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Preface to the third edition

The major change between the second and third edition is the separation
of linear and multilinear algebra into two different volumes as well as
the incorporation of a great deal of new material. However, the essential
character of the book remains the same; in other words, the entire
presentation continues to be based on an axiomatic treatment of vector
spaces.

In this first volume the restriction to finite dimensional vector spaces
has been eliminated except for those results which do not hold in the
infinite dimensional case. The restriction of the coefficient field to the
real and complex numbers has also been removed and except for chapters
VII to XI, § 5 of chapter I and § 8, chapter IV we allow any coefficient
field of characteristic zero. In fact, many of the theorems are valid for
modules over a commutative ring. Finally, a large number of problems of
different degree of difficulty has been added.

Chapter I deals with the general properties of a vector space. The
topology of a real vector space of finite dimension is axiomatically
characterized in an additional paragraph.

In chapter II the sections on exact sequences, direct decompositions
and duality have been greatly expanded. Oriented vector spaces have been
incorporated into chapter IV and so chapter V of the second edition has
disappeared. Chapter V (algebras) and VI (gradations and homology)
are completely new and introduce the reader to the basic concepts
associated with these fields. The second volume will depend heavily on
some of the material developed in these two chapters.

Chapters X (Inner product spaces) XI (Linear mappings of inner
product spaces) -XII (Symmetric bilinear functions) XIIT (Quadrics) and
XIV (Unitary spaces) of the second edition have been renumbered but
remain otherwise essentially unchanged.

Chapter XII (Polynomial algebra) is again completely new and de-
velopes all the standard material about polynomials in one indeterminate.
Most of this is applied in chapter XIII (Theory of a linear transformation).
This last chapter is a very much expanded version of chapter XV of the
second edition. Of particular importance is the generalization of the
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results in the second edition to vector spaces over an arbitrary coefficient
field of characteristic zero. This has been accomplished without reversion
to the cumbersome calculations of the first edition. Furthermore the
concept of a semisimple transformation is introduced and treated in
some depth.

One additional change has been made: some of the paragraphs or
sections have been starred. The rest of the book can be read without
reference to this material.

Last but certainly not least, I have to express my sincerest thanks
to everyone who has helped in the preparation of this edition. First of
all I am particularly indebted to Mr. S. HALPERIN who made a great
number of valuable suggestions for improvements. Large parts of the
book, in particular chapters XII and XIII are his own work. My warm
thanks also go to Mr. L. YONKER, Mr. G. PEDERZOLI and Mr. J. SCHERK
who did the proofreading. Furthermore I am grateful to Mrs, V. PEDERZOLI
and to Miss M. PerTINGER for their assistance in the preparation of the
manuscript. Finally I would like to express my thanks to professor
K. BLEULER for providing an agreeable milieu in which to work and to
the publishers for their patience and cooperation.

Toronto, December 1966 ‘WERNER H. GREUB



Preface to the second edition

Besides the very obvious change from German to English, the second
edition of this book contains many additions as well as a great many
other changes. It might even be called a new book altogether were it not
for the fact that the essential character of the book has remained the
same; in other words, the entire presentation continues to be based on
an axiomatic treatment of linear spaces.

In this second edition, the thorough-going restriction to linear spaces
of finite dimension has been removed. Another complete change is the
restriction to linear spaces with real or complex coefficients, thereby
removing a number of relatively involved discussions which did not
really contribute substantially to the subject. On p. 6 there is a list of
those chapters in which the presentation can be transferred directly to
spaces over an arbitrary coeflicient field.

Chapter I deals with the general properties of a linear space. Those
concepts which are only valid for finitely many dimensions are discussed
in a special paragraph.

Chapter II now covers only linear transformations while the treat-
ment of matrices has been delegated to a new chapter, chapter III. The
discussion of dual spaces has been changed; dual spaces are now intro-
duced abstractly and the connection with the space of linear functions is
not established until later.

Chapters IV and V, dealing with determinants and orientation re-
spectively, do not contain substantial changes. Brief reference should
be made here to the new paragraph in chapter IV on the trace of an
endomorphism — a concept which is used quite consistently throughout
the book from that time on.

Special emphasize is given to tensors. The original chapter on Multi-
linear Algebra is now spread over four chapters: Multilinear Mappings
(Ch. VI), Tensor Algebra (Ch. VII), Exterior Algebra (Ch. VIII) and
Duality in Exterior Algebra (Ch. IX). The chapter on multilinear
mappings consists now primarily of an introduction to the theory of the
tensor-product. In chapter VII the notion of vector-valued tensors has
been introduced and used to define the contraction. Furthermore, a
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treatment of the transformation of tensors under linear mappings has been
added. In Chapter VIII the antisymmetry-operator is studied in greater
detail and the concept of the skew-symmetric power is introduced. The
dual product (Ch. IX) is generalized to mixed tensors. A special paragraph
in this chapter covers the skew-symmetric powers of the unit tensor and
shows their significance in the characteristic polynomial. The paragraph
“Adjoint Tensors” provides a number of applications of the duality theory
to certain tensors arising from an endomorphism of the underlying space.

There are no essential changes in Chapter X (Inner product spaces)
except for the addition of a short new paragraph on normed linear spaces.
In the next chapter, on linear mappings of inner product spaces, the
orthogonal projections (§ 3) and the skew mappings (§ 4) are discussed
in greater detail. Furthermore, a paragraph on differentiable families of
automorphisms has been added here.

Chapter XII (Symmetric Bilinear Functions) contains a new paragraph
dealing with Lorentz-transformations.

Whereas the discussion of quadrics in the first edition was limited to
quadrics with centers, the second edition covers this topic in full.

The chapter on unitary spaces has been changed to include a more
thorough-going presentation of unitary transformations of the complex
plane and their relation to the algebra of quaternions.

The restriction to linear spaces with complex or real coefficients has
of course greatly simplified the construction of irreducible subspaces in
chapter XV. Another essential simplification of this construction was
achieved by the simultaneous consideration of the dual mapping. A final
paragraph with applications to Lorentz-transformation has been added
to this concluding chapter.

Many other minor changes have been incorporated — not least of which
are the many additional problems now accompanying each paragraph.

Last, but certainly not least, I have to express my sincerest thanks
to everyone who has helped me in the preparation of this second edition.
First of all, I am particularly indebted to CORNELIE J. RHEINBOLDT
who assisted in the entire translating and editing work and to Dr.
WERNER C. RHEINBOLDT who cooperated in this task and who also
made a number of valuable suggestions for improvements, especially in
the chapters on linear transformations and matrices. My warm thanks
also go to Dr. H. BoLDER of the Royal Dutch/Shell Laboratory at
Amsterdam for his criticism on the chapter on tensor-products and to
Dr. H. H. KELLER who read the entire manuscript and offered many
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important suggestions. Furthermore, I am grateful to Mr. GioRGIO
PepERZOLI Who helped to read the proofs of the entire work and who
collected a number of new problems and to Mr. KHADIA NESAMUDDIN
KHAN for his assistance in preparing the manuscript.

Finally I would like to express my thanks to the publishers for their
patience and cooperation during the preparation of this edition.

Toronto, April 1963 WERNER H. GREUB
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Chapter 0

Prerequisites

0.1. Sets. The reader is expected to be familiar with naive set theory
up to the level of the first half of [11]. In general we shall adopt the no-
tations and definitions of that book; however, we make two exceptions.
First, the word function will in this book have a very restricted meaning,
and what Halmos calls a function, we shall call a mapping or a set map-
ping. Second, we follow Bourbaki and call mappings that are one-to-one
(onto, one-to-one and onto) injective (surjective, bijective).

0.2. Topology. Except for § 5 chap. I, § 8, Chap. IV and parts of chap-
ters VII to IX we make no use at all of topology. For these parts of the
book the reader should be familiar with elementary point set topology
as found in the first part of [16].

0.3. Groups. A group is a set G, together with a binary law of com-
position

nGexG->G

which satisfies the following axioms (u(x, y) will be denoted by xy):
1. Associativity: (xy)z=x(yz)
2. Identity: There exists an element e, called the identity such that

XxXe=ex=Xx.

3. To each element x€G corresponds a second element x~! such that

The identity element of a group is uniquely determined and each ele-

ment has a unique inverse. We also have the relation
1,-1

(xy)t=y"tx

As an example consider the set S, of all permutations of the set {1...n}
and define the product of two permutations ¢, T by

(6r)ima(zi) i=1..n.
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In this way S, becomes a group, called the group of permutations of n
objects. The identity element of S, is the identity permutation.
Let G and H be two groups. Then a mapping

9:G-oH
is called a homomorphism if

e(xy)=9@xoy x,yeG.

A homomorphism which is injective (resp. surjective, bijective) is called
a monomorphism (resp. epimorphism, isomorphism). The inverse map-
ping of an isomorphism is clearly again an isomorphism.

A subgroup H of a group G is a subset H such that with any two ele-
ments ye H and ze H the product yz is contained in H and that the inverse
of every element of H is again in H. Then the restriction of u to the subset
H x H makes H into a group.

A group G is called commutative or abelian if for each x, ye G xy=yx.
In an abelian group one often writes x+p instead of xy and calls x+y
the sum of x and y. Then the unit element is denoted by 0. As an example
consider the set Z of integers and define addition in the usual way.

0.4. Factor groups of commutative groups.* Let G be a commutative
group and consider a subgroup H. Then H determines an equivalence
relation in G given by

I

x~x" ifandonlyif x—x'eH.

The corresponding equivalence classes are the sets { H+ x} and are called
the cosets of H in G. Every element xeG is contained in precisely one
coset X. The set G/H of these cosets is called the factor set of G by H and
the surjective mapping
n:G— G/H
defined by
X=X, XEX

is called the canonical projection of G onto G/H. The set G/H can be made
into a group in precisely one way such that the canonical projection be-
comes a homomorphism; i.e.,

n(x+y)=nx+mny. 0.1
To define the addition in G/H let xe G/H, € G/H be arbitrary and choose

*) This concept can be generalized to non-commutative groups.
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x€eG and yeG such that
nx=X% and wy=7y.

Then the element 7 (x+y) depends only on ¥ and j. In fact, if x', y" are
two other elements satisfying nx’ =x and ny’' =y we have that

x'—xeH and y —yeH
whence
x'+y)—(x+yeH

and so n(x’+y")=mn(x+y). Hence, it makes sense to define the sum X+ y
by
+y=n(x+y) TX=X%ny=7.

It is easy to verify that the above sum satisfies the group axioms. Relation
(0.1) is an immediate consequence of the definition of the sum in G/H.
Finally, since = is a surjective map, the addition in G/H is uniquely deter-
mined by (0.1).

The group G/H is called the factor group of G with respect to the sub-
group H. Its unit element is the set H.

0.5. Fields. A fieldis aset I' on which two binary laws of composition,
called respectively addition and multiplication, are defined such that

1. I' is a commutative group with respect to the addition.

2. The set I'—{0} is a commutative group with respect to the multi-
plication.

3. Addition and multiplication are connected by the distributive law,

(«+By=ay+By, op, yel.

The rational numbers Q, the real numbers R and the complex numbers
C are fields with respect to the usual operations, as will be assumed with-
out proof.

A homomorphism ¢:I'->T'’ between two fields is a mapping that pre-
serves addition and multiplication.

A subset 4T of a field which is closed under addition, multiplication
and the taking of inverses is called a subfield. If 4 is a subfield of I', I' is
called an extension field of A.

Given a field I we define for every positive integer k the element ke (e
unit element of I') by

ke=e+--+e

k
The field I is said to have characteristic zero if ke0 for every positive
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integer k. If I' has characteristic zero it follows that ke<k'e whenever
k+k'. Hence, a field of characteristic zero is an infinite set. Throughout
this book it will be assumed without explicit mention that all fields are of
characteristic zero.

For more details on groups and fields the reader is referred to [29].

0.6. Partial order. Suppose S is a set, and that a relation, denoted by
<, is defined in S satisfying the following conditions:

(i) Reflexivity: x<x, xeS

(ii) Antisymmetry: x<y and y<x implies that x=y

(iii) Transitivity: x<y and y <z implies that x<z
Then S is called a partially ordered set. If, in addition for every x, yeS
either x <y or y<x, then S is said to be linearly ordered or to be a chain.

Clearly every subset of a partially ordered set (chain) is again a par-
tially ordered set (chain). However, a subset of a non-linearly partially
ordered set may still be a chain.

If S is a partially ordered set, and T is a subset, then an element a€ .S is
called an upper bound for T, if a=x for every xeT. An element beS is
called a lower bound for T if b= x for every xe T. Now consider the sets
Upp T and Low T of upper and lower bounds for 7. An element a,€S
is called a least upper bound for T (Lu.b.) if a,e Upp T and 4, is a lower
bound for Upp 7. Similarly an element b,€S is called a grearest lower
bound for T (g.1.b.) if byeLow T and b, is an upper bound for Low T It
is clear that these conditions determine @, and b, uniquely if they exist
and that a, and b, are respectively the g.l.b. and Lu.b. for Upp T and
Low T.

If for every two elements x, y€ S the set {x, y} has a g.1.b. and a Lu.b.
(denoted by x Ay and x v y) then S is called a Jattice. It is easily checked
that any finite subset {x,, ..., x,} of a lattice has a g.l.b. and a Lu.b.,
which are denoted respectlvely by /\x and Vx,

As an example of a lattice, cons1der the collectlon of subsets of a given
set, X, ordered by inclusion. If U, V are any two subsets, then

UAV=UnVY and UvV =UUYV.

If S, T are two partially ordered sets and ¢:S—T is a mapping such
that ¢x < ¢y whenever x<y, then ¢ is called a homomorphism of par-
tially ordered sets.
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Vector Spaces

§ 1. Vector spaces

1.1. Definition. A vector (linear) space, E, over the field I' is a set of
elements x, y, ... called vectors with the following algebraic structure:

I. Eis an additive group; that is, there is a fixed mapping Ex E»E
denoted by
(,y)->x+y (L.1)

and satisfying the following axioms:
L1 (x+y)+z=x+(y+2z) (associative law)
I.2. x+y=y+x (commutative law)
1.3. there exists a zero-vector 0; i.e., a vector such that x4+0=
0+ x=x for every xeE.
L.4. To every vector x there is a vector —x such that x+(—x)=0.

II. There is a fixed mapping I x E— E denoted by

(A, x) > Ax 1.2)

and satisfying the axioms:
IL1. (Au)x=A(ux) (associative law)
IL2. (A+p)x=Ax+pux
A(x+y)=Ax+ Ay (distributive laws)
I1.3. 1-x=x (1 unit element of I')

(The reader should note that in the left hand side of the first distributive
law, + denotes the addition in I" while in the right hand side, + denotes
the addition in E. In the sequel, the name addition and the symbol + will
continue to be used for both operations, but it will always be clear from
the context which one is meant). I' is called the coefficient field of the
vector space E, and the elements of I are called scalars. Thus the mapping
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(1.2) defines a multiplication of vectors by scalars, and so it is called
scalar multiplication.

If the coefficient field I' is the field R of real numbers (the field C of
complex numbers), then E is called a real (complex) vector space. For the
rest of this paragraph all vector spaces are defined over a fixed, but arbi-
trarily chosen field I' of characteristic O.

If {xi, ..., X,} is a finite family of vectors in E, the sum x, +-.- +Xx, will

often be denoted by Y, x,.
i=1

Now we shall establish some elementary properties of vector spaces.
It follows from an easy induction argument on » that the distributive laws
hold for any finite number of terms,

(25)

AZx,

Il
M=EM=

R
=

N
=

It
-

Proposition I: The equation
Ax=0
holds if and only if
A=0 or x=0.

Proof: Substitution of u=0 in the first distributive law yields
Ax=2Ax+0x
whence 0x =0. Similarly, the second distributive law shows that
A0=0.

Conversely, suppose that Ax=0 and assume that A40. Then the as-
sociative law II.1 gives that

lx=(2"1)x=2""(Ax)=4"10=0

and hence axiom II.3 implies that x=0.
The first distributive law gives for u=—41

Ax+(-)x=A-A)x=0x=0

whence
(- )x=—2x.
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In the same way the formula

M—=—x)=—4ix
is proved.
1.2. Examples. 1. Consider the set I'"=I"x--- x I' of n-tuples

n

x=(..., &, &erl
and define addition and scalar multiplication by

(éla ---76") + (nls ---,’1") = (él + '113 '--96" + ,,,n)
and

A(EL, ... e = (A8, ..., AE%).

Then the associativity and commutativity of addition follows at once
from the associativity and commutativity of addition in I'. The zero vec-
tor is the. n-tuple (0, ..., 0) and the inverse of (¢, ..., €") is the n-tuple
(=€, ..., —&"). Consequently, addition as defined above makes the set
I'" into an additive group. The scalar multiplication satisfies IL.1, 1.2,
and I1.3, as is equally easily checked, and so these two operations make
I'" into a vector space. This vector space is called the n-space over I'. In
particular, I' is a vector space over itself in which scalar multiplication
coincides with the field multiplication.

2. Let C be the set of all continuous real-valued functions, f, in the
interval [:0<¢ <1,

f:I-R.

If f, g are two continuous functions, then the function f+ g defined by

(f+e)=fO+g()

is again continuous. Moreover, for any real number A, the function Af
defined by

) =2f()
is continuous as well. It is clear that the mappings
(f.g)>f+g and (Lf)—>Af

satisfy the systems of axioms I. and II. and so C becomes a real vector
space. The zero vector is the function 0 defined by

0o(=0
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and the vector —f'is the function given by

(=NO=~10).

Instead of the continuous functions we could equally well have con-
sidered the set of k-times differentiable functions, or the set of analytic
functions.

3. Let S be an arbitrary set and E be a vector space. Consider all map-
pings f: S— E and define the sum of two mappings f'and g as the mapping

(fF+E)=f(s)+g(s) seSs
and the mapping Af by
(Af)s)=2f(s) ses.

Under these operations the set of all mappings f: S— E becomes a vector
space, which will be denoted by (S; E). The zero vector of (S; E) is the
function f defined by f(s)=0, seS.

1.3. Linear combinations. Suppose E is a vector space and x,, ..., X,
are vectors in E. Then a vector xeE is called a linear combination of the
vectors x; if it can be written in the form

x=Y ix;, AVel.

More generally, if (x,), 4 is any family of vectors in E, a vector xe E will
be called a linear combination of the vectors x, if there are scalars 1%, only
finitely many of which being different from zero, such that

Y A'x,. some 4, + 0

X =< iz%0

0 every A, =0

We shall simply write
x=y 1x,
aed
and it is to be understood that only finitely many A* are different from
zero. In particular, by setting A,=0 for each « we obtain that the 0-vector
is a linear combination of every family. It is clear from the definition that
if x is a linear combination of the family x, then x is a linear combination
of a finite subfamily.
Suppose now that x is a linear combination of vectors x,, ae 4
x= Y A*x,, Ael

aeAd

and assume further that each x, is a linear combination of vectors y,s,
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BeB,,
xa=;ﬂaﬁyaﬁa ﬂaﬁer‘

Then the second distributive law yields
x=z}“ax“=Zﬂ)“aﬂap)’aﬁ=ZpQ¢ﬁy¢ﬁ’ Qaﬂ=laﬂa‘3

and hence x is a linear combination of the vectors y,,.

A subset S E is called a system of generators for E if every vector xe E
is a linear combination of vectors of S. The whole space E is clearly a
system of generators. Now suppose that S is a system of generators for
E and that every vector of S is a linear combination of vectors of a subset
Tc<S. Then it follows from the above discussion that 7 is also a system
of generators for E.

1.4. Linear dependence. Let (x,),., be a given family of vectors. Then
a non-trivial linear combination of the vectors x, is a linear combination
Y'A%x, where at least one scalar A* is different from zero. The family {x,}
a

is called linearly dependent if there exists a non-trivial linear combination
of the x,; that is, if there exists a system of scalars A* such that

Y Aix, =0 (1.3)

and at least one A*+0. It follows from the above definition that if a sub-
family of the family {x,} is linearly dependent, then so is the full family.
An equation of the form (1.3) is called a non-trivial linear relation.
A family consisting of one vector x is linearly dependent if and only if
x=0. In fact, the relation
1-:0=0

shows that the zero vector is linearly dependent. Conversely, if the vector
x is linearly dependent we have that Ax=0 where 140. Then Proposition
I implies that x=0.

It follows from the above remarks that every family containing the zero
vector is linearly dependent.

Proposition IT: A family of vectors (x,),c is linearly dependent if and
only if for some Be 4, x; is a linear combination of the vectors x,, a ¥ §.
Proof: Suppose that for some fe A,
xpg= 3, A%x,.

f*a
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Then setting A#= —1 we obtain that
Y Ax,=0

and hence the vectors x, are linearly dependent.
Conversely, assume that

Yix,=0

and that A*+0 for some fe A. Then multiplying by (1#)~! we obtain in
view of II.1 and I1.2
0=ux,+ Y ()7 4x,

a+p

xp=— 3 (A1 1x,.

aFp

ie.

Corollary: Two vectors x, y are linearly dependent if and only if y=4x
(or x=Ay) for some Aerl.

1.5. Linear independence. A family of vectors (x,),. 4 is called linearly
independent if it is not linearly dependent; i.e., the vectors x, are linearly
independent if and only if the equation

Y i*x,=0

implies that 4*=0 for each a€ A. It is clear that every subfamily of a line-
arly independent family of vectors is again linearly independent. If
(X.)ze 4 is a linearly independent family, then for any two distinct indices
a, Be A, x, % x4, and so the map a—>x, is injective.

Proposition IIT: A family (x,),e, of vectors is linearly independent if
and only if every vector x can be written in at most one way as a linear
combination of the x, i.e., if and only if for each linear combination

x=Yi*x, (1.4)

the scalars A* are uniquely determined by x.
Proof: Suppose first that the scalars A* in (1.4) are uniquely determined
by x. Then in particular for x=0, the only scalars A* such that

Yix,=0

are the scalars 1*=0. Hence, the vectors x, are linearly independent. Con-
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versely, suppose that the x, are linearly independent and consider the
relations

x=YAx,, x=)u'x,.
Then
S~ )5, =0

whence in view of the linear independence of the x,

A—u =0, acA
1e., A=y
1.6. Basis. A family of vectors (x,),.4 in Eis called a basis of E if it is
simultaneously a system of generators and linearly independent.
In view of Proposition III and the definition of a system of generators,
we have that (x,),. 4 is a basis if and only if every vector xeE can be
written in precisely one way as

x=3&x%,, &erl.

The scalars &* are called the components of x with respect to the basis
(xa)as A

Proposition IV: Suppose S=(x;...x,,) is a finite system of generators
for E, and assume that the vectors x,, ..., x, are linearly independent.
Then there exists a basis of E which contains the vectors x,(¢=1...r) and
is contained in S.

Proof: Consider the collection I(S) of all linearly independent subsets
of S containing the vectors x, (¢=1...r). Let Te I(S) be a subset such
that the number, n, of elements in 7" is maximized (clearly, r <n<m). We
shall show that T is a basis for E. Without loss of generality we may as-
sume that T consists of the vectors x;...x,. Then these vectors generate E.

In fact, for every i>n, the (n+ 1) vectors x,...x,, x; are linearly depend-
ent; hence there exists a non-trivial relation

Y Ax, + Ax;=0. (1.5
v=1
In particular, A*%0, because A'=0 would imply that
Y A'x,=0
v=1

whence A'=0(v=1, .-, n) and hence all coefficients in (1.5) would be
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zero. Now multiplication of (1.5) by (1)~ yields
xi==~ 3y (N ¥x,.
v=1

This relation shows that every vector x; (i=n+1, ...,m) is a linear
combination of the vectors x,(v=1, ..., n). It follows from sec. 1.3 that
the vectors x, (v=1, ..., n) form a system of generators for E. Since they
are linearly independent, they form a basis.

With the aid of Zorn’s lemma we can generalize the above proposition
to an arbitrary system of generators.

Theorem I: Let E be a non-trivial vector space. Suppose S is a system
of generators for F and that R is a linearly independent subset of S. Then
there exists a basis, T, of E such that ReT<S.

Proof: Consider the collection I (S) of all linearly independent subsets
of S which contain R and order them by inclusion. Clearly ReI(S). If
{S,} is a chain of such subsets, then

US.€I(S). (1.6)
In fact, it is clear that R=J S,. Now suppose that
Zj.ixi=0, Aier, xiEUSa.
i=1 a

Then for each i, x,eS,, for some «;. Since {S,} is a chain, we may assume

that

S8, (i=1..n)
whence

x;€S (i=1...n).

ay

Since the vectors of S,, are linearly independent, it follows that A'=0
(i=1...n) and hence the set |_JS, is linearly independent, which proves
(1.6). *

Now Zorn’s lemma can be applied to yield a maximal element T in
I(S). Since TeI(S) it follows that the set T is linearly independent. To
prove that T'is a system of generators for E let xe S be an arbitrary vector
such that x¢ 7. Then the set x U T is linearly dependent because otherwise
we would have that xU T'eI (S) which contradicts the maximality of T.
Since x U T is linearly dependent there exists a non-trivial relation

ix+YAx=0 Aiel, xeT. (1.7)
i
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In particular, 130, because A=0 would imply that A'=0 for every i.
Hence, multiplying (1.7) by A~! we obtain

x==Y 21" 2x.

This equation shows that T generates S. Since S generates F it follows
that T generates E. Consequently, T is a basis for E. Finally, since
TeI(S) we have

RcTcS.

Corollary I: Every system of generators contains a basis.

Proof: Since Eis non-trivial and S'is a system of generators, there exists
a non-zero vector xeS. Applying the theorem for R={x} we see that
there exists a basis 7 of E such that T<S.

Corollary II: Every linearly independent set, R, in E can be extended
to a basis of E.

Proof: Set S=F and apply the theorem.

Corollary III: Every non-trivial vector space has a basis.
1.7. Example 4: Consider the space I'" defined in example 1 of sec.
1.2. Then the vectors
x;=(0...0,1,0...0)

form a basis of I'", as is easily verified.

Example 5: Let S be an arbitrary set and consider the set C(S) of all
mappings f: S— I such that f(s)=0 for all but finitely many seS. Then
if fand g are two such mappings, and A is any scalar, the mappings f+g
and Af defined by

S+ = ()+g©
Af)s)=2-f(s)

and

are again contained in C(S). As in Example 3 of sec. 1.2 we make the set
C(S) into a vector space.
Now for each aeS denote by f, the mapping given by

sl 15
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Then the vectors f, are a basis of C(S). In fact, if fe C(S) is any vector,
let a,...a, be the finitely many distinct elements of S such that f(a;)#0.
Setting f(a;) =4’ we obtain that

1= 41

and so the f, form a system of generators for C(S).
On the other hand, assume a relation

Y Af,=0, Xel.
i=1
Then for each j we have

0=(3 #1.) @)= % #fula) =¥

whence A/=0. It follows that the f, are linearly independent, and hence
they form a basis of C(S).
Finally, consider the set mapping S—{f,} given by

a-f,.

This is clearly a bijection, and so we may identify a with the mapping f.
With this identification S becomes a basis of C(S). C(S) is called the free
vector space over the set S.

Problems

1. Show that axiom II.3 can be replaced by the following one: The
equation Ax=0 holds only if 1=0 or x=0.

2. Given a system of linearly independent vectors (x;, ..., x,), prove
that the system (x,, ...x;+4x;, ...x,), i%j with arbitrary 4 is again line-
arly independent.

3. Show that the set of all solutions of the homogeneous linear differ-
ential equation

2
%zy +p fj; +qy=0

where p and g are fixed functions of ¢, is a vector space.
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4. Which of the following sets of functions are linearly dependent in
the vector space of Example 2?

a) fy=3t; fo=t+5; fy=21% fa=(@+1)
b) fi=0+1) fr=12=1; f3=22+2t-3

©) fi=1; fa=¢; fi=e"

d) f1=1% fa=t fi=1

e) fi=1-1; f2=t(1_t);f3=1"t2-

5. Let E be a real linear space. Consider the set E x E of ordered pairs
(x, ) with xe E and yeE. Show that the set Ex E becomes a complex
vector space under the operations:

(%1, ¥1) + (x2,¥2) = (X1 + X2, 51 + ¥2)
and

(«+iB)(x,y)=(ax—PBy,ay + fx)  (« B real numbers).

6. Which of the following sets of vectors in R* are linearly independent,
(a generating set, a basis)?

a) (1,1,1, 1), (1,0,0,0), (0, 1,0,0), (0,0, 1,0), (0, 0, 0, 1)
b) (1,0, 0,0), (2,0,0,0)

o) (17, 39, 25, 10), (13, 12, 99, 4), (16, 1, 0, 0)

d) (1,4,0,0), (0,0, 1,1), (0,4, %, 1), (5, 0,0, 3)

Extend the linearly independent sets to bases.

7. Are the vectors x;=(1,0, 1); x,=(, 1,0), x3=(i, 2, 1 +1) linearly
independent in C3? Express x=(1, 2, 3) and y=(i, #, i) as linear combi-
binations of x4, x;, x;.

8. Recall that an n-tuple (4,...4,) is defined by a map f:{l...n}—>T
given by

fH=4 (@(=1..n).

Show that the vector spaces C{1...n} and I'" are equal. Show further that
the basis f; defined in Example 5 coincides with the basis f; defined in
Example 4.

9. Let S be any set and consider the set of maps

f:S->I"

such that f(x)=0 for all but finitely many xeS. In a manner similar to
that of Example 5, make this set into a vector space (denoted by C(S, I'")).
Construct a basis for this vector space.
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10. Let (x,),.4 be a basis for a vector space E and consider a vector
a=Yy:¢&x,.

Suppose that for some fe 4, £# +0. Show that the vectors (x,),+ s> a form
again a basis for E.

11. Prove the following exchange theorem of Steinitz: Let (x,),.4 be a
basis of E and g;(i=1...p) be a system of linearly independent vectors.
Then it is possible to exchange certain p of the vectors x, by the vectors
a; such that the new system is again a basis of E. Hint: Use problem 10.

12. Consider the set of polynomial functions f: R— R,

Fx) =Y ax.
i=0
Make this set into a vector space as in Example 3, and construct a natural
basis.
§ 2. Linear mappings
In this paragraph, all vector spaces are defined over a fixed but arbi-
trarily chosen field I of characteristic zero.

1.8. Definition. Suppose that E and F are vector spaces, and let
¢:E—~ F be a set mapping. Then ¢ will be called a linear mapping if

ep(x+y)=0ox+9y x,yeE (1.8)
and
¢(Ax)=Adex Ael,xeE (1.9)

(Recall that condition (1.8) states that ¢ is a homomorphism between
abelian groups). If F=T then ¢ is called a linear function in E.
Conditions (1.8) and (1.9) are clearly equivalent to the condition

fp(iZl‘x,) = iZA" ox;
and so a linear mapping is a mapping which preserves linear combinations.
From (1.8) we obtain that for every linear mapping, ¢,
¢0=0(0+0)=¢(0)+ ¢(0)
whence ¢ (0)=0. Suppose now that
YAx=0 (1.10)
‘
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is a linear relation among the vectors x;. Then we have

YAoxi=(LAx)=¢0=0
whence
Yiex, =0. (1.11)

Conversely, assume that ¢:E—F is a set map such that (1.11) holds
whenever (1.10) holds. Then for any x, ye E and Aerl set

u=x+y and v=A4x.
Since
u—x—y=0 and v—Ax=0
it follows that
p(x+y)—ox—@y=0
and
o(Ax)—Aox=0

and hence ¢ is a linear mapping. This shows that linear mappings are
precisely the set mappings which preserve linear relations.

In particular, it follows that if x,...x, are linearly dependent, then so
are the vectors @x;...¢x,. If x;...x, are linearly independent, it does not,
however, follow that the vectors ¢x;...¢x, are linearly independent. In
fact, the zero mapping defined by ¢x=0, xeE is clearly a linear mapping
which maps every family of vectors into the linearly dependent set (0).

A bijective linear mapping ¢: E— F is called a linear isomorphism and
will be denoted by ¢ : EZ F. Given a linear isomorphism ¢ : E 5 F consider
the set mapping ¢ ~!: E—F. It is easy to verify that ¢ ~! again satisfies the
conditions (1.8) and (1.9) and so it is a linear mapping. ¢ ~' is bijective
and hence a linear isomorphism. It is called the inverse isomorphism of ¢.
Two vector spaces E and F are called isomorphic if there exists a linear
isomorphism of E onto F.

A linear mapping ¢:E—E is called a linear transformation of E. A
bijective linear transformation will be called a linear automorphism of E.

1.9. Examples: 1. Let E=I"" and define ¢: E-E by

@ (&, ..., &) = (&M + E3,83%,...,EM).

Then ¢ satisfies the conditions (1.8) and (1.9) and hence it is a linear
transformation of E.
2. Given a set S and a vector space E consider the vector space (S; E)
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defined in Example 3, sec. 1.2. Let ¢:(S; E)— E be the mapping given by
of =f(a) fe(S;E)

where ae S is a fixed element. Then ¢ is a linear mapping.

3. Let ¢:E—E be the mapping defined by ¢x=Ax, where lel is a
fixed element. Then ¢ is a linear transformation. In particular, the iden-
tity map 1: E-E, ix=X, is a linear transformation.

1.10. Composition. Let ¢: E—F and y: F»G be two linear mappings.
Then the composition of ¢ and ¥

Yop:E-G
is defined by
oo)x=y(px) xeE.

‘l’O‘P(Zlixi) = l//(zli(roxi)
= Z/li‘/’“/’xi

shows that . ¢ is a linear mapping of Einto G. - ¢ will often be denoted
simply by ¥ ¢. If ¢ is a linear transformation in E, then we denote ¢ - ¢ by

¢*. More generally, the linear transformation @o....¢ is denoted by ¢*.
\,‘X\/
We extend the definition to the case k=0 by setting ¢° =1. A linear trans-

formation, ¢, satisfying @*=1 is called an involution in E.

1.11. Generators and basis.

Proposition I: Suppose S is a system of generators for Fand ¢o:S—F
is a set map (F a second vector space). Then ¢, can be extended in at most
one way to a linear mapping

The relation

¢:E—>F

A necessary and sufficient condition for the existence of such an extension
is that
Y A pox; =0 1.12)
i
whenever

Y Ax;=0.

Proof: If ¢ is an extension of ¢, we have for each finite set of vectors
x;e S that

‘leixi = Z/Wxi = Zli‘/’oxi-
i i 1

Since the set S generates E it follows from this relation that ¢ is uniquely
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determined by ¢,. Moreover, if

YAx;=0 xS

it follows that
Zli%xi = Z/liq)xi = ‘leixi =¢0=0

and so condition (1.12) is necessary.
Conversely, assume that (1.12) is satisfied. Then define ¢ by

¢Zlixi=21i§0oxi, xiES. (1.13)
To prove that ¢ is a well defined map assume that

Z/lixi=zujyj, x;€S, y;€S.
Then l ’
Zlix,- - Zujyj =0
whence in view of (1.12) l ’
Z/li‘/’oxi - Zﬂj¢OYj =0
and so ’ ’
;li‘/’oxi = Z;,lrlj(l’o)’j-

The linearity of ¢ follows immediately from the definition, and it is clear
that ¢ extends ¢,.

Proposition II: Let (x,),4 be a basis of E and ¢q:{x,}—>F be a set
map. Then ¢, can be extended in a unique way to a linear mapping
@:E-F.

Proof: The urfiqueness follows from proposition I. To prove the exist-
ence of ¢ consider a relation

Y A% x,=0.

Since the vectors x, are linearly independent it follows that each A*=0,
whence

Y A pox, =0.

Now proposition / shows that ¢, can be extended to a linear mapping
¢ E>F.
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Corollary: Let S be a linearly independent subset of E and ¢4:S—F
be a set map. Then ¢, can be extended to a linear mapping ¢: E—~F.

Proof: Let T be a basis of E containing S (cf. sec. 1.6). Extend ¢, in an
arbitrary way to a set map y: T— F. Then 4 may be extended to a linear
mapping y: E—F and it is clear that ¢ extends ¢,.

Now let ¢: E—~F be a surjective linear map, and suppose that S is a
system of generators for E. Then the set

¢(S) ={px|xeS}
is a system of generators for F. In fact, since ¢ is surjective, every vector
yeF can be written as

y=0x
for some xeE. Since S generates E there are vectors x;&S and scalars
Eer such that
X = z&ixi .
i

whence

y=ox=)ox,

13

This shows that every vector yeF is a linear combination of vectors in
©(S) and hence ¢(S) is a system of generators for ¢ (S).

Next, suppose that ¢:E— F is injective and that S is a linearly inde-
pendent subset of E. Then ¢ (S) is a linearly independent subset of F. In
fact, the relation

YXex;=0, xS
implies that
ey Ax;=0.
i
Since ¢ is injective we obtain
z A«i xi = O
i
whence, in view of the linear independence of the vectors x;, A*=0. Hence
¢(S) is a linearly independent set.

In particular, if ¢:E—Fis a linear isomorphism and (x,),. 4 is a basis
for E, then (¢x,),.4 is @ basis for F.

Proposition I1I: Let ¢: E— F be a linear mapping and (x,), 4« be a basis
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of E. Then ¢ is a linear isomorphism if and only if the vectors y,=¢x,
form a basis for F.

Proof: If ¢ is a linear isomorphism then the vectors form a linearly
independent system of generators for F. Hence they are a basis. Converse-
ly, assume that the vectors y, form a basis of F. Then we have for every
yeF

y=In =Xt ex. = oL,
and so ¢ is surjective.

Now assume that

PY N Xy =Y X,
-3 -1
Then it follows that
0=V ox,— X uox,
-1 -1
= Z(Aa - I'la) V-
-1
Since the vectors y, are linearly independent, we obtain that A*=yu* for

each o, and so
Y Ax, = utx,.
a a

It follows that ¢ is injective, and hence a linear isomorphism.

Problems

1. Consider the vector space of all real valued continuous functions
defined in the interval a<7=<b. Show that the mapping ¢ given by

e:x(t) > tx(1)
is linear.
2. Which of the following mappings of I'* into itself are linear trans-
formations?

a) (él’ 62’ 53’ 54) - (61 62’ 62 - 51, 63’ 64)

b) (61: €2$ €3a 64) - ()' 623 62 - 613 63’ 64)

¢) (£,8%,8%,¢8 (0,888 + 2+ & + &%)

3. Let E be a vector space over I', and let f;...f, be linear functions in
E. Show that the mapping ¢: E—»I'" given by

@x=(f(x),.... f(x))

is linear.
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4. Suppose ¢:E—T" is a linear map, and write

px = (fl(x)""’fr(x))'

Show that the mappings f;: E—~ I are linear functions in E.
5. Let S and T be two arbitrary sets and ¢ be an arbitrary mapping of
S into T. Prove that ¢ induces a linear mapping

©:C(S)—- C(T)
(cf. sec. 1.7, Example 5) defined by
(4 zs}'xfx = zsle(px'

6. Let E be a vector space over I' and consider the vector space C(E).
Show that there is a unique linear map

ng:C(E)—> E suchthat nf,=x,x€E.

7. Let E, F be vector spaces over I', and ¢: E— F be any mapping. Let
@: C(E)— C(F) be the linear mapping of problem 5, and let

ng:C(E)—»E and np:C(F)»F

be the linear mappings of problem 6. Show that a necessary and sufficient
condition for ¢ to be linear is that the diagram

cE)® c(F)
el
ES F

be commutative.
8. Let »
P=Y ot ael
v=0

be a fixed polynomial and let f be any linear function in a vector space E.
Define a function P(f): E—I by

P(f)x=v2 o, f (x)".

=0
Find necessary and sufficient conditions on P that P( /) be again a linear
function.

§ 3. Subspaces and factor spaces

In this paragraph, all vector spaces are defined over a fixed, but arbitrarily
chosen field T of characteristic 0.
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1.12. Subspaces. Let E be a vector space over the field I'. A non-empty
subset, E, of E is called a subspace if for each x, yeEl and every scalar

Ael X+ yek, (1.14)
and
AxeE,. (1.15)

Equivalently, a subspace is a subset of E such that
Ax+ puyekE,

whenever x, ye E,. In particular, the whole space £ and the subset (0)
consisting of the zero vector only are subspaces. Every subspace E, c E
contains the zero vector. In fact, if x, € E, is an arbitrary vector we have
that 0=x; —x;€E,. A subspace E; of E inherits the structure of a vector
space from E.

Now consider the injective map i: E; — E defined by

ix=x, xekE;.

In view of the definition of the linear operations in E, i is a linear map-
ping, called the canonical injection of E, into E. Since i is injective it fol-
lows from (sec. 1.11) that a family of vectors in E, is linearly independent
(dependent) if and only if it is linearly independent (dependent) in E.

Next let S be any non-empty subset of E and denote by E; the set of
linear combinations of vectors in S. Then any linear combination of vec-
tors in E; is a linear combination of vectors in S (cf. sec. 1.3) and hence
it belongs to E;. Thus E; is a subspace of E, called the subspace generated
by S, or the linear closure of S.

Clearly, S is a system of generators for E,. In particular, if the set S is
linearly independent, then S is a basis of E,. We notice that E =S if and
only if S is a subspace itself.

1.13. Intersections and sums. Let E, and E, be subspaces of E and
consider the intersection E; n E, of the sets E; and E,. Then E, n E, is
again a subspace of E. In fact, since Oc E; and Oe E, we have OcE, n E,
and so E;n E, is not empty. Moreover, it is clear that the set £, n E,
satisfies again conditions (1.14) and (1.15) and so it is a subspace of E.
E, N E, is called the intersection of the subspaces E; and E,. Clearly,
E, N E, is a subspace of E, and a subspace of E,.

The sum of two subspaces E, and E, is defined as the set of all vectors
of the form

X=X+ X3, x,€E{,x,eE, (1.16)
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and is denoted by E, + E,. Again it is easy to verify that E, + E, is a sub-
space of E. Clearly E; + E, contains E; and E, as subspaces.

A vector x of E;+E, can generally be written in several ways in the
form (1.16). Given two such decompositions

Xx=x;+x, and x=x]+ x}
it follows that
X, — Xy =x5—x,.
Hence, the vector
z=1x; —Xx]

is contained in the intersection E; n E,. Conversely, let x=x, +x,, x, € E,,
x,eE, be a decomposition of E and z be an arbitrary vector of E, n E,.
Then the vectors

x'1=x1—-ZEE1 and x’2=x2+ZEE2

form again a decomposition of x. It follows from this remark that the
decomposition (1.16) of a vector xe E, + E, is uniquely determined if and
only if E, n E,=0. In this case E + E, is called the (internal) direct sum
of E; and E, and is denoted by E; @ E,.

Now let §; and S, be systems of generators for E; and E,. Then clearly
S, U S, is a system of generators for E; + E,. If Ty and T, are respectively
bases for E, and E, and the sum is direct, E; n E,=0, then T, U T, is a
basis for E;@E,. To prove that the set T, U T, is linearly independent,
suppose that

Yix,+Yuwy;=0, x;eTy,y;€T,.
- -
Then ’
YAixi==Yu'y,eE,nE, =0
i J
whence
Yix;=0 and Yp'y,=0.
i J

Now the x; are linearly independent, and so A'=0. Similarly it follows
that pu/ =0,
Suppose that
E=E , ®E, (1.17)

is a decomposition of E as a direct sum of subspaces and let F be an arbi-
trary subspace of E. Then it is not in general true that

F=FnE®FnE, (1.18)
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as the example below will show. However, if E; c F, then (1.18) holds.
In fact, it is clear that
FNnE,®@FnE,cF. (1.19)

On the other hand, if
y=x;+x, x,€E{,x,€E,
is the decomposition of any vector yeF, then

xleE1=FﬂE1, x2=y—x16FﬂE2.
It follows that
FcFNE,®FnE,. (1.20)

The relations (1.19) and (1.20) imply (1.18).
Example 1: Let E be a vector space with a basis e,, e,. Define E,, E,
and F as the subspaces generated by e,, e, and e, + ¢, respectively. Then

E=E, ®E,
while on the other hand
FNnE,=FnE,=0.
Hence
F+FNE @FNE,.

1.14. }\rbitrary families of subspaces. Next consider an arbitrary family
of subspaces E, c E, ae A. Then the intersection () E, is again a subspace
of E. The sum XE, is defined as the set of all vectors which can be written

@

as finite sums, x=Yx,, x,cE, (1.21)

and is a subspace of E as well. If for every ae 4

Ean ZEp=O
Bta

then each vector. of the sum Y E, can be uniquely represented in the form
(1.21). In this case the space ;.‘E, is called the (internal) direct sum of the
subspaces E,, and is denotedaby YE,.
If S, is a system of generators Eor E,, then the set | S, is a system of
generators for YE,. If the sum of the E, is direct and fT, is a basis of E,,
a

then (T, is a basis for ) E,.
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Example 2: Let (x,),. 4 be a basis of E and E, be the subspace generated
by x,. Then
E=YE,.
Suppose
E=YE, (1.22)

is a direct sum of subspaces. Then we have the canonical injections
i,: E,~>E., We define the canonical projections n,: E—E, determined by
e X = X,
where
x=Yx, x.€E,.
"1

It is clear that the =, are surjective linear mappings. Moreover, it is easily
verified that the following relations hold:

. 1 f=a
“““"{0 B+a
Yignex=x  xekE.

1.15. Complementary subspaces. An important property of vector
spaces is given in the

Proposition I: If E, is a subspace of E, then there exists a second sub-
space E, such that
E = El @ E2 .

E, is called a complementary subspace for E, in E.

Proof: We may assume that E, + E and E; +(0) since the proposition
is trivial in these cases. Let (x,) be a basis of E, and extend it with vectors
¥ to form a basis of E. Let E, be the subspace of E generated by the
vectors yg. Then

E=E, ®E,.

In fact, since (x,)U (¥5) is a system of generators for E, we have that
E=E1+E2. (1.23)
On the other hand, if xe E, n E,, then we may write

x=YA"x, and x= ;p"yﬁ
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whence
Z/laxa - zﬂﬂyﬂ =0.
a B

Now since the set (x,) U (v,) is linearly independent, we obtain
=0 and #=0

whence x=0. It follows that E; n E,=0 and so the decomposition (1.23)
is direct.

As an immediate consequence of the proposition we have

Corollary I. Let E, be a subspace of E and ¢, : E; — F a linear mapping
(F a second vector space). Then ¢, may be extended (in several ways) to a
linear map @: E—F.

Proof: Let E, be a complementary subspace for E; in E,

E=E QE, (1.24)
and define ¢ by
Px =01y
where
x=y+z

is the decomposition of x determined by (1.24). Then
¢;lixi=¢(lzlli)’i+;lizi) X =Y+ 2z
=@y Ei:/li Yi
= ;}-iqh Vi
= Zli @ x;
and so ¢ is linear. It is trivial that ¢ extends ¢,.

As a special example we have:

Corollary II: Let E; be a subspace of E. Then there exists a surjective
linear map
¢:E—>E,
such that
Px =X xekE,.
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Proof: Simply extend the identity map 1:E,—E, to a linear map
¢ E-E,.

1.16. Factor spaces. Suppose E; is a subspace of the vector space E.
Two vectors xe F and x' € E are called equivalent mod E; if X' —xeE;. It
is easy to verify that this relation is reflexive, symmetric and transitive
and hence is indeed an equivalence relation. (The equivalence classes are
the cosets of the additive subgroup E, in E (cf. sec. 0.4)). Let E/E, denote
the set of the equivalence classes so obtained and let

n:E— E[E,
be the set mapping given by
nx =X, xeE

where X is the equivalence class containing x. Clearly 7 is a surjective
map.

Proposition II: There exists precisely one linear structure in E/E; such
that = is a linear mapping.

Proof: Assume that E/E, is made into a vector space such that « is a
linear mapping. Then the equations

a(x+y)=nx+mny
and
n(Ax)=Anx

show that the linear operations in E/E, are uniquely determined by the
linear operations in E.

It remains to be shown that a linear structure can be defined in E/E,
such that = becomes a linear mapping. Let ¥ and j be two arbitrary ele-
ments of E/E; and choose vectors xe E and ye E such that

X=X, wy=7y.
Then the class 7 (x + y) depends only on X and j. Assume for instance that

x'eE is another vector such that nx'=Z%.
Then nx’ =nx and hence we may write

xX=x+z, zekE,.
It follows that

X +y=(x+y)+z
whence

n(x + y)=n(x+y).
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We now define the sum of the elements *cE/E, and yeE/E, by
F+j=n(x+y) where x=nx and j=my. (1.25)

It is easy to verify that E/E; becomes an abelian group under this oper-
ation and that the class 0=E, is the zero-element.

Now let X E/E, be an arbitrary element and AeI” be a scalar. Choose
x€E such that nx=%. Then a similar argument shows that the class 7 (1x)
depends only on % (and not on the choice of the vector x). We now define
the scalar multiplication in E/E, by

A-X=mn(Ax) where X=nx. (1.26)

Again it is easy to verify that the multiplication satisfies axioms II.1-11.3
and so E/E, is made into a vector space. It follows immediately from
(1.25) and (1.26) that

n(x+y)=nx+ny x,yeE

n(Ax)=Anx rel

i.e., @ is a linear mapping.

The vector space E/E; obtained in this way is called the factor space
of E with respect to the subspace E,. The linear mapping = is called the
canonical projection of E onto E,. If E, = E, then the factor space reduces
to the vector 0. On the other hand, if E, =0, two vectors x€E and ye E
are equivalent mod E, if and only if y=x. Thus the elements of E/(0) are
the singleton sets {x} where x is any element of E, and = is the linear
isomorphism x— {x}. Consequently we identify E and E/(0).

1.17. Linear dependence mod a subspace. Let E;, be a subspace of E,
and suppose that (x,) is a family of vectors in E. Then the x, will be called
linearly dependent mod E| if there are scalars 1% not all zero, such that

Y A*x,eE;.

If the x, are not linearly dependent mod E, they will be called linearly
independent mod E;.
Now consider the canonical projection

n:E— EJE,.

It follows immediately from the definition that the vectors x, are linearly
dependent (independent) mod E, if and only if the vectors nx, are linearly
dependent (independent) in E/E,.
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1.18. Basis of a factor space. Suppose that (y,)U (z;) is a basis of E
such that the vectors y, form a basis of E;. Then the vectors nz; form a
basis of E/E;. To prove this let E, be the subspace of E generated by the

vectors z;. Then E—E,®E,. (1.27)
Now consider the linear mapping ¢: E,— E/E, defined by

Qz="mnz z€E,.
Then ¢ is surjective. In fact, let X€E/E; be an arbitrary vector. Since
n: E—~E/E; is surjective we can write

X=mx, xeE.
In view of (1.27) the vector x can be decomposed in the form

x=y+z yeE,,zekE,. (1.28)

Equation (1.28) yields

X=nx=ny+mnz=mz=¢z
and so ¢ is surjective.
To show that ¢ is injective assume that

oz=¢z z,2'€E,.
Then
n(z' —z)=¢(z' ~2)=0

and hence z' —zeE,. On the other hand we have that z’—zeE, and thus
Z’— ZEEl n E2=O.

It follows that ¢:E,—E/E, is a linear isomorphism and now Propo-
sition III of sec. 1.11 shows that the vectors nz, form a basis of E/E;.

Problems

1. Let (&', &%, &%) be an arbitrary vector in I'*. Which of the following
subsets are subspaces?

a) all vectors with & =¢2=¢3

b) all vectors with £3=0

¢) all vectors with ¢! =¢2—¢3

d) all vectors with £'=1

2. Find the subspaces F,, F,, F,, F; generated by the sets of problem 1,
and construct bases for these subspaces.
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3. Construct bases for the factor spaces determined by the subspaces
of problem 2.

4. Find complementary spaces for the subspaces of problem 2, and
construct bases for these complementary spaces. Show that there exists
more than one complementary space for each given subspace.

5. Show that

a) I3=F,+F,
b) [*=F,+F,
¢) '*=F,+F,

Find the intersections F,n F,, F, 0 F,, F,n F, and decide in which cases
the sums above are direct.

6. Let .S be an arbitrary subset of E and E; its linear closure. Show that
E, is the intersection of all subspaces of E containing S.

7. Assume a direct composition E=E,®FE,. Show that in each class
of E with respect to E; (i.e. in each coset X€E/E,) there is exactly one
vector of E,.

8. Let E be a plane and let E, be a straight line through the origin. What
is the geometrical meaning of the equivalence classes respect to E;. Give
a geometrical interpretation of the fact that x~x" and y ~y’ implies that
x+y~x'+y'.

9. Suppose S is a set of linearly independent vectors in E, and suppose
T is a basis of E. Prove that there is a subset of 7 which, together with S,
is again a basis of E.

10. Let w be an involution in E. Show that the sets £, and E_ defined
by

E,={xeE;ox=x}, E_={xeE;0x=—X}

are subspaces of E and that
E=E,®E_.

11. Let E,, E, be subspaces of E. Show that E,+ E, is the linear
closure of E, U E,. Prove that

E1 + E2 - El U E2
if and only if
E,oE, or E,oE,.

12. Find subspaces E,, E,, E; of I'’* such that
DENE =0 (i+))

i) E, + Ey + Ey =TI

iii) the sum in ii) is not direct .
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§ 4. Dimension

In this paragraph all vector spaces are defined over a fixed, but arbitrarily
chosen field I of characteristic 0.

1.19. Finitely generated vector spaces. Suppose E is a finitely generated
vector space, and consider a surjective linear mapping ¢: E—F. Then F
is finitely generated as well. In fact, if x;...x, is a system of generators for
E, then the vectors ¢x, ..., @x, generate F. In particular, the factor space
of a finitely generated space with respect to any subspace is finitely gener-
ated.

Now consider a subspace E; of E. In view of Cor. II to Proposition I,
sec. 1.15 there exists a surjective linear mapping ¢: E— E;. It follows that
E, is finitely generated.

1.20. Dimension. Recall that every system of generators of a non-
trivial vector space contains a basis. It follows that a finitely generated
non-trivial vector space has a finite basis. In the following it will be shown
that in this case every basis of E consists of the same number of vectors.
This number will be called the dimension of E and will be denoted by
dim E. E will be called a finite-dimensional vector space. We extend the
definition to the case E=(0) by assigning the dimension 0 to the space
(0). If E does not have finite dimension it will be called an infinite-dimen-
sional vector space.

Proposition I: Suppose a vector space has a basis of n vectors. Then
every family of (n+1) vectors is linearly dependent. Consequently, » is
the maximum number of linearly independent vectors in E and hence
every basis of E consists of n vectors.

Proof: We proceed by induction on n. Consider first the case n=1 and
let a be a basis vector of E. Then if x40 and y =0 are two arbitrary vec-
tors we have that

x=21a, A+0 and y=pa, u+0
whence
ux —Aiy=0.
Thus the vectors x and y are linearly dependent.

Now assume by induction that the proposition holds for every vector
space having a basis of r<n—1 vectors.

Let E be a vector space, and let a,(u=1...n) be a basis of E and
Xy...X, 4 @ family of n+ 1 vectors. We may assume that x, ., +0 because
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otherwise it would follow immediately that the vectors x;...x,,, were
linearly dependent.
Consider the factor space E, = E/(x,,,) and the canonical projection

n:E > E[(Xy41)

where (x,, ) denotes the subspace generated by x,.,. Since the system
4y, ..., d, generates E; it contains a basis of E; (cf. Cor. I to Theorem I,
sec. 1.6). On the other hand the equation

n
Xn+1 ™ Z }'v a,

v=1

implies that
Aa,=0

1
and so the vectors (d, ..., 4,) are linearly dependent. It follows that E,
has a basis consisting of less than n vectors. Hence, by the induction

hypothesis, the vectors %,...%, are linearly dependent. Consequently,
there exists a non-trivial relation

2, &%, =0
1

y=

=

v

and so
n
i
2 6vxv = €”+ xn+1'
v=1

This formula shows that the vectors x,...x,, are linearly dependent and
closes the induction.

Example: Since the space I'" (cf. Example 1, sec. 1.2) has a basis of n
vectors it follows that
dimI™ =n.

Proposition II: Two finite dimensional vector spaces E and F are iso-
morphic if and only if they have the same dimension.

Proof: Let ¢:E—F be an isomorphism. Then it follows from Propo-
sition IIL, sec. 1.11 that ¢ maps a basis of E injectively onto a basis of F
and so dim E=dim F. Conversely, assume that dim E=dim F=n and let
x,and y, (u=1...n) be bases of Eand Frespectively. According to Propo-
sition II, sec. 1.11 there exists a linear mapping ¢:E—F such that
@x,=y,(p=1...n). Then ¢ maps the basis x, onto the basis y, and hence
it is a linear isomorphism by Proposition I, sec. 1.11.



34 Chapter I. Vector spaces

1.21. Subspaces and factor spaces. Let E; be a subspace of the #n-dimen-
sional vector space E. Then E, is finitely generated and so it has finite
dimension m. Let x,...x,, be a basis of E,. Then the vectors x,...x,, are
linearly independent in E and so Cor. II to Theorem I, sec. 1.6 implies
that the vectors x; may be extended to a basis of E. Hence

dimE, < dimE. (1.29)

If equality holds, then the vectors x,...x, form a basis of E and it fol-
lows that E,=E.
Now it will be shown that

dimE = dimE, + dim E/E, . (1.30)

If E,=(0) or E,=FE (1.30) is trivial and so we may assume that E, is a
proper non-trivial subspace of E,

0 <dimE; <dimE.

Let x,...x, be a basis of E; and extend it to a basis x,...x,...x, of E. Then
the vectors X,,,...X, form a basis of E/E, (cf. sec. 1.18) and so (1.30)
follows.

Finally, suppose that E is a direct sum of two subspaces E; and E,,

E=E @E,.
Then
dimE = dimE, + dimE,. 1.3n

In fact, if x,...x, is a basis of E; and x,,,...X,., is a basis of E,, then
Xj...Xp4q 18 @ basis of E whence (1.31). More generally, if E is the direct
sum of several subspaces,

E=

i

E,

13

M'I

1

then
dimE = ) dimE,.
&

11

Formula (1.31) can also be generalized in the following way. Let E,
and E, be arbitrary subspaces of E. Then

dim(E, + E,) + dim (E, n E;) =dimE, + dimE,.  (1.32)

In fact, let z;...z, be a basis of E;n E, and extend it to a basis z,...z,,
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Xp41.--X, of E; and to a basis z,...z,, y, ...y, of E;. Then the vectors

Zy i Zpy XpsgrerXpy Vegieor Vg (1.33)

form a basis of E, +E,. Clearly, the vectors (1.33) generate E, +E,.
To show that they are linearly independent, we comment first that the
vectors x; are linearly independent mod (E; n E,). In fact, the relation

Y Ax;eE, nE,

implies that
Z li xi = Z Mk Zk
i k

whence =0 and p*=0. Now assume a relation

Y+ Y Ex + Yy, =0.
k i J
Then

Zfixi =- Z"lj.\’j - ZCkaEEz
7 7 k

whence
Y.&x,eE; nE,.

i

Since the vectors x; are linearly independent mod (E; n E,) it follows that
&'=0. In the same way it is shown that #/=0. Now it follows that {*=0
and so the vectors (1.33) are linearly independent. Hence, they form a
basis of E; + E, and we obtain that

dim(E, + E))=r+(p—r)+(q—7r)
=p+qg-—-r

Problems

1. Let (x,, x,) be a basis of a 2-dimensional vector space. Show that
the vectors

Xp=x1+x;, X=X3—Xx,

again form a basis. Let (£*, £%) and (&', &%) be the components of a vector
x relative to the bases (x,, x,) and (X,, X,) respectively. Express the com-
ponents (&', £%) in terms of the components (&', £2).

2. Consider an n-dimensional complex vector space E. Since the multi-
plication with real coefficients in particular is defined in E, this space may
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also be considered as a real vector space. Let (z,...2,) be a basis of E.
Prove that the vectors z,...z,, iz;...iz, form a basis of E if Eis considered
as a real vector space.

3. Let E be an n-dimensional real vector space and C the complex
linear space as constructed in § 1, Problem 5. If x, (v=1...n) is a basis of
E, prove that the vectors (x,, 0)(v=1...n) form a basis of C.

4. Consider the space I'" of n-tuples of scalars AeI". Choose as basis
the vectors:

ey =(1,1,...,1,1)
e;=(0,1,...,1,1)

e, =(0,0,...,0,1).

Compute the components ', n%, ..., " of the vector x=(¢!, &2, ..., &")
relative to the above basis. For which basis in I'" is the connection be-
tween the components of x and the scalars &, &2, ..., & particularly sim-
ple?

5. In I'* consider the subspace T of all vectors (!, &2, &3, £4) satisfying
E 4282 =¢34+ 284 Show that the vectors: x;=(1,0,1,0) and x,=
(0, 1, 0, 1) are linearly independent and lie in T'; then extend this set of
two vectors to a basis of T.

6. Let ay, a,, a; be fixed real numbers. Show that all vectors (r!, 52,
7%, n*) in R* obeying n*=a,n* +a,n* +an> form a subspace V. Show
that ¥ is generated by

x; =(1,0,0,a,); x, = (0,1,0,0,); x5 = (0,0, 1, 3).

Verify that x,, x,, x; form a basis of the subspace V.
7. In the space P of all polynomials of degree <n—1 consider the two
bases p, and g, defined by

p(@®)=r
q,(t)=(t—a)’ (a,constant;v=0,...,n—1).

Express the vectors g, explicitly in terms of the vectors p,.

8. A subspace E, of a vector space E is said to have co-dimension n if
the factor space E/E; has dimension n. Let E; and F, be subspaces of
finite codimension, and let E,, F, be complementary subspaces,

E,@E,=E, F,@F,=E.
Show that
dimE, = codimE,, dimF, =codimF,.
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Prove that E; n F, has finite codimension, and that
codim(E; n F,) £ dimE, + dim F,.

9. Under the hypothesis of problem 8, construct a decomposition
E=H,®H, such that H, has finite codimension and

l) H1<:E1ﬂF1
ii) H23E1+F1.

Show that

H,=E,®(E; n Hy)
and

H,=F,®(F, n H,).

10. Let (x,)qe 4 and (y5)e 5 be two bases for a vector space E. Establish
a 1—1 correspondence between the sets 4 and B.

11. Let E be an n-dimensional real vector space and E, be an (n—1)-
dimensional subspace. Denote by E* the set of all vectors xe E which are
not contained in E,. Define an equivalence relation in E!as follows: Two
vectors xe E' and yeE! are equivalent, if the straight segment

x()=1—-fHx+ty 0211

is disjoint to E,. Prove that there are precisely two equivalence classes.

§ 5. The topology of a real finite-dimensional vector space

1.22. Real topological vector spaces. Let E be a real vector space in
which a topology is defined. Then E is called a topological vector space if
the linear operations

ExE—-E and Rx E—E defined by
(5 y)—>x+y
and
(A4, x)—> Ax
are continuous.

Example: Consider the space R". Since the set R” is the Cartesian
product of n copies of R, a topology is induced in R" by the topology in
R. It is easy to verify that the linear operations are continuous with re-
spect to this topology and so R” is a topological vector space. A second
example is given in problem 6.
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In the following it will be shown that a real vector space of finite di-
mension carries a natural topology.

Proposition: Let E be an n-dimensional vector space over R. Then
there exists precisely one topology in E satisfying the conditions

T,: E is a topological vector space

T,: Every linear function in E is continuous.

Proof: To provetheexistence of suchatopology let e,(v=1,...,n) be a
fixed basis of E and consider the linear isomorphism ¢:R"— E given by

(... > Y Ee,.

Then define the open sets in E by ¢ (U) where U is an open set in R".
Clearly ¢ becomes a homeomorphism and the linear operations in E are
continuous in this topology. Now let f be a linear function in E. Then we
have for every xqeE, xe E

fE)=f(x)=f(x- xo)=;(€" — &) f (e).

Given an arbitrary positive number ¢>0 consider the neighbourhood,
U, of x, defined by
&~ &)<  v=1,..,n

where 6 >0 is a number such that

5-21f ()l <e.
Then if xe U we have that

If (x) = f (xo)l <8R If ()l <&

which proves the continuity of fat x=x,.

It remains to be shown that the topology of E is uniquely determined
by T; and T,. In fact, suppose that an arbitrary topology is defined in E
which satisfies T and T,.

Let e,(v=1, ..., n) be a basis of E and define mappings ¢:R"—E and
Y:E—-R" by

(p(él, ~"a€n) = Zévev
and

¥x = (& (x),....E"())
X = ;fv(x)ev

where
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T, implies that ¢ is continuous. On the other hand, the functions x—¢&* (x)
are linear and hence it follows from T, that ¥ is continuous. Since

Vop =1« and o@oy =1

we obtain that ¢ is a homeomorphism of R" onto E. Hence the topology
of E is uniquely determined by T; and T,.
Corollary: The topology of E constructed above is independent of the

basis e,.
Let F be a second finite-dimensional real vector space and let ¢: E—F
be a linear mapping. Then ¢ is continuous. In fact, if y,(u=1, ..., m) is

a basis of F we can write
px =Y n"(x)y,
I

where the #* are linear functions in E. Now the continuity of ¢ follows
from T and T5.

1.23. Complex topological vector spaces. The reader should verify that
the results of sec. 1.22 carry over word for word in the case of complex
spaces.

Problems

1. Let f be a real valued continuous function in the real n-dimensional
linear space E such that

fx+y)=f(x)+f() =xyeE.

Prove that f is linear.

2. Let ¢: E{—E, be a surjective linear mapping of finite dimensional
real vector spaces. Show that ¢ is open and closed (the image of an open
or closed set in E; under ¢ is again open or closed in E,).

3. Let n: E~E/F be the canonical projection, where E is a real finite
dimensional vector space, and F is a subspace. Then the topology in E
determines a topology in E/F (a subset Uc E/F is open if and only if
n~1U is open in E).

a) Prove that this topology coincides with the natural topology in the
vector space E/F.

b) Prove that the subspace topology of F coincides with the natural
topology of F.

4. Show that every subspace of a finite dimensional real vector space
is a closed set.
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5. Construct a topology for finite dimensional real vector spaces that
satisfies T, but not T,, and a topology that satisfies T, but not T;.

6. Let E be a real vector space. Then every finite dimensional subspace
of E carries a natural topology. Let E, be any finite dimensional subspace
of E, and let U, = E; be an open set. Moreover let E, be a complementary
subspace in E, E=FE,®F,. Then U, and E, determine a set O given by

O0={x+y;xeU,yeE,}. (1.39)
Suppose that
"={x+y;xeU,ueE}}

is a second set of this form. Prove that On O’ is again a set of this form.
Hint: Use problems 8 and 9, § 4.

Conclude that the sets Oc E of the form (1.34) form a basis for a
topology in E.

7. Prove that the topology defined in problem 6 satisfies T, and T,.

8. Prove that the topology of problem 7 is regular. Show that E is not
metrizable if it has infinite dimension.
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Linear Mappings

In this chapter all vector spaces are defined over a fixed but arbitrarily
chosen field, I, of characteristic 0.

§ 1. Basic properties

2.1. Kernel and image space. Suppose E, F are vector spaces and let
@:E—F be a linear mapping. Then the kernel of ¢, denoted by ker o, is
the subset of vectors xe E such that ¢x=0. It follows from (1.8) and (1.9)
that ker ¢ is a subspace of E.

The mapping ¢ is injective if and only if

ker g = (0). @2.1)

In fact, if ¢ is injective there is at most one vector xe E such that px=0.
But ¢0=0 and so it follows that ker ¢ =(0). Conversely, assume that
(2.1) holds. Then if

PXy = QX

for two vectors x,, x,€E we have

P(x; —x3)=0

whence x; —x, eker ¢. It follows that x; —x,=0 and so x; =x,. Hence
¢ is injective,

The image space of ¢, denoted by Im ¢, is the set of vectors ye F of the
form y=¢x for some xeE. Im ¢ is a subspace of F. It is clear that ¢ is
surjective if and only if Im ¢p=F.

Example 1. Let E, be a subspace of E and consider the canonical
projection

n.:E—E|E,.
Then
kern=E, and Imn=E/E,.
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2.2. The restriction of a linear mapping. Suppose ¢:E—F is a linear
mapping and let E; c E, F, = F be subspaces such that

oxeF, for xeE,.
Then the linear mapping
¢y Ey—Fy
defined by
P1LX=0x xeE,

is called the restriction of ¢ to E;, F,. It satisfies the relation

Qoip=ipoq

where ip: E;— E and ip:F, —F are the canonical injections. Equivalently,

the diagram
P

E -F
it i
E,5F
is commutative.
2.3. The induced mapping in the factor spaces. Let ¢:E—F be a linear
mapping and ¢, : E;—~F, be its restriction to subspaces E;c E and F; c F.
Then there exists precisely one linear mapping

¢:E|E; - F|F,
such that
Pollg =Tpo @ 2.2)
where
ng:E—~E|E; and =ng:F - F/F,

are the canonical projections.
Since ny is surjective, the mapping & is uniquely determined by (2.2) if
it exists. To define @ we notice first that

Tp@ Xy =Tp@PX, (2.3)

whenever
MpXy = NgX,. (2.4)
In fact, (2.4) implies that
X, —x,€kerny =E,.
But by the hypothesis
Xy — @xy =@ (x; —x;)eF =kerng

and so

TP Xy =Np@PXy.
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It follows from (2.3) and (2.4) that there is a set map ¢:E/E, > E/F,
satisfying (2.2). To prove that ¢ is linear let X, €E/E, and JeE/E, be
arbityrar and choose vectors xe E and y € Fsuch that nyx=x and ngy=7.
Then it follows from (2.2) that

PAX+up)=ong(Ax +py)=np@(Ax +py)
=AM QX+ punpPy=A0X + pu@y
and hence { is a linear mapping.
The reader should notice that the relation (2.2) is equivalent to the
requirement that the diagram
E-2>F
) L
E|E, 5 F|F,

be commutative. Setting npx=X, xe E and n;y=y, ye F we can rewrite
(2.2) in the form
FX=0px.

2.4. The factoring of a linear mapping. Let ¢: E— F be a linear mapping
and consider the subspaces E; =ker ¢ and F; =(0). Since ¢x=0, xeE,
a linear mapping

p:Elkerop > F

is induced by ¢ (cf. sec. 2.3) such that
Pow =@ (2.5)
where © denotes the canonical projection
n:E— Eflkero.

The mapping § is injective. In fact, if pnx=0 we have that ¢x=0. Hence
xeker ¢ and so nx=0. It follows that ¢ is injective. In particular, the
restriction of ¢ to E/ker ¢, Im ¢ (also denoted by §) is a linear isomorph-
ism

p:Efker ¢ 3 Ime.

Formula (2.5) shows that every linear mapping ¢: E— F can be written
as the composition of a surjective and an injective linear mapping,
ESF
xl / @
E/ker @
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As an application it will now be shown that for any two subspaces
E,cE and E,cE there is a natural isomorphism

E\[(Ey n E) 5 (Ey + E))[E,. (2.6)
Consider the canonical projection
TI:E1 + E2 —)(E1 + EZ)/EZ

and let ¢ be the restriction of n to E,, (E, + E,)/E,. Then ¢ is surjective.
In fact, if
x=x1+x2, X1€E1,xzeE2

is any vector of E; +E, we have

X =n(X; + X)) =X, = QX
Since
kero =kern n E; =E, N E,

it follows that ¢ induces a linear isomorphism
G:E(Ey 0 Ep) > (B, + E)/E;.
Now consider the special case that
E=E, ®E,.
Then E, n E, =0 and hence the relation (2.6) reduces to
E, > EJE,.

As a second example, let f;(i=1...r) be r linear functions in £ and
define a subspace FcE by

F = (Nkerf,.

i=1

Now consider the linear mapping ¢: E—TI'" defined by

¢x = (f1(x); .., £ (x)).
Then clearly

kero = (M kerf,=F
i=1

and so ¢ determines a linear isomorphism

#:E/F SImocT'.
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1t follows that Im ¢, and hence E/F, has dimension =r,
dimE/F<r.

Proposition I: Suppose ¢: E— F and y: E— G are linear mappings such
that
kerp < kery.

Then  can be factored over ¢; that is, there exists a linear mapping
x:F—-G such that

Xo@=Vy.
Proof: Since { maps ker ¢ into 0 it induces a linear mappingy : E/ker ¢

-G such that
Yom=y

where
n:E — E/ker ¢

is the canonical projection. Let

@:Efker o S Ime

be the linear isomorphism determined by ¢, and define a linear mapping
V,:Im ¢—G by
‘71 = ‘F o '

Finally, let y: F— G be any linear mapping which extends i ;. Then we have
that

G lop=0"toPon=m
whence

Xe@=Y100=Yof lop=Yon=y.
Our result is expressed in the commutative diagram
ESF
v] ¥
G

2.5. Exact sequences. Exact sequences provide a sophisticated method
for describing elementary properties of linear mappings.
A sequence of linear mappings

FAEYG Q.7
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is called exact at E if
Img =kery.

We exhibit the following special cases:

1. F=0. Then the exact sequence (2.7) reads

0%E%G. (2.8)

Since Im ¢ =0 it follows that ker Y =0 i.e., Y is injective. Conversely,
suppose EY F is injective. Then ker =0, and so the sequence (2.8) is
exact at E.

2. G=0. Then the exact sequence (2.7) has the form
FSE%o. (2.9)
Since y is the zero mapping it follows that
Ime =kery =E

and so ¢ is surjective. Conversely, if the linear mapping ¢: F— E is sur-
jective, then the sequence (2.9) is exact.

A short exact sequence is a sequence of the form

*)

0-F35ELGS0 (2.10)

which is exact at F, E and G. As an example consider the sequence
0-E, SELEE 0 (2.11)

where E, is a subspace of E and i, = denote the canonical injection and
projection respectively. Then

Imi=E; =kern

and so (2.11) is exact at E. Moreover, since i and n are respectively injec-
tive and surjective, it follows that (2.11) is exact at E, and E/E; and so
(2.11) is a short exact sequence.

The example above is essentially the only example of a short exact
sequence.

*) It is clear that the first and the last mapping in the above diagram are the zero
mappings.
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In fact, suppose
0-FLE%GS0 (2.10)

is a short exact sequence. Let
E; =Im¢ =kery
and consider the exact sequence
0-E, >ESE/E, 0.

Since the mapping ¢: F— E is injective its restriction ¢4 to F, E, is a linear
isomorphism, ¢,:F35 E;. On the other hand, \ induces a linear iso-
morphism -
V:E|E; >G.
Now it follows easily from the definitions that the diagram

0-F - FE > G-0
pr|= o= = (2.12)
O0—-E,-E -EE-0
is commutative.
2.6. Homomorphisms of exact sequences. A commutative diagram of
the form
0-F,3E 56,0
le o s (2.13)

0-F3E%6,50

where both horizontal sequences are short exact sequences, and g, o, T
are linear mappings, is called a homomorphism of exact sequences. If
0, 0, T are linear isomorphisms, then (2.13) is called an isomorphism be-
tween the two short exact sequences. In particular, (2.12) is an isomorph-
ism of short exact sequences.

2.7. Split short exact sequences. Suppose that

0-F5ELG-0 (2.10)

is a short exact sequence, and assume that there y: E«G is a linear
mapping such that

pping Woy=1.
Then y is said to split the sequence (2.10) and the sequence

v
0-F3E®2G-0
X
is called a split short exact sequence.
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Proposition II: Every short exact sequence can be split.
Proof: Given a short exact sequence, (2.10) let E, be a complementary
subspace of ker y in E,
E=E @kery

and consider the restriction, y,, of y to E,;, G. Since ker y, =0, }r, is a
linear isomorphism, y,: E; 5 G. Then the mapping x: E,«G defined by

x=1y7 ! satisfies the relation

Yrz=yyi'z=y,yi'z=1z z€G

and hence y splits the sequence.

2.8. Stable subspaces. Consider now the case F=EFE; i.e., let ¢ be
a linear transformation of the vector space E. Then a subspace E;c E
will be called stable under ¢ if

oxeE; for xeE,.

It is easy to verify that the subspaces ker ¢ and Im ¢ are stable. If E; is
a stable subspace, the restriction, ¢,, of ¢ to E,, E, will be called simply
the restriction of ¢ to E,. Clearly, ¢, is a linear transformation of E;. We
also have that the induced map

¢:E[E, > E[E,

is a linear transformation of E/E,.

Problems

1. Let C be the space of continuous functions f: R— R and define the
mapping ¢:C—C by

0:f (1)~ f £ ()ds.

Prove that Im ¢ consists of all continuously differentiable functions while
the kernel of ¢ is 0. Conclude that ¢ is injective but not bijective.

2. Find the image spaces and kernels of the following linear transfor-
mations of I'*:

a) Y(&, %8, = (e - 48 + 84,8, ¢8%
b) Y(& &%, 8%, 8% = (&, &4 EL 8D
) (&L E%E5,E5 = (&% 8" + &4, 6 + £5,¢%).
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3. Find the image spaces and kernels of the following linear mappings
of I'*into I'*:
a) ¢(£1’ 62’ 63’ 64) — (561 _ 62’ 61 + 62’ 63’ 64, {1)
b) ¢(£19 62’ 63, 64) — (61 + 62 + 763 + £4a 263 + 64’ 61’ 62’ 61 _ 62)
) p(eLE3EEN =(E* = + 3+ L8 - 2,178 + 1382,16¢" +
+ 564’ 62 _ 63)

4. Construct bases for the factor spaces I'*/ker Y and I'*/ker ¢ of
problems 2 and 3. Determine the action of the induced mappings on these
bases and verify that the induced mappings are injective.

5. Prove that if ¢: E—F and y: E—G are linear mappings, then the
relation

ker ¢ < kery

is necessary for the existence of a linear mapping yx:F—G such that
Y=x00.

6. Consider the pairs (i, @) in parts a, b, ¢ of problems 2 and 3. Decide
in each case if Y can be factored over ¢, or if ¢ can be factored over y,
or if both factorings are possible. Whenever  can be factored over ¢
(or conversely) construct an explicit factoring map.

7. a) Use formula (2.6) to obtain an elegant proof of formula (1.32).

b) Establish a linear isomorphism

(E/F)/(E,/F) — E|E,
where Fc E;cE.
8. Consider the short exact sequence

0-E, >ESEJE, —0.

Show that the relation y=2Im y defines a 1—1 correspondence between
linear mappings y: E«— E/E, which split the sequence, and complementary
subspaces of E; in E.

9. Show that a short exact sequence 0— F—> E%G-0is splitif and only
if there exists a linear mapping w: F« E such that w.@=1.
In the process establish a 1—1 correspondence between the split short
exact sequences of the form

0-FSESG-0

r 4
and of the form

0-FoESGo0

w
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such that the diagram
0-FEE&G0O

is again a short exact sequence.
10. Consider a homomorphism of short exact sequences

0-F,5ESG6,-0
el o] e
0-F%E,%G6,-0
a) Show that
i) ¢, (kerg)=kero
ii) Yy,(Ime)=Im<
b) Use a) to prove that
i) ¢ is surjective if and only if g is injective
ii) o is injective if and only if g is surjective.
¢) Construct a linear mapping

azkert— F,/Img.

11. Consider a system of linear mappings

0 0 0

! 1 !
0— Ego (E’OEmw‘o’l Egy—>

'/Iool '1101,1, 'I’oz,l,

@10 P11
O0-Eo,—E  ~E;,;~
'lllol 'llnl 'lllz,l,
0> E) B E, B E,, -

A

where all the horizontal and the vertical sequences are exact at each E;;.
Assume that the diagram is commutative. Define spaces H;; (izl,jz 1) by

H;; = (ker@;; N ker'//ij)/lm('//i—u o €0i—1j—1)-

Construct a linear isomorphism between H; ;,; and H;, ;.
12. Given an exact sequence

ESFYLGLH

prove that ¢ is surjective if and only if y is injective,
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§ 2. Operations with linear mappings

2.9. The space L(E; F). Let E and F be vector spaces and consider the
set L(E; F) of linear mappings ¢: E—F. If ¢ and  are two such map-
pings @ +y and A of E into F are defined by

(p+¥)x=0x+yx
and
Ao)x=Apx xeE.

It is easy to verify that ¢+ and A¢@ are again linear mappings, and so
the set L(E; F) becomes a linear space, called the space of linear mappings
of E into F. The zero vector of L(E; F) is the linear mapping 0 defined
by 0 x=0, xeE.

In the case that F=T (¢ and y are linear functions) L (E; I') is denoted
simply by L(E).

2.10. Composition. Recall (sec. 1.10) that if ¢: E— F and y: F—G are
linear mappings then the mapping Y- ¢: E—G defined by

(Yop)x =Y (ox)

is again linear. If H is a fourth linear space and y: G— H is a linear map-
ping, we have for each xeE

[ro( o 0)]x = 2 (b o0)x = 1 [¥ (0 %)] = ((=¥) @ x = [(x o ¥) 0] %
whence xo(Wo9) = (xo¥)e0. (2.14)

Consequently, we can simply write yoyo@.
If ¢: E> F is a linear mapping and 1 and 15 are the identity mappings
of E and F we have clearly
oolg=¢ and iz.@p=¢. (2.15)
Moreover, if ¢ is a linear isomorphism and ¢ ~ ! is the inverse isomorphism
we have the relations
0 top=1; and .o '=1;. (2.16)
Finally, if ¢,: E» F and y;: F—» G are linear mappings, then it is easily
checked that
(S2¥)o0 = TE(Wio0)
i
and .17
V’O(Zﬂ‘ﬁt) = ;Al(wﬂlh)-
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2.11. Left and right inverses. Let ¢: E—F and y: E«< F be linear map-
pings. Then y is called a right inverse of ¢ if @y =1p.
y is called a left inverse of @ if Yo =1

Proposition I: A linear mapping ¢: E—~F is surjective if and only if it
has a right inverse. It is injective if and only if it has a left inverse.
Proof: Suppose ¢ has a right inverse. Then we have for every yeF

y=0yy

and so yelm ¢; i.e., ¢ is surjective. Conversely, if ¢ is surjective, let E,
be a complementary subspace of ker ¢ in E,

E=E @kero.

Then the restriction ¢, of ¢ to E;, F is a linear isomorphism. Define the
linear mapping Y: E;«F by Yy =i, ", where i, : E; > E is the canonical
injection. Then
oYy=0,01'y=y, yeF
ie, Qo =1p.
For the proof of the second part of the proposition assume that ¢ has
a left inverse. Then if xeker ¢ we have that

x=yYox=y0=0

whence ker ¢ =0. Consequently ¢ is injective.

Conversely, if ¢ is injective, consider the restriction ¢, of ¢ to E, Im ¢.
Then ¢, is a linear isomorphism. Let 7n: F—»Im ¢ be a linear mapping
such that

ny=y for yelme

(cf. Cor. II, Proposition I, sec. 1.15) and define : E«~F by

Y= qof1 oTl.
Then we have that

Vox=9i'nox=0;'ox =07 @ x=x
whence . @ =1;. Hence ¢ has a left inverse. This completes the proof.

Corollary: A linear isomorphism ¢: E—~F has a uniquely determined

right (left) inverse, namely, ¢ ~!.
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Proof: Relation (2.16) shows that ¢ ~ ' is a left (and right) inverse to ¢.
Now let i be any inverse of ¢,

Yo =1g.

Then multiplying by ¢ ™' from the right we obtain

1 1

Yoo =@~

whence y=¢ ~'. In the same way it is shown that the only right inverse
of pis ™',

2.12. Linear automorphisms. Consider the set GL(E) of all linear auto-
morphisms of E. Clearly, GL(E) is closed under the composition
(¢, Yy)— o @ and it satisfies the following conditions:

) xo(Yo@)=(x-¥)-¢ (associative law)
ii) there exists an element 1 (the identity map) such that @o:=
1o =¢ for every peGL(E)

iii) to every ¢ e GL(E) there is an element ¢ ~' € GL(E) such that

0 lop=0.p =1

In other words, the linear automorphisms of E form a group.

Problems

1. Show that if E, F are vector spaces, then the inclusions
L(E;F)c C(E; F)<(E; F)

are proper ((E; F) is defined in Example 3, sec. 1.2 and C(E; F) is defined
in problem 9, § 1, chap. I). Under which conditions do any of these spaces
have finite dimension?
2. Suppose
e, Y1, 20 E-F and @,y 1: F > G

are linear mappings. Assume that @4, @, are injective, ¥, ¥, are surjec-
tive and y,, x, are bijective. Prove that

a) @, 1is injective

b) Y, oy, is surjective

€) %20y is bijective

3. Let ¢: E—F be a linear mapping. a) Consider the space M'(¢) of
linear mappings ¥ : E« F such that y - ¢ =0. Prove that M'(¢)=0 if and
only if ¢ is surjective.

b) Consider the space M"(¢p) of linear mappings y :E<« F such that
@ oy =0. Prove that M'(¢)=0 if and only if ¢ is injective.



54 Chapter I1. Linear mappings

4. Suppose that ¢:E—F is injective and let M'(p) be the subspace
defined in problem 3. Show that the set of left inverses of ¢ is a coset in
the factor space L(F; E)/M'(p), and conclude that the left inverse of ¢
is uniquely determined if and only if ¢ is surjective. Establish a similar
result for surjective linear mappings.

5. Show that the space M'(¢) of problem 3 is the set of linear mappings
Y : E—F such that Im ¢ cker yy. Construct a natural linear isomorphism
between M'(¢) and L(F/Im ¢; E).

b) Construct a natural linear isomorphism between M" (o) (cf. prob-
lem 3) and L (F; ker ¢).

6. Assume that ¢: E— Eis a linear transformation such that o=y . ¢
for every linear transformation . Prove that ¢ =41 where 1 is a scalar.
Hint: Show first that, for every vector xe E there is a scalar 4(x) such that
@x=2A(x)x. Then prove that 1(x) does not depend on x.

7. Prove that the group GL(E) is not commutative for dim E>1. If
dim E=1, show that GL(E) is isomorphic to the multiplicative group of
the field I'.

8. Let E be a vector space and S be a set of linear transformations of
E. A subspace FcE is called stable with respect to S if F is stable under
every @€ S. The space E is called irreducible with respect to S if the only
stable subspaces are F=0 and F=E.

Prove Schur’s Lemma: Let E and F be vector spaces and o: E—»F be a
linear mapping. Assume that Sy and Sy are two sets of linear transfor-
mations of E and F such that

OCSE=SFO(

i.e. to every transformation @e€Sg there exists a transformation Y eSy
such that ao@=y.a and conversely. Prove that «=0 or o is a linear
isomorphism of E onto F.

§ 3. Linear isomorphisms

2.13. It is customary to state simply that a linear isomorphism pre-
serves all linear properties. We shall attempt to make this statement more
precise, by listing without praof (the proofs being all trivial) some of the
important properties which are preserved under an isomorphism ¢:E3 F.

Property I: The image under ¢ of a generating set (linearly independent
set, basis) in E is a generating set (linearly independent set, basis) in F.
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Property II: If E, is any subspace in E, and E/E, is the corresponding
factor space, then ¢ determines linear isomorphisms

E, 5 QE,
and
E|E,> @E[¢E,.

Property III: If G is a third vector space, then the mappings

yoyeo™t  YeL(E;G)
and
Yooy  YeL(G;E)
are linear isomorphisms
L(E;G)S L(F;G)
and
L(G;E) 5 L(G;F)

2.14. Identification: Suppose ¢:E—F is an injective linear mapping.
Then ¢ determines a linear isomorphism

qol:EiImqo.

It may be convenient not to distinguish between E and Im ¢, but to
regard them as the same vector space. This is called identification, and
while in some sense it is sloppy mathematics, it leads to a great deal of
economy of formulae and a much clearer presentation. Of course we
shall only identify spaces whenever there is no possibility of confusion.

§ 4. Direct sum of vector spaces

2.15. Definition. Let E and F be two vector spaces and consider the set
Ex F of all ordered pairs (x, y), xe E, ye F. It is easy to verify that the set
E x F becomes a vector space under the operations

(%1, 1) + (X2, ¥2) = (X1 + X3, ¥5 + ¥2)
and

'l(x’ y) = (}'x’}'y)

This vector space is called the (external) direct sum of E and F and is
denoted by E@ F. If (x,),¢ 4 and (1), . s are bases of E and F respectively
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then the pairs (x,, 0) and (0, ;) form a basis of E@F. In particular, if E
and F are finite dimensional we have that

dim(E® F) = dimE + dim F .

2.16. The canonical injections and projections. Consider the linear map-
pings
defined by
i1x=(x’0) 12y=(05y)
and the linear mappings
n:E®@F—>E n,,E®@F->F
given by
m (X, y) =% m(x,y)=y.

It follows immediately from the definitions that

Tcloil = Ig 7T2oi2=lp (2.18)

ﬂloi2=0 thoil=0 (2.19)
and

iloTCl +i207T2=lE®F. (2.20)

The relations (2.18) imply that the mappings i,(A=1, 2) are injective
and the mappings 7, (A=1,2) are surjective. The mappings i, are called
respectively the canonical injections and n, the canonical projections as-
sociated with the external direct sum E@F. Since i; and i, are injective
we can identify E with Im i, and F with Im i,. Then E and F become sub-
spaces of E@F, and EQF is the internal direct sum of E and F.

The reader will have noticed that we have used the same symbol to
denote the external and the internal direct sums of two subspaces of a
vector space. However, it will always be clear from the context whether
the internal or the external direct sum is meant. (If we perform the iden-
tification, then the distinction vanishes). In the discussion of direct sums
of families of subspaces (see sec. 2.17) we adopt different notations.

If F=E we define an injective mapping 4: E—» E®E by

4x=(x,x).

4 is called the diagonal mapping. In terms of i; and i, the diagonal map-
ping can be written as
A = il + iz .



§ 4. Direct sum of vector spaces 57

Relations (2.18) and (2.19) imply that
TCloA = TCZOA =lg.

The following proposition shows that the direct sum of two vector
spaces is characterized by its canonical injections and projections up to
an isomorphism.

Proposition I: Let E, F, G be three vector spaces and suppose that a
system of linear mappings

¢:E>G, Y,:G-E
0, F>G, Yy,:G-F

is given subject to the conditions

Yiopr =1 Yr00,=1f
Yi00;=0 Yr00,=0
and

Pro¥i+ @0y, = 15.
Then there exists a linear isomorphism 7: EQ F5 G such that

@1 =7Toly Yy=mot "
and 2.21)

@, =Toly Yp=T,01 1.

The ¢;, Y; are called (as before) canonical injections and projections.
Proof: Define linear mappings

6:GE®F and T EQF-G
by

oz=(Y,2,¥,2), zeG
and

(X)) =@ x+ @2V, x€E,yeF.
Then for every vector zeG
T0z2=Q1Y 2+ @Yz =12

and for every vector (x, y)eEQF

et(%,¥) =W, 0 X+ V109,00, x +Y,0,¥) =(x,)).

These relations show that ¢ and ¢ are inverse isomorphisms. Formulae
(2.21) are immediate conscquences of the definition of <.
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2.17. Direct sum of an arbitrary family of vector spaces. Let (E,),. 4 be
an arbitrary family of vector spaces. To define the direct sum of the family
E, consider all mappings

x:A-E, (2.22)
[ 4

such that
i) x(x)eE,, acd
i) all but finitely many x (o) are zero.
We denote x () by x,. Then the mapping (2.22) can be written as

X100 X,.
The sum of two mappings x and y is defined by
e+ y)(2) = % + ya
and the mapping Ax is given by
(Ax)(2) = Ax,.

Under these operations the set of all mappings (2.22) is made into a
vector space. This vector space is called the (external) direct sum of the
vector spaces E, and will be denoted by @E The zero vector of @E is
the mapping x given by

x(a) =0, (0, zero vector of E,).

For every fixed ge4 we define the canonical injection i,: E,—~»@E, by
[ 4

. 0, o«
lox:aa{x 0= x€E, (2.23)

and the canonical projection n,: ® E,—E, by

T, X = X, XeE®E, (2.24)
It follows from (2.23) and (2.24) that
Tyois = Ggql (2.25)
and
Yi,mex=x xe®E,. (2.26)
e -4

By ‘abus de langage’ we shall write (2.26) simply as

Y,y =1.
Q
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Proposition II: Suppose that a decomposition of a vector space E as a
direct sum of a family of subspaces E, is given. Then FE is isomorphic to
the external direct sum of the vector spaces E,.

Proof: Let @ E,=F. Then a linear mapping o: E— £ is defined by

[ 4

ox=Yi,x, where x=Yx,x,€E,.
[ 4 [ 4

Conversely, a linear mapping 7: E— E is given by
X=) 7,%.
[ 4
Relations (2.25) and (2.26) imply that

To0=1 and c.Tt=1

and hence ¢ is an isomorphism of E onto £ and 7 is the inverse isomorph-
ism.

2.18. Direct sumoflinear mappings. Suppose¢,: E;—»F;and¢,: E;,—F,
are linear mappings. Then a linear mapping ¢, @ ¢@,: E,®E,~F,®F, is
defined by

(1@ @2)(x1,x2) = (@1 %1, 92 X3).

It follows immediately from the definition that

Im(¢, @ ¢,) =Imep, ®Ime,
and

ker (¢ @ ¢,) = kerp; @ ker ;.

Now suppose E;, E, are subspaces of E and F,, F, are subspaces of F
such that
E=E, ®E, and F=F ®F,. 2.27)

If ¢,: E,—~F, are linear maps then @; @ ¢, is again a linear map, defined by

(01 @ @2)(x1 + x2) = @1 x5 + 92X,

where x=x, + x, is the decomposition of any vector x€ E determined by
(2.27). @, ® 9, may be characterized as the unique linear map of E into F
which extends ¢, and ¢,.
2.19. Projection operators. A linear transformation ¢:E—FE is called
a projection operator in E, if >=¢. If ¢ is a projection operator in E,
then
E=kero®Ime. (2.28)
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Moreover,
= Um @ @ Oker ¢ (2'29)

To prove (2.28) let xe E be an arbitrary vector. Writing

x=y+ox (ie.y=x—0¢x)
we obtain that

py=0x—¢*x=0
whence yeker ¢. It follows that
E =kero +Ime. (2.30)

To show that the decomposition (2.30) is direct let z=@x be an arbi-
trary vector of ker ¢ n Im ¢. Then we have that

O=¢z=¢*’x=0¢px=1z2

and thus ker ¢ 0 Im ¢ =0.

To prove (2.29) we observe that the subspaces Im ¢ and ker ¢ are
stable under ¢ (cf. sec. 2.8) and that the induced transformations are the
identity and the zero mapping respectively.

Conversely, if a direct decomposition

E=E1@E2

is given, then the linear mapping
(p = lEl @ 0E1

is clearly a projection operator in E.

Proposition III: Let g,(i=1...r) be projection operators in E such that
0io0; =0, is%j (2.31)

Yo=1.

and

Then

r

E= Y Img;.

i=1

Proof: Let xeE be arbitrary. Then the relation

r
x=ZQix€ z lin
i i=1

1]
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shows that

r

E= X Img. (2.32)

i=1
To prove that the sum (2.32) is direct suppose that
xelmg; n 2 Imyg;.

JjFi

Then x=gp;y (some yeE), so that
ex=0ly=gy=x. (2.33)
On the other hand, we have that for some vectors y;€E,

X=730;¥;
i¥i
whence, in view of (2.31),

gx=1Y 00;y=0. (2.39)

Jj¥i

Relations (2.33) and (2.34) yield x=0 and hence the decomposition (2.32)
is direct.

Suppose now that

is a decomposition of E as a direct sum of subspaces E,. Let n,: E~E,
and i,: E,—~ E denote the canonical projections and injections, and con-
sider the linear mappings ¢,: E— E defined by

O =LT,.

Then the g, are projection operators satisfying (2.31) as follows from
(2.25) and (2.26). Moreover, Im g,=E, and so the decomposition of E
determined by the g, agrees with the original decomposition.

Problems

1. Assume a decomposition
E=E, +E,.

Consider the external direct sum E, @ E, and define a linear mapping
¢:E,®E,~E by
@ (xy1x2) = x; + X, x €E,x,€E,.
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Prove that the kernel of ¢ is the subspace of E consisting of the pairs
(x, — x) where xe E; n E,. Show that @ isa linear isomorphismif and only
if the decomposition E=E, + E, is direct.

2. Given two vector spaces E and F, consider subspaces E;cE, F,c F
and the canonical projections

ng:E—- E[E,, ng:F— F[F,.
Define a mapping
9:E®@F->E|E,®F|F,
by
@(x,y) = (ngx,mry).

Show that ¢ induces a linear isomorphism
p:(E@F)/(E,®F)—>E[E,®F|F,.

3. Let E=E,®E, and F=F,@F, be decompositions of E and F as
direct sums of subspaces. Show that the external direct sum, G, of Eand F
can be written as G=G,® G, where G, and G, are subspaces of G and G;
is the external direct sum of E; and F;(i=1, 2).

4. Prove that from every projection operator n in E an involution w
is obtained by w=2n—1 and that every involution can be written in this
form.

5. Let m;(i=1...r) be projection operators in E such that

Imm,=F (i=1..r)
where F is a fixed subspace of E. Let A’(i=1...r) be scalars. Show that
a) Ifz}f 4 0 then Imz}f ,=F
b) Z};ni is a non-triviall projection operator in E if and only if ZA"= 1.

6. Let E be a vector space with a countable basis. Construct a linear
isomorphism between E and EQE.

§ S. Dual vector spaces

2.20. Bilinear functions. Let E and F be vector spaces. Then a mapping
&:Ex F-T satisfying

P(AXy + ux2,)) = A0(x1,y) + p®B(x2,y) xy,x,€E,yeF  (2.35)
and
B(X, Ay, + 1y)=A®(x,p,) +u®(x,y;) x€E,y,y,eF  (2.36)
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is called a bilinear function in E x F. If @ is a bilinear function in Ex F
and E; cE, F; < F are subspaces, then ¢ induces a bilinear function @,
in E; x F, defined by

<I>1(x,y)=<1>(x,y) erl’yeFl

&, is called the restriction of @ to E, x F;.
Conversely, every bilinear function @, in E; x F; may be extended (in
several ways) to a bilinear function in E x F. In fact, let

Q:E-‘)El, O':F-‘)Fl

be surjective linear mappings such that ¢ and ¢ reduce to the identity in
E; and F, respectively (cf. Cor. II, Proposition I, sec. 1.15). Define ¢ by

¢(X’y) = ¢1(QX,O'y)-

Then @ is a bilinear function in E x F and for x,€E, y, € F; we have that

D(x1,y,) = P1(0x1,0y1) = D1 (X1, ¥1)
Thus @ extends @,.
Now let
E=ZE, and F=ZF,, (2.37)
a B

be decompositions of E and F as direct sums of subspaces. Then every
system of bilinear functions
Dy E, x Fg>T

can be extended in precisely one way to a bilinear function @ in Ex F.
The function @ is given by

d(x,y) = Z;;Du,, (M x, 75 y)

where ,: E— E, and n5: F—~F, denote the canonical projections associated
with the decompositions (2.37).

2.21. Nullspaces. A bilinear function ¢ in Ex F determines two sub-
spaces N E and Nyc F defined by

Neg={x|®(x,y) =0} forevery yeF
and
Ne={y|®(x,y) =0} forevery xeE.

It follows immediately from (2.35) and (2.36) that Ny and N are sub-
spaces of E and F. They are called the nullspaces of @. If Ny=0and N,=0
then the bilinear function @ is called non-degenerate.
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Given an arbitrary bilinear function @ consider the canonical projec-
tions ng:E—E[Ng, mg:F—F|Np.
Then @ induces a non-degenerate bilinear function & in E|Ng x F|Ng such
that -
¢(7IEX, 7rFy) = ¢(X, y)
To show that @ is well defined, suppose that x’e E and y’€ F are two other
vectors such that ngx=ngx’ and nzpy=nzy’. Then x’ —xeNgand y' —ye N
and hence we can write x'=x+u, ue N and y' =y +v, veNg. It follows
that
O(x",y)=0(x+u,y +v)
=@(x,y)+ O(x,0) + D(u,y) + ®(u,v)
=@ (x,¥).

Clearly & is bilinear. It remains to be shown that & is non-degenerate.
In fact, assume that
S(ngx,nzy)=0 (2.38)

for a fixed ngx and every nzy. Then &(x, y)=0 for every yeF. It follows
that xe Ny whence n;x=0. Similarly, if (2.38) holds for a fixed nzy and
every mpx, then nyy=0. Hence @ is non-degenerate.
A non-degenerate bilinear function @ in E x F will often be denoted by
{, . Then we write
D(x,y)=<{x, ¥ xeE,yeF.

2.22. Dual spaces. Suppose E*, E is a pair of vector spaces, and as-
sume that a fixed non-degenerate bilinear function, ¢, ), in E*x E is
defined. Then E and E* will be called dual with respect to the bilinear
function ¢, >. The scalar {x*, x>, is called the scalar product of x* and x,
and the bilinear function {, ) is called a scalar product between E* and E.

Examples. 1 Let E=E*=T and define a mapping {, > by
opp=Ap  Apel.

Clearly ¢, ) is a non-degenerate bilinear function, and hence I' can be re-
garded as a self-dual space.

2. Let E=E*=T" and consider the bilinear mapping ¢, > defined by

<X*’ X> = i-il C‘Ci
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where

x*=(&,...,& and x=(&,...,&,).

It is easy to verify that the bilinear mapping ¢, ) is non-degenerate and
hence I'" is dual to itself.

3. Let E be any vector space and E*=L(E) the space of linear func-
tions in E. Define a bilinear mapping ¢, > by

f.x>=f(x), feL(E),xeE.

Since f(x)=0 for each xeE if and only if f=0, it follows that Ny, =0.
On the other hand, let ae E be a non-zero vector and E, be the one-
dimensional subspace of E generated by a. Then a linear function g is
defined in E, by
g(x)=71 where x=1la.

In view of sec. 1.15, g can be extended to a linear function fin E. Then
(fray=f(a)=g(a)=1+0.

It follows that Ny =0 and hence the bilinear function ¢, ) is non-degener-
ate.

This example is of particular importance because of the following

Proposition I: Let E*, E be any pair of dual vector spaces with respect
to a scalar product {, ». Then there is an injective linear mapping

¢:E* - L(E)
such that
(@ x*)(x) = {x*,x>. (2.39)

The linear mapping @ is uniquely determined by (2.39).
Proof: 1t is clear that ¢ is uniquely determined by (2.39).

To define ¢ let x*€ E* be a fixed vector and consider the linear function
Sy defined by

Fee(x) = {x*, %) (2.40)
The bilinearity of ¢, > implies that the correspondence

x* > f



66 Chapter I1. Linear mappings

is a linear mapping. Define ¢ by
Qx* = fla. (2.41)

Then (2.39) follows from (2.40) and (2.41). To prove that ¢ is injective
suppose that ¢x*=0 for a vector x*e E*. Then we have that

{(x*,x>=0

for every xe E whence x*=0. This proves the injectivity of ¢.

Note: Tt will be shown in sec. 2.33 that ¢ is surjective (and hence a
linear isomorphism) if E has finite dimension.

2.23. Orthogonal complements. Two vectors x*cE* and x€FE are
called orthogonal if {x*, x> =0. Now let E, be a subspace of E. Then the
vectors of E* which are orthogonal to E, form a subspace Ei of E*. Ej
is called the orthogonal complement of E,. In the same way every subspace
Efc E* determines an orthogonal complement (E{)* < E. The fact that
the bilinear function ¢, > is non-degenerate can now be expressed by the
relations

E'*=0 and (E*)" =0.

It follows immediately from the definition that for every subspace E, < E
E,c(E}D)" (2.42)

Suppose next that E*, E are a pair of dual spaces and that F is a sub-
space of E. Then a scalar product is induced in the pair E*/F*, F by

(E*,y> =<x*yy, K*eE*F*'
veF

where x* is a representative of the class x*. In fact, let @ be the restriction
of the scalar product ¢, > to E* x F. Then the nullspaces of ¢ are given by

Ng.=F' and N;=0.

Now our result follows immediately from sec. 2.21.

More generally, suppose F= E and H*< E* are any subspaces.
Then a scalar product in the pair H*/H*n F* F/Fn (H*)', is deter-
mined by

(R, %y = (x*,x)

as a similar argument will show.

2.24. Dual mappings. Suppose that E, E* and F, F* are two pairs of
dual spaces and ¢: E—~F, ¢*: E*« F* are linear mappings. The mappings



§ 5. Dual vector spaces 67
¢ and @* are called dual if

¥ ex) = p*y*,x)  y*eF* xeE.

To a given linear mapping ¢ : E— F there exists at most one dual mapping.
If ¢} and @} are dual to ¢ we have that

X ex)=<ory x> and (¥ ex) =< eiy* x>
whence
(T y* —@3y*,x> =0 xeE,y*eF.

This implies, in view of the duality of E and E*, that ¢} y*= @3 y* whence
PT=03.

As an example of dual mappings consider the dual pairs E*, E and
E*|E{, E, where E, is a subspace of E (cf. sec. 2.23) and let 7 be the
canonical projection of E* onto E*/E {,

n:E*/ET1 « E*.
Then the canonical injection
itE,»E
is dual to . In fact, if xeE,, and y*€E* are arbitrary, we have
*ix)y ={y*,x) = (P x) = ny*, xd

and thus
T =1i*,

2.25. Operations with dual mappings. Assume that E* E and F* F
are two pairs of dual vector spaces. Assume further that ¢:E—F and
Y:E—F are linear mappings and that there exist dual mappings ¢*:
E*«F*and y*: E*« F* Then there are mappings dual to ¢ +y and ¢
and these dual mappings are given by

(@ + ) = o* + y* (2.43)
and

(Ao)* = do*. (2.44)
(2.43) follows from the relation

Lp* + ¥*)y*, x> = {@* y*, x> + Y* y*, x>
=y e x> + {yPxd =¥ (e + ¥)xD

and (2.44) is proved in the same way. Now let G, G* be a third pair of
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dual spaces and let y: F— G, y*: F*«G™* be a pair of dual mappings. Then
the dual mapping of 3¢ exists, and is given by

(xo@)* = @*ox*.
In fact, if z¥€G* and xeF are arbitrary vectors we have that
o*x*z*,x) = (y* 2%, 0 x> = 2%, 1 o x>.
For the identity map we have clearly
1pe = (1p)*.

Now assume that ¢: E— F has a left inverse ¢: F—>E,

Q100 =15 (2.45)

and that the dual mappings @*: E*—F* and ¢} : F*«E* exist. Then we
obtain from (2.45) that

0* o0} = (9100)* = (15)* = 1. (2.46)
In view of sec. 2.11 the relations (2.45) and (2.46) are equivalent to
¢ injective, ¢, surjective

and
o¥ injective, @* surjective.

In particular, if ¢ and ¢, are inverse linear isomorphisms, then so are
o* and o},

2.26. Kernel and image space. Let ¢: E—F and ¢*: E¥«F* be a pair
of dual mappings. In this section we shall study the relations between the
subspaces

kerocE, ImocF
and
ker p* c F*, Imo*c E*.

First we establish the formulae
ker o* = (Im ¢)* (2.47)
ker ¢ = (Im @*)*. (2.48)
In fact, for any two vectors y*cker o*, pxelm ¢ we have

Ot exd>=Lp*y* x> =0



§ 5. Dual vector spaces 69

and hence the subspaces ker ¢* and Im ¢ are orthogonal, ker ¢* = (Im ¢) *.
Now let y*e(Im ¢)* be any vector. Then for every xe E

Lp*y*, x> =<y*,0x>=0.

It follows that ¢*y* =0, whence y*eker ¢*. This completes the proof of
(2.47). (2.48) is proved by the same argument.

Now assume that ¢ is surjective. Then Im ¢=F and hence formula
(2.47) implies that ker o*=0; i.e., ¢* is injective. If ¢ is injective we ob-
tain from (2.48) that (Im @*)*=0. However, this does not imply that
Im @*=E* and so we can not conclude that the dual of an injective map-
ping is surjective (cf. problem 9).

2.27. Relations between the induced mappings. Again let ¢:E—F and
@*: E*« F* be a pair of dual mappings. Then it follows from (2.48) and
from the discussion in sec. 2.23 that a scalar product is induced in the pair
Im ¢* E/ker ¢, by

{x*, %> =<x* x> x*elmoe* XcEfker.

In particular, if ¢ is injective, then the restriction of the scalar product in
E*, Eto Im ¢*, E is non-degenerate.

The same argument as above shows that the vector spaces F*/ker ¢*
and Im ¢ are dual with respect to the bilinear functions given by

{xX* x> ={x¥, x> x*e F*[ker p*, xelmo.
Now consider the surjective linear mapping
¢ E->Imo
induced by ¢ and the injective linear mapping
§*: E¥ « F*/ker ¢*

induced by ¢*. The mappings ¢, and ¢* are dual. In fact, if ¥*e F*/ker o*
and xcE are arbitrary vectors, we have that

{@* x*, x> = (o*x*,x)
= <X*9(px>
= <XI*9 (pl x>‘

In the same way it follows that the surjective mapping

ot Imep* — F*
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induced by ¢* and the injective mapping
p:Elkero - F
induced by ¢ are dual. Finally, the induced isomorphisms

E/ker ¢ Sm @
and
Im ¢* « F*/ker ¢*
are dual as well.

2.28. The space of linear functions as a dual space. Let E be a vector
space and L(E) be the space of linear functions in E. Then the spaces E,
L(E) are dual with respect to the scalar product defined in sec. 2.22. For
these spaces we have three important results, which are not valid for
arbitrary pairs of dual spaces.

Proposition II: Let F, F* be arbitrary dual spaces and ¢:E—F be a
linear mapping. Then a dual mapping ¢*:L(E)« F* exists, and is given
by
y*eF* (2.49)

(@*y)() =O*ex> | g

Proof: 1t is easy to verify that the correspondence y*—@*y* defined
by (2.49) determines a linear mapping. Moreover, the relation

{o* y*, x> = (9* y*)(x) = <y*, @ x>

shows that ¢* is dual to ¢. If F*=L(F) as well, (2.49) can be written in
the form

o*f =fop, feL(F). (2.50)

Proposition III: Suppose ¢: E— F is a linear mapping, and consider the
dual mapping
@*:L(E)~ L(F).
Then
Im ¢* = (kerg)". (2.51)

Proof: From (2.42) and (2.48) we obtain that
Im@* = (Im ¢*)** = (ker @)*. (2.52)
On the other hand, suppose that fe(ker ¢)*. Then
ker f > kerg
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and hence (cf. sec. 2.4) there exists a linear function g in F such that

gop=1.
Now (2.50) yields
p*g=gop=f
and so feIm ¢*. Thus Im ¢* > (ker @) * which together with (2.52) proves
(2.51).

Corollary I: If ¢ is injective, then @* is surjective.
Proof: If ker ¢ =0 formula (2.51) yields

Im ¢* = (ker @)* = (0)* = L(E)
and so ¢@* is surjective.

Corollary II: (ker ¢)**=ker ¢
Proof: Proposition I1I together with the relation (2.48) yields

(kerp)'* = (Im ¢*)" =kerg.

Proposition I'V: If E, cE is any subspace, then
Ei*=E,. (2.53)
Proof: Consider the canonical projection n: E—E/E;. Then ker n=FE,.

Now the result follows immediately from corollary II.

Corollary I: If ¢: E-Fis a linear mapping and ¢*: L(E)«L(F)is the
dual mapping, then
(ker 0*)t = Imo.

Proof: 1t follows from (2.47) and (2.53) that

(kero*)" = (Im @) =Imog.

Corollary II: The bilinear function
(x*, %y =(x*x) x*eEf,%eEJE,

defines a scalar product in the pair E|, E/E;.
2.29. Dual exact sequences. As an application suppose the sequence

FAEYLG
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is exact at E. Then the dual sequence
L(F) L L(E) L L(G)
is exact at L(E). In fact, it follows from (2.47) and (2.51) that

ker o* = (Im @)* = (kery)" = Imy*.
In particular, if
0~F3E A G-0

is a short exact sequence, then the dual sequence
0 L(F) EL(E)ELG)«0

is again a short exact sequence.
2.30. Direct decompositions. Proposition V: Suppose

E=E QE, (2.54)
is a decomposition of E as a direct sum of subspaces. Then
L(E)y=E{®E;
and the pairs E{, E, and E ;, E; are dual with respect to the induced
scalar products. Moreover, the induced injections

E; -~ L(E,), E;-L(E,)

are surjective, and hence
L(E)= L(E,)® L(E,).
Finally, (E{)*"*=E{ and (E;)**=Ej;.
Proof: Let n,:E—E, and n,: E—E, be the canonical projections as-

sociated with the direct decomposition (2.54). Let fe L(E) be any linear
function, and define functions f7, f; by

fi(x)=f(nyx) and f(x)=f(myx).
It follows that f,eE; (i=1, 2) and
f=fi+1:

Consequently,
L(E)=E{+E;. (2.55)

To show that the decomposition (2.55) is direct, assume that fe E1 n E 3.
Then
f(x)=0 xeE, xeE,
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and hence f (x)=0 for every xe E. Thus f=0, and so the decomposition
(2.55) is direct. The rest of the proposition is trivial.

Corollary: If E=E,@®--®E, is a decomposition of E as a direct sum
of r subspaces, then
L(Ey=F{ @ - ®F/
where
F,=Y E;.

J¥i
Moreover, the restriction of the scalar product to E;, F;" is again non-

degenerate, and
F} ~ L(E).

Proposition V has the following converse:

Proposition VI: Let E,cE be any subspace, and let Ef cL(E) be a
subspace dual to E; such that

(E1) = EY.
Then
E=E, ®(E})" (2.56)
and
L(E)=Ef®E;. (2.57)
Proof: We have that
(Ey + EYY) =Eyn (Ef") =Efn Ef =0
whence
E=0"=(E, + E}Y)** = E, + E}*. (2.58)

On the other hand, since E; and E{ are dual, it follows that
E;nE¥H=0

which together with (2.58) proves (2.56). (2.57) follows from Proposition
V and (2.56).

Problems

1. Given two pairs of dual spaces E*, E and F*, F prove that the
spaces E¥*@F* and EQ@F are dual with respect to the bilinear function

Ax* 2 (¥ = (x*xd> + ¥,y
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2. Consider two subspaces E; and E, of E. Establish the relation
(E, + E;))* =E; n E;.

3. Given a vector space E consider the mapping ®:E—L(L(E)) de-
fined by

®,(f)=f(a) acE,feL(E).

Prove that @ is injective.
4. Suppose n: E—E and n*: E*—E* are dual mappings. Assume that
7 is a projection operator in E. Prove that n* is a projection operator in
E* and that
Imn* = (kern)*, Imn=(kerzn*)".

Conclude that the subspaces Im 7, Im n* and ker =, ker n* are dual pairs.

5. Suppose E, E* is a pair of dual spaces such that every linear func-
tion 1 E-T induces a dual mapping f*: E*«I'. Show that the natural
injection E*—~ L (E) is surjective.

6. Suppose that F is an infinite dimensional vector space. Show that
there exists a dual space E* such that the natural injection E*—L(E) is
not surjective.

7. Consider the vector space E of sequences

(hosAy...) kel

and the subspace F consisting of those sequences for which only finitely
many 4; are different from zero (addition and scalar multiplication being
defined as in the case of I'"), Show that the mapping Ex F—I given by

(AosAy )5 (Hoshy -~-)“"Z’1i#i

defines a scalar product in E and F. Show further that the induced injec-
tion E— L (F) is surjective.

8. Let S be any set. Construct a scalar product between (S; I') and
C(S) (cf. Example 3, sec. 1.2 and Example 5, sec. 1.7) which determines
a linear isomorphism (S; I')5 L(C(S)).

Hint: See problem 7.

9. Let E be any vector space of infinite dimension. Show that there is
a dual space E* and a second pair of dual spaces F, F* such that there
exist dual mappings

¢:E-F, o@*:E*<F*

where ¢ is injective but ¢* is not surjective.
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Prove that E, Im ¢* is again a dual pair of spaces.

10. Let ¢: E—F be a linear mapping with restriction ¢, : E;—F;. Sup-
pose that ¢*: E* « F* is a dual mapping. Prove that ¢* can be restricted
to the pair (F1, E1). Show that the induced mapping

@*:E/E1 « F|F}

is dual to ¢, with respect to the induced scalar product.

§ 6. Finite dimensional vector spaces

2.31. The space L(E; F). Let E and F be vector spaces of dimension
n and m respectively. Then the space L(E; F) has dimension am,

dim L(E; F) = dim E-dim F . (2.59)

To prove (2.59) let x,(v=1, ..., n) be a basis of Eand y,(u=1, ..., m) be
a basis of F. Consider the linear mappings ¢?: E-F defined by

ALv=1,..,n

A = A *
PeXy =0y, *) —1..m

Now let ¢: E—F be any linear mapping, and define scalars «f by

ox,= ) avy,.
n=1
Then
(p—Yabo)x, =Yy, — Y abdzy, =Yy, — 2 afy, =0
v e [ e [
whence
o=7 ayo}.
Vi

It follows that the mappings ¢ generate the space L(E; F). A similar
argument shows that the mappings ¢% are linearly independent and hence
they form a basis of L(E; F). This basis is called the basis induced by the
bases of E and F. Since the basis ¢/ consists of nm vectors, formula (2.59)
follows.

2.32. The space L(E). Now consider the case that F=TI and choose in
I the basis consisting of the unit element. Then the basis of L(E) induced

(1 A=y
{0 A%v

*) 8% is the Kronecker symbol defined by 8%
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by the basis x,(v=1, ..., n) consists of # linear functions f* given by
fr(x,)=29. (2.60)

The basis f# of L(E) is called the dual of the basis x, of E. In particular,
we have
dimL(E)=dimE.

Since the functions f* form a basis of L(E) every linear function f in
E can be uniquely written in the form

f = Zluf”9
I3
where the scalars 4, are given by
A=f(x,) n=1,.,n

This formula shows that the components of f with respect to the basis f#
are obtained by evaluating the function f on the basis x,.
2.33. Dual spaces. We shall now provetheassertion quotedinsec. 2.22.
Proposition I: Let E, E* be a pair of dual spaces and assume that E
has finite dimension. Then the injection ¢: E*— L (E) defined by formula
(2.39) is surjective and hence a linear isomorphism. In particular, E* has
finite dimension and
dim E* = dimE. (2.61)

Proof: Since ¢ is injective and dim L(E)=dim F it follows that
dim E* < dimE.

Hence E* has finite dimension. In view of the symmetry between E and
E* we also have that
dimE < dimE*

whence (2.61). On the other hand, dim L(E)=dim E and hence ¢ is
surjective.

Corollary I: Let E, E* be a pair of dual finite dimensional spaces. Then
the results of sec. 2.28, 2.29 and 2.30 hold.

Proof: Each result needs to be verified independently, but the proofs
can all be obtained by using the linear isomorphism E *5 L(FE). The actual
verifications are left to the reader.

Corollary II: Let Ef and E; be any two vector spaces dual to E. Then

there exists a unique linear isomorphism ¢: E;* S EJ such that

{px*,x>=(x* x> x*cE}, xeE.
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Two bases x, and x**(v=1...n) of E and E* are called dual if
x*x,> =0, (2.62)

Given a basis x,(v=1...n) of E there exists precisely one dual basis of E*.
It is clear that the vectors x*” are uniquely determined by (2.62). To prove
the existence of the dual basis let f* be the basis of L(E) defined in sec.
2.32 and set

x¥ =@ 1f v=1..n
where ¢ is the linear isomorphism of E* onto L(E). Then we have that
x> =%y = (%) = 9.
Given a pair of dual bases x,, x*”(v=1...n) consider two vectors
x*=Y&x* and x=Y¢&x,.

It follows from (2.62) that
x*oxy =3¢,¢8"

Replacing x* by x** in this relation we obtain the formula
& = (e x)

which shows that the components of a vector xe€ E with respect to a basis
of E are the scalar products of x with the dual basis vectors.
Proposition II: Let F be a subspace of E and consider the orthogonal
complement F*. Then
dimF + dim F' = dimE. (2.63)

Proof: Consider the factor space E/F. In view of sec. 2.23, E/F is dual
to F* which implies (2.63).

Proposition III: Let E, E* be a pair of dual vector spaces and consider
a bilinear function @:E* x E—TI. Then there exists precisely one linear
transformation ¢: E— E such that

D (x*,x) = {x*, x> x*cE* xeE.

Proof: Let xeE be a fixed vector and consider the linear function f in
E* defined by

fx(x‘) = d)(x’.-x)'
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In view of proposition I there is precisely one vector ¢pxeE such that
[ (%) = <{x* 0x).
The two above equations yield
{x*,ox) = P(x*,x) x*eE*,xeE

and so a mapping ¢: E— E is defined. The linearity of ¢ follows immedi-
ately from the bilinearity of ¢. Suppose now that ¢, and ¢, are two
linear transformations of E such that

O(x*,x) = (x*,0,x) and B(x*,x) = (x*, @, %)

Then we have that
X%, 01X = @yx)=0
whence ¢, =@,.
Proposition 111 establishes a canonical linear isomorphism between the
spaces B(E*, E) and L(E; E),

B(E*,E) = L(E; E).

Here B(E*, E) is the space of bilinear functions @: E* x E—~I with ad-
dition and scalar multiplication defined by

(D1 + B,) (x*,x) = @, (x*,x) + P, (x*, %)
and
(AD)(x*,x) = A P (x*,x).
2.34. The rank of a linear mapping. Let ¢:E— F be a linear mapping

of finite dimensional vector spaces. Then ker ¢ < E and Im ¢ = F have
finite dimension as well. We define the rank of ¢ as the dimension of Im ¢

r(p) =dimIme.
In view of the induced linear isomorphism
E/ker¢p 5Img
we have at once
r(¢) + dimker¢ = dimE. (2.64)

o is called regular if it is injective. (2.64) implies that ¢ is regular if and
only if r(¢)=dim E.

In the special case dim E=dim F (and hence in particular in the case of

a linear transformation) we have that ¢ is regular if and only if it is sur-
jective.
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2.35. Dual mappings. Let E*, E and F*, F be dual pairs and ¢: E-F
be a linear mapping. Since E* is canonically isomorphic to the space L(E)
there exists a dual mapping ¢*: E*« F* Hence we have the relations

Im ¢ = (ker p*)*
and
Im o* = (kerp)*.

The first relation states that the equation
px=y
has a solution for a given yeF if and only if y satisfies the condition
{(x*,y>=0 forevery x*ekerop*.

The second relation implies that dual mappings have the same rank. In
fact, from (2.63) we have that

dim Im ¢* = dim (ker ¢)* = dim E — dimker ¢ = dimIm ¢
whence
r(e*) =r(9). (2.65)

Problems

(In problems 1-10 it will be assumed that all vector spaces have finite
dimension).
1. Let E, E* be a pair of dual vector spaces, and let E,, E, be sub-
spaces of E, Prove that
(Ey N Ey)* =Et + Ej.

Hint: Use problem 2, § 5.
2. Given subspaces Uc E and V* < E* prove that

dim(U* 0 ¥*) + dimU = dim(U n ¥*%) + dim V*.

3. Let E, E* be a pair of non-trivial dual vector spaces and let ¢: E» E*
be a linear mapping such that @.t=(7*)"'o¢ for every linear auto-
morphism 7 of E. Prove that ¢ =0. Conclude that there exists no linear
mapping ¢ : E— E* which transforms every basis of E into its dual basis.

4. Given a pair of dual bases x**, x,(v=1...n) of E, E* show that the

n
bases (x*'+ Y A,x**, x*3, .., x*") and (x,, X, — A%y, ..., X,—A,x,) are
again dual, *=?
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5. Let E, F, G be three vector spaces. Given two linear mappings
¢:E—F and y: F-G prove that

r(Wop)=r(e) and r(yo@)=r(¥).

If ¢ is injective show that

r(oe)=r(¥).

6. Let E be a vector space of dimension » and consider a system of n
linear transformations ¢;: E— E such that

O'ioo'j=0'i5ij (i,j=1...n).

a) Show that every g, has rank 1
b) If o;(i=1...n) is a second system with the same property, prove that
there exists a linear automorphism t of E such that

-1
O';=‘C 00;o0T.

7. Given two linear mappings ¢: E—F and : E— F prove that

Ir(@)—r(W) Sr(eo+¥)Sr(e) +r(¥).

8. Show that the dimensions of the spaces M'(¢), M"(¢) in problem 3,
§ 2 are given by
dim M (¢) = (dim F — r(¢))-dimE
dim M"(¢) = dimker¢-dim F.

9. Show that the mapping @:¢@— ¢* defines a linear isomorphism,

&:L(E;F)> L(F*;E¥).
10. Prove that
o M (¢) = M"(¢*)
and
oM’ (¢) = M'(¢%)

where the notation is defined in problems 8 and 9. Hence obtain the
formula

r(o) =r(¢¥).

11. Let ¢: E—F be a linear mapping (E, F possibly of infinite dimen-
sion). Prove that Im ¢ has finite dimension if and only if ker ¢ has finite
codimension (recall that the codimension of a subspace is the dimension
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of the corresponding factor space), and that in this case
codimker ¢ = dimIme.

12. Let E and F be vector spaces of finite dimension and consider a
bilinear function ¢ in E x F. Prove that

dim E — dim Ng == dim F — dim N,

where N and N denote the null spaces of @.



Chapter 111
Matrices

In this chapter all vector spaces will be defined over a fixed, but arbitrarily
chosen field I’ of characteristic 0.

§ 1. Matrices and systems of linear equations

3.1. Definition. A rectangular array

af ..o
a=(: (3.1)
al. ot

of nm scalars o) is called a matrix of n rows and m columns or, in brief,
an n x m-matrix. The scalars of are called the entries or the elements of
the matrix A. The rows

a,=(l...af) (v=1..n)

can be considered as vectors of the space I'™" and therefore are called the
row-vectors of A. Similarly, the columns

b =(by...b)) (u=1...m)

considered as vectors of the space I' ", are called the column-vectors of A.
Interchanging rows and columns we obtain from A the transposed

matrix
o ...a
A* = < : : > (3.2)
of ..ol

In the following, matrices will rarely be written down explicitly as in
(3.1) but rather be abbreviated in the form 4 = («}). This notation has the
disadvantage of not identifying which index counts the rows and which
the columns. It has to be mentioned in this connection that it would be
very undesirable — as we shall see — to agree once and for all to always let
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the subscript count the rows, etc. If the above abbreviation is used, it will
be stated explicitly which index indicates the rows.

3.2, The matrix of a linear mapping. Consider two linear spaces E and
F of dimensions » and m and a linear mapping ¢: E—~ F. With the aid of
bases x,(v=1...n) and y,(u=1...m) in E and in F respectively, every
vector ¢@x, can be written as a linear combination of the vectors y,
(u=1...m),

ex,=Yay, (v=1..n). 3.3)
"

In this way, the mapping ¢ determines an n x m-matrix («}), where v
counts the rows and p counts the columns. This matrix will be denoted
by M(g, x,, y,) or simply by M(¢) if no ambiguity is possible.

Conversely, every nxm-matrix (o)) determines a linear mapping
¢: E—F by the equations (3.3). Thus, the operator

M:¢ - M(o)

defines a one-to-one correspondence between all linear mappings ¢: E—F
and all n x m-matrices.

3.3. The matrix of the dual mapping. Let E* and F* be dual spaces of
E and F, respectively, and ¢: E— F, ¢*: E*« F* a pair of dual mappings.
Consider two pairs of dual bases x*’, x,(v=1...n) and y**, y, (u=1...m)
of E*, E and F*, F, respectively. We shall show that the two correspond-
ing matrices M (¢) and M (¢*) (relative to these bases) are transposed,
i.e., that

M(¢*) = M (p)*. (3.4

The matrices M (¢) and M (¢*) are defined by the representations
px,=Yyaly, and @*y*™ =Yooy x*.
) " 5

Note here that the subscript v indicates in the first formula the rows of
the matrix «f and in the second the columns of the matrix of. Substituting
x=2x, and y=y** in the relation

¥ ex) = {p* y*, x> (3.5
we obtain
Y, 0x,) = {P* y*,x,). (3.6)
Now
<y‘"| ‘va) = Zd: <.V*“, yx> = “‘: (37)



84 Chapter II1. Matrices

and
(o™ y*,x,y = Y af (x*, x> = ay*. (3.8)
A

The relations (3.6), (3.7) and (3.8) then yield
art = ab.

Observing — as stated before — that the subscript v indicates rows of («%)
and columns of («y*) we obtain the desired equation (3.4).

3.4. Rank of a matrix. Consider an n x m-matrix 4. Denote by r, and
by r, the maximal number of linearly independent row-vectors and co-
lumn-vectors, respectively. It will be shown that r; =r,. To prove this let
E and F be two linear spaces of dimensions n and m. Choose a basis
x,(v=1...n)and y,(u=1...m) in E and in F and define the linear mapping
¢@:E->F by

PX, =AY,
"

Besides ¢, consider the isomorphism

B:F->I"
defined by
B:y—(mt...q™),
where

y=21"y,.
n

Then B. ¢ is a linear mapping of E into I'™™. From definition of g it follows
that S.¢ maps x, into the v-th row-vector,

Box,=a,.

Consequently, the rank of B.¢ is equal to the maximal number r, of
linearly independent row-vectors. Since B is a linear isomorphism, Bo¢
has the same rank as ¢ and hence r, is equal to the rank r of ¢.

Replacing ¢ by ¢* we see that the maximal number r, of linearly inde-
pendent column-vectors is equal to the rank of ¢*. But ¢* has the same
rank as ¢ and thus r, =r,=r. The number r is called the rank of the
matrix A.

3.5. Systems of linear equations. Matrices play an important role in
the discussion of systems of linear equations in a field. Such a system

Yat&=n* (u=1...m) (3.9)
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of m equations with n unknowns is called inhomogeneous if at least one
n* is different from zero. Otherwise it is called homogeneous.

From the results of Chapter II it is easy to obtain theorems about the
existence and uniqueness of solutions of the system (3.9). Let £ and F be
two linear spaces of dimensions n and m. Choose a basis x, (v=1...n) of
E as well as a basis y,(u=1...m) of F and define the linear mapping
¢@:E-F by

PxX, =2 Ay,
"

Consider two vectors

x=3¢&x, (3.10)
and
y=21"y,. (3.11)
"
Then
px=30x, =Y &y, (3.12)
v v, 4

Comparing the representations (3.9) and (3.12) we see that the system (3.9)
is equivalent to the vector-equation

px=y.

Consequently, the system (3.9) has a solution if and only if the vector y
is contained in the image-space Im ¢. Moreover, this solution is uniquely
determined if and only if the kernel of ¢ consists only of the zero-vector.

3.6. The homogeneous system. Consider the homogeneous system

YoakE =0 (u=1...m). (3.13)
From the foregoing discussion it is immediately clear that (¢'...&") is a
solution of this system if and only if the vector x defined by (3.10) is con-
tained in the kernel ker ¢ of the linear mapping ¢. In sec. 2.34 we have
shown that the dimension of ker ¢ equals n—r where r denotes the rank
of ¢.

Since the rank of ¢ is equal to the rank of the matrix (o)), we therefore
obtain the following theorem:

A homogeneous system of m equations with n unknowns whose coefficient-
matrix is of rank r has exactly n—r linearly independent solutions. In the
special case that the number m of equations is less than the number n of
unknowns we have n—r2n—m2 1. Hence the theorem asserts that the
system (3.13) always has non-trivial solutions if m is less than n.
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3.7. The alternative-theorem. Let us assume that the number of equa-
tions is equal to the number of unknowns,

Yah&=n* (u=1...n). 3.14)

Besides (3.14) consider the so-called *“corresponding” homogeneous sys-
tem

Yot =0 (u=1..n). (3.15)

The mapping ¢ introduced in sec. 3.5 is now a linear mapping of the »n-
dimensional space F into a space of the same dimension. Hence we may
apply the result of sec. 2.34 and obtain the following alternative-theorem:

If the homogeneous system possesses only the trivial solution (0...0), the
inhomogeneous system has a solution (E*...E") for every choice of the right-
hand side. If the homogeneous system has non-trivial solutions, then the
inhomogeneous is not solvable for every choice of the n” (v=1...n).

From the last statement of section 3.5 it follows immediately that in the
first case the solution of (3.14) is uniquely determined while in the second
case the system (3.14) has - if it is solvable at all — infinitely many solu-
tions.

3.8. The main-theorem. We now proceed to the general case of an
arbitrary system

Y& =0 (u=1..m) (3.16)

v

of m linear equations in n unknowns. As stated before, this system has a
solution if and only if the vector

y=xn",
"
is contained in the image-space Im ¢. In sec. 2.35 it has been shown that
the space Im ¢ is the orthogonal complement of the kernel of the dual

mapping ¢*: F*— E* In other words, the system (3.16) is solvable if and
only if the right-hand side #* (u=1...m) satisfies the conditions

211“11: =0 (3.17)
n
for all solutions 1} (u=1...m) of the system

Yokni=0 (v=1...n). (3.18)

We formulate this resuit in the following
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Main-theorem: An inhomogeneous system of n equations in m unknowns
has a solution if and only if every solution n; (u=1...m) of the transposed
homogeneous system (3.18) satisfies the orthogonality-relation (3.17).

Problems: 1. Find the matrices corresponding to the following map-
pings:

a) ox=0.

b) px=x.

c) px=Ax.

d) px= Y &’e, where e,(v=1, ...,n) is a given basis and mZnis a
v=1

given number.
2. Consider a system of two equations in » unknowns

Yal=u ¥ AE=F.

v=1
Find the solutions of the corresponding transposed homogeneous system.

3. Prove the following statement:

The general solution of the inhomogeneous system is equal to the sum
of any particular solution of this system and the general solution of the
corresponding homogeneous system.

4. Let x, and X, be two bases of E and A be the matrix of the basis-
transformation x,—X,. Define the automorphism « of E by ax,=X%,.
Prove that 4 is the matrix of o as well with respect to the basis x, as with
respect to the basis %,.

5. Show that a necessary and sufficient condition for the » x n-matrix
A=(o}) to have rank <1 is that there exist elements a4, «,, ..., &, and
B, B2, ..., B" such that

av=a,p (v=12,..,n,u=12,..,n).
If 4+0, show that the elements «, and f* are uniquely determined up to

constant factor A and p respectively, where Au=1.
6. Given a basis a, of a linear space E, define the mapping ¢: E—~E as

pa, =Zau'
n

Find the matrix of the dual mapping relative to the dual basis.
7. Verify that the system of three equations:

S+n+{=3,

{—-n—-({=4,
E+3n+3=1
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has no solution. Find a solution of the transposed homogeneous system
which is not orthogonal to the vector (3, 4, 1). Replace the number 1 on
the right-hand side of the third equation in such a way that the resulting
system is solvable.

8. Let an inhomogeneous system of linear equations be given,

Y& =n" (u=1,..,m).

The augmented matrix of the system is defined as the m x (n+ 1)-matrix
obtained from the matrix «, by adding the column (1, ..., #™). Prove that
the above system has a solution if and only if the augmented matrix has
the same rank as the matrix («).

§ 2. Multiplication of matrices

3.9. The linear space of the n x m matrices. Consider the space L(E; F)
of all linear mappings ¢: E—F and the set M"*™ of all n x m-matrices.
Once bases have been chosen in F and in Fthere is a 1-1 correspondence
between the mappings ¢: E-»F and the n x m-matrices defined by

¢ ->M(p,x,,y,). (3.19)

This correspondence suggests defining a linear structure in the set M"*™
such that the mapping (3.19) becomes an isomorphism.
We define the sum of two n x m-matrices

A=(af) and B=(8)
as the n x m-matrix
A+ B=(a + 8%

and the product of a scalar A and a matrix 4 as the matrix
LA =(Ad}).

It is immediately apparent that with these operations the set M"*™ is a
linear space. The zero-vector in this linear space is the matrix which has
only zero-entries.

Furthermore, it follows from the above definitions that

M@Ao+uy)=AM(¢)+uM{) o@,YeL(E;F)

i.e., that the mapping (3.19) defines an isomorphism between L(E; F) and
the space M"*™,



§ 2. Multiplication of matrices 89

3.10. Product of matrices. Assume that
@9:E—F and y:F->G

are linear mappings between three linear spaces E, F, G of dimensions
n, m and /, respectively. Then y. ¢ is a linear mapping of E into G. Select
a basis x,(v=1...n), y,(u=1...m) and z;(A=1...7) in each of the three
spaces. Then the mappings ¢ and ¥ determine two matrices () and (87)
by the relations

Px, =Y oy,

I
Yy,= ; Bﬁ Z3-

and

These two equations yield
Wo0)x, = Zld‘vlﬁﬁzl'
IS
Consequently, the matrix of the mapping - ¢ relative to the bases x, and

z, is given by yi=YalBl (3.20)
"

The n x I-matrix (3.20) is called the product of the n x m-matrix A= (e})
and the m x I-matrix B=(p}) and is denoted by 4 B. It follows immedi-
ately from this definition that

Myo0)=M(e)MY). (3.21)

Note that the matrix M (- ¢) of the product-mapping y - ¢ is the product
of the matrices M (¢) and M (¥) in reversed order of the factors.

It follows immediately from (3.21) and the formulas of sec. 2.16 that
the matrix-multiplication has the following properties:

A(AB, +uB,)=AAB, + uAB,
(A4 +pA;)B=1A, B+ uA,B
' (AB)C = A(BC)

(AB)* = B* A*.

3.11. Automorphisms and regular matrices. An » x n-matrix A4 is called
regular if it has the maximal rank n. Let ¢ be an automorphism of the
n-dimensional linear space E and 4= M(¢) the corresponding nx n-
matrix relative to a basis x, (v=1...n). By the result of section 3.4 the rank
of ¢ is equal to the rank of the matrix 4. Consequently, the matrix A4 is
regular. Conversely, every linear transformation ¢ : E— E having a regular
matrix is an automorphism,
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To every regular matrix A there exists an inverse matrix, i.e., a matrix
A~ such
such that AA~t=A14=1,
where J denotes the unit matrix whose entries are 6%. In fact, let ¢ be the
automorphism of E such that M(¢)=4 and let ¢! be the inverse
automorphism. Then
t

¢ o =0op ' =1,

whence
M(p)M(p) ' =M(p ™ op)=M()=J
and
M(e~YM(p) =M(po9™)=M@)=1J.
These equations show that the matrix
ATt =M(p™

is the inverse of the matrix A.

Problems

1. Verify the following properties:

a) (4 + B)* = A* + B*.
b) (A A)* = 1 4*.
) (A7I)* = (4%

2. A square-matrix is called upper (lower) triangular if all the elements
below (above) the main diagonal are zero. Prove that sum and product of
triangular matrices are again triangular.

3. Let ¢ be linear transformation such that ¢?=¢. Show that there
exists a basis in which ¢ is represented by a matrix of the form:

M 0...0)
1
m
1 0...0
[\ U 0
n-—m
(0 eveniinnns 0
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4. Denote by A4,; the matrix having the entry 1 at the place (i, /) and
zero elsewhere. Verify the formula

Aij'Ajk = Ay

Prove that the matrices form a basis of the space M"*".

§ 3. Basis-transformation

3.12. Definition. Consider two bases x, and %,(v=1...n) of the space
E. Then every vector %,(v=1...n) can be written as

¥, =) ahx,. (3.22)
I
Similarly,
X, =Y aL%,. (3.23)
n
The two n x n-matrices defined by (3.22) and (3.23) are inverse to each

other. In fact, combining (3.22) and (3.23) we obtain

- _ HY A=
E,= ) ohd, %,
B A

Z(Z“"” —8))%,=0

and hence it implies that

This is equivalent to

Tei}=

In a similar way the relations

are proved. Thus, any two bases of E are connected by a pair of inverse
matrices. .

Conversely, given a basis x,(v=1...n) and a regular n x n-matrix (o),
another basis can be obtained by

=) ohx,
"
To show that the vectors X, are linearly independent, assume that

Y% =0.

v

Then
YAalx, =0
0
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and hence, in view of the linear independence of the vectors Xus
YAXai=0 (u=1...n).
v
Multiplication with the inverse matrix &’ yields
Y Nabar=31"6 =1 = (k=1...n).
Vit v

3.13. Transformation of the dual basis. Let £* be a dual space of E,
x*’ the dual basis of x, and x*" the dual of the basis X,(v=1...n). Then

x* =Y eyt (3.24)

where B2 is a regular n x n-matrix. Relations (3.23) and (3.24) yield

PN REEDEDNITEE NP (3.25)

Now
(x*,x,> =067 and (X*,%,) =6%.

Substituting this in (3.25) we obtain

This shows that the matrix of the basis-transformation x*'—x*" is the
inverse of the matrix of the transformation x,—x,. The two basis-trans-
formations
%, =Yax, and =3 a,x* (3.26)
I [

are called contragradient to each other.

The relations (3.26) permit the derivation of the transformation-law
for the components of a vector xeE under the basis-transformation
x,—%,. Decomposing x relative to the bases x, and %, we obtain

x=Y¢&x, and x=)&%,.
From the two above equations we obtain in view of (3.26).
E=Ydai(x*xy=Ya,E". (3.27)
B [

Comparing (3.27) with the second equation (3.26) we see that the com-
ponents of a vector are transformed exactly in the same way as the vectors
of the dual basis.
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3.14. The transformation of the matrix of a linear mapping. In this sec-
tion it will be investigated how the matrix of a linear mapping ¢: E—>F
is changed under a basis-transformation in E as well as in F. Let M (o;
x,, v)=(¥}) and M(g; %,, 5,)=(74) be the nx m-matrices of ¢ relative
to the bases x,,y, and X, y,(v=1...n, u=1...m), respectively. Then

ex,=Y7yky, and 9%, =775, (v=1..n). (3.28)
u u

Introducing the matrices
A=) and B=(B)

of the basis-transformations x,— %, and y,—, and their inverse matrices,
we then have the relations

x‘v = Zd:‘x}. Xy = Z&\;;xﬂ.
A A
Fu=2Buve Vu=2Bn-

Equations (3.28) and (3.29) yield

(3.29)

@ X, = ;dfqmﬁ ; dfv%y,,=lZ i Br
1

s s K
and we obtain the following relation between the matrices (y}) and (5):
%=X b (3.30)
i

Using capital letters for the matrices we can write the transformation
formula (3.30) in the form

M(g;%,5,) = AM(p;x,y,)B™".
It shows that all possible matrices of the mapping ¢ are obtained from
a particular matrix by left-multiplication with a regular n xn-matrix
and right-multiplication with a regular m x m-matrix.
Problems
1. Let f be a function defined in the set of all n x n-matrices such that
f(TAT™") =f(4)
for every regular matrix 7. Define the function Fin the space L(E; E) by
F(e) = f(M(¢:x,.x,))
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where E is an n-dimensional linear space and x,(v=1...n) is a basis of E.
Prove that the function F does not depend on the choice of the basis x,.
2. Assume that ¢ is a linear transformation E— E having the same
matrix relative to every basis x,(v=1...n). Prove that ¢ =11 where A is a
scalar.
3. Given the basis transformation

find all the vectors which have the same components with respect to the
bases x, and %,. (u=1, 2, 3).
§ 4. Elementary transformations

3.15. Definition. Consider a linear mapping ¢: E— F. Then there exists
abasis a,(v=1, ..., n) of E and a basis b,(u=1, ..., n) of F such that the
corresponding matrix of ¢ has the following normal-form:

0'\

(3.31)

kO 0.)
where r is the rank of ¢. In fact, let a,(v=1, ..., n) be a basis of E such
that the vectors a,,,...a, form a basis of the kernel. Then the vectors
b,=¢a,(¢=1, ..., r) are linearly independent and hence this system can
be extended to a basis (by, ..., b,,) of F. It follows from the construction
of the bases a, and b, that the matrix of ¢ has the form (3.31).

Now let x,(v=1, ...,n) and y,(u=1, ..., m) be two arbitrary bases of
E and F. It will be shown that the corresponding matrix M(o; x,, y,) can
be converted into the normal-form (3.31) by a number of elementary
basis-transformations. These transformations are:
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(I.1.) Interchange of two vectors x; and x;(i%7).
(L.2.) Interchange of two vectors y, and y,(k=+/).
(IL.1.) Adding to a vector x; an arbitrary multiple of a vector x;(j=+i).
(IL.2.) Adding to a vector y; an arbitrary multiple of a vector y;(I+ k).
It is easy to see that the four above transformations have the following
effect on the matrix M (¢):

(I.1.) Interchange of the rows i and j.

(1.2.) Interchange of the columns & and /.

(IL.1.) Replacement of the row-vector g; by a;+ Aa;(j+1).
(IL.2.) Replacement of the column-vector b, by b, + Ab, (I +k).

It remains to be shown that every n x m-matrix can be converted into
the normal form (3.31) by a sequence of these elementary matrix-trans-
formations.

3.16. Transformation into the normal-form. Let (7)) be the given n x m-
matrix. It is no restriction to assume that at least one y¥=0, otherwise
the matrix is already in the normal-form. By the operations (I.1.) and
(1.2.) this element can be moved to the place (1.1.). Then y}=+0 and it is
no restriction to assume that y} = 1. Now, by adding proper multiples of
the first row to the other rows we can obtain a matrix whose first column
consists of zeros except for yi. Next, by adding certain multiples of the
first column to the other columns this matrix can be converted into the
form

1 0...0
0 * *
. (3.32)
0 * =

If all the elements y, (v=2...n, u=2...m) are zero, (3.32) is the normal-
form. Otherwise there is an element ¥} +0(2<v<m, 2<u<m). This can
be moved to the place (2,2) by the operations (I.1. and (1.2.). Hereby the
first row and the first column are not changed. Dividing the second row
by 73 and applying the operations (IL.1.) and (IL2.) we can obtain a
matrix of the form

10 ...0
01 0...0
0 * =
0 0 = =

In this way the original matrix is ultimately converted into the form (3.31.).
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3.17. The Gaussian elimination. The technique described in sec. 3.16

can be used to solve a system of linear equations by successive elimination.

bet 0 &+, =gt

: (3.33)
apEl 4 ="

be a system of m linear equations in » unknowns. Before starting the

elimination we perform the following reductions:

If all coefficients in a certain row, say in the i-th row, are zero, consider
the corresponding number #' on the right hand-side. If 5’0, the i-th
equation contains a contradiction and the system (3.33) has no solution
If ' =0, the i-th equation is an identity and can be omitted.

Hence, we can assume that at least one coefficient in every equation is
different from zero. Rearranging the unknowns we can achieve that o} +0.
Multiplying the first equation by —(«})™ '« and adding it to the other
equations we obtain a system of the form

0 & bz El ety
B+ - Bi
. (3.39)
BrE + B ="
which is equivalent to the system (3.33).

Now apply the above reduction to the (m — 1) last equations of the sys-
tem (3.34). If one of these equations contains a contradiction, the system
(3.34) has no solutions. Then the equivalent system (3.33) does not have
a solution either. Otherwise eliminate the next unknown, say &2, from the
reduced system.

Continue this process until either a contradiction arises at a certain
step or until no equations are left after the reduction. In the first case,
(3.33) does not have a solution. In the second case we finally obtain a
triangular system

G+t g =0
BiE+ - iE =0 B340
(3.35)

which is equivalent to the original system *).

*) If no equations are left after the reduction, then every n-tuple (§!...&") is a
solution of (3.33).
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The system (3.35) can be solved in a step by step manner beginning
with &,
E=—(x)"" (w’ -y KQ&“) . (3.36)
v=r+1
Inserting (3.36) into the first (r—1) equations we can reduce the system
to a triangular one of r—1 equations. Continuing this way we finally
obtain the solution of (3.33) in the form

=Y L&+ (v=1..r)

n=r+1

where the &' (v=r+1...n) are arbitrary parameters.

Problems

1. Two nx m-matrices C and C’ are called equivalent if there exists a
regular n x n-matrix A4 and a regular m x m-matrix B such that C'=ACB.
Prove that two matrices are equivalent if and only if they have the same
rank,

2. Apply the Gauss elimination to the following systems:

a) - +28=1,

281 +28 =1,
B30 4 48t =2,

b) 7' +2n% +3n +4n* =5,
2+ P+ P+ nt=2,
'+’ + nP 45t =6,
20t + 3n% + 593 + 2% = 3.

0 e+ef+ed=1,

3! + ¢ —¢*=0.
26! + 2 =1,



Chapter IV
Determinants

In this chapter, except for the last paragraph, all vector spaces will be
defined over a fixed but arbitrarily chosen field I' of characteristic 0.

§ 1. Determinant-functions

4.1. Definition. Consider a linear space E of dimension n(n=1). A
determinant-function 4 is a function of n vectors subject to the following
conditions:

1. 4 is linear with respect to every argument,

A(xl .--lxi + /ly,-...x,,) = lA(xl ...xi...x,,) +
+pud(xy...y;...x) (i=1..n).

2. 4 is skew-symmetric with respect to all arguments. More precisely,
if ¢ is any permutation of the numbers (1...n), then

4 (xau) x,(,,,) =&, 4(x1 ... X,),
where

+ 1 for an even permutation ¢
e —
“ | =1 for an odd permutation ¢ .

It will be shown in sec. 4.4 that there exist non-trivial determinant-func-
tions in every finite dimensional linear space. First of all, a few conse-
quences of the above conditions will be derived.

Since the interchange of any two numbers (i, /) is an odd permutation,
we obtain from the second condition

A(Xy X X X)) = — A(Xg 000 X500 XL X))
In particular, if x;=x;=x,
A(xy...x...x...%,)=0. “.1)

Thus, a determinant-function assumes zero whenever two arguments
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coincide. More generally, it will be shown that
A(xy...x,)=0

if the arguments are linearly dependent. In fact, assume that

n—1
X, =3, Ax,.
v=1
Then in view of (4.1),
n—-1
A(xy..x)= Y AA(xy... Xy Xyo1,X,) = 0.
v=1

As another consequence of (4.1) we note that the value of a determinant-
function is not changed if a multiple of an argument x; is added to another
argument x;(i /),
A(xy .. x;+ A% x)=A(x;..x,) (i %)).
4.2. Representation in a basis. Let e,(v=1...n) be a basis of E. Then
every vector x, can be written as

x,=Y¢&e (v=1..n).
i

Inserting these linear combinations into 4 we obtain

A(xl...x,,)={V_“MC’}‘...C,’}"A(eM...e,In) 4.2)

the summation being taken over all systems (4;...4,) (1 S 4, <n). It follows
from (4.1) that all terms for which at least two indices ; and 4; coincide,
are zero. Therefore we can restrict ourselves to those systems (4, ... 4,) for
which any two 4, are different. In other words, we have only to sum over
all permutations ¢ of the set (1...n). Hence (4.2) can be written as

Ay . x) =Y ED L ED A(ey1) - Eoqmy) - 4.3)
Next we observe that
A(g1y - Comy) = €4 (e1... €,)

for every permutation ¢. We thus obtain from (4.3)

A(xy...x)=Ad(ey... )Y e, EM ... &1™.

This equation shows that a determinant-function is identically zero if it
assumes the value zero at a basis of E. In other words, a non-trivial de-
terminant-function is different from zero on every basis of E.



100 Chapter 1V. Determinants

Altogether we have shown that a non-trivial determinant-function
vanishes for a system of vectors x, (v=1...n) if and only if the vectors x,
are linearly dependent.

4.3. Uniqueness. Let 4 and 4, be two determinant-functions in E and
assume that 4, is non-trivial. Employing a basis e, (v=1...n) we have the
relations

A(xy ... x)=Ad(e;y...e) Y e, & ... &™ (4.4)
and
A (xy . x)=Ad,(ey...€)Y g, &M ... &5™, (4.5)

Since 4, is non-trivial,

di(ey...e,) 0.
Defining the scalar A as the quotient
4 (e 1o €n)

*= 4 (el n)

we obtain from (4.4) and (4.5)
A(xy ... x) =24, (x;...%,).

Since this is an identity with respect to all vectors x,...x,, it can be
written as
A = AAI .

This formula shows that every determinant-function 4 is a constant mul-
tiple of a fixed non-trivial determinant-function 4,.

4.4. Existence. To prove that there exist non-trivial determinant-func-
tions in E define the function 4 by

A(xy..x) =Y g, {0 ... g0™, (4.6)

It is immediately clear that 4 is linear with respect to every argument.
Furthermore, 4 is not identically zero since

A(e,...e)=1.

It remains to be shown that 4 is skew-symmetric with respect to all
arguments.
Consider a fixed permutation t of (1...n). Then

(0
A(Xeqa) - Xeqm) = Ze &) Exmy -
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Rearranging the factors in every term so that the subscripts appear in the
natural order we can write

-1¢1 -1
A(xay o Xem) = S, €TI0 g
a

Now, if ¢ runs over all the permutations of (1...n), the same holds for the
permutations ¢ =01~ '. Therefore we can introduce ¢ as a new “index of
summation” and find that

A (K)o Xegmy) = 3. 64 E5D .. EX @.7)
Q

Since

€, = E,E

e~

ot

we finally obtain from (4.7)

A(Xyq) - Xogm) = &, 9 8 8D L E =g A(xy ... x,).
Q

Thus the equation (4.6) defines a non-trivial determinant-function.

Problem

Let E*, E be a pair of dual spaces and 4+0 be a determinant-func-
tion in E. Define the function 4* of n vectors in E* as follows:

Ifthevectorsx*” (v=1...n)arelinearly dependent, then 4* (x*!...x*")=0.

Ifthevectors x** (v=1...n)arelinearly independent, then 4* (x*!...x*") =
A(x,...x,)” ! where x, (v=1...n) is the dual basis. Prove that 4* is a deter-
minant-function in E*,

§ 2. The determinant of a linear transformation

4.5. Definition, Let ¢ be a linear transformation of the n-dimensional
linear space E. To define the determinant of ¢ choose a non-trivial deter-
minant-function 4. Then the function 4,, defined by

Ady(x1.0. %) =d(@x1...0x,)

obviously is again a determinant-function. Hence, by the uniqueness-
theorem of section 4.3,
Ad,=ad,

where a is a scalar. This scalar does not depend on the choice of 4. In
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fact, if 4" is another non-trivial determinant-function, then 4’=A44 and
consequently A1 =24, =rad=od .
Thus, the scalar a is uniquely determined by the transformation ¢. It is
called the determinant of ¢ and it will be denoted by det ¢. So we have the
following equation of definition:

4,=deto-4,

where 4 is an arbitrary non-trivial determinant-function. In a less con-
densed form this equation reads

A(px,...ox,)=detod(x,...x,). 4.8)
In particular, if ¢ =41, then
d,=2"4
and hence
det(i1)=1".

It follows from the above equation that the determinant of the identity-
map is 1 and the determinant of the zero-map is zero.

4.6. Properties of the determinant. A linear transformation ¢ is regular
if and only if its determinant is different from zero. To prove this, select
a basis e, (v=1...n) of E. Then

A(pe,...0e,)=detpd(e,...e,). (4.9)
If @ is regular, the vectors @e,(v=1...n) are linearly independent; hence
A(pey...0e,)$0. (4.10)

Relations (4.9) and (4.10) imply that
detop + 0.
Conversely, assume that det ¢ +0. Then it follows from (4.9) that
Ad(pey...0e,)*0.

Hence the vectors @e,(v=1...n) are linearly independent and ¢ is regular.
Consider two linear transformations ¢ and ¥ of E. Then

det (Yo @) =detydeto. 4.11)
In fact,
AWox,...¥ox,) =detyd(px,...0x,)
=detydetp 4 (x, ... x,),
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whence (4.11). In particular, if ¢ is a linear automorphism and ¢! is the
inverse automorphism, we obtain

deto~ldetp =det1=1.

4.7. Stable subspaces. Let ¢: E—FE be a linear transformation and as-
sume that E is the direct sum of two stable subspaces,

E = El @ E2 .
Then linear transformations

(pI:El_)El and (PZ:EZ—’EZ
are induced by ¢. It will be shown that
det ¢ = det ¢, deto,.

Define the transformations y,: E-E and y,: E-E by

@,iInE 1 inE
~//1={‘ ! ~//2={ !

1 inE, ¢@,inE,
Then
Q=yYz0Y,

detp = detyr, -dety, .

and so

Hence it is sufficient to prove that
dety, =detep, and dety,=detep,. 4.12)

Let 4 be a determinant function in E and b,...5, be a basis of E,. Then
the function 4,, defined by

Ady(xy..x,)=A(x1...Xp, by ... by), x;eE, (4.13)
is a non-trivial determinant function in E,. Hence
A (@1x1...0yx,)=deto, 4,(x;...x,). (4.14)
On the other hand we obtain from (4.13)
Ay (@ %y @ X)) =AWy xy ...y Xp Y1 by ooy by)

=dety, d(x,...x, b, ... b))
= dety, 4,(x,...x,). 4.15)
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Relations (4.14) and (4.15) yield
deto, =dety,.

The second formula (4.12) is proved in the same way.

Problems

1. Consider the linear transformation ¢: E— E defined by
pe,=Ae, (v=1...n)
where e,(v=1...n) is a basis of E. Show that
detop =2,...4,.

2. Let ¢: E—E be a linear transformation and assume that E, is a
stable subspace. Consider the induced transformations ¢,:E;—FE; and
¢:E/E,—E/E,. Prove that

deto = detp,-det.

3. Let a: E»F be a linear isomorphism and ¢ be a linear transfor-
mation of E. Prove that
det(xo@oa™t)=deto.

4. Let E be a vector space of dimension n and consider the space
L(E; E) of linear transformations.
a) Assume that Fis a function in L(E; E) satisfying

F(Yop)=F()F(p)

F()=1.

Prove that F can be written in the form
F(p) = f (detg)
where f:I'—>T is a mapping such that
FOaw=rfAfw.
b) Suppose that F satisfies the additional condition that
F(Ay=2".

Then, if E is a real vector space,

F(p)=detp or F(¢)=|deto]|

and
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and if E is a complex vector space

F(p)=deto.
Hint for part a): Let e;(i=1...n) be a basis for E and define the trans-
formations ¥;; and ¢; by

" ey vEio {
ij€y = . L,Jj=1...n
J e+Ae; v=i J

and
e, v*i .
(piev={iei pi i=1..n.
Show first that
F(l//ij)=1

and that F(¢,) is independent of i.

4. Let E be a vector space with a countable basis and assume that a
function Fis given in L(E; E) which satisfies the conditions of problem
3a). Prove that

F(p)=1 @eL(E;E).

Hint: Construct an injective mapping ¢ and a surjective mapping ¥
such that
l// op = 0 .

§ 3. The determinant of a matrix

4.8. Definition. Let ¢ be alinear transformation of E and (%) the corre-
sponding matrix relative to a basis e, (v=1...n). Then

pe, =Y dbe,.
I
Substituting x, =, in (4.8) we obtain
A(pey,...qe,)=detpd(e,...e,).
The left-hand side of this equation can be written as
A(pey,...pe,) = Aq_:oz‘l‘ €, ...y ahe,)
In
=Y e, 0]V ai™ A(e...e,).

We thus obtain
detop =Y g af .. ag™. (4.16)
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This formula shows how the determinant of ¢ is expressed in terms of the
corresponding matrix.
We now define the determinant of an nx n-matrix A= (o) by

detd =Y g, af® .. af®. 4.17)

Then equation (4.16) can be written as
detp = det M(p). (4.18)
Now let A and B be two n x n-matrices. Then
det(A4 B) = det 4 det B. (4.19)

In fact, let E be an n-dimensional vector space and define the linear trans-
formations ¢ and y of E such that (with respect to a given basis)

M(p)=A and M(y)=B.
Then
det(AB) = det M (@) M () = det M (Y - @) = det (Y - )
= det@p-dety = det M (p)det M () = det A-detB.

Formula (4.22) yields for two inverse matrices

detA-det(4™') = detJ =1 (J unit-matrix)
showing that
det(A™ 1) =(det4)™'.

We finally note that an n x n-matrix A4 is regular if and only if det A $0.
This follows from (4.18) and from the corresponding property of the
determinant of ¢.

4.9. The determinant considered as a function of its rows. If the rows
a,=(al...}) of the matrix A are considered as vectors of the space I
the determinant det A appears as a function of the n vectors a,(v=1...n).
To investigate this function define a linear transformation ¢ of I'"

pe,=a, (v=1..n)
where the vectors e, are the n-tuples

e,=(0...1...0) (v=1...n).

Then A is the matrix of ¢ relative to the basis e,. Now let 4 be the deter-
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minant-functionin I'” which assumes the value one at the basis e, (v=1...n),

d(ey...e,)=1.
Then
A(ay...a,)=A4(pey...pe,) =detpd(e,...e,) = dete

and hence
detA=4d(ay...a,). (4.20)

This formula shows that the determinant of A considered as a function
of the row-vectors has the following properties:

1. The determinant is linear with respect to every row-vector.

2. If two row-vectors are interchanged the determinant changes the
sign.,

3. The determinant does not change if to a row-vector a multiple of
another row-vector is added.

4. The determinant is different from zero if and only if the row-vectors
are linearly independent.
An argument similar to the one above shows that

detd = A(b%,... b"

where the b* are the column-vectors of A. It follows that the properties
1-4 remain true if the determinant of A is considered as a function of the
column-vectors.

Problems
1. Let A=(a}) be a matrix such that af=0 if v<pu. Prove that
detA =al...al.
2. Prove that the determinant of the n x n-matrix

~ ab=1~—0%
is equal to (n—1)(—1)""1.
Hint: Consider the mapping ¢: E— E defined by
pe,=Ye,—e, (v=1..n).
I3

3. Given an n x n-matrix 4A=(o;) define the matrix B=(p}) by

B =(—1)"**ab.
Prove that
detB = detA.
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4. Given n complex numbers «, prove that

Oy Oy lOpoy Oy
oy Oy...d, oy nn-h

det . =(— 1) 2 Bl--'ﬁn

Oy Opeellyog Oy q

where the numbers §, are defined by
2nk 2nk
Be= > &a, &=cos— +isin— (k=1...n).
v n n

Hint: Multiply the above matrix by the matrix

€y ver

2
£r...80
g ... &,

§ 4. Dual determinant functions

4.10. Let E*, E be a pair of dual vector spaces and 4*+0, 40 be
determinant-functions in E* and E. It will be shown that

A*(x* L x*YA(xy .. x,) = adet({x*,x,>), x*eE*,x;eE, (421)

where ael’ is a constant scalar. Consider the function 2 of 2n vectors
defined by
Q(x*' ... x*"; x, ... x,) = det ({x*, x;>).

Then it follows from the properties of the determinant of a matrix that Q
is linear with respect to each argument. Moreover, Q is skew symmetric
with respect to the vectors x* and with respect to the vectors x;(i=1...n).
Hence the uniqueness theorem (sec. 4.3) implies that Q can be written as

Q(x*!, . x* Xy o x,) = P(x* . x*) 4 (x4 ... X,) (4.22)

where @ depends only on the vectors x*.. Replacing the x; in (4.21) by a
basis ¢; of E we obtain

Q(x*, ... x*"; ey ...e,) = D(x*' ... x*) A (e, ... e,).

This relation shows that @ is linear with respect to every argument and
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skew symmetric. Applying the uniqueness theorem again we find that
O (x*1 ... x*) = BAa*(x*'...x*"), Bel. (4.23)
Combining (4.22) and (4.23) we obtain
Q(x* L x*xy )= BA*(x* L x*)A(xy ... x,). (424
Now let e*!, ¢;(i=1...n) be a pair of dual bases. Then (4.24) yields
1=pBd*(e*!...e*") A (e, ... e,) (4.25)

and so f+0. Multiplying (4.24) by ="' we obtain the relation (4.21).
The determinant-functions 4* and 4 are called dual if the factor « in
(4.21) is equal to 1; i.e.,

A* (x* L x*)A(xy ... x,) = det (¥ x ). (4.26)

To every determinant-function 4 #0 in E there exists precisely one dual
determinant-function 4* in E*. In fact, let 45+0 be an arbitrary deter-
minant-function in E* and set 4*=a~'4% where « is the scalar in (4.21).
Then A* and 4 are dual. To prove the uniqueness, assume that 47 and
A3 are dual determinant-function to 4. Then we have that

[AF(x* . x*) = A5 (x* . x*™)]A(xy...x,)=0  x*eE* x,eE

whence AF =43,
4.11. The determinant of dual transformations. Let ¢:F—E and
@*: E*«E* be two dual linear transformations. Then

det * = det . (4.27)

To prove this, let 4*, 4 be a pair of dual determinant-functions in E*
and E. Then we have in view of (4.21)

A*(x*, L x*)A(xy .. x,) = det (¥, x;)).
This relation yields

A*(* x*' . @*X*) A (x4 ... x,) = det({p* x*, x D)
and
A*(x*1 L x*™) A(@ xy ... ¢ x,) = det ({x*, 9 x,;)).
Since
Cp*x* xp=(x* x>  (Lj=1..n)
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it follows that

A*(@* x*!, L @*x*)A(X, ... x,) = A*(x* . x*)A(@x,...0%,).
(4.28)
But
A*(* x*1, ... @* x*") = det p*- A* (x*! ... x*")
and
A(pxy...ox,)=detod(x, ... x,)

and so we obtain from (4.28) that
(deto* — detp) 4* (x*' ... x*) 4(xy...x,) =0

whence (4.27)

The above result implies that transposed n x n-matrices have the same
determinant. In fact, let A be an # x n-matrix and let ¢ be a linear trans-
formation of an n#-dimensional vector space such that (with respect to a
given basis) M (¢)=A. Then it follows that

det A* = det M (¢)* = det M (p*) =
=detp* =detp = det M (p) =det 4.

Problems

1. Show that the determinant-functions, 4, 4* of § 1, problem 1 are
dual.
2. Using the expansion formula (4.17) prove that,

det A* =detA.

§ 5. Cofactors

4.12, Definition. Consider an n x n-matrix 4=(a%). Replacing the ele-
ment o by 1 and all other elements of row i and column j by zero, we
obtain the matrix

ci=| o . 1 0 0
1 1 Jj+
Oy q “xj 1 R
ot ™ 0 W
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The determinant of CV is called the cofactor of the element «f and will be
denoted by cof o). The 7 x n-matrix (ﬁj) defined by the determinants

B = cofof

is called the adjoint matrix of A¥*). In other words, the adjoint of a matrix
is the transpose of the matrix formed by the cofactors. Applying formula
(4.20) to C/ we obtain

cofof = A(ay ...a;_y,e5, ;44 ... a,).
Multiplication by «f (1 £k <n) and summation over j yields
?a,{ﬁj- =A(ay ... ai_l,;a,{ej,ai“ e @)
=A4(ay...0i-1,0, 04, ...4,).
If ki, the vector g, appears twice on the right hand-side whence
;a,{ﬁj=0 if i%k. 4.29
Now assume that k=i. Then

4(ay...q;-1,08;,8;44 ...0,)=det 4
and we thus obtain

Za{ﬁ;=detA (i=1..n). (4.30)
J
Relations (4.29) and (4.30) can be combined in the formula
Za,{ﬁj:&;;-detA (i,k=1..n). 4.31)
J
Denoting the adjoint matrix by ad 4 we can write the equation (4.31) as
A-ad A =J-detA.

4.13. The inverse matrix. Assume that det 4+0. Then the equations
(4.31) can be divided by det A4 yielding

(detA)"IZa,{ﬁ;:é}; (,k=1...n).
J

This equation shows that the matrix

&} = (det4)"' B (4.32)
is the inverse of (a}).

*) In the above equation / counts the row and / counts the column,
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Applying the relation (4.31) to a system of # linear equations with »
unknowns we obtain the Cramer’s solution formula. Let

;aw:n!‘ (j=1...n) (4.33)

be the given system and assume that the determinant of the matrix (ai) is
different from zero. Multiplying the j* equation by [3’;- and summing with
respect to j we obtain in view of (4.31)

Edetd=Y By
j

whence
& =(detA)™ Y Bin' = (detd)™* Y det Ciy’. (4.34)
J J

In this formula the solution of the system (4.33) is expressed in terms
of the scalars (n'...1") and the cofactors of the matrix A.

4.14. The submatrices S{. Denote by S the (n—.1) x (n— 1)-matrix ob-
tained from A by deleting the row i and the column j. It will be shown
that

cofaf = (— 1)/ det S/, (4.35)

Assume first that i=1 and j=1. Then, by (4.17)
detSi =Y e, 05 ...o8™ (4.36)
e

where the summation is taken over all the permutations of the numbers
(2...n). The elements of C} are given by p5=484 and fi=of—54al
(v=2...n). Hence, the expansion-formula (4.17) yields

cofa = Y e, (03P — 67D 03)... (™ — 8] o). (4.37)

In this sum all terms are zero for which ¢ (1) 1. Consequently, (4.37)

can be written as
cofaj = Y e, a3®...a5™
[

where the summation is taken over all permutations leaving the number 1
fixed. Every such permutation ¢ induces a permutation ¢ of the numbers
(2...n). Since ¢ and 7 have the same parity, it follows that

cofay = Y e,04®... 2™ (4.38)
e

where ¢ runs over all the permutations of (2...n). Equations (4.36) and
(4.38) yield (4.35) for the case i=1, j=1.



§ 5. Cofactors 113

Now we proceed to the general case. Interchanging the row i with all
the preceding rows, and the column j with all the preceding columns, the
matrix C{ is converted into the matrix

1 0 ....0)
0

B= S}
ko /

The determinants of B and C{ are obviously related by
detB=(—1)""/detC!. ~(4.39)

Now S/ is obtained from B by deleting the first row and the first column
and hence, as it has been shown above,

det B = det S/. (4.40)

Equations (4.39) and (4.40) yield (4.35).
4.15. Expansion by cofactors. From the relations (4.35) and (4.30) we
obtain the expansion-formula of the determinant with respect to the i

row,
detd =Y (—1)*ajdetS] (i=1..n). (4.41)
J

By this formula the evaluation of the determinant of » rows is reduced to
the evaluation of » determinants of n—1 rows.

In the same way the expansion-formula with respect to the j* column
is proved: .
detd=Y(—1)"ajdetS! (j=1..n). 4.42)

4.16. Minors. Let A=(c})) be a given n x m-matrix. For every system
of indices

1fii<i,<<ipEn and 15/, <j, <-<jyEm

denote by 4/'#* the submatrix of 4, consisting of the rows i...j, and the

columns j,...j,. The determinant of A,-jl‘jj_',-’;“ is called a minor of order k of
the matrix 4. It will be shown that in a matrix of rank r there is always a
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minor of order r which is different from zero, whereas all minors of order
k>r are zero. Let 4]/* be a minor of order k> r. Then the row-vectors
a;,...a;, of A are linearly dependent. This implies that the rows of the
matrix 4j'j* are also linearly dependent and thus the determinant must
be zero.

It remains to be shown that there is a minor of order r which is different
from zero. Since A has rank r, there are r linearly independent row-
vectors g;,...a;,. The submatrix consisting of these row-vectors has again
the rank r. Therefore it must contain r linearly independent column-
vectors b'*...b". Consider the matrix 47"/~ Its column-vectors are line-
arly independent, whence

det Ai*d» £ 0.

ifenir
If A is a square-matrix, the minors
det Al

i1k

are called the principal minors of order k.

Problems

1. Compute the inverse of the following matrices.

1 1 1 1
1 1 -1 -1
A=37 _1 1 —1
1 -1 -1 1
A1
A1
B= " (4% 0)
.1
A
2. Show that
a) (xaa..a
axa..a
det| - =[x+ (n—-1a](x—a)"?
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and that
b {1 1 1
Ay Ay A,
det| 22 22 ...A2 |= T =4y,
i>j
PTUOATLLA
(Vandermonde determinant.)
3. Define
f x, 1 D
-1 x, 1
- 1 X3 1
. = det
Xp—q1 1
g -1 Xa )

Show that 4,=x,4,_,+4,_, (n>2)
A1=x1; A2=x1x2+1.

4. Verify the following formula for a quasi-triangular determinant:

(X4 N 0....0) 4 A

. . . Xp+rip+1-+++Xptin
Xp1.0.%,, 0....0 .

p pp
Xyq oo Xyp .
det| X419 000n--. Xpi1a [=det| : . |-det] .
Xp1 e+ Xpp .
Xpfeoeeroons Xpn

(XL eveereesis Xpw ) \

5. Prove that the operation 4—ad A has the following properties pro-
vided that the matrix A is regular*)

a) ad (4B)=ad A-ad B

b) det ad A=(det 4)""".

¢) ad ad A=(det 4)""% A.

d) detad ad A=(det 4)"" V7,

7"') It will be shown in sec. 19.24 (Multilincar Algebra) that these relations are also
valid for a nonregular matrix.
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§ 6. The characteristic polynomial

4.17. Eigenvectors. Consider a linear transformation ¢ of an #-dimen-
sional linear space E. A vector a+0 of E is called an eigenvector of ¢ if

pa=Aa.

The scalar 4 is called the corresponding eigenvalue. A linear transforma-
tion @ need not have eigenvectors. As an example let E be a real linear
space of two dimensions and define ¢ by

DXy =Xy @PX3=—X4
where the vectors x; and x, form a basis of E. This mapping does not
have eigenvectors. In fact, assume that
a=¢&x +&x,
is an eigenvector. Then ¢a=Aa and hence
=28, P=-2¢.
These equations yield
(61)2 + (62)2 =0
whence &' =0 and £2=0.

4.18. The characteristic equation. Assume that a is an eigenvector of
¢ and that 1 is the corresponding eigenvalue. Then

pa=JAla, a+0.
This equation can be written as
(p—A1)a=0 (4.43)
showing that ¢ — A1 is not regular. This implies that
det(p — A1) =0. (4.44)

Hence, every eigenvalue of ¢ satisfies the equation (4.44). Conversely,
assume that A is a solution of the equation (4.44). Then ¢—A4: is not
regular. Consequently there is a vector a0 such that

(p —Aa=0,
whence pa=2Aa.
Thus, the eigenvalues of ¢ are the solutions of the equation (4.44). This
equation is called the characteristic equation of the linear transformation ¢.
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4.19. The characteristic polynomial. To obtain a more explicit expres-
sion for the characteristic equation choose a determinant-function 4+0
in E. Then

A(@xy — Axy...0x, — Ax,)=det(p — A1) 4 (x; ... x,)
x,eE(v=1...n). (4.45)

Expanding the left hand-side we obtain a sum of 2" terms of the form

4(zy...2,),

where every argument is either ¢ x, or —Ax,. Denote by S,(0<p<n) the
sum of all terms in which p arguments are equal to ¢ x, and n—p argu-
ments are equal to —Ax,. Collect in each term of S, the indices v,...v,
(v <+ <v,) such that

zv1 = q,xvl zvp = q,xvp
and the indices v, ...9,(v,4+; <--- <v,) such that

Zypo = AX 2y, = AX,

Introducing the permutation o by
o()=v; (i=1...n)
we can write
A(Zy ... 2,) = 6 A(Zo(1y o+ Zo(my)
= 6, A(QXo1y @ Xopyr — AXg(pa1y e — AXo(my)

= (= AP, A(Q Xs(1) - P Xo(py Xa(p+ 1) -+ Xany) +
Thus,

S,=(—A)"""Ye, A(p Xo(1) -+ P Xapys Xa(p4 1) - Xa(ny) (4.46)

where the sum is extended over all permutations o subject to the con-
ditions :
c(l)<--<o(p) and o(p+1)<--<a(n).
Observing the skew symmetry of 4 we obtain from (4.46)
—%Zs A(px Xo(py X Xem)  (4.47)
= p!(n _ p)! . a P Xg(1y -+ PXgpys Xa(p+1) +++ Xan) .

where the sum on the right hand-side is taken over all permutations. Let
&, be the function defined by

p

Py(xy - X,) = 2334(‘/”‘,(1)--- ‘qu(p)’xa(p+1)~-~xu(n)) O=p=<n)
-3
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and t be an arbitrary permutation of (1...n). Then

2, (xr(l) xt(n)) = Zsa A(o Xio(1) +++ P Xio(p)» Xea(p+1) --- xw(n))
[
= stzsra'A (q’ xra(l) q’xra(p)a xta'(p+ 1) - xm(n))
g

= sz% A(P Xg(1) - @ Xo(py Xo(p+1) -+ Xo(m)
g

=g, P, (%1 ... %)

This equation shows that @, is skew-symmetric with respect to all argu-
ments. This implies that

®,=(—1)""?p!(n—p)a, 4 (4.48)
where «, is a scalar. Inserting (4.48) into (4.47) we obtain
S,=a,A""?"-4.
Hence, the left hand-side of (4.45) can be written as

A(@x; —Axy, . @X, —AX,) = A(xy...%,) Y, 0, A" P, (4.49)
p=0
Now equations (4.45) and (4.49) yield

det(p —A)= ) a,A""?
p=0
showing that the determinant of ¢ —A4: is a polynomial of degree n in A.
This polynomial is called the characteristic polynomial of the linear trans-
formation ¢. The coefficients of the characteristic polynomial are deter-
mined by equation (4.48), and are called the characteristic coefficients.
These relations yield for p=0 and p=n

o =(—1)" and «,=deto
respectively.
4.20. Existence of eigenvalues. Combining the results of sec. 4.18 and
4.19, we see that the eigenvalues of ¢ are the roots of the characteristic
polynomial

n

W)=Y ai.

v=0

This shows that a linear transformation of an n-dimensional linear space
has at most n different eigenvalues.
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Assume that E is a complex linear space. Then, according to the funda-
mental theorem of algebra, the polynomial f has at least one zero. Con-
sequently, every linear transformation of a complex linear space has at
least one eigenvalue,

If E is a real linear space, this does not generally hold, as it has been
shown in the beginning of this paragraph.

Now assume that the dimension of E is odd. Then

lim f(A)=—o and lim f())=+o

A= A — o0

and thus the polynomial /(1) must have at least one zero. This proves
that a linear transformation of an odd-dimensional real linear space has at
least one eigenvalue. Observing that

f(0) =, =detg

we see that a linear transformation of positive determinant has at least
one positive eigenvalue and a linear transformation of negative deter-
minant has at least one negative eigenvalue, provided that E has odd
dimension.

If the dimension of E is even we have the relations

lim f(A) =0 and lim f(1)=c0
A —o0

A0

and hence nothing can be said if det ¢ >0. However, if det ¢ <0, there
exists at least one positive and one negative eigenvalue.

4.21. The characteristic polynomial of the inverse mapping. It follows
from (4.27) that the characteristic polynomial of the dual transformation
@* coincides with the characteristic polynomial of ¢.

Suppose now that E=E,@FE, where E, and E, are stable subspaces.
Then the result of sec. 4.7 implies that the characteristic polynomial of ¢
is the product of the characteristic polynomials of the induced transfor-
mations ¢,: E,—»E, and ¢,:E,—~E,.

Finally, let ¢ : E— E be a regular linear transformation and consider the
inverse transformation ¢ ~!. The characteristic polynomial of ¢~ 1 is
defined by

F(2)=det(p™! — 41).
Now,
el —hi=9 (1= Ae)=—do T (e — A7),
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whence
det(p™' — A1) = (— 4)"deto ™ !-det(p — 171 1).

This equation shows that the characteristic polynomials of ¢ and of ¢ ™!

are related by
F(A)=(—Aydeto™ ' f(A71).

Expanding F(A) as
FO)= ¥ B2

we obtain the following relations between the coefficients of fand of F:
B,=(—1ydeto e, (v=0..n).

4.22. The characteristic polynomial of a matrix. Let ¢,(v=1...n) be a
basis of E and A= M(p) be the matrix of the linear transformation ¢
relative to this basis. Then

M(p—At)=M(@)—AM(@)=A4—AJ
whence
det(p — A1) =det M (¢ — A1) =det(4 — A J).

Thus, the characteristic polynomial of ¢ can be written as
f(A) =det(4—1J). (4.50)

The polynomial (4.50) is called the characteristic polynomial of the matrix
A. The roots of the polynomial fare called the eigenvalues of the matrix A.

Problems

1. Compute the eigenvalues of the matrix

1 0 3
3 -2 -1
1 -1 1

2. Show that the eigenvalues of the matrix

(73 l;) are real.
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3. Prove that the characteristic polynomial of a projection n: E—E,
(see Chapter II, sec. 2.19, Problem 1) is given by

fA=(=0rra-a

where n=dim E and p=dim E,.

4, Show that the coefficients of the characteristic polynomial of an

involution satisfy the relations
a,=¢8a,_, e=+1 (p=0..n).

S. Consider a direct decomposition E=E, @ E,. Given linear transfor-
mations ¢;: E;— E; (i=1,2) consider the linear transformation ¢ =¢,®¢,:
E— E. Prove that the characteristic polynomial of ¢ is the product of the
characteristic polynomials of ¢, and of ¢,.

6. Let ¢: E—-E be a linear transformation and assume that E, is
a stable subspace. Consider the induced transformations ¢,:E,—E;
and @:E/E,—~E/E,. Prove that

X=X1X1

where y, x; and ¥ denote the characteristic polynomials of ¢, ¢, and ¢
respectively. In particular show that

x(A)=(=4r1(d)

where @ is the induced transformation of E/ker ¢ and s denotes the di-
mension of ker ¢.

7. A linear transformation, ¢, of E is called nilpotent if ¢*=0
for somek. Prove that ¢ is nilpotent if and only if the characteristic
polynomial has the form

1A =(=4.

Hint: Use problem 6.

8. Giventwo linear transformations ¢ and y of E show that det (¢ — 1y/)
is a polynomial in A.

9. Let ¢ and y be two linear transformations. Prove that .y and
¥ o ¢ have the same characteristic polynomial.

Hint: Consider first the case that y is regular.
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§ 7. The trace

4.23. The trace of a linear transformation. In a similar way as the deter-
minant, another scalar can be associated with a given linear transforma-
tion ¢. Let 440 be a determinant-function in E. Consider the sum

g (%o 0% ).

This sum obviously is again a determinant-function and thus it can be
written as

zn:A(xl...qoxi...x,,)=oc-A(x1...x,,) (4.51)
i=1

where « is a scalar. This scalar which is uniquely determined by ¢ is called
the trace of @ and will be denoted by tr ¢. It follows immediately that
the trace depends linearly on ¢,

tr(Agp + py) =Atro + ptry.
Next we show that

tr(Yyo)=tr(poy) (4.52)

for any two linear transformations ¢ and . The trace of . ¢ is defined
by the equation

DAk og)xi ) = tr(Wo0) (31 3) wEE
Replacing the vectors x, by ¥ x,(v=1...n) we obtain
Y AW (Yopod)X;.. Yx,)
- tlr(lpoqo)A(lpxl Y x) = tr(Yog)dety A(x, ... x,).

(4.53)

The left hand-side of this equation can be written as

;A(upx1 ci(o@o)x; . x,) = detupzi:A(xl v (@o)x;..x,)

=dety tr(@oy)d(x;...x,)
and thus (4.53) implies that

detytr(@ o) =tr(yop)dety . (4.54)

If  is regular, this equation may be divided by det ¢ yielding (4.52). If
is non-regular, consider the mapping y — A1 where A is different from all
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eigenvalues of . Then y — A1 is regular, whence

tr{(y —A)op] =trloo(y — A1)].

In view of the linearity of the trace-operator this equation yields

tr(Yop)—Atro =tr(poy) — Atro
whence (4.52).
Finally it will be shown that the coefficient of A"~ ! in the characteristic
polynomial of ¢ can be written as

a;=(—1)""tro. (4.55)
Formula (4.48) yields for p=1
Y &g AP Xo(1ys Xo2) -+ Xomy) = (— 1" Loy A(x4...x,)  (4.56)
the sum being taken over all permutations ¢ subject to the restrictions
c(2)<---<o(n).
This sum can be written as
.Zl(— DM A(@ X Xg oo Xg 0 X,) = _ZlA (Xg eer Xim 1y @ X1y Xy g vee X)
We thus obtain from (4.56)
Y A(xy 0% %) =(— 1) "oy A(xq ... x,). 4.57)

Comparing the relations (4.57) and (4.51) we find (4.55).
4.24. The trace of a matrix. Let e,(v=1...n) be a basis of E. Then ¢
determines an » x n-matrix o, by the equations

pe, =Y aje,. (4.58)
: "
Inserting x,=e, (v= 1...n) in (4.51) we find
ZA(el...qoei...e,,)=trq)A(e1...e,,). 4.59)
Equations (4.58) and (4.59) imply that
d(ey ... e,,)‘zn:1 of = A(e;...e,)tro

whence
tro =Y o. (4.60)
i
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Observing that
oy =< pe,),

where e*'(v=1...n) is the dual basis of e,, we can rewrite equation
(4.60) as

tro =Y e, pe). (4.61)

Formula (4.60) shows that the trace of a linear transformation is equal
to the sum of all entries in the main-diagonal of the corresponding matrix.
For any »n x n-matrix 4 =(«}) this sum is called the trace of A and will be
denoted by tr 4,

trd=Yo. 4.62)

Now equation (4.60) can be written in the form

tro =trM(op).

4.25. The duality of L(E; F) and L(F; E). Now consider two linear
spaces Eand Fand the spaces L(E; F)and L(F; E) of all linear mappings
¢:E—~F and y: F» E. With the help of the trace a scalar product can be
introduced in these spaces in the following way:

o.y>=t(-9) @eL(E;F), yeL(F;E). (4.63)
The function defined by (4.63) is obviously bilinear. Now assume that
o, ¥>=0 (4.64)

for a fixed mapping ¢eL(E; F) and all linear mappings yeL(F; E). It
has to be shown that this implies that ¢ =0. Assume that ¢=+0. Then
there exists a vector ae E such that ¢ a+0. Extend the vector b, =¢a to
a basis (b,...b,,) of F and define the linear mapping y: F»E by

yby=a, yb,=0 (u=2...m).
Then
(@oy)by=by, (9oy)b,=0 (u=2..m),
whence

o, ¥> =tr(‘p°q’)=tr(§0olp) =1.

This is in contradiction with (4.64). Interchanging E and F we see that
the relation

Ko, ¥>=0
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for a fixed mapping Y€ L(F; E) and all mappings ¢eL(E; F) implies
that yy=0. Hence, a scalar-product is defined in L(E; F) and L(F; E)
by (4.63).

Problems

1. Show that the characteristic polynomial of a linear transformation
¢ of a 2-dimensional linear space can be written as

f(A) =A% —=Atro +deto.
Verify that every such ¢ satisfies its characteristic equation,
¢ —@-tro + 1-detp =0.
2. Given three linear transformations ¢, , x of E show that

tr(xoyo@) * tr(xopoth)
in general.
3. Show that the trace of a projection operator n: E—E, (see Chapter
II sec. 2.19) is equal to the dimension of Im =.
4. Consider two pairs of dual spaces E*, E and F*, F. Prove that the
spaces L(E; F) and L(E*; F*)are dual with respect to the scalar-product
defined by

@, ¥ =tr(p*oyy) @eL(E;F) yeL(E*;F*).

5. Let f be a linear function in the space L(E; E). Show that f can be
written as

f(o)=tr(p.w)

where o is a fixed linear transformation in E. Prove that o« is uniquely
determined by f.
6. Assume that fis a linear function in the space L(E; E) such that

FWeo)=f(po¥).

f@)=Atro

Prove that

where 1 is a scalar.
7. Let ¢ and ¥ be two linear transformations of E. Consider the sum

Y A(Xy .. QX Y x;X,)
i®j

where 4+0 is a determinant-function in E. This sum is again a deter-
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minant-function and hence it can be written as

Z.A(x1 QX Y x . X) = B, ) A (x4 ... X,).

ij

By the above relation a bilinear function B is defined in the space L (E; E).
Prove:

a) B(g, ¥)=trotry—tr(y.9). :

b) $B(¢, ¢)=(—1)"a, where a, is the coefficient of 4"~ 2 in the charac-
teristic polynomial of ¢.

(=1
2

[(tr o)’ — tr(o™)].

C) a, =

8. Consider two n x n-matrices A and B. Prove the relation
tr(4B) =tr(BA).

a) by direct computation.

b) using the relation tr ¢ =tr M (o).

9. If ¢ and ¢ are two linear transformations of a 2-dimensional linear
space prove the relation

Yop+ QoY =otry +ytro +i(tr(Yo.p) —trotry).

10. Let A:L(E; E)>L(E; E) be a linear transformation such that

A(po¥) = A(9)oA(Y)  o¢,¥eL(E;E)
and
A(1)=1.
Prove that tr 4 (¢)=tr ¢.

11. Let E be a 2-dimensional vector space and ¢ be a linear transfor-
mation of E. Prove that ¢ satisfies the equation ¢*=—A1, A>0 if and
only if

deto >0 and tro=0.

12. Let ¢: E, > E; and ¢,: E,— E, be linear transformations. Consider
¢=0 D9, E,®E, > E, ®E,.

Prove that tr ¢ =tr @, +tr ¢,.

13. Let ¢: E—E be a linear transformation and assume that there is a
decomposition E=E @ ---@E, into subspaces such that E;n¢E;=0
(i=1...r). Prove that tr ¢=0.
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§ 8. Oriented vector spaces

In this paragraph E will be a real vector space of dimension nz 1.
4.26. Orientation by a determinant function. Let 4,40 and 4,+0 be
two determinant functions in E. Then 4, =14, where 140 is a real num-
ber. Hence we can introduce an equivalence relation in the set of all de-
terminant functions 440 as follows:

A1~A2 if l>0.

It is easy to verify that this is indeed an equivalence. Hence a decompo-
sition of all determinant functions 4+0 into two equivalence classes is
induced. Each of these classes is called an orientation of E. If (4) is an
orientation and 4 €(4) we shall say that 4 represents the given orientation.
Since there are two equivalence classes of determinant functions the vec-
tor space E can be oriented in two different ways.

A basis e, (v=1...n) of an oriented vector space is called positive if

A(ey...e,) >0

where 4 is a representing determinant function. If (e,...e,) is a positive
basis and ¢ is a permutation of the numbers (1...n) then the basis (e, 4.
€, (m) 18 positive if and only if the permutation o is even.

Suppose now that E* is a dual space of E and that an orientation is
defined in E. Then the dual determinant function (cf. sec. 4.10) determines
an orientation in E*, It is clear that this orientation depends only on the
orientation of E. Hence, an orientation in E* is induced by the orien-
tation of E.

4.27. Orientation preserving linear mappings. Let £ and F be two
oriented vector spaces of the same dimension » and ¢: E— F be a linear
isomorphism. Gijven two representing determinant functions 4; and Ag
in E and F consider the function 4, defined by

Ay(X1 0. X)) = Ap(@ X150, 0 X,).
Clearly 4, is again a determinant function in E and hence we have that
A¢ = )A,AE

where A+0 is a real number. The sign of 1 depends only on ¢ and on the
given orientations (and not on the choice of the representing determinant
functions). The linear isomorphism ¢ is called orientation preserving if
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A>0. The above argument shows that, given a linear isomorphsim
¢:E—F and an orientation in E, then there exists precisely one orien-
tation in F such that ¢ preserves the orientation. This orientation will be
called the orientation induced by ¢.
Now let ¢ be a linear automorphism; i.e., F=E. Then we have 4p=A4,
and hence it follows that 1
A=detep.

This relation shows that a linear automorphism ¢: E—E preserves the
orientation if and only if det ¢ > 0.
As an example consider the mapping ¢ = —1. Since

det(— 1) = (= 1)

it follows that ¢ preserves the orientation if and only if the dimension of
n is even.

4.28. Factor spaces. Let E be an orientated vector space and F be an
oriented subspace. Then an orientation is induced in the factor space
E/F in the following way: Let 4 be a representing determinant function
in E and a,...a, be a positive basis of F. Then the function

A4(ay...ap,Xp41...%,), x;eE

depends only on the classes %;. In fact, assume for instance that y,,, and
X,+1 are equivalent mod F.
Then

4
yp+1 = xp+1 + levav
ve
and we obtain
A(ay...8pYpr1. X)) =4(ay ... Ay Xppq ... X,) +
p

+ Y XYd(ay...apa,..x)=A4(ay...a,Xp11 ... X,).
v=1

Hence a single valued function 4 of (n—p) vectors in E/F is defined by
AXpir - X)) =4(ay...0p%X,01 0 X,). (4.65)

It is clear that A is linear with respect to every argument and skew sym-
metric. Hence 4 is a determinant function in E/F. It will now be shown
that the orientation defined in E/F by 4 depends only on the orientations
of E and F. Clearly, if A’ is another representing determinant function in
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E we have that 4’=14, >0 and hence 4’=14. Now let (d]...d,) be
another positive basis of F. Then we have that

a,=Yaba,, det(e)>0
"

whence
A(ay...ap,xp4q ... %) =det(ad)A(ay ... ap, Xpyq .. X,).

It follows that the function 4’ obtained from the basis aj...a, is a positive
multiple of the function 4 obtained from the basis ay...a,.
4.29. Direct decompositions. Consider a direct decomposition

E=E, ®E, (4.66)

and assume that orientations are defined in E, and E,. Then an orien-
tation is induced in E as follows: Let a;(i=1...p) and b;(j=1...q) be
positive bases of E, and E, respectively. Then choose the orientation of
E such that the basis a,...a,, b,...b, is positive. To prove that this orien-
tation depends only on the orientations of E; and E, let 4;(i=1...p) and
b;(j=1...q) be two other positive bases of E, and E,. Consider the linear
transformations ¢: E, - E; and y: E;— E, defined by

pa;=d; (i=1..p) and yb;=b; (j=1...9).

Then the transformation ¢ @y carries the basis (a,...a,, b,...b,) into the
basis (d,...d,, by...b,). Since det ¢ >0 and det Y >0 it follows from sec. 4.7
that

det(p @yY) = detodety >0

and hence (d,...d,, b,...b,) is again a positive basis of E.

Suppose now that in the direct decomposition (4.66) orientations are
given in E and E,. Then an orientation is induced in E,. In fact, consider
the projection n: E— E, defined by the decomposition (4.66). It induces
an isomorphisni.

@:E|E, 5 E,.

In view of sec. 4.28 an orientation in E/E; is determined by the orien-
tations of E and E,. Hence an orientation is induced in E, by ¢. To
describe this orientation explicitly let 4 be a representing determinant
function in E and a,...a, be a positive basis of E;. Then formula (4.65)
implies that the induced orientation in E, is represented by the deter-
minant function

Ay (Ypr1 Y =4(ay .05 Yp41-- V), Vi€E,. (4.67)
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Now let b,,,...b, be a positive basis of E, with respect to the induced
orientation. Then we have that

Ay(bpsy...5,)>0
and hence formula (4.67) implies that
d(ay...apbypy...b)>0.

It follows that the basis a,...ap, b, 4 ;...b, of E is positive. In other words,
the orientation induced in E by E, and E, coincides with the original
orientation.

The space E; in turn induces an orientation in E,. It will be shown that
this orientation coincides with the original orientation of E, if and only
if p(n—p) is even. The induced orientation of E,; is represented by the
determinant-function

Ay (xy .. xp) = Ad(€prq .. € Xy - Xp) (4.68)

where e, (A=p+1, ...n) is a positive basis of E,. Substituting x,=e,
(v=1...n) in equation (4.68) we find that

di(ey...ep)=A(€psy... 01 ...6)=(—1P""PA,(e,.q...0) (4.69)
But ¢,(A=1...p) is a positive basis of E, whence

Ay(epsy-.e))>0. (4.70)
1t follows from (4.69) and (4.70) that

>0 if p(n-— p)iseven

4.71
<0 if p(n—p)isodd. 471

d4,(ey...€,) {
Since the basis (e, ...e,) of E; is positive with respect to the original orien-
tation, relation (4.71) shows that the induced orientation coincides with
the original orientation if and only if p(n—p) is even.
4.30. Example. Consider a 2-dimensional linear space E. Given a basis
(ey, e,) we choose the orientation of E in which the basis e,, e, is positive.
Then the determinant-function 4, defined by

A (el, ez) = 1

represents this orientation. Now consider the subspace E;(j=1,2) gener-
ated by e;(j=1,2) with the orientation defined by e;. Then E; induces in
E, the given orientation, but E, induces in E; the inverse orientation.
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In fact, defining the determinant-functions 4, and 4, in E, and in E, by
4,(x)=4(e;,x) xeE, and 4,(x)=A4(e;,x) x€eE,
we find that
dy(e;) = Ad(e;,e;)=1 and 4,(e;)=A4d(ez,e,)=—1.
4.31. Intersections. Let E; and E, be two subspaces of E such that
E=E  +E, 4.72)

and assume that orientations are given in E;, E, and E. It will be shown
that then an orientation is induced in the intersection E,,=E,n E,.
Setting

dimE; =p, dimE,=gqg, dimE,,=r

we obtain from (4.72) and (1.32) that
r=p+q-—mn.

Now consider the isomorphisms

¢:E[E, - E,[|E,,
and
Y:E[E, f’El/Elz-

Since orientations are induced in E/E; and E/E, these isomorphisms
determine orientations in E,/E,, and in E,/E,, respectively. Now choose
two positive bases d,4,...d, and b, ,,...b, in E,/E,, and E,/E,, respec-
tively and let a;e E; and b;e E, be vectors such that

ma;=4d; and myb;=5;
where 7, and © 2 denote the canonical projections
n,:E, > EE,, and mn,:E,—>E,[E,,.
Now define the function 4, by
Ay5(zy...2,)=4(21 ... 2,,8,41 .-G b,y .. by). 4.73)

In a similar way as in sec. 4.30 it is shown that the orientation defined in
E,, by 4,, depends only on the orientations of E,, E, and E (and not on
the choice of the vectors a,and b,). Hence an orientation is induced in E, ,.
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Interchanging E; and E, in (4.73) we obtain

Azl(zl ...Z,) = A(Zl e Z’,, br+1 e bq, a,.+1 ...ap). (4.74)

Hence it follows that
Ay = (_ 1)(p-r) (q-r)A12 = (_ 1)(n-p) (n—q)A12 . (4.75)

Now consider the special case of a direct decomposition. Then p+g=n
and E,,=(0). The function 4,, reduces to the scalar

0(12=A(al...ap,b1...bq). (4.76)

o

It follows from (4.76) that «,,=0. Moreover the number 12 depends
%12

only on the orientations of E,, E, and E. Itis called the intersection number

of the oriented subspaces E, and E,. From (4.76) we obtain the relation
a = (— l)p("_p)“lz-

4.32. Basis deformation. Let a, and b,(v=1...n) be two bases of E.
Then the basis a, is called deformable into the basis b, if there exist n
continuous mappings

Xt x,(1) Sttty

satisfying the conditions

1. x,(ty)=a, and x,(¢,)=b,

2. The vectors x, (f)(v=1...n) are linearly independent for every fixed ¢.
The deformability of two bases is obviously an equivalence relation.
Hence, the set of all bases of E is decomposed into classes of deformable
bases. We shall now prove that there are precisely two such classes. This
is a consequence of the following

Theorem: Two bases a, and b,(v=1...n) are deformable into each
other if and only if the linear transformation ¢: E—FE defined by ¢ a,=b,
has positive determinant.

Proof: Let 440 be an arbitrary determinant function. Then formula
4.17 together with the observation that the components éiv(i =1...n) are
continuous functions of x, shows that the mapping E x --- x E-R defined
by 4 is continuous. n

Now assume that t—x,(¢) is a deformation of the basis a, into the
basis b,. Consider the real valued function

D(t)=4(x,(1)...x,(2)).
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The continuity of the function 4 and the mappings t— x, (¢) implies that
the function @ is continuous. Furthermore,

D(H£0 (o St=ty)

because the vectors x,(¢t)(v=1...n) are linearly independent. Thus the
function @ assumes the same sign at t=¢, and at t=¢,. But

&(t))=A4(by...b,)=A4(pa,...pa,)=detopd(a,...a,)=detp ()
whence

detyp >0

and so the first part of the theorem is proved.

4.33. Conversely, assume that the linear transformation ¢:a,—b, has
positive determinant. To construct a deformation (a,...a,)—(b,...b,)
assume first that the vector n-tuple

(ay...a;,b;4q...b,) 4.7

is linearly independent for every i(1<i<n—1). Then consider the de-
composition

b,=Ypa,.

By the above assumption the vectors (a,...a,_ 1, b,) are linearly independ-
ent, whence f" <+ 0. Define the number ¢, by

+1 if B,>0
—1 if B,<0.

n

It will be shown that the » mappings

{xv(t)=av(v=1...n—1)

%)= (1= 1)ay + 15,6, C='=V

define a deformation
(ay...a,)—>(ay...a,-1,8,Db,).
Let 440 be a determinant-function in E. Then
A(x (1) ... x, () =((1 = ?) + &,B8,1)4(a, ... a,).
Since ¢, 8,>0, it follows that

1—t+epB,t>0 0=sts1)
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whence
A(x,(f)...x, (1)) £0 (0=r=1).

This implies the linear independence of the vectors x,(¢t)(v=1...n) for
every .
In the same way a deformation

(ay...ay-1,8,b,) > (ay...ap_2,8,—1 b,— 1,8, b,)

can be constructed where ¢,_, = + 1. Continuing this way we finally ob-
tain a deformation

(ay...a)—>(ey by...e,b,) e,=%+1  (v=1..n).
To construct a deformation
(61 by...8,b,) > (by ... b,)
consider the linear transformations

¢:a,—»¢e,b, (v=1..n)
and
yie,b,—»b, (v=1..n).

The product of these linear transformations is given by

Yopia,—»b, (v=1..n).

By hypothesis,
det(Yop)>0 (4.78)
and by the result of sec. 4.32
deto > 0. 4.79)
Relations (4.78), and (4.79) imply that
dety > 0.
But
dety =g, ...¢,
whence
g ...8,=+1.

Thus, the number of ¢, equal to —1 is even. Rearranging the vectors b,
(v=1...n) we can achieve that

-1 (v=1...2p)
&, =
o+t (v=2p+1..n).
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Then a deformation
(61 by ...8,b,) > (by...b,)

is defined by the mappings

va—l(t) = - bzv_lcost + vaSint

) (v=1...p) <, <
va(t) =—b2v_151nt—b2vcost 0=t=7t.
x,(1) =b, (v=2p+1...n)

4.34. The case remains to be considered that not all the vector n-tuples
(4.77) are linearly independent. Eet 440 be a determinant-function. The
linear independence of the vectors a,(v=1...n) implies that

A(ay...a,)*0.

Since 4 is a continuous function, there exists a spherical neighborhood
U,, of a, (v=1...n) such that

4(x;..x,)*0 if x,elU, (v=1...n).

Choose a vector a) € U,, which is not contained in the (n — 1)-dimensional
subspace generated by the vectors (b,...b,). Then the vectors (aj, b,...b,)
are linearly independent. Next, choose a vector a3 e U,, which is not con-
tained in the (n—1)-dimensional subspace generated by the vectors
(ai, b,...b,). Then the vectors (a}, a3, bs...b,) are linearly independent.
Going on this way we finally obtain a system of n vectors a,(v=1...n)
such that every n-tuple

(ay...a}biyq ... by) (i=1..n-1)
is linearly independent. Since a;e U, , it follows that
A(a}...a)*0.
Hence the vectors a, (v=1...n) form a basis of E. The n mappings
x,()=(1—-1)a, + ta, o0=t=1)

define a deformation
(ay...a,)—>(ay...ap). (4.80)

In fact, x, () (0= ¢=<1) is contained in U,, whence
4(x,(@)..x,(1)) €0 (0st=1).

This implies the linear independence of the vectors x, (f)(v=1...n).
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By the result of sec. 4.33 there exists a deformation
(ay...ay)—>(by...b,). (4.81)
The two deformations (4.80) and (4.81) yield a deformation

(ay...a,)—>(by...b,).

This completes the proof of the theorem in sec. 4.32.

4.35. Basis-deformation in an oriented linear space. If an orientation is
given in the linear space E, the theorem of sec. 4.32 can be formulated as
follows: Two bases a, and b, (v=1...n) can be deformed into each other
if and only if they are both positive or both negative with respect to the
given orientation. In fact, the linear transformation

p:a,»b, (v=1...n)

has positive determinant if and only if the bases a, and b,(v=1...n) are
both positive or both negative.

Thus the two classes of deformable bases consist of all positive bases
and all negative bases.

4.36. Complex linear spaces. The existence of two orientations in a
real linear space is based upon the fact that every real number A0
is either positive or negative. Therefore it is not possible to distinguish
two orientations of a complex linear space. In this context the question
arises whether any two bases of a complex linear space can be deformed
into each other. It will be shown that this is indeed always possible.

Consider two bases a, and b, (v=1...n) of the complex linear space E.
As in sec. 4.33 we can assume that the vector n-tuples

(al vee ai, bi+l aae bn)

are linearly independent for every i(1<i<n—1). It follows from the
above assumption that the coefficient §” in the decomposition

by=%p"a,
v
is different from zero. The complex number B” can be written as
gr=re® (r>00=59<2n).
Now choose a continuous function r(t)(0=7=<1) such that

r=1, r()=r (4.82)
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and a continuous function 9 (£)(0<¢<1) such that
9(0)=0, 9(1)=S9. (4.83)
Define mappings x,(?), (0=¢<1) by
x,()=a, (v=1...n—-1)

and 0st=<1 (4.84)

n—1
xy()=1Y Ba,+r()e*a,.
v=1

Then the vectors x,(t)(v=1...n) are linearly independent for every 7. In
fact, assume a relation

i Ax,(1)=0.

v=1

Then

n—1 n—1

Y Va,+2tY Ba,+ Ar(t)e*Pa, =0

v=1 v=1
whence

A+Ap=0 (v=1..n-1)

and

Ar(t)e*® =0.

Since r(¢)£0 for 0<¢<1, the last equation implies that 1"=0. Hence the
first (n— 1) equations reduce to A*=0(v=1...n—1).
It follows from (4.84), (4.82) and (4.83) that

x,(0)=a, and x,(1)=0b,.
Thus the mappings (4.84) define a deformation
. (ay...a,_y,a,) > (ay...a,_1,b,).
Continuing this way we obtain after n steps a deformation of the basis
a, into the basis b,(v=1...n).
Problems

1. Let E be an oriented n-dimensional linear space and x, (v=1...n) be
a positive basis; denote by E,, the subspace generated by the vectors
(xy, ..-%;...x,). Prove that the basis (x,...%...x,) is positive with respect
to the orientation induced in E, by the vector (— 1)~ 'x;.
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2. Let E be an oriented vector space of dimension 2 and let 4,, a, be
two linearly independent vectors. Consider the 1-dimensional subspaces
E, and E, generated by a, and a, and define orientations in E; such that
the bases a; are positive (i=1,2). Show that the intersection number of
E, and E, is +1 if and only if the basis a,, @, of E is positive.

3. Let E be a vector space of dimension 4 and assume that e,
(v=1...4) is a basis of E. Consider the following quadruples of vectors:

I ej+ey, e +ey+es, e+e,+e3+ey, e,—e,+ ey
II. e;+2es, es+ey, e3—e,+ey, €
III. e, +e,—es, e,+€4, €3+ €5, e2—e
IV. e;+e,—e3, e,—ey, e3+e,, e,—e
V. e;—3e;, e,+e,, e,—€,—ey, €5,

a) Verify that each quadruple is a basis of F and decide for each pair
of bases if they determine the same orientation of E.

b) If for any pair of bases, the two bases determine the same orien-
tation, construct an explicit deformation.

¢) Consider E as a subspace of a 5-dimensional vector space £ and
assume that e, (v=1, ...5) is a basis of E. Extend each of the bases above
to a basis of £ which determines the same orientation as the basis e,
(v=1, ..., 5). Construct the corresponding deformations explicitly.

4. Let E be an oriented vector space and let E,, E, be two oriented
subspaces such that E=E, + E,. Consider the intersection E, n E, to-
gether with the induced orientation. Given a positive basis (cy, ..., ¢,) of
E, n E, extend it to a positive basis (¢, ..., ¢ @11, +-., a,) of E; and to
a positive basis (cy, ..., ¢, b4 1, .., b)) of E,. Prove that then (cy, ..., ¢,
@yiys ooos By briy, ...y by) is @ positive basis of E.
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Algebras

In paragraphs one and two all vector spaces are defined over a fixed, but
arbitrarily chosen field I' of characteristic 0.

§ 1. Basic properties

5.1. Definition: An algebra, A, is a vector space together with a map-
ping 4 x A— A such that the conditions (M,) and (M,) below both hold.
The image of two vectors xeA, ye A, under this mapping is called the
product of x and y and will be denoted by xy.

The mapping 4 x A— A is required to satisfy:

(My) (Axg+pxz)y =A(x, )+ p(x2y)

(M) X(Ayy+ pyz)=A(xys) + p(xy,).

As an immediate consequence of the definition we have that
0x=x0=0.

Suppose B is a second algebra. Then a linear mapping ¢ : A— B is called
a homomorphism (of algebras) if ¢ preserves products; i.e.,

p(xy)=o0x0y. ¢.1)

A homomorphism that is injective (resp. surjective, bijective) is called a
monomorphism (resp. epimorphism, isomorphism). If B=A, ¢ is called
an endomorphism.

Note: To distinguish between mappings of vector spaces and mappings
of algebras, we reserve the word linear mapping for a mapping between
vector spaces satisfying (1.8), (1.9) and homomorphism for a linear map-
ping between algebras which satisfies (5.1).

Let A4 be a given algebra and let U, V be two subsets of 4. We denote
by UV, the set

UV:{xed|x=Yuv, weUwyeV}.
i
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Every vector aeA induces a linear mapping

u(@):A-4
defined by
p(a)x =ax (5.2)

u(a) is called the multiplication operator determined by a.

An algebra A4 is called associative if

x(yvz2)=(xy)z x,y,z€ed
and commutative if
xXy=yx x,yeA.

From every algebra 4 we can obtain a second algebra 4°*® by defining

(xy)PP=yx

A°P? is called the algebra opposite to A. It is clear that if 4 is associative
then so is A°". If 4 is commutative we have A°**=4.

If A is an associative algebra, a subset S< A is called a system of gener-
ators of A if each vector x€4 is a linear combination of products of ele-
ments in S,

Xx=3ATPX, X, Xy, €8, A&l
)

A unit element (or identity) in an algebra is an element e such that for

every x
Xe=ex=x. (5.3)

If 4 has a unit element, then it is unique. In fact, if e and ¢’ are unit ele-
ments, we obtain from (5.3)

Let 4 be an algebra with unit element e, and ¢ be an epimorphism of
A onto a second algebra B. Then eg=¢e, is the unit element of B. In fact,
if yeB is arbitrary, there exists an element xe 4 such that y=¢x. This
gives

yep=0x Qe =0¢(xe)=o(x)=y.

In the same way it is shown that egy=y.
5.2. Examples: 1. Consider the space L(E; E) of all linear transfor-
mations of a vector space E. Define the product of two transformations

by Vo=yo0p.
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The relations (2.17) imply that the mapping (¢, ¥)—>y ¢ satisfies (M)
and (M,) and hence L(E; E) is made into an algebra. L(E; E) together
with this multiplication is called the algebra of linear transformations of E
and is denoted by 4 (E; E). The identity transformation : acts as unit
element in 4 (E; E). It follows from (2.14) that the algebra A(E; E) is
associative.

However, it is not commutative if dim E=2. In fact, write

E=(x)®(x)®F

where (x,) and (x,) are the one-dimensional subspaces generated by two
linearly independent vectors x; and x,, and F is a complementary sub-
space. Define linear transformations ¢ and y by

¢x; =0, ¢x,=x1; @y=0,yeF

and
Yxy =X Yx,=0; yYyy=0,yeF.
Then
oYx; =¢00=0
while
Yox,=yYx =x,
whence @Y+ ¢.

Suppose now that A is an associative algebra and consider the linear

mapping
prd— A(4; A4)
defined by
u(@)x =ax. 5.4
Then we have that
u(@b)x=abx = u(a)u(b)x

whence

u(ab) = u(@)u(d).

This relation shows that u is a homomorphism of 4 into 4(4; A4).

Example 2: Let M"*" be the vector space\of (nx n)-matrices for a
given integer n and define the product of two (n\x n)-matrices by formula
(3.20). Then it follows from the results of sec. 13).10 that the space M"*"
is made into an associative algebra under this multiplication with the
unit matrix J as unit element. Now consider a vector space E of dimen-
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sion » with a distinguished basis e, (v=1...n). Then every linear transfor-
mation ¢ : E— E determines a matrix M (¢). The correspondence ¢p— M (o)
determines a linear isomorphism of 4(E; E) onto M"*", In view of sec.
3.10 we have that

M(Y9) = M(@)M(). (3.21)

This relation shows that M is an isomorphism of the algebra 4(E; E)
onto the opposite algebra (M™*")°PP,

Example 3: Suppose I'y = I is a subfield. Then I' is an algebra over I';.
We show first that I' is a vector space over I'y. In fact, consider the map-
ping I'y x > T defined by

(A, x)—Ax, lel,xel.

It satisfies the relations
A+ wx=~Ax+pux
Ax+y)=Ax+ A4y
(Aw)x = A(ux)
Ix=x

where A, uel'y, x, yeI'. Thus I is a vector space over I',.
Define the multiplication in I’ by

(x,y)—xy (field multiplication).

Then M, and M, follow from the distribution laws for field multiplication.
Hence I' is an associative commutative algebra over I'; with 1 as unit
element.

Example 4: Let C" be the vector space of functions of a real variable ¢
which have derivatives up to order r. Defining the product by

(f8)(®) =f()g()
we obtain an associative and commutative algebra in which the function
f(©)=1 acts as unit element.

5.3. Subalgebras and ideals. A subalgebra, A,, of an algebra 4 is a
linear subspace which is closed under the multiplication in 4; that is, if
x and y are arbitrary elements of A4,, then xye 4;. Thus A, inherits the
structure of an algebra from A. It is clear that a subalgebra of an asso-
ciative (commutative) algebra is itself associative (commutative).

Let S be a subset of 4, and suppose that 4 is associative. Then the sub-
space Bc A generated (linearly) by elements of the form

5;y...5,, s;€S
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is clearly a subalgebra of A, called the subalgebra generated by S. It is
easily verified that

B=4,

where the A4, are all the subalgebras of A4 containing S.

A right (left) ideal in an algebra A is a subspace I such that for every
xel, and every yed, xyel(yxel). A subspace that is both a right and
left ideal is called a two-sided ideal, or simply an ideal in A. Clearly, every
right (left) ideal is a subalgebra. As an example of an ideal, consider the
subspace A2 (linearly generated by the products xy). A2 is clearly an ideal
and is called the derived algebra.

The ideal I generated by a set S is the intersection of all ideals containing
S. If A is associative, I is the subspace of A4 generated (linearly) by ele-
ments of the form

s,as,sa seS,aeAd.

In particular every single element a generates an ideal I,. I, is called the
principal ideal generated by a.

Example 5: Suppose A is an algebra with unit element e, and let
¢@:I'> A be the linear mapping defined by

pl=le.

Considering I" as an algebra over itself we have that

p(Am)=(Au)e=(Ae)(ue)=o0(W)e(n).

Hence ¢ is a homomorphism. Moreover, if ¢ 1=0, then Ae=0 whence
A=0. It follows that ¢ is a monomorphism. Consequently we may iden-
tify I' with its image under ¢. Then I" becomes a subalgebra of 4 and
scalar multiplication coincides with algebra multiplication. In fact, if 4
is any scalar, then

Aa=Aea)=(Ae)-a=¢(Aa.

5.4. Factor algebras. Let 4 be an algebra and B be an arbitrary sub-
space of A. Consider the canonical projectio

n:A— AlB.

It will be shown that 4/B admits a multiplicatior\ such that = is a homo-

morphism if and only if B is an ideal in 4. ‘3
Assume first that there exists such a multiplication in A4/B. Then for
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every xe A, ye B, we have

r(xy)=nxny=nx0=0
whence xyeB.
Similarly it follows that yxe B and so B must be an ideal.

Conversely, assume B is an ideal. Then define the multiplication in
A/B by

¥y=mn(xy) X%yeA/B (5.5)
where x and y are any representatives of ¥ and j respectively.

It has to be shown that the above product does not depend on the
choice of x and y. Let x" and y’ be two other elements such that 7x'=*
and ny"=j. Then

x'—xeB and y' —yeB.
Hence we can write
xX'=x+b, beB and y'=y+e¢, ceB.
It follows that
X'y —xy=by+xc+bceB
and so
n(x'y) =n(xy).

The multiplication in A/B clearly satisfies (M;) and (M,) as follows

from the linearity of n. Finally, rewriting (5.5) in the form
a(xy)=nxmy

we see that # is a homomorphism and that the multiplication in 4/B is

uniquely determined by the requirements that 7 be a homomorphism.

The vector space A/B together with the multiplication (5.5) is called the
Sactor algebra of A with respect to the ideal B. It is clear that if A4 is
associative (commutative) then so is 4/B. If 4 has a unit element e then
é=re is the unit element of the algebra A/B.

5.5. Homomorphisms. Suppose 4 and B are algebras and ¢:4—B is
a homomorphism. Then the kernel of ¢ is an ideal in 4. In fact, if
xeker ¢ and yeA are arbitrary we have that

p(xy)=0@x@y=00¢y=0
whence x yeker ¢. In the same way it follows that y xeker ¢. Next con-
sider the subspace Im ¢ < B. Since for every two elements x, ye 4

px-@py=¢(xy)elme
it follows that Im ¢ is a subalgebra of B.
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Now let
p:Alkero —» B

be the induced injective linear mapping. Then we have the commutative
diagram
£ A5 B
nl yu -]
Alker @

and since 7 is a homomorphism, it follows that

(nx-my)=on(xy)
=@(xy)
=¢(x) 0 (y)
=¢(nx) @(ny).

This relation shows that ¢ is a homomorphism and hence a monomor-
phism. In particular, the induced mapping

@:Alker @ =t Im e
is an isomorphism.

Finally, assume that C is a third algebra, and let {: B— C be a homo-
morphism. Then the composition Yo ¢: 4—C is again a homomorphism.
In fact, we have

Wop)(xy)=¥(ex 0))
=Yoxyoy
=We@)x(Wo0)y.

Let ¢: A— B be any homomorphism of associative algebras and S be
a system of generators for A. Then ¢ determines a set map ¢,:5—B by

PoXx=@Xx, xeS.
The homomorphism ¢ is completely determined by ¢,. In fact, if

x= M x, %, ,  x,€8,A el
)
is an arbitrary element we have that
px=3A"""0x, ...0x,
(v)

= ZAVI'“V" Po XV| Py xv,J

{v)
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Proposition I: Let ¢,:S— B be an arbitrary set map. Then ¢, can be
can be extended to a homomorphism ¢:4— B if and only if

YA Qo X, . @oX,, =0  whenever z):/l VP e X, = 0. (5.6)
o) o

Proof: 1t is clear that the above condition is necessary. Conversely,
assume that (5.6) is satisfied. Then define a mapping ¢:4— B by
® Z)éh---"p Xyy ooe Xy, = Z;é"‘“'"f’ P Xy, - Qo Xy, x, €S. (5.7
(v (v
To show that ¢ is, in fact, well defined we notice that if
Z&m...vp x“ xvp — Znul...uq y‘“ y”q
) (]
then

(Zl)évl..."px“ . xvp — (Z:)nlh...llq y‘“ . y“q =0.
v "

In view of (5.6)

Z)évlmvp(PO Xy, - Qo xvp _ (Z)nllx..-llq(Po y“l e g yllq =0
© *
and so

Z évl...\’p Po Xy, - Po xvp = Znﬂl---ﬂq PoVu, - Po yllq .

"
It follows from (5.7) that
QX = (@QgX xeS

p(Ax +py)=2ox+uepy
and

e(xy)=9xo@y
and hence ¢ is a homomorphism.

Now suppose {e,} is a basis for 4 and let ¢: 4— B be a linear map such
that

@ (ese5)= e, 0e;

for each a, B. Then ¢ is a homomorphism, as follows from the relation
oG9 = {X¢e) (;; n‘f e)}
= <P(§%5“'7’e« e) = ;ﬂi“n"tp (e) 0 (ep)
=XCte(e) (; 7 ¢(ep)) = 0 (x)0 ().
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5.6. Derivations. A linear mapping 6: A— A4 of an algebra into itself is
called a derivation if
0(xy)=0x-y+x-0y x,yed. (5.8)

As an example let A be the algebra of C®-functions f: R—R and
define the mapping 0 by 0:f—f" where f’ denotes the derivative of . Then
the elementary rules of calculus imply that § is a derivation.

If A has a unit element e it follows from (5.8) that

Oe=0e+0e

whence §e=0. A derivation is completely determined by its action on a
system of generators of 4, as follows from an argument similarly to that
used to prove the same result for homomorphisms. Moreover, if 0: 4— A4
is a linear map such that

0 (e e5) = 0(e,) es + ,0(ep)

where {e,} is a basis for 4, then 0 is a derivation in A4.
For every derivation 0 we have the Leibniz formula

0"(xy) = Z (':) 0 x-6"""y. (5.9

In fact, for n=1, (5.9) coincides with (5.8). Suppose now by induction
that (5.9) holds for some n. Then

0" (xy) = 00"(xy)

n n

= Z(;’) 0r+1x_0n—ry + Z <;1> orx.on—r+l y

r= r=
n

— .gnt1 n h r..on+i-r n+1
=x-0 y+Z[<r>+<n_r>]0x0 y+&  xey

r=

n

= x.9n+1y+z <n—;—1> O'X'O"_Hly + 0n+1x_y

r=1
n+1

— <n+1>0rx_0n+l—ry.
Z ; r
0

r=

and so the induction is closed.
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The image of a derivation 8 in A is of course a subspace of 4, but it is
in general not a subalgebra. Similarly, the kernel is a subalgebra, but it
is not, in general an ideal. To see that ker § is a subalgebra, we notice
that for any two elements x, yeker 0

f(xy)=0xy+x-0y=0
whence xyeker 6.

1t follows immediately from (5.8) that a linear combination of deri-
vations 0;: A— A is again a derivation in 4. But the product of two deri-
vations 0, 0, satisfies

(010:)(xy) = 0,(6,x y + x-0, )
=9192x'y+92x'91y+91X'92y+x'9192y (5.10)

and so is, in general, not a derivation. However, the commutator
[91,92] =0,0,~-0,0,

is again a derivation, as follows at once from (5.10).
5.7. ¢p-derivations. Let 4 and B be algebras and ¢:4A— B be a fixed
homomorphism. Then a linear mapping 8: A— B is called a ¢-derivation if

O(xy)=0x-0y +ox-0y x,yeA.

In particular, all derivations in A4 are i-derivations where 1: A— A4 denotes
the identity map.

As an example of a p-derivation, let A be the algebra of C*-functions
Jf:R—R and let B=R. Define the homomorphism ¢ to be the evaluation

homomorphism
P o:f > £(0)

0:f — f'(0).
Then it follows that
0(fg)=(fg) (0)
= f"(0)g(0) + f (0)g'(0)
=0f-pg+of-0g
and so 0 is a ¢-derivation.
More generally, if 0, is any derivation in A4, then 0=¢.0, is a ¢-
derivation. In fact,
0(xy) =@ 0,(xy)
=@(04xy+x0,y)
=@ x-0y+tox-@l,y
=0x-py+ox0y.

and the mapping 6 by

Similarly, if 8 is a derivation in B, then 0gz.¢ is a g-derivation.
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5.8. Antiderivations. Recall that an involution in a linear space is a
linear transformation whose square is the identity. Similarly we define an
involution w in an algebra A to be an endomorphism of A whose square
is the identity map. Clearly the identity map of 4 is an involution. If 4
has a unit element e it follows from sec. 5.1 that we=e.

Now let @ be a fixed involution in 4. A linear transformation Q: 4— A4
will be called an antiderivation with respect to w if it satisfies the relation

Qxy)=Q2x-y+wxQy. (5.11)

In particular, a derivation is an antiderivation with respect to the involu-
tion 1. As in the case of a derivation it is easy to show that an antideri-
vation is determined by its action on a system of generators for 4 and
that ker Q is a subalgebra of 4. Moreover, if 4 has a unit element e, then
Qe=0. It also follows easily that any linear combination of antideriva-
tions with respect to a fixed involution w is again an antiderivation with
respect to w.

Suppose next that Q, and Q, are antiderivations in 4 with respect to
the involutions w, and w, and assume that @, cw, =w,c®,. Then v, o,
is again an involution. The relations

() (xy)=Q(Qxy+ @, xQy)=2,Qxy+
+ ‘(6192”91}’ + Q2,0 2y + 0y 0x- 22,y
and N

(2,2)(xy) =2, (@2 x 'y +@;x 2, y)=2,Q, xy +
+ wz.le'sz + Qza)lx'gly + C()za)l x'ngly
yield

('Ql ingzgl)(xJ’)=
=(2,2, 4+ 2,Q)xy+ (0,2, Q0)x 2,y +
+ (0,2 0,Q)x Dy + 00, x (2,2, £ 2,2)y. (5.12)

Now consider the following special cases:

l. 0w,2,=2,»,; and w, Q; =0, w, (this is trivially true if w; = +1and
@, = t1). Then the relation shows that Q, Q, —Q, Q, is an antiderivation
with respect to the involution @, w,. In particular, if Q is an antiderivation
with respect to w and 6 is a derivation such that w0 =0w, then 6Q—-Q0
is again an antiderivation with respect to .

2. w,Q,=-Q,0,and 0,2, = —Q, w,. Then 2, Q, + 2, 2, is an anti-
derivation with respect to the involution @, w,.
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Now let 2, and @, be two antiderivations with respect to the same
involution @ such that

o =-Qeo (i=12).

Then it follows that Q, 2,4+ Q, Q, is a derivation. In particular, if Q is
any antiderivation such that
0oQ=-Qw
then Q2 is a derivation. :
Finally, let B be a second algebra, and let ¢ : A— B be a homomorphism.
Assume that w, is an involution in A. Then a ¢-antiderivation with re-
spect to w, is a linear mapping Q: A— B satisfying

Qxy)=Qxpy+ow,x-Qy. (5.13)
If wg is an involution in B such that

pwy=wgP
then equation (5.13) can be rewritten in the form

Qxy)=Qx @y +wgepx-Qy.

Problems

1. Let A be an arbitrary algebra and consider the set C(A4) of elements
ae A that commute with every element in 4. Show that C(4) is a subspace
of A. If A is associative, prove that C(4) is a subalgebra of 4. C(4) is
called the centre of A.

2. If A is any algebra and 0 is a derivation in 4, prove that C(4) and
the derived algebra are stable under 0.

3. Construct an explicit example to prove that the sum of two endo-
morphisms is in general not an endomorphism.

4. Suppose ¢:A— B is a homomorphism of algebras and let 1£0, 1 be
an arbitrarily chosen scalar. Prove that 1¢ is a homomorphism if and
only if the derived algebra is contained in ker ¢.

5. Let C! and C denote respectively the algebras of continuously differ-
entiable and continuous functions f: R— R (cf. Example 4). Consider the
linear mapping

d:C*>C

given by df=f"' where f"' is the derivative of f.
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a) Prove that this is an i-derivation where i:C'— C denotes the ca-
nonical injection.
b) Show that d is surjective and construct a right inverse for d.
¢) Prove that d cannot be extended to a derivation in the algebra C.
6. Suppose A is an associative commutative algebra and 8 is a deri-
vation in 4. Prove that
6x? = px?~10(x).

7. Suppose that 0 is a derivation in an associative commutative algebra
A with identity e and assume that xe A is invertible; i.e.; there exists an
element x~! such that

-1

xx l=x"lx=e.

Prove that x? (p=1) is invertible and that
()7 = (.
Denoting the inverse of x? by x~? show that for every derivation 0
0(x7?)=—px2710(x).

8. Let L be an algebra in which the product of two elements x, y is
denoted by [x, ¥]. Assume that

[x,] +[y,x] =0 (skew symmetry)
(Cx, ¥1. 2] + [y, Zl)g]# [[z,x],y] =0 (Jacobi identity)

Then L is called a Lie algeb\rg.
Let Ad(a) be the multiplicatioh operator in the Lie algebra L. Prove that
Ad(a) is a derivation.

9. Let A be an associative algebra with product xy. Show that the
multiplication (x, y)-[x, y] where

A [x,y]=xy—yx
makes A4 into a Lie algebra.

10. Let A be any algebra and consider the space D(A) of derivations
in A. Define a multiplication in D (A4) by setting

[91,92] =0,0,—-0,0,.

a) Prove that D(A) is a Lie algebra.

b) Assume that A is a Lie algebra itself and consider the mapping
¢:A-D(A) given by ¢:x—Adx. Show that ¢ is a homomorphism of
Lie algebras. Determine the kernel of ¢.
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11. If L is a Lie algebra and 7 is an ideal in A4, prove that the algebra
L/I is again a Lie algebra.
12. Let E be a finite dimensional vector space. Show that the mapping

®: A(E; E) > A(E*; EX)?P

given by ¢—¢* is an isomorphism of algebras.

13. Let 4 be any algebra with identity and consider the multiplication
operator piA—->A(A; A).
Show that u is a monomorphism. If 4=L(E; E) show that by a suitable
restriction of 4 a monomorphism

GL(E)- GL(L(E; E)
can be obtained.
14. Let E be an n-dimensional vector space. Show that each basis e;
(i=1...n) of E determines a basis g;; (i, j=1...n) of L(E; E) such that

1) QijQu = 51'1 Qi
ii) ZQii =1.

Conversely, given n? linear transformations g; ; of E satisfying i) and ii),
prove that they form a basis of L(E; E) and are induced by a basis of E.

Show that two bases ¢; and e; of E determine the same basis of L(E; E)
if and only if e;=1e;, 1T

15. Define an equivalence relation in the set of all n*-tuples (¢...¢,2),
¢,eL(E; E), in the following way:

((Pl (Pnz) ~ (lpl lp,,z)
if and only if there exists an element yeG L(E) such that

Ya=x0ax”t (A=1..n%)
Prove that
(15 0g2) ~(A@y...20,) Ael.
onlyif A=1.

16. Prove that the bases of L(E; E) defined in problem 14 form an
equivalence class under the equivalence relation of problem 15. Use this
to show that every non-zero endomorphism @: A(E; E)>A(E; E) is an
inner automorphism; i.e., there exists a fixed linear automorphism « of E

such that 1

d(p)=0a@a ' @eA(E;E).

17. Let A be an associative algebra, and let L denote the corresponding
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Lie algebra (cf. problem 9). Show that a linear mapping §:4—>A is a
derivation in A4 only if it is a derivation in L.

18. Let E be a finite dimensional vector space and consider the map-
ping 0,: A(E; E)—> A(E; E) defined by

91 ((P) =g — o
Prove that 0, is a derivation. Conversely, prove that every derivation in
A(E; E) is of this form.
Hint: Use problem 14.

§ 2. Ideals

5.9. The lattice of ideals. Let 4 be an algebra, and consider the set .#
of ideals in 4. We order this set by inclusion; i.e., if I; and I, are ideals
in A, then we write I, <1, if and only if I, <I,. The relation < is clearly
a partial order in £. Now let I, be any family of ideals in 4. Then it is

easily checked that 1, and NI,

are again ideals, and are in fact the least upper bound and the greatest
lower bound for the given family. Hence, the relation < induces in# the
structure of a lattice.

5.10. Nilpotent ideals. Let A be an associative algebra. Then an element
ae A will be called nilpotent if for some k,

ak=0. (5.14)

The least k for which (5.14) holds is called the degree of nilpotency of a.
An ideal I will be called nilpotent if for some k,

I*=0. (5.15)

The least k for which (5.15) holds is called the degree of nilpotency of I
and will be denoted by deg J.

5.11.* Radicals. Let 4 be an associative commutative algebra. Thenthe
nilpotent elements of A form an ideal. In fact, if x and y are nilpotent of
degree p and ¢q respectively we have that

ptq

(lx + lr‘J’)pM — Z <P‘*"q> liup+q—iyp+q—ixi

1
i=0
ptq . .
Z aixlyp+q—l
i=0

a Ioprami i pta—i
Yoax'yPTiThy N ax'yPTiTi =0
{a0 i=pt+1

I
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and
(xy)=x?y?=0.

The ideal consisting of the nilpotent elements is called the radical of A
and will be denoted by rad A. (The definition of radical can be generalized
to the non-commutative case; the theory is then much more difficult and
belongs to the theory of rings and algebras. The reader is referred to [14]).
It is clear that

rad(rad4) =rad 4.

The factor algebra A/rad A contains no non-zero nilpotent elements.
To prove this assume that e A/rad 4 is an element such that ¥ =0 for
some k. Then x*erad 4 and hence the definition of rad A4 yields

= (x¥) = 0.

It follows that xerad 4 whence £=0. The above result can be expressed
by the formula
rad (4/rad 4) = 0.

Now assume that the algebra 4 has dimension n. Then rad A4 is a nil-
potent ideal, and

deg(rad 4) £ dim(rad4)+ 1= n + 1. (5.16)

For the proof, we choose a basis ey, ..., e, of rad 4. Then each ¢; is nil-
potent. Let k=max (deg ¢;), and consider the ideal (rad A)*. An arbitrary
i

element in this ideal is a sum of elements of the form

eki ek
where

ky +-+k =kr.
In particular, for some i, k;=k and so €'...e¥" =0. This shows that
(rad 4)" =0
and so rad A is nilpotent.
Now let s be the degree of nilpotency of rad 4, and suppose that for

some m<s,
(rad A)" = (rad A)"*!. (5.17)

Then we obtain by induction that

(rad )" = (rad 4)"*! = (rad 4)"*? =-.. = (rad 4)’' = 0
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which is a contradiction. Hence (5.17) is false and so in particular
dim(rad A)" > dim(rad 4)"*!, m <s.

It follows at once that s —1 cannot be greater than the dimension of rad A,
which proves (5.16).

As a corollary, we notice that for any nilpotent element xe A4, its degree
of nilpotency is less than or equal to n+1,

degx=n+1.

5.12.* Simple algebras. An algebra A is called simple if it has no proper
non-trivial ideals and if A2+0. As an example consider a field I'" as an
algebra over a subfield I'y. Let I+ 0 be an ideal in I'. If x is a non-zero
element of I, then

1=x"1txel
and it follows that

r=r-i1<li

whence I'=1. Since I'>%0, I' is simple.

As a second example consider the algebra A(E; E) where E is a vector
space of dimension »n. Suppose 7 is a non-trivial ideal in A (E; E) and let
¢@+0 be an arbitrary element of I. Then there exists a vector ae E such
that ¢ a+0. Now define the linear transformations ¢; by

pe=0a iLk=1..n

where ¢;(i=1---n) is a basis of E. Choose linear transformations y; such
that
‘l/i(Pa:ei i=1...n.

Let ye A(E; E) be arbitrary and of let be the matrix of y with respect to
the basis e;. Then
Ve = Z“l{ej = Z“l{‘/’jq’a = (.Z“{‘pj‘P(Pi)ek
J J i J
whence

V=2 ody;00.
LJ

It follows that Yel and so I=A(E; E). Since, (clearly) 4 (E; E)*#+0,
A(E;E) is a simple algebra. The following theorem (without proof) is
offered to the reader and it is suggested that he treat it as a difficult
exercise.
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Theorem I: 1f A is a simple commutative associative algebra over I’
then 4 is an extension field for I'.

5.13.* Totally reducible algebras. An algebra A is called rotally reduc-
ible if to every ideal I there is a complementary ideal I,

A=I@I.

Every ideal I in a totally reducible algebra is itself a totally reducible
algebra. In fact, let I’ be a complementary ideal. Then

I''cInl'=0.
Consequently, if J is an ideal in 7, we have

J'IcJ and J-I'cI'I'=0
whence
J-AcJ.

It follows that J is an ideal in A. Let J' be a complementary ideal in 4,
A=J®J .
Intersecting with I and observing that J<I we obtain
I=sJ®InJ.

It follows that I is again totally reducible.

An algebra, A, is called irreducible if it cannot be written as the direct
sum of two non-trivial ideals.

5.14.* Semisimple algebras. In this section A will denote a finite-dimen-
sional associative commutative algebra. 4 will be called semisimple if it
is totally reducible and if for every non-zero ideal I +0.

Proposition I If A is totally reducible, then A is the direct sum of its
radical and a semisimple ideal. The square of the radical is zero.

Proof: Let B denote a complementary ideal for rad A4,

A=radA®B.

Since B= A/rad A it follows that B contains no non-zero nilpotent ele-
ments and so, B2+0. It follows from sec. (5.13) that B is totally reducible
and hence B is semisimple.

To show that the square of rad A is zero, let k be the degree of nil-
potency of rad 4, (rad 4)*=0. Then (rad 4)*~! is an ideal in rad A4, and
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so there exists a complementary ideal J,
(rad A} ' @J =rad 4.

Now we have the relations

(rad 4*")? =rad 4* =0 (5.18)
J-(rad )1 =0 (5.19)
J*" o (rad Ay~ nJ=0. (5.20)

From (5.18), (5.19) and (5.20) we obtain that

(radA)max (2,k—1) _ 0.
But (rad A)*"'+0 and so
(rad 4)> = 0.

Corollary: A is semisimple if and only if A4 is totally reducible and
rad A=0.

Proof: 1If A is totally reducible and rad 4=0, then A4 is semisimple, as
follows at once from Proposition I.

Conversely, suppose that A4 is semisimple. Then clearly, A is totally
reducible. Moreover, if rad A+0, let k be the degree of nilpotency of
rad A. Then (rad A)*~! is a non-trivial ideal in 4 whose square is zero,
which contradicts the semisimplicity of 4. Hence rad 4A=0.

Since A4 has finite dimension, a minimality argument shows that if 4
is a semisimple, then A is the direct sum of simple algebras. The following
two theorems are reasonably non-trivial, but are not needed in the rest
of the book. Thus we do not supply proofs, but leave them as exercises
to the interested readers, remarking only that theorem II follows from
theorem L. ‘

Theorem II: If A is semisimple, then A has an identity.

Theorem III: A is semisimple if and only if rad 4=0.

Problems
1. Suppose thatI,, I, are ideals in an algebra A. Prove that
(L, + )/ =2 LI NL).

2. Show that the algebra C' defined in Example 4, § 1, has no nilpotent
elements.
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3. Consider the set S of step functions f: [0,1]— R. Show that the oper-
ations
(f+(O=r0)+20)
(Af)(1) = Af ()
(o)) =1 (e

make S into a commutative associative algebra with identity. (A function
f:[0,1]-> R is called a step function if there exists a decomposition of the
unit interval,

O=ty<t; < <t,=1

such that f'is constant in every interval ¢, <t<t;(i=1...n).

4. Show that the algebra constructed in problem 3 has zero divisors,
but no non-zero nilpotent elements.

5. Show that the algebra S of problem 3 has ideals which are not
principal. Let (@, b)<[0,1] be any open interval, and let f be a step func-
tion such that £ (t)=0 if and only if a<t<b. Prove that the ideal gener-
ated by f is precisely the subset of functions g such that g()=0 for
a<t<b.

6. Let I be any principal ideal in S (cf. problem 3). Show that there
exists a complementary principal ideal I,. Conversely, if S=I®I, is a
decomposition of S into ideals, prove that I and I, are principal.

7. Let E be an algebra with identity. Show that if E is totally reducible,
then every ideal is principal.

8. Let E be an infinite dimensional vector space. Show that the linear
transformations of E whose kernels have finite codimension form an
ideal. Conclude that A(E; E) is not simple.

Hint: See problem 11, chap. I1, § 6 and problem 8, chap. [, § 4.

§ 3. Change of coefficient ficld of a vector space

5.15. Vector space over a subfield. Let E be a vector space over a field
I' and let 4 be a subfield of I'. The vector space structure of E is given by
a mapping

I' xE->E

satisfying the conditions (I1.1), (11.2) and (I1.3) of sec. L.1. The restriction
of this mapping to 4 x E satisfies again these conditions, and so it deter-
mines on E the structure of a vector space over 4. A subspace (factor
space) of E considered as a A-vector space, will be called a A-subspace
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(4-factor space). Similarly we refer to I'-subspaces and I'-factor spaces.
Clearly every I'-subspace (factor space) is a A-subspace (4-factor space).

Now let F be a second vector space over I' and suppose that ¢: E-F
is a I'-linear mapping; i.e.,

e(Ax+py)=iox+pey x,yeE A puel.

Then ¢ is a A-linear mapping if £ and F are considered as 4-vector spaces.

As an example, consider the field I' as a 1-dimensional vector space
over itself. Then (cf. sec. 5.2 Example 3) I' is an algebra over 4.

5.16. Dimensions. To distinguish between the dimensions of E over I'
and 4 we shall write dim E and dim, E. Suppose now that I' is finite
dimensional over 4. Assume further that the dimension of E over I is
finite. It will be shown that

dim, E = dim, E-dim,I".

Let ¢;(i=1...n) be a basis of E over I and consider the I'-subspace E;
of E generated by e;. Then there is a I'-isomorphism ¢:I'Z, E;. But ¢ is
also a A-isomorphism and hence it follows that

dim,E, = dim,I, i=1...n. (5.21)

Since the A-vector space E is the direct sum of the A-vector spaces E; we
obtain from (5.21) that

dim E =n-dim,I' =dim  E-dim,I".

As an example let E be a complex vector space of dimension #. Then,
since dimgp C=2, E, considered as a real vector space, has dimension 2n.
If z,(v=1...n) is a basis of the complex vector space E then the vectors
z,, iz,(v=1...n) form a basis of E considered as a real vector space.

5.17. Algebras over subfields. Again let 4 be a subfield of I' and let 4
be an algebra over I'. Then 4 may be considered as a vector space over 4,
and it is clear that A, together with its A-vector space structure, is an
algebra over 4. We (in a way similar to the case of vector spaces) distin-
guish between A-subalgebras, A-homomorphisms and I'-subalgebras, I'-
homomorphisms. Clearly every I'-subalgebra, (I'-homomorphism) is a
A4-subalgebra, (4-homomorphism).

5.18. Extension fields as subalgebras of A,(E; E). Let E be a non-
trivial vector space over I' and A =T be a subfield. Then E can be con-
sidered as a vector space over 4. Denote by A,(E: E) the algebra (over 4)
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of 4-linear transformations of E. Define a mapping

&:I' > A,(E; E)
by
P (t)x = ax, oel,xeE (5.22)

where ax is the ordinary scalar multiplication defined between I' and E.
Then

&(p)x = (2B)x = a(Bx) = () B (B)x

and
P+ pf)x=(@+px=ax+fx
=@ (a)x + P(f)x
=(®(@)+ ®(B)x
whence
P(a+ B)=P()+ o(p)
and

D)= (1) 2(f) o fel.

Since 4 < F, it follows that @ is a A-homomorphism. Moreover, @ is in-
jective. In fact, @ (x)=0 implies that «x=0 for every xeE whence a=0.

Since ¢ is a monomorphism we may identify I’ with the 4-subalgebra
Im & of A,(E; E).

Conversely, let E be a vector space over a field 4 and assume that
I'cA,(E; E) is a field containing the identity. We may identify 4 with
the subalgebra of I consisting of elements of the form A1, A4, the iden-
tification map being given by A—A:. Then we have A<T';i.e., 4 is a sub-
field of I.

Now define a mapping I' x E— E by

(p,x)>@x  ¢@el,xeE. (5.23)

Then we have the relations
oY (x)= oY x)
p(x+y)=¢x+oy
(p+¥P)x=0x+yYx
1IX=X x,veE; @, yel,

and hence E is made into a vector space over I'.

The restriction of the mapping (5.23) to 4 gives the original structure
of E as a vector space over 4 while the mapping @ restricted to 4 reduces
to the canonical injection of 4 into A4(E; E).
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5.19. Linear transformations over extension fields. Let 4 =TI be a sub-
field and E be a vector space over I'. Then we have shown that A, (E; E)c
A4(E; E). Now we shall prove the more precise

Proposition: Ar(E; E) is the subalgebra of A,(E; E) consisting of
those 4-linear transformations which commute with every 4-linear trans-
formation of the form

giX—r0X, ael.

Proof: Let peA; (E; E). Then

plx)=apx  xeEael
and so
Poby==Eo0@. (5.24)

Conversely, if (5.24) holds, then by inverting the above argument we ob-
tain that pe A (E; E).

Corollary: Suppose E is a vector space over 4 and '« A,(E; E) is a field
such that 1eI'. Then a transformation @eAd, (E; E) is contained in
Ar(E; E) if and only if it commutes with every 4-linear transformation
inT.

Problems

1. Suppose A<T is a subfield of I such that I" has finite dimension
over A. Suppose further that A = I' is a subalgebra such that 4 = 4. Prove
that A is a subfield of I'.

2. Show that if A =T is a subfield, and I has finite dimension over 4,
then there are no non-trivial derivations in the A-algebra I'.

3. A complex number z is called algebraic if it satisfies an equation of
the form

n
Y a,27=0  («, rational)
v=1
where not all the coefficients a, are zero. Prove that the algebraic numbers

are a subfield, 4, of C and that A4 has infinite dimension over the rationals.
Prove that there are no non-trivial derivations in A.



Chapter VI

Gradations and homology

In this chapter all vector spaces are defined over a fixed, but arbitrarily
chosen field I of characteristic O.

§ 1. G-graded vector spaces

6.1. Definition. Let E be a vector space and G' be an abelian group.
Suppose that a direct decomposition
E= Y E, 6.1)
ael
is given and that to every subspace E, an element k (o) of G is assigned
such that the mapping a—k («) is injective. Then E is called a G-graded
vector space. G is called the group of degrees for E. The vectors of E, are
called homogeneous of degree k («) and we shall write

degx = k(2), xeE,.

In particular, the zero vector is homogeneous of every degree. If the
mapping a— k() is bijective we may use the group G as index set in the
decomposition (6.1). Then formula (6.1) reads

E = Z Ek

keG
where E; denotes the subspace of the homogeneous elements of degree k.

If G=2, E will be called simply a graded vector space. Suppose that
E is a vector space with direct decomposition

E=Y E (keZ).
k=0

Then by setting E, =0 (K< —1) we make E into a graded space, and when-

ever we refer to the graded space E=) E,, we shall mean this particular
k=0

gradation. A gradation of E such that E, =0, k< — 1, is called a positive
gradation.
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Now let E be a G-graded space, E=) E,, and consider a subspace
Fc E such that ke
F= ) FnE.
keG
Then a G-gradation is induced in F by assigning the degree k to the vec-
tors of Fn E,. F together with its induced gradation is called a G-graded
subspace of E.

Suppose next that E* is a family of G-graded spaces indexed by a set I
and let E be the direct sum of the E*. Then a G-gradation is induced in
E by

E= Y E, where E,= Y E;.
iel

keG

This follows from the relation

E= ) E'= Y Y E= 2 ZEk 2 E.
Ael Ael keG keG A keG
6.2. Linear mappings of G-graded spaces. Let E and F be two G-graded
spaces and let ¢ : E— F be a linear map. The map ¢ is called homogeneous
if there exists a fixed element ke G such that

9oE;cF,,, jeG (6.2)

k is called the degree of the homogeneous mapping ¢. The kernel of a
homogeneous mapping is a graded subspace of E. In fact, if ¢;: E-»E; and
6;:F—F; denote the projection operators in E and F induced by the
gradations of E and F it follows from (6.2) that

Or+jo @ =®og;. (6.3)

Relation (6.3) implies that ker ¢ is stable under the projection operators
¢, and hence ker ¢ is a G-graded subspace of E. Similarly, the image of ¢
is a G-graded subspace of F.

Now let E be a G-graded vector space, F be an arbitrary vector space
{without gradation) and suppose that ¢: E—Fis a linear map of E onto F
such that ker ¢ is a graded subspace of E. Then there is a uniquely deter-
mined G-gradation in F such that ¢ is homogeneous of degree zero. The
G-gradation of F is given explicitly by

F= 3} F (6.4)
JjeG
where
F,=¢(E).
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To show that (6.4) defines a G-gradation in F, we notice first that since
o is onto,
i i

To prove that the decomposition (6.4) is direct assume that

Zyj =0 where y;eF;.
J

Since F;=¢ E; every y; can be written in the form y;= ¢ x;, x;€E;. It fol-
lows that ¢ ) x;=0 whence
J

Y x;ekero.
7
Since ker ¢ is a graded subspace of E we obtain
x;ekero foreach j

whence y;=¢x;=0. Thus the decomposition (6.4) is direct and hence it
defines a G-gradation in F. Clearly, the mapping ¢ is homogeneous of
degree zero with respect to the induced gradation.

Finally, it is clear that any G-gradation of F such that ¢ is homogene-
ous of degree zero must assign to the elements of F; the degree j. In view
of the decomposition (6.4) it follows that this G-gradation is uniquely
determined by the requirement that ¢ be homogeneous of degree zero.

This result implies in particular that there is a unique G-gradation de-
termined in the factor space of E with respect to a G-graded subspace
such that the canonical projection is homogeneous of degree zero. Such
a factor space, together with its G-gradation, is called a G-graded factor
space of E.

Now let E= Y E, and F= ) F,betwo G-graded spaces, and suppose
that keG keG

¢:E->F

is a linear mapping homogeneous of degree /. Denote by ¢, the restriction
of ¢ to E,,

O Ey - Fpyy.
Then clearly
o= 0.
keG

It follows that ¢ is injective (surjective, bijective) if and only if each ¢, is
injective (surjective, bijective).
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6.3. Gradations with respect to several groups. Suppose that 7:G—G'’
is a homomorphism of G into another abelian group G’. Then a G-
gradation of E induces a G’'-gradation of E by

E=YE; where Ez;= ) E,. (6.5)
B T(0)=§

To prove this we note first that
E=2XE
8

since E, < E,,. The directness of the decomposition (6.5) follows from the
fact that every space E; is a sum of certain subspaces E, and that the
decomposition E=) E, is direct.

a&

A G p-gradation is a gradation with respect to the group G,=G®...®G.
>
If G=12, we refer simply to a p-gradation of E. Given a G p-gradation in
E consider the homomorphism
1:G,->G
given by
T(kl,,... kp) = kl + b + kp.

The induced (simple) G-gradation of E is given by

E=YF, F= Y E,® - ®E,. 6.6)
I kit tkp=j
The G-gradation (6.6) of E is called the (simple) G-gradation induced by
the given G p-gradation.
Finally, suppose E is a vector space, and assume that

E=YE, E=Y F 6.7y

jeG keH

define G and H-gradations in E. Then the gradations will be called com-
patible if
E = Z E] ﬂ Fk .
ik

If the two gradations given by (6.7) are compatible, they determine a
(G@ H)-gradation in E by the assignment

(. k)= E; 0 Fy.
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Conversely, suppose a (G® H )-gradation in E is given
E=YE;;.
Jiok
Then compatible G and H-gradations of E are defined by
E= Y E;, E;j=) E;;

jeG keH
and

E= Z Fk’ Fk= Z Ej,k'

keH jeG

Moreover, the (G@®H)-gradation of E determined by these G and H-
gradations is given by

E;v=E;nF, jeGkeH.
6.4. The Poincaré series. A gradation E=) E, of a vector space E is
k

called almost finite if the dimension of every space E, is finite. To every
almost finite positive gradation we assign the formal series

Py (t) =Y dimE,-¢*.
k
Pg(2) is called the Poincaré series of the graded space E. If the dimension
of E is finite, then Pg(¢) is a polynomial and
P;(1)=dimE.

The direct sum of two almost finite positively-graded spaces F and F
is again an almost finite positively graded space, and its Poincaré series
is given by

Pror(t) = Pg(t) + Pp(2).

Two almost finite positively graded spaces E and F are connected by a
homogeneous linear isomorphism of degree O if and only if Pg= Pp. In
fact, suppose

Q: E-F

is such a homogeneous linear isomorphism of degree 0. Writing
o=2 ®
k=0
(cf. sec. 6.2) we obtain that each ¢, is a linear isomorphism,

¢y: E, > F,.
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Hence
dimE, = dim F, (k=0,1,...) 6.8)
and so
Py = P;.

Conversely, assume that P;= P,. Then (6.8) must hold, and thus there
are linear isomorphisms

(Pk:Ek—E) Fk' (6'9)

Since E= Y, E; we can construct the linear mapping
k=0

e o]
¢=72 ¢:E-F
k=0

which is clearly homogeneous of degree zero. Moreover, in view of sec.
(6.2) it follows from (6.9) that ¢ is a linear isomorphism.

6.5. Dual G-graded spaces. Suppose E= ) E and F= ) F, aretwo G-
graded vector spaces, and assume that *<¢ ke

¢:ExF->T

is a bilinear function. Then we say that ¢ respects the G-gradations of E
and Fif
, @/E, x F; =0 (6.10)

for each pair of distinct degrees, k.
Every bilinear function ¢: E x F—I" which respects G-gradations deter-
mines bilinear functions ¢,: E; x F,—»T (keG) by

@|E, xF,=¢,, keG. (6.11)

Conversely, if any bilinear functions ¢,: E, x F,—»I' are given, then a
unique bilinear function ¢:Ex F—TI which respects G-gradations is de-
termined by (6.10) and (6.11).

In particular, it follows that ¢ is non-degenerate if and only if each ¢,
is non-degenerate. Thus a scalar product which respects G-gradations
determines a scalar product between each pair (E,, F,), and conversely if
a scalar product is defined between each pair (E;, F,) then the given scalar
product can be extended in a unique way to a G-gradation-respecting scalar
product between E and F. E and F, together with a G-gradation-respecting
scalar product, will be called dual G-graded spaces.

Now suppose that £ and F ar¢ dual almost finite G-graded spaces.
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Then E, and F; are dual, and so
dimE, =dimF, keG.
In particular, if G=Z and the gradations of E and F are positive, we have

PE=PF'

Problems

1. Let ¢: E—F be an injective linear mapping. Assume that F is a G-
graded vector space and that Im ¢ is a G-graded subspace of F. Prove
that there is a unique G-gradation in E so that ¢ becomes homogeneous
of degree zero.

2. Prove that every G-graded subspace of a G-graded vector space has
a complementary G-graded subspace.

3. Let E, F be G-graded vector spaces and suppose that E,cE, F;c F
are G-graded subspaces. Let ¢: E— F be a linear mapping homogeneous
of degree k. Assume that ¢ can be restricted to E,, F; to obtain a linear
mapping ¢;:E;—F; and an induced mapping

@:E|E, > F|F;.

Prove that ¢, and ¢ are homogeneous of degree k.

4. If @, E, F are as in problem 3, prove that if ¢ has a left (right) in-
verse, then a left (right) fomogeneous inverse of ¢ must exist. What are
the possible degrees of such a homogeneous left (right) inverse mapping?

5. Let E,, E,, E; be G-graded vector spaces. Suppose that ¢:E;—>FE,
and Y: E; - E; are linear mappings, homogeneous of degree k and [/ re-
spectively. Assume that i can be factored over ¢. Prove that y can be
factored over ¢ with a homogeneous linear mapping yx:E,—E; and
determine the degree of .

Hint: See problem 5, chap. II, § 1.

6. Let E, E* and F, F* be two pairs of dual G-graded vector spaces.

Assume that
¢:E—-F and o¢*.E*« F*

are dual linear mappings. If ¢ is homogeneous of degree &, prove that ¢*
is homogeneous of degree k.

7. Let E be an almost finite graded space. Suppose that Ef and E are
G-graded spaces each of which is dual to the G-graded space E. Construct
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a homogeneous linear isomorphism of degree zero
* *
1 2

E

Ir

¢ E
such that
(py*,xy =<(y*,x) y*eE}, xeE.

8. Let E, E* be a pair of almost finite dual G-graded spaces. Let F be
a G-graded subspace of E. Prove that F* is a G-graded subspace of E*
and that (F*)'=F.

9. Suppose E, E*, F are as in problem 6. Let F; be a complementary
G-graded subspace for Fin E (cf. problem 2). Prove that

E*=F'@®F{

and that F, F{ and F,, F* are two pairs of dual G-graded spaces.

10. Suppose E, E* and F, F* are two pairs of almost finite dval G-
graded vector spaces, and let ¢: E— F be a linear mapping homogeneous
of degree k. Prove that ¢* exists.

11. Suppose E, E* is a pair of almost finite dual G-graded vector
spaces. Let {x,} be a basis of E consisting of the set union of bases for the
homogeneous subspaces of E. Prove that a dual basis {x**} in E* exists.

12. Let E and F be two G-graded vector spaces and ¢ : E— F be a homo-
geneous linear mapping of degree k. Assume further that a homomorphism
®:G—-H is given. Prove that ¢ is homogeneous of degree w (k) with er-
spect to the induced H-gradation.

§ 2. G-graded algebras

6.6. G-graded algebras. Let 4 be an algebra and suppose that a G-

gradation A= )’ A, is defined in the vector space A. Then A is called a
keG

G-graded algebra if for every two homogeneous elements x and y, xy 1s
homogeneous, and
deg(xy) = degx + degy. 6.12)

Suppose that 4= ) A, is a graded algebra with identity element e.
keG

The e is homogeneous of degree 0. In fact, writing

e= Y ¢  ecA,
ke G
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we obtain for each xe A4 that

x=xe= ) Xe.
keG

Hence if x is homogeneous of degree /

z Xe €Ak

keG
whence

xe=0 for k+0
and so
Xey=X. (6.13)

Since (6.13) holds for each homogeneous vector x it follows that e, is
a right identity for 4, whence

e=ceey=eg.

Thus e A, and so it is homogeneous of degree 0.

It is clear that every subalgebra of A4 that is simultaneously a G-graded
subspace, is a G-graded algebra. Such subalgebras are called G-graded
subalgebras.

Now suppose that /c 4 is a G-graded ideal. Then the factor algebra
A/I has a natural G-gradation as a linear space (cf. sec. 6.2) such that the
canonical projection 7: A— A/I is homogeneous of degree zero. Hence if
% and 7 are any two homogeneous elements in 4/I we have

y=yx=n(xy)
and so X7 is homogeneous. Moreover,
deg(xy) = deg(x y) = degx + degy = degx + degy.

Consequently, 4/l is a G-graded algebra.

More generally, if Bis a second algebra without gradation, and ¢p: 4> B
is an epimorphism whose kernel is a G-graded ideal in A4, then the induced
G-gradation (cf. sec. 6.2) makes B into a G-graded algebra.

Now let 4 and B be G-graded algebras, and assume that p: 4> Bis a
homogeneous homomorphism of degree k. Then ker ¢ is a G-graded
ideal in 4 and Im ¢ is a G-graded subalgebra of B.

Suppose next that 4 is a G-graded algebra, and 1:G—-G’ is a homo-
morphism, G’ being a second abelian group. Then it is easily checked
that the induced G'-gradation of 4 makes 4 into a G'-graded algebra.
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The reader should also verify that if E is simultaneously a G- and an
H-graded algebra such that the gradations are compatible, then the in-
duced (GD H)-gradation of 4 makes A into a (G® H)-graded algebra.

A graded algebra A is called anticommutative if for every two homo-
geneous elements x and y

xy=(_ l)degxdegyyx.

If x and y are two homogeneous elements in an associative anticommu-
tative graded algebra such that deg x - deg y is even, then x and y com-
mute, and so we obtain the binomial formula

n

(x+y)= Z (?) Xy

i=0

In every graded algebra A= ) A, an involution w is defined by
k

wox=(-1¢x, xed,. (6.14)
In fact, if xe 4, and ye 4, are two homogeneous elements we have
oxy)=(-1)"xy=(-1)x(-)y=0xowy
and so w preserves products. It follows immediately from (6.14) that
w?=1and so w is an involution. @ will be called the canonical involution
of the graded algebra A4.
A homogeneous antiderivation with respect to the canonical involution

(6.14) will simply be called an antiderivation in the graded algebra A. It
satisfies the relation

Qxy)=Qxy+(—1x-Qy, xeA,yeA.

If Q, and Q, are antiderivations of odd degree then Q, 2, +Q,Q, is a
derivation. If Q is an antiderivation of odd degree and 6 is a derivation
then 0—0€Q is an antiderivation (cf. sec. 5.8).

Now assume that A is an associative anticommutative graded algebra
and let heA be a fixed element of odd (even) degree. Then, if Q is a
homogeneous antiderivation, u(h)Q is a homogeneous derivation (anti-
derivation) and if 6 is a homogeneous derivation, u(/)0 is a homogeneous
antiderivation (derivation) as is easily checked.

Problems

1. Let 4 be a G-graded algebra and suppose x is an invertible element
homogeneous of degree k (cf. problem 7, chap. V, § 1). Prove that x~*



172 Chapter VI. Gradations and hormology

is homogeneous and calculate the degree. Conclude that if 4 is a positively
graded algebra, then k=0.

2. Suppose that 4 is a graded algebra without zero divisors. Prove that
every invertible element is homogeneous of degree zero.

3. Let E, F be G-graded vector spaces. Show that the vector space
Lg(E; F) generated by the homogeneous linear mappings ¢: E—F is a
subspace of L (E; F). Define a natural G-gradation in this subspace such
that an element g€ L (E; F) is homogeneous if and only if it is a homo-
geneous linear mapping.

4. Prove that the G-graded space Lg(E; E) (E is a G-graded vector
space) is a subalgebra of A(E; E). Prove that the G-gradation makes
L;(E; E) into a G-graded algebra (which is denoted by A¢(E; E)).

5. Let E be a positively graded vector space. Show that an injective
(surjective) linear mapping @€ L, (E; E) has degree <0(=0). Conclude
that a homogeneous linear automorphism of E has degree zero.

6. Let A be a positively graded algebra. Show that the subset 4, of A
consisting of the linear combinations of homogeneous elements of degree
=k is an ideal.

7. Let E, E* be a pair of almost finite dual G-graded vector spaces.
Construct an isomorphism of algebras:

®: Ag(E;E) > Ag(E*; E*)®.

Hint: See problem 12, chap. V, § 1.
Show that there is a natural G-gradation in 4 (E*; E*)°*® such that &
is homogeneous of degree zero.

8. Consider the G-graded space Lg(E; E) (E is a G-graded vector
space). Assign a new gradation to L;(E; E) by setting

degop = —dego

whenever peLg(E; E) is a homogeneous element. Show that with this
new gradation L (E; E) is again a G-graded space and AG(E; E) is a
G-graded algebra. To avoid confusion, we denote these objects by
L4(E; E) and 44 (E; E).
Prove that the scalar product between L (E; E) and Lg (E; E) defined
by
o, ¥ =tr(poy)

makes these spaces into dual G-graded vector spaces.
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9. Let A=) A, be a graded algebra and consider the linear mapping
p

8:A— A defined by
O0x=px xed

p*

Show that 0 is a derivation.

§ 3.* Differential spaces and differential algebras

6.7. Differential spaces. A differential operator 0 in a vector space E is
a linear mapping 0: E-E such that 0*=0. The vectors of ker =Z(E)
are called cycles and the vectors of Im d=B(FE) are called boundaries. It
follows from 8?=0 that B(E)<Z(E). The factor space

H(E) = Z(E)/B(E)

is called the homology space of E with respect to the differential operator
0. A vector space E together with a fixed differential operator 0, is called
a differential space.

A linear mapping of a differential space (E, ¢;) into a differential space
(F, 0p) is called a homomorphism (of differential spaces) if

Bpop = @ody. (6.15)

It follows from (6.15) that ¢ maps Z(E) into Z(F) and B(E) into B(F).
Hence a linear mapping ¢, :H(E)— H(F) is induced by ¢. If ¢ is an
isomorphism of differential spaces and ¢~ ! is the linear inverse iso-
morphism, then by applying ¢ ~! on the left and right of (6.15) we obtain

(p_lan = an(P—l

and so ¢! is an isomorphism of differential spaces as well.
If  is a homomorphism of (F, ;) into a third differential space (G, d;)
we have clearly

(‘//090)# =YyoPy.

In particular, if ¢ is an isomorphism of E onto F and ¢ ™! is the inverse
isomorphism we have

(@ Dsopu=14=1
and

Puo(@™Nu=14=1.

Consequently, ¢, is an isomorphism of H(E) onto H(F).
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6.8. The exact triangle. An exact sequence of differential spaces is an
exact sequence

0-FLELGS0 (6.16)

where (F, 0g), (E, 0g) and (G, ) are differential spaces, and @, § are
homomorphisms.

Suppose we are given an exact sequence of differential spaces then the
sequence

H(F) HE)™ H(G)

is exact at H(E). Moreover there is a unique linear mapping x: H(G)—
H(F) such that the triangle

H(F)"% H(E)
iN e (6.17)
H(G)

is exact at H(F) and H(G) as well. y is called the connecting map.

The proof of these statements is not trivial; it is nonetheless left to
the interested reader.

Hint: See problem 10, § 1, Chap. II.

6.9. Dual differential spaces. Suppose (E, 0) is a differential space and
E* is a dual space. Assume that a linear mapping 0*: E*—» E* dual to 8
can be defined in E*. Then for all xeE, x*e¢ E* we have

{O**x*,x) = (x*,00x) = (x*,00 =0

whence ¢* 0*x*=0i.e.,
(%)% =0.

Thus (E*, 0*) is again a differential space. The pairs (E, 0) and (E*, 0*)
are called dual differential spaces.

The vectors of ker 0*=Z (E*) are called cocycles (for E) and the vectors
of B(E*) are called coboundaries (for E). The factor space

H(E*) = Z(E*)/B(E*)

is called the cohomology space for E.
It will now be shown that the scalar product between E and E* deter-
mines a scalar product between the homology and cohomology spaces of
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E. First, however, we establish the formulae

Z(E*) = B(E)* (6.18)
and
Z(E)= B(E®". (6.19)

In fact, suppose z* is any cocycle, and let & x be any boundary. Then
P y Y
{z¥,0x) =0*%z*,x) =<0,x> =0

and so z*eB(E)*; iee.,
Z(E*) < B(E)*. (6.20)

To prove inclusion in the other direction, suppose x* is any vector in
B(E)*. Then for all xeE we have

{0*x*,xy> = (x*,0x> =0
whence
*x*eEt=0.
This shows that x* is a cocycle; i.e.,

Z(E*) > B(E)*. (6.21)

(6.20) and (6.21) give (6.18). Formula (6.19) is proved in the same way.

We can now construct a scalar product between H(E) and H(E*).
Consider the restriction of the scalar product between E and E* to
Z(E)xZ(E*),

Z(E) x Z(E¥)->T.
Then since
Z(E®'n Z(E)=B(E)n Z(E) = B(E)
and
Z(E)' n Z(E*)=B(E*) n Z(E*) = B(E®)

It follows that

EEY = xhxy S

defines a scalar product between H(E) and H(E*) (cf. sec. 2.23).
Finally, suppose (E, dg), (E*, 0g.) and (F, 0;), (F*, 0.) are two pairs
of dual differential spaces. Let
¢o:E-F

be a homomorphism of differential spaces, and assume that the dual linear
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mapping
(P* : F* «— E*

can be defined. Then dualizing (6.15) we obtain
@* o 0F = 050"

and so ¢* is a homomorphism of differential spaces. It is clear that the
induced mappings
¢4 H(E)—> H(F)
and
(9*)+: H (E*) < H(F*)

are again dual with respect to the induced scalar products; i.e.,

(@%)s = (@4)*.
6.10. G-graded differential spaces. Let E be a G-graded space, E= ) E,
peG
and consider a differential operator ¢ in E that is homogeneous of some
degree k. Then a gradation is induced in Z(E) and B(E) by

Z(E)= Z Zp(E) and B(E)= z Bp(E)

where Z,(E)=Z(E)n E, and B,(E)=B(E)n E, (cf. sec. 6.2).
Now consider the canonical projection

n:Z(E)— H(E).

Since 7 is an onto map and the kernel of = is a graded subspace of Z (E),
a G-gradation is induced in the homology space H(E) by

H(E)= ) H,(E) where H,(E)=nZ,(E).

Now consider the subspaces Z,(E)cZ(E) and B,(E)cB(E). The
factor space Z,(E)/B,(E) is called the p-th homology space of the graded
differential space E. It is canonically isomorphic to the space H,(E). In
fact, if m, denotes the restriction of = to the spaces Z,(E), H,(E), then

T[P: ZP (E) - HP (E)
is an onto map and the kernel of =, is given by

kern,=Z,(E) n kern = Z,(E) n B(E) = B,(E).
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Hence, 7, induces a linear isomorphism of Z,(E)/B,(E) onto H,(E).
If E is a graded space and dim H,(E) is finite we write
dim H,(E) =

b, is called the p-th Betti number of the graded differential space (E, 9).
If Eis an almost finite positively graded space, then clearly, so is H(E).
The Poincaré series for H(E) is given by

o0
— 4
Pygy= Y b,1".
p=0

6.11. Dual G-graded differential spaces. Suppose (E= Y E,, ;) and
keG

=Y E;, d}) is a pair of dual G-graded differential spaces. Thenif 3

keG
is homogeneous of degree /, we have that 0z E;c E; ., and hence

<a;y?,x1>=<y:k’a£x]>=0 J’?‘EE?‘,ijEj
unless y eE +, It follows that

Eyl € m EJ_ - El 1
Jxi—l
and so 5 is homogeneous of degree —/.
Now consider the induced G-gradations in the homology spaces

H(E) = ;Hk(E)’ H(E*) = ;Hk(E*)'

The induced scalar product is given by
* *
* sk z*eZ(E")
<7tE*Z ’nEZ>_ <Z ,Z> ZGZ(E) (622)
Since
np: Z(E*)> H(E*) and np:Z(E)—> H(E)

are homogeneous of degree zero, it follows that the scalar product (6.22)
respects the gradations. Hence H(E) and H(E*) are again dual G-graded
vector spaces. In particular, if G = Z, the p-th homology and cohomology
spaces of E are dual. If H,(E) has finite dimension we obtain that

dim H,(E*) = dim H,(E) = b,

6.12. Differential algebras. Suppose that A is an algebra and that 0 is
a differential operator in the vector space 4. Assume further that an in-
volution w of the algebra A4 is given such that dw+wd=0, and that 0 is
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an antiderivation with respect to w; i.e., that
o(xy)=0xy+wx-0dy. (6.22)

Then (4, 0) is called a differential algebra.

It follows from (6.22) that the subspace Z(A4) is a subalgebra of A.
Further, the subspace B(A) is an ideal in the algebra Z(A). In fact, if
and dxe B(A) we have

o(xy)=0xy yeZ(4)
and
d(wyx)=w?y-dx+d(wy)x=y0x yeZ(A)

whence dx - ye B(4) and y - dxeB(A).
Hence, a multiplication is induced in the homology space H(4). The
space H (A) together with this multiplication is called the homology alge-
bra of the differential algebra (4, 0).

The multiplication in H(A4) is given by

nzymz, =7n(z12,) zy,2,€Z(A)

where n: Z (A)- H(A) denotes the canonical projection. If 4 is associative
(commutative) then so is H(A).

Let (A, 8,) and (B, 05) be differential algebras. Then a homomorphism
@:A- B is called a homomorphism of differential algebras if

©d=050.

It follows easily that the induced mapping ¢ : H(4)— H(B) is a homo-
morphism of homology algebras.

Suppose now A is a graded algebra and that & and @ are both homo-
geneous, o of degree zero. The A is called a graded differential algebra.
Consider the induced gradation in H(A). Since the canonical projection
n:Z(A)> H(A) is a homogeneous map of degree zero it follows that
H(A) is a graded algebra.

If 4 is an anticommutative graded algebra, then so is H(4) as follows
from the fact that # is a homogeneous epimorphism of degree zero.

Problems

1. Let (E, 8,), (F, 0,) be two differential spaces and define the differ-
ential operator 0 in EQF by
a = al @ 62 .
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Prove that
H(E@F)~H(E)Y®H(F).

2. Given a differential space (E, 0), consider a differential subspace;
i.e., a subspace E, that is stable under 0. Assume that ¢: E— E| is a linear
mapping such that

i) gd=20p
i) gy=y yek
iii) ox —xeB(E) xeZ(E).
Prove that the induced mapping

04:H(E) > H(E,)
is a linear isomorphism.
3. Let(E, 0) be a differential space. A homotopy operator in Eis alinear
transformation 4: E— E such that

ho+0h=1.

Show that a homotopy operator exists in E if and only if H(E)=0.

4. Let (E, 0g) and (F, d;) be two differential spaces and let ¢, y be
homomorphisms of differential spaces. Prove that ¢, =y, if and only if
there exists a linear mapping #: E— F such that

hog+ 0ph =0 —y;

h is called a homotopy operator connecting ¢ and . Show that problem 2
is a special case of problem 3.
5. Let 8,, 0, be differential operators in £ which commute, ¢,3,=7,0;.
a) Prove that 8, 0, is a differential operator in E.
b) Let B,, B,, B be the boundaries with respect to d,, 0, and 0, 0,.
Prove that
62(31) =0, (Bz) =B.

c) Let Z,, Z,, Z be the cycles with respect to d,, d, and ,8,. Show
that Z, + Z, = Z. Establish natural linear isomorphisms

Z/Z,5B,nZ, and Z/Z,>B,n Z,
d) Establish a natural linear isomorphism
(By 0 2,)/6,(2,) > (B> 1 2,)/6,(Z1)

and then show that each of these spaces is linearly isomorphic to
Z(Z, + Z,).
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e) Show that 4, induces a differential operator in Z,. Let H, denote
the corresponding homology space. Assume now that Z=Z,+Z, and
prove that A, can be identified with a subspace of the homology space
H,=Z,|B,. State and prove a similar result for ¢,.

f) Show that the results a) to €) remain true if 8,0,= —09,9,.

6. Let 8., 0, be differential operators in E such that 3, 0,=—0,9,.

a) Prove that 0, +0, and @, — @, are differential operators in E.

b) With the notation of problem 5, assume that

B=BlnB2 and Z=Zl+22.

Prove that the homology space of each of the differential operators in a)
is linearly isomorphic to

Z, 0 Z(ZinB,+Z,NBy).
(This is essentially the Kiinneth theorem of sec. 15.10).
k
7. Let E= Y E, be a finite-dimensional graded differential space, and
i=0

assume that the differential operator ¢ has degree —1. Let b; be the i-th
Betti number, and suppose that dim E;=n;. Prove the Euler-Poincaré
SJormula

T (=D'b=3 (=D (6.23)

Express this formula in terms of Pz and Py ). The number (6.23), is called
the Euler-Poincaré characteristic of E.



Chapter VII

Inner product spaces

In this chapter all vector spaces are assumed to be real vector spaces

§ 1. The inner product

7.1. Definition. An inner product in a real vector space E is a bilinear
function (, ) having the following properties:

1. Symmetry: (x, y)=(, x).

2. Positive definiteness: (x, x)20, and (x, x)=0 only for the vector
x=0.

A vector space in which an inner product is defined is called an
inner product space. An inner product space of finite dimension is also
called a Euclidean space.

The norm |x| of a vector xe E is defined as the positive square-root

x| = /(% %).

A unit vector is a vector with the norm 1. The set of all unit vectors is
called the unit-sphere.
It follows from the bilinearity of the inner product that

Ix 4+ yI2 = [xI> + 2(x, y) + |yI?
whence
(x,¥)=1(x + y1* = |x|> = |y?).

This equation shows that the inner product can be expressed in terms of
the norm.

The restriction of the bilinear function (, ) to a subspace E; = E has
again properties 1 and 2 and hence every subspace of an inner product
space is itself an inner product space.

The bilinear function (,) is non-degenerate. In fact, assume that (a, y)=0
for a fixed vector aeF and every vector yeE. Setting y=a we obtain
(a, a)=0 whence a=0. It follows that an inner product space is dual to
itself.



182 Chapter VII. Inner product spaces

7.2. Examples. 1. In the real number-space R" the standard inner pro-
duct is defined by

(x9y)=26v Y,
where
x=(..& and y=(n'...n").

2. Let E be an n-dimensional real vector space and x,(v=1...n) bea
basis of E. Then an inner product can be defined by

Cuy) =Y,
where
x=YE%, y=y1"x,.

3. Consider the space C of all continuous functions f in the interval
0<r=<1 and define the inner product by

(f.e) = ff(t)g(t)d:.

7.3. Orthogonality. Two vectors xeE and yeFE are said to be ortho-
gonal if (x, y)=0. The definiteness implies that only the zero-vector is
orthogonal to itself. A system of p vectors x,#+0 in which any two vectors
x, and x, (vs p) are orthogonal, is linearly independent. In fact, the re-
lation

Y Ax, =0
yields
Mx,x,)=0 (u=1...p)
whence
=0 (u=1...p).

Two subspaces E,cE and E,c<F are called orthogonal, denoted as
E, 1 E,, if any two vectors x,€ F, and x,eE, are orthogonal.

7.4. The Schwarz-inequality. Let x and y be two arbitrary vectors of
the inner product space E. Then the Schwarz-inequality asserts that

(x, y)* £ 1x12 1y (7.1

and that equality holds if and only if the vectors are linearly dependent.
To prove this consider the function

|x + Ay|?
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of the real variable A. The definiteness of the inner product implies that
x+4y*20 (=< i<o).
Expanding the norm we obtain
Ay +24(x,y) + |x|* 2 0.

Hence the discriminant of the above quadratic expression must be nega-
tive or zero,

(x, 9)* < IxI* [y12.

Now assume that equality holds in (7.1). Then the discriminant of
the quadratic equation

A2+ 24(x, )+ |x2=0 (7.2
is zero.*¥) Hence equation (7.2) has a real solution 44. It follows that
M’O y + xIZ = 0 ’
whence
lo y + X = 0.

Thus, the vectors x and y are linearly dependent.
7.5. Angles. Given two vectors x=+0 and y =0, the Schwarz-inequality
implies that

-1 M <1.
x| |yl
Consequently, there exists exactly one real number (0 < w <7) such that
0sw = (x,5) . (7.3)
|x} 1yl

The number w is called the angle between the vectors x and y. The sym-
metry of the inner product implies that the angle is symmetric with respect
to x and y. If the vectors x and y are orthogonal, it follows that cos w=0,

n
whence o= 5

Now assume that the vectors x and y are linearly dependent, y=A4x,

Then p {+1ifi>0

COBP=T1=1 if A<o

*) Without loss of generality we may assume that y + 0.
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and hence

n if A<0.
With the help of (7.3) the equation

{0 if A>0
w =

Ix — y1%2 = |x]* = 2(x, ) + yI?
can be written in the form
Ix = 3% = |x|> + [y|* = 21| |yl cos .

This formula is known as the cosine-theorem. If the vectors x and y are
orthogonal, the cosine-theorem reduces to the Pythagorean theorem

Ix — yI? = x> + 1yI*.

7.6. The triangle-inequality. It follows from the Schwarz-inequality
that

I+ p12 = 1% + 2(x, p) + 1y S |x12 + 2[x| {yl + [y12 = (Ix] + Y])?,

whence
|x + y| < Ix| + |y]- (7.4)

Relation (7.4) is called the rtriangle-inequality. To discuss the equality-
sign we may exclude the trivial case y=0. It will be shown that equality
holds in (7.4) if and only if

x=Ay, A>0.
The equation

lx + ¥l = Ix| + |yl
implies that

X124+ 2(x,y) + [y1? = |x1? + 2|xl 1yl + (917,
whence
(x,y) = x| Iyl ()

Thus, the vectors x and y must be linearly dependent,
x=2Ay. (7.6)

Equations (7.5) and (7.6) yield 41=|A|, whence AZ=0.
Conversely, assume that x=Ay, where A=0. Then

I + ¥l =14+ Dyl =@+ DIyl =21yl + Iyl = Ix| + [yl
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Given three vectors x, y, z, the triangle-inequality can be written in the

form
[x =yl Slx =z 4+ |z = yl. (7.7

As a generalization of (7.7), we prove the Ptolemy-inequality
[x = yllzl S|y — z| x| + 1z — x| |y]. (7.8)

Relation (7.8) is trivial if one of the three vectors is zero. Hence we
may assume that x40, y+0 and z +0. Define the vectors x’, ' and z’ by
! x ! y ! z
X = - 5 y = — 5 Z = —.

|x|? y|? |z1*
Then
bl 26) 1 k=P
R B e {3 R B o

Applying the inequality (7.7) to the vectors x’, ¥" and z’' we obtain

’

[x" — y'|

=yl _ly—z lz—x
Er R

whence (7.8).

7.7. The Riesz theorem. Let E be an inner product space of dimension
n and consider the space L(E) of linear functions. Then the spaces L(E)
and E are dual with respect to the bilinear function defined by

(f,x)-> f(x).

On the other hand, E is dual to itself with respect to the inner product.
Hence the result of sec. 2.33 implies that there is a linear isomorphism
a—f, of E onto L(E) such that

fa(¥) = (a,y).
In other words, every linear function fin E can be written in the form
f) =(ay)

and the vector ae E is uniquely determined by f (Riesz theorem).

Problems
1. For x=(¢', ¢*)and y=(n', #%) in R? show that the bilinear function
(,)=¢&"n' —&n' — &' n* + 48 0?

satisfies the properties listed in sec. 7.1,
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2. Consider the space S of all infinite sequences x=(&,, &,, ...) such
that

YE<w.
Show that Y &,#, converges and that the bilinear function (x, y)=Y &,n,

is an inner product.
3. Consider three distinct vectors x=#0, y+0 and z 0. Prove that the
equation
lx ~yllzl =1y — z|Ix| + |z — x] |y

holds if and only if the four points x, y, z, 0 are contained on a circle such
that the pairs x, y and z, 0 separate each other.

4. Consider two inner product spaces E; and E,. Prove that an inner
product is defined in the direct sum E,®E, by

((xnxz), (J/nJ/z)) = (x1> V1) + (¥2,72) X1, V1€E1, X3,y,€E,;.

5. Given a subspace E; of a finite dimensional inner product space E,
consider the factor space E/E;. Prove that every equivalence class con-
tains exactly one vector which is orthogonal to E,.

§ 2. Orthonormal bases

7.8. Definition. Let £ be an n-dimensional inner product space and
x,(v=1...n) be a basis of E. Then the bilinear function (,) determines
a symmetric matrix

g =(xux)  (hu=1..n). (1.9)

The inner product of two vectors

x=3Y¢&x, and y=)n"x,
v v
can be written as

(2= & (x,,x) =) 8, &' 1" (7.10)

v,

and hence it appears as a bilinear form with the coefficient-matrix g, .
The basis x,(v=1...n) is called orthonormal, if the vectors x,(v=1...n)
are mutually orthogonal and have the norm 1,

(%15 X,) = By, (7.11)



§ 2. Orthonormal bases 187

Then formula (7.10) reduces to
(x,9)=2¢&n" (7.12)

v

and in the case y=x

|x|* =Y &
The substitution x=x, in (7.12) yields

(x,x,)=¢&  (u=1..n). (7.13)

Now assume that x =0, and denote by 6§, the angle between the vectors x
and x,(u=1...n). Formulas (7.3) and (7.13) imply that

"

cosé),,¢=|;l (n=1...n). (7.14)
If x is a unit-vector (7.14) reduces to
cosf, =&+ (n=1..n). (7.15)

These equations show that the components of a unit-vector x relative to
an orthonormal basis are equal to the cosines of the angles between x and
the basisvectors x,,.

7.9. The Schmidt-orthogonalization. In this section it will be shown that
an orthonormal basis can be constructed in every inner product space of
finite dimension. Let a,(v=1...n) be an arbitrary basis of E. Starting out
from this basis a new basis b, (v=1...n) will be constructed whose vectors
are mutually orthogonal. Let

by=ua,.
Then put
b,=a, + b,

and determine the scalar 4 such that (b,, b,)=0. This yields
(az’bl) + A(bl’bl) =0.

Since b, # 0, this equation can be solved with respect to A. The vector b,

thus obtained is different from zero because otherwise a; and a, would

be linearly dependent.
To obtain b,, set

: by=az;+ub; +vb,

and determine the scalars 4 and v such that

(b;,b3)=0 and (b,,by)=0.
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This yields

(a3, by) + p(by, by) =0
and

(03, b2) + V(bz, bz) = 0.

Since b, #0 and b, =0, these equations can be solved with respect to u
and v. The linear independence of the vectors ay, a,, a; implies that b3+ 0.
Continuing this way we finally obtain a system of n vectors b,£0(v=1...n)

such that
(byb)=0  (v*p).

It follows from the criterion in sec. 7.3, that the vectors b, are linearly
independent and hence they form a basis of E. Consequently the vectors
b,
e, =
[b,l
form an orthonormal basis.

7.10. Orthogonal transformations. Consider two orthogonal bases x,
and %, (v=1...n) of E. Denote by o} the matrix of the basis-transformation

xv_)jv’
X,=yhx,. (7.16)
"

(v=1...n)

The relations
(xva xu) = 5vu and (fw fu) = 5\'#
imply that
Zl:ocﬁ o =3,,. (7.17)

This equation shows that the product of the matrix («%) and the transposed
matrix is equal to the unit-matrix. In other words, the transposed matrix
coincides with the inverse matrix. A matrix of this kind is called orthogonal.

Hence, two orthonormal bases are related by an orthogonal matrix.
Conversely, given an orthonormal basis x,(v=1...n) and an orthogonal
n x n-matrix (a,), the basis X, defined by (7.16) is again orthonormal.

7.11. Orthogonal complement. Let E be an inner product space (of
finite or infinite dimension) and E, be a subspace of E. Denote by E; the
set of all vectors which are orthogonal to E;. Obviously, E{ is again a
subspace of E and the intersection E, 0 Ei* consists of the zero-vector
only. Ey is called the orthogonal complement of E,. If E has finite dimen-
sion, then we have that

dimE, + dimE; = dim E
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and hence E, n E{ = 0 implies that
E=E, ®E;, (7.18)

Select an orthonormal basis y,(u=1...m) of E,. Given a vector xe E
and a vector

y=21"yu.
u
of E; consider the difference
z=x—y.
Then
(Z’yu) = (x’yM) - (y’yu) = (x’.))u) - ",

This equation shows that z is contained in E; if and only if
n*=(x,,) (u=1...m).
We thus obtain the decomposition

x=p+h (7.19)
where
p=Y(xy)y, and h=x—-p.
u

The vector p is called the orthogonal projection of x onto E,.
Passing over to the norm in the decomposition (7.19) we obtain the
relation
|2 = 1p|* + |h|*. (7.20)

Formula (7.20) yields Bessel’s-inequality
Ix] = Ipl

showing that the norm of the projection never exceeds the norm of x. The
equality holds if and only if #=0, i.e. if and only if xe E;. The number
|h| is called the distance of x from the subspace E;.

Problems
1. Starting from the basis
al=(1,0,1) az=(2,1,_3) a3=(“‘ 1,1,0)

of the number-space R construct an orthonormal basis by the Schmidt-
orthogonalization process.



190 Chapter VII. Inner product spaces

2. Let E be an inner product space and consider E as dual to itself.
Prove that the orthonormal bases are precisely the bases which are dual
to themselves.

3. Given an inner product space E and a subspace E; of finite dimen-
sion consider a decomposition

X=X, + X, x,€E;
and the projection
x=p+h  peE, heE;s.
Prove that
%2 2 |h|

and that equality is assumed only if x, =p and x,=h.

4, Let C be the space of all continuous functions in the interval 05 <1
with the inner product defined as in sec. 7.2. If C* denotes the subspace
of all continuously differentiable functions, show that C{ =0.

5. Consider a subspace E; of E. Assume an orthogonal decomposition

E,=F, ®G;, F, 1LG,.
Establish the relations

Fi =E{®G,,E, LG, and Gi=E;f@®F,,E{ LF,.

6. Let F3 be the space of all polynomials of degree <2. Define the
inner product of two polynomials as follows:
1
.00 [ PO
-1

The vectors 1, z, t* form a basis in F2. Orthogonalize and orthonormalize
this basis. Generalize the result for the case of the space F” of polynomials
of degree <n-—1.

§ 3. Normed determinant-functions

7.12. Definition. Let E be an n-dimensional inner product space and
Ao +0 be a determinant-function in E. Since E is dual to itself we have
in view of (4.21)

do(xyy . x) Ao (¥y - Ya) = adet(xi’yj) x;€E,y,€E

where o is a real constant. Setting x;=y,=e; where ¢, is an orthonormal
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basis we obtain

a=Ady(e; ... e,)* (7.21)
and so the constant « is positive. Now define a determinant-function 4
by
4
4=+ \/—"_ (7.22)
o

Then we have that

A(xl ...x,,)A(yl ...yn) = det(x,-,yj). (7.23)

A determinant-function in an inner product space which satisfies (7.23)
is called a normed determinant-function. It follows from (7.22) that there
are precisely two normed determinant-functions 4 and —4 in E.

Now assume that an orientation is defined in E. Then one of the func-
tions 4 and —4 represents the orientation. Consequently, in an oriented
inner product space there exists exactly one normed determinant-function
representing the given orientation.

7.13. Angles in an oriented plane. With the help of a normed deter-
minant-function it is possible to attach a sign to the angle between two
vectors of a 2-dimensional oriented inner product space. Consider the
normed determinant-function 4 which represents the given orientation.
Then the identity (7.23) yields

X2 112 = (x,5)* = 4(x,y)*. (7.24)
Now assume that x #0 and y # 0. Dividing (7.24) by |x|?|y|? we obtain the
relation
RIS
X212 1x? Iyl

Consequently, there exists exactly one real number 6 in the interval
—n <0< r such that

(x,y) and sinf = 40 y)'
[xI 1yl [x[ 1yl

This number is called the oriented angle between x and y.

If the orientation is changed, 4 has to be replaced by —4, and hence 0
changes into —8.

Furthermore it follows from (7.25) that 8 changes the sign if the vectors
x and y are interchanged and that

cosf = (7.25)

O(x,— y)=0(x,y) +en
where e =+ 1if 0(x,y)>0and e=—1if §(x,y) <O.



192 Chapter VII. Inner product spaces

7.14. The Gram determinant. Given p vectors x,(v=1...p) in an inner
product space E, the Gram determinant G(x,...x,) is defined by

(X1, %1) - (%1, %)
G(xy...x,)=det| : : . (7.26)
(o %1) - (5o X,)
It will be shown that
G(xy..x,)20 (7.27)

and that equality holds if and only if the vectors (x;...x,) are linearly
dependent. In the case p=2 (7.27) reduces to the Schwarz-inequality.
To prove (7.27), assume first that the vectors x,(v=1...p) are linearly
dependent. Then the rows of the matrix (7.26) are also linearly dependent
whence
G(xy...x,)=0.

If the vectors x,(v=1...p) are linearly independent, they generate a
p-dimensional subspace E, of E. E, is again an inner product space. De-
note by 4, a normed determinant-function in E;. Then it follows from
(7.23) that

G(xy...xp) =4y (x1...x,)°.
The linear independence of the vectors x,(v=1...p) implies that

4, (xy...x,) %0, whence
G(xy...x,)>0.

7.15. The volume of a parallelepiped. Let p linearly independent vectors
a,(v=1...p) be given in E. The set

x=YAa, 0Vl (v=1..p (7.28)

is called the p-dimensional parallelepiped spanned by the vectors a,
(v=1...p). The volume ¥ (a,...a,) of the parallelepiped is defined by

V(ay...a,)=4y(ay...a,)l, (7.29)

where A, is a normed determinant-function in the subspace generated by
the vectors a, (v=1...p).
In view of the identity (7.23) formula (7.29) can be written as

<(a1,a1)...(a1,ap)>
V(ay...ap)* =det| : : .

: (7.30)
(ap,ay)...(ap a,)
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In the case p=2 the above formula yields
V(ay,ay)® =lay|*la,y|* — (ay,az)* = lay|?|a,|*sin? @, (7.31)

where @ denotes the angle between a, and a,. Taking the square-root on
both sides of (7.31), we obtain the well-known formula for the area of a
arallelogram: .
P & V(ay,a;) = la,||a,llsinf].
Going back to the general case, select an integer i (1 </<p) and de-
compose g; in the form
a;=) &a,+h;, where (h,a,)=0 (v+i). (7.32)

v¥i

Then (7.29) can be written as
V(al e ap) = IAl(al es a,-_l, hi’ ai+1 ‘oo ap)l .

Employing the identity (7.23) and observing that (h;, a,)40(vi) we
obtain*)
(ay,ay)...(d1,d)...(ay, a,)

V(ay...ap)? =det| (8,8,) ...(3nd) ...(6,4,) |(hihy). (7.33)

(@ a1) -, @) .- (ap ;)
The determinant in this equation represents the square of the volume of
the(p —1)-dimensional parallelepiped generated by the vectors (ay ...d;...a,).
We thus obtain the formula

V(ay...a,)=V(ay...4...a,) |h (1giZp)

showing that the volume ¥ (a,...a,) is the product of the volume
V(ay...d;...a,) of the i"* “base” and the corresponding height.

7.16. The cross product. Let E be an oriented 3-dimensional Euclidean
space and 4 be the normed determinant function which represents the
orientation. Given two vectors xe E and ye E consider the linear function

defined b
d d f(@)=4(xy,2). (7.34)
In view of the Riesz-theorem there exists precisely one vector ueE such
that
f@)=,z). (7.35)

*) The symbol d indicates that the vector ay is deleted.
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The vector u is called the cross product of x and y and is denoted by x x y.
Relations (7.34) and (7.35) yield

(x x y,z)=4d(x,y,2). (7.36)

It follows from the linearity of 4 in x and y that the cross product is
distributive

(Ax; +px3) X y=2A%; Xy + px, Xy

XX Ay +pys)=Ax Xy +px X y,

and hence it defines an algebra in E. The reader should observe that the
cross product depends on the orientation of E. If the orientation is re-
versed then the cross product changes its sign.

From the skew symmetry of 4 we obtain that

XXy=—yXX.
Setting z=x in (7.36) we obtain that

(x x y,x)=0.
Similarly it follows that

(x xy,y)=0

and so the cross product is orthogonal to both factors.

It will now be shown that x x y+0 if and only if x and y are linearly
independent. In fact, if y=Ax, it follows immediately from the skew
symmetry that x x y=0. Conversely, assume that the vectors x and y are
linearly independent. Then choose a vector ze E such that the vectors
X, ¥, z form a basis of E. It follows from (7.36) that

(x xy,z)=4(x,y,2) % 0
whence x x y=+0.
Formula (7.36) yields for z=xxy

A(x,y,x x y)=|x x y|?. (7.37)

If x and y are linearly independent it follows from (7.37) that 4(x, y,
xxy)>0 and so the basis x, y, x x y is positive with respect to the given
orientation.

Finally the identity

(%1 X X2, 71 X y2) = (X1, ¥1) (X2, ¥2) = (X1, ¥2) (X2, ¥1) (7.38)

will be proved. We may assume that the vectors x,, x, are linearly inde-
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pendent because otherwise both sides of (7.38) are zero. Multiplying the

relations
A(X1,%3,%3) = (X1 X X3,X3)

and
Ay, ¥2,¥3) = (yy % Y2,¥3)

we obtain in view of (7.23)

(%3 X X2, %3)(y1 X ¥2,¥3) = det(x;, y;).

Setting y; =x; X x, and expanding the determinant on the right hand side
by the last row we obtain that

(X1 X X3, X3) (Y1 X Y3, %1 X X) =
(%1 % X2,%x3) [(x1,¥1) (X2, ¥2) — (X1, ¥2) (25 J’x)] . (7.39)
Since x, and x, are linearly independent we have that x; x x, 40 and
hence x5 can be chosen such that (x, x x,, x;)#0. Hence formula (7.39)
implies (7.38).
Formula (7.38) yields for x; =y;=x and x,=y,=y

Ix x y|2 = |x]*|y]* = (x,»)*. (7.40)

If 6 (0<0=n) denotes the angle between x and y we can rewrite (7.40) in

the form lx x yl =Ix|lylsin@  x+0,y+0.

Now let e, e,, e; be a positive orthonormal basis of E. Since the vector
e;x e;(i+j) is orthogonal to ¢; and e;; we can write
eixej=/l,-jkek k:":l, k*j. (7.41)
Inner multiplication by e, yields in view of (7.36)
A’ijk = (ei X ej, ek) == A (ei, ej, ek).
But
A(e; e, e) = &ijk

where ¢;;, denotes the sign of the permutation : (1, 2, 3)— (i, j, k) and so
we obtain from (7.41)
e xe;=¢gpe (i+))
ie.
e, Xe,=¢€3, € Xez=¢e;, e3Xe =e,.
It follows that the cross product of two vectors

x=)¢e and y =Z‘:11‘ e
i
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is given by

ny=(€2 3_€3n2)e1+(€3n1_€1n3)e2+(€1 2_62n1)e3.

Problems

1. Given a vector a+0 determine the locus of all vectors x such that
X —a is orthogonal to x+a.

2. Prove that the cross product defines a Lie-algebra in a 3-dimensional
inner product space (cf. problem 8, Chap. V, § 1).

3. Let e be a given unit vector of an n-dimensional inner product space
E and E, be the orthogonal complement of e. Show that the distance of
a vector xe E from the subspace E, is given by

d =|(xe).

4. Prove that the area of the parallelogram generated by the vectors x,
and x, is given by

A=2./s(s—a)(s—b)(s—¢),

a=|x4, b=|x,], c=|x;—x, s=%(a+b+o).

where

5. Prove the formula
(a x b) x ¢ =(a,c)b—(b,c)a.

Hint: The product on the left-hand side is orthogonal to ax b and
hence it can be written as

(axb)xc=~Aia+pub.

Determine the factors 4 and p using formula (7.38).

6. Let a+0 and b be two given vectors of an oriented 3-space. Prove
that the equation x x a=b has a solution if and only if (a, b)=0. If this
condition is satisfied and x, is a particular solution, show that the general
solution is xq+ Aa.

7. Consider an oriented inner product space of dimension 2. Given two
positive orthonormal bases (e;, e,) and (&, é,), prove that

&, =e,Co80 — e,8inw
e, =e;8inw+e,cosm.

where w is the oriented angle between e, and é,.
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8. Let a, and a, be two linearly independent vectors of an oriented
Euclidean 3-space and F be the plane generated by a; and a,. Introduce
an orientation in F such that the basis a,, a, is positive. Prove that the
angle between two vectors

x=¢'ay +&%a, and y=9n'a, +n’a,

is determined by the equations

> (a,a,)E " 1.2 _ g2 1
cos@="% and sin0=€ =4

= la; X a,l(—w <0< m).
x| 1yl |x] ¥l

9. Given an orthonormal basis e,(v=1,2, 3) in the 3-space, define
linear transformations ¢, by

@, X=X X e, (v=1,2,3).
Prove that
Y o2=-2.

10. Let E be an oriented inner product space of dimension 4. Select a
unit-vector ¢ and denote by E; the orthogonal complement of e. Using
the induced orientation in E, (see sec. 4.29) define a multiplication in E
as follows:

xe=x,ye=y xeE,yeE
xy=(xye+xxy xeE,, yekE,.

Prove that this multiplication has the following properties:

1. (xy)z=x(yz).

2. For every vector x=0 there exists a vector x~! such that xx"'=e
and x " 'x=e.

3. [xyl=|x| |yl.
The algebra which is defined in E by the above multiplication is called
the quaternion-algebra.

11. Let x, y, z be three vectors of a plane such that x and y are linearly
independent and that x+y+z=0.

a) Prove that the ordered pairs x, y; y, z and z, x represent the same
orientation. Then show that

0(x,y)+0(v,z) + 0(z,x)=2=x

where the angles refer to the above orientation.
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b) Prove that
0(y,—~x)+0(z,—y)+0(x,— z) =m=.

What is the geometric significance of the two above relations?
12. Given p vectors xy, ..., X, prove the inequality

G(Xg, o0 X,p) S %412 %507, 10s 1,12

Then derive the Hadamard’s inequality for a determinant

2
all"‘aln n ) n 2 n 5
det{ : < Y lagl® Y lawl®... Y lawl®.

k=1 k=1 k=1
Quy o Ay

§ 4. Duality in an inner product space

7.17. The isomorphism 7. Let E be an inner product space of dimension
nand let E* be a vector space which is dual to E with respect to a scalar
product {, >. Since E* and E are both dual to E it follows from sec. 2.33
that there is a linear isomorphism t: E— E* such that

{tx,y> =(x,y) x,ye€E. (7.42)

With the aid of this isomorphism we can introduce a positive definite
inner product in E* given by

(x*,y%) = (z7 x*, 17 y%). (7.43)
Now introduce a scalar product in Ex E* by
{x, x*) = {x*,x). (7.44)
Then it follows from (7.42) and (7.44) that

<Tx’y> =(X,Y)= (y’x)= <Ty’x> = <X,TY>-

This relation shows that the dual mapping t*:E*+« F coincides with 1
and so 7 is dual to itself.

Let e,, €*”(v=1...n) be a pair of dual bases of E and E* and consider
the matrices

g, =(e,e;) and gt =(e*’, e*). (7.45)

It follows from the symmetry of the inner product that the matrices (7.45)
are symmetric. On the other hand, the linear isomorphism 7: E-+E* de-
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termines an n x n-matrix o ;, by

Te;' = Za;'ve*v.

v

Scalar multiplication by e, yields

(Z;_“ = <T €5 eu> = (ei.’ eu) = gi.u

and hence we can write

Te, =Y g e, (7.46)
n
A similar argument shows that
the* =Y gMe,. (7.47)
w

From (7.46) and (7.47) we obtain that
Y88 =0}
)

and hence the matrices (7.45) are inverse to each other.
If

x=Y e, (7.48)
A
is an arbitrary vector of E we can write
tx =Y & e*. (7.49)
A

The numbers &, are called the covariant components of x with respect to
the basis e, (A=1...n). It follows from (7.48) that

Ei=<K1x,e,) ={1e;x) = Z(‘re;,, ey = Zgi.v &

whence

&L=Yent. (7.50)

We finally note that the covariant components of a vector xe E are its
inner products of x with the basis vectors. In fact, from (7.48) and (7.50)
we obtain that

(x’ ev) = ;fl(% ev) = ;gi.v é;' = ng). é;' = év'

If the basis e, (v=1...n) is orthcnormal we have that g,,=§,, and hence

formulae (7.46) simplify to 2

Te, = e**.
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It follows that T maps every orthonormal basis of E into the dual basis.
Moreover, the equations (7.50) reduce in the case of an orthonormal basis

0 é;. = é‘-

Problems

1. Let ¢;(i=1...n) be a basis of E consisting of unit vectors. Given a
vector x€ E write

x=p;+h

where p; is the orthogonal projection of x onto the subspace defined by
(x, €)=0. Show that
[hyl = 1&l i=1l..n

where the &; are the covariant components of x with respect to the basis e;.

2. Let E, E* be a dual pair of finite dimensional vector spaces and con-
sider a linear isomorphism t: E— E*. Find necessary and sufficient con-
ditions such that the bilinear function defined by

(x,y)=<tx,¥> x,y€E

be a positive definite inner product.

§ 5. Normed vector spaces

7.18. Norm-functions. Let E be a real linear space of finite or infinite
dimension. A norm-function in E is a real-valued function {| | having the
following properties:

N;:|lx|| = O for every xeE, and ||x| =0 only if x =0.
Nytllx + yll = Il + 1yl
Ny:||Ax] = |4} =] .

A linear space in which a norm-function is defined is called a normed
linear space. The distance of two vectors x and y of a normed linear space
is defined b

Y e(x,y)=lx-yl.

Ny, N, and N; imply respectively
e(x,y)>0 if x%y

e(x,y)<e(x,z) + ¢(z,y) (triangle inequality)
e(xy)=e(»x).
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Hence g is a metric in E and so it defines a topology in E, called the norm

topology. It follows from N, and N; that the linear operations are con-

tinuous in this topology and so E becomes a topological vector space.

7.19. Examples. 1. Every inner product space is a normed linear space
with the norm defined by —_
%) = /(. %).

2. Let C be the linear space of all continuous functions fin the interval
0=t£1. Then a norm is defined in C by

Ifll = max Lf (1.

Conditions N, and N, are obviously satisfied. To prove N, observe
that

f@+eg@=IfOI+1g=Ifl+1gl, (O=t=1)

whence
If+el=is0+1lgl.

3. Consider an n-dimensional (real or complex) linear space E and let
x,(v=1...n) be a basis of E. Define the norm of a vector

x=3&x,
x| = 3 1¢°.

7.20. Bounded linear transformations. A linear transformation ¢: E—E
of a normed space is called bounded if there exists a number M such that

lex| =M|x|  xeE. (7.51)

by’

It is easily verified that a linear transformation is bounded if and only if
it is continuous. It follows from N, and Nj that a linear combination of
bounded transformations is again bounded. Hence, the set B(E; E) of all
bounded linear transformations is a subspace of L(E; E).

Let ¢: E—E be a bounded linear transformation. Then the set |¢ x|,
Ix]|=1 is bounded. Its least upper bound will be denoted by |¢|,

ol = ”S}lll_il o x| . (7.52)
It follows from (7.52) that
lexll < llell-lxl  xeE.

Now it will be shown that the function ¢— | ¢| thus obtained is indeed a
norm-function in B(E; E). Conditions N, and N; are obviously satisfied.
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To prove N, let ¢ and y be two bounded linear transformations. Then

i(e +¥)xll = llox + ¥ x| < lloxll + ¥ xll < (lol +Iyl)-Ixl  xeE

1
and consequently, o 4wl < lloll + 1011

The norm-function {¢| has the following additional property:
1ol = ¥l-lel. (7.53)

In fact,
IWop)xll = ¥l -lexl S Wi -lel-lxl  xeE
whence (7.53).

7.21. Normed spaces of finite dimension. Suppose now that Eis a norm-
ed vector space of finite dimension. Then it will be shown that the norm
topology of E coincides with the natural topology (cf. sec. 1.22). Since
the linear operations are continuous it has only to be shown that a linear
function is continuous in the norm topology. Let e, (v=1, ..., n) be a basis
of E. Then we have in view of N, and N; that

x| =12¢"e,l <31 e,

This relation implies that the function x—|x| is continuous in the natural
topology.
Now consider the set Q < E defined by

Q={x=3"2", [LI&@=1}.

Since Q is compact in the natural topology and |x| 30 for xe Q it follows
that there exists a positive constant m such that

x| = m xeQ.
Now Nj yields
x| =mY |&' xeE

whence

f44! S|—XI v=1,..,n. (7.54)
m

Let f be a linear function in E. Then we have in view of (7.54) that
v Ix|
If =128 f(e)l < - YIf(e)l < Mx

and so fis continuous. This completes the proof.
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Since every linear transformation ¢ of E is continuous (cf. sec. 1.22) it
follows that ¢ is bounded and hence B(E; E)=L(E; E). Thus L(E; E)
becomes a normed space, the norm of a transformation ¢ being given by

lp| = max |¢x|.

Ixl=1

Problems

1. Let E be a normed linear space and E, be a subspace of E. Show that
a norm-function is defined in the factor-space E/E, by
%l = inf |[x| XeE[E,.

XEX

2. An infinite sequence of vectors x,(v=1,2...) of a normed linear
space E is called convergent towards x if the following condition holds:
To every positive number ¢ there exists an integer N such that

lx,—x|| <e if n>N.

a) Prove that every convergent sequence satisfies the following Cauchy-
criterion: To every positive number ¢ there exists an integer N such that

%, — x.ll <& if n>N and m>N.

b) Prove that every Cauchy-sequence*) in a normed linear space of
finite dimension is convergent.

¢) Give an example showing that the assertion b) is not necessarily
correct if the dimension of E is infinite. '

3. A normed linear space is called complete if every Cauchy-sequence
is convergent. Let E be a complete normed linear space and ¢ be a linear

transformation of E such that [[¢| <1. Prove that the series Z [T
convergent and that the linear transformation v=0

has the following properties:
a) (=)o =yo(1—9g)=1.
b) Iyl =

1
1— el

*) i.e. a sequence satisfying the Cauchy-criterion.




Chapter VIII

Linear mappings of inner product spaces

In this chapter all linear spaces are assumed to be real and to have finite
dimension

§ 1. The adjoint mapping

8.1. Definition. Consider two inner product spaces E and F and assume
that a linear mapping ¢: E— F is given. If E* and F* are two linear spaces
dual to F and F respectively, the mapping ¢ induces a dual mapping
o*: F*— E*, The mappings ¢ and ¢* are related by

Y ex) =<Lp*y*,x)  xe€E,y*eF*. (8.1)

Since inner products are defined in E and in F, these linear spaces can be
considered as dual to themselves. Then the dual mapping is a linear map-
ping of Finto E. This mapping is called the adjoint mapping of ¢ and will
be denoted by @. Replacing the scalar product by the inner product in
(8.1) we obtain the relation

(px,y)=(x,8y) xeE,yeF. (8.2)

In this way every linear mapping ¢ of an inner product space E into an
inner product space F determines a linear mapping @ of F into E.
The adjoint mapping ¢ of @ is again ¢. In fact, the mappings ¢ and ¢
are related by
(97, %) =, ¢). (8.3)

Equations (8.2) and (8.3) yield
(¢x,)=(¢x,y) x€E,yeF

whence @ =¢. Hence, the relation between a linear mapping and the
adjoint mapping is symmetric.
As it has been shown in sec. 2.35 the subspaces Im ¢ and ker ¢ are
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orthogonal complements. We thus obtain the orthogonal decomposition
F=Imo¢ @kerp. 8.4)

8.2. The relation between the matrices. Employing two bases x,
(v=1...n) and y,(u=1...m) of E and of F, we obtain from the mappings
¢ and  two matrices ) and &, *) defined by the equations

PXy, =0 Y,
and
@ yl‘ = ; &i x;' .
Substituting x=x, and y=y, in (8.2) we obtain the relation
za:(ym yu) = ;&2()‘:"1 x}.)' (85)
K
Introducing the components

v = (xv’ xi.) and hun = (ym yx)

of the metric tensors we can write the relation (8.5) as
Z“:hxu = Z&:g\’l'
* v
Multiplication by the inverse matrix g*¢ yields the formula
=73 ayh,g". (8.6)
bt

Now assume that the bases x,(v=1...n) and y,(u=1...m) are ortho-
normal,

g = 6vi. ’ hxu = 61:;4'
Then formula (8.6) reduces to
@ =ap.

This relation shows that with respect to orthonormal bases, the matrices
of adjoint mappings are transposed to each other.

8.3. The adjoint linear transformation. Let us now consider the case
that F=E. Then to every linear transformation ¢ of E corresponds an
adjoint transformation @. Since @ is dual to ¢ relative to the inner pro-

*) The six;script indicates the row,
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duct, it follows that
detp=detg and trg=tro.

The adjoint mapping of the product Y. ¢ is given by

l—.—, .
Vo =poy.

The matrices of @ and ¢ relative to an orthonormal basis are transposed
to each other.
Suppose now that e and & are eigenvectors of ¢ and ¢ respectively.
Then we have that
pe=JAe and pé=1é

whence in view of (8.2)

(A = 2)(e,&) = 0.

It follows that (e,&)=0 whenever X% ; that is, any two eigenvectors of
¢ and @ whose eigenvalues are different are orthogonal.

8.4. The relation between linear transformations and bilinear functions.
Given a linear transformation ¢: E— E consider the bilinear function

(x,y)=(¢x,). (8.7)
The correspondence ¢p— @ defines a linear mapping
¢:L(E; E)— B(E, E). (8.8)

where B(E, E) denotes the space of bilinear functions in E x E. It will be
shown that this linear mapping is a linear isomorphism of L(E; E) onto
B(E, E). To prove that g is regular, assume that a certain ¢ determines
the zero-function. Then (¢ x, y)=0 for every xe E and every ye E, whence
@=0.

It remains to be shown that g is a mapping onto B(E, E). Given a bi-
linear function @, choose a fixed vector xe E and consider the linear func-
tion £, defined by

f:(y) = 2(x,y).
By the Riesz-theorem (cf. sec. 7.7) this function can be written in the form

f:() =)

where the vector x'€ E is uniquely determined by x.
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Define a linear transformation ¢: E—E by

ox=x",
Then
®(x,y)=(¢x,y) xeE,yeE.

Thus, there is a one-to-one correspondence between the linear trans-
formations of E and the bilinear functions in E. In particular, the identity-
map corresponds to the bilinear function defined by the inner product.

Let & be the bilinear function which corresponds to the adjoint trans-
formation. Then

®(x,y)=(px,y)=(x,0) =(9y,x) = ®(,x).

This equation shows that the bilinear functions & and @ are obtained
from each other by interchanging the arguments.

8.5. Normal transformations. A linear transformation ¢ : E— Eis called
normal, if

Pop=@op. 8.9
The above condition is equivalent to
(px,0y)=(#x,9y) x,y€E. (8.10)

In fact, assume that ¢ is normal. Then

(¢x,0y)=(00y)=(x00y)=(9x.0).
Conversely, condition (8.10) implies that

(1 00x)=(0y,0x)=(py,0%)=(y,0 §x)
whence (8.9).
Formula (8.10) yields for y=x

_ lox|? = 1px|?.
This relation implies that the kernels of ¢ and ¢ coincide,
ker o = ker .
Hence, the orthogonal decomposition (8.4) can be written in the form
E=kero®Imeg. 8.11)

Relation (8.11) implies that the restriction of ¢ to Im ¢ is regular. Hence,
©* has the same rank as ¢. The same argument shows that all the trans-
formations ¢*(k=2, 3...) have the same rank as ¢.
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It is easy to verify that if ¢ is a normal transformation then so is ¢ — 41,
AeR. Hence it follows that
ker(p — A1) =ker(p — 11).

In other words, ¢ and @ have the same eigenvectors. Now the result at
the end of sec. 8.3. implies that every two eigenvectors of a normal trans-
formation whose eigenvalues are different must be orthogonal.
Let ¢: E— E be a linear transformation and assume that an orthogonal
decomposition
E=E @ QE,

is given such that the subspaces E; are stable. Denote by ¢, the restriction
of ¢ to E;. Then ¢ is normal if and only if the subspaces E; are stable
under @; and the transformations ¢; are normal.
In fact, assume that ¢ is normal and let x;e E; be arbitrary. Then we
have for every x;eE;, j+i
(#x5%;) = (x,9x;)=0.

This implies that px;e E J-l, Jj#iwhence ¢ x;e E;. Thus E; is stable under @.
The normality of ¢; follows immediately from the relation

lo;x|* = lox|> = |px|> =1p;x|> x€E,.

Conversely, assume that E; is stable under @; and that ¢, is normal. Then
we have for every vector
X = Z x,~ x,~EE,~
i

that
lox|* = Zl¢xi|2 = Zl¢ixi|2 = Z gixi|® = Z lpxil? =px|*
and so ¢ is normal.
Problems

1. Consider two inner product spaces E and F. Prove that an inner
product is defined in the space L(E; F) by

(p:¥)=tr(fo9) @, YeL(E;F).

Derive the inequality

tr(@@ @))* = tr (YY) tr(p )

and show that equality holds only if y =19, AeR.



§ 2. Selfadjoint mappings 209

2. Let ¢: E—E be a linear transformation and ¢ be the adjoint trans-
formation. Prove that if F< Eis stable under ¢, then F* is stable under P.

3. Prove that the matrix of a normal transformation of a 2-dimensional
space with respect to an orthonormal basis has the form

(-5 %)

Conclude that if a normal transformation of a 2-dimensional space is
different from zero, then it is regular.

§ 2. Selfadjoint mappings

8.6. Eigenvalue problem. A linear transformation ¢:E—E is called
selfadjoint if p= ¢ or equivalently

(px,y)=(x,0y) x,yeE.

The above equation implies that the matrix of a selfadjoint transformation
relative to an orthonormal basis is symmetric.

If ¢: E— E is a selfadjoint transformation and F< E is a stable subspace
that the orthogonal complement F* is stable as well. In fact, let ze F*
be any vector. Then we have for every yeF

(0z,5)=(z,0y)=0
whence pze F*.

It is the aim of this paragraph to show that a selfadjoint transformation
of an n-dimensional inner product space E has n eigenvectors which are
mutually orthogonal.

Define the function F by

x+0. (8.12)

This function is defined for all vectors x+0. As a quotient of continuous
functions, F is also continuous. Moreover, F is homogeneous of degree

Zero, i.e.
F(AX)=F(x) {(A%0). (8.13)

Consider the function F on the unit sphere |x|=1. Since the unit sphere
is a bounded and closed subset of £, F assumes a minimum on the sphere
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|x|=1. Let e; be a unit vector such that

F(ey) S F(x) 8.14)
for all vectors |x|=1. Relations (8.13) and (8.14) imply that
Fe) S F(x) (8.15)

for all vectors x+0. In fact, if x40 is an arbitrary vector, consider the
corresponding unit-vector e. Then x=|x|e, whence in view of (8.13)

F(x)=F(e)Z F(ey).

Now it will be shown that e, is an eigenvector of ¢. Let y be an arbitrary
vector and define the function f by

F(t) =F(e+1y). (8.16)

Then it follows from (8.15) that f assumes a minimum at t=0, whence
S’ (0)=0. Inserting the expression (8.12) into (8.16) we can write

(ex +ty,pe +1toy)
(es +ty,eq+1ty)
Differentiating this function at t=0 we obtain
L) =(er,0y) + (r,0e1) = 2(er, @ es)(er, ¥)- (8.17)

Since ¢ is selfadjoint,

f=

(e, 0y)=(¢e1,y)

and hence equation (8.17) can be written as

f(0)=2(pe,y)—2(e;,0eq)(ey, y). (8.18)
We thus obtain

(pe, — (e, pe,)e,y)=0 (8.19)
for every vector ye E. This implies that
ey =(e,pe)e,
i.e. e, is an eigenvector of ¢ and the corresponding eigenvalue is
Ay= (e, 0ey).

8.7. Representation in diagonal form. Once an eigenvector of ¢ has
been constructed it is easy to find a system of n orthogonal eigenvectors.
In fact, consider the 1-dimensional subspace (e,) generated by e,. Then
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(ey) is stable under ¢ and hence so is the orthogonal complement E; of
(ey). Clearly the induced linear transformation is again selfadjoint and
hence the above construction can be applied to E,. Hence, there exists
an eigenvector e, such that (e,, e,)=0. )

Continuing this way we finally obtain a system of » eigenvectors e,
(v=1...n) such that

(ev’ eu) = 5vu .

The eigenvectors e, form an orthonormal basis of E. In this basis the
mapping ¢ has the form
pe,=Ae, (8.20)

where 1, denotes the eigenvalue of e,. These equations show that the
matrix of a selfadjoint mapping has diagonal form if the eigenvectors are
used as a basis.

8.8. The eigenvector-spaces. If A is an eigenvalue of ¢, the correspond-
ing eigen-space E(J) is the set of all vectors x satisfying the equation
px=)x. Two eigen-spaces E(X) and E(1) corresponding to different
eigenvalues are orthogonal. In fact, assume that

pe=Je and @e =1¢".
Then
(e,pe)=1A(e,e’) and (e,pe)=1'(e €).
Subtracting these equations we obtain
(A=A (e,€) =0,
whence (e, ')=0if 2" % 1.

Denote by 1,(v=1...r) the different eigenvalues of ¢. Then every two
eigenspaces E(4;) and E(4;)(i<)) are orthogonal. Since every vector xe E
can be written as a linear combination of eigenvectors it follows that the
direct sum of the spaces E(4,) is E. We thus obtain the orthogonal de-
composition .

E=E(})®®E(2,). (8.21)

Let ¢, be the transformation induced by ¢ in E(4;). Then
Q;x =X xeE(4).
This implies that the characteristic polynomial of ¢; is given by
det(o, —A)=(1 =) (i=1...r) (8.22)
where &, is the dimension of £(4,). It follows from (8.21), and (8.22)
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that the characteristic polynomial of ¢ is equal to the product
det(p — A1) = (A, — A" .. (4, — Y. (8.23)

The representation 8.23 shows that the characteristic polynomial of a
selfadjoint transformation has » real zeros, if every zero is counted with
its multiplicity. As another consequence of (8.23) we note that the dimen-
sion of the eigen-space E(4;) is equal to the multiplicity of the zero 4; in
the characteristic polynomial.

8.9. The characteristic polynomial of a symmetric matrix. The above
result implies that a symmetric » x n-matrix 4=(c) has » real eigen-
values. In fact, consider the transformation

ox,=Yarx, (v=1..n)
u

where x,(v=1...n) is an orthonormal basis of E. Then ¢ is selfadjoint
and hence the characteristic polynomial of ¢ has the form (8.23). At the
same time we know that

det(e — A1) =det(4 — AJ). (8.24)
Equations (8.23) and (8.24) yield
det(Ad —AJ)= (A, — D ... (4, — 2.

8.10. Eigenvectors of bilinear functions. In sec. 8.4 a one-to-one corre-
spondence between all the bilinear functions @ in E and all the linear
transformations ¢: E— E has been established. A bilinear function ¢ and
the corresponding transformation ¢ are related by the equation

&(x,y)=(px,y) x,y€E.

Using this relation, we define eigenvectors and eigenvalues of a bilinear
function to be the eigenvectors and eigenvalues of the corresponding
transformation. Let e be an eigenvector of @ and 1 be the corresponding
eigenvalue. Then
D(e,y) =(pe,y)=1(e,y) (8.25)
for every vector yeE.
Now assume that the bilinear function & is symmetric,

®(x,y) = ®(y,x).

Then the corresponding transformation ¢ is selfadjoint. Consequently,
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there exists an orthonormal system of » eigenvectors e,

pe,=Ae, (v=1...n). } (8.26)
This implies that .
¢(ew eu) = j'v (ev’ eu) = j'v 5vu
Hence, to every symmetric bilinear function ® in E there exists an ortho-

normal basis of E in which the matrix of & has diagonal-form.

Problems

1. Prove by direct computation that a symmetric 2 x 2-matrix has only
real eigenvalues.
2. Compute the eigenvalues of the matrix

4 -1 2

5

-1 -2 -3
5

2 -5 1

3. Find the eigenvalues of the bilinear function
o(xy)= Y &'
v¥pu
4. Prove that the product of two selfadjoint transformations ¢ and ¥
is selfadjoint if and only if o=@y
5. A selfadjoint transformation ¢ is called positive, if
(x,0x)=0

for every xe E. Given a positive selfadjoint transformation ¢, prove that
there exists exactly one positive selfadjoint transformation ¥ such that
Yi=0

6. Given a selfadjoint mapping ¢, consider a vector b (ker ¢)*. Prove
that there exists exactly one vector aeker ¢* such that pa=».

7. Let ¢ be a selfadjoint mapping and let e,(v=1...n) be a system of n
orthonormal eigenvectors. Define the mapping ¢, by

pa=¢ — 41
where 4 is a real parameter. Prove that

o;'x= Zix_ez xeE.

provided that A is not an eigenvalue of ¢.
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8. Let ¢ be a linear transformation of a real n-dimensional linear space
E. Show that an inner product can be introduced in E such that ¢ becomes
a selfadjoint mapping if and only if ¢ has » linearly independent eigen-
vectors.

9. Let ¢ be a linear transformation of E and ¢ the adjoint map. Denote
by |¢@| the norm of ¢ which is induced by the Euclidean norm of E (cf.
sec. (7.19)). Prove that lol? = 4

where A is the largest eigenvalue of the selfadjoint mapping @-¢.
10. Let ¢ be any linear transformation of an inner product space E.
Prove that ¢ @ is a positive self-adjoint mapping. Prove that

(x,0#x)>0 x+0
if and only if ¢ is regular.

11. Prove that a regular linear transformation ¢ of a Euclidean space
can be uniquely written in the form

@ =0CoT

where ¢ is a positive selfadjoint transformation and 7 is a rotation.
Hint: Use problems 5 and 10. (This is essentially the unitary trick of
Weyl).

§ 3. Orthogonal projections

8.11. Definition. A linear transformation n: E—E of an inner product
space is called an orthogonal projection if it is selfadjoint and satisfies the
condition 7% = . For every orthogonal projection we have the orthogonal
decomposition

E=kern®Imn

and the restriction of 7 to Im = is the identity. Clearly every orthogonal
projection is normal. Conversely, a normal transformation ¢ which satis-
fies the relation @?=g is an orthogonal projection. In fact, since p2=¢
we can write

X=0x+ X, x,ekerg.

Since ¢ is normal we have that ker ¢=ker ¢ and so it follows that
x,eker §.
Hence we obtain for an arbitrary vector ye E

% 03)=(0%0y)+ (1, 0y) =(¢x,0) +(¢x1,7) = (0%, 0 y)
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whence
(x0y)=0,0x).

It follows that ¢ is selfadjoint.

To every subspace E; — E there exists precisely one orthogonal projec-
tion 7 such that Im == E,. It is clear that = is uniquely determined by E,.
To obtain 7 consider the orthogonal complement E; and define n by

ny=y,yeE;; nz=0z€Ey.

Then it is easy to verify that n?=n and #=n.

Consider two subspaces E; and E, of E and the corresponding ortho-
gonal projections n,: E—~E, and n,: E— E,. It will be shown that 7, o, =0
if and only if E, and E, are orthogonal to each other. Assume first that
E, LE,. Then =, xeE; for every vector xeE, whence 7,07, =0. Con-
versely, the equation 7,07, =0 implies that 7, xe E; for every vector
xeE, whence E, e E;.

8.12. Sum of two projections. The sum of two projections n,: E—E,
and 7,: E— E, is again a projection if and only if the subspaces E, and E,
are orthogonal. Assume first that £, L E, and consider the transformation
n=m,+7,. Then

(%, + X)) =%nx, + X, =x, +%x, x,€E ,x,eE,.

Hence, n reduces to the identity-map in the sum E; @ E,. On the other
hand,
nx=0 if xeEin E;.
But E{ n E; is the orthogonal complement of the sum E,®E, and hence
7 is the projection of E onto E, D E,.
Conversely, assume that 7, +n, is a projection. Then

(ry + 7)) =y + 1y,
whence

MioTy + Myomy =0. (8.27)

This equation implies that

TyoMyoly +Myoy =0 (8.28)
and
Moy + MyoMyomy =0. (8.29)

Adding (8.28) and (8.29) and using (8.27) we obtain
Ryomyon; =0. (8.30)
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The equations (8.30) and (8.28) yield
Myomy =0,

This implies that £, LE,, as it has been shown at the end of sec. 8.11.

8.13. Difference of two projections. The difference n, —n, of two pro-
jections n,: E~E, and &n,: E— E, is a projection if and only if E, is a sub-
space of E,. To prove this, consider the mapping

p=1—(n, — 7)) =0 —m) +m,.

Since 1 —n, is the projection E—Ej, it follows that ¢ is a projection if
and only if E{ cEj, i.e., if and only if E, > E,. If this condition is ful-
filled, ¢ is the projection onto the subspace E i + E,. This implies that
7, —n,=1—¢ is the projection onto the subspace

(Et + E))'=E, n E3.

This subspace is the orthogonal complement of E, relative to E,.

8.14. Product of two projections. The product of two projections
n,:E—E, and n,: E-E, is an orthogonal projection if and only if the
projections commute. Assume first that 7,07, =7, o7,. Then

n, 7 X =7, x = x for every vector xeE, n E,. (8.31)

On the other hand, m,.7, reduces to the zero-map in the subspace
(Ein E})*=E{ +Ej. In fact, consider a vector

x=x{+x; xi€E{,x;€E3.
Then
L 1 1 1_
MM X =T M X7 + MM X3 =My X7 + T, x5 =0, (8.32)

Equations (8.31) and (8.32) show that n, 0w, is the projection E-E N E,.
Conversely, if 7,07, is a projection, it follows that

*
Tyomy =(yom)* =nton; = 0m,.

Problems

1. Prove that a subspace J< E is stable under the projection n: E—~E,
if and only if
J=JnE ®Jn Ef.
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2. Prove that two projections n,: E—E, and n,: E— E, commute if and
only if
E,+E,=E,nNE,+E, nEf+EnE,.

3. The reflection ¢ of E at a subspace E, is defined by
ex=p—h

where x=p+h(peE,, he E{). Show that the reflection ¢ and the projec-
tion n: E—E, are related by
o=2n—1.

4. Consider linear transformation ¢ of a real linear space E. Prove that
an inner product can be introduced in E such that becomes an orthogonal
projection if and only if p2=¢.

5. Given two projections n, and n, prove that

ﬂ:=7r1 +7r2 —(71:1071:2+7r207r1)

is again a projection.

6. Given a selfadjoint mapping ¢ of E, consider the distinct eigen-
values 4; and the corresponding eigenspaces E;(i=1 ...r). If =; denotes
the orthogonal projection E— E; prove the relations:

a) mom; =0 (i #)).
b) Ymi=1.
c) Zlini=(p.
§ 4. Skew mappings

8.15. Definition. A linear transformation ¢ in E is called skew if
Y = —y. The above condition is equivalent to the relation

Wxy)+(x¢¥y)=0 xyeE. (8.33)

It follows from (8.33) that the matrix of a skew mapping relative to an
orthonormal basis is skew-symmetric.
Substitution of y=x in (8.33) yields the equation

(x,¢yx)=0  xeE (8.34)

showing that every vector is orthogonal to its image-vector. Conversely,
a transformation ¥ having this property is skew. In fact, replacing x by
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x+y in (8.34) we obtain

(x+y,¥x+yy) =0,
whence

(¥ x) + (x,y)=0.

1t follows from (8.34) that a skew mapping can only have the eigenvalue

A=0.
The relation y = —y implies that
try =0
and

dety = (— 1)"dety.

The last equation shows that
detyy =0

if the dimension of E is odd. More general, it will now be shown that the
rank of a skew transformation is always even. Since every skew mapping
is normal (see sec. 8.5) the image space is the orthogonal complement of
the kernel. Consequently, the induced transformation ¥, :Im y—Im
is regular. Since yr, is again skew, it follows that the dimension of Im ¥
must be even.

It follows from this result that the rank of a skew-symmetric matrix is
always even.

8.16. The normal-form of a skew-symmetric matrix. In this section it
will be shown that to every skew mapping ¥ an orthonormal basis a,
(v=1...n) can be constructed in which the matrix of y has the form

(0 x h
‘—KIO

» (8.35)

. 0/
Consider the mapping ¢ = 2. Then #=¢. According to the result of sec.
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8.7, there exists an orthonormal basis e, (v=1...n) in which ¢ has the form
Qe,=4,e, (v=1..n).
All the eigenvalues A, are negative or zero. In fact, the equation

Qpe=le
implies that
A=(e,pe)=(e,y’e)=—(Ye,Ye) 0.

Since the rank of  is even and /2 has the same rank as , the rank of
¢ must be even. Consequently, the number of the negative eigenvalues is
even and we can enumerate the vectors e,(v=1...n) such that

Ay<0 (v=1..2p) and A4,=0 (v=2p+1...n).
Define the orthonormal basis a,(v=1...n) by
1 R
dzy—1 = 6, a2v='dlpev Kv=\/_'1v (V"—=1p)
K

A4
and

a,=e, (v=2p+1..n).

In this basis the matrix of { has the form (8.35).

Problems

1. Show that every skew mapping ¢ of a 2-dimensional inner product
space satisfies the relation

(px,0y) =dete:(x,y).

2. Show that every skew mapping ¢ of an oriented 3-space can be
written as
ox=bxx

and that the vector b is uniquely determined by ¢. Prove that the com-
ponents of b relative to a positive orthonormal basis are obtained from
the matrix (a,,) of ¢ by the formulae

ﬂl=°‘23, ﬂ2=°‘31a ﬂ3=°‘12-

3. Assume that ¢+0 and ¢ are two skew mappings of the 3-space
having the same kernel. Prove that y =A¢ where 1 is a scalar.
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4. Applying the result of problem 3 to the mappings

ex=(a, Xa,)xx
and
‘/’x =da, (al’x) - al(azax)
prove the formula

(ay x ay) x a3y =ay(ay,a3)—a,(a,,as).

5. Prove that a linear transformation ¢:E— E satisfies the relation
p=2A¢, Ae R if and only if ¢ is selfadjoint or skew.

6. Show that every skew-symmetric bilinear function @ in an oriented
3-space E can be represented in the form

®(x,y) = (x x y,a)

and that the vector a is uniquely determined by &.

7. Prove that the product of a selfadjoint mapping and a skew map-
ping has trace zero.

8. Prove that the characteristic polynomial of a skew mapping satisfies
the equation

2= =(=1xA).

From this relation derive that the coefficient of *~" is zero for every odd v.
9. Let ¢ be a linear transformation of a real linear space E. Prove that
an inner product can be defined in E such that ¢ becomes a skew mapping
if and only if the following conditions are satisfied: 1. The space E can
be decomposed into ker ¢ and stable planes. 2. The mappings which are
induced in these planes have positive determinant and trace zero.
10. Given a skew-symmetric 4 x 4-matrix 4=(a,,) verify the identity

det A = (0ty, 034 + 043045 + °‘14°‘23)2-

§ 5. Isometric mappings

8.17. Definition. Consider two inner product spaces E and F. A linear
mapping ¢:E—F is called isometric if the inner product is preserved
under ¢,

(@x1,0x3) =(x1,%) Xx1,%,€E.

Inserting x, =x,=x in we find

lox] =|x| xeE.
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Conversely, the above relation implies that ¢ is isometric. In fact,

2(@ x4, 0 X2) = |@(xy + X)17 — 1@ x;1* — |@ x,|?
=|x; + x,]% — |x41? — |x,* = 2(x1,%5).

Since an isometric mapping preserves the norm it is always injective.

We assume in the following that the spaces F and F have the same di-
mension. Then every isometric mapping ¢: E— F is a linear isomorphism
of E onto F and hence there exists an inverse isomorphism ¢~ !: F»E.
The isometry of ¢ implies that

(px,y)=(x,90"'y) xeE,yeF,
whence

p=0". (8.36)

Conversely every linear isomorphism ¢ satisfying the equation (8.36) is
isometric. In fact,

(@ x4, ‘sz) = (%1, @‘sz) = (351,‘!’_1 fl’xz) = (xl,xz).

The image of an orthonormal basis a, (v=1...n) of E under an isometric
mapping is an orthonormal basis of F. Conversely, a linear mapping
which sends an orthonormal basis of E into an orthonormal basis b,
(v=1...n) of Fis isometric. To prove this, consider two vectors

x;=3¢&a, and x,=)¢&a,;
then
(px1=25;bv and (Px2=Zf;bv,

whence
((le,(sz) = Z 5; 6‘2t(bv’ bu) = Z 5; é;évu = Zgi, 5; = (x15x2)'

It follows from this remark that an isometric mapping can be defined
between any two inner product spaces E and F of the same dimension:
Select orthonormal bases a, and b,(v=1...n) in E and in F respectively
and define ¢ by ¢a,=b,(v=1...n).

8.18. The condition for the matrix. Assume that an isometric mapping
¢: E—Fis given. Employing two bases a, and b, (v=1...n) we obtain from
@ an n x n-matrix a4 by the equations

pa, =Yy arb,.
u
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Then the equations
(pay@a,)=(a,a,)

AZ aé a: (bl’ bx) = (av, all) .

can be written as

Introducing the matrices

gvu = (aw au) and h/lx = (bla bx)

we obtain the relation
/12 dé d; hlx = gvu . (837)

Conversely, (8.37) implies that the inner products of the basis-vectors are
preserved under ¢ and hence that ¢ is an isometric mapping.
If the bases a, and b, are orthonormal,

gvy = 5vu ’ hlx = 5,11: s

relation (8.37) reduces to
; ajoat =3,

showing that the matrix of an isometric mapping relative to orthonormal
bases is orthogonal.

8.19. Rotations. A rotation of an inner product space E is an isometric
mapping of E into itself. Formula (8.36) implies that

(detp)*=1

showing that the determinant of a rotation is =+ 1.

A rotation is called proper if det o= +1 and improper if det o= —1.

Every eigenvalue of a rotation is & 1. In fact, the equation pe=27e im-
plies that |e|=|4| |e], whence A= £ 1. A rotation need not have eigenvec-
vectors as can already be seen in the plane.

Suppose now that the dimension of E is odd and let ¢ be a proper
rotation. Then it follows from sec. 4.20 that ¢ has at least one positive
eigenvalue 4. On the other hand we have that 1= + 1 whence A=1. Hence,
every proper rotation of an odd-dimensional space has the eigenvalue 1.
The corresponding eigenvector e satisfies the equation gpe=e; that is, e
remains invariant under ¢. A similar argument shows that to every im-
proper rotation of an odd-dimensional space there exists a vector e such
that pe= —e. If the dimension of E is even, nothing can be said about



§ 5. Isometric mappings . 223

the existence of eigenvalues for a proper rotation. However, to every im-
proper rotation, there is at least one invariant vector and at least one
vector e such that pe= —e (cf. sec. 4.20).

Let ¢: E— E be a rotation and assume that Fc E is a stable subspace.
Then the orthogonal complement F* is stable as well. In fact, if zeF*
is arbitrary we have for every ye F

(z,5)=(z,07'y)=0
whence pzeF*.

The product of two rotations is obviously again a rotation and the
inverse of a rotation is also a rotation. In other words, the set of all
rotations of an n-dimensional inner product space forms a group, called
the general orthogonal group. The relation

det(@, 0 ¢,) = det @, deto,

implies that the set of all proper rotations forms a subgroup, the special
orthogonal group.

A linear transformation of the form 41¢ where A>0 and ¢ is a proper
rotation is called homothetic.

8.20. Decomposition into stable planes and straight lines. With the aid
of the results of § 2 it will now be shown that for every rotation ¢ there
exists an orthogonal decomposition of F into stable subspaces of dimen-
sion 1 and 2. Denote by E; and E, the eigenspaces which correspond to
the eigenvalues A= +1 and A= —1 respectively. Then E, is orthogonal
to E,. In fact, let x; € E, and x,€ E, be two arbitrary vectors. Then

¢x,=x; and @x,=-x,.

These equations yield
. (x¥1,%2) = — (x1,%2),
whence (x,, x,)=0.
It follows from sec. 8.19 that the subspace F=(E; @ E,)" is again stable
under ¢. Moreover, F does not contain an eigenvector of ¢ and hence F
has even dimension. Now consider the selfadjoint mapping

Y=o+ P=0+o"

of F. The result of sec. 8.6 assures that there exists an eigenvector e of .
If A denotes the corresponding eigenvalue we have the relation

pe+ o le=le.
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Applying ¢ we obtain
ple=lpe—e. (8.38)

Since there are no eigenvectors of ¢ in F the vectors e and ¢ e are linearly
independent and hence they generate a plane F;. Equation (8.38) shows
that this plane is stable under ¢. The induced mapping is a proper rota-
tion (otherwise there would be eigenvectors in F).

The orthogonal complement F;- of F, with respect to F is again stable
under ¢ and hence the same construction can be applied to Fi". Conti-
nuing in this way we finally obtain an orthogonal decomposition of Finto
mutually orthogonal stable planes.

Now select orthonormal bases in E;, E, and in every stable plane.
These bases determine together an orthonormal basis of E. In this basis
the matrix of ¢ has the form

(e, N

sP
cosf; sind, g, =11 (v=1...p)

—sinf;, cosf, 2k=n-—p

cos@, sinf,
L —sin6, cos6, )

Problems

1. Given a skew transformation iy of E, prove that

=W+ -1t

is a rotation and that —1 is not an eigenvalue of ¢. Conversely, if ¢ is a
rotation, not having the eigenvalue —1 prove that
Y=(p—1-(p+17"
is a skew mapping.
2. Let ¢ be a regular linear transformation of a Euclidean space E such
that (¢ x, @y)=0 whenever (x, y)=0. Prove that ¢ is of the form ¢ =211,
A#+0 where 7 is a rotation.
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3. Assume two inner products ¢ and ¢ in E such that all angles with
respect to ¢ and ¥ coincide. Prove that ¥ (x, y)=1® (x, y) where 1>0
is a constant.

4. Prove that every normal transformation of a plane is homothetic.

5. Let ¢ be a mapping of the inner product space E into itself such that
¢0=0 and

lox—@yl=|x—y| x,yeE.

Prove that ¢ is then linear.

6. Prove that to every proper rotation ¢ there exists a continuous
family ¢,(0<7<1) of rotations such that ¢,=¢ and ¢, =1.

7. Let ¢ be a linear automorphism of an n-dimensional real linear
space E. Show that an inner product can be defined in E such that ¢ be-
comes a rotation if and only if the following conditions are fulfilled:

1. The space E can be decomposed into stable planes and stable straight
lines.

2. Every stable straight line remains pointwise fixed or is reflected at
the point O.

3. In every irreducible invariant plane a linear automorphism y is
induced such that

detyy=1 and |try] <2.

8. If ¢ is a rotation of an n-dimensional Euclidean space, show that
[tr @] =n.

9. Prove that the characteristic polynomial of a proper rotation satis-
fies the relation

fA=(=2r0™.

10. Let E be an inner product space of dimension n>2. Consider a
proper rotation 7 which commutes with all proper rotations. Prove that
t=¢1 where e=1 if nis odd and ¢= +1 if n is even.

§ 6. Rotations of the plane and of 3-space

8.21. Proper rotations of the plane. Let E be a Euclidean plane and ¢
be a proper rotation of E. Employing an orthonormal basis e, e, of E

we can write pe,=ae +fe; i+ pi=1. (8.39)
Since ¢e, is orthogonal to @e;, it follows that

pe; =1 (— fe +aey). (8.40)
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Computing the determinant of ¢ from (8.39) and (8.40) we obtain
deto =+ (o> + ¥ =+ 1.
Since ¢ is a proper rotation the determinant must be + 1 and hence the
+ sign stands in (8.40),
pe,=—fe, +ae,. (8.41)
Given an arbitrary vector
x=2Ce +ne;

we obtain from (8.39) and (8.41)

px=(xl—fn)e;+(BE+ an)e,
whence

(x, @) = (e + 1) = a(x, ). (8.42)

This equation shows that the inner product (x, ¢ x) only depends on the
norm of x.

Let us now introduce an orientation in E by a normed determinant-
function 4. Then

A(x,ox)=n(@&—pn)d(ez,e) + E(BE+ an)d(ey, e;)
= Blx|*4 (e1,€2) = &f|x|? (8.43)

where e= + 1 depending on whether the basis e;, e, is positive or negative.
Denote by 0 the oriented angle between the vectors x and ¢ x. Then equa-
tions (7.25), (8.42) and (8.43) yield

cosf =u
sinf =¢f (8.44)

showing that the angle § does not depend on x. Hence, it makes sense to
call 0 the rotation-angle of ¢. If the orientation of E is reversed, the ro-
tation-angle changes the sign.

Now equations (8.39) and (8.41) can be written in the form

Qe =e;c0o80 + ge,sinf
Qe,=—c¢e sinf + e,cos (8.45)

where e=1 if the basis (ey, e,) is positive, and e= —1 if the basis (e, e,)
is negative. The above equations show that

cos =1itre. (8.46)
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8.22. Proper rotations of 3-space. Consider a proper rotation ¢ of a
3-dimensional inner product space E. As it has been shown in sec. 8.19,
there exists a 1-dimensional subspace E; of FE whose vectors remain fixed.
If ¢ is different from the identity-map there are no other invariant vectors
(an invariant vector is a vector xe E such that ¢ x=x).

In fact, assume that @ and b are two linearly independent invariant
vectors. Let ¢ (¢ +0) be a vector which is orthogonal to a and to b. Then
@c=Ac where 1=+ 1. Now the equation det ¢=1 implies that A= +1
showing that ¢ is the identity.

In the following discussion it is assumed that ¢ =:. Then the invariant
vectors generate a 1-dimensional subspace E; called the axis of ¢.

To determine the axis of a given rotation ¢ consider the skew mapping

v=3%e-9) (8.47)
and introduce an orientation in E. Then y can be written in the form
Yx=uxx uek. (8.48)

The vector u# which is uniquely determined by ¢ is called the rozation-
vector. The rotation vector is contained in the axis of ¢. In fact, let a+0
be a vector on the axis. Then equations (8.48) and (8.47) yield
[w,al=va=3(pa—pa)=4(pa—9 ta)=0  (849)
showing that # is a multiple of a. Hence (8.48) can be used to find the
rotation axis provided that the rotation vector is different from zero.

This exceptional case occurs if and only if ¢=¢ i.e. if and only if
@=¢ . Then ¢ has the eigenvalues 1, —1 and —1. In other words, @ is
a reflection at the axis.

8.23. The rotation-angle. Consider the plane F which is orthogonal to
E,. Then ¢ transforms F into itself and the induced rotation ¢, is again
proper. Denote by @ the rotation-angle of ¢,. Then, in view of (8.46)

' cosf =Itro,.
Observing that
tro=tro, +1
we obtain the formula
cosf=14(tro —1).

To find a formula forsin 0 consider the orientation of Fwhich is induced
by E, and by the vector u (cf. sec. 4.29)*). This orientation is represented

© %) It is assumed that « # 0.
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by the normed determinant-function

4,(y,2) = LA(,, y,2)

where 4 is the normed determinant-function representing the orientation

of E. Then formula (7.25) yields

1
sinf = 4 (y,goy)-—-A(u Ys®y)

where y is an arbitrary unit vector of F. Now

A(u,y,0y)=detod(p 'u, 0”1y, y)
=AW, 0 ' y,y)=—A(u,y,0""y)

and hence equation (8.50) can be written as

1
sin @ = — mA(u,y,fp_lJ’)'

By adding formulae (8.50) and (8.51) we obtain

1
smf)——A(u Y0y —¢@~ y) A(u,y,4y).

2ul
Inserting the expression (8.48) in (8.52), we thus obtain

1 1
sinf =— A(u,y,u x y)= —|u x y|.
|ul ( ) |ul

Since y is a unit-vector orthogonal to u, it follows that
lu x yl = |ullyl = [u]
and hence (8.53) yields the formula

sinf = |u|.

(8.50)

(8.51)

(8.52)

(8.53)

This equation shows that sin 6 is positive and hence that 0 <8 <= if the

above orientation of F is used.

Altogether we thus obtain the following geometric significance of the

rotation-vector u:
1. u is contained in the axis of ¢.
2. The norm of u is equal to sin 6.

3. If the orientation induced by u is used in F, then 6 is contained in

the interval 0<f8<n.
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1, ¢! has obviously the

Let us now compare the rotations ¢ and ¢~
same axis as ¢. Observing that ¢~ ! = @ we see that the rotation vector of
@~ ! is —u. This implies that the inverse rotation induces the inverse
orientation in the plane F.

To obtain an explicit expression for u select a positive orthonormal
basis e,, e,, e, in E and let o, be the corresponding matrix of ¢. Then
has the matrix

By =% (o} — o)
and the components of u are given by
u' =3} —a3) w=3(af—a3) ud=34(af—a}).

It should be observed that the rotationvector u does not determine the
mapping ¢ completely. In fact, two rotations about the same axis through
the angles 6 and = —@ have the same rotation-vector. To characterize the
mapping ¢ completely, we need both the rotationvector and the cosine
of the rotation angle.

Problems

1. Prove that any two proper rotations of the plane commute.
2. Given a proper rotation ¢ of the plane denote by 6(¢) the corre-
sponding rotation-angle. Show that

0(pz001)=0(p,)+ 0(p,), mod 2m.

3. Let ¢ be a linear automorphism of a real 2-dimensional linear space
E. Prove that an inner product can be introduced in E such that ¢ be-
comes a proper rotation if and only if

detop=1 and |tro|/<2.

4, Consider the set H of all homothetic transformations ¢ of the plane.
Prove:

a) If ¢, eH and ¢p,eH, then Ap;,+up,eH.

b) If the multiplication is defined in H in the natural way, the set H
becomes a commutative field.

¢) Choose a fixed unit-vector e. Then, to every vector xe E there exists
exactly one homothetic mapping ¢, such that ¢ ,e=x. Define a multi-
plication in E by xy =g, y. Prove that E becomes a field under this multi-
plication and that the mapping x— ¢, defines an isomorphism of E onto
H.
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d) Prove that E is isomorphic to the field of complex numbers.

5. Given an improper rotation ¢ of the plane construct an orthonormal
basis e,, e, such that pe, =e, and gpe,= —e,.

6. Show that every skew mapping i of the plane is homothetic. If  F0,

s
prove that the angle of the corresponding rotation is equal to + 5 if the

orientation is defined by the determinant-function

4(x,y)=W=x,y) x,yeE.

7. Find the axis and the angle of the rotation defined by
pe;=3%(—e +2e —2ej)
per=3%(2e  +2e; + e3)
pes=%(2e; —e; —2e3)

where e, (v=1, 2, 3) is a positive orthonormal basis.

8. If ¢ is a proper rotation of the 3-space, prove the relation

det(p + 1) = 4(1 + cos )

where 0 is the rotation angle.
9. Consider an orthogonal 3 x 3-matrix (o) whose determinant is + 1.

Prove the relation
Gy =17+ Y (o — o) = 4.

v<p
10. Let e be a unit-vector of an oriented 3-space and 6(—n<60=<r) be
a given angle. Denote by F the plane orthogonal to e. Consider the proper
rotation ¢ whose axis is generated by e and whose angle is 6 if the orien-
tation induced by e is used in F. Prove the formula

¢x =xcos0 + e(e,x)(1 — cosB) + (e x x)sinf.

11. Prove that two proper rotations of the 3-space commute if and
only if they have the same axis.

12. Let ¢ be a proper rotation of the 3-space not having the eigen-
value —1.

Prove that the skew transformations

1=(9=1o(p+1)"" and Y=1(p—9)
are connected by the equation
1

x=1+cos9

where @ denotes the rotation-angle of ¢.
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13. Assume that an improper rotation ¢ + —1 of the Euclidean 3-space
is given.

a) Prove that the vectors x for which ¢ x= —x, form a 1-dimensional
subspace E;.

b) Prove that a proper rotation ¢, is induced in the plane F orthogonal
to E;. Defining the rotation-vector u as in sec. 8.22, prove that ¢, is the
identity if and only if u=0.

c) Show that the rotation-angle of ¢, is given by

cosf=4%(tro +1)

and that 0< 6 <~ if the induced orientation is used in F.

14. Let E be an oriented Euclidean plane and 4 a normed determinant
function which represents the orientation of E. Define the linear trans-
formation 7 by

(vx,y) = 4(x,y).

a) Prove that 7 is a proper rotation and that the rotation angle is g

b) Using the identity (7.23) prove the relations

(x,y) 4 (u,v) = 4(x,0) (u, y) = = 4(x,u)(y,v)
and

A(x,y)A(u,v) + (x’ v)(u, y)=- (x’ u)(y’v)’

c) Lete;(i=1, 2, 3) bethree unit vectors in an oriented plane and denote
by 6;; the angle between e; and e; (i=+/). Prove the formulae

cos 3 =cosf,,cos80,; —sinf,,sinf,,
sinfl;; =sin@;,cosf,, + cosf,,sinf,;.

15. Let E be an oriented 3-dimensional inner product space.

a) Consider E together with the cross product as an algebra. Show
that the set of non-zero endomorphisms of this algebra is precisely the
group of proper rotations of E.

b) Suppose a multiplication is defined in F such that every proper ro-
tation 7 is an endomorphism,

txy)y=tx-7y.
Show that

xy=2a(x xy)
where 1 is a constant.
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§ 7. Differentiable families of linear automorphisms

8.24. Differentiation formulas. Let E be an n-dimensional inner product
space and let L(E; E) be the space of all linear transformations of E. It has
been shown in sec. 7.20 that a norm is defined in the space L(E; E) by
the equation

lol = ﬂa)i lpx].
A continuous mapping r—¢ (z) of a closed interval z,<7<¢; into the
space L(E; E) will be called a continuous family of kinear transformations
or a continuous curve in L(E; E). A continuous curve ¢ (z) is called differ-
entiable if the limit
fim e +40)—0() _

40 A4t #(0)
exists for every 7(¢f,<¢<t,). The mapping ¢ is obviously again linear for
every fixed z.

The following formulae are immediate consequences of the above
definition:

1. (Ap+uy) =2¢+pul (A, u constants)

2. (Yo9) =Yop+yop

3. p=¢

4. If ¢,(t)(v=1...p) are p differentiable curves in L(E; E) and & is a
p-linear function in L(E; E), then

12600 0,0) = 3 (01 40)- ,(9)-

A curve ¢ (2) (2, <t <ty) is called continuously differentiable if the mapping
t— ¢ (¢) is again continuous. Throughout this paragraph all differentiable
curves are assumed to be continuously differentiable.

8.25. Differentiable families of linear automorphisms. Our first aim is
to establish a one-to-one correspondence between all differentiable fami-
lies of linear automorphisms on the one hand and all continuous families
of linear transformations on the other hand. Let a differentiable family
¢ (t)(to<t<t,) of linear automorphisms be given such that ¢(z,)=1.
Then a continuous family ¥ (f) of linear transformations is defined by

V(D) = 9(0)e0() .

Interpreting ¢ as time we obtain the following physical significance of the
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mappings ¥ (¢): Let x be a fixed vector of E and
x(t)=o()x

the corresponding orbit. Then the velocity vector % (¢) is given by

(O =0@x=00 ()" xO =y [Ox(@).

Hence, the mapping ¥ (¢) associates with every vector x (z) its velocity at
the instant ¢.

Now it will be shown that, conversely, to every continuous curve ¥ (¢)
in L(E; E) there exists exactly one differentiable family ¢ (¢)(¢,<t<1¢,)
of linear automorphisms satisfying the differential equation

() =¥ ()-0() (8.54)

and the initial-condition ¢ (z,)=1. First of all we notice that the differ-
ential equation (8.54) together with the above initial condition is equiva-
lent to the integral equation

o) =1 +f¢(z)o<p(z)dt (thS1<1,). (8.55)

In the next section the solution of the integral equation (8.55) will be con-
structed by the method of successive approximations.

8.26. The Picard iteration process. Define the curves ¢,(f)(r=0,1...)
by the equations

Po(t)=1
and

orei® =1+ [U Dot (1=0.1..)

Introducing the differences

£,() = 0,(0) = pps () (1=1,2,..) (8.57)

we obtain from (8.56) the relations

A,,(t)=fl/l(t)od,,_,(t)dt (n=2,3,..). (8.58)
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Equation (8.57) yields for n=1

Al(t)=<o1<t)—<po(t>=fw(t)dt-

Define the number M by

M = max |y(1).
fostst
Then
|41 ()] < M(t—to). (8.59)

Employing the equation (8.58) for n=2 we obtain in view of (8.59)

t M2
14 ()] = sz(t —to)dt < 7(‘ — to)?
to
and in general
M"
14,(0)] £ ;T(t -t (n=1,2..).

Now relations (8.57) imply that

n+tp

Pusp() —0u()= 3 4,0,

v=n+1
whence
n+p ntp

[@nsp(8) — <p..(t)|< Z IA (t)l< Z —(t—to)

e MY

<Y V-t

vent1 V!

(8.60)

Let ¢>0 be an arbitrary number. It follows from the convergence of

. MY . .
the series Y, o (r, —t,)’ that there exists an integer N such that
> v!

n+p v

Y —'(tl—to)v<s for n>N and p=1. (8.61)

v=n+1V
The inequalities (8.60) and (8.61) yield
|@nsp() —0u() <& for n>N and p2=1.

These relations show that the sequence ¢, (¢) is uniformly convergent in
the interval £, <1=<¢,,

lim ¢, (1) = o (1).

n—ao
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In view of the uniform convergence, equation (8.56) implies that

o()=1+ (VDo (5151, (8.62)

As a uniform limit of continuous curves the curve ¢ (¢) is itself continuous.
Hence, the right hand-side of (8.62) is differentiable and so ¢ (¢) must be
differentiable. Differentiating (8.62) we obtain the relation

() =v()o0(t)

showing that ¢ () satisfies the differential equation (8.54). The equation
o (2,)=1is an immediate consequence of the relations ¢, (¢5) =1(n=0,1...).

8.27. The determinant of ¢ (7). It remains to be shown that the map-
pings @ (z) are linear automorphisms. This will be done by proving the
formula

} try (1) dt
deto(f) = €° . (8.63)

Let A30 be a determinant-function in E. Then
A(p()xy...0()x,) =detp()A(x,...x,)  x,€E.

Differentiating this equation and using the differential equation (8.54) we
obtain

T A (%1 (D P ()%, 9(0)%,)
P (8.64)
= 3~tdetgo(t)-41(x1 v Xp)-

Observing that
s ;A (%1 ...y (Do () x,...0(£) x,)

=try () 4(p()xy ... 0 (t)x,)
= try(t)deto(t) 4(xy ... x,).

We obtain from (8.64) the differential equation
d
dtdetgo(t) =try(¢)-deto(t) (8.65)

for the function det ¢ (¢). Integrating this differential equation and ob-
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serving the initial-condition

deto(ty) =deti=1
we find (8.63).
8.28. Uniqueness of the solution. Assume that ¢, (z) and ¢, () are two
solutions of the differential equation (8.54) with the initial condition
¢ (to)=1. Consider the difference

()= 02(t) — 0. (1).

The curve ¢ (t) is again a solution of the differential equation (8.54) and
it satisfies the initial condition ¢ (¢,)=0. This implies the inequality

t t t

eI =|[ srar < flcb(t)ldr ngup(t)ldt- (8.66)

to

Now define the function F by
t
F(t)= f](p(t)ldt. (8.67)
to
Then (8.66) implies the relation
F()SMF(1).
Multiplying by ™™ we obtain

F)e™M —Me™F(r)<0,
whence

dit(F(t)e_’M) <o0.

Integrating this inequality and observing that F(¢,)=0, we obtain

F(t)em™ <0
and consequently _
F)£0 (toststy). (8.68)

On the other hand it follows from (8.67) that
F()z0 (to=t=1ty). (8.69)

Relations (8.68) and (8.69) imply that F(r)=0 whence ¢(r)=0. Con-
sequently, the two solutions ¢, (¢) and ¢, (¢) coincide.



§ 7. Differentiable families of linear automorphisms 237

8.29. 1-parameter groups of linear automorphisms. A differentiable
family of linear automorphisms ¢ () (— oo <t< o) is called a 1-parameter
group, if

e(t+1)=0{)oo(7). (8.70)

Equation (8.70) implies indeed that the automorphisms ¢(¢) form a
group. Inserting =0 we find ¢ (0)=1. Now equation (8.70) yields

o(D)ep(=1) =1

showing that with every automorphism ¢ (7) the inverse automorphism
@ (¢)~! is contained in the family ¢ (¢)(— 0 <t<o0). In addition it fol-
lows from (8.70) that the group ¢ (¢) is commutative.

Differentiation of (8.70) with respect to # yields

o(t+7)=9(0)e0().

Inserting =0 we obtain the differential equation

p(x)=vYo0(z) (—o< 7<) (8.71)

where y=¢(0). Conversely, consider the differential equation (8.71)
where f is a given transformation of E. It will be shown that the solution
¢ (7) of this differential equation to the initial condition ¢ (0)=1is a 1-
parameter group of automorphisms. To prove this let 7 be fixed and con-
sider the curves

p1()=0(t+7) (8.72)
and
P2() =9 (o0 (7). (8.73)
Differentiating the equations (8.72) and (8.73) we obtain
br()=g(t+)=Vop(t+1)=¥o0, () (8.74)
and

9, =00 o0(x)=vop(Dop() =Vop,(t). (8.75)

Relations (8.74) and (8.75) show that the two curves @ (?) and ¢, (7)
satisfy the same differential equation. Moreover,

?1(0)= ¢,(0) = 0(7).

Thus, it follows from the uniqueness theorem of sec. 8.28 that ¢ ()=, (?)
whence (8.70).
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8.30. Differentiable families of rotations. Let ¢ (¢)(zo <7=1,) be a differ-
entiable family of rotations such that ¢ (zy)=1. Since det ¢ (f)=+1 for
every ¢ and det ¢ (0)= +1 it follows from the continuity that det ¢ ()=
+1, i.e. all rotations ¢ () are proper.

Now it will be shown that the linear transformations

¥ (@) =600

are skew. Differentiating the identity

p(De0()=1

we obtain
oo () + 9()ep(r)=0.
Inserting
(1) =y ()o0(1)
and

p(1)= ¢()= ()P (?)
into this equation we find

20 (I () +y())o0(1) =0,

g +y(@)=0.

Conversely, let the family of linear automorphisms ¢ (¢) be defined by
the differential equation

() =¥ ®)o0(), o(to)=1

where ¥ (¢) is a continuous family of skew mappings. Then every auto-
morphism ¢ (¢) is a proper rotation. To prove this, define the family y(z)
by

whence

x(D)=p0-0().

1) =)0 (1) + #(t)o 6(2)
== @)y (Do) + 7Oy (Dop(t)=0

Then

and
x(to) =1.

Now the uniqueness theorem implies that x(¢)=1, whence
p(eo()=1.

This equation shows that the mappings ¢ (¢) are rotations.
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8.31. Angular velocity. As an example, let ¢(r) be a differentiable
family of rotations of the 3-space such that ¢ (0)=1. If ¢ is interpreted as
the time, the family ¢ (z) can be considered as a rigid motion of the space
E. Given a vector x, the curve

x(1) = ¢ (1)
describes its orbit. The corresponding velocity-vector is determined by
() =¢Ox=y e (O)x=y)x(1). (8.76)

Now assume that an orientation is defined in E. Then every mapping
¥ () can be written as

Yy(t)y =Ly,u@®)]. (8.77)

The vector u(¢) is uniquely determined by y (¢) and hence by z. Equations
(8.76) and (8.77) yield

2(t) = [x(1), u(®)]. (8.78)

The vector u(z) is called the angular velocity at the time z. To obtain a
physical interpretation of the angular velocity, fix a certain instant ¢ and
assume that u(#)=0. Then equation (8.78) shows that % () =0 if and only
if x(¢) is a multiple of u(¢). In other words, the straight line generated by
u () consists of all vectors having the velocity zero at the instant z. This
straight line is called the instantaneous axis. Equation (8.78) implies that
the velocity-vector x(?) is orthogonal to the instantaneous axis.

Passing over to the norm in equation (8.78) we find that

Sy (O = lu () 1A (1)

« where |A(?)| is the distance of the vector x (7)
Fig. 1 from the instantaneous axis (fig. 1). Conse-
’ quently, the norm of u(¢) is equal to the mag-
nitude of the Velomty of a vector having the distance 1 from the instan-
taneous axis.

The uniqueness theorem in sec. 8.28 implies that the rigid motion ¢ (7)

is uniquely determined if the angular velocity is a given function of ¢.
8.32. The trigonometric functions. In this concluding section we shall
apply our general results about families of rotations to the Euclidean
plane and show that this leads to the trigonometric function cos and
sin. This definition has the advantage that the addition-theorems can be
proved in a simple fashion, without making use of the geometric intuition.
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Let E be an oriented Euclidean plane and 4 be the normed determinant
function representing the given orientation. Consider the skew mapping
¥ which is defined by the equation

W x,y)=4(x,y). (8.79)

First of all we notice that ¥ is a proper rotation. In fact, the identity 7.24
yields
(W x,9)* = 4(x, )" = (x,x) (3, y) — (%, ¥)*.

Inserting y =y x we find
(¥ x, ¥ x)? = (x,x) (¥ x, ¥ x).
Now ¥ is regular as follows from (8.79). Hence the above equation implies

that
(W x, ¢ x) = (x,x).

Replacing x and y by Y x and ¥ y respectively in (8.79) we obtain the re-
lation
AWxyy) = xyy)=Wxy)=4(x,y)
showing that
dety = + 1.

Let ¢ () (— o0 <t<0) be the family of rotations defined by the differ-
ential equation

p(H)=vo-0() (8.80)
and the initial condition
@(0)=1.
Then it follows from the result of sec. 8.29 that
e(t+1)=0()o0(1). (8.81)

We now define functions ¢ and s by

c(f)=}tro ()
and —00<t<0. (8.82)

s()=—1tr(Yo0())

These functions are the well-known functions cos and sin. In fact, all
the properties of the trigonometric functions can easily be derived from
(8.82). Select an arbitrary unit-vector e. Then the vectors e and e form
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an orthonormal basis of E. Consequently,

tro()=(p(t)e,e) + (e (Ve Ye). (8.83)

Since ¥ is itself a proper rotation, the mappings ¢ (¢) and Y commute.
Hence, the second term in (8.83) can be written as

(eMyeve)=o()eve)=(e()ee).
We thus obtain

c()=(p(D)ee). (8.84)
In the same way it is shown that
s)=(e(eye). (8.85)
Equations (8.84) and (8.85) imply that
p(t)e=c(t)e+s(t)ye. (8.86)

Replacing ¢ by £+ 7 in (8.84) and using the formulae (8.81) and (8.86) we
obtain

ct+1)=(p(t+1)e,e)=(p()o(t)e,€)
=c(t)(e(r)e,e) —s(N(p(x)e Y e). (8.87)

Equations (8.87), (8.84) and (8.85) yield the addition theorem of the func-
tion c:

c(t+1)=c(t)c(r) = s(?)s(r).
In the same way it is shown that

s(t+1)=s()c(zr) + c()s(r).

Problems

1. Let y be a linear transformation of the inner product space E. De-
fine the linear automorphism exp ¥ by

expy = ¢ (1)
where ¢ (2) is the family of linear automorphisms defined by

o) =Yo(1),0(0)=1.
Prove that
p()=cxp(1y) (—w<t<oo).
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2. Show that the mapping Y —exp y defined in problem 1 has the fol-
lowing properties:

1. exp (Y +y;)=expyoexp ¥, if Yooy =0,
2. exp(—¥)=(expy)~".
3. exp0=1.

4. expy =expy.
5. det expy=e".

From these formulas derive that exp ¥ is selfadjoint if i is selfadjoint and
that exp ¥ is a proper rotation if y is skew.

3. Consider the family of rotations ¢ (¢) defined by (8.80).

a) Assuming that there is a real number p =0 such that ¢ (p) =1, prove
that ¢ (1 +p)=¢(t)(— 0 <t < 0).

b) Prove that ¢ (#,)=: if and only if

1
d
t0=4kf——i— (k=0,+1,+2,..).
0\/1—1'2

c) Show that the family ¢ (7) has derivatives of every order and that

VPN =—™(@#) (v=0,1.).
d) Define the curve x(¢) by

x()=o(t)e

where e is a fixed unit-vector. Show that

jl)’:(t)ldt: t.

4. Derive from formulae (8.82) that the function c is even and that
the function s is odd.

5. Let y be the skew mapping defined by (8.79). Prove De Moivre’s
Sformula

exp(ty)=c(i+s()y.

6. Let y a skew mapping of an n-dimensional inner product space and
¢ (?) the corresponding family of rotations. Consider the normal form
(8.35) of the matrix of Y. Prove that the function ¢ (f)(— oo <t<o0) is
periodic if and only if all the ratios k,:x, are rational.
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7. Let 4 be a finite dimensional associative real algebra.

a) Consider a differentiable family of endomorphisms ¢,: A— A4 such
that ¢, =1. Prove that ¢, is a derivation in 4.

b) Let 6 be a derivation in 4 and define the family ¢, of linear trans-
formations by

p=00¢, @o=1.

Prove that every ¢, is an automorphism of 4. Show that every ¢, com-
mutes with 6.



Chapter IX

Symmetric bilinear functions

All the properties of an inner product space discussed in Chapter VII
are based upon the bilinearity, the symmetry and the definiteness of the
inner product. The question arises which of these properties do not depend
on the definiteness and hence can be carried over to a real linear space
with an indefinite inner product. Linear spaces of this type will be dis-
cussed in § 4. First of all, the general properties of a symmetric bilinear
function will be investigated. It will be assumed throughout the chapter
that all linear spaces are real.

§ 1. Bilinear and quadratic functions

9.1. Definition. Let E be a real vector space and ¢ be a bilinear func-
tion in Ex E. The bilinear function & is called symmetric if

P(x,y)=?(y,x) x,yeE. 9.1)

Given a symmetric bilinear function @ consider the (non-linear) func-
tion ¥ defined by
¥ (x)=d(x,x).

Then & is uniquely determined by ¥.
In fact, replacing x by x+y in (9.1) we obtain
P(x+y)=P(x+ y,x +y)=P(x) +20(x,y) + P(»), (9.2)

whence
O(x,y)=3{¥(x+y)—¥(x) - ¥Y()}- 9-3)

Equation (9.3) shows that different symmetric bilinear functions @ lead
to different functions ¥.
Replacing y by —y in (9.2) we find

P(x—y)=¥(x)—20(x,y) + (). 9.4)
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Adding the equations (9.3) and (9.4) we obtain the so-called parallelo-
gram-identity
Y(x+y)+¥(x—-y)=2(¥() +\'I’(y)). 9.5)

9.2. Quadratic functions. A continuous function ¥ of one vector which
satisfies the parallelogram-identity will be called a quadratic function.
Every symmetric bilinear function yields a quadratic function by setting
x=y. We shall now prove that, conversely, every quadratic function can
be obtained in this way.

Substituting x=y=0 in the parallelogram-identity we find that

¥(0)=0. i 9.6)
Now the same identity yields for x=0
F(-y)=¥0)

showing that a quadratic function is an even function.
If there exists at all a symmetric bilinear function @ such that

P (x,x) = ¥(x)
this function is given by the equation

P(x,y) =H¥(x +y) - ¥(x) - ¥(»)}. ©.7)

Therefore it remains to be shown that the function @ defined by (9.7) is
indeed bilinear and symmetric. The symmetry is an immediate conse-
quence of (9.7). Next, we prove the relation

D (x; + x3,¥) = P(xy, ) + P(x3, ). (9.8)
Equation (9.7) yields
20(Xy + %2, ) =YXy + x, +¥) — P(x; + x3) — ¥(»)
20(x,y) =¥ (x; +y)— ¥ (x) — ¥(»)

20 (x2, )= ¥(x2 + y) — ¥ (x2) — ¥ (),
whence

2{P(x; + X2, ¥) — P (x1,¥) = P (x5, 9)} = {¥(x1 + x, + y) + ()} —
—{P(x; + )+ P+ 9} = {P (X1 + %) = P(xy) — P(x3)}. (9.9

It follows from (9.5) that
Yo+ x+p)+ P(y)=${¥(x, +x; +2p) + ¥ (x; + x3)} (9.10)
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and
Py + )+ P+ ) =3{¥(x; + %2+ 2p) + P(x; — %)} (9.11)
Subtracting (9.11) from (9.10) and using the parallelogram-identity again
we find that

{P(xi+x,+9)+ PO} — {P(x +9) + P(x, + )} (9.12)
=3{¥(x1 + x2) = ¥(x; — x2)} = — ¥ (x;) = ¥ (xz) + ¥ (xs + x3)-

Now equations (9.9) and (9.12) imply (9.8). Inserting x; =x and x,= —x
into (9.8) we obtain

P(—x,y)=—d(x,y). (9.13)
It remains to be shown that
P(Ax,y)=AD(x,y) (9.14)

for every real number A. First of all it follows from (9.8) that
| & (k x, y) = kB(x, y)

for a positive integer k. Equation (9.13) shows that (9.14) is also correct
for negative integers. Now consider a rational number

a=F (p, ¢ integers).
q
Then
p
q¢<qx, y) =@(px,y)=pP(x,y),

whence
d><gx,y) = Btﬁ(x,y).
q q

To prove (9.14) for an irrational factor A we note first that ¢ is a continu-
ous function of x and y, as follows from the continuity of ¥. Now select
a sequence of rational numbers A, such that

lim 2, = 4.
Then we have that
(A%, y) = 2y D(x,¥). (9.15)

For n— o0 we obtain from (9.15) the relation (9.14).
Our result shows that the relations (9.1) and (9.7) define a one-to-one
correspondence between all symmetric bilinear functions and all qua-
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dratic functions. If no ambiguity is possible we shall designate a symme-
tric bilinear function and the corresponding quadratic function by the
same symbol, i.e., we shall simply write

P (x,x) = P(x).

9.3. Bilinear and quadratic forms. Now assume that E has dimen-
sion n and let x,(v=1...n) be a basis of E. Then a symmetric bilinear
function @ can be expressed as a bilinear form

O(x,y)=> a,,&n* 9.16)
v, B
x=38%, y=xn"x,
and the matrix «,, is defined by

a,, = D(x,,x,) *).

It follows from the symmetry of @ that the matrix «,, is symmetric:

where

OCV“ = OC‘". .

Replacing y by x in (9.16) we obtain the corresponding quadratic form
D(x) =) a,, EE".
v, B

Problems

1. Let fand g be two linearly independent linear functions in E- and
let @ be a derivation in the algebra R. Show that the function

P (x)=S(x) 0[g(x)]—g(x) O [ f (x)]

satisfies the paralelogram identity and the relation ¥ (Ax)=A2¥(x).
Prove that the function @ obtained from ¥ by (9.7) is bilinear if and only
if 6=0.

2. Prove that a symmetric bilinear function in E defines a quadratic
function in the direct sum EQE.

3. Denote by 4 and by 4 the matrices of the bilinear function @ with
respect to two bases x, and %,(v=1...n). Show that

A=TAT*
where T is the matrix of the basis transformation x,— x,.

*) The first index counts the row.



248 Chapter IX. Symmetric bilinear functions

§ 2. The decomposition of E

9.4. Rank. Let E be a vector space of dimension n and @ a sym-
metric bilinear function in Ex E. Recall that the nullspace E, of & is
defined to be the set of all vectors x,€ E such that

D(xp,y)=0  forevery yeE.

The difference of the dimensions of E and E, is called the rank of &.
Hence & is non-degenerate if and only it has rank n.

Now let E* be a dual space and consider the linear mapping ¢: E— E*
defined by

D(x,y)=<ox,y> x,yeE. (9.18)
Then the null-space of @ obviously coincides with the kernel of ¢,
Ey=kereg.

Consequently, the rank of @ is equal to the rank of the mapping ¢. Let
(«,,) be the matrix of @ relative to a basis x,(v=1...n) of E. Then relation
(9.18) yields

<(D Xys xu) =¢ (xv’ xu) = Uy,

showing that «,, is the matrix of the mapping ¢. This implies that the
rank of the matrix (,,) is equal to the rank of ¢ and hence equal to the
rank of @. In particular, a symmetric bilinear function is non-degenerate
if and only if the determinant of («,,) is different from zero.
9.5. Definiteness. A symmetric bilinear function ¢ is called positive
definite if
P(x)>0

for all vectors x=0. As it has been shown in sec. 7.4, a positive definite
bilinear function satisfies the Schwarz-inequality

d(x,y) <o(x)d(y) x,yeE.

Equality holds if and only if the vectors x and y are linearly dependent.
A positive definite function ¢ is non-degenerate.

If @ (x) 20 for all vectors xe E, but ¢ (x)=0 for some vectors x %0, the
function @ is called positive semidefinite. The Schwarz inequality is still
valid for a semidefinite function. But now equality may hold without the
vectors x and y being linearly dependent. A semidefinite function is al-
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ways degenerate. In fact, consider a vector x,+0 such that &(x,)=0.
Then the Schwarz inequality implies that

D (%0, y)* < P(x0)P(y) =0

whence @ (x,, ¥)=0 for all vectors y.

In the same way negative definite and negative semidefinite bilinear
functions are defined.

The bilinear function @ is called indefinite if the function & (x) assumes
positive and negative values. An indefinite function may be degenerate
or non-degenerate.

9.6. The decomposition of E. Let a non-degenerate indefinite bilinear
function & be given in the n-dimensional space E. It will be shown that
the space E can be decomposed into two subspaces E* and E~ such that
& is positive definite in E* and is negative definite in E~.

Since @ is indefinite, there is a non-trivial subspace of E in which @ is
positive definite. For instance, every vector a for which &(a) >0 generates
such a subspace.

Let E* be a subspace of maximal dimension such that & is positive
definite in E*. Consider the orthogonal complement £~ of E* with re-
spect to the scalar product defined by . Since @ is positive definite in E*,
the intersection E* n E~ consists only of the zero-vector. At the same
time we have the relation (cf. sec. 2.33)

dimE* + dimE~ =dimE.
This yields the direct decomposition
E=E*®E".
Now it will be shown that ¢ is negative definite in £~. Given a vector

z+0 of E~, consider the subspace E; generated by E* and z. Every vec-
tor of this subspace can be written as

x=y+Az yeE*.
This implies that
d(x)=D(y) + A2 D(z). (9-19)

Now assume that @ (z)>0. Then equation (9.19) shows that @ is positive
definite in the subspace E, which is a contradiction to the maximum-
property of E*. Consequently,

¢(z) S0 for all vectors ze€E~
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i.e., @ is negative semidefinite in E~. Using the Schwarz inequality
&(z,2? S P(z,)P(z) z,€E",zeE~ (9.20)

we can prove that @ is even negative definite in £ . Assume that #(z,)=0
for a vector z,e E~. Then the inequality (9.20) yields

&(zy,2)=0

for all vectors ze E~. At the same time we know that
4 (Z 15 .V) =0

for all vectors ye E*. These two equations imply that
b(z,,x)=0

for all vectors xe E, whence z, =0.
9.7. The decomposition in the degenerate case. If the bilinear function
& is degenerate, select a subspace E, complementary to the nullspace E,

E=E,®E,.
Then & is non-degenerate in E,. In fact, assume that
D(x1,y1)=0
for a fixed vector x,eE; and all vectors y, € E;. Consider an arbitrary

vector ye E. This vector can be written as

y=Yot+y1 Vo€Eo, y,€E,
whence
45(x1,y)=Q(xl,y0)+<15(xl,y1)=0. 9.21)

This equation shows that x, is contained in £, and hence it is contained
in the intersection E,n E,. This implies that x; =0.

Now the construction of sec. 9.6 can be applied to the subspace E,. We
thus obtain altogether a direct decomposition

E=E*®E @E, (9.22)

of E such that & is positive definite in E* and negative definite in E~.
9.8. Diagonalization of the matrix. Let (x,...x,) be a basis of E*, which
is orthonormal with respect to &, (x,;,...x,) be a basis of E~ which is
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orthonormal with respect to —@, and (x,,,...x,) be an arbitrary basis
of E,. Then
+1(v=1...5)
d(x,,x,) =¢,9,, whereg, =S —1(v=s+1...7)
O(v=r+1..n)

The vectors (x,...x,) then form a basis of E in which the matrix of ¢ has
the following diagonal-form:

0\

9.9. The index. It is clear from the above construction that there are
infinitely many different decompositions of the form (9.22). However, the
dimensions of E* and E~ are uniquely determined by the bilinear func-
tion @. To prove this, consider two decompositions

E=E{ ®@E[ ®E, (9.23)
and
E=E; ®E; ®E, (9.24)

such that @ is positive definite in E;{ and E; and negative definite in
E; and E, . This implies that

whence
dimE; + dimE] + dimE, < n. (9.25)

Comparing the dimensions in (9.23) we find
dimE{ +dimE[ + dimE,=n. (9.26)
Equations (9.25) and (9.26) yield
dimE; SdimE;.
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Interchanging E;" and E,” we obtain

dimE{ £ dimE;,
whence
dimE; = dimE; .

Consequently, the dimension of E* is uniquely determined by &. This
number is called the index of the bilinear function @ and the number
dim E* —dim E~ =25~ is called the signature of ®.

Now suppose that x,(v=1...n) is a basis of E in which the quadratic
function ¢ has diagonal form

P(x)=Y48¢
and assume that
A,>0(v=1..p) and A, =0(v=p+1..n).

Then p is the index of &. In fact, the vectors x,(v=1...p) generate a sub-
space of maximal dimension in which & is positive definite.

From the above result we obtain Sylvester’s law of inertia which asserts
that the number of positive coefficients is the same for every diagonal
form.

9.10. The rank and the index of a symmetric bilinear function can be
determined explicitly from the corresponding quadratic form

O(x) =) «,t .

We can exclude the case ¢ =0. Then at least one coefficient «;; is different
from zero. If i+j, apply the substitution

E=8185=8-¥.
o(x)=>) a,,E&

v, b

where &;+ 0 and &;;%+0. Thus, we may assume that at least one coefficient
a;, SAY &, 4, is different from zero. Then € (x) can be written as

<D(x)—<xu{(€ )2+* Z oy, & é“}+ » o, & &

11 p=2 v, p=2

Then

The substitution

1
nt=¢+— Zal,‘

X11 p=2

"=¢  (v=2..n)
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yields
@ =o' + 3 Bunn (9.27)
v, =

The sum in (9.27) is a symmetric bilinear form in (n—1) variables and
hence the same reduction can be applied to this sum. Continuing this way
we finally obtain an expression of the form

o(x)=Y2"¢0¢.
Rearranging the variables we can achieve that

>0 (v=1..53)
<0 (v=s+1..7)
A=0 (v=r+1..n).

Then r is the rank and s is the index of &.

Problems

1. Let &0 be a given quadratic function. Prove that & can be written
in the form
O(x)=c¢f(x)%e= %1

where fis a linear function, if and only if the corresponding bilinear func-
tion has rank 1.
2. Given a non-degenerate symmetric bilinear form ¢ in E, let J be a
subspace of maximal dimension such that ¢(x, x)=0 for every xeJ.
Prove that
dimJ = min(s,n ~ s).

Hint: Introduce two dual spaces E* and F* and linear mappings

¢,:E—-E* and ¢,:F—>F*
defined by
¢(x,}’)=<(01xd’> and ¢(x7y)=<x’¢2y>'

3. Define the bilinear function @ in the space L(E; E) by

(0, ¥) = tr (Y 0).

Let S(E; E) be the space of all selfadjoint mappings and A(E; E) be
the space of all skew mappings with respect to a positive definite inner
product. Prove:
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a) @ (¢, ¢)>0 for every ¢ +0 in S(E; E),
b) ®(¢p, ¢)<O0 for every ¢ =0 in A(E; E),
¢) @(p, ¥)=0if peS(E; E) and Y€ A(E; E),

1
d) The index of @ is nin+1)

, where n = dim E.

4. Find the index of the bilinear function

(o) =tr(Yop)—trotry

in the space L(E; E).

5. Find the index of the quadratic form

D(x)= Y &'el.
i<j

6. Let ¢ be a bilinear function in E. Assume that E, is a subspace of
E such that & is non-degenerate in E,. Define the subspace E, as follows:
A vector x,€E is contained in E, if

& (x,,x,) =0 for all vectors x, € E, .
Prove that
E = El @Ez .

7. Consider a (not necessarily symmetric) bilinear function ¢ such that
& (x, x)> 0 for all vectors x 4 0. Construct a basis of E in which the matrix
of @ has the form
1 Ky D
—K; 1

. 1)
Hint: Decompose & in the form

? =9, +P,,
where

Dy (x,9) = 31(P(x,y) + (3, x))
and

P, (x,y) = 4(®(x,y) — ®(»,%)).
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8. Let E be a 2-dimensional vector space, and consider the 4-dimen-
sional space L(E; E). Prove that there exists a 3-dimensional subspace
FcL(E; E) and a symmetric bilinear function @ in F such that the nil-
potent transformations (cf. problem 7, Chap. IV, § 6) are precisely the
transformations t satisfying @ (r)=0 (In other words, the nilpotent trans-
formations form a cone in F).

§ 3. Pairs of symmetric bilinear functions

9.11. In this paragraph we shall investigate the question under which
conditions two symmetric bilinear functions @ and ¥ can be simultane-
ously reduced to diagonal form.

To obtain a first criterion we consider the case that one of the bilinear
functions, say ¥, is non-degenerate. Then the vector space E is self-dual
with respect to ¥ and hence there exists a linear transformation ¢: E—E
satisfying

b(x,y)=Y(ox,y) x,yeE

(cf. prop. 111, sec. 2.33). Suppose now that x; and x, are eigenvectors of
¢ such that the corresponding eigenvalues 4, and A, are different. Then
we have that

D (xy,x5) = A1 P (xy1,x,)
and

D (x2,%1) = Ao P (x2,%1)

whence in view of the symmetry of ¢ and ¥
(4 = A2) ¥ (x4,%,) = 0.

Since A, %4, it follows that ¥ (x,, x,)=0 and hence & (x,, x,)=0.
Proposition: Assume that ¥ is non-degenerate. Then & and ¥ are
simultaneously diagonalizable if and only if the linear transformation ¢
has n linearly independent eigenvectors.
Proof: 1f ¢ has n linearly independent eigenvectors consider the distinct
eigenvalues 1,...4, of ¢. Then it follows that

E = El @"' @E,.
where E; is the eigenspace of 4. Then we have for x;e E; and x;€E;, i%j
Y(x,x)=0 and &(x,x;)=0.

Now choose a basis in each space E, such that ¥ has diagonal form (cf.
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sec. 9.8). Since
D(x,y)=14¥(x,¥) x;YeE;

it follows that & has also diagonal form in this basis. Combining all these
bases of the E; we obtain a basis of E such that ¢ and ¥ have diagonal
form.

Conversely, let ¢;(i=1...n) be a basis of E such that &(e;, ¢;)=0 and
¥ (e;, €;)=0 if i=j. Then we have that

W(pe,e)=0 i+].

This equation shows that the vector ge; is contained in the orthogonal
complement (with respect to the scalar product defined by ¥) of the sub-
space F; generated by the vectors e,, vi. But F Jl is the 1-dimensional
subspace generated by ¢;, and so it follows that ¢ ¢;=4¢;. In other words,
the e; are eigenvectors of ¢.

As an example let E be a plane with basis a, b and consider the bilinear
functions @, ¥ given by

®(a,a)=1, &(a,b)=0, &(b,b)=-1
and
¥Y(a,a)=0, ¥Y(a,b)=1, ¥(b,b)=0.

It is easy to verify that then the linear transformation ¢ is given by
ea=b, pb=—a.

Since the characteristic polynomial of ¢ is A%+ 1 it follows that ¢ has no
eigenvectors. Hence, the bilinear functions @ and ¥ are not simultane-
ously diagonalizable.

Theorem: Let E be a vector space of dimension n=3 and let ¢ and ¥
be two symmetric bilinear functions such that

d(x)2+¥P(x)*+0 if x+0.

Then & and ¥ are simultaneously diagonalizable.

Before giving the proof we comment that the theorem is not correct for
dimension 2 as the example above shows.

9.12. To prove the above theorem we employ a similar method as in
sec. 8.6. If one of the functions & and ¥, say ¥, is positive definite the
desired basis-vectors are those for which the function

&(x)
¥ (x)

F(x)= x%0. (9.28)
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assumes a relative minimum. However, if ¥ is indefinite, the denominator
in (9.28) assumes the value zero for certain vectors x+0 and hence the
function F is no longer defined in the entire space x+0. The method of
sec. 8.6 can still be carried over to the present case if the function F is
replaced by the function

arc tan F(x). (9.29)

To avoid difficulties arising from the fact that the function arc tan is not
single-valued, we shall write the function as a line-integral. At this point
the hypothesis n>3 will be essential *).
Let E be the deleted space x40 and x = x (£) (0<¢<1) be a differentiable
curve in E. Consider the line-integral
1
; =J¢(x) Y(x,x) — &(x,%) ‘P(x)dt

O(x)* + P(x)? (-30)

taken along the curve x (7). First of all it will be shown that the integral J
depends only on the initial point x,=x(0) and the endpoint x=x(1) of
the curve x(¢). For this purpose define the following mapping of E into
the complex w-plane:

o(x)=&(x) +i¥(x).

The image of the curve x () under this mapping is the curve
o)=d(x@)+i¥(x@)) @O=:t=1) (9.31)

in the w-plane. The hypothesis @ (x)?+ ¥ (x)?+0 implies that the curve
o ()(0=r<1) does not go through the point w=0. The integral (9.30)

can now be written as
1

1{udo—av
=“J—7*“fd‘
2) u*+v
0
where the integration is taken along the curve (9.31).

Now let 6(r) be an angle-function for the curve w () i.e. a continuous
function of ¢ such that
@

cosB(t)=|~u- — and sinf(f) =
w

)l

v(?)
| ()]

(9.32)

‘) The proof given is due to JOHN MILNOR.
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(cf. fig. 2)*). It follows from the differentiability of the curve w(r) that
the angle-function 6 is differentiable and we thus obtain from (9.32)

d|o|
—-Uu ICU' +u —E?—
all) Sina.g = |60|2 (933)
l ot and
u d|ol
vlw| — 077
cosff=—— . (9.34)
Fig. 2 o]

Multiplying (9.33) by sin 6 and (9.34) by cos 0 and adding these equa-
tions we find that
b—uv
0="""2".
u2 + 02

Integration from #=0 to r=1 gives

1
uv —u

J)\mdt= 0(1)— 0(0)

showing that the integral J is equal to the change of the angle-function @
along the curve w(¢),

27 =6(1) — 6(0). (9.35)

Now consider another differentiable curve x=%(¢)(0<¢<1) in E with
the initial point x, and the endpoint x and denote by J the integral (9.30)
taken along the curve %(¢). Then formula (9.35) yields

2J=08(1)-08(0) (9.36)
where 8 is an angle-function for the curve
o)=(x@)+iPEE) ((O=Les1).

Since the curves w(¢) and @ (¢)(0<7<1) have the same initial point and
the same endpoint it follows that

@(0)— w(0)=2kyn and @(1)— w(1)=2k.n 9.37)

*) For more details cf. ALEXANDRov. Combinatorial Topology, Vol. 1, chapter II,

§2.
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where k, and k, are integers. Equations (9.35), (9.36) and (9.37) show
that the difference J—J is a multiple of =,

J-J=kn.

It remains to be shown that k=0. The hypothesis #=3 implies that the
space E is simply connected. In other words, there exists a continuous
mapping x=x (¢, 7) of the square 0<¢<1, 0<t<1 into E such that

x(t,0)=x(t), x(r,1)=%() 0=r=1
and
x(0,7)=x%,, x(L7)=x 0s7=1.

The mapping x (¢, T) can even be assumed to be differentiable. Then, for
every fixed 7, we can form the integral (9.30) along the curve

x(t,t) (0=Lt=1).

This integral is a continuous function J(z) of 7. At the same time we know
that the difference J(t)—J is a multiple of =,

J()—J =nk(z). (9.38)
Hence, k(r) is a continuous integer-valued function in the interval
0=<7=1 and thus k() must be a constant. Since k(0)=0 it follows that
k(t)=0(0=<t<1). Now equation (9.38) yields
J(t)=J (0=7=51).
Inserting =1 we obtain the relation
J=J

showing that the integral (9.30) is indeed independent of the curve x(¢).
9.13. The function F. We now can define a single-valued function Fin
the space E by

)P (% %) — B %) P (x)
F&= J o (x) + ¥ (x)

dt (9.39)

where the integration is taken along an arbitrary differentiable curve x (¢)
in Eleading from x, to x. The function F is homogeneous of degree zero,

F(ix)=F(x), 4>0. (9.40)
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To prove this, observe that
Ax

F(lx)—F(x)=J

x

D (x)P(x,x)— ®(x,%)¥(x)
o(x)* + ¥ (x)

dt.

Choosing the straight segment
x()=1—-tix+tx (0=t£1)
as path of integration we find that

x=(1-2)x
whence
P(x)¥(x,%) — P(x,X)P(x)=0.

This implies the equation (9.40).

9.14. The construction of eigenvectors. From now on our proof will
follow the same lines as in sec. 8.6. We consider first the case that ¥ is non-
degenerate. Introduce a positive definite inner product in E. Then the
continuous function F assumes a minimum on the sphere |x|=1. Let ¢,
be a vector on |x|=1 such that

F(e,)) £F(x)
for all vectors }x|=1. Then the homogenuity of F implies that

F(e)) S F(x)
for all vectors x=+0.
Consequently, the function

f(t)=F(e, +1y),
where y is an arbitrary vector, assumes a minimum at =0, whence
f(0=o0. (9.41)
Carrying out the differentiation we find that

/ _‘p(el)g’(el,}’)—‘15(91,}’)?’(91)
fO= ®(ey)” + P(ey)? '

Equations (9.41) and (9.42) imply that
P(ey,y)Pley) — Ple)¥(ey,y) =0 (9.43)

for all vectors yeE. In this equation ¥ (e,;)=+0. In fact, assume that

(9.42)
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¥ (e;)=0. Then & (e;)=0 and hence equation (9.43) yields ¥ (e,, y)=0
for all vectors yeE. This is a contradiction to our assumption that ¥ is
non-degenerate.

Define the number 4, by

_ (e,
¥(ey)’

then equation (9.43) can be written as

D(ey,y) =4 P(ey,y) yeE.

9.15. Now consider the subspace E, defined by the equation

o

¥(e;,z)=0.

Since ¥ is non-degenerate, E; has the dimension #—1. Moreover, the
restriction of ¥ to E, is again non-degenerate: Assume that z, is a vector
of E, such that

¥(z,2)=0 9.44)
for all vectors ze E,. Equation (9.44) implies that
¥Y(z,x)=0 (9.45)
for every vector xe E because x can be decomposed in the form
x=E%e;+2z  zeE,.

Now it follows from (9.45) that z, =0, and so ¥ is non-degenerate in E,.
Therefore, the construction of sec. 9.14 can be applied to E,. We thus
obtain a vector e, E; with the property that

@ (e,,z) = A, ¥(ey,z) for every vector ze E, (9.46)
where
i = ?(e;)
2 - .
¥ (ey)

Equation (9.46) implies that
D(ey, y) =14, Pley,y) 9.47)
for every vector yeE; in fact, y can be decomposed in the form

y=fe +z zeE,
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and we thus obtain

(e, y) =ED(ey, 1) + Pley, 2) = EP(ey, ;) + P(e,2) (9.48)
=EA, P (e, ;) + Ples, z) = P(ey, 2)
and
P (epy) =EW¥(es,ey) + Ples,2) = ¥ey, 2). (9.49)

Equations (9.46), (9.48) and (9.49) yield (9.47).
Continuing this construction we obtain after n steps a system of n
vectors e, subject to the following conditions:

(e, y)=4¥(e,y) yeE (9.50)
Y(e,e,) +0
P(e,e)=0 (v+u).

Rearranging the vectors e, and multiplying them with appropriate scalars
we can achieve that
+1(v=1...3)

?I’(ev,e,,)= svévu & = _ I(V =s5+1 n)

9.51)
where s denotes the signature of ?. It follows from the above relations
that the vectors e, form a basis of E.

Inserting y=e, in the first equation (9.50) we find

P (e, e,) = 4,8,0,,. (9.52)

Equations (9.51) and (9.52) show that the bilinear functions ¢ and ¥ have
diagonal form in the basis e,(v=1...n).

9.16. The degenerate case. The degenerate case now remains to be con-
sidered. We may assume that ¥ +0. Then it will be shown that there
exists a scalar A, such that the bilinear function ®+4,¥ is non-de-
generate

Let E* be a dual space of E and consider the linear mappings

@:E—E* and y:E—E*
defined by the equations

B(x,y)=<px,y> and P(x,y)=<Yx,pd.
Then

Imy n @(kery)=0. (9.53)

To prove this relation, let yeImy N ¢ (ker ) be any vector. Then y=¢px
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for some x e ker . Hence
P(x) =<x,¥x>=0 (9.54)
and
B(x)=<@x,x)=<y,x)=0 (9.55)

because yeImy and xe kery.
Equations (9.54) and (9.55) imply that x=0 and hence that y=@x=0.
Now let x,(v=1...n) be a basis of E such that the vectors (x,,;...X,)
form a basis of ker . Employing a determinant-function 4%0 in E we
obtain
A(ox, +AYx,...@x, + AYx,)
=A(@X; + AYXy ... 0X, + AYX, 0%, 01 ...0X,).

The expansion of this expression yields a polynomial f(2) starting with
the term

AAWXy Y X @ Xpsy oo @X,).

The coefficient of A" is not identically zero. This follows from the relation
(9.53) and the fact that the r vectors yx,eImy(¢=1...r) and the (n—r)
vectors px,€¢ (ker y) (6=r+1...n) are linearly independent.

Hence, fis a polynomial of degree r. Our assumption ¥ 0 implies
that > 1. Consequently, a number 4, can be chosen such that f(4,)=0.
Then ¢+ 4,¥ is non-degenerate.

By the previous theorem there exists a basis e, (v=1...n) of E in which
the bilinear functions ¢ and ¢+ A¥ both have diagonal form. Then the
functions ¢ and ¥ have also diagonal form in this basis.

Problems

1. Let ¢ and ¥ be two symmetric bilinear functions in E. Prove that
the condition
O(xY+¥(x)*>0, x%0

is equivalent to the following one: There exist real numbers 4 and p such
that
AP(X)+ p¥(x)>0
for every x=0.
2. Let A=(a,,) and B=(B,,) be two symmetric nx n-matrices and
assume that the equations

> ,8¢=0 and Y} B,E¢" =0
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together imply that £* =0 (v=1...n). Prove that the polynomial
f (%) =det(4 + AB)

is of degree r and has r real roots where r is the rank of B.

§ 4. Pseudo-Euclidean spaces

9.17. Definition. A pseudo-Euclidean space is a real linear space in
which a non-degenerate indefinite bilinear function is given. As in the
positive definite case, this bilinear function is called the inner product and
is denoted by (,). The index of the inner product is called the index of
the pseudo-Euclidean space.

Since the inner product is indefinite, the number (x, x) can be positive,
negative or zero, depending on the vector x. A vector x=+0 is called

space-like, if (x, x)>0

time-like, if (x, x)<0

a light-vector, if (x, x)=0

The light-cone is the set of all light-vectors.

As in the definite case two vectors x and y are called orthogonal if
(x, )=0. The light-cone consists of all vectors which are orthogonal to
themselves.

A basis e, (v=1...n) is called orthonormal if

(ev, e;‘) =&, 6\';‘
where
(+1(v=1...5)
sv = ¢
(—1(v=s5+1..n).
In sec. 9.8 we have shown that an orthonormal basis can always be
constructed.

If an orthonormal basis e,(v=1...n) is chosen, the inner product of

two vectors x = Z e, and y= va e,
is given by the bilinear form

(xy)=2 &80 = 21 En'— 3 & (9.56)
v=1 v= v=s5s+1
and the equation of the light-cone reads

Zlcv€v_ Z cvcv=0.

v=s+1
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9.18. Orthogonal complements. Since the inner product in E is non-
degenerate the space E is dual to itself. Hence, every subspace E;c E
determines an orthogonal complement E; which is again a subspace of E
and has complementary dimension.

However, the intersection E; N E; does not necessarily consist of the
zero-vector alone, as in the positive definite case. Assume, for instance,
that E, is the l-dimensional subspace generated by a light-vector /.
Then E; is contained in Ey.

It will be shown that E;n E{ =0 if and only if the inner product is
non-degenerate in E;. Assume first that this condition is fulfilled. Let x,
be a vector of E; 0 Ef. Then

(x1,y,) =0 for all vectors y, € E,, (9.57)

whence x,€E; n E; and thus x, =0. Conversely, assume that E, n E{ =0.
Then it follows that
E=E,®E; (9.58)

since E; and E; have complementary dimension.
Now let x; be a vector of E; such that

(x1,y1) =0 for all vectors y, €E;.
It follows from (9.58) that every vector y of E can be written as

y=y1+yi  yi€Ey,yiekEy,
whence
(x1,¥) = (%1, y1) + (x1,¥1) =0 for all vectors yeE.

This equation implies that x, =0. Consequently, the inner product is
non-degenerate in E,.

9.19. Normed-determinant-functions. Let 4, be a determinant-function
in E. Since E is dual to itself, the identity (4.21) applies to E yielding

ce R (9.59)

Ao(Xy, o0y %) Ao (Y1, .ons yu) = adet(x;, ;) a0

Substituting x,=y,=e, in (9.59), where e,(v=1...n) is an orthonormal
basis, we obtain

doley...e)> = (= 1Y %a.

This equation shows that
a{ = 1) *>0.
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Consequently, another determinant-function, 4, can be defined by

A (9.60)

=+ ‘A"_f_
\/(_ l)n—sa
Then the identity (9.59) assumes the form
A(xg .. x)A(yy .o yo) = (= 1)""5det(x;, y;). 9.61)

A determinant-function satisfying the relation (9.61) is called a normed
determinant-function. Equation (9.60) shows that there exist exactly two
normed determinant-functions 4 and —A4 in E.

9.20. The pseudo-Euclidean plane. The simplest example of a pseudo-
Euclidean space is a 2-dimensional linear space with an inner product
of index 1. Then the light-cone consists of two straight lines. Selecting
two vectors /; and /, which generate these lines we have the equations

(I,1)) =0 and (I,,1,)=0. (9.62)
But
(11’ 12) ='= 0
because otherwise the inner product would be identically zero. We can

therefore assume that (1) =—1. (9.63)

Given a vector
x = + &2,

of E the equations (9.62) and (9.63) yield
(x’x) == 251 52

showing that x is space-like if &' £2 <0 and x is time-like if ' £2>0. In
other words, the space-like vectors are contained in the two sectors S,
and S, of fig. 3 and the time-like vectors are contained in T+ and T~
The inner product of two vectors

x=¢810+&1, and y=nll +9l,

(o)== ("n* + &n').
This formula shows that the inner product of two
space-like vectors is positive if and only if these
vectors are contained in the same one of the sectors
S; and S,.
Let an orientationbe defined in E by the normed determinant-function 4.

Fig. 3
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Then the identity (9.61) yields (n=2, s=1)
(x,y)* — 4(x,)* = (x,x)(y, y)- (9.64)
If x and y are not light-vectors equation (9.64) may be written in the
form (x.»)* A(x,y)?

)0y D0

Now assume in addition, that the vectors x and y are space-like and are
contained in the same one of the sectors S; and S,. Then

(x,y)>0. (9.66)

(9.65)

Relations (9.65) and (9.66) imply that there exists exactly one real
number 0 (— 00 <@ < o0) such that

_(x,y) and sinhf = (x y)

coshf =
|x] |y Ixl [yl

9.67)
This number is called the pseudo-Euclidean angle between the space-like
vectors x and y.

We finally note that the vectors

e, = (l1 + lz)

\/2(11 l,) and e, = \/_

form an orthonormal basis of E. Relative to this basis the equation of
the light-cone assumes the form

(&) - (&) =0.

9.21. Pseudo-Euclidean spaces of index n—1. More generally let us con-
sider an n-dimensional pseudo-Euclidean space with index #—1. Then
every fixed time-like unit vector z determines an orthogonal decom-
position of E into an (n—1)-dimensional subspace consisting of space-
like vectors and the 1-dimensional subspace generated by z. In fact, every
vector xc E can be uniquely decomposed in the form

x=z+y (z,y)=0
where the scalar A is given by
A=—(x,2).
Passing over to the norm we obtain the equation

(X.X)=— A? + (y,_V)
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showing that
A% < (y,y) if x is space-like
A% > (y,y) if x is time-like (9.68)
A% =(y,y) if x is a light-vector.

From this decomposition we shall now derive the following properties:

(1) Two time-like vectors are never orthogonal.

(2) A time-like vector is never orthogonal to a light-vector.

(3) Two light-vectors are orthogonal if and only if they are linearly
dependent.

(4) The orthogonal complement of a light-vector is an (n—1)-di-
mensional subspace of E in which the inner product is positive semide-
finite and has rank n—2.

To prove (1), consider another time-like vector z,. This vector z; can be
written as

z,=Az+y;, (z,y,)=0. (9.69)
Then
22>y p1),

whence A0, Inner multiplication of (9.69) by z yields
(z,21) = 4(z,2) £ 0.
Next, consider a light-vector /. Then

l=4z+y (zy)=0
and
A2 =(y,y)>0.
These two relations imply that
(,2)=4(z,2) £ 0

which proves (2).

Now let /; and /, be two orthogonal light-vectors. Then we have the
decompositions

Li=4z+y, and L, =4,z +y,,
whence
— A4y + (y1,52) =0. (9.70)
Observing that
A= y1) and 23 =(y2y2)

we obtain from (9.71) the equation

(ylsyl)(yZ’y2)=(y1’y2)2' (971)
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The vectors y; and y, are contained in the orthogonal complement
of z. In this space the inner product is positive definite and hence equation.
(9.71) implies that y, and y, are linearly dependent, y, =Ay,. Inserting
this into (9.70) we find 4, =14, whence /,=1/,.

Finally, let / be a light-vector and E, be the orthogonal complement of
1. Tt follows from property (2) that E, does not contain time-like vectors.
In other words, the inner product is positive semidefinite in E,. To find
the null-space of the inner product, assume that y, is a vector of E; such
that

(y1,y)=0 for all vectors yeE,.

This implies that (y,, y;)=0 showing that y, is a light-vector. Now it
follows from property (3) that y, is a multiple of /. Consequently, the
null-space of the inner product in E; is generated by /.

9.22. Fore-cone and past-cone. As another consequence of the prop-
erties established in the last section it will now be shown that the set of all
time-like vectors consists of two disjoint sectors T+ and T~ (cf. fig. 4.) To
this purpose we define an equivalence relation in the set 7 of all time-like

vectors in the following way:

Zy ™~ 2y if (21,22)<0. (9.72)

Xy

Relation (9.72) is obviously symmetric and reflexive.
To prove the transitivity, consider three time-like
% vectors z;(i=1, 2, 3) and assume that

........ (21,23)<0 and (22’23)<0'

We have to show that

Fig. 4

(Z 152 2) < 0 .
We may assume that z; is a time-like unit-vector. Then the vectors z; and
z, can be decomposed in the form

Zi=li23+yi’ li=—'(2i,23) (l= 1,2) (973)

where the vectors y, and y, are contained in the orthogonal complement
F of z;. Equations (9.73) yield

(zvz)=— 21+ (i y) (i=12) (9.74)
and

(zoz) == A A +(y1.92)- (9.75)
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It follows from (9.68) that
Goy) <Al (i=12).

Now observe that the inner product is positive definite in the subspace
F. Consequently, the Schwarz inequality applies to the vectors y; and y,,
yielding

e }’2)2 Sy ) S /lf /li .

This inequality shows that the first term determines the sign on the
right-hand side of (9.75). But this term is negative because ;= — (z;, z3)
>0 (i=1, 2) and we thus obtain

(z4,2,) < 0.

The equivalence relation (9.72) induces a decomposition of the set T
into two classes T and T~ which are obtained from each other by the
reflection x— —x.

9.23. The two subsets Tt and T~ are convex, i.e., they contain with
any two vectors z, and z, the straight segment

z)=(1—-1t)z; +tz, (0=t=1).
In fact, assume that z; eT* and z, €T*. Then

(z1,24) <0,(22,2,) <0 and (z,,z,) <0,
whence

(0, z(8) = (1 = 1) (21, z¢) + 2t (1 — 1)(z1, 23) + (22, 22) <O,
O0=t=1).

In the special theory of relativity the sectors 7% and T~ are called the
Jfore-cone and the past-cone.
The set S of the space-like vectors is not convex as fig. 4 shows.

Problems

1. Let E be a pseudo-Euclidean plane and g,, g, be the two straight
lines generated by the light-vectors. Introduce a Euclidean metric in E
such that g, and g, are orthogonal. Prove that two vectors x=+0 and
y=*0 are orthogonal with respect to the pseudo-Euclidean metric if and
only if they generate the Euclidean bisectors of g, and g,.

2. Consider a pseudo-Euclidean space of dimension 3 and index 2.
Assume that an orientation is defined in E by the normed determinant-
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function 4. As in a Euclidean space define the cross product of two
vectors x, and x, by the relation

(%1 X X3, X3) = A(Xy, X3, X3).

Prove: a) x, x x, =0 if and only if the vectors x;, and x, are linearly
dependent.

b) (xy X X3, X3 X Xz)= (X3, X2)* = (%1, %) (%2, X3)

¢) If e;, e,, €3 is a positive orthonormal basis of E, then

ey X e, =—¢€;, € Xeyz=—¢e, € Xe;=e;q.

3. Let E be an n-dimensional pseudo-Euclidean space of index n—1.
Given two time-like unit vectors z, and z, prove: a) The vector z, +z, is
time-like or space-like depending on whether z, and z, are contained in
the same cone or in different cones. b) The Schwarz inequality holds in
the reversed form

(zl,zz)z 2 (21, 21)(22, 22)-

Equality holds if and only if z, and z, are linearly dependent.

4, Denote by S the set of all space-like vectors. Prove that the set S
is connected if n=3. More precisely: Given two vectors x,€S and x;eS
there exists a continuous curve x=x(£)(0<¢<1) in S such that x(0)=x,
x(1)=x,.

§ 5. Linear mappings of pseudo-Euclidean spaces

9.24. The adjoint mapping. Let ¢ a linear transformation of the n-di-
mensional pseudo-Euclidean space E. Since E is dual to itself with
respect to the inner product the adjoint mapping @ can be defined as in
sec. (8.1). The mappings ¢ and ¢ are connected by the relation

(px,y)=(x,py) x,yeE. (0.76)
The duality of the mappings ¢ and @ implies that
detp=detyp and trg=tre.

Let (@) and (&) (v, u=1...n) be the matrices of ¢ and @ relative to an
orthonormal basis e,. Inserting x=e, and y=e, into (9.76) we find that

£,a) =, a, (vouu=1..n)
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Where +1(v=1...5)

& {— 1(v=s+1..n).

Now assume that the mapping ¢ is selfadjoint, 3= ¢. In the positive
definite case we have shown that there exists a system of » orthonormal
eigenvectors. This result can be carried over to pseudo-Euclidean spaces
of dimension n =3 if we add the hypothesis that (x, ¢x)+0 for all light-
vectors. To prove this, consider the symmetric bilinear functions

2(x,y)=(¢x,y) and ¥(x,y)=(x,y).

It follows from the above assumption that

& (x)?+ ¥(x)* >0 for all vectors x 0.

Hence the theorem of sec. 9.11 applies to ¢ and ¥, showing that there
exists an orthonormal basis e, (v=1...n) such that

(pe,e)=4,89,, (u=1..n). (9.77)
Equations (9.77) imply that
pe,=Aee, (v=1..n)
showing that the e, are eigenvectors of ¢.

9.25. Pseudo-Euclidean rotations. A linear transformation ¢ of the
pseudo-Euclidean space E which preserves the inner product,

(px,0y)=(x,5) (9.78)

is called a pseudo-Euclidean rotation. Replacing y by x in (9.78) we obtain
the equation (¢x0x) =(6x) xeE
showing that a pseudo-Euclidean rotation sends space-like vectors into
space-like vectors, time-like vectors into time-like vectors and light-
vectors into light-vectors. A rotation is always regular. In fact, assume
that ¢ x =0 for a vector xeE. Then it follows from (9.78) that

(x,9)=(¢x,0y)=0

for all vectors ye E, whence x=0.
Comparing the relations (9.76) and (9.78) we see that the adjoint and
the inverse of a pseudo-Euclidean rotation coincide,

p=o L. (9.79)
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Equation (9.79) shows that the determinant of ¢ must be + 1, as in the
Euclidean case.
Now let e be an eigenvector of ¢ and A be the corresponding eigen-
value,
pe=Jle.
Passing over to the norms we obtain

(pe,pe) =A% (e, e).

This equation shows that A=+ 1 provided that e is not a light-vector.
An eigenvector which is contained in the light-cone may have an eigen-
value A+ + 1 as can be seen from examples.

If an orthonormal basis is chosen in E the matrix of ¢ satisfies the

relations A A
Ye a0, =£,0,,.
A

A matrix of this kind is called pseudo-orthogonal.
9.26. Pseudo-Euclidean rotations of the plane. In particular, consider
a pseudo-Euclidean rotation ¢ of a 2-dimensional space with index 1.
Then the light-cone consists of two straight lines. Since the light-cone is
preserved under the rotation ¢, it follows that these straight lines are
either transformed into themselves or they are interchanged. Now assume
that ¢ is a proper rotation i.e. det ¢ = + 1. Then the second case is im-
possible because the inner product is preserved under ¢. Thus we can
write {
ol =41, and (plz=zlz, (9.80)

where /;, /, is the basis of E defined in sec. 9.20. The number A is positive
or negative depending on whether the sectors T+ and T~ are mapped
onto themselves or interchanged.

Now consider.an arbitrary vector

x=E + &%1,. (9.81)
Then equations (9.80) and (9.81) yield
1
ox =11 +I€212’
whence

(x,(px)=<l+;)<f'fz =;</1+1>(x,x). (9.82)
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This equation shows, that the inner product of x and ¢x depends only
on the norm of x as in the case of a Euclidean rotation (cf. sec. 8.21).

To find the “rotation-angle” of ¢, introduce an orientation in E such
that the basis /;, /, is positive. Let 4 be a normed determinant-function
which represents this rotation. Then identity (9.64) yields

4 (ll’ lz)z = (ll’ lz)z =1,
whence
A (ll’ lz) = 1 .

Inserting the vectors x and ¢x into 4 we find that

A(x, ¢ %) =%<1 —%)(x, x)A(1,, 1) = %(/1 ——D(x, X).

Now assume in addition that ¢ transforms the sectors 75 and T~
into themselves (i. e. that ¢ does not interchange TF and T7). Then
A> 0 and equation (9.82) shows that (x, ¢x) > 0for every space-like vector
x. Using formulae (9.67) we obtain the equations

ho 1,1 1 d 'h0—1/l ! 9.83)
cos =3 +1 and sin =5 1) ©.

where 6 denotes the pseudo-Euclidean angle between the vectors x and
ox.
Now consider the orthonormal basis of E which is determined by the
vectors
1

1
e1=ﬁ(ll_12) and ez=\/§(l1+12)-

Then equations (9.80) yield
1 1 1 1
pes =5<A’ +1>el +*2*’<1 —1>22
1 1 1 1
(Pez=—i 1—1 el+§ l+‘i eZ.

We thus obtain the following representation of ¢, which corresponds to

the representation (8.45) of a Euclidean rotation:

pe, =e,coshf + e,sinh 0
pe, =e,sinhf + e,coshd.
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9.27. Lorentz-transformations. A 4-dimensional pseudo-Euclidean
space with index 3 is called Minkowski-space. A Lorentz-transformation is
a rotation of the Minkowski-space. The purpose of this section is to
show that a proper Lorentz-transformation ¢ possesses always at least one
eigenvector on the light-cone*). We may restrict ourselves to Lorentz-
transformations which do not interchange fore-cone and past-cone be-
cause this can be achieved by multiplication with —1. These transfor-
mations are called orthochroneous. First of all we observe that a light-
vector / is an eigenvector of ¢ if and only if (, l)=0.Infact, theequation
@l=Al yields

(Lel)=A(l,1)=0.

Conversely, assume that / is a light-vector with the property that (/, /)=
0. Then it follows from sec. (9.21) property (3) that the vectors / and ¢/
are linearly dependent. In other words, /is an eigenvector of ¢.

Now consider the selfadjoint mapping

y=1e+p)=1(e+e¢7"). (9.84)
Then

(x, ¥ x)=3(x,0x)+3(x,px)=(x,0x) x€E. (9.85)

It follows from the above remark and from (9.85) that a light-vector /
is an eigenvector of ¢ if and only if (/, yy/)=0. We now preceed indirectly
and assume that ¢ does not have an eigenvector on the lightcone. Then
(x, ¥x)=(x, @x)=*0 for all light-vectors and hence we can apply the
result of sec. 9.24 to the mapping : There exist four eigenvectors such
e, (v=1...4) that

(ev’eu) = sv‘svu &y = {+ l(v B 1’2’ 3)

—1(v=4).

Let us denote the time-like eigenvector e, by e and the corresponding
eigenvalue by A. Then ye=4ie and hence it follows from (9.84) that
ple=2Aye—e.

Next, we wish to construct a time-like eigenvector of the mapping ¢.
If pe is a multiple of e, e is such a vector. We thus may assume that the
vectors e and ¢e are linearly independent. Then these two vectors generate

*) Observe that a proper Euclidean rotation of a 4-dimensional space need not have
cig envectors.
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a plane F which is invariant under ¢. This plane intersects the light-cone
in two straight lines. Since the plane F and the light-cone are both
invariant under ¢, these two lines are either interchanged or transformed
into themselves. In the first case we have two eigenvectors of ¢ on the
light-cone, in contradiction to our assumption. In the second case select
two generating vectors /; and /, on these lines such that (/;, l;)=1. Then

ely=al, and ¢l,=81,.
The condition
(‘Pll,(Plz) =(l1,lz)

implies that «f=1. Now consider the vector z

Z=l1 +al2.
Then
¢Z=alz+aﬁl1=al2+ll=z

To show that z is timelike observe that
(z,2) =2a(ly, 1) = 2

and that the vector =1/, —/, is time-like. Moreover,
1
(tLe)=a+-. (9.86)
o

Now (z, ¢t)<0 because ¢ leaves the fore-cone and the past-cone in-
variant (cf. sec. 9.22). Hence equation (9.86) implies that o <0, showing
that z is time-like.

Using the time-like vector z we shall now construct an eigenvector on
the light-cone which will give us a contradiction. Let E| be the orthogonal
complement of z. E; is a 3-dimensional Euclidean subspace of E which is
invariant under ¢. Since ¢ is a proper Lorentz-transformation it induces
a proper Euclidean rotation in E,. Consequently, there exists an invariant
in E; (cf. sec. 8.19). Let y be a vector of this axis such that (y, y)= -2 a.
Then /=y+z is a light-vector and

pl=¢oy+oz=y+z=1

i. e. /is an eigenvector of ¢.

Hence, the assumption that there are no eigenvectors on the light-cone
leads to a contradiction and the assertion in the beginning of this section
is proved.
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We finally note that every eigenvalue A of ¢ whose eigenvector / lies
on the light-cone is positive. In fact, select a space-like unit-vector y such
that (/, y)=1 and consider the vector z=/+1ty where 7 is a real para-
meter. Then we have the relation

(z:2) =2t + 1%

showing that z is time-like if —2 <1 <0. Since ¢ preserves fore-cone and
past-cone it follows that

(z,02) <0  (—2<1<0).
But

1
(Z,(pz):(l+1:y,ll+1:(py)=1:</1+1>+Tz(y,(py)

and we thus obtain

1
1:<A+E>+tz(y,(py)<0 (-2<1<0).

Letting 7—0 we see that 4 must be positive.

Problems

1. Let ¢ be a linear automorphism of the plane E. Prove that an inner
product of index 1 can be introduced in E such that ¢ becomes a proper
pseudo-Euclidean rotation if and only if the following conditions are
satisfied:

1. There are two linearly independent eigenvectors.
2. detep=1.
3. |tre|=2.

2. Find the eigenvectors of the Lorentz-transformation defined by the

matrix )

— O M
OO = O
= N
N = O N

‘

Verify that there exists an eigenvector on the light-cone.
3. Let @ and b be two linearly independent light-vectors in the pseudo-
Euclidean plane E. Then a linear transformation yy of E is defined by

ya=a, Yyb=-0>.
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Consider the family of linear automorphisms ¢ (#) which is defined by the
differential equation

¢()=vo0()

@ (0)=1.

a) Prove that ¢(¢) is a family of proper rotations carrying fore-cone
and past-cone into itself.
b) Define the functions C(#) and S(¢) by

Ct)=4tro(t) and S(E)=1tr(Yoo(r)).

Prove the functional-equations

C(ty +1,) = C(t)C(t2) + S(t) S(t2)

and the initial condition

and
S(ty +12) = S(t) C(t) + S(t2) C(ty)-
c) Prove that
e()a=efa and @()b=e"'b.

4. Let E be a pseudo-Euclidean space and consider an orthogonal

decomposition
E=E*Q®E"

such that the restriction of the inner product to E* (E~) is positive

(negative) definite. Let w be a selfadjoint involution of E such that E*

(and hence E7) is stable under w. Define a symmetric bilinear function
¥ by

¥Y(x,y)=(0x,y) x,yeE.
Prove that the signature of ¥ is given by
sig? =trot —tro”

where ot and o~ denote the restrictions of w to E* and E~ respectively.



Chapter X

Quadrics *

In the present Chapter the theory of the bilinear functions developed
in Chapter IX will be applied to the discussion of quadrics. In this
context we shall have to deal with affine spaces.

§ 1. Affine spaces

10.1. Points and vectors. Let E be a real n-dimensional linear space and
let 4 be aset of elements P, Q... which will be called points. Assume that a
relation between points and vectors is defined in the following way:

1. To every ordered pair P, Q of A4 there is assigned a vector of E,

called the difference vector and denoted by PQ.
2. To every point PeA and every vector xeE there exists exactly one

point Q€ 4 such that PQ=x.
3. If P, Q, R are three arbitrary points, then
—_— — —_—
PQ+ QR =PR. (10.1)
A is called an n-dimensional affine space with the difference space E.
—_—— > ——> ——
Insertion of Q=P in (10.1) yields PP+ PR=PR, whence PP=0 for
every point Pe A. Using this relation we obtain from (10.1)
' QP=-PQ.
——  —— —— ——
The equation P,Q,=P,Q, implies that P,P,=Q;Q, (parallelogram-
law). In fact, ey ey
P P,=PQ,—P0,
—_— > E—
0:10,=P 0, —P 0.
—_— —
Substraction of these equations yields P,P,=0,0,.

For any given linear space E, an affine space can be constructed which
possesses E as difference space:
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Define the points as the vectors of F and the difference-vector of two
points x and y as the vector y —x. Then the above conditions are obvi-
ously satisfied.

Let 4 be a given affine space. If a fixed point O is distinguished as

origin, every point P is uniquely determined by the vector x=0;. x is
called the position-vector of P and every point P can be identified with
the corresponding position-vector x. The difference-vector of two points
x and y is simply the vector y —x.

10.2. Affine coordinate systems. An affine coordinate-system(O; x;...x,)
consists of a fixed point Oe 4, the origin, and a basis x,(v=1...n) of the
difference-space E. Then every point PeA determines a system of »
numbers & (v=1...n) by

—

OP=)~2&x,.

The numbers &' (v=1...n) are called the affine coordinates of P relative to
the given system. The origin O has the coordinates &' =0.
Now consider two affine coordinate-systems

(0;xy...x,) and (O'; yy...¥n).

Denote by o, the matrix of the basis-transformation x,—y, and by §” the
affine coordinates of O’ relative to the system (O; x;...x,),

ye=0kx,, 0—0'=ZB"xv.
u v
The affine coordinates &” and #” of a point P, corresponding to the sys-
tems (O; x,...x,) and (O'; y,...y,) respectively, are given by
—_— —
OP=Y¢&x, and O'P=3)17"y,. (10.2)
v v

—

Inserting EP= OP-00' in the second equation (10.2) we obtain
Z"vyv = Z(év - Bv)xv’
whence

Yo =& —p  (u=1...n).

Multiplication by the inverse matrix yields the transformation-formula
for the affine coordinates:

r]”=§:o?;(f“—[i“) (v=1...n).
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10.3. Affine subspaces. An affine subspace of A is a subset 4, of 4 such

—
that the vectors PQ(Ped,, Q€ A,) form a subspace of E. If O is the
origin of 4 and (O;; x;...x,) is an affine coordinate-system of A4,, the
points of 4, can be represented as

—> —_— 14
OP=00,+ ) &x,. (10.3)
v=1

For p=1 we obtain a straight line through O, with the “direction vector”’
x, —> —_—
OP=00, +¢&x.
In the case p=2 equation (10.3) reads

—> —

0P=001 + élxl + ézxZ.

It then represents the plane through O, generated by the vectors x, and
x,. An affine subspace of dimension #—1 is called a hyperplane.

Two affine subspaces 4, and 4, of A are called parallel if the differ-
ence-space E; of A4, is contained in the difference-space E, of 4,, or
conversely. Parallel subspaces are either disjoint or contained in each
other. Assume, for instance, that E, is contained in E,. Let Q be a point
of the intersection 4; N 4, and P, be an arbitrary point of 4,. Then

—

QA, is contained in E, and hence is contained in E;. This implies that
P,eA,, whence 4, < 4,.

10.4. Affine mappings. Let P— P’ be a mapping of A4 into itself subject
to the following conditions:

—_— > - —>
1. P,Q,=P,Q, implies that P{Q;=P,05.

2. The mapping ¢ : E— E defined by ¢ (P§)=P’Q' is linear.

Then P— P’ is-called an affine mapping. Given two points O and O’ and
a linear mapping ¢: E—E, there exists exactly one affine mapping which
sends O into O’ and induces ¢. This mapping is defined by

— > —>
OP =00+ ¢(OP).

If a fixed origin is used in A4, every affine mapping x— x’ can be written
in the form
x'=¢x+0b,

e
where ¢ is the induced linear mapping and b=00".
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A translation is an affine mapping which induces the identity in E,

P Q' =PQ.
For two arbitrary points P and P’ there obviously exists exactly one
translation which sends P into P’.

10.5. Euclidean space. Let 4 be an n-dimensional affine space and as-
sume that a positive definite inner product is defined in the difference-
space E. Then A is called a Euclidean space. The distance of two points P
and Q is defined by .

e(P,Q)=|PQ|.

It follows from this definition that the distance has the following pro-
perties:

1. ¢(P,Q) =0 and ¢(P,Q)=0 if and only if P=Q.

2. Q(P’ Q)=Q(Q’P)-

3.0(PQ) < o(P,R) +¢(R, Q).

All the metric concepts defined for an inner product space (cf. Chap.
VII) can be applied to a Euclidean space. Given a point x,e4 of 4 and a
vector p = 0 there exists exactly one hyperplane through x, whose differ-
ence-space is orthogonal to p. This hyperplane is represented by the
equation

(x —x4,p)=0.

A rigid motion of a Euclidean space is an affine mapping P— P’ which
preserves the distance,

e(P',Q)=0¢(P,Q). (10.4)

Condition (10.4) implies that the linear mapping, which is induced in
the difference-space by a rigid motion, is a rotation. Conversely, given
a rotation ¢ and two points O€4 and O’e A, there exists exactly one
rigid motion which induces ¢ and maps O into O’.

Problems

1. (p+1) points P,(v=0...p) in an affine space are said to be in general
position, if the points P, are not contained in a (p —1)-dimensional sub-
space. Prove that the points P,(v=0...p) are in general position if and

—
only if the vectors Py P, are linearly independent.
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2. Given (p+1) points P,(v=0...p) in general position, the sets of all
points P satisfying

— p e p
PoP=3 PP, £20, ) &=<1
v=1 v=1

is called the p-simplex spanned by the points P,(v=0...p). If O is the
origin of A4, prove that a point P of the above simplex can be uniquely
represented as
_— p —— p
OP=Y &0P,, &20, Y &=1.
=0 v=0

v

The numbers £” (v=0...p) are called the barycentric coordinates of P.

1
(v=0...p) is

The point B with the barycentric coordinates &’= 1
p

called the center of S.

3. Given a p-simplex (P,...P,) (p = 2) consider the (p —1) simplex S; de-
fined by the points (P,...B,...P,) (0<i<p) and denote by B, the center
of §;(0=i<p). Show that the straight lines (P, B;) and (P;, B;) (i=+/) inter-
sect each other at the center of S and that

— 1] ——
B,S=—B,P,.
p+1

4. An equilateral simplex of length a in a Euclidean space is a simplex

—
(Po...P,) with the property that |P,P,|=a(v+y). Find the angle between

u

the vectors PVI;; and Pvl‘—’j1 (u#v, A#v) and between the vectors BI;: and
BP, where B is the center of (P,...P,).

5. Assume that an orientation is defined in the difference-space E by
the determinant function 4. An ordered system of (n+ 1) points (P,...P,)
in general position is called positive with respect to the given orientation,
if k — > —_—

A(PyP, ...PyP) > 0.

a) If the system (P,...P,) is positive and ¢ is a permutation of the
numbers (0, 1...n), show that the system (P,¢y...P, ) is again positive if
and only if the permutation ¢ is even.

b) Let 4; be the (n—1)-dimensional subspace spanned by the points
P,...P....P,. Introduce an orientation in the difference-space of 4; with
the help of the determinant function

4(xy ... xy-y) = A(Plé,xl e Xae1)s
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where Q is an arbitrary point of A4;. Prove that the ordered a-tuple
(Py...P;...P,) is positive with respect to the determinant function (—1)'4,.

6. Let (P,...P,) be a n-simplex and S be its center. Denote by S;,...; the
center of the (n—k)-simplex obtained by deleting the vertices P, ,..., P,.
Now select an ordered system of » integers iy,..., i,(0=<i,=n) and define
the affine mapping « by

a:S— Py, S, = P, S — P,

ne

isiz —>P2, ""Sil"'in

1
Prove that det a= (~+T)' g,. In this equation ¢ denotes the permutation
n !

6(v)=i,(v=1...n),6(0)=k where k is the integer not appearing among
the numbers (i;...i,).

7. Let g4 and g, be two straight lines in a Euclidean space which are
not parallel and do not intersect. Prove that there exists exactly one

—
point P, on g;(i=1, 2) such that P, P, is orthogonal to g; and to g,.

8. Let 4, and A4, be two subspaces of the affine space such that the
difference-spaces E; and E, form a direct decomposition of E. Prove that
the intersection 4, N 4, consists of exactly one point.

9. Prove that a rigid motion x’=tx+a has a fixed point if and only if
the vector a is orthogonal to all the vectors invariant under 7.

A rigid motion is called proper if det = + 1. Prove that every proper
rigid motion of the Euclidean plane without fixed points is a translation.

10. Consider a proper rigid motion x"=tx+a(t+1) of the Euclidean
plane. Prove that there is exactly one fixed point x, and that

0
xo=%|a|<a + bcot§>.

In this equation, b is a vector of the same length as a and orthogonal to a.
0 designates the rotation-angle relative to the orientation defined by the
basis (a, b).
11. Prove that two proper rigid motions a1 and B4 of the plane
commute, if and only if one of the two conditions holds:
1. o and B are both translations
2. o and f have the same fixed point.

§ 2. Quadrics in the affine space

10.6. Definition. From elementary analytic geometry it is well known
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that every conic section can be represented by an equation of the form
2
s B=

where a,,, 8, and « are constants, Generalizing this to higher dimensions
we define a quadric Q in an n-dimensional affine space A4 as the set of all
points satisfying an equation of the form

2
¢ +2 T p 8 =a,

v 1

O(x)+2f (x)=oa, (10.5)

where &+0 is a quadratic function, f a linear function and « a constant.

For the following discussion it will be convenient to introduce a dual
space E* of the difference-space E. Then the bilinear function @ can be
written in the form

o(x,y)=<{@x,y> X, yeE,

where ¢ is a linear mapping of E into E* which is dual to itself: ¢*=q¢.
Moreover, the linear function f determines a vector a* € E* such that

f(x)=<a*, x> x€E.
Hence, equation (10.5) can be written in the form
{dox,x) +2{a* x> =a. (10.6)

We recall that the null-space of the bilinear function @ coincides with the
kernel of the linear mapping ¢.

10.7. Cones. Let us assume that there exists a point x,eQ such that
¢xo+a*=0. Then (10.6) can be written as

{px,x> —2{Q@Xg,X) =0t (10.7)
and the substitution x=x, gives
o=— {PXgy,Xg)-
Inserting this into (10.7) we obtain
{Px,x> —2{@x0, x> + {Pxg,%5) = 0.
Hence, the equation of Q assumes the form
P(x — x0)=0.

A quadric of this kind is called a cone with the vertex x,. For the sake of
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simplicity, cones will be excluded in the following discussion. In other
words, it will be assumed that

¢x+a*+ 0 forall points xeQ. (10.8)

10.8. Tangent-space. Consider a fixed point x,€Q. It follows from
condition (10.8) that the orthogonal complement of the vector ¢x, +a* is
an (n—1)-dimensional subspace T, of E. This subspace is called the
tangent-space of Q at the point x,. A vector ye E is contained in T, if and
only if

{a* + @xp,y>=0. (10.9)

In terms of the functions @ and f equation (10.9) can be written as

D (x0,y) + f(y)=0. (10.10)

The (n —1)-dimensional affine subspace which is determined by the point
X, and the tangent-space T, is called the rangent-hyperplane of Q at x,. It
consists of all points

X=2Xxo+Yy yeT,.

Inserting y=x—x, into equation (10.10) we obtain

D (x0,x — x0) + f(x — x0) = 0. (10.11)
Observing that

D (xo) + 2f (xo) =
we can write equation (10.11) of the tangent-hyperplane in the form
D (xg,Xx) + f (xo + x) = a. (10.12)

To obtain a geometric picture of the tangent-space, consider a 2-
dimensional plane

F:x=xy+&a+nb (10.13)

through x, where a and b are two linearly independent vectors. Inserting
(10.13) into equation (10.5) we obtain the relation

Ed(a)+2ind(a,b) + n* o (b) +
+ 28(P(x0,a) + f (a)) + 2n(P(x0,b) + f (b)) =0 (10.14)

showing that the plane F intersects Q in a conic y. Upon introduction of
the linear function

g(x) = 2(D(x0.x) + f (x)) (10.15)
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the equation of the conic y can be written in the form
£ d(a) +2ind(a,b) + 1> (b) + Lg(a) +ng(b)=0.  (10.16)

Now assume that the vectors a and b are chosen such that g(a) and g(b)
are not both equal to zero. Then the conic has a unique tangent at the
point £=#=0 and this tangent is generated by the vector

t=—g(b)a+g(a)b. (10.17)

The vector ¢ is contained in the tangent-space T, ; this follows from the

equation

0

g()=—g(b)g(a) + g(a)g(b)=0.

Every vector y=%0 of the tangent-space T, can be obtained in this way.
In fact, let a be a vector such that g (a)=1 and consider the plane through
X, spanned by a and y. Then equation (10.17) yields

t=—g()a+gl@y=y (10.18)

showing that y is the tangent-vector of the intersection QN F at the
point é=n=0.
Note: If g(a)=0 and g(b)=0 equation (10.16) reduces to

Ed(a)+2énd(a,b) +n*d(b)=0.

Then the intersection of @ and F consists of
a) two straight lines intersecting at x,, if

®(a,b)* — ¢ (a)d(b) >0,
b) the point x, only, if

®(a,b)* — ®(a)d(b) <0,
c) one straight line through x,, if

®(a,b)? — ¢ (a)d(b) =0,

but not all three coefficients @ (a), @ (b) and P (a, b) are zero

d) The entire plane F, if

®(a)=®(b) = ®d(a,b)=0.

10.9. Uniqueness of the representation. Assume that a quadric Q is rep-
resented in two ways
P (x) +2f, (x) =, (10.19)
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and
D, (x) + 2f,(x) =a,. (10.20)
It will be shown that
O, =40, fr=f1,0, =120

where A =01s a real number. Let x, be a fixed point of Q. It follows from
hypothesis (10.8) that the linear functions g, and g,, defined by

g1(x) = @1 (x,%0) + f1(x) and g;(x) = @,(x,x,) + f2(x) (10.21)

are not identically zero.
Choose a vector a such that g; (a)+0 and g, (a)+0, and a vector b0
such that g, (6)=0. Obviously a and b are linearly independent. The plane

xX=xo+&éa+nb

then intersects the quadric Q in a conic y whose equation is given by
each one of the equations

£, (a)+ 2610, (a,b) + 0, (b) + g1 (@) =0 (10.22)
and

£, (a) + 280 @2 (ab) + n* @3 (b) + £ga(a) + ng2(b)=0.  (10.23)
The tangent of this curve at the point £=n=0 is generated by the vector

t, =g(a)b
and also by
t,=—gy(b)a+g,(a)b.
This implies that
whence
g,(a)=41g.(a) and g,(b)=0. (10.24)

But 5530 was an arbitrary vector of the kernel of g,. Hence the second
equation (10.24) shows that g, (b)=0 whenever g, (b)=0. In other words,
the linear functions g, and g, have the same kernel. Consequently g, is a

constant multiple of g,
g, =Ag, A+0. (10.25)

Muitiplying equation (10.22) by 1 and substracting it from (10.23) we
obtain in view of (10.24) that

52(452 - /1451)(‘1) + 25’1((152 - /l(pl)(a’ b) + ’72(¢2 - /“pl)(b) =0.
(10.26)
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In this equation all three coefficients must be zero. In fact, if at least one
coefficient is different from zero, equation (10.26) implies that the conic
y consists of two straight lines, one straight line or the point x, only.
But this is impossible because g, (a)+0. We thus obtain from (10.26)
that

@,(a)=1®,(a),P,(a,b) = AP, (a,b),P,(b) = AP, (b). (10.27)

These equations show that
D, (x) =19, (x) (10.28)

for all vectors xe E: If g, (x)=0, (10.28) follows from the third equation
(10.27); if g, (x)+0, then g, (x)+0 [in view of (10.25)] and (10.28) fol-
lows from the first equation (10.27).

Altogether we thus obtain the identities

b,=A¢, and g,=12g, A%0.
Now relations (10.21) imply that
fa=Af
and equation (10.20) can be written as
A, (x) + 2f, (x)) =a,. (10.29)

Comparing equations (10.19) and (10.29) we finally obtain «, = Aq,. This
completes the proof of the uniqueness theorem,
10.10. Centers. Let

0:0(x) +2f (x) =

be a given quadric and ¢ be an arbitrary point of the space 4. If we
introduce ¢ as a new origin,
- x=c+x',

the equation of Q is transformed into
D(x")+2(P(c,x) + f(x)=a—D(c)—2f (¢).  (10.30)

Here the question arises whether the point ¢ can be chosen such that the
linear terms in (10.30) disappear, i. e. that

P(e,x)+ f(x)=0 (10.31)

for all vectors x"e E. If this is possible, ¢ is called a center of Q. Writing
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equation (10.31) in the form
{pec+a*x'>=0 x'eE
we see that ¢ is a center of Q if and only if
pc=—o*. (10.32)

This implies that the quadric Q has a center if and only if the vector a*
is contained in the image space Im ¢. Observing that Im ¢ is the ortho-
gonal complement of the kernel of ¢ we obtain the following criterion:
A quadric Q has a center if and only if the vector a* is orthogonal to the
kernel of ¢.

If this condition is satisfied, the center is determined up to a vector of
ker ¢. In other words, the set of all centers is an affine subspace of 4
with ker ¢ as difference-space.

Now assume that the bilinear function @ is non-degenerate. Then ¢ is a
regular mapping and hence equation (10.32) has exactly one solution.
Thus it follows from the above criterion that a non-degenerate quadric has
exactly one center.

10.11. Normal-form of a quadric with center. Suppose that Q is a quad-
ric with centers. If a center is used as origin the equation of Q assumes
the form

2(x)=p B=*0. (10.33)

Then the tangent-vectors y at a point x,eQ are characterized by the
equation {@x,, y>=0. Observing that {(@x,, y>=<{x,, @¥) we see that
every tangent-space T, contains the null-space of @.

The equation of the tangent-hyperplane of Q at x; is given by

D (x0,y)=p. (10.34)

It follows from (10.34) that a center of Q is never contained in a tangent-
hyperplane. 1

Dividing (10.33) by $ and replacing the quadratic function ¢ by - ¢
we can write the equation of Q in the normal-form

P(x)=1. (10.35)
Now select a basis x,(v=1...n) of E such that
+1(v=1..5)
P (x,,X5) = 8,0,5 g, =1—1(r=s+1..1) (10.36)

O(v=r+1..n)
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where r denotes the rank and s denotes the index of @. Then the normal-
form (10.36) can be written as

r

Y g, & =1. (10.37)
v=1

10.12. Normal-form of a quadric without center. Now consider a quad-
ric Q without a center. If a point of Q is chosen as origin the constant « in
(13.5) becomes zero and the equation of Q reads

?(x)+2<a*x)=0. (10.38)

By multiplying equation (10.38) with — 1 if necessary we can achieve
that 2s=r. In other words, we can assume that the signature of ¢ is not
negative
To reduce equation (10.38) to a normal form consider the tangent-
space T, at the origin. Equation (10.9) shows that T, is the orthogonal
complement of a*. Hence, a* is contained in the orthogonal complement
T4 On the other hand, a* is not contained in the orthogonal complement
K* (K=ker @) because otherwise Q would have a center (cf. sec. 10.10).
The relations a*e Ty and a*¢ K* show that Ty ¢ K*. Taking the ortho-
gonal complement we obtain the relation Ty K showing that there exists
a vector aeK which is not contained in T, (cf. fig. 5). Then {a*, a) +£0
and hence we may assume that {(a*,a)=1.
Now T, has dimension n— 1 and hence every vector
x€eE can be written in the form
x=y+¢&a yeT,. (10.39) —
To
Inserting (10.39) into equation (10.38) we obtain Fig. 5

O(y)+26P(y,a)+ 2 d(a) +2<¢a*,y + Ea)=0. (10.40)
Now -
?(y,a)=0 and &(a)=0,
because ae K, and
{a*,y> =0,

because yeT,. Hence, equation (10.40) reduces to the following normal-
SJorm:
o(y) +2¢=0. (10.41)

Since a is contained in the nuli space of @ it follows from the decom-
position (10.39) that the restriction of @ to the tangent-space T, has again
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rank r and index s. Therefore we can select a basis x,(v=1...n—1) of T
such that

o(x,,x,)=¢,6,, (p=1..n-—1).

Then the vectors x,(v=1...n—1) and a form a basis of E in which the
normal form (10.41) can be written as

r

Y e & +28=0. (10.42)
1

v=

Problems

1. Let E be a 3-dimensional pseudo-Euclidean space with index 2.
Given an orientation in £ define the cross product x x y by

(xxy,z)=4(x,y,2) x,y,z€E

where 4 is a normed determinant-function (cf. sec. 9.19) which re-
presents the orientation. Consider a point x, =0 of the light-cone (x,x)=0
and a plane Fix=xo+Za+nb
which does not contain the point O. Prove that the intersection of the
plane F and the light-cone is

an ellipse if a x b is time-like

a hyperbola if ax b is space-like

a parabola if ax b is a light-vector.

2. Consider the quadric Q:®(x)=1 where & is a non-degenerate
quadric function. Then every point x, %0 defines an (n —1)-dimensional
subspace P (x,) by the equation

d(x,x)=1.

This subspace is called the polar of x,. It follows from the above equation
that the polar P(x,) does not contain the center O.

a) Prove that x,eP(x,) if and only if x,eP(x,).

b) Given an (n—1)-dimensional affine subspace 4; of A4 which does
not contain O, show that there exists exactly one point x, such that
Ay = P(xy).

¢) Show that P(x,) is a tangent-plane of Q if and only if x, e Q.

3. Let x, be a point of the quadric ¢(x)=1. Prove that the restriction
of the bilinear function ¢ to the tangent-space T, has the rank r —1 and
index s—1.
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4. Let x,, be a point of the quadric
P(x)+2f(x)+a=0
and consider the skew bilinear mapping w: (E, E)— E defined by
ox,y)=g(x)y —g(y)x x,yeE
where the linear function g is defined by (10.15). Show that the linear
closure of the set @ (x,y) under this mapping is the tangent-space T,.

§ 3. Affine equivalence of quadrics

10.13. Definition. Let an affine mapping x'=1x+ b of A4 onto itself be
given. Then the image of a quadric

0:6(x) +2f () =a
is the quadric Q' defined by the equation

Q¥ (x) + 2g(x) = B,

where
Y(x)=o(x"'x), (10.43)
gx)=—=@(x 'x, v b)+ f (7 x) (10.44)
and
==&t 'b)+2f(t7'h) + a. (10.45)

In fact, relations (10.43), (10.44) and (10.45) yield
P(rx+b)+28tx+b)—B=d(x)+2f(x)—«

showing that a point xeA is contained in Q if and only if the point
x'=1x+b is contained in Q.

Two quadrics Q, and Q, are called affine equivalent if there exists a
one-to-one affine mapping of 4 onto itself which carries Q, into Q,. The
affine equivalence induces a decomposition of all possible quadricsinto
affine equivalence classes. It is the purpose of this paragraph to construct
a complete system of representatives of these equivalence classes.

10.14. The affine classification of quadrics is based upon the following
theorem: Let E and F be two n-dimensional linear spaces and ¢ and ¥
two symmetric bilinear functions in £ and in F. Then there exists a
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linear isomorphism t: E— F with the property that
®(x,y)=¥(tx,1y) x,y€E (10.46)

if and only if @ and ¥ have the same rank and the same index.
To prove this assume first that the relation (10.46) holds. Select a basis
a,(v=1...n) of E such that
+1(v=1--5)
o(a,a,)=¢0, &=1—1(vr=s+1..71) (10.47)
O(v=r+1..n).

Then equations (10.46) and (10.47) yield
¥Y(ra,,ta,)= ®(a,a,) =¢,0,,.

showing that ¥ has rank r and index s.
Conversely, assume that this condition is satisfied. Then there exist
bases a, and b, (v=1...n) of E and of F such that

®(a,,a,)=¢,6,, and ¥(b,,b,)=¢,9,,.
Define the isomorphism 7: E— F by the equations
ta,=bv  (v=1..n).

Then
®(a,a)=Y(ra,ta,) (,u=1..n)
and consequently

&(x,y)=¥(tx,7y) x,y€E.

10.15. Affine classification. First of all it will be shown that the centers
are invariant under an affine mapping. In fact, let

Q:d(x—c)=4

be a quadric with ¢ as center and x’=tx+5 an affine mapping of 4 onto
itself. Then the image Q' of @ is given by the equation

Q:¥(x—c)=8,
where
Y(x)=o(t"'x)
and
¢ =b+rc.

This equation shows that ¢’ is a center of Q'.
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Now consider two quadrics with center

0.:®,(x —¢))=1 (10.48)
and
Q,:P,(x —cy)=1 (10.49)

and assume that x—x’ is an affine mapping carrying @, into Q,. Since
centers are transformed into centers we may assume the mapping x— x’
sends ¢, into ¢, and hence it has the form

x'=1(x —¢y) +c;.
By hypothesis, Q, is mapped onto Q, and hence the equation
P(t(x —cy))=1 (10.50)

must represent the quadric Q,. Comparing (10.48) and (10.50) and
applying the uniqueness theorem of sec. 10.9 we find that

P, (x) = P, (1x).
This relation implies that

ro=r, and s, =s,. (10.51)

Conversely, the relations (10.51) imply that there exists a linear auto-
morphism 7 of E such that
%, (x) = B, (s%).

Then the affine mapping x—x’ defined by
X =t1(x—¢)+¢,

transforms @, into Q,. We thus obtain the following criterion: The rwo
normal forms (10.48) and (10.49) represent affine equivalent quadrics if
and only if the bilinear functions ®, and ®, have the same rank and the
same index.

10.16. Next, let

Q::P,(x—qy)+2<at,x—q,>=0 q,€Q, (10.52)
and

Q2:®,(x — q2) +2<a%,x —q;) =0 q:€C, (10.53)
be two quadrics without a center. It is assumed that the equations

(10.52) and (10.53) are written in such a way that 2s, 2 r, and 2s,2r,.
If x' = t1(x~q,) + q, is an affine mapping transforming Q, into Q,, the
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equation of Q, can be written in the form
®,(t(x — qq)) + 2<a3,1(x — q,)) = 0.
Now the uniqueness theorem yields
@, (x)=1D,(x)

where A% 0 is a constant. This relation implies that the bilinear functions
&, and @, have the same rank r and that s,=s, or s,=r—s,; depending
on whether A>0 or A<0. But the equation s, =r—s, is only compatible

r
with the inequalities 25, =2r; and 2s,=r, if s, =5, = 3 and hence we see

that s, =s, in either case.

Conversely, assume that r,=r,=r and s,=s,=s. To find an affine
mapping which transforms @, into @, consider the tangent-spaces
T,,(Q,) and T,,(Q,). As has been mentioned in sec. 10.12 the restriction
of @; to the subspace T,,(Q), (i=1, 2) has the same rank and the same
index as @;. Consequently, there exists an isomorphism g:T, (Q,)—
— T ,,(Q,) such that

@, (y)=2,(cy) yeT, (Q1).
Now select a vector g; in the nullspace of @;(i=1, 2) such that
{af,a)=1 (i=1,2)

and define the linear automorphism 7 of E by the equations

ty=0y yeT,(Q,)
and

Ta,=a,. (10.54)
Then
®,(tx) +<a3,tx) = &, (x) + (al,x)  x€E. (10.55)

In fact, every vector xe E can be decomposed in the form
x=y+¢&a, yeT, (Q,). (10.56)
Equations (10.54), (10.55) and (10.56) imply that

P,(1x) = Py (ty +£ay) = P2 (1)) =0, (1) =&, (y + Lay) = P, (x)
(10.57)
and

a3,txy =<a3,0y +&ay) ={a3,a,) =& =<af,xy.  (10.58)



§ 3. Affine equivalence of quadrics 297

Adding (10.57) and (10.58) we obtain (10.55). Relation (10.55) shows
that the affine mapping x'=t(x—g,)+4g, sends Q, into Q, and we
have the following result: The normal-forms (10.52) and (10.53) represent
affine equivalent quadrics if and only if the bilinear functions ¢, and &,
have the same rank and the same index.

10.17. The affine classes. It follows from the two criteria in sec. 10.15
and 10.16 that the normal forms

FP b EpogHpt e =1 (1SsS7)
and
PE 4t EE-EVE LN =0 (r<2s)

form a complete system of representatives of the affine classes. Denote by
N, (r) and by N, (r) the total number of affine classes with center and
without center respectively of a given rank r. Then the above equations
show that

r+1
if » is odd

<r<np-—
N(r)=r and N,(r)={r+2_ . 1<r<n-1
if r is even

0 r=n.

The following list contains a system of representatives of the affine
classes in the plane and in 3-space*®):

Plane:
I. Quadrics with center:
1. r=2: a) s=2: E+n*=1 ellipse,
b) s=1: E—p*=1 hyperbola.
2. r=1: s=1: é=+1 two parallel lines.
II. Quadrics without center:
r=1,s=1: E2—-2y=0 parabola.
3-space:

I. Quadrics with center:
L. r=3: a) s=3: &+n®+¢*=1 ellipsoid,
b) s=2: E+5?—-(*=1 hyperboloid with one shell,
c) s=1: & —yp*=¢?>=1 hyperboloid with two shells.

*) In the following equations the coordinates are denoted by &, #, { and the super-
scripts indicate exponents.
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2. r=2:a) s=2: E+n*=1 elliptic cylinder,
b) s=1: £2—yp2=1 hyperbolic cylinder.
3. r=1: s=1: E=+1 two parallel planes.

II. Quadrics without center:
1. r=2: a) s=2: E2+n*—2({=0 elliptic paraboloid,
b) s=1: é2—y»2—-2{=0 hyperbolic paraboloid.
2. r=1, s=1: E2-20=0 parabolic cylinder.

Problems
1. Let Q be a given quadric and C be a given point. Show that Cis a
center of Q if and only if the affine mapping P—~P’ defined by CP'=

—CP transforms Q into itself.
2. If @ is an indefinite quadratic function, show that the quadrics

P(x)=1 and P(x)=-1

are equivalent if and only if the signature of @ is zero.
3. Denote by N; and by N, the total number of affine classes with
center and without center respectively. Prove that

_n(n+1)
)

kK*+ k-1 if n=2k
2={k2+2k it n=2k+1.

1

4, Let x; and x, be two points of the quadric
0:P(x)=1.
Assume that an isomorphism t: T, —T,, is given such that
D(ty,tz)=D(y,z) y,zeT,,.

Construct an affine mapping 4—4 which transforms @ into itself and
which induces the isomorphism 7 in the tangent-space T,,.
5. Prove the assertion of problem 4 for the quadric

@ (x) +2{a*x)=0.
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§ 4. Quadrics in the Euclidean space

10.18. Normal-vector. Let 4 be an n-dimensional Euclidean space and
0:0(x) +2f (x) = 2

be a quadric in 4. The bilinear function @ determines a selfadjoint linear
transformation ¢ of E by the equation

®(x,y)=(9x,y).

The linear function f can be written as

f(x) = (a’x)

where a is a fixed vector of E. Cones will again be excluded; i. e. we shall
assume that
ox+ —a

for all points xe Q. Let x, be a fixed point of Q. Then equation (10.10)
shows that the tangent-space T, consists of all vectors y satisfying the
relation

(pxo + a,y)=0.

In other words, the tangent-space T, is the orthogonal complement of
the normal-vector

P(xo) = ¢ xo +a.

The straight line determined by the point x, and the vector p(x,) is
called the normal of Q at x,.
10.19. Quadrics with center. Now consider a quadric with center

0:d(x)=1. (10.59)
Then the normal-vector p (x,) is simply given by
p(X0) = @ Xo.

This equation shows that the linear mapping ¢ associates with every
point x,€Q the corresponding normal-vector. In particular, let x, be a
point of Q whose position-vector is an eigenvector of ¢. Then we have the
relation

P xg =A%

showing that the normal-vector is a multiple of the position-vector x,.
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Inserting this into equation (10.59) we see that the corresponding eigen-~
value is equal to
1

= __i'
[Xol

As has been shown in sec. 8.7 there exists an orthonormal system of »
eigenvectors e,(v=1...n). Then

A

pe,=21,e, (v=1..n) (10.60)
whence
P (e, e,)=4,0,,.

Let us enumerate the eigenvectors e, such that
0<l Sl A
0> A4y 2442224, (10.61)
Aoy =+=12,=0

where r is the rank and s is the index of ®. Then equation (10.59) can be
written as

Zrl ALEE=1. (10.62)

The vectors
e, ey

— (v —_——
\/j-v \/— j'v
are called the principal axes and the conjugate principal axes of Q.
Inserting

a, =

=1..s) and a,= (v=s+1..r)

(v=1..5) and A, = (v=s+1..r)

yvETTT5 —T
|a,| la|

into (10.62) we obtain the metric normal-form of Q:

s é\lév r fva
2 Y

v=1 Iav|2 v=s+1 ‘avlz

(10.63)

Every principal axis a, generates a straight line which intersects the
quadric Q in the points a, and —a,. The straight lines generated by the
conjugate axes have no points in common with Q but they intersect the
conjugate quadric

0:P(x)=-1

at the points @, and —a,(v=s+1...r).
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10.20. Quadrics without center. Now consider a quadric Q without
center. Using an arbitrary point of Q as origin, we can write the equation
of Q in the form

&(x) +2(a,x)=0 (10.64)

where a is a normal vector of Q at the point x=0.
For every point xeQ the vector

p(x)=¢x+a (10.65)

is contained in the normal of Q. A point xe( is called a vertex if the
corresponding normal is contained in the null-space K of & (cf. fig. 6).

It will be shown that every quadric without center has at least one
vertex.

Applying ¢ to the equation (10.65) we obtain

op(x)=0*x + ¢pa
showing that a point xeQ is a vertex if and only if
e’x=—¢a. (10.66)

To find all verticles of Q we thus have to determine all the solutions of
equations (10.64) and (10.66). The self-adjointness of ¢ implies that the
mappings ¢ and ¢? have the sameimage-space and the same kernel (cf. sec.
8.4). Consequently, equation (10.66) has at least one solution. The general
solution of (10.66) can be written in the form

X=X¢+2

where z is an arbitrary vector of the kernel K. Inserting this into equation
(10.64) we obtain

1P (xo) + (a,x0) + (a,2) =0. (10.67)

Now a¢ K* (otherwise Q would have a center) and consequently (10.67)
has a solution ze K. This solution is determined up to an arbitrary vector
of the intersection K N Ty. In other words, the set of all vertices of Q
forms an affine subspace with the difference-space X n T,. This subspace
has dimension (n—r—1).

Now we are ready to construct the normal form of the quadric (10.64).
First of all we select a vertex of @ as origin. Then the vector 4 in (10.64) is
contained in the kernel K. Multiplying equation (10.64) by an appro-
priate scalar we can achieve that j¢| =1 and that 2s=r. Now let e, (v=1
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...n—1) be a basis of T, consisting of eigenvectors of ®. Then the vectors
e,(v=1...n~1) and a form an orthonormal basis of E such that

d(e,e,)=4,06,, u=1..n-1)
and
®(e,a)=(e,pa)=0 (v=1...n-1).

In this basis the equation of Q assumes the metric normal-form

Y AEE +28=0. (10.68)
v=1
Upon introduction of the principal axes and the principal conjugate axes
e e
a,=—— (v=1...5) and a,=———= (v=s+1..r
v, ) Ny ( )
the normal-form (10.68) can be also written as
255_ Y é§+2£=0. (10.69)

v=la)? vShala,)?

10.21. Metric classification of bilinear forms. Two quadrics Q and Q'
in the Euclidean space A are called metrically equivalent, if there exists
a rigid motion x—x’ which transforms Q into Q'. Two metrically equiv-
alent quadrics are a fortiori affine equivalent. Hence, the metric classi-
fication of quadrics consists in the construction of the metric subclasses
within every affine equivalence class.

It will be shown that the lengths of the principal axes form a com-
plete system of metric invariants. In other words, two affine equivalent
quadrics Q and Q' are metrically equivalent if and only if the principal axes
of Q and Q' respectively have the same length.

We prove first the following criterion: Let E and F be two n-dimen-
sional Euclidean spaces and consider two symmetric bilinear functions ¢
and ¥ having the same rank and the same index. Then there exists an
isometric mapping t: E— F such that

P(x,y)=¥(rx,7y) x,yeE (10.70)

if and only if @ and ¥ have the same eigenvalues.
Define linear transformations ¢: E—~E and : F—F by

?(x,y)=(¢x,y) x,yeE and Y(x,y)=Wx,y) x,yeF.
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Then the eigenvalues of @ and ¥ are equal to the eigenvalues of ¢ and
 respectively (cf. sec. 8.10).

Now assume that 7z is an isometric mapping of £ onto F such that
relation (10.70) holds. Then

(px,y)=Wx,7y) (10.71)
whence

(p=1'_lol//o1'.

This relation implies that ¢ and y have the same eigenvalues.

Conversely, assume that ¢ and { have the same eigenvalues. Then
there is an orthonormal basis @, in E and an orthonormal basis b,(v=
1...n) in Fsuch that

pa,=A,a, and yb,=1,b, (v=1...n). (10.72)
Hence, an isometric mapping t: E—F is defined by
ta,=b, (v=1..n). (10.73)
Equations (10.72) and (10.73) imply that
(pa,a,)=Wra,ta,) (hu=1..n)
whence (10.71).
10.22. Metric classification of quadrics. Consider first two quadrics Q
and Q' with center. Since a translation does not change the principal axis

we may assume that Q and Q' have the common center O. Then the
equations of Q and Q' read

Q:d(x)=1
and
Q:d' (x)=1.
Now assume that there exists a rotation of E carrying Q into Q'. Then
P(x)=9(rx) xeE. (10.74)

It follows from the criterion in sec. 10.21 that the bilinear functions
@ and ¢’ have the same eigenvalues. This implies that the principal axes
of Q and Q' have the same length,

laf=la)l (=1..7). (10.75)
Conversely, assume the relations (10.75). Then

Al=12  (v=1..n).
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Observing the conditions (10.61) we see that 4,=A,(v=1...n). According
to the criterion in sec. 10.21 there exists a rotation t of E such that

@ (x)=2(rx).

This rotation obviously transforms Q into Q.

Now let Q and Q' be two quadrics without center. Without loss of
generality we may assume that Q and Q' have the common vertex O.
Then the equations of Q and Q' read

Q:d(x)+2(a,x)=0 aeK |a|=1, (10.76)
and
Q:d'(x)+2(a’,x)=0 adeK |d|=1, (10.77)
If Q and Q' are metrically equivalent there exists a rotation t such that
P(x) =9 (rx).
Then
la,| = lal| (v=1..r). (10.78)

Conversely, equations (10.78) imply that the bilinear functions ¢ and
¢’ have the same eigenvalues,

A, =4, (v=1..n). (10.79)

Now consider the restriction ¥ of @ to the subspace T, (Q). Then every
eigenvalue of ¥ is also an eigenvalue of @. In fact, assume that

¥ (e,y)=2(e)
for a fixed vector ee T, (Q) and all vectors ye T, (Q). Then

d(e,x)=P(e,la+y)=,DP(e,a)+ P(e,y) =ED(e,a) + Ale, y)
(10.80)

for an arbitrary vector xeE. Since the point O is a vertex of Q we have
that @ (e, a)=0. We thus obtain from (10.80) the relation

D(e,x)=A(e,y)=A(e,Ea + y) = A(e, x)

showing that A is an eigenvalue of &. Hence we see that the bilinear
function ¥ has the eigenvalues 4,...4,_,. In the same way we see that the
restriction P’ of @’ to the subspace T, (Q’) has the eigenvalues A...4, _;.
Now it follows from (10.79) and the criterion in sec. 10.21 that there exists
an isometric mapping

0:To(Q)~ To(2)
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with the property that
P (ey)=2(1) yeT(Q).
Define the rotation t of E by

ty=¢0y yeT(Q)
ta=da.
Then
@' (tx)+2(a',tx) = &(x) +2(a,x) xeE

and consequently, T transforms Q into Q’.

10.23. The metric normal-forms in the plane and in 3-space. Equations
(10.63) and (10.69) yield the following metric normal forms for the
dimensions n=2 and n=13:

Plane:
1. Quadrics with center:
52 ’12
1. e + e =1, a=b ellipse with the axes ¢ and b.
62 ’12
2. 2 1 hyperbola with the axes a and b.
3.é=xa two parallel lines with the distance
2a.
II. Quadrics without center:
62
—5 =27 parabola with latus rectum of
a length a.
3-space:

1. Quadrics with center:

£ g2
1. pe + b7 + e =1,a=b = ¢ ellipsoid with axes a, b, c.
e n ¢
2. e + A l,azb hyperboloid with one shell and axes
a, b, c.
e 9 ¢ o
3. ,—- ,—,=4Lb=c hyperboloid with two shells and axes

a, b, c.
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elliptic cylinder with the axes a and b.

hyperbolic cylinder with the axes a

and b.

two parallel planes with the distance

2a.

II. Quadrics without center:

e
4.?4'35
5 e 9
" b2
6. ¢E==a
1?:2 n’
“ar b2
, &
e

2
Lo

Give the center or vertex, the type and the axes of the following quad-
rics in the 3-space:

=2 az=bh

elliptic paraboloid with axes @ and b.

hyperbolic paraboloid with axes a

and b.

parabolic cylinder with latus rectum

of length a.

Problems

a) 2824202 — {2+ 8En —4EL — ANt =2.
b) 482 4-3n% —{2—12En+4EL —8nL=1.
C) E24n?+T70% —16En —8EL —8nL =9.
d) 382432402280+ 6E —2n -2 +3=0.

2. Given a non-degenerate quadratic function &, consider the family
(Q,) of quadrics defined by

P(x)=a (x+0).

Show that every point x 40 is contained in exactly one quadric Q,.
Prove that the linear transformation ¢ of E defined by

associates with every point x £=0 the normal vector of the quadric passing

through x.

3. Consider the quadric

P(x,y)=(¢x,y)

0:9(x)=1,
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where @ is a non-degenerate bilinear function. Denote by Q' the image
of Q under the mapping ¢ which corresponds to &. Prove that the
principal axes of Q" and Q are connected by the relation

!

av
a,=——
la,|

(v=1...n).
4. Given two points p, ¢ and a number 2«(a>|p —q|), consider the
locus Q of all points x such that
|x = pl + |x — gq| = 2«.
Prove that Q is a quadric of index n whose principal axes have the length

|a1|=a9 Iav|= “2—7}|P—q|2 (V=2...n).

5. Let ®(x)=1 be the equation of a non-degenerate quadric Q with
the property that x is a normal vector at every point of Q. Prove that Q
is a sphere,
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Unitary spaces

§ 1. Hermitian functions

11.1. Sesquilinear functions in a complex space. Let E be an n-dimen-
sional complex linear space and @: E x E~+C be a function such that

D(Axy + Xy, y) = AD(x1,Y) + p (x5, )
DX, Ay; 4+ puy)) =A0(x,y1) + EP(X,y,) (11.1)

where 1 and ji are the complex conjugate coefficients. Then @ will be
called a sesquilinear function. Replacing y by x we obtain from & the
corresponding quadratic function

¥(x)=&(x,x). (11.2)
It follows from (11.1) that ¥ satisfies the relations

P+ +Px—y)=2(Yx) + %) (11.3)
and
P (1x) =2 ¥ (x).

The function @ can be expressed in terms of ¥. In fact, equation (11.2)
yields

P(x+y)=¥(x)+ )+ D(x,5) + 2(y,%). (11.4)
Replacing y by iy we obtain
Yx+iy)=Yx)+PQ)—id(x,y) +i®(y,x). (11.5)
Multiplying (11.5) by i and adding it to (11.4) we find
Fx+y)+i¥x+iy)=1+)¥()+ ¥())+22(x,),
whence

20(%, ) = {F(x+ )= P) - YO +i{¥(x+iy)— ¥(x)— ¥ ()}
(11.6)
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Note: The fact that @ is uniquely determined by the function ¥ is due
to the sesquilinearity. We recall that a bilinear function has to by sym-
metric in order to be uniquely determined by the corresponding quadratic
function.

11.2. Hermitian functions. With every sesquilinear function ¢ we can
associate another sesquilinear function @ given by

B (x,y) = 2(,%).
A sesquilinear function @ is called Hermitian if =9, i. e.
B (x,y) = @(y, ). (11.7)
Inserting y=x in (11.7) we find that
¥ (x) = ¥(x) (11.8)

Hence the quadratic function ¥ is real valued. Conversely, a sesquilinear
function ¢ whose quadratic function is real valued is Hermitian. In fact,
if ¥ is real valued, both parantheses in (11.6) are real. Interchange of x
and y yields

2000, ) = {F(x+ )= ¥(x) =¥} + i{¥+ix)— ¥(x)- ()}
(11.9)

Comparison of (11.6) and (11.9) shows that the real parts coincide. The
sum of the imaginary parts is equal to

Px+iy)+ Py +ix)—2¥%(x)—2¥(y).
Replacing y by iy in (11.3) we see that this is equal to zero, whence
D(y,x) = (x,y).

A Hermitian function & is called positive definite, if ¥ (x)> 0 for all vec-
tors x+0.

11.3. Hermitian matrices. Let x,(v=1...n) be a basis of E. Then every
sesquilinear function ¢ defines a complex n x #n-matrix

ty = P (x,,x,).
The function @ is uniquely determined by the matrix (a,,). In fact, if

x=3Y¢x, and y=3n"x,
v v
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are two arbitrary vectors, we have that
P(x,y)= Y &, &7,
v, i

The matrices (a,,) and (4,,) of @ and & are obviously connected by the
relation

R

vi = Oy
If @ is a Hermitian function it follows that

Oy = &y

A complex n x n-matrix satisfying this relation is called a Hermitian matrix.
Problems: 1. Prove that a skew-symmetric sequilinear function is
identically zero.
2. Show that the decomposition constructed in sec. 9.6 can be carried
over to Hermitian functions.

§ 2. Unitary spaces

11.4. Definition. A unitary space is a complex linear space E in which
a positive definite Hermitian function, denoted by (), is distinguished.
The number (x, y)is called the inner product of the vectors x and y. It has
the following properties:

1 (Axy +pux2,3)=A(x1,¥) + 1 (x2,))
(6, Ays +1y2)=A(x,y,) + A (x,,).

2. (x,3)=(,).
3. (x, x)>0 for all vectors x#0.

In a similar way as for real linear spaces, the standard-inner product in
the complex number-space C" is defined by

(x,9)=Y &% where x=('...¢ and y=(q'..71").

The norm of a vector x of a unitary space is defined as the positive
square-root

Ixl = \/(x,%).
|Cx, Y)I < Ixl 1yl (11.10)

is proved in the same way as for real inner product spaces. Equality holds
if and only if the vectors x and y are linearly dependent.

The Schwarz-inequality
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From (11:10) we obtain the triangle-inequality
Ix + y| = x| + |yl

Equality holds if and only if y=Ax where 4 is real and non-negative. In
fact, assume that

[x + yl = Ix| + [y]. (11.11)
»
Squaring this équztion we obtain
(x, ) + (x,¥) = 2|x| ]yl (11.12)
This can be written as
Re(x, y) = |xl |yl

where Re denotes the real part. The above relation yields

G, ) = Ix] 1yl

and hence it implies that the vectors x and y are linearly dependent,
y=2Ax. Inserting this into (11.11) we obtain

A+2=2])
whence
Rel = [A].

Hence, A is real and non-negative. Conversely, it is clear that
|1+ A) x| = |x] + Alx|

for every real, non-negative number 4.
Two vectors xe E and yeE are called orthogonal, if

(x,y) =0.

Every subspace E, c E determines an orthogonal complement E; con-
sisting of all vectors which are orthogonal to E;. The spaces E, and E;
form a direct decomposition of E:

E=E ®E;.

11.5. Orthonormal bases. A basis x,(v=1...n) of E is called orthonor-
mal, if

(%,,x,) =9,,.

The inner product of two vectors

x=3¢x, and y=Yn"x,
14 v
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is then given by

(x’ y) = ;évflv-

Replacing y by x we obtain
x> =Y.&¢&.

Orthogonal bases can be constructed in the same way as in a real inner
product space by the Schmidt-orthogonalization process.

Consider two orthonormal bases x, and X, (v=1...n). Then the matrix
(o) of the basis-transformation x,— X, satisfies the relations

uou__
Zaval—‘évl‘
I

A complex matrix of this kind is called a unitary matrix. Conversely, if
an orthonormal basis x, and a unitary matrix () is given, the basis

s “
E, =3 ahx,
n
is again orthonormal.

11.6. The duality in a unitary space. A conjugation in a complex linear
space is a mapping x—X of E into itself having the following properties:

1 =X+ X

If an inner product is defined in E we require in addition that
(%,7) = (x,y).
A conjugation can always be defined in an n-dimensional complex space.
In fact, select an orthonormal basis x,(v=1...n) and define the mapping
x—+X by
x=Y8&x,

where

x=3&x,.

v

Then the above conditions are obviously satisfied.
Assume that a conjugation is given in E. Then the function {x, y)
defined by

%, ¥) =(x,3) (11.13)

is linear with respect to both arguments. The definiteness of the inner
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product implies that the function (11.13) is non-degenerate. Hence, the
space E'may be considered as dual to itself, relative to the scalar product
(11.13).

Now all the properties arising from the duality can be carried over to
unitary spaces. The Riesz-theorem asserts that every linear function f in
E can be represented in the form

f(x)=(x,a)

where a is a vector of E which is uniquely determined by f. In fact, there
exists a unique vector be E such that

) fx)=<x,b).
Thena=1b
11.7. Normed determinant-functions. Assuming that a conjugation is

defined in F, let 4,0 be a determinant-function in E. Then the function
A, defined by

_,4_10(x1 x)—A (%y...%,)

is obviously again a determinant-function. It will be called the conjugate
determinant-function. Application of the identity (4.21) to the spaces E
and E*=E yields

Ag(xy, ... %) Ao (yq ... yp) = adet({x;, ¥,>)

where a is a complex constant. Replacing the vectors y, by 7, and ob-
serving that

Xy P = (X4 V)
we obtain the relation

Ag(Xy ... x,) Ao (Fy ... Jn) = adet(x, y;). (11.14)

Setting x,=y,=e, where e,(v=1...n) is an orthonormal basis we obtain
from (11.14) that

o= IAO(eI’ en)|2 .

Hence, « is real and positive. Now let 1 be a complex number such that

1
|A|> =« and define a new determinant-function 4 by 4= le o- Then (11.14)
assumes the form

A(xy .. x)A(yy ... y,) =det(x;, y;). (11.15)

A determinant-function in E which satisfies (11.15) is called a normed
determinant-function.
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A normed determinant-functions in F is uniquely determined up to a
complex factor of absolute value one.

Equation (11.15) shows that a normed determinant-function assumes
the absolute value 1 on every orthonormal basis.

Problems

1. Prove that the Gram determinant

(¢, %1) ... (%1, %)
G(x;...x,)=det| : :

(s X1) oo- (Xps %)

of p vectors of a unitary space is real and non negative. Show that
G(x,y...x,)=0if and only if the vectors x, are linearly dependent.

2. Assume that a conjugation x— X is defined in the n-dimensional
complex linear space E. A vector zeE is called real relative to the given
conjugation, if Z=z.

a) Prove that the real vectors form a real n-dimensional linear space
R(E).

b) Show that every vector ze E can be written in exactly one way as
z=x+iy where the vectors x and y are real.

c) If E is a unitary space, prove that a real positive definite inner
product is induced in R(E) by the inner product in E.

3. Let E be a complex linear space and z—Z be a conjugation. Define
the space of real vectors as in problem 2. If an inner product is defined in
R(E), prove that an inner product is defined in E by

(21,22) = (%1, %3) + (V1> V2) + i (%15 ¥2) = (X2, 1))
and that

(z1,25) = (21, %)

§ 3. Linear mappings of unitary spaces

11.8. The adjoint mapping. Let E and F be two unitary spaces and
¢: E— F alinear mapping of E into F. As in the real case we can associate
with ¢ an adjoint mapping @ of F into E. Let x—X and y-J be conju-
gations in E and in F, respectively. Then FE and F are dual to themselves
and hence ¢ determines a dual mapping ¢*: F— E by the relation

{ox,y> ={x,0*y). (11.16)
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Replacing y by y in (11.16) we obtain
Lo x, 7> =<x,0*7). (11.17)

Observing the relation (11.13) between inner product and scalar product
we can rewrite (11.17) in the form

(¢ x,y) = (x,0*7). (11.18)
Now define the mapping @: E«F by

(11.19)

<

py=o*
Then relation (11.18) reads

(px,y)=(x,9y) xeE, yeF. (11.20)

The mapping @ does not depend on the conjugations in £ and F. In fact,
assume that @, and @, are two linear mappings of F into FE satisfying
(11.20). Then

(x,(p, — 91)y)=0.

This equation holds for every fixed ye F and all vectors xe€E and hence
it implies that @, = @,. The mapping @ is called the adjoint of the mapping
Q.
It follows from equation (11.18) that the relations

— - ey ~
o+Y=9p+y and Ao=19

hold for any two linear mappings and for every complex coefficient A.
Equation (11.20) implies that the matrices of ¢ and @ relative to two
orthonormal bases of E and F are connected by the relation

& =a, (v=1..np=1..m).

Now consider the case E=F. Then the determinants of ¢ and ¢ are
complex conjugates. To prove this, let 4 +0be a determinant function in
E and 4 be the conjugate determinant function. Then it follows from the
definition of 4 that

A@x1 . px) = AT TR = AP Es 97 5y)
=det@ A (%, ... %,) = deto A(x, ... x,).

This equation implies that
det ¢ = deto. (11.21)
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If ¢ is replaced by ¢ —Ai, where A is a complex parameter, relation
(11.21) yields

det(p — A7) = det(p — 11).
Expanding both sides with respect to A we obtain
YeAT =Ye,4".

This equation shows that corresponding coefficients in the charac-
teristic polynomials of ¢ and @ are complex conjugates. In particular,
trg = tr—(p .

11.9. The inner product in the space L(E; E). Consider the space

L(E; E). An inner product can be introduced in this space by

1 y
(o.¥) = ;tr(qul//)- (11.22)

It follows immediately from (11.22) that the function (¢, V) is sesquili-
near. Interchange of ¢ and y yields

¥ 9) =1t op) = 5o D) = (:9).

To prove that the Hermitian function (11.22) is positive definite let
e, (v=1...n) be an orthonormal basis. Then

pe,=Yabe, and pe, =) dle, (11.23)
7 "
where &, =&,. Equations (11.23) yield
4 ¢ev = Z &‘:aﬁel
", v
whence

tr(pog) =y dlay =Y oy =3 |ol”.
v, v, i '

This formula shows that (¢, ¢) >0 for every transformation ¢ 0.
11.10. Normal mappings. A linear transformation ¢:E—FE is called
normal, if the mappings ¢ and § commute,

Do =op. (11.24)

In the same way as for a real inner product (cf. sec. 8.5) it is shown
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that the condition (11.24) is equivalent to
lox|>=]|@px|> xeE. (11.25)

It follows from (11.25) that the kernels of @, and @ coincide, ker ¢ = ker @.
We thus obtain the direct decomposition

E=kero@®Imeg. (11.26)

The relation ker ¢ =ker ¢ implies that the mappings ¢ and @ have the
same eigenvectors and that the corresponding eigenvalues are complex
conjugates. In fact, assume that e is an eigenvector of ¢ and that A is the
corresponding eigenvalue,

pe=Ae.

Then e is contained in the kernel of ¢ — Az Since the mapping ¢ —A:1 is
again normal, e must also be contained in the kernel of ¢ —1z, i. e.

pe=1le.

In sec. 8.7 we have seen that a selfadjoint linear transformation of a
real inner product space always possesses n eigenvectors which are
mutually orthogonal. Now it will be shown that in a complex space the
same assertion holds even for normal mapping. Consider the charac-
teristic polynomial of ¢. According to the fundamental theorem of
algebra this polynomial must have a zero 4,. Then 4, is an eigenvalue of
0. Let e, be a corresponding eigenvector and E; the orthogonal comple-
ment of e;. The space E, is stable under ¢. In fact, let y be an arbitrary
vector of E;. Then

(¢y,e))=(.0e;)=(y,2e1) = 4(y,€,) =0

and hence ¢y is contained in E;. The induced mapping is obviously again
normal and hence there exists an eigenvector e, in E,. Continuing this
way we finally obtain » eigenvectors e, (v=1...n) which are mutually
orthogonal,

(e.€)=0  (v+p).

If these vectors are normed to length one, they form an orthonormal
basis of E. Relative to this basis the matrix of ¢ has diagonal form with
the eigenvalues in the main-diagonal,

pe, = Ae, (v=1...n). (11.27)
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11.11. Selfadjoint and skew mappings. Let ¢ be a selfadjoint linear
transformation of E; i.e., a mapping such that #=¢. Then relation
(11.20) yields

(¢x,5)=(x,0y) x,y€E.

Replacing y by x we obtain

(9%, %) = (x,0x) = (¢ x, %)

showing that (¢x, x) is real for every vector xe E. This implies that all
eigenvalues of a selfadjoint transformation are real. In fact, let e be an
eigenvector and A be the corresponding eigenvalue. Then pe=Ae, whence

(pe,e) = i(e,e).

Since (@e, €) and (e, €) + 0 are real, 4 must be real.

Every selfadjoint mapping is obviously normal and hence there exists
a system of » orthonormal eigenvectors. Relative to this system the matrix
of ¢ has the form (11.27) where all numbers 4, are real.

The matrix of a selfadjoint mapping relative to an orthonormal basis
is Hermitian.

A linear transformation ¢ of E is called skew if = —¢. In a unitary
space there is no essential difference between selfadjoint and skew
mappings. In fact, the relation

ip=—1ip
shows that multiplication by i associates with every selfadjoint mapping a
skew mapping and conversely.

11.12. Unitary mappings. A unitary mapping is a linear transformation
of E which preserves the inner product,

(px,0y)=(x,») x,yeE. (11.28)
Relation (11.28) implies that
lpx| =|x|  xeE

showing that every unitary mapping is regular and hence it is an auto-
morphism of E. If equation (11.28) is written in the form

(px,y)=(x0""y)
it shows that the inverse mapping of ¢ is equal to the adjoint mapping,

p=0 1. (11.29)



§ 3. Linear mappings of unitary spaces 319

Passing over to the determinants we obtain

detp-detp =1
whence
[detop| =1.

Every eigenvalue of a unitary mapping has norm 1. In fact, the equation
@e=Ae yields
lpel = [A]e]
whence |A|=1.
Equation (11.29) shows that a unitary map is normal. Hence, there
exists an orthonormal basis e, (v=1...n) such that

pe,=Ae, (v=1..n)

where the 4, are complex numbers of absolute value one.

Problems

1. Given a linear transformation ¢: E—E show that the bilinear
function & defined by &(x, y) = (0, )
is sesquilinear. Conversely, prove that every sesquilinear function @ can
be obtained in this way. Prove that the adjoint transformation determines
the Hermitian conjugate function.

2. Show that the set of selfadjoint transformations is a real vector
space of dimension nZ.

3. Let ¢ be a linear transformation of a complex vector space E.

a) Prove that a positive-definite inner product can be introduced in E
such that ¢ becomes a normal mapping if and only if ¢ has n linearly
independent eigenvectors.

b) Prove that a positive definite inner product can be introduced such
that ¢ is

i) selfadjoint

ii) skew

iii) unitary
if and only if in addition the following conditions are fulfilled in corre-
sponding order:

i) all eigenvalues of ¢ are real
ii) all eigenvalues of ¢ are imaginary or zero
iii) ali eigenvalues have absolute value 1.
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4. Denote by S(E) the space of all selfadjoint mappings and by 4 (E)
the space of all skew mappings of the unitary space E.
Prove that a multiplication is defined in S(E) and A4 (E) by

[‘ps‘p]=i(¢°¢_¢°(p) (pES(E)"pES(E)

and
lo.¥l=0c¥ —Yoo peA(E), ¥ e A(E)

respectively and that these spaces become Lie-algebras under the above
multiplications.

§ 4.* Unitary mappings of the complex plane

11.13. Definition. In this paragraph we will study the unitary mappings
of a 2-dimensional unitary space in further detail. Let © be a unitary
mapping of the complex plane C. Employing an orthonormal basis ey, e,
we can represent the mapping 7 in the form

te, =de, + fe, (11.30)
te, =¢(— Pey +de,)

where o, § and ¢ are complex numbers subject to the conditions

l«]® + B> =1
and
le] =1.
Equations (11.30) show that
dett =¢.

We are particularly interested in the unitary mappings with the determi-
nant + 1. For every such mapping equations (11.30) reduce to

Te; =oey + fe,
Tez=—Bel +&ez
This implies that

jol? + 1817 = 1.

t7le, =de, — Pe,
e
t le, =PBe, +ae,.

Adding the above relations in the corresponding order we find that

(t+t Ve, =(+d)e, =trrre, (v=1,2)
whence
T4+t P =1trr. (11.31)
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Formula (11.31) implies that
(z,t2) + (z,t7 ' 2) = |z]?tre
for every vector ze C. Observing that
(z,1712) = (x2,2) = (2,7 2)
we thus obtain the relation
2Re(z,72) = |z|*trt  zeC (11.32)

showing that the real part of the inner product (z,7z) depends only on
the norm of z. (11.32) is the complex analogue of the relation (8.42) for a
proper rotation of the real plane.
We finally note that the set of all unitary mappings with the deter-
minant + 1 forms a subgroup of the group of all unitary mappings.
11.14. The quaternion-algebra. Consider the set Q of all linear trans-
formations of the form
o=t (11.33)

where 7 is a unitary mapping with determinant 1 and A is an arbitrary
real non-negative number. Given an orthonormal basis e,, e, of C these
mappings ¢ are in a one-to-one correspondence with all matrices of the
form
x B (11.34)
(-5 2)

where « and § are arbitrary complex numbers. The sum of two matrices
of the form (11.34) has again this form and the same holds for an arbitrary
real multiple of the matrix (11.34). Consequently, the set Q is a (real)
linear space.

This space obviously has dimension 4. Moreover, with every two
mappings ¢;€Q and ¢,eQ the product ¢,.¢, is also contained in Q.
Hence, Q is an algebra with the identity-map as unit-element. The algebra
Q is even a division-algebra, i. €. every element ¢ 0 possesses an inverse
with respect to the multiplication. In fact, let o =24t %0 be an element of

1
Q. Then A#0 and hence ¢~ *= 1 771 is the inverse of ¢. The division-

algebra thus obtained is called the algebra of quaternions.
1t follows from (11.31) and (11.33) that

0+ p=1trg. (11.35)
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Replacing ¢ by $ we find that
P+o=1trg.
These two equations yield
tro = Ep
showing that the trace of every ¢ e is real.
Now consider the positive definite inner product

(0. ¥)=3tr(poy) o,¥eQ (11.36)

in Q (cf. sec. 11.9). Since the product ¢ .V is contained in Q it follows that
the bilinear function (11.36) is real-valued. In other words, Q becomes a
Euclidean space.

In view of (11.35) the inner product (11.36) can also be written as

(o) =1%(tro-try —trooy) o, yeQ. (11.37)
Inserting = ¢ in (11.36) we find

(9. 0) =1tr(90 ).
Observing that

(po¢ =det(p'l

for every ¢ Q we obtain the formula

(p,p)=deto  ¢eQ. (11.38)
Substituting Y =1 in (11.36) we see that
(p,1)=4tro. (11.39)

Now it will be shown that the multiplication in Q and the inner product
(11.36) are connected by the relations

(@oxs¥ox) = (0. ¥)1xl? (11.40)
and @. ¥, 10
(xo 0, xo¥) = 1t (0, ¥)- (11.41)

1

Without loss of generality we may assume that |y|=1. Then y =)' and

we obtain

(ot ¥or) =tr(@oxoioth) =tr(@oxox o) =tr(poh) = (o,¥)

and

(xo@xo¥) =tr(xo@ofoX) =tr(poxofox™') =tr(poh) = (0,¥).
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11.15. The multiplication in C. Select a fixed unit-vector a in C. Then
to every vector zeC there exists a unique mapping ¢,eQ such that
¢,a=2z. This mapping is determined by the equations

p,a=aa-+ b
Q,b=—PBa+ab (11.42)

where b is a unit-vector orthogonal to a and
z=aa+ fb.
The correspondence z— ¢, obviously satisfies the relation

(plzl-f'uzz = l(le + ”'(pzz

for any two real numbers A and u. Hence, it defines a linear mapping of
C onto the linear space Q, if C is considered as a 4-dimensional real
linear space. This suggests to define a multiplication among the vectors
zeC in the following way:
2123 =@y, Zy. (11.43)
Then
Prizy = P2y 0Pz, z1z;€C. (11.44)

In fact, the two mappings ¢,, ., and ¢,,.¢,, are both contained in Q and
send a into the same vector. Relation (11.44) shows that the corre-
spondence z— ¢, preserves products. Consequently, the space C be-
comes a (real) division-algebra under the multiplication (11.43) and this
algebra is isomorphic to the algebra of quaternions.

Equation (11.31) implies that

z+z" 1 =2(¢,1)a (11.45)
for every unit-vector z.
In fact, if z is a unit-vector then ¢, is a unitary mapping with determi-
nant 1 and thus (11.31) and (11.39) yield

1

z+z '=9¢,a+(p,a) ' =9,a+ ¢, la=atro, =2a(e,1).

Finally, it will be shown that the inner products in C and Q are connected
by the relation

Re(z1,22) = (92,5 92,) - (11.46)

To prove this we may again assume that z, and z, are unit-vectors. Then
¢., and @,, are unitary mappings and we can write

(21,22) = (@5, 00 0,,0) = (0.," 9., 0,0) = (9,,,,-1a,a).  (11.47)
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Since @,,.,-1 is also unitary formula (11.32) yields

Re((p2122'1 a, a) = Ttr <pzlzz" = %tr(<pz_21 o <pzl) = %tr (;Z; o (pzl)
= %tr((P“ ° '(Z;) = (‘P z1? <Pz2) .
Relations (11.47) and (11.48) imply (11.46).

(11.48)

Problems

1. Assume that an orthonormal basis is chosen in C. Prove that the
transformations which correspond to the matrices

(61) -3 (7o) (i70)

form an orthonormal basis of Q.
2. Show that a transformation e Q is skew if and only if tr ¢ =0.
3. Prove that a transformation ¢ e Q satisfies the equation

¢ ==t
if and only if
detop=1 and tro=0.

4. Verify the formula

(z12,2,2) = (24, 2,) 2] z,,25,2€C.

§ 5.* Application to the orthogonal group

11.16. Definition. Now consider a real 4-dimensional Euclidean space
E and let w be a linear isomorphism of C onto E such that

(wzy,wz;) = Re(zy,2,). *) (11.49)
Introduce a multiplication among the vectors of E by
XX, =w(z;z,) where x;=wz; (i=1,2). (11.50)

Then E becomes a division-aigebra and w defines an isomorphism of C
onto E. The unit-element of E obviously is the vector e=wa.
Relations (11.40) and (11.41) yieid

*) C is considered as a real 4-dimensional linear space. Such a mapping exists be-
cause every two Euclidean spaces of the same dimension are isometric.
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(4 %, x5 x) = (%1, %) |x|? (11.51)
and X{,X,, Xx€E.
(e x1, x%5) = [x]? (x5, x,) (11.52)

In fact, let x=wz, x; =wz, and x,=wz,. Then it follows from (11.50),
(11.49) and (11.46) that

(1%, %2 %) = (Ps,22 P2,2) = (P20 0:,, @0 9,)
= |(pz|2 ((pzl’ (pzz) = lxlz (xh x2)'
Formula (11.52) is proved in the same way. Inserting x, =x; in (11.51)

we obtain the relation
|y X[ = |xq] || (11.53)

showing that the norm is preserved under the multiplication. It follows
from (11.45) that every unit-vector e satisfies the equation

x+x"t=2(x,e)e, x| =1. (11.54)

Relations (11.53) and (11.54) show that a vector xeE satisfies the equa-
tion
x2=—e
if and only if
x| =1 and (x,e)=0.

11.17. The relation to the cross-product. Let E; be the orthogonal com-
plement of e. Then E|, is a 3-dimensional subspace of E. It will be shown
that a normed determinant-function is defined in E; by

A4(y,y1,¥2) =, y1¥2) yeE, y,€E, y,€E. (11.55)
To prove the skew symmetry of 4 we may assume that all three argu-
ments are unit-vectors. Then it follows from (11.54) that y~! =~y and

yit=-y;(j= 1,-2). Using formulae (11.51) and (11.52) we thus obtain
A y5Y2) =111y == LTy D ==L 2y)7Y)
== (y,.V2 J’1) = A(J’:)’z,}ﬁ)-

To prove the skew symmetry with respect to the first and the third
argument we write

A,y 92) + 42y 6Y) =y y2) + (V2,91 9)

A ) _ 11.56
=(yyz' +y2y hy)=(@+q ) (11.36)

where
g=yy;'.
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Now g is a unit-vector and hence formula (11.54) yields

g+q "' =2(g.ee
showing that

(g+4q7"y1)=2(q,¢)(y1,¢) = 0. (11.57)
Relations (11.56) and (11.57) imply that

A(y,yl’y2)+A(y2’yl5y)=0- ~

It remains to be shown that A is a normed determinant-function.

Let e; and e, be two orthogonal unit-vectors of E,. Then ¢;= —e; *

(i=1, 2) and hence formula (11.51) yields
(erer,€)=—(e;e;',e)=—(es,e;) =0

showing that the product e e, is again contained in E;. Moreover,
Relations (11.51) and (11.52) imply that

(e e3.€;)=(ez,e)=0 and (e;ese;)=(ej,e)=0.
Finally,
le; ex] = leglles] =1.

Hence, the vectors ey, e,,e, e, form an orthonormal basis of E,. Inserting
these vectors into 4 we find that

A(ej ez e1,€;) = (e1ez,e16) = 1.

Let us now introduce an orientation in the Euclidean space E; by the
normed determinant-function 4. It will be shown that then the product
of two vectors y,€E; and y,€ E; can be written as

yiyz=—(yi,¥2)e+y1 X y,. (11.58)

Denote by 7 the orthogonal projection of E onto E;. Then

Viva=(yys.e)e+n(y1y2).

We have to show that

(y1y2€)=—(1uy2) (11.59)
and

m(y1y2) = yi X ya. (11.60)

Let ye E, be an arbitrary vector. Then

(171 Y2) =@, ¥192) = (1, y1¥2) = 4, Y1, ¥2) = (0, 1 X ,).
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This implies the relation (11.60). To prove (11.59) we can assume that y,
is a unit-vector. Then y,= —y; ! and it follows from (11.51) that

(y1y2.e)=—(n J’Z_I,e) =—(1,¥2)-

Selecting a positive orthonormal basis e,(v=1, 2, 3) of E, we obtain
from (11.58) the well-known multiplication-table for quaternions:

2 _

= €16 =—6€6; =63
ee,=e¢, (v=1,2,3) ee5=—eze;,=¢
2
ev=—e e3el='—ele3=ez

11.18. Representation of rotations. As an application of the quaternion-
multiplication it will now be shown that every proper rotation of a
Euclidean space of dimension 3 or 4 can be represented as a quaternion-
product.

Let p be a fixed unit-vector of E and define the mapping t by

tx=pxp~ ! xeE. (11.61)
The relation
ltx| = |pxp~'| = x|

shows that 7 is a rotation. It follows from (11.61) that ze=e and hence ©
induces a rotation in the 3-dimensional subspace E;. The induced ro-
tation is proper as follows from the equation

A(""J’l’TJ’zaT)’s): (TY1,7J’2TJ’3)
=(yip L py2ysp )= (1, ¥2V3) = A(¥1, Y2, ¥3).

Let us now determine the axis and the angle of this rotation. The
equations te=e and tp=p imply that the orthogonal projection g of p
onto the subspace E, is invariant under 7. This projection is given by

g=p—4ie A=(pe). (11.62)

From now on it will be assumed that p+ + e (otherwise < is the identity-
map). Then g+ 0 and the norm of g is equal to

lg> =1 - 4%

To find the rotation-angle consider the plane Fin E; which is orthogonal
to ¢. In this plane a proper rotation is induced by t. Next it will be shown
that the induced rotation can be written as

1z2=(24*-1)z +2i(q xz) zeF. (11.63)
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The equations

p=Jie+q and p~!

=le—¢q
yield
pzp_l =(/le+q)z(/le—q)=/122+/l(qz—Zq)_qzq'

Using formula (11.58) we obtain

gz—zq=2(q X z)
and
gz+zq9=—2(q,z)e=0.

The last equation shows that

gzq=-q*z=|ql*ez=(1-4%z.
We thus obtain
pzp ' =(Q24*~1)z+2i(q x 2)

which proves the relation (11.63).
The orientation of E; and the vector ¢ induce an orientation in the
plane F (cf. sec. 4.29). Using this orientation we obtain for the rotation-

angle 0 that cos 8 = (z,72)
and 0=0<2n), |z]=1.

1
sinf = —A4(q,z,72).
lq] ( )

Substituting for 7z the expression (11.63) we find that
cosf =24* -1 (11.64)

24 24
sin0=|—-—|A(q,z,q x z)=|—||q xz|? =21]q| =241 - A%.
q q

Equations (11.64) yield a simple relation between the rotation-angle 8 and
the angle @ between the vectors p and e. In fact, the angle w is determined
by cosw=(p,e) (O<w<n).
Hence, relations (11.64) can be written as

cosf = 2cos’w — 1 = cos 2w
and
sinf = 2coswsinw =sin2w *).

*) The restriction 0 < @ < © implies that sin @ > 0 and hence that vVi—22
= + sin .
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showing that 0=_2w. Altogether we see that the axis of the rotation 1 is
determined by the vector q and that the rotation-angle is twice the angle
between p and e.

It follows from this result that two unit-vectors p; and p, determine
the same rotation if and only if p, = +p,.

Now it will be shown that, conversely, every proper rotation ¢ of E,;
can be represented in the form (11.61). The case ¢=1 may again be
excluded. Let a be a unit-vector in the axis of ¢ and F be the plane ortho-
gonal to a. Denote by 3(0<$<2x) the rotation-angle with respect to
the orientation induced by a. Now consider the unit-vector

) .9
p= ecosi + asmi. (11.65)
Then the rotation
ty=pyp ' yek

coincides with ¢. To prove this let g be the vector determined by (11.62).
Equations (11.62) and (11.65) yield

3
g=a sini (11.66)

showing that 7 and ¢ have the same axis. The rotation-angle 0 of 7 is given
” 0 29 3
=25 =9

This angle refers to the orientation of F which is induced by ¢. But

equation (11.66) shows that g is a positive multiple of a and hence these

two vectors induce the same orientation in F. This implies that t=0.

11.19. Rotations of the 4-dimensional space. Now it is simple to show

that every proper rotation of the 4-dimensional space E can be repre-

sented in the form 1

TX=DpXq
where p and g are unit-vectors. Consider the rotation 7, given by

tx=1tx(te)" L. (11.67)
Then
Te=e

and hence 7, induces a rotation in the 3-dimensional subspace F;. Now
the result of sec. 11.18 implies that 7, can be written as

T, X=pxp lp| = 1. (11.68)
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Equations (11.67) and (11.68) yield

tx=pxp -t(e)=pxq ', q=71(e)7'p.
The unit vectors p and g are determined by 7 up to a common sign facto;.
In fact, assume that
pixq; ' =pyxq;'  xeE.
This yields for x=e
Pidi' = P24z’

when p; 'p, =q; 'q,. Hence setting p; 'p, =p we obtain that

pxp l=x  xeE.

Now it follows from sec. 11.18 that p=¢e, e= 1, whence p,=¢p, and
q,=¢q;.
Problems

1. Let a+0bea vector of E which is not a negative multiple of e. Prove
that the equation x* =g has exactly two solutions.
2. If y;(j=1, 2, 3) are three vectors of E;, prove that

ViVaYa=—A4uynys)e—ouy)ys+ (e ys)ya — (V2 ¥3) i -

3. Let p be a unit-vector of E. Show that the rotation-vector (cf. sec.
8.22) of the rotation tx=pxp~! is given by

u=2i(p—41e), A=(p,e).

4. Introduce an orientation in E such that the vector e induces in E,
the orientation defined by the determinant function (11.55). Let p¥ +e be
a unit-vector. Denote by F the plane spanned by e and p and by F* the
orthogonal plane. Introduce in E an orientation such that the vectors
e, p form a positive basis and in F* the orientation induced by E and F.
The rotations

px=px Yyx=xp
of E obviously leave the planes F and F* invariant and they coincide in
E. Denote by 9 the (common) rotation-angle in F and by 94 and 95 the
rotation-angles in F*. Prove that 97 =9 and 9; = —9.
5. Consider a skew transformation y of E.
a) Show that ¥ can be written in the form

yx=px+xq pqek,
and that the vectors p and g are uniquely determined by .
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b) Show that y transforms E, into E, if and only if g= —p.
c¢) Establish the formula

dety = (Ip|* — 1g1?)*.

6. Let a, b be an orthonormal basis of the complex plane C such that a
is the unit-element of the multiplication defined in sec. 11.15. Show that
the vectors

e=wae =w(ia) e;=wbe;=w(ib)

form an orthonormal basis of E and that
A (el’ ez, e3) = - 1 .

7. Let  be a skew transformation of C with trace zero. Show that the
skew mapping Y =w.@.w ! of E can be written as

Yyx=px
where p is a vector of E,.

If
o B+iy
—B+iy —ia
is the matrix of ¢ relative to the orthonormal basis a, b (cf. prob. 6),

show that
p=uae + Bey +ye;.

§ 6.* Application to Lorentz-transformations

11.20. Selfadjoint linear transformations of the complex plane. Consider
the set of all selfadjoint mappings ¢ of the complex plane C. S is a real
4-dimensional linear space. In this space introduce an inner product by

(o,7) =4(tr(go7) — tro-trr). (11.69)

This inner product is indefinite and has index 3. To prove this we note
first that
{o,0) = }(tra? — (tro)?) = — deto (11.70)
and
{o,1) =— }tro. (11.71)

Now select an orthonormal basis z,,z, of C and consider the transfor-
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mations ¢;(j=1,2,3) which correspond to the Pauli-matrices

1 0 {0 1 (0 -1
0y 0 —1 0, 10 03! ; 0]
Then it follows from (11.69) that

<0i,0j> =5ij
and
<ai’l>=05 <l>l>=_1'

These equations show that the mappings 1, 6., 6,, ¢; form an ortho-
normal basis of § with respect to the inner product (11.69) and that this

inner product has index 3.

The orthogonal complement of the identity-map consists of all self-

adjoint transformations with the trace zero.

11.21. The isomorphism between Q and S. Besides S let us now con-
sider the 4-dimensional real linear space Q introduced in sec. 11.14. Then

a linear mapping Q: Q— S is defined by

1—i
Qo= 7 itro +ig peQ.

In fact, equation (11.72) implies that

— 14 .
Q(p=—2—ltr(p—l¢

whence

ey
Qo—Qe=ittro—i(p+ 9).
Observing that
@+ @=11rp

we obtain from (11.73) the relation

[—
Qo=2Q¢

showing that Qo is selfadjoint and hence it is contained in S.
It follows immediately from (11.72) that

QWopoy™=yYoQopoy™" @, yeQ

and
trQe=treo 0peQ.

(11.72)

(11.73)

(11.74)

(11.75)
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Solving (11.72) with respect to ¢ we find that
141
Q= T ltr.Q(p -— iQ(p

showing that Q is an isomorphism of Q onto S. With the help of the
isomorphism Q the inner product (11.69) can be carried over into the
space Q:

{0, ¥)> ={Q0¢,Qy>. (11.76)

This gives in view of (11.69)

(o, ¥> =3{tr(Qo.QY) —trQo-tr Qy}
=1 {trQe.Qy —tro-try}.

Now
Qe.Qy = (- i)zztrq)trw + ! 2— ii(xptr(p + @try) — oy
and consequently,
trQe.Qy=tro-try —tr(poy). (11.77)
Combining equations (11.76) and (11.77) we find the formula
(o, ¥ =—1tr(poy) o, YeQ. (11.78)

11.22. The transformations 7,. Now consider an arbitrary linear trans-
formation « of the complex plane C such that det «a=1. Then a linear
transformation T,: S— S is defined by

T,c =0oc0o& ceS. (11.79)
In fact, the equation

T¢6=ao&o&=aoao&= T;O'

shows that the mapping T,c is again selfadjoint. The transformation T,
preserves the inner product (11.69) and hence it is a Lorentz-transfor-
mation:
{T,0,T, 6> =—detT,6 =— det(aoco&)
= —deto|deta|? = — deto = {g,0).

Every Lorentz-transformation obtained in this way is proper. To prove
this let «(#) (0=<7=1) be a continuous family of linear transformations of
C such that

a(0) =1 a(l)=a and deta(t) =1 0=<t=s1).
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It follows from the result of sec. 4.36 that such a family exists. The
continuous function det T, O<r<1) .

is equal to + 1 for every ¢. In particular

det TG(O) = detT = 1.
This implies that
detT, ,, =1 0=st=s1)

whence
detT,=1.
The transformations T, are orthochroneous. To prove this, observe
that 5
) Toi=a0d
whence

4, T, =(1,008) =—4tr(axo&) <O.

This relation shows that the time-like vectors 1 and T, are contained in
the same cone (cf. sec. (9.22)).

11.23. In this way every transformation « with determinant 1 defines a
proper Lorentz-transformation T,. Obviously,

Taoﬂ=T¢°Tﬂ° (11.80)

Now it will be shown that two transformations T, and T coincide only
if = +a. In view of (11.80) it is sufficient to prove that T, is the identity
operator only if = +1. If T, is the identity, then

aodod =0 forevery cgeS. (11.81)

Inserting o =1 we find that «o&=1 whence a=&" . Now equation (11.81)
implies that
ao0 =00 forevery ceS. (11.82)

To show that «=-+1 select an arbitrary unit-vector ecC and define
a selfadjoint mapping ¢ by
6z=(z,e)e zeC.
Then
(coa)e=(xe,e)e and (x.o)e=ae.

Employing (11.82) we find that
ae=(xe,e)e.

In other words, every vector az is a multiple of z. Now it follows from
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the linearity that a=A: where A is a complex constant. Observing that
det =1 we finally see that A=+ 1,

11.24. In this section it will be shown conversely that every proper
orthochroneous Lorentz-transformation T can be represented in the
form (11.79). Consider first the case that 1 is invariant under 7,

Ti=1.

Employing the isomorphism Q:Q—S (cf. sec. 11.21) we introduce the
transformation

T =Q7'.T.Q (11.83)
of Q. Obviously,
<TI s T,¢> ={p, ¥ o, yeQ (11.84)
and
T 1=1. (11.85)

Besides the inner product (11.78) we have in Q the positive inner product
defined by (11.37). Comparing these two inner products we see that

(V) =<, ¥> + Htrotry = (o, ¥)> —2{p, 1) {Y,1).  (11.86)
Now formulae (11.84), (11.86) and (11.85) yield
(T, T'Y)=(¢,¥) o, ¥eQ

showing that 7" is also an isometry with respect to the positive definite
inner product (11.37). Hence the result of sec. 11.18 applies to 7": There
exists a unit-vector feQ such that

T o=Bopo.p . (11.87)
Using formulae (11.83), (11.87) and (11.74) we thus obtain
To=(Qo T oQ Vo=QB-Q 1o )=Bocg.p" .
Since == this equation can be written in the form
To=PBocof=Tyo.
Equation (11.38) shows finally that  has indeed determinant 1,
detB=(8,8)=1.

In the general case where T+ consider the plane F generated by the
vectors 1 and Ti. Let w be a vector of F such that

(wy=0 and (w,0d=1. (11.88)
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Then
Q7 'w,1) ={0,21) =Lw,1> =0
and consequently,
Q lw.Q 'o=—1. (11.89)

On the other hand it follows from (11.72) and the first equation (11.88)
that

1 1
Q o=-0. (11.90)
i
Relations (11.89) and (11.90) yield
Do =1.

By hypothesis, T preserves fore-cone and past-cone. Hence Tt can be

written as
Ti1=1cosh0 + wsinh . (11.91)

Let « be the selfadjoint transformation defined by

0 0
o= lCOShz— + wsinhi. (11.92)
Then

0 0. 0 o
T,i=0a.d= 1cosh25 + 2wcosh§sinhi + wowsinhzi (11.93)

=1coshf + wsinh 0.
Comparing (11.91) and (11.93) we see that
Ti1=T,:.

This equation shows that the transformation T, *°T leaves vector t in-
variant. As it has been shown already there exists a linear transformation
B0 of determinant 1 such that

T, 'oT=T,.
Hence,
T = T;o Tp= T;oﬂ'

It remains to be proved that « has determinant 1. But this follows from
(11.70), (11.92) and (11.88):

0 0
deta = — (o, &) = — (1,1>c0sh25 - {w,w) sinhzi =1.
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Problem

Let « be the linear transformation of a complex plane defined by the

matrix
1 2i
—-i 3

Find the real 4 x 4 matrix which corresponds to the Lorentz-transfor-
mation T, with respect to the basis 1, ¢, 0,, 05 (cf. sec. 11.20).



Chapter XII

Polynomial algebra
§ 1. Basic properties

In this paragraph we shall define a polynomial algebra over a field I’
and establish some of its elementary properties. Some of the work done
here is simply a specialization of the more general results of Chapter
XX, Vol. II and is included here so that the results of the following
chapter will be accessible to the reader who has not read the volume on
multilinear algebra.

12.1. The polynomial algebra over a field. Let I" be a field and consider
the set of infinite sequences

(otgs 004y .en 0y ..0)

with elements in I', such that only finitely many of the «; are different from
zero. We define addition and scalar multiplication by

(%05 %1 ---) + (Bos B1s--.) = (%0 + Bos %y + By o)

and
/1(0(0,061,...)=(/10(0,/10(1,...). AGF

It is easily checked that with these operations, this set of sequences

becomes a vector space over I'.
Now we define the product of two sequences by

(“0’ Ay, )(ﬁos ﬁb ) = (VO’VI’ )
Ve = Z “iﬁj

i+i=k

where

and leave it to the reader to verify that this multiplication makes the
vector space of sequences into an associative commutative algebra with
identity, (1, 0,...) being the identity element. This algebra is called the
polynomial algebra over I' and is denoted by I'[¢].
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It is easy to verify that the mapping of I' into the polynomial algebra
Tr]givenby 2=(4,0,...0,..)

is a monomorphism, and so we may identify I" with its image under the
above injection.
The element (0, 1, 0,...) will be denoted by ¢. Then setting °=(1,0,...),
we have that
#*=(0,...0,1,0...).

k

Consequently an arbitrary element of the polynomial algebra may be
written as a polynomial in ¢

f=Y 4t Aerl. (12.1)
k=0

Since the elements ¢* are linearly independent the representation (12.1) is
unique. 4, is called the leading coefficient of f. A polynomial whose leading
coefficientis 1 is called monic. It follows from the definitions that addition
and multiplication in the algebra I"[#] coincide with ordinary addition and
multiplication of polynomials. The element Ayel is called the scalar term

of f. Itiseasy to verify that themapping ¢: I'[f]— I defined by Y At*—4,
k=0

is a homomorphism.
Consider a non-zero polynomial

f=Y 4t a=*0.
K=o

The number # is called the degree of f. If g is a second polynomial, then
clearly

deg(f + g) < max(deg f,degg)
and

deg(f g) =degf + degg. (12.2)

A polynomial of the form o, (2,4 0) is called a monomial of degree n.
Let I',[f] be the space of the monomials of degree » together with the
zero element. Then clearly

[ = fo r,[1

and by assigning the degree n to the elements of I',[¢] we make I'[] into a
graded algebra as follows from (12.2). A homogeneous element of degree
n with respect to this gradation is precisely a monomial of degree n.
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However, the structure of I'[#] as a graded algebra does not play a role
in the subsequent theory. Consequently we shall consider simply its
structure as an algebra.

12.2. Homomorphisms. Let 4 be any associative algebra with unit ele-
ment e and choose a fixed element xe A. Then the map

loet—ox
can be extended in a unique way to an algebra homomorphism
O:I'[f]-4.

The uniqueness follows immediately from the fact that the elements 1 and
t generate the algebra I'[r]. To prove existence, simply define

di(;akt") = ;cxkx".

It follows easily that @ is an algebra homomorphism. The image of I'[¢]
under @ will be denoted by I'(x). It is clearly the subalgebra of A gener-
ated by e and x.

Its elements are called polynomials in x, and are denoted by f(x).

The homomorphism &:f— f(x) induces a monomorphism

G:K[t]/kerd > A.

If A is generated by e and x, then & (and hence &) is surjective and we

have that =
$:K[t]/kerdo > 4.

As a special example, let 4 =K[r] and x=ge K[¢]. Let B, be the scalar
term of g. Then the homomorphism &:4— A4 is given by

&(f)=f(g)-

Since the mapping ¢:I'[t] T (cf. sec 12.1) is a homomorphism it follows

that 0f(8) =1 (28) = £ (o)

i.e. the scalar term of f(g) is given by f(B,). In particular if f=u, is a
scalar, then f(g)= 0.

As a second example let A=TI'[r}/] where [ is an ideal in I'[¢] and
x=1F. Then the homomorphism & is given by

DY o th =3 o i
k k

i.e., @ is the canonical projection of I'[f] onto I'[¢]/I.
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12.3. Differentiation. Consider the linear mapping

d:T'[{]- T[]
defined by
df =pP~1! r=1
dl=0.
Then we have for p,g=1

d(tP-1%) = d(©*+9)
=(@+grr !
= pt"_l 11+ t"qt““l
=dtP-1" 4 7. d
i.e.
d(Pt)=d-11 +*dH. (12.3)
It is easily checked that (12.3) continues to hold for p=0 or ¢=0. Since
the polynomials #* form a basis of I'[¢] it follows from (12.3) that the
mapping d is a derivation in the algebra I'[t].
d is called the differentiation map in I'[t], and is the unique derivation
which maps ¢ into 1. It follows from the definition of d that d lowers the
degree of a polynomial by 1. In particular we have

kerd=r
and so the relations

and
f—g=aqa, oael

are equivalent. The polynomial df will be denoted by f”.
The chain rule states that for any two polynomials fand g,

(fey=r"(g)g-

For the proof we comment first that

dgt=kgt"'dg k=1 (12.4)

dg®=0
which follows easily from an induction argument. Now let

f =Y otk
k
Then
J®R)=Xe g"
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and hence formula (12.4) yields
f(g) = ;“kkgk_l'dg
= Zkakgk_l'gl
k
=f'(g) g
12.4. Taylor’s expansion. The polynomial d"f (r=1) is called the r-th

derivative of £ and is usually denoted by f®. We extend the notation to
the case r =0 by setting f(® =F. It follows from the definition that f® =0
if and only if r exceeds the degree of 1.

Suppose now that f, g, and & are any polynomials in I'[f]. Then we
have the Taylor’s expansion

n n
f(g+h)= zjof ")(g)r—! (12.5)

where n denotes the degree of f. Since the relation (12.5) is linear in f'it is
sufficient to consider the case f=¢". For n=0, (12.4) is trivial and hence
we may assume that n>1. A simple induction argument shows that

"0 =—""_r  o<ren.
(n—r)! -
Thus
f@+h)=1"(g+h)
=(g+h)’
N
,=o(n - T)!g ;
n nt K
= ,-;o (n r)!t (g);;
n h"
= 3 (")
r=0
RN
h r=20f (g)r'
Problems

1. Consider the mapping I'[¢] x I'[¢]-I'[] defined by (f,g)—-/(g).
a) Show that this mapping does not make the space I'[{] into an algebra.
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b) Show that the mapping is associative and has a left and right
identity.

¢) Show that the mapping is not commutative.

d) Prove that the mapping obeys the left cancellation law but not the
right cancellation law; i.e., f;(g)=/>(g) implies that f; =/, but f(g,)=
f(g,) does not imply that g, =g,.

2. Construct a linear mapping

{:r[]-r[1

doj=l.

such that

Prove that if {, and [, are two such mappings, then there is a fixed scalar,
o, such that

(.fl “Iz)f =a.

In particular, prove that there is a unique homogeneous linear mapping |
of the graded space I'[¢] into itself and calculate its degree. | is called the
integration operator.

3. Consider the homomorphism ¢:I'[f] T defined by

ey ot =aq.
Show that ‘
ef =r(0).
Prove that if | is the integration operator in I'[¢], then
fod=1-0.

Use this relation to obtain the formula for integration by parts:

ffed=rfg—eo(fe)-Jgf.

4. What is the Poincaré series for the graded space I'[ £]?

5. Show that if 9:I'[f]-I'[f] is a non-trivial homogeneous antideri-
vation in the graded algebra I'[¢] with respect to the canonical involution,
and 8%=0 then

H,(r'[f]) =0, pz1.

6. Calculate Taylor’s expansion

flg+h)=f@+hf'()+-

for the following cases and so verify that it holds in each case:
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a) f=t2—t+1, g=1342t, h=t-5

b) f=2+1, g=£+t—1, h=—1+1

©) f=312+2t+5, g=1, h=-1

d) f=—>+t—1, g=t, h=1*—1+1

7. For the polynomials in problem 6 verify the chain rule

f@) =1 ()¢

explicitly. Express the polynomial f(g(h)),in terms of the derivatives of f,
gand h and calculate [ f(g(h))]" explicitly for the polynomials of problem
6.

§ 2. Ideals and divisibility

12.5. Ideals in I'[t]. In this section it will be shown that every ideal in
the algebra I'[¢] is a principal ideal (cf. sec. 5.3). We first prove the
following

Lemma I: (Euclid algorithm): Let f+0 and g+0 be two polynomials.
Then there exists polynomials ¢ and r such that

f=gq+r
and deg r<deg g or r=0.
Proof: Let deg f=n and deg g=m. If m>n we write

f=80+f

and the lemma is proved. Now consider the case n=m. Without loss of
generality we may assume that f and g are monic polynomials. Then we
have that

f=t""g+ f, degfi<n or f,=0. (12.6)

If f; # 0 assume (by induction on #) that the lemma holds for f;.
Then

fi=g841+n (12.7)
where deg r, <deg g or r; =0, Combining (12.6) and (12.7) we obtain
f=0""+q)g+r
and so the lemma follows by induction.

Proposition 1: Every ideal in I'[£] is principal.
Proof: Let I be the given ideal. We may assume that I30. Let h be a
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monic polynomial of minimum degree in 7. It will be shown that I = I,
(cf. sec. 5.3). Clearly, I, = I. Conversely, let fel be an arbitrary poly-
nomial. Then by the lemma,
f=hg+r
where
degr <degh or r=0. (12.8)

Since fe I and he I we have that
r=f —hqel

and hence if r+0 deg r=deg h. Now (12.8) implies that r=0; i.e. f=hg
and so fel,. n

12.6. Divisors and multiples in I' [¢]. If fand g are two non-zero poly-
nomials we say that g divides f (g is a divisor of f, fis a multiple of g) and
write g /; if there exists a polynomial 4 such that

\\\ f=gh.
Clearly the multiples of a polynomial g are precisely the non-zero
elements of the principal ideal I, and g divides f if and only if fel, or
equivalently I, = I.. A polynomial, f, whose only divisors are scalars
and scalar multiples of f is called irreducible or prime.

The algebra I'[f] contains no zero-divisors. In fact, let fand g be two
polynomials with leading coefficients «,+0 and 8,3 0. Since the leading
coefficient of fg is a,f,, it follows that fg+0.

Suppose now that g fand let 4 be a polynomial such that f=gh. Then h
is uniquely determined. In fact, if 4, is a second polynomial such that
f=gh,, then g(h—h,)=0 whence h=h,.

Two monic polynomials f and g which divide each other coincide. To
prove this assume that

f=gh, and g=fh,. (12.9)
Then it follows that
f=r hl hz
and since f+0,
hih,=1.

Comparing the degrees we find that deg 4, +deg h, =0 and so deg h; =0
and deg h, =0. It follows that b, =aeTl and h,=fel'. Now (12.9) can be
written as

f=og ael,

Since f and g are monic we obtain that « =1 whence f=g.
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Next let I be an ideal and h be a monic polynomial which generates I.
Then h is uniquely determined by I In fact, if 4, is a second monic
polynomial generating I we have that h,/k and h/h, whence h=h,.

12.7. Divisibility and the lattice of ideals. Consider the set & of all
monic polynomials in I'[¢] together with the zero polynomial. In & we
introduce a relation £ by

f<Sg ifandonlyifg|f (f +0,g+0)
0<g ge?. (12.10)

The above relation is reflexive, antisymmetric and transitive and hence it
defines a partial order in 2.

On the other hand, let # denote the lattice of ideals in I'[¢] and define
the map &¢: - by

o(f)=1,.

The discussion of sec. 12.5 and sec. 12.6 shows that @ is bijective, More-
over, if f< g it follows that g|f whence I, I, and conversely. Hence & is
an isomorphism between the partially ordered sets & and . Since £ is a
lattice it follows that £ is a lattice as well.

12.8. Greatest common divisor and least common multiple. Let f;
(i=1...r) be a system of monic polynomials. Since £ is a lattice there

r
exists a unique greatest lower bound A f; and a unique least upper bound
r i=1

\/ f in?, \/ f and /\ f;are called the greatest common dzvzsor and the least
= i=1

common multzple of the f; respectively. It is clear that \/ f;isindeed a
i=1

common divisor of the f; and that every common divisor of the f; divides

r r

V fi. Similarly A f; is a common multiple of the f; and every common
i=1 i=1

multiple of the f; is a multiple of /\ f
If

vV fi=1

i=1

the polynomials f; are called relatively prime.
Now consider the lattice isomorphism @:2—.#. It follows that

<1><\r/ f,) = 2 1, (12.11)
i=1 i=1
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and

q></r\ f,.) = Ol I,. (12.12)

Proposition I1: If fis the greatest common divisor of the polynomials f;
then there exist polynomials g; such that

f=2 fia (12.13)
Proof: 1t follows from (12.11) that
Iy=3 I,

Since f'€ I, it follows that fis of the form (12.13).

Corollary I: If the polynomials f; are relatively prime there exist poly-
nomials g; (i=1...r) such that

;V‘_ figi=1. (12.14)
i=1

Conversely if there exists a relation of the form (12.13) then the f; are
relatively prime.

Proof: The first part follows immediately from the proposition. Now
assume that there is a relation of the form (12.14). Then every common
divisor of the f; divides 1 and hence is a scalar.

Corollary II: Let d be the greatest common divisor of the monic
polynomials fand g, and write
f=df,, g=dg,.

Then f; and g, are relatively prime, and the least common multiple of f
and g is given by

Sfidg,.
Proof: Let ry and r, be polynomials such that
rf+ryg=d. (12.15)
Then
d(rifi+r:8)=d
whence

nfi+rag =1

and so f, and g, are relatively prime.
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To prove the rest of the corollary, we notice first that f;dg, is clearly a
common multiple of fand g. Suppose & is any common multiple of fand g,

h=fh,, h=gh,. (12.16)
From (12.15) we obtain that

rifhi+r,ghy=dh,
ie.,
rih+rygh =dh,.

Since h is a multiple of g, it follows that dh, is a multiple of g. Hence
h, is a multiple of g,,
hy=g, k.
Now (12.16) yields
h=fg k=/fidgk

and so & is a multiple of f; dg,. Hence f,dg, is the least common multiple
of fand g.

Corollary III: Suppose fi,...f, is a system of prime polynomials. Then
the least common multiple of the f; is the polynomial

Jrotre

Proof: For r =2, the corollary is an immediate consequence of corol-
lary II. For r>2 a simple induction argument is required.

12.9. The decomposition of a polynomial into prime factors.

Theorem 1: Every monic polynomial can be written

f=rrk (12.17)

where the f; are irreducible monic polynomials and degf;>1. The de-
composition is unique up to the ordering of the prime factors.

Proof: The existence of the decomposition (12.17) is proved by in-
duction on the degree of /. If deg f=0 then f/=1 and the decomposition is
trivial. Suppose that the decomposition (12.17) exists for polynomials of
degree <n and let f be of degree n. Then either f is irreducible in which
case we have nothing to prove; or fis a product

f=gh degg=1l,degh=1.
Since deg g <deg fand deg h<deg fit follows by induction that

g=gt..g¢
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and
h=hi ... hk*
whence
f=gt.. glnit.. hk.

Collecting the powers of the same prime polynomials we obtain the
decomposition (12.17).

The uniqueness-part follows (with the aid of a similar induction
argument) from the

Lemma II: Suppose f, g, h are monic polynomials and 4 is irreducible.
Then the product fg is divisible by A" (m21) if and only if there are
integers p, g such that m=p+q and h?| fand K|g.

Proof: The ““if” statement is trivial. Suppose then that A™|fg and let p
be the largest integer such that 4” divides f. If p=m there is nothing to
prove. Suppose p <m. Writing

f = hpfl
we obtain
fg=h"fg. (12.18)
On the other hand we have that
fg=h"k. (12.19)
The relations (12.18) and (12.19) yield
fig=h""Pk. (12.20)

By the definition of p, f; is not divisible by k. Since 4 is irreducible it
follows that h and f, are relatively prime, and so there are polynomials «

and v such that wh+of, =1. (12.21)
Substitution of (12.20) in (12.21) yields
g=uhg+vf g

=h(ug+vh" ?" k)

=hg,
i.e.

g=hg
whence, in view of (12.20)
figi=h""P" k.

Continuing this process we obtain that g is divisible by A™~2,
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Corollary I. The monic polynomials which divide the polynomial
f=ff

are precisely the polynomials
g=f'"..ff i<k (v=1,..,7).

Now let (12.17) be the decomposition of the monic polynomial f and
set

q; = lkl..._fiki-..frr.

It will be shown that the g; are relatively prime and that for every i, f'is
the least common multiple of ¢; and the greatest common divisor of the
polynomials g; (j#1i),

Vog=1 (12.22)
i=1
an(Va)=r. (12.23)
J¥i

Let g be a monic polynomial which divides ¢;. Then Theorem I implies
that g has the form

g=f1i1"'-fiki"'frjr jvskv'

Hence, if g divides all polynomials g;, it follows that g=1, whence (12.22).
A similar argument shows that V ¢;=p}* and now formula (12.23)
follows from the relation g+

@V a;=q:pi'=f
J*i
and the fact that g; and p}* are relatively prime.
12.10. Polynomial functions. Let (I'; I') be the space of all set maps
I'>T furnished with the linear structure defined in sec. 1.2, Example 3.

Then every polynomial f= ) a7 determines an element f of (I'; I') defined
by i=0

F@=Yal=f©®, =t

The functions f are called polynomial functions.
If /(A1) =0 for some AeTl, then A is called a root of f. Aisarootof fif and
only if  — A divides /. In fact, if

f=0-2s
it follows that f(1)=0. Conversely, if t — A does not divide £, then r—A and
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[fare relatively prime and hence there exist polynomials ¢ and s such that

fg+(@—2A)s=1.
This implies that

fHq() =1

whence f(1)=0. It follows from the above remark that a polynomial of
degree n has at most » roots.

Proposition T11: The mapping f—f is injective. ©
Proof: Suppose f=0. Then f(£)=0 for every éeT. Since I has charac-
teristic zero it contains infinitely many elements and hence it follows that

/=0

In view of the above proposition we may denote the polynomial
function f simply by f.

Problems

Let f'be a polynomial such that f’(0)#0. Consider two polynomials g,
and g, such that g, +g, and f(g,)=/(g,). Prove that g, and g, are
relatively prime.

2. Consider the set of all pairs (f,g) where g+0. Define an equivalence
relation in this set by

(f.8)~(f,§) ifandonlyif fj=7fg.

Show that this is indeed an equivalence relation. Denote the equivalence
classes by (f,g). Prove that the operations

(f1-81) +(f2.82) = (f1 82+ f281,81 22)

and
(f1,81)(f2,82) = (f1 f2,81,82)
are well defined.
Show that with these operations the set of equivalence classes becomes
a field, denoted by Q[¢].
Prove that the mapping

f-01
is a monomorphism of the algebra I'[¢] into the algebra Q,[¢].
3. Extend the derivation d to a derivation in Q@[] and show that this

extension is unique. Show that the integration operator | (cf. problem 2,
§ 1) cannot be extended to Q, [r].
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4. Show that any ideal in I'[f] is contained in only finitely many ideals.
5. Consider the mapping R[7] x R[¢]—R[¢] defined by

(Zdv tV’ZBv tv)qzavﬁv'

Show that this mapping makes R[] into an inner product space. Prove
that the induced topology makes R[] into a topological algebra (ad-
dition, scalar multiplication, multiplication and division are continuous).
6. Let R[] have the inner product of problem 5. Let I be any ideal.
Calculate 7 explicitly. Under what conditions do either of the equations

R[{]=1I"
Uy =1
hold? Show that
((I..L).L)_L = IJ. .

7. Let f and g be any two non-zero polynomials and assume that
degf=deg g. Write
f=pg+g

where g; =0 or deg g, <deg g. Prove that the greatest common divisor
of fand g coincides with the greatest common divisor of g and g, unless
g divides f. If g, &0 write

g=D281+8, 8 =0 or degg, <degg,.

Show that the repeated application of this process yields an explicit
calculation of the greatest common divisor of f and g. (This method is
called the Euclidean algorithm).

8. Calculate the greatest common divisors and the least common
multiples of the following polynomials over R[¢]:

A L+t 4+ 4+1, 5-1

b) £ +3°+1, t*—t+7, T*+16

o) 5t* — L + 12 —3t+7, 4*—177 +16, 10— +2r+1
d) 8:° + /61" — /2t =72 +2./6, 26° +° +5¢* — 67 =3t — 15
e) 3t* 4 501> — 91> + 84t 4+ 5, 1* + 156> —29¢* — 64t + 4.

9. If f, g are two polynomials and d is their greatest common divisor
use the Euclidean algorithm to construct polynomials #, s such that

fr+gs=d.
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10. Construct the polynomials r, s explicitly for the polynomials of
problem 8, (in parts b) and c) it will be necessary to construct three
polynomials).

§ 3. Products of relatively prime polynomials

12.11. Proposition I: Suppose f is a product of relatively prime irre-
ducible polynomials and suppose f|g" for some polynomial g. Then f|g.
Proof: Let f=f;...f, and g=g%' ... gks
be the decompositions (12.17) of fand g. Then

g=g..a"
is the decomposition (12.17) of g". Now theorem I implies that to each i
corresponds a j such that
fi=ag i
and it follows that fg.

Proposition II: A polynomial f is the product of relatively prime
irreducible polynomials if and only if fand f” are relatively prime.
Proof: Let

f=f

be the decomposition of finto prime factors. Since this decomposition is
essentially unique, it follows that f is a product of irreducible prime
factors if and only if k; =-.-=k, =1. Suppose first that k;> 1 for some i.
Then writing
f=rg
we obtain
fl=r'gl+2rgg
=(r'g+2rg)s

and so g; divides fand f’. Consequently, f and f* are not relatively prime.

On the other hand, suppose k; = --- =k, = 1. Then according to

Corollary to Theorem 1, sec. 12.9, if f and f” have a common factor,
they are both divisible by some f;. But

and thusif ' is divisible by g;, then so is g;...g; ...g,. Since g; is irreducible
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it follows from Lemma II, sec. 12.9 that either g; divides some g;(j+{) or
g:divides g; . But g; and g; are relatively prime for /4, and deg g; <degg;.
Thus the hypothesis that g; divides g’ leads to a contradiction, and this
completes the proof.

We shall now prove a lemma which will be important in the determi-
nation of the structure of factor algebras.

Lemma I: Let f'be a polynomial such that fand f * are relatively prime.
Then for each integer r = 1 there are polynomials #, and v, such that

@) fr divides f (u,)
and
@) u, + fov,=t.

Proof: For r=1 set u,=t and v,=0. Now consider the case r=2. Since
fand f’ are relatively prime there are polynomials g and h such that

L+gf'=hf.
The Taylor expansion gives

’ fn n n
fl+eN=f+fef +-+—8 1"
— L+ f )+ Ok (12.24)
=f2(h+k)
where n denotes the degree of f. Now set
u,=t+fg and v,=-—g.
Then we have that
U+ fu, =t (12.25)

and in view of (12.24)
fu)=f*-(h+k)

which achieves the result for r=2.
Suppose finally that the proposition holds for » —1 and define u, by

U, =u, (ur—-l)'
Replacing ¢ by u,_, in (12.25) we obtain

Uy (ur— 1) + f (ur—l)UZ (ur—l) =Up_. (12'26)
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Since r=2 we have by induction hypothesis

SIS (@,0)

whence f(u,_,)=/-q where g is some polynomial. Now (12.26) can be
written as

U+ fqoy(U,_y)=u,_;. (12.27)
Finally, we obtain from (ii) by induction hypothesis that
u,.__1=t—fv__1. (12.28)

The relations (12.27) and (12.28) imply that
u, + f(qua (- y) + v,-y) =1.
Setting v, =qv, (4, ,)+v,_, we obtain
u,+fv.=t

It remains to be shown that /" divides f(»,). But

f@)=f(u:(u,-y)

and so f(u,) is divisible by f(u,,)*. Since f(u,_,) is divisible by £~ it
follows that f| f (u,). The induction is now closed.

Corollary 1: If r= 2, then v, and f are relatively prime.

Proof': Suppose that g is a polynomial dividing f'and v,,

f=1Frg
and
v,=17,.g.

Then the lemma, together with an application of Taylor’s expansion,
gives
f@)=f(—5gf)

= f (t - 5rf g2)

=f-g1
where / is some polynomial.

Since r=2, f(u,) is divisible by f2, and hence it is divisible by g2. It

follows that f'is divisible by g2,

f=g*m.
Thus
S ' =2gm



356 Chapter XII. Polynomial algebra

andso g divides fand /. But fand /' were relatively prime, so that g must
be a scalar. Hence f and v, are relatively prime.

The Lemma and Corollary may be restated in the following form:

Lemma II: Let fbe a product of relatively prime irreducible polynomials.
Then for each integer r there are polynomials 4, and w, such that

(1) fr divides f (u,)
(it) f divides w,,w, = f v, but f and v, are relatively prime
and
Gi) u, + w,=1¢.
Lemma ITI: If f,u,,w,=fv, are as in Lemma II, and &, W,=f7, are
polynomials such that

() f (@) is divisible by f*
(i) @, + W, — t is divisible by f*

then #, —u, and W, —w, are both divisible by f”.
Proof: Taylor’s expansion yields the relation

f (ﬁr) = f (“r + (ﬁr - ur)) = f (“r) + (ar - “r)f, (“r) + (ﬁr - “r)2 k

whence

@)~ f () =@ — u)[f () + (@ — u)k].

This shows that (&, —u,) [ f'(u,) + (@, —u,)k] is divisible by /. Now assume
that #, —u, is not divisible by f*. Then

f'(u,)+ @, ~u)k (12.29)
must be divisible by f.
Since
g —u,+fi (B, —v)=0+Ww —t (12.30)

is divisible by f7, it follows that #, —u, is divisible by f. Now (12.29) implies
that f”(u,) is also divisible by f.
On the other hand there exists a relation

fa+fg=1
which yields

f@yqa@)+ f (@)e(@)=1.
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Since f(#,) is divisible by f'it follows that f” (iZ,) is not divisible by f, which
is a contradiction. Hence #, —u, is divisible by /™.
Finally, since &, —u, is divisible by f™ it follows from (12.30) thatso is
W, —W,.
Problems

Decide whether the following polynomials are products of relatively
prime irreducible polynomials:

a) ' —t5+13—1¢

b) t*+2t3+212 41

¢) the polynomials of problem 6, § 1.

d) the polynomials of problem 8, § 2.

2. Prove that for any non-zero polynomials f, g,, g,, g, —&, divides
f(g1)—f(22)-

3. Consider the polynomials

a) f=2—6t*4+11¢~1b

b) f=12+1+7

Q) f=1*-5
Prove that in each case fis the product of relatively prome irreducible
polynomials. For r=2, 3 construct polynomials u, and v, which satisfy the
conditions of Lemma II.

§ 4. Factor algebras

12.12. The factor algebra I'(f). Let f be a polynomial and I, be the
ideal generated by f. Then I'[¢]/1, = I'(7) is an associative commutative
algebra. The image of an element he I'[7] under the canonical projection

n:I'[t] - I (P)

will be denoted by A. In particular, T is the identity of I'(f).
If deg f=n then
dimI'(f)=n

and a basis of I'(7) is given by 1,...,#"~!. The polynomial f is called the
minimum polynomial for f.

Every ideal in I'(7) is principal. In fact, if I < I'(f) is an ideal, denote by 7
the set of elements in I'[#] whose images under = are in /,

I=n""(I).
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Clearly I is an ideal in I'[£], and hence
I=1,
for some monic polynomial g. Now it follows easily that
I=1I.

Since (obviously) [, oI, we have g|f. Let g, be a second monic
polynomial such that I=I; . Then g, =hg; i.e.

gi=hg+hf.

It follows that g|g,. In particular, if g,| f as well, then as similar argument
shows that g,|g and hence g, =g.

12.13. Nilpotent elements. Suppose g is a nilpotent element of I'(7).
Then if ge g is any representative there exists an integer m such that

g" = (e =0

and hence g™ is a multiple of /. Let
f=

be the decomposition of f, and set
qg=f1...f..

Then it follows from Proposition I, sec. 12.11 that g divides g.

Conversely, suppose that ¢ divides g. Then setting k =max k; we have
that f divides g* and hence g¥=0. Thus g is nilpotent if and only if g is
divisible by ¢. In particular, if f=g, then I'(f) contains no nilpotent ele-
ments, and conversely.

12.14. Factor algebras of an irreducible polynomial.

Theorem I The factor algebra I'(7)is a field if and only if  is irreducible.

Proof: Supposef = gh, where deg g = 1 and deg & = 1. Theng¢ I, h¢l,
and so g+0, h=0. On the other hand, g-h=gh=7=0 and so I'() has
zero divisors. Consequently, it is not a field.

Conversely, suppose f is irreducible. I'(f) is an associative commuta-
tive algebra with identity 1. To prove that I'(f) is a field we need only
show that every non-zero element g has a multiplicative inverse. Let geg
be any representing polynomial. Then since g0, it follows that g is not
divisible by f. Since f is irreducible, f and g are relatively prime and so
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there exist polynomials # and k such that

gh+fk=1
whence
gh+ fk=1
But /=0 and so
gh=1

Hence % is an inverse of g.

Corollary I: If fis irreducible, then I'(f)is an extension field of I'.
Proof: Consider the homomorphism ¢:I'—I'(7) defined by

Q=0

It is clear that ¢ is a monomorphism and so the result follows.

Problems

1. Consider the irreducible polynomial f=z?+5t+1 as an element of
Q[¢] (where Q is the field of rational numbers). Let

n: Q] - Q[e)I,

be the canonical projection.
a) Decide whether the polynomials of problem 6, § 1, problem 7, § 2
(except for part d) and problems 1 and 3, § 3 are in the kernel of 7.
b) To each polynomial p of part a) such that zp 40 construct a poly-
nomial ge QO[] such that
nqg=(mnp)~".

2. Let fel'[f] be any polynomial. Consider an arbitrary element
xeI'[f]/I;. Prove that the minimum polynomial of x has degree < deg f.

3. Suppose feI'[f] is an irreducible polynomial, and consider the
polynomial algebra I'[#]/I;[¢] denoted by I';[£].

a) Show that I'[¢] may be identified in a natural way with a subalgebra
of I';[t].

b) Prove, that if two polynomials in I'[¢] are relatively prime, then
they are relatively prime when considered as polynomials in I',[£].

¢) Construct an example to prove that an irreducible polynomial in
I'[] is not necessarily irreducible in I' /[7].

d) Suppose that f has degree 2, and that g is an irreducible polynomial
of degree 3 in I'[¢]. Prove that g is irreducible in I';[1].
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§ 5.* The structure of factor algebras

In this paragraph f will denote a fixed but arbitrarily chosen monic poly-
nomial, and I'( f) will denote the factor algebra I'[t]/I,.

12.15. The lattice of ideals in I' (f). Consider the set of all monic poly-
nomials which divide f. These polynomials form a sublattice #, of Z. In
fact, if f;...f, is any finite set in 2, then the greatest common divisor and
the least common multiple of the f; is again contained in #,. fis a lower
bound and 1 is an upper bound of Z,.

On the other hand, consider the lattice /, of ideals in the algebra
I'(f)=T[f]/I,. The remarks of sec. 12.12 establish a bijection

‘P:g”f—b I,
defined by
bg=1I

where I; denotes the ideal in I'(7) generated by 2. The reader can easily
check @ and @~ ! are order preserving and so @ is a lattice isomorphism;
ie.

o(Vf) =21,
and

d5(/\ fl) = m Ift
In particular,

o(1)=r(7)

and

@(f)=0.

12.16. Decomposition of I'(f) into irreducible ideals. Let /=1 ...f,
and let I; denote theideal in I'(7) generated by f;. Consider the ideal

I=Y1I,. (12.31)
7
Proposition]: I=I(f) if and only if the polynomials f; are relatively

prime. The sum (12.31) is direct if and only if for each j the polynomials
fjand V f; have f as least common multiple.
i+j

Proof: To prove the first part of the proposition we notice that

r@) =y
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is equivalent to
o(1) = &(V f)
which in turn is equivalent to
1 = v fi .

But according to sec. 12.8, this holds if and only if the f; are relatively
prime.
For the second part we observe that the sum is direct if and only if

I;n ZI,-=0 (i=1..m).
i%j
Since

I;n Z_Ii =®(f; A (l/f:))

i£j
this is equivalent to

fin(VH=f (i=1..m).

i%j
Theorem I: Let
f=r

be the decomposition of finto prime polynomials and let the polynomials
g; be defined by

gi=f. fle e
Then
r@=73y1I (12.32)
i=1

where I; denotes the ideal generated by g;. Moreover let

1 é+-+ée., e‘ie[i (12.33)

and

Ii
bl

P=f +-+1i, §el (12.34)

be the decompositions determined by (12.32). Then ¢; is an identity in Z
and for every geI'(f)

g= _; q(7). (12.35)

Finally, if I is any ideal in I'(7), then

r

1=Y1In1,. (12.36)
i-1
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Proof: The relation (12.32) is an immediate consequence of Proposition
I, sec. 12.16 and the discussion at the end of sec. 12.9. To show that ¢;is an
identity in I'(7) let geI, be arbitrary. Then

j=1q= TR
J
Since for j+i
¢;ge Iinl;=0
it follows that
€qd=4q.
Now let § be an arbitrary element of I'(f) and ge4 any representative.
Writing
q= Z“k t*
k
we obtain
G=a0(é ++ &)+ T oy +-+0)
k=1
But
and so

(il +oee i')" = f;‘ +. 4 ir"_
It follows that

‘i=k20°‘k(ff+"'+frk)='zl‘1(fi) (#=e).
Finally, let 7 be any ideal in I'(f). Then clearly
INL =61

and so (12.36) is an immediate consequence of (12.33).

Theorem II. With the notation of Theorem I let
Q.. IT'[t]-1;
be the homomorphism defined by
o:()=¢;0,(0)=1;.

Then ¢; is an epimorphism and ker ¢; = I, .
Thus ¢; induces an isomorphism

r [/, 2. (12.37)

In particular, the minimum polynomial of 7 is 1k
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Proof: (12.35) shows that ¢, is an epimorphism. Next we prove that
If,:,. = ker ¢;. We have that

T @)= 1@ =0.
Since f(f)el; and the sum (12.32) is direct it follows that
f(@)=0 (i=1-7
i.e., 9;(f)=0. Now consider the induced mapping

@ :I'[/I;— L.
Then
:(H)=4q(7) qer[t]

and in view of (12.35) we have that

kel‘ ¢i = Z Ii .
i7i
But ) I, is the ideal generated by £* and thus
j*i
kel' (pi = If:q .

This completes the proof.

Corollary I: An element geI'(7) is contained in J, if and only if
q(#)=4 and g(i{)=0 j=*i.

Theorem III: The ideals I; are irreducible and (12.32) is the unique
decomposition of I'(7) into a direct sum of irreducible ideals.

Proof: Let f{**=g,. In view of the isomorphism (12.37) it is sufficient to
prove that the algebra I'[£]/I,, is irreducible. According to Proposition I,
sec. 12.16, I'[1]/ I, is the direct sum of two ideals I, and I, only if

Il =151 and 12 =qu

where ¢, and ¢, are relatively prime divisors of g;. But this can only
happen if either g, =1 or g,=1. If g, =1, say, then I, is the full algebra
and so 1,=0. It follows that I'(¢)/1,, is irreducible.

Now suppose that I is an irreducible ideal in I'(f). Then Theorem I,
sec. 12.16 gives

I=Y Inl,.
=1
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Since 1 is irreducible, it follows that 7 < I; for some i. Thus if
rf@=1eJ
for some ideal J, then intersection with ; gives
L=I®(nIL).

Since I, is irreducible, it follows that Jn 7;=0, whence I;=7. This com-
pletes the proof.

Corollary 1: The irreducible factor algebras I'(f) are precisely those fer
which f is a power of an irreducible polynomial.

Corollary II: Suppose the ideal I is a direct summand in (). Then 7
is a direct sum of the 7.

Proof: Let J be an ideal such that /@ J = I'(f). It is obvious that in a
finite dimensional algebra any ideal is a direct sum of irreducible ideals.
Since I and J are ideals, I-J=0, and soanyidealin I(J) is an ideal in I'(7).
Now the result follows from Theorem III, sec. 12.16.

12.17. Semisimple factor algebras.

Theorem IV. The following conditions are equivalent:

(1) I (7) is totally reducible

(2) I () is semisimple

(3) I'(7) contains no nilpotent elements

(4) all the exponents in the decomposition of finto prime factors are 1

(5) The irreducible ideals in I' (7) are fields

(6) every ideal in I'(f) is a sum of the irreducible ideals .#,.

Proof: (1)=>(2): Suppose I is any ideal in I'(f). Since I'(f) is totally
reducible, there is a complementary ideal I’ such that

r=Ier.

Hence, by Corollary II to Theorem III sec. 12.16, I is a direct sum of the
irreducible ideals in I'(f) and in particular, I contains an identity. It
follows that 72 +0.
(2)=-(3): Suppose that rad I'(f)=0. Then let m be the least-integer such
that

(radr (F))"=0

and set 7 = (rad I'(f))""*'. I is a non-trivial ideal in I'(f) and I* =0,
which contradicts the semisimplicity of I' (7).
(3)=-(4): This is proved in sec. 12.13.
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(4)=>(5): This is an immediate consequence of Theorem II sec. 12.16 and
Theorem I, sec. 12.14.
(5)=(6): Let

rO=1,& @I,

be the decomposition of I'(f). Then if /is an ideal in I'()
I=YILnl
(cf. Theorem I, sec. 12.16). But I;n I is an ideal in the field 7; and hence
ILnI=1 or InI=0.

(6)=-(1). This follows at once from (12.32).
12.18. Decomposition of I"(f) into the radical and a direct sum of fields.
Let

f=ff (12.38)
be the decomposition of finto prime factors, and set
g=/f...f, and k=max(k,,..., k). (12.39)

Choose polynomials #, w such that g(u) is divisible by g* (and hence by 1),
w is divisible by fand u+w=1 (cf. Lemma I, sec. 12.11). Projection onto
the factor algebra I'(7) gives that

g(@)=0 (12.40)
and
a+w=7f W nilpotent . (12.41)

It is easily verified that 7 and w are uniquely determined by conditions
(12.40) and (12.41) and that w is nilpotent of degree & (cf. Lemma III, sec.
12.11). The elements @ and w determined by f are called the semisimple
and nilpotent part of .

Proposition I1: g is the minimum polynomial for .
Proof: Let h be the minimum polynomial of # Then (12.40) implies
that g is a multiple of 4. On the other hand, Taylor’s expansion gives

h=h(@)=h(@+w)y=h(@)+ wi=wr

where r is some polynomial. Hence £ is nilpotent and it follows from sec.
12.13 that g divides A. Consequently, g = 4.
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Corollary: The subalgebra 4 of I'(f) generated by # and 1 is a direct
sum of irreducible ideals 7; each of which is a field. Moreover

I=T[t]/L,.

Proof: This is an immediate consequence of Theorem IV, sec. 12.17
and Theorem II, sec. 12.16.
Theorem V: The algebra I'(f) has a decomposition

r(f)=A®radI (%) (12.42)
where A is a semisimple subalgebra. Moreover, if
A=1,®-®1, (12.43)
is the decomposition of A4 into irreducible ideals, then
I = T[]/, (12.44)

Proof: Let A be the subalgebra of I'(f) generated by # and 1. Then 4
satisfies (12.41) by Cor. to Proposition II, sec. 12.18. In view of (12.41)

we have that r(H)=A+I, (12.45)

On the other hand, Theorem 1V, sec. 12.17 shows that A is semisimple,
and hence contains no nilpotent elements. Since every element in I; is
nilpotent, it follows that the sum (12.45) is direct. It is clear from (12.45)
and the nilpotency of I; that I; = rad I (7).

Theorem VI. The decomposition (12.42) is unique.

Proof: Suppose

IF(f)=A,@radrl (i) (12.46)
where A4, has a decomposition of the form (12.45). Write
F=1d, + ¥, #,€A,, b eradI' (7). (12.47)
Clearly Te 4,.

If B denotes the subalgebra of 4 generated by #; and T it follows from

(12.47) that [ (i) = B®radI (i)

and hence B=A4,. Thus 4, is generated by #, and 1.
Now let 4 be the minimum polynomial of @,. It will be shown that
h=g where g is defined by (12.39). In fact, the relation

h=h(@)=h(i, +w)=w,1
implies that % is nilpotent, and hence g divides 4 (cf. sec. 12.13).
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On the other hand,
g=g(@)+w,l
and hence g(i, ) is nilpotent. It follows that 4 divides g™ for some m.
Finally, since @, and T generate 4,, and A4, is the direct sum of fields,

we have from sec. 12.17 that 4 is a product of relatively prime irreducible
polynomials. Hence, A=g and so

g(#,) =0. (12.48)

Thus #, and 7, satisfy the conditions (12.40) and (12.41) whence #, =
and consequently 4, =A4.
The results of this paragraph yield at once
Theorem VII: Let
r@)=rne-el (12.32)

be the decomposition of the algebra I'(f) into irreducible ideals. Then
every ideal .4, can be written as

I=rad I, ® 4; (12.49)

where A; is a field isomorphic to I'[t]/I;,. The decompositions (12.32)
and (12.42) are related by
radI'(7) = 3, radJ
i=1
and

A= z Ai'
i=1
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Theory of a linear transformation

In this chapter E will denote a finite-dimensional vector space defined over an
arbitrary field I' of characteristic 0, and ¢: E— E will denote a linear trans-
formation in E.

§ 1. Polynomials in a linear transformation

13.1. Consider the homomorphism @:I'[t{]-> A(E; E) defined by
t->@, 1-1

(cf. sec. 12.2). Then the image algebra, Im &, is the subalgebra of L(E; E)
generated by ¢ and 7 and is denoted by I'(¢). Recall that I'(p) is a
commutative, associative algebra with the identity transformation as unit
element. Since A(E; E) has finite dimension, it follows that I (¢) has finite
dimension as well. On the other hand, I'[¢] has infinite dimension. Hence
@ has a non-trivial kernel, which is an ideal in I'[ £].

Let u be the unique monic polynomial which generates ker @ (cf. sec.
12.5). p is called the minimum polynomial for ¢. In this chapter, the
symbol p will be used exclusively to denote the minimum polynomial of
¢. The homomorphism r[-r)

riL=>T(e)
suchthat 7~ ¢ and 1 1. Since dim I'[£]/I,=deg p (cf. sec. 12.12) it follows
that

induces an isomorphism

dim I' (¢) = degu.
13.2. Stable subspaces. Recall that a subspace E, < F is called stable

under ¢ if oxeE; whenever xeE,.

It is clear that a stable subspace is stable under all the linear transfor-
mations f(@)el (). As an example of a stable subspace, consider

K(f)=kerf (o)
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where f is an arbitrary polynomial. For each vector xe K(f) we have

. f@ox=0f(o)x=0
ie.,

oxeK(f) if xeK(f).

Thus K(f) is a stable subspace.

Now let F be any stable subspace of F, and let y; denote the minimum
polynomial-of ¢, where ¢ denotes the linear transformation in F in-
duced by ¢; i.e., ¢ is the restriction of ¢ to F. Then u(¢;)=0and so

prlp.

13.3. The spaces K(f). Suppose that fand g are two polynomials such
that g/f. Then it follows that

K(g) = K(f). (13.1)
In fact, writing f= gg, we obtain that for every vector xe K(g)

f(@)x=g1(p)g(9)x=0
whence xe K(f). This proves (13.1).

Proposition I: Let f and g be any two non-zero polynomials, and let d
be their greatest common divisor. Then

K(d)=K(f)n K(g)-
Proof: Since d/f and d/g it follows that

K(d)<K(f) and K(d)=K(g)
whence
K@)y K(f)n K(g). (13.2)

On the other hand, since d is the greatest common divisor of f and g,
there exist polynomials f; and g; such that

d=fif + 22
Thus if xe K(f)n (K(g) we have
d(@)x = f1(0)/ (9)x + g1(#)g(0)x =0
and hence xe K(d). It follows that

K@) > K(f)n K(g) (13.3)
which, together with (13.2) establishes the proposition.
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Corollary I: Let f be any polynomial and let d be the greatest common
divisor of fand u. Then

K(f) = K(d).
Proof: Since K(u)=E, it follows from the proposition that
K(d)=K(f)n E=K(f).

Proposition II: Let fand g be any two non-zero polynomials, and let v
be their least common multiple. Then

K@)=K(f)+ K(g). (13.4)

Proof: Since f|v and glv it follows that K(f)<=K(v) and K(g)<=K(v);
whence

K@) > K(f)+K(g). (13.5)

On the other hand, since v is the least common multiple of / and g,
there are polynomials f; and g, such that

fif=v=g¢

and f; and g, are relatively prime. Choose polynomials f, and g, so that
fofi+828,=1; then
f2(0) f1(9) + g2(0) 81 () = 1.

Consequently each xe E can be written as

X = Xl + Xz
where

x;=f2(@)f1(@)x and x, =g,(9)g,(p)x. (13.6)
Now suppose that xe K(v). Then
f1(@)f (@)x =g:(9)g(9)x =v(p)x =0
and so (13.6) implies that
f(9)x;=0=¢g(p)x,.
Hence x,e K(f), and x,eK(g), so that

xeK(f)+K(g)
that is,

K@) = K(f)+K(g)- 13.7
(13.4) follows from (13.5) and (13.7).
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Corollary I: If fand g are relatively prime, then

K(fg)=K(f)®K(g)- (13.8)

Proof: Since fand g are relatively prime, their least common multiple is
fg and it follows from Proposition II that

K(fg)=K(f)+ K(g). (13.9)

On the other hand the greatest common divisor of f and g is 1, and so
Proposition I yields that
K(f)n K(g)=K(1)=0. (13.10)

Now (13.9) and (13.10) imply (13.8).
Corollary II: Suppose
f=ff
is a decomposition of the polynomial finto relatively prime factors. Then
K(f)=K(f1)®®K(f).
Proof: This is an immediate consequence of Corollary I with the aid of

an induction argument on r.

Let f and g be any two non-zero polynomials such that g is a proper
divisor of f. Then K(g) = K(f)but the inclusion need not be proper. In fact,
let g=u and f=hyu where k is any polynomial such that deg #>1. Then
g|f (properly) but K(g)=E=K(f). Now consider

Proposition I1I: Let fand g be non-zero polynomials such that

@@ g flu
and
(i) glf (properly)
Then

K(g)=K(f)  (properly).
Proof (i) and (ii) imply that there are polynomials f; and g, such that

p=ff, and f=gg,  degg, >0. (13.11)

Setting g,=gf, we have that deg ¢; <deg u and so u is not a divisor of
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2,. It follows that g, cannot annihilate all the vectors of E; i.e., there is a
vector x€ E such that
2, (@)x +0. (13.12)

Let y=f;(¢)x. Then we obtain from (13.11) and (13.12) that

f(@)y=/f(o)f1(p)x=pn(p)x=0

while
g(@)y=2(9)fi(p)x=g,(p)x + 0.

Thus ye K(f), but y¢ K(g) and so K(g) is a proper subspace of K(f).

Corollary I: Let f be a non-zero polynomial. Then
K(f)=0 (13.13)

if and only if f and p are relatively prime.
Proof: If fand p are relatively prime, then Corollary I to Proposition II
gives that

K(f)=K(f)n E=K(f)n K(u) =0.

Conversely suppose (13.13) holds, and let d be the greatest common
divisor of fand u. Then

1/d and d/u
but

K(d)=K(f)n K@ =0=K(1).

It follows from Proposition III that 1 cannot be a proper divisor of d;
hence d=1 and f and y are relatively prime.

Corollary II: Let f be any non-zero monic polynomial that divides gy,
and let ¢ ; denote the restriction of ¢ to K(f). Let u, denote the minimum
polynomial of ¢,. Then

u=1. (13.14)

Proof: We have from the definitions that f(¢,)=0, and hence u/f. It
follows that K(i;) = K(f) and since K(u;) > K(f) we obtain

K (us) = K(f)-

On the other hand, f|u and u,|f. Now Proposition 1II implies that p,
cannot be a proper divisor of f; which yields (13.14).
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Proposition IV: Let
H= fl se fr

be a decomposition of y into relatively prime factors. Then

E=K(f)® - ®K(f).

Moreover, if ¢; denotes the restriction of ¢ to K(f;) and ; is the minimum
olynomial of ¢;, then
POy ¢ B = f;-
Proof: The proposition is an immediate consequence of Corollary II to
Proposition II and Corollary I to Proposition II1.

13.4. Eigenvalues. Recall that an eigenvalue of ¢ is a scalar AeI" such
that

¢ox=A1x (13.15)

for some non-zero vector xe E, and that x is called an eigenvector corre-
sponding to the eigenvalue 4. (13.15) is clearly equivalent to

K(f)*0 (13.16)

where fis the polynomial f=¢—A4.

In view of Corollary I to Proposition III, (13.16) is equivalent to
requiring that fand y have a non-scalar common divisor. Since deg f=1,
this is the same as requiring that f I,u. Thus the eigenvalues of ¢ are
precisely the distinct roots of u.

Now consider the characteristic polynomial of ¢,

x=2 0,1

where the a, are the characteristic coefficients of ¢ defined in sec. 4.19.
The corresponding polynomial function is then given by

1(3) = det(p — 41)
and it follows from the definition that
dimE = degy.

Recall that the distinct roots of y are precisely the eigenvalues of o,
(cf. sec 4.20). Hence the distinct roots of the characteristic polynomial
coincide with the distinct roots of the minimum polynomial. In sec. 13.14
it will be shown that the minimum polynomial is even a divisor of the
characteristic polynomial.



374 Chapter XIII. Theory of a linear transformation

Problems

1. Calculate the minimum polynomials for the following linear trans-
formations:

a) p=4

b) ¢ is a projection operator

¢) ¢ is an involution

d) ¢ is a differential operator

e) ¢ is a (proper or improper) rotation of a Euclidean plane or in

Euclidean 3-space

2. Given an example of linear transformations ¢,:E—E such that
Yo and ¢ oy do not have the same minimum polynomial.

3. Suppose E=E,®E, and ¢=¢,®¢, where ¢;:E;~E, (i=1,2) are
linear transformations. Let u, u;, yu, be the minimum polynomials of ¢,
¢, and @,. Prove that y is the least common multiple of p; and pu,.

4. More generally, suppose E,, E, « F are stable under ¢ and E=
E,+E, Let ¢,:E,~E,, ¢,:FE,—E, and ¢,,: E,n E,—»E n E, be the
restrictions of ¢ and suppose that they have minimum polynomials gy, u,,
l12. Show that

a) uis the least common multiple of u, and p,.

b) #12|V where v is the greatest common divisor of u; and p,.

¢) Give an example showing that in general pu,, +v.

5. Suppose E, ¢ E is a subspace stable under ¢. Let u, iy and ji be the
minimum polynomials of ¢:FE—~E, ¢,:E,—»F, and §:E/E,—»E/E, and
let v be the least common multiple of y, and ji. Prove that v|ul|fiy,.
Construct an example where v=pu+ju, and an example where v+u=
fiuy. Finally construct an example where v p = jiy,.

6. Show that the minimal polynomial u of a linear transformation ¢
can be constructed in the following way: Select an arbitrary vector x, € E
and determine the smallest integer k,, such that the vectors ¢’x; (v=
0...k,) are linearly dependent,

k1

Y A,9"x,=0.
v=0
Define a polynomial f, by

ki
fl = Zolvtv.

If the vectors ¢”x; (v=0...k;) do not generate the space E select a vector
x, which is not a linear combination of these vectors and apply the same
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construction to x,. Let f, be the corresponding polynomial. Continue
this procedure until the whole space F is exhausted. Then g is the least
common multiple of the polynomials £,.

7. Construct the minimum and characteristic polynomials for the
following linear transformations of R*. Verify in each case that p divides
X

a) (0(61,62, 63, 54) — (61 _ 52 + 63,61,62 + 64’0)

b) ¢ (&, £%,83,8%) = (& + 382 + 285,282, & — 382 — 484,284

0 ¢(£,8%,83,8 =+, + 5,8+ 8,89

d) (1,835,868, =" -+ & - -2+ 8 -8,

gt =g,

8. Let ¢ be a rotation of an inner product space. Prove that the

coeflicients «, of the minimum polynomial satisfy the relations

o, = £, k=deguv=0...k

where ¢= 11 depending on whether the rotation is proper or improper.

9. Show that the minimum polynomial of a selfadjoint transformation
of a unitary space has real coefficients.

10. Assume that a conjugation z—7Z is defined in the complex vector
space E (cf. sec. 11.6). Let ¢: E—E be a linear transformation such that
@z=@z. Prove that the minimum polynomial of ¢ has real coefficients.

11. Show that the set of stable subspaces of E under a linear transfor-
mation ¢ is a lattice with respect to inclusion. Establish a lattice homo-
morphism of this lattice onto the lattice of ideals in I'(¢).

12. Given a regular linear transformation ¢ show that ¢ ~! is a poly-
nomial in ¢.

13. Suppose g e L(E, E) is regular, and ye L(E, E) is arbitrary. Assume
that gy =AY (some Ael). Prove that 2*=1 for some k. If k is the least
integer such that A*=1, prove that the minimum polynomial, g, of ¢ can
be written

p= Z“ytkv
v

§ 2. Generalized eigenspaces
13.5. Generalized eigenspaces. Let

p=ft ... f¥  f irreducible (13.17)
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be the decomposition of p into products of powers of relatively prime
irreducible monic polynomials. (cf. sec. 12.9) Then the spaces

E=K(ff i=1,..,r

are called the generalized eigenspaces of @. 1t follows from sec. 13.2 that
the E; are stable under ¢. Moreover, Proposition IV, sec. 13.3 implies
that
E=E, ®--®E, (13.18)
and
— ki
Hi= T

where u; denotes the minimum polynomial of the restriction ¢, of ¢ to E;.
In particular, dim E;>0.

Now suppose 1 is an eigenvalue for ¢. Then t—ll,u, and so for some i
(1<i<r)

fi=t—4.

Hence the eigenspaces of ¢ are precisely the spaces

K(f)

where the f; are the linear polynomials in the decomposition (13.17).

13.6. The projection operators. Let the projection operators in F
associated with the decomposition (13.18) be denoted by x;. It will be
shown that the mappings =; are polynomials in ¢,

n;el (@) i=1,..r.

If r=1, m; =1 and the assertion is trivial. Suppose now that r>1 and
define polynomials g; by

g=fl flll e,

Then according to sec. 12.9 the g; are relatively prime, and hence there
exist polynomials 4; such that

Ygh=1. (13.19)

On the other hand, it follows from Corollary II, Proposition II, sec.
13.3 that
K(g)= Z E;

j¥i
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and so, in particular,

hi(p)gi(p)x =0 xe; E;. (13.20)

Now let x€ E be an arbitrary vector, and let

X=X; +-+ X, x;eE;

13 13

be the decomposition of x determined by (13.18). Then (13.19) and
(13.20) yield the relation

;m=X=;MWMK@x=EMWMK@M
= Ei:hi(q’) g (q’) X

whence
x;i=h(@)g(e)x; i=1,..r. (13.21)

Finally, it follows at once from (13.20) and (13.21) that

7, = hi(0) g;(0) i=1..,r

which completes the proof.
13.7. Arbitrary stable subspaces. Let Fc E be any stable subspace.
Then

F=YFnE (13.22)

where the E; are the generalized eigenspaces of ¢. In fact, since the
projection operators x; are polynomials in ¢, it follows that F is stable
under each x;.
Now we have for each xeF that
X=1x=)Y mx

and
mxeF n E;.

It follows that xe ) Fn E;, whence
F [and ZF n El"
Since inclusion in the other direction is obvious, (13.22) is established.
13.8. The Fitting decomposition. Suppose F, is the generalized eigen-

space of ¢ corresponding to the irreducible polynomial ¢ (if ¢ does not
divide pu, then of course F, =0). Let F, be the direct sum of the remaining
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generalized eigenspaces. Then the decomposition
E=F,®F,

is called the Fitting decomposition of E with respect to ¢. F, and F, are
called respectively the Fitting-null component and the Fitting-one com-
ponent of E.

Clearly F, and F, are stable subspaces. Moreover it follows from the
definitions that if ¢y and ¢, denote the restrictions of ¢ to Fyand F,, then
Qg is nilpotent; i.e., o\ =0 some I > 0
while ¢, is a linear isomorphism. Finally, we remark that the corre-
sponding projection operators are polynomials in ¢, since they are
sums of the projection operators x; defined in sec. 13.6.

13.9. Dual mappings. Let E* be a space dual to E and let

(P*:E* « E*

be the linear transformation dual to ¢. Then if f is any polynomial, it
follows from sec. 2.25 that

fe*)=1f(e)]*.

This implies that f(¢*)=0 if and only if f(¢)=0. In particular, the
minimum polynomials of ¢ and ¢* coincide.

Now suppose that F is any stable subspace of E. Then F' is stable
under @*. In fact, if ye Fand y*e F* are arbitrarily chosen, we have that

{o*y*, 3> ={y*0y>=0

whence @*y*e F*. This proves that F* is stable. In particular, ¢* induces a
linear transformation
oF:E*|Ft « E*|F*.
On the other hand, let
@p:F—>F

be the restriction of @ to F. It will now be shown that ¢, and ¢} are dual
with respect to the induced scalar product between F and E*/F* (cf. sec.
2.24). Infactif ye F is any vector and y* is a representative of an arbitrary
vector y*e E¥/F*, then

er 75> =<Le* ¥y > =% 0
=% ory) =G50y

which proves the duality of ¢ and ¢f.
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Suppose next that E=F,®F,

is a decomposition of E into two stable subspaces. Then it follows that
E*=F®F}'

is a decomposition of E* into stable subspaces (under ¢*). Moreover, the
pairs F;, F3 and F,, F7 are dual,

Ff=F; and Ff=F}

(cf. sec. 2.30), and it is easily checked that ¢ and ¢* induce dual mappings
in each pair.

Conversely, assume that F; cE and F{cE* are two dual subspaces
stable under ¢ and @* respectively. Then we have the direct decom-
positions

E=F & (F ; )l
and
E*=Ff®F}

(cf. sec. 2.30). Moreover, clearly the subspaces (F{)* and F; are again
stable.
More generally, a direct decomposition

E=F,®-®F,

of E into several stable subspace determines a direct decomposition of E*
into stable subspaces,
E*=F®-®F F'=(yF)*
Jj¥i
as follows by an argument similar to that used in the case s=2. Each pair
F, Ff,is dualand the restrictions @;, @;* of ¢ and ¢* to F; and F* are dual
mappings. )

Proposition I: Let '
p=f g

be the decomposition of the common minimum polynomial g of ¢ and
@*. Consider the direct decompositions

E=E, @ --@E, (13.18)
and
E'*=El® -@E (13.23)



380 Chapter XII1. Theory of a linear transformation

of F and E* into the generalized eigenspaces of ¢ and ¢*. Then
Ei*_—.(;Ej)* i=1,..,r. (13.24)
iFi
Proof: Consider the subspaces F;* = E* defined by
Fr=(Y E)* i=1,..r.
J*i
Then as shown above, the F;* are stable under ¢* and
E*=F'® - ®FF. (13.25)

It will now be shown that
F¥ c EF. (13.26)

Let y*e F;* be arbitrarily chosen. Then for each xe E; we have
SE@™)y* x> = <™ (e) x> = (y*,0) = 0.

In view of the duality between E; and F;*, this implies that fi"i(cp*)y*=0;
Le.,
y*eE;.

This establishes (13.26). Now a comparison of the decompositions (13.23)
and (13.25) yields (13.24).

Problems

1. Show that the minimum polynomial of ¢ is completely reducible
(i.e. all prime factors are of degree 1) if and only if every stable subspace
contains an eigenvector.

2. Suppose that the minimum polynomial p of ¢ is completely re-
ducible. Construct a basis of E with respect to which the matrix of ¢ is
lower triangular; i.e., the matrix has the form

* }'n

Hint: Use problem 1.

3. Let E be an n-dimensional real vector space and @p:E—FE be a
regular linear transformation. Show that ¢ can be written ¢=¢,0,
where every eigenvalue of @, is positive and every eigenvalue of ¢, is
negative.
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4, Use problem 3 to derive a simple proof of the basis deformation
theorem of sec. 4.32.
5. Let ¢p:E—E be a linear transformation and consider the subspaces
F, and F, defined by
Fo= Y kerg’ and F,= () Img’

jz1 jz1

a) Show that Fy=Jker ¢;

jz1

b) Show that E=F,®F,

¢) Prove that F, and F, are stable under ¢ and that the restrictions
@o:Fy—F, and ¢, : F;—F, are respectively nilpotent and regular.

d) Prove that c) characterizes the decomposition E=F,@®F,; and con-
clude that F, and F, are respectively the Fitting null and the Fitting
1-component of E.

6. Consider the linear transformations of problem 7, § 1. For each
transformation

a) Construct the decomposition of R* into the generalized eigenspaces.

b) Determine the eigenspaces.

¢) Calculate explicitly polynomials g; such that the g;(¢) are the pro-
jection operators in E corresponding to the generalized eigenspaces.
Verify by explicit consideration of the vectors g;(¢)x that the g;(¢) are in
fact the projection operators.

d) Determine the Fitting decomposition of E.

7. Let E=Y E; be the decomposition of E into generalized eigenspaces

of ¢, and let x; be the corresponding projection operators. Show that
there exist unique polynomials g; such that
gi(p)=m; and degg <degpu.
Conclude that the polynomials g; depend only on u.
8. Let E* be dual to E and ¢*: E*— E* be dual to ¢. If E*=Y E*is the
decomposition of E* into generalized eigenspaces of ¢* prove that
i = gi(o*)

where the 7} are the corresponding projection operators and the g; are
defined in problem 6.

Use this result to show that 7, and ] are dual and to obtain formula
(13.24).

9. Let F= E be stable under ¢ and consider the induced mappings
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@p:F>F and @:E[F->E|F. Let E=) E, be the decomposition of E into

generalized eigenspaces of ¢. Let j: F—E be the canonical injection and
¢: E— E/F be the canonical projection.
a) Show that the decomposition of F into generalized eigenspaces is

given by F=YF, where F,=Fn E,
b) Show that the decomposition of E/F into generalized eigenspaces of
@ is given by
E/F =) (E/F), where (E/F);=¢(E).
Conclude that ¢ determines a linear isomorphism
El'/Fi - (E/F)i

¢) If m;, nf, %, denote the projection operators in E, F and E/F associ-
ated with the decompositions, prove that the diagrams

01 el and ji jj
E/F 3 EJF FOLF

are commutative, and that 7, 7; are the unique linear mappings for
which this is the case. Conclude that if g; are the polynomials of problem

6, then _ _
;= g,(¢) and ”iF = gi(¢r)-

10. Suppose that the minimum polynomial u of ¢ is completely re-
ducible.
a) By considering first the case u= (t —4)* prove that

degu < dimE

b) With the aid of a) prove that u]x, x the characteristic polynomial
of ¢.

§ 3. Cyclic spaces and irreducible spaces

13.10. Cyclic spaces. Let ae E be a fixed vector. Then a linear mapping

6,:T(¢p)>E
is defined by
o.:f (@)~ f(p)a
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E is called cyclic with respect to ¢ if there exists a vector a€ E such that o,
is surjective. In other words, E is cyclic if there exists a vector ae E such
that every vector x€ E can be written as

x=f(p)a

where f is some polynomial. a is called a generator of the cyclic space E.

A cyclic subspace of E is a stable subspace which is cyclic with respect
to the linear transformation induced by ¢. Every vector qge E generates a
cyclic subspace, E,, namely the space

E,={f(p)a;f(o)el(p)}

E, is clearly the smallest stable subspace containing a.
Let E be a cyclic space, and let a be a generator for E. Suppose that /is
the greatest integer such that the vectors

a,pa,...o' " ta (13.27)

are linearly independent. Then the vectors (13.27) generate E and hence
form a basis of E. In fact, let F be the subspace of E generated by the
vectors (13.27). Since ¢'a is a linear combination of these vectors, it
follows that F is stable. Hence F is a stable subspace containing ¢ and so
F= E,. But by hypothesis we have that E=E,, whence E=F.

Lemma I: If o, is surjective then it is injective and hence a linear
isomorphism.
Proof: Suppose f(¢)e ker o,. Then

f(p)a=0.

Let xeE be any vector. Since g, is surjective, there exists a polynomial g
such that

x=g(p)a.
It follows that
flo)x=f(p)g(p)a=2g(e)f(p)a=0
whence
f(p)=0.

Consequently o, is injective.

Corollary I: Let E, be the cyclic subspace of E generated by an arbi-
trary vector a. If v is the minimum polynomial of the transformation
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induced in E, by ¢, then

f(p)a=0
if and only if v|f.

Lemma II: There exists a vector ae E such that ¢, is injective.
Proof: 1t has only to be shown that for some vector ae E,

g(p)a=0

implies that g(¢)=0 for any polynomial g.
Consider first the case that

u=f* f irreducible .
Then there exists a vector ae E such that
f N @)a+0.
Suppose now that for some polynomial g,

g(p)a=0

(13.28)

and let d be the greatest common divisor of g and u. Then by Corollary I

to Proposition I, sec. 13.3
d(@)a=0.

(13.29)

Since d|u, d is of the form d=f", I<k, and so in view of (13.28) and

(13.29) we obtain d=f*=p.

On the other hand, d/g, so that /g, whence

g(p)=0.

Now consider the general case,

p=fE.. f&  f irreducible
and as usual, let
E=E, ®-®E,

be the corresponding decomposition of E. Then according to sec. 13.5,
the minimum polynomial of the linear transformation induced in E; is

iven b .
8 y w= .

Hence there exist vectors g;€ E; such that

g(cp)a, =0
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if and only if

wilg-
Now set

a=a; ++a,.
Then if g(¢) a=0 for some g, we have
Ye(@a;=0  g(p)aeE,

whence
gle)a;=0 i=1,..,r.
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It follows that ui[ g, i=1,...,r. But the y; are relatively prime, and so their

product, u, divides g.
Thus

g(p)=0.

Corollary: There exists a cyclic subspace Fc E such that
dim F = degu.
Proof: Let ae E be a vector such that ¢, is injective, and set
F=E,=Imag,.
Then Fis cyclic. Moreover, since o, is injective, we have that

dimF = dim I' (¢) = deg .

Theorem I: Let F be any cyclic subspace of E. Then
dimF < degu <dimE.
In particular, E is cyclic if and only if

m=degu=dimE.

(13.30)

(13.31)

If E is cyclic with generator a, then the vectors g, ..., @™ 'a are a basis

for E.

Proof: According to the Corollary to Lemma II, E contains a cyclic

subspace, E,, such that dim E,=deg u. This implies that
dimE > degu.

If dim E=deg p it follows that E= E,, and thus E is cyclic. Conversely,
assume that E is cyclic and let a be a generator for E. Then g, is surjective
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and so according to Lemma I, o, is a linear isomorphism. Consequently,
dimE =dimI'(p) =degpu.

Finally, let F be any cyclic subspace of E. Then, as we have just seen,
it follows that
dim F = degv (13.32)

where v is the minimum polynomial of the linear transformation induced
by ¢ in F. Since VIH (cf. sec. 13.2) (13.32) implies that dim F< deg u
which proves the rest of (13.30). The last statement follows from (13.31)
and the discussion of the beginning of this section.

Corollary: Let Fc E be any cyclic subspace, and let v denote the
minimum polynomial of the linear transformation induced in F by ¢.
Then

v=yp
if and only if
dim F = degpu.

Proof: From the theorem we have
dim F = degv

while according to (13.2) v divides u.
Hence v=p if and only if deg v=deg u; i.e., if and only if

dim F = degpu.

13.11. Decomposition of E into cyclic subspaces. Theorem II: There
exists a decomposition of E into a direct sum of cyclic subspaces.

Proof: The theorem is an immediate consequence (with the aid of an
induction argument on the dimension of E) of the following lemma,

Lemma III: Let E, be a cyclic subspace of E such that
dimE, =degu=m.
Then there is a complementary stable subspace, Fc E,
E=E,®F.

Proof: Let
(pa . Ea e Ea
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denote the restriction of ¢ to E,, and let
@*.E¥ « E*

be the linear transformation in E* dual to ¢. Then (cf. sec. 13.9) E;" is
stable under ¢*, and the induced linear transformation

@ E*|E; « E*|E}

is dual to ¢, with respect to the induced scalar product between E, and
E*|E}.

Now Corollary I to Theorem I, sec. 13.10 implies that the minimum
polynomial of ¢, is again u. Hence (cf. sec. 13.9) the minimum polynomial
of @ is u. But E, and E*/E; are dual, so that

dim E*/E} = dimE, = deg .

Thus Theorem I, sec. 13.10 implies that E*/E < is cyclic with respect to .
Let g*e E*/E; be any generator for E*/E;". Then according to Theorem
1, sec. 13.10 the vectors
a*..,o¥m ta*
are linearly independent in E*/E;-. It follows that if a*ed* is any repre-
sentative, the vectors
a*, ...,p*m g%

are linearly independent in E*. Thus the cyclic subspace E, generated
by a* has dimension >m. On the other hand, ¢* has minimum polyno-
mial g, and so Theorem I, sec. 13.10 implies that dim E_; <m. Hence

dimE:. =m.
It foliows that if
n:E* - E*|E}f

is the canonical projection, then the restriction of 7 to E is a linear
isomorphism; whence
E*=EX®E;

is a decomposition of E* into stable subspaces. Taking orthogonal
complements, we find that
E=E,®EX

is a decomposition of E into stable subspaces, and this proves the lemma.
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13.12. Irreducible spaces. E will be called irreducible with respect to ¢
if it can not be expressed as a direct sum of two proper stable subspaces.
A stable subspace Fc Eis called irreducible if it is irreducible with respect
to the linear transformation induced in it by ¢.

Proposition I: E is the direct sum of irreducible subspaces

Proof: Let s

E=Y)F dimF; >0
j=1

be a decomposition of E into stable subspaces such that s is maximized

(this is clearly possible, since for all decompositions we have s<dim F).

Then the spaces F; are irreducible. In fact, assume that for some i,
F,=F @®F dimF; > 0,dimF;" > 0

is a decomposition of F; into stable subspaces. Then

E= zFi®E’®Fi”
JFi
is a decomposition of E into (s+ 1) stable subspaces, which contradicts
the maximality of s.

Now we shall establish a connection between cyclic and irreducible
spaces.

Theorem III: E is irreducible if and only if

® p=f* f irreducible
and
(i) E is cyclic.

Proof: Suppose E is irreducible, and let
E=E @..©LE,

be the decomposition of E into generalized eigenspaces. Then the irre-
ducibility of E implies that r=1, and (i) is an immediate consequence.
Now let

E= Z F;
j=1

be a decomposition of E into cyclic subspaces, which exists by Theorem
I, sec. 13.11. Again the irreducibility of E implies that s=1 and so E is
itself cyclic. This proves (ii).
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Conversely, suppose that (i) and (ii) hold. Let
E=E ®E,

be any decomposition of E into stable subspaces. Denote by ¢, and ¢,
the linear transformations induced in E, and E, by ¢, and let y, and g,
be the minimum polynomials of ¢, and ¢,. Then sec. 13.2 implies that
u1|u and y2|y. Hence, we obtain from (i) that

po=f =" ki <k. (13.33)
Without loss of generality we may assume that k, >k,. Then

f“(@)x=0  xeE, or xeE,
and so

A (p)=0.

It follows that u| /™ whence k; > k. In view of (13.33) we obtain k; =k
ie.,
H=Hy.
Now Theorem I, sec. 13.10 yields that
dimE, > degp. (13.34)

On the other hand, since E is cyclic, the same Theorem implies that

dimE = degpu. (13.35)
Relations (13.34) and (13.35) give that
dimE =dimE, .

Thus E=E, and E, =0. It follows that F is irreducible.

Corollary I: Any decomposition of E into a direct sum of irreducible
subspaces is simultaneously a decomposition into cyclic subspaces.

Corollary II: Suppose that u=f*, firreducible. Then a stable subspace
of Eis cyclic if and only if it is irreducible.

13.13. The Jordan canonical matrix. Suppose that E is irreducible with
respect to ¢. Then it follows from Theorem 111 sec. 13.12 that Eis cyclic
and that the minimum polynomial of ¢ has the form

u=f*  kx>1 (13.36)

where f is an irreducible polynomial. Let ¢ be a generator of E and
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consider the vectors
i—1 i i=1,..,k
a;=f(o) o e joty p=degf.  (13.37)

It will be shown that these form a basis of E.
Since
dimE = degu = pk

it is sufficient to show that the vectors (13.37) generate E. Let F< E be
the subspace generated by the vectors (13.37).
Writing

p
f=Y at a,=1
v=0
we obtain that

©a;= a1 i=1,.,k j=1,..,p—1

i-1_p- i- i ! i-
pap=0f (@) o e=f(p) o"e=f(p) e~ ¥ 0 ST (9)0
p—1
=Aiy11 — Zavaiv+l i=13~~-,k_1
p—1 v=0
@ agp = — Zoavakv+l'

1

These equations show that the subspace F is stable under ¢. Moreover,
e=a,;€F. On the other hand, since E is cyclic, E is the smallest stable
subspace containing e. It follows that F=E.

Now consider the basis

Aiqs .--,alp;a2l “ee azp; ser s Qpg ven akp

of E. The matrix of ¢ relative to this basis has the form

' 3
0
4

4z

(13.38)

| A I
0 k
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where the submatrices A4, are all equal, and given by

(01 0)
01
0
Aj= J=1a ,k
0 1
o~ o — Uy .o — Opy )

The matrix (13.38) is called a Jordan canonical matrix of the irreducible
transformation ¢.

Next let ¢ be an arbitrary linear transformation. In view of sec. 13.12
there exists a decomposition of E into irreducible subspaces. Choose a
basis in every subspace relative to which the induced transformation has
the Jordan canonical form. Combining these bases we obtain a basis of E.
In this basis the matrix of ¢ consists of submatrices of the form (13.38)
following each other along the main diagonal. This matrix is called
a Jordan canonical matrix of ¢.

13.14. Completely reducible minimum polynomials. Suppose now that
E is an irreducible space and that the minimum polynomial is completely
reducible (p=1); i.e. that

p=(t- 2"

It follows that the A; are (1 x 1)-matrices given by 4;=(4). Hence the
Jordan canonical matrix of ¢ is given by

Al 0
Al
(13.39)
1
0 A

In particular, if E is a complex vector space (or more generally a vector
space over an algebraically closed field) which is irreducible with respect
to ¢, then the Jordan canonical matrix of ¢ has the form (13.39).

13.15. Real vector spaces. Next, let E be a real vector space which is
irreducible with respect to ¢. Then the polynomial fin (13.36) has one of
the two forms fet—2 1R

or
f=t*+at+p afeR, o?—4p<0.
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In the first case the Jordan canonical matrix of ¢ has the form (13.39). In
the second case the 4; are 2 x 2-matrices given by

e

Hence the Jordan canonical matrix of ¢ has the form

Ve

0 1 A
—B -«

0 1
_ﬂ R 4 1

0 1
0 —B -]

13.16. The number of irreducible subspaces. It is clear from the con-
struction in sec. 13.12 that a vector space can be decomposed in several
ways into irreducible subspaces. However, the number of irreducible
subspaces of any given dimension is uniquely determined by ¢, as will be
shown in this section.

Consider first the case that the minimum polynomial of ¢ has the form

p=f" degf=p
where f'is irreducible. Assume that a decomposition of E into irreducible
subspaces is given. The dimension of every such subspace is of the form
pr(1<k<k), as follows from sec. 13.12. Denote by F, the direct sum of
the irreducible subspaces I} of dimension px and denote by N, the

number of the subspaces /7.
Then we have that

k
E= ) F, (13.40)
k=1
Comparing the dimensions in (13.40) we obtain the equation

k k
n= Z‘IdimFK=p ;KNK

where dim E=n.
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Now consider the transformation

¥ =1 (o).
Since the subspaces F, are stable under ¢ it follows from (13.40) that

YE= ) yF,. (13.41)
By the definition of I, we have that
N
Fo=)Y 1} dimI!=px
A=1
whence
Ny
=Y VI
A=1

Since the dimension of each 17 decreases by p under ¥ (cf. sec. 13.13) it
follows that
dimy F, = p(x — 1)N,. (13.42)

Equations (13.41) and (13.42) yield

k
r(y)=rp ZZ(K —1)N,.
Repeating the above argument we obtain the equations
k
r(W)=p Y (k—j)N. Jj=1,..,k.
k=j+1
Replacing j by j+ 1 and j—1 respectively we find that

dUABE P Z (K—J—I)N—p Z+ (k=PDN.—p Z”N
T 13.43)

and

r(p’ ™ = pZ(K—JH)N “pZ (x — )N, +p2 N,. (13.44)

K=j

Adding (13.43) and (13.44) we obtain

r(‘ﬁjﬂ)*’r(dﬂ 1) 2p 2 (K_])N+PNJ+1+P(N + j+1)

K= J

=2p Z (k —j)N.+pN;=2r(y’) + pN;

K= f4+1
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whence
1 ) ; .
N= DO+ r @) =@ =k

This equation shows that the numbers N; are uniquely determined by the
ranks of the transformations y/ (j=1,...,k).

In the general case consider the decomposition of E into the generalized
eigenspaces E;(i=1,...,r) and suppose that

E=;ﬂ

is a decomposition of E as a direct sum of irreducible subspaces. Then
every irreducible subspace F; is contained in some E;. Hence the decom-
position determines a decomposition of each E; into irreducible subspaces.
Moreover, it is clear that these subspaces are irreducible with respect to
the induced transformation ¢;: E;— E;. Hence the number of irreducible
subspaces in E; of a given dimension is determined by ¢, and thus by ¢.
It follows that the number of spaces F, of a given dimension depends only
on ¢.

Problems
1. Two linear transformations ¢, ¢ of E are called conjugate if there
exists a linear automorphism « in E such that
y=oa"lgpoa.

Prove that ¢ and s are conjugate if and only if
i) ¢ and ¥ have the same minimum polynomial u.

i) If
) “=f1kl~"frkr
is the decomposition of y into prime factors, then

r(fi(‘P)m) = "(fi(l//)m) =k 2k;.
2. Show directly that if ¢: A(E;E)—A(E;E) is a non-zero endomor-
phism and n: E~E is a projection operator, then
r(®n)=r(n).
Use this to prove that
r(@g)=r(p) ¢ecA(E;E).

In view of problem 1 conclude that every non-zero endomorphism of
A(E;E) is an inner automorphism.
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3. Suppose that E, E* are dual and that ¢*: E¥*« E* is dual to ¢. Prove
that there exists a linear isomorphism «: E~ E* such that

p*=agpal.

4. Construct a decomposition of R* into irreducible subspaces with
respect to the linear transformations of problem 7, § 1. Hence obtain the
Jordan canonical matrices.

5. Which of the linear transformations of problem 7, § 1 make R* into
a cyclic space? For each such transformation find a generator. For which
of these transformations is R* irreducible?

6. Let E; cE be a stable subspace under ¢ and consider the induced
mappings ¢:E;—FE, and ¢:E/E;—-E/E;. Let u, uy, i be the corre-
sponding minimum polynomials.

a) Prove that E is cyclic if and only if

i) E, is cyclic

i) E/E; is cyclic

i) p=p, it

In particular conclude that every subspace of a cyclic space is again
cyclic.

b) Construct examples in which conditions 1), ii), iii) respectively fail,
while the remaining two continue to hold.

Hint: Use problem 5, § 1.

7. Let E=) F; be a decomposition of E into subspaces and suppose
j=1
@;:F;>F; are linear transformations with minimum polynomials u;.

Define a linear transformation ¢ of E by

0=¢; D @ g

a) Prove that E is cyclic if and only if each ¢; is cyclic and the u; are
relatively prime. .

b) Conclude that if E is cyclic, then each F; is a sum of generalized
eigenspaces for ¢.

¢) Prove that if E is cyclic and

a=a;+-+a; a;eF;

isany vectorin E, thena generates E if and only if a; generates F; (j=1...s).
8. Suppose Fc E is stable under ¢ and let ¢z:F— F (minimum poly-

nomial yp) and @:E/F—E/F (mmimum polynomial ji) be the induced

transformations. Show that E is irreducible if and only if
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i) E/F is irreducible.

ii) F'is irreducible.

ili) pp=s* g=f",u=f*"" where f'is an irreducible polynomial.

9. Suppose that Eis irreducible with respect to ¢. Let f* (firreducible)
be the minimum polynomial of ¢.

a) Prove that the & subspaces K(f), ... K(f*) are the only non-trivial
stable subspaces of E

b) Conclude that

Imf(pyf=K(f**) 0=Zx=k.

10. Find necessary and sufficient conditions that E have no non-
trivial stable subspaces.

11. Let 0 be a differential operator in E

a) Show that in any decomposition of E into irreducible subspaces,
each subspace has dimension 1 or 2.

b) Let N; be the number of j-dimensional irreducible subspaces in the
above decomposition (j=1, 2). Show that

N; + 2N, =dimE and N, = dim H (E)

c¢) Using part b) prove that two differential operators in E are con-
jugate if and only if the corresponding homology spaces coincide.

Hint: Use problem 1.

12. Show that two linear transformations of a 3-dimensional vector
space are conjugate if and only if they have the same minimum poly-
nomial.

13. Let ¢: E—FE be a linear transformation. Show that there exists a
(not necessarily unique) multiplication in E such that

1) E is an associative commutative algebra
ii) E contains a subalgebra A isomorphic to I'(¢)
iii) If @:I'(¢)> 4 is the isomorphism, then

() x =yx yel(¢p),xeE.

14. Let E be irreducible (and hence cyclic) with respect to ¢. Show that
the set S of generators of the cyclic space E is not a subspace. Construct
a subspace F such that S is in 1 —1 correspondence with the non-zero
elements of E/F.

15. Let ¢ be a linear transformation of a real vector space having
distinct eigenvalues, all negative. Show that ¢ can not be written in the
form ¢ =1y>.
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§ 4. Applications of cyclic spaces

In this paragraph we shall apply the theory developed in the preceding
paragraph to obtain three important, independent theorems.

13.17. Generalized eigenspaces. Direct sums of the generalized eigen-
spaces of ¢ are characterized by the following

Theorem I: Let
E=F, ® -®F, (13.45)

be any decomposition of E into a direct sum of stable subspaces. Then
the following three conditions on the decomposition (13.45) are equiva-
lent:

(i) Each F; is a direct sum of some of the generalized eigenspaces E;
of ¢.

(ii) The projection operators g; in E associated with the decomposition
(13.45) are polynomials in ¢.

(iii) Every stable subspace U< F satisfies

U= UneF,.
J

Proof: Suppose that (i) holds. Then the projection operators g; are
sums of the projection operators associated with the decomposition of E
into generalized eigenspaces, and so it follows from sec. 13.6 that they
are polynomials in ¢. Thus (i) implies (ii).

Now suppose that (ii) holds, and let U < E be any stable subspace. Then
since ) ¢;=1, we have

g UcYo,U.
J

Since U is stable under g; it follows that o ;U= U n F;; whence
Uc Z Un F;.
J

The inclusion in the other direction is obvious. Thus (ii) implies (iii).
Finally, suppose that (iii} holds. To show that (i) must also hold we
first prove the
Lemma I: Suppose that (iii} holds, and let

E=E @ -@E,
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be the decomposition of F into generalized eigenspaces. Then to every i,
(i=1,...,r) there corresponds precisely one integer j, (1 <j<s) such that

E; N F;+0.

Proof of lemma: Suppose first that E;n F;=0 for a fixed i and for every
J» (1<j<s). Then from (iii) we obtain

which is clearly false (cf. sec. 13.5). Hence there is at least one j such that
E;N F;+0.

To prove that there is at most one j (for any fixed /) such that E;n F; %0,
we shall assume that for some i, j, j,,

EnF;, 0 and E;NnF;, %0

and derive a contradiction. Without loss of generality we may assume
that
ElﬂFl#O and Elan#O.

Choose two non-zero vectors
yi€E, N F, and y,eE N F,.
Then since y,, y,€ E; we have that
1’“(4’))’1 =0 =f1k'(§0))’2

where p=f{"...f*, f, irreducible, is the decomposition of u. Let /, and /,
be the least integers such that f{'(¢)y,=0 and f{*(¢)y,=0. We may
assume that /, =1/,. In fact, if /, >, we simply replace y; by the vector
A7(#)y1. Then

P (@27 (9)y1 =0 and fi(o)f1 2 (9)y, 0 for k<lI,.

Now set
y=Yi1+):
and let Y be the cyclic subspace generated by y. Clearly Y<F, @F,, and so
in view of (iii) we obtain
Y=YnF®YnF,.

It will now be shown that Y n F; =0.



§ 4. Applications of cyclic spaces 399
Let ue Y n F, be any vector. Since #€ Y we have that

u=f(@)y=f(@)y+f(®)y:

for some polynomial f. Since ueF,, it follows that

f(@)y,=u—f(p)y,eFnF,=0

and hence d(¢) y,=0 where d is the greatest common divisor of f and
1. Thus we obtain that
ky> 1.

But d|f; whence f7*| £, and so u=£(¢)y=1(@)y, +f(¢)y,=0.
This proves that Y n F; =0. A similar argument shows that YN F, =0
so that

Y=YnF,®YnF,=0.

This is the desired contradiction, and it completes the proof of the lemma,

We now revert to the proof of the theorem. Recall that we assume that
(iii) holds, and are required to prove (i). In view of the above lemma we
can define a set mapping

(L, .., r)>(,...,5)
such that
ENF,,+0 i=1,.,r and E,nF;=0 ’_f’(’)
i=1,...,r.
Then (iii) yields that

Ei= 2 E,n F,=E,ﬂ Fr(i)'
ji=1

Finally, the relation

E=Y E=)ENFy<c)Foc)XF=E
i=1 i i i
implies that
SF.,=>F and F;= Y E,.
i j et~ 1())
Hence 7 is a surjection, and for every integer j (1 <j<s). F; is a direct sum
of some of the E; and so (i) is proved. Thus (iii) implies (i), and the
proof of the theorem is complete.
13.18. Cayley-Hamilton theorem. It is the purpose of this section to
prove the
Theorem II: (Cayley-Hamilton) Let x denote the characteristic poly-
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nomial of ¢. Then
ulx

or, equivalently, ¢ satisfies its own characteristic equation.

Before proceeding to the proof of this theorem we establish some
elementary results.

Suppose Ael is any scalar, and let v denote the minimum polynomial
of ¢ —A1. Assume further that v has degree m, and let v be given ex-
plicitly by

m-1
v=1t"+ Y Bt (13.46)
Jj=0
Then
m-—1
O0=(p—A)"+ Zoﬁj(q)—/lt)’
j=
m . ot 13.47
j=0
= f(9)
where
m—1
f=t"+ Y at).
j=o0

It follows that u/f, and so in particular

degu < deg f =degv. (13.48)
On the other hand,
’ o=(p— A1)+ 11

and thus a similar argument shows that
degv < degyu.
This, together with (13.48) implies that
degv=degf =degu. (13.49)
Since f|u and f has leading coefficient 1, we obtain that
f=un
In particular, (13.47) and (13.48) yield the relation

Bo = u(4). (13.50)
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Lemma II: Suppose E is cyclic and dim E=m, and let y be the charac-
teristic polynomial for ¢. Then

r=(=1"u.

Proof: Let AeI be any scalar, and let v be the minimum polynomial
for ¢—A1. Since E is cyclic (with respect to ¢), Theorem I, sec. 13.10
implies that

degp=dimE =m.

Now we obtain from (13.49) that deg v=m, and so a second application
of Theorem I, sec. 13.10 shows that E is cyclic with respect to ¢ —A1.
Let a be any generator of E (with respect to ¢ —A1). Then

a,(¢—Aa,....(¢ — i)™ 'a
is a basis for E (cf. Theorem I, sec. 13.10).
Now suppose that 4 is a non-trivial determinant function for E. Then
x(A)-4(a,(¢ — A)a,....,(p — At)" " " a)
=det(p — A1)-4(a,....(p — A1)" ' a)
=A4((¢ — A)a,....(p — A1)"a) (13.51)
=(— )" 4((¢ —A)"a,(¢ — A1) a,....(¢ — A1)" "1 a)

On the other hand, if (13.46) gives the minimum polynomial of ¢ — A1,
we obtain that

(p —A)"a=— jg:ﬁj(qo —AYa
and substitution in (13.51) yields the relation
X () 4(a, (0 — 20" *a)
=(- l)mjg::ﬁjzi ((p — A1ty a,(¢ — At)a,...,(¢ — A1)"" " a)

=(—1)"Bo4(a,(¢ — AD)a,...,(¢ — A)" " ta).
It follows that
1) =(=1)"p
and in view of (13.50) we obtain that
x(A)=(-=10)"u(d) Aerl. (13.52)

Finally, since (13.52) holds for every AeTl’, we can conclude (cf. sec.
12.10) that

(=1)"n=y.



402 Chapter XIII. Theory of a linear transformation

Proof of Theorem II: According to Corollary to Lemma II, sec. 13.10
and Lemma III, sec. 13.11 there exists a cyclic subspace E, < E such that

dimE, =degu
and E, has a complementary stable subspace F,
E=E,®F.

Let x, and xr be the characteristic polynomials of the linear transfor-
mations induced in E, and in F by ¢. Then

X =XaXkr
(cf. sec. 4.21).

On the other hand, the minimum polynomial of the linear transfor-
mation induced in E, by ¢ is u as follows from Corollary to Theorem I,
sec. 13.10. Now the lemma implies that

(— l)ml’l' = Xa-
Hence, u|x.

13.19.* The commutant of ¢. The commutant of ¢, C(g), is the sub-
algebra of L(E; E) consisting of all the linear transformations that
commute with ¢.

Let f be any polynomial. Then K(f) is stable under every yeC(¢). In
fact if ye K(f) is any vector, then

f@vy=4f(p)y=0 yeC(o)

and so yyeK(f).
Next suppose that ye C(¢) is any linear transformation. Consider the
decompositions of E into generalized eigenspaces of ¢ and of ¥,

E=E @ -®E, (forgp)
and
E=F &-@F, (fory)

and the corresponding projection operators in E, 7; and ¢;. Since the
mappings 7; and g; are respectively polynomials in ¢ and ¥ (cf. sec. 13.6)
it follows that

i=1,...
ﬂiij=QjoT[i ]=1

Now define linear transformations 7;; in E by

Tl'j =T[iij.
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Then we obtain that

2 _ _ .2 2 _ —
Tij—niogjoﬂiogj =T; ij —ﬂiij—- Tij

and hence the 7;; are again projection operators in E.

Since Imt,; < E n F

%Tii = (Zi:”:)o(;gj) =1

and

it follows that
E=)Imt;c ) E;nF,cE
ij i, J

whence
Imz;=E;n F;
and
E=YEnF,.
i, J

Proposition I: Let E=F,@®---@F; be any decomposition of E as a direct
sum of subspaces. Then the subspaces F; are stable under ¢ if and only if
the projection operators ¢; are contained in C(g).

Proof: Since F,= (" kero,

1+
it follows that the F; are stable under ¢ if the o ;€ C(¢). Conversely, if the
F; are stable under ¢ we have for each yeF, that pye F;, and hence
G,y =Qy=¢0;y
while
o90y=0=9ay I+].

Thus the ; commute with ¢.

13.20.* The bicommutant of ¢. The bicommutant, C*(¢), of ¢ is the

subalgebra of L(E, E) consisting of all the linear transformations which
commute with every linear transformation in C(¢).

Theorem III: C?(¢) coincides with the linear transformations which
are polynomials in ¢.
Proof: Clearly
C*(¢) > I'(9).

Conversely, suppose e C*(¢) is any linear transformation and let

E=F, @& ®F, (13.53)
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be a decomposition of F into cyclic subspaces with respect to ¢. A
decomposition (13.53) exists by Theorem II, sec. 13.11. Let a; be any
fixed generators of the spaces F,.

Denote by ¢; the linear transformation in F; induced by ¢, and let y; be
the minimum polynomial of ¢;. Then (cf. sec. 13.2) u;|u so we can write

= i=1,..,s.

In view of Lemma Il sec. 13.11 we may (and do) assume that u, =p.
Now the F; are stable subspaces of E (under ¢), and so by Proposition I,
sec. 13.19 the projection operators in E associated with (13.53) commute
with ¢. Hence they commute with { as well, and so a second application
of Proposition 1 shows that the F; are stable under . In particular,
Ya;eF,. Since F, is cyclic with respect to ¢ we can write
ya;=g(e)a;, i=1,..,5s.

Thus if #(¢)a;e F; is an arbitrary vector in F; we obtain

Yh(e)a;=h(o)ya;= h(e)g(e)a; = g (@) h(e)a;
since ¢ and y commute. It follows that

v = g (o) i=1,...,s

where ; denotes the restriction of ¥ to F;. In the following it will be
shown that

Y=g, (o)

thus proving the theorem.
Consider now linear transformations y; in E defined by

X=X xeE; j#i
nf(@)a;=f(o)vi(p)a;.
To show that y; is well-defined it is clearly sufficient to prove that
f(o)vi(p)a, =0 whenever f(¢)a;=0.
But if f(¢)a; =0, then y;| fand so u=p,v; divides v, whence
f(@)vi(@)=0.

The relation
uef(@a=of(o)vi(p)a, = f(0)a

shows that y; commutes with ¢, and hence with . On the other hand we
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have that
uVa; = xg:(e)a; = gi(@) vi(@)ay = vi(@) g (@) a,
and
Y =vvi(@)a, =vi(p)a, = Vi(q’)gl (p)a,
whence

vi(¢)[8:(®) — g1(p)]a; = 0.
This relation implies that u,|v,(g; —g). But uy=p and so
1lvi(g: — 81)-
Since p=w;u;, we obtain that
Bilg — 8-
This last relation yields that for any vector xeF,,

yx=g(p)x=g,(p)x i=1,..s.
It follows that

¥ =2g.(9)
which completes the proof.
Problems
1. Let
p=f S

be the decomposition of the minimum polynomial of ¢, and let E; be the
generalized eigenspaces. If f; has degree p, denote by N;; the number of
irreducible subspaces of E; of dimension p;j (1< j<k;). Set

Iy = f‘, JN; i
. j=1
Show that the characteristic polynomial of ¢ is given by
A=A 1
2. Prove that E is cyclic if and only if
1= xu.
3. Let ¢ be a linear transformation of F and assume that E =ZF,- isa

J
decomposition of E as a direct sum of stable subspaces. If each F; is a
sum of generalized eigenspaces, prove that each F; is stable under every
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e C(p). Conversely, assume that each F; is stable under every y e C(¢)
and prove that each F; is a sum of generalized eigenspaces of ¢.

4. a) Show that the only projection operators in C(¢) are : and 0 if and
only if E is irreducible with respect to ¢.

b) Show that the set of projection operators in C(¢) is a subset of
C*(¢) if and only if E is cyclic with respect to ¢.

5. a) Define C3(p) to be the set of all linear transformations in E
commuting with every transformation in C?(¢p). Prove that

C*(¢) =C(o)

b) Prove that C?(¢)=C(¢) if and only if E is cyclic.

6. Let E be cyclic with respect to ¢ and S be the set of generators of E.
Let G be the set of linear automorphisms in C(¢p).

a) Prove that G is a group.

b) Prove that for each ¥ €G, S is stable under ¥ and the restriction y,
of Y to S'is a bijection. Show that i, has no fixed points if  +1.

¢) Let ae S be a fixed generator and let g, te G be arbitrary. Prove that
og=1 if and only if

ga=1a

and hence in particular, 6 =1 if and only if 6,=1,.

d) Prove that G acts transitively on S, i.e. for each a, b€ S there is a
YeG such that ya=>b.

e) Conclude that if QeS is a generator, then the mapping &:G—S
given by Yy— s, is a bijection.

7. Let 0 be a differential operator in E. Consider the set I of transfor-
mations € C(¢) such that Y Z(E) < B(E).

Show that 7 is an ideal in C(¢) and establish an algebra isomorphism

C(@)/I > L(H(E); H(E)).

§ 5. Nilpotent and semisimple transformations

13.21. Nilpotent transformations. A linear transformation, ¢, is called
nilpotent if @*=0 for some integer k or equivalently, if its minimal
polynomial has the form

u=t".

The exponent m is called the degree of ¢. It follows from sec. 13.8 that ¢
is nilpotent if and only if the Fitting null component is the entire space.
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It is clear that the restriction of a nilpotent transformation to a stable
subspace is again nilpotent.

Suppose now that ¢ and y are two commuting nilpotent transfor-
mations, Then the transformations ¢ + and . ¢ are again nilpotent. In
fact, if k and ! denote the degrees of ¢ and y we have that

k k+1
K+l k+1\ ; k+l-j k+1 Jopktl=j
(0+v) —Z( e +-=Z+1< Ferurrii=o
and '
Wo)Y=y*e*=0

which proves that ¢ +y and Y. are nilpotent.

Assume that E is irreducible with respect to the nilpotent transfor-
mation ¢. Then it follows from sec. 13.13 that the Jordan canonical
matrix of ¢ has the form

01 0
0

(13.54)
1
0 0

Hence, the Jordan canonical matrix of any nilpotent transformation
consists of matrices of the form (13.54) following each other along the
main diagonal.
Suppose now that ¢ is any linear transformation, and that u has the
decomposition .
P p= g

f=f1"'fr'

Then if & is any polynomial, h(¢) is nilpotent if and only if f|h, as follows
at once from sec. 12.13.

13.22. Semisimple transformations. A linear transformation ¢ will be
called semisimple if every stable subspace E, < E has a complementary
stable subspace.

Example I: Let E be a Euclidean space and ¢ be a rotation of E. Since
the orthogonal complement of every stable subspace is stable (cf. sec.
8.19) it follows that ¢ is semisimple.

Example II: In a Euclidean space every selfadjoint and every skew
transformation is semisimple, as follows from a similar argument.

Let f be the polynomial
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Example I11: Let E be a unitary space. Then every unitary and every
selfadjoint transformation is semisimple.

Let ¢ be a semisimple transformation and suppose that E; is a stable
subspace. Then the restriction ¢, of ¢ to E; is semisimple. In fact,
suppose F, < E, is stable under ¢,. Then F; is stable under ¢, and hence
there exists a complementary stable subspace, F,, in E,

E=F ®F,.
Intersection with E; yields

E,=F,®F,nE,.

Since F, N E; is (clearly) stable under ¢, it follows that ¢, is semisimple.

Proposition I: Suppose ¢ is semisimple, and let f be any polynomial.
Then f(¢) is nilpotent if and only if f(¢)=0.

Proof: The if part is trivial. Suppose now that f(¢) is nilpotent of degree
k. Then K(f*1) is stable under ¢ and so we can write

E=K(f*"YYoF

where F is stable under ¢, and hence under f(¢). On the other hand, it is
clear that f( 9)F<K(f*~') whence

f(@F<K(f*)nF=0
ie.,

F < K(f).

It follows that E=K(f) where /=max (k—1,1). Since k is the degree
of nilpotency of f(¢p) we have
I>k
whence k=1/=1. Hence f(¢)=0.
Corollary I: If ¢ is simultaneously nilpotent and semisimple, then
¢@=0.

The major result on semisimple transformations which we obtain in
section is the following criterion:

Theorem I: A linear transformation is semisimple if and only if its
minimum polynomial is the product of relatively prime irreducible
polynomials (or equivalently, if the polynomials u and u’ are relatively
prime).
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Proof: Suppose ¢ is semisimple. Consider the decompositions
u=f... ffr  fi irreducible and relatively prime

of the minimum polynomial, and set

f=fif.

Then f(¢) is nilpotent, and hence by Proposition 1 of this section,
S(@)=0. It follows that y| /. Since f |u by definition, we have

W= fio ko

This proves the only if part of the theorem.

To prove the second part of the theorem we consider first the special
case that the minimum polynomial, y, of ¢ is irreducible. To show that
¢ is semisimple consider the subalgebra, I' (¢), of 4 (E; E) generated by ¢
and 1. Since yu is irreducible, I' (¢) is a field. I' (¢) contains I" and hence it is
an extension field of I', and £ may be considered as a vector space over
I' (@) (cf. § 3, Chapt. V). Since a subspace of the I'-vector space E is stable
under ¢ if and only if it is stable under every transformation of I' (¢), it
follows that the stable subspaces of E are precisely the I' (¢)-subspaces of
the I'(p)-vector space E. Since every subspace of a vector space has a
complementary subspace it follows that ¢ is semisimple.

Now consider the general case

u=f1...1. fi irreducible and relatively prime.
Then we have the decomposition
E=E ®®E,

of E into generalized eigenspaces. Since the minimum polynomial of the
induced transformation ¢;: E;— E; is precisely f; (cf. sec. 13.5) it follows
from the above result that ¢, is semisimple. Now let Fc— E be a stable
subspace. Then we have in view of sec. 13.7 that

F=FNnE ®-®FnE,.

Clearly En F; is a stable subspace of E; and hence there exists a stable
complementary subspace H,,

E,=Fn E,(‘BH‘.
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These equations yield
E=YFnE®YH=FoH H=YH,.

Since H is a stable subspace of E it follows that ¢ is semisimple.
Corollary I: Let ¢ be any linear transformation and assume that

E=F ®-®F

is a decomposition of E into stable subspaces such that the induced
transformations ¢,: F,— F; are semisimple. Then ¢ is semisimple.

Proof: Let u; be the minimum polynomial of the induced transfor-
mation ¢,;: F;— F;. Since ¢, is semisimple each y; is a product of relatively
prime irreducible polynomials. Hence, the least common multiple, f, of
the ; is again a product of such polynomials. But f(¢) annihilates E and
hence the minimum polynomial, u, of ¢ divides f. It follows that u is a
product of relatively prime irreducible polynomials. Now Theorem I
implies that ¢ is semisimple.

Proposition II: Let AT be a subfield, and assume that E, considered
as a A-vector space has finite dimension. Then every (I'-linear) transfor-
mation, ¢, of E which is semisimple as a A-linear transformation is
semisimple considered as I'-linear transformation.

Proof: Let u, be the minimum polynomial of ¢ considered as a 4-linear
transformation. It follows from Theorem I that u, and u) are relatively
prime. Hence there are polynomials g,re 4[¢] such that

qust+ru;=1. (13.55)

On the other hand, every polynomial over A[¢#] may be considered as a
polynomial in I'[¢]. Since p4(¢)=0 we have that
Brl s

where ur denotes the minimum polynomial of the (I'-linear) transfor-
mation ¢. Hence we may write

, us=purh some hel[t]
and so

Wy=purh+ puph'. (13.56)
Combining (13.55) and (13.56) we obtain

ghpr + h'rpur+hrpp=1
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whence
(gh+h'rypr+(hrypr=1.

This relation shows that the polynomials u and ur are relatively prime.
Now Theorem I implies that the I'-linear transformation ¢ is semisimple.

13.23. The Jordan normal form of a semisimple transformation. Sup-
pose that E is irreducible with respect to a semisimple transformation ¢.
Then it follows from sec. 13.12 and Theorem I sec. 13.22 that the mini-
mum polynomial of ¢ has the form

n=1rf

where f is irreducible. Hence the Jordan canonical matrix of ¢ has the
form

(0 1 0)
01
(13.57)
0 1
\_— % — %y ... = Oy q )

where
p= Y ot oa,=1 p=degp.

It follows that the Jordan canonical matrix of an arbitrary semisimple
transformation consists of submatrices of the form (13.57) following
each other along the main diagonal.

Now consider the special case that E is irreducible with respect to a
semisimple transformation whose minimum polynomial is completely
reducible. Then we have that p=1 and hence E has dimension 1. It
follows that if ¢ is a semisimple transformation with completely reducible
minimum polynomial, then E is the direct sum of stable subspaces of
dimension 1; i.e., E has a basis of eigenvectors. The matrix of ¢ with
respect to this basis is of the form

A 0
Aa
(13.58)
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where the A; are the (not necessarily distinct) eigenvalues of ¢. A linear
transformation with a matrix of the form (13.58) is called diagonalizable.
Thus semisimple linear transformations with completely reducible mini-
mum polynomial are diagonalizable.

Finally let ¢ be a semisimple transformation of a real vector space E.
Then a similar argument shows that E is the direct sum of irreducible
subspaces of dimension 1 and 2.

13.24.* The commutant of a semisimple transformation.

Theorem II: The commutant C(¢) of a semisimple transformation ¢
is a direct sum of ideals (in the algebra C(¢)) each of which is isomorphic
to the full algebra of transformations of a vector space over an extension
field of I'.

Proof: Let

E=E ®-®E, (13.59)

be the decomposition of E into the generalized eigenspaces. It follows
from sec. 13.19 that the eigenspaces E; are stable under every transfor-
mation YeC(@). Now let I;=C(p) be the subspace consisting of all
transformations  such that

YiE,—»0 k+j.

Since E; is stable under each y, it follows that I; is an ideal in the algebra
C(p). As an immediate consequence of the definition, we have that

Ln SL=0 j=1,..,r. (13.60)
k+j

Now let e C(¢p) be arbitrary and consider the projection operators
n;:E— E associated with the decomposition (13.59).
Then we have that

'l’___zﬂi'l’:ZﬂiZ'l’:Zﬂi'l’ﬂi:Z'l’i (13.61)
where

yi=mym. (13.62)

It follows from (13.62) that ;e I,. Hence formulae (13.60) and (13.61)
imply that
Clp)= ;Ii'
It is clear that
I, C(p;) ¢, is the restriction of ¢ to E;
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where the isomorphism is obtained by restricting a transformation eI,
to E,.

Now consider the transformations ¢;: E—E induced by ¢. Since the
minimum polynomial of ¢; is irreducible it follows that I' (¢,) is a field.
Considering E as a vector space over I'(¢;) we obtain from chap. V, § 3
that

C(9:)) = Arey (E; E).

13.25. Semisimple sets of linear transformations. A set {¢,} of linear
transformations of E will be called semisimple if to every subspace F; c E
which is stable under each ¢, there exists a complementary subspace F,
which is stable under each ¢,.

Suppose now that {¢p,} is any set of linear transformations and let
AcA(E;E) be the subalgebra generated by the ¢,. Then clearly, a
subspace Fc E is stable under each ¢, if and only if it is stable under
each yeA. In particular, the set {¢,} is semisimple if and only if the
algebra A is semisimple.

Theorem II: Let {p,} be a set of commuting semisimple transfor-
mations. Then {¢,} is a semisimple set.

Proof: We first consider the case of a finite set of transformations
@4,-..,¢; and proceed by induction on s. If s=1 the theorem is trivial.
Suppose now it holds for s—1 and assume for the moment that the
minimum polynomial of ¢, is irreducible. Then £ may be considered as a
I' (¢,)-vector space. Since the ¢;(i=2,...,5) commute with ¢, they may
be considered as I'(¢,)-linear transformations (cf. Chap. V, § 3). More-
over, Proposition II, sec. 13.22 implies that the ¢;, considered as I' (¢,)-
linear transformations, are again semisimple.

Now let F; = E be any subspace stable under the ¢;(i=1,...,s). Then
since F; is stable under ¢,, it is a I'(¢,)-subspace of E. Hence, by in-
duction hypothesis, there exists a I' (¢, )-subspace of E, F,, which is stable
under ¢,,...,¢, and such that

E=F1(‘BF2.

Since F, is a I' (¢,)-subspace, it is also stable under ¢, and so it is a
stable subspace complementary to F;.

Let the minimum polynomial u, of ¢, be arbitrary. Since ¢, is semi-
simple, we have that

= fy..-f,  f;irreducible and relatively prime.
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Let
E=E, ®-QE,

be the corresponding decomposition of £ into the generalized eigenspaces
of ¢,.

Now assume that F; < E is a subspace stable under each ¢; (i=1,...,s).

According to sec. 13.19 each E; is stable under each ¢,. It follows that
the subspaces F; N E; are also stable under every ¢, Moreover the re-
strictions of the ¢; to each E; are again semisimple. (cf. sec. 13.22) and in
particular, the restriction of ¢, to E; has as minimum polynomial the
irreducible polynomial f;. Thus it follows that the restrictions of the
@; to E; form a semisimple set, and hence there exist subspaces chEj
which are stable under each ¢; and which satisfy

Ej=(FlnEj)®Fj ji=1...r.
Setting
F,=3YF
J

we have that F, is stable under each ¢;, and that
E = Fl (‘B FZ .

This closes the induction, and completes the proof for the case that the
{@,} are a finite set.

If the set {¢,} is infinite consider the subalgebra A = A (E; E) generated
by the ¢,. Then A is a commutative algebra and hence every subset of 4
consists of commuting transformations. In view of the discussion in the
beginning of this section it is sufficient to construct a semisimple system
of generators for 4. But A is finite dimensional and so has a finite system
of generators. Hence the theorem is reduced to the case of a finite set.

Theorem II has the following converse:

Theorem III: Suppose AcA(E;E)is a commutative semisimple set.
Then for each ¢4, ¢ is a semisimple transformation.

Proof: Let @< A be arbitrary and consider the decomposition

uw=fi.. fF
of its minimum polynomial p. Define a polynomial, g, by
g= fl o fr :

Since the set A4 is commutative, K(g) is stable under every ye 4. Hence
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there exists a subspace E; < E which is stable under every iy € 4 such that

E=K(g)®DE,. (13.63)
Now let
h=fht L
Then we have
h(p)E = K(g).

On the other hand, since E, is stable under 4(p),

h(‘P)El < E,
whence
h(p)E, = K(g)n E; =0.

It follows that E, = K(h).
Now consider the polynomial

p=fit..fIr where I =max(k —1,1).
Since /;>k; —1 it follows that

ple)x=0  xcE, (13.64)

and from /;>1 we obtain that
ple)x=0  xeK(g). (13.65)

In view of (13.63), (13.64) and (13.65) imply that p(¢)=0 and so u|p.
Now it follows that

max(k,—1,1) =k, i=1,...,r
whence

Hence ¢ is semisimple.

Corollary: If @ and y are two commuting semisimple transformations,
then ¢ +y and ¢ are again semisimple.

Proof: Consider the subalgebra 4 < A(E;E) generated by ¢ and y
Then Theorem II implies that A is a semisimple set. Hence it follows
from Theorem III that ¢+ and ¢ are semisimple.

13.26.* The decomposition into semisimple and nilpotent parts.

Theorem IV: Every linear transformation ¢ can be written in the form

Q= 0@s -+ @y

where @ is semisimple and ¢y is nilpotent. ¢sand @y are polynomials in



416 Chapter XIII. Theory of a linear transformation
¢. The minimum polynomials of ¢g and ¢y are given by

Il,s=f1...f,,, ﬂN=tm m=n1.axki.
12
Moreover if
@ =yYs+ Yy
is any decomposition of ¢ into a semisimple and a nilpotent transfor-
mation such that gy =yybs, then

Ys=¢s and yYy=ogy.
Proof: Let
g=fif.
Then according to Lemma II, sec. 12.11 there are polynomials u,we I'[¢]
such that
u+w=t (13.66)
g(u) is divisible by g™ (13.67)

w is divisible by g, but not by f? (i=1...7) (13.68)
Let

ps=u(p) and oy=ow(p).
Then, (13.66), (13.67) and (13.68) imply that

Q= @s+ @y (13.69)
g(ps)=0 (13.70)
pn=0 but @i '+0. (13.71)

Hence ¢g is semisimple and ¢, is nilpotent of degree m. Moreover,
suppose ug is the minimum polynomial for ¢s. Then Taylor’s expansion
yields

ts(@) = pus(@s + o) = ong(0)
and so pg(¢) is nilpotent. It follows from sec. 13.21 that g divides us.

On the other hand, (13.70) shows that ug divides g. It follows that ug=g.
To prove the uniqueness let

¢ =yYs+ Yy (13.72)
be any decomposition of ¢ such that
Ys¥n =Ynys. (13.73)

Then (13.72) and (13.73) imply that ¢ commutes with g and yy. Since
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¢s and @y are polynomials in ¢ it follows that ¢g, @y, g and Yy all
commute. Now the relation

Ps+ oy =V¥s+ Yy
yields

Ps—Ys=Yn— On-

It follows from the Corollary to Theorem III, sec. 13.25 and from sec.
13.21 that ¢g—yg semisimple and ¢y — @y is nilpotent. Thus the Corol-
lary to Proposition I, sec. 13.22 implies that ¢g=y5 and @y =iy.
Corollary: A linear transformation iy: E—» E commutes with ¢ if and
only if it commutes with ¢y and g@y.
Now let ¢ be semisimple, and let f be any polynomial. Then f (@) is
semisimple. In fact, writing

f(@)=f(o)s+ f (o

we have that f(¢)y is a polynomial in f(¢), and hence a polynomial
in ¢@. It follows from Proposition I, sec. 13.22 that f (¢)y=0, and so

f(0)=f(p)s is semisimple.
More generally, let ¢ be arbitrary and write

Q=05+ Qy.
Then
f(os)=f(0)s

i.e., f(¢s) is the semisimple part of f (¢). For the proof we notice that
Taylor’s expansion yields

f (@)= f(os) + ong(o)

where g is some polynomial.

Now ¢y and g(¢) commute, and so @yg(¢) is nilpotent. On the other
hand, f (¢@g) is semisimple since @ is semisimple. Since f (¢5) and oyg (@)
are both polynomials in ¢, they commute. It follows from the uniqueness
part of Theorem TV that f (¢g) is the semisimple part of f (¢),

f(9s) = £ (o)s.

Problems

1. Let ¢ be nilpotent, and let N, be the number of subspaces of di-
mension 4 in a decomposition of E into irreducible subspaces. Prove that

dimkerp =Y N,.
A
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2. Let ¢ be nilpotent of degree k in a 6-dimensional vector space E.
For each k(1 <k <6) determine the possible ranks of ¢ and show that k
and r(¢) determine the numbers N, (cf. problem 1) explicitly. Conclude
that two nilpotent transformations ¢ and y are conjugate if and only if

r(@)=r(¥) and degp=degy.

3. Suppose ¢ is nilpotent and let ¢*: E*«— E* be the dual mapping.
Assume that E is cyclic with respect to ¢ and that ¢ is of degree k. Let
a be a generator of E. Prove that E* is cyclic with respect to ¢* and that
¢* is of degree k. Let a*€ E* be any vector. Show that

a*,¢* 'ay 0

if and only if ¢* is a generator of E*.

4, Prove that a linear transformation ¢ with minimum polynomial g
is diagonalizable if and only if

i) pu is completely reducible

ii) ¢ is semisimple
Show that i) and ii) are equivalent to

=t =)ot =4)

where the A; are distinct scalars.

5. a) Prove that two commuting diagonalizable transformations are
simultaneously diagonalizable; i.e., there exists a basis of E with respect
to which both matrices are diagonal.

b) Use a) to prove that if ¢ and  are commuting semisimple transfor-
mations of a complex space, then ¢+ and ¢y are again semisimple.

6. Suppose ¢ is a linear transformation of a complex space E. Let
E=Y E; be the decomposition of E into generalized eigenspaces, and let

13

7; be the corresponding projection operators. Assume that the minimum
polynomial of the induced transformation ¢;: E;— E; is (t—l,»)"‘. Prove
that the semisimple part of ¢ is given by

‘Ps=2_)~i75i-

7. Let E be a complex vector space and ¢ be a linear transformation
with eigenvalues A,(v=1,...,n), not necessarily distinct. Given an arbi-
trary polynomial f prove directly that the linear transformation f (¢) has
the eigenvalues f(4,) (v=1...n).
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8. Give an example of a semisimple set of linear transformations which
contains transformations that are not semisimple.

9. Let A be an algebra of commuting linear transformations in a
complex space E.

a) Construct a decomposition E=E,; @ ---@E, such that for any e A4,
E, is stable under ¢ and the minimum polynomial of the induced trans-
formation ¢;: E;— E; is of the form

(t = L) .
b) Show that the mapping 4—C given by

- h(p) €4

is a linear function in A4. Prove that A; preserves products and so it is a
homomorphism.
¢) Show that the nilpotent transformations in A form an ideal which is
precisely rad A (cf. chap. V, § 2). Consider the subspace T of L(4)
generated by the 4;. Prove that
rad4=T".

d) Prove that the semisimple transformations in 4 form a subalgebra,
A,. Consider the linear functions A} in A4, obtained by restricting 4; to 4,.
Show that they generate (linearly) the dual space L(4,). Prove that the
mapping A,— 4; is a linear isomorphism. 7-3 L(4,).

10. Assume that E is a complex vector space. Prove that every com-
mutative algebra of semisimple transformations is contained in an »n-
dimensional commutative algebra of semisimple transformations.

11. Calculate the semisimple and nilpotent parts of the linear transfor-
mations of problem 7, § 1.

§6. "Applications to inner product spaces

In this concluding paragraph we shall apply our general decomposition
theorems to inner product spaces. Irreducible decompositions of an inner
product space with respect to selfadjoint mappings, skew mappings and
isometries have already been constructed in chap. VIIL

Generalizing these results we shall now construct an irreducible de-
composition for a normal transformation. Since a complex linear space is
fully reducible with respect to a normal endomorphism (cf. sec. 11.10)
we can restrict ourselves to real inner product spaces.
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13.27. Normal transformations. Let E be an inner product space and
¢@:E—E be a normal transformation (cf. sec. 8.5). It is clear that every
polynomialin ¢ is again normal. Moreover since the rank of ¢* (k=2,3...)
is equal to the rank of ¢, it follows that ¢ is nilpotent only if ¢=0.

Now consider the decomposition of the minimum polynomial into its
prime factors,

p=fl.. fe (13.74)
and the corresponding decomposition of E into the generalized eigen-
Spaces, E=E, ®®E,. (13.75)

Since the projection operators =; associated with the decomposition
(13.75) are polynomials in ¢ they are normal. On the other hand we have
that #7 =, and so it follows from sec. 8.11 that the 7 are selfadjoint. Now
let x;€E; and x;e E; be arbitrary. Then

(x5 %;) = (x5, ;%) = (m;%,,x;) = 0 i*j

i.e., the decomposition (13.75) is orthogonal.

Now consider the induced transformations ¢;: E;— E,. It follows from
sec. 8.5 that the ¢; are again normal and hence so are the transformations
fi(@y). On the other hand, f;(¢,) is nilpotent. It follows that f;(¢,)=0 and
hence all the exponents in (13.74) are equal to 1. Now Theorem I of
sec. 13.22 implies that a normal transformation is semisimple.

Theorem I: Let E be an inner product space. Then a linear transfor-
mation ¢ is normal if and only if

i) the generalized eigenspaces are mutually orthogonal

ii) The restrictions ¢,;:E;— E; are homothetic (cf. sec. 8.19).

Proof: Let ¢ be a normal transformation. It has been shown already
that the spaces E; are mutually orthogonal. Now consider the minimum
polynomial f; of theinduced transformation ¢;. Since f; is irreducible over
R it follows that

fi=t—2  AeR (13.76)
or
fi=P+ot+p, oF—4p,<0  a,pieR. (13.77)

In the first case we have that ¢;=4;1 and so ¢, is homothetic. Now
consider the case (13.77). Then ¢, satisfies the relation

o + @+ Bir=0
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and hence the proof is reduced to showing that a normal transforma-
tion ¢: E— E which satisfies

*+ap+B1=0 a?—4<0 (13.78)
is a homothetic.
We prove first that @ —¢ is regular. In fact, let K be the kernel of —¢.
If zeK is an arbitrary vector, we have that ¢z=¢@z whence

Plez)=(p@)z=(0d)z=0(pz)=¢(¢2z).

It follows that X is stable under ¢ and hence stable under . Clearly the

restriction of ¢ to K is selfadjoint. Hence, if K+0, ¢ has an eigenvector in

K which contradicts the hypothesis a? —4f <0. Consequently, K=0.
Equation (13.78) implies that

p*+ap+p=0. (13.79)

Multiplying (13.78) and (13.79) respectively by ¢ and ¢ and subtracting
we find that

(Pe—B1)(p—0)=0

whence, in view of the regularity of § —¢,

po=2p1. (13.80)
Define a transformation 7 by
T = i 103
JB
(notice that a®> —48 <0 implies that §>0). Then (13.80) yields fr=1 and
so 7 is a rotation. This proves that every normal mapping satisfies i) and
ii). The converse follows immediately from sec. 8.5.
Corollary I: If ¢ is a normal transformation then the orthogonal
complement of a stable subspace is stable.
Proof: Let F be a stable subspace. In view of sec. 13.7 we have that

F=E nF® -®EnnF.

Clearly the subspace E;n F is stable under the restriction ¢, of ¢ to E,.
Since ¢; is homothetic it follows that the orthogonal complement H, of
E;n Fin E; is again stable under ¢;. Hence, the space H= ZH is stable
under ¢. On the other hand the equations

E,=(E,n F)®H,
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yield
E=F@H H=F".

Hence F* is a stable subspace.

As an immediate consequence of Theorem I we obtain

Theorem II: Let E be an inner product space. Then a linear transfor-
mation ¢ is normal if and only if E can be written as the sum of mutually
orthogonal irreducible subspaces such that the restriction of ¢ to
every subspace is homothetic.

13.28. Semisimple transformations of a real vector space. In sec. 13.27
it has been shown that every normal transformation of an inner product
space is semisimple. Conversely, let ¢:E—E be a semisimple transfor-
mation of a real vector space. Then a positive definite inner product can
be introduced in E such that ¢ becomes a normal mapping. To prove this

let E =2Fj
J

be a decomposition of E into irreducible subspaces. In view of Theorem
IT it is sufficient to define a positive inner product in each F; such that the
restrictions @; of ¢ to F; are homothetic. In fact, we simply extend these
inner products to an inner product in E such that the F; are mutually
orthogonal.

Now let F be one of the irreducible subspaces. Since ¢ is semisimple,
F has dimension 1 or 2. If dim F=1 we choose the inner product in F
arbitrarily. If dim F=2 there exists a basis @, b in F such that

pa=b, ob=—fa—abd
(cf. sec. 13.15). Define the inner product by

(a,0) =1, (a,b)=—;, (b,b) = B.

Then we have for every vector
x=E&a+nb
of F that

(x,x)=E* —aln+ Bn*.

Since a? —4B<0 it follows that (x, x)=0 and equality holds only for
x=0. Moreover, since

(<pa,<pa)=ﬁ=ﬁ(a,a),(<pa,rpb)=—Ezf=ﬂ(a’b),
and (@b,¢b)=p*=p(b,b)
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it follows that
lex|*=p|x|* xeF.

This equation shows that ¢ is homothetic and so the proof is complete.

13.29. Lorentz-transformations. As a second example we shall con-
struct an irreducible decomposition of the Minkowski-space with respect
to a Lorentz-transformation ¢ (cf. sec. 9.27). For the sake of simplicity
we assume that the Lorentz-transformation is proper orthochroneous.
The condition p=¢ ! implies that the inverse of every eigenvalue is
again an eigenvalue. Since there exists at least one eigenvalue (cf. sec.
9.27) the minimum polynomial, u, of ¢ has at least one real root. Now we
distinguish three cases:

I. The minimum polynomial x4 contains a prime-factor

P4+at+B o —48<0
of second degree. Then consider the mapping
=0’ +op + p1.

The kernel of 7 is a stable subspace F of even dimension and containing
no eigenvectors. Since ¢ has an eigenvector in E, E4F. Thus F has
necessarily dimension 2 and hence it is a plane. The intersection of the
plane F and the light-cone consists of two straight lines, one straight line,
or the point O only. The two first cases are impossible because the plane F
does not contain eigenvectors. Thus the inner product must be positive
definite in F and the induced transformation ¢, is a proper Euclidean
rotation. (An improper rotation of F would have eigenvectors). Now
consider the orthogonal complement F*. The restriction of the inner
product to F* has index 1. Hence F* is a pseudo-Euclidean plane. Denote
by @, the induced transformation of F*. The equation

detg = det @, det ¢,

implies that det ¢, = +1, showing that ¢, is a proper pseudo-Euclidean
rotation. Choosing orthonormal bases in F and in F* we obtain an
orthonormal basis of E in which the matrix of ¢ has the form

cosw sinw 0
—sinw cosw

coshf sinh@

0 sinh® coshd
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I1. The minimum polynomial is completely redacible, and not all its

1
roots are equal to 1. Then ¢ has eigenvalues A1 and - #1 Lete and e’
be corresponding eigenvectors
1
e=le e =-e.
¢ ¢ 1
The condition A1 implies that e and e’ are light-vectors. These vectors

are linearly independent, whence (e,e’)#0 (cf. sec. 9.21). Let F be the
plane generated by e and e’ and let

z=¢%e+ne
be any vector of F. Then

(z,2) =2(e, )&
This equation shows that the induced inner product has index 1. The
orthogonal complement F* is therefore a Euclidean plane and the in-
duced mapping is a Euclidean rotation. The angle of this rotation must be
0 or z, because otherwise the minimum polynomial of ¢ would contain an
irreducible factor of second degree. Select orthonormal bases in Fand F*.
These two bases form an orthonormal basis of E in which the matrix of ¢
has the form
coshf sinhf 0
sinhf cosh@ 0+0
e 0 e==+1
0 0 ¢
I11. The minimum polynomial of ¢ has the form
=(t-1 (1<k<4).

If k=1, ¢ reduces to the identity map. Next, it will be shown that the
case k=2 is impossible. If k=2, applying ¢ "' to the equation (¢ —1)>=0
yields
e+ o=2
whence
(x,px)=(x,x) x€E.

Inserting a light-vector I for x we see that (/,/)=0. But two light-vectors
can be orthogonal only if they are linearly dependent. We thus obtain
¢@l=Al. Since ¢ does not have eigenvalues 11, it follows that /=1 for
all light-vectors /. But this implies that ¢ is the identity. Hence the
minimal polynomial is £ —1 in contradiction to our assumption k=2,
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Now consider the case k>3. As it has been shown in sec. 9.27 there
exists an eigenvector e on the light-cone. The orthogonal complement E;
of e is a 3-dimensional subspace of E which contains the light-vector e.
The induced inner product has product has rank and index 2 (cf. sec.
9.21). Let F be a 2-dimensional subspace of E in which the inner product
is positive definite. Selecting an orthonormal basis e, e, in F we can write

Qe =e,cosw + e;sinw + a; e
Qe,=—e;Sinw + e,cosw + aye (13.81)
pe=e.

The coefficients «; and «, are not both zero. In fact, if #; =0 and a,=0
the plane F is invariant under ¢ and we have the direct decomposition
E=F®F" of E into two 2-dimensional invariant subspaces. This would
imply that k<2.

Now consider the characteristic polynomial y; of the induced mapping
¢.:E;—»E,. Computing the characteristic polynomial from the matrix
(13.81) we find that

x1 = —2tcosw + 1)(1 —1). (13.82)

At the same time we know that
= (1— t)3. (13.83)

Comparing the polynomials (13.82) and (13.83) we find that w=0. Hence,
equations (13.81) reduce to
e, =e +ae
Pe, =¢e, + e
pe=ce.
Now consider the vector
y=gaye; —%e;.
Then
(ny)=ei+a3>0
and
py=0a,0e —,pe; =a,(e; +ae)—ay(e; +ae)=y.

In other words, y is a space-like eigenvector of ¢. Denote by Y the
I-dimensional subspace generated by y. Then we have the orthogonal
decomposition

E=Y®Y"

into two invariant subspaces. The orthogonal complement Y*is a 3-
dimensional pseudo-Euclidean space with index 2.
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Thesubspace Y™ is irreducible with respect to ¢. This follows from our
hypothesis that the degree of the minimal polynomial u is >3. At the
same time we see that u can not have degree 4 because then the space E
would be irreducible.

Combining our results we see that the decomposition of a Minkowski-
space with respect to a proper orthochroneous Lorentz-transformation ¢
has one of the following forms:

I. E is completely reducible. Then ¢ is the identity.

II. E is the direct sum of an invariant Euclidean plane and an in-
variant pseudo-Euclidean plane. These planes are irreducible except for
the case where the induced mappings are +1 (Euclidean plane) or 1
(pseudo-Eudidean plane)

III. E is the direct sum of a space-like 1-dimensional stable subspace
(eigenvalue 1) and an irreducible subspace of dimension 3 and index 2.

Problems

1. Suppose E is an n-dimensional vector space over I". Assume that a
symmetric bilinear function Ex E—I is defined such that {x, x> 0
whenever x %0.

a) Prove that {, ) is a scalar product.

b) If F< E is a subspace show that

E=F®F'.

c) Suppose ¢:FE—E is a linear transformation such that p¢*=¢*e.
Prove that ¢ is semisimple.

2. Let ¢ be a linear transformation of a unitary space. Prove that ¢ is
normal if and only if for some polynomial f

p=r(e)-

3. Suppose ¢ is a linear transformation of a complex vector space such
that ¢*=1 for some integer k. Show that E can be made into a unitary
space such that ¢ becomes a unitary mapping.

4. Let Ebe a real linear space and let ¢ be a linear transformation of E.
Prove that a positive definite inner product can be introduced in E such
that ¢ becomes a normal mapping if and only if the following conditions
are satisfied:

a) The space Ecanbe decomposedintoinvariantsubspaces of dimension
1 and 2.
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b) If 7 is the induced mapping in an irreducible subspace of dimension
2, then

}(tr7)? — dett < 0.

5. Consider a 3-dimensional pseudo-Euclidean space F with the index
2. Let [; (i=1, 2, 3) be three light-vectors such that

Define a linear transformation, ¢, by the equations

ply=1
ely=a(a—1)1; +al, + (1 —a)ly a1
ely=(@-2) -1l +(a—1)L+(2—a)l;.

Prove that ¢ is a rotation and that E is irreducible with respect ¢.

6. Show that a real 3-dimensional vector space cannot be irreducible
with respect to a semisimple linear transformation. Conclude that the
pseudo-Euclidean rotation of problem 5 is not semisimple. Use this to
show that a linear transformation in a self dual space which satisfies
@@*=@*@ is not necessarily semisimple (cf. problem 1).

7. Let a Lorentz-transformation ¢ be defined by the matrix

-~

1 2 5
- 2 -1 ==
2 3 6
2 1 4 10
3 9 3 9
p Ut 1 5

3 3
5 10 5 43
6 9 318

Construct a decomposition of E into irreducible subspaces.

8. Consider the group G of Lorentz transformations.

Let e be a time-like unit vector and F be the orthogonal complement of
e. Consider the subgroup H< G consisting of all Lorentz transformations
¢ such that o H=H.

a) Prove that H is a compact subgroup.

b) Prove that H is not properly contained in a compact subgroup of G.

Hint: Show first that if XK is a compact subgroup of G and @eXK, then
every real eigenvalue of @ is + 1.
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