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Preface

Goal

Quaternion algebras sit prominently at the intersection of many mathematical
subjects. They capture essential features of noncommutative ring theory, number
theory, K-theory, group theory, geometric topology, Lie theory, functions of a
complex variable, spectral theory of Riemannian manifolds, arithmetic geometry,
representation theory, the Langlands program—and the list goes on. Quaternion
algebras are especially fruitful to study because they often reflect some of the
general aspects of these subjects, while at the same time they remain amenable to
concrete argumentation. Moreover, quaternions often encapsulate unique features
that are absent from the general theory (even as they provide motivation for it).

With this in mind, the main goal in writing this text is to introduce a large subset
of the above topics to graduate students interested in algebra, geometry, and number
theory. To get the most out of reading this text, readers will likely want to have
been exposed to some algebraic number theory, commutative algebra (e.g., module
theory, localization, and tensor products), as well as the fundamentals of linear
algebra, topology, and complex analysis. For certain sections, further experience
with objects in differential geometry or arithmetic geometry (e.g., Riemannian
manifolds and elliptic curves), may be useful. With these prerequisites in mind, I
have endeavored to present the material in the simplest, motivated version—full of
rich interconnections and illustrative examples—so even if the reader is missing a
piece of background, it can be quickly filled in.

Unfortunately, this text only scratches the surface of most of the topics covered
in the book! In particular, some appearances of quaternion algebras in arithmetic
geometry that are dear to me are absent, as they would substantially extend the
length and scope of this already long book. I hope that the presentation herein will
serve as a foundation upon which a detailed and more specialized treatment of these
topics will be possible.

I have tried to maximize exposition of ideas and minimize technicality:
sometimes I allow a quick and dirty proof, but sometimes the “right level of
generality” (where things can be seen most clearly) is pretty abstract. So my efforts
have resulted in a level of exposition that is occasionally uneven jumping between
sections. I consider this a feature of the book, and I hope that the reader will agree
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and feel free to skip around (see How to use this book below). I tried to “reboot” at
the beginning of each part and again at the beginning of each chapter, to refresh our
motivation. For researchers working with quaternion algebras, I have tried to collect
results otherwise scattered in the literature and to provide some clarifications,
corrections, and complete proofs in the hope that this text will provide a convenient
reference. In order to provide these features, to the extent possible I have opted for
an organizational pattern that is “horizontal” rather than “vertical”: the text has
many chapters, each representing a different slice of the theory.

I tried to compactify the text as much as possible, without sacrificing com-
pleteness. There were a few occasions when I thought a topic could use further
elaboration or has evolved from the existing literature, but did not want to over-
burden the text; I collected these in a supplementary text Quaternion algebras
companion, available at the website for the text at http:/quatalg.org.

As usual, each chapter also contains a number of exercises at the end, ranging
from checking basic facts used in a proof to more difficult problems that stretch the
reader. Exercises that are used in the text are marked by . For a subset of exercises
(including many of those marked with 1), there are hints, comments, or a complete
solution available online.

How to Use This Book

With apologies to Whitman, this book is large, it contains multitudes—and hope-
fully, it does not contradict itself!

There is no obligation to read the book linearly cover to cover, and the reader is
encouraged to find their own path, such as the following.

1. For an introductory survey course on quaternion algebras, read just the
introductory sections in each chapter, those labeled with >, and supplement
with sections from the text when interested. These introductions usually
contain motivation and a summary of the results in the rest of the chapter,
and I often restrict the level of generality or make simplifying hypotheses so
that the main ideas are made plain. The reader who wants to quickly and
gently grab hold of the basic concepts may digest the book in this way. The
instructor may desire to fill in some further statements or proofs to make for a
one semester course: Chapters 1, 2, 11, 25, and 35 could be fruitfully read in
their entirety.

2. For a minicourse in noncommutative algebra with emphasis on quaternion
algebras, read just Part I. Such an early graduate course would have minimal
prerequisites and in a semester could be executed at a considered pace; it
would provide the foundation for further study in many possible directions.

3. For quaternion algebras and algebraic number theory, read Part I and II. This
course would be a nice second-semester addition following a standard
first-semester course in algebraic number theory, suitable for graduate stu-
dents in algebra and number theory who are motivated to study quaternion
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algebras as “noncommutative quadratic fields”. For a lighter course,
Chapters 6, 20, and 21 could be skipped, and the instructor may opt to cover
only the introductory section of a chapter for reasons of time and interest. To
reinforce concepts from algebraic number theory, special emphasis could be
placed on Chapter 13 (where local division algebras are treated like local
fields) and 18 (where maximal orders are treated like noncommutative
Dedekind domains).

There are also more specialized options, beginning with the introductory sec-
tions in Part I and continuing as follows:

4. For quaternion algebras and analytic number theory, continue with the
introductory sections in Part II (just Chapters 9—17), and then cover Part III (at
least through Chapter 29). This course could follow a first-semester course in
analytic number theory, enriching students' understanding of zeta functions
and L-functions (roughly speaking, beginning the move from GL; to GL,).
The additional prerequisite of real analysis (measure theory) is recommended.
Optionally, this course could break after Chapter 26 to avoid adeles, and
perhaps resume in an advanced topics course with the remaining chapters.

5. For quaternionic applications to geometry (specifically, hyperbolic geometry
and low-dimensional topology), continue with the introductory sections in
Part II (through Chapter 14), and then cover Part IV (optionally skipping
Chapter 32).

6. For an advanced course on quaternion algebras and arithmetic geometry,
continue with Part II, the introductory sections in Parts IV and V. Chapter 41
could be read immediately after Part II. This path is probably most appro-
priate for an advanced course for students with some familiarity with mod-
ular forms and some hyperbolic geometry, and Chapter 42 is probably only
meaningful for students with a background in elliptic curves (though the
relevant concepts are reviewed at the start).

7. Finally, for the reader who is studying quaternion algebras with an eye to
applications with supersingular elliptic curves, the reader may follow Chapters
2-4,9-10, 13-14, 16-17, 23, then the main event in Chapter 42. For further
reading on quaternion orders and ternary quadratic forms, I suggest Chapters 5,
22, and 24.

Sections of the text that are more advanced (requiring more background) or
those may be omitted are labeled with . The final chapter (Chapter 43) is neces-
sarily more advanced, and additional prerequisites in algebraic and arithmetic
geometry are indicated.

It is a unique feature of quaternion algebras that topics overlap and fold together
like this, and so I hope the reader will forgive the length of the book. The reader
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may find the symbol definition list at the end to help in identifying unfamiliar
notation. Finally, to ease in location, I have chosen to number all objects
(theorem-like environments, equations, and figures) consecutively.

Companion Reading

Several general texts can serve as companion reading for this monograph:

e The lecture notes of Vignéras [Vig80a] have been an essential reference for the
arithmetic of quaternion algebras since their publication.

e The seminal text by Reiner [Rei2003] on maximal orders treats many intro-
ductory topics that overlap this text.

e The book of Maclachlan—-Reid [MR2003] gives an introduction to quaternion
algebras with application to the geometry of 3-manifolds.

e The book by Deuring [Deu68] (in German) develops the theory of algebras over
fields, culminating in the treatment of zeta functions of division algebras over
the rationals, and may be of historical interest as well.

e Finally, Pizer [Piz76a] and Alsina—Bayer [AB2004] present arithmetic and
algorithmic aspects of quaternion algebras over Q.

Hanover, NH, USA John Voight
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Chapter 1

Introduction

We begin following the historical arc of quaternion algebras and tracing their impact
on the development of mathematics. Our account is selective: for further overview, see
Lam [Lam2003] and Lewis [Lew2006a].

1.1 Hamilton’s quaternions

In perhaps the “most famous act of mathematical vandalism”, on October 16, 1843, Sir
William Rowan Hamilton (1805-1865, Figure 1.1.2) carved the following equations
into the Brougham Bridge (now Broom Bridge) in Dublin:

2= 2= k% =ijk=—1. (1.1.1)

His discovery was a defining moment in the history of algebra (Figure 1.1.3).

Figure 1.1.2: William Rowan Hamilton
(public domain; scan by Wellesley College Library)
© The Author(s) 2021 1
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For at least ten years (on and off), Hamilton had been attempting to model (real)
three-dimensional space with a structure like the complex numbers, whose addition
and multiplication occur in two-dimensional space. Just like the complex numbers had
a “real” and “imaginary” part, so too did Hamilton hope to find an algebraic system
whose elements had a “real” and two-dimensional “imaginary” part. In the early part
of the month of October 1843, his sons Archibald Henry and William Edwin Hamilton,
while still very young, would ask their father at breakfast [Ham67, p. xv]: “Well, papa,
can you multiply triplets?” To which Hamilton would reply, “with a sad shake of the
head, ‘No, I can only add and subtract them’” [Ham67, p. xv]. For a history of the
“multiplying triplets” problem—the nonexistence of division algebra over the reals of
dimension 3—see May [May66, p. 290].

'HEn

Figure 1.1.3: William Rowan Hamilton, a sand sculpture by Daniel Doyle,
part of the 2012 Dublin castle exhibition, Irish Science
(© Daniel Doyle; reproduced with permission)

Then, on the dramatic day in 1843, Hamilton’s had a flash of insight [Ham67,
p- xv—xvi], which he described in a letter to Archibald (written in 1865):

On the 16th day of [October]—which happened to be a Monday, and a
Council day of the Royal Irish Academy—I was walking in to attend and
preside, and your mother was walking with me, along the Royal Canal, to
which she had perhaps driven; and although she talked with me now and
then, yet an under-current of thought was going on in my mind, which
gave at last a result, whereof it is not too much to say that I felt at once
the importance. An electric circuit seemed to close; and a spark flashed
forth, the herald (as I foresaw, immediately) of many long years to come
of definitely directed thought and work, by myself if spared, and at all
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events on the part of others, if I should even be allowed to live long
enough distinctly to communicate the discovery. Nor could I resist the
impulse—unphilosophical as it may have been—to cut with a knife on a
stone of Brougham Bridge, as we passed it, the fundamental formula with
the symbols, i, j, k; namely,

2= =k*=ijk=-1

which contains the Solution of the Problem, but of course, as an inscrip-
tion, has long since mouldered away.

In this moment, Hamilton realized that he needed a fourth dimension; he later
coined the term quaternions for the real space spanned by the elements 1, i, j, k, subject
to his multiplication laws. He presented his theory of quaternions to the Royal Irish
Academy in a paper entitled “On a new Species of Imaginary Quantities connected
with a theory of Quaternions” [Ham1843]. Today, we denote this algebra H := R +
Ri + Rj + Rk and call H the ring of Hamilton quaternions in his honor.

This charming story of quaternionic discovery remains in the popular conscious-
ness, and to commemorate Hamilton’s discovery of the quaternions, there is an annual
“Hamilton walk” in Dublin [OCa2010]. Although his carvings have long since worn
away, a plaque on the bridge now commemorates this significant event in mathematical
history (Figure 1.1.4).

| Here as he walked ov |8
| on the 19th of Octobes 1843
SirWilliam Rowan Bamitvon
ina flash of gentus discevered
the fundamental formula for
quaternion multiplication
! spit= | =R = i{R= 1
cutit ona stone of thisbri
ﬁmmp@ra stene gt c\ge a

= —_—

Figure 1.1.4: The Broom Bridge plaque (author’s photo)

For more on the history of Hamilton’s discovery, see the extensive and detailed
accounts of Dickson [Dic19] and Van der Waerden [vdW76]. There are also three
main biographies written about the life of William Rowan Hamilton, a man sometimes
referred to as “Ireland’s greatest mathematician”: by Graves [Grav1882, Grav1885,
Grav1889] in three volumes, Hankins [Hankin80], and O’Donnell [O’Do83]. Numer-
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ous other shorter biographies have been written [DM89, Lanc67, 0OCa2000]. (Certain
aspects of Hamilton’s private life deserve a more positive portrayal, however: see Van
Weerden—Wepster [WW2018].)

160 ELEMENTS OF QUATERNIONS, [Boox 11.

the laws of i, j, k agree with usual and algebraic laws : namely,
in the Associative Property of Multiplication ; or in the pro-
perty that the new symbols always obey the associative for-
mula (comp. 9),
KA = KCA,
whichever of them may be substituted for «, for k, and for A ;
in virtue of which equality of values we may omit the point, in
any such symbol of a ternary product (whether of equal or of’
unequal factors), and write it simply a8 w. In particular
we have thus,
ijk=ii=it=1;  jh=kkeB=-1;

or briefly,
w1,
‘We may, therefore, by 182, establish the following important
Formula :
ek eiha-1; (A)

to which we shall occasionally refer, as to ¢ Formula A,” and
which we shall find to contain (virtually) all the laws of the
symbols ijk, and therefore to be a sufficient symbolical basis
for the whole Calculus of Quaternions :* because it will be
shown that every quaternion can be reduced to the Quadrino-
mial Form, .
g=w+1z +jy + Rz,

where w, , y, z compose a system of four scalars, while i, j, &
are the same three right versors as above.

(1.) A direct proof of the equation, ijk =— 1, may be derived from the definitions
of the symbols in Art. 181. In fact, we have only to remember that those defini-
tions were seen to give, .

* This fe la (A) was dingly made the basis of that Calculus in the first
on the subject, by the present writer, to the Royal Irish Academy in
1848 ; and the letters, i, j, &, continued to be, for some time, the only pecwliar sym-
bols of the calculus in question. But it was gradually found to be useful to incor-
porate with these a few other motations (such as K and U, &c.), for representing
Operations on Quaternions. It was also thought to be instructive to establish the
principles of that Calculus, on a more geometrical (or less exclusively symbolical)
foundation than at first ; which was accordingly afterwards done, in the volome en-
titled : Lectures on Quaternions (Dublin, 1858); and is again atiempted in the pre-
sent work, although with many differ in the adopted plan of exposition, and in
the applications brought forward, or suppressed.

Figure 1.1.5: A page from Hamilton’s Elements of quaternions [Ham1866]
(public domain)

There are several precursors to Hamilton’s discovery that bear mentioning. First,
the quaternion multiplication laws are already implicit in the four-square identity of
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Leonhard Euler (1707-1783):

(@ +a3+ai+a)(bj+b5+b5+b))=ci+c3+c5+c) =
(a1by — asby — azbs — asbs)* + (a1by + axby + azbs — asbs)? (1.1.6)
+ (a1b3 — axba + azby + asbs)* + (a1ba + axbs — azby + asby)>.
Indeed, the full multiplication law for quaternions reads precisely
(a1 + axi + azj + ask)(by + boi + b3j + bak) = c1 + i + 3] + cak

with ¢y, ¢, ¢3, ¢4 as defined in (1.1.6); the four-square identity corresponds to taking a
norm on both sides.

It was perhaps Carl Friedrich Gauss (1777-1855) who first observed this connec-
tion. In a note dated around 1819 [Gau0O], he interpreted the formula (1.1.6) as a
way of composing real quadruples: to the quadruples (ay, az, a3, as) and (by, ba, b3, bs)
in R*, he defined the composite tuple (cy, ¢z, ¢3, ¢4) and noted the noncommutativity
of this operation. Gauss elected not to publish these findings (as he chose not to do
with many of his discoveries). In letters to De Morgan [Grav1885, Grav1889, p. 330,
p- 490], Hamilton attacks the allegation that Gauss had discovered quaternions first.

Finally, Olinde Rodrigues (1795-1851) (of the Rodrigues formula for Legendre
polynomials) gave a formula for the angle and axis of a rotation in R® obtained
from two successive rotations—essentially giving a different parametrization of the
quaternions—but had left mathematics for banking long before the publication of his
paper [Rod1840]. The story of Rodrigues and the quaternions is given by Altmann
[Alt89] and Pujol [Puj2012], and the fuller story of his life is recounted by Altmann—
Ortiz [AO2005]. See also the description by Pujol [Puj2014] of Hamilton’s derivation
of the relation between rotations and quaternions from 1847, set in historical context.

In any case, the quaternions consumed the rest of Hamilton’s academic life and
resulted in the publication of two bulky treatises [Ham1853, Ham1866] (see also the
review [Ham1899]). Hamilton’s mathematical writing over these years, an example of
which can be found in Figure 1.1.5, was at times opaque; nevertheless, many physicists
used quaternions extensively and for a long time in the mid-19th century, quaternions
were an essential notion in physics.

Other figures contemporaneous with Hamilton were also developing vectorial sys-
tems, most notably Hermann Grassmann (1809—1877) [Gras1862]. The modern notion
of vectors was developed by Willard Gibbs (1839-1903) and Oliver Heaviside (1850—
1925), independently. In 1881 and 1884 (in two halves), Gibbs introduced in a pamphlet
Elements of Vector Analysis the now standard vector notation of the cross product and
dot product, with the splendid equality

VW ==V -WH+VXW (1.1.7)

for v,w € Ri + Rj + Rk c H relating quaternionic multiplication on the left to dot and
cross products on the right. (The equality (1.1.7) also appears in Hamilton’s work, but in
different notation.) Gibbs did not consider the quaternion product to be a “fundamental
notion in vector analysis” [Gib1891, p. 512], and argued for a vector analysis that
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would apply in arbitrary dimension; on the relationship between these works, Gibbs
wrote after learning of the work of Grassmann: “I saw that the methods wh[ich] I
was using, while nearly those of Hamilton, were almost exactly those of Grassmann”
[Whe62, p. 108]. For more on the history of quaternionic and vector calculus, see
Crowe [Cro64] and Simons [Sim2010].

The rivalry between physical notations flared into a war in the latter part of the 19th
century between the ‘quaternionists’ and the ‘vectorists’, and for some the preference
of one system versus the other became an almost partisan split. On the side of quater-
nions, James Clerk Maxwell (1831-1879), who derived the equations which describe
electromagnetic fields, wrote [Max 1869, p. 226]:

The invention of the calculus of quaternions is a step towards the knowl-
edge of quantities related to space which can only be compared, for its
importance, with the invention of triple coordinates by Descartes. The
ideas of this calculus, as distinguished from its operations and symbols,
are fitted to be of the greatest use in all parts of science.

And Peter Tait (1831-1901), Hamilton’s “chief disciple” [Hankin80, p. 316], wrote in
1890 [Tai1890] decrying notation and attacking Willard Gibbs (1839-1903):

It is disappointing to find how little progress has recently been made
with the development of Quaternions. One cause, which has been spe-
cially active in France, is that workers at the subject have been more
intent on modifying the notation, or the mode of presentation of the
fundamental principles, than on extending the applications of the Calcu-
lus. ... Even Prof. Willard Gibbs must be ranked as one the retarders of
quaternions progress, in virtue of his pamphlet on Vector Analysis, a sort
of hermaphrodite monster, compounded of the notation of Hamilton and
Grassman.

Game on! On the vectorist side, Lord Kelvin (a.k.a. William Thomson, who formulated
the laws of thermodynamics), said in an 1892 letter to R. B. Hayward about his textbook
in algebra (quoted in Thompson [Tho10, p. 1070]):

Quaternions came from Hamilton after his really good work had been
done; and, though beautifully ingenious, have been an unmixed evil to
those who have touched them in any way, including Clerk Maxwell.

(There is also a rompous fictionalized account by Pynchon in his tome Against the Day
[Pyn2006].) Ultimately, the superiority and generality of vector notation carried the
day, and only certain useful fragments of Hamilton’s quaternionic notation—e.g., the
“right-hand rule” i X j = k in multivariable calculus—remain in modern usage.

1.2 Algebra after the quaternions

The debut of Hamilton’s quaternions was met with some resistance in the mathematical
world: it proposed a system of “numbers” that did not satisfy the usual commutative
rule of multiplication. Quaternions predated even the notion of matrices, introduced in
1855 by Arthur Cayley (1821-1895). Hamilton’s bold proposal of a noncommutative
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multiplication law was the harbinger of a burgeoning array of algebraic structures. In
the words of J.J. Sylvester [Syl1883, pp. 271-272]:

In Quaternions (which, as will presently be seen, are but the simplest
order of matrices viewed under a particular aspect) the example had been
given of Algebra released from the yoke of the commutative principle
of multiplication—an emancipation somewhat akin to Lobachevsky’s of
Geometry from Euclid’s noted empirical axiom; and later on, the Peirces,
father and son (but subsequently to 1858) had prefigured the universal-
ization of Hamilton’s theory, and had emitted an opinion to the effect that
probably all systems of algebraical symbols subject to the associative law
of multiplication would be eventually found to be identical with linear
transformations of schemata susceptible of matriculate representation.

So with the introduction of the quaternions, the floodgates of algebraic possibility had
been opened. See Happel [Hap80] for an overview of the early development of algebra
following Hamilton’s quaternions, as well as the more general history given by Van
der Waerden [vdW85, Chapters 10-11].

The day after his discovery, Hamilton sent a letter [Ham1844] describing the
quaternions to his friend John T. Graves (1806-1870). Graves replied on October 26,
1843, with his compliments, but added:

There is still something in the system which gravels me. I have not yet any
clear views as to the extent to which we are at liberty arbitrarily to create

imaginaries, and to endow them with supernatural properties. ... If with
your alchemy you can make three pounds of gold, why should you stop
there?

Following through on this invitation, on December 26, 1843, Graves wrote to Hamilton
that he had successfully generalized the quaternions to the “octaves”, now called
octonions O, an algebra in eight dimensions, with which he was able to prove that the
product of two sums of eight perfect squares is another sum of eight perfect squares,
a formula generalizing (1.1.6). In fact, Hamilton first invented the term associative in
1844, around the time of his correspondence with Graves. Unfortunately for Graves, the
octonions were discovered independently and published in 1845 by Cayley [Cay1845b],
who often is credited for their discovery. (Even worse, the eight squares identity was
also previously discovered by C. F. Degen.) For a more complete account of this
story and the relationships between quaternions and octonions, see the survey article
by Baez [Bae2002], the article by Van der Blij [vdB60], and the delightful book by
Conway—Smith [CSm2003].

Cayley also studied quaternions themselves [Cay1845a] and was able to reinterpret
them as arising from a doubling process, also called the Cayley—Dickson construction,
which starting from R produces C then H then O, taking the ordered, commuta-
tive, associative algebra R and progressively deleting one adjective at a time. So
algebras were first studied over the real and complex numbers and were accordingly
called hypercomplex numbers in the late 19th and early 20th century. And this theory
flourished. Hamilton himself considered the algebra over C defined by his famous
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equations (1.1.1), calling them biquaternions. In 1878, Ferdinand Frobenius (1849—
1917) proved that the only finite-dimensional associative real division algebras are R,
C, and H [Fro1878]. This result was also proven independently by C.S. Peirce, the
son of Benjamin Peirce, below. Adolf Hurwitz (1859-1919) later showed that the only
normed finite-dimensional not-necessarily-associative real division algebras are R, C,
H, and Q. (The same statement is true without the condition that the algebra be normed,
but currently the proofs use topology, not algebra! Bott—-Milnor [BM58] and Kervaire
[Ker58] proved that the (n — 1)-dimensional sphere {x € R" : lx|*> = 1} has trivial
tangent bundle if and only if there is an n-dimensional not-necessarily-associative
real division algebra if and only if n = 1,2,4, 8. The solution to the Hopf invariant
one problem by Adams also implies this result; an elegant and concise proof using K-
theory, Adams operations, and elementary number theory was given by Adams—Atiyah
[AA66]. See Hirzebruch [Hir91] or Ranicki [Ran2011] for a more complete account.)

In another attempt to seek a generalization of the quaternions to higher dimension,
William Clifford (1845—-1879) developed a way to build algebras from quadratic forms
in 1876 [Cli1878]. Clifford constructed what we now call a Clifford algebra C(V)
associated to V = R" (with the standard Euclidean norm); it is an algebra of dimension
2" containing V with multiplication induced from the relation x> = —||x|* for all
x € V. We have C(R") = C and C(R?) = H, so the Hamilton quaternions arise as a
Clifford algebra—but C(IR?) is not the octonions. The theory of Clifford algebras tightly
connects the theory of quadratic forms and the theory of normed division algebras and
its impact extends in many mathematical directions. For more on the history of Clifford
algebras, see Diek—Kantowski [DK95].

A further physically motivated generalization was pursued by Alexander Macfar-
lane (1851-1913): he developed a theory of what he called hyperbolic quaternions
[Macf00] (a revised version of an earlier, nonassociative attempt [Macf1891]), with
the multiplication laws

P=2=i2=1,

ij = V=1k = —ji, jk=V-li=—kj, ki=V-1j=—ik.

Thought of as an algebra over C = R(V-1), Macfarlane’s hyperbolic quaternions
are isomorphic to Hamilton’s biquaternions (and therefore isomorphic to M,(C)).
Moreover, the restriction of the norm to the real span of the basis 1, , j, k in Macfarlane’s
algebra is a quadratic form of signature (1, 3): this gives a quaternionic version of space-
time, something also known as Minkowski space (but with Macfarlane’s construction
predating that of Minkowski). For more on the history and further connections, see
Crowe [Cro64].

Around this time, other types of algebras over the real numbers were also being
investigated, the most significant of which were Lie algebras. In the seminal work
of Sophus Lie (1842-1899), group actions on manifolds were understood by looking
at this action infinitesimally; one thereby obtains a Lie algebra of vector fields that
determines the local group action. The simplest nontrivial example of a Lie algebra
is the cross product of two vectors, related to quaternion multiplication in (1.1.7): it
defines, a linear, alternating, but nonassociative binary operation on R3 that satisfies

(1.2.1)
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the Jacobi identity emblematized by
IX(GXk)+kx(Axj)+jx(kxi)=0. (1.2.2)

The Lie algebra “linearizes” the group action and is therefore more accessible. Wilhelm
Killing (1847-1923) initiated the study of the classification of Lie algebras in a series
of papers [Kil1888], and this work was completed by Elie Cartan (1869-1951). We
refer to Hawkins [Haw2000] for a description of this rich series of developments.

In this way, the study of division algebras gradually evolved, independent of phys-
ical interpretations. Benjamin Peirce (1809-1880) in 1870 developed what he called
linear associative algebras [Peil 882]; he provided a decomposition of an algebra rel-
ative to an idempotent (his terminology). The first definition of an algebra over an
arbitrary field seems to have been given by Leonard E. Dickson (1874-1954) [Dic03]:
at first he still called the resulting object a system of complex numbers and only later
adopted the name linear algebra.

The notion of a simple algebra had been discovered by Cartan, and Theodor Molien
(1861-1941) had earlier shown in his terminology that every simple algebra over the
complex numbers is a matrix algebra [Mol1893]. But it was Joseph Henry Maclagan
Wedderburn (1882-1948) who was the first to find meaning in the structure of simple
algebras over an arbitrary field, in many ways leading the way forward. The jewel
of his 1908 paper [Wed08] is still foundational in the structure theory of algebras: a
simple algebra (finite-dimensional over a field) is isomorphic to a matrix ring over a
division ring. Wedderburn also proved that a finite division ring is a field, a result that
like his structure theorem has inspired much mathematics. For more on the legacy of
Wedderburn, see Artin [Art50].

In the early 1900s, Dickson was the first to consider quaternion algebras over a
general field [Dic12, (8), p. 65]. He began by considering more generally those algebras
in which every element satisfies a quadratic equation [Dic12], exhibited a diagonalized
basis for such an algebra, and considered when such an algebra can be a division
algebra. This led him to multiplication laws for what he later called a generalized
quaternion algebra [Dicl4, Dic23], with multiplication laws

i’=a, j*=0b k*=—ab,

. L . : L . (1.2.3)
ij=k=—ji, ik=aj=-ki, kj=bi=—jk

with a, b nonzero elements in the base field. (To keep track of these, it is helpful
to write i, j, k around a circle clockwise.) Today, we no longer employ the adjective
“generalized”—over fields other than R, there is no reason to privilege the Hamiltonian
quaternions—and we can reinterpret this vein of Dickson’s work as showing that every
4-dimensional central simple algebra is a quaternion algebra (a statement that holds
even over a field F with char F = 2). See Fenster [Fen98] for a summary of Dickson’s
work in algebra, and Lewis [Lew2006b] for a broad survey of the role of involutions
and anti-automorphisms in the classification of algebras.
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1.3 Quadratic forms and arithmetic

Hamilton’s quaternions also fused a link between quadratic forms and arithmetic,
phrased in the language of noncommutative algebra. Indeed, part of Dickson’s interest
in quaternion algebras stemmed from earlier work of Hurwitz [Hur1898], alluded to
above. Hurwitz had asked for generalizations of the composition laws arising from sum
of squares laws like that of Euler (1.1.6) for four squares and Cayley for eight squares:
for which n does there exist an identity

(af+--~+a,21)(b%+-~+bfl)=cf+~--+c,zl

with each ¢; bilinear in the variables a and b? He then proved [Hur1898] that over a
field where 2 is invertible, these identities exist only for n = 1, 2,4, 8 variables (so in
particular, there is no formula expressing the product of two sums of 16 squares as
the sum of 16 squares). As Dickson [Dic19] further explained, this result of Hurwitz
is intimately tied to the theory of algebras. For more on compositions of quadratic
forms and their history, including theorems of Hurwitz—Radon and Pfister, see Shapiro
[Sha9o0].

Thinking along similar lines, Hurwitz gave a new proof of the four-square theorem
of Lagrange, that every positive integer is the sum of four integer squares: he first wrote
about this in 1896 on quaternionic number theory (“Uber die Zahlentheorie der Quater-
nionen”) [Hur1896], then published a short book on the subject in 1919 [Hur19]. To
this end, Hurwitz considered Hamilton’s equations over the rational numbers and said
that a quaternion ¢+ xi +yj+zk with ¢, x, y, z € Q was an integer if t, x, y, z all belonged
to Z or all to % + Z, conditions for the quaternion to satisfy a quadratic polynomial with
integer coefficients. Hurwitz showed that his ring of integer quaternions, today called
the Hurwitz order, admits a generalization of the Euclidean algorithm and thereby a
factorization theory. He then applied this to count the number of ways of representing
an integer as the sum of four squares, a result due to Jacobi. The notion of integral
quaternions was also explored in the 1920s by Venkov [Ven22, Ven29] and the 1930s by
Albert [Alb34]. Dickson considered further questions of representing positive integers
by integral quaternary quadratic forms [Dic19, Dic23, Dic24] in the same vein.

So by the end of the 1920s, quaternion algebras were used to study quadratic
forms in a kind of noncommutative algebraic number theory [Lat26, Gri28]. It was
known that a (generalized) quaternion algebra (1.2.3) was semisimple in the sense of
Wedderburn, and thus it was either a division algebra or a full matrix algebra over the
ground field. Indeed, a quaternion algebra is a matrix algebra if and only if a certain
ternary quadratic form has a nontrivial zero, and over the rational numbers this problem
was already studied by Legendre. Helmut Hasse (1898—1979) reformulated Legendre’s
conditions: a quadratic form has a nontrivial zero over the rationals if and only if it
has a nontrivial zero over the real numbers and Hensel’s field of p-adic numbers for
all odd primes p. This result paved the way for many further advances, and it is now
known as the Hasse principle or the local-global principle for quadratic forms. For an
overview of this history, see Scharlau [Scha2009, §1].

Further deep results in number theory were soon to follow. Dickson [Dic14] had
defined cyclic algebras, reflecting many properties of quaternion algebras, and in
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1929 lectures Emmy Noether (1882-1935) considered the even more general crossed
product algebras. Not very long after, in a volume dedicated to Hensel’s seventieth
birthday, Richard Brauer (1901-1977), Hasse, and Noether proved a fundamental
theorem for the structure theory of algebras over number fields [BHN31]: every central
division algebra over a number field is a cyclic algebra. This crucial statement had
profound implications for class field theory, the classification of abelian extensions of
a number field, with a central role played by the Brauer group of a number field, a
group encoding its division algebras. For a detailed history and discussion of these
lines, see Fenster—Schwermer [FS2007], Roquette [Roq2006], and the history of class
field theory summarized by Hasse himself [Hass67].

At the same time, Abraham Adrian Albert (1905-1972), a doctoral student of Dick-
son, was working on the structure of division algebras and algebras with involution,
and he had written a full book on the subject [Alb39] collecting his work in the area,
published in 1939. Albert had examined the tensor product of two quaternion algebras,
called a biquaternion algebra (not to be confused with Hamilton’s biquaternions), and
he characterized when such an algebra was a division algebra in terms of a senary (six
variable) quadratic form. Albert’s classification of algebras with involution was moti-
vated by understanding possible endomorphism algebras of abelian varieties, viewed
as multiplier rings of Riemann matrices and equipped with the Rosati involution: a
consequence of this classification is that quaternion algebras are the only noncommu-
tative endomorphism algebras of simple abelian varieties. He also proved that a central
simple algebra admits an involution if and only if the algebra is isomorphic to its oppo-
site algebra (equivalently, it has order at most 2 in the Brauer group). For a biography of
Albert and a survey of his work, see Jacobson [Jacn74]. Roquette argues convincingly
[Roq2006, §8] that because of Albert’s contributions to its proof (for example, his work
with Hasse [AH32]), we should refer to the Albert—Brauer—Hasse—Noether theorem in
the previous paragraph.

1.4 Modular forms and geometry

Quaternion algebras also played a formative role in what began as a subfield of complex
analysis and ordinary differential equations and then branched into the theory of
modular forms—and ultimately became a central area of modern number theory.

Returning to a thread from the previous section, the subject of representing numbers
as the sum of four squares saw considerable interest in the 17th and 18th centuries
[Dic71, Chapter VIII]. Carl Jacobi (1804-1851) approached the subject from the
analytic point of view of theta functions, the basic building blocks for elliptic functions;
these were first studied in connection with the problem of the arc length of an ellipse,
going back to Abel. Jacobi studied the series

0(t) := Z exprin®t) =1 +2q +2¢* +2¢° + ... (1.4.1)

n=—oo

where 7 is a complex number with positive imaginary part and ¢ = exp(2xit). Jacobi
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proved the remarkable identity

0(r)* = Z g Z 4 g Z o (n)q", (14.2)
a,b,c,d€l. n=1

where 0*(n) := XYgyq), d is the sum of divisors of n not divisible by 4. In this way,
Jacobi gave an explicit formula for the number of ways of expressing a number as the
sum of four squares. For a bit of history and an elementary derivation in the style of
Gauss and Jacobi, see Ewell [Ewe82].

As a Fourier series, the Jacobi theta function 6 (1.4.1) visibly satisfies 8(7 + 1) =
0(t). Moreover, owing to its symmetric description, Jacobi showed using Poisson
summation that 6 also satisfies the transformation formula

0(-1/7) = \r/i 6(r). (1.4.3)

Felix Klein (1849-1925) saw geometry in formulas like (1.4.3). In his Erlangen Pro-
gram (1872), he recast 19th century geometry in terms of the underlying group of
symmetries, unifying Euclidean and non-Euclidean formulations. Turning then to
hyperbolic geometry, he studied the modular group SL,(Z) acting by linear fractional
transformations on the upper half-plane, and interpreted transformation formulas for
elliptic functions: in particular, Klein defined his absolute invariant J(7) [Kle1878], a
function invariant under the modular group. Together with his student Robert Fricke
(1861-1930), this led to four volumes [FK1890-2, FK1897, FK12] on elliptic modular
functions and automorphic functions, combining brilliant advances in group theory,
number theory, geometry, and invariant theory (Figure 1.4.4).

A7

Figure 1.4.4: The (2, 3, 7)-tiling by Fricke and Klein [FK1890-2]
(public domain)
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At the same time, Henri Poincaré (1854-1912) brought in the theory of linear
differential equations—and a different, group-theoretic approach. In correspondence
with Fuchs in 1880 on hypergeometric differential equations, he writes about the
beginnings of his discovery of a new class of analytic functions [Gray2000, p.177]:

They present the greatest analogy with elliptic functions, and can be
represented as the quotient of two infinite series in infinitely many ways.
Amongst those series are those which are entire series playing the role of
Theta functions. These converge in a certain circle and do not exist outside
it, as thus does the Fuchsian function itself. Besides these functions there
are others which play the same role as the zeta functions in the theory
of elliptic functions, and by means of which I solve linear differential
equations of arbitrary orders with rational coefficients whenever there are
only two finite singular points and the roots of the three determinantal
equations are commensurable.

As he reminisced later in his Science et Méthode [Poil908, p. 53]:

I then undertook to study some arithmetical questions without any great
result appearing and without expecting that this could have the least con-
nection with my previous researches. Disgusted with my lack of success,
I went to spend some days at the sea-side and thought of quite different
things. One day, walking along the cliff, the idea came to me, always with
the same characteristics of brevity, suddenness, and immediate certainty,
that the arithmetical transformations of ternary indefinite quadratic forms
were identical with those of non-Euclidean geometry.

In other words, like Klein, Poincaré launched a program to study complex analytic
functions defined on the unit disc that are invariant with respect to a discrete group
of matrix transformations that preserve a rational indefinite ternary quadratic form.
Today, such groups are called arithmetic Fuchsian groups, and we study them as unit
groups of quaternion algebras. To read more on the history of differential equations
in the time of Riemann and Poincaré, see the history by Gray [Gray2000], as well as
Gray’s scientific biography of Poincaré [Gray2013].

In the context of these profound analytic discoveries, Erich Hecke (1887-1947)
began his study of modular forms. He studied the Dedekind zeta function, a gener-
alization of Riemann’s zeta function to number fields, and established its functional
equation using theta functions. In the study of similarly defined analytic functions
arising from modular forms, he was led to define the “averaging” operators acting on
spaces of modular forms that now bear his name. In this way, he could interpret the
Fourier coefficients a(n) of a Hecke eigenform (normalized, weight 2) as eigenvalues
of his operators: he proved that they satisfy a relation of the form

a(mya(n) = Z a(mn/d®)d (1.4.5)
dlged(m,n)

and consequently a two-term recursion relation. He thereby showed that the Dirichlet
L-series of an eigenform, defined via Mellin transform, has an Euler product, analytic
continuation, and functional equation.
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Hecke went further, and connected the analytic theory of modular forms and his
operators to the arithmetic theory of quadratic forms. In 1935-1936, he found that for
certain systems of quaternary quadratic forms, the number of representations of integers
by the system satisfied the recursion (1.4.5), in analogy with binary quadratic forms.
He published a conjecture on this subject in 1940 [Hec40, Satz 53, p. 100]: that the
weighted representation numbers satisfy the Hecke recursion, connecting coefficients
to operators on theta series, and further that the columns in a composition table always
result in linearly independent theta series. He verified the conjecture up to prime level
g < 37, but was not able to prove this recursion using his methods of complex analysis
(see his letter [Bra41, Footnote 1]).

The arithmetic part of these conjectures was investigated by Heinrich Brandt (1886—
1954) in the quaternionic context—and so the weave of our narrative is further tightly
sewn. Preceding Hecke’s work, and inspired by Gauss composition of binary quadratic
forms as the product of classes of ideals in a quadratic field, Brandt had earlier
considered a generalization to quaternary quadratic forms and the product of classes
of ideals in a quaternion algebra [Bra28]: he was only able to define a partially defined
product, and so he coined the term groupoid for such a structure [Bra40]. He then
considered the combinatorial problem of counting the ways of factoring an ideal into
prime ideals, according to their classes. In this way, he recorded these counts in a
matrix 7'(n) for each positive integer n, and he proved strikingly (sketched in 1941
[Bra41], dated 1939, and proved completely in 1943 [Bra43]) that the matrices 7'(n)
satisfy Hecke’s recursion (1.4.5). To read more on the life and work of Brandt, see
Hoehnke—Knus [HK2004]. Today we call the matrices T'(n) Brandt matrices, and for
certain purposes, they are still the most convenient way to get ahold of spaces of
modular forms.

Martin Eichler (1912-1992) wrote his thesis [Eic36] under the supervision of
Brandt on quaternion orders over the integers, in particular studying the orders that
now bear his name. Later he continued the grand synthesis of modular forms, quadratic
forms, and quaternion algebras, viewing in generality the orthogonal group of a
quadratic form as acting via automorphic transformations [Eic53]. In this vein, he
formulated his basis problem (arising from the conjecture of Hecke) which sought
to understand explicitly the span of quaternionic theta series among classical modu-
lar forms, giving a correspondence between systems of Hecke eigenvalues appearing
in the quaternionic and classical context. He answered the basis problem in affir-
mative for the case of prime level in 1955 [Eic56a] and then for squarefree level
[Eic56b, Eic58, Eic73]. For more on Eichler’s basis problem and its history, see
Hijikata—Pizer—Shemanske [HPS89a].

Having come to recent history, our account now becomes much more abbreviated:
we provide further commentary in sifu in remarks in the rest of this text, and we
conclude with just a few highlights. In the 1950s and 1960s, there was subtantial
work done in understanding zeta functions of certain varieties arising from quaternion
algebras over totally real number fields. For example, Eichler’s correspondence was
generalized to totally real fields by Shimizu [Shz65]. Shimura embarked on a deep and
systematic study of arithmetic groups obtained from indefinite quaternion algebras
over totally real fields, including both the arithmetic Fuchsian groups of Poincaré,
Fricke, and Klein, and the generalization of the modular group to totally real fields
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studied by Hilbert. In addition to understanding their zeta functions, he also formulated
a general theory of complex multiplication in terms of automorphic functions; as a
consequence, he found the corresponding arithmetic quotients can be defined as an
algebraic variety with equations defined over a number field—and so today we refer to
quaternionic Shimura varieties. For an overview of Shimura’s work, see his lectures
at the International Congress of Mathematicians in 1978 [Shi80]. As it turns out,
quaternion algebras over number fields also give rise to arithmetic manifolds that are
not algebraic varieties, and they are quite important in the areas of spectral theory,
low-dimensional geometry, and topology—in particular, in Thurston’s geometrization
program for hyperbolic 3-manifolds and in classifying knots and links.

Just as the Hecke operators determine the coefficients of classical modular forms
and Dirichlet L-series, they may be vastly generalized, replacing modular groups
by other algebraic groups, such as the group of units in a central simple algebra or
the orthogonal group of a quadratic form. Understanding the theory of automorphic
forms in this context is a program that continues today: formulated in the language
of automorphic representations, and seen as a nonabelian generalization of class field
theory, Langlands initiated this program in a letter to Weil in January 1967. It is
indeed fitting that an early success of the Langlands program [Gel84, B+2003] would
be on the subject of quaternion algebras: a generalization of the Eichler—Shimizu
correspondence to encompass arbitrary quaternion algebras over number fields was
achieved in foundational work by Jacquet-Langlands [JL70] in 1970. For more on the
modern arithmetic history of modular forms, see Edixhoven—Van der Geer-Moonen
[EGM2008]; Alsina—Bayer [AB2004, Appendices B—C] also give references for further
applications of quaternion algebras in arithmetic geometry (in particular, of Shimura
curves).

1.5 Conclusion

We have seen how quaternion algebras have threaded mathematical history through to
the present day, weaving together advances in algebra, quadratic forms, number theory,
geometry, and modular forms. And although our history ends here, the story does not!

Quaternion algebras continue to arise in unexpected ways. In the arithmetic setting,
quaternion orders arise as endomorphism rings of supersingular elliptic curves and
have been used in proposed post-quantum cryptosystems and digital signature schemes
(see for example the overview by Galbraith—Vercauteren [GV2018]). In the field of
quantum computation, Parzanchevski—Sarnak [PS2018] have proposed Super-Golden-
Gates built from certain special quaternion algebras and their arithmetic groups that
would give efficient 1-qubit quantum gates. In coding theory, lattices in quaternion
algebras (and more generally central simple algebras over number fields) yield space-
time codes that achieve high spectral efficiency on wireless channels with two transmit
antennas, currently part of certain IEEE standards [BO2013].

Quaternions have also seen a revival in computer graphics, modeling, and animation
[HFK94, Sho85]. Indeed, a rotation in R? about an axis through the origin can be
represented by a 3 x 3 orthogonal matrix with determinant 1, conveniently encoded in
Euler angles. However, the matrix representation is redundant, as there are only three
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degrees of freedom in such a rotation. Moreover, to compose two rotations requires the
product of the two corresponding matrices, which requires 27 multiplications and 18
additions in R. Quaternions, on the other hand, represent this rotation with a 4-tuple,
and multiplication of two quaternions takes only 16 multiplications and 12 additions
in R (if done naively). In computer games, quaternion interpolation provides a way
to smoothly interpolate between orientations in space—something crucial for fighting
Nazi zombies. Quaternions are also vital for attitude control of aircraft and spacecraft
[Hans2006]: they avoid the ambiguity that can arise when two rotation axes align,
leading to a potentially disastrous loss of control called gimbal lock.

In quantum physics, quaternions yield elegant expressions for Lorentz transforma-
tions, the basis of the modern theory of relativity [Gir83]. Some physicists are now
hoping to find deeper understanding of these principles of quantum physics in terms
of quaternions. And so, although much of Hamilton’s quaternionic physics fell out of
favor long ago, we have come full circle in our elongated historical arc. The enduring
role of quaternion algebras as a catalyst for a vast range of mathematical research
promises rewards for many years to come.

Exercises

1. Hamilton sought a multiplication * : R? x R?> — R3 that preserves length:
2 2 2
[vlI” - lwll = v = wil

for v,w € R3. Expanding out in terms of coordinates, such a multiplication
would imply that the product of the sum of three squares over R is again the sum
of three squares in R. (Such a law holds for the sum of four squares (1.1.6).)
Show that such a formula for three squares is impossible as an identity in the
polynomial ring in 6 variables over Z. [Hint: Find a natural number that is the
product of two sums of three squares which is not itself the sum of three squares. |

2. Hamilton originally sought an associative multiplication law on
D:=R+Ri+Rj =R’

where i2 = —1 and every nonzero element of D has a (two-sided) inverse. Show
this cannot happen in two (not really different) ways.

(a) Ifij = a + bi + cj with a, b, ¢ € R, multiply on the left by i and derive a
contradiction.

(b) Show that D is a (left) C-vector space, so D has even dimension as an
R-vector space, a contradiction.

3. Show that there is no way to give R? the structure of a ring (with 1) in which
multiplication respects scalar multiplication by R, i.e.,

x-(cy)=c(x-y)=(cx)-y forallcE]Randx,yE]R3

and every nonzero element has a (two-sided) inverse, as follows.
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(a) Suppose B := R? is equipped with a multiplication law that respects scalar
multiplication. Show that left multiplication by o € B is R-linear and «
satisfies the characteristic polynomial of this linear map, a polynomial of
degree 3.

(b) Now suppose that every nonzero a € B has an inverse. By consideration
of eigenvalues or the minimal polynomial, derive a contradiction. [Hint:
show that the characteristic polynomial has a real eigenvalue, or that
every a € B satisfies a (minimal) polynomial of degree 1, and derive a
contradiction from either statement. |
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Chapter 2

Beginnings

In this chapter, we define quaternion algebras over fields by giving a multiplication
table, following Hamilton; we then consider the classical application of understanding
rotations in R3.

2.1 » Conventions

Throughout this text (unless otherwise stated), we let F' be a (commutative) field with
algebraic closure F?!,

When G is a group, and H C G is a subset, we write H < G when H is a subgroup
and H < G when H is a normal subgroup; if G is abelian (written multiplicatively), we
write G2 := {g" : g € G} < G for the subgroup of squares.

We suppose throughout that all rings are associative, not necessarily commutative,
with multiplicative identity 1, and that ring homomorphisms preserve 1. In particular, a
subring of a ring has the same 1. For a ring A, we write A* for the multiplicative group
of units of A. An algebra over the field F is a ring Bequipped with a homomorphism
F — B such that the image of F lies in the center Z(B) of B, defined by

Z(B) :={a € B: aff = Ba for all B € B}; (2.1.1)

if Z(B) = F, we say B is central (as an F-algebra). We write M,,(F) for the F-algebra
of n X n-matrices with entries in F.

One may profitably think of an F-algebra as being an F-vector space that is also
compatibly a ring. If the F-algebra B is not the zero ring, then its structure map F — B
is necessarily injective (since 1 maps to 1) and we identify F with its image; keeping
track of the structure map just litters notation. The dimension dimg B of an F-algebra
B is its dimension as an F-vector space.

A homomorphism of F-algebras is a ring homomorphism which restricts to the
identity on F. An F-algebra homomorphism is necessarily F-linear. An F-algebra
homomorphism B — B is called an endomorphism. By convention (and as usual for
functions), endomorphisms act on the left. An invertible F-algebra homomorphism
B = B’ is called an isomorphism, and an invertible endomorphism is an automor-
phism.
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The set of automorphisms of B forms a group, which we write as Aut(B)—these
maps are necessarily F-linear, but we do not include this in the notation. reserve the
notation Endg (V) for the ring of F-linear endomorphisms of the F-vector space V,
and Autg (V) for the group of F-linear automorphisms of V; in particular, Endg(B) ~
M, (F) if n = dimp B.

Remark 2.1.2. Throughout, whenever we define a homomorphism of objects, we adopt
the (categorical) convention extending this to the terms endomorphism (homomor-
phism with equal domain and codomain), isomorphism (invertible homomorphism),
and automorphism (invertible endomorphism).

A division ring (also called a skew field) is a ring D in which every nonzero
element has a (two-sided) inverse, i.e., D\{0} is a group under multiplication. A
division algebra is an algebra that is a division ring.

2.2 > Quaternion algebras

In this section, we define quaternion algebras in a direct way, via generators and
relations. Throughout the rest of this chapter, suppose that char FF # 2; the case
char F' = 2 is treated in Chapter 6.

Definition 2.2.1. An algebra B over F is a quaternion algebra if there exist i, j € B
such that 1,4, j,ij is an F-basis for B and

i’=a, j>=0b, and ji = —ij (2.2.2)
for some a, b € F*.

The entire multiplication table for a quaternion algebra is determined by the mul-
tiplication rules (2.2.2), linearity, and associativity: for example,

@) = ()aj) = i(jDj = i(=ij)j = =G*)(?) = —ab
and j(ij) = (=ij)j = —bi. Conversely, given a, b € F*, one can write down the unique

possible associative multiplication table on the basis 1,7, j, k compatible with (2.2.2),
and then verify independently that it is associative (Exercise 2.1). Accordingly, for

,b .
a, b € F*, we define (aT) to be the quaternion algebra over F with F-basis 1,1, j,ij

subject to the multiplication (2.2.2); we will also write (a, b | F) when convenient for
formatting. By definition, we have dimg(a, b | F) = 4.

»b b7
The map which interchanges i and j gives an isomorphism (%) ~ (Ta)’

so Definition 2.2.1 is symmetric in a, b. The elements a, b are far from unique in
determining the isomorphism class of a quaternion algebra: see Exercise 2.4.
If K 2 F is a field extension of F, then there is a canonical isomorphism

a,b a, b
— | ®r K =~ | —
(% )or e~ (%)
extending scalars (same basis, but now spanning a K-vector space), so Definition 2.2.1
behaves well with respect to inclusion of fields.
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- L

1
Example 2.2.3. The R-algebra H := ) is the ring of quaternions over the real

numbers, discovered by Hamilton; we call H the ring of (real) Hamiltonians (also
known as Hamilton’s quaternions).

Example 2.2.4. The ring M, (F) of 2 x 2-matrices with coefficients in F is a quaternion

1,1
algebra over F: there is an isomorphism (’7) = My(F) of F-algebras induced by

(ro0) (o1
=lo 1)/ o)

If F = F is algebraically closed and B is a quaternion algebra over F, then
necessarily B =~ M, (F) (Exercise 2.4). Consequently, every quaternion algebra B over
F has B®p F¥ ~ My(F).

A quaternion algebra B is generated by the elements i, j by definition (2.2.2). How-
ever, exhibiting an algebra by generators and relations (instead of by a multiplication
table) can be a bit subtle, as the dimension of such an algebra is not a priori clear. But
working with presentations is quite useful; and at least for quaternion algebras, we can
think in these terms as follows.

Lemma 2.2.5. An F-algebra B is a quaternion algebra if and only if there exist nonzero
i, j € B that generate B as an F-algebra and satisfy

2

i’=a, j>=0b, and ij = —ji (2.2.6)

with a,b € F*.

In other words, once the relations (2.2.6) are satisfied for generators i, j, then
automatically B has dimension 4 as an F-vector space, with F-basis 1,1, j,ij.

Proof. 1t is necessary and sufficient to prove that the elements 1,7, j,ij are linearly
independent. Suppose that @ = ¢ + xi + yj + zij = 0 with #,x,y,z € F. Using the
relations given, we compute that

0 =i(ai +ia) = 2a(t + xi).

Since char F' # 2 and a # 0, we conclude that # + xi = 0. Repeating with j and ij, we
similarly find that # + yj = ¢ + zij = 0. Thus

a—(+xi)—(+yj)—(@+2zij)=-2t=0.

Since i, j are nonzero, B is not the zero ring, so 1 # 0; thus # = 0 and so xi = yj =
zij = 0. Finally, if x # 0, theni = 0 so iZ2=0=aq, impossible; hence x = 0. Similarly,
y=2z=0. O

Accordingly, we will call elements i, j € B satisfying (2.2.6) standard generators
for a quaternion algebra B.
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Remark 2.2.7. Invertibility of both a and b in F is needed for Lemma 2.2.5: the
commutative algebra B = F[i, j1/(i, j)* is generated by the elements i, j satisfying
i> = j2 = ij = —ji = 0 but B is not a quaternion algebra.

Remark 2.2.8. In light of Lemma 2.2.5, we will often drop the symbol k = ij and
reserve it for other use. (In particular, in later sections we will want k to represent other
quaternion elements.) If we wish to use this abbreviation, we will assign k := ij.

2.3 > Matrix representations

Every quaternion algebra can be viewed as a subalgebra of 2 X 2-matrices over an at
most quadratic extension; this is sometimes taken to be the definition!

,b
Proposition 2.3.1. Let B := (%) be a quaternion algebra over F and let F(+a) be
a splitting field over F for the polynomial x> — a, with root \Ja € F(\Ja). Then the map
A: B = May(F(Va))
.. Va 0 0 b
bI ( 0 —va’\t o

S t+xva b(y+zVa)
t+xz+y]+zlj'_>(y—z\/a t—x\/E

is an injective F-algebra homomorphism and an isomorphism onto its image.

(2.3.2)

Proof. Injectivity follows by checking ker 4 = {0} on matrix entries, and the homo-
morphism property can be verified directly, checking the multiplication table (Exercise
2.10). O

Remark 2.3.3. Proposition 2.3.1 can be turned around to assert the existence of quater-
nion algebras: one can check that the set

b
(Lo 20 2) ecerf e

is an F-vector subspace of dimension 4, closed under multiplication, with the matrices
A(Q), A(j) satisfying the defining relations (2.2.2).

2.34.1fa ¢ F*?, then K = F(+a) 2 F is a quadratic extension of F. Let Gal(K | F) =
Autp(K) =~ Z/27 be the Galois group of K over F and let o € Gal(K|F) be the
nontrivial element. Then we can rewrite the image A(B) in (2.3.2) as

u by
AB) = {(U(V) U(M)) SuvE K} C My(K). (2.3.5)
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Corollary 2.3.6. We have an isomorphism
I,b ~
—_— My (F
( 7 ) — Ma(F)

(10 [0 b
L1710 —1)\1 o

Proof. Specializing Proposition 2.3.1, we see the map is an injective F-algebra homo-
morphism, so since dimgp B = dimp M,(F) = 4, the map is also surjective. O

(2.3.7)

The provenance of the map (2.3.2) is itself important, so we now pursue another
(more natural) proof of Proposition 2.3.1.

2.3.8. Let
K := Flil| = F® Fi ~ F[x]/(x> — a)

be the (commutative) F-algebra generated by i. Suppose first that K is a field (so
a ¢ F*?): then K ~ F(+/a) is a quadratic field extension of F. The algebra B has the
structure of a right K-vector space of dimension 2, with basis 1, j: explicitly,

a=t+xi+yj+zij=0C+xD)+j(y—-z2) € KD jK

for all @ € B, so B = K & jK. We then define the left regular representation of B
over K by
A: B — Endg(B)

a (g B af).

Each map A, is indeed a K-linear endomorphism in B (considered as a right K-vector
space) by associativity in B: forall @, 8 € Band w € K,

Aa(Bw) = a(Bw) = (@B)w = Aa(B)W.

Similarly, A is an F-algebra homomorphism: for all @, 5, v € B

Aap(vV) = (@B)v = a(B(v)) = (Aadp)(V)
reading functions from right to left as usual. The map A is injective (4 is a faithful
representation) since 1, = 0 implies 1,(1) = @ = 0.
In the basis 1, j we have Endg (B) ~ M»(K), and A is given by

(2.3.9)

iH@=% ﬁ’jHM:G @; (2.3.10)

these matrices act on column vectors on the left. We then recognize the map A given
in (2.3.2).

If K is not a field, then K =~ F X F, and we repeat the above argument but with
B a free module of rank 2 over K; then projecting onto one of the factors (choosing
va € F) gives the map A, which is still injective and therefore induces an F-algebra
isomorphism B =~ M, (F).
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Remark 2.3.11. In Proposition 2.3.1, B acts on columns on the left; if instead, one
wishes to have B act on the right on rows, give B the structure of a left K-vector space
and define accordingly the right regular representation instead (taking care about the
order of multiplication).

2.3.12. In some circumstances, it can be notationally convenient to consider variants
of the injection (2.3.2): for example

B — My(F(Va))

t+ x\/E y+ z\/E (2.3.13)
b(y —zva) t-xva

t+xi+yj+zij—

is obtained by taking the basis 1, 57!}, equivalently postcomposing by ((1) 2) See

also Exercise 2.12.

Remark 2.3.14. The left regular representation 2.3.8 is not the only way to embed B
as a subalgebra of 2 x 2-matrices. Indeed, the “splitting” of quaternion algebras in
this way, in particular the question of whether or not B = M, (F), is a theme that will
reappear throughout this text. For a preview, see Main Theorem 5.4.4.

2.3.15. Thinking of a quaternion algebra as in 2.3.8 as a right K-vector space suggests
notation for quaternion algebras that is also useful: for a peek, see 6.1.5.

2.4 > Rotations

To conclude this chapter, we return to Hamilton’s original design: quaternions model
rotations in 3-dimensional space. This development is not only historically important
but it also previews many aspects of the general theory of quaternion algebras over
fields. In this section, we follow Hamilton and take k :=ij.

Proposition 2.3.1 provides an R-algebra embedding
A: H < Endc(H) = M(C)
f+xi —y- zi) _ (u —V) (2.4.1)

VvV ou

t+xl+y]+zk:u+]vr—>(y_zi [ i _

where u :=t + xi and v := y + zi and ~ denotes complex conjugation. (The abuse of
notation, taking i € H as well as i € C is harmless: we may think of C c H.) We have

u %
det(v ﬁ) =P+ P =2+ 2+ + 5

thus H* = H\{0}. If preferred, see (2.3.13) to obtain matrices of the form (_MV ;)

instead.
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2.4.2. We define the subgroup of unit Hamiltonians as
H' :=(r+xi+yj+zkeH: >+ x> +y*+ 22 =1}.

(In some contexts, one also writes GL; (H) = H* and SL;(H) = H'.)

As a set, the unit Hamiltonians are naturally identified with the 3-sphere in R*. As
groups, we have an isomorphism H! ~ SU(2) with the special unitary group of rank
2, defined by

SU®n) :={A e SL,(C): A*=A""} ={AeSL,(C): JA=AJ} (2.4.3)

where A* = A' is the (complex) conjugate transpose of A and J := ((l) _01) is the

image of j € H'.

Definition 2.4.4. Let @ € H. We say « is real if @ € R, and we say « is pure (or
imaginary) if @ € Ri + Rj + Rk.

2.4.5. Just as for the complex numbers, every element of H is the sum of its real
part and its pure (imaginary) part. And just like complex conjugation, we define a
(quaternion) conjugation map

TTH-H
L _ S (2.4.6)
a=t+xi+yj+zk)a=t-(xi+yj+zk)
by negating the imaginary part. We compute that
a+a=tr(l(a)) =2t
(2.4.7)

llel? := det(A(a)) = a@ = @a = 1> + x> + y> + 2%

The notation || || is used to indicate that it agrees the usual square norm on H ~ R4.

The conjugate transpose map on M;(C) restricts to quaternion conjugation on the
image of H in (2.4.1), also known as adjugation

a:(ﬁ __V).—ul(a)z(”_ V).

vV ou -V u

Thus the elements @ € H such that A(@) = A(a) (i.e., A* = A, and we say A is
Hermitian), are exactly the scalar (real) matrices; and those that are skew-Hermitian,
i.e., A* = —A, are exactly the pure quaternions. The conjugation map plays a crucial
role for quaternion algebras and is the subject of the next chapter (Chapter 3), where

to avoid confusion with other notions of conjugation we refer to it as the standard
involution.

2.4.8. Let

HO:={v=xi+yj+zkeH:xyzeR}~R>
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be the set of pure Hamiltonians, the three-dimensional real space on which we will soon
see that the (unit) Hamiltonians act by rotations. (The reader should not confuse v € HP
with v the entry of a 2 x 2-matrix in a local instantiation above.) For v € H° ~ R3,

VI =+ y? + 2% = det(A(v), (2.4.9)

and from (2.4.1),
H ={v eH: tr(A(v)) = v + 7V = 0}.

We again see that v = —v for v € HC.

The set HO is not closed under multiplication: if v,w € HO, then
VW=—=V-WH+VXW (2.4.10)

where v - w is the dot product on R? and v x w € H? is the cross product, defined as
the determinant

i Jj k
vXw=det|vy v v3 (2.4.11)
Wi wy w3
where v = vii + voj + v3k and w = wii + wyj + w3k, so
VW =viw +Vvowy + Vviws

and
VX W= (w3 —vawp)i + (V3w —viws)j + (viwa — vawy)k.

The formula (2.4.10) is striking: it contains three different kinds of ‘multiplications’!

Lemma 2.4.12. For all v,w € HC, the following statements hold.

(a) vw € HO if and only if v, w are orthogonal.
(b) v2 = —[v|* € R.

(c) wv = —vw if and only if v,w are orthogonal.

Proof. Apply (2.4.10). O

2.4.13. The group H! acts on our three-dimensional space H (on the left) by conju-
gation:

H'OH - H°
(2.4.14)

vn—>avof';

indeed, tr(A(ava ™)) = tr(A(v)) = 0 by properties of the trace, so ava~! e HY. Or
H° = {v e H: v? € Rep}

and this latter set is visibly stable under conjugation. The representation (2.4.14) is
called the adjoint representation.
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2.4.15. Let @ € H'\{%1}. Then there exists a unique 6 € (0, ) such that

a=t+xi+yj+zk=cosé + (sin6)(a) (2.4.16)
where I(@) is pure and ||I(@)|| = 1: to be precise, we take 6 such that cos§ = ¢ and
I@) = xi+'yj+zk
|sin 6|

We call I(«) the axis of a, and observe that I(@)? = —1.

Remark 2.4.17. In analogy with Euler’s formula, we can write (2.4.16) as
a = exp({(a)09).

We are now prepared to identify this action by quaternions with rotations. As usual,
let
O(n) :={A e M,(R): A* = A7}

be the orthogonal group of R” (preserving the standard inner product), and let
SO(n) :={A € O(n) : det(A) = 1} < O(n)

to be the special orthogonal group of rotations of R", a normal subgroup of index 2
fitting into the exact sequence

1 - SO(n) — O(n) <4 (+1} — 1.

Proposition 2.4.18. H' acts by rotation on H® ~ R3 via conjugation (2.4.14): specifi-
cally, a acts by rotation through the angle 260 about the axis I(«).

Proof. Let & € H'\{+1}. Then for all v € H?,
llave™|* = vII*

by (2.4.9), so a acts by a matrix belonging to O(3).

But we can be more precise. Let j* € H be a unit vector orthogonal to i’ = I().
Then (i)*> = (j’)> = —1 by Lemma 2.4.12(b) and j’i’ = —i’j’ by Lemma 2.4.12(c), so
without loss of generality we may suppose that I(«) =i and j' = j. Thus @ =t + xi =
cos 0 + (sin 0)i with 12 + x2 = cos2 @ +sin260 = 1, and ¢~ = ¢ — xi.

We have aia~! =i, and

ajat = (1 + xi)j(t — xi) = (¢ + xi)(t + xi)j

5 (2.4.19)
=((t" — x7) + 2txi)j = (cos26)j + (sin20)k
by the double angle formula. Consequently,
aka ! =i(aja™") = (—sin20)j + (cos 20)k
so the matrix of « in the basis i, j, k is
1 0 0
A=[0 cos20 —sin26]|, (2.4.20)

0 sin26 cos260

a (counterclockwise) rotation (determinant 1) through the angle 26 about i. m]
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Corollary 2.4.21. The action (2.4.13) defines a group homomorphism H' — SO(3),
fitting into an exact sequence

1 > {1} > H' - SO3) > 1.

Proof. The map H' - SO(@3) is surjective, since every element of SO(3) is rotation
about some axis (Exercise 2.15). If @ belongs to the kernel, then @ = cos 6 + (sin 6)I(«@)
must have sinf = 0 so a = +1. O

2.4.22. The matrix representation of H in section 2.4 extends to a matrix representation
of H®g C, and this representation and its connection to unitary matrices is still used
widely in quantum mechanics. In the embedding with

S L T S R (O
Zlo -] T\ o) i 0

whose images are unitary matrices, we multiply by —i to obtain Hermitian matrices

(1 o (0 =i (o 1
=0 -1 T o) T o

where o7, 0y, 0, are the famous Pauli spin matrices. Because of this application to
the spin (a kind of angular momentum) of an electron in particle physics, the group
H' also goes by the name H' ~ Spin(3).

The extra bit of information conveyed by spin can also be seen by the “belt trick”
[Hans2006, Chapter 2].

2.4.23. We conclude with one final observation, returning to the formula (2.4.10).
There is another way to mix the dot product and cross product (2.4.11) in H: we define
the scalar triple product

HxHxH-R

(2.4.24)
(u,vyw)y—> u- (v Xw).

Amusingly, this gives a way to “multiply” triples of triples! The map (2.4.24) defines
an alternating, trilinear form (Exercise 2.19). If u,v,w € HO, then the scalar triple
product is a determinant

u-(wvxw)y=det|lvy va 3
wp w2 w3

and |u - (v X w)| is the volume of a parallelepiped in R whose sides are given by u, v, w.

Exercises

Let F be a field with char F # 2.
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> 1.

>4,

S.

> 7.

Show that a (not necessarily associative) F-algebra is associative if and only if
the associative law holds on a basis, and then check that the multiplication table
implied by (2.2.2) is associative.

. Show that if B is an F-algebra generated by i,j € B and 1,i,j are linearly

dependent, then B is commutative.

L1y o
. Verify directly that the map (’T) — Mj(F) in Example 2.2.4 is an isomor-

phism of F-algebras.

Leta, b e F*.
] b s b b, - b
(a) Show that (a_) ~ (a a ) ~ ( a )
F F F
b 2 bd?
(b) Show that if ¢, d € F* then “T ~ “CF . Conclude that if F*/F*2

is finite, then there are only finitely many isomorphism classes of quater-
nion algebras over F, and in particular that if F**> = F* then there is only

1,1
one isomorphism class (7) ~ Mj,(F). [The converse is not true, see

Exercise 3.16.]
a,b

(c) Show that if B = (E) is a quaternion algebra over R, then B =~ M(R)

or B ~ Hi, the latter occurring if and only if a < 0 and b < 0. Conclude
that if B is a division quaternion algebra over R, then B ~ H.

(d) Let B be a quaternion algebra over F. Show that B ® F& ~ M,(F),
where F? is an algebraic closure of F.

(e) Refine part (d) as follows. A field K 2 F is a splitting field for B if
B ®p K ~ M(K). Show that B has a splitting field K with [K : F] < 2.

b
LetB = (a?) be a quaternion algebra over F. Let i’ € B\F satisfy (i')’> = a’ €

’ 4

b
F*. Show that there exists »* € F* and an isomorphism B = (aF ) (under

which i’ maps to the first standard generator).

b}

-1,-1
Use the quaternion algebra B = (T), multiplicativity of the determinant,

and the left regular representation (2.3.2) to show that if two elements of F can
be written as the sum of four squares, then so too can their product (a discovery
of Euler in 1748). [In Chapter 3, this statement will follow immediately from the
multiplicativity of the reduced norm on B; here, the formula is derived easily
from multiplicativity of the determinant.]

Let B be an F-algebra. Show that if B is a quaternion algebra over F, then B is
central.
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> 8.

> 9.

> 10.

11.

12.

13.
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Let A, B be F-algebras, and let ¢: A — B be a surjective F-algebra homomor-
phism. Show that ¢ restricts to an F-algebra homomorphism Z(A) — Z(B).

Prove the following partial generalization of Exercise 2.4(b). Let B be a finite-
dimensional algebra over F.

(a) Show that every element @ € B satisfies a unique monic polynomial of
smallest degree with coefficients in F.

(b) Suppose that B = D is a division algebra. Show that the minimal poly-
nomial of @ € D is irreducible over F. Conclude that if F = F¥ is
algebraically closed, then D = F.

Prove Proposition 2.3.1: show directly that the map
A: B = My(F(Va))
.. va 0 0 b
R ( 0 —va)'\l 0
extends uniquely to an injective F-algebra homomorphism. [Hint: check that the
relations are satisfied. |

a) Show explicitly that every quaternion algebra B = (a, b | F) is isomorphic
to an F-subalgebra of M4(F') via the left (or right) regular representation
over F: write down 4 X 4-matrices representing i and j and verify that
the relations i> = a, j> = b, ji = —ij hold for these matrices. Note the
2 x 2-block structure of these matrices.

b) With respect to a suitable such embedding in (a) for B = H, verify that
the quaternionic conjugation map @ — « is the matrix transpose, and the
matrix determinant is the square of the norm llal? = aa.

In certain circumstances, one may not want to “play favorites” in the left regular
representation (Proposition 2.3.1) and so involve i and j on more equal footing.
To this end, show that the map

B= ("Tb) — My(F(Va, Vb))
o (o

is an injective F-algebra isomorphism. How is it related to the left regular
representation?

(2.4.25)

Let B = (a,b | F) be a quaternion algebra over F. For a nonzero element
a =t+ xi +yj+ zk € B, show that the following are equivalent:

(i) t =0;and
(ii) a¢ Fanda?eF.

[So the notion of “pure quaternion” is not tethered to a particular basis.]
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14.

15.

16.

> 17.

18.

19.

20.

Verify that (2.3.7) is an isomorphism of F-algebras, and interpret this map as
arising from the left regular representation viaa map B < My(F X F) — My(F).

Show that every rotation A € SO(3) fixes an axis. [Hint: Consider the eigenvalues

of A.]

For v € H° and 8 € H\{0}, consider the map v — B~'v8 = -g~lvg e HC.
Show that this map is the reflection across the plane {w € H° : fw = 0}. (For
example, taking 8 = i, the map is xi + yj + zk — —xi + yj + zk.)

In Corollary 2.4.21, we showed that SU(2) ~ H! has a 2-to-1 map to SO(3),
where H! acts on H° ~ R? by conjugation: quaternions model rotations in
three-dimensional space, with spin. Quaternions also model rotations in four-
dimensional space, as follows.

(a) Show that the map

(H' x HHOH —» H
s axg (2.4.26)
X ax

defines a (left) action of H' xH! on H ~ R*, giving a group homomorphism
¢: H' x H' - 04).

(b) Show that ¢ surjects onto SO4) < O4). [Hint: If A € SO(4) fixes
1 € H, then A restricted to HY is a rotation and so is given by conjugation.
More generally, if Al = a, consider x — a~ ' Ax.]

(c) Show that the kernel of ¢ is {+1} embedded diagonally, so there is an exact
sequence
1 — {£1} — SUQ2) x SU(2) — SO4) — 1.

[More generally, the universal cover of SO(n) for n > 3 is a double cover called
the spin group Spin(n), and so Corollary 2.4.21 shows that Spin(3) =~ SU(2)
and this exercise shows that Spin(4) =~ SU(2) x SU(2). For further reading, see
e.g. Fulton—-Harris [FH91, Lecture 20].]

Let p,9: R — R3 be the counterclockwise rotation by the angle 6 about the
axis u € R3 ~ HO, with |ju|| = 1. Prove Rodrigues’s rotation formula: for all
v eR3,

Pu,o(v) = (cos O)v + (sinB)(u X v) + (1 —cos ) (u - v)u
where u X v and u - v are the cross and dot product, respectively.

Verify that the map (2.4.24) is a trilinear alternating form on H, i.e., show the
form is linear when any two of the three arguments are fixed and zero when two
argument are equal.

Let B be a quaternion algebra over F and let My(B) be the ring of 2 x 2-
matrices over B. (Be careful in the definition of matrix multiplication: B is
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noncommutative!) Consider the Cayley determinant:

Cdet: Ma(B) > B

Cdet (3 /;) =ad—-vyp

(a) Show that Cdet is F-multilinear in the rows and columns of the matrix.

(b) Show that Cdet is not left B-multilinear in the rows of the matrix.

(c) Give an example showing that Cdet is not multiplicative.

(d) Find amatrix A € M, (HH) that is invertible (i.e., having a two-sided inverse)
but has Cdet(A) = 0. Then find such an A with the further property that its
transpose has nonzero determinant but is not invertible.

[Moral: be careful with matrix rings over noncommutative rings! For more on
quaternionic determinants, including the Dieudonné determinant, see Aslaksen
[As196].]

This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-
nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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Chapter 3

Involutions

In this chapter, we define the standard involution on a quaternion algebra. In this
way, we characterize division quaternion algebras as noncommutative division rings
equipped with a standard involution.

3.1 » Conjugation

The quaternion conjugation map (2.4.6) defined on the Hamiltonians H arises naturally
from the notion of real and pure (imaginary) parts, as defined by Hamilton. This
involution has a natural generalization to a quaternion algebra B = (a,b | F) over a
field F' with char F' # 2: we define

“:B—B
a=t+xi+yj+zij—a=t—(xi+yj+zij)
Multiplying out, we then verify that
a@ = aa = 1* —ax®> — by* + abz’ € F.

The way in which the cross terms cancel, because the basis elements i, j, k skew
commute, is a calculation that never fails to enchant!

But this definition seems to depend on a basis: it is not intrinsically defined.
What properties characterize it? Is it unique? We are looking for a good definition
of conjugation ~ : B — B on an F-algebra B: we will call such a map a standard
involution.

The involutions we consider should have basic linearity properties: they are F-linear
(with T = 1, so they act as the identity on F) and have order 2 as an F-linear map.
An involution should also respect the multiplication structure on B, but we should not
require that it be an F-algebra isomorphism: instead, like the inverse map (or transpose
map) reverses order of multiplication, we ask that a8 = @ for all a € B. Finally, we
want the standard involution to give rise to a trace and norm (a measure of size), which
is to say, we want @ + @ € F and aa = aa € F for all @ € B. The precise definition
is given in Definition 3.2.1, and the defining properties are rigid: if an algebra B has a
standard involution, then it is necessarily unique (Corollary 3.4.4).
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The existence of a standard involution on B implies that every element of B satisfies
a quadratic equation: by direct substitution, we see that @ € B is aroot of the polynomial
x2—tx+ne F[x] wheret := a + @ and n := a@ = @a, since then

az—(a+5)a+a5=0

identically. Accordingly, we define the reduced trace trd: B — F by trd(@) = o + @
and reduced norm nrd: B — F by nrd(e) = aa. We observe that trd is F-linear and
nrd is multiplicative on B*.

Motivated by this setting, we say that B has degree 2 if every element € B
satisfies a (monic) polynomial in F[x] of degree 2 and, to avoid trivialities, that B # F
(or equivalently, at least one element of B satisfies no polynomial of degree 1). The
final result of this section is the following theorem (see Theorem 3.5.1).

Theorem 3.1.1. Let B be a division F-algebra of degree 2 over a field F with char
F # 2. Then either B = K is a quadratic field extension of F or B is a division
quaternion algebra over F.

As a consequence, division quaternion algebras are characterized as noncommu-
tative division algebras with a standard involution, when char F' # 2.

3.2 Involutions

Throughout this chapter, let B be an F-algebra. For the moment, we allow F to be of
arbitrary characteristic. We begin by defining involutions on B.

Definition 3.2.1. An involution ~ : B — B is an F-linear map which satisfies:

H1=1
(ii) @ = «a for all @ € B; and
(iii) @B = Ba for all @, B € B (the map ~ is an anti-automorphism).

3.2.2. We define the opposite algebra of B by letting B°® = B as F-vector spaces but
with multiplication a -, 8= - afora, € B.

One can then equivalently define an involution to be an F-algebra isomorphism
B = B°P whose underlying F-linear map has order at most 2.

Remark 3.2.3. What we have defined to be an involution is known in other contexts as
an involution of the first kind. An involution of the second kind is a map which acts
nontrivially when restricted to F', and hence is not F-linear; although these involutions
are interesting in other contexts, they will not figure in our discussion (and anyway one
can consider such an algebra over the fixed field of the involution).

Definition 3.2.4. An involution ~ is standard if aa € F for all @ € B.

Remark 3.2.5. Standard involutions go by many other names. The terminology stan-
dard is employed because conjugation on a quaternion algebra is the “standard” exam-
ple of such an involution. Other authors call the standard involution the main involution
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for quaternion algebras, but then find situations where the “main” involution is not stan-
dard by our definition. The standard involution is also called conjugation on B, but
this can be confused with conjugation by an element in B*. We will see in Corollary
3.4.4 that a standard involution is unique, so it is also called the canonical involution;
however, there are other circumstances where involutions can be defined canonically
that are not standard (like the map induced by g +— g~! on the group ring F[G]).

3.2.6. If — is a standard involution, so that ea € F for all @ € B, then
(a+Da+D)=(@+)a+1)=aa+a+a+1€F
and hence a + @ € F for all @ € B as well; it then also follows that ca = @a, since

(@ +@)a = ala + a).

Example 3.2.7. The identity map is a standard involution on B = F as an F-algebra.
The R-algebra C has a standard involution, namely, complex conjugation.

Example 3.2.8. The adjugate map

A:(a b)HA*:(d —b)
c d -c a
is a standard involution on M, (F) since AA" = ATA = ad — bc = det A € F.

Matrix transpose is an involution on M, (F) but is a standard involution (if and)
only ifn = 1.

3.2.9. Suppose char F # 2 and let B = (a, b | F). Then the map
“:B—>B
a=t+xi+yj+zija=t—xi—-yj—zij
defines a standard involution on B and @ = 2¢ — . The map is F-linear with 1=1and
a = a, so properties (i) and (ii) hold. By F-linearity, it is enough to check property

(iii) on a basis (Exercise 3.1), and we verify for instance that

ij=ij=~ij=ji=()D=ji
(see Exercise 3.3). Finally, the involution is standard because

(t+xi+yj+zij)t — xi — yj — zij) = 1> — ax® — by> + abz” € F. (3.2.10)

Remark 3.2.11. Algebras with involution play an important role in analysis, in particu-
lar Banach algebras with involution and C*-algebras (generally of infinite dimension).
A good reference is the text by Dixmier [Dix77] (or the more introductory book by
Conway [Con2012]).
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3.3 Reduced trace and reduced norm

Let ™ : B — B be a standard involution on B. We define the reduced trace on B by

trd: B—> F
_ (3.3.1)
aP a+a
and similarly the reduced norm
nrd: B— F
_ (3.3.2)
a P aa.

Example 3.3.3. For B = M,(F), equipped with the adjugate map as a standard invo-
lution as in Example 3.2.8, the reduced trace is the usual matrix trace and the reduced
norm is the determinant.

3.3.4. The reduced trace trd is an F-linear map, since this is true for the standard
involution:

trd(@ + ) = (@ + ) + (@ + B) = (@ + @) + (B + ) = trd(e) + trd(B)
for @, 8 € B. The reduced norm nrd is multiplicative, since
nrd(aB) = (af)(ap) = aff@ = anrd(B)@ = nrd(a) nrd(B)
forall @, 5 € B.

It will be convenient to write

BY := {@ € B : trd(a) = 0}
. (3.3.5)
B' :={a € B* : nrd(e) = 1}

for the F-subspace B C B of elements of reduced trace O and for the subgroup
B' < B* of elements of reduced norm 1. We observe that B! < B is normal, by
multiplicativity, indeed we have an exact sequence of groups

d
1 - B' - B X5 Fx
(noting that the reduced norm map need not be surjective).

Lemma 3.3.6. If B is not the zero ring, then a € B is a unit (has a two-sided inverse)
if and only if nrd(a) # 0.

Proof. Exercise 3.5. O

Lemma 3.3.7. For all a, 8 € B, we have trd(Ba) = trd(a3).
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Proof. We have
trd(a) = trd(a(trd(B) — B)) = trd(e) trd(8) — trd(aB)

and so _
trd(aB) = trd(af) = trd(Ba@) = trd(a) trd(B) — trd(Ba)
therefore trd(af) = trd(Ba). O

Remark 3.3.8. The maps trd and nrd are called reduced for the following reason.

Let A be a finite-dimensional F'-algebra, and consider the left regular representation
A: A — Endr(A) given by left multiplication in A (cf. Proposition 2.3.1, but over F).
We then have a (left) trace map Tr: A — F and (left) norm map Nm: A — F given
by mapping @ € B to the trace and determinant of the endomorphism A, € Endg(A).
When A = M,(F), a direct calculation (Exercise 3.13) reveals that

Tr(e) = 2 trd(@) = 2 tr(e)

(algebra trace, reduced trace, and matrix trace, respectively; there is no difference
between left and right), and

Nm(e) = nrd(e)? = det(a)?

for all @ € A, whence the name reduced. (To preview the language of chapter 7, this
calculation can be efficiently summarized: as a left A-module, A is the sum of two
simple A-modules—acting on the columns of a matrix—and the reduced trace and
reduced norm represent ‘half” of this action.)

3.3.9. Since
- (@+@)a+aa =0 (3.3.10)

identically we see that @ € B is a root of the polynomial
X - trd(a)x + nrd(a) € F[x] (3.3.11)

which we call the reduced characteristic polynomial of a. The fact that « satisfies its
reduced characteristic polynomial is the reduced Cayley-Hamilton theorem for an
algebra with standard involution. When a ¢ F, the reduced characteristic polynomial
of « is its minimal polynomial, since if « satisfies a polynomial of degree 1 then @ € F.

3.4 Uniqueness and degree

Definition 3.4.1. An F-algebra K with dimg K = 2 is called a quadratic algebra.

Lemma 3.4.2. Let K be a quadratic F-algebra. Then K is commutative and has a
unique standard involution.
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Proof. Let @ € K\NF. Then K = F @ Fa = F[a], so in particular K is commutative.
Then o = ta — n for unique t,n € F, since 1, « is a basis for K.

If 7 : K — K is any standard involution, then from (3.3.10) and uniqueness we
conclude ¢ = @ + @ (and n = aa), and so any involution must have @ = t — @. On
the other hand, there is a unique standard involution x: B — B with @ = ¢ — a: the
verification is straightforward (see Exercise 3.2). m]

Example 3.4.3. The reduced trace and norm on a quadratic algebra are precisely the
usual algebra trace and norm. If char F # 2 and K 2 F is a quadratic field extension
of F, then the standard involution is just the nontrivial element of Gal(K | F).

Corollary 3.4.4. If B has a standard involution, then this involution is unique.

Proof. For any @ € B\F, we have from (3.3.10) that dimg F[a] = 2, so the restriction
of the standard involution to F[«] is unique. Therefore the standard involution on B is
itself unique. o

We have seen that the equation (3.3.10), implying that if B has a standard involution
then every @ € B satisfies a quadratic equation, has figured prominently in the above
proofs. To further clarify the relationship between these two notions, we make the
following definition.

Definition 3.4.5. The degree of B is the smallest m € Zs( such that every element
a € B satisfies a monic polynomial f(x) € F[x] of degree m, if such an integer exists;
otherwise, we say B has degree co.

3.4.6. If B has finite dimension n = dimg B < oo, then every element of B satis-
fies a polynomial of degree at most n: if @ € B then the elements 1, ¢a,...,a" are
linearly dependent over F. Consequently, every finite-dimensional F-algebra has a
(well-defined) integer degree, at most n.

Example 3.4.7. By convention, we interpret Definition 3.4.5 as defining the degree
of the zero ring to be 0 (since 1 = 0, the element O satisfies the monic polynomial
Ox)—whatever!

If B has degree 1, then B = F. If B has a standard involution, then either B = F or
B has degree 2 by (3.3.11).

3.5 Quaternion algebras

We are now ready to characterize division algebras of degree 2 when char F # 2. (For
the case char F = 2, see Chapter 6.)

Theorem 3.5.1. Suppose char F # 2 and let B be a division F-algebra. Then B has
degree at most 2 if and only if one of the following hold:

(i) B=F;
(ii) B = K is a quadratic field extension of F; or
(iii) B is a division quaternion algebra over F.
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Proof. From Example 3.4.7, we may suppose that B # F and B has degree 2.

Let i € B\F. Then F[i] = K is a (commutative) quadratic F-subalgebra of the
division ring B, so K = F(i) is a field. If K = B, we are done. Completing the square
(since char F # 2), we may suppose that i> = a € F*.

Let ¢: B — B be the map given by conjugation by i, i.e., ¢(a) = i"'ai. Then ¢
is a K-linear endomorphism of B, thought of as a (left) K-vector space, and ¢? is the
identity on B. Therefore ¢ is diagonalizable, and we may decompose B = B* & B~
into eigenspaces for ¢: explicitly, we can always write

_ato@)  a-¢@
2 2

We now prove dimg B* = 1. Let @ € B*. Then L = F(w,i) is a field. Since
char F # 2, and L is a compositum of quadratic extensions of F', the primitive element
theorem implies that L = F(B) for some S € L. But by hypothesis § satisfies a
quadratic equation so dimgr L = 2 and hence L = K. (For an alternative direct proof
of this claim, see Exercise 3.10.)

If B = B* = K, we are done. So suppose B~ # {0}. We will prove that dimg B~ = 1.
If0# j € B theni~'ji = —j, soi = —j'ij and hence all elements of B~ conjugate i
to —i. Thus if O # jy, j» € B~ then ji j, centralizes i and j; j, € B* = K. Thus any two
nonzero elements of B~ are K-multiples of each other.

Finally, let j € B \{0}; then B = B* @ B~ = K ® Kj so B has F-basis
1,i,j,ij and ji = —ij. We claim that trd(j) = 0: indeed, both j and i"'ji = —j
satisfy the same reduced characteristic (or minimal) polynomial of degree 2, so
trd(j) = trd(—j) = —trd(j) so trd(j) = 0. Thus j2 = b € F*, and B is a quater-
nion algebra by definition. O

eBtoB.

Remark 3.5.2. We need not assume in Theorem 3.5.1 that B is finite-dimensional;
somehow, it is a consequence, and every division algebra over F (with char F' # 2) of
degree < 2 is finite-dimensional.

There are algebras of arbitary (finite or infinite) dimension over F of degree 2: see
Exercise 3.15. Also, a boolean ring (see Exercise 3.12) has degree 2 as an [F,-algebra,
and there are such rings of arbitrary dimension over [F,. Such algebras are quite far
from being division rings, of course.

Remark 3.5.3. The proof of Theorem 3.5.1 has quite a bit of history, discussed by van
Praag [vPr2002] (along with several proofs). See Lam [Lam2005, Theorem IIL.5.1] for
a parallel proof of Theorem 3.5.1. Moore [Moore35, Theorem 14.4] in 1915 studied
algebra of matrices over skew fields and in particular the role of involutions, and gives
an elementary proof of this theorem (with the assumption char ' # 2). Dieudonné
[Die48, Die53] gave another proof that relies on structure theory for finite-dimensional
division algebras.

Corollary 3.5.4. Let B be a division F-algebra with char F # 2. Then B has degree at
most 2 if and only if B has a standard involution.

Proof. In each of the cases (i)—(iii), B has a standard involution; and conversely if B
has a standard involution, then B has degree at most 2 (Example 3.4.7). O
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Remark 3.5.5. The statement of Corollary 3.5.4 holds more generally—even if B is
not necessarily a division ring—as follows. Let B be an F-algebra with char F' # 2.
Then B has a standard involution if and only if B has degree at most 2 [Voi2011b].
However, this is no longer true in characteristic 2 (Exercise 3.12).

Corollary 3.5.6. Let B be a division F-algebra with char F # 2. Then the following
are equivalent:

(i) B is a quaternion algebra;
(ii) B is noncommutative and has degree 2; and
(iii) B is central and has degree 2.

Definition 3.5.7. An F-algebra B is algebraic if every a € B is algebraic over F (i.e.,
a satisfies a polynomial with coefficients in F).

If B has finite degree (such as when dimp B = n < o), then B is algebraic.

Corollary 3.5.8. (Frobenius). Let B be an algebraic division algebra over R. Then
either B=R or B ~ C or B ~ H as R-algebras.

Proof. If @ € B\R then R(a) ~ C, so « satisfies a polynomial of degree 2. Thus if
B # Rthen B has degree 2 and either B =~ C or B is a division quaternion algebra over
R, and hence B ~ H by Exercise 2.4(c). O

Example 3.5.9. Division algebras over R of infinite dimension abound. Transcendental
field extensions of IR, such as the function field R(x) or the Laurent series field R((x)),
are examples of infinite-dimensional division algebras over R. Also, the free algebra in
two (noncommuting) variables is a subring of a division ring B (its “noncommutative
ring of fractions”) with center R and of infinite dimension over R.

Remark 3.5.10. The theorem of Frobenius (Corollary 3.5.8) extends directly to fields
F akin to R, as follows. A field is formally real if —1 cannot be expressed in F' as a
sum of squares and real closed if F is formally real and has no formally real proper
algebraic extension. The real numbers R and the field of all real algebraic numbers are
real closed. A real closed field has characteristic zero, is totally ordered, and contains
a square root of each nonnegative element; the field obtained from F by adjoining a
root of the irreducible polynomial x? + 1 is algebraically closed. For these statements,
see Rajwade [Raj93, Chapter 15]. Every finite-dimensional division algebra over a real
closed field F is either F or K = F(\/—_l) orB=(-1,-1]|F).

Remark 3.5.11. Algebras of dimension 3, sitting somehow between quadratic exten-
sions and quaternion algebras, can be characterized in a similar way. If B is an R-algebra
of dimension 3, then either B is commutative or B has a standard involution and is
isomorphic to the subring of upper triangular matrices in M(R). A similar state-
ment holds for free R-algebras of rank 3 over a (commutative) domain R; see Levin
[Lev2013].
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Exercises

Throughout these exercises, let F be a field.

> 1.

> 2.

> 3.

> 5.

10.

11.

Let B be an F-algebra and let " : B — B be an F-linear map with 1= 1. Show
that — is an involution if and only if (ii)—(iii) in Definition 3.2.1 hold for a basis
of B (as an F'-vector space).
Let K = F[a] be a quadratic F-algebra, with ” = ta — n for (unique) t,n € F.
Extending linearly, show that there is a unique standard involution ~: K — K
with the property that @ = # — @, and show that

trd(x + ya) = 2x + ty

nrd(x + ya) = 2+ txy + ny2

for all x + ya € Fla].
Verify that the map ~ in Example 3.2.9 is a standard involution.

. Determine the standard involution on K = F X F (with F — K under the

diagonal map).

Let B be an F-algebra with a standard involution. Show that O # @ € B is a left
zerodivisor if and only if « is a right zerodivisor if and only if nrd(a) = 0. In
particular, if B is not the zero ring, then @ € B is (left and right) invertible if and
only if nrd(a) # 0.

Suppose char ' # 2, let B be a division quaternion algebra over F, and let
K1, K, C B be subfields with K} N K, = F. Show that the F-subalgebra of B
generated by K| and Kj is equal to B. Conclude that if 1, @, 8 € B are F-linearly
independent, then 1, @, 8, @8 are an F-basis for B. [Hint: use the involution.] By
way of counterexample, show that these results need not hold for B = M, (F).
Show that B = M,,(F) has a standard involution if and only if n < 2.

Let G be a finite group. Show that the F-linear map induced by g — g~!
for g € G is an involution on the group ring F[G] = @ 2€G Fg. Determine
necessary and sufficient conditions for this map to be a standard involution.
Let B be an F-algebra with a standard involution ~ : B — B. In this exercise,
we examine when ~ is the identity map.

(a) Show that if char ' # 2, then x € B satisfies x = x if and only x € F.

(b) Suppose that dimp B < oo. Show that the identity map is a standard
involution on B if and only if (i) B = F or (ii) char F = 2 and B is a
quotient of the commutative ring F[xy, .. ., )cn]/()cl2 —-ay,..., x,% —ay) with
a; € F.

Let K 2 F be a field which has degree m as an F-algebra in the sense of
Definition 3.4.5. Suppose that char F { m. Show that [K : F] = m, i.e., K has
degree m in the usual sense. (What happens when char F' | m?)

Let B be an F-algebra with standard involution. Suppose that ¢: B => B is
an F-algebra automorphism. Show for @ € B that m = ¢(a), and therefore
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12.

> 13.

14.

15.

> 16.
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that trd(¢(@)) = trd(@) and nrd(¢(@)) = nrd(a@). [Hint: consider the map a —
¢~ (¢(a))]

In this exercise, we explore further the relationship between algebras of degree
2 and those with standard involutions (Remark 3.5.5).

(a) Suppose char F' # 2 and let B be a finite-dimensional F-algebra. Show that
B has a standard involution if and only if deg, B < 2.

(b) Let F = F, and let B be a Boolean ring, a ring such that x> = x for all
x € B. (Verify that2 = 0 in B, so B is an [F;-algebra.) Prove that B does not
have a standard involution unless B = I, or B = [F, X [F», but nevertheless
any Boolean ring has degree at most 2.

Let B = M,,(F), and consider the map A: B — Endr(B) by @ — A1, defined
by left-multiplication in B. Show that for all @ € M, (F), the characteristic
polynomial of 4, is the nth power of the usual characteristic polynomial of a.
Conclude when n = 2 that tr(@) = 2 trd(A) and det(¢) = nrd(a)?.

Considering a slightly different take on the previous exercise: let B be a quater-
nion algebra over F'. Show that the characteristic polynomial of left multiplication
by @ € B is equal to that of right multiplication and is the square of the reduced
characteristic polynomial. [Hint: if a direct approach is too cumbersome, con-
sider applying the previous exercise and the left regular representation as in
2.3.8.]

Let V be an F-vector space and let7 : V — F be an F-linear map. Let B = F@V
and define the binary operation x - y = #(x)y for x, y € V. Show that - induces
a multiplication on B, and that the map x — X = #(x) — x for x € V induces
a standard involution on B. [Such an algebra is called an exceptional algebra
[GrLu2009, Vo0i2011b].] Conclude that there exists a central F-algebra B with a
standard involution in any dimension n = dimg B > 3.

In this exercise, we mimic the proof of Theorem 3.5.1 to prove that a quaternion
algebra over a finite field of odd cardinality is not a division ring, a special case
of Wedderburn’s little theorem: a finite division ring is a field.

Assume for purposes of contradiction that B is a division quaternion algebra
over F = I, with g odd.

(a) Leti € B\F. Show that the centralizer Cgx(i) = {@ € B* : ia = ai} of i in
B* satisfies Cgx (i) = F(i)*.

(b) Conclude that any noncentral conjugacy class in BX has order ¢° + 1.

(c) Derive a contradiction from the class equation g* — 1 = g — 1 + m(q®> + 1)
(where m € Z).

[For the case g even, see Exercise 6.16; for fun, the eager reader may wish to
prove Weddernburn’s little theorem for F = [F, directly.]
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17.

18.

19.

Derive Euler’s identity (1.1.6) that the product of the sum of four squares is
again the sum of four squares as follows. Let F = Q(xy,...,X4, y1,-- ., Y4)
be a function field over QQ in 8 variables and consider the quaternion algebra
(—1,—11 F). Show (by an explicit universal formula) that if R is any commutative
ring and x, y € R are the sum of four squares in R, then xy is the sum of four
squares in R.

Suppose char F' # 2. For an F-algebra B, let

V(B) = {@ € B\F : & € F} U {0}.

Let B be a division ring. Show that V(B) is a vector space (closed under addition)
if and only if B = F or B = K is a quadratic field extension of F or B is a
quaternion algebra over F.

Let B be an F-algebra with F-basis ey, ey, . . ., e,.Let™ : B — Bbeaninvolution.
Show that ~ is standard if and only if

eie; € Fand (e; + ej)(e; +ej) € Fforalli,j=1,...,n.
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Chapter 4

Quadratic forms

Quaternion algebras, as algebras equipped with a standard involution, are intrinsically
related to quadratic forms. We develop this connection in the next two chapters.

4.1 » Reduced norm as quadratic form

Let F be a field with char F # 2 and let B = (a, b | F) be a quaternion algebra over
F. We have seen (3.2.9) that B has a unique standard involution and consequently a
reduced norm map, with

nrd(r + xi + yj + zij) = 1> — ax* — by* + abz? 4.1.1)

fort, x, y, z € F. The reduced norm therefore defines a quadratic form, a homogeneous
polynomial of degree 2 in F[t, x, y, z] (thought of as a function of the coefficients of
an element respect to the basis 1,7, j, k). It should come as no surprise, then, that the
structure of the quaternion algebra B is related to properties of the quadratic form nrd.

Let Q: V — F be a quadratic form. Then Q can be diagonalized by a change of
variables: there is a basis ey, . . ., e, of V such that

2 2
O(x1e1 + -+ xpey) = OQ(X1, ..., Xp) = a1 Xy + -+ apx;,

with a; € F. We define the discriminant of Q to be the (well-defined) product
disc(Q) := ay - - - a, /2" € F/F*?. (The factor 2" is for consistency with more general
notions; it is harmless if a bit annoying.) We say that a quadratic form is nondegenerate
if its discriminant is nonzero. The reduced norm quadratic form (4.1.1) is already
diagonal in the basis 1,1, j, k, and it is nondegenerate because a, b # 0.

A similarity from Q to another quadratic form Q’: V' — F is a pair (f, u) where
f:v = V’ is an F-linear isomorphism and u € F* satisfy Q’(f(x)) = uQ(x) for all
x € V. An isometry is a similarity with # = 1. The orthogonal group of Q is the
group of self-isometries of Q, i.e.,

OQ)F) :=={f € Autp(V) : Q(f(x)) = Q(x) for all x € V}.
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An isometry f € O(Q)(F) is special if det f, and the special orthogonal group of O
is the group of special isometries of Q.

More generally, we have seen that any algebra with a standard involution has a
quadratic form nrd. We say that the standard involution is nondegenerate whenever
the quadratic form nrd is so. Generalizing Theorem 3.1.1, we prove the following (see
Main Theorem 4.4.1 for the proof).

Main Theorem 4.1.2. Let B be an F-algebra. Then B has a nondegenerate standard
involution if and only if one of the following holds:

(i) B=F;
(ii) B = K has dimg K = 2 and either K =~ F X F or K is a field; or
(iii) B is a quaternion algebra over F.

This theorem gives another way of characterizing quaternion algebras: they are
noncommutative algebras with a nondegenerate standard involution.

In Section 2.4, we saw that the unit Hamiltonians H! act on the pure Hamiltonians
HP (Section 2.4) by rotations: the standard Euclidean quadratic form (sum of squares)
is preserved by conjugation. This generalizes in a natural way to an arbitrary field, and
so we can understand the group of linear transformations that preserve a ternary (or
quaternary) form in terms of the unit group of a quaternion algebra B (Proposition
4.5.10): there is an exact sequence

1> F*— B* - SO(nrd |go)(F) — 1

where SO(Q)(F) is the group of special (or oriented) isometries of the quadratic form

0.
4.2 Basic definitions

In this section, we summarize basic definitions and notation for quadratic forms over
fields. The “Bible for all quadratic form practitioners” (according to the MathSciNet
review by K. Szymiczek) is the book by Lam [Lam2005]; in particular, Lam gives
a very readable account of the relationship between quadratic forms and quaternion
algebras over F when char F # 2 [Lam2005, Sections III.1-III.2] and many other
topics in the algebraic theory of quadratic forms. Also recommended are the books by
Cassels [Cas78], O’Meara [O’Me73], and Scharlau [Scha85], as well as the book by
Grove [Grov2002], who treats quadratic forms from a geometric point of view in terms
of the orthogonal group. For reference and further inspiration, see also the hugely
influential book by Eichler [Eic53].
Let F be a field. (For now, we allow char F to be arbitrary.)

Definition 4.2.1. A quadratic form Q is a map Q: V — F on an F-vector space V
satisfying:

(i) O(ax) = a*Q(x) forall a € F and x € V; and
(i) The map T: V X V — F defined by

T(x,y)=0(x+y) -0 -0©1»)

is F-bilinear.
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We call the pair (V, Q) a quadratic space and T the associated bilinear form.

We will often abbreviate a quadratic space (V, Q) by simply V. If Q is a quadratic
form then the associated bilinear form 7 is symmetric, satisfying T'(x, y) = T(y, x)
for all x, y € V; in particular, T(x, x) = 2Q(x) for all x € V, so when char F' # 2 we
recover the quadratic form from the symmetric bilinear form.

For the remainder of this section, let O: V — F be a quadratic form with associated
bilinear form 7.

4.2.2. Suppose dimg V = n < co. Let ey,.. ., e, be a basis for V, giving an isomor-
phism V ~ F". Then Q can be written

O(xier + -+ + Xpep) = Z Q(e))x} + Z T(ei, e))xix; € Flx1, ..., x,]
i i<j
as a homogeneous polynomial of degree 2.
The Gram matrix of Q in the basis e; is the (symmetric) matrix

[T] := (T(ei, €)))i,j € Mn(F).

We then have T(x, y) = x[T]y for x,y € V ~ F" as column vectors. Under a change
of basis A € GL,(F) with e] = Ae;, the Gram matrix [T]" in the basis e; has

[T = AYT]A. (4.2.3)

Definition 4.2.4. A similarity of quadratic forms from Q: V — Fto Q’: V' — F
is a pair (f,u) where f: V = V’ is an F-linear isomorphism and u € F* satisfy
Q'(f(x)) = uQ(x) for all x € V, i.e., such that the diagram

\% *Q> F
Zl ; Zlu 4.2.5)
Q/

V —=F

commutes. In a similarity (f, u), the scalar u is called the similitude factor of the
similarity. An isometry of quadratic forms (or isomorphism of quadratic spaces) is a
similarity with similitude factor u = 1; we write in this case Q ~ Q’.

Definition 4.2.6. The general orthogonal group (or similarity group) of the quadratic
form Q is the group of self-similarities of Q under composition

GO(Q)(F) := {(f,u) € Autp(V) X F* : O(f(x)) = uQ(x) for all x € V};
the orthogonal group of Q is the group of self-isometries of Q, i.e.,

O(Q)(F) :={f € Autr(V) : Q(f(x)) = Q(x) for all x € V.
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Remark 4.2.7. A similarity allows isomorphisms of the target F' (as a one-dimensional
F-vector space). The notion of isometry comes from the connection with measuring
lengths, when working with the usual Euclidean norm form on a vector space over R:
similarity allows these lengths to scale uniformly (e.g., similar triangles).

There is a canonical exact sequence

1 — O(Q)(F) —» GO(Q)(F) — F*
(fiu) > u

realizing O(Q)(F) < GO(Q)(F) as the subgroup of self-similarities with similitude
factor u = 1.

(4.2.8)

4.2.9. Returning to 4.2.2, suppose dimg V = n < oo and char F # 2. Then one can
understand the orthogonal group of Q quite concretely in matrix terms as follows.
Choose a basis ey, ..., e, for V and let [T] be the Gram matrix of Q with respect to
this basis, so that 2Q(x) = x*[T]x for all x € V ~ F". Then Autz(V) =~ GL,(F) and
A € GL,(F) belongs to O(Q) if and only if

(AX)Y[T1(Ax) = x*(AY[T]A)x = x*[T]x
for all x € V, and therefore
O(Q)(F) = {A € GL,(F) : A*[T]1A = [T]) (4.2.10)
and

GO(Q)(F) = {(A,u) € GL,(F) x F* : A*Y[T]A = u[T]} (4.2.11)

From now on, let Q: V — F be a quadratic form and let7 : V XV — F be the
symmetric bilinear form associated to Q.

Definition 4.2.12. Let x, y € V. We say that x is orthogonal to y (with respect to Q)
if T(x,y) =0.

Since T is symmetric, x is orthogonal to y if and only if y is orthogonal to x for
x,y €V, and so we simply say x, y are orthogonal. If S C V is a subset, we write

Sti={xeV:T(v,x)=0forallveS)

for the subspace of V which is orthogonal to (the span of) S.

4.2.13. Let B be an algebra over F with a standard involution. Then nrd: B — F is a
quadratic form on B. Indeed, nrd(ae) = a’a for all @ € B, and the map T given by

T(@,B)=(@+B)a+B)—aa—BB=aB+pa=aB+ a_ﬁ =trd(afB) (4.2.14)
for @, B € B is bilinear, and

T(a, B) = trd(af) = trd(a(trd(B) — B)) = trd(a) trd(B) — trd(af). (4.2.15)
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So a, B € B are orthogonal with respect to nrd if and only if
trd(aB) = aB+Ba =0

if and only if
trd(aB) = trd(@) trd(B).

Thus 1 and @ € B are orthogonal if and only if trd(a) = 0 if and only if a@? = —nrd(a).
Moreover, rearranging (4.2.14),

af + Ba = rd(B)e + trd(a)B — T(a, p). (4.2.16)

In particular, if 1, @, 8 € B are linearly independent over F, then by (4.2.16) they are
pairwise orthogonal if and only if Ba = —ap.

In this way, we see that the multiplication law in B is governed in a fundamental
way by the reduced norm quadratic form.

Definition 4.2.17. Let Q: V — F be a quadratic form. We say that O represents an
element a € F if there exists x € V such that Q(x) = a. A quadratic form is universal
if it represents every element of F.

Definition 4.2.18. A quadratic form Q (or a quadratic space V) is isotropic if O
represents 0 nontrivially (there exists 0 # x € V such that Q(x) = 0) and otherwise Q
is anisotropic.

Remark 4.2.19. The terminology isotropic is as least as old as Eichler [Eic53, p. 3],
and perhaps it goes back to Witt. The word can be used to mean “having properties
that are identical in all directions”, and so the motivation for this language possibly
comes from physics: the second fundamental form associated to a parametrized surface
z = f(x,y)inR3is a quadratic form, and (roughly speaking) this quadratic form defines
the curvature at a given point. In this sense, if the quadratic form vanishes, then the
curvature is zero, and things look the same in all directions.

4.2.20. Let Q’: V' — F be another quadratic form. We define the orthogonal direct
sum

OsQ': VeV - F
QuvQ)(x+x") = 0(x) + Q(x')
where x € V and x’ € V’; the associated bilinear form 7 s 7’ has
TeT)x+x,y+y)=T(y)+Tx,y")

for all x,y € V and x’,y" € V’. By definition, under the natural inclusion of V,V’ C
VeV, wehave V' C V+t (and V C (V))1).

4.2.21. For a € F, we write (a) for the quadratic form ax? on F. More generally, for
ai,...,a, € F, we write

(ay)m ... 8{a,) :={ay,...,a,)

2 2

for the quadratic form on F" defined by Q(xy, ..., x,) = ayxy + 0t anxy.
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To conclude this introduction, we state an important result due originally to Witt
which governs the decomposition of quadratic spaces into orthogonal sums up to
isometry.

Theorem 4.2.22. Let V ~ V' be isometric quadratic spaces with orthogonal decom-
positions V=W eW, and V' ~ W{ | Wé.

(@) If W) ~ W{, then Wy ~ WZ,
(b) If g : Wi — W] is an isometry, then there exists an isometry f: V — V' such
that flw, = g and f(W>) = W;.

Proof. The proofis requested in Exercise 4.16. For a proof and the equivalence between
Witt cancellation (part (a)) and Witt extension (part (b)), see Lam [Lam2005, Proof
of Theorem 1.4.2, p. 14], Scharlau [Scha85, Theorem 1.5.3], or O’Meara [O’Me73,
Theorem 42:17]. O

Theorem 4.2.22(a) is called Witt cancellation and 4.2.22(b) is called Witt exten-
sion.

4.3 Discriminants, nondegeneracy

For the remainder of this chapter, we suppose that char F' # 2. (We take up the case
char F = 2 in section 6.3.) Throughout, let Q: V — F be a quadratic form with
dimpg V = n < oo and associated symmetric bilinear form 7.

The following result (proven by induction) is a standard application of Gram—
Schmidt orthogonalization (Exercise 4.1); working with a quadratic form as a polyno-
mial, this procedure can be thought of as iteratively completing the square.

Lemma 4.3.1. There exists a basis of V such that Q =~ {a, ...,a,) witha; € F.

A form presented with a basis as in Lemma 4.3.1 is called normalized (or diag-
onal). For a diagonal quadratic form @, the associated Gram matrix [7] is diagonal
with entries 2ay, . . ., 2a,.

4.3.2. The determinant det([7']) of a Gram matrix for Q depends on a choice of basis for
V, but by (4.2.3), a change of basis matrix A € GL,,(F) operates on [T] by A*[T]A, and
det(AY[T]A) = det(A)* det([T]), so we obtain a well-defined element det(T) € F/F>*?
independent of the choice of basis.

Definition 4.3.3. The discriminant of Q is
disc(Q) := 27" det(T) € F/F**.
The signed discriminant of Q is

sgndisc(Q) := (-1)"""V"2 disc(Q) € F/F*.
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When it will cause no confusion, we will represent the class of the discriminant in
F/F*? simply by a representative element in F.

Remark 4.3.4. The extra factor 27" is harmless since char F' # 2, and it allows us to
naturally cancel certain factors 2 that appear whether we are in even or odd dimension—
it will be essential when we consider the case char F = 2 (see 6.3.1). The distinction
between even and odd dimensional quadratic spaces is not arbitrary: indeed, this
distinction is pervasive, even down to the classification of semisimple Lie algebras.

Example 4.3.5. We have disc({ay,...,a,)) =a;---a, fora; € F.

Definition 4.3.6. The bilinear foom 7 : V x V — F is nondegenerate if for all
x € V\{0}, the linear functional 7yx: V — F defined by Tx(y) = T(x, y) is nonzero,
i.e., there exists y € V such that T(x, y) # 0. We say that O (or V) is nondegenerate if
the associated bilinear form 7 is nondegenerate.

4.3.7. The bilinear form T induces a map

V — Hom(V, F)
x = (y = T, y)
and 7 is nondegenerate if and only if this map is injective (and hence an isomorphism)

if and only if det(7T’) # 0. Put another way, Q is nondegenerate if and only if disc(Q) # 0,
and so a diagonal form {ay, . . ., a,) is nondegenerate if and only if a; # O for all .

Example 4.3.8. Let B = (a, b | F) be aquaternion algebra. Then by 3.2.9, the quadratic
form nrd: B — F is normalized with respect to the basis 1,1, j, ij. Indeed,

nrd =~ (1, —a, —b, ab).

We have disc(nrd) = (ab)? # 0, so nrd is nondegenerate.

If B is an F-algebra with a standard involution, then the reduced norm defines a
quadratic form on B, and we say that the standard involution is nondegenerate if nrd
is nondegenerate.

4.3.9. One can often restrict to the case where a quadratic form Q is nondegenerate by
splitting off the radical, as follows. We define the radical of Q to be

rad(Q) :=V* ={x eV :T(x,y)=0forall y € V}.

The radical rad(Q) C V is a subspace, so completing a basis of rad(Q) to V we can
write (noncanonically) V = rad(Q) s W, as the direct sum is an orthogonal direct sum
by definition of the radical. In this decomposition, Qlr.d(p) is identically zero and Qlw
is nondegenerate.



54 CHAPTER 4. QUADRATIC FORMS

4.4 Nondegenerate standard involutions

In this section, we follow Theorem 3.5.1 with a characterization of quaternion algebras
beyond division algebras.

Main Theorem 4.4.1. Suppose char F # 2 and let B be an F-algebra. Then B has a
nondegenerate standard involution if and only if one of the following holds:

(i) B=F;
(ii) B = K is a quadratic F-algebra and either K ~ F X F or K is a field; or
(iii) B is a quaternion algebra over F.

Case (ii) in Main Theorem 4.4.1 is equivalent to requiring that K be a quadratic
F-algebra that is reduced (has no nonzero nilpotent elements).

Remark 4.4.2. By Exercise 3.15, there exist F-algebras with standard involution having
arbitrary dimension, so it is remarkable that the additional requirement that the standard
involution be nondegenerate gives such a tidy result.

Proof of Main Theorem 4.4.1. 1If B = F, then the standard involution is the identity and
nrd is nondegenerate. If dimp K = 2, then after completing the square we may write
K =~ F[x]/(x% — a) and in the basis 1, x we find nrd = (1, a). By Example 4.3.5, nrd is
nondegenerate if and only if a € F* if and only if K is a quadratic field extension of F
orK=~FXF.

Suppose that dimg B > 2. Let 1,7, j be a part of a normalized basis for B with
respect to the quadratic form nrd. Then 7(1,7) = trd() = 0, so iZ = a € FX, since
nrd is nondegenerate. Note in particular that i = —i. Similarly j2 = b € F*, and
by (4.2.16) we have trd(ij) = ij + ji = 0. We have T(1,ij) = trd(ij) = 0, and
T(ij,i) = trd(i(ij)) = —atrd(j) = 0 and similarly 7(ij, j) = O, hence ij € {1,i, j}*. If
ij = 0then i(ij) = aj = 0so j = 0, a contradiction. Since nrd is nondegenerate, it
follows then that the set 1,1, j, ij is linearly independent.

Therefore, the subalgebra A of B generated by i, j satisfies A ~ (a,b | F), and if
dimp B = 4 we are done. So let k € A*; then trd(k) = 0 and k%> = ¢ € F*. Thus
k € B*, with k™' = ¢"'k. By 4.2.13 we have ka = @k for any o € A since k = —k.
But then _ - =

k(@ij) = (ij)k = jik = jki = k(ji). (4.4.3)
But k € B* soij = ji = —ij, and this is a contradiction. (]
Main Theorem 4.4.1 has the following corollaries.

Corollary 4.4.4. Let B be an F-algebra with char F # 2. Then B is a quaternion alge-
bra if and only if B is noncommutative and has a nondegenerate standard involution.

Proof. Immediate. O

Corollary 4.4.5. Let B have a nondegenerate standard involution, and suppose that
K C B is a commutative F-subalgebra such that the restriction of the standard involu-
tion is nondegenerate. Then dimg K < 2. Moreover, if K # F, then the centralizer of
K*in B* is K*.
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Proof. The first statement is immediate; the second follows by considering the algebra
generated by the centralizer. O

Remark 4.4.6. Algebras with involutions come from quadratic forms, and the results
of this chapter are just one special case of a much more general theory. More precisely,
there is a natural bijection between the set of isomorphism classes of finite-dimensional
simple F-algebras equipped with an F-linear involution and the set of similarity classes
of nondegenerate quadratic forms on finite-dimensional F-vector spaces. More gener-
ally, for involutions that act nontrivially on the base field, one looks at Hermitian forms.
Consequently, there are three broad types of involutions on central simple algebras,
depending on the associated quadratic or Hermitian form: orthogonal, symplectic, and
unitary. Accordingly, algebras with involutions can be classified by the invariants of the
associated form. This connection is the subject of the tome by Knus—Merkurjev—Rost—
Tignol [KMRT98]. In this way the theory of quadratic forms belongs to the theory of
algebras with involution, which in turn is a part of the theory of linear algebraic groups,
as expounded by Weil [Weil60]: see the survey by Tignol [Tig98] for an overview and
further references.

4.5 Special orthogonal groups

In this section, we revisit the original motivation of Hamilton (Section 2.4) in a more
general context, relating quaternions to the orthogonal group of a quadratic form. We
retain our running hypothesis that char /' # 2 and Q: V — F is a nondegenerate
quadratic form with dimg V =n < oco.

Definition 4.5.1. An isometry f € O(Q)(F) is special (or proper) if det f = 1. The
special orthogonal group of Q is the group of special isometries of Q:

SO(Q)(F) := {f € O(Q)(F) : det(f) = 1}.

The condition “det f = 1” is well-defined, independent of the choice of F-basis
of V; having chosen a basis of V so that O(Q)(F) < GL,(F), we have SO(Q)(F) =
O(Q)(F) N SL,(F).

4.5.2. Suppose that V = F" and let f € O(Q) be a self-isometry of Q, represented in
the standard basis by A € GL,,(F). Taking determinants in (4.2.10) we conclude that
det(A)? = 1 so det(A) = +1. The determinant is surjective (see Exercise 4.15), so we
have an exact sequence

1 SOQ)(F) = O(Q)(F) <5 {21} — 1.
If n is odd, then either f or —f is special, so the sequence splits and
O(Q)(F) = {£1} X SO(Q)(F). (4.5.3)

4.5.4. Similarly, if (f,u) € GO(Q)(F) then from (4.2.11) we get ™" det(f)> = 1. If
n = 2m is even, then u~"" det(f) = +1, and we define the general special orthogonal
group (or special similarity group) of O to be

GSOQ)(F) == {(f,u) € GOQ)(F) : u™™ det(f) = 1}
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giving an exact sequence
1 - GSO(Q)(F) —» GO(Q)(F) — {*1} — 1.
If n is odd, we have little choice other than to define GSO(Q)(F) := GO(Q)(F).

Example 4.5.5. If V = R" and Q is the usual Euclidean norm on V, then
O(Q)(R) = O(n) = {A € GL,(R) : AA* =1}

is the group of linear maps preserving length (but not necessarily orientation), whereas
SO(Q)(R) is the usual group of rotations of V (preserving orientation). Similarly,
GSO(Q)(R) consists of orientation-preserving similarities, preserving orientation but
allowing a constant scaling.

In particular, if n = 2 then O(2) := O(Q)(R) contains

cosf sind
—sinf cosd

SO(2) := SO(Q)(R) = {( ) e R} =~ R/2rZ) = S!

(the circle group) with index 2, with a reflection in any line through the origin repre-
senting a nontrivial coset of SO(2) < O(2).

4.5.6. More generally, we may define reflections in O(Q)(F) as follows. For x € V
anisotropic (so Q(x) # 0), we define the reflection in x to be
VoV
T(v,x)
X.
O(x)

(V) =v -

We have 7,(x) = x —2x = —x, and

O(tx(v)) = 0(v) + Q (_T(V’ x)x) T (v, T, x) x)

0(x) 0(x)
B T(v, x)? T(v, x) ~
=0+ 002 O(x) - 0w T(v,x)=0(®)

50 Tx € O(Q)(F)\ SO(Q)(F).

By a classical theorem of Cartan and Dieudonné, the orthogonal group is generated
by reflections.

Theorem 4.5.7. (Cartan-Dieudonné). Let (V, Q) be a nondegenerate quadratic space
withdimg V = n. Then every isometry f € O(Q)(F) is a product of at most n reflections.

Proof. See Lam [Lam2005, §1.7], O’Meara [O’Me73, §43B], or Scharlau [Scha85,
Theorem 1.5.4]. The proof is by induction on n, carefully recording the effect of a
reflection in an anisotropic vector. O
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Since reflections have determinant — 1, an isometry f is special (and f € SO(Q)(F))
if and only if it is the product of an even number of reflections.

4.5.8. Now let B be a quaternion algebra over F', and recall (3.3.5) that we have defined
BY :={v € B: trd(B) = 0}.

Then there is a (left) action
B*OB® - B°
(4.5.9)

a-v=aval.

since trd(ava™") = trd(v) = 0. Moreover, B* acts on V by isometries with respect to
the quadratic form Q = nrd|go: V — F, since nrd(eve™!) = nrd(v) for all @ € B and
vev.

Proposition 4.5.10. Let B be a quaternion algebra over F. Then the action (4.5.9)
induces an exact sequence

1 - F* - B* — SO(nrd |go)(F) — 1. (4.5.11)
If further nrd(B*) = F*2, then

1 - {+1} - B' = SO(nrd|go)(F) — 1,
where B! := {a € B : nrd(e) = 1}.
Proof. Let Q = nrd |go. We saw in 4.5.8 that the action of B* is by isometries, so lands
in O(Q)(F). By the Cartan—Dieudonné theorem (Theorem 4.5.7, the weak version of
Exercise 4.17 suffices), every isometry is the product of reflections, and by determinants

an isometry is special if and only if it is the product of an even number of reflections.
A reflection in x € V = B® with Q(x) = nrd(x) # 0 is of the form

) = v — T(v, x)x o trd(vf)x
A O(x) " nrd(x) (4.5.12)
=V — (WX + x| = v x = xvxl,

the final equality from X = —x as x € B’. The product of two such reflections is thus
of the form v + ava~' with @ € BX. Therefore B* acts by special isometries, and
every special isometry so arises: the map B* — O(Q)(F) surjects onto SO(Q)(F). The
kernel of the action is given by those @ € B* with ava™! = v for all v € BY, i..,
a € Z(B*) = F*.

The second statement follows directly by writing BX = B! F*. O

Example 4.5.13. If B ~ M,(F), then nrd = det, so det” ~ (1,-1,-1) and (4.5.11)
yields the isomorphism PGL,(F) =~ SO({1, —1, —=1))(F).

Example 4.5.14. If F = R and B = H, then det(H) = R.o = R*?, and the second
exact sequence is Hamilton’s (Section 2.4).
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To conclude, we pass from three variables to four variables.

4.5.15. In Exercise 2.17, we showed that there is an exact sequence
1 > {+1}) > H' xH' - SO4) - 1

with H' x H! actingon H ~ R* by v — avB™' = avB for a, 8 € H'.
More generally, let B be a quaternion algebra over F. Then there is a left action of
B* x B* on B:
B*xB*UOB — B
(@.pB)-v=avg

This action is by similarities, since if a = nrd(«) and b = nrd(8), then

(4.5.16)

nrd(ozvﬁ_l) = nrd(a) nrd(v) nrd(ﬁ_l) = %nrd(v)

for all v € V, with similitude factor u = a/b. In particular, if nrd(e) = nrd(8), then the
action is by isometries.

Proposition 4.5.17. With notation as in 4.5.15, the left action (4.5.16) induces exact

sequences

1 » F* - B*x B* - GSO(rd)(F) — 1
(4.5.18)
a (a,a)

and
1 - F* > {(a, B) € B x B* : nrd(@) = nrd(B)} — SO(nrd)(F) — 1.
If further nrd(B*) = F*2, then the sequence
1 - {1} » B' x B! - SO(nrd)(F) — 1

is exact.

Proof. For the first statement, we first show that the kernel of the action is the diagonally
embedded F*. Suppose that av~! = v for all v € B; taking v = 1 shows 8 = a, and
then we conclude that av = va forallv € Bsoa € Z(B) = F.

Next, the map B* x B* — GSO(nrd)(F) is surjective. If f € GSO(nrd)(F) then
nrd(f(x)) = unrd(x) for all x € B, so in particular u € nrd(B>). Every such similitude
factor occurs, since the similitude factor of (a, 1) is nrd(a). So it suffices to show that
the map

{(a, B) € B* x B* : nrd(a) = nrd(B)} — SO(nrd)(F)

is surjective. We again appeal to the Cartan—Dieudonné theorem; by the same compu-

tation as in (4.5.12), we calculate that a reflection in x € B* is of the form
7(v) = —xv X .

The product of two reflections for x, y € B* is thus of the form

v —y(axx Dy = WO D) = avg”!
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where @ = yx~! and 8 = @, and in particular the action is by special similarities. We
conclude that (4.5.18) and the second sequence are both exact.

The final statement again follows by writing BX = B! F*¥, and seeing the kernel as
F*nB' = {£1}. o

Example 4.5.19. When B = M(F), then nrd(B*) = det(GL,(F)) = F*, giving the
exact sequence

1 = GL{(F) = GLy(F) x GL(F) — GSO(det)(F) — 1.

Exercises

Let F be a field with char F' # 2.

> 1. Give an algorithmic proof that every finite-dimensional quadratic space has a
normalized basis (Lemma 4.3.1).

2. Let F = R and let

V= {(an)n ca, € Rforall n >0 and Z afl converges;.
n=0

Show that V is an R-vector space, and themap Q: V — Rby Q((an)n) = ZZO:O afl
is a quadratic form, and so V is an example of an infinite-dimensional quadratic
space. [This example generalizes to the context of Hilbert spaces.]

3. Let B be a quaternion algebraover F.Let N : B — F and A : B — F be defined
by N(@) = trd(@?) and A(a) = trd(a)? — 4 nrd(a). Show that N, A are quadratic
forms on B, describe their associated bilinear forms, and compute a normalized
form (and basis) for each.

4. Generalize Exercise 2.15 as follows. Let O: V — F be a quadratic form with

dimp V = n and lety € O(Q).

(a) If nis odd and dety = 1, then y has a nonzero fixed vector (and therefore
restricts to the identity on a one-dimensional subspace of V).
(b) If nis even and dety = —1, then y has both eigenvalues —1 and 1.

5. Generalizing part of Exercise 4.3, let B be an F-algebra with a standard involu-
tion. Show that the discriminant form

A:B>F
A(@) = trd(@)* — 4 nrd(a)

is a quadratic form.
6. Let Q: V — F be a quadratic form with dimr V < oo and associated bilinear
form 7. The map
V — Hompg(V, F)
x = (v T y)
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is F-linear. Show that Q is nondegenerate if and only if this map is an isomor-
phism.

7. Write out the action (4.5.9) explicitly, as follows. Let B = (a,b | F) and let
a=t+xi+yj+zij.

(a) Show that the matrix of the action v ava~! in the F-basis B =1{i]j,k}
for BY is [@] where nrd(e)[«] is equal to

2 —ax? + by2 —abz? —2a(tz + xy) —2(ty + axz)
2b(tz — xy) 2 + ax* — by? — abz? 2(tx — byz)
2b(axz —ty) 2a(tx + byz) 2 +ax? + by2 +abz?

and nrd(@) = 2 — ax? - by2 +abz?.
(b) Let O = nrd|go and let T be the associated bilinear form. Show that

the Gram matrix [7T] in the basis S is the diagonal matrix with entries
—2a,-2b,2ab. Then confirm by direct calculation that

[a] € SOQ)(F) = {A € SL3(F) : A[T1A" = [T1}.

8. In this exercise, we prove the chain lemma. Let B := (a, b | F) be a quaternion
algebra.

(a) Show that if i’ is orthogonal to 1, j, then (i')> = a’ € F* and ', are
standard generators for B, so B ~ (a/,b | F).

(b) Let B’ := (a’, b’ | F), and suppose that B is isomorphic to B’. Show that
there exists ¢ € F* such that

) (2)- ()
F F F F
[Hint: let ¢: B’ = B be the isomorphism, and take an element orthogonal
to1,j,¢(").]
9. In this exercise, we develop some of the notions mentioned in Remark 3.3.8 in
the context of quadratic forms.

Let B be a finite-dimensional F-algebra (not necessarily a quaternion algebra),
and let Tr : B — F be the left algebra trace (the trace of the endomorphism
given by left multiplication).

(a) Show that the map B — F defined by x — Tr(x?) is a quadratic form on
B; this form is called the (left) trace form on B.

(b) Compute the trace form of A X B and A ®f B in terms of the trace form of
A and B.

(c) Show that if K 2 F is a inseparable field extension of finite degree, then
the trace form on K (as an F-algebra) is identically zero. On the other hand,
show that if K/F is a finite separable field extension (with char F' # 2) then
the trace form is nondegenerate.

(d) Compute the trace form on Q(V5) and Q(@) where @ = 2cos(27/7), so
thata® + @ - 2a-1=0.
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>10. Let Q: V — F and Q’: V' — F be quadratic forms over F with dimp V =

11.

12.

> 13.

14.

dimp V'’ = n < oo, and let 7,7’ be the associated bilinear forms. Suppose
that there is a similarity Q ~ Q' with similitude factor u € F*. Show that
detT’ = u"detT € F/F*2.

Let Q: V — F be a nondegenerate quadratic form with dimg V = n < co.

(a) A subspace W C V is totally isotropic if Qlw = 0 is identically zero.
The Witt index v(Q) of Q is the maximal dimension of a totally isotropic
subspace. Show that if v(Q) = m then 2m < n.

(b) A Pfister form is a form in 2™ variables defined inductively by {a) =
(1, —a) and

Cat,...,am-1,am) = Kai, ..., am1 )8 —apday, ..., am-1).

b
Show that the reduced norm nrd on aT is the Pfister form ({a, b)).

(c) The hyperbolic plane is the quadratic form H: F> — F with H(x, y) = xy.
A quadratic form Q is a hyperbolic plane if Q ~ H. A quadratic form Q
is totally hyperbolic if 0 ~ H= ... = H where H is a hyperbolic plane.
Show that if Q is an isotropic Pfister form, then Q is totally hyperbolic.

(d) Suppose that Q is an isotropic Pfister form with n > 4. Let W c V be
a subspace of dimension n — 1. Show that Q|w is isotropic. [This gives
another proof of Main Theorem 5.4.4 (iii) = (iv).]

(a) Let B be a quaternion algebra over F. Show that the reduced norm is
the unique nonzero quadratic form Q on B that is multiplicative, i.e.,
O(ap) = Q(@)Q(P) for all a, B € B.

(b) Show that (a) does not necessarily hold more generally, for B an algebra
with a standard involution. [Hint: consider upper triangular matrices. |

In this exercise, we pursue some geometric notions for readers some background

in algebraic geometry (at the level of Hartshorne [Har77, Chapter 1]).
Let QO be nonzero quadratic form on V with dimg V = n. The vanishing locus

of Q(x) = 0 defines a projective variety X C P(V) ~ P" of degree 2 called a
quadric. Show that the quadratic form Q is nondegenerate if and only if the
projective variety X is nonsingular. [For this reason, a nondegenerate quadratic
form is also synonymously called nonsingular.]

In this exercise, we work out from scratch Example 4.5.13: we translate the
results on rotations in section 2.4 to B = M,(R), but with respect to a different
measure of ‘length’.

Let
My(R)? = {v € Mr(R) : tr(v) = 0} = {(f _yx) CX, V.7 € R} )

For v € M(R)?, we have det(v) = —x? — yz. Show that the group
My(R)! = SLy(R) = {a € Ma(R) : det(a) = 1}
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> 15.

> 16.

> 17.
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acts linearly on M,(R)? by conjugation (the adjoint representation) preserving
the determinant, giving rise to an exact sequence

1 - {x1} - SLy(R) — SO(det) — 1.

Let Q: V — F be a quadratic form with V finite-dimensional over F. Show
that SO(Q) < O(Q) is a (normal) subgroup of index 2. What can you say about
GSO(Q) < GO(Q)?

In this exercise, we prove Theorem 4.2.22. Let Q: V — F be a quadratic form
with dimg V < oo and let T be its associated bilinear form.

(a) Letv € V be anisotropic. Define the reflection along v by

T,: VoV
7,(x) =x— TSE’VJ)C)V.

Observe that 7, is F-linear, and then show that 7, € O(V) withdet 7, = —1.
[Hint: extend v to a basis of the orthogonal complement of V.] Why is T,
called a reflection?

(b) If x,y € V are anisotropic with Q(x) = Q(y), show that there exists
f € O(V) such that f(x) = y. [Hint: reflect along either v = x + y or
v = X — y as at least one is anisotropic, in the former case postcomposing
with reflection along x.]

(c) Let Q’: V! — F be another quadratic form, and let f: V = V’ be an
isometry. For W C V, show that f(W=) = f(W)*.

(d) Prove Theorem 4.2.22(a). [Hint: reduce to the case where dimgp W| =
dimp W{ = 1; apply parts (b) and (c).]

(e) Prove Theorem 4.2.22(b). [Hint: compare the isometry V =~ V' with the
isometry g.]

Prove the following weakened version of the Cartan—Dieudonné theorem (The-
orem 4.5.7): Let (V, Q) be a nondegenerate quadratic space with dimg V = n.
Show that every isometry f € O(Q)(F) is a product of at most 2n — 1 reflections.
[Hint: in the proof of Exercise 4.16(b), note that f can be taken to be a product
of at most 2 reflections, and finish by induction. |
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Chapter 5

Ternary quadratic forms and
quaternion algebras

Continuing our treatment of quadratic forms, in this chapter we connect quaternion
algebras to ternary quadratic forms.

5.1 » Reduced norm as quadratic form

Let F be a field with char F # 2 and let B = (a, b | F) be a quaternion algebra over
F. We saw in the previous chapter (4.1.1) that the reduced norm defines a quadratic
form. But always have scalar norms nrd(¢) = 1% for t € F, so the form carries the same
information when restricted to the space of pure quaternions

BY := {@ € B : trd(a) = 0}
with basis i, j, ij. This quadratic form restricted to B is
nrd(xi + yj + zij) = —ax® — by? + abz®

with discriminant (—a)(—b)(ab) = (ab)?, so the trivial class in F*/F*.

We might now try to classify quaternion algebras over F' up to isomorphism in
terms of this quadratic form. Recall as in the previous chapters that for morphisms
between quadratic forms, one allows either isometries, an invertible change of basis
preserving the quadratic form, or similarities, which allow a rescaling of the quadratic
form by a nonzero element of F. Our main result is as follows (Corollary 5.2.6).

Theorem 5.1.1. The map B +— nrd |go induces a bijection:
with discriminant 1 € F*/F*2

up to isometry
{ Nondegenerate ternary }
>

{Quaternion algebras over F

Ternary quadratic forms over F
up to isomorphism } { }

quadratic forms over F
up to similarity
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The map B +— nrd |go in Theorem 5.1.1 has inverse defined by the even Clifford
algebra (see section 5.3). The similarity class of a nondegenerate ternary quadratic
form cuts out a well-defined plane conic C C IP? over F, so one also has a bijection
between isomorphism classes of quaternion algebras over F' and isomorphism classes
of conics over F. Finally, keeping track of an orientation allows one to fully upgrade
this bijection to an equivalence of categories (Theorem 5.6.8).

The classification of quaternion algebras over F' is now rephrased in terms of
quadratic forms, and a more detailed description depends on the field F'. In this vein,
the most basic question we can ask about a quaternion algebra B is if it is isomorphic
to the matrix ring B =~ My (F): if so, we say that B is split over F. For example, every
quaternion algebra over C (or an algebraically closed field) is split, and a quaternion
algebra (a, b | R) is split if and only if a > O or b > 0.

Ultimately, we will identify six equivalent ways (Main Theorem 5.4.4) to check if
a quaternion algebra B is split; in light of Theorem 5.1.1, we isolate the following.

Proposition 5.1.2. B is split if and only if the quadratic form nrd|go represents O
nontrivially.

In later chapters, we will return to this classification problem, gradually increasing
the “arithmetic complexity” of the field F.

5.2 Isomorphism classes of quaternion algebras

In Section 2.4, we found that the unit Hamiltonians act by conjugation on the pure
quaternions H? ~ R as rotations, preserving the standard inner product. In this
section, we return to this theme for a general quaternion algebra, and we characterize
isomorphism classes of quaternion algebras in terms of isometry classes of ternary
quadratic forms.

Throughout this chapter, let F' be a field with char F' # 2, and let B = (a, b | F) be
a quaternion algebra over F.

Definition 5.2.1. a € B is scalar if a € F and pure if trd(a) = 0.

5.2.2. Recalling (3.3.5), we have the F-vector space of pure (trace 0) elements of B
given by B® = {1}*. The standard involution restricted to B® is given by @ = —a for
@ € BY, so equivalently B is the —I-eigenspace for ~. We have B = Fi ® Fj @ Fij
and in this basis

nrd |go ~ (—a, —b, ab) (5.2.3)

so that disc(nrd |go) = (ab)? = 1 € F*/F*? (cf. Example 4.3.8).
Proposition 5.2.4. Let B, B’ be quaternion algebras over F. Then the following are
equivalent:
(i) B ~ B’ are isomorphic as F-algebras;
(ii) B =~ (B’)°P are isomorphic as F-algebras;
(iii) B ~ B’ are isometric as quadratic spaces; and
(iv) B® =~ (B")° are isometric as quadratic spaces.
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If £+ B = (B is an isometry, then f extends uniquely to either an isomorphism
f: B> B’ oran isomorphism f: B = (B")°? of F-algebras.

Proof. We follow Lam [Lam2005, Theorem II1.2.5]. The equivalence (i) < (ii) follows
from postcomposing with the standard involution ~ : B” = (B’)°P.

The implication (i) = (iii) follows from the fact that the standard involution on an
algebra is unique and the reduced norm is determined by this standard involution, so
the reduced norm on B is identified with the reduced norm on B’.

The implication (iii) = (iv) follows from Witt cancellation (Theorem 4.2.22); and
(iv) = (iii) is immediate, since B = (1)®B” and B’ = (1)@ (B’)? so the isometry
extends by mapping 1 — 1. (Or use Witt extension, Theorem 4.2.22(b).)

So finally we prove (iv) = (i). Let f: BY — (B")" be an isometry of quadratic
spaces. Suppose B =~ (a, b | F). Since f is an isometry, nrd(f(i)) = nrd(i) = —a and

nrd(f(0) = £G) () = - f(i)*

so f(i)? = a. Similarly f(j)?> = b. Finally, ji = —ij since i, j are orthogonal (as in
the proof of Main Theorem 4.4.1), but then f(i), f(j) are orthogonal as well and so
FDF@ ==fOFO).

Similarly, we know that ij is orthogonal to i, j, thus f(ij) is orthogonal to both
f(@) and f(j) and so f(ij) = uf(@i)f(j) for some u € F*; taking reduced norms gives
nrd(ij) = w? nrd(i)nrd(j) so u? = 1 thus u = 1. If u = 1, then f(ij) = fG)f()),
and f extends via f(1) = 1 to an F-algebra isomorphism B = B’. Otherwise,
u=—land f(ij) = —f()f(G) = f(j)f(@i), in which case f extends to an F-algebra
anti-isomorphism, or equivalently an F-algebra isomorphism B = (B’)°P; but then
postcomposing with the standard involution we obtain an F-algebra isomorphism
B = B'. O

Main Theorem 5.2.5. Let F be a field with char F # 2. Then the functor B — nrd |go
yields an equivalence of categories between

Quaternion algebras over F,
under F-algebra isomorphisms and anti-isomorphisms

and
Ternary quadratic forms over F with discriminant 1 € F*/F>2,

under isometries.

Proof. The association B — nrd|gzo gives a functor from quaternion algebras to non-
degenerate ternary quadratic forms with discriminant 1, by 5.2.2; the map sends iso-
morphisms and anti-isomorphisms to isometries and vice versa by Proposition 5.2.4.
Therefore the functor is fully faithful. To conclude, we show that the functor is essen-
tially surjective. Let V be a nondegenerate ternary quadratic space with discriminant
1 € F*/F*2. Choose a normalized basis for V, so that Q ~ (—a, —b, ¢) witha, b, ¢ € F*.
By hypothesis, we have disc(Q) = abc € F*?, so applying the isometry rescaling the
third basis vector we may suppose ¢ = ab. We then associate to V the isomorphism
class of the quaternion algebra (a, b | F). The result follows. ]
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Corollary 5.2.6. The map B — nrd |go yields a bijection

with discriminant 1 € F*/F*?
up to isometry
{ Nondegenerate ternary }
g

{Quaternion algebras over F'

Ternary quadratic forms over F
up to isomorphism } { }

quadratic forms over F
up to similarity

that is functorial with respect to F.

By the expression functorial with respect to F', we mean that this bijection respects
(is compatible with) field extensions: explicitly, if ' < K is an inclusion of fields,
and B is a quaternion algebra with associated ternary quadratic form Q: B — F,
then the quaternion algebra Bx = B ®f K has associated ternary quadratic form
Ok: BY =B"®r K > K.

Proof of Corollary 5.2.6. Functoriality boils down to the fact that
(Bx)’ = (Bop K)° = B" ®F K

for F — K an inclusion of fields. The first bijection is an immediate consequence of
Main Theorem 5.2.5. We do not need anti-isomorphisms once we restrict to classes,
since if there is an anti-isomorphism B = B’ then composing with the standard
involution gives a straight up isomorphism.

Next, we examine the natural map from isometry classes to similarity classes and
show it is surjective. Every nondegenerate ternary quadratic form (or any quadratic
form in odd dimension) is similar to a unique isometry class of quadratic forms with
trivial discriminant: if Q = {(a, b, ¢) with a, b, c € F*, then disc({a, b, ¢)) = abc and

0 ={a,b,c) ~ abc{a, b, c) = (a*bc, ab*c, abc®y ~ (bc, ac, ab)

and disc({(bc, ac, ab)) = (abc)> = 1 € F*/F*?. Therefore the map is surjective.

To conclude, we show this map is injective. Suppose that Q, Q’ are forms of
discriminant 1, so det7,detT’ € F*2 Suppose there is a similarity Q ~ Q’, so
O’ (f(x)) = uQ(x) for some f: V — V' and u € F*; we show in fact that Q ~ Q’ are
isometric. By Exercise 4.10, we have det 7" = u? det T, and u = ¢*> € F*?. Therefore

Q' (™ f(x) = 2 (f(x) = u Q' (f (%)) = Q(x)

and ¢~ f: V =5 V' is the sought after isometry. O

Remark 5.2.7. We will refine Main Theorem 5.2.5 in section 5.6 by restricting the
isometries to those that preserve orientation.
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5.3 Clifford algebras

In this section, we define a functorial inverse to B +— nrd|go = Q in Main Theorem
5.2.5: this is the even Clifford algebra of Q. The Clifford algebra is useful in many
contexts, so we define it more generally. Loosely speaking, the Clifford algebra of a
quadratic form Q is the algebra generated by V subject to the condition x> = Q(x)
for all x € V, so the multiplication on the Clifford algebra is induced by the quadratic
form.

Let Q: V — F be a quadratic form with dimr V = n < oo; in this section, we
pause our assumption and allow F of arbitrary characteristic.

Proposition 5.3.1. There exists an F-algebra CIf Q with the following properties:

(i) There is an F-linear map v: V — CIf Q such that W(x)? = O(x) forall x € V;
and

(ii) CIf Q has the following universal property: if Ais an F-algebraand iy : V — A
is a map such that talx)? = Q(x) for all x € V, then there exists a unique
F-algebra homomorphism ¢ : CIf Q — A such that the diagram

V> CIfQ
|

X ¢
\
A

commutes.
The pair (CIf Q, ) is unique up to unique isomorphism.

The algebra CIf Q in Proposition 5.3.1 is called the Clifford algebra of Q.

Proof. Let
TenV := @ yed (5.3.2)
d=0
where
v .= V®---®@V and V®:=F,
S —
d

so that

TenV=FaVa(VeV)s....

Then Ten V has a multiplication given by tensor product: for x € V®? and y € V® we
define
x-y=x®ye Voo

(concatenate, and possibly distribute, tensors). In this manner, Ten V has the structure
of an F-algebra, and we call Ten V the tensor algebra of V.
Let
IQ)=(x®x—-0x):xeVyCcTenV (5.3.3)
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be the two-sided ideal generated the elements x ® x — Q(x) for all x € V. Let
CIf Q = Ten V/I(Q). (5.3.4)

The algebra CIf Q by construction satisfies (i). And if t4 : V — A is as in (ii), then
the map «(x) — t4(x) for x € V extends to a unique F-algebra map TenV — A; since
further 14 (x)> = Q(x) for all x € V, this algebra map factors through ¢: CIf Q — A.
By abstract nonsense (taking A = CIf Q), we see that any other algebra having the
same property as CIf(Q) is uniquely isomorphic to it, i.e., CIf Q is unique up to unique
isomorphism. O

Example 5.3.5. If Q: F — F is the quadratic form Q(x) = ax? with a € F, then
CIf(F) =~ F[x]/(x> — a) (Exercise 5.6).

Example 5.3.6. In the extreme case where Q = 0 identically, CIf @ =~ €P},_, AV is
canonically identified with the exterior algebra on V.

5.3.7. Let x, y € V. Then in CIf Q, we have
x+y)@(x+y)-x®@x—-y®y=0(x+y)-0x)—0(y)

(5.3.8)
x®y+y®x=T(,Yy).
In particular, x, y are orthogonal if and only if x® y = —y ® x.
5.3.9. Letey, ..., e, be an F-basis for V. Then finite tensors on these elements are an F'-

basis for Ten V. In CIf Q, by 5.3.7 we have ¢;®e; = Q(e;) and e;®e; = T(e;, ej)—e;®ej,
so an F-spanning set for CIf Q is givenby ¢; ®---®e¢;, with1 <ij <ip <--- <ig<n
(including 1 arising from the empty tensor product), and so

n
dimp CIf(Q) < )’ (”) =, (5.3.10)
d
d=0
It is customary to abbreviate ¢;, ® - ®¢;, = ¢;, - ¢;,.

Example 5.3.11. If Q ~ {ay, ..., a,) is diagonal in the basis ¢;, then
(i - ei,) = sgnli ... i)} (e ooy’ = oo = (DI ay gy,
Example 5.3.12. Suppose char F # 2 and let Q: F> — F be the quadratic form
Q(x) = {a, b). Then by a direct calculation using 5.3.9, we find
CifQ=F&Fe ®Fe,®Fejep (5.3.13)
2

with multiplication e} = a and eg = band eze; = —ejep,i.e., withi:=ejand j := e

b
we have identified CIf Q ~ (GT) when a, b # 0.
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Example 5.3.12 generalizes as follows.

Lemma 5.3.14. The map 1: V — CIf Q is injective, and dimp CIf(Q) = 2".

Proof. By Lemma 4.3.1, we may choose a basis ej,...,e, for V in which Q =
{ai,---,ay,) is diagonal. Let A be the F-vector space with basis the symbols z;, - - - z;,
forl <ij <ip < -+ <ig £ n Inthe same way as what was considered for the
relations (2.2.2), we verify directly that there is a unique, associative multiplication
on A such that ziz = a; and zjz; = —z;zj. (Alternatively, this can be viewed as a
graded tensor product; see Exercise 5.21.) The map t4: V — A by ¢; — z; has
ta(x)? = 1a(X; xie)* = aixi + -+ + apxi = Q(x), so by the universal property of
CIf(Q), there exists a unique F-algebra homomorphism ¢: CIf(Q) — A such that

@1 = 14. Since the elements z;, - - - z;, are F-linearly independent in A, so too are their
preimages e;, - - - ¢;, in CIf O, so the spanning set given in 5.3.9 is in fact a basis and
¢ is an isomorphism. O

As it will cause no confusion, we may identify V with its image «(V) — CIf Q.

5.3.15. The reversal map, given by
rev: CIfQ —» CIf Q

X1Q - ®X, P X, Q- QX

(5.3.16)

on pure tensors (and extended F-linearly) is well-defined, as it maps the ideal 1(Q) to
itself, and so it defines an involution on CIf Q that we call the reversal involution.

Lemma 5.3.17. The association Q — CIf Q induces a faithful functor from the cate-
gory of

quadratic forms over F, under isometries
to the category of

finite-dimensional F-algebras with involution, under isomorphisms.

Proof. Let Q": V' — F be another quadratic form and let f: V — V’ be an isometry.
Then f induces an F-algebra map Ten V — Ten(V”’) and

fa®x=0) = f()® f(x) - 0x) = f(O)® f(x) - Q' (f(x))

so f also induces an F-algebra map CIf 0 — CIf(Q’). Repeating with the inverse
map, and applying the universal property, we see that these maps are inverse, so define
isomorphisms. The functor is faithful because V c CIf Q, so if f: V = V acts as the
identity on CIf Q then it acts as the identity on V, so f itself is the identity. (This can
be rephrased in terms of the universal property: see Exercise 5.13.) O
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5.3.18. The tensor algebra Ten V has a natural Zs( grading by degree, and by con-
struction (5.3.4), the quotient CIf Q = Ten V/I(Q) retains a Z/2Z-grading

CIfQ =Clf’ Q@ CIf'

where CIf° Q C CIf Q is the F-subalgebra of terms of even degree and CIf' Q the
CIf Q-bimodule of terms with odd degree. The reversal involution 5.3.15 preserves
CIfY Q and so descends to an involution on CIf° Q.

We call CIf° Q the even Clifford algebra and CIf! Q the odd Clifford bimodule
of Q. The former admits the following direct construction: let

Ten® V := @ ye2d
d=0

and let 1°(Q) := I(Q) N Ten® V; then CIf° Q ~ Ten’ V/1°(Q).

5.3.19. Referring to 5.3.9, the elements ejey, ..., e,—1e, generate CIf? Q as an F-
algebra, and CIf° Q has basis e;, ---e;, where d is even (including the empty product
1), so dimg CIf°(Q) = 27!,

Example 5.3.20. Continuing Example 5.3.12, we see that the reversal involution fixes
i, j and acts as the standard involution on CIf® Q. So the algebra CIf Q is not just a
quaternion algebra, but one retaining a Z/27Z-grading.

Lemma 5.3.21. The association Q +— CIf° Q defines a functor from the category of
quadratic forms over F, under similarities
to the category of

finite-dimensional F-algebras with involution, under isomorphisms.

Proof. Let Q': V' — F be another quadratic form and let (f, u) be a similarity, with
f:V > V' andu € F*, so that uQ(x) = Q’(f(x)) for all x € V. We modify the proof
in Lemma 5.3.17: we define a map

Ten’ V — Ten(V")
1@ @xg - WP f(x) @ ® fxa).
Then under this map, we have
x®@x=00x) ~ u” (f()® f()) - O(x) = u” (f(x) ® f(x) - Q' (f(x)))

so 1°(Q) maps to 1°(Q’), and the induced map CIf® Q — CIf°(Q’) is an F-algebra
isomorphism. O

5.3.22. Note that unlike the Clifford functor, the even Clifford functor need not be
faithful: for example, the map —1: F? — F? has ejes > (—e1)(—e2) = eje; s0 acts by
the identity on CIf° Q.

We now come to the important immediate application.
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5.3.23. Suppose that char F # 2 and let Q(x) = {a, b, c) be a nondegenerate ternary
quadratic form. Then the even Clifford algebra CIf° Q is given by

Clif°Q=FoFi®FjaFij
where i = ejep, j = eze3, subject to the multiplication
i>=—ab, j*=-bc, ij+ji=0.
So

CIt’ 9 ~ (#).

Letting k = eze;, we obtain symmetrically with the other two pairs of generators j, k

or k, i that
CIf' 0 ~ (—bc, —ac) N (—ac, —ab).

F F
The reversal involution is the standard involution on CIf° Q. Letting B = citl o,
nrd |go = {(ab, bc, ac) ~ (abcz, a*be, abzc) = abc{a, b, c).

So if disc Q(x) = abc € F*?, then nrd |go is isometric to Q. In a similar way, if

(]

b
B = (a?)’ then in Main Theorem 5.2.5 we associate Q = nrdgo = (—a, —b, ab), and

—ab, ab*? a,b
CIf’ 0 ~ (T) ~ (?) (5.3.24)

This gives another tidy proof of the bijection in Corollary 5.2.6.

Remark 5.3.25. The even Clifford map does not furnish an equivalence of categories
for the same reason as in 5.3.22; one way to deal with this issue is to restrict the
isometries to those that preserve orientation: we carry this out in section 5.6.

5.4 Splitting

The moral of Main Theorem 5.2.5 is that the problem of classifying quaternion algebras
depends on the theory of ternary quadratic forms over that field (and vice versa). We
now pursue the first consequence of this moral, and we characterize the matrix ring
among quaternion algebras. Suppose that char F # 2, but still Q: V — F a quadratic
form with dimg V < 0.

Definition 5.4.1. The hyperbolic plane is the quadratic form H: F? — F defined by
H(x,y) = xy. A quadratic form is a hyperbolic plane if it is isometric to H.

A hyperbolic plane H is universal, its associated bilinear form has Gram matrix

((1) (l)) in the standard basis, and H has normalized form H =~ (1, —1).
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Lemma 5.4.2. Suppose Q is nondegenerate. Then Q is isotropic if and only if there
exists an isometry Q ~ H® Q' with Q' nondegenerate and H a hyperbolic plane.

Proof. For the implication (&), we have an isotropic vector from either one of the two
basis vectors. For the implication (=), let x € V be isotropic, so x # 0 and satisfy
0(x) = 0. Since Q is nondegenerate, there exists y € V such that T'(x, y) # 0; rescaling
y, wemay assume 7'(x,y) = 1. If T(y, y) = 20(y, y) # 0, replacing y < y—2x/T(y, y)
gives T(y,y) = 0. Thus Q restricted to Fx + Fy is isometric to H, and in particular
is nondegenerate. Therefore letting V’ := (Fx + Fy)* and Q' := Qly/, we have
V~(Fx+Fy)BV' andQ=~HBQ'. O

Lemma 5.4.3. Suppose Q is nondegenerate and let a € F*. Then the following are
equivalent:

(i) Q represents a;
(ii) Q = (ayB Q' for some nondegenerate form Q’; and
(iii) (—a) B Q is isotropic.

Proof. For (i) = (ii), we take Q' = Qlw and W = {v}* c V where Q(v) = a. For
(ii) = (iii), we note that (—a) B Q =~ (a, —a)B Q’ is isotropic. For (iii) = (i), suppose
{(—a)yBQO)(v) = 0, s0 Q(v) = ax? for some x € F. If x = 0, then Q is isotropic and
by Lemma 5.4.2 represents a; if x # 0, then by homogeneity Q(v/x) = a and again Q
represents a. O

We now come to a main result.

b
Main Theorem 5.4.4. Let B = aT) be a quaternion algebra over F (withchar F # 2).

Then the following are equivalent:

(i) B ~ (%) = My (F);
(ii) B is not a division ring;
(iii) The quadratic form nrd = (1, —a, —b, ab) is isotropic;
(iv) The quadratic form nrd |go =~ (—a, —b, ab) is isotropic;
(v) The binary form {a, by represents 1;
(vi) b € Nmg|r(K*) where K = F[i]; and
(vi") b € Nmg p(K*) where K = F(r\/a).

Condition (vi) holds if and only if there exist x, y € F such that x> — ay* = b; if K
is not a field then K ~ F X F and Nmgr(K*) = F*. In condition (vi’), we take F(~+/a)
to be a splitting field for x> — a over F, so equal to F if a € F*. (Depending on the
circumstances, one of these formulations may be more natural than the other.)

Proof. We follow Lam [Lam2005, Theorem 2.7]. The isomorphism (1, 1 | F) ~ M, (F)
in (i) follows from Example 2.2.4. The implication (i) = (ii) is clear. The equivalence
(ii) & (iii) follows from the fact that @ € B* if and only if nrd(a) € F* (Exercise 3.5).



5.4. SPLITTING 75

We now prove (iii) = (iv). Let O # @ € B be such that nrd(a) = 0. If trd(e) = 0, then
we are done. Otherwise, trd(e) # 0. Let 8 be orthogonal to 1, @, so that trd(af) = 0.
We cannot have both @ = 0 and af = (trd(a) — @) = 0, so we may suppose a8 # 0.
But then nrd(a8) = nrd(a) nrd(8) = 0 as desired.

To complete the equivalence of the first four we prove (iv) = (i). Let 8 € B°
satisfy nrd(8) = 0. Since nrd |z is nondegenerate, there exists 0 # a € B’ such
that trd(eB8) # 0. Therefore, the restriction of nrd to Fa & Ff3 is nondegenerate
and isotropic. By Lemma 5.4.2, we conclude there exists a basis for B® such that
nrd [go = (1,-1)B(c) = (1, -1, ¢); but disc(nrd |po) = —c € F*2 by 5.2.2; rescaling,
we may suppose ¢ = —1. But then by Proposition 5.2.4 we have B ~ (1,1 | F).

Now we show (iv) = (v). For @ € BY,

nrd(e) = nrd(xi + yj + zij) = —ax* — by* + abz?

as in 5.2.2. Suppose nrd(a) = 0. If z = 0, then the binary form (a, b) is isotropic so is
a hyperbolic plane by Lemma 5.4.2 and thus represents 1. If z # 0 then

y 2 \2
=] +b|—]| =1.
a(az) (bz)
Next we prove (v) = (vi). If a € F*? then K ~ F X F and Nmgr(K*) = F* 3 b.
If a ¢ F*?, then given ax® + by*> = 1 we must have y # 0 so

o] o) e (55

In the equivalence (vi) & (vi’), the two statements are identical if a ¢ F %2 and
both automatically satisfied if a € F*2.

To conclude, we prove (vi) = (iii). If b = x> — ay’ € Nmgr(K*), then @ =
x+vyi+j#0hasnrd(a) = x> —ay* -b=0. o

We give a name to the equivalent conditions in Main Theorem 5.4.4.

Definition 5.4.5. A quaternion algebra B over F is split if B ~ M(F). A field K
containing F is a splitting field for B if B ®F K is split.

Example 5.4.6. The fundamental example of a splitting field for a quaternion algebra
is that C splits the real Hamiltonians H: we have H ®r C ~ M,(C) as in (2.4.1).

Lemma 5.4.7. Let K D F be a quadratic extension of fields. Then K is a splitting field
for B if and only if there is an injective F-algebra homomorphism K — B.

Proof. First, suppose ¢: K < B. We may suppose that K = F(Vd) with d € F*. Let
o= L(\/Z), SO ,u2 =d. Then 1 ® Vd - u® 1is azerodivisor in B ®f K:

(1eVd-ue (1o Vd+u®)=108d-de1=0.
By Main Theorem 5.4.4, we conclude that B ® K ~ M»(K).
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Next we prove the converse. If B =~ M;(F) already, then any quadratic field K
embeds in B (take a matrix in rational normal form) and B ® K ~ M;(K) for any K.
So by Main Theorem 5.4.4, we may suppose B is a division ring. Let K = F(Vd). We
have B ®r K ~ M, (K) if and only if (—a, —b, ab) is isotropic over K, which is to say
there exist x, y, z, u, v, w € F such that

—a(x + uNd)? = b(y + vVd)* + ab(z + wVd)> = 0. (5.4.8)

Let @ = xi + yj + zij and 8 = ui + vj + wij. Then trd(a) = trd(8) = 0. Expansion
of (5.4.8) (Exercise 5.14) shows that « is orthogonal to 8, so trd(aef) = 0, and that
nrd(@) + dnrd(B) = 0. Since B is a division ring, if nrd(8) = ¢ = O then 8 = 0
so nrd(a) = 0 as well and @ = 0, a contradiction. So nrd(8) # 0, and the element
y =aB™' =c'ap € Bhas nrd(y) = —d and trd(y) = ¢~ trd(a8) = 0s0 y> = d as
desired. O

b Lb L
Example 5.4.9. If B = (07), then either a € F*? and B ~ (?) ~ M, (F) is split,

ora ¢ F*? and K = F(+/a) splits B.
Example 5.4.10. Let p be an odd prime and let a be a quadratic nonresidue modulo p.
We claim that % is a division quaternion algebra over Q. By Main Theorem 5.4.4,

it suffices to show that the quadratic form (1, —a, —p, ap) is anisotropic. So suppose that
2 —ax? = p(y2 - azz) with 7, x, v, z € Q not all zero. The equation is homogeneous, so
we can multiply through by a common denominator and suppose that ¢, x, y, z € Z with
gcd(t, x, y, z) = 1. Reducing modulo p we find 2 = ax? (mod p); since a is a quadratic
nonresidue, we must have ¢ = x = 0 (mod p). Plugging back in and cancelling a factor
of p we find y? = az® = 0 (mod p), and again y = z = 0 (mod p), a contradiction.

5.5 Conics, embeddings

Following Main Theorem 5.2.5, we are led to consider the zero locus of the quadratic
form nrd |zo up to scaling; this gives a geometric way to view the preceding results.

Definition 5.5.1. A conic C c P? over F is a nonsingular projective plane curve of
degree 2. An isomorphism of conics C,C’ over F is an element f € PGL3(F) =
Aut(P?)(F) that induces an isomorphism of curves f: C = C’.

If we identify
P(B®) := (B'\{0})/F* ~ P*(F)

with (the points of) the projective plane over F, then the vanishing locus C = V(Q) of
Q = nrd|zo defines a conic over F: if we take the basis i, j, ij for BY, then the conic C
is defined by the vanishing of the equation

0(x, y,z) = nrd(xi + yj + zij) = —ax* — by* + abz®> = 0.

Here, nondegeneracy of the quadratic form is equivalent to the nonsingularity of the
associated plane curve (Exercise 4.13).
The following corollary is then simply a rephrasing of Main Theorem 5.2.5.
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Corollary 5.5.2. The map B — C = V(ard |go) yields a bijection

Quaternion algebras over F' Conics over F
up to isomorphism up to isomorphism

that is functorial with respect to F.

Main Theorem 5.4.4 also extends to this context.

Theorem 5.5.3. The following are equivalent:

() B =~ Ma(F);
(vii) The conic C associated to B has an F-rational point.

By Lemma 5.4.7, a quadratic field K over F embeds in B if and only if the ternary
quadratic form nrd |go represents 0 over K. We can also rephrase this in terms of the
values represented by nrd |go.

Lemma 5.5.4. Let K be a quadratic extension of F of discriminant d. Then K — B if
and only if nrd |go represents —d over F.

Proof. Write K = F (Vd). Then K — B if and only if there exists @ € B such that
a* = d if and only if there exists @ € B with trd(e) = 0 and nrd(@) = —d, as claimed.
m}

Remark 5.5.5. Two conics over F are isomorphic (as plane curves) if and only if their
function fields are isomorphic (Exercise 5.23).

5.6 Orientations

To conclude, we show that the notion of orientation underlying the definition of special
isometries (as in Example 4.5.5) extends more generally to isometries between two
different quadratic spaces by keeping track of one bit of extra information, refining
Main Theorem 5.2.5. We follow Knus—Murkurjev—Rost-Tignol [KMRT98, Theorem
15.2]. We retain our hypothesis that char F # 2.

Let Q: V — F be a quadratic space with dimg V = n odd.

Lemma 5.6.1. Suppose Q has signed discriminant sgndiscQ = d € F*/F*%. Let
A := CIf Q be the Clifford algebra of Q, and let K = Z(A) be the center of A. Then
K =~ F[x]/(x* - d).

The signed discriminant gives a simpler statement; one could equally well work
with the usual discriminant and keep track of the sign.

Proof. We do the case n = 3. We may suppose V =~ F3 with standard basis ey, e, e3
and that Q = (a, b, c) is diagonal, with sgndisc(Q) = —abc = d. We have the relation
eiej = —eje; fori # j; forall i = 1,2, 3, conjugation by e; acts by —1 on ¢; and ¢;e;



78 CHAPTER S5 TERNARY QUADRATIC FORMS

for j # i. This implies Z(A) C F + Fejezes. Let 6 := ejeres = epeze; = ezejep; then
oe; = e;o fori =1,2,3,s0 Z(A) = F[5]. We compute

6% = (e1e2e3)(e1e2e3) = €3 (ere3)(ere3) = —abe = sgndisc(Q) = d. (5.6.2)
Therefore K =~ F[x]/(x* - d).

The general case is requested in Exercise 5.19: with a basis ey, ..., e, for V, the

center is generated over F by 6 = e; - - - ej,. O

From now on, suppose sgndisc(Q) = d = 1.
Definition 5.6.3. An orientation of Q is a choice of £ € Z(CIf Q)\F with ¢* = 1.

5.6.4. Q has exactly two choices of orientation ¢, differing by sign, by Lemma 5.6.1:
under an isomorphism Z(CIf Q) ~ F X F, the two orientations are (-1, 1) and (1, —1).
More intrinsically, given an orientation £, we have a projection K — K/({ — 1) = F,
and conversely given a projection 7: K — F, there is a unique orientation { with
n({) = 1 (the other maps to —1, by F-linearity).

Definition 5.6.5. Let ¢, " be orientations on Q,Q’. An isometry f: V — V' is
oriented (with respect to £, ) if in the induced map f: Z(Clf Q) — Z(CIf Q") we
have () = {".

5.6.6. An oriented isometry is the same as a special isometry (Definition 4.5.1) when
V =~ F" (n still odd), as follows. Let A = CIf Q. Let ey, . . ., e, be a basis for V adapted
as in the proof of Lemma 5.6.1 and § = e;...e,. Then Z(A) is generated by ¢ and
6% = 1. If f € O(Q)(F), then f(8) = (det f)d, so £ = =6 is preserved if and only if
det(f) = 1, and this is independent of the choice of orientation.

So we define the oriented or special orthogonal group of a quadratic space by
choosing an orientation and letting

SOQ)(F) :={f € O(Q)(F) : f is oriented};

the resulting group is independent of the choice, and we recover the same group as in
Definition 4.5.1.
a,b . . .

5.6.7. Let B = (T) be a quaternion algebra over F. In previous sections, we took
nrd|go : B — F, a nondegenerate ternary quadratic space of discriminant 1. Since
we are working with the signed discriminant, we take instead —nrd|g : B — F
with sgndisc(—nrd |zo) = 1; this map has a nice description as the squaring map, since
@? = —nrd(e) for @ € B°.

We claim that B® has a canonical orientation. We have an inclusion ¢: B < B
with «(x)> = —nrd(x) for all x € B°. By the universal property of Clifford algebras,
we get an F-algebra homomorphism ¢: CIf(B%) — B. We see that ¢ is surjective so
it induces an F-algebra map « : Z(CIf(B)) — Z(B) = F (Exercise 2.8). This defines
a unique orientation {p = { with { — 1 € kerx, by 5.6.4.

Explicitly, let i,j,k be the standard basis for B with k = ij. Then
nrd(k) = ab, and i, j, k is a basis for B’. Let ¢ = ijk~' = —ijk/(ab) € Z(CIf(B®)). Then
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6% = —ab(—ab)/(ab)*> = 1 as in (5.6.2). Multiplying out in B, we get ¢({) = 1 € B, so
{ is the same orientation as in the previous paragraph.

The following theorem then refines Main Theorem 5.2.5.

Theorem 5.6.8. Let F be a field with char F # 2. Then the functors

Q.- Clf’Q
(—nrd|go,{B) «— B

vield an equivalence of categories between

Oriented ternary quadratic forms over F with signed discriminant 1 € F*/F*?,
under oriented isometries.

and

Quaternion algebras over F, under F-algebra isomorphisms.

Proof. Let B be a quaternion algebra. As in 5.6.7, the inclusion ¢: B® < B gives
an F-algebra homomorphism CIf(—nrd|go) — B which restricts to a canonical F-
algebra homomorphism CIf’(— nrd | po) — B. In fact, in coordinates, this map is the
isomorphism (5.3.24): choosing the standard basis i, j, k for B = (a, b | F), and letting
e =1i,ey = j,e3 =k, we have

—ab, ab?
CIf%(— nrd | go) = CIf°((a, b, —ab)) = (&)

F

with the standard generators iy := ejep = ij and jy := ere3 = jk. We define the

isomorphism
—ab, ab? a, b
_ | > | —
F F
io, jo = ij, jk.
Therefore, the canonical isomorphism leo(— nrd |go) = B yields a natural isomor-
phism between these composed functors and the identity functor, giving an equivalence
of categories.
Conversely, let (Q, ) be an oriented ternary quadratic space, let B = CIf° Q,

and consider (—nrd |go, {p). We define a natural oriented isometry between these two
spaces. We have a natural inclusion V — CIf Q, and we define the linear map

mg:V—> B
v vl
since v, € CIf' Q, we have vZ € CIf°Q = B. We now show that m; induces an

oriented isometry m; : V — BY. To do so, we let V ~ F> by choosing an orthogonal
basis ey, €3, e3 in which Q = (a, b, ¢) and —abc = 1. We identify B =~ (—ab, —bc | F) as
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in 5.3.23, withi = ejep and j = epe3,and welet k = ij = —beze| so k% = b*(-ac) = b.
Then ¢ = €ejezes with € = +1, and
emy(e) = ej(e1eze3) = aeze; = aj
emy(e2) = ex(ejeze3) = —beje; = —k (5.6.9)
emy(e3) = ez(erezes) = ci;
so in particular mg(V) C BO. The map is an isometry, because
—nrd(my(v)) = —nrd(vd) = (v0)? = v? = —nrd(v) (5.6.10)

since ¢2 = 1 and { is central. Finally, the map is oriented:

mg({) = my(eerezes) = e(e1d)(e2d)(e3d)
= e(eaj)(—ek)(eci) = (—ac)(ijk) = (=abe)ijk™' = ijk™ = ¢g.

This natural oriented isometry gives a natural transformation between these composed
functors and the identity functor, and the statement follows. O

Remark 5.6.11. Theorem 5.6.8 can be seen as a manifestation of the isomorphism
of Dynkin diagrams A; =~ B (consisting of a single node e), corresponding to the
isomorphism of Lie algebras sly ~ so3. This is just one of the (finitely many) exceptional
isomorphisms—the others are just as beautiful, with deep implications, and the reader
is encouraged to read the bible by Knus—Merkurjev—Rost-Tignol [KMRT98, §15].

We record the following important consequence.
Corollary 5.6.12. We have Aut(B) ~ B*/F*.

Proof. We take stabilizers of objects on both sides of the equivalence of categories in
Theorem 5.6.8; we find Aut(B) ~ SO(Q)(F) if B corresponds to Q. But by Proposition
4.5.10, there is an isomorphism B*/F* ~ SO(Q)(F), and the result follows. ]

Remark 5.6.13. We will return to Corollary 5.6.12 in the Skolem—Noether theorem in
section 7.7, generalizing to the context of embeddings into a simple algebra.

To conclude, we extend the notion of oriented isometry to similarities.

5.6.14. Let {,{’ be orientations on quadratic spaces V,V’ and suppose dim V =
dim V' = n = 2m is even. Then a similarity (f, «) from V to V’ induces an F-linear
map u A" f: A"(V) — A™(V’), and we say (f, u) is oriented if the map u=™ A" f
preserves orientations. We define

GSO(Q)(F) := {(f,u) € GO(Q)(F) : (f,u) is oriented}

and recover the same group as in 4.5.4. If n is odd, we declare that every similarity is
oriented and let GSO(Q)(F) := GO(Q)(F).
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Exercises

Throughout, let F be a field with char F' # 2.

1.

10.

Let B, B’ be quaternion algebras over F. Show that if the quadratic forms nrdp
and nrdp: are similar, then they are isometric.

. Consider the hyperbolic quaternions Hyy,. of Macfarlane (1.2.1).

(a) Show that Hyypy is the Clifford algebra of (1, 1, 1) over R.
(a) Show that Hypyc is isomorphic as an algebra over C = R(V-1) to the even
Clifford algebra of the ternary quadratic form —v—1(1, 1, 1).

Prove the implication (vi) = (v) of Main Theorem 5.4.4 directly.

. Use Main Theorem 5.4.4(vi) to give another proof that there is no division

quaternion algebra B over a finite field F' = [F, (with g odd).

(a) Show that the quadratic form Q(x, y, z) = x* + y? + z? is isotropic over F,,
for all odd primes p. Conclude that (=1, -1 | F,) = Ma(IF,). [Hint: count
squares and nonsquares. |

(b) More generally, show that every ternary quadratic form over a finite field
IF, (with g odd) is isotropic. [Hint: Reduce to the case of finding a solution
to y? = f(x) where f is a polynomial of degree 2.] Use Main Theorem
5.4.4(iv) to give yet another proof that there is no division quaternion
algebra B over ;.

(c) Show that over a finite field IF, with g odd, there is a unique anisotropic
binary quadratic form up to isometry.

Show that if Q: F — F is the quadratic form Q(x) = ax*> with a € F, then
CIf(F) = F[x]/(x* - a).
-1,26

. Show that (~1,26)g = 1, i.e., (T) =~ My(Q).

-1,
. Let p be prime. Show that (Fp) ~ Mp(@Q)ifandonlyif p =2o0orp =1
(mod 4).
. Show that

-2,-3\ _(-L-1 -2,-5 -1,-1
( - )_( - )butthat( i )i( } )

Let B = (a, b | F) be a quaternion algebra over F. Give a constructive (algorith-
mic) proof of the implication (iv) = (i) in Main Theorem 5.4.4, as follows.

Let € = xi + yj + zij € B satisfy nrd(e) = —ax*> — by* + abz* = —€> = 0.

(a) Show that there exists k € {i, j,ij} such that trd(ek) = s # 0.
(b) Let ¢ := trd(k) and n := nrd(k), and let €’ := s~ 'e. Let

i"i=€k—(k+1)e
J i=k+(-tk+n+1)é.
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Show that i’, j* generate B as an F-algebra, and that (i")*> = (j')> = 1 and
j'i" = =i’j’. Conclude that B ~ M,(F).

(c) Show that ] := Fe'+Fke' is aleftideal of B with dimg I = 2, and interpret
(b) as arising from the left multiplication map B — Endp(I) ~ M,(F).

Let B be a quaternion algebra over F. Let Q be the reduced norm on B, and for
clarity write eg = 1, ey =i, ep = j, e3 = k as a basis for the domain of Q.

(a) Let C° = CIf° O be the even Clifford algebra of the reduced norm Q. Show
that Z(C%) ~ F x F. [Hint: Z(C°) is generated by epejezes.]

(b) Show that C° ~ B x B°*(~ B x B) as F-algebras.

(c) Prove that if B’ is a quaternion algebra over F then B ~ B’ are isomorphic
as F-algebras if and only if the reduced norms Q ~ Q’ are similar as
quadratic spaces.

Let Q: V — F be a nondegenerate quadratic form. Show that the reversal map
~: CIf° 9 — CIf° O on the Clifford algebra has the property that xx € F for all
pure tensors x = ejey - - eq, but defines a standard involution on CIf Q if and
only if V = {0} and on CIf° Q if and only if dimz V < 3.

Give another proof of Lemma 5.3.17 using the universal property of the Clifford
algebra.

Expand (5.4.8) and prove as a consequence that if @« = xi + yj + zij and
B = ui +vj+ wij, then trd(ef) = 0 (so « is orthogonal to 8) and moreover
nrd(a) + d nrd(B) = 0.

Show that the Hilbert symbol is Galois equivariant, in the following sense: for
all field automorphisms o~ € Aut(F) and all a, b € F*, we have (o (a), o(b))F =
(a, b)F

Let a,b, b’ € F*. Show that there exists an F-linear isomorphism ¢: (a, b |
F) = (a,b' | F) with ¢(i) = i’ if and only if b/b’ € Nmgr(K*) where
K = F(;y/a). [More generally, see Corollary 7.7.6.]

Let a € Q*\Q*2. Show that there are infinitely many distinct isomorphism
classes of conics x> — ay® = bz> for b € Q.

Let K = F(a, b) with a, b algebraically independent, transcendental elements.
,b
Show that the generic quaternion algebra a? is a division algebra. [Hint:

show the associated ternary quadratic form is anisotropic. ]

Prove Lemma 5.6.1 for general odd » as follows.
(a) Forasubsetl ={i,...,i,} C{l,...,n},lete; = e; ---¢; withij <--- <
i,. Then for subsets 1, J C {1, ..., n}, show that

_ #1-#J-#(INJ
erey —6161(—1) ( ).

(b) Show that Z(CIf Q) = F[6] =~ F[x]/(x* — d) where § = eje;...e, and
d = sgndisc(Q). [Hint: Argue on bases and choose #J =2 withINJ =1.]
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20. Let Q: V — F be a quadratic form. Show that the even Clifford algebra CIf° Q
with its map ¢: V ® V — CIf° O has the following universal property: if A is an
F-algebraand ¢4 : V®V — A is an F-linear map such that

(i) tax®x) =Q(x)forall x € V, and
(i) ta(x®)a(y ®2z) = 0(y)ia(x®z) forall x,y,z €V,

then there exists a unique F-algebra homomorphism ¢ : CIf® Q — A such that
the diagram

VeV —=CIf'Q

|
xw’
A

commutes. Conclude that the pair (CIf° Q, 1) is unique up to unique isomorphism.

21. In this exercise, we consider graded tensor products, giving an alternate verifi-
cation of Lemma 5.3.14.
Let A= Ay ® A; and B = By @ B be finite-dimensional F-algebras equipped
with a Z/27Z-grading. We define the graded tensor product A®B to be the usual
tensor product as an F-vector space but with multiplication law defined on
simple tensors by

(@®b)-(d ®b) = (-1 b yq" @ pp').
(a) Show that A®B is an F-algebra of dimension (dimy A)(dimf B).
(b) LetQ: V| » Fand Q,: V, — F,and let Q := Q| 8 Q> be the orthogonal

direct sum on the quadratic space V := V| 8V,. Show there is a canonical
isomorphism of Clifford algebras

CIf(Q) = CIf(Q)® CIf(Q>).

(c) Observe that (b) gives another proof of Lemma 5.3.14.

22. Fori =1,2,let Q;: V; — F be quadratic forms over F.

(a) Prove that there exists a canonical R-algebra isomorphism

CIf%(Q 8 Q2) = (CIf°(Q1) ® CIf*(Q)) @ (Clf' (Q1) ® CIf (1))

where CIf' (01)®CIf!(Q») has multiplication induced from the full Clifford
algebras CIf(Q) and CIf(Q»).
(b) Prove that there is a leO(Q1 B 0»)-bimodule isomorphism

CIf'(Q1 8 Q2) = (CIf°(Q1) ® CIf'(02)) @ (CIf' (Q1) ® CIfY(Q2))

with bimodule structure induced by multiplication in the full Clifford
algebra.
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23. In this exercise, we assume background in algebraic curves. Show that two
conics over F are isomorphic (as projective plane curves) if and only if their
function fields are isomorphic. [Hint: conics are anticanonically embedded—the
restriction of Op2(—1) to the conic is a canonical sheaf—so an isomorphism of
function fields induces an linear isomorphism of conics.]

This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-
nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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Chapter 6

Characteristic 2

In this chapter, we extend the results from the previous four chapters to the neglected
case where the base field has characteristic 2. Throughout this chapter, let F be a field
with algebraic closure F2.

6.1 Separability

To get warmed up, we give a different notation (symbol) for quaternion algebras that
holds in any characteristic and which is convenient for many purposes.

Definition 6.1.1. Let A be a commutative, finite-dimensional algebra over F'. We say
A is separable if
A®p F¥ ~ Fx ... x F,

otherwise, we say A is inseparable.

Example 6.1.2. If A ~ F[x]/(f(x)) with f(x) € F[x], then A is separable if and only
if f has distinct roots in F?!,

6.1.3. If char F # 2, and K is a quadratic F-algebra, then after completing the square,
we see that the following are equivalent:

(i) K is separable;

(ii) K =~ F[x]/(x* — a) with a # 0;
(iii) K is reduced (K has no nonzero nilpotent elements);
(iv) Kisafieldor K ~ F X F.

6.1.4. If char F = 2, then a quadratic F-algebra K is separable if and only if
K ~ F[x]/(x*> + x + a)
for some a € F. A quadratic algebra of the form K = F[x]/(x% + a) with a € F is
inseparable.
Now we introduce the more general notation.
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6.1.5. Let K be a separable quadratic F-algebra, and let b € F*. We denote by
K,b
— | =K®Kj

the F-algebra with basis 1, j as a left K-vector space and with the multiplication rules
j*>=band ja = aj for @ € K, where ~ is the standard involution on K (the nontrivial
element of Gal(K | F) if K is a field). We will also write (K, b | F) for formatting.

From 6.1.3, if char F # 2 then writing K =~ F[x]/(x* — a) we see that

(-

is a quaternion algebra over F. The point is that we cannot complete the square in
characteristic 2, so the more general notation gives a characteristic-independent way
to define quaternion algebras. In using this symbol, we are breaking the symmetry
between the standard generators i, j, but otherwise have not changed anything about
the definition.

6.2 Quaternion algebras

Throughout the rest of this chapter, we suppose that char F' = 2. (We will occasionally
remind the reader of this supposition, but it is meant to hold throughout.)

Definition 6.2.1. An algebra B over F' (with char F = 2) is a quaternion algebra if
there exists an F-basis 1,1, j, k for B such that

P?+i=a, j>=b, and k=ij=ji+1) (6.2.2)
witha € F and b € F*.

Just as when char F # 2, we find that the multiplication table for a quaternion
algebra B is determined by the rules (6.2.2), e.g.

jk=jaj)=3Gj+)j=bi+b=kj+b.
b
We denote by [a?) or [a,b | F) the F-algebra with basis 1,4, j,ij subject to the
b

multiplication rules (6.2.2). The algebra [%) is not symmetric in a, b (explaining the

choice of notation), but it is still functorial in the field F.
If we let K = F[i] ~ F[x]/(x? + x + a), then

2)- 52

and our notation extends that of Section 6.1.
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Example 6.2.3. The ring M(F) of 2 X 2-matrices with coefficients in F is again a
quaternion algebra over F, via the isomorphism

L1y o
[7) — My (F)

oo 1) (o1
LI 1)\ o

Lemma 6.2.4. An F-algebra B is a quaternion algebra if and only if there exist F-
algebra generators i, j € B satisfying

2ti=a, j®>=0b, and ij = jGi+1). (6.2.5)

i
Proof. Proven the same way as Lemma 2.2.5. O

6.2.6. Let B = [a, b | F)be aquaternion algebra over F. Then B has a (unique) standard
involution ~ : B — B given by

a=t+xi+yj+zijmra=x+a=0+x)+xi+yj+zij

since
aa ={+xi+yj+zij)(t +x)+xi +yj+zij) 627)
= 1> +tx +ax* + by + byz + abz’ € F. o

Consequently, one has a reduced trace and reduced norm on B as in Chapter 3.

We now state a version of Theorem 3.5.1 in characteristic 2; the proof is similar
and is left as an exercise.

Theorem 6.2.8. Let B be a division F-algebra with a standard involution that is not
the identity. Then either B is a separable quadratic field extension of F or B is a
quaternion algebra over F.

Proof. Exercise 6.9. (This theorem is also implied by Theorem 6.4.1.) O

6.3 * Quadratic forms

We now turn to the theory of quadratic forms over F with char F = 2. The basic
definitions from section 4.2 apply. For further reference, Grove [Grov2002, Chapters
12-14] treats quadratic forms in characteristic 2, and the book by Elman—Karpenko—
Merkurjev [EKM2008, Chapters I-II] discusses bilinear forms and quadratic forms in
all characteristics.

Let Q: V — F be a quadratic form with dimr V = n < oo and associated bilinear
form 7. Then T(x, x) = 2Q(x) = 0 for all x € V, so one cannot recover the quadratic
form from the symmetric (equivalently, alternating) bilinear form.

6.3.1. We begin with the definition of the discriminant. When # is even, we simply
define disc(Q) = det(T) € F/F**>—this is equivalent to Definition 4.3.3 when char F #
2, having absorbed the square power of 2.
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When n is odd, the symmetric matrix 7 always has determinant 0 (Exercise 6.8);
we need to “divide this by 2”. So instead we work with a generic quadratic form, as
follows. Consider the quadratic form

univ e — 2 2
O"™(xy, ..., xp) = Z ijXiXj = a1 Xy + apX1Xx2 + 0+ appX;, (6.3.2)
1<i<j<n

over the field F*Y .= Q(aij)i,j=1,...n (now of characteristic zero!) with a;; transcen-
dental elements. We compute its universal determinant

2a11 a2 -+ ain

. aipy  2axp -+ axn
det([Tumv]) = det . . . . € ZZ[aij]i,j (6.3.3)

aln arn s 2apg

as a polynomial with integer coefficients. We claim all of these coefficients are even:
indeed, reducing modulo 2 and computing the determinant over F»(a;;); ;, we recall
that the determinant of an alternating matrix of odd size is zero (over any field).
Therefore, we may let

8@, . - -, ann) := det(T™™)/2 € Zlay;1; (6.3.4)
be the universal (half-)discriminant. We then define
disc(Q) := 6(Q(e1), T(e1, €2), . .., Qen)) € F/F?
by specialization. Repeating the argument in 4.3.2, if 1;; € F and ¢} := }; 1;je; then
3(Q(e}), T(e}, €)),..., Oe),) = 5(Q(er), T(en, €2), . . ., Qen)) det(r;;)?

(verified universally!) so disc(Q) is well-defined. Moreover, this definition agrees with
Definition 4.3.3 when char F' # 2.

Example 6.3.5. For example, disc({a)) = a for a € F, and if
o(x,y,2) = ax* + by2 +e? + Uyz +vxz + wxy
with a, b, c,u,v,w € F, then
disc(Q) = 4abc + uvw — au* — bv> — cw?
in all characteristics.

Definition 6.3.6. We say Q is nondegenerate if disc(Q) # 0.

Next, even though not every quadratic form over F can be diagonalized, so we will
also make use of one extra form: for a, b € F, we write [a, b] for the quadratic form
ax® + axy + by on F2.
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Lemma 6.3.7. There exists a basis of V such that
O=~la,b\l=s...slan bulslc,...,cr) (6.3.8)

with a;, b;, Cj € F.

Proof. Exercise 6.11. O

We say that a quadratic form Q is normalized if Q is presented with a basis as in
(6.3.8).

Example 6.3.9. The quadratic forms Q(x, y,z) = x> + yz + z> and Q(x,y,2) = x> +
y2 + 2% are normalized over [, but the quadratic form Q(x, y, z) = xz + yz + z is not.

Example 6.3.10. For a normalized quadratic form as in (6.3.8),
disc(Q) = disc([ay, br]l ® - - - @ [am, bw]) disc(c, - - ., ¢r))
= (ay - am)* disc({cy, . . ., ).

In F/F*%, we have

0, ifr >2;
disc({c1,...,cr)) =19c¢1, ifr=1;
1, ifr=0.

Therefore, Q is nondegenerate if and only if | - - - apc; ¢, #0and r < 1.

b
Example 6.3.11. Let B = [aT) be a quaternion algebra. Then 1, i, j, ij is anormalized

basis for B, and by (6.2.7),
nrd ~ [1, a] @ [b, ab],

so disc(nrd) = 4% so nrd is nondegenerate.

6.4 =+ Characterizing quaternion algebras

We now consider the characterization of quaternion algebras as those equipped with
a nondegenerate standard involution (revisiting Main Theorem 4.4.1, but now with
char F = 2).

Theorem 6.4.1. Let B be an F-algebra (with char F = 2). Then B has a nondegenerate
standard involution if and only if one of the following holds:

(i) B=F;
(ii) B = K is a separable quadratic F-algebra; or

(iii) B is a quaternion algebra over F.
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Proof. If B = F, then the standard involution is the identity, and nrd is nondegenerate
on F because the reduced (half-)discriminant of the quadratic form nrd(x) = x? is 1.

If dimg B = 2, then B = K has a unique standard involution (Lemma 3.4.2). By
6.1.4, we see that the involution is nondegenerate if and only if K is separable.

So suppose dimg B > 2. Since B has a nondegenerate standard involution, there
exists an element i € B such that T'(i, 1) = trd(i) # 0. We have i ¢ F since trd(F) = {0}.
Rescaling we may suppose trd(i) = 1, whence i> = i + a for some a € F, and
nrd |+ = [1,a]. (We have started the proof of Lemma 6.3.7, and 1,i is part of a
normalized basis, in this special case.)

By nondegeneracy, there exists j € {1,i}* such thatnrd(j) = b # 0. Thus trd(j) = 0
so j = j and j2 = b € F*. Furthermore,

0 = trd(ij) = ij + ji = ij + j(i + 1)
soij = j(i + 1). Therefore i, j generate an F-subalgebra A =~ [a, b | F).

The conclusion of the proof follows exactly as in (4.4.3): if k € {1,4, j,ij}* then
k(ij) = k(ji), a contradiction. 0

Corollary 6.4.2. Let B be a quaternion algebra over F, and suppose that K C B is a
commutative separable F-subalgebra. Then dimp K < 2. Moreover, if K # F, then the
centralizer of K* in B* is again K*.

Next, we characterize isomorphism classes of quaternion algebras in characteristic
2 in the language of quadratic forms.
6.4.3. Let B be a quaternion algebra over F. We again define
B% :={a € B : trd() = 0} = {1}*. (6.4.4)
But now B” = F @ Fj & Fk and in this basis
nrd(x + yj + zij) = x> + by* + byz + abz® (6.4.5)
so nrd |go =~ (1) = [b, ab]. The discriminant is therefore
disc(nrd |go) = b* = 1 € F¥/F*%. (6.4.6)

Theorem 6.4.7. Let F be a field with char F = 2. Then the functor B +— nrd |go yields
an equivalence of categories between

Quaternion algebras over F,
under F-algebra isomorphisms

and

Ternary quadratic forms over F with discriminant 1 € F*/F*?,
under isometries.
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Proof. We argue as in Theorem 5.6.8 but with char F' = 2. The argument here is easier,
because all sign issues go away and there is no orientation to chase: by Exercise 6.12,
there is a unique ¢ € CIf! O\F such that £ = 1. The inclusion ¢: B’ < B induces
a surjective F-algebra homomorphism CIf%(nrd | o) — B, so by dimensions it is an
isomorphism; this gives one natural transformation. In the other direction, the map
my V> BY by v > v{ is again an isometry by (5.6.10), giving the other.

Here is a second direct proof. By 6.4.3, the quadratic form nrd |zo has discriminant
1. To show the functor is essentially surjective, let Q: V — F be a ternary quadratic
form with discriminant 1 € F*/F>?. Then Q =~ (u)® [b, c] for some u, b,c € F. We
have disc(Q) = ub®> = 1 € F** so b € F* and u € F*?. Rescaling the first variable,
we obtain Q ~ (1) @ [b, c]. Thus by 6.4.3, Q arises up to isometry from the quaternion

,b
algebra [a?) with a = c¢b™!.

For morphisms, we argue as in the proof of Proposition 5.2.4 but with char F = 2.In
one direction, an F-algebra isomorphism B =5 B’ induces an isometry B = (B")" by
uniqueness of the standard involution. Conversely, let f: B® — (B’)? be an isometry.

Let B ~

a,_Fb). Extend f to an F-linear map B — B’ by mapping i - b~ £(ij) £ ().
The map f preserves 1: it maps F to F by Exercise 6.15, since F = (BY* = ((B")")*,
and 1 = nrd(1) = nrd(f(1)) = f(l)2 so f(1) = 1. We have f(j)2 = nrd(f(j)) =
nrd(j) = b and similarly f(ij)> = ab since j,ij € B°. Thus
1 = ted(i) = b~ trd((if)j) = b™'T(ij, j) =

= b7'T(f(i)), f()) = ed(b™" fGf) () = trd(f(D))

and similarly nrd(f (7)) = nrd(i) = a, thus f(i)2 + f(i) + a = 0. Finally,
FOFG) = b~ FGHFG = £G))
and
D@ = b7 FDFGNLGY = b7 FDS GG + TS G )

= @)+ f() = (FO) + DFG) = FOFG)

so f is an isomorphism of F-algebras. Therefore the functor is full and faithful, yielding
an equivalence of categories. O

Corollary 6.4.8. The maps B — Q = nrd |go = C = V(Q) yield bijections

Nondegenerate ternary
Quaternion algebras over F quadratic forms over F'
{ up to isomorphism } with discriminant 1 € F*/F*?
up to isometry
Nondegenerate ternary
o { quadratic forms over F }
up to similarity
Conics over F'
{ up to isomorphism }
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that are functorial with respect to F.

Proof. The remaining parts of the bijection follow as in the proof of Corollary 5.2.6.
O

We now turn to identifying the matrix ring in characteristic 2.
Definition 6.4.9. A quadratic form H: V — F is a hyperbolic plane if H =~ [1, 0].

Recall that [1,0] : F2 - F is given by the quadratic form X2+ xy = x(x +y),
visibly isometric to the quadratic form xy. Definition 6.4.9 agrees with Definition 5.4.1
after a change of basis.

Lemma 6.4.10. If Q is nondegenerate and isotropic then Q ~ Hw Q" with H a hyper-
bolic plane.

Proof. We repeat the proof of Lemma 5.4.2. O

We may again characterize division quaternion algebras by examination of the
reduced norm as a quadratic form as in Main Theorem 5.4.4 and Theorem 5.5.3.

, b
Theorem 6.4.11. Let B = [a?) (with char F = 2). Then the following are equivalent:

1,1
@) B =~ [?) = Ma(F);

(ii) B is not a division ring;
(iii) The quadratic form nrd is isotropic;
(iv) The quadratic form nrd |go is isotropic;
(v) The binary form [1, a] represents b;
(vi) b € Nmgp(K*) where K = F[i]; and
(vii) The conic C := V(nrd|zo) C P? has an F-rational point.

Proof. Only condition (v) requires significant modification in the case char F' = 2; see
Exercise 6.13. O

Lemma 6.4.12. Let K D F be a quadratic extension of fields. Then K is a splitting
field for B if and only if there is an injective F-algebra homomorphism K — B.

Proof. If 1: K — B and K = F(a), then 1 ® @ — «(@) ® 1 is a zerodivisor in B ®f K,
since
(Ia-ta)dD)(I1®a—-ta)®1) =0, (6.4.13)

and so B ®F K =~ M(K) and KX is a splitting field.
Conversely, let K = F(@) and suppose B ¢ K =~ My(K). If B ~ M,(F'), we can
take the embedding mapping « to a matrix with the same rational canonical form. So

we suppose that B = a’? is a division ring. By Theorem 6.4.11(iv) (over K) and

6.4.3, there exist x, y, z,u, v, w € F not all zero such that

(x+ ua)2 +b(y + va)2 + b(y + va)(z + wa) + ab(z + wa)2 =0; (6.4.14)
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expanding and rewriting into the powers of a gives
U? + bv? + bvw + abw?)a? + (vz + wy)ba + (x> + by* + byz + abz?) = 0. (6.4.15)

Let 8 := x + yj+zij and v := u + vj + wij. Then v € B*, since y = 0 implies
nrd(B) = 0 and yet B is a division ring. Then the equation (6.4.15) can be written

nrd(y)a? + trd(By)a + nrd(8) = 0;

then a direct calculation shows that the element

w=py"' =nrd(y)"' gy

satisfies the same equation as (6.4.15) in the variable a, so there is an embedding
K — B defined by @ — p. O

Exercises

Throughout these exercises, we let F' be a field (of any characteristic, unless specified).

1. Recall the primitive element theorem from Galois theory: if K 2 F is a separable
field extension of finite degree, then there exists @ € K such that K = F(a@)—
and hence K ~ F[x]/(f(x)) where f(x) € F[x] is the minimal polynomial of a.
Extend this theorem to algebras as follows. Let B be a separable, commutative,
finite-dimensional F-algebra. Show that B ~ F[x]/(f(x)) for some f(x) € F[x].

>2. Let B be a quaternion algebra over F and let K C B be a separable quadratic

K,b
F-algebra. Show that there exists b € F* such that B ~ (T) (asin 6.1.5).

3. Let F5P be a separable closure of F and let B be a quaternion algebra over F.
Show that B @ F5P ~ M, (F*®P). [More generally, see Exercise 7.24.]

K, b
> 4. Let K be a separable quadratic F-algebra and let u, b € F*. Show that (T) ~

K.
( ’;b) if and only if # € nrd(K*) = Nmgr(K*).

5. Let B be a quaternion algebra over F, and let Ky 2 F be a quadratic field. Prove
that there exists a separable extension K 2 F linearly disjoint from Ky over F/
(i.e., K ®F Ky is a domain) such that K splits F.

6. Suppose char F =2 and leta € F and b € F*.

,ab
[a;z )ifaiO.

b
(a) Show that [“—) N
F

b
(b) Show that if 7 € F and u € F, then [“T) ~

a+ (¢t + 1%), bu?
B )

,b
7. Letchar F =2 and let B = [a?) be a quaternion algebra over F'. Compute the

left regular representation A: B — Endg(B) = M»(K) where K = F[i] as in
2.3.8.
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> 8. Suppose char F = 2. Let M € M,,(F) be a symmetric matrix with n odd, and
suppose that all diagonal entries of M are zero. Show that det M = 0.

>9. Let char F = 2 and let B be a division F-algebra with a standard involution.
Prove that either the standard involution is the identity (and so B is classified by
Exercise 3.9), or that the conclusion of Theorem 3.5.1 holds for B: namely, that
either B = K is a separable quadratic field extension of F or that B is a quaternion
algebra over F. [Hint: Replace conjugation by i by the map ¢(x) = ix + xi, and
show that ¢* = ¢. Then diagonalize and proceed as in the case char F # 2.]

>10. Let char F = 2. Show that the even Clifford algebra CIf’ Q of a nondegenerate
ternary quadratic form Q: V — F is a quaternion algebra over F.

> 11. Prove Lemma 6.3.7, that every quadratic form over F with char F = 2 has a
normalized basis.

>12. Letchar F =2 and let Q: V — F be a quadratic form over F' with discriminant
d € F¥/F** and dimy V = n odd. Show that Z(CIf Q) ~ F[x]/(x> — d) and that
there is a unique £ € Z(CIf Q) N CIf' Q such that /% = 1.

> 13. Prove Theorem 6.4.11.

> 14. Let Q := Q" ® Q” be an orthogonal sum of two anisotropic quadratic forms over
F (with F of arbitrary characteristic). Show that Q is isotropic if and only if
there exists ¢ € F* that is represented by both Q" and —Q”’.

> 15. Let B be a quaternion algebra over F' (with F of arbitrary characteristic). Show
that F = (B%)*.

> 16. Prove Wedderburn’s little theorem in the following special case: a quaternion
algebra over a finite field with even cardinality is not a division ring. [Hint: See
Exercise 3.16.]
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nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution and
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Chapter 7

Simple algebras

In this chapter, we return to the characterization of quaternion algebras. We initially
defined quaternion algebras in terms of generators and relations in Chapter 2; in the
chapters that followed, we showed that quaternion algebras are equivalently noncom-
mutative algebras with a nondegenerate standard involution. Here, we pursue another
approach, and we characterize quaternion algebras in a different way, as central simple
algebras of dimension 4.

7.1 »> Motivation and summary

Consider now the “simplest” sorts of algebras. Like the primes among the integers or
the finite simple groups among finite groups, it is natural to seek algebras that cannot
be “broken down” any further. Accordingly, we say that a ring A is simple if it has no
nontrivial two-sided (bilateral) ideals, i.e., the only two-sided ideals are {0} and A. To
show the power of this notion, consider this: if ¢: A — A’ is aring homomorphism and
A is simple, then ¢ is either injective or the zero map (since ker ¢ C B is a two-sided
ideal).

A division ring A is simple, since every nonzero element is a unit and therefore
every nonzero ideal (left, right, or two-sided) contains 1 so is equal to A. In particular,
a field is a simple ring, and a commutative ring is simple if and only if it is a field.
The matrix ring M, (F) over a field F is also simple, something that can be checked
directly by multiplying by matrix units (Exercise 7.5).

Moreover, quaternion algebras are simple. The shortest proof of this statement,
given what we have done so far, is to employ Main Theorem 5.4.4 (and Theorem
6.4.11 in characteristic 2): a quaternion algebra B over F is either isomorphic to
M, (F) or is a division ring, and in either case is simple. One can also prove this
directly (Exercise 7.1).

Although the primes are quite mysterious and the classification of finite simple
groups is a monumental achievement in group theory, the situation for algebras is quite
simple, indeed! Our first main result is as follows (Main Theorem 7.3.10).
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Theorem 7.1.1. (Wedderburn—Artin). Let F be a field and B be a finite-dimensional
F-algebra. Then B is simple if and only if B ~ M, (D) where n > 1 and D is a
finite-dimensional division F-algebra.

As a corollary of Theorem 7.1.1, we give another characterization of quaternion
algebras.

Corollary 7.1.2. Let B be an F-algebra. Then the following are equivalent:

(i) B is a quaternion algebra;
(i) B®F F¥ =~ My(FY), where F* is an algebraic closure of F; and
(iii) B is a central simple algebra of dimension dimp B = 4.

Moreover, a central simple algebra B of dimension dimg B = 4 is either a division
algebra or has B ~ M (F).

This corollary has the neat consequence that a division algebra B over F is a
quaternion algebra over F if and only if it is central of dimension dimg B = 4.

For the reader in a hurry, we now give a proof of this corollary without invoking the
Wedderburn—Artin theorem; this proof also serves as a preview of some of the ideas
that go into the theorem.

Proof of Corollary 7.1.2. The statement (i) = (ii) was proven in Exercise 2.4(d).

To prove (ii) = (iii), suppose B is an algebra with BY := B®p F ~ M,(F). The
F?l_algebra B is central simple, from above. Thus Z(B) = Z(BY)N B = F. And if I
is a two-sided ideal of B then I*' := I @ F? is a two-sided ideal of B, so 1! = {0}
or 12! = BY is trivial, whence I = I*' N F is trivial. Finally, dimg B = dimga Bl =4,

Finally, we prove (iii) = (i). Let B a central simple F-algebra of dimension 4. If
B is a division algebra we are done; so suppose not. Then B has a nontrivial left ideal
(e.g., one generated by a nonunit); let {0} C I C B be a nontrivial left ideal with
0 < m = dimg I minimal. Then there is a nonzero homomorphism B — Endg(I) =~
M,,,(F) which is injective, since B is simple. By dimension, we cannot have m = 1;
if m = 2, then B ~ M,(F) and we are done. So suppose m = 3. Then by minimality,
every nontrivial left ideal of B has dimension 3. But for any a € B, we have that /« is
a left ideal, so the left ideal I N I« is either {0} or I; in either case, I« C I and I is a
right ideal as well. But this contradicts the fact that B is simple. O

The Wedderburn—Artin theorem is an important structural result used throughout
mathematics, so we give in this chapter a self-contained account of its proof. More
generally, it will be convenient to work with semisimple algebras, finite direct products
of simple algebras. When treating ideals of an algebra we would be remiss if we did
not discuss more generally modules over the algebra, and the notions of simple and
semisimple module are natural concepts in linear algebra and representation theory:
a semisimple module is one that is a direct sum of simple modules (“completely
reducible”), analogous to a semisimple operator where every invariant subspace has
an invariant complement (e.g., a diagonalizable matrix).

The second important result in this chapter is a theorem that concerns the simple
subalgebras of a simple algebra, as follows (Main Theorem 7.7.1).
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Theorem 7.1.3. (Skolem—Noether). Let A, B be simple F-algebras and suppose that
B is central. Suppose that f,g: A — B are homomorphisms. Then there exists 8 € B
such that f(a) = B~ 'g(@)B for all a € A.

Corollary 7.1.4. Every F-algebra automorphism of a simple F-algebra B is inner, i.e.,
Aut(B) ~ B*/F*.

Just as above, for our quaternionic purposes, we can give a direct proof.

Corollary 7.1.5. Let B be a quaternion algebra over F and let K1, K» C B be quadratic
subfields. Suppose that ¢: K| = K, is an isomorphism of F-algebras. Then ¢ lifts to
an inner automorphism of B, i.e., there exists 8 € B such that ar = ¢(a1) = a1 B
for all a; € K. In particular, K, = B~ K, B.

Proof. Write K| = F(ap) with @) € B and let ay = ¢(a1) € K> C B, so Kp = F(a).

We want to find 8 € B* such that a; = a1 8. In the special case B ~ M,(F), then

ay, @y € My(F) satisty the same irreducible characteristic polynomial, so by the theory

of rational canonical forms, a; = ﬁ’lal B where B € B* =~ GL,(F) as desired.
Suppose then that B is a division ring. Then the set

W={8€B: Bar=aif} (7.1.6)

is an F-vector subspace of B. Let F*°P be a separable closure of F'. (Or, apply Exercise
6.5 and work over a splitting field K linearly disjoint from K; =~ K5.) Then we have
B ®F F*P =~ M, (F*%P), and the common characteristic polynomial of @y, @, either
remains irreducible over F*P (if K D F is inseparable) or splits as the product of two
linear factors with distinct roots. In either case, the theory of rational canonical forms
again applies, and there exists § € B ®p F*P ~ GL,(F*P) that will do; but then by
linear algebra dimpsee W ®p F5P = dimp W > 0, so there exists 8 € B\ {0} = B* with
the desired property. O

As shown in the above proof, Corollary 7.1.5 can be seen as a general reformulation
of the rational canonical form from linear algebra.

7.2 Simple modules

Basic references for this section include Drozd—Kirichenko [DK94, §1-4], Curtis—
Reiner [CR81, §3], Lam [Lam2001, §2-3], and Farb—Dennis [FD93, Part I]. An ele-
mentary approach to the Weddernburn—Artin theorem is given by BreSar [Bre2010].
An overview of the subject of associative algebras is given by Pierce [Pie82] and
Jacobson [Jacn2009].

Throughout this chapter, let B be a finite-dimensional F-algebra.

To understand the algebra B, we look at its representations. A representation of
B (over F) is a vector space V over F together with an F-algebra homomorphism
B — Endg(V). Equivalently, a representation is given by a left (or right) B-module V:
this is almost a tautology. Although one can define infinite-dimensional representations,
they will not interest us here, and we suppose throughout that dimp V < oo, or
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equivalently that V is a finitely generated (left or right) B-module. If we choose a
basis for V, we obtain an isomorphism Endg(V) =~ M,,(F) where n = dimg V, so a
representation is just a homomorphic way of thinking of the algebra B as an algebra
of matrices.

Example 7.2.1. The space of column vectors F" is a left M,,(F)-module; the space of
row vectors is a right M,,(F)-module.

Example 7.2.2. B is itself a left B-module, giving rise to the left regular representa-
tion B — Endg(B) over F (cf. Remark 3.3.8).

Example 7.2.3. Let G be a finite group. Then a representation of F[G] (is the same as
an F[G]-module which) is the same as a homomorphism G — GL(V), where V is an
F-vector space (Exercise 3.8).

Definition 7.2.4. Let V be a left B-module. We say V is simple (or irreducible) if
V # {0} and the only B-submodules of V are {0} and V.

We say V is indecomposable if V cannot be written as V = V@V, with V|, V, # {0}
left B-modules.

A simple module is indecomposable, but the converse need not hold, and this is a
central point of difficulty in understanding representations.

a

Example 7.2.5. If B = {(0

IC)) ca,b,ce F} C My(F), then the space V = F? of

column vectors is not simple, since the subspace spanned by ((1)) is a B-submodule;
nevertheless, V is indecomposable (Exercise 7.4).

The importance of simple modules is analogous to that of simple groups. Arguing
by induction on the dimension of V, we have the following lemma analogous to the
Jordan—Holder theorem on composition series.

Lemma 7.2.6. A (finite-dimensional) left B-module V admits a filtration
V=¥%2W2W2-2V=(0)
such that V; [V;41 is simple for each i.

This filtration is not unique, but up to isomorphism and permutation, the quotients
Vi /V;i41 are unique.

Lemma 7.2.7. If I is a maximal left ideal of B, then B/I is a simple B-module.
Conversely, if V is a simple B-module, then V ~ B/I for a maximal left ideal I: more
precisely, for any x € V\{0}, we may take

I =ann(x) :={a € B: ax =0}.

Proof. For the first statement, a submodule of B/I corresponds to a left ideal containing
1, so B/I is simple if and only if I is maximal. Conversely, letting x € V\{0} we have
{0} # Bx € V a B-submodule and so Bx = V; and consequently V ~ B/l where

I = ann(x) and again [ is a maximal left ideal. O
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Having defined the notion of simplicity for modules, we now consider simplicity
of the algebra B.

Definition 7.2.8. An F-algebra B is simple if the only two-sided ideals of B are {0}
and B.

Equivalently, B is simple if and only if any F-algebra (or even ring) homomorphism
B — A is either injective or the zero map.

Example 7.2.9. A division F-algebra D is simple. In fact, the F-algebra M,,(D) is
simple for any division F-algebra D (Exercise 7.5), and in particular M,,(F) is simple.

Example 7.2.10. Let F¥! be an algebraic closure of F. If B ®F F& is simple, then B
is simple. The association I — I ®¢ F? is an injective map from the set of two-sided
ideals of B to the set of two-sided ideals of B ®p F?.

7.2.11. If B is a quaternion algebra over F, then B is simple. We have B ®p F* =~
M, (F?), which is simple by Example 7.2.9, and B is simple by Example 7.2.10.

Example 7.2.9 shows that algebras of the form M,,(D) with D a division F-algebra
yield a large class of simple F-algebras. In fact, these are all such algebras, a fact we
will now prove. First, a few preliminary results.

Lemma 7.2.12. (Schur). Let B be an F-algebra. Let Vi, V, be simple B-modules. Then
any homomorphism ¢: Vi — V, of B-modules is either zero or an isomorphism.

Proof. We have that ker ¢ and img ¢ are B-submodules of V; and V5, respectively, so
either ¢ = 0 or ker ¢ = {0} and img ¢ = V5, hence V| = V». O

Corollary 7.2.13. IfV is a simple B-module, then Endg (V) is a division ring.

7.2.14. Let B be an F-algebra and consider B as a left B-module. Then there is a map
p: B°®® - Endg(B)
a (pg: B+ Pa),
where B°P is the opposite algebra of B defined in 3.2.2. The map p is injective since
pa = 0 implies p, (1) = a = 0; it is also surjective, since if ¢ € Endp(B) then letting

a = ¢(1) we have ¢(8) = Bop(1) = Ba for all B € B. Finally, it is an F-algebra
homomorphism, since

Pap() = paf) = (pa)B = (p © pa)(W),

and therefore p is an isomorphism of F-algebras.

One lesson here is that a left module has endomorphisms that act naturally on the
right; but the more common convention is that endomorphisms also act on the left. In
order to make this compatible, the opposite algebra intervenes.
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7.2.15. More generally, the decomposition of modules is determined by idempotent
endomorphisms as follows. Let V be a left B-module. Then V is indecomposable if and
only if Endg(V) has no nontrivial idempotents: that is to say, if ¢ € Endg(V) satisfies
€2 = e, then ¢ € {0, 1}. Given a nontrivial idempotent, we can write V = eVa® (1 —e)V,

and conversely if V = V| & V; then the projection V — V; C V gives an idempotent.

7.2.16. Many theorems of linear algebra hold equally well over division rings as they
do over fields, as long as one is careful about the direction of scalar multiplication. For
example, let D be a division F-algebra and let V be a left D-module. Then V ~ D"
is free, and choice of basis for V gives an isomorphism Endp (V) ~ M,,(D°P). When
n = 1, this becomes Endp (D) =~ D°P, asin 7.2.14.

Lemma 7.2.17. Let B be a (finite-dimensional) simple F-algebra. Then there exists a
simple left B-module which is unique up to isomorphism.

Proof. Since B is finite-dimensional over F, there is a nonzero left ideal I of B of
minimal dimension, and such an ideal [/ is necessarily simple. Moreover, if v € [ is
nonzero then Bv = I, since By C [ is nonzero and [ is simple. Let / = By with v € .

Now let V be any simple B-module; we will show I = V as B-modules. Since B
is simple, the natural map B — Endg(V) is injective (since it is nonzero). Therefore,
there exists x € V such that vx # 0, so Ix # {0}. Thus, the map/ — Vby S Bxisa
nonzero B-module homomorphism, so it is an isomorphism by Schur’s lemma. O

Example 7.2.18. The unique simple left M,,(F)-module (up to isomorphism) is the
space F"" of column vectors (Example 7.2.1).

7.2.19. Every algebra can be decomposed according to its idempotents 7.2.15. Let B
be a finite-dimensional F-algebra. Then we can write B = I} & --- @ I, as a direct
sum of indecomposable left B-modules: this follows by induction, as the decomposing
procedure must stop because each factor is a finite-dimensional F-vector space. This
means we may write

l=ej+---+e

with e; € I;. For each a € I; we have @ = }}; @e; whence ae; = « and ae; = 0 for
j # i, which implies that

e?=e¢, eej=0 forj#i, andl; =Be.

Thus each e; is idempotent; we call {ey, . . ., e, } a complete set of primitive orthogonal
idempotents: the orthogonal is because e;e; = 0 for j # i, and the primitive is because
each e; is not the sum of two other orthogonal idempotents (by 7.2.15).

Remark 7.2.20. The tight connection between F and M,,(F) is encoded in the fact that
the two rings are Morita equivalent: there is an equivalence of categories between
F-vector spaces and left M,,(F)-modules. For more on this rich subject, see Lam
[Lam99, §18], Reiner [Rei2003, Chapter 4], and Curtis—Reiner [CR81, §35].
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7.3 Semisimple modules and the Wedderburn—Artin theorem

We continue our assumptions that B is a finite-dimensional F-algebra and a B-module
V is finite-dimensional.

Definition 7.3.1. A B-module V is semisimple (or completely reducible) if V is
isomorphic to a (finite) direct sum of simple B-modules V =~ (P, V;.
B is a semisimple F-algebra if B is semisimple as a left B-module.

Remark 7.3.2. More precisely, we have defined the notion of left semisimple and
could equally well define right semisimple; below we will see that these two notions
are the same.

Example 7.3.3. If B = F, then simple F-modules are one-dimensional vector spaces,
and as F is simple these are the only ones. Every F-vector space has a basis and so is
the direct sum of one-dimensional subspaces, thus every F-module is semisimple.

Example 7.3.4. A finite-dimensional commutative F-algebra B is semisimple if and
only if B is the product of field extensions of F,i.e., B~ K; X--- X K, with K; 2 F a
finite extension of fields.

Lemma 7.3.5. The following statements hold.

(a) A B-module V is semisimple if and only if it is the sum of simple B-modules.
(b) A submodule or a quotient module of a semisimple B-module is semisimple.
(¢) If B is a semisimple F-algebra, then every B-module is semisimple.

Proof. For (a), let V.= };V; be the sum of simple B-modules. Since V is finite-
dimensional, we can rewrite it as an irredundant finite sum; and then since each V; is
simple, the intersection of any two distinct summands is {0}, so the sum is direct.

For (b), let W C V be a submodule of the semisimple B-module V. Every x € W
with x # 0 is contained in a simple B-submodule of W by minimality, so W = }}; W;
is a sum of simple B-modules. The result now follows from (a) for submodules. For
quotient modules, suppose ¢: V — Z is a surjective B-module homomorphism; then
¢‘I(Z) C V is a B-submodule, and ¢"(Z) = 2,; W; is a sum of simple B-modules,
and hence by Schur’s lemma Z = }; ¢(W;) is semisimple.

For (c), let V be a B-module. Since V is finitely generated as a B-module, there is a
surjective B-module homomorphism B” — V for some r > 1. Since B” is semisimple,
so too is V by (b). ]

Remark 7.3.6. Doing linear algebra with semisimple modules mirrors very closely
linear algebra over a field. We have already seen that every submodule and quotient
module of a semisimple module is again semisimple. Moreover, every module homo-
morphism V. — W with V semisimple splits, and every submodule of a semisimple
module is a direct summand. The extent to which this fails over other rings concerns
the structure of projective modules; we take this up in Chapter 20.

Lemma 7.3.7. If B is a simple F-algebra, then B is a semisimple F-algebra.
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Proof. Let I C B be a minimal nonzero left ideal, the unique simple left B-module up
to isomorphism as in Lemma 7.2.17. For all @ € B, the left ideal /« is a homomorphic
image of I, so by Schur’s lemma, either /o = {0} or [« is simple. Let A := 3 ,c5 I .
Then A is a nonzero two-sided ideal of B, so since B is simple, we conclude A = B.
Thus B is the sum of simple B-modules, and the result follows from Lemma 7.3.5(a).

O

Corollary 7.3.8. A (finite) direct product of simple F-algebras is a semisimple F-
algebra.

Proof. If B ~ By X --- X B, with each B; simple, then by Lemma 7.3.7, each B; is
semisimple so B; = @ ; I;; is the direct sum of simple B;-modules /;;. Each I;; has
the natural structure of a B-module (extending by zero), and with this structure it is
simple, and B = (P, ; I;; is semisimple. w

The converse of Corollary 7.3.8 is true and is proven as Corollary 7.3.14, a conse-
quence of the Wedderburn—Artin theorem.
In analogy to 7.2.16, we have the following corollary.

Corollary 7.3.9. Let B be a simple F-algebra and let V be a left B-module. Then
V =~ I®" for some n > 1, where I is a simple left B-module. In particular, two left
B-modules Vi, V, are isomorphic if and only if dimg V| = dimg V5.

Proof. Since B is simple, B is semisimple by Lemma 7.3.7, and V is semisimple by
Lemma 7.3.5. But by Lemma 7.2.17, there is a unique simple left B-module /, and the
result follows. O

In other words, this corollary says that if B is simple then every left B-module V
is free over B, so has a left basis over B; if we define the rank of a left B-module V to
be cardinality of this basis (the integer n such that V ~ I®" as in Corollary 7.3.9), then
two such modules are isomorphic if and only if they have the same rank.

We now come to one of the main results of this chapter.

Main Theorem 7.3.10. (Wedderburn—Artin). Let B be a finite-dimensional F-algebra.
Then B is semisimple if and only if there exist integers ny, . . ., n, and division algebras
Dy, ..., D, such that

B =M, (Dy) X --- XM, (D).

Such a decomposition is unique up to permuting the integers ny, . . ., n, and applying
an isomorphism to the division rings Dy, . . ., D;.

Proof. It B ~ []; M, (D;), then each factor M,,,(D;) is a simple F-algebra by Example
7.2.9, so by Corollary 7.3.8, B is semisimple.

So suppose B is semisimple. Then we can write B as a left B-module as the direct
sum B = I7" &---@ " of simple B-modules Iy, . . ., I, grouped up to isomorphism.
We have Endp(B) ~ B by 7.2.14. By Schur’s lemma,

Endp(B) = (1) Endg (I7");
i
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by 7.2.16,
Endg (I7") ~ My, (D;)

where D; = Endpg([;) is a division ring. So
B =~ Endp(B)® = M, (D*) X - - - x M, (D;").
The statements about uniqueness are then clear. O

Remark 7.3.11. Main Theorem 7.3.10 as it is stated was originally proven by Wedder-
burn [Wed08], and so is sometimes called Wedderburn’s theorem. However, this term
may also apply to the theorem of Wedderburn that a finite division ring is a field; and
Artin generalized Main Theorem 7.3.10 to rings where the ascending and descending
chain condition holds for left ideals [Art26]. We follow the common convention by
referring to Main Theorem 7.3.10 as the Wedderburn—Artin theorem.

Corollary 7.3.12. Let B be a simple F-algebra. Then B ~ M, (D) for a unique n € Z,
and a division algebra D unique up to isomorphism.

Example 7.3.13. Let B be a division F-algebra. Then V = B is a simple B-module,
and in Corollary 7.3.12 we have D = Endg(B) = B°P, and the Wedderburn—Artin
isomorphism is just B ~ M ((B°P)°P).

Corollary 7.3.14. An F-algebra B is semisimple if and only if B is the direct product
of simple F-algebras.

Proof. Immediate from the Wedderburn—Artin theorem, as each factor My, (D;) is
simple. m|

7.4 Jacobson radical

We now consider an important criterion for establishing the semisimplicity of an
F-algebra. Let B be a finite-dimensional F-algebra.

Definition 7.4.1. The Jacobson radical rad B of B is the intersection of all maximal
left ideals of B.

We will in Corollary 7.4.6 see that this definition has left-right symmetry. Before
doing so, we see right away the importance of the Jacobson radical in the following
lemma.

Lemma 7.4.2. B is semisimple if and only if rad B = {0}.

Proof. First, suppose B is semisimple. Then B as a left B-module is isomorphic to
the direct sum of simple left ideals of B. Suppose rad B # {0}; then rad B contains
a minimal, hence simple, nonzero left ideal / C B. Then B = I & I’ for some B-
submodule I’ and B/I’ ~ I so I’ is a maximal left ideal. Therefore rad B C I, but then
rad B N I = {0}, a contradiction.

Conversely, suppose rad B = {0}. Suppose B is not semisimple. Let /; be a minimal
left ideal of B. Since I; # {0} = rad B, there exists a maximal left ideal J; not
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containing I, so I N J; = {0} and B = I; ® J;. Since B is not semisimple, J; # {0},
and there exists a minimal left ideal /, C J; € B. Continuing in this fashion, we obtain
a descending chain J; 2 J, D ..., a contradiction. O

Corollary 7.4.3. B/ rad B is semisimple.

Proof. LetJ = rad B. Under the natural map B — B/J, the intersection of all maximal
left ideals of B/rad B corresponds to the intersection of all maximal left ideals of B
containing J; but rad B is the intersection thereof, so rad(B/J) = {0} and by Lemma
7.4.2, B/J is semisimple. |

‘We now characterize the Jacobson radical in several ways.

7.4.4. For a left B-module V, define its annihilator by
annV :={a € B:aV =0}.

Every annihilator annV is a two-sided ideal of B: if @ € ann(V) and 8 € B, then
aBV C aV = {0} so af € ann(V).

Lemma 7.4.5. The Jacobson radical is equal to the intersection of the annihilators of
all simple left B-modules: i.e., we have rad B = )y, ann V, the intersection taken over
all simple left B-modules. Moreover, if a € rad B, then 1 — @ € B*.

Proof. We begin with the containment (2). Let @ € )y, annV and let I be a maximal
left ideal. Then V = B/I is a simple left B-module, so @ € ann(B/I) whence aB C [
and a € I.

The containment (C) follows with a bit more work. Let @ € rad B, and let V be a
simple left B-module. Assume for purposes of contradiction that x € V has ax # 0.
Then as in Lemma 7.2.7, V = B(ax) so x = Bax for some 8 € B and (1 — Ba)x = 0.
Let / be a maximal left ideal containing 1 — Sa. Since @ € rad B, we have « € I, and
thus 1 = (1 — Ba) + Ba € I, a contradiction. Thus aV = {0} and @ € ann V.

The final statement follows along similar lines as the previous paragraph (Exercise
7.10). O

Corollary 7.4.6. The Jacobson radical rad B is a two-sided ideal of B.

Proof. The statement follows by combining 7.4.4 and Lemma 7.4.5: rad B is the
intersection of two-sided ideals and so is itself a two-sided ideal. O

Example 7.4.7. If B is commutative (and still a finite-dimensional F-algebra), then
rad B = +/(0) is the nilradical of B, the set of all nilpotent elements of B.

A two-sided ideal J C B is nilpotent if /" = {0} for some n > 1, i.e., every product
of n elements from J is zero. Every element of a nilpotent ideal is itself nilpotent.

Lemma 7.4.8. J = rad B contains every nilpotent two-sided ideal, and J itself is
nilpotent.



7.5. CENTRAL SIMPLE ALGEBRAS 105

Proof. If I C B is a nilpotent two-sided ideal, then I + J is a nilpotent two-sided ideal
of B/J; but rad(B/J) = {0} by Corollary 7.4.3, so B/J is the direct product of simple
algebras (Corollary 7.3.14) and therefore has no nonzero nilpotent two-sided ideals.
Therefore I C 1+ J C J.

Now we prove that J is nilpotent. Consider the descending chain

B>J2J*2....

There exists n € Zs; such that J” = J?*. We claim that J" = {0}. Assume for the
purposes of contradiction that / € J" is a minimal left ideal such that J"I # {0}. Let
a € I be such that J"a # {0}; by minimality /"« = I, so @ = na for some n € J", thus
(1-n)a =0.Butny e J" CJ =rad B. By Lemma 7.4.5, 1 — € B* is a unit hence
a = 0, a contradiction. O

Example 7.4.9. Suppose B has a standard involution. Then by Lemma 7.4.8 and the
fact that B has degree 2, we conclude that rad B C {e¢ € B : €2 = 0). If charF # 2
and we define rad(nrd) as in 4.3.9 for the quadratic form nrd, then rad(nrd) = rad B
(Exercise 7.21).

Corollary 7.4.10. The Jacobson radical rad B is the intersection of all maximal right
ideals of B.

Proof. Lemma 7.4.8 gives a left-right symmetric characterization of the Jacobson
radical, so rad B = rad B°P. There is a bijection between simple left B-modules and
simple right B°P-modules, and the result follows. O

7.5 Central simple algebras

For more on central simple algebras (and in particular division algebras), see e.g.
Saltman [Sal99] or Draxl [Dra83].
Recall (2.1.1) that the center of B is defined as

Z(B) :={a € B : aB = Ba for all a € B}.

Remark 7.5.1. An F-algebra B is a central Z(B)-algebra when Z(B) is a field. (Under
a more general definition of algebra, every algebra is an algebra over its center.)

Example 7.5.2. The center Z(B) of a simple F-algebra is a field, since it is a simple
commutative F'-algebra. One reaches the same conclusion by applying Corollary 7.3.12
together with Z(M,,(D)) = Z(D) (Exercise 7.5).

The category of central simple algebras is closed under tensor product, as follows.
Proposition 7.5.3. Let A, B be F-algebras and suppose that B is central.

(a) The center of A ®F B is the image of Z(A) — A®F B under z — zQ 1.
(b) Suppose that A, B are simple. Then A ® B is simple.
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Proof. First, centrality in part (a). Suppose that y = 3}, @; ® 8; € Z(A ® B) (a finite
sum). By rewriting the tensor, without loss of generality, we may suppose that @; are
linearly independent over F. Then by properties of tensor products, the elements 8; € B
in the representation y = )}; @; ® 5; are unique. But then for all 8 € B,

Z(a,- ®BB) =(1©p) (Z ai ®,8i) = (Zai ® Bi

so BB; = B;B for each i; thus 8; = b; € Z(B) = F. Hence

)/:Zai@bi:Zaibi@l = Zaibi)@)l;
i i i

since @ ® 1 also commutes with y for all @ € A, we have }; a;b; € Z(A). Thus
vyE€EZ(A)®F = Z(A).

Next, simplicity in part (b). Let I be a nontrivial two-sided ideal in A ® B, and
let y = 3", a; ® B € I\{0}. Without loss of generality, we may suppose B; # 0.
Then BBB = B since B is simple; multiplying on the left and right by elements of
B € A® B, we may suppose further that 8; = 1. Let y € I\{0} be such an element that
is minimal with respect to m; then in particular the elements §3; are linearly independent
over F. Now for each 8 € B,

(188) = ) (@i 8 Bip)

1By -y @B) =) (e Bpi-BB)el;
i=2

but by minimality of m, the right-hand side is zero, so 8; = ;8 for all i. Hence
Bi € Z(B) = F for all i and as above ¥ = @ ® 1 for some 0 # @ € A. But then

IDMAD)(@®1)(A®])=(AcA) @1 =A®1

since A is simple, so I 2 (A® 1)(1®B) = A®B,andthus ] = A® Band A® B is
simple. O

Lemma 7.5.4. If B is a finite-dimensional algebra over F, then B is a central simple
F-algebra if and only if the map

¢: B®F B® = Endp(B)
2.0 ® P > (U= Y ufy)

is an isomorphism.

Proof. First, the implication (=). Justas in 7.2.14, ¢ is a nonzero F-algebra homomor-
phism. By Proposition 7.5.3, B @ B°P is simple, so ¢ is injective. Since dimp(B ®F
B°P) = dimy Endg(B) = (dimg B)?, ¢ is an isomorphism.

Now the converse (<); suppose ¢ is an isomorphism. If [ is an ideal of B then
¢(I @ B°?) C Endp(B) is an ideal; but Endg(B) is simple over F, therefore 7 is trivial.
And if @ € Z(B) then ¢(a® 1) € Z(Endp(B)) = F,soa € F. |
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7.5.5. Among central simple algebras over a field, quaternion algebras have an espe-
cially nice presentation because the quadratic norm form can be put into a standard
form (indeed, diagonalized in characteristic not 2). More generally, one may look at
algebras with a similarly nice presentation, as follows.

Let F be a field, let K D F be a cyclic extension of F of degree n = [K : F], let
o € Gal(K | F) be a generator, and let b € F*. For example, if F contains a primitive
nth root of unity £ € F*, and a € F*\F*", then we may take K = F(*{/a) and
o (¥/a) = ¢ {/a. We then define the cyclic algebra

K,o,b
F

):K@Kj@m@](j""

to be the left K-vector space with basis 1, j, . . ., j"‘1 and with multiplication j" = b
and ja = o(@)j for @ € K. The definition of a cyclic algebra generalizes that of 6.1.5,
where there is only one choice for the generator o. A cyclic algebra is a central simple
algebra over F of dimension n?, and indeed (K, o, b | K) ~ M,,(K). (See Exercise 7.12.)
More generally, we may relax the condition that G be cyclic: there is an analogous
construction for any finite Galois extension, yielding a central simple algebra called a
crossed product algebra (and giving an interpretation to a second cohomology group):
see Reiner [Rei2003, §29-30]. There are significant open problems relating cyclic
algebras and crossed products to central simple algebras in general [ABGV2006].

It is a consequence of the main theorem of class field theory that if F is a global
field then every (finite-dimensional) central simple algebra over F is isomorphic to a
cyclic algebra.

Remark 7.5.6. The theory of central simple algebras and Brauer groups extends to one
over commutative rings (or even schemes), and this becomes the theory of Azumaya
algebras: see Saltman [Sal99, §2].

7.6 Quaternion algebras

Having set the stage, we are now ready to prove the following final characterizations
of quaternion algebras.

Proposition 7.6.1. Let B be an F-algebra. Then the following are equivalent:

(i) B is a quaternion algebra;

(ii) B is a central simple F-algebra with dimp B = 4;
(iii) B is a central semisimple F-algebra with dimp B = 4; and
(iv) B®p F =~ My (FY), where F¥ is an algebraic closure of F.

Proof. First, (i) = (ii): if B is a quaternion algebra, then B is central simple (7.2.11).
The equivalence (ii) < (iii) follows from the Wedderburn—Artin theorem:

1 = dim Z(B) = Z dimp Z(D;) > r

i=1
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sor =1.

Next we prove (ii) = (iv). If B is central simple, then B @ F al ig a central simple
F¥-algebra by Proposition 7.5.3. But by Exercise 2.9, the only division F*-algebra is
Fal g0 by the Wedderburn—Artin theorem, B®p F al M, (F al); by dimensions, n = 2.

It remains to prove (iv) = (i). So suppose B ® F¥ ~ My(F). Then B is simple
by Example 7.2.10 and dimr B = 4. By the Wedderburn—Artin theorem (Corollary
7.3.12), we have B ~ M,(D) with n € Z3; and D a division ring. Since 4 = dimp B =
n? dimp D, either n = 2 and B ~ M(F), or n = 1 and B is a division ring.

In this latter case, the result will follow from Theorem 3.5.1 (and Theorem 6.2.8
for the case char F' = 2) if we show that B has degree 2. But for any @ € B we have
that @ € B®p F ~ M,(F¥) satisfies its characteristic polynomial of degree 2, so that
1, @, o are linearly dependent over F! and hence linearly dependent over F, by linear
algebra. O

Inspired by the proof of this result, we reconsider and reprove our splitting criterion
for quaternion algebras.

Proposition 7.6.2. Let B be a quaternion algebra over F. Then the following are
equivalent:

(i) B =~ Ma(F);

(ii) B is not a division ring;
(iii) There exists 0 # € € B such that €* = 0;
(iv) B has a nontrivial left ideal I C B;

Proof. The equivalence (i) < (ii) follows from the Wedderburn—Artin theorem (also
proved in Main Theorem 5.4.4 and Theorem 6.4.11). The implications (i) = (iii) =
(ii) and (i) = (iv) = (ii) are clear. O

7.6.3. We showed in Lemma 7.2.17 that a simple algebra B has a unique simple left
B-module I up to isomorphism, obtained as a minimal nonzero left ideal. If B is a
quaternion algebra, this simple module / can be readily identified using the above
proposition. If B is a division ring, then necessarily / = B. Otherwise, B ~ M, (F),
and then I ~ F?, and the map B — Endy (/) given by left matrix multiplication is an
isomorphism.

7.7 The Skolem—Noether theorem

We conclude this chapter with a fundamental result that characterizes the automor-
phisms of a simple algebra—and much more.

Main Theorem 7.7.1. (Skolem—Noether). Let A, B be simple F-algebras and suppose
that B is central. Suppose that f,g: A — B are homomorphisms. Then there exists
B € B* such that f(a) = B~ g(a)B for all a € A.
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Proof. By Corollary 7.3.12, we have B ~ Endp(V) ~ M,,(D°P) where V is a simple
B-module and D = Endg(V) is a central F-algebra. Now the maps f, g give V the
structure of an A-module in two ways. The A-module structure commutes with the
D-module structure since B ~ Endp (V). So V has two A ®  D-module structures via
fand g.

By Proposition 7.5.3, since D is central over F', we have that A®p D is a simple F-
algebra. By Corollary 7.3.9 and a dimension count, the two A ®  D-module structures
on V are isomorphic. Thus, there exists an isomorphism 8: V — V of AQr D-modules;
ie. B(f(a)x) = gla)B(x) for all @ € A and x € V, and B(6x) = 6B(x) forall 6 € D
and x € V. We have 8 € Endp(V) ~ B and so we can write Bf(a)B~' = g(a) for all
a € A, as claimed. O

The following corollaries are immediate consequences (special cases) of the
Skolem—Noether theorem.

Corollary 7.7.2. If Ay, A are simple F-subalgebras of a central simple F-algebra B
and ¢: Ay = Aj is an isomorphism of F-algebras, then ¢ is induced by an inner
automorphism of B.

Proof. Let (;: A; — B be the natural inclusions, and apply Main Theorem 7.7.1 to

f =1 and g := 1 o ¢: we conclude there exists B € B> such that (@) = a =
B lia(p())B or equivalently ¢(e) = BaB~! for all @ € Ay, as desired. o

Corollary 7.7.3. If B is a central simple F-algebra and a1, ay € B, then ay, a; have
the same irreducible minimal polynomial over F if and only if there exists B € B* such
that ay = B~ a1 B.

Proof. The implication (<) is immediate. Conversely (=), let A; = Flao;] =
F[x]/(fi(x)) where f;(x) € F[x] are minimal polynomials over F. Since these poly-

nomials are irreducible, A; is a field hence simple, so Corollary 7.7.2 gives the result.
[m]

Corollary 7.7.4. The group of F-algebra automorphisms of a central simple algebra
B is Aut(B) ~ B*/F*.

Proof. Taking A = B in Main Theorem 7.7.1, we conclude that every automorphism
of B as an F-algebra is inner, and an inner automorphism is trivial if and only if it is
conjugation by an element of the center F*. O

Example 7.7.5. By Corollary 7.7.4, we have a canonical isomorphism of groups
Aut(M,,(F)) = GL,,(F)/F* = PGL,,(F).

As a final application, we extend the splitting criterion of Main Theorem 5.4.4(i)
& (vi) to detect isomorphism classes of quaternion algebras.

Corollary 7.7.6. Let K 2 F be a separable quadratic F-algebra, and let b, b’ € F*.

Then b b
K K b
(;) ~ ( ’ ) =4 b/b/ (S NmK‘F(KX).

F F
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Taking b” = 1, we recover the previous splitting criteria.

Proof. For the implication (<), if /b = Nmgr(@) with @ € K*, then an isomor-
phism is furnished as left K-vector spaces by sending j — «aj.

For the implication (=), let ¢: (K, b | F) = B’ := (K, b’ | F) be an isomorphism
of F-algebras. If K ~ F x F is not a field, then Nmgr(K>) = F* and the result holds.
So suppose K is a field. Then ¢(K) C B’ isomorphic to K as an F-algebra, but need
not be the designated one in B’; however, by the Skolem—Noether theorem, we may
postcompose ¢ with an automorphism that sends ¢(K) to the designated one, i.e., we
may suppose that ¢ is a K-linear map (taking the algebras as left K-vector spaces). Let
¢(j) = a + Bj’ witha, 8 € K. Then

{0} = rd(Kj) = trd(¢(K j)) = trd(K¢(j)) = trd(Ke)
and thus o = 0 since K is separable. Consequently,
b = nrd(j) = nrd(¢(j)) = ~ Nmg(B)Y
and so b/b’ = Nmg r () as desired. |

In the remainder of this section, we prove an important consequence of the Skolem—
Noether theorem that compares centralizers of subalgebras to dimensions.

Definition 7.7.7. Let A be an F-subalgebra of B. Let
Cp(A):={BeB:apf=pPaforall a € A}
be the centralizer of A in B.

The centralizer Cg(A) is an F-subalgebra of B.

Proposition 7.7.8. Let B be a central simple F-algebra and let A C B a simple
F-subalgebra. Then the following statements hold:

(a) Cp(A) is a simple F-algebra.
(b) dimF B = dimF A- dimF CB(A)
(c) Cp(Cp(A)) = A.

Part (c) of this proposition is called the double centralizer property.

Proof. First, part (a). We interpret the centralizer as arising from certain kinds of
endomorphisms. We have that B is a left AQ B°® module by the action (a¢®8)-u = auf
fora ® f € A® B°? and u € B. We claim that

Cp(A) = Endsgpo (B). (7.7.9)

Any ¢ € Endggpor(B) is left multiplication by an element of B: if v = ¢(1), then
¢(u) = (1) = yu by 1 ® BP-linearity. Now the equality

ya = ¢(@) = aé(l) = ay
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shows that multiplication by y is A® 1-linear if and only if y € Cp(A), proving (7.7.9).

By Proposition 7.5.3, the algebra A ® B°P is simple. By the Wedderburn—Artin
theorem, A ® B°? ~ M,,(D) for some n > 1 and division F-algebra D. Since M,,(D)
is simple, its unique simple left D-module is V = D", and Endy,,(p)(V) =~ D°P. In
particular, B ~ V" for some r > 1 as an A ® B°°’-module. So

Cg(A) = Endgpor(B) =~ Endm,,(p)(V") = M, (Endwm, (p)(V)) = M, (D).

Thus Cp(A) is simple.
For part (b),
dimp Cg(A) = dimp M, (D°?) = r? dimp D

and
dimp (A ® B®) = dimp A - dimp B = n* dimp D

and finally
dimg B = dimg V" = rdimg D" = rndimg D;

putting these together gives dimg A - dimg Cg(A) = rndimp D = dimp B.
Finally, part (c) follows from (a) and (b):

dimF B = dimF CB(A) . dimF CB(CB(A)) = dimF A- dimF CB(A)
so dimg A = dimp Cp(Cp(A)) and A C Cg(Cp(A)), therefore equality holds. O

Example 7.7.10. We always have the two extremes A = F and A = B, with Cp(F) = B
and Cg(B) = F, accordingly.

We note the following structurally crucial corollary of Proposition 7.7.8.

Corollary 7.7.11. Let B be a central simple F-algebra and let K be a maximal subfield.
Then [B: F]=[K : F]*.

Proof. If K is maximal, then Cp(K) = K and [B: F] = [K : F12. O

Corollary 7.7.11 generalizes the comparatively easier statement for quaternion
algebras: the maximal subfields of a quaternion algebra are quadratic. Returning now
to quaternion algebras, we conclude with a nice package of consequences of the above
results concerning embeddings of quadratic fields into quaternion algebras.

7.7.12. Let B be a quaternion algebra over F' and let K C B be a quadratic separable
F-subalgebra. Then the set of all embeddings of K in B is naturally identified with the
set K*\B*, as follows.

By the Skolem—Noether theorem (Corollary 7.1.5, and Exercise 7.11 for the case
K =~ F X F), if ¢: K — B is another embedding, then there exists 8 € B* such
that ¢(ar) = B~'aB for all @ € K, and conversely. Such a conjugate embedding is the
identity if and only if S8 centralizes K. By Corollary 4.4.5, and Corollary 6.4.2 for
characteristic 2, the centralizer of K* in B* is K*. Therefore, the set of embeddings of
K in B is naturally identified with the set K*\ B>, with K* acting on the left.
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7.8 Reduced trace and norm, universality

In this last section, we consider notions of reduced trace and reduced norm in the
context of semisimple algebras. Thr

7.8.1. Let B be a (finite-dimensional) central simple algebra over F, and let F*°P denote
a separable closure of F. By Exercise 7.24, we have an F-algebra homomorphism

¢: B®p F*P = M, (F*P)

for some n > 1. By the Skolem—Noether theorem (Main Theorem 7.7.1), for any
other isomorphism ¢’ : B ® F5P ~ M,,(F*P), there exists M € GL,,(F*P) such that
¢’ (@) = M@(a)M™', so the characteristic polynomial of an element of B ®¢ F*P is
independent of the choice of . In particular, from the canonical embedding ¢: B —
BQ®Fp F*P by @ — a ® 1, we define the reduced characteristic polynomial of @ € B
to be the characteristic polynomial of (¢¢)(@) as an element of F*°P[T] and similarly
the reduced trace and reduced norm of « to be the trace and determinant of (¢¢)()
as elements of F*P,

In fact, the reduced characteristic polynomial descends to F, as follows. The abso-
lute Galois group Galg := Gal(F*®P | F) acts on B Qp F*P ~ M,,(F*°P) by

cl@®a)=a®oc(a)

foro € Galp,a € B,and a € F5°P_ Let o € Galg. Since oc(a® 1) = a®oc(l) = a®1,
the reduced characteristic polynomials of (@) and o («(«)) are the same. By comparison
(see e.g. Reiner [Rei2003, Theorem 9.3]), if

fla;T) = det(T — (@) =T" + ap T" ' + - + ag

is the reduced characteristic polynomial of «(@), then the reduced characteristic poly-
nomial of (o (¢))(@) is

o(f)a@;T) = det(T — o («(@))) = T" + 0 (an-)T" " + - - - + 0 (ay).

And then since f(a;T) = o(f)(a;T) for all o € Galg, by the fundamental theorem
of Galois theory, f(a;T) € F[T]. Therefore, the reduced norm and reduced trace also
belong to F.

Alternatively, we may argue as follows. The characteristic polynomial of left mul-
tiplication by @ on B is the same as left multiplication by (¢¢)(@) on M,,(F*P) (by
extension of basis), and the latter is the nth power of the reduced characteristic poly-
nomial by Exercise 3.13. Finally, if f(T) € F*P[T] has f(T)" € F[T] then in fact
f(T) € F[T]: see Exercise 7.25.

These definitions extend to a general semisimple algebra over F, but to do so it
is convenient to give an alternate approach that avoids going to the separable closure
and works in even more generality using universal elements; for more, see Garibaldi
[Gar2004].

Let B be a (finite-dimensional) F-algebra with n := dimg B, and choose a basis
el,...,e, for B.Let F(xy,..., x,) be a pure transcendental field extension of transcen-
dence degree n, and let & := xje; + -+ + xpe, € B®F F(xy,...,x,); we call & the
universal element of B in the given basis.
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Definition 7.8.2. The universal minimal polynomial of B (in the basis ey, . . ., ¢,) is
the minimal polynomial mp(&;T) of & over F(xy, ..., Xp).

For @ = aje; + -+ + ane,, € B (with a; € F), the polynomial obtained from
mp(&;T) by the substitution x; < a; is called the specialization of mp(&;T) at a.

The following example will hopefully illustrate the role of this notion.

,b
Example 7.8.3. For char F # 2 and B = (GT) in the basis 1,4, j,ij we have & =

t + xi + yj + zij (substituting 7, x, y, z for xi,...,x4). We claim that the universal
minimal polynomial is

mp(&;T) =T? = 2T + (> — ax® — by* + abz?).
Indeed, we verify that £ satisfies mp(&; €) = 0 by considering ¢ € B®F F(t, x,y,2) =

b

— %7 ) and computing that trd(¢) = 27 and nrd(¢) = 12 — ax? — by? + abz?; and
F(t, x,9,2)

this polynomial is minimal because & ¢ F(t, x, y, z) does not satisfy a polynomial of

degree 1 over F(t, x, y, 2).

7.8.4.1f B~ By X --- X B,, then in a basis for B obtained from the union of bases for
the factors B; with universal elements &;, we have

mp(&;T) = mp,(£1;T) - -mp, (£ T).

In the proofs that follow, we abbreviate by using multi-index notation, e.g. writing
F[x] = Flx1,...,x,].

Lemma 7.8.5. We have mp(¢;T) € Flxy, ..., x,][T], i.e., the universal minimal poly-
nomial has coefficients in F[xy,. .., x,].

Proof. For part (a), we consider the map given by left multiplication by € on B®f F(x).
In the basis ey, . . ., e,, almost by construction we find that the matrix of this map has
coefficients in F[x] (it is the matrix of linear forms obtained from left multiplication by
e;). We conclude that ¢ satisfies the characteristic polynomial of this matrix, which is
a monic polynomial with coefficients in F[x]. Since mp(&; T) divides this polynomial
(over F(x)) by minimality, by Gauss’s lemma we conclude that mp(£;T) € F[x][T].

m}

Proposition 7.8.6. For all a € B, the specialization of mp(¢;T) at « is independent of
the choice of basis ey, . . ., e, and is satisfied by the element a. Moreover, if ¢ € Aut(B)
and a € B, then « and ¢(a) have the same specialized polynomials.

In view of Proposition 7.8.6, we write mp(a; T) for the specialization of mp(&;T)
at @ € B; from it, we conclude that mg(a; @) = 0.

Proof. Since mp(&;€) = 0, by specialization we obtain mp(a; @) = 0. For the inde-
pendence of basis, let ei, ..., e, be another F-basis and ¢’ the corresponding uni-
versal element. Writing e; in the basis e allows us to write é = }7", £;(x)e. where
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i(x) € F[x] are linear forms; moreover, writing @ = }; a’e; we have {;(a) = a;.
The map x; — {;(x) extends to an F-algebra automorphism ¢ of F[x] (repeat the
construction with the inverse, and compose) with ¢(c)(a) = c(a’) for all c¢(x) € F[x].
We let ¢ act on polynomials over F[x] by acting on the coefficients; by uniqueness of
minimal polynomials, we have ¢(mp(&;T)) = mp(¢';T). Therefore, looking at each
coefficient, specializing ¢(mp(&;T)) at a is the same as specializing mp(¢’;T) at a’,
as claimed.

The second sentence follows by the same argument, as from ¢ € Aut(B) we have
a new basis e := ¢(e;) so the specializations again agree. (This argument replaces the
use of the Skolem—Noether theorem in the special case where B is a central simple
algebra.) O

Lemma 7.8.7. For any field extension K 2 F, we have mpg,. k(£;T) = mi (&;T).

Proof. First, because an F-basis for B is a K-basis for B ®f K, the element & (as
the universal element of B), also serves as a universal element of B ® K. Since
K(x1,...,x,) € F(xy,...,x,), by minimality we have mp, (¢;T) | mp(€;T). Con-
versely, let F(x)[£] € B ®F F(x) be the subalgebra generated by & over F(x); then
F(x)[€] = F()[T1/(mp(&: T)). Tensoring with K gives K(x)[€] = K(x)[T1/(mp(&;T))
as the subalgebra of (B ®F K) ®k K(x) generated by &. Thus mp(£;7T) | mp, (€;T), so
equality holds. O

We conclude by relating this construction to more familiar polynomials.
Lemma 7.8.8. Let « € B. Then the following statements hold.

(a) If B = K 2 F is a separable field extension, then mg (a;T) is the characteristic
polynomial of left multiplication by «.

(b) If B is a central simple F-algebra, then mp(a;T) is the reduced characteristic
polynomial of a.

Proof. For (a), we recall (as in the proof of Lemma 7.8.5 that £ satisfies the character-
istic polynomial of left multiplication on K, a polynomial of degree n = [K : F]; on
the other hand, choosing a primitive element a, we see the specialization mg (a; T) is
satisfied by « so has degree at least n, so equality holds and mg(a;T) is the charac-
teristic polynomial. Therefore the universal minimal polynomial is the characteristic
polynomial, and hence the same is true under every specialization.

For (b), it suffices to prove this when F = F? is algebraically closed, in which
case B ~ M,,(F); by Proposition 7.8.6, we may assume B = M,,(F). By 7.8.1, we want
to show that mp(a;T) for @ € M, (F) is the usual characteristic polynomial. But the
universal element (in a basis of matrix units, or any basis) satisfies its characteristic
polynomial of degree n, and a nilpotent matrix (with 1s just above the diagonal) has
minimal polynomial 7", so we conclude as in the previous paragraph. O

In light of the above, we may make the following definition.
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Definition 7.8.9. Let B be a semisimple F-algebra. For @ € B, the reduced charac-
teristic polynomial f(a;T) = T" - T ' +.--+(=1)c, € F[T]is the specialization
of the universal minimal polynomial mp(&;T), and the reduced trace and reduced
norm are the coefficients cy, ¢,, respectively.

Example 7.8.10. For a semisimple algebra B ~ B X --- X B,, with each B; central
simple, we find that the reduced characteristic polynomial is just the product of the
reduced characteristic polynomials on each simple direct factor B;; this is well-defined
(again) by the uniqueness statement in the Wedderburn—Artin theorem (Main Theorem
7.3.10).

Proposition 7.8.11. Let B be semisimple. Then the reduced trace trd: B — F is
F-linear and satisfies trd(af) = trd(Ba) for all o, € B; and the reduced norm
nrd: B — F is multiplicative, satisfying nrd(a) = nrd(a) nrd(B).

Proof. Consider (again) V := F(x)[¢] € B®F F(x) the subalgebra generated over F(x)
by &; then € acts on V =~ F(x)[T]/(mp(&;T)) by left multiplication with characteristic
polynomial mp(&; T). It follows that the reduced trace and reduced norm are the usual
trace and determinant in this representation, so the announced properties follow on
specialization. O

Remark 7.8.12. Tt is also possible to define the reduced characteristic polynomial on
a semisimple algebra B by writing B ~ By X - -+ X B, as a product of simple algebras;
for details, see Reiner [Rei2003, §9].

7.9 Separable algebras

For a (finite-dimensional) F'-algebra, the notions of simple and semisimple are sensitive
to the base field F in the sense that these properties need not hold after extending the
base field. Indeed, let K 2 F be a finite extension of fields, so K is a simple F-
algebra. Then K ® F? is simple only when K = F and is semisimple if and only if
Kop Fl ~ Fil x ... x Fal je. K is separable over F.

It is important to have a notion which is stable under base change, as follows.
For further reference, see Drozd—Kirichenko [DK94, §6], Curtis—Reiner [CR81, §7],
Reiner [Rei2003, §7c], or Pierce [Pie82, Chapter 10].

Definition 7.9.1. Let B be a finite-dimensional F-algebra. We say that B is a separable
F-algebra if B is semisimple and Z(B) is a separable F-algebra.

In particular, a separable algebra over a field F with char F' = 0 is just a semisimple
algebra.

7.9.2. For a semisimple algebra B ~ M,,, (D7) X --- X My, (D,), by Example 7.5.2 we
have Z(B) ~ Z(Dy) X - - - X Z(D,), and B is separable if and only if Z(D;) is separable
foreachi=1,...,r.

Lemma 7.9.3. A finite-dimensional simple F-algebra is a separable algebra over its
center K.
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Proof. The center of B is a field K = Z(B) and as a K-algebra, the center Z(B) = K
is certainly separable over K. (Or use Proposition 7.5.3 and Theorem 7.9.4(iii) below.)
O

The notion of separability in this context is quite robust.

Theorem 7.9.4. Let B be a finite-dimensional F-algebra. Then the following are equiv-
alent:

(i) B is separable;
(ii) There exists a finite separable field extension K of F such that B @p K =~
M, (K) X ---x M, (K) for integers ny, ...,n, > 1;
(iii) For every extension K 2 F of fields, the K-algebra B @ K is semisimple;
(iv) B is semisimple and the bilinear form

BxB—F
(@, B) = trd(af)

is nondegenerate.
Moreover, if char F = O, then these are further equivalent to:
(v) The bilinear form («, 8) = Trg|r(aB) is nondegenerate.

A separable F-algebra is sometimes called absolutely semisimple, in view of
Theorem 7.9.4(iii).

Proof. First we prove (i) = (ii). Let B; be a simple component of B; then Z(B;) is
separable over F. Let K; 2 F be a separable field extension containing Z(B;) that splits
B;, so B; ®z,) Ki = M,,(K;). Let K be the compositum of the fields K;. Then K is
separable, and

Bi ®F K = My, (Z(B;) ®F K) = My, (K) X -+ X My, (K)

the number of copies equal to [Z(B;) : F].

Next we prove (ii) = (iii). Suppose B ®r K =~ []; M,,,(K) and let L 2 F be an
extension of fields. Let M = KL. On the one hand, BQr M ~ (B®r K) @k M =
[T; M,, (M), sorad B®F M = {0}; on the other hand, B®r M ~ (B®f L)®; M and
rad(B®r L) Crad(B®r L) ®r M = {0}, so B®p L is semisimple.

For the implication (iii) = (i), suppose B is not separable, and we show that there
exists K 2 F such that B ® K is not semisimple. If B is not semisimple over F, we
can just take F = K. Otherwise, Z(B) is not separable as an F-algebra, and there is a
component of Z(B) which is an inseparable field extension K. Then B®p K contains a
nonzero nilpotent element in its center and this element generates a nonzero nilpotent
ideal, so rad(B ®f K) # {0} and B ®F K is not semisimple.

The implication (iii) = (iv) holds for the following reason. We have B ®p F? ~
M, (F¥) X - - - x My, (F4), and the reduced trace pairing on each matrix ring factor is
nondegenerate so the whole pairing is nondegenerate. By linear algebra we conclude
that the bilinear form on B is nondegenerate.
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The implication (iv) = (i) holds with char F arbitrary: if € € rad B then a€ € rad B
is nilpotent and trd(ae) = O for all @ € B, and by nondegeneracy € = 0.

The final equivalence (iv) & (v) follows when char F = 0 since the algebra trace
pairing on each simple factor is a scalar multiple of the reduced trace pairing. O

Exercises

Throughout the exercises, let F' be a field.

,b
> 1. Prove that a quaternion algebra B = (%) with char F # 2 is simple by a direct
calculation, as follows.

(a) Let I be a nontrivial two-sided ideal, and let € = ¢ + xi + yj + zij € I. By

considering i€ — €i, show that 7 + xi € I.
(b) Arguing symmetrically and taking a linear combination, show that t € I,

and conclude that r = 0, whence x =y = z = 0.

,b
Modify this argument to show that an algebra B = [a?) is simple when

char F' = 2. [We proved these statements without separating into cases in 7.2.11.]

2. Let B be a quaternion algebra over F, and let K C B be an F-subalgebra that is
commutative. Show that dimg K < 2.

3. Let B be a quaternion algebra. Exhibit an explicit isomorphism
B®r B> My(F).
[Hint: see Exercise 2.11.]

>4. Let B = {(g lc)) ta,b,c € F} C My(F), and V = FZ be the left B-module
of column vectors. Show that V is indecomposable, but not simple, as a left

B-module (cf. Example 7.2.5).

> 5. This exercise proves basic but important facts about two-sided ideals in matrix
algebras using matrix units.

(a) Let D be a division F-algebra. Prove that M,,(D) is a simple F-algebra
with center Z(D) for all n > 1. [Hint: Let E;; be the matrix with 1 in the
ijth entry and zeros in all other entries. Show that Ex;MEj, = m;jEy,
where m;; is the ijth entry of M.]

(b) More generally, let R be a ring (associative with 1, but potentially non-
commutative). Show that Z(M,,(R)) = Z(R) and that any two-sided ideal
of M,,(R) is of the form M,,(1) C M,,(R) where I is a two-sided ideal of R.

> 6. Let F be a field, let B a simple algebra, and let I be a left B-module with
dimg I = dimg B. Show that [ is isomorphic to B as a left B-module, i.e., there
exists @ € I such I = Ba.
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7.

> 9.

> 10.

11.

12.

13.

14.
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In this exercise, we consider extensions of the Skolem—Noether theorem.

(a) Let B be a quaternion algebra over F and let K, K, C B be F-subalgebras
(not necessarily subfields). Suppose that ¢: K| = K; is an isomorphism
of F-algebras. Show that ¢ lifts to an inner automorphism of B. [Hint:

repeat the proof of Corollary 7.1.5.]
(b) Show by example that Corollary 7.7.3 is false if the minimal polynomi-

als are not supposed to be irreducible. In particular, provide an example
of isomorphic algebras Kj, K» € B that are not isomorphic by an inner
automorphism of B.

. Let B be a quaternion algebra over F, and let K C B be a separable, quadratic

F-subalgebra. Show that there exists b € F* such that B =~ (K | b). [Hint: lift
the standard involution on K via the Skolem—Noether theorem. |

Let B be a finite-dimensional F-algebra. Show thatif @ € rad B, then 1 —Ba € B*
for all 8 € B. [Hint: if 1 — Ba is not left invertible then it belongs to a maximal
left ideal; left invertible implies invertible. |

Extend Corollary 7.1.5 to the case where K = F X F as follows: show that
if K1,K, C B are F-subalgebras with K; ~ F X F, and ¢: K| = K is an
isomorphism of F-algebras, then ¢ lifts to an inner automorphism of B.

Let n € Zs; and let F be a field with char F { n. Let { € F be a primitive nth

N
root of unity. Let a, b € F* and let A = (;_{) be the algebra over F generated

)

by elements i, j subject to

i"=a, j"=b ji=/{ij.
(a) Show that dimp A = n?.
(b) Show that A is a central simple algebra over F.
(c) Let K = F[i] =~ F[x]/(x™ — a). Show that if b € Nmgr(K*) then A ~
M,,(F). [Such algebras are called cyclic algebras or sometimes power
norm residue algebras.]

Generalize the statement of Proposition 7.5.3(a) as follows. Let A, B be
F-algebras, and let A’ C A and B’ C B be F-subalgebras. Prove that

Cag(A’® B') = Ca(A") ® Cp(B').
Let B be a finite-dimensional F-algebra. Show that the following are equivalent:

(i) B is separable;
(ii) B is semisimple and the center K = Z(B) is separable;
(iii) B ®F B°P is semisimple.

Let G # {1} be a finite group. Show that the augmentation ideal, the two-sided
ideal generated by g — 1 for g € G, is a nontrivial ideal, and hence F[G] is not
simple as an F-algebra.
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15. Let G be a finite group of order n = #G. Show that F[G] is a separable F-
algebra if and only if char F 1 n as follows. [This exercise is known as Maschke’s
theorem.]

(a) Suppose first that char F' = 0 for a special but quick special case. Compute
the trace pairing and conclude F[G] is separable.

(b) If char F | n, show that N = } ¢ g is a nilpotent element in the center of
F[G], so F[G] is not semisimple.

(c) Suppose that char F' { n. Let B = F[G]. Define the map of left B-modules
by

¢: B> B®p B® =: B°

1
H=-) g®g"
¢ . }; g§®g
so that ¢(a) = a¢(l) for all @ € B. Give B the structure of a B®-algebra
by (@, a@®) - B +— afBa®. Show that ¢ is a homomorphism of B®-modules,
and that the structure map ¢ : B® — B has ¢ o ¢ = idg. Conclude that B
is separable.

16. Let B be an F-algebra, and let %' be an algebraic closure of F. Show that B is
simple if and only if B ® F is simple.

17. Let D be a (finite-dimensional) division algebra over F2. Show that D = F?.
Conclude that if B is a simple algebra over F2, then B ~ M,,(F) for some n > 1
and hence is central.

> 18. Let B be a (finite-dimensional) F algebra, and let K 2 F be a finite separable
extension of fields. Show that rad(B @ K) = rad(B) Qf K.
> 19. Show that if B is a semisimple F'-algebra, then so is M,,(B) for any n € Zs|.

>20. Let B be a (finite-dimensional) F-algebra with standard involution and suppose
char F # 2.

(a) Show that rad B = radnrd. Conclude B is semisimple if and only if
rad nrd = {0}.

(b) Suppose B # F and B is central. Conclude that B is a quaternion algebra
if and only if rad nrd = {0}.

21. Compute the Jacobson radical rad B of the F-algebra B with basis 1,1, j,ij

satisfying
2

i’=a, j>=0, and ij = —ji
for a € F, and compute B/ rad B. In particular, conclude that such an algebra
is not semisimple, so B is not a quaternion algebra. [Hint: restrict to the case

char F # 2 first.]

22. Give an example of (finite-dimensional) simple algebras A, B over a field F such
that A ®f B is not simple. Then find A, B such that A ® B is not semisimple.
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> 23.

24.

25.

> 26.

27.

28.

> 29.

> 30.
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In Exercise 7.18, we saw that if D is a (finite-dimensional) division algebra over
F then D ®f F¥ ~ M,,(F¥) for some n > 1. In this exercise, we show the same
is true if we consider the separable closure. (We proved this already in Exercise
6.3 for D a quaternion algebra.)

Let F be a separably closed field, so every nonconstant separable polynomial
with coefficients in F' has a root in F. Let D be a finite-dimensional central
division algebra over F' with char F' = p. For purposes of contradiction, assume
that D # F.

(a) Prove that dimg D is divisible by p.
(b) Show that the minimal polynomial of each nonzero d € D has the form

xP¢ —aforsome a € F and e > 0.
(c) Choose an F?-algebra isomorphism ¢: D ®¢ F* =5 M, (F*). Show that

tro(x® 1) =0forall x € D.
(d) Prove that D does not exist.

Let K 2 F be a separable (possibly infinite) extension, and let f(7T) € K[T1].
Suppose that f(T)" € F[T] for some n € Zs. Show that f(T) € F[T]. [Hint:
when p = char F | n, use the fact that aP € F implies a € F.]

Let B be a finite-dimensional F-algebra, let @ € B, and let f, (;T) and fr(a;T)
be the characteristic polynomial of left and right multiplication of @ on B,
respectively.

(a) If B is semisimple, show that f (a;T) = fr(a;T).
(b) Give an example where f, (a;T) # fr(a;T).

Use the Skolem—Noether theorem to give another solution to Exercise 6.2: if
K C B is a separable quadratic F-algebra then B ~ (K, b | F) for some b € F*.

Give a direct proof of Corollary 7.7.4. [Hint: Use the fact that there is a unique
simple left B-module.]

Let B = (K, b | F) be a quaternion algebra. Show that the subgroup of Aut(B)
that maps K C B to itself is isomorphic to the group

K*/F* U j(K*|F®).
Show that the subgroup of Aut(B) that restricts to the identity on K (fixing K
elementwise) is isomorphic to K*/F*.

Use the Skolem—Noether theorem and the fact that a finite group cannot be
written as the union of the conjugates of a proper subgroup to prove Wedderburn’s
little theorem: a finite division ring is a field.

Let B be a quaternion algebra over F'. In this exercise, we show that the commu-
tator subgroup
[B*,B*] = (aBa”'f7" : a, g € BX)

is precisely

[BX,B*] = B' = {y € B : nrd(y) = 1} = SL{(B).
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()
(b)

(©

Show that [B*, BX] < B'.
Show that [GL,(F), GLy(F)] = SL,(F) if #F > 3. [Hint: choose z € F
such that 72 — 1 € FX, let y = (Z

0
1 ox) 1 x(z2-17!
o 1)=[l )]

and analogously for the transpose. See 28.3 for a review of elementary
matrices. |

Z(_)l , and show that for all x € F we

have

Suppose that B is a division algebra. Let y € B'. Show that there exists
a € K = F(y) such that aa ! = v. [Hint: This is a special case of Hilbert’s
theorem 90. Let « = y + 1 if ¥y # —1, and a € B\(0} if y = —1, with
appropriate modifications if char F = 2.] Conclude from the Skolem-—
Noether theorem that there exists 8 € B* such that Sa8~! = @, and thus
v € [BX, BX].

31. Show that every ring automorphism of H is inner. (Compare this with ring
automorphisms of C!)
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Chapter 8

Simple algebras and involutions

In this chapter, we examine further connections between quaternion algebras, simple
algebras, and involutions.

8.1 » The Brauer group and involutions

An involution on an F-algebra B induces an isomorphism ~ : B = B°P_ for example
such an isomorphism is furnished by the standard involution on a quaternion algebra B.
More generally, if B, B, are quaternion algebras, then the tensor product B; ®r B; has
an involution provided by the standard involution on each factor giving an isomorphism
to (B) ®F B,)*? = B{® ® B;"—but this involution is no longer a standard involution
(Exercise 8.1). The algebra B; ® B, is a central simple algebra over F called a
biquaternion algebra. In some circumstances, we may have

B) ®F By ~ My(B3) (8.1.1)

where B3 is again a quaternion algebra, and in other circumstances, we may not;
following Albert, we begin this chapter by studying (8.1.1) and biquaternion algebras
in detail.

To this end, we look at the set of isomorphism classes of central simple algebras
over F, which is closed under tensor product; if we think that the matrix ring is
something that is ‘no more complicated than its base ring’, it is natural to introduce an
equivalence relation on central simple algebras that identifies a division ring with the
matrix ring (of any rank) over this division ring. More precisely, if A, A’ are central
simple algebras over F we say A, A’ are Brauer equivalent if there exist n, n” > 1 such
that M,(A) =~ M,,/(A’). In this way, (8.1.1) reads B; ® B, ~ B3. The set of Brauer
equivalence classes [A] has the structure of a group under tensor product, known as the
Brauer group Br(F) of F, with identity element [F] and inverse [A]"! = [A°P]. The
class [B] € Br(F) of a quaternion algebra B is a 2-torsion element, and therefore so is a
biquaternion algebra. In fact, by a striking theorem of Merkurjev, when char F # 2, all
2-torsion elements in Br(F’) are represented by a tensor product of quaternion algebras
(see section 8.3).
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Finally, our interest in involutions in Chapter 3 began with an observation of
Hamilton: the product of a nonzero element with its involute in H is a positive real
number (its norm, or square length). We then proved that the existence of such an
involution characterizes quaternion algebras in an essential way. However, one may
want to relax this setup and instead consider when the product of a nonzero element with
its involute merely has positive trace. Such involutions are called positive involutions
and they arise naturally in algebraic geometry: the Rosati involution is a positive
involution on the endomorphism algebra of an abelian variety, and it is a consequence
that this algebra (over QQ) is semisimple, and unsurprisingly quaternion algebras once
again feature prominently (see sections 8.4-8.5).

8.2 Biquaternion algebras

Let F be a field. All tensor products in this section will be taken over F.

8.2.1. Let By, B, be quaternion algebras over F. The tensor product B; ® B; is a
central simple algebra over F of dimension 4> = 16 called a biquaternion algebra. A
biquaternion algebra may be written as a tensor product of two quaternion algebras in
different ways, so the pair is not intrinsic to the biquaternion algebra.

By the Wedderburn—Artin theorem (Main Theorem 7.3.10), we have exactly one
of the three following possibilities for this algebra:

+ B| ® B, is a division algebra;
« B; ® B, ~ M»(B3) where B3 is a quaternion division algebra over F; or
* B] ® By =~ My(F).

We could combine the latter two and just say that By ® B, ~ My(B3) where B3 is a
quaternion algebra over F, since My(M3(F)) ~ My(F) as F-algebras.

Example 8.2.2. By Exercise 8.2, when char F # 2 we have
a, b1 a, bz
— | ®(—) = M(B
(22 o %) = waaen

a, b?

- ) = My(F).

bib b b
where B; = (a, Fl 2). In particular, (%)@(Q’?) ~ My(F), since(

Example 8.2.2 is no accident, as the following proposition indicates.
Proposition 8.2.3. (Albert). The following are equivalent:

(i) There exists a quadratic field extension K D F that can be embedded as an
F-algebra in both By and B;;
(ii) By and B, have a common quadratic splitting field; and
(iii) B1 ® B, is not a division algebra.

Proof. The equivalence (i) < (ii) follows from Lemma 5.4.7.
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For the implication (i) = (iii), for i = 1,2 let a; € B; generate K so al.z =ta; —n
witht,n € F. Let
B=a191-1Qa;.

Then
,3(01®1+1®az—t)=af®l—l®a§—t,3

(8.2.4)
=t -n®l-1®(ay—n)—tB=0.

Therefore S is a zerodivisor and B; ® B, is not a division algebra.
To finish, we prove (iii) = (i). We have an embedding

B, — B1® B,

a a®1

and similarly B,; the images of B| and B; in B; ® B, commute. Write B, = (K, b, | F).
Consider (B1)x = B; ® K C B} ® By; then (B )k is a quaternion algebra over K (with
dimpg(B1)x = 8). If (B1)k is not a division algebra, then K splits B; and K — B; and
we are done. So suppose that (B;)g is a division algebra. Then

B ® By = (B1)k + (Bi)kJ

is free of rank 2 as a left (B;)g-module.

Since B; ® B, ~ M»(B3) is not a division algebra, there exists € € B; ® B, nonzero
such that €2 = 0. Without loss of generality, we can write € = a; ® z + j where @ € B;
and z € K. Then

0=€>=al®7°+ (a1 ®2)j + (a1 ®7)j + by (8.2.5)
From the basis 1, j over (By)k, if 7 =t — z with ¢ € F, we conclude that
1 ®z+a1@(t—z)=a;0t =0.

Therefore ¢+ = 0, and z2 = ¢ for some ¢ € F*. Then from (8.2.5) ca/l2 +by =0
SO alz = —by/c and B; contains the quadratic field F (W=D3¢). But so does B, as
(zj)* = —=byc as well.

(For an alternate proof, see Jacobson [Jacn2009, Theorem 2.10.3].) O

Remark 8.2.6. In view of Proposition 8.2.3, we say that two quaternion algebras
By, B; over F are linked if they contain a common quadratic field extension K 2 F.
For further discussion of biquaternion algebras and linkage in characteristic 2 (where
one must treat separable and inseparable extensions differently), see Knus [Knu93],
Lam [Lam?2002], or Sah [Sah72]. Garibaldi—Saltman [GS2010] study the subfields of
quaternion algebra over fields with char F' # 2.

From now on, we suppose that char F # 2. (For the case char F' = 2, see Chapman—
Dolphin-Laghbribi [CDL2015, §6].)



126 CHAPTER 8. SIMPLE ALGEBRAS AND INVOLUTIONS

8.2.7. Motivated by Proposition 8.2.3, we consider the quadratic extensions repre-
sented by B; and B, encoded in the language of quadratic forms (recalling Lemma
5.54). Let

V={o1®1-1®a; € B ® By : trd(a) = trd(ap)}.

Then dimp V = 6, and we may identify V = B? ®1-1 ®B(2). The reduced norm on each
factor separately defines a quadratic form on V by taking the difference: explicitly, if
By = (a1, b | F) and B, = (ay, by | F), then taking the standard bases for By, B>

O(By, By) ~ (—ay,—by, a1by) B —(~az, —by, ax b>)
~ (—ay, —by, a1b1, az, by, —asr by).

The quadratic form Q(By, By) : V — F is called the Albert form of the biquaternion
algebra B| ® B;.

We then add onto Proposition 8.2.3 as follows.

Proposition 8.2.8. (Albert). Let B; ® By be a biquaternion algebra over F (with
char F # 2) with Albert form Q(By, By). Then the following are equivalent:

(i) B1, By have a common quadratic splitting field;
(iv) Q(B1, By) is isotropic.

Proof. The implication (ii) = (iv) follows by construction 8.2.7. To prove (iv) =
(ii), without loss of generality, we may suppose Bj, B, are division algebras; then
an isotropic vector of Q corresponds to elements a@; € By and @, € B; such that
a% = oz% = ¢ € F*. Therefore K = F(+/c) is a common quadratic splitting field. O
Remark 8.2.9. Albert’s book [Alb39] on algebras still reads well today. The proof of
Proposition 8.2.3 is due to him [Alb72]. (“I discovered this theorem some time ago.
There appears to be some continuing interest in it, and I am therefore publishing it
now.”) Albert used Proposition 8.2.8 to show that

-1,-1 X,
B] = (—F ) and Bz = (Ty)

over F' = R(x, y) have tensor product B; ®¢ B, a division algebra by verifying that
the Albert form Q(B, B,) is anisotropic over F. See Lam [Lam2005, Example VI.1]
for more details. For the fields of interest in this book (local fields and global fields),
a biquaternion algebra will never be a division algebra—the proof of this fact rests on
classification results for quaternion algebras over these fields, which we will take up
in earnest in Part IIL.

8.3 Brauer group

Motivated to study the situation where B; ® B, ~ Mj(B3) among quaternion algebras
By, B>, B3 more generally, we now turn to the Brauer group.

Let CSA(F) be the set of isomorphism classes of central simple F-algebras. The
operation of tensor product on CSA(F) defines a commutative binary operation with
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identity F', butinverses are lacking (for dimension reasons). So we define an equivalence
relation ~ on CSA(F) by

A~ A if M,y (A) = M,,(A”) for some n,n’ > 1 (8.3.1)

and we say then that A, A’ are Brauer equivalent. In particular, A ~ M,,(A) for all
A € CSA(F) as needed above.

Lemma 8.3.2. The set of equivalence classes of central simple F-algebras under the
equivalence relation ~ has the structure of an abelian group under tensor product,
with identity [F] and inverse [A]7! = [A°P].

Proof. By Exercise 8.5, the operation is well-defined: if A, A’ € CSA(F) and A’ ~
A” € CSA(F)then A® A’ ~ A® A”. To conclude, we need to show that inverses exist.
This is furnished by Lemma 7.5.4: if dimp A = n and AP is the opposite algebra of A
(3.2.2) then the map

A®p A% - Endp(A) ~ M, (F)
a®p e (- aup)

is an isomorphism of F-algebras, so [A]~! = [A°P] provides an inverse to [A]. |
So we make the following definition.

Definition 8.3.3. The Brauer group of F is the set Br(F) of Brauer equivalence classes
of central simple F-algebras (8.3.1) under the group operation of tensor product.

8.3.4. Let Bbe aquaternion algebra over F. We have B ~ M (F) ifand only if [B] = [F]
is the identity. Otherwise, B is a division algebra. Then the standard involution gives
an F-algebra isomorphism B =5 B°P, and hence in Br(F) we have [B]~' = [B] and
so [B] is an element of order 2. Since Br(F) is abelian, it follows that biquaternion
algebras, or more generally tensor products B; ® --- ® B; of quaternion algebras B;,
are also elements of order at most 2 in Br(F).

Theorem 8.3.5. (Merkurjev). Let char F # 2. Then Br(F)|[2] is generated by quater-
nion algebras over F, i.e., every (finite-dimensional) central division F-algebra with
involution is Brauer equivalent to a tensor product of quaternion algebras.

Remark 8.3.6. More generally, Merkurjev [Mer82] proved in 1981 that a division
algebra with an involution is Brauer equivalent to a tensor product of quaternion
algebras; more precisely, if D is a division F-algebra with (not necessarily standard)
involution, then there exists n € Zs; such that M,,(D) is isomorphic to a tensor
product of quaternion algebras. His theorem, more properly, says that the natural
map K>(F) — Br(F)[2] is an isomorphism. (Some care is required in this area: for
example, Amitsur—Rowen-Tignol [ART79] exhibit a division algebra D of degree 8
with involution that is not a tensor product of quaternion algebras, but M, (D) is a tensor
product of quaternion algebras.) For an elementary proof of Merkurjev’s theorem, see
Wadsworth [Wad86].
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Remark 8.3.7. Justas quaternion algebras are in correspondence with conics (Corollary
5.5.2), with a quaternion algebra split if and only if the corresponding conic has a
rational point (Theorem 5.5.3), similarly the Brauer group of a field has a geometric
interpretation (see e.g. Serre [Ser79, §X.6]): central simple algebras correspond to
Brauer—Severi varieties—for each degree n > 1, both are parametrized by the Galois
cohomology set H'!(Gal(F*%? | F), PGL),).

8.4 Positive involutions

We now turn to study algebras with involution more general than a standard involution.
Throughout this section, let F € R be a subfield of R and B a finite-dimensional
F-algebra. We define the trace map Tr : B — R by the trace of left multiplication.

Definition 8.4.1. Aninvolution * : B — B is positive if Tr(a*@) > 0 for all @ € B\{0}.

Since the map («, 8) — Tr(a*p) is bilinear, an involution * on B is positive if and
only if Tr(a*a@) > O for « in a basis for B and so is positive if and only if its extension
to B ®F R is positive.

Example 8.4.2. The standard involutions on R, C, and H, defined by a — trd(a) — «,
are positive involutions. The standard involution on R X R is not positive since for
a = (x1,x) € R X R we have Tr(aa@) = 2x;x;. The standard involution on M, (R) is
also not positive, since for @ € M(R) we have Tr(aa) = 4 det(a).

8.4.3. Let D be one of R, C, or H. Let B = M,,(D). The standard involution ~ on D
extends to an involution on B, acting on coordinates. The conjugate transpose (or,
perhaps better the standard involution transpose) map

*:B—> B
a—a =at

also defines an involution on B, where ! is the transpose map. If @ = (a; )i,j=1,...,n then
Tr(a* @) = n(dimg D) Z aga;; > 0 (8.4.4)
ij=1

thus * is positive, and the norm o — Tr(e* @) is (an integer multiple of) the Frobenius
norm on B.

We will soon see that every positive involution can be derived from the conjugate
transpose as in 8.4.3. First, we reduce to the case where B is a semisimple algebra.

Lemma 8.4.5. Suppose that B admits a positive involution *. Then B is semisimple.

Proof. We give two proofs. First, we appeal to Theorem 7.9.4: since the trace pairing
is positive definite, it is nondegenerate and immediately B is semisimple.
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For a second (more general) proof, let / = rad B be the Jacobson radical of B.
By Lemma 7.4.2, B is semisimple if and only if rad B = {0}, and by Lemma 7.4.8,
J = rad B is nilpotent. Suppose for purposes of contradiction that J # {0}. Then there
exists n > 0 such that J” # {0} but J**! = {0}. Let € € J be such that " # 0 but

€"*! = 0. The involution gives an isomorphism B — B°P taking maximal left ideals
to maximal right ideals and therefore by Corollary 7.4.6 we conclude J* = J. Thus
€"e* = 0so Tr(e"(e")") = Tr(e" (™)) = 0, contradicting that * is positive. ]

8.4.6. Suppose B is semisimple with a positive involution *, and let B; be a simple
factor of B. Then * preserves B;: for if Bl’." = B; # B;, then B; is a simple factor and
B;Bj = 0 so Tr(B;B}) = Tr(B; B;) = {0}, a contradiction.

Putting Lemma 8.4.5 with 8.4.6, we see it is enough to classify positive involutions
on simple R-algebras. By the theorem of Frobenius (Corollary 3.5.8), a simple algebra
over R is isomorphic to M, (D) with D = R, C, H, so 8.4.3 applies.

Proposition 8.4.7. Let B ~ M,,(D) be a simple R-algebra and let * be the conjugate
transpose involution on B. Let *: B — B be another positive involution on B. Then
there exists an element u € B* with u* = u such that

of =y oty
forall @ € B.

Proof. First suppose B is central over R. Then the involutions T and * give two
R-algebra maps B — B°P. By the Skolem—Noether theorem (Main Theorem 7.7.1),
there exists x4 € B* such that o' = y~'o* u. Since

a=@") =@ o' w = p e’ = T e ) (8:4.8)
for all @ € B, we have u'u* € Z(B) = R, so u* = cu for some ¢ € R. But

(U = pu = (cp™)* = u, thus ¢ = =1. But if ¢ = —1, then y is skew-symmetric so
its top-left entry is w1, = O; but then for the matrix unit e;; we have

Tr(enre])) = Trenp ™" e}y ) = Tr(u " enper) = T i) =0, (8.4.9)

a contradiction.

A similar argument holds if B has center Z(B) = C. The restriction of an involution
to Z(B) is either the identity or complex conjugation; the latter holds for the conjugate
transpose involution, as well as for . if 7 € Z(B) then Tr(zz") = n%(zz") > 0, and
we must have z' = Z. So the map @ +— (a*)" is a C-linear automorphism, and
again there exists 4 € B* such that o' = y~'a*u. By the same argument, we have
W = zu with z € C, but now p = (u*)* = zzu so |z] = 1. Let w?> = w/w = z; then
(wp)* = wu* = wzu = wu. Replacing u by wu, we may take z = 1. O

Corollary 8.4.10. The only positive involution on a real division algebra is the standard
involution.

Proof. Apply Proposition 8.4.7 with n = 1, noting that u* = u = u implies u € R.
O
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8.4.11. Let pu € B* with u* = u. Then u is self-adjoint with respect to the pairing
(@, B) = Tr(a”B):

(ne, B) = Tr((pa)*B) = Tr(a™ 1 B) = Tr(a” up) = (a, up).

It follows from the spectral theorem that the R-linear endomorphism of B given by
left-multiplication by i on B as an R-algebra is diagonalizable (with real eigenvalues)
via a symmetric matrix. We say u is positive definite (for *) if all eigenvalues of u
are positive. The map @ — Tr(a* ua) defines a quadratic form on B, and y is positive
definite if and only this quadratic form is positive definite.

Lemma 8.4.12. Let 1" = p. Then the involution a" = p~'a* u is positive if and only if
either u or —u is positive definite.

Proof. Diagonalize the quadratic form a +— Tr(a*uae) to get {(ay, ..., a,) in a nor-
malized basis ey, ..., e,, and suppose without loss of generality that a; = +1. If all
a; = —1, then we can replace u with —u without changing the involution to suppose
they are all +1.

Suppose u is not positive, and without loss of generality a; < 0 and a; > 0, then
Tr((e; + ex)*u(e; + e2)) = —1 + 1 = 0, a contradiction. Conversely, if u is positive
definite, then all eigenvalues are +1. Let v = +/u be such that v* = v, and then

Tr(e* " ap) = Tr(@* v 2av?) = Te((va* v (v av))

8.4.13
=Te((v vy (v lav)) > 0 ( )

forall @ € B, so T is positive. O

Example 8.4.14. If n = 1, and B = D, then the condition u* = u implies x € R, and
the condition u positive implies u > 0; rescaling does not affect the involution, so we
can take u = 1 and there is a unique positive involution on D given by *.

Example 8.4.15. Let B = My(R). Then u = (2; 2bc) is positive definite if and only if

a > 0 and b? — 4ac < 0. Combining Proposition 8.4.7 with Lemma 8.4.12, we see that
all positive involutions T on B are given by o" = y~'a* u where u is positive definite.

We can instead relate positive involutions to the standard involution @ instead of
the transpose; to this end, it is enough to find j € B* = GL,(R) such that @ = ]‘lcz* Js

and the element j = ( 0 1) does the trick, because

-1 0
0 1)fa c}(0 -1 d -b
(—1 0) (b d) (1 0 ) = (—c a ) (84.16)
0 1\({2a b b 2 .
From the product (_1 ()) ( b 20) = (—Za B b)’ we conclude that all positive

involutions are given by o' = u~'@u where y? € R_y.



8.5. * ENDOMORPHISM ALGEBRAS OF ABELIAN VARIETIES 131

Remark 8.4.17. Beyond the application to endomorphism algebras, Weil [Weil60]
has given a more general point of view on positive involutions, connecting them to
the classical groups. For more on involutions on finite-dimensional algebras over real
closed fields, see work of Munn [Mun2004].

8.5 s« Endomorphism algebras of abelian varieties

We conclude this chapter with an advanced (optional) application: we characterize
endomorphism algebras of (simple) abelian varieties in terms of algebras with invo-
lutions. We borrow from the future the notions from section 43.4. Briefly, a complex
torus of dimension g is a complex manifold of the form A = V/A for g > 0, where
A C V ~ C# is a lattice (discrete subgroup) and A = Z?&. A complex abelian variety
is a certain kind of complex torus. A complex abelian variety A is simple if A has no
abelian subvariety other than {0} and A.

An endomorphism of A is a C-linear map @: V — V such that a(A) C A. Let
End(A) be the ring (Z-algebra) of endomorphisms of A.

Proposition 8.5.1. B = End(A) ® Q is a finite-dimensional algebra over Q that admits
a positive involution ': B — B.

Proof. The algebra B acts faithfully on A® Q ~ Q?%, so is isomorphic to a subalgebra
of M2, (Q) hence is finite-dimensional over Q. For positivity, see Proposition 43.4.24
(for the case when A is principally polarized). O

Remark 8.5.2. The involution " : B — B is called the Rosati involution (and depends
on a choice of polarization 1: A — A", where A" is the dual abelian variety).

Now Lemma 8.4.5 and Proposition 8.5.1 imply that B is semisimple as a Q-algebra,
with

B =] [M, D)
i=1

where each D; C B is a division algebra. It follows that A is isogenous to a product
n r
Al XX AL

where ny,...,n. > 0and Ay, ..., A, are simple pairwise nonisogenous abelian subva-
rieties of A such that D; = End(A;) ®z Q.

We therefore reduce to the case where A is simple, and D := End(A) ® Q is a
division algebra. Let K := Z(D) be the center of D and let

Ko :=K<T>={aeK:aT=a}
be the subfield of K where T acts by the identity.

Lemma 8.5.3. Ky is a totally real number field, i.e., every embedding Ky — C factors
through R, and if T acts nontrivially on K, then K is a CM field, i.e., K is a totally
imaginary extension of Ky.
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Proof. The positive involution © restricts to complex conjugation on Z(D) by Propo-
sition 8.4.7, so for all embeddings Ky < C, the image lies in R. For the same reason,
we cannot have ™ acting nontrivially on K and have an embedding K — R. O

The following theorem of Albert classifies the possibilities for D.

Theorem 8.5.4. (Albert). Let D be a (finite-dimensional) division algebra over Q with
positive involution " and center K = Z(D), let Ko := K" and n := [Ky : Q). Then K
is a totally real number field, and one of the four following possibilities holds:

() D=K =Ky and " is the identity;
= Ky an is a quaternion algebra over Ky such that
) K=Kpand D i j lgeb K h th

Dy R =~ MyR)",

and there exists u € D* such that u* = d € K is totally negative and af =
W@ forall @ € D;
(II) K = Ky and D is a quaternion algebra over Ky such that

DegR =~ H",

and t is the standard involution; or
V) K 2 Ky and
D &g R =~ My4(C)"

for some d > 1, and " extends to the conjugate transpose * on each factor M4(C).

Proof. We have assembled many of the tools needed to prove this theorem, and hope-
fully motivated its statement sufficiently well—but unfortunately, a proof remains just
out of reach: we require some results about quaternion algebras over number fields
not yet in our grasp. For a proof, see Mumford [Mum70, Application I, §21] or
Birkenhake-Lange [BL2004, §§5.3-5.5].

To connect a few dots as well as we can right now, we give a sketch in the case
where K = K for the reader who is willing to flip ahead to Chapter 14. In this case,
D is a central division algebra over K = K( and has a Ky-linear involution giving
an isomorphism D = D°P of Ky-algebras. Looking in the Brauer group Br(Ky), we
conclude that [D] = [D°P] = [D]7}, so [D] € Br(Kp) has order at most 2. By class
field theory (see Remark 14.6.10), we conclude that either D = K or D is a (division)
quaternion algebra over Ky. If D = Ky, we are in case (I), so suppose D is a quaternion
algebra over Ky. We have D®g R =~ [],., D, a direct product of n quaternion algebras
D,, over R indexed by the real places v of Ky. We have D,, ~ M»(R) or D,, ~ HI, and our
positive involution induces a corresponding positive involution on each D,,. If there
exists v such that D,, ~ H, then by Corollary 8.4.10, the positive involution on D,, is the
standard involution, so it is so on D, and then all components must have D,, ~ H as the
standard involution is not positive on M,(IR)—and we are in case (II). Otherwise, we
are in case (III), with Proposition 8.4.7 and Example 8.4.15 characterizing the positive
involution. O
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Exercises

Let F be a field.

1. Let By, B, be quaternion algebras over F, with standard involution written ~ in
both cases. Let A := B| ® B».

(a) Show thatthemapo: A — Adefined by @i ®a, — @1®a; for @) € By and
@) € B; extends to an involution on A, but it is not a standard involution.
[Hint: consider sums. ]

(b) Suppose that char F # 2. Diagonalize A = A* & A~ into +1 and -1
eigenspaces for 0. Show that

A*=Fo(B;®B,) and A" =(B{®F)&(F®B;).

a, by

b
>2. Suppose char F # 2 and let B : (%) and B; := (T) be quaternion

algebras over F.

(a) Let B3 bethe F-spanofl,i3 :=i1®1, j3 := j|®j2,and k3 1= i3j3 = i1j1®j>
a,b1b2

inside B; ® B;. Show that Bs ~ as F-algebras.
(b) Similarly, let B4 be the F-span of 1, iy := 1® jo, ja := (ii ® k2)/a, and
by, —b
ks := isjs. Show that By =~ ( 2 2) ~ My(F).

(c) Show that

B1 ® By ~ B3 ® By ~ M)(B3).

[Hint: Show that Bz and B4 are commuting subalgebras, or consider the
map B3 ® B4 — B; ® B, given by multiplication.]
(d) Restore symmetry and repeat (a)—(c) to find algebras B} ~ B; and B) =~

by, —b1\ . , , ,
( 7 ) with B| ® B, :BS®B4 :MQ(BS).

3. Suppose char F' # 2. Show that B; ® B, ~ My(F) if and only if the Albert form
Q(B1, By) is totally hyperbolic.

4. Let G be a finite group. Show that the map induced by g +— g~! for g € G
defines an positive involution on R[G]. Then show that this map composed with
coordinatewise complex conjugation defines a positive involution on C[G] (as
an R-algebra).

> 5. Show thatif ~ is the equivalence relation (8.3.1) on CSA(F), then ~ is compatible
with tensor product, i.e., if A,A” € CSA(F) and A’ ~ A” € CSA(F) then
ARA ~A®A".

6. Show that every class in the Brauer group Br(F) contains a unique division
F-algebra, up to isomorphism.

7. Show that Br F = {1} if F is separably closed, and that Br(R) =~ Z/27Z and
Br(IF,) = {1}.
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Let B € CSA(F) and suppose that B has an involution (not necessarily standard).
Show that [B] has order at most 2 in Br F.

Let K 2 F be a field extension. Show that the map A — A®p K induces a group
homomorphism Br F — Br K. Conclude that the set of isomorphism classes of
central division F-algebras D such that D ® r K ~ M,,(K) for some n > 1 forms
a subgroup of Br F, called the relative Brauer group Br(K | F).

In this exercise, we give an example of a central simple algebra of infinite
dimension, called the Weyl algebra.

Suppose char F' = 0, let F[x] be the polynomial ring over F in the variable x.
Inside the enormous algebra Endr F[x] is the operator f(x) — xf(x), denoted
also x, and the differentiation operator ¢ : F[x] — F[x]. These two operators
are related by the product rule:

o(xf(x)) = x6(f(x) = f(x).

Accordingly, the subalgebra of Endr F[x] generated by 6, x is isomorphic to an
algebra given in terms of generators and relations:

W = F(6,x)/{6x — x6 — 1),

the quotient of the “noncommutative polynomial ring” in two variables F{(J, x)
by the two-sided ideal generated by 6x — x6 — 1.

(a) Show that every element of W can be written in the form Z:’:O fi(x)d"
where f;(x) € F[x] for all i, i.e., W has F-basis elements xt67 for i,j>0.

(b) Show that Z(W) = F.

(c) Letbeatwo-sided of W.Show that if there exists nonzero f(x) € F[x]NI,
then I = W. Similarly, show that if 6" € I for some n > 0, then I = W.

(d) Show that W is simple. [Hint: argue by induction. ]

Let B be a finite-dimensional R-algebra with positive involution *: B — B. Let
P(B,”) :={u € B : u* = pand u is positive definite for *}.

(a) Show that B* acts on P(B,*) by 8- u := B*up.

(b) Show that P(B,*) is a convex open subset of {& € B : a* = a}, an R-vector
subspace of B.

(c) Let y: B — B be an R-algebra automorphism or anti-automorphism.
Show that o' := y~!((a)*) defines a positive involution for @ € B, and
that  maps P(B, ") bijectively to P(B,?).
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Chapter 9

Lattices and integral quadratic forms

In many ways, quaternion algebras are like “noncommutative quadratic field exten-
sions”: this is apparent from their very definition, but also from their description as
wannabe 2 x 2-matrices. Just as the quadratic fields Q(Vd) are wonderously rich, so
too are their noncommutative analogues. In this part of the text, we explore these
beginnings of noncommutative algebraic number theory.

In this chapter, we begin with some prerequisites from commutative algebra,
embarking on a study of integral structures and linear algebra over domains.

9.1 » Integral structures

Just as we find the integers Z inside the rational numbers Q, more generally we want
a robust notion of integrality for possibly noncommutative algebras: this is the theory
of orders over a domain.

We first have to understand the linear algebra aspects of this question. Let R be a
domain with field of fractions F := Frac R, and let V be a finite-dimensional F-vector
space. An R-lattice in V is a finitely generated R-submodule M Cc V with MF = V.If R
is a PID (for example, R = Z), then M is an R-lattice if and only if M = Rx; ®---® Rx,,
where x, ..., X, is a basis for V as an F-vector space.

Between M and V lies intermediate structures, where instead of allowing all denom-
inators (in the field of fractions), we only allow certain denominators; these are the
localizations of M. To fix ideas, suppose R = Z, so M ~ Z"; we call a Z-lattice simply
a lattice. For a prime p, we define the localization of Z away from p to be

Zpy ={a/beQ: ptb}C Q.

In the localization, we can focus on those aspects of the lattice concentrated at the
prime p. Extending scalars, M(,) := MZ,) C V is a Zy)-lattice in V, again called the
localization of M at p. These localizations determine the lattice M in the following
strong sense (Theorem 9.4.9).

Theorem 9.1.1. (Local-global dictionary for lattices). Let V be a finite-dimensional
Q-vector space, and let M C V be a lattice. Then the map N — (N(p)), establishes a
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bijection between lattices N and collections of lattices (N))p (indexed by primes p)
where My = N for all but finitely many primes p.

By this theorem, the choice of “reference” lattice M is arbitrary. Because of the
importance of this theorem, a property of a lattice that holds if and only if it holds over
every localization is called a local property.

Finally, often vector spaces come equipped with a measure of length, or more
generally a quadratic form; we can restrict these to the lattice M C V with V a Q-
vector space. More intrinsically, we define a quadratic form Q: M — 7Z to be a map
satisfying:

(i) Q(ax) = a*Q(x)foralla € Z and x € M, and

(ii) The associated map 7: M X M — Z by T(x,y) = Q(x +y) — Q(x) — Q(y) is
(Z-)bilinear.

Condition (i) explains (partly) the ‘quadratic’ nature of the map, and part (ii) is the usual
way relating norms (quadratic forms) to bilinear forms. Choosing a basis ey, . . ., e, for
M =~ 7", we may then write

2 2
O(xier + -+ + Xpep) = a1 Xy + apXx1x2 + -+ + appX;, € Zlxy, ..., x,) (9.1.2)

as a homogeneous polynomial of degree 2.

9.2 Bits of commutative algebra

We begin with a brief review of some bits of commutative algebra relevant to our
context: we need just enough to do linear algebra over (commutative) domains with
good properties. Good general references for the basic facts from algebra we use
(Dedekind domains, localization, etc.) are Atiyah—Macdonald [AM69], Matsumura
[Mat89, Chapter 8], Curtis—Reiner [CR81, §1, §4], Reiner [Rei2003, Chapter 1], and
Bourbaki [Bou98].

Throughout this chapter, let R be a (commutative) noetherian domain with field of
fractions F := Frac R.

9.2.1. An R-module P is projective if it is a direct summand of a free module;
equivalently, P is projective if and only if every R-module surjection M — P of
R-modules has a section, i.e., an R-module homomorphism g: P — M such that
fog=idp.

Accordingly, a free R-module is projective. A projective R-module M is necessarily
torsion free over R, which is to say, if rx = 0O with» € Rand x € M, then r = 0 or
x=0.

9.2.2. A fractional ideal of R is a nonzero finitely generated R-submodule b C F, or
equivalently, a subset of the form b = da where a C R is a nonzero ideal and d € F*.
Two fractional ideals g, b of R are isomorphic (as R-modules) if and only if there exists
¢ € F* such that b = ca: indeed, given an isomorphism a =~ b, we may extend scalars
to F to obtain an F-linear map F ~ F, which must be given by ¢ € F*, and conversely.
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A Dedekind domain is a noetherian, integrally closed domain such that every
nonzero prime ideal is maximal.

Example 9.2.3. A field or a PID is a Dedekind domain; in particular, the rings Z and
IF,,[#] are Dedekind domains. If F is a finite extension of Q or IF,,(¢), then the integral
closure of Z or IF,[¢] in F respectively is a Dedekind domain.

9.2.4. Suppose R is a Dedekind domain. Then a finitely generated R-module is pro-
jective if and only if it is torsion free. Moreover, every nonzero ideal a of R can be
written uniquely as the product of prime ideals (up to reordering). For every fractional
ideal a of R, the set a™' := {a € F : aa C R} is a fractional ideal with aa™! = R.
Therefore the set of fractional ideals of R forms a group under multiplication. The
set of principal fractional ideals comprises a subgroup, and we define CI R to be the
quotient, or equivalently the group of isomorphism classes of fractional ideals of R.

9.3 Lattices

Let V be a finite-dimensional F-vector space.

Definition 9.3.1. An R-lattice in V is a finitely generated R-submodule M C V with
MF = V. We refer to a Z-lattice as a lattice.

The condition that MF = V is equivalent to the requirement that M contains a
basis for V as an F-vector space.

Example 9.3.2. An R-lattice in V = F is the same thing as a fractional ideal of R.

We will be primarily concerned with projective R-lattices; if R is a Dedekind
domain, then a finitely generated R-submodule M C V is torsion free and hence
automatically projective (9.2.4).

9.3.3. If there is no ambient vector space around, we will also call a finitely generated
torsion free R-module M an R-lattice: in this case, M is a lattice in the F-vector space
M ®g F because the map M — M ®g F is injective (as M is torsion free).

Remark 9.3.4. Some authors omit the second condition in the definition of an R-lattice
and say that M is full if MF = V. We will not encounter R-lattices that are not full
(and when we do, we call them finitely generated R-submodules), so we avoid this
added nomenclature.

By definition, an R-lattice can be thought of an R-submodule that “allows bounded
denominators”, as follows.

Lemma 9.3.5. Let M C V be an R-lattice and let J C V be a finitely generated
R-submodule. Then the following statements hold.

(a) For all x € V, there exists nonzero r € R such that rx € M.
(b) There exists nonzero r € R such that rJ C M.
(c) J is an R-lattice if and only if there exists nonzero r € R such that rM C J C
-1
rM.
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Proof. First (a). Since FM =V, the R-lattice M contains an F-basis x, ..., x, for V,
so in particular M 2 Rx; & - -- @ Rx,,. For all x € V, writing x in the basis xi, ..., x,
and clearing (finitely many) denominators, we conclude that there exists nonzero r € R
such that rx € M.

For (b), let yy, . . ., y;, generate J as an R-module; then for each i, there exist r; € R
nonzero such that r;y; € M hence r := []; r; # O satisfies rJ € M, and therefore
J € r~'M. For (c), we repeat (b) with M interchanged with J to find nonzero s € R
such that sM C J, so then

rsMCsMcJCrMc (rs)_lM. m]

For the rest of this section, we suppose that R is a Dedekind domain and treat lattices
over R; for further references, see Curtis—Reiner [CR62, §22], O’Meara [O’Me73, §81],
or Frohlich-Taylor [FT91, §11.4]. It turns out that although not every R-lattice has a
basis, it can be decomposed as a direct sum, as follows.

Theorem 9.3.6. Let R be a Dedekind domain, let M C V be an R-lattice and let
V1, ..., Yn be an F-basis for V. Then there exist Xy, ..., X, € M and fractional ideals
a, ..., a, such that

M=a1x1® - ®a,x, (9.3.7)

and xj € Fyi +---+Fyjforj=1,...,n

Accordingly, we say that every R-lattice M is completely decomposable (as a
direct sum of fractional ideals), and we call the elements xj, ..., x, a pseudobasis for
the lattice M with respect to the coefficient ideals a,, . . ., a,,. The matrix with rows x;
in the basis y; is lower triangular by construction; without loss of generality (rescaling),
we may suppose that the diagonal entries are equal to 1, in which case we say that the
pseudobasis for M is given in Hermite normal form.

More generally, if M = ajx; + - - - + a,, X, the sum not necessarily direct, then we
say that the elements x; are a pseudogenerating set for M with coefficient ideals a;.

Proof of Theorem 9.3.6. We argue by induction on n, the case n = 1 corresponding to
the case of a single fractional ideal.

LetW := Fy; +---+ Fy,_1,and let N = M N W. Then there is a commutative
diagram

0 N M MJN 0
l i l (9.3.8)
0 w 1% VW 0

Since N = W N M, we have M/N — V/W, and V/W =~ F projecting onto Fy,.
Since M /N is nonzero and finitely generated, by 9.2.4 we conclude M/N =~ a C F
is a fractional ideal, hence projective. Therefore the top exact sequence of R-modules
splits (the surjection has a section), so there exists x € M such that M = N & ax as
R-modules. The result then follows by applying the inductive hypothesis to N. O
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An argument generalizing that of Theorem 9.3.6 yields the following [O’Me73,
81:11].

Theorem 9.3.9. (Invariant factors). Let R be a Dedekind domain and let M,N C V
be R-lattices. Then there exists a common pseudobasis xi, . . ., X, for M, N; i.e., there
exists a basis xi, . . ., x, for V and fractional ideals ay, . . ., a,, and by, . .., b, such that

M=a1x1®--Da,x,
N=0bix1®---®b,x,

Moreover, letting 0; := biat.‘l we may further take 01 | - -- | 0,, and then such 0; are
unique.
The unique fractional ideals ?1,...,0, given by Theorem 9.3.9 are called the

invariant factors of N relative to M.

9.3.10. Let M C V be an R-lattice with pseudobasis as in (9.3.7). The class [a; - - - a,] €
CI1 R is well-defined (Exercise 9.7) and called the Steinitz class.

In fact, if we do not require that x; € Fy; +--- + Fy; for j = 1,...,nin Theorem
9.3.6, then we can find a pseudobasis for M witha; =--- =a,-1 = R, i.e.,

M=Rx1®---®Rx,—1 ®ax,

with [a] the Steinitz class of M.

9.4 Localizations

Properties of a domain are governed in an important way by its localizations, and
consequently the structure of lattices, orders, and algebras can often be understood by
looking at their localizations (and later, completions).

For a prime ideal p C R, we denote by

Rp):={r/s€F:sgp}CF 9.4.1)

the localization of R at p. (We reserve the simpler subscript notation for the completion,
defined in section 9.5.)

Example 9.4.2. If R = Z and p = (2), then Ry = {r/s € Q : s is odd} consists of the
subring of rational numbers with odd denominator.

Since R is a domain, the map R <> R is an embedding and we can recover R as
an intersection

R=(\Rp=[ R CF (9.4.3)
p m

where the intersections are over all prime ideals of R and all maximal ideals of R,
respectively.
Let V be a finite-dimensional F-vector space and let M C V be an R-lattice. For a
prime p of R, let
M) == MRy €V
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be the extension of scalars of M over R,; identifying V. = MF ~ M ®g F under
multiplication, we could similarly define

My := M ®g Rp).

In either lens, M(y) is an R,-lattice in V. In this way, M determines a collection
(M(p))p indexed over the primes p of R.

9.4.4. Returning to 9.2.1, a finitely generated R-module M is projective if and only if
it is locally free, i.e., M(y) is free for all prime ideals of R.

The ability to argue locally and then with free objects is very useful, and so very
often we will restrict our attention to projective (equivalently, locally free) R-modules.

9.4.5. The localization of a Dedekind domain R is a discrete valuation ring (DVR). A
DVR is equivalently a local PID that is not a field. In particular, a DVR is integrally
closed and every finitely generated module over a DVR s free.

Consequently, if R is a Dedekind domain, then every fractional ideal of R is locally
principal, ie., if a C F is a fractional ideal, then for all primes p of R we have
ap) = apRp) for some a, € F*.

We now prove a version of the equality (9.4.3) for R-lattices (recall Definition
9.3.1).

Lemma 9.4.6. Let M be an R-lattice in'V. Then
M = ﬂM(p) = ﬂM(m) cVv
p m

where the intersection is over all prime (maximal) ideals p.

Proof. It suffices to prove the statement for maximal ideals since M(m) € M,y when-
ever m 2 p. The inclusion M C (), Mm) is clear. Conversely, let x € V satisfy

X € M) for all maximal ideals m. Let
M :x):={reR:rxeM}.

Then (M : x) is an ideal of R. For a maximal ideal m of R, since x € My, there exists
0 # ryy € Rx\m such that ryx € M. Thus r, € (M : x) and (M : x) is not contained in
any maximal ideal of R. Therefore (M : x) = R and hence x € M. O

Corollary 9.4.7. Let M, N be R-lattices in V. Then the following are equivalent:

(i) M CN;
(if) M(py C Ny for all prime ideals p of R; and
(iii) M(m) € N for all maximal ideals m of R.

Proof. The implications (i) = (ii) = (iii) are direct; for the implication (iii) = (i), we
have M = (", M(m) € (p Nm) = N by Lemma 9.4.6. O

In particular, it follows from Corollary 9.4.7 that M = N for R-lattices M, N if and
only if My = Ny for all primes p of R.
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9.4.8. A property that holds if and only if it holds locally (as in Corollary 9.4.7, for the
property that one lattice is contained in another) is called a local property.

To conclude this section, we characterize in a simple way the conditions under
which a collection (M(p))p of R)-lattices arise from a global R-lattice. We will see
that just as a nonzero ideal of R can be factored uniquely into a product of prime
ideals, and hence by the data of these primes and their exponents, so too can a lattice
be understood by a finite number of localized lattices, once a “reference” lattice has
been chosen (to specify the local behavior of the lattice at other primes).

Theorem 9.4.9. (Local-global dictionary for lattices). Let R be a Dedekind domain,
and let M C 'V be an R-lattice. Then the map N — (N))p establishes a bijection
between R-lattices N C V and collections of lattices (N))p indexed by the primes p
of R satisfying M(py = N(p) for all but finitely many primes p.

In Theorem 9.4.9, the choice of the “reference” lattice M is arbitrary: if M’ is
another lattice, then by Theorem 9.4.9 M) = M(’p) for all but finitely many primes p,
so we get the same set of lattices replacing M by M’. In particular, any lattice N C V
agrees with any other one at all but finitely many localizations.

Remark 9.4.10. In Theorem 9.4.9, there is a bit of notational abuse: when we write a
collection (N(p))p, we do not mean to imply that there is (yet) an R-lattice N such that
the localization of N at p is equal to N,). This conclusion is what is provided by the
theorem (the statement of surjectivity), so the notational conflict is only temporary.

Proof of Theorem 9.4.9. Let N C V be an R-lattice. Then there exists 0 # r € R such
that rM C N C r~'M. But r is contained in only finitely many prime (maximal) ideals
of R, so for all but finitely many primes p, the element r is a unit in R, and thus
M) = Nip)-

So consider the set of collections (Np)), of lattices where Ny is an R(p)-lattice for
each prime p with the property that M(,) = N(p) for all but finitely many primes p of
R. Given such a collection, we define N = (), Np) € V. Then N is an R-submodule
of V. We show it is an R-lattice in V. For each p such that M,y # N(y), there exists
rp € R such that r, Mp) € Nip) € 7, Mip). Therefore, if r = [, ry is the product of
these elements, then rM) € N C r~' M, for all primes p with M(,) # N(p). On the
other hand, if My, = N then already rMy) € M) = Ny C 77 Ny = 1 M),
Therefore by Corollary 9.4.7, we have rM C N C r~'M, and so N is an R-lattice.

By Lemma 9.4.6, the association (Ny))p + (1, Nip) is an inverse to N > (Np))yp-
Conversely, given a collection (N))p, for a nonzero prime p, we have (1, Ny)

®
Np) since (Rq)p) = F s0 (Ng)p) = V whenever q # p. O

9.5 Completions

Next, we briefly define the completion and show that the local-global dictionary holds
in this context as well. (We will consider completions in the context of local fields
more generally starting in chapter 12, so the reader may wish to return to this section
later.) For a general reference on completions (and the induced topology), see e.g.
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Atiyah—Macdonald [AM69, Chapter 10], Matsumura [Mat89, Chapter 8], Bourbaki
[Bou98, Chapter III, §3]. To avoid diving too deeply into commutative algebra we
suppose that R is a DVR, with maximal ideal p: for example, we might take the
localization of a Dedekind domain R at a prime ideal by 9.4.5. There is a natural
system of compatible projection maps R/p"*! — R/p" indexed by integers n > 1, and
we define the completion of R at p to be the inverse (or projective) limit under this
system:

—1i n
Ry = linR/p

n

0 (9.5.1)
= {a = (ap)n € 1—[ R/p" : any1 = a, (mod p™) for all n > 1} .

n=1

The completion Ry, is again a commutative ring, and we have a natural map R — R,
defined by a — (a),. Since R has a discrete valuation we have (", »" = {0}, so this
map is injective. Moreover, since p is maximal, then in fact this inclusion factors via
R = Ry > Ry inducing isomorphisms (Exercise 9.8)

R/pe = R(p)/peR(p) = Rp /peRp (952)

for all e > 1; in particular, the operation of completion is in a sense ‘stronger’ than
the operation of localization, and the valuation on R extends naturally to Ry, so
R = F N Ry, C F,. However, once local the completion looks rather similar in the
context of lattices, as follows. Let Fj, := FF ®g Ry and V, := V ®f F,.

Lemma 9.5.3. Let R be a DVR with maximal ideal p C R. Then the maps
M) = My = Mp) ®r,,, Ry

(9.5.4)

are mutually inverse bijections between the set of R-lattices in V and the set of Ry-
lattices in V.

Proof. Let M C V be an R-lattice. By 9.4.5 we have M ~ R" free over R; choose a basis
M = Rx1®---®Rx,. Then My, = M®grR, ~ Ryx1®---®Rpx,. Let M’ := M,NV C V.
Then x" € M’ if and only if x" = a;x; + -+ + a,x, with a; € R, N F = R, so indeed
M’ = M. Conversely, let M, € V, and let M’ := M, N'V. Then (M’), € My, and
we prove the opposite inclusion. First, a bit of setup. Let y, ..., y, be an F-basis for
V,and let N = Ry; @ --- ® Ry,. By Lemma 9.3.5, there exists nonzero r € R, such
that rNp, € M C r! Ny. Choosing an element s € R with the same valuation as r, we
have r/s € R;j so in fact may suppose that » € R. Rescaling the basis vectors y; and
replacing % by r we may suppose that (rN )p = rNp € My C N,. From the previous
paragraph, we have rN, = rN®g R, C M. Letting (r) = p¢ and taking (9.5.2) on each
coordinate, we have an isomorphism ¢: N/rN =~ N, /rN, induced from the natural
inclusion N < Nj,. Now to show the inclusion, let y € M. Let x € N C V be such that
@(x +rN) = y +rNy; lifting to Ny, we find that there exists z € rN, € (M"), € M,
suchthatx =y+zeMyNV,soy=x-z€(M'),. O
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In particular, Lemma 9.5.3 implies that in the local-global dictionary for lattices
over a Dedekind domain R (Theorem 9.4.9), we may also work with collections of
Ry-lattices (Np), over the completions at primes.

9.6 Index

Continuing with R a noetherian domain, let M, N C V be R-lattices.

Definition 9.6.1. The R-index of N in M, written [M : N]g, is the R-submodule of F
generated by the set

{det(6) : 6 € Endp(V) and 6(M) C N}. (9.6.2)

The style of Definition 9.6.1, given by a large generating set (9.6.2), is the replace-
ment for being able to work with given bases; this style will be typical for us in what
follows. The determinants det(d) are meant in the intrinsic sense, but can be computed
as the determinant of a matrix upon choosing a basis for V.

Lemma 9.6.3. The index [M : N]g is a nonzero R-module, and if « € Autg (V) then
[@M : N] = det(@)"[M : N].

Proof. Exercise 9.10. O

Lemma 9.6.4. If M, N are free (as R-submodules), then [M : N]g is a free R-module
generated by the determinant of any 6 € Endp(V) giving a change of basis from
M to N.

Proof. Letxi,...,x, bean R-basis for M, thereby an F-basis for V.Letyy, ..., y,bean
R-basis for N; then the map x; > y; first extends to an R-linear isomorphism M = N
and thereby to an F-linear map € Endr(V), and of course (M) C N by construction,
so det(6) € [M : N]g. Conversely, let 6’ € Endp(V) be such that §'(M) C N. The
map 6’6"': N — N is an R-linear map, so det(6’6~!) = det(6")det(5)! € R, so
det(¢”) € det(6)R. O

Example 9.6.5. If N = rM with r € R, then [M : N]gr = r"R where n = dimpg V.
Example 9.6.6. [f R = Zand N € M, then [M : Nz is the ideal generated by #(M /N),
the usual index taken as abelian groups. In this case, for convenience we will often
identify [M : N]z with its unique positive generator.

Forming the R-index commutes with localization, as follows.

Lemma 9.6.7. Let p be a prime of R. Then

(M) : Np)lrgy, = (LM 2 NIR)(p)-
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Proof. If 6(M) € N, then 6(Mp)) € Ny by Rp)-linearity, giving the inclusion (2).
For (©), let 6 € Endr(V) be such that 6(M(y)) € N(p). For any x € M, we have 6(x) €
6(M) € 6(M(p)) S N, so there exists y € N and s € R\p such that s6(x) = y € N.
Let xi, ..., x,,, generate M as an R-module, and for each i, let s; € R\p be such that
5;0(x;) € N. Let s := []; s;. Then s6(M) C N, so det(sd) = s" det(d) € [M : N]g, if

n := dimg V. Finally, s € R&), we conclude that detd € ([M : N]g)y), as desired. O

Proposition 9.6.8. Suppose that M, N are projective R-modules. Then [M : N]r is a
projective R-module. Moreover, if N € M then [M : N]g = R ifand only if M = N.

Proof. Let p be a prime of R and consider the localization ([M : N]gr)p) at p. Since
M, N are projective R-modules, they are locally free (9.2.1). By Lemma 9.6.4, the
local index [M(y) : Nip)lr,, is a principal Rp)-ideal. By Lemma 9.6.7, we conclude
that [M : N]g is locally principal, therefore projective.

The second statement follows in a similar way: we may suppose that R is local and
thus N € M are free, in which case M = N if and only if a change of basis matrix
from N to M has determinant in R*. O

For Dedekind domains, the R-index can be described as follows.

Lemma 9.6.9. If R is a Dedekind domain and N C M, then [M : N]g is the product
of the invariant factors (or elementary divisors) of the torsion R-module M |N.

Proof. Exercise 9.12. O

9.7 Quadratic forms

In setting up an integral theory, we will also have need of an extension of the theory
of quadratic forms integrally, generalizing those over fields (Section 4.2). For further
reading on quadratic forms over rings, we suggest the books by O’Meara [O’Me73],
Knus [Knu88], and Scharlau [Scha85].

Definition 9.7.1. A quadratic map is a map Q: M — N between R-modules, satis-
fying:

() O(rx) = er(x) forallr € Rand x € M; and
(i) The map T: M X M — N defined by
T(x,y)=Q0x+y) -0 —-0®»)
is R-bilinear.
The map T in (ii) is called the associated bilinear map.

Remark 9.7.2. The bilinearity condition (ii) can be given purely in terms of Q: we
require

Ox+y+2)=0x+y)+0(x+2)+ 00y +2)—0x) - 0(y) - 0(2)
forall x,y,z € M.
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Definition 9.7.3. A quadratic module over R is a quadratic map Q: M — L where
M is a projective R-module of finite rank and L is a projective R-module of rank 1. A
quadratic form over R is a quadratic module with codomain L = R.

A quadratic module Q: M — L is free if M and L are free as R-modules, and a
quadratic form Q: M — R is free if M is free as an R-module.

Example 9.7.4. Let Q: V — F be a quadratic form. Let M C V be an R-lattice such
that Q(M) C L where L is an invertible R-module. (When R is a Dedekind domain,
we may take L = Q(M), see Exercise 9.13.) Then the restriction Q|py: M — L is a
quadratic module over R.

Conversely, if O: M — L isaquadratic module over R, then the extension Q: M®g
F — L ®g F ~ F is a quadratic form over F. Moreover, at the slight cost of some
generality (replacing an object by an isomorphic one), by choosing an isomorphism
L®g F ~ F we may suppose that O takes values in an invertible fractional ideal [ C F.

Example 9.7.5. If 0: M — L is a quadratic module and a C R is a projective R-ideal,
then Q extends naturally by property (i) to a quadratic module aM — a*L.

Definition 9.7.6. A similarity between two quadratic modules Q: M — L and
Q’': M’ — L’ isapair of R-module isomorphisms f: M = M’ and h : L = L’ such
that o' (f(x)) = h(Q(x)) for all X € M, ie.,
such that the diagram

-2 9.7.7)

zi f zlh
M 4 QH L’
commutes. An isometry between quadratic modules is a similarity with L = L’ and h

the identity map.

Definition 9.7.8. Let O: M — L be a quadratic module over R. Then Q is nondegen-
erate if the R-linear map
T: M - Homg(M, L)
(9.7.9)
x =y T(x,y)
is injective; and Q is nonsingular (or regular) if the map (9.7.9) is an isomorphism.

Example 9.7.10. If R = F is a field, then (by linear algebra) Q is nondegenerate if and

only if Q is nonsingular.

Example 9.7.11. A quadratic module is nondegenerate if and only if its base extension
Qr: M@ F > L F~F

is nondegenerate, since the kernel can be detected over F. Recalling the definition
of discriminant (Definition 4.3.3 for char ' # 2 and Definition 6.3.1 in general), we
conclude that Q is nondegenerate if and only if disc O # 0.
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The apparent notion of discriminant of a quadratic module needs some care in
its definition in this generality; it is delayed until section 15.3, where discriminantal
notions are explored in some detail.

Example 9.7.12. Borrowing from the future (see Lemma 15.3.8): if M ~ R" is free,
then choosing a basis for M and computing (half-)discriminant disc Q, we will see that
M is nonsingular if and only if disc Q € R*.

We now define the notions of genus and classes.

Definition 9.7.13. Let O: M — L be a quadratic module. The genus Gen Q is the set
of quadratic modules that are locally isometric to Q, i.e., sz) ~ Q(p) for all primes
p € R. The class set C1Q is the set of isometry classes in the genus.

We conclude with some comments on the codomain of a quadratic map.

Definition 9.7.14. A quadratic module Q: M — L is primitive if Q(M) generates L
as an R-module.

9.7.15. If Q: R" — R is a quadratic form, written

O(x1,...,%,) = Z a;jxixj € R[x1,. .., xu],

1<i<j<n

then Q is primitive if and only if the coeflicients a;; generate the unit ideal R.

If R is a Dedekind domain, then Q(M) C L is again projective (locally at a prime
generated by an element of minimal valuation), so one can always replace Q: M — L
by O: M — Q(M) to get a primitive quadratic module; when R is a PID, up to
similarity we may divide through by greatest common divisor of the coefficients a;; in
the previous paragraph.

9.7.16. In our admittedly abstract treatment of quadratic modules so far, we have
specifically allowed the codomain of the quadratic map to vary at the same time as the
domain—in particular, we do not ask that they necessarily take values in R.

Remark 9.7.17. In certain lattice contexts with R a Dedekind domain, a quadratic form
with values in a fractional ideal a is called an a-modular quadratic form. Given the
overloaded meanings of the word modular, we do not employ this terminology. In the
geometric context, a quadratic module is called a line-bundle valued quadratic form.
Whatever the terminology, we will see in Chapter 22 that it is important to keep track
of the codomain of the quadratic map just as much as the domain, and in particular we
cannot assume that either is free when R is not a PID.

9.8 Normalized form

To conclude this chapter, we discuss an explicit normalized form for quadratic forms.
Let R be a local PID; then R is either a field or a DVR. In either case, R has valuation
v: R — Zsp U {oo} and uniformizer 7r; when R is a field, we take a trivial valuation
and 7 = 1.
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Let O: M — R be a quadratic form over R. Then since R is a PID, M ~ R" is free.
We compute a basis for M in which Q has a particularly nice form, diagonalizing Q
as far as possible. In cases where 2 € R, we can accomplish a full diagonalization;
otherwise, we can at least break up the form as much as possible, as follows. For
a, b, c € R, the quadratic form Q(x, y) = ax® + bxy + ¢y on R? is denoted [a, b, c].

Definition 9.8.1. A quadratic form Q over R is atomic if either:
(i) Q = {a) for some a € R*, or
(ii) 2 ¢ R* and Q = [a, b, c] with a, b, ¢ € R satisfying
v(b) <v(2a) <v(2c) and v(a)v(b) =0.

In case (ii), we necessarily have v(2) > 0 and v(b? = 4ac) = 2v(b).

Example 9.8.2. Suppose R = Z, is the ring of 2-adic integers, so that v(x) = ord,(x)
is the largest power of 2 dividing x € Z,. Recall that Z /Z;<2 is represented by the
elements +1, +5, therefore a quadratic form Q over Z; is atomic of type (i) above
if and only if Q(x) ~ +x? or Q(x) ~ +5x%. For forms of type (ii), the conditions
v(b) < v(2a) = v(a) + 1 and v(a)v(b) = 0 imply v(b) = 0, and so a quadratic
form Q over Z, is atomic of type (ii) if and only if Q(x,y) =~ ax® + xy + cy? with
ord>(a) < ordy(c). Replacing x by ux and y by u~'y for u € Z5 we may suppose
a = 2" or a = +£5 - 2" with ¢t > 0, and then the atomic representative [a, 1, c] of the
isomorphism class of Q is unique.

A quadratic form Q is decomposable if O can be written as the orthogonal sum
of two quadratic forms (Q ~ Q; 8 Q) and is indecomposable otherwise. It follows by
induction on the rank of M that Q is the orthogonal sum of indecomposable forms. We
will soon give an algorithmic proof of this fact and write each indecomposable form
as a scalar multiple of an atomic form. We begin with the following lemma.

Lemma 9.8.3. An atomic form Q is indecomposable.

Proof. If Q is atomic of type (i) then the space underlying Q has rank 1 and is therefore
indecomposable. Suppose Q = [a, b, c] is atomic of type (ii) and assume for purposes
of contradiction that Q is decomposable. It follows that if x, y € M then T'(x, y) € 2R.
Thus we cannot have v(b) = 0, so v(a) = 0, and further v(b) > v(2) = v(2a); this
contradicts the fact that Q is atomic. ]

Proposition 9.8.4. Let R be a local PID and let Q: M — R be a quadratic form. Then
there exists a basis of M such that the form Q can be written

Q=nQ1=s ... 81"

where the forms Q; are atomic and 0 < e} < --- < e, < 0o,

In the above proposition, we interpret 7% = 0. A form as presented in Proposition
9.8.4 is called normalized; this normalized form need not be unique.
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Proof. When R = F is a field with char F # 2, we are applying the standard method
of Gram—Schmidt orthogonalization to diagonalize the quadratic form. This argument
can be adapted to the case where R = F is a field with char F = 2, see e.g. Scharlau
[Scha85, §9.4]. For the general case, we make further adaptations to this procedure:
see Voight [Voi2013, Algorithm 3.12] for a constructive (algorithmic) approach. O

Exercises

Let R be a noetherian domain with field of fractions F' := Frac R.

1.

> 2.

> 9.

Let V be a finite-dimensional F-vector space and let M, N C V be R-lattices.
Show that M + N and M N N are R-lattices.

Let B be an F-algebra and let I ¢ B be an R-lattice. Show that there exists a
nonzeror € RN I.

. Give an example of a non-noetherian ring R and modules N C M such that M

is finitely generated but N is not finitely generated.

. Let k be a field and R = k[x, y]. Show that the R-module (x, y) is not projective.
. Let R be a Dedekind domain. Show that every ideal of R is projective, as

follows. Let a € R be a nonzero ideal. (The zero ideal is trivially projective.)

Since aa™' = R, we may write 1 = Z?:l a;b; with g; € aand b; € a”!.

(a) Define the map ¢: R" — a by ¢(x1,...,x,) = 2.1, a;x;. Observe that ¢
is an R-module homomorphism, and construct a right inverse ¥ to ¢, i.e.,
oY = idq.

(b) Using (a), show that a is a direct summand of R", so a is projective.

. Let m C R be a maximal ideal and let M be a finitely generated R-module. Let

anng M :={re R:rx =0forall x € M}

be the annihilator of M. Show that My, = {0} if and only if m + anng M = R.

. Suppose R is a Dedekind domain. Let V be a finite-dimensional F-vector space

and let M C V be an R-lattice. Given a pseudobasis M = ajx; & --- ® a,x, as
in (9.3.7), let [a; - - - a,,] € C1R. Show that this class (the Steinitz class, 9.3.10)
is well-defined for M independent of the choice of pseudobasis.

. Let R be a DVR with maximal ideal m. Show that if s ¢ m then 1/s € Ry, so

there are natural inclusions
R — Ry = Rn
from the domain into its localization into the completion, inducing isomorphisms
R/p® = Rip)/p“Rip) = Ryp/p°Ry

foralle > 1.

Let V be a finite-dimensional vector space over F and M C V an R-lattice. Let
p be a prime of R. Show that if My C V is an Rp)-lattice then M, NV = M.
Conclude that Lemma 9.5.3 holds.
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10. Let V be a finite-dimensional F-vector space and let M, N C V be R-lattices.

11.
12.

13.

14.

15.

16.

(a) Show that the index [M : N]g is a nonzero R-module. [Hint: use Lemma
9.3.5.]

(b) For a € Autg(V), show [aM : N] = det(e)™'[M : N].

Find R-lattices M, N C V such that [M : N]Jr = Rbut M # N.

Prove Lemma 9.6.9, as follows. Suppose R is a Dedekind domain, and let
N € M C V be R-lattices in a finite-dimensional vector space V over F. Prove
that [M : N]g is the product of the invariant factors (or elementary divisors) of
the torsion R-module M /N.

Suppose R is a Dedekind domain. Let Q: V — F be a quadratic form over F,
let M C V be an R-lattice, and let L := Q(M) C F be the R-submodule of F
generated by the values of Q. Show that L is a fractional R-ideal.

Consider the ternary quadratic form Q(x, y,z) = xy + xz over Z,. Compute a
normalized form for Q.

Consider the following ‘counterexamples’ to Theorem 9.4.9 for more general
integral domains as follows. Let R = Q[x, y] be the polynomial ring in two
variables over Q, so that F = Q(x, y). LetV = Fand I = R.

(a) Show that yR has the property that yR, # R, for infinitely many prime
ideals p of R.

(b) Consider the collection of lattices given by J, = f(x)R if p = (y, f(x))
where f(x) € Q[x] is irreducible and J, = R, otherwise. Show that
Np Jp = (0.

[Instead, to conclude that a collection (Jp), of Ry-lattices arises from a global
R-lattice J, one needs that the collection forms a sheaf.]

In this advanced exercise, we consider generalizations of the notion of lattices to
a geometric context; we assume background in algebraic geometry at the level
of Hartshorne [Har77, Chapter IIJ.

Let X be a separated, integral scheme—so for each open U, the ring Ox (U) is
a(n integral) domain—and let O be its structure sheaf. Let F be the function
field of X (so F = Ox({n}) where n is the generic point of X). Let V be a
finite-dimensional F-vector space.

Define a sheaf of Ox-lattices in V (also called an Ox-lattice in V), to be a sheaf
M of Ox-modules such that for each affine open set U C X, the set .#(U) is an
Ox(U)-lattice in V. As usual, for P € X a point, we denote by .#(p) the stalk of
M at P.

(a) Show that a sheaf of Ox-lattices in V is naturally a subsheaf of the constant
sheaf V over X.

(b) Let X = |J; U; be an affine open cover of X, with U; = Spec R;. Since X
is separated, each intersection U; N U; = Spec R;; is afline, so there are
natural inclusions R;, R; — R;; C F of rings for each i, j. Show that a
sheaf of Ox-lattices is specified uniquely by R;-lattices M; C V for each i,
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subject to the condition that M; R;; = M;R;; for each i, j. [Hint: this is an
easy case of gluing, where isomorphism is replaced by equality in V.]
Now suppose further that X is noetherian, normal, and of dimension < 1
(also called a Dedekind scheme). Then the local rings of X at closed
points are DVRs with fraction field F, and nonempty affine open subsets
of X are the complements of finite subsets of closed points and of the
form U = Spec R with R an Dedekind domain. (For example, we may take
X = Spec R for R a Dedekind domain or X a smooth projective integral
curve over a field.)

Extend the local-global dictionary for lattices to X, in the following way.
Let U = Spec R € X be a nonempty affine open subset, and let M C V
be an R-lattice. Show that the map .4~ — (.#(p))p establishes a bijection
between Ox-lattices .#” in V and collections of lattices (Np))p indexed
by the points P € X, such that for all but finitely many P € U given by the
prime p C R, we have M) = Npy C V.
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Chapter 10

Orders

In this chapter, continuing with a second background installment, we study when
lattices over a domain are closed under a multiplication law: these will be orders, an
integral analogue of algebras over fields.

10.1 » Lattices with multiplication

We begin with a brief indication of the theory of orders over the integers. Let B be a
finite-dimensional (Q-algebra. An order O C B is a lattice that is also a subring of B
(in particular, 1 € O). The property of being an order is a local property for a lattice,
i.e., one may check that it is closed under multiplication in every localization O, for
p prime.

An order is maximal if it is not properly contained in another order. For example,

(]

b
if we start with the quaternion algebra B := %) with a, b € Z nonzero, then the

lattice
O=Z+Zi+7Zj+7Zij CB

is closed under multiplication, and so defines an order—but it is never a maximal order.

An important construction of lattices comes about as follows: if I C B is a lattice,
then
OI)={aeB:al CI}

is an order, called the left order of /; we similarly define the right order.

If O c Bis an order and a € O, then « is integral (over Z), satisfying a monic
polynomial with integer coefficients. If B is a quaternion algebra, then a € B satisfies
its reduced characteristic polynomial of degree 2, and « is integral if and only if
trd(a), nrd(r) € Z (Corollary 10.3.6). When B = F is a number field, the most
important order in F is the ring of integers, the set of all integral elements: it is the
unique maximal order.

Unfortunately, this construction does not work in the noncommutative setting: the
set of all integral elements does not form an order. For one thing, if O C B is a

© The Author(s) 2021 155
J. Voight, Quaternion Algebras, Graduate Texts in Mathematics 288,
https://doi.org/10.1007/978-3-030-56694-4_10


https://doi.org/10.1007/978-3-030-56694-4_10
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56694-4_10&domain=pdf

156 CHAPTER 10. ORDERS

maximal order and @ € B*, then «Oa~' C B is a maximal order and when B is
noncommutative, we may have aOa~! # O. But there are more serious problems, as
the following example indicates.

0 1/2 0
a* = % = 0, so a, 8 are integral over R = Z, but a + 8 and a3 are not integral since
nrd(a + B) = —1/4 and trd(eB8) = 1/4. (Such a counterexample does not require the
existence of zerodivisors: see Exercise 10.10.)

Example 10.1.1. Let B = My(Q) and let @ = (g 1/ 2) and § = ( 0 0), Then

Understanding orders in quaternion algebras is a major task of this second part of
the text. In the simplest case B = M»(Q), every maximal order is conjugate (and thus
isomorphic) in B to M(Z). The reader may wish to skip ahead to Chapter 11 to get to
know the Hurwitz order before returning to study orders more generally.

10.2 Orders

Throughout, let R be a domain with field of fractions F := Frac(R), and let B be
a finite-dimensional F-algebra. For further reference about orders (as lattices), see
Reiner [Rei2003, Chapter 2] and Curtis—Reiner [CR81, §§23, 26].

Definition 10.2.1. An R-order O C B is an R-lattice that is also a subring of B.

In particular, if O is an R-order, then since O is a subring we have 1 € O, and since
O is an R-module we have R € O. We will primarily be concerned with R-orders that
are projective as R-modules, and call them projective R-orders.

10.2.2. An R-algebra is a ring O equipped with an embedding R < O whose image
lies in the center of O. An R-order O has the structure of an R-algebra, and if O is
an R-algebra that is finitely generated as an R-module, then O is an R-order of the
F-algebra B=0O Qg F.

Example 10.2.3. The matrix algebra M,,(F) has the R-order M,,(R). The subring
R[G] = @gEG Rg is an R-order in the group ring F[G].

Example 10.2.4. Let a, b € R\{0} and consider the quaternion algebra B = (a, b | F).
Then O = R® Ri @ Rj & Rk is an R-order, because it is closed under multiplication
(e.g.,ik =i(ij) = aj € O).

Let I C B be an R-lattice in the F-algebra B.

10.2.5. An important construction of orders comes as follows. Let

O.():={aeB:alCI}. (10.2.6)

Lemma 10.2.7. O_(I) C B is an R-order.
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Proof. Then O_(]) is an R-submodule of B which is a ring. We show it is also an
R-lattice. For all @ € B, by Lemma 9.3.5(b), there exists nonzero » € R such that
r(al) C I, hence O (I)F = B. Also by this lemma, there exists nonzero s € R such
that s = s- 1 € I; thus O.(I)s € I so O_(I) C s~'I. Since R is noetherian and s~'7 is
an R-lattice so finitely generated, we conclude that O\ (/) is finitely generated and is
thus an R-lattice. O

Definition 10.2.8. The order O, (1) = {& € B : al C I} in (10.2.6) is called the left
order of /. We similarly define the right order of / by

Or():={a€eB:lacClI}.

Example 10.2.9. It follows from Lemma 10.2.7 that B has an R-order: the R-span of
an F-basis for B defines an R-lattice, so O, (/) is an R-order. (This is a nice way of
“clearing denominators” from a multiplication table to obtain an order.)

We can read other properties about lattices from their localizations, such as in the
following lemma.

Lemma 10.2.10. Let B be a finite-dimensional F-algebra and let I C B be an R-lattice.
Then the following are equivalent:

(i) I is an R-order;
(ii) I(py is an Rpy-order for all primes p of R; and
(iii) I(m) is an Rum)-order for all maximal ideals m of R.

Proof. For (i) = (ii) = (iii), if 1 is an R-order then /() is an Ry)-order for all primes
p, hence a fortiori for all maximal ideals m.

To conclude, we prove (iii) = (i), and suppose that Iy, is an Rm)-order for all
maximal ideals m. Then (N, /() = by Lemma 9.4.6. Thus 1 € (), Iim) = 1, and for
all @, 8 € I we have @8 € (N, Iim) = I, so [ is a subring of B and hence an order. O

Remark 10.2.11. The hypothesis that R is noetherian is used in Lemma 10.2.7, but it is
not actually needed; the fact that O, (/) is an order follows by a process often referred
to as noetherian reduction. A basis of B yields a multiplication table, consisting of
finitely many elements of F; moreover, we know that / is finitely generated as an
R-module. Writing these generators in terms of a basis we can express these generators
over the basis using finitely many elements of F'. Let Ry be the subring of R generated
by these finitely elements, with field of fractions Fy, let By be the Fy-algebra with the
same multiplication table as B; let Iy be the Rp-submodule generated by the generators
for I written over Ry. Then B = By ®f, F and I = Iy ®g, R. But now Ry is a finitely
generated commutative algebra over its prime ring (the subring generated by 1), so by
the Hilbert basis theorem, Ry is noetherian. The argument given then shows that Iy is
finitely generated as an Ry-module, whence [ is finitely generated as an R-module.

Noetherian reduction applies to many results in this text, but non-noetherian rings
are not our primary concern; we retain the noetherian hypothesis for simplicity of
argument and encourage the interested reader to seek generalizations (when they are
possible).



158 CHAPTER 10. ORDERS

10.3 Integrality

Orders are composed of integral elements, defined as follows. If @ € B, we denote by
R[a] = ¥, Ra? the (commutative) R-subalgebra of B generated by a.

Definition 10.3.1. An element « € B is integral over R if « satisfies a monic polyno-
mial with coefficients in R.

Lemma 10.3.2. For a € B, the following are equivalent:

(i) «a is integral over R;
(ii) R[] is a finitely generated R-module;
(iii) a is contained in a subring A that is finitely generated as an R-module.

Proof. This lemma is standard; the only extra detail here is to note that in (iii) we do
not need to assume that the subring A is commutative: (ii) = (iii) is immediate taking
A = R[a], and for the converse, if A C B is a subring that is finitely generated as an
R-module, then R[] C A and since R is noetherian and A is finitely generated as an
R-module, it follows that R[«a] is also finitely generated as an R-module. O

Corollary 10.3.3. If O is an R-order, then every a € O is integral over R.

10.3.4. We say R is integrally closed (in F) if whenever @ € F is integral over R,
then in fact @ € R. Inside the field F, the set of elements integral over R (the integral
closure of R in F) forms a ring: if a, 8 are integral over R then @ + 8 and af are
integral since they lie in R[a, 8] which is a finitely generated submodule of F. The
integral closure of R is itself integrally closed.

Lemma 10.3.5. Suppose that R is integrally closed. Then a € B is integral over R if
and only if the minimal polynomial of a over F has coefficients in R.

Proof. Let f(x) € R[x] be a monic polynomial that « satisfies, and let g(x) € F[x] be
the minimal polynomial of @. Let K be a splitting field for g(x), and let ay, ..., a, be
the roots of g(x) in K. Since g(x) | f(x), each such «; is integral over R, and the set of
elements in K integral over R forms a ring, so each coefficient of g is integral over R
and belongs to F'; but since R is integrally closed, these coefficients must belong to R
and g(x) € R[x]. O

Corollary 10.3.6. If B is an F-algebra with a standard involution, and R is integrally
closed, then a € B is integral over R if and only if trd(a), nrd(@) € R.

‘We may characterize orders in separable algebras as follows.

Lemma 10.3.7. Let O C B be a subring of a separable F-algebra B such that OF = B.
Then O is an R-order if and only if every a € O is integral.

Proof. Let O C B be a subring of an F-algebra B such that OF = B. Recall from
Theorem 7.9.4 that a separable F-algebra is a semisimple F-algebra such that the
symmetric bilinear pairing («, 8) — trd(a8) is nondegenerate.
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We need to show that O is finitely generated. Let a1, ..., @, be an F-basis for B
contained in O. If 8 € O then B = }; a;a; with a; € F. We have Ba; € O since O
is aring, so trd(Ba;) = Zj a; trd(a;a;) with trd(eja;) € R. Now since B is separable,
the matrix (trd(@;a;)); j=1,...,n is invertible, say r = det(trd(e;a;)), so we can solve
these equations for a; using Cramer’s rule and we find that a; € r~'R. Consequently
O Cr Y(Ra1 ®---® Ray) is a submodule of a finitely generated module so (since R
is noetherian) O is finitely generated. O

10.4 Maximal orders

The integral closure of R in F is the largest ring containing integral elements. Accord-
ingly, we make the following more general definition.

Definition 10.4.1. An R-order O C B is maximal if it is not properly contained in
another R-order.

If B is a commutative F-algebra and R is integrally closed in F, then the integral
closure S of R in K is integrally closed and therefore S is a maximal R-order in K. How-
ever, if B is noncommutative, then the set of elements in B integral over R is no longer
necessarily itself a ring, and so the theory of maximal orders is more complicated. (This
may seem counterintuitive at first, but certain aspects of the noncommutative situation
are quite different!) The problem in the noncommutative setting is that although R[]
and R[B] may be finitely generated as R-modules for @, 8 € B, this need not be the
case for the R-algebra generated by o and .

10.4.2. It follows from Lemma 10.3.7 that a separable F-algebra B has a maximal R-
order, as follows. By Lemma 10.2.7, B has an R-order O (since it has a lattice, taking
the R-span of an F-basis), so the collection of R-orders containing O is nonempty.
Given a chain of R-orders containing O, by Lemma 10.3.7 the union of these orders is
again an R-order. Since R is noetherian, there exists a maximal element in a chain.

For the rest of this section, we restrict attention and suppose that R is a Dedekind
domain. We begin by showing that the property of being a maximal order is a local

property.

Lemma 10.4.3. An R-order O C B is maximal if and only if Oy is a maximal Ry)-
order for all primes p of R.

Proof. If Oy is maximal for each prime p then by Corollary 9.4.7 we see that O is
maximal. Conversely, suppose O is maximal and suppose that O,y C Ozp) is a proper

containment of orders for some nonzero prime p. Then the set O’ = (Mg Oq) N Oy
is an R-order properly containing O by Lemma 10.2.10 and Theorem 9.4.9. O

Lemma 10.4.4. Let O C B be an R-order. Then for all but finitely many primes p of
R, we have that Oy = O ®g R(p) is maximal.

Proof. By 10.4.2, there exists a maximal order O’ 2 O. By the local-global principle
for lattices (Theorem 9.4.9), we have O,, = O,, for all but finitely many primes p. O
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The structure of (maximal) orders in quaternion algebras over domains of arithmetic
interest is the subject of the second part of this text.

10.5 Orders in a matrix ring

In this section, we study orders in a matrix ring; we restore generality, and let R be a
noetherian domain with F' = Frac R.

The matrix ring over F is just the endomorphism ring of a finite-dimension vector
space over F, and we seek a similar description for orders as endomorphism rings of
lattices (cf. 10.2.5).

Let V be an F-vector space with dimg V = n and let B = Endg (V). Choosing a
basis of V gives an identification B = Endg (V) ~ M,,(F). Given an R-lattice M C V,
we define

Endg(M) := {f € Endp(V): f(M) C M} C B. (10.5.1)

The left order (10.2.5) is the special case of (10.5.1) where M =1 CV = B.

Example 10.5.2. f V=Fx; ®---® Fx, and M = Rx; ® - - - ® Rx,, then Endr(M) =~
M,.(R).

More generally, if M is completely decomposable,i.e. M = a;x; ®- - - ®a,x, with
each a; C F invertible fractional ideals, then we have Endg(M) C M,,(F) the subring
of matrices whose ij-entry belongs to the R-module

cg,ai_l ~ Homg(a;, a;) € Homp(F, F) = F
where the isomorphisms come from multiplication. For example, if n = 2 then

EndR(M)z( R_l axay

1
C
war! R )_MZ(F).

(Note how the cross terms are aligned correctly in the multiplication!) For example, if

R a!
M = Rx; + axp, then Endg(M) =~ 4« R

Lemma 10.5.3. Let M be an R-lattice of V. Then Endg(M) is an R-order in B =
Endg (V).

Proof. As in the proof of Lemma 10.2.7, we conclude that Endr(M)F = B. Let
ay, @, . ..,q, bean F-basis for Vandlet N = Ra®- - -®Ra,,. Thus Endg (N) ~ M,,(R)
is finitely generated as an R-module.

By Lemma 9.3.5 there exists nonzero r € R such thatrN € M C r~LN. Therefore,
if ¢ € Endg(M), so that ¢(M) C M, then

(F2¢)(N) = r¢(rN) C r¢(M) € rM € N

and thus Endg(M) C r~2 Endg(N); since R is noetherian, this implies that Endg (M)
is finitely generated as an R-module and Endg (M) is an R-order in B. O
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Lemma 10.5.4. Let O C B = Endg (V) be an R-order. Then O C Endg(M) for some
R-lattice M C V. In particular, if O C B is a maximal R-order, then O = Endg(M) for
some R-lattice M.

Proof. Quite generally, if N is any R-lattice in V, then M = {x € N : Ox C N} is an
R-submodule of N with FM =V (as in Lemma 10.2.7), thus M is an R-lattice in V
and O € Endgr(M). If further O is maximal, then the other containment so equality
holds. O

Corollary 10.5.5. If R is a PID, then every maximal R-order O C B ~ M, (F) is
conjugate in B to M,,(R).

Proof. The isomorphism B ~ M,,(F) arises from a choice of basis xi, ..., x, for V;
letting N = @?:1 Rx; we have Endgr(N) =~ M,,(R). The R-order M,,(R) is maximal by
Exercise 10.6, since a PID is integrally closed.

By Lemma 10.5.4, we have O C Endg (M) for some R-lattice M C V, so if O is
maximal then O = Endg(M). If R is a PID then M is free as an R-module, and we
can write M = Ry; @ - - - ® Ry,; the change of basis matrix from x; to y; then realizes
Endgr(M) as a conjugate of Endgr(N) ~ M,,(R). O

Exercises
Let R be a noetherian domain with field of fractions F.

1. Let ¢ € R be an ideal. Show that
R R a b
(c R) = {(c d) eMy(R):ce c} C M(R)

is an R-order in M, (F). Note further that if ¢ is projective (equivalently, locally
free) as an R-module, then this R-order is projective as an R-module.

2. Let B be a finite-dimensional F-algebra with a standard involution and let O C B
be an R-order. Verify that nrd: O — R is a quadratic form over R.

3. Let O, O’ C B be R-orders in an F-algebra B.

(a) Show that O N O’ is an R-order.
(b) If O € O, show that O’* N O = O*.

4. Let O C B be an R-order in an F-algebra B and suppose that R is integrally
closed. Show that F N O = R.

5. Let Ay, ..., A, be F-algebras and let B = A X --- X A,. Show that O C B is an
R-order if and only if O is an R-lattice in B and O N A; is an R-order for each i.

6. Let R be integrally closed. Show that M,,(R) is a maximal R-order in M,,(F).

7. Let B = (K, b | F) be a quaternion algebra with b € R and let S be an R-order in
K.Let O =S+ Sj. Show that O is an R-order in B.
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. Suppose that R is a PID, and let O C B be an R-order in the quaternion algebra

B. Let @ € O be such that S = R[«] is (commutative) domain that is a maximal
R-order in its field of fractions.

(a) Show that 1, @ extends to an R-basis for O.
(b) If moreover S is a PID, show that there exists 8 € O such that 1, @, 8, af is
an R-basis for O.

. Let B be an F-algebra with a standard involution and let @ € B. Show that if «

is integral over R then trd(a™) € R for all n € Zy. Is the converse true?

Generalize Example 10.1.1: Exhibit a division quaternion algebra B over Q and
elements «, S € B such that a, 8 are integral over Z but both @ + 8 and a3 are
not.

Let @ € M,,(F) have characteristic polynomial with coefficients in R. Show that
a is conjugate by an element S € GL,(F) to an element of M,,(R). Explicitly,
how do you find such a matrix 8?

Let B = M,,(F) and let I C B be an R-lattice. Let I* = {a' : a € I} be the
transpose lattice. Show that O_(I*) = Og(1).

Let 1, J C B be R-lattices. Let /J be the R-submodule of B generated by products
aBwherea c€l, B e J;ie.,

1J:= {3k aifi:ai e 1B € J}.
(a) Show that I1J is an R-lattice.

(b) Let p be a prime of R. Show that products commute with localization in
the sense that

(1) @R Rip) = (I ®r Rp))(J ®r Rp)) € By) = B.
Let O C B be an R-order in an F-algebra B.

(a) Show that O (O) = Og(O) = O.
(b) Let @ € B, and let 2O = {af : B € O}. Show that O is an R-lattice and
that O, (eO) = aOa .

Let O C B be an R-order in an F-algebra B. Let y € O and let N : B* — F*
be a multiplicative map. Show that y € O* if and only if N(y) € R*, and in
particular, if B has a standard involution, then y € O if and only if nrd(y) € R*.
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Chapter 11

The Hurwitz order

With the preceding chapters on lattices and orders in hand, we are now prepared
to embark on a general treatment of quaternion algebras over number fields and the
arithmetic of their orders. Before we do so, for motivation and pure enjoyment, in this
chapter we consider the special case of the Hurwitz order. Not only is this appropriate
in a historical spirit, it is also instructive for what follows; moreover, the Hurwitz order
has certain exceptional symmetries that make it worthy of specific investigation.

11.1 » The Hurwitz order

Hurwitz developed the theory of integral quaternions in a treatise [Hur19] in 1919. A
more modern treasure trove of detail about quaternion groups and the Hurwitz order
(as well as many other things) can be found in the book by Conway—Smith [CSm2003];
the review by Baez [Bae2005] also provides an accessible overview.

We consider in this chapter the restriction of the Hamiltonians from R to QQ, namely,

the quaternion algebra B = (’—_) . We further restrict to those elements with integer

Q
I, jy = Z+ Zi + Zj + Tk, (11.1.1)

coordinates

where k := ij. By Example 10.2.4, this is an order in B, called the Lipschitz order.
In the rest of this chapter, we will work over Z and so we will simply refer to lattices
and orders.

The Lipschitz order is not a maximal order, and maximal orders have better prop-
erties. This is analogous to the fact that the ring Z[V-3] is an order in Q(V-3) but is
not maximal (not integrally closed), properly contained in the better-behaved maximal
order Z[(-1 + \/—_3)/2] of Eisenstein integers. The comparison with the Eisenstein
integers is more than incidental: the element & = i + j + k satisfies @®> + 3 = 0, so it is

natural to consider o
“1+i+j+k
wi=—
2

which satisfies w?+w+1 = 0. We can enlarge the Lipschitz order to include w—indeed,
this is the only possibility.
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Lemma 11.1.2. The lattice
O=Z+Zi+7Zj+Zw =7, ) + Zi, jw (11.1.3)

in B is the unique order that properly contains Z(i, j), and O is maximal.

The order O in (11.1.3) is called the Hurwitz order, and it contains Zi, j) with
index 2. Note that if @ € O, then a € Z(i, j) if and only if trd(a) € 2Z.

Proof. By Exercise 11.1, the lattice O is an order.

Suppose that O" D Z(i, jyand let @ = t + xi + yj + zk € O’ with ¢, x,y,z € Q.
Then trd(a) = 2t € Z, so by Corollary 10.3.6 we have ¢ € %Z. Similarly, @i € O’
therefore trd(ai) = —2x € Z and x € %Z, and in the same way y, z € %Z. Finally,
nrd(a) = 1> + x> + y? + z* € Z, and considerations modulo 4 imply that ¢, x, y, z either
all belong to Z or to % + Z;thus @ € O and so O’ = O. O

11.1.4. We can recast this calculation in terms of the local-global dictionary for lattices
(Theorem 9.1.1). Since O[%] = Z(i,j)[%], for every odd prime p we have O,y =
Z(i,j)(p), and O(Q) 2 Z(i,j>(2).

11.2 » Hurwitz units

We now consider unit groups; in this section, we take k := ij. An element y =
t+ xi +yj+ zk € Z(, j) is a unit if and only if nrd(y) = 2 + x> + y> + 22 € 7%,
i.e. nrd(y) = 1, and since ¢, x, y, z € Z we immediately have

730, j) = {£1, +i, +j, £k} = Og

is the quaternion group of order 8. In a similar way, taking y € O in the Hurwitz
order and allowing ¢, x, y, z € %Z so that 21, 2x, 2y, 2z all have the same parity, we find
that

O*=QgU(xlxi+j+k)/2

is a group of order 24.

We have O* # S, (the symmetric group on 4 letters) because there is no embedding
Qs — S4. (The permutation representation Qg — S4 obtained by the action on the
cosets of the unique subgroup (—1) of index 4 factors through the quotient Qg —
Qg /{x1} =~ V4 — S4, where V4 is the Klein 4-group.) There are 15 groups of order 24
up to isomorphism! We identify the right one as follows.

Lemma 11.2.1. We have O* =~ SL,(IF3).

Proof. We reduce modulo 3. There is a ring homomorphism

-1,-1
O - 0/30 =T, j) ~ (—)
IF3
Any quaternion algebra over a finite field is isomorphic to the matrix ring by Wed-
derburn’s little theorem (Exercises 3.16, 6.16, and 7.30). Specifically, the element
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€ =i+ j+khase? =0 e O/30. The left ideal I generated by e is an F3-vector space,
and we compute that it has basis € and ie = —1 — j + k. As in (7.6.3) (Proposition
7.6.2) this yields an isomorphism

0/30 — Mx(IF3)
PN 0 -1\ (1 1
RERR VUVl A SRS |
(a statement that can be explicitly and independently verified in Exercise 11.3). We
obtain a group homomorphism O* — SL,(F3), since the reduced norm corresponds
to the determinant and nrd(O*) = {1}, and this homomorphism is injective because if

v € O*has y — 1 € 30 then y = 1, by inspection. Since #O* = #SL,(F3) = 24, the
map O* < SL,(IF3) is an isomorphism. O

11.2.2. The group SL,(IF3) acts on the left on the set of nonzero column vectors
]F% up to sign, a set of cardinality (9 — 1)/2 = 4. (More generally, SL(IF),) acts on
P! (Fp) = (F?,\{(O, 0)})/IF%, a set of cardinality p+ 1.) This action yields a permutation
representation SL,(F3) — S4; the kernel of this map is the subgroup generated by the
scalar matrix —1 and so the representation gives an injective group homomorphism
from PSL,(IF3) := SLy(F3)/{*1} into S4. Since A4 < Sy is the unique subgroup of size
24/2 = 12, we must have PSL,(F3) ~ A4, giving an exact sequence

1> {1} >0 - Ay —> 1. (11.2.3)

11.2.4. We can also visualize the group O and the exact sequence (11.2.3), thinking of
the Hamiltonians as acting by rotations (section 2.4). Recall there is an exact sequence
(Corollary 2.4.21)

1 > {xl} > H' - S03) > 1 (11.2.5)

obtained by the left action a +— ava~! for o € H' and v € H® ~ R?; specifically,
by Proposition 2.4.18, a quaternion @ = cos 6 + I(a) sin 6 acts by rotation through the
angle 26 about the axis /().
We have been considering
-1,-1 -1,-1

O%B:(T)%B@QR:(T)zH, (11.2.6)

and we now consider the corresponding embedding of groups O' = O* — H'. We
are led to think of the group O* /{£1} ~ A4 as the group of symmetries (rigid motions)
of a tetrahedron (or rather, a tetrahedron and its dual), as in Figure 11.2.7.
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Figure 11.2.7: Symmetries of a tetrahedron, viewed quaternionically

Inside the cube in R? with vertices (x1,+1,+1) = +i + j = k, we can find four
inscribed tetrahedra, for example, the tetrahedron 7 with vertices

i+j+ki—j—k—-i+j—k—-i—j+k.

Then the elements +i, +j, +k act by rotation about the x, y, z axes by an angle 7 (so
interchanging points with the same x, y, z coordinate). The element +w = (-1 +i +
J +k)/2 rotates by the angle 27/3 fixing the point (1, 1, 1) and cyclically permuting the
other three points, and by symmetry we understand the action of the other elements of
O*. We therefore call O* the binary tetrahedral group. Following Conway—Smith
[CSm2003, §3.3], we also write 2T = O* for this group; the notation 24 is also used.

The subgroup Qg < 2T is normal (as it is characteristic, consisting of all elements
of O of order dividing 4), and so we can write 27T = Qg X (w) where (w) ~ Z/37Z acts
on Qg by conjugation, cyclically rotating the elements i, j, k. Finally, the group 2T has
a presentation (Exercise 11.6)

2T ~(r,s,t|r* =5 =13 =rst = —1) (11.2.8)

viar=i,s=w=(C-1+i+j+k)/2,andt =(-1+i+j—k)/2.

We conclude by noting that the difference between the Lipschitz and Hurwitz
orders is “covered” by the extra units.

Lemma 11.2.9. For every B € O, there exists y € O* such that By € Z{i, j).
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Proof. If B € Z(i, j) already, then we are done. Otherwise, 23 = t + xi + yj + zk with
all ¢, x, y, z € Z odd. Choosing matching signs, there exists y € O* such that 23 = 2y
(mod 40). Thus

2By '=2 (mod 40)

so By~' € Z + 20 = 7Z(i, j), so we may take y~! for the statement of the lemma. O

11.3 > Euclidean algorithm

The Eisenstein order Z[(—1 + V—-3)/2] has several nice properties. Perhaps nicest of
all is that it is a Euclidean domain, so in particular it is a PID and UFD. (Alas, the ring
Z[V-3] just fails to be Euclidean.)

11.3.1. The Hurwitz order also has a left (or right) Euclidean algorithm generalizing
the commutative case, as follows. There is an embedding B — B ®y R ~ H, and
inside H ~ R* the Hurwitz order sits as a (Z-)lattice equipped with the Euclidean
inner product, so we can think of the reduced norm by instead thinking of distance.
In the Lipschitz order, we see by rounding coordinates that for all y € B there exists
u € Z4i, jy such that nrd(y — u) < 4 - (1/2)> = 1—a farthest point occurs at the center
(1/2,1/2,1/2,1/2) of a unit cube. But this is precisely the point where the Hurwitz
quaternions occur, and it follows that for all y € B, there exists u € O such that
nrd(y — p) < 1. (In fact, we can take nrd(y — p) < 1/2; see Exercise 11.7.)

Paragraph 11.3.1 becomes a right Euclidean algorithm as in the commutative case.

Lemma 11.3.2. (Hurwitz order is right norm Euclidean). Forall a, 8 € O with 8 # 0,
there exists p, p € O such that
a=Bu+p (11.3.3)

and nrd(p) < nrd(B).

Proof. If nrd(@) < nrd(B), we may take ¢ = 0 and p = «, so suppose nrd(a) >
nrd(8) > 0. Let y = B~ 'a € B. Then by 11.3.1, there exists u € O such that
nrd(y — p) < 1. Let p = @ — Bu. Then by multiplicativity of the norm,

nrd(p) = nrd(a — Bu) < nrd(B). O

A similar statement to Lemma 11.3.2 holds for division on the left, i.e., in (11.3.3)
we may take @ = uf3 + p (with possibly different elements y, p € O, of course).

Proposition 11.3.4. Every right ideal I C O is right principal, i.e., there exists 8 € 1
such that I = BO.

Proof. Let I C O be aright ideal. If I = {0}, we are done. Otherwise, there exists an
element 0 # 8 € I with minimal reduced norm nrd(8) € Z~o. We claim that = SO.
For all @ € I, by the left Euclidean algorithm in Lemma 11.3.2, there exists u € O
such that @ = pf + p with nrd(p) < nrd(B8); but p = @ — Bu € I, so by minimality,
nrd(p) = 0 and p = 0, hence @ = Bu € BO as claimed. O
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Definition 11.3.5. Let o, 8 € O. We say S right divides « (or « is a right multiple of
) and write B |r « if there exists v € O such that a = By.

A right common divisor of @, 8 € O is an element y € O such that y |ra, 8. A
right greatest common divisor of a, 8 is a common divisor y such that ¢ |g y for all
common divisors ¢ of a, 8.

It follows from Lemma 11.3.2 in the same way as in the commutative case that if
a, B are not both zero, then there exists a greatest common divisor of «, 5, taking the
last nonzero remainder in the right Euclidean algorithm.

Corollary 11.3.6. (Bézout’s theorem). For all o, € O not both zero, there exists
u, v € O such that au + Bv = y where 7y is a right greatest common divisor of a, 3.

Proof. By Proposition 11.3.4, we may write @O + SO = yO for some y € O, and then
v € a0 + BO implies there exists y, v € O such that au + Bv = y. O

Proposition 11.3.7. Ler O’ C B be a maximal order. Then there exists a € B* such
that O' = a~'Oa, and in particular O' =~ O as rings.

Proof. By clearing denominators, there exists nonzero a € Z such that aO’ C O. Let
I = a0’ O be the right ideal of O generated by aO’. Then O’ C O, (1), and equality
holds since O’ is maximal. By Proposition 11.3.4, we have I = SO for some 8 € B*.
We have O, (/) = BOB~! by Exercise 10.14, s0 O’ = BOB~! and we may take & = 7!,

[m]

Example 11.3.8. The Lipschitz order Zi, j) does not enjoy the property that every
right ideal is principal, as the following example shows.

Let I =20 =2Z +2iZ+2jZ + (1 +i+ j + k)Z. Then I C Z{i, j) and I has
the structure of a right Z(i, j)-ideal, in fact I = 27Z{i, j) + (1 +i + j + k)Z{i, j). We
claim that I is not principal as a right Z(i, j)-ideal. Indeed, suppose I = aZ(i, j) with
a € I. Since a € 20, we have 4 | nrd(@). But 2 € I so 2 = af with B8 € Z(i, j), so
4 = nrd(2) = nrd(e) nrd(B), whence nrd(a) = 4 and nrd(B) = 1 so B € Z(i, j)* and
s0 20 = I = aZ{i, j) = 27Zi, j). Cancelling the factor 2, we conclude O = Z{i, j), a
contradiction.

For more, see Exercise 11.10.

11.4 » Unique factorization

It does not follow that there is unique factorization in O in the traditional sense, as the
order of multiplication matters. Nevertheless, there is a theory of prime factorization
in O as follows.

Lemma 11.4.1. Let p be prime. Then there exists 1 € O such that tw = nrd(xr) = p.

Proof. We have nrd(1 + i) = 12 + 12 = 2, so we may suppose p > 3 is odd. Then
O/pO = (=1,-1 | Fp) = M,(F,) by Wedderburn’s little theorem, and there exists a
right ideal / mod p ¢ O/pO with dimg,, (I mod p) = 2. Let

I={e¢e€eO:amodp el mod p}



11.4. » UNIQUE FACTORIZATION 171

be the preimage of I mod p in the map O — O/pO. Then pO C I C O. ThenI c O
is a right ideal, and I # O. But I = BO is right principal by Proposition 11.3.4.

We claim that nrd(8) = p. Since p € I, we have p = Bu for some u € O, whence
nrd(p) = p* = nrd(B) nrd(x) so nrd(B) | p>. We cannot have nrd(8) = 1 or nrd(8) = p?,
as these would imply 7 = O or I = pO, impossible. We conclude that nrd(8) = p. O

Remark 11.4.2. Once we have developed a suitable theory of norms, the proof that
nrd(8) = p above will be immediate: if we define N(I) := #(O/I) then N(I) = p* by
construction, and it turns out that N(/) = nrd(,B)2.

Theorem 11.4.3. (Lagrange). Every integer n > 0 is the sum of four squares, i.e.,

there exist t, x, y, 7 € Z such that n = 2+ x4 y2 + 22

Proof. We seek an element 8 € Z(i, j) such that nrd(8) = n. By multiplicativity of
the reduced norm, it is sufficient to treat the case where n = p is prime. We obtain
7 € O such that nrd(7r) = p by Lemma 11.4.1. But now the result follows from Lemma
11.2.9, as there exists y € O* such that ry € Z{i, j). O

Remark 11.4.4. A counterpart to Lagrange’s theorem (Theorem 11.4.3) is the following
theorem of Legendre and Gauss on sums of three squares: Every integer n that is not
of the form n = 4“m with m = 7 (mod 8) can be written as the sum of three squares
n = x>+ y? + z2. We will revisit this classical theorem in Chapter 30 as motivation for
the study of embedding numbers, and the number of such representations will be given
in terms of class numbers, following Gauss. A direct proof of the three square theorem
is given by Mordell [Mor69, §20, Theorem 1], but he notes that “no really elementary
treatment [of this theorem] is known”.

We finish this section with a discussion of ‘unique factorization’ in the Hurwitz
order.

Definition 11.4.5. Anelement 7 € O is irreducible if whenever 7 = ¢ witha, 8 € O
then either @ € O* or B € O*.

Lemma 11.4.6. Let ©1 € O. Then n is irreducible if and only if ntd(n) = p € Z is
prime.

Proof. If nrd(rr) = p is prime and 7 = af then nrd(7) = p = nrd(@) nrd(B) so either
nrd(a) = 1 ornrd(B) = 1, thus @ € O* or B € O*. Conversely, suppose 7 is irreducible
and let p | nrd(rr). Let I = 70 + pO = aO. Then nrd(e) | nrd(p) = p>. We cannot
have nrd(e) = 1, as every element of I has reduced norm divisible by p. We similarly
cannot have nrd(a) = p?, since this would imply 7 € pO; but by Lemma 11.4.1, p is
reducible, a contradiction. We conclude that nrd(a) = p. From n € I = @O we obtain
= aB with g € O; by irreducibility, 8 € O* and nrd(r) = nrd(a) = p. O

Definition 11.4.7. An element @ € O is primitive if @ ¢ nO for all n € Z>,.

Theorem 11.4.8. (Conway—Smith). Let a € O be primitive and let a = nrd(a). Factor
a = p1pa -+ pr into a product of primes. Then there exists w1, my, . . ., 1 € O such that

a=mny--mp, and nrd(n;) = p; foralli. (11.4.9)
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Moreover, every other such factorization is of the form

a = (myD)yy ' my) - ) (11.4.10)
where y1, . ..,y, € O%.

Proof. Let I = aO + p;0; as in the proof of Lemma 11.4.6, we find I = 1,0 with
nrd(mr) = pi, arguing that nrd(m;) # p% since @ € p; 0O is in contradiction to @ being
primitive. Then m; is unique up to right multiplication by a unit and @ = mja,. The
result then follows by induction. O

The factorization (11.4.10) is said to be obtained from @ = m;---m, by unit
migration.

Remark 11.4.11. To look at all possible prime factorizations of « as in (11.4.9), it is
necessary to consider the possible factorizations a = p; - - - p,. Conway—Smith call this
process metacommutation [CSm2003, Chapter 5]; metacommutation is analyzed by
Cohn—Kumar [CK2015], Forsyth—-Gurev—Shrima FGS, and in a very general context
by Chari [Cha2020].

11.5 Finite quaternionic unit groups

We conclude this section by a discussion of quaternion unit groups extending the
discussion 11.2: we classify finite subgroups of H* and realize the possible subgroups
as coming from quaternionic unit groups.

11.5.1. To begin with the classification, suppose that I' € H* is a finite subgroup.
Then nrd(T') is a finite subgroup of R, hence identically 1, so T C H'.

>0’
Similarly, if T € H*/R* ~ H'/{+1} is a finite subgroup, then it lifts via the
projection H' - H'/{+1} to a finite subgroup of H!.

Solet ' C H! be a finite subgroup. Then

I/{x1} — H!'/{£1} = SO(3)

the latter isomorphism by Hamilton’s original (!) motivation for quaternion algebras
(Corollary 2.4.21). Therefore I'/{+1} C SO(3) is a finite rotation group, and these
groups have been known since antiquity.

Proposition 11.5.2. A finite subgroup of SO(3) is one of the following:
(i) a cyclic group;

(ii) a dihedral group;
(iii) the tetrahedral group A4 of order 12;
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(iv) the octahedral group S of order 24; or
(v) the icosahedral group As of order 60.

Cases (iii)—(v) are the symmetry groups of the corresponding Platonic solids and
are called exceptional rotation groups.

Proof. Let G < SO(3) be a finite subgroup with #G = n > 1; then G must consist of
rotations about a common fixed point (its center of gravity), which we may take to be
the origin. The group G then acts on the unit sphere, and every nonidentity element of
G acts by rotation about an axis, fixing the poles of its axis on the sphere. Let V be
the subset of these poles in the unit sphere; the set V will soon be the vertices of our
(possibly degenerate) polyhedron. Let

X ={(g,v) : g € G\{l} and v is a pole of g}.

Since each g € G\{1} has exactly two poles, we have #X = 2(n — 1). On the other
hand, we can also count organizing by orbits. Choose a representative set v1, . . ., v, of
poles, one from each orbit of G on V, and let

n; = #Stabg(v;)) =#lg e G: gv; = v;}

be the order of the stabilizer: this group is a cyclic subgroup about a common axis.
Then

In—2=#X = #(Gvi)(ni—1):Z£(ni—l):n2(l—l),

i=1 i=1 i=1 ni

by the orbit—stabilizer theorem. Dividing both sides by n gives

2 < 1
2- = Z(l_n_,-)‘ (11.5.3)

i=1
Sincen > 1,wehavel <2-2/n < 2;andsinceeachn; > 2,wehave1/2 < 1-1/n; < 1.
Putting these together, we must have r = 2, 3.

If r = 2, then (11.5.3) becomes 2 = n/n; + n/ny, with n/n; = #(Gv;) > 1, so
ny = ny = n, there is only one axis of rotation, and G is cyclic.

If r = 3, then the only possibilities for (ny,ny,n3) with ny < ny < nz are
(2,2,¢),(2,3,3),(2,3,4),(2,3,5); the corresponding groups have sizes 2c, 12, 24, 60,
respectively, and can be identified with D,., A4, S4, A5 by a careful but classical analy-
sis of orbits. See Armstrong [Arm88, Chapter 19], Grove—Benson [GB2008, §2.4], or
Conway—Smith [CSm2003, §3.3]. O

In 11.2.4, we gave a quaternionic visualization of the binary tetrahedral group
(lifting the tetrahedral group to H'); we repeat this with the two other exceptional
rotation groups, taking again k := ij.
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11.5.4. The octahedral group Sy pulls back to the binary octahedral group 20 C H!
of order 24 - 2 = 48, whose elements act by rigid motions of the octahedron (or dually,
the cube). We make identifications following 11.2.4, shown in Figure 11.5.5.

Figure 11.5.5: Symmetries of an octahedron and a cube, viewed quaternionically

The binary tetrahedral group 27" < 20 of order 24 acts as a subgroup of rigid
motions; the group 20 is generated by an element which maps to a rotation of order 4
around the 6 faces, i.e., one of the 12 elements

+l+i £1+j 1k

The group 20 has a Coxeter presentation

20 =(r,s,t|r* =5 =" =rst = -1)

(with —1 central and (—1)? = 1). One also writes 20 =~ §4.
Let F = Q(\/E) and R = Z[V2]. If we consider the Hamiltonians restricted to F

—-1,-1
as B = (T), then the group 20 C H! generates an R-order: letting i, j be the
standard generators and still k£ := ij, and letting @ = (1 + i)/V2 and B=(1+ j)/\/i,
then

020 = R+ Ra + RS + Rap; (11.5.6)

this order contains the scalar extension of the Hurwitz order to R and is in fact a maximal
R-order. (The extension of scalars is necessary: S4 contains an element of order 4 which
lifts to an element of order 8 in 20; such an element has trace +({g + &g = i\/z.)
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11.5.7. Finally, we treat the binary icosahedral group 2/ C H' of order 60 -2 = 120,
acting by rigid motions of the icosahedron (or dually, the dodecahedron). We choose
the regular icosahedron to have vertices at

ditjrk wrixr V), 2rj Tk 2tk 7l
where 7 = (1 + V5)/2 is the golden ratio. The elements of order 5 are given by
conjugates and powers of the element = (t + 7! + j)/2, which acts by rotation
about a face. The group 2/ can be presented as

2 ={rst|rr=s= =rst =-1)

and we have 2] ~ Zs =~ SI,(Fs). Letting now F = Q(\/g) and R = Z|[1], the R-algebra
generated by 27 is the maximal order

O = R+ Ri+ R + RiC. (11.5.8)

For further references, see Conway—Sloane [CSI188, §8.2], who describe the binary
icosahedral group in detail, calling it the icosian group.

We now consider the related possibilities over Q. (We will return to a general
,b
classification in section 32.4.) To put ourselves in a situation like (11.2.6),let B = (%)

, b
be a quaternion algebra over QQ such that B®g R = %) ~ H: in this case, we say

that B is definite. By Exercise 2.4, B is definite if and only if a, b < 0. Let O C B be
an order in B; we would like to understand its unit group.

Lemma 11.5.9. The group O* = O! is finite.

Proof. We may take B = (a,b | Q) with a,b < 0. Consider the reduced norm
nrd: B — Q, givenby nrd(t+xi+yj+zij) = t*+lalx*+|bly*+|ablz?, sonrd(B*) € Q.
At the same time, nrd(O*) C Z* = {+1}, so we conclude O% = O'. This group is finite
because the restriction nrd | of the reduced norm to O =~ Z* defines a (still) positive
definite quadratic form, so there are only finitely many elements of O of any fixed
reduced norm. (For a geometric perspective, viewing the elements of O' as lattice
points on an ellipsoid in R*), see Proposition 17.5.6.) O

In view of Lemma 11.5.9, the classification of finite rotation groups (Proposition
11.5.2) applies. We consider each case in turn.

11.5.10. Among the (nontrivial) cyclic groups, only subgroups of order 2,4, 6 are
possible over Q. Indeed, a generator satisfies a quadratic equation with integer coeffi-
cients and so belongs to the ring of integers of an imaginary quadratic field; and only
two imaginary quadratic fields have units other than +1, namely, the Eisenstein order
ZI(-1+ \/—_3)/2] of discriminant —3 and the Gaussian order Z[\/—_l ] of discriminant
—4 with groups of size 4, 6, respectively. (The more precise question of whether or not
there is a unit of specified order is a question of embedding numbers, the subject of
Chapter 30.)
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11.5.11. Next, suppose that O*/{x1} is dihedral, and let j € O*\{£1} act by inversion
(equivalently, conjugation) on a cyclic group (of order 2, 3, by 11.5.10), generated by
an element i. Let K = Q(i). Since j acts by inversion, we have j> € Q, and since

K, -1
j € O* we have j2 = —1. It follows that ja = @j for all @ € K. Thus B ~ ( Q ),

and we have two possibilities:

(i) If i has order 4, then B ~ (-1, -1 | Q) and O contains the order generated by i, j.
This is the case treated in section 11.2: O is the Lipschitz order, and O* =~ Qg is
the quaternion group of order 8.

(ii) Otherwise, i = w has order 6, and B ~ (-3,—1 | Q). By Exercise 11.11(a), we
have (-3,-1| Q) # (-1,-1 | Q). By an argument similar to Lemma 11.1.2—
and boy, there is more of this to come in Chapter 32—we see that

O=Z+Zw+7Zj+ Zwj (11.5.12)

is maximal. The group O*/{x1} ~ Dg is a dihedral group of order 6, and the
group O* is generated by w, j with relations w® = j2 = =1 and jw = w™'j; in
other words, O* =~ C3 x Cy4 is the semidirect product of the cyclic group C; of
order 3 by the action of the cyclic group C4 with a generator acting by inversion

on C3. Because i> = —1 is central, we also have an exact sequence

15C—-0->C —1

where Cg ~ (w)and C, =~ (j)/{x1}. This groupis also called the binary dihedral
or dicyclic group of order 12, denoted 2Ds.

11.5.13. To conclude, suppose that O*/{x1} is exceptional. Each of these groups
contain a dihedral group, so the argument from 11.5.11 applies: the only new group we
see is the (binary) tetrahedral group obtained from the Hurwitz units (section 11.2).
Here is another proof: the group Ss contains an element of order 4 and As an element
of order 5, and these lift to elements of order 8, 10 in O*, impossible.

We have proven the following theorem.

Theorem 11.5.14. Let B = (a,b | Q) be a quaternion algebra over Q with a,b < 0,
and let O C B be an order. Then O* is either cyclic of order 2,4, 6, quaternion of order
8, binary dihedral of order 12, or binary tetrahedral of order 24.

Moreover, O* is quaternion, binary dihedral, or binary tetrahedral if and only
if O is isomorphic to the Lipschitz order, the order (11.5.12), or the Hurwitz order,
respectively.

Proof. Combine 11.5.10, 11.5.11, and 11.5.13. O

Exercises

> 1. Check directly that the Hurwitz order
1+i+j+k
O=Z+Zi+Zj+Z(%)
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> 6.

> 7.

“1,-1
is indeed an order in B = (T)

-1,-1
. LetB = (—) and let O C B be the Hurwitz order. For the normalizer

Q
Np<(O) :={a € BX : a”'Oa = O}

show the equality Npx(Z(i, j)) = Npx(O). [Hint: consider units and their traces. |

(a) Show that the Lipschitz order Z(i, j) is the unique suborder of the Hurwitz
order O with index 2 (as abelian groups).

(b) Show that
Z{i, j) = {a € O : trd(@) is even}.

Check that the map
0/30 - Mx(IF3)

oo -1y (1o
SR I R §

from Lemma 11.2.1 is an F3-algebra isomorphism.

. Generalizing the previous exercise, show that for an odd prime p that O/pO =~

My(F ).

. Draw the subgroup lattice for SL,(IF'3), indicating normal subgroups (and their

quotients).
Show explicitly that

2T2(r,s,t|r2=s3 =t3=rst=—1)

(cf. (11.2.8)).

Let

A=Z*+72 55 H e R
be the image of the Hurwitz order O under the natural embedding O < H ~ R*.
Show that for every x € R*, there exists 1 € A such that ||A|]> < 1/2. [Hint:
without loss of generality we may take 0 < x; < 1/2 for all i; then show we may
take x1 + x2 + x3 + x4 < 1; conclude that the maximum value of |lx|1? with these
conditions occurs at the point (%, %, 0,0)./

. Let B be a definite quaternion algebra over Q and let O C B be an order. Show

that O is left Euclidean if and only if O is right Euclidean (with respect to a
norm N).

. Let O c B := (—1,—1 | Q) be the Hurwitz order.

(a) Consider the natural ring homomorphism O — O/20 = O ®y F, giving
the reduction of the algebra O modulo 2. Show that O/20 is an F,-algebra,
that#(O/20) = 16, and that (O/20)* ~ Ay is isomorphic to the alternating
group on 4 elements. Conclude that O/20 # M;(IF,) and hence that O/20
is not a quaternion algebra over [F,.
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10.

11.

12.

13.
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(b) Show that the group of ring automorphisms of O/20 is
Aut(0/20) =~ S4.

(c) More generally, if F is a field of characteristic 2 show that there is an exact
sequence
1 - F? > Aut(O ®7 F) — SLy(F) — 1

where F? is an additive group. [Hint: let J = rad(O ®z, F) be the Jacobson
radical of the algebra, and show that the sequence is induced by F-linear
automorphisms of J and the automorphisms w — w + € with € € J.]

[This kind of construction, considered instead over the octonions, arises

when constructing the exceptional group G, in characteristic 2 [Wils2009,
§4.4.1].]

Although the Lipschitz order just misses being Euclidean with respect to the
norm (see Example 11.3.8), bootstrapping from the Hurwitz order we still obtain
a result on principality by restricting the set of ideals, as follows.

Let I C Z(i, j) be a right ideal.

(a) Show that 70O = BO for some B8 € 10 N Zi, j).

(b) Prove that I3y = Z»)(i, j) if and only if I is generated by elements of odd
reduced norm.

(c) If Ip) = Z)(i, j), show that IO N Z(i, j) = I and conclude that I is right
principal. [Hint: Argue locally.]

Let B :=(—1,-3|Q), and let
1+j 1+
O:= 76, (1 + j)/2) = 7+ Zi + Z% + Zi%.

(a) Show that B # (—-1,-1] Q).
(b) Show that O is a maximal order in B.
(c) Show that O is Euclidean with respect to the reduced norm

nrd(r + xi + y(1 + j)/2 + zi(1 + j)/2) = t* + ty + x* + xz+ y* + 2.
(d) Show that every maximal order in B is conjugate to O.

Let G < O(2) be a finite subgroup such that tr(g),det(g) € Q for all g € G.
Show that G is conjugate in O(2) to one of the following: (i) a cyclic group of
order 1,2,3,4,6 that is a subgroup of SO(2), or (ii) a dihedral group of order
2,4, 6,8, 12, not contained in SO(2).

Let p be an odd prime.

(a) The group GLy(Zp)) acts by right multiplication on the set of matrices
n € My(Zpy) with p || det(rr) (i.e., p exactly divides the numerator of
det(rmr), written in lowest terms). Show that there are precisely p + 1 orbits,
represented by
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and

1 0
ﬂ—(a p)’ a=01,...,p—-1.

[Hint: use column operations. |

(b) Repeat (a) but with SL,(Z,)) acting on the set of matrices 7 € Ma(Zp))
with det(rr) = p, with the same conclusion.

(c) Show that the number of (left or) right ideals of O of reduced norm p is
equal to p + 1.

(d) Accounting for units, conclude that the number of ways of writing an odd
prime p as the sum of four squares is equal to 8(p + 1).

14. Inthe following exercise, we consider a computational problem, suitable for those
with some background in number theory algorithms (see e.g. Cohen [Coh93]).

(a) Show that one can find x, y, z € Z such that x> + y?> + z> = pm with p tm
in probabilistic polynomial time in log p.

(b) Describe the right Euclidean algorithm as applied to @ = xi + yj + zk and
p to obtain 7 € O with nrd(x) = p. Adjust as in Lemma 11.2.9 to find a
solution to x> + y? + z2 = p with x, y, z € Z. Estimate the running time of
this algorithm.

This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-
nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
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to obtain permission directly from the copyright holder.
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Chapter 12

Ternary quadratic forms over local
fields

In this chapter, we classify quaternion algebras over local fields using quadratic forms;
this generalizes the classification of quaternion algebras over R.

12.1 » The p-adic numbers and local quaternion algebras

Before beginning, we briefly remind the reader about the structure of the p-adic
numbers. The p-adics were developed by Hensel, who wanted a uniform way to say
that a Diophantine equation has a (consistent) solution modulo p" for all n. In the early
1920s, Hasse used them in the study of quadratic forms and algebras over number
fields. At the time, what is now called the local-global principle then was called the
p-adic transfer from the “small” to the “large”. As references on p-adic numbers, see
for example Gouvéa [Gou97], Katok [Kat2007], or Koblitz [Kob84].

Just as elements of R can be thought of infinite decimals, an element of Q,, can be
thought of in its p-adic expansion

0

a=(...a3axa100.a-1G_2 - d_)p = Z anpp” (12.1.1)
n=-k
where each a; € {0, ..., p — 1} are the digits of a. We continue “to the left” because a

decimal expansion is a series in the base 1/10 < 1 and instead we have a base p > 1.
Put a bit more precisely, we define the p-adic absolute value on QQ by defined by
0], := 0 and
lelp := p72(© for c € Q%, (12.1.2)

where v, (c) is the power of p occurring in c¢ in its unique factorization (taken to be
negative if p divides the denominator of ¢ written in lowest terms). Then the field Q,
is the completion of Q with respect to ||, that is to say, Q,, is the set of equivalence
classes of Cauchy sequences of rational numbers, and it obtains a topology induced by
the metric dp,(x,y) = |x — y|,. We have |a|, = pX for a as in (12.1.1) with a_; # 0.
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Of course, all of the information in the p-adic absolute value is encoded in the p-adic
valuation v, : Q — R U {co}.

Inside Q,, is the ring Z,, of p-adic integers, the completion of Z with respect to
[1p: the ring Z,, consists of those elements of Q,, with a,, = 0 for n < 0. (The ring Z,
might be thought of intuitively as Z/p*Z, if this made sense.)

Equipped with their topologies, the ring Z, is compact and the field Q, is
locally compact. These statements can be understood quite easily by viewing Z,
in a slightly different way, as a projective limit with respect to the natural projection
maps Z/p" 7 — 7./ p"Z:

Z, =limZ/p"Z

n

w (12.1.3)
- {x = (X)) € ]_[ Z/p"Z : Xns1 = xn (mod p™) for all n > 1} .

n=1

In other words, each element of Z, is a compatible sequence of elements in Z/p" Z for
each n. The equality (12.1.3) is just a reformulation of the notion of Cauchy sequence
for Z, and so for the purposes of this introduction it can equally well be taken as a
definition.

As for the topology in (12.1.3), each factor Z/p"Z is given the discrete topology,
the product [, Z/p"Z is given the product topology, and Z,, is given the subspace
topology. Since each Z/p"Z is compact (it is a finite set!), by Tychonoff’s theorem the
product [1,", Z/p"Z is compact; and Z,, is closed inside this product (a convergent
limit of Cauchy sequences is a Cauchy sequence), so Zj, is compact and still HausdorfT.
The topology on Z, is a bit strange though, as Z, is totally disconnected: every
nonempty connected subset is a single point. In fact, Z, is homeomorphic to the
Cantor set, which is itself homeomorphic to the product of countably many copies
of {0, 1}. (More generally, every nonempty totally disconnected compact metric space
with no isolated points is homeomorphic to the Cantor set.)

The set Z,, is a compact neighborhood of 0, as it is the closed ball of radius 1
around O:

Zp ={x€Qp:lxlp <1} ={x€Qp:vy(x) >0} (12.1.4)

In a similar way, the disc of radius 1 around a € Q,, is a compact neighborhood of
a homeomorphic to Z,, so Q, is locally compact. Being able to make topological
arguments like the one above is the whole point of looking at fields like Q,: our
understanding of infinite algebraic objects is informed by topology.

With this review, and topological arguments now at our disposal, we consider
quaternion algebras over QQ,. The ‘original’ quaternion algebra, of course, was the
division ring H of Hamiltonians over the real numbers (the ‘original’ field with a
topology), and indeed H is the unique division quaternion algebra over R (Corollary
3.5.8). We find a similar result over QQ,, (a special case of Theorem 12.3.2), as follows.

Theorem 12.1.5. There is a unique division quaternion algebra B over Q,, up to
isomorphism; if p # 2, then
B~ (2)
Q
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where e € 7 is a quadratic nonresidue modulo p.

For example, if p = 3 (mod 4) then —1 is quadratic nonresidue and (-1, p | Q) is
the unique division quaternion algebra over Q,.

Because we have exactly two such possibilities, we define the Hilbert symbol: for
a, b € QF, we have (a, b)q, = 1,—1 according as the quaternion algebra (a, b | Qp) =
M>(Q),) is split or not. According to Theorem 12.1.5, the Hilbert symbol over Q,
uniquely identifies the two possible isomorphism classes of quaternion algebras over
Qp—ijust like it does over R.

Our approach to Theorem 12.1.5 uses quadratic forms: we use the classification
of isomorphism classes of quaternion algebras given in terms of similarity classes
of ternary quadratic forms (Theorem 5.1.1). The following proposition then implies
Theorem 12.1.5.

Proposition 12.1.6. There is a unique ternary anisotropic quadratic form Q over Qp,
up to similarity; if p # 2, then Q ~ (1, —e,—p) where e is a quadratic nonresidue
modulo p.

Happily, this proposition can be proved using some rather direct manipulations
with quadratic forms and gives a very “hands on” feel; it is also suggests the arguments
we use for a more general result. The main input we need is a quadratic Hensel’s
lemma, or more precisely, the following consequence.

Lemma 12.1.7. For p # 2, the classes in Q,/ Q;z are represented by 1, e, p, ep where
e is a quadratic nonresidue modulo p.

Proof. Leta € Qp and let m := vp(a). Then a = bp™ with b := a/p™ € Zy, and by
squaring a € Q;z if and only if b € Z;Z and m is even. We claim that b € Z;Z if and
only if its reduction b modulo p is a square in (Z/pZ)*. With the forward implication
immediate, suppose b = ¢ (mod p) with ¢ € Z;, then b/c*> € 1 + DPZp. But squaring
is a bijection on 1 + pZ,, by expanding the square root as a convergent series (see
Exercise 12.1) and using that p # 2. Thus b/c* € Zf,z, and the result follows. O

We now proceed with the proof when p # 2.

Proof of Proposition 12.1.6, p # 2. We start by showing that Q(x, y, z) = x*>—ey*—pz>
is anisotropic. Suppose Q(x, y,z) = 0 with not all x, y,z € Q, zero. Rescaling by p,
we may assume that x, y,z € Z, and not all x, y, z € pZ,,. We then reduce modulo p
to find that x*> = ey? (mod p). If p { y, then (x/y)> = e (mod p); but e is a quadratic
nonresidue modulo p, a contradiction. So p | y; thus p | (ey? + pz*) = x%, so p | x;
thus p? | (x* — ey?) = pz?, so p | z, a contradiction.

To show uniqueness, let Q be a ternary anisotropic form over Q,. Since p # 2,
we may diagonalize. In such a diagonal form taken up to similarity, we may also
rescale each coordinate up to squares as well as rescale the entire quadratic form.
Putting this together with Lemma 12.1.7, without loss of generality we may suppose
0(x,y,2) = (1, =b,—c) = x> — by*> — cz> with b, ¢ € {1, e, p, ep}, the signs chosen for
convenience. If b = 1 or ¢ = 1, the form is isotropic by inspection. So we are left to
consider the cases (b, ¢) = (e, e), (e, p), (e, ep), (p, p), (p, ep), (ep, ep).
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« When (b, ¢) = (e, e), we have after rescaling x> + y> — ez>. We claim this form is
always isotropic. Indeed, the form reduces to a nondegenerate ternary quadratic
form over Fj,. Such a form is always isotropic by a delightful counting argument
(Exercise 5.5(b), or a second chance in Exercise 12.6!). Lifting, there exist
X,¥,2 € Zp, not all zero modulo p, such that x2 = —y% + ez? (mod p). Since
e is a nonsquare, we have p 1 x (arguing similarly as in the first paragraph).
Letd := —y> + ez’ € Q- By the possibilities in Lemma 12.1.7, we must have
d € Q%?; solving x*> = d for x € Q, then shows that Q is isotropic.

+ The case (e, p) is our desired form.

+ In the third case (eep!), we substitute x < ex and divide by e to obtain the form
—y2 +ex? - pzz. We claim that there is an isometry (-1, e) =~ (1, —e): indeed,
in the first bullet we showed that the quadratic form (-1, e, —1) is isotropic,
so —x? + ey? represents 1; using this representation as the first basis vector,
extending to a basis, and diagonalizing, we conclude that (—1, e) ~ (1, b). By
discriminants, we have —e = b up to squares. This brings us back to the first
case.

« In cases (p, p) or (ep, ep), replacing x < px and dividing gives the quadratic
forms x% + y? — pz% and x* + y? —epz?. If -1 € Z?z, then the form is isotropic;
otherwise, we may take e = —1 and we are back to cases (e, p), (e, ep).

+ In the final case (keeping pep!), we substitute x < px and divide by —p to get
y% + ez — px?. If =1 € ZX?, then by substitution we change the middle sign to
return to the first case. Otherwise, we may take e = —1, and the form is isotropic,
a contradiction.

This consideration of cases completes the proof. O

Although direct, the proof we just gave has the defect that quadratic forms behave
differently in characteristic 2, and so one may ask for a proof that works uniformly in
all characteristics: we give such a proof in the next chapter by extending valuations.

One of the nice applications of this classification is that it gives a necessary
condition for two quaternion algebras to be isomorphic. Let B = (a,b | Q) be a
quaternion algebra over QQ and consider its scalar extension B, = B®gQ, = (a,b | Q)).
If B’ is another quaternion algebra over Q and B ~ B’, then this implies B), ~ B, for all
primes p, and of course the same is true over R. Perhaps surprisingly, it turns out that
the collection of all of these tests is also sufficient: if B, B” become isomorphic over R
and over QQ, for all primes p, then in fact B ~ B’ are isomorphic over Q! This profound
and powerful principle—detecting global isomorphism from local isomorphisms, a
local-global principle—will be examined in chapter 14.

12.2 Local fields

In this section, we set up notation and basic results from the theory of local fields.
The theory of local fields is described in many places, including Neukirch [Neu99,
Chapters II, V], the classic texts by Cassels [Cas86] and Serre [Ser79]. Weil [Weil74]
approaches number theory from the ground up in the language of local fields, building
up the theory of local division rings.
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Our motivation for local fields is as follows: we want a topology compatible with
the field operations in which the field is Hausdorff and locally compact (every element
has a compact neighborhood), analogous to what holds over the real and complex
numbers. And to avoid trivialities, we will insist that this topology is not the discrete
topology (where every subset of F is open). To carry this out, we begin with some
basic definitions.

Definition 12.2.1. A topological group is a group equipped with a topology such that
the group operation and inversion are continuous. A homomorphism of topological
groups is a group homomorphism that is continuous.

A topological ring is a ring A equipped with a topology such that the ring oper-
ations (addition, negation, and multiplication) are continuous. A homomorphism of
topological rings is a ring homomorphism that is continuous. A topological field is a
field that is also a topological ring in such a way that division by a nonzero element is
continuous.

One natural way to equip a ring with a topology is by way of an absolute value. To
get started, we consider such notions first for fields. Throughout this section, let F' be
a field.

Definition 12.2.2. An absolute value on F is a map
[I: F— Rxo
such that:

@) |x| = 0 if and only if x = O;
(i) |xy| = |x|ly| for all x, y € F; and
(iii) |x + y| < |x| + |y| for all x, y € F (triangle inequality).

An absolute value || on F gives F the structure of a topological field by the metric
d(x,y) = |x — y|. Two absolute values ||,|], on F are (strictly) equivalent if there
exists ¢ > 0 such that |x|; = [x[{ for all x € F; equivalent absolute values induce the
same topology on F.

Remark 12.2.3. If || is an absolute value on F, then it need not be the case that x +— |x|¢
for ¢ > 0 is again absolute value, because it need not satisfy the triangle inequality.
In particular, we will find it convenient to consider the square of the usual absolute
value on F = C, which suffers from this deficiency. There are various ways around
this problem; perhaps the simplest is just to ignore it.

Definition 12.2.4. An absolute value is nonarchimedean if the wultrametric
inequality
lx + y| < supflxl, [y}

is satisfied for all x, y € F, and archimedean otherwise.

Example 12.2.5. The fields R and C are topological fields with respect to the usual
archimedean absolute value.
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Remark 12.2.6. A field with absolute value is archimedean if and only if it satisfies
the archimedean property: for all x € F*, there exists n € Z such that [nx| > 1. In
particular, a field F' equipped with an archimedean absolute value has char F = 0.

Example 12.2.7. Every field has the trivial (nonarchimedean) absolute value, defined
by [0] = 0 and |x| = 1 for all x € F*; the trivial absolute value induces the discrete
topology on F.

A nonarchimedean absolute value on a field F arises naturally by way of a valuation,
as follows.

Definition 12.2.8. A valuation of a field F isamap v: F — R U {co} such that:

(i) v(x) = oo if and only if x = 0;
(il) v(xy) = v(x) + v(y) for all x,y € F; and
(iii) v(x + y) = min(v(x), v(y)) for all x,y € F.

A valuation is discrete if the value group v(F>) is discrete in R (has no accumulation
points).

Here, we set the convention that x + co = co + x = oo for all x € R U {o0}. By
(ii), the value group v(F*) is a subgroup of the additive group R, and so whereas an
absolute value is multiplicative, a valuation is additive.

Example 12.2.9. Each x € Q* can be written x = p"a/b with a, b € Z relatively prime
and p { ab; the map v, (x) = r defines the p-adic valuation on Q.

Example 12.2.10. Let k be afield and F' = k(¢) the field of rational functions over k. For
f@) =g@)/h() € k(t)\{0} with g(¢), h(¢) € k[t], define v(f(?)) := deg h(t) — deg g(?).
Then v is a discrete valuation on F'.

Given the parallels between them, it should come as no surprise that a valuation
gives rise to an absolute value on F by defining

x| = 7™ (12.2.11)

for a fixed ¢ > 1; the induced topology on F is independent of the choice of c. By
condition (iii), the absolute value associated to a valuation is nonarchimedean.

Example 12.2.12. The trivial valuation is the valuation v satisfying v(0) = co and
v(x) = 0 for all x € F*. The trivial valuation gives the trivial absolute value on F.

Two valuations v, w are equivalent if there exists a € R.( such that v(x) = aw(x)
for all x € F; equivalent valuations give the same topology on a field. A nontrivial
discrete valuation is equivalent after rescaling (by the minimal positive element in the
value group) to one with value group Z, since a nontrivial discrete subgroup of R is
cyclic; we call such a discrete valuation normalized.
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12.2.13. Given a field F with a nontrivial discrete valuation v, the valuation ring is
R:={x e F :v(x)>0}. Wehave R* = {x € F : v(x) = 0} since

vx) +v(x ) =vax ) =v(1) =0
for all x € F*. The valuation ring is a local domain with unique maximal ideal
p:={x€F:v(x)>0}=RR"

An element 7 € p with smallest valuation is called a uniformizer, and comparing
valuations we see that 7R = () = p. Since p C R is maximal, the quotient k := R/p
is a field, called the residue field of R (or of F).

Recall that a topological space is locally compact if each point has a compact
neighborhood (every point is contained in a compact set containing an open set).

Definition 12.2.14. A local field is a Hausdorff, locally compact topological field with
a nondiscrete topology.

In a local field, we can hope to understand its structure by local considerations in a
compact neighborhood, hence the name. Local fields have a very simple classification
as follows.

Theorem 12.2.15. A field F with absolute value is a local field if and only if F is one
of the following:

(i) F is archimedean, and F ~ R or F ~ C;
(ii) F is nonarchimedean with char F = 0, and F is a finite extension of Q,, for some
prime p; or
(iii) F is nonarchimedean with char F = p, and F is a finite extension of the Laurent
series field T, ((t)) for some prime p; in this case, there is a (non-canonical)
isomorphism F ~ F,((t)) where q is a power of p.

A field F with absolute value | | is a nonarchimedean local field if and only if F is
complete with respect to | |, and | | is equivalent to the absolute value associated to a
nontrivial discrete valuation v: F — R U {co} with finite residue field.

Proof. See Neukirch [Neu99, Chapter II, §5], Cassels [Cas86, Chapter 4, §1], or Serre
[Ser79, Chapter II, §1]. O

Although a local field is only locally compact, the valuation ring is itself compact,
as follows.

Lemma 12.2.16. Suppose F is nonarchimedean. Then F is totally disconnected and
the valuation ring R C F is a compact, totally disconnected topological ring.

Proof. To see that F is totally disconnected (whence R too is totally disconnected),
by translation it suffices to show that the only connected set containing 0 is {0}. Let
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x € F* with |x| = 6 > 0. The image |F*| C R~ is discrete, so there exists 0 < € < ¢
such that |y| < ¢ implies |y| < § — € for all y € F. Thus an open ball is a closed ball

DO,0)={yeF:|lyl<do}={yeF:|ly|<d-¢€}=D[0,6—e€];

since x € F* and 6 > 0 were arbitrary, the only connected subset containing 0 is {0}.
Next, we show R is compact. There is a natural continuous ring homomorphism

¢: R—> ﬁR/p"
n=1

where each factor R/p" is equipped with the discrete topology and the product is given
the product topology. The map ¢ is injective, since (;_, p” = {0} (every nonzero
element has finite valuation). The image of ¢ is obviously closed. Therefore R is home-
omorphic onto its closed image. But by Tychonoft’s theorem, the product [];;_, R/p"
of compact sets is compact, and a closed subset of a compact set is compact, thus R is
compact. O

One key property of local fields we will use is Hensel’s lemma.

Lemma 12.2.17. (Hensel’s lemma, univariate). Let F' be a nonarchimedean local
field with valuation v and valuation ring R, and let f(x) € R[x]. Let a € R satisfy
m = v(f(a)) > 2v(f’(a)). Then there exists a € R such that f(a) = 0 and a = a
(mod p™).

Proof. The result is straightforward to prove using Taylor expansion or the same
formulas as in Newton’s method. O

Perhaps less well-known is the multivariate version.

Lemma 12.2.18. (Hensel’s lemma). Let F be a nonarchimedean local field with
valuation v and valuation ring R, and let f(x1,...,xy) € R[x1,...,Xx,] withn > 1.
Let a € R" have m := v(f(a)) and suppose that

m > 2minvy (ﬂ(a)) > 0.
i axi

Then there exists a € R" such that f(a) = 0 and
a=a (mod p™).

Proof. One can reduce from several variables to the one variable version of Hensel’s
lemma (Lemma 12.2.17): see Exercise 12.11. m]

Remark 12.2.19. With essentially the same proof, Hensel’s lemma holds more gener-
ally for R a complete DVR (without the condition on the residue field) and becomes
axiomatically the property of Henselian rings.
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12.3 Classification via quadratic forms

We now seek to classify quaternion algebras over local fields.

12.3.1. First, suppose F is archimedean. When F = C, the only quaternion algebra
over C up to isomorphism is B = M,(C). When F = R, by the theorem of Frobenius
(Corollary 3.5.8), there is a unique quaternion division algebra over R.

The classification of quaternion algebras over nonarchimedean local fields is quite
analogous to the classification over R, as follows.

Main Theorem 12.3.2. Let F # C be a local field. Then there is a unique division
quaternion algebra B over F up to F-algebra isomorphism.

We approach the proof of Main Theorem 12.3.2 from two vantage points. In this
section, we give a proof using quadratic forms; in the next section, we give another
proof by extending the valuation (valid in all characteristics).

To prove this theorem, having dispatched the cases F = R, C in 12.3.1 above, from
the previous section we may suppose F is a nonarchimedean local field with discrete
valuation v, valuation ring R, maximal ideal p = R with uniformizer x, and residue
field R/p = k.

12.3.3. Since R is a DVR, all R-lattices M are free (and we only consider those of
finite rank): i.e., M =~ R" for some n € Zsq. Given such an R-lattice M, we can reduce
modulo p to get M/pM ~ M ®g k =~ k"; conversely, any lift to M of any k-basis of
M /pM is an R-basis for M, by Nakayama’s lemma.

We recall Main Theorem 5.2.5, Corollary 5.2.6, and Main Theorem 5.4.4: iso-
morphism classes of quaternion algebras over a field F are in natural bijection with
nondegenerate ternary quadratic forms up to similarity, and the matrix algebra corre-
sponds to any isotropic form. So to prove Main Theorem 12.3.2, it is equivalent to
prove the following statement.

Theorem 12.3.4. Let F # C be a local field. Then there is a unique anisotropic ternary
quadratic form over F up to similarity.

Rescaling shows equivalently that there is a unique anisotropic ternary quadratic
form over a local field F # C of discriminant 1 up to isometry. So our task becomes
a hands-on investigation of ternary quadratic forms over F. The theory of quadratic
forms over F is linked to that over its residue field k, so we first need to examine
isotropy of quadratic forms over a finite field.

Lemma 12.3.5. A quadratic form Q:V — k over a finite field k with dim; V > 3 is
isotropic.

Proof. The proof is a delightful elementary exercise (Exercise 12.6). O

Recall definitions and notation for quadratic forms over R provided in section 9.7,
we embark on a proof in the case where chark # 2, beginning with the following
lemma.
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Lemma 12.3.6. Suppose chark # 2. Let Q: M — R be a nonsingular quadratic
form over R. Then the reduction Qr: M ®r k — k of Q modulo p is nonsingular
(equivalently, nondegenerate) over k; moreover, Q is isotropic over R if and only if
0O mod p is isotropic.

Proof. For the first statement, by definition we have disc Q € R*, so disc Q. € k* by
reduction.

For the second, we first prove (=), let x € M\{0} have Q(x) = 0. Since Q is
homogeneous, we may suppose that x ¢ pM (divide by powers of 7 as necessary),
so its image in M ®, k is nonzero and thereby shows that Qy is isotropic. For (&),
let a € M be such that Qy(a) = 0 € k and a has nonzero reduction. Choose a basis
M =~ R"™ and write Q(x1, ..., X,) = Q(xje1+---+x,e,) € R[x1, ..., x,] in the standard
basis as a homogeneous polynomial of degree 2, let T be the associated symmetric
bilinear form and [T'] = (T'(e;, e;));,; the Gram matrix. We are almost ready to apply
Hensel’s lemma (Lemma 12.2.18), but need to ensure convergence. We observe that

B—Q(xl, X)) = Z T(xi, X)x; (12.3.7)
=1

ax[
J

so the vector of partial derivatives ((0Q/0x;)(a)); = [T]a is just the matrix product
of the Gram matrix with the vector a = (a;);. Working modulo p, we have disc Oy =
27" det[T] € k*, using that 2 € k*, so the kernel of [T] mod p is zero. Since a has
nonzero reduction, we conclude that [T ]a also has nonzero reduction, which means that
min; v((0Q/0x;)(a)) = 0. Therefore the hypotheses of Hensel’s lemma are satisfied
with m = 1, and we conclude there exists a nonzero a € M such that Q(a) = 0 and so
Q is isotropic. O

From Lemma 12.3.6, we obtain the following.

Proposition 12.3.8. Suppose chark # 2. Let Q: M — R be a nonsingular quadratic
form over R with M free of rank at least 3. Then Q is isotropic.

Proof. Combine Lemmas 12.3.5 and 12.3.6. O
Considering valuations, we also deduce the following from Lemma 12.3.6.

Lemma 12.3.9. Suppose chark # 2. Then F*/F** ~ (Z/27)* and is represented by
the classes of 1,e,n,enr where e € R* is an element which reduces modulo p to a
nonsquare in k.

We now turn to the proof of our theorem in the case char k # 2.

Proof of Theorem 12.3.4 (chark # 2). Let Q ~ {(a,—b, —c) be an anisotropic ternary
quadratic form over F. Then Q is nondegenerate. After rescaling and a change of basis
(Exercise 12.8), we may suppose that a = 1 and 0 = v(b) < v(c). If v(b) = v(c) = 0
then the quadratic form modulo p is nonsingular, so by Lemma 12.3.5 it is isotropic
and by Lemma 12.3.6 we conclude Q is isotropic, a contradiction.



12.3. CLASSIFICATION VIA QUADRATIC FORMS 191

We are left with the case v(b) = 0 and v(c) = 1. By Lemma 12.3.9, we may
suppose b = 1 or b = e where e is a nonsquare in k. If b = 1, then the form is obviously
isotropic, so b = e. Similarly, ¢ = 7 or ¢ = en. In fact, the latter case is similar to the
former: dividing by e, we have

(1,—e,—em)y ~ (e, ~1,-m) = (~1,e, -7)

and since (—1, e) ~ (1, —e) (Exercise 12.7), we conclude Q ~ (1, —e, —7).

To finish, we show that the form (1, —e, —7) is anisotropic. Suppose that x> — ey? =
nz* with x,y,z € F3 not all zero. By homogeneity, rescaling by a power of 7 if
necessary, we may suppose x,y,z € R and at least one of x,y,z € R*. Reducing
modulo p we have x> = ey? (mod p); since e is a nonsquare in k, we must have
v(x),v(y) > 1. But this implies that v(z) = 0 and so v(nz?) = 1 = v(x? —ey?) > 2, a
contradiction. O

Predictably, the proof when char k # 2 involving quadratic forms does not general-
ize in a simple way. However, armed with the above outline and acknowledging these
complications, we now pursue the case char k = 2. A key ingredient will understanding
certain binary quadratic forms, as follows.

Lemma 12.3.10. There is a unique anisotropic binary quadratic form over k, up to
isometry. Moreover, there is a unique (anisotropic) binary quadratic form over R whose
reduction modulo p is anisotropic, up to isometry (over R).

When char k # 2, this unique class of binary forms over R is (1, ¢) in the notation
above. We will want a similar bit of notation in the case char k = 2.

12.3.11. Recall the issues (6.1.4) with inseparability in characteristic 2. Let (k) =
{z + 2% : 7 € k) be the Artin—-Schreier group of k. The polynomial x> + x + a € k[x]
is reducible if and only if a € p(k), and since k is finite, k/p(k) ~ Z/2Z (Exercise
12.9).

Let t € R be such that its reduction to k represents the nontrivial class in k/@(k).

Proof of Lemma 12.3.10. We begin with the first part of the statement. Let Q be an
anisotropic binary quadratic form over k, with T the associated bilinear form. The
quadratic form Q ®(—1) is isotropic by Lemma 12.3.5, and Q is anisotropic, so O
represents 1, say O(x) = 1. Extending to a basis, we may rescale the second basis
element y so that T'(x, y) = 0, 1.

« Suppose T(x,y) = 0, so Q = (1,-b) for b € k*. Since Q is isotropic, b ¢ k>,
so char k # 2, the class b € k*/k*?% is unique, and indeed Q is anisotropic.

« Suppose T(x,y) = 1. If char k # 2, we may complete the square and reduce to
the previous case, so we suppose char k = 2 and Q(x, y) = x> + xy + cy? with
¢ € k. Working now with the Artin—Schreier group, since Q is anisotropic we
must have ¢ + (k) = 1 + p(k) € k, giving uniqueness.

For the second statement, if Q is a binary quadratic form over R whose reduction
modulo p is anisotropic, then we can find a change of basis over k to put Qy in the
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unique isometry class found above; lifting this basis, we may suppose that Oy is equal
to this fixed form. The statement then follows by using Hensel’s lemma to lift the
identity between any two such lifts, and it is a nice application of Hensel’s lemma in
two (several) variables: see exercise (Exercise 12.12). O

We now return to the proof of our theorem.

Proof of Theorem 12.3.4 (char k = 2). We first claim that the form [1, 1, 7] 8 (r) is
anisotropic; this follows from a straightforward modification of the argument as in the
proof when char k # 2 above.

We now show this form is the unique one up to similarity. Suppose that Q is a
ternary anisotropic form over R. Let x € V be nonzero; since Q is anisotropic, we
may scale x so that a := Q(x) € R. Since dimV > 3, there exists nonzero y’ € V
such that T(x, y’) = 0; rescale y’ so that Q(y’) € R. Let y := x + y’. Then T(x, y) =
T(x,x +y") =aand b := Q(y) € R, so Q on this basis is ax? + axy + b*> =~ [a, a, b].
We compute that disc[a,a, b] = a(a — 4b) = a?® (mod p), so disc[a,a,b] € R*
and [a, a, b] is nonsingular; completing to a basis with a nonzero element in the
orthogonal complement and rescaling, we may suppose without loss of generality
that Q = [a,a, b]B{c) with a,b,¢c € R and both v(a) = 0,1 and v(c) = 0,1, with
disc Q = a(a — 4b)c. This leaves four cases.

« If v(a) = v(c) = 0, then reducing modulo p we have disc Qx = a’c # 0 so Qy
is nondegenerate. By Lemma 12.3.5, QO is isotropic. Hensel’s lemma (Lemma
12.2.18) applies to Q, showing that Q is isotropic and giving a contradiction—we
omit the details.

+ Suppose v(a) = 0 and v(c) = 1. Rescaling by a unit we may suppose ¢ = n.
The reduction [a, a, b]; modulo p is nondegenerate, so if it is isotropic then Q is
isotropic, a contradiction. Therefore by Lemma 12.3.10, we may suppose a = 1
and b = t; this is the desired form.

+ Next, consider the case v(a) = 1 and v(c) = 0; we may suppose ¢ = 1. If
v(b) > 2, then 7 Ya,a,b] ~ [1,1,b/7] so the argument in the previous case
applies to show that Q is isotropic. If v(b) = 1, then we scale z by 7 and divide
0 by « to reduce to the previous case. Finally, if v(b) = 0, we scale y by 7 and
7 a, a br?] ~ [1, 1, b(n%/a)] is again isotropic, a contradiction as in the case
v(b) > 2.

« In the case v(a) = v(c) = 1, if v(b) > 0 then dividing through by 7 we reduce to
the first case, so we may suppose v(b) = 0. Then we multiply by a and replace
x < ax,and y « y/band z « z/x to work with [1,a/b,a/b] & {ac/n?), which
after interchanging x, y reduces to the previous case v(a) = 1, v(c) = 0.

Having exhausted the cases and the reader, the result now follows. O

Corollary 12.3.12. Let F be a nonarchimedean local field with valuation ring R and
uniformizer m € R. Let B be a quaternion algebra over F.
If char k # 2, then B is a division algebra if and only if

B~ (?n), where e € R* is nontrivial in k™ /k**
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and if char F = char k = 2, then B is a division algebra if and only if

t’ . . . .
B =~ [7”), where t € R is nontrivial in k/p(k).

In Theorem 13.3.11, we rephrase this corollary in terms of the unramified quadratic
extension of F.

Remark 12.3.13. In mixed characteristic where char F = 0 and chark = 2, in the
extension K = F[x]/(x? + x + 1) for ¢ nontrivial in k/ ¢(k) we can complete the square
to obtain K = F(r\/e) with e € F*\F*2.

Definition 12.3.14. Let B be a quaternion algebra over F. The Hasse invariant of B
is defined to be —1 if B is a division algebra and +1 if B ~ M,(F).

12.4 Hilbert symbol

Let F be a local field with char F # 2. We record the splitting behavior of quaternion
algebras as follows.

Definition 12.4.1. We define the Hilbert symbol
(, )F: FXxXF* - {1}

,b
by the condition that (@, b)r = 1 if and only if the quaternion algebra (aT) ~ My(F)
is split.

The Hilbert symbol is well-defined as a map
F*|F? x F*|F** > {1}

(Exercise 2.4). By Main Theorem 5.4.4(v), we have (a,b)r = 1 if and only if the
Hilbert equation ax? + by? = 1 has a solution with x, y € F: this is called Hilbert’s
criterion for the splitting of a quaternion algebra.

, b
Remark 12.4.2. The similarity between the symbols (GT) and (a, b)F is intentional;

but they are not the same, as the former represents an algebra and the latter takes the
value +1.
In some contexts, the Hilbert symbol (a, b)r is defined to be the isomorphism class

,b
of the quaternion algebra (aT in the Brauer group Br(F), rather than +1 according to

whether or not the algebra is split. Conflating these two symbols is not uncommon and
in certain contexts it can be quite convenient, but we warn that it can lead to confusion
and caution against referring to a quaternion algebra or its isomorphism class as a
Hilbert symbol.

Lemma 12.4.3. Let a, b € F*. Then the following statements hold:
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(a) (ac?, bd*)r = (a, b)p forall c,d € F*.

(®) (b,a)r = (a,D)F.

(¢) (a,b)F = (a,—ab)F = (b,—ab)F.

d (La)r =(a-a)F = 1.

(e)Ifa + 1, then (a,1 —a)r = 1.

(f) If o € Aut(F), then (a, b)r = (o(a), c(b))F.

Proof. Statements (a)—(c) follow from Exercise 2.4. For (d), the Hilbert equation
x% + ay? = 1 has the obvious solution (x, y) = (1,0). And (a, —a) is isotropic (taking
(x,y) = (1,1)) so is a hyperbolic plane and represents 1 as in the proof of Main
Theorem 5.4.4, or we argue

(a,—a)r = (a,a*)F = (a,DF = (L,a)r = 1

by Exercise 2.4. For part (e), by Hilbert’s criterion (a, 1 — a)r = 1 since the quadratic
equation ax?+(1 —a)y2 = 1 has the solution (x, y) = (1, 1). Finally, part (f): the Hilbert
equation ax” + by> = 1 has a solution with x, y € F if and only if o-(a)x> + o(b)y? = 1
has such a solution. O

Remark 12.4.4. Staring at the properties in Lemma 12.4.3 and seeking to axiomatize
them, the study of symbols like the Hilbert symbol leads naturally to the definition of
K>(F). In its various formulations, algebraic K-theory (K for the German “Klasse”,
following Grothendieck) seeks to understand certain kinds of functors from rings to
abelian groups in a universal sense, encoded in groups K, (R) for n € Zsp and R a
commutative ring: see e.g. Karoubi [Kar2010]. For a field F, we have Ko(F) = Z and
K| (F) = F*. By a theorem of Matsumoto [Mat69] (see also Milnor [Milno71]), the
group K> (F) is the universal domain for symbols over F:

K>(F):=(F*®z F*)/{a®(1 —a):a#0,1).

(The tensor product over Z views F* as an abelian group and therefore a Z-module.)
The map a ® b — (a, b)r extends to a map K»(F) — {1}, a Steinberg symbol, a
homomorphism from K>(F) to a multiplicative abelian group. The higher K-groups
are related to deeper arithmetic of commutative rings. For an introduction, see Weibel
[Weib2013] and Curtis—Reiner [CR87, Chapter 5].

‘We now turn to be quite explicit about the values of the Hilbert symbol. We begin
with the case where F is archimedean. If F' = C, then the Hilbert symbol is identically

1.If F = R, then
1 ifa>0orb > 0;
T ’ 1245
(@ b {—1, ifa <0andb < 0. (1245)

Lemma 12.4.6. The Hilbert symbol defines a nondegenerate symmetric bimultiplica-
tive pairing

()F: FYJFP? X FX P = (1)
By bimultiplicativity, we mean that

(a,bc)r = (a,b)p(a,c)p and (ab,c)r = (a,c)r(b, c)F (12.4.7)
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for all a, b, ¢ € F* (equivalent, by symmetry).
Keeping in the vibe of this section, we give a proof under the hypothesis that
char k # 2; for a general proof, see Corollary 13.4.6.

Proof (char k # 2). This lemma can be read off of the direct computation below
(12.4.9), recording what was computed along the way in the proof of Theorem 12.3.4.
O

12.4.8. Since the Hilbert symbol is well-defined up to squares, the symbol (a, b)r is
determined by the values with a, b € {1, e, 7, en} where e is a nonsquare in k*. Let
s = (=1)#=D/2 5o that s = 1, —1 according as —1 is a square in k. Then:

(a,b)F | 1 e 7 en
1 1 1 1 1
e 1 1 -1 -1 (12.4.9)
b 1 -1 s -5
em 1 -1 —-s s

The computation of this table is requested in Exercise 12.15. For example, if a = e, we
showed in the proof of Theorem 12.3.4 that (e, 1)r = (e, e)F = 1, because ex? + y> — 72
and ex? + ey? — 72 are isotropic.

In general, writing a = agn”® and b = byn"® we have

v(b) v(a)
(a,b)F = (—1)““”“’)(4”/2(?) (%) (12.4.10)
where g = #k and
(%) =0,+1 =9 V2 (mod p) (12.4.11)

is the Legendre symbol: see Exercise 12.16. (Multiplicativity can also be read off of
the formula 12.4.10.)

12.4.12. The following easy criteria follow from 12.4.9 (or (12.4.10)):

(a) If v(ab) = 0, then (a, b)p = 1.
(b) If v(a) = 0 and v(b) = v(rr), then

: x2.
(a,b)r = (g) _ {1 if a € &%

-1 ifae kK<,

12.4.13. To compute the Hilbert symbol for a local field F with char F = 0 and
chark = 2 is significantly more involved. But we can at least compute the Hilbert
symbol by hand for F = Q,.

To begin, the group Q3 /Q;2 is generated by —1,—3,2, so representatives are
{1, £3, +2, +6}. We recall Hilbert’s criterion: (a, b)r = 1 if and only if ax? + by2 =1
has a solution with x,y € F.
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If a, b € Z are odd, then

ax’ + by? = 7% has a nontrivial solution in Q,
S a=1(mod4)orb=1(mod4),

by homogeneity and Hensel’s lemma, it is enough to check for a solution modulo 4.
This deals with all of the symbols with a, b odd: summarizing, we have in this case

(a, by, = (=1)la~DE=D/4, (12.4.14)

By the determination above, we see that (=3, b) = —1 for b = £2, +6 and (2,2), =
(=1,2), = 1 the latter by Hilbert’s criterion, as —1 + 2 = 1; knowing multiplicativity
(Lemma 12.4.6), we have uniquely determined all Hilbert symbols, in particular, for

a € Z odd we have )
(a,2); = (1)@ ~D/8, (12.4.15)

It is still useful to compute several of these symbols individually, in the same manner
as (12.4.13) (working modulo 8): see Exercise 12.17. We summarize the results here:

(@bp|1 -3 -1 3 2 -6 -2 6
T (1 1 1 1 1 1 1 1
3 (1 1 1 1 -1 -1 -1 -1
-1 {1 1 -1 -1 1 1 -1 -1
3 001 1 -1 -1 -1 -1 1 1 (12.4.16)
2 |1 -1 1 -1 1 -1 1 -1
-6 [1 -1 1 -1 -1 1 -1 1
2 (1 -1 -1 1 1 -1 -1 1
6 |1 -1 -1 1 -1 1 1 -1

Remark 12.4.17. Analogously, one can define a symbol [a, b)F for the splitting of
quaternion algebras for F alocal field with char F' = 2. This symbol is no longer called
the Hilbert symbol, but many properties remain: in particular, there is still an analogue

,b
of the Hilbert equation, and [a?) is split if and only if bx> + bxy + aby’> = 1 has a

solution with x,y € F.

Exercises

1. Let p be an odd prime. Show

(a) Show the equality

(1—-4x)'?=1- Z Cux" € Z[[x]]

n=1
of formal series in x with coefficients in Z, where

1 2n
C"'"zn—l(n)ez>°

are the Catalan numbers. [Hint: use binomial expansion. |
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2.

> 4.

> 6.

> 7.

> 8.

>9.

(b) Let p be an odd prime. Show that the squaring map is bijective on 1 + pZ,,.
[Hint: show that the series expansion in (a) converges in Z,.]

Recall that a topological space is T if for every pair of distinct points, each point
has an open neighborhood not containing the other.

(a) Show that a topological space X is T if and only if {x} is closed for all
xeX.

(b) Let G be a topological group. Show that G is Hausdorff if and only if G is
T;.

. In this exercise we prove some basic facts about topological groups. Let G be a

topological group.

(a) Let H < G be a subgroup. Show that H is open if and only if there exists
h € H and an open neighborhood of / contained in H.

(b) Show that if H < G is an open subgroup, then H is closed.

(c) Show that a closed subgroup H < G of finite index is open.

(d) Suppose that G is compact. Show that an open subgroup H < G is of finite
index, and that every open subgroup contains an open normal subgroup.

Let G be a topological group. Let U > 1 be an open neighborhood of 1.

(a) Show that there exists an open neighborhood V C U of 1 € V such that
V?2=V .V CU.[Hint: Multiplication is continuous. |

(b) Similarly, show that there exists an open neighborhood V C U of 1 € V
such that V'V C U.

. Let G be a topological group and let H < G be a closed subgroup. Equip G/H

with the quotient topology. Show that G/H is Hausdorff. [Hint: Use Exercise
12.4(b).]

Let & be a finite field and let Q: V — k be a ternary quadratic form. Show that
Q is isotropic. [Hint: Reduce to the case of finding a solution to y*> = f(x) where
f is a polynomial of degree 2. If #k is odd, count squares and the number of
distinct values taken by f(x) in k. Second approach: reduce to the case where #k
is odd, and show that x*> + y* represents a nonsquare, since the squares cannot
be closed under addition! ] [This repeats Exercise 5.5!]

Let k be a finite field with char k # 2 and let e € k™. Show directly that there is
an isometry (—1,e) ~ (1, —e).

Let R be a DVR with field of fractions F, let a, b, ¢ € F be nonzero and let Q =
{a, —b, —c). Show that Q is similar over F to (1, —b’, —¢’) with 0 = v(b’) < v(¢’).
[Hint: first get v(a), v(b),v(c) € {0, 1}.]

Let k be a finite field with even cardinality. Show that #k/@(k) = 2, where p(k)
is the Artin-Schreier group.
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10.

> 11.

> 12.

13.
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By Theorem 12.2.15, a complete archimedean local field is isomorphic to R or
C. Extend this classification to division algebras as follows.

The notion of absolute value (Definition 12.2.2) extends to a division algebra
without modification, as does the notion of archimedean and nonarchimedean.

(a) Show that H has an absolute value |@| = vnrd(«@) for a € H.

(b) Let D be a division algebra equipped with an absolute value | |. Show that
if | | is archimedean, then char D = 0 and if the restriction of | | to its
center Z(D) is archimedean.

(c) Show that every division algebra complete with respect to an archimedean
absolute value is isomorphic to R, C, or H and with the absolute value
equivalent to the absolute value |@| = Vnrd « in each case. [Hint: recall
Theorem 3.5.1.]

Prove Lemma 12.2.18 using Lemma 12.2.17. [Hint: let j be the index that
achieves the minimal valuation among partial derivatives, and consider the
restriction f(ay,...,a;_1,X,aj11,. . .,d,) € R[x] to one variable. |

In this exercise, we consider an extension of Hensel’s lemma to several polyno-
mials (in several variables). Let F be a nonarchimedean local field with valuation
v and valuation ring R.

(a) Let fi,..., fu € R[x1, ..., x,] be polynomials with n > 1. Let a € R" have
m := min; v(f;(a)). Let

(9%
Dy = (ax,- (a))i,j € My(R).

Suppose m > 2v(detDy(a)). Show that there exists a € R" such that
fia) = O0foralli = 1,...,n and a = a (mod p"™). [Hint: by Taylor
expansion, write f(a+n'x) = f(a)+Dys(a)p'x + p* r(x) in vector notation
with t > m, and iteratively solve the system in a manner analogous to
Newton’s method. See Conrad [Con] for a complete development. ]

(b) Show that (a) also holds more generally if the number of polynomials  has
r < n and there exists an r X r matrix minor of Dy(a) whose determinant
has valuation < m/2. [Hint: see Exercise 12.11.]

(c) Finish the proof of Lemma 12.3.10 as follows. Let Q, Q’ be two binary
quadratic forms over R such that their reductions Ok, O} are anisotropic.
Show that Q ~ Q’. [Hint: reduce to the case where Qy = Q;(. If Or ~
(1, —e), rescale the basis using a plain vanilla flavor of Hensel’s lemma.
If Or = [1,1,1], reduce to showing that Q = [1, 1,¢t]. Consider a general
change of variables in GLy(R) from [1,1,t] that reduces to the identity
modulo p and apply the deluxe version of Hensel’s lemma in part (b) to
the resulting system of three equations in four unknowns: there is a minor
with determinant 1 — 4t € R*.]

Let F#C be a local field and let Q be a nondegenerate ternary quadratic form
over F. Let K2F be a quadratic field extension. Show that Q is isotropic over K.
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14.

> 15.
> 16.

> 17.

18.

Give another proof of Lemma 12.4.6 that the local Hilbert symbol is bimulti-
plicative using Example 8.2.2 and the Brauer group (section 8.3).

Show that the table of Hilbert symbols (12.4.9) is correct.

One can package 12.4.8 together with multiplying by squares to prove the fol-
lowing more general criterion. Let F' be a nonarchimedean local field with
uniformizer n, valuation v with v(rr) = 1, and residue field k. Let ¢ = #k and
suppose ¢ is odd.

Show that for a, b € F*, if we write a = aonv(“) and b = bonv(b), then

b
(@ by = (—1)"@vbxa-D2( % YO g\
: . o)

Show that the table of Hilbert symbols (12.4.16) is correct by considering the
equation ax? + by> = 1 (mod 8).

Prove a descent for the Hilbert symbol, as follows. Let K be a finite extension
of the local field F with char F # 2 and let a,b € F*. Show that (a,b)x =

(a, Nmgr(b))r = (Nmgr(a), b)F.
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Chapter 13

Quaternion algebras over local fields

In this chapter, we approach the classification of quaternion algebras over local fields
in a second way, using valuations.

13.1 Extending the valuation

Recall (section 12.1) the valuation v = v, on Q,,, measuring divisibility by p. We have

Zp ={x € Qp : v(x) 20}, and
pZp ={x € Qp 1 v(x) > O}

Indeed, these can profitably be taken as their definition.

(13.1.1)

For any finite extension K 2 Q,, of fields, there is a unique valuation w on K such
that wlg, = v (so w extends v), defined by
v(Nmg g, (x))
(K :Qp]

The integral closure of Z,, in K is the valuation ring {x € K : w(x) > 0} 2 Z,, and its
unique maximal ideal is {x € K : w(x) > 0}, as in (13.1.1).

(13.1.2)

w(x) =

For example, there is a unique unramified quadratic extension K of Q,: we have
K = Qp(+/e), where e = -3 for p = 2 and otherwise e € Z is a quadratic nonresidue
modulo p for p odd. It is common to write K = Q,,> for this field and Z, for its
valuation ring, since the residue field of K is sz.

In a completely parallel fashion, let B be a division quaternion algebra over Q.
Then there is again a unique valuation w extending v, defined by

w: B —> R U {oo}

v(nrd(a)) (13.1.3)
- —.
2
The valuation ring
O:={aeB:w) =0} (13.1.4)
© The Author(s) 2021 201
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is the unique (!) maximal R-order in B, consisting of all elements of B that are integral
over Z,. The set

P :={aeB:wa) >0} (13.1.5)
is the unique maximal two-sided (bilateral) ideal of O.

Using the unique extension of the valuation, we obtain the following main result
of this chapter (a special case of Theorem 13.3.11).

Theorem 13.1.6. Let g := p>. Then the following statements hold.

(a) There is a unique division quaternion algebra B over Qp, up to isomorphism
@q_,p)

Q )

(b) The valuation ring of Bis O ~ Zq ® Zyj.

(c) The maximal ideal P = Oj has P> = pO and O/P =~ ZgqlpZLy ~TF,.

given by B ~ (

The method of proof used in this classification can also be used to classify central
division algebras over local fields in much the same manner.

13.2 Valuations

To begin, we briefly review extensions of valuations; for further reading, see the
references given in section 12.2.

Let R be a complete DVR with valuation v: R — Zyq U {oo}, field of fractions
F, maximal ideal p generated by a uniformizer m (with v(xr) = 1), and residue field
k := R/p. Then R is an integrally closed PID (every ideal is a power of the maximal
ideal p), and R = {x € F : v(x) > 0}. Let | |, be an absolute value attached to v, as in
(12.2.11).

Let K 2 F be a finite separable extension of degree n := [K : F]. Then in fact K
is also a nonarchimedean local field; more precisely, we have the following lemma.

Lemma 13.2.1. There exists a unique valuation w on K such that w|g = v, defined by

v(Nmg r(x))

W =

(13.2.2)

The integral closure of R in K is the valuation ring

S:={xeK:wkx)=>0}
When w|r = v, we say that w extends v.

Proof. See e.g. Neukrich [Neu99, Chapter II, Theorem (4.8)], Cassels [Cas86, Chapter
7, Theorem 1.1], or Serre [Ser79, Chapter 11, §2, Proposition 3]. O

By the same token using (13.2.2), there exists a unique absolute value | |,, on K
which restricts to | |, on F’; we pass freely between these two formulations.
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13.2.3. We say K 2 F is unramified if a uniformizer n for F is also a uniformizer for
K. We say K 2 F is totally ramified if a uniformizer 7 has the property that 7% is a
uniformizer for F.

In general, there is a (unique) maximal unramified subextension Ky, € K, and the
extension K 2 Ky, is totally ramified.

We say that e = [K : Ky,] is the ramification degree and f = [Ky, : F] the inertial
degree, and the fundamental equality

n=[K:F]l=ef (13.2.4)
holds.

13.2.5. Suppose that F is a local field (equivalently, the residue field £ is a finite field).
Then for all f € Zs1, there is a unique unramified extension of F of degree f and such
a field corresponds to the unique extension of the residue field k of degree f. In an
unramified extension K 2 F of degree [K : F] = f, we have Nmgp(K*) = R*n/Z,
so b € Nmgr(K*) if and only if f | v(b).

If char k # 2, then by Hensel’s lemma, the unramified extension of degree 2 is given
by adjoining a square root of an element of R which reduces to the unique nontrivial
class in k*/k*?; if char k = 2, then the unramified extension of degree 2 is given by
adjoining a root of the polynomial x> + x + f where ¢ € R reduces to an element which
is nontrivial in the Artin-Schreier group k/@(k) (recalling 12.3.11).

Before proceeding further, we describe local fields by their defining polynomials—
we will need this later in the study of norms and strong approximation.

Lemma 13.2.6. (Krasner’s lemma). Let K 2 F be a finite, Galois extension with
absolute value| |,,. Let a, B € K, and suppose that for all o € Gal(K | F) with o (@) # «,

we have
la = Blw < la = o(a)lw. (13.2.7)

Then F(a) C F(B).

Intuitively, we can think of Krasner’s lemma as telling us when S is closer to @
than any of its conjugates, then F(f) contains «. It is for this reason that we state the
lemma in terms of absolute values (instead of valuations).

Proof. Let o € Gal(K | F(8)) have o (@) # a. Then by the ultrametric inequality,

lo(@) — aly = lo(@) = B+ B - alw < max(jo(@) - Blw, B — alw)

(13.2.8)
= max(|o(@ = B)lw, |8 — alw) = |a = Blw.
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the final equality a consequence of (13.2.2) and the fact that Galois conjugates have the
same norm. This contradicts the existence of o, so o-(@) = a for all o € Gal(K | F(B)).
By Galois theory, we conclude that F(a) C F(8). O

Corollary 13.2.9. Let f(x) = x" + a,_1x"' + - + ay € F[x] be a separable, monic
polynomial. Then there exists § > 0 such that whenever g(x) = x* + by_1x" 1 + -+ +
by € F[x] has |a; — b;|, < 0, then

FLxl/(f(x)) = Flx]/(g(x)).

In particular, if f(x) is irreducible then g(x) is irreducible.

Proof. Since f(x) is separable, its discriminant disc(f) is nonzero. The discriminant
is a polynomial function in the coefficients, so by continuity (multivariate Taylor
expansion), there exists 6; > O such thatif g(x) = x"+---+bg € F[x]has|a;—b;|, < I;
for all 7, then |disc(g)—disc(f)|, < |disc(f)|y; by the ultrametric inequality, we conclude
that for such g(x) we have |disc(g)|,, = |disc(f)|, so in particular disc(g) # O.

Let g(x) be as in the previous paragraph; then g(x) is separable. We first consider
the case where f(x) is irreducible. Let K 2 F be a splitting field for the polynomials
fx) =TI, (x — ;) € K[x] and g(x) = []/L,(x — Bi). Let ||, on K extend |[,. Let

€ := min|a; — a;ly. (13.2.10)
i#]
Finally, let
n n
p(8) = plbo.....bu-) = | [ gt = [ [ (ai = By). (13.2.11)
i=1 ij=1
The map g — p(g) is again a polynomial in the coefficients by, ..., b,—; (indeed, it

is a polynomial resultant). Therefore there exists § > 0, with 6 < §j, such that if
la; — b;l, < 6, then |p(g)|, < €™ . Therefore in (13.2.11), there exists i, j such that
|a; — Bjlw < €. Together with (13.2.10), we have

|a'l' _ﬁj|w <€< |ai _a'klw

for all k # i. By Krasner’s lemma (Lemma 13.2.6), we conclude that F(a;) € F(8;).
Since f(a;) = g(B;) = 0 and f is irreducible, we have

[Fla)): Fl=n<[F(B;): F]<n
soin fact [F(8;) : F] = nand F(«;) = F(B;). Finally,
Flx]/(f(x)) = F(a;) = F(B;) = F[x]/(g(x))

as desired.

The case when f(x) = fi(x)--- f(x) is reducible follows by repeating the above
argument on each factor, and finishing using the continuity of multiplication among
the coefficients: the details are requested in Exercise 13.16. O
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13.3 Classification via extensions of valuations

We now seek to generalize this setup to the noncommutative case; we retain the notation
from the previous section. Let D be a central (simple) division algebra over F' with
dimp D = [D : F] = n*. We extend the valuation v to a map

w:D — RU{co}

v(Nmpir(@))  v(nrd(a)) (13.3.1)
[D:F] n

where the equality follows from the fact that Nmpr(«) = nrd(a)" (see section 7.8).

Lemma 13.3.2. The map w is the unique valuation on D extending v, i.e., the following
hold:

(i) w(@) = oo ifand only if a = 0.

(ii) w(aB) = w(a) + w(B) = w(Ba) for all o, B € D.
>iii) w(a + B) = min(w(a), w(p)) for all a, B € D.
@iv) w(D*) is discrete in R.

Proof. Since D is a division ring, statement (i) is immediate. Statement (ii) follows
from the multiplicativity of nrd and v. To prove (iii), we may suppose S # 0 and so
B € D*. We have

w(a +B) =w(@B™ ' + DB) = waB™' + 1) +w(p).

But the restriction of w to F(eS8™') is a discrete valuation, thus w(e8™' + 1) >
min(w(a,B‘l), w(1)) and by (ii) w(a + B) = min(w(a), w(B)), as desired. Finally, (iv)
holds since w(D*) C v(F*)/n and the latter is discrete. The valuation is unique because
it is unique whenever it is restricted to a subfield. O

13.3.3. From Lemma 13.3.2, we say that w is a discrete valuation on D since it
satisfies the same axioms as for a field. It follows from Lemma 13.3.2 that the set

O:={aeD:w) =0}

is aring, called the valuation ring of D.

Proposition 13.3.4. The ring O is the unique maximal R-order in D, consisting of all
elements of D that are integral over R.

Proof. First, we prove that
O ={a € D : « is integral over R}. (13.3.5)

We first show the inclusion (2) of (13.3.5), and suppose @ € D is integral over
R. Since R is integrally closed, by Lemma 10.3.5 the coefficients of the minimal
polynomial f(x) € F[x] of @ belong to R. Since D is a division ring, f(x) is irreducible
and hence the reduced characteristic polynomial g(x) is a power of f(x) and thus has
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coefficients in R. Up to sign, the constant coefficient of g(x) is nrd(a), so w(a) =
v(nrd(a)) = 0, hence a € O.

Next we prove (C) in (13.3.5). Suppose @ € O, so that w(@) > 0, and let K = F(a).
Let f(x) € F[x] be the minimal polynomial of @. We want to conclude that f(x) € R[x]
knowing that w(a) > 0. But the restriction of w to K is the unique extension of v to K,
and this is a statement about the extension K 2 F of fields and therefore follows from
the commutative case, Lemma 13.2.1.

We can now prove that O is an R-order. Scaling an element of D* by an appropriate
power of & gives it positive valuation, so OF = D. To conclude, we must show that O
is finitely generated as an R-module. Recall that D is a central division algebra over F,
hence a separable F-algebra, so we may apply Lemma 10.3.7: every a € O is integral
over R and O is a ring, and the lemma implies that O is an R-order.

Finally, it follows immediately that O is a maximal R-order: by Corollary 10.3.3,
every element of an R-order is integral over R, and O contains all such elements. O

Remark 13.3.6. For a quaternion division algebra D, we can argue more directly in
the proof of Proposition 13.3.4 using the reduced norm: see Exercise 13.4.

13.3.7. It follows from Proposition 13.3.4 that O is a finitely generated R-submodule
of D. But R is a PID so in fact O is free of rank [D : F] as an R-module. We have

O*={aeD:w) =0} (13.3.8)
since w(a~!) = —w(a), and in particular @ € O* if and only if nrd(a) € R*. Conse-
quently,

P :={a €D :w(a) >0} = O\0" (13.3.9)

is the unique maximal two-sided (bilateral) ideal of O, as well as the unique left or
right ideal of O. Therefore O is a noncommutative local ring, a noncommutative ring
with a unique maximal left (equivalently, right) ideal.

13.3.10. Let 8 € P have minimal (positive) valuation w(B) > 0. Thenforall0 # @ € P
we have w(aB8™") = w(a@) — w(B) = 0so @' € O and a € OB. Arguing on the other
side, we have also @ € SO. Thus P = O = BO = OBO0.

Arguing in the same way, we see that every one-sided ideal of O is in fact two-sided,
and every two-sided ideal of O is principally generated by any element with minimal
valuation hence of the form P” for some r € Zy.

We are now prepared to give the second proof of the main result in this chapter
(Main Theorem 12.3.2). We now add the hypothesis that F is a local field, so that k is
a finite field.

Theorem 13.3.11. Let F be a nonarchimedean local field. Then the following state-
ments hold.

(a) There is a unique division quaternion algebra B over F, up to F-algebra iso-
morphism given by
)
B=~|—|,
F

where K is the unique quadratic unramified (separable) extension of F.
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(b) Let B be as in (a). Then the valuation ring of B is O ~ S & Sj, where S is the
integral closure of R in K. Moreover, the ideal P = Oj is the unique maximal
ideal; we have P> = O, and O/P 2 R/y is a quadratic extension of finite fields.

Proof. We begin with existence in part (a), and existence: we prove that B = (K, | F)
is a division algebra. We recall that B is a division ring if and only if 7 ¢ Nmgr(K*)
by Main Theorem 5.4.4 and Theorem 6.4.11. Since K 2 F' is unramified, we have
Nmg r(K*) = R*7°% by 13.2.5. Putting these together gives the result.

Continuing with (a), we now show uniqueness. Let B be a division quaternion
algebra over F. We refer to 13.3.10, and let P = OB. Then w(B) € %Z>o, SO

w(B) <w(m) =v(r)=1<2w(B) = w(ﬁz); (13.3.12)

we conclude that 8O = P 2 7O 2 P? = 820. The map @ + o yields an isomorphism
O/P =5 P/P? of k-vector spaces, sO

4 = dim(O/70) < dimg(O/P?) = dimg(O/P) + dimg(P/P?) = 2 dimg(O/P)
(13.3.13)
and thus dimy (O/P) > 2, with equality if and only if 7O = P2

As in (13.3.9), we have O\P = O%, so the ring O/P is a division algebra over
k and hence a finite division ring. By Wedderburn’s little theorem (Exercise 7.30),
we conclude that O/P is a finite field! So there exists i € O such that its reduction
generates O/P as a finite extension of k. But i satisfies its reduced characteristic
polynomial, a monic polynomial of degree 2 with coeflicients in R, so its reduction
satisfies a polynomial of degree 2 with coefficients in k. Since i is a generator, we
conclude [O/P : k] < 2. Together with the conclusion of the previous paragraph,
we conclude that [O/P : k] = dimg(O/P) = 2, in other words O/P is a (separable)
quadratic field extension of k. It then follows from 13.2.5 that K := F(i) is the unique,
unramified (separable) quadratic extension of F. Therefore equality holds in (13.3.13)
and P? = 0. Since 50 = P? = 70, we have w(8) = 1/2.

By Exercise 6.2 or 7.27, there exists b € F* such that B ~ (K, b | F). Recalling the
first paragraph above, since B is a division algebra, we have b ¢ Nmgr(K>) = R*m?Z,
Applying Exercise 6.4, we may multiply b by a norm from K*, so we may suppose
b = rr, and therefore B =~ (K, 7 | F). This concludes the proof of (a).

We turn now to (b), with B = (K, 7| F) = K+ Kj with j>=n.Leta =u+vj € B
with u,v € K. Then nrd(@) = Nmg r(u) — n Nmgr(v) = x — my with x,y € F and
v(x) even and v(rry) odd (as norms from K). By the ultrametric inequality, we have
w(a@) = v(nrd(a)) > 0 if and only if v(x), v(y) > 0 if and only if u,v € S (as S is the
valuation ring of K). Therefore O = S + Sj. Since j> = m, we have w(j) = 1/2, so
jO = P. The remaining statements were proven in the course of proving (a). O

Corollary 13.3.14. Let F # C be a local field. Let K be the unramified quadratic
extension of F, with (o) = Gal(K | F). Then the F-subalgebra

={( “ ﬂv):u,veK}cMz(K)

o) o)

is the unique division quaternion algebra over F (up to isomorphism).
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Proof. Using Theorem 13.3.11(a), we split B over K as in 2.3.4. (We may also put 7
below the diagonal as in 2.3.12.) O

13.4 Consequences
We now observe a few consequences of Theorem 13.3.11.

Corollary 13.4.1. Let F be a nonarchimedean local field with valuation v, let K be
a separable, unramified quadratic F-algebra, and let B = (K, b | F) with b € F*. If
v(b) = 0, then B ~ M(F).

Proof. Either K ~ F X F or K 2 F is the unique unramified quadratic field extension.
In the first case, K has a zerodivisor so B ~ M,(F). In the second case, we conclude
as in the first paragraph of the proof of Theorem 13.3.11, since b € R* < Nmg r(K*).

O

13.4.2. Let B be a division quaternion algebra over F. In analogy with the case of field
extensions (13.2.4), we define the ramification index of B over F as e¢(B|F) = 2 since
P? = 70, and the inertial degree of B over F as f(B|F) = 2 since B contains the
unramified quadratic extension K of F, and note the equality

e(BIF)f(B|F) =4 =[B: F],

as in the commutative case. (Viewed in this way, B is obtained from first an unramified
extension and then a “noncommutative” ramified extension.)

Remark 13.4.3. Theorem 13.3.11, the fundamental result describing division quater-
nion algebras over a local field, is a special case of a more general result as follows.
Let R be a complete DVR with maximal ideal p = 7R and F := Frac(R).

Let D be a (finite-dimensional) division algebra over F, and let O C D be the
valuation ring and P C O the maximal ideal. Then P¢ = pO for some e > 1, called the
ramification index; the quotient O/P is a division algebra over the field k = R/p, and
we let the inertial degree be f = dimg(O/P). Then ef = dimp D = n?; moreover,
if k is finite (F is a local field), then ¢ = f = n. For a proof, see Exercise 13.10; or
consult Reiner [Rei2003, Theorems 12.8, 13.3, 14.3]. However, the uniqueness of D
up to F-algebra isomorphism no longer holds. If F is a local field, then the possibilities
for D are classified up to isomorphism by a local invariant inv D € (%Z) |7 ~ ZnZ.
These patch together to give a global result: see Remark 14.6.10.

This classification can be further extended to an arbitrary central simple algebra
B =~ M,,(D) over F: see Reiner [Rei2003, §17-18].

Splitting of local division quaternion algebras over extension fields is given by the
following simple criterion.

Proposition 13.4.4. Let B be a division quaternion algebra over a local field F, and
let L be a separable field extension of F of finite degree. Then L is a splitting field for
B ifand only if [L : F] is even.
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Proof. If F is archimedean, then either F = C and there is no such L, or F = R and
B = H and L = C, and the result holds. So suppose F is nonarchimedean. We have
B ~ (K,n | F) where K is the unramified quadratic extension of F. Let e, f be the
ramification index and inertial degree of L, respectively. Then [L : F] = n = ef, and
n is even if and only if e is even or f is even. But f is even if and only if L contains
an unramified quadratic subextension, necessarily isomorphic to K; but then K splits
B so L splits B.

Having established the claim when f is even, suppose that f is odd. Then L is
linearly disjoint from K and K ® L = KL is the unramified quadratic extension of L.
Therefore B ®r L ~ (KL, 7 | L). Let Ry be the valuation ring of L and let 7y be a
uniformizer for L. Then Nmgy /. (KL*) = RZH%Z. We have 7 = un{ for some u € R}.
Putting these together, we see that B ® L is split if and only if 7 is a norm from KL
if and only if e is even. O

As a consequence, B contains every separable quadratic extension of F'.

Corollary 13.4.5. If B is a division quaternion algebra over a local field F and K 2 F
is a separable quadratic field extension, then K — B.

Proof. Combine Proposition 13.4.4 with Lemmas 5.4.7 and 6.4.12. O

We repeat now Lemma 12.4.6, giving a proof that works without restriction on
characteristic.

Corollary 13.4.6. If char F # 2, then the Hilbert symbol defines a symmetric, nonde-
generate bilinear form on F*|F*2.

Proof. Let K := F[x]/(x> — a). The Hilbert symbol gives a well-defined map of sets

FX/F? 5 (1)
b (d ((1, b)F

and we may conclude as in Lemma 12.4.6 if we show that this is a nontrivial group
homomorphism.

First we show it is nontrivial. By Corollary 13.4.5, the field K embeds in the division
quaternion algebra B, so by Exercise 2.5, there exists b such that B = (a, b | F), whence
(a,b)r = —1.

Next, we show it is a homomorphism. We appeal to Main Theorem 5.4.4. We
have (a,b)r = 1 if and only if b € Nmgr(K*). So we reduce to showing that if
(a,b)r = (a,b")p = —1for b, b’ € F*, then (a, bb’)r = 1. But by Corollary 7.7.6, since
there is a unique division quaternion algebra, we conclude that b/b’" € Nmgr(K*);
thus b’ = (V')2(b/b') € Nmgr(K*) and (a, bb’ | F) =~ Ma(F) so (a,bb)r =1, as
claimed. ]

Remark 13.4.7. The proof of Corollary 13.4.6 (pairing with any F*/F*?) shows that
F*/Nmgp(K*) =~ Z/27Z. (13.4.8)
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Conversely, if we know (13.4.8) then the properties of the Hilbert symbol are immedi-
ate. Although it was not hard to prove (13.4.8) when char k # 2, to establish its truth
when char k = 2, one is led to study higher ramification groups (e.g. Serre [Ser79,
Chapter XV]) eventually leading to local class field theory.

The norm groups played an important role in the proof above, so we conclude by
recording the image of the reduced norm nrd(B}) € F\.

Lemma 13.4.9. We have

RX if B ~ H;
nrd(B*) =4 >0 if >
F*, otherwise.

Moreover, if F is nonarchimedean and O C B is a maximal R-order, thennrd(O*) =
R*.

Proof. If B ~ My(F) is split, then nrd(B*) = det(GL,(F)) = F*. So suppose B is a
division algebra. If B ~ H then nrd(B*) = RX ), so we suppose F is nonarchimedean.
Then B ~ (K,nm | F) where as above K is the unramified quadratic extension of F
and 7 is a uniformizer. But F* = R* X (xr), and nrd(K*) = Nmg|r(K*) = R*7*% and
nrd(j) = . The result then follows by multiplicativity of the norm.

The second statement follows similarly: if B ~ Mj(F) then O =~ M,(R) and
nrd(O*) = det(GL,(R)) = R*; otherwise O = (S, | R) where S is the ring of integers
of K, and nrd(S*) = Nmg r(S*) 2 R* and again nrd(j) = «. O

13.5 Some topology

In this section, we dive into the basic topological adjectives relevant to the objects we
have seen and that will continue to play an important role. Throughout, let F be a local
field.

13.5.1. F is a locally compact topological field (by definition) but F' is not itself
compact. The subgroup F* = F\{0} is given the topology induced from the embedding
F*— FXF
x - (xxh;

it turns out here that this coincides with the subspace topology F* C F (see Exercise
13.14(a)). Visibly, F* is open in F so F* is locally compact.

If F is nonarchimedean, with valuation ring R and valuation v, then F* is totally
disconnected and further

R*={xeR:v(x)=0}CR

is closed so is a topological abelian group that is compact (and totally disconnected).

Now let B be a finite-dimensional F-algebra.
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13.5.2. Asan F-vector space, B has a unique topology compatible with the topology on
F as all norms on a topological vector F-space extending the norm on F are equivalent
(the sup norm is equivalent to the sum of squares norm, etc.): see Exercise 13.12. In
particular, two elements are close in the topology on B if and only if their coefficients
are close with respect to a (fixed) basis: for example, two matrices in M,,(F) are close
if and only if all of their coordinate entries are close. (Of course, the precise notion
of “close” depends on the choice of norm.) Consequently, B is a complete, locally
compact topological ring, taking a compact neighborhood in each coordinate.

13.5.3. The group B* is a topological group, with the topology given by the embedding
BX 3 a ~ (a,a™') € B x B. This topology coincides with the subspace topology
(see Exercise 13.14(b)). From this, we can see that B is locally compact: the norm
Nmpr: B* — F* is a continuous map, so B* = ng‘lF(FX) is open in B, and an
open subset of a Hausdorff, locally compact space is locally compact in the subspace

topology (Exercise 13.14(c)).

Example 13.5.4. If B = M,,(F), then B* = GL,(F) is locally compact: a closed,
bounded neighborhood that avoids the locus of matrices with determinant O is a
compact neighborhood. When F is archimedean, this is quite visual: a matrix of
nonzero determinant is at some finite distance away from the determinant zero locus!
Note however that GL,,(F) is not itself compact: already F* = GL(F) is not compact.

Now suppose F' is nonarchimedean with valuation v and valuation ring R.

13.5.5. We claim that R is the maximal compact subring of F. Indeed, x € F lies
in a compact subring if and only if v(x) > 0 if and only if x is integral over R. The
only new implication here is the statement that if v(x) < O then x does not lie in a
compact subring, and that is because the sequence x,, = x"* does not have a convergent
subsequence as |x,| — oo.

Next, let O be an R-order in B.

13.5.6. Choosing an R-basis, we have an isomorphism O ~ R", and this isomorphism
is also a homeomorphism. Therefore, O is compact as the Cartesian power of a
compact set. The group O* is therefore also compact because it is closed: for y € O,
we have y € O* if and only if Nmpr(y) € R*, the norm map is continuous, and
R* ={x € R:v(x) =0} C Ris closed.

Example 13.5.7. For R = Z, € F = Q, and B = M,,(Q,,), the order O = M,(Z,,) is
compact (neighborhoods of a matrix can be taken as neighbhoods in each coordinate)
and the subgroup O* = GL,(Z,,) is compact: there is no way to “run off to infinity”,
either in a single coordinate or via the determinant.

13.5.8. Suppose B = D is a division algebra. Then the valuation ring O is the maximal
compact subring of B, for the same reason as in the commutative case (see 13.5.5,
details requested in Exercise 13.17(a)). There is a filtration

O>PoP*>...
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giving rise to a filtration
O*>14P>1+P>.... (13.5.9)

As in the second proof of Main Theorem 12.3.2, the quotient O/ P is a finite extension
of the finite residue field k, so (O/P)* is a finite cyclic group. The maximal two-sided
ideal P is principal, generated by an element j of minimal valuation, and multiplication
by j" gives an isomorphism O/P => P"/P"*! of k-vector spaces (or abelian groups)
foralln > 1.

Furthermore, for each n > 1, there is an isomorphism of groups

O/P ~ P"/P™ = (1 + P")/(1 + P"™)

a—1+a.

(13.5.10)

Therefore, O* = 1(21 (O/P™)* is a projective limit of solvable groups, also called a
n
prosolvable group.

Example 13.5.11. If B is a division quaternion algebra over Q,, with valuation ring
O and maximal ideal P, then the filtration (13.5.9) has quotients isomorphic to O/P =
F .

p

13.5.12. We will also want to consider norm 1 groups; for this, we suppose that B is a
semisimple algebra. Let
B' :={w e B :nrd(a) = 1};

some authors also write SL;(B) := B'. Then B! is a closed subgroup of B>, since the
reduced norm is continuous.

If B is a division ring and F is archimedean, then B ~ H and B' ~ H! ~ SU(2) is
compact (it is identified with the 3-sphere in R*). In a similar way, if B is a division ring
and F is nonarchimedean, then B' is compact: for B has a valuation v and valuation
ring O, and if @ € B has nrd(@) = 1 then v() = 0 and @ € O, and consequently
B' € O* is closed in a compact set so compact.

If B is not a division ring, then either B is the product of two algebras or B is a
matrix ring over a division ring, and in either case B' is not compact.

Remark 13.5.13. The locally compact division algebras over a nonarchimedean field
are necessarily totally disconnected. On the other hand, it is a theorem of Pontryagin
[War89, Theorem 27.2] that if A is a connected locally compact division ring, then A
is isomorphic as a topological ring to either R, C, or H.

Exercises

1 LetB'—(_l’_l)
. : o)

(a) Show that B is a division ring that is complete with respect to the discrete
valuation w defined by w(t + xi + yj + zij) = v(t? + x> + y*> + 2?) for
t’ -x’ ya Z S QZ
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(b) Prove that
IL+i+j+ij c

B
2

O := Lo ®@Zoi®Zoj ® 7o

is the valuation ring of B.

2. Let B be a division quaternion algebra over a nonarchimedean local field F'. Give
another proof that the unramified quadratic extension K of F embeds in B as
follows.

Suppose it does not: then for all @ € O, the extension F(a) 2 F is ramified,
so there exists ¢ € R such that « —a € P N K(a); let P = jO and write
@ = o = a + jay, and iterate to conclude that @ = 3 ; a,j" with a, € R. But
F(j) is complete so O C F(j), a contradiction.

3. Let F be a local field with F # C, let K the unramified (separable) quadratic
extension of F (take K = C if F ~ R), and let {(o") = Gal(K | F), so that ¢ is the
standard involution on K. Let B be a division quaternion algebra B over F.

Show that

a b
B~ {(na’(b) a'(a)) ta,be K} C M(K).

[Hint: Compute the regular representation 2.3.8. ] Identify the maximal order O
its maximal ideal J under this identification.

4. Let B be a division quaternion algebra over F. Show that @ € B is integral over
R if and only if nrd(e), nrd(a + 1) € R if and only if w(a), w(a + 1) > 0, where
w is the valuation on B.

5. Extend Theorem 13.3.11 as follows. Let R be a complete DVR with field of
fractions F, and let B be a quaternion division algebra over F. Show that B ~

K,b
(T) where K 2 F is an unramified separable quadratic extension of F and

b ¢ NmK|F(KX).

6. Let F be a nonarchimedean local field with residue field k having chark # 2,
and let K 2 F be a separable quadratic field extension.

a) Let b € F*. Show that if K is unramified then b € Nmg r(K*) if and only
if v(b) is even; and if K = F(+/a) is ramified, then b € Nmgr(K*) if and
only if b = ¢? or b = —ac? for some ¢ € F*2.

b) Deduce [F* : Nmgr(K*)] = 2 and Corollary 13.4.6 in this case.

7. Let R := QI[[]] be the ring of formal power series over QQ; then R is a complete
DVR with fraction field F = QQ((¢)), the Laurent series over Q. Let By := (a, b | Q)
be a division quaternion algebra over Q, and let B := By ®q F = (a,b | F).
Show that B is a division quaternion algebra over F, with valuation ring O :=
R+ Ri+Rj + Rij.
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8. Let B be a division quaternion algebra over a nonarchimedean local field F, and
let O be the valuation ring.

(a) Show that every one-sided (left or right) ideal of O is a power of the
maximal ideal P and hence is two-sided.
(b) Let
[0,0]:=(aB - Ba:a,pBec0)
be the commutator ideal [O, O] of O, the two-sided ideal generated by
commutators of elements of O. Show that P = [O, O].

9. Let F be a nonarchimedean local field, let B = M(F) and O = M;(R). Show
that there are g + 1 right O-ideals of norm p corresponding to the elements of
P! (k) or equivalently the lines in k2.

10. Give another proof of Lemma 13.4.9 using quadratic forms.

11. Let F be a nonarchimedean local field with valuation ring R, maximal ideal
p, and residue field k. Let D be a division algebra over F with dimp D = n2,
with valuation ring O and maximal two-sided ideal P. Show that O/P is finite
extension of k of degree n, and P" = pO (cf. Remark 13.4.3).

12. Show that (13.5.10) is an isomorphism of (abelian) groups.
13. Let F be a field with absolute value | | and V a finite-dimensional F-vector space.
(a) Let xy,...,x, be abasis for V, and define
llaixi + - - + anxyll := max(lail, . . ., lanl)
for a; € F. Show that V is a metric space with distance d(x, y) = ||x — y||.

(b) Show that the topology on V is independent of the choice of basis in (a).

(c) Finally, show thatif F is complete with respect to| |, then V is also complete.

14. Let F be a topological field. Show that the coarsest topology (fewest open sets) in
which multiplication on M,,(F) is continuous is given by the coordinate topology.

15. Let F be alocal field.

(a) The group F* has the structure of topological group under the embedding
x = (x,x~") € F x F (under the subspace topology in F X F). Show that
this topology coincides with the subspace topology F* C F.

(b) More generally, let B be a finite-dimensional F-algebra. Show that the the
topology on B* induced by @ +— (@, a”') € B x B coincides with the
subspace topology B* C B.

(c) Show that an open subset of a Hausdorff, locally compact space is locally
compact in the subspace topology.

16. Let F be a finite extension of Q,. Show that (—1, —1)p = (-=1)F:Ql,
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17. Finish the proof of Lemma 13.2.9.

18. Let D be a division algebra over a nonarchimedean local field F'. We recall (see
13.5.2) that D is a complete, locally compact topological ring.

(a) Verify (as in 13.5.5) that O is the maximal compact subring of B.
(b) Show that B*/F* is a compact topological group.
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Chapter 14

Quaternion algebras over global fields

In this chapter, we discuss quaternion algebras over global fields and characterize them
up to isomorphism.

14.1 » Ramification

To motivate the classification of quaternion algebras over Q, we consider by analogy a
classification of quadratic fields. We restrict to the following class of quadratic fields
for the best analogy.

Definition 14.1.1. A quadratic field F = Q(Vd) of discriminant d € Z is mildly
ramified if 8 1 d.

A quadratic field F is mildly ramified if and only if F = Q(+/m) where m # 1 is
odd and squarefree; then d = m or d = 4m according as m = 1,3 (mod 4).

Let F = Q(Vd) be a mildly ramified quadratic field of discriminant d € Z and let
R be its ring of integers. A prime p ramifies in F, i.e. pR = p® for a prime ideal p C R,
ifand only if p | d.

But a discriminant d can be either positive or negative; to put this bit of data on
the same footing, we define the set of places of Q to be the primes together with the
symbol co, and we make the convention that co ramifies in F if d < 0 and is unramified
ifd>0.Let F = Q(\/ﬁ) be a mildly ramified quadratic field, and let Ram(F) be the
set of places that ramify in F. The set Ram(F’) determines F up to isomorphism, since
the discriminant of F is the product of the odd primes in Ram(F’), multiplied by 4 if
2 € Ram(F) and by —1 if co € Ram(F). (For bookkeeping reasons, in this context it
would probably therefore be better to consider 4 and —1 as primes, but we will resist
the inducement here.) However, not every finite set of places £ occurs: the product d
corresponding to X is a discriminant if and only if d = 0,1 (mod 4). We call this a
parity condition on the set of ramifying places of a mildly ramified quadratic field:

2e€X « there are an odd number of places in X congruent to —1 (mod 4)

with the convention that oo is congruent to —1 (mod 4).
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Note that if X is a finite subset of places of Q and 2 ¢ X, then precisely one of
either  or X U {oco} satisfies the parity condition; accordingly, if we define m(Z) to be
the product of all odd primes in £ multiplied by —1 if co € Z, then we can recover
from m(X).

We have proven the following result.

Lemma 14.1.2. The maps F — Ram(F) and £ — m(X) furnishes a bijection

Mildly ramified quadratic fields Finite subsets of places of Q
{ Q(Vd) up to isomorphism } {satisfying the parity condition}
o {Squarefree odd integers}
m# 1 '

This classification procedure using sets of ramifying primes and discriminants
works as well for quaternion algebras over Q. Let B be a quaternion algebra over
Q. When is a prime p ramified in B? In Chapter 12, we saw that the completion
B, = B®qg Q,, is either a division ring or the matrix ring M»(Q),). Further, when B,
is a division ring, the valuation ring O, C B,, is the unique maximal order, and the
unique maximal ideal P, c O, satisfies pO, = PI%. By analogy with the quadratic
case, we say that a place v is ramified in B if the completion B, is a division ring, and
otherwise v is unramified (or split).

, b
Let B = (a_) Without loss of generality, we may suppose a, b € Z. There are

only finitely many places where B is ramified: by the calculation of the Hilbert symbol
(12.4.12), if p is prime and p t 2ab, then (a, b)@p = 1 and p is split in B. Therefore
#Ram B < oo.

We say that B is definite if co € Ram B and B is indefinite otherwise. By definition,

,b
B is definite if and only if Bo, := B®pR = (a_) ~ Hif and only if a, b < 0 (Exercise

R
2.4).

Let Ram B be the set of ramified places of B. Not every finite subset £ of places
can occur as Ram B for a quaternion algebra B. It turns out that the parity condition
here is that we must have #X even. So again, if Z is a finite set of primes, then precisely
one of either Z or £ U {oo} can occur as Ram B. We define the discriminant of B to be
the product disc B of primes that ramify in B, so disc B is a squarefree positive integer.
This notion of discriminant is admittedly strange; we relate it to perhaps more familiar
notions in Chapter 15.

The main result of this chapter, specialized to the case F = Q, is the following.

Main Theorem 14.1.3. The maps B — Ram B and X > [] 5 p furnish bijections

Quaternion algebras over Q Finite subsets of places of Q
up to isomorphism of even cardinality

& {D € Z-q squarefree } .

The composition of these maps is B — [],eram g p = disc B.
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As previewed at the end of section 12.1, Main Theorem 14.1.3 is a local-global
principle and provides a convenient way to test when quaternion algebras over QQ are
isomorphic: instead of working hard over @@, we can just test for isomorphism over the
local fields Q,, and R.

We will spend the next two sections giving a self-contained proof of Main Theo-
rem 14.1.3 following Serre [Ser73, Chapters III-IV], assuming two statements from
basic number theory (quadratic reciprocity and the existence of primes in arithmetic
progression), finishing the proof in section 14.3. Although the proofs presented do not
seem to generalize beyond F = @Q, the argument is simple enough and its structure
is good motivation for the more involved treatment in the Chapter ahead. (It is also
comforting to see a complete proof in the simplest case.)

14.2 » Hilbert reciprocity over the rationals

To begin, we look into the parity condition: it has a simple reformulation in terms of the
Hilbert symbol (section 12.4). For a place v of Q, let Q,, denote the completion of QQ at
the absolute value associated to v: if v = p is prime, then Q, = Q,, is the field of p-adic
numbers; if v = co, then Q,, = R. For a, b € Q*, we abbreviate (a, b)g, = (a, b),.

Proposition 14.2.1. (Hilbert reciprocity). For all a, b € Q*, we have
[ J@on =1, (14.2.2)
where the product taken over all places v of Q.
When p is odd and divides neither numerator nor denominator of a or b, we have

(a,b), = 1, so the product (14.2.2) is well-defined. The following corollary is an
equivalent statement.

Corollary 14.2.3. Let B be a quaternion algebra over Q. Then the set Ram B is finite
of even cardinality.

The law of Hilbert reciprocity, as it turns out, is a core premise in number theory:
it is equivalent to the law of quadratic reciprocity

(1_’)(2) N (14.2.4)
al\p

for odd primes p, g together with the supplement

(_—1) = (-7 and (3) - (- (14.2.5)
p p

for odd primes p.
We now give a proof of Hilbert reciprocity (Proposition 14.2.1), assuming the law
of quadratic reciprocity and its supplement.
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Proof of Proposition 14.2.1. Since each local Hilbert symbol is bilinear, it suffices to
prove the statement when a,b € 7Z are equal to either —1 or a prime number. The
Hilbert symbol is also symmetric, so we may interchange a, b.
b -1,-1
Ifa=bh=—1,then B =22 = [=

(-1,-Deo = (-1,-1); = =1 and (-1,-1), = 1 if v # 2, oo, by the computation of
the even Hilbert symbol (12.4.13). Similarly, the cases with a = —1, 2 follow from the
supplement (14.2.5), and are requested in Exercise 14.1.

is the rational Hamiltonians, and

Q Q

and we reduce to the previous case, so we may suppose p # g. Since p, g > 0, we have
(P, 9)o = 1. We have (p, q)¢ = 1 for all primes ¢ 1 2pq, and

> _17
So we may suppose a = p and b = g are primes. If p = g then (M) ~ (_p)

(P q)P = (CI,P)p = (g) and (p, q)q = (g)

by 12.4.12. Finally,
(p, q)2 = —1if and only if p, ¢ = 3 (mod 4)

ie., (p,g) = (=1)P~D@D/4 again by the computation of the even Hilbert symbol
(12.4.13). Thus the product becomes

H(P, 9y = (—1)(P—1><q—1)/4(£)(g) .
v q)\p

by quadratic reciprocity. O

Hilbert reciprocity has several aesthetic advantages over the law of quadratic reci-
procity. For one, it is simpler to write down! Also, Hilbert believed that his reciprocity
law is a kind of analogue of Cauchy’s integral theorem, expressing an integral as a
sum of residues (Remark 14.6.4). The fact that a normalized product over all places is
trivial also arises quite naturally: if we define for x € Q* and a prime p the normalized
absolute value

x| := p7P ™,

and |x| the usual archimedean absolute value, then
[ Jreh =1
v

by unique factorization in Z; this is called the product formula for QQ, for obvious
reasons.

From the tight relationship between quaternion algebras and ternary quadratic
forms, we obtain the following corollary.

Corollary 14.2.6. Let Q be a nondegenerate ternary quadratic form over Q. Then the
set of places v such that Q. is anisotropic is finite and of even cardinality.
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In particular, by Corollary 14.2.6, if Q, is isotropic for all but one place v of Q,
then Q,, is in fact isotropic for all places v.

Proof. In the bijection implied by Main Theorem 5.2.5, the quadratic form Q cor-
responds to a quaternion algebra B = (a,b | QQ), and by Main Theorem 5.4.4, Q is
isotropic if and only if B is split if and only if (a, b)g = 1. By functoriality, the same is
true over each completion Q,, for v a place of QQ, and therefore the set of places v where
Q, is isotropic is precisely the set of ramified places in B. The result then follows by
Hilbert reciprocity. O

To conclude this section, we show that every allowable product of Hilbert symbols
is obtained.

Proposition 14.2.7. Let X be a finite set of places of Q of even cardinality. Then there
exists a quaternion algebra B over Q with Ram B = X.

Remark 14.2.8. Albert [Alb34, Theorem 2, Theorem 3] already sought to simplify
the presentation of a quaternion algebra by a series of transformations, the content
of which is contained in Proposition 14.2.7; this was further investigated by Latimer
[Lat35].

Just as with Hilbert reciprocity, Proposition 14.2.7 touches on a deep statement in
number theory concerning primes, due to Dirichlet.

Theorem 14.2.9. (Infinitude of primes in arithmetic progression). Given a,n € Z
coprime, there are infinitely many primes p = a (mod n).

Proof. See e.g. Serre [Ser73, Chapter VI] or Apostol [Apo76, Chapter 7]. We will
prove this theorem in Exercise 26.11 as a consequence of the analytic class number
formula. O

Remark 14.2.10. Theorem 14.2.9 seems to require analysis. (For algebraic proofs in
special cases, see e.g., Neukirch [Neu99, Exercise 1.10.1] and Lenstra—Stevenhagen
[LS91].) Ram Murty [Mur88] showed that a “Euclidean proof” of the infinitude of
primes p = a (mod n) is possible if and only if a*> = 1 (mod n), and Paul Pollack
[Pol2010] has shown that Schnizel’s Hypothesis H gives a heuristic for this. This
crucial role played by analytic methods motivates part III of this monograph.

We now prove Proposition 14.2.7 assuming Theorem 14.2.9.

Proof. Let D := [],¢x p be the product of the primes in £, and let u := —1 if co € X
and u := 1 otherwise. Let D® := uD. We consider quaternion algebras of the form

3 qO,DO
B‘( Q )

with ¢° = ug (and g prime) chosen to satisfy certain congruence conditions ensuring
that Ram B = X. To this end, we seek a prime g such that

&
(q—) =—1forallodd p| D (14.2.11)
p
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and 1 (mod8), if24D
¢ {(mo » 24D (14.2.12)

5 (mod 8), if2|D.

There exists a prime satisfying the conditions (14.2.11)—(14.2.12) by Theorem 14.2.9,
since the condition to be a quadratic nonresidue is a congruence condition on ¢° and
hence on ¢ modulo p.

We now verify that B has Ram B = X. We have (¢°, D°). = u by choice of signs
and (¢°, D%),, = 1 for all p { 2dg. We compute that

&
(q°,D%), = (q;) =-1 foralloddp|D

by (14.2.11). For p = 2, we find that (¢°, D®), = —1 or (¢°, D%), = 1 according as
2 | D or not by the computation of the even Hilbert symbol (12.4.13). This shows that

Y CRamB C X U {g}.

The final symbol (¢°, D®), is determined by Hilbert reciprocity (Proposition 14.2.1):

since #X is already even, we must have (¢°, D), = 1. Therefore the quaternion algebra
<& D<>

B:= (QET) has £ = Ram B. mi

Example 14.2.13. Let B = (a, b | Q) be a quaternion algebra of prime discriminant
D = p over Q. Then:

(i) ForD=p=2,wetakea = b = —1;
(ii) For D = p = 3 (mod 4), we take b = —p and a = —1;
(iii) For D = p = 1 (mod 4), we take b = —p and @ = —q where ¢ = 3 (mod 4) is

prime and 9) = 1.
p

In case (iii), by qudaratic reciprocity (—_p = _(ﬁ) = 1 so indeed B is not ramified at
q D

p. In the proof of Theorem 14.2.7 above, we would have required the more restrictive
condition ¢ = 3 (mod 8), but we can look again at the table of even Hilbert symbols
(12.4.16): since b = —p = —1, 3 (mod 8), we may take a = —g = 1, -3 (mod 8) freely,
so ¢ = 3 (mod 4).

Similarly, for discriminant D the product of two (distinct) primes:

(i) For D = 2p with p = 3 (mod 4), we take a = —1 and b = p;
(ii) For D = 2p with p = 5 (mod 8), we take a = 2 and b = p;
(iii) For D = pg with p = g = 3 (mod 4), we take a = —1 and b = pq;
@iv) For D = pq with p = 1 (mod 4) or g = 1 (mod 4) and (2) #1,wetakea = p
P
and b = gq.
For other explicit presentations of quaternion algebras over Q with specified dis-

criminant, see Alsina—Bayer [AB2004, §1.1.2]. See Example 15.5.7 for some explicit
maximal orders.
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14.3 » Hasse—Minkowski theorem over the rationals

To complete the proof of Main Theorem 14.1.3, we now show that the map B — Ram B
is injective on isomorphism classes.

Proposition 14.3.1. Let B, B’ be quaternion algebras over Q. Then the following are
equivalent:

(i) B~ B’;

(ii) Ram B = Ram B’;
(iii) By = B;, for all places v € PI(Q); and
(iv) B, ~ By, for all but one place v.

The statement of Proposition 14.3.1 is a local-global principle: the global isomor-
phism class is determined by the local isomorphism classes.

Corollary 14.3.2. Let B be a quaternion algebra over Q. Then B ~ M (Q) if and only
if B, = My(Q),) for all primes p.

Proof. Apply Proposition 14.3.1 (i) & (iv) with B’ = M,(Q) checking all but the
archimedean place. O

By the equivalence between quaternion algebras and quadratic forms (see Chapter
5, specifically section 5.2), the statement of Proposition 14.3.1 is equivalent to the
statement that a ternary quadratic form over Q is isotropic if and only if it is isotropic
over all (but one) completions. In fact, the more general statement is true—and again
we come in contact with a deep result in number theory.

Theorem 14.3.3. (Hasse—-Minkowski). Let Q be a quadratic form over Q. Then Q is
isotropic if and only if Q, is isotropic for all places v of Q.

We will prove the Hasse—Minkowski theorem by induction on the number of
variables. Of particular interest is the case of (nondegenerate) ternary quadratic forms,
for which we have the following theorem of Legendre.

Theorem 14.3.4. (Legendre). Let a, b, c € Z be nonzero, squarefree integers that are
relatively prime in pairs. Then the quadratic form

ax’> +by* +cz> =0
has a nontrivial solution x, y, z € Q if and only if a, b, ¢ do not all have the same sign

and

—ab, —bc, —ac are quadratic residues modulo |c|, |a|, |b|, respectively.

Proof. First, the conditions for solvability are necessary. The condition on signs is
necessary for a solution in R. If ax? + by2 +cz? = 0 with x, v,z € Q not all zero, then
scaling we may suppose x, y, z € Z satisfy ged(x, y,z) = 1;if p | cthenp t y (else p | x
and p | z, contradiction), so (x/ y)2 = (=b/a) (mod |c|) and —ba is a quadratic residue
modulo |c|; the other conditions hold by symmetry.
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So suppose the conditions hold. Multiplying through and rescaling by squares
(Exercise 14.8), we may suppose a, b are squarefree (but not necessarily coprime) and
¢ = —1, and we seek a nontrivial solution to ax? + by? = z2. If a € Q*?, then we are
done. Otherwise, we need to solve

2 2

2 —ax 7+ x\a )
———— =b=Nm .
y2 QWa)/Q ( y
for x,y,z € Qand y # 0, i.e., we need to show that b is a norm from F = Q(+a). By

hypothesis, a, b are not both negative and

b is a square modulo |a| and a is a square modulo |b|. (14.3.5)

We may also suppose |a| < |b].

We use complete induction on m = |a| + |b|. If m = 2, then we must consider the
equation +x? + y> = 7> with the case both negative signs excluded, each of which
has solutions. Now suppose that m > 2 so |b| > 2, and let p | b be prime divisor. By
hypothesis, there exist integers , b’ such that t> = a + bb’; taking a small residue, we
may suppose |t| < |b|/2. Thus

bb' =1* —a = Nmgq(t + Va)
so bb’ is a norm from F. Thus b is a norm if and only if »” is a norm. But

2 - b
-4 S%+1<|b|

b=
15" b

because [b| > 2.

Now write b’ = b”u* with b”,u € Z and b"’ squarefree. Then |b”’| < |b’| < |b| and
b" is a norm if and only if »” is a norm. With these manipulations, we propagate the
hypothesis that |a| is a square modulo |[»”’| and |b”’| is a square modulo |a|. Therefore,
the induction hypothesis applies to the equation ax? + b”y> = z2, and the proof is
complete. O

Corollary 14.3.6. Let Q be a nondegenerate ternary quadratic form over Q. Then Q
is isotropic if and only if Q,, is isotropic for all places v of Q (but one).

Proof. If Q is isotropic, then Q,, is isotropic for all v. For the converse, suppose that
Q, is isotropic for all places v of Q. As in the proof of Legendre’s Theorem 14.3.4, we
may suppose Q(x, y,z) = ax’ + by?> — z>. The fact that Q is isotropic over R implies
that a, b are not both negative. Now let p | a be odd. The condition that Q,, is isotropic
is equivalent to (a, b), = (b/p) = 1; putting these together, we conclude that b is a
quadratic residue modulo |a|. The same holds for a, b interchanged, so (14.3.5) holds
and the result follows. O

We are now in a position to complete the proof of the Hasse-Minkowski theorem.
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Proof of Theorem 14.3.3. We follow Serre [Ser73, Theorem 8, §IV.3.2]. We may sup-
pose that Q is nondegenerate in n > 1 variables. If n = 1, the statement is vacuous. If
n = 2, the after scaling we may suppose Q(x, y) = x> — ay? with a € Q*; since Q,, is
isotropic for all primes p, we have a € Q;z so in particular v, (a) is even for all primes
p; since Q is isotropic at co, we have a > 0; thus by unique factorization a € QXZ, and
the result follows. If n = 3, the statement is proven in Corollary 14.3.6.

Now suppose n > 4. Write Q = {(a,b)s — Q" where Q" = {cy,...,cp—2) and
a,b,c; € Z.Letd = 2ab(cy - - - cy—2) # 0. For each prime p | d, since Q is isotropic,
there exists ¢, € Q;j represented by both (a, b) and Q' in Q,,. (This requires a small
argument, see Exercise 6.14.) Similarly, there exists 7o, € R* represented by these
forms in R.

By another application of the infinitude of primes in arithmetic progression (Exer-
cise 14.10), there exists ¢ € Q* such that:

(i) t € 1,Qy? for all primes p | d,
(ii) r and t., have the same sign, and
(iii) p 1 ¢ for all primes p 1 d except possibly for one prime ¢ 1 d.

Now the quadratic form (a, b, —t) is isotropic for all p | d and at co by construction and
at all primes p 1 d except p = g since p t abt. Therefore, by case n = 3 (using the “all
but one” in Corollary 14.3.6), the form {a, b, —t) is isotropic.

On the other side, if n = 4, then the form (¢) m Q’ is isotropic by the same argument.
If n > 5, then we apply the induction hypothesis to Q’: the hypothesis holds, since Q”
is isotropic at oo and all p | d by construction, and for all p t d the completion Q) is
a nondegenerate form in > 3 variables over Z, so is isotropic by the results of section
12.3, using Hensel’s lemma to lift a solution modulo the odd prime p.

Putting these two pieces together, we find that Q is isotropic over Q. O

We conclude with the following consequence.

Corollary 14.3.7. Let Q, Q" be quadratic forms over Q in the same number of variables.
Then Q =~ Q" if and only if Q,, ~ Q/, for all places v.

Proof. The implication (=) is immediate. We prove (<) by induction on the number
of variables, the case of n = 0 variables being clear. By splitting the radical (4.3.9),
we may suppose that Q, Q’ are nondegenerate. Let a € Q* be represented by Q. Since
0, = Q) the quadratic form (—a)= Q’ is isotropic at v for all v, so Q’ represents a
(Lemma 5.4.3). In both cases, we can write Q ~ (-a)® Q) and Q" = (~a)= Q] for
quadratic forms Q1, Q] in one fewer number of variables. Finally, by Witt cancellation
(Theorem 4.2.22), from Q, =~ Q) we have (Q1), = (Q}), for all v, so by induction

Q1 = 0, and thus 0 = Q". O

‘We now officially complete our proofs.

Proof of Proposition 14.3.1. The implications (i) = (ii) and (iii) = (iv) are imme-
diate. For the implication (ii) = (iii): either v € Ram B, in which case B, =~ B]
is the unique division algebra over @, (Theorem 12.1.5), or v ¢ Ram B, in which
case B, = My(Q,) = B; by definition. For the implication (iv) = (i), recalling
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Theorem 5.1.1, by Corollary 14.3.6 applied to the ternary quadratic form associated
to B, we conclude that this form is isotropic, which by Proposition 5.1.2 implies that
B = M(Q). o

Proof of Main Theorem 14.1.3. The map B — Ram B has the desired codomain, by
Hilbert reciprocity (Proposition 14.2.1); it is surjective by Proposition 14.2.7; and it
is injective by Corollaries 14.3.6 and 14.3.7. The second bijection (with squarefree
integers) is immediate. O

To summarize these past few sections, the classification of quaternion algebras
over (Q embodies some deep statements in number theory: quadratic reciprocity (and
its reformulation in Hilbert reciprocity), the Hasse-Minkowski theorem (the local-
global principle for quadratic forms), and the proofs use the theorem of the infinitude
of primes in arithmetic progression! It is a small blessing that we can make these
essentially elementary arguments over Q. In the more general case, we must dig more
deeply.

For fun, we conclude this section with a consequence in number theory: Legen-
dre’s three-square theorem (cf. Lagrange’s four-square theorem, Theorem 11.4.3, and
Remark 11.4.4).

Theorem 14.3.8. (Legendre—Gauss). An integer n > 0 can be written as the sum of
three squares n = x> + y*> + z% if and only if n is not of the form n = 4%(8b + 7) with
a,be’.

Proof. Looking modulo 8, we see that the provided condition is necessary (Exercise
14.3(a)). Conversely, suppose n > 0 is not of the form n = 44(8b + 7), or equivalently
that —n ¢ Q;Q (Exercise 14.4). We may suppose a = 0, 1.

Let B = (—1, —1 | Q) be the rational Hamiltonians. We have Ram B = {2, oo}, which
is to say the associated ternary quadratic form x? + y* + z? is isotropic over Q,, for all
odd primes p. Consider the quadratic form Q(x, y, z, w) = x> + y> + z2 — nw?. Then
Q is isotropic over R since n > 0, and isotropic over all Q, with p odd taking w = 0.
The form is also isotropic over Q, (Exercise 14.3), lifting a solution modulo 8§ via
Hensel’s lemma. By the Hasse—-Minkowski theorem (Theorem 14.3.3), Q is isotropic
over Q, so there exist x, y, z, w € Q not all zero such that x> + y> + z2 = nw?. We must
have w # 0 by positivity, and dividing through we get x, y, z € Q not all zero such that
x?+y*+z2=nleta=xi+yj+zije B Thena?+n=0and a € B is integral.

Let O’ c B be a maximal order containing @, and let O be the Hurwitz order. By
Proposition 11.3.7, O is conjugate to O; after conjugating, we may suppose a € O.
But trd(@) = 0, so necessarily @ € Z(i, jy and x, y, z € Z withnrd(@) = x> +y*+z> =n

as desired. O
See also Exercise 14.5 for a variant of the proof of the three-square theorem staying

in the language of quaternions.
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14.4 Global fields

In this chapter and in many that remain, we focus on a certain class of fields of
arithmetic interest: a global field is either a finite extension of Q (a number field)
or of IF,(¢) (a function field) for a prime p. Global fields are strongly governed by
their completions with respect to nontrivial absolute values, which are local fields.
Throughout this text, we will return to this theme that global behavior is governed by
local behavior.

For the rest of this chapter, let F be a global field. We quickly introduce in this
section some basic notions from algebraic number theory: for further reference, see
e.g. Neukirch [Neu99, Chapters I-1I], Cassels [Cas2010, Chapter I1], or Janusz [Jan96,
Chapter II].

Remark 14.4.1. When F is a function field, we will often insist that F' is equipped
with an inclusion Fy < F where Fy =~ IF,,(¢) has pure transcendence degree 1 over
IF,,. (For the geometrically inclined, this corresponds to a morphism X — P! of the
associated curves.) Often this inclusion will not play a role, but it will be important
to treat certain aspects uniformly with the number field case where there is only one
inclusion Q < F.

14.4.2. The set of places of F' is the set Pl F' of equivalence classes of embeddings
ty: F — F, where F, is a local field and ¢,(F) is dense in F,; two embeddings
tv: F — F,and (,: F — F, are said to be equivalent if there is an isomorphism of
topological fields ¢: F,, — F, such that ¢/, = ¢ o t,,.

14.4.3. Every valuation v: F — R U {co}, up to scaling, defines a place ¢,: F' — F,
where v is the completion of F with respect to the absolute value induced by v;
we call such a place nonarchimedean, and using this identification we will write
v for both the place of F and the corresponding valuation. For a nonarchimedean
place v corresponding to a local field F),, we denote by R, its valuation ring, p, its
maximal ideal, and k, its residue field. If F is a function field, then all places of F are
nonarchimedean. If F is a number field, a place ' — R is called a real place and a
place F — C (equivalent to its complex conjugate) is called a complex place. A real
or complex place is archimedean.

14.4.4. Let K 2 F be a finite, separable extension of fields, and let v € P1 F. We say
that a place w of K is above v if w|r = v, and we write w | v. The set of places w
above v are obtained as follows: since K is separable, we have an isomorphism

K®r F, ~K| X--- XK, (14.4.5)

where each K; 2 F,, is afinite extension of local fields. Indeed, writing K = F[x]/(f(x))
with f(x) € F[x] the minimal polynomial of a primitive element, we have

K®r F, = F,[x]/(f(x)) = F[x]/(fi(x) X --- X F,[x]/(f-(x))

where f(x) = fi(x)--- f-(x) € F,[x] is the factorization of f(x) into irreducibles in
F,[x], distinct because f is separable. Thus each K; is a local field by the classification



228 CHAPTER 14. QUATERNION ALGEBRAS OVER GLOBAL FIELDS

in Theorem 12.2.15, and the composition
K — KQ®fr F, - K;

defines a place w; of K above v. Conversely, every place w above v is equivalent to w;
for some i [Jan96, Chapter II, Theorem 5.1; Cas78, §9; Neu99, Chapter II, Proposition
(8.3)].

We say that a nonarchimedean place v ramifies in K if there exists a place w | v
such that K, 2 F, is ramified (see 13.2.3). Only finitely many places of F ramify in
K.

A global field F has a set of preferred embeddings ¢, : F' < F, corresponding to
each place v € Pl F—equivalently, a preferred choice of absolute values ||, for each
place v € Pl F—such that the product formula holds: for all x € F*,

[]mr =1 (14.4.6)
vePl F

where m,, = 2 if v is complex and m, = 1 otherwise. Admittedly, the extra exponents
2 for the complex places are annoying (see Remark 12.2.3)! Often what is done is

to define normalized absolute values ||x||, := |x|)"” for v € PIF, so then (14.4.6)
becomes
]—[ llxlly = 1. (14.4.7)
VvePIF

Preferred absolute values are defined as follows.

14.4.8. The set of places P1(Q) of Q consists of the archimedean real place, induced
by the embedding Q@ < R and the usual absolute value |x|., and the set of nonar-
chimedean places indexed by the primes p given by the embeddings Q — Q,, with

the preferred absolute value

xlp = p .

The statement of the product formula for x € Q is

el [ [P = 1 (14.4.9)
p

rearranging, (14.4.9) is equivalent to [], p’»™ = |x|, and this follows from unique
factorization in Z.

14.4.10. The set of places of IF, (¢) is indexed by monic irreducible polynomials f(t) €
IF,,[¢] with preferred absolute value

(Dl = preen o)

and 1/¢, the place at infinity, with preferred absolute value

lx(t)l1/e = p*&*,
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where if x = f/g is the ratio of relatively prime polynomials f,g € IF,[z], then
deg x := max(deg f, deg g).
Then the statement of the product formula for x(7) € IF,,(¢) is

pdegx Hp—(degf)ordf(x) = 1’ (14411)
f

rearranging as over Q, but now also taking the logarithm in base p, (14.4.9) is equivalent
to 3 ¢(deg f)ords(x) = deg x which follows from unique factorization in ), [f].

14.4.12. More generally, let K 2 F be a finite, separable extension of global fields.
Let v be a place of F with a preferred absolute value and let w be a place of K above
v. Then the preferred absolute value for w is the unique one extending v, namely

[y = INmp, (o))
for x € K. These absolute values fit together, with

]—[lew = Nmgr (x)ly (14.4.13)

wlv

for all x € K, a consequence of (14.4.5) [Jan96, Chapter II, Theorem 5.2; Cas78, §11,
Theorem, p. 59; Neu99, Chapter II, Corollary (8.4)].

In particular, if F satisfies the product formula (14.4.6) with respect to preferred
absolute values, then so does K, since

[ Tt = [_](]_[ |x|$w) = [ [ INmgrol™ = 1. (14.4.14)

v wly

Remark 14.4.15. The definitions for the preferred absolute values are pretty dry—
sorry! But we will see later that they are natural from the perspective of Haar measure:
see section 29.3 and ultimately (29.6.3).

We will also make use of the following notation in many places in the text. Let F
be a global field.

Definition 14.4.16. A set S C P1 F is eligible if S is finite, nonempty, and contains all
archimedean places of F.

Definition 14.4.17. Let S be an eligible set of places. The ring of S-integers in F is

the set
Ry ={xeF:v(x)>0forallv ¢ S}. (14.4.18)

A global ring is a ring of S-integers in a global field for an associated eligible set S.

The expression (14.4.18) makes sense, since if v ¢ S then by hypothesis v is
nonarchimedean. When no confusion can result, we will abbreviate R = R(s) for a
global ring R.

Example 14.4.19. If F is a number field and S consists only of the archimedean places
in F then R(s) is the ring of integers in F, the integral closure of Z in F, also denoted
R(s) = Zp. If F is a function field, corresponding to a curve X, then R(s) is the ring of
all rational functions with no poles outside S. (So in all cases, it is helpful to think of
the ring R(s) as consisting of those elements of F' with “no poles outside S”.)
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14.5 Ramification and discriminant

Let R = R(s) be a global ring, with S c PI F eligible. Let B be a quaternion algebra
over F.

Definition 14.5.1. Let v € P1 F. We say that B is ramified at v if B, = B®F F,, is a
division ring; otherwise we say that B is split (or unramified) at v.
Let Ram B denote the set of ramified places of B.

If v € PI F is a nonarchimedean place, corresponding to a prime p of R, we will
also say that B is ramified at p when B is ramified at v.

Remark 14.5.2. We use the term ramified for the following reason: if By is a divi-
sion ring with valuation ring Oy, then pO, = P? for a two-sided maximal ideal P:
see Theorem 13.3.11. (Eichler [Eic55-56, §1, Theorem 4] called them characteristic
primes.)

Lemma 14.5.3. The set Ram B of ramified places of B is finite.

Proof. Write B = (K, b | F). Since F has only finitely many archimedean places, we
may suppose v is nonarchimedean. The extension K 2 F is ramified at only finitely
many places, so we may suppose that K 2 F is unramified at v. Finally, v(b) = O for
all but finitely many v, so we may suppose v(b) = 0. But then under these hypotheses,
B, = (K,, b | F,) is split, by Corollary 13.4.1. O

Motivated by the fact that the discriminant of a quadratic field extension is divisible
by ramifying primes, we make the following definition.

Definition 14.5.4. The R-discriminant of B is the R-ideal
discg(B) = ]—[ pCR

peRam B
pes

obtained as the product of all primes p of R = R(s) ramified in B.

Remark 14.5.5. When F is a number field and S consists of archimedean places only,
so that R = Zp is the ring of integers of F, we abbreviate discg(B) = disc B. The
discriminant discg(B) discards information about primes in S: only Ram B records
information about B that is independent of S.

Remark 14.5.6. One could make the same definitions when R is more generally a
Dedekind domain. However, unless the residue fields of R are finite, this is not as
useful a notion: see Exercise 14.14. (In some sense, this is because the Brauer group
of F' = Frac R is not as simply described as when F is a global field, viz. Remark
14.6.10.)

As usual, the archimedean places play a special role for number fields, so we make
the following definition.

Definition 14.5.7. Let F' be a number field. We say that B is totally definite if all
archimedean places of F' are ramified in B; otherwise, we say B is indefinite.
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14.5.8. If v is a complex place, then v is necessarily split, since the only quaternion
algebra over C is M,(C); therefore, if B is a totally definite quaternion algebra over a
number field F, then F is totally real.

14.6 Quaternion algebras over global fields

We now generalize Main Theorem 14.1.3 to the global field F, deducing results
characterizing isomorphism classes of quaternion algebras. The main result is as
follows.

Main Theorem 14.6.1. Let F be a global field. Then the map B — Ram B gives a
bijection

Quaternion algebras over F' Finite subsets of noncomplex places
up to isomorphism of F of even cardinality

In other words, if B is a quaternion algebra over a global field, then the set of places
of F where B is ramified is finite and of even cardinality, this set uniquely determines
B up to isomorphism, and every such set occurs.

Proof. We give a proof in section 26.8, which itself relies on an analytic result (Theo-
rem 26.8.19) proven in Chapter 29.

Alternatively, this statement can also be viewed a direct consequence of a (hard-
earned) fundamental exact sequence in class field theory: see Remark 14.6.10. O

Recall the definition of the Hilbert symbol (as in section 12.4), computed explicitly
for v an odd nonarchimedean place (12.4.9): for a place v of F, we abbreviate (a, b)r, =
(a, b),,. We also recall Lemma 14.5.3 that (a, b),, = 1 for all but finitely many places v.

Corollary 14.6.2. (Hilbert reciprocity). Let F be a global field with char F + 2 and
let a,b € F*. Then
[]@hbyn=1. (14.6.3)

vePIF

Proof. Immediate from Main Theorem 14.6.1: Hilbert reciprocity is equivalent to the
statement that # Ram B is even. O

Remark 14.6.4. Stating the reciprocity law in the form (14.6.3) is natural from the
point of view of the product formula (14.4.6). And Hilbert reciprocity can be rightly
seen as a law of quadratic reciprocity for number fields (as we saw in section 14.2 for
F = Q). (For more, see Exercise 14.16.)

Hilbert saw his reciprocity law (Corollary 14.6.2) as an analogue of Cauchy’s inte-
gral theorem [Hil32, p. 367-368]; for more on this analogy, see Vostokov [Vos2009].

Corollary 14.6.5. (Local-global principle for quaternion algebras). Let B, B’ be quater-
nion algebras over F. Then the following are equivalent:

(i) B~ B’;

(ii) Ram B = Ram(B’);
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(iii) By =~ B;, for all places v € P1 F; and
(iv) By = B}, for all but one place v € P F.

In particular, B ~ M, (F) if and only if Ram B = (.

Proof. For the equivalence (i) & (ii)  (iii), combine Main Theorem 14.6.1 and the
fact that for a noncomplex place v there is a unique division algebra over F,. The
equivalence (iii) & (iv) follows from the parity constraint, since if v is a place and
Ram B\{v} = Z, then v € Ram B or not according as #X is odd or even. O

Remark 14.6.6. Corollary 14.6.5 is a special case of the Albert—Brauer—Hasse—Noether
theorem [AH32, BHN31]: a central simple algebra A over F such that A, =~ M, (F,)
for all v € PI F has A ~ M,,(F). See Remark 14.6.10 for further discussion.

The statement of Corollary 14.6.5 is the local-global principle for quaternion
algebras: the isomorphism class of a quaternion algebra over a global field is determined
by its isomorphism classes over the collection of local fields obtained as completions
of the global field. In a similar way, we have a local-global principle for quadratic
embeddings as follows.

Proposition 14.6.7. (Local-global principle for splitting/embeddings). Let K 2 F be
a finite separable extension of global fields. Then the following are equivalent:

(i) K splits B, i.e., B®r K ~ My(K); and
(ii) For all places w € P1 K, the field K, splits B.

If dimp K = 2, then these are further equivalent to:

(iii) There is an embedding K — B of F-algebras;
@iv) For all places v € P1 F, there is an embedding K,, — B,, of F,-algebras; and
(v) Every v € Ram B does not split in K, i.e., K, is a field for all v € Ram B.

Proof. The equivalence (i) < (ii) is a consequence of Corollary 14.6.5: they are both
equivalent to Ram Bx = 0, since K splits B if and only if B®F K ~ M;(K) if and only
if Ram(B ®f K) = 0 if and only if for all places w of K we have B ®f K,, ~ My(K,,).

The equivalence (i) & (iii) was given by Lemmas 5.4.7 and 6.4.12.

The implication (iii) = (iv) is clear. For the implication (iv) = (v), if v € Ram B,
then B, is a division algebra; so if K,, is not a field, then we cannot have K,, — B,,.
Finally, for (v) = (ii), let w € PIK with w | v € P1F. If v ¢ Ram B then already F,
splits B; otherwise, v € Ram B and K,, = K,, is a field with [K,, : F,] = 2, so by
Proposition 13.4.4, K,, splits B. O

14.6.8. The equivalences (iii) & (iv) < (v) in Proposition 14.6.7 hold also for the
separable F-algebra K = F X F: for there is an embedding F X F — B if and only if
B =~ M(F).

We also record the statement of the Hasse-Minkowski theorem over global fields,
generalizing Theorem 14.3.3.
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Theorem 14.6.9. (Hasse—Minkowski). Let F' be a global field and let Q be a quadratic
form over F. Then Q is isotropic over F if and only if Q, is isotropic over F, for all
places v of F.

Proof. The same comments as in the proof of Main Theorem 14.6.1 apply: we give a
proof in section 26.8. But see also O’Meara [O’Me73, §§65-66] for a standalone class
field theory proof for the case when F' is a number field. O

This local-global principle for isotropy of quadratic forms is also called the Hasse
principle. For a historical overview of the Hasse principle, and more generally Hasse’s
contributions in the arithmetic theory of algebras, see Fenster—Schwirmer [FS2007].

Remark 14.6.10. The fact that quaternion algebras are classified by their ramification
set (Main Theorem 14.6.1) over a global field F is a consequence of the following
theorem from class field theory: there is an exact sequence

0 — Br(F) —» @Br(m - Q/Z -0 .

([AvDy P 2, invy [Ay]

where the first map is the natural diagonal inclusion [A] — ([A ®, F]), and the
second map is the sum of the local invariant maps inv, : Br(k,) — Q/Z from Remark
13.4.3. The class of a quaternion algebra B in a Brauer group over a field is 2-torsion
by 8.3.4, and the local invariant inv, B, is equal to 0, 1/2 according as B, is split or
ramified, and in this way we recover the main classification theorem. (In this sense, the
discriminant of a quaternion algebra captures the Brauer class of a quaternion algebra
at the finite places, and the ramification set captures it fully.) The exact sequence
(14.6.11) is sometimes called the fundamental exact sequence of global class field
theory: see Milne [Milne-CFT, § VIIL.4] or Neukirch—Schmidt—Wingberg [NSW2008,
Theorem 8.1.17].

14.7 Theorems on norms

In the previous sections, we have seen how both local-global principles allow a nice,
clean understanding of quaternion algebras—and at the same time, the norm groups
play an important role in this characterization. These themes will continue through
the book, so we develop them here in an important first case by describing the group
nrd(B*) < F*.

We retain our hypotheses that F is a global field and B a quaternion F-algebra.

14.7.1. First, we recall the calculation of the local norm groups (Lemma 13.4.9): for
v € PI F, we have

RX,, ifv € Ram Bisreal (i.e., B, =~ H);

FY,  otherwise.

nrd(B)) = {

Under B — B,, we have nrd(B*) < nrd(By) for all places v € P1F, and this
‘places’ a condition on the reduced norm at precisely the real ramified places.
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14.7.2. Let Q € Ram B be the set of ramified (necessarily real) archimedean places in
B. (If F is a function field, then Q = 0.) Let
FZ ,:={xeF*:v(x)>O0forallv e Q} (14.7.3)

>Q

be the group of elements that are positive for the embeddings v € Q. For Q the set of
all real places, we write simply F{) and call such elements totally positive.

By 14.7.1, we have nrd(B*) < Ffﬁo. In fact, equality holds.

Main Theorem 14.7.4. (Hasse—Schilling). We have nrd(B*) = F*

>00°

To prove this theorem, we will use two lemmas.

Lemma 14.7.5. Let v be a noncomplex place of F. Let n,, € F)\, and if v is real suppose
ny > 0. Then there exists t, € F, such that x> — t,x + n,, is separable and irreducible
over F,,. Moreover, if n,, € R, then we may take t, € R,,.

Proof. We suppose that char F,, # 2 and leave the other case as an exercise (Exercise
14.22). If n, ¢ vaz, then we can take #, = 0; this includes the case where v is a
real place. So suppose n, € FVXZ. Let K,, = F,(\d,) 2 F, be a separable quadratic
extension, and in particular d, ¢ Fj(z. The quadratic form (1, —4n,) =~ (1,—-1) over
F, is a hyperbolic plane (Definition 5.4.1) so universal; let x,, y, € F, be such that
x‘% - 4nvy‘2, = d,,. We cannot have y, = 0, else x‘% =d, € FVXZ. Lett, = x,,/y,. Then
x2 = t,x + n, has discriminant d,, and so is separable and irreducible.

For the second statement, multiplying by a square we may suppose without loss of
generality that d,, € R, so the equality 1> = d, + 4n, implies v(,) > Oandt, € R. O

Next, we want to show that we can approximate a polynomial over a completion
F, by a polynomial over the global field F sufficiently well—the reader is invited to
ignore this on a first reading and accept this intuitively as a consequence of the fact
that F is dense in F,,.

Lemma 14.7.6. Let v € P1F, let f,(x) = x2 —t,x+n, € F,[x] be a separable
polynomial, and let € > 0. Then there exists t,n € F such that |t — t,,|,|n — n,| < € and
such that f(x) = x> — tx + n has

Fo[x]/(f(x)) = F,[x]/(f(x)). (14.7.7)

In particular, f(x) is separable, and if f,(x) is irreducible then so is f(x).
Further, if already n,, € F then we may take n = n,,, and similarly with t.

Proof. If F, is nonarchimedean, the lemma follows from Corollary 13.2.9 and the
fact that F is dense in F,. The case where F, is archimedean is straightforward: see
Exercise 14.23. m|

The same argument can be applied to several local fields at once, as follows.
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Corollary 14.7.8. Let  C P1 F be a finite set of noncomplex places. For each v € Z,
let f,(x) = x2—t,x+n, € F[x] be a separable polynomial, and let € > 0. Then
there exists t,n € F such that for f(x) = x> —tx + n and for all v € T we have
[t =t |n—n,| < €eand F,[x]/(f(x)) = F,[x]/(f,(x)). In particular, f(x) is separable,
and if f,(x) is irreducible for some v then so is f(x).

Further, if all n, = m € F forv € X, then we may take n = m, and similarly with t.

Proof. We repeat the argument of Lemma 14.7.6, using weak approximation (i.e., F
is dense in [], Fy; look ahead to Lemma 28.7.1 and the adjacent discussion) for all
v € Zto find ¢, n. O

We now conclude with a proof of the theorem on norms.

Proof of Main Theorem 14.7.4. Letn € F;ﬂo. We will construct a separable quadratic
extension K 2 F with K < B such that n € Nmgr(K*). To this end, by Proposition
14.6.7, it is enough to find K 2 F such that K, is a field for all v € Ram B.

By Lemma 14.7.5, for all v € Ram B, there exists t,, € F,, such that the polynomial
x2—t,x+n € F,[x]is separable and irreducible over F,,; here if v € Q is real we use that
v(n) > 0. By Corollary 14.7.8, there exists ¢ € F such that x> — tx + n irreducible over
each F,,. Let K be the extension of F obtained by adjoining a root of this polynomial.
Then K, is a field for each ramified v, and n € Nmgp(K*) as desired. O

Exercises

> 1. Complete the proof of Hilbert reciprocity (Proposition 14.2.1) in the remaining
cases (a, b) = (—1,2),(2,2), (-1, p), (2, p). In particular, show that

%)+ (%)=

and

a
(a,P)Z = (‘Lp)[) = (_)
4
for a = —1,2 and all primes p (cf. 12.4.13).

2. Derive the law of quadratic reciprocity (14.2.4) and the supplement (14.2.5)
from the statement of Hilbert reciprocity (Proposition 14.2.1).

> 3. Letn € Z+y.

(a) Suppose n is of the form n = 44(8b + 7) with a, b € Z. Show that there is
no solution to x2 + y2 + 72 = n with x, v,z € Z. [Hint: Look modulo 8.]

(b) Suppose n is not of the form n = 4%(8b + 7) with a, b € Z. Show that there
is a solution to x* + y% + z2 = n with x, y,z € Z,. [Hint: lift a solution
modulo 8 using Hensel’s lemma. |

>4. Let n € Z be nonzero. Show that # is a square in QQ, if and only if n is of the
form n = 4%(8b + 1) with a, b € 7Z.



236

CHAPTER 14. QUATERNION ALGEBRAS OVER GLOBAL FIELDS

. Letn > Ohave —n ¢ QEQ. Let B=(-1,-1| Q) and let K = Q(+/—n). Show that

K splits B. [Hint: Use the local-global principle for embeddings (Proposition
14.6.7).] Conclude that there exists @ € B such that a®> = —n, and conclude as
in Theorem 14.3.8 that n is the sum of three squares.

Let F be a number field. Show that every totally positive element of F is a sum
of four squares of elements of F.

. Show that the law of Hilbert reciprocity (Proposition 14.2.1) implies the law of

quadratic reciprocity; with the argument given in section 14.1, this completes
the equivalence of these two laws.

. In the proof of Legendre’s theorem (Theorem 14.3.4), we reduced to the case

a,b > 0 and ¢ = —1. Show that this reduction is valid.

In this exercise, we generalize the proof of Proposition 14.2.7 to give a more
general construction of quaternion quaternion algebras. Let D be a squarefree
positive integer and let u = —1 if D has an odd number of prime divisors,
otherwise u := 1.

(a) For b € Z squarefree, show that K := Q(Vb) embeds in a quaternion
algebra of discriminant D if and only if:

e b < 0if B is definite;
e b1 (mod 8)if2| D; and
e for all odd primes p | D, we have (—) # 1.
P
(b) Suppose b satisfies the conditions in (a) but with the further requirement
b
that D | b, i.e., in the third condition we require (—) = 0. Let ¢ be an odd
p

prime such that ¢° := ug has:

q<>
° (—) =—1forall odd p | D;
p

&
. (Q_) = 1 for all odd p | (b/D); and
p

e 4°=1,5 (mod 8) accordingas 2{ D or2 | D.
Note there exist infinitely many such primes g by the infinitude of primes

°b
in arithmetic progression. Then show that B := % has discB = D

and RamB = X.

> 10. Let S C PI(Q) be eligible. For each v € S, let £, € Q7 be given. Show that there

11.

12.

exists € Q* such that ¢ € £,QX* for all v € S and vp(t) = 0 for all p ¢ S\{oo}
except (possibly) for one prime p = gq.

Let F = Q(Vd) be a real quadratic field. Find a, b € Q* (depending on d) such
that (a, b | F) is a division ring unramified at all finite places.

Let F := Q(a) where a := 2cos(2n/7) = {7 + 1/&; with &7 = exp(2ni/7). Let
B :=(-1,-1| F). Compute Ram(B) and find a maximal order in B.
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13. Let F be a global field with char F # 2 and let B be a quaternion algebra over
F.Let L 2 F be a finite extension. An extension K 2 F is linearly disjoint
with L over F if the multiplication map K ® L = KL is an isomorphism of
F-algebras.

Show that there exists a splitting field K 2 F for B such that K is linearly disjoint
with L over F.

14. Show that the notion of discriminant of a quaternion algebra as the product of

ramified primes is not such a great notion when R is an arbitrary Dedekind
domain, as follows.
Let R = Qt]; then R is a Dedekind domain. Let F = FracR = Q(z). Let
By = (a,b | Q) be a division quaternion algebra ove Q and let B = By ®q F =
(a, b | Q()). Show that there are infinitely primes at which B is “ramified”: for
every prime p = (t — ¢)R, show that the algebra By is a division quaternion
algebra over F, = Q((1)). [Hint: See Exercise 13.6.]

15. Using Hilbert reciprocity, one can convert the computation of an even Hilbert
symbol to the computation of several odd Hilbert symbols, as follows.

Let F be a number field, let p | (2), and let a,b € F*. Show that there exist
(computable) a’, b’ € F* such that the following hold:

(i) (a,b)p = (a’,b')p; and
(ii) ordq(a’) = ordq(b’) = O for all q | (2) with q # p.

Conclude that
@by =[] @ b

vePIF
v odd

16. Let F be a number field with ring of integers Zr. We say an ideal b C ZF is odd
if Nm(b) is odd, and b € ZF is odd if (b) is odd. For a € Zg and b C Zr odd,

let (% be the generalized Jacobi symbol, extending the generalized Legendre

symbol by multiplicativity, and write (%) = (b%) for a, b € Zp~\{0} with b
F
odd.

(a) Leta, b € ZF satisfy aZp + bZr = Zr, with b odd, and suppose a = apa;

with aq odd. Then
= | |( )
) a, b Ve

v|200

(b) Suppose that F has a computable Euclidean function N and let a,b €
Z {0} with b odd. Describe an algorithm using (a) to compute the Leg-

a
endre symbol (Z)
17. In this exercise, we give a constructive proof of the surjectivity of the map

B — Ram B in Main Theorem 14.6.1 in the spirit of the proof of Proposition
14.2.7 (assuming two analytic results).
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Let F be a number field, and let £ € P1 F' be a finite set of noncomplex places
of F of even cardinality. Let R = ZF be the ring of integers of F.

(a)

(b)

(©)

(d)

Let © := []pex p be the product of the primes corresponding to nonar-
chimedean places in S. Using weak approximation (see Lemma 28.7.1),
show there exists a € ® such that:

e v(a) < Ofor all real places v € X and v(a) > O for all real places v ¢ Z,

if there are any; and

e aR=Dbwith®+b=Rand2R+b =R.
In the special case where R has narrow class number 1 (that is, every ideal
a C R is principal a = (a) and generated by an element a € R such that
v(a) > 0 for every real places v), show that we may take (a) = © and
b=R
Show that there exists ¢ € R coprime to 8aR such that the following hold:

1t
e For all primes p | © with p { 2R, we have —) =-1;
e For all primes p | ® with p | 2R, the extension Fp(\/f) is the quadratic
t
unramified extension of F},, so (—) = —1 in the sense of the general-

ized Kronecker symbol;
t
e For all primes q | b we have | — | = 1; and
e For all prime powers t¢ || 8R voxlflth t1D,wehaver =1 (mod t°).

Show that ¢ is well-defined as an element of (R/8aR)*, i.e., if ' = ¢

(mod 8a) then ¢’ also satisfies these conditions.
Using the infinitude of primes in arithmetic progression over number fields

(Theorem 26.8.26), show there exists ¢ € R a prime element (i.e., gR is a
prime ideal) such that ¢ = ¢ (mod 8a) with ¢ as in (b) and further satisfying
v(q) < 0 for all real places v € X.

Show that B := (%) has Ram B = X.

18. Let F be a global field. Show that two quaternion algebras B, B’ over F are
isomorphic if and only if they have the same quadratic subfields (for a quadratic
extension K O F, we have K — B if and only if K — B’).

[See work of Garibaldi—Saltman [GS2010] for a discussion of the fields F' with
char F # 2 and the property that two division quaternion algebras over F with
the same subfields are necessarily isomorphic. (Roughly speaking, they are the
fields for which nonzero 2-torsion elements of the Brauer group can be detected
using ramification.)]

19. In this exercise, we consider how ramification sets change under base extension.
Let F be a global field and let K 2 F be a finite separable extension.

(a)

Let B be a quaternion algebra over F with ramification set Ram B and
consider Bx = B ®f K. Show that

Ram(Bg) = {w € PI(K) : w lies over v € Ram B and 2 { [K,, : F,]1}.
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20.

>21.

22.

> 23.

> 24,

25.

(b) Suppose B is a division algebra and [K : F] is odd. Show that Bk is a
division algebra.

(c) Asaconverse to (a), suppose that Zx C PI(K) is a finite subset of noncom-
plex places of K of even cardinality with the property that if w € Zg lies
over v € P1 F, then [K,, : F,] is odd and moreover

{wePIF :wlies over v and [K,, : F,]is odd} C Xg.

Show that there exists a quaternion algebra B over F with the property that
Ram(Bg) = Xk . (We say that the quaternion algebra associated to the set
2k descends to F.)

(d) As a special case, what do (a) and (c) say when [K : F] = 2?

(e) Restate (a) and (b) in terms of the kernel of the map Br(F)[2] — Br(K)[2]
induced by [B] — [Bk] (see Remark 14.6.10).

Let R be a global ring with F = FracR, and let K 2 F be a finite Galois
extension with S the integral closure of R in K. Let B be a quaternion algebra
over F' and consider Bx = B ®F K. Then Gal(K | F) acts naturally on Bk via
o(a ® x) = @ ® o(x). (This action is not by K-algebra isomorphism!)

Show that there exists a maximal S-order O C Bk stable under Gal(K | F), i.e.,
o(0) = Ofor all o € Gal(K | F).

Let F be a global field, let vy, .. ., v, be places of F, and for each v; suppose we
are given the condition ramified, split, or inert. Show that there exists a separable
quadratic extension K 2 F that K, satisfies the given condition for each i. [Hint:
follow the proof of Main Theorem 14.7.4.]

Let F be a global field, let By, By, . . ., B, be quaternion algebras over F, and let
B := B; ® B, ® - -- ® B,.. Recalling section 8.2, show (in as many ways as you
can) that B ~ M,,-1(B’) for a quaternion algebra B’ over F. (Recalling 8.3, by
Merkurjev’s theorem this shows the class of every element in the 2-torsion of
the Brauer group Br(F)[2] is represented by a quaternion algebra.)

Let F, be alocal field with char F,, = 2. Let n € F,,. Show that there exists ¢ € F,
such that x> — tx + n is separable and irreducible.

Prove Lemma 14.7.6 for v an archimedean place.

In this advanced exercise following up on Exercise 9.8, we consider features of
quaternion algebras and orders in the case of a global function field, assuming
background in algebraic geometry.

Let X be a smooth, projective, geometrically integral curve over a finite field k;
then X is a separated, integral Dedekind scheme. Let O be its structure sheaf.
Let F be its function field, and let B be a quaternion algebra over F. Define a
sheaf of Ox-orders in B, or simply an Ox-order in B, to be an Ox-lattice % in
B such that for each open set U C X, the O (U)-lattice Z8(U) is a subring of B.
We recall the local-global dictionary for &x-lattices (Exercise 9.16(c)).
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In parts (a)—(c) we work out an example: let X = P! with function field F = k(r)
where div ¢ = (0) — (c0). Suppose that char k # 2, and let u € k*\k*2. Let B be
the quaternion algebra with Ram(B) = {(0), (c0)}.

(a) Show that B = (u,t | F).

(b) Let U = Spec k[t] = X\{co}. Show that there exists a unique Ox-order
in B with B(U) = klt] + k[t]i + k[t]j + k[t]ij and stalk (., a maximal
Ox,(0)-order. Describe explicitly %) and Z(Spec k[1/t]) as orders in B.

(c) With 4 from (b), show that Z(X) = k[i].

Restoring generality, let # be an Ox-order such that Z(U) is a maximal Ox (U)-
order in B for all affine open sets U.

(d) Show that Z(X) has a zero divisor if and only if ZB(X) ~ My(k) if and
only if B =~ My (F).

(e) Show that B(X) is a k-algebra with a nondegenerate standard involution.

(f) Suppose that B is a division algebra. Show that either ZA(X) = k or
HB(X) ~ ky is the quadratic extension of k.

(g) Still supposing that B is a division algebra, show that if Z(X) = k,, then
every ramified place of B has odd degree. [Hint: show that B ~ (K, b | F)
where K = Fky is the constant field extension of F of degree 2, and
b € F*\k*. Compute the Hilbert symbol at v € Ram(B) to show v(b) is
odd.]
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Chapter 15

Discriminants

Discriminants measure volume and arithmetic complexity, and they simultaneously
encode ramification. We devote this chapter to their study.

15.1 » Discriminantal notions

Let xq, ..., x, € R", and let A be the matrix with columns x;. Then the parallelopiped
with edges from the origin to x; has volume |det(A)|. We can compute this volume in
another way:
det(A)? = det(A*A) = det(M) (15.1.1)
where M has ijth entry equal to the ordinary dot product x; - x;.

The absolute discriminant of a number field is a volume and a measure of arithmetic
complexity, as follows. If xi, ..., x, is a Z-basis for Zr and ¢ : F — F®g R ~ R"
(normalized with an extra factor of V2 at the complex places), then the volume of Z
in this embedding is the absolute determinant of the matrix with columns ¢(x;), and
its square is defined to be the absolute discriminant of F. Replacing the dot product in
the definition of M in (15.1.1) with the trace form (x, y) = Trg,g(xy), we see that the
absolute discriminant is a positive integer. A prime p is ramified in F if and only if it
divides the discriminant, so this volume also records arithmetic properties of F'.

More generally, whenever we have a symmetric bilinear form 7: V XV — F on
a finite-dimensional F-vector space V, there is a volume defined by the determinant
det(T'(x;, xj));,j: and when T arises from a quadratic form Q, this is volume is the
discriminant of Q (up to a normalizing factor of 2 in odd degree, see 6.3.1). In
particular, if B is a finite-dimensional algebra over F, there is a bilinear form

BxB—F
(a, B) = Trpir(ap)

(or, when B is semisimple, the bilinear form associated to the reduced trace trd)
and so we obtain a discriminant—a “squared” volume—measuring in some way the
complexity of B. As in the commutative case, discriminants encode ramification.

In this chapter, we establish basic facts about discriminants, including how they
behave under inclusion (measuring index) and localization. To illustrate, let B be a
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quaternion algebra over Q and let O C B be an order. We define the discriminant of
O to be
disc(O) := |det(trd(a;@))i,j| € Z>o (15.1.2)

b
where a1, ..., a4 is a Z-basis for O. For example, if B = (%) with a, b € Z~\{0},
then the standard order O = Z + Zi + Zj + Zk has
disc(O) = (4ab)*;

indeed, this is the discriminant of the quadratic form (1, —a, —b, ab), the reduced norm
restricted to O. If a,b < 0, i.e. B is definite, then the reduced norm is a Euclidean
norm on B, = B ®g R ~ Hj; normalizing with an extra factor \/5, the discriminant is
square of the covolume of the lattice O C B. For example, the Lipschitz order Z(i, j)
(11.1.1) has disc(Z(i, j)) = 4?, the square of the covolume of the lattice (V27Z)* c R*.

If O’ 2 O, then disc(O) = [0’ : O] disc(O’); in particular O’ = O if and only if
disc(O’) = disc(O). It follows that the discriminant of an order is always a square, so
we define the reduced discriminant discrd(O) to be the positive integer square root,
and discrd(O)? = disc(O). The discriminant of an order measures how far the order
is from being a maximal order. We will show (Theorem 15.5.5) that O is a maximal
order if and only if discrd(O) = disc B, where disc B is the (squarefree) product of
primes ramified in B.

In an extension of Dedekind domains, the different of the extension is an ideal whose
norm is the discriminant of the extension (see Neukirch [Neu99, §111.2]). The different
is perhaps not as popular as its discriminant cousin, but it has many nice properties,
including easy-to-understand behavior under base extension. Similar conclusions holds
in the noncommutative context (presented in section 15.6).

15.2 Discriminant

For further reference on discriminants, see Reiner [Rei2003, §10, §14].

Let R be a noetherian domain and let F = Frac R. Let B be a semisimple algebra
over F' with dimg B = n. For elements a4, . . ., a, € B, we define

dlay,...,a,) = det(trd(aiaj))i,jzl’,__,n. (15.2.1)

Let I C B be an R-lattice.

Definition 15.2.2. The discriminant of [ is the R-submodule disc(/) € F generated
by the set
{dlay,...,an) :ay,...,a, €1}.

15.2.3.If I = O, then for a1, ..., @, € O we have a;a; € O and so trd(a;;) € R for
all i, j. Thus d(a, ..., a;,) € R and therefore disc(O) C R.
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Remark 15.2.4. When working over Z, it is common to take the discriminant instead to
be the positive generator of the discriminant as an ideal; passing between these should
cause no confusion.

Although Definition 15.2.2 may look unwieldly, it works as well in the commutative
case as in the noncommutative case. Right away, we see that if O C O are R-orders,
then disc(O’) | disc(O).

The function d itself transforms in a nice way under a change of basis, as follows.

Lemma 15.2.5. Let ay,...,a, € B and suppose Bi,...,Bn € B are of the form
,3[ = Z;lzl m;ja; with m;j € F.Let M = (m[j),-,j:]’m,n. Then

dBi, ..., Bn) = det(M)*d(ay, . .., an). (15.2.6)

Proof. By properties of determinants, if 51, . . ., 8, are linearly dependent (over F') then
d(B1, ..., Bn) = 0and either 1, . . ., @, are also linearly dependent or det(M) = 0, and
in either case the equality (15.2.6) holds trivially.

Sosupposethat By, . . ., B, are linearly independent, then «, . . ., @, are also linearly
independent and the matrix M, a change of basis matrix, is invertible. By Gaussian
reduction, we can write M as a product of elementary matrices (a matrix that coincides
with the identity matrix except for a single off-diagonal entry), permutation matrices
(a matrix interchanging rows suffices), and a diagonal matrix; it is enough to check that
the equality holds when M is a matrix of one of these forms. And for such a matrix, the
equality can be checked in a straightforward manner using the corresponding property
of determinants. O

Corollary 15.2.7. If I is free as an R-module, and «, . . ., a, is an R-basis for I, then

disc(/) = d(ay,...,a,)R.

Proof. The matrix M writing any other Si,...,8, € [ in terms of the basis has
M € M, (R) so det(M) € R, and therefore d(By, ..., B,) € d(ay,...,,)R by Lemma
15.2.5. o

15.2.8. More generally, if / is completely decomposable with
I=a0101® - ®a,a,
such as in (9.3.7), then from (15.2.6)
disc(!) = (a1 -+ a,)2d(ar, . . ., an).

More generally, the discriminant is well-behaved under automorphisms because
the reduced trace is so.

Corollary 15.2.9. If ¢: B = B is an F-algebra automorphism, then disc(¢(I)) =
disc(1).

Proof. By Proposition 7.8.6, we have trd(¢(a8)) = trd(ap) for all a, 8 € B. There-
fore, for all ay,...,a, € B we have d(¢(ay),...,d(a,)) = d(ay,...,ay); the result
disc(¢(1)) = disc(Z) follows. O
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Our primary interest will be in the case I = O.

Example 15.2.10. Suppose char F # 2. Let B := (a,b | F) with a,b € R. Let O :=
R®Ri®Rj® Rij be the standard order. Then disc(O) is the principal R-ideal generated

by

2 0 0 0
Cee 0 2a 0 0 |_ 2
d(1,i,j,ij) = det 0 0 2 o |7 —(4ab)“.

0 0 0 -2ab

The calculation when char F' = 2 is requested in Exercise 15.1.

Example 15.2.11. Let B := M,,(F) and O := M, (R). Then disc(O) = R (Exercise
15.2).

15.2.12. Let B := (K, b | F) be a quaternion algebra over F' with b € R and let S be an
R-order in K. Let O := S @ Sj; then O is an R-order in B by Exercise 10.7. We have
disc(0) = b? disc(S)?, by Exercise 15.4.

In particular, let F be a nonarchimedean local field, let R be its valuation ring and
p = Rr its maximal ideal, and let B be a division quaternion algebra over F. Then
by Theorem 13.3.11, we have B =~ (K, | F) with K 2 F an unramified separable
quadratic extension of F. The valuation ring S of K has disc(S) = R, so the valuation
ring O = S @ S of B has discriminant disc(O) = p.

15.2.13. Equation (15.2.6) and the fact that /) = I ® R implies the equality
diSC([(p)) = diSC(I)(p)

on localizations and for the same reason an equality for the completions disc(/) =
disc(/)y. In other words, the discriminant respects localization and completion and can
be computed locally. Therefore, by the local-global principle (Lemma 9.4.6),

disc(I) = ﬂ disc(Ip))-
p

Lemma 15.2.14. If B is separable as an F-algebra and I is projective as an R-module,
then disc(]) is a nonzero projective fractional ideal of R.

Proof. Since I is an R-lattice, there exist elements a1, . . ., @, which are linearly inde-
pendent over F. Since B is separable, by Theorem 7.9.4, trd is a nondegenerate bilinear
pairing on B so disc(/) is a nonzero ideal of R. It follows from Lemma 15.2.5 that
disc(/) is finitely generated as an R-module, since this is true of I: we apply d to
all subsets of a set of generators for / as an R-module. To show that disc(/) is pro-
jective, by 9.2.1 we show that disc([) is locally principal. Let p be a prime ideal of
R. Since I is a projective R-module, its localization Iy is free; thus from Corollary
15.2.77, we conclude that disc([)(p) = disc(l(p)) is principal over Ry and generated by
disc(ay, . . ., ay) for an Ryy-basis ay, . . ., a, of I, as desired. O
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We conclude this section comparing lattices by their index and discriminant as
follows. We recall the definition of index (section 9.6).

Lemma 15.2.15. Let I, J C B be projective R-lattices. Then
disc(l) = [J : IT% disc(J).
Moreover, if I C J, then disc(I) = disc(J) if and only if I = J.

Proof. For the first statement, we argue locally, and combine (15.2.6) and Lemma 9.6.4.
For the second statement, clearly disc(J) C disc(/), and if I = J then equality holds;
and conversely, from disc(/) = [J : I]fe disc(J) = disc(J) we conclude [J : I]g = R,
hence J = I by Proposition 9.6.8. O

Remark 15.2.16. We defined the discriminant for semisimple algebras so that it is given
in terms of the reduced trace. This definition extends to an arbitrary finite-dimensional
F-algebra B, replacing the reduced trace by the algebra trace Trp|r. If B is a central
simple F-algebra of dimension n2, then n trd = Trp)r so when n € F* one can recover
the discriminant as we have defined it here from the more general definition; but if
n = 0 € F then the discriminant of B computed with the algebra trace will be zero.

15.3 Quadratic forms

Essentially the same definition of discriminant (Definition 15.2.2) applies to quadratic
modules, as follows. We recall 6.3.1, where the discriminant was defined in all char-
acteristics.

Let O: M — L be a quadratic module over R (Definition 9.7.3) withtk M = n and
associated bilinear map7: M X M — L.

15.3.1. Let xy,...,x, € M and f € LY := Homg(L, R). If n is even, we define

d(xi, ..., xn3 f) := det(f(T(xi, Xj)))ij=1,...n- (153.2)
If n is odd, then by specializing the universal determinant as in 6.3.4, we define
d(x1, ..., xp3 f) = (det /2)(f (T (xi, Xj)))ij=1,...n- (15.3.3)
The discriminant of Q is then the ideal disc(Q) C R generated by the set
{dxt, ... Xy f) i Xt,.. ., xn €M, feLY). (15.3.4)

15.3.5. If M, L are free with R-basis xi, . . ., x, and e, respectively, then letting f € LY
the dual to e with f(e) = 1 gives

disc(Q) = d(x1, . . ., Xn; f)R.

In particular, since M, L are projective and therefore locally free over R, the discrimi-
nant of Q is locally free and hence a projective R-ideal.
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Lemma 15.3.6. The discriminant of a quadratic module is well-defined up to similarity.

Proof. Let Q: M — L and Q': M’ — L’ be quadratic modules over R similar by
g:M > M and h: L = L’. Tt suffices to check the invariance locally, so to this end
we may suppose that the modules are free; choose a basis M = 3" | Rx; and L = Re,
and let x! = g(x;) and ¢’ = h(e). Then M’ = 37| Rx] and L’ = Re’. Let f, f’ be dual
to e, e’; then postcomposing Q and Q’ by f, f* we may suppose L = L’ = R and A is
the identity.

We then have Q’(g(x)) = Q(x) for all x € M, so the same is true of the associated
bilinear forms 7, 7’. But then d(x;, cooy Xp) =d(x1,. .., x,), and by 15.3.5 this implies
disc(Q) = disc(Q’) as ideals of R. |

15.3.7. Let B be a finite-dimensional F-algebra with a standard involution. Then the
reduced norm is a quadratic form on B with associated bilinear form 7'(a, 8) = trd(af3).
Although the bilinear form differs by the presence of this standard involution from the
definition of discriminant in (15.2.1), the resulting discriminants are the same (up to
R™): see Exercise 15.13.

Lemma 15.3.8. The quadratic module Q is nonsingular if and only if disc(Q) = L.

In particular, suppose that M =~ R" is free with basis e; and L = R, and let
[T] := (T(ei, €)))i,j € M (R) be the Gram matrix in this basis. Then Q is nonsingular
if and only if det([T]), (det /2)([T]) € R* according as n is even or odd.

Proof. The map T: M — Homg(M, L) is an isomorphism if and only if it is an
isomorphism in every localization, so we may suppose that Q is free, with M = R"
and L = R, which is to say we may prove the second statement in the case where R is
local, with maximal ideal p and residue field k := R/p. Let O mod p: M ®r k — k
be the reduction of Q; its Gram matrix is [T] mod p € M, (k). Over the field k, we
have that Q mod p is nonsingular if and only if it is nondegenerate if and only if
det[T], (det /2)([T]) # O according as n is even or odd; since R is local, these are
equivalent to asking that these values are in R*. An application of Nakayama’s lemma
then implies the result. O

15.4 Reduced discriminant

In this section, we extract a square root of the discriminant for quaternion orders.
Indeed, in Example 15.2.10, we saw that the discriminant of the standard R-order
O C B =(a,b| F)is disc(O) = (4ab)’R, a square. If O’ is another projective R-order,
then disc(O’) = [O : O’]%e disc(O) by Lemma 15.2.15, so in fact the discriminant of
every R-order is the square of an R-ideal.

In fact, there is a way to define this square root directly, inspired by vector calculus.

15.4.1. Ifu, v, w € R3 then |u-(vxw)]|, the absolute value of the so-called mixed product
(or scalar triple product or box product), is the volume of the parallelopiped defined
by u, v, w; identifying R3 ~ HO as in section 2.4, from (2.4.10) we can write

2u-(vXw)=u-(wvw—wy)=—trd(u(vw — wv)).
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For example, 2 = =2i - (j X k) = —i - (jk — kj) = trd(ijk).
More generally (and carefully attending to the factors of 2) we make the following
definition. Let B be a quaternion algebra over F.

15.4.2. For a1, a», a3 € B, we define

m(ay, az, @3) = trd((a1 a2 — az1)az)

= a/1(12a/_3 - (Zza’la’_3 - a/3a_2a_1 + a’3a/_1(¥_2.

Lemma 15.4.3. The form m: B X B X B — F is an alternating trilinear form which is
well-defined as a form on B/F.

Proof. The form is alternating because for all @, @» € B we have m(ay, @;,az) = 0
and

m(ay, az, 1) = trd((@yaz — azar)a) = trd(nrd(a)asz) — trd(a; nrd(ay)) = 0

and similarly m(ay, ap, @) = 0. The trilinearity follows from the linearity of the
reduced trace. Finally, from these two properties, the descent to B/F follows from the

computation m(1, ay, ay) = 0 for all @, a, € B.
(Alternatively, one can check that the pairing descends to B/F first, so that the
involution becomes @ + F = —a + F, and then the alternating condition is immediate.)
O

Definition 15.4.4. Let / C B be an R-lattice. The reduced discriminant of / is the
R-submodule discrd(/) of F generated by

{m(ay, @2, @3) : a1, ap, a3 € I}.

15.4.5. If a;, B; € B with B; = Ma; for some M € M3(F), then
m(B1, B2, B3) = det(M)m(ay, az, a3) (15.4.6)

by Exercise 15.10. It follows that if I C J are projective R-lattices in B, then

discrd(Z) = [J : I]discrd(J).
Lemma 15.4.7. If I is a projective R-lattice in B, then disc(I) = discrd(/)>.
Proof. First, we claim that

m(i, j,ij)* = ~d(L,i, j,ij).
If char F # 2, then disc(1, 4, j,ij) = —(4ab)? by Example 15.2.10 and
m(i, j,ij) = wd((G] - ji)ij) = wd(2ij(ij)) = 4ab,

as claimed. See Exercise 15.1 for the case char F' = 2. This computation verifies the

result for the order O = R&® Ri ® Rj & Rij.
The lemma now follows using (15.2.6) and (15.4.6), for it shows that

2
m(ay, a2, 3)” = —d(1, ay, a2, @3)

for all @y, ap, @3 € B, and the latter generate discrd(/) by Exercise 15.7. m|
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The notions in this section extend more generally to an arbitrary algebra B with a
standard involution.

15.5 Maximal orders and discriminants

We now relate discriminants to maximal orders. Throughout this section, we suppose
that R is a Dedekind domain. We record the following important principle.

Lemma 15.5.1. Let O € O’ be R-orders. Then O = O’ if and only if disc O = disc O'.

Proof. In the nontrivial direction, by Lemma 15.2.15 we have
discO =[O’ : O]%z disc(O")
so disc O = disc O’ if and only if O = O’. O
First, we ensure the existence of maximal orders (cf. 10.4.2) using the discriminant.

Proposition 15.5.2. There exists a maximal R-order O C B, and every order O is
contained in a maximal R-order O’ C B.

Proof. The algebra B has at least one R-order O as the left- or right-order of a lattice
10.2.5. If O is not maximal, then there exists an order O’ 2 O with disc(O’) 2 disc(O)
by Lemma 15.5.1. If O’ is maximal, we are done; otherwise, we can continue in
this way to obtain orders O = O; € O, C ... and an ascending chain of ideals
disc(O7) € disc(O;) € ... of R; but since R is noetherian, the latter stabilizes after
finitely many steps, and the resulting order is then maximal, by Lemma 15.2.15. O

Using the discriminant as a measure of index, we can similarly detect when orders
are maximal. We recall (10.4.3) that the property of being maximal is a local property,
so we begin with the local matrix case.

Lemma 15.5.3. Suppose that R is a DVR, and let O C B := M, (F) be an R-order.
Then O is maximal if and only if disc O = R.

Proof. First, suppose O is maximal. Then by Corollary 10.5.5, we conclude O =
M,,(R) (conjugate in B). By Corollary 15.2.9, we have discO = disc M, (R); we
computed in Example 15.2.11 that disc M,,(R) = R, as claimed. The converse follows
by taking O’ a maximal order containing O (furnished by Proposition 15.5.2) and
applying Lemma 15.5.1. O

Example 15.5.4. By 15.2.12, if F' is a nonarchimedean local field with valuation ring
R and B is a division quaternion algebra over F, then the valuation ring O C B is the
unique maximal order (Theorem 13.3.11) with disc O = p? and discrd O = p. Arguing
as in Lemma 15.5.3, we find that an R-order in B is maximal if and only if it has
reduced discriminant p.

Maximality can be detected over global rings in terms of discriminants, as follows.
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Theorem 15.5.5. Let R be a global ring with field of fractions F, let B be a quaternion
algebra over F, and let O C B be an R-order. Then O is maximal if and only if

discrd(O) = discgr(B). (15.5.6)

Proof. Suppose that O is maximal. Then O, is maximal for all primes p of R. If
By =~ My(Fp) is split, then by Lemma 15.5.3, discrd O, = Ry; if By is a division
algebra, then discrd O = pRy. Since discriminants are defined locally, we conclude
that
discrd(0) = ]—[ p = discr(B)
peRam B\ S

if R as a global ring is the ring of S-integers.

In the other direction, if (15.5.6) holds, we choose O’ O O be a maximal
R-superorder and conclude that disc(O) = discg(B)? = disc(O’) so O = O’ is maximal
by Lemma 15.5.1. O

Example 15.5.7. We recall Example 14.2.13, giving an explicit description of quater-
nion algebras B = (a, b | Q) of prime discriminant D = p. We now exhibit an explicit
maximal order in each of these algebras.

For p =2, we have B = (—1,-1| Q) and take O C B the Hurwitz order.

For p = 3(mod4),wetook B = (—p, —1 | Q). The order O := Z{(1+i)/2, j) = S®Sj
with § := Z[(1 + {)/2] has discrd O = p by 15.2.12, so O is maximal by Theorem
15.5.5.

For p = 1 (mod 4), we had B = (—p, —¢q | Q) where ¢ = 3 (mod 4) is prime and

(g) = —1, so that by qudaratic reciprocity —pq = —gp = 1. In this case, let ¢ € Z be
p

such that ¢ = —p (mod g). Then

1+ @Zi(1+j) @Z(C+i)j
2 2 q

is a maximal order: one checks that O is closed under multiplication (in particular, the
basis elements are integral), and then that disc O = p. The order Z{i, (1+)/2) € O has
the larger reduced discriminant pg, hence the need for a denominator g in the fourth
element.

For further discussion of explicit maximal orders over Z, see Ibukiyama [Ibu82,
pp- 181-182] or Pizer [Piz80a, Proposition 5.2]. For a more general construction, see
Exercise 15.5.

O=Z&Z

15.6 Duality

To round out the chapter, we relate the discriminant and trace pairings to the dual and
the different. For a detailed, general investigation of the dual in the context of other
results for orders, see Faddeev [Fad65].

We continue with the hypothesis that R is a domain with F = Frac R. Let B be an
F-algebra with n := dimg B < co. As the trace pairing will play a significant role in
what follows, we suppose throughout that B is separable (in particular, semisimple) as
an F-algebra with reduced trace trd. Let I, J be R-lattices in B.
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Definition 15.6.1. The dual of / (over R, with respect to trd) is
I*:={e eB:tudal) CR} ={eecB:udla) CR}.
Some properties of the dual are evident.
Lemma 15.6.2.

(@) If 1 C J then I¥ 2 J¥.
(b) For all B € B, we have (BI)* = 1*7".
(c) If p C R is prime, then (I(,,))'i = (Iﬂ)(p) and the same with the completion.

Proof. For parts (a) and (b), see Exercise 15.15. The proof of part (c) is similarly
straightforward. O

15.6.3. Suppose that [ is free over R with basis a1, .. ., @;. Since the trace pairing on
# € B to a; under the

i
reduced trace trd, so that trd(a/?aj) =0, 1 according asi # jori = j.

Then I* is free over R with basis a?,...,aﬁ: if B = b1a¥ + e+ bnag with

bi,...,b, € F,then B8 € 1% if and only if trd(e;8) = b; € R for all i.

B is nondegenerate (Theorem 7.9.4), there exists a dual basis a

Lemma 15.6.4. I* is an R-lattice in B.

Proof. Let ay,...,a, € I be an F-basis for B, and let J = }}; Ra; C I. Then there

exists nonzero r € Rsuch that r7 € J,soJ C T C r1J. Let af,...,ag € B be the

dual basis as in 15.6.3. It follows that J# = ¥ i Rcyl.j is an R-lattice, and consequently by

Lemma 15.6.2(a)—(b) we have rJ#% c I* C J*; since R is noetherian, I* is an R-lattice.
m}

From now on, we suppose that R is a Dedekind domain; in particular, [ is then
projective as an R-module.

Lemma 15.6.5. The natural inclusion I — (I C B is an equality.

Proof. Ifa e I and B € I* then trd(eB) C Rand @ € (I"Y%. To show that the map is an
equality, we argue locally, so we may suppose that / is free over R with basis «;; then

by applying 15.6.3 twice, (I #)¥ has basis (oz?)ti = a;, and equality holds. O

Proposition 15.6.6. We have Og(I) = O (I and OL(I) = Ox(IH).

Proof. First the inclusion (C). Let @ € Or({); then I C I, so Ifla C 1] and
trd(a*1) = wd(I*1a) € rd(I*1) C R

hence aI* C I* and @ € O (I*). Thus Or(1) € O (I*) € Or((U"¥) = Or(I) by
Lemma 15.6.5, so equality holds. A similar argument works on the other side. O

The name dual is explained by the following lemma.
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Proposition 15.6.7. Let trd(/) = a C F. Then the map

1* = Homg(1, a)
B - (a - trd(af))

is an isomorphism of Or(I), O_(I)-bimodules over R.

(15.6.8)

Proof. For € I, let ¢g: I — a be defined by ¢g(a) = trd(ap) for a € I. The map
B — ¢p € Homg(/, a) from (15.6.8) is an R-module homomorphism. Moreover, it a
map of Or(1), O (I)-bimodules: if y € O (1) then y € Or(Ih by Lemma 15.6.6, with
induced map

Ppy(@) = trd(aBy) = trd(yap) = ¢p(ya) = (ydp)(@) (15.6.9)

and similarly on the other side.
Finally, we prove that the map (15.6.8) is also an isomorphism. Extending scalars
to F, the trace pairing gives an isomorphism of F-vector spaces

Homg(I, a) ®g F ~ Homp(B, F) ~ B
B g

because the pairing is nondegenerate (as B is separable). So immediately the map is
injective; and it is surjective, because if ¢ € Homg(/, a) then ¢ = ¢g for some 8 € B,
but then ¢(a) = trd(aB) e Rforalla e I,so S e[ # by definition. O

Remark 15.6.10. The content of Proposition 15.6.7 is that although one can always
construct the module dual, the trace pairing concretely realizes this module dual as a
lattice. (And we speak of bimodules in the proposition because Homg(/, a) does not
come equipped with the structure of R-lattice in B.) This module duality, and the fact
that / is projective over R, can be used to give another proof of Lemma 15.6.5.

The dual asks for elements that pair integrally under the trace. We might also ask
for elements that multiply one lattice into another, as follows.

Definition 15.6.11. Let 1, J be R-lattices. The left colon lattice of / with respect to J
is the set
(I:J):={aeB:aJcl}

and similarly the right colon lattice is

(I:NHr:={aeB:Jacl}.

Note that (I : I). = O_(I) is the left order of I (and similarly on the right). The
same proof as in Lemma 10.2.7 shows that (/ : J)_ and (I : J)g are R-lattices.

Lemma 15.6.12. We have
ANF =1 Dr=UY: DL
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Proof. We have B € (IJ)* if and only if trd(81J) C R if and only if Ba € J¥ for
all @ € I if and only if 8 € (J* : I).. A similar argument works on the other side,
considering trd(1Jg) instead. O

Corollary 15.6.13. We have O, (I) = (I1%)# and Ox(I) = (I* )%

Proof. Combining Lemmas 15.6.5 and 15.6.12,
Ol = (I : D = (M : D = U1

and similarly on the right. O

Definition 15.6.14. The level of I is the fractional ideal 1vl(/) = nrd(/ ﬁ) CF.
We now relate the above duality to the discriminant.

Definition 15.6.15. The codifferent of O is
codiff(O) := OF.

Lemma 15.6.16. O, (codiff(O)) = Or(codiff(O)) = O and O C codiff(O).

Proof. By Proposition 15.6.6, O = Ogr(O) = O, (codiff(O)) and similarly on the right.
And O C codiff(O) since trd(OO) = trd(O) C R. O

The major role played by the codifferent is its relationship to the discriminant, as
follows.

Lemma 15.6.17. disc(O) = [codiff (O) : O]g.

Proof. For a prime p € R we have disc(O)) = disc(O(p)) and [O?p) : Omlry,, =
([0 : O] R)(p)> and so to establish the equality we may argue locally. Since Oy, is
free over R(p), we reduce to the case where O is free over R, say O = }; Ra;. Then
Ot = i Rai.i with a'?, R a/ﬂ € B the dual basis, as in 15.6.3.

The ideal disc(O) is principal, generated by d(a1, ..., a,) = det(trd(a;a;));,;; at
the same time, the R-index [O* : O]y is generated by det(8) where & is the change of
basis from a/i.j to ;. But ¢ is precisely the matrix (trd(e;;)); ; (Exercise 15.14), and
the result follows. O

Remark 15.6.18. In certain circumstances, it is preferable to work with an integral
ideal measuring the discriminant, so instead of the codifferent instead a different: we
will want to take a kind of inverse. We study this in the next chapter: see section 16.8.
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Exercises

Unless otherwise specified, let R be a noetherian domain with field of fractions F.

,b
1. Let char F = 2 and let [aT be a quaternion algebra over F with a, b € R and

b # 0. Show that O = R + Ri + Rj + Rij is an R-order in B and compute the
(reduced) discriminant of O.

2. Let B = M,,(F) and O = M,,(R) with n > 1. Show that disc(O) = R. [Hint:
Compute directly on a basis {e;;}; j of matrix units, which satisfy e;jeyj = e;j
if j =1i’, otherwise zero.]

3. Suppose R is a global ring, so F is a global field; let B be a quaternion algebra
over F and let O C B be an R-order. Prove that for all primes p C R, we have
O, = M, (Rp) if and only if p { disc O.

4. Let B := (K,b | F) be a quaternion algebra over a field F with b € F*. Let
S C K be an R-order with 0 := disc(S); let b C K be a fractional S-ideal (which
can be but need not be invertible), and finally let O := S @ bj.

(a) Show that O is an R-order if and only if Nmg|r b C b'R.
(b) Compute that discrd O = 0(Nmg | b)b.

5. In this exercise, we consider a construction of maximal orders as crossed prod-

°b
ucts in the simplest case over Q, continuing Exercise 14.9. Let B := 9.2 be a

quaternion algebra of discriminant D, where b € Z is squarefree with D | b and
q is an odd prime with g° = £q = 1 (mod 4), the minus sign if B is indefinite.

Let K := Q(\/q_O) be the quadratic field of discriminant ¢°. Let S € K be the
ring of integers of K, so disc S = ¢°.

<&

(a) Show that for all odd primes p | (b/D), we have (q_) = 1. Conclude there
p

exists an ideal b C S such that Nmb = b/D.
(b) Let q € S be the unique prime above ¢, and let

O:=S®(qb)'j

Show that O is a maximal order in B.
(c) Let ¢ € Z satisfy ¢* = ¢° (mod 4b/D). Show that the order O in (b) can be

written {4 Dic +1)j
+1 . c+i)