regard these as right
vector spaces, the relation between them is f; = Zev;; where vj;
= Gi;. Thus the matrix connecting the right bases is (v) = (@),
and this matrix is called the conjugate transpose of the matrix
(). Now we have seen (p. 139) that the new matrix of g(x, y)
is (v) = (W)(B)(»). Hence we have the relation

27) () = (W B(@)'

where (u) 1s the matrix that gives the change of left bases. Two
matrices (8) and () connected asin (27) by a non-singular matrix
(u) are said to be cogredient (relative to the given anti-automor-
phism). It is easy to see that this relation is an equivalence.
The result we have established is that any two matrices of a
scalar product are cogredient. It is also clear that, if (8) is the
matrix of a scalar product, then any matrix cogredient to (8) is
also a matrix of the scalar product.

If & is a subspace of &, then it is evident that the contraction
of the function g(x, y) to the pairs of vectors in & is a scalar prod-
uct for &. Itis now natural to introduce the following notion of
equivalence between subspaces of %#. We say that the subspaces
@, and &; are g-equivalent if there exists a 1-1 linear transforma-
tion U of &, onto &, such that g(x;, y1) = gl U, y,U) holds for
all x1, y1 in &;. If (e, €, -, €,) is a basis for &, then (¢, U,
esU, -+, ¢,U) is a basis for &, and gle;, ¢;) = gle:U, ¢;U).
Hence the matrices of the contractions of g relative to these
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bases are identical. It follows that, if arbitrary bases are chosen
in g-equivalent subspaces, then the matrices determined by these
bases are cogredient. Conversely, suppose that &; and &, are
subspaces such that the matrices of the contractions of g to these
spaces are cogredient. Then by an appropriate choice of basis
in &; we can suppose that we have a basis (e}, es, + -, ¢,) for
&, and a basis (f1, fe, * * *,fr) for &, such that g(e;, ¢;) = g(fs, f;).
Now let x; = Z&we;, y1 = Znj¢; be any two vectors in &;. We
have Z&g(é’u &)l = Zfig(fufz)m, and this gives g(x1, y1) =

g(EE,fz, Zn;f;). Now the mapping x; = Z&e; — Zéifiis a 1-1
linear transformation of &; onto &,. Hence the foregoing rela-
tion shows that &, and &, are g-equivalent.

7. Hermitian scalar products. We shall assume now the anti-
automorphism « — & is involutorial in the sense that & = « for
all @« We consider first the theory of scalar products which are
hermitian in the sense that

(28) gy, x) = glx, y)

for all x and y. If A = & is a field and & = « (this is allowed),
then the hermitian condition reads

(29) g0y, %) = glx, 3).

A scalar product satisfying this condition is said to be symmetric.
If (ey, €3, ++-, €,) 1s a basis for & over A, then the condition
(28) implies 1n particular that

Bi; = gles, €5) = glej, €5) = Byan
Hence a necessary condition that g(x, y) be hermitian is that the
matrices (8) of the scalar product be Aermitian in the sense that

(30) ®'" = (8)-
This condition is also sufficient; for, if it holds and ¥ = Z¢e; and
y = Znses, then _ o

8, x) = ZniBut; = Znibiik;

g%, 3) = Z&Busi; = Zn;fisks

Hence g(y, x) = g(x, y). In particular g(x, y) is symmetric if and
only if its matrices are symmetric ((8)" = (8)).

and
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If g(x,y) i1s hermitian, g(u,v) = O for the particular vectors
u, v implies g(v, #) = g(u, v) = 0. If this holds, then we say that
the vectors # and v are orthogonal (relative to g). Our remark
shows that this relation is a symmetric one. If & is a subspace
of ®, we define the orthogonal complement &t to be the space of
vectors v that are orthogonal to every vector # ¢ & This coin-
cides with our earlier definition of 7(&). It should be noted that,
except in important special cases, some of which will be consid-
ered in the next chapter, @ is not in general a complement of
& in the lattice of subspaces.

The subspace %' of vectors z that are orthogonal to every
x e R will, as before, be called the radical of g(x, y). The scalar
product is non-degenerate if its radical ®*+ = 0. In this case we
know that the mapping & — &' is an anti-automorphism of
the lattice of subspaces onto itself. Also we know that dim &*
= »n — dim &. Hence dim &'t = dim &. Since it is clear that
&1 2 @, this relation gives &' = & Thus the mapping
© — &7 determined by a non-degenerate hermitian scalar prod-
uct is an involutorial mapping in the lattice of subspaces.

A subspace & will be called isorropic if @ N &t = 0., This
evidently implies that & contains a non-zero vector # which
is isotropic in the sense that g(u, u) = 0. A subspace & will be
called totally isotropic if @ C &,

If g is non-degenerate and & is a non-isotropic subspace, then
&N &' =0 and dim & = # — dim &. Hence in this case we
have the decomposition § = @ &*.

EXERCISES

1. Show that the existence of a hermitian scalar product 3 0 implies that the
anti-automorphism « — @& is involutorial. (Hence the latter condition is super-
fluous in the above discussion.)

2. Show that the existence of a scalar product 20 which satisfies g(x,y) =
2(y, x) implies that & = « and hence that A is a field.

3. Show that, if (&) and (B) are hermitian, then so are (&) = (8), (@7, (@(®B) +
B)@).

4. A scalar product A(x, y) is called skew-kermitian if A(y, x) = —h(x, ¥). Let
 be an element of A that satifies # = —p 5% 0 and let A(x, ) be skew-hermitian.
Prove that the mapping £ — £* = u~1£u is an involutorial anti-automorphism
in A and that g(x, ¥) = A{x, ¥)u is hermitian relative to this anti-automorphism,
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8. Matrices of hermitian scalar products. In our discussion
of hermitian scalar products we shall find it convenient to treat
separately the symmetric forms over fields of characteristic 2.
We therefore assume in this section that, if g is symmetric, then
the characteristic of A = & is not two.

We consider first the function g(x, x) of a single vector x de-
termined by the scalar product. If g(x, y) is symmetric, the as-
sociated function g(v, %) is called the quadratic form determined
by the symmetric form. In general, we shall say that the ele-
ment B of A is represented by the scalar product if there exists a
vector # # 0 such that g(u, #) = 8. Since

g(”) Zt) = g(”) Zl), B = B_

Hence the elements represented by the scalar product are invari-
ant under the anti-automorphism. An important step in proving
the main result on hermitian scalar products is the following

Lemma. I[f g(x,v) is a hermitian scalar product # 0, then there
exist non-gero elements which are represented by the scalar product.
(In other words, if R is not totally isotropic, then it contains a non-
isotropic vector.)

Proof. If the conclusion is false, g(u, #) = 0 for all . Hence
g, ) + 80y, %) = glx + 3,2+ 5) — glx, %) —g(y, ) =0

for all x, y. Since g(y, ) = g(x, y) this gives g(x, y) = —g(x, ¥).
Now since g(x,y) & 0, there exist vectors #, v such that p =
g(u, v) #£ 0. If we replace # by p~'u and change the notation,
then we can suppose that g(#,v) = 1. Then for any a in A,

glau, v) = —glam,v) and @ = —a. Since 1 = 1, this implies
that the characteristic is two and that @ = . Hence our anti-
automorphism is the identity mapping and A = & is commuta-
tive. This case is ruled out by assumption.

The argument we have just used is not a constructive one.
However, in the special case in which g(x, y) is symmetric, we
can easily give such a method to find a vector # such that g(x, »)
# 0, Thus let (e1, €3, -, €,) be a basis for R over ®. Then
gleiy e5) # 0 for some pair ¢;, ¢;. If i =7, we can take u = e
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Otherwise, we can assume that g(e;, e;) = 0 = g(e;, ¢;) and
glene) #0 for i # 4. Then gle; + ¢, e+ ¢;) = gles, e) +
gles, ) + gleg, ) + glej, e5) = glew, ) + gleg, e)) = 2g(es, ¢7)
# 0.

We now return to the general case and we shall prove the fol-
lowing

Theorem 3. If g(x, y) is a hermitian scalar product, then there
exists @ basis (Uy, Ugy =+ +y Upy 1y 22y ** *y Tn—r) SUCK that

(31) flunu) = B0, = 1,2, 0,7,
and all other products are Q.

Proof. The result is trivial if g = 0; for then any basis serves
as a set of 2’s. If g & 0, we can take #, to be any vector such
that g(uy, u;) = B, # 0. Such vectors exist by the Lemma,
Now suppose that we have already determined linearly inde-
pendent vectors (u,, #p, -+, ux) such that g(u; u;) = 8; #0
and g(us, u;) = 0 if i £ j. We introduce the mapping E; de-
fined by

k
(32) x — 20 g, ui)Bi ua

1
Clearly E} is linear and maps R into the space &, = [uy, uz, * -,
up). Also u;E, = 3 g(u;, u)Bi'us = u;. Hence Ej, is the iden-

tity mapping in &;. It follows that E;2 = Ej so that, if we set
F,=1— E;, then ® = &,® RF). Also we have

k
gxEy, u;) = g (Z glx, ug)B: ™ us, W)
i=1

k
= 2 g, ui)Bi g (us, u;)
i=1

= g(x) le).
Hence g(xFy, u;) = gx(1 — Ex), u;) = glx, u;) — g(xEs, u;) = O.
Thus the vectors in RF; are orthogonal to every vector in &y,
that is, RF, C &,-. We consider the scalar product g(x, y) in
RF;. If this is 0 in RF, we choose a basis (2y, 29, <+, 2n) for
RE:. Since R = S, @ RF%, (U1, Uy +*+y Uny 21, Zay ***y Zm) 1S 2
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basis for %. Since the 2’s are orthogonal to the #’s and to the 2’s,
this is a basis of the required type. On the other hand, if g # 0
in RF;, then we can find a vector u;,; in this space such that
gt g1, Ui g1) = Brga # 0. Then (uy, ugy <+ -, #tx41) 1s a linearly
independent set and, since #u;4; is orthogonal to the other u,,
the new set satisfies the same conditions as (#u;, #s, -, #3).
The process can then be repeated.

The method that we have given for finding a normalized basis
is in essence due to Lagrange. It should be noted that 8, can
be taken to be any element that is represented by the scalar prod-
uct. Also we note that any #; can be replaced by ~v,us, v: # 0.
This replaces 8; by 8. = g(yatti, vitts) = viBs¥s. In carrying out
the above process it is necessary to have a basis for ®Fy. This
can be done by supplementing (u1, u2, -, %) to a basis (u;,
Ugy ~+y Upy U1, Ugy ***y Un_z) for ®. Then the v;F}; form a basis
fOI‘ E}?.Fk

EXERCISES

1. If ®is the field of rational numbers, find a diagonal matrix (8) cogredient to

-2 3 5
(@) = [ 3 1 —1}-
5 —1 4

Also find a non-singular matrix (u) such that (W(@)(w)’ = (B).
2, Show that the space [21, 22, - «, Zn—s] given in Theorem 3 is the radical of

g(%, ).

3. Suppose that ® has characteristic 3£ 2 and that g(x, ) is a symmetric non-
degenerate scalar product in i over ®. Prove that, if g represents 0, then g is
universal in the sense that it represents every element of ®.

9. Symmetric and hermitian scalar products over special divi-
sion rings. The foregoing discussion reduces the problem of co-
gredience for hermitian matrices to that of finding conditions for
cogredience of diagonal matrices. No general solution of this
problem is known. The known results are all special in that they
make use of special assumptions on the nature of A and of the
anti-automorphism. For example, a complete solution of the co-
gredience problem is known for symmetric matrices over the field
of rational numbers. The theory for this case, which is due prin-
cipally to Minkowski and Hasse, is arithmetic in nature and will



BILINEAR FORMS 155

not be discussed here. Instead, our plan for the remainder of
this chapter is as follows: In this section and in § 10 we consider
the special cases of the cogredience problem which should be
familiar to every student of mathematics. In the last two sec-
tions we consider questions which are of interest primarily to
specialists in algebra. Thus in § 11 we consider again the gen-
eral theory of hermitian forms and we discuss Witt’s important
generalization of the notion of signature. In the final section
(§ 12) we consider the theory of symmetric scalar products over
a field of characteristic 2.

We specialize first the result of the preceding section to sym-
metric matrices and symmetric scalar products (A = & a field,
& = ). We assume ® has characteristic # 2. Suppose that
g(x, y) is a symmetric scalar product and let (uy, #s, ---, u,)
be a basis such that

glugy u;) = 6458: B:#0, i=1,2,--- 7

Then 7 is the rank of the matrix diag {81, B2, * -, B} of g(x, ),
and r i1s the common rank of all the matrices of this scalar prod-
uct. As we have seen, we may replace u; by v; = vu; v: # O.
Then the ¢’s form another basis and the matrix determined by
this basis is

dlag {Bl,) 62,) Y Bn,}

where 8; = v;28;. Thus we see that any B; can be replaced by
B: = v:*Bi, v: # 0. Suppose now that ® is a field in which every
element is a square. As usual, if ¥ = 8, we write ¥ = 4. Then
if B: # 0, let v; = B; 7t = (879~ This choice of v; replaces 8;
by B8/ = 1. Hence our symmetric scalar product has a matrix of
the form

(33) diag {1,1, -+, 1,0, -+, 0}.

This form is applicable in particular if ® is an algebraically closed
field.

If (B) is any symmetric matrix, then (8) can be used to define
a symmetric scalar product in ® over ®. The matrices of this
scalar product constitute the cogredience class determined by (8).
Thus we see that, if ® is algebraically closed of characteristic # 2,
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then any symmetric matrix (8) in ®, is cogredient to a matrix of
the form (33). Clearly (33) is completely determined by the
rank of (8). This implies the following

Theorem 4. If & is algebraically closed of characteristic # 2,
then any two symmetric matrices in ®, are cogredient if and only if
they have the same rank.

We assume next that ® is the field of real numbers. Let the
vectors #; be arranged so that

Bi>0,i=1’2’...’p; B].<0’j=p+l’...’r.

Then we can extract a square root of B; i < p and of —8;,
r > j > p. Accordingly, let v; = g: 7% v; = (—8;) . Using
these v; as above, we obtain a matrix

z—-‘—p——\ —r — _p

(34) {1)”'>1> —1>"'> —1>0>"'>0}*

for g(x, ). It follows from this that any real symmetric matrix
is cogredient to a matrix of the form (34). We shall show next
that two matrices of the form (34) cannot be cogredient in ®,,
& the real field, unless they are identical. This will follow from

Theorem 5 (Sylvester). If the diagonal matrices

{Bl) B2> Y Bn}) {Bl,> 62,> Y Bn,}

are cogredient in ®,, ® the field of real numbers, then the number p
of positive B; is the same as the number p’ of positive 3.

Proof. The given matrices may be taken to be matrices of the
same symmetric scalar product in & over®. We may suppose that
the first p 8; are > 0 and the first p’ 8, are > 0 and that in both
matrices the first » elements are 5 0 and the last # — r are 0.
Let (uy, us, ---, u,) be a basis relative to which the matrix of
g, ) is {B1, B2, =+, Ba} and (v, vz, - -+, va) a basis for which
the matrix is {81/, B2', - - -, B.’}. It is easy to see (Ex. 2, p. 154)
that the radical

ERJ- = [uf-i-l) Urgoy, ") un] = [vf-i-l) Urg2, "7 vn]'

* In the remainder of this chapter we drop the symbol “diag” in the notation for diag-
onal matrices.
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We now introduce the following subspaces:
Ry = [y, 213y » -, U]
S.4 = [v1, 02y =+, Upr]
R_ = [tpy1, Upio, = * 5 U]

S_ = [pr 415 Upr g2, **°5 Us]-

k4 n
Letye®R, + Rt. Theny = 3 nu; + > nu; and
1 r+1

p
g()’, .y) = Znizﬂi-
1

Since 8; >0 for 1 =1,2, -+, p, g(y,y) >0 and g(y,5) =0
only if all the 9; = 0,7 < p. Thusifye R, + R, g(y,5) >0
and g(v,y) = 0 only if y e ®t. A similar result holds for &,
+ %*. On the other hand, if y e R_ + R* or to S_ + R+, then
a similar argument shows that g(y, y) <0 and that g(y,y) =0
only if ye®Rt. Now let ye (Ry + R N (S_ 4+ RY). Then
£y, %) >0 and g(y,5) <0. Hence g(y,y) =0 and yeR"
This establishes the following relation:

(35) Ry +RYHN G+ RYH =nt

We now make use of the general dimensionality relation (Ex. 3,
p. 28):

> dim &; 4+ dim &; — n.
Applying this to (35) we obtain

n—r>pt+m—ry+@r—p)+n—r —n

Hence p — p’ < 0. Similarly p’ < pandsop = p'.

Sylvester’s theorem shows that the number of positive elements
in any diagonal matrix that is cogredient to a given real sym-
metric matrix (8) is an invariant. Likewise the difference 2p — »
between the number of positive elements and the number of neg-



158 BILINEAR FORMS

ative elements in any diagonal form is an invariant. We call this
number the signature (inertial index) of the matrix. The main
theorem on real symmetric matrices may now be stated as

Theorem 6. Two real symmetric matrices are cogredient if and
only if they have the same rank and the same signature.

We assume next that ® is the field of complex numbers and that
a — & 1s the mapping of a complex number into its complex
conjugate. Let g(x, ¥) be a hermitian scalar product in & over &
associated with the usual mapping &« — a. For any u, g(u, u) =
g(u, u) 1s real. In particular, if (#,, #y, -+, u,) is a basis such
that (31) holds, then the elements g; are real. If we replace u;
by v; = vitts, v: 7= 0, then B; is replaced by vi7:8: = | v: |28, It
follows in this case, too, that & has a basis relative to which the
matrix has the form (34).

Sylvester’s theorem holds in the present case also. It asserts
that, if ® is the complex field and {1, B2, * -, 8.} and {81/, B2,
-+, Ba’} are cogredient in the sense that there exists a matrix
(u) in L(®, ) such that

{Bl,> B2I> Y Bn,} = (”){Bl) B2> Y Bn}(ﬁ),>

then the number of positive 8; is the same as the number of posi-
tive B/. The proof is exactly the same as before. The essential
point is that, if

P n
Y= Z:mui + > niu;

r+1
and 8; > 0 for ; < p and B; = 0 for j > 7, then

£, ) = Z[n:]%6: > 0.

As in the real case we have the criterion that two hermitian
matrices are cogredient relative to the anti-automorphism a — &
if and only if they have the same rank and the same signature.
Here again we define the signature to be the difference between
the number of positive elements and the number of negative ele-
ments in a diagonal matrix cogredient to the given hermitian
matrix.
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We consider finally the theory of quaternionic hermitian forms.
Let A be the division ring of Hamilton’s quaternions and let
a — & be the mapping of a quaternion @ = ag + 17 + agf +
ask into its conjugate

a = ag — O(li - O(zj“' Olgk.

If g(x, y) is hermitian in R over A, g(u, u) = g(u, u) is real.
Also a@ = ap® + a1? + @y? + a3? > 0 and equality holds only if
a = 0. These remarks indicate that this case is essentially the
same as the complex hermitian case. Matrices of the form (34)
serve as canonical forms under cogredience. Sylvester’s theorem
and the final result that equality of ranks and of signatures are
necessary and sufficient conditions for cogredience hold.

EXERCISES

1. Prove that the number of cogredience classes of real symmetric matrices of
n rows and columns is (# + 1)(n + 2)/2.
2. Find a matrix of the form (34) cogredient to the real symmetric matrix

1 3 =5
[ 3 -1 0]-
-5 0 2

3. Find the matrix of the form (34) that is cogredient to the hermitian quater-
nion matrix

1—i4+2 0 4j

[—1 14+i—12 —2i+k]
2% — & —4 2

4, Prove that, if (@), (), « - -, () are a) real symmetric, or b) complex hermitian,
or ¢) quaternionic hermitian, then

@ () 4+ @) = 0
can hold only if (@) = (8) =---= (») = 0.

10. Alternate scalar products. A scalar product g{x, y) is called
skew symmetric if g(x,y) = —g(y, x) for all ¥ and y. In this
case g(x, x) = —g(x, x). If the characteristic is not two, then
this implies that g(x, x) = 0. If the characteristic is two, it
may still be true that g(x, ¥) = 0 for all x. We shall now call
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a skew symmetric scalar product alternate if g(x, x) = 0 for all
x, and we consider the problem of finding suitable canonical
bases for this type of scalar product. The proof of the lemma on
p. 152 shows that, if g(x, ) 1s alternate, then it is skew symmetric
and that, if g 0 is skew-symmetric, then @ = o« and A =&
1s commutative.

Suppose that g(x, y) is alternate and not identically 0. Then
we can find a pair of vectors #, v such that g(u, v) # 0. By re-
placing v by a suitable multiple v; of v we then obtain u, = u
and vy such that g(u,, v;) = 1. Then g(oy, #y) = —1, gluy, uy)
= 0 = g(vy, v1). It follows that #; and v, are linearly independ-
ent. Now suppose that we have already found £ pairs of vectors
U1,01, UaVg, * * *, UpYy that are linearly independent and satisfy

(36) g(”i) vi) = 1) g(vi) ”i) = —1

with all other products 0. Let Ej denote the linear transforma-
tion

37) x — ; glx, vi)u; — ;g(x, us)vi.

As in the proof of Theorem 3 we see that Ej is a projection on
the space &, = [u1,01, #2,00, * -, tr,0x]. Hence if F, =1 — E,,
RN =S, ®RFr. Also we can verify that g(xEyx, u;) = glx, u.)
and g(xEx, v;) = glx, v;). Hence g(xFy, ;) = 0 = g(xF, v;) and
RF, € St * Now either gis 0 in RF; or we can choose a pair
of vectors #j.1, vx41 1n this space such that

gtk g1, Vhgr) = 1 = —g(Urq1, Up ).

Since &, N RFy, = 0, (41,01, U202y * * *y Uk41,0%41) 18 an independ-
ent set and since the last two vectors are orthogonal to the pre-
ceding ones the set of 2(k 4 1) vectors satisfies the same condi-
tions as the set (#y,01, #sy0s, - - -, Urwr). Eventually we either
span the whole space or obtain a space ®F, in which gis 0. In
the latter case we choose any basis (22,.4.1, * * *, 2») for this space.

* &yt is the orthogonal complement of &, defined as for hermitian scalar products.
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Evidently the matrix of g(x, y) relative to the basis

. (ubvb UgyVy 0ty UpslUpy 21582, * 7 %, zn-—27‘)
18

01
-1 0

01
-1 0

r blocks

(38)

01
-1 0

This proves the following

Theorem 7. If g(x,y) is an alternate scalar product, there exists
a basis for R relative to which the matrix has the form (38).

If g(x, y) # O1s alternate, the anti-automorphism is the identity
and the matrices (8) of g(x, y) are alternate in the sense that
(B = —(B) and B =0 for i = 1,2, ---, n. These conditions
are also sufficient; for if ¥ = T, then

g(x, %) = 20 Bty = 2 But® + 2<) (Bs; + Bja)ék; = 0.
%J i 1<g
Hence g(x, y) is alternate. The following results are now easy

consequences of Theorem 7.,

Corollary 1. The rank of an alternate matrix with elements in a
JSield is even.

Corollary 2. Two alternate matrices in ®, are cogredient if and
only if they have the same rank.
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1. Prove that EXERCISE
-2 0 42 -1 0 00
@=11 4 o 1" P 00 o1
=3 2 —1 0 00 —1 0

are cogredient in P4, ® the field of rational numbers. Also find a (u) in L(D, 4)
such that (8) = (W)(a)(w)’.

*11, Witt’'s theorem. We now take up again the general
theory of hermitian scalar products over a division ring. In the
present discussion we shall assume that the basic anti-automor-
phism a« — @& satisfies the following solvability condition.

Axiom S. The equation & + £ = 8 has a solution for every her-
mitian element B of the division ring.

This axiom is automatically satisfied if the characteristic of A
is not two; for, in this case, we may take £ = 38. It is also satis-
fied in the characteristic two case if there exists an element v
of the center I of A such that ¥ # . Then 6 =y 4+ 3 #0is
in T since the anti-automorphism maps T into itself. Hence if
£ = By, then

E+E=Bys " + By =B85 (v +7) = 8.

We remark finally that our axiom rules out the case A = &, a
field of characteristic two, & = «. This is clear since in this case
¢ + & = 0 while 8 need not be 0.

Assume that ® is a vector space over A and that g(x, y) is a
non-degenerate hermitian scalar product relative to the anti-auto-
morphism o — & We recall that, if & is a subspace of % that is not
isotropic in the sense that @ N &+ = 0, then we have the de-
composition ® = @ &*. The basic result of the theory which
we shall develop is the following theorem.

Witt’s theorem. If &, and &, are non-isotropic and g-equiva-
lent, then &1 and &,* are g-equivalent.*

* Witt proved this result for symmetric scalar products over a field of characteristic
# 2 (Journal fiir Math., Vol. 176 (1937)). The extension to division rings of characteristic
# 2 is due to Pall (Bulletin Amer. Math. Soc., Vol. 51 (1945)). In the present discussion
we assume only the foregoing Axiom S. Cf. also Kaplansky, Forms in infinite dimensional
spaces, Anais Acad. Brasil Ci. 22 (1950), pp. 1-7. Witt’s theorem does not hold for sym-
metric scalar products over a field of characteristic 2 (see the next section).
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Proof. It suffices to prove the result for dim &, = 1; for, if it
is known in this case, then we can use induction on dim &, as
follows. We choose a vector #; in &; such that [«#,;] is not iso-
tropic (Lemma to Theorem 3). Then &; = [#;]@U; where
U; € [#,]*. Using the equivalence of &; and &;, we can write
So = [us) ® Uy where Uy C [us]*, [#1] and [#,] are equivalent and
U, and U, are equivalent. Then [#3]t = W, @ &t and [u,]t =
U, @ S,t are equivalent under a transformation U. Hence
[#o]t = U @ St = U@ &,1U. Now U, and W, U are equiva-
lent and W, U and &,1U are orthogonal. Since dim U,U <
dim &, and U, is not isotropic, we can assume that &,*U and &S,*
are equivalent. This implies that &, and &,* are equivalent.

We note next that the case: &; = [#,], dim R arbitrary, can
be deduced from the special case: &, = [#,], dim ® = 2. Thus,
suppose we know the result in the special case. Let &, = [u,]
be equivalent to [#;]. We have the decompositions R = [#1] ®
(1)t = [ua] @ [wo]* and g(us, u1) = g(us, us). If [u1, us] is one-
dimensional, [#,]* = [#s]*, and the theorem holds. Hence as-
sume that dim [u;, #,] = 2. Consider first the case in which
this space is not isotropic. Here

R = [uy, us) @ [, us]*
(39) = [u1) @ (1, u2] O [1]") @ [11, ua]*
= [u2] @ ([1, 2] O [122]") @ [0, 00] "

Then [uy, us] 0 [uy]t and [uy, us) O [us]t are equivalent by the
case dim ® = 2 (applied to R = [u;, #,]). Hence by (39)

(1]t = ([1, #2] O [10] 1) @ (w1, 2]*

(]t = ([u1, #2] O[] 1) @ [01, 2]t

are g-equivalent. Next consider the case in which [#;, #,] is iso-
tropic. Here we have a vector w £ 0 in this space such that
g(w, u;) = 0 = g(w, uy). We can find a #in R such that g(w, #)
# 0. Then the matrix of g in [uy, #,, #] relative to the basis
(w) Uy, t) is

and

0 0 g(w, 1)
0 gluy, uy) *
gt w) * *
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It is evident that the row vectors of this matrix are linearly
independent; hence the matrix is non-singular and [u;, #,, £] 1s
not isotropic. Hence

R = [uy, g, 1) @ [11, us, £1*
=[] ® ([, #2, 8] O [o1]7) @ [m1, 212, A]*
= [u2) ® ([t1, 12, 8] O []") @ [101, o, 1]

Thus, it suffices to show that [u;, us, £] O [u,]t and [uy, us, £] N
[#s)* are equivalent. Now these are non-isotropic two-dimen-
sional spaces that contain an isotropic one-dimensional subspace
[w]. In a space of this type we can always select a basis relative

01

1 0
glw, q) =1 = glg, w) and set 2 = ¢+ Aw. Then gz, w) =1
= g(w, 2) also while g(z, 2) = g(g, ¢9) + X + X. By Axiom S we
can choose X so that g(2,2) = 0. This gives a matrix of the re-
quired form. It follows now that [u;, us, A N [u,]* and [uy, us, 4]
N [us]* are equivalent. This completes the reduction to the
case: dim % = 2, dim &, = 1.

We consider finally this special case. The result we wish to
prove here is equivalent to the statement that, if the non-singu-
lar diagonal hermitian matrices {@,8;:} and {a,8:} are cogredient,
then the elements 8, and 8, are cogredient. Let (u) be a non-
singular matrix such that

o Lol oI B )

per  m2e) L0 Byl L@ie [ 0 B

If A is commutative, we take determinants and we obtain 8,
= uB1a where u = det (ui;), which is the desired result. In the
general case we shall work directly with the conditions that are
given by the matrix relation. These are

to which the matrix is [ ] To see this, choose ¢ so that

(41) pricgan + pi2Biftie = @

(42) priogisy + pioBifice = 0 = ugrafnr + peafiitre

(43) pz1afiar + pooBiiter = Be.

If w1y = 0, uga = 0 by (42) since uyp # 0. Hence a = u12Bift12
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and B2 = mgioizr. These relations imply that 8, and B are co-
gredient.
Assume, therefore, that u;; % 0. Then by (42)

ofisr = — 11 w12Bifiae
pe1 = — pooBifiizin ot
so that by (43)

poa(Briizfiny e w1 T uieBr + Bi)ize = Be-

Thus B, is cogredient to Bifiafiin ‘o ‘w1t ‘w1281 + B We
wish to show that the latter element is cogredient to 8,. For
this purpose we try to solve

(44) (1 + Branetui2)B1(l + fir2EuiB1)

= Biftrofinn e "By + B
This will be satisfied if

(45) £+ £+ Eurafiine = (uniainn) ™
Replacing u;981i12 according to (41) we obtain
(46) £+ E+ tHa — puaiin)E = (puai) ™

If pyy = 1, (46) reduces to & + & = (uyaqy) %, which is solva-
ble by Axiom S. If u;; # 1, we make the substitution & = o~!
and multiply on the left by 7 and on the right by % to obtain

(47) 7+ 7+ (@ — pnain) = 9(unoin) 7.
Next we substitute y = ¢ 4 ujje;; and obtain

(48) f(ﬂuaﬁu)_lf = a.

Now (48) is satisfied by { = —ajis1; hence (47) is satisfied by
7 = (u11 — Dea@iy; which is not 0. Then ¢ = 97! satisfies (46).
Thus (44) holds and B8, and B, are cogredient. This completes
the proof.

A 1-1 linear transformation U of ® onto itself is said to be
g-unitary if glxU, yU) = g(x, y) holds for every pair of vectors
x,y in ®. Evidently this condition is equivalent to the require-
ment that UU” = 1 where U’ is the transpose of U relative to the
scalar product. Now suppose again that &; and &, are non-iso-
tropic spaces which are g-equivalent and let M be a g-equivalence
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of &, onto &,. By Witt’s theorem we can find an equivalence
N of &, onto &,*. Since R = &, @ &,%, any vector » can be
written in one and only one way as # + v where u ¢ &, and
v e &,t. Then the mapping U: x — uM + oN is a 1-1 linear
transformation of &% onto itself. Moreover, making use of the
fact that uM e &, and vN e &,1, we can verify directly that U is
g-unitary. Evidently U coincides with the given equivalence M
on the subspace &;. Thus we see that Witt’s theorem implies
that any g-equivalence between non-isotropic subspaces can be
extended to a g-unitary transformation. We shall now show that
this result holds also for isotropic subspaces of .

Consider first an arbitrary subspace & of ®. If x is any vec-
tor in R, then the mapping vy — g.(y) = g(y, x¥) of & into A is
a linear function. It is easy to see that the linear functions thus
obtained fill up the conjugate space ©* of & (Ex. 2, p. 56).
Hence if (y1, Y2, ***, ¥m) 1s any basis for &, then we can find a
vector v; such that

(49) gy, ) =1, glysv) =0 for i> 1.

Assume now that & is isotropic and that (yi, ya, *--, y,) is a
basis for the radical of & Then we can choose the vector v; so
that in addition to (49) we have g(v;, v;) = 0. This can be seen
by an argument used in the proof of Witt’s theorem. Thus if
v; is not orthogonal to itself, then we can replace this vector by
v1 + Ay1 and choose A\ so that X\ + X\ 4+ g(v;, v;) = 0. We then
denote this new vector as v;.

Now the space [y1, 1] 1s a two-dimensional non-isotropic sub-
space of ®. Hence R = [y1, v1] ® [y1, 11]*. Also it is clear that
(Y25 ** s ¥ml € [¥1, 1]t and that [y,, ---, y,] is the radical of
[¥2s ** 5 ¥m]. Hence we can use induction on » to prove the exist-
ence of a set of vectors (v, vy, * - -, ,) such that

g()’j,vj)=l, j=1)2)"‘)v
(50) g(yi, v;) = 0 otherwise
g(vf)vk)=0 j)k=1)2)"')v-

It is immediate that the vectors (v, v9, - **, 1,) are linearly inde-
pendent and that the space 8 = [vy, v, - -+, 3] is totally isotropic
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and satisfies 8 N & = 0. The matrix of g in & + B relative to
the basis (¥1, Yo, ** s Yy U1, Ugy * =+ Uy) 18

1
0 0
1
(51) 0 B 0
1
0 0
1

where B is the-matrix relative to (¥,41, ***, ¥m). Since [y,

-+, ¥,] 1s the radical of &, B is non-singular. Hence (51) is non-
singular and so & + B is not isotropic.

Now let U be an equivalence of & (onto &U). Evidently
(y,U, ---, U] is the radical of U. Hence we can find a set
of vectors (B4, by, * -, 5,) such that

giU5) =1, j=1,2,--,»
£(y:U, 5;) = 0 otherwise
g0, 0) =0, 7, k=1,2,-+-,».
Then it 1s clear that the linear transformation that sends v; into
7; and that coincides with U on & is an equivalence of & + .

Since & + 8B 1s not isotropic, this mapping can be extended to a
g-unitary transformation. Hence we have proved the following

Theorem 8. Any g-equivalence of a subspace of R can be ex-
tended to a g-unitary transformation in R.*

A hermitian scalar product is called totally regular if g(x, x)
# 0 for every x % 0 in ®. This is equivalent to saying that
every non-zero subspace of % is not isotropic. Hence if g is

* Cf. Dieudonné, Sur les Groupes Classiques, p. 18.
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totally regular and & is any subspace, then ® = @@ &*. We
shall now show that the problem of cogredience of hermitian
matrices can be reduced to the case in which the associated scalar
products are totally regular.

Let & be a totally isotropic subspace of ® which is maximal
in the sense that it cannot be imbedded in a larger subspace of
this type. Write & = [yi1, -, 5] where the y; are linearly in-
dependent. As before we determine a totally isotropic space
B =[vy, +++, ] such that ¥ = & + B = S@ B and such that
the matrix of g relative to the basis (y1, * -+, ¥ v1, * -+, 1) Of
% is
1

(52)

1

Since & is a maximal totally isotropic subspace and ® = SO B @
%', g is totally regular in ¥*. We can choose a basis for % so that
the matrix of g has the form

(53) 1
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where B is a matrix of gin ¥t. Thus any hermitian matrix is co-
gredient to one of the form (53) in which B is totally regular
(that is, the associated scalar product is totally regular).

Conversely suppose that we have any matrix of g of the form
(53) where B 1is totally regular. Let (yi, -+, 3, 01, =+, 0
21, "' Zn_g) be a basis such that the matrix of g relative to
this basis is the given matrix (53). Then & = [y, +--, y,] is
totally isotropic. Moreover, & is maximal totally isotropic; for,
if there is a larger totally isotropic subspace containing &, then
it contains a non-zero vector of the form v + 2 where v e [v;,

) and ze (21, =5 Zn_a]- Then gv + 2, v+ z) = g(2, z)
=0 so that 2=0. If v = 2y, g, y;) = v.. Hence also
v = 0 contrary to v 4 2 # 0.

We are now in a position to show that two matrices of the form
(53) in which the B’s are totally regular are cogredient if and
only if the matrices B are cogredient. The “if”’ part is, of course,
trivial, and the foregoing discussion shows that the “only if”
part is equivalent to the statement that the spaces ¥' deter-
mined as above by a maximal totally isotropic subspace & are
g-equivalent.

We observe first that any two maximal totally isotropic sub-
spaces have the same dimensionality. Thus let &, and &, be
of this type and assume that dim &; > dim &,. Then we can
find a subspace U1; of &; such that dim U1, = dim &,. Since I,
and &, are totally isotropic, any 1-1 linear transformation of
11, onto &, is a gequivalence; hence it can be extended to a uni-
tary transformation U. Then &,U is totally isotropic and con-
tains U, U = &;. By the maximality of &, this implies that U,
= &, and that dim &; = dim &..

Now let &; = [y, .-+, 3,@),7i = 1,2, and determine B; =
[0, + -, 1,9 as above so that the matrix of gin ¥; = &; + B;
is (52). Then ¥, and %, are gequivalent; hence also ¥;* and ¥,*
are g-equivalent. We have therefore established the following

Theorem 9. Any non-singular hermitian matrix is cogredient
to one of the form (53) in which B is totally regular; two matrices
of the form (53) in whick B is totally regular are cogredient if and
only if the submatrices B are cogredient.
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The number of rows and columns of the matrix B is, of course,
an invariant of the cogredience class. This number is the di-
mensionality of the spaces % and is also # — 2» where » is the
maximum dimensionality of totally isotropic subspaces relative
to g. We shall call this non-negative integer the #itt signature
of g or of the associated matrices. It can be seen (Ex. 1 below)
that for symmetric matrices over the real field or for hermitian
matrices over the complex field or over real quaternions the Witt
signature is the absolute value of the ordinary signature which
we defined before.

EXERCISES

1. Prove the foregoing statement on sighatures.

2. If g is an alternate non-degenerate scalar product, a 1-1 linear transforma-
tion S of R such that g(xS, ¥S) = g(x,y) is called a symplectic transformation.
Prove the following analogue of Theorem 8: Any g-equivalence of a subspace of
R can be extended to a symplectic transformation.

*12. Non-alternate skew-symmetric forms. We suppose finally
that g(x, y) is a skew symmetric scalar product that is not alter-
nate. Then & has characteristic two and g(x, y) may also be re-
garded as symmetric. Moreover, we have seen that, if (e1, s,

-+, e,) 1s a basis for R, then g(e;, ¢;) # 0 for some 7. We shall
now show that it is possible to choose a basis (1, ugy -+, #y,
21y 22y ** 'y Zn_r) for R such that the matrix determined by this

basis is
{Bl) B2s * 5 Brs 0) 0) Y 0})

B: # 0. Evidently #; can be chosen so that (u;, u;) = 8; # 0.
Now suppose that #;, #y, -+, #; have already been found such
that g(u;, u;) = 8;8s B: # 0. As in the proof of Theorem 3 we
can write & = &, @ RFy where & = [uy, #y, +--, ui] and RF;
C &t If g(x, y) is identically 0 in %F}, we set £ = 7 and choose
a basis (21, 29, **+, 2n_r) in RFy. If g(x, y) is not alternate in
RFy, then we choose a vector uy.; in this subspace so that
g&(tr 41, tpq1) = Bry1 #Z 0. We then repeat the argument with
the £+ 1 #’s. It remains to consider now the case in which
g(%, ¥) is not identically 0 and alternate in RF;. Here we can
find two linearly independent vectors v, w such that

(v, 0) =0 = (w, w), (v, w) =1= (w,0).
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We now set # = u, 8 = B and we consider the scalar product
in the three-dimensional space [#, v, w]. Using these vectors as
basis we obtain the matrix

B 0 0
0 01
010

Thusify = fu +no + twand y’ = £u + 4'v + {'w, then g(y, ¥")
= BEt’ + 9’ + 7’t. Hence the following vectors

yi=u-+v
Yo = u + fw
ys=u-+tv+pw

are orthogonal in pairs and satisfy g(y;, y;) = 8. It follows that,
if we replace the original #; by y, and call this vector u; again,
then wy, uyy ¢, tp, tpy1 = Yo, Upye = y3 satisfy glus, u;) =
8:;Bi, B: #= 0. This proves

Theorem 10. If ® has characteristic two and g(x,y) is a non-
alternate symmetric scalar product in R over ®, then there exists a

basis of R relative to whick the matrix of g(x,y) is a diagonal
matrix.*

The argument used in the proof of the preceding theorem shows

that the matrices.
1 00 1 0 0

0 0 1 |01 O
010 0 01

are cogredient. On the other hand these submatrices

01 1 0
[1 0] ’ {o 1]
are not cogredient. These observations show that Witt’s theo-
rem does not hold in the characteristic two case.
* The canonical form given in this theorem is useful in that it simplifies matrix calcula-
tions with symmetric matrices over a field of characteristic two. A more geometric dis-

cussion of symmetric scalar products in the characteristic two case has been indicated by
Dieudonné, Sur les Groupes Classiques, p. 62.



Chapter V1

EUCLIDEAN AND UNITARY SPACES

As we have pointed out at the beginning of these Lectures,
Euclidean geometry is concerned with the study of a real vector

n
space relative to the scalar product Y £#; determined by writ-
1

ing ¥ = Z&u;, v = Znau; in terms of basic unit vectors that are
mutually orthogonal. Since this scalar product is fixed, it is cus-
tomary to denote it simply as (x, ¥) instead of g(x, y) as in the
preceding chapter. The geometric meaning of (x, y) is clear. It
gives the product of the cosine of the angle between x and y by
the lengths of the two vectors. The length of x can also be ex-
pressed in terms of the scalar product, namely, | x| = (x, x)*

From our point of view the characteristic properties of (x, y)
can be stated by saying that this function is positive definite in
the sense that (x,x) > 0 for all x £ 0. In fact, it is customary
nowadays to axiomatize Euclidean geometry in the following
way. We suppose R is a finite dimensional vector space over the
field of real numbers, and we take in 9% a positive definite sym-
metric scalar product (x, y). The space % over ®, together with
the fundamental scalar product, constitutes a Euclidean space. In
a similar manner we define the complex analogue of a Euclidean
space as a vector space over the field of complex numbers to-
gether with a positive definite hermitian scalar product defined
in this space. In this chapter we shall study properties of these
spaces and of certain special types of linear transformations in
these spaces. We shall also consider briefly the theory of analytic

functions of matrices (or linear transformations).
172
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1. Cartesian bases. Let % be a Euclidean space in the sense
that ® is an n#-dimensional vector space over the field ® of real
numbers in which a positive definite symmetric scalar product
(%, ) is defined. Thus the basic properties of this real valued
function are

1) (e1 + X2, 9) = (#1, ) + (%2, ),
(5,31 + y2) = (%, 71) + (%, y2)

(2) (ax, y) = alx, ) = (%, ay)

©) (%, 5) = (9, %)

4) (%, %) >0 if x5 0.

Now we know that, if (x, y) is any symmetric scalar product in
a real vector space, then there exists a basis (uy, us, -, #n)
such that (u;, #;) = 8;;8; where the 8; are either 1, —1, or 0. If
(%, ¥) is positive definite, clearly every 8; = 1. Thus we see that
there exists a basis (#y, us, -+, #,) for i such that

(5) (tiy u;) = 8ij.
Then if x = Z&ui, y = Znins,

(%, .y) = Z¢m;
as usual.

A basis which satisfies (5) will now be called a Cartesian basis
for the Euclidean space. The method of Lagrange for determin-
ing such a basis is capable of some refinements which we now in-
dicate. Let (ey, €s, * - -, €,) be any basis for ®. Then (e, e1) > 0.
Hence if u, = (e1, e1) %1, (w1, u1) = 1. We next apply La-
grange’s reduction and set

f2 = ¢35 — (eg, UUy.

Then (fs, #1) = (e2, 1) — (e2, #1)(#1, #;) = 0. Hence #u; and
us = (fs, f2) ifs satisfy

(ul) le) = 1 = (th, th), (le, th) = 0 = (th, le).
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Suppose now that (u;, #s, -+, #) have already been deter-
mined so that (u; #;) = 8;; and [uq, us, -+, us] = [e1, €9, -+, €3]
for i < k. Let

Sog1 = g1 — (€k g1y ur)tty — (€x 415 Up)thy — -+ - — (€k+1, Uk) U

Then (frq1, #s) = 0 for i =1,2, -+, k. Hence if we set #4;
= (frq1> foq1) g1, then (uy, ugy -+ -, uryy) satisfy the condi-
tion stated for (uy, us, * -+, #3). Repetition of this method leads
at length to a Cartesian basis for ®. The process we have given
for “orthogonalizing” the basis (e, g, * -, ¢,) is often called
E. Schmidt's orthogonalization process.

It is worth noting that the matrix of (uy, us, - - -, u,) relative
to (e1, €2, * -, €,) 1s triangular; for [uy, us, -+, #:] = [e1, e,

-+, e;. Hence #; is a linear combination of the ¢; with j < 7.

1
Thus u; = D 7i¢;, and the matrix of the #’s relative to the ¢’s is

J=1
T11 0
T21 Ta2
(6) = -
Tnl Tn2 tre Tan

If (B) is the matrix. of (x, y) relative to the originally chosen
basis (e1, €2, - -, €,), then we know that the matrix of (u,, us,

-y ) 18 (7)(B)(7)’. On the other hand, by (5) the latter matrix
is the identity. Hence (r)(8)(r)’ = 1. The inverse (») of (7) is
also triangular of the same form as (r) and (8) = (»)(»)’. This
proves the following

Theorem 1. Let (B) be a matrix of a positive definite symmetric
scalar product. Then there exists a triangular matrix (v) such that

B = @)

We consider now the relation between Cartesian bases and
matrices. Let (v, vg, - - -, v,) be a definite Cartesian basis. Then
if (uy, usy +++, u,) is a second such basis, the matrices of (x, y)
relative to these bases is 1. Hence if (o) is the matrix of (u;, #,
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-+, #,) relative to (v, v, + -, vs), then (0)(¢)’ = 1. A matrix
satisfying this condition:

™ (0)(0) =1

is called an orthogonal matrix. Conversely, if (¢) is any orthogonal
matrix and #; = Zo;;v;, then the matrix of (x, y) relative to
(s1, tt2y -+, uy) is (d)1(a)’ = 1. Hence the #’s form a Cartesian
basis. Thus we see that, if one Cartesian basis is known, all
others can be obtained from it by applying orthogonal matrices.
We have a 1-1 correspondence between the Cartesian bases and
the orthogonal matrices.

If (o) is orthogonal, then (det (¢))? = 1. Hence det (¢) = 1.
If det (¢) = 1, we shall say that (o) is proper, otherwise (o) is
improper. It is readily verified that the orthogonal matrices con-
stitute a subgroup O(®, #) of the group L(®, 7). The proper or-
thogonal matrices form an invariant subgroup 0,(®, #) in O®, #)
and the index of Oy in O is two.

If two Cartesian bases are related by a proper orthogonal ma-
trix, then we say that the bases have the same orientation and,
if the matrix relating the bases is improper, we say that the bases
have opposite orientation. Thus the Cartesian bases fall into two
mutually exclusive classes, namely, those that have the same
orientation and those that have opposite orientation to a par-
ticular Cartesian basis (v1, vg, - -, v,). We note that a change
of sign of one vector or an odd permutation of the vectors changes
the orientation.

Suppose again that (ey, ez, - -+, €,) 1s any basis and let (v) be
the matrix of this basis relative to the Cartesian basis (vq, vs,

-+, ). Since the ¢’s form an arbitrary basis, the matrix (y) is
an arbitrary matrix in L(®, 7). Now we have seen that there
exists a Cartesian basis (uy, us, - -+, u,) whose matrix relative to
(e1, €25 * *+, €,) 1s a triangular matrix (r). The matrix of (uy, us,

-+, u,) relative to (vy, v2, -+, v,) is the product (r)(y). Since
(#1, tgy - -+, ) 1s Cartesian, (r)(y) = (o) is orthogonal. Hence
we have the following

Theorem 2. If (v) e L(®, n), ® the field of real numbers, then
(v) may be factored as (v)(a) where (v) is triangular and (o) is
orthogonal.
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EXERCISES

1. Show that the matrix (») in the preceding theorem can be taken to have
positive diagonal elements. Show that, if this normalization is made, then (¥) and
(¢) are uniquely determined by ().

2. Decompose

-1 0 2 =2
3 4 -1 7
1 2 1 -1
0 2 0 1

as a product of a triangular matrix and an orthogonal matrix.

3. Show that, if (B) is the matrix of a positive definite symmetric scalar
product, then det (8) > 0. Generalize this to prove that every diagonal minor
of (B) is positive.

4, Prove that, if (x, y) isa positive definite symmetric scalar product, then (%, v)*
< (%, #)(v, v) for any » and v and that equality holds only if # and v are linearly
dependent.

5. Prove the triangle inequality for lengths of vectors:

(v, u+0)%< (u, )%+ (v, )%

2. Linear transformations and scalar products. If 4 is a
linear transformation of % over & into itself, then g(x, y) =
(x4, y) is a second scalar product in the space. Conversely let
g(%, y) be any scalar product in ®. Then if we hold x fixed, the
function g(x, ¥) is linear in y. Hence, as we have shown in Chap-
ter V, there is a uniquely determined vector x4 in & such that
glx,y) = (x4, y) for all y. The mapping A4 is linear. This
shows that any scalar product in % can be obtained from the fun-
damental scalar product (x, y) by applying a linear transformation
4 in the above manner. The theory of scalar products in R is
therefore equivalent to the theory of linear transformations in R.

For the most part we shall adopt the linear transformation
point of view. We recall first the definition of the transpose A4’
relative to (x, ¥) of the linear transformation 4: 4’ is the linear
transformation in & which satisfies the condition

®) (%, yd') = (24, y)

for all x, y in ®. There is only one linear transformation that
satisfies this condition, and the requirement (8) can be reduced
to the #? equations

(”b ”.7"4,) = (”i/{) le), 1)] = 1) 2) Tt
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for a basis (uy, %9, -+, un). If the basis is Cartesian these con-
ditions imply that 4 is the linear transformation whose matrix
relative to (u, #s, -+ -, u,) is the transpose of that of 4. If

ud = Zapuy, and  u; A" = 2By,
then
(siy u; A" = ZB;1(uiy u1) = Bji

(uid, u;) = Zaw(ur, u;) = aij-

Hence (8) = («)’. (Cf. p. 145.)
We recall the fundamental algebraic properties of the mapping
4 — 4"
(A+BY = A4 + B, (4AB) = B' A

Also it is clear from (8) and the symmetry of (x, y) that
A’ = A.

3. Orthogonal complete reducibility. If & is any subspace
# 0 of R, (x,y) is non-degenerate in &. In fact, (x, x) & 0 if
x # 0. It follows from this that the orthogonal complement
&' of & is a true complement, that is, # = &@ &+ (cf. p. 151).
It is easy to determine a basis for &, For this purpose one
needs to have a Cartesian basis (uy, #s, * -, #,) for &. This can
be supplemented to a basis (uy, #g, * =+, #r} €rq1, ***y €,) for R
Then Schmidt’s orthogonalization process yields the Cartesian
basis (u1, #s, -, #,), and it is clear that &' = (4,11, #,.40,
ey ).

Suppose now that @ is an arbitrary set of linear transformations
in ® over & We shall call Q@ orthogonally completely reducible if
the orthogonal complement &' of any subspace & invariant
under @ is also invariant under Q. Since ® = &@ &4, it is clear
that orthogonal complete reducibility implies ordinary complete
reducibility. We shall see that this property is enjoyed by many
important types of linear transformations in ®. If @ is orthogo-
nally completely reducible, we can decompose R as a direct sum
RiDR2@ -+ - @ N, of subspaces that are invariant and irreduci-
ble relative to @ and that are, moreover, mutually orthogonal.
Thus let ®; be an irreducible invariant subspace relative to Q.
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Then R,* is invariant and % = %@ F;t. Let R, be an irre-
ducible invariant subspace contained in ®;*. Then ®; + Ry =
R @ Re and these two spaces are orthogonal. Next we may
write R = R DR @ (B, + Ro)'.  Continuing in this way we
obtain the required decomposition.

There is a very useful test for orthogonal complete reducibility
which is based on the following

Theorem 3. If Q is any set of linear transformations and & is
invariant under Q, then the orthogonal complement &  is invariant
under Q the set of transposes of the linear transformations in Q.

Proof. Let xe& and y e &*. Then x4 ¢ & for any A4 in Q.
Hence (x4, y) = 0 and also (x, y4’) = 0. Since this holds for
all ¥ in &, y4’ e . Since y is arbitrary in &%, this shows that
©&? is invariant under @',

We can now state the following important criterion.

Corollary. 4 set Q is orthogonally completely reducible if and
only if @ and  have the same invariant subspaces.

4. Symmetric, skew and orthogonal linear transformations.
Of special interest in Euclidean geometry are the following types
of linear transformations: Symmetric, defined by the condition
A" = A4, skew defined by 4" = —4 and orthogonal defined by
A" = 47'. These conditions can also be given in terms of the
associated scalar products. Thus 4 is symmetric if and only if
(x4, y) 1s symmetric. This is readily verified. Similarly 4 is
skew 1f and only if (x4, y) is a skew scalar product in R. If (a)
is the matrix of A relative to a Cartesian basis (uy, us, -« -, #,),
then 4 is symmetric (skew) if and only if (a) is symmetric (skew).

In order to see the geometric meaning of orthogonal linear
transformations we must recall that (u, ) gives the square of
the length of the vector #. The condition 44" =1 = 4’4 im-
plies that

(9) (ud, ud) = (u, udd") = (u, u).

Hence A preserves the length of any vector. We now prove the
converse, namely, if 4 is any linear transformation that leaves
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the length of every vector unaltered, then 4 is orthogonal. For
if (9) holds for all #, then

((# + )4, (x +9)A) = (x + 3, % + 3)

for all ¥ and y. Expanding and cancelling off equal terms,
2xd, yd) = 2(x, y).

Hence (x, y4A") = (x, y) for all x, y. Since (x, y) 1s non-degen-
erate this implies that 44" = 1.

It is clear that 4 is orthogonal if and only if its matrix («)
relative to a Cartesian basis is orthogonal. Another way of stat-
ing this result is that 4 is orthogonal if and only if the transform
(uy A, us A, - - -, u,A) of a Cartesian basis is a Cartesian basis for
R. The matrix (&) has determinant 1 or determinant —1. In
the former case (u A4, usAd, - -, u,A) has the same orientation
as (uy, tgy -+, #,). Then A is called a rotation in R.

5. Canonical matrices for symmetric and skew linear trans-
formations. If & is a subspace invariant under a linear transfor-
mation A4 that is symmetric, then clearly & is invariant under 4.
Hence the set consisting of 4 alone is orthogonally completely
reducible. Our discussion of orthogonally completely reducible
sets suggests the following procedure for obtaining a canonical
matrix for 4.

Let x be a non-zero vector in R and let u,(A) be its order (see
p. 67). If w(\) is an irreducible factor (leading coefficient 1) of
uz(A) and wu,(A) = #(N)v(X), then y = xv(A) has the order =(A).
Since ® is the field of real numbers the irreducible polynomial
x(\) 1s either linear or quadratic. We shall now show that the
symmetry of A4 assures that =(A) is linear. Otherwise (y, y4)
is a basis for the cyclic space {y}, and this basis yields the matrix

01
o
8 «
where A2 — A — 8 = #(A). On the other hand, if we choose a
Cartesian basis in {y}, then we obtain a symmetric matrix
v 6]

() [5 e)
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for 4in {y}. Since (10) and (11) are similar,
M —ah—B8=7— (v + O+ (ye — ).
The discriminant of this quadratic is
(r+e&>—4(ye—8) =(y—e*>+48*2>0

and this contradicts the irreducibility of #(A). Thus we see that
x(\) must be linear so that {y} = [y] is one dimensional and y4
= py.

We now replace y by a multiple y, that has length 1. Then
y14 = p1y1, p1 = p. Also R = [y;] @ [y1]* and 4 induces a sym-
metric transformation in [y;]*. Hence we can find a y, of length
1 in [y,]* such that y,4 = pyy,. Next we use the decomposition
R = [y1, yo] + [y1, 2]t to obtain a y; of length 1 in [y;, y,]* such
that ys4 = pays. We remark that the y; thus obtained are or-
thogonal in pairs. Hence when we have finished our process, we
get a Cartesian basis (yy, Y2, - -, ¥»). The matrix of 4 deter-
mined by this basis is

(12) diag {pl) P2, "%y pn}'

If we recall that the passage from one Cartesian basis to another
is given by an orthogonal matrix, we see that the following theo-
rem holds.

Theorem 4. If (&) is a real symmetric matrix, then there exists
a real orthogonal matrix (o) such that (o)(c)(a) ™! is a diagonal
matrix.

We can also arrange to have (o) proper. This can be done by
changing the sign, if necessary, of one of the y;, We note also
that the p; in the canonical matrix (12) are the roots of the char-
acteristic polynomial of this matrix. Hence they are also the
roots of the characteristic polynomial of («). We have therefore
proved incidentally the

Corollary. The characteristic roots of a real symmetric matrix
are real.

We pass now to the theory of a skew linear transformation in
Euclidean space. Let 4 be skew and, as above, let y be a vec-
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tor # 0 whose order is an irreducible polynomial #(N). If =(\)
is linear, then yA4 = py. Hence p(y,y) = (y4,y) = —(y, yA)
= —p(y, ¥), and this implies that p = 0. If #(\) is quadratic,
we choose a Cartesian basis in {y}. We then obtain a skew sym-

The polynomial #()) is the characteristic polynomial of this ma-
trix. Hence w(\) = A? + 82 where 6 £ 0. If we apply the
method used above for symmetric mappings, we can decompose
the space as a direct sum of mutually orthogonal spaces &;, 7 =
1, 2, -+, A, such that each &; = {y:}, and the minimum poly-
nomial #;(A) of y; is either X or it is of the form A% + §;% §; == 0.
We can arrange the &; so that #;(\) = N2+ 82 fori =1,2, ---,
k and w;(\) = X for i > k. If we choose Cartesian bases in the
& we obtain a Cartesian basis for it by stringing these bases
together. The matrix of 4 relative to this basis is

0 3
-8 O

0 o
—d 0

(13)

0 o
—d 0
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This proves the following

Theorem 5. If (a) is a real skew symmetrix matrix, then there
exists a real orthogonal matrix (o) such that (o)(a)(o) ™! has the
Sform (13).

As for symmetric matrices the canonical form is completely de-
termined by the characteristic polynomial

k
VTR 462, 6:7#0
1

of (a). We remark also that the characteristic roots are pure
imaginaries.

EXERCISES
1. If
1 =2 0
(a) = -2 2 —-2] ’
0 -2 3

find a proper orthogonal matrix (¢) such that (¢)(a)(¢) ! is diagonal,
2. Prove that, if g(x, ¥) is a symmetric scalar product in Euclidean space, then
there exists a Cartesian basis for R relative to which the matrix of g is diagonal.
3. Prove that, if () is a real symmetric or skew symmetric matrix of rank p,
then there is a non-zero p-rowed diagonal minor in (c).

6. Commutative symmetric and skew linear transformations.
If p is a root of the characteristic polynomial f(A) of the sym-
metric linear transformation, 4, then the subspace R\_, of vec-
tors y such that y4 = py is #£ 0. We call R\_, the characteristic
space corresponding to the root p or to the factor A — p of f(A).
If 4 is skew and N 1s a factor of f(\), we define in a similar man-
ner the characteristic space . The other irreducible factors of
) have the form =(A) = A% 4+ 8% 6 # 0. Corresponding to
such a factor we define the characteristic space Rr) to be the to-
tality of vectors y such that y=(4) = 0. As we have seen in the
preceding section, R,y #= 0.

If B is any linear transformation which commutes with 4, it
is clear that B maps each characteristic space of A4 into itself.
For, evidently, yr(A4) = 0 implies that yax(A)B = (yB)x(A)
= 0.*

* The ideas which occur here have been discussed in a more general form in §9 of
Chapter IV.
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Now let @ be a set of linear transformations such that 1) any
two linear transformations of @ commute, 2) every transforma-
tion of Q is either symmetric or skew. In order to determine
canonical matrices for the set @, we consider first the case in
which @ is an irreducible set. The result that we shall establish
is the following

Theorem 6. If a Euclidean space R is irreducible relative to a
commutative set of linear transformations which are either sym-
metric or skew, then dim ® < 2.

Proof. Let w(\) be an irreducible factor of the characteristic
polynomial of any 4 eQ. Then the characteristic space R,y of
A is invariant relative to . Hence Ry = R so that #(A4) = 0.
If 4 is symmetric, then we know that «#(A) = N\ — p; hence, in
this case, 4 is a scalar multiplication. If A is skew, either #(A)
= A, in which case 4 =0, or #(A) = A2 4682, 6% 0. In the
latter case 42 = —6821; hence 47! exists and is skew. Then if
B is any other skew transformation in the set,

M=BA" = 47'B= (=47 (=B) = (4B =M

is symmetric. Since M commutes with every member of Q, the
argument used before shows that M is a scalar multiplication.
Hence B = uA4. Thus we see that either the set Q consists of
scalar multiplications only, or @ consists of scalar multiplications
and multiples of a single skew 4 in this set. In the former case
every subspace of R is invariant relative to . Hence by the
irreducibility of ®, dim ® = 1. In the second case we can find
a two-dimensional subspace which is invariant and irreducible
relative to the chosen skew transformation 4. Clearly this space
is also invariant relative to every member of Q. Hence, here
dim ® = 2. This completes the proof.

Now suppose that Q is an arbitrary commutative set of sym-
metric or skew linear transformations in a Euclidean space. It
is clear by the Corollary to Theorem 3 that every set of sym-
metric and skew linear transformations is orthogonally com-
pletely reducible. This implies that we may write ® = &, @ S
@ -+ @ S, where the &; are mutually orthogonal and irreducible
and invariant relative to Q. We can now apply Theorem 6 to
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conclude that the spaces &; are either one-dimensional or two-
dimensional. Moreover, the proof of Theorem 6 shows that the
symmetric 4 are scalar multiplications in the &; and that the
skew A are multiples of a particular one. If we choose Cartesian
bases in the ©&;, we obtain a Cartesian basis for % relative to
which the matrices of the 4 & @ all have the form

(81)
(B2)
(14)
(8r)
where (B;) is either a one- or two-rowed scalar matrix or
0 €;
(15) ®=[_, o]

In matrix form our result is the following

Theorem 7. Let w be a set of commutative real matrices which
are either symmetric or skew symmetric. Then there exists a real
orthogonal matrix (o) such that, for each (@) e w, (0)(a)(0)™?! has
the form (14).

EXERCISES

1. Prove that if 4 is symmetric, then any two distinct characteristic spaces
of A are orthogonal. Also show that % is a direct sum of the characteristic sub-
spaces relative to A4.

2. Prove that, if w is 2 set of commutative real symmetric matrices, then there
exists a real symmetric matrix (8) such that each (o) & w is 2 polynomial in ().

7. Normal and orthogonal linear transformations. A linear
transformation A is called normalif it commutes with its transpose.
Special cases of such mappings are the symmetric, skew and
orthogonal linear transformations. If A4 is any linear transforma-
tion, we may write d=3Ad+A)+iA4—-4)Y=B+C
where B = 1(A4 + A4’) is symmetric and C = (4 — 4') is
skew. This decomposition into a symmetric and a skew part is

unique. For if B+ C = B, + C, where B, = B; and C, =
—Cl, then
(B - Bl) = (Cl - C)
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Since B — B, is symmetric and C; — C is skew, B — B, =0
= C, — C. We may therefore call B and C respectively the sym-
metric and the skew part of 4. We note now that 4 is normal if
and only if Band C commute. Thisis clearsince B = (4 + A7),
=3(d—A4) and 4 =B+ C, 4 =B — C. This remark
shows that the results on commutative symmetric and skew lin-
ear transformations can be applied to the study of normal linear
transformations. Using this method we see that there exists a
Cartesian basis relative to which B and C have matrices of the
form (14). Since B is symmetric and C 1s skew we know that,
if (B;) is a one-rowed block, then it is O for C and if (8;) is two-
rowed, then it has the form (15) for C and is scalar for B. The
matrix of 4 = B 4 C is the sum of the matrices of B and of C.
Hence it has the form (14) where each (8;) is one-rowed or

(16) 6= " ]

—€& pi
e; # 0.

A matrix is called normal if it commutes with its transposed.
A linear transformation 4 is normal if and only if its matrix
relative to a Cartesian basis is normal. Our discussion therefore
yields the following

Theorem 8. If (&) is a real normal matrix, there exists an or-
thogonal matrix (o) such that (a)(a)(a) ™" has the form (14) where
each (B;) is either one-rowed or is a two-rowed matrix of the form

(16).

We consider finally the special case of orthogonal transforma-
tions. Here the one-rowed blocks (8;) are associated with vec-
tors y; # 0 such that y;4 = 8;y;. Since 4 does not change the
length of vectors, 8; = 1. Also 4 is orthogonal in the two-
dimensional subspaces &;. Hence the blocks (16) are orthogonal.

Thus
[ pi éi] [ps —'éi] _ [1 0]
—e o le o 101

This reduces to the single condition

a7) pi® + & = 1.
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We can determine a number 8; such that cos 8; = p;, sin ; = e;.

Then (16) becomes

18) { cosf; sin 0,-] .

—sin 6; cos6;

Theorem 9. FEvery real orthogonal matrix is conjugate in the
group of orthogonal matrices to a matrix (14) in which the (8;) are
either one-rowed matrices (1) or are of the form (18).

EXERCISES

1. Prove that an orthogonal linear transformation is proper or improper ac-
cording as the multiplicity of the root —1 of the characteristic polynomial is even
or odd.

2. Prove that, if A4 is a rotation in an odd-dimensional Euclidean space, then
there exists a vector # # 0 such that u4 = «.

3. Prove that every set of orthogonal linear transformations is orthogonally
completely reducible.

4. Show that, if O is orthogonal and does not have —1 as a characteristic root,
then§ = (0 — 1O + 1) Lisskewand O = (1 4 §)(1 — §)~L. Show that,ifO
is orthogonal and 1 is not a characteristic root, then § = (0 + 1)(O — 1)~ is
skew and O = (§ + 1)(S — 1)L,

8. Semi-definite transformations. A linear transformation 4
is said to be positive definite if it is symmetric and if the asso-
ciated symmetric bilinear form (x4, y) is positive definite. This,
of course, means simply that (x4, x) > 0 for all ¥ 0. It is
useful also to generalize this notion slightly by defining 4 to be
(non-negative) semi-definite if (x4, x) >0 for all x. It is evi-
dent from the definition that a positive definite transformation
is semi-definite and 1-1. The converse holds also. This will
follow from the following criterion for definiteness and semi-
definiteness.

Theorem 10. A symmetric transformation A is positive definite
(semi-definite) if and only if its characteristic roots are all positive
(non-negative).

Proof. We know that there exists a Cartesian basis (y1, ¥z,
<+, v,) for ® such that each y; is a characteristic vector in the
sense that y;4 = p;y,.. The p; are the characteristic roots.
Now (y:4, y:) = (piys, ¥:) = pi(ys, ys) has the same sign as pi.
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Hence if A4 is definite (semi-definite) each p; is positive (non-
negative). Conversely suppose that p; > 0 (> 0) for all 7 and
write x = Z¢y;. Then

(e, ) = (Stod, )

1

= (E Eipiyi 2 Ef%‘)
1 1

n
= > p&
1

If all the p; are > 0, thisis > 0 unless each §& = 0. Hencep; > 0
insures definiteness. Also it is clear that, if the p; > 0, then
(x4, x) > 0.

If 4 1is 1-1, then O is not a characteristic root of 4. Hence if
A is semi-definite and 1-1, all of its characteristic roots are posi-
tive. Theorem 10 then shows that 4 is definite.

If A4 is an arbitrary linear transformation in Euclidean space,
then B = AA’ is semi-definite since (x¥B, x) = (x4A4', x) =
(x4, xA) > 0. We note also that B and 4 have the same null-
space; for it is clear that, if 24 = 0, then 2B = 0. On the other
hand, if 2B = 0, then 0 = (2B, 2) = (24, 24), and this implies
that 24 = 0. As a consequence of this remark we see that B is
positive definite if and only if 4 is 1-1.

We shall now prove the following useful result:

Theorem 11. Any semi-definite transformation B has a semi-
definite square root P (that is, P* = B), and P is unique.

Proof. The determination of a semi-definite P such that
P? = B is easy. We choose a Cartesian basis (y1, y2, ***, ¥x)
such that y;B = p;y; and we know that the p; are > 0. Hence
we can define P to be the linear transformation such that y;P
= p%y;. Clearly P?2 = B. Also since the matrix of P relative
to a Cartesian basis is symmetric, P is symmetric. Finally
since the characteristic roots p;”# of P are non-negative, P is semi-
definite. To prove the uniqueness of P we arrange the charac-
teristic vectors of B in groups in such a way that the first 7, are
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those that go with the root p;, the next #, are those that go with
ps (#p1), etc. Also we introduce the spaces

R = Lyl).y2) o ').ym]) N2 = [.yn1+1).ym+2) vt ').ym+n2]) e

sothat R = R A R2@ -+ @ Ry, (A = number of distinct char-
acteristic roots). If #; is any vector in R;, clearly B = pu;.
On the other hand, let # = u; + us 4 -+ -+ u; where u; e R;, be
any characteristic vector belonging to the root p;, that is, uB =
pitt. Then

pitt = uB = (uy +up +-- -+ un)B=wB+wuB+-- -+ u,B
= pi#y + patte -+ -+ prith.

Hence u; = 0 if j ## i and # = u; e Ri. Thus we see that the
space %, is just the characteristic subspace of ® corresponding
to the characteristic root p; of B. As we have seen the charac-
teristic subspaces of a linear transformation B are invariant with
respect to any linear transformation C that commutes with B.
If P is any linear transformation such that P? = B, then BP
= PB and %:;P € RN;. Thus if P is semi-definite, then P induces
a semi-definite transformation in each ®;,. Now we can find a
Cartesian basis (w,; @, w,®, -+ w, @) for %; such that Pw;®
= 'y,-w,-("). Then Bw,-(") = Pzw]'(i) = ’sz‘w]'(i). Hence ’sz = pg
and v; = p%. This shows that P coincides with the scalar mul-
tiplication by p;” in the space %;. Hence P is the mapping we
constructed before.

EXERCISES

1. Show that any symmetric .4 whose negative characteristic roots have even
multiplicities has a square root.
2. Prove that any symmetric 4 has a unique symmetric cube root.

9. Polar factorization of an arbitrary linear transformation.
Evidently any real number can be written as a product of a non-
negative real number by one of the numbers 1, —1. This result
can be generalized to linear transformations in Euclidean space
as follows

Theorem 12.  Every linear transformation 4 in Euclidean space
can be written as a product A = PO where P is semi-definite and
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O is orthogonal. P is uniquely determined while O is unique if and
only if A is 1-1.

Proof. The proof is somewhat simpler in the important case
in which 4 is 1-1; hence we consider this case first. We form
the positive definite transformation B = A4’ and its positive
definite square root P. Set O = P7'4. Then

00" = P7'4A4’'P~' = P71BP~1 = p7ipip~t =1

and this shows that O is orthogonal. Since 4 = PO, the exist-
ence of the representation is established for 4 1-1.

The proof in the general case is basically the same as the fore-
going. Again we define B = A4A’, and we take P to be the semi-
definite square root of B. Our task is to determine an orthogonal
transformation O such that 4 = PO. We define first a mapping
of the space @ = RP into the space &, = RA by specifying that
xP — xA4. If xP=yP, (x—3y)P=0 and (x —y)B=0.
Since B = AA’, this implies that (x — y)4 = 0 so that x4 =
yA. This shows that our correspondence is single-valued. It is
now clear that it is linear. Also this mapping preserves lengths
of vectors, since

(xAd, xA) = (xAA’, x) = (xB, %)
and

(xP, xP) = (xP?, x) = (xB, x).

Now 4, B and P have the same null space; hence they have the
same rank. It follows that the orthogonal complements &* and
©,* have the same dimensionality = 4. Now let (uy, us, -+, us),
(v1, v2, **+, vn) be Cartesian bases for these spaces. Then the
linear transformation of &* into &;* that sends u; into v; pre-
serves lengths, It follows that the mapping

O: xP 4 Zou; —» x4 4 Saw;

is an orthogonal transformation. Clearly xPO = xA for all x so
that 4 = PO as required.

If 4 = PO, A4’ = P%. Hence P is necessarily a square root
of the semi-definite transformation B = 44’. *~ence P is unique.
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If 4 is 1-1, it follows that O = P~'A is also unique. On the
other hand, if 4 is not 1-1, then 2 > 0 in the above notation. In
this case there are many choices available for the transformation
of &' into &;* and these give different determinations of an or-
thogonal transformation O. This completes the proof.

In a similar manner we can establish a factorization 4 = 0,7,
where O, is orthogonal and P, is semi-definite. This can also
be deduced by applying Theorem 12 to 4.

EXERCISES

1 -1 2
{2 1 SJ
1 0 —5

as a product of a positive definite matrix and an orthogonal matrix.
2. Show that 4 = PO is normal if and only if PO = OP.

1. Decompose

10. Unitary geometry. Unitary geometry is the study of a vec-
tor space over the field of complex numbers relative to a positive
definite hermitian scalar product (x, y). Itis evident at the out-
set that this geometry will have the essential features of Euclidean
geometry. On the other hand, we can expect some simplifica-
tions here due to the fact that the underlying field is algebraically
closed. Consequently the theory of canonical matrices will be
simpler than in the real case. It is not necessary to duplicate
our previous discussion in all detail. In the main we shall be
content to state the principal results and will give proofs only
when new methods yield simplifications over the corresponding
proofs in the Euclidean case.

We suppose now that ® is the field of complex numbers and
that (v, y) is a hermitian scalar product relative to the usual
mapping @« — & Then we know that (x, x) is real for any x.
We shall assume, moreover, that (x, y) is positive definite in the
sense that (¥, x) > 0 if x £ 0. This assumption implies that
there exists a basis (u1, uz, - -, #,) that is unitary in the sense
that (s, u;) = 85, i, j = 1,2, -+, n. The passage from one
unitary basis to another is given by a matrix (¢) that is unitary
in the sense that

(@)@ =1 = (3)(0).
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These matrices constitute the unitary subgroup U(®, n) of L(®, n),
® the complex field. The Schmidt orthogonalization process holds
and this enables us to carry over all of the results of § 1. The
analogue of Theorem 1 is that, if (8) is the matrix of a positive
definite hermitian scalar product, then (8) has the form (v)(¥') for
a suitable triangular matrix (v) with complex elements. The ana-
logue of Theorem 2 is obtained by replacing the word “real” by
“complex” and “orthogonal” by “unitary’ in its statement.

The transpose of a linear transformation A is defined as usual.
If (u1, w2, -+, u,) is a unitary bdsis, then the matrix of 4’ is
the conjugate transpose (@)’ of the matrix of 4. Thus 4 is
hermitian, A" = A, if and only if («) is hermitian; A is skew Aer-
mitian, A’ = — A,1f and only if (@) is skew hermitian; A is unitary,
A'd =1=A4A4, if and only if («) is unitary; and A is normal,
AA" = A’ 4, if and only if (a)(@) = (&@)'(a). Skew hermitian
transformations need not be studied as a separate case since their
theory can be reduced to that of hermitian transformations by
observing that, if 4 is skew hermitian, then i4 (2 = —1) is her-
mitian. This follows from the fact that the transpose of the
scalar multiplication x — ux is the scalar multiplication x — jx.
Hence » — ix is skew hermitian and, since it commutes with
A, id 1s hermitian.

Suppose now that A4 is hermitian and let p be a root of the
characteristic polynomial. Let y be a corresponding characteris-
tic vector. Then

(3,5 = (0, y) = (v4,3) = (9, 54) = (3, ) = (3, )5

Since (y, y) # 0, this implies that 5 = p is real. We normalize
¥ to obtain a multiple y, such that (y;, y1) = 1. Then also y,4
= p1¥1, p = p1- 1f & is any subspace, we denote the orthogonal
complement consisting of the vectors y’ such that (y,y’) =0
for all y e @ by &*. This space is a complement of & and, if &
is invariant under A4, then so is @*. If we apply this remark to
& = [yi1], then we see that ® = [y,]® [y1]* and that [y,]*4 <
[y:1]*. Hence we can find a real number p, and a vector y, in
[y]* such that y,4 = psys. Next we write R = [y1,7:] ®
[y1, ¥2]*, and we repeat the argument with [y4, y5]*. This leads
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finally to a unitary basis relative to which the matrix of 4 is

diag {p1, p2, ** > Pn}

where the p; are real.

Theorem 13. If («) is a complex hermitian matrix, there exists
a unitary matrix (o) such that (o)(a) (o) "' is a real diagonal matrix.

Evidently a similar result holds also for skew-hermitian matrices.
As in the Euclidean case we may prove next that, if w is a set of
commutative hermitian and skew-hermitian matrices, then there
exists a single unitary matrix (¢) such that every (¢)(a)(c) ™! is
diagonal for every « in w. This leads as before to Theorem 13,
with the word “real” omitted, for normal matrices and conse-
quently also for unitary matrices. For the latter the character-
istic roots are of absolute value 1. This follows from

|0 120, 9) = 04, 34) = (3,%)

if y4 = py. The principal theorem on unitary matrices can
also be derived directly by using the same argument that we
used in the hermitian case. The important remark is that, if &
is a subspace invariant under a unitary transformation, then the
orthogonal complement &% is also invariant.

If 4 is a hermitian linear transformation, the associated bi-
linear form (x4, y) is hermitian; for

(.y/{) x) = (}’, x/{) = (x/{).y)

It follows that (x4, x) is real for any x. Now as in the Euclidean
case we define 4 to be positive definite (semi-definite) if (xA, x)
> 0(>0) for all x 0. The discussion that we gave in the
Euclidean case can be carried over without change. Thus we
can prove that any semi-definite transformation has a unique
square root. As before, this can be used to establish the polar
factorization. Every linear transformation in unitary space can be
written as A = PU where P is semi-definite and U is unitary. P
is unique and U is unique if and only if A4 is 1-1.
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We shall prove now another theorem that is applicable to arbi-
trary linear transformations and matrices in a unitary space.
This is the following

Theorem 14. If () is a matrix with complex elements, then
there exists a unitary matrix (o) such that (o)(a)(a) ™ is triangular.

Proof. In order to prove this we let 4 be the linear transfor-
mation whose matrix relative to some unitary basis (o5, vs, * -,
v,) is the given matrix (a). If p; is a characteristic root, there
exists a vector y; such that (y;, 1) = 1 and y,4 = p,y;. We
can find a unitary basis (y;, ¥, ** -, ¥,) that includes the vector
y1. Then, since y,4 = p,y;, the matrix of A relative to this
basis is

1 0 N (]

P21 P22 " P2n
(19) B) =

Prnl  Pn2 Tt Pan

If (u) is the matrix of (y1, y2, - -+, ¥a) relative to (vy, vsy = -+, U,),
then () is unitary and (u){e)(u) ~! is the matrix (8) of (19). We
may now assume that there exists a unitary matrix (») of » — 1
rows and columns such that

[Pz 0
P2z "'t P2
G| - - =
Pn2 "  Pan %
Pn
Then the matrix (r) = [1 ] 1s unitary and
0 ()
P1 0
P2
(D@ = () () e) " =
* Pr

where (¢) = (7)(u) is unitary.
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EXERCISES

1. Show that Theorem 14 holds for any set w of commutative complex ma-
trices.

2. What is the analogue of Theorem 14 in the real case?

3. Show that a triangular matrix is normal if and only if it is diagonal. Use
this to prove the theorem on canonical forms for normal matrices with complex
elements.

11. Analytic functions of linear transformations. In treating
analytic questions on matrices we shall take as our point of de-
parture the notion of convergence of sequences of matrices. If
{(@®)}, k=1,2,3, ---, is an infinite sequence of matrices in
®,, ® the field of complex numbers, we say that {(a«®)} converges
to (@), (™) — (a), if the sequence of complex numbers a;;® —
agj for every i, j = 1,2, -+, n. The /imit matrix (&) is unique
since this is the case for sequences of complex numbers. Using
our definition of convergence it is clear that addition and multi-
plication of matrices are continuous functions, that is, if (a®)

— (a) and (8®) — (B), then
(20) (a®) 4 (B®) — () + (B)
(21) (a®)(B®) — (a)(B).

To convince ourselves of the validity of these basic rules we have
only to observe that the (7, /) element of the sum (product) of
two matrices is a continuous function of the 2#2 coordinates
agj, Bij.  An important special case of (21) is that, if (a®) — («)
and (u) is non-singular, then

(22) W (@) (W)™ = W)W

The last result can be used to define convergence for linear
transformations. Let {4}, k£ = 1,2, .-, be an infinite sequence
of linear transformations in i over ® and let («‘®) be the matrix
of Ay relative to a basis (ey, 2, -+ -, €,) of R. We shall say that
{Ax} converges to the linear transformation 4, A, — A if
(a®) — () where () is the matrix of 4. Because of (22) it
is clear that the condition 4; — A is independent of the choice
of basis in R.
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We shall now consider power series in a linear transformation.
As for ordinary series, we assign a meaning to

(23) Yol + yid 4+ yod? +- -+, v;in &,
if the sequence of partial sums {Si},
St = vol + vid +-+ -+ v d”

converges. The limit of {8} is called #ke sum of (23), and we
write

vol + vid + vod? +---=§.
The principal result we wish to prove is the following

Theorem 15. Let vg + viN + voA2 - -+ be an ordinary power
series with radius of convergence r. Then the power series (23)
converges for every linear transformation A whose characteristic
roots p; satisfy | pi| < .

Proof. We choose a coordinate system relative to which the
matrix of 4 has the classical canonical form

(061)
(a2)
(an)
where each diagonal block has the form
I 1
1 »
1
24) ’
1 pl

p a characteristic root. Evidently the matrix of 4™ has the same
block form as that of 4. Moreover the block that is in the same
position as (24) is
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and we note that

0
0 0
a_|1 0
1

etc,

+ yiIh + 2N+

[Si(e)

Si(4) 1s

§ k'(P)
N k"(P)
2!

o -0 o 3

L0

0
Sk(P) 0

81 ()  Sulp)

0l
0
00
0
1
0
0 01 0 0 OJ

Hence if §x(\) denotes the kth partial sum of S(A) = v,
-, then a typical block of the matrix of
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If | o| < 7, Sklp), Si'(p), - - - converge to S(p), §'(p), - - -, respec-
tively. Hence the matrix sequence determined by {S(4)} con-
verges to the matrix with typical diagonal block

SG) 0
SG) S 0
(25) 0 5@ s

Consequently {S,(A4)} converges.
An important special case is the exponential function

expAd =144+ £2/2! +---

which is defined for all 4. A matrix of exp A has the diagonal
block form with blocks

[exp p |
EXpp €Xpp
exp p

o1 expp expp

This formula can be used to calculate det (exp 4). We find that
det (exp A) = exp p; €xp p2 - - - €xp pp, = exp (Zpy)

where py, p2, - - -, pn are the n characteristic roots. Hence

(26) det (exp 4) = exp (tr A)

where tr A as usual denotes the trace of 4.

Power series in A are particularly easy to handle if A is a nor-
mal linear transformation; for in this case we can find a unitary
basis for our vector space such that the matrix of 4 has the
canonical form

(27) dlag {Pl) P25 'y Pn}-
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Then if S(\) = vo + v1IN + v2A2 +- -+ is a power series with
radius of convergence » > | p;|, ¢ = 1,2, -+ -, n, §(A) is defined
and this linear transformation has the matrix

diag {S(p1), S(o2), *+*»> Spn)}

relative to the given unitary basis. Since s(4) has a diagonal
matrix relative to a unitary basis, this transformation is normal.

If U is unitary, the p; in (27) are of absolute value 1. Hence
p: = exp V —186;, 0; real. Let H be the linear transformation
with matrix

diag {6y, 85, - - -, 0,}

relative to our unitary basis. Then H is hermitian, and our con-
siderations show that

(28) U = exp (iH).

This result in conjunction with the polar factorization shows that
every linear transformation has the form

(29) A = P exp (iH)

where P is a (positive) semi-definite hermitian transformation
and H is hermitian. This factorization obviously generalizes the
factorization @ = | a | exp (in), 7 real, of any complex number.

EXERCISES

1. Prove that a linear transformation A is positive definite hermitian if and
only if 4 = exp H for some hermitian H.
« 2. Show that, if the characteristic roots of 4 are of absolute value <1, then
log(14+ 4)=A— £/2+ A/3—--. isdefined. Prove thatexp (log (1 + 4))
=14+ 4.

3. Prove that #% — 0 if and only if all the characteristic roots of 4 are of
absolute value less than 1,

4, Prove that the sequence of powers {#*} of 4 possesses convergent sub-
sequences if and only if 1) | p| < 1 for every characteristic root p and 2) the
elementary divisors corresponding to the roots of absolute value 1 are simple.



Chapter VII

PRODUCTS OF VECTOR SPACES

In this chapter we consider a process for forming out of a pair
consisting of a right vector space %’ and a left vector space &,
a group R’ X & called the direct product of the two spaces. The
product R’ X & is a commutative group, but in general there is
no natural way of regarding this group as a vector space. Our
process does lead to a vector space if one of the factors is a two-
sided vector space. We define this concept here, and we remark
that, if A = & is a field, then any left or right space can be re-
garded, in a trivial fashion, as a two-sided space. This leads to
the definition of the Kronecker product of two vector spaces over
a field. We also discuss the elements of tensor algebra, and we
consider the extension of a vector space over a field ® to a vec-
tor space over a field P containing ®. Iinally we consider the
concept of a (non-associative) algebra over a field, and we define
the direct product of algebras.

1. Product groups of vector spaces. A bilinear form g(x,y")
connecting a left space and a right space may be regarded as a
type of product of pairs of vectors, one chosen from each space,
giving a result g(x, y) in A. The basic properties of this prod-
uct are the distributive laws and the homogeneity:

(1) g(ax).y,) = ag(x).y,)) g(x).y,a) = g(x).y,)a-

The fundamental concept of the present chapter is that of another
kind of a product that we shall now define.
Let %’ be a right vector space and & a left vector space over

the same division ring A. Let $ be a commutative group (opera-
199
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tion written as +) and suppose that, for each pair of vectors
%'y y, X' e R’y y e &, there is associated a unique element x’ X
y € P. Then we shall say that P is a product group of R’ and &
relative to the product X if

L (' + %) Xy =0/ Xy +x" Xy
X X (y1+y2) =+ Xy + & Xye.
2. XaXy=x Xay.
3. Every element of B has the form Zx; X y..

We remark first that a non-zero bilinear form is a product of
the present type if and only if A = ® is commutative. Thus if
we adopt the present notation and write x” X y for g(y, x"), then
by (1),

¥ Xay =alx' Xy), ¥aXy=u Xyea

On the other hand, ¥” X ay = ¥’a X y. Hence
a(x’ X y) = (" X y)a.

Now if the form is not the zero form, then it takes on all values
in A. Hence the above equation shows that A is commutative.
The converse is clear.

We shall give next a way of forming a product group for any
pair of vector spaces R’ and &. We take first a left vector space
R dual to ®’, and we suppose that this duality is given by the
non-degenerate bilinear form g(x, y"), x e R, y' e R’. For value
group P we take the group &R, &) of linear transformations of
% into &. Finally we define »” X y for x" in ® and y in & to
be the linear transformation

2) x — glx, x')y.

Then 1. and 2. are immediate. Also we have seen (Chapter V,
§ 5) that any linear mapping of R into & has the form

(3) x — Zglx, x{)yi.

Hence according to our definition it is a sum Zx;/ X y;. This
proves 3.
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For any product we can prove as usual the rules:
OXy=0=x"X0
(=2) Xy = —(" Xy) =5 X (=9
Suppose next that (fi, f2, ***, fm) 1s @ basis for @. Then any
y = Eﬂ,’f{ and hence x’ Xy = Zx' X Bifi = Ex'ﬂi Xfi. It fol-
lows that any element of B can be written in the form Zx, X f..
Similarly, if (¢, e5’, - - -, €4”) 1s a basis for 9%/, then any element of
P can be written as Ze;’ X y;, y; in ©. We shall call $ a direct
product of ®’ and & if uniqueness holds for each of these ways of
writing an element. A somewhat better way of putting this is
the following. The group P is a direct product of R and & rela-
tive to X if

4. (a) Zx/ X y; = 0 implies that either the y; are linearly de-
pendent or that all the »/ = 0;

(b) Zx./ X y: = 0 implies that either the x, are linearly de-
pendent or that all the y; = 0.

The group (R, &) is a direct product in this sense. Suppose
that Zx/ X y; = 0. Then by definition of the product this
means that Zg(x, x/)y; = 0 for all x. If the y, are linearly inde-
pendent, we have g(x, x/) = 0 for all x. Hence by the non-
degeneracy of the form, x/ = 0 for all 7. On the other hand,
suppose that the x;/ are linearly independent. Then we know
that we can find a set of x; such that g(x;, x/) = 8;;. Then every

yi = Zg(xj, x)y: = 0.
A direct product of ®' and & is the “most general” kind of

product of these two spaces; for we have the following

Theorem 1. Let P be a direct product of X' and & relative to
X and let Py be any product of these same spaces relative to the
multiplication Xy. Then the mapping Zx. X y; — Zx/ X1 y; is
a homomorphism of B onto B,.

Proof. Suppose we have two ways of writing an element
z2eP as a sum of products. We can suppose that these are

m q q
2= x' Xyi= ;(—xj') X yi. Then 2 x’ X v, = 0. Let
1 m 1
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us express the y; in terms of a set of linearly independent ele-
ments fi, f2, ***, fr (a basis, for example). Then y, = Zau fi

and
0=23xi Xyr= 20 X2 anfi
% 1
=2 (E xk'akz) X fi.
1 %

Hence Zx/a; = 0 for / = 1,2, ---, ». This implies that in B,
we have the relation 2 (E xk'ak;) X 1f1 = 0. By retracing the
l k

steps we can conclude that Zx,” X; v, = 0 in $;. Hence the

two formally distinct images f: %/ X1y:and zq: (—x") X1y;of

2 are equal. This, of course, rileans that the z:no-:rlrespondence
Zxd Xy = Zxd X1y:

is single-valued. It can now be verified directly that this map-
ping is a homomorphism of B onto ;.

Suppose now that $B;, too, is a direct product. Then the argu-
ment that we have given shows that Zx,” X, y; = 0 implies that
Zx{ X y; = 0. Thus the kernel of the homomorphism is 0, and
hence the homomorphism is an isomorphism. This proves

Theorem 2. If P and B, are direct products of R’ and &, then
the “natural” mapping Zx; X y; — Zx; X1y:is an isomorphism.

This result shows that there is essentially only one direct prod-
uct of two given vector spaces. We may therefore speak of the
direct product and we denote this group as R’ X &.

EXERCISES

1. Write any vector in % as an#; X 1 matrix and any vectorin @ asal X ny
matrix. Let scalar multiplication in S’ and & be respectively right and left
multiplication of coordinates. Show that the group of #; X 72 matrices is a di-
rect product of R’ and & relative to 8” X y = ¥’y the ordinary matrix product.

2. Show that either of the conditions in 4. implies the other. [Hint: note that
only one of these is used to prove Theorem 1.]

2. Direct products of linear transformations. We shall now
consider an important generalization of Theorem 1. As in that
theorem we let $ = R’ X &, but for the second group we now
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take any product Q; of the right space W’ by the left space 8
(both over A). Suppose A’ is a linear mapping of R’ into 11’ and
B is a linear mapping of & into 8. Then we assert that the
mapping

4) Zxi X yi = Zxi{A" X1y:B

is a homomorphism of $ into Q;. The proof is obtained by re-
peating the argument used to prove Theorem 1. Thus, we have
to show that a relation Zx;,” X y; = 0implies Zx'4" X, y,B = 0.
As before, we write y;, = Zayfi where the f’s are independent.
Then we obtain Zx;’ax; = 0. Hence also Z(x’ 4" )y = 0 by the
linearity of 4’. Then

0 = (/Ao X1 iB = 20 i’ 4" X1 20 a(fiB)
% P ]
= 2 xi’d Xy 2 3B
% %

by the linearity of B. The rest of the proof is an exact repetition
of the previous one.

Theorem 1 is obtained from the present result by specializing
W=xR,B8=6, £/'=1, B=1. Another important special
case is that in whichW = %, 8 = & and O, = B. Here we see
that, if 4’ is any linear transformation in &’ and B is any linear
transformation in &, then the mapping defined by (4) is an endo-
morphism in the direct product . We shall call this the direct
product of A and B, and we denote it as 4’ X B. Itisimmediate
from the definition that the direct product 4’ X B is distributive:

) (A +4)XB=4'XB+ 4’ XB

A" X (By+ Bg) = A" X By + 4" X By,
and that

(6) (4’ X B)(C' X D) = A'C’ X BD.

If we now use 1’ to denote the identity mapping in %’ and 1
that in &, then clearly 1’ X 1 1s the identity in . We note also
that by (6) any 4’ X B can be factored as

(7 A X B=(A"X1)1"XB)= ("X B)(4"X1).
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EXERCISES

1. Let (R, &) be the group of linear mappings of R into & and regard L as a
product of R’ and & in the manner defined in § 1. Show that, if 4 is a linear
transformation in R’ and B is a linear transformation in &, then the mapping
A" X Bin® = R’ X Sisidentical with L — ALB where L is a general element
of € and A is the transpose in &R of A’

2. Let P = R X & and let M be the totality of endomorphisms =4/ X B;
where A4/ is a linear transformation in R/ and B; isone in &@. Show that N is a
subring of the ring of endomorphisms of p = R’ X S.

3. Show that the subset of elements of the form 1/ X B is a subring of I iso-
morphic to ¥(&, &) and that the subset of elements of the form A4 X 1 is a
subring isomorphic to ¥/, RN').

3. Two-sided vector spaces. The process that we have given
of “pasting together” two vector spaces to form their direct
product has the serious defect that the final result is not a vec-
tor space but only a group. To get around this difficulty we are
led to consider two-sided vector spaces instead of the one-sided
ones that we have studied hitherto. We define such a system to
consist of a commutative group R, a division ring A, and two
functions ax and xa which satisfy the conditions for left and
right scalar multiplication respectively, and that, in addition,
satisfy the associative law

®) (ax)B = a(xB)

for all @, Be A and all x e R. Thus our assumptions are that ®
is at the same time a left and a right vector space and that any
right (left) scalar multiplication is a linear transformation in %
regarded as a left (right) vector space.

If A =& is a field, any right vector space can be regarded as
a left vector space. One merely has to set xa = ax. Hence in
dealing with vector spaces over fields we can suppose that all of
these are left vector spaces. On the other hand, we can also
consider these vector spaces as special types of two-sided spaces
in which the left multiplication and the right multiplication de-
termined by any aeA are identical. This “trivial” type of
two-sided vector space is the one that will be our main concern
in the remainder of this chapter. It is not difficult to construct
other, non-trivial, types of two-sided vector spaces. We give one
example here.
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Example. Let R be an n-dimensional left vector space over a field ® and let
(e1, €2, -+ +, ) be a (left) basis for R. Let 8§y, S, *« -, S» be automorphisms in
® and define the right multiplication by e e ® to be the linear transformation
in the left space R defined by the matrix

diag {a®, &%, -« -, o},
Then ;o = aSe; and (S = ZESe;.  Since
ea +B) = (a + B)%e; = aSe; + B%; = e + &8
edaf) = (@B)Se: = a¥B%e; = a*(ef)
= (a%e)B = (ei))B,
eil = e

<N is a right vector space over ®. Since the right multiplications are linear
transformations in R as left space, (8) holds. Hence R is a two-sided vector
space.

Suppose now % is any two-sided vector space over a division
ring A and & is a left vector space over A. We can form the
direct product P = R X & obtained by regarding % as a right
vector space. Since the mapping ¥ — ax is a linear transfor-
mation in R regarded as a right vector space, we know that the
mapping Zx; X y; — Zax; X yi, x; e R, y: €S, 1s an endomor-
phism in . We now set

9) aZx; X y: = Zax; X Yi,

and we can verify that, relative to this scalar multiplication, $
is a left vector space over A.

We shall now show that the (left) dimensionality dim; P is
the product of the left dimensionality of % and the left dimen-
sionality of &@. Thus, let (e, €5, * -+, €,) be a left basis for % and
let (f1, fo, *++,fm) be a left basis for &. Any x e R can be writ-
ten as Z£e; and any y € & can be written as Zn;f;. Hence

x Xy = Z&e; X nif; = Z(kedn; X fi

= 222 (Eedni X fie
7 1
On the other hand, the vectors E (t:6:)n; belong to ®. Hence
we have E (Eié’i)'r]j = E M5E€ ke Hence
i 2

XXy =2, (E uﬂcé’k) X fi = 20 wanler X f1).
Fi k Jik
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This proves that any vector in P is a left linear combination of
the vectors ¢; X f;. Suppose next that Zvy;(e; X fi) = 0. Then

0= E(’yijé’i) ij = E (E ’Yijé’i) ij. Since the f’S are lin-
7 \'7
early independent, this gives E’Yijei =0; =12, -+, m.

Hence each v;; = 0.

A similar discussion applies if &% is a right space over A and
@ is two-sided. Here § = % X & can be turned into a right
space over A by defining

(10) Zx: X yi)a = Zx; X yia.

Also the product relation for right dimensionalities holds.

If both ® and & are two-sided vector spaces over A, then by
using (9) and (10) we can convert P into a left and a right vec-
tor space over A. As we have seen, any left multiplication de-
fined in this way commutes with any right multiplication. Hence
P is a two-sided vector space.

It is natural to define a /inear transformation of one two-sided
vector space R into a second one & to be a mapping of R into &
which is linear for the left vector spaces ®, & and is linear also
for the right vector spaces R, &. Similarly, % and & are con-
sidered as equivalent if there exists a 1-1 linear transformation of
% onto .

Suppose now that %, @ and T are three two-sided A-spaces
and consider the two-sided space )t X (& X T) where the X here
indicates the direct product regarded as a two-sided space in the
manner indicated. It is clear that any element of this space has
the form 2Zx; X (y: X 2), x:e R, y:e S, 2;eT. Similarly any
element of (} X &) X T has the form Z(x; X y:) X z;. We now
wish to show that the rule Zx; X (y: X 2)) — Z(x: X 3)) X 24
defines a 1-1 linear transformation of X (& X ) onto (R X &)
X T. For this purpose assume that we have a relation Zx; X
(y: X 2) =01n R X (& X T). Then we can write x; = Zejoy;
and z; = ZPugr, where the ¢’s are right linearly independent and
the ¢’s are left linearly independent. If we substitute in our rela-
tion we obtain

0= Z:é’j X Dy X 2) = 2, 6; X 2 (aiy: X 25).
J 3 7 [
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Hence 2 aj9; X 2 = 0 forj = 1,2, --+. Then

0 =2 (ajsy)Bax X gi = Zk: 2} (e:9:)Bir X Lo

i,k

Hence E (395 B = O for all 4, k. Thus E a;i(y:8i) = 0 and

this in turn implies that

0=20¢6X ZaulyBa) = 2 (Z ffaﬁ) X ¥ifir
7 1 7

1

= E x; X ¥iBik-

Similarly this relation yields the relation Z(x; X y;) X 2, =0. A
direct verification now shows that the correspondence

Tws X (e X 2) = Z(x: Xy X 2

is a linear transformation of & X (& X T) onto (R X &) X T.
Moreover, by symmetry, the kernel of this mapping is 0; hence
it is an equivalence. Because of this equivalence we need not
distinguish between the two direct products ® X (& X £) and
(R X &) X IT. We therefore use the notation i X & X T for
either of these products, and we shall call this space the direct
product of the three spaces R, &, T. Also we write x X y X 2
for either of the products ¥ X (y X 2) or (¥ X ¥) X z.

In a similar fashion we can define direct products of more than
three two-sided spaces: Any two direct products obtained by
taking ®, &, ---, U in this order and associating the factors are
equivalent under a natural equivalence of the type given for three
factors. We can therefore denote any of the resulting product
spaces as %t X & X ---X U. The product of vectors in this space
will be written as x X y X -+ X u.

EXERCISES

1. Let @ — o be an isomorphism of the field ® into itself and let R} be a left
vector space over ®. Define xa = aSx and verify that this turns $ into a two-
sided vector space. Show that if the subfield 5 of image elements o8 is properly
contained in ®, then the left and the right dimensionalities of i over ® are dif-
ferent.

2. Let R be a two-sided vector space over A such that the left and the right
dimensionalities over A are finite and equal. Prove that there exists a set of
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Vectors ei, ea, - -+, n, which is at the same time a left basis and a right basis for
N over A,

3. Let R be defined as in Ex. 1 with § an automorphism in ® and let & be a
second space of this type defined by the automorphism 7. Show that, if ST
TS, then R X & is not equivalent to & X R.

4. The Kronecker product. In the remainder of this chapter
we shall suppose that A = ® is a field. Moreover, we shall be
interested only in one-sided spaces and we shall write all of these
as left spaces. The conjugate space of a space R will be denoted
as usual as R*, but this, too, will be regarded as a left vector
space.

Suppose now that i and & are two spaces over &. We con-
sider ®# and & momentarily as two-sided vector spaces in the
trivial way that ax = xa for all @ and x, and we form the direct
product % X &. This is a two-sided vector space, too, but of the
trivial sort since

a(Zx; X ) = Zaxy X y; = Zwaae X yi = 2x; X ay;
= 2Zx; X Yo = E(xl X yi)a.

Hence we may regard % X & simply as a left vector space. The
(left) vector space thus obtained is called the Kronecker product
of ® and &. Of the equations above, the significant ones from
the point of view of left vector spaces are

a(Zx; X yi) = Zax; X y: = Zx: X ays.

Thus, the space ® X & is characterized by the following proper-
ties: There is defined a product ¥ X y e ® X & for every x e i
and y € & such that

V. eyt w) Xy=x1 Xy+x Xy
x X (y1+y2) = x Xy1+ x Xy2
2., alx Xy)=ax Xy =5 Xay.
3. Every element of ) X & is of the form Zx; X y;, x: e R,
Yi € .
4. (a) Zx; X y: =0 implies that either the y; are linearly
dependent or all the x; are 0.
(b) Zx; X y; = 0 implies that either the x; are linearly
dependent or all the y; are 0.
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The foregoing discussion has established the existence of the
Kronecker product of any two (finite dimensional) vector spaces.*
Most of the results which we have obtained are applicable in the
present situation. In particular, we recall that dim (% X &) =
dim % dim &. We shall now show that this equation can be used
as a substitute for the independence conditions 4”.; for we have
the following

Theorem 3. Let R, & and P be vector spaces over a field ® and
suppose that there is defined a product x X y,x e R,y e S,x X y e B,
such that 1., 2. and 3’. hold. Then B is a Kronecker product of
R and & if and only if dim B = dim R dim &.

Proof. The necessity of this condition has already been proved.
Conversely, let dim ¢ = dim R dim &. Let (e1, €2, -+, ¢,) be
a basis for % and let (fi, f2, + - -, fm) be a basis for &@. Then it
follows easily that the vectors ¢; X f; are generators of B. Since
their number is #m, they constitute a basis. Now suppose that
€1, €3, -, ¢, are any linearly independent vectors in ®. Then
we can suppose that these are part of a basis for . If Ze; X y4
= 0, we can write y; = 28;;f; and we obtain Z8;e; X fj = 0.
Hence each 8;; = 0, and this means that each y; = 0. In a simi-
lar manner we establish the second independence condition.

We have seen that direct multiplication of two-sided vector
spaces is associative and, in particular, this holds for Kronecker
products. Thus, if ®, & and T are three vector spaces over a
field, then we have the natural equivalence Zx; X (y; X 2;) —
Z(x: X y:)) X 2ziof B X (& X ) onto (R X &) X T. We there-
fore identify these two spaces and we identify the elements
Zx; X (yi X 2;) and Z(x; X ;) X 2;. Also as before we may
simplify our notation and write ® X @ X £ and » X y X z.
More generally we can define the Kronecker product i X & X
-++X U of any finite number of spaces and denote its elements as
Zx Xy X+ Xu.

Direct multiplication of two-sided spaces is not in general com-
mutative (cf. Ex. 3, p. 208). However, in the special case of
Kronecker products the commutative law does hold. In fact, we

* As we shall see in Chapter IX, it is easy to carry this over to infinite dimensional
spaces.
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can show that the rule Zx; X y; — Zy; X x; defines an equiva-
lence of ® X & onto & X R. The proof of this result follows the
pattern of our other proofs: By expressing the x; and the y; in
terms of linearly independent elements we can show that Zx; X
y; = 0 holds if and only if Zy; X x; = 0. The remainder of the
argument is a verification. More generally the Kronecker prod-
uct RO X F@ X - X R is equivalent to R X ®? x. ..
X RY for any permutation (ji, ja, *++, Js) of (1,2, -+, 5). The
mapping  Za:P X %2 XX 4,0 — ZTa X xf“) XX
%9 is an equivalence.

The notion of the Kronecker product of vector spaces leads to
the definition of the useful concept of a free (associative) algebra.
To define this concept we begin with an arbitrary vector space
% over a field ® and we introduce the Kronecker products R°
=R X R XX R ({ factors). Also we adopt the convention
that Re! = R and R® = ; hence Ry’ is defined for all = 0, 1,
2, +--. By the above remarks on associativity $o' X R¢ =
Ro' T if i, ; > 1. Hence any x? e Ro¥, ¥ e Ry’ determine a
vector ) X x@ of RoiH. If either i =0 or j = 0, then we
define x® X x% to be the product of x@ (or ) by the field
element x? (or ). We now form the direct sum § of the spaces
Ro’. This space can be defined to be the set of sequences x =
(%@, x D x@ ...} where ¥ £ Ro° and ¥ = 0 for 7 sufficiently
large. We consider ¥ = y = (3@, M, y@_ ...} if and only if
x® = y@ for all /. For arbitrary x and y we define

s by = @O +yO,aD £y0, )
(11)

ax = (ax®; axD) qx®) ...,

Then it is clear that § is a vector space. If we identify the vec-
tor (0, -+, 0, ¥, 0, --+) with x(?, then any vectot in § can be

written in one and only one way as E x® where x = 0 for i

sufficiently large. If the i; are dlstmct and x“ 3 0, then these
vectors are linearly independent. It follows that, if ® £ 0, then
& is infinite dimensional.
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We now introduce a multiplication X in § by defining (Zx(®)
X (ZyP) = Z2™ where

(12) 20 = 5 X y® 4 4D ¢ yE=D L4 xR 3¢ 5O

It is easy to verify that § is an associative algebra. We shall call
this algebra the free (associative) algebra based on the vector
space R.

EXERCISES

1. Show that, if % is 2 one-dimensional space, then §§ is essentially the poly-
nomial algebra in one indeterminate (transcendental element) over ®.

2. Let {§ be the free algebra based on an # dimensional vector space & and let
B be the (two-sided) ideal in {§ generated by the vectorsx X y —y X », ¥ and »
in ®. Show that F/B is essentially the polynomial algebra in # algebraically in-
dependent transcendental elements.

3. Let §§ be as in Ex. 2. Assume the characteristic of ® # 2 and let € be the
ideal in {§ generated by the vectors ¥ X ¥ + 5 X %, x, ¥ in R. Then §/C is
called the Grassmann (or exterior) algebra based on R. Show that dim /€ = 27,

4. If R, S, - -+, U are vector spaces over ®, we define a multilinear function on
R, S, -+, Uasafunction flx, 9, -+, #),xe R, ye S, - -+, we U, with values in
&, such that f is a linear function of any one of the arguments for fixed values of
the remaining ones., Show that this concept is equivalent to that of linear func-
tionon B X & X+ -+ X U by proving: 1) if f is multilinear, then Zx; X y; X+« + X
u; — Zf(xi, ¥iy -+ +, #;) is an element of the conjugate space of ® X & X+ X U;
and 2) if fis a linear function on ! X & X- -+ X U, then the contraction of f to
the subset of vectors of the form x X y X-++ X # is a multilinear function.

5. Let g(x), A(9), ---, k(u) € R* &S* .-, U* respectively. Show that
Sy 3y oo, 1) = g(x)A(y) -+ - k(x) is multilinear. Let f also denote the associated
element of (! X & X--+ X U)* and show that therule £g X 2 X.-+ X k — Zf
defines an equivalence of ¢* X &* X--- X U* onto (R X & X--- X W*.

5. Kronecker products of linear transformations and of ma-
trices. If A is a linear transformation in & and B is one in &,
then we know that Zx; X y; — Zx;4 X y;B is a group homo-
morphism in § X &. It is evident also that this mapping com-
mutes with the scalar multiplications; hence it is linear. We
shall call this mapping the Kronecker product A X B of 4 and B.
In a similar manner we can define the Kronecker products 4 X
B X---X D of a number of linear transformations. We shall
now show that, relative to Kronecker multiplication, the vector
space 2R X S, R X &) of linear transformations in R X S is a
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Kronecker product (%, R) X (S, &). Equation (5) shows that
the distributive laws hold. Also

(x X y)(a(d X B)) = (x4 X yB)a = (xA)a X yB
= x(Aa) X yB.

Hence a(4 X B) = a4 X Bandsimilarly a(4 X B) = 4 X aB.
Next let (eq, €2, -, €,) be a basis for ® and (fy, f2, ***, fm) 2
basis for &. Then the nm vectors e; X f; form a basis for # X &.
Let E, ;; be the linear transformation in ® X & which sends
e; X fjinto ep X fi» and sends the remaining ¢; X f;into 0. Then
we can verify that

(13) Eip iy = Ew X Fijpr

where E;i 1s the linear transformation in % which sends ¢; into
e;» and the remaining ¢’s into 0 and Fj; is the linear transforma-
tion in & which sends f; into f;» and the remaining f’s into 0. It
follows that every element of @R X &, R X &) has the form
ZA; X By A; (R, R), Bie(S,S). Since dimR X &, R
X &) = (mn)? = dim R, R) dim (S, &), our assertion follows
from Theorem 3. We have therefore proved the following

Theorem 4. If R and S are (finite dimensional) vector spaces,
the space QR X S, R X &) = R, R) X S, &) relative to Kro-
necker multiplication of linear transformations.

Assume now that
(14) e:d = Zage;, B = ZBuf

so that (a) and (8) are the matrices of 4 and B, respectively, rel-
ative to the chosen bases. Then we have

(15) (6’1' ka)(zf X B) = Eaijﬂkzé’j sz.
We shall arrange the vectors ¢; X f; lexicographically as
(61 X f1y =y o1 Xfms €2 X 1y ooy 00 X fmy 205 o005 6n X fi)

and we shall call this ordered basis the one associated with (e1, e,
o+, en) and (f1, fo, **, fm)- Equation (15) shows that the
matrix of 4 X B relative to the associated basis is
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(11811 "+ @1181m agBin 0 efim | 0 aBim |
a11Bmi 0 %11Bmm | @128m1 0 i2Bmm | C 0 QnBmm
az1ffin 0 A21Bim ageflir trr agaBim | vt %2aBim
ag18m1 0 21Bmm | @22Bmi c @22Bmm | C 0 C2nBmm

We denote this matrix as (a) X (8) and we shall call it the
Kronecker product of the two matrices (a) and (8).

The basic rules governing Kronecker multiplication of linear
transformations have their counterparts for matrices. In par-
ticular the preceding theorem shows that the space of nm X nm
matrices over ® is the Kronecker product of the space of n X »
matrices and the space of m X m matrices relative to . Also,
we know that (4 X B)(C X D) = AC X BD holds for linear
transformations and this leads directly to the matrix rule

(16) ((@) X (B)((v) X (8)) = () (v) X (B)(8).

EXERCISES
1. Show that the matrix of 4 X B relative to the basis (e1 X f1, 2 X f1, *+,
en X f15 61 X fa, 2 X fa, -+, en X fa; *+-3 ==+, en X fu) is (B) X (@). Hence

prove that (8) X (&) is similar to (&) X (B).

2. Prove that (a) X ((8) X (v)) = (@ X (B)) X (1)

3. Prove that if p is a root of the characteristic polynomial of 4 and o has
this property for B then po has the property for 4 X B.

4. Prove that det (4 X B) = (det 4£)™(det B)"™.

6. Tensor spaces. If R is a vector space and R* is the conju-
gate of R, then any Kronecker product space § X---X % X ®*
X X R*1s called a tensor space based on the space R. The ele-
ments of such a space.are called tensors, and if there are r factors
R and s factors R*, then we say that these tensors are contra-



214 PRODUCTS OF VECTOR SPACES

variant of rank r and covariant of rank s. We shall use the abbrevi-
ated notation R," for the space. Also, as in § 4, it will be con-
venient to regard ® as the tensor space ®,° of ranks 0.
If (eqy €2, =+, €n) is a basis in the base space % and (¢!, 2,
e™) * is the complementary basis in #* in the sense that

é(es) = 87,
the Kronecker delta, then the vectors
(17) e X ey Xoo X ey X&' XX &

constitute a basis in the tensor space. We can write any vector
in this space as

(18) SEN e XX ey X XX £

It is natural to give preference to bases of this type that are de-
termined by the basis (g, €, - - -, €,) in R. The element (18) of
the tensor space will be called the tensor whose coordinates are
4% relative to the (¢)-basis in ®. If (fi, fo, - -+, fa) is a second
basis in ® and f; = Zule;, then

=2V§f1’) fi=2”;:ej) e"=2ﬂ{fi
where (») is the inverse of the matrix (u). Hence
TE e XX e, XXX e
k Er i ! .
EE] hyli" lrﬂ"l’: '”’isfklx"'xfkr Xflxxf‘
Thus our tensor has the coordinates
r b 3 o
(19) mpn = DEE i
relative to the ( ﬂ ba51s.
We consider next a generalization of the concept of the transpose
of a linear transformation. We recall that, if 4 is any linear

transformation in ®, then the transpose 4* of A is the mapping

x* — y* in R* where y*(x) = x*(x4). We shall now associ-
——\

ate with 4 the linear transformation A4, = A4 X---X 4 X

——

A* XX A* Itisnatural to consider this transformation to be

the transformation induced by A in the tensor space R,". We

* This notation is somewhat more convenient than our former one: (e1*, e2*, ..., ex®).
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recall that, if («) is the matrix of A relative to the basis (1, e,
-+, €a), then ()’ is the matrix of 4* relative to the complemen-
tary basis (¢!, €%, - -+, ¢"). It follows that the matrix of 4," rela-
tive to the natural basis (17) ordered lexicographically is the
—— —
Kronecker product (a) X -+ X (a) X (a) X+ X (&)’

There is an important process called contraction for associating
with any tensor which is contravariant of rank r > 0 and co-
variant of rank s > 0 a tensor contravariant of rank » — 1 and
covariant of rank s — 1. We recall first of all that, if x e % and
y*e ®* then the mapping (¥, ¥*) — y*(x) is a bilinear form
connecting ® and R*. Since ® is commutative, this form de-
fines a product of the vector spaces % and R* in the sense of § 1.
Hence by Theorem 1 we know that the mapping Zx; X y.* —
Zy:*(x;) is a homomorphism of R = R X R* onto the additive
group . Also it is immediate that our correspondence is a linear
transformation of ®;' onto the one-dimensional vector space &
(= ReO).

The considerations of § 1 show also that, if & is a second vector
space, then the linear mapping of R:! onto R,° can be combined
with the identity mapping in & to give a linear mapping of R;!
X & onto Ry® X &. The resulting mapping is defined by the
following rule

Za; X y* X 2: > Zy*(x) X 2,

x; e R, y¥ e R* 2;eS. It is easy to see that the space R? X &
is equivalent to & under the mapping Za; X 2; — Zaz;. Hence
we see that

(20) Zui X yi* X 2: — Zyi*(xoz

is a linear transformation of ;! X & onto &.

The process of contraction is obtained by specializing & to be
the tensor space ®,_;"~!. This specialization shows directly that
the mapping

T X y* Xag XX x,—g X y1* X y2* XX ye_1*
— ZyF)xg X X a1 X y1*¥ X X ye*t

t We have omitted the summation subscript here. 1t is understood that we have a sum
of terms of the type indicated.
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is a linear mapping of ®;' X R,_;""! onto R,". Now let £ be
chosenin1,2, ---,rand /in 1, ---; 5. Then we know that the

mapping

Sy X Xy X yi* X Xyt —

Sap X yr* X ap Xooo X xp—g X Kpgr XXy X y¥* Xooo
X yi_1* X yip1* XX ye*

—1

is an equivalence of R," onto R1' X R,—" Hence the mapping

(21) Zxy X X x, X y1* XX y,* —
Sy ¥op)xr Xooo o X wp—1 X Hppg X X w X y* X
><yl_1* ><yz+1* ><---><ys*

is a linear transformation of ®,” onto ®,_;"~*. This mapping is
called contraction of R," with respect to the kth contravariant index
and the lth covariant index.

We now employ a basis ¢, X+ X ¢; X &* X++-X £ in R,
and consider the tensor (18). Contraction with respect to the
kth contravariant and the /th covariant index yields the tensor

SE sl X X e, X, X X ey X & X e
>< ejl—l >< ejl+1 ><. .. >< €js-

Hence the coordinates of the contracted tensor relative to the
basis determined by the (¢)-basis in ® are

(22) f1ee dborlprite i _ E,'I. «ik_1qThg1 i
Ji s Ji-it1e e ods E FALRR U4} F8 LR Pl
q

The notion of contraction can be used to give a definition of
the trace of a linear transformation which is independent of
bases. We note first that the space (R, R) of linear transforma-
tions in R can be regarded as the tensor space ®;'. This is clear
from our construction of direct products, (§ 1). Thus, if x e 9t
and y* e ®*, then we have defined x X y* to be the linear trans-
formation of ® into itself that sends the vector # into y*(u)x.
We knéw that, relative to this definition of X, (R, ®) = R X R*.
Any element of £ can be written in the form Zx; X y,*. Now the
contraction which we have defined is a linear mapping of g into
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& which sends Zx; X y.* into Zy,*(x,). We shall now show that
this mapping coincides with the mapping 4 — tr 4 defined by
bases for ®.

To see this, let (¢1, €2, - -+, €,) be a basis for ® and write 4 =
Eui* X é&;. Then

6’_,'4 = E u;*(e,-)e,-.

Hence the matrix of A relative to (e, e, * - -, €,) 1s (@) = (u:*(e;)).
Hence tr 4 = Zu;*(¢;). This is the same result which is obtained
by contraction. A change of basis yields a second matrix of 4
similar to (a). Its trace coincides with the contraction of the
tensor. Thus, without verifying this fact by direct computation
(as we have done previously) we see that similar matrices have
the same trace.

7. Symmetry classes of tensors. We consider in this section
the space R," of contravariant tensors of rank ». The elements
of this space are the tensors Zx; X g X-+-X x,. Let i — ¢/
be any permutation of the numbers 1, 2, ---, . Then we know
that the mapping

296'1><X2 XX x, —>2x1:><x2, KXo X Xy

is a (1-1) linear transformation in R,". We shall call this trans-
formation a symmetry in R,". There is one of these associated
with every element of the symmetric group &, on the r letters
1,2, -+, r. If oe®,, we denote the associated mapping in Ry
by P(¢). Then it is clear from our definition that

(23) P(a7) = P(e)P(v).

A linear transformation of the form Z«, P(¢) where «, denotes
the scalar multiplication by the element «, is called a symmetry
operator in Ry". Because of (23) these operators form a subalgebra
of the complete algebra of linear transformations in %" If Q is
a symmetry operator, then the set of vectors annihilated by Q is
a subspace; more generally if {Q} is any set of symmetry opera-
tors then the vectors 2 such that 20 = 0 for all Q is a subspace.
We shall call such a subspace a symmetry class of tensors. For
example, let the set {Q} be the totality of symmetry operators
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P(e) — 1 =P(g) — P(1), 0eS,. A tensor in this symmetry
class is symmetric in the sense that

EXIIXXZ/ X"'er'=2x1><xz><"'><x,

for any permutation i — ' of 1,2, -+ -, 7. Similarly if {Q} is the
set of symmetry operators P(¢) — ¢, where ¢, = 1 if ¢ is an even
permutation and ¢, = —1 if ¢ is odd, then the set {Q} determines
the class of tensors which are skew symmetric in the sense that

ExI/sz, X-..er, =6U2x1><x2><...><xr

fore:i — 7.

The symmetry operators are of particular importance in study-
ing the linear transformations in R¢" which are induced by the
linear transformations in the base space ®. If £ is such a map-
ping in &%, we have defined the “induced” linear transformation
A =4 X 4 X---X A4 by the formula

(EXIXX2 X---Xx,)/for=2x1/{><x24><---><x,.4.
Evidently we have the relation
(24) (/{B)OT = /{OTBOT.

Since 1y = 1, if 4 has an inverse 471, then A" (A7) = 147
= 1. Hence if A4 is non-singular, then 4" is non-singular in the
ring y" of linear transformations of Ry". The equation (24)
shows that the mapping 4 — A, is a homomorphism of the
units of ¢ in the group of units of &y

It is clear from the definition that 4y" commutes with every
symmetry and hence with every symmetry operator Q. If 20
= 0, then also (24,)Q = 0. This remark shows that any sym-
metry class of tensors is an invariant subspace relative to the
totality of mappings of the form 4,". If U(A) denotes the linear
transformation induced by A, in a particular symmetry class,
then by (24) we have the relation U(4B) = U(A)U(B).

We shall consider now the special case of the symmetry class
of skew symmetric tensors. We shall assume also that the char-
acteristic of ® is not two. We determine first a basis for our sym-
metry class. Let

S X g XX e
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be skew symmetric. Then
(25)  ZE e X ey XX ey, = €ZE e Xy, XX e
and, since ¢,7! = ¢, this implies that

(26) E'iy'ig/-.-'ir' —

Hence an interchange of any two subscripts changes the sign of
the component £ As a corollary we see that £ = 0 if
any two of the #; are equal. In particular, if » > 7 every £ =
0, that is, the only skew symmetric tensor of rank » > 7 is the 0
tensor. Also we see that, whatever the value of r, the expression
St Xeoo X ¢, for a skew symmetric tensor has zero co-
efficients for each term ¢, X ¢, X -+ X ¢_in which two 7; are
equal. Hence these terms can be dropped. We suppose next
that i; < i <---< i,. Then the coefficient £ """ = ¢ 1 %,
Hence the terms involving all the base tensors ¢;, X ¢, X--
X e, add up to

‘,Eiﬂz . .,;'.

(27) Emz"'i'[é’ileiz e 6’1’,]: i1 < 1’2 <oon &L ir
where
(28> [e'ileiz st eir] = Z eaeiy >< 61'2' >< ctt >< 6’,;,.

It is clear that [¢e;, -+ ¢,] 1s skew symmetric. Moreover, if
jl <j2 < "<jr and (jla j2: Y ].r) # (ila i2: R i,), then

le; 6, - - - ¢;] involves a set of base tensors ¢, X ¢, XX ¢,
that has vacuous intersection with the set ¢, X ¢, XX ¢,,.
It follows that the vectors [¢;¢;, - - - ¢;] determined by all pos-

sible choices of the indices i; < iy <---< i, from 1 to n are
linearly independent. Hence these tensors form a basis for the
space of skew symmetric tensors. The number of elements in
this basis is the same as the number of combinations of r distinct
objects that can be selected from # distinct objects. This num-

n\ . . .
ber (r) is the dimensionality of our space.

We arrange the vectors [¢; e, -+ - e;] lexicographically with re-
spect to the indices 71, 73, ---, #,. For example, if » = 3 and
r = 2, the order is [eiea], [e1es], [e2e3]. If («) is the matrix of a
linear transformation A4 relative to the basis (e1, ez, -+, €n),
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then the matrix relative to the lexicographically ordered basis
lese, -+ €], of the linear transformation induced by A in the
space of skew symmetric tensors of rank r is called the rth com-
pound of (). We denote this matrix as C.(«). Evidently we
have the relation
(29) Cr((@)(8) = Cr(@)C:(B).

We shall now obtain the explicit form of C,(«). Since e;4 =
Eaijé’j,
lenes, =+ - eildo”

= Z 6,6’1'1,/{ X 6’1'2,/{ X X 6’1',,/{

(30) = ; JZ €001 Nigrjye * ° ° i€y X by Xove Xejr'

= Z Z €051 Xiggy * * " Qi X €l XX Cip
7 a

(51'1' X Ciy XX eir')

= Z I ail]’l’aiﬂ'z' et a":rjr'
;

where | o ;000 + * + @i, | denotes the determinant
Xgyj Riygp "7 Wiy
Qigjre Cligjy * " ° Qg

Q1)
al’r]’l' airjz' e air]’r’

If any two j’s are equal, this determinant is 0 and for unequal ;’s

I 1 Riggor ™ *° Uiy | = fal Uy Ripjy * * Uiy

where j; < jo <---<j,. Hence (30) can be written as

leis, - -+ e lAdo™ = ) E . I @iy *** g, | €565 - - ejr]'
Nn<gp< o <Jr
This shows that C,(«) is the matrix whose elements are the r-
rowed minors | ;;a;, * ** @y, | of (@).
If r = n, the skew symmetric tensors have the basis [e1e2 - -+ €,].
The matrix C,(a) = det (). Thus (29) specializes in this case

to the multiplication rule for determinants.
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These remarks will serve as an introduction to the rich but
somewhat involved theory of symmetry classes of tensors. A
thorough treatment of this subject is given in Weyl’s The Classi-
cal Groups, Chapters 3 and 4. (Cf. also Wedderburn’s Lectures
on Matrices, Chapter 5.)

EXERCISES
1. Show that [xx2 - -+ 4] = Seonrwe -« %o = |Enas - - unlleres -+ 4]
wher? | 11 -+ Enn | is the determinant of the coordinates of the #'s relative to
thg.é’ g.how that, for the scalar matrix al, ?r(al) = a'l.
3. Prove that det C,(a) = (det (oz))('::1 .

8. Extension of the field of a vector space. If P is a field
which contains ® as a subfield, then P can be regarded as a vec-
tor space over ®. The addition in the vector space is taken to
be the field addition, and scalar multiplication a¢ for a in ® and
£1in P is defined to be the field product. The axioms of a vector
space are immediate consequences of the associative and distribu-
tive laws and the fact that ® contains the identity of P. The vec-
tor space may be infinite dimensional or finite dimensional. For
example, if P = ®(\) where X is an indeterminate, then P is in-
finite over . On the other hand, if P is the field of complex
numbers and & is the subfield of real numbers, then P is two-
dimensional over &.

Now let ® be a vector space over & and let = P X R the
Kronecker products of P regarded as a vector space over & with
the vector space #.* The elements of P have the form Zp; X x;
where p; e P and %, e ®. Let ¢ be any element of P; then, since
£ — of1s alinear transformation in P over &, the mapping

Zpi X x¢ — Zopy X X5

is an endomorphism. We use this to define a scalar multiplica-
tion in P by setting
(32) d(Zpi X x5) = Zops X x4

* Strictly speaking the existence of the Kronecker product has thus far been proved only

in the case in which P is finite over ®. The considerations of Chapter IX will enable us to
extend our construction to the infinite case.
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Then we have shown that the function ¢z is single-valued and
that ¢(z; + 23) = 627 + 2;. The other axioms for scalar mul-
tiplication can be verified directly. Hence P can be regarded as
a vector space over P. We shall denote $ as Rp, and we call
this space obtained from R by extending the base field ® to the
Jield P.

It is easy to see that the dimensionality of Rp over P is the
same as that of ® over ®. For let (¢4, €3, -- -, €,) be a basis for
R over ® and let &; = 1 X ¢;. Then p; X e; = ps(1 X ;) = pi&:
and, since any 2z € Rp has the form Zp; X ¢;, it also has the form
Zpi¢i.  Similarly, if Zp.f; = 0, then Zp; X e; = 0 and, since the
¢; are linearly independent over ®, every p; = 0.

For each xe ® we set ¥ = 1 X x. Then it is easy to check
that the correspondence ¥ — % is an equivalence between the
vector space R over ® and a subspace & of Rp over ®. If we like
we can replace the space % by the subset & of ®p. The relation
between Rp and R can be described by the following statements:

1. Any vector in Rp has the form Zp;%; where p; e P and %; e .
2. If the vectors (¢, &3, -+ -, &,) are in & and are linearly inde-
pendent over ®, then they are also linearly independent over P.

Suppose now that A is a linear transformation in % over &;
then we know that the mapping Zp; X x; — Zp; X x;4 is an en-
domorphism in Rp. It is also immediate that it is a linear trans-
formation in Rp over P. We shall call this mapping tke extension
of 4 in Rp. We use the same letter to denote a mapping and its
extension. If (a) is a matrix of A relative to the basis (¢q, ¢,

- -, e,) of R, then

&4 = (]. X €i)/{ =1Xed=21X Q€5
= Eaﬁ(l >< €j) = Eaﬁéj.

Hence the matrix of the extension A relative to the basis (&y, 2,
-+, &) 1s (@) also.

9. A theorem on similarity of sets of matrices. In this sec-
tion we shall prove a theorem on sets of matrices which is of
interest in itself and which illustrates a useful method in the
theory of matrices and of algebras. The idea of this method is
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that it 1s sometimes easier to prove a result if the base field is
“sufficiently large” (e.g., algebraically closed). We can, there-
fore, extend the base field to obtain one which has the necessary
properties and then we are confronted with the problem of show-
ing that the final result is valid in the original field.

The particular problem we shall consider is the following. Let
w; and wy be two sets of matrices with elements in ®. Suppose
they are similar by means of a matrix whose elements belong to
an extension field P. Then can we conclude that the sets are
similar by a matrix with elements in ®?

More precisely, we begin with a set @ of linear transformations
in ® over &, and we consider their extensions in R over P. Let
w be the set of matrices determined by these extensions relative
to a basis (&1, €2, *--, &n), & = 1 X ;. As we have seen, the
matrices in w all have elements in the field ®. If (u1, #ua, - -+, #,)
is any basis in ®p over P and #; = Zuy;2;, then the set of matrices
of Q relative to this basis is (u)w(x) ~!. In general some of these
matrices will have elements which do not belong to ®. How-
ever, it may happen that even though (u) ¢ ®, the set (p)w(p) ™!
C ®,. We shall now show that, if this is the case, then there
exists a matrix (y) in L(®, #) such that for every (a) e w

M@ = W)W~

We shall prove this result under the assumption that ® has an in-
finite number of elements.*

Theorem 5. Let & be infinite and let w be a set of matrices with
elements in &. Suppose that (u) is @ matrix in L(P, n), P an ex-
tension of ®, such that (wWw(w) ™ S ®,. Then there exists a matrix

(7) e L@, n) such that (v)(@)() ™' = (W)(@)(w) ™" for every (o)

Proof. Denote (u)(a)(u) ! as (a),. Then
(W (@) = (a)u(u)

and these equations are equivalent to a system (possibly infinite)
of homogeneous linear equations for the elements ui; of (u).

* A proof for the finite case is given in Deuring, Galoische Theorie und Darstellungstheoris,
Math. Annalen, v. 107, pp. 140-144.
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Moreover, these equations have coefficients in ®, that is, they
have the form Sfimy = 0, By in &,

We regard the set {(8)} first as a subset of ®,, and we suppose
that 7 is the rank of this set in the sense that this is the largest
number of linearly independent (relative to ®) matrices in {(8)}.
Then the equations Z8;;£;; = 0 have #n® — r linearly independent
solutions for £;; in ® such that every solution is a linear combina-
tion of these. Let (v#®), (vi;®), -+ -, (vii'®), & = n? — r, be
such a set of solutions.

We remark next that a set of matrices with coefficients in &
that are linearly independent over ® are also linearly independent
over P. This is clear since the space P, is the extension space ®,p.
Hence the matrices (v5;V), « -+, (v4™) are P independent. We
now note that 7 is also the rank of the set {(8)} relative to P and
that the maximum number of linearly independent solutions of
the equations =8t in P is also #n2 — ». Hence the particular
solutions (v5™1), (v;®), -+, (v;®) which we selected form a
basic set for the solutions in P. In particular

pi = vy vy ® o v ™

where the »’s are in P.
We now replace the »; by independent indeterminates \;, and
we consider the polynomial

det (Ek: )\k'yi,-”‘)).

This polynomial in ®[A;, Ag, - - -, Ai] is not the O polynomial since
its value det (u) for Ny = pz 1s not 0. Since & is infinite, we can
select values \; = B; in & such that det (Z8yy:;*) # 0.* Let
v = ZBryi;® and let (v) = (yi)- Then (v) e L(®, 7)) and
ZBiyvi; = O for all 8. Hence

(M(@) = (0)u(v)

for all (), and () satisfies the requirements of the theorem.

EXERCISE

1. Prove Theorem 5 for w a set consisting of a single matrix without any re-
striction on ®.

* See Theorem 10, p. 112, of Volume I of these Lectures.
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10. Alternative definition of an algebra. Kronecker product
of algebras. The concept of an associative algebra has been in-
troduced in Chapter II. We shall now see that a simple alterna-
tive definition can be given in terms of the notion of the Kro-
necker product. We find it convenient to generalize the former
discussion by dropping the associative law. Then our previous
definition takes the following form: A (not necessarily associative)
algebra U 1s a vector space over a field ® together with a binary
multiplication xy in ¥ such that

(33)  (#1 + x2)y = x1y + %2y, x(y1 +y2) = xy1 + &y
34 a(xy) = (ax)y = x(ay).

Conditions (33) and the last equality in (34) state that % is a
product space of ¥ and ¥ relative to the multiplication xy. Hence
we know that the mapping Zx X y — Zxy is a linear transfor-
mation of the Kronecker product % X % into ¥.

This remark serves as a basis for our second definition of an
algebra. According to it we define an algebra to be a vector
space ¥ over a field ® together with a linear transformation P of
% X Ainto¥. In an algebra defined in this way we can introduce
a binary product by means of the formula

35 xy = (x X y)P.

Then it is easy to see that (33) and (34) hold. Hence it is clear
that this procedure leads to the same concept as the former
definition.

Suppose next that %; and ¥, are arbitrary algebras over the
same field ®. Let P; be the linear mapping of %, X ¥, into ..
Thus x:y: = (x; X y5)P;. Wenow form the Kronecker product
A = A; X Ay and we consider the Kronecker product ¥ X U of
this space with itself. We know that, if x;, y; are in ¥; and xs,
y2 are in Uy, then the mapping

(36) Zxr X xg X 31 X y2 = Zx1 X y1 X %2 X y2

is an equivalence of % X A = A; X Az X U; X Uz onto A; X A,
>< ?Iz >< 2[2. AlSO

(B7) Zx1 X y1 X x2 X y2 — Z(x1 X y0)P1 X (%2 X y2) P2
is a linear mapping of Ay X UA; X Uz X ¥, into A = ¥A; X U.
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Combining (36) and (37) we obtain a linear mapping P of A X U
into %. Thus ¥, together with the mapping P, constitutes an
algebra over the field . If Zx; X xp and Zy; X y, are two ele-
ments of ¥, then their product in ¥ is

(38) (1 X %2)(Zy1 X y2) = Zwryr X X2ys;
for, by definition
(Zx; X %2 X y1 X y2)P = Z(x1 X y1)P1 X (w2 X y2)Ps
= Zx1y1 X Xg¥2.

The algebra ¥ thus defined is called the Kronecker or direct prod-
uct of A; and Ap. It is an immediate consequence of (38) that, if
%, and A, are associative algebras, then the Kronecker product
A =A; X Ay is associative.

As an illustration of the concept of the Kronecker product of
algebras we note the following extension of Theorem 4.

Theorem 6. The algebra QR X S, F X &) = R, R) X
e, B).

Proof. We have already seen that this relation holds in the
vector space sense. Also we have the relation (4 X B)(C X D)
= AC X BD, and this shows that the ordinary product in
LR X &, R X ©) coincides with the composition defined in the
Kronecker product of the two algebras.

A slightly different form of our result is given in the

Corollary. ®,, = &, X ®,.

EXERCISES

1. Let 4 be an element of an algebra ¥ and let R, denote the mapping ¥ — xa
determined by 4. Show that R, is a linear transformation in 9. Also show that
the mapping 4 — R, is a linear transformation of ¥ into the space { consisting
of all the linear transformations in ¥.

2. Let L, denote the mapping ¥ — ax. Show that L, is a linear transforma-
tion in ¥ and that & — L, is linear.

3. Prove that ¥ is associative if and only if L,Ry = RiL, for all @, 5. Also
prove that I is associative if and only if RyRy = Rap (Lol = Lpg).

4. Let U be the algebra of real quaternions with basis 1, £, j, £ where

P alel, = —jizk jk= —kj=i, ki= —ik=]j.
Show that i X U = &,.



Chapter VIII

THE RING OF LINEAR TRANSFORMATIONS

In this chapter we obtain the basic properties of the ring & of
all the linear transformations in a finite dimensional vector space.
We determine the ideals, two-sided, left and right, of this ring.
Also we show that two rings ¢; and 2. determined respectively
by the vector spaces ®; and R, are not isomorphic unless the
spaces in which they act are isomorphic. In studying the auto-
morphisms of € we are led to consider an important type of trans-
formation called semi-linear which generalizes the concept of a
linear transformation.

1. Simplicity of & As we shall see, there are a number of
ways of studying the ring ® of all the linear transformations in a
vector space &% over a division ring A. The first of these that we
consider consists in treating € as a matrix ring. We introduce a
set of “matrix units”’ E;; determined by a particular basis (ey, es,
-+, e,) for . We define E;; to be the linear mapping such that

M bEy = due r= 12 om

By checking for the base vectors we verify that

2) EiEw = dipEa,
ZE;=1.

Next we introduce a set A of linear transformations which
correspond to the set of matrices diag {, @, - -, a}. These are
obtained by associating with each a e A the linear mapping &
such that

(3) £ = aeé;.
227
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It should be noted that, although & has the same effect on the ¢;
as the scalar multiplication a;, these transformations are not in
general identical; for if x = Z&e;, then ax = Z(af;)e;, while xa
= Z(fieg)a = ZE(e) = Z(fa)e;. Hence & = oy if and only if
a is in the center of A. We remark also that & depends on the
choice of the basis as well as on a. For the most part we shall
stick to a single basis; hence the dependence on the basis need
not be indicated.

The fundamental correspondence between linear transforma-
tions and matrices associates with @ the matrix diag {a, @, - - -,
a}. Clearly the totality of these matrices is a subring of A, iso-
morphic to A. Hence A is a subring of € which is isomorphic to
A, the correspondence « — & being an isomorphism.

It is easy to verify that

(4) &Eij = Eij&
and that, if e;4 = Zaye;, then
(%) A= E&ﬁEﬁ = EEij&ij-

Thus any A4 € can be written as a linear combination with co-
efficients in A of the E;;. Also we have the important formula

(6) Qi = Ek: EyiAEj;,

for the coefficients in the expression 4 = Za;E.;.

This formula yields a simple proof of the fact that ® is a simple
ring. By this we mean that the only two-sided ideals in & are 0
and  itself. Thus let B be a two-sided ideal £ 0 in  and let
B = Z3,;E;; be an element # 0in 8. Then each 8;; = ZE.BE;;
isin 8. If By # 0, then 1 = 3,,8,,7" is also in B, and this im-
plies that every A ¢ 2 is contained in 8. Hence 8 = &

Theorem 1. The ring & of linear transformations in a finite

dimensional vector space is simple.

EXERCISE

1. Prove that A is the totality of linear transformations that commute with
the E,','.
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2. Operator methods. We shall now give a second proof of
the simplicity of @ using operator methods. Let B be a two-
sided ideal # 0 in & We show first that, if [x] is any one-dimen-
sional subspace of R, then B contains a projection E of % on [x].
Let B 5% 0 belong to ¥ and let ®B = [y1, ¥2, - -+, y-] where the
y; are linearly independent. Let x; be a vector such that x B
= y;. We can find a linear transformation 4; such that y; 4,
= x;andy;4; = Ofori > 1. Then x;BA4; = y;4; = x;. Hence
E, = BA, is a projection of ® on [x;]. Now let C and D be linear
transformations such that xC = x; and x;D = ¥. Then if E =
CE.D, RE = RCED = [x,]D = [x] and xE = xCED = x:E.D
= x:D = x. Hence E is a projection of R on [x]. Since E =
CE1D, Ee®.

Now let E be a projection of maximum rank in 8. We assert
that £ = 1. Otherwise @ = REcC ®, and there is a vector
2 % 0 such that zE = 0. As we have seen, 8 contains a projec-
tion Fof Ron[2]. NowsetG=E +F — EF. Ifxe@,

xG = xE + xF — xEF = x + xF — xF = x.
Moreover,
2G = 2E + 2F — 2EF = 2F = 2.

Thus G acts as the identity in & + [2]. Then RG 2 RE + RF
= & + [2]. It follows that G is a projection of greater rank than
E. Since G &9, this contradicts the choice of E. Hence we see
that £ = 1 £¢9B. Clearly this means that 8 = Q.

We use a similar method to prove the following

Theorem 2. If R is the ring of linear transformations in R
over A, then reciprocally A is the complete set of endomorphisms in
R which commute with all the transformations contained in L.

Proof. Let C be an endomorphism in ® which commutes with
every element of 8. If x is any vector in R, then x and xC are
linearly dependent. Otherwise there exists an 4 @ such that
xd = 0, but (xC)A4 5 0. This contradicts 0 = (x.4)C = xCA.
Thus for each x £ 0, xC = y,x. Now let x and y be any two
non-zero vectors. Then

xC = vux, yC = 7).
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On the other hand, there exists a B £ & such that xB = y. Hence
yC = xBC = xCB = v,(xB) = v.y.

Hence vy, = v,. This proves that xC = yx for all ¥ ¢ 0. Since
this holds also for ¥ = 0, C is the scalar multiplication 7.

3. The left ideals of 2. In order to determine the one-sided
ideals of § we shall make use of still another technique, namely,
we consider { as a product group. Let %’ be a right vector space
dual to R relative to the bilinear form g(x, x’). As in the preced-
ing chapter we define &’ X y for »’ e R’ and y e % to be the map-
ping x — g(x, #")y. Then we know that  is a direct product
R’ X R relative to this multiplication.

We consider now the representation of the product (resultant)
of the two mappings ¥’ X y and #’ X ». We have the following
equations:

x[(x X y)(u' X )] = gle, x)y@' X v) = glglx, ¥)y, u')v
= glx, x")g(y, u')v

= g(x, x'g(y, u'))v
which show that

(' X ) (' Xv) = x'g(y, u") X v=x"Xgly,u)r.
More generally, if we use the distributive laws, we see that
7 (i’ X y3)(Zui X v;) = Zaig(ys, ui’) X v
= Zxi X g(ys, u)v;0

This fundamental multiplication rule shows us how to con-
struct one-sided ideals in = %’ X R. Let & be any subspace
in ® and set § = R’ X & the totality of linear transformations
of the form Zu; X v; where u/ e R’ and v;e&. Clearly § is
closed under addition and subtraction. Moreover, by (7), & is
closed under left multiplication by arbitrary elements of . Thus
g’ is a left ideal. In a similar fashion we see that, if &’ is a sub-
space of &', then § = & X R the totality of mappings Zx;’ X y;
where x; ¢ & and y; e R is a right ideal in &

The main result we shall establish is that the ideals %' X &,
&’ X R are the only one-sided ideals in 2. We consider left ideals
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first. Let 8 be any left ideal # 0 in € and let & be thé join of
all the rank subspaces ®B for B in §. If B 0, we can write

B = E u; X v; where r is the rank of B. Then it is easily seen

that the set (v1, vgy -+, 0,) is a basis for ®B and (u1’, us’, -+,
u,’) is one for R'B’, B’ the transpose of B (cf. Chapter V, § 5).
Since the 9; e RBCS &, Be R’ X &. Hence ' C %' X &. Next
let y1, y2, -+ *, ¥, be vectors such that g(y;, #;/) = &;; and let x/’,
%9/, -+, %, be arbitrary in ®%'. Set 4 = Zx;/ X y; Then by (7)

(8) AB = Zx{g(y;, ui) X v; = Zad X v;

and this linear transformation is in §’. This shows that, if v =
ZBv; is any vector in R B and «’ is arbitrary in &', then the map-
ping x’ X v = Zx’'8; X v;e Y. It follows also that, if B;, B,

- are any linear transformations in 8’ and v® is any vector in
R By, then Zx;,” X 0¥ isin Y. Thus %’ X & C & and this proves
the following

Theorem 3. Every left ideal ' in R has the form R’ X S where
S is a subspace of R. The subspace & is in fact the join of all the
rank spaces RB, B in &',

This result can also be formulated in another way. Let & be
any subspace of ®. Define §'(&) to be the totality of B e £ such
that B € &. Clearly (&) is a left ideal in & On the other
hand, let & be any left ideal in ® and, as before, let & be the join
of all the subspaces B, B in &’. Obviously &' C §'(&), and
Theorem 3 shows that §' = ®' X &. Now let B e §'(&). Then
RB C © and, if RB = [vy, vs, - - -, 0,] where the v; are linearly in-
dependent, B = Zu;’ X v;. Hence they;e @ and Be®R' X & =
§’. Thus & = §(&). We therefore have the following alter-
nate form of Theorem 3.

Theorem 4. Every left ideal §' in R has the form I’ (), the
totality of linear transformations which map R into a subspace S.
The space S is the join of the rank spaces of the mappings belonging
to .

Theorem 3 (or 4) establishes a 1-1 correspondence & — %' X
& (¥(®)) between the set of subspaces of ® and the set of left
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ideals of . Clearly this correspondence preserves order: if &; D
Sg, then R’ X &1 2 R’ X S,. It follows that we have a lattice
isomorphism of the lattice of subspaces of % onto the lattice of
left ideals of g.

EXERCISES

1. Aleft (right, two-sided) ideal & is called minimal if 3’ ¢ 0 and there exists
no left (right, two-sided) ideal &’/ such that &' D §” D 0. Show that £ pos-
sesses minimal left ideals and find their form.

2. A left (right, two-sided) ideal & is called maximalif &’ = L and there exists
no left (right, two-sided) ideal 3/ such that 3/ < §” < 2. Show that & pos-
sesses maximal left ideals and find their form.

3. Prove that, if 8/ is a left ideal in the matrix ring A,, A a division ring, then
there exists a matrix (u) in L(4, ») such that (u)§(u) ! is the set of matrices of
the form

ay ae e ayr 0 ... 0
oz oge o+ age 0 -0 0
Qni Qna **°* Qnr 0 ... 0

a; arbitrary.
4. Prove that every left ideal of € is a principal ideal E generated by an
idempotent element E.

4. Right ideals. If §isa rightideal ing, the set 3’ of transposes
B, Beg, is a left ideal in ¥, the ring of linear transformations
in the dual space . Moreover, & is the set of transposes of the
mappings in §. We can therefore deduce the form of § from
that of . If we apply Theorem 3 to &', we see that ' = &’
X’ ®, the totality of mappings Zx; X’ y; where x,/ ¢ & and y;
e  and where Zx,/ X’ y; denotes the mapping

©) X — Zxig(ys &),

Hence & is the totality of mappings

(10) x — Zglx, x)yi

in & Thus 3 = @ X ®. We therefore have the following

Theorem 5. Every right ideal & in & has the form & X R where
&' is a subspace of R'.

We can obtain a correspondence also between subspaces of &
and right ideals of & For this purpose we consider the subspace
& = j(&') of vectors y in & such that g(y, y’) = 0 for all ¥’ in
€. If ye @ and Be$, then, by (10), yB = 0. Also if z is any
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vector such that 2B = 0 for all B in &, then Zg(z, x/')y; = O for
all ¥,/ e © and all y; e ®. If the y; are chosen to be linearly inde-
pendent, then this implies that g(z, /) = 0. Thusze &. Hence
& can be characterized as the totality of vectors annihilated by
every B in 8. Suppose next that C is any linear transformation
such that yC = 0 for all y e &, We write C = Zx;/ X y; where
the y; are linearly independent. Then 0 = yC = Zg(y, )y,
and so g(y, x,/) = Ofor all y e ©. Hence the x; £ /(&) = j(j(&))
= & and Ce & We therefore see also that & is the totality,
denoted as 3(&), of linear transformations which annihilate every
vector in &. This proves

Theorem 6. Every right ideal, & in R has the form 3(S), the
set of linear transformations which annihilate a subspace &. The
subspace S is the totality of vectors annihilated by every B e Q.

Since &' is arbitrary in ®’, & is arbitrary in ®. If & is any sub-
space of &, it is clear at the start that the totality § = 3(&) of
linear transformations which annihilate & is a right ideal in .
The above argument shows that the only vectors annihilated by
every mapping in 3(8) are those in &. Moreover, we have proved
that every right ideal has the form 3(&). Thus the correspond-
ence @ — 3(©) is 1-1 between the set of subspaces of ® and the
set of right ideals in 2 Clearly this correspondence reverses
order: if &, 2 &,, then 3(&,) C 3(S&y).

EXERCISES

1. State and prove the analogues of Exs. 1, 2, 3, 4 of p. 232 for right ideals.

2. Prove that, if &' is a left ideal 3 0, then the only vector which is annihi-
lated by all the linear transformations in & is z == 0.

3. Use Theorem 6 and Ex. 2 to prove that £ is simple.

5. Isomorphisms of rings of linear transformations. Let & be
a right ideal # 0in & Then there exists a vector x such that x8,
the set of images xB, B in &, is not 0. If By and B, are in &,
then

(11) X(B]_ + Bz) = x31 + sz.

Hence the mapping B — xB is a homomorphism of the additive
group of & into ®. It follows that the image x& under this homo-
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morphism is a subgroup of the group . We shall now show that
x& is in fact the whole of ®. We note first that ¥& is mapped
into itself by every 4 e&; for if y e x3, y = B for some Be,
and y4 = xB4 = xB’ where B = BA isin §. Hence y4 £ x3.

We note next that 8 is closed under scalar multiplication. If
a € A there exists an 4 in  such that y4 = ay. Then ay = y4
is in x§. Thus we see that x3 is a non-zero subspace invariant
under 8. We have seen (Chapter IV, p. 116) that the only such
subspace is % itself. Hence we have the following

Lemma 1. If & is a right ideal % 0 and x is a vector such that
x8 = 0, then xS = R.

We observe next that the mapping B — xB is more than a
group homomorphism, namely, it is an operator or module ho-
momorphism. This means simply that

(12) BA — (xB)4,

which is clear since (xB)4 = x(BA). Thus if we denote our
mapping as x, then (12) reads

(13) (BA)x = (Bx)4,

an equation which holds for all B in & and all A4 in Q.

Equation (13) shows that the kernel of the homomorphism x
1s not merely a subgroup of the additive group of & but a right
ideal of the ring &; for if Bx = 0, then (BA)x = (Bx)4 = 04
= 0. It follows that, if & is a minimal right ideal, then the ker-
nel of x is 0. This, of course, means that x is an isomorphism.

Lemma 2. If & is a minimal right ideal and xJ 5 O, then the
homomorphism x + B — xB is an isomorphism of & onto x§ = R.

If x~* denotes the inverse mapping of ® onto & and 4, denotes
the right multiplication B — B4 in §, then, by (13), 4:x = x4
so that

(139 A, = xAx™.

This relation between the vector space and any minimal right
ideal of 2 gives the underlying reason for some remarkable re-
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sults on rings of linear transformations which we shall now de-
rive. The first of these is the following

Theorem 7. Let Ry, i = 1, 2, be a vector space over a division
ring A;, and let R; be the ring of linear transformations in Ry over
A Then if & is isomorphic to s, Ay is isomorphic to Ay and the
two spaces have the same dimensionality.

Proof. Let ¢ be an isomorphism of ; onto €, and let &, be a
minimal right ideal in 2;. Then the image §» = 3¢ is a mini-
mal right ideal in &,. Let x; be an isomorphism of J; onto %, de-
fined as above. Thus

(14) Ay = xadixa™  Aer = xodox2Tt

if Ai 881’. AlSO (B]_Al)¢ = (B]_¢)(1{1¢) if B]_ 83(1. Hence AIT¢
= ¢(41¢4), where, as throughout this proof, 4;¢ denotes the
image of 4; under ¢. Thus

(15) (A19)r = ¢ 411,
Combining (14) and (15) we obtain
A1¢ = x2 7 (A1p)rx2 = x2T'¢ T 1bx2
= (x2 7' x0) 41 (x1 " dx2).
Since x; 7! is an isomorphism of %, onto &, ¢ an isomorphism ot
S, onto &, and xe an isomorphism of &, onto R,, the mapping

U = x1 Y¢xz is an isomorphism of &%, onto R,. Moreover, we
have proved that

(16) 1{1¢ = U_II{IU.

Now let a;; denote a scalar multiplication on %;. Since ay; com-
mutes with every 4, e @y, U la;;U commutes with every (4:1¢);
hence with every A4,e®. By Theorem 2 this implies that
U~'ay U 1s a scalar multiplication in ®,. Similarly if ag; 1s any
scalar multiplication in R, then ay; = Uay U™t is a scalar mul-
tiplication in ®;. Clearly U ayU = ag. Hence the mapping
ay — U7'ay;U is an isomorphism of the ring Ay; of scalar mul-
tiplications in %, onto the ring Ay; of scalar multiplications in R,.
Now let o;* denote the element in A, such that

(oq“)z = U_lale.
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Then the mapping # thus determined is an isomorphism of A,
onto Ag. For any x; in ®; and any «, in A;, we have

(arx)U = (x101)U = (%, U)(UtayU)
= (x1U)(1")s,

or
(17) () U = ay*(x,U).

This equation shows that %#; and R, have the same dimension-
ality. Let (ey, €2, -+, €,) be a basis for ®#; over A. Then any
x = Zkie, £ in Ay, Hence by (17) xU = Z(%iea) U = Z2£4(e;U)
so that the vectors ¢;U are generators of ®;. Moreover, if we
have a relation between the ¢;U, then we can write it in the form
Z£%(e;U) = 0. Then (ZE.;)U = 0 and the £; and £ are all 0.
This completes the proof.

In reality we have proved a good deal more than we set out
to prove. In order to state the precise result we shall make use
of an important generalization of the concept of a linear trans-
formation which we define as follows: A mapping U of a vector
space R over 4, into a vector space Ry over A, is called a semi-
linear transformation if 1) U is a homomorphism of the additive
groups and 2) there exists an isomorphism # of Ay onto A, such
that

(ax)U = a*(xU)
for all x e Ry and all a e Ay, If #' is a second isomorphism such
that the above equation holds, then (a* — a*)(xU) = 0 for all
x. Hence, if U0, a* = a* and u = »’. Thusif U0, u is
uniquely determined by U and in this case # will be called t4e
associated isomorphism of U.

Let U, be a semi-linear transformation of ®; into Ry and U,
a semi-linear transformation of R, into a third vector space Rj.
Let #y and #; be the isomorphisms of U; and U, respectively.

Then " v
(ax) U, Uy = (o (xU)) U, = o™ (xU,Us).

Hence U, U, is a semi-linear transformation of %, into Rz with
associated isomorphism zjus. Suppose next that U, is 1-1 of
R, onto Ry and let U, ! denote the inverse. Then from (ax)U,
= a"(xU;) we obtain ax = ("' (xU,))U;~. Replacing xU, by
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o (xU; ™). Hence U, ™!

%, & by «, this becomes (ax)U; !
is semi-linear with isomorphism #,

These remarks show that, if 4, €8, and U is a 1-1 semi-linear
transformation of ®; onto Ry, then U214, U e It is clear
that 4 — U~'4,U is an isomorphism of , onto &,. This is, of
course, rather trivial, but it is striking that the converse holds
and this is what equations (16) and (17) show.

—1

Theorem 8. Any isomorphism Ay — A of &y onto R, is given

by a 1-1 semi-linear transformation U of R, onto R, in the sense
that 1{1¢ = U_IZ{]_ U.

This, of course, gives the following

Corollary. Any automorphism of & is given by a 1-1 semi-linear
transformation of R onto itself.

EXERCISES

1. Let (e, €3, - - +, €x) be a basis for & and let U be a semi-linear transformation
of Rintoitself. If ;U = Zayje;, then (@) is the matrix of U (relative to the given
basis). Show that U is completely determined by (@) and the associated auto-
morphism. Find the transformation formula giving the matrix of U relative to
a second basis. Show that to any pair (@), #), (@) 2 matrix and # an automorph-
ism, there corresponds a semi-linear transformation whose matrix relative to
(e1, €2, -+ *, en) 1s () and whose automorphism is .

2. If U is semi-linear with matrix (@) and automorphism #», we write
U — (@), u). Show that, if U — (@), ) and 7" — ((8), v), then
UV — (@)(8), uv), (@) = (a:").

3. Prove that the image &U of a subspace under a semi-linear transformation
U is a subspace. Prove that the set 3 of vectors mapped into 0 by U is a sub-
space. Prove the dimensionality relation dim RU + dim 8 = ».

4. Show that the scalar multiplications are semi-linear transformations.

5. Let & be the ring of linear transformations in a vector space over a field &.
Prove that every automorphism of £ which leaves the elements of the center
fixed is inner, that is, has the form 4 — U—'A4U where Ue &.



Chapter 1X

INFINITE DIMENSIONAL VECTOR SPACES

Up to this point we have directed our attention to the considera-
tion of finite dimensional vector spaces exclusively. While it is
true that the basic concepts of the finite case are applicable for
arbitrary spaces, it is not obvious that all of these are significant
for spaces without finite bases.

In this chapter we give an introduction to the study of arbi-
trary vector spaces. The study of such spaces constitutes a com-
paratively new field of research whose development has been in-
fluenced to a considerable degree by demands of analysis. The
most important applications make use of topological notions as
well as of algebraic notions. The point of departure for these
applications is the concept of a topological vector space. On the
other hand, a number of interesting results have been found
which deal with arbitrary (discrete) vector spaces and it is these
which we shall discuss here. Notions from topology do not ap-
pear at the beginning of our discussion, but we shall encounter
these in the consideration of certain natural topologies for sets of
linear transformations. These will serve to give simple descrip-
tions of purely algebraic results.

Many of the results which we shall give are direct generaliza-
tions of results in the finite case. However, there are some essen-
tial differences. The most important of these is the fact that the
conjugate space of the conjugate space of a vector space cannot
be identified with the original space. In fact, if ® is infinite di-
mensional, then dim ®* > dim ®, and this precludes the equa-
tion R** = K.

238
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In the last part of this chapter we shall take up again the study
of sets of linear transformations. As we shall see, a fundamental
lemma of Schur permits the reduction of the theory of irreducible
sets of endomorphisms to that of irreducible sets of linear trans-
formations. In addition to this lemma we shall prove a density
theorem for irreducible sets of linear transformations which gen-
eralizes a classical theorem of Burnside.

Naturally, the present considerations will require more power-
ful logical tools than those which served in the finite case. Among
these we mention particularly Zorn’s lemma and the theory of
cardinal numbers. We shall assume a familiarity with these no-
tions as well as with the elements of topology.

1. Existence of a basis. Let ® be an arbitrary vector space
over a division ring A. We recall that a subset § of ® is a set of
generators of & if every vector in R is a (finite) linear combina-
tion of the vectors belonging to §. The set § is /inearly independent
if every finite subset F of § is linearly independent. A subset B
which is linearly independent and a set of generators is a basis
in the sense that every vector can be written in one and only
one way as a linear combination of elements in B.

We shall now prove the following two basic results: 1) any set
of generators contains a basis for ® and 2) any linearly inde-
pendent set of elements can be supplemented by elements from
any basis to give a basis. For both of these results we shall use
Zorn’s lemma in the following form:

Let P be a partially ordered set which has the property that every
linearly ordered subset has an upper bound. Then P possesses a
maximal element.*

The concept of a partially ordered set has been defined in
Chapter I. We recall that this is a set in which a binary relation
a < b is defined such that: (1) @ <4, (i) if 2 <4 and 4 < a,
then @ = /; and (ii1) if 2 < b and & < ¢, thena < c¢. A linearly
ordered set (or a chain) is a partially ordered set with the property
that any two elements are comparable in the sense that either

* This maximum principle seems to have been discovered first by Hausdorff. Its im-

portance in algebra was first recognized by Zorn. An adequate discussion of the principle
can be found in Birkhoff’s Lattice Theory, 2nd edition, p. 42.
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a <borb<a An upper bound of a subset § of a partially
ordered set is an element # ¢ P such that s < # for every s in §.
An element m of a subset § is maximal if no s % m in § has the
property m < s.

We give now the proof of statement 1) above. Let § be a set
of generators for ®. Let P be the collection of linearly independ-
ent subsets of §. Then P is a partially ordered set relative to the
relation of inclusion. Let L be a linearly ordered subcollection
of P, and let U be the logical sum of the sets belonging to L.
We assert that U is linearly independent. Otherwise U contains
a dependent set uy, #g, ***, Uy Now u; e 4; e L. Also for any
i, j either 4, & A4; or 4; & A;. Hence one of the 4’s, say 4,
contains all the others. Thus every #; e 4,, and 4,, contains a
finite linearly dependent subset. This contradicts the assump-
tion that A4, e P; hence Ue P. It is clear that this element
serves as an upper bound for all the 4 e L. We can now apply
Zorn’s lemma to conclude that P contains a maximal element,
and this means that the set of generators § contains a maximal
linearly independent subset B. It is now easy to see that Bis a
basis for ®. If y is any member of § not contained in B, then the
set BU y is a dependent set. This implies that y is a linear
combination of elements of B (Lemma 1 on p. 11). Hence every
s €S is a linear combination of elements of B. It follows that B
is a set of generators and, since B is a linearly independent set,
B is, in fact, a basis for R.

The proof of 2) is similar to the foregoing. Here let § be a
linearly independent set and let B be a basis. Let P be the col-
lection of linearly independent sets containing § and contained
in § U B. Then a repetition of the above argument shows that
P contains a maximal element C. It follows easily that C is a
basis for .

2. Invariance of dimensionality. We wish to prove next that
the cardinal numbers of any two bases for ® are equal.

Let B and C be two bases for ®. We label the elements of B
by subscripts ¢ belonging to a set 7 and the elements of C by
subscripts £ in a set K. If, say, B (or I) is finite, then ® has a
finite basis. Then we know that C is also finite, and its cardinal
number is the same as that of B (Theorems 2 and 3, Chapter I).
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It therefore suffices to consider the case in which both B and C
are infinite. Here the following argument due to Lowig can be
applied. Express each ¢; of B in terms of the f; of C as, say,

e; = Bufu, + Befr, + + Bnfrn

where the 8; % 0. Now every f; occurs in some such expression;
for if a particular f; does not occur, then, since this f; is a linear
combination of the ¢’s and each ¢ is a linear combination of f’s
# f%, /% 18 a linear combination of f°s ¢ f;. This contradicts the
linear independence of the f’s.

We can now define a single-valued mapping ¢ of the set C into
the set B. Let f; € C and let ¢; = ¢(f1) be one of the ¢’s in B
whose expression involves fz. We thus obtain a single-valued
mapping of the whole of C into B. Let B’ = f(C) be the image
set. If ey e B, the inverse image ¢ *(¢s) consists of f; which
occur in the expression for ¢;;. Thus ¢~(eys) is a finite set. Now
we have a 1-1 correspondence between the set B’ and the col-
lection T of inverse images ¢ 1(e;r). The collection T gives a de-
composition of the set C into non-overlapping finite sets. More-
over, since C is infinite, T is infinite. It follows easily from stand-
ard theorems in the theory of cardinal numbers that C and T
have the same cardinal number.* Hence the cardinal number of
B’ is the same as that of C and so the cardinal number of B is
greater than or equal to that of C. If we reverse the roles of B
and C, we see that the cardinal number of B does not exceed that
of C. Hence by Bernstein’s theorem these two sets have the
same cardinal number.

As in the finite case we shall call the cardinal number of any
basis the dimensionality of ® over A. Also as in the finite case
we can construct a vector space over any given A with dimen-
sionality any given cardinal number. For this purpose let 7 be
a set having the given cardinal number. Let ® be the set of
functions defined on I with values x(z) in A such that x(¢?) = 0
for all but a finite number of / £ I. We define the sum of two such
functions by addition of coordinates and scalar product by
left multiplication of the coordinates by the given element of A.

* Consult for example, Sierpinski, Legons sur les Nombres Transfinis, Paris, 1928,
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These compositions yield results in &%, and it is clear that the
postulates for a vector space are fulfilled. We now determine a
special basis for ®. For each 7 e 7, we define ¢; to be the vector
such that

(1) e(j) = b

It is easy to see that these vectors are linearly independent. If
x is any vector, let 7y, 73, + -, im be the i for which x(z) = 0.
Then if x(z;) = &, 1t is clear that x = &6, + Eoey, + -+ Emty,.
Hence the ¢; form a basis. Since i — ¢;1s a 1-1 correspondence,
this basis has the same cardinal number as 1.

We remark also that, as in the finite case, any two vector spaces
which have the same dimensionality are equivalent. In particu-
lar, any vector space is equivalent to a space of functions of the
type just constructed.

3. Subspaces. Almost all the properties, noted in Chapter I,
of the lattice of subspaces of a finite dimensional vector space
hold also in the infinite case. Exception must be made for the
chain conditions. In fact, it is clear that neither of these condi-
tions holds for vector spaces with infinite bases.

Our former considerations made use of bases only in the proof
of the existence of a complement of a subspace. Property 2) can
now be used to carry over the argument used to prove this result.
Let & be a subspace of ®. Then we know that & has a basis §.
Since § is a linearly independent set, it can be imbedded in a
basis Bof ®. We write B = S U T where § N T is vacuous, and
we let &’ be the space spanned by the vectors in 7. It is immedi-
ate that § = &+ &' and that &N & =0. Hence & is a
complement of .

The argument which we have used here can also be used to
prove the existence of a special type of basis for any subspace of
R. The result is the following

Theorem 1. Let R have a basis B = (¢;). Then if © is any
subspace of R, we can divide B into two non-overlapping subsets
C = (¢;), D = (ey) such that & has a basis of the form f; = ¢; + u;
where the u; are in the space spanned by D and f; — ¢; is a 1-1
mapping onto C.
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Proof. There exists a complement & of & spanned by a sub-
set D = (&) of B. Let C = (¢;) be the complement of D in B.
Then each ¢; = f; — u; where f; € © and #; € & and, as we pro-
ceed to show, (f;) is a basis for &. The set (f;) is linearly inde-
pendent, for let Z8;f; = 0. Then Zg;e; + Z8;u; = 0; hence every
B8; = 0 by the linear independence of the ¢;. The set (f;) gen-
erates ©; for if y e &, then y = Z8;e; + Zyrer = 26;f;i — ZBju;
+ Zvier. Then y — Z8;f;€ &/, and hence y — Z8;f; = 0. We
note finally that, if ¢; and ¢; are distinct elements in C, then
Jfi # fir. Otherwise ¢; — ¢; € &, contrary to the fact that B is
a basis. We therefore see that the mapping ¢; — f; is 1-1 and
this concludes the proof.

Theorem 1 is due to Emmy Noether. It is therefore appropri-
ate to call a basis of the type described a Noether basis for the
subspace & relative to the basis B of .

4. Linear transformations and matrices. The connection be-
tween linear transformations of finite dimensional vector spaces
and finite matrices can be carried over directly to the infinite
case.

Let ® and & be vector spaces over A and let B = (¢;) be a
basis for ®. Then we note first that any mapping ¢; — y; of B
into & can be extended in one and only one way to a linear trans-
formation of ® into &. As is easily verified, this extension maps

2 &6, into D0 &y ¥ Next let C = (%) be a basis for & and
1 1

write the image of ¢; relative to the linear transformation 4 as
(2) 6’,',4 =Y = Eaikfk

where the sum is finite. Thus the matrix (as;) is 7ow finite in the
sense that for a fixed 7 ay % 0 for only a finite number of %.
In general, if 7 and J are any two sets, then a function on the
product set / X J into A is called an I X J matrix over A. Thus
we have established a correspondence between linear transforma-
tions of & into & and row finite I X J matrices over A. Of course,
this correspondence depends on the choice of basis. In the special
case ® = & it is natural to take C to be the same as the basis B.

* This establishes the existence of non-trivial linear transformations of 9 into &. It
seems to be impossible to do this without using bases.
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We then obtain an 7 X I “square” matrix as the matrix of A
relative to the basis B.

We can verify easily as in the finite case that the correspondence
A4 — (a) determined by (2) is 1-1 of the set (R, &) of linear
transformations onto the set of row finite 7 X J matrices. The
matrix corresponding to the sum of two transformations is ob-
tained from the two matrices by adding components a;yr, Bir. It
follows that the row finite matrices form a group relative to this
operation.

If @ = (R, %) and the matrix of A is determined by a single
basis, then it can be seen that the element v; of the matrix 4B is

3) Yin = Ek: B

where 4 — (a) and B — (B) in our correspondence. The sum
in (3) is finite, and the product matrix (y) = (a)(B) is row finite.
It follows now that the set A; of 7 X I row finite matrices to-
gether with the indicated addition and multiplication is a ring
isomorphic to the ring g.

Changes of bases can also be discussed as in the finite case.
If we have a second basis for i, we can suppose that it has been
put into 1-1 correspondence with the same set of indices 7. If
we denote the ve:tors in this basis by f;, then we can write

(4) fk = Zuri€i, €; = EVikfk

where (1) and (») are row finite 7 X I matrices. It follows easily
that (u)(») = 1 = (»)(w) where 1 is the matrix with elements §;.
Thus (u) is a unit in A in the sense that is has a two-sided in-
verse (¥) = (u)~!. Conversely if (u) is any unit, then the f; de-
fined by the first set of equations in (4) is a basis for R.

If A is a linear transformation with matrix («) relative to the
basis (e;), then one verifies directly that the matrix of A relative
to (fa) is (w)(a) () ™1

5. Dimensionality of the conjugate space. If R is a finite di-
mensional vector space, then we know that the right vector
space R®* of linear functions on R has the same dimensionality
as ®. A fundamental difference between the finite and the infi-
nite theories is that this does not hold for % infinite dimensional.
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In this case we shall show that dim ®* > dim ®. More precisely
we shall show that if the cardinal number of A is 4 and the di-
mensionality of &% is &, then the dimensionality of ®* is 4°, the
cardinal number of the set of mappings of a set of cardinal num-
ber & into one of cardinal number 4. We prove first the following

Lemma 1. [f dim ® = b is infinite and the cardinal number of
A is d, then the cardinal number of R is bd.

Proof. If (¢;) is a basis for R, every non-zero vector x in R
has a unique representation as

N
X = Z Ei,‘ei,') Ei,’ = O~
i=1

Thus with each x ¥ 0 we can associate a uniquely determined
subset ¢, ¢;,, * * , ¢;, and a unique N-tuple (&, &,, * -+, &,) with
non-zero components in A. Since (¢;) is infinite, the cardinal
number of the set of subsets containing NV elements of (¢;) equals
6.* On the other hand, the cardinal number of the set of N-
tuples (&, &, -, &) 1s either 4(= 4") or it is finite. In either
case the cardinal number of the set of pairs consisting of the set
Cis €y "y €y and the N-tuple (&, &,, -+, &,) is db. It follows
that the cardinal number of ® is b+ db +---; hence it is
simply db.

Any linear function on ® is determined by its values on the
basis (¢;) of ® and there exists a linear function such that f(¢;)
is any element of A. Thus we have a 1-1 correspondence be-
tween R* and the set of mappings of (¢;) into A. It follows that
the cardinal number of ®* is 2%, On the other hand, if &* =
dim ®*, then Lemma 1 shows that the cardinal number of ®*
is db*. Hence db* = 4. Since db* is the maximum of 4 and 4%,
the relation 4* = 4* will follow if we can show that &* > 4.
Since it is clear that #* is infinite, the relation 4* > 4 holds if
d < aleph null. Hence we shall assume from now on that 4 >
aleph null. In order to establish the required inequality in this
case, we consider collections of denumerable sequences (v, vz,
--+) with v; in A. A collection F of such sequences will be called

* This follows from the well-known result that ¥ = 4. See Sierpinski, Legons sur les
Nombres Transfinis, p. 217.
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strongly independent if every finite square matrix chosen from the
collection is non-singular. We choose a finite square matrix from
F by selecting first a finite set of sequences

(71(1)) 72(1)) © ')) (71(2)) 72(2)) t ')) Y ('Yl(n)) 72(n)) ©r )
and then a set 7y, 79, + -+, 7, of indices, obtaining the matrix

'Yil(l) 'Yiz(l) 'Yi,.(l)

'Yil(") .yiz(n) 'Yi..(n)

We now prove the following

Lemma 2. There exists a strongly independent collection of se-
quences with cardinal number > d.*

Proof. We partially order the strongly independent collections
F by inclusion. Ifaset {F} of these collections is linearly ordered,
clearly U F is strongly independent. By Zorn’s lemma, there
exists a maximal strongly independent collection M. We shall
prove, by induction, that if the cardinal number of M is less than
d, then we can construct a sequence X ¢ M such that M U { X}
is strongly independent, thereby contradicting the maximality of
M. Suppose that we have found the first p elements &y, &2, « -,
£p of X so that every ¢ X ¢ matrix, ¢ < p, chosen from M U (&,
£2, ++, &) is non-singular. We shall determine £,,; so that
every r X r matrix, » < p + 1, chosen from M U (&, -+, £p41)
1s non-singular. The conditions that this imposes on £,,; are
that every matrix of the form

*

(5) N
%
Eix Eiz b Eir-x EP +1

* This lemma was communicated to the author by I. Kaplansky. It was proved by
Kaplansky in collaboration with P. Erdés.
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where the 4 is an » —1 X r — 1 matrix determined by M, be
non-singular. Now for each matrix of the form (5), in which
£, 41 is regarded as an indeterminate, there is just one choice of
£,411n A making (5) singular. Thus, A is a non-singular matrix;
hence its row vectors are left linearly independent. It follows
that the row vector (&, &,, -, &_,) can be written in one and
only one way as a linear combination of the rows of 4. Then if
u represents the same linear combination of the elements of the
last column of (§), (5) is non-singular, provided that £,,, 5% u.
We note next that the cardinal number of the collection of ma-
trices (5) in which £, is an indeterminate is less than 4. By our
assumption the cardinal number of M is less than 4. The cardi-
nal number of the set of matrices under consideration is the prod-
uct of the cardinal number of sets of » — 1 sequences chosen
from M times the cardinal number of » — 1 elements chosen in
the integers 1, 2, ---, p. The result is either finite or the cardi-
nal number of M. In either case it is less than 4. Since the
cardinal number of A is 4, we can choose a £, so that all the
matrices (5) are non-singular. This completes the proof by in-
duction of the existence of X such that M U {X} is strongly in-
dependent. We have therefore contradicted the maximality of
M and established the lemma.
We can now prove the main result.

Theorem 2. If R is a vector space of infinite dimensionality b
and the cardinal number of the division ring A is d, then the dimen-
stonality 6% of R* is d°.

Proof. We have seen that it suffices to prove that é* > 4, and
we may assume that 4 exceeds aleph null. Let (¢;) be a basis for
R and select a denumerable set (¢;) in (¢;). Let M be a strongly
independent collection of denumerable sequences. For each (v,
vg, - - -) € M, we can define a linear function f such that f(¢;) = v;.
The collection of linear functions thus obtained from the ele-
ments of M is a linearly independent one. Its cardinal number
is the same as that of M. Hence by Lemma 2 we may suppose
that it is > 4. This proves that there exist at least 4 linearly in-
dependent elements in #*; hence 6* > 4 as required and &* = 4°.
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The relation 4* = 4° implies, of course, that 4* > 4. More-
over, if 6** = dim ®**, then 6** > 4* > 4. This result shows
that % cannot be identified with the space of linear functions on
R*

EXERCISE

1. (Mackey) Let R be a vector space over a field ®. Prove that the collection
of sequences & = (v, ¥4 v% +*), v # 0 in ®,islinearly independent. (Note:
This leads to an elementary proof of Theorem 2 for the commutative case.)

6. Finite topology for linear transformations. We shall now
introduce a certain topology in the set (R, &) of linear transfor-
mations of the vector space R into the vector space &. Our
topology will be a trivial (i.e., discrete) one if and only if ® is
finite dimensional. Hence this gives another important point of
difference between the finite and the infinite theories.

We recall that a ropological space consists of a set E and a col-
lection of subsets of E, called open sets, such that

1. The logical sum of any collection of open sets is open.
2. The intersection of any finite number of open sets is open.
3. The set E and the vacuous set are open.*

A subcollection B of the set of open sets is called a dasis if every
open set is a logical sum of members of 8. If B is a basis, then
the intersection of any two elements of B is a logical sum of ele-
ments of 8. Conversely, if E is any set and B is a collection of
its subsets such that their logical sum is £ and the intersection of
any two elements of 8 is a logical sum of elements of B, then we
can specify as open sets the logical sums of elements of 8. The re-
sulting collection satisfies 1.-3.; hence it and the set £ define a
topological space. A set E is fopologized if a collection of its sub-
sets satisfying the above conditions is given. The collection of
open sets is called a fopology for E.

Now consider the set (R, &). If xy, x2, -+, xm and y1, yo,
*++, ym are finite subsets of ® and & respectively, then we define
O(x;; y:) to be the set of linear mappings 4 of R into & such that
x;d=19; i=12, .-, m Itis clear that the intersection of
any two O(x;; ¥;) is another one. Hence this collection serves as

* Throughout our discussion we shall follow the terminology of Lefschetz’ Algedraic
Topology, Chapter 1.
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a basis for a topology in (R, ©). We shall call this topology the
JSinite topology of Q(R, &). We note now that any open set O(x;;
¥:) 1s either vacuous or it coincides with an open set O(x;; ;) where
the x; are linearly independent. Thus, suppose x1, x5, -+, %,
is a maximal linearly independent subset of xy, xo, - -+, %, and

let x; = 2 Bix; hold for k =r+ 1, .-+, m. Then, unless y;
j=1

= ZBjyi> O(x:; ¥;) is vacuous. On the other hand, if the condi-
tions do hold, then O(x;; y5) = O(x;597), 7 =1, - -+, r. This re-
mark shows that the sets O(x;; ¥;), x; linearly independent, con-
stitute a basis for our topology.

We can now see that the topological space 2(R, &) (endowed
with the finite topology) is discrete in the sense that every subset
is open, if and only if R is finite dimensional. First, let % have
the finite basis ¢, €2, + -+, €, and let 4 e (R, &). Then O(ey;
e;d) = (A) so that 4 is an open set. It follows from 1. that every
subset of (R, &) is open. Next let dim R be infinite. Then if
Xy, Xg, **+, % 1s a linearly independent set, O(x;; ¥;) is a non-
denumerable set; for we can supplement the x; to a basis and
there exists a linear transformation mapping the elements of a
basis into arbitrary elements of &. It follows now that every
open set of (N, &) 1s non-denumerable; hence the topology is
not discrete.

We shall show next that (R, &) is a topological group, that is,
that 4 — B is a continuous function of the two variables 4, B
in @R, ). Finally, if ® = & so that & = (R, R) is a ring, then
2 is a topological ring in the sense that in addition to the con-
tinuity of 4 — B we have the continuity of the multiplication
composition. Let 4 and B be fixed elements of (R, &) and let
O(x:; y:) be a member of the basis containing 4 — B. Such a
sct will be called a neighborhood of the point. Since 4 — Be
O(xs; ¥:), we can write y; = x:(4 — B) so that O(xs; y:) = O(xy;
x:(4 — B)). Now O(x;; x;4) and O(x;; x:B) are neighborhoods
of 4 and B respectively and it is clear that if X e O(x;; 234) and
Y € O(xy; #:B), then X — Y e O(x;; x;(4 — B)). This proves
that the difference composition is continuous.

Next let ® = & and let O(x;; x;.4B) be any neighborhood of
AB. Then O(x;; x:4) and O(x;4; x;,AB) are neighborhoods of 4
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and B respectively. Moreover, if X € O(x;; x:.4) and Y e O(x;A4
x:AB), then XY € O(x;; x;4B). Hence multiplication is a con-
tinuous composition.

We recall that a subset of a topological space E is called closed
if its complement is open. The closed sets satisfy conditions dual
to 1.-3. In particular, the intersection of any number of closed
sets is closed. Hence any subset § of E has a c/osure Cl1 § defined to
be the intersection of all the closed sets containing S. (Since E
itself is closed, there exist closed sets containing §.) The closure
of § can also be defined as the totality of points p (elements of E)
with the property that every neighborhood of p has non-vacuous
intersection with §. We shall now illustrate these concepts in
the finite topology for linear transformations by considering the
following

Example. Let R be a vector space with a denumerable basis (¢;) over an in-
finite field ®. Let (a;) be a2 denumerable set of distinct elements in ® and let 4
be the linear transformation such that ;4 = a.e;. We wish to determine the
closure Cl ®[A] of the set $[A] of polynomials in 4. We observe first that the sets
O"XB) = Ole;;6iB), 5 = 1,2, -++,r,r = 1,2, - -+, form a complete set of neigh-
borhoods of the point B, that is, any open set containing B contains one of these
sets. Let O(xx; #xB), xx linearly independent, be a neighborhood of B. Then
there exists an 7 such that the given x4 € [ey, €3, -+, &]. It follows that O)(B)
C O(xx; %1.B) and this proves our assertion. It is now clear that an element B is
in the closure of a set M if and only if every set Ole;; ¢;B) meets M. Now let
BeCl®[4]. Ifp(\) is a polynomial, then e.p(A4) = ¢la)e;. Thus if ¢(A) e O(B),
then ¢;B = e;d(A) = ¢play)e; for j = 1, +--, r. This shows that B is a diagonal
linear transformation in the sense that ;B = Bie;, 7 = 1,2, +++. We wish to
show that Cl ®[A4] is identical with the set of diagonal linear transformations.
Let B be any diagonal linear transformation and let  be any integer. Consider
the transformations induced by B and by the polynomials ¢(4) in [e1, 2, « -+, &1].
Since the @; are distinct, it is easy to see that the ¢(4) induce every diagonal
transformation in our subspace. Hence there exists a ¢(A) such that ¢;B =
e;p(A) holds for j =1, 2, - -+, r. This shows that Be Cl ®[4]. Thus Cl &[4]
is the set of diagonal transformations.

EXERCISES

1. Let & be a vector space with a denumerable basis (¢;) over a field. Deter-
mine Cl <I>[/{] where (2) ;4 = ¢;41, i = 1,2, -+, and (b) e1d = 0, ei14 = &5,
i=1,2,

2. Show that the basic open sets O(ws; yi) are also closed. (This implies that
R, ©) is a totally disconnected space in the sense that the only connected sub-
sets of (R, &) are points.)

3. Prove that every finite dimensional subspace of linear transformations in a
vector space over a field is closed in the finite topology.
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7. Total subspaces of R* Consider the subset %o* of R* of
linear functions f whose matrices relative to the basis (¢;) are
column finite in the sense that f(¢;) ¢ 0O for only a finite number
of . Evidently this collection of linear functions constitutes a
subspace of the conjugate space. For each / we define a linear
function ¢;* by the conditions

(6) es*(ex) = Bixe

Thus ¢;* is the linear function whose matrix relative to the bases
(e:) has a 1 in the 7 place and O’s elsewhere. Hence it is clear
that the e* form a basis for Re*. Consequently dim Ro* =
dim ®. We now observe that Ro* is a total subspace of R* in
the sense that, if # is any vector £ 0 in R, then there exists an
element f € Ro* such that f(#) = 0. Write u = Bye;, + B2, +-- -
+ Bme;, where By % 0. Then ¢, *(u) = 8, # 0 as required.

We recall that a subset § of a topological space is dense (in the
space) if its closure Cl § is the whole space. We shall now show
that a subspace R’ of ®* is dense in the finite topology of R* =
(R, A) if and only if R’ is total. First, it is clear that, if %’ is
dense in R*, then R’ is total. Otherwise there exists a vector
u ¥ 0 in R such that g(x) = 0 for all ge %’. Then f(u) = 0 for
all /in Cl ®’ = ®* On the other hand, we can use # as a vector
in a basis, and then it is clear that there exists a linear function
f such that f(x) = 0.

To prove the converse we make use of the following criterion
for density of a subset of (R, ©): A subset U of (R, &) is dense
in the finite topology if and only if for every ordered set (x;, ¥s,

-+, &m) of linearly independent vectors in ® and every ordered
set (¥1, y2, -+, Ym) in &, there exists an 4 € ¥ such that x;.4 =
yi for £ = 1,2, ---, m. The sufficiency of this criterion is clear
from the fact that the sets O(x;; #;B) form a basis for the neigh-
borhoods of B. The necessity follows from the fact that the com-
plete set of linear transformations has the property stated in the
criterion. If R’ is a subspace of %*, we can simplify the criterion
further and show that %’ is dense if, for any linearly independent
finite set ¥y, xg, - - -, ¥n, of vectors in R, there exists a complemen-
tary set of vectors x1*, x2%, -+, x,* in ®’ such that

xi*(xf) = aip i;j =1, .-, m.



252 INFINITE DIMENSIONAL VECTOR SPACES

If this is the case and the 8;, 7 = 1, - - -, m, are arbitrary elements
of A, then the function f = Zx;*8; e %’ and f(x;) = Bi. Hence
R’ is dense by the foregoing criterion. We now prove the fol-
lowing

Lemma. If R’ is a total subspace of R* and xy, xa, - -, %m are
any linearly independent vectors in R, then R’ contains a set of vec-
tors x,*, -+, xn* complementary to the x;.

Proof. If m = 1, this is clear; for, in this case, we can find an
fin ® such that f(x;) = 81 % 0. Then x;* = f8,7! satisfies
x1*(xy) = 1. Assume the result for m — 1 vectors. Then, for
X1, X9y "y ¥m—y we can find fy, fo, -+, fm—1 iIn R such that
fu(x1) = 8 holds for k, / = 1,2, ---; m — 1. For any fe R’ we
define

m—1
g(x) = flx) — 22 ful@)f(xx).
1
Then ge R’ and g(x;) =0 for /=1,2, ---, m — 1. Also there

exists an f in ®’ such that the corresponding g has the property
g(xm) # 0. Otherwise we have

= g(tn) = flw) —méfuxm)f(xk)

= flom = 3 fulem)e)

m—1

for all fin ®’. This implies that x,, = E—:fk(xm)xk and contra-
1

dicts the linear independence of the x’s. Now choose f so that
g(®m) = v 5% 0 and define

Xm* (%) = gla)y ™

xk*(x) =fk(x) - xm*(x)fk(xm); k= 1; 2; e, L.

Then we can verify that the x;* are complementary to the x;.
This lemma completes the proof of the following

Theorem 3. A necessary and sufficient condition that a subspace
R’ of R* is total is that R’ is dense in the finite topology.
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If % is finite dimensional, the finite topology in ®* is discrete.
Hence the closure Cl ' = %’ for every subspace R’ of #*. It fol-
lows that the only total subspace of ®* is ®* itself. On the other
hand, the example given at the beginning of this section shows
that, for infinite dimensional R, R* contains proper total sub-
spaces.

EXERCISES

1. Let R have a denumerable basis and let }’ be a total subspace of R*.
Show that there exists a basis («;) for & which has a complementary set of vectors
(#:*) in R’ in the sense that #;*(«;) = 8 holds for 7,7 = 1,2, ---,

2. (Mackey) Let i and R’ be as in 1. Assume, moreover, that R’ has a de-
numerable basis. Prove that i and R’ have complementary bases.

3. Let R and R’ be as in 2., and let (¢:), (e;*) be complementary bases. Show
that the basis (f;) where fi = ¢1 and f; = e; 4 e;—1 for / > 1 has no complemen-
tary set in ',

8. Dual spaces. Kronecker products. Let R’ be a total sub-
space of ®* and let x e ®. Then the mapping f — x(f) = f(x)
is a linear function on %', that is, it is an element of the conju-
gate space ®'* of ®’. The mapping x — x(f) is a linear trans-
formation of & into ®'* and, since R’ is total, this linear trans-
formation is 1-1. Moreover, the image space is a total subspace
of ®'*. Hence in a certain sense § and R’ are interchangeable
in our discussion. As in the finite case the symmetry which is
implicit in this situation can be made explicit by introducing the
notions of a bilinear form and of duality between a left vector
space and a right vector space. Thus, we shall say that the left
vector space R and the right vector space R’ are dual relative to
the bilinear form g(x,y’) if this form is non-degenerate in the
sense that g(z, y’) = O for all 3" e ® implies that 2 = 0 and g(x,
z’) = 0 for all x e ® implies that 2’ = 0. If %’ is a total subspace
of %*, then ® and R’ are dual relative to the bilinear form s(x, f)
= f(x) = x(f). On the other hand, if ® and R’ are dual relative
to g(x, ¥'), then each y’ e ®’ defines a linear function g, (x) on R
and the mapping y' — g, is 1-1 linear transformation of %’
onto a total subspace of ®*. Similarly, g(x, y') can be used to
define a 1-1 linear mapping of % onto a total subspace of %’'*.

The results on total subspaces can be carried over directly to
dual spaces. In particular, each member of a pair of dual spaces
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defines a topology in the other which corresponds to the finite
topology in the conjugate space. Thus let ® and R’ be dual and
let ¢(R’) be the total subspace of R* corresponding to %’. Then
#(R’) has a topology which is inherited from $*: the open sets
of ¢(R’) are the intersections of the open sets of ®* with the set
é(R’). (This is the standard subspace topology.) We can now
use the 1-1 correspondence between ¢(R’) and R’ to transfer the
topology of ¢(R’) to a topology in ®’. The result that we obtain
is that the open sets of %’ are the logical sums of the basic open
sets O(x4; B:), i =1, ---, r, where O(x;; 8:) is the totality of
y e 9’ such that g(x;, ') = 8;. We shall refer to this topology
of R’ as the R-fopology. In a similar fashion we can define an
R'-topology for R.

Let ® and R’ be dual relative to g(x, ¥’). As in the finite di-
mensional case, if & is a subspace of R, we denote by j(&) the
subspace of R’ of vectors y’ which are incident to every x e S in
the sense that g(x, ¥’) = 0. In a similar manner we can associate
with every subspace & of ®' a subspace of j(&') of ®. It is
easy to establish the following rules:

@ If &2 Sy, then /(&) S j(S2),
(i) s((@) 28,
(i) sGG®)) = j(@).

The first two of these are evident. To prove (iii) we use (ii) for
&, replaced by j(&;). This gives j(j(7(&1))) 2 j(S;). On the
other hand, since j(j(&;)) 2 &, (i) implies that j(j((S;))) &
7(&1). If R (and hence ®’) is finite dimensional, then the map-
ping & — j(&) is 1-1 of the lattice of subspaces of ® onto the
lattice of subspaces of ®’. This need not hold for infinite di-
mensional spaces. For example, let ® = R*, the complete con-
jugate space. Then if R’ is a total subspace of #* distinct from
R*, then j(R') = 0 = j(R*) in spite of R’ = R*. We shall show
that the j-mapping induces a 1-1 mapping of the set of closed
subspaces of % onto the set of closed subspaces of ®%'.

We observe first that, if & is any subspace of &, then the bi-
linear form g defines a bilinear form § connecting the space &
and the factor space ®' — j(&). We define g(x, 5'), where 5’ =
¥+ j(©), by g(x, ') = g(x, »’). Since any two choices of y’ are
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congruent modulo j(&), it is clear that we obtain in this way a
single-valued mapping of the set of pairs (x, ') into A. We can
verify directly that g is a bilinear form. If x £ 0 in &, then we
know that there exists a ¥’ such that g(x, ") ¢ 0. Then g(x, 7)
5% 0. On the other hand, assume that 5’ is a vector in &' — (&)
such that #(x, ') = 0 holds for all x in & Then g(x, y’) =0
for all x, and y’ £j(&). Thus 5 = 0. These remarks show that
the pair of vector spaces &, R’ — /(&) are dual relative to the bi-
linear form g We can now prove the following

Theorem 4. [f &' is a subspace of R, then j(j(&')) is the closure
of & in the R-topology of R'; in particular, &' is closed if and only
75((@) = ©.

Proof. It follows directly from the definition of the topologies
that subspaces of the form j(&), /(&) are closed. Since j(7(&"))
2 @,7(j(©)) 2 Cle. Conversely, let #’ £ j(;(&")) and consider
any neighborhood O(x:; g(xs, #’)) of u’. Let ¥ be the finite di-
mensional space spanned by the x; and let (y1, y2, -+, ¥,) be a
basis for this space such that (y1, y2, **+, ¥s) is a basis for /(&)
N %. The cosets 5z = yr + (&), k = s + 1, - -+, r, are linearly
independent in ® — j(&’). Since & and ® — j(&) are dual rel-
ative to g(x + j(&€), y') = g(x, y’), we can conclude from the
lemma of the preceding section that there exists a v’ £ & such
that g(yr + (&), v') = g(ys, #’) holds for k =s+ 1, ---, 7.
Thus g(ys, ') = g(ys, #'). On the other hand, g(y;,¢)) =0 =
gly;, w')y for =1, ---, 5. Hence ¢/ € O(y;; g(yi, #')). Now
O(yi; g(ys, t')) = O(xgy g(xs, ¢')), i =1, -+-, r. Hence v is in
the given neighborhood O(x;; g(x:, #”)) of #’. This shows that
#’ € Cl @' hence Cl @ = j(;(&)) as we wished to prove.

Now consider the mapping & — j(&) where & ranges over
the set of closed subspaces of %. Since j(j(&)) = & for closed
&, it is clear that our mapping is 1-1. Since every closed sub-
space of R’ has the form & = ;(;(&")), the mapping is a mapping
onto the set of closed subspaces of ®’. This proves the assertion
that we made before.

The existence of a dual for any given vector space enables us
to carry over the proof given in the finite case for the existence
of a direct product group for any right vector space %’ and any
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left vector space & (§ 1, Chapter VII). As before, let R be dual to
R’ relative to the bilinear form g. Consider the set P of linear
transformations of ® into & which have the form

% = 2 g% 2)ys
1

where the x/ e %’ and the y; e &. It is immediate that § is a
subgroup of 2(R, &). If ¥’ e R’ and y € S, then we define »’ X y
to be the linear transformation x — g(x, x’)y belonging to the
group . Then we can verify as in the finite case that § is a di-
rect product group, B = R’ X &, of R’ and &.

This basic definition permits us to carry over much of our
previous discussion of direct products. In particular we can use
it to define the Kronecker product of arbitrary vector spaces
over a field and the Kronecker product of arbitrary (non-associa-
tive) algebras. Also we can define the extension space Rz for %
arbitrary and Z any extension field of the base field ® of ®. The
proofs of the elementary properties such as commutativity and
associativity of Kronecker multiplication made no use of finite-
ness; hence these hold in the general case.

EXERCISES

1. Prove that, if &€ is a closed subspace of & (in the R’-topology) and F is
finite dimensional, then & + § is closed.

2. Let § be a finite dimensional vector space over a field ® and let & be an
arbitrary vector space over ®. Show that (R X §, R X ) is the Kronecker
product of (R, R) and XF, F) relative to 4 X B defined as on p. 211.

3. Show that the result of Ex. 2 does not hold for infinite dimensional R, §.

4, Let {R,} be a collection of subspaces of a vector space R over a field ® and
let Z be an extension field of ®. Prove that (NR)sx = N Rz holds in R

9. Two-sided ideals in the ring of linear transformations. As
in the finite case we define the rank p(A) of a linear transforma-
tion 4 as the dimensionality of the image space ®4. Similarly
the nullity v(A) is the dimensionality of the null space N4 of
vectors 2 such that 24 = 0. If ®; is a complement of N4 so
that % = R, @ N4, then 4 is a 1-1 mapping of R; onto R4 =
%4. Hence dim R4 = dim R, and this implies, as before, that
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o(A4) + v(4) = dim R. Also we can easily prove the following
important relations:

1. p(4+ B) <p(4) + p(B).
2. p(4B) < min (p(4), p(B)).

These formulas allow us to define certain proper two-sided
ideals in the ring 2 of linear transformations of an infinite di-
mensional vector space. Let ¢ be any infinite cardinal such that
¢ < b = dim R and let &, be the set of linear transformations A,
such that

P(Ae) <e

Since p(—A4.) = p(A4,), R contains the negative of every linear
transformation in this set. Also since the sum of two cardinals,
one of which is infinite, is the larger of the two cardinals we see,
using 1., that 2, is closed under addition. Finally 2. shows that
g, is closed under multiplication by arbitrary elements of 2.
Hence £, is a two-sided ideal.

If ¢ and ¢ are two infinite cardinals <4 and e < ¢/, then
L, C Q3 for evidently & C ®,,. Moreover, there exist linear
transformations of any given rank < 4; for we can obtain such
transformations by choosing a basis (¢;) of ® and a subset (¢;)
which has the given cardinal number. Then the linear transfor-
mation such that ¢ — ¢; and e; — O for i 5 k has the required
rank. Now the linear transformations of rank ¢ are in g, but
not in §,. Hence & £ &, and & < &,. Thus we see that the
correspondence ¢ — &, is 1-1.

The main result on two-sided ideals of € is that the ideals £,
are the only proper two-sided ideals in 8. For the proof of this
fact we require the following

Lemma. If A and Bef and p(B) < p(A), then there exist P
and Q in  such that B = PAQ.

Proof. We write ® = R; @ %4 where N4 is the null space of
A and similarly % = R, @ Ne. Let (xx) be a basis for R; and
(»\) be a basis for R,. Since dim R; = dim R4 > dim RB =
dim Rs, we can set up a 1-1 correspondence y» — x) of () into
(xx). Let P be the linear transformation which maps yy into xy
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and maps g into 0. Since the vectors m4 form a linearly inde-
pendent set, there exists a linear transformation Q such that

(x)\A)Q = y)\B. Then
nPAQ = xdQ = NB,
2PAQ =0 if zeMNs.

Hence PAQ = B as required.

Suppose now B is any proper two-sided ideal in & Let ¢ be
the smallest infinite cardinal number such that ¢ > p(B) for all
Be®. If ¥ contains a linear transformation B of rank 4 =
dim % and A is any linear transformation of R, then rank 4 <
rank B. Hence by the preceding lemma, 4/ = PBQ e¢®8. Thus
$ = ¢ contrary to hypothesis. Thus & > p(B) for every Be®
and therefore ¢ < 4. Since ¢ < 4, the definitions show that
B S L. On the other hand, let C be any element of 8. Then
p(C) < ¢ and if p(C) is infinite there must exist a B e B such that
p(B) > p(C). By the lemma this implies that Ce®B. If p(C) is
finite, we can argue in the same way that C is in B unless p(C)
> p(B), for every B. At any rate we can conclude that 8 con-
tains every linear transformation of rank one. We shall now
show that any transformation of finite rank is a sum of transfor-
mations of rank 1. To prove this we write RC = [y1, ¥z, -y Ym)
where the y; are linearly independent. Then for any x

xC = ¢1(x)y1 + p2(¥)y2 + -+ -+ dn(¥)ym.

It is clear that the ¢4(x) are linear functions and that the map-
ping C; such that xC; = ¢:(x)y; is a linear transformation of rank
one. Evidently C = C; + C; +---+ C,, and, since we know
that the C; e ®B, we see that Ce®B. Thus every Cin &, is in B
and 8 = 2. This proves

Theorem 5. Let R be the ring of linear transformations in an
infinite dimensional vector space R. For each infinite cardinal e <
dim R define R, to be the totality of linear transformations of rank
< e ThenQ, is a proper two-sided ideal in { and any proper two-
sided ideal coincides with one of the L.

We have seen that, if ¢ and ¢’ are two infinite cardinals < 4
and ¢ < ¢, then & c ®... Theorem 5 therefore shows that the
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correspondence ¢ — g, is a lattice isomorphism of the set of in-
finite cardinals < & on the set of proper ideals in 8. In particular
we see that € has at least one proper two-sided ideal, 8 where ¢
is aleph null. This ideal consists of the transformations of finite
rank and in the sequel we denote it as §. Clearly § is contained
in every two-sided ideal = 0 of &.

10. Dense rings of linear transformations. Some of the results
on the ring of linear transformations of a finite dimensional vec-
tor space can be extended to arbitrary dense rings of linear trans-
formations. We recall that a set ¥ of linear transformations is
dense in the finite topology if and only if for any two ordered
finite sets of vectors (x1, x2, ***, *m), (¥1, Y25 **+» ¥m) such that
the x’s are linearly independent, there exists an 4 € % such that
xiz{:yi, i= 1, 2, ety M.

We note first that any dense ring ¥ of linear transformations
is an irreducible set of endomorphisms. By this we mean that
the only subgroups of the additive group ® which are mapped
into themselves by % are % and 0. Thus, let & be such a sub-
group. If & # 0, it contains a vector x % 0. Then if y is any
vector in R, we can find an A4 e¥ such that x4 = y. Hence
y €©. Since y is arbitrary this shows that & = ®.

Another noteworthy result on dense rings is that the only endo-
morphisms of the group ® which commute with every 4 e are
the scalar multiplications. This is an extension of Theorem 2 of
the preceding chapter. The proof of the earlier result carries
over word for word to the present situation.

It appears to be very difficult to construct and to classify all
dense rings of linear transformations. However, a good deal can
be done for an important subclass of the class of dense rings,
namely, those which contain non-zero transformations of finite
rank. In the remainder of this section and the next two sections
we shall be concerned with the theory of rings of this type.

We give first a method for constructing such rings which will
turn out to be completely general. We begin with a total sub-
space %’ of the conjugate space #* and we let @R’ | k) denote the
totality of linear transformations 4 whose transposes A4* map %’
into itself. We recall that 4* is the linear transformation f — fA4*
where fA4*(x) = f(x4). Now let ¢1, ¢2, -+, ¢m be arbitrary



260 INFINITE DIMENSIONAL VECTOR SPACES

elements of &', uy, ug, -+, U, arbitrary vectors in § and let
F= E ¢i X u;.. We recall that this means that F is the linear
transformatlon x = E ¢i(x)u;. Thus F is of finite rank. More-

over, if f is any linear functlon, then fF*(x) = Z¢.(x) f(u;). Thus
fF* is a linear combination of ¢, ¢s, *--, ¢m and hence F*e
(R’ | ®). This shows that (R’ | %) contains non-zero transfor-
mations of finite rank. Let F(®' |®) = N R’ | R) the to-
tality of finite rank transformations contained in @R’ | %).

We prove next that F(®' | %) is dense in & Thus let (y1, y2,

-+, ¥m) be linearly independent and let (x4, us, * - -, u,) be arbi-
trary in ®. Since R’ is total, it contains linear functions ¢; such
that ¢:(y;) = 8, 4,7 = 1,2, - -+, m. Then the linear transforma-
tion F=2¢; X u; eFR' | R) and y.F = wusy i =1, -+, m, as
required.

It is clear from the definition of (R’ | %) that this set is a sub-
ring of @ = (R, R) (= YR*| R)). Likewise F(R'| R) is a sub-
ring of & Now let % be any subring of (%’ | ) which contains
F(R' | R). Then since F(R' | R) is dense, ¥ is dense. Also obvi-
ously ¥ contains non-zero transformations of finite rank.

Conversely, let % be any dense ring of linear transformations
such that ¥ N § = 0. Let R’ be the subspace of R* defined by
(7) R = 2 R¥F

Feln§
that is, ®’ is the smallest subspace of %* containing the spaces
R*F* where Fed N §. Then we shall show that ®’ is total and
that (R | R) SAC R’ | R). The totality of R’ will follow
from the following lemma which is of interest in itself.

Lemma 1. [f U is an irreducible ring of endomorphisms, any
non-zero two-sided ideal B of U is irreducible.

Proof. If x is a non-zero element of the group % in which «
acts, then the set 18 of elements xB, B in $B, is a subgroup in-
variant relative to . Hence either ¥8 = % or 8 = 0. If x®B
= 0, then the collection & of x’s with this property is not O.
But & is a subgroup invariant relative to ¥ also. Hence & = .
Thus B = 0 contrary to B = 0. We have therefore proved
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that ¥8 = ® holds for every non-zero x. The irreducibility of %
relative to B is an immediate consequence of this result.

We can now prove that the space R’ defined by (7) is total.
We know that § is a two-sided ideal in . Hence § N ¥ is a non-
zero two-sided ideal in ¥ so that by Lemma 1 § N ¥ is irreducible.
If x % 0is in R, then we can find an F e § N ¥ such that xF = 0.
Also we can find a linear function f such that f(xF) ¢ 0. Then
fF*(x) ¢ 0 and fF* e ®’. Hence R’ is total.

Now let 4 9. Then we have the following relations

mld* — Em*F*d* — Em*(d};‘)* c m/’

since § N ¥ is an ideal in . Hence we have proved that ¥ <
(R’ | R). In order to prove the other inclusion relation F(%' | R)
C 9 we require the following

Lemma 2. Let F be a transformation of finite rank and let
RE = [uy, tg, - - -, n) Where the u; are linearly independent. Then

m
F can be written in one and only one way as D i X u; where the
1

di e R*.  Moreover, the ¢; are linearly independent and R'F* =
(b1, P2, - -+ Pm] A0lds for every total subspace R’ of R*.

Proof. We have seen before (p. 258) that F has the form
> ¢i X u;. The uniqueness has also been noted previously in
1

our discussion of direct products (p. 201 and p. 256). Thus the
first statement of the lemma holds. Now let fe®* Then
fF* = 2¢; f(u;); hence R*F* C [¢1, ¢2, -~ ¢m]. On the other
hand, if %’ is dense, then we can find g; in %’ such that g;(»;) =
8:. Then giF* = ¢, so that [¢1, ¢2, - -, dm] & R'F*. This com-
pletes the proof.

Now let Fe&(®R' | R) and write F = Z¢; X u; where the u;
form a basis for RF. Then R'F* = [¢1, 2, - ", ¢ml so that the
dieR’. Thus all the ¢;e R*F* + R*Fo* +-- -+ R*¥F,* for
suitable F; e N §. We apply the preceding lemma to the F;
and write F; = Ek:w,-k X vjr where the v;; form a basis for RF;

and the y;; form a basis for ®*F;*. Then ¢; = D Yiujn,s for
ik
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suitable ujx,; in A. Since ¥ i1s dense and the v;; for fixed j are
linearly independent, we can find A;; e ¥ such that

(8) vjklfji = Mjk,ili

for k=1,2, -+, i=1,2, --+-, m. Now the transformation
2 Fid;; eF N Y and
I

2. Fidyi = JE (Ek: Yir X v:'k) Ay = 22 i X vindji
i i

ik
= Z Vie X Wik, ihe = Z (Z lﬁjkujk,f) X u;
1,5,k 3 ik
=2Z¢; X u; = F.

Thus FeF N A. This completes the proof of the following struc-
ture theorem.

Theorem 6. Let R’ be a total subspace of R* and let LR’ | R)
be the totality of linear transformations A whose transposes map R’
into itself. Then any subring % of (K’ | R) whick contains FR' | R)
= § N R’ | R) is a dense ring of linear transformations contain-
ing non-zero transformations of finite rank. Conversely, any dense
ring of linear transformations which contains non-zero finite rank
transformations can be obtained in this way.

Our arguments actually establish somewhat more than we have
stated in the theorem. Thus we have the formula (7) for the
total subspace R’ determined by the given ring %. Moreover, it
is easy to see from our discussion that F(R'|R) = R’ X R the
totality of mappings Z¢; X u;, i e R, u; e R. If we begin with
a ring between @(R’ | R) and F(R’ | R), then the space determined
by (7) is R’ itself. We leave the verification of these statements
to the reader.

The main theorem can also be formulated in a more symmetric
fashion in terms of dual spaces. For this purpose let % and %’
be dual relative to the bilinear form g. Then we have the natural
equivalence R of 9 onto a total subspace &* of R*: If y' e R/,
then 'R is the linear function g, (x) = g(y’, x) (cf. p. 137). If
Ae(@*|R), then £’ = RA*R™ is a linear transformation of
R’ into itself. We shall call A4’ the transpose of A relative to g. As
in the finite dimensional case, 4’ satisfies the condition

©) gxd, y’) = glx, y'4')
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for all xe® and all ¥’ e ®’. Conversely, let 4 be any linear
transformation in % for which there exists a linear transformation
A in ®’ such that (9) holds. Then g, 4* = g, 4 £ &* so that
Ae(&*|R). It follows that 4’ is the transpose of A relative to
g. It is now natural to denote 2(&* | %) also as @R’ | R). The
transformations of finite rank in this ring have the form Zy,/ X x;
where, as usual, this denotes the mapping ¥ — Zg(x, y/)x:. The
transpose in R’ of Zy,/ X x;is Zy; X’ x; where y'(Zy,/ X x;) =
Zy/g(xs y’). Hence the sets F(R'|R) =FNLYR'|R) and
(R | ®’) (defined in the same way) correspond in the mapping
4 — A
The dual space formulation of Theorem 6 can now be given.

Theorem 6’. Let R and R’ be dual vector spaces and let QR | R)
denote the totality of linear transformations in R which have trans-
poses in . Then any subring of (R’ | R) whick contains FR' | R)
= § N R’ | R) i5 a dense ring of linear transformations in R con-
taining non-zero transformations of finite rank. Conversely, any
dense ring of linear transformations which contains non-xero finite
rank transformations can be obtained in this way.

It is clear from this formulation that the set %’ of transposes 4’
in ® is a dense ring in %’ containing transformations of finite
rank. The mapping 4 — A’ is an anti-isomorphism of I onto
2[/

EXERCISES

1. Let R have a denumerable basis over A and let U be the totality of linear
transformations whose matrices relative to this basis have the form

(5 o
0 0
where A is a finite matrix. Show that ¥ is a dense ring.
2. Let R be as in 1. and let &’ be the total subspace [p1, 2, - - -] where ¢:(e;)
= 8y for (¢;) a basis. Show that £& (R’ | R) if and only if its matrix relative to

(e:) is both row finite and column finite.
3. Let U and 7 be the linear transformations in R over ® whose matrices are

01
0 01 ]
01

O = O
_— O
- O
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Show that the algebra ®{U, 7] generated by U and ¥ is dense and contains trans-
formations of finite rank.

4, Verify that, if the vectors (¢;) and (¢;) are complementary (¢p.{ex) = o),
then the linear transformations e = ¢; X ex satisfy the multiplication table for
matrix units,

5. (Litoff) Prove that any finite subset of F(R’ | R) can be imbedded in a sub-
ring which is isomorphic to a finite matrix ring A,.

6. Prove that any right ideal of FR'|R) = R’ X R has the form & X R
where &' is a subspace of R’ and that any left ideal has the form R’ X &, & a
subspace of R. (Cf. § 34 of Chapter VIIL)

7. Prove that R’ | R) is simple.

8. Prove that A4 has a transpose in R’ if and only if 4 is a continuous mapping
of R, endowed with the R’-topology, into itself.

11. Isomorphism theorems. We take up now the question of
isomorphism of dense rings of linear transformations containing
non-zero transformations of finite rank. For this purpose we
shall use the structure theorem in its original form, namely, that
9 can be sandwiched in as @R’ | R) D A D FHR' | R) where R’ is
a total subspace of #*. We have seen (Ex. 6) that every right
ideal of (R’ | %) has the form & X R where & is a subspace of
R’. Now if 4 is any linear transformation in ®, then (Zy; X x;) 4
= 2Z¢: X x:4. Hence & X R is in reality a right ideal in £ and
a fortiori in %. If & = [¢] is a one-dimensional subspace of %,
then it is clear that & X % is a minimal right ideal of F(%’ | %).
Since it is clear that any right ideal of % contained in (R’ | R) is
a right ideal of (R’ | R), our remark shows that [y] X R is a
minimal right ideal of .

We can now list the following facts about ¥: 1) 9 is an irreduci-
ble ring of endormophisms in R, 2) the set of endomorphisms
which commute with every 4 in ¥ is the set of scalar multiplica-
tions, and 3) U possesses minimal right ideals. These results en-
able us to carry over the discussion in § 5 of Chapter VIII on the
isomorphism of rings of linear transformations of finite dimen-
sional vector spaces.

We sketch the argument that we used before. Let & be a
minimal right ideal in % and let » be a vector such that x3 5= 0.
Then %3 is a subgroup of &% mapped into itself by %. Hence x3
= R. We can conclude as before that the mapping x: B — xB
is an operator isomorphism of & onto .
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We now consider two isomorphic rings %;, 7 = 1, 2, where
QRS | R 2 LD F(RS | Re) and R is a vector space over Ay, R/
a total subspace of linear functions in %;. Let 4; — A¢ be an
isomorphism of U; onto A,. Choose a minimal right ideal & in
%; and let 8, = 31¢. Let y; be an operator isomorphism of I,
into R; determined as above. Then by the argument of §5,
Chapter VIII, the mapping U = ¢; ¢y is a 1-1 semi-linear
transformation of i; onto R and

(10) 1{1¢ = U_II{IU

holds for all A4; in ;. In particular we see as before that the
base division rings are isomorphic and ®; and ®; have the same
dimensionality.

In the finite case this is all one needs to say. In the infinite
case, however, there is an important additional remark which
should be made. This concerns the transpose of the semi-linear
transformation U. We proceed to define this concept for any
semi-linear transformation.

Let § be any semi-linear transformation of ®; into R, and let
s be the isomorphism of A; onto A, associated with §. Then
(ax1)S = a®(x1S8) for any x; in R;. Now let f(x2) be any linear
function in R, and set

glx1) = f(x:8)".

Then it is clear that g is a linear function on %;. Also it can be
verified directly that the mapping §*: f — g is a semi-linear
transformation of R* into R* with associated isomorphism
s~ We call §* the transpose of §.  As for linear transformations

(11) (S1S2)* = Sz*S1*-

This implies that, if § has the inverse §~! (a semi-linear transfor-
mation of Ry onto N; with isomorphism s~!) so that S§~1 =1
= §718, then S*(S~1)* = 1 = (§™1)*§*. Hence §* also has an
inverse. This is equivalent to saying that, if § is a 1-1 mapping
of ®; onto R, then §* is 1-1 of Ro* onto R1*. We observe that
F; is a transformation of finite rank in ®; if and only if U1/ U
is of finite rank in R,. It follows that ¢ maps F(R.' | R:1) onto
F(R2' | R2). If we refer to formula (7) for the R/, we can verify
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that U* maps R’ onto %;’. Thus,
msz* = EmZ*Fz*U* = Emz*U*Fl*
= IR *F* = Ry
We can therefore state the following isomorphism theorem:

Theorem 7. Let Ri i = 1, 2, be a vector space over A; and let
R be a total subspace of linear functions on R. Suppose that U; is
a subring of QR | Vi) containing F(RS | Re) and let ¢ be an iso-
morphism of Wy onto Ue. Then there exists a 1-1 semi-linear trans-
Sformation U of R1 onto Ra, whose transpose maps Ry onto Ry, such
that 1{1¢ = U_II{IU holds f07' all 1{1 in 2[1.

This theorem has a number of interesting consequences. We
give one of these here, a generalization of Ex. 5, p. 237.

Corollary 1. Let R be a vector space over a field ® and let R’ be
a total subspace of R*. Then every automorphism of (R’ | R)
which leaves the elements of the center fixed is inner.

Proof. Evidently (R’ | ®) contains the set ®; of scalar multi-
plications. Also since the only endomorphisms which commute
with all the elements of (R’ | %) are the scalar multiplications,
the set ®; is the center of Q&' | ®). If 4 — A¢ is an automor-
phism in R(R’ | R), then there is a semi-linear transformation U
such that 4p = U™'4U. If u is the associated automorphism
in ®;, then U layU = (a*);. Assume now that aip = o for all
a. Then U loyU = asp = ay. Hence a; = (a*); and so u = 1.
Thus U is linear. Since U* maps ®’ into itself, Ue (R’ | ®) by
definition. Thus ¢ is inner.

This result includes, of course, the following special case:

Corollary 2. Every automorphism of the ring R of linear trans-
formations of a vector space over a field which leaves the elements of
the center fixed is inner.

EXERCISE

1. Let A be any division ring with the property that the only automorphisms
in A leaving the elements of the center fixed are inner. Prove that, if & is a vec-
tor space over 4, then every automorphism of a ring R’ | i) which leaves the
elements of the center fixed is inner.
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12. Anti-automorphisms and scalar products. We consider now
the problem of finding conditions that a dense ring of linear
transformations containing non-zero transformations of finite
rank possess an anti-automorphism. It is convenient to assume
here the second formulation of the structure theorem, that is,
that % is given as a subring of 2R’ | R) containing F(R' | R)
where ® and R’ are dual relative to a bilinear form g. We intro-
duce the division ring A’ anti-isomorphic to A and let « — of
be a fixed anti-isomorphism of A onto A’. Then we can regard %
as a right vector space over A’ if we take xa’ = ax. Similarly,
R’ 1s a left vector space over A’ if ofx’ = x'a.

Now suppose that 4 — A¥ is an anti-automorphism in %. If
A’ denotes the transpose of A relative to g, then 4 — A’ is an anti-
isomorphism of ¥ onto a ring %’ and R | R) DU 2D FR | R').
It follows that the mapping 4 — A¥ is an isomorphism of ¥’
onto 9. Hence by the isomorphism theorem there exists a semi-
linear transformation 7 of the left vector space ' (over A’) onto
the left vector space ® such that

(12) AV = VLY

holds for all 4 e%. The semi-linear transformation » can be
used to define a scalar product in ®; for we can put

(13) h(xy y) = gl y770).

Then it is clear that
h(xy + %2, ¥) = h(x1,5) + A(xz, ¥)
h(xy 31+ y2) = hlx, y1) + A(x, y2)

Ao, y) = ah(x, y)-
Moreover,

h(x, ay) = glx, (@)P™1) = glx, & (37 7Y)
= glx, WP D"7) = gla, yV e
= A, y)a

where v is the isomorphism of A’ onto A associated with 7. Since
»~!is an isomorphism of A onto A’ and #7! is an anti-isomorphism
of A’ onto A, v™ 17! is an anti-automorphism in A, We write

=141
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& = o’ 5 hence A(x, ay) = A(x, y)a& and % is a scalar product in
R relative to o — a.

It is easy to see that the non-degeneracy of g and the proper-
ties of 7 imply the non-degeneracy of 4. Hence if we regard ®
as a right vector space over A by taking xa& = ax, then ® is dual
with itself relative to 2. We prove next that ¥ is a subring of
R | R) containing F(® | ®). Thus if £ e, then

h(xd,y) = gxd, y V1) = glo, y V=1 A") = g(ot, yV 1A' VV )
= g(x) y‘d\I’V_l) = ;l(x) yd\ll)

Thus 4 eQ®R | R) and its transpose relative to 4 is the image
AV under the given anti-isomorphism. On the other hand, let
FeF(®|R). Then

E&F,y") = h(xF,y'V) = h(x, y'VF¥) = h(x, y' VFIV V)
= g%, y'VF¥V1);

hence F has a transpose relative to g and F e . We have there-
fore proved that @R |R) DUD F(R | R) and that 4 — AV is
the transpose mapping relative to 4.

We have not yet fully exploited the fact that 4¥ ed. We
shall show next that this condition implies that A(x, y) is a weakly
hermitian scalar product in the sense that there exists a 1-1 semi-
linear transformation Q of i onto itself such that

(14) h(%, y) = h(y, 20)

holds for all x, y e R. Consider the mapping y; X ¥y, that is,
x — h(x, y1)x1. We know that this belongs to F(® | R) and
that its transposeisy — y14(x1,y) = A(x1,y)%; wherea — a’is
the inverse of « — &. Since the transpose mapping sends ¥ into
itself, y — A(x1, y)%: coincides with a linear transformation
Zu; X v, A simple argument shows that in reality our transfor-
mation has the form 2; X y;. It follows that &(x1, ¥)* = A(y, 21)
holds for all y. If we take the bar of both sides, we obtain 4(x;, y)
= A(y, 21). Thus for each x there exists a z such that A(x, y)

= h(y, z) holds for all y. Now the non-degeneracy of %4 implies
that 2 is uniquely determined by x; hence x — z is a mapping
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Q of R into itself. Clearly Q is an endomorphism. Moreover,
;l(ax) y) = ah(x, y) = a;l(y) XQ) = ;l(y) xQ)aa
A(y, o (xQ));

hence (a¥)Q = a*(¥Q) and Q is semi-linear with associated auto-
morphism 42. The non-degeneracy of 4 implies that Q is 1-1.
Finally, since every element of F(® | ®) is a transpose, Q is a map-
ping onto ®. This proves that 4 is weakly hermitian.

Conversely, assume that % is a non-degenerate weakly her-
mitian scalar product in % over A. Let £ eQ(R | R) and let 4
now denote its transpose relative to 4. Then,

hxd'yy) = h(yQ7", xd’) = h(yQ™'4, x)

= ;l(x) yQ—IAQ)'

Hence (x4, y) = h(x, yQ'4Q). This shows that 4’ e (R | R)
and that 4” = Q7'40. Hence 4 — A’ is an anti-automor-
phism of (% | ®). We can summarize our results as follows:

Theorem 8. Let U be a dense ring of linear transformations in
R over A containing non-zero transformations of finite rank. As-
sume that U possesses an anti-automorphism 4 — AY. Then A
has an anti-automorphism o — & and there exists a non-degenerate
weakly hermitian scalar product in R such that N is included between
R | R) and FR | R) and such that A — AY coincides with the
transpose mapping relative to h. Conversely, if R has a non-degen-
erate weakly hermitian scalar product, then the transpose mapping in
R | R) is an anti-automorphism.

We impose next the condition that 4 — A4’ (= A¥) is involu-
torial, that is, that 4”7 = A4 holds for all £ 9. By the relation
A" = Q7' AQ derived above, our condition is equivalent to
Q7'4Q = A for all 4e¥. The latter holds if and only if Q =
p a scalar multiplication. Thus 4 — A’ is involutorial if and
only if

(15) ;l(x) y) = V}l(}’, x)

for a fixed »(= f) and all x, y. We shall now show that we can
replace 4 by a suitable multiple s(x, y) = A(x, y)r which is either
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hermitian or skew hermitian. We note first that iteration of (15)
gives

(16) h(x, y) = vh(x, y)5.
If we choose x, ¥y so that A(x, y) = 1, this gives 5 = »~ 1. If
v = —1, % is skew hermitian and there is nothing to prove. If

v # —1, then we set r = (v + 1) ™! and we verify that
=0+ DG+ D)T=0+ DT+ 1) =

Then if s(x, y) = A(x, y)1, we can verify that s is a scalar product
whose anti-automorphism is a« — o* = 7 'ar. Also

5(}’, x)* = 7_15(}’, X)T = T_l?h(y) x)T

= V;l(y) x)T = ;l(x) y)T = S(JC, y)’
hence s is hermitian. We have therefore proved the following

Theorem 9. Let A and ¥ be as in Theorem 8, and assume that
V2 = 1. Then A has an involutorial anti-automorphism and there
exists a non-degenerate hermitian or skew hermitian scalar product
s in R such that 4 — AY coincides with the transpose mapping rela-
tive to h. Conversely, if R has a non-degenerate hermitian or skew
hermitian scalar product, then the transpose mapping in QR | R) is
an anti-automorphism.

We remark also that in view of Ex. 4, page 151, we can sup-
pose that our scalar product is either hermitian or skew symmetric.
The latter possibility can hold only if A = & a field.

EXERCISES

1. Let % be a non-degenerate hermitian or skew hermitian scalar product in
R. Prove that, if & is a finite dimensional non-isotropic subspace of &, then
R = © @ & where & is the orthogonal complement of &. (& is non-isotropic
if& N & =0, see page 151.)

2. (Rickart) A linear transformation U is & unitary if A(xU, yU) = Alx, )
holds for all #, y in ®. A unitary transformation 7 such that 72 = 1 is called an
involution. Assume the characteristic of A is 7 2 and prove that, if 7 is an in-
volution, then there exists a decomposition & = R D R_. where R4 and R_.
are non-isotropic and orthogonal and #I = x for x in R4 and w/ = —x for »
in®_.
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13. Schur’s lemma. A general density theorem. The range
of applications of the results which we obtained for dense rings
of linear transformations can be considerably broadened. We are
going to show that these results apply to arbitrary irreducible
rings of endomorphisms; for we shall prove that the two concepts
—dense ring of linear transformations and irreducible ring of en-
domorphisms—are fully equivalent. We have seen that every
dense ring of linear transformations is an irreducible set of endo-
morphisms. It remains to prove the converse.

Thus suppose that % is an irreducible ring of endomorphisms
of a commutative group R. Our first step is to introduce a divi-
sion ring A relative to which ® is a vector space and ¥ is a set
of linear transformations. This step can be taken because of the
following fundamental lemma.

Schur’s lemma. [f ¥ is an irreducible ring of endomorphisms
in a commutative group R, then the ring B of endomorphisms that
commute with every A e is a division ring.

Proof. Let B be any non-zero element in 8. The image group
R B is invariant relative to 9. This is immediate from the commu-
tativity of B with the elements of 9. Since ®B = 0, the irreduci-
bility of & implies that RB = R. Next let N be the kernel of the
endomorphism B. Again we can verify that % is an %-subgroup.
Also = % since B % 0. Hence % = 0. This means that B is
1-1. Thus we see that B is an automorphism of ® (onto itself).
The inverse mapping B~ is also an endomorphism. Clearly B!
commutes with every A4 in %. Hence B~' e®8. We have there-
fore proved that every B # 0 of 8 has an inverse in 8. Thus 8
is a division ring.

Since the ring of endomorphisms 9 is a division ring containing
the identity endomorphism, the group % together with $ con-
stitutes a right vector space. Here, of course, the scalar product
xB, xin ®, B in B is simply the image of x under B. In conformity
with our consistent emphasis on left vector spaces we shall now
regard R as a left vector space. We let A denote a division ring
anti-isomorphic to 8. Then if § — B is a definite anti-isomor-
phism of A onto %, the product 8x = xB turns % into a left vector
space over A, Evidently the elements of i are linear transforma-
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tions in R over A (or R over B). Also we know that the only
endomorphisms that commute with every A4 e are the scalar
multiplications.

From now on we assume that 9 ¢ 0. Then if 9% denotes the
set of z such that z4 = 0 for all 4, t = R. But N is a subgroup
invariant relative to %. Hence # = 0. This result means that,
if x is any vector s 0, then there exists an A4 e ¥ such that x4
5% 0. Moreover, it is clear that the set ¥ of images x4 of the
fixed vector x is an ¥-subgroup. Again by the irreducibility of
9 we conclude that #[ = ®. Thus if x > 0 and y is any vector,
then there exists an 4 in % such that x4 = y. We have therefore
proved that A4 is 1-fold transitive in the sense of the following
definition.

A set U of linear transformations in R is k-fold transitive if,
given any two ordered sets of / <k vectors (x1, X3, -+, 1),
(¥1, ¥2, - -+, ¥1) such that the x’s are linearly independent, there
exists an 4 e ¥ such that x4 = y;fori=1,2, --. [

We continue our analysis of irreducible sets of endomorphisms
by proving next that 9 is two-fold transitive. Here we shall make
use of the fact that the scalar multiplications are the only endo-
morphisms which commute with all the 4 in%. As a preliminary
to the proof we note that a ring of linear transformations is £-fold
transitive if 1) 9 is 1-fold transitive, and 2) if (%1, g, - - -, &;) are
/ < k linearly independent vectors, then for any i = 1,2, ---, /,
there exists a linear transformation F; in % such that

x;E; =0 for jsi and xE; 0.

Forif E;,i = 1,2, - -+, /, exists, then we can find a B;in ¥ such
that x;£;B; = y;.. Then 4 = ZE,B; has the required properties
x¢d =5 i=1,2,--.,/. Now take / = 2 and suppose on the
contrary that there is no £ in % such that x; £ = 0 but x.£ < 0.
Then if B is any element of % such that x;8 = 0 also x28 = 0.
This fact implies that the correspondence x14 — xod, 4 vary-
ing in ¥ is single-valued. Forif x4 = x;4', A and A’ in ¥, then
x1B =0 for B=A4 — 4. Hence 0 = x3B = x3(4 — A4’) and
x4 = x,4'. Now we know that the set of images x;% is the
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whole space ®. Also it is clear that our mapping is a homomor-
phism. Hence it is an endomorphism of ®. If C is any linear
transformation in ¥, then

(XIZ{)C = XII{C - X2I{C = (X2A)C

and this shows that the mapping x;4 — x4 commutes with C.
It follows that this mapping is a scalar multiplication, that is,
there exists a 8 € A such that x4 = 8(x;4) holds for all 4. Thus
(x2 — Bx1)4 = 0 for all 4. Hence x, = B1x1 and this contra-
dicts the linear independence of x; and xs.

Our final step is to show that % is dense in  or, what is the same
thing, % is k-fold transitive for all &. We shall, in fact, prove
somewhat more, namely, we shall show that any two-fold transi-
tive ring of linear transformations is dense. Suppose ¥ has this
property and assume that we know already that 9 is k-fold transi-
tive for a particular £. Then the result will follow by induction
if we can show that, if x1, x2, - -, x%x41 are linearly independent
vectors, then there exists a transformation F in ¥ such that
xF =0 for i <k but x541F % 0. By the induction assumption
we know that there exist £; in % such that

XiEj = aijx,i’ l.,j = 1’ 2’ . k.

k
We set £ = Y E; and we consider first the case in which x; 1 F
1
7% Xpp1. Lhen xpp1F — x541 % 0 and there exists an 4 in U
such that (x341F — x441)4 # 0. Thenif F= F4 — 4
Xk+1F = xk+1(Ed - A) = (xk+1E - xk+1)d & 0.

On the other hand, x;F = x; for i < k; hence x;FA4 = x;4 and
xsF = 0. Suppose next that xz,1E = x441. Then we assert
that there is an 7 < k such that x4, E;, %; are linearly independ-
ent; for, otherwise, x5 1£; = By and

Xip1 = X1 = Zxp 1 Ee = 2By

contrary to the linear independence of x1, x2, * -+, ¥341. Now
let xx+1F; and x; be linearly independent for a particular 7. Then
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since ¥ is two-fold transitive, there exists a Bed such that
xk41E:B % 0 but x,B = 0. If we set F = E;B, we find that
xF' = x;FE:B = 0 for j 5% i and < k and x:F = 0 but x5 1F 5 0.
This proves our assertion and completes the proof of the following

General density theorem. Lez U be any irveducible ring of endo-
morphisms % 0 in a commutative group R and regard R as a left
vector space over a division ring A anti-isomorphic to the division
ring of endomorphisms which commute with every 4 in U. Then U
is a dense ring of linear transformations in R over A.

14. Irreducible algebras of linear transformations. The theo-
rems of the preceding section can also be applied to irreducible
algebras of linear transformations, and in this form they give
some results which are fundamental in the theory of group repre-
sentations. We proceed to derive these results. Thus we begin
with a vector space ® over a field ® and with an algebra ¥ of
linear transformations in R over ®. The assumption that ¥ is
an algebra means that ¥ is closed under the compositions of ad-
dition and multiplication and under multiplication by elements of
® (or q’z).

Assume now that ¥ is irreducible as a set of linear transforma-
tions (cf. § 1, Chapter IV). Thus we are assuming that the only
subspaces of % which are invariant relative to ¥ are ® and O or,
equivalently, that the set (%, ®;) is an irreducible set of endo-
morphisms. We shall now show that, if % 5 0, then ¥ itself is
irreducible as a set of endomorphisms. To prove this let x be
any vector 3 0 in . Consider the set x¥ of vectors x4. Since
9 is an algebra, «9 is a subspace. Also it is clear that x9 is %-
invariant. Hence, either x3 = R or 4% = 0. If the second alter-
native holds, then the set % of vectors z such that 2% = 0 con-
tains non-zero vectors. Clearly % is a subspace and 9 is ¥ in-
variant also. Hence t = % and ¥ = 0 contrary to assumption.
We therefore have x% = ® for any non-zero x and this implies
directly that 9 is an irreducible set of endomorphisms.

We can now apply the results of the preceding section. For
this purpose we consider the ring ¥ of endomorphisms which
commute with every 4 €. Evidently 8 D ®;,. We observe next
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that the elements of 8 are linear transformations. Thus let a; €
®;, Be®B. Then for any 4 e we have

0 = Blayd) — (ayA)B = (Ba)d — ou(A4B)
= (Ba))d — ay(BA) = (Bay)d — (auB)A
= (Ba; — ayB)A.

Now, if Ba; — ayB £ 0, then we can find a vector x such that
y = %(Boy — oyB) 2 0. Then y4 = 0 for all 4, and this con-
tradicts the irreducibility of . Thus Ba; = a;B for every ay,
and B is a linear transformation. We have therefore proved that
P is also the totality of linear transformations which commute
with the elements of 9. Clearly 8 is an algebra of linear trans-
formations. By Schur’s lemma 9 is a division algebra.

We now follow the procedure of the preceding section and in-
troduce the division algebra A anti-isomorphic to 8. Since B
contains ®; we can suppose that A D ®. Also it is easy to see
that we can regard ® as a left vector space over A in such a way
that the scalar multiplication by the elements of the subset ® is
the original scalar multiplication. The main density theorem
now states that % is a dense set of linear transformations of R
over A.

We shall now specialize our results to obtain some classical
theorems on algebras of linear transformations. We assume that
® is algebraically closed and that ® is finite dimensional over .
Let % be an irreducible algebra of linear transformations in R
over . Let B be a linear transformation which commutes with
every element of . Then B is an endomorphism that commutes
with every element of the irreducible set (¥, ®;). Hence by
Schur’s lemma either B is 0 or B is non-singular. Now let p be
a root of the characteristic polynomial of B. Then C = B — p;
commutes with every 4 e¥. But det C = 0 so that Cis singular.
Hence C = 0 and B = p;. We have therefore proved that the
only linear transformations which commute with every A4 e ¥ are
the scalar multiplications. The same result can also be estab-
lished for irreducible sets of linear transformations. Thus if Q
is such a set, then the enveloping algebra 9 (cf. § 6 of Chapter IV)
of @ is an irreducible algebra of linear transformations. More-



276 INFINITE DIMENSIONAL VECTOR SPACES

over, if B is a linear transformation which commutes with every
A eQ, then B commutes with every 4 e%. Hence we can state
the following theorem which is one of the most useful special
cases of Schut’s lemma.

Theorem 10. Let Q be an irreducible set of linear transformations
in a finite dimensional vector space R over an algebraically closed
Sield.,  Then the only linear transformations whick commute with
every A € are the scalar multiplications.

An immediate consequence of this result and of the density
theorem is

Burnside’s theorem. [/ ¥ is an irreducible algebra < 0 of linear
transformations in a finite dimensional vector space over an alge-
braically closed field, then U = R the complete algebra of linear
transformations.

Proof. By Theorem 10 the division algebra of linear transfor-
mations commuting with the 4 e is .. Hence by the density
theorem, 9 is a dense set of linear transformations of % over &.
Since % has a finite basis over &, this implies that 9 = Q.
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