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Preface

This book is first of all designed as a text for the course usually called
“theory of functions of a real variable”. This course is at present cus-
tomarily offered as a first or second year graduate course in United
States universities, although there are signs that this sort of analysis
will soon penetrate upper division undergraduate curricula. We have
included every topic that we think essential for the training of analysts,
and we have also gone down a number of interesting bypaths. We hope
too that the book will be useful as a reference for mature mathematicians
and other scientific workers. Hence we have presented very general and
complete versions of a number of important theorems and constructions.
Since these sophisticated versions may be difficult for the beginner, we
have given elementary-avatars of all important theorems, with appro-
priate suggestions for skipping. We have given complete definitions, ex-
planations, and proofs throughout, so that the book should be usable
for individual study as well as for a course text.

Prerequisites for reading the book are the following. The reader is
assumed to know elementary analysis as the subject is set forth, for
example, in ToM M. AposToL’s Mathematical Analysis [Addison-Wesley
Publ. Co., Reading, Mass., 1957], or WALTER RUDIN’s Principles of Mathe-
matical Analysis [27¢ Ed., McGraw-Hill Book Co., New York, 1964].
There are no other prerequisites for reading the book: we define practi-
cally everything else that we use. Some prior acquaintance with abstract
algebramay be helpful. The text 4 Survey of Modern Algebra, by GARRETT
BirkHOFF and SAUNDERS MAc LANE [37% Ed., MacMillan Co., New York,
1965] contains far more than the reader of this book needs from the
field of algebra.

Modern analysis draws on at least five disciplines. First, to explore
measure theory, and even the structure of the real number system, one
must use powerful machinery from the abstract theory of sets. Second,
as hinted above, algebraic ideas and techniques are illuminating and
sometimes essential in studying problems in analysis. Third, set-theoretic
topology is needed in constructing and studying measures. Fourth, the
theory of topological linear spaces [“functional analysis”] can.often be
applied to obtain fundamental results in analysis, with surprisingly little
effort. Finally, analysis really is analysis. We think that handling ine-
qualities, computing with actual functions, and obtaining actual num-
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bers, is indispensable to the training of every mathematician. All five of
these subjects thus find a place in our book. To make the book useful
to probabilists, statisticians, physicists, chemists, and engineers, we have
included many ‘“‘applied” topics: Hermite functions; Fourier series and
integrals, including PLANCHEREL’S theorem and pointwise summability;
the strong law of large numbers; a thorough discussion of complex-
valued measures on the line. Such applications of the abstract theory
are also vital to the pure mathematician who wants to know where his
subject came from and also where it may be going.

With only a few exceptions, everything in the book has been taught
by at least one of us at least once in our real variables courses, at the
Universities of Oregon and Washington. As it stands, however, the book
is undoubtedly too long to be covered ¢» fofo in a one-year course. We
offer the following road map for the instructor or individual reader who
wants to get to the center of the subject without pursuing byways, even
interesting ones.

Chapter Omne. Sections 1 and 2 should be read to establish our
notation. Sections 3, 4, and 5 can be omitted or assigned as outside
reading. What is essential is that the reader should have facility in the
use of cardinal numbers, well ordering, and the real and complex number
fields.

Chapter Two. Section 6 is of course important, but a lecturer should
not succumb to the temptation of spending too much time over it. Many
students using this text will have already learned, or will be in the
process of learning, the elements of topology elsewhere. Readers who
are genuinely pressed for time may omit § 6 and throughout the rest of
the book replace “locally compact Hausdorff space” by “real line”’, and
“compact Hausdorff space” by ““closed bounded subset of the real line”.
We do not recommend this, but it should at least shorten the reading.
We urge everyone to cover § 7 in detail, except possibly for the exercises.

Chapter Three. This chapter is the heart of the book and must be
studied carefully. Few, if any, omissions appear possible. Chapter Three
is essential for all that follows, barring § 14 and most of § 16.

After Chapter Three has been completed, several options are open.
One can go directly to § 21 for a study of product measures and FUBINI'S
theorem. [The applications of FUBINI’S theorem in (21.32) et seq. require
parts of §§ 13—18, however.] Also §§ 17—18 can be studied immediately
after Chapter Three. Finally, of course, one can read §§ 13—22 in order.

Chapter Four. Section 13 should be studied by all readers. Subheads
(13.40)—(13.51) are not used in the sequel, and can be omitted if neces-
sary. Section 14 can also be omitted. [While it is called upon later in
the text, it is not essential for our main theorems.] We believe never-
theless that § 14 is valuable for its own sake as a basic part of functional
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analysis. Section 15, which is an exercise in classical analysis, should be
read by everyone who can possibly find the time. We use Theorem
(15.11) in our proof of the LEBESGUE-RADON-NIKODYM theorem [§ 197,
but as the reader will see, one can get by with much less. Readers who
skip § 15 must read § 16 in order to understand § 19.

Chapter Five. Sections 17 and 18 should be studied in detail. They
are parts of classical analysis that every student should learn. Of § 19,
only subheads (19.1)—(19.24) and (19.35)—(19.44) are really essential. Of
§ 20, (20.1)—(20.8) should be studied by all readers. The remainder of
§ 20, while interesting, is peripheral. Note, however, that subheads
(20.55)—(20.59) are needed in the refined study of infinite product
measures presented in § 22.

Chapter Six. Everyone should read (21.1)—(21.27) at the very least.
We hope that most readers will find time to read our presentation of
PLANCHEREL’s theorem (21.31)—(21.53) and of the HARDY-LITTLEWOOD
maximal theorems (21.74)—(21.83). Section 22 is optional. It is essential
for all students of probability and in our opinion, its results are extremely
elegant. However, it can be sacrificed if necessary.

Occasionally we use phrases like “obvious on a little thought , or
“a moment’s reflection shows. ..”. Such phrases mean really that the
proof is not hard but is clumsy to write out, and we think that more
writing would only confuse the matter. We offer a very large number of
exercises, ranging in difficulty from trivial to all but impossible. The
harder exercises are supplied with hints. Heroic readers may of course
ignore the hints, although we think that every reader will be grateful
for some of them. Diligent work on a fairly large number of exercises is
vital for a genuine mastery of the book: exercises are to a mathematician
what CZERNY is to a pianist.

We owe a great debt to many friends. Prof. KENNETH A. Ross has
read the entire manuscript, pruned many a prolix proof, and uncovered
myriad mistakes. Mr. LEE W. ERLEBACH has read most of the text and
has given us useful suggestions from the student’s point of view. Prof.
KEeITH L. PHILLIPS compiled the class notes that are the skeleton of the
book, has generously assisted in preparing the typescript for the printer,
and has written the present version of (21.74)—(21.83). Valuable con-
versations and suggestions have been offered by Professors ROBERT M.
BLUMENTHAL, IRVING GLICKSBERG, WILLIAM H. SiLLs, DoNALD R.TRUAX,
BEeRTRAM Yo0OD, and HERBERT S. ZUCKERMAN. Miss BERTHA THOMPSON
has checked the references. The Computing Center of the University
of Oregon and in particular Mr. JAMEs H. BJERRING have generously
aided in preparing the index. We are indebted to the several hundred
students who have attended our courses on this subject and who have
suffered, not always in silence, through awkward presentations. We
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are deeply grateful to Mrs. SHANTI THAYIL, who has typed the entire
manuscript with real artistry.

Our thanks are also due to the Universities of Oregon and Washington
for exemption from other duties and for financial assistance in the pre-
paration of the manuscript. It is a pleasure to acknowledge the great
help given us by Springer-Verlag, in their rapid and meticulous publica-
tion of the work.

Seattle, Washington EpwiNn HEwITT

Eugene, Oregon KARL R. STROMBERG
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CHAPTER ONE
Set Theory and Algebra

From the logician’s point of view, mathematics is the theory of sets
and its consequences. For the analyst, sets and concepts immediately
definable from sets are essential tools, and manipulation of sets is an
operation he must carry out continually. Accordingly we begin with two
sections on sets and functions, containing few proofs, and intended largely
to fix notation and terminology and to form a review for the reader in
need of one. Sections 3 and 4, on the axiom of choice and infinite arith-
metic, are more serious: they contain detailed proofs and are recommended
for close study by readers unfamiliar with their contents.

Plainly one cannot study real- and complex-valued functions seriously
without knowing what the real and complex number fields are. Therefore,
in § 5, we give a short but complete construction of these objects. This
section may be read, recalled from previous work, or taken on faith.

This téxt is not rigorous in the sense of proceeding from the axioms
of set theory. We believe in sets, and we believe in the rational numbers.
Beyond that, we have tried to prove all we say.

§ 1. The algebra of sets

(1.1) The concept of a set. As remarked above, we take the notion of set
as being already known. Roughly speaking, a set [collection, assemblage,
aggregate, class, family] is any identifiable collection of objects of any
sort. We identify a set by stating what its members [elements, points]
are. The theory of sets has been described axiomatically in terms of the
notion “member of”’. To build the complete theory of sets from these
axioms is a long, difficult process, and it is remote from classical analysis,
which is the main subject of the present text. Therefore we shall make
no effort to be rigorous in dealing with the concept of sets, but will appeal
throughout to intuition and elementary logic. Rigorous treatments of the
theory of sets can be found in Naisve Set Theory by P. HaLMos [Princeton,
N. J.: D. Van Nostrand Co. 1960] and in Axiomatic Set Theory by
P. SuppEs [Princeton, N. J.: D. Van Nostrand Co. 1960].

(1.2) Notation. We will usually adhere to the following notational
conventions. Elements of sets will be denoted by small letters: 4, b, ¢,
e %9, 2, B, v, ... Sets will be denoted by capital Roman letters:
A, B, C, ... Families of sets will be denoted by capital script letters:
oA, B, €, ... Occasionally we need to consider collections of families of
sets. These entities will be denoted by capital Cyrillic letters: X, H, . ..

1



2 Chapter I. Set Theory and Algebra

A set is often defined by some property of its elements. We will write
{x: P(x)} [where P(x) is some proposition about x] to denote the set of
all x such that P (x) is true. We have done nothing here to sharpen the
definition of a set, since “property”’ and “‘set” are from one point of view
synonymous.

If the object x is an element of the set 4, we will write x € 4; while
x ¢ A will mean that x is not in 4.

We write @ for the void [empty, vacuous] set; it has no members at
all. Thus @ = {x: x is a real number and #? < 0} = {x: x is a unicorn in
the Bronx Zoo}, and so on.

For any object x, {x} will denote the set whose only member is x.
Similarly, {%;, %,, . . ., %} will denote the set whose members are precisely
Xy, Xgy o oy K.

Throughout this text we will adhere to the following notations:
N will denote the set {1, 2, 3, . . .} of all positive integers; Z will denote
the set of all integers; Q will denote the set of all rational numbers;
R will denote the set of all real numbers; and K will denote the set of all
complex numbers. We assume a knowledge on the part of the reader of the
sets NV, Z, and Q. The sets R and K are constructed in § 5.

(1.3) Definitions. Let 4 and B be sets such that for all x, x € 4
implies ¥ € B. Then A4 is called a subset of B and we write 4 C B or
BDA. If ACB and BC A, then we write A = B; A + B denies
A=B.1f AC Band 4 + B, we say that 4 is a proper subset of B and
we write 4 % B. We note that under this idea of equality of sets, the void
set is unique, for if , and @, are any two void sets we have 2,C o,
and 2,C 2,.

(1.4) Definitions. If 4 and B are sets, then we define 4 U B as the set
{x:x €A orx¢ B}, and we call A U B the union of A and B. Let o/ be a
family of sets; then we define U/ = {x: x € 4 for some 4 € &/}. Similarly
if {A.}i¢s is a family of sets indexed by iota, we write ;léjz A, ={x:x¢€4,
for some ¢ €I}. If I = N, the positive integers,ﬁ%JNA,, will usually be

written as”U 1A"' Other notations, such as_ LiwA”, are self-explanatory.

For given sets 4 and B, we define 4 N B as the set {x:x ¢ 4 and
% € B}, and we call A N B the intersection of A and B. If o is any family
of sets, we define N o/ = {x: v € A forall 4 € #}; if {4}, is a family of
sets indexed by iota, then we write QI A,={x:x €A, forall, ¢I}. The
00 \ ‘
notation ”QIA,, [and similar notations] have obvious meanings.
Example. If A,= {x : x is a real number, || <%}, n=1238, ...,

then N 4,={0}.
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For a set 4, the family of all subsets of 4 is a well-defined family of
sets which is known as the power set of A and is denoted by #(4). For
example, if 4 = {1, 2}, then Z(4) = {z, {1}, {2}, {1, 2}}.

(1.5) Theorem. Let A, B, C be any sets. Then we have:

@ AUB=BUA; @) ANB=BNA;

() AUd=4; (ii’) ANA=A;

i)y AUg =4, (iii’) ANg=2;

(iv) AU(BUC) (iv’) AN(BNC) -
—(AUB)UC; =(ANB)NC;

vy ACAUB; (v’ ANBCA;

(vi) A C B if and only if (vi) A C B if and only if
AUB=B; ANB=A.

The proof of this theorem is very simple and is left to the reader.

(1.6) Theorem.

i) AN(BUC)=(ANBUMANC),

i) AUBNC)=AUBNAUC).

Proof. These and similar identities may be verified schematically; the
verification of (i) follows:

AN (BUQ) (ANB) U (ANg)
Fig. 1

A similar schematic procedure could be applied to (ii). However, we may
use (i) and the previous laws as follows:
(AUB)N(AUC)=(AUB NAU(4UB)NC)
=(AN4)uBNAHUANCUBNC)=4U
uBNAUMANC=4U(BNC);
the last equality holds because BN AC dandANCCA4. ot
(1.7) Definition. If A N B = o, then 4 and B are said to be disjoint.
If o is a family of sets such that each pair of distinct members of </ are
disjoint, then & is said to be pasrwise disjoint. Thus an indexed family
{A.}.c1 is pairwise disjoint if 4, 4,= & whenever ¢ = 7.
(1.8) Definition. In most of our ensuing discussions the sets in question
will be subsets of some fixed ‘“universal” set X. Thus if A C X, we define

1 The symbol [] will be used throughout the text to indicate the end of a proof.

(BN C)



4 Chapter 1. Set Theory and Algebra

the complement of A [relative to X] to be the set {x: x € X, x ¢ A}. This
set is denoted by the symbol 4. If there is any possible ambiguity as to
which set is the universal set, we will write X N A4’ for A’. Other common
notations for what we call 4’ are X — 4, X\ 4, X ~ A, CA, and 4¢;
we will use A’ exclusively.

(1.9) Theorem [pE MoreAaN’s laws].

(i) (AUB)=4'Nn B’;

(ii) (AN B)Y=A4'UB’;

(iii) (LLGJI 4)' = ‘QI Al

() (0 4)= U 4.

The proofs of these identities are easy and are left to the reader.

(1.10) Definition. For sets A and B, the symmetric difference of A and
Bistheset {x:x €A orx € Band x § A N B}, and we write 4 A B for
this set. Note that 4 A B is the set consisting of those points which are
in exactly one of 4 and B, and that it may also be defined by 4 A B
= (AN B’)U(4'N B). The symmetric difference
is sketched in Fig. 2

(1.11) Definition. Let X be a set and let #
be a nonvoid family of subsets of X such that

(i) A, B€Z implies AUB¢R;

(i) A, B€Z implies A N B’ ¢ .

AAB Then Z is called a ring of sets. A ring of sets
Fig. 2 closed under complementation [i.e. 4 € # implies
A’ €] is called an algebra of sets.

(1.12) Remarks. A ring of sets is closed under the formation of finite
intersections; for, if 4, B €4, then (1.11.i) applied twice shows that
ANB=A4N (4N B)€R. By (1.11.i) and (1.11.i), we have 4 A B
=(AUB)N (4N B)cRZ. Note also that @ € since # is nonvoid.
Also Z is an algebra if and only if X € . There are rings of sets which
are not algebras of sets; e.g., the family of all finite subsets of N is a ring
of sets but not an algebra of sets.

(1.13) Definition. A o-ring [o-algebra] of sets is a ring [algebra] of

sets # such that if {4,:n ¢ N} C %, then”L=Jl A ER.

Much of measure theory deals with families of sets which form o-Tings
or g-algebras. There are ¢-rings which are not g-algebras, ¢.g., the family
of all countable subsets of an uncountable set. [For the definitions of
countable and uncountable, see § 4.]

(1.14) Remarks.! There are many axiomatic treatments of rings and
algebras of sets, and in fact some very curious entities can be interpreted

1 This subhead is included only for its cultural interest and may be omitted by
anyone who is in a hurry.
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as rings or algebras of sets [see (1.25)]. Let B be any set. Suppose that
to each a € B there is assigned a unique element a* ¢ B and that to each
pair of elements a, b € B there is assigned a unique element ¢ V b ¢ B
such that these operations satisfy

(i aVb=>bVa,

(i) aV(@®Ve)={(aVbd)Ve,

(ili) (a*V b*¥)*V (a*V b)*= a.

Sets B with operations V and * [or similar operations] and satisfying
axioms equivalent to (i) —(iii) were studied by many writers in the period
1890—1930. They bear the generic name Boolean algebras, after the
English mathematician GEORGE BooLE [1815—1864]. The axioms
(i) —(iii) were given by the U.S. mathematician E. V. HUNTINGTON
[1874—1952] [Trans. Amer. Math. Soc. 5, 288—309 (1904)].

The reader will observe that if a, b are interpreted as sets and V
and * as union and complementation, then (i) —(iii) are simple identities.
Other operations can be defined in a Boolean algebra, e.g., A [the analogue
of N for sets], which is defined by a A b = (a*V b*)*. A great deal of
effort has been devoted to investigating abstract Boolean algebras. In the
1930’s, the contemporary U.S. mathematician M. H. SToNE showed that
any Boolean algebra can be interpreted as an algebra of sets in the follow-
ing very precise way [Trans. Amer. Math. Soc. 40, 37—111 (1936)]. Given
any Boolean algebra B, there is a set X, an algebra £ of subsets of X,
and a one-to-one mapping v of B onto # such that 7(a*) = (v(a))’
[* becomes '} and 7(a V b) = t(a) U 7(d) [V becomes U]. Thus from the
point of view of studying the operations in a Boolean algebra, one may
as well study only algebras of sets.

"STONE’s treatment of the representation of Boolean algebras was
based on a slightly different entity, namely, a Boolean ring. A Boolean
ring is any ring S such that ¥2 = x for each x € S. [For the definition of
ring, see (5.3).]

SToNE showed that Boolean algebras and Boolean rings having a mul-
tiplicative unit can be identified, and then based his treatment on
Boolean rings. More precisely: for every Boolean ring S, there is a ring
of sets Z and a one-to-one mapping 7 of S onto Z such that

T(a4-b) =7(a) At(d)
t(ab) =7(a) N 7(b).

That is, addition in a Boolean ring corresponds to the symmetric differ-
ence, and multiplication to intersection.

Proofs of the above results and a lengthy treatment of Boolean al-
gebras and rings and of algebras and rings of sets can be found in
G. BirRkHOFF, Lattice Theory [Amer. Math. Soc. Colloquium Publications,
Vol. XXV, 2nd edition; Amer. Math. Soc., New York, N. Y., 1948].

and
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(1.15) Exercise. Simplify as much as possible:
(@ (AU@BNCUW));
d) (X'uUY)N(XUY));
© ANBNOUMA NBNCOUMANBNCUMANBNC)
uAanpBncyy@d'nBncyu@' nB nge.
(1.16) Exercise [PorETrskY]. Given two sets X and Y, prove that
X=gifandonlyif Y=XAY.

(1.17) Exercise. Describe in words the sets ”gl (k D,,A k) and”g1 (k E”A k)

where {4,, 4y, ..., Ay, ...} is any family of sets indexed by N. Also
prove that the first set is a subset of the second.

(1.18) Exercise. Prove:

(a AABAC)=(AAB)AC;

b) AN(BAC)=(ANBA(ANC);

() ANA=2;

(d) sAd=A4.

(1.19) Exercise. Let {4,},c; and {B},c; be nonvoid families of sets.
Prove that '

() (UA)A (N B)CU (4AB).

Prove by an example that the inclusion may be proper. Can you assert
anything about (i) if the U’s are changed to N's?
(1.20) Exercise. For any sets 4, B, and C, prove that

AABC(AACU(BAC),

and show by an example that the inclusion may be proper.
(1.21) Exercise. Let {M,};>, and {N,},2, be families of sets such
that the sets N, are pairwise disjoint. Define Q; = M, and Q, =
”

M, N(MU---UM, _,) forn=2,3,... Prove thatN,,AQanLil(N,,AMk)
n=12...).

(1.22) Exercise. Consider an alphabet with a finite number of letters,
say a, where a > 1. A word in this alphabet is a finite sequence of letters,
not necessarily distinct. Two words are equal if and only if they have the
same number of letters and if the letters are the same and in the same order.
Consider all words of length /, where / > 1. How many words of length
have at least two repetitions of a fixed letter ? How many have three such
repetitions ? In how many words of length / do there occur two specified
distinct letters?

(1.23) Exercise.

(a) Let A be a finite set, and let »(4) denote the number of elements
of A: thus y(4) is a nonnegative integer. Prove that

»(A U B) =»(4) + »(B) —»(4 N B).
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(b) Generalize this identity to»(4 U BUC)and tov(AU BUCUD).

(c) A university registrar reported that the total enrollment in his
university was 10,000 students. Of these, he stated, 2521 were married,
6471 were men, 3115 were over 21 years of age, 1915 were married men,
1873 were married persons over 21 years of age, and 1302 were married
men over 21 years of age. Could this have been the case?

(d) Help the registrar. For a student body of 10,000 members, find
positive integers for the categories listed in (c) that are consistent with
the identity you found in (b).

(1.24) Exercise. Prove that in any Boolean ring we have the iden-
tities

(@) x+x=0;

(b) xy = yx.

(1.25) Exercise. (a) Let B be the set of all positive integers that
divide 30. For x, y € B, let x V y be the least common multiple of x and y,

and let x*= % Prove that B is a Boolean algebra. Find an algebra of

sets that represents B as in (1.14).
(b) Generalize (a), replacing 30 by any square-free positive integer.
(c) Generalize (b) by considering the set B of all square-free positive
integers, defining x V y as the least common multiple of x and y, x A y

as the greatest common divisor of x and y, and x A y as Ay Show

that B can be represented as a certain ring of sets but not as an algebra
of sets.

§ 2. Relations and functions

In this section we take up the concepts of relation and function,
familiar in several forms from elementary analysis. We adopt the currently
popular point of view that relations and functions are indistinguishable
from their graphs, 7.e., they are sets of ordered pairs. As in the case of
sets, we content ourselves with a highly informal discussion of the subject.

(2.1) Definition. Let X and Y be sets. The Cartesian product of X
and Y is the set X > Y of all ordered pairs (x, ¥) such that x ¢ X and
yey.

We write (x, y) = (w, v) if and only if x = » and y = ». Thus (1, 2)
%+ (2, 1) while {1, 2} = {2, 1}.

(2.2) Definition. A relation is any set of ordered pairs. Thus a relation
is any set which is a subset of the Cartesian product of two sets. Observe
that g is a relation.

(2.3) Definitions. Let / be any relation. We define the domain of f to
be the set domf = {x: (x, y) € f for some y} and we define the range of f
to be the set mgf = {y: (x, ¥) €f for some x}. The symbol /-1 denotes the

tnverse of f: f~1={(y, %) : (x,y) €f}.
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(2.4) Definition. Let f and g be relations. We define the composition
[product, iterate are also used] of f and g to be the relation g o f = {(x, 2) :
for some y, (%, ¥) € f and (v, 2) €g}.

The composition of f and g may be void. In fact, gof+ & if and
only if (rngf) N (domg) += .

(2.5) Definition. Let f and g be relations such that / C g. Then we say
that g is an extension of f and that f is a restriction of g.

We now discuss some special kinds of relations that are needed in the
sequel. Wherever convenient, we will use the conventional notation xfy
to mean that (x, y) €f.

(2.6) Definition. Let X be a set. An equivalence relation on X is any
relation ~ C X > X such that, for all x, y, zin X we have:

(i) % ~ x [reflexive];

(ii) x ~ ¥ implies y ~ x [symmetric];

(iii) # ~ y and y ~ zimply x ~ z [transitive].

(2.7) Definitions. Let P be a set. A partial ordering on P is any
relation < C P > P satisfying

(i) x £ x [reflexive];

(i) * < y and y < x imply x =y [antisymmetric];

(i) x < y and y < z imply x < z [transitive].

If < also satisfies

(iv) x, y € P implies x < y or y < x [trichotomy],
then < is called a linear [also called simple, complete, or total] ordering on P.
If x < y and x <+ y, we write x < y. The expression x = y means y < x
and x > y means y < x.

If < is a linear ordering such that

(v) @ + A C P implies there exists an element a ¢ A4 such that
a < x for each x € A [a is the smallest element of A],
then < is called a well ordering on P.

A partially ordered set is an ordered pair (P, <) where Pisaset and =
is a partial ordering on P. If < is a linear ordering, (P, =) is called a
Linearly [simply, completely, totally] ordered set. If < is a well ordering,
then (P, £) is called a well-ordered set.

Let P be a linearly ordered set. For x, y € P, we define max{x, y} =y

if x < y, and max{x, y} = x if y < x. For a finite subset {x;, %,, . . ., %n}
of P [not all x,’s necessarily distinct], we define max{x;, %, . . ., %,} as
max{x,, max{x,, %,, ..., %,_4}}. The expressions min{x,y} and
min{x,, %, . . ., %,,} are defined analogously.

(2.8) Examples. (a) Let & be any family of sets. Then set inclusion C
is a partial ordering on & and (&, C) is a partially ordered set. For short
we say that & is partially ordered by C. The reader should note that,
depending on &, this relation may fail to be a linear ordering ; for example,
take F = 2({0, 1}).
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(b) Let P be the set of all nonnegative rational numbers:
P={x:2€Q,x= 0},

and let =< be the usual ordering on P. Then < is a linear ordering on P
and P has a smallest element 0, but P, with this ordering, is not a well-
ordered set, since there are nonvoid subsets of P containing no smallest

element. For example, let 4 = {x € P:x = 0}. Then % € A whenever

x € A, so A contains no smallest element.

(c) Theset IV of all positive integers with its usual ordering is a linearly
ordered set. It is also a well-ordered set. This last assertion is equivalent
to PEANO’s axiom of mathematical induction.

(2.9) Definition. Let f be a relation and let 4 be a set. We define the
image of A under f to be the set

f(4) ={y: (x,y) €f forsome x € A} .

Observe that f(4) += o if and only if 4 N domf 3 @. The tnverse image
of A under f is the set /~1(4).

(2.10) Definition. A relation f is said to be single-valued if (x, y) € f
and (x, 2) €f imply y = z. If f and ! are both single-valued, then f is
called a one-fo-one relation. The definitions of many-to-one, one-to-many,
and many-to-many relations are analogous.

Single-valued relations play such an important réle in analysis that
we make the following definition.

(2.11) Definition. A single-valued relation is called a function
[mapping, transformation, operation, correspondence, application].

(2.12) Examples. The sine function, {(x, sinx) : ¥ € R} is many-to-one.
The inverse of this function, {(sinx, %) : ¥ € R}, is a one-to-many relation.
The relation {(x,%): %,y ¢ R, x®+ y?= 1} is a many-to-many relation.

The function {(x, tanx):x €R, — ; <x< —721} is a one-to-one function.

(2.13) Definition. Let f be a function and let X and Y denote the
domain and range of f, respectively. For x € X, let f (x) denote that unique
element of Y such that (x, f(x)) € f. The element f(x) is called the value
of f at x or the image of x under f.

Note that in order to specify a function completely, it is sufficient to
specify the domain of the function and the value of the function at each
point of its domain.

(2.14) Remark. Referring to (2.9), we observe that if f is a function
and 4 isa set, then f(4) = {f(x) : x €A Ndomf} and /1 (4) = {x : x €dom/,
f(x) € A}. The reader should verify these statements.

(2.15) Theorem. Let X and Y be sets and let f C X =< Y be a relation.
Suppose that {A}.c1 is a family of subsets of X and that {B},c1 is a family
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of subsets of Y. For A C X we write A’ for the complement of A relative
to X and for B C Y we write B’ for the complement of B relativeto Y. Then

() /Y 4) = Y F(4);
(i) /(0 4) C

n7A).
The followingy results are true if f is a function, but may fail for arbitrary
relations:

(i) /(0 B) = O /(B);

(iv) f2(B) = (F(B))~

(v) 1 (B) N 4) = BN f(4).

The proof of this theorem is left to the reader.

(2.16) Remark. From Theorem (2.15) it follows that the domain and
range of a one-to-one function cannot be distinguished from each other
by any purely set-theoretic properties. If X and Y are sets for which
there is a one-to-one function f with domain X and range Y, then for any
subset A of X we have f(4’) = f(4)’. For any family {4,},c of subsets
of X, we have f("‘erA‘) = ;Lejz f(4) and f(tlgl 4) = ;Q] f(4,). Similar
statements hold for subsets of ¥ and f-1. Thus, all Boolean operations
(U, N, A, ") are preserved under f and /-1

(2.17) Definition. Let f be a function such that domf= X and
rngf C Y. Then f is said to be a function from [on] X into [t0] Y and we
write f: X - Y. If rngf =Y, we say that fis onfo Y.

(2.18) Definition. A sequence is a function having N, the set of all
positive integers, as its domain. If x is a sequence, we will frequently
write #,, instead of x (n) for the value of x at #. The value x, is called the
nt* term of the sequence. The sequence x whose n'* term is x, will be
denoted by (x,)s-; or simply (x,). A sequence (#,) is said to be i X if
%, € X for each #» € N; we abuse our notation to write (x,) C X.

The following theorem will be used several times in the sequel.

(2.19) Theorem. Let § be any family of functions such that f, g €&
implies either f C g ov g C [, i.e., § is linearly ordered relative o C. Let
h=UG. Then:

(i) & is a function,

(ii) domh = U{domf:fcGF},

(iii) x € domh implies h(x) = f(x) for each f €F such that x € domf;

(iv) mgh = U{mg/f:/ €&}

Proof. (i) Obviously 4 is a relation since it is a union of sets of ordered
pairs. We need only show that 4 is single-valued. Let (x,y) €4 and
(%, z) € h. Then there exist f and g in & such that (», y) €f and (x, 2) €¢.
We know that fC g or gCf; say f Cg. Then (x,y) €g and (x, 2) €g.

Since g is a function we have y = z. Thus 4 is a function.
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The equality (i) is true because the following statements are pairwise
equivalent: x €dom#k; (x,y) €& for some y; (x,y) €f for some f€F;
x € domf for some f €.

Let x ¢dom% N domf = domf where ¢ Then (x, f(x) €fCh
and /% is single-valued so 4 (x) = f(x). This proves (iii).

The equality (iv) follows from the previous conclusions and (2.15.i)
since mmgh = k(domh) = h(U{domf:f €F}) =U {h(dom/):f cF}
= U{f(dom/): / €F} = Ufmg/f: f¢§}. O

(2.20) Definition. Let X be any set and E any subset of X. The
function &z with domain X and range contained in {0, 1} such that

_ 1if x¢cE,
E@=Vo0itxexnE,

is called the characteristic function of E. It will always be clear from the
context what the domain of £ is. Characteristic functions are very use-
ful in analysis, and will be encountered frequently throughout this text.
One particular characteristic function is used so much that it has a
special symbol. The diagonal D of X > X isdefinedas D = {(x, x) : x € X}.
The value of the characteristic function of D at (x, y) is written 6,, and
is called KroNECKER’s §-symbol. Thus 6,,=1 if x =y and §,,= 0 if
x = y; here x and y are arbitrary points in X.

(2.21) Exercise. Prove that fo (g 0 &) = (f o g) o & for all relations f,
g, and 4.

(2.22) Exercise. Show that the equality f(f-2(B) N 4) = B N f(4)
fails for every relation f that is not a function.

(2.23) Exercise. For (a, ) and (¢, d) in N > N, define (a, b) < (c, d)
if either:a <c,or a=c and b < d. Prove that, with this relation, N < N
is a well-ordered set.

(2.24) Exercise. Let  be a positive integer and let P,={k € N:
kis a divisor of u}. For a, b € P, define a < b to mean that a is a divisor of b,
i.e., a|b.

(a) Prove that P,, with <, is a partially ordered set.

(b) Find necessary and sufficient conditions on # that P, be a linearly
ordered set.

(2.25) Exercise. Let X be a set with a binary operation p defined on
it, 4.e., p is a function from X > X into X. Write #(x, y) = xy. Suppose
that this operation satisfies

(i) x(yz) = (x3)2,

(i) xy =yx,

(iii) xx =« ,
forall x, y, zin X. Define < on X by x < v if and only if xy = y. Prove
that: (a) X is a partially ordered set; (b) each pair of elements of X has
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a least upper bound, 7.e., if x, ¥ € X, then there exists z € X such that
x<zy=zandifx < w, y < w thenz < w.

(2.26) Exercise. Let f be a function from X to Y. Suppose that there
is a function g from Y to X such that fog(y)=y for all y €Y and
g o f(x) = x for all x € X. Prove that f is a one-to-one function from X
onto Y and that g = /1.

§ 3. The axiom of choice and some equivalents

In the study of algebra, analysis, and topology one frequently encoun-
ters situations in which the tools of elementary set theory [as they have
been informally presented in §§ 1 and 2] are too weak to permit construc-
tions, proofs, or even definitions that one may need. In the early 1900’s
the German mathematician ERNST ZERMELO propounded an innocent-
appearing but actually very strong axiom, called the axiom of choice
[Auswahlpostulat], which has many important consequences, and which
has also excited vigorous controversy. In this section we take up the
axiom of choice, establish the equivalence of four other assertions with it,
and point out two important applications. Other applications of the
axiom of choice will appear throughout the book.

(3.1) Definition. Let {4},c; be any family of sets. The Cartesian
product of this family, written ‘>e<l A,, is the set of all functions x having

domain I such that %, = x (¢) € 4, for each ¢€ I. Each such function x is
called a choice function for the family {4},c;. For x € ‘)E(I A,and ¢ €1,
the value x, € A4, is known as the ¢** coordinate of x.

One may ask if there are any choice functions for a given family of
sets. Of course if I = &, then the void function & is a choice function for
any family indexed by I. If I + o and A, = @ for some ¢ €I, then
¢>e(1 A, = . These two special cases are of little interest. In general the

question cannot be answered on the basis of the usual axioms of set
theory. We will use the following axiom.

(3.2) Axiom of choice. The Cartesian product of any nonvoid family
of nonvoid sets is a nonvoid set, 1. e.,if {4 } ,¢ y is a family of sets such that

I+ o and A, + o for each ¢ € I, then there exists at least one choice
function for the family {4.},¢;.

P. J. CoHEN has recently proved that this axiom is independent of
the other axioms of set theory [Proc. Nat. Acad. Sci. U.S.A. 50, 1143 —
1148 (1963); 51, 105—110 (1964)].

(3.3) Definition. Let 4 and I be sets. We define A7 to be the Cartesian
product c)e(t A, where A, = A for each ¢ € I. Thus AT is the set of all

functions f such that domf = I and rngf C 4. If, for some n ¢ N, I'is
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the set {1,..., n}, then we write A7= 4" Some authors write
A for A¥,

A typical member of A" is, to be sure, a function and as such is a set
of n ordered pairs. We follow conventional notation, however, and list the
values of such a function as an ordered #-tuple. Thus A*= {(a,, . . ., @,)
tap€ A for k=1, ..., n}. Similarly A¥ = {(a;, a,, . . .): a, € A for
k € N}. The set R* is called Euclidean n-space and K is called unitary
n-space.

(3.4) Example. Let 4 = {0, 1}. Then A¥ is the set of all sequences
a=(ay, @g, « .+, @y, . ..) Where each a, is 0 or 1. In many ways this set

resembles CANTOR’S ternary set P=[0,1]1N (]%, %[ U ]%, %[
U ]%, %[ U-- -)’ [see (6.62) infra]l. The mapping ¢ defined by
pla)=2 21 % is a one-to-one mapping from A¥ onto P. Anticipating
we
future developments, we remark that A¥ can be made a metric space by
introducing the metric g, where g(a, b) = 71— if =20, ag="0, ...,
@p_y=b,_,, and a, = b,; and g (a, ) = 0 if a = b. Under this metric on
A¥, @ and ¢! are both continuous. The set 4¥ becomes an Abelian
group under the operation + defined by (a + b), = 4, + b, (mod 2} for
n € N. [There are many other ways to make A% into an Abelian group. ]

(3.5) Definitions. Let (P, <) be any partially ordered set and let
A C P. An element # € P is called an upper bound for A if x < u for each
x € A. An element m ¢ P is called a maximal element of P if x € P and
m < x implies m = x. Similarly we define lower bound and minimal
elementX A chain in P is any subset C of P such that C is linearly ordered
under the given order relation < on P.

This terminology of partially ordered sets will often be applied to an
arbitrary family of sets. When this is done, it should be understood that
the family is being regarded as a partially ordered set under the relation
C of set inclusion. Thus a maximal member of &7 is a set M € &7 such that
M is a proper subset of no other member of & and a chain of sets is a
family & of sets such that 4 C B or B C 4 whenever 4, B € %.

(3.6) Definition. Let & be a family of sets. Then & is said to be a
family of finite character if for each set A we have 4 ¢ # if and only if
each finite? subset of 4 is in &F.

We shall need the following technical fact.

! We agree that every element of P is both an upper bound and a lower bound
for the void set & ; but naturally @ confains neither a maximal nor a minimal element.

2 A set F is said to be finite if either F = g or there exist » € N and a one-to-one
function from {1, 2, ..., n} onto F. See (4.12).
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(3.7) Lemma. Let F be a family of finite character and let B be a chain
in F. Then UB € F.

Proof. It suffices to show that each finite subset of UZ is in &#. Let
F={x,...,x,} CUZ. Then there exist sets By, . . ., B, in & such that
% €B;(j=1,..., n). Since # is a chain there is a j, €{1, . .., #} such
that B, C B, foreachj=1,...,n Then F C B, € #. But & is of finite
character, andso F € #. 0O

There are many problems in set theory, algebra, and analysis to which
the axiom of choice in the form (3.2) is not immediately applicable, but
to which one or another equivalent axiom is applicable at once. We next
list four such statements. The names ‘“lemma’” and ‘“‘theorem’ are at-
tached to them only for historical reasons, as they are all equivalent to
Axiom (3.2).

(3.8) TukeY’s Lemma. Every nonvoid family of finite character has
a maximal member.

(3.9) Hausdorff Maximality Principle. Every nonvoid partially ordered
set contains a maximal chain.

(3.10) Zorn’s Lemma. Every nonvoid partially orvdered set in which
each chain has an wpper bound has a maximal element.

(3.11) Well-ordering Theorem [ZERMELO]. Every set can be well
ordered; i.e.,if S is a set, then there exists some well-ordering < on S.

(3.12) Theorem. The following five propositions are pairwise equiv-
alent:

(i) The axiom of choice;

(ii) TUukreY's lemma;

(i) The Hausdorff maximality principle;

(iv) ZorN’s lemma;

(V) The well-ordering theorem.

Proof. We will prove this theorem by showing successively that (i)
implies (ii), (ii) implies (iii), (iii) implies (iv), (iv) implies (v), and finally
that (v) implies (i). The most difficult of these five proofs is the first.

Suppose that (i) is true and assume that (ii) is false. Then there exists
a nonvoid family & of finite character having no maximal member. For
each F € F,let &p={E ¢ #:F G E}. Then {&%: F € #} is a nonvoid
family of nonvoid sets, so by (i) there is a function f defined on & such
that f(F) € & for each F ¢ &#. Thus we havngf(F) € F foreachF ¢ F.

A subfamily # of &# will be called f-inductive if it has the following
three properties:

(1) 2 €5

(2) 4 ¢~ implies f(4) €5 ;

(3) # a chain C.# implies UZ ¢ 7.

Since & is nonvoid, since @ is finite, and since (8.7) holds, the family &%
is f-inductive. Let Jy= N{F:F is f-inductive} ={4 ¢ F :4 ¢F for
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every f-inductive family #}. It is easy to see that ; is f-inductive. Thus
S, is the smallest f-inductive family, so any f—mductlve family contained
in £, must be £,. We will make heavy use of this fact in proving that %,
is a chain.

Let # = {4 ¢4, B ¢SF,and B & 4 imply f(B) C A}. We assert that
if A € 5 and C €4, then eitherC C A or f(4) C C To prove this asser-
tion, let A € # and define %, = {C €¢.%,: C C A4 or f(A) C C}. It suffices

to show that &, is f-inductive. Since o €5 and g C A (1) is satisfied.
Let C € %,. Then we have either CG 4, C = 4, or f(4) CC. IfCCA
then f(C) C A because 4 ¢ #. 1 C =.A, then f(4) C f(C). If f(4) C

then f(4) C f(C) because C C f(C). Thus in every case f(C) €%, and
(2) is satisfied. Next let & be a chain in ,. Then either C C 4 for each
C ¢4, in which case UZ C 4, or there exists a C ¢# such that
flA)c CcUA. Thus UZ €%, and (3) is satisfied. We conclude that
¢, is f-inductive and so ¥, = J4,.

We next assert that s# = %, We prove this by showing that 5# is
f-inductive. Since @ has no proper subset, # satisfies (1) vacuously.
Next let A € # and B €4, be such that B G f(4). Since B €4, =%,
we have B C A [the inclusion f(4) C B being 1mp0551b1e] IfB C A, the
definition of s yields f(B) C A C f(4). If B= A, then f(B )Cf(A)
In either case, the inclusion f(B) C f(4) obtains, so f (4) € # and (2) holds
for #. Next, let # be a chain in 5 and let B €.#, have the property that
B C U4. Since B ¢S, = Y, for each A ¢ #, we have either BC 4
for some A € & or f(4) C B for every A € #. If the latter alternative
were true, we would have

BGUZCU{f(4):A¢%}CB,

which is impossible. Thus thereis some A € #suchthat BC 4. If B c 4,
then, since 4 € #, we have f(B) CA C U%.If B= A, then B E.}fand
U% ¢S, = Fp. This implies that f(B) CUZ [UZ C B being impossible].
Thus in either case, we have f(B) C U#Z and so UZ € 5. This proves
that 2 satisfies (3). Therefore 5 is f-inductive and # = S,

We conclude from the above arguments that if 4 €5, = 5# and
B ¢S, = 9,, then either BC 4 or A C {(A) C B. Accordingly 4, is a
chain. Let M = U4, Since 4, is f-inductive, (3) implies that M €.,
Applying (2), we have U J" M G {(M) €4, This contradiction
establishes the fact that (i) implies (ii).

We next show that (ii) implies (iii). Let (P, <) be any nonvoid par-
tially ordered set. We want to show that P contains a maximal chain.
This follows at once from TUKEY’S lemma since the family % of all chains
in P is a nonvoid family of finite character [@ € € and {x} € % for each
x € P].
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To show that (iii) implies (iv), let (P, =) be any nonvoid partially
ordered set in which each chain has an upper bound. By (iii) there is a
maximal chain M C P. Let m be an upper bound for M. Then m is a
maximal element of P, for if there is an x € P such that m < x and
m = x, then M U {x} is a chain which properly includes M, contradicting
the maximality of M.

To prove that (iv) implies (v), let S be any nonvoid set and let &
denote the family of all well-ordered sets (W, <) such that W C S. For
example, ({#}, {(x, #)}) € Z for each x € S. We next introduce an ordering
on Z by defining (W, <,) £ (W,, <,) to mean that either W, = W, and
=, = =, or there exists a € W, such that W, = {x € W,:x <, 4, x %+ a}
and =, agrees with <, on W, i.e.,, <, C <,. We say that (W,, <,) isa
continuation of (W, <,). The reader should see without difficulty that
< is a partial ordering on Z.

Let us show that ZorN’s lemma can be applied to the partially ordered
set (Z, X). Let € = {(W,, =.)}.c; be any nonvoid chain (relative to <)
in Z. Set W = 4'211 W and £ = ‘LGJI <, [recall that each <, is a set of

ordered pairs]. We leave it to the reader to prove that < is a linear
ordering on W. Let 4 be a nonvoid subset of W. There exists ¢ € I such
that A N W, &= @. Since (W,, £,) is a well-ordered set, there is an element
a €4 N Wssuchthat a <, x foreach x € A4 N W,. Suppose that there is an
element b € 4 such that b < a. Thenb ¢ W and b <, 4,50 b = a. Thus 4
has a smallest element a in (W, <). We conclude that (W, =) € £ and
is an upper bound for €.

By ZorN’s lemma, & has a maximal element (W, <,). If W, =S,
then < ,is a well-ordering for S and we are through. Assume that W= S.
Let z€SN Wy Define < = <,U{(x,2): x €WoU {z}} on W,U {z},
i.e., we place z after everything in W,. Then (W, U {2z}, <) € Z. This
contradicts the maximality of (W, <,), and so we have proved that
W,=S.

It remains only to show that (v) implies (i). Let {4,},¢y be any non-
void family of nonvoid sets. Let S = }eJIA" Let < be a well-ordering

for S. For each ¢ €1, let f(t) be the smallest member of 4, relative to the
well-ordering <. Then f is a choice function for the family {4,},c;. O

It is frequently useful to make definitions or carry out constructions
by well ordering a certain set W and making the definition or construction
at @ € W depend upon what has been defined or done at all of the prede-
cessors of a in the well-ordering. The general form of this process is
described in (3.13) and (3.14) below.

(3.13) Definition. Let (W, <) be a well-ordered set and let a ¢ W.
The set I{a) ={x €W :x =< a, x + a} is called the snilial segment of W
determined by a.
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(3.14) Theorem [Principle of Transfinite Induction]. Let (W, <) be a
well-ordered set and let A C W be such that a € A whenever I(a) C A. Then
A=W.

Proof. Assume that W N 4’ &+ @ and let a be the smallest member of
W N A’. Then we have I(a) C A,s0a € A. Buta ¢ WnA. 0

The axiom of choice does not perhaps play a central role in analysis,
but when it is needed, it is needed most urgently. We shall encounter
several such situations in our subsequent study of measure theory and
linear functionals. To give an immediate and important application of the
axiom of choice, we will prove from TUKEY’s lemma that every vector
space contains a basis. Exact definitions follow.

(3.15) Definition. A vector space [linear space] is an ordered triple
(X, -, F) where X is an additive Abelian group?, F is a field, and - is a
function from F > X into X, whose value at («, x) is denoted ax, such
that for «, g € F and x, y € X we have

() x(x+9y) =ax+ ay;

(i) (x+ B)x = ax + Bx;

(iii) o(Bx) = (xf)*;

(iv) 1x = x, where 1 is the multiplicative identity of F.

The members of X are called vecfors and the members of F are called
scalars. The operation - is called scalar multiplication. For short we say
that X is a vector space over the field F.

(3.16) Remarks. In a vector space we have 0x = a0 = 0 because
0x = (0 + 0)x = 0x + Oxand «0 = «(0 + 0) = «0 + «0. Also x % 0 and
x % 0 imply ax = 0, since otherwise we would have x = 1x = (a~'a)*
= o (ox) = 0= 0.

(3.17) Examples. (a) Let F be any field, let » ¢ N, and let X = F".
For @ = (%,...,%,) and y= (¥1,...,¥s) in X and « € F definex + y
=(%+ Y1, . - %n+ yn) and @ = (@%;,..., ®%,). Then X is a vector space
over F.

(b) Let F be any field, let A be any nonvoid set, and let X = FA4,
For f,g € Xand « ¢ F define (f + ) (x) = /(x) + g(x) and («f) (x) = af (%)
for all x € A. Then X is a vector space over F. Note that (a) is the special
case of (b) in which 4 = {1, ..., n}. ,

(c) Let X = R with its usual addition and let F = Q. For x ¢ R and
a € Q let acx be the usual product in R. Then R is a vector space over Q.

(3.18) Definition. Let X be a vector space over F. A subset 4 of X is
said to be lindarly independent [over F] if for every finite subset
{#1, %, . . ., %, of distinct elements of 4 and every sequence (0tg, Otgy o v o5 0p)

” .
of elements of F, the equality ) a,%,=0 implies the equalities
k=1

1 The reader will find a discussion of groups, rings, and fields in § 5.
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o =ay="+=0a, =01 A nonvoid linearly independent set B such that
B C E C X implies that E is not linearly independent is called a Hamel
basis [or merely basis] for X over F. Thus a Hamel basis is a maximal
linearly independent set.

(3.19) Theorem. Every vector space with at least two elements contains
a Hamel basis.

Proof. Let X be a vector space with at least two elements. Let x += 0
in X. Then (3.16) shows that {x} is a linearly independent set. Thus the
family & of all linearly independent subsets of X isnonvoid. The definition
of linear independence shows at once that & is of finite character. TUKEY’S
lemma proves that & contains a maximal member, ¢.e., X contains a
basis. O

(3.20) Theorem. Let X be a vector space over a field F and let B be a
Hamel basis for X over F. Then for each x € X there exists a unique function
o from B into F such that o(b) =0 except for finitely many b € B and

x= Y a(d)b, i.e., x can be expressed in just one way as a finite linear
beB
combination of members of B.

Proof. Let x ¢ X. If x € B, define «(x) = 1 and «(d) =0 for € B,

b+ x Then Y 'a(b)b = lx==x. Suppose x ¢ B. Then B U {x} is not
bEB

linearly independent, so there is a finite set {x, %, %;, . . ., x,} C BU {x}
and a finite sequence (B, By, - . ., fn) CF not all 0, such that fx + f;x,
+ ¢+ 4 B,x,= 0. Since B is independent, we see at once that § =+ 0.
Therefore x = — 16,2, — * + * — p'f,%,. Now define a(x;) = — 8,
(j=1,...,n)anda(d) = Oforb € BN {x,, ..., %,} . Thenx = 3 x(}).
This proves the existence statement. beB

To prove uniqueness, suppose that J'oy ()b = 3 'ay(b)b. Then

bE€B beB

2 (o, (8) — a3 (0))b =0, and this is a finite linear combination of elements
beB

of B. By independence, o, (b) — a3 (b) = O for each b € B and therefore
the two functions &, and «y are the same. 0O

(3.21) Exercise. Given a nonvoid set 4 and a field F, let £ be the
subset of F4 consisting of those functions f for which the set {a €4 : f (a) =+ 0}
is finite. Let the linear operations in £ be as in (3.17.b). Prove that € is
a vector space over F. Prove that every vector space is isomorphic qua
vector space with some vector space £.2

(3.22) Exercise. Prove that if P is a set and < is a partial ordering
on P, then there exists a linear ordering <, on P such that < C =,.

1 Note that @ is linearly independent.

# Let X, and X, be linear spaces over F. An isomorphism 7 of X, onto X, is a
one-to-one mapping of X, onto X, such that (¥ 4+ ») = t(*) + 7(y) and
T(ax) = av () for all #, ¥ € X, and all « € F. Isomorphic linear spaces cannot be
told apart by any linear space properties.
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(3.23) Exercise. Let (L, <) be a linearly ordered set. Prove that there
exists a set W C L such that < well orders W and such that for each
x €L there is a y € W for which ¥ < y.

(3.24) Exercise. Let G be a group and let H be an Abelian subgroup
of G. Prove that there exists a maximal Abelian subgroup J of G such
that H C J; i.e., J is Abelian, but no subgroup J* such that J & J* is
Abelian.

(3.25) Exercise. Prove that the following assertion is equivalent to
the axiom of choice: If A and B are nonvoid sets and } is a function from
A onto B, then there exists a function g from B into A4 such that
g(y) €/7(y) for each y € B.

(3.26) Exercise. Let X be a vector space over a ﬁeld F.Let Abea
nonvoid linearly independent subset of X and let S be a subset of X
such that each element of X is a finite linear combination of elements
of S. [The set S is said to span X.] Suppose that 4 C'S. Prove that X
has a Hamel basis B such that A € B C S.

§ 4. Cardinal numbers and ordinal numbers

As noted in (2.16), two sets which can be placed in a one-to-one
correspondence cannot be told apart by any purely set-theoretic prop-
erties although, of course, they may be quite different entities. This
observation leads us to the following definition.

(4.1) Definition. With every set 4 we associate a symbol, called the
cardinal number of A, such that two sets 4 and B have the same symbol
attached to them if and only if there exists a one-to-one function f with
domf= A and rgf= B. We will write 4 ~ B to mean that such a
one-to-one function exists. If 4 ~ B, we say that 4 and B are equivalent
lequipollent, equipotent, have the same cardinality, have the same power].
We write 4 to denote the cardinal number of 4. Thus 4 = B if and only
if A ~ B.

(4.2) Examples. Some sets are so commonly encountered that we name

their cardinal numbers by special symbols. Thus 3 = 0,{1,2, ..., 7} =n
for each n ¢ N, N=xg, [read “aleph nought”], and E = ¢ [for con-
tinuum).

(4.3) Remark. The reader will easily verify, by considering the iden-
tity, inverse, and composite functions, that set equivalence, as defined
in (4.1), is reflexive, symmetric, and transitive. This fact makes Definition
(4.1) reasonable and also extremely useful.

(4.4) Remark. Our definition of cardinal number is somewhat vague
since, among other things, it is not made clear what these ‘“‘symbols’’ are
to be. Some such vagueness is inevitable because of our intuitive approach
to set theory. However our definition is adequate for our purposes. In

\ =
AN

AN
\
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one version of axiomatic set theory, the cardinal number of a set is taken
to be a very specific well-ordered set, vsz., the smallest ordinal number
that is equivalent to the given set.

We next define an order relation for cardinal numbers.

(4.5) Definition. Let u and v be cardinal numbers and let U and V
be sets such that & = u and ¥ = . We write u < » or v = u to mean
that U is equivalent to some subset of V. One sees by considering com-
posite functions that this definition is unambiguous. We write u < v or
p > u to mean that u < v and u +».

(4.6) Theorem. Let u, v, and w be cardinal numbers. Then:

i) usu;

(i) usvandv < wimply u < w.

Proof. Exercise.

(4.7) Theorem [SCHRODER-BERNSTEIN]. If u and v are cardinal
numbers such that u < v and v < u, then u = o.

Proof. Let U and V be sets such that I = u and ¥ =». By hypoth-
esis there exist one-to-one functions f and g such that domf= U,
mgfCV, domg=V, and rngg C U. Define a function ¢ on Z(U)
into Z(U) by the following rule:

9(E)=UnN[gVn{E))] . (1)

It is easy to see that
EcCcFcU implies ¢(E)Ce@(F). 2
Define 2={E¢ P(U): EC ¢(E)}. Notice that o €2. Next let
D =U 2. Since E C D for each E € 2, (2) implies that EC ¢ (E)C ¢ (D)
for each E € &. Therefore D C ¢ (D). Applying (2) again, we have

¢ (D) C p(p(D)) so ¢(D) € 2. Thus we have the reversed inclusion
D=U2 5 ¢(D), so that ¢ (D) = D. According to (1), this means that

D=UnN [g(V N (D))')]’ .
Thus UN D' = g(V n (D))’). It follows that the function % defined
on U by
hw) = 1(x) for x¢D,
glx) for xcUND,

is one-to-one and onto V. O

The proof of the Schrider-Bernstein theorem does not require the
axiom of choice. Also it does not tell us all that we would like to know
about comparing cardinal numbers: it merely asserts that u <»v and
» < u cannot occur. To prove that all pairs of cardinals are actually
comparable, as we do in (4.8), the axiom of choice is needed.

(4.8) Theorem. Let u and v be cardinal numbers. Then either u < v
orv = u.
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Proof. Let U and V be sets such that U =u and V=v». Let §
denote the family of all one-to-one functions f such that domfC U
and rngf C V. It is easily seen that (f is a family of finite character so,
by TukeY’s lemma (3.8), & contains a maximal member 4. We assert
that either dom# = U or rngh = V. Assume that this is false. Then
thereexistx € U N (dom#%) andy € V N (rngh)’. But then 2 U {(x,)}¢ &,
contradicting the maximality of 4. Thus our assertion is true. If dom k= U,
then % shows that u < »v. If rngh = V, then A-1 shows thatv < u. QO

(4.9) Theorem. The ordering < for cardinal numbers makes any set
of cardinal numbers a linearly ordered set.

Proof. This theorem is just a summary of Theorems (4.6), (4.7),
and (4.8). O

Our next theorem shows that there is no largest cardinal number.

(4.10) Theorem [CANTOR]. Let U be any set. Then U < P(U).

Proof. We suppose that U+ g, since 2 (o) = 1 >0=2. Let
u = U and » = 2(U). The function f defined on U by /(x = {x}c 2(U)
is one-to-one, so u < v. Assume that u = v. Then there ex1sts a [one-to-
one] function 4 such that dom# = U and rngh = 2(U). Define

S={xcU:x¢hr(x)}.

Since SC U [perhaps S = @], we have S¢ Z(U). Thus, because 4
is onto # (U), there exists an element 4 € U such that %(a) = S. There
are only two alternatives: either a € S or ¢ ¢ S. If a ¢ S, then, by the
definition of S, we have a ¢ & (a) = S. Therefore a ¢ S. But S is the set
h(a), so a ¢ h(a), which implies that @ € S. This contradiction shows
that u + v, and so we have proved that u <». 0O

(4.11) Remark. Intuitive set theory suffers from the presence of
several well-known paradoxes. These known paradoxes are avoided in
axiomatic set theory by the elimination of “‘sets’” that are ‘‘too large”.
For example, let C be the “set” of all cardinal numbers. For each a ¢ C
let A, be a set such that 4, = a. Define B = U {As:a€C}. Let b =
Since 4, C B we have a < b for every cardinal number a. This conclu-
sion is incompatible with Theorem (4.10). The trouble is that the “‘set”
C is “too large”. It is indeed very large. We shall have no occasion in
this book to consider such large sets.

(4.12) Definition. A set S is said to be finite if either S= @ or
S=n= {1,2,...,n} for some n € N. Any set that is not finite is said
to be infinite.

Definitions of ““finite” and “infinite” that make no mention of the
natural numbers \hqve been given by Tarski and DEDEKIND. We
state them in the form of a theorem.
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(4.13) Theorem. Let S be a set. Then:

(i) [TARSK1) the set S is finite if and only if each nonvoid family of
subsets of S has a minimal member,

(ii) [DEDEKIND] the set S is infinite if and only if S is equivalent to
some proper subset of itself.

Proof. Exercise. [Use (4.15).]

(4 14) Definition. A set S is called countable if either S is finite or
S = N = 8, Any set that is not countable is uncountable. A set S is
countably infinite [or denumerable] if S = R,. If S is countably infinite and
f is a one-to-one function from N onto S, then the sequence (x,) where
%, = f(n) is called an enumeration of S. Note that x, =+ x,, if # + m.

(4.15) Theorem. Every infinite set has a countably infinite subset.

Proof. Let A be any infinite set. We show by induction that for each
n € N there exists a set 4, C A such that A, =mn.Indeed 4 + & so
there exists an 4, C A. If A C A and A, = n, then, since 4 is infinite,
there exists an element x € A N A,. Letting A,+,; = 4, U {x}, we have
Ay CAand 4, =n+ 1.

Next let {A4,},ex be any family of subsets of 4 as described above.
[Notice the use of the axiom of choice in selecting this family.] For each
n € N, define

n—1 ’
Bn = AZ" n (kL-rJ-OAZk) .

Then the family {B,},cx is a pairwise disjoint family of subsets of 4,
and for each # ¢ N we have

— _ n—1_ n—1
Bz Adp— Y Ap=2n— Y 2%=2r— (20— 1)=1,
k=0 k=0

so each B, is nonvoid. Apply the axiom of choice to {B,},ex to get a
choice function f. Then f is a one-to-one mapping of N into 4, so rngf
is a countably infinite subset of 4. O

(4.16) Corollary. If a is any infinite cardinal number, i.e., the cardinal
number of an infinite set, then Ry = a.

(4.17) Theorem. Any subset of a countable set is countable.

Proof. Let A be any countable set and let B C A. If B is finite, there
is nothing to prove. Thus suppose that B is infinite. Then 4 is countably
infinite. Let (a,) be an enumeration of 4. Define a one-to-one function f
from N onto B recurswely as follows:

f(1) = a,, where =, is the smallest n¢ N such that a,€ B;
f(k + 1) = a,,,, where m,,; is the smallest #n¢ N such that a, €
BN{a,a,...,8,}). O

(4.18) Theorem The Cartesian product N><N 1is a countable set.

Proof. We must show that N ~ N> N. One way to do this is to
define the mapping f from N > N onto N by f(m, n) = 2»=(2n — 1).
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Since each positive integer is a power of 2 [possibly the 0t* power] times
an odd integer, f is onto N. We see that f is one-to-one, for otherwise
there would be an integer which is both even and odd. 0O

(4.19) Lemma. If A is any nonvoid countable set, then there exists a
mapping from N onto A.

Proof. Since A is countable, there exists a one-to-one mapping g
from A into N. Let a € 4. Define f on N by

g 1(n) for mnc€ringg,
a for n¢rmgg. O

f(n) ={

(4.20) Lemma. If A and B are two nonvoid sets and if there is a
mapping f from A onto B, then A = B.

Proof. Let g be a choice function for the family {{~1(8)},¢p. Then g
is a one-to-one mapping from B into 4. O

(4.21) Theorem. The union of any countable family of countable sets
1s a countable set, i.e., if {A}ser ts a family of sets such that I is countable
and each A, is countable, then A = U A; is countable.

el

Proof. Let {4 };cr be as in the theorem. We obviously may, and do,
suppose that I and each 4; are nonvoid. Apply Lemma (4.19) to obtain
mappings f; and g such that domf; = domg = N,rmgg = I, and rngf;= 4,
for all ¢ I. Now define 2 on Nx< N by h(m, n) = fo(m (n). Then A
is onto 4. It follows from (4.20) and (4.18) that

A<Nx<N=g,.
By (4.16), A4 is countable. 0O

(4.22) Corollary. Each of the following sets is countable:
(1) Z, the set of all integers;
(ii) Q, the set of all rational numbers.

Proof. We have
Z=NU{0}U{—n:n¢c N}

and
(o]

Q=”gl{%:m62}. O

We next introduce arithmetical operations for cardinal numbers.
We will show that the arithmetic of infinite cardinals is quite simple.

(4.23) Definition. Let a and b be cardinal numbers and let A and B
be sets for BV\%igh A=aand B=b.If AN B= g, we define a + b
= A U B. We define ab = 4 > B and a® = (45).

It is easy to show that these are unambiguous definitions. Also we
hasten to point out that a + b is always defined since it is always possible
to find appropriate sets 4 and B that are disjoint. Infactif 4 N B % g,
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then define Ay={(4,0):a€ A} and By={(b,1):b€ B} to obtain
A~ A4y B~ By,and 4,N By = .

(4.24) Theorem. Let u, v, and w be any three cardinal numbers. Then:

(i u+ (@+w)=(u+0o)+w;
(i) u+ D=9+ u;
(iii) u(v + w) = up + uw;
(iv) ufow) = (un)w;
(v) uv =ou;
(vi) wPu® = uetw:
(vii) u®p® = (up)®;
(viii) (u®)® = u®®;
(ix) u S vimpliesu+w = v + w;
(x) u < v impliesuw < ow;
(x1) u = v implies u® < »®;
(xil) u < v implies w" < W° .

Proof. All twelve of these conclusions are proved by defining appro-
priate one-to-one mappings. As a sample we prove (viii) while the
remaining eleven are left as exercises.

Let U, V, and W be sets such that U=u, ¥V =», and W =w. We
must show that (UV)¥ ~ UV>W. To do this we define a mapping ¢
on (UY)¥ by the rule

o(f) =g UV
where
=)y eU for (y,2)€V<W.

Now g is onto UVXW since if g € UV>W, we define f to be that function
on W whose value at z ¢ W is that function on ¥ which assigns to each
¥y € V the value g(y, 2) € U. Then ¢(f) = g. To see that ¢ is one-to-one,
suppose that f; =% f, in (UY)". Then there is a z,€ W such that £, (z,)
% fo(2,). Since these two functions on V are different, there must be a
Yo€ V such that £, (20) (o) =+ 2 (20) (¥o). Thus [@ (£1)] (Yo, 20) =+ [@ (F2)] (¥6, 20)
so @ (f;) and @ (f,) are different functions. 0O

(4.25) Theorem. If a is any cardinal number, then a < 2°.

Proof. Let A be a set such that 4 = a. We know (4.10) that a< P (4) (4)

and that 2% = ({0, 1}4). It suffices to show that #(4) ~ {0, 1}4. Define
@ on #(4) by
@(E)=§&5€{0,1}4 for ECA,

where as in (2.20) 1t CE
or x ,

fpln) = {o for x€ANE. D
We next consider the cardinal number ¢ = R. The reader is invited

to look ahead to § 5 for a detailed construction of R and for the relevant
properties of R that we use here.



§ 4. Cardinal numbers and ordinal numbers 25

(4.26) Theorem. Let
10,1 [={x€R:0 <x < 1},
[0,1[={x¢R: 0 x < 1},
0,1]={x¢R:0< x< 1}.
Then 10, 1[ = [0, 1[ = [0, 1] = ¢.
Proof. The function f defined by f(x) = Wf%

mapping of 10, 1[ onto R. Therefore ]0, 1[ = B = ¢. The rest follows
from the inequalities ¢=10,1[ < [0,1[ < [0,1] < R=¢ and the
Schroder-Bernstein theorem. 0O

(4.27) Theorem. 2% = c. _

Proof. Let A = {0, 1}¥. Definition (4.23) shows that 4 = 2%, By
(4.26), [0, 1[ = c. Define f on 4 by f(¢) = 5 2"\ Then [see (5.40)]

n=1

f is a one-to-one mapping of A into [0, 1[, and so 2¥ < ¢. For each
x € [0, 1[ there is a unique representation of x in the form

1—2 .
1s a one-to-one

”=

where each x,, is 0 or 1 and x,, = 0 for infinitely many » € N: see (5.40).
Define g on [0, 1[ into 4 by g(x) = ¢ where @ (n) = x,, for each n € N.
Then g is a one-to-one mapping, so that ¢’ < 2%. Now apply the Schroder-
Bernstein theorem. 0O

We next point out a few curious arithmetical properties of infinite
cardinal numbers. First we need a lemma.

(4.28) Lemma. If D is any infinite set and F is any finite set such that
DNF =g, then D=DUF.
. Proof. Let F={y,,9,, ...,9,} where y,=y; for i4j and let
C = {x;:7€ N} be a countably infinite subset of D where x; & x; for
i %7 (4.15). Define f from D onto D U F by

¥i for x=x,1<7=<n,
f(x) =1%_n for x=2x,j>n,
x for x¢DNC.

Then f is one-to-one. 0O

- (4.29) Theorem. Let a be any infinite cardinal number. Then a + a = a.

' Proof. Let A be any set such that 4 =a. Let B=A4>{0,1}.
Then B={(a,0):a€¢ A}U{(a,1):a€ A} so, by Definition (4.23),
we have B = a + a. Let & denote the set of all one-to-one functions f
such that domf C 4 and rngf= (dom/f) =< {0, 1}. Since A is infinite,
there exists a countably infinite set C such that C C 4 (4.15). In view
of (4.21), we see that C>< {0, 1} is also countably infinite. Hence there
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is a one-to-one function f with domf= C and rngf = C> {0, 1}. This
proves that § + o. Partially order §f by C. According to the Haus-
dorff Maximality Principle (3.9), § contains a maximal chain €. Let
g = U Q. It is easily checked that g € §. Let D = domg. The existence
of the function g shows that D = D + D. Thus, to complete the proof,
it suffices to show that D = a. Let E = A N D’. If E is finite, our Lemma
(4.28) shows that D = D U E = a. If E is infinite, let G be a countably
infinite subset of E. Let f be any one-to-one mapping of G onto G < {0, 1}.
Then h=fUg€ G and g $ 4. This contradicts the maximality of €.

Therefore E is finite and D = a. O

(4.30) Corollary. If a is any infinite cardinal number and b is any
cardinal number such that b < a, then a + b = a.

Proof. Since b < a, wehavea<a+b=a+t+a=a 0O

(4.31) Theorem. If a is any infinite cardinal number, then a* = aa = a.

Proof. Let A be any set such that 4 = a. Let & denote the set of all
one-to-one functions f such that domf C 4 and rngf = (dom{)>< (domf).
Since A contains a countably infinite subset (4.15) and since 8,8, = R,
(4.18), we see that § & . As in (4.29), we use the Hausdorff Maximality
Principle to prove that § contains a maximal member g. Let D = domg.
Then the existence of g shows that D ~ D> D. To finish the proof we
need only show that D=a. Let E=AND'andlet b=D. If £ < b,
then (4.30) shows that =5+ E = DU E = A= a. The only other
possibility is that b < E (4.8). Assume that this is the case. Then there
is a set G C E such that G = b. Since D ~ D> D, we know that b2 = b.
Thus D <xG=G <D =G ><G=>5 We appeal to (4.29) to see that
p=>0+ b+ . It follows that (D <G)U (G=<D)U (G=<G)=bd=G.
Consequently there exists a one-to-one function f from G onto (D < G)
U (G =< D) U (G > G). Define A= f U g. Then /4 is a one-to-one correspond-
ence between DUG and (DU G)>=< (DUG). Thus we have A€ .
Since g G &, we have contradicted the maximality of g. Consequently
E < b and d = a. The accompanying figure may be helpful.

D %> |D=<D|DxG

¢ > [6=D|6=G| 4

(4.32) Corollary. If a is an infinite cardinal number and b is a cardinal
number such that 0 < b = a, then ab = a.

Proof. We havea < ab < aa=4qa. O

(4.33) Exercise. Prove that our ordering and our arithmetical opera-
tions for cardinal numbers agree on the set NV with the usual ordering
and arithmetical operations for positive integers.
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(4.34) Exercise. Let a be any cardinal number such that 2 < a < ¢.
Prove that a® = ¢ and that a® = 2¢.

(4.35) Exercise. Let A be any infinite Eet and let & be the family
of all finite subsets of A. Prove that F = 4

(4.36) Exercise. Let A be any infinite set such that 4 < ¢, and let
& denote the family of all countable subsets of A. Prove that € = «.

(4.37) Exercise. Let W be a set and suppose that ¢ C W ><W is a
relation such that (W, ¢) and (W, ¢~1) are both well-ordered sets.
Prove that W is finite.

(4.38) Exercise. Without appealing to the axiom of choice or its
equivalents prove that ¢2 = ¢. [Hint. Use decimal representations of
real numbers.]

(4.39) Exercise [K6NI1G]. Let I be a nonvoid set and let {4 },c; and
{B.}.e1 be families of sets such that A, < B foreacht€I. Let 4 = U A,

and B = z)e<1 B,. Prove that A < B. [For each ¢ € I, let z, denote the pro-

jection mapping of B onto B,, i.e., 7, (b) = b, for each b € B. Let f be any
mapping from A into B. Then 7, 0 f(4,) + B, (4.20), so that there exists
¢, € B,N [m, 0f(A,)] for each ¢€I. It follows that the element c¢ B
having ¢, as ¢** coordinate is not in rng f. Thus there is no mapping of 4
onto B.]

We next present a brief introduction to the theory of ordinal num-
bers. The chief distinction between cardinal numbers and ordinal numbers
is that each set has a cardinal number while only well-ordered sets have
ordinal numbers. There may be many essentially different ways to well
order a given set. Each of these ways has its own ordinal number even
though the set has only one cardinal number. For example, we can well
order N in the following two ways:

1<2<38<:+--,
2<83<4<---<1.

The first of these is the usual ordering and the second of these is the
same except that 1 has been removed from the beginning and placed
at the end. These well orderings are different since the second has a last
element while the first has no last element. We need some precise def-
initions.

(4.40) Definition. Let 4 and B be linearly ordered sets. An order
isomorphism from A onto B is a one-to-one function f from 4 onto B
such that x < y in 4 implies f(x) < /(y) in B. We write 4 ~ B to mean
that such an order isomorphism exists. It is easy to see that the relation ~
is reflexive, symmetric, and transitive. With every linearly ordered set 4
we associate a symbol, called the order type of A, such that two linearly
ordered sets 4 and B have the same symbol attached to them if and only
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if A~ B.If A~ B, we say that A and B are order isomorphic or have
the same order type. We write ord 4 to denote the order type of 4. If,
in particular, 4 is well ordered, we call ord 4 an ordinal number.

(4.41) Examples. Let {1,2,...,n} (n€ N), N, and Q have their
usual orderings. We write ord o =0, ord{1,2, ..., n} =n, ordQ = 7,
and ord N = w. Thus 0, #, and w are ordinal numbers, but # is #of an
ordinal number, since Q is far from being well ordered.

(4.42) Definition. Let A be a linearly ordered set and let x € 4. The
initial segment of A determined by x is the set A, ={y€cAd:y <x}.
If x and f are ordinal numbers and 4 and B are well-ordered sets such
that ord4 = « and ord B = f, we write « < f§ to mean that there is an
x € B such that 4 ~ B,. We write « =< § to mean that either x < §
or & = f. It is easy to verify that this definition of ordering for ordinal
numbers does not depend on the particular sets 4 and B that are used,
but only upon their order types.

Let us investigate the properties of this ordering.

(4.43) Theorem. I} A is a well-ordered set and f is an order isomorphism
from A into A, then x < f(x) for each x € A.

Proof. Assume that there is an x in 4 such that f(x) < x and let a
be the smallest such x. Then f(a) < a so f(f(a)) < f(a). But this contra-
dicts the minimality of . O

(4.44) Theorem. Let A and B be well-ordered sets. Then:

(i) A is order isomorphic to no initial segment of A,

(i) Ay ~ A, for some x,y € A implies x = y;

(iii) 4f A ~ B, there exists exactly one ovder isomorphism from A onto B.

Proof. Assume that there are an x € A and an order isomorphism f
from A onto A,. Then by (4.43), we have x < f(x). But f(x) € 4,, so
that f(x) < x. This contradiction proves (i).

Now suppose that 4, ~ A4, for some %,y € A. Assume that x =+ y.
We may suppose that x < y. Then A, is an initial segment of the well-
ordered set 4,. As shown in (i), this is impossible, and so (ii) is established.

Suppose that f and g are order isomorphisms from 4 onto B. Then
h = f~1og is an order isomorphism of 4 onto 4. Applying (4.43), we
have x < h(x) for each x € 4, . ¢, f(x) = g(x) for each x € 4. Inter-
changing the rdles of f and g in this argument, we obtain g(x) < f(x)
for each x € A. It follows that f(x) = g(x) foreachx ¢ 4,4.e.,f=¢g. O

(4.45) Theorem. Let o and 8 be ordinal numbers. Then exactly one of
the following three alternatives obtains: o < f§, a = f, f < a.

Proof. Theorem (4.44) shows that at most one of these alternatives
can prevail. We now show that at least one of them must.

Let A and B be well-ordered sets such that ord4 = « and ord B = B.
Let & denote the family of all mappings f such that f is an order isomor-
phism from either an initial segment of A or 4 itself onto either an
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initial segment of B or B itself [we may obviously suppose that
A + @ % B]. If a is the least element of A and b is the least element
of B, then {(a, b)} €&, and so & & @. By the Hausdorff Maximality
Principle, there is a maximal chain € C . [Actually €=, but we
do not need this fact.] Let 2 = U €. It is easy to check that % belongs to
&. If dom# and rngh are initial segments 4, and B, of 4 and B, re-
spectively, then % U {(x, ¥)} can be adjoined to €, and this violates the
maximality of € Thus we have either domh=A4 or rngh= B. If
domh = A, then either mmgh = B [i.e., a = B], or rgh is an initial
segment of B [i. e., « < B]. If dom#% == A4, then dom# is an initial segment
of 4 and rngh = B, and so the existence of #~! shows in this case that
f<e O

(4.46) Corollary. With the ordering defined in (4.42), any set of ordinal
numbers is linearly ordered.

(4.47) Theorem. Let o be any ordinal number >0 and let P, denote
the set of all ordinal numbers <a. Then P,, with the order relation of
(4.42), is a well-ordered set and ord P, = «.

Proof. Let g€ P, and let A and B be well-ordered sets such that
ord4A = & and ord B = f. Since f < «, there is an x€ 4 such that
A, ~ B. In view of (4.44.ii), this x is uniquely determined by f. Thus
define ¢ (f) = x. The reader should have no difficulty in verifying that
this defines an order isomorphism ¢ from P, onto A. Thus F, is well
ordered and ord P, = ord4A = «. 0O

(4.48) Theorem. Let a be a cardinal number. Then there exists an
ordinal number o such that Fa = Q. _

Proof. Let A be any set such that 4 = a. According to the Well-
ordering Theorem (3.11), there is a well ordering on 4, making 4 a well-
ordered set. Let « = ord4. Then (4.47) A ~ F,. Consequently 4 ~ P,
and P,=A=a. O

(4.49) Theorem. There is a smallest ordinal number 2 such that P,
is uncountable. The set Py has the following properties:

(i) Pg is well ordered;

(ii) &€ Py implies P, is countable,

(iil) Py is uncountable,

(iv) C C Py and C countable imply there s a B € Py such that « < 8
for each a € C.

Proof. Choose an ordinal number  such that B, = ¢. If each member
of P, has only countably many predecessors, set 2 = y. Otherwise some
members of P, have uncountably many predecessors and we let £ be
the smallest of these (4.47). Conclusion (i) follows at once from (4.47).
Conclusions (ii) and (iii) follow from the definition of 2. Suppose that C
is a countable subset of P,. Let D=U {F,: a€ C}. Then D is a count-
able union of countable sets so D is countable (4.21). Let g€ P, N D'.
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Clearly « < f for each « € C for otherwise § € D. This proves (iv). 0O

(4.50) Remark. The cardinal number of the set Pg, is denoted ¥;.
The continuum hypothesis is the assertion that &, = ¢. This is equivalent
to the assertion that each infinite subset of R is either countable or of
cardinal number ¢. Many interesting and important theorems have
been proved with the aid of this hypothesis. It was recently shown by
Paur J. CoHEN [loc. cit. (3.2)] that the continuum hypothesis is inde-
pendent of the Zermelo-Fraenkel axioms of set theory.

(4.51) Exercise. Prove that every nonvoid set of cardinal numbers
has a smallest member.

(4.52) Exercise. Let A be an infinite linearly ordered set. Suppose
that no infinite subset of A has a largest element. Prove that ord4 = w.
[Recall that w = ord V.] ‘

(4.53) Exercise. Let A be a linearly ordered set such that:

(i) A4 is countably infinite;

(ii) A has no first or last element;

(iii) »,y€ 4, x <y imply that there is a 2€ 4 such that x <z < y.
Prove that ord 4 = . [Recall that # = ord Q.]

(4.54) Exercise. Prove that there are uncountably many different
ways to well order the set N such that no two of these different well-
ordered sets are order isomorphic.

(4.55) Exercise. Let 4 be any infinite set. Prove that 4 can be well
ordered in such a way that it has no last element. Also show that there
is a well-ordering of A in which there is a last element.

(4.56) Exercise. A permutation of a set 4 is any one-to-one mapping
of A onto A. Let A be a set such that 4 > 1.

(a) Prove that there exists a permutation f of 4 such that f(x) + x
forall x € A.

(b) Show that if A is an even integer or is infinite, then the permuta-
tion f in (a) can be chosen so that f o f(x) = x for all x € A. What happens
if 4 is an odd integer?

(c) Show that the permutation f in (a) can always be chosen so that
fofofofofof(x)=xforallx€ 4.

(4.57) Exercise. Let B be a set, let b = B, and let

b!={f: fis a permutation of B}.

Prove that if B is infinite, then b! = 28,

We now prove a theorem which allows us to define the algebraic
dimension of any vector space.

(4.58) Theorem. Let X be a vector space over a field F and let A and B
be any two Hamel bases for X over F. Then A = B.

Proof. We will first use ZorN’s lemma to produce a one-to-one

function from A4 into B. To this end let § denote the set of all one-to-one
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functions f such that:

(1) domfC A4;

(2) mgfC B;

(8) (rmgf) U [4 N (dom{)] is linearly independent over F.
The fact that A is linearly independent shows that the empty function @
is an element of 8. Thus 8 == . Partially order 8 by inclusion. To show
that ZorN’s lemma applies to 8, let € be any nonvoid chain contained
in  and let g = U €. An application of (2.19) shows that g is a function
and that (1) and (2} hold for the function g. One easily sees that gis one-to-
one. We have

(mgg) U [4 N (domg)] = (Y megHU[4 N (Y domf)]. (4)

Now let F be any finite subset of the set in (4). Since {rngf:f¢€ €}
is a chain under inclusion, there is a function f, € € such that

F C (mgfy) U [4 N (Y, dom/y]

C (mgf,) U[4 N (domfy)'] .

Therefore F is linearly independent, and so g satisfies condition (3).
Thus g is in 8, and g is an upper bound for €. By ZorN’s lemma, 8 hasa
maximal member, say A.

We assert that domhs = A. Assume that dom’ 3 4 and let a,€
A N (dom#A)’. According to (3), a4isnot a linear combination of elements
of rngh. Since 4, is a linear combination of elements of B, it follows that
rngh + B. Let b, be any element of B N (rng#)’. If the set

{bo} U (rngh) U4 N (domA)']

is linearly independent, then, as is easily seen, the function AU {(a,,b,)}
is in 8, contrary to the maximality of 4. We infer that b, is a linear com-
bination of elements of the set (rngh) U [4 N (domA)']; we write

b0=2 [+ 7% 9

E=1
Since B is linearly independent, b, is not a linear combination of elements
of rngh. Hence there exists a & such that x, € 4 N (dom#A)’ and e, =+ 0.
Thus b, is not a linear combination of elements of the linearly independ-
ent set (rngh) U [4 N ({x;} U dom#A)’] and therefore the function
h U {(xz, by)} is an element of 3. This contradicts the maximality of 4.
Consequently doms = 4 and 4 < B.

Interchanging the roles of 4 and B in the above argument, we see
also that B < A. The proof is completed by invoking the Schréder-
Bernstein theorem (4.7). O

(4.59) Definition. Let X be a vector space over a field F. We define
the algebraic [linear] dimension of X to be 0 if X = {0} and to be the car-
dinal number of an arbitrary Hamel basis for X over F if X = {0}.
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(4.60) Exercise. Let X be a vector space over a field F and let B
be a Hamel basis for this space. Prove that:

(a) X = max{B, F}if B is infinite;

(b) X = FBif B is finite.

(4.61) Exercise. Without using the continuum hypothesis, find the
algebraic dimension of the vector space R over the field @.

(4.62) Exercise [proposed by M. HEWITT]. Let A be a nonvoid set.
Suppose that there is a family & of subsets of A with the following

properties:
(i) B=3forall B &;
(i) U¥ =4;

(iii) B, N B, =1 for distinct B,, B, € &;

(iv) if x, ¥ € A and x = y, then there is exactly one B ¢ & contain-
ing {, 3} _

Prove that such an & exists if and only if A =3 or 4 =7.

§ 5. Construction of the real and complex number fields

We give in this section a short and reasonably sophisticated construc-
tion of the real and complex numbers, assuming the rational numbers
as known. It seems appropriate to do this, since completeness of the real
number field is the rock on which elementary analysis rests. Also there
is a strong interplay between algebra and contemporary analysis, which
demands the use of the ideas and methods of algebra in analysis. We
begin with a few facts about groups and other algebraic structures.

(5.1) Definition. A set G together with a binary operation (¥, y) > x¥
mapping G >< G into G is called a group provided that:

(i) x(yz) = (xy)z for all %, y, z € G [associative law];
(i) there is an element e € G such that ex = x for all x€ G [eis a
left identity];

(iii) for all ¢ as in (ii) and all a € G there exists a=1 ¢ G such that
a~la = e [a~1is a left inverse for a].

If also we have

(iv) ab=baforalla, b€G,
then G is called an Abelian group [afler the Norwegian mathematician
N. H. ABEL (1802—1829)].

(5.2) Remarks. (a) Every left inverse is a right inverse. In fact, for
any e as in (ii) we have

(@la)at=eal=al.
Now let b be a left inverse of a1, 1. e., ba—! = e. Then
balaa~l)=bal=e,
(ba=Yy (aa"Y) =e,

e(aal) =e,
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and so by (ii)
aal=e.

Note that the last equality also implies that « is a left inverse of a-1.
(b) For any e as in (ii) and any a € G, we have

ae=a(ala)= (@aaY)a=cea=a,

1. e., e is also a right identity. If ¢, and e, satisfy (ii), then they are both
right identities also, and so

e,e, = €y [ey is a left identity],
e,e, = ¢, [e,is a right identity] ,

so that ¢, = e,, 1. e., there is a unique left and right identity in G.

(c) Similarly one sees that a~! is unique.

(d) For Abelian groups, we often use additive notation [+ denotes
the binary operation]; in this case we denote the identity by 0, the in-
verse of @ by —a, and a + (—b) by 2 — b.

(5.3) Definition. Consider a set 4 with two binary operations + and -
[called addition and multiplication, respectively], which is an Abelian
group under -+, with identity 0, and in which the equalities

a-(b+c)=(a-d)+ (a-c) [leftdistributive law],

(@+b)-c=(a-c)+ (b-c) [rightdistributive law],
and

(@-b)-c=a-(b-c) [associative law for multiplication]

hold for all a, b, c € A. Then A is called aring. If a-b=1>b-aforall a, b
in a ring A, 4 is called commutative. An element 1¢ A such that 1-a
=a+1=a for all a€ A is called a [two-sided] unit for A. A nonvoid
subset I of a ring A is called a left [right] idealif a — b€ I foralla, b€l
andx-acl[a-x¢I]forallacland x¢ A. A subset I of 4 that is a left
and a right ideal is called a two-sided ideal.

(5.4) Remarks. (a) The notation in the statements of the distributive
laws is correct but clumsy. From now on we will follow the universal
algebraic -convention that a4b means a-b and that ab 4+ cd means
(a-d) + (c*d). ‘

(b) For all x in a ring 4, we have xx = x(x + 0) = xx + %0, so
that x0 = 0. Similarly 0x = 0.

(c) Evidently two groups or rings can be distinct objects and still
be indistinguishable as groups or rings. Formally, we say that rings 4
and A’ are isomorphic if there is a one-to-one mapping v carrying 4
onto A’ such that v(a + ) = v(a) + v (b) and 7(ab) = 7(a) T(b) for all
a,b¢ A. The mapping v is called an ¢somorphism or an isomorphic
mapping. An analogous definition is made for groups. An isomorphism
of a ring or group onto itself is called an automorphism.
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We now define an important special type of ring.

(5.5) Definition. A ring F such that F N {0}’ is an Abelian group
under multiplication is called a field.

(5.6) Remarks.

(a) Since a group contains an element, our definition of a field shows
that 1 s 0 and that a field contains at least two elements.

(b) The identities (5.4.b) show that O has to be excluded from F
in order to obtain a group under multiplication.

(c) The simplest field is {0, 1}, with operations addition and multi-
plication modulo 2. The addition and multiplication tables for this field
are

+]0]1 -lo1
0|01 ojlofo
110}, 1101

(d) If p is a prime, the set {0, 1,2, ..., — 1} is a field under addi-
tion and multiplication modulo p. All necessary verifications are easy;
we will give the least easy one, namely that each nonzero element has
a multiplicative inverse. If a€{1,2,..., p — 1}, then we must show
that there exists x € {1, 2, ..., p — 1} such that

ax=1 (mod p).

Since p is prime, the greatest common divisor of 2 and p is 1. It follows
that there are integers x and y, x == 0, such that

l1=ax+ py.
In particular, there are integers %" and y’ such that
l=ax' +py, 121 <p;

hence ax’=1 (mod p) and ' € {1,2,...,p — 1}.

(e) If F is any field, then the elements 0,1, 1+1,...,nl,...
[where # is any positive integer and # 1 has an obvious meaning] are all
members of F. If n1 = 0 for some positive integer », then the smallest
positive integer p such that 1 = 0 is obviously a prime. In this case F
is said to have characteristic p; otherwise F is said to have characteristic 0.
Fields of characteristic  are of no interest at present in elementary
analysis. If F has characteristic 0, then F has a subfield [the definition
of a subfield is obvious] which is isomorphic to the rational number field.
We will always denote the rational number field by the symbol Q.

To see that F contains a [unique] isomorph of Q, consider a mapping
v of part of F onto Q, and see what properties it must have in order to
be an isomorphism. For notatjonal convenience, we ignore the distinc-
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tion between the zeros of F and of Q and between the units of F and of Q.
It is clear that 7(0) = 0 and 7(1) = 1. A trivial induction shows that
T(nl) == for all n€ N. If 7 is an isomorphism, we must also have

T((n1)-1) = % and 7(—(#1)) = —# for all € N. It follows that we must
have

w((m1) (n1)=1) ==

and
m

t((=(mD) (r 1)) = — -
for all m, n € N. It is a routine matter to show that the mapping 7 so
constructed is an isomorphism of a subfield of F onto the field Q.
(f) Let G be any group. For 4, B C G, we define

AB={xy:x¢A,y¢c B},
A-l'={x"1:x¢ 4},
A?=AA4 .

In additive notation, these sets are written as 4 + B, — A4, and 24.
The set A" [#A in additive notation], where % is a positive integer, has
the obvious definition.

(g) For a nonzero element b of a field, we frequently write the multi-

plicative inverse b~ as —l—, and for an element a of the field, we frequently

write ab~1! as %.

(5.7) Definition. A field F is said to be ordered if there is a subset P
of F such that:

i) PN (—P)=o,;

(i) PU{O}U (—P)=F;

(iii) @, b€ Pimplya + b€ Pandab€ P.

If one thinks of F as the rational or real numbers, then P is just the set
of positive rational or real numbers. Accordingly, in the general case
elements of P are called positive; elements of — P are called negative.
Since 0 = —0, 0 cannot be an element of P.

(5.8) Theorem. Let F be an ovdeved field, and let P be as in (5.7).
IfacF and a & 0, then a®> € P. In particular, 1 € P. If a, b€ F, ab¢ P,
and a € P, then also b ¢ P.

Proof. If a¢ P, then a*¢ P by (5.7.ii). If a ¢ P and a % 0, then
a¢ — P by (5.7.i), i. e., —a € P. Again by (5.7.iii), we have (—a)2 € P.
In any ring, the identity (—a) (—b) = ab holds, and so a2 = (—a)?*¢ P.
Since 12 = 1, the second assertion holds. To prove the third assertion,
assume that b ¢ P. If =0, then ab = 0 ¢ P, which contradicts the
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hypothesis. If b€ — P, then —b € P and
a(—b) = —(ab) € P;

therefore we have ad € — P, which is a contradiction. Hence € P. 0O

(5.9) Theorem. Every ordered field F contains an isomorph of Q,
and the isomorphism can be taken as order-preserving.

Proof. Since 1¢ P, (5.7.iii) implies that #1 € P for all »€ N. This
implies that F has characteristic 0, and so the isomorphism 7 of (5.6.¢)
can be constructed. It is easy to check that v preserves order. O

(5.10) Definition. Let F be an ordered field. We writea < band b > a
if b — a € P; the expressions ¢ < b and b = a have obvious meanings.

(5.11) Theorem. Let F be an ordered field. For all a,b¢ F, we have
a<bora=bora>b, and only one of these relations holds.

Proof. The proof is immediate from the definition of P and the fact
that

b—a=0 ifandonlyif b=a,
b—ac¢P ifandonlyif b>a,
a—b¢cP ifandonlyif a>b. O

Many elementary facts about inequalities are consequences of the
axioms of order (5.7). We now list a few of them.

(5.12) Theorem. If F is an ordered field, if a,b,c,dCF, and a <b
andc < d, thena+c<b+d.

The proof is left to the reader.

(5.13) Theorem. If F is an ordered field, if a,b,c€F, a < b, and
c>0[c<0], then ac < bc [ac > bc].

Proof. If a < b, then b — a€¢ P, and therefore if ¢ > 0, we have
c(b—a)€ Pandcb>ca. Ifc <0, then —c€ P,andso (—¢) (b — a) € P;
hence ac — bc€ P,i.e.,ac>bc. O

(5.14) Theorem. In an ordered field F, the inequalities 0 < a <b
1

2"

imply that 0 < - <
Proof. Since b%—: 1¢P and b€ P, (5.8) implies that %E P.

Hence 71)—, %, and b — g are in P, and it follows that
1 1 1 1
A R A AR
so that
0<~<X. O
< 7 < 2
(5.15) Definition. For an element a of an ordered field F, we define
a if a=0,
lal = —a if a<0.
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(5.16) Theorem. For all elements a, b in an ordered field F, we have:
(i) |a| = |—al;
(ii) |ad] = |a] 5]
(iii) |a + b| = |a| + |0|;
(iv) | lal = o] | < |a — 3.
Proof. Statements (i) and (ii) are obvious consequences of the def-
inition of |a|, and (iv) follows from (iii). We will prove (iii). If a = 0,

we have |a| = a; if 2 < 0, then we have |a| = —a > 0. Hence we always
have

a < |af,

b= 9,

and so (5.10) implies that
a+b=|al+b.
Since —a = |—a| = |a|, we also have
—(@+8) = |a| + 3],

and (iii) follows from these two inequalities. O

(5.17) Definition. An ordered field F is said to be Archimedean
ordered if for all a € F and all b€ P there exists a positive integer n
such that #b > a. In intuitive language, this definition means that no
matter how large a is and how small b is, successive repetitions of b will
eventually exceed a. There are ordered fields which are not Archimedean
ordered; see (5.39).

(5.18) Theorem. Let F be an Archimedean ordered field, and let a, b € F

be such that a < b. Then there exists —:5:— € F, where m and n are integers,

such that a < % <bl

Proof. Since b — a4 > 0, we have (b — a)~1> 0; and so, since F is
Archimedean ordered and 1> 0, there exists an integer # such that

nl>((b—a1>0.
Using (5.14), we have
0<(nl)t<b—a;

or, using an obvious notation,
Li<o—a.
”
Let n be any integer satisfying the last inequality, and let S be the set
S={k:kisanintegerandk-%>a} .

1
1 The expression % really means Lnnl— € F; in view of (5.6.¢€), it does no harm
to suppose that F D Q.
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Since % >0 and F is Archimedean ordered, we have S =% @. Also,
again by the Archimedean order property of F, there is a positive integer
such that
1
P P
(pl)<e
1
(-— P) y <a.
It follows that —p, —(p + 1), —(p + 2), . .. lie outside of S. Hence S
is a nonvoid set of integers which is bounded below, and so it contains a

. m
least element m. Since m € S, we have a < e

1
< a; and so

Since m — 1 ¢ S, we have i

m—1

% + <at— <a+(b—a)—b
1. e.,
a<—<b ]

(5.19) Definition. Let F be an ordered field. A sequence (a,)
[= (@, @3 « - -, @, . . .)] Of elements of F is called bounded if there is an
element b € F such that |a,| < b for each positive integer #. A sequence
(a,) is called Cauchy if for every e € F such that ¢ > 0, there is a positive
integer N (e) such that |a, — a,| < e for all p, g = N(¢). [The French
mathematician AuGusTIN Louls CaucHY (1789—1857) first considered
this class of sequences, for the case in which F is the real number field.]
A sequence (a,) is called null if for every e € F such that ¢ > 0, there is
a positive integer N (¢) such that |a,| < e forall p = N (¢). The families of
sequences satisfying these conditions will be denoted by B, €, and R,
respectively.

(5.20) Theorem. The inclusions R C € C B obtain.

Proof. If (a,) € €, then p, ¢ = N (1) implies |2, — a,| < 1. In particular,

layw+r — ayw| <1 for £=0,1,2,.

Let b = max {|a,|, |aa|, - . ., layw|, |ayw| + 1} [see (2.7) for the defini-
tion of max]; then |a,| < bforp=1,2,..., and so (a,) € B.
If (a,) € R, then for any given positive e € F, we have

Ia - aa] = Iaﬂl + |aq! < +

provided that p,g = N (—é— e). It follows that (a,) € €, andsoRC €. 0O

(5.21) Theorem. For (a,), (b,) €€, let (a,) + (b,) = (a, + b,) and
(@) (by) = (anb,). With these definitions of sum and product, € is a com-
mutative ring with unit, and N is an ideal in € such that R E €.
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Proof. Let us first show that sums and products of Cauchy sequences
are again Cauchy sequences. Let (a,), (b,) € € be given. For a positive
ecF, let N(e) and M (e) be the positive integers associated with the

Cauchy sequences (,) and (b,), respectively. If p, g = max {N (%), M (—;?)},

then we have |a, + by — (ag + b))| < | — ag| + [b,— b)| < ge+ ge—e.

It follows that (a,) + (b,) is a Cauchy sequence.
Since € C B, there are positive elements ¢ and 4 of F such that:

la,| £ ¢ for $=1,2,8,...;
o] £d for p=1,2,3,....

If , ¢ = max {N (—2fd—), M(-zic)}, then we have

[@pby — agby| = |apby — apby + ayby — a5b,
ce de

< lapl 1By = | + [bg] |ap — ag| <5, + 57 =¢.

1t follows that (a,) (b,) is a Cauchy sequence.

It is now obvious that € is an additive Abelian group in which (0, 0, ...)
is the zero. Also multiplication in € is clearly commutative and € has
the multiplicative unit (1, 1,...). The distributive law for € follows
immediately from the distributive law for F. We have thus shown that €
is a commutative ring with unit.

We will now show that R is a proper ideal of €. If (a,), (b,) € R,
then it is clear that (a,) — (b,) € N; thus N is an additive subgroup of €.
If (a,) € R and (b,) € €, then we must show that (a,5,) € . Let c be a
positive element of F such that

|bn| = ¢, n=123,....
For a given positive e¢ F, the;e is a positive integer N (%) such that
p=N (%) implies that
|a,| < %
Hencep = N (—:4) implies that
|ayb,| < |ay] "<%C=5’

and so (a,b,) € N. Thus we have shown that R is an ideal. Since
(1,1,1,...)€€NAR;, Nis a proper ideal. O

Note that € is not a field; e. g., (0,1,0,0,...) has no multiplica-
tive inverse in €.

(5.22) Theorem. Let &/N denote the set whose elements are the sets
(ay) + R [called cosets of N/, where (a,) € €. Addition and multiplication
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in €/N are defined by
(@) + R) + ((bs) + R) = (@n) + () + R = (@0 + 1) + N,

((an) + Qz) ((bn) + <"’z) = (an) (bn) + R = (a,b,) + N.
These definitions are unambiguous, and with addition and multiplication
so defined, €/N is a field.
Proof. Since A is an additive subgroup of €, any two cosets (a,) + R,
(bs) + N are either disjoint or identical. Two sequences (a,), (4,) € €
belong to the same coset if and only if (a;,) = (a,) + (c,), for some (c,) € N.
If (c,), (d,) € A, then

((@n) + () + R) + (((Ba) + (dn) + R)
= (an) + (bn) + (C”) + (dn) + R = (an) + (bn) + X,

an

and

(@) + (en)) + R) (((Ba) + (@) + )

= (an) ( ) + (@n) (dn) + (Ca) (br) + (cs) (dn) + R
= (aa) (bn) + R .

Thus addition and multiplication of cosets are defined unambiguously.
It is a simple matter to verify that €/ is a commutative ring with unit.
For example, (1, 1, 1, . . .) + 9 is the unit of €/A.

It remains to show that every nonzero element of €/ has a multi-
plicative inverse. Let (a,) + RN+ N; 7. e, let (a,) €€ NRN". We are
required to find (x,) € € such that

(@n%0) + R = (1w) + X,
1. e., such that
(anxn - l(n)) €EN.
Since (a,) is not a null sequence, there is a positive e € F such that for
every positive integer » there is some integer s > 7 for which |a,] = e.

Forallp,g= N (11; e) we have
1
la, — a,| < 5 e

Lets> N (% e) be such that |a,| = e; then for arbitrary p = N (% e)
we have

e < la] = |a, — a, + ay| < |a, — a,| + |ay| <5 e+ |ay| -

Hence
lay] > 3¢ if ;ng(%e).

We now define (x,). Write N (—;— e) as m, and let

Xy =Xg="'"'=Xp =1,
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and
Xp—— if p=m
= >m.
We have %
(%nty) = (ay, a9, . - ., 81, 1, 1,..),
and hence

(Fnty — 1) = (@, —1,a2,—1,...,a,,—1,0,0,...).
Thus it is obvious that (v, a, — 1(,) € R. To complete the proof, we need
only show that (x,) € €. If p,g= N (% e), then we have
1 1

ap 44

1
ap

lxﬁ - xal =

1 2 2
Ja e —ad =% Zlay—all.

For arbitrary positive d € F, it is now obvious that
pooz mosfi(3). 5(%)

[, — x| < d.

implies that

Hence (x,) € €. O

(5.23) Notation. The field €/R will be written as F. Throughout
(5.23—5.30), elements (a,) + N of €/N will be denoted by small Greek
letters: «, B, ... . If aCF, then the element (a(,) + RN of F will be
written as &; it is the coset of R containing the constant sequence all
of whose terms are a.

(5.24) Theorem. In F, let P = {a € F : a + 0 and there exists (a,) € «
such that a, >0 for n=1,2,3,...}. With this set P, F is an ordered
field in the sense of (5.7). The mapping v: v(a) = @ is an order-preserving
algebraic isomorphism of F into F.

The proof of this theorem is left to the reader.

(5.25) Definition. Given a sequence (4,) in an ordered field F and
b € F, we say that the limit of (a,) is b, and we write

lm a,=% or a,—b,

n—- o

if for every positive ¢ in F there exists a positive integer L (¢) such that
la, — b] < e for all » = L(e). An ordered field is said to be complete if
every Cauchy sequence in F has a limit in F.

(5.26) Lemma, A sequence with a limit is a Cauchy sequence. If (a,)
is a Cauchy sequence and (an)y—1(1 <ty <My < - <mp<:::)isa
subsequence with limit b, then (a,) has limit b.

Proof. The first assertion is trivial. To prove the second, choose

e>0in F. If L(% e) < k, then we have |a, — b <~;—e. Since (a,)
is a Cauchy sequence, we have

1
la, —a, <5 e
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if pg= N (% e) .A Choose any fixed % such that 2= L (% e) and
ny = N(%e). Then for ¢ = N(—;—e), we have

lag — b £ |ag— ap| + la,, — b <e. O

(5.27) Lemma. For o > 0, a € F, there exists ¢ € F such that0 < & < a.
It F is Archimedean ordered, then F is also Archimedean ordered.

Proof. Since « > 0, there exists (a,) € a such that a, >0 for
n=123... and (a,) ¢ N. Hence there is a d € P such that
a, = |a,| = d for arbitrarily large s. We have

1
lay, — a4 <54

if pg= N (% d). Choose an s as above such that s= N (% d);

then we have

1
A< a,=a,—ay+a, < |a,— ap| + |ay| <5 d+ay;

i.e., %_d_< a, whenever p = N (% d). It follows that (a,, - -21— d(,,)) +A

=a—%dz 0. We have

4=0,

1 1
oc——d>oc——2—

3
and so
—
x> 3 d.
Hence e = % d satisfies the first assertion of the theorem.
Suppose that F is Archimedean ordered, and let «, 8 € F be such that

O<ax<p.

By the first assertion of the theorem, there is a positive ¢ € F such that
& < a. Since every Cauchy sequence is bounded, there is a € F such
that g < d. If m is any positive integer such that me > d, then we have

ma>mé>d>f;

hence ma > B, and so F is Archimedean ordered. O

(5.28) Lemma. Let « € F and (a,) € a. Then we have
lima, =c.

Proof. Choose any ¢ > 0in F and any ¢ > 0 in F such that 0 <& < ¢;
this is possible by (5.27). We have

lay —agl <e if p,g=Nie).
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Now fix p = N(¢). For n = N (¢) we have
ay—a, <e,
a, —a,<e.
It follows that
,—ax<i<e,
a—a, = e<eg;
i. €.,
le—a,<e if p=N). O

We now state and prove our main result about F.

(5.29) Theorem. The field F is complete.

Proof. Let (a,) be any Cauchy sequence in F. If (,) is ultimately
constant, there is nothing to prove; if not, there exists a subsequence
(@)% 1 such that &y, + &, for7=1,2,.... By (5.26), it suffices to
prove that («,);- ; has a limit. Hence we suppose with no loss of general-
ity that (ap)y-; is such that «,=+a,y (p=1,238,...). Write
0 <oy — atpya| = iy

For all ¢ > 0 in F, there exists N (¢) such that

lepy — gl <& if p,g= N(e);
in particular,
pp<s it p=N(.
Using (5.28), we choose a, € F such that |7, — a,| <pp (#=1,2,3,...).
Now choose any ¢ > 0in F. For p, g = N (% é), we have

@, — & = |y — o] 4 oty — | + g — T
1 _ 1 _ 1 _ 1. .
<,up+'3—8+,uq <§e+§6 +'§'8=6.
Since the mapping 7 of (5.24) is an order-preserving isomorphism, it

follows that |, —a,| <¢ if 5,92 N(3 2), i.c., (4) €€ Define B

as (a,) + N.
We claim thatph'm «, = B. To prove this, choose any positive ¢ in F.

For p= N (% s) , we have |@, — o] < p, < % e. Also (5.28) shows
that there is a positive integer M (—;— e) such that |z, — f]| < %e for
p=M (—;— e). Hence
oty — Bl = |y — @] + |7, — f]
< %s + %e =¢£

if p = max{N(%e),M(%s)}. 0
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(5.30) Theorem. For any ordered field F, F is isomorphic with F;
every Cauchy sequence of F differs from a constant sequence by a null
sequence.

Proof. For a Cauchy sequence (a,) of elements of I, let g :plim oy

(5.29). Then (&, — B(s) is a null sequence, and the theorem follows. 0O
(5.31) Theorem. In any Archimedean ordered field, the sequence
(2-2)57~ 1 ts null.

Proof. We have 2¢ — Zp (P) > p, and so 2-? <L. Since (—;—)m

K=o \F p p=1

is null, (2-#) is also null. O

(5.32) Definition. Let F be an ordered field and & & 4 CF. An
element b € F is said to be an upper [lower] bound for A if x < b [x = b]
for allx € A. An upper bound b is called the least upper bound or supremum
of A, and we write b = sup 4, if b is less thar all other upper bounds for 4.
The greatest lower bound or infimum of A, written inf A, is defined analo-
gously!. The notations l.u.b.A and g.1.b.A. are sometimes used for what
we call sup4 and inf4.

(5.33) Theorem. Let F be a complete Archimedean ordered field,
and let A be a nonvoid subset of F that is bounded above [below]. Then
sup A [inf A4 ] exiss.

Proof. Let b be any upper bound for 4, and let a € A. There exist
positive integers M and —m such that M > b and —m > —a, ‘.e,
m < a < b< M. For each positive integer p, let

Sy = {k : kis an integer and % is an upper bound for A} .
If £ < 2?m, then kis not in S,. Thus S, is bounded below. Since we have
22M¢S,, S, is nonvoid. It follows that S, has a least element, say Z,,.

k . 2k k

We define a, =55 (p = 1,2,3,...). By the definition of %,, 5537 = 55
. 2k,—2 ky—1 .
is an upper bound for A and —5}-7— = —'5;— is not. Therefore we have
either

ko1 =2k, or Ry, =2k,—1,
so that

2k, 2k, — 1 1

Bp+1 = o1 — @p OT By = o3t = p — gp41 2

and hence

1
apy1=a, and a,—a,,, <5y (P=12,3..).

1 Clearly we can also define suprema and infima in arbitrary partially ordered
sets.
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Ifg>p =1, then
0= a,—ag=(a,— ap4) + (ap+1 —@pig) + ot (Ggo1— @)

1 1 1
éw+m+"'+2a 2,+.(1+ + - +F‘»T)

1 1 1
T gpn1 2- 2e-p-1 <%

1
We thus have |a, — a,| = @, — a; < 55 whenever ¢ > p = 1. From (5.31)
we infer that (a,) is a Cauchy sequence, and soplim a, exists; call it c.

It is plain that ¢, = ¢

We claim that supA4 = ¢. To prove it, assume first that ¢ is not an
upper bound for A. Then there is an x € 4 such that x > ¢, and hence
there is a positive integer p such that a, —c=|a, —c[<x—c; t. e,
a, < %. Since a, is an upper bound for 4, the last inequality cannot
obtain. Therefore ¢ is an upper bound for A. Assume next that there

exists an upper bound ¢’ for 4 such that ¢’ < ¢, and choose a positive
. 1 1 1
integer p such that 5; <c—c¢". We then have ap — 55 2 ¢— 55

1 .
>c + ¢ —c=¢', and so a,, — 57 is an upper bound for 4. However,

a, — - is by definition ——;— ko — 7 and 2 2 —! isnot an upper bound for 4.

It follows that ¢ = sup4.
A similar proof can be given that inf4 exists if 4 is bounded below;

or it can be shown that
infA = —sup(—4). O
(5.34) Theorem. Any two complete Archimedean ordered fields F,
and F,, with sets of positive elements Py and Py, respectively, are algebraically
and order isomorphic, i. e., there exists a one-to-one mapping v of Fy onto Iy
such that
Tx+y) =Tt +70),
T(xy) =T1(*) (),
v(x) € Py ifandonlyif x€P.
Proof. Let 1, and 1, be the units of F; and F, and 0, and 0, the zeros.

The mapping 7 [cf. (5.6.e)] is first defined on the rational elements of F,;
thus:

() = 1y;
7(0)) = 0y;
t(ml)) = ml,, wheremisan integer;

I

3 2|~ ¥

1,, where # is a nonzero integer;

o

Q
I~

2§ 3=
— —

Nl Nl
I

1;.
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If x € F, and x is not of the form — 11, then we define

t(x)=sup{% 12:—2111<x}.

It is left to the reader to prove that v has the desired properties. 0
(5.35) Definition. The real number field is any complete Archimedean
ordered field; e. g., Q. We will always denote this field by R.
(5.36) Exercise. Let F be any ordered field. For a, b ¢ F, prove that

max{a,b}:%(]a—b[+a+b),
min {a, b} =5 (~|a — b + a +b).

(5.37) Exercise. Let F be any ordered field, and let 4, b, ¢ be any
elements of F. Define

mode{a, b, ¢} as min{max{a, b}, max{b, c}, max{a, c}}.

Describe the mode in words, and write it in terms of absolute values and
the field operations.

(5.38) Exercise. Let F be any ordered field. A subset D of F is called
a Dedekind cut in F if:

(i) S DGF;

(ii) the relations x € D and y < x imply y € D.

(a) Let D be a Dedekind cut in R. Prove that D = {x € R: x < a} for
somea€ Ror D={x€R:x < a} for some a € R.

(b) If F is an ordered field not order isomorphic to R, prove that F
contains a Dedekind cut that is of neither of these two forms.

(c) Using (a) for the field R, prove that every positive real number
has a unique positive k% root (¢ =2, 3,4,...).

(5.39) Exercise. Consider the field of all rational functions with
coefficients in Q in a single indeterminate £, and denote this field by the
Al
B@)’

where A4 (2) 2 a,t* and B(¢ Z b;#. The numbers a, and b; are in Q,

symbol @ (#). Thus a generic nonzero element of Q (¢) has the form

1=
anda, + 0 and b =+ 0. Addition and multiplication are defined as usual.

We order Q(f) by the rule that B—Et; is in P if and only if 4,b,, is a

positive rational number. Prove that Q (f) is an ordered field and that the
order is non-Archimedean. Prove also that every non-Archimedean ordered
field contains a subfield algebraically and order isomorphic with Q (¢).
Find the completion of Q(f).

(5.40) Exercise. Let (a,),—; be any sequence of integers all greater
than 1. Prove that every real number x such that 0 < x< 1 has an
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expansion of the form

where each #,€{0,1,...,a;— 1}. Find a necessary and sufficient
condition for two distinct expansions to be the same real number.

We next construct the complex number field, a much simpler process
than our construction of R.

(5.41) Theorem. Consider the ring R[t] of all polynomials in the
indeterminate t with coefficients in R, and with addition and multiplica-
tion defined as usual. Let J = {(*+ 1) p() : p(t) € R(2]}. Then J is an
ideal in R[t]. Let R[t]]] be the set of cosets p(t) + J. Addition and multi-
plication in R[t)/] are defined by

PO+DN+@ty+D=0@O+ee)+]
PO+ +DN=0Hed)+J.

These definitions are unambiguous, and with addition and multiplication
so defined, R[t]/] is a field.

Proof. It is obvious that J is an ideal in R [¢]. Exactly as in the proof
of (5.22), we see that the definitions of addition and multiplication in
R[t)/J are unambiguous, and that R[¢)/] is a commutative ring with
zero J and unit 1+ J.

To describe R[t]/J more closely, suppose that (a-+ b¢)+J
= (@' + b’'t) + J. Then [(a + b#) — (a’ + b'#)] € J,and so (@ — a') + (b —¥')¢
= (2 + 1) p(f), for some p(f) € R[t]. Comparing the degrees of these
two polynomials, we see that p(f) = 0 and that a = &', b = &'. In other
words, each element of the set {(a -+ bf)+ J:(a, b)) € R><R} is a
distinct element of R[t]/J. It is an elementary algebraic fact, whose
proof we omit, that every p (¢) € R [¢] can be written

pO)=@+1)g) +70),

where ¢(f) € R[t] and 7(f) = a + bs. Thus the coset p () + J is equal to
@+ 1)q(t) + (a+bt) + J=(a+bf)+ J. This proves that R[t]/]
= {a 4 bt + J: (a, b) € R >< R}, where distinct pairs (, b) yield distinct
elements of R[t]/].

Routine computations show that

(e+ )+ N+ @@+ +N=(a+a)+ 0+ ) )+ ]
and that
(@ + b0 + (@ + b'8) + J) = (@@’ — bY) + (ab' + &'B)) + J .
If (@ + bt) + J + J, then a & 0 or b + 0. Since R is an ordered field, we

and
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1 . . .
have a?+ 8% > 0, and so i eXists in R. It is clear that

e+ + T [(orgr =z t) + J] = 1+ T

This shows that every nonzero element of R[¢]/] has a multiplicative
inverse, and so R[¢]/] is a field. O

(5.42) Definitions. The field R [¢]/] is called the complex number field
or the field of complex numbers and is denoted by the symbol K. We
write the coset (¢ + bf) + J asa + b¢; a + be is called a complex number.
The number a is called the real part of a + bi and is written Re(a + b7).
The number b is called the ‘maginary part of a + bi and is written
Im(a + b7). The symbols z=x+14dy, w=u+1v, ¢+ i1, a+ B,
etc., will be used to denote complex numbers. The complex number
a4+ 07z will be written as a alone and 0 + b7 as b7 alone. For z=

1
x+ 1y € K, the absolute value of z is defined as (x2+ ¥?)2 [the nonnegative
square root!] and is written |z|. The complex conjugate of z [or simply
conjugate] is defined as ¥ — 7y and is written Z.

(5.43) Theorem. The field K cannot be ordered.

Proof. Assuming the existence in K of a subset P as in (5.7), we have
t€P or —i€ P. If ¢€ P, then 1= —1¢ P, which contradicts (5.8).
If —i¢ P, then (—4)2= —1¢ P, also a contradiction. 0

(5.44) Theorem. For all 2, z;, 2, € K we have:

(i) Z=2,
(i) 2, + 2, =7 + 7y,

(iil) 77Z5 = %%, -

Proof. Routine calculation.

(5.45) Remark.! The foregoing theorem shows that conjugation is an
automorphism of K. The field R has no automorphisms save the identity.
In fact let ¢ be a function with domain R, range contained in R,
@ (R) + {0}, and such that ¢ (x + ) = ¢(x) + ¢ (), ¢(xy) = ¢(*) ().
It is easy to show that ¢ (1) = 1, ¢ (0} = 0, and in general that ¢ (r) = »
for all7 € Q. If x += 0 and @ (x) = 0, then

1=9o()= ¢(x%) = ¢ w(%) =0.
Hence @ (x) += 0if x 4 0. If a < b, then
o)~ 9@ = 96— a) = p(((6 — 9}) = (p((6— @3 > 0.

Hence ¢(a) < @ (b) if a< b. For an arbitrary real number x, choose
7y, 73 € Q such that r, < ¥ < 7,. Then

n=gr)< e < @) =r,.

1 Subheads (5.45) and (5.46) are included only for cultural interest and are not
referred to in the sequel.
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Since 7, — #, can be made arbitrarily small, it follows that ¢(x) = «.

(5.46) The functional equation ¢ (x + y) = @ (¥) + ¢ (y) has 2¢ dis-
continuous solutions on R. In fact, regard R as a vector space over @
(8.17.c) and let B be a Hamel basis for R over @ (3.19). For each x € R
let «, denote that unique function from B into Q as in (3.20) such that
% =2 o, (b)b. Now for each f € R® define ¢,: R — R by the rule

bEB
Pr(x) =2 a,(5) 1(b) -
bEB

The reader can easily verify that each such ¢, satisfies the desired
functional equation and that ¢,(rx) =7r¢,(x) for € Q, x€ R. Thus
@s(r) =7g,(1) (r € Q), so that if ¢, is continuous, then @, (x) = xg,(1) for
allx € R. Since ¢, (1) has just ¢ possible values we see that there are just ¢
continuous ¢,’s. But RB = ¢¢ = 2¢ [see (4.34)] and f + g in R® implies
@r + @ so there exist 2¢ discontinuous ¢,’s. The preceding paragraph
shows that the additional requirement that ¢ (xy) = @ (x) ¢ (v) forces ¢
to be continuous.
To illustrate the bizarre nature of some of these additive functions,
define p(x) =2 «,(b) for x€ R, 7.e., = @, where f(b) = 1 for each
bEB

b€ B. Now consider b, = b, in B, c< din R, and 7 € Q.
Next choose s € Q such that ¢ < 7d; + s(b, — by) < d. Let
w=1rby+ s(by — by) = (r + 5) b; — sb,.
Then ¢ < u< d and y(u) = (r + s) —s=r. Therefore ¢ < 4 in R implies
that yp({x: ¢ < x < d}) = Q. This function is wildly discontinuous.

The field K has 2¢ automorphisms. This fact depends on the fact that
K is algebraically closed. Only the identity z -z and conjugation
z— 7 are continuous in the usual topology on K (6.17).

(5.47) Theorem. For z, w € K we have |zw|= 2| |w|, |z| = |2,
|2]2= 2%, 2+ 2= 2 Re(2), and z — Z = 21 Im (2).

Proof. Computation.

(5.48) Lemma. Let z = x + yi be a complex number. Then |Re (2)| < |2|,
and Re(z) = |z| if and only if x = 0 and y = 0. Also |Im(2)| < |2|, and
Im(2) = |2| if and only if x =0 and y = 0.

Proof. The following relations are evident:

—l = (S ()i = e S
< dl = (7 = (4=l
Clearly x = (x% + yz)% if and only if y =0 and x = 0. The proof for
Im (2) is the same. 0O
(5.49) Theorem. For z,w€ K, we have |2+ w| =< 2|+ |w|, and

equality holds if and only if az = fw, where a and B are nonnegative real
numbers not both zero.
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Proof. Applying (5.47) and (5.48), we write
z+w?i=(2+w) (Z+ @) =22+ wW+ 20+ Zw
= |2|> + |w|? + 2 Re (2)
= |2 + [w]* + 2|29
= |2]* + [@[® + 22| ||
= (lo] + [el)?.
This shows that |z + w| < |2 + |w|. Equality holds if and only if
Re (@) = |z10], and so by (5.48) if and only if 2@ is a nonnegative real
number. If z=0,take a =1and §=0.If w=0, takea=0and f =1
If 24 0 and w = 0 and zW is a positive real number §, then z|w|? = :Tw
= fw, and we can take a = |»|2>0. O
(5.50) Geometric interpretation. As the reader will already know,
the field K can be very usefully regarded as the Euclidean plane R >< R,
in which the point (a, b) corresponds to the complex number a + b1.
Thus the Euclidean distance between (a, b) and (0, 0) is the absolute
value of a + b%. Conjugation is simply reflection in the X-axis.
(5.51) Definition. Let z= x + ¢y be a complex number different
from 0. Then arg(z) is the set of all real numbers 0 such that

cos () = l—:'— and sin(f) = —IZT .

Any element 8 of arg(z) such that —z< 0 < = will be denoted by
Arg(z). We define arg (0) = R and do not define Arg(0).

(5.52) Theorem. For every monzero complex number z, arg(z) is a
countably infinite set, and Arg(z) contains exactly ome veal number. If
0 € arg(z), then arg(z) = {0 + 2an:n € Z}.

Proof. We only sketch the proof; details may be found, for example,
in Saks and ZyGMUND, Amnalytic Functions, pp.62—64 [Monografie
Matematyczne, Warszawa, Vol. 28 (1952)]. The real-valued functions

. N Ve i
51n(x)=”£w and cos(x) =”§) @)1

are defined, continuous, and in fact infinitely differentiable for all x € R.

In particular, sin(0) = 0 and cos(0) = 1. The number% is defined as

the least positive zero of cos. One then proves that for every pair (c, d)
of real numbers such that ¢% 4+ 42 = 1, there is a unique real number
such that —z< 0 < &, cos(f) =¢, and sin() = d. This number is
Arg(z). One also shows that cos(f) =cos(0+ 2z%) and sin(0)
=sin(0 + 2nn) for all 6€ R and #€ Z, and that 27z is the smallest
period of cos and of sin. These facts imply the last two statements of
the present theorem. 0O

(5.53) Exercise. For a nonzero complex number z, prove that

arg (%)= —arg(2). If z is not a negative real number, prove that
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Arg (—:—) = —Arg(2). If z is a negative real number, prove that Arg(z)

[y
SN —

= Arg (—z— = 7.

(5.54) Exercise. For z and w nonzero complex numbers, prove that
arg(zw) = arg(z) + arg(w). For every positive integer %, arg(z*)
= k- arg (2).

(5.55) Recapitulation.

In the accompanying Figure 3 we illustrate addition and multiplica-
tion of complex numbers. Addition is componentwise; graphically, one
applies the parallelogram law for addition of vectors. Multiplication is
a little more complicated. We have

Arg (zw) = Arg(z) + Arg(w) modulo 27, and |zw|=|z| - [w].

zw
iy
B
=T
—_— /
W /
/
/
z
Arg \Arg (w)
(zw)
Arg (z)
4 x
Fig. 3

In Figure 4, we illustrate the only conditions under which |2+ 2z
= |z| + |2o| (5.49) and also the position of Z relative to z.

(5.56) Exponential notation. A sequence (z,) of complex numbers
converges to a limit z ifnlinol0 |z — z,| = 0. [We shall have more to say on

this subject in § 6.] For the moment, we use it to define the exponential
function exp by

(=]

exp(s) = X o = lim

n= n

zn

T

M,.,

1l
)

Just as with real power series, one proves that exp(z) exists [4. e., the
limit exists] for all z ¢ K. The identity

exp(z + w) = exp (2) exp(w)
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holds and is proved by multiplying out (” =Z(: 7) (»é:) W) and taking
the limit as £ — oo. It is easy to show that
exp (¢6) = cos(8) + ¢ sin ()

for all 6€ R and so |exp(¢0)| = 1. Every nonzero complex number z
can thus be written as

2=z (ﬁ) = |2| exp (¢0) = |2| (cos(0) + ¢sin(B)).

Here 0 is any number in arg (z).

4
Zy+2Zp
22

zZ

\

Zy \
\
‘.

0 I x

|
//

Fig. 4 z

The function z —>—|:|— , defined implicitly above, is used frequently.

It is called the signum and is defined formally by
2z
if K n {0},
sgn (z) = l2| “< {0}
0 if z=0.
(5.57) Exercise. Use Hamel bases to prove that the additive groups R
and K are isomorphic.

(5.58) Exercise. Define addition in K as usual and define multipli-
cation ‘‘coordinatewise’:

(x +1y) ( + iv) = xu + iyv.

Prove that, with these operations, K is a commutative ring with unit.
Prove also that K is not a field.



CHAPTER TWO

Topology and Continuous Functions

The main goal of this text is to give a complete presentation of
integration and differentiation. Plainly a detailed study of set-theoretic
topology would be out of place here. Similarly, a detailed treatment of
continuous functions is outside our purview. Nevertheless, topology and
continuity can be ignored in no study of integration and differentiation
having a serious claim to completeness.

First of all, there is an intimate connection between measure theory
[which is almost coextensive with the theory of integration] and the
topological notion of compactness. Second, many important facts in the
theories of integrals and derivatives rest in the end on properties of
continuous functions. Third, purely topological notions play a vital
part both in constructing the objects studied in abstract analysis and
in carrying out proofs. Fourth, a great many proofs are just as simple
for arbitrary topological spaces as they are for the real line.

Therefore, in asking the reader to consider constructions involving
topological spaces far more general than the line, we ask for a not in-
considerable preliminary effort, as the length of § 6 will show. In return,
we promise a much more thorough presentation of contemporary analysis.

Section 6 is a self-contained if rather terse treatment of those parts
of set-theoretic topology that have proved important for analysis. With
some reluctance we have omitted the topics of paracompactness and
compactifications of completely regular spaces. But a line had to be
drawn somewhere. In § 7, we embark on a study of continuous functions
and of functions closely related to continuous functions. We are partic-
ularly concerned with spaces of such functions and properties that they
may have. The section culminates with the STONE-WEIERSTRASS theorem,
surely an indispensable tool for every analyst.

§ 6. Topological preliminaries

Set-theoretic topology is the study of abstract forms of the notions
of mearness, limit point, and convergence. Consider as a special but
extremely important case the line R. For %,y € R, we can define the
distance between x and y as the absolute value of x — y:

o(x y) =|x—y|.
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We can also associate with a point x € R all of the points y € R such that
o(x, y) is less than a specified positive number «, 7. e., the open interval
J¥ — &, x + «[. This gives us a systematic notion of nearness in R
based on the distance-function g. Even a more general idea is needed.
A subset A of R is called open if it contains all points “‘sufficiently close”
to each of its members. The abstract and axiomatized notion of open
set is one common and convenient way to approach the study of set-
theoretic topology.

To make all of this precise, we begin with some definitions. We
first extend the real number system, and describe certain important
subsets of the extended real numbers.

(6.1) Definition. (a) Let co and — oo be two distinct objects, neither
of which is a real number?. The set R* = R U {— oo} U {oo} is known
as the set of extended real numbers. We make R¥ a linearly ordered set
by taking the usual ordering in R and defining — oo < oo and —oco< x< 00
for each x € R. For a and b in R* such that a < b, the sets

Ja,b[={x € R¥:a < x < b},

[a,b]={x¢R¥:a < x < b},

[a,b[={x€R¥:a < x < b},
and

Ja,b]={x € R¥:a < x < b}

are called intervals, with endpoints a and b. The interval ]a, b[ is an
open interval, [a,b] is a closed interval, and [a, b[ and ]a, b] are half-
open intervals. If a and b are in R, these intervals are said to be bounded.
Otherwise they are said to be unbounded. Note that R itself is the open
interval ]—oo, co[ and that all intervals under our definition have
cardinal number c.

(b) For future use, we define sums and products in R#*, with a few
restrictions, by the following rules. For x,y ¢ RC R¥, x +y and xy
are defined as usual. For x € R, we define:

00+ X=X+ 00 =00,
(—o0) + 2= %+ (—o0) = % =00 = —o0;
we also define
00 + 00 = 00,
(—0) 4+ (—0) = —00 —00 = —o00;

—(e0) = —o0 and —(—o0) = oo}
the expressions oo + (—o0) and (—oo) + oo are not defined. For x€ R

1 Many writers use the symbol + co for what we write as co. The + sign is a
mere nuisance and so we omit it.
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and x > 0, we define:

We define

and
X0 =00,

For x € R and x < 0, we define
RO X=X°00=—00;
(—o)x=2x"(—00) = o0;

the expressions oo + (—o0), (— o) * 00, and (— o0) * (— o0) are not defined.

Open subsets of R are defined in terms of open intervals, as follows.

(6.2) Definition. A set U C R is said to be open if for each x ¢ U
there is a positive real number ¢ such that Jx — ¢, x + e[ C U.

Thus we may say informally that a subset U of R is open if for each
of its points #, it contains all points y such that y is sufficiently close to x.
[The “‘sufficiently close” depends of course on x.] Plainly every open
interval is an open set. Some important properties of open subsets of
R are listed in the following theorem.

(6.3) Theorem. Let O denote the family of all open subsets of R. Then:

(i) s€Oand Rc O,
(ii) 2f % is a subfamily of O, then U% € O 1;

(i) ¢f {Uy, Uy, ..., U}C O, then UyNU,N---NU,EO.

The reader can supply the proof of this very simple result.

The properties of open sets in R given in Theorem (6.3) form the
basis for the concept of a topological space, which we now define.

(6.4) Definition. Let X be a set and @ a family of subsets of X with
the following properties:

(i) g€ @and X € 0;
(ii) if % is a subfamily of @, then U% ¢ 0;

(ili) if {U, Uy, ..., U,}C 0, then Uy NU,N---NU,€0.

[That is, @ is closed under the formation of arbitrary unions and of
finite intersections.] Then @ is called a fopology for X and the pair (X, 0)
is called a topological space. When confusion appears impossible, we will
call X itself a topological space. The members of @ are called open
sets in X.

Definition (6.4) by itself is rather barren. No great number of excit-
ing theorems can be proved about arbitrary topological spaces. However,
certain entities definable in terms of open sets are of considerable interest
in showing the connections among various topological concepts and in

1 Recall that the union of a void family is &.
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showing the simple nature of such ideas as continuity. Also by the ad-
dition of only two more axioms, we obtain a class of topological spaces
in which many of the processes of analysis can be carried out with great
profit. We first give a few examples of topological spaces.

(6.5) Examples. (a) Naturally, the real line R with the topology
described in (6.2) and (6.3) is a topological space. This topology for R
is known as the usual topology for R. We will always suppose that R
is equipped with its usual topology unless the contrary is specifically
stated.

(b) Consider R* and the family 0% of all sets having any of the
following four forms: U, U U }¢, 0], U U [— oo, s[, U U [— o0, s[U}, 0],
where U is an open subset of R and s, ¢ R. Then (R*¥, 0%) is a topo-
logical space; 0¥ is called the usual topology for R¥*.

(c) Let X be any set. The pair (X, (X)) is a topological space,
obviously. The family £ (X) is called the discrete topology for X. A set X
with the discrete topology will frequently be denoted by X,.

(d) Let X be any set and let 0 = {X, @}. Then @ is called the in-
discrete [or concrete] topology for X. This topology is of little interest to us.

We proceed to the definition of various topological concepts from
our basic notion of open sets. :

(6.6) Definitions. Let X be a topological space. A neighborhood of a
pouint x € X is any open subset U of X such that x € U. The space X
is known as a Hausdorff space if each pair of distinct points of X have
disjoint neighborhoods. A set 4 C X is said to be closed if X N A’ is
open. For x€ X and 4 C X, we say that x is a limit point of A if
(UN{x}Y)N A+ o for each neighborhood U of x. For 4 C X, the
closure of A is the set A~ = N {F: F is closed, A CF C X}; the interior
of A is the set A°=U{U: U is open, U C A}; and the boundary of A
istheset 94 =4~ N (4")".

(6.7) Theorem. Let X be a topological space.

(i) The union of any finite collection of closed subsets of X is a
closed set.
(ii) The intersection of any nonvoid family of closed subsets of X is a
closed set. :
(iii) The closure A~ of a subset A of X is the smallest closed set con-
taining A, and A is closed if and only if A = A~
(iv) The interior A° of A is the largest open set contained in A,
and A is open if and only if A = A°.
(v) A subset A of X is closed if and only if it contains all of its limit
points.
For subsets A and B of X, we have:
(vi) A°=4""";
(vil) 94 =A" N A,
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(viii) AUB)"=4"UB™;
(ix) (AN B)=4°N B°.
For an arbitrary family {A.} of subsets of X, we have:
(x) U4, c(U4)~;
(xi) N 42D (N4)°.
Finally,
(xii) @ and X are closed.

Proof. Assertions (i) and (ii) follow at once from DE MORGAN’s laws
(1.9.iii) and (1.9.iv) applied to axioms (6.4.iii) and (6.4.ii) for open sets.

Since A7 is the intersection of all closed supersets of A4, assertion (ii)
proves (iii). Assertion (iv) is all but obvious.

We next prove (v). Suppose first that 4 is closed. Then A4’ is a neigh-
borhood of each point in 4’ and 4’ N 4 = @, so that no point of A’
is a limit point of 4, 4.e., A contains all of its limit points. Conversely,
if no point of A’ is a limit point of 4, then for each x € 4’, there is a
neighborhood U, of x such that U, N 4 = @, and therefore
A'=U{U,:x€ A'}is open, i.e., A is closed.

To prove (vi), we compute as follows:

A" =[N{F:Fisclosed and F D 4'}]’
= U{F':Fisclosedand F D 4’}
= U{F':F'isopenand F' C 4}
= A4°.
Assertion (vii) is immediate from (vi) and the definition of 34.

To prove (viii), notice that (4 U B)™ is a closed set containing both
A and B, so it must contain both A~ and B~. Thus we have

(AUB™ D4 UB™.
But A™ U B is a closed set containing 4 U B, so that
(AUB"cd UB™
and hence
(AUB™=A"UB".
To prove (ix), we write

A4nNB°=(ANB)Y~"'=(A"UB)"
=A"UBT)Y=(4"NB"
= A° N B°.

Assertion (x) follows from the inclusions 4, CU4,and 4, € (U4))7,
both of which are obvious for all indices ¢, Assertion (xi) is obvious
from (x), and (xii) from (6.4.1)) and the definition of a closed set. 0O

(6.8) Definition. A topological space X is said to be connected if
@ and X are the only subsets of X that are both open and closed.
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(6.9) Theorem. The space R with its usual fopology is commected.

Proof. Let A be a nonvoid subset of R which is both open and closed.
Assume that 4 + R and let c€ RN A’. Since 4 + @, we have either
AN]—oo,c[+ @ or ANJec,[=+ @. Suppose that B=A N]—~o0,c[+ &
and let a be the supremum of this set (5.33). It is clear that a < ¢. If
e > 0, then a — ¢ is not an upper bound for B, and so there is some x € B
such that @ — ¢ < ¥ < a. This proves that every neighborhood of 2 meets
A so, since A is closed, a is in 4. Since A is open, there is a § > 0 such
that Ja — 8, a + [ C A. Choose any b € Rsuch thata < b < min{a+d,c}.
[Note that a + ¢ since ¢ € A’.] It follows that b€ 4 and b< ¢, so that
b € B. The inequality b > a contradicts the choice of a. A similar con-
tradiction is obtained if A N J¢, oo = @. We are thus forced to the
conclusion that A = R. O

It is often convenient to define a topology not by specifying all
of the open sets but only some of them.

(6.10) Definition. Let (X, 0) be a topological space. A family Z C ¢
is called a base for the topology O if for each U € O there exists some sub-
family &/ C & such that U = U«/. That is, every open set is a union
of sets in #. A subfamily & of 0 is called a subbase for the topology O
if the family of all finite intersections of sets in & is a base for the
topology 0.

(6.11) Theorem. Let X be a set and le¢ B C P(X). Define
0= {U:of CHB}. Then (X, 0) is a topological space, and & is a base
for O, if and only if

@Huz=Xx
and

() U, VeZ and xc UNYV imply that there exists W € B such that
xeEWcCuUnNnVv.

Proof. Suppose that ¢ is a topology for X. Then X € @, so there exists
of C & such that X =UZ CcUZC X. That is, (i) is true. Next let
U, Vbesetsin Zandlet x€c UN V. Then UN V is in 0O, so there is
some ¥ C & such that UNV = U# . Thus we have x¢e WC UNV
for some W ¢ #. This proves (ii).

Conversely, suppose that (i) and (ii) hold. We must show that O
is a topology. Let {U},¢cr be any subfamily of @. Then, by the defini-
tion of @, for each ¢ there exists & C # such that U, = Us. [Here
we use the axiom of choice to choose just one & for each ¢€ I.] Let
.sa!=‘l6JI.94. It is clear that &/ C # and that U.91=‘|EJIU,; thus 0

is closed under the formation of arbitrary unions. Next let U, V be
in 0. Then there exist subfamilies {U},¢; and {V,},cx of & such that
U= ‘91 U and V =ﬂEJHV,,. Thus for each x€ U N V, there exist ¢€ I

and 7 € H such that x€ U NV, and therefore, by (ii), there is a W,
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in Zsuchthat xc W, CcUNV,CcUNV. Let &« ={W,: xc UNV}
Then & C # [/ may be void!] and UNV=U« €0 Thus O is closed
under the formation of finite intersections. According to (i) X is in @,
and, since g C %, we have @ = U @ € 0. This proves that 0 is a topol-
ogy for X. Clearly & is a base for 0. O

The function (x,y) »|x — y| defined on R>< R is an obvious dis-
tance-function. An important although special class of topological spaces
are those in which the topology can be defined from a reasonable dis-
tance-function. The axiomatic definition follows.

(6.12) Definition. Let X be a set and let g be a function from X >< X
into R such that for all #, ¥, 2€ X we have:

() e(x.9) = 0;

(ii) o(x,y) = 0if and only if x = y;

(iii) g(x,y) =e(y, %);

(iv) o(x,2) = o(x, ) + o(y, 2) [the triangle inequality).

Then g is called a metric [or distance-function] for X ; o (x, y) is called
the distance from x to y, and the pair (X, p) is called a metric space.
When no confusion seems possible, we will refer to X as a metric space.

(6.13) Examples. (a) Let # be a positive integer, let X = R® or K»,
and let p be a real number such that p = 1. For ® = (x;,..., %,) and
= (Y1, . . ., Yn) in X, define

or(x, y) = (Z |25 — y;l”)%

Properties (6.12.i))—(6.12.iii) are obvious for p,. The triangle inequality
(6.12.iv) is a special case of MINKOWSKI'S inequality, which we will
prove in (13.7) infra.

The metric g, is known as the Euclidean metric on R* or K.

(b) For ®, y € R" or K" define
e(x, y) = max{|x; — y;/: 1 =5 < n}. It is easy to verify that (K", g)
and (R", g) are metric spaces.

(c) Let X be any set. For x, y € X define go(x, y) = 1 — 4, [0 is KrON-
ECKER’S d-symbol as in (2.20)]. Plainly g is a metric. It is known as the
discrete metric for X.

(d) Consider the set NV, which we realize in concrete form as the
set of all sequences (a,);— of positive integers. For @ = (a;) and b= (b;)
in N¥, define:

e(a, b) =

¢(a b) =

0 if a=0b;
1 .
o i oay=0b,a,=0,....8,_1=by,,
and a, =+ b,.
Then (N7, g) is a metric space.
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(e) Let D = {z¢ K:|z| = 1} be the closed unit disk in the complex
plane. For 2z, w ¢ D define

e(z,W)={

Then (D, p) is a metric space. This space is called the “French railroad
space” or the “Washington D. C. space”. A picture should be sketched
to appreciate the reasons for these names. Actually this rather artificial-
looking space is [essentially] a certain closed subset of the closed unit
ball in a Hilbert space of dimension ¢. See (16.54) infra.

(6.14) Definition. Let (X, p) be any metric space. For ¢ > 0 and
x ¢ X, let

|z — w| if arg(z) = arg(w) or one of z and w is zero,
|2] + |w| otherwise .

B.(x) ={ycX:po(x y)< ¢}.

This set is called the e-neighborhood of x or the open ball of radius &
centered at x.
(6.15) Theorem. Let (X, g) be a metric space. Let

By ={B,(x):e>0,x¢ X}.

Then B, is a base for atopology O, for X. We call 0, the topology generated
by o. The members of O, are called p-open sets.

Proof. We need only show that %, satisfies (6.11.i) and (6.11.ii).
Property (6.11.) is obvious. Let B,(x) and Bs(y) be in %, and let
z¢ B.(x) N Bs(y). Then we have g(x,2) < ¢ and p(y, 2) < 8. Define

y = min{e — (%, 2), 6 — (¥, 2)} -

Thus y is positive, and for u € B, (z), we have o (x, u) = o(x, 2) + o(z, %)
<(e—y)+y=¢ and po(y, ) =e(y.2)+ez < (d—y)+y=34
This proves that B, () € B.{x) N B,(y) and so (6.11.1i} is satisfied. O

(6.16) Remark. Restated slightly, (6.15) says that a set U C X is
p-open if and only if for each x € U there is an & > 0 such that y ¢ U
whenever g (x, ¥) < &. When we make statements of a topological nature
about a metric space X, we will always mean the topology generated by
the given metric, unless we make some explicit statement to the contrary.

(6.17) Exercise. Let # be a positive integer and let X denote either
R or K». Prove that all of the metrics defined in (6.13.a) and (6.13.b)
for X generate exactly the same topology for X, i.e., any two of those
metrics yield the same open sets. This topology is known as the wusual
topology for R* [K™].

Every subset of a topological space can be made into a topological
space in a natural way.

(6.18) Definition. Let (X, @) be a topological space and let S be a
subset of X. The relative topology on S induced by O is the family
{U N S:U ¢ 0} and the set S with this topology is called a subspace of X.
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Thus a set V C S is relatively open if and only if V = U N S for some set
U that is open in X.

(6.19) Examples. (a) Let X = R [with its usual topology] and let
S = [0, 1]. Then the set ]%
1 1 . . 1 . .
= ]— 2[ N [0, 1] and]?, 2[ is open in R. However ]— 1] is obviously

1] is open relative to [0, 1] since ]%, 1]

2 3
not open in R.

(b) Let X = Rand S = Q. Then [J2, )31 N Q is open relative to Q
since [J2,Y31NQ=1/2,/3[NQ.

(c) Consider theset L = {(x, x): € R} C {(r,y) : € R, y € R} = R2
With the usual topology for R?, L has the usual topology for R.

(d) Consider theset C = {(% cos (), _)_1{_ sin (x)) 1XC€R,0<x< 00} CR2
The relative topology of C in R? [which has its usual topology] is the
usual topology of ]0, co[. [Identify C with ]0, co[ in the natural way.]

We pass on to some additional important notions.

(6.20) Definition. A subset D of a topological space X is said to be
dense in X if D™ = X. A space X is said to be separable if X contains a
countable dense subset. A space X is said to have a countable base if there
is a base for the topology of X which is a countable family.

(6.21) Example. The space R* with its usual topology is separable
since theset D = {(%y, . . ., %,) : %; € Q, 1 < j < n}is countable and dense.
However R; is not separable since each countable subset [like all sub-
sets] of R, is closed and R is uncountable. Also the French railroad space
(6.13.e) is not separable.

(6.22) Theorem. Any space with a countable base is separable.

Proof. Let X be a space with a countable base #. For each nonvoid
B¢ & let xg€ B. Then the set D = {xp: B¢ %} is countable and
dense. O ,

(6.23) Theorem. Any separable metric space has a countable base.

Proof. Let X be a metric space containing a countable dense subset D.
Let Z={B,(x):x€¢D, 7€ Q, 7> 0}. Then £ is countable. To see that #
is a base, let U be open and let z € U. Then there exists ¢ > 0 such that
B,(2) € U. Since D is dense in X, there is an x € B,/5(z) N D. Now choose

. 2 .
a rational number 7 such that —;— e<r< ge Then if y € B, (x), we have

1
e(y.2) S ey tera<r+gze<e,
so that B,(x) C B,(z) C U. Also

1
elx, 2)< 3€6<7,

so that 2z € B,(x). Thus U is a union of members of #. 0O
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(6.24) Definition. A sequence (x,),—, in a topological space X is
said to converge to an element x € X, or to have limit x, if for each neigh-
borhood U of x there exists a positive integer #, such that x, ¢ U when-
ever n = #, We write ’}im %, = x and also x, - x if (x,)5.; converges
to #. -

(6.25) Theorem. A subset A of a metric space X is closed if and only
if whenever (x,) s a sequence with values in A and (x,) has limit x in X,
we have x € A.

Proof. Suppose that 4 is closed and let (x,) be a sequence with values
in A for which a limit x in X exists. If x were in 4’, then 4’ would be a
neighborhood of x, and so all but a finite number of the values x,, would
lie in A" — a contradiction.

Conversely, suppose that 4 is not closed. Then by (6.7.v), 4 has a
limit point x such that x ¢ A. For each #» € N, choose x,€ A N B 1( ).
Then (x,) C A, x,>x,andx ¢ A. O

(6.26) Theorem. Let X be a Hausdorff space. Suppose that A C X
and that x is a limit point of A. Then each neighborhood of x contains
infinttely many points of A.

Proof. Exercise.

(6.27) Theorem. Every metric space is a Hausdorff space.

Proof. Exercise.

One of the most important concepts in topology is compactness.
There are several versions of this concept, which we next discuss.

(6.28) Definition. If (x,) is a sequence and {n; <ny <+ <mp<'--}
is an infinite set of positive integers, then the sequence (x,,), defined
by k- x,, for R€ N, is said to be a subsequence of (x,).

(6.29) Definition. A topological space X is said to be sequentially
compact if every sequence in X admits a subsequence converging to some
point of X.

(6.30) Definition. A topological space X is said to be Fréchet compact
[or to have the Bolzano-Weierstrass property] if every infinite subset of X
admits a limit point in X.

Sequential compactness and Fréchet compactness are useful enough,
but the most useful notion of this sort is compactness alone, which we
now define.

(6.31) Definition. Let X be a topological space. A cover of X is any
family & of subsets of X such that U&/ = X. A cover in which each
member is an open set is called an open cover. A subfamily of a cover
which is also a cover is called a subcover.

(6.32) Definition. A topological space X is said to be compact if each
open cover of X admits a finite subcover.

(6.33) Definition. A family of sets is said to have the finite inter-
section property if each finite subfamily has nonvoid intersection.
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(6.34) Theorem. A topological space X is compact if and only if each
family of closed subsets of X having the finite intersection property has
nonvoid intersection.

Proof. This is nothing but an application of de MORGAN’s laws
(1.9). In fact, % is an open cover of X if and only if F= {U': U € %}
is a family of closed sets with void intersection. Thus every open cover
has a finite subcover if and only if every family of closed sets having void
intersection has a finite subfamily with void intersection. 0O

(6.35) Theorem. Every compact topological space is Fréchet compact.

Proof. Let X be a compact space. Assume that X has an infinite
subset A with no limit points in X. Then 4 is a closed set (6.7.v). Moreover
each a€ A has a neighborhood U, containing no point of 4 N {a}'.
Then {U,: a€ A} U {4’} is an open cover of X with no finite subcover.
This contradiction completes the proof. 0O

(6.36) Theorem. Every sequentially compact metric space is separable.

Proof. Let X be a sequentially compact metric space. TUKEY’S
lemma (3.8) shows that for each positive integer # there is a maximal

subset A4, of X having the property that p(x,y) = % for each pair

of distinct points x, y € 4,. Each 4, is a finite set since otherwise, for
some n, A, would have an infinite sequence of distinct points with no

convergent subsequence. Thus the set 4 = ”L_J__l A, is countable. We assert

that A is dense in X. If this is not the case, then there existsanx€ X N A™".
Since A~ is open, there is an & > 0 such that B,(x) C A47'. Choose € N

such that % < ¢&. Then we have g(x,y) = ¢ > % for each y€ 4, and

the existence of the set 4, U {x} contradicts the maximality of A4,.
It follows that A™ = X. O

(6.37) Theorem. Let X be a metric space. Then the following three

assertions are pairwise equivalent:
(i) X is compact,

(if) X ¢s Fréchet compact,

(ili) X ¢s sequentially compact.

Proof. The fact that (i) implies (ii) follows from (6.35). Suppose that
(ii) holds and let (x,) be a sequence with values in X. If (x,) has only
finitely many distinct terms, it is clear that there exists an infinite set
{ny: k€ N} C N such that n, < n,< -+ and x,, = x, for each k¢ N.
In this case the subsequence (x,,) converges to x,, . Therefore we suppose
that (x,) has infinitely many distinct values. Then the set {x,:# ¢ N}
has a limit point x ¢ X. Let x, = x,. Suppose that %, ..., %, have
been chosen. Since each neighborhood of x contains infinitely many

distinct x,’s, we choose x,, € B = () such that ng > n; (1= F< k).
+
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Then the subsequence (x,,) converges to x. Thus (ii) implies (iii). Next
suppose that (iii) holds. According to (6.36) X is separable so, by (6.23),
X has a countable base #. Now let % be any open cover of X. Let
o ={B¢%:BC U for some U € }. For each B¢ &/, choose Up€ %
such that B C U and let #" = {Up: B € &}. Clearly ¥ is a countable
family. If x ¢ X, then x € U for some U € %, and since & is a base, there
is a B€# such that x¢ BC U. Then B¢ & and x€ BC Ug. We
conclude that ¥” is a countable subcover of %. Enumerate ¥~ in a se-

k
quence ¥"= (V). For each k¢ N let W, = nL=Jx V,. To prove (i), we

need only show that W, = X for some k€ N. Assume that this is false.
For each % choose x,€ X N W;. Then (x,) has a subsequence (x,)
converging to some x € X. Since #” is a cover there exists a 2, ¢ N such
that x € V3, CW;,. Thus W, is a neighborhood of x which contains x;
for only finitely many k. This contradiction establishes the fact that (iii)
implies (i). O

(6.38) Theorem. Let X be a Hausdorff space and let A be a subspace
of X that is compact in its relative topology. Then A is a closed subset
of X.

Proof. We will show that A’ is open. Let z¢ A’. For each x€ 4
choose disjoint open sets U, and V, such that x¢ U,, z€V,. Then
{U,N A:x€ A} is an open cover of 4, in its relative topology, so there

” ”

exists a finite set {x,, . . ., %,} C 4 such that 4 Cil;'1 U, LetV =in V-
Then V is a neighborhood of zand VN A = @, 4.6, VC A" O

(6.39) Theorem. Let X be a compact space and let A be a closed subset
of X. Then A is a compact subspace of X.

Proof. Let % be any family of closed [in the relative topology]
subsets of A having the finite intersection property. Then each member
of # is closed in X, so (6.34) implies that N.# = . Thus 4 is compact,
by (6.34). O

We next present a striking characterization of compactness which
shows that we may restrict our attention to very special open covers in
proving that a space is compact.

(6.40) Theorem [ALEXANDER]. Let X be a topological space and let &
be any subbase for the topology of X [see (6.10)]. Then the following two
assertions are equivalent.

(i) The space X is compact.

(i) Every cover of X by a subfamily of & admits a finite subcover.

Proof. Obviously (i) implies (ii). To prove the converse, assume that
(ii) holds and (i) fails. Consider the family XX of all open covers of X
without finite subcovers. The family X is partially ordered by inclusion,
and plainly the union of a nonvoid chain in X is a cover in JK. ZORN’s
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Lemma (3.10) implies that )X contains a maximal cover ¥". That is,
¥ is an open cover of X, ¥” has no finite subcover, and if U is any open
set not in ¥7, then ¥~ U {U} admits a finite subcover. Let #" = ¥ N &.
Then no finite subfamily of #” covers X, and so (ii) implies that #" is
not a cover of X. Let x be a point in X N (U¥")’, and select a set V
in the cover ¥~ that contains x. Since & is a subbase, there are sets

Sy, ..., S, in & such that x€ N S;C V. Since x § (U#"), no S; is in
=177 i

¥ . Since ¥ is maximal, there exists for each j a set 4; which is the union
of a finite number of sets in ¥~ such that S; U 4; = X. Hence

vuu A,.:a(.n s,) U (,u Aj)=X,
j=1 j=1 ji=1

and therefore X is a union of finitely many sets from ¥". This contradicts
our choice of ¥". 0O

Another important class of topological spaces are those obtained
by taking the Cartesian product of a given family of topological spaces.
We need a definition.

(6.41) Definition. Let {X },c; be a nonvoid family of topological
spaces and let X =L2(I X, [see (8.1)]. For each (€I, define =, on X

by 7, (x) = x,. The function =z, is known as the projection of X onto X..
We define the product topology on the set X by using as a subbase the
family of all sets of the form n;1(U,), where ¢ runs through I and U,
runs through the open sets of X,. Thus a base for the product topology
is the family of all finite intersections of inverse projections of open sets.
A base for the product topology is the family of all sets of the form
;2(1 U,, where U, is open in X, for each ¢ € I and U, = X, for all but a finite

number of the ¢’s. Whenever we discuss the Cartesian product of a family
of topological spaces, it is to be understood that the product is endowed
with the product topology unless the contrary is specified.

(6.42) Exercise. Let I = {1,2, ..., n} for some n € N, and for each
t€1Ilet X, = R [or K] with its usual topology. Clearly X = ‘)e(l X,=Rn

[or K*]. Prove that the product topology on X is the usual topology on X.

(6.43) Tionov’s Theorem!. Let {X},c; be a monvoid family of
compact topological spaces. Then the Cartesian product X of these spaces
s compact [in the product topology |.

Proof. According to ALEXANDER’S theorem (6.40) it suffices to con-
sider open covers of X by subbasic open sets as described in (6.41).
Let % be any cover of X by subbasic open sets. For each ¢ € I, let %,
denote the family of all open sets U C X, such that #;1(U) € %Z. We

1 This theorem was proved by A. TiHoNoV for the case in which each X, is the
closed unit interval [0,1] [Math. Annalen 102, 544 —561 (1930)]. The general case
was first proved by E. Cecu [Ann. of Math. (2) 38, 823844 (1937)].
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assert that U %, = X, for some ¢ € I. If this were not the case, there would
be a point & € X such that for every ¢€ I, m,(x) =x,¢ X, N (U%)';
hence x ¢ 771 (U) for all i1 (U) € %. That is, % would not be a cover of X.
Hence we can [and do] choose an #% € I such that U %, = X, . Since X,
is compact, there is a finite family {U,, ..., U,} C %, such that
X,=U,UU,U---UU,. Plainly {#n;'(U;):j=1,...,n} is a finite
subcover of  for X. O

We next characterize the compact subspaces of R* and K*.

(6.44) Theorem [HEINE-BOREL-BOLZANO-WEIERSTRASS]. Let n€ N
and let A CR* [or K*]. Then A is compact [in the relativized usual
topology] if and only if A is closed and boundedl.

Proof. The mapping x + ¢y — (x, ¥) of K onto R? preserves distance:
1
l(x + i9) — (u + §9)| = ((x — ©)* + (¥ — 9)37 = o((x, »), (w, v)). Thus
K" and R? are indistinguishable as topological spaces. We therefore
restrict our attention to the case in which 4 C R».

We first take the case that » = 1 and 4 = [a, b], a bounded closed
interval in R. A subbase for the topology of [4, b] is the family & of
all intervals of the form [a, d[ or ¢, b] where ¢, d € [a, b]. Let % be any
cover of [a, b] by sets in &. Since b is covered by %, there is a set of the
form J¢, 8] in %. Let ¢, = inf{c: Jc, ] € %}. Since ¢, is covered by %,
there is an interval [a, 4,[ € % such that c¢y< d;. By the definition of
infimum, there is an interval ]c,, ] € % such that ¢, < d;. Thus {[2, 4,[,
Jey, 8]} C % and [a, b] = [a, d,[ U] ¢, b]. It follows from this and ALEX-
ANDER’S theorem (6.40) that [a, b] is compact.

Now let # be arbitrary and suppose that A4 is closed and bounded.

Since 4 is bounded, there exists a cube C = i)=(1 [a;, b;] such that A C C.

The preceding paragraph and TiHONOV’s theorem (6.43) show that C
is compact. Using the fact that A4 is closed and citing (6.39), we see that 4
is compact.

Conversely, suppose that A is compact. By (6.38), 4 is closed.

ItisclearthatAC kL=Jl B (0) = R", where B, (0) is the open ball of radius

k centered at 0 = (0,0, ...,0) in R". Since 4 is compact, there exists
ko € N such that 4 C B, (0), <.e., 4 is bounded. 0O
(6.45) Exercise. Prove the following.

(a) Any compact subset of a metric space is bounded.
(b) Theorem (6.44) is not true for arbitrary metric spaces.

{c) Every bounded sequence in R* [or K*] admits a convergent sub-
sequence.

1 A subset 4 of a metric space X is said to be bounded if there exist p ¢ X and
B € R such that g(p, ) < B for all € 4.
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We next take up the study of completeness for metric spaces.

(6.46) Definition. A sequence (%,) in a metric space X is said to be
a Cauchy sequence if for each & > 0 there exists 7€ N such that o (¥, %x) <e€
whenever m, n = n,. A metric space X is said to be complete if each Cauchy
sequence in X converges to a point of X.

(6.47) Example. The real line R is complete (5.25), (5.35). Also it is
easy to see that a subset of a complete metric space is complete if and only
if it is closed.

(6.48) Theorem. Any compact metric space is complete.

Proof. Let X be a compact metric space and let (x,) be a Cauchy
sequence in X. Then (x,) has a subsequence (xy,) converging to some
%€ X. Let ¢ > 0 be given. Choose %, ko€ N such that m, n = n, implies
0 (%, %n) < €/2 and k = k, implies o (%, %) < &/2. Choose k, = &, such
that #; = n,. Then n =m, implies o (x,, x) £ 0 (%n x,,k‘) + g(x,,k‘, x)
< ¢/2 + ¢/2=e. Thus ”111’1:0 %, = %, and so X is complete. 0O

(6.49) Theorem. Any Cauchy sequence in a metric space is bounded.

Proof. Let (x,) be a Cauchy sequence in a metric space X. Choose

o€ N such that n = n, implies @ (%,, %,,) < 1. Let & = max{l, o (%1, %n,),
o @ (%n -1, %a,)}. Then o(%,, %,) < aforeach e N. O

(6.50) Theorem. Let n ¢ N. Then R* and K are complete in the Eucli-
dean metric.

Proof. Let X = R® or K» and let (a,) be a Cauchy sequence in X.
Since () is bounded (6.49), there exists a real number B such that
0(0, ) < B for each k€ N. Then () is a Cauchy sequence in the com-
pact metric space (Bg(0))™ (6.44), so (x;) converges (6.48). [

(6.51) Definition. Let A be a nonvoid bounded set in a metric space X.
The diameter of A is the number

diam (4) = sup{o (¥, ) 1 %, ¥ € 4} .

(6.52) Theorem [CANTOR]. Let X bea metric space. Then X is complete
if and only if whenever (A,) is a decreasing sequence of monvoid closed
subsets of X, i.e. A, D Ay D+, such that lim diam(4,) = 0, we have

#7H—>0

”Q‘ A, = {x} for some x ¢ X.

Proof. Suppose that (4,) is a decreasing sequence of nonvoid closed
subsets of X such that diam(A4,) — 0. For each #n ¢ N let %, € A,. Then
m = n implies that @ (¥, %,) < diam(4,) >0 so (z,) is a Cauchy se-
quence. Let x = lim x,. For each m, %, € 4, for all large #, and 4,,

Nn—» 00

isclosed,so x€ 4,,. Thusx € ”QIA,,. If ' E"QIA,,, then g (x, x) < diam(4,)

for every #. Therefore g (x, x') = 0. Hence 1 4, = {x}.
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Conversely, suppose that X has the decreasing closed sets property.
Let (x,) be a Cauchy sequence in X. Foreachn€ N, let 4, = {x,,: m= n} .
Then (4,) is a decreasing sequence of closed sets and, since (x,) is a
Cauchy sequence, diam(4,) — 0. Let "QIA,, = {x}. If ¢ >0, then there
is an n,€ N such that diam(4,)< e. But x€ 4,, so n = n, implies
that p(x,, x) < e. O

(6.53) Definition. Let X be a topological space. A set 4 C X is
said to be nowhere dense if A~ ° = . A set F C X is said to be of first
category if F is a countable union of nowhere dense sets. All other sub-
sets of X are said to be of second category.

(6.54) Baire Category Theorem. Let X be a complete metric space.
Suppose that A C X and that A is of first category in X. Then X N A’
1s dense in X. Thus X is of second category [as a subset of itself].

Proof. Let 4 = ”L=Jl A, where each 4, is nowhere dense in X. We

suppose that each A, is closed [at worst this makes X N A’ smaller].
Let V be any nonvoid open subset of X. We will show that V N 4’ % g.
Choose a nonvoid open set U; C V such that diam (U7) < 1. For example

we may take U, to be an open ball of radius < —;— Then U, is not a
subset of 4;, so U; N A7 is a nonvoid open set. Let U, be a nonvoid open
set such that Uz C U, N 4] and diam (Uy) < % Suppose that U,,..., U,
have been chosen such that U, ,; is a nonvoid open set, U;3,CU; N 4;,
and diam(U7,) < 741 for 1S/ n—1. Then U, N4+ 5, so
there exists a nonvoid open set U,,, such that U,,,C U, N 4, and
diam (U, ;) < n;_,‘_l We thus obtain a decreasing sequence (U,) of
nonvoid closed sets such that diam (U, ) — 0. Since X is complete, there

exists an x € X such that "Dl U, ={x}. Then x¢ ngl U,..cU, ﬂ”DIA,"

crn ("';JIA,,) =V N A4’. Since V was arbitrary, it follows that A’

isdense in X. O

The Baire category theorem has many interesting and important
applications throughout analysis, as we shall see several times in the
sequel. For the moment, we content ourselves with an unimportant
though interesting application. :

(6.55) Definition. Let X be a topological space and let 4 C X.
The set A4 is called a G, set if A is a countable intersection of open sets,
and 4 is called an F, sef if it is a countable union of closed sets.

(6.56) Theorem. The set Q of rational numbers is not a Gy set in R.
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oo
Proof. Assume that Q = nf_Tl U,, where each U, is open in R. Then each
U,, is nowhere dense since it is closed and contains no rational numbers.

Let Q = (x,)n=1 be an enumeration of Q (4.22). Then R = ”l=Jl (Uy U {x,}).

But U, U {x,} is nowhere dense for each #¢ N and R is a complete
metric space. This contradicts (6.54). O

We next examine the structure of open subsets and closed subsets of R.

(6.57) Definition. Let 4 be a nonvoid subset of R¥. If A has no upper
[lower] bound in R, we say that the supremum [infimum] of 4 is co [— cc]
and write supA4 = oo [inf4 = — oo].

(6.58) Remark. In view of (5.33) and (6.57), every nonvoid subset of
R has both a supremum and an infimum in R¥,

(6.59) Theorem. Let U be a nonvoid open subset of R. Then there
exists one and only one pairwise disjoint family S of open intervals of R
such that U = U L. The family S is countable and the members of F are
called component intervals of U. For each I € F, the endpoints of I are
not in U.

Proof. Let €U and define a, = inf{t:]¢ x] C U} and
b, = sup{t: [x, t[ C U}. Since U is open, it is clear that a, and b, exist
in R* We first assert that Ja,, b,[ C U and begin by proving that

la, x]CU. If a,€R, let x, =a,,+land if a,=—o00, let x,=—n.

In either case a, = inf{x, : n € N}. By the definition of 4, it follows that
for each sufficiently large # € N there exists a real number ¢, such that

a, = t,< %, and t,,x]CU. Then Ja,, x] = ”l=Jno 1%n, ] C ”L=J”o]t,,, x]cU.
Likewise, we have [x, b,[ C U, and hence Ja,, b,[ C U.

We next show that a, ¢ U, b, ¢ U. Assume that b, € U. Since U is
open, there is a § > 0 such that 16, — 8, b, + 6[ C U. But then [x, b, + 8
= [x,b,[U [b,d,+6[CU and b, + 6 > b,. This contradicts the def-
inition of b,. Thus b, ¢ U. Likewise a, ¢ U.

Let £ ={la,, b,[: x€ U}. Since x € U implies x € Ja,, b,[, we have
U = US. We next show that.# is a pairwise disjoint family. Let x,y € U
and suppose that there exists % ¢ Ja,, b,[ N Ja,, b,[. If a,< a,< u,
then a, € U and if a,< a,< u, then a,¢ U. But neither a, nor a, is
in U. Therefore a, = a,. Likewise b, = b,. Accordingly any two inter-
vals in # are either disjoint or identical, i.e., S is pairwise disjoint.

For each I € .# there is a rational number 7; ¢ I. Since f is pair-
wise dls]omt the mapping f: I —7; of £ into @ is one-to-one, and so
g < 0= Ro- Thus . is countable.

It remains only to prove that .# is unique. Thus suppose that U = U ¢
where £ is a pairwise disjoint family of open intervals. Let ]a, b[ € 7.
Assume that @ € U. Then there exists an interval J¢, d[ € # such that



70 Chapter II. Topology and Continuous Functions

a ¢ Jc, d[. Thus Ja, b + I, d[, but Ja, b[ N Jc, 4[ = Ja, min{d, d} + 2.
This contradiction shows that @ ¢ U. Likewise b ¢ U. Let x¢ Ja, b[.
Then Ja,x] C U and [#,8[C U so Ja, b[C la, b,[CU. Since a ¢ U
and b ¢ U, we have la, b[ = la,, b,[ € F. Therefore FCJS. If there
exists Ja,, b,[ € F N #’, then x € U while x ¢ U F = U, a contradiction.
Therefore S = ¢. 0

(6.60) Remark. The simple structure of open sets in R has no analogue
in Euclidean spaces of dimension >1. For example, in the plane R?
open disks play the role that open intervals play on the line as the
building blocks for open sets, i.e., the base for the topology. But it is
plain that the open square {(¥,%):0< < 1, 0<y< 1} is not a union
of disjoint open disks, for if it were, the diagonal {(x,%):0< x< 1}
would be a union of [more than one] disjoint open intervals, contrary to
the uniqueness statement of (6.59).

Neither do the closed subsets of R have such a simple structure as
the open ones do. The next few paragraphs show this rather complicated
structure. We begin with a definition.

(6.61) Definition. Let X be a topological space and let 4 C X. A point
ac A is called an isolated point of A if it is not a limit point of 4, ¢.e.,
if there exists a neighborhood U of a such that U N 4 = {a}. The
set A is said to be perfect if it is closed and has no isolated points, .e.,
if A is equal to the set of its own limit points.

We will now construct a large class of nowhere dense perfect subsets
of [0, 1].

(6.62) Definition. Remove any open interval Ip,; of length <1
from the center of [0,1]. This leaves two disjoint closed intervals

J1,1 and Jy,, each having length < —;— This completes the first stage of
our construction. If the n** step of the construction has been completed,
leaving 2" disjoint closed intervals Ju,i, Ja,a -+ > Jn,on [numbered
from left to right], each of length < -21,,- , we perform the (# + 1)* step

by removing any open interval I, ,,, from the center of ], such that
the length of I, ., is less than the length of J,,, (1 = k = 2"). This

. 1
leaves 27 +1 closed intervals J, 11,1, - - -» Jn41,20+1 €ach of length < 2055,
2"—1

b o
Let V= U I, and By= U Jn, (n€N). Let P=N B = [0, 1]

n (nl;llV,,) . Any set P constructed in the above manner is known as a

Cantor-like set. In the case that I,,, = ]—1— 1[ and the length of I, ,;,»

3’3
is exactly — of the length of J,y for all k,n€ N, 1< k< 20, the

resulting set P is known as the Cantor ternary set [or simply the Cantor
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set]. In this latter case J;,; = [O, ] Ji,2= [2, ], IM:]l 2[,

foa=J3 3 = o ] e

(6.63) Theorem. Let P be any Cantor-like set. Then P is compact,
nowhere dense in R, and perfect.

Proof. We use the notation of (6.62). Obviously each P, is closed,
so that P is closed and bounded and hence compact (6.44). Since no

follows that P contains no mterval. Thus P"° =P°=g; that is,
P is nowhere dense in R. Next let x € P. For each #» ¢ N we have x ¢ P,
so that there exists k, such that x € J, ;. Thus, given & > 0, there is an

n€ N such that - < ¢, and therefore the endpoints of J, , are both in
Jx—e¢ x4+ &gf. But these endpoints are in P. Hence x is a limit point
of P. We conclude that P is perfect. O

(6.64) Theorem. Let P be the Cantor ternary set. Then P = { D) Fn

el 3%

x,€{0,2} for each nc N } , and therefore P = c.
Proof. Each number x € [0, 1] has a ternary [base three] expansion

00
. X, . . . . N
intheformx= } ?:— , where each x,,is 0, 1, or 2. This expansion is unique
n=1

except for the case that x = % for some a,m¢ N where 0 < a < 3™
and 3 does not divide 4. In this case x has a finite expansion of the form
x=—+---+% where %, =1 [if a=1 (mod3)] or %, =2 [if a=2
(mod3)]. If x,, = 2 we use this finite expansion for x, but if x,, = 1, we

prefer the expansion x = %‘-+ ool 3,,, + Z‘ 32,, We leave it

3m-1
n=m+1
to the reader to verify these assertions [cf. (5.40)]. Thus we have assigned
a unique ternary expansion to each x € [0, 1]. One sees by induction that

P={x:0=x<1, {%, ..., %, C{0,2}}. For example P, =[0 l]U
U[%—, 1] andP=[O, %]U[%, —;—]U[g, 9] [9,1] [we write

5= 2 ln] . Thus x€ P = N P, if and only if x,€ {0, 2} for each n€ N.

Clearly the mapping 2 3" — (x,) is a one-to-one correspondence be-

tween P and {0, 2}V. "Therefore B — 2% — ¢. O
In view of the following theorem, it is no accident that the Cantor
set has cardinal number ¢.
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(6.65) Theorem. Let X be a complete metric space and let A be a
nonvoid perfect subset of X. Then 4 = «¢.

Proof. We will construct a one-to-one mapping of {0, 1}¥ into 4.
Sinre 4 is nonvoid, it has a limit point and therefore A is infinite (6.26).

Let x,%+2%, in A. Let ¢ = min{%, —é— 0{%,, xl)} and define A4(0)
={xCA:9(%p %) < &} and A1) ={x€ A:p(x, %) £ &} Then A(0)
and A(1) are disjoint infinite closed sets each of diameter < 1. Suppose
that # is a positive integer and for each n-tuple (4, ..., a,) € {0, 1}*

we have an infinite closed subset A(aq,, ..., 4,) of 4 having diameter
= —:L— and such that no two of these sets have a common point. For
(@, ..., a,) € {0,1}%, choose =x(ay, ..., 4, 0)+zx(ay,..., a, 1) in

. 1 1
Alay, ..., a,) and let ¢, ;= min {m, 39(;\:(:11, ..., a, 0),
x(ay, . . ., ay, 1))} Define A(a,, . . ., a,,J) = {x € A(ay, . . ., a,):
o(x(ay, . .., @ J), %) < €41} (j=0,1). Then {A(ay, ..., a,):
(@, - -, 8nyq) €{0, 1}*+1} is a pairwise disjoint family of closed in-

finite sets each having diameter < ﬁ . Thus for each a= (a,)€{0,1}¥

we have a decreasing sequence (4(a,, ..., 4,))5~, of infinite closed
subsets of A with diameters tending to 0. Hence by CANTOR’S theorem

(6.52), there exists a point x(a) € 4 such thatnf;il Alay, ..., a,) = {x(a)}.

Suppose @ + b in {0, 1}¥. Then, for some n,, a, + b, sox(a)€A (ay,...,a,)
while x(b) ¢ 4 (ay, . . ., a,) and therefore x(a) # x(b). It follows that
the mapping @ — % (a) is one-to-one. Thus 4 = {0, 1}¥ =¢. O

We next present a structure theorem for closed sets.

(6.66) Theorem [CANTOR-BENDIXSON]. Let X be a topological space
with a countable base & for its topology and let A be any closed subset of X.
Then X contains a perfect subset P and a countable subset C such that
A=PUC.

Proof. A point x€ X will be called a condensation point of A if
U N 4 is uncountable for each neighborhood U of x. Let P={x¢ X :xisa
condensation point of A} and let C = A N P’. Since each condensation
point is a limit point, it follows that P C 4. Clearly 4 = P U C. Since
no point of C is a condensation point of A, each x € C has a neighbor-
hood V,€ # such that A NV, is countable. But & is countable so
Cccu{4NYV,:x¢C} and C is countable.

Next let x€ P and let U be a neighBorhood of x. Then U N 4 is
uncountable and U N C is countable, so UN P=(UN4)N (U NC)
is uncountable, and hence x is a limit point of P. Thus P has no isolated
points. To show that P is closed, let x € P’. Then x has a neighborhood V
such that ¥V N A is countable. If thereisa y € ¥V N P, then V is a neigh-
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borhood of y and y is a condensation point of 4, so ¥V N 4 is uncountable.
It follows that ¥V N P = g, so that x is not a limit point of P. Therefore
P contains all of its limit points, ¢.e., P is closed. We conclude that
P is perfect. O

(6.67) Remark. In view of (6.21) and (6.23), every Euclidean space
satisfies the hypothesis of (6.66).

We now make a brief study of continuity.

(6.68) Definition. Let X and Y be topological spaces and let f be a
function from X into Y. Then f is said to be continuous at a point x ¢ X
if for each neighborhood V of f(x) there exists a neighborhood U of x
such that f(U) C V. The function f is said to be continuous on X if f
is continuous at each point of X.

(6.69) Theorem. Let X, Y, and f be as in (6.68). Then f is continuous
on X if and only tf {2 (V) is open in X whenever V is open in Y.

Proof. Suppose that f is continuous on X and let ¥ be open in Y.
We must show that f~1(V) is open in X. For x € f~1(V), we know that f
is continuous at x, so there exists a neighborhood U, of x such that
fU)cV, e, U, f2(V). It follows that f-1(V) = U{U,: x € f-}(V)}
which is a union of open sets, so that f~1(V) is open.

Conversely, suppose that f~1(V) is open in X whenever V isopenin Y.
Let x € X and let V be a neighborhood of f(x). Then f~1(V) is a neigh-
borhood of x and f(f~*(V)) C V. Thus { is continuous at x. Since x is
arbitrary, f is continuous on X. O

(6.70) Theorem. Let X, Y, and f be as in (6.68). Suppose that & is
a subbase for the topology of Y and that {~1(S) is open in X for every S¢€ &.
Then f is continuous on X.

n
Proof. Let # be the family of all sets of the form B = ;'Dx S;, where
{Sy, . . ., S,} is a finite subfamily of . Then £ is a base for the topology

of Y (6.10), and the set /~1(B) = if:ll f~1(S;), being a finite intersection
of open sets, is open for every B € #. Next, let ¥ be open in Y. Then
V= ‘leJI B, for some family {B},c;C #. Therefore f~1(V) = f (‘LEJI B,)
= ;ler /~1(B,) which, being a union of open sets, is open in X. 0O

(6.71) Theorem. Let X, Y, and f be as in (6.68). Suppose that X is a

metric space and x € X. Then f is continuous at x if and only if f(x,) — f(x)
whenever (x,) is a sequence in X such that x, — x.

Proof. Suppose that f(x,) - f(x) whenever x, — x and assume that f
is not continuous at x. Then there is a neighborhood V' of f(x) such that
f(U) C V for no neighborhood U of x. For each n¢ N, choose x, € Ba (x)

such that f(x,) ¢ V. Then x, > x but f(x,)—+>f(x). This contradiction
shows that f is continuous at x.
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Conversely, suppose that f is continuous at x and let (x,) be any se-
quence in X such that x, —x. Let ¥ be any neighborhood of f(x). Then
there is a neighborhood U of x such that f(U) C V. Since %, - x, there
exists #,€ N such that n = n, implies x, ¢ U. Then #n = #, implies
1) € f(U) C V. Thus f(x) > {(x). O

(6.72) Theorem. Let X, Y, and f be as in (6.68). Suppose that X s
compact and that f is continuous on X. Then f(X) 1s a compact subspace of Y.

Proof. Let ¥~ be any open cover of f(X). Then {/*(V):V €77}
is an open cover of X, so there exist Vy, ..., V,€7¥ such that

X=U (V)= f—l(kL=JlV,,) . Tt follows that /(X) € U V4. O

(6.73) Corollary. Let X be a compact space and let f be a continuous
real-valued function on X. Then [ is bounded [i.e., {(X) is a bounded set)
and there exist points a and b in X such that f(a) = sup{f(x): x € X},
f(d) = inf{f(x) : x € X}.

Proof. According to (6.72), f(X) is a compact subspace of R. Thus
(X) is closed and bounded (6.44). Let a = supf(X) and B = inff(X).
Since f(X) is bounded, we have a, f € R. Since f(X) is closed, we have
a, B € f(X). Choose a € f2({a}), b€ f2({B}). O

(6.74) Theorem. Let A, B, and C be topological spaces. Let f be a
function from A into B and let g be a function from B into C. Let x € A and
suppose that f is continuous at x and g is continuous at f(x). Then gof
1s continuous at x.

Proof. Let W be any neighborhood of g o f(x) = g(f(¥)). Then there
is a neighborhood V of f(x) such that g(V) C W. Since f is continuous
at x, there is a neighborhood U of x such that f(U) C V. Thus we have
found a neighborhood U of # such that g o f(U) = g(f(U)) Cg(V) C w. O

(6.75) Corollary. Let A, B, C, {, and g be as in (6.74). Suppose that |
is continuous on A and g is continuous on B. Then g o | is continuous on A.

(6.76) Theorem. Let X and Y be topological spaces and let f be a
continuwous function from X into Y. Let S C X. Then the function f [with
its domain restricted to S] is a continuous function from S [with its relative
topology] into Y.

Proof. Let x € S and let V be a neighborhood of f(x). Then there is a
neighborhood U [open in X] of # such that /(U) C V. But then UN S
is a neighborhood of x in the relative topology on S and /(UNS)
c/uycv. o

We next discuss locally compact spaces. These spaces are of great
importance in our treatment of measure theory.

(6.77) Definition. A topological space X is said to be locally compact
if each point x € X has a neighborhood U such that U™ is compact.
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(6.78) Theorem. Let X be a locally compact Hausdorff space. Let
x € X and let U be a neighborhood of x. Then there exists a neighborhood V
of x such that V" is compact and V— C U.

Proof. Let W be any neighborhood of x such that W™ is compact. Let
G = U N W. Then G is a neighborhood of x; since G is a closed subset
of W, it follows from (6.39) that G— is compact. We have G C U, but we
do not know that G~ C U. Recall (6.7.vii)thatoG =G N G* =G NG’
Thus 96 is compact (6.39). If G = », we may take V = G. Thus sup-
pose 0G =+ @. For each y € 0G, choose neighborhoods V,, and H, of x
and y respectively such that V, N H, = . We may suppose that V,C G,
for otherwise intersect it with G. Then {H, : y € G} is an open cover of
oG, and by compactness there exist y,,...,%,€9G such that aG C
H,U---UH, =H.Let V=V, N---NV, . Then V is a neighborhood
of x and VN H=g@. Clearly VC G,s0 V”C G~ and V™ is compact.
Moreover V C H' and H' is closed so V" C H'. Thus V" CG NH'
CG N@G)=6 0O

(6.79) Theorem. Let X be a locally compact Hausdorff space and let
A be a compact subspace of X. Suppose that U is an open subset of X such
that A C U. Then there exists an open V C X suchthat ACVCV CU
and V™~ is compact.

Proof. Apply (6.78) to each x € A. Thus for each x ¢ A4, there exists a
neighborhood V, of x such that V™ is compact and V;~ C U. The family

{Vi:x E A} is an open cover ofA so there exist x,, . . ., %, € 4 such that
4c Ulek =V.Then V™ = U Ve € U (6.7.viii) and V™, being a finite

union of compact sets, is plamly compact. O
The following locally compact version of URYSOHN'S lemma will
be adequate for our purposes.

(6.80) Theorem [URrRvYSOHN)]. Let X be a locally compact Hausdorff
space, let A be a compact subspace of X, and let U be an open set such that
A C U. Then there exists a conttnuous function f from X into [0, 1] such
that f(x) = 1 forall x€ A and f(x) = 0 for all x€ U’.

Proof. Let D, = {0, 1} and for each # € N define D,, = {Ea;,- :a€N,ais

odd, 0<a< 2"} .Let D =”§0Dn. Thus D is the set of all dyadic rational
numbers in [0, 1]. We shall define by induction on # a chain {U},¢p of
subsets of X. First let U; = 4 and Uy = U. Forn = 1 wehave D, = {i
and we apply (6.79) to obtain an open set U% such that U~ C U% C U% cU,.
Next let » = 2 and suppose that open sets U, have been defined for all

n—1 n—1 a
tEleDk so that s< ¢ inkl;loD,, implies U~ C U, . For { = 5 €D, we set
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¢ =L g g 4]
[a — 1 and a + 1 are even]. We again use (6.79) to obtain an open set
U, such that U7 U, C U;” C U,. Thus we obtain the desired family
{U;}scp, and we have U~ C U, whenever s< ¢ in D.

Now define fon X by f(x) = O forx € Ug and f(x) = sup{t € D: x€ U;}
for x € U,.Clearly f(x) = 1 for all x € 4 = U,. It remains to show that f
is continuous. To this end,let 0 < a< 1 and 0< B £ 1. Clearly f(x) > «
if and only if x¢€ U, for some ¢> « and therefore f=3(Je, 1]) =
U {U,:t€ D, t> a}, which is open. In like manner f(x) = f if and only
if x¢ U, for every s< B. Therefore f~1([8, 1]) =N {U s¢D,s< B}
= N{U7:t€ D, t< B}, which is closed. Taking complements we see
that f-1([0, B[) is open. These facts together with (6.70) show that f
is continuous. O

We now take up the notions of limit superior and limit inferior for
sequences of real numbers.

(6.81) Definition. A nondecreasing [nonincreasing] sequence in R¥ is a
sequence (x,) C R¥ such that m < » implies x,, < %, [¥, = ¥,). A se-
quence (x,) C R¥ is said to have limit oo [—oo] if to each « € R there
corresponds an #, € N such that #» = n, implies %, = « [%, £ ], and

we write im x,, = oo [ lim x,, = — o0] or x,, - o [x, > — o0]. A sequence
7n— 00 #H—r 0O

and notice that U, and U~ are already defined

that is either nondecreasing or nonincreasing is called monotone.
(6.82) Theorem. Every monotone sequence in R¥* has a limit in R¥.
Proof. Let (x,) be nondecreasing and let x = sup{x, : # ¢ N}. Then
limx, =% 0O

n—>x0

(6.83) Definition. Let (x,) be any sequence in R¥. We define the
limit superior of (x,) to be the extended real number

lim x, = inf (supx,
n—rco kEN ,.Ji n)

and the limit inferior of (x,) to be the extended real number

lim x, = sup(inf x,).
%n—>c0 REN n2k

Obviously the sequences (sup x,,);:° and ( inf xn),i‘;, are monotone
nzk =1 n=k

sequences, so that lim x, and lim #, are just their respective limits.

n—>0 n—-»cc

The alternative notations lim sup %, = hm %, and lim inf %, = lim x,

7n—-00 7n—>0oo ﬂ‘-’@

are often used.
(6.84) Theorem. Let (x,) be a sequence in R¥* and let L ={x € R¥*: x

is the limit of some subsequence of (x,)}. Then hm x, and lim x, are in
L and lim %, = infL, lim x, = sup L.
7% —>»00

n—»00



§ 6. Topological preliminaries 77

Proof. We prove only the assertions about the limit superior, the
others being obvious duals. Let x = lim x,, and for each 2€ N, let ¥,

#—>00
= sup{#,: 7 = k}. Then x = inf{y, : k€ N}.

Case I: x = 0. Then y, = oo for each 2 € N, so that for each m ¢ N
there are infinitely many # € N such that x, > m. Choose #, so that
%n, > 1. When #,, ..., n, have been chosen, choose 7, > #, such
that %, , >m+ 1. Then (%, )n—: is a subsequence of (x,) and

lim x, = co. Thusx = oco€ L and clearly x = oo = supL.
m-—>00

Case II: x€ R. We have x = inf{y,: € N}. Thus for each >«
there is a ¥, < f and therefore %, > f for only finitely many »[# < &].
This proves that there is no element of L greater than x. On the other hand,
¥ = x for all % so for each m € N there exist arbitrarily large #’s such

that x, > X—— . We conclude that {nEN:x——l— <%, <x +i} is
m m m

an infinite set for each m € N. Consequently, as in Case I, we can choose
a subsequence (x, ) of (x,) such that lim x, = x. Therefore x¢€ L.

Case III: x = — oo. The argument given in Case II proves that there
is no element of L greater than x. But for each m € N there is a y, such
that y, < —m. Thus x, < —m for all but finitely many » € ¥, and so

}Lm Xp= —o0o=x. 0

(6.85) Exercise. Let (X, p) be a metric space. Prove that:

(a) there exists a complete metric space (X, §) and a function f from
X into X such that f(X) is dense in X and §(f(»), /(¥)) = o(x, ) for all
%,y € X [(X, @) is called the completion of (X, 0)];

(b) (X, @) is unique in the sense that if (Y, ¢) is a complete metric
space and g is a function from X into Y such that g(X) is dense in Y
and o(g(x), g(¥)) = o(x, y) for all x, ¥ € X, then there is a function &
from X onto Y such that o(h(), 2(B)) = g(« B) for all «, € X.
[Functionssuch asf, g, and A which preserve distance are called Zsometries. )

[Hints. Let € be the set of all Cauchy sequences in X. Define (x,) ~ (v,)
if @(%y, ¥,) = 0. Let X be the set of equivalence classes. Define §(a, f)
="1er; 0 (%, ¥n) Where (x,) € o, (y,,) € §. [cf. the completion of an ordered

field in § 5].]
(6.86) Exercise. Let (X, ) be a metric space. For each nonvoid
subset A of X and each x € X, define

o(x, 4) =inf{o(x,a):a € A}.

The number p (x, 4) is called the distance from x to A. Prove each of the

following statements.
(@ feo+ACX, thend™ ={x€cX:9(x, 4) =0}
(b) If o =4 C X and x,y€ X, then |p(x, 4) — o(y, 4)| £ o(¥, ).
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Thus the function f defined on X by f(x) = g (x, 4) is continuous on X.
(c) If A and B are two nonvoid disjoint closed subsets of X, then the
function % defined on X by
¢(#, B)

Mo) = 36 4) + ot B) |
is continuous on X. Also k(A4) = {1} and 4 (B) = {0}. Notice that this
gives a simple proof of (6.80) in the case that X is a metric space.

(6.87) Exercise. Let (X, g) be a metric space and let 4 and B be
nonvoid subsets of X. Define the distance from A to B to be the number
o(4, B)=inf{p(a, b):a€ A, b€ B}.

Prove the following assertions.

(a) If A is compact, then there exists a point a € 4 such that g (a, B)
= g(4, B).

(b) If A and B are both compact, then there exist points @ € 4 and
b€ B such that g(a, b) = o(4, B).

(c) If A is compact and B is closed, then g(4, B) = 0 if and only
ifANB* o.

(d) If X is a noncompact metric space with no isolated points, then
X contains nonvoid, closed, disjoint sets 4 and B such that p(4, B) = 0.

(6.88) Exercise. Let X be a nonvoid complete metric space. Suppose
that f is a function from X into X such that for some constant ¢ € ]0, 1[

we have 2, 1)) S colw)
for all x, y € X. Prove that there exists a unique point % ¢ X such that
f(u) = u. [Let x€ X and consider the sequence %, f(x), f(f(¥)),...).
This result is known as BANACH'S fixed-point theorem. It implies several
existence theorems in the theory of differential and integral equations.

(6.89) Exercise. Prove that the closed interval [0,1] cannot be ex-
pressed as the union of a pairwise disjoint family of closed [nondegenerate]
intervals each of length less than 1.

(6.90) Exercise. Suppose that: X is a topological space; Y is a metric
space; and f is a function from X into Y. For each x € X, define

o (x) = inf{diam(f(U)): U is a neighborhood of x} .

The function e is called the oscillation function for f. Prove the following
statements.

(a) The function f is continuous at x if and only if w(x) = 0.

(b) For each real number «, the set {¥ € X : w(x) < «} is open in X.

(c) The set {x € X : f is continuous at x} is a G, set.

(d) There is no real-valued function f defined on R such that
{x € R: { is continuous at x} = Q.

(e) There exists a real-valued function f on R such that {x€ R:
f is discontinuous at x} = Q.
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(6.91) Exercise. Prove that every locally compact Hausdorff space
is of second category [as a subset of itself]. [Mimic the proof of the Baire
category theorem (6.54) by constructing an appropriate decreasing se-
quence of compact sets.]

(6.92) Exercise. Let X be a topological space and let Y be a metric
space. Suppose that f and (f,);~, are functions from X into Y such
that each f, is continuous and ”lgr; fa(x) = f(x) for each x€ X. Let

a=0 Ul Nnlex:o(fn® )= %}] .
Prove that:

(a) fis continuous at each point of 4;

(b) X N A’ is of first category in X; !

(c) if X is of second category [in itself], then {x ¢ X : f is continuous
at x} is dense in X;

(d) f1(V) is an F, set for each open set VCY [prove that f-1(V)

~ U U n {xeX:g(f,,(x),V')g%}];

k=1 m=1 n=

(e) the function &g is the pointwise limit of no sequence of contin-
uous real-valued functions on R.2
(f) Prove that &y(x) = lim [ lim {cos(m!nx)}*] for all x € R.

(g) Prove that sgn(x) = lim %arctan (nx) for all x € R.
(h) Prove that 1 — &y (x) = lim sgn{sin?(m!nx)} for all x € R.

(6.93) Exercise. Let I/ (N) denote the set of all bounded sequences
% = (x,) of real numbers. For x, y € I’ (N), define d (x, y) = sup{|x,—¥a| :
n € N}. Prove the following.

(a) The function 4 is a metric for I (N).

(b) The metric space I/ (V) is not separable.

(c) If (X, p) is any separable metric space, then there exists an isom-
etry f from X into I7 (N), i.e., d(f(x), )— o(x,y) for all x,y¢€ X.
[Let (), be dense in X and define / = (0%, Pn) — 0 (Bm P)2mr]

(6.94) Exercise. Prove that if X isa compact metric space and f is an
isometry from X into X, then f is onto X.

(6.95) Exercise. Let X be a locally compact Hausdorff space and let
D be a dense subset of X such that D is locally compact in its relative
topology. Prove that D is open in X.

(6.96) Exercise. Let X be a linearly ordered set. The order fopology
for X is the topology on X obtained by taking as a subbase the family

1 Show first that if (E,)., is any sequence of subsets of X, then "El E=-
c(B ENu(C ExnE
? Recall that &g is the characteristic function of Q (2.20).
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of all sets of the form {* € X:c< x} and {x€ X:x< d} for ¢, d€ X.
Prove that X, with its order topology, is compact if and only if every
nonvoid subset of X has both a supremum and an infimum in X. [Use
(6.40) as in the proof of (6.44).]

(6.97) Exercise. (a) Use (6.96) to prove that a well-ordered set is
compact [in its order topology] if and only if it contains a greatest
element.

(b) Use (6.96) to show that R¥* with the usual topology (6.5.b) is
compact. ‘

(6.98) Exercise. Prove that the set P, of all countable ordinal
numbers [see (4.49)] with its order topology (6.96) is sequentially compact
but not compact.

(6.99) Exercise. Let P be CANTOR’s ternary set and let X = {0, 1}¥
have the product topology, where {0, 1} has the discrete topology. For

T = (%, %y, ...) €X, define ¢(x) =} % According to (6.64), ¢ is
n=1

a one-to-one mapping from X onto P. Prove that both ¢ and ¢!
are continuous.

(6.100) Exercise. Prove that if Y is a compact metric space and P is
CANTOR’S ternary set, then there exists a continuous function f from P
onto Y. [Let {V,};-, be a countable base for the topology of Y. For each
2%,
3n
the set ngl Ay, ., is either void or contains just one point. Let

n€N, set A, =V, and 4, ,=Y NV,. For a point x= 3’ in P,
o n=1

B= {xé p: nglA,,, v, F Q} and foreach x ¢ B,let g(x) € ngl 4,, ., Prove
that g is continuous from B onto Y. Show that B is closed in P and that
there exists a continuous function % from P onto B. Finally set f = g o A.]
(6.101) Exercise [BANACH]. Let f be a continuous real-valued func-
tion on [a, b] C R.
(a) For each positive integer #,let F,, = {x 1% € [a,b], and f(x') = f(x)
for some x' = x + %} Prove that F,, is a closed set.

(b) Let E = [a, 8] N ngl F}. Prove that f is one-to-one on E and that

(E) = f([a, b)). In fact, each x€ E is equal to sup{y:y€[a,b], f(y)
= f(x)}. Note that E is a G, set.

(6.102) Exercise. Let f be a real-valued function with domain R
having a relative minimum at each point of R, i.e., for each a € R, there
is a number 6 (a) > 0 such that /(f) = f(a) if |t — a] < &(a).

(a) Prove that f(R) is a countable set.

(b) Find a function as above that is unbounded and also monotone
on no interval containing 0.
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(6.103) Exercise. Consider a function f with domain R and range
contained in R such that f o f = f. Describe f completely. If f is continuous,
what more can you say ? [Recall that R and f(R) are connected (6.9) and
so f(R) is an interval.] If f is differentiable, what more can you say?

(6.104) Exercise. Prove the following.

(a) A continuous image of a connected space is connected.

(b) A Cartesian product L)e(l X, is connected if and only if every X,

is connected.

§ 7. Spaces of continuous functions

Functions — both real- and complex-valued — are a major object
of study in this text. Given a set X and a set & of functions defined on X,
we are frequently interested not only in individual functions f in &,
but also in F as an entity, or space, in its own right. Often § admits a
natural topology [or several natural topologies] of interest by themselves
and also for proving facts about . Often too & is a vector space over K
or R, and vector space notions can be most helpful in studying analytic
questions regarding . In the present section we take up a simple class
of function spaces — spaces of continuous functions — and a simple
topology for these spaces. Many other function spaces will be studied
in the sequel.

We begin with a few definitions and some notation.

(7.1) Definition. Let X be any nonvoid set [no topology as yet], and
consider the set KX of all complex-valued functions defined on X.
For f, g € KX, let f + g be the function in K% defined by

() (f+8) () = F(x) + g(x) forall x€ X;
let f¢ be defined by

(i) (fg) (%) = f(») g(x) forall x¢ X;
for f€ KX and « ¢ K, let af be defined by

(i) («f) (%) = a(f(x)) forall x€ X.
For f ¢ KZ%, let |f| be the function such that

(iv) |fl(x) = |f(x)| forall x¢ X
and f the function such that

(v) f(x) = f(x) forall x¢ X .
That is, sums, products, scalar multiples, absolute values, and complex
conjugates of functions on X are defined pointwise. The set RX of all
real-valued functions on X can be considered in an obvious way as a
subset of KX, and so definitions (i), (ii), (iii) [for real o], (iv) and (v)
[f = f if and only if f € RX] hold for R¥ as well as K. In addition, RX
admits a natural partial order. For f, g€ RX, we write f < g [or g = f] if

(vi) f(x) = g(x) forall x¢ X.
We define max{f, g} and min{f, g} by
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(vii) max{f, g}(x) = max{f(x), g(x)} forall x€ X
and

(viii) min{f, g} (*) = min{/(x), g(x)} for all x € X.

For some purposes, we also need extended real-valued functions on X.
For ® C (R¥)X, we define sup{f: /€ ®} by

(ix) sup{/:f€ D}(x) = sup{f(x) : f€ D},
which can be any element of R¥, and inf{f: ¢ ®} by

(x) inf{f: /€ D} (x) = inf{f(x): /€ D}.
Thus all of our operations on and relations between functions are de-
fined potntwise.

Finally, for a subset & of KX, we define §" by

(xi) Fr={f€F:f(x) €R forall x¢ X} =F N RX
and §* by »

(xi)) F* = {f€F :f(x) = 0 forall x¢ X}.

The set §* also can be defined for § C (R¥)X.

(7.2) Remarks. (a) For a¢ K, the function  in KX such that
p(x) = « for all x € X is called the constant function with value o or the
function identically «. This function is a quite different entity from the
number «. It would be unwieldy to use a distinct symbol [e.g. Cq, x] for
this function whenever we need to write it. We will therefore write the
function identically « simply as «, trusting to the reader’s good sense to
avoid confusion.

(b) It is easy to check that K¥ is a vector space over K and that
RX is a vector space over R. Also these spaces are commutative rings,
with [multiplicative] unit the constant function 1. It is further obvious
that

(i) a(fg) = (af)g = f(xg)
for all functions f, ¢ and scalars «. That is, KZX and RX are algebras over K
and R, respectively. [A vector space over a field F that is also a ring in
which (i) holds is called an algebra over F.]

(c) It is also clear that the relation < in RX satisfies (2.7.1)—(2.7.iii),
i.e., < is a genuine partial ordering. If X > 1, then < is not a linear
order. It is also easy to see that (RX, <) is a lattice: for f, g € R, there is
aunique #€¢ R¥ suchthat A= f,h =z g and h < W if W = fand W' = g;
that is, & is the smallest majorant of f and g. Similarly there is a largest
minorant k of f and g. It is obvious that h = max{f, g} and that
k = min{f, g}.

(d) The partially ordered set R¥ enjoys a much stronger property
than (c). Let § be any nonvoid subset of R¥ bounded above by a func-
tion ¢ € RX,i.e., f < gfor all € F. Then F admits a smallest majorant.
Its value at x € X is of course sup{f(¥) : f € &}. Similar statements hold
for sets § C RX that admit minorants.
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For infinite sets X, the algebras KX and RX are too large to be of
much use in analysis, although their algebraic structure is of great in-
terest to specialists. By a first restriction we obtain a metrizable space.

(7.3) Definition. Let X be a nonvoid set. Let B(X) denote the set
of all functions f € KX such that

i) sup{|f(x)|: x € X}
is finite. Such functions are said to be bounded. The number (i), written
as [ f|ly, is called the uniform norm of f.

(7.4) Theorem. Let X be a nonvoid set, and consider f, g€ B(X)

and o € K. Then the following relations hold:
@ [0Ju=0, |flu>0 4 f+0;

(1) floeflu = lo [f]ur

(@) 1f + glu = 17l

(iv) I7glu = Iflulglu-

Similar assertions hold for f, g € B7(X) and « € R.

Proof. Simple exercise.

The linear space B (X) with its norm | ||, is an important example of
a class of analytico-algebraic objects which we shall encounter repeatedly.

(7.5) Definition. Let E be a linear space over K [or R]. Suppose that
there is a function x — x| with domain E and range contained in R
such that: ‘

(i) 0] =0 and [x| >0 if x=+0;
(ii) Jax|| = |«||x] forall x€E and «€ K [or R];

(i) |x+ ] £ |#[ + |y| forall x,y¢E.

The pair (E, || ||) is called a complex [or real] normed linear space, and
| || is called a #norm.*

If E is a normed linear space and also an algebra over K [or R], and if

(i) l#yl < ] |y] forall zy€E,
then E is called a complex [or real] normed algebra. If a normed algebra
has a multiplicative unit %, then we will postulate that

(v) | =1.2

(7.6) Theorem. Let E be a complex or veal normed linear space. Let o
be the function on E > E defined by

) o3 = Jx—y].

Then g is a metric on E.

Proof. Trivial.

1 As usual, where confusion seems unlikely we will call E itself a normed linear
space.

% Since [[#] = [|ux| < ||u]]#|, we have |u||= 1 without (v). Also, a normed
algebra with unit can be renormed so that the unit has norm 1 and nothing essential
is changed. See Exercise (7.42) infra.
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(7.7) Definition. A complex [real] normed linear space that is com-
plete in the metric |x — | is called a complex [real] Banach space.
A complex [real] Banach space that is also a normed algebra is called
a Banach algebra.

Banach spaces are very important in contemporary analysis; many
basic theorems can be couched in abstract terms as assertions about
Banach spaces of one kind or another. We will give many examples
throughout the text of this technique [see in particular § 14]. We turn
next to the principal object of study in the present section, and one of
the important objects of study in the entire text.

(7.8) Definition. Let X be a nonvoid topological space. Let €(X)
denote the set of all functions in B(X) that are continuous complex-
valued functions on X.

(7.9) Theorem. With the algebraic operations (7.1.i)—(7.1.iii) and the
norm || |, of (1.3), €(X) is a commutative complex Banach algebra with
unit.

Proof. The only nonobvious point is the completeness of €(X) in
the uniform metric. Let (f,)5.; be a sequence of functions in €(X)
such that

ml'llr_qoo ”fn—fm“uzo (1)
That is, ’
i [sup{fa() — fula)]: 3 € X)] 0. @

For every fixed x € X, (2) implies that
lim |y (3) — fu(#)] =0,

and so0 (f, (%)=, is a Cauchy sequence in K. Since K is complete [use
(6.50) with # = 1], the sequence (f, (*)) has a limit in K, which we denote
by f(x). The mapping x — f(x) is thus an element of KX. We claim that
7 € €(X) and that

Tim [f — fu]u=0. @®

Actually, it is easiest to prove (3) first. Let & be an arbitrary positive
real number and let the integer p [depending only on &] be so large that

lfw = fmlu< 5 4)
for all m, n = p. Now consider a fixed but arbitrary x ¢ X, and choose m
[depending on both x and €] so large that m = p and also

€

fm (%) —F ()< 5 - (5)
Combining (4) and (5), we see that
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fa(®) — )| = [fm (%) — Fa®)] + [ (%) — F(%)]
<z+5
=2 (6)

foralln = p. The integer p is independent of ¥, and as x is arbitrary in (6),
we may take the supremum in (6) to write

2e

£

IA

A

if » = p. That is, (3) holds.

It remains to prove that f € €(X). Choose # so that |f — /.||, < 1. Then
it is evident that |f(x)| < |f.(x)] + 1 for all x € X, and so |f], exists and
does not exceed ||f,|, + 1. To prove that f is continuous, let ¥ be any
point in X, let £ be a positive number, and let » be so large that ||f,— f|.

< % Let U be a neighborhood of x such that

() — fa(®)| < 5 forall yeU.
For y € U, we thus see that

IH(y) = 1@ = 11(9) = a] + fa(y) — fa(®)] + Ifa (%) — F(%)]
= "/ - fn"u + Vn(y) - fn(x)l + "fn - f”u

€ € &
3t3 Ty

= €.

A

This is just the defining property (6.68) of continuity of fatx. O

(7.10) Remarks. Some topological spaces X admit no nonconstant
continuous real- or complex-valued functions. A simple but trivial example
is (X, 0) where X is infinite and @ consists of @ plus all subsets of X
with finite complements. Such spaces are of no interest for the present
text. However, if X > 1 and X is a locally compact Hausdorff space, then
€(X) contains an abundance of nonconstant functions, as Theorem
(6.80) shows. At the present time, locally compact Hausdorff spaces
seem to be an ideal vehicle for integration theory, as well as for a number
of classical theorems of analysis. Much of the present section will ac-
cordingly be devoted to these spaces.

(7.11) Exercise. Many, although not all, noncompact topological
spaces admit unbounded continuous complex-valued functions. We
will make no detailed study of the space of all continuous functions on
a topological space, but in this exercise the reader is invited to consider
some of the possibilities, and to prove the following assertions.



86 Chapter 1I. Topology and Continuous Functions

(a) Every noncompact metric space admits an unbounded con-
tinuous real-valued function.

(b) Let Pg, be the well-ordered set defined in (4.49). Let & be the
family of all sets of the form {0} or {y€ Pg: a< y < B} where a< < Q.
Then # is a base for the order topology of Pg [cf. (6.96) and (6.98)].
The topological space Py is a locally compact Hausdorff space; in fact
every subspace {y€ Po:a < y < f} is compact. Also P, is non-
compact, although it is both sequentially compact and Fréchet compact.
[Again see (6.96) and (6.98).]

(c) Every continuous complex-valued function f on Py, is ultimately
constant: there are an ordinal « € Py and a complex number ¢ such
that f(y) =¢ for all ¥ = & Consequently every continuous complex-
valued function on Pj is bounded.

(d) Let X be a topological space, and let €, (X) denote the set of all
continuous complex-valued functions on X, bounded or unbounded.
If €;(X) contains unbounded functions, we cannot impose the uniform
norm | ||, on €,(X). However, an analogue of (7.9) does hold. If (f,)7-,
is a sequence of functions in €,(X) for which all differences f, — f,,
are bounded, and if

m,li?»oo"f" - fm”u =0,
then there is an f € €;(X) such that all f — f, are bounded and
zim [f  fulu=0.

We return to a study of function spaces on locally compact Haus-
dorff spaces.

(7.12) Definition. Let X be a nonvoid locally compact Hausdorff
space. Let €y, (X) be the subset of €(X) consisting of all f € €(X) such
that for some compact subset F of X [depending on f], f(x) = 0 for all
%€ F' N X. Let € (X) be the subset of €(X) consisting of all f € €(X)
such that for every positive number &, there is a compact subset F of X
[depending on f and &] such that |f(x)| < & for all x € F’ N X. Functions
in €y, (X) are said to vanish in a neighborhood of infinity and functions in
Co(X) to vanmish at infinity: both phrases are loose but expressive.

(7.13) Exercise. Prove the following.

(a) The inclusions €y, (X) C €,(X) C €(X) obtain. If X is non-
compact, then €,(X) G €(X). For the space P, of (7.11.b), we have
Co(X) = € (X). If X is compact, then €y, (X) = €, (X) = €(X).

(b) Let X be an arbitrary locally compact Hausdorff space, and
consider €(X) and B(X) as metric spaces under the uniform metric
If — gllu- The space €,(X) is closed in B(X) [and hence also in €(X)]:

if f,€€(X), f€B(X), and lim ||f, — f|, =0, then f€ €, (X). Also
€,(X) is complete as a metric space. [Recall (6.47).] The space €y, (X)
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is not in general closed: its closure is €, (X). [A proof of the last state-
ment is indicated in (7.41) below.]

Several concepts closely related to, but not identical with, continuity
are needed in our treatment of integration theory. We now take them up.

(7.14) Definition. Let X and Y be metric spaces with metrics p and o
respectively. A mapping ¢ with domain X and range contained in Y
is said to be uniformly continuous if for every ¢ >0 there isa § >0
such that o (¥, ¥') < ¢ implies that o(p(¥), @ (x) < &.

(7.15) Remarks. (a) It is easy to see from (6.71) that a uniformly
continuous mapping is indeed continuous.

(b) There is a notion of uniform continuity more general than that
in (7.14), based on what are called uniform spaces. We do not need this
concept and hence omit it.

(7.16) Exercise. (a) Consider the function exp (5.56) defined on K.
Prove that exp is continuous but not uniformly continuous.

(b) Let X be a nonvoid set and let p be the discrete metric on X
(6.13.c). Prove that every mapping of (X, g) into a metric space is
uniformly continuous.

(c) Find reasonable necessary and sufficient conditions for a metric
space to admit a continuous real-valued function that is not uniformly
continuous.

(d) Let (f,)3-, be a sequence of complex-valued uniformly con-
tinuous functions on a metric space X such that all differences f, — f,
are bounded and

ml’é_lllm"fn - fm"u =0.

Prove that the limit function f (7.11.d) is uniformly continuous.

(7.17) Theorem. Let X and Y be as in (7.14) and let ¢ be a continuous
mapping of X into Y with the following property. For every & > 0, there
is a compact subset A, of X such that o(p(x), p(x")< € for all x, %'
in Ay N X. Then @ is uniformly continuous.

Proof. Let ¢ be an arbitrary positive number, and let 4, be as in the
statement of the theorem: if x, ' are in A; N X, then

o(p(*), ()< e. (1)

Now look at an arbitrary point y € 4,. Since ¢ is continuous, there is
a positive number 7, [depending on y] such that

z€ Byy,(y) implies o(p (), p(¥) < % @)

[Notation is as in (6.14).] Now consider the family of sets {B, (y):
y€ A,}. This is an open covering of 4,, and so by (6.32) and (6.18)
there is a finite subfamily {B,, (3,), ..., By, (ym)} that covers 4,. Let
6 be the number min{n,, 7, ..., %y,}. We claim that this § will
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satisfy (7.14) for the preassigned e. If x and x’ are in 4, N X, then (1)
may be applied. If at least one of x and ' is in 4,, we may suppose that
%€ A,. Then x is in some B, (). If o(x, ") < 4, then we have

oy ¥) = e(yr %) + 0(%, %)
< Ny + 0
= 29y,

That is, & is in By, (yx) and so (2) shows that o(p(x'), ¢(ys) < %
Since x is alsoin By,,, (4), (2) implies that o (¢ (%), ¢ (¥s)) < %, and hence

o(p(®), p(x)) = a(@(*), (yr) + o(@(¥s), p())

&
<?+7

=E£.

Thus ¢ is uniformly continuous. 0

(7.18) Corollary. If X is a locally compact metric space, then all
functions in €y(X) are uniformly continuous. If X is a compact metric
space, then all functions in €(X) are uniformly continuous.

Proof. See (7.17). O

(7.19) Our next notion is restricted to real-valued functions f on a
topological space X. The definition of continuity for f at x,€ X may be
[somewhat artificially] broken up into two parts: for every ¢ > 0, there
is a neighborhood U of x, such that

(1) f(x) > f(xg) —e forall x€U,
and

() f(x) < f(xy) + & forall x€U.
Taken separately, (i) and (ii) define useful classes of functions. It is
advisable also to consider extended real-valued functions.

(7.20) Definition. Let X be a topological space and f an extended
real-valued function defined on X that does not assume the value — oo,
that is, f(x) is real or oo for all x € X. The function £ is said to be lower
semicontinuous at x, € X if the following conditions hold. If f(x,) < oo,
then for every & > 0, there is a neighborhood U of x4 such that f(x)
> fxg) — € for all x € U. If f(x,) = oo, then for every positive number «
there is a neighborhood U of x, such that f(x) > & for all x € U. The
function f is called lower semicontinuous if it is lower semicontinuous at
every point of X. The set of all lower semicontinuous functions on X
is denoted by the symbol M (X). A function on X with values in [— oo, co[
is called upper semicomtinuous if analogous conditions f(x) < f(xo) -
+ & [f(x,) finite] or f(x) < — & [f(x,) = — o] hold near x,. The set of all
upper semicontinuous functions on X is denoted by R (X).
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(7.21) Exercise. Prove the following.

(a) Nonconstant semicontinuous functions exist on every topological
space X having an open set U such that & & U C X. The characteristic
function &y is lower semicontinuous and fu is upper semicontinuous.

(b) A function f is lower semicontinuous if and only if —/ is upper
semicontinuous. [Recall that — (c0) = — o0 and that — (—o0) = 0 (6.1).]
Thus for any fact about lower semicontinuous functions there is a dual
fact about upper semicontinuous functions. [We will ordinarily state ex-
plicitly only assertions about lower semicontinuous functions.]

(c) The definition of lower semicontinuity at x, can be recast: for
every real number « < f(x,), there is a neighborhood U of x, such that
f(x) > o for all x ¢ U. This deals with the cases f(x,) < oo and f(xy) = oo
simultaneously.

(d) A function f from X into ]— oo, 0] is lower semicontinuous if and
only if f~1(J¢, o0]) is open in X for every ¢ € R. [This characterization is
frequently useful.]

(7.22) Theorem. Let X be a topological space.

(i) If f € M(X) and a is a nonnegative real number, then of € M(X).

(ii) If f, g € M(X), then min{f, g} € M(X).

(iii) If ® is a nonvoid subset of M(X), then sup{f: f € D} is a function
in M(X).

(iv) If 1, g € M(X), then | + g € M(X).

(V) Suppose that X is a locally compact Hausdorff space. Then if
f€ M+ (X), we have f = sup{p: (pE(f,OO( ), ¢ = f}

Proof. Assertions (i), (ii), and (iv) are all but obvious, and we leave
their proof to the reader. To prove (111) write g for the function sup{f:/€®}.
Consider a fixed but arbitrary point x,€ X. For every real number
a < g(%,), the definition of supremum (5.32) shows that there is an /¢ ©
such that < f(x) < g(%,). [This holds both for g (x,) < coand g(x,) = oo
note that f(x,) may be finite or infinite if g(x,) = oc]. Since f is in M (X),
there is a neighborhood U of x, such that

f(x) >a forall x€U

[this holds for f (%) < oo as well as for f(x,) = oo]. Forallx € U, we clearly
have

g(x) = f(x) > «.
Thus g satisfies (7.21.c) and so (iii) is proved.

To prove (v), we use URysOHN’s theorem (6.80). If f = 0, there is
nothing to prove. If f(x,) > 0 for some x, € X, consider any real number
a such that 0< a< f(x,). There is a neighborhood U of x, such that
f(x) > a for all x € U. By (6.80) there is a function ¢ € € (X) such that
P(X)C [0, a), p(x) = and ¢(U’) C {0}. Plainly we have ¢ </,
and as « can be arbitrarily close to f(x,) [f(%,) < o] or arbitrarily large
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[f(%,) = o0], we infer that f(x,) = sup{ep(x,): @ € €H(X), ¢ < f}. Since
%, is arbitrary, (v) is established. 0O

(7.23) Exercise. (a) State and prove the analogue of (7.22) for upper
semicontinuous functions.

(b) Let X be a topological space admitting a nonclosed open set.
Prove that Mr(X), the real-valued lower semicontinuous functions on X,
do not form a linear space. If every open subset of X is closed, prove that
M7 (X) is a linear space.

(c) Prove that uniform limits of sequences in M (X) are in M (X).

(7.24) We now take up a famous and vitally important approxima-
tion theorem. The German mathematician KARL WEIERSTRASS [1815—
1897] published in 1885 a proof that polynomials with real coefficients are
dense in the space €7([0, 1]} in the topology induced by the uniform
metric. We will prove a far-reaching generalization of this theorem due to
the contemporary U.S. mathematician M. H. SToNE. Every proof of the
STONE-WEIERSTRASS theorem requires some ‘‘hard” analysis. Our proof
uses only a little such analysis, which is presented in the next theorem.
We prove somewhat more than we need.

(7.25) Theorem. For any real number «, let (g) = 1and

(a)= a(fe— ) (x—2) - (x—n + 1)

" n!
forn=1,2,.... The infinite series
&) X (5)w
n=0

converges for all x € 1—1, 1[. For o > 0, the series

o
()
converges, and the series (i) converges uniformly and absolutely in [—1, 1].
Finally, we have

0

(i) P

n=0

oo

(i) ¥ (:) = (14 %)

n=0

for x€1—1,1[ for all real «. For « > 0, (iii) holds for all x€ [—1, 1].
Proof. To prove (i), we use the ratio test. If « is a nonnegative integer,

then all but finitely many of the numbers (:) are 0, and so (i) trivially
converges. Otherwise, for || < 1and#=10,1,2,..., we have

b n+1
(n + l)x _ je—mn]

= |} - x| < 1.

RN
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Hence the series (i) converges absolutely for |x| < 1. Next we prove (ii).
The case in which « is a nonnegative integer is again trivial. For «

not a nonnegative integer, let a, = (:)’ Then we have

gy |a—n| _ n—a
a, n+1 w41’

the last equality holding for n = [«] + 1 [[a] is the largest integer not
exceeding ac]. Hence for #n = [«] + 1, we have (n + 1)a, ,.,= na,—aa,,
and so

na,— (n+ 1)a, = aa,>0. (1)

Thus for # = [«] + 1, (#a,) is a decreasing sequence and so has a
limit; let lim na,= y = 0. Now consider the series 2 (na,—(n+1)a, ).
The p** partial sum of this series is — (p + 1)ap 4, Whlch converges to

— ». Hence the series 2 (na, — (n+ 1) a, ;) converges, and since by (1)
1
an = ;'(”an — (n+ 1) ay4q)

for sufficiently large #, the series 3 a, converges; i.e., the series (ii)
n=0

converges. Since

x"l ’ | for |¥| £ 1, the series (i) converges

absolutely and umformly in [—1, 1] and so defines a continuous func-
tion on [—1, 1].
We now prove (iii). For x€ ]—1, 1{ and a € R, let f,(x) =}/ (:) .
n=0
A power series may be differentiated term by term in its opex interval
of convergence, and so we have

LW = Za()er= Zean(,3)

Using the identity (n + 1) (n :T_ 1) =a (“_ 1) ’

n
we see that

fw=aX (*7 )= afea () @

n=0
Next we have

148 @) = (140 2 (7, 1)

n=

o

1+ 3 [(“:l)+(::})]xﬂ= f(:)x"=fa(x),

=1

X
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i.e.,
(1+ %) faer (%) = fa(x) . )
Combining (2) and (3), we see that

(1+ %)fa(%) — afa(x) =0
for all x€ ]—1, 1[. Also we have

= Tal®) (14 2] = (1+ )===3((1 + %) fu(x) — afu(x)) = 0.

fa (%)

Hence A is a constant function in ]— 1, 1[. Setting x = 0, we deter-

mine that the constant value of this function is 1; i.e., f,(¥) = (1 + %)®
for |x] < 1. If @ > 0, then the series also converges for x = 41, and hence
the identity (iii) also holds for these values of x. [Two continuous complex-
valued functions that are equal on a dense subset of their common
domain are equal everywhere.] 0O

(7.26) Remarks. (a) In proving the important Theorem (7.27), we

need only the special case of (7.25.iii) in which &« = % That is, we need
the identity

1 o fL
0 (1+27= 2(;)x".
n=0
and the fact that the series converges absolutely and uniformly for
|| = 1.

(b) The STONE-WEIERSTRASS theorem depends ultimately upon order
properties of the space €”(X) for a compact Hausdorff space X. It is
evident that max{f, g} and min{f, g} are continuous if /, g are in € (X),
and this simple fact will be very useful. The following theorem connects
polynomials with maxima and minima.

(7.27) Theorem. Let X be any nonvoid set [no topology] and let Y
and @ be functions in B (X). For every &> 0, there is a polynomial
P =3 3 a;;, ¢ ¢* with real coefficients such that

i=0 &=0

@ |max{y, ¢} — Plu< e.
A like assertion holds for min{y, ¢}.

Proof. For every real number ¢, the identity

1
3

H=(1+2-1)
1
is obvious. For |2 — 1| < 1, that is, for |¢| < 27, we have

1 e 1
(1+p-1i= ¥ (3)(t2—1>n,

n=0

and the series converges absolutely and uniformly for all ¢ such that
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1 .
|| < 22 (7.26). For every positive integer p and for all real ¢ such that
1
|f| £ 2%, we thus have
1
2.
( ” )1 ’ M)

» (L

(B> (2)02—1)»
n=0 \ "

and the right side of (1) is arbitrarily small for p sufficiently large. Now

consider any nonzero function y in V’(X), and for brevity write the

number |y, as . For x ¢ X and p ¢ N, we apply (1) to write

‘|«p<x>|— b) ﬂ(f)[‘”j,f:" -1’

n=0

)

n=p+1

sl = £ (2) -
< ﬂ”;;l (é) .

It follows that for » € B"(X) and £ >0, there is a real polynomial @
in the functions 1 and 2 [¢.e., a linear combination with real coefficients
of 1, 9% g4, ...], the coefficients of which depend solely upon f and ¢,

for which
[yl — Qllu < 2¢. 2)

If ¢ = y, the relation (i) is trivial, If ¢ + o, then y — ¢ is not the
zero function, and we may apply (2) with y replaced by y — ¢:

Iy — ol — Qv — @llu< 2¢.
As noted in (5.36), the identity

1
max{y, ¢} =5 (v — ¢/ + (¥ + ¢))
obtains, and so we have

[max(y. 6} 3@ =) + 9+ )< e

Setting P(yp, @) = %(Q (y — @) + v + @), we obtain (i). To prove (i)
with “max” replaced by “min”’, note that min{y, ¢} = —max{—y,—¢}. O

(7.28) Definitions. Let X be a set and & a family of functions on X
with values in a set Y. Suppose that for all %,y € X such that x &y
there is an f € & such that f(x) = f(y). Then we say that & is a separating
family of functions on X. Next suppose that & is a family of real-valued
functions on X. A real polynomial in functions from & is any finite
sum of functions afj:fy:- - f;*, where the coefficient « is a real number
and the exponents #; are positive integers. Equivalently, a real poly-
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nomial in functions from & is an element of the smallest subalgebra of
RX that contains &. Complex polynomials are defined similarly in KX,

We now prove one version of the STONE-WEIERSTRASS theorem.

(7.29) Theorem. Let X be a nonvoid compact Hausdorff space, and let
& be a subset of €' (X) such that:

(i) © ts a separating family,;

(i) & contains the function 1;

(iii) /€ & and a € R imply af € &,

(iv) f,g€ S implies f+ g€ &;

(v) 1, 8 € © implies max{f, g} € S.
Then & is dense in €' (X) in the topology induced by the uniform metric.t

Proof. Consider f, € € (X). If f, is constant, then the approximation
is trivial. If not, we have

c=inf{fo(x) : x € X} < d=sup{fy(x):x€ X}.

Let f=———(fy—d) +1, so that f(X)C[—1,1] and inff=—1,
supf = 1. It obviously suffices to prove that f lies in the closure of &.

Consider the nonvoid compact sets E = {x EX fix) = — %} and

F= {x €EX:fx) = %} For every x ¢ E and y € F there exists g,,, € &
such that g, , (%) & g,,,(¥). Define

4 2
by = By o) — a5y &5y )+

We have h,, ,(x) = — %« and 2, ,(y) = é Since € is a linear space, it is

clear that 4,,, € &. Since 4,,, is continuous, there exists for each x ¢ E

and y € F a neighborhood U, of x such that %, , (w) < — % for all w€ U,.

Since E is compact and J‘|€JE U, D E, there are points x;, %5, .. ., ¥, € E

such that '
v,uu,u---UU, DE.

Let o, = min{h, ,, A,y . . ., by} Since min{a, b} = —max{—a, —b},

L7144

hypothesis (v) shows that ¢, € &. It is clear that ¢,(y) = %and that

pyx) < — % for all x € E. Note that the function g, is defined for every

fixed y € F.
We repeat the above technique to find points y;, ¥, ..., 9, €F

and functions ¢,, @y, ..., ¢, €& such that ¢, (x) < — % for all
% €E and such that for each x € F, some ¢, (x) is greater than —:—:— .

1 Note that our hypotheses are slightly redundant: if X admits a separating
family of continuous real-valued functions, then X has to be a Hausdorff space.
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Hence the function y = max{g,, @,,, . .., @y} is in & and satisfies the
following inequalities: (%) < - —;— for all x ¢E and y(x) > % for all
% € E. Now define w; by

%, = min {max {w, — —;—} , %} .
It is clear that w, €&, w,(E) = {— %} 1wy (F) = {%} , and @ (X) C

[— % , %] . The definitions of E and F show that

2
If — willu =3 -
The function %(,‘ — w,) is in €’ (X) and has minimum — 1 and maxi-
mum 1. The method used to construct w, can again be used to approxi-

mate %(f — w,). Thus there exists w, € & such that
2

'3_ .

o Sel 3

Our scheme is now clear. In the next step we approximate

() (1= m)

by a suitable function w; in &, obtaining the equality

2 2\2 || _ [2)3
f—wl_?;“wz—(f wa“'“(? .

In general, if # is any positive integer, there are functions w,, ..., w,

150~ w) —w,=

Multiplying by %, we have

such that
2 2\n—1 2\n
-3 G el B
where each w; is in &. Since & is a linear space and lim (%)”= 0,

the proof is complete. 0O

The standard version of the approximation theorem is simple to
prove from (7.27) and (7.29).

(7.30) StoNE-WEIERsTRASS Theorem. Let X be a nonvoid compact
Hausdorff space and S a separating family of functions in € (X) containing
the function 1. Then polynomials with real coefficients in functions from &
- are a dense subalgebra of €'(X) in the topology induced by the uniform
metric.

Proof. Let P be the set of all polynomials with real coefficients in
functions from &, and let ~ be the closure operation in €’ (X). Clearly P
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is a subalgebra of €"(X). Suppose that f and g are in P, and that
Bim |f = fulu=0, lim lg—giu=0,

where f, and g, are in P. Theorem (7.27) proves that max{f,, g,}is in P~
It is easy to see from (5.36) that

|max{f,, gn} — max{f, g}y = Ifo — flu + & — &lu .

and so max{f, g} is in (B7)” =P . Thus P~ satisfies all the hypotheses
imposed on & in (7.29), and (7.29) therefore implies that (B™)" =P~
is € (X). O

(7.31) Corollary [WEIERSTRASS]. Let X be a compact subset of R
and let [ € €' (X). Then there is a real polynomial P = P (x) such that
If — Pl ts arbitrarily small.

Proof. The corollary is simply (7.30) with & = {¢, 1} where ¢(x) = »
forallx¢X. O

(7.32) Remarks. The hypothesis in (7.29) and (7.30) that & be
a separating family of functions is obviously necessary. Let X be a
compact Hausdorff space containing at least two points. Suppose that
& is a nonvoid subset of € (X) such that for some distinct 4, b € X, we
have f(a) = f(b) for all f €F. Then P(a) = P (b) for every polynomial P
in functions from {. It follows that polynomials in functions from
cannot be dense in € (X). In fact, no function having different values
at a and b can be arbitrarily uniformly approximated by polynomials
in the functions of , and Theorem (6.80) shows that there is a ¢ € €"(X)
such that @ (a) = 1 and ¢ (b) = 0. The beauty of the STONE-WEIERSTRASS
theorem lies in the fact that its hypothesis, trivially necessary, is also
sufficient. We will use the STONE-WEIERSTRASS theorem very frequently.
It is an essential tool for the analyst.

(7.33) Examples. (a) Let X be CANTOR’S ternary set (6.62), which we

write as the set of all numbers 2 3] %, where each y,isOor 1. For n €N,
E=1

let ¢, be the function on X such that

l
Form <my<-:--<my,let @u n,....n =11 @n,
=1

Then each ¢, is continuous on X, the set {¢y, s, ..., @, ...} is
a separating family on X, and ¢2 = 1. Hence every function in €’ (X)
is arbitrarily uniformly approximable by a linear combination of the
functions 1 and @, , ,,,...,n-

(b) The function exp defined as in (5.56) is real-valued on R and
satisfies, as every schoolboy should know, the inequality exp (x,) <exp (#,)
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if x, < x,. Hence the one-element family {exp} is a separating family
on R, and the family of polynomials in exp and 1 is dense in €7(X)
for every compact subset X of R. These polynomials are precisely all

”
functions P of the form P(x) = 3 «, exp(n,x), where the a;’s are
E=0

real numbers, the #,’s are nonnegative integers, and n=1,2,3. ...

(c) Polynomials in the cosine function and 1 are dense in €"([0, x]).
For every n €N, cos®(x) can be written as a linear combination of terms
of the form cos(k%) and 1 [this fact can be proved by induction on #].
Hence the family of all linear combinations of the functions 1, cos(x),
cos (2x), . . . is dense in €’ ([0, 7).

(d) Consider €' ([0, 1]) and the smallest subset & of €’ ([0, 1J) con-
taining 1, the function ¢ [¢(x) = x], and satisfying (7.29.iii)—(7.29.v).
It is not hard to see that & is exactly the linear lattice consisting of all
piecewise linear, continuous, real-valued functions f on [0, 1]. That is,
there are a finite number of subintervals [0, x;], [%;, %,], . . ., [%p_y, 1]
such that 0 <%, <+++<x,_;<1 and such that f is linear on each
[¥x—1, #2]. Theorem (7.29) shows that & is dense in €"([0, 1]).

One would expect a complex version of the STONE-WEIERSTRASS theo-
rem, and indeed there is one. However, in the complex case some ad-
ditional hypothesis is required.

(7.34) Theorem. Let X be a nonvoid compact Hausdorff space. Let &
be a separating family of functions in € (X) containing the function 1 and
such that | ¢ S whenever | ¢ S. Then polynomials with complex coefficients
in functions from & are dense in € (X) in the topology induced by the uni-
form metric.

Proof. Let g be in € (X). We will show that the real-valued continuous

functions Reg and Img can be approximated by polynomials in functions
belonging to &. For f ¢S, we have Ref = —f—:—f and Imf= sz;__f ,
and so Ref and Im{ are polynomials in functions from &. The family of
functions &,, consisting of all Ref and Imf for f €&, is a separating
family on X, for if %, y € X and f(x) = f(y), then either Ref(x) + Ref(y)
or Imf(x) + Imf(y). Also &, contains the function 1. Theorem (7.30)
shows that for every & > 0, there are polynomials P and @ in functions

from &, such that
“P - Reg”u < %8 B

1
”Q—‘ Img”u<_2'8v
and so
[P+1:Q—glua<e. O
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(7.35) Examples. (a) Let X ={2¢K:|z] = 1}, and let & = {i}
where ¢(2) = z. Uniform limits of polynomials in ¢ and 1 are analytic
on the open unit disk {z € K : |z| < 1} and continuous on the closed unit
disk {z € K: |z| < 1}. There are certainly nonanalytic continuous func-
tions on the unit disk, and so polynomials in functions from & are %ot
dense in €(X). Thus some additional hypothesis is necessary in the com-
plex STONE-WEIERSTRASS theorem. Conditions on X under which the theo-
rem holds for €(X) with no additional hypothesis have been found by
W. RupiN [Proc. Amer. Math. Soc. 8, 39—42 (1957)].

(b) Let T={2€K:|z|=1}, and consider the function ¢ on T
given by «(z) =z. For any z€ T, we have z= exp (¢x) = cos (x) + ¢ sin (),
for exactly one x € [0, 2n[. Hence t(exp(ix)) = exp(ix), and we see
that {1} is a separating family for T. We have i (z) = t(exp (¢%)) = cos(x)
— ¢sin(x) = cos(—x) + ¢ sin(—x) = exp(—¢x). Recall that exp(ix)"
=exp(inx), n=1,2,.... The family {i, 7, 1} satisfies the conditions
of (7.34). Now let / € €(T) and let &£ > 0. By the above remarks there is
a function

exp(tx) - 3 oy exp(tkx)
k=—n

such that

n
2 apexp(thx) — f(exp(ix))| < €
k=-—n
for all x € [0, 2x[ [actually for all x € R]. This result is important in the
theory of trigonometric series [see (16.34)], and the proof we have given
is the shortest one that we know of.

(7.36) Exercise. (a) Let X be any noncompact subset of R. Find a
separating family & in €' (X) such that polynomials in the family & U {1}
are not dense in €"(X). Be careful to consider all possible cases. How
small can you make &?

(b) Let A be a nonvoid, finite, discrete space. Prove a sharpened
form of the STONE-WEIERSTRASS theorem for this set, and do it without
recourse to (7.30).

(7.37) Exercise. There are several versions of the STONE-WEIERSTRASS
theorem besides (7.29) and (7.30), which are listed below. Prove them,
using (7.30).

(a) For a compact Hausdorff space X, a closed subalgebra Y of
€’ (X) that separates points is either € (X) or {f € € (X): f(xy) = 0}
for a fixed point %, € X. A subalgebra A of (i’ (X) that separates points
and vanishes identically at no point of X is dense in € (X). [This state-
ment differs from (7.30) in that 2 need not contain the function 1.]

(b) For a locally compact Hausdorff space X, a closed subalgebra
A of €}(X) that separates points is either €}(X) or {f € €5(X):f(xo) = 0}
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for a fixed point %, € X. A separating subalgebra 2 of €f(X) vanishing
identically at no point of X is dense in €f(X).

(c) State and prove complex versions of (a) and (b).

(7.38) Exercise. Theorems (7.29) and (7.30) are incomparable, in the
sense that subalgebras of €”(X) need not be sublattices and sublattices
need not be subalgebras.

(a) Let P and Q be real polynomials on [0, 1]. Prove that max{P, 0}

is a polynomial if and only if P = Q or @ = P. Prove, however, that if
P,, Q,, P,, and Q, are polynomials such that P, < Py, P, < @5, 0; < P,,
and Q, = Q,, then there is a polynomial @ such that max{P;, Q;}
< @ < min{P,, Q,}.
"~ (b) The sublattice & of €’([0, 1]) defined in (7.33.d) is not a sub-
algebra of €7 ([0, 1]). Prove that if / and /2 are both in &, then f is a
constant. Find conditions on f and g in & necessary and sufficient for
fg to bein &.

(7.39) Exercise. Let X be a nonvoid compact subset of R", where
n€N. For ¢ = (%;,...,%,) €X and (k,..., k,) a finite sequence of
nonnegative integers, consider the function

@ > xhighe o xhn
Prove that linear combinations of these functions are dense in €"(X).
State and prove an analogue for X C K* and €(X).

We close this section with an important application of the STONE-
WEIERSTRASS theorem.

(7.40) Tierze’s Extension Theorem. Let X be a locally compact
Hausdorff space, let Y be a nonvoid compact subspace of X, and let U
be an open set such that Y C U C X. Then every function in €(Y) can be
extended to a function in €y (X) that vanishes on X N U'".

Proof. In view of (6.79), we lose no generality in supposing that U
is compact. It obviously suffices to show that every function f in
€r(Y) admits an extension ! in € (X) such that /' (¥) = O forallx¢ XN U".
Let G be the set of all functions f in €’ (Y) admitting such extensions f'.
It is trivial that & is a subalgebra of € (Y). Let us show that & separates
points of Y. For a+ b and a, b €Y, there is a neighborhood W of a
such that b ¢ W. By (6.79), there is a neighborhood ¥V of & such that
V- Cc UN W and V™ is compact. By (6.80) there is a continuous func-
tion @ from X into [0, 1] such that ¢ (V™) = {1} and ¢((U N W)") = {0}.
Thus @(a) =1, ¢(b) =0, (X N U’) C{0}, and the restriction of ¢
to the domain Y is plainly in &. That is, & separates points of Y. Theorem
(6.80) shows too that all constant functions on Y are in &.

Next consider any f ¢ &, and write a = max{f(y):y €Y},
B =min{f(y):y €Y}. It is obvious that |f], = max{|a|, |B|}. Let f*
be a continuous real-valued extension of f over X such that
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X NU)cC{0}. Let «f = max{e, 0} and B' = min{B, 0}. Then define
the function ¢ on X as
@ = min{max{f, 8}, «'} .

It is clear that @ is in €"(X), and it is easy to see that: ¢ (x) = f(x) for
2€Y; ol =max{p(x):x€X}; fl=min{p(x): ¥ €X}; pr) =0 for
x € X N U'. Thus ¢ is an extension of f of the sort we want for which
|@llu = [fls That is, if f € &, then f admits an extension f' such that
1#11e = [l

Now let g be a function in €"(Y) that is the uniform limit on Y
of a sequence (f,)7~, of functions in &. Choose a subsequence (f,)%-,
such that [|fp, — fn,,.[lu <2~% and write g, = f,, — fn,,, (k=1,2,8, ...).
Then we have

g—fn.=1§lgk‘

where the infinite series converges uniformly on Y, and |gx[, < 2-*.
Now let g} be a continuous extension of g, over X such that g} vanishes

on U’ and ||g}ll, = |lgxll. < 2~*. The infinite series 3 g} converges uni-
k=1

formly on X to a function in € (X) that vanishes on U’. Therefore g — fn,
is in & and hence g itself is in &.

We have therefore shown that & satisfies the hypotheses of (7.30)
and is uniformly closed in €"(Y). Therefore & is all of €(Y). 0

(7.41) Exercise. Let X be a locally compact Hausdorff space. Every
function f in €y(X) can be arbitrarily uniformly approximated by
functions in €,y (X). [Hint: consider a compact set outside of which f is
small and use (7.40).]

(7.42) Exercise. Let E be a real or complex normed algebra with
multiplicative unit #. For x € E, let

ll#[ll = sup{lyx] : y €E, |5] < 1}.
Prove the following:

(a) Illrlll =1

(®) T Il = 1lI#lll = [#] forall x€E;

(c) the algebra E with the norm ||| ||| is a normed algebra in the sense
of (7.5);

(d) if E is complete in the metric g (x, y) = ||x — |, it is also complete
in the metric |||x — ¥|||.

(7.43) Exercise. Let X be a nonvoid compact Hausdorff space and
let £ be a lattice of real-valued continuous functions on X, i.e., f, g€er
implies max{f, g} € € and min{f, g} € L. Suppose that g is a real-valued
continuous function on X having the property that for each &> 0
and each pair of points x, y € X there exists a function f € € such that
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lp(x) — f(x)] < e and |@(y) — f(y)| <e. Prove that for each &£>0
there exists a function & € € such that | — &|, <.

(7.44) Exercise [ROBERT I. JEWETT]. Let I denote the interval
[0, 1]. A family § of functions is said to have property V if

(i) & € IX for some set X,
(i) f€E implies (1 — /) €&,
and

(ii) /, ¢ € implies /g €.

Supply I¥ with the topology of uniform convergence [the topology
induced by the uniform metric]. Prove assertions (a)—(k). [This exercise
is rather difficult.]

(a) If X is a set and A C I%, then U is contained in a smallest sub-
family [closed subfamily] of I¥ having property V. [Intersect a collection
of families.]

Suppose that X is a topological space, and let ® (X) = I¥ N €(X).
For n €N, let P, be the smallest subfamily of ® (I*) that has property
V and contains the # projections

(g, oo %) > 2 (R=1,...,m).

(b) If & has property V, if {f,, ..., f,} €&, and if p € P, then the
function f defined on X by

Hx) =p(h(), ..., fa(x)
is in &. [Consider the set of all p € ® (I*) for which the conclusion holds.]
(c) For every & > 0, there exist functions p and ¢ in 9, such that
p<eand g >1— ¢on I [Consider p(x) = x™(1 — x)™.]
(d) If e>0 and 0<a<b <1, then there is a function p €%P,
such that
p>1—¢ on [0,a],

p<e on [b 1].

[Take p(x) = (1 — x™)" for appropriate m, n € N.]
(e) If{ay, ..., a,} U {by, ..., 0,} C I, then

ku— Hak
k=1

k=1

< Xle—a.

[Use induction on #.]
(f) If (a, b) €12 = I >< I and ¢ and ¢ are positive real numbers, then
there is a function p € P, such that
P, y)>1—¢ if (x—a)?+ (y—02= 62
and
plry)<e if (x—a)+ (y—0? =z (49)°
for (x, y) € I2.
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[Take p (%, ) = (1 — $1(x))$2(*) (1 — $3(¥)) P4 (¥), where the p;’s are
obtained by using (d).]

(g) Let 4 and B be disjoint compact subsets of I2, and consider
arbitrary ¢ > 0 and p € PB,. Then there exists ¢ € P, such that

g=p on I?

g>1—¢ on A4,
and

g<p+¢e on B.
[Let 40 = dist(4, B). Use compactness and (f) to piece together a
go € P, such that g, is near 1 on B and near 0 on A. Then let ¢ =
1—(1—2)g,]

(h) Define ¢ and % on I? by ¢(r,y)=max{x,y} and w(x,y)

= min{x, y}. For each &> 0 there exist functions 7, ¢ € P, such that

lp—rlu<e

ly — gl <e.

[Let 8 =c< 1. Let C={(x,y) €I?: 6 < p(x,y) = 1 — 6} and choose
m € N such that (xy)™ < 6 on C. Let p(x,y) =1 — (x3)™. Then p € P,
andl—d<p<lonC.Fork = Oletd,={(x,y) €C: p*(x,5) < p(x, ¥)}
and B, = {(r, y) € C: p*(x,y) = (%, )}. Choosen € N such that B, =g&.
Note that 4,_;N By = o for all .. For k=1,..., %, use (g) to find
gr €P, such that ¢, = p on 12 ¢, > 1 — % on A,_;, and ¢, < p + %
on B,. Put ¢ =¢,¢;, - ¢, Prove that 0 < p* —y < 4 on B, N By,
and use (e) to show that |p* —¢'{<38on C (k= 1,...,n— 1). Thus
conclude that |p — ¢’| < 46 on C. Use (g) again to find ¢"’ €9, such that
¢"zq¢onl?g'>1-0ifpy=1—-4d,andg”" <qg' +difp<1—24,
Notice that |y — ¢’’| < 68 if p = 4. Use a slight variant of (g) to find
gEéPysuchthatg< g’ onl% g<dify<d,andg>q”" —dif p =224.
Then |g — y] <86 = ¢ on I2.]

(i) Let X be a nonvoid set and let § be a closed subfamily of IX
having property V. Then & is a lattice. [Use (b) and (h).]

(j) Let X be a compact Hausdorff space and let & be a closed separat-
ing subset of ®(X) having property V. Let S={x € X:f(x) €{0, 1}
for all f €F}. Then F={f: f € ®(X), f(S) € {0, 1}}. [Use (7.43), (i), (b),
and (d).]

(k) If » € N and § is a closed subfamily of © (I*) which has property
V and contains the # projections as well as some function which is never 0
or 1, then § = ® (I7).

(7.45) Exercise. The algebra of gquaternions® H is defined as the
4-dimensional vector space over R having a basis, traditionally written

and

1 Discovered by the Irish mathematician Sir WiLriam Rowan HaMILTON
(1805 —1865).
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as {1, 1,7, £}, with the following multiplication table:

1|4

11 |dils |k

i | i |—1) & |—j

|7 |—k[—1] 3

B R |j |—i|l—1

Products (a1 + b7 + ¢f + dk) (@'l + b4 + ¢’ + d'k) [real coefficients!]
are defined by supposing that H is an associative algebra over R. Prove
the following.

(a) For every al + b¢+ ¢j +dk €H,

(@l + bi+cj+dR)(al —bi—cj—dk)=(a®+ b2+ c2+d¥1.
b) The set HN {01+ 07+ 07 + Ok} is a non-Abelian grou
7 group

under multiplication.
(c) Forx=al+bi+cj+dkcH,wehavex —ixi —jxj—kxk=4al.

1

(d) For x = al + bi + ¢j + dk € H, let |x] = (a® + b% + 2 + d?)2.
Prove that | | is a norm on H (7.5) and that |xy| = |#] || for all
%,y €H.

(e) Let X be a topological space and € (X, H) the set of all continuous
mappings f of X into H [make H into a metric and hence topological
space via the norm] for which |f||, = sup{|f(#}] : £ € X} is finite. Show
that € (X, H) is a noncommutative Banach algebra over R with a multi-
plicative unit, all operations being pointwise.

(f) [J.C. HoLLADAY]. Let X be a compact Hausdorff space and let
be any subalgebra of € (X, H) [closed in particular under multiplication
by all constant functions] that separates points and contains 1. Prove
that U is dense in €(X, H). [Use (c) and (7.30), regarding €(X, R) as a
subring of €(X, H).]



CHAPTER THREE

The Lebesgue Integral

Integration from one point of view is an averaging process for func-
tions, and it is in this spirit that we will introduce and discuss integration.
In applying an averaging process to a class § of real- or complex-valued
functions, a number I (f) is assigned to each /€ . If I (f) is to be an average,
then it should certainly satisfy the conditions

If+e)=I(Hh+1I),
I(af) = al(f)
for f, g €& and & € R. A less essential but often desirable property for I
is that I(f) = 0 if f = 0. In some cases these three properties suffice to
identify the averaging process completely. ‘

Let us mention a few such averaging processes. Suppose for example
that & is all real-valued functions on the finite set {1,2,3,..., n},
ie,§ =:R", and define

1 if j=4&,
&k = {o if j+k;
that is, ¢;(k) = ;. For each f €, we have

f=éﬂﬁn

For any “integral”’ I we must have

1) =3 ) 1) .

i=1
In fact if we choose the numbers I(e), I(e,), ..., I(e,) arbitrarily,
then an integral I satisfying the first two conditions is determined by the
above sum for all { €. Hence in this case the integral is merely a finite
sum in which certain weights have been assigned to the points in the
domain of the function. To satisfy the third property, we need only
require that I (¢;) = 0.

1
If & = €([0, 1]) and I(f) = f f(x) dx [the Riemann integral], then I

0
is an averaging process for . A simple-minded average defined for any

class of functions defined at x = —;— is given by I(f) =f (;—) Both of
these averaging processes satisfy the third property: I(f) = 0if f = 0.
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Let (x,)n— be an enumeration of a countably infinite set C, let («,,)

be a sequence of complex numbers such that 3 |a,| < oo, and let &
n=1

be the set of all bounded complex-valued functions defined on C. Then I
defined on § by I(f) = 3 «,f(x,) is an average. It satisfies the third
n=1

property if and only if &, = 0 for all #.
As a final example, let & be all complex-valued functions f on the

set C of our last example such that } |f(x,)|? < oo. For fixed g €&
n=1

let I, (f) = 2 f(%,) &(,). This series converges absolutely by CAuCHY's
inequality (13 13), i.e.,

) = (£ eear) (£ g

n=

In this chapter we will first discuss averages of continuous functions
and then extend the process to wider classes of functions. In particular,
we will extend the Riemann integral gua averaging process to obtain
the Lebesgue integral.

We begin with a rapid review of the Riemann-Stieltjes integral,
which is a classical device for averaging continuous functions on inter-
vals [a, b].

§ 8. The Riemann-Stieltjes integral

(8.1) Definition. Let A be a subset of R. An extended real-valued
function « defined on A is said to be nondecreasing on A if a(x) < a(y)
whenever x < y in 4. In case a(x) < «(y) whenever x < y in 4, we say
that « is strictly increasing on A. The terms nonincreasing and. strictly
decreasing are defined analogously. A function is said to be monotone or
monotonic if it is either nondecreasing or nonincreasing!.

(8.2) Definition. Let [a, b] be any closed interval in R. A subdivision
of [a, b] is any finite [ordered] set A C [a, b] of the form

d={a=t<ty< - <t,=10}.

The family of all subdivisions of [a, 4] is denoted by 2([a, b]).

(8.3) Definition. Let [a, b] be a closed interval in R, let « be a real-
valued nondecreasing function on [a, b], and let f be a bounded real-
valued function on [a,b]. For each A={a=¢t,<t; <---<t, =08} €

1 This definition plainly generalizes that given in (6.81) for sequences: simply
take 4 = N in (8.1) to obtain (6.81).
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2 ([a, b)), define
L(f, e, 4)= i‘:‘: inf{f(x) : % € [t; 1, 1,1} - (&) — a(t;-1))

and

Ut v, 4 2 sup{f(¥) : ¥ € [t;_1, t;]} + (@ (t;) — «(t;-1)) -

These numbers are known as lower Darboux sums and upper Darboux
sums, respectively. Suppose that for every & > 0 there exists a 4 €2 ([a, b))
[depending on f, &, and &] such that

Ulf, e, 4) — L{f, a, 4) < ¢&.

Then f is said to be Riemann-Stieltjes integrable with respect to o on [a, b].

(8.4) Lemma. Let [a,b], f, and « be as in (8.3). Suppose that A,
A% € D([a, b)) and that A C A*. Then we have

@) Lo, ) = L(f, 0, 4%) = U(f, &, 4%) = U(f, &, 4).

Proof. The middle inequality is obvious. Let us show that
L(f,«, 4) < L(f, @, 4%). Suppose first that A4* contains just one more
point than A. Thus if 4 = {a =t, <t <+ <1, = b}, then

A*={a=ty<lh < < <u<t<-<t,=b}
for some k. We have

L(f, &, A%) — L(f, @, A) = inf{f (x) : ¥ € [tx_y, u]} - (@ (%) — a(tr_1))
+ inf{f(x): % € [u, ta]} - (x(te) — o (u)
— inf{f(x): % € [tr 1, tp]} - (o (te) — a(tr 1))
= (inf{f (%) :x €[ty _1, u]} — inf{f (%) :x €[t _y, tel}) (o (1) — x(te_y))
R e e .xevk-l,m}) (ac(t3) — o (w))
=0.

Hence L(f, a, 4*) = L(f, «, 4). The proof by induction on the number
of points in A* and not in 4 is now clear. Similarly, suprema decrease
on subintervals of an interval, and so the last inequality in (i) also
holds. O
(8.5) Lemma. If A, A* are in D ([a, b)), then L(f, &, A) = U(f, a, 4%).
Proof. By (8.4) wehave L(f, a, 4) < L(f, o, AU 4*) = U(f, a,4%). O
(8.6) Theorem. Let f be Riemann-Stieltjes integrable with respect to a
on [a, b]. Then there exists a unique real number vy such that

Lf,ed) = y = U(f, & 4)
for every A4 €D ([a, b]). In fact,
y=sup{L(f, ., 4): 4 € D([a, b])} = inf{U(f, «, 4): 4 € D([a, b])}.
This number y is called the Riemann-Stieltjes integral of f with respect
b
to « over [a, b]. Historically it is denoted by [ /() d & (), but in this text we
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write it as S.(f; [4, b]). In case a(x) = x for each x € [a, b], we call y
the Riemann integral of f over [a, b] and denote it by S(f; [a, b]).

Proof. Let y = sup{L(f, a, 4) : 4 €2 ([a, b])} and § = inf{U{{, «, 4):
A €2({a, b])}. It follows from (8.5) that y and § are real numbers
and that y < . We need only show that y = 4. Assume that y <.
Since § — y > 0, the definition of integrability (8.3) shows that there is a
A4 €9([a, b)) such that U(f, «, 4) — L(f, @, 4) <6 — y. Then

02U aA)=U(, 0, A)—L(f, 0, ))+L(f,x, 4)<(d—9)+y=29,

a clear contradiction. Thus y =4. O

(8.7) Theorem. Let [a, b], f and o be as in (8.3). If f is continuous
on [a,b], then | is Riemann-Sticltjes integrable with respect to a over
[a, b].

Proof. Let ¢ > 0 be given. Since [a, b] is compact (6.44), the function f
is uniformly continuous on [a, b] (7.18). Thus there exists a 6 > 0 such

£

that |f(x) — (M| < O —a@ F1 whenever x, y €[a, b] and |x — y| <4.
Choose Ad={a=1ty<t, <+ -<t,=>b} such that ¢ —¢_,<d for
j=1,...,n. Select x;, y; € [t;_,, {;] such that

f(x;) = sup{f (%) : x € [t;_1, t;1}

f(ys) = inf{f(x) : % € [t;_y, #;1}

forj=1,..., n. [Such selections are possible by (6.73).] Then we have
]xj —yil § tj — ti-l < 6, so that

0=1(x)—1Fys) < )_;(a) F1°
Thus we also have

U(f,a, 4) — L(f, &, 4) =

and

'l‘ﬂa

(F(x5) — 1(3)) () — x(t5-1))

<.
]
-

<

I

W (oe(ty) — e (t;-1))

=—“(b)_a(a)+l (x(®) —x(a))<e. O

(8.8) Theorem. If f, and f, are both Riemann-Stieltjes integrable with
respect to o over [a,b], then so is f;+f, and S.(fy + fs; [a, b))
= Salhy; [a,B]) + Sulfy; [a, B]).

Proof. Let £ >0 be given. Choose 4; such that U(f;, «, 4;) —
L(fsy @ 4;) <+ forj=1,2, and let 4=A4,U4,. Using (8.4) and

the simple inequalities inf(f, + f;) = inff, + inff, and sup(f, + fo) <
supf, + supf, [valid for any bounded real-valued functions on any
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nonvoid set], we have
L(fy o, 4y) + L(fy, & 45) = Lfy, o, 4) + L(fy, o, 4)
L{fy+ fo o &)
Uty + fo 2. 4)
Uy a, 4) + Ulfy, «, 4)
Ulfy, a 4) + Ulfy, &, 4y)
L(fy, &, A7) + L(fy, a, 45) + €.
L(f, + fs «, 4) < € and hence f,+/f,

A

U
<
<
<<
a4) —

It follows that U(f, + f,, «
is integrable.
Next let S.(f;; [a, b]) = y; and let I'; be such that

Lty T =yl <5 (1)
and .

IU(f:i:“:Fj)_?:'|<E' (2)
It follows that 0 < U(f;, « I}) — L(f;, &, Tj) <5 for j=1,2. Setting
I'= I, U T, we have

L(tp o, IN) + L(fy 00 Ty) < L{fy, 00, I') + L(f 0, I)

SLh+fha )
sUh+foxl)
sU(fpa I+ Ulfy I)
= Ulfy o, IN) + Ulfy & I')
< Ly, I7) + L(fa o, F2)+ 3 s
from which we see that
Lif+ fo o I) = Lifu o 1) = Ly o0 T) < 5 3)
and
Ulfy & I) + U(fzr“,rz)—‘U(f1+fz»“:r)<:;‘- (4)

From (1) and (3) we infer that

Lih+faae I')— (n+ydl<e,
and from (2) and (4) that
[Uh+foa )= (y1+ v)l<e. O

(8.9) Theorem. If f is Riemann-Stieltjes integrable with respect to o
over [a, b] and if ¢ € R, then so also is cf and S.(cf; [a, b]) = ¢S, (f;[a, b]).

Proof. Exercise.

(8.10) Theorem. Let [a, b, f, and o be as in (8.3). If f is Riemann-
Stieltjes integrable with respect to o« over [a, bl and f = 0, then S, (f; [a,b]) s
nonnegative.

Proof. Trivial.
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(8.11) Theorem. Let f be Riemann-Stieltjes integrable with respect to o
over [a, b] and let a < ¢ < b. Then f is Riemann-Stieltjes integrable with
respect to o« over both [a,c] and [c, b] and S.(f; [a, b]) = S.(f; [a, c])
+ Salf; [e, b))

Proof. Let ¢ > 0 be given. Choose A € & ([a, b]) such that

U(f, 0, 4)— L(f, &, 4) < &.
In view of (8.4) we may, and do, suppose that ¢ € 4; say

A={a=to<"‘<tm=0<tm+1<"'<tn=b}'

Let

di=fa=ty<  <tp=c}€D([ac)
and

dy={c=t< -+ <t,=0b} €D b)) .
Then

(Ufy o, 4)) — L}, o0, 41)) + (U (f, &, 4g) — L(}, @, 4))
=U(f,,4) —L(f, 2, 4) < ¢.

It follows that f is integrable over both [a, ¢] and [¢, &]. Let S.(f;[a,c])
=y, and S,(f; [c,d]) = y,. Clearly 0 < U(f, &, 4;) — 9, < ¢ and
0= U(f, o, 43) — y, < &. Adding these two inequalities, we get
0< U(f,a A4) — (v, + y2) <2e Since a similar statement is true
for L (f, &, 4), we conclude that S,(f; [a,8]) = ¥, + ¥, O
(8.12) Theorem. Let & be a real-valued nondecreasing function de-
fined on R. For | € €5 (R), define S.(f) = Sx(f; [a, b)) where [a, b] is any
closed interval in R such that | vanishes outside of [a, b]. Then S,(f) is
unambiguously defined for each f €&y (R). Moreover the function S,
has the following properties:
(1) Self + &) = Sa(f) + Sa(g),
(i) Salcf) = cSalf),
(it) Sa(f) = 0 if f €C(R).
Proof. Let f € €, (R) and suppose that f = 0 outside of both [a, b]
and [a’, b']. Let @’ = min{a, a'} and b’ = max{b, b'}. By (8.11), we have
Sa(f; [a”,0"]) = Sulf; [a”, a]) + Salf; [a, b]) + Salf; [6,0"])
=0+ Se(f; [a,0]) + 0
= Su(f; [a, 8]) .
Similarly we see that S,(f; [@",b"]) = S.(f; [@’, 8']). Therefore
Se(f; [a, b]) = Se(f; [@', b']) and so S,(f) is well defined. The remaining
assertions of the theorem are now trivial consequences of previous
results. O
(8.13) Theorem. Let o be as in (8.12). For f € €y (R), define S.(f)
as S, (Ref) + 1S, (Imf). Then for f, g € €y (R) and ¢ € K, we have
(i) Salf + 8) = Salf) + Sa(8)
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(i) Sa(cf) = e¢Sal(f)

(i) Sa(f) Z 0 if f € €go(R).

This simple computation is left to the reader.

(8.14) Definition. For any function f defined on R and any ¢ €R,
let f, be defined on R by f,(x) = f(x + #). The function /, is called the
translate of f by t. Let f* be defined on R by f* (x) = f(—#). The function f*
is called the reflection of f.

(8.15) Theorem. Let S be the Riemann integral on €y (R), i.e., S=S,
where a(x) = x for all x € R. Then S has the following properties:

(i) S(f+ &) =S()+ S(e)

)

S(
(i) S(cf) =cS(f) forall c€cK;
(iii) S(f) > 04f f €CH(R) and f + 0;
(iv) S(f)) = S(f) for all t € R;
(v) S(F) =S0.

Proof. Conclusions (i) and (ii) are contained in (8.13). To prove (iii),
let f € €} (R) where f is not the zero function. Then there exists » ¢ R
such that f(#) > 0. Since f is continuous at %, there is some neighborhood

Ju — 8, w + 6[ of u such that f(x) >%f(u) whenever v — 6 <x < u+96.

Suppose that f vanishes off of [a,b], where a <u —d<u+06<b,
and let A={a,u— 6,4+ 6,b}. Then S(f)=S(f;[a,0]) = L(f, « 4)

= 5 /() (28) > O.
The proofs of (iv) and (v) are left to the reader. 0O

(8.16) Remark. The function S is [except for a positive multiple]
the only complex-valued function on €, (R) satisfying (8.15.i)—(8.15.iv),
i.e., if S’is another complex-valued function on €y, (R) satisfying (8.15.i)

o (8.15.iv), then S’ = yS for some positive real number y. We will
prove this fact infra [see (19.50)] when more analytical machinery has
been developed.

Theorem (8.13) shows that for each nondecreasing « defined on R,
the Riemann-Stieltjes integral S, is an averaging process on €y (R).
We shall see later (19.50) that every averaging process on €y (R) is of
the form S, for some &. Our next theorem gives a sufficient condition
that two different «’s give rise to the same averaging process on €y (R).

(8.17) Theorem. Let o and B be two real-valued mondecreasing func-
tions defined on R and suppose that there exists a ¢ € R such that the set
D = {x €R: «a(x) = B(x) + c}isdensein R. Then S,(f) = Sp(f) for every |
in €y (R).

Proof. In view of (8.13) it obviously suffices to consider real-valued
f's. Thus let f € €} (R). Choose a < b in D such that f vanishes off of
[, b]. Note that «(x) — a(y) = B(x) — B(y) whenever x,y €D. Let
&> 0 be given. Since f is uniformly continuous on R, thereis a § >0
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such that |f(x) — f(¥)| < ;—(b)T-:(am whenever |x — y| <. Because D
is dense in R, there exists a subdivision 4 = {a=ty<-**<t,=d}C D
such that ¢; — ¢;_;< d for j = 1,2, ..., n. Then, as in the proof of (8.7),
it follows that

U(f,, ) — L{f, a, 4y < €.

Since 4 € D, we have U(f,8,4)=U(f,«,4) and L(f, ,4)=L(f,«,A4).
Therefore |Sg(f) — S«(f)] < & [see (8.6)]. Since ¢ is arbitrary, the theorem
is proved. 0O

We next examine a few interesting properties of nondecreasing func-
tions. First, a definition is in order.

(8.18) Definition. Let  be a complex-valued function defined on an
open interval ]a, b[ of the real line. We say that the right-hand limit of
fatais f(a+) [or that the left-hand limit of f at bis f(b—)], and we write

lim /() = f(a+) [or lim /(x) = F(0-)],

if there exists a complex number f(a+) [or f(b—)] such that for each
£ > 0 there is a 4 > 0 such that

|f (%) — fa+)| < & [If (x) — F(2-)| < &]

whenever ¥ € Ja, b[and x —a < § [or b — x < 4].

Next suppose that f is defined on [a, b]. We say that f is right con-
tinuous at a [left continuous at b] if lxlirl f(x) = f(a) [lxu;rg fx) = f(b)].

(8.19) Theorem. Let « be a real-valued nondecreasing function defined
on R. Then o has finite right- and left-hand limits at all points of R, and o
1s continuous except at a countable set of points of R.

Proof. Let x ¢ R and set a(x+)=inf{a(f):x <?}. This infimum
exists in R since a(x) < «(f) whenever x <?. For ¢>0, a(x+) + ¢
is not a lower bound for {«(f): x < t}, so there exists a § > 0 such that
a(x + 6) < a(x+) + & It follows that x <t < x + & implies a(x+) <
a(t) = a{x+) + ¢, t.e., 1‘15‘1 a(t) = a(x+). Similarly we prove that

ltig a(t) = sup{a(t) 1t < 2} = a(x—).

Let D = {x € R: « is discontinuous at x}. Plainly x ¢ D if and only
if a(x—) < a(¥+). Also x <y in D implies that a(¥+) < a(y—). Thus
the family # = {Ja(x—), «(¥+)[: % € D} is a pairwise disjoint family
of nonvoid open intervals of R. By (6.59), . is countable, and so D is
countable as well. O

(8.20) Remarks. (a) Let a be a real-valued nondecreasing function
on R. Define 8 by the rule: B(x) = a(¥—) — «(0—) for ¥ € R. Then B
is nondecreasing, §(0) = 0, and B is left continuous at each point of R.
Moreover, since a« is continuous except on a countable set, we have
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B(x) = a(x) — «(0—) on a dense subset of R. It follows from (8.17)
that Sg(f) = S.(f) forall f € €, (R). Because of these facts, we lose nothing,
in constructing Riemann-Stieltjes integrals on €y (R), by normalizing
our «'s to be left continuous and to vanish at 0. It must be pointed out
however that this normalization may affect the value of the integral of a
discontinuous function. For example, let a(x) = 0 for x < 0 and a(x)=1
for x = 0; B(x) =0 for x < 0 and f(x) = 1 for x > 0; and take f = B.
Integrating over [—1,1], we have L(8,a, 4)=L(B, 8, 4)=0 and
U@B B 4)=1 for al 4 in Z([—-1,1]) while U(B, a, 4)=0 if
0¢€4¢2([—1,1]). Therefore S, (B, [—1, 1)) is zero and Sg(B, [—1, 1])
does not exist.

(b) The foregoing example of a non Stieltjes integrable function is
undramatic, to say the least. A bit more interesting is the function
on [0, 1] such that f(x) = 0 if x is rational and f(x) = 1 if x is irrational.
The Riemann-Stieltjes integral S, (f; [0, 1]) exists only if & (1) =« (0), since
all lower Darboux sums are 0 and all upper Darboux sums are a (1) — a(0).
A complete description of Riemann integrable functions appears in
(12.51) infra.

(8.21) Exercise. Prove that if f is a bounded real-valued function
on [a, b] having only a finite number of discontinuities and if « is a
real-valued nondecreasing function on [, b] having no discontinuities
in comnmon with /, then f is Riemann-Stieltjes integrable with respect
to « over [a, b].

(8.22) Exercise. Let a be a real-valued nondecreasing function on
[a, 8] and let (f,) be a sequence of bounded real-valued functions on
[a, b], each of which is Riemann-Stieltjes integrable with respect to «
over [a, b]. Suppose that ”1_1>rr°1° |f — fullu = O, where f is in B"([a, b]).
Prove that f is Riemann-Stieltjes integrable with respect to « over
(@, b] and that

lim S,(fa; [a, 8]) = Su(f; [4, 2]) .
(8.23) Exercise. By way of contrast with (8.22), find a sequence

(fs) where each f, € € (R), such that f,— 0 uniformly on R, but
lim S(f,) = 0 = S(0).

(8.24) Exercise. Let g be defined on R by g(x) = x — [x], where [x] is
the largest integer not exceeding x. Using (8.21) and (8.22), prove that the

function f defined by f(x) = 3 &%) ;s Riemann integrable over [0, 1].
n=1

2n
Also evaluate S(f; [0, 1]).
(8.25) Exercise. Let « and f be continuous, real-valued, nondecreasing
functions on R such that «(0) = f(0) = 0 and « #+ B. Find a function
f € €% (R) such that S.(f) + Ss(f).
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(8.26) Exercise. Let (x,,),, 1 be an enumeration of Q. Define « on R

by the rule: a(x) = 3] - 2,, , where the summation is extended over all »

such that x,, < x. Prove that:
(a) « is strictly increasing;
(b) e is left continuous;
(c) « is discontinuous at each rational number;
(d) « is continuous at each irrational number;
(e) hngoac(x) =1;
),

(f

[This example gives some indication of how bad a monotone function
can be.]
(8.27) Exercise. Let (v,) and o be as in (8.26). Prove that S,(f)

hm x(x) =

— y [0 (xn") for every f €€y (R). [First consider f € &5y (R), show that
) Of
n=1

every L is = this sum and that every U is = it.]

(8.28) Exercise. Let P denote the Cantor ternary set. Notation is
as in (6.62) and (6.64). Define a function ¢ on [0, 1] as follows:

¥(0) = 0;

2R —1

p(x) = o forx€l, ,(n=12,..;k=12,...,2°;

p(x) = sup{y(f):t€ P',t <x}forx € PN {0}.
The function y is called LeBESGUE’S singular function!. Prove that:

(a) p(x) is defined for all x € [0, 1];

(b} v is nondecreasing;

(c)  is continuous on [0, 1];

(d) mgy = [0, 1];

(e ) if x € P and

x= Z,' 3" ~an—» Where each

n=1

%, =0 or 1, then y(x)
oo 7
== 2 5—,

n=1

The accompanying
Fig.5,showingpartofthe
graph ofp, may be help-
ful. [Use the fact that the
dyadic rationalsin [0, 1]
[on the y-axis] form a
dense subset of [0, 1].] Fig. 5

1 The French mathematician HENRI LEBESGUE (1875—1941) was a principal

founder of the theories of measure, integration, and differentiation treated in this
book. His name occurs frequently in the sequel.
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(8.29) Exercise. Let o be as in (8.28) and let ¢(x) = x for all x € [0, 1].
Prove that S,(¢; [0, 1]) = % [Consider the sequeuce of subdivisions

(4,) where A4, consists of the endpoints of the closed intervals J,
making up P,.] For the computation of S,(:*; [0, 1]) for £=2,3, ...,
see (22.44) and (22.45) infra.

§ 9. Extending certain functionals

In §8 we have presented Riemann-Stieltjes integrals as averaging
processes on €y, (R). We wish to extend these processes to much wider
classes of functions. To be sure, there exist many discontinuous functions
on R which are Riemann-Stieltjes integrable, but these integrals suffer
from serious defects. For example, very simple functions are noninte-
grable [see (8.20)]. Our method of extension is a very general one. It
consists of starting with an averaging process on a space of continuous
functions, extending it to nonnegative lower semicontinuous func-
tions, extending a second time to all nonnegative, extended real-valued
functions, and finally realizing our process as an integral [the Lebesgue
integral] on a large class of functions. This procedure is often called the
Daniell approach to integration theory, after the British mathematician
P. J. DanieLL (1889—1946). ‘

(9.1) Definition. Let X be a nonvoid locally compact Hausdorff
space. A complex-valued function I defined on €y (X) is called a non-
negative linear functional [sometimes Radon measure] if for all f, g € €y (X)
and « € K we have

() I(f+g)=1(f) +I(g) [additive),

(i) I(af) = aI(f) [homogeneous],

(iii) I(f) = 0 if f € CH(X) [nonnegative).

(9.2) Examples. (a) Let X = R and I = S, for any real-valued non-
decreasing « on R.

(b) Let X = R% and let I(f) = fw foof(x,y) dx dy for all f €€y (R?).

[This is the 2-dimensional Riemann integral, familiar to the reader from
elementary analysis. We will discuss such “multiple” integrals in detail
in §21.]

(c) Let X be any nonvoid locally compact Hausdorff space and let
a be a fixed point of X. The functional E, defined by E,(f) = f(a) is
plainly a nonnegative linear functional on €y (X). It is called an evalua-
tion functional. In addition, E, satisfies the identity

Ea (fg) =E, (f) Ea (g)
for all f, g € €y(X). Such linear functionals are called multiplicative.
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They are of great importance in the theory of Banach algebras, and we
shall return to them later [see (20.52) and (21.65) ¢nfra].

(d) Let X = R and let w be any nonnegative real-valued continuous
function on R [perhaps unbounded]. Then I(f) = S(fw) [S being,the
Riemann integral] defines a nonnegative linear functional I on €y (R).

Throughout the rest of § 9, except where the contrary is specified,
X will denote a fixed but arbitrary nonvoid locally compact Hausdorff
space, and I will denote a fixed but arbitrary nonnegative linear func-
tional on €y (X). We will write €, instead of €y, (X), for brevity’s sake.

(9.3) Theorem.

(1) If f € &y, then I(f) is a real number.

(i) If f < g in G, then I(f) < I(g).

Proof. For f¢@fy, write /"= max{f,0} and f = —min{f, 0}.
Ttisclearthat f=f* — /7, ff =2 0,and /~ 2 0.Thus I (f) = I{({*) — I ("),
so I(f) is the difference of two nonnegative real numbers. This proves (i).

Iff,gcCpandf<g theng—f=0andsoI(g) —I(f)=1I(g—f) =0.
This proves (ii). O

(9.4) Theorem. Let f € €. Then |I(f)] < I(|f]).

Proof. Write I(f) = p exp(i0) where 0 S p< o0 and — <0 = 7.
Let exp(—40)f =g, + g, where g, g, € €5 Then p = exp(—:0)I(f)
= I(exp(—10)f) = I(g, + 18:) = I(g) + +I(gy). But g is real and I(g,)
and I(g,) are real. Therefore I(g;) = 0 and g =1I(g). Clearly
& = jexp(—i0)f| = |f|. Thus {I(f)| = ¢ =I(g) = I(/f)). O

(9.5) Theorem. Let A be any compact subset of X. Then there exists
a real number B [depending only on A] such that |I(f)| < Blf|. for all
f € €y such that f(A") C {0}.

Proof. According to (6.79) there is an open set U D A4 such that U™
is compact. By (6.80) there is a continuous function ® from X into [0, 1]
such that w(x) =1 for all x €4 and w(x) =0 for all x €X N U'. Let
f € €, be such that f=0 on A’. Then f(x) = f(*¥)w(x) for all x € X.
It follows that |f| < |f],w and hence |1 ()] < I (If}) = I (Iflue) = Iflu] ().
Set f=I(w). O

Our linear functional I is given to us a priori as only finitely additive:
I(f+ g) = I(f) + I(g). For many purposes, it is useful to have countable

additivity: I ( P f,,) = J' I(f,). This equality is seldom true for all
n=1 n=1

convergent sequences of functions on X, and to prove it for some se-
quences of functions, we must extend the domain of definition of I.
In (9.6)—(9.18), we carry out this extension and establish properties
of the extended functional that lead up to countable additivity.

(9.6) Theorem. Let © be a nonvoid subset of €, such that for all
f1 fa €D there exists f3 €D such that fy < min{f,, fo} [we say that ® is
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directed downward ]. Suppose also that inf{f(x): f € ©}=0 for everyx ¢ X.
Then we have

() inf{I(f): / €9} =0,
and for every £ > 0 there is an f, €D such that ||f|. < e

Proof. Let ¢ > 0 be fixed. Choose f, €® and define 4,={r € X:
fo(x) > 0} . Since f, € €y, A, is compact. For each f¢9®, let
Ay={x €Ay:f(x) = €}. Then {4,:f €D} is a family of closed subsets
of the compact space 4, and N{4,:f€D}= &. It follows (6.34)
that this family does not have the finite intersection property, z.e.,
there is a finite subset {f;,...,f,} of ® such that 4, N4, N---
N A, = o. Since ® is directed downward, there is a function f, € ®
such that f, < min{f,, f,, . . ., f}; plainly |/, < &.

To prove (i), apply (9.5) to find a real number 8 [depending only
on A, and not on &] such that |[I(f)| < B||f|ls for all f € €y that vanish
on A4, It is clear that f,=0 on A Thus 0= I(f) < Blfl. <Be.
Since ¢ is arbitrary, (i) is established. 0O

(9.7) Remarks. The reader will note that compactness is used in an
essential way in the proof of Theorem (9.6). This is no accident. Our
function space €y, was chosen so that compactness could be applied.
Many other plausible choices of function spaces and positive linear
functionals fail to produce countably additive extensions. Theorem (9.6)
is the key to obtaining countable additivity of our extended functional,
and so countable additivity depends in the end upon compactness.

Our first extension of I is to the class M+ of all lower semicontinuous
functions on X with range contained in [0, oo]. [See (7.20)—(7.22).]

(9.8) Definition. For each g ¢ MM+, define
I(g)=sup{I(f): /€€ [ =g}

Notice that I(g) may be co. For example, if X =R and I =S,
then the function 1 is in 9* and S(1) = co. For arbitrary X and I =+ 0,
the function oo is in M*, and I (o0) = co.

(9.9) Exercise. (a) Make a careful computation of S(£y), where U
is any open subset of R and S is the Riemann integral. [Hint. Use
(6.59).] The number S(&y) is called the Lebesgue measure of U. It will
be discussed in detail below.

(b) For the evaluation functional E, (9.2.c) and for g ¢ M*, compute
Ei(g).

(9.10) Theorem.

(@) If f €Cgo then I(f) = I(f). )
(ii) If &, g; € M* and g, = g,, then 1(g)) = I(gy).
(i) If g ¢ M* and o = 0, then I (ag) = al(g).
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These assertions are all obvious upon a moment’s reflection.
The next theorem is a counterpart of (9.6).

(9.11) Theorem. Let ® be a nonvoid subset of M* such that for all
81, 82 €D there is a g3 €D such that g = max{g,, g,} [we say that © is
directed upward /. Then

(i) I(sup®) = sup{l(g):g € D}

Proof.Let g,=sup{g:g €9}, i.e., go(¥) =sup{g(x):g €D} for all
x € X. Then (7.22.iii) shows that g, € I*. There are two cases to consider.

Case I: {go} U D C €. Then the family {g,—g:g €D} satisfies
the hypotheses of (9.6), for if gg = max{g,, g}, then

8o — & = min{g, — &1, o — &2}
and
inf{g, () — g () : g €D} = go (%) — sup{g(¥) : g €D} = &o(x) — & (¥) = 0
for every x € X. Then (9.6) implies that

0=inf{I (go—g) :86D} = inf{I (go) — I (g) :£ €D} =1 (go) —sup{I(g):£€D}.
But I and T agree on €%, and so I(g) =sup{I(g):g ¢ 9D}

Case II: {g,} U ® C M*, i.e., the general case. Since g = g, for all
g €9, wehavesup{I(g) : g €9} =< I(g,). To prove the reversed inequality,
we introduce the family € = {f €€5,:f < g for some g € ©}. Making
use of (7.22.v), we have

go=sup{g: g €D} =sup{sup{f €€ :f < g}: €D} =sup €.
Let B be any real number less than I(g,). By the definition of 7,
there exists a ¢ €€ such that ¢ < g, and I(p)> . We have
@ = min{p, g,} = min{p, sup€} = sup{min{gp, f}:f €€} [the reader
should check this sleight of hand carefully]. The result for Case I now
applies with the family {min{g, f}:f € €} taking the role of ® and ¢
the role of g,. Thus

B < 1(g) = sup{l (min{p, f}):/ € €} < sup{I(f): /€ €}
=sup{l(g) : g €9} .

Since f is arbitrary, we have proved that

- I(g) =sup{l(g):g€®}. O
(9.12) Corollary. If g, < g, < -+ < g, = -+, where g, CM* for
n=12 ..., then _ _
lim I (g,) = I(lim g,) .

7> 00

The proof is immediate.
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(9.13) Corollary. For g, g, € M*, we have I(g+g,)=1(g)-+1(gd)-
Proof. We have g, + go =sup{fy+f,: ;€€ and ; < g;, 7= 1,2},
and therefore
I(g,+g) =sup{I(h) + I(f): 1; €0 s = &5}
= sup{I(f,) : }, €Cgo. f £ &1} + sup{I(fa) : /2 €€ f2 = g0}
=I(g)+I(g). O
(9.14) Corollary. For any nonvoid ® C ¥, we have

— 1
I(%e)=2 1)

Proof. For finite ®, (9.13) and an easy induction yield the result.
For infinite ®, apply (9.13) and (9.11). O

We now make our second, and last, extension of I.

(9.15) Definition. Let F* be the set of all functions defined on X
with values in [0, co]. For & €, let

I(hy=inf{I(g):g €M, g=h}.
(9.16) Theorem.
(i) For g € M*, we have I(g) = I(g).

(@) If by < hg, by €, then we have I(hy) < I(hy).

(iii) For h €&+ and 0 < « < oo, we have I{ah) = al(h).

(iv) For hy, by €+, we have I(hy + hy) < T(h) + I (hy).

The proof is left to the reader.

Our next theorem is a generalization of B. LEVI’s monotone conver-

gence theorem.
(9.17) Theorem [Generalized B. Levi theorem]. If h, €F* for

n=1,23..., and by < hy < "= h, = -+, then I( im h,)
= lim I(h).

Proof. Let # = lim h,; we obviously have
Ih) < I(hy) <---<limI(k,) = I(h).

We must now prove that lim I(h,) = I(h); clearly we may suppose that
hm I(h,) <oo. Choose & > 0 For each positive integer #, select g, eew
such that gn = h, and I(g,) — 2,, < I(h,). We wish to apply (9.12). T

do this, we must replace the functions g, by a nondecreasing sequence.
Thus define g, = max{g,, g, - . -, &} for n = 1,2, ...; we have g, € M*

1 The function }' g is defined by ( 2 g ) = sup{g(*) + &® +---+
gED

£n (*): {&1 82 - - -, ga} C D}; similarly, we have Z' T(g) = sup{l(&) +I(es) +
-+ I(gn) {8182 -- - 8} C @} gE®
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forn=1,2,.... The reader can easily check the identity
Ens1 + Min{gy, g1} = & + Ens1-

All of the functions above are in M*, and so we have

I(gnsy) + I (min {gn: gns1}) = I(g,) + ‘T(gn+1) .

From the inequalities g,,y = A,y = A, and g, = max{gy, gs, . - ., &n}
= max{hy, by, ..., b= hy, it follows that min{g,, g,,:} = A,. Hence
—I(min{g,, g, +1}) < —I(h,), and we have

T(gn) = I(&) + I (gnsa) — I (min{gy, guss})
g I(g,’,) + I(g'n+1) - I(hn)
<TI(g) + I(hoyy) + TL~ Ih,).

Summing this inequality over n = 1,2, ..., p, we have
p_ p_ ?
Z_{I(gn+1)<§l(gn)+§l(hn+l ZI ‘*“—22_"
and so
L(gya) < I(&0) + I(hpss) — () + 5

= I(hpsn) + (T(e) = T(w) + 5
<I(hyps)) + .
Thus the inequality I(g;,,) < I(h,,,) + ¢ is valid for p = 1,2,3,.. ..
The same inequality obtains with p = 0, and so we have
Ig) <T(h)+ e (1)
for n=1,2,3,.... The sequence (g,) is nondecreasing and g, ¢ M*
forn=1,2,3,...;(9.12) thus implies that
lim I (g,) = I (lim g,) = I (supg,) .
Since gy =g, = A, for n=1,2,3,..., we have supg, = suph, = A,

and so I(supgl) = I(k). Using (1), we now find that lim I(k (hy) =

lim I (g;) — & = I(h) — . The inequality lim T(h,) = I(A) follows, since

¢ is arbitrary. 01 ‘
(9.18) Corollary. Let (h,)y-, be any sequence of functions in F*;

then f( g h,.) < é‘of(h,,).

1 Theorem (9.17) is of course (9.12) with I replaced by I 1tis important to note

that (9.13) and (9.11) fail in general if [ is replaced by I: see (10.41). The truth of
(9.17) is by itself fairly remarkable.
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Proof. Write y, = A, + 5y + - -+ + h,; then

I-(”g’lh,,) —I(hm 1/;,,)—— lim I(tpn)—hm f(kéhk>

n— 0

< lim Z",‘Is(hk)= Z‘mf(h,,). 0
® k=1 n=1

We now define the measure [with respect to I] of a subset of X.

(9.19) Definition. For 4 C X let ¢(4) = I(&,). We call ¢(4) the
[outer] measure of A. The function ¢, defined on #(X), is known as the
[outer] measure induced by I. In case X = R and I = S, for some real-
valued nondecreasing function « on R, we write 1,(4) = 8,(£,) and
call A, the Lebesgue-Stieltjes [outer] measure on R induced by «. If X = R
and I =S [the Riemann integral], then we write 1(4) = §8(£,) and
call A Lebesgue [outer] measure on R. For arbitrary X and I = E, (9.2.c),
we write &, (4) = E,(£,4) and call ¢, the unit point mass [or Dirac measure)
concentrated at a.

(9.20) Exercise. For arbitrary X, a € X, and 4 C X, prove that
g(A)=11if a€ A and ¢(4) =0 if a¢ A. That is, ¢,(4) = &4(a).

We propose now to investigate properties of the measure ¢ and to
construct an integral [which is the classical Lebesgue integral for ¢ = 1]
from it. This integral turns out to be the functional I whenever the integral
exists. The program is somewhat long; it will be completed in Theorem
(12.35) infra. We begin by pointing out some properties of the set func-
tion «.

(9.21) Theorem. The set function ¢ has the following properties:

0= (d) S oforal ACX;

(i) «(4d)=¢(B)ifACBCX;

(ili) ¢(2) =0,

(iv) #f(Ap)ney s zmysequenceofsubsetsofX,them(”lil A ) 2 (4 4 ”
[countably subadditive].

Proof. Assertions (i)—(iii) are trivial consequences of the definition
of ¢. To prove (iv), we write

(B4)-T(¢g,)=T(Z )= ST - ot

here we have used the inequality & © Z‘ and (9.18). O
n—l n=1
(9.22) Theorem. Let {Uy: 0 € O} be any pairwise disjoint family of
open subsets of X. Then c( U Ug) = 3 (Up).
€6 0€0
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Proof. If U = U U,, it is clear that &y, €9R* for each 6¢O and that
EU_aZ{; $uy Applymg (9.14), we have ((U)=1I(&p) = ZI(SUG
€

== ZL(UQ). g

0co
(9.23) Corollary. If (la,, b,[)s=; is any pairwise disjoint sequence of

oc

open intervals of R, then A (”L=J1 12, bn[) = 3 (b, — ay).

n=1
Proof. This is an immediate consequence of (9.22) and the fact
[which is a trivial exercise] that A(Ja, b[) = b — a. [Note that a or b
may be infinite.] See also Exercise (9.9.a). O
(9.24) Theorem. For every A C X we have

1(4) = inf{e(U) : Uis open, A C U} .

Proof. If ¢(A4) = oo, then the result is trivial since A C X, X is open,
and oo = 1(A4) < ¢(X) = oo. Thus suppose that ¢(4) < oo and let ¢ >0
be arbitrary. Choose a real number é such that 0 < d < les—j-—t(zT) <1
Next select g € M+ such that g = &, and I(g) — 8 < I(&4) =¢(4).

Let U={x¢X:g(x)>1—6}. Clearly U is open and ACU. For

x € U, we have %g(x) > 1, and so 1—1-6 g = &y. Thus

- 1

o(U)= I(§u)<1( — g) 5 I <5—5 (A +8<e(d)+e. O

(9.25) Remark. It follows from (9.24), (6.59), and (9.23) that for

ACR wehave A(A)=inf{ 2 (ba—aa): U 1a,,b,[D A and {]a,,bal}ns
n=1 n=

are pairwise disjoint}. This is how A was originally defined by LEBESGUE

himself, in 1902. LEBESGUE’s fundamental idea was to consider countable
coverings of 4 by open intervals. Earlier attempts at defining a suitable
notion of measure for subsets of R were similar to LEBESGUE’S, but in
each case only finite coverings of the set in question were considered.
For example, the content of A was defined by C. JORDAN to be the number

4 4
inf{ 2 b,—a,):AC U1 lan., 0,0, p=1,2, .. .}.The Jordan content
n=1 n=

[Inhalt in German] is still studied by some mathematicians?!, but it
has proved to be unsatisfactory for the purposes of modern analysis.

(9.26) Theorem. Let U be any open set in X; then we have 1(U)
= sup{e(F) : F ¢s compact and F C U} = sup{¢(V): V is open in X,V
is compact, and V— C U}.

1 See for example K. MAYRHOFER, Inhalt und Map, Springer-Verlag, Wien, 1952.
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Proof. Take any real number f such that # < ¢(U). Since U is open,
we have ¢(U) = I (&y) = sup{I (f): f € €%, | < &p}. Thus we can choose

f€C€L such that B<I(f)<:¢(U). For n=1,23,..., define
F, = {x EX:fx) = %}, and W, = {x €X:f{x) >717}; E, is compact,

W, is open, and W, is compact. Let W = {x € X : f(x) > 0}. It is clear
that lim &z (x) = lim &y (x) = é(x) for each x € X, and it is clear

too that the sequences are nondecreasing. Applying (9.17), we have
B<I(f) < In) = lim I(Er,) = lim I (Ey,) = lim ¢(F,) = lim ¢ () .
The theorem follows from these inequalities. 0O

(9.27) Theorem. If A C X and A~ s compact, then 0 = 1(4) < oo.
Proof. According to (6.79), there is an open set U such that U
is compact and A~ C U. Apply (6.80) to find a continuous /: X — [0, 1]
such that f(x) =1 for all x €A~ and f(x) =0 for all x € U’. Then
4= [€Ck andso(d)=I(Eg) S I(f) <eo. D
(9.28) Theorem. There exists a unique set E C X having the following
properties:
(i) E is closed in X,
(i) (ENU)>04 ENU =+ o and U is open in X,
(ili) «(X NE)=0.
The set E is called the support [or carrier, or spectrum] of «.
Proof. Let # ={U:U is open in X, ¢(U) =0} and let V=U %,
E =V’ Since &y < ) &y and &y € MY for each U €%, (9.14) yields
Uew

(E) =) = 10 < I(Z o) = Z T60) = 5 «U) = 0.

Uew
Thus (i) and (iii) are established. To prove (ii), let W be any open subset
of Xsuchthat ENW 4 @. Then W ¢ % and VN W € %. Thus

0< W)= U ENW)+u(VNAW)=((ENW).

Thus E satisfies (i), (ii), and (iii).

To prove that E is unique, assume that both E, and E, satisfy (i),
(i), and (iii) and E,; # E,. At least one of E; N E, and E,; N E; is non-
void; say E; N E, + @. Since E| is open, (ii) implies that ¢((E; N E,) > 0.
But E{NE,CE;] and so 0 < ((E] NE,) < ¢(Ej). According to (iii),
we have ¢(Ej) = 0. This is a contradiction. 0O

(9.29) Definition. A subset 4 of X for which ¢(4) = 0 is called an
t-null set. 1f 1 (B N F) = 0 for every compact set F C X, then B is called
a locally i-null set. A property which holds for all x € X except for those »
in some ¢-null set is said to hold i-almost everywhere [abbreviated t-a.e.].
If a property holds for all x ¢ X except for those x in some locally
«-null set, then the property is said to hold locally t-almost everywhere

D
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[locally t-a.e.]. A complex or extended real-valued function f on X
such that f(x) =0 ta.e. [locally ¢-a.e.] is called an ¢null function
[locally 1-null function]. Where no confusion can result, we will drop

o, »
= .

the prefix “u

(9.30) Theorem. For h €&+, we have I (k) = 0 if and only if b is an
v-null function. If I(h) < oo, then h is finite t-a.e.

Proof. Let A = {x € X : h(x) > 0}. The functionsnh, n=1,2,...,
are all in &*, and it is obvious that lim nk = &4. Thus if Iy =o,
(9.17) shows that ¢(4)=I(£4) < I(lim nk)= lim I (nh) = lim nI (k)= 0.

n—» 00 n— o0 n—
If 4 is an ¢-null function, then ¢ (4) = 0; using the inequality » < lim n&,,
we have I'(h) < lim I (n&,) = lim #I(&4) = lim n¢(4) = 0.
N—> 00 7n— 0o 7n— 00

Next suppose that I(#) < oo, and let B={xcX:h(x)= oo}. For
all ¢ >0 we have {p = eh, and so ¢«(B) = I(&p) < I(eh) = el (k). Since
I(h) is finite, we infer that ((B) =0. O

(9.31) Corollary. Let (k) be a sequence of functions in F* and
suppose that lim I (h,) = 0. Then there is a subsequence (hn)i=, such that

2 Py (%) < oo t-a.e. on X and in particular, ’}im B (%) = 0 t-a.e.
k=1 ; —> 00
Proof. We first select a subsequence (%,,) of (h,) such that 3} I(n,,) < oo.
k=1
Using (9.18), we see that T ( P h,,k) < oo, and it follows from (9.30)
k=1

that 3 &, (x) < oo t-a.e. O
T}’;e lnext theorem is a technicality, but a very useful one for later
purposes. ’
(9.32) Theorem. Let U be an open subset of X. Then
t(D=(TNU)+(TNT
for every set T C X. ,

Proof. Let T C X. It is an immediate consequence of (9.21) that
((T) £ (TN U)+ (T NTU). The reversed inequality is obvious if
¢(T) = oo. Thus suppose that ¢(T) < oo, and let £ > 0 be arbitrary. By

(9.24), there is an open set ¥V D T such that «(V) < ¢(T) + -;— Use (9.24)
again to choose an openset H D V N U’ such that ¢ (H) < (VN U’) + —:—.
Applying (9.26), choose an open set W such that W~ C ¥V N U and
WW) +5> (VA U). Let W=V O HN(W); then W and W, are
disjoint open sets. Since ¥ N U’ is a subset of each of the sets V, H,
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and (WY, it follows that V N U’ CW, C H, and so
0 W) — 1 (VAU) s oH)—(VATU) <.
Therefore
(W) + c(W) = (VA U) + (VN U] = [1(F) — (VN T
F W) -V D) <5 +5=7%-
Combining this with the fact that W U W, C V and using (9.22), we have

UT) + &> V) + 5 = (WU W) + 5= (W) + (F) + 5
>(VAU)+:vAU)Z(TANU)+(TNT).
Since ¢ is arbitrary, we conclude that
(DzZz(TNU)+(TNT). O

(9.33) Exercise. Prove that:

(a) if @ < b in R¥, then A(Ja, b[) = b — a; and

(b) if a< bin R, then A(Ja, b[) = A([a, b[) = A(]a, b])

= A([a, b)) =b—a.

(9.34) Exercise. Let 4 be a countable subset of R. Prove that
* (A29.3% Exercise. Let P be the Cantor ternary set. Prove that A(P)=0.

(9.36) Exercise. Construct a nowhere dense perfect subset F of
[0, 1] such that A(F) =, where « is any real number, 0 = x < 1.

(9.37) Exercise. Let F be a nonvoid perfect subset of R. Prove that

F contains a nonvoid perfect subset of Lebesgue measure zero.
(9.38) Exercise. Let (a,)72, be a sequence of positive real numbers

such that 3 a, = 1. Prove that there exists a pairwise disjoint sequence

n=1

(I), of open intervals such that ”lleI,, c [0, 1}, A(L,) = a, for eacil

n €N, and [0,1]1 N (”L=J1 I,,) is nowhere dense and perfect in R. [See

(8.26).]

(9.39) Exercise [FAToU’s lemma]. Let X and I again be arbitrary.
Suppose that (k,) is a sequence of functions in &*. Prove that

I( lim k)< lim I(h,).

Also find a sequence (k,) C €& for which the strict inequality holds,
where X = R and I = S, the Riemann integral.

(9.40) Exercise. Let X be a locally compact Hausdorff space. Let X*
be a nonvoid closed subset of X [with the relative topology]. Let I*

B
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be a nonnegative linear functional on €4 (X*) and let «* be the set
function defined on the subsets of X* constructed as in (9.19) from the
functional I*.

(a) For a function f on X, let /* be f with its domain restricted to X*.
Prove that if f € €y (X), then f* € €py(X*).

(b) Let g € €4y (X*). Prove that there is a function f € €y (X) such
that g = f*. [Use TIETZE’S extension theorem (7.40).] :

(c) For f €Coy(X), let I(f) = I*(f*). Prove that I is a nonnegative
linear functional on €, (X).

(d) Let ¢ be the set function obtained from I as in (9.19). Prove that
((X*) = 0and ¢(4) = (A N X*) = ¢*(4 N X*) for every 4 C X.

(9.41) Exercise. Let X be the product space R; >< R, where the first
factor is the real line with the discrete topology and the second factor
is the real line with its usual topology. For x, a, b € R with a <, let

U(x,a,b) ={(r,y) €X:a<y<b}={x} ><]a b[.

(a) Show that {U(x,a,b):x,a,b¢R and a < b} is a base for the
product topology on X (6.41).
(b) Prove that X with this topology is a locally compact Hausdorff

space.
For any function f defined on X and any x € R, let f;,) be the function
defined on R by the rule fi,;(y) = f(x, ¥)-
(c) Prove that if f € €y (X), then f;, is identically zero except for
finitely many x € R.
Define I on €y (X) by the rule I(f) =3’ S(f(»), where S is the or-
2€R

dinary Riemann integral.

(d) Prove that I is a nonnegative linear functional on €g(X).

Let ¢ be the measure obtained from I as in (9.19).

(e) Prove that the set 4 = {(x, 0) : ¥ € R} is locally ¢-null but is not
t-null.

(9.42) Exercise. Prove that if X is a countable union of compact
sets [such a space is said to be g-compact], then every locally ¢-null
set is ¢-null.

§ 10. Measures and measurable sets

(10.1) Introduction. Section 9 was devoted to the construction of the
functional I and the set function ¢, defined on £ (X). Our ultimate aim
[to be realized in § 12] is to find a reasonably large class of functions
on X for which the equality

() 1w =1(5h)

n=1
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holds. [We have already proved (i) for functions in I*.] The avenue
we choose toward this goal is through abstract measures and integrals
defined in terms of these abstract measures. The problem of finding
a largest family of functions on X for which (i) holds is unsolved and ap-
parently very difficult. Our approach to the problem is not the only
one possible, but it has the advantages of simplicity and also of introduc-
ing abstract integrals, which every reader should know about anyway.

The present section is mainly concerned with properties of the set
function ¢ and in particular with its good behavior on a certain well-
defined family of subsets of X. The properties of ¢ that we need in defining
this family are set down in Theorem (9.21). It turns out that set functions
enjoying properties (9.21.i)—(9.21.iv) can be studied ¢n abstracto, with
no reference to a topological space or to positive functionals. We make
a formal definition, as follows.

(10.2) Definition. Let X be a set [no topology]. A function u de-
fined on 2 (X) is called a [CARATHEODORYY] outer measure if the follow-
ing relations hold:

i) 0= ,u(A) < oo forall 4 C X;

(i) u(2)=
(i) p(4) < y(B) if ACBCX;

(iv) m (” ) = 2 U (A4,) for all sequences (4,);2, of subsets of X.

Outer measures are not by themselves of great use. Far more important
for integration theory are measures, which we next define.

(10.3) Definition. Let X be a set and &7 an algebra of subsets of X.
A set function u defined only on &7 is called a finitely additive measure if :
() 0= u(d) = o forall 4 ¢«;
(i) p(o)=0;
(iil) u(AUB)=pu(A)+u(B)if A, B€s/ and AN B= g2
A finitely additive measure u such that

(iv) u (nL—Jl A,,) =} u(4,) for all pairwise disjoint sequences (4,)7~
- n=1

such that 4,, € & and nL=JlAn € & is called a countably additive measure

or simply a measure. If o7 is a o-algebra of subsets of X and u is a [count-
ably additive] measure on &/, then the triple (X, &7, u) is called a
measure space. Let (X, &, u) be a measure space. If y(X) < oo, then

1 ConsTANTIN CARATHEODORY (1873—1950), the inventor of outer measures,
was a distinguished German mathematician [of Greek descent] who made many vital
contributions to modern analysis.

2 Finitely additive measures as such are only of penpheral interest for this
text. We include their definition largely for the sake of completeness, but also with
an eye to certain applications in § 20.
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(X, o, u) is called a finite measure space and u a finite measure. If X
is the union of a countable family of sets in & each having finite meas-
ure, then (X, &7, u) and u are called o-finite. If 4 =0 or u assumes only
the values 0 and oo, then (X, o7, u) and u are called degenerate.

Outer measures offer a convenient method of obtaining measures,
if we suitably restrict the family of subsets on which the outer measure
is defined. Before entering on the technicalities of this construction,
we give a few examples.

(10.4) Examples. (a) Let X be any set. For 4 C X, let

y A if A is finite,
Y(4) =1\ w if 4 is infinite .

Then » is a measure and also an outer measure on £ (X). [It is easy to
see that a measure on #(X) is also an outer measure.] The measure »
is usually called counting measure.

(b) Let X be any set. For A C X, let

0 fd=g,
u(‘A)={

o if A+ 2.
Then g is a [plainly degenerate] measure and also outer measure on £ (X).

(c) The set function identically zero is a degenerate measure on
Z(X), for any set X.

(d) The most important outer measures for our purposes are the
set functions ¢ constructed as in § 9 for all subsets of a locally compact
Hausdorff space X. See Theorem (9.21) for the proof that ¢ is an outer
measure. The reader should be aware, however, that not all measures
used in analysis are derived from set functions .

We now begin our construction of measures.

(10.5) Definition [CARATHEODORY]. Let X be a set [no topology]
and u an outer measure on & (X). A subset A of X is said to be y-measur-
able if

p(T) = (T NA) + p(T N A)

for all T C X. Let .#, denote the family of all u-measurable subsets of
X and ./V the family of all subsets 4 of X such that u(4) = 0.

(10.6) Remarks. (a) In view of (10.2.iv) and (10.2.ii), a subset 4
of X is u-measurable provided that u(7T) = u(T N A4) + u(T N 4')
forall T C X.

(b) Definition (10.5) has a somewhat artificial air. It singles out the
subsets 4 of X for which A splits all subsets T of X into two pieces on
which x adds. How CARATHEODORY came to think of this definition seems
mysterious, since it is not in the least intuitive. CARATHEODORY'S def-
inition has many useful implications. It gives us a g-algebra, although
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not necessarily the largest possible g-algebra, on which x is a countably
additive measure. [In (10.40), we point out conditions under which
A, is the largest o-algebra on which u is countably additive.]

(c) If X is alocally compact Hausdorff space and ¢ is an outer measure
asin § 9, then the family .# of «-measurable sets contains all open sets.
This fact, proved in (9.32), has important consequences as we shall see.

(d) Let A be Lebesgue outer measure on R. The family 4 of A-
measurable sets is often called the family of Lebesgue measurable sets.
We will use this phrase when convenient.

We proceed to develop the properties of y-measurable sets. Through-
out (10.7)—(10.11), X is an arbitrary set and y is an arbitrary outer
measure on £ (X).

(10.7) Theorem. Every subset A of X such that u(A) = 0 1s u-measur-
able, and u(T) =u(T N A') for all T C X.

Proof. Let T be any subset of X. Then u (T N 4) = 0,since TNA C 4.
Also, we have u(T) < u(TNA)+p(TNA)=p(TN A) £ pu(T).
It follows that u(T)=u(T N A) +u(T NA)= u(T N A’); the first
equality shows that A is measurable. O

(10.8) Theorem. If A 1S y—measumble, then A’ is also.

Proof. Trivial.

(10.9) Theorem. Let (4,)7-, be a sequence of pairwise disjoint u-
measurable subsets of X. Then

O w(@ =2 wT04)+u(Tn (0,4,)) foran T x.

n=1

Proof. By countable subadditivity, we have u(T) = D u(TNA4,)
n=1

+ ,u(T n (”LleA,,) ) If u(T) = oo, (i) follows immediately. Hence we
may suppose that u(T) < co. We first prove

u(T) =él,u(TﬂA,.) +,u(Tﬂ (nQIA,,)') forallp ¢N. (1)

We prove this by induction on p. For p = 1, (1) becomes u(T)
= u(T N 4,) + u(T N Aj). This is true for all T C X since 4, is u-
measurable. Suppose that (1) is true for a positive integer p and all
subsets T of X. Since 4, is u-measurable, we have

w(T) = p(T O Apy) + 4(T N 4))
4 b ’
—u(T N4y )+ S (T4 N4+ p (:r n4}.n (U 4,) ) .
(2)
[We apply the inductive hypothesis to the set TNAy.,] Since
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A, C Ay, for n+ p + 1, (2) can be written as

? ? ’
WD) = (T N ) + 2 u(T N 4,) + ,u(T n43,0(0 4,) )

p1 p+1 ’
=S urnay+u(ra(Y 4)),
and this is (1) for p + 1.

4 N\
The sequence of numbers (y(T n (nUlA,,) ) is a nonincreasing
s pml

in the equahty (1), we obtain
j 4 b ’
u(T) = Jim Zﬂﬂ*hm+}mu@ﬂ(gﬁJ)

P> L

= g'lﬂ(r na)+u(rn(04.)).

Since the reversed inequality has already been established, this completes
the proof. O

(10.10) Theorem. If A and B are y-measurable, then A N B’ is u-
measurable.

Proof. It suffices to prove that if EC A N B’ and F C (4 N B,
then pu(EUF) = u(E) + pu(F). Since F=(FN B)U(FN B’) and B
is u-measurable, we have

p(E) + p(F) = u(E) + u((F N B) U (F N BY)
=u(E)+ u(FNB)+u(FNDB).
Now since EC 4,F N B’ C A’, and 4 is u-measurable, we have

u(E) + u(F O B)) + u(F N B) = u(E U (F N B) + u(F N B).

Again EU(FN B’)C B’and F N B C B so that
WEUFNB)+u(FNB)=u(EU(FNB)U(FNB))=u(EUF).
Combining these equalities, we have u(E) + u(F) = u(EUF). O

(10.11) Theorem. The family M, of u-measurable sets is a o-algebra
of subsets of X, and u 1s a countably additive measure on the o-algebra M,
Proof. Let (A4,);_, be a sequence of u-measurable subsets of X.

Then U A, =AU (4,NA]) U(d;NA;N4)U---U (4, N4,
N---NA)U---. By (10.10), each set of the form B, = (4, N 4, _,

N---NA]) is u-measurable. Furthermore, the sets B, are pairwise
disjoint.
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Let TC X. By (10.9.) and countable subadditivity, we have
w0 =Zurne)+p(rn(85))zu(rn(5)

u(rn(S5)).
By countable subadditivity, we have

wD = u(rn(0,8)+u(rn(55)).

and so

- nlrn(82) < u(rn(5)).

This implies that ngl B, is y-measurable. Thusnl__J1 A, = ”El B, is y-measur-
able. This fact and (10.8) imply that the family of u-measurable sets is
a g-algebra (1.13).

Upon setting T = kL__Jl B, in (10.9.i), we obtain
# (”l;J]B") = é‘l,u ((k';JxB”) n B") Ta ((kL;']B") n (nl;—JlB") )

=§ﬂ(3n)+#(@)=gu(3n)-

Thus u is countably additive on the g-algebra of all y-measurable subsets
of X. O

Having proved in (10.11) that nontrivial measure spaces exist,
we digress to prove some useful facts about arbitrary measure spaces.

(10.12) Theorem. Let (X, o, u) be a measure space. If A, B ¢ o/
and A C B, then u(4) = u(B).

Proof. By (10.3.iii) we have

p(B) = p(d) + (BN 4'),

and by (10.34) u(BN A) = 0. O

(10.13) Theorem. Let (X, &, u) be a measure space. Let (A,)ni,
be a sequence of sets in S such that Ay C A, C+--CA,C-+-. Then

o (5.4) - i,

Proof. Write 4g= o. Then clearly U 4, = U (4,0 4,_,). By
(10.3.iv), countable additivity, we have

o ) P
p(5,40) = B uida N i) = lim 2 a0 45
n=1 —® p=

P
= lim ﬂ(nu (A,,nA,’,_I)) = lim p(4,). O

p—00 =1
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(10.14) Remark. A result strictly analogous to Theorem (10.13) for
intersections of measurable sets cannot be proved. To see this let X =R,
u=A, and & = A, the Lebesgue measurable sets. Let A, = [n, oo
Then A(4,) =oo for n=1,2,3,..., so that lim A(4,)=cc. On the

n—r 0

other hand, A ("Ql A.,,\) = A(2) = 0. However, we do obtain the following
result.

(10.15) Theorem. Let (X, .o, u) be a measure space. If (Ap)a=1
is a sequence of sets in o suchthat u(A,) < occand A, DA, D+ DA4,D" ",
then

()= mptaa.
In particular, if 0 A, = o, then im u(4,) = 0.

Proof. The sequence (4, N 4,)7-, is nondecreasing, and all 4, N A,
are in 7. Applying (10.13), we get

(dy) — lim pu(4,) = lim (u(4y) — p(4n) = lim pu(dy O A7)
- w3 anad) ~u(an (39
= w(an(f4.)) - nt-u (84)-
Subtracting u(4,) [which we may do since u(4,) < o], we have
tim (4 = (0,4,) . 0

(10.16) Theorem. Let (A,)7_, be any sequence of sets in . Then

o

0 #(,0, (5, 4.) = im (4.

We also have

o]

(ii) ,u( n ( UkA,,)) p= ’}i_m u(Ay) provided that u (kU Ak) <oo.

k=1 \n= =1

oo

Proof. It is clear thathlA” Cnng,, c--- C”f;lkA,, C - . Theorem

o0

(10.13) implies that u (kUl(”gkA,,)) =k£x20 7 (anA,,). We also have

u(dy) = ‘u("QkA,,) for all k. This implies that klim 7 (anA") =
lim u(4,), from which (i) follows. The inequality (ii) is proved in like
k—> o0

manner. [J
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(10.17) Corollary. Hypotheses are as in (10.16). Suppose also that
n ( UkA,,) = kL__Jl(”DkAn) =B and u (kL=JlAk> < oo. Then ;}Enw“(Ak)

k=1 \n=

exists and is equal to u(B).
Proof. The assertion follows from the inequalities @m u(d4,) <

k—>co
#(B) = lim u(4,). O

(10.18) Note. In (10.3), as we trust the reader has noted, countably
additive measures are defined on algebras 7 that need not be o-algebras.
This is a technicality, but it is occasionally quite useful. There is a
technique for extending a countably additive measure to a g-algebra
containing /. This is not an essential point in our development of meas-
ure theory, and we relegate it to an exercise (10.36). Note however
that the term measure space is reserved for a triple (X, o, p) in which &/
is a o-algebra and u is countably additive on 7.

We return to locally compact Hausdorff spaces and outer measures ¢
asin §9.

(10.19) Definition. For an arbitrary set X and an arbitrary family#
of subsets of X, let & (&) denote the intersection of all g-algebras of sub-
sets of X that contain &. Clearly & (&) is a o-algebra. Thus (&)
is the smallest ¢-algebra of subsets of X containing &. If X is a topolog-
ical space, let Z(X) be the smallest o-algebra of subsets of X that con-
tains every open set, i.e., #(X) = & (0) where O is the family of all
open sets. The members of #(X) aré called the Borel sets of X.

(10.20) Theorem. Let X be a locally compact Hausdorff space and let ¢
be as in (9.19). Then B (X) C M, i.e., every Borel set is t-measurable,
and (X, M, 1) is a measure space.

Proof. Theorem (9.32) is just the statement that all open subsets
of X are :-measurable [although this phrase is not used in 9.32)].
Thus .# contains the family @ of all open subsets of X, and so by (10.11)

M DL (O)=RB(X). O

(10.21) Remarks. (a) For many choices of X and i, there are ¢-
measurable sets that are not Borel sets. For example, let X = R, ¢ = 4,
and let P be Cantor’s ternary set. Since A(P)=0 (9.35), we have
A(A) =0 for all 4 C P, and so all subsets of P are A-measurable. Thus
P(P)C MCPR). Since P=R=¢, we have 2= P (P) < .4
< 2(R) =2, and so M, = 2¢. There are exactly ¢ open subsets of R.
This follows from the fact that each open subset of R is a union of open
intervals with 7ational endpoints. It is therefore a corollary to the next

—_—

theorem that % (R) = ¢. This crude cardinal number argument shows
that there are 2° A-measurable sets that are not Borel sets, but it gives
no indication of how to construct such sets.

»
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(b) It is possible actually to construct a very large class of A-measur-
able sets, the so-called analytic sets, which includes all Borel sets as well
as ¢ other sets. The interested reader is referred to the discussions of
analytic sets in S. SAxs, Theory of the Integral [2nd Edition, Monografie
Matematyczne, Warszawa-Lwéw, 1937], Chapter III, and in W. SiER-
PINSKI, General Topology [2nd Edition, Univ. of Toronto Press, Toronto,
1956], Chapter VII.

(10.22) Exercise. (a) Let X, a4, E,, and ¢, be as in (9.19). Prove
that 4, = Z(X).

(b) Let X be a locally compact Hausdorff space, let {x,};>, be a
countable [possibly finite] subset of X, and let (e,);~, be a sequence

=]

of positive numbers such that ' o, < 0. Let I'(p) = 3 o, ¢ (,) for all
n=1 n=1
@ € €y (X). Prove that: I is anonnegative linear functional on €y (X); the

(o)
corresponding measure ¢ is 3 o, ¢, ; M = P(X).

n=1

(c) Extend (b) to the case in which }] «, = oo. Find extra conditions
n=1
on {#,}s~; necessary and sufficient for I to be finite for all ¢ € €y, (X),
and prove the second and third assertions of part (b) for the new I
and ¢, under the hypothesis that X is o-compact.

The proof of the next theorem gives a method of ‘“‘constructing”
the g-algebra generated by a given family of sets.

(10.23) Theorem!®. Let X be a set, let & be a family of subsets of X
‘such that @ € &, and let F = F (&) be the smallest o-algebra of subsets
of X containing &. If E=cand e =2, then P < &,

Proof. For each nonvoid family &# of subsets of X, let #* be the

family of all sets of the form ”lilA,,, where, for each # €N, either 4,

or A, is an element of &. Let 2 denote the smallest uncountable ordinal
number (4.49). We use transfinite induction to define a family &, for
each ordinal number « < Q. Define &, as the family &. Suppose that
0 < a < £ and that &; has been defined for each fsuch that 0 < f < .
Define &, as (oslﬂJ<¢ é’ﬂ)*, and write & for the family OSEJﬂ)é’a. We

assert that & = &.
It is clear that &= & C &. Suppose that & C & for every f < a

and let nL=Jx A, €&, For each nEN, either A, or 4, is an element of

U & C & sothat 4,, 4,€%. Thus ”L__JlA,, is in &; i.e., &, is contained

B<a

1 This theorem is not needed in the sequel and may be omitted by any reader
who is pressed for time; similarly for (10.24) and (10.25).
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in &. Since &= OSU< o &,, we have proved that &/ C .&. It is trivial

that & C &7, and so to complete the proof we need only to show that
& is a g-algebra. Since @ € &, we have
X=(g'UgUgU- - )e&H A

Now let A € /. There is an a« < £ such that A €4,; hence 4’
=(A"UA4'U---) €6 C & for every f > a, and therefore A’ € &/. Next
let (4,)2-, be a sequence of elements of 2. For each # € N, there is an
@, < 2 such that 4, €&, . Apply (4.49.v) to find a f < £2 such that
o, < P for each n € N. Then

© =) *
Ud,¢ (nL;!lé"%) c&Hoo.

Therefore &/ is a g-algebra and & = &.
By hypothesis, we have &, = ¢ = 2. Considering the ways in which

the sets "l:JlAnEé’l can be formed [at most 2¢ choices for each 4,],

we see that & < (2¢)% = e® [(4.32), (4.34), (4.24.vii), and (4.24.xi)].

Now suppose that & < e® for all § such that 1< B <o where
1 <o <. Then ﬂL<J“é’ﬂ < et g, = ¢® (4.32), and so, arguing as above,

g’; < (e®)® = e [(4.24.viil) and (4.31)]. It follows by transfinite in-
duction that &, < e® for every o such that 0 < a < Q. Therefore

&= J=aﬁ,§ o R, = et
[(4.50) and (4.32)]. O

(10.24) Exercise. Notation is as in (10.19).

(a) Find &# (&) if & = {@}.

(b) Find &£ (&) if & ={U,, U,, ..., U,}, where the U; are nonvoid
and pairwise disjoint and U; U - - - U U,,, = X. What is .57(?) ?

(c) Find & (&) if & is an arbitrary finite family of subsets of X.

What is & (&) ?
(d) Find & (&) if & is the family of all finite subsets of X [X can

be finite or infinite]. What is & (&) ?
(10.25) Corollary. If X is a topological space with a countable base

€ for its topology, then % (X) = .

Proof. The definition of base (6.10) shows that every open subset of X
is in the family €, [notation is borrowed with evident changes from
(10.23)]). This proves that & (%) = #(X); applying (10.23) and (4.34),
we obtain I

B(X) = (Rg)P=1¢. O

The problem of finding non u-measurable sets for a given outer meas-

ure u can be terribly complicated. Even for outer measures constructed
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as in §9, no general facts or methods are known. For Lebesgue outer
measure A on £ (R), however, it is reasonably simple to find non 4-
measurable sets. We begin with a simple fact about A.

(10.26) Definition. For subsets 4 and Bof R, let A+ B={x + y:
x€A,y€EBL,A—B={x—y:x€A,y€B}, and —4A={—x:x€A}.
For x € R, the set {x} + A will be written x + A, and is called the trans-
late of A by x. The sets AB, A~ [if 0 ¢ A], AB~*, and x4 are defined
analogously.

(10.27) Lemma. For all x ¢ R and A C R, the equalities A(x + A)
= A(A) = A(— A) obtain.

Proof. By (9.24) and (9.23), we have

AA) =inf{A(U): U isopenin Rand 4 C U}
= inf { 2, —a):AC nL_Jl]a,,, bn[} .
n=1 -

Since the inclusions -
AC nL=JI 1., 5,0,

x+ACn£Jl la, + %, b, + x[, )
—4C “L=Jl ]_bn: - n[

are mutually equivalent, and since the three unions of intervals in (1)
have the same Lebesgue measure, the lemma is proved. 0O

(10.28) Theorem. Let T be a A-measurable subset of R such that
MT) > 0. Then T contains a subset E that is not A-measurable. In fact,
E can be chosen to have the following property. If of is a o-algebra of sub-
sets of R such that M, C o and x + A € o whenever A € o and x €R
[for example of = M, ], and if p is a countably additive measure on
such that u(A) = A(A) for all A€M and p(x+ A) = u(A) for all
A€l and x CR, then E ¢ .

Proof. Since T = ngl (T N [—n, n]), (9.21.iv) shows that
0<A(D) =X AMTN[—nn).
n=1

Hence there is a p € N such that

0<MTN[—p.p) = A([—5. ) =2p <o,
and we lose nothing in supposing that 0 < A(7T) < oo and thatT C[—p,p].
Since countable sets have A-measure 0 (9.34), we must have

T>xot

1 By (10.30) infra, T contains a compact set F of posxtwe A-measure. By (9.34),
F is uncountable, and (6.65) and (6.66) imply that F=c. Hence T =c¢.
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Now let D be any countably infinite subset of T (4.15) and let H be the
smallest additive subgroup of R that contains D. That is, H consists

of all finite sums }; #,d,, where the »,’s are integers and the d,’s are
k=1
in D; from this it is clear that H is countable.

Consider the cosets {t+ H:t € R}. Since H is a subgroup of R,
these cosets are pairwise disjoint; 7.e., for any ¢, and #,, the cosets ¢, + H
and ¢, + H are disjoint or identical. Let {#,: y € I'} be chosen in R so
that the sets ¢, + H; y € I', are all of the distinct cosets of H, i.e., y; + y,
implies (¢, + H) N (t,, + H) = 2, and for each ¢ € R, there is a y ¢TI
such that t+ H=t¢,+ H. Let Iy={y€l':({,+H) N T+ g} For
each y €I, choose just one element x,€(t,+ H)N T, and let
E={x,:p €3} [Since T is contained in U{t, + H:y I} and
t, + H = R, we must have

Fy=T>y,.]

In finding E we have twice made an uncountable number of arbitrary
choices, and to do this we must invoke the axiom of choicel.

To prove that E possesses the pathological properties ascribed to it,
define the set J tobe H N (T — T). Since D — D C J C H, it is obvious
that J =8, We claim that (y,+ E)N (y,+ E) = o for distinct
Y1, ¥s € J. If not, then there are distinct x,, x, € E such that y, + x;
= ¥, + %,. Since y,, ¥, € H, this implies

Xy =%+ (1 — ) €%, + H,

a contradiction to the definition of E, as x; and x, lie in disjoint cosets
of H. Hence the family {y + E : y € J} is pairwise disjoint. Now assume
that E is in the g-algebra . If u(E) = 0, our hypotheses on u imply
that

p(J+E) =pn(Y y+E)=y§u(y+E)

=2 u(E)=0. (1)
veJ
If u(E) > 0, a similar reckoning gives
p(J+E) = oo. @)
Both (1) and (2) are impossible. To see this, we first prove that
TCJ+E. 3)

In fact, if v € T, then v €t, + H=x,+ H for some y €I, and so

1 Every example of a non A-measurable set has been constructed by using the
axiom of choice. A recent announcement by R. SoLovay [Notices Amer. Math.
Soc. 12, 217 (1965)] indicates that without the axiom of choice, non A-measurable
sets cannot be obtained at all.



§ 10. Measures and measurable sets 137

v = x, + h for some %4 € H. Thus
h=v—%,¢(T-T)NH=],
which proves (3). If (1) holds, then (3) implies that
u(l) < p(J+E)=0.
Since A(T) is positive and u(T) = A(T), this is a contradiction, and (1)
cannot hold. It is also obvious that
J+E=HNT-TH)+EC(T-T)+T

C [-3p.32],
so that
p(J + E) = p([—3p,3p]) = A([—3p,3p]) = 6p < .
Thus (2) is impossible, and the assumption that E € &/ must be re-
jected. O

(10.29) Remarks. (a) There exists a finitely additive measure u on
#(R) such that u(A) = A(4) for all A €4 and p(x+ 4)=u(d)
for x € R and A C R. This was first proved by S. BaNnacH [Fund. Math.
4, 7—33 (1923)]. The construction is sketched in (20.40) infra. A far-
reaching generalization of BANACH’S result appears in HEWITT and
Ross, Abstract Harmonic Analysis I [Springer-Verlag, Heidelberg, 1963],
Pp. 242245, to which interested readers are referred.

(b) Countably additive extensions u of Lebesgue measure to very
large g-algebras # of subsets of R have been found, retaining the prop-
erty that u(x 4+ A) = u(4). One can make 2° new sets y-measurable,
and in fact there is a family & C .# such that & = 2¢and u(D; A Dy)=1
for distinct D,, D, € 9. Such extensions are implicit in a construction
given by KAKUTANI and OxToBY [Ann. of Math. (2) 52, 580—590 (1950)].
They are given explicitly in a construction by HEwIitT and Ross [Math.
Annalen 160, 171194 (1965)].

(c) For an interpretation of (b) in terms of a certain metric space,
see (10.45) and (10.47) below.

We return to our outer measures ¢ on locally compact Hausdorff
spaces, proving some useful facts about ¢-measurable sets.

(10.30) Theorem. Let X be a locally compact Hausdorff space and let ¢

be as in §9. Let A be an 1-measurable subset of X such that A C ”L=Jl B,
for some sequence (B,)m-, of sets such that +(B,) < oo for all n. Then
t(4) = sup{e(F): F is compact, FC A} .

Proof. (I) Suppose first that ¢(4) < oc. Let ¢ be any positive number.
By (9.24) there is an open set ¥ such that A € V and «(V) < ¢(4) + %e.

Since ¢(V) = ¢(4) + «(V N 4’), we have ¢(V N 4') <—41—e. Using (9.26),
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select a compact subset E of V such that ¢«(V N E') < % e. Using (9.24)

again, choose an open set Wsuchthat VN A’ C W C Vand (W) < % e.
The set F = E N W’ is compact. It is clear that F C A4, for

ENWCEN(V'UACVNI'U4)=4.
We have
tANF)Y=(AN(EUW)Z(ANE)+(ANW)

S VNE)+ (W) <—;—e+%s=s.

Using the t-measurability of 4, we see that ¢(F) = ¢(4) —¢(4 N F')
> 1(4) — &. Since ¢ is arbitrary, the theorem follows for ¢(A4) < co.

(IT) Suppose that ¢(4) = oo. In view of (9.24), we may suppose that
the sets B, in our hypothesis are -measurable [in fact, open]. Write
A,=AN(B,U---UB,) for n ¢ N and 4,= &. Then 4, is i-measur-

able, ¢(4,) < oo, A,C A, and nL=Jl A,= A1
By (10.11), (X, 4, ¢) is a measure space; hence (10.13) implies
that
oo = (4) = lim ¢(4,). (1

Using part (I), choose for each # € N a compact set F, such that F, C 4,

and «(F,) = %L(A"). It is plain from (1) that

im (F,) = lim ¢(4,) = o0 = t(4). O

(10.31) Theorem. Let X be a locally compact Hausdorff space and
let + be as in §9. For A C X, the following statements are equivalent:

(i) A4 is i-measurable;

(i) (U) = «(UNA)+ «(UN A" for all open sets U such that
t(U) < o0,

(iii) 4 N U s t-measurable for each open set U such that +(U) < oo

(iv) A N F is t-measurable for every compact set F.

Proof. Theorem (10.20) shows that each compact set F is -measur-
able, since it is closed; and so (i) implies (iv).

Suppose that (iv) holds and let U be an open set such that ¢(U) < oo.
Theorem (10.30) shows that for each # € N there is a compact set

1 oo
F,C U such that «(F) > ¢(U) — - Let F= ”LJIF,,. Then we have:
) 1
F C U, F is i-measurable; and «(F) = ¢(F,) > ¢(U) — - foreach n € N.
1 A set that is the union of a countable family of sets of finite measure is called

o-finite [cf. (10.3)]. Recall also: a set that is the union of a countable number of
compact sets is called o-compact.
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It follows that ¢(F) = ¢(U) and ¢«(U N F’) = 0. Hence

ANU=ANFUUNF)]=ANFKHUANUNF)
= (nL=Jl(A n F,,)) ud4nunery,
and so, since t(A NUNF)=0, ANU is a countable union of ¢
measurable sets. Therefore (iv) implies (iii).
Next suppose that (iii) holds and let U be open of finite (-measure.
Then U and A NU are both ¢-measurable, and so UNA'=UN (U NA)’
is i-measurable. Thus

(U)=e((UNAUVUNAN=(UNA)y+:(UNA",
i.e., (iii) implies (ii).
Suppose that (ii) holds, and let T be an arbitrary subset of X. In
establishing (10.5), we may suppose that ¢(T) < oo, since otherwise

t(T) =002 (T NA)+ (T NA’). For a given &€ > 0, choose an open
set U such that TC U and ¢(U) < ¢(T) + & Then (ii) implies that

(T) 4+ e>(U)Z e (UNA)+e(UNA)Z (TNA)+(TNAY).

Since ¢ is arbitrary, we are through. 0O

(10.32) Corollary. If A is locally i-null, then A is i-measurable and
t(A) = 0 o7 oo.

Proof. For each compact set ¥ we have ¢«(F N 4) =0 (9.29), and so
F N A is -measurable (10.7). It follows from (10.31) that 4 is ¢-measur-
able. Suppose that ¢ (4) < co. Applying (10.30), we have t(4) =sup{¢(F):F
is compact and FC A} =0. 0O

(10.33) Remark. Since for some choices of X and ¢ there exist locally
«-null sets which are not ¢-null [see (9.41.e)], (10.32) shows that (10.30)
cannot in general be strengthened to admit all -measurable sets. How-
ever if X is a countable union of compact sets [¢.g. X = R*], then
every t-measurable subset of X satisfies the hypothesis of (10.30).

(10.34) Theorem. Let X be a locally compact Hausdorff space and let ¢
be as in §9. For every o-finite, -measurable subset A of X, there are subsets B
and C of X such that B is -compact, C is a Borel set, the inclusions BCACC
obtain, and «(C N B') = 0.

Proof. (I) Suppose that ¢(4) < oc. For each # € N, there is a compact

set F,C 4 such that ¢(F,)>¢(4) —+. Let B= U F,. For each n
we have ((F,) = «(B) £ t(4), and so ¢(B) =t(4). Next, for each
n €N, select an open set U, D A such that ¢(U,) < ¢(4) +£—. Let

C= ”Ql U,; then C is a G, set, and hence clearly a Borel set. It is clear
that ¢(C) = ¢(4). Using the i-measurability of 4, we have ¢(C N 4’)
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=1(C) —¢(4) =0, t(A N B') = ¢(4) — ¢(B) = 0, and so also
{CNB)=((CNA)+ (AN B)=0.

(II) If ¢(A) = oo, then, as in the proof of (10.30), write 4 = nng”

where each 4, is measurable and has finite measure. By case (I), there
are o-compact sets B, and G, sets C, n=123,..., such that

B,CA,cC, and «(C,N B,) =0. Let B= ”L:Jl B,; B is clearly o-

compact. We have
AQ B = (nglAn) n (kng”) - (nng") n (kQIB;‘) CanJl(An NB,),

and so - -
c(AﬂB’)éL(nlil(AnﬂB)éz (4, N B,))=0.

Now let C = ”Li] C,; C is clearly a Borel set. The argument given above

to prove that ¢(4 N B’) = 0 can be used to prove that ((C N 4') =0,
and as in part (I) it follows that «(C N B’) =0. O

The functional I of § 9 satisfies the inequality I(f + &) < I(f) + I(g)
for all f, g €&F* (9.18). It is possible to exhibit functionals I and functions
f and g such that strict inequality holds [see (10.41)]; i.e., I is not in
general additive on &*. However I is additive on special classes of func-
tions, and we now exhibit one such class.

(10.35) Theorem. Let A and B be disjoint t- -measurable sets and let
« and 5 be nonnegative real numbers. Then we have

(@) T(atq+ BEp) = 2l (£4) + BI(ER)-

Proof. By the subadditivity of I, it obviously suffices to prove that

T(aby + BEp) = oI (E4) + BI(ER) - (1)
The inequality (1) is easy to verify if « =0 or f=0, or if ¢(4) =0 or
t(4) = oo, or if ¢(B) =0 or ¢(B) = co. We leave these verifications to
the reader, and prove (1) under the hypothesis that «f > 0,0 < ((4) <o,
and 0 < ¢(B) < co.

(I) Suppose that 4 and B are compact. By (6 80), there is a contln-
uous real-valued function @ on X such that ¢ (4) = {0} and ¢ (B) = {1}.
The sets {x eX:px)< %} and {x €X: ) > %} are open dls]omt
sets containing 4 and B, respectively. Since 4 and B have finite measure,
they are contained in open sets having finite measure. Taking the
intersections of these open sets with those defined by ¢, we obtain open
sets U, and V, such that UyD 4 and V;D B, U, NV, = 2,
0 < ¢(Uy) < o0, and 0 < ¢(Vp) < o0. We have

Ty + Bép) < al(§4) + BI(Ep) = ae(4) + fu(B) < oo
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Now choose & > 0. There is a function f € M* such that f = aé, + fép
and
- 1 -
I(fy—ge<I(xés+ BEB) -
Choose 8 > 0 such that
. € £
0<6<mln{m,m,%ﬁ} .

For all x € 4, we have f(x) = «. By the lower semicontinuity of f, there
is an open set U such that 4 C U € U, and f(x) > & — 6 for all x ¢ U.
Similarly, there is an open set ¥ such that BC V CV, and f(x) > g—296
for all x ¢ V. Thus we have f= (x— 8)&p+ (B — 0)&p; therefore

I(f) = I((e—0) Eu+ (B—0) év) = (x— ) (Ev) + (B—O) I (£v)
= (= 8)e(U) + (B— 8)¢(V) Z ae(d) + Bu(B) — 8((U) +¢(V)

= wu(A)+ 1(B) — 8G(Up) + 1 V9) > wa(d) + Be(B)— e .
Summarizing, we have shown that
aT (&) + BI(Es) — e <T(f) — 5 e <T(xka+ BEn)-
Since ¢ is arbitrary, it follows that (1) holds if 4 and B are compact.

(I1) We suppose now that 4 and B are arbitrary -measurable sets
of finite positive measure. Choose & > 0. Using (10.30), choose compact

sets E and F such that EC A and F C B, at(E) > at(d) — —;—e, and
Bu(F) > Bu(B) —%e. Using part (I) for the compact sets E and F,

we have
T(aky+ BEp) = I(abp + BEr) = at(E) + Bu(F) > au(d) + fu(B) — ¢
=al(&,) + BI(s) —¢. O

We close this section with a large collection of exercises. A few of
these [for example (10.37)] are actually needed for subsequent theorems
in the main text. The rest of the exercises illustrate and extend the theory
in various directions, and we trust that all serious readers will work
through most of them.

(10.36) Exercise. Let X be an arbitrary set and &/ an algebra of
subsets of X [« need not be a g-algebra]. Let u be a countably additive
measure on & in the sense of (10.3). Define a set function 4 on 2(X)
as follows: for T C X, let

ﬂ(T):inf{glp(A,,); Tc Ud, and Al,Az,...,A,,,...e.sa!}.

(a) Prove that j is an outer measure on 2(X).
(b) Prove that f is equal to u on the algebra /.
(c) Prove that all elements of &/ are measurable with respect to .
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(d) Prove that u can be extended to a countably additive measure
defined on a ¢-algebra of subsets of X that contains &/. [The fact that
this can be done is called E. Horr’s extension theorem.)

(10.37) Exercise. Let X and & be as in (10.36). Let y be a set func-
tion on & satisfying the following conditions:

i) 0= y(4) £ o forall 4 € ;
(i) y(AUB)=y(A4)+ y(B)ford, BeZandA N B =g,

(i) ifA4,, 4y, ... €H,ifA4, D 4,D--DA4,D-- -,andnglA”= z,
then lim y(4,) = 0.
Define # just as in (10.36). Prove that (a), (b), (c), and (d) of (10.36)

hold for the set functions y and #. [This is another version of E. HorF’s
extension theorem.]

(10.38) Exercise. Let (X, &7, u) be a measure space. Prove that u
can be extended to a measure ji on a o-algebra & such that every subset
of every set of y-measure 0 is j-measurable and has j-measure 0.

The following exercise will be needed in the sequel to prove two im-
portant theorems of the main text [(20.56) and (20.57)], and so we
spell out the proof in some detail.

(10.39) Exercise. Let X, &7, u, and g be asin (10.36). Let & = & (&)
be the smallest g-algebra of subsets of X that contains the algebra /.
Suppose that (X, %, ») is a measure space such that »(4) = u(4)
for all 4 € &Z. Prove the following.

(a) If B¢ %, then g(B) = v(B). [Hint. Let & denote the family
of all countable unions of sets in &. If A= ”IZIA,, € &, where
{An-1 C &, then 4 =4,U ”Qz(An N4iNn4;:N---NA4,_,) is a
disjoint union of sets in .7, and so ¥{4) = @(4). Thus

A(B)=inf{i(A): BC A €} =inf{v(4): BC 4 € &} = v(B).]

(b) If F €& and ja(F)< oo, then »(F) (F). [Hint. For ¢ >0,

=f
choose 4 €9 such that FC 4 and jg(A4)< @(F)+ e. Then use (a)
to show that

AF) = g(A)=v(A)=v(F)+v(ANF)=»(F)+ g(ANF)<v(F)+e.]
(c) If there is a sequence (F,)p~; C & such that u(F,) < oo for all

nand X = ”l=JlE,,, then »(E) = g(E) for all E € &, 4.e., the extension

of u to & is unique. [Hint. We may suppose that F, N F, = & for
n == m. Then by (b) we have

o

v(E) = X v(ENE) = 5 4(ENE) = @(E)]

n=1 n=1
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(d) If the o-finiteness hypothesis in (c) fails, then x may have more
than one extension to &. [Hint. Let X = [0, 1[ and let &/ be the algebra
of all finite unions of intervals of the form [a, b[ C [0, 1[. Define u
on & by u(2) = 0and u(4) = oo if A & @. Show that there are exactly
2¢ countably additive measures on the Borel sets of [0, 1[ that agree
with g on &7.]

(10.40) Exercise. An outer measure u on £ (X) is said to be regular
if for each E C X, there exists a u-measurable set 4 C X such that
E C A and u(4) = u(E).

(a) Prove that any outer measure obtained from a measure on an
algebra of sets as in (10.36) is a regular outer measure.

(b) Prove that if X is a locally compact Hausdorff space and ¢ is
asin § 9, then ¢ is a regular outer measure.

(c) Let X = {0, 1}. Construct an irregular outer measure on Z(X).

(d) Let u be a regular outer measure on #(X), let E C X, and let o
be the smallest algebra containing {E} U .#,. Prove that if u is finitely
additive on &, then E € 4.

(¢) Notice that, since 4 is a regular outer measure on R, none of the
extensions of A [as a measure on .#;] mentioned in (10.29.b) can agree
with the outer measure A on any algebra of sets properly containing .#.

(10.41) Exercise. Let A be a subset of [0, 1] that is not  A-measurable,
and let B = [0, 1] N A’. Prove that S (é4+ &g) <8 (£4) + S (£p), where S
is the Riemann integral.

(10.42) Exercise. Let X and Y be topological spaces. Prove the
following.

(a) If f is a continuous function from X into Y and if B €B(Y),
then f~1(B) € #(X). [Consider the family of all sets B for which the asser-
tion holds.]

(b) If A €#(X) and B € #(Y), then 4 =< B ¢#(X x<Y). [Recall
the definition of the product topology (6.41) and use (a).]

(c) Generalize (b) to products of countably many topological spaces.

(10.43) Exercise [H. STEINHAUS]. Let T be a A-measurable set in R
such that A(T) > 0. Prove that the set T — T contains an interval
[—a, a] (e > 0). The following steps may be useful.

(@) If U and V are open in R and have finite A-measure, the
function x — A((x + U) N V) is continuous on R. [Begin with intervals
and use (6.59) for general U and V.]

(b) If A and B are A-measurable of finite A-measure, then
x> A((* + 4) N B) is continuous. [For U D 4 and V O B, prove first
that

A+ U)NV)—A(x+4) NB)| s AUNA)+AVNB)]



144 Chapter I1I. The Lebesgue Integral

(c) The set T — T contains an interval [—e«, «]. [The function
x> A{(x+ T)NT) is positive at 0, and if (x+ T) N T =+ @, then
x€T —T.]

(10.44) Exercise. Generalize (10.43) to 4 + B, where 4, B are in
A, and both have positive measure.

(10.45) Exercise. Let (X, .#, u) be a measure space and let

ﬁz{E €M p(E) <oo}.
For A, B € .4, define

e, B)=pu(d A B).
(a) Identifying sets A and B for which u(4 A B) = 0, prove that
(A, o) is a complete metric space.
(b) Show that the mappings from .7 >< . to .4 with values 4 U B,
AA B, and A N B at (4, B) are continuous. Show also that 4 — 4’
is continuous from .# to ..

(10.46) Exercise. Prove that the metric space (.7, ) defined in
(10.45) is not compact in the case that X = [0, 1], # = # ([0, 1]), and
u=A

(10.47) Exercise. (a) Let X be a locally compact Hausdorff space
and let ¢ be a measure on X asin §9. Prove that if there exists a countable
base for the topology of X, then the metric space (.4, g) defined as in
(10.45) is separable.

(b) Note that the metric space (4, o) has a countable dense subset,
where .# is the o-algebra of Lebesgue measurable subsets of R and 4
is the measure used to define g, as in (10.45). Find the smallest cardinal
number of a dense subset of (.7, g) for the invariant extension u of
Lebesgue measure described in (10.29.b).

(10.48) Exercise. Let X be a metric space with metric g and let u
be any outer measure on Z(X) such thatif 4, BC X, 4 + o, B+ &,
and ¢(4, B) > 0, then u(4 U B) = u(A) + p(B). Such outer measures
are called metric outer measures. Let U be an open proper subset of X

and let 4 be a nonvoid subset of U. For each # € N define 4, = {x cA:
o(x, U") = %} Prove that:

(@) lim u(4,) = p(4)
[consider the sets D,, = A,, N A;,_; and Dy, ., = Ay, 1V 43,15

(b) U is u-measurable;

(c) Z(X)C 4,

(10.49) Exercise: Construction of a class of outer measures. Let X

be a separable metric space, let @ be the family of all open sets in X,
and let p be a positive real number. For each ¢ >0 let 0,={U €0:
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diamU = &} U {2}. For each E C X, define

Up,e(E) = inf{ 2 (dlamU,)?:U, €0, EC U1 U,,} ,
n=1 "=
where we define diam @ = 0.
(a) Prove that u,,.(E) is nondecreasing as ¢ decreases.
Define u,(E) = lifx(} Uo,e(E) for each E C X.

(b) Prove that u, is a metric outer measure on X.

(c) Prove that if u,(E) < o and g > p, then y,(E) = 0.

The set function u, is called the Hausdorff p-dimensional [outer]
measure on X. For E C X we define the Hausdorff dimension of E to be
the number sup{p € R:p >0, u,(E) = oo}, where we let supz = 0.

(10.50) Exercise. Let R have its usual metric. We consider Haus-
dorff measures u, on R [see (10.49)]. For E C R,let dimE be the Haus-
dorff dimension of E. Prove that

@ m=4;

(b) dimU = 1 for all nonvoid open sets U C R;

(c) dimE = 0 implies A(E) =

log2

(d) if P is CANTOR’s ternary set, then dim P =-—— [consider the

log3
sets P, of (6.62)];
(e) there is an uncountable subset E of R such that dimE = 0.

(10.51) Exercise: Another class of outer measures. Let (X, o) be a
metric space. For a nonvoid set EC X and ¢> 0, define #n(E,¢) as
follows:

n(E,t)=1 if p(x, ') =t forall x 4 CE;

n(E,t) = sup{F :F C E, F is finite, g (x, x") > ¢ for distinct x, 2’ ¢ F}
if this supremum is finite;

n(E, t) = oo in all other cases.

Define # (@, t) as zero. Let @ be a real-valued, positive, strictly de-
creasing function defined on ]0, 1] such that hm @(t) =oc.Forall EC X,
define

o n(E
extw(E)—lTl%l o0 "

For all E C X, define
v (E { D, exty(Ay) }

where the infimum is taken over all countable, pairwise disjoint families

of sets {A,};2; such that kL=JlA +=E.

(a) Prove that v, is a metric outer measure as defined in (10.48).
[Hint. The only nontriviality is showing that »,(4 U B) = v, (A4) + v,(B)
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if p(4, B) > 0. This follows from the equality #(4 U B, ) = n(4, ) +
n (B, t), which is valid for ¢ < g(4, B).]

(b) Compute », for X = R with the usual metric for R and ¢ (¢) = —:——

(c) Compare the outer measures v, [with suitable ¢!] with Haus-
dorff p-dimensional measures.

(d) Prove that v,(E) = 0 if E is countable.

(e) Prove that v,(E) =»,(F) if there is an isometry of E onto F.
[An isometry is a mapping y of one metric space onto another such that
e(x, y) =o' (w), w(¥), o and o’ being the metrics on the two spaces.]

(10.52) Exercise. Let « be any real-valued nondecreasing function
on R and let 4, be the Lebesgue-Stieltjes measure on R induced by the
Riemann-Stieltjes integral as in §9. Prove that A,({#}) =0 for x €R
if and only if « is continuous at x.

(10.53) Exercise. Let « and A, be as in (10.52) and suppose that «
is continuous. Prove the following assertions.

(a) For each ¢ > 0 there exists a nowhere dense perfect set 4 C[0,1]
such that 4,(4) > 2,([0, 1]) — e.

(b) There exists an F, set B C [0, 1] such that B is of first category
and 4,(B) = 4.([0, 1]).

(c) There exists a G, set of second category contained in [0, 1]
having A,-measure zero.

(10.54) Exercise. In this exercise, we first sketch the construction of
a subset B of R measurable for no measure A, with continuous «.

(a) Prove that every uncountable closed subset F of R has cardinal
number ¢. [Use (6.65) and (6.66).]

(b) [F. BERNSTEIN]. Prove that there is a subset B of R such that
BNF=+ g and B'NF == g for every uncountable closed subset F
of R. [Hints. There are just ¢ open subsets of R and hence just ¢ uncount-
able closed subsets. Let w, be the smallest ordinal number with correspond-
ing cardinal number ¢ [use (4.47) to show that w, exists]. Let {F,: n<w.}
be a well ordering of all uncountable closed subsets of R. Define B by
transfinite recursion and the axiom of choice, as follows. Let %, and y,
be any two distinct points in F, Suppose that x, and y, have been
defined for all y < %, where < w,. Theset A, = {x,: y <n} U{y,:y<n}
has cardinal number <c¢, because w, is the smallest ordinal number of
cardinal ¢. Hence the set F, N A4, has cardinal number ¢. Let x, and y,
be any two distinct points in the set F, N 4. Finally let B={x,: n<w}.
It is clear that B N F, & o and that B’ N F, + & for all < w,.]

(c) Prove that B is non A,-measurable if « is continuous and 4, =+ 0.
[Hints. Assume that B is A,-measurable. Then by (10.30), we have
Ae(B) = sup{A.(F) : F is compact, F C B}. The only compact subsets
of B are countable, and since 4,({x}) = O for all x € R, it follows that
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Ae(B) = 0. Similarly 2,(B’) = 0, and so if B is A,-measurable, A, is the
Zero measure. |

Throughout the remainder of this exercise, assume the continuum
hypothesis, i.e., X; = ¢ [see (4.49) and (4.50)].

(d) Prove that there exists an indexing {C,: 0 < 5 < 2} of the family
of all nowhere dense closed subsets of [0, 1] by the set Py, of all countable
ordinal numbers.

Define [by transfinite recursion and the axiom of choice] a set
S ={x,:0 < n < 2} as follows: let x, € [0, 1] N C; and

2%, €10, 1] 0 (U (Co U {%5}))".

(e) Prove that § = ¢ and that S N C, is countable for all 9 € P,.

(f) Prove that 1,(S) = 0 for all Lebesgue-Stieltjes measures 4, such
that « is continuous.

(10.55) Remark. The set S defined above is not a Borel set in R.
In fact, it is known that each uncountable Borel set in a complete separa-
ble metric space contains a nonvoid perfect set [see W. SIERPINSKI,
loc. cit. (10.21.b), p. 228].

(10.56) Exercise. (a) Let (X, o/, u) be a measure space such that
0 < u(X) < oo and u assumes only a finite number of distinct positive
values. Prove that X =E,U---UE, UF, where the summands are
&/-measurable and pairwise disjoint and have the following properties.
There is a nondecreasing sequence («;)s—; of positive numbers such that
if A€o/ and A CE,, then u(d) =0 or u(A) = o; u(Ex) = a; and
u(F) = 0. [Hint. Let «; be the least positive value assumed by g and
let E, be any set in & for which u(E,) = ;. Consider E| and proceed
by induction.]

(b). Let X be an uncountable set, &/ the family {A: 4 C X, 4 is
countable or 4’ is countable}, and x4 on o7 defined by u(4) =1 if 4’
is countable and u(4) = 0 if 4 is countable. Prove that (X, &7, u) is
a measure space. Use this example to show that the decomposition
described in () need not be unique.

(c) Let (X, o, u) be a measure space such that 0 < y(X) <ocoand u
assumes infinitely many distinct values. Show that there is an infinite
pairwise disjoint family {4,}>.; C & such that 0 < u(4,) < oo for all n.

(d) Let (X, &7, u) be a measure space such that every 4 €./ such
that u(4) = oo contains a set B €./ such that 0 < y(B) < co. Then
every such 4 contains a set C € & such that u(C) = oo and C is the union
of a countable number of sets of finite measure. [Hints. Let « = sup{u(B) :
B¢, BC A, u(B) < oo}. Let (B,);-, be a nondecreasing sequence of
sets in & such that u(B,) <o, B,C 4, and "lirgle u(B,) = a. Let

C= ”L=Jl B,,. The assumption u (C) < oo leads at once to a contradiction.]
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(10.57) Exercise. Let X be a set and let % be a family of subsets
of X such that AUB €% and A N B¢ Z if A, B ¢¥. Suppose also
that X ¢ & and @ € %. Such a family % is called a lattice of sets [with
unit and zero]. Let 2 be the family of all proper differences of sets in &,
ie,P2={BNA"": A, B¢%, AC B} Finally, let % be the family of
all finite disjoint unions of sets in 2. Prove the following.

(a) If D, D, €9, then DN D, €2. [If D; = B;,NA4; (7=12),
then Dy, N Dy = (By N By) N ({4, N By) U (4,0 By)).]

(b) If Uy, Uy €%, then U, N U, €%.

(c) If U ¢, then U’ €%«. [Use induction on the number #, where
U=D,UD,U---UD,]

(d) The family % is the smallest algebra of subsets of X containing Z.

Let o be a o-algebra of subsets of X such that & C &/ and let u
and v be two measures defined on /.

(e) If u(d)=7v(4) for all 4 €L and if there exists a sequence

(4,) € &£ such that nlglA,,= X and u(4,) <o for all n¢N, then
u(E) = »(E) for all E € £(&). [First show that u and » agree on %
and then use (10.39).]

(10.58) Exercise. Use (10.57) to prove the following.

(a) If X is a topological space and u and v are two finite measures
defined on #(X) that agree on (1) the family of all open sets, or (2) the
family of all closed sets, or (3) the family of all compact sets [in the case
that X is o-compact], then g and » agree on % (X).

(b) If X is a metric space and u is a finite measure defined on #Z(X),
then u(E) = inf{u(U): U is open, E C U} for all E ¢ Z(X). [Define
»(E) = inf{u(U): U is open, E C U} for all EC X. Show that v is a
metric outer measure (10.48) and use (a).]

§ 11. Measurable functions

(11.1) Introduction. As was pointed out in (10.40.d), the outer meas-
ures ¢ constructed in § 9 from nonnegative linear functionals I need not
be even finitely additive on all sets. However, we have learned that they
are in fact countably additive on their g-algebras of measurable sets.
In like manner, we cannot expect that the extensions I should be finitely
additive on all nonnegative functions [see (10.41)]. In this section we
construct a large class of functions on which the functionals I are countably
additive. [The countable additivity will be proved in § 12.] These so-
called measurable functions bear a relationship to the family of all func-
tions which is analogous in many ways to the relation between measurable
sets and the family of all sets.
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Throughout this section, X will denote an arbitrary set and &/ will
denote an arbitrary g-algebra of subsets of X. The ordered pair (X, &)
is called a measurable space?.

(11.2) Definition. Let f be an extended real-valued function defined
on X. Suppose that f-1(Ja,oc]) €7 for every a€R, e, {x €X:
a < f(x) £ oo} €& for all real numbers a. Then f is said to be an /-
measurable function. [The reader should notice that this definition closely
resembles the definition of lower semicontinuity (7.21.d).] If X is a
topological space and & is the g-algebra #(X) of Borel sets, then any
& (X)-measurable function is said to be Borel measurable. If X = R
and & = 4, then an .#-measurable function is called a Lebesgue
measurable function. [Notice that the definition of measurable function
depends in no way upon any measure, but only upon a particular
g-algebra.]

(11.3) Theorem. Let D be any dense subset of R [that is, D™ = R].
The following conditions on an extended real-valued function f with domain
X are equivalent:

(i) fis of-measurable;
(ii) f~*(la, ]) € for all a € D;
(iil) f~*({a, o]} €& for all a € D;
(iv) fY([—oc,al) €L foralla €D,

V) F([—o0,a)) €L forall a €D .

Proof. It is trivial that (i) implies (ii). To see that (ii) implies (iii),
let a € D and let (a,) be a strictly increasing sequence in D such that
a, - a. Then we have f-1([a, o]) = ”Ql 71 (Ja,, oo]). To see that (iii)
implies (iv), observe that f~1({— oo, a[) = (f~1([4, o=]))". The proof that
(iv) implies (v) is similar to the proof that (ii) implies (iii). It remains
only to show that (v) implies (i). For @ € R, choose a strictly decreasing
sequence (b,) in D such that b, - a. Then

108, ) = ([, (-0, 80) - ©

(11.4) Theorem. Let f be an extended rveal-valued function having
domain X. Then [ is s/-measurable if and only if

(i) f~2({—o0}) and f-1({oo}) are both in o,
and

(ii) f~Y(B) € for every B € #(R).

Proof. Since Ja, oo € #(R) and Ja, o] = Ja, co[ U {oo} for every
a € R, it is clear that (i) and (ii) imply that f is &/-measurable.

1 A purist might cavil at the term ‘“measurable space’’, as there is absolutely no
guarantee that a nontrivial measure exists on &. We use the term faute de mieux.
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Conversely, suppose that f is &/-measurable. Then

fr—ooh) = A, fH (1= oo, ) €7 and [ ({oo}) = 1171 (im0l

Thus (i) obtains. To prove (ii), let & ={S C R:f1(S) € &} We will
show that . is a ¢-algebra of subsets of R. Clearly o € &%. If (S,) is

any sequence in %, then f-! (nL;ll Sn) = ”L__Jl 1~1(S,) €7 ; thus countable
unions of sets in & are again in &. If S € &, then

[FHROS) = [f7(S) U ({—oe}) U ({oe})] €
thus & is closed under complementation. It follows that &% is a ¢-algebra
of subsets of R. We next show that . contains every open subset of R.
Indeed, since f is &/-measurable, R € &, and (i) is true, we have f~1(Ja, o))
€/ and f~2([— oo, b[) € & whenever —oco < a < o0 and —o0 < b < oo.
Thus if Ja, b[ is any open interval of R, we have

17*(1a, b[) = f~([— o0, 8[) N /=1 (la, ]) € &
and so ]a, b[ € &. It follows that all open subsets of R are in &. Thus
& is a o-algebra containing #(R) and (ii) obtains. 0O

(11.5) Corollary. Suppose that X is a topological space and that
A D B(X). Then all real-valued continuwous functions and all extended
real-valued lower [upper] semicontinuous functions defined on X are of-
measurable.

(11.6) Remark. It is clear that if f is a real-valued Lebesgue measur-
able function on R, then /~1(B) is a Lebesgue measurable set whenever B
is a Borel set. It is worth noting that even for certain real-valued con-
tinuous functions f on R there exist Lebesgue measurable sets 4 such that
f~1(A4) is not Lebesgue measurable. We sketch the construction of such
a set. Let P be a nowhere dense perfect subset of [0, 1] such that
infP =0, supP =1, and 1(P) > 0 (10.53.a). Let C denote CANTOR’S
ternary set. Let # and _# denote the families of component open sub-
intervals of [0, 1] that are complementary to P and C, respectively.
Linearly order both .# and ¢ in the obvious way (I, < I, if I, lies to
the left of I,]. Then # and _# are both of order type 7 (4.53), and so
there exists an order-isomorphism ¢ from .# onto #. [If P is a Cantor-
like set constructed as in (6.62), then ¢ can be defined explicitly by
associating complementary intervals having like subscripts.] Define
a function f from [0, 1] onto [0, 1] as follows: f(0) = 0; for I €.#, define f
linearly from I onto ¢ (I) by mapping the lower [upper] endpoint of I
to the lower [upper] endpoint of ¢ (I) and joining with a line segment;
and forx € P N {0}, define f(x) = sup{f(): t < x,t €US = [0,1] N P’}.
Then f is a continuous one-to-one [strictly increasing!] function from
[0, 1] onto [0, 1] and f(P) = C. Let S be a non Lebesgue measurable
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subset of P (10.28) and let 4 = f(S). Then we have 4 C C, so that
A(A) =0 and 4 ¢ .#. However f~1(4) = S ¢ .#. [Note that the above
construction can be used to show that any two nowhere dense compact
perfect subsets of R are homeomorphic.]

We conclude from (11.4) that the set 4 in the above example is not
a Borel set. This is yet another proof that there exist Lebesgue measur-
able sets that are not Borel sets [cf. (10.21.a)].

Let f, A, and S be as above and let g = &4. It is clear that g o f = &g
(on [0, 1]). Notice that f and g are both Lebesgue measurable and that
gof is not. Thus the composition of two measurable functions need
not be measurable. We do however have the following theorem.

(11.7) Theorem. Let ¢ be any extended real-valued function defined
on R¥ such that p=1([a, o]) N R is a Borel set for all real a, i.e., @ is
B (R*)-measurable. Let f be of-measurable. Then @ o f is of-measurable.

Proof. We have

(p o)~ ([a, 00]) = f~Hp*([a, oo]))
= (¢ ([, ) NR)U 4, U A)
= e e, x]) NR)U f1(4,) U fH(4),
where A, = {oo} N ¢~1([a, o0]) and A_ = {—oo} N ¢~1{([a, oo]). Since
@ 1([a,]) N R is a Borel set by hypothesis, f~1(p~([a, ]) N R)
is in o, by (11.4). It is easy to see that /~1(4,) and f~1(A_) are also
in &/ ; therefore (¢ o f)~([a, oo]) € &, and so @ o f is &/-measurable. [
(11.8) Theorem. If f is o/-measurable, then the following assertions
hold.
(i) The function f + o is f-measurable for all veal o.
(i) The function af is of/-measurable for all real a.
(i) Let
NP if F(x) ds fimite,
h(x) =1 B-3f [(x) = —c0,
By if f(x) =00,
where f_ and [, are arbitrary extended real numbers and p is any positive
real number. Then h is of-measurable.
(iv) Let
[ (x)Im of f(x) is finite,
h(x) =1 B-if f(¥) = —o0,
Bs if (%) = oo,
where m is a positive integer and B_ and B, ave arbitrary extended veal
numbers. Then h is o/-measurable.

(v) Let h= -;—where [ s finite and not zevo, and let h assume constant
but arbitrary values B, B_, and P, on the sets {x € X:f(x) = oo},
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{xeX:f(x)=—oc}, and {x €X:[(x) =0}, respectively. Then h fis
o -measurable.

Proof. In each case, we define a suitable function ¢ such that the
function in question is equal to ¢ o f and apply (11.7). For (i), let

’ t4+a if tER,
P = +oo if t= +oo.
To prove (ii), let

—o00 if t=—o00,
pt) =1 at if tER,
) if t=o00
if & > 0, and
) if t=—o0,

p(t) =1at if tER,
—o0 if =00

if ¢ < 0; if &« = 0, the assertion is trivial
For (iii), let ¢ (£ o0) = B, and @ (t) = |¢|? for real ¢. Since @ is con-
tinuous on R, it is clear that ¢—!([a, oo]) N R is a Borel set for all real a.
The proof of (iv) is similar, with @(t) =tmforrealtand ¢ (+ o) = B..

To prove (v), let q)()—— for £+ 0, 00, —o0, and let ¢(0) = B,

p(foo)=p4:. 0O
(11.9) Lemma. Let f and g be s/-measurable. Then the sets
) {x€X:f(x)>gx)},
(i) {x€X:/(x) =2 g(x)},
and
() {x € X f(x) = g(x)}

are in .
Proof. We have

{reX:f@)>g()}t=Y {(x€X:f(x)>u} N {x€X:g(x) <u}),

and from this identity the measurability of (i) follows. The set (ii) is the
complement of the set (i) with the réles of f and g interchanged, and so
it too is measurable. The set (iii) is the intersection of two measurable
sets of type (ii), and so is measurable. O

(11.10) Theorem. Let f, g be /-measurable. Let h(x) = f(x) + g{x)
for all x € X such that f(x) + g(x) is defined and let h have any fixed value f
[an extended real number)] elsewhere. Then h is of-measurable.

Proof. For any real number a, we have

h=1(Ja, o0]) ={x € X : f(x) + g(x) > a} U 4,
={x€X:f(x)>a—gx}U 4,
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where
({x:f(x) = 00} N {x: g(x) = —oo})
Ag=q1U ({x:f(x) = —oc} N{x:g(x) =o0}) if a<p,
g if a= p.
The set {x € X: f(x) > a — g(x)} is in &/ by (11.9); therefore, since A4,
is also in &7, the set A=1(Ja, o0]) is in &. O

(11.11) Theorem. Let f and g be of-measurable functions. Let h be
defined on X by

hx) = f(x)gl) i x¢4
Y: it x€d,
where B is an arbitrary extended real number, and A = {x € X : f(x) = oo
and g(x) = —oc} U{x €X:f(x) =—oc0 and g(x) =oo}. Then h is an
L -measurable function.

Proof. Consider a € R such that a > 0, and let
4 if a<§8,
Aﬂ:{a if az=B.
We have A71(Ja, o0]) = {x € X : h(x) > a} = Ag U {x € X: f(x) = co and
g(x) >0t U {x € X:f(x) >0and g(x) =00} U {x € X: f(x) < 0 and

g(¥) = —oo} U {v € X: f(x) = —oo and g(x) < 0} U {x € X: f(x) and

g(#) are finite and  [(f(x) + g(9)* — (f(x) — g(x))*] > a}. Applying

(11.4), (11.8) and (11.10), we see that x~1(]a, o0]) € &. Similar expressions
hold for @ < 0 and a = 0, and it follows that % is .%/-measurable. O
We next study limits of sequences of measurable functions.

(11.12) Theorem. Let (f,) be a sequence of </-measurable functions
defined on X. Then the four functions inff,, supf,, lim f,, and Tim f,

[defined pointwise as in (7.1)] are all of-measurable.

Proof. It follows immediately from the identity {x€X:supf,(x)>a}

= Ul{x €X:/},(x) > a} that supf, is /-measurable. The &/-measur-
n= n
ability of inf £, follows at once from the identity inf £, (x) = — sup(—/, (%))
”n ” ”

[recall that —(o0)} = — o0 and — (— o0) = oo]. The rest follows from the
first two results and the identities

lim /,(x) = sup (int /, (%))

and
lim 7,(x) = inf (sup /,(x)). O
n— o0 k n=k
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(11.13) Corollary. Let f,, . . ., f, be Z-measurable. Then the functions

max{f,, ..., Im} and min{f, ..., fm}
[defined pointwise] are sf-measurable.

Proof. Define f, = f,, for all # > m and apply (11.12). O

(11.14) Corollary. If (f,) is a sequence of s/-measurable functions
defined on X and 'lli_znoofn (x) exists in R¥* for all x € X, then "ll)rrol° fn 15 -
measurable.

Proof. Since}i_r)r:o fo=1lm f, =nlﬁf,,, (11.12) applies. O

We now consider thz_;;oncept of measurability for complex-valued
[finite] functions.

(11.15) Definition. A complex-valued function f defined on X is
said to be &7-measurable if both Ref and Im{ are o/-measurable.

(11.16) Theorem. Let | be a complex-valued function defined on X.
Then the following statements are equivalent:

(i) fis &f-measurable;

(i) f~1(U) € A for each open U C K,

(iii) f~2(B) € A for every B ¢ B(K) .

Proof. Let f, = Ref and f, = Im{. Then f = f, + 1f,. First suppose
that (i) is true and let V={s+it€K:a<s<b, ¢c<t<d} where
{a, b, ¢,d}C Q. Then f~1(V) = fi*(la, 8[) O f31(Jc, d[) € . Next, let U
be any open subset of K. There exists a sequence (V) of rational rectangles

of the form V above such that U = ”lilV;,. It follows that f-1(U)

= U (Va) ¢ &/. Thus (i) implies (ii).

Now suppose that (ii) is true and set & ={SC K:f*(S) €«}.
As in the proof of (11.4), we see that & is a g-algebra of subsets of K.
Also & contains all open subsets of K, and so Z(K) C &. Thus (iii)
follows and therefore (ii) implies (iii).

Finally, suppose that (iii) is true. For a€R, let 4;={s+4¢€K:s>a}
and A,= {s + it€ K:t > a}. Then f;i*(Ja, 0]) = fi *(Ja,00[) = f}(4,) €~
because A; € #(K) (j = 1, 2). Thus f, and f, are &/-measurable, and so (i)
is true. O

(11.17) Theorem. Let f and g be complex-valued, s/-measurable func-
tions on X, let « € K, let m € N, and let p be a positive real number. Then
all of the following functions are sf-measurable on X:f + a; af, |f|*;

i i 1)+ 0 for al 2 € X514 g fe

Proof. These results all follow immediately from Definition (11.15)
by applying (11.8), (11.10), and (11.11). O
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(11.18) Theorem. Let (f,) be a sequence of sZ/-measurable complex-
valued functions on X and suppose that lim f,(x) = f(x) € K for each x € X.

Then f is of-measurable.
Proof. Apply (11.15) and (11.14). O

(11.19) Remark. Theorems (11.18) and (11.14) both require that the
sequence in question converge for every x € X. However, a large portion
of our work will deal with the case in which there is some specific meas-
ure u defined on &7, the functions in question are defined only p-almost
everywhere, and the convergence of sequences is only u-a.el. Thus
we would like a corresponding theorem for this case. Such a theorem will
require some additional hypothesis about u, for consider the case that
X =R, =%(R), u= A P =CANTOR’S ternary set, A C P, 4 ¢ #(R),
f= &4, and f, = 0 for all » ¢ N. Then each f, is & (R)-measurable and {
is not % (R)-measurable, but f,(x) > f(x) forall x ¢RN P, i.e., f, > f
A-a.e. To avoid such irritating situations, it is enough to consider complete
measures, defined as follows.

(11.20) Definition. Suppose that p is a measure defined on & and
that B € & whenever A € %7, u(4) =0, and B C 4, <.e., all subsets of
sets of measure zero are measurable. Then yu is said to be a complete
measure and (X, o, ) is called a complete measure space.

Theorem (10.7) implies that if 4 is an outer measure on X, then
(X, A, p) is a complete measure space. We gain much and lose little
[as the next theorem shows] by restricting our attention to complete
measure spaces.

(11.21) Theorem. Let (X, o/, u) be any measure space. Define
& ={EUA:Ecs/, ACB for some B¢l such that u(B)= 0}
and define i on o by the rule G(E U A) = u(E). Then o7 is a o-algebra,
i s a complete measure on s, and (X, S/, i) is a complete measure space.
This measure space is called the completion of (X, &, u) and fi is called
the completion of p.

Proof. Exercise.

(11.22) Definition. If F ¢ & and & = {F ¢« F C E}, then %
is plainly a o-algebra of subsets of E and (E, &%) is a measurable space.
A function defined on E will be called &/-measurable if it is e/p-measur-
able.

(11.23) Theorem. Let (X, o7, u) be a complete measure space and let f
be an sf-measurable function defined p-a.e. on X. Suppose that g 1s a
function defined p-a.e. on X such that f = g u-a.e. Then g is s/-measurable.

1 The term ‘“‘g-almost everywhere’” and its abbreviation “‘u-a.e.”” were defined
in (9.29) for the case in which u4 is a measure ¢ on a locally compact Hausdorff
space. The extension to arbitrary measure spaces (X, &/, #) is immediate.
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Proof. Let A ={x € (domf) N (domg) : f(x) = g(x)}. Then u(4’)=0
and all subsets of 4’ are in &7. We suppose that f and g are extended
real-valued, the complex case being similar. For 4 ¢ R, we have

g7*(Ja, ]) = (g7*(Ja, o0]) N 4) U (g7 (Ja, o]) N 4')
=(f(la, ) N A)U (g7t (Ja, o) N A) €. DO

(11.24) Theorem. Let (X, o7, u) be a complete measure space and let
(f,) be a sequence of of-measurable functions each of which is defined
u-a.e.on X. Suppose that f is defined p-a.e. on X and that lim f, (x) = f(x)

u-a.e. on X. Then f is of-measurable.
Proof. Define 4 as the set

(dom/) N (,,Q, domf,,) N EX:fo(x) > f).
It is obvious that 4 € &7 and that u(4’) = 0. For each n € N, define

flx) it xed,
&W =10 i xeca

fx) if x¢€A4,
g8 = {0 if xeA
Theorem (11.23) implies that g, is &/-measurable for all #» € N. Clearly
8. (%) - g(x) for all x ¢ X. Applying (11.14) or (11.18), we see that g
is &/-measurable. Again by (11.23), f is &/-measurable. O
Mathematical analysis is heavily concerned with convergence of
sequences and series of functions. Indeed, a main goal of analysis is the
approximation of complicated functions by means of simple functions.
[The terms ‘‘approximation”, “‘complicated”, and “simple” have dif-
ferent meanings in different situations.] Up to this point we have met
in this book two kinds of convergence: pointwise [almost everywhere]
and uniform. We now introduce a third kind of convergence and prove
some theorems that show a number of relationships among these three
kinds of convergence.
(11.25) Definition. Let (X, &/, u) be a measure space and let f and
(fn)sz1 be &7-measurable functions on X. They may be either extended
real- or complex-valued. Suppose that for every é > 0, we have

lim p((x € X /(%) — fu(3)] Z 8}) = 0.

Then (f,) is said to converge in measure [or in probability] to f. We write:
fn — f in measure.

(11.26) Theorem [F. R1Esz]. Let (X, o7, u) be a measure space and let |
and (f,) be of-measurable functions such that f, — f tn measure. Then there
exists a subsequence (f,,) such that f, — f p-a.e.

and define
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Proof. Choose 7, € N such that u({x € X: [f(#) — fu. ()] Z 1}) <=

Suppose that #,, 7,, . . ., #; have been chosen. Then choose #,,, such
that n, ., > n; and

(€ X110 = W] 2 537)) < 3 -

Let 4; =k|:|i {x f®) — f ()] = %} for each j ¢ N. Clearly we have

4,0 4,0+, Next let B= N4, Since u(d,) < 3 < oo, it
- k=1
follows from (10.15) that
p(B)=lim u(4,) < lim 3 - =1lim - =0,
j—>00 j> i 2 j—>00 27

g
8 1

that is, u(B) = 0. Next, let x ¢ B’ =7_L=JlA,’-, Then there is a j, such that

' A 1
sed, =0 {yex: 1) - fu) <5} -
Given £ >0, choose %, such that %;=j, and ki < ¢. Then k= &,
0

implies that |f(x) — f,. (¥)| < % < e. This proves that f, (x) - f(x)
forallx ¢ B. 0O
(11.27) Note. There exist sequences of functions that converge in
measure and do not converge a.e. For example, let X = [0, 1], & = .4,
p = A, and, for each #n € N, define
fa= E[L i+1] where n=2*47,0<j<2*.

2k ' 2k

Thus f; = &, 11, f2=§[0 ] ...,fm=§[L 3],.... It is clear that
’ 4’8

17,
2
A{x: |fa(x)| = 0}) é% —0 as #—>oo for every 6 >0. Thus f,—»>0

in measure. On the other hand, if x € [0, 1], the sequence (f,(x)) contains
an infinite number of 0’s and an infinite number of 1's. Thus the se-
quence of functions (f,) converges nowhere on [0, 1].

(11.28) Exercise. Find a subsequence of the sequence (f,) of (11.27)
that converges to zero A-a.e. on [0, 1]. Can you find a subsequence
(fa) of (f) that converges to zero everywhere on [0, 1]?

(11.29) Note. We have already seen several instances in which
finiteness or o-finiteness of a measure space is an essential hypothesis:
cf. for example (10.15), (10.30), (10.34), and (10.58). Our next two
theorems are stated for finite measure spaces.

(11.30) Lemma. Let (X, o, u) be a finite measure space and let f
and (f,) te of-measurable functions that are defined and finite y-a.e. on X.
Suppose that f, — | u-a.e.on X. Then for each pair of positive real numbers
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0 and ¢, there exist a set J € of and an integer ny € N such that u(J') < e
and |f(x) — fo(%)| < O for all x € ] and n = n,.

Proof. Let E = {x ¢ X : f(x) is finite, f,(x) is finite for all # €N,
f»(x) = f(x)}. By hypothesis, u(E’) = 0. For each m € N, let E,, = {x€E:

|f (%) — fa(x)] < éforalln = m}. WehaveE, CE,C--- and U E,=FE.

m=1
Therefore E] D E} D -+- and ”ﬁl E, = E’. Since u(E;) < pu(X) < oo, it
follows that "l‘l_x)r; W(E,) = u(E)=0. Thus choose #n, €N such that
u(E,) <eandset J=E,. O
(11.31) Theorem [LEBESGUE]. Let (X, &, ), f, and (f,) be as in
(11.30). Then f, — f in measure.

Proof. Choose arbitrary positive numbers 6 and ¢. For each n €N,
let S,(8)={x€X:|f(x) — fu(x)] = 6}. By (11.30), there exist J €&/
and 7y €N such that u(J)<e and |f(x) — fu(x)| <6 for all x¢J
and for all » = #n,. Thus # = #, implies S, (6) C J'. Therefore » = n,
implies u(S,(8)) < u(J') <e. Since & is arbitrary, it follows that
,,ll.n; u(S,(8) =0, i.e., f, > f in measure. 0O

(11.32) Theorem [Ecorov]. Let (X, &, p), , and (f,) be as in (11.30).
Then for each & > 0 there exists a set A € & such that u(A')y < e and
fn = [ uniformly on A.

Proof. Choose a positive number ¢. By (11.30), for each m € N there

exist J,, € and n,, € N such that u(J}) < ox and [f(x)— fa()] <o

forallx € J,,and all # = #,,. Define 4 by 4 =ml:ll]m. Then A’=mLil],',,,
and so

8

pA)E S uU) <X S

m

I

Also # = n,, implies that
sup [f (%) — fa ()| = sup |f(*) — fa (%)]
x€A %] m

1
m

A

for every m € N. Thus f, — f uniformly on 4. O

(11.33) Caution. Theorems (11.31) and (11.32) depend heavily on
the hypothesis that u(X) < oc. For example, suppose that X =R,
A =My, p=2, frn=Enns+1y and f=0. Then f,(x) - f(x) = 0 for all
%€R. But A{x€R:|f(®) — fo(®¥)| = 1}) = A([#,n + 1]) = 1+->0, and
so f, =+ in measure. Also, if 4 €.4 and A(4’) < 1, then for each n¢ N
there exists x, € A N [#, n+ 1], and so |[f(x,) — fa(@)| =1, 1.6, fn+>f
uniformly on 4.
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The remainder of this section is devoted to an investigation of the
structure of measurable functions. As usual, (X, /) is an arbitrary
measurable space.

(11.34) Definition. A simple function s on X is a function that
assumes only a finite number of values. If mgs={a, ..., a,} and

n

A, ={x €X:s(x) = o} (1 <k < n), thenitisobvious that s = PN T
E=1

(11.35) Theorem. Let [ be any complex- or extended real-valued
o/ -measurable function defined on X. Then there exists a sequence (sy)
of finite-valued, sf/-measurable, simple functions defined on X such that
Isg] S s = -+ = [sp] <+« and s, (x) — f(x) for each x ¢ X. If f is
bounded, then the functions s, can be chosen so that the convergence is uni-
form. If f = O, the sequence (s,) can be chosen so that 0 < $; = sp = *** = I

Proof. First consider the case f= 0. For each #¢N and for
1k n-2n let

A,,,,,:{xeX; bt gf(x)<—2k;},
and ‘
Define

"2 h—1

sl = X ALk (0) + nn, ().

k=1

It is clear that all of the sets 4,,; and B, are in &, and so each s, is
an o/-measurable simple function. It is also easy to see that

0sssss-=f ful=n and [f(x) — s, <5

for all x € B.. It follows that lim s, (x) = f(x) for every x ¢ X. Moreover,
if there exists 8 € R such that |f| < B, then sup [f(x) — s, (%) = -217
xeX
for all » = B; therefore s, — f uniformly on X if fis bounded.
Now consider the general case. If f is extended real-valued, define
f* = max{f,0}and {~ = —min{f, 0}. Thenf* = 0,f” = 0,andf =fr—f.
If  is complex-valued, we may write

f=f1"f2+i(f3"f4)

where each f; = 0. In either of these cases we apply the results of the
preceding paragraph to the nonnegative extended real-valued functions
making up f. We leave the details to the reader. 0O

(11.36) Theorem [N. N. Luzin]. Let X be a locally compact Haus-
dorff space and let v and M, be as in §§ 9, 10. Suppose that E ¢ M, 1(E) < oo,
and that f is a complex-valued M-measurable function on X such that

f(x) = O for all x € E'. Then for each & > 0 there exists a function g € €y (X)
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such that «({x € X: f(x) + g(x)}) < &. Moreover if |f|, < oo, then g can
be selected so that ||g|l, < | /uu

Proof. Let £ > 0 be given. Use (9.24) to select an open set U such that
ECUand «(U) <¢(E) + %. The set U is fixed throughout the proof.

(I) Suppose that /= £4. Then 4 C E and A is t-measurable. Since
t(4) < oo, we may apply (10.30) to find a compact set F such that

FCA and ((ANF) <—;—. Next use (9.24) and (6.79) to produce an

open set ¥V with compact closure suchthat FCVC U and ((VNF) < % .
Use (6.80) to obtain a continuous function g from X into [0, 1] such that
g(x) = lforallx € Fandg(x) = Oforallx € V’. Then we have: g€, (X),
g=0onU',and {x € X:f(x) + g(x)} C (VN F)U (4 N F'). It follows
that

{reX f) +gWP <5 +5=¢,

and so the proof is complete if f = &,.

n

(IT) Consider next the case that fis a simple functiion, say f = 3 opby,
k=1

where each 4, is t-measurable. We may [and do] suppose that 4, C E
for each £. Next apply (I) to find functions g, € €y, (X) such that g, = 0

on U’ and «({x €X:&4,(%) + g(¥)}) <— for 1<k =<mn Define
g =2 g Then we have: g €€y (X); g=0 on U’; and {x €X :
k=1 :

[0+ 80} C U {x €X: Eqyr) + a (1)} Thus o({x € X: /(x) +2(x)})
<Xf_e

(_III) Now consider the general case. Apply (11.35) to obtain a se-
quence (s,)n=, of .#-measurable, complex-valued, simple functions such
that s, = 0 on E’ for each # € N and s, (x¥) - /() for all x € X. For each

n ¢ N, apply (II) to obtain a function g, € €y (X) such that g, =0 on
U’ and if A, = {x €X : 5, (x) + ga ()}, then 1(4,) <57 Let 4 = U 4,
It is clear that 4 C U and that

oo

W) £ X i(d,) < §%=%

n=1
Clearly s,(x) =g,(x) for all ¥ €A’ and all » € N. Thus g,(x) - f(x)
for all ¥ €A’. Since ¢(U N 4’) < o0, EGOROV’S theorem (11.32) shows

that there is an -measurable set B C U N A4’ such that «(UNA4'N B’) < -
and g, - f uniformly on B. Next use (10.30) to select a compact set
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F C B such that ((BNF’) < —. Plainly g,/ uniformly on F U U’
7} y & y

[recall that g, = /=0 on U’]. Since each g, is continuous, it follows
from (7.9) that f is continuous on F U U’ [in the relative topology].
Applying the TIETZE extension theorem (7.40), for the compact set F
and its open superset U, we find a function g € €y (X) such that f(x) =g ()
for all x ¢ F U U’. We have

{xeX: f¥) g} CUNF =40 UNANB)U(BNF'),
and so
({reX:f@) +g@) =¢(4d)+(UNA'NB)+«(BNF)
<s+gt+s<e.
Finally, suppose that |f|, <oo and |g[, > |fl.. This is certainly
possible. In this case we tamper a little with g to obtain the desired con-

clusion. Let S={2€K:|z| < |/} and T = {z€K: 2| < [g|s}. De-
fine 2 mapping ¢ from T onto S as follows:

o) = z if z¢S
oMl i 26T

It is easy to see that ¢ is continuous and that |p(2)| = |fl,forz € T N S".
Now let & = @ o g. Then £ is continuous and /(x) = 0 whenever g(x) = 0;
thus & € €po(X). Also it is evident that [A], = |f], and {x €X:{(x)
+hx)}C{xreX:f(x) +gx)} O

(11.37) Exercise: Measures on measurable subsets. Let (X, &/, u) be
a measure space and E a set in &/. Let &% be as in (11.22), and let ug
be the restriction of u to &%. Prove that (E, &%, ug) is a measure space.

(11.38) Exercise: Measures on image sets. (a) Let (X, s/, u) be a
measure space 'and 7 a mapping of X onto a set Y. Let & be the family
of all subsets B of Y such that 7=1(B) € &/. For B € %, let
v(B) = u(z"1(B)). Prove that (Y, &, ») is a measure space.

‘(b) State and prove an analogue of (a) for outer measures.

(11.39) Exercise: Measures on nonmeasurable subsets. (a) Let (X, 7, u)
be a measure space and let Y be a subset of X such that if BC Y’
and B € &, then u(B) = 0. Let o/t be the family of all sets ¥ N M for
M c /. For Mt € o1, define u'(M') as u(M) for an arbitrary M ¢ &/
such that Y N M = M*'. Prove that u' is well defined, that tis a
o-algebra of subsets of Y, and that (Y, &1, u') is a measure space.

(b) Consider the measure space (R, .4, A). Find a subset Y of R
that is not A-measurable and which satisfies the condition of part (a).
[Hint. Use a set B as constructed in (10.54.b).]

(c) Prove that [0, 1] contains a subset D admitting a measure u
on & (D) such that u(D) =1, u(F)=0 for all compact sets FCD,
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and p(Y) = inf{u(U): U is open in the topology of D, U D Y} for all
Y € #(D). That is, (D, #(D), p) is irregular, although “outer” regular.
[Hints. Construct a subset D of [0, 1] such that DNF+ o+ D' NF
for every uncountable closed set F C [0, 1]: see (10.54.b). Then D is
non A-measurable, and so 0 << A(D) < 1. Let X be a G, set such that
DcXci[0,1] and A(X)=A(D). Then every A—measurable subset

of X N D’ has A-measure 0, and we may take u to be ( 00) l)f as in
part (a). All of the claims made for u are easy to verify. Compare this
result with (10.58).]

(11.40) Exercise: Extending a measure. Let (X, &/, u) be a measure

space. Let % be a subfamily of # (X) such that:
(i) P €< N .« implies u(P) = 0;

(i) Py, Py, Py, .. .€F irnply"L_Jl P, c&.

Let &/* be the family of all subsets 4* of X such that the symmetric
difference 4* A A is in & for some 4 €.&/. For such a set 4%, let
u*(4%) = p(A).

(a) Prove that &/* is a g-algebra of subsets of X.

(b) Prove that u* is well defined on &/* and that (X, &/*, u*) is a
measure space.

(c) In what sense is (X, &*, u*) an extension of (X, &, u)?

(d) Find a simple hypothesis on & necessary and sufficient for
(X, &*, u*) to be a complete measure space. Prove your assertion!

(11.41) Exercise. Let (X, &7, u) be a finite measure space. Let
(fa)2-; be a sequence of extended real-valued, ./-measurable functions
on X. Suppose that '}1_1){10 fn(x) = f(x) for p-almost all x € X, where f

is extended real-valued and &/-measurable. Define arctan(oco) =

|8

%, and consider the functions arctan of, and
arctan o f. Now formulate and prove an analogue of EGOROV’S theorem
(11.32) on uniform convergence of f, to f except on sets of arbitrarily

small measure.

(11.42) Exercise. Let (X, &, u) be a o-finite measure space and let f
and (f,) be &/-measurable complex-valued functions that are defined
u-a.e. on X. Suppose that f, > f u-a.e. on X. Prove that there exists a

set H¢o/ and a family {E,}fL, €& such that X=HU U E,,
u(H) =0, and f,— f uniformly on each E,. [Use EGorov’s theorem
(11.32).]

(11.43) Exercise. (a) Find a sequence (f,) € €([0, 1]) and a real-
valued function f such that f,(x) - f(x) for all x € [0, 1] but f,—>f

and arctan(—oo) = —
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uniformly on no subinterval of [0, 1]. [Make f discontinuous on a
dense set.]

(b) Use the sequence constructed in (a) to show that the conclusion
of (11.42) fails for the measure space ([0, 1], Z([0, 1]), ») where » is
counting measure on [0, 1] (10.4.a). [Show that the E;'s can be taken
closed and apply BAIRE's category theorem (6.54).]

(c) Show that there is a sequence (f,) € € ([0, 1]) such that £, (x) -0
for every x € [0, 1] but f, >0 uniformly on no subinterval of [0, 1].
[For each # € N, let F, be the set of all numbers in ]0, 1] having the form

—Zk; for an integer k and an integer m€{0, 1, ..., n}. Let f, be zevo on F,.
For ~2k7 ¢ E,, where & is odd, let fn(% — 3}3) = % . Let /, be linear
in all subintervals of [0, 1] where it is not yet defined.}

(11.44) Exercise. Let X be a locally compact Hausdorff space and
let ¢ be a measure on X as in §9. Suppose that f is a complex-valued
A-measurable function on X such that {x € X: /(%) # O} is o-finite
with respect to ¢« Prove that there exists a Borel measurable function
g on X such that |g| < |f| and ¢({x € X : f(¥) & g(x)}) = 0. [Use (11.35)
and (10.34).]

(11.45) Exercise. Let (X, &, u) be a finite measure space. Suppose
that f and (f,)>, are &/-measurable complex-valued functions on X.
Prove that f, — f in measure if and only if each subsequence of (f,)
admits a subsubsequence that converges to f u-a.e.

(11.46) Exercise. Let X be a topological space. A family € of com-
plex-valued functions on X is said to be closed under pointwise limits if
f € € whenever f is a complex-valued function on X and, for some
sequence (f,) C €, f(x) = '}molo fa(x) for all x € X. The family R(X) of

all Baire functions on X is defined to be the intersection of all families €
of complex-valued functions on X such that € contains all complex-
valued continuous functions on X and € is closed under pointwise
limits. Notice that KX is such a class €.

(a) Prove that every Baire function is Borel measurable.

Let R, be the set of all complex-valued continuous functions on X.
If « is an ordinal number such that 0 < « < 2 [see (4.49)], define R,
to be the family of all functions f such that f is the pointwise limit of some
sequence (f,) C U {R;: B is an ordinal number, § < «}. The functions
in R, are known as the Baire functions of type «.

(b) Prove that R(X) = aLJQ R, [compare the proof of (10.23)].
(c) Prove that if f and g are Baire functions, then so are f + g, fg,

and |f|; if f and g are real-valued Baire functions, then so are max{f, g}
and min{/, g} [use (b) and transfinite induction].
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Let %,(X) be the smallest o-algebra of subsets of X that contains all
sets of the form {x € X : f(x) = 0}, where { is a continuous complex-valued
function on X. The sets in #,(X) are called the Baire sets of X.

(d) Prove that f € R(X) if and only if / is a complex-valued function
on X and f is #,(X)-measurable. [For the “if” statement, first show that
{ECX: % € R(X)} = %y(X), and then use (11.35). For the “only if”
statement use (b) and transfinite induction.]

(e) Prove that %,(X) = #(X) if X is a metric space [use (6.86)].

§ 12. The abstract Lebesgue integral

This is perhaps the most important single section in the entire
book. In it we construct, and study the remarkable properties of, the
Lebesgue integral on an arbitrary measure space. It turns out that this
integral is equal to the functional I for all nonnegative measurable func-
tions when the measure space is (X, .4, ¢). Throughout the present
section, (X, .o/, ) denotes an arbitrary measure space, except where
further restrictions are explicitly stated. The symbol & denotes all simple,
&/-measurable functions on X that are complex- or extended real-valued;
€™ is as usual the set of all nonnegative functions in &.

(12.1) Definition. A measurable dissection of X is any finite, pairwise

disjoint family {4,, 4,, .. ., 4,} C & such that Y 4di=X.
(12.2) Definition. Let f be any function from X into [0, oo]. Define

L(f) =sup {k§ inf{f(x) : ¥ €A} u(A4p) 1 {4y, ..., 4}
is a measurable dissection of X} .

Since one or more 4;’s may be @, we must define inf @ : as a matter of
convenience we set inf @ = 0.
For an extended real-valued function f we define [just as in (11.35)]

f*=max{/,0} and f = —min{f, 0}.

Noticethatf* = 0,/ = 0,andf = f* — /. Wedefine L (f) = L(f*)—L(f")
provided that at least one of the numbers L (f*) and L (/") is finite. If
L(f*) = L(f") = oo, then we do not define L (f). The number L (f) [when
defined] is called the Lebesgue integral [or simply the ¢ntegral] of f.

(12.3) Examples.

(@) If @ € R¥ and f(x) = « for all x € X, then L(f) = au(X).

(b) If (%) = oo for x € E and u(E) > 0, then L(f) = oo if it is defined.

() If X = [0, 1], u = 4, and f is nonnegative and Riemann integrable
on [0, 1], then L{f) = S(f; [0, 1]). This inequality is all but trivial: each
lower Darboux sum for f is less than or equal to one of the numbers of
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which L(f) is the supremum. [Actually the equality L(f) = S(f; [0, 1])
holds: see (12.51.1) infra.]

(12.4) Theorem. Let f€ &%, say f= 3 anég,, where the Ey's are
‘ =8
patrwise disjoint and in &f. Then L(f) exists and L(f) = 3 o u(Ey).
E=1
Proof. We may suppose that the pairwise disjoint family {E.}i_,

covers X. Since inf{f(x):x €E;} = ap, we have L(f) = Y o u(E;).
k=1

Now let {B,}~, be an arbitrary measurable dissection of X. Then

é’:inf{f(x) x€BYu(B) = 3 Zint{f(s): € B} w(Ex 0 B)

*

I

A
s
[\13 u

<
I
—
==
]
—_

inf{f(x) : x € E, N B;} u(ExN B;)

M:

o w(Ex N B)

M. b3
T

oy (Ey) -

2
li

Thus we obtain L(f) £ } a, u(E;) and hence L{f) = Zak u(Ey). 0O
E=1

(12.5) Theorem. Let f and g be any nomnegative functions on X.
If f(x) < g(w) for all x € X, then L(f) < L(g).
Proof. Trivial.

(12.6) Theorem Let | be a mnonnegative measurable function. If
u({x € X : f(x) > 0}) is positive, then L(f) is positive.

Proof. We will find a set A € &7 and a positive number « such that
u(A) > 0and f(x) = a for all ¥ € 4. It will then follow that

L(f) = inf{f(x) :x € A} p(4) + inf{f(x): x € A"} u(4")
= au(d)>0.

For each positive integer #, let 4, = {xEX fx) = %} We have
4,C4,C- C4,C - and U 4,—{x €X:}(x) >0}. By (10.13)
we have }Lrg n(d,) = ,u("lzj]An) > 0. Hence there is a positive integer
no for which u(4,) > 0 and f(x) = nioon 4,. O

(12.7) Theorem. Let f and g be in S*. Then we have L(f + g)
—L()+L(e).
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Proof. Write f= 3 &;&4,and g= Z B &5, wherejEJIA,-= kL_Jl B,=X.
A = e

Then f + g = 3 3 (&; + Br) &4,;nBy- Thus by (12.4) we have
j=1 k=1
L(f+g) = Z,ZI:Z’,!(% + B1) 1n(4; N By)
ishi=
=21?1“1ﬂ(Ajan)+225 p(4; 0 By)
7=1r= k=1j=1

I
Ms

,t(A,.n(kngk)) Su(mn(04)
(4,) + é B 14(Br)

L)+ L. O

(12.8) Theorem. If {= 0 and t€R, then we have L(tf) = tL(f).
The proof is easy and is omitted.
Our immediate aim is to establish the extremely important identity

<.
I
—

&

I
l\’.} .

L(Zn)= L

for all sequences (f,) of nonnegative ./-measurable functions. We
begin with a lemma.

(12.9) Lemma. Let f be any extended real-valued function on X and
suppose that E = {x € X : f(x) = O} is an </-measurable set. Let g
and pg be as in (11.22) and (11.37). Then, if L (f) exists, we have L (f) = Lg(f),
where Ly is the integral for the measure space (E, g, ug).

Proof. First suppose that f = 0 and let y be any real number such
that y < L(f). There exists a measurable dissection {4;, ..., Ap} of X
satisfying the inequality

y < kz,‘linf{f(x) tx CAg) u(Ady)
Using the fact that E is in &/, we have

y < ké inf{f(x) : x € A} p(d, O E) + é inf{f(x) : x € Ay} p(4, N E)

< Sinf{f(3):x €4, 0 E} p(dy 0 E)
k=1

= Lg(f) .
[Note that 4, N E’ + o implies inf{/(x): x € 4,} = 0.] It follows that
L(f) = Lg(f).
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Next suppose that y < Lg(f), and let {B,}i-.; be any measurable
dissection of E such that -

y< B int{f(s) € B u(Ba).
We have
y < X inf{f(x): x € Ba} u(Ba) + 0 p(E) = L),

and so Lg(f) < L(f). The assertion for arbitrary functions follows im-
mediately. O

The following result, which looks harmless enough, is the key to
the proof that L is countably additive.

(12.10) Theorem. Let (g,)2, be any nondecreasing sequence in S*.
Suppose that h ¢ S and that ,}E?o &n = h. Then we have ,}Lrg L(g,) = L(h).

Proof. The theorem is trivialif x4 (X) =0, and so we suppose throughout
that 0 < u(X) < . Let b=y, &g, + y2ég, + * * * + Ym&E,,,» Where the

E,’sare pairwise disjoint, X = U Ey, and 0 = 9, <y, < *** < Ym = 0.
Suppose that y; = 0; then by (12.9) we have L (h) = LE; (h). Supposing
that the theorem is established for the case y, > 0 and letting E; take
the réle of X, we have
L(k) = Lg; (k) < lim Ly (g,) < lim L(g,) .
1 n—>co 1 7n-—>00

It thus suffices to prove the theorem under the assumption that y,>0.
Case (I): u(X) and y,, are finite. For any é > 0, choose & > 0 satisfy-
ing the inequality
&£ = min {———6—— % } .
= 2u(X)’ 1
For every positive integer », let S, = {x € X : g,(x) > h(x) — &}. Since

lim g, = 4, we have X =”L=JIS,,. The sequence (g,) is nondecreasing,

7n—>00
and so the sequence S,, S,, . . . is nondecreasing. From these facts and

the countable additivity of 4, we find (10.13) that
lim 4(S,) = p(X)
and that
lim p(S,)=0.1
We also have L(g,) = L(gn&s,) = L((h — ¢€)és,) = L(h&s,) — eL(&s,).
The relations h = hég, + hég, < hés, + ymés, imply that L(h) =

1 Countable additivity of u is used in Case (I) only to establish this relation.
However, countable additivity is essential: the theorem fails for u’s that are finitely
but not countably additive.
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L(h&s,) + Pm p(S,). Hence
L(ga) Z L (k) — ym pe(Ss) — ep(Sn)
=L(h) — ymp(Ss) — (X)
= L(h) — ymp(Sa) —

If » is so large that y,, u(S,) <—g—, then we have L(g,) > L(h) — é.
The inequality lim L(g,) = L (k) follows, as § is arbitrary.

Case (II): 9, is finite and wu(X)=oc. We plainly have L (k)
y1u(X) = oo. Let & be any number such that 0 < ¢ < y;, and define
for n € N just as in Case (I). For x € S,, we have g,(x) > k(x) — ¢
y, — &. Therefore the relations L(g,) = L(g.és,) = L((y1— &) é&s,)
(y, — €) u(S,) obtain, and (10.13) implies that

lim L(g) 2 (2 — €) lim s(S,) = (32 — #) () = o0 =L (h) .

IRVELLY,

Case (III): u(E,) is positive and y,, = c. Here we have L (h)
2 Ym p(Ep) = . Choose any real number y > y,_;, and let

hy=y &g, + "+ Ym-1%c,, + &g, By Cases (I) and (II), we have
lim L(g,) = L(h,) = yu(E,). Since y can be arbitrarily large, it follows
7n—»00

that lim L(g,) = co = L(A).
m—1
Case (IV): y,, = o and u(E,,) = 0. Here we have L (h)= } y; u(E,).
j=1

Let B=E,UE,U---UE,,_, Then

&= gnép and lim g fp = hip= 2 i€, -
Since 9,,_, < oo, Case (I) or Case (1I) applies to (g,&p) and A &g, so that
lim L(g,) = lim L(g,&p) = L(hép)=L(h). O

(12.11) Theorem. Let (g,) be a nondecreasing sequence of functions in
&*. Then we have lim L (g,) = L (lim g,).
Proof. Let lim g, = @, and let y be any real number such that

y < L(p). There exists a measurable dissection {4;, 4,, ..., A} of X
such that

y< Eintlp A uia) =L (£ artar) = lim L)

where a; = inf{p(x):x € 4,}. Here we have used (12.10). Since y is
arbitrary, we infer that L(p) < lim L(g,). The reverse inequality is
n—>00

immediate. O
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(12.12) Theorem. ‘Let f and g be nonnegative o/-measurable functions.
Then
L{f+e9=L(H+L(g)-

Proof. Let (f,) and (g,) be nondecreasing sequences of nonnegative
simple functions with limits f and g respectively (11.35). The sequence
(fn + &n) increases to f + g, and so by (12.11) and the additivity of L on
nonnegative simple functions (12.7), we have

L(f)+L(g) = im L(f) + lim L(g) = lim L(fy + g) = L(f + ¢) . O

(12.13) Theorem. Let f be a nonnegative of -measurable function on X.
Then L(f) = 0 if and only if f = 0 u-a.e.

Proof. Let E={x ¢ X:f(x) > 0}. If L(f) = 0, then it follows from
(12.6) that u(E) = 0, i.e., f = 0 a.e. Conversely, suppose that u(E)=0.
Then

OSL(f)s L(co-ép)=c0-u(E)=0. O

(12.14) Theorem. Let f and g be f/-measurable, extended real-valued
functions on X such that f = g p-a.e. and L(f) is defined. Then L(g) is
defined and L (g) = L (f).

Proof. Let E = {x ¢ X : f(x) + g(x)}. By hypothesis y(E) = 0.

Case (I): f = 0, g = 0. Apply (12.12) and (12.13) to obtain

L =L(fép) + L(fép) = L(fér) = L(gép) = L(gkr) + L(gér) = L(g).

Case (II): general case. For x € X such that f(x) = g(x), we have
F*(#) = max{f(x), 0} = max{g(x), 0} = g* (x) and ¢ (x) = —min{g(»), 0}
= —min{f(x), 0} = /~ (x). Therefore

PeX: frx) gV {xeX:f(x)+g ¥} CE,

andso f* =g*a.e.and f = g~ a.e. Applying Case (I) twice, we conclude
that L(f) = L(/) = L(f) = L(¢") — L(g) = L(g). O

(12.15) Theorem. Let f be an extended real-valued, sZ/-measurable
function defined on X and suppose that L(f) is defined and finite. Then
u{x € X : f(x) = L oo}) =0, i.e., fis finite y-a.e.

Proof. Let A ={xcX:f(x) =} and B={x¢X:f(x) = —oo}.
By the definition of L we have

oo+ p(d) + inf{f*(x) : x ¢ A7} p(4') < L(F) <o
and

oo u(B) +inf{f-(x):x ¢ B} u(B)< L(f) <.
It follows that u(4) = u(B)=0. O

(12.16) Remarks. Let / be an extended real-valued, ./-measurable
function defined on X, let E be any set in &, and let « be any extended
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real number. Let £, be the function on X such that

. a if x¢E,

It is obvious from (11.2) that f, is &/-measurable. If y(E) = 0 and L(f)
is defined, then (12.14) shows that L (f,) is defined and that L (f,) = L(f).
If L (f) is finite, we use (12.15) and the value « = 0 [say] in (i) to replace /
by a finite-valued function f, equal to f a.e. and having the same integral
as f. Thus we lose nothing in dealing with &/-measurable functions having
finite integrals if we suppose that these functions are finite-valued. It is
also convenient at times to consider functions defined only almost
everywhere. The definition follows.

(12.17) Definition. Let E be a set in &/ such that u(E’) = 0. Let
& be as in (11.37), and let f be an -measurable, extended real-valued
function defined on E. Let f, be any extended real-valued, s/-measurable
function on X such that f,(x) = f (%) for x € E [e.g., fo(¥) = 0 for x € E'].
Let L(f) = L(f,) if L(f,) is defined, and leave L(f) undefined if L (f,)
is undefined. [It is immediate from (12.14) that L(f) is uniquely deter-
mined by the definition just given.] We shall frequently in the sequel
encounter functions that are defined only on sets E as above and are
Sfg-measurable. To avoid tedious repetition, we shall call such functions
&f-measurable, although this is not really correct, and we will whenever
convenient think of these functions as being extended over all of X so
as to be &/-measurable.

We now introduce a very important space of functions.

(12.18) Definition. We define 2](X, .o/, u) as the set of all «/-
measurable real-valued functions f defined u-a.e. on X such that L(f)
exists and is finite. Where confusion seems impossible, we will write
L1 for Q1(X, A, y).

The functional L is ordinarily written in integral notation:

L(f) =Xff(x) dp () =Xff(t) du(t) =Xffd#= [fap.
We will adopt this notation in dealing with ./-measurable functions.

b b
In case X = [a,b] and u= A, we write [/(x)dx, [f(f)dt, etc., for

) oo b
[ fdA. The notations [ f(x) dx, [ f(x)dx, and [ f(x)dx are self-
[a,?] — o0 a —
explanatory.

(12.19) Theorem. Let f € £, and let f=f, — f,, where f, 2 0, f2=0
and fy, f, € L5. Then

[fap=[hap— [fdu.
x x x
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Proof. By definition, we have f fdu= f frdu— f f~ du. Since

fi—fa=1"—/f, we have f, +f = f+ + fo From thls equality and
(12.12) we infer that

Jhap+ [fdu=[f"du+ [frdu. O
X X X x
(12.20) Theorem. For f, g € & and «, B € R, we have
J(«f+Bgdp=affdu+ B [gdu.
X x x
That is, the mapping f — [ f du is a linear functional on L.
X

The proof is easy and is omitted.

(12.21) Theorem [LEBESGUE]. Lef (f,) be a sequence of nonnegative,
extended real-valued, of-measurable functions on X. Then

f(fgfj) = 75‘:}-{]‘1‘#‘-

Proof. For every positive integer m, we have

[\18

Zf;,

<.
I

1
therefore

f(fif’)d“gf(éf’)d”=;xfffd ,
X X

and consequently
J(E)a=5 1

For every positive integer #, let (s)%°, be a nondecreasing sequence
of functions in &* with limit f,. For 2 € N, let g, = s{® + s 4 .. 4 s{®,
The sequence (g;)5~; is obviously nondecreasing. If m < k, then we have

P +sP R =g h+ ot hs Z

Taking the limit with respect to &, we find that
f1+f2+"'+fm§,}in;gk§2;fj
1=
for each m. Taking the limit with respect to m, we obtain

. _ had k|
Lim g ",é/"'
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Now (12.11) implies that

Li)du=lim [gdu= lm [(fiefotr--+fi)dpu
k—>00 x koo x

=1
X

= lim Z [ 1;dp = E [fidu. O

koo iy X j=1X
(12.22) B. Levr’s Theorem. Let (f,)i>, be a nondecreasing sequence of
extended real-valued, sZ-measurable functions on X such that [ f, du < oo
X

for some k. Then
klim [tdp= [ (klim f) du
>0 x X —> 00

Proof. We may suppose with no loss of generality that f fi du < oo,
X

and in view of (12.16) that no f, assumes the value —oco. If any [ f, du
X

is equal to oo, the result is trivial. Otherwise, for k € N, we define

frar(®) = fe(x) I fr(x) < oo,
&r(®) =

co otherwise .

n—1 oo
Then we have lim f, =lim (f1+ b3 gk) =4+ 3 &2 and so by
7n—>00 #n—>00 k=1 k=1
(12.21) and (12.19),
[im f) du= [ fydu+ 3 ([ s dp— [ fudp) = lim [ fydp. D
X oo X E=1 X x n—oo i

(12.23) Farou’s Lemma. Let (f,)n-: be a sequence of nonnegative,
extended real-valued, sZ-measurable functions on X. Then
[Hm f, du < llm f]‘,, au .

X n-—»oo
Proof. For every p051t1ve integer %, let g, = mf{fk, fest - - -} Plainly
g, is &#/-measurable, (g,) is nondecreasing, and g, < f,. The hypotheses
of (12.22) obtain for (g;)s=,, and so we have
[ lim f,du = fhm g du = lim fgkdy < 11m ff,,dy 0

X n—oo
(12.24) LeBEsGUE’s Dominated Convergence Theorem. Le? (f,);-, be a
sequence of extended real-valued, sf-measurable functions each defined a.e.
on X, and suppose that there is a function s ¢ &F such that for each n,
the inequality |f,(x)| < s(x) holds a.e. on X. Then
(i) [ lim f,du < lim [ f,dp
n—so0 X

X >

(i) [Tm fudpz T [fadp.
X n—>0 y
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If lim f,(x) exists for u-almost all x ¢ X, then lim [ f,du exists and

H—>00 Nn~>»00 X

(1ii) Xf lim £, du = lim ){ fndu .

Proof. It is obvious that all f, are in £1. Hence all f,, and s, are finite
a.e.onX.Letd ={x€X:f,(x)is 4 oo or [f,(x)| > s(x) for some n € N},
let B={x € X:f,(x) is undefined for some n ¢ N}, and let C = {x ¢ X:
s(x) is infinite or is undefined}. Let f,(x) =s(x) =0 on AU BU C.
Since u(4 U B U C) = 0, (12.14) shows that none of the integrals appear-
ing in the statement of the theorem has been changed by this definition.
Furthermore we have |f,(x)| < s(x) < o for all # €N and all x € X.

The sequence (s + f,)n- consists of nonnegative functions. Applying
Farou’s lemma (12.23), we find

;){sdﬁ){'g%f,,dwf[u_m(wfn)]d/»

< lim [(s+f,) du= fsd,u+ lim [/, du.

n—>rc0 X i~ X
Thus (i) holds. [The reader will note that the function lim /, occurring
in (i) is defined only a.e., but is equal a.e. to the function lim f, with

n—00

the f, defined everywhere as in the proof.] The inequality (ii) is proved
in like manner, starting with the sequence (s — £,)o>, and using the
equality Iim «, = — lim (—a,).

n—>0 H—>0o0

Finally, if lim f, exists a.e. on X, (i) and (ii) imply that
>0
S [taduz [ lim fodp = Bm [ fudp.
Hence lim |[ f, du exists and (iii) holds. O
n—>o x
(12.25) Note. The presence of the dominating function s in the above
theorem is of the utmost importance. If no such function exists, the
conclusion may fail. For examole, let X =R, u= 4, and f, = n§]0 1].
“n
Then [fydA=n+—=1 for all #€N while Lim f,(x) =0 for all
% €R.Thatis, lim ff,dA=1+%0= flim f,dA
H—>»00 R R n—>C

We next extend our integral to complex-valued functions.

(12.26) Definition. Let £,(X, o/, u) [written for brevity as £]
denote the set of all complex-valued functions f such that f is defined
u-a.e. on X, Refc ], and Imfc Q. For f€L, we define [fdu

x

= [Refdu+ 1 { Imfdyu. Functions in £, are sometimes called ¢nfe-
X X

grable or summable.
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(12.27) Theorem. Let f,g€ R, and o, B¢ K. Then of+ g€,
and [(af + Bg)du=o [fdu+ B [gdu, ie., £ is a complex linear
x X X
space and [ - - - du is a linear functional on £,.
X
This theorem follows at once by considering real and imaginary parts

and applying previous results.

(12.28) Theorem. Let f be a complex-valued sf-measurable function
on X. Then

(1) 7 €2, if and only if |f| € &,
and

() if € &, then | [ fdu S [If] du.
Proof. Conclusion (i) follows directly from the inequalities
/| = [Ref| + [Imf] < 2|f|

and the fact that |g| = g* + g~ for real-valued g’s. To prove (ii), repeat
the argument of (9.4). O

(12.29) Note. To find necessary and sufficient conditions for equality
in the inequality | f fd,u] < [|f] du, consider 4 € £,. We then ask when
X x

the equalit
e S hdul = [ |#] du

holds. It clearly suffices to have A = exp(¢«) |#| where o is any real

number. We now show that this condition is also necessary. Suppose

then that [ Adu = exp(if) [ |#| du for a real number 8, and define
g=exp(—tf)h=g+ iy

where @, and @, are real-valued functions. We have
[odu=exp(—if) [hdp=exp(—ip)exp(f) |[ hdul=[|hldu.
Hence
[@du=fodu+ifpdu—[ 93+ du,
and therefore
Jodp=[gdu< [|p|dp < f[¢%+¢%]%du=f¢du-

Hence we have ¢, =0 a.e. and so ¢ = ¢, a.e. Since [ @ du = [ || dy,
we have @ = 0 a.e. Thus the equality ¢ = exp(—if)4 = 0 holds a.e.
and from this we conclude that % = exp(¢f) ¢, = exp(¢f) |A| a.e.

(12.30) LeBEsGUE’s Dominated Convergence Theorem [complex form].
Let (f,) be a sequence in 2, such that lim f,(x) exists uy-a.e. on X. Suppose

that there exists a function s ¢ 8% such that |f,| = s u-a.e. for each n ¢ N.
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Then lim f, € &, and
n—~»0o
lim ff,du= [lim f,du.
n—>00 X X Nn—>o0
Proof. Let f(x) = lim f,(x) whenever this limit exists. Clearly f

is defined a.e. on X and is &/-measurable. Also |f(x) — f,(x)| < [f(%)]
+ |fo(®)| £ 2s(x) for all € N and lim |f(x) — f,(x)| =0 a.e. Thus,

by (12.24) and (12.28.ii), we have
| fdp= [ fadp|S [V~ Ll du> [0du=0. O
e x x e
(12.31) Definition. Let f be any function for which [ fdu is defined.
X

For each E ¢ & we define
[fdp= [éefadu.
E X

It is easy to see that
Jian=]1dux,

where pg is the measure y restricted to the o-algebra 27z (11.37).
(12.32) Corollary. Let f be in Ly, let (A,)n-y be a pairwise disjoint

sequence in o, and write A = nL=Jl A,. Then
Jtau=2 [ fdu.
4 n=1 A,
Proof. Define g, = f&4, + * + + + [&4,. Then

lgnl = 1] € 2,

and
im g,(x) = f()Ea () ace.

From (12.30) we have
Jidu=[1&sdu=
4 x
é?l J
/1

Ag

(12.33) Corollary. Let ( f.) be a sequence of com;blex—valued &/ -measurable
functions on X such that Z Ifal € 8, [0, equivalently, )__j f |fal B < 0] .

Then 3 1, is in Slandf 3 hdu=5 ff,,d,u.
n=1 x n=1 "=1X

Proof. Exercise.

f hm gnd/"'_ hm fgnd/"
X
fau

f

lim
n—>00
=2,
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LEBESGUE’S theorem on dominated convergence (12.30), and its
cousins (12.21)—(12.24), are used very frequently in analysis. It is
not too much to say that Fourier analysis, for example, depends upon
(12.30). We shall take up some of these applications in the sequel;
for the moment we content ourselves with a simple though nonobvious
corollary of (12.22).

(12.34) Theorem. Let f€ R, (X, o, u). For every &> 0 there exists
a 6> 0 depending only on ¢ and [ such that for all E ¢ o/ satisfying
U(E) < 0, we have

[Ifldu<e.
E
Proof. Forn =1,2,...,let
o [ =
¥ n otherwise .

Then (y,) is a nondecreasing sequence of &/-measurable functions and
hm v, = |f|. By (12.22), we have

lm [ yndp= [ lim y,dp= [ |f| dp.

7n—>=00 X
Select # so that [ (|f] — v,) du < % e. Setting § = EEJ and choosing
x

any E € & such that u(E) < §, we have
1
Efzp,,d‘u _S_i['nd/z= nu(E) <ge
It follows that

|J 1] = [ du= [ (= va) A+ [ pu dp
<f([f] Wndﬂ+28<—'£+2g_g

for all E € & such that u(E) < 4. 0O

We now return to the functionals I, I, and I of § 9. We wish to show
that I is actually an integral.

(12.35) Theorem. Let X be a locally compact Hausdorff space, let 1
be a nonnegative linear functional on €y (X), I as in (9.15), and ¢ as in
(9.19). Then (X, M4, 1) is a measure space (10.20); and for every non-
negative M-measurable function f on X, we have

(i) I-(f)=){fdt-

Proof. Let (s,) be the sequence of simple functions defined in terms
of fasin (11.35):
n-2n 3

—1
sn= Z TEAn.k + nan 4

k=1
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where A4, k—{xEX Sf(x)< k} and B,={x€cX:f(x) = n}.
By (10.35) * and (12.4), we have

I(s,) = [s,de forall neN.
X

By (9.17), we have
lim I(s,)=1I(f).

7n—>00

By (12.11), we have
lim fs,de= ffdt
n— 00 X
Combining these equalities, we have (i). 0O
Theorem (12.35) is a generalized form of one of the most famous and
most important theorems of modern analysis; we now state it.

(12.36) F. Riesz’s Representation Theorem. Let X be a locally com-
pact Hausdor[f space and let I be a nonnegative linear functional on €y (X).
Then there is a measure space (X, M, 1), where M, contains all Borel sets,
such that

(i) I{f) = Xff(x) du(x)
for all f € €y (X).

Proof. This is a special case of (12.35), since I (f) = I(f) for all non-
negative f in €y (X), and I and [ - - - d¢ are linear functionals. 0
b'e

(12.37) Remark. The importance of RIESZ’s representation theorem
lies in the countable additivity of the integral, as described in (12.21)
to (12.24) and (12.30). Frequently we encounter functionals I on € (X)
that are nonnegative and linear. RiEsz’s theorem shows that we can
write I as a countably additive integral; and from this useful conse-
quences often ensue.

(12.38) Remark. In (12.36) there is no statement that the measure ¢
corresponding to a given functional I is unique. In fact, in some cases
there are distinct measures ¢ and # defined on #(X) such that
[fdv= [fdn for all €@y (X) [see (12.58) infra]. However, this
X X -

phenomenon does not occur if we restrict our attention to regular
measures.

(12.39) Definition. Let X be a locally compact Hausdorff space and
let 4 be a measure defined on a g-algebra & of subsets of X such that &/
contains # (X), the Borel sets of X. Then u is called a regular measure if:

(i) p(F) < oo for all compact sets F C X;
(i) u(A) =inf{u(U): Uisopenin X, 4 C U} forall 4 ¢ «;

(iii) u(U) = sup{u(F):F is compact, F C U} for all open sets
UcX.

1 Actually, we here need (10.35) for an arbitrary finite number of summands:
the proof of this stronger assertion is easily obtained, mutatis mutandis, from the
proof given in the text.
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It follows from (10.20), (9.27), (9.24), and (9.26) that every measure ¢
defined as in § 9 is a regular measure on .#. [Cf. the different but
related definition of regular outer measure in (10.40) supra.]

(12.40) Theorem. Let u be a regular measure defined on a c-algebra
of subsets of a locally compact Hausdorff space X. Then

u(A) = sup{u(F) : F is compact, F C A}

for every A € & that is o-finite with respect to p.
Proof. Repeat verbatim the proof of (10.30) with ¢ replaced by u. O
(12.41) Theorem. Let X be a locally compact Hausdorff space and
let u and v be regular measures defined on c-algebras M, and M, respectively.
Suppose that [fdu= [fdv for all [c€H(X). Then u(E)=»(E)
X X
for all E ¢ M, N M,

Proof. Let F be any nonvoid compact subset of X. Use (12.39.ii)
to find sequences (U,) and (¥,) of open sets containing F such that
u(Uy) < o0, ¥(Vy) < 0, u(U,) > u(F), and »(V,) - »(F). For each n € N,

set W,,= ﬂ (Ue N Vy). Then each W, is open, WD W, D+ DF,
v(W,,)—»v( ), and u(W,) - u(F). For each # ¢ N, use (6.80) to obtain

a function f, € €3, (X) such that f,(X) C [0, 1], f,(F) = {1}, and £,(W,)
C {0}. Next let g, = min{f;, ..., fu}. It is clear that &n € €& (X), that

& =g =, and that lim &n(x) = &p(x) for all x € (ngl W, ﬂF’) ,i.e.,

p-a.e.and y-a.e. Since [g du < u(W;) <cocand [gdv = v(Wy) <o,
X X

Theorem (12.24) applies to yield

p(F)= [épdp=1im [g,du=1lim [g,dv= [Epdv=19(F).
X n—+o0 y B0 x X

Thus u(F) = »(F) for all compact sets F C X.

For open sets U C X, we have u(U) = sup{u(F):F is compact,
F c U} = sup{»(F) : F is compact, F C U} = »(U). For arbitrary sets
E ¢ 4, N A, we have u(E) =inf{u(U): U is open, E C U} = inf{» (V)
Uisopen, EC U}=w»(E). O

(12.42) Theorem. Let X be a locally compact Hausdorff space and
let y be a regular measure defined on a o-algebra S/ of subsets of X such that
(X, o, p) is a complete measure space. Suppose that E € & if and only
if ENF ¢ for every compact set F C X. Define I on €y(X) by I(f)
= [ fdu and let ¢ be the measure constructed from I as in § 9. Then of = 4

X

and u(E) = (E) for all E ¢ 4,
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Proof. Let E be in o/ and suppose that u(E) < co. Since y is regular,
there exist sequences of sets (F,) and (U,) such that F,C EcC U,
each F,, is compact each U is open, u(F,) - u(E), and u(U,) —u(E).

Letd = U F,and B = ﬂ U,. Then A and B are Borel sets, A C E CB,

u(d) = ,u(E) u(B), and u(BNA')=0. It follows from (12.35)
and (12.41) that t(4) =¢(B) and ¢(B N A’) = 0. Therefore, since ¢
is complete, E=AUI[EN (BN A’')] € 4. This argument proves:

Ecs/ and u(E)<oo imply E€.4. (1)

Repeating the above argument with the réles of p and ¢ reversed,
we have
Ec# and ((E)<o imply Ecsf. 2

Next consider any E in & and any compact set F C X. By hypothesis
we have ENF €/, and of course y(E N F) < co. Therefore E N F
is in .#, for all compact sets F. Applying (10.31.iv), we infer that E € .4,
and so we have proved that &/ C .#. A very similar argument proves
the reversed inclusion, and so we have & = .#. Finally, (12.41) shows
that u(E) = ¢(E) forall E ¢ 4. O

(12.43) Remark. The hypothesis that E € &/ ifandonlyif EN F ¢ o/
for all compact sets F C X is essential to prove (12.42). For example,
let X = R;>< R, define I on €y, (X) as in (9.41), and let ¢ be the measure
induced by I. Let v be the restriction of ¢ to #(X) and let (X, &, )
be the completion of the measure space (X, #(X), ») [see (11.21)]. Then

= [ fdp for all f € €y (X), but we also have o/ & 4. We construct
e

aset 4 ¢ 4 N o as follows. Let ¢ be a one-to-one mapping of R onto
%#(R) (10.25). Define 4 = xge {{x,y):y € p(x)}. The set 4 is in .4

because 4 N F ¢ #(X) C 4 for all compact F C X. Assuming that
A ¢ o/, we have 4 = B U C where C meets only countably many lines
V.={(x.9):y € R} and B ¢ #(X). Then there exists an ordinal number
o < £2 such that B ¢ &, [where &, is the family of all open subsets of X
and succeeding &,’s are defined as in the proof of (10.23)]. Thus
BNV, ¢é&,,, for all vertical lines V,. It follows that ¢(x) € %,
[where & is the family of all open subsets of R] for all x € R except possibly
those countably many %’s for which C NV, & @. But this contradicts
the known fact that #(R) N % = o forall B < 2 [see K. KURATOWSKI,
C. R. Paris, vol. 176 (1923), 229; also see W. Sierpi¥ski, Fund. Math.,
vol. 6 (1924), 39]. Thus 4 ¢ «.

Next we note an important property of integrals with respect to
Lebesgue measure.
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(12.44) Theorem. Let f be a Lebesgue measurable function on R, let ¢
be a real number, and let f, be the translate of f by t (8.14). Then

(1) fft dx—ff dx—ff(x ) dx

whenever any of these integrals is defined.
Proof. For f = 0, the translation and inversion invariance of the
Riemann integral makes it clear that

8(f) =8 =38(f). (1)

[Use (8.15.iv), (8.15.v), (9.8), and (9.15).] Now call on (12.35); and refer
o (12.2) and (12.26) for conditions under which the integrals in (i)
are defined. 0O

(12.45) Continuous images of measures. This construction requires
some preliminary explanation, although the basic idea is simple enough.
Let X and Y be locally compact Hausdorff spaces, and let ¢ be a con-
tinuous mapping of X onto Y. Suppose that we are given a measure u
on X in the sense of §9, and make the hypothesis that

(i) @~1(F) is compact in X for every compact subset ¥ of Y
or that

(i) p(X) is finite.
Consider an arbitrary function f € €y, (Y). It is easy to see that the com-
posite function fo ¢ is in £, (X, .4, u), since it is in €, (X) if (i) holds
and is a bounded continuous function in any case and so isin £, (X, .4, u)
if u(X) is finite. Therefore the mapping

(i) / —>Xf fog®) dulx)

is a nonnegative linear functional on €, (Y). Accordingly there is a meas-
ure » in the sense of § 9 on Y such that

(iv) Jioewdu) = [ 1y

for all f ¢ €y (Y). The measure v is called the image of the measure u
under the continuous mapping .

(12.46) Theorem. Notation is as in (12.45). For all o-finite v-measur-
able subsets B of Y, we have

1) v(B) = p(p7'(B) = [ €5 o () du().
For every function f € (Y, A4, ), f o isin & (X, A, u) and we have
(i) Yff(y) dv(y) = J1op) dulx).

Proof. We proceed in steps. Suppose first that U is a nonvoid open
subset of Y. Let & be the set of all functions f in €& (Y) such that
f = &p. URYsoHN’s theorem (6.80) implies that sup{f:f¢ R} = ép,
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and it is obvious that R is directed upward in the sense of (9.11). Taking
note of (12.35) and applying (9.11) twice, we find that

W(U) = [ Eu () dvly —sup{f/ )dn(y): 1 €KY
=sup{Xffoqp ./e.@}
=stup{f0¢(x)1f€@}du(x)=Xf§U°<p(x) dp(®)
= w7 (V). M

Next suppose that B is an arbitrary subset of Y. Theorem (9.24)
and (1) show that

v(B) = inf{»(U): U is open in Y and U D B}
= inf{u(p~1(U)): Uisopenin Y and U D B}
= p(p ' (B)) - (2)
In particular, if »(B) = 0, then (i) holds for B. If F is a compact subset

of Y, then F is contained in an open set U such that U~ is compact
(6.79). Thus »(U) is finite (9.27), and so

»(U)—v(UNF')=9»(F). (3)
Apply (1) to (3) and note that U N F' is open:
= u(e71(U)) — p(e~*(U N F))
= u(p~(U) N (p~*(U N FY)))
= u(p~(F)) - 4)
Every o-finite y-measurable set B can be written as
= (”L:J1 F,,) uPpr, (5)
where F,C F,C---CF,C---, each F, is compact, P is disjoint

from "Lle F,, and »(P) = 0. This follows readily from (10.34), and we
omit the details. Applying (4) to (5) and using (10.13), we obtain

v(B) = » (0, Fo) = lim »(F,) = lim u(p=(F.)

=18, o ®) = ule (U 7)) s we®y.

Now (i) follows from (6) and (2)
Let us show that ¢=1(B) ¢ 4, for all B ¢ .4, If B is o-finite, use (5)
to write

9=1(B) = U, ¢=}(F.) U g=1(P);

each ¢~1(F,) is closed, because ¢ is continuous, and u(p=*(P))=0
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because of (2). If B is not o-finite, let £ be any compact subset of X.
We have
ENeY(B)=EN ¢~ (p(E) N B)

since g is single-valued. The set ¢ (E) N B is plainly y-measurable and
finite for », so that <p-1(<p ) N B) is y-measurable, as was just proved.
Thus E N ¢~1(B) is in 4, and (10.31) implies that ¢—*(B) is in .4,

It is now obvious that for every y-measurable complex function f
on Y, the function f o ¢ on X is y-measurable. Using (i), it is easy to
establish (ii). Consider f¢ &,(Y, .4, »); we may suppose that f = 0.
By (11.35) there is a nondecreasing sequence (s,)s ; of simple, »-measur-
able functions such that lim su(y) = f(y) everywhere on Y. Plainly

Jsm(9)dv(y) = [10)dv(y) <eo. 7

”t
Write s, = 3 a,&p, where 0 <a, <:--<«,. Then y(B,) is finite
k=1

for all %, as (7) proves, and (12.4) and (i) imply that
S0 av) = Z (B = £ anule(B)
=f(Z -1 (By (x)) dp(x)
¥ \E=1
= [smopl) du). ®

Take the limit as # — oo of both ends of (8), and cite B. LEvI’'s theorem
(12.22). This proves (ii). O

We close this section with a large collection of exercises. Of these,
(12.48), (12.51), (12.54), and (12.63) are important either for later appli-
cations or for understanding the theory expounded up to this point.
We hope that all readers will work through at least these exercises, and
that most readers will work through all of them.

(12.47) Exercise. Let (X, &, u) be any finite measure space and let &
be the set of all complex-valued #~measurable functions on X. For f, g€ &
define

o(f.g) = %d#-
X

Prove the following assertions.
(a) o(f,gy =0if and only if f =g a.e.
(b) (. &) = el(e. f)-
() ot ) = eol(f.8) + ol A).
(d) If (f,)52, satisfies ml’i‘r_r}c° @ (fnr fm) = O, then there exists a complex-

valued measurable function g such that lim p(f,, g) = 0.
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That is, identifying functions equal a.e., we have defined a complete
metric space {.

(¢) For /¢ and (f,) € F we have go(f,, f) > 0 if and only if f, > f
in measure. For this reason we call g the metric of convergence in measure.

(12.48) Exercise. Let (X, &/, u) be any measure space and let f
be a nonnegative, real-valued, bounded, &/-measurable function on X.
Let a=inf{f(x):x¢ X} and B=sup{f(x):x¢X}. For n¢N and
i=12...,n—1,let

N .

and let
A,,-——{xeX:oc—l—uué]‘(x) §ﬂ}.

n

The Lebesgue sums for f are defined as the numbers

n

s 2 (at IERE= ) fay.

i=1

Prove that lim s,= [ fdu.
X

Next suppose that u(X) < . Let f be any bounded, real-valued,
&-measurable function on X. Define s, as above. Prove that lim s, = [ fdpu.
Nn—>00 X

(12.49) Exercise. Let (X, &, u) be any finite measure space and let
(f)r>, and f be complex-valued, 2/~-measurable functions on X such that
f. — f a.e. Suppose that there exists § € R such that |f,| < f a.e. for all
n € N. Use EGOrov’s theorem, not (12.21)—(12.24) or (12.30), to prove

that
lim [f,du= [fdu.
7—>00 X X

(12.50) Exercise. Let (X, &/, u) be a o-finite measure space. Let g
be an o/-measurable function on X such that fg € &, forevery f € £,. Prove
that there is a number « ¢ R such that u({x € X:|g(x)| > oa}) =0.
Give an example to show that this conclusion may fail if the hypothesis
of o-finiteness is dropped.

(12.51) Exercise. Let —co <4 < b < oo and let f be any bounded
real-valued function on [a, b]. For each 6 >0 and x € [a, 0], define

my(x) =inf{f(f): ¢t € [a, 0] N ]x — 6, x + [}
and

M;(x) =sup{f(t):t€[a, 8] N ]Jx — 6, x + [},
and define

m(x) = laigl ms (%), M (x) = ldiw M,(x) .

(a) Prove that f is continuous at x if and only if m(x) = M (x).
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Let (4,);2, be a sequence of subdivisions of [4, b], say

dij={a=xP <P < <) =b},
such that

lim max{x{’ — 22 1<k <#n}=0.
j—>00

Let
md = inf{f(t) : 2, < t < 2P}, MP = sup{f(t): 2P, < t < 2P},

]
- i) — (0]
= 28 . 0 p= MO8 .

Prove that:
(b) if x € [a, b] and x is distinct from all x{, then lim ¢, (x) = m(x)
j—>00
and lim y;(x) = M (x);
7—)@

(c) m and M are Lebesgue measurable on [a, b];

(d) if L(f, 4;) and U (f, 4;) are the lower and upper Darboux sums
respectively [defined with a(x) = «] for the function f corresponding to the
subdivision 4;, then

b
lim L(f, 4,) = [m(x
j—>00 a

and
b
lim U(f, 4,) = [ M(x) dx;
j—>00 a

(e) f is Riemann integrable on [a, ] if and only if f is continuous
a.e., 1.e., A({x € [a, b] : { is discontinuous at x}) = 0;
(f) if f is Riemann integrable on [a, &), then f € £,([a, b], .4, A) and

b
S(f; [a, 8]) =aff(x) dx

where S denotes the Riemann integral (8.6). [The reader should note
that the foregoing applies only to bounded functions on finite intervals.]
(12.52) Exercise. Find a real-valued function f on [0, 1] such that f

is continuous on ]0, 1], llm [ fdA is finite, and the Lebesgue integral
0 8,1
of f over [0, 1] is not deﬁned
(12.53) Exercise. Find a bounded, real-valued, Lebesgue measur-

able function f on [0, 1] such that [ |[f — g| dA > 0 for every Riemann
[0, 13

integrable function g on [0, 1].
(12.54) Exercise. Let —co <a <b < oo and let f be a Lebesgue

measurable function on [, &] such that [ f(f) d¢ = 0 for every x € [a,b].

Prove that f = 0 A-a.e. [This exercise is needed for the proof of Theorem
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b
(16.34) infra. Hints are as follows. Since [ /() di exists and is finite,

I/l is in £,([a, b], 4, A). It is evident from (6.59), (12.32), and our hy-
pothesis that [ f @4 = 0 for all open subsets U of [a, b]. Use (9.24) to infer

U
that [ f 42 = Ofor all A-measurablesets 4 C [a, b]. From this the identity
A

f =0 A-a.e. is immediate.]

(12.55) Exercise. Let X be a locally compact Hausdorff space such
that every open subset of X is g-compact. Suppose that u is a measure
defined on #(X) such that u(F) <oo for all compact sets F C X.
Prove that u is a regular measure. [First consider the case that X is
compact. Consider the family # = {E € Z(X): u(E) = inf{u(U): U
is open, U D E} and u(E) = sup{u(F) : F is compact, F C E}]

(12.56) Exercise. Let 4 be a measure defined on #(R) such that
p([0,1) =1 and u(E + %) = u(E) for every E€¢#(R) and x¢R.
Prove that u(E) = A(E) for all E ¢ #(R). [First prove that u{x}) =0
for all x ¢ R. Next show that u(]a, d[) =b—a for all a <b in R. Use
(12.55)].

(12.57) Exercise. Let (X, &/, ) be an arbitrary measure space and
let f and (f,)%; be complex-valued measurable functions on X. Suppose
that f, — f in measure and that there exists a function g € 217 such that
If.l < g a.e. for all n¢N. Prove that lim [|f —f,|du= 0. [Assume

B 7->»00 D. ¢

that im [ |f — f,| du = o > 0 and choose a subsequence (f,,) such that
n—>xo y
,}im [ |f — fx) dp = . Then use (11.26)].
—» 00 X
(12.58) Exercise. Let I be the nonnegative linear functional on
Gy (Rs>< R) defined in (9.41). Define  on #(R, > R) by the rule
n(E) = X A({y: (x, y) € E}). Prove that:
26R
(a) 7 is a measure on #(R; =< R);
(b) I(f)= [ fdnforall{cCp(Ry><R);
Rg><R
(¢) 7 is not a regular measure.

(12.59) Exercise. Let X be a locally compact Hausdorff space and
let u be a regular measure defined on a g-algebra & of subsets of X
[of course & D #(X)] such that u({x}) = 0 for all x € X. Suppose that
Bisin & and that

u(B) = sup{u(F): F is compact, F C B} <.

Prove that for each « € [0, u(B)] there exists a g-compact set A C B
such that u(4) = «a.

(12.60) Exercise. Let (X, o/, u) be a measure space as described in
(10.56.2). Let f be an s/-measurable function on X. Prove that f is con-
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stant on each E, except for a set of u-measure zero, and accordingly
write the integral [ fdu as a certain finite sum.
X

(12.61) Exercise. Let (X, &7, u) be a measure space that is degenerate
in the sense of (10.3): u(A4) = 0 or u(4) = o for all A ¢ &. Show that
every function f ¢ €,(X, &7, u) vanishes except on a set of u-measure
zero and that [ |f| du = 0. [This unpleasant property justifies the term

X

“degenerate’” for the measure spaces under consideration.]

(12.62) Exercise. Let X be a locally compact, o-compact Hausdorff
space and let u be a regular measure defined on a g-algebra & of subsets
of X [ D #(X)]. Let f be an &/-measurable function on X such that
f(X) € [0, o] and such that f&p € £, (X, &, u) for all compact subsets F
of X. [Such an f is called locally p-integrable.] Define the set-function »

b
e Y4) = [ 1) duts).

Prove that v is a regular measure on .

(12.63) Exercise: Integrals on the completion of a measure space.
Let (X, &, u) be a measure space and (X, &7, ) its completion (11.21).

(a) Let  be a complex- or extended real-valued .-measurable
function defined on X. Prove that there is an &/-measurable function f
such that f = f ji-almost everywhere on X. [Hints. Suppose that f is
extended real-valued. Use (11.35) to find a sequence (5,) of real-valued,
&f -measurable, simple functions such that '}Lm §, = f everywhere. Each

§, has the form 3 «,, &4, , with 4, , € &7 and the 4, ;s pairwise dis-
%

joint. Each 4, is contained in aset B, ; <.« such that 7 (B,, ;N 4, ;) =0.
Let s, = 3 «,, €5, , and define f as lim s,.]
3

(b) Let fbe a function in £, (X, &7, 7). Prove that there is a function f
in £, (X, &, p) such that

JIf=flda=0
X

and .
Jldu= [fdf.
X X

(It suffices to consider nonnegative functions f. By adding sets of u-
measure 0, it is easy to make the simple functions s, of part (a) into a
nondecreasing sequence. By (12.22) we then find

[fdp=1lim [5,dag=1lim [s,du= [fdu.
X n—»00 X n—>0oo X X
The other equality is obvious.]

(c) Let X be a locally compact Hausdorff space and (X, .4, ¢
asin §§ 9 and 10. Suppose that X is o-finite with respect to ¢. Let #(X)
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denote the Borel sets of X. Prove that (X, .4, ¢) is the completion of
(X, #(X), t). What does this tell you about Borel measurable functions
and arbitrary .#-measurable functions? [Use part (a).]

(d) Drop the hypothesis in part (c) that X be o-finite. Let f be an
arbitrary function in £, (X, .4, t). Prove that there is a Borel measur-
able function £, on X such that f, = f t-almost everywhere and such that
|2l £ |f]- [Consider a subset Y of X o-finite with respect to ¢ such that f
vanishes on Y’ [Y can be chosen to be open if you like], and then argue
as in part (c).]

(12.64) Exercise. Let (X, &7, u) be a measure space and let f be a
complex-valued .«/-measurable function on X. Prove that f € £, (X, &, p)
if and only if there exists a sequence (s,) of simple functions such that
(s.) C £, s, — f in measure, and

im f|s, — s,/ du=0.
mn—>o0

In this case we have
ffdu=1lm [s,du.
X n—>0oc X

[If one first defines [ sdu for complex-valued, &/-measurable, simple
x

functions, then the above facts can be used to define £, and the integral
on £,. This approach is useful when dealing with functions with values
in a Banach space. It does not depend directly on the ordering of the
real numbers as our definition of the integral does.]



CHAPTER FOUR

Function Spaces and Banach Spaces

The theory of integration developed in Chapter Three enables us
to define certain spaces of functions that have remarkable properties
and are of enormous importance in analysis as well as in its applications.
We have already, in § 7, considered spaces whose points are functions.
In §7, we considered only the uniform norm | |, [see (7.3)] to define
the distance between two functions. The present chapter is concerned
with norms that are defined in one way or another from ¢nfegrals. The
most important such norms are defined and studied in § 13. These
special norms lead us very naturally to study abstract Banach spaces, to
which § 14 is devoted. While we are not concerned with Banach spaces
per se, it is an inescapable fact that many results can be proved as easily
for all Banach spaces [perhaps with some additional property] as for
the special Banach spaces defined in §§7 and 13. Our desires both
for economy of effort and for clarity of exposition dictate that we treat
these results in general Banach spaces. In § 15, we give a strictly com-
putational construction of the conjugate spaces of the function spaces
£, (1 < p < o). We have chosen this construction because of its elemen-
tary nature and also because we think that manipulation of inequalities
is something that every student of analysis should learn. In § 16, we
consider Hilbert spaces, which are £, spaces looked at abstractly, and
also give some concrete examples and illustrations.

All of the sections of this chapter are important, and the reader is
advised to study them all.

§ 13. The spaces €, (1 = p < ©)

As usual, we begin with a definition.

(13.1) Definition. Let p be a positive real number, and let (X, &7, u)
be an arbitrary measure space. Let f be a complex-valued «/-measurable
function defined w-a.e. on X such that [f|® € £]. We then say that
1 €8, (X, o, u), and we define the symbol |f||, by

o= [ 1P au]s.
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Where no confusion seems possible, we will write £, for £,(X, &, p).
For p = 1 and f € 8,, we call |f|, the norm of f or the Ly-norm of f.2
The symbols L?, L,, and £? are employed by some writers to denote £,.

For 1 < p< oo, the function f— |f|, on £, satisfies all the axioms
for a norm set down in (7.5), except for the positivity requirement:
Ifl, > 0 if f+ 0. [If & contains a nonvoid set E such that u(E) =0,
then &g =0 but |£g|l, = 0.] The only nontrivial fact is the triangle
inequality (7.5.iii), which for £, is

If + gls = Ils + lells -
We shall first prove this inequality, paying attention to possible equalities
and also obtaining some other inequalities useful in the sequel.

(13.2) Theorem [Youne’s inequality]. Let ¢ be a continuous,
real-valued, strictly increasing function defined on [0, oo such that
3_1_1;!;10 @u)=oco and @(0)=0. Let p= =t For all x¢[0, o[ define

D(x) = 0f<}’(u) du
and
x
¥ (x) =0fzp(v) dv.

Then a, b € [0, cof imply
ab < @) + V()

and equality obtains if and only if b= @ (a).
c
Proof. A formal proof can be given using the fact that [ ¢ («) du
@(c) 0
+ [ w(v)dv=ce(c) for all c = 0. However, interpreting the integrals
0

as areas, we render the result obvious by the accompanying Fig. 6. 0O

5> ) Fig. 6 b<p @

1 For p = 1, the present definition is consistent with our earlier definition of
£, given in (12.26), in view of the assertion (12.28.i).

2 For 0< p< 1 and all but a few measure spaces, the function f— ||,
on £, is not a norm in the sense of (7.5). See (13.25.c) for a discussion.
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For any positive real number p such that p = 1, define p' = £

1,1 p—1
[thus7+ = 1] .

(13.3) Corollary. For p> 1 and a and b any nonnegative real numbers,
we have

. a?
(i) abg}——}-

e
e
Equality holds in (i) if and only if a? = b?'.
Proof. For u € [0, o[, define ¢ (1) = #?~1; @ is continuous and strictly
increasing, 1}1_r>r°10 @ (u) = oo, and ¢ (0) = 0. The inverse y of ¢ is given by

1 a a
() =v?P-1. We have @(a) = [ p(u)du = [uP-1du =—‘;—:1 and ¥(b)
0 0
b b _I »’
= fy@)dv= fvP-! dvz%; [the Lebesgue integral and the Riemann in-
0 0
tegral agree on Riemann integrable functions (12.51.f)]. The corollary

follows at once from (13.2). O
(13.4) Theorem [HoOLDER’s inequality for p > 1]. Let f €8, and
g €8y, where p > 1. Then fg € 8, and we have

(i) |/ fgdul = [feldu
and

(i) Jlfglap < |fls lgles
and so also

(iii) |/ 1g dul = 1Hs gl -

Proof. We first prove (ii). [Note that (ii) and (12.28.ii) imply (i).]
If f or g is zero u-a.e., then (ii) is trivial. Otherwise, using (13.3), we have
|7 @) g ()| Ut 1 Je@)”
=— = :
M el =7 105 T 7 " lelE
for all  in X such that () and g(«) are defined, i.e., for y-almost all u.
Thus we have

1 1 1
m./‘[fgld‘ugp_“fﬁfmpdﬂ—f-mflg

and this proves (ii). The inequality (iii) is immediate. O

For p = p’'=2, the inequality (ii) is called Cauvcuy’s inequality,
or ScHWARZ's inequality, or BUNyakovskil's inequality; sometimes the
three names are listed together.

(13.5) Conditions for equality in (13.4). To get equality in (13.4.ii),
it is clearly necessary and sufficient that we have

[f)| le@)] _ 1 [f@)l> 1 |g@)|”

I, Il — 2 Wz 7 " lel

f"d‘u=—;—+P,=1,
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for almost all #€ X. By (13.3), this happens if and only if |||f|||’ llli I];:,

almost everywhere. Thus equality obtains in (13.4.ii) if and only if there
are nonnegative real numbers 4 and B, not both zero, such that

A|fit= Blgl”
almost everywhere.
The reader can easily formulate from this and (12.29) a necessary
and sufficient condition that equality hold in (13.4.iii).
(13.6) Theorem [HOLDER’s inequality for 0<p<1]. Let 0< p< 1
and let | and g be functions in L} and L, respectwely Then we have

(i) Jigau= (/1 duﬁ (f & du)7
unless [ g du = 0 [note that p’ < 0].

Proof. In the case we are concerned with, we have 0< [ g du < oo,
and since p’ < 0, this implies that g(x) >0 for almost all x € X. Let
1 1 1

g= -11)— and define p =g ¢andy=g? f¢. It is easy to see that 7 = g,

and so @ €8, If [fgdu= oo, then (i) holds trivially. Otherwise fg
is in £,, and so ¢ is in €,. Applying (13.4) with p replaced by ¢, we have

1 1 1
Jtrau=[oydu =< ([y"du) ([ ¢7dn)? = ([fgdp)? (/g du)7 .
It follows immediately that
1 1
[tegdu= ([ du)? ([ g dp) 77,

and since — ?l? = %, the theorem follows. O

(13.7) Theorem [MINKOWSKI s inequality]. For 15 p< o and
1. & € L, we have

(i) If + gl = 1fl» + l&ls -
Proof. Suppose first that p > 1. We have

If + gl? = (Ifl + lel)? = [2 max{}{|, |g[}]?
= 2* max{|f|*, |g|*} < 2°(/fi + IgI?) -

This crude estimate shows that |f + g|? € £,, i.¢., f + g € £,. Thus (13.4)
implies that

If+elo=/1f+elPdp=<[If+glf~*Ifldu+ [If+glP gl du
< ([IfiPau)? ([ If + gl E=% ) + ([ |glPap)? ([ |f +&|® ¥ du)?
b
= (Ifls + lgls) 17 + &l§" -
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The inequality
»

I +ls ? < Ifls + lels

thus holds. Observing that p — :, = 1, we obtain MINKOWSKI’S inequality

for p> 1. Since [|f+gldu = [|f|du+ [|g du, the inequality is
trivial forp = 1. O
We now give conditions for equality in MINKOWSKI'S inequality.
(13.8) Theorem. For p = 1, we obtain equality in (13.7.1) if and only if
there is a positive measurable function g such that

1(%) e(x) = g(x)

almost everywhere on the set {x:[(x)g(x) + 0}. Equality obtains for
1 < p < ooif and only if Af = Bg almost everywhere, where A and B are
nonnegative real numbers such that A2 + B2® > 0.

Proof. Exercise. B
(13.9) Theorem. For 0< p< 1and f, g € 85, we have

() 17+ els = 115+ lells -

Proof. The estimate given in (13.7) for |f + g|? shows again that
f + £ €28p. To prove (i), use (13.6.i) and the argument of (13.7). O

We next describe the exact sense in which £, is a normed linear
space (p = 1).

(13.10) Theorem. For 1 < p < oo, £, s a normed linear space over K,
where we agree that f = g means f(x) = g(x) for u-almost all x ¢ X. [Alter-
natively, let R ={f € Ly:f(x) =0 a.e. on X}; then N is a closed linear
subspace of Lp. What we call 8y upon identifying functions that are equal
a.e. s really L,/N.]

Proof. It is trivial that [[af|, = |«| [f],- All other necessary verifica-
tions have been made. O

The following theorem is of vital importance in many applications
of integration theory. A very special case, the RiEsz-FISCHER theorem,
was regarded as sensational when it was first enunciated in 1906. Now,
as we will see, the general theorem is not hard to prove.

(13.11) Theorem. For 1 < p < o, L, is a complex Banach space,
i.e., i the metric o(f, 8) = |f — &llp, L is a complete metric space.

Proof. Let (f,),2, be a Cauchy sequence in £, 7.e., (f,) has the prop-
erty that lim |f, — f.]p = 0. The sequence of numbers (f,(x))s=;

may converge at no point x € X [the sequence (f,) constructed in (11.27)
serves as an example of this phenomenon]. However, we can find a
subsequence of (f,) that does converge u-almost everywhere. In fact,
choose (f,)iL: as any subsequence of (f,) such that #n, < my< -:-
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(=]
<my<---and Y |fu., — fmlp = & < co. This is possible: ¢.g., we can
E=1

select increasing #,’s such that ||f, — f,]p < 27* for all m = n;. Now
define

=t fa—Ffal +* + fuga—Ful » for £=123,....
It is clear that
llgflh = ||gn||$ = (” Vn,l + Ifn,_ fn,l +oot Ifm:u_ fm;l “ﬁ)P
k »
S (ko + Z Vo= fuls) = (Wl + 0 < co.
’=

Let g = %im gz By B. LEvI's theorem (12.22), and the above estimate,
we have
Jgrdp=[lim ghdp=lim [ghdp < .

Hence g is in £,; t.e.,

Ll 4
/ [Ifn,l + ié: l/u,ﬂ— f,,,l] d‘u< oo .,

The nonnegative integrand above must be finite u-a.e., and so the series

2 |fng (%) — fn;(%)] converges u-a.e. Obviously the series
i=1

fon @) + ;‘“ (e (5) — oy ()

also converges u-a.e. The kt* partial sum of this series is f,, (%), and
g lu p k+1

so the sequence (f,, (¥))i>; converges to a complex number f(x) for all
x €A, where A € o/ and u(4’) = 0. Define f(x) as 0 for all x ¢ 4". It
is easy to see that f is &/-measurable, and obviously f is complex-valued
on X.

We will show that f is the limit in £, of the sequence (f,), and this
will of course prove that £, is complete in the metric induced by the £,-
norm. Given ¢ > 0, let [ be so large that

Ife—fellp<<e for s,t=mn.
Then for & = !/ and m > n;, we have

Ifmn = Fullp < &

By Fartou’s lemma (12.23), we have
f If - fmIp d/l' = f ;;1'2’1.?5‘10 [fn;, - fmlp d/‘
< lm [ |fo, — fml? dp < €F .
k—o0

Thus for each m > #,, the function f — f,, isin £, andso f=f — f +fm



194 Chapter IV. Function Spaces and Banach Spaces

isin £,; and )
lim |f—fulp=0. O
#~—>»00

(13.12) Remark. The function spaces €}, [real-valued «/-measurable
1

functions defined u-a.e. on X such that [f|, = (f |f| du)? < o] are
real normed linear spaces for 1 £ p < oo, and they too are complete.
The proofs are very like the proofs for the complex spaces £,.
(13.13) Example. Let D be any nonvoid set and consider all complex-
valued functions f on D such that J} |f(%)[? < oo, where 0 < p < oo.
x€D

[Recall that 3 |f(x)[? = sup { X' [{(x)[?: F is a finite subset of D}.]
*€D 2cF

If o is all subsets of D and u the counting measure defined in (10.4.a),
then these functions are the elements of £,(D, &7, u). Custom dictates
that this space be designated by I,(D), and if D = N, simply by /.
If 1 < p < o, then l, (D) is a complete metric space in which the metric
is obtained from the norm

Il = (xefl,) F@)IP)? .

The HOLDER and MINKOWSKI inequalities take the forms

,,62—1; If(x)g(®) = (xEZ‘; l(f(x)l")7(x€2D lg@)1P)”

and
1 1 1
(X 1) +e@P)? = (X I @D + (X lgw)P)?,
z€D x€D 2D

respectively. If D is finite, say D ={1,2, ..., n}, then the foregoing
produces the [, norm and its corresponding metric on K* and R*. The
distance between two points (x,,

vh Xor o s Xn) anq (Y1 Yo - Ym) 15

n
(2 lxj—y,-lf’)p. For p =2, we
j=1
olyatain the classical Euclidean
metric. The topologies induced by
the /, metrics on K™ and R” are
p=1 all the same [cf. (6.17)].
The first quadrant of the unit
balls in R? for various values of p
are sketched in Fig. 7.
7 X (13.14) Examples. The spaces
£, ([0, 1]) and £,(R), where 0< $
Fig. 7. < oo [it is understood that u =4
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and & = 4], are very important function spaces in both pure and ap-
plied analysis.

(13.15) Example. For $ = 2, we obtain the famous function space
L,(X, o, u). In this case p = p’ = 2, and so HOLDER’S inequality takes

the form
S el du < [fll2 gl
for f, g € 2,. Consider the mapping that takes £, >< €, into K by the rule
(f.e)~>[1gdu= <t &),
where the equality defines {7, g). This mapping has the following prop-

erties:
St fog) =L e)+ <t g);
{af, gy = alf, gy for a€K;
h&)=<& 1
. 1H)>0 for f+0.

We infer from these identities [or directly] that

a1+ 8gy=< &)+ &,
foagy=1alf &),

0,/)=<{/0)=0.

The spaces £, can be described in abstract terms, as follows.
(13.16) Definition. Let H be a linear space over K having an inner

product

and

@y >y K
mapping H > H into K such that

Gty D=0+,
(ax,y) = alx, y) for « €K,

@Yy =),
(x,2)y>0 if x+%0.

[The other properties of { , ) listed for £, in (13.15) can be proved for H
from the above relations.] Then H is called an inner product space or
a pre-Hilbert space. For x € H, define
1
I#l = <% %)% .
<z, 31 = [0 - [yl

Iz + 1 = l*] + |51

The inequalities

and
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can be proved. Thus H is a normed linear space. If H is complete rela-
tive to this norm, then H is called a Hilbert space. There is a very
extensive theory of Hilbert spaces. We will take up the rudiments of
this theory in § 16 ¢nfra. One of the most striking facts of this theory
is that every Hilbert space is identifiable gua Hilbert space with some
ly(D). Thus in particular every £, space can be identified with some space
ly(D). We will deal with this identification problem in (16.29).

We now return to the spaces £, establishing a few more simple
facts.

(13.17) Theorem. If pu(X)< o and 0< p< g< oo, then L, C &,

and the inequality
1

Ifls = Il (u(X))? ¢
holds for f € £,.

Proof. Let r = % > 1. For any f € £, we have

1 1 ? 9—
JIPdu = (U7 du)” ([ 17 dp)™ = ([ 11 du)? (u (X))%-

It follows that f € 25, and that
1

-t 1_1
Ifle = 1fla (u(X)) 24 = [l (u(X))F 7.
(13.18) Theorem. If 0< p< g< oo, then ly(D) C1,(D); and the .
tnclusion is proper if D is infinite.
Proof. Suppose that f €1, (D); then we have
2 I (x) I"—Z IF@P @) ~* = Aq"’ZL,')If(X) ?
%€
where 4 is a constant such that |f(x)| < 4 for all x € D. The reader
should find it easy to construct an example illustrating that the inclu-
sion is proper if D is infinite. 0
(13.19) Theorem. If f¢ 8, N L, where 0< p< g< o, and if
Pp<r< g, then f €8, Also, the function @ defined by
@ (r) = log (|fl7)

on [P, q] 1s convex, i.e., 0 < a<< 1 implies
p(ap+ (1 —a)g) = ap(p) + (1 —a) ¢(g) -
Proof. Let 7 = ap + (1 — @) ¢, 0 < a< 1. Using HOLDER's inequality
with % [note that (%)' = ] , we have

1—a

S = g frraosau = (7110 @) (1= 4 ™
= ([ 11" dpe)= (] 1112 dpy==.
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[Note that the functions |f|*#and [f|®~®¢arein £, and 2( 1 )', respectively.]
Hence we have f € £,5, -, and

IAEEE=38 = (A= A = -

Taking the logarithm of both sides of this inequality, we have

plap+(1-a)g=ap@)+(1-a e,
i.e., @ is convex. 0O

(13.20) Theorem. Consider any L, 1< p< co. For every f€2,
and every ¢ > 0, there exists a simple function o € L such that |o| < |f|
and |0 — flp < &. In particular, S N L, is dense in L.

Proof. Note first that G N £, C £,. Suppose next that f = 0, f € €,,.
According to (11.35) there exists a nondecreasing sequence (s,) of non-
negative simple functions such that s,(x) - f(x) u-a.e. For each n ¢ N
we have

st =peg.
It follows from LEBESGUE’S theorem on dominated convergence (12.24)
that

lim [ |f ~ s, dp= [ lim |f — s,J? du =0,

and so we can choose s, € & N &, so that s, < f and |s, — f| is arbitrar-
ily small. For an arbitrary f € £, write f = f; — fo + ¢(f; — f4), where
}; €85 and fif,=fs f4 = 0. For ¢> 0, choose g; € £ N & such that

o; < f;and o; — fillp< 5 (7 €{1, 2, 3, 4}). Definecas o, — g5+ 1 (65— 04) ;
obviously ¢ is in & N 2,, Also we have

I — Gllp 2 Ifs = oslp< &

and
4

4
|o]2 = (07 — 02)% + (05 — 0,)? 2 ;F”‘ If%.

(13.21) Theorem. Let X be a locally compact Hausdorff space, let
t be any measure on X as in §9, and let M, be the o-algebra of -measur-
able sets. Then Cy(X) C Ly (X, A, 1) and €yy(X) is dense in Lup(X, M, 1)
for 1 < p<oco. That is, if  €Lp(X, M, 1) and & > 0, then there exists
a function @ € €y (X) such that ||f — |, < e. Moreover, if f is bounded,
then @ can be chosen so that |@lu = |fllu.

Proof. If @ € €y, (X), then there exists a compact set F [say the sup-
port of @] such that |p|? < ||p|?&p. Since ¢ (F) < oo, it follows that ¢ € ;.

Let f €2,(X, 4, ) and let ¢ > 0 be given. Apply (13. 20) to obtain a

function 0 € & N L, such that |o| < |f| and [f —ofp < 5 . Since o
takes on only finitely many complex values, it is clear that o]l < oo.
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If 0 = 0, then o € €y, (X) and the proof is complete. Thus suppose that

lofu = M > 0.
Let E={x€¢X:0(x) + 0}. Since ¢ €S N &), we have ((E) < co.
We apply Luzin’s theorem (11.36) to obtain a function @ € €, such

that @, < M and if A = {x CX: @ (x) + o(x)}, then 1(4) < (4M)’.
We therefore have

I = @l < If — oo+ o — plo<5 + ( flo~ <P|”dt)

=t (Af o — gl? dL)? <5+ (Af (2 M)? dt)%

1
=—;—+2M°L(A)7< e. O

1
#

—

(13.22) Definition. A step function on R is any function of the form

”
2 &, where «;, . . ., «, are complex numbers and each I is a bounded
E=1
interval [open, closed, or half-open].
(13.23) Theorem. Let ¢ be any measure on R asin §9 andlet 1 < p
< oo. Then the step functions on R form a dense subset of Ly (R, M, 1).
Proof. Clearly each step function is bounded and vanishes off of a
compact set, and so each step function is in £,.
Let f €8, and ¢ > 0 be given. Use (13.20) to find a simple function c€ L,

”
such that [|f - of,< % ,say o= ) B;&p, where B, €4, for all j. Since 6€ 2y,
=1

[ ?
we may suppose that ¢(B;) < oo for all j. Let § = —;—(2 (1 + ZM!I;J) ’
j=1
and fix jin {1,2, . .., m}. Use (9.24) to obtain an open set U, such that
B; C U; and ¢ (U;) < ¢(B;) + 4. It follows from (6.59) that U; = U I,,,,,

OO

where the I, ,’s are pairwise disjoint open intervals. We have 3 ¢(I;,,)
E=1

= 1(U;) < o, and so we may choose k, such that 3’ ¢(;;) < é.
k=ko+1

ko
Let Vj——~kL=J1 I;, and W;=U; NV;. We see at once that (W) < 4,

V, A B;C (U;N B)UW, and 1(;AB) < u(U; N B)) + () < 24.

Therefore
1

" 55; - ij"P = " §V;A Bj"? < (2 6)7

m
Next set s= 3 &y, Since each V; is the union of a finite number of
=1
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intervals, s is a step function. Also

o — 5], = ' 2 B, (65— &)

4

= 318 16a— tuls < @7 (Z181) < £
and so 7 !
If=slp=lf—olp+ o ~sl,<e. O

The norm in the spaces £, (R, .#, ) has an interesting and useful
continuity property, which we now establish. Recall the definition (8.14)
of the translate f, of a function f on R by a real number #.

(13.24) Theorem. Let X = R and let A be as usual Lebesgue measure.
Let p be a real number such that 1 < p < oo, and let f be any function in
Ly (R, M, 2). Then

0 tim Iy — flp = im I — fls = 0.

Proof. Let ¢ be an arbitrary positive number. Applying (13.21),
choose ¢ €€y (R) such that | — f|l, < % Then ¢ is uniformly contin-

uous (7.18), and also there is a positive real number « such that et)=0
if |{{ = «. Choose > 0 so that 6 < 1 and

1
1 L
lp(t+ ) — @) <§(m)—)p for |A[<d.
Then |A| < 6 implies that
at1
4
[let+mn—p@pa= [ lpetn-para<(g),
R —(at+1)
which is to say that
lon— @lp < 5 -

It is clear from (12.44) that

lon—falls =@ — fl, forall R¢R,
- and so we have

Ifn=1lo = 1 — @alls + lon — @lo + lo — flp<
if [p|< 6. O
(13.25) Exercise. Let p be a real number such that 0< p< 1.
Let (X, o/, u) be any measure space, and let f g be functions in
(X, , ).
(a) Prove that

(i) 17+ glo < 22 (Ifl + lels) -
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[Hints. For 0 < < oo, prove that

1+#= (148,
This implies that
If + &llf = 1115 + el -

1 1

Next look at the function () = (1 +£7) (1+#) ?. The function ¢
has exactly one minimum in [0, o[, at £ = 1. Computing this minimum,
one finds that (i) can be established.]

(b) Prove that g(f,g) = |f — g||5 is a metric on €, under which £,
is a complete metric space. [Hint. Imitate the proof of (13.11).]

(c) Suppose that X contains two disjoint .&/-measurable sets 4
and B each of finite positive u-measure. Prove that | |, is not a norm,
i.e., that there are functions f, g € £, for which [[f + glp > [fl» + lgllp-

[Write ¢ for the number% . Note that (1 4 )2 > 1 4 # for all positive

real numbers ¢ Let f = «&, and g = $&p, where « and f are positive
real numbers. Now computing the £,-norms of f, g, and f+ g, and
using the inequality just noted, one can choose & and f§ so as to solve
the present problem.]

(d) In this part, let p be any positive number. Suppose that no two
sets in &7 of finite positive u-measure are disjoint. Determine completely
the structure of 2,(X, s/, y). From this determination, show that
L, (X, &, p) is a trivial normed linear space for all $ > 0. [Hints. Sup-
pose that there are no sets at all of finite positive y-measure. Then every
L, reduces to {0}. Suppose next that there is some set of finite positive
p-measure. Then, under our hypothesis, every €, reduces to K alone.]

(13.26) Exercise: Generalized HOLDER's inequality. Let «;, ay, . . , o,
be positive real numbers such that Y «; = 1. For f, fs - .., f, in £f,
i=1
we have
:) ;, :»€g+,

and

[ (fefe - ) dp < MAlE Ml - - Ialge -

X

(13.27) Exercise. Write out carefully and prove the conditions for
equality in MINKOWSKI’S inequality for p = 1 and also for 1 < p < .

(13.28) Exercise. Let X be a locally compact Hausdorff space and
¢t and #, as usual. Suppose that ¢(X) > 0 and ¢({x}) = 0 for all x € X.
Let p be any positive number.

(a) Find a function f € £, such that f ¢ £,,, for all 6 > 0.

[Hint. Use (12.59) and the fact that 3 —
n=1

= oo for all 6 > 0.]

né
n2



§ 13. The spaces £,(1 < p < ) 201

(b) Find a function fon X suchthatf¢ 8, sforalld>0andf¢ L.
[Recall that 2 n~* converges if « > 1 and diverges if 0 < « < 1.]

n=1

(c) Find a nonnegative real-valued function that is in no 2.

(13.29) Exercise. Consider the set [0, o[ and Lebesgue measure A on
it. For every >0, find a function f on [0, co[ such that f €€, and f ¢ &,

if p = ¢. [Hint. Consider the function g such that g(x) = FEaTIE J

(13.30) Exercise. Let (X, &7, u) be a finite measure space and let f
be any bounded measurable function on X. Prove that

Tim ], = inf{ € R: 2> 0, u({x € X : |f(9)] > a}) = 0}

(13.31) Exercise. Let p be a real number such that 1 £ $ < oo, and
let f be a function in £, (R) such that f is uniformly continuous. Prove
that f € €;(R). Show by examples that each ,(R) contains an unbounded
continuous function.

(13.32) Exercise. Let (X, .7, u) be a measure space such that
(X) = 1 and let f be a function in £} (X, o, u). Define log (0) as — co.
I 1 19
(a) Prove that

(i) ){ log /(x) du(x) < log ( [ (%) du(x)).
Hint. Check the inequality log(f) < ¢— 1 for 0 < ¢ < . Replace ¢
P.

1 .
by T /(%) and integrate.]

(b) Prove that equality holds in (i) if and only if f is a constant func-
tion a. e. [Hint. Check that log(f) < ¢ — 1if ¢ & 1.]

(c) Prove that
(i) lim [/f], = exp [ Xf log/ (%) du(x)] -

[Hints. Show that (fr — 1)/r decreases to logf as » {0, and apply the
monotone convergence theorem to prove that

hmr—l(ff’d‘u 1)=Xf10gfd/4.

740

Using (i), show that
1 1 1
7[ff'd/4— 1] = —;logff'd/t% 7f10g(f') au =flogfd/t ]
X X X X

(13.33) Exercise. Let (X, &, u) be a measure space and let p be any
positive real number. Prove that if f and (f,);_, are in £, (X, &, p) and
If —falp — 0, then f, —f in measure. Find a sequence (f,)ix,C
£,([0, 1], A4, 2) such that f, — 0 in measure but ||f,|,—+> 0.
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(13.34) Exercise: Convex functions. Let I be an interval of R.
A real-valued function @ defined on I is said to be convex if whenever
a<binlIand 0 £ ¢ < 1 we have

Pla+(1—-8)b)=itDa)+ (1—-1) D),

i.e., on the interval [, b] the graph of @ is never above the chord [line
segment] joining the points (a, @ (a)) and (b, @ (b)). Let @ be a convex
function.

a) Prove that if ¢,...,¢, are positive real numbers and
( ) 1 P
X3, - - ., %,3 C I, then

. by + v +t,,x,,) LD (xy) + -0 +1,D(x,)

® @ e e T T

[Use induction.]

(b) Prove that @ is continuous on the interior I° of I and show by
an example that @ may be discontinuous at the endpoints of I.

(c} Prove that if ¢ is in 7°, then there exists a real number « such
that @ (u) = a(u — ¢) + @ (c) forall u € I, i.e., the line through (c, D (c))
having slope « is always below or on the graph of @.

(d) Prove the following generalization of inequality (i). Let (X, ., )
be a finite measure space. If f € £1(X, o, p), if f(X)C I, and if Pof
€ 21(X, &, u), then

. 1 1
(i) ® [0 [ 1 0] = e @
Inequalities (i) and (ii) are known as JENSEN'S tnequalities. [Hints.
1 o
Let c=mxffd,u. Show that ¢ € I. For the case that ¢ €I°, let «
be as in (c). Then
DPof(x) = a(f(x) —c) + DP(c) forall x¢X.

Integrate both sides of this inequality. The other case is straightforward.]
(13.35) Exercise. Let @ be a real-valued nondecreasing function

defined on an interval [¢, [ C R. Fora < x< b, let D (x) = [ ¢ (u) du.

Prove that @ is convex on [a, b[.

(13.36) Exercise. Let @ and ¥ be as in YoUNG’s inequality (13.2).
Let (X, o, u) be a o-finite measure space and let €1, be the set of all
complex-valued .o/-measurable functions on X such that @ o|f| €
(X, A, p).

(a) If @ increases too rapidly we may have f € £}, and 2/ ¢ £},. Give
1
such an example. [Try ¢ («) = exp () — 1 and f () = log(t” 2).]
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Let £4 be the set of all complex-valued &/-measurable functions f
on X such that

Ifle = sup{ /gl : & € €} ,XfYJOIgI du < 1)< oo

Prove that:
(b) 81 C L [use (13.2)];
(c) Lo is a complex linear space;
) || |o is @ norm on L4, where functions equal a.e. are identified;

(e) with the norm | |g, L5 is a Banach space. [First suppose that
#(X) < oo. Prove that if ||f, — f.]le = 0, then |f, — full, > 0.]

The spaces Ry are called BirnBaum-Orricz spaces. For further infor-
mation about these spaces, the reader should consult A. C. ZAANEN,
Linear Analysis, Vol. 1 [New York: Interscience Publishers, 1953].

(13.37) Exercise. Define @ on [0, by @(f) =0if 0<¢=< 1and
D) =t-logt if £ = 1. The Birnbaum-Orlicz space L4(X, &, u) [see
(18.36)] is often denoted £ log* Q. Prove that for the measure space
([0, 1], A4, 2) we have

g CllogteCg

for all p > 1. The space £ log* £ arises quite naturally in Fourier analy-
sis. See for example A. ZyGMUND, Trigonometric Sertes, 2nd Edition.
[2 Vols. Cambridge : Cambridge University Press, 1959], and also Theorem
(21.80) tnfra.

(13.38) Exercise: ViTALI’s convergence theorem. Let (X, &7, u) be a
measure spaceandlet 1 < p < oo. Let (f,)a, be asequencein £, (X, o, u)
and let f be an &/-measurable function such that f is finite g-a.e. and
f.—1 w-a.e. Then f€ (X, o, p) and |f — f,[,—> 0 if and only if:

(i) for each &> 0, there exists a set A4, € & such that u(4,) <
and [ |f,/fdu< eforalln €N;

e

(i tim [ 1fal du =0

B (E)>0
E

uniformly in #, i.e., for each & > 0 there is a § > 0 such that E ¢ o/
and u(E)< 6 imply [|f/?du< € for all n € N.
E

Prove this theorem. [To prove the necessity of (i), let £ > 0 be given,
choose 7, € N such that ||f — f,], < ¢ for all # = n,y, choose B,, C, €
of finite measure such that f Ifff du < eand f falfdu<eforn=1,...,nm,

Then put 4,= B, U C.. The necessity of (11) is proved similarly by using
(12.34). Next suppose that (i) and (ii) hold. Use (i), FaToU’s lemma and
MINKOWSKI'S inequality to reduce the problem to the case that u(X) < co.
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For £ >0, let 6 be as in (il). Use EGorov’s theorem to find B ¢ &/

such that g (B) < 6 and f, — f uniformly on B’. Use FATOU’S lemma to

prove that [ |f|du < e Then use MINKOWSKI'S inequality to show
B

that [ |f — f,|? du < 3%¢ for all large #. Thus conclude that f = (f — f,)
x

+fo €25 and [f = foll, > 0]
VITALT'S convergence theorem has considerable theoretical impor-
tance and can also be frequently applied to prove other useful theorems.
The next exercise is also useful for applications [see for example (20.58)
infra] and so we provide plentiful hints for its proof.
(13.39) Exercise. Let (X, s, u), p, (f,), and f be as in (13.38).
Suppose that f, — f u-a.e. For each (n, k) €N < N let B, ;= {x € X:

|fu ()P = R}
(a) Suppose that condition (13.38.i) holds [as it does, for example,
if u(X) < o). Prove that the following four assertions are equivalent:

(i) /€Lpand [f — falp > 0;

(i) if (Ep)iz, C, E;DE; D+, and ’El E,= @, then ’}EE{ |ful? dps
= 0 uniformly in »;

(iii) ’}Lrg . [ |fn? du = 0 uniformly in »?';

n.k

(iv) condition (13.38.ii) holds.

[Hints. Assertions (i) and (iv) are equivalent by (13.38). To show
that (i) implies (ii), consider ¢ > 0 and 7, € N such that |f, — fl,< ¢
for all n = n,. Then for n = n,, we have

(f 1 an)? = (e an)? + (1= s du)s

< (E{ 1f|9dy)71" + e (1)

now apply dominated convergence to (|f|?&g)iz; to show that (1) is
less than 2¢ for k = kyand all n = ny. If n € {1, . . ., ny}, then

[P dp = [max{[hIP, ..., |f |} 2,
Ey Eg
and dominated convergence implies (ii).
Next suppose that (ii) holds, and write E,= ”l;lk B, Plainly
E,DE,D---, and lim |f,(x)| = o on kﬂl E,. Hence 'u(kan”) is 0;
7n—>00 = =
write F = E, N (kQ‘E,,) . Use (ii) to choose a k, such that for & = &,

1 A sequence (|f,|?)s2, satisfying (iii) is said to be uniformly integrable.
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and for all #,
[P dp< e
Fy

For n = ky, we have B, ;, C E;, and so for n = &, and k& = &,, it follows

that
f falfdn = [ |flPdu = f |fal? dpe = f Ifult du < €.

n, ko

For = é{l ..., ky— 1}, we have |f,,|f’ = max{[flif’, vl =8
ko—1

and so f [falf du < fgdy, where B; = U B,, k_{xeX g(x) = k}
Thus dommated convergence applies, and so (iii) holds if (ii) holds.

Finally, suppose that (iii) holds. Choose %, so large that if 2 = %k, and

n € N, we have
[ hPdu< et
Bﬂ.k

If E ¢ of and u(E) < k5! &, then

L 1 1
(f1bp au)e = ([ IWPau)e + ( J |hPdu)r < ete.
E EN By, x, ENBn,x,
Hence (iv) holds if (iii) holds.]
(b) Prove that condition (ii) of part (a) implies conditions (13.38.1)
and (13.38.ii).

(13.40) Discussion. We conclude this section with a study of a
concept of convergence in £, spaces different from norm convergence.
Thus far we have considered four important concepts of convergence
for sequence of functions: uniform [unif.]; pointwise almost everywhere
[a.e.]; in measure [meas.]; and in the £, norm [mean-p]. We have also
expended considerable effort in examining the relationships among these
four types of convergence. Let us summarize our main results. It is
trivial that [unif.] implies [a.e.], in fact ‘““everywhere”’. Obvious examples
show that the converse fails. Nevertheless, it is easy to infer from (9.6)
that if X is a compact Hausdorff space and (f,) is a monotone sequence or
directed family in €7 (X) that converges pointwise to a function f € €7(X),
then f, -/ uniformly. [This fact is called Dinr’s theorem.] Our most
useful result in this direction is EGoRoOV’s theorem (11.32). The relation-
ship between [a.e.] and [meas.] was thoroughly examined in (11.26),
(11.27), (11.31), and (11.33). Riesz’s theorem (11.26) is often valuable in
weakening an hypothesis of [a.e.] to [meas.] [see (13.45) infra and (12.57)].
We have a number of theorems on interchanging the order of limit and
integral, viz. (12.21)—(12.24), (12.30), (13.38), and (13.39). These theorems
can all be regarded as relating [a.e.] to [mean-p]. The relation between
[meas.] and [mean-p] is set down in (13.33). Plainly [unif.] is much
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stronger than either [meas.] or [mean-p] on finife measure spaces, but
for infinite measure spaces there is no implication running either way.
We now introduce a fifth kind of convergence for functions in £,
spaces, and will study its relations with the notions studied previously.
(13.41) Definition. Let (X, &7, u) be a measure space, let 1 < p < oo,
and let f and (f,)7=, be functions in £, (X, &, u). If > 1, then (f,)
is said to converge to f weakly [in )] if

lim [f,gdpu=[fgdu
n—>o0 X X

for every g € &-. If p = 1, then (f,) is said to converge to f weakly [in L]
if
im [f.gdu=[fgdp

for every bounded &/-measurable function g on X.

(13.42) Theorem. Notation is as in (13.41). If |f — f.llp = O, then
fn — [ weakly.

Proof. This follows at once from HOLDER's inequality. 0O

(13.43) Examples. We now give a few examples to show that there
is no connection at all between weak convergence and the four kinds of
convergence discussed in (13.40) [except for (13.42) of course] unless
further hypotheses are imposed on either the sequence or the measure
space. In all of these examples we use Lebesgue measure A.

(a) For each # €N, define f, on [0, 2] by f,(x) = cos(nx). Then
(fx) C 2,{[0, 2x)) for each p = 1. The Riemann-Lebesgue lemma [which
we prove in (16.35) infra] shows that f, — 0 weakly for all p = 1. Since
2n

[ 12 di =z for all » ¢ N, (12.24) and (12.57) show that f, — 0 for none
0

of the other four kinds of convergence.
(b) Take f, = n§[0 i]' Then (f,) C £,([0,1]) forall p=1, f, >0

a.e. and in measure, but f, +> 0 weakly [take g = &{,,11]-
(c) Let f,‘=%§[l,exp(,,)]. Then (f,) C L (R) for all p = 1. Write

g(x) =-;17 for x =1 and g(x) =0 for x< 1. Then g ¢ £y (R) for all
exp (n)

p>1, g is bounded, and ffgdz—i 2% _1 for all neN.

Thus f, - 0 uniformly on R but fa+0 weakly in £, (R).

For finite measure spaces, we know that £, C &, if p = 1 (13.17),
and so uniform convergence implies £,-weak convergence for finite
measure spaces.

In spite of the negative results just exhibited, we do have some pos-
itive results if our sequences (f,) satisfy certain side conditions.
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(13.44) Theorem. Notation is as in (13.41). Suppose that 1 < p < oo
and that (|f,]p)e=1 s a bounded sequence of numbers. If f, —f u-a.e.,
then f, — f weakly in L.

Proof. Choose « € R such that |f,|, < « for all » € N. By Fatou’s
lemma (12.23), we have

Vg = [ 17 dge = [ lim (e dp o)
< lim [ |l du s o
n—s>00 X

Let ¢ >0 and g € £ be given. Use (12.34) to obtain é > 0 such that
for all E € &/ for which u(E) < 4, we have

1
2a( Ef lg”' du)? < . )
Next select 4 € &/ such that u(4) < o and
1
Za(A[ gl dp)? < <. 3)

Apply Ecorov’s theorem (11.32) to obtain B € &/ such that BC 4,
u(A N B)< 4, and f, —f uniformly on B. Finally, choose #, €N
such that » = », implies

(%) — £ (0)] (u(B))? lely < 5
for all x € B. Then n = », implies
(J1f = hl? a)? el < 5 - 4)

Thus, combining (1), (2) [with E= A4 N B’], (3), and (4) and using
HOLDER's and MINKOWSKI'S inequalities, we have

|[fgdu— [ tgdu| < [If 1l lgl dp
X X X
= [ If—fallgldu + [ |f = fal lg] du
ANB A’ .
+ [l —tal gl du = 1 = flo (S Ll dp)?
B ANB’
+ 1 = e (S 161 )" + (f Vf = fal? dpe)? Tl
< -;— + ?8 + % =&

forallw =z n, DO

(13.45) Corollary. The hypothesw fo—f u-a.e. in (13.44) can be re-
placed by the hypothesis that [, — f in measure.
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Proof. Assume that f, does not converge weakly to f. Choose g € £,
such that

lim | [fgdp— [f.gdp|=a+0.
n—»0 X X
Use (6.84) to find integers #, < 7, < - * - such that
fim | [ (F = fu)e dp|=a. (1)
Next use (11.26) to find a subsequence (f"k,);il of (f,)i=1 such that
lim f, =/fp-a.e It follows from (13.44) that
1> ¢l
lim ]Xf (f = foy) €20 = 0.

But this equality is incompatible with (1). O

(13.46) Remark. Example (13.43.b) shows that neither (13.44) nor
(13.45) is true for the case p = 1. However, if we replace the hypothesis
that (|f.],) be a bounded sequence by the hypothesis that [/, = [/l
we get a much stronger conclusion.

(13.47) Theorem. Notation is as in (13.41). Suppose that p =1,
that f, — f u-a.e., and that |f,), — fli. Then

Q) [Vl du— [Ifldp forall Ecs,
(i) If = fali—>0,

and
(iii) f, — f weakly in ;.

Proof. Let E ¢ &7. Then Fatou’s lemma (12.23) shows that
im [|f,ldp= [Ifldp= [Ifldp— [Ifldn
n—>00 E E X E’
= [Ifldp— lim [|fa|du
X n—>c0 E’
= Iim (f1fuldu— [Itul @)= lim [ lfal dp.
n—>00 X E’ n—>00 E
Hence lim [ |f,| du exists and (i) holds.
7—>00 E
To prove (ii), let & > 0 be given. Select 4 €5/ such that p(4) < oo

and [ |fldu< . Use (12.34) to obtain a § > 0 such that if £ €./ and
)t
u(E) <9, then f |f] dp < % Next apply EGorov’s theorem (11.32)

E
to find B €& such that BC 4, u(4 N B') < 9, and f, — f uniformly
on B. Choose 74 € N such that

[sup If (%) — fa ()] - (B) < &
*€B
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for all # = n,. Now apply (i) to get
i [V~ fldu=Tm [ [l-tldu+ [ 11-tldu+ [11~hldn]
x 4 B

ANB’

=B [aus [t dns [idns [ ol dp] + 5

4’ AnB’

=2 [dp+2 [ fdp+g<F+5+5=¢.
4 AnB

Since ¢ is arbitrary, we have proved (ii). Conclusion (iii) follows at once

from (ii). O

(13.48) Note. Theorem (13.42) admits a partial converse involving
no hypothesis about pointwise convergence or convergence in measure.
This converse is easy to prove once certain inequalities are established,
and we postpone it to (15.17) infra.

(13.49) Exercise. Notation is as in (13.41). Suppose that |f,[» — |f{s-
Prove the following.

(a) If f, > f w-a.e., then ||f — fu]p > O.

(b) If {, — f in measure, then [f — f,], - 0. [Recall that 1 < p < c.]

(13.50) Exercise. Notation is as in (13.41). Suppose that In—>1f
u-a.e. and suppose that there is a function g € 2f such that |f,[f<¢g
for all # € N. Prove that for every & > 0 there is a set B € &/ such that
u(B') < ¢ and f, — f uniformly on B. [Take a hard look at the proof
of (11.30) and then proceed as in (11.32).]

(13.51) Exercise. Let (X, o, p) be a measure space such that {x} €./
and pu({x}) >0 for all x € X. Let {,f, €&(X, &, p) for n=1,2,....
Prove the following.

(a) If f, - f weakly in &, then f,(x) - f(x) for all » € X.

(b) The converse of (a) is false except when X is a finite set.

(c) If f, — f weakly, then [f — fu[, 0. [Write fo = { and note that

Y {x € X : f,(x) + 0} is a countable set. Use (a) and (13.47).]

(d) For p > 1, find a sequence (f,) C J, such that f, — 0 weakly but
I£alls > 0. [See (13.13).]

§ 14. Abstract Banach spaces

We have already defined Banach spaces (7.7) and have met several
specific examples: €(X) and €y(X) in §7 and £,(X, &, p) in §13.
In the present section we give a short introduction to the abstract
theory of Banach spaces and prove some important theorems about
these spaces. For a thorough treatment of the subject, the reader is
invited to consult the treatise Linear Operators Part I by NELSON
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Duxrorp and JacoB T. ScawarTz [New York: Interscience Publishers,
1958]. Throughout this section F will denote either the field R or the
field K.

(14.1) Definition. Let 4 and B be linear spaces over F. A function T
from A into B is called a linear transformation [or linear operator] if

() T(x+3) =T(x)+ T(y)

and

(i) T(oex) = aT (%)
forall x, y € 4 and « € F. If A and B are normed linear spaces, a linear
transformation T from A4 into B is said to be bounded if there exists a
nonnegative real number M such that

(i) [T (x)] < M|x| forall x€A4
[4.e., T is bounded on the unit sphere of 4]. In this case we define the norm
of T to be the infimum of the set of all M’s that satisfy (iii), and we write
|T|| for the norm of T This norm is called the operator norm.

(14.2) Theorem. Let A and B be normed linear spaces and let T be
a bounded linear transformation from A into B. Then

1 = sup {45 5 ¢4, 2+ of

— sup{| T(x)] - € 4, || = 1}
— sup{| T (x| : x €4, |¢] = 1},

and
IT@] < |T] - |a] forall x¢4.

Proof. Exercise.

(14.3) Theorem. Let A and B be normed linear spaces and let T be
a linear transformation from A into B. Then the following three statements
are mutually equivalent:

(i) T s bounded,

(ii) T s uniformly continuous on A;

(iii) T is continuous at some point of A.
The continuity statements are, as always in this section, understood to be
relative to the metric topologies induced on A and B by their respective norms.

Proof. If (i) holds, we have ’

ITE =T =1TE=y = |T]-|x—l

for all x, y € 4, and so (ii) follows. Trivially (ii) implies (iii). Next sup-
pose that (iii) holds, say T is continuous at x, € A. Then there exists a
d > 0 such that ||T(x) — T (xy)] = 1 whenever |x — %, = 6. Therefore
l«] < 1 implies |(dx + xo) — %] = 6, and so
1
1T = IIT(ﬁbeo) - Tl =5 -

Thus T is bounded and ||T|[ <. O
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(14.4) Theorem. Let A and B be normed linear spaces over F and let
B (A, B) denote the set of all bounded linear transformations from A into
B. Then, with pointwise linear operations and the operator norm, B(A, B)
is a normed linear space. Moreover B(A, B) is a Banach space if B is a
Banach space.

Proof. We prove only that B(4, B) is complete if B is complete;
the other verifications are routine and we omit them. Suppose that B
is complete and let (T,) be a Cauchy sequence in B(4, B). For x €4
we have [T, (1) — Tu(®)] = T, — Tnl - |2l and so (T, (x)) is a Cauchy
sequence in B. Thus for each x € 4, there is a vector T (x) € B such that
IT,(¥) — T (x)] = 0. This defines a mapping T from 4 into B. For
%,y €4, we have | T'(x + ) — [T(x) + T()]| = IT(x+3) — T+
+ 5@ — T@I + 1T,() — T(»)] >0, and thus T(x+9) =T (2)
+ T (y). We prove similarly that T (xx) = « T (x) forallx € 4 and « € F.
Thus T is linear.

Since (T,)) is a Cauchy sequence, there is a positive constant 8 such
that |T,| < B for all n € N. For |x| < 1, we have |T(x)| = | T (x) —
T,(®)|| + | T, (x)] < 1+ B [for all large »], and hence T is bounded,
i.e., T €B(4, B). It remains only to show that |T —T,| —0. Let
£ > 0 be given. Choose an integer p so large that m,# = p implies

1T — Tl < —; Next let x € A be such that ||x|| < 1 and choose m, €N

such that m, = p and [T (x) — T, (*)| < % . Then n = p implies that

IT@) — @) S |T@) = T, + 1T, — Tl <5 +5=¢.
1t follows that » = p implies
IT —T,| =sup{|T(x) —L@|: x| <1} <e. O

(14.5) Remark. The reader should notice the similarity between
the above proof and the proof of (7.9).

(14.6) Definition. Let E be a linear space over F. A linear functional
on E is a linear transformation from E into F [where F is regarded as a
one-dimensional linear space over F]. If E is a normed linear space
[and the absolute value is used as a norm on F], let E* denote the spate
of all bounded linear functionals on E, i.e., E* = B (E, F). Since F is
complete, it follows from (14.4) that E* is a Banach space. The space E*
is called the conjugate [adjoint, dual] space of E. The conjugate space E**
of the space E* is called the second conjugate space of E, etc.

(14.7) Discussion. Let E be a normed linear space. There is a so-
called natural mapping of E into E** defined as follows. For x € E,
define £ on E* by the rule £(f) = f(x). Simple computations show that
each £ is a linear functional on E* and that the mapping x — £ is a linear
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transformation. Also

sup{|£(f)| : f € E*, |f] = 1} = sup{lf ()| : f € E*, |f] = 1}
< sup{|/] |«] : f € E*, |f] = 1} = |]

for each x € E. Thus the mapping ¥ — £ is a bounded linear transforma-
tion from E into E** of norm < 1. Several questions arise. (1) Is this
mapping one-to-one? (2) Does it preserve norms? (3) Is it onto E**?
(4) Indeed, are there any nonzero elements in E* ? In general none of these
questions have obvious answers; however we are able to answer (1),
(2), and (4) with the aid of the Hahn-Banach theorem, which is next
on our program. Question (3) will be answered in the exercises.

(14.8) Definition. Let E be a real linear space. A real-valued function
p defined on E is said to be a sublinear functional if

) px+y) =2 +201)
and

(i) p(xx) = ap(x)
for all x,y € E and all positive real numbers «. Notice that a norm is
a sublinear functional.

(14.9) Hahn-Banach Theorem. Let E be a real linear space and let M
be a linear subspace of E. Suppose that p is a sublinear functional de-
fined on E and that f is a linear functional defined on M such that f(x)
< p(x) for every x € M. Then there exists a linear functional g defined on
E such that g is an extension of f [i.e., f C g] and g(x) < p(x) for every
x ¢E. ’

Proof. Let § be the set of all real functions 4 such that dom % is a linear
subspace of E, k is linear, fC A, and A(x) < p(x) for all x € domh.
Notice that f € 8. Partially order § by C [recall that a function is a set
of ordered pairs]. Let € be any chain in 8 and let 2 = U €. Then, with
the help of (2.19), we see that 4 ¢ 3. Applying ZorN's lemma (3.10),
we see also that @ has a maximal member, say g. To complete the proof
we need only show that domg = E. Assume that this is false, and let y
be any element in E N (domg)’. Let G = domg and define H = {x+ ay:
% €G, a ¢ R}. Clearly H is a linear subspace of E and G g H. Let ¢
be a fixed, but arbitrary, real number and define %4 on H by

h(x + ay) = g(x) + ac.
Then 4 is well-defined since if %, + oy = x5 + apy, Where x;, x, €G
and a,, &, € R, then (0; — ) ¥ = %, — %, € G s0 that &) = a and ¥, =x,.
Clearly % is a linear functional and g & 4. If we can select ¢ in such
a way that &(x) < p(x) for all x € H, then we will have 4 €3, which
contradicts the maximality of g and will complete our proof. The re-

mainder of our proof is therefore devoted to showing that ¢ can be so
selected.
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Our requirement is that g(x) + ac=h(x + ay) < p(x + ay) for
all x € G, « € R. By the linearity of g and the sublinearity of p, this is
equivalent to the two requirements

g(%)+c§p(%+y) for x¢G and «a>0,
and

g(%) +c=—p (—%—y) for x€G and a<0.
Therefore it is sufficient to have

gu) —plu—y)=c=—g) +p(+y)
for all #, v € G. But we do have

gu) +g()=gu+v)=plu+v)=plu—y +p@+y)
for all », v € G. Write
a = sup{g(u) — p(u— ) : u € G}
and
b=inf{—g(@) + p(v+y):v€G}.
Itis clear that a < b. Taking ¢ to be any real number such that a < ¢ <5,
we complete our construction. 0O

(14.10) Remark. The crux of the Hahn-Banach theorem is that the
extended functional is still majorized by p. If this requirement were
not made we could obtain an extension of f simply by taking any Hamel
basis for M, enlarging it to a Hamel basis for E, defining g arbitrarily on
the new basis vectors, and defining g to be linear on E.

(14.11) Corollary. Let E be a real normed linear space and let M be
a linear subspace of E. If | € M*, then there exists g € E* such that f C g
and |g| = |f].

Proof. Define p on E by p(x) = |f] - |#|. Then p is a sublinear func-
tional on E and we have ]‘(x ) < |f(x)] < p(x) for all x € M. Apply
(14.9) to obtain a linear functional g on E such that f C gand g(x) = p(x)
forallx € E. Clearly g € E* and ||g| = |f|. But we also have

lel = = 1}
zsup{lg)|:x €M, x| = 1}
=sup{lf(®)|:x €M, |x| = 1} = || .

Thus [ = [/]-

(14.12) Theorem [BOHNENBLUST-SOBCZYK-SUHOMLINOV]. Let E be
a complex normed linear space and let M be a linear subspace of E. If
f € M*, then there exists g € E* such that { C g and ||g| = |f].

Proof. For each x € M, write f(x) = f,(x) + ¢f;(x) where f; and f,
are real-valued. An easy computation shows that f; and f, are real
linear functionals on M, i.e., f;(x + ¥) = f;(x) + f;(¥) and f; (xx) = «f;(x)
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for « € R. It is also obvious that |f;(x)| < |f(*)| = /] - [#], and so £,
and f, are bounded and |f;| < |f|. Now, regarding E and M as real
linear spaces [simply ignore multiplication by all but real scalars],
we apply (14.11) to obtain a bounded real linear functional g on E
such that f, C g, and ||g,|| = |/1]. Next define g on E by the rule

g(x) = g1 (%) — 18, (4x) .

It is easy to see that g is a complex linear functional, e.g.,7g (x) =1g, (%)
+ g (6x) = g, (5%) — 1g,(4 (%)) = g(¢x). To see that fC g, notice that
for x ¢ M we have

(%) + if,(6%) = H62) + ifylix) = i) = if ()
= —fal®) +1f(x) = — fo(x) + 181 (%),
so that g,(¢x) = —f,(x) and therefore g(x) =g (%) —ig (s%) = /L(»)
+ if5(x) = f(x). We need only show that g is bounded and that |g|| = ||/|.

Let x € E be arbitrary and write g (x) = 7 exp (¢6) wherer = 0and 6 € R.
Then we have ‘

lg(x)] = 7 = exp(—i0) g (x) = g(exp(—16) %) = & (exp(—i6) %)
< leal - =l = 140 - 1=l = 171 - =] -

This proves that g is bounded and that |g| < [f|. As in (14.11), it is
obvious that ||f]| < |g||. Therefore |g| = |f|. O

(14.13) Corollary. Let E be a normed linear space and let S be a
linear subspace of E. Suppose that z ¢ E and dist(z, S) =d > 0. Then
there exists g € E* such that g(S) = {0}, g(2) =d, and |g| = 1. In partic-
ular, if S = {0}, then we have g(z) = ||

Proof. Let M = {x + az:x €S, a €F}. Then M is a linear sub-
space of E. Define f on M by f(x + «2) = ad. Clearly f is a well-defined
linear functional on M such that f(S) = {0} and f(z) =d. Also |f]

|ad

ad] . _ 4 .
=sup{m x4+ az €M, |x + oz #0} = sup{”_y_H" .yES}

=-Z—= 1. Apply (14.11) if F = R or (14.12) if F = K to obtain the re-

quired functional g € E*. O

We now return to the mapping ¥ — £ discussed in (14.7).

(14.14) Theorem. Let E be a normed linear space and let m be the
natural mapping of E into E*¥*: m(x) (f) = f(x). Then m is a norm-preserv-
ing linear transformation from E into E**. Consequently 7 is one-to-one.

Proof. We have already observed in (14.7) that # is a bounded linear
transformation from E into E** and that |z < 1. Let x be any non-
zero element of E. According to (14.13), there is an element g € E*
such that [g]| = 1 and g(x) = ||x||. Thus

I#] = g(x) < sup{|f(x)| : f €E*, |fl = 1} = [=(x)| = || .
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that is,

7 ()| = =] -
Clearly [[7(0)] = O = |0||. We have thus proved that = preserves norms.
Consequently x =y in E implies that [n(x) — m(y)| = [=(x — )|
= ||l —y| + 0, and so m(x) = = (y). O

(14.15) Remark. In view of (14.14), a normed linear space E is
indistinguishable gua normed linear space from the subspace 7 (E)
of E** The mapping & need not be onto E** [see (14.26)]. In case
n(E) = E**, the space E is called reflexive. Since E** is complete and =
is an isometry, every reflexive normed linear space is a Banach space.
In § 15 we will show that every £, space (1< p < oo) is reflexive.

We next present three theorems which, together with the Hahn-
Banach theorem, are often regarded as the cornerstones of functional
analysis. These are the open-mapping theorem, the closed-graph theorem,
and the uniform boundedness principle. Several applications of these
theorems will be given in the corollaries and the exercises. Unlike the
Hahn-Banach theorem, these three theorems require completeness.

(14.16) Open mapping theorem [BaANACH]. Let A and B be Banach
spaces and let T be a bounded linear transformation from A onto B.
Then T (U) is open tn B for each open subset U of A.

Proof. For each ¢ >0, define A, ={x €4 : x| < &} and B,={y € B:
|yl < €}. Let &> 0 be given. We will show that there exists a é > 0

such that T (4,) D Bs. For each n €N, let ¢, = % . It is clear that if »
is fixed, then .
4= 7L=Jl jAe”
[we define j4,, as in (5.6.f)], and so we also have
B=T(4) = U T(jA,).

Since B is complete, the Baire category theorem (6.54) implies that not
every T(j4,), j=1,2,..., is nowhere dense. Thus there is a j, €N

such that [7'( Jn4.,)]" has nonvoid interior. But

— 1 i —_
[T = o [TGnA]

and aW is open in B if &+ 0 and W is open in B. Thus there exists a

nonvoid open set V, C[T(4,,5)] - It follows that

[T(4.)] D[T(Aey2) =T (Aey2)] D [T(Aey2)]
- —[TAe2)] 2V -V,.2

! For subsets C and D of B, we write C—D ={x—y:x€C, y € D}: see
(5.6.1).
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Since 0 ¢V, —V, and V, — V, = U {V, — x: x €V} is open in B, there
exists a §,, > 0 such that

B, CV, =V, C[T(4,)] - (1)

We may suppose that d, < % for every n ¢ N. We will now show that
Bs, C T(4,).

To this end, let ¥ be any element of B,;. We must find an x € 4,
such that T (x) = v. By (1), there exists x; € 4, suchthat |y —T (x,)]| < &,
so that y — T'(x;) € Bs,. In view of (1) there exists x, € 4, such that
ly — T(x,) — T(xy)] < 8. Continuing by finite induction, we find a
sequence (%,)a>, such that for each # € N, x,, is in 4, and

Hy - kZ'l T (%)|| < Onsa - (@)
Let z, = %, + %, + - - - + x,,. For m < #n, we have
n oo e e
ln—znl = X lwl< X =3
k=m+1 k=m+1

which has limit 0 as # — co. Thus (z,) is a Cauchy sequence in 4 ; since 4
is complete, there is an x € 4 such that |x — z,| - 0. It is clear that

4= fim = 5l < 2 5=,

and so «x is in A4,. It follows from (2) that |y — T (z,)] - 0. Since T is
continuous, we have | T (z,) — T ()] = 0, and so y = T ().

Finally, let U be any nonvoid open subset of 4, and let y be any,
element of T (U). Then there exists x € U such that T (x) = y. Since U
is open, there is an & > 0 such that x + 4, C U. Applying our previous
result, we find that there is a 6 > 0 for which B; C T (4,). Therefore
y+ BsCT(x)+ T(4d)=T(x+ A,)C T(U). Thus y is an interior
point of T(U), and T (U) is open. 0

(14.17) Corollary. If A and B are Banach spaces and T is a one-to-one
conttnuous linear transformation from A onto B, then T-' is continuous.

Proof. If U is open in A = rmg7-1, then (T-Y)-1(U)= T(U) is
openin B=domT-1. O

(14.18) Corollary. Let E be a linear space over F and suppose that
| | and | | are two Banach space norms for E. Then the metric topologies
induced on E by || and || |’ are identical if and only if there exists a
posttive constant a such that

or all x € E alx] = |=|’
or all x € E.
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Proof. Consider the identity mapping on E as a linear transformation
from the Banach space (E, | |) onto the Banach space (E, | |'). We leave
the details as an exercise. 0

(14.19) Lemma. Let A and B be normed linear spaces. Then A >< B,
with coordinatewise linear operations and the norm

1o = Il + [yl
is a normed linear space. Moreover A < B is complete if and only if both
A and B are complete.

Proof. Exercise.

(14.20) Definition. Let 4 and B be normed linear spaces. A linear
transformation T: A4 — B is said to have a closed graph if whenever
%,—x%in A and T(x,) -y in B we have T (x) =y, t.e., T, as a set of
ordered pairs, is a closed set in 4 > B.

It is trivial that if T is continuous, then T has a closed graph. The
converse is not always true. However the converse is true if 4 and B
are Banach spaces.

(14.21) Closed graph theorem. Let A and B be Banach spaces and let T
be a linear transformation from A into B such that T has a closed graph.
Then T is continuous.

Proof. Let G = {(x, T (x)) : # € A} be the graph of T [actually G is T].
Then G is a closed linear subspace of the Banach space 4 >< B, and
so G is a Banach space. Let P, and P, be the projections of G into 4
and B respectively, ¢.e., Py(x, T(x)) = x and P,(x, T (x)) = T (x) for
all x € A. We have

. 1P1(x, T ()] = =] = (= T ()]
an
1P2(x T()| = 1T )] = 1Cx T (%))

and therefore P; and P, are continuous linear transformations. Since T°
is single-valued and dom T = A, P, is one-to-one and onto 4. It follows
from (14.17) that P! is continuous. Clearly 7= P, o Pi!, and so T
is continuous. 0O

(14.22) Lemma. Let B be a Banach space and let 1 be a nonvoid set.
Let I' denote the set of all functions y from I into B such that sup{|y (o] :
Lt €I} < oo and let | y| denote this supremum. Then I', with pointwise linear
operations and the above norm, is a Banach space.

The proof is almost the same as that given in (7.9) and we therefore
omit it.

(14.23) Theorem: Uniform boundedness principle. Let A and B be
Banach spaces and let {T,:1 € I} be a nonvoid family of bounded linear
transformations from A into B such that

sup{|T(%)| : e € I} <0
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for every x € A. Then
sup{|T|: e €I} < 0.

Proof. Let I be as in (14.22). Define a mapping S: 4 — I' by
Sx)(e) =T,(x) for x€A,€1.

Our hypothesis that the family {7;:: € I} is pointwise bounded shows
that S(x) € I" for each x € A. Clearly S is linear. We show that S is con-
tinuous by using the closed graph theorem. Thus suppose that x, -«
in 4 and that S(x,) > y in I'. For each ¢ € I, we have

ly(@ = SE@I = Iy = SE)O] + [SEa) () = S]]
= ly = Sl + L) — T(#)] -
The last expression has limit 0 as # — oo because 7, is continuous. There-
fore y(¢) = S(x)(¢) for all ¢ €1, and so y = S(x). This proves that the
graph of S is closed, and hence S is continuous, ¢.e., | S| = sup{|S (x)]|:
%] = 1} < co. Since
IZ] = sup{| T (=)]| - |#] = 1}
= sup{|SH ] : 2] = 1}
=sup{|S()]: |x] = 1} = |S]
for every ¢ € I, we conclude that
sup{|Z] s L€} < S| < o0. D

(14.24) Corollary [Banach-Steinhaus theorem]. Let A and B be
Banach spaces and let (1,)5 , be a pointwise convergent sequence of bounded
linear transformations from A into B. Then the mapping T: A~ B
defined by

T(x) = lim T,(x)

1s a bounded linear transformation.
Proof. It is obvious that T is linear. It is also clear that for each
x € A we have
sup{| T, (%) : # € N} < 0.

It follows from (14.23) that there exists a positive constant M such that
|7.] £ M for all » € N. Thus x € 4 implies

IT()] = lim |T.(x)] = M|,

and so T is bounded and |T|| = M. O

(14.25) Exercise. Let D be a nonvoid set and let ¢,(D) denote the
set of all complex-valued functions f defined on D such that for each
€> 0 the set {x € D:|f(x)| = &} is finite. Thus ¢o(D) = €,(D) where D
is equipped with the discrete topology [see (7.12)]. Define linear operations
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pointwise on ¢o(D), and for f €c,(D) define |f|, = sup{|f(x)|: x € D}.
Prove the following.

(a) co(D) is a Banach space.

(b) ¢o(D) is separable if and only if D is countable.

(c) If @ is a bounded linear functional on ¢y(D), then there exists
a function g €7, (D) [see (13.13)] such that

o(f)y =2 f(x)gx)
x2€D

for all f € ¢y(D).

(d) The mapping ¢ — g described in (c) is a norm-preserving iso-
morphism from ¢, (D)* onto I, (D).

(14.26) Exercise. Let D be a nonvoid set and let /(D) denote the
set of all bounded complex-valued functions defined on D. [The space
I (D) is denoted m (D) by some writers.] Define linear operations point-
wise in /. (D), and for f € I, (D) define

Iflu = sup{lf(#)| : € D} .

Notice that ., (D) = € (D) where D has the discrete topology. Notation
is as in (14.25). Prove the following.
(a) If @ €1,(D)*, then there exists a g in /(D) such that

p(f) = 2 [(x) g
x€D

for all f €1,(D).

(b) The mapping ¢ — g described in (a) is a norm-preserving iso-
morphism from /, (D)* onto I, (D).

(c) If D is infinite, then ¢, (D) is not reflexive. [Compute the natural
mapping of ¢,(D) into I (D) explicitly.]

The density character of a topological space X is the smallest cardinal
number such that there exists a dense subset of X having that cardinal
number.

(d) If D is infinite and D = b, then both ¢, (D) and /; (D) have density
character b, but J_ (D) has density character 2°.

(e) If D is infinite, then there exists an element ¢ €/ (D)* such that
@(f) = 0 for all f € ¢(D) and | @] = 1. [Use an extension theorem.]

(f) If 1, (D) is reflexive, then D is finite. [Use (b) and (e). For an
explicit computation of I (D)*, see (20.27) —(20.35) ¢nfra.]

(14.27) Exercise. Let E be a real linear space and let P C E be such
that

(i) x,y € Pand «, § = 0 imply ax + By € P;

(ii) x € P and —x € P imply ¥ = 0.

Then P is called a convex cone. For %,y € E, define x < y to mean that
y — x € P. Prove that < is a partial ordering on E. Let S be a linear
subspace of E such that for all x €¢E, (x + S) N P =+ o if and only if



220 Chapter IV. Function Spaces and Banach Spaces

(=% + S) N P+ o. Suppose that f is a linear functional on S such that
€S and x = 0 imply f(x) = 0. Prove that f can be extended to a
linear functional g on E such that x €E and x = 0 imply g(x) = 0.
[Use the Hahn-Banach theorem, defining

p(x) =inf{f(y):y €S,y = #}

for all x in the linear span of S U P. Alternatively, give a direct proof
using ZORN’s lemma.] This result is known as KRreiN’s extension theorem
for nonnegative linear functionals.

(14.28) Exercise. Prove that there exists no sequence (c,),-, of

oo
complex numbers such that an infinite series 3 a,, of complex numbers
n=1

converges absolutely if and only if (c,a,);., is a bounded sequence.
[Assume such a sequence exists with ¢, + 0 for all #. Consider the
- mapping T :l.(N)—> 4 (N) given by T (f)(n) = %:) and use the open
mapping theorem.]

(14.29) Exercise. Let E be a normed linear space and let D be a
nonvoid subset of E such that

sup{|f(x)| : x € D} < o

for each f € E*. Prove that sup{| x| : x € D} < co. [Consider 7 (D) C E**.]

(14.30) Exercise. Let E be a Banach space and let 4 and B be
closed linear subspaces of E such that 4 N B = {0}. Prove the following.

(a) If A + B is closed in E, then the mapping x +y —x for x € 4,
y € B is a continuous linear mapping of 4 + B onto 4.

(b) Forx €A,y € Blet |x + | = |x| + |¥|. Then | |’ is a complete
norm for 4 + B.

(c) The set A + Bis closed in E if and only if || || and | |" induce the
same topology on 4 + B.

(14.31) Exercise. (a) Let E be a normed linear space and let M be
a closed linear subspace of E. Suppose that z CE N M'. Let S = {x + az:
% €M, « ¢ F}. Thus S is the smallest linear subspace of E containing
M and z. Prove that S is closed in E. [Define f on S by f(x + «2) = a.

Show that f€S* and ||f| = E{s—“t(lz—MT Then use the fact that F is

complete.]

(b) Prove that every finite-dimensional linear subspace of E is closed
in E. [Use (a) and induction].

(14.32) Exercise. Prove that there exists no Banach space of al-
gebraic dimension R, [Use (14.31) and the Baire category theorem.]
For an arbitrary nonzero cardinal number m [finite or infinite], construct
a normed linear space of algebraic dimension m.
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(14.33) Exercise. Let 4 and B be Banach spaces and let T be a
linear transformation from A into B such that go T € A* for every
g € B*, Prove that T is continuous.

(14.34) Exercise. Let 4 and B be normed linear spaces and let T
be a bounded linear transformation from A into B. For g € B*, define
T*(g) = g o T. [The transformation T* is frequently called the adjoint
of T.] Prove that:

(a) T*is a bounded linear transformation from B* into 4*;

(b) 17+ =171

(c) T*is one-to-one if and only if T (4) is dense in B;

(d) T is one-to-one if and only if T*(B*) separates points of 4.

(14.35) Exercise. Let A be a normed linear space.

(a) Prove that there exists a Banach space B and a norm-preserving
linear transformation T : 4 — B such that T (4) is dense in B. [Consider
the natural mapping of 4 into A**.]

(b) Prove that if B, and B, are any two Banach spaces having the
property ascribed to B in part (a), then there exists a norm-preserving
linear transformation from B, onto B,.

(14.36) Exercise. Let I be a nonvoid set, and for each ¢ €7, let E,
be a normed linear space over F. Let p be a real number = 1. Let E
be the set of all x = (x) elé E, such that Z,I' |x.]? < oo, and for all

€.

1
x €E, let |x] =[X |x/?]?. With linear operations (x + y)(t) = x(z)
el

+ y(¢) and (ax)(¢) = a(x()) and the norm just defined, E is a normed
linear space. The space E is a Banach space if and only if each E, is.
Prove the preceding two assertions.

(14.37) Exercise. Let E be a finite-dimensional linear space and let
| Il and || || be norms on E. Prove that there are positive numbers «
and f§ such that

afx]y = |2l = Bl

for all x ¢ E. Thus all pairs of norms on E are ‘‘equivalent”, and all
norms make E a Banach space.

(14.38) Exercise. Let E be a normed linear space and let M be a
closed linear subspace of E. Consider the quotient space E/M = {x + M :
% € E}, where linear operations are defined by

E+M)+(y+M)=@x+y)+M
and
oa(x+ M) =(ax)+ M.

Define the guotient norm on E/M by the rule
() =+ M| = int{x + m| : m € M},
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Prove the following.

(a) Formula (i) defines a norm on E/M.

(b) If E is a Banach space, then so is E/M. [For a given Cauchy
sequence in E/M, choose a subsequence (x,+ M);L; such that
|% — %, + M| < 2-"for k = n. Then choose z, € M such that |x, ,, — %,
+ 2| < 2-mforeachn. Let y, =%, + 23y + Zy_3 + * * * + %. Prove that
(y,) is a Cauchy sequence in E, let y,, — y, and prove that x, + M -y + M
in E/M.]

(c) The natural mapping ¢ of E onto E/M: @(x)=x + M, is a
bounded linear transformation with |@| < 1, and ¢ sends open sets
onto open sets.

(@) If E is a Banach space, then ¢ maps the open unit ball of E onto
the open unit ball of E/M.

(e) If M and E/M are both complete, then so is E.

(14.39) Exercise. Let E be a separable Banach space, let (%) pes
be a countable dense subset of E, and let B={f ¢ E*:|f| = 1}. For
/. g € B, define

o 1 lfw) — &)
elh &)= X o T |t(e) — gleal] °
Prove that

(a) e is a metric for B,
and

(b) with the metric g, B is a compact metric space.

Let P be CANTOR’S ternary set.

(c) Prove that there exists a norm-preserving linear transformation
T from E onto a closed subspace of €(P), where €(P) has the uniform
norm. [Use (b) and (6.100) to obtain a continuous mapping ¢ from P
onto B. Define T (%)(f) = @ (¢)(x), for x €E and ¢ € P.]

(d) Prove (c) with P replaced by [0, 1].

(14.40) Exercise. Let E be a normed linear space and let S be a
linear subspace of E that is dense in E. Suppose that fisa bounded linear
functional on S. Without recourse to the Hahn-Banach theorem, prove
that there exists a unique g € E* such that g(x) = f(x) for all x € S.
Prove also that | g = |f]-

§ 15. The conjugate space of €5 (1 <p < )

In this section we construct the conjugate spaces of an important,
if special, class of Banach spaces. Throughout this section (X, &, p)
denotes a fixed but arbitrary measure space and p a fixed but arbitrary
real number such that 1 < p < co. We abbreviate £,(X, &, p) as €.
Recall that ¢’ = p/(p — 1) (§ 13).
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(15.1) Theorem. Let g € 2, and define L, on Ly by the rule
Ly(f) = [ fgdp forall [€S.

Then Ly € L3 and | L] = |-
Proof. By HOLDER’s inequality (13.4) we have
ILe (N1 = 115 llgly -

Thus L, is a bounded linear functional on £, [the linearity of L, is
obvious], and

1Ll = llells -
In fact, equality holds here, i.e., |L,| = |g]p- To see this, let f be
le]? —1sgn (g); then we have |f|? = |g|?". Thus fis in £,, and
.
I#1s = llgly = lels ™ -
Hence the equalities
Li(f)=[1gdp=[lgl " sgn(g) gdu= [ |gl" du
= lelp = lglz = lgly = 1/l el
hold, and so also |L|| = ||g|l,»- Hence we have |L,| = ||g]ly-.* O

(15.2) Remark. Our goal in this section is to prove that every bounded
linear functional on £, has the form L, for some g € £,.. It will then follow
that £ and @, are indistinguishable as Banach spaces, even though,
naturally, they consist of quite different entities. Our proof is elementary,
making use of no sophisticated facts. Only techniques of the calculus
are needed.

(15.3) Lemma. Suppose that p = 2. Then the inequality

O (52)+ (=) =g+
obtains for all x € [0, 1].

Proof. Define F(x) = ( ! 42_%)#—}- (1 5 x)P——%(l + x?). We must
show that F(x) < 0 for 0 < x < 1. Since F(0) = 2-1(2-#*2— 1) and

p = 2, we have F(0) < 0. For 0 < x < 1, it is convenient to consider
the function @ defined by

B(x) = 2 F(x) . (1)

D (x) = [(} 1)+ (5 —1) -2 (54 1))

clearly @(1) = 0. Let us prove that @' (x) = 0 for 0 < x < 1. This deriv-

Thus

1 We could just as well have used g as g in the definition of the functional L,.
For the case p = 2, g is more natural, as we will see in § 16, and so we keep it here.
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ative is
@' (x) = — Lo [(1+ 2)P~1 4 (1 — xpp=t — 2271]. @

Write &= p — 1 [note that « = 1], and consider the function ¥ de-
fined by
Y(x) = (1+ )%+ (1 —x)*— 2%,
We have
Y'x) =a(l+x)*t—a(l—2)*1=20 for 0<x<1.

Thus ¥ is a nondecreasing function on [0, 1], and since ¥(1) = 0, the
mean value theorem implies that W(x) < 0 for 0 < x =< 1. Going
back to (2), we infer that @’ (x) = 0 for 0 < x < 1, and since @(1) = 0,
@ (x) is nonpositive for 0 < x < 1. The definition (1) shows that F (x) is
also nonpositive for 0 <x < 1. 0O

(15.4) Lemma. Let z and w be complex numbers, and suppose that
p = 2. Then we have ‘

@)

Proof. If w = 0, the inequality becomes e = _|_z2|_9' which holds

2r~1 =

2 2 2t

z+w‘?

z—w ’# |z|? |w)?

since p — 1 = 1. Thus we may suppose that |2| = |w| > 0. The inequality
(i) is equivalent to

w \|? 1 w(p

2 = (1+]2) (1

which we will now prove. The inequality (1) can be written in the form

1 w\|?
(e

|1+rexp (20) p |1—1'exp(10 ’ <1 1+”P) @)

where 0 <7< 1land 0= 6 < 27:. If 6 = 0, the inequality (2) is just
(15.8.). The proof will be complete if we show that the left side of (2)
is a maximum when 6 = 0, for fixed 7. Clearly we may consider only §

such that 0 = 6 < % We must show that the function g defined by
g(0)=|1+rexp(t0)|? + |1 —rexp(i6)|?

has a maximum on [O, 2] at 6 = 0. We have

SIS

gBy=1[1 +r”+27cos(0)]§+ [1+ 7% — 27 cos(0)]
and so
»
g(6)= %(1 + 724 27 cos(t9))—2-_1 (—27sin (6))
+ %(1 42— 27 cos(6))§~1 (27 sin(6))

= — prsin(0)[(1+ 72+ 2rcos(0))%_l-— (1+72—27 cos(@))%_l] . 3
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Since p = 2, it is clear from (3) that g’ (f) = 0 for 6 € [O, %] Therefore

. . . . . Tt . . .
the function g is nonincreasing in [O, —2—], i.e., g assumes its maximum

valueat 0. 0O

(15.5) CLARKsON’s inequality for p= 2. For p = 2 and f, g%y,
we have

< 5 15+ gl

' t+sg I‘ . ‘I f— l
p
Proof. We may suppose that f and g assume complex values and are

defined u-a.e. [(12.18) and (12.26)]. Then for all x € X such that f(x)
and g(x) are defined, (15.4.i) implies that

[f*) +¢&
| 2

’f x)—g x) }1’ (x)lp + [g(x)‘p . (1)

Integrating both sides of (1) over X, we obtain (i). O

There is an analogue of (15.5.i) for 1 < p < 2, which we establish
next. The inequality and its proof, for some reason, are more com-
plicated than for p = 2.

(15.6) Lemma. Suppose that 1 < p = 2. Then the inequality
1

() (14 %) + (1 —2)? <2(1+x)?—1
obtains for all x € [0, 1].

Proof. The result is trivial if » = 2. Thus we suppose that 1 < < 2.
For x = 0 and for x = 1, (i) becomes an equality. As % runs from 0 to 1,

the function L . decreases [strictly] from 1 to 0. Hence our desired-

1+ u
inequality (i) is equivalent to

1
1— u\? 1—u — P\ p—
(1+ ) (- ) 32(1+(1+u))p o
for 0 < u < 1. Multiplying both sides of (1) by (1 + #)?, we obtain

1

27 (1 + ) < 2[(1 + w)? + (1 — w)?]?=1. (2)

Raising both sides of (2) to the (p — 1)** power, we get
1
(14w~ < 5 [+ w? + (1—u?], 3)

for 0 < u < 1. It is clear that the steps going from (i) to (3) are reversible,
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so that we need only to prove (3). Expanding in power series, we have

L0 (=] = (14w
BB e 505
=I§' [(;k)“zk_(P k— l)u""’]

=§ [(Zpk)uz (Zf’k _ll)ul’ @k—1) _ ("Z‘k‘ l)uwk] : (4)

As shown in (7.25), the last line of (4) converges absolutely and uni-
formly for « € [0, 1]. We will show that each term [- - -] in this series
is nonnegative. Plainly this will prove (3). The %** term is

plp—1)(p—2)---(p—(2k—1) W — —1(p—=2)-(p—(2k—1)) ub @r-1)

@mt @k — 1)1
=@ (P =2k o
@R
_pp—1)(2—p) (2k—1—1‘)) _ =12 B=p) - 2E—1—p) or-yy
(2k)! 2k —1)! “
(P D@—p):2k=p) o
2k)1
= y2r B2 B—p) - 2R D)
2k—1)!
pp—-1) =1 yer-ny-2xy P=D  yar_m
X [(2k)(2k—1>) (2k—p) ut to@n w ]

The first factor here is obviously positive. Rewrite the expression in
brackets as

. . . 2%—p 2%
-1 1 =1
2k—p 2k 2h—p ¥ T ]
-1 p—1 -1 p—1
2h—p 2
1—yu ?—1 1—u?—1
= [ 2k—p 2% ] : (5)
-1 p—1
An elementary argument [which the reader should carry out] shows
—_ gyt
that for any # > 0 the function with values i_t_“_ , 0 <t < oo, is de-
creasing as a function of ¢. Since 2:__1{’ < % , it follows that (5) is

positive. 0
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(15.7) Theorem. Let z and w be complex numbers, and suppose that
1< p < 2. Then we have

1
@ |z + @’ + |z — 0" < 2(|2l + [w])?=T .

Proof. If 2 =0 or w = 0, (i) is obvious. Otherwise, we may suppose
that 0 < |z| £ |w|. The desired inequality is thus equivalent to the in-
equality

z

‘r 1)?1‘_’- ()

?gz(

z | z
'1 + T ‘— 1+~ -
Write (1) in the form
1
|14+ 7exp(0))Y + |—1+7exp@E0)f < 2(* + 1)7-1, 2
where %= rexp(i0), 0 <7 =<1, and 0 £ 60 <2x. For 6 =0, the in-
equality (2) is just (15.6.). Just as in the proof of (15.4.2), one shows
that the expression on the left in (2) attains its maximum on [0, 12'—] at
6 = 0. Thus (2) holds for all §. O
(15.8) CrarksoN’s inequality for 1 < p < 2. For functions f and g
in L, the inequality
. f+e|f  lli—¢
O s A
holds.

1
v 1 1 P—1
D [+ enz]

Proof. By MinkowskI’'s inequality for 0 < p < 1 (13.9), we have
f+eglt f—gl¥ f+el, |f—eglf
=t = s e+ =

The left side of (1) is the left side of (i), since | [A*'|,—;= |A|5 for
any & € £5. The right side is

/(==

which by (15.7) is less than or equal to

1 1
L (lFle, elp =1 1 1 -1
[forr (5 + &) ] = [z + 7 1ewg] - o
Throughout (15.9)—(15.11), # is fixed and greater than 1, £, denotes

an arbitrary 8, (X, &, ), and L is an arbitrary bounded linear functional
on &, different from 0.

(15.9) Theorem. There is a function @y € Lp such that | @ylp = 1 and
L(py) = |L|, that is, L assumes a maximum absolute value on the unit
ball of L,.

P')P—l d,u];l—l,

”_,_lf;‘g
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Proof. The definition (14.1) of |L| shows that there is a sequence

7\ 00 . ’ ’ 1 . ’
(pwazy in €, such that @, =1, |L(@a)| > 5 [L], and lim |L(p,)]
= |L|. Let ¢, = sgn[L(¢p,)] ¢, Then we obviously have:

L(ga) = IL(g)] > 5 || > 0; (1)
Igals = 1; @
Jim L (g,) = L] - (3)

We will show that (g,) is a Cauchy sequence in £,. In the contrary case,
there are a positive number « and subsequences (@n)iz; and (@m,)r=1
such that |@n, — @m]p > afor k=1,2,.... For p = 2, we use CLARK-
SON’s inequality (15.5) to write

‘| P, — %k|

| I

For 1 < p <2, we use CLARKSON’S inequality (15.8) to erte

Pm, + wnk
2

= 2 ” (p"k“P+ 2 ” q’”‘k"? (4)

Py + P, |[P P, = Pn
N T T T
For p = 2, the inequality (4) implies that
P, + P, ||P ¢\
1_—3 21— (2, ©)
and for 1 < p < 2, (5) implies that
Pm, + @n [P P’
Tl <1-(4) ™

From (6) and (7) we can find, for each p > 1, a number § € ]0, 1[ that
is independent of k£ and such that

P, + Pn
" ,<1- B 8)
for k=1,2,.... Consider the sequence of functions (g;};—, defined by
Py + Prye
=t 9
&5 = [ + P, ©)
No denominator in (9) is zero, for otherwise we would have gn, = — @m,,

and hence the equality L (¢s,) = — L (¢n,) would hold, contradicting (1).
Fork=1,2,...,(8) and (9) show that
L(gk)=W[ L(gm,) + L (fpnk)]
2 »
1 1 1
> 1= [z Ligm) + 3 Lign)] (10)
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y (3) we have ]}E?o L(pm) = klir{}o L(@a,) = |L|. Thus (10) implies that
. 1
= — .
lim L(g9) 2 725 2]

Since [|gxfp = 1, this is an evident contradiction. Therefore (¢,) is a
Cauchy sequence in £, and so has a limit ¢, in £, (13.11). It is clear
from (3) that lim L(¢,) = L{g,) = |L|. O

n—>o0

(15.10) Lemma?. Let E be a complex normed linear space, and let L
be a nonzero bounded linear functional on E for which there exists g CE
satisfying the conditions |g| = 1 and L(g) = |L|. Consider the function

Q) £ lg+tfl = ()
defined on R, where [ is any element of E. If vy, and y_,; are differentiable
at t = 0, then we have

() 2y L () = 91 (0) + i9L4(0).

Proof. Suppose without loss of generality that |L| = 1. For any
complex number z, we have

L{g+2(f-L(Ne)=Lig +=(L{)—LAHLE)=L(g=1.
Since |L (h)| < |4 for all & € E, it follows that

le+2(/—-L(Hl =1 forall z¢K. (1

For each € R different from write g + ¢f in the form g+ tf

—1
Ly’
= (1+tL{f)) [g+t n +tL (f L(f g)] The norm of the expression

in brackets is greater than or equal to 1 for all ¢, and for ¢ = 0 it is equal
to 1. Hence

lg + 2/l — lel = 11+ ¢L(f)] — 1

[(1+ tRe(L())?+ (¢t Im(L (f)))Z]% -
1+tRe(L(f)) — 1=tRe(L(),

v

which implies that

w = Re(L(f)) if ¢t>0, (2)
and
le+ il = el < Rez(fy) it t<o0. @)
Both (2) and (3) follow trivially from (1) if L(f) = 0. It follows that
v; (0) = Re(L(f)) forall fCE. (4)

1 This lemma is due to E. J. McSHANE [Proc. Amer. Math. Soc. 1 (1950), p. 402].



230 Chapter IV. Function Spaces and Banach Spaces

Applying (4) to the function —¢f, we obtain
¥_4(0) = Re(L(—4)) = Im(L()); (5)
and (4) and (5) imply (ii). O

(15.11) Theorem (F. Riesz]. Let L be a bounded Linear functional

on € (1< p < oo). There is a function h € R such that L(f)= [fhdp
x
for all € 2. '

Proof. The result is trivial for L = 0, so we suppose that L = 0.
Using (15.9), select a function g € £, such that L(g) = |L| and |g],= 1.
We want to apply (15.10), and to do this we must show that the function

t—>[tf + glp = v, ()
is differentiable at =0 for every €L, Let w(f) = yf () = [ |t/ +g|? dp.
x

Writing f = f, + ¢f; and g = g, + 7g,, we have
#

tf + gl = [(tfl + &)+ (e + g2)2]7 ,

and so almost everywhere on X we have

d

=7 1t + &P = plif + glP2[(th + &) o + (ta + 82) o] (1)
for all ¢&. [If 1 <p < 2 and the points x € X and f € R are such that
tf(x) + g(x) =0, then the first factor in the above expression for
La tf + g|? is undefined, and the second factor is zero. In this case,
di g

as the reader can check, the derivative is actually zero.] For every
t 4+ 0, we have

t) — w(0 tf + gl — |g|?

7 ==
X

Using the mean value theorem and (1) to rewrite the integrand in (2),
we have

o) —ow

20 [plet a2 lth+e) h+ Eh+e)fol du (@)
X

where 0 < |¢'| < |t| and ¢’ is a function of x € X. [If 1 <p <2 and ¢'f(x)
+ g(x) = 0, then the integrand is zero.] Since (V'f;+ &) = |¢'f + g
and /; < |f|, the absolute value of the integrand in (3) is less than or
equal to 2p[¢'f + g|?-1|f]. If |{| <1, then we have 2p|¢'f + g|? /]
< 2p(f| + lgl)?~!|f|- The functions |f| and |g| are both in &, and so
(Ifl + lg)?~Lisin £,, and (Jf| + |g])?*|f| is in £,, by HOLDER’S inequality
(13.4). Thus for all |f| < 1, the integrand in (3) is less than or equal to
the fixed function 2p (|f| + |g|)?~*|f|, which is in £,. LEBESGUE’S theorem
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on dominated convergence (12.24) implies that
i [ T Jriepah e @
[If 1 < $ < 2and g(x) = 0, then the integrand in (4) and in the following

integrals is zero.] Combining (2) and (4), we see that «’(0) exists and
that

w'(0) = Xfp |gl?=2(g1fr + gafol dpe . (5)
Consequently y; (0) also exists. Using (5), we write
1
v/ 0) =5 ( / lgwu) P (0) = ey o (0)
X
= f 8P =2 [&11 + &afel A - (6)
x

Lemma (15.10) and (6) imply that
L(f) = IL]| (y (0) + 19Z4(0))
=|L| Xf lgl?=2((g1fr+ &af2) + 7 (81 /2~ 821h)) d/":"L"'Xf lgl?-2&fdu.

The theorem follows when we set # = ||L| - |g|?~1sgn(g); 7.e.,
= [fthdu. O
b's

(15.12) Theorem. Let (X, &, u) be an arbitrary measure space and let
 be a real number such that 1 < p < oco. Then the mapping T defined by

T(e) =L
[see (15.1)] s a norm-preserving linear transformation from Ly onto LF.

Thus, as Banach spaces, L and 53; are isomorphic.

Proof. The fact that T is a norm-preserving mapping from €,
into £F is (15.1). It follows from (15.11) that T is onto £F. It is trivial
that T is linear. Since T is linear and norm-preserving, 1 is one-to-one. 0O

(15.13) Exercise [J. A. CLarksoN]. Let (Y, o/, u) be a measure
space such that &7 contains two disjoint sets of finite positive measure.
There is a [unique] least positive number ¢ such that

1 _ f+el3+ 17 —sl2
CET (T e =€

for all f, g € £ (1 < p < ) such that || f]» and |g|, are not both zero.
12—l

Prove that ¢ exists and that c=2 # 1’ . Also, the constants ¢ and —

are attained.



232 Chapter IV. Function Spaces and Banach Spaces

(15.14) Exercise. (a) Let (X, o/, u) be a measure space, let p be a
real number such that » > 1, and let f be an &/-measurable function on X
such that:

(i) {x € X : f(x) == 0} is the union of a countable number of sets in
&/ having finite measure;

(i) fg € (X, A, p) forall g € £ (X, A, p).

Then f is in &y (X, &, u). [Hints. Construct a sequence of functions
(fa)sy such that (|f,|)o=, is nondecreasing, |f,| — |f| everywhere, and
each f, vanishes except on a set of finite measure. Then use (12.22),
(15.1), and (14.23) to infer that f € £,..]

(b) [E.B. LEacH]. Let (X, &/, u) be a measure space and suppose
that every set 4 in & such that u(4) = oo contains a set B € & for
which 0 < u(B) < oo. Let f be any «/-measurable function on X for
which (ii) above holds. Then f is in £, (X, &/, ). [Hints. Let 4,

= {xEX: lf(x)| = —1-11—} If u(Ad,) = oo, use (10.56.d) to find a subset C of

A,, such that C€4Z, u(C) = oo, and C is o-finite. Then f&, satisfies (i)
above and also (ii), since f satisfies (ii). It follows that f & € &4, a contra-
diction. Hence f satisfies (i), and (a) applies.]

(15.15) Exercise. (a) Let (X, &/, u) be the measure space described
in (10.56.b). Show that the conclusion of (15.13) fails for this measure
space for each p such that 1 < p < co.

(b) Let (X, o7, u) be a measure space for which there is a set D € &/
such that u (D) = o and no &/-measurable subset of D has finite posi-
tive measure. Prove that there is an &/-measurable, nonnegative, real-
valued function f on X such that (15.14.ii) holds and f is in no £,
(0 <7 < o). ’

(15.16) Exercise. Let E be a [real or complex] normed linear space
such that foralle > Oand «, y € E such that |x| = |y] = 1and |x—y| >¢,
the inequality

0 [ze+n|=a-9

obtains, where d = d(¢) is independent of x and ¥ and 0 < § < 1. Such
spaces are called uniformly convex [by some writers unsformly rotund).

(a) Let E be a uniformly convex Banach space and L a bounded
linear functional on E. Prove that there is an x ¢ E such that x| =1
and L(x) = |L|. [Imitate the proof of (15.9), noting that (15.9.8) is
simply the assertion that £, is uniformly convex.]

(b) Give an example to show that (a) may fail if the hypothesis of
uniform convexity is omitted.

(c) Let E be a uniformly convex normed linear space, let S be a
proper linear subspace of E that is complete in the norm on E?, and let x

1 For example, S can be any closed subspace of E if E is a Banach space, or
any finite-dimensional subspace of an arbitrary E [see (14.31.b) and (14.37)].
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be any element of E N S’. Show that there is one and only one element
¥ €S such that

|30 — =] = inf{lly — x| : y €S} .

(15.17) Exercise: Weak convergence and the Rapon-Riksz theorem.
In (13.41), we defined weak convergence for sequences of functions in £,
and thereafter studied relations between weak convergence and other
sorts of convergence. Weak convergence can be defined for sequences
(#,) in any normed linear space E, as follows. The sequence (x,,) converges
weakly to x € E if f(x,) — f(x) for all f in the conjugate space E* of E.
Theorem (15.11) shows that the present definition is consistent with
the definition offered in (13.41) for E= 2, (1<p < oo): for E = g,
see (20.19) infra.

(a) Let E be a normed linear space [over R or K] with the property
that if (x,) is a sequence in E, x € E, ||%,| = 1, and |x| = 1, then the
relation
Xp + x

2 -1

implies
%, — %|| > 0.

[Such spaces are called locally uniformly convex.] Let (y,) be a sequence
in E and y an element of E such that:

() lyal > 191

(i) v, — y weakly.
Prove that ||y, — y] - 0. [If | ¥|| = 0, the assertion is trivial. Otherwise,
write %, = |¥.]"'¥, and x = |y|~1y. Then x,—>x weakly and |,
= ||x| = 1. Also if |x, — x| = 0, it follows that |y, — y| - 0. Hence
we need only to show that ||z, — x| — 0. Assume the contrary. Then by
local uniform convexity, there is a subsequence (¥s);-; such that

2

By (14.13), there is an f € E* such that |[f| = 1 and f(x) = 1. For this {,
(1) implies that

i(xnk-i-x)H<oc<l k=1,23..). (1)

1
?I/(xnk)-l- 1] <o,

so %, does not converge weakly to x.]

(b) [RaDoN-RiEsz theorem). Let p be a real number such that
1 < p < coandlet (X, s, u) be a measure space. Write £, for €, (X, o7, ).
Let (f,) be a sequence of functions in £, and f a function in £, such that
fn— fweakly and ||f,| = [f|s. Prove that ||f, — f|l» = 0. [Use CLARKSON’S
inequalities (15.5) and (15.8) to show that £, is locally uniformly convex.
Then apply part (a).]

1 This short proof of the RapoN-R1Esz theorem, and part (a), were kindly sug-
gested to us by Professor IRVING GLICKSBERG.
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(15.18) Exercise. Define f and f,, n=1,2,..., on [0, 2x] by the
rules: f(x) =1, f,(x) = 1 + sin(nx). Notice that /, f, € £,([0, 2n], 4, A)
for all » € N. Prove that:

( a) f, — f weakly in £, [use (16.35)];
(®) 1fls= ol = 2m for all » € N;
( ¢) f, +> [ in measure;
(@) Ifa— Hl1+>0;
(€) fa—+>Tace;
(f) £,([0, 27], .//,1, A) is not locally uniformly convex.

§ 16. Abstract Hilbert spaces

(16.1) Inner product spaces. Recall (13.16) that an dnner product
space is a linear space H over K together with a mapping (, y) > {x, ¥)
of H > H into K such that:

&+, =<% 2+, 2);
(ax, y) = alx, y);
CEIERCEDY
{x,2)y>0 if x0;
[for all x, y, z€ H and « € K]. The above relations imply trivially that:

0,5) =<y, 0)=0;
(xoay) = @iz y);
&y + 2=y + (% 2);
forallx,y,2¢ Hand a € K.
An inner product space over R is defined similarly; in this case we

have (y, x) = {x, ). For many reasons complex inner product spaces
are more useful in analysis than are real inner product spaces.

(16.2) Theorem [Inequality of CAUCHY-BUNYAKOVSKII-SCHWARZ].
For %,y € H we have

) 1<% = <% %) 9, 9) -
Equality obtains in (i) if and only if x and y are linearly dependent.

Proof. If y = 0, equality obtains and we have 0x = 1y. Thus suppose
that y + 0 and let y € K. Then we have

0= x—yy,x—yy)y=%x) -y % —7&x»+ Y. (1)

Setting y = g ; ; in (1), we obtain
Fy)yxy  myyny) | KNP G
0= &% -0 Gyt Gy
— (x, xy — SR Krit

65
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It is clear that strict inequality holds throughout this computation
unless x — yy = 0.

If xx = fy, where |&| + |f] & 0, it is easy to see that the two sides
of (i) are equal. O

1
(16.3) Theorem. Let ||x| = {x, x)2. With this definition of norm,
an inner product space H is a normed linear space.
Proof. All of the verifications that | || is a norm on H are trivial ex-
cept for the triangle inequality. Evidently

lx+yl2=<x+3. 5+ 5) =520 + 5,90 + 0, %) + {9, )
= |%]2 + 2 Relx, ¥> + [¥]*.

Applying (16.2), we have

2Re(r, y) = 2<% )] = 2|#] - ] -
Therefore |lx +y|* = (|#] + [¥])% and so |x+y] < |*] +|y]. O
(16.4) Exercise. Find a necessary and sufficient condition that
I+ 51 = Il + |71
(16.5) Exercise: The polar identity. Prove that if H is a complex
inner product space, then

4¢x,yy=x+ 52— lx =y + ]z + oy[* — ]z — oy|?
forall x,y € H.
(16.6) Exercise. Let E be a complex normed linear space. Prove that

there exists an inner product on E that induces the given norm as in
(16.3) if and only if the given norm satisfies the paralielogram law

() I+ 212+ % — y2 = 2(|*]* + |¥]?) forall xycE.
[If (i) holds, define <x,y) by Re(x y)= % (% + 202 — =12 = 1v1?)

and Im {x, ) =%(||x +1y|? — |x)2 — |¥[*. Then (16.1) is easy to

check. The reader should draw a diagram to show that (i) is really a
well-known elementary fact about sides and diagonals of a parallelo-
gram. This exercise shows that inner product spaces are the normed linear
spaces in which all two-dimensional subspaces “look like” Euclidean
spaces. ]

(16.7) Definition. An inner product space which, with the norm
defined in (16.3), is a Banach space is called a Hilbert space. An in-
complete inner product space is sometimes called a pre-Hulbert space.

(16.8) Examples. (a) If (X, ., ) is any measure space, then
L, (X, o, u) is a Hilbert space [(13.11) and (13.15)].

(b) The space €y, (R) with

Gey= [ 10EM a
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is an incomplete inner product space. To see this, approximate &,
by the sequence (g,);-; of continuous functions defined as follows:

gn(x) =0 for —oo<x§-—-:7 and for 1+%§x<oo; &n (%) =1

for 0 < x < 1; and g, is linear on [—-—};,O] and [1, l+~£~]. The

sequence (g,) converges to &po,4; in €,, and so is a Cauchy sequence.
However, it is clear that (g,) converges to no function in €y, (R).

(c) The sequence space I,(N), consisting of all complex sequences

% = (x,) such that 2 |%,|2 < o0, is a Hilbert space in which {(%,), (¥x))>

= 2 %,¥,. [As we have observed before (13.13), [;(N) is actually the

space £,(X, &, u) in which X is the set N, o is all subsets of X, and u
is counting measure.]

(d) The space consisting of all sequences x = (x,) such that x, is
ultimately zero is an incomplete inner product space [the inner prod-
uct is that induced by /,]. For example, the sequence (xt™)>_, in

. 1
which #m = (1, 4, . . .,

no zero terms. The reader should note the analogy between this space
and €y, (R); indeed if the positive integers N are given the discrete
topology, then the space being considered is €y (V).

We now take up a notion that lies ready to hand in any inner prod-
uct space, and which we will use later to classify all Hilbert spaces.

(16.9) Definition. Let H be an inner product space. If {x,y)>=0
for elements x and y of H, then x and y are said to be orthogonal to each
other, and we write x | y. If E is a subset of H such that {x, y) =0
for all %,y € E such that x = y, then E is said to be orthogonal. If in
addition ||x|| = 1 for all x € E, then FE is called orthonormal. If E and F
are subsets of H such that ¥ | y for all x € E and y € F, then we say
that E and F are orthogonal, and we write £ | F.

The sets @ and {x} are orthogonal for all x € H. The vector 0 is
orthogonal to every vector in H.

(16.10) Theorem. If {z,...,2,} is an orthogonal set in H, then

1 . . ..
50,0, ) converges in J,, but its limit has

lzg 4+ -+ zal2 = [af2+ - - + azl® -
Proof. We have
2 n

<§ i Z”' Zk>=i£ Zn: (2 2) = é(zi’ z;)

k=1 k=

”
2
E=1

—
—

= 7_=)__:1”zi||2' o
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(16.11) Definition. Let E be a normed linear space and let (x,)3>,

00

be a sequence of elements of E. We say that the series )] x,, converges,

n=1
[ ?
and we write 3 x, = x, if there exists an x € E such that lim ||x — } x,
n=1 p—>o0 n=1

= 0.
(16.12) Theorem. Let H be a Hilbert space and let {z,}n, be an

orthogonal set in H, i.e., 2, | 2, for n &= m. Then ) z, converges if and
n=1

only if 3 laal? < o0. If 3 2 = 2, then [z]2 = 3 |2
n=1 n=1 n=1

Proof. For #» > m, it is plain that

élzk—ézk = Zn !Izkllz=élllzkr|2—£mluzkuz.

k=m+1

2 2

"

2 %

k=m+1

Thus ( > zk) is a Cauchy sequence in H if and only if ( P szﬂz)
k=1 n=1 k=1 n=

is a Cauchy sequence in R. This proves our first assertion.

1

oe] n
Now suppose that 3 z; = z. Writing s, = 3, 2, we have |z — s,| - 0
=1 E=1

and |s, 2= 3 ||z|2. Thus (|z] + [s,])s=y is a bounded sequence of
k=1

numbers. Also we have ||z] — [[s,[| £ [z — .| > 0, and so
ek —ké'l l2ell® = 112 = lsall®]
= (Il + lIsal) [zl = lIsal [ >0,

lim 3 faft= . O

(16.13) Theorem. Let H be an inner product space and let E be an
orthogonal subset of H not containing 0. Then E is linearly independent.

Proof. Suppose that {x,,...,x,} CE, that «,, ..., «, are scalars,
and that 3 oz x; = 0. Then for each j €{1, ..., n} we have 0 = 0, ,)
k=1 '

= <2 ockxk,xj> =ij o (X, %) = o | %] 2 But x; & 0, and so [|x;]|2+0.
k=1 =1

Therefore all «;’s are zero. O

(16.14) Definition. Let E be an arbitrary orthogonal set in an inner
product space H. For x € H and z € E, we define the Fourier coefficient
of x with respect to z to be the number (x, z).
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In the real Hilbert space R® [3-dimensional Euclidean space], the
vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) form an orthonormal set, and the
Fourier coefficient of a vector ¥ with respect to each of these unit vectors
is simply the length of the perpendicular projection of  in the direction
determined by that unit vector.

The following example motivates the use of the term “‘Fourier
coefficient” in (16.14).

(16.15) Example. Consider the space £, ([— z, 7], M, 2—;— l). In
this space, the inner product is

&)= [ 1080 dt

for f, g € ;. For n €Z, the functions y,: ¢ — exp (int) are defined and
continuous on R, and so are in €,([— =, ]). We will show that these
functions form an orthonormal set. For each # €Z, we have |y,|*

1 4 1 4 .
= [lm@P dt =5 [1dt=1 1f m+n in Z, we have (m 2a)
E1d n

=-217fx’"(t)mdt=‘2%feXP("(’"—”)?)dt'———il; fcos((m—n)t)dt

- —7 —n
7

+ # f sin((m — n)f) dt = 0. [Use elementary calculus to evaluate

—x
these integrals.] Hence {y,}o> _ o is an orthonormal set. For f€€,([—7, #]),
the classical #t* Fourier coefficient of f is the number

Fo) = g [ 1) exp(—int) dt = {f, ga) -

For an inner product space H and an orthonormal set {z,, . .., z,} C H,
one often wants to know how closely an element x¢H can be approximat-
ed in the metric of H by a linear combination of the z;’s. This question
is completely answered by the following theorem.

(16.16) Theorem. Let H be an inner product space, let {zl, ey 2}
be an orthonormal set in H, and let x be any element of H. Then the function f
defined on K™ by

"
(1) f(“l! R (Z" = 2 02y
attains an absolute minimum value at one and only one point of K*, viz.,
ap= (%, 2y (k=1,..., n). Furthermore, the inequality

(ii) kg.: [<x, zp|? < [«
holds.
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Proof. We have
” 2 n ” n
x— X oapzl| = %2 — X @ (x ) — X an(z ¥y + X |l
E=1 E=1 F=1 E=1

= o1+ 3G 2l = a0 — an Gy + [ealF] = PN

SLEIRID I ICENEPNESICENT

Hence f(«, . . ., &,) is a minimum if and only if &, = (%, ), k= 1,...,%;
and in this case we see that

0= [t — X[, 2l

(16.17) Theorem [BESSEL’s inequality]. Let E be a monvoid ortho-
normal set tn an inner product space H, and let x € H. Then we have

Z,' [Kx, 2)F = |#[*,
and so {z € E: {x, z) & 0} is countable.
Proof. The inequality (16.16.ii) implies that for each nonvoid finite

set F C E we have
g IKx, 252 = [+
Therefore
ZE’ (%, 2|2 = sup{‘gF] <%, 2)|2: F & o, F finite, F CE}< [«[®. O
%€
(16.18) Theorem. Let {z;}5>, be an orthonormal set in a Hilbert space H.
For every x € H, the vector y = 2: {x, 2y zy exists in H and x — y is orthog-

onal to every zy.
Proof. The existence of y follows from (16.12) and BESSEL’s inequality.
Let m € N. We must show that (¥ — ¥, 2,,) = 0. For each # €N let

= }) (%, 2) 2. Then for all » = m, we have
E=1
|<x =Y Zm>] = |<x - Yn zm)l + Kyn i zm>l
= (B 2y — L8 2 G 2|+ | 9 =Yl 1zm]

=0+ [y.—ul.
We have used the fact that {z,} is orthonormal. Since [y, — | — 0,
it follows that (x — ¥, z,,> = 0. 0O
We shall now investigate the problem of writing an arbitrary element
of an inner product space as a limit of linear combinations of elements of
an orthonormal set. We first make a definition.
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(16.19) Definition. An orthonormal set E in an inner product space H
is said to be complete if the only vector orthogonal to all elements of E is 0.

(16.20) Theorem. Every inner product space that is not {0} contains a
complete orthonormal set. In fact, every orthonormal subset of H is contained
in a complete orthonormal set.

Proof. We use TUKEY’s lemma (3.8). Let 4 be any nonvoid ortho-
normal subset of H; for example, 4 = {|x|~*x} where x +0, x € H.
Next let F={B: BC H,AU B is an orthonormal set}. To test ortho-
normality one tests only two vectors at a time, and so it is clear that #
is of finite character. Also 4 € &, so that # is nonvoid. By TUKkEY’s
lemma, & has a maximal member E. It is obvious that E D A. We
assert that E is complete. Assume that y == 0 and that y | E. Set
z=|y|'y. Then EU{z} € # and E ¢ E U {z}. This contradicts the
maximality of E. Thus y | E implies y = 0. 0O

The above proof is not constructive; it gives no clue as to how to
construct a complete orthonormal set in any given inner product space.
There are methods of actually constructing complete orthonormal sets
provided that they are not too large. We now take up this construction.

(16.21) Lemma. Let S be a dense subset of an inner product space H.
Ifx | S, then x = 0.

Proof. Choose a sequence (¥,) in S such that ||x — y,|| - 0. Then

I#)2 = €%, %) — <% yup = %, 2 — 9y = 3] - % — 5] >0
Therefore |x] = 0. O
(16.22) The Gram-Schmidt orthonormalization process. Let H be an

inner product space and let {y;,..., %, ...} be a finite or countably
infinite linearly independent subset of H. Let z; = ¥, and set

uy = [al| 7,
and

2y =Yp — (Yo, Uy %y -

The vector z, is not zero, for y, is not a multiple of y,. Define

Uy = [|25] 712, -
We have

Cby, y) = [ 2] 7120, 1) = 0.

Thus the set {u,, #,} is orthonormal and it spans the same 2-dimen-
sional subspace as {y,, ¥,}.

We will define inductively an orthonormal set {uy,..., %, ...}
such that for each positive integer &, the set {«,, . .., %} spans the same
subspace as {¥, . . ., ¥x}. Thus suppose that {«,, ..., #,} has been con-

structed and that span{u,, ..., #z} = span{y;,..., ¥z} for k=1,...,n.
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If {y1, 2 - - -» Yn} is all of the y’s, stop the construction. If ¥, 41 exists,
let

n
Zp41= Yn+1 —kg:l Yt uk> Ug -

Now z,,, is not the zero vector, because ¥ni ¢span{yy, . .., ¥}
= span{uy, . . -, u,}. Next define
Unt1 = ” zn+1” 1 Zptr -

For 1 <j < n, we have
(1) ;) = |Zn4a] ™ <yn+1 —kZ_.'I Yns1r Ur) U “:‘>

= ll‘zn+1"_1 ((yn+1’ Uiy — Ons1r u;) (us, u’.7>) =0.

Thus the set {#y, ..., U 4q} 1S orthonormal; it remains to show that
it spans the same subspace as {¥1 « - Ynsr) 118 obvious from the def-
initions of z,,, and u, ,, that y, ,, isalinear combination of u,, . . ., %y, 1.
Therefore

{Yns1} U (span{yy, . - - ¥n}) C span{uy, . . ., Un i1}

and so

span{yy, - - -, Yns1) C© span{uy, . . ., tn 11} -
Similarly #, ., is a linear combination of the vectors y, 4y and %, . . ., %,
By the inductive hypothesis, it follows that u, ., €span{yy, .. -, Yns1}
and therefore span{uy, . . ., %11} C Span{yy, . . -, ¥n +1}- Thus these two

subspaces are the same. [Alternatively, we could have reversed the
first inclusion by a dimensionality argument.]

The Gram-Schmidt process yields an orthonormal set which is es-
sentially unique. More precisely, if {u;, ..., #,} is to span the same

subspace as {¥;, . . ., Yn} for each z, then we must have u, = ”—;i"— Y1

where |y| = 1. Hence the choice of u, is unique up to a multiplicative
constant of absolute value 1. Having defined {uy, . . ., t}, we must take
Uy oq €SPAN{ty, . . ., Uy, Yy} Thus for some complex numbers f, ..., B
o, we have

Upp1 = XYn+1 + ‘31“1 +oert ﬁnun .

The number « cannot be zero since, if it were, then u, ,, € span {w, ..., 0}
=span{yy, ..., Ya}, from which it would follow that y, ,,€span{#; ..., Un1}
= span{yy, . . ., ¥n}. This would contradict the linear independence of
the y,’s. Hence

1
= Yn+1 =Yn41t+ Oyt + -+ + Optn »
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and so also

1
0= <7 Up 415 “z’> = <yn+1r “a‘) +0;,
and
0= —(Insv ;) (1=5=1n).
Thus we have

1 n
o Un+1 = Ynt1 —kZJI (Ynsr Wa) n,

just as we defined z,,;. The number « is now determined from this last
equality by taking norms and noting that |u,,,| = 1. Clearly o, and
hence #, 4, is unique up to a multiplicative factor of absolute value 1.

(16.23) Theorem. Let H be an inner product space, not {0}, that con-
tains a countable dense subset D. Then H contains a countable complete
orthonormal set that is obtaimed from D by the Gram-Schmidt process.

Proof. Suppose, as we may, that 0 ¢ D, and enumerate D as (%,),L;.
Define y, = %, where #, = 1. Suppose that y, = x,,, . . ., ¥z = %, have
been defined and are linearly independent, and that 7, < #, < -+ - <.
If there is no j > n; such that {y,, ..., ¥ #;} is linearly independent,
stop the process. Otherwise let #,_, be the smallest such j and define
Yk 41 = %y, We have thus defined a finite or countably infinite linearly
independent set {yy, ¥,, . . .} C€ D. Let S be the smallest linear subspace
of H containing {y,, ¥, . . .}. It is clear that D C S, since if x; ¢ D, then
%; is a linear combination of y;, ..., y, where % is chosen so that
Ny < § < Ny4q [OT else vy is the last y selected and #, < 7). Hence S'is dense
in H. Let {u,, uy, . ..} be the orthonormal set obtained from the set
{¥1, ¥a, - - -} by the Gram-Schmidt process. We will show that {u;, u,, . . .}
is complete. Suppose that x ¢ H and {x,%,)=0 for all #. Then

?
<x, P oc,,u,,>= 0 for all finite linear combinations of the #,’s, and so
n=1

{x,y) =0 for all y € S. It follows from (16.21) that x = 0. O

(16.24) Corollary. Let n € N. Then an inner product space H is in-
distinguishable [as an inner product space] from K" if and only if the
algebraic dimension of H is n. [In K™ we define {(2, . . -, Zn), (@y, - - -, Wn))

n
j=1

Proof. It is clear that if H has dimension #, then the process of
choosing the y’s in the previous proof stops with {y,, ..., y,}. Thus we
obtain a complete orthonormal set {u,, ..., #,} C H. The mapping of
H onto K" given by

”
X oyu;—> (o, .. ., o)
=1
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preserves all inner product space structure, ¢.e., it is one-to-one, onto,
linear, and preserves inner products [hence norms as well]. The converse
is trivial. O

(16.25) Example. By way of illustration, we work out a certain classi-
cal orthonormal set. For each integer #» = 0, define f, on R by

i = mesp [~ 7].

Since Z,'

=1
space 22 (R, A, 2). Since each polynomial has only finitely many roots,

the set {f,}s_, is linearly independent over K. For each integer n = 0,
define

— < oo for all # = 0, each f, is evidently in the Hilbert
exp(k )

H,(x) = (—1)" exp [x*] exp™ [— 7],

where the superscript  denotes the n** derivative of the function
x — exp [—x2]. The functions (H,),>, are clearly all polynomials. They
are called the Hermite polynomials. The first three Hermite polynomials are

Hy(x) =1,

H (x) =2x,

Hy(x) =42 —2.

One can go on computing them as long as patience will permit, Next let

Pulx) = exp [~ 5| Hal0);

these functions are called the Hermite functions. They are all in
2, (R, M, 2), and, as we will now show, they are an orthogonal set.
First we have

i) = ({8 1) ex [ expr (e
+ 2x exp [—%—] exp®+1) [— x2] 4+ exp [%] expm+? [— xz]} . {1
Using LeiBniz’s rule for finding the derivatives of a product, we have

expt? [—x2] = {—2x exp [—x2]}n+D)

n+1
_ 2 (n + l)( 2x)® exp(r +1-k) [ x2]

k=0

— (—24) exp®+D [— 2] + (n + 1) (— 2) exp® [ 3] .
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Substituting this expression in (1), we obtain
9@ = (~1rexp [Z] {62 + 1) exp [— 2] + 2z exp+) [~ 2]
+ (——2x exp®+1) [—x%] — 2(n + 1) exp®™ [—x2))}
= (—1)"exp [i;—] exp® [— x2] (32— 2n —1) = (2 — 21 — 1) @, (%) .
Thus every g, satisfies the differential equation

Pn (%) = (32 — 20 — 1)@, (%) -

Hence for every pair of nonnegative integers 7 and », we have

(P;’ Pm— %<P;r'»= (xz_'z”_ 1) Pn Pm— (xz_zm— 1) <Pn¢m=2(m—”) Pn Pm -

If m += n, we have

f PnPm dx =5 — 2(m f [(pn Pm — Q’n(P:;] dx
) A A A A
= m,qh_l;l;lo [(Pm(pn _A"‘ J PrPm % — PP » + —!¢n¢m dx} =

[This computation requires LEBESGUE’s theorem on dominated conver-
gence.] Thus the set {g,},>, is orthogonal.

To normalize the g,’s, we now compute [ @2 dx. We begin by establish-

ing the equality
H,=2nH, ; (n=1,23,...). 2
We have

Hj (%) = (— 1)" {2 exp [#?] exp® [ 47] + exp [x2] exp+) [— 2]} .
Computing as before, we find that
exp®+D [~ %] = = 2x exp™ [—x?] — 2n exp® - [— x%],
and therefore
Hi(x) = (— 1) {2 exp [32] exp® [ 27]

+ exp [#?] (—2x exp™ [—x2] — 27 exp™—D [—22])}
= (—1)*-12n exp [#?] exp®—V [—x2] = 2nH, _, .

This establishes (2). To evaluate our integrals, we first observe that

-] oo 1

[ #®) dx= [exp (-] dx=n7,
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as is well known. [See (21.60) ¢nfra.] Next, we have
~Z¢'2’(x) dx = joexp [—#?) H:(x) dx
— [ exp [~ Hy(s) exp[s¥] (— 1" exp® [—47] d
— 1) me,1 (x) exp™ [— 2] dx
~ lim {(— 1) H, (1) exp®-D [~ a3][4,,

+ (= 1)n- 1fH ) exp®—1) [— x2] dx}

(=]

—2n [ (=11 Hy_y(2) exp-D[—#*] dx
=2n [ @i _(x)dx

This establishes the recursive formula

Jgi) dx=2n [ @i_,(x)dx,

and it follows that
1

J 9E(x) dx = =2 2"n!
for =10,1,2,.... Hence the functions {y,},_, given by u,(x)

1 - 1 —=
= (n? 2n n!) % (%) = (n7 2“%!) 2 (= 1)" exp [%2] exp® [—x?] form
an orthonormal set. The functions {y,},—, are obtained from

x™ exp A by the Gram-Schmidt process. This follows readil
2 |fneo 2Y |2 y

from the fact that H, has degree » for all #, and from the essential unique-
ness pointed out in (16.22).

(16.26) Theorem. Let H be a Hilbert space. The following properties
of an orthonormal subset E of H are equivalent.
(i) The set E is complete.
(ii) For each x € H, we have x = 2 {x, zyz [Fourier series].!

(ili) For all x € H, we have ||x||? = 2 |{x, 2)|* [PARSEVAL’S identity].
1 The equality (ii) means that the right side has only a countable number of

nonzero terms and that for every enumeration of these terms the resulting series
converges to x as in (16.11). The equalities (iii) and (iv) have analogous meanings.
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(iv) For all x,y € H, we have {(x,y) = 3' (%, 2) {y, z) [PARSEVAL’S
€E

identity].
(v) The smallest subspace of H containing E 1s dense in H.
Proof. Suppose that (i) holds and let x € H. According to BESSEL’S
inequality (16.17), there are only countably many z €E such that
(%, z) # 0; enumerate these as (z,). By (16.18), the vector y = 3 {x,2,)2,

= ' {x, z)z exists and x — y is orthogonal to E. Since E is complete,
€E
it follows that x — y = 0; and so (ii) holds.
To show that (ii) implies (iv), let x, ¥ € H be given and let (z;) be
an enumeration of all z € E such that (x,z) =+ 0 or (y,2z) =+ 0. Let

”
%, =kZl {x, 2 2

and

Y= é‘l CEDIT

Then we have

33 = 2 ) G| = K9y = o )

= Kx’ y) - <xmy>l‘+ mey) - (xw yn>l
< x — %l - Y0 + 1%al - |yn — 21 >0

because ||x — x,| >0, |¥n—]—0, and [, —|x]|. Thus <(x,y)

= {x, ) (3, zy = X (%, z) (¥, 2); hence (iv) is established.
k=1 «€E

It is obvious that (iv) implies (iii). If (iii) holds and (x, z) = 0 for all
z € E, then it is plain that ||x|| = 0. Thus (iii) implies (i). This completes
the proof that (i), (ii), (iii), and (iv) are pairwise equivalent.

Plainly (ii) implies (v). Finally we show that (v) implies (i). Suppose
that x € H and (x, z) = 0 for all z € E. Then it is clear that {(x,y) =0
for all y in the linear span of E. It follows from (v) and (16.21) that x=0. O

(16.27) Theorem. Any two complete orthonormal sets in a Hilbert
space H have the same cardinal number.

Proof. Ignoring a trivial case, we suppose that H = {0}. Let A and B
be any two complete orthonormal sets in H. If 4 is finite, it follows from
(16.26.i1) and (16.13) that A is a Hamel basis for H over K. Since B
is linearly independent, (3.26) shows that B is contained in a Hamel basis
C, so that B < C, and C = 4 by (4.58). Thus B is also finite, and is
also a Hamel basis. Another reference to (4.58) shows that B = 4.

The case in which 4 and B are infinite remains to be treated. For
each a € 4, let B, = {b-¢ B: {a, b) + 0}. Then B, is countable for all
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a€A. For any b€ B we have 1 = |52 = 2 [<b, a)|?* (16.26.iii), and so

there is some a € A such that {a, b)Y + 0, ¢.e., b € B,. Thus B = U B,.

It follows that B < 8,4 = 4. Interchanging the roles of 4 and B
in this argument, we see also that 4 < B. It follows from the Schréder-
Bernstein theorem that 4 = B. 0O

(16.28) Definition. Let H be a Hilbert space. If H = {0}, we define
the orthogonal dimension of H to be the [unique!] cardinal number of
any complete orthonormal set in H. If H = {0}, we say that H has orthog-
onal dimension zero.

(16.29) Theorem. Let H be a nonzero Hilbert space. Then there
exists a set D and a linear transformation T from H onto I, (D) that preserves
inner products [hence norms as well). Also D is the orthogonal dimension of H.

Proof. Let D be an arbitrary complete orthonormal set in H; then
D is the orthogonal dimension of H. For x € H, let T (x) be that function
on D such that

[T ()](z) =< 2
for all z € D. Then T maps H into lz( ), for 37 |{x, 2)|2 < co by BESSEL’s
2€D

inequality Also, for x, y € H, we have

[T(x+ )@ = &+ 3.2 = no+ (2 = [TEIE + [T
for alleD that is, T(x +y) = T(x) + T(y). Similarly T (ex) = o T (%)
for all « € K. Thus T is linear. Using PARSEVAL’S identity (16.26.iv),
we have

(T (x), T(y>—2[T(x @] [T(y ]~Zf(xZ><y,Z> xy),

and so T preserves inner products. Fmally, we show that T is onto
I,(D). If f€l,(D), then J|f(2)|2< oo, and it follows from (16.12) that
D

2
x= 2 f(2)zis in H. Let (z,) be an enumeration of all z¢ D such that
€D
f(z) = 0 or {x, z) & 0. For a fixed p and any m = p, we have

G209 = He)l = G5 29 = 32 1(a) - Gom 200

m

§ @) 2

Therefore f(2) = {x, 2) = T (x)(2) for all z€ D; hence f=T(x). 0O

(16.30) Remark. It follows from (16.29) that every £,(X, <, u)
is completely determined gua Hilbert space by a single cardinal number,
and in fact is indistinguishable from a certain /,(D). No characterization
of this kind for £,(X, &, u), p + 2, is known to the authors. We also
see that there exists just one [complex] Hilbert space for each cardinal

éf ‘|zl >0 as m—>oo.
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number, 4.e., a Hilbert space is completely determined by its orthogonal

dimension.
(16.31) Theorem. Let H be a Hilbert space and let f be a bounded
linear functional on H. Then there exists a unique y € H such that

fx) = <% 9

=l -

Proof. Since H may be identified with an ,(D), the theorem follows
from (15.12). D
(16.32) Theorem. The functions y,:t—exp(int) (n€Z) form a

complete orthonormal set in L, ([—n, A % /1).

Proof. We have already shown (16.15) that {y,}ncz is an orthonormal
set in £, We now prove that it is complete. Let T ={z € K: |z] = 1}
= {exp(it) : —n < t < a}. For every integer 7, the function

for every x € H. Moreover

exp (¢t) - exp (inf)
is continuous on 7. Let € denote the set of all functions of the form

exp (1) - Z o exp(tkt)

k=—n
where «, € K. These functions are called, for an obvious reason, trig-
onometric polynommls We have proved in (7.35.b) that € is uniformly
dense in € (7). It is plain that this implies that any function € € ([ =, x])
such that f(—z) = f(#) can be uniformly approximated [arbitrarily
closely] by functions in & [regarded as functions of ¢ € [, 7]]. Now
let @ € L,([—m, 7)) and let ¢ be a positive real number. Use (13.21)

to select a function g € €([—m, «r]) such that |¢ —gll, = % Next,

by changing the values of g on an interval [z — §, =] for an appropriate
8 > 0 [if necessary], it is easy to find a function f € €([— =, #]) such that

f(—m)=f(m) and l] g—flla < g . Finally, choose a function p¢%
such that |[f — p], <5 . Then
le — ?Ilz sle—gla+le— fllz + 17 = ;bllz

<%s+<% fn!f—Plz‘“)z
i 1
= (g)m)z 2

IA

I
™
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Thus € is dense in £,([—=, =]). By (16.26.v), {¥,}ncz is complete. O
(16.33) Definition. For €&, ([— =, 7], #4, 4), let

f0) =5 [ 10) exp(—ind) dt (n € 2).

The number f(n) is called the #* Fourier coefficient of f. The function }
on Z is called the Fourier transform of f.

(16.34) Theorem. Let f ¢ £, ([—m, n]). If the identity { = O holds, then
f=01in L.

Proof. Let € be the set of all trigonometric polynomials on T, defined
as in the proof of (16.32). If f = 0, then it is obvious that

10w ar=o

forall p € Z. Let x be a fixed number in ]— 7, x]. It is easy to construct a
nondecreasing sequence (g,),-, of nonnegative continuous functions
such that:

&n(—7) = gu(m) = 0;
il_glo 8n (t) = 5]—71, al (t) forall ¢ € [_ 7, 7‘3 .

By (7.35.b), there exists for each # € N a polynomial p, € € such that
l&n — Pnllu < % . Then we have

1) &1 ) = Tim /() po(t) forall € [—m ],
and plainly
10 220 = 170 (lew )] +) = 210 -

LEBESGUE’s dominated convergence theorem (12.30) shows that

J10dt= F10 &l di=Tm 0 puhdi=0.

From (12.54) we infer that f =0 a.e. on [—m, w]. O

(16.35) Riemann-Lebesgue Lemma. Let f € @, ([—n, n]). Then
Il]irn f(n) = 0.

Proof. Let ¢ >0 be given. Use (13.21) to choose g ¢ €([—m, 7])
such that |f — g]; < % . Clearly g € £, ([— =, =]). By BESSEL’S inequality

o0

we have 3' |4(n)|2 < |g|3 Thus there exists a positive integer p

n=—00
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such that |g(n)] < %whenever |n] = p. Hence |#| = p implies

)] < If(n) — g(m)| + |g(m)]

= Elaz‘f(f(?‘)—g(x)) exp(—inx) dx| +

§2n fV I‘z"ﬁLz

<'§'+"2"=8. O

(16.36) Remark. There is an analogous theory of Fourier transforms
for the space &, (R, 4, 1) = £, (R). In this case, one defines

)= @a)~7 [ 1) exp(~iyx) dx
R

for each y € R. Once again the equality / = 0 implies f = 0 a. . Also,

'lllm () = 0. These transforms are important in several parts of analysis.
Y|
Using them, it is possible to prove that the Hermite functions are a

complete orthonormal set in £,(R); for a short proof, see (21.64.b)
infra.

(16.37) Theorem [ParsevaL’s identity]. For f¢ L,([—n, ®]), the
equality

(i) e f ForRat - X ifo)

holds.

Proof. This is an immediate consequence of (16.26), (16.32), and the
definition (16.33) of f(n)

(16.38) Remark. There is a generalization of (16.37) for £, ([— =, x]),
1 < p < 2. In this case, the inequality

(2 ver)” < (% / v(t)wt) ,,

holds, unless f(x) = & exp(¢mx) for some « € K and m €Z. This is a
nontrivial fact, and its proof is fairly sophisticated. See for example
Epwin HEwitt and I. I. HIRSCHMAN JR., Amer. J. Math. 76, 839 —852
(1954).

(16.39) Riesz-Fischer theorem. Let (o,),-_o be in 1,(Z), ie,

D |an|2 < oo. Then there is a function f¢€L,([—m, w]) such that

n=—00

f(n) =, for all n € Z.
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Proof. This is a trivial consequence of the completeness of £, (13.11).
Let

k

hy= % o explij) (h=1,2,...).

j=—k
—r—1
Then the equality |f,—fi|3= 2 ocs]® + Z,' |o|2  shows that
f=k+1
(fx) is a Cauchy sequence. Let f be the limit in £, of (f;). We clearly
have f(n) = = lim f( fa(m) = a,. O

(16.40) Theorem. Let H be a Hilbert space and let B (H) denote the
space of all bounded linear operators [transformations] from H into H.
Then B(H) is a Banach algebra with wnit, where we take composition
for multiplication. Moreover, for each T € B(H) there exists a unique

T* ¢ B(H) such that
(T (x),y) = <% T*(y)

for all x,y €H. Also T** =T and |T*| = |T|. The operator T* is
called the adjoint of T.

Proof. We have proved in (14.4) that B (H) is a Banach space. For
T, T, €B(H) and x € H, we have

1Ty Ta@)| = 1Tl - 1 Te) = I T3l - 1Tl - %] -
Therefore T, T, ¢ B(H) and
ITaTe| = [ T4) - 1 7] -

It is easy to see that B (H) is an algebra over K. Thus B (H) is a Banach
algebra.
Let T ¢ B(H). For each y € H, define f, on H by

=(T(x), 5.

Iy (@) = KT @), 1 = I T|| - I*] - |51
for all x € H. Obviously f, is linear. Thus f, is a bounded linear functional
on H and |f,] < |T] - |y|. It follows from (16.31) that there exists a,
unique element T*(y) € H such that (T (x),y) = f,(x) = {x, T*(y))

for all x € H and
1T* =1l = 170 - ol - (1

This defines T* on H. A simple computation shows that T* is linear,
and (1) implies that T* is bounded and
17 = |71 - @

_Applying the above results to T*, we have (T*(x), y) = (y, T*(x))
= (T (), x) = (x, T(y)) for all x, y € H. Since the adjoint is unique,
this implies that T = (T*)* = T** We next apply the inequality (2)

Then we have
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with T* taking the role of T to obtain |T| = |T**| < |T*. Thus
|7} = I T*]. O

(16.41) Theorem. Let H and B (H) be as in (16.40). Then the mapping
T — T* of B(H) into B(H) has the following properties:

() (T + To)* = TT + T2

@) («T)*=aT* for €K,

(i) (T, To)* = T TY,

(iv) T** =T,

W) IT*T) = | T]*.

Proof. Equality (iv) was established in (16.40). Equalities (i)—(iii)
follow from the uniqueness of the adjoint and the following computa-
tions:

AT+ TI(), y) = (T1(®), y> + T (%), ¥
— (& THO)) + (&, TEO))
= {x, (T + TH)(9));
(xT)(x), ) = a(T (x), y) = %, T* (5))
=(x & T*(9));
T To)(%), 9y = KTo(To (%), = To (%), TY(9)) = % TETT(9)) -

We next prove (v). First we have |T*T| < |T*|| - [|[T| = | 7| Next,

for all x € H we have

IT@)2= (T @), T®)) =< T*T () = |2 [ T*T @) = |#]* | T* T ;

hence |T(x)| = 1[T*T||?- |x]. Therefore |T| = |T* THE, and so
|72 < |T*T]. ©

(16.42) Exercise. Let H be a Hilbert space and let M be a closed
linear subspace of H. Prove that there exists a closed linear subspace
M<L of Hsuch that M | ML and H=MDOM*L, 1.e., M + ML =H
and M N M+ = {0}. [Hint. Consider a complete orthonormal set in M ;
extend it to a complete orthonormal set in H; and let M+ be the closed
linear subspace spanned by the added orthonormal vectors.]

(16.43) Exercise. Let H be an inner product space and let 4 be a
nonvoid subset of H that is complete in the norm metric of H, and also

has the property that % (x+y) €4 if x,y € A. Prove the following

statements.
(a) The set A4 is closed in H.
(b) Forxy, ..., x, € A and positive real numbers «, . . ., &, such that

X' o = 1, the element }; a; %, is in 4. [This is the property of convexity.]
E= E=1

—

(c) Every finite-dimensional linear subspace of H is complete in its
norm metric, 7.e., it is a Hilbert space.
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(16.44) Exercise. Let H and A be as in (16.43) and let z be any
element of H. Prove that there is a unique element y, € 4 such that

M lyo— 2l = inf{]ly — 2| :y € 4} .
[The right side of (i) is the distance from {z} to A as defined in (6.87)].
[Hints. Cf. (15.16.c), noting that H is uniformly convex; or apply the
parallelogram law directly. Choose a sequence (y,) of elements in A4
such that lim |y, — 2| = inf{]|y — 2] : ¥ € A}. Apply uniform convexity
7n—00

to y, — z and y,, + 2 to infer that (y,) is a Cauchy sequence and so has a
limit y, in 4. Uniqueness is proved similarly.]

(16.45) Exercise. Let H be an inner product space and let {x,};>,
be a set of vectorsin H. Let S, be the linear space spanned by {x,, . . ., %,}.
Suppose that x, is the element of S, nearest to x,,, forn =1,2,3,....
[This element exists by (16.43.c) and (16.44).] The set {x,};>, is called
a martingale in the wide sense. Write y, = x, and y,, = %, — %, _, forn > 1.
Prove the following.

(@) The vectors y, are pairwise orthogonal and x,, Vit Y

(b) The inequalities %] < [x, < -+ < |%,] = - - - hold.

c) If {z,}._, is an orthogonal set, then {#z;+ "+ z,,},"f=1 is a martin-
gale in the wide sense.

(16.46) Exercise. Let H be a Hilbert space and let T € B(H).
Prove:

a) if (T (x),y)=0forallx,y € H, then T = 0;

b) if (T'(x), x) =0 forall x € H, then T = 0;

(¢) T*T = TT*if and only if | Tx| = | T*x| forall x € H.

(16.47) Exercise. Let H be a Hilbert space and let M be a closed
linear subspace of H. As in (16.42), we have H = M @ M+. Prove that:

(a) for each x € H, there exists a unique (y, z) € M > M+ such that
% =79+ z; define P(x) =
P 6 %( )

( ) = M;

(f) P-1(0) = ML.

The operator P is known as the projection of H onto M.

Prove that if T € B(H) satisfies T2 =T and T = T*, then T is
the projection of H onto some closed subspace of H.

(16.48) Exercise: Construction of a particular projection operator.
(a) Let (X, &/, u) be a measure space such that 0 < u(X) < oo; write
L, for £,(X, &, p). Let § be a dense linear subspace of £, closed under
the formation of complex conjugates and containing only bounded
functions. Let I be a closed linear subspace of £, such that f €M
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and g €& imply gf €M [i.e., M is tnvariant under multiplication by
functions in E). Let P be the projection of €, onto M as defined in (16.47).
Prove that P(¢) = P(1) - ¢ for all ¢ € £, and that P (1) = &g for some
set E € &Z. Thus M is exactly the set of all functions in £, that vanish
on E’. Note that every such set is plainly a closed subspace of £, invariant
under multiplication by functions in . [Hints. Consider any # ¢ M+,
€M, and g €F. We have

[1ghdu=[(fg) hdu=0
x X
and so M+ too is invariant under multiplication by functions in .
Since 1— P(1) €L, it follows that P(g(1— P(1)))=0 and so
= P(gP(1)) =gP(1) for all g €F. As & is dense in L;, we infer
that P(p) = @ P(1)forall ¢ € £,.Since P (1) = P (1) wehaveP (1)={g.]
(b) Let (X, o/, u) be a o-finite measure space, and let M and §F

be subspaces of £,(X, &, u) just as in part (a). Prove that the projection
operator P of £,(X, &, u) onto M has the form P(f) = &xf for some

Eco? [Write X =”§1 F,, where the F,’s are pairwise disjoint sets in ./
of finite measure. Apply (a) to each subspace &5, £,(X, &, u) and add.]
(16.49) Exercise. Let H be the real Hilbert space /3 = /3(N). Define

= {f €H:|f(n)| = %for all n EN}. Prove that C is a compact, no-

where dense subset of H. The metric space C is known as the Hilbert
parallelotope.

(16.50) Exercise. Let x, v, z be elements of an inner product space H
such that |x| = |y]| = |z|. Prove that

(@) <% %)<z ) — (x ) <a )I2 = [, 232 — Ky, )] [{, )2 — €2, )]

[Hint. You may obviously suppose that |x]| = |y| = |2 = 1. Use the
Gram-Schmidt process to replace H by K3, 2 by (1, 0, 0), y by («, 8, 0),
and z by (y, d, €), where |2+ |B]2=|y|* + |0]2 + |¢|*= 1. Then (i)
becomes nearly trivial. ]

(16.51) Exercise. Let x, y, z and H be as in (16.50). Prove that

) <& 22 (Iy, DI+ Ky D+ Kz 017
= (x) + (5,8 )y (pwd(ms) + BNy R (Hy) (e
(16.52) Exercise. Prove that a Hilbert space H is separable if and
only if the orthogonal dimension of H is < R, [see (16.29)].

(16.53) Exercise. Let (X, o/, y) be a measure space such that
0 < u(X) < oo and let (#, g) be the metric space defined in (10.45).
Let m be the smallest cardinal number of a dense subset of (%7, g).

1 For a yet more general result, see (19.76).
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Let b be the orthogonal dimension of the Hilbert space £,(X, <, u).
Prove the following assertions. If b is finite, thenm = 2b_ If p is infinite,
then m = b. [Hints. Consider first the case in which g assumes only
finitely many values, and use (10.56.a) and (12.60) to prove that m = 2°.
If p assumes infinitely many values, then (10.56.c) shows that b is in-
finite. In this case, the inequalities m < ® and d < m are proved by
simple arguments. ]

(16.54) Exercise. Let H be the real Hilbert space /;(R). For each
t € R let u, be that element of H defined on R by u,(s) = J,,, [KRON-
ECKER'’S delta]. Define X = {{ € H :f = au, for some t €R, 0 £ « < 1}.
Then X, with the metric of H, is a metric space. Prove that there exists a
one-to-one mapping ¢ of X onto the French railroad space (D, p) [see
(6.13.e)] such that both ¢ and ¢~! are uniformly continuous.

(16.55) Exercise. Let H be a Hilbert space and let T € B(H). Write
o(T) = sup{|{Tx, x)| : x € H, ||z = 1}.

(a) Prove that «(T) = |T| if T = T*. [Use the identity
4| Tx[® = KT (|1Tx|  + Tx), | Tx] 2 + Tx) — KT (| Tx| x — Tx), [ Tx| x — Tx)
and the parallelogram law.]

(b) Find a T for which «(T) = | T|.

(16.56) Exercise. Use (16.42) to give a proof of (16.31) that does not
invoke the results of §15. [For fEeH* let M =f1({0}). If M=H,

let y=0.If M & H, let z be a nonzero element of ML and set y=
f(z) |z| -2z Note that (x — %z) €M forall » EH.]

(16.57) Exercise. Let H be a Hilbert space and let T ¢ B(H).
Prove that [7-1({0})] L [T*(H)] and H = [T-}({0})]+ [T*(H)].
[See (16.42). Show that T*(H)L = T-1({0}).]

(16.58) Exercise. Let H be a Hilbert space and let T ¢ B(H) be
such that T = T*. Suppose that there exists a positive constant ¢
such that | T (x)| = c|j»| for all x € H. Prove that

(a) T is one-to-one,

(b) T(H) =
and .

() T-1€B(H).

[Use (16.57) and (14.17).]




CHAPTER FIVE

Differentiation

This chapter contains first a brief but reasonably complete treatment
of the theory of differentiation for complex-valued functions defined
on intervals of the line. Section 17 is severely classical, containing
examples and LEBESGUE’s famous theorem on differentiation of functions
of finite variation. In § 18, we explore the conditions under which the

classical equality
b

1(6) — f(a) = [ f'(t) at

a

is valid. This exploration leads to interesting and perhaps unexpected
measure-theoretic ideas, which have little to do with differentiation and
which have applications in extraordinarily diverse fields. The main
result in this direction is the LEBESGUE-RADON-NIKODYM theorem, which
we examine thoroughly in § 19 and apply to the decomposition of
measures on R. In §20, we present several other applications of the
LEBESGUE-RADON-NIKODYM theorem to problems in abstract analysis.
Sections 17 and 18 are important, and should be studied by all readers.
The same is true of § 19, up to and including (19.24). The remainder of
§ 19 may be omitted by readers pressed for time. Of § 20, (20.1)—(20.5)
and (20.41)—(20.52) are topics important for every student. The re-
mainder of § 20 is in our opinion interesting but less vital, and it too
may be omitted by readers pressed for time.

§ 17. Differentiable and nondifferentiable functions

This section deals solely with functions defined on intervals of R.
While reasonably elementary, it is an indispensable introduction to the
more sophisticated matters considered in §§ 18 and 19. Throughout this
section, “almost everywhere” means ‘‘A-almost everywhere” and
“measurable’” means ‘“‘.#;-measurable”’. As usual, we begin with some
definitions.

(17.1) Definition. Let a € R and § > 0. If ¢ is a real-valued function
defined on Ja, a + 6[, define

lim ¢ (%) = sup{inf{p(h) :a <h <t}:a <t = a+ 8}
and

%nqa(h)=inf{sup{qa(h):a<h<t}:a<t§a+6}.



§ 17. Differentiable and nondifferentiable functions 257

These two extended real numbers are called the lower right limit and the
upper right limit of @ at a respectively. If ¢ is a real-valued function
defined on Ja — 9, a[, define the lower left limit and the upper left limit of ¢
at a to be the extended real numbers

lhiTnup(h)=sup{inf{<p(h):t<h<a}:a—6§t<a}

and
li_m(p(h)=inf{sup{<p(h):t<h<a}:a—5§ t<a}
hta

respectively.

(17.2) Definition. Let a € R and 6 > 0. If { is a real-valued function
defined on [a, a + &[, define
_limJ@ + 4 —t@)
D, f(e) = lim /22
and

" — T fla+ k) —f(a)
D+{(a) l}g{)l ——
If f is a real-valued function defined on Ja — §, a], define

— 1lim f@ + A —{(a)
D_f(a) =lim [e LN —/(@)

and
- — Top fa+ k) — fa)
D7 f(a) = lm . .
These four extended real numbers are known as the Dint derivates of f
at a; D, f(a) is the lower right derivate, D+ f(a) is the upper right derivate,
D_{f(a) is the lower left derivate, and D™ f(a) is the upper left derivate.
(17.3) Remarks. The inequalities

(D+h)(a) = (D*/)(a)

(D-f)(a) = (D™ /)(a)

obviously hold. Also it is easy to see that (D*f)(a) [(D+f)(a)] is the

largest [smallest] limit of a sequence (f(a—-’-%i—ﬂ), where %, >0

and lim %, = 0. Similar statements hold for (D™ f)}(a) and (D_f)(a).
n—>»00

(17.4) Definition. If (D*f)(a) = (D;f)(a), then f is said to have a
right derivative at a, and we write ) (a) for the common value (D*f)(a)
= (D, f)(a). The left derivative of f at a is defined analogously, and is
written f_ (a). If /', (4) and /. (a) exist and are equal, then f is said to be
differentiable at a, or to have a derivative at a, and we write f’(a) for the
common value f/, (a) = f_ (4). The number /' (a) is called the derivative of f
at a. Notice that our definition does not exclude oo or — oo as a value for

' (a). For example, if f(x) = x% (x € R), then f'(0) exists and f'(0) = .

and
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(17.5) Definition. If f is a complex-valued function defined on
[a, a + O[, we say that f is right differentiable at a or has a right derivative

at a if

lim 16 +h — @)

40
exists and is a complex number. Left derivatives and two-sided deriv-
atives [which are simply called derivatives] are defined similarly. It is
obvious that f has a derivative at ¢ if and only if Ref and Imf have

finite derivatives at a. Then

f'(a) = (Ref)'(a) + i(Imf)'(a) .

(17.6) Remarks. (a) There is a slight solecism in Definitions (17.4)
and (17.5), since a real-valued function is certainly complex-valued,
and 4+ oo are admitted as values of /' if f is real-valued. The point should
cause no trouble, however, and we will not bother with the special
terminology that would be needed to remove the difficulty.

(b) If /', () exists and is finite, then 12&)1 f(a + k) = f(a). Similarly,

if /_ (a) exists and is finite, then I}H{)l f(a + k) = f(a). Hence if f has a

finite derivative at a, then it is continuous at 4. {Is this true if /' (a) = oo
or —oo?] The following two theorems show that the converse of this
statement fails in a striking way.

(17.7) Theorem. Let a be an odd positive integer and b a real number

such that 0 < b < 1. Suppose also that ab > 1+ —3—27}— . Let { be the function
defined on R by

flx) = f‘ b* cos[atmx] .
k=0

Then | is continuous and bounded on R, and | has a finite derivative at no
pointl,
Proof. For each & we have |b% cos[a*nx]| < % for all x € R. Thus

the series defining f converges absolutely and |f(x)] < }3) % = T—l-—b
E=0

1 The investigation of the relationship between continuity and differentiability
has a long history. The function f defined here was constructed by WEIERSTRASS
(ca. 1875). It was minutely examined by HARDY in 1916 [Trans. Amer. Math. Soc.
17, 301—325 (1916)]. Among other things, HARDY was able to show that f has the
stated properties if ab = 1. In the same paper, he showed that the continuous

function
[e0)

gx)= X

n=1

sin{n?mx]
nZ
is nowhere differentiable; this is considerably more difficult to prove than the

corresponding statement for f. RIEMANN had conjectured many years earlier that
g is nowhere differentiable.
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n—1

for all x € R. Also, if f,(x) = } b* cos[a*mx], we have
E=0

(o] bn
If = falu = X 0% = 1—b -0
k=n

as # — oo, It follows as in (7.9) that f is continuous on R.
We will show that f is differentiable at no point of R. Let x € R be
fixed. For #» € N and % > 0, write

flx+r)—f(x) _ " 1bk cos[a*z (¥ + h)] — cos[a*nx]

h 0 h

=
1

bad cos [a*m(x + k)] — cos [a*nmx]
+ 3 b* b =S,+ R, .

k=n

®

Using the mean value theorem, we write

cos[a*m(x + k)] — coslatmx]
y =

—adkmsinfa*z(x + #')], (1)
where 0 < 4’ < k. The absolute value of the right side of (1) is less than
or equal to ez, and so

arbr — 1 marbr
ab—1 ~ab—1° @

n—1
ISpl = 3 a*bPm=m
k=0

Now write
arx = o, + ﬂn ’

. . 1 1
where «, is an integer, and — - 6. < - - Let

We now estimate |R,|. For £ = #», consider
arm(x+ h) =abFrarm(x+ k) =a*"n(@rx+ 1—F,)=a*"m(1+a,).
Since a is odd, the equalities
cos[afm(x + h,)] = cos[a*~"m(l + &,)] = (—1)'**
hold. We also have

—cos [wafx] = —cos [ra*~"arx] = —cos [wa*~"(x, + Bn)]
= —cos[ma*~"a,] cos[wa*~"B,] = (— 1)'* * cos [ma*~"f,].
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Upon setting & = h,, we find that |R,| becomes

e (—=1)+% 4- (—1)1+% cos[na*-" B, ]
IRnI': 2 b ha
k=n
Zb" + cos[ma*—" 8,]) g b g 2a;b" ,

since cosz 8, = 0. Comblnmg this estimate for |R,| with (2), we obtain

fix + k) — f(2) 2a " mardbn 2 7
b Sal >—5—— 4=y = (@d)" [?“ ab—-l]'
Since ab > 1+ ?n, [% - —a_b—ﬂ—T] is a positive constant, and it follows
that
lim /‘(x+h;)"—f("’) = o0

Since lim k&, = 0, it is clear that at least one right derivate of f at x

is infinite. O

Our next theorem gives an indirect proof that continuous nowhere
differentiable functions exist. It shows actually that in a certain sense
most continuous functions are nowhere differentiable.

(17.8) Theorem. Consider the real Banach space €= €r([0, 1]).
Let ® = {f € : D*[(x) and D_f(x) are both finite for some x € [0, 1[}.
Then ®© 1is of first category in the complete metric space €. Thus the
set of all continuous functions on [0, 1] which have at least one infinite right
derivate at every point of [0, 1[ is dense in €7 ([0, 1]).

Proof. For each integer #n > 1, let €, = {f € €r: there exists an
fx+h) —fx) < %]} We

h
first show that ® = ngz@fn. Obviously nsz €,C9D. Let f€9. Then there

existsanx € [0, 1[ and a constant « > Osuch that forsome d, 0 <d<1—x,
the inequality

x € [O, 1-— %] such that

fx+h) — )

A <«

holds for every % € 10, 6[. Select an integer » for which # > max {%, oc}.

It is plain that f €€, and so ® C U, G,

Next we show that each €, is closed in €". To this end fix #, let
f €€, , and choose a sequence (fy)i>, of functions in &, such that

If — fxlu = 0. For each &, choose x; ¢ [0, 11— —:;—] to correspond to f,

. " . 17 .
as in the definition of &,. Since [O, 1— 7{] is compact, the sequence
(xz) has a convergent subsequence whose corresponding subsequence of
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(fx) converges in norm to f; we denote these subsequences again by (%)
and (f,) respectively. Let x = hm xy; clearly x € [O 1-— —] Now fix

h E] —] and let ¢ > 0 be arbitrary. Choose % so large that

IF = fall <=5 f ) — F(0)| < h , and |f(xs + ) — f(x + B)] <l4i,

Thenlf(x+k—f ISI/‘(x+h — fxn + B)| + |f (% + &) — fr(xa+H)]
+Vk(xk‘*‘h)“‘fk(xk["‘Ikak)—ka|+]ka—f |<he+~}ii

+ nh + —4— + T = h(n + ¢). Since ¢ is arbitrary, it follows that

f(x+h}1—f(x) <n

forall 4 ¢ ]O, %] ; hence f € €,. It follows that €, is closed.

We now show that every &, has void interior. Assume the contrary,
that there exist an #, an f€&,, and an & > 0 such that B,(f)
{(p €€ |f — @llu < £} C €,. By WEIERSTRASS'S approximation theorem
(7.31), there is a polynomial $ such that |p — fll,<e.Let 6 =e— |p — ..
Then we have B;(p) C B.(f) C €,. Next we construct a function g € €*
such that: gl < 6, &'s (x) exists, and ¢’ (¥)] > n + '], for all x € [0, 1[.
[Such g’s clearly exist; e.g., let g be a nonnegative ‘‘sawtooth’ function

on [0, 1] with maximum % and slopes greater in absolute value than

the constant # + ||p'],.] Then g+ p € B;s(p), and we also have

g+ 2)4| = lgh + 2| = lg& | — 12| = lgh] = |2'u >

at all points of [0, 1[. Thus g + # ¢ €,. This contradiction proves that
€, = o for all n.

We conclude that each set €, is nowhere dense in €. Therefore
o :
D= ”L_Jz €, is of first category in €. Since € is a complete metric space,

it follows from the Baire category theorem (6.54) that € N ®’ is dense
in€.t O

The technique used in the proof of (17.8) is important. Many existence
proofs throughout analysis and set-theoretic topology are carried out
in just this way.

We next examine the extent to which a function can have different
right and left derivatives.

1 Many writers have made constructions of this sort. Our construction is taken
from S. Banach, Studia Math. 3, 174—179 (1931). See also K. KURATOWSKI,
Topologie I, Deuxiéme Edition, Monografie Matematyczne, Tom XX, Warszawa-
Wroclaw, 1948, pp. 326—328.
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(17.9) Theorem. Let Ja, b[ be any open interval of R and let | be an
arbitrary real-valued function defined on la,b[. Then there exist only count-
ably many points x € la, b[ such that f_(x) and [’ (x) both exist [they
may be infinite] and are not equal.

Proof. Let A ={x¢]a, b[: f_ (x) exists, f (x) exists, f, (x) </f_ (%)}
and let B={x¢]a, b[:f_(x) exists, f (x) exists, f} () > f_(x)}. For
each x € 4, choose a rational number 7, such that f (x) <7, <f_ (%).
Next choose rational numbers s, and £, such that a <s, <x <{?,<0b,

(» — .
-”’741)—>rx if s,<y<wx, (1)
and
ﬂ%}§ﬁ<a i ox<y<t,. @)
Combining (1) and (2), we have
1) — 1) <7n(y —2) 3)

whenever ¥ = x and s, <y <{,. Thus we obtain a function ¢ from 4
into the countable set @3, defined by ¢ (x) = (7, s,, £,). We will prove
that 4 is countable by showing that @ is one-to-one. Assume that there
are distinct x and y in A4 such that ¢(x) = @(y). Then Js,, t,[ = Is,, ¢,[,
and x and y are both in this interval. It follows from (3) that

1) — 1) <7(y—2)
and

Hx) = 1) <n(x—3).
Since 7, = #,, adding these two inequalities yields 0 < 0. This is a con-
tradiction, so that ¢ is one-to-one and A is countable. Similar reason-
ing proves that B is countable. 0O

Our next goal is to prove H. LEBESGUE’S famous theorem that a
monotone function has a finite derivative almost everywhere. The main
tool used in the proof is a remarkable theorem of VitarLi, which we
present next. VITALL'S theorem has numerous applications in classical
analysis, particularly in the theory of differentiation.

(17.10) Definition. Let E C R. A family ¥~ of closed intervals of R,
each having positive length, is called a Vitali cover of E if for each x € E
and each ¢ > 0 there exists an interval I € " such that x € I and (1) <e,
i.e., each point of E is in arbitrarily short intervals of ¥".

(17.11) Vrrawr’s covering theorem. Let E be an arbitrary subset of R
and let ¥~ be any [nonvoid] Vitali cover of E. Then there exists a pairwise
disjoint countable family {I,} C ¥ such that

MENWILY)=0.

Moreover, if A(E) < oo, then for each & > 0 there exists a pairwise disjoint
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finite family {I,, . . ., I,} C ¥ such that

P ’
A(Eﬂ (0 1,) ) <e.

Proof!. Case I: A(E) < oo. Choose an open set ¥ such that EC V
and A(V) < co. Let¥;={I € ¥": I C V}. Plainly ¥} is a Vitali cover of E.
Let I, € ¥,. If E C I,, the construction is complete. Otherwise we con-
tinue by induction as follows. Suppose that I, I,, ..., I, have been

”
selected and are pairwise disjoint. If E Ck';ll I, the construction is
complete. Otherwise, write

A,,=kL=JIIk, U=VNA4,.
Clearly 4, is closed, U, is open, and U, N E + @. Let

0, =sup{A(l): I €Y, ICU,}. (1

Choose Iy, €% such that I,,,C U, and A(l,,) > 5 &, If our

process does not stop after a finite number of steps [in which case there
is nothing left to prove], then it yields an infinite sequence (I,)2., of
00

pairwise disjoint members of ¥ Let A = ”L=Jl I,. We must show that
A(E N A’) = 0. For each #, let J, be the closed interval having the same
midpoint as I, and such that

AJn) = 54(1) .
We have

A3, 1) s Zagn=s Saa)
=5A(4) < 5A(V) < oo. 2)
Theorem (10.15) shows that

m A(:Qp ]") =0.

p—>o0

Thus, to prove that A(E N 4’) = 0, it suffices to prove that EN A’
C”L=Jp]n for every p€N. Fix p€ N and let x€ EN A’. Then we have

x¢ENA,C U, and so there exists an I ¢¥; such that x €I C U,.
It is evident that 4, < 24(1,.,), and (2) shows that A(I,) - 0 as # ~> oo.
Hence there is an integer # such that 8, < A(I). Thus, by (1), there
exists an integer # such that I ¢¢ U,; let ¢ be the smallest such integer.
It is obvious that p < ¢. We infer that

IN4,+9 and ITN4, ,=2.

1 We give the ingenious proof of this theorem due to S. BanacH [Fund. Math.
6, 170—188 (1924)].
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It follows that
INI,+ o (3)
and, since I C U,_,, we have

Al £ 6,_1<24(1,) . (4)
Since A(J,) = 5A(1,), (3) and (4) show that

1cjc0 ..

so that x € nLj; J.. Hence we have EN 4'C ’EP J.» which implies that

MENA)=0
Now let £ > 0 be given and choose an integer p so large that

3 ) <e.
n=p+1
Then
EN4,c (EN4)U (”=L3+11,,),
and so

AENA) <0+ A ("=ﬁ+11,,) <

Thus the proof is finished if 4(E) < oo.
Case IT: A(E) =oco. Foreach n €Z, let E,=E N In,n + l[andlet
={I¢¥ :1Cn n+ 1[}. Clearly ¥, is a Vitali cover of E,. Apply
Case I to find a countable pairwise disjoint family 4, C ¥, such that

AME,N(UA))=0foreachn¢Z. Let £ = ,,ji %o Then .# is a countable
pairwise disjoint subfamily of ¥ and

nwsyczu[ 8 (E.nway)].
We see that
MENUAYS AN+ X 0=0. 0O

(17.12) Theorem [LEBESGUE]. Let [a, b] be a closed interval in R
and let | be a real-valued monotone function on [a, b]. Then [ has a finite
derivative almost everywhere on [a, b]. '

Proof. We suppose that f is nondecreasing [otherwise consider —f].
Let E={x:a<x<b, D,f(x) <D"f(x)}. We will first show that
A(E) = 0. For every pair of positive rational numbers # and v such that

u <v,let
E,,={x€¢E:D,fx) <u<v< D*f(x)}.

Clearly E = U{E,,: %, v €Q, 0 < u < v}. Since this is a countable union,
it suffices to show that A(E,,,) = 0 for all 0 < u < v in Q. Assume the
contrary: that there exist positive rational numbers # and v, # <v,
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such that A(E,,,) = & > 0. Let & be such that

(v —%)

o
O<e< w T %0

Choose an open set U D E,,,, such that 2(U) < & + ¢. For each x € E,, ,,
there exist arbitrarily small positive numbers 4 such that [x, x + 4] C U
N [a,b] and

o+ 1) — F(®) < uh. (1)

The family ¥~ of all such closed intervals is a Vitali cover of E,,,, and so,
by (17.11), there exists a finite, pairwise disjoint subfamily { [, %;+ A;]}/-,
of ¥ such that

A(Eu,v n (il..—_Jl [x,-, X + h‘]) ) <eE€.
Let V= i';Jl 1%: %; + h;[. Then we have
AME,,NV)<e. (2)
The inclusion ¥V C U implies that
Dhi=A)=AU)<a+e,
i=1
and so (1) yields the inequalities
gl‘l(f(xi'*'hi)—f(xi))<u§hi<u(“+£)' (3)

Again, for all y €E,, , NV, there exist arbitrarily small positive
numbers % such that [y, y + 2] C V and

Hy + &) — {(y) > vk. )

The family of all such closed intervals is a Vitali cover of E, , NV,
and so there is a finite, pairwise disjoint family {[y;, y; + #;]}j~, of such
intervals with the property that

A(Ewen v (D0my + 1) ) <e.

This inequality together with (2) implies that

i=1

t=M(Eue) S MEue N V) + A(E,e N V) <e+ ( +3 kf)- (5)
Next, using (4) and (5), we have

v(a—ze)<vék,-<é‘l(f(y,-+kf)—f(y,-))- (6)

7

n ”
Since ’,l=Jl (y;, v, + k] C 1.l;'l [%; %; + h;] and f is nondecreasing, we also
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have

e

I (1054 k) = 109) 5 5 (e 1) = 1(30) o
Combining (6), (7), and (3) gives

v(x— 2¢) <uloe+ e,

which contradicts our choice of e. Thus A(E) = 0, and so /! (x) exists
a.e. on [a, b]. Similarly f’ (x) exists a.e. on [a, b]. Now apply (17.9)
to see that /' (x) exists a.e. on [a, b].
It remains only to show that the set F of points % in ]a, 5[ for which
f' (x) = co has measure zero. Let f be an arbitrary positive number.
For each x € F, there exist arbitrarily small positive numbers % such that
[, % + k] C Ja, b[ and
Jo 48— [2) > Bh. ®)

By VitaLl’'s theorem (17.11), there exists a countable pairwise disjoint
family {[x,,, Xy + hn]} of these intervals such that

AF O (Y [, 2 + 7)) = 0.
From this fact and (8) we obtain

Thus
BAF) <f(d) —f(a) forall BER,

which implies that A(F) =0. 0O

(17.13) Question. Suppose that A(4) =0, 4 C [a, b]. Is it possible
to find a monotone function f on [a, b] such that f' exists exactly on
A’ N Ja, b[? The complete answer seems to be unknown.

(17.14) Definition. Let f be a complex-valued function defined on
[a, b] C R. Define

Va”fzsup{ﬁ'lf(xk)—f(xk_l)liﬂ=xo<x1<"'<xn=b}-
E=1

The extended real number V?f is called the fotal variation of f over
[, b). If V2f < oo, then f is said to be of finite variation [or bounded
variation) over [a, b].

(17.15) Remarks. (a) The function f has finite variation if and only
if the functions Ref and Imf have finite variation.

(b) The equality V2 f + V¥f = V. holds for a < b < c.

(¢) The function x — V{ is nondecreasing.

(17.16) Theorem [Jordan decomposition theorem]. A real-valued
function of finite variation is the difference of two nondecreasing functions.
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Proof. Write f(x) =V}f— (VFf — f(x)), where we define Vf=0.
Evidently the function x — V;f is nondecreasing. The function

x> Vif— f(x)
is also nondecreasing, for if ' > x, then
VI — 1) =V —1a)=VE = () = f(x)) = 0. O

(17.17) Theorem [LEBESGUE]. A complex-valued function of finite
variation has a finite derivative a.e.

Proof. This is an immediate consequence of (17.16), (17.15.a), (17.12),
and (17.5). O

(17.18) Theorem [FuBIN1]. Let (f,),>, be a sequence of nondecreasing
lor nonincreasing] real-valued functions on an interval [a, b] such that

f' fn (%) = s(x) exists and is finite 1n [a, b]. Then
n=1

(0 ICEPHAD
a.e.in Ja, b[.

Proof. There is no harm in supposing [and we do] that all f, are
nondecreasing. Also, by considering the functions f, — f,(a), we may
suppose that f, =0. Thus s = Zo;o' f» is nonnegative and nondecreasing.

n=1
The derivative s’ (x) exists and is finite for almost all x € Ja, b[, as (17.12)
shows.

Consider then the partial sums s,=f, + fy+ -+ f,, and the
remainders 7, = s — s,. Each f; has a finite derivative a.e.; hence there
is a set A C la, b[ such that A(4' N Ja, b[) = 0,

Sa(®) = f1(2) + f2(2) + +* + fulx) < o0
for all x € 4 and all #, and s’(x) exists and is finite for x € 4. For any
% € Ja, b[ and every 4 > O such that x + % € ]a, b[, it follows from the
equality

s+ h) —s(®) _ salx + h) — s, (%) Yolx + h) — 7,(#)
h - h + 3

that
Sa(x +h) —sal¥) _ sr+h) —s@) |
h h ’
and this inequality implies that s,,(x) < s’ (x) for all ¥ € 4. The inequality
Sp(%) < $p41(%) is clear, and so we have

$n(%) = $p1a(¥) = 8'(%)

=

1 This is not the theorem ordinarily called ‘“Fusini’s theorem’, which deals
with product measures and integrals and will be taken up in Chapter Six.
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forx€Aandn=1,2,.... Hence

lim s, (x) =
n—>00

[\18

fi (%)

i

i
exists a.e., and it remains to show that lim s, (x) = s’ (x) a.e. Since the

n—oo

sequence (s, (x))s>; is nondecreasing for each x € 4, it suffices to show
that (s;) admits a subsequence converging a.e. to s’. To this end, let
My, Mg, - . ., My, ... be an increasing sequence of integers such that

él [5(8) — s, (B)] < oo

For each 7, and for every x € ]a, b, we have
0= 5(x) — 5p,(8) < 5(B) — 5, (B) -
The terms on the left side of this inequality are bounded by the terms of

e
a convergent series of nonnegative terms. Hence 3 [s(x) — sn,(¥)]
k=1

converges. The terms of this series are monotone functions that have
finite derivatives a.e. Therefore the argument used above to prove that

2. /(%) converges a.e. also proves that }'[s'(x) —s,,(x)] converges
im k=1
a.e.; and of course it follows that ’}im Sp (%) = s"(x) a.e. O

We close this section with a long collection of exercises. A number are
merely illustrative examples; several are minor theorems with sketched
proofs [(17.24), (17.25), (17.26), (17.27), (17.31), (17.36), (17.37)]; and
(17.33) and (17.34) are needed for later theorems of the main text. The
reader should bear these facts in mind when doing the exercises.

(17.19) Exercise. Let 9 be LEBESGUE’s singular function, defined
in (8.28). Compute all of the derivates of y at each point of [0, 1].

(17.20) Exercise. Define the function ¢ on R by

1
x if 0 Sx<g,

P(x) = .
1—x if ?§x<1,

px+ k) = @) forall k€Z.
Let

)__,' 2-"p(2x) .

Prove that f is continuous on R. Compute all four derivates of f at each
dyadic rational point. Prove that f fails to have a finite derivative at
every point not a dyadic rational.

(17.21) Exercise. Let {a,}5>; be a set of distinct points in the inter-
val [a, b]. Let (u,)5>, and (v,);>, be sequences of real numbers such
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that f‘ |#4,] < 00 and 2‘ Jv,| < 0. Define
#n=1 n=1

0 if x<a,,
f’n(x) = 1%n if xX=ay,
v, if x>a,.

Prove that s(x) = Zo,c' f» (%) has a finite derivative a.e., and that s"(x) =0
n=1

a.e. [Hint. The function s has finite variation; find each V;° by using
the numbers |u,| and |v,|. Then apply (17.18).]

(17.22) Exercise. Find a real-valued strictly increasing function f
on R such that f'(x) = 0 a.e.

(17.23) Exercise. Let f € € ([a, b]). Suppose that there exist real
constants a < f such that

a< D*f(x) = B
for all x € [a, b[. Prove that
has fx+h) —f(x) < hp
ifa £ x <x+ k< b. [Hint. Assuming that
F (%o + ko) — [xo) < yho < athg

and writing &, = sup{h: 0 <h < hy, f(xy + k) — f(%) = yh}, show that
Dtf(xo + hy) < a.]

(17.24) Exercise. Let f be a function in €7([a, 5]) and let ¢ be a
number in ]a, b[. Suppose that D*f(c) is finite and that D*f is contin-
uous at ¢. Prove that f'(c) exists. [Use (17.23).]

(17.25) Exercise. Let f be a real-valued nondecreasing function on
[a, b]. Suppose that # = 0 and E C [a, b] are such that for each x € E,
there exists some derivate of f at x which does not exceed #. Prove that
A(J(E)) £ uA(E). [Consider an appropriate Vitali cover of f(4), where
A= {x €EE: f(x) = f(y) forally €[a, bl N {x}'} Notice that f(E N 4’)
is countable.]

(17.26) Exercise. Let f be as in (17.25). Suppose that v = 0 and
F C [a, b] are such that for each x € F, some derivate of f at x is greater
than or equal to ». Prove that A(f(F)) = vA(F). [Consider an appro-
priate Vitali cover of B, where B = {x € F : f is continuous at x}. Notice
that F N B’ is countable.]

(17.27) Exercise. Let f be a real-valued function defined on [q, b].
Suppose that ¢ = 0and E C [a, b] are such that f' (x) exists and |f' ()| < ¢
for all x € E. Prove that A(f(E)) = cA(E). [Consider a Vitali cover of
f(E) by intervals [f(x), f(x+ #)] such that f([x, x + &]) C [f(x),
Fe+ )]
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(17.28) Exercise. Let E be a subset of R that is the union of a family
of quite arbitrary intervals, each being open, closed, or half open and
half closed. Prove that E is Lebesgue measurable. [Use VITALI’s theorem.]

(17.29) Exercise. Let « and f§ be positive real numbers. Define f on
[0,1] by f(x) = x2sin(xf)(0 <x < 1), f(0) =0. Prove that f is of
finite variation on [0, 1] if and only if & > §.

(17.30) Exercise. Prove or disprove the following statement. If f
isa function in €7 ([0, 1]), then thereexista, b € Rsuchthat0 < a <b =<1
and f is of finite variation on [a, b].

(17.31) Exercise. A function f defined on an interval I of R is said
to satisfy a Lipschitz condition of order o« > 0 if there exists a constant
M = 0 such that

(%) — 1) = Mlx - yJ*
for all x, y € I. We write f € Lip,(I). Prove the following.

(a) If « > 1 and f € Lip.(I), then fis a constant.

(b) If 0 < x < 1, then there exists a function f¢ Lip,([0, 1]) such
that f has infinite variation over [0, 1].

(c) There exists a continuous function of finite variation on [0, 1]
which satisfies no Lipschitz condition.

(d) If f € €([a, b)), then f € Rip, ([a, b)) if and only if D*f is bounded
on [a, b[. [Hint. Use (17.23).]

(17.32) Exercise. Let f be a complex-valued function of finite varia-
tion on [a, b]. Suppose that f is continuous at ¢ € [a, b]. Prove that the
function g : x — V7 f, where g(a) = 0, is continuous at c.

(17.33) Exercise. Let f be a function in €7([a, b]). For each sub-
division 4 ={a =%y < % < +** < %, = b} of [a,b], define
[4]| = max{xy — 2z _,:1 =< k< n}and

o =max{f(x):xp_; £ x < %} — min{f(x) 1 x5, = ¥ < x5}
for k=1, ..., n Prove that
V2f= lim 2 @y, -

4]0 =

(17.34) Exercise. Let f be a function in €r([a, b]). For each y € R,
let A, = {x € [a, b]: f(x) = y}. Define » on R by

4, if A, is finite,
YO) =1 ifA,isinfinite .
Prove that the function » is Lebesgue measurable and that
S0 dy =721

[Hint. Use (17.33). Let 4, C 4, C - - - be a sequence of subdivisions of
[a,b] such that |4,]—0, say 4,={a=x" < < =b}. For
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each %, define
Mn
V= kZ €
=1

where B, , = f([#§?,, x0"]). Prove that »,(y) —»(y) for almost all y €R
and apply B. LEVI's monotone convergence theorem.] The function » is
known as the Banach indicatrix of f.

(17.35) Exercise. For an interval [, ] C R, let T ([, b]) denote the
set of all complex-valued functions f on [, b] such that V)f < oo and
f(a) = 0. For f € B([a, b)), define |f| = V2f. Prove (a)—(c) and answer
{d) and (e).

(a) With pointwise operations B ([, b]) is a complex linear algebra.

(b) For f € B([a, b)), the inequality |f], =< |f| holds.

(c) With the above norm, B ([a, b]) is a Banach space.

() Is it true that |fg] < I/ - lg] for all /, g € B([a, b))?

(e) Find the least cardinal number of a dense subset of T ([a, b])
in the topology defined by the variation norm.

(17.36) Exercise. Let x be a real number and let f be a real-valued
function defined in a neighborhood of x. The wupper [lower] first and
second symmetric derivatives of f at x are defined to be the limits superior
[inferior] of the expressions

+ R —flx—h
flx )2hf(x ) (1)

and
flx+h) + f(:z— k) —2f(%) @)

as k| 0, respectively. These derivatives are denoted by D;f(x) and
D,f(x) [Dyf(x) and D,f (x)] respectively. If Dyf(x) = Dif(x) [Dyf ()
= D,f(x)], we call this common value the first [second] symmetric deriv-
ative of f at x and denote it by D,f(x) [D,yf(x)]. Prove the following.

(a) If #'(x) exists, then so does D, f(x) and they are equal.

(b) The converse of (a) is false.

(c) If # exists and is finite in a neighborhood of x and f” () is finite,
then D,f(x) exists and is equal to /"’ (x). [Use the mean value theorem
on (2) as a function of 4.]

(d) D,f(x) may exist even when f is continuous only at x.

(17.37) Exercise: More on convex functions. Let I be an open interval
in R and let f be a convex function [see (13.34)] defined on I.

(a) Prove that /) (¥) and f_ (x) exist and are finite for all x¢7,
also that f), and f_ are nondecreasing functions and f_. < f) on I
Thus /' exists and is finite a.e. on I. [Hints. For x <y <z, we have
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y=-=2 x4+ 222z and so f(y) = Z=L () + 7 /(). Hence

z—x z—x z2—x
fy) =1 < fe) — i < f&) = (y) ) (1)
y —x z—x z—y

From (1) our assertions follow easily.]
(b) Prove that f is in gip, ([a, b]) for all closed bounded subintervals

[a, b] of I. [For a <x<y<b, (1) implies that
fx) —f@ _ 1 —fx _ 10— )

¥x—a = y—x = b—y
and from this and (a) it is easy to see that
f (J/ ) - f (Z) ’ ’
1D =10 < max{|f, @], IF- @) ]
(c) Let g be a real-valued function on an open interval I in R.
Prove that g is convex if and only if g is continuous and D,g = 0 on

I [see (17.36)]. [First suppose that D,g > 0 on I, assume that g is not
convex on I, and find a point x such that D,g(x) < 0. Next consider the

functions g, {x) = g(x) + %xz, n=12 .. ]

§ 18. Absolutely continuous functions
In this section, we identify the class of functions F of the form
x
F(x)= [ f(t)dt for f €L ([a, b]). We also identify the functions on

intervals of R that are integrals of their derivatives. This study leads
directly to some classical facts in the theory of Fourier series, which we
also take up. As in § 17, ““almost everywhere”” means ‘‘A-almost every-
where”’, and “measurable” means ‘.#-measurable’”’. We begin with
some simple theorems.

(18.1) Theorem. Let { € £,([a, b]) and define F on [a, b] by

Flx) = [ 1) dt.

[The function F is called the indefinite integral of f.] Then F is uniformly
b

continuous and has finite variation, and VPF = [ |f()| dt. A similar

assertion holds for f € 2,(R) and F(x) = [ f(t) dt. [If ¢ is a complex-

— 00

valued function on R, then we define V= (p) = Alirn VAip; Vi(9)

and V;° (@) are defined similarly.]
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Proof. For »' > x, the equality |F(x') — F(x)| =

J1@) dtl holds;
x

therefore it is clear from (12.34) that F is uniformly continuous. If
a=1%y <% <<%, =>, then we have

n E7% b
éﬁéfl xf |1 )| a¢ =!|f(t)ldt-

n

kZ:IIF(x — F(xp_y)| = 2

\R

k-1

b
Hence the inequality T/; < [ |f@®)| 4t holds, and so F has finite
a

variation.
To prove the reversed inequality, first recall that step functions

oz,, Sl (@=%<xn < <x,=10) (1)

[
I [\1,

are dense in 21( a, b]) (13.28). Consider the function sgnf; for every
positive integer m, select a step function o, of the form (1) such that

7 1
lowm —sgnfly <, - 2)

Since |sgnf(¥)| = 1 or O for every x, it is easy to see that the inequality (2)
is only improved by replacing every &, such that |o;| > 1 by the number
ay|ox|~2. There is thus no harm in supposing that |o,(%)| = 1 for all
% € [a, b] and m € N. Clearly ¢, - sgnf in measure, and so by (11.26)
there is a subsequence (g,,) of (g,,) such that

lim o,,,(f) = sgnf(¥) a.e.in [a,d].

j—>o0
We then infer from LEBESGUE’s theorem on dominated convergence
(12.30) that

b b
I ldt—ff sgnf(t) dt = lim [ (t) o (8 d2. @)

Since 0, has the form (1), the absolute value of the last integral in (3)
has the form

Z o f 1) dt\ “k(F (xx) — F (x_1))

L7y

"

= kz log| * |F (%2) — F (%5 -1)|

[
-

|F (%) — F (%_y)| = V;bF . 4)

[P

=
¥

Combining (3) and (4), we have

I
-

fblf(t)| dt<VPF. O
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The foregoing theorem shows that indefinite integrals are continuous
and have finite variation. We wish now to show that the derivative of
an indefinite integral is the integrated function [a.e.!]. To prove this,
we need a preliminary, which is of some interest in its own right.

(18.2) Theorem. Let A be an arbitrary subset of R. Then

AANTx, % + k) AANTx — b, %)

@) Lim k =lim 3
— lim AANIx — h, x4+ k) =1
B, kO h+k

for almost all x € A. If A is A-measurable, the limits in (i) are equal to zero
for almost all x € A'.?

Proof. With no harm done, we can [and do] suppose that 4 is bounded.
There are bounded open sets U,, n =1, 2, . . ., such that

U,o0U,D---D2U,D:--D4
and A(U,) —2 "< A(4). Let a=infU;, and consider the functions

@n (%) = A(U, N ]a, x[)
and
¢(x) = 2(4 N Ja, 2]) -

For x ¢ U, and sufficiently small positive 4, it is clear that

Pald + ) — @a(®) _ @nl¥) — @ulx — B) _ .
3 - z -

hence ¢, (x) exists for all x € U, and
Pn(x)=1.
We want to apply FuBInI’s theorem (17.18) to the sum
(=@ +(pe— @)+ -+ (Pn—@)+

we first show that each ¢, — @ is monotone. For x’ > x, we have

P () — @) — (@a(x) — @ (x))

=AU, N[x5[)— A4 N]a x[) + A4 N ]a, x[)

AU N[x2)—2A4AN[x2[)=0
because

AANla,x[)< AMAN]Ta x[)+ A4 N [x2])
and

ANxx{cCcU,N[xx[;
thus ¢, — @is monotone. Now let b = sup U; ; then
Pn(0) — @(b) = A(U,) — 4(4) <277,

1 Points » for which the relations (i) hold are called points of density of A.
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and so for a < x¥ < b we have

gl(%(x)—<P(x))§§(<p,,(b)_¢(b))§ 232_,,<°°.

Let o
s() = 2 (9(¥) — 9()) -

By (17.18) and (17.12), the relations
s'(x) = Z‘l(%ﬁ (%) — @' (%)) < o0
hold for almost all x in ]a, b[, and so also we have
lim g, (x) = ¢’ (%)
700
a.e.in Ja, b[. Thus ¢'(¥) = 1 on "Ql U, except on a set of A-measure zero,
and this implies the first assertion of the theorem.?!

If A is A-measurable, then
1= AANIx —k, x + k) + AA’Q)x — k,x + &)
h+k h+k
Ya(¥) + par (%)
for all &, k. As  and % go to 0, y4 (x) goes to 1 for almost all x € 4’
[apply the first part of the theorem to the set 4’]. Hence y,(x) goes to

zeroa.e.on A’. O
(18.3) Theorem. Let f €8, ([a, b)), and let F be as in (18.1). Then the

equality

(i) F'(x) = f(x)
holds for almost all x € Ja, b.

Proof. If f= £&,, where A is a measurable subset of ], b{, then
F(x) = A(Ja, [ N 4); and (18.2) shows that F'(x) = £,(x) a.e. in

Ja, B[. Next, let s = } &, &4, be a nonnegative simple measurable func-
E=1

tion, so that
x x

S =fs@at= S ftaat.

Theorem (18.2) implies that
S’'(x) =s(x) a.e.in]a, b[. (1)

For a nonnegative function f in £,, let (s,);.; be a nondecreasing se-
quence of simple measurable functions such that lim s,(x) = f() for all

1 We have actually proved a little more than claimed in the theorem. We have

oo
¢’(x) = 1 a.e. on the set n1 U,; if A is nonmeasurable, the nonmeasurable set
ne

o«
(f'll U,,) N A’ does not have measure 0.
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x € [a, b] (11.35). Write S, (x) = fsn t) dt for n € N; B. LEvI’s theorem
(12.22) shows that

x

=f/( dt = lim fsn(t) dt = lim S, (x)

=S5 (%) + né'l [Sn+1(%) — Sa(#)] 2)

for all x € [a, b]. Each function S, ,; — S, is the integral of a nonnegative
function and so is nondecreasing. FUBINI'S theorem (17.18) applied to
(2) gives us the equalities

F'(x) = Si(x) + ﬁ [Sha (%) — Sa(x)]

= lim S, (x) a.e.in]a, b[, (3)
and (1) gives us
lim S, (x) = lim s,(x) a.e.in]a, (. 4)

Combining (3) and (4), we obtain (i).
Finally, if f is an arbitrary function in €, ([a, b]), write
f=h—1)+ o(fs — fa)

where f; € €f and apply (i) for nonnegative functions. 0O

Theorem (18.3) can be sharpened considerably, as the next two
assertions show.

(18.4) Lemma [LEBESGUE]. Let f be a function in 2,([a, b]). Then
there is a set E C ]a b[ such that A(E’' N [a b]) = 0 and

) lim f\f —ocldt~hm——f|f ) — of dt = |f(x) — o

ho h

for all « EKand all x CE.
Proof. Let {$,}s>, be any countable dense subset of K. The functions

, defined b
En CETREC DY gal) = f() — Bal (R EN)

are in £ ([a, b]). By (18.3), there are sets E, C Ja, b[ such that
A(E, N [a,b]) =0and
xz+h

lim—~f &alt dt——hm— fg,, (t) dt = gn (%)

B0 h

for all x€ E,,. Let E be the intersection ﬂ En; clearly A(E’ N [a, b]) =

For & > 0 and « € K, select an # such that |, — «| <. Then we have

1/ — ol = /() — Bal| < 18a—al <5 forall t€[ab].
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It follows that

z+h z+h

[ 0 —aldt—5 [ 110 palaf s

x

and in turn that
z+h

[ 1l — o at— 1) — a

z+h z+h

e —aat— [ 110 - palat

A

x+h

1
[ e dt— g+ [l <+ E T
x

if x €E and 0 < k < h,, where h, depends on ¢ and #. But » depends
only on ¢ and «. Thus we conclude that

x+h
lim — f|f — ol dt=|f(x) — &

hy0

for all x € E and « € K. A similar argument shows that
hm_/v () — ol dt = {(x) — o

forallx¢Eanda € K. O
(18.5) Theorem [LEBESGUE]. Let f € £,([a, b]). Then we have

(i hmhflf )+ fr— ) —2f(x)| dE=0

hy0

for almost all x € la, b[.
Proof. For fixed x € ]a, b[, write
h
%fvw+n+fw—o—wwnw

x+h

=5/ 1 —r|w+h_hf fe)lds.

Applying (18.4) with « = f(x), we see that (i) holds for almost all
x€la, b[. O
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(18.6) Definition. Suppose that f¢€ €,([a,b]) and that x ¢ Ja,b[.
Then x is called a Lebesgue point for f if (18.5.i) holds. The set of all
Lebesgue points for f is called the Lebesgue set for f.

It is obvious that every point of ]a, b[ at which f is continuous is
a Lebesgue point for f. However f need not be continuous anywhere,
and yet almost every point is a Lebesgue point. The Lebesgue set plays
an important rdle in the theory of Fourier series and integrals, as we
shall see in (18.29) and (21.43). :

We now inquire into the “reverse’ [not really a converse] of Theorem
(18.3). Given a continuous function ¢ that is differentiable a.e., is it
true that

¢m—¢w=f¢wu?

That is, does the fundamental theorem of the calculus hold with the
Riemann integral replaced by the Lebesgue integral and differentiability
replaced by differentiability a. e. ? The following examples answer this
question with an emphatic “no”

(18.7) Example. As in (8. 28) let p be LEBESGUE’S singular function.
Then w is continuous on [0, 1] and it is clear that y’(x) = 0 for all x
in [0, 1] that are not in P [CANTOR’s ternary set]. Thus ¢’(x) =0 a.e.
It follows that '

wn—w@=1#0=jWWMx

The next example seems not as geometrically obvious as (18.7),
but it is much more dramatic.

(18.8) Example [Adapted from Riesz-Nacy]. We will exhibit a
real-valued function F on [0, 1] such that F(0) = 0, F (1) = 1, F is con-
tinuous and strictly increasing, and F’ (x) = 0 a.e. We define continuous
functions F,, n=0,1,2, ..., inductively as follows. First, let ({,)52,
be any sequence of numbers in ]0, 1[. Let Fy(x) = x, and define F; (0) = 0,

F(1)=1, and Fl(%)= 1;t‘-0+ 1;" -1; and define F to be

linear on [O, %] and [é—, 1]. Suppose that Fy, F, ..., F, have been
defined. Then we define:

Fo(g)=Fu(g) for =0,1,...,2%

Fn+1(2;11)= 1-:,,+1 F( )+ 1+2t,,+l Fn(k;;l)
for k=0,1,...,2"—1;

and define F, ., to be linear in the intervals [%,

W fOI' k=0,

1,...,27+1_ 1, The functions F, are plainly continuous. They are also

k+1]



§ 18. Absolutely continuous functions 279

strictly increasing. Indeed, for 0 < f < 1 and any «, f such that « < f,
the inequalities

ﬁ_(l;ta_*_ 1;”ﬁ)= lgt(ﬂ—a)>0

1—¢ 1+1¢
g at——pf—

hold. These inequalities show that if F, is strictly increasing, then
2k + 1 k+1
Fpy (2..) <F. (W) <F; (T)

for k=0,1,...,2* — 1. The piecewise linearity of F,,, proves that
it too is strictly increasing. Also, if & < 8, we have

and

—a)>0

et g -2l = (6-w0>0,

and from this inequality it follows that

2k +1 2k +1
E, (—Qﬁl—) <Fy (“W.T)
for k=0,1,...,2"— 1. Hence, again by linearity, the inequality
E,(x) = Fypa (%)

holds for all x € [0, 1]. Thus the sequence (F,(x))n=1 converges for all
x €0, 1]; let

F(x) = lim F,(x) .

7n—>00
It is clear that F is nondecreasing. Actually it is strictly increasing. For,

if ¥ <x’and k and » are such that x < kn < &', then we have

2
F(x) = F(g) =F(5) <Bal) S F).

We next consider any sequence of pairs of numbers (ot,, f,)aeo Satis-
fying the following conditions:

< oty and B =B (n=0,1,2,..); (1)
k. By + 1
tp=gr and fu=-"5—, )
where £, €{0, 1, 2"— 1} (n=0,1,2,...). Thus we have a, = a,

1
and B, .1 = fn— 2“1 , OF By = Bnand ap g = &, + 5az7 - In the first

case, we go to the left in proceeding from (a,, f,) to (Cni1) But1):
in the second, we go to the »ight.
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Let & be a fixed nonnegative integer. Suppose that we go to the
right in going from (a, B;) to (a1, Br4+1)- Then we have

F(Brs1) — F(ant1) = Far1(Brsr) — Fagr (0ns1)

A L A )
1

=121 (F(B,) — F (o)) - (3)

If we go to the left in going from (ay, Bi) to (¢x41, Br41), then a like
computation shows that

F(Brar) — Flans) =21 (F(B) — F (o) - (4)

A simple induction shows that

F(B) — Fla) = IT (1522),

k=1

where the ¢;’s are 1 or — 1. Thus
21+t
F(g) — Fla)l = I (-5,

and if all £, are less than a number less than 1, F is obviously continuous.
[We will not bother with exploring necessary conditions for the conti-
nuity of F.]

We now look at the derivates of F. Consider any dyadic rational

2l such that 0 < -217 < 1. Define a sequence (e, f,) satisfying (1) and (2)

. !
for which &, = &,y = -+ + = 5, we care not what a;, Br- % 1,01
are. Then we must have

1
ﬂ0+3 E’_‘: for s=0,1,2,....

Applying (4), we see that

F(By1s) — (211,) s 1
2 () (P T )
P+s T Top

= 22(F(8) — Flo) IT (1 + 1,

If the series ’g’l t, diverges, it follows that DYF (El;) = 00 [log 1+ = —;—

for 0<it< 1]. Similarly we have D_F(%)=O if 0<4;=1 and
Iz (1—1t,) =0. For these two results it is sufficient that lim ¢, be

o
.. . . X -
ositive. Consider next a point x = Z% where x, = 0 or x, =1, and
2k k k
E=1
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each value is assumed for infinitely many £’s, 7.e., x is not a dyadic

ratxonal For each #, there is a unique / such that T <x< 12,, let

+

= 5 and f,= —5;— . In fact these numbers are given by

! A
“n=_27=T+”'+§<x<?+'”+'§f+§=7=ﬂn'

w . Ifx, =0, thena, = ,_, and

‘We will compute
2n
1 Oy_1 + Pn-
ﬁn = Oy..q + F = .—‘.2__&_1 .
1f x, =1, then 8,=f,_,, and
1 Op_y + Ba_
“’n=“n—l+§;=——%'
In the first case we have

F(ﬁn) —F(“n) n l—tn
— 1 =2 {_2—F

1+41¢,

() + (Bami) = Faca(oa-)]

on

PN (F (Bot) = Fua )}

In the second case the factor

line, and so we obtain

F(B,) — F (e, 1+ --l Ynt,
1 1 = =2n( ) “(Fpe 1 (Bru=1) — Fuci(n—1)
on

== (14 (- 1)) (5)

for all #. We know that the function F has a finite derivative a.e., and
hence the limit of the product in (5) exists, is finite, and is equal to F’ ()

IT (1 + (—1)%1,)

k=1
II(l (—=1)%2y)
verges to 1 if and only 1f hrnt = 0. Thus if lim ¢, > 0, the product

n—>00

for almost all x. The ratio is 1+ ¢, ,,, and hence it con-

k]_Il (1 + (—1)*t,) cannot converge to a positive finite number, and so

F’(x) = 0 for almost all x.

We summarize. Given a sequence (£,)5-,; with valuesin ]0, 1[, we have
constructed a real-valued function F on {0, 1] having the following
properties:

(i) F(0) =0, F(1) = 1, F is strictly increasing;
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(i) if lim ¢, < 1, then F is continuous;

n—>oo

(iti) if lim ¢, > 0 and x is a dyadic rationalin 0, 1[, then D*F (x) = oo

n—>00

and D_F(x) = 0;
(iv) if lim #, > 0, then F’(x) = 0 for almost all x € ]0, 1[.

7n—0oo

Thus if 0 < lim #, < 1, then F is continuous, strictly increasing, and

n—>0o0

F’ = 0 a.e. The reader should sketch the first few approximants F,, to F

for a special choice of (¢,), say ¢, = L for all #, to see what is going on.
y 3 going

(18.9) Note. The construction in (18.8) proves also a curious measure-
theoretic fact. If (£,);%, is a sequence of numbers in ]0, 1] not having
limit 0, then

[oo]

TT(1+ (=1)"4) =0

k=1

S X
for almost all numbers x = ' 5.
k=1

We now identify the class of functions that are indefinite integrals of
functions in £;.

(18.10) Definition. Let f be a complex-valued function defined on a
subinterval J of R.1 Suppose that for every ¢ > 0, there is a 4 > 0 such
that

() 2 F(d) — f(en)] < e

for every finite, pairwise disjoint, family {Jc;, d,[}i—, of open subinter-
vals of J for which

(i1) kZ,' (@r—cx) <9
=1
Then f is said to be absolutely continuous on J.

(18.11) Examples. (a) Theorem (12.34) shows that the indefinite
integral of a function in £,([a, b]) is absolutely continuous. Our next
project will be to prove that every absolutely continuous function is an
indefinite integral.

(b) LEBESGUE’s singular function g is not absolutely continuous.

We can enclose CANTOR'’S ternary set P in a union kyl as, by[ of pairwise
disjoint open intervals such that 3 (b, — a;) is arbitrarily small. Extend
E=1

p so that yp(x) = 0 for x < 0 and y(x) = 1 for x > 1. Then it is easy to

1 Recall that by (6.1) J can be open, closed, or half-open, and that J can be
bounded or unbounded.
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see that 3 (p(oa) — v(a) = 1, and s0 S (p(t) — pla) =5 for
k=1

sufficiently large #, while 3’ (b, — a;) is arbitrarily small.
E=1

(c) None of the functions F of (18.8) is absolutely continuous. This is
most easily seen from Theorem (18.15) infra.

We first set down some elementary properties of absolutely continuous
functions.

(18.12) Theorem. Any complex-valued absolutely continuous function f
defined on [a, b] has finite variation on [a, b].

Proof. Let § > 0 satisfy the conditions of Definition (18.10) for ¢ = 1.

Let #» be any integer such that n > —5— b 5 »and subdivide [, 5] by points

a= 2y <% <-+-<x,=>bsuchthat x; — %, _;= b <6fork=1,2,
o N From our choice of § it follows that V;* f < 1 for all 2. Thus

244 =k2 Vikf=n. O
1

(18.13) Theorem. Any absolutely continuous function f on [a,b]
1s continuous, and can be written as

() f=h—fot+ills—1d),
where the |; are real, nondecreasing, and absolutely continuous on {a, b].

Proof. If f is absolutely continuous, then the continuity of f and the
absolute continuity of Imf and Ref are obvious. For a real-valued,
absolutely continuous function g, write g, (¥) =V;'g. Theng=g, — (g,—8),
and the proof will be complete upon showing that g, is absolutely con-
tinuous. [Note that g, and g, — g are nondecreasing (17.16).] For an

”
arbitrary £>0, let 6> 0 be so small that J3'|g(dx) — glcs)| <-;—
k=1

whenever the pairwise disjoint intervals ]c;, d,[ are such that

n

kZ: (@r—cr) <9. (1)
Let {Icg, di[}i—; be a fixed system of pairwise disjoint intervals satis-
fying (1). Since g has finite variation, there is for each 2 €{1, 2, ..., n}
a subdivision ¢, = af? < a{? < - - - < &P’ = 4, such that

Virg < 2 le(a®,)— @)+ 5= -

Hence we have

” ” n L—1
Zlald) - gl = X Vieg < 2 T lelay - el + -
= 1=

—

&
<?+?=8,

and so g, is absolutely continuous. O
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(18.14) Theorem. If [ is a real-valued, nondecreasing function on
[a, b], then ' is Lebesgue measurable and

b
@) J1(x)dx=f0)— f(a) .

If g is a complex-valued function of finite variation on [a,b], then
g €2([s,0]).
Proof. For x > b, let f(x) = f(b). Let

Hr+5) — 1

) = ——
n
forn=1,2,3,...anda = x < b. Then (f,) is a sequence of nonnegative

measurable functions and

lim £,(2) = /(%)

for almost all x € Ja, b [see (17.12)]; thus f’ is measurable. By FATOU’S
lemma (12.23) and (12.44) we have

b b b
[twdx= [ lim f,(x)dx < lim [ f,(x)dx
a a b a

:’}_i_f_ilonf [f(x+%)—f(x)] dx

b+— ,H__
= lim f (%) dx—nf fx) d
il ard -
< lim nf f(b)dx—nf f(a) dx
. b a n
= () — {(a) -

This proves our first assertion. The second assertion plainly follows from
the first and the fact that g can be expressed as a linear combination of
four nondecreasing functions. 0O

(18.15) Theorem. Let f be an absolutely continuous complex-valued
function on [a, b] and suppose that ['(x) =0 a.e. in la, b[. Then [ is a
constant. , )

Proof. We lose no generality by supposing that f is real-valued, for
otherwise we examine Ref and Im/ separately. We will show that
f(c) = f(a) for all ¢ € Ja, b]. Thus let ¢ € ]Ja, b] and & > 0 be arbitrary.
Select a number ¢ > 0 corresponding to the given ¢ for which the condi-
tion in the definition of absolute continuity (18.10) is satisfied. Let
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E={x¢la,c[:f(x) = 0}. Clearly A(E) =c¢ — a. For each x ¢ E there
exist arbitrarily small # > 0 such that [x, x + 4] C ]a, ¢[ and

If(x+h) —f(x)] < (1)

The family of all such intervals [x, x 4+ A] is a Vitali cover of E, and so by
ViTALl's theorem (17.11) there exists a finite pairwise disjoint family
{[#%, % + hy]}s—, of these intervals such that

eh
c—a '

A (E 0 (0, pram+ hk])') <6,
Then

A(a, c) = A(E) < & + ké:hk. 2)

We may [and do] suppose that x; < x, < - -+ < x,. It follows from (2)
that the sum of the lengths of the open intervals

la, 2,0 1% 4 Py, %ol oo W+ o, €]

complementary to kli] (%%, %5 + ] is less than 6, and so, in view of our

choice of §, we have

/@) — Fl + T e+ o) = Honia)l + o+ ) = @O < 2. @)

The inequalities (1) and (3) combine to yield
n—1
(@) — fl)] = (@) — f{x)] + ké; If (%r + i) — f(xn44)]
Wt ) = @]+ 3 o+ ) = (23

2 ehy
<e+ )] o =2e.
k=1

Since ¢ is arbitrary, it follows that f(c) = f(a). O

(18.16) Theorem [Fundamental theorem of the integral calculus for
Lebesgue integrals]. Let f be a complex-valued, absolutely continuous
function on [a, b]. Then ' € &,([a, b)) and

x

) fx) =1+ [f()dt
for every x € [a, b].
Proof. From (18.12) and (18.14) it follows that f' €L,. Let g(x)

= [ f'(¢) d¢. Then g is absolutely continuous and, by (18.3), g’ (x) = /' ()

a.e. Thus the function 4 = f — g is absolutely continuous and 2’(x)
=f'(x) — g (x) =0 a.e. It follows from (18.15) that % is a constant.
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Therefore

f@)=h(x)+g@) =h(a)+ [ @) di=[(a) + fx/'(t) dt
forallx €[a, b]. O
(18.17) Theorem. A function f on [a, b] has the form
16 =@+ [ o dt

for some @ € 2, ([a, b]) if and only if f is absolutely continuous on [a, b].
In this case we have @ (x) = f' (x) a.e. on ]a, b[.

Proof. This is just a summary of (18.3), (18.11.a), and (18.16). U
Indefinite integrals on R can be characterized in much the same way.

(18.18) Theorem. A function f on R has the form
x

(i) fx) = [ @) at
for some @ € £, (R) if and only if f is absolutely continuous on [— A, A] for
all 4 >0, V=, f is finite, and lim f(x) = 0.

Proof. Suppose that f has the form (i). Then f is absolute