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Chapter 0

Preface: Algebra and Geometry

Syzygy, ancient Greek συζυγια: yoke, pair, copulation, conjunction—OED

This book describes some aspects of the relation between the geometry of
projective algebraic varieties and the algebra of their equations. It is intended
as a (rather algebraic) second course in algebraic geometry and commutative
algebra, such as I have taught at Brandeis University, the Intitut Poincaré
in Paris, and Berkeley.

Implicit in the very name Algebraic Geometry is the relation between geome-
try and equations. The qualitative study of systems of polynomial equations
is also the fundamental subject of Commutative Algebra. But when we ac-
tually study algebraic varieties or rings, we often know a great deal before
finding out anything about their equations. Conversely, given a system of
equations, it can be extremely difficult to analyze the geometry of the corre-
sponding variety or their other qualitative properties. Nevertheless, there is
a growing body of results relating fundamental properties in Algebraic Ge-
ometry and Commutative Algebra to the structure of equations. The theory
of syzygies offers a microscope for enlarging our view of equations.

This book is concerned with the qualitative geometric theory of syzygies:
it describes some aspects of the geometry of a projective variety that cor-
respond to the numbers and degrees of its syzygies or to its having some
structural property such as being determinantal, or more generally having a
free resolution with some particularly simple structure.

xi



xii CHAPTER 0. PREFACE: ALGEBRA AND GEOMETRY

0A What are syzygies?

In algebraic geometry over a field K we study the geometry of varieties
through properties of the polynomial ring S = K[x0, . . . , xr] and its ideals.
It turns out that to study ideals effectively we we also need to study more
general graded modules over S. The simplest way to describe a module is
by generators and relations. We may think of a set M ⊂ M of generators
for an S-module M as a map from a free S-module F = SM onto M sending
the basis element of F corresponding to a generator m ∈ M to the element
m ∈ M . When M is graded, we keep the grading in view by insisting that
the chosen generators be homogeneous.

Let M1 be the kernel of the map F →M ; it is called the module of syzygies
of M (corresponding to the given choice of generators), and a syzygy of M
is an element of M1–that is, a linear relation, with coefficients in S, on the
chosen generators. (The use of the word syzygy in this context seems to go
back to Sylvester [Sylvester 1853]. Already in the 17-th century the word was
used in science to denote the relation of astonomical bodies in alignment, and
earlier still it was a Greek agricultural term referring to the yoking of oxen.)
When we give M by generators and relations, we are choosing generators for
M and generators for the module of syzygies of M .

If we were working over the polynomial ring in one variable, r = 0, then
the module of syzygies would itself be a free module (over a principal ideal
domain every submodule of a free module is free). But when r > 0 it may be
the case that any set of generators of the module of syzygies has relations.
To understand them, we proceed as before: we choose a generating set of
syzygies and use them to define a map from a new free module, say F1, onto
M1, equivalently, we give a map φ1 : F1 → F whose image is M1. Continuing
in this way we get a free resolution of M , that is a sequence of maps

· · · - F2
φ2- F1

φ1- F - M - 0

where all the modules Fi are free and each map is a surjection onto the kernel
of the following map. The image Mi of φi is called the i-th module of syzygies
of M .

In projective geometry we treat S as a graded ring by giving each variable xi
degree 1, and we will be interested in the case where M is a finitely generated
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graded S-module. In this case we can choose a minimal set of homogeneous
generators for M , and we choose the degrees of the generators of F1 so that
the map F1 →M preserves degrees. The syzygy module M1 is then a graded
submodule of F ; and Hilbert’s Basis Theorem tells us thatM1 is again finitely
generated, so we may repeat the procedure. Hilbert’s Syzygy Theorem tells
us that the modules Mi are free as soon as i ≥ r.

The free resolution of M appears to depend strongly on our initial choice
of generators for M , as well as the subsequent choices of generators of M1,
and so on. But if M is a finitely generated graded module, and we choose
a minimal set of generators for M (that is, one with the smallest possible
cardinality), then M1 is, up to isomorphism, independent of the minimal set
of generators chosen. It follows that if we choose minimal sets of generators
at each stage in the construction of a free resolution we get a minimal free
resolution of M that is, up to isomorphism, independent of all the choices
made. Since, by the Hilbert Syzygy Theorem, Mi is free for i > r, we see
that Fi = 0 for i > r+1. In this sense the minimal free resolution is finite: it
has length at most r+ 1. Moreover, any free resolution of M can be derived
from the minimal one in a simple way.

0B The Geometric Content of Syzygies

The minimal, finite free resolution of a module M is a good tool for extract-
ing information about M . For example, Hilbert’s original application (the
motivation for his results quoted above) was to a simple formula for the di-
mension of the d-th graded component of M as a function of d. He showed
that the function d 7→ dimK Md, now called the Hilbert function of M , agrees
for large d with a polynomial function of d. The coefficients of this polyno-
mial are among the most important invariants of the module: for example, if
X ⊂ Pr is a curve, then the Hilbert Polynomial of the homogeneous coordi-
nate ring SX of X is deg(X) · d+ (1− genus(X)), whose coefficients deg(X)
and 1 − genus(X) give a topological classification of the embedded curve.
Hilbert originally studied free resolutions because their discrete invariants,
the graded Betti numbers, determine the Hilbert function (see Chapter 1).

But the graded Betti numbers contain significantly more information than
the Hilbert function. A typical example for points is the case of seven points
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in P3, described in Section 2B: every set of 7 points in P3 in linearly general
position has the same Hilbert function, but the graded Betti numbers of the
ideal of the points tell us whether the points lie on a rational normal curve.

Most of this book is concerned with examples one dimension higher: we study
the graded Betti numbers of the ideals of a projective curve, and relate them
to the geometric properties of the curve. To take just one example from
those we will explore, Green’s Conjecture (partly still open) says that the
graded Betti numbers of the ideal of a canonically embedded curve tell us
the Clifford index of the curve (the Clifford index of “most” curves X is 2 less
than the minimal degree of a map X → P1). This circle of ideas is described
in Chapter 9.

Some work has been done on syzygies of higher-dimensional varieties too,
though this subject is less well-developed. Syzygies are important in the
study of embeddings of Abelian varieties, and thus in the study of moduli of
abelian varieties (for example citez****). They currently play a part in the
study of surfaces of low codimension (for example [?]), and other questions****
about surfaces (for example [?]). They have also been used in the study ofgallego-purna
Calabi-Yau varieties (for example [?]).****

((complete this section!))

0C What does it mean to solve linear equa-

tions?

Free resolutions appear naturally in another context, too. To set the stage,
consider a system of linear equations A · X = 0 where A is a p × q matrix
of elements of K. Suppose we find some solution vectors X1, . . . , Xn. These
vectors constitute a complete solution to the equations if every solution vector
can be expressed as a linear combination of them. Elementary linear algebra
shows that there are complete solutions consisting of (q−rankA) independent
vectors. Moreover, there is a powerful test for completeness: A given system
of solutions {Xi} is complete if and only if it contains (q−rankA) independent
vectors.

In modern language, solutions of a system of equations are elements of the
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of the kernel of a linear map of vector spaces A : F1 = Kq → F0 = Kp. The
existence of a linearly independent set of solutions means that there exists
an exact sequence

0 → F2
X- F1

A- F0.

The criterion says that a complex

F2
X- F1

A- F0

is exact if and only if rankA+ rankX = rankF1.

Suppose now that the elements of A vary as polynomial functions of some
data x0, . . . , xr, and we need to find solution vectors whose entries also vary
as polynomial functions. Given a set X1, . . . Xn of vectors of polynomials
that are solutions to the equations A ·X = 0, we ask whether every solution
can be written as a linear combination of the Xi with polynomial coefficients.
If so we say that the system of solutions is complete. The solutions are once
again elements of the kernel of the map A : F1 = Sq → F0 = Sp, and
a complete system of solutions is a set of generators of the kernel. Thus
Hilbert’s Basis Theorem implies that there do exist finite complete systems
of solutions. However, it might be the case that every complete system of
solutions is linearly dependent (the syzygy module M1 = kerA is not free.)
Thus to understand the solutions we must compute the dependency relations
on them, and then the dependency relations on these. This is precisely a free
resolution of the cokernel of A. When we think of solving a system of linear
equations, we should think of the whole free resolution.

One reward for this point of view is a criterion analogous to the rank criterion
given above for the completeness of a system of solutions. We know no simple
criterion for the completeness of a given system of solutions to a system of
linear equations over S—that is, for the exactness of a complex of free S-
modules F2 → F1 → F0. However, if we consider a whole free resolution, the
situation is better: a complex

0 → Fm
φm- · · · φ2- F1

φ1- F0

of matrices of polynomial functions is exact if and only if the ranks ri of the
φi satisfy the conditions ri + ri−1 = rankFi as in the case where S is a field,
and the set of points p ∈ Kr+1 such that evaluated matrix φi|x=p has rank
< ri has codimension ≥ i for each i (see Theorem 3.4 below.)
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0D Experiment and Computation

A qualitative understanding of equations also makes algebraic geometry more
accessible to experiment: when it is possible to test geometric properties
using their equations, it becomes possible to make constructions and decide
their structure by computer. Sometimes unexpected patterns and regularities
emerge and lead to surprising conjectures. The experimental method is a
useful addition to the method of guessing new theorems by extrapolating
from old ones. I personally owe some of the theorems of which I’m proudest to
experiment. Number theory is provides a good example of how this principle
can operate: experiment is much easier in number theory than in algebraic
geometry, and this is one of the reasons that number theory subject is so
richly endowed with marvelous and difficult conjectures. The conjectures
discovered by experiment can be trivial or very difficult; they usually come
with no pedigree suggesting methods for proof. As in physics, chemistry
or biology, there is art involved in inventing feasible experiments that have
useful answers.

A good example where experiments with syzygies were useful in algebraic
geometry is the study of surfaces of low degree in projective 4-space, as in
work of Aure, Decker, Hulek, Popescu and Ranestad [Aure et al. 1997] and
in work on Fano manifolds such as that of of Schreyer [Schreyer 2001], or
the applications surveyed in Schreyer and Decker [Decker and Schreyer 2001]
[Eisenbud et al. 2002a]. The idea, roughly, is to deduce the form of the
equations from the geometric properties that the varieties are supposed to
possess, guess at sets of equations with this structure, and then prove that the
guessed equations represent actual varieties. Syzygies were also crucial in my
work with Joe Harris on algebraic curves. Many further examples of this sort
could be given within algebraic geometry, and there are still more examples
in commutative algebra and other related areas, such as those described in
the Macaulay 2 Book [Decker and Eisenbud 2002].

Computation in algebraic geometry is itself an interesting field of study, not
covered in this book. Computational techniques have developed a great deal
in recent years, and there are now at least three powerful programs devoted
to them: CoCoA, Macaulay2, and Singular 1. Despite these advances, it will

1These are freely available for many platforms, at the websites
http://cocoa.dima.unige.it, http://www.math.uiuc.edu/Macaulay2 and
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always be easy to give sets of equations which render our best algorithms
and biggest machines useless, so the qualitative theory remains essential.

A useful adjunct to this book would be a study of the construction of Gröbner
bases which underlies these tools, perhaps from my book [Eisenbud 1995,
Chapter 15], and the use of one of these computing platforms. The books
[Greuel and Pfister 2002] and [Kreuzer and Robbiano 2000], and for projective
geometry, the forthcoming book of Decker and Schreyer [Decker and Schreyer
≥ 2003] will be very helpful.

0E What’s In This Book?

The first chapter of this book is introductory—it explains the ideas of Hilbert
that give the definitive link between the syzygies and the Hilbert function.
This is the origin of the modern theory of syzygies. This chapter also in-
troduces the basic discrete invariants of resolution, the graded Betti numbers
and the convenient Betti diagrams for displaying them.

At this stage we still have no tools for showing that a given complex is a
resolution, and in Chapter 2 we remedy this lack with a simple but very ef-
fective idea of Bayer, Peeva, and Sturmfels for describing resolutions in terms
of labeled simplicial complexes. With this tool we prove the Hilbert syzygy
theorem and, and we also introduce Koszul homology. We then spend some
time on the example of seven points in P3, where we see a deep connection
between syzygies and an important invariant of the positions of the seven
points.

In the next chapter we explore an example in which we can say a great deal
(though much research continues): sets of points in P2. Here we characterize
all possible resolutions, and we derive some invariants of point sets from the
structure of syzygies.

The following Chapter Chapter 4 introduces a basic invariant of the reso-
lution, coarser than the graded Betti numbers: the Castelnuovo-Mumford
regularity. This is a topic of central importance for the rest of the book, and

http://www.singular.uni-kl.de respectively. These web sites are also good sources
of further information and references
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a very active one for research. The goal of Chapter 4 however is modest:
we show that in the setting of sets of points in Pr the Castelnuovo-Mumford
regularity is essetially just the degree needed to interpolate any function as a
polynomial function. We also explore different characterizations of the regu-
larity, in terms of local or Zariski cohomology, and use them to prove some
basic results used later.

Chapter 5 is devoted to the most important result on Castelnuovo-Mumford
regularity to date, the Castelnuovo-Mattuck-Mumford-Gruson-Lazarsfeld-
Peskine theorem bounding the regularity of projective curves. The techniques
introduced here reappear many times later in the book.

The next Chapter returns to examples. We develop enough material about
linear series to explain the free resolutions of all the curves of genus 0 and 1
in complete embeddings. This material can be generalized to deal with nice
embeddings of any hyperelliptic curve and beyond.

Chapter 7 is again devoted to a major result: Green’s Linear Syzygy theo-
rem. The proof involves us with exterior algebra constructions that can be
organized around the Bernstein-Gel’fand-Gel’fand correspondence, and we
spend a section at the end of the chapter 7 exploring this tool.

Chapter 8 is in many ways the culmination of the book. In it we describe
(and in most cases prove) the results that are the current state of knowledge
of the syzygies of the ideal of a curve embedded by a complete linear series of
high degree—that is, degree greater than twice the genus of the curve. Many
new techniques are needed, and many old ones resurface from earlier in the
book. The results directly generalize the picture, worked out much more
explicitly, of the embeddings of curves of genus 1 and 2. We also present the
conjectures of Green and Lazarsfeld extending what we can prove.

No book on syzygies written at this time could omit a description of Green’s
conjecture, which has been a well-spring of ideas and motivation for the whole
area. This is treated in Chapter 9. However, in another sense the time is
the worst possible for writing about the conjecture, as major new results,
recently proven, are still unpublished. These results will leave the state of
the problem greatly advanced but still far from complete. It’s clear that
another book will have to be written some day. . . .

Finally, I have included two appendices to help the reader: one, in Chapter
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10 where we explain local cohomology and its relation to sheaf cohomology,
and one (Chapter 11) in which we try to survey, without proofs, the relevant
commutative algebra. ((these should probably be appendix numbers,
not chapter numbers)) I can perhaps claim (for the moment) to have
written the longest exposition of commutative algebra in [Eisenbud 1995];
with this second appendix I would like to claim also to have written the
shortest!

0F Prerequisites

The ideal preparation for reading these notes is a first course on algebraic
geometry (a little bit about curves and about the cohomology of sheaves on
projective space is plenty) and a first course on commutative algebra, with
an emphasis on the homological side of the field. I have included an appendix
proving all that is needed about local cohomology (and a little more). It is
unusual in that it leans on an introductory knowledge of sheaf cohomology.
To help the reader cope with the commutative algebra required, there is
a second appendix summarizing the relevant notions and results. Taking
[Eisenbud 1995] into account, perhaps now I have written both the longest
and the shortest introduction to this field!

0G How did this book come about?

These notes originated in a course I gave at the Institut Poincaré in Paris, in
1996. The course was presented in my rather imperfect French, but this flaw
was corrected by three of my auditors, Freddy Bonnin, Clément Caubel, and
Hèléne Maugendre. They wrote up notes and added a lot of polish.

I have recently been working on a number of projects connected with the
exterior algebra, partly motivated by the work of Green described in Chapter
7. This led me to offer a course on the subject again in the Fall of 2001, at
the University of California, Berkeley. I rewrote the notes completely and
added many topics and results, including material about exterior algebras
and the Bernstein-Gel’fand-Gel’fand correspondence.
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0H Other Books

Free resolutions appear in many places, and play an important role in books
such as [Eisenbud 1995], [Bruns and Herzog 1998], and [Miller and Sturmfels
≥ 2003]. There are at least two book-length treatments focussing on them
specifically, [Northcott 1976] and [Evans and Griffith 1985]. See also [Cox
et al. 1997].

0I Thanks

I’ve worked on the things presented here with some wonderful mathemati-
cians, and I’ve had the good fortune to teach a group of PhD students and
postdocs who have taught me as much as I’ve taught them. I’m particularly
grateful to Dave Bayer, David Buchsbaum, Joe Harris, Jee Heub Koh, Mark
Green, Irena Peeva, Sorin Popescu, Frank Schreyer, Mike Stillman, Bernd
Sturmfels, Jerzy Weyman and Sergey Yuzvinsky for the fun we’ve shared
while exploring this terrain.

I’m also grateful to Arthur Weiss, Eric Babson, Baohua Fu, Leah Gold,
George Kirkup, Pat Perkins Emma Previato, Hal Schenck, Jessica Sidman,
Greg Smith, Rekha Thomas and Simon Turner who read parts of earlier
versions of this text and pointed out infinitely many of the infinitely many
things that needed fixing.

0J Notation

Throughout the text K will denote an arbitrary field; S = K[x0, . . . , xr]
will denote a polynomial ring; and m = (x0, . . . , xr) ⊂ S will denote its
homogeneous maximal ideal. Sometimes when r is small we will rename the
variables and write, for example, S = K[x, y, z].
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Chapter 1

Free resolutions and Hilbert
functions

A minimal free resolution is an invariant associated to a graded module over
a ring graded by the natural numbers N, or more generally by Nn. In this
book we study minimal free resolutions of finitely generated graded modules
in the case where the ring is a polynomial ring S = K[x0, . . . , xr] over a field
K, graded by N with each variable in degree 1. This study is motivated
primarily by questions from projective geometry. The information provided
by free resolutions is a refinement of the information provided by the Hilbert
polynomial and Hilbert function. In this chapter we define all these objects
and explain their relationships.

1A Hilbert’s contributions

1A.1 The generation of invariants

As all roads lead to Rome, so I find in my own case at least
that all algebraic inquiries, sooner or later, end at the Capitol
of modern algebra, over whose shining portal is inscribed The
Theory of Invariants.

—J. J. Sylvester, 1864

3
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In the second half of the nineteenth century, invariant theory stood at the
center of algebra. It originated in a desire to define properties of an equa-
tion, or of a curve defined by an equation, that were invariant under some
geometrically defined set of transformations and that could be expressed in
terms of a polynomial function of the coefficients of the equation. The most
classical example is the discriminant of a polynomial in one variable. It is
a polynomial function of the coefficients that does not change under linear
changes of variable and whose vanishing is the condition for the polynomial
to have multiple roots. This example had been studied since Leibniz’ work in
1693: it was part of the motivation for Leibniz’ invention of matrix notation
and determinants around 1693 [Leibniz 1962, Letter to l’Hôpital, April 28
1693, p. 239]. A host of new examples had become important with the rise
of complex projective plane geometry in the early nineteenth century.

The general setting is easy to describe: if a group G acts by linear trans-
formations on a finite-dimensional vector space W over a field K, then the
action extends uniquely to the ring S of polynomials whose variables are a
basis for W . The fundamental problem of invariant theory was to prove in
good cases—for example when K has characteristic zero and G is a finite
group or a special linear group—that the ring of invariant functions SG is
finitely generated as a K-algebra: every invariant function can be expressed
as a polynomial in a finite generating set of invariant functions. This had
been proved, in a number of special cases, by explicitly finding finite sets of
generators.

The typical nineteenth-century paper on invariants was full of difficult com-
putations, and had as goal to compute explicitly a finite set of invariants
generating all the invariants of a particular representation of a particular
group. David Hilbert changed the landscape of the theory forever in his
papers on Invariant theory ([Hilbert 1978] or [Hilbert 1970]), the work that
first brought him major recognition. He proved that the ring of invariants
is finitely generated for a wide class of groups including those his contem-
poraries were studying and many more. Most amazing, he did this by an
existential argument that avoided hard calculation. In fact, he did not com-
pute a single new invariant. An idea of his proof is given in [Eisenbud 1995,
Chapter 1] The really new ingredient was what is now called the Hilbert Ba-
sis Theorem, which says that submodules of finitely generated S-modules are
finitely generated.
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1A.2 The study of syzygies

Hilbert studied syzygies in order to show that the generating function for the
number of invariants of each degree is a rational function [Hilbert 1993]. He
also showed that if I is a homogeneous ideal of the polynomial ring S, then
the “number of independent linear conditions for a form of degree d in S to
lie in I” is a polynomial function of d [Hilbert 1970, p. 236]. 1

Our primary focus is on the homogeneous coordinate rings of projective vari-
eties and the modules over them, so we adapt our notation to this end. Recall
that the homogeneous coordinate ring of the projective r-space Pr = Pr

K is
the polynomial ring S = K[x0, . . . , xr] in r + 1 variables over a field K, with
all variables of degree 1. Let M = ⊕d∈ZMd be a finitely generated graded
S-module with d-th graded component Md. Because M is finitely gener-
ated, each Md is a finite dimensional vector space, and we define the Hilbert
function of M to be

HM(d) = dimK(Md).

Hilbert had the idea of computingHM(d) by comparingM with free modules,
using a free resolution. For any graded module M we denote by M(a) the
module M “shifted by a” so that M(a)d = Ma+d. Thus for example the free
S-module of rank 1 generated by an element of degree a is S(−a). Given
homogeneous elements mi ∈M of degree ai that generate M as an S-module,
we may define a map from the graded free module F0 = ⊕iS(−ai) onto M
by sending the i-th generator to mi. (In this text a map of graded modules
means a degree-preserving map, and we need the twists to make this true.)
Let M1 ⊂ F0 be the kernel of this map F0 → M . By the Hilbert Basis
Theorem, M1 is also a finitely generated module. The elements of M1 are

1The problem of counting the number of conditions had already been considered for
some time; it arose both in projective geometry and in invariant theory. A general state-
ment of the problem, with a clear understanding of the role of syzygies—but without
the word, introduced a few years later by Sylvester [Sylvester 1853]—is given by Cayley
[Cayley 1847], who also reviews some of the earlier literature and the mistakes made in
it. Like Hilbert, Cayley was interested in syzygies (and higher syzygies too) because they
let him count the number of forms in the ideal generated by a given set of forms. He was
well aware that the syzygies form a module (in our sense). But unlike Hilbert, Cayley
seems concerned with this module only one degree at a time, not in its totality. Thus,
for example, Cayley did not raise the question of finite generation that is at the center of
Hilbert’s work.
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called syzygies on the generators mi, or simply syzygies of M .

Choosing finitely many homogeneous syzygies that generate M1, we may
define a map from a graded free module F1 to F0 with image M1. Continuing
in this way we construct a sequence of maps of graded free resolution, called
a graded free resolution of M .

· · · - Fi
ϕi- Fi−1

- · · · - F1
ϕ1- F0.

It is an exact sequence of degree 0 maps between graded free modules such
that the cokernel of ϕ1 is M . Since the ϕi preserve degrees, we get an exact
sequence of finite dimensional vector spaces by taking the degree d part of
each module in this sequence, which suggests writing

HM(d) =
∑
i

(−1)iHFi
(d).

This sum might be useless—or even meaningless—if it were infinite, but
Hilbert showed that it can be made finite.

Theorem 1.1. (Hilbert Syzygy Theorem) Any finitely generated graded
S-module M has a finite graded free resolution

0 - Fm
ϕm- Fm−1

- · · · - F1
ϕ1- F0.

Moreover, we may take m ≤ r + 1, the number of variables in S.

We will prove Theorem 1.1 in Section 2A.3.

As first examples we take, as did Hilbert, three complexes that form the
beginning of the most important, and simplest, family of free resolutions.
They are now called Koszul complexes: ((these are too small, and the
lines are too close together; but I do want them each to fit on one
line if possible))

K(x0) : 0 - S(−1)
(x0)- S

K(x0, x1) : 0 - S(−2)

(
x1

−x0

)
- S2(−1)

(x0 x1)- S

K(x0, x1, x2) : 0 - S(−3)

(
x0

x1

x2

)
- S3(−2)

(
0 x2 −x1

−x2 0 x0

x1 −x0 0

)
- S3(−1)

(x0 x1 x2)- S.
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The first of these is obviously a resolution of S/(x0). It is quite easy to prove
that the second is a resolution—see Exercise 1.1. It is not hard to prove
directly that the third is a resolution, but we will do it with a technique
developed in the first half of Chapter 2.

1A.3 The Hilbert function becomes polynomial

From a free resolution of M we can compute the Hilbert function of M
explicitly.

Corollary 1.2. Suppose that S = K[x0, . . . , xr] is a polynomial ring. If the
graded S-module M has finite free resolution

0 - Fm
ϕm- Fm−1

- · · · - F1
ϕ1- F0,

with each Fi a finitely generated free module Fi = ⊕jS(−ai,j) then

HM(d) =
m∑
i=0

(−1)i
∑
j

(
r + d− ai,j

r

)
.

If we allow the variables to have different degrees, HM(t) becomes, for large
t, a polynomial with coefficients that are periodic in t. See Exercise 1.7 for
details.

Proof. We haveHM(d) =
∑m
i=0(−1)iHFi

(d), so it suffices to show thatHFi
(d) =∑

j

(
r+d−ai,j

r

)
. Decomposing Fi as a direct sum, it even suffices to show that

HS(−a)(d) =
(
r+d−a
r

)
. Shifting back, it suffices to show that HS(d) =

(
r+d
r

)
.

This basic combinatorial identity may be proved quickly as follows: a mono-
mial of degree d is specified by the sequence of indices of its factors, which
may be ordered to make a weakly increasing sequence of d integers, each be-
tween 0 and r. For example, we could specify x3

1x
2
3 by the sequence 1, 1, 1, 3, 3.

Adding i to the i-th element of the sequence, we get a d element subset of
1, . . . , r + d, and there are

(
r+d
d

)
=
(
r+d
r

)
of these.

Corollary 1.3. There is a polynomial PM(d) (called the Hilbert polynomial
of M) such that, if M has free resolution as above, then PM(d) = HM(d) for
d ≥ maxi,j{ai,j − r}.
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Proof. When d+ r − a ≥ 0 we have(
d+ r − a

r

)
=

(d+ r − a)(d+ r − 1− a) · · · (d+ 1− a)

r!
,

which is a polynomial of degree r in d. Thus in the desired range all the terms
in the expression of HM(d) from Proposition 1.2 become polynomials.

Exercise 2.15 shows that the bound in Corollary 1.3 is not always sharp. We
will investigate the matter further in Chapter 4; see, for example, Theorem
4A.2.

1B Minimal free resolutions

Each finitely generated graded S-module has a minimal free resolution, which
is unique up to isomorphism. The degrees of the generators of its free modules
not only yield the Hilbert function, as would be true for any resolution, but
form a finer invariant, which is the subject of this book. In this section we
give a careful statement of the definition of minimality, and of the uniqueness
theorem.

Naively, minimal free resolutions can be described as follows: Given a finitely
generated graded moduleM , choose a minimal set of homogeneous generators
mi. Map a graded free module F0 onto M by sending a basis for F0 to the set
of mi. Let M ′ be the kernel of the map F0 →M , and repeat the procedure,
starting with a minimal system of homogeneous generators of M ′. . . .

Most of the applications of minimal free resolutions are based on a property
that characterizes them in a different way, which we will adopt as the formal
definition. To state it we will use our standard notation m to denote the
homogeneous maximal ideal (x0, . . . , xr) ⊂ S = K[x0, . . . , xr].

Definition 1. A complex of graded S-modules

· · · - Fi
δi- Fi−1

- · · ·

is called minimal if for each i the image of δi is contained in mFi−1.
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Informally, we may say that a complex of free modules is minimal if its
differential is represented by matrices with entries in the maximal ideal.

The relation between this and the naive idea of a minimal resolution is a
consequence of the graded analogue of Nakayama’s Lemma. See [Eisenbud
1995, Section 4.1] for a discussion and proof in the local case.

Lemma 1.4. (Nakayama) If M is a finitely generated graded S-module and
m1, . . . ,mn ∈M generate M/mM then m1, . . . ,mn generate M .

Proof. Let M = M/(
∑
Smi). If the mi generate M/mM then M/mM = 0

so mM = M . If M 6= 0 then, since M is finitely generated, there would be
a nonzero element of least degree in M ; this element could not be in mM .
Thus M = 0, so M is generated by the mi.

Corollary 1.5. If

F : · · · - Fi
δi- Fi−1

- · · ·

is a graded free resolution, then F is minimal as a complex if and only if for
each i the map δi takes a basis of Fi to a minimal set of generators of the
image of δi.

Proof. Consider the right exact sequence Fi+1 → Fi → im δi → 0. The
complex F is minimal if and only if, for each i, the induced map

δi+1 : Fi+1/mFi+1 → Fi/mFi

is zero. This holds if and only if the induced map Fi/mFi → (im δi)/m(im δi)
is an isomorphism. By Nakayama’s Lemma this occurs if and only if a basis
of Fi maps to a minimal set of generators of im δi.

Considering all the choices made in the construction, it is perhaps surprising
that minimal free resolutions are unique up to isomorphism:

Theorem 1.6. Let M be a finitely generated graded S-module. If F and G
are minimal graded free resolutions of M , then there is a graded isomorphism
of complexes F → G inducing the identity map on M . Any free resolution
of M contains the minimal free resolution as a direct summand.



10 CHAPTER 1. FREE RESOLUTIONS AND HILBERT FUNCTIONS

For a proof see [Eisenbud 1995, Theorem 20.2].

We can construct a minimal free resolution from any resolution, proving
the second statement of Theorem 1.6 along the way. If F is a nonminimal
complex of free modules, then a matrix representing some differential of F
must contain a nonzero element of degree 0. This corresponds to a free basis
element of some Fi that maps to an element of Fi−1 not contained in mFi−1.
By Nakayama’s Lemma this element of Fi−1 may be taken as a basis element.
Thus we have found a subcomplex of F of the form

G : 0 - S(−a) c- S(−a) - 0

for a nonzero scalar c (such a thing is called a trivial complex) embedded in
F in such a way that F/G is again a free complex. Since G has no homology
at all, the long exact sequence in homology corresponding to the short exact
sequence of complexes 0 → G → F → F/G → 0 shows that the homology
of F/G is the same as that of F. In particular, if F is a free resolution of
M then so is F/G. Continuing in this way we eventually reach a minimal
complex. If F was a resolution of M , then we have constructed the minimal
free resolution.

For us the most important aspect of the uniqueness of minimal free resolu-
tions is the fact that, if F : . . . F1 → F0 is the minimal free resolution of
a finitely generated graded S-module M , then the number of generators of
each degree required for the free modules Fi depends only on M . The easiest
way to state a precise result is to use the functor Tor (see for example ****
for an introduction to this useful tool.)

Proposition 1.7. If F : . . . F1 → F0 is the minimal free resolution of a
finitely generated graded S-module M , and K denotes the residue field S/m
then any minimal set of homogeneous generators of Fi contains precisely
dimK TorSi (K,M)j generators of degree j.

Proof. The vector space TorSi (K,M)j is the degree j component of the graded
vector space that is the i-th homology of the complex K ⊗S F. Since F is
minimal, the maps in K⊗S F are all zero, so TorSi (K,M) = K⊗S Fi, and by
Lemma 1.4 (Nakayama), TorSi (K,M)j is the number of degree j generators
that Fi requires.
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Corollary 1.8. If M is a finitely generated graded S-module then the pro-
jective dimension of M is equal to the length of the minimal free resolution.

Proof. The projective dimension is by definition the minimal length of a pro-
jective resolution ofM . The minimal free resolution is a projective resolution,
so one inequality is obvious. To show that the length of the minimal free
resolution is at most the projective dimension, note that TorSi (K,M) = 0
when i is greater than the projective dimension of M . By Proposition 1.7
this implies that the minimal free resolution has length less than i too.

1B.1 Describing resolutions: Betti diagrams

We have seen above that the numerical invariants associated to free reso-
lutions suffice to describe Hilbert functions, and below we will see that the
numerical invariants of minimal free resolutions contain more information.
Since we will be dealing with them a lot, we will introduce a compact way
to display them, called a Betti diagram.

To begin with an example, suppose S = K[x0, x1, x2] is the homogeneous
coordinate ring of P2. Theorem 3.10 and Corollary 3.9 below imply that
there is a set X of 10 points in P2 whose homogeneous coordinate ring SX
has free resolution of the form ((Silvio, I’d like to have the = Fi “hang
down”))

0 → F2 = S(−6)⊕ S(−5) - F1 = S(−4)⊕ S(−4)⊕ S(−3) - F0 = S.

We will represent the numbers that appear by the Betti diagram
0 1 2

0 1 − −
1 − − −
2 − 1 −
3 − 2 1
4 − − 1

where the column labeled i describes the free module Fi.

In general, suppose that F is a free complex

F : 0 → Fs → · · · → Fm → · · · → F0
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where Fi = ⊕jS(−j)βi,j ; that is, Fi requires βi,j minimal generators of degree
j. The Betti diagram of F has the form

0 1 · · · s
i β0,i β1,i+1 · · · βs,i+s

i+ 1 β0,i+1 β1,i+2 · · · βs,i+s+1

· · · · · · · · · · · ·
j β0,j β1,j+1 · · · βs,j+s

It consists of a table with s + 1 columns, labeled 0, 1, . . . , s, corresponding
to the free modules F0, . . . , Fs. It has rows labeled with consecutive integers
corresponding to degrees. (We sometimes omit the row and column labels
when they are clear from context.) The m-th column specifies the degrees
of the generators of Fm. Thus, for example, the row labels at the left of the
diagram correspond to the possible degrees of a generator of F0. For clarity
we sometimes replace a 0 in the diagram by a “−” (as in the example given
at the beginning of the section) and an indefinite value by a “∗”.

Note that the entry in the j-th row of the i-th column is βi,i+j rather than
βi,j. This choice will be explained below.

If F is the minimal free resolution of a module M , we refer to the Betti
diagram of F as the Betti diagram of M and the βm,d of F are called the
graded Betti numbers of M , sometimes written βm,d(M). In that case the
graded vector space Torm(M,K) is the homology of the complex F ⊗K K.
Since F is minimal, the differentials in this complex are zero, so βm,d(M) =
dimK(Torm(M,K)d).

1B.2 Properties of the graded Betti numbers

For example, the number β0,j is the number of elements of degree j required
among the minimal generators of M . We will often consider the case where
M is the homogeneous coordinate ring SX of a (nonempty) projective variety
X. As an S-module SX is generated by the element 1, so we will have β0,0 = 1
and β0,j = 0 for j 6= 1.

On the other hand β1,j is the number of independent forms of degree j needed
to generate the ideal IX of X. If SX is not the zero ring (that is, X 6= ∅),
there are no elements of the ideal of X in degree 0, so β1,0 = 0. Something
similar holds in general:

Proposition 1.9. Let {βi,j} be the graded Betti numbers of a finitely gen-
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erated S-module. If d is an integer such that βi,j = 0 for all j < d then
βi+1,j+1 = 0 for all j < d.

Proof. Suppose that the minimal free resolution is · · · δ2- F1
δ1- F0. By

minimality any generator of Fi+1 must map to a nonzero element of the same
degree in mFi, the maximal homogeneous ideal times Fi. To say that βi,j = 0
for all j < d means that all generators—and thus all nonzero elements—of
Fi have degree ≥ d. Thus all nonzero elements of mFi have degree ≥ d+ 1,
so Fi+1 can have generators only in degree ≥ d+1 and βi+1,j+1 = 0 for j < d
as claimed.

Proposition 1.9 gives a first hint of why it is convenient to write the Betti
diagram in the form we have, with βi,i+j in the j-th row of the i-th column:
it says that if the i-th column of the Betti diagram has zeros above the j-th
row, then then the i + 1-st column also has zeros above the j-th row. This
allows a more compact display of Betti numbers than if we had written βi,j
in the i-th column and j-th row. A deeper reason for our choice will be clear
from the description of Castelnuovo-Mumford regularity in Chapter 4.

1B.3 The information in the Hilbert function

The formula for the Hilbert function given in Corollary 1.2 has a convenient
expression in terms of graded Betti numbers.

Corollary 1.10. If {βi,j} are the graded Betti numbers of a finitely generated
S-module M , then the alternating sums Bj =

∑
i≥0(−1)iβi,j determine the

Hilbert function of M via the formula

HM(d) =
∑
j

Bj

(
r + d− j

r

)
.

Moreover, the values of the Bj can be deduced inductively from the function
HM(d) via the formula

Bj = HM(j)−
∑
k: k<j

Bk

(
r + j − k

r

)
.



14 CHAPTER 1. FREE RESOLUTIONS AND HILBERT FUNCTIONS

Proof. The first formula is simply a rearrangement of the formula in Corollary
1.2.

Conversely, to compute theBj from the Hilbert functionHM(d) we proceed as
follows. Since M is finitely generated there is a number j0 so that HM(d) = 0
for d ≤ j0. It follows that β0,j = 0 for all j ≤ j0, and from Proposition 1.9 it
follows that if j ≤ j0 then βi,j = 0 for all i. Thus Bj = 0 for all j ≤ j0.

Inductively, we may assume that we know the value of Bk for k < j. Since(
r+j−k
r

)
= 0 when j < k, only the values of Bk with k ≤ j enter into the

formula for HM(j), and knowing HM(j) we can solve for Bj. Conveniently,

Bj occurs with coefficient
(
r
r

)
= 1, and we get the displayed formula.

1C Exercises

1. Suppose that f, g are polynomials (homogeneous or not) in S, neither
of which divides the other. Prove that the complex

0 - S

(
g′

−f ′
)
- S2 (f, g )

- S,

where f ′ = f/h, g′ = g/h and h is the greatest common divisor of f
and g, is a free resolution. In particular, the projective dimension of
S/(f, g) is ≤ 2. If f and g are homogeneous, and neither divides the
other, show that this is the minimal free resolution of S/(f, g), so that
the projective dimension of this module is exactly 2. Compute the
twists necessary to make this a graded free resolution.

This exercise is a hint of the connection between syzygies and unique
factorization, underlined by the famous theorem of Auslander and Buchs-
baum that regular local rings (those where every module has a finite
free resolution) are factorial. Indeed, refinements of the Auslander-
Buchsbaum theorem by MacRae [MacRae 1965] and Buchsbaum-Eisenbud
[Buchsbaum and Eisenbud 1974]) show that a local or graded ring is
factorial if and only if the free resolution of any ideal generated by two
elements has the form above.
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2. (( preamble)) In the situation of classical invariant theory Hilbert’s
argument with syzygies easily gives a nice expression for the number
of invariants of each degree ([Hilbert 1993]). The situation is not quite
as simple as the one studied in the text because, although the ring of
invariants is graded, its generators have different degrees. Exercises
1.3–1.7 show how this can be handled. For these exercises we let T =
K[z1, . . . , zn] be a graded polynomial ring whose variables have degrees
deg zi = αi ∈ N.

3. The most obvious generalization of Corollary 1.2 is false: Compute the
Hilbert function HT (d) of T in the case n = 2, α1 = 2, α2 = 3. Show
that it is not eventually equal to a polynomial function of d (compare
with the result of Exercise 1.7). Show that (over the complex numbers,
for example) this ring T is isomorphic to the ring of invariants of the
cyclic group of order 6 acting on the polynomial ring K[x0, x1] where
the generator acts by x0 7→ e2πi/2x0, x1 7→ e2πi/3x1.

4. []((more preamble)) Now let M be a finitely generated graded T -
module. Hilbert’s original argument for the Syzygy Theorem (or the
modern one given in Section 2A.3) shows that M has a finite graded
free resolution as a T -module. Let

ΨM(t) =
∑
d

HM(d)td

be the generating function for the Hilbert function.

5. Two simple examples will make the possibilities clearer:

(a) Modules of finite length. Show that any Laurent polynomial
can be written as ΨM for suitable finitely generated M .

(b) Free modules. Supppose M = T , the free module of rank 1
generated by an element of degree 0 (the unit element). Prove by
induction on n that

ΨT (t) =
∞∑
e=0

teαnΨT ′(t)

=
1

1− tαn
ΨT ′(t)

=
1∏n

i=1(1− tαi)
.
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where T ′ = K[z1, . . . , zn−1].

Deduce that if M =
∑N
i=−N T (−i)φi then

ΨM(t) =
N∑

i=−N
φiΨT (−i)(t) =

∑N
i=−N φit

i∏n
i=1(1− tαi)

.

6. Prove:

Theorem 1.11. (Hilbert) Let T = K[z1, . . . , zn], where deg zi = αi,
and let M be a graded T -module with finite free resolution

· · · -
∑
j

T (−j)β1,j -
∑
j

T (−j)β0,j .

Set φj =
∑
i(−1)iβi,j and set φM(t) = φ−N t

−N + · · · + φN t
N . The

Hilbert series of M is given by the formula

ΨM(t) =
φM(t)∏n

1 (1− tαi)
;

in particular ΨM is a rational function.

7. Suppose T = K[z0, . . . , zr] is a graded polynomial ring with deg zi =
αi ∈ N. Use induction on r and the exact sequence

0 → T (−αr)
zr- T - T/(zr) → 0

to show that the Hilbert function HT of T is, for large d, equal to a
polyomial with periodic coefficients: that is

HT (d) = h0(d)d
r + h1(d)d

r−1 + . . .

for some periodic functions hi(d) with values in Q, whose periods di-
vide the least common multiple of the αi. Using free resolutions, state
and derive a corresponding result for all finitely generated graded T -
modules.

8. []((Preamble for the next Exercises)) Some infinite resolu-
tions: Let R = S/I be a graded quotient of a polynomial ring S =
K[x0, . . . , xr]. Minimal free resolutions exist R, but are generally not
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finite. Much is known about what the resolutions look like in the case
where R is a complete intersection—that is, I is generated by a regular
sequence—and in a few other cases, but not in general. For surveys of
some different areas, see [Avramov 1998] or [Fröberg 1999]. Here are
a few sample results about resolutions of modules over a ring of the
form R = S/I, where S is a graded polynomial ring (or a regular local
ring) and I is a principal ideal. Such rings are often called hypersurface
rings.

9. Let S = K[x0, . . . , xr], let I ⊂ S be a homogeneous ideal, and let R =
S/I. Use the Auslander-Buchsbaum-Serre characterization of regular
local rings to prove that there is a finite R-free resolution of K =
R/(x0, . . . , xr)R if and only if I is generated by linear forms.

10. Let R = K[t]/(tn). Use the structure theorem for modules over the
principal ideal domain K[t] to classify all finitely generated R-modules.
Show that the minimal free resolution of the module R/ta, for 0 < a <
n, is

· · · ta- R
tn−a

- R
ta- · · · ta- R.

11. Let R = S/(f), where f is a nonzero homogeneous form of positive
degree. Suppose that A and B are two n × n matrices with entries of
positive degree in S, such that AB = f · I, where I is an n×n identity
matrix. Show that BA = f · I as well. Such a pair of matrices A,B is
called a matrix factorization of f ([Eisenbud 1980]). Let

F : · · · A- Rn B- Rn A- · · · A- Rn,

where A := R ⊗S A and B := R ⊗S B denote the reductions of A
and B modulo (f). Show that F is a minimal free resolution. (Hint:
any element that goes to 0 under A lifts to an element that goes to a
multiple of f over A.)

12. Suppose that M is an R-module that has projective dimension 1 as an
S-module. Show that the free resolution of M as an S-module has the
form

0 - Sn
A- Sn

for some n and some n × n matrix A. Show that there is an n × n
matrix B with AB = f · I. Conclude that the free resolution of M as
a B-module has the form given in Exercise 1.11.
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13. The ring R is Cohen-Macaulay, of depth r (Example 11E.1). Use part
3 of Theorem 11.10, together with the Auslander-Buchsbaum Formula
11.9 to show that if N is any finitely generated graded R-module, then
the r-th syzygy of M has depth r, and thus has projective dimension
1 as an S-module. Deduce that the free resolution of any finitely gen-
erated graded module is periodic, of period at most 2, and that the
periodic part of the resolution comes from a matrix factorization.



Chapter 2

First Examples of Free
Resolutions

In this chapter we introduce a fundamental construction of resolutions based
on simplicial complexes. This construction gives free resolutions of mono-
mial ideals, but does not always yield minimal resolutions. It includes the
Koszul complexes, which we use to establish basic bounds on syzygies of all
modules, including the Hilbert Syzygy Theorem. We conclude the chapter
with an example of a different kind, showing how free resolutions capture the
geometry of sets of seven points in P3.

2A Monomial ideals and simplicial complexes

We now introduce a beautiful method of writing down graded free resolutions
of monomial ideals due to Bayer, Peeva and Sturmfels [Bayer et al. 1998]. So
far we have used Z-gradings only, but we can think of the polynomial ring
S as Zr+1-graded, with xa0

0 · · ·xar
r having degree (a0, . . . , ar) ∈ Zr+1, and

the free resolutions we write down will also be Zr+1-graded. We begin by
reviewing the basics of the theory of finite simplicial complexes. For a more
complete treatment, see [Bruns and Herzog 1998].

19
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Simplicial complexes

A finite simplicial complex ∆ is a finite set N , called the set of vertices (or
nodes) of ∆, and a collection F of subsets of N , called the faces of ∆, such
that if A ∈ F is a face and B ⊂ A then B is also in F . Maximal faces are
called facets.

A simplex is a simplicial complex in which every subset of N is a face.
For any vertex set N we may form the void simplicial complex, which has
no faces at all. But if ∆ has any faces at all, then the empty set ∅ is
necessarily a face of ∆. By contrast, we call the simplicial complex whose
only face is ∅ the irrelevant simplicial complex on N . (The name comes
from the Stanley-Reisner correspondence, which associates to any simplicial
complex ∆ with vertex set N = {x0, . . . , xn} the square-free monomial ideal
in S = K[x0, . . . , xr] whose elements are the monomials with support equal to
a non-face of ∆. Under this correspondence the irrelevant simplicial complex
corresponds to the irrelevant ideal (x0, dots, xr), while the void simplicial
complex corresponds to the ideal (1).)

Any simplicial complex ∆ has a geometric realization which is a topological
space that is a union of simplices corresponding to the faces of ∆. It may
be constructed by realizing the set of vertices of ∆ as a linearly independent
set in a sufficiently large real vector space, and realizing each face of ∆ as
the convex hull of its vertex points; the realization of ∆ is then the union of
these faces.

An orientation of a simplicial complex consists of an ordering of the vertices
of ∆. Thus a simplicial complex may have many orientations—this is not
the same as an orientation of the underlying topological space.

Labeling by Monomials

We will say that ∆ is labeled (by monomials of S) if there is a monomial of
S associated to each vertex of ∆. We then label each face A of ∆ by the
least common multiple of the labels of the vertices in A. We write mA for
the monomial that is the label of A. By convention the label of the empty
face is m∅ = 1.
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Let ∆ be an oriented labeled simplicial complex, and write I ⊂ S for the
ideal generated by the monomials mj = xαj labeling the vertices of ∆. We
will associate to ∆ a graded complex of free S-modules

C(∆) = C(∆;S) : · · · - Fi
δ- Fi−1

- · · · δ- F0,

where Fi is the free S-module whose basis consists of the set of faces of ∆
having i elements, which is sometimes a resolution of S/I. The differential δ
is given by the formula

δA =
∑
n∈A

(−1)pos(n,A) mA

mA\n
(A \ n)

where pos(n,A), the “position of vertex n in A”, is the number of elements
preceding n in the ordering of A and A \n denotes the face obtained from A
by removing n.

If ∆ is not void then F0 = S (the generator is the face of ∆ which is the
empty set.) Further, the generators of F1 correspond to the vertices of ∆,
and each generator maps by δ to its labeling monomial, so

H0(C(∆)) = coker
(
F1

δ- S
)

= S/I.

We set the degree of the basis element corresponding to the face A equal to
the exponent vector of the monomial that is the label of A. With respect to
this grading, the differential δ has degree 0, and C(∆) is a Zr+1-graded free
complex.

For example we might take S = K and label all the vertices of ∆ with
1 ∈ K; then C(∆; K) is, up to a shift in homological degree, the usual reduced
chain complex of ∆ with coefficients in S. Its homology is written Hi(∆; K)
and is called the reduced homology of ∆ with coefficients in S. The shift
in homological degree comes about as follows: the homological degree of a
simplex in C(∆) is the number of vertices in the simplex, which is one more
than the dimension of the simplex, so that Hi(∆; K) is the (i+1)-st homology
of C(∆; K). If Hi(∆; K) = 0 for i ≥ −1, we say that ∆ is K-acyclic. (Since
S is a free module over K, this is the same as saying that ∆ is S-acyclic.)

The homology Hi(∆; K) and the homology of Hi(C(∆;S)) are independent
of the orientation of ∆—in fact they depend only on the homotopy type of
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the geometric realization of ∆ and the ring K or S. Thus we will often ignore
orientations.

Roughly speaking, we may say that the complex C(∆;S), for an arbitrary
labeling, is obtained by extending scalars from K to S and “homogenizing”
the formula for the differential of C(∆,K) with respect to the degrees of the
generators of the Fi defined for the S-labeling of ∆.

Example 2.1. Suppose that ∆ is the labeled simplicial complex

((Figure 3))

with the orientation obtained by ordering the vertices from left to right. The
complex C(∆) is

0 - S2(−3)

−x2 0
x1 −x1

0 x0


- S3(−2)

(x0x1 x0x2 x1x2 )
- S.

This complex is represented by the Betti diagram
0 1 2

0 1 − −
1 − 3 2

As we shall soon see, the only homology of this complex is at the right hand
end, where we have H0(C(∆)) = S/(x0x1, x0x2, x1x2), so the complex is a
free resolution of this S-module.

If we took the same simplicial complex, but with the trivial labeling by 1’s,
we would get the complex

0 - S2

−1 0
1 −1
0 1


- S3 (1 1 1)

- S,

represented by the Betti diagram
0 1 2

−2 − − 2
−1 − 3 −

0 1 − −
which has reduced homology 0 (with any coefficients), as the reader may
easily check.

We want a criterion that will tell us when C(∆) is a resolution of S/I; that
is, when Hi(C(∆)) = 0 for i > 0. To state it we need one more definition.
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If m is any monomial, we write ∆m for the subcomplex consisting of those
faces of ∆ whose labels divide m. For example, if m is not divisible by any of
the vertex labels, then ∆m is the empty simplicial complex, with no vertices
and the single face ∅. On the other hand, if m is divisible by all the labels of
∆, then ∆m = ∆. Moreover, ∆m is equal to ∆LCM {mi|i∈I} for some subset I
of the vertex set of ∆.

A full subcomplex of ∆ is a subcomplex of all the faces of ∆ that involve a
particular set of vertices. Note that all the subcomplexes ∆m are full.

2A.1 Syzygies of monomial ideals

Theorem 2.1. (Bayer, Peeva, and Sturmfels) Let ∆ be a simplicial complex
labeled by monomials m1, . . . ,mt ∈ S, and let I = (m1, . . . ,mt) ⊂ S be the
ideal in S generated by the vertex labels. The complex C(∆) = C(∆;S) is a
free resolution of S/I if and only if the reduced simplicial homlogy Hi(∆m; K)
vanishes for every monomial m and every i ≥ 0. Moreover, C(∆) is a min-
imal complex if and only if mA 6= mA′ for every proper subface A′ of a face
A.

By the remarks above, we can determine whether C(∆) is a resolution just
by checking the vanishing condition for monomials that are least common
multiples of sets of vertex labels.

Proof. Let C(∆) be the complex

C(∆) : · · · - Fi
δ- Fi−1

- · · · δ- F0.

It is clear that S/I is the cokernel of δ : F1 → F0. We will identify the
homology of C(∆) at Fi with a direct sum of copies of the vector spaces

Hi(∆m; K).

For each α ∈ Zr+1 we will compute the homology of the complex of vector
spaces

C(∆)α : · · · - (Fi)α
δ- (Fi−1)α - · · · δ- (F0)α,
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formed from the degree α components of each free module Fi in C(∆). If
any of the components of α are negative then C(∆)α = 0, so of course the
homology vanishes in this degree.

Thus we may suppose α ∈ Nr+1. Set m = xα = xα0
0 · · ·xαr

r ∈ S. For each
face A of ∆, the complex C(∆) has a rank one free summand S ·A which, as
a vector space, has basis {n · A | n ∈ S is a monomial}. The degree of n · A
is the exponent of nmA, where mA is the label of the face A. Thus for the
degree α part of S · A we have

S · Aα =
{

K · (xα/mA) · A if mA|m
0 otherwise.

It follows that the complex C(∆)α has a K-basis corresponding bijectively
to the faces of ∆m. Using this correspondence we identify the terms of the
complex C(∆)α with the terms of the reduced chain complex of ∆m having
coefficients in K (up to a shift in homological degree as for the case where the
vertex labels are all 1, described above). A moment’s consideration shows
that the differentials of these complexes agree.

Having identified C(∆)α with the reduced chain complex of ∆m, we see that
the complex C(∆) is a resolution of S/I if and only if Hi(∆m; K) = 0 for all
i ≥ 0, as required for the first statement.

For minimality, note that if A is an i + 1-face, and A′ an i-face of ∆, then
the component of the differential of C(∆) that maps S ·A to S ·A′ is 0 unless
A′ ⊂ A, in which case it is ±mA/mA′ . Thus C(∆) is minimal if and only if
mA 6= mA′ for all A′ ⊂ A, as required.

For more information about the complexes C(∆) and about a generalization
in which cell complexes replace simplicial complexes, see [Bayer et al. 1998]
and [Bayer and Sturmfels 1998].

Example 2.2. We continue with the ideal (x0x1, x0x2, x1x2) as above. For
the labeled simplicial complex ∆((repeat the figure above)) the distinct
subcomplexes ∆′ of the form ∆m are the empty complex ∆1, the complexes
∆x0x1 ,∆x0x2 ,∆x1x2 , each of which consists of a single point, and the complex
∆ itself. As each of these is contractible, they have no higher reduced ho-
mology, and we see that the complex C(∆) is the minimal free resolution of
S/(x0x1, x0x2, x1x2).
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Any full subcomplex of a simplex is a simplex, and as these are all con-
tractible, they have no reduced homology (with any coefficients.) This idea
gives a result first proved, in a different way, by Diana Taylor [Eisenbud 1995,
Exercise 17.11].

Corollary 2.2. Let I = (m1, . . . ,mn) ⊂ S be any monomial ideal, and let ∆
be a simplex with n vertices, labeled m1, . . . ,mn. The complex C(∆), called
the Taylor complex of m1, . . . ,mn, is a free resolution of S/I.

For an interesting consequence see Exercise 2.1.

2A.2 Examples

a) The Taylor complex is rarely minimal. For instance, taking (m1,m2,m3) =
(x0x1, x0x2, x1x2) as in the example above, the Taylor complex is a nonmin-
imal resolution with Betti diagram

0 1 2 3
0 1 − − 1
1 − 3 3 −

b) We may define the Koszul complex K(x0, . . . , xr) of x0, . . . , xr to be the
Taylor complex in the special case where the mi = xi are variables. We
have exhibited the smallest examples in Section 1A.2. By Theorem 2.1 the
Koszul complex is a minimal free resolution of the residue class field K =
S/(x0, . . . , xr).

We can replace the variables x0, . . . , xr by any polynomials f0, . . . , fr to ob-
tain a complex we will write as K(f0, . . . , fr), the Koszul complex of the
sequence f0, . . . , fr. In fact, since the differentials have only Z coefficients,
we could even take the fi to be elements of an arbitrary commutative ring.

Under nice circumstances, for example when the fi are homogeneous elements
of positive degree in a graded ring, this complex is a resolution if and only
if the fi form a regular sequence. See Appendix 11F or [Eisenbud 1995,
Theorem 17.6].
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2A.3 Bounds on Betti numbers and proof of Hilbert’s
Syzygy Theorem

We can use the Koszul complex and Theorem 2.1 to prove a sharpening
of Hilbert’s Syzygy Theorem 1.1, which is the vanishing statement in the
following proposition. We also get an alternate way to compute the graded
Betti numbers.

Proposition 2.3. Let M be a graded module over S = K[x0, . . . , xr]. The
graded Betti number βi,j(M) is the dimension of the homology, at the term
Mj−i ⊗ ∧iKr+1, of the complex

0 →Mj−(r+1) ⊗ ∧r+1Kr+1 → · · ·
→Mj−i−1 ⊗ ∧i+1Kr+1 →Mj−i ⊗ ∧iKr+1 →Mj−i+1 ⊗ ∧i−1Kr+1 →

· · · →Mj ⊗ ∧0Kr+1 → 0.

In particular,

βi,j(M) ≤ HM(j − i)

(
r + 1

i

)

so βi,j(M) = 0 if i > r + 1.

See Exercise 2.5 for the relation of this to Corollary 1.10.

Proof. To simplify notation, let βi,j = βi,j(M). By Proposition 1.7 we have
βi,j = dimK Tori(M,K)j. Since K(x0, . . . , xr) is a free resolution of K, we
may compute TorSi (M,K)j as the degree j part of the homology of M ⊗S

K(x0, . . . , xr) at the term

M ⊗S

i∧
Sr+1(−i) = M ⊗K

i∧
Kr+1(−i).

Decomposing M into its homogeneous components M = ⊕Mk, we see that
the degree j part of M⊗K

∧i Kr+1(−i) is Mj−i⊗K
∧i Kr+1. If we put this term

into the j-th row of the i-th column of a diagram, then the differentials of
M ⊗S K(x0, . . . , xr) preserve degrees, and thus are represented by horizontal
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arrows

Mj−i−2 ⊗K

i+1∧
Kr+1 - Mj−i−1 ⊗K

i∧
Kr+1 - Mj−i ⊗K

i−1∧
Kr+1

Mj−i−1 ⊗K

i+1∧
Kr+1 - Mj−i ⊗K

i∧
Kr+1 - Mj−i+1 ⊗K

i−1∧
Kr+1

Mj−i ⊗K

i+1∧
Kr+1 - Mj−i+1 ⊗K

i∧
Kr+1 - Mj−i+2 ⊗K

i−1∧
Kr+1.

The rows of this diagram are precisely the complexes in the Proposition, and
this proves the first statement. The inequality on βi,j follows at once.

The upper bound given in Proposition 2.3 is achieved when mM = 0 (and
conversely—see Exercise 2.6.) It is not hard to deduce a weak lower bound,
too (Exercise 2.7), but is often a very difficult problem, to determine the
actual range of possibilities, especially when the module M is supposed to
come from some geometric construction.

An example will illustrate some of the possible considerations. A true geo-
metric example, related to this one, will be given in the next section. Suppose
that r = 2 and the Hilbert function of M has values

HM(i) =



0 if i < 0
1 if i = 0
3 if i = 1
3 if i = 2
0 if i > 2.

To fit with the way we write Betti diagrams, we represent the complexes
in Proposition 2.3 with maps going from right to left, and put the term
Mj⊗∧i⊗Kr+1(−i) (the term of degree i+j) in row j and column i. Because
the differential has degree 0, it goes diagonally down and to the left.

M M ⊗K ∧(Kr(−1)
M0 K1 K3 K3 K1

M1 K3 K9 K9 K3

M2 K3 K9 K9 K3

((Silvio, the M⊗K ∧(Kr(−1) should be centered in its space. I’d like
to show the arrows (down and to the left) in the lower right part
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of the diagram, too.)) From this we see that the termwise maximal Betti
diagram of a module with the given Hilbert function, valid if the module
structure of M is trivial, is

0 1 2 3
0 1 3 3 1
1 3 9 9 3
2 3 9 9 3

On the other hand, if the differential

di,j : Mi−j ⊗ ∧iK3 →Mi−j+1 ⊗ ∧i−1K3

has rank k, then both βi,j and βi−1,j drop from this maximal value by k.

Other considerations come into play as well. For example, suppose that M is
a cyclic module, generated by M0. Equivalently, β0,j = 0 for j 6= 0. It follows
that the differentials d1,0 and d1,1 have rank 3, so β1,1 = 0 and β1,2 ≤ 6. Since
β1,1 = 0, Proposition 1.9 implies that βi,i = 0 for all i ≥ 1. This means that
the differential d2,2 has rank 3 and the differential d3,3 has rank 1, so the
maximal possible Betti numbers are

0 1 2 3
0 1 − − −
1 − 3 8 3
2 − 9 9 3

Whatever the ranks of the remaining differentials, we see that any Betti
diagram of a cyclic module with the given Hilbert function has the form

0 1 2 3
0 1 − − −
1 − 3 β2,3 β3,4

2 − 1 + β2,3 6 + β3,4 3
for some 0 ≤ β2,3 ≤ 8 and 0 ≤ β3,4 ≤ 3. For example, if all the remaining
differentials have maximal rank, the Betti diagram would be

0 1 2 3
0 1 − − −
1 − 3 − −
2 − 1 6 3

We will see in the next section that this diagram is realized as the Betti
diagram of the homogeneous coordinate ring of a general set of 7 points in
P3 modulo a nonzerodivisor of degree 1.
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2B Geometry from syzygies: seven points in

P3

We have seen above that if we know the graded Betti numbers of a graded S-
module, then we can compute the Hilbert function. In geometric situations,
the graded Betti numbers often carry information beyond that of the Hilbert
function. Perhaps the most interesting current results in this direction center
on Green’s Conjecture described in Section 9B.

For a simpler example we consider the graded Betti numbers of the homo-
geneous coordinate ring of a set of 7 points in “linearly general position”
(defined below) in P3. We will meet a number of the ideas that occupy the
next few chapters. To save time we will allow ourselves to quote freely from
material developed (independently of this discussion!) later in the text. The
inexperienced reader should feel free to look at the statements and skip the
proofs in the rest of this section until after having read through Chapter 6.

2B.1 The Hilbert polynomial and function. . .

Any set X of 7 distinct points in P3 has Hilbert polynomial equal to the con-
stant 7 (such things are discussed at the beginning of Chapter 4.) However,
not all sets of 7 points in P3 have the same Hilbert function. For example, if
X is not contained in a plane then the Hilbert function H = HSX

(d) begins
with the values H(0) = 1, H(1) = 4, but if X is contained in a plane then
H(1) < 4.

To avoid such degeneracy we will restrict our attention in the rest of this
section to 7-tuples of points that are in linearly general position: In general,
we say that a set of points Y ⊂ Pr is in linearly general position if there
are no more than 2 points of Y on any line, no more than 3 points on any
2-plane, . . . , no more than r points in an r− 1 plane. Thinking of the points
as coming from vectors in Kr+1, this means that every subset of at most r+1
of the vectors is linearly independent. Of course if there are at least r + 1
points, then it is equivalent to say simply that every subset of exactly r + 1
of the vectors is linearly independent.

The condition that a set of points is in linearly general position arises fre-
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quently. For example, the general hyperplane section of any curve of any
irreducible curve over a field of characteristic 0 is a set of points in linearly
general position [Harris 1980] and this is usually, though not always, true in
characteristic p as well ([Rathmann 1987]). See Exercises 8.21–??. ((if we
add lin gen posn to Ch 9 it should be referenced here))

It is not hard to show—the reader is invited to prove a more general fact in
Exercise 2.9— that the Hilbert function of any set X of 7 points in linearly
general position in P3 is given by the table

d 0 1 2 3 . . .
HSX

(d) 1 4 7 7 . . .
In particular, any set X of 7 points in linearly general position lies on exactly
3 =

(
3+2
2

)
− 7 independent quadrics. These three quadrics cannot generate

the ideal: since S = K[x0, . . . , x3] has only four linear forms, the dimension
of the space of cubics in the ideal generated by the three quadrics is at most
4× 3 = 12, whereas there are

(
3+3
3

)
− 7 = 13 independent cubics in the ideal

of X. Thus the ideal of X requires at least one cubic generator in addition
to the three quadrics.

One might worry that higher degree generators might be needed as well.
The ideal of 7 points on a line in P3, for example, is minimally generated
by the two linear forms that generate the ideal of the line, together with
any form of degree 7 vanishing on the points but not on the line. But
part c) of Theorem 4.2 tells us that since the 7 points of X are in linearly
general position the “Castelnuovo-Mumford regularity of SX” (defined in
Chapter 4) is 2, or equivalently, that the Betti diagram of SX fits into 3
rows. Moreover, the ring SX is reduced and of dimension 1 so it has depth
1. The Auslander-Buchsbaum Formula 11.11 shows that the resolution will
have length 3. Putting this together, and using Corollary 1.9 we see that the
minimal free resolution of SX must have Betti diagram of the form:

0 1 2 3
0 1 − − −
1 − β1,2 β2,3 β3,4

2 − β1,3 β2,4 β3,5

where the βi,j that are not shown are zero. In particular, the ideal of X is
generated by quadrics and cubics.



2B. GEOMETRY FROM SYZYGIES: SEVEN POINTS IN P3 31

Using Corollary 1.10 we compute successively

β1,2 = 3

β1,3 − β2,3 = 1

β2,4 − β3,4 = 6

β3,5 = 3

and the Betti diagram has the form
0 1 2 3

0 1 − − −
1 − 3 β2,3 β3,4

2 − 1 + β2,3 6 + β3,4 3
(This is the same diagram as at the end of the previous section. Here is the
connection: Extending the ground field if necessary to make it infinite, we
could use Lemma 11.3 and choose a linear form x ∈ S that is a nonzerodivisor
on SX . By Lemma 3.12 the graded Betti numbers of SX/xSX as an S/xS-
module are the same as those of SX as an S-module. Using our knowledge
of the Hilbert function of SX and the exactness of the sequence

0 - SX(−1)
x- SX - SX/xSx - 0,

we see that the cyclic (S/xS)-module SX/xSx has Hilbert function with
values 1, 3, 3—this is what we used in Section 2A.3.)

2B.2 . . . and other information in the resolution

We see that even in this simple case the Hilbert function does not determine
the βi,j, and indeed they can take different values. It turns out that the
difference reflects a fundamental geometric distinction between different sets
X of 7 points in linearly general position in P3: whether or not X lies on a
curve of degree 3.

Up to linear automorphisms of P3 there is only one irreducible curve of degree
3 not contained in a plane. This twisted cubic is one of the rational normal
curves studied in Chapter 6. Any 6 points in linearly general position in P3

lie on a unique twisted cubic (see Exercise 6.6). But for a twisted cubic to
pass through 7 points, the seventh must lie on the twisted cubic determined
by the first 6. Thus most sets of seven points do not lie on any twisted cubic.
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((Figure 2))

Theorem 2.4. Let X be a set of 7 points in linearly general position in
P3. There are just two distinct Betti diagrams possible for the homogeneous
coordinate ring SX :

0 1 2 3
0 1 − − −
1 − 3 − −
2 − 1 6 3

and

0 1 2 3
0 1 − − −
1 − 3 2 −
2 − 3 6 3

In the first case the points do not lie on any curve of degree 3. In the second
case, the ideal J generated by the quadrics containing X is the ideal of the
unique curve of degree 3 containing X, which is irreducible.

Proof. Let q0, q1, q2 be three quadratic forms that span the degree 2 part of
I := IX . A linear syzygy of the qi is a vector (a0, a1, a2) of linear forms with∑2
i=0 aiqi = 0. We will focus on the number of independent linear syzygies,

which is β2,3.

If β2,3 = 0, then by Proposition 1.9 we also have β3,4 = 0 and the computation
of the differences of the βi,j above shows that the Betti diagram of SX =
S/I is the first of the two given tables. As we shall see in Chapter 6, any
irreducible curve of degree ≤ 2 lies in a plane. Since the points of X are
in linearly general position, they are not contained in the union of a line
and a plane, or the union of 3 lines, so any degree 3 curve containing X is
irreducible. Further, if C is an irreducible degree 3 curve in P3, not contained
in a plane, then the C is a twisted cubic, and the ideal of C is generated by
three quadrics, which have 2 linear syzygies. Thus in the case where X is
contained in a degree 3 curve we have β2,3 ≥ 2.

Now suppose β2,3 > 0, so that there is a nonzero linear syzygy
∑2
i=0 aiqi =

0. If the ai were linearly dependent then we could rewrite this relation as
a′1q

′
1 + a′2q

′
2 = 0 for some independendent quadrics q′1 and q′2 in I. By unique

factorization, the linear form a′1 would divide q′2; say q′2 = a′1b. Thus X
would be contained in the union of the planes a′1 = 0 and b = 0, and one of
these planes would contain four points of X, contradicting our hypothesis.
Therefore the a0, a1, a2 are linearly independent linear forms.

Changing coordinates on P3 we can harmlessly assume that ai = xi. We
can then read the relation

∑
xiqi = 0 as a syzygy on the xi. But from the

exactness of the Koszul complex (see for example Theorem 2.1 as applied in
example b of Section 2A.2), we know that all the syzygies of x0, x1, x2 are
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given by the columns of the matrix 0 x2 −x1

−x2 0 x0

x1 −x0 0

 ,
and thus we must have q0q1

q2

 =

 0 x2 −x1

−x2 0 x0

x1 −x0 0


 b0b1
b2


for some linear forms bi. Another way to express this equation is to say that
qi is (−1)i times the determinant of the 2× 2 matrix formed by omitting the
i-th column of the matrix

M =
(
x0 x1 x2

b0 b1 b2

)
,

where the columns are numbered 0, 1, 2. The two rows of M are independent
because the qi, the minors, are nonzero. (Throughout this book we will
follow the convention that a minor of a matrix is a subdeterminant times an
appropriate sign.)

We claim that both rows of M give relations on the qi. The vector (x0, x1, x2)
is a syzygy by virtue of our choice of coordinates. To see that (b0, b1, b2) is
also a syzygy, note that the Laplace expansion of

det

x0 x1 x2

b0 b1 b2
b0 b1 b2


is
∑
i biqi. However, this 3×3 matrix has a repeated row, so the determinant is

0, showing that
∑
i biqi = 0. Since the two rows ofM are linearly independent,

we see that the qi have (at least) 2 independent syzygies with linear forms
as coefficients.

The ideal (q0, q1, q2) ⊂ I that is generated by the minors of M is unchanged
if we replace M by a matrix PMQ where P and Q are invertible matrices of
scalars. It follows that matrices of the form PMQ cannot have any entries
equal to zero. This shows that M is “1-generic” in the sense of Chapter 6
and it follows from Theorem 6.4 that the ideal J = (q0, q1, q2) ⊂ I is prime
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and of codimension 2—that is, J defines an irreducible curve C containing
X in P3.

From Theorem 3.2 it follows that a free resolution of SC may be written as

0 → S2(−3)

x0 b0
x1 b1
x2 b2


- S3(−2)

(q0 q1 q2 )
- S - SC → 0.

From the resolution of SC we can also compute its Hilbert function:

HSC
(d) =

(
3 + d

3

)
− 3

(
3 + d− 2

3

)
+ 2

(
3 + d− 3

3

)
= 3d+ 1 for d ≥ 0.

Thus the Hilbert polynomial of the curve is 3d+ 1.

For large d the higher cohomology H i(OC(d)) vanishes by Serre’s Theo-
rem ([Hartshorne 1977, Theorem 5.2]) so that the Euler characteristic is
χ(OC(d)) :=

∑
i(−1)i dimK Hi(OC(d)) = 3d+1. It follows from the Riemann-

Roch Theorem that C is a cubic curve as claimed.

It may be surprising that in Theorem 2.4 the only possibilities for β2,3 are 0
and 2, and that β3,4 is always 0. These restrictions are removed, however, if
one looks at sets of 7 points that are not in linearly general position though
they have the same Hilbert function as a set of points in linearly general
position; some examples are given in Exercises 2.11–2.12.

2C Exercises

1. If m1, . . . ,mn are monomials in S, show that the projective dimension
of S/(m1, · · · ,mn) is at most n. No such principle holds for arbitrary
homogeneous polynomials; see Exercise 2.4.

2. Let 0 ≤ n ≤ r. Show that if M is a graded S-module which contains
a submodule isomorphic to S/(x0, . . . , xn) (so that (x0, . . . , xn) is an
associated prime of M) then the projective dimension of M is at least
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n + 1. If n + 1 is equal to the number of variables in S, show that
this condition is necessary as well as sufficient. (Hint: For the last
statement, use the Auslander-Buchsbaum theorem, Theorem 11.11.)

3. Consider the ideal I = (x0, x1) ∩ (x2, x3) of two skew lines in P3.

((Figure 4))

Prove that I = (x0x2, x0x3, x1x2, x1x3), and compute the minimal free
resolution of S/I. In particular, show that S/I has projective dimension
3 even though its associated primes are precisely (x0, x1) and (x2, x3),
which have height only 2. Thus the principle of Exercise 2.2 can’t be
extended to give the projective dimension in general.

4. Show that the ideal J = (x0x2 − x1x3, x0x1, x2x3) defines the union
of two (reduced) lines in P3, but is not equal to the saturated ideal
of the two lines. Conclude that the projective dimension of S/J is 4
(you might use the Auslander-Buchsbaum formula, Theorem 11.35).
In fact, three-generator ideals can have any projective dimension; see
[Bruns 1976] or [Evans and Griffith 1985, Corollary 3.13].

5. LetM be a finitely generated graded S-module, and letBj =
∑
i(−1)iβi,j(M).

Show from Proposition 2.3 that

Bj =
∑
i

(−1)iHM(j)

(
r + 1

j

)
.

This is another form of the formula in Corollary 1.10.

6. Show that if M is a graded S module, then

β0,j(M) = HM(j)

if and only if mM = 0.

7. If M is a graded S-module, show that

βi,j(M) ≥HM(j − i)

(
r + 1

i

)

−HM(j − i+ 1)

(
r + 1

i− 1

)

−HM(j − i− 1)

(
r + 1

i+ 1

)
.
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8. Prove that the complex

0 → S2(−3)

x0 x1

x1 x2

x2 x3


- S3(−2)

(x1x3−x2
2 −x0x3+x1x2 x0x2−x2

1)
- S

is indeed a resolution of the homogeneous coordinate ring SC of the
twisted cubic curve C by the following steps:

(a) Identify SC with the subring of K[s, t] consisting of those graded
components whose degree is divisible by 3. Show in this way that
HSC

(d) = 3d+ 1 for d ≥ 0.

(b) Compute the Hilbert functions of the terms S, S3(−2), and S2(−3).
Show that their alternating sum HS −HS3(−2) +HS2(−3) is equal
to the Hilbert function HSC

.

(c) Show that the map

S2(−3)

x0 x1

x1 x2

x2 x3


- S3(−2)

is a monomorphism. As a first step you might prove that it be-
comes a monomorphism when the polynomial ring S is replaced
by its quotient field, the field of rational functions.

(d) Show that the results in 2.8 and 2.8 together imply that the com-
plex exhibited above is a free resolution of SC .

9. Let X be a set of n ≤ 2r + 1 points in Pr in linearly general position.
Show that X imposes independent conditions on quadrics: that is,
show that the space of quadratic forms vanishing on X is

(
r+2
2

)
− n

dimensional. (It is enough to show that for each p ∈ X there is a
quadric not vanishing on p but vanishing at all the other points of X.)
Use this to show that X imposes independent conditions on forms of
degree ≥ 2. The same idea can be used to show that and n ≤ dr + 1
points in linearly general position impose independent conditions on
forms of degree d.

Deduce the correctness of the Hilbert function for 7 points in linearly
general position given by the table in Section 2B.1.
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10. The sufficient condition of Exercise 2.9 is far from necessary. One
way to sharpen it is to use Edmonds’ Theorem, which is the following
beautiful and nontrivial theorem in linear algebra ([Edmonds 1965]).
((Find an accessible reference for this story!))

Theorem 2.5. If v1, . . . , vds are vectors in an s-dimensional vector
space then the list (v1, . . . , vds) can be written as the union of d bases if
and only if no dk + 1 of the vectors vi lie in a k-dimensional subspace,
for every k.

Now suppose that Γ is a set of at most 2r+ 1 points in Pr, and, for all
k < r, each set of 2k+1 points of Γ spans at least a (k+1)-plane. Use
Edmonds’ Theorem to show that Γ imposes independent conditions on
quadrics in Pr (Hint: You can apply Edmonds’ Theorem to the set
obtained by counting one of the points of Γ twice.)

11. Show that if X is a set of 7 points in P3 with 6 points on a plane, but
not on any conic curve in that plane, while the seventh point does not
line in the plane, then X imposes independent conditions on forms of
degree ≥ 2 and β2,3 = 3.

12. Let Λ ⊂ P3 be a plane, and let D ⊂ Λ be an irreducible conic. Choose
points p1, p2 /∈ Λ such that the line joining p1 and p2 does not meet
D. Show that if X is a set of 7 points in P3 consisting of p1, p2 and
5 points on D, then X imposes independent conditions on forms of
degree ≥ 2 and β2,3 = 1. (Hint: To show that β2,3 ≥ 1, find a pair
of reducible quadrics in the ideal having a common component. To
show that β2,3 ≤ 1, show that the quadrics through the points are the
same as the quadrics containing D and the two points. There is, up
to automorphisms of P3, only one configuration consisting of a conic
and two points in P3 such that the line though the two points does not
meet the conic. You might produce such a configuration explicitly and
compute the quadrics and their sysygies.)

13. Show that the labeled simplicial complex

((Figure 5))

gives a nonminimal free resolution of the monomial ideal (x0x1, x0x2, x1x2, x2x3).
Use this to prove that the Betti diagram of a minimal free resolution is

0 1 2 3
0 1 − − −
1 − 4 4 1
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14. Use the Betti diagram in Exercise 2.13 to show that the minimal free
resolution of (x0x1, x0x2, x1x2, x2x3) cannot be written as C(∆) for any
labeled simplicial complex ∆. (It can be written as the free complex
coming from a certain topological cell complex; for this generalization
see [Bayer and Sturmfels 1998].)

15. Show the ideal

I = (x3, x2y, x2z, y3) ⊂ S = K[x, y, z]

has minimal free resolution C(∆), where ∆ is the labeled simplicial
complex

((Figure 18.))

Compute the Betti diagram, the Hilbert function, and the Hilbert poly-
nomial of S/I, and show that in this case the bound given in Corollary
1.3 ((I think this is now a forward reference to something that
does not exist.)) is not sharp. Can you see easily from the Betti
diagram why this happens?



Chapter 3

Points in P2

Revised 8/12/03

The first case in which the relation of syzygies and geometry becomes clear,
and the one in which it is best understood, is the case where the geometric
objects are finite sets of points in P2. We will devote this chapter to such sets.
(The reader who knows about schemes, for example at the level of the first
two chapters of Eisenbud-Harris [Eisenbud and Harris 2000], will see that
exactly the same considerations apply to finite schemes in P2.) Of course
the only intrinsic geometry of a set of points is the number of points, and
we will see that this is the data present in the Hilbert polynomial. But a set
of points embedded in projective space has plenty of extrinsic geometry. For
example, it is interesting to ask what sorts of curves a given set of points lies
on, or to ask about the geometry of the dual hyperplane arrangement (see
[Orlik and Terao 1992]), or about the embedding of the “Gale transform” of
the points (see [Eisenbud and Popescu 1999]). All of these things have some
connections with syzygies.

Besides being a good model problem, the case of points in P2 arises directly
in considering the plane sections of varieties of codimension 2, such as the
very classical examples of curves in P3 and surfaces in P4. For example,
a knowledge of the possible Hilbert functions of sets of points in “uniform
position” is the key ingredient in “Castelnuovo Theory”, which treats the
possible genera of curves in P3 and related problems.

39
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Despite this wealth of related topics, the goal of this chapter is modest:
We will characterize the Betti diagrams of the possible minimal graded free
resolutions of ideals of forms vanishing on sets of points in P2, and begin to
relate these discrete invariants to geometry in simple cases.

Throughout this chapter, S will denote the graded ring K[x0, x1, x2]. All the
S-modules we consider will be finitely generated and graded. Such a module
admits a minimal free resolution, unique up to isomorphism. By Corollary
1.8, its length is equal to the module’s projective dimension.

3A The ideal of a finite set of points

The simplest ideals are principal ideals. As a module, such an ideal is free.
The next simplest case is perhaps that of an ideal having a free resolution of
length 1, and we will see that the ideal of forms vanishing on any finite set
of points in P2 has this property.

We will write pd I for the projective dimension of I. By the depth of a
graded ring, we mean the grade of the irrelevant ideal—that is, the length
of a maximal regular sequence of homogeneous elements of positive degree.
(The homogeneous case is very similar to the local case; for example, all
maximal regular sequences have the same length in the homogeneous case
as in the local case, and the local proofs can be modified to work in the
homogeneous case. For a systematic treatement see [Goto and Watanabe
1978a] and [Goto and Watanabe 1978b].)

Proposition 3.1. If I ⊂ S is the homogeneous ideal of a finite set of points
in P2, then I has a free resolution of length 1.

Proof. Suppose I = I(X), the ideal of forms vanishing on the finite set
X ⊂ P2. By the Auslander-Buchsbaum Formula (Theorem 11.11 we have

pd S/I = depth(S)− depth(S/I).

But depth(S/I) ≤ dim(S/I) = 1. The ideal I is the intersection of the
prime ideals of forms vanishing at the individual points of X, so the max-
imal homogeneous ideal m of S is not associated to I. This implies that
depth(S/I) > 0. Also, the depth of S is 3 (the variables form a maximal
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homogeneous regular sequence). Thus pd S/I = 3−1 = 2, whence pd I = 1,
as I is the first module of syzygies in a free resolution of S/I.

It turns out that ideals with a free resolution of length 1 are determinantal
(see Appendix 11G for some results about determinantal ideals.) This result
was discovered by Hilbert in a special case and by Burch in general.

3A.1 The Hilbert-Burch Theorem

In what follows, we shall work over an arbitrary Noetherian ring R. (Even
more general results are possible; see for example [Northcott 1976].) For any
matrix M with entries in R we write It(M) for the ideal generated by the
t× t subdeterminants of M The length of a maximal regular sequence in an
ideal I is written grade(I).

Theorem 3.2 (Hilbert-Burch). Suppose that an ideal I in a Noetherian
ring R admits a free resolution of length 1

0 - F
M- G - I - 0.

If the rank of the free module F is t, then the rank of G is t + 1, and there
exists a nonzerodivisor a such that I = aIt(M). Regarding M as a matrix
with respect to given bases of F and G, the generator of I that is the image
of the i-th basis vector of G is ±a times the determinant of the submatrix of
M formed from all except the i-th row. Moreover, the grade of It(M) is 2.

Conversely, given a (t+1)×t matrix M with entries in R such that grade It(M) ≥
2 and a nonzerodivisor a of R, the ideal I = aIt(M) admits a free resolution
of length 1 as above. The ideal I has grade 2 if and only if the element a is
a unit.

In view of the signs that appear in front of the determinants, we define the
t × t minor of M to be (−1)i detM ′

i , where M ′
i is the matrix M ′ with the

i-th row omitted. We can then say that the generator of I that is the image
of the i-th basis vector of G is a times the i-th minor of M .

We postpone the proof in order to state a general result describing free reso-
lutions. If ϕ is a map of free R-modules, we write rank(ϕ) for the rank (that
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is, the largest size of a nonvanishing minor) and I(ϕ) for the determinantal
ideal Irank(ϕ)(ϕ). For any map ϕ of free modules we make the convention
that I0(ϕ) = R. In particular, if ϕ is the zero map, then the rank of ϕ is 0 so
I(ϕ) := I0(ϕ) = R. We also take depth(R,R) = ∞, so that grade(I(ϕ)) = ∞
in this case.

Theorem 3.3 (Buchsbaum-Eisenbud). A complex of free modules

F : 0 - Fm
ϕm- Fm−1

- · · · - F1
ϕ1- F0

over a Noetherian ring R is exact if and only if, for every i,

1. rankϕi+1 + rankϕi = rankFi.

2. depth(I(ϕi)) ≥ i.

For a proof of Theorem 3.3 see Eisenbud [Eisenbud 1995, Theorem 20.9]. It
is crucial that the complex be finite and begin with a zero on the left; no
similar result is known without such hypotheses.

In the special case where R is a polynomial ring R = K[x0, . . . , xr] and K
is algebraically closed, Theorem 3.3 has a simple geometric interpretation.
We think of R as a ring of functions on Kr+1 (in the graded case we could
work with Pr instead.) If p ∈ Kr+1, we write I(p) for the ideal of functions
vanishing at p, and we write

F(p) : 0 - Fm(p)
ϕm(p)- · · · ϕ1(p)- F0(p)

for the result of tensoring F with the residue field κ(p) := R/I(p), regarded
as a complex of finite dimensional vector spaces over κ(p). A matrix for the
map ϕi(p) is obtained simply by evaluating a matrix for the map ϕi at p.
Theorem 3.3 expresses the relation between the exactness of the complex of
free modules F and the exactness of the complexes of vector spaces F(p).

Corollary 3.4. Let

F : 0 - Fm
ϕm- Fm−1

- · · · - F1
ϕ1- F0

be a complex of free modules over the polynomial ring S = K[x0, . . . , xr],
where K is an algebraically closed field. Let Xi ⊂ Kr+1 be the set of points
p such that the evaluated complex F(p) is not exact at Fi(p). The complex F
is exact if and only if, for every i, the set Xi is empty or codimXi ≥ i.
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Proof. Set ri = rankFi − rankFi+1 + . . . ± rankFm. Theorem 3.3 implies
that F is exact if and only if grade Iri(ϕi) ≥ i for each i ≥ 1. First, if F is
exact then by descending induction we see from condition 1 of the Theorem
that rankϕi = ri for every i, and then the condition grade Iri(ϕi) ≥ i is just
condition 2 of Theorem 3.3.

Conversely, suppose that grade Iri(ϕi) ≥ i. It follows that rankϕi ≥ ri
for each i. Tensoring with the quotient field of R we see that rankϕi+1 +
rankϕi ≤ rankFi in any case. Using this and the previous inequality, we see
by descending induction that in fact rankϕi = ri for every i, so conditions 1
and 2 of Theorem 3.3 are satisfied.

Now let

Yi = {p ∈ Kr+1 | rankϕi(p) < ri}.

Thus Yi is the algebraic set defined by the ideal Iri(ϕi). Since the polynomial
ring S is Cohen-Macaulay (Theorem 11.20) the grade of Iri(ϕi) is equal to
the codimension of this ideal, which is the same as the codimension of Yi. It
follows that F is exact if and only if the codimension of Yi in Kr+1 is ≥ i for
each i ≥ 1.

On the other hand, the complex of finite-dimensional K-vector spaces F(p)
is exact at Fj(p) if and only if rankϕj+1(p) + rankϕj(p) = rankFj(p). Since
F(p) is a complex, this is the same as saying that rankϕj+1(p)+rankϕj(p) ≥
rankFj(p). This is true for all j ≥ i if and only if rankϕj(p) ≥ rj for all
j ≥ i. Thus F(p) is exact at Fj(p) for all j ≥ i if and only if p /∈ ⋃j≥i Yj.
The codimension of

⋃
j≥i Yj is the minimum of the codimensions of the Yj for

j ≥ i. Thus codim
⋃
j≥i Yj ≥ i for all i if and only if codimYi ≥ i for all i.

Thus F satisfies the condition of the Corollary if and only if F is exact.

Example 3.1. To illustrate these results, we return to the example of Ex-
ercise 2.8 from Chapter 2, and consider the complex

F : 0 → S2(−3)

ϕ2=

x0 x1

x1 x2

x2 x3


- S3(−2)

ϕ1=(x1x3−x2
2 −x0x3+x1x2 x0x2−x2

1)
- S.

In the notation of the proof of 3.4 we have r2 = 2, r1 = 1. Further, the
entries of ϕ1 are the 2 × 2 minors of ϕ2, as in Theorem 3.2 with a = 1. In
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particular Y1 = Y2 and X1 = X2. Thus Corollary 3.4 asserts that F is exact if
and only if codimX2 ≥ 2. But X2 consists of the points p where ϕ2 fails to be
a monomorphism—that is, where rank(ϕ(p)) ≤ 1. If p = (p0, . . . , p3) ∈ X2

and p0 = 0 then, inspecting the matrix ϕ2 we see that p1 = p2 = 0, so
p = (0, 0, 0, p3). Such points form a set of codimension 3 in K4. On the other
hand, if p ∈ X2 and p0 6= 0 then set again inspecting the matrix ϕ2 we see
that p2 = (p1/p0)

2, p3 = (p1/p0)
3. Thus p is determined by the 2 parameters

p0, p1, and the set of such p has codimension ≥ 4− 2 = 2. In particular X2,
the union of these two sets, has codimension ≥ 2, so F is exact by Corollary
3.4.

In this example all the ideals are homogeneous, and the projective algebraic
set X2 is in fact the twisted cubic curve.

A consequence of Theorem 3.2 in the general case is that any ideal with a
free resolution of length 1 contains a nonzerodivisor. Theorem 3.3 allows us
to prove a more general result of Auslander and Buchsbaum:

Corollary 3.5 (Auslander-Buchsbaum). If an ideal I has a finite free
resolution, then I contains a nonzerodivisor.

In the non-graded, non-local case, having a finite projective resolution (finite
projective dimension) would not be enough; for example, if k is a field then
the ideal k×{0} ⊂ k×k is projective, but does not contain a nonzerodivisor.

Proof. In the free resolution

0 - Fn
ϕn- · · · ϕ2- F1

ϕ1- R - R/I - 0

the ideal I(ϕ1) is exactly I. By Theorem 3.3 it has grade at least 1.

The proof of the last statement of Theorem 3.2 depends on the following
identity:

Lemma 3.6. If M is a (t + 1) × t matrix over a commutative ring R, and
a ∈ R, then the composition

Rt M- Rt+1 ∆- R
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is zero, where the map ∆ is given by the matrix ∆ = (a∆1, · · · , a∆t+1), the
element ∆i being the t× t minor of M omitting the i-th row (remember that
by definition this minor is (−1)i times the determinant of the corresponding
submatrix.)

Proof. Write ai,j for the (i, j) entry of M . The i-th entry of the composite
map ∆M is a

∑
j ∆jai,j, that is, a times the Laplace expansion of the deter-

minant of the (t+1)× (t+1) matrix obtained from M by repeating the i-th
column. Since any matrix with a repeated row has determinant zero, we get
∆M = 0.

Proof of Theorem 3.2. We prove the last statement first: suppose that the
grade of It(M) is at least 2 and a is a nonzerodivisor. It follows that the
rank of M is t, so that I(M) = It(M), and the rank of ∆ is 1. Thus
I(∆) = I1(∆) = aI(M) and the grade of I(∆) is at least 1. By Theorem 3.3

0 - F
M- G - I - 0.

is the resolution of I = aI(M) as required.

We now turn to the first part of Theorem 3.2. Using the inclusion of the
ideal I in R, we see that there is a free resolution of R/I of the form

0 - F
M- G

A- R.

Since A is nonzero it has rank 1, and it follows from Theorem 3.3 that the
rank of M must be t, and the rank of G must be t + 1. Further, the grade
of I(M) = It(M) is at least 2. Theorem 11.32 shows that the codimension
of the ideal of t× t minors of a (t+ 1)× t matrix is at most 2. By Theorem
11.7 the codimension is an upper bound for the grade, so grade I(M) = 2.
Write ∆ = (∆1, . . . ,∆t+1), for the 1× (t+1) matrix whose entries ∆i are the
minors of M as in Lemma 3.6. Writing −∗ for HomR(−, R), it follows from
Theorem 3.3 that the sequence

F ∗ �M
∗
G∗ �∆∗

R � 0,

which is a complex by Lemma 3.6, is exact. On the other hand, the image of
the map A∗ is contained in the kernel of M∗, so that there is a map a : R→ R
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such that the diagram

F ∗ �
M∗

G∗ �
A∗

R

F ∗

wwwwwwwwwwwww
�

M∗
G∗

wwwwwwwwwwwww
�

∆∗
R

a

?

.................

commutes. The map a is represented by a 1× 1 matrix whose entry we also
call a. By Corollary 3.5, the ideal I contains a nonzerodivisor. But from the
diagram above we see that I = aIt(M) is contained in (a), so a must be a
nonzerodivisor.

As It(M) has grade 2, the ideal I = aIt(M) has grade 2 if and only if a is a
unit. With Theorem 3.3 this completes the proof.

3A.2 Invariants of the resolution

The Hilbert-Burch Theorem just described allows us to exhibit some interest-
ing numerical invariants of a set X of points in P2. Throughout this section
we will write I = IX ⊂ S for the homogeneous ideal of X, and SX = S/IX for
the homogeneous coordinate ring of X. By Proposition 3.1 the ideal IX has
projective dimension 1, and thus SX has projective dimension 2. Suppose
that the minimal graded free resolution of SX has the form

F : 0 → F
M- G - S,

where G is a free module of rank t+ 1. By Theorem 3.2, the rank of F is t.

We can exhibit the numerical invariants of this situation either by using the
degrees of the generators of the free modules or the degrees of the entries
of the matrix M . We write the graded free modules G and F in the form
G =

⊕t+1
1 S(−ai) and F =

⊕t
1 S(−bi), where, as always, S(−a) denotes the

free module of rank 1 with generator in degree a. The ai are thus the degrees
of the minimal generators of I. The degree of the (i, j) entry of the matrix
M is then bj − ai. As we shall soon see, the degrees of the entries on the
two principal diagonals of M determine all the other invariants. We write
ei = bi − ai and fi = bi − ai+1 for these degrees.
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To make the data unique, we assume that the bases are ordered so that a1 ≥
· · · ≥ at+1 and b1 ≥ · · · ≥ bt or, equivalently, so that fi ≥ ei and fi ≥ ei+1.
Since the generators of G correspond to rows of M and the generators of F
correspond to columns of M , and the ei and fi are degrees of entries of M ,
we can exhibit the data schematically as follows:



b1 b2 · · · bt
a1 e1 ∗ · · · ∗
a2 f1 e2 · · · ∗
...

...
. . . . . .

...
at ∗ · · · ft−1 et
at+1 ∗ · · · ∗ ft


The case of 8 general points in P2 is illustrated on the cover of this book.
((Refers to Figure 6 — should it be at the top of this Ch in-
stead?)) Since minimal free resolutions are unique up to isomorphism, the
integers ai, bi, ei, fi are invariants of the set of points X. They are not ar-
bitary, however, but are determined (for example) by the ei and fi. The next
proposition gives these relations. We shall see at the very end of this chapter
that Proposition 3.7 gives all the restrictions on these invariants, so that it
describes the numerical characteristics of all possible free resolutions of sets
of points.

Proposition 3.7. If

F : 0 →
t∑
1

S(−bi)
M-

t+1∑
1

S(−ai) - S,

is a minimal graded free resolution of S/I, and ei, fi denote the degrees of
the entries on the principal diagonals of M , then for all i,

• ei ≥ 1, fi ≥ 1.

• ai =
∑
j<i

ej +
∑
j≥i

fj.

• bi = ai + ei for i = 1, . . . , t and
∑t

1 bi =
∑t+1

1 ai.

If the bases are ordered so that a1 ≥ · · · ≥ at+1 and b1 ≥ · · · ≥ bt then in
addition
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• fi ≥ ei, fi ≥ ei+1.

Proposition 3.7 gives an upper bound on the minimal number of generators
of the ideal of a set of points that are known to lie on a curve of given degree.
Burch’s motivation in proving her version of the Hilbert-Burch theorem was
to generalize this bound, which was known independently.

Corollary 3.8. If I is the homogeneous ideal of a set of points in P2 lying
on a curve of degree d, then I can be generated by d+ 1 elements.

Proof of Corollary 3.8. If t+1 is the minimal number of generators of I then,
by Proposition 3.7, the degree ai of the i-th minimal generator is the sum
of t numbers that are each at least 1, so t ≤ ai. Since I contains a form of
degree d we must have ai ≤ d for some i.

Hilbert’s method for computing the Hilbert function, described in Chapter
1, allows us to compute the Hilbert function and polynomial of SX in terms
of the ei and fi. As we will see in Section 4A.1, HX(d) is constant for large
d, and its value is the number of points in X, usually called the degree of
X and written degX. If X were the complete intersection of a curve of
degree e with a curve of degree f , then in the notation of Proposition 3.7
we would have t = 1, e1 = e f1 = f , and by Bézout’s Theorem the degree
of X would be ef = e1f1. The following is the generalization to arbitrary
t, discovered by Ciliberto, Geramita, and Orrechia [Ciliberto et al. 1986].
For the generalization to determinantal varieties of higher codimension see
Herzog and Trung [Herzog and Trung 1992, Corollary 6.5].

Corollary 3.9. If X is a finite set of points in P2 then, with notation as
above,

degX =
∑
i≤j

eifj.

The proof is straightforward calculation from Proposition 3.7, and we leave
it and a related formula to the reader in Exercise 3.14.

Proof of Proposition 3.7. Since I has codimension 2 and S is a polynomial
ring (and thus Cohen-Macaulay) I has grade 2. It follows that the non-
zerodivisor a that is associated to the resolution F as in Theorem 3.2 is a
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unit. Again because S is a polynomial ring this unit must be a scalar. Thus
the ai are the degrees of the minors of M .

We may assume that the bases are ordered as in the last statement of the
Proposition. We first show that the ei (and thus also, by our ordering con-
ventions, the fi) are at least 1. Write mi,j for the (i, j) entry of M . By the
minimality of F, no mi,j can be a nonzero constant, so that if ei ≤ 0 then
mi,i = 0. Moreover if p ≤ i and q ≥ i then

degmp,q = bq − ap ≤ bi − ai = ei,

by our ordering of the bases. If ei ≤ 0 then mp,q = 0 for all (p, q) in this
range, as in the following diagram, where t = 4 and we assume e3 ≤ 0:

M =


∗ ∗ 0 0
∗ ∗ 0 0
∗ ∗ 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 .

We see by calculation that the determinant of the upper t × t submatrix of
M vanishes. By Theorem 3.2 this determinant is a minimal generator of I,
and this is a contradiction.

The identity ai =
∑
j<i

ej +
∑
j≥i

fj again follows from Theorem 3.2, since ai is

the degree of the determinant ∆i of the submatrix of M omitting the i-th
row, and one term in the expansion of this determinant is

∏
j<i

mj,j ·
∏
j≥i

mj+1,j.

Since ei = bi − ai. we get
∑t

1 bi =
∑t

1 ai +
∑t

1 ei =
∑t+1

1 ai.

3B Examples

3B.1 Points on a conic

We illustrate the theory above, in particular Corollary 3.8, by discussing the
possible resolutions of a set of points lying on an irreducible conic.

((Figure 7a))
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For the easy case of points on a line, and the more complicated case of points
on a reducible conic, see Exercises 3.1 and 3.4–3.7 below.

Suppose now that the point set X ⊂ P2 does not lie on any line, but does
lie on some conic, defined by a quadratic form q. In the notation of Proposi-
tion 3.7 we have at+1 = 2. Since at+1 =

∑t
1 ei it follows from Proposition 3.7

that either t = 1, e1 = 2 or else t = 2 and e1 = e2 = 1.

1. If t = 1 then X is a complete intersection of the conic with a curve
of degree a1 = d defined by a form g. By our formula (or Bézout’s
Theorem), the degree of X is 2d. Note in particular that it is even. We
have b1 = d + 2, and the resolution takes the following form (see also
Theorem 11.28):

S(−2)

����g * HHHH
q
j

0 - S(−d− 2) ⊕ S −→ SX
HHHH−q j ����

g

*

S(−d)

((Silvio: this diagram has the same problems as the similar
one in this chapter.)) In the case d = 2 the Betti diagram of this
resolution is

0 1 2
0 1 − −
1 − 2 −
2 − − 1

while for larger d it takes the form
0 1 2

0 1 − −
1 − 1 −
2 − − −
.
..

.

..
.
..

.

..
d− 2 − − −
d− 1 − 1 −

d − − 1

2. The other possibility is that t = 2 and e1 = e2 = 1. We will treat only
the case where the conic q = 0 is irreducible, and leave the reducible
case to the reader in Exercises 3.4–3.7 at the end of the chapter. By
Proposition 3.7 the resolution has the form

0 - S(−1− f1 − f2)⊕ S(−2− f2)
M- S(−f1 − f2)⊕ S(−1− f2)⊕ S(−2) - S
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where we assume that f1 ≥ e1 = 1, f1 ≥ e2 = 1, and f2 ≥ e2 = 1 as
usual. If there are two quadratic generators, we further assume that
the last generator is q.

By Theorem 3.2, q is (a multiple of) the determinant of the 2×2 matrix
M ′ formed from the first two rows of M . Because q is irreducible, all
four entries of the upper 2× 2 submatrix of M must be nonzero. The
upper right entry of M has degree e1 + e2 − f1 ≤ 1. If it were of
degree 0 then by the supposed minimality of the resolution it would
be 0, contradicting the irreducibility of q. Thus e1 + e2 − f1 = 1, so
f1 = 1. By our hypothesis a3 = 2, and it follows from Proposition 3.7
that a1 = a2 = 1 + f2, b1 = b2 = 2 + f2. We deduce that the resolution
has the form

0 - S(−2− f2)
2 M- S(−1− f2)

2 ⊕ S(−2) - S.

If f2 = 1 then the Betti diagram is
0 1 2

0 1 0 0
1 0 3 2

while if f2 > 1 it has the form
0 1 2

0 1 − −
1 − 1 −
2 − − −
..
.

..

.
..
.

..

.
f2 − 1 − − −

f2 − 2 2

Applying the formula of Corollary 3.9 we get degX = 2f2 + 1. In
particular, we can distinguish this case from the complete intersection
case by the fact that the number of points is odd.

3B.2 Four non-colinear points

Any 5 points lie on a conic, since the quadratic forms in 3 variables form a
5-dimensional vector space, and vanishing at a point is one linear condition,
so there is a nonzero quadratic form vanishing at any 5 points. Thus we can
use the ideas of the previous subsection to describe the possible resolutions
for up to 5 points. One set of three non-colinear points in P2 is like another,
so we treat the case of a set X = {p1, . . . , p4} of four non-colinear points, the
first case where geometry enters. (For the case of 3 points see Exercise 3.2.)
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Since there is a 6 dimensional vector space of quadratic forms on P2, and the
condition of vanishing at a point is a single linear condition, there must be
at least two distinct conics containing X.

First suppose that no three of the points lie on a line. It follows that X is
contained in the following two conics, each a union of two lines:

C1 = p1, p2 ∪ p3, p4 C2 = p1, p3 ∪ p2, p4.

In this case, X is the complete intersection of C1 and C2, and we have Betti
diagram

0 1 2
0 1 0 0
1 0 2 0
2 0 0 1

. ((Figure 9))
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The two conics are the two pairs of lines containing the 4 points

On the other hand, suppose that three of the points, say p1, p2, p3 lie on a
line L. Let L1 and L2 be lines through p4 that do not contain any of the
points p1, p2, p3. It follows that X lies on the two conics

C1 = L ∪ L1 C2 = L ∪ L2,

and the intersection of these two conics contains the whole line L. Thus
X is not the complete intersection of these two conics containing it, so by
Corollary 3.8 the ideal of X requires exactly 3 generators. From Propositions
3.7 and 3.9 it follows that

e1 = e2 = 1, f1 = 2, f2 = 1,

and the ideal I of X is generated by the quadrics defining C1 and C2 together
with a cubic equation. ((Figure 10))
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Four points, three on a line, are the intersection of two conics and a cubic

The Betti diagram will be
0 1 2

0 1 0 0
1 0 2 1
2 0 1 1

3C The existence of sets of points with given

numerical invariants

This section is devoted to a proof of the following converse of Proposition
3.7:

Theorem 3.10. If the ground field K is infinite and ei, fi ≥ 1, for i =
1, . . . , t, are integers, then there is a set of points X ⊂ P2 such that SX has
a minimal free resolution whose second map has diagonal degrees ei and fi
as in Proposition 3.7.

The proof is in two parts. In the next section we show that there is a
monomial ideal J ⊂ K[x, y] (that is, an ideal generated by monomials in the
variables), containing a power of x and a power of y, whose free resolution has
the corresponding invariants. This step is rather easy. Then, given any such
monomial ideal J we will show how to produce a set of distinct points in P2

whose defining ideal I has free resolution with the same numerical invariants
as that of J .
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The second step, including Theorem 3.13, is part of a much more general
theory, sometimes called the “polarization” of monomial ideals. We sketch
its elements in the exercises at the end of this chapter.

3C.1 The existence of monomial ideals with given nu-
merical invariants

Proposition 3.11. Let S = K[x, y, z], and let e1, . . . , et and f1, . . . , ft be
positive integers. For i = 1, . . . , t+ 1 set

mi =
∏
j<i

xej
∏
j≥i

yfj .

and let I = (m1, . . . ,mt+1) ⊂ S be the monomial ideal they generate. Define
ai and bi by the formulas of Proposition 3.7. The ring S/I has minimal free
resolution

0 →
t∑
i=1

S(−bi)
M-

t+1∑
i=1

S(−ai) - S - S/I → 0

where

M =



xe1 0 0 · · · 0 0 0
yf1 xe2 0 · · · 0 0 0
0 yf2 xe3 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 yft−1 xet

0 0 0 · · · 0 0 yft


and the generator of S(−ai) maps to ±mi ∈ S.

Proof. It is easy to see that mi is the determinant of the submatrix of M
omitting the i-th row. Thus by Theorem 3.2 it suffices to show that the ideal
of maximal minors of M has grade at least 2. But this ideal contains

∏t
i=1 x

ei

and
∏t
i=1 y

fi .

3C.2 Points from a monomial ideal

We will prove some general results allowing us to manufacture a reduced
algebraic set having ideal with the same Betti diagram as any given monomial
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ideal, as long as the ground field K is infinite. This treatment is taken from
Geramita, Gregory and Roberts [1986].

Here is the tool we will use to show that the two resolutions have the same
Betti diagram:

Lemma 3.12. Let R be a ring. If M is an R-module and y ∈ R is a
nonzerodivisor both on R and on M , then any free resolution of M over R
reduces modulo (y) to a free resolution of M/yM over R/(y). Thus if R is a
graded polynomial ring, M is a graded module, and y is a linear form, then
the Betti diagram of M (over R) is the same as the Betti diagram of M/yM
(over the graded polynomial ring R/(y).)

Proof. Let F : · · · → F1 → F0 be a free resolution of M . We must show that
F/yF = R/(y) ⊗R F, which is obviously a free complex of R/(y)-modules,
is actually a free resolution—that is, its homology is trivial except at F0,
where it is M/yM . The homology of F/yF = R/(y) ⊗R F is by definition
TorR∗ (R/(y),M). Because y is a nonzerodivisor on R, the complex 0 →
R

y- R → R/(y) → 0 is exact, and it is thus a free resolution of R/(y).
We can use this free resolution instead of the other to compute Tor (see for
example [Eisenbud 1995, p. 674]), and we see that TorR∗ (R/(y),M) is the

homology of the sequence 0 → M
y- M . Since y is a nonzerodivisor on

M , the homology is just M/yM in degree 0, as required.

We now return to the construction of sets of points. If K is infinite we can
choose r embeddings (of sets) ηi : N ↪→ K. (If K has characteristic 0, we
could choose all ηi equal to the natural embedding ηi(n) = n ∈ Z ⊂ K, but
any assignment of distinct ηi(n) ∈ K will do. In general we could choose all
ηi to be equal, but the extra flexibility will be useful in the proof.) We use the
ηi to embed the set of monomials of K[x1, . . . , xr] into Pr: if m = xp11 · · ·xpr

r

we set η(m) = (1, η1(p1), . . . , ηr(pr)), and we set

fm =
r∏
i=1

pi−1∏
j=0

(xi − ηi(j)x0).

We think of fm as the result of replacing the powers of each xi in m by
products of the distinct linear forms xi − ηi(j)x0. Note in particular that
fm ∼= m mod (x0).
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Theorem 3.13. Let K be an infinite field, with an embedding N ⊂ K as
above, and let J be a monomial ideal in K[x1, . . . , xr]. Let XJ ⊂ Pr be the
set

XJ = {p ∈ Nr ⊂ Pr | xp /∈ J}.

The ideal IXJ
⊂ S = K[x0, . . . , xr] has the same Betti diagram as J ; in fact

x0 is a nonzerodivisor modulo IXJ
, and J ∼= IXJ

mod (x0). Moreover, IXJ
is

generated by the forms fm where m runs over a set of monomial generators
for J .

Examples: Before giving the proof, two examples will clarify the result:

1. In the case of a monomial ideal J in K[x1, . . . , xr] that contains a power of
each variable xi, such as the ones in K[x, y, z] described in section 3C.1, the
set XJ is finite. Thus Theorem 3.13 and Proposition 3.11 together yield the
existence of sets of points in P2 whose free resolution has arbitrary invariants
satisfying Proposition 3.7. For example, the Betti diagram

0 1 2
0 1 − −
1 − - -
2 − 1 -
3 − 2 1
4 − - 1

corresponds to invariants (e1, e2) = (2, 1), (f1, f2) = (2, 2), and monomial
ideal J = (y3, x4, x3y), where we have replaced x1 by x and x2 by y to
simplify notation. We will also replace x0 by z. Assuming, for simplicity,
that K has characteristic 0 and that ηi(n) = n for all i, the set of points XJ

in the affine plane z = 1 looks like ((figure 19))
* * *
* * *
* * * *

Its ideal is generated by the polynomials

y(y − 1)(y − 2)

x(x− 1)(x− 2)y

x(x− 1)(x− 2)(x− 3).

As a set of points in projective space, it has ideal IXJ
⊂ K[z, x, y] generated
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by the homogenizations

fy3 = y(y − z)(y − 2z)

fx3y = x(x− z)(x− 2z)y

fx4 = x(x− z)(x− 2z)(x− 3z).

2. Now suppose that J does not contain any power of x1. There are infinitely
many isolated points in XJ , corresponding to the elements 1, x1, x

2
1, . . . /∈

J . Thus XJ is not itself an algebraic set. Its Zariski closure (the smallest
algebraic set containing it) is a union of planes, as we shall see. For example,
if J = (x3, x2y, xy2) then XJ and its Zariski closure are shown in Figure 20.

((Figure 20))

For the proof of Theorem 3.13 we will use the following basic properties of
the forms fm.

Lemma 3.14. Let K be an infinite field. With notation as above:

1. If f ∈ S is a form of degree ≤ d that vanishes on η(m) ∈ Pr for every
monomial m with degm ≤ d, then f = 0.

2. fm(η(m)) 6= 0.

3. fm(η(n)) = 0 if m 6= n and deg n ≤ degm

Proof. 1. We induct on the degree d ≥ 0 and the dimension r ≥ 1. The cases
in which d = 0 or r = 1 are easy.

For any form f of degree d we may write f = (xr − ηr(0)x0)q + g, where
q ∈ S is a form of degree d− 1 and g ∈ K[x0, ..., xr−1] is a form of degree ≤ d
not involving xr. Suppose that f vanishes on η(m) = (1, η1(p1), . . . , ηr(pr))
for every monomial of degree ≤ d. The linear form xr − ηr(0)x0 vanishes on
η(m) if and only if ηr(pr) = ηr(0), that is, pr = 0. This means that m is
divisible by xr, so g vanishes on η(m) for all monomials m of degree ≤ d that
are not divisible by xr. It follows by induction on r that g = 0.

Since g = 0, the form q vanishes on η(xrn) for all monomials n of degree
≤ d− 1. If we define new embeddings η′i by the formula η′i = ηi for i < r but
η′r(p) = ηr(p + 1), and let η′ be the corresponding embedding of the set of
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monomials, then q vanishes on η′(n) for all monomials n of degree at most
d− 1. By induction on d, we have q = 0, whence f = 0 as required.

2. This follows at once from the fact that η : N → K is injective.

3. Write m = xp11 · · ·xpr
r and n = xq11 · · ·xqrr . Since deg n ≤ degm we have

qi < pi for some i. It follows that fm(η(n)) = 0.

Proof of Theorem 3.13. Let I be the ideal generated by {fm} where m ranges
over a set of monomial generators of J . We first prove that I = IXJ

.

For every pair of monomials m ∈ J, n /∈ J one of the exponents of n is
strictly less than the corresponding exponent of m. It follows immediately
that I ⊂ IXJ

.

For the other inclusion, let f ∈ IXJ
be any form of degree d. Suppose that

for some e ≤ d the form f vanishes on all the points η(n) for deg n < e,
but not on some η(m) with degm = e. By parts 2 and 3 of Lemma 3.14
we can subtract a multiple of xd−e0 fm from f to get a new form of degree d
vanishing on η(m) in addition to all the points η(m′) where either degm′ < e
or degm′ = e and f(η(m′)) = 0. Proceeding in this way, we see that f differs
from an element of I by a form g of degree d that vanishes on η(m) for every
monomial m of degree ≤ d. By part 1 of Lemma 3.14 we have g = 0, so
f ∈ I. This proves that I = IXJ

.

Since none of the points η(m) lies in the hyperplane x0 = 0, we see that x0 is
a nonzerodivisor modulo IXJ

. On the other hand it is clear from the form of
the given generators that I ∼= J mod (x0). Applying Lemma 3.12 below we
see that a (minimal) resolution of I over S reduces modulo x0 to a (minimal)
free resolution of J over K[x1, . . . , xr]; in particular the Betti diagrams are
the same.

3D Exercises

1. Let X be a set of d points on a line in P2. Use Corollary 3.8 to show
that the ideal IX can be generated by two elements, the linear form
defining the line and one more form g, of degree a1 = d. Compute the
Betti diagram of SX . ((Insert Picture 7))
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2. By a change of coordinates, any three non-colinear points can be taken
to be the points x = y = 0, x = z = 0, and y = z = 0. Let X be
this set of points. Show that X lies on a nonsingular conic and deduce
that its ideal IX must have 3 quadratic generators. Prove that in fact
IX = (yz, xz, xy). By Proposition 3.7 the matrix M of syzygies must
have linear entries; show that it is x 0

−y y
0 −z

 .
Write down the Betti diagram.

`````````
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�
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�
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bb
The three pairs of lines span the space of conics through the three points

((Figure 8))

3. ((this is a preamble to exercises ??–3.7)) In Exercises 3.4 to 3.7
we invite the reader to treat the case where the conic in Section 3B,
case 2 is reducible, that is, its equation is a product of linear forms.
Changing coordinates, we may assume that the linear forms are x and
y. The following exercises all refer to a finite set (or, in the last exercise,
scheme) of points lying on the union of the lines x = 0 and y = 0, and
its free resolution. We use the notation of Section 3A.2. We write a
for the point with coordinates (0, 0, 1) where the two lines meet.

4. Show that the number of points is f1+2f2 (which may be even or odd.)

5. Suppose that M ′ : F → G1 is a map of homogeneous free modules over
the ring S = K[x, y, z], and that the determinant of M ′ is xy. Show
that with a suitable choice of the generators of F and G1, and possibly



60 CHAPTER 3. POINTS IN P2

replacing z by a linear form z′ in x, y, z, the map M ′ can be represented
by a matrix of the form(

xy 0
0 1

)
or

(
x 0
0 y

)
or

(
x 0
z′f y

)

for some integer f ≥ 0.

6. Deduce that the matrix M occuring in the free resolution of the ideal
of X can be reduced to the form

M =

 x 0
zf1 y

p(y, z) q(x, z)

 ,
where p and q are homogeneous forms of degrees f1 + f2 − 1 and f2

respectively.

Show that X does contains the point a if and only if q(x, z) is divisible
by x.

7. Supposing that X does not contain the point a, show that X contains
precisely f2 points on the line y = 0 and f1 + f2 points on the line
x = 0.

8. Consider the local ring R = k[x, y](x,y), and let I ⊂ R be an ideal
containing xy such that R/I is a finite dimensional k vector space.
Show that (possibly after a change of variable) I = (xy, xs, yt) or I =
(xy, xs + yt). Show that

dimk R/(xy, x
s, yt) = s+ t− 1; dimk R/(xy, x

s + yt) = s+ t.

Regarding R as the local ring of a point in P2, we may think of this as
giving a classfication of all the schemes lying on the union of two lines
and supported at the intersection point of the lines.

9. (For those who know about schemes) In the general case of a set of
points on a reducible conic, find invariants of the matrix M (after row
and column transformations) that determine the length of the part of
X concentrated at the point a and the parts on each of the lines x = 0
and y = 0 away from the point a.
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10. Let u ≥ 1 be an integer, and suppose that K is an infinite field. Show
that any sufficiently general set X of

(
u+1

2

)
points in P2 has free reso-

lution of the form

0 → Su(−u− 1)
M- Su+1(−u) - S;

that is, the equations of X are the minors of a (u + 1) × u matrix of
linear forms.

11. (Gaeta) Suppose d ≥ 0 is an integer, and let s, t be the coordinates of
d in the diagram

...

14
. . .

9 13
. . .

5 8 12
. . .

2 4 7 11
. . .

0 1 3 6 10 · · ·

((Silvio: Please Change to show axes, perhaps grayed out un-
der the numbers. Label the verstical axis s label the horizontal
axis t. (The coordinates of 0 are (0, 0).) The current dots are
unsatisfactory; the diagonal ones should go sw to ne instead
of nw to se.)) Algebraically speaking, s, t are the unique non-negative
integers such that

d =

(
s+ t+ 1

2

)
+ s or equivalently d =

(
s+ t+ 2

2

)
− t− 1.

(a) Use Theorem 3.13 to show that there is a set of d points X ⊂ P2

with Betti diagram

1 t+ 1 t
0 1 − −
1 − − −
...

...
...

...
− − −

s+ t− 1 − t+ 1 t− s
s+ t − − s

or

1 s+ 1 s
0 1 − −
1 − − −
...

...
...

...
− − −

s+ t− 1 − t+ 1 −
s+ t − s− t s

according as s ≤ t or t ≤ s. (This was proven by Gaeta ([Gaeta
1951]) using the technique of linkage; see [Eisenbud 1995, Section
21.10] for the definition of linkage and modern references.)
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(b) Let MX be the presentation matrix for the ideal of a set of points
X as above. Show that if s ≤ t then MX has t + 1 rows, with s
columns of quadrics followed by t columns of linear forms; while
if t ≤ s then MX has s + 1 rows, with s − t rows of linear forms
followed by t rows of quadrics.

(c) (The Gaeta set) Suppose that K has characteristic 0. Define the
Gaeta set of d points to be the set of points in the affine plane
with labels 1, 2, . . . , d in the picture above, regarded as a set of
points in P2. Show that if X is the Gaeta set of d points, then
the Betti diagram of SX has the form given in Part 3.11. (Hint:
Theorem 3.13 still can be used.)

12. Although the Gaeta set X is quite special—for example it is usually
not in linearly general position—show that the free resolution of SX
as above has the same Betti diagram as that of the generic set of d
points (that is, for all sets of point in a dense open subset of (P2)d,
or equivalently, the set of d points in P2

L where L is the field obtained
by adjoining 3d indeterminates to K, which are the 3d homogeneous
coordinates of the points.) One way to prove this is to follow these
steps. Let Y be the generic set of d points.

(a) Show that the generic set of points Y has Hilbert functionHSY
(n) =

min{HS(n), d}, and that this is the same as for the Gaeta set.

(b) Deduce that with s, t defined as above, the ideal IY of Y does not
contain any form of degree < s + t, and contains exactly t + 1
independent forms of degree s + t; and that IY requires at least
(s − t)+ generators of degree s + t + 1, where (s − t)+ denotes
max{0, s− t}, the “positive part” of s− t.

(c) Show that the fact that the ideal of the Gaeta set requires only
(s− t)+ generators of degree s+ t+ 1, and none of higher degree,
implies that the same is true for an open (and thus dense) set of
sets of points with d elements, and thus is true for Y .

(d) Conclude that the resolution of SX has the same Betti diagram as
that of SY .

Despite quite a lot of work we do not know how to describe the free
resolution of a general set of d points in Pr. It would be natural to
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conjecture that the resolution is the “simplest possible, compatible with
the Hilbert function”, as in the case above, and this is known to be
true for r ≤ 4. On the other hand it fails in general; the simplest
case, discovered by Schreyer, is for 11 points in P6, and many other
examples are known. See Eisenbud, Popescu, Schreyer and Walter
[Eisenbud et al. 2002b] for a recent account.

13. (Geramita, Gregory, and Roberts [Geramita et al. 1986]): Suppose that
J ⊂ K[x1, . . . , xr] is a monomial ideal, and that the cardinality of K is
q. Suppose further that no variable xi appears to a power higher than
q in a monomial minimal generator of J . Show that there is a radical
ideal I ⊂ S = K[x0, . . . , xr] such that x0 is a nonzerodivisor modulo
I and J ∼= I mod (x0). (Hint: Although XJ may not make any sense
over K, the generators of IXJ

defined in Theorem 3.13 can be defined
in S. Show that they generate a radical ideal.

14. (Degree formulas) We will continue to assume that X ⊂ P2 is a finite
set of points, and to use the notations for the free resolution of SX
developed in Proposition 3.7.

Show that

HX(d) = HS(d)−
t+1∑
i=1

HS(d− ai) +
t∑
i=1

HS(d− bi)

=
(
d+ 2

2

)
−

t+1∑
i=1

(
d− ai + 2

2

)
+

t∑
i=1

(
d− bi + 2

2

)
,

and

PX(d) =
(d+ 2)(d+ 1)

2
−
t+1∑
i=1

(d− ai + 2)(d− ai + 1)

2

+
t∑
i=1

(d− bi + 2)(d− bi + 1)

2
.

Deduce that in PX(d) the terms of degree ≥ 1 in d all cancel. (Of
course this can also be deduced from the fact that the degree of PX is
the dimension of X.) Prove that

degX = PX(0) =
1

2

( t∑
i=1

b2i −
t+1∑
i=1

a2
i

)
=
∑
i≤j

eifj.
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15. (Sturmfels) Those who know about Gröbner bases ([Eisenbud 1995]
Chapter 15) may show that, with respect to a suitable term order, the
ideal IXJ

constructed in Theorem 3.13 has initial ideal J .

16. [] Monomial Ideals This beautiful theory is one of the main links
between commutative algebra and combinatorics, and has been strongly
developed in recent years. We invite the reader to work out some of this
theory in Exercises 3.17–3.24. These results only scratch the surface.
For more information see [Eisenbud 1995, Section 15.1 and Exercises
15.1–15.6] and [Miller and Sturmfels ≥ 2003].

17. (Ideal membership for monomial ideals) Show that if J = (m1, . . . ,mg) ⊂
T = K[x1, . . . , xn] is the ideal generated by monomials m1, . . . ,mg then
a polynomial p belongs to J if and only if each term of p is divisible by
one of the mi.

((Figure 11))

18. (Intersections and quotients of monomial ideals) Let I = (m1, . . . ,ms), J =
(n1, . . . , nt) be two monomial ideals. Show that

(a) I ∩ J = ({LCM(mi, nj) | i = 1 . . . s, j = 1, . . . , t})
(b) (I : J) = ∩j=1...,t({mi : nj | i = 1 . . . s}).

where we write m : n for the “quotient” monomial p = LCM(m,n)/n,
so that (m) : (n) = (p).

19. (Decomposing a monomial ideal) Let J = (m1, . . . ,mt) ⊂ T = K[x1, . . . , xn]
be a monomial ideal. If mt = ab where a and b are monomials with no
common divisor, show that

(m1, · · · ,mt) = (m1, · · · ,mt−1, a) ∩ (m1, · · · ,mt−1, b).

20. Use the preceding exercise to decompose the ideal (x2, xy, y3) into the
simplest pieces you can.

21. The only monomial ideals that cannot be decomposed by the technique
of Exercise 3.19 are those generated by powers of the variables. Let

Jα = (xα1
1 , x

α2
2 , . . . , x

αn
n )
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where we allow some of the αi to be ∞ and make the convention that
x∞i = 0. We set N∗ = Z ∪ {∞}.
Now show that any monomial ideal J may be written as J = ∩α∈AJα for
some finite set A ⊂ Nn

∗ . The ideal Jα is Pα := ({xi | αi 6= ∞})-primary.
Deduce that the variety corresponding to any associated prime of a
monomial ideal J is a plane of some dimension.

22. If P is a prime ideal, show that the intersection of finitely many P -
primary ideals is P -primary. Use the preceding exercise to find an
irredundant primary decomposition, and the associated primes, of I =
(x2, yz, xz, y2z, yz2, z4) (note that the decomposition produced by ap-
plying Exercise 3.19 may produce redundant components, and also may
produce several irreducible components corresponding to the same as-
sociated prime.)

23. We say that an ideal J is reduced if it is equal to its own radical; that
is, if pn ∈ J implies p ∈ J for any ring element p. An obvious necessary
condition for a monomial ideal to be reduced is that it is square-free in
the sense that none of its minimal generators is divisible by the square
of a variable. Prove that this condition is also sufficient.

24. Polarization and Hartshorne’s proof of Theorem 3.13 An older
method of proving Theorem 3.13 ([Hartshorne 1966]) uses a process
called polarization. If m = xa1

1 x
a2
2 · · · is a monomial, then the po-

larization of m is a monomial (in a larger polynomial ring) obtained
by replacing each power xai

i by a product of ai distinct new variables
P (xai

i ) = xi,1 · · ·xi,ai
. Thus

P (m) =
∏
i

∏
j

xij ∈ K[x1,1, . . . , xn,an ].

Similarly, if J = (m1, . . . ,mt) ⊂ T = K[x1, . . . , xn] is a monomial
ideal, then we define the polarization P (J) to be the ideal generated
by P (m1), . . . , P (mt) in a polynomial ring T = K[x1,1, . . .] large enough
to form all the P (mi). For example, if J = (x2

1, x1x
2
2) ⊂ K[x1, x2] then

P (J) = (x1,1x1,2, x1,1x2,1x2,2) ⊂ K[x1,1, x1,2, x2,1, x2,2].

(a) Show that P (J) is square-free and that if xi,j+1 divides a polar-
ized monomial P (m), then xi,j divides P (m). Show that we can
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get back from P (J) to J by factoring out the differences of the
variables xi,j, xi,k. Prove that any sequence of such differences
modulo which all the xi,j are identified with xi,1 (for i = 0, . . . , r),
and which is minimal with this property, is a regular sequence
modulo P (J). Conclude that the Betti diagram of P (J) is equal
to the Betti diagram of J .

(b) Suppose that the ground field K is infinite, and that J is a mono-
mial ideal in K[x1, x2] containing a power of each variable, with po-
larization P (J) ⊂ K[x0, . . . , xr]. Show that for a general set of r−2
linear forms y3, . . . , yr in the xi the ideal P (J)+(y3, . . . , yr)/(y3, . . . , yr)
is reduced and defines a set of points in the 2-plane defined by
y3 = 0, . . . , yr = 0. Show that the ideal I of this set of points has
the same Betti diagram as J .



Chapter 4

Castelnuovo-Mumford
Regularity

Revised 8/12/03

4A Definition and First Applications

The Castelnuovo-Mumford regularity , or simply regularity , of an ideal in S is
an important measure of how complicated the ideal is. A first approximation
is the maximum degree of a generator the ideal requires; the actual definition
involves the syzygies as well. Regularity is actually a property of a complex,
defined as follows.

Let S = K[x0, . . . , xr] and let

F : · · · → Fi → Fi−1 → · · ·

be a graded complex of free S-modules, with Fi =
∑
j S(−ai,j). The regularity

of F is the supremum of the numbers ai,j − i. The regularity of a finitely
generated graded S-module M is the regularity of a minimal graded free
resolution of M . We will write regM for this number.

For example, if M is free, the regularity of M is the supremum of the degrees
of a set of homogeneous minimal generators of M . In general, the regularity

67
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of M is an upper bound for the largest degree of a minimal generator of
M , which is the supremum of the numbers a0,j − 0. Assuming that M is
generated in degree 0, the regularity of M is the number of nonzero rows in
the Betti diagram of M .

The power of the notion of regularity comes from an alternate description,
in terms of cohomology, which might seem to have little to do with free
resolutions. Historically, the cohomological interpretation came first. David
Mumford defined the regularity of a coherent sheaf on projective space in
order to generalize a classic argument of Castelnuovo. Mumford’s definition
is given in terms of sheaf cohomology; see Section 4B.4 below. The definition
for modules, which extends that for sheaves, and the equivalence with the
condition on the resolution used as a definition above, come from [Eisenbud
and Goto 1984]. In most cases the regularity of a sheaf, in the sense of
Mumford, is equal to the regularity of the graded module of its twisted global
sections.

To give the reader a sense of how regularity is used, we postpone the technical
treatment to describe applications to interpolation and to a sharpening of
Corollary 1.3.

4A.1 The Interpolation Problem

We begin with a classic problem. It is not hard to show that if X is a finite
set of points in Ar = Ar

K , then all functions from X to K are induced by
polynomials. Indeed, if X has n points, then polynomials of degree ≤ n− 1
suffice. To see this, let X = {p1, . . . , pn} and assume for simplicity that
the field K is infinite (we will soon see that this is unnecessary). Using
this assumption we can choose an affine hyperplane passing through pi but
not through any of the other pj. Let `i be a linear function vanishing on
this hyperplane: that is, a linear function on Ar such that `i(pi) = 0 but
`i(pj) 6= 0 for all j 6= i. If we set Qi =

∏
j 6=i `j, then the polynomial

n∑
i=1

ai
Qi(pi)

Qi

takes the value ai at the point pi for any desired values ai ∈ K.
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The polynomials Qi have degree n − 1. Can we find polynomials of strictly
lower degree that give the same functions on X? The answer is generally
“no”: A polynomial of degree < n− 1 that vanishes at n− 1 points on a line
vanishes on the entire line, so if all the points of X lie on a line, then n− 1
is the lowest possible degree. On the other hand, if we consider the set of
three noncolinear points {(0, 0), (0, 1), (1, 0)} in the plane with coordinates
x, y, then the linear function ax + by + c(1 − x − y) takes arbitrary values
a, b, c at the three points, showing that degree 1 polynomials suffice in this
case although 1 < n− 1 = 2. This suggests the following problem.

Interpolation Problem: Given a finite set of points X in Ar, what is
the interpolation degree of X—that is, the smallest degree d such that every
function X → K can be realized as the restriction from Ar of a polynomial
function of degree ≤ d?

The problem has nothing to do with free resolutions; but its solution lies in
the regularity.

Theorem 4.1. Let X ⊂ Ar ⊂ Pr be a finite collection of points, and let SX
be the homogeneous coordinate ring of X as a subset of Pr. The interpolation
degree of X is equal to regSX , the regularity of SX .

The proof will be given in subsection 4B.2. As we shall see there, the inter-
polation problem is related to the question of when the Hilbert function of a
module becomes equal to the Hilbert polynomial.

4A.2 When does the Hilbert function become a poly-
nomial?

As a second illustration of how the regularity is used, we consider the Hilbert
polynomial. Recall that HM(d) = dimK Md is the Hilbert function of M , and
that it is equal to a polynomial function PM(d) for large d. How large does
d have to be for HM(d) = PM(d)? We will show that the regularity of M
provides a bound, which is sharp in the case of a Cohen-Macaulay module.

Recall that a graded S-module is said to be Cohen-Macaulay if its depth
is equal to its dimension. For any finite set of points X ⊂ Pr we have
depthSX = 1 = dimSX , so SX is a Cohen-Macaulay module.
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Theorem 4.2. Let M be finitely generated graded module over the polynomial
ring S = K[x0, . . . , xr].

1. The Hilbert function HM(d) agrees with the Hilbert polynomial PM(d)
for d ≥ regM + 1.

2. More explicitly, if M is a module of projective dimension δ, then HM(d) =
PM(d) for d ≥ regM + δ − r.

3. Let X ⊂ Pr be a nonempty set of points and M = SX , then HM(d) =
PM(d) if and only if d ≥ regM . More generally, if M is a Cohen-
Macaulay module then the bound in part 2 is sharp.

Proof : Part 1 follows at once from part 2 and the Hilbert Syzygy Theorem
(Theorem 1.1). To prove part 2, consider the minimal graded free resolution
of M . By assumption, it has the form

0 →
∑
j

S(−aδ,j) → · · · →
∑
j

S(−a0,j) →M → 0,

and in these terms regM = maxi,j(ai,j − i).

We can compute the Hilbert function or polynomial of M by taking the
alternating sum of the Hilbert functions or polynomials of the free modules
in the resolution of M . In this way we obtain the expressions

HM(d) =
∑
i, j

(−1)i
(
d− ai,j + r

r

)

PM(d) =
∑
i, j

(−1)i
(d− ai,j + r)(d− ai,j + r − 1) · · · (d− ai,j + 1)

r!
.

where i runs from 0 to δ. This expansion for PM is the expression forHM with
each binomial coefficient replaced by the polynomial to which it is eventually
equal. In fact the binomial coefficient

(
d−a+r
r

)
has the same value as the

polyonomial (d− a)(d− a− 1) · · · (d− a− r + 1)/r! for all d ≥ a− r. Thus
from d ≥ regM + δ − r we get d ≥ ai,j − i + δ − r ≥ ai,j − r for each ai,j.
with i ≤ δ. For such d, each term in the expression of the Hilbert function is
equal to the corresponding term in the expression of the Hilbert polynomial,
proving part 2.
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Half of part 3 follows from part 2: The ideal defining X is reduced, and
thus SX is of depth ≥ 1 so, by the Auslander-Buchsbaum formula (Theorem
11.11), the projective dimension of SX is r. Thus by part 2, the Hilbert
function and polynomial coincide for d ≥ regSX . The converse, and the
more general fact about Cohen-Macaulay modules, is more delicate. Again,
we will complete the proof in subsection 4B.2, after developing some general
theory. A different, more direct proof is sketched in Exercises 4.7–4.9.

4B Characterizations of regularity

4B.1 Cohomology

Perhaps the most important characterization of the regularity is cohomo-
logical. One way to state it is that the regularity of a module M can be
determined from the homology of the complex Hom(F, S), where F is a free
resolution of M . This homology is actually dual to the local cohomology of
M . We will formulate the results in terms of local cohomology. The reader
not already familiar with this notion which, in the case we will require, is a
simple extension of the notion of the (Zariski) cohomology of sheaves, should
probably take time out to browse at least the first parts of Appendix 10. The
explicit use of local cohomology can be eliminated—by local duality, many
statement about local cohomology can be turned into statements about Ext
modules. For a treatment with this flavor see [Eisenbud 1995, Section 20.5].

Theorem 4.3. Let M be a finitely generated graded S-module, and let d be
an integer. The following conditions are equivalent:

1. d ≥ regM .

2. d ≥ max{e | Hi
m(M)e 6= 0 }+ i for all i ≥ 0.

3. d ≥ max{e | H0
m(M)e 6= 0}; and Hi

m(M)d−i+1 = 0 for all i > 0.

The proof of this result will occupy most of this subsection. Before beginning
it, we illustrate with four corollaries.
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Corollary 4.4. If M is a graded S-module of finite length, then regM =
max{d |Md 6= 0}.

Proof. H0
m(M) = M and all the higher cohomology of M vanishes by by

Corollary 10.10.

Corollary 4.4 suggests a convenient reformulation of the definition and of
a (slightly weaker) formulation of Theorem 4.3. We first extend the result
of the Corollary with a definition: If M = ⊕Md is an Artinian graded S-
module, then regM := max{d | Md 6= 0}. This does not conflict with our
previous definition because an Artinian module that is finitely generated is of
finite length. The local cohomology modules of any finitely generated graded
module are graded Artinian modules by local duality, Theorem 10.6. Thus
the following formulas make sense:

Corollary 4.5.
regM = max

i
reg Tori(M,K)− i

= max
j

reg H
j
m(M) + j.

In fact there is a term-by-term comparison,

reg H
j
m(M) + j ≤ reg Torr+1−j(M,K)− (r + 1− j).

for each j, as we invite the reader to prove in Exercise 4.11.

Proof. The formula regM = maxj reg Hj
m(M) + j is part of Theorem 4.3.

For the rest, let F : · · · → Fi → · · · be the minimal free resolution of M . The
module Tori(M,K) = Fi/mFi is a finitely generated graded vector space,
thus a module of finite length. By Nakayama’s Lemma, the numbers βi,j,
which are the degrees of the generators of Fi, are also the degrees of the
nonzero elements of Tori(M,K). Thus reg Tori(M,K) − i = maxj{βi,j} − i
and the first equality follows.

It follows from Corollary 4.4 that the regularity of a module M of finite
length is a property that has nothing to do with the S-module structure of
M—it would be the same if we replaced S by K. Theorem 4.3 allows us to
prove a similar independence for any finitely generated module. To express
the result, we write regSM to denote the regularity of M considered as an
S-module.
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Corollary 4.6. Let M be a finitely generated graded S-module, and let S ′ →
S be a homomorphism of graded rings generated by degree 1 elements. If M
is also a finitely generated S ′-module, then regSM = regS′M .

Proof of Corollary 4.6. The statement of finite generation is equivalent to the
statement that the maximal ideal of S is nilpotent modulo the ideal generated
by the maximal ideal of S ′ and the annihilator of M . By Corollary 10.5 the
local cohomology of M with respect to the maximal ideal of S ′ is thus the
same as that with respect to the maximal ideal of S, so Theorem 4.3 gives
the same value for the regularity in either case.

The next result is very close to Theorems 4.1 and 4.2

Corollary 4.7. If X is a set of n points in Pr then the regularity of SX is
the smallest integer d such that the space of forms vanishing on the points X
has codimension n in the space of forms of degree d.

Proof. The ring SX has depth 1 because it is reduced, so have H0
m(SX) = 0.

Further, since dimSX = 1 we have Hi
m(SX) = 0 for i > 1 by Proposition

10.12. Thus, using Theorem 4.3 the regularity is the smallest integer d such
that H1(SX)d = 0. On the other hand, by Proposition 10.7, there is an exact
sequence

0 → H
0
m(SX) → SX → ⊕d H

0(OX(d)) → H
1
m SX → 0.

Since X is just a finite set of points, it is isomorphic to an affine variety, and
every line bundle on X is trivial. Thus for every d the sheaf OX(d) ∼= OX ,
a sheaf whose sections are the locally polynomial functions on X. This is
just KX , a vector space of dimension n. Thus (H1

m SX)d = 0 if and only
if (SX)d = (S/IX)d has dimension n as a vector space, or equivalently, the
space of forms (IX)d of degree d that vanish on X has codimension n.

It will be convenient to introduce a temporary definition. We call a module
weakly d-regular if Hi

m(M)d−i+1 = 0 for every i > 0, and d-regular if in
addition d ≥ reg H0

m(M). In this language, Theorem 4.3 asserts that M is
d-regular if and only if regM ≤ d.

Proof of Theorem 4.3. For the implication 1 ⇒ 2 we do induction on the
projective dimension of M . If M = ⊕S(−aj) is a graded free module, this
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is easy: regM = maxj aj by definition, and the computation of local coho-
mology in Lemma 10.9 shows that M is d-regular if and only if ai ≤ d for all
i.

Next suppose that the minimal free resolution of M begins

· · · → L1
ϕ1- L0 →M → 0.

Let M ′ = imϕ1 be the first syzygy module of M . By the definition of
regularity, regM ′ ≤ 1 + regM . By induction on projective dimension, we
may assume that M ′ is (d + 1)-regular; in fact, since e ≥ regM for every
e ≥ d we may assume that M ′ is e + 1-regular for every e ≥ d. The long
exact sequence in local cohomology

· · · → H i
m(L0) → H i

m(M) → H i+1
m (M ′) → · · ·

yields exact sequences in each degree, and shows that M is e-regular for every
e ≥ d. This is condition 2.

The implication 2 ⇒ 3 is obvious, but 3 ⇒ 1 requires some preparation. For
x ∈ R we set

(0 :M x) = {m ∈M | xm = 0} = ker(M
x- M).

This is a submodule of M which is zero when x is a nonzerodivisor (that is,
a regular element) on M . When (0 :M x) has finite length, we say that x is
almost regular on M .

Lemma 4.8. Let M be a finitely generated graded S-module, and suppose
that K is infinite. If x is a sufficiently general form of (any) degree d, then
x is almost regular on M .

The meaning of the conclusion is that the set of forms x of degree d for which
(0 :M x) is of finite length contains the complement of some proper algebraic

subset of the space K(r+d
r ) of forms of degree d.

Proof. The module (0 :M x) has finite length if the radical of the annihilator
of (0 :M x) is the maximal homogeneous ideal m, or equivalently, if the
annihilator of (0 :M x) is not contained in any other prime ideal P . This
is equivalent to the condition that for all primes P 6= m, the localization
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(0 :M x)P = 0 or equivalently that x is a nonzerodivisor on the localized
module MP . For this it suffices that x not be contained in any associated
prime ideal of M except possibly m.

Each prime ideal P of S other than m intersects Sd in a proper subspace,
since otherwise P ⊃ md, whence m = P . Since there are only finitely many
associated prime ideals of M , an element x ∈ Sd has the desired property if
it is outside a certain finite union of proper subspaces.

Proposition 4.9. Suppose that M is a finitely generated graded S-module,
and suppose that x is a linear form in S such that (0 :M x) has finite length.

1. If M is weakly d-regular , then M/xM is weakly d-regular.

2. If M is (weakly) d-regular then M is (weakly) (d+ 1)-regular.

3. M is d-regular if and only if M/xM is d-regular and H0
m(M) is d-

regular.

The combination of Part 3 of Proposition 4.9 with Theorem 4.3 yields some-
thing useful:

Corollary 4.10. If x is almost regular on M then

regM = max{reg H
0
m(M), regM/xM}.

Proof of Proposition 4.9. 1. Lemma 4.8 shows that that if x is a sufficiently
general linear form then (0 :M x) is of finite length. We set M = M/(0 :M x).
Using Corollary 10.10 and the long exact sequence of local cohomology we
obtain Hi

m(M) = Hi
m(M) for every i > 0.

Consider the exact sequence

0 - (M)(−1)
x- M - M/xM - 0 (4.1)

where the left hand map is induced by multiplication with x. The associated
long exact sequence in local cohomology contains the sequence

H
i
m(M)d+1−i → H

i
m(M/xM)d+1−i → H i+1

m (M(−1))d+1−i. (4.2)
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By definition H i+1
m ((M)(−1))d+1−i ' H i+1

m (M)d−i. If M is weakly d-regular
then the modules on the left and right vanish for every i ≥ 1. Thus the
module in the middle vanishes too, proving that M/xM is weakly d-regular.

2. Suppose M is weakly d-regular. To prove that M is weakly d+ 1-regular
we do induction on dimM . If dimM = 0, then Hi

m(M) = 0 for all i ≥ 1 by
Corollary 10.10, so M is in any case weakly e-regular for all e and there is
nothing to prove.

Now suppose that dimM > 0. Since

(0 :M x) = kerM
x- M

has finite length, the Hilbert polynomial of M/xM is the first difference of
the Hilbert polynomial of M . From Theorem 11.7 we deduce dimM/xM =
dimM − 1. We know from part 1 that M/xM is weakly d-regular. It follows
from our inductive hypothesis that M/xM is weakly d+ 1-regular.

From the exact sequence 4.1 we get an exact sequence

H
i
m(M(−1))(d+1)−i+1 → H

i
m(M)(d+1)−i+1 → H

i
m(M/xM)(d+1)−i+1.

For i ≥ 1. we have Hi
m(M(−1)) = Hi

m(M), and since M is weakly d-regular
the left hand term vanishes. The right hand term is zero because M/xM is
weakly d+ 1-regular. Thus M is weakly d+ 1-regular as asserted.

If M is d-regular then as before M is weakly (d + 1)-regular; and since the
extra condition on H0

m(M) for (d + 1)-regularity is included in the corre-
sponding condition for d-regularity, we see that M is actually (d+1) regular
as well.

3. Suppose first that M is d-regular. The condition that H0
m(M)e = 0 for

all e > d is part of the definition of d-regularity, so it suffices to show that
M/xM is d-regular. Since we already know that M/xM is weakly d-regular,
it remains to show that if e > d then H0

m(M/xM)e = 0. Using the sequence
4.1 once more we get the exact sequence

H
0
m(M)e → H

0
m(M/xM)e → H

1
m(M(−1))e.

The left hand term is 0 by hypothesis. The right hand term is equal to

H1
m(M)e−1. From part 2 we see that M is weakly e-regular, so the right hand

term is 0. Thus H0
m(M/xM)e = 0 as required.
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Suppose conversely that H0
m(M)e = 0 for e > d and that M/xM is d-regular.

To show that M is d-regular, it suffices to show that Hi
m(M)d−i+1 = 0 for

i ≥ 1. From the exact sequence 4.1 we derive, for each e, an exact sequence

H
i−1
m (M/xM)e+1

- H
i
m(M)e

αe- H
i
m(M)e+1.

Since M/xM is d-regular, part 2 shows it is e-regular for e ≥ d, so the left-
hand term vanishes for e ≥ d − i + 1 so αe is a monomomorphism. From

Hi(M) ∼= Hi(M) we thus get an infinite sequence of monomorphisms

H
i
m(M)d−i+1 → H

i
m(M)d−i+2 → H

i
m(M)d−i+3 → · · · ,

induced by multiplication by x on Hi
m(M). But by Proposition 10.1 every

element of Hi
m(M) is annihilated by some power of x, so the composites of

these maps eventually vanish, and it follows that Hi
m(M)d−i+1 itself is 0, as

required.

Completion of the proof of Theorem 4.3. Assuming that M is d-regular, it
remains to show that d ≥ regM . Since extension of our base field commutes
with the formation of local cohomology, we see that these conditions are
independent of such an extension, and we may thus assume for the proof
that K is infinite.

Suppose that the minimal free resolution of M has the form

· · · - L1
ϕ1- L0

- M - 0.

To show that the generators of the free module L0 are all of degree ≤ d we
must show that M is generated by elements of degrees ≤ d. For this purpose
we induct on dimM . If dimM = 0 the result is easy: M has finite length,
so by d-regularity Me = H0

m(M)e = 0 for e > d.

Set M := M/H0
m(M). From the short exact sequence

0 → H
0
m(M) →M →M → 0,

we see that it suffices to prove that both H0
m(M) and M are generated in

degrees at most d. For H0
m(M) this is easy, since H0

m(M)e = 0 for e > d.

By Lemma 4.8 we may choose a linear form x that is a nonzerodivisor on
M . By Proposition 4.9 we see that M/xM is d-regular. As dimM/xM <
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dimM , the induction shows that M/xM , and thus M/mM , are generated
by elements of degrees ≤ d. Nakayama’s Lemma allows us to conclude that
M is also generated by elements of degrees ≤ d.

If M is free, this concludes the argument. Otherwise, we induct on the
projective dimension of M . Let M ′ = imϕ1 be the first syzygy module of
M . The long exact sequence in local cohomology coming from the exact
sequence

0 - M ′ - L0
- M - 0

shows that M ′ is d+1-regular. By induction regM ′ ≤ d+1; that is, the part
of the resolution of M that starts from L1 satisfies exactly the conditions
that make regM ≤ d.

4B.2 Solution of the Interpolation Problem

The first step in solving the interpolation problem is to reformulate the ques-
tion solely in terms of projective geometry. To do this we first have to get
away from the language of functions. A homogeneous form F ∈ S does
not define a function with a value at a point p = (p0, . . . , pr) ∈ Pr: for we
could also write p = (λp0, . . . , λpr) for any nonzero λ, but if degF = d then
F (λp0, . . . , λpr) = λdF (p0, . . . , pr) which may not be equal to F (p0, . . . , pq).
But the trouble disappears if F (p0, . . . , pr) = 0, so it does make sense to
speak of a homogeneous form vanishing at a point. This is a linear condition
on the coefficients of the form (Reason: choose homogeneous coordinates
for the point and substitute them into the monomials in the form, to get a
value for each monomial. The linear combination of the coefficients given by
these values is zero if and only if the form vanishes at the point.) We will
say that X imposes independent conditions on the forms of degree d if the
linear conditions associated to the distinct points of X are independent, or
equivalently if we can find a form vanishing at any one of the points with-
out vanishing at the others. In this language, Corollary 4.7 asserts that the
regularity of SX is equal to the smallest degree d such that X imposes inde-
pendent conditions on forms of degree d. The following result completes the
proof of Theorem 4.1.

Proposition 4.11. A finite set of points X ⊂ Ar ⊂ Pr imposes independent
conditions on forms of degree d in Pr if and only if every function on the
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points is the restriction of a polynomial of degree ≤ d on Ar.

((Figure 12))

Proof. We think of Ar ⊂ Pr as the complement of the hyperplane x0 = 0.
If the points impose independent conditions on forms of degree d then we
can find a form Fi(x0, . . . , xr) of degree d vanishing on pj for exactly those
j 6= i. The polynomial fi(x1, . . . , xr) = Fi(1, x1, . . . , xr) has degree ≤ d and
the same vanishing/nonvanishing property, so the function

∑
i(ai/fi(pi))fi

takes values ai on pi for any desired ai.

Conversely, if any function on X is induced by a polynomial of degree ≤ d on
Ar, then for each i there is a function fi of degree ≤ d that vanishes at pj for
j 6= i but does not vanish at pi. The degree d homogenization Fi(x0, . . . , xr) =
xd0fi(x1/x0, . . . , xr/x0) has corresponding vanishing properties. The existence
of the Fi shows that the points pi impose independent conditions on forms
of degree d.

The maximal number of independent linear equations in a certain set of linear
equations—the rank of the system of equations—does not change when we
extend the field, so Proposition 4.11 shows that the interpolation degree is
independent of field extensions.

4B.3 The regularity of a Cohen-Macaulay module

In the special case of Proposition 4.9 where x is a regular element, we
must have H0

m(M) = 0, so part 3 together with Theorem 4.3 says that
regM/xM = regM . This special case admits a simple proof without coho-
mology.

Corollary 4.12. Suppose that M is a finitely generated graded S-module.
If x is a linear form in S that is a nonzerodivisor on M then regM =
regM/xM .

Proof. Let F be the minimal free resolution ofM . We can compute Tor∗(M,S/(x))
from the free resolution

G : 0 - S(−1)
x- S
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of S/(x). Since x is a nonzerodivisor on M , the sequence 0 →M(−1) →M
obtained by tensoring M with G has homology

Tor0(M,S/(x)) = M/xM ; Tori(M,S/(x)) = 0

for i > 0. We can also compute Tor as the homology of the free complex
F⊗G, so we see that F⊗G is the minimal free resolution of M/xM . The i-th
free module in F⊗G is Fi⊕Fi−1(−1), so we see that regM/xM = regM.

We can apply this to get another means of computing the regularity in the
Cohen-Macaulay case.

Proposition 4.13. Let M be a finitely generated Cohen-Macaulay graded S-
module, and let y1, . . . , yt be a maximal M-regular sequence of linear forms.
The regularity of M is the largest d such that (M/(y1, . . . , yt)M)d 6= 0

Proof. If dimM = 0 the result is obvious from Theorem 4.3. It follows in
general by induction and Corollary 4.12.

As a consequence, we can give a general inequality on the regularity of the
homogeneous coordinate ring of an algebraic set X that strengthens the
computation done at the beginning of Section 4A.1—so long as SX is Cohen-
Macaulay.

Corollary 4.14. Suppose that X ⊂ Pr is not contained in any hyperplane.
If SX is Cohen-Macaulay, then regSX ≤ degX − codimX.

Proof. Let t = dimX, so that the dimension of SX as a module is t +
1. We may harmlessly extend the ground field and assume that it is al-
gebraically closed, and in particular infinite. Thus we may assume that
there are linear forms y0, . . . , yt that form a regular sequence on SX . Set
SX = SX/(y0, . . . , yt). Since X is not contained in a hyperplane, we have
dimK(SX)1 = r+1, and thus dimK(SX)1 = r−t = codimX. If the regularity
of SX is d, then by Proposition 4.13 we have HSX

(d) 6= 0. This implies that
HSX

(e) 6= 0 for all 0 ≤ e ≤ d. On the other hand, degX is the number of
points in which X meets a sufficiently general linear space of codimension t.
By induction using the exact sequence

0 → SX/(y1, . . . , yt)(−1)
y0- SX/(y1, . . . , yt) - SX → 0
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we see that HSX/(y1,...,yt)(d) =
∑d
e=0HSX

(e). It follows that for large d

degX =
d∑
e=0

HSX
(e) ≥ 1 + (codimX) + (regX − 1)

since there are at least regX − 1 more nonzero values of HSX
(e) 6= 0 for

e = 2, . . . , d. This gives regX ≤ degX − codimX as required.

In the most general case, the regularity can be very large. Consider the case
of a module of the form M = S/I. Gröbner basis methods give a general
bound for the regularity of M in terms of the degrees of generators of I
and the number of variables, but these bounds are very large: for example,
they are doubly exponential in the number of variables. On the other hand,
it is known that such bounds are reasonably sharp: there are examples of
ideals I such that the regularity of S/I really is doubly exponential in r (see
[Bayer and Sturmfels 1998] and [Koh 1998]). (Notwithstanding, I know few
examples in small numbers of variables of ideals I where regS/I is much
bigger than the sum of the degree of the generators of I. Perhaps the best is
due to Caviglia, who has proved ([Caviglia ≥ 2003]) that if S = K[s, t, u, v]
and d > 1 then

I = (sd, td, sud−1 − tvd−1) ⊂ K[s, t, u, v]

has regS/I = d2 − 2. It would be interesting to have more and stronger
examples with high regularity.)

In contrast with the situation of general ideals, prime ideals seem to behave
very well. For example, in Chapter 5.1 we will prove a theorem of Gruson,
Lazarsfeld, and Peskine to the effect that if K is algebraically closed and
X is an irreducible (reduced) curve in projective space, not contained in a
hyperplane then again regSX ≤ degX − codimX, even if SX is not Cohen-
Macaulay, and we will discuss some conjectural extensions of this result.

We have seen that Theorem 4.2 is sharp for the homogeneous coordinate ring
of a set of points. This is true more generally for Cohen-Macaulay modules:

Corollary 4.15. Let M be a finitely generated graded Cohen-Macaulay S-
module. If s is the smallest number such that HM(d) = Pm(d) for all d ≥ s,
then s = 1− depthM + regM .
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Proof. Since M is Cohen-Macaulay we have dimM = depthM so Proposi-
tion 10.12 shows that the only local cohomology module of M that is nonzero
is HdepthM

m M . Given this, there can be no cancellation in the formula of
Corollary 10.11. Thus s is the smallest number such that HdepthM(M)d = 0
for all d ≥ s, and Corollary 4.15 follows by Theorem 4.3.

See Exercise 4.5 for an example showing that the Cohen-Macaulay hypoth-
esis is necessary, and Exercise 4.8 for a proof that gives some additional
information.

4B.4 The regularity of a coherent sheaf

Mumford originally defined a coherent sheaf F on Pr to be d-regular if
H iF(d− i) = 0 for every i ≥ 1 (see [Mumford 1966, Lecture 14].) When F
is a sheaf, we will write regF for the least number d such that F is d-regular
(or −∞ if F is d-regular for every d.) The connection with our previous
notion is the following:

Proposition 4.16. Let M be a finitely generated graded S-module, and let
M̃ be the coherent sheaf on Pr

C that it defines. The module M is d-regular if
and only if

1) M̃ is d-regular;

2) H0
m(M)e = 0 for every e > d; and

3) the canonical map Md → H0(M̃(d)) is surjective.

In particular, one always has regM ≥ reg M̃ .

Proof. By Proposition 10.8, H i
m(M)e = H i−1(M̃(e)) for all i ≥ 2. Thus M

is d-regular if and only if it fulfills conditions 1), 2), and

3′) H1
m(M)e = 0 for all e ≥ d.

The exact sequence of Proposition 10.8 shows that condition 3′) is equivalent
to condition 3).
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We can give a corresponding result starting with the sheaf. Suppose F is
a nonzero coherent sheaf on Pr

C. The S-module Γ∗(F) :=
⊕

e∈ZH
0(F(e))

is not necessarily finitely generated; (the problem comes about if F has 0-
dimensional associated points) but for every e0 its truncation

Γ≥e0(F) :=
⊕
e≥e0

H0(F(e))

is a finitely generated S-module. We can compare its regularity with that of
F .

Corollary 4.17. If F is a coherent sheaf on Pr
K then

reg(Γ≥e0(F)) = max(reg(F), e0).

Proof. Suppose first that M := Γ≥e0(F) is d-regular. The sheaf associated
to M is F . Proposition 10.8 shows that F is d-regular. Since M is d-regular
it is generated in degrees ≤ d. If d < e0 then M = 0, contradicting our
hypothesis F 6= 0. Thus d ≥ e0.

It remains to show that if F is d-regular and d ≥ e0, then M is d-regular.
We again want to apply Proposition 10.8. Conditions 1 and 3 are clearly
satisfied, while condition 2 follows from Proposition 10.8.

It is now easy to give the analogue for sheaves of Proposition 4.9. The first
statement is one of the key results in the theory.

Corollary 4.18. If F is a d-regular coherent sheaf on Pr then F(d) is gen-
erated by global sections. Moreover, F is e-regular for every e ≥ d.

Proof. The module M = Γ≥d(F) is d-regular by Corollary 4.17, and thus it
is generated by its elements of degree d, that is to say, by H0F(d). Since
M̃ = F , the first conclusion follows.

By Proposition 4.9 M is e-regular for e ≥ d. Using Corollary 4.17 again we
see that F is e-regular.
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4C Exercises

1. For a set of points X in P2, with notation ei, fi as in Proposition 3.7,
show that regSX = e1 +

∑
i fi − 2. Use this to compute the possible

regularities of all sets of 10 points in P2.

2. Suppose that

0 →M ′ →M →M ′′ → 0

is an exact sequence of finitely genenerated graded S-modules. Show
that

(a) regM ′ ≤ max{regM, regM ′′ − 1}

(b) regM ≤ max{regM ′, regM ′′}

(c) regM ′′ ≤ max{regM, regM ′ + 1}

3. We say that a variety in a projective space is nondegenerate if it is not
contained in any hyperplane. Correspondingly, we might say that a
homogeneous ideal is nondegenerate if it does not contain a linear form.
Most questions about the free resolutions of ideals can be reduced to
the nondegenerate case, just as can most questions about varieties in
projective space. Here is the basic idea:

(a) Show that if I ⊂ S is a homogeneous ideal in a polynomial ring
containing linealy independent linear forms `0, . . . , `t, then there
is are linear forms `t+1, . . . , `r such that {`0, . . . , `t, `t+1, . . . , `r}
is a basis for S1, and such that I may be written in the form
I = JS+(`1, . . . , `t) where J is a homogeneous ideal in the smaller
polynomial ring R = K[`t+1, . . . , `r].

(b) Show that the minimal S-free resolution of SJ is obtained from
the minimal R-free resolution of J by tensoring with S. Thus they
have the same graded Betti numbers.

(c) Show that the minimal S-free resolution of S/I is obtained from
the minimal S-free resolution of S/J by tensoring with the Koszul
complex on `0, . . . , `t. Deduce that the regularity of S/I is the
same as that of R/J .
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4. Suppose that M is a finitely generated graded Cohen-Macaulay S-
module, with minimal free resolution

0 → Fc → · · ·F1 → F0,

and write Fi = ⊕S(−j)βi,j as usual. Show that regM = max{j |
βc,j 6= 0}; that is, the regularity of M is measured “at the end of the
resolution” in the Cohen-Macaulay case. Find an example of a module
for which the regularity cannot be measured just “at the end of the
resolution.”

5. Find an example showing that Corollary 4.15 may fail if we do not
assume that M is Cohen-Macaulay. (If this is too easy, find an example
with M = S/I for some ideal I.)

6. Show that if X consists of d distinct point in Pr then the regularity
of SX is bounded below by the smallest integer s such that d ≤

(
r+s
r

)
.

Show that this bound is attained by the general set of d points.

7. Recall that the generating function of the Hilbert function of a (finitely
generated graded) module M is ΨM(t) =

∑∞
−∞HM(d)td, and that by

Theorem 1.11 (with all xi of degree 1) it can be written as a rational
φM(t)/(1 − t)r+1. Show that if dimM < r + 1 then 1 − t divides the
numerator; more precisely, we can write

ΨM(t) =
φ′M(t)

(1− t)dimM
.

for some Laurent polynomial φ′M , and this numerator and denominator
are relatively prime.

8. With notation as in the previous exercise, suppose that M is a Cohen-
Macaulay S-module, and let y0, . . . , ys be a maximal M -regular se-
quence of linear forms, so that M ′ = M/(y0, . . . , ys) has finite length.
Let ΨM ′ =

∑
HM ′(d)td be the generating function of the Hilbert func-

tion of M ′, so that ΨM ′ is a polynomial with positive coefficients in t
and t−1. Show that

ΨM(t) =
ΨM ′(t)

(1− t)dimM
.
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In the notation of Exercise 4.7 φ′M = ΨM ′ . Deduce that

HM(d) =
∑
e≤d

(
dimM + d

dimM

)
HM ′(d− e).

9. Use the result of Exercise 4.8 to give a direct proof of Theorem ??

10. Find an example of a finitely generated graded S-module M such that
φ′M(t) does not have positive coefficients.

11. Use local duality to refine Corollary 4.5 by showing that for each i we
have

reg H
j
m(M) + j ≤ reg Torr+1−j(M,K)− (r + 1− j).

12. (The “Base-point-free pencil trick.”) Here is the idea of Castelnuovo
that led Mumford to define what we call Castlnuovo-Mumford regu-
larity: Suppose that L is a line bundle on a curve X ⊂ Pr over an
infinite field, and suppose and that L is base-point-free. Show that we
may choose 2 sections σ1, σ2 of L which together form a base-point-free
pencil—that is, V := 〈σ1, σ2〉 is a 2 dimensional subspace of H0(L)
which generates L locally everywhere. Show that the Koszul complex
of σ1, σ2

K : 0 → L−2 → L−1 ⊕ L−1 → L → 0

is exact, and remains exact when tensored with any sheaf.

Now let F be a coherent sheaf on X with H1F = 0 (or, as we might
say now, such that the Castelnuovo Mumford regularity of F is at most
−1.) Use the sequence K above to show that the multiplication map
map V ⊗F → L⊗F induces a surjection V ⊗ H0F → H0(L ⊗ F).

Suppose that X is embedded in Pr as a curve of degree d ≥ 2g + 1,
where g is the genus of X. Use the argument above to show that

H
0(OX(1))⊗ H

0(OX(n)) → H
0(OX(n+ 1))

is surjective for n ≥ 1. This result is a special case of what is proven
in Theorem 8.1.

13. Surprisingly few general bounds on the regularity of ideals are known.
As we have seen, if X is the union of n points on a line, then regSX =
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n−1. The following result of Derksen and Sidman [Derksen and Sidman
2002] shows (in the case I0 = (0) that this is in some sense the worst
case: no matter what the dimensions, the ideal of the union of n planes
in Pr has regularity at most n. Here is the algebraic form of the result.
The extra generality is used for an induction.

Theorem 4.19. If I0, . . . , In are ideals generated by spaces of linear
forms in S then the regularity of I = I0 + ∩n1Ij is at most n.

Prove this result as follows:

(a) Show that it is equivalent to prove that regS/I = n− 1.

(b) Reduce to the case where I0 + I1 + · · ·+ In = m.

(c) Use Corollary 4.10 and induction on the dimension of the space
of linear forms generating I0 to reduce the problem to proving
reg H0

m(S/I) ≤ n − 1; that is, reduce to showing that if f is an
element of degree n in H0

m(S/I) then f = 0.

(d) Let x be a general linear form in S. Show that f = xf ′ for some
f ′ of degree n− 1. Use the fact that x is general to show that the
image of f ′ is in H0

m(S/(I0 + ∩j 6=iIj)) for i = 1, . . . , n. Conclude
by induction on n that the image of f ′ is zero in S/(I0 + ∩j 6=iIj).

(e) Use Part 4.13 to write x =
∑
xi for linear forms xi ∈ Ii. Now

show that f = xf ′ ∈ I.
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Chapter 5

The regularity of projective
curves

Revised 8/12/03

This chapter is devoted to a theorem of [Gruson et al. 1983] giving an op-
timal upper bound for the regularity of a projective curve in terms of its
degree. The result had been proven for smooth curves in P3 by Castelnuovo
in [Castelnuovo 1893].

5A The Gruson-Lazarsfeld-Peskine Theorem

Theorem 5.1 (Gruson-Lazarsfeld-Peskine). Let K be an algebraically
closed field. If X ⊂ Pr

K is a reduced and irreducible curve, not contained
in a hyperplane, then then regSX ≤ degX − codimX, and thus reg IX ≤
degX − codimX + 1.

In particular, Theorem 5.1 implies that the degrees of the polynomials needed
to generate IX are bounded by degX − r+ 2. Note that if the field K is the
complex numbers, then the degree of X may be thought of as the homology
class ofX in H2(Pr; K) = Z, so the bound given depends only on the topology
of the embedding of X.

89
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5A.1 A general regularity conjecture

We have seen in Corollary 4.14 that if X ⊂ Pr is arithmetically Cohen-
Macaulay (that is, if SX is a Cohen-Macaulay ring) and non degenerate
(that is, not contained in a hyperplane), then regSX ≤ degX − codimX,
just as for curves. This suggests that some version of Theorem 5.1 could
hold much more generally. However, this bound can fail for schemes that are
not arithmetically Cohen-Macaulay, even in the case of curves; the simplest
example is where X is the union of two disjoint lines in P3 (see Exercise 5.2),
and the result can also fail when X is not reduced or the ground field is not
algebraically closed (see Exercises 5.3–5.4. And it is not enough to assume
that the scheme is reduced and connected, since the cone over a disconnected
set is connected and has the same codimension and regularity.

A possible way around these examples is to insist that X be reduced, and
connected in codimension 1, meaning that X is pure-dimensional and cannot
be disconnected by removing any algebraic subset of codimension 2.

((Figure 13))

Conjecture ([Eisenbud and Goto 1984]). If K is algebraically closed and
X ⊂ Pr

K be a nondegenerate algebraic set that is connected in codimension
1, then

reg(SX) ≤ degX − codimX.

For example, in dimension 1 the conjecture just says that the bound should
hold for connected reduced curves. This was recently proven in [Giamo
≥ 2003]. In addition to the Cohen-Macaulay and 1-dimensional cases, the
conjecture is known to hold for smooth surfaces in characteristic 0, ([Lazars-
feld 1987]), arithmetically Buchsbaum surfaces ([Stückrad and Vogel 1987])
and toric varieties of low codimension ([Peeva and Sturmfels 1998]). Some-
what weaker results are known more generally; see [Kwak 1998] and [Kwak
2000] for the best current results and [Bayer and Mumford 1993] for a survey.

Of course for the conjecture to have a chance, the number degX − codimX
must at least be non-negative. The next Proposition establishes this in-
equality. The examples in Exercises 5.2–5.4 show that the hypotheses are
necessary.

Proposition 5.2. If X is a nondegenerate algebraic set in Pr = Pr
K , where
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K is algebraically closed, then degX ≥ r.

To understand the bound, set c = codimX and let p1, . . . , pc be c general
points on X. Since X is nondegenerate, these points span a plane L of
dimension c− 1. The degree of X is the number of points in which X meets
a general (c − 1)-plane, and it is clear that L meets X in at least c − 1
points. The problem with this argument is that L might, a priori, meet X in
a set of positive dimension, and this can indeed happen without some extra
hypothesis, such as ”reduced and connected in codimension 1”.

As the reader may see using the ideas of Corollary 4.14, the conclusion of
Proposition 5.2 also holds for any scheme X ⊂ Pr such that SX is Cohen-
Macaulay.

Proof. We do induction on the dimension of X. If dimX = 0, then X cannot
span Pr unless it contains at least r+1 points; that is, degX ≥ r = codimX.
If dimX > 0 we consider a general hyperplane section Y = H ∩ X ⊂ H =
Pr−1. The degree and codimension of Y agree with those for X. Further,
since H was general, Bertini’s Theorem ([Hartshorne 1977, ***]) tells us that
Y is reduced. It remains to show that Y is connected in codimension 1 and
nondegenerate.

The condition that X is pure-dimensional and connected in codimension 1
can be re-interpreted as saying that the irreducible components of X can be
ordered, say X1, X2, . . . in such a way that if i > 1 then Xi meets some Xj,
with j < i, in a set of codimension 1 in each. This condition is inherited by
X ∩H so long as the H does not contain any of the Xi or Xi ∩Xj.

For nondegeneracy we need only the condition that X is connected. Thus
Lemma 5.3 completes the proof.

Lemma 5.3. If K is algebraically closed and X is a connected algebraic set
in Pr = Pr

K , not contained in any hyperplane, then for every hyperplane in
Pr the scheme X ∩H is nondegenerate in H.

For those who prefer not to deal with schemes: the general hyperplane section
of any algebraic set is reduced, and thus can be again considered an algebraic
set , so the scheme theory can be avoided at the expense of taking general
hyperplane sections.
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Proof of Lemma 5.3. Let x be the linear form defining H. There is a com-
mutative diagram with exact rows

0 - H
0(OPr)

x
- H

0(OPr(1)) - H
0(OH(1)) - H

1(OPr)

0 - H
0(OX)

? x
- H

0(OX(1))
?

- H
0(OX∩H(1))

?
- · · · .

The hypotheses that X is connected and projective, together with the hy-
pothesis that K is algebraically closed, imply that the only regular functions
defined everywhere on X are constant; that is, H0(OX) = K, so the left-hand
vertical map is surjective (in fact, an isomorphism). The statement that X
is nondegenerate means that the middle vertical map is injective. Using the
fact that H1(OPr) = 0, the Snake Lemma shows that the right hand vertical
map is injective, so X ∩H is nondegenerate.

5B Proof of Theorem 5.1

5B.1 Fitting ideals

Here is a summary of the proof: We will find a complex that is almost a
resolution of an ideal that is almost the ideal IX of X. Miraculously, this
will establish the regularity of IX .

More explicitly, we will find a module F over SX which is similar to SX but
admits a free presentation by a matrix of linear forms ψ, and such that the
Eagon-Northcott complex associated with the ideal of maximal minors of ψ
is nearly a resolution of IX . We will then prove that the regularity of this
Eagon-Northcott complex is a bound for the regularity of IX . The module
F will come from a line bundle on the normalization of the curve X. From
the cohomological properties of the line bundle we will be able to control the
properties of the module.

Still more explicitly, let π : C → X ⊂ Pr
K be the normalization of X. Let

A be an invertible sheaf on C and let F = π∗A. The sheaf F is locally
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isomorphic to OX except at the finitely many points where π fails to be an
isomorphism. Let F = ⊕n≥0 H0F(n), and let

L1
ψ- L0 → F

be a minimal free presentation of F . We write I(ψ) for the ideal generated
by the rankL0-sized minors (subdeterminants) of a matrix representing ψ;
this is the 0-th Fitting ideal of F . We will use three facts about Fitting ideals
presented in Appendix 11G: they do not depend on the free presentations
used to define them; they commute with localization; and the 0-th Fitting
ideal of a module is contained in the annihilator of the module. Write I(ψ)
for the sheafification of the Fitting ideal (which is also the sheaf of Fitting
ideals of the sheaf A, by our remark on localization). This sheaf is useful to
us because of the last statement of the following result.

Proposition 5.4. With notation above, I(ψ) ⊆ IX . The quotient IX/I(ψ)
is supported on a finite set of points in Pr, and reg I(ψ) ≥ reg IX .

Proof. The 0-th Fitting ideal of a module is quite generally contained in the
annihilator of the module. The construction of the Fitting ideal commutes
with localization (see [Eisenbud 1995, Corollary 20.5] or Appendix 11G.)
At any point p ∈ Pr such that π is an isomorphism we have (π∗A)p ∼=
(OX)p. Since the Fitting ideal of SX is IX , we see that (IX)p = I(ψ)p,
where the subscript denotes the stalk at the point p. Since X is reduced and
1-dimensional, the map π is an isomorphism except at finitely many points.

Consider the exact sequence

0 → I(ψ) → IX → IX/I(ψ) → 0.

Since IX/I(ψ) is supported on a finite set, we have H1(IX(d)/I(ψ)(d)) =
0 for every d. From the long exact sequence in cohomology we see that

H1(IX(d)) is a quotient of H1(I(ψ)(d)), while Hi(IX(d)) = Hi(I(ψ)(d) for
i > 1. In particular, reg I(ψ) ≥ reg IX . Since IX is saturated, we obtain
reg I(ψ) ≥ reg IX as well.

Thus it suffices to find a line bundle A on C such that the regularity of I(ψ)
is low enough. It turns out that this regularity is easiest to estimate if we
have a linear presentation matrix for F , so we begin by looking for conditions
under which that will be true.
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5B.2 Linear presentations

The main results in this section were proved by Green in his exploration of
Koszul cohomology in [Green 1984a], [Green 1984b] and [Green 1989].

If F is any finitely generated graded S module, we say that F has a linear
presentation if in the minimal free resolution

· · · - L1
ϕ1- L0

- F - 0

we have Li = ⊕S(−i) for i = 0, 1 This signifies that F is generated by
elements of degree 0 and the map ϕ1 can be represented by a matrix of linear
forms.

The condition of having a linear presentation implies that Fd = 0 for d < 0.
Note that if F is any module with Fd = 0 for d < 0, and L1 → L0 is a minimal
free presentation, then the free module L0 is generated in degrees ≥ 0. By
Nakayama’s lemma the kernel of L0 → F is contained in the homogeneous
maximal ideal times L0 so it is generated in degrees ≥ 1, and it follows from
minimality that L1 is generated in degrees ≥ 1. Thus a module F generated
in degrees≥ 0 has a linear presentation if and only if Li requires no generators
of degree > i for i = 0, 1—we do not have to worry about generators of too
low degree.

In the following results we will make use of the tautological rank r sub-bundle
M on P := Pr

K . It is defined as the sub-bundle of Or+1
P that fits into the

exact sequence

0 - M - Or+1
P

(x0 · · · xr )- OP(1) - 0,

where x0, . . . , xr generate the linear forms on P. (The bundle M may be
identified with the twist ΩP(1) of the cotangent sheaf Ω = ΩP; see for example
[Eisenbud 1995, Section 17.5]. We will not need this fact.)

The result that we need for the proof of Theorem 5.1 is:

Theorem 5.5. Let F be a coherent sheaf on P = Pr
K with r ≥ 2 and let M

be the tautological rank r sub-bundle on P. If the support of F has dimension
≤ 1 and

H
1(∧2M⊗F) = 0

then the graded S-module F :=
⊕

n≥0 H0F(n) has a linear free presentation.
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Before giving the proof we explain how the exterior powers of M arise in the
context of syzygies. Let

K : 0 - Kr+1
- · · · - K0

be the minimal free resolution of the residue field K = S/(x0, . . . , xr) as
an S = K[x0, . . . , xr]-module. By Theorem 11.30 we may identify K with
the dual of the Koszul complex of x = (x0, . . . , xr) ∈ (Sr+1)∗ (as ungraded
modules). To make the grading correct, so that the copy of K that is resolved
is concentrated in degree 0, we must set Ki = ∧i(Sr+1(−1)) = (∧iSr+1)(−i),
so that the complex begins with the terms

K : · · · ϕ3- (∧2Sr+1)(−2)
ϕ2- Sr+1(−1)

ϕ1=(x0 · · · xr )- S.

Let Mi = (kerϕi)(i), that is, Mi is the module kerϕi shifted so that it
is a submodule of the free module ∧i−1Sr+1 generated in degree 0. For
example, the tautological sub-bundle M ⊂ Or+1

Pr on projective space is the
sheafification of M1. We need the following generalization of this remark.

Proposition 5.6. With notation as above, the ith exterior power ∧iM of
the tautological sub-bundle on Pr is the sheafification of Mi.

This result is only true at the sheaf level: ∧iM1 is not isomorphic to Mi.

Proof. Since the sheafification of the Koszul complex is exact, the sheafifica-
tions of all the Mi are vector bundles, and it suffices to show that (M̃i)

∗ ∼=
(∧iM)∗. Since Hom is left exact, the module Mi is the dual of the module
Ni = (cokerϕ∗i )(−i). Being a vector bundle, Ñi is reflexive, so M̃∗

i = Ñi.
Thus it suffices to show that Ni

∼= ∧iN1 (it would even be enough to prove
this for the associated sheaves, but in this case it is true for the modules
themselves.)

As described above, the complex K is the dual of the Koszul complex of
the element x = (x0, . . . , xr) ∈ (Sr+1)∗(1). By the description in Appendix
11F, the map ϕ∗i : ∧i−1((Sr+1)∗(1)) → ∧i((Sr+1)∗(1)) is given by exterior
multiplication with x. But the exterior algebra functor is right exact. Thus
from

N1 =
(Sr+1)∗(1)

Sx
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we deduce that

∧N1 =
∧(Sr+1)∗(1)

x ∧ (∧Sr+1)∗(1))

as graded algebras. In particular

∧iN1 =
∧i(Sr+1)∗(1)

x ∧ (∧i−1(Sr+1)∗(1))
= coker(ϕi)

∗

as required.

With this preamble, we can state the general connection between syzygies
and the sort of cohomology groups that appear in Theorem 5.5:

Theorem 5.7. Let F be a coherent sheaf on Pr
K , and set F =

⊕
n≥0 H0F(n).

Let M be the tautological rank r sub-bundle on P. If d ≥ i+ 1 then there is
an exact sequence

0 - TorSi (F,K)d - H
1(∧i+1M⊗F(d−i−1))

α- H
1(∧i+1Or+1

P ⊗F(d−i−1))

where the map α is induced by the inclusion M⊂ Or+1
P .

Proof. The vector space TorSi (F,K) can be computed as the homology of the
sequence obtained by tensoring the Koszul complex, which is a free resolution
of K, with F . In particular, TorSi (F,K)d is the homology of of the sequence

(∧i+1Sr+1(−i− 1)⊗ F )d → (∧iSr+1(−i)⊗ F )d → (∧i−1Sr+1(−i+ 1)⊗ F )d.

For any t the module ∧tSr+1(−t)⊗ F is just a sum of copies of F (−t), and
thus if d ≥ t then

(∧tSr+1(−t)⊗ F )d = (∧tSr+1 ⊗ F )d−t = H0(∧tOr+1
P ⊗F(d− t)).

For this reason we can compute Tor through sheaf cohomology. The sheafi-
fication of the complex K is an exact sequence of vector bundles. Such a
sequence is locally split, and thus remains exact when tensored by any sheaf,
for example F . With notation as in Proposition 5.6 we get short exact se-
quences ((Silvio, the following doesn’t print right on some systems))

0 → ∧tM⊗F(d−t) → ∧tOr+1
P ⊗F(d−t) → ∧t−1M⊗F(d−t+1) → 0 (5.1)
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that fit into a diagram

. . . - ∧i+1Or+1
P ⊗F(d−i−1) - ∧iOr+1

P ⊗F(d−i) - . . .
HHHHj ����* HHHHj ����*

∧i+1M⊗F(d−i−1) ∧iM⊗F(d−i)

����* HHHHj ����* HHHHj
0 0 0 0

It follows that TorSi (F,K)d is the cokernel of the diagonal map

H
0(∧i+1Or+1

P ⊗F(d− i− 1)) - H
0(∧iM⊗F(d− i)).

The long exact sequence in cohomology associated to the sequence 5.1 now
gives the desired result.

Proof of Theorem 5.5: Let L : · · · - L1
ϕ1- L0

- F - 0 be
the minimal free resolution of F . By the definition of F the free module L0

has no generators of degrees ≤ 0. As we saw at the beginning of this section,
this implies that L1 has no generators of degrees < 1.

Since H1(∧2M⊗F) = 0 and ∧2M⊗F is supported on a curve, it has no
higher cohomology and is thus a 1-regular sheaf. It follows that this sheaf is
s-regular for all s ≥ 2 as well, so that

H
1 ∧2M⊗F(t) = 0

for all t ≥ 0. By Theorem 5.7 we have TorS1 (F,K)d = 0 for all d ≥ 2. We can
compute this Tor as the homology of the complex L⊗K. As L is minimal,
the complex L⊗K has differentials equal to 0, so TorSi (F,K) = Li ⊗K. In
particular, L1 has no generators of degrees ≥ 2.

Since F is a torsion module it has no free summands, and thus for any
summand L′0 of L0 the composite map L1 → L0 → L′0 is nonzero. From this
and the fact that L1 is generated in degree 1 it follows that L0 can have no
generator of degree ≥ 2. By construction, F is generated in degrees ≥ 0 so
L0 is actually generated in degree 0, completing the proof.

5B.3 Regularity and the Eagon-Northcott complex

To bound the regularity of the Fitting ideal of the sheaf π∗A that will occur
in the proof of Theorem 5.1 we will use the following easy generalization of
the argument at the beginning of the proof of Theorem 4.3.
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Lemma 5.8. Let

E : 0 → Et
ϕt- Et−1

- · · · - E1
ϕ1- E0

be a complex of sheaves on Pr, and let d be an integer.

Suppose that for i > 0 the homology of E is supported in dimension ≤ 1. If
regEs − s ≤ d for every s, then reg cokerϕ1 ≤ d and reg imϕ1 ≤ d+ 1.

Proof. We induct on t, the case t = 0 (where ϕ1 : 0 → E0 is the 0 map)
being immediate. From the long exact sequence in cohomology coming from
the short exact sequence

0 → imϕ1 → E0 → cokerϕ1 → 0

we see that the regularity bound for imϕ1 implies the one for cokerϕ1.

Since the homologyH1(E) is supported in dimension 1, we have Hi(H1(E)(s)) =
0 for all i > 1. Thus the long exact sequence in cohomology coming from the
short exact sequence

0 → H1(E) → cokerϕ2 → imϕ1 → 0

shows that reg imϕ1 ≤ reg cokerϕ2. By induction, we have reg cokerφ2 ≤
d+ 1, and we are done.

Lemma 5.8 gives a general bound on the regularity of Fitting ideals:

Corollary 5.9. Suppose ϕ : F1 → F0 is a map of vector bundles on Pr with
F1 = ⊕n

i=1OPr(−1) and F0 = ⊕h
i=1OPr . If the ideal sheaf Ih(ϕ) generated by

the h× h minors of ϕ defines a scheme of dimension ≤ 1, then

reg Ih(ϕ) ≤ h.

Proof. We apply Lemma 5.8 to the Eagon-Northcott complex E = EN(ϕ)
of ϕ. The 0-th term of the complex is isomorphic to OPr , while for s > 0 the
s-th term is isomorphic to

Es = (Syms−1F0)
∗ ⊗ ∧h+s−1F1 ⊗ ∧hF∗

0 .

This sheaf is a direct sum of copies of OPr(−h−s+1). Thus it has regularity
h+ s− 1, so we may take d = h− 1 in Lemma 5.8 and the result follows.
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The following Theorem, a combination of Corollary 5.9 with Theorem 5.5,
summarizes our progress.

Theorem 5.10. Let X ⊂ Pr
K be a reduced irreducible curve with r ≥ 3. Let

F be a coherent sheaf on X which is locally free of rank 1 except at finitely
many points of X, and let M be the tautological rank r sub-bundle on Pr

K . If

H
1(∧2M⊗F) = 0

then reg IX ≤ h0F .

Proof. By Theorem 5.5 the module F = ⊕n≥0 H0(F(n)) has a linear presenta-
tion matrix; in particular, F is the cokernel of a matrix ϕ : On

Pr(−1) → Oh
Pr .

Applying Corollary 5.9 we see that reg Ih(ϕ) ≤ h0F . But by Proposition 5.4
we have reg IX ≤ reg Ih(ϕ).

Even without further machinery, Theorem 5.10 is quite powerful. See Exer-
cise 5.7 for a combinatorial statement proved by Lvovsky using it, for which
I don’t know a combinatorial proof.

5B.4 Filtering the restricted tautological bundle

With this reduction of the problem in hand, we can find the solution by
working on the normalization π : C → X of X. If A is a line bundle on C
then F = π∗A is locally free except at the finitely many points where X is
singular, and

H
1(∧2M⊗ π∗A) = H

1(π∗ ∧2 M⊗A) = H
1(∧2π∗M⊗A).

On the other hand, since π is a finite map we have h0 π∗A = h0A. It thus
suffices to investigate the bundle π∗M and to find a line bundle A on C such
that the cohomology above vanishes and h0A is minimal.

We need three facts about π∗M. This is where we use the hypotheses on the
curve X in Theorem 5.1.

((the space before the list in the next Prop looks too big))
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Proposition 5.11. Let K be an algebraically closed field, and let X ⊂ Pr
K be

a nondegenerate, reduced and irreducible curve. Suppose that π : C → Pr is
a map from a reduced and irreducible curve C onto X, and that π : C → X
is birational. If M denotes the tautological sub-bundle on Pr, then

1. π∗M is contained in a direct sum of copies of OC;

2. H0(π∗M) = 0; and

3. deg π∗M = − degX.

Proof. 1: Since any exact sequence of vector bundles is locally split, we can
pull back the defining sequence

0 →M→ Or+1
Pr → OPr(1) → 0

to get an exact sequence

0 → π∗M→Or+1
C → L → 0

where we have written L for the line bundle π∗OPr(1).

2: Using the sequence above, it suffices to show that the map on cohomology

H
0(Or+1

C ) → H
0(L)

is a monomorphism. Since π is finite, we can compute the cohomology after
pushing forward to X. Since X is reduced and irreducible and K is alge-
braically closed we have H0OX = K, generated by the constant section 1.
For the same reason K = H0OC = H0(π∗OC) is also generated by 1. The
map OX(1) → π∗L = π∗π

∗OX(1) looks locally like the injection of OX into
OC , so it is a monomorphism. Thus the induced map H0OX(1) → H0 L is a
monomorphism, and it suffices to show that the map on cohomology

H
0(Or+1

X ) → H
0(OX(1))

coming from the embedding of X in Pr is a monomorphism. This is the
restriction to X of the map

H
0(Or+1

Pr ) → H
0(OPr(1))
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sending the generators of Or+1
Pr to linear forms on Pr. Since X is nondegen-

erate, no nonzero linear form vanishes on X, so the displayed maps are all
monomorphisms.

3: The bundle M has rank r, and so does its pullback π∗M. The degree
of the latter is, by definition, the degree of its highest nonvanishing exterior
power, ∧rπ∗M = π∗ ∧r M. From the exact sequence defining M we see
that ∧rM∼= OPr(−1), and it follows that π∗ ∧r M = π∗OX(−1) has degree
− degX.

Any vector bundle on a curve can be filtered by a sequence of sub-bundles in
such a way that the successive quotients are line bundles. Using Proposition
5.11 we can find a special filtration.

Proposition 5.12. Let N be a vector bundle on a smooth curve C over an
algebraically closed field K. If N is contained in a direct sum of copies of
OC and h0N = 0 then N has a filtration

N = N1 ⊃ . . . ⊃ Nr+1 = 0,

such that Li := Ni/Ni+1 is a line bundle of strictly negative degree.

Proof. We will find an epimorphism N → L1 from N to a line bundle L1

of negative degree. Given such a map, the kernel N ′ ⊂ N automatically
satisfies the hypotheses of the proposition, and thus by induction N has a
filtration of the desired type.

By hypothesis there is an embedding N ↪→ On
C for some n. We claim that

we can take n = rankN . For simplicity, set r = rankN . Tensoring the
given inclusion with the field K of rational functions on C, we get a map
of K-vector spaces Kr ∼= K ⊗ N → K ⊗ On

C = Kn. Since this map is
a monomorphism, one of its r × r minors must be nonzero. Thus we can
factor out a subset of n − r of the given basis elements of Kn and get a
monomorphism Kr ∼= K ⊗ N → K ⊗ Or

C = Kr. Since N is torsion free,
the corresponding projection of On

C → Or
C gives a composite monomorphism

α : N ↪→ Or
C as claimed.

Since N has no global sections, the map α cannot be an isomorphism. Since
the rank of N is r, the cokernel of α is torsion; that is, it has finite support.
Let p be a point of its support. Since we have assumed that K is algebraically
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closed, the residue class field κ(p) is K. We may choose an epimorphism from
Or
C/N → Op, the skyscraper sheaf at p. Since Or

C is generated by its global
sections, the image of the global sections of Or

C generate the sheaf Op, and
thus the map Kr = H0(Or

C) → H0(Op) = K is onto, and its kernel has
dimension r − 1. Any subspace of H0(Or

C) generates a direct summand, so
we get a summand Or−1

C of Or
C which maps to a proper subsheaf of Or

C/N .
The map Or

C → Op factors through the quotient Or
C/Or−1

C = OC , as in the
diagram

Or−1
C

@
@

@
@

@R

N
α

- Or
C

?
- On

C/N
@

@
@

@
@

β
R

OC

?
-- Op

?

The composite map N → Op is zero, so β : N → Or
C → OC is not an

epimorphism. Thus the ideal sheaf L1 = β(N ) is properly contained in OC .
It defines a nonempty finite subscheme Y of C, so degL1 = − deg Y < 0.
Since C is smooth, L1 is a line bundle, and we are done.

Multilinear algebra gives us a corresponding filtration for the exterior square.

Lemma 5.13. If N is a vector bundle on a variety V which has a filtration

N = N1 ⊃ . . . ⊃ Nr ⊃ Nr+1 = 0,

such that the successive quotients Li := Ni/Ni+1 are line bundles, then ∧2N
has a similar filtration whose successive quotients are the line bundles Li⊗Lj
with 1 ≤ i < j ≤ r.

Proof. We induct on r, the rank of N . If r = 1 then ∧2N = 0, and we are
done. From the exact sequence

0 → Nr → N → N /Nr → 0,
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and the right exactness of the exterior algebra functor we deduce that

∧(N/Nr) = ∧N/(Nr ∧ (∧N ))

as graded algebras. In degree 2 this gives a right exact sequence

(N/Nr)⊗Nr → ∧2N → ∧2(N/Nr) → 0.

In this case the left hand arrow is a monomorphism because

rank(N/(Nr ⊗Nr)) = (r − 1) · 1 = r − 1

is the same as the difference of the ranks of the right hand bundles,

r − 1 =

(
r

2

)
−
(
r − 1

2

)
.

Thus we can construct a filtration of ∧2N by combining a filtration of
(N/Nr)⊗Nr with a filtration of ∧2(N/Nr). The sub-bundles (Ni/Nr)⊗Nr ⊂
(N/Nr)⊗Nr give a filtration ofN/Nr with successive quotients Li⊗Lr = Nr

for i < r. By induction on the rank of N , the bundle ∧2(N/Nr), it too has
a filtration with subquotients Li ⊗ Lj, completing the argument.

5B.5 General line bundles

To complete the proof of Theorem 5.1 we will use a general result about line
bundles on curves:

Proposition 5.14. Let C be a smooth curve of genus g over an algebraically
closed field. If B is a general line bundle of degree ≥ g − 1 then h1 B = 0.

To understand the statement, the reader needs to know that the set Picd(C)
of isomorphism classes of line bundles of degree d on C form an irreducible
variety, called the Picard variety. The statement of the proposition is short-
hand for the statement that the set of line bundles B of degree g − 1 that
have vanishing cohomology is an open dense subset of this variety.

We will need this Proposition and more related results in Chapter 8, Lemma
8.5 and we postpone the proof until then.
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Proof of Theorem 5.1. Since it does not change the regularity, we may extend
the ground field and assume that K is algebraically closed (the hypothesis
that X is absolutely reduced and irreducible means exactly that X stays
reduced and irreducible after this extension.) Set d = degX. By Propositions
5.11 and 5.13 the bundle ∧2π∗M can be filtered in such a way that the
successive quotients are the tensor products Li ⊗ Lj of two negative line
bundles.

Thus to achieve the vanishing of H1(∧2M⊗A) it suffices to chooseA such that

h1(Li⊗Lj⊗A) = 0 for all i, j. By Proposition 5.14, it is enough to choose A
general and of degree e such that deg(Li⊗Lj⊗A) = degLi+degLj+e ≥ g−1
for every i and j.

Again by Proposition 5.11 we have −d = deg π∗M =
∑
i degLi. Since the

degLi are negative integers,

degLi + degLj = −d −∑
k 6=i,j degLk ≥ −d − r + 2 and it suffices to take

e = g − 1 + d− r + 2. In sum, we have shown that if A is general of degree
g − 1 + d − r + 2 then reg IX ≤ h0A. By the Riemann-Roch theorem we
have h0A = h1A + d− r + 2. By Proposition 5.2, d ≥ r, so degA ≥ g + 1,
and Proposition 5.14 implies that h1A = 0. Thus reg IX ≤ h0A = d− r+2,
completing the proof.

As we shall see in the next chapter, the bound we have obtained is sometimes
optimal. But the examples that we know in which this happens are of low
genus; rational and elliptic curves. Are their better bounds for higher genus?
At any rate, we shall see in Corollary 8.2 that there are much better bounds
for curves embedded by complete series of high degree. (Exercise 8.4 gives a
weak form of this for varieties, even schemes, of any dimension.)

5C Exercises

1. Show that if the curve X ⊂ Pr has an n-secant line (that is, a line that
meets the curve in n points) then reg IX ≥ n. Deduce that that there
are nondegenerate smooth rational curves X in P3 of any degree d ≥ 3
with regSX = degX − codimX. (Hint: consider curves on quadric
surfaces.)
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2. Show that if X is the union of 2 disjoint lines in P3, or a conic contained
in a plane in P3, then then 2 = reg IX > degX − codimX + 1

3. Show that if Xd is the scheme in P3 given by the equations

x2
0, x0x1, x

2
1, x0x

d
2 − x1x

d
3

then Xd is 1-dimensional, irreducible, and not contained in a hyper-
plane. Show that the degree of Xd is 2 but the regularity of SXd

is ≥ d.
(In case K is the field of complex numbers, the scheme Xd can be visu-
alized as follows: It lies in the first infinitesimal neighborhood, defined
by the ideal (x2

0, x0x1, x
2
1) of the line X defined by x0 = x1 = 0, which

has affine coordinate x2/x3. In this sense Xd can be thought of as a
subscheme of the normal bundle of X in P3. Identifying the normal
bundle with X ×K2 the scheme Xd meets each p×K2 = K2 as a line
through the origin of K2, and is identified by its slope x0/x1 = (x2/x3)

d.
Thus for example if we restrict to values of x2/x3 in the unit circle, we
see that Xd is a ribbon with d twists as in Figure ***((now fig 14)).

((Figure 14))

4. Consider the reduced irreducible 1-dimensional subscheme X of the
real projective space P3

R defined by the equations

x2
0 − x2

1, x
2
2 − x2

3, x3x0 − x1x2, x0x2 − x1x3

Show that degX = 2 and regSX > degX − codimX, so that the
conclusion of Theorem 5.1 does not hold for X. Show that after a
ground field extension X becomes the union of two disjoint lines.

5. Show that Proposition 5.6 is only true on the sheaf level; the ith syzygy
module of K itself is not isomorphic to a twist of the ith exterior power of
the first one. (Hint: To see this just consider the number of generators
of each module, which can be deduced from Nakayama’s Lemma and
the right exactness of the exterior algebra functor (see [Eisenbud 1995,
Proposition A2.1]). On the other hand, Use the argument in the text
above to show that the dual of the ith syzygy is isomorphic to the ith

exterior power of the first syzygy.

6. Generalizing Corollary 5.9, suppose ϕ : F1 → F0 is a map of vector
bundles on Pr with F1 = ⊕n

i=1OPr(−bi) and F0 = ⊕h
i=1OPr(−ai). Sup-

pose that min aj < min bj (as would be the case if ϕ were a minimal
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presentation of a coherent sheaf.) Show that if the ideal sheaf Ih(ϕ)
generated by the h× h minors of ϕ defines a scheme of dimension ≤ 1,
then

reg Ih ≤
∑

bi −
∑

ai − (n− h)(1 + min
i
ai)

7. The monomial curve in Pr with exponents a1 ≤ a2 ≤ · · · ≤ ar is the
curve X ⊂ Pr of degree d = ar parametrized by

φ : P1 3 (s, t) - (sd, sd−a1ta1 , . . . , sd−ar−1tar−1 , td).

Set a0 = 0, and for i = 1, . . . r set αi = ai − ai−1. With notation as in
Theorem 5.10, show that

φ∗(M) =
⊕
i6=j

OP1(−αi − αj).

Now use Theorem 5.10 to show that the regularity of IX is at most
maxi6=j αi + αj. This exercise is taken from [L′vovsky 1996].



Chapter 6

Linear Series and One-generic
Matrices

Revised 8/19/03

In this chapter we will introduce two techniques that are useful for describing
the embeddings of curves and other varieties: linear series, and the 1-generic
matrices to which they give rise. We illustrate these techniques by describing
in some detail the free resolutions of ideals of curves of genus 0 and 1 in their
“nicest” embeddings.

In the case of genus 0 curves we are looking at embeddings of degree ≥ 1; in
the case of genus 1 curves we are looking at embeddings of degree ≥ 3. It
turns out that the technique of this chapter gives very explicit information
about the resolutions of ideal of any hyperelliptic curves of any genus g
embedded by complete linear series of degree ≥ 2g + 1. We will see in
Chapter 8 that some qualitative aspects extend to all curves in such “high
degree” embeddings.

For simplicity we suppose throughout this section that K is an algebraically
closed field and we work with projective varieties—that is, irreducible alge-
braic subsets of a projective space Pr.

107
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6A Rational normal curves

Consider first the plane conics. One such conic—we will call it the standard
conic in P2 with respect to coordinates x0, x1, x2—is the curve with equation
x0x2 − x2

1 = 0. It is the image of the map

P1 - P2; (s, t) 7→ (s2, st, t2)

Any irreducible conic is obtained from this one by an automorphism—that
is, a linear change of coordinates—of P2.

Analogously, we consider the curve X ∈ Pr that is the image of the map

P1 νr- Pr; (s, t) 7→ (sr, sr−1t, . . . , str−1, tr)

We call X the standard rational normal curve in Pr. By a rational normal
curve in Pr we will mean any curve obtained from this standard one by an
automorphism—a linear change of coordinates—of Pr. Being an image of
P1, a rational normal curve is irreducible. In fact, the map νr is an embed-
ding, so X ∼= P1 is a smooth rational (genus 0) curve. Because the mono-
mials sr, sr−1t, . . . , tr are linearly independent, it is nondegenerate—that is,
not contained in a hyperplane. The intersection of X with the hyperplane∑
aixi = 0 is the set of nontrivial solutions of the homogeneous equation∑
ais

r−iti. Up to scalars there are (with multiplicity) r such solutions, so
that X has degree r. We will soon see (Theorem 6.8) that any irreducible,
nondegenerate curve of degree r in Pr is a rational normal curve in Pr.

In algebraic terms, the standard rational normal curve X is the variety whose
ideal is the kernel of the ring homomorphism α : S = K[x0, . . . , xr] → K[s, t]
sending xi to sr−iti. Since K[s, t] is a domain, this ideal is prime. Since K[s, t]
is generated as a module over the ring α(S) ⊂ K[s, t] by the the finitely many
monomials in K[s, t] of degree < r, we see that dimα(S) = 2. This is the
algebraic counterpart of the statement that X is an irreducible curve.

Note that the defining equation x0x2−x2
1 of the standard conic can be written

in a simple way as a determinant,

x0x2 − x2
1 = det

(
x0 x1

x1 x2

)
.

This whole chapter concerns the systematic understanding and exploitation
of such determinants!
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6A.1 Where’d that matrix come from?

If we replace the variables x0, x1, x2 in the matrix above by their images
s2, st, t2 under ν2 we get the interior of the “multiplication table”

s t
s s2 st
t st t2

.

The determinant of M goes to zero under the homomorphism α because
(s2)(t2) = (st)(st) (associativity and commutativity).

To generalize this to the rational normal curve of degree r we may take any
d with 1 ≤ d < r and write the multiplication table

sr−d sr−d−1t . . . tr−d

sd sr sr−1t . . . sdtr−d

sd−1t sr−1t sr−2t2 . . . sd−1tr−d+1

...
...

...
...

...
td sr−dtd sr−d−1td+1 . . . tr

and substituting xi for sr−iti we see that the 2 × 2 minors of the (d + 1) ×
(r − d+ 1) matrix

Mr,d =


x0 x1 · · · xr−d
x1 x2 · · · xr−d+1
...

...
...

...
xd xd+1 · · · xr


vanish on X. Arthur Cayley called the matrices Mr,d catalecticant matrices
(see Exercises 6.3 and 6.4 for the explanation), and we will follow this ter-
minology. They are also called generic Hankel matrices, (a Hankel matrix is
any matrix whoses anti-diagonals are constant.)

Generalizing the result that the quadratic form q = detM2,1 generates the
ideal of the conic in the case r = 2, we now prove:

Proposition 6.1. The ideal I ⊂ S = K[x0, . . . , xr] of the rational normal
curve X ⊂ Pr of degree r is generated by the 2× 2 minors of the matrix

Mr,1 =
(
x0 · · · xr−1

x1 · · · xr

)
.
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Proof. Consider the homogeneous coordinate ring SX = S/I which is the
image of the homomorphism

α : S → K[s, t]; xi 7→ sr−iti.

The homogeneous component (S/I)d is equal to K[s, t]rd, which has dimen-
sion rd+ 1.

On the other hand, let J ⊂ I be the ideal of 2× 2 minors of Mr,1, so S/I is
a homomorphic image of S/J . To prove I = J it thus suffices to show that
dim(S/J)d ≤ rd+ 1 for all d.

We have xixj ≡ xi−1xj+1 mod (J) as long as i − 1 ≥ 0 and j + 1 ≤ r.
Thus, modulo J , any monomial of degree d is congruent either to xa0x

d−a
r ,

with 0 ≤ a ≤ d, or to xa0xix
d−1−a
r with 0 ≤ a ≤ d − 1 and 1 ≤ i ≤ r − 1.

There are d + 1 monomials of the first kind and d(r − 1) of the second, so
dim(S/J)d ≤ (d+ 1) + d(r − 1) = rd+ 1 as required.

By using the (much harder!) Theorem 5.1 we could have simplified the proof
a little: Since the degree of the rational normal curve is r, Theorem 5.1 shows
that reg I ≤ 2, and in particular I is generated by quadratic forms. Thus
it suffices to show that, comparing the degree 2 part of J and of I we have
dimK J2 ≥ dimK(I)2. This reduces the proof to showing that the minors of
M1,r are linearly independent; one could do this as in the proof above, or
using the result of Exercise 6.8.

Corollary 6.2. The minimal free resolution of the homogeneous coordinate
ring SX of the rational normal curve X of degree r in Pr is given by the
Eagon-Northcott complex EN(Mr,1)

0 → (Symr−2 S
2)∗ ⊗ ∧rSr → . . .→ (S2)∗ ⊗ ∧3Sr → ∧2Sr

∧2Mr,1- ∧2 S

of the matrix Mr,1 (see Section 11.35). It has Betti diagram of the form

0 1 2 · · · r − 1
0 1 − − · · · −
1 −

(
r
2

)
2
(
r
3

)
· · · (r − 1)

(
r
r

)
= r − 1

In particular, SX is a Cohen-Macaulay ring.
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Proof. The codimension of X ⊂ Pr, and thus of I ⊂ S, is r−1, which is equal
to the codimension of the ideal of 2×2 minors of a generic 2×r matrix. Thus
by Theorem 11.35 the Eagon-Northcott complex is exact. The entries of Mr,1

are of degree 1. From the construction of the Eagon-Northcott complex given
in Section 11H we see that the Betti diagram is as claimed. In particular, the
Eagon-Northcott complex is minimal. The length of EN(Mr,1) is r − 1, the
codimension of X, so SX is Cohen-Macaulay by the Auslander-Buchsbaum
Theorem (11.11).

6B 1-Generic Matrices

To describe some of what is special about the matrices Mr,d we introduce
some terminology: IfM is a matrix of linear forms with rows `i = (`i,1, . . . , `i,n)
then a generalized row of M is by definition a row∑

i

λi`i = (
∑
i

λi`i,1, . . . ,
∑
i

λi`i,n),

that is, a scalar linear combination of the rows of M , with coefficients λi ∈ K
that are not all zero. We similarly define generalized columns of M . In the
same spirit, a generalized entry of M is a nonzero linear combination of
the entries of some generalized row of M or, equivalently, a nonzero linear
combination of the entries of some generalized column of M . We will say that
M is 1-generic if every generalized entry of M is nonzero. This is the same
as saying that every generalized row (or column) of M consists of linearly
independent linear forms.

Proposition 6.3. For each 0 < d < r the matrix Mr,d is 1-generic.

Proof. A nonzero linear combination of the columns of the multiplication
table corresponds to a nonzero form of degree r−d in s and t, and, similarly,
a nonzero linear combination of the rows corresponds to a nonzero form of
degree d. A generalized entry of Mr,d is the linear form corresponding to a
product of such nonzero forms, which is again nonzero.

Clearly the same argument would work for a matrix made from part of the
multiplication table of any graded domain; we shall further generalize and
apply this idea later.
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Determinantal ideals of 1-generic matrices have many remarkable properties.
See [Room 1938] for a classical account and [Eisenbud 1988] for a modern
treatment. In particular, they satisfy a generalization of Proposition 6.1 and
Corollary 6.2.

Theorem 6.4. If M is a 1-generic matrix of linear forms in S = K[x0, . . . , xr],
of size p × q with p ≤ q, over an algebraically closed field K, then the
ideal Ip(M) generated by the maximal minors of M is prime of codimension
q − p + 1; in particular, its free resolution is given by an Eagon-Northcott
complex, and S/Ip(M) is a Cohen-Macaulay domain.

Note that q − p + 1 is the codimension of the ideal of p × p minors of the
generic matrix (Theorem 11.32).

Proof. Set I = Ip(M). We first show that codim I = q−p+1; equivalently, if
X is the projective algebraic set defined by I, we will show that the dimension
of X is r − (q − p + 1). By Theorem 11.32 the codimension of I cannot be
any greater than q − p + 1 so, for the codimension statement, it suffices to
show that dimX ≤ r − (q − p+ 1).

Let a ∈ Pr be a point with homogeneous coordinates a0, . . . , ar. The point a
lies in X if and only if the rows of M become linearly dependent when eval-
uated at a. This is equivalent to saying that some generalized row vanishes
at a, so X is the union of the zero loci of the generalized rows of M . As M is
1-generic, each generalized row has zero locus equal to a linear subspace of Pr

of dimension precisely r− q. A generalized row is determined by an element
of the vector space Kp of linear combinations of rows. Two generalized rows
have the same zero locus if they differ by a scalar, so X is the union of a
family of linear spaces of dimension r−q, parametrized by a projective space
Pp−1. Thus dimX ≤ (r − q) + (p− 1) = r − (q − p+ 1).

More formally, we could define X ′ = {(y, a) ∈ Pp−1 × Pr | Ry vanishes at a}
where Ry denotes the generalized row corresponding to the parameter value
y. The set X ′ fibers over Pp−1 with fibers isomorphic to Pr−q so dimX ′ =
(r − q) + (p− 1) = r − (q − p + 1). Also, the projection of X ′ to Pr carries
X ′ onto X, so dimX ≤ dimX ′.

A projective algebraic set, such as X ′, which is fibered over an irreducible
base with irreducible equidimensional fibers is irreducible ([Eisenbud 1995,
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Exercise 14.3]). It follows that the image X is also irreducible. This proves
that the radical of Ip(M) is prime.

From the codimension statement, and the Cohen-Macaulay property of S, it
follows that the Eagon-Northcott complex associated toM is a free resolution
of S/I, and we see that the projective dimension of S/I is q − p + 1. By
the Auslander-Buchsbaum Formula (Theorem 11.11) the ring S/I is Cohen-
Macaulay.

It remains to show that I itself is prime. From the fact that S/I is Cohen-
Macaulay, it follows that all the associated primes of I are minimal, and have
codimension precisely q − p+ 1. Since the radical of I is prime, we see that
in fact I is a primary ideal.

The submatrix M1 of M consisting of the first p− 1 rows is also 1-generic so
by what we have already proved, the ideal Ip−1(M1) has codimension q − p.
Thus some (p − 1) × (p − 1) minor ∆ of M1 does not vanish identically on
X. Since X is the union of the zero loci of the generalized rows of M , there
is even a generalized row whose elements generate an ideal that does not
contain ∆. This generalized row cannot be in the span of the first p− 1 rows
alone, so we may replace the last row of M by this row without changing the
ideal of minors of M , and we may assume that ∆ /∈ Q := (xp,1, . . . , xp,q). On
the other hand, since we can expand any p×p minor of M along its last row,
we see that I is contained in Q.

Since the ideal Q is generated by a sequence of linear forms, it is prime. Since
we have seen that I is primary, it suffices to show that ISQ is prime, where
SQ denotes the local ring of S at Q. Since ∆ becomes a unit in SQ we may
make an SQ-linear invertible transformation of the columns of M to bring M
into the form

M ′ =


1 0 . . . 0 | 0 . . . 0
0 1 . . . 0 | 0 . . . 0
. . . . . . . . . . . . | . . . . . . . . .
0 0 . . . 1 | 0 . . . 0
x′p,1 x′p,2 . . . x′p,p−1 | x′p,p . . . x′p,q

 .

where x′p,1, . . . , x
′
p,q is the result of applying an invertible SQ-linear transfor-

mation to xp,1, . . . , xp,q, and the (p − 1) × (p − 1) matrix in the upper left
hand corner is the identity. It follows that ISQ = (xp,p, . . . , xp,q)SQ.
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Since xp,1, . . . , xp,q are linearly independent moduloQ2SQ, so are x′p,1, . . . , x
′
p,q.

It follows that SQ/(x
′
p,p, . . . , x

′
p,q) = SQ/ISQ is a regular local ring and thus

a domain (see [Eisenbud 1995, Corollary 10.14]). This shows that ISQ is
prime.

Theorem 6.4 can be regarded as a generalization of Proposition 6.1—see
Exercise 6.5.

6C Linear Series

We can extend these ideas to give a description of certain embeddings of
genus 1 curves. At least over the complex numbers, this could be done
very explicitly, replacing monomials by doubly periodic functions. Instead,
we approach the problems algebraically, using the general notion of linear
series.

A linear series (L, V, α) on a variety X over K consists of a line bundle L
on X, a finite dimensional K-vector space V and a nonzero homomorphism
α : V → H0 L. We define the (projective) dimension of the series to be
(dimK V )− 1. The linear series is nondegenerate if α is injective; in this case
we think of V as a subspace of H0(L), and write (L, V ) for the linear series.
Frequently we consider a linear series where the space V is the space H0(L)
and α is the identity. We call this the complete linear series defined by L,
and denote it by |L|.

One can think of a linear series as a family of divisors on X parametrized by
the nonzero elements of V : corresponding to v ∈ V is the divisor which is
the zero locus of the section α(v) ∈ H0(L). Since the divisor corresponding
to v is the same as that corresponding to a multiple rv with 0 6= r ∈ K,
the family of divisors is really parametrized by the projective space of 1-
dimensional subspaces of V , which we think of as the projective space P(V ∗).
The simplest kind of linear series is the “hyperplane series” arising from a
projective embedding X ⊂ P(V ). It consists of the family of divisors that
are hyperplane sections of X; more formally this series is (OX(1), V, α) where
OX(1) is the line bundle OP(V )(1) restricted to X and

α : V = H
0(OP(V )(1)) → H

0(OX(1))
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is the restriction mapping. This series is nondegenerate in the sense above if
and only if X is nondegenerate in P(V ) (that is, X is not contained in any
hyperplane.)

For example, if X ∼= P1 is embedded in Pr as the rational normal curve of
degree r, then the hyperplane series is the complete linear series

|OP1(r)| = (OP1(r),H
0(OP1(r)), id),

where id denotes the identity map.

Not all linear series can be realized as the linear series of all hyperplane
sections of an embedded variety. For example, the linear series on P2 of
conics through p. It is defined as follows: Let L = OP2(2). The global sections
of L correspond to quadratic forms in 3 variables. Taking coordinates x, y, z,
we choose p to be the point (0, 0, 1), and we take V to be the vector space
of quadratic forms vanishing at p, that is, V = 〈x2, xy, xz, y2, yz〉.

In general we define a base-point of a linear series to be a point in the zero
loci of all the sections in α(V ) ⊂ H0(L). Equivalently, this is a point at which
the sections of α(V ) fail to generate L; or, again, it is a point contained in all
the divisors in the series. In the example above, p is the only base point. The
linear series is called base point free if it has no base points. The hyperplane
series of any variety in Pr is base point free because there is a hyperplane
missing any given point.

Recall that a rational map from a variety X to a variety Y is a morphism
defined on an open dense subset U ⊂ X. A nontrivial linear series L =
(L, V, α) gives rise to a rational map from X to P(V ) as follows. Let U
be the set of points of X that are not base points of the series, and let
ΦL : U → P(V ) be the map associating a point p to the hyperplane in V of
sections v ∈ V such that α(v)(p) = 0. If L is base point free then it defines
a morphism on all of X.

To express these things in coordinates, choose a basis x0, . . . , xr of V and
regard the xi as homogeneous coordinates on P(V ) ∼= Pr. Given q ∈ X,
suppose that the global section α(xj) generates L locally near q. There is a
morphism from the open set Uj ⊂ X where α(xj) 6= 0 to the open set xj 6= 0
in P(V ) corresponding to the ring homomorphism K[x0/xj, . . . , xr/xj] →
OX(U) sending xi/xj 7→ ϕ(xi)/ϕ(xj). These morphisms glue together to
form a morphism, from X minus the base point locus of L, to P(V ). See
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[Hartshorne 1977, Section 2.7] or [Eisenbud and Harris 2000, Section 3.2.5]
for more details.

For example, we could have defined a rational normal curve in Pr to be the
image of P1 by the complete linear series |OP1(r)| = (OP1(r),H0(OP1(r)), id)
together with an identification of Pr and P(V )—that is, a choice of basis of
V .

On the other hand, the series of plane conics with a base point at p =
(0, 0, 1) above corresponds to the rational map from P2 to P4 sending a point
(a, b, c) other than p to (a2, ab, ac, b2, bc). This map cannot be extended to a
morphism on all of P2.

If Λ ⊂ Ps is a linear space of codimension r+1, then the linear projection πΛ

from Ps to Pr with center Λ is the rational map from Ps to Pr correspond-
ing to the linear series of hyperplanes in Ps containing Λ. Embeddings by
complete series are simply those not obtained in a nontrivial way by linear
projection.

Proposition 6.5. Let L = (L, V, α) be a base point free linear series on
a variety X. The linear series L is nondegenerate (that is, the map α is
injective) if and only if φL(X) ⊂ P(V ) is nondegenerate. The map α is
surjective if and only if φL does not factor as the composition of a morphism
from X to a nondegenerate variety in a projective space Ps and a linear
projection πΛ, where Λ is a linear space not meeting the image of X in Ps.

Proof. A linear form on P(V ) that vanishes on φL(X) is precisely an element
of kerα, which proves the first statement. For the second, note that if φL
factors through a morphism ψ : X → Ps and a linear projection πΛ to
Pr, where Λ does not meet ψ(X), then the pull back of OPr to ψ(X) is
OPs(1)|ψ(X), so ψ∗(OPs(1)) = φ∗L(OPr(1)) = L. If ψ(X) is nondegenerate,
then H0(L) is at least (s+ 1)-dimensional, so α cannot be onto. Conversely
if α is not onto, we can obtain a factorization as above where ψ is defined by
the complete linear series |L|. The plane Λ is defined by the vanishing of all
the forms in α(V ), and does not meet X because L is base point free.

In case α is a surjection we say that the linear series (L, V, α) is linearly nor-
mal. In Corollary 10.13 it is shown that if X ⊂ Pr is a variety then the homo-
geneous coordinate ring SX has depth 2 if and only if SX → ⊕d∈Z H0(OX(d))
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is an isormorphism. We can restate this condition by saying that, for every
d, the linear series (OX(d),H0(OPr(d)), αd) is complete, where

αd : H
0(OPr(d)) → H

0(OX(d))

is the restriction map.

Using Theorem 11.19 we see that ifX is normal and of dimension≥ 1 (so that
SX is locally normal at any homogeneous ideal except the irrelevant ideal,
which has codimension ≥ 2), then this condition is equivalent to saying that
SX is a normal ring. In this case the condition that X ⊂ Pr is linearly normal
is the “degree 1 part” of the condition for the normality of SX .

6C.1 Ampleness

The linear series that interest us the most are those that provide embeddings.
In general, a line bundle L is called very ample if |L| is base point free and the
morphism corresponding to |L| is an embedding of X in the projective space
P(H0(L)). (The term ample is used for a line bundle for which some power is
very ample.) In case X is a nonsingular variety over an algebraically closed
field there is a simple criterion, which we recall here in the case of curves
from [Hartshorne 1977, IV, 3.1.(b)].

Theorem 6.6. Let X be a nonsingular curve over an algebraically closed
field. A line bundle L on X is very ample if and only if

h0(L(−p− q)) = h0(L)− 2

for every pair of points p, q ∈ X.

That is: L is very ample if and only if any two points of X (possibly equal
to one another) impose independent conditions on the complete series |L|.

Combining this theorem with the Riemann-Roch formula, we easily prove
that any line bundle of high degree is very ample. In what follows we write
L(D), where D is a divisor, for the line bundle L ⊗OX(D).

Corollary 6.7. If X is a curve of genus g, then any line bundle of degree
≥ 2g + 1 on X is very ample. If g = 0 or g = 1, then the converse is also
true.
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Proof. For any points p, q ∈ X, degL(−p− q) > 2g − 2 = degωX , so L and
L(−p− q) are both nonspecial. Applying the Riemann Roch formula to each
of these bundles we get

h
0(L(−p− q)) = degL − 2− g + 1 = h

0(L)− 2.

as reqired by Theorem 6.6.

Any very ample line bundle must have positive degree, so the converse is
immediate for g = 0. For g = 1, we note that, by Riemann-Roch, h0(L) =
degL as long as L has positive degree. Thus a linear series of degree 1 must
map X to a point, and a linear series of degree 2 can at best map X to P1.
Since X 6= P1, such a map is not very ample.

The language of linear series is convenient for proving the following charac-
terization:

Theorem 6.8. If X ⊂ Pr is a nondegenerate irreducible curve of degree r
then X is a rational normal curve.

Proof. Suppose that the embedding is given by the linear series L = (L, V, α)
on the curve X, so that L is the restriction to X of OPr(1) and degL = r.
As X is nondegenerate, Lemma 6.5 shows that h0(L) ≥ r + 1.

We first prove that the existence of a line bundle L on X with degL ≥ 1
and h0(L) ≥ 1 + degL implies that X ∼= P1. To see this we do induction on
degL.

If degL = 1 then for any points p, q ∈ X we have degL(−p−q) = −1 whence

h0(L(−p−q)) = 0 ≤ h0(L)−2. In fact, we must have equality, since vanishing
at 2 points can impose at most two independent linear conditions. Thus L
is very ample and provides a degree 1 morphism—that is, an isomorphism—
from X to P1.

If, on the other hand, degL > 1 then we choose a nonsingular point p of
X. Since the condition of vanishing at p is (at most) one linear condition
on the sections of L, we see that L(−p) has degL(−p) = degL − 1 and

h0(L(−p)) ≥ h0(L)− 1, so L(−p) satisfies the same hypotheses as L.

Since X ∼= P1, and there is only one line bundle on P1 of each degree,
L ∼= OP1(d), with d = degL. It follows that h0(L) = 1 + degL. Thus the
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embedding is given by the complete linear series, and X is a rational normal
curve.

Corollary 6.9. a) If X is a nondegenerate curve of degree r in Pr, then the
ideal of X is generated by the 2 × 2 minors of a 1-generic, 2 × r matrix of
linear forms and the minimal free resolution of SX is the Eagon-Northcott
complex of this matrix. In particular, SX is Cohen-Macaulay.

b) Conversely, if M is a 1-generic 2 × r matrix of linear forms in r + 1
variables, then the 2× 2 minors of M generate the ideal of a rational normal
curve.

Proof. a) By Theorem 6.8, a nondegenerate curve of degree r in Pr is, up
to change of coordinates, the standard rational normal curve. The desired
matrix and resolution can be obtained by applying the same change of coor-
dinates to the matrix Mr,1.

b) By Theorem 6.4 the ideal P of minors is prime of codimension r − 1,
and thus defines a nondegenerate irreducible curve C in Pr. Its resolution is
the Eagon-Northcott complex, as would be the case for the ideal defining the
standard rational normal curve X. Since the Hilbert polynomials of C and X
can be computed from their graded Betti numbers, these Hilbert polynomials
are equal; in particular C has the same degree, r, as X, and Theorem 6.8
completes the proof.

6C.2 Matrices from pairs of linear series.

We have seen that the matrices produced from the multiplication table of
the ring K[s, t] play a major role in the theory of the rational normal curve.
Using linear series we can extend this idea to more general varieties.

Suppose that X ⊂ Pr is a variety embedded by the complete linear series
|L| corresponding to some line bundle L. Set V = H0(L), the space of
linear forms on Pr. Suppose that we can factorize L as L = L1 ⊗ L2 for
some line bundles L1 and L2. Choose ordered bases y1 . . . ym ∈ H0(L1) and
z1 . . . zn ∈ H0(L2), and let

M(L1,L2)
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be the matrix of linear forms on P(V ) whose (i, j) element is the section
yi ⊗ zj ∈ V = H0(L). (Of course this matrix is only interesting when it has
at least two rows and two columns, that is, h0 L1 ≥ 2 and h0 L2 ≥ 2.) Each
generalized row of M(L1,L2) has entries y ⊗ z1, . . . , y ⊗ zn for some section
0 6= y ∈ H0(L1), and a generalized entry of this row will have the form y ⊗ z
for some section 0 6= z ∈ H0(L2).

Proposition 6.10. If X is a variety, and L1,L2 are line bundles on X, then
the matrix M(L1,L2) is 1-generic, and its 2× 2 minors vanish on X.

Proof. With notation as above, a generalized element of M may be written
x = y ⊗ z where y, z are sections of L1,L2 respectively. If p ∈ X we may
identify L1 and L2 with OX in a neighborhood of p and write x = yz. Since
OX,p is an integral domain, x vanishes at p if and only if at least one of y
and z vanish at p. Since X is irreducible, X is not the union of the zero loci
of a nonzero y and a nonzero z, so no section y ⊗ z can vanish identically.
This shows that M is 1-generic. On the other hand, any 2 × 2 minor of M
may be written as

(y ⊗ z)(y′ ⊗ z′)− (y ⊗ z′)(y′ ⊗ z) ∈ H
0(L)

for sections y, y′ ∈ H0(L1) and z, z′ ∈ H0(L2). Locally near a point p of X we
may identify L1,L2 and L with OX,p and this expression becomes (yz)(y′z′)−
(yz′)(y′z) which is 0 because OX,p is commutative and associative.

It seems that if both the line bundles L1 and L2 are “sufficiently posi-
tive” then the homogeneous ideal of X is generated by the 2 × 2 minors
of M(L1,L2). For example, we have seen that in the case where X is P1 it
suffices that the bundles each have degree ≥ 1. For an easy example general-
izing the case of rational normal curves see Exercise 6.11; for more results in
this direction see [Eisenbud et al. 1988]. For less positive bundles, the 2× 2
minors of M(L1,L2) may still define an interesting variety containing X, as
in Section 6D.

Using the idea introduced in the proof of Theorem 6.4 we can describe the
geometry of the locus defined by the maximal minors of M(L1,L2) in more
detail. Interchanging L1 and L2 if necessary we may suppose that n = h0L2 >

h0 L1 = m so M(L1,L2) has more columns than rows. If y =
∑
riyi ∈ H0(L1)

is a section, we write `y for the generalized row indexed by y. The maximal
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minors of M(L1,L2) vanish at a point p ∈ Pr if and only if some row `y
consists of linear forms vanishing at p; that is,

V (Im(M(L1,L2)) =
⋃
y

V (`y).

The important point is that we can identify the linear spaces V (`y) geomet-
rically.

Proposition 6.11. Suppose X ⊂ Pr is embedded by a complete linear series,
and assume that the hyperplane bundle L = OX(1) decomposes as the tensor
product of two line bundles, L = L1 ⊗ L2. For each y ∈ H0L1 we have
V (`y) = Dy, the projective plane spanned by the divisor Dy ⊂ X defined by
the vanishing of y.

Proof. The linear span of Dy is the interesection of all the hyperplanes con-
taining Dy, so we must show that the linear forms appearing in the row `y
span the space of all linear forms vanishing on Dy. It is clear that every
entry y ⊗ zi of this row does in fact vanish where y vanishes, so it suffices to
show that if x ∈ H0 L is a linear form vanishing on Dy then x has the form
y⊗ z for some z ∈ H0 L2. Write Dx, Dy for the divisors on X defined by the
vanishing of x and y respectively.

There is an exact sequence

0 - L−1
1

y- OX
- ODy

- 0.

Tensoring with L we see that y : L2 → L is the kernel of the restriction map
L → LDy = L ⊗ ODy . Since the section x of L vanishes on Dy, the map
OX → L sending 1 to x factors through a map OX → L2. The image of 1 is
the desired section z.

OX

@
@

@
@

@

x

R

0 - L2

z

?
- L - L|Dy

((Silvio, the vertical map should be a dotted arrow.))
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Note that V (`y) and Dy do not change if we change y by a nonzero scalar
multiple. Thus when we write Dy we may think of y as an element of Pm−1.
We can summarize the results of this section, in their most important special
case, as follows.

Corollary 6.12. Suppose that X ⊂ Pr is embedded by the complete linear
series |L|, and that L1,L2 are line bundles on X such that L = L1 ⊗ L2.
Suppose that h0 L1 = m ≤ h0 L2. If y ∈ H0 L1, write Dy for the corresponding
divisor. If Dy denotes the linear span of Dy, then the variety defined by the
maximal minors of M(L1,L2) is

Y = V (Im(M(L1,L2))) =
⋃

y∈Pm−1

Dy.

We may illustrate Corollary 6.12 with the example of the rational normal
curve. Let X = P1 and let L1 = OP1(1),L2 = OP1(r − 1) so that

M(L1,L2) = Mr,1 =
(
x0 x1 . . . xr−1

x1 x2 . . . xr.

)

The generalized row corresponding to an element y = (y1, y2) ∈ P1 has the
form

`y = (y0x0 + y1x1, y0x1 + y1x2, · · · , y0xr−1 + y1xr).

The linear space V (`y) is thus the set of solutions of the linear equations


y0x0 + y1x1 = 0
y0x1 + y1x2 = 0
...
y0xr−1 + y1xr = 0,

Since these r equations are linearly independent, V (`y) is a single point. Solv-
ing the equations, we see that this point has coordinates xi = (−y0/y1)

ix0.
Taking y0 = 1, x0 = sr, y1 = −s/t we obtain the usual parametrization
xi = sr−iti of the rational normal curve.
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6C.3 Linear subcomplexes and mapping cones

We have seen that if X is embedded by the complete linear series |L| and if
L = L1⊗L2 is a factorization, then by Theorem 6.4 and Proposition 6.10 the
ideal I = IX of X contains the ideal of 2× 2 minors of the 1-generic matrix
M = M(L1,L2). This has an important consequence for the free resolution
of M .

Proposition 6.13. Suppose that X ⊂ Pr is a variety embedded by a complete
linear series |L|, and that L = L1⊗L2 for some line bundles L1,L2 on X. Let
M ′ be a 2× h0(L2) submatrix of M(L1,L2), and let J be the ideal generated
by the 2×2 minors of M ′. If F : · · · → F0 → IX is a minimal free resolution
and E : · · · → E0 → J denotes the Eagon-Northcott complex of M ′, then E
is a subcomplex of F in such a way that Fi = Ei ⊕Gi for every i.

Proof. Choose any map α : E → F lifting the inclusion J ⊂ I = IX . We
will show by induction that αi : Ei → Fi is a split inclusion for every i ≥ 0.
Write δ for the differentials—both of E and of F. Write P = (x0, . . . , xr) for
the homogeneous maximal ideal of S. It suffices to show that if e ∈ Ei but
e /∈ PEi (so that e is a minimal generator) then αi(e) /∈ PFi.

Suppose on the contrary αie ∈ PFi. In the case i = 0, we see that δe must
be in PI ∩ J . But the Eagon-Northcott complex EN(M ′) is a minimal free
resolution, so δe is a nonzero quadratic form. As X is nondegenerate the
ideal I = IX does not contain any linear form, so we cannot have e ∈ PI.

Now suppose i > 0, and assume by induction that αi−1 maps Ei−1 isomorphi-
cally to a summand of Fi−1. Since F is a minimal free resolution the relation
αi ∈ PFi implies that

αi−1δe = δαie ∈ P 2Fi−1.

However, the coefficients in the differential of the Eagon-Northcott complex
are all linear forms. As EN(M ′) is a minimal free resolution we have δe 6= 0,
so δe /∈ P 2Ei−1, a contradiction since Ei−1 is mapped by αi−1 isomorphically
to a summand of Fi−1.

The reader may verify that the idea used in this proof applies more generally
when one has a linear complex that is minimal in an appropriate sense and
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maps to the “least degree part” of a free resolution. We will study linear
complexes further in the next chapter.

Proposition 6.13 is typically applied when L1 has just two sections—otherwise,
to choose the 2×n submatrix M ′ one effectively throws away some sections,
losing some information. It would be very interesting to have a systematic
way of exploiting the existence of further sections, or more generally of ex-
ploiting the presence of many difference choices of factorization L = L1⊗L2

with a choice of two sections of L1. In the next section we will see a case
where we have in fact many such factorizations, but our analysis ignores the
fact. See, however, Kempf [Kempf 1989] for an interesting case where the
presence of multiple factorizations is successfully exploited.

The situation produced by Proposition 6.13 allows us to split the analysis of
the resolution into two parts. Here is the general setup, which we will apply
to a certain family of curves in the next section.

Proposition 6.14. Suppose that F : · · · → F0 is a free complex, with free
subcomplex E : · · · → E0. If Ei is a summand of Fi for every i and we
write Fi = Gi ⊕ Ei then G = F/E : · · · → G0 is again a free complex and,
then F is the mapping cone of the map α : G[−1] → E defined by taking
αi : Gi+1 → Ei to be the composite

Gi+1 ⊂ Gi+1 ⊕ Ei+1 = Fi+1
δ- Fi = Gi ⊕ Ei - Ei,

where δ is the differential of the complex F.

Proof. Immediate from the definitions.

To reverse the process and construct F as a mapping cone, we need a different
way of specifying the map from G[−1] to E. In our situation the following
observation is convenient. We leave to the reader the easy formalization for
the most general case.

Proposition 6.15. Suppose that J ⊂ I are ideals of S. Let G : · · · → G0

be a free resolution of I/J as an S-module. Let E : · · · → E1 → S be a free
resolution of S/J . If α : G → Ẽ is a map of complexes lifting the inclusion
I/J → S/J , then the mapping cone, F, of α is a free resolution of S/I.
If matrices representing the maps αi : Gi → Ei have all nonzero entries of
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positive degree, and if both E and G are minimal resolutions, then F is also
a minimal resolution.

Proof. Denoting the mapping cylinder of α by F, we have an exact sequence
0 → E → F → G̃[−1] → 0. Since G and E have no homology except at
the right hand end, we see from the long exact sequence in homology that

HiF = 0 for i ≥ 2. From the end of the sequence we get

· · · → H1 E → H1 F → I/J → S/J → H0 F → 0,

where the map I/J → S/J is the inclusion. It follows that H1 F = 0 and
F : · · · → F1 → S = F0 is a resolution of S/I.

6D Elliptic normal curves

Let X be a nonsingular, irreducible curve of genus 1, let L be a very ample
line bundle on X, and let d be the degree of L. By Corollary 6.7, d ≥ 3,
and by the Riemann-Roch formula, h0(L) = d. Thus the complete linear
series |L| embeds X as a curve of degree d in Pr = Pd−1. We will call such
an embedded curve an elliptic normal curve of degree d. (Strictly speaking,
an elliptic curve is a nonsingular projective curve of genus 1 with a chosen
point, made into an algebraic group in such a way that the chosen point is
the origin. We will not need the chosen point for what we are doing, and
we will accordingly not distinguish between an elliptic curve and a curve of
genus 1.)

In this section we will use the ideas introduced above to study the minimal
free resolution F of SX , where X ⊂ Pr is an elliptic normal curve of degree
d. Specifically, we will show that F is built up as a mapping cone from an
Eagon-Northcott complex E and its dual, appropriately shifted and twisted.
Further, we shall see that SX is always Cohen-Macaulay, and of regularity 3.

The cases with d ≤ 4 are easy and somewhat degenerate, so we will deal
with them separately. If d = 3, then X is embedded as a cubic in P2, so the
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resolution has Betti diagram

0 1
0 1 −
1 − −
2 − 1

In this case the Eagon-Northcott complex in question would be that of the
2× 2 minors of a 2× 1 matrix—and thus isn’t visible at all.

Next suppose d = 4. By the Riemann-Roch formula h0(L2) = 8 − g + 1 =
8, while, since r = 3, the space of quadratic forms on Pr has dimension
dimS2 = 10. It follows that the ideal IX of X contains at least 2 linearly
independant quadratic forms, Q1, Q2. If Q1 were reducible then the quadric
it defines would be the union of two planes. Since X is irreducible, X would
have to lie entirely on one of them. But by hypothesis X is embedded by
the complete series |L|, so X is nondegenerate in P3. Thus Q1 is irreducible,
and S/(Q1) is a domain.

It follows that Q1, Q2 form a regular sequence. The complete intersection
of the two quadrics corresponding to Q1 and Q2 has degree 4 by Bézout’s
Theorem, and it contains the degree 4 curve X, so it is equal to X. Since
any complete intersection is unmixed (see Theorem 11.23), the ideal IX is
equal to (Q1, Q2). Since these forms are relatively prime, the free resolution
of SX has the form

0 - S(−4)

(
Q2

−Q1

)
- S2(−2)

(Q1, Q2 )
- S,

with Betti diagram
0 1 2

0 1 −
1 − 2 −
2 − − 1

In this case the Eagon-Northcott complex in question is that of the 2 × 2
minors of a 2× 2 matrix. It has the form

0 - S(−2)
Q1- S.

In both these cases, the reader can see from the Betti diagrams that SX is
Cohen-Macaulay of regularity 3 as promised.
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Henceforward, we will freely assume that d ≥ 5 whenever it makes a differ-
ence. LetD be a divisor consisting of 2 points onX. We have h0(OX(D)) = 2
and h0(L(−D)) = d − 2, so from the theory of the previous section we see
that M = M(OX(D),L(−D)) is a 2 × (d − 2) matrix of linear forms on Pr

that is 1-generic, and the ideal J of 2 × 2 minors of M is contained in the
ideal of X. Moreover, we know from Theorem 6.4 that J is a prime ideal
of codimension equal to (d − 2) − 2 + 1 = r − 2; that is, J = IY is the
homogeneous ideal of an irreducible surface Y containing X. The surface Y
is the union of the lines spanned by the divisors linearly equivalent to D in
X. Since Y is a surface, X is a divisor on Y .

We can now apply Proposition 6.13 and Proposition 6.15 to construct the free
resolution of I from the Eagon-Northcott resolution of J and a resolution of
I/J . To this end we must identify I/J . We will show that it is a line bundle
on Y .

To continue our analysis, it is helpful to identify the surface Y . Although
it is not hard to perform this analysis in general, the situation is slightly
simpler when D = 2p and L = OX(dp) for some point p ∈ X. This case will
suffice for the analysis of any elliptic normal curve because of the following:

Theorem 6.16. If L is a line bundle of degree k on a smooth projective curve
of genus 1 over an algebraically closed field, then L = OX(kp) for some point
p ∈ X.

Proof. The result follows from simple facts about the group law on X: We
may choose a point q ∈ X, and regard X as an algebraic group with origin
q. There is a one-to-one correspondence between points of X and divisors
of degree 0 taking a point p to the divisor p − q; if D is a divisor of degree
0 then, by the Riemann-Roch theorem, the line bundle OX(D + q) has a
unique section σ. It vanishes at the unique point p for which p ∼ D + q,
that is p − q ∼ D. It follows from the definition of the group law that this
correspondence is an isomorphism of groups.

Multiplication by k is a nonconstant map of projective curves X → X,
and is thus surjective. It follows that there is a divisor p − q such that
D − kq ∼ k(p− q), and thus D ∼ kp as claimed.

Returning to our elliptic normal curve X embedded by |L|, we see from
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Theorem 6.16 that we may write L = OX(dp) for some p ∈ X, and we
choose D = 2p. To make the matrix M(OX(2p),OX((d − 2)p)) explicit, we
must choose bases of the global sections of OX(dp) and OX(2p).

In general the global sections of OX(kp) may be thought of as rational func-
tions on X having no poles except at p, and a pole of order at most k at p.
Thus there is a sequence of inclusions

K = H0OX ⊆ H0OX(p) ⊆ H0OX(2p) ⊆ . . . ⊆ H0OX(kp) ⊆ . . . .

Moreover, we have seen that h0OX(kP ) = k for k ≥ 1. It follows that
1 ∈ H0(OX) = H0(OX(p) may be considered as a basis of either of these
spaces. But there is a new section σ ∈ H0(OX(2p)), with a pole at p of order
exactly 2, and in addition to 1 and σ a section τ ∈ H0(OX(3p)) with order
exactly 3. The function σ2 has a pole of order 4, and continuing in this way
we get:

Proposition 6.17. If p is a point of the smooth projective curve X of genus
1 and d ≥ 1 is an integer, then the rational functions σa for 0 ≤ a ≤ d/2
and σaτ , for 0 ≤ a ≤ (d− 3)/2, form a basis of H0(OX(d)).

Proof. The function σaτ b has pole of order 2a + 3b at p, so the given func-
tions are all sections, and are linearly independent. Since the dimension of

H0(OX(dp)) is d = 1 + bd/2c+ b(d− 1)/2c = (1 + bd/2c) + (1 + b(d− 3)/2c),
the number of sections given, this suffices.

Corollary 6.18. Let X be an elliptic curve, and let p ∈ X be a point. If
d ≥ 2 and e ≥ 3 are integers, then the multiplication map

H
0(OX(dp))⊗ H

0(OX(ep)) → H
0(OX((d+ e)p)

is surjective. In particular, if L is a line bundle on X of degree ≥ 3, and
X ⊂ Pr is embedded by the complete linear series |L|, then SX is Cohen-
Macaulay and normal.

Proof. The sections of H0(OX(dp)) exhibited in Proposition 6.17 include sec-
tions with every vanishing order at p from 0 to d except for 1, and similarly
for H0(OX(dp)). When we multiply sections we add their vanishing orders at
p, so the image of the multiplication map contains sections with every van-
ishing order from 0 to d+ e except 1, a total of d+ e distinct orders. These
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elements must be linearly independent, so they span the d + e-dimensional
space H0(OX((d+ e)p).

For the second statement we may first extend the ground field if necessary
until it is algebraically closed, and then use Theorem 6.16 to rewrite L as
OX(dp) for some d ≥ 3. From the first part of the Corollary we see that the
multiplication map

H
0OX(d)⊗ H

0OX(md) → H
0OX((m+ 1)d)

is surjective for every m ≥ 0. From Corollary 10.13 we see that SX has
depth 2 (and is even normal). Since SX is a 2-dimensional ring, this implies
in particular that it is Cohen-Macaulay.

For example, consider an elliptic normal cubic X ⊂ P2. By Theorem 6.16 the
embedding is by a complete linear series |OX(3p)| for some point p ∈ X. Let
S = K[x0, x1, x2] → SX = ⊕n H0(OX(3np) be the map sending x0 7→ 1; x1 7→
σ; x2 7→ τ . By Corollary 6.18 this map is a surjection. To find its kernel,
the equation of the curve, consider H0(OX(6p)), the first space for which we
can write down an “extra” section τ 2. We see that there must be a linear
relation among 1, σ, σ2, σ3, τ, στ and τ 2, and since σ3 and τ 2 are the only two
sections on this list with a triple pole at p, each must appear with a nonzero
coefficient. From this we get an equation of the form τ 2 = f(σ)+τg(σ), where
f is a polynomial of degree 3 and g a polynomial of degree ≤ 1. This is the
affine equation of the embedding of the open subset X \ {p} of X in A2 with
coordinates σ, τ corresponding to the linear series |OX(3p)|. Homogenizing,
we get an equation of the form x0x

2
2 = F (x0, x1)+x0x2G(x0, x1) where F and

G are the homogenizations of f and g respectively. Since 3p is a hyperplane
section, the point p goes to a flex point of X, and the line at infinity is the
flex tangent. When the characteristic of K is not 2 or 3, further simplification
yields the Weierstrass normal form y2 = x3 +ax+ b for the equation in affine
coordinates.

In general, the table giving the multiplication between the sections ofOX(2p),
and the sections of OX((d − 2)p), with the choice of bases above, can be
written, as

1 σ . . . σn−1 τ στ . . . σm−1τ
1 1 σ . . . σn−1 τ στ . . . σm−1τ
σ σ σ2 . . . σn στ σ2τ . . . σmτ,
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where n = bd/2c and m = b(d− 3)/2c so that (m+ 1) + (n+ 1) = r+ 1 = d.
Taking xi to be the linear form on Pr corresponding to σi and yj to be the
linear form corresponding to σjτ , the matrix M = M(OX(2p),OX((d− 2)p)
takes the form

M =
(
x0 x1 · · · xn−1

x1 x2 · · · xn
| y0 y1 · · · ym−1

y1 y2 · · · ym

)

((Silvio, the vertical line should be the same height at the two rows
of the matrix.)) where the vertical line indicates the division of M into
two parts, which we will call M ′ and M ′′. The reader should recognize the
matrices M ′ and M ′′ from Section 6A: their ideals of 2 × 2 minors define
rational normal curvesX ′ andX ′′ of degrees n andm in the disjoint subspaces
L′ defined by y0 = · · · = ym and L′′ defined by x0 = · · · = xn respectively.

Let Y be the vanishing locus of the 2 × 2 minors of M , the union of the
linear spaces defined by the vanishing of the generalized rows of M . Since
M is 1-generic each generalized row consists of linearly independent linear
forms—that is, its vanishing locus is a line. Moreover, the intersection of
the line with the subspace Lx is the the point on the rational normal curve
in that space given by the vanishing of the corresponding generalized row
of M ′, and similarly for Ly. Thus the matrix M defines an isomorphism
α : X ′ → X ′′, and in terms of this isomorphism the surface Y is the union
of the lines joining p ∈ X ′ to α(p) ∈ X ′′. Such a surface is called a rational
normal scroll; the name is justified by the picture below: ((the picture
could be made nicer with more rolls at the ends))



6D. ELLIPTIC NORMAL CURVES 131

ee �
�/

Q
Q

QQs

Dλ

XXXXXy

X ′ X ′′

Y XXXXz

��* QQk

A scroll

((This is picture 15))

In the simplest interesting case, r = 3, we get m = 2 and n = 0 so

M =
(
x0 x1

x1 x2

)
.

In this case Y is the cone in P3 over the irreducible conic x0x2 = x2
1 in P2,

and the lines F are the lines through the vertex on this cone. When r ≥ 4,
however, we will show that Y is nonsingular.

Proposition 6.19. Suppose that d ≥ 5, or equivalently that r ≥ 4. The
surface Y , defined by the 2× 2 minors of the matrix

M = M(OX(2p),OX((d− 2)p),

is nonsingular.

Proof. As we have already seen, Y is the union of the lines defined by the
generalized rows of the matrix M . To see that no two of these lines can
intersect, note that any two distinct generalized rows span the space of all
generalized rows, and thus any two generalized rows contain linear forms that
span the space of all linear forms on Pr. It follows that the set on which the
linear forms in both generalized rows vanish is the empty set.

We can parametrize Y on the open set where x0 6= 0 as the image of A2

by the map sending f : (t, u) 7→ (1, t, . . . , tm, u, ut, . . . , utn). The differential
of f is nowhere vanishing, so f is an immersion. It is one-to-one because,
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from our previous argument, the lines t = c1 and t = c2 are distinct for any
distinct constants c1, c2. A similar argument applies to the open set ym 6= 0,
and these two sets cover Y .

One can classify the 1-generic matrices of size 2 × m completely using the
classification of matrix pencils due to Kronecker and Weierstrass. The result
shows that the varieties defined by the 2 × 2 minors of such a matrix are
all rational normal scrolls of some dimension; for example, if such a variety
is of dimension 1 then it is a rational normal curve. See Eisenbud-Harris
[Eisenbud and Harris 1987] for details and many more properties of these
interesting and ubiquitous varieties.

To identify X as a divisor, we use a description of the Picard group and
intersection form of Y .

Proposition 6.20. Let Y be the surface defined in Proposition 6.19. The
divisor class group of Y is

PicY = ZH ⊕ ZF,

where H is the class of a hyperplane section and F is the class of a line
defined by the vanishing of one of the rows of the matrix M(OX(D),L(−D))
used to define Y . The intersection numbers of these classes are F · F = 0,
F ·H = 1, and H ·H = r − 1.

Proof. The intersection numbers are easy to compute: We have F · F = 0
because two fibers of the map to P1 (defined by the vanishing of the general-
ized rows of M) do not meet, and F ·H = 1 because F is a line, which meets
a general hyperplane transversely in a single point. Since Y is a surface the
number H ·H is just the degree of the surface.

Modulo the polynomial xm+1 − y0 then the matrix M becomes the matrix
whose 2×2 minors define the rational normal curve of degreem+n+2 = r−1.
Thus the hyperplane section of Y is this rational normal curve, and the degree
of Y is also r − 1. The fact that the intersection matrix(

0 1
1 r − 1

)
we have just computed has rank 2 shows that the divisor classes of F and H
are linearly independent. The proof that they generate the group is outlined
in Exercise 6.9 [Hartshorne 1977, V.2.3] or [Eisenbud and Harris 1987].
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We can now identify a divisor by computing its intersection numbers with
the classes H and F :

Proposition 6.21. In the basis introduced above, the divisor class of X on
the surface Y is 2H − (r − 3)F .

Proof. By Proposition 6.20 we can write the class of X as [X] = aH + bF
for some integers a, b. From the form of the intersection matrix we see that
a = X.F and b = X.H − (r − 1)a. Since the lines F on the surface are the
linear spans of divisors on X that are linearly equivalent to D, and thus of
degree 2, we have a = 2. On the other hand X.H is the degree of X as a
curve in Pr, that is, r + 1. Thus b = r + 1− (r − 1)2 = −(r − 3).

In general, we see that the sheaf of ideals Ĩ/J = IX/Y defining X in Y is the
sheaf

Ĩ/J = OY ((r − 3)F − 2H) = OY ((r − 3)F )(−2)

and thus the homogeneous ideal I/J of X in Y is, up to a shift of grading,⊕
n≥0 H0OY ((r−3)F )(n). Here is a first step toward identifying this module

and its free resolution.

Proposition 6.22. The cokernel K of the matrix

M = M(OX(2p),OX((r − 1)p))

has associated sheaf on Pr equal to K̃ = OY (F ).

Proof. Let K̃ be the sheaf on Pr that is associated to the module K. We
will first show that K̃ is an invertible sheaf on Y . The entries of the matrix
M span all the linear forms on Pr so locally at any point p ∈ Pr one of them
is invertible, and we may apply the following result.

Lemma 6.23. If N is a 2×n matrix over a ring R and M has one invertible
entry, then the cokernel of N is isomorphic to R modulo the 2× 2 minors of
N .

Proof. Using row and column operations we may put N into the form

N ′ =
(

1 0 . . . 0
0 r2 . . . rn

)
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for some ri ∈ R. The result is obvious for this N ′, which has the same
cokernel and same ideal of minors as N .

Continuing the proof of Proposition 6.22, we note that the module K is
generated by degree 0 elements e1, e2 with relations xie1 + xi+1e2 = 0 and
yie1 + yi+1e2 = 0. The elements ei determine sections σi of K̃. Thus if p ∈ Y
is a point where some linear form in the second row of M is nonzero, then σ1

generates K̃ locally at p. As the second row vanishes precisely on the fiber
F , this shows that the zero locus of σ1 is contained in F .

Conversely, suppose p ∈ F so that the second row of M vanishes at p. Since
the linear forms in M span the space of all linear forms on Pr, one of the
linear forms in the first row of M is nonzero at p. Locally at p this means
m1σ1 + m2σ2 = 0 in K̃p where m1 is a unit in OY,p, the local ring of Y at
p, and m2 is in the maximal ideal mY,p ⊂ OY,p. Dividing by m1 we see that
σ1 ∈ mY,pK̃p. Since mY,p is the set of functions vanishing at p, we see that σ1

vanishes at p when considerd as a section of a line bundle. Since this holds
at all p ∈ F we obtain K̃ = OY (F ).

Recall that we wish to find a free resolution (as S-module) of the ideal IX/Y ⊂
S/IY , that is, of the module of twisted global sections of the sheaf OY ((r −
3)F )(−2). This sheaf is the sheafification of the module K⊗(r−3)(−2), but
one can show that for r ≥ 5 this module has depth 0, so it differs from the
module of twisted global sections. A better module—in this case the right
one—is given by the symmetric power.

Proposition 6.24. Let L be an S-module. If the sheaf L = L̃ on Pr is locally
generated by at most one element, then the sheafification L⊗k of L⊗k is also
the sheafification of Symk(L). In particular, this is the case when L is a line
bundle on some subvariety Y ⊂ Pr.

Proof. Since the formation of tensor powers and symmetric powers commutes
with localization, and with taking degree 0 parts, it suffices to do the case
where L is a module over a ring R such that L is generated by at most one
element. In this case, L ∼= R/I for some ideal I. If ri are elements of R/I
then

r1 ⊗ r2 = r1r2(1⊗ 1) = r2 ⊗ r1 ∈ R/I ⊗R/I.



6D. ELLIPTIC NORMAL CURVES 135

Since Sym2(L) is obtained from L⊗L by factoring out the submodule gener-
ated by elements of the form r1⊗ r2− r2⊗ r1, we see that L⊗L = Sym2(L).
The same argument works for products with k factors.

We return to the module K = cokerM , and study Symr−3K.

Proposition 6.25. With notation as above, ⊕d H0(L⊗(r−3)(d)) = Symr−3K
as S-modules. Its free resolution is, up to a shift of degree, given by the dual
of the Eagon-Northcott complex of M .

Proof. We use the exact sequence of Corollary 10.8,

0 → H
0
m(Symr−3K) → Symr−3K →

⊕
d

H
0(L(d)) → H

1
m(Symr−3K) → 0.

Thus we want to show that H0
m(Symr−3K) = H1

m(Symr−3K) = 0. By Propo-
sition 10.12 it suffices to prove that the depth of K is at least 2. Equivalently,
by the Auslander-Buchsbaum Formula 11.11 it suffices to show that the pro-
jective dimension of Symr−3K is at most r − 1.

From the presentation Sr−1(−1)
ϕ- S2 → K → 0, we can derive a presen-

tation

Sr−1 ⊗ Symr−4 S
2(−1)

ϕ⊗1- Symr−3 S
2 - Symr−3K → 0

(see [Eisenbud 1995, Proposition A2.2.d]). This map is, up to some identifi-
cations and a twist, the dual of the last map in the Eagon-Northcott complex
associated to Mµ, namely

0 → (Symr−3S
2)∗ ⊗ ∧r−1Sr−1(−r + 1) → (Symr−4S

2)∗ ⊗ ∧r−2Sr−1(−r + 2).

To see this we use the isomorphisms ∧iSr−1 ' (∧r−1−iSr−1)∗ (which depend
on an “orientation”, that is, a choice of basis element for ∧r−1Sr−1). Since
the Eagon-Northcott complex is a free resolution of the Cohen-Macaulay S-
module S/I, its dual is again a free resolution, so we see that the module
Symr−3K is also of projective dimension r − 1.

To sum up: we have shown that there is an S-free resolution of the homo-
geneous coordinate ring S/I of the elliptic normal curve X obtained as a
mapping cone of the Eagon-Northcott complex of the matrix M , which is a
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resolution of J , and the resolution of the module I/J . The proof of Proposi-
tion 6.25 shows that the dual of the Eagon-Northcott complex, appropriately
shifted, is a resolution of Symr−3K, while I/J ∼= Symr−3K(−2). Thus the
free resolution of I/J is isomorphic to the dual of the Eagon-Northcott com-
plex with a different shift in degrees. If we choose an orientation as above it
may be written as:

0 → (∧2S2)∗(−r − 1) - (∧2Sr−1)∗(−r + 1) - · · ·

· · · - Sr−1 ⊗ Symr−4 S
2(−3)

ϕ⊗1- Symr−3 S
2(−2).

So far we have simply applied Proposition 6.15, whose conclusion is that the
mapping cone is a resolution. But in this case, the resolution is minimal:

Theorem 6.26. The minimal free resolution of an elliptic normal curve in
Pr has the form

0 - Symr−3(S
2)∗ ⊗ ∧r−1Sr−1(−r + 1) - . . .

����*

0
⊕

����* ⊕
����*

HHHHj
∧2(S2)∗(−r − 1) - ∧2(Sr−1)∗(−r + 1) - . . .

. . . - (S2)∗ ⊗ ∧3Sr−1(−3) - ∧2Sr−1(−2)
HHHHj

����* ⊕
����* ⊕

S→ SX → 0.

����*

. . . - (Sr−1)∗ ⊗ Symr−4 S
2(−3) - Symr−3 S

2(−2)

.

((Silvio, let’s talk about how to improve the readability of this
diagram)) It has Betti diagram of the form

0 1 2 . . . r − 2 r − 1
0 1 0 0 · · · 0 0
1 0 b1 b2 . . . br−2 0
2 0 0 0 . . . 0 1

with

bi = i

(
r − 1

i+ 1

)
+ (r − i− 1)

(
r − 1

i− 1

)
.

In particular, regX = 3.



6E. EXERCISES 137

Notice that the terms of the resolution are symmetric about the middle. A
closer analysis shows that the i-th map in the resolution can be taken to be
the dual of the (r−1− i)-th map, and if r ∼= 0 (mod 4) then the middle map
can be chosen to be skew symmetric, while if r ∼= 2 (mod 4) then the middle
map can be chosen to be symmetric. See Eisenbud-Buchsbaum [Buchsbaum
and Eisenbud 1977] for the beginning of this theory.

Proof. We have already shown that the given complex is a resolution. Each
map in the complex goes from a free module generated in one degree to a free
module generated in a lower degree. Thus the differentials are represented by
matrices of elements of strictly positive degree, and the complex is minimal.
Given this, the value for the regularity follows by inspection.

The regularity statement says that for an elliptic normal curve X (degree
d = r+1 and codimension c = r−1 in Pr the regularity of the homogeneous
coordinate ring SX is precisely d− c = 2. By the Gruson-Lazarsfeld-Peskine
Theorem 5.1, this is the largests possible regularity. In general, ifX is a curve
of genus g. We shall see in the next chapter that linearly normal curves of
high degree compared to their genus always have regularity 3—which is less
than the Gruson-Lazarsfeld-Peskine bound when the genus is greater than 1.

The methods used here apply, and give information about the resolution, for
a larger class of divisors on rational normal scrolls. The simplest application
is to give the resolution of the ideal of any set of points lying on a rational
normal curve in Pr. It also works for high degree embeddings of hyperellip-
tic curves (in the sense of Chapter 8, trigonal curves of any genus in their
canonical embeddings, and many other interesting varieties. See [Eisenbud
1995, end of appendix A2] for an algebraic treatment with further references.

6E Exercises

1. []The Catalecticant matrix
((this is preamble to the next 4 exercises)) (The results of Ex-

ercises 6.2 and 6.3 were proved by a different method, requiring char-
acteristic 0, by Gruson-Peskine [Gruson and Peskine 1982], following
the observation by T. G. Room [Room 1938] that these relations held
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set-theoretically. The simple proof in full generality sketched here was
discovered by Conca [Conca 1998].)

2. Prove that Ie(Mr,d) = Ie(Mr,e−1) for all d with e ≤ d+1 and e ≤ r−d+1
and thus the ideal Ie(Mr,d) is prime of codimension r−2e+1, with free
resolution given by the Eagon-Northcott complex associated to Mr,e.
In particular, the ideal of the rational normal curve may be written as
I2(Mr,e) for any e ≤ r − d. You might follow these steps.

(a) Using the fact that Transpose Mr,d = Mr,d+1, reduce the problem
to proving Ie(Mr,d) ⊂ Ie(Mr,d+1) for e− 1 ≤ d < d+1 ≤ r− e+1.

(b) If a = (a1, . . . , as) with 0 ≤ a1, . . . , as and b = (b1, . . . , bs) with
0 ≤ b1, . . . , bs with ai + bj ≤ r for every i, j, then we write [a, b]
for the determinant of the submatrix involving rows a1, . . . , as and
columns b1, . . . , bs of the triangular array

x0 x1 . . . xr−1 xr
x1 x2 . . . xr
...

...
xr−1 xr
xr

.

Let e be the vector of length s equal to (1, . . . , 1). Prove the
identity

[a+ e, b] = [a, b+ e]

whenever this makes sense.

(c) Generalize the previous identity as follows: for I ⊂ {1, . . . , s}
write #I for the cardinality of I, and write e(I) for the charac-
teristic vector of I, which has a 1 in the i-th place if and only if
i ∈ I. Show that for each k between 1 and s we have∑

#I=k

[a+ e(I), b] =
∑

#J=k

[a, b+ e(J)].

(Hint: Expand each minor [a+ e(I), b] on the left hand side along
the collection of rows indexed by I, as

[a+ e(I), b] =
∑

#J=k

(−1)|I|[aI + e(I)I , bJ ][aIc + e(Ic)I , bJc ]
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where
|I| =

∑
i∈I

i,

aI denotes the subvector involving only the indices in I and Ic

denotes the complement of I, etc. Expand the right hand side
similarly using along the set of columns from J , and check that
the two expressions are the same.)

3. LetM be any matrix of linear forms in S. We can think ofM as defining
a linear space of matrices parametrized by Kr+1 by associating to each
point p in Kr+1 the scalar matrix M(p) whose entries are obtained by
evaluating the entries of M at p. A property of a matrix that does not
change when the matrix is multiplied by a scalar then corresponds to a
subset of Pr, namely the set of points p such that M(p) has the given
property, and these are often algebraic sets. For example the locus of
points p where M(p) has rank at most k is the algebraic set defined by
the (k + 1)× (k + 1) minors of M .

(a) From the fact that the sum of k rank 1 matrices has rank at most
k, show that the locus where M(p) has rank ≤ k contains the
k-secant locus of the locus where M(p) has rank at most 1.

(b) If M = Mr,d is the catalecticant matrix, show that the rank k
locus of M is actually equal to the k-secant locus of the rational
normal curve X ⊂ Pr of degree r as follows: First show that two
generic k-secant planes with k < r/2 cannot meet (if they did they
would span a 2k-secant 2k − 2-plane, whereas any set of d points
on X spans a d− 1-plane as long as d ≤ r.) Use this to compute
the dimension of the k-secant locus. Use part 6.2 of Exercise 6.1
and Theorem 6.4 to show that the ideal of (e+1)× (e+1) minors
of Mr,d is the defining ideal of the e-secant locus of X.

4. We can identify Pr with the set of polynomials of degree r in 2 variables,
up to scalar. Show (in characteristic 0) that the points of the rational
normal curve may be identified with the set of r-th powers of linear
forms, and a sufficiently general point of the k-secant locus may thus
be identified with the set of polynomials that can be written as a sum
of just k pure r-th powers. The general problem of writing a form as a
sum of powers is called Waring’s problem. See, for example, [Geramita
1996], and [Ranestad and Schreyer 2000] for more information.
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5. Use Theorem 6.4 to reprove Proposition 6.1 by comparing the codi-
mensions of the (necessarily prime) ideal generated by the minors and
the prime ideal defining the curve.

6. Let X = {p1, . . . , pr+3} ⊂ Pr be a set of r+ 3 points in linearly general
position. Show that there is a unique rational normal curve in Pr

containing X, perhaps as follows:

(a) Existence We will use Corollary 6.9. We look for a 1-generic
matrix of linear forms

M =
(
a0 . . . ar−1

b0 . . . br−1

)
whose minors vanish on X. Let ai be a linear form that vanishes
on p1, . . . , p̂i, . . . , pn, pn+1; and let bi be a linear form that vanishes
on p1, . . . , p̂i, . . . , pn, pn+3. These forms are unique up to scalars,
so we may normalize them to make all the rational functions ai/bi
take the value 1 at pn+2. Show that with these choices the matrix
M is 1-generic and that its minors vanish at all the points of X.

For example let X be the set of r+ 3 points pi with homogeneous
coordinates given by the rows of the matrix

1 0 . . . 0
0 1 . . . 0

. . .

0 0 . . . 1
1 1 . . . 1
t0 t1 . . . tr


.

Show that these points are in linearly general position if and only
if the ti ∈ K are all nonzero and are pairwise distinct, and that
any set of r + 3 points in linearly general position can we written
this way in suitable coordinates. Show that the 2 × 2 minors of
the matrix

M =

(
x0 . . . xr−1

tnx0−t0xn

tn−t0 . . . tnxn−1−tn−1xn

tn−tn−1

)

generate the ideal of a rational normal curve containing these
points.
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See [Griffiths and Harris 1978, p. 530] for a more classical argu-
ment, and [Harris 1995] for further information.

(b) Uniqueness Suppose that C1, C2 are distinct rational normal
curves containing X. Show by induction on r that the projec-
tions of these curves from pr+3 into Pr−1 are equal. In general,
suppose that C1, C2 are two rational normal curves through pr+3

that project to the same curve in Pr−1. so that C1, C2 both lie on
the cone F over a rational normal curve in Pr−1.

Let F ′ be the surface obtained by blowing up this cone at pr+3,
let E ⊂ F ′ be the exceptional divisor, a curve of self-intersection
−r + 1, and let R′ ⊂ F ′ be the preimage of a ruling of the cone
F . ((Insert Picture A)) See for example [Hartshorne 1977,
Section V.2] for information about such surfaces, and [Eisenbud
and Harris 2000, Section VI.2] for information about blowups in
general.

Show that F ′ is a minimal rational surface, ruled by lines linearly
equivalent to R′, and E.E = −r+1. Let C ′

1, C
′
2 ⊂ F ′ be the strict

transforms of C1, C2. Compute the intersection numbers C ′
i.E and

C ′
i.R, and conclude that C ′

i ∼ E + rR so C ′
1.C2. = r + 1. Deduce

that the number of distinct points in C1 ∩ C2 is at most r + 2, so
that C1 ∩ C2 cannot contain X.

7. Let M be a 1-generic 2×r matrix of linear forms on Pr, and let X ∼= P1

be the rational normal curve defined by the 2×2 minors of M . Suppose
that M ′ is any 2 × r matrix of linear forms on Pr whose minors are
contained in the ideal of X. Show that the sheaf associated to the S-
module cokerM is isomorphic to the line bundle OX(p) for any point
p ∈ X, and that M is a minimal free presentation of this module.
Deduce from the uniqueness of minimal free resolutions that if M ′ is
another 1-generic 2× r matrix whose minors vanish on X then M and
M ′ differ by an element of GL2(K)×GL2(K).

8. (For those who know about Gröbner bases.) Let < be the reverse
lexicographic order on the monomials of S with x0 < · · · < xr. For
1 ≤ e ≤ d + 1 ≤ r show that the initial ideal, with respect to the
order <, of the ideal Ie(Mr,d), is the ideal (xe−1, . . . , xr−e)

e. This gives
another proof of the formula for the codimension of Ie(Mr,d) above,
and also for the vector space dimension of the degree e component of
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Ie(Mr,d). Use this and Theorem 5.1 to give another proof of the fact
that I2(Mr,1) is the ideal of the rational normal curve.

(a) Consider the rational map from a nodal cubic plane curve X to P1

given by projection from the node. ((insert picture, with label
as below)) Show that there are infinitely many linear series on
the nodal plane cubic which agree with the linear series defined
on the smooth part by the projection to P1 as in figure 6.8.

(b) Now let X be the cone in P3 over the plane conic with equation
xy − z2. Let φ be the rational map from the cone to the plane
given by projection from the vertex. ((insert picture)) Show
that this map does not correspond to any linear series on X; that
is, the linear series on the complement of the vertex cannot be
extended to a linear series on the whole cone with a base point at
the vertex, as would be possible if the vertex were a smooth point.

9. By Proposition 6.22 below, the sheaf associated to cokerM is the line
bundle OY (F ). Show that the two sections corresponding to genera-
tors of cokerM define a morphism pi of Y to P1. The fibers are the
linear spaces defined by rows of M , thus projective spaces, and Y is a
projective space bundle; in fact, Y = Proj(π∗(OY (1))) (we could show
this is OP1(m) ⊕ OP1(n).) From [Hartshorne 1977, V.2.3] it follows
that Pic(Y ) = Z ⊕ π∗Pic(P1) = Z ⊕ Z. Since the determinant of the
intersection form on the sublattice spanned by F and H is 1, these two
elements must be a basis.

10. (For those who know about schemes.) Generalize Theorem 6.6 as fol-
lows: Let X be a nonsingular projective variety over an algebraically
closed field and let L = (L, V, α) be a linear series on X. Show that
L is very ample if, for each finite subscheme Y of length 2 in X, the
space of sections in α(V ) vanishing on Y has codimension 2 in α(V ).

11. Here is the easiest case of the (vague) principle that embeddings of
varieties by sufficiently positive bundles are often defined by ideals of
2 × 2 minors: Suppose that the homogeneous ideal I of X in Pr is
generated by equations of degrees ≤ d, and let Ye be the image of X in
P(H0(OX(e))) under the complete series |OX(e)|. Let e ≥ d be an inte-
ger, and let e1 ≥ 1 and e2 ≥ 1 be integers with e1 + e2 = e. Show that
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the ideal of Ye is generated by the 2× 2 minors of M(OX(e1),OX(e2).
(Hint: Start with the case X = Pr.)

12. Theorem 6.8 Shows that any nondegenerate, reduced irreducible curve
of degree r in Pr is equivalent by a linear automorphism to the rational
normal curve (we usually say: is a rational normal curve.) One can be
almost as explicit about curves of degree r+1. Use the Riemann-Roch
theorem and Clifford’s theorem ([Hartshorne 1977, th.IV.5.4]) to prove:

Proposition 6.27. If X is a nondegenerate reduced irreducible curve
of degree r+ 1 in Pr over an algebraically closed field, then X is either

(a) a smooth elliptic normal curve; or

(b) a rational curve with one double point (also of arithmetic genus
1); or

(c) a smooth rational curve.

Moreover, up to linear transformations of Pr each singular curve (type
2) is equivalent to the image of one of the two maps

(a) P1 3 (s, t) 7→ (sr+1, sr−1t, sr−2t2, . . . , tr+1) ∈ Pr; or

(b) P1 3 (s, t) 7→ (sr+1 + tr+1, st · sr−2t, st · sr−3t2, . . . , st · tr−1) ∈ Pr.

Unlike for the singular case there are moduli for the embeddings of a
smooth rational curve of degree r + 1 (case (c) in the result above),
and several different Betti diagrams can appear. However, in all of
these cases, the curve lies on a rational normal scroll and its free reso-
lution can be analyzed in the manner of the elliptic normal curves (see
[Eisenbud and Harris 1987] for further information.)
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Chapter 7

Linear Complexes and the
Linear Syzygy Theorem

Revised 8/21/03

Minimal free resolutions are built out of linear complexes, and in this chapter
we study a canonical linear subcomplex (the linear strand) of a free resolu-
tion.

We first present an elementary version of the Bernstein-Gel’fand-Gel’fand
correspondence (BGG) and use it to prove Green’s Linear Syzygy Theorem.
In brief, BGG allows us to translate statements about linear complexes over
a polynomial ring S into statements about modules over an exterior algebra
E. The Linear Syzygy Theorem gives a bound on the length of the linear part
of the minimal free resolution of a graded S-module M . The translation is
that a certain E-module is annihilated by a particular power of the maximal
ideal. This is proved with a variant of Fitting’s Lemma, which gives a general
way of producing elements that annihilate a module.

The proof presented here is a simplification of that in Green’s original paper
[Green 1999]. Our presentation is influenced by the ideas of [Eisenbud et al.
≥ 2003] and [Eisenbud and Weyman 2003]. In Chapter 8 we will apply the
Linear Syzygy Theorem to the ideals of curves in Pr.

The last section of the chapter surveys some other aspects of BGG, including
the connection between Tate resolutions and the cohomology of sheaves.
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Throughout this chapter, we denote the polynomial ring in r + 1 variables
by S = K[x0, . . . , xr]. We write W = S1 for the space of linear forms, and
V := HomK(W,K) for its dual. We let E = ∧V be the exterior algebra of V .

7A Linear Syzygies

7A.1 The linear strand of a complex

One natural way to study the minimal resolution of a graded S-module is as
an iterated extension of a sequence of linear complexes. In general, suppose
that

G : · · · - Gi
di- Gi−1

- · · ·

is a complex of graded free S-modules, whose i-th term Gi is generated in
degrees ≥ i, and suppose, moreover that G is minimal in the sense that
di(Gi) ⊂ WGi−1 (for example G might be a minimal free resolution, or a free
sub- or quotient-complex of a minimal free resolution of a module generated
in degrees ≥ 0.) Let Fi ⊂ Gi be the submodule generated by all elements
of degree precisely i. Since i is the minimal degree of generators of Gi, the
submodule Fi is free. Since di(Fi) is generated in degree i and is contained
in WGi−1, it must in fact be contained in WFi−1. In particular the Fi form
a free subcomplex F ⊂ G, called the linear strand of G. The Betti diagram
of F is simply the 0-th row of the Betti diagram of G. The linear strand
sometimes isolates interesting information about G.

For an arbitrary free complex G, we define the linear strand to the be the
linear strand of the complex G(i) where i = sup{regGj − j}, the least twist
so that G(i) satisfies the condition that the j-th free module is generated in
degrees ≥ j. (The case where G is infinite and the supremum is infinity will
not concern us.)

Since F is a subcomplex of G we can factor it out and start again with the
quotient complex G/F. The linear strand of G/F(1), shifted by −1, is called
the second linear strand of G. Continuing in this way we produce a series
of linear strands, and we see that G is built up from them as an iterated
extension. The Betti diagram of the i-th linear strand is the i-th row of the
Betti diagram of G.
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For example Theorem 3.13 shows that there is a set X of 9 points in P2

whose ideal I = IX has minimal free resolution G with Betti diagram

0 1
3 2 1
4 1 -
5 - 1

From this Betti diagram we see that the ideal of X is generated by two cubics
and a quartic and that its syzygy matrix has the form

d =

 q 0
f1 `1
f2 `2


where q has degree 2, the `i are linear forms and the fi have degree 3.

Let p be the intersection of the lines L1 and L2 defined by `1 and `2. We claim
that the nine points consist of p together with the 8 points of intersection of
the conic Q and the quartic G defined by q and by

g = det
(
f1 `1
f2 `2

)

respectively (counted with appropriate multiplicities).

Indeed, the Hilbert-Burch Theorem 3.2 shows that I is minimally generated
by the 2×2 minors `1q, `2q, andg of the matrix d, so `1 and `2 must be linearly
independent. At the point p both `1 and `2 vanish, so all the forms in the ideal
of X vanish, whence p ∈ X. Away from p, the equations `1q = 0, `2q = 0
imply q = 0, so the other points of X are in Q ∩ G as required. ((Insert
picture 17))

On the other hand, the Betti diagram of the linear strand of the resolution
G of I is

0 1
3 2 1

and the matrix representing its differential is

d|F =
(
`1
`2

)
.
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Thus the linear strand of the resolution captures a subtle fact: a set of 9
distinct points in P2 with resolution as above contains a distinguished point.
In this case the second and third linear strands of G have trivial differential;
the remaining information about the maps of G is in the extension data.

7A.2 Green’s Linear Syzygy Theorem

The length of the minimal free resolution of a module M , that is, its projec-
tive dimension, is a fundamental invariant. At least when M has generators
in degree 0, but none of negative degree, one may hope that the length of the
linear strand of a resolution will also prove interesting, and in many examples
it does. The condition on the degrees of generators of M is not serious; we
can first shift M to make it so.

The following result of Mark Green gives a useful bound in terms of a simple
property of the rank 1 linear relations of M—that is, the elements of the
algebraic set R(M) ⊂ W ⊗M0 defined by

R(M) := {w ⊗m ∈ W ⊗M0 | wm = 0 in M1}.

One can also define linear syzygies of higher rank, and there are many inter-
esting open questions about them; see [Eisenbud and Koh 1991], where the
set R(M) just defined is called R1(M).

Theorem 7.1. Let S = K[x0, . . . , xr] and let M be a graded S-module with
Mi = 0 for i < 0 and M0 6= 0. The length n of the linear strand of the
minimal free resolution of M satisfies

n ≤ max (dimM0 − 1, dimR(M) ).

See Exercise 7.2 for a way to see the maximum as the dimension of a single
natural object.

We postpone the proof, which will occupy most of this chapter, to study
some special cases. First, we give examples illustrating that either term in
the max of the theorem can dominate.

Example 7.1. Consider first the Koszul complex

K(x1, . . . , xn) : 0 → S(−n) → · · · → S(−1)n → S → 0,



7A. LINEAR SYZYGIES 149

which is the resolution of S/(x1, . . . , xn). It is linear, and has length n. We
have dimM0 = dim K = 1, but the variety R is all of W ⊗M0 = W ⊗ K,
which has dimension precisely n.

Example 7.2. For the other possibility, let r = n + 2 and consider the
2× (n+ 2) matrix

N =
(
x0 · · · xr−1

x1 · · · xr

)
whose minors define the rational normal curve in Pr, or more generally any
2× (n+ 2) 1-generic matrix of linear forms

N =
(
`1,1 · · · `1,n+2

`2,1 · · · `2,n+2

)
.

It follows from Theorem 6.4 that the ideal I = I2(N) has codimension n+1,
the largest possible value. In this case we know from Theorem 11.35 that the
minimal free resolution of S/I is the Eagon-Northcott complex of N

EN(N) : 0 → (Symn S
2)∗ ⊗ ∧n+2Sn+2(−n− 2) → · · ·

→ (Sym0 S
2)∗ ⊗ ∧2Sn+2(−2)

∧2N- ∧2 S2 → 0.

with Betti diagram
0 1 · · · n+ 1

0 1 − · · · −
1 −

(
n+2

2

)
· · · n+ 1

The dual of EN(N) is a free resolution of a module ω—see Theorem 11.35.
(This module is, up to a shift of degrees, the canonical module of S/I, though
we shall not need this here; see [Bruns and Herzog 1998, Chapter 3]. Let G
be the dual of EN(N), so that G has Betti diagram

0 · · · n n+ 1

−n− 2 n+ 1 · · ·
(
n+2

2

)
−

−n− 1 − · · · − 1

We see that the linear part of G has length n. The module ω requires n+ 1
generators, so it satisfies Theorem 7.1. In this case we claim that R(ω) = 0
(see also Exercise 7.3).
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To see this, note first that ω = Extn+1
S (S/I, S) is annihilated by I. If a

nonzero element m ∈ ω were annihilated by a nonzero linear form x then
it would be annihillated by I + (x). By Theorem 6.4 I is a prime ideal of
codimension n+ 1, so I + (x) has codimension > n+ 1. It follows that some
associated prime (= maximal annihilator of an element) of ω would have
codimension > n + 1, and thus ω would have projective dimension > n + 1
by Theorem 11.12. Since we have exhibited a resolution length n+ 1, this is
a contradiction.

The phenomenon we saw in the second example is the one we will apply in
the next chapter. Here is a way of codifying it.

Corollary 7.2. Let X ⊂ Pr be a reduced, irreducible variety that is not
contained in a hyperplane, let E be a vector bundle on X, and let M ⊂
⊕i≥0 H0 E(i) be a submodule of the S-module of non-negatively twisted global
sections, where S = ⊕H0OPr(i) of Pr. If M0 6= 0 then the linear strand of the
minimal free resolution of M as an S-module has length at most dimM − 1.

Proof. Let W = H0(E), and let R(M) ⊂ M0 ⊕W be the variety defined in
7.1. Let n be the length of the linear strand of the minimal free resolution of
M . If w ∈ W and m ∈M0 = H0 E with wm = 0 then X would be the union
of the subvariety of X defined by the vanishing of w and the subvariety of X
defined by the vanishing of m. Since X is irreducible and not contained in
any hyperplane, this can only happen if w = 0 or m = 0. Thus R(M) = 0,
and Theorem 7.1 implies that h0 E = dimK M0 ≥ n+ 1.

The history of these results is this: [Green 1984a] proved Corollary 7.2. In
trying to understand and extend it algebraically, [Eisenbud and Koh 1991]
were lead to conjecture the truth of the Theorem 7.1, as well as some stronger
results in this direction. [Green 1999] proved the given form; as of this writing
(2002) the stronger statements are still open.
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7B The Bernstein-Gel’fand-Gel’fand correspon-

dence

7B.1 Graded Modules and Linear Free Complexes

Recall that V = W ∗ denotes the vector space dual to W , and E = ∧V
denotes the exterior algebra. If e0, . . . , er is a dual basis to x0, . . . , xr then
e2i = 0, eiej = −ejei, and the algebra E has a vector space basis consisting
of the square free monomials in the ei. Since we think of elements of W as
having degree 1, we will think of elements of V as having degree −1.

Although E is not commutative, it is skew-commutative (or strictly commuta-
tive): that is, homogeneous elements e, f ∈ E satisfy ef = (−1)deg(e) deg(f)fe,
and E behaves like a commutative local ring in many respects. For exam-
ple, any one-sided ideal is automatically a 2-sided ideal. The algebra E
has a unique maximal ideal, generated by the basis e0, . . . , er of V ; we will
denote this ideal by (V ). The analogue of Nakayama’s Lemma is almost triv-
ially satisfied (and even works for modules that are not finitely generated,
since (V ) is nilpotent). It follows for example that any graded E-module P
has unique (up to isomorphism) minimal free graded resolution F, and that
TorE(P,K) = F⊗E K as graded vector spaces. The same proofs work as in
the commutative case.

Also, just as in the commutative case, any graded left E-module P can
be naturally regarded as a graded right E-module, but we must be careful
with the signs: if p ∈ P and e ∈ E are homogeneous elements then pe =
(−1)(deg p)(deg e)ep. We will work throughout with left E-modules.

An example where this change-of-sides is important comes from duality. If
P = ⊕Pi is a finitely generated left-E-module, then the vector space dual
P̂ := ⊕P̂i, where P̂i := HomK(Pi,K), is naturally a right E-module, where
the product φ ·e is the functional defined by (φ ·e)(p) = φ(ep) for φ ∈ P̂i, e ∈
E−j, and p ∈ Pi+j. (We will systematically use “̂” for HomK(−,K) and
reserve “∗” for HomE(−, P ) or HomS(−, S), as appropriate.) As a graded
left module, with P̂−i = P̂i in degree −i, we have

(eφ)(p) = (−1)(deg e)(deg φ)(φe)(p) = (−1)(deg e)(deg φ)φ(ep).
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Let P be any graded E-module. We will make S ⊗K P into a complex of
graded free S-modules

L(P ) : · · · - S ⊗K Pi
di- S ⊗K Pi−1

- · · ·
1⊗ p -

∑
xi ⊗ eip

where the term S ⊗ Pi ∼= S(−i)dimPi is in homological degree i, and is gen-
erated in degree i as well. The identity

di−1dip =
∑
j

∑
i

xjxi ⊗ ejeip =
∑
i≤j

xjxi ⊗ (ejei + eiej)p = 0

follows from the associative and commutative laws for the E-module struc-
ture of P . Thus L(P ) is a linear free complex.

If we choose bases {ps} and {p′t} for Pi and Pi−1 respectively we can represent
the differential di as a matrix, and it will be a matrix of linear forms: writing
emps =

∑
t cm,s,tp

′
t the matrix of di has (t, s)-entry equal to the linear form∑

m cm,s,txm.

It is easy to see that L is actually a functor from the category of graded
E-modules to the category of linear free complexes of S-modules. Even more
is true.

Proposition 7.3. The functor L is an equivalence from the category of
graded E-modules to the category of linear free complexes of S-modules.

Proof. We show how to define the inverse, leaving the routine verification to
the reader. For each e ∈ V = Hom(W,K), and any vector space P there is a
unique linear map e : W ⊗ P → P satisfying e(x⊗ p) = e(x)p. If now

· · · - S ⊗K Pi
di- S ⊗K Pi−1

- · · · ,

is a linear free complex of S-modules, then d(Pi) ⊂ W⊗Pi−1 so we can define
a multiplication V ⊗K Pi → Pi−1 by e ⊗ p 7→ e(d(p)). Direct computation
shows that the associative and anti-commutative laws for this multiplication
follow from the identity di−1di = 0. (See Exercise 7.8 for a basis-free approach
to this computation.)
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Example 7.3. For example we may take P = E, the free module of rank 1.
The complex L(E) has the form

L(E) : 0 → S ⊗K → S ⊗ V → · · · → S ⊗ ∧rV → S ⊗ ∧r+1V → 0

since ∧r+2V = 0. The differential takes s⊗ f to
∑
xis⊗ eif . This is one way

to write the Koszul complex of x0, . . . , xr, though we must shift the degrees
to regard ∧r+1V ∼= S as being in homological degree 0 and as being generated
in degree 0 if we wish to have a graded resolution of K. (see [Eisenbud 1995,
Section 17.4]). Usually the Koszul complex is written as the dual of this
complex:

K(x0, . . . , xr) = HomS(L(E), S) :

0 → ∧r+1W ⊗K → S ⊗ ∧rW → · · · → S ⊗ ∧1W → S ⊗K → 0

where we have exploited the identifications ∧kW = HomK(∧kV,K) com-
ing from the identification W = HomK(V,K). It is useful to note that
HomS(L(E), S) = L(HomK(E,K)) = L(Ê) (and more generally L(P̂ ) =
HomS(L(P ), S) for any graded E-module P , as the reader is asked to verify
in Exercise 7.6. From Theorem 7.3 and the fact that the Koszul complex is
isomorphic to its own dual, it now follows that Ê ∼= E as E-modules. For a
more direct proof, see Exercise 7.5

There are other ways of treating linear complexes and the linear strand be-
sides BGG. One approach is given by [Eisenbud et al. 1981]. Another is the
Koszul homology approach of Green—see, for example, [Green 1989]. The
method we follow here is implicit in Bernstein-Gel’fand-Gel’fand and explicit
in Eisenbud-Fløystad-Schreyer.

7B.2 What it means to be the linear strand of a reso-
lution

We see from Proposition 7.3 that there must be a dictionary between prop-
erties of linear free complexes over S and properties of graded E-modules.
When is L(P ) a minimal free resolution? When is it a subcomplex of a min-
imal resolution? When is it the whole linear strand of a resolution? It turns
out that these properties are most conveniently characterized in terms of the
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dual E-module P̂ introduced above. For simplicity we normalize and assume
that L(P ) has no terms of negative homological degree, or equivalently that
Pi = 0 for i < 0. For the proof of Green’s Theorem 7.1 we will use part 3 of
the following dictionary.

Theorem 7.4. Let P be a finitely generated, graded E-module with no com-
ponent of negative degree, and let

F = L(P ) : · · · d2- S ⊗K P1
d1- S ⊗K P0

- 0

be the corresponding finite linear free complex of S-modules.

1. F is a free resolution (of coker d1) if and only if P̂ has a linear free
resolution.

2. F is a subcomplex of the minimal free resolution of coker d1 if and only
if P̂ is generated in degree 0.

3. F is the linear strand of the free resolution of coker d1 if and only if P̂ is
linearly presented (that is, P̂ is generated in degree 0 and has relations
generated in degree −1.)

In Example ?? above we saw that L(E) and L(Ê) are both linear free resolu-
tions. By part 1 of Theorem 7.4, this statement is equivalent to saying that
both E and Ê have linear free resolutions as E-modules. Since E is itself
free, and Ê ∼= E, this is indeed satisfied.

We will deduce Theorem 7.4 from a more technical looking result expressing
the graded components of the homology of L(P ) in terms of homological
invariants of P̂ .

Theorem 7.5. Let P be a finitely generated graded module over the exterior
algebra E. For any integers i ≥ 0 and k the vector space Hk(L(P ))i+k is dual
to TorEi (P̂ ,K)−i−k.

We postpone the proof of Theorem 7.5 until the end of this section.

Proof of Theorem 7.4 from Theorem 7.5. Let P be a finitely generated
graded E-module such that Pi = 0 for i < 0 as in Theorem 7.4, and set
M = coker d1 = H0(L(P )).
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The module P̂ has a linear free resolution if and only if TorEi (P̂ ,K)−i−k = 0
for k 6= 0. By Theorem 7.5 this occurs if and only if L(P ) has vanishing
homology except at the 0-th step; that is, L(P ) is a free resolution of M .
This proves part 1.

For part 2, note that P̂ is generated as an E-module in degree 0 if and only if
TorE0 (P̂ ,K)−k = 0 for k 6= 0. By Theorem 7.5 this means that Hk(L(P ))k = 0
for k 6= 0. Since L(P )k+1 is generated in degree −k − 1, this vanishing is
equivalent to the statement that, for every k, the map of Pk to the kernel of
W ⊗ Pk−1 → S2(W )⊗ Pk−2 is a monomorphism.

Suppose that

L(P )≤k−1 : S ⊗ Pk−1 → S ⊗ Pk−2 → · · ·

is a subcomplex of the minimal free resolution G of M (this is certainly true
for k = 1). In order for L(P )≤k to be a subcomplex of G, it is necessary and
sufficient that 1⊗Pk ⊂ S⊗Pk maps monomorphically to the linear relations
in kerS ⊗ Pk−1 → S ⊗ Pk−2, and this is the same condition as above. This
proves 2.

Finally for part 3, notice that P̂ is linearly presented if, in addition to be-
ing generated in degree 0, it satisfies TorE1 (P̂ ,K)−1−k = 0 for k 6= 0. By
Theorem 7.5 this additional condition is equivalent to the statement that

Hk(L(P ))1+k = 0 for all k, or in other words that the image of Pk generates
the linear relations in kerS⊗Pk−1 → S⊗Pk−2, making L(P ) the linear part
of the minimal resolution of M .

To prove Theorem 7.5 we will compute TorE(P̂ ,K) using the Cartan complex,
the minimal free resolution of K as an E-module. Define Ŝ to be the S-
module Ŝ := ⊕HomK(Si,K) = ⊕iŜi. We regard Ŝi as a graded vector space
concentrated in degree −i. The Cartan resolution is an infinite complex of
the form

C : · · · d2- E ⊗K Ŝ1
d1- E ⊗K Ŝ0,

where the free E-module E ⊗K Ŝi, which is generated in degree −i, has
homological degree i.

To define the differential di : E ⊗ Ŝi → E ⊗ Ŝi−1 we regard Ŝ as a graded
S-module, taking multiplication by s ∈ S to be the dual of the multiplication
on S, and we choose dual bases {ej} and {wj} of V and W . If p ∈ E, f ∈ Ŝi
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and g ∈ Si−1 we set

di(p⊗ f)(g) =
∑
j

pej ⊗ f(wjg) ∈ E ⊗ Ŝi−1.

It is easy to check directly that di−1di = 0, so that C is a complex of free
E-modules, and that di is independent of the choice of dual bases; as with
the differential of the Koszul complex, this occurs because the differential is
really right multiplication by the element

∑
j ej ⊗ wj in the algebra E ⊗ S,

and this well-defined element squares to zero.

We will show that C is a free resolution of K. To prove Theorem 7.5 we then
must compute

TorEi (P,K) = Hi(P ⊗E C).

This computation will suffice for both steps, since to prove that C is a reso-
lution of K it will suffice to know the homology of E ⊗C.

Proposition 7.6. If P is a finitely generated graded E-module then, for any
integers i, k the vector space Hi(P ⊗E C)−i−k is dual to Hk(L(P̂ ))i+k.

Proof. The i-th term of P ⊗E C is

P ⊗E E ⊗K Ŝi = P ⊗K Ŝi,

and the differential P ⊗E di is expressed by the same formula defining di,
simply taking p ∈ P . We will continue to denote it di. Taking graded
components we see that Hi(P ⊗E C)−i−k is the homology of the sequence of
vector spaces

P−k+1 ⊗ Ŝi+1
di+1- P−k ⊗ Ŝi

di- P−k−1 ⊗ Ŝi−1.

Its dual is the homology of the dual sequence

P̂k−1 ⊗ Si+1
�̂di+1

P̂k ⊗ Si �d̂i
P̂k+1 ⊗ Si−1

which is the degree i + k component of the complex L(P̂ ) at homological
degree k.

Corollary 7.7. The Cartan complex C is the minimal E-free resolution of
the residue field K = E/(V ).
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Proof. By the Proposition, it suffices to show that H0(L(Ê)) = K in degree
0, while Hk(L(Ê)) = 0 for k > 0; that is, L(Ê) is a free resolution of K as
an S-module. But we have already seen that L(Ê) is the Koszul complex,
the minimal free resolution of K, as required.

Proof of Theorem 7.5. By Corollary 7.7 TorEi (P̂ ,K)−i−k = Hi(P̂ ⊗E C)−i−k
and by Proposition 7.6 Hi(P̂ ⊗E C)−i−k is dual to Hk(L(P ))i+k.

7B.3 Identifying the linear strand

Given a graded S-module M we can use part 3) of the Dictionary Theorem to
identify the E-module Q such that L(Q̂) is the linear strand of the minimal
free resolution of M . If we shift grading so that M “begins” in degree 0, the
result is the following:

Corollary 7.8. Let M =
∑
i≥0Mi be a graded S-module with M0 6= 0. The

linear strand of the minimal free resolution of M as an S-module is L(Q̂),
where Q is the E-module with free presentation

E ⊗ M̂1
α- E ⊗ M̂0

- Q - 0

where the map α is defined on the generators 1⊗ M̂1 = M̂1 by the condition
that

α|
M̂1

: M̂1 → V ⊗ M̂0

is the dual of the multiplication map µ : W ⊗M0 →M1.

Proof. By Proposition 7.3 we may write the linear part of the resolution of
M as L(P ) for some E-module P , so we have

L(P ) : · · · - S ⊗ P1
- S ⊗ P0

- M.

It follows that P0 = M0, and P1 = kerµ : W ⊗M0 → M1, that is, P1 = R.
Dualizing, we get a right-exact sequence M̂1 → V ⊗ M̂0 → R → 0; that
is, the image of M̂1 generates the linear relations on Q = P̂ . By part 3)
of Theorem 7.4, Q is linearly presented, so this is the presentation map as
claimed.
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Using Corollary 7.8 we can explain the relationship between the linear strand
of the free resolution of a module M over the polynomial ring S = SymW
and the linear strand of the resolution of M when viewed, by “restriction of
scalars”, as a module M ′ over a smaller polynomial ring S ′ = SymW ′ for a
subspace W ′ ⊂ W . Write V ′ = W ′⊥ ⊂ V = Ŵ for the annihilator of W ′,
and let E ′ = E/(V ′) = ∧(V/V ′), so that E ′ = ∧(Ŵ ′).

Corollary 7.9. With notation as above, the linear part of the S ′-free reso-
lution of M ′ is L(P ′), where P ′ is the E ′-module {p ∈ P | V ′p = 0}.

Proof. The dual of the multiplication map µ′ : W ′⊗M0 →M1 is the induced
map M̂1 → (V/V ′)⊗M̂0, and the associated map of free modules E ′⊗M̂1 →
E ′⊗ M̂0 is obtained by tensoring the one for M with E ′. Thus Q′ = Q/V ′Q,
and then P ′ = Q̂′ is the set of elements annihilating V ′Q, that is, the set of
elements annihilated by V ′.

One concrete application is to give a bound on the length of the linear part
that will be useful in the proof of Green’s Theorem.

Corollary 7.10. With notation as in Corollary 7.9, suppose that the codi-
mension of W ′ in W is c. If the length of the linear strand of the minimal
free resolution of M ′ as an S ′ module is n, then the length of the linear strand
of the minimal free resolution of M is at most n+ c.

Proof. By an obvious induction, it suffices to do the case c = 1. Suppose
that V ′ is the 1-dimensional space spanned by e ∈ V , so that P ′ = {p ∈ P |
ep = 0} ⊃ eP . Recalling that the degree of e is −1, there is a left exact
sequence

0 - P ′ - P
e- P (−1).

The image of the right hand map is inside P ′(−1). Thus if P ′
i = 0 for i > n

then Pi = 0 for i > n+ 1 as required.

7C Exterior minors and annihilators

From Theorem 7.4 we see that the problem of bounding the length of the
linear part of a free resolution over S is the same as the problem of bounding
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the number of nonzero components of a finitely generated E-module P that
is linearly presented. Since P is generated in a single degree, the number of
nonzero components is ≤ n if and only if (V )nP = 0. Because of this, the
proof of Theorem 7.1 depends on being able to estimate the annihilator of
an E-module.

Over a commutative ring such as S we could do this with Fitting’s Lemma,
which says that if a module M has free presentation

φ : Sm
φ- Sd - M - 0

then the d × d minors of φ annihilate M (see Appendix 11G.) The good
properties of minors depend very much on the commutativity of S, so this
technique cannot simply be transplanted to the case of an E-module. But
Green discovered a remarkable analogue, the exterior minors. We will first
give an elementary description, then a more technical one that will allow us
to connect the theory with that of ordinary minors.

7C.1 Definitions

It is instructive to look first at the case m = 1. Consider an E-module P
with linear presentation

E(1)

e1...
ed


- Ed - P - 0.

where the ei ∈ V are arbitrary. We claim that (e1∧· · ·∧ed)P = 0. Indeed, if
the basis of Ed maps to generators p1, . . . , pd ∈ P , so that

∑
i eipi = 0, then

(e1 ∧ · · · ∧ ed)pi = ±(e1 ∧ · · · ∧ ei−1 ∧ ei+1 ∧ · · · ∧ ed) ∧ eipi
= ∓(e1 ∧ · · · ∧ ei−1 ∧ ei+1 ∧ · · · ∧ ed)

∑
j 6=i

ejpi

= 0

since e2j = 0 for all j.

When the presentation matrix φ has many columns, it follows that the prod-
uct of the elements in any one of the columns of φ is in the annihilator of P ,
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and the same goes for the elements of any generalized column of φ—that is,
a column which is a a scalar linear combination of the columns of φ. These
products are particular examples of exterior minors.

In general, suppose that φ is a p× q matrix with entries ei,j ∈ V ⊂ E. Given
a collection of columns numbered c1, . . . , ck, with multiplicities n1, . . . , nk
adding up to d, and any collection of d rows r1, . . . rd, we will define an d× d
exterior minor

φ[1, . . . , d | c(n1)
1 , · · · , c(nk)

k ] ∈ ∧dV

to be the sum of all products of the form ec1,j1 ∧ · · · ∧ ecd,jd where precisely
ni of the numbers js are equal to ri.

For example, if the multiplicities ni are all equal to 1, then the exterior minor
is the permanent (= “determinant without signs”) of the d× d submatrix of
φ with the given rows and columns. On the other hand, if we take a single
column with multiplicity d, then φ[c1, . . . , cd | r(d)

1 ] is the product of d entries
of column number c1, as above.

With general multiplicities, but in characteristic zero, φ[1, . . . , d | 1(n1) · · · k(nk)]
is the permanent of the d× d matrix whose columns include ni copies of ci,
divided by the product n1! · · ·nk!. If we think of the rows and columns as
being vectors in V , the exterior minor is alternating in the rows and symmet-
ric in the columns. The notation i(ni) has been chosen, for those who know
about such things, to suggest a divided power; see for example [Eisenbud
1995, Appendix 2].

7C.2 Description by multilinear algebra

We can give an invariant treatment, which also relates the exterior minors of
φ to the ordinary minors of a closely related map φ′.

We first write the transpose φ∗ : Ep(1) → Eq of φ without using bases as a
map φ∗ : E⊗K A→ E⊗K B where A and B are vector spaces of dimensions
p and q generated in degrees −1 and 0, respectively. Thus the rows of φ
(columns of φ∗) correspond to elements of A while the columns of φ (rows of
φ∗) correspond to elements of B̂.

The map φ∗ (and with it φ) is determined by its restriction to the generating
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set A = 1⊗ A ⊂ E ⊗ A, and the image of A is contained in V ⊗B. Let

ψ : A→ V ⊗B,

be the restriction of φ∗. Explicitly, we may write

φ′ : ∧V ⊗ B̂ - ∧ V ⊗ Â : 1̂⊗ b 7→
∑
i

vi ⊗ (b̂⊗ 1)ψ(v̂i)

where {vi} and {v̂i} are dual bases of V and V̂ .

Taking the d-th exterior power of ψ, we get a map ∧dψ : ∧dA→ ∧d(V ⊗B).
Because any element x ∈ V ⊗ B ⊂ (∧V ) ⊗ (SymB) satisfies x2 = 0, the
identity map on V ⊗ B extends uniquely to an algebra map ∧(V ⊗ B) →
(∧V )⊗ (SymB). The degree d component m of this map is given by

∧d(V ⊗B)
m- ∧d V ⊗ Symd(B)

(v1 ⊗ b1) ∧ · · · ∧ (v1 ⊗ bd) - (v1 ∧ · · · ∧ vd)⊗ (b1 · · · · · bd).

We will see that m ◦ ∧dψ may be regarded as “the matrix of exterior minors
of φ.”

On the other hand, we could equally consider ψ as specifying a map of free
modules in which “variables” are elements of B, and columns correspond to
elements of V̂ , with rows corresponding to elements of A as before. This
could in fact be done over any algebra containing the vector space B. We
take the algebra to be the new polynomial ring Sym(B) and define

φ′ : Sym(B)⊗ V̂ - Sym(B)⊗ Â : v̂ 7→
∑
i

bi ⊗ (v̂ ⊗ 1)ψ(b̂i)

where {bi} and {b̂i} are dual bases of B and B̂.

If a1, . . . , ad ∈ A and v̂1, . . . , v̂d ∈ V̂ then we write

φ′(a1, . . . , ad | v̂1 . . . v̂d) ∈ SymdB

for the d× d minor of φ′ involving the rows corresponding to a1, . . . , ad and
the columns corresponding to v1, . . . , vd.

We can now shows that the map m ◦∧dψ expresses both the exterior minors
of φ and the ordinary minors of φ′.



162CHAPTER 7. LINEAR COMPLEXES AND THE LINEAR SYZYGY THEOREM

Proposition 7.11. With notation as above, let {v0, . . . , vr} and {v̂0, . . . , v̂r}
be dual bases for V and V̂ , and let {b1, . . . , bq} and {b̂1, . . . , b̂q} be dual bases
for B and B̂. The map m ◦ ∧dψ is given by the formula

m ◦ ∧dψ(a1 ∧ · · · ∧ ad)
=

∑
0≤i1<...<id≤r

vi1 ∧ · · · ∧ vid ⊗ φ′( a1, . . . , ad | v̂i1 , . . . , v̂id )

=
∑

1≤i1≤...≤ik≤q,
∑

nj=d, 0<nj

φ[ a1, . . . , ad | b̂(n1)
i1 · · · b̂(nk)

ik
] ⊗ bn1

i1 · · · b
nk
ik

Proof. Let ψ(at) =
∑
i,j ci,j,tvi ⊗ bj with coefficients ci,j,t ∈ K. Let G be the

symmetric group on {1, . . . , d} and let (−1)σ denote the sign of a permutation
σ ∈ G.

For the first equality, set `i,t =
∑
j ci,j,tbj ∈ B = Sym1(B), so that (φ′)∗ has

(i, t)-entry equal to `i,t and ψ(at) =
∑
i vi ⊗ `i,t. We have

m ◦ ∧dψ(a1 ∧ · · · ∧ ad) = m
(
(
∑
i

(vi ⊗ `i,1)) ∧ · · · ∧ (
∑
i

(vi ⊗ `i,d))
)

= m

 ∑
0≤i1,...,id≤r

(vi1 ⊗ `i1,1) ∧ · · · ∧ (vid ⊗ `id,d)


=

∑
0≤i1,···,id≤r

vi1 ∧ · · · ∧ vid ⊗ `i1,1 · · · `id,d

Gathering the terms corresponding to each (unordered) set of indices {i1, . . . , id},
we see that this sum is equal to the first required expression:∑

0≤i1<...<id≤r σ∈G
vi1 ∧ · · · ∧ vid ⊗ (−1)σ`iσ(1),1 · · · `iσ(d),d

=
∑

0≤i1<...<id≤r
vi1 ∧ · · · ∧ vid ⊗ φ′(a1, . . . , ad | v̂i1 , . . . , v̂id).

The proof that m ◦ ∧dψ(a1 ∧ · · · ∧ ad) is given by the second expression is
completely parallel once we write mj,t =

∑
i ci,j,tvi ∈ V = ∧1(V ), so that (φ)∗

has (j, t)-entry equal to mj,t and ψ(at) =
∑
jmj,t ⊗ bj.

7C.3 How to handle exterior minors

Here are some results that illustrate the usefulness of Proposition 7.11.
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Corollary 7.12. With notation above, the span of the d× d exterior minors
of φ is the image of a map

md : ∧dA⊗ ŜymdB → ∧dV

that depends only on φ as a map of free modules, and not on the matrix
chosen. In particular, if v1, . . . , vd are the elements of any generalized column
of φ, then v1 ∧ · · · ∧ vd is in this span.

Proof. The map md is defined by saying that it sends a⊗ g ∈ ∧dA⊗ ŜymdB
to (1 ⊗ g)(m ◦ ∧dψ(a)). Since we can replace one of the columns of φ by a
generalized column without changing the map of free modules, the second
statement follows from our original description of the exterior minors.

Corollary 7.12 suggests a different approach to the the exterior minors. In
particular, if we take V = A ⊗ B̂ and if φ is the generic matrix of linear
forms over the ring E, then the span of the d × d exterior minors of φ is
invariant under the product of linear groups GL(A) × GL(B), and is the

(unique) invariant submodule of ∧(A⊗B) isomorphic to ∧dA⊗ ŜymdB. For
further information see [Eisenbud and Weyman 2003].

Corollary 7.13. If K is an infinite field and φ is a d ×m matrix of linear
forms over E, then the ideal generated by all the d×d exterior minors of φ is
in fact generated by all elements of the form m1 ∧ · · · ∧md where m1, . . . ,md

are the elements of a generalized column of φ.

Proof. A (generalized) column of φ corresponds to an element b̂ : B → K.
Such an element induces a map SymB → Sym K = K[x], and thus for every
d it induces a map SymdB → K · xd = K that we will call b̂(d).

By Corollary 7.12 the span of the exterior minors of φ is the image of md :

∧dA⊗ ŜymdB → ∧dV. In these terms the exterior minor

φ[ a1, · · · , ad | b̂(d) ] = md(a1 ∧ · · · ∧ ad ⊗ b̂(d))

as one may check directly from the formulas. Thus to show that the special
exterior minors that are products of the elements in a generalized column
span all the exterior minors, it suffices to show that the elements b̂(d) span

ŜymdB. Equivalently, it suffices to show that there is no element in the
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intersection of the kernels of the projections b̂(d) : SymdB → K. But this
kernel is the degree d part of the ideal generated by the kernel of b̂. If
we think of this ideal as the ideal of the point in projective space P(B)
corresponding to b̂, the desired result follows because the only polynomial
that vanishes on all the points of a projective space over an infinite field is
the zero polynomial.

The next two corollaries are the keys to the proof of the Linear Syzygy
Theorem to be given in the next section.

Corollary 7.14. (Exterior Fitting Lemma) If φ is a d × m matrix of
linear forms over the exterior algebra E then the cokernel of φ is annihilated
by the exterior minors of φ.

Proof. We may harmlessly extend the field K, and thus we may suppose that
K is infinite. By Corollary 7.13 it suffices to prove the result for the special
exterior minors that are products of the elements in generalized columns.
The proof in this case is given at the beginning of this subsection.

Corollary 7.15. Let φ : E⊗B̂ → E⊗Â and φ′ : Sym(B)⊗V̂ → Sym(B)⊗Â
be maps of free modules coming from a single map of vector spaces ψ : A→
V ⊗ B as above. If dimK A = d, then the dimension of the span of the
d × d exterior minors of φ is the same as the dimension of the span of the
(ordinary) d× d minors of φ′.

Proof. Let a1, . . . , ad be a basis of A. The element

f = m ◦ ∧dψ(a1 ∧ · · · ∧ ad) ∈ ∧dV ⊗ SymdB

may be regarded as a map ∧̂dV → SymdB or as a map ŜymdB → ∧dV .
These maps are dual to one another, and thus have the same rank. By
Proposition 7.11 the image of the first is the span of the ordinary minors of
φ′, while the image of the second is the span of the exterior minors of φ.

7D Proof of the Linear Syzygy Theorem

We now turn to the proof of the Linear Syzygy Theorem 7.1 itself. Let
M = M0⊕M1⊕· · · be an S-module with M0 6= 0, and let m0 = dimM0. We
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must show that the length of the linear strand of the minimal free resolution
of M is at most max(m0−1, dimR), where R = {w⊗a ∈ W ⊗M0 | wa = 0}.
We may harmlessly extend the ground field if necessary and assume that K
is algebraically closed.

Suppose first that dimR ≤ m0−1. In this case we must show that the length
of the linear strand is ≤ m0 − 1. From Theorem 7.3 and Corollary 7.8 we
know that the linear strand has the form L(P ), where P = Q̂ and

Q = coker
(
E ⊗ M̂1

α- E ⊗ M̂0

)
.

Here α is the dual of the multiplication map µ : W ⊗M0 →M1. Since Q is
generated in degree 0, it will suffice to show that Q is annihilated by (V )m0 ,
and by Corollary 7.14 it suffices in turn to show that the m0 ×m0 exterior
minors of α span all of Em0 , a space of dimension

(
r+1
m0

)
.

By Corollary 7.15, the dimension of the span of the exterior minors of α is
the same as the dimension of the span of the ordinary m0×m0 minors of the
map of Sym(M1)-modules

φ′ : Sym(M1)⊗W → Sym(M1)⊗ M̂0

corresponding to the map W →M1 ⊗ M̂0 adjoint to the multiplication W ⊗
M0 →M1.

Perhaps the reader is by now lost in the snow of dualizations, so it may
help to remark that φ′ is represented by an m0 × (r + 1) matrix whose rows
are indexed by a basis of M0 and whose columns indexed by a basis of W .
The entry of this matrix corresponding to m ∈ M0 and w ∈ W is simply
the element wm ∈ M1. It suffices to prove that the m0 × m0 minors of φ′

span a linear space of dimension
(
r+1
m0

)
—that is, these minors are linearly

independent.

Using the Eagon-Northcott complex as in Corollary 11.36 we see that it is
now enough to show that the m0×m0 minors of φ′ vanish only in codimension
r + 1 −m0 + 1. The vanishing locus of these minors is of course the union
of the loci where the generalized rows of φ′ vanish, so we consider these
rows. Let Be ⊂ M0 be the set of elements m such that the corresponding
generalized row vanishes in codimension e. This means that m is annihilated
by an r+1−e dimensional space Wm ⊂ W . The tensors w⊗m with w ∈ Wm
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form a dimBe+(r+1− e)−1 = dimBe+ r− e-dimensional family in R. By
hypothesis, dimR ≤ m0 − 1, so dimBe ≤ m0 − 1− (r− e) = m0 − r+ e− 1.

Two elements of Be that differ by a scalar correspond to rows with the same
vanishing locus. Thus the union of the vanishing loci of the generalized rows
corresponding to elements of Be has codimension at least e− (dimBe− 1) ≥
r + 2−m0, completing the proof of the case dimR ≤ m0 − 1.

Finally, suppose that dimR ≥ m0. By induction and the proof above, we
may assume that the Theorem has been proved for all modules with the same
value of m0 but smaller dimR.

The affine variety R is a union of lines through the origin in the vector space

W ⊗M0. Let R be the corresponding projective variety in P(Ŵ ⊗M0). The
set of pure tensors w ⊗ a corresponds to the Segre embedding of P(Ŵ ) ×
P(M̂0), so R is contained in ths product. Each hyperplane W ′ ⊂ W corre-
sponds to a divisor P(Ŵ ′) × P(M0) ⊂ P(Ŵ ) × P(M̂0), and the intersection
of all such divisors is empty. Thus we can find a hyperplane W ′ such that
dimR ∩ P(Ŵ ′)× P(M0) ≤ dimR− 1.

Let M ′ be the S ′ = SymW ′-module obtained from M by restriction of
scalars. By Corollary 7.10, the length of the linear strand of the minimal
free resolution of M ′ is shorter than that of M by at most 1. By induction
Theorem 7.1 is true for M ′, whence it is also true for M .

7E More about the Exterior Algebra and BGG

In this section we will go a little further into the the module theory over the
exterior algebra E = ∧V and then explain some more about the Bernstein-
Gel’fand-Gel’fand correspondence. Our approach to the latter is based on
[Eisenbud et al. ≥ 2003].

7E.1 Gorenstein property and Tate Resolutions

We have already introduced the duality functor P 7→ P̂ for finitely generated
E-modules. Since K is a field the duality functor P 7→ P̂ is exact, so it
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takes projective modules to injective modules. Just as in the commutative
local case, Nakayama’s Lemma implies that every projective E-module is free
(even the non-finitely generated modules are easy here because the maximal
ideal (V ) of E is nilpotent). It follows that every finitely generated injective
E-module is a direct sum of copies of the module Ê. We gave an ad hoc
proof, based on the self-duality of the Koszul complex, that Ê ∼= E as E-
modules, but the isomorphism is non-canonical and does not preserve the
grading. Here is a more precise statement, with an independent proof; note
that by Theorem 7.3 it implies the self-duality of the Koszul complex.

Proposition 7.16. The rank 1 free E-module E has a unique minimal
nonzero ideal, and is injective as an E-module. Thus it is an injective enve-
lope of the simple E-module and is isomorphic to Ê as an E-module (with a
shift in grading.) Moreover, Ê ∼= E ⊗K ∧r+1W canonically.

Proof. In fact the minimal nonzero ideal is the 1-dimensional vector space
∧r+1V = Er, generated by the product of the elements of any basis of V . To
see this, we show that any nonzero element of E generates an ideal containing
∧r+1V . If E 3 e 6= 0 then with respect to a basis ei of V we could write
e = a ·ei1ei2 · · · eit +e′ where 0 6= a ∈ K, i1 < · · · < it, and e′ consists of other
monomials of degree t as well (perhaps) as monomials of degree > t. Let J
be the complement of i1, . . . , it in 0, . . . , r. It follows that every monomial of
e′ is divisible by one of the elements ej with j ∈ J , so

e ·
∏
j∈J

ej = ±a · e0 · · · er,

is a generator of ∧r+1V , as required.

From this we see that Ê is generated by the 1-dimensional vector space

∧̂r+1V = ∧r+1W , so there is a canonical surjection E ⊗ ∧r+1W → Ê. Since
E and Ê have the same dimension, they are equal. In particular, E is the
injective envelope of its submodule (∧r+1V ).

As a consequence we can give another view of the duality functor P 7→ P̂ for
finitely generated E-modules:

Corollary 7.17. There is a natural isomorphism P̂ ∼= HomE(P,E)⊗∧r+1W .
In particular, HomE(−, E) is an exact functor.
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Proof. Since E⊗− is left adjoint to the forgetful functor from E-modules to
K-modules we have

HomK(P,K) = HomE(E ⊗K P,K) = HomE(P,HomK(E,K)) = HomE(P, Ê)

and by Proposition 7.16 HomE(P, Ê) = HomE(P,E)⊗ ∧r+1W .

The last statement follows from this (or directly from the fact that E is
injective as an E-module.)

Over any ring we can combine a projective resolution F and an injective
resolution I of a module into a Tate resolution:

· · · - F1
- F0

- I0 - I1 - · · ·
@

@
@R �

�
��

P

�
�

�� @
@

@R

0 0

Over a ring like E the Ij are also free. In fact, we may take F to be a minimal
free resolution and I to be the dual of a minimal free resolution of P̂ , and we
get a unique minimal Tate resolution, a doubly infinite exact free complex
as above where the image of the 0-th differential is isomorphic to P .

For example, if we take P = E/(V ) = K to be the residue field of E,
then we already know that the minimal free resolution of P is the Cartan
resolution. Since P is self-dual, the minimal injective resolution is the dual
of the Cartan resolution, and the Tate resolution has the form: ((Compress
the following further))

· · ·E ⊗ ̂Sym2W - E ⊗ V - E - Ê - Ê ⊗W - Ê ⊗ Sym2W · · ·
@

@
@R �

�
��

K

�
�

�� @
@

@R

0 0
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Note that the sum of the terms on the right is Ê⊗S; we shall see in the next
section that this is not an accident.

In the next section we will see that Tate resolutions over E appear rather
naturally in algebraic geometry.

It is not hard to show that Gröbner basis methods apply to the exterior
algebra just as to the commutative polynomial ring (in fact, there are some
advantages to computation that come from the finite dimensionality of E.)
Thus it is possible to compute Tate resolutions—or at least bounded portions
of them—explicitly in a program such as Macaulay2 [Grayson and Stillman
≥ 2003].

7E.2 Where BGG Leads

The Bernstein-Gel’fand-Gel’fand correspondence was stated in [Bernštĕı n
et al. 1978] as an equivalence between the derived categories of bounded
complexes of finitely generated graded S-modules and graded E-modules, or
between the bounded derived categories of coherent sheaves on Pr and the
graded E-modules modulo free modules. A different way of describing this
equivalence was discovered at the same time in ([Bĕı linson 1978])—both
these papers were inspired by a lecture of Manin. BGG was the first ap-
pearance of the “derived equivalences” between various module and sheaf
categories that now play an important role in representation theory (for ex-
ample [Ringel 1984]), algebraic geometry (for example [Bridgeland 2002])
and the mathematics of theoretical physics (for example [Polishchuk and Za-
slow 1998]). In this subsection we will explain a little more about the BGG
equivalence, and describe one of its recent applications.

The functor L from graded E-modules to linear free complexes of S-modules
has a version R that goes “the other way” from graded S-modules to linear
free E complexes: it takes a graded S-module M = ⊕Mi to the complex

R(M) : · · · - Ê ⊗K Mi
- Ê ⊗K Mi−1

- · · ·
f ⊗m -

∑
i

eif ⊗ xim

where {xi} and {ei} are dual bases of W and V . We think of Mi as being
a vector space concentrated in degree i, and the term Ê ⊗Mi as being in
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cohomological degree i (≡ homological degree −i). (We could have used E
in place of Ê but then the results to come would be less canonical.) For any
vector space N we have Ê ⊗K N = HomK(E,N), so thinking of R(M) as a
differential graded E-module, we could simply write R(M) = HomK(E,M),
just as we can write L(P ) = S ⊗K P .

This suggests that the two functors might somehow be adjoint. However,
they do not even go between the same pair of categories! To repair this,
we extend the functor L from the category of modules to the category of
complexes: If · · · → A → B → · · · is a complex of graded S-modules,
then · · · → L(A) → L(B) → · · · is naturally a double complex, and we
can take its total complex to get a complex of S-modules. Thus L goes
from the category of complexes of E-modules to the category of complexes
of S-modules. Similarly, R may be extended to a functor going the other
way. These two functors are adjoint. Moreover, they pass to the derived
categories and are inverse equivalences there. See for example [Gelfand and
Manin 2003].

We will not pursue this line of development further. Instead we want to
point out a source of interesting Tate resolutions connected with the functor
R. An argument similar to the proof of Theorem 7.5 (see also Exercise 7.9)
yields:

Proposition 7.18. If M is a graded S-module then the homology of the
complex R(M) is

H
j(R(M))i+j = Tori(K,M)i+j.

Proposition 7.18 shows in particular that R(M) is exact “far out to the right”.
The key invariant is—once again—the Castelnuovo-Mumford regularity of
M :

Corollary 7.19. regM ≤ d if and only if Hi(M) = 0 for all i > d.

Proof. The condition regM = dmeans that Tori(K,M)i+j = 0 for j > d.

Now suppose that M is a finitely generated graded S-module of regularity
n. By Corollary 7.19 the free complex

· · · - 0 - Ê ⊗Mn
dn
- Mn+1

dn+1
- · · ·
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is exact except at Ê ⊗Mn.

We will truncate this complex at Mn+1 and then adjoin a minimal free reso-
lution of ker dn+1. The result is a Tate resolution

T(M) : · · ·T n−1 - T n - Ê ⊗Mn+1
dn+1

- · · · .

The truncation at Mn+1 is necessary in order to ensure minimality (as we
will see in the proof of the Proposition 7.20.)

The resolution T(M) obviously depends only on the truncation M≥n+1, but
even more is true:

Proposition 7.20. Let F be a coherent sheaf on Pr, and let M be a finitely
generated graded S-module whose sheafification is F . The Tate resolution
T(M) depends, up to noncanonical isomorphism, only on the sheaf F .

Proof. The sheaf F determines M up to finite truncation, so it suffices to
show that if m ≥ n = regM then the Tate resolution

T(M≥m) : · · ·T ′m−1 - T ′m - Ê ⊗Mm+1
dm+1

- · · · .

is isomorphic to T(M). By the definition of T(M≥m) and the uniqueness of
minimal resolutions, it suffices to show that

∗)Ê ⊗Mn+1
- · · · dm−1

- Ê ⊗Mm

is the beginning of a minimal free resolution of coker dm−1 = ker dm+1. By
Corollary 7.19 it is at least a resolution, and this would be so even if we
extended it one more step to Ê ⊗Mn. But the differentials in the complex

Ê ⊗Mn
dn- · · · dm−1

- Ê ⊗Mm

are all minimal (their matrices have entries of degree 1), so for all i > n the
module Ê ⊗Mi is the minimal free cover of ker di+1.

Henceforward, when F is a coherent sheaf on Pr, we will write T(F) for
the Tate resolution T(M) associated with any finitely generated S-module
having sheafification F , and call it the Tate resolution of F .
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For example, let X be the standard twisted cubic curve in P3 with structure
sheaf OX and homogeneous coordinate ring SX . to simplify notation write
a, b, c, d for the homogeneous coordinates of P3, instead of x0, . . . x3. We have
regSX ≤ 1 by the Gruson-Lazarsfeld-Peskine Theorem 5.1, and in fact the
resolution is the Eagon-Northcott complex of(

a b c
b c d

)
with Betti diagram

0 1 2
0 1 -
1 - 3 2

so regSX = 1. The values of the Hilbert function HSX
(n) are 1, 4, 7, . . ., and

R(SX) is the complex

Ê


a
b
c
d


- Ê4(−1)

d2=



a 0 0 0
b a 0 0
c b a 0
d c b a
0 d c b
0 0 d c
0 0 0 d


- Ê7(−2) - · · · .

Corollary 7.19 shows that R(SX) is not exact at Ê4(−1) = Ê ⊗ (SX)1, but

we can see this in a more primitive way. It suffices to show that R̂(SX) is not

exact at E4(1). But the first map in R̂(SX) is the same as the first map in

the Cartan resolution R̂(S), while the second map has source E7(2) instead
of the E ⊗ Sym2(W ) = E10(2) that occurs in the Cartan resolution. Since
the Cartan resolution is minimal, this proves the inexactness.

It turns out that ker d2 has three minimal generators: the given linear one
and two more, which have quadratic coefficients. The map d1 of the Tate
resolution may be represented by the matrix

d1 =


a 0 0
b ad ac
c bd bc+ ad
d cd bd

 .
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(It is obvious that the columns of this matrix are in the kernel, and that
no two of them could generate it; to prove that they actually generate it
requires either an (easy) computation with Gröbner bases or an application
of Theorem 7.21 below.) The rest of the Tate resolution of OX has the form
((This needs to be set in small type or use an eqalign?))

· · · - Ê8(3)


d c b a 0 0 0 0
0 d c b a 0 0 0
0 0 d c b a 0 0
0 0 0 d c b a 0
0 0 0 0 d c b a


- Ê5(2)

d c b a 0
0 d c b a
0 0 da ca ba


- Ê⊕Ê2(1)

d1-

The reader well-educated in algebraic geometry may have noticed something
interesting: the ranks of the free modules with generators in various degrees
in the Tate resolution of OX are precisely the numbers hi(OX(n)), as sug-
gested in the following table:

n -2 -1 0 1 2

h1OX(n) 5 2 0 0 0

h0OX(n) 0 0 1 4 7

Here is the general result:

Theorem 7.21. Let F be a coherent sheaf on Pr. The free module T i in
cohomological degree i of the Tate resolution T(F) is

T i = ⊕jÊ ⊗Hj(F(i− j))

where Hj(F(i− j)) is regarded as a vector space concentrated in degree i− j.

For the proof we refer to [Eisenbud et al. ≥ 2003]. For further applications
see [Eisenbud et al. 2003], and for an exposition emphasizing how to use
these techniques in computation see [Decker and Eisenbud 2002]. We close
this section by interpreting Theorem 7.21 in the case of the Tate resolution
of the residue field, the Cartan resolution.

We claim that the Tate resolution of K = E/(V ) derived above by putting
the Cartan resolution together with its dual is precisely the Tate resolution
of the sheaf OPr . In fact, S is a module whose sheafification is OPr , and the
regularity of S (as an S-module) is 0, so

R(S) : Ê - Ê ⊗W - Ê ⊗ Sym2(W ) - · · · ,
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which is the dual of the Cartan resolution, is exact starting from Ê ⊗W .
Since Ê is a minimal cover of the next map, we may complete it to a Tate
resolution T(OPr) by adjoining a minimal free resolution of the kernel K of
Ê → Ê ⊗W . This gives us the Tate resolution of K as claimed.

Comparing the free modules T i with Theorem 7.21 we deduce the well-known
formula

H
iOPr(n) =


Symn(W ) if i = 0
0 if 0 < i < r

̂Symn−r−1(W ) if i = r.

See [Hartshorne 1977, III.3.1], and also Corollary 10.9.

7F Exercises

1. Let F be a finitely generated free graded module. Show that, for any
i, the submodule of F generated by all elements of degree ≤ i is free.

2. With hypotheses as in Theorem 7.1 let

A = {(w,m) ∈ W × P(M∗
0 ) | wm = 0},

where m denotes the one-dimensional subspace spanned by a nonzero
element m ∈M0.

Show that the statement of Theorem 7.1 is equivalent to the statement
that the length of the linear strand of the free resolution of M is ≤
dimA.

3. Consider Example 7.2. Show that if the linear forms `i,j span all of W ,
then the variety X defined by the minors of N is nondegenerate. Show
that in this case, since N is 1-generic, the module ω is the module of
twisted global sections of a line bundle, so the hypotheses of Corollary
7.2 apply.

4. Show that over any local Artinian ring, any free submodule of a free
module is a summand. Deduce that the only modules of finite projec-
tive dimension are the free modules. Over the exterior algebra, show
that any free submodule of any module is a summand.
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5. Though E is a noncommutative ring, it is so close to commutative that
commutative proofs can usually be used almost unchanged. Following
the ideas at the beginning of [Eisenbud 1995, Chapter 21], give a direct
proof that Ê ∼= E as E-modules.

6. Show that L(P̂ ) = HomS(L(P ), S) as complexes.

7. Let e ∈ E be an element of degree −1. Show that the periodic complex

· · · e- E
e- E

e- E
e- · · ·

is exact. In fact, it is the Tate resolution of a rather familiar sheaf.
Which one?

8. Here is a basis free approach to the equivalence in Proposition 7.3.

(a) If V is finite-dimensional vector space and Pi, Pi−1 are any vector
spaces over K, show that there is a natural isomorphism

HomK(V ⊗ Pi, Pi−1) ∼= HomK(Pi,W ⊗ Pi−1),

where W is the dual of V , taking a map µ : V ⊗Pi → Pi−1 to the
map

d : Pi → W ⊗ Pi−1; d(p) =
∑
i

xi ⊗ µ(ei ⊗ p).

Maps that correspond under this isomorphism are said to be ad-
joint to one another.

(b) Suppose that µi : V ⊗ Pi → Pi−1 and µi−1 : V ⊗ Pi−1 → Pi−2 are
adjoint to di and di−1, and write s : W ⊗W → Sym2W for the
natural projection. Show that Pi ⊕ Pi−1 ⊕ Pi−2 is an E = ∧V -
module (the associative and anti-commutative laws hold) if and
only if the map V ⊗ V ⊗ Pi → Pi−2 factors through the natural
projection V ⊗ V ⊗ Pi → ∧2V ⊗ Pi.

(c) Show that the maps

S ⊗ Pi - S ⊗ Pi−1
- S ⊗ Pi−2

induced by di and di−1 compose to zero if and only if the composite
map

Pi
di- W ⊗ Pi−1

1⊗di−1- W ⊗W ⊗ Pi−2
s⊗1- Sym2(W )⊗ Pi−2

is zero.
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(d) Show that the composite map

Pi
di- W ⊗ Pi−1

1⊗di−1- W ⊗W ⊗ Pi−2
s⊗1- Sym2(W )⊗ Pi−2

is adjoint to the composite map

(Sym2(W ))∗ ⊗ Pi
s∗- W ∗ ⊗W ∗ ⊗ Pi

1⊗µi- W ∗ ⊗ Pi−1
µi−1- Pi−2.

Deduce that the first of these maps is 0 if and only if the second
is zero if and only if the map

W ∗ ⊗W ∗ ⊗ Pi
1⊗µi- W ∗ ⊗ Pi−1

µi−1- Pi−2

factors through ∧2(V )⊗ Pi.

(e) Deduce Proposition 7.3.

9. Prove Proposition 7.18 by examining the sequence of vector spaces
whose homology is Hi(R(M))i+j, as in Theorem 7.5.



Chapter 8

Curves of High Degree

Revised 9/17/03

LetX be a curve of genus g. We know from Corollary 6.7 that any line bundle
of degree ≥ 2g + 1 is very ample. By an embedding of high degree we will
mean any embedding of X by a complete linear series of degree d ≥ 2g + 1,
and by a curve of high degree we mean the image of such an embedding.

In Chapter 6 we gave an account of the free resolutions of curves of genus
g = 0 and 1, embedded by complete linear series, constructing them rather
explicitly. For curves of genus g = 0, we had embeddings of any degree ≥ 1.
For curves of genus g = 1, only linear series of degree ≥ 3 could be very
ample, so these were all curves of high degree. In this chapter we will see
that many features of the free resolutions we computed for curves of genus 0
and 1 are shared by all curves of high degree.

To study these matters we will introduce some techniques that play a cen-
tral role in current research: the restricted tautological sub-bundle, Koszul
cohomology, the property Np and the strands of the resolution. We will see
that the form of the free resolution is related to special varieties containing
X, and also to special sets of points on the curve in its embedding.

For simplicity we will use the word curve to indicate a smooth irreducible
1-dimensional variety over an algebraically closed field K, though the sophis-
ticated reader will see that many of the results can be extended to Gorenstein
1-dimensional subschemes over any field. Recall that the canonical sheaf of a
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curve X is the sheaf associated to the cotangent bundle of X. If X is embed-
ded in some projective space Pr, then it is convenient to use a different char-
acterization: ωX is the sheaf associated to the module Extr−1

S (SX , S(−r−1)).
For this and much more about canonical sheaves, see [Altman and Kleiman
1970].

8.1 The Cohen-Macaulay Property

Theorem 8.1. Let X ⊂ Pr be a nonsingular irreducible curve of arithmetic
genus g over an algebraically closed field K, embedded by a complete linear
series as a curve of degree d. If d ≥ 2g+1, then the homogeneous coordinate
ring SX is Cohen-Macaulay.

This result first appeared in [Castelnuovo 1893], with subsequent proofs by
[Mattuck 1961], [Mumford 1970] and [Green and Lazarsfeld 1985]. Here we
follow a method of Green and Lazarsfeld because it works in all characteristics
and generalizes easily to singular curves. In Exercises 8.18–?? we give an
attractive geometric argument that works most smoothly in characteristic 0.
((If we add the Mattuck exercises, put in a pointer here.))

Before giving a proof, we deduce the Castelnuovo-Mumford regularity and
Hilbert function of SX :

Corollary 8.2. Let X ⊂ Pr be an irreducible nonsingular curve of genus g
over an algebraically closed field K, embedded by a complete linear series as
a curve of degree d ≥ 2g+1. If g = 0 then regSX = 1; otherwise regSX = 2.

Proof of Corollary 8.2. Since SX is Cohen-Macaulay of dimension 2 we have

H0
m(SX) = H1

m(SX) = 0, so SX is m-regular if and only if H2
m(SX)m−1 = 0.

By Corollary 10.8 this is equivalent to the condition that H1OX(m− 1) = 0.
Serre duality says that H1(OX(m−1)) is dual to H0(KX(−m+1)), where KX

is the canonical divisor of X. Since the degree of OX(1) = L is at least 2g+1,
we have degKX(−1) ≤ 2g − 2 − (2g + 1) < 0. Thus H0(KX(−1)) = 0, and
SX is 2-regular. On the other hand SX is 1-regular if and only if h1(OX) = 0.
Since h1(OX) = g, this concludes the proof.

Classically, the Cohen-Macaulay property of SX was described as a con-
dition on linear series. The degree n part of the homogeneous coordinate
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ring (SX)n of X is the image of H0OPr(n) in H0OX(n). Thus the linear
series (OX(n), (SX)n) may be described as the linear series cut out by hy-
persurfaces of degree n on X. We may compare it to the complete series
(OX(n),H0OX(n)). To prove Theorem 8.1 we will use the following crite-
rion.

Proposition 8.3. Let X be a curve in Pr. The homogeneous coordinate
ring SX of X is Cohen-Macaulay if and only if the series of hypersurfaces of
degree n in Pr is complete for every n; that is, the natural monomorphism

SX → ⊕n H
0OX(n)

is an isomorphism.

Proof. The ring SX has dimension 2, so it is Cohen-Macaulay if and only
if it has has depth 2. By Proposition 10.12 this is the case if and only if

H0
m SX = 0 = H1

m SX . The conclusion of the proposition follows from the
exactness of the sequence

0 → H
0
m SX → SX → ⊕n H

0OX(n) → H
1
m SX → 0

from Corollary 10.8.

Corollary 8.4. Let X ⊂ Pr be a nonsingular irreducible curve of arithmetic
genus g over an algebraically closed field K, embedded by a complete linear
series as a curve of degree d = 2g+1+p ≥ 2g+1. If x, y are linear forms of S
that do not vanish simultaneously anywhere on X then the Hilbert functions
of SX , SX/xSX and SX/(x, y)SX are given by the table

HM(n) :

n M = SX/(x, y)SX SX/xSX SX
0 1 1 1
1 g + p d− g d− g + 1
2 g d 2d− g + 1
3 0 d 3d− g + 1
...

...
...

...
n 0 d nd− g + 1

In particular, if Γ = H ∩ X is a hyperplane section of X consisting of d
distinct points, then the points of Γ impose independent linear conditions on
forms of degree ≥ 2, and the “last” graded Betti number of X is βr−1,r+1(SX) =
g.
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Proof. By Theorem 8.1 and Proposition 8.3 we have (SX)n = H0(OX(n)).
Furthermore, H1OX(n) = 0 for n > 0 because d ≥ 2g− 2. For M = SX , the
value HM(n) is thus given by the Riemann-Roch formula,

HM(n) = h0OX(n)

= h0OX(n)− h
1OX(n)

= degOX(n)− g + 1

= dn− g + 1.

These are the values in the right hand column of the table. Since SX is
Cohen-Macaulay, the elements x, y for a regular sequence on SX and we get
short exact sequences ((I want the next two sequences centered, but
I don’t want the equation number! seems “notag” doesn’t work
without amstex.))

0 - SX(−1) - SX - SX/xSX - 0 (8.1)

0 - (SX/xSX)(−1) - (SX/xSX) - SX/(x, y)SX - 0 .(8.2)

From these we see that the Hilbert functions of SX/xSX and SX/(x, y)SX
can be obtained from that of SX by taking first and second differences, giving
the rest of the values in the table.

If a hyperplane H has equation x = 0, then for any variety Y the homo-
geneous ideal of the hyperplane section H ∩ Y is the saturation of the ho-
mogeneneous ideal IY + (x) defining SY /xSY . Since SX is Cohen-Macaulay,
SX/xSX has depth 1, and the ideal IX + (x) is already saturated. Thus the
homogeneous coordinate ring SH∩X is equal to SX/xSX . To say that the
points of Γ = H ∩ X impose d linearly independent conditions on quadrics
means that for M = SH∩X we have HM(2) = d, and the second column of
the table shows that this is so (even in more general circumstances.)

Finally, to compute the “last” graded Betti number, we use the idea of Sec-
tion 2A.3. If x, y ∈ S1 form a regular sequence on SX as above, then by
Lemma 3.12 graded Betti numbers of SX , as a module over S, variables are
the same as those of SX/(x, y)SX , as a module over S/(x, y)S. The first
column of the table gives us the Hilbert function of SX/(x, y)SX . By Propo-
sition 2.3, βr−1,r+1(SX) is thus the dimension of the homology of the complex
0 - Kg � 0, which is obviously g.
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The fact that the points of a hyperplane section of a linearly normal curve
X impose independent conditions on forms of degree 2 actually implies that
SX is Cohen-Macaulay (Exercise 8.19), and the alternate proof given in the
Exercises relies on this.

Proof of Theorem 8.1 We will use the criterion in Proposition 8.3, and check
that for each n the map αn : (SX)n → H0OX(n) is surjective. Any effective
divisor has non-negative degree, so for n < 0 we have H0OX(n) = 0 (see Ex-
ercise 8.6 for a generalization). Since the curveX in Theorem 8.1 is projective
and connected, H0(OX) consists of the constant functions [Hartshorne 1977,
Theorem I.3.4(a)]. Thus α0 is an isomorphism, while α1 is an isomorphism
by our assumption that X is embedded by a complete linear series.

We now do induction and prove the surjectivity of αn+1 given the surjectivity
of αn with n ≥ 1. There is a commutative diagram

(SX)1 ⊗ (SX)n
α1 ⊗ αn- H

0OX(1)⊗ H
0OX(n)

(SX)n+1

? αn+1 - H
0OX(n+ 1).

µn

?

Since αn is surjective so is α1⊗αn is surjective. Thus it suffices to show that
µn is surjective for each n ≥ 1.

For n ≥ 2 the surjectivity can be proved by the “base-point-free pencil trick”
of Castelnuovo; see Exercise 4.12. This is presumably the origin of the idea
of Castelnuovo-Mumford regularity. For the case n = 1 we need a new tool,
which in fact works in all cases.

8.2 The restricted tautological bundle

For simplicity we return to the notation L = OX(1). The map µn is the map
on cohomology induced by the multiplication map of sheaves H0(L)⊗KLn →
Ln+1 where Ln means L ⊗ · · · ⊗ L with n factors). Thus µn is the tensor
product of the identity map on Ln with the multiplication map H0(L) ⊗K
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OX → L. We set

MX = ker
[
H

0(L)⊗K OX → L
]
.

Thus MX is the restriction to X of the tautological sub-bundle on Pr (see
Section 5B.2 of Chapter 5).

Tensoring with Ln we obtain an exact sequence

0 →MX ⊗ Ln → H
0(L)⊗K Ln → Ln+1 → 0.

Taking cohomology, we see that the surjectivity of the map µn would fol-
low from the vanishing of H1(MX ⊗ Ln). We will prove this vanishing by
analyzing MX .

We first generalize. For any sheaf F on X we define

MF = ker
[
H

0(F)⊗K OX → F
]
,

so that MX = ML. Thus we have a tautological left exact sequence

εF : 0 →MF → H
0F ⊗OX → F → 0.

which is right exact if and only if F is generated by global sections. This
construction is functorial in F . Thus for any effective divisor D ⊂ X, the
short exact sequence

0 → L(−D) → L → L|D → 0

gives rise to a diagram (whose rows and columns may not be exact!)

(∗)

0 0 0

0 - ML(−D)

?
- H

0 L(−D)⊗K OX

?
- L(−D)

?
- 0

0 - ML

?
- H

0 L ⊗K OX

?
- L

?
- 0

0 - ML|D

?
- H

0(L|D)⊗K OX

?
- L|D

?
- 0

0
?

0
?

0.
?
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Whenever we can prove that the left hand column is exact and analyze the
sheaves ML(−D) and ML|D we will get useful information about MX = ML.

We will do exactly that for the case where D is the sum of d− g− 1 general
points of X. For this we need some deeper property of linear series, expressed
in part 6 of the following Lemma. Parts 1–3 will be used in the proof of part
6. We wileave parts 4 and 5, which we will not use, for the reader’s practice
(Exercise 8.12).

Theorem 8.5. Suppose that X is a nonsingular curve of arithmetic genus g
over an algebraically closed field, and let d be an integer.

1. If d ≥ g− 1 then the set of line bundles L′ ∈ Picd(X) with h1 L′ = 0 is
open and dense.

2. If L′ is any line bundle of degree ≥ g then L′ = OX(D) for some
effective divisor D on X.

3. If L′ is a general line bundle of degree ≥ g + 1 then |L′| is base point
free, and thus exhibits X as a g + 1-fold cover of P1.

4. If L′ is a general line bundle of degree ≥ g + 2 then |L′| maps X
birationally onto a curve of degree g + 2 with at worst ordinary nodes
in P2.

5. If L′ is a general line bundle of degree ≥ g + 3 then |L′| embeds X as
a curve of degree g + 3 in P3.

6. If L is a line bundle of degree d ≥ 2g + 1 and D is a general effective
divisor of degree d−g−1 then L′ = L(−D) has h1(L′) = 0, h0(L′) = 2,
and |L′| is base point free.

Here, when we say that something is true for “a general effective divisor of
degree m,” we mean that there is a dense open subset U ⊆ Xm = X ×
X × · · · × X such that the property holds for all divisors D =

∑m
1 pi with

(p1, . . . , pm) ∈ U . To say that something holds for a general line bundle of
degree m makes sense in the same way because Picm(X) is an irreducible
algebraic variety. In the proof below will use this and several further facts
about Picard varieties. For a characteristic 0 introduction to the subject, see
[Hartshorne 1977, Appendix B, Section 5]. A full characteristic 0 treatment
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is given in [Arbarello et al. 1985, Chapter 1], while [Serre 1988] gives an
exposition of the construction in general.

• For each integer d the variety Picd(X) is irreducible of dimension g, the
genus of X.

• The disjoint union
⋃

Picd(X) is a graded algebraic group in the sense
that the inverse and multiplication maps

Picd(X) → Pic−d(X) : L 7→ L−1

Picd(X)× Pice → Picd+e(X) : (L,L′) 7→ L ⊗ L′

are maps of varieties.

• The set of effective divisors of degree d on X may be identified with
the d-th symmetric power X(d) := Xd/G, where Xd = X × · · · ×X is
the direct product of d copies of X and G is the symmetric group on d
elements, permuting the factors. The identification is given by

Xd 3 (x1, . . . , xd) 7→ x1 + · · ·+ xd.

Since Xd is a projective variety of dimension d and G is a finite group,
dimX(d) is also a projective variety of dimension d.

• The map of sets X(d) → Picd(X) sending (x1, . . . , xd) to the line bundle
OX(x1 + . . .+xd) is a map of algebraic varieties, called the Abel-Jacobi
map. Its fiber over a line bundle L is the projective space |L| of global
sections of L modulo nonzero scalars.

Proof of Theorem 8.5. Part 1: By duality, h1 L′ = h0(ωX ⊗L′−1). Further,
if degL′ = d ≥ g − 1 then deg(ωX ⊗ L′−1) = 2g − 2 − d ≤ g − 1. Since
the map Picd(X) → Pic2g−2−d(X) taking L′ to ωX ⊗ L′−1 is a morphism.
Its inverse is given by the same formula, so it is an isomorphism. Thus it
suffices to show the set of line bundles L′′ ∈ Pic2g−2−d(X) of with h0 L′′ = 0
is open and dense. Let e = 2g − 2 − d ≤ g − 1. The complementary set,
the set of bundles L′′ ∈ Pice(X) with nonzero sections, is the image of the
Abel-Jacobi map X(e) → Pice . Since X(e) is projective, the image is closed
and of dimension ≤ dimX(2g−2−d) = 2g−2−d < g = dim Pice(X), Thus the
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original set of bundles of degree e without sections is non-empty and open;
it is dense since Pice(X) is irreducible.

Part 2: Let x be a point of X. For any integer d the morphism

Picd(X) 3 L′ 7→ L′(p) = L′ ⊗OX(p) ∈ Picd+1(X)

is an isomorphism (its inverse is L′′ 7→ L′′(−p)). Thus it suffices to show
that every line bundle of degree exactly g can be written as OX(D) for some
D ∈ X(g). That is, it suffices to show that the Abel-Jacobi map X(g) →
Picg(X) is surjective. These varieties both have dimension g. Since X(g) is
a projective variety its image is closed, so it suffices to show that the image
has dimension g, or equivalently, that the general fiber is finite. The fiber
through a general divisor D consists of all the linearly equivalent divisors, so
it suffices to show that there are none except D—that is, h0(OX(D)) = 1.

By the Riemann-Roch theorem and duality,

h
0(OX(D)) = degD − g + 1 + h

1(OX(D)) = 1 + h
0(ωX(−D)).

If F is any sheaf on X with H0F 6= 0 then the set of sections of F vanishing
at a general point of X is a proper linear subspace of H0F . Since h0(ωX) = g,
we have h0(ωX(−p1 − · · · − pg)) = 0 as required.

Part 3: Suppose d ≥ g + 1 and let U ⊂ Picd(X) be set of line bundles L′
with h1(L′) = 0, which is open and dense by part 1. Let

U ′ = {(L′, p) ⊂ U ×X | p is a basepoint of L′},

and let π1 : U ′ → U and π2 : U ′ → X be the projections. The set of line
bundles of degree d without base points contains the complement of π1(U

′).
It thus suffices to show that dimU ′ < g.

Consider the map

φ : U ′ → Picd−1(X); (L′, p) 7→ L′(−p).

The fiber φ−1(L′′) over any line bundle L′′ is contained in the set {(L′′(p), p) |
p ∈ X} parametrized by X, so dimφ−1(L′′) ≤ 1. On the other hand, the
image φ(U ′) consists of line bundles L′(−p) such that h0(L′(−p)) = h0(L′).
Applying the Riemann-Roch formula, and using h1(L′) = 0, we see that
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h0(L′(−p)) = (d−1)−g+1+h1(L′(−p)) = d−g+1; that is, h1(L′(−p) = 1.
It thus suffices to show that the set U ′′ of line bundles L′′ of degree d−1 ≥ g
with h1(L′′) 6= 0 has dimension ≤ g − 2.

Let e = 2g − 2− (d− 1). Under the isomorphism

Picd−1(X) → Pice(X); L′′ 7→ ωX ⊗ L′′−1

the set U ′′ is carried into the set of bundles with a nonzero global section, the
image of the Abel-Jacobi map X(e) → Pice(X). This image has dimension
at most dimX(e) = e = 2g − 2− (d− 1) ≤ 2g − 2− g = g − 2 as required.

Part 6: If d ≥ 2g + 1 then d − g − 1 ≥ g, so any line bundle of degree
d − g − 1 can be written as OX(D) for some effective divisor. Thus if L
has degree d, and D is a general effective divisor of degree d − g − 1, then
L′ = L(−D) is a general line bundle of degree g + 1. The assertions of part
3 thus follow from those of parts 1 and 2, together with the Riemann-Roch
theorem.

Returning to the proof of Theorem 8.1 and its notation, we suppose that D
is a general divisor of degree d− g − 1, the sum of d− g − 1 general points.
Since L|D is a coherent sheaf with finite support it is generated by global
sections. The line bundle L is generated by global sections too, as already
noted, and by Theorem 8.5, Part 3, the same goes for L(−D). Thus all three
rows of diagram (∗) are exact. The exactness of the right hand column is
immediate, while the exactness of the middle column follows from the fact
that H1 L(−D) = 0. By the Snake Lemma, it follows that all the rows and
columns of (∗) are exact.

To understand ML(−D), we use Part 3 of Theorem 8.5 again. Let σ1, σ2 be a
basis of the vector space H0(L(−D)). We can form a sort of Koszul complex

K : 0 → L−1(D)

(
σ2

−σ1

)
- O2

X

(σ1 σ2 )
- L(−D) → 0

whose right hand map O2
X

(σ1 σ2 )
- L(−D) → 0 is the map H0 L(−D)⊗K

OX → L(−D) in the sequence εL(−D). If U = SpecR ⊂ X is an open
set where L is trivial, then we may identify L|U with R, and σ1, σ2 as a
pair of elements generating the unit ideal, so K is exact, and it follows that
ML(−D) = L−1(D).
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Finally, to understand ML|D we choose an isomorphism L|D = OD. Writing

D =
∑d−g−1

1 pi, the defining sequence εOD
becomes

0 →MOD
→

d−g−1∑
1

OX →
d−g−1∑

1

Opi
→ 0,

and we deduce that MOD
=
∑d−g−1

1 OX(−pi).

Thus the left hand column of diagram (∗) is an exact sequence

0 → L−1(D) →MX →
d−g−1∑

1

OX(−pi) → 0.

Tensoring with Ln and taking cohomology, we get an exact sequence

H
1(Ln−1(D)) → H

1(Ln ⊗MX) →
∑

H
1(Ln(−pi)).

As D is general of degree d−g−1 ≥ g we get H1(Ln−1(D)) = 0 for all n ≥ 1.
Since Ln(−pi) has degree at least n(2g + 1) − 1 ≥ 2g, its first cohomology
also vanishes, whence H1(Ln ⊗MX) = 0 as required.

8A Strands of the Resolution

Consider again the case of a curveX of genus g embedded in Pr by a complete
linear series |L| of “high” degree d ≥ 2g + 1 (so that by Riemann-Roch we
have r = d− g.) By Theorem 8.1 and Corollary 8.2 the resolution of SX has
the form

0 1 2 · · · · · · r − 2 r − 1
0 1 0 0 · · · · · · 0 0
1 0 β1,2 β2,3 · · · · · · βr−2,r−1 βr−1,r

2 0 β1,3 β2,4 · · · · · · βr−2,r βr−1,r+1

where βi,j is the vector space dimension of TorSi (SX ,K)j. The goal of this
section is to explain what is known about the βi,j. We will call the strand
of the resolution corresponding to the βi,i+1 the quadratic strand ; the βi,i+2

correspond to the cubic strand. (The names arise because β1,2 is the number
of quadratic generators required for the ideal of X, while β1,3 is the number
of cubic equations.)
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Since IX contains no linear forms, the number of generators of degree 2 is

β1,2 = dim(IX)2 = dimS2−dim(SX)2 =

(
r + 2

2

)
−(2d−g+1) =

(
d− g − 1

2

)
,

where the penultimate equality comes from Corollary 8.4 and the Riemann-
Roch Theorem. This argument extends a little. By Corollary 1.10, the
formula in Corollary 8.4 determines the numbers βi,i+1 − βi−1,i+1 for all i.

We have already given a similar argument computing the “last” graded Betti
number, βr−1,r+1(SX) (Corollary 8.4). Now we will give a conceptual argu-
ment yielding much more.

Proposition 8.6. With notation as above, βr−1,r+1 = g. In fact, if F is the
minimal free resolution of SX as an S-module, and ωX is the canonical sheaf
of X, then the twisted dual, HomS(F, S(−r − 1)), of F, is the minimal free
resolution of the S-module wX := ⊕n H0 ωX(n).

Proof. The first statement of the Proposition follows from the second be-
cause wX is 0 in negative degrees, while (wX)0 = H0 ωX is a vector space of
dimension g.

Since SX is Cohen-Macaulay and of codimension r − 1 we have

ExtiS(SX , S(−r − 1)) = 0 for i 6= r − 1.

In other words, the cohomology of the twisted dual Hom(F, S(−r − 1)) is
zero except at the end, so it is a free resolution of wX . It is minimal because
it is the dual of a minimal complex. Because the resolution is of length r−1,
the module Extr−1

S (SX , S(−r − 1)) is Cohen-Macaulay, and it follows from
Corollary 10.8 that Extr−1

S (SX , S(−r− 1)) = ⊕n H0 ωX(n). In particular, we
see that

βr−1,r+1(SX) = β0,0

(
Extr−1

S (SX , S(−r − 1))
)

= dimK H
0 ωX = h

0 ωX .

From Serre duality we have h0ωX = h1OX = g, as required by the last
formula.

In terms of Betti diagrams, Proposition 8.6 means that the Betti diagram
of wX is obtained by “reversing” that of SX left-right and top-to-bottom.
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Taking account of what we know so far, it has the form:

0 1 2 · · · · · · r − 2 r − 1
0 g βr−2,r · · · · · · β2,4 β1,3 0
1 βr−1,r βr−2,r−1 · · · · · · β2,3 β1,2 0
2 0 0 · · · · · · 0 0 1

It would be fascinating to know what the value of each individual Betti
number says about the geometry of the curve, but this is far beyond current
knowledge. A cruder question is, “Which of the βi,j are actually nonzero?”
In fact, there is just one block of nonzero entries in each row:

Proposition 8.7. If I ⊂ S is a homogeneous ideal that does not contain any
linear forms, and if S/I is Cohen-Macaulay of regularity 3, then

βi,i+1 = 0 ⇒ βj,j+1 = 0 for j ≥ i,
βi,i+2 = 0 ⇒ βj,j+2 = 0 for j ≤ i.

Proof. Using Proposition 1.9, applied to the resolution of SX , gives the first
conclusion. By Proposition 8.6 the dual complex is also a resolution; applying
Proposition 1.9 to it, we get the second conclusion.

Because the projective dimension of SX is r − 1, at least one of βi,i+1 and
βi,i+2 must be nonzero for i = 1, . . . , r − 1. Thus the nonzero entries in the
Betti diagram of SX are determined by two numbers a = a(X) and b = b(X)
with 0 ≤ a < b ≤ r which may be defined informally from the diagram

0 1 · · · a a+ 1 · · · b− 1 b · · · r − 1
0 1 − · · · − − · · · − − · · · −
1 − ∗ · · · ∗ ∗ · · · ∗ − · · · −
2 − − · · · − ∗ · · · ∗ ∗ · · · g

where “−” denotes a zero entry and “∗” denotes a nonzero entry (we admit
the possibilities a = 0, b = r, and b = a + 1.) More formally, 0 ≤ a(X) <
b(X) ≤ r are defined by letting a(X) be the greatest number such that
βi,i+2(SX) = 0 for all i ≤ a(X) and letting b(X) be the least number such
that βi,i+1(SX) = 0 for all i ≥ b(X).

Note that when b ≤ a + 2 Corollaries 8.4 and 1.10 determine all of the
numbers βi,j. However if b ≥ a+ 3 there could be examples with the same g
and p but with different graded Betti numbers.
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8A.1 The Cubic Strand

What does the number a tell us? It is closely related to an important ge-
ometric invariant of the embedding X ⊂ Pr, the dimension of the smallest
degenerate secant plane. To understand this notion, recall that q general
points span a projective q − 1-plane. A plane in Pr is thus a degenerate
q-secant plane to X if it has dimension at most q−2 and meets X in at least
q points, or more generally if it meets X in a scheme of length at least q. We
use bxc and dxe to denote the floor and ceiling of x, the largest integer ≤ x
and the smallest integer ≥ x respectively.

Theorem 8.8. Suppose that X ⊂ Pr is a curve embedded by a complete
linear series of degree 2g + 1 + p, with p ≥ 0.

1. p ≤ a(X).

2. If X has a degenerate q-secant plane, then a(X) ≤ q − 3.

3. X always has a degenerate q-secant plane for q = p+3+max(0,
⌈
g−p−3

2

⌉
).

Thus

p ≤ a(X) ≤ p+ max
(
0,
⌈
g − 3− p

2

⌉)
.

When p ≥ g − 3, or in other words d = 2g + 1 + p ≥ 3g − 2, Parts 1 and 2
show that a(X) determines the size of the smallest degenerate secant plane
precisely. For smaller p, and special X other phenomena can occur. See the
example and discussion in Section 8B.

Part 1 of Theorem 8.8, along with Theorem 8.1, is usually stated by saying
that a linearly normal curve X ⊂ Pr of degree 2g + 1 + p satisfies condition
Np; here N0 is taken to mean that SX is Cohen-Macaulay; N1 means N0 and
the condition that IX is generated by quadrics; N2 means in addition that
IX is linearly presented; and so on.

Proof of Theorem 8.8 part 1. Consider the free resolution F of SX . Since SX
is Cohen-Macaulay, we have ExtiS(SX , S(−r−1)) = 0 for i 6= codimX = r−1
while Extr−1

S (SX , S(−r− 1)) = wX = ⊕n H0(ωX(n)). Thus HomS(F, S(−r−
1)) is a minimal free resolution of wX .

We have h0(ωX) = g, while h0ωX(n) = 0 for n < 0 since degOX(1) >
degωX = 2g − 2. Thus we may apply Corollary 7.2, and we see that the
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linear strand of the free resolution HomS(F, S(−r − 1)) has length at most
g − 1. It follows that

βi,i+2(SX) = βr−1−i,r−1−i(wX) = 0

when r − 1− i ≥ g, or equivalently

i ≥ r − 1− g = (d− g)− 1− g = 2g + 1 + p− 2g − 1 = p

as required for part 1.

Part 2 of Theorem 8.8 is a special case of a more general geometric result.

Theorem 8.9. If a variety (more generally any scheme) X ⊂ Pr intersects
a plane Λ of dimension e in a finite scheme of length ≥ e+2, then the graded
Betti number βe,e+2(SX) 6= 0. In particular a ≤ e− 1.

The idea is that by Theorem 4.1 and Proposition 4.11, the homogeneous
coordinate ring of a set of dependent points in Pe cannot be 1-regular, and
the cubic strand of its resolution begins by the e-th step. In general, the
regularity of a subset Y ⊂ X need not be bounded by the regularity of X,
but in our setting the high degree syzygy in the e-th place of the resolution
of the coordinate ring of the point somehow forces a high degree syzygy in
the same place in the resolution of the coordinate ring of X. The proof we
will give is indirect; we bound the local cohomology instead of the syzygies.
Here is a general algebraic version, from which Theorem 8.9 will follow easily.
The reader will recognize the idea used here from the proof of the Gruson-
Lazarsfeld-Peskine Theorem 5.1: if the homology of a free complex has low
dimension, then the complex can be used to compute regularity as if it were
a resolution.

Theorem 8.9 follows at once from a more general result.

Theorem 8.10. Let M be a finitely generated graded module over a polyno-
mial ring S = K[x0, . . . , xr]. Set S = K[x0, . . . , xp] be the quotient of S by
an ideal generated by r − p linear forms, and M = M ⊗S S. If dimM ≤ 1
then reg H1

m(M) + 1 ≤ reg Torp(M,K)− p.

Proof. Let F : · · · → F1 → F0 → M → 0 be the minimal free resolution of
M as an S-module, and write F i for S ⊗ Fi. Let Ki = kerF i → F i−1 be the
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module of i-cycles, and let Bi = imF i+1 → F i be the module of boundaries,
so that there are exact sequences

(Ei) 0 → Bi → Ki → Hi(S ⊗ F) → 0

and

(Gi) 0 → Ki → F i → Bi−1 → 0.

The objects that play a role in the proof appear in the diagram

H
1
mM

s0- H
2
mK0

�
t0

H
2
mB0

s1- H
3
mK1

�
t1

H
3
mB1

s2- H
4
mK2

�
t2 · · ·

· · ·

H
2
m F 1

u1
6

H
3
m F 2

u2
6

· · ·

where the map ti is induced by the inclusion Bi ⊂ Ki, the map si is the
connecting homomorphism coming from the sequence Gi and the map ui
comes from the surjection F i → Bi−1. We will prove:

1. Each ti is an isomorphism;

2. For i < p the map si is a monomorphism;

3. For i = p the map ui is a surjection.

It follows from items 1–3 that H1
m(M) is a subquotient of Hp+1

m (F p). In par-
ticular, since both of these are Artinian modules, reg H1

m(M) ≤ reg Hp+1
m (F p).

By Lemma 10.9 reg Hp+1
m (F p) + p + 1 is the maximum degree of a genera-

tor of F p or, equivalently, of Fp; this number is also equal to reg Torp(M,K).
Putting this together we get reg H1

m(M)+1 ≤ reg Torp(M,K)−p as required.

The map ti is an isomorphism for i = 0 simply because B0 = K0. For i > 0,
we first note that Hi(S⊗F) = Tori(S,M). Since M = S⊗M has dimension
≤ 1, the annihilator of M plus the annihilator of S is an ideal of dimension
≤ 1. This ideal also annihilates Tori(S,M), so dim Tori(S,M) ≤ 1 also. It
follows that Hj

m(Hi(S ⊗ F)) = 0 for all j ≥ 2 and all i. The short exact
sequence (Ei) gives rise to a long exact sequence containing

H
i+1
m (Hi(S ⊗ F)) - H

i+2
m (Bi)

ti- H
i+2
m (Ki) - H

i+2
m (Hi(S ⊗ F))
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and we have just shown that for i ≥ 1 the two outer terms are 0. Thus ti is
an isomorphism, proving the statement in item 1.

For items 2 and 3 we use the long exact sequence

· · · - H
i+1 F i

- H
i+1Bi−1

si- H
i+2Ki

- · · ·

corresponding to the short exact sequence (Gi). For i < p we have Hi+1 F i =
0, giving the conclusion of item 2. Finally, dimS = p + 1, so Hp+2

m Ki = 0.
This gives the statement of item 3.

Conclusion of the proof of Theorem 8.8. It remains to prove part 3, and for
this it is enough to produce a degenerate q-secant plane with q = p + 3 +
max(0,

⌈
g−p−3

2

⌉
). to which to apply Theorem 8.9.

To do this we will focus not on the q-plane but on the subscheme D in which
it meets X. We don’t need to know about schemes for this: in our case D is
an effective divisor on X. Thus we want to know when an effective divisor
spans “too small” a plane.

The hyperplanes in Pr correspond to the global sections of L := OX(1), so the
hyperplanes containing D correspond to the global sections of L(−D). Thus
the number of independent sections of L(−D) is the codimension of the span
of D. That is, D spans a projective plane of dimension e = r−h0(L(−D)) =

h0(L)− 1− h0(L(−D)).

The Riemann-Roch formula applied to L and to L(−D) shows that

e = (degL − g + 1− h
1 L)− 1− (degL − degD − g + 1− h

1 L(−D))

= degD + h
1 L − h

1 L(−D)− 1

= degD − h
1 L(−D)− 1

since h1 L = 0. From this we see that the points of D are linearly dependent,
that is, e ≤ degD − 2, if and only if

h
1 L(−D) = h

0 ωX ⊗ L−1(D) 6= 0.

This means ωX⊗L−1(D) = OX(D′), or equivalently that L⊗ω−1
X = OX(D−

D′), for some effective divisor D′.
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The degree of L⊗ω−1
X is 2g+ 1 + p− (2g− 2) = p+ 3, but we know nothing

else about it. If p ≥ g − 3, then degL ⊗ ω−1
X ≥ g. By Theorem 8.5, Part 2,

there is an effective divisor D such that L⊗ω−1
X = OX(D), and taking D′ = 0

we see that the span of D is a degenerate p + 3-secant plane, as required in
this case.

On the other hand, if p < g − 3 then the subset of Picp+3(X) that consists
of line bundles of degree p + 3 that can be written in the form OX(D) is
the image of Xp+3, so it has at most dimension p + 3 < g. Thus it cannot
be all of the variety Picp+3(X), and we will not in general be able to take
D′ = 0. From this argument it is clear that we may have to take the degree
q of D large enough so that the sum of the degrees of D and D′ is at least g.
Moreover this condition suffices: if q and q′ are integers with q+ q′ = g then
the map

Xq ×Xq′ → Picq−q′(X)

((a1, . . . , aq), (b1, . . . bq′)) 7→ OX(
q∑
1

ai −
q′∑
1

bj)

is surjective (see [Arbarello et al. 1985, V.D.1]).

With this motivation we take

q = p+ 3 + dg − p− 3

2
e = dg + p+ 3

2
e,

q′ = bg − p− 3

2
c.

We get q − q′ = p + 3 and q + q′ = g, so by the result above we may write
the line bundle L⊗ω−1

X in the form OX(D−D′) for effective divisors D and
D′ of degrees q and q′, and the span of D will be a degenerate q-secant plane
as required.

Some of the uncertainty in the value of a(X) left by Theorem 8.8 can be
explained in terms of the quadratic strand; see Example ?? and Theorem
8.21.

8A.2 The Quadratic Strand

We now turn to the invariant of X given by b(X) = min{i ≥ 1 | βi,i+1(X) =
0}. Theorem 8.8 shows that some βi,i+2 6= 0 when X contains certain “in-
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teresting” subschemes. By contrast, we will show that some βi,i+1 6= 0 by
showing that X is contained in a variety Y with βi,i+1(SY ) 6= 0. To do this
we compare the resolutions of IX with that of its submodule IY .

Proposition 8.11. Suppose that M ′ ⊂M are graded S-modules. If Mn = 0
for n < e, then βi,i+e(M

′) ≤ βi,i+e(M) for all i.

Proof. If Me = 0 then β0,e(M) = 0, and since the differential in a minimal
resolution maps each module into m times the next one, it follows by induc-
tion that βi,i+e(M) = 0 for every i. Thus we may assume that M ′

e ⊂ Me

are both nonzero. To simplify the notation we may shift both M and M ′ so
that e = 0. Under this hypothesis, we will show that any map φ : F′ → F
from the minimal free resolution of M ′ to that of M that lifts the inclusion
M ′ ⊂M must induce an inclusion of the linear strands.

To this end let G ⊂ F be the linear strand, so that the i-th free module Gi

in G is a direct sum of copies of S(−i), and similarly for G′ ⊂ F′. To prove
that φi|Gi

: G′
i → Fi is an inclusion, we do induction on i, starting with

i = 0.

Because the resolution is minimal, we have F0/mF0 = M/mM . In partic-
ular G0/mG0 = M0, and similarly G′

0/mG′
0 = M ′

0, which is a subspace of
M0. Thus the map φ0|G′0 has kernel contained in mG′

0. Since G′
0 and G0

are free modules generated in the same degree, and φ0|G′0 is a monomor-
phism in the degree of the generators, φ0|G′0 is a monomorphism (even a split
monomorphism.)

For the inductive step, suppose that we have shown φi|G′i is a monomorphism
for some i. Since F′ is a minimal resolution, the kernel of the differential
d : F ′

i+1 → F ′
i is contained in mF ′

i+1. Since d(G′
i+1) ⊂ G′

i, and G′
i+1 is

a summand of F ′
i+1, the composite map φi|Gi+1

◦ d has kernel contained in
mGi+1. From the commutativity of the diagram

Gi+1

d
- Gi

G′
i+1

φi+1|Gi+1

6

d
- G′

i

φi|Gi

6
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we see that the kernel of φi+1|Gi+1
must also be contained in mG′

i+1. Once
again, φi+1|Gi+1

is a map of free modules generated in the same degree that is
a monomorphism in the degree of the generators, so it is a (split) monomor-
phism.

To apply Proposition 8.11 we need an ideal generated by quadrics that is
contained in IX . We will use an ideal of 2× 2 minors of a 1-generic matrix,
as described in Chapter 6. Recall that the integer b(X) was defined as the
smallest integer such that βi,i+1(SX) = 0 for all i ≥ b(X).

Theorem 8.12. Suppose that X ⊂ Pr is a curve embedded by a complete
linear series |L|. Suppose a divisor D ⊂ X has has h0OX(D) = s + 1 ≥ 2.
If h0 L(−D) = t+1 ≥ 2, then βs+t−1,s+t(SX) 6= 0. In particular b(X) ≥ s+ t.

Proof. After picking bases for H0OX(D) and H0 L(−D) the multiplication
map H0OX(D)⊗ H0 L(−D) → H0 L corresponds, as in Proposition 6.10, to
a 1-generic (s+1)×(t+1) matrix A of linear forms on Pr whose 2×2 minors
lie in IX .

Since IX contains no linear forms we may apply Proposition 8.11, and it
suffices to show that the ideal I = I2(A) ⊂ IX has βs+t−2,s+t(I) 6= 0.

If s = 1, we can get the result from the Eagon-Northcott complex as follows.
By Theorem 6.4 the maximal minors of A generate an ideal I of codimension
(t+1)− (s+1)+1 = t whose minimal free resolution is given by the Eagon-
Northcott complex (see Section 11H). Examining this complex, we see that
βt−1,t+1(I) 6= 0. A similar argument holds when t = 1.

If s > 2 and t > 2 we use a different technique, which also covers the
previous case and is in some ways simpler. Since the matrix A is 1-generic,
the elements of the first row are linearly independent, and the same goes for
the first column. We first show that by choosing bases that are sufficiently
general, we can ensure that the s + t + 1 elements in the union of the first
row and the first column are linearly independent.

Choose bases σ0, . . . , σs and τ0, . . . , τt for H0OX(D) and H0 L(−D) respec-
tively, so that the (i, j)-th element of the matrix A is the linear form cor-
responding to σiτj ∈ H0 L = S1. Let Bσ and Bτ be the base divisors of the lin-
ear series |OX(D)| = (OX(D), 〈σ0, . . . , σs−1〉) and |L(−D)| = (L(−D), 〈τ0, . . . , τt−1〉)
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respectively. Since the linear series |OX(D−Bσ)| is base point free, we may
choose the basis {σi} so that the divisor corresponding to σ0 is Bσ +D0, and
D0 is disjoint from the divisor of Bτ . We may then choose τ0 such that the
divisor corresponding to τ0 is BτE0 and E0 is disjoint from both Bσ and D0.

With these choices, we claim that the spaces of linear forms 〈σ0τ0, . . . , σ0τt−1〉
and 〈σ0τ0, . . . , σs−1τ0〉 intersect only in the 1-dimensional space 〈σ0τ0〉. In-
deed, if a linear form ` is in the intersection, then ` vanishes on both D0 and
E0, so it vanishes on D0 +E0 and thus, taking the base loci into account, on
Bσ + Bτ + D0 + E0. This is the divisor of σ0τ0, so ` is a scalar multiple of
σ0τ0 as required. It follows that the linear forms that appear in the first row
and column of A, that is the s+ t+ 1 elements

σ0τ0 · · · σ0τt
...

σsτ0

are linearly independent.

The following more general result now concludes the proof of Theorem 8.12.

Theorem 8.13. Let A = (`i,j)0≤i≤s,0≤j≤t be an s + 1 × t + 1 matrix of
linear forms. If the first row and column of A consist of s + t + 1 linearly
independent elements and if some 2 × 2 minor of A involving the upper left
corner is nonzero, then βs+t−1,s+t(S/I2(A)) 6= 0.

A weaker version of Theorem 8.13 was proved by Green and Lazarsfeld to
verify one inequality of Green’s conjecture, as explained below. A similar
theorem holds for the 4×4 pfaffians of a suitably conditioned skew-symmetric
matrix of linear forms, and in fact this represents a natural generalization of
the result above. See [Koh and Stillman 1989] for details.

Example 8.1. Consider the matrix

A =


x0 x1 x2 · · · xt
x1+t 0 0 · · · 0

...
...

... · · · ...
xs+t 0 0 · · · 0

 (∗)
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where x0, . . . , xs+t are indeterminates. To simplify the notation, let P =
(x1, . . . , xt) and Q = (x1+t, . . . , xs+t) be the ideals of S corresponding to
the first row and the first column of A, respectively. It is easy to see that
I2(A) = PQ = P ∩Q. Consider the exact sequence

0 → S/P ∩Q→ S/P
⊕

S/Q→ S/P +Q→ 0.

The corresponding long exact sequence in Tor includes

Tors+t(S/P ⊕ S/Q,K) → Tors+t(S/(P +Q),K) → Tors+t−1(S/(P ∩Q),K).

The free resolutions of S/P , S/Q and S/(P + Q) are all given by Koszul
complexes, and we see that the left hand term is 0 while the middle term is
K in degree s+ t, so

βs+t−1,s+t(S/I2(A)) = dim Tors+t−1(S/(P ∩Q) ≥ 1

as required.

Note that x0 actually played no role in this example—we could have replaced
it by 0. Thus the conclusion of Theorem 8.13 holds in slightly more generality
than we have formulated it. But some condition is necessary: see Exercise
8.15.

Proof of Theorem 8.13. To simplify notation, set I = I2(A). We must show
that the vector space Tors+t−1(S/I,K)s+t is nonzero, and we use the free
resolution K of K to compute it. We may take K to be the Koszul complex

K : 0 - ∧r+1 Sr+1(−r − 1)
δ- ∧r Sr(−r) δ- · · · δ- S,

Thus it suffices to give a cycle of degree s+ t in

S/I ⊗Ks+t−1 = S/I ⊗ ∧s+t−1Sr+1(−s− t+ 1)

that is not a boundary. The trick is to find an element α, of degree s+ t in
Ks+t−1, such that

1. δ(α) 6= 0 ∈ Ks+t−2; and

2. δ(α) goes to zero in S/I ⊗Ks+t−2.
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Having such an element will suffice to prove the Theorem: From condition 2
it follows that the image of α in S/I ⊗K is a cycle. On the other hand, the
generators of Ks+t−1 have degree s + t − 1, and the elements of I are all of
degree 2 or more. Thus the degree s+ t part of Ks+t−1 coincides with that of
S/I ⊗Ks+t−1. If α were a boundary in S/I ⊗K it would also be a boundary
in K, and δ(α) would be zero, contradicting condition 1.

To write down α, let x0, . . . xt be the elements of the first row of A, and let
x1+t, . . . , xs+t be the elements of the first column, starting from the position
below the upper left corner, as in equation (∗) in the example above. Com-
plete the sequence x0, . . . , xs+t to a basis of the linear forms in S by adjoining
some linear forms xs+t+1, . . . , xr. Let {ei} be a basis of Sr+1(−1) such that
δ(ei) = xi in the Koszul complex. Thus if 0 ≤ j ≤ t then `0,j = xj, while if
1 ≤ i ≤ s then `i,0 = xi+t.

The free module
∧s+t−1 Sr+1(−s−t+1) has a basis consisting of the products

of s+ t−1 of the ei. If 0 ≤ j ≤ t and 1 ≤ i ≤ s, then we denote by e[i+t,j] the
product of all the e1, . . . , es+t except ej and ei+t, in the natural order, which
is such a basis element. With this notation, set

α =
∑

1≤i≤s
0≤j≤t

(−1)i+j`i,je[i+t,j].

If 0 ≤ k ≤ s+ t and k 6= i+ t, k 6= j then we write e[k,i+t,j] for the product of
all the e1, . . . , es+t except for ei+t, ek and ej, as always in the natural order.
These elements are among the free generators of

∧s+t−2 Sr+1(−s − t + 2).
The formula for the differential of the Koszul complex gives

δ(e[i+t,j]) =
∑

0≤k<j
(−1)ke[k,i+t,j]+

∑
j<k<i+t

(−1)k−1e[k,i+t,j]+
∑

i+t<k≤s+t
(−1)ke[k,i+t,j].

Write (p, q|u, v) for the 2×2 minor of A involving rows p, q and columns u, v.
Straightforward computation gives

δ(α) =

{
±(0, i|j, k)e[k,i+t,j] if 0 ≤ k ≤ t
±(i, k − t|0, j)e[k,i+t,j] if 1 + j ≤ k =≤ s+ t.

In particular, the coeffients of the e[k,i+t,j] in δ(α) are all in I.

Consider a 2× 2 minor of A involving the upper left corner, say

(0, 1|0, 1) = det
(
`0,0 `0,1
`1,0 `1,1

)
= `0,0`1,1 − `0,1`1,0.



200 CHAPTER 8. CURVES OF HIGH DEGREE

Since `0,0, `0,1, and `1,0 are distinct prime elements of S, and S is factorial,
this element is nonzero. Thus the coefficients of δ(α) are not all 0, so α
satisfies conditions 1 and 2 as required.

One way to get a divisor to which to apply Theorem 8.12 is to choose D to be
a general divisor of degree g+1. By Theorem 8.5, Part 1, we have h0OX(D) =
2. Since L(−D) is a general line bundle of degree 2g + 1 + p− g− 1 = g + p
the bundle L(−D) will be nonspecial, whence h0(L(−D)) = p + 1 by the
Riemann-Roch formula. Thus b ≥ p + 1. However, we could already have
deduced this from the fact that b > a and a ≥ p by Theorem 8.8.

To do better, we need to invoke a much deeper result, the Brill-Noether
Theorem. The statement first appears in [Brill and Noether 1873], but it was
realized fairly soon that the proof given by Brill and Noether was incorrect.
The first correct proofs are found in [Kempf 1972], [Kleiman and Laksov
1974] and [Kleiman and Laksov 1972] (see [Arbarello et al. 1985, Chapter V]
for an exposition and history). The application to high degree curves was
first noted in the thesis of [Schreyer 1983].

Theorem 8.14. If X is a curve of genus g, then the set Jrd of line bundles
F ∈ Picd(X) with h0F ≥ s+ 1 is an algebraic subset with dimension

dim Jrd ≥ ρ(d, s) = g − (s+ 1)(g − d+ s).

In particular, if if d ≥ 1 + dg
2
e then X has a line bundle of degree d with at

least 2 independent sections.

It is known that the Brill-Noether theorem is sharp for a general curve (that
is, for the curves in on open dense set of the moduli space of curves of genus
g.) See [Gieseker 1982] or, for a simpler proof, [Eisenbud and Harris 1983].

Idea of the Proof. The formula is easy to understand, even though it is hard
to prove. Take an arbitrary divisor E that is the sum of a large number e
of distinct points of X. The divisor E corresponds to a section of the line
bundle OX(E) from which we get a short exact sequence

0 - OX
- OX(E) - OE

- 0.

Let F be a line bundle of degree d on X. We tensor the exact sequence above
with F . Since E is a finite set of points we may identify F ⊗ OE with OE.
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Taking cohomology, we get a left exact sequence

0 - H
0F - H

0F(E)
αL- H

0OE.

Now H0OE
∼= Ke is the e-dimensional vector space of functions. If we choose

e so large that degF(E) = d+e > 2g−2, then by the Riemann-Roch formula

h
0F(E) = (d+ e)− g + 1 + h

1F(E) = d+ e− g + 1.

Thus the dimension of H0F(E) does not vary as F runs over Picd(X). Lo-
cally on Picd(X) we may think of αF as a varying map between a fixed
pair of vector spaces (globally it is a map between a certain pair of vector
bundles). The set of F with h0F ≥ s + 1 is the set of F with rankαF ≤
d + e − g + 1 − (s + 1) = d + e − g − s, so, locally, Jrd(X) is defined by the
(d+ e− g− s− 1)× (d+ e− g− s− 1) minors of a (d+ e− g+1)× e matrix.
Macaulay’s formula, Theorem 11.32 shows that if the set Jrd is nonempty
then its codimension is at most (s + 1)(g − d + s), so the dimension is at
least g − (s + 1)(g − d + s) as required. The argument we have given is
essentially the original argument of Brill and Noether. Its main problem is
that is does not prove that the locus Jrd(X) is non-empty—the very fact we
were interested in.

One way to address this point is to identify αF as the map on fibers of a
map of explicitly given vector bundles, α : E1 → E2. To see what might be
required, replace Picd(X) by a projective space Pr, and α by a map

α : E1 = OPr(a) → E2 = OPr(b).

Let Y be the locus of points y ∈ Pr such that the fiber of α at y has rank 0.
There are three cases:

• If b− a < 0 then α = 0 and Y = Pr.

• If b− a = 0 then either Y = Pr or Y = ∅.

• If b − a > 0 then Y is always nonempty, and has codimension ≤ 1 by
Macaulay’s formula, Theorem 11.32, or just the Principal Ideal Theo-
rem, of which Macaulay’s Theorem is a generalization.
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Thus the case in which Macaulay’s formula is relevant is the case where
E∗1 ⊗ E2 = OPr(b − a) with b − a > 0. This suggests the general case: by
[Fulton and Lazarsfeld 1983, Theorem ****] the determinantal loci are really
nonempty if E∗1 ⊗ E2 is ample in the vector bundle sense. This turns out to
be true for the bundles that appear in the Brill-Noether theorem, completing
the proof.

As promised, we can use the Brill-Noether theorem to give a lower bound for
the number b(X) that is better than p+ 1:

Theorem 8.15 (Schreyer). If X ⊂ Pr is a curve embedded by a complete
linear series of degree 2g + 1 + p, with p ≥ 0, then

b(X) ≥ p+ 1 +
⌊
g

2

⌋
.

Proof. Brill-Noether theory tells us that X must have a line bundle F of
degree 1 + dg/2e with h0F ≥ 2. Let D be the divisor corresponding to a
global section of F . As before, set L = OX(1). The codimension of the
span of D in Pr is number of independent hyperplanes containing D, that is
h0L(−D). By the Riemann-Roch formula,

h0L(−D) ≥ degL − degD − g + 1

= 2g + 1 + p− dg/2e − 1− g + 1

= p+ 1 + bg/2c,

and the desired result follows from Theorem 8.12.

When X ⊂ Pr is the rational normal curve, then the Eagon-Northcott con-
struction (Theorem 11.35) shows that the quadratic strand is the whole reso-
lution. Thus b(X) = 1 + pdSX = r. However, this cannot happen for curves
of higher genus. To derive the bound we use Koszul homology, which enables
us to go directly from information about the βi,i+1(X) to information about
quadrics in the ideal of X.

Suppose that I is a homogeneous ideal of S. Our construction generalizes the
observation that, Tor1(S/I,K) = K ⊗ I may be thought of (by Nakayama’s
Lemma, [Eisenbud 1995, Section 4.1]) as the graded vector space of genera-
tors of I, which may be seen as follows. From the exact sequence

0 → m → S → K → 0
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we get an exact sequence

0 → Tor1(S/I,K) → S/I ⊗m → S/I → K → 0.

Since S/I ⊗m = m/(Im), this shows that Tor1(S/I,K) = I/(Im) = K ⊗ I
as required.

To be explicit, we compute Tor1(S/I,K) using the free resolution of K given
by the Koszul complex

K(x0, . . . , xr) : · · · δ- ∧i Sr+1(−i) δ- · · · δ- Sr+1(−1)
δ- S.

Thus an element t ∈ Tor1(S/I,K) defines a cycle in S/I ⊗ K(x0, . . . , xr)
which may be reprented by an element 1 ⊗ u for some u ∈ Sr+1(−1). The
generator of I associated to t is then δ(u) ∈ S (More precisely, the generator
is the class of δ(u) in I/mI). Moreover, if u ∈ Sr+1(−1) is arbitrary, then
1⊗ u defines a cycle in S/I ⊗K(x0, . . . , xr) if and only if δ(u) ∈ I.

Here is the application to graded betti numbers of a variety. We may harm-
lessly assume that the ideal of the variety contains no linear forms; otherwise
we would reduce to the case of a variety in a smaller projective space as in
Exercise 4.3.

Theorem 8.16. Let I ⊂ S be a homogeneous ideal containing no linear
form, and let δ be the differential of the Koszul complex K(x0, . . . , xr). The
graded betti number βi,i+1(S/I) is nonzero if and only if there is an element
u ∈ ∧iSr+1(−i) of degree i + 1, such that δ(u) ∈ I ∧i−1 Sr+1(−i + 1) and
δ(u) 6= 0.

Given an element u ∈ ∧iSr+1(−i) of degree i + 1 with δ(u) 6= 0, there is a
smallest ideal I such that δ(u) ∈ I ∧i−1Sr+1(−i+1); it is the ideal generated
by the coefficients of δ(u) with respect to some basis of ∧i−1Sr+1(−i + 1),
and is thus generated by quadrics. This ideal I is called the syzygy ideal of
u, and by Theorem 8.16 we have βi,i+1(S/I) 6= 0.

Proof. Suppose first that βi,i+1(S/I) = dimK Tori(S/I,K)i+1 6= 0, so we can
choose a nonzero element t ∈ Tori(S/I,K)i+1. Since Tori(S/I,K) is the i-th
homology of S/I ⊗K(x0, . . . , xr), we may represent t as the class of a cycle
1⊗u with u ∈ ∧iSr+1(−i) and deg u = i+1. Thus δ(u) ∈ I∧i−1Sr+1(−i+1).
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If δ(u) = 0, then u would be a boundary in K(x0, . . . , xr), and thus also a
boundary in S/I⊗K(x0, . . . , xr), so that t = 0, contradicting our hypothesis.

Conversely, let u ∈ ∧iSr+1(−i) be an element with deg u = i+1 and δ(u) 6= 0.
If δ(u) ∈ I ∧i−1 Sr+1(−i + 1) then the element 1 ⊗ u is a cycle in S/I ⊗
K(x0, . . . , xr).

We next show by contradiction that 1⊗u is not a boundary. The generators
of ∧iSr+1(−i) are all in degree exactly i. Since I contains no linear forms,
the degree i+ 1 part of S/I ⊗∧iSr+1(−i) may be identified with the degree
i + 1 part of ∧iSr+1(−i). If 1 ⊗ u were a boundary in S/I ⊗K(x0, . . . , xr),
then u would be a boundary in K(x0, . . . , xr) itself. But then δ(u) = 0,
contradicting our hypothesis.

Since 1 ⊗ u is not a boundary, Tori(S/I,K)i+1 6= 0, and thus βi,i+1(S/I) 6=
0.

The hypothesis that I contain no linear forms is necessary in Theorem 8.16.
For example, if I = m, then δ(u) ∈ I ∧i−1 Sr+1(−i + 1) for any u, but
βi,i+1S/m = 0 for all i.

It is easy to give an ideal I, containing no linear forms, such that βr+1,r+2(S/I) 6=
0. The Koszul complex resolving S/(x0, . . . , xr) is linear and r+1 steps long,
If we change the first map by multiplying it by a linear form `, we get a
complex

∧r+1Sr+1(−r − 2)
δ- · · · - Sr+1(−2)

`δ- S.

By the Criterion of Exactness, Theorem 3.3, this complex is actually the free
resolution of S/ im `δ = S/(`x0, . . . , `xr), so βr+1,r+2(S/(`x0, . . . , `xr)) 6= 0.

Compare the preceding example to the result of Theorem 8.16. Since ∧r+1Sr+1 ∼=
S, an element of degree r+2 in ∧r+1Sr+1(−r− 1) may be written as a linear
form ` times the generator. Applying δ gives an element whose coefficients are
±xi`. By Theorem 8.16, if I is a homogeneous ideal that contains no linear
forms, then βr+1,r+2(S/I) 6= 0 if and only if I contains the ideal `(x0, . . . , xr)
for some linear form `.

A deeper application concerns the case βr,r+1 6= 0. Recall that we have
assumed K to be algebraically closed. The next result depends on this hy-
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pothesis; see Exercise 8.11 for the sort of thing that can happen in a more
general case.

Theorem 8.17. Suppose that K is algebraically closed. If I ⊂ S is a homo-
geneous ideal not containing any linear form, then βr,r+1(S/I) is nonzero if
and only if, after a linear change of variables, I contains the ideal of 2 × 2
minors of a matrix of the form(

x0 · · · xs xs+1 · · · xr
`0 · · · `s 0 · · · 0

)
where 0 ≤ s < r and `0, . . . , `s are linearly independent linear forms.

Proof. Consider again the Koszul complex

K(x0, . . . , xr) : 0 -
r+1∧

Sr+1(−r − 1)
δ- · · · δ- Sr+1(−1)

δ- S.

By Theorem 8.16 it suffices to show that if u ∈ ∧rSr+1(−r) is an element
of degree r + 1 such that δ(u) 6= 0, then the syzygy ideal of u has the given
determinantal form.

Let e0, . . . , er be the basis of Sr+1 such that δ(ei) = xi. There is a basis for
∧r−1Sr+1 consisting of all products of “all but one” of the ej; we shall write

ê
i
= e0 ∧ · · · ∧ ei−1 ∧ ei+1 ∧ · · · ∧ er

for such a product. Similarly, we write e
î,j

for the product of all but the i-th

and j-th basis vectors, so the e
î,j

form a basis of ∧r−1Sr+1.

Suppose that u =
∑
imiêi. Since deg u = i+ 1, the mi are linear forms. We

have
δ(ê

i
) =

∑
j<i

(−1)jxjeî,j +
∑
j>i

(−1)j−1xjeî,j

so
δ(u) =

∑
g<h

[(−1)gxgmh + (−1)h−1xhmg]eî,j

=
∑
g<h

det
(

(−1)gxg (−1)hxh
mg mh

)
e
î,j

=
∑
g<h

(−1)g+h det
(

xg xh
(−1)gmg (−1)hmh

)
e
î,j
.
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Setting `′i = (−1)imi, it follows that the syzygy ideal of u is the ideal of 2×2
minors of the matrix

M =
(
x0 x1 · · · xr
`′0 `′1 · · · `′r

)
.

If we set e = e0 ∧ · · · ∧ er, then δ(e) =
∑

(−1)ixiêi. Moreover, the Koszul
complex is exact, so the hypothesis δ(u) 6= 0 translates into the hypothesis
that u is not a scalar multiple of δ(e). It follows in particular that the two
rows R1, R2 of the matrix M , regarded as vectors of linear forms, are linearly
independent, so no scalar linear combination of R1 and R2 can be 0. If
the elements `′i are linearly dependent, then after a column transformation
and a linear change of variables, the matrix M will have the desired form.
Furthermore, we could replace the second row R2 by λR1 +R2 for any λ ∈ K
without changing the situation, so it is enough to show that the linear forms
in the vector λR1 +R2 are linearly dependent for some λ.

Each vector `0, . . . , `r of r+1 linear forms corresponds to a linear transforma-
tion of the space of linear forms sending xi to `i. Because R2 is not a scalar
multiple of R1, the set of vectors λR1 +R2 correspond to a line in the projec-
tive space of matrices modulo scalars. In this projective space, any line must
meet the hypersurface of matrices of determinant 0, so some row λR1 + R2

consists of linearly dependent forms, and we are done. (This last argument
is a special case of a general fact about 1-generic matrices [Eisenbud 1988,
Proposition 1.3].)

Using these ideas, we can characterize rational normal curves in terms of
syzygies.

Corollary 8.18. Suppose that X ⊂ Pr is an irreducible nondegenerate curve
such that SX is Cohen-Macaulay and some hyperplane section H ∩X of X
consists of simple points in linearly general position. If b(X) = r then X is
a rational normal curve.

Proof. The hypothesis b(X) = r means that βr−1,r 6= 0. Let Y be a hy-
perplane section Y = X ∩ H. After a change of variable, we may suppose
that the ideal of H is generated by the last variable, xr. Since SX is Cohen-
Macaulay, the mininimal free resolution of SY as an S = S/(xr)-module is
obtained by reducing the resolution of SX modulo xr.



8A. STRANDS OF THE RESOLUTION 207

We consider Y as a subset of H = Pr−1. Write βr−1,r(SY , S) for the graded
betti number of this S-free resolution. We have βr−1,r(SY , S) 6= 0 and S has
only r variables, so we may apply Theorem 8.17. In particular, the ideal of
Y contains a product (`0, . . . , `s)(xs+1, . . . , xr−1) with 0 ≤ s < r − 1. Since
Y is reduced, it is contained in the union of the linear subspaces L and L′ in
Pr−1 defined by the ideals (`0, . . . , `s) and (xs+1, . . . , xr−1) respectively. The
dimensions of L and L′ are r − 1− (s+ 1) < r − 1 and s < r − 1. Since the
points of Y are in linearly general position, at most (r−1−(s+1))+1 points
of Y can be contained in L and at most s + 1 points of Y can be contained
in L′, so the cardinality of Y , which is the degree of X, is at most

degX ≤ (r − 1− (s+ 1)) + 1) + (s+ 1) = r.

By Theorem 6.8, X is a rational normal curve.

Corollary 8.19. If X ⊂ Pr is a curve embedded by a complete linear series
of degree 2g + 1 + p, with p ≥ 0, and X is not a rational normal curve, then
b(X) < r. In particular, the graded S-module wX = ⊕H0(ωX(n)) is generated
by H0(ωX).

The method explained at the end of Section 2A.3 can be used to derive the
value of the second-to-last Betti number in the cubic strand from this; see
Exercise ??.

Proof. The hypothesis of Corollary 8.18 holds for all smooth curves X em-
bedded by linear series of high degree. The Cohen-Macaulay property is
proven in Theorem 8.1 and the general position property is proved in the
case char K = 0 in Exercise ??. A general proof may be found in [Rathmann
1987].

Because pdSX ≤ r − 1 we have b(X) ≤ r. The curve X satisfies all the
hypotheses of Corollary 8.18 except possibly b(X) = r, but does not satisfy
the conclusion. Thus b(X) < r.

To prove the second statement we must show that β0,m(wX) = 0 for m 6= 0.
Since SX is Cohen-Macaulay, the dual of its free resolution, twisted by −r−1,
is a free resolution of the canonical module wX = Extr−1(SX , S(−r − 1)).
Thus β0,m(wX) = βr−1,r+1−m(SX). When m ≥ 2 this is zero because IX is
0 in degrees ≤ 1, and when m < 0 we have H0(ωX(m)) = 0 because then
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ωX(m) has negative degree. Thus only β0,0(wX) = βr−1,r(SX) and β0,1(wX)
could be nonzero. But βr−1,r(SX) = 0 by the first part of the Corollary.

8B Conjectures and Problems

Again, let X be a (nonsingular irreducible) curve embedded in Pr as a curve
of degree d = 2g + 1 + p ≥ 2g + 1 by a complete linear series |L|. We return
to the diagram at the end of the introduction to Section 8A:

0 1 · · · a a+ 1 · · · b− 1 b · · · r − 1 = g + p
0 1 − · · · − − · · · − − · · · −
1 −

(
d−g−1

2

)
· · · ∗ ∗ · · · ∗ − · · · 0

2 − − · · · − ∗ · · · ∗ ∗ · · · g

We have shown that

p ≤ a ≤ p+ max
(
0,
⌈
g − p− 3

2

⌉)
and

p+ 1 + bg
2
c ≤ b ≤ r − 1.

Using Proposition 2.3 and Corollary 8.4 we can compute some of the nonzero
graded Betti numbers, namely βi,i+1 for i ≤ a+ 1 and βi,i+2 for i ≥ b− 1 in
terms of g and d. When b(X) ≤ a(X) + 2 (and this includes all cases with
g ≤ 3 we get the values of all the graded Betti numbers. However, in the
opposite case, for example when g ≥ 4, p ≥ 2, we will have both βa,a+2 6= 0
and βa+1,a+2 6= 0, so βa,a+2 cannot be determined this way. In such cases the
remaining values, and their significance, are mostly unknown.

We can probe a little deeper into the question of vanishing in the cubic strand,
that is, the value of a(X). Part 3 of Theorem 8.8 shows that, when the degree
d is at least 3g − 2, the value of a(X) is accounted for by degenerate secant
planes to X. But when 2g+1 ≤ d < 3g−2, other phenomena may intervene,
as the next example shows.

Example 8.2. When does a high degree curve require equations of
degree 3?
Suppose that X ⊂ Pr is a curve embedded by a complete linear series of
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degree d = 2g + 1 + p, with p ≥ 0. By Corollary 8.2), the ideal IX of X
is generated by forms of degrees ≤ 3. We know that IX contains exactly(
d−g+1

2

)
quadrics. It turns out that there are two kinds of “reasons” why IX

might require generators of degree 3 as well.

First, if X has a trisecant line L, then every quadric containing X vanishes
at three points L, and thus vanishes on all of L. This shows that IX is not
generated by quadrics. (This is an simple special case of Theorem 8.8.)

The second geometric reason involves the quadrics containing X having “too
many” linear relations. To say that IX requires degree 3 generators is the
same as saying that a(X) = 0. By Theorem 8.8 we have

p ≤ a(X)

so if IX requires degree three generators then p = 0, d = 2g+1. We will now
restrict our attention to this case.

By Corollary 8.4, we may choose linear forms x, y ∈ S that form a regular se-
quence on SX , and the nonzero values of the Hilbert function of SX/(x, y)SX
are 1, g, g. Using Proposition 2.3 we see that

β1,3(SX)− β2,3(SX) = g2 − g

(
g

2

)
+

(
g

3

)
= g2 − 2

(
g + 1

3

)
.

From this it follows that if β2,3(SX) > 2
(
g+1
3

)
− g2, then β1,3(SX) 6= 0. (A

similar argument shows that if any Betti number βj−1,j(SX) in the quadratic
strand is unusually large, then the Betti number βj−2,j in the cubic strand is
nonzero, so a(X) ≤ j − 3.)

One geometric reason for the quadratic strand to be large is the presence of
a variety with many quadratic sysygies containing X (Theorem 8.12). The
most extreme examples come from 2-dimensional scrolls, defined by the 2×2
minors of a 1-generic matrix of linear forms on Pr. Such scrolls appear, for
example, when X is hyperelliptic in the sense that g ≥ 2 and there is a
degree 2 map X → P1. Let D be a fiber of this map, so that degD = 2
and h0(OX(D) = 2. The multiplication matrix H0(OX(D))⊗H0(L(−D)) →
H0 L = S1 corresponds to a 2× (h0 L(−D)) matrix of linear forms. Since L
has such high degree, the line bundle L(−D) is nonspecial, so the Riemann-
Roch theorem yields h0 L(−D) = g + p − 1 = r − 2. By Theorem 6.4 the
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variety Y defined by the 2 × 2 minors is irreducible and has the “generic”
codimension for a variety defined by such matrices, namely r − 2, so it is
a surface. (Geometrically, it is the union of the lines spanned by divisors
linearly equivalent to D; see [?].) Moreover X ⊂ Y by Proposition 6.10.

The minimal free resolution of S/IY is an Eagon-Northcott complex, and it

follows that β2,3(SY ) = 2
(
r−2
3

)
. By Theorem 8.12

β2,3(SX) ≥ 2

(
r − 2

3

)
= 2

(
g − 1

3

)
.

But 2
(
g−1
3

)
> 2

(
g+1
3

)
− g2 for every g ≥ 1. This proves the first statement of

the following Proposition.

Proposition 8.20. If X ⊂ Pr is a hyperelliptic curve embedded by a complete
linear series |L| of degree 2g + 1, then IX is not generated by quadrics (so
a(X) = 0). Moreover, if g ≥ 4 and L is general in Pic2g+1(X), then X has
no trisecant.

Using the same method one can show that a(X) = p whenever X ⊂ Pr is
hyperelliptic of high degree, (Exercise 8.16).

Proof. We can characterize a trisecant as an effective divisor D of degree
3 on X lying on r − 2 independent hyperplanes, which means h0 L(−D) =
r − 2. Since degL(−D) = 2g + 1− 3 = 2g − 2, the Riemann-Roch Theorem
yields h0 L(−D) = 2g − 2 + h1 L(−D) = r − 1 + h0(ωX ⊗ L−1(D)). Since
ωX ⊗ L−1(D) is a line bundle of degree 0, it cannot have sections unless it
is trivial. Unwinding this, we see that there exists a trisecant D to X if and
only if the line bundle L = OX(1) can be written as OX(1) = ωX(D) for some
effective divisor D of degree 3. When g ≤ 3 this is always the case—that
is, there is always a trisecant—by part 2 of Theorem 8.5. But when g ≥ 4
most line bundles of degree 3 are ineffective, so when L is general X has no
trisecant.

Hyperellipticity is, however, the only reason other than a secant plane for
having a(X) = p.

Theorem 8.21. ([Green and Lazarsfeld 1988] Suppose that X is a curve of
genus g. embedded by a complete linear series of degree 2g+1+p. If X ⊂ Pr
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is embedded by a complete linear series of degree 2g + 1 + p, with p ≥ 0, and
a(X) = p, then either X ⊂ Pr has a degenerate (p+ 3)-secant plane (that is,
OX(1) = ωX(D) for some effective divisor D) or X is hyperelliptic.

Hyperelliptic curves are special in other ways too; for example b(X) takes
on its maximal value r − 1 for hyperelliptic curves: if X is hyperelliptic,
then the scroll Y ⊃ X constucted above has βr−2,r−1(SY ) 6= 0 because the
free resolution is given by the Eagon-Northcott complex of 2× 2 minors of a
2× (r − 1) matrix. Thus βr−2,r−1(SX) 6= 0 by Theorem 8.12.

More generally, we say that a curve X is δ-gonal if there is a nonconstant
map φ : X → P1 of degree δ. The gonality of X is then the minimal δ such
that X is δ-gonal. (The name came from the habit of calling a curve with a
three-to-one map to P1 “trigonal”.) Suppose that X ⊂ Pr is a δ-gonal curve
in a high degree embedding, and set L = OX(1). Let D be a fiber of a map
φ : X → P1 of degree δ. By the same arguments as before, X is contained in
the variety Y defined by the 2× 2 minors of the matrix M(OX(D),L(−D)).
This matrix has size at least 2× (r+1− δ), so the Eagon-Northcott complex
resolving SY has length at least r − δ, and b(X) ≥ r − δ + 1 by Theorem
8.12. For embedding of very high degree, this may be the only factor, though
there is only limited evidence:

Gonality Conjecture ([Green and Lazarsfeld 1985, Conjecture 3.7]) If d�
g and X is a δ-gonal curve of genus g embedded by a complete linear series
of degree d in Pr, then b(X) = r − δ + 1.

8C Exercises

1. Show that every embedded curve of genus g = 0 or 1 has degree d ≥
2g + 1, and is thus “of high degree” in the sense of this chapter.

2. Suppose that X ⊂ Pr is a curve of arithmetic genus > 0. Use the
sheaf-cohomology description of regularity to prove that the regularity
of SX is at least 2.

3. Show that if X ⊂ Pr is any scheme with SX Cohen-Macaulay of reg-
ularity 1, then X has degree at most 1 + codimX (this gives another
approach to Exercise 8.2 in the arithmetically Cohen-Macaulay case.)
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4. Show that if X ⊂ Pr is any variety (or even any scheme) of dimension
d, and νd : X → PN is the d-th Veronese embedding (the embedding
by the complete linear series |OX(d)|) then for d� 0 the image νd(X)
is (1 + dimX)-regular. (This relatively easy fact can be proved using
just Serre’s and Grothendieck’s Vanishing Theorems [Hartshorne 1977,
Theorems III.2.7 and III.5.2].)

5. Let X be a reduced curve in Pr. Show that SX is Cohen-Macaulay if
and only if X is connected and the space of forms of degree n in Pr

vanishing on X has dimension at most (equivalently: exactly)

dim(IX)n =

(
r + n

r

)
− h0OX(n).

6. Suppose that X is an irreducible algebraic variety of dimension ≥ 1
and that L 6∼= OX is a line bundle on X with H0 L 6= 0. Show that

H0 L−1 = 0. (Hint: Show the section of L must vanish somewhere. . . ).

7. Suppose that X is a smooth projective hyperelliptic curve of genus g,
and let L0 be the line bundle that is the pull-back of OP1(1) under
the two-to-one map X → P1. Show that if L is any line bundle on
X that is special (which means h1(L) 6= 0) then L = La0L1 where L1

is a special bundle satisfying h0 L1 = 1 and a ≥ 0. Show under these
circumstances that h0 L = g + 1. Deduce that any very ample line
bundle on X is nonspecial.

8. Suppose that X ⊂ Pr is a hyperelliptic curve of genus g. Show that
if SX is Cohen-Macualay then degX ≥ 2g + 1 by using part 2 of
Proposition 8.3 and the 2× 2 minors of the matrix M(L′,L⊗L′−1) as
defined in Section 6C.2, where L′ is the line bundle of degree 2 defining
the two-to-one map from X → P1.

9. Compute all the βi,j for a curve of genus 2, embedded by a complete
linear series of degree 5.

10. labelsecond-to-last Betti Let X ⊂ Pr be a curve of degree 2g + 1 + p
embedded by a complete linear series in Pr. Use Corollary 8.19 and
the method of Section 2A.3 to show that βr−2,r(X) = g(g+ p− 1) (the
case g = 2, p = 0 may look familiar.)
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11. Let r = 1, and let

Q = det
(
x0 x1

−x1 x0

)
; I = (Q) ⊂ R[x0, x1].

Show that βr,r+1(R[x0, x1]/I) 6= 0, but that I does not satisfy the
conclusion of Theorem 8.17. Show directly that I does satisfy Theorem
8.17 if we extend the scalars to be the complex numbers.

12. Prove the remaining parts 4 and 5 of Theorem 8.5.

13. Complete the proof of the second statement of Theorem 8.8 by showing
that there are divisors D and E such that L−1⊗ωX(D) = OX(E) with
degD ≤ 2+max(p+1, d(g+ p− 1)/2e). Hint: the numbers are chosen
to make degD + degE ≥ g.

14. Show that a smooth irreducible curve X of genus g, embedded in Pr by
a complete linear series of degree 2g + 1 + p, cannot have a degenerate
q-secant plane for q < p + 3. (One proof uses Theorem 8.8; but there
is a much more direct one.)

15. Find a 2× t+ 1 matrix of linear forms(
`0,0 · · · `0,t
`1,0 · · · `1,t

)
such that the 1 + t elements `1,0, `0,1, `0,2, . . . , `0,t are linearly indepen-
dent, but all the 2× 2 minors are 0. Compare with the example before
the proof of Theorem 8.13.

16. Let X ⊂ Pr be a hyperelliptic curve embedded by a complete linear
series of degree 2g + 1 + p with p ≥ 0. Show by the method of Section
2A.3 that a(X) ≤ p, and thus a(X) = p by Theorem 8.8.

17. ((This should be preamble to the next few exercises)) Many
deep properties of projective curves can be proved by Harris’ “Uniform
Position Principle” (citeMR80m:14038) which says that, in character-
istic 0, two subsets of points of a general hyperplane section are geo-
metrically indistinguishable from one another. A consequence is that
the points of a general hyperplane section always lie in linearly gen-
eral position. It turns out that Theorem 8.1 (in characteristic 0) can
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easily be deduced from this. The following exercises sketch a general
approach to the Arithmetic Cohen-Macaulay property for “nonspecial”
curves—that is, curves embedded by linear series whose line bundle has
vanishing first cohomology—that includes this result.

18. Suppose that X ⊂ Pr is a (reduced, irreducible) curve. Show that SX is
Arithmetically Cohen-Macaulay if and only if dim(SX)n = dim H0OX(n)
for every n.

19. Suppose that X ⊂ Pr is a (reduced, irreducible) curve. Show that if X
is linearly normal and the points of some hyperplane section of X im-
pose independent conditions on quadrics, then SX is Cohen-Macaulay.
If h1OX(1) = 0, show that the converse is also true.

20. Suppose that X is a curve of genus g, embedded in Pr by a complete
linear series of degree d ≥ 2g + 1. Show that d ≤ 2(r− 1) + 1. Deduce
from Exercise 2.9 that if the points of the hyperplane section H∩X are
in linearly general position, then they impose independent conditions
on quadrics. By Exercise 8.19, this statement implies Theorem 8.1 for
any curve of high degree whose general hyperplane section consists of
points in linearly general position.

21. ((This is a preamble)) Here are two sharp forms of the uniform
position principle, from [Harris 1979]. The exercises below sketch a
proof of the first, and suggest one of its simplest corollaries.

Theorem 8.22. Let X ⊂ Pr
C be an irreducible reduced complex pro-

jective curve. If U ⊂ P̌r
C is the set of hyperplanes H that meet X

transversely then the fundamental group of U acts by monodromy as
the full symmetric group on the hyperplane section H ∩X.

In other words, as we move the hyperplane H around a loop in U
and follow the points of intersection H ∩ X (which we can do since
the interesection remains transverse) we can achieve any permutation
of the set H ∩ X. The result can be restated in a purely algebraic
form, which makes sense over any field, and is true in somewhat more
generality.

Theorem 8.23. ([Rathmann 1987]) Let S = K[x0, . . . , xr] be the ho-
mogeneous coordinate ring of Pr, and let X ⊂ Pr

K be an irreducible
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reduced curve. Assume that K is algebraically closed, and that either
K has characteristic 0 or that X is smooth. Let H be the universal hy-
perplane, defined over the field of rational functions K(u0, . . . , ur), with
equation

∑
uixi = 0. The intersection H ∩X is an irreducible variety

and the natural map H ∩X → X is a finite covering with Galois group
equal to the full symmetric group on degX letters.

Theorem 8.23 can be stated as the same way as Theorem 8.22 by using
the étale fundamental group. It remains true for singular curves in P5

or higher-dimensional spaces. Amazingly, it really can fail for singular
curves in P3: [Rathmann 1987] contains examples where the general
hyperplane section looks like the set of points of a finite projective
plane (with many colinear points, for example).

Theorem 8.22 may be proved by following the steps in Exercises 8.23–
8.24. But first, here is an application.

22. Use Theorem 8.22 to show that if X ⊂ Pr
C is an irreducible curve,

then the general hyperplane section Γ = H ∩ X consists of points in
linearly general position (If a point p ∈ H ∩ X lies in the span of
p1, . . . , pk ∈ H ∩ X, use a permutation to show that every point of
H ∩X lies in this span.) Use Exercise 8.20 to deduce Theorem 8.1 for
projective curves over C.

23. Let X ⊂ Pr
C be a reduced, irreducible, complex projective curve. Show

that a general tangent line to X is simply tangent, and only tangent
at 1 point of X as follows.

(a) Reduce to the case r = 2 by showing that X ⊂ Pr
C can be pro-

jected birationally into P2 (Show that if r > 2 then there is a point
of Pr on only finitely many (or no) secant lines to X at smooth
points. Sard’s Theorem implies that projection from such a point
is generically an isomorphism. For a version that works in any
characteristic see [Hartshorne 1977, Proposition IV.3.7])

(b) Assume that r = 2. Show that the family of tangent lines to X is
irreducible and 1-dimensional, and that not all the tangent lines
pass through a point. (For the second part, you can use Sard’s the-
orem on the projection from the point.) Thus the general tangent
line does not pass through any singular point of the curve.
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(c) Let U be an open subset of C. Show that the general point of any
analytic map v : U → C2, is uninflected. (This just means that
there are points p ∈ U such that the derivatives v′(p) and v′′(p)
are linearly independent.) Deduce that the general tangent line is
at worst simply tangent at several nonsingular points of X.

(d) Let p ∈ X ⊂ P2
C be an uninflected point. Show that in suitable

analytic coordinates there is a local parametrization at p of the
form v(x) = p + v0(x) and v0(x) = (x, x2). Deduce that as p
moves only X the motion of the tangent line is approximated to
first order by “rolling” on the point p.

((new figure A: line tangent to a plane curve at two points
rolling to a nearby simple tangent.))

(e) Conclude that there are only finitely many lines that are simply
tangent to X at more than one point. Thus the general tangent
line to X is tangent only at a single, nonsingular point.

24. Complete the proof of Theorem 8.22 as follows.

(a) Use Exercise 8.23 to prove that the general tangent hyperplane to
X is tangent at only one point, and is simply tangent there.

(b) Suppose that H meets X at an isolated point p, at which H is
simply tangent to X. Show that a general hyperplane H ′ near
H meets X in two points near p, and that these two points are
exchanged as H ′ moves along a small loop around the divisor of
planes near H that are tangent to X near p. That is, the local
monodromy of H ′∩X is the transposition interchanging these two
points.

(c) Show that the incidence correspondence

I := {(p1, p2, H) ∈ X2 × P̌r | p1 6= p2,

p1, p2 ∈ H and H meets X transversely}
is an irreducible quasiprojective variety, and is thus connected
(this depends on the complex numbers: over the real numbers, an
irreducible variety minus a proper closed set may be disconnected).

(d) Deduce that the monodromy action in Theorem 8.22 is doubly
transitive. Show that a doubly transitive permutation group that
contains a transposition is the full symmetric group.
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Clifford Index and Canonical
Embedding

Revised 8/9/03

The properties of a curve in a high degree embedding depend, in general on
the properties of the abstract curve and on the choice of the embedding line
bundle. But each curveX has a distinguished linear series on each curve—the
complete linear series called the canonical series. It is the complete linear se-
ries |ωX | associated to the to the canonical bundle ωX , the cotangent bundle
of the curve. For most curves it gives an embedding, and the free resolution
of the homogeneous coordinate ring of the curve in this embedding gives in-
formation about the curve itself, with no additional choices. In fact, Green’s
conjecture says that the simplest information available (corresponding to the
invariants a and b of the previous chapter) contains the most important in-
variant of the curve after its genus: the Clifford index. In this chapter we
introduce the study of the Clifford index, canonical curves, and Green’s con-
jecture. As this book is being completed there have been dramatic advances
in this area, to which we give pointers at the end of the chapter.
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9A The Clifford Index

The Cohen-Macaulay property of curves of high degree played a major role
in our analysis, and it is interesting to ask more generally when the homoge-
neous coordinate ring SX of an embedded curve is Cohen-Macaulay. We can
harmlessly suppose that X ⊂ Pr is nondegenerate, and then a necessary con-
dition for SX to be Cohen-Macaulay is that X be embedded by the complete
linear series |L|, where L = OX(1). Thus we are asking about a property of
a very ample line bundle: for which very ample line bundles L on X is the
embedding by the complete linear series |L| such that the homogeneneous
coordinate ring SX is Cohen-Macaulay? Theorem 8.1 asserts that this is the
case whenever degL ≥ 2g + 1. What about bundles of lower degree?

Recall that a curve X is called hyperelliptic if it has genus ≥ 2 and admits
a map of degree 2 onto P1. In many ways, hyperelliptic curves are the most
special curves. Exercise 8.8 shows that if X ⊂ Pr is a hyperelliptic curve
with SX Cohen-Macaulay then X must have degree ≥ 2g + 1, so Theorem
8.1 is sharp in this sense. However, among curves of genus ≥ 2, hyperelliptic
curves are the only curves for which Theorem 8.1 is sharp! To give a general
statement we need to define the Clifford index, which is a measure of how
far a curve is from hyperelliptic.

The Clifford index is perhaps the most important invariant of a curve after
the topological data of the degree and genus, the two invariants described,
via the Riemann-Roch theorem, by the Hilbert polynomial. For most curves,
knowing the Clifford index is equivalent to knowing the gonality, the lowest
degree of a nonconstant morphism from the curve to the projective line. In
general the Clifford index of X measures how special the line bundles on X
are.

To define the Clifford index of a curve, we must first define the Clifford index
of a line bundle on a curve. If L is a line bundle on the curve X of genus g,
then the Clifford index of L is defined as

Cliff L = degL − 2(h
0(L)− 1)

= g + 1− h
0(L)− h

1(L),

where the two formulas are related by the Riemann-Roch theorem. By Serre
duality, Cliff L = Cliff(L−1 ⊗ ωX).
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For example, if L is nonspecial (that is, h1 L = 0) then Cliff L = 2g − degL
depends only on the degree of L, and is negative when degL ≥ 2g + 1. The
name of the invariant comes from the following classical result ([Hartshorne
1977, Theorem IV.5.4].)

Theorem 9.1 (Clifford’s Theorem). If L is a special line bundle on a
curve X, then Cliff L ≥ 0, with equality only when

• L = OX ; or

• L = ωX ; or

• X is hyperelliptic and L = Ln0 , where L0 is the unique line bundle of
degree 2 on X having 2 independent sections.

Finally, the Clifford index of a curve X of genus g ≥ 4 is defined by taking
the minimum of the Clifford indices of all “relevant” line bundles on X:

Cliff(X) = min{Cliff L | h0L ≥ 2 and h1L ≥ 2}.

If g ≤ 3 (in which case there are no line bundles L with h0L ≥ 2 and h1L ≥ 2)
we instead make the convention that a non-hyperelliptic curve of genus 3 has
Clifford index 1, while any hyperelliptic curve or curve of genus ≤ 2 has
Clifford index 0.

Thus CliffX ≥ 0 and (by the other part of Clifford’s Theorem), and CliffX =
0 if and only if X is hyperelliptic (or g ≤ 1). If X is δ-gonal in the sense
introduced in Chapter 8, then a line bundle L defining a map of minimal
degree has degree δ and h0(L) = 2, so Cliff L = δ − 2. By Theorem 8.14 the
gonality of any curve is at most d(g + 2)/2e, and it follows that

0 ≤ CliffX ≤ dg − 2

2
e.

The sharpness of the Brill-Noether Theorem for general curves implies that
for a general curve of genus g we actually have CliffX = dg−2

2
e, and that

(for g ≥ 4) the “relevant” line bundles achieving this low Clifford index are
exactly those defining the lowest degree maps to P1.

On the other hand, suppose X is a smooth plane quintic curve. The line
bundle L embedding X in the plane as a quintic has

g = 6, degL = 5, h
0 L = 3
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whence

h
1 L = 3, Cliff L = 1 and CliffX ≤ 1.

Any smooth plane quintic X is in fact 4-gonal: the lowest degree maps
X → P1 are projections from points on X, as indicated in the drawing.

((Figure 1 here))

One can show that CliffX = 1 if and only if X is either trigonal or X
can be represented as a smooth plane quintic. This sort of analysis can be
carried much farther; see for example Eisenbud-Lange-Schreyer [Eisenbud
et al. 1989].

Using the notion of Clifford index we can state a strong result about the
Cohen-Macaulay property:

Theorem 9.2. Suppose that X ⊂ Pr is a smooth curve over an algebraically
closed field of characteristic 0, embedded by a complete linear system. If

CliffOX(1) < Cliff(X),

then SX is Cohen-Macaulay.

Theorem 9.2 was first proved by Green and Lazarsfeld [Green and Lazarsfeld
1985] (over the complex numbers). See Koh and Stillman [Koh and Stillman
1989] for a proof in all characteristics along lines developed in this book.
Theorem 9.2 includes Theorem 8.1 and other classical assertions.

Corollary 9.3. Let X ⊂ Pr be a smooth nondegenerate curve of degree d and
genus g ≥ 2, embedded by a complete linear series, and let L = OX(1). The
homogeneous coordinate ring SX is Cohen-Macaulay if any of the following
conditions are satisfied:

1. (Castelnuovo) d ≥ 2g + 1.

2. (Max Noether) X is non-hyperelliptic and L = ωX .

3. (Arbarello, Cornalba, Griffiths, Harris) X is a general curve, L is a
general bundle on X, and d ≥ b3

2
gc+ 2.
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Proof. 1. If d ≥ 2g + 1 then L is nonspecial so Cliff L = 2g − d < 0 while
CliffX ≥ 0.

2. Cliff ωX = 0, and by Clifford’s theorem CliffX = 0 only if X is hyperel-
liptic.

3. If X is general then CliffX = d(g − 2)/2e. If L is general of degree
≥ (3/2)g then L is nonspecial by Lemma 8.5, so Cliff L = 2g−d. Arithmetic
shows that 2g− d < d(g− 2)/2e if and only if d ≥ b(3/2)gc+2. See Exercise
9.1 and [Arbarello et al. 1985, Exercises V.C] for further information.

Because of the way CliffX is defined, the only very ample bundles that can
have Cliff L < CliffX must have h1 L ≤ 1. It would also be very interesting
to know what is true beyond this range. The paper [Yau and Chen 1996]
gives some results of this sort.

9B Green’s Conjecture

When X is a curve embedded by a complete linear series of high degree, the
properties of the free resolution of SX depend on both X and the linear series
defining the embedding. But for the image X of X under the canonical linear
series (ωX ,H

0 ωX), which is called the canonical model of X, the properties
of SX and its free resolution depend only on the intrinsic geometry of X.
Green’s conjecture relates a fundamental invariant of the intrinsic geometry
of X to the free resolution of X in its canonical embedding. At the time
this book was being finished there was tremendous recent progress on this
conjecture, but the picture was far from complete.d It seems to me most
appropriate to end by stating the conjecture, relating it to the theorems we
have just been discussing, and giving some references to the current literature.

The homogeneous coordinate ring of a canonical curve

Let X be a smooth projective curve . If X has genus 0—since we are working
over an algebraically closed field, this just meansX ∼= P1—then the canonical
series has only the 0 section. For a curve of genus g > 0, however, the
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canonical series is base-point free. If X has genus 1, then the canonical line
bundle is OX , and the canonical model is a point. For a curve of genus 2,
there are 2 sections, so the canonical model is P1. In these cases the canonical
series is not very ample. But for g ≥ 3, the canonical series is very ample on
most curves of genus g.

Theorem 9.4. ([Hartshorne 1977, Proposition IV.5.2]) Let X be a smooth
curve of genus g ≥ 2. If X is hyperelliptic, then the canonical series maps
X two-to-one onto X, which is a rational normal curve of degree g − 1 in
Pg−1. Otherwise, the canonical series is very ample and embeds X = X as a
curve of degree 2g − 2 in Pg−1.

Since the hyperelliptic case is so simple we will normally exclude it from
consideration, and we will discuss only canonical modelsX ⊂ Pg−1 of smooth,
non-hyperelliptic curves of genus g ≥ 3. By Part 2 of Corollary 9.3 the
homogeneous coordinate ring SX of X in its canonical embedding is then
Cohen-Macaulay.

For example, it follows from the adjunction formula [Hartshorne 1977, Ex-
ample 8.20.3], or from Exercise 9.2 that any smooth plane curve of degree
4 = 2 · 3 − 2 is the canonical model of a smooth non-hyperelliptic curve of
genus 3, and conversely; see Exercise 9.3. The Betti diagram is

g = 3 :

0 1
0 1 −
1 − −
2 − −
3 − 1

For a non-hyperelliptic curve X of genus g = 4, we see from the Hilbert
function that the canonical model X ⊂ P3 has degree 6 and lies on a unique
quadric. In fact, X is a complete intersection of the quadric and a cubic
(see Exercise 9.4). Conversely, the adjunction formula shows that every such
complete intersection is the canonical model of a curve of genus 4.

g = 4 :

0 1 2
0 1 − −
1 − 1 −
2 − 1 −
3 − − 1
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Finally, we shall see in Exercise 9.5 that there are two possible Betti diagrams
for the homogeneous coordinate ring of the canonical model of a curve of
genus 5:

g = 5 :

0 1 2 3
0 1 − − −
1 − 3 − −
2 − − 3 −
3 − − − 1

or

0 1 2 3
0 1 − − −
1 − 3 2 −
2 − 2 3 −
3 − − − 1

In all these examples we see that SX has regularity 3. This is typical:

Corollary 9.5. If X ⊂ Pg−1 is the canonical model of a non-hyperelliptic
curve of genus g ≥ 3, then the Hilbert function of SX is given by

HSX
(n) =


0 if n < 0
1 if n = 0
g if n = 1
(2g − 2)n− g + 1 = (2n− 1)(g − 1) if n > 1.

In particular, β1,2(SX), the dimension of the space of quadratic forms in the

ideal of X, is
(
g−1
2

)
and the Castelnuovo-Mumford regularity of SX is 3.

Proof. Because SX is Cohen-Macaulay, its n-th homogeneous component
(SX)n is isomorphic to H0(OX(n)) = H0(ωnX). Given this, the Hilbert func-
tion values follow at once from the Riemann-Roch Theorem.

Because SX is Cohen-Macaulay we can find a regular sequence on X con-
sisting of 2 linear forms `1, `2. The regularity of SX is the same as that of
SX/(`1, `2). The Hilbert function of this last module has values 1, g − 2, g −
2, 1, and thus regSX/(`1, `2) = 3. (See also Theorem 4.2.)

The question addressed by Green’s conjecture is: which βi,j are non-zero?
Since the regularity is 3 rather than 2 as in the case of a curve of high
degree, one might think that many invariants would be required to determine
this. But in fact things are simpler than in the high degree case, and a
unique invariant suffices. The simplification comes from a self-duality of the
resolution of SX , equivalent to the statement that SX is a Gorenstein ring.
See [Eisenbud 1995, Chapter 20] for an introduction to the rich theory of
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Gorenstein rings, as well as [Huneke 1999] and Eisenbud-Popescu [Eisenbud
and Popescu 2000] for some manifestations.

As in the previous chapter, we write a(X) for the largest integer a such that
βi,i+2(SX) = 0 for all i ≤ a(X), and b(X) for the smallest integer such that
βi,i+1(SX) = 0 for all i ≥ b(X). The next result shows that, for a canonical
curve, b(X) = g − 2− a(X).

Proposition 9.6. If X ⊂ Pg−1 is the canonical model of a non-hyperelliptic
curve of genus g ≥ 3, then wX = Extg−2(SX , S(−g)) ∼= SX(1), so the mini-
mal free resolution of SX is, up to shift, self-dual, with

βi,j(SX) = βg−2−i,g−1−j(SX).

Setting βi = βi,i+1 the Betti diagram of SX has the form

0 1 · · · a a+ 1 · · · b− 1 b · · · g − 3 g − 2
0 1 − · · · − − · · · − − · · · − −
1 − β1 · · · βa βa+1 · · · βg−2−a − · · · − −
2 − − · · · − βg−2−a · · · βa+1 βa · · · β1 −
3 − − · · · − − · · · − − · · · − 1

where the terms marked “−” are zero, the numbers βi are nonzero, and β1 =(
g−2
2

)
.

Proof. By Theorem 9.4, local duality (Theorem 10.6), and Corollary 9.3 we
have

SX = ⊕H
0OX(n) = ⊕H

0(ωnX) = ⊕H
0(ωX(n− 1)) = wX(−1).

The rest of the statements follow.

Here is Green’s Conjecture, which stands at the center of much current work
on the topics of this book.

Conjecture[Green 1984b]. Let X ⊂ Pg−1 be a smooth non-hyperelliptic
curve over a field of characteristic 0 in its canonical embedding. The invariant
a(X) of the free resolution of SX is equal to Cliff(X)− 1.
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The first case in which Green’s conjecture is nontrivial is that of a non-
hyperelliptic curve X of genus 5. In this case X has Clifford index 1 if and
only if X has a degree 3 divisor that “moves” in the sense that h0OX(D) = 2;
otherwise X has Clifford index 2. If the Clifford index of X is 2, then the
canonical model X ⊂ P4 is a complete intersection of 3 quadrics, with Betti
diagram

g = 5, CliffX = 2 :

0 1 2 3
0 1 − − −
1 − 3 − −
2 − − 3 −
3 − − − 1

On the other hand, if X has Clifford index 1 then the Betti diagram of X is

g = 5, CliffX = 1 :

0 1 2 3
0 1 − − −
1 − 3 2 −
2 − 2 3 −
3 − − − 1

(Exercise 9.5). In the case g = 6 one encounters for the first time a case
in which the Clifford index itself, and not just the gonality of X enters the
picture. If X is a smooth plane quintic curve, then by the adjunction formula
([Hartshorne 1977, Example 8.20.3]) the canonical series is the restriction of
OP2(g − 3) = OP2(2) to X. Thus the canonical model of X in P5 is the
image of X ⊂ P2 under the quadratic Veronese map ν2 : P2 → P5. The
Veronese surface V := ν2(P2) has degree 4, and thus its hyperplane section
is a rational normal curve. Since SV is Cohen-Macaulay (11E.5), the graded
Betti numbers of SV are the same as those for the rational normal quartic,
namely

Veronese Surface :
0 1 2 3

0 1 − − −
1 − 6 8 3

It follows from Theorem 8.12 that β3,4(S/IX) 6= 0, so a(X) = 0 in this case,
just as it would if X admitted a line bundle L of degree 3 with h0 L = 2.
This corresponds to the fact that CliffX = 1 in both cases.

Green and Lazarsfeld proved one inequality of the Conjecture, using the same
technique that we have used above to give a lower bound for b(X) (Appendix
to [Green 1984b]).
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Corollary 9.7. With hypothesis as in Green’s Conjecture,

a(X) ≤ Cliff(X)− 1.

Proof. Theorem 8.12 shows that if D is a divisor on X with h0OX(D) ≥ 2
and h1OX(D) ≥ 2 then b(X) is bounded below by

h
0OX(D)−1+h

0 ωX(−D)−1 = h
0OX(D)+h

1OX(D)−2 = g−1−CliffOX(D).

By virtue of the duality above, this bound can also be viewed as an upper
bound

a(X) = g − 2− b(X)

≤ g − 2− (g − 1− CliffOX(D))

= CliffOX(D)− 1.

Green’s conjecture has been verified completely for curves of genus ≤ 9
([Schreyer 1986] for genus ≤ 8 and a combination of [Hirschowitz and Ra-
manan 1998], [Mukai 1995] and [Schreyer 1989] for genus 9). As of this writ-
ing, a series of spectacular papers ([Voisin 2002], [Voisin 2003], and [Teixidor
I Bigas 2002]) has greatly advanced our knowledge: roughly speaking, we
now know that the conjecture holds for the generic curves of each genus and
Clifford index. Perhaps the reader will take one of the next steps!

The obvious extension of Green’s conjecture to positive characteristic is
known to fail in characteristic 2 for curves of genus 7 ([Schreyer 1986]) and
9 ([Mukai 1995] and there is strong probabalistic evidence that it fails in
various other cases of postive characteristic. For this and a very interesting
group of conjectures about the possible Betti diagrams of canonical curves
of genus up to 14 in any characteristic, see [Schreyer 2003, Section 6].

9C Exercises

1. Use the methods of Lemma 8.5 to prove that a general line bundle of
degree g + 2 on a curve of genus g is very ample.



9C. EXERCISES 227

2. Suppose X ⊂ Pg−1 is a nondegenerate curve such that SX is Cohen-
Macaulay. Show that X is a canonical model if and only if

βg−2,n =
{

1 if n = g;
0 otherwise.

3. Show that a smooth plane curve is a canonical model if and only if it is
a plane quartic (you might use Exercise 9.2 or the Adjunction Formula
([Hartshorne 1977, Example 8.20.3]).

4. Prove that a curve in P3 is a canonical model if and only if it is a
complete intersection of a quadric and a cubic. (again, you might use
Exercise 9.2.)

5. Let X ⊂ P4 be a nondegenerate smooth irreducible curve. If X is
the complete intersection of three quadrics, show that X is a canonical
model. In this case a(X) = 1.

Now X ⊂ P4 be a canonical model with a(X) = 0; that is, suppose
that IX is not generated by quadrics. Show that the quadratic forms
in IX form a 3-dimensional vector space, and that each of them is
irreducible. Show that they define a two-dimensional irreducible non-
degenerate variety of degree 3. This is the minimal possible degree for
a nondegenerate surface in P4 ([Hartshorne 1977, Exercise I.7.8].) By
the classification of such surfaces (see for example [Eisenbud and Har-
ris 1987]) this is a scroll. Using the Adjunction formula ([Hartshorne
1977, Proposition V.5.5]) show that the curve meets each line of the
ruling in 3 points. The divisor defined by these three points moves in a
1-dimensional linear series by Theorem 9.8, and thus the Clifford index
of X is 1, as required by Green’s Theorem.

6. Suppose that X ⊂ Pg−1 is a smooth, irreducible, nondegenerate curve
of degree 2g − 2 where g ≥ 3 is the genus of X. Using Clifford’s
Theorem ([Hartshorne 1977, Theorem 5.4]) show that OX(1) = ωX . In
particular, h1OX(1) = 1 and h1OX(n) = 0 for n > 1.

7. Let X ⊂ Pg−1 be the canonical model of a smooth irreducible curve of
genus g ≥ 3.

Assume that for a general hyperplane H ⊂ Pg−1 the hyperplane section
Γ = H ∩X consists of points in linearly general position.
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Show that Γ fails by at most 1 to impose independent conditions on
quadrics in H, and imposes independent conditions on n-ics for n > 2:

Deduce that the linear series of hypersurfaces of degree n is complete
for every n, and thus that SX is Cohen-Macaulay.

8. Reinterpret the Riemann-Roch theorem to prove the following:

Theorem 9.8 (Geometric Riemann-Roch). Let X ⊂ Pg−1 be a
canonically embedded non-hyperelliptic curve. If D is an effective divi-
sor on X and L is the smallest linear space in Pg−1 containing D, then

h0OX(D) = degD − dimL.

More succinctly: The (projective) dimension of the linear series D, that
is, h0(OX(D))−1, is equal to the amount by which the points of D fail
to be linearly independant. (Some care is necessary when the points of
D are not distinct. In the statement of the Theorem, we must insist
that L cut X with multiplicity at least as great as that of D at each
point. And the ”the amount by which the points of D fail to be linearly
independant requires us to think of the ”span” of a multiple point as
the dimension of the smallest linear space that contains it, in the sense
just given.)

9. Use Theorem 8.9, Corollary 9.7, and Theorem 9.8 to show that for a
canonically embedded, non-hyperelliptic curve X ⊂ Pg−1, with genus
g ≥ 4, that

a(X) ≤ CliffOX(D)− 1 ≤ d− 3.

10. Follow the Macaulay 2 tutorial on plane curves and duality (avail-
able as part of the Macaulay 2 package at http://www.math.uiuc.edu/
Macaulay2/Manual/1617.html



Chapter 10

Appendix A: Introduction to
Local Cohomology

Revised 8/21/03

((Silvio, all the lim’s in this chapter should have a right arrow under
them (direct limit functor). This exists in amsmath, I think. Some
of them have an additional subscript, which really should go under
the arrow in displays. In text perhaps the arrow is unnecessary...))

In this section we provide an introduction to local cohomology for those who
have (at least a little) experience with the cohomology of coherent sheaves on
projective space. Our goal is to prove the theorems used in the text, and a
few further results that may serve to orient the reader to this important con-
struction. For the scheme-theoretic version, see Grothendieck [Hartshorne
1967]; for more results in the affine case, in a very detailed and careful treat-
ment, see Brodmann and Sharp, [Brodmann and Sharp 1998]. A partial idea
of recent work in the subject can be had from the survey [Lyubeznik 2002].

In this chapter we will work over a Noetherian ring, with a few comments
along the way about the differences in the non-Noetherian case. (I am grate-
ful to Arthur Ogus and Daniel Schepler for straightening out my ideas about
this case.)

229
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10A Definitions and Tools

First of all, the definition: If R is a Noetherian ring, Q ⊂ R is an ideal, and
M is an R-module, then the 0-th local cohomology module of M is

H
0
Q(M) := {m ∈M | Qdm = 0 for some d}.

H0
Q is a functor in an obvious way: if ϕ : M → N is a map, the induced map

H0
Q(ϕ) is the restriction of ϕ to H0

Q(M). It is immediate to see from this that
the functor H0

Q is left exact, so it is natural to study its derived functors,
which we call Hi

Q.

Local cohomology and Ext

Proposition 10.1. We can relate the local cohomology to the more familiar
derived functor Ext. There is a canonical isomorphism

H i
Q(M) ∼= lim

−→
ExtiR(R/Qd,M),

where the limit is taken over the maps ExtiR(R/Qd,M) → ExtiR(R/Qe,M)
induced by the natural epimorphisms R/Qe -- R/Qd for e ≥ d.

Proof. There is a natural injection

Ext0
R(R/Qd,M) = Hom(R/Qd,M) - M

φ - φ(1)

whose image is {m ∈M | Qdm = 0}. Thus the direct limit lim Ext0
R(R/Qd,M) =

lim Hom(R/Qd,M) may be identified with the union

∪d{m ∈M | Qdm = 0} = H
0
Q(M).

The functor ExtiR(R/Qd,−) is the i-th derived functor of HomR(R/Qd,−).
Taking filtered direct limits commutes with taking derived functors because of
the exactness of the filtered direct limit functor ([Eisenbud 1995, Proposition
A6.4]).
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Local cohomology and Čech cohomology

Another useful expression for the local cohomology is obtained from a Čech
complex: Suppose that Q is generated by elements (x1, . . . , xt). We write
[t] = {1, . . . , t} for the set of integers from 1 to t, and for any subset J ⊂ [t]
we let xJ =

∏
j∈J xj. We denote by M [x−1

J ] the localization of M by inverting
xJ . If i /∈ J we let oJ(i) denote the number of elements of J less than i.

Theorem 10.2. Suppose that R is a Noetherian ring and Q = (x1, . . . , xt).
For any R-module M the local cohomology Hi

Q(M) is the i-th cohomology of
the complex

C(x1, . . . ,xt; M) : 0 - M
d- ⊕t

1 M [x−1
i ]

d- · · ·
- ⊕#J=sM [x−1

J ]
d- · · · - M [x−1

{1,...,t}]
- 0

whose differential takes an element

mJ ∈M [x−1
J ] ⊂ ⊕#J=sM [x−1

J ]

to the element
d(mJ) =

∑
k/∈J

(−1)oJ (k)mJ∪{k},

where mJ∪{k} denotes the image of mJ in the further localization M [(xJ∪{k})
−1] =

M [x−1
J ][x−1

k ].

Here the terms of the Čech complex are numbered from left to right, counting
M as the 0-th term, and we write Cs(M) = ⊕#J=sM [x−1

J ] for the term of
cohomological degree s. If R is non-Noetherian, then the Čech complex as
defined here does not always compute the derived functors in the category
of R-modules of H0

I() as defined above, even for finitely generated I. Rather,
it computes the derived functors in the category of (not necessarily quasi-
coherent) sheaves of OSpecR modules. For this and other reasons, the general
definition of the local cohomology modules should probably be made in this
larger category. As we have no use for this refinement, we will not pursue it
further. See [Hartshorne 1967] for a treatment in this setting.

Proof. An element m ∈M goes to zero under d : M → ⊕jM [x−1
j ] if and only

if m is annihilated by some power of each of the xi. This is true if and only
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if m is annihilated by a sufficiently big power of Q, so H0(C(M)) = H0
Q(M)

as required.

The complex C(x1, . . . , xt; M) is obviously functorial in M . Since localiza-
tion is exact, a short exact sequence of modules gives rise to a short exact
sequence of complexes, and thus to a long exact sequence in the homology
functors Hi(C(M)). To prove that Hi(C(M)) = Hi

Q(M) we must show it is
the derived functor of H0

Q(M) = H0(C(M)). For this it is enought to show
that Hi(C(M)) = 0 when M is an injective module and i > 0 (see for exam-
ple [Eisenbud 1995, Proposition A3.17 and Exercise A3.15].) We need two
properties of injective modules over Noetherian rings:

Lemma 10.3. Suppose that R is a Noetherian ring, and M is an injective
R-module.
(a) For any ideal Q ⊂ R the submodule H0

Q(M) is also an injective module.
(b) For any x ∈ R the localization map M →M [x−1] is surjective.

Proof. (a): We must show that if I ⊂ R is an ideal and φ : I → H0
Q(M)

is a map, then φ extends to a map R → H0
Q(M). We first extend φ to

an ideal containing a power of Q: Since I is finitely generated, and each
generator goes to an element annihilated by a power of Q, we see that for
sufficiently large d the ideal QdI is in the kernel of φ. By the Artin-Rees
Lemma ([Eisenbud 1995, Lemma 5.1]), the ideal QdI contains an ideal of the
form Qe∩I. It follows that the map (φ, 0) : I⊕Qe → H0

Q(M) factors through
the ideal I +Qe ⊂ R. Changing notation, we may assume that I ⊃ Qe from
the outset.

By the injectivity of M we may extend φ to a map φ′ : R → M . Since
φ′(Qe) = φ(Qe) ⊂ H0

Q(M), it follows that some power of Q annihilates
Qeφ′(1), and thus some power of Q annihilates φ′(1); that is, φ′(1) ∈ H0

Q(M),
so φ′ is the desired extension.

(b): Given m ∈ M and natural number d, we want to show that m/xd is
in the image of M in M [x−1]. Since R is Noetherian, the annihilator of xe

in R is equal to the annihilator of xd+e in R when e is large enough. Thus
the annihilator of xd+e is contained in the annihilator of xem. It follows that
there is a map from the principal ideal (xd+e) to M sending xd+e to xem.
Since M is injective, this map extends to a map R → M ; write m′ ∈ M for
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the image of 1, so that xe+dm′ = xem. Since xe(xdm′ −m) = 0, the element
m′ goes, under the localization map, to m/xd ∈M [x−1], as required.

To complete the proof of Theorem 10.2 we do induction on t. When t = 0
the result is obvious. For the case t = 1 we must show that, for any injective
R-module M and any x ∈ R, the localization map M →M [x−1] is surjective,
and this is the content of part (b) of Lemma 10.3.

If t > 1 we use the exact sequence of complexes

0 → C(x1, . . . , xt−1; M)[x−1
t ][1] →

C(x1, . . . , xt; M) → C(x1, . . . , xt−1; M) → 0

which comes from the splitting of the terms of C(x1, . . . , xt; M) into those
that involve inverting xt and those that don’t. The associated long exact
sequence contains the terms

H
i−1(C(x1, . . . ,xt−1; M))

δ- H
i−1(C(x1, . . . , xt−1; M)[x−1

t ]) -

H
i(C(x1, . . . , xt; M)) - H

i(C(x1, . . . , xt−1; M)).

It is easy to check from the definitions that the connecting homomorphism
δ is simply the localization map. If M is injective and i > 1 we derive

HiC(x1, . . . , xt; M) = 0 by induction. For the case i = 1 it follows from
parts (a) and (b) of Lemma 10.3.

One of the most important applications of local cohomology depends on the
following easy consequence.

Corollary 10.4. Suppose Q = (x1, . . . , xt). If M is an R-module then

Hi
Q(M) = 0 for i > t.

Proof. The length of the Čech complex C(x1, . . . , xt; M) is t.

This result is a powerful tool for studying how many equations it takes to
define an algebraic set X set-theoretically over an algebraically closed field.
Of course X can be defined by n equations if and only if there is an ideal Q
with n generators, having the same radical as I(X), the ideal of X. Since the
local cohomology Hi

I(M) depends only on the radical of I, we would have
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Hi
I(X)(M) = Hi

Q(M) = 0 for all i > n and all modules M . See [Schmitt
and Vogel 1979] and [Stückrad and Vogel 1982] for some examples where this
technique is used, and [Lyubeznik 2002] for a recent survey including many
pointers to the literature.

By far the most famous open question of this type is whether each irreducible
curve in P3

K can be defined set-theoretically by just two equations; it is not
even known whether this is the case for the smooth rational quartic curve X
in P3

K defined as the image of the map

P1
K 3 (s, t) → (s4, s3t, st3, t4) ∈ P3

K .

For this curve it is known that Hi
I(X)(M) = 0 for all i > 2 and all modules

M (see [Hartshorne 1970, Chapter 3]), so the local cohomology test is not
useful here. To add to the fun, it is known that if we replace K by a field
of characteristic p > 0 then this curve is set-theoretically the complete in-
tersection of two surfaces ([Hartshorne 1979]). See [Lyubeznik 1989] for an
excellent review of this whole area.

Change of Rings

Suppose ϕ : R→ R′ is a homomorphism of rings, Q is an ideal of R, and M
is an R′-module. Using the map ϕ we can also regard M as an R-module. In
general, the relation between ExtiR(R/Qd,M) and ExtiR′(R

′/Q′d,M), where
Q′ = QR′, is mysterious (there is a change of rings spectral sequence that
helps a little). For some reason taking the limit, and passing to local coho-
mology, fixes this.

Corollary 10.5. Suppose that ϕ : R→ R′ is a homomorphism of Noetherian
rings. With notation as above, there is a canonical isomorphism H i

Q(M) ∼=
H i
QR′(M).

Proof. If x ∈ R is any element, then the localization M [x−1] is the same
whether we think of M as an R-module or an R′-module: it is the set
of ordered pairs (m,xd) modulo the equivalence relation (m,xd) (m′, xe) if
xf (xem − xdm′) = 0 for some f . Thus the Čech complex C(x1, . . . , xt; M)
is the same whether we regard M as an R-module or an R′-module, and we
are done by Theorem 10.2.
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Corollary 10.5 fails in the non-Noetherian case even when R = K[t] and
I = t; see Exercise 10.9.

Local Duality

Because it comes up so often in applications, we mention a convenient way
to compute local cohomology with respect to the maximal ideal of a homoge-
neous polynomial ring. The same method works more generally over regular
local rings, and, with some care, over arbitrary rings.

Theorem 10.6. Let S = K[x0, . . . , xr] be the polynomial ring, and let m =
(x0, . . . , xr) be the homogeneous maximal ideal. If M is a finitely generated
graded S-module then Hi

m(M) is (as S-module) the graded K-vectorspace dual
of Extr+1−i(M,S(−r − 1)).

For a proof see [Brodmann and Sharp 1998, ****].

An Example

A simple example may serve to make all these computations clearer.

Let S = K[x, y], m = (x, y), and consider the S-moduleR = K[x, y]/(x2, xy).
We will compute the local cohomology Hi

m(R) (which is the same, by Theo-
rem 10.5, is the same as the local cohomology of R as a module over itself)
in two ways:

From the Čech complex: The Čech complex of R is by defition

0 - R

(
1
1

)
- R[x−1]⊕R[y−1]

(1,−1)
- R[(xy)−1] - 0.

However, R is annihilated by x2, and thus also by (xy)2. Thus the Čech
complex takes the simpler form

0 → R
(1)

- R[y−1] - 0,

where the map denoted (1) is the canonical map to the localization.
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The kernel of this map is the 0-th homology of the Čech complex, and thus by
Theorem 10.2 it is H0

m(R). As the kernel of the localization map R→ R[y−1]
it is the set of elements of R annihilated by a power of y, which is the 1-
dimensional vector space

H
0
m(R) = (x2, xy) : y∞/(x2, xy) = (x)/(x2, xy) = K · x.

Since the localization map kills x, we see that R[y−1] = S/(x)[y−1], and the
image of R in R[y−1] is the same as the image of S/(x) in S/(x)[y−1]. Thus
the first homology of the Čech complex, which is equal by Theorem 10.2 to
the first local cohomology of R, is

H
1
m(R) = S/(x)[y−1]/(S/(y)) = K · y−1 ⊕K · y−2 ⊕ · · · = K(1)⊕K(2)⊕ · · · .

From local duality: Because (x2, xy) is generated by just two elements it
is easy to write down a free resolution of S/(x2, xy):

0 - S(−3)

(
y
−x

)
- S2(−2)

(x2 xy )
- S - R - 0

The modules ExtiS(R,S) = ExtS(R,S) are the homology of the dual complex,
twisted by −2, which is

0 � S(1) �
(y −x )

S2 �

(
x2

xy

)
S(−2) � 0.

It is thus immediate that Ext0
S(R,S(−2)) = 0. We also see at once that

Ext2
S(R, S(−2)) = (S(3)/(x, y))(−2) = K(1), the dual of K(−1) = H0

m(R)
as claimed by Theorem 10.6.

To analyze Ext1
S(R,S(−2)) = 0 we note that the actual kernel of the map

S(1) �
(y −x )

S2

is

S2 �

(
x
y

)
S(−1),

so the desired homology is

Ext1
S(R, S(−2)) = S ·(x, y)/S ·(x2, xy) = S/(x)(−1) = K(−1)⊕K(−2)⊕· · · ,

which is indeed the dual of the local cohomology module H1
m(R) as computed

above.
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10B Local cohomology and sheaf cohomology

If M is any module over a Noetherian ring R and Q = (x1, . . . , xt) ⊂ R is
an ideal, then M gives rise by restriction to a sheaf FM on the affine scheme
SpecR \V (Q) whose i-th Zariski cohomology Hi(FM) may be defined as the
i-th cohomology of the Čech complex

Čech(x1, . . . , xt; M) :

0 - ⊕t
1 M [x−1

i ]
d- · · · ⊕#J=sM [x−1

J ]
d- · · ·M [x−1

{1,...,t}]
- 0

whose differential is defined as in Theorem 10.2. The reader who has not yet
studied schemes and their cohomology should think of Hi(FM) as a functor
of M without worrying about the nature of FM . The definition is actually
independent of the choice of generators x1, . . . , xt for Q; one can show that

H0(FM) = limd Hom(Qd,M), sometimes called the ideal transform of M with
respect to Q (see Exercise 10.3). Further, Hi(M) is the i-th right derived
functor of the ideal transform functor—this follows just as in the proof of
Theorem 10.2. When R and M are standard graded algebras, we will see
below that Hi(FM) is a sum of the usual i-th cohomology modules of the
sheaves M̃(d) on the projective variety ProjR.

The local cohomology is related to Zariski cohomology in a simple way:

Proposition 10.7. If Q = (x1, . . . , xt) then:
(a) There is an exact sequence of R-modules

0 → H0
Q(M) →M → H0(FM) → H1

Q(M) → 0.

(b) For every i ≥ 2

H i
Q(M) =

⊕
d

H i−1(FM).

Proof. Note that Čech(x1, . . . , xt; M) is the subcomplex of the complex
C(x1, . . . , xt; M) obtained by dropping the first term, M ; so we get an
exact sequence of complexes

0 → Čech(x1, . . . , xt; M)[−1] → C(x1, . . . , xt; M) →M → 0
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where M is regarded as a complex with just one term, in degree 0. Since
this one-term complex has no higher cohomology, the long exact sequence in
cohomology coming from this short exact sequence of complexes gives exactly
statements (a) and (b).

Henceforward we will restrict our attention to the case where R is the poly-
onomial ring S = K[x0, . . . , xr], the ideal Q is the homogeneous maximal
ideal Q = (x0, . . . , xr), and the module M is finitely generated and graded.
It follows that all the cohomology is graded too. Following our usual con-
vention we will write Hi

Q(M)d for the d-th graded component of Hi
Q(M), and

similarly for the Zariski cohomology of FM .

Another way to express H0
Q(M) in our special case is to say that it is the

largest submodule of M having finite length. To see this, note that any
submodule N ⊂M of finite length is (by Nakayama’s lemma) annihilated by
a power of Q. Conversely, the submodule H0

Q(M) is finitely generated, and
each of its generators is annihilated by a power of Q. Thus it is a finitely
generated module over the ring of finite length S/Qd for sufficiently large d.

In this setting the Zariski cohomology has another interpretation: Any graded
S-module M gives rise to a quasicoherent sheaf M̃ on the projective space
Pr (for the definition and properties of this construction see for example
[Hartshorne 1977, II.5].) The Čech complex for M̃ is the degree 0 part of
the complex Čech(x0, . . . , xr; M). In particular, the i-th (Zariski) cohomol-
ogy of the sheaf M̃ is the degree 0 part of the cohomology of FM , that is

Hi(M̃) = Hi(FM)0. If we shift the grading of M by d to get M(d), then M̃(d)
is the sheaf on Pr associated to M(d), so in general Hi(M̃(d)) = Hi(FM)d.
Thus Theorem 10.7 takes on the following form:

Corollary 10.8. Let M be a graded S-module, and let M̃ be the correspond-
ing quasicoherent sheaf on Pr.
(a) There is an exact sequence of graded S-modules

0 → H0
Q(M) →M →

⊕
d

H0(M̃(d)) → H1
Q(M) → 0.

(b) For every i ≥ 2
H i
Q(M) =

⊕
d

H i−1(M̃(d)).
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As a first example, Proposition 10.8 lets us compute the local cohomology of
the polynomial ring as a module over itself in terms of the well-known sheaf
cohomology of line bundles on Pr.

Corollary 10.9. If S = K[x0, . . . , xr] with r ≥ 1 then

H i
Q(S)d =

{
0 if i ≤ r
HomK(S−r−1−d,K) if i = r + 1.

Proof. This is an immediate consequence of Proposition 10.8, given the co-
homology of OPr(d) = S̃(d) (see [Hartshorne 1977, III.3.1]).

It is also easy to calculate the local cohomology of a module of finite length:
it has (almost) none!

Corollary 10.10. If M is a graded S-module of finite length, then H0
Q(M) =

M , while H i
Q(M) = 0 for i > 0.

Note the contrast with the case of ExtiS(S/Q
j,M); for example when M

is the module K, of length 1: here the value is nonzero for all j and all
0 ≤ i ≤ r. The Corollary says that in the limit everything goes to zero
except when i = 0!

Proof. The first assertion is the definition of H0
Q(M) = 0 in this case. Since

a power of each xi annihilates M , we have M [x−1
i ] = 0 for each i, whence the

sheaf M̃ is zero. Thus the second assertion follows from Proposition 10.8.

The final result of this section explains the gap between the Hilbert function
and the Hilbert polynomial:

Corollary 10.11. Let M be a finitely generated graded S-module. For every
d ∈ Z

PM(d) = HM(d)−
∑
i≥0

(−1)i dimK H
i
Q(M)d.

Proof. The Euler characterisitic of the sheaf M̃(d) is by definition

χ(M̃(d)) =
∑
i≥0

(−1)i dimK H
i M̃(d).
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We first claim that PM(d) = χ(M̃(d)) for every d. Indeed, by Serre’s Vanish-
ing Theorem (see [Hartshorne 1977, Chapter 3]) Hi(M̃(d)) vanishes for i > 0
when d � 0 so χ(M̃(d)) = dimK H0(M̃(d)) = Md for large d. Thus for the
claim it suffices to show that χ(M̃(d)) is a polynomial function of d. This is
done by induction: if x is a general linear form on Pr then from the exact
sequence

0 → M̃(−1)
x- M̃ - M̃/xM → 0

we derive a long exact sequence in cohomology which (since it has only finitely
many terms) establishes the recursion formula

χ(M̃(d))− χ(M̃(d− 1)) = χ(M̃/xM(d)).

Since the support of ˜M/xM equals the hyperplane section of the support of

M̃ , we see by induction on the dimension of the suport of M̃ that χ( ˜M/xM(d))
is a polynomial, and thus χ(M̃(d)) is also.

By Corollary 10.8 we have

χ(M̃(d)) = dimK H
0(M̃(d))−

∑
i≥1

(−1)i dimK H
i(M̃(d))

= dimK Md − dimK H
0
Q(M)d + dimK H

1
Q(M)d −

∑
i≥2

(−1)i dimK H
i
Q(M)d

as required.

10C Vanishing and nonvanishing theorems

In this section we maintain the hypothesis that S = K[x0, . . . , xr], the ideal
Q is the homogeneous maximal ideal Q = (x0, . . . , xr), and the module M is
finitely generated and graded.

The converse of Corollary 10.10 is also true; it is a special case of the di-
mension assertion in the following result. The proofs of the next two results
require slightly more sophisticated commutative algebra than what has gone
before, and we will not use them in the sequel. We include them to give a
flavor of the usefulness of local cohomology.

Proposition 10.12. Let M be a finitely generated graded S-module.
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1. If i < depthM or i > dimM then H i
Q(M) = 0.

2. If i = depthM or i = dimM then H i
Q(M) 6= 0.

In between the depth and the dimension almost anything can happen; see
[Evans and Griffith 1979].

Proof. Usng the fact that Exti(S/Qn,M) = 0 for i < depth(Q,M) (see
[Eisenbud 1995, Proposition 18.4]) we see that H i

Q(M) = 0 in this range.
From Proposition 10.8 and Grothendieck’s Theorem (see [Hartshorne 1977,
Theorem III.2.7]) that sheaf cohomology vanishes in degrees above the di-
mension of the support of the sheaf, we see that H i

Q(M) = 0 for i > dimM .
This proves part 1.

For the nonvanishing we use the fact that the local cohomology is a derived
functor and thus we get a long exact sequence in local cohomology from
any short exact sequence of modules. To prove that H i

Q(M) 6= 0 when
i = depthM we do induction on depthM . If the depth is zero then every
element of positive degree is a zero divisor on M . The set of zero divisors
on M is the union of the associated primes of M , so this says that Q is
contained in the union. It follows from the “prime avoidance lemma” that
Q is an associated prime of M , that is, M contains a copy of S/Q, a module
of finite length, and thus H0

Q(M) 6= 0.

If, on the other hand, the depth is positive, then we can choose a homoge-
neous nonzerodivisor f on M . We have depthM/fM = depthM − 1. If the
degree of f is d, we have a short exact sequence

0 →M →M(d) →M/fM(d) → 0,

and by inductionHdepthM−1
Q M/fM(d) 6= 0. On the other handHdepthM−1

Q M(d) =
0 by part 1, so the resulting long exact sequence

· · · → HdepthM−1
Q M(d) → HdepthM−1

Q M/fM(d) → HdepthM
Q M → · · ·

shows that HdepthM
Q M 6= 0.

To prove that HdimM
Q M 6= 0 we proceed by induction on dimM . Let

M = M/H0
Q(M). For i > 0 we have H i

Q(H0
QM) = 0 by Corollary 10.10, so
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H i
Q(M) = H i

Q(M/(H0
QM)). Further, H0

Q(M/(H0
QM)) = 0. Since dimM =

dimM/(H0
QM), we may thus suppose H0

QM = 0.

It follows as above that Q is not an associated prime of M , and we may
choose a nonzerodivisor f on M as before. As dimM/fM = dimM − 1 we
may replace the depth in the argument above by the dimension, and conclude
that HdimM

Q M 6= 0 as required.

Finally, we use the theory developed to study the map M → ⊕dH
0(M̃(d)).

Recall that the normalization of a domain is its integral closure in its field of
fractions, and that when we speak of a variety we assume it to be irreducible.

Corollary 10.13. Let M be a finitely generated graded S-module. The nat-
ural map M → ⊕dH

0(M̃(d)) is an isomorphism if and only if depthM ≥ 2.
If M = SX is the homogeneous coordinate ring of a normal projective variety
X of dimension at least 1, then ⊕dH

0(OX(d)) is the normalization of SX .

Proof. We have already seen that depthM ≥ 2 if and only if H i
QM = 0

for i = 0, 1 and the first assertion now follows from the first assertion of
Proposition 10.8.

For the second assertion, set R = ⊕dH
0(OX(d)). Thus R is a domain con-

taining SX .

To show that R is integral over SX we use the finiteness of cohomology and
Serre’s vanishing theorem: Suppose 0 6= f ∈ H0OX(d). As X is a variety of
dimension ≥ 1 we must have d > 0.

For the case d = 0 we note that R0 = H0OX is a finite dimensional K-vector
space. It follows that f satisfies an algebraic equation with coefficients in K,
so it is integral over K and thus necessarily integral over (SX)0.

To take care of the case d > 0, we may assume r ≥ 2 (otherwise X = P1 and
SX = K[x0, x1] = R to begin with). We use the sequence

0 → IX → OPr → OX → 0.

Since r ≥ 2 we have H1OPr(d) = 0 for all d, so the long exact sequence gives⊕
d

H1IX(d) = coker(
⊕
d

H0OPr(d) →
⊕
d

H0OX(d)) = cokerSX → R = H1
QSX
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by Proposition 10.8 (we have used the fact that SX is the image of
⊕

dH
0OPr(d) =

S in
⊕

dH
0OX(d)) = R.) By Serre’s vanishing theorem, (H1

QSX)e = 0 and
Re = (SX)e for e >> 0, whence a large power of f must be in SX , proving
that f is integral in this case too. Notice that our argument proves that
elements of non-negative degree in R are integral over SX whether or not the
dimension of X is at least 1 and whether or not X is irreducible.

It now suffices to show that R is normal. For this we use Serre’s criterion: A
domain R is normal if RP is regular for every associated prime P of a principal
ideal in R (see [Eisenbud 1995, Theorem 11.2]). In the graded case, we may
asssume that the principal ideal is generated by a homogeneous element (This
follows as in the reference given, once we remark that the integral closure
of R would have to be generated by homogeneous elements.) Suppose that
P ⊂ R is associated to a principal ideal of R, and let P ′ = P ∩ SX . Since
X is a normal variety, the localization of SX at any homogeneous prime P ′

other than Q is the local ring of X along a subvariety, with a variable and
its inverse adjoined. Since X is normal, so is (SX)P ′ , and thus (SX)P ′ = RP ,
and P cannot be associated to a principal ideal unless RP is regular.

There remains the case where P ′ = Q, the maximal homogeneous ideal.
Because R is integral over SX , and R+ ∩ S = Q, while P ⊂ R+, we must
have P = R+ by “incomparability” (see [Eisenbud 1995, Corollary 4.18]).
We will show that this case cannot occur by showing that depth(R+, R) ≥ 2.

To this end, choose any homogeneous element 0 6= f ∈ R of positive degree
d, say. Since R is a domain we have a short exact sequence

0 → R(−d) f- R - R/fR→ 0.

Sheafifying and taking homology we get a long exact sequence containing the
terms

0 → R(−d) f- R -
⊕
d

H0(R̃/fR)(d) → · · · ,

where we have used the first statement of Corollary 10.13 to identify
⊕

dH
0(R̃)(d)

with R.

Again by the first statement of Corollary 10.13 we haveH0
Q(
⊕

dH
0(R̃/fR)(d)) =

0, whence H0
Q(R/fR) = 0, so Q and a fortiori P contains a nonzerodivisor

on R/fR, and P is not associated to fR. Since all maximal regular se-
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quences have the same length, P is not associated to any principal ideal of
R generated by a nonzerodivisor.

In the subjects we deal with elsewhere in this book it is really a matter of
taste whether one uses local cohomology or sticks with the language of coher-
ent sheaf cohomology, passing to the cohomology of various syzygy modules
to replace the “missing” groups H0

Q and H1
Q. But using local cohomology

makes the statements much simpler and more uniform, so we have given it
preference.

10D Exercises

1. Cofinality: Let R ⊃ J1 ⊃ J2 ⊃ . . . and R ⊃ K1 ⊃ K2 ⊃ . . . be
sequences of ideals in a ring R, and suppose that there exist functions
m(i) and n(i) such that Ji ⊃ Km(i) and Ki ⊃ Jn(i) for all i. Show that
for any R-module M we have

lim
i

ExtpR(S/Ji,M) = lim
i

ExtpR(S/Ki,M).

2. Use Exercise 10.1 and the Artin Rees Theorem to show that if R is a
Noetherian ring containing ideals Q1 and Q2, and M is an R-module,
then there is a long exact sequence

· · · →H
i
Q1+Q2

(M) → H
i
Q1

(M)⊕ H
i
Q2

(M) → H
i
Q1∩Q2

(M) →
H
i+1
Q1+Q2

(M) → · · ·

3. Let R be a Noetherian ring, and Q an ideal of R. Let F be a coher-
ent sheaf on SpecR \ V (Q). Prove that H0(FM) = limHom(Qd,M)
by defining maps in both directions {mi/x

d
i } 7→ [f : xei 7→ xe−di mi]

restricted to Q(r+1)e ⊂ (xe0, . . . , x
e
r) for big e; and [f : Qd → M ] 7→

{f(xdi )/x
d
i }.

4. Prove that for any R-module M over any Noetherian ring we have

lim
d

Hom((xd),M) = M [x−1].
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5. Show that the complex C(x1, . . . , xt; M) is the direct limit of the
Koszul complexes. Use this to give another proof of Theorem 10.2
in the case where x1, . . . , xt is a regular sequence in R.

6. Compute the local cohomology of the module S in the cases S = K[x0]
and S = K not treated in Corollary 10.9

7. Use Corollary 10.12 to prove Grothendieck’s Vanishing Theorem: If
F is a coherent sheaf F on Pr whose support has dimenion n then

Hi(F) = 0 for i > n. (Hint: choose a system of parameters for S
consisting of elements in annM and dimM further elements, and use
Theorem 10.2.

8. Let R be the ring R = k[x, y1, y2, . . .]/(xy1, x
2y2, . . .). Note that R is

non-Noetherian: for example the sequence of ideals ann(xn) increases
forever. Show that the formula in Exercise 10.4 fails over this ring for
M = R.

9. Let R be any ring containing an element x such that the sequence
of ideals ann(xn) increases forever. If an R-module M contains R,
show that the map M →M [x−1] cannot be surjective; that is the first
homology of the Čech complex

0 →M →M [x−1] → 0

is nonzero. In particular, this is true for the injective envelope of R in
the category of R-modules. Conclude that the cohomology of this Čech
complex ofM does not compute the derived functors of the functor H0

Rx,
and in particular that Corollary 10.5 fails for the map Z[t] → R with
t 7→ x.
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Chapter 11

Appendix B: A Jog Through
Commutative Algebra

Revised 9/11/03

((Get rid of “Chapter 11” — this is appendix B))

My goal in this appendix is to lead the reader on a brisk jog through the
garden of commutative algebra. There won’t be time to smell many flowers,
but I hope to impart an overview of the landscape, at least of that part of
the subject used in this book.

Each section is focused on a single topic. It begins with some motivation
and the principle definitions, and then lists some central results, often with
illustrations of their use. Finally, there are some further, perhaps more subtle,
examples. There are practially no proofs; these can be found, for example,
in my book [Eisenbud 1995].

I assume that the reader is familar with

• Rings, ideals, and modules, and occasionally some homological notions,
such as Hom and ⊗, Ext and Tor.

• Prime ideals and the localizations of a ring

• The correspondence between affine rings and algebraic sets

247
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There are a few references to sheaves and schemes, but these can be harm-
lessly skipped.

The topics to be treated are:

1. Associated primes

2. Depth

3. Projective dimension and regular local rings

4. Normalization (resolution of singularities for curves)

5. The Cohen-Macaulay property

6. The Koszul complex

7. Fitting ideals

8. The Eagon-Northcott complex and scrolls

Throughout, K denotes a field and R denotes a commutative Noetherian
ring. The reader should think primarily of the cases whereR = K[x1, . . . , xn]/I
for some ideal I, or where R is the localization of such a ring at a prime
ideal. Perhaps the most interesting case of all is when R is a homogeneous
(or standard graded) algebra, by which we mean a graded ring of the form
R = K[x0, . . . , xr]/I, where all the xi have degree 1, and I is a homogeneous
ideal (that is, a polynomial f is in I iff each homogeneous component of f
is in I).

There is a fundamental similarity between the local and the homogeneous
cases. Many results for local rings depend on Nakayama’s Lemma, which
states (in one version) that ifM is a finitely generated module over a local ring
R with maximal ideal m and g1, . . . , gn ∈ M are elements whose images in
M/mM generate M/mM , then g1, . . . , gn generate M . A closely analogous
result is true in the homogeneous situation: if M is a finitely generated
graded module over a homogeneous ring R with maximal homogeneous ideal
m =

∑
d>0Rd, and if g1, . . . , gn ∈M are homogeneous elements whose images

in M/mM generate M/mM , then g1, . . . , gn generate M . These results can
be unified: following Goto and Watanabe [* ref: Generalized Local Rings I,
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II] one can define a generalized local ring to be a graded ring R = R0⊕R1⊕. . .
such that R0 is a local ring. If m is the maximal homogeneous ideal, that
is, the sum of the maximal ideal of R0 and the ideal of elements of strictly
positive degree, then Nakayama’s Lemma holds for R and a finitely generated
graded R-module M just as before.

Similar homogeneous versions are possible for many results involving local
rings. Both the local and homogeneous cases are important, but rather than
spelling out two versions of every theorem, or passing to the generality of
generalized local rings, we usually give only the local version.

11A Associated Primes and primary decom-

position.

11A.1 Motivation and Definitions

Any integer admits a unique decomposition as a product of primes and a unit.
Attempts to generalize this result to rings of integers in number fields were
the number-theoretic origin of commutative algebra. With the work of Lasker
and Macaulay around 1900 the theorems took something like their final form
for the case of polynomial rings, the theory of primary decomposition. It was
Emmy Noether’s great contribution to see that they followed relatively easily
from just the ascending chain condition on ideals. (Indeed, modern work
has shown that most of the important statements of the theory fail in the
non-Noetherian case). Though the full strength of primary decomposition is
rarely used, the concepts involved are fundamental, and some of the simplest
cases are pervasive.

The first step is to recast the unique factorization of an integer n ∈ Z into a
unit and a product of powers of distinct primes, say

n = ±
∏
i

pai
i ,

as a result about intersections of ideals, namely

(n) =
⋂
i

(pai
i ).
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In the general case we will again express an ideal as an intersection of ideals,
called primary ideals, each connected to a particular prime ideal.

Recall that a proper ideal I ⊂ R (that is, an ideal not equal to R) is prime if
xy ∈ I and x /∈ I implies y ∈ I. If M is a module then a prime ideal P is said
to be associated to M if P = annm, the annihilator of some m ∈ M . We
write AssM for the set of associated primes of M . The module M is called
P -primary if P is the only associated prime of M . The most important case
occurs when I ⊂ R is an ideal and M = R/I; then it is traditional to say
that P is associated to I when P is associated to R/I, and to write Ass I in
place of AssR/I. We also say that I is P -primary if R/I is P -primary. (The
confusion this could cause is rarely a problem: usually the associated primes
of I as a module are not very interesting.) The reader should check that the
associated primes of an ideal (n) ⊂ Z are those (p) generated by the prime
divisors p of n. In particular, the (p)-primary ideals in Z are exactly those
of the form (pa).

For any ideal I we say that a prime P is minimal over I if P is is minimal
among primes containing I. An important set of primes connected with a
module M is the set MinM of primes minimal over the annihilator I =
annM . These are called the minimal primes of M . Again we abuse the
terminology, and when I is an ideal we define the minimal primes of I to be
the minimal primes over I, or equivalently the minimal primes of the module
R/I. We shall see below that all minimal primes of M are associated to M .
The associated primes of M that are not minimal are called embedded primes
of M .

11A.2 Results

Theorem 11.1. Let M be a nonzero finitely generated R-module.

1. MinM ⊂ AssM , and both are nonempty finite sets.

2. The set of elements of R that are zerodivisors on M is the union of the
associated primes of M .

If M is a graded module over a homogeneous ring R, then all the associated
primes of M are homogeneous.
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Among the most useful Corollaries is the following.

Corollary 11.2. If I is an ideal of R and M is a finitely generated module
such that every element of I annihilates some nonzero element of M , then
there is a single nonzero element of M annihilated by all of I. In particular,
any ideal of R that consists of zerodivisors is annihilated by a single element.

The proof is immediate from Theorem 11.1 given the “prime avoidance
lemma”.

Lemma 11.3. If an ideal I is contained in a finite union of prime ideals,
then it is contained in one of them.

It is easy to see that an element f ∈ R is contained in an ideal I iff the image
of f in the localization RP is contained in IP for all prime ideals, or even just
for all maximal ideals P of R. Using Theorem 11.1 one can pinpoint the set
of localizations it is necessary to test, and see that this set is finite.

Corollary 11.4. If f ∈M , then f = 0 iff the image of f is zero in MP for
each associated prime P of M . It even suffices that this condition is satisfied
at each maximal associated prime of M .

One reason for looking at associated primes for modules, and not only for
ideals, is the following useful result, which is a component of the proof of
Theorem 11.1.

Theorem 11.5. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of
finitely generated R-modules. We have

Ass(M ′) ⊂ Ass(M) ⊂ Ass(M ′) ∪ Ass(M ′′).

If M = M ′ ⊕M ′′ then the second inclusion becomes an equality.

Here is the primary decomposition result itself.

Theorem 11.6. If I is an ideal of R then Ass(R/I) is the unique minimal
set of prime ideals S such that we can write I = ∩P∈SQP , where QP is a
P -primary ideal (there is a similar result for modules).

In this decomposition the ideals QP with P ∈ Min I are called minimal
components and are unique. The others are called embedded components
and are generally non-unique.



252CHAPTER 11. APPENDIX B: A JOG THROUGH COMMUTATIVE ALGEBRA

11A.3 Examples

1. Primary decomposition translates easily into geometry by means of
Hilbert’s Nullstellensatz [Eisenbud 1995, Theorem 1.6]. Here is a sam-
ple that contains a fundamental finiteness principle. Recall that the
radical of an ideal I, written

√
I, is the ideal

√
I = {f ∈ R | fm ∈ I for some m}.

We say that I is radical if I =
√
I. The primary decomposition of a

radical ideal has the form
√
I = ∩P∈Min IP.

Any algebraic set X (say in affine n-space An
K over an algebraically

closed field K, or in projective space) can be written uniquely as a finite
union X = ∪iXi of irreducible sets. The ideal I = I(X) of functions
vanishing on X is the intersection of the prime ideals Pi = I(Xi). The
expression I = ∩iPi is the primary decomposition of I.

2. For any ring R we write K(R) for the result of localizing R by inverting
all the nonzerodivisors of R. By Theorem 11.1, this is the localization
of R at the complement of the union of the associated primes of R, and
thus it is a ring with finitely many maximal ideals. Of course if R is
a domain then K(R) is simply its quotient field. The most useful case
beyond is when R is reduced. ThenK(R) = K(R/P1)×· · ·×K(R/Pm),
the product of the quotient fields of R modulo its finitely many minimal
primes.

3. Let R = K[x, y] and let I = (x2, xy). The associated primes of I are (x)
and (x, y), and a primary decomposition of I is I = (x) ∩ (x, y)2. This
might be read geometrically as saying: for a function f(x, y) to lie in I,
the function must vanish on the line x = 0 in K2 and vanish to order
2 at the point (0, 0). In this example, the (x, y)-primary component
(x, y)2 is not unique: we also have I = (x)∩ (x2, y). The corresponding
geometric statement is that a function f lies in I if and only if f vanishes
on the line x = 0 in K2 and (∂f/∂x)(0, 0) = 0.

4. If P is a prime ideal, the powers of P may fail to be P -primary! In
general, the P -primary component of Pm is called the m-th symbolic



11B. DIMENSION AND DEPTH 253

power of P , written P (m). In the special case where R = K[x1, . . . , xn]
and K is algebraically closed, a famous result of Zariski and Nagata
(see for example [Eisenbud and Hochster 1979]) says that P (m) is the MR80g:14002
set of all functions vanishing to order ≥ m at each point of V (P ). For
example, suppose that

A =

x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3


is a matrix of indeterminates. If P is the ideal I2(A) of 2 × 2 minors
of A, then P is prime but, we claim, P (2) 6= P 2. In fact, the partial
derivatives of detA are the 2 × 2 minors of A, so detA vanishes to
order 2 wherever the 2 × 2 minors vanish. Thus detA ∈ P (2). On the
other hand detA /∈ P 2 because P 2 is generated by elements of degree
4, while detA only has degree 3.

11B Dimension and Depth

11B.1 Motivation and Definitions

Perhaps the most fundamental definition in geometry is that of dimension.
The dimension (also called Krull dimension) of a commutative ring plays
a similarly central role. An arithmetic notion of dimension called depth is
also important (the word “arithmetic” in this context refers to divisibility
properties of elements in a ring). Later we shall see geometric examples of
the difference between depth and dimension.

The dimension of R, written dimR is the supremum of lengths of chains of
prime ideals of R. ( Here a chain is a totally ordered set. The length of a
chain of primes is, by definition, one less than the number of primes; that
is P0 ⊂ P1 ⊂ . . . ⊂ Pn is a chain of length n.) If I is an ideal of R, the
codimension of I, written codim(I), is the maximum of the lengths of chains
of primes descending from primes minimal among those containing I. See
Eisenbud [1995, Ch. 8] for a discussion linking this very algebraic notion with
geometry.) The generalization to modules doesn’t involve anything new: we
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define the dimension dimM of an R-module M to be the dimension of the
ring R/ ann(M)

A sequence x = x1, . . . , xn of elements of R is a regular sequence (or R-
sequence) if x1, . . . , xn generate a proper ideal of R and if, for each i, the
element xi is a nonzerodivisor modulo (x1, . . . , xi−1). Similarly, if M is an R-
module, then x is a regular sequence on M (orM -sequence) if (x1, . . . , xn)M 6=
M and, for each i, the element xi is a nonzerodivisor on M/(x1, . . . , xi−1)M .

If I is an ideal of R and M is a finitely generated module such that IM 6= M ,
then the depth of I onM , written depth(I,M), is the maximal length of a reg-
ular sequence on M contained in I. (If IM = M we set depth(I,M) = ∞.)
The most interesting cases are the ones where R is a local or homoge-
neous ring and I is the maximal (homogeneous) ideal. In these cases we
write depth(M) in place of depth(I,M). We define the grade of I to be
grade(I) = depth(I, R). (Alas, terminology in this area is quite variable; see
for example [Bruns and Herzog 1998, Section 1.2] for a different system.) We
need one further notion of dimension, a homological one that will reappear in
the next section. The projective dimension of an R-module is the minimum
length of a projective resolution of M (or ∞ if there is no finite projective
resolution.)

11B.2 Results

We will suppose for simplicity that R is local with maximal ideal m. Similar
results hold in the homogeneous case. A fundamental geometric observation
is that a variety over an algebraically closed field that is defined by one
equation has codimension at most 1. The following is Krull’s justly celebrated
generalization.

Theorem 11.7. (Principal Ideal Theorem). If I is an ideal that can be gen-
erated by n elements in a Noetherian ring R, then grade(I) ≤ codim(I) ≤ n.
Moreover, any prime minimal among those containing I has codimension at
most n. If M is a finitely generated R-module, then dimM/IM ≥ dimM−n.

For example, in R = K[x1, . . . , xn] or R = K[x1, . . . , xn](x1,...,xn) or R =
K[[x1, . . . , xn]] the sequence x1, . . . , xn is a maximal regular sequence. It
follows at once from Theorem 11.7 that in each of these cases the ideal



11B. DIMENSION AND DEPTH 255

(x1, . . . , xn) has codimension n, and for the local ringR = K[x1, . . . , xn](x1,...,xn)

or R = K[[x1, . . . , xn]] this gives dimR = n. For the polynomial ring R it-
self this argument gives only dimR ≥ n, but in fact it is not hard to show
dimR = n in this case as well. This follows from a general result on affine
rings.

Theorem 11.8. If R is an integral domain with quotient field K(R), and
R is a finitely generated algebra over the field K, then dimR is equal to the
transcendence degree of K(R) over K. Geometrically: the dimension of an
algebraic variety is the number of algebraically independent functions on it.

The following is a generalization of Theorem 11.7 in which the ring R is
replaced by an arbitrary module.

Theorem 11.9. If M is a finitely generated R-module and I ⊂ R is an ideal,
then

depth(I,M) ≤ codim((I + annM)/(annM)) ≤ dimM.

A module is generally better behaved—more like a free module over a poly-
nomial ring—if its depth is close to its dimension. See also Theorem 11.11.)

Theorem 11.10. If R is a local ring and M is a finitely generated R-module
then

1. All maximal regular sequences on M have the same length; this common
length is equal to the depth of M . Any permutation of a regular sequence
on M is again a regular sequence on M .

2. depth(M) = 0 iff Ass(M) contains the maximal ideal (see Theorem
11.1(2)).

3. For any ideal I, depth(I,M) = inf{i | ExtiR(R/I,M) 6= 0}.

4. If R = K[x0, . . . , xr] with the usual grading, M is a finitely generated
graded R-module, and m = (x0, . . . , xr), then depth(M) = inf{i |
Hi

m(M) 6= 0}.

Parts 3 and 4 of Theorem 11.10 are connected by what is usually called local
duality ; see Theorem 10.6.
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Theorem 11.11. (Auslander-Buchsbaum formula). If R is a local ring and
M is a finitely generated R-module such that pd(M) (the projective dimension
of M) is finite, then depth(M) = depth(R)− pd(M).

The following results follow from Theorem 11.11 by localization.

Corollary 11.12. Suppose that M is a finitely generated module over a local
ring R.

1. If M has an associated prime of codimension n, then pd(M) ≥ n.

2. If M has finite projective dimension, then pd(M) ≤ depthR ≤ dimR.
If pd(M) = 0 then M is free.

3. If pd(M) = dimR then R is Cohen-Macaulay and the maximal ideal is
associated to M .

Another homological characterization of depth, this time in terms of the
Koszul complex, is given in Section 11G.

11B.3 Examples

1. Theorem 11.10 really requires the “local” hypothesis (or, of course, the
analogous “graded” hypothesis). For example, in K[x] × K[y, z] the
sequences (1, y), (0, z) and (x, 1) are both maximal regular sequences.
Similarly, in R = K[x, y, z] the seqence x(1− x), 1− x(1− y), xz is a a
regular sequence but its permutation x(1−x), xz, 1−x(1−y) is not. The
ideas behind these examples are related: R/(x(1−x)) = K[y, z]×K[y, z]
by the Chinese Remainder Theorem.
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11C Projective dimension and regular local

rings

11C.1 Motivation and Definitions

After dimension, the next most fundamental geometric ideas may be those of
smooth manifolds and tangent spaces. The analogues in commutative algebra
are regular rings and Zariski tangent spaces, introduced by Krull [Krull 1937]
and Zarisk [Zariski 1947]. Since the work of Auslander, Buchsbaum, and
Serre in the 1950s this theory has been connected with the idea of projective
dimension.

Let R be a local ring with maximal ideal m. The Zariski cotangent space of
R is m/m2, regarded as a vector space over R/m; the Zariski tangent space
is the dual, HomR/m(m/m2, R/m). The ring R is called regular if its Krull
dimension, dim(R), is equal to the dimension of the Zariski tangent space
(as a vector space); otherwise, R is singular. If R is a Noetherian ring that
is not local, we say that R is regular if each localization at a maximal ideal
is regular.

For example, the n-dimensional power series ring

K[[x1, . . . , xn]]

is regular because the maximal ideal m = (x1, . . . , xn) satisfies m/m2 =
⊕n

1Kxi. The same goes for the localization of the polynomial ring K[x1, . . . , xn](x1, . . . , xn).
Indeed any localization of one of these rings is also regular though this is
harder to prove; see Corollary 11.15.

11C.2 Results

Here is a first taste of the consequences of regularity.

Theorem 11.13. Any regular local ring is a domain. A local ring is regular
iff its maximal ideal is generated by a regular sequence.

The following result initiated the whole homological study of rings.
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Theorem 11.14. (Auslander-Buchsbaum-Serre). A local ring R is regular
iff the residue field of R has finite projective dimension iff every R-module
has finite projective dimension.

The abstract-looking characterization of regularity in Theorem 11.14 allowed
a proof of two properties that had been known only in the “geometric” case
(R a localization of a finitely generated algebra over a field). These were
the first triumphs of representation theory in commutative algebra. Recall
that a domain R is called factorial if every element of r can be factored into
a product of prime elements, uniquely up to units and permutation of the
factors.

Theorem 11.15. Any localization of a regular local ring is regular. Every
regular local ring is factorial (that is, has unique factorization of elements
into prime elements.)

The first of these statements is, in the geometric case, a weak version of the
statement that the singular locus is a closed subset. The second plays an
important role in the theory of divisors.

11C.3 Examples

1. The rings

K[x1, . . . , xn], K[x1, . . . , xn, x
−1
1 , . . . , x−1

n ], and K[[x1, . . . , xn]]

are regular, and the same is true if K is replaced by the ring of integers
Z.

2. A regular local ring R of dimension 1 is called a discrete valuation
ring. By definition, the maximal ideal of R must be principal; let π be
a generator. By Theorem 11.13 R is a domain. Conversely, any one
dimensional local domain with maximal ideal that is principal (and
nonzero!) is a discrete valuation ring. Every nonzero element f of the
the quotient field K(R) can be written uniquely in the form u · πk for
some unit u ∈ R and some integer k ∈ Z. The name “discrete valuation
ring” comes from the fact that the mapping

ν : K(R)∗ → Z f 7→ k
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satisfies the definition of a valuation on R and has “value group” the
discrete group Z.

3. A ring of the form A = K[[x1, . . . , xn]]/(f) is regular iff the leading
term of f has degree ≤ 1 (if the degree is 0, then of course A is the zero
ring!) In case the degree is 1, the ring A is isomorphic to the ring of
power series in n−1 variables. If R = K[[x1, . . . , xn]]/I is nonzero then
R is regular iff I can be generated by some elements f1, . . . , fm with
leading terms that are of degree 1 and linearly independent; in this
case R ∼= K[[x1, . . . , xn−m]]. Indeed, Cohen’s Structure Theorem says
that any complete regular local ring containing a field is isomorphic to
a power series ring (possibly over a larger field.)

This result suggests that all regular local rings, or perhaps at least
all regular local rings of the same dimension and characteristic, look
much alike, but this is only true in the complete case (things like power
series rings). Example 11D.2 shows how much structure even a discrete
valuation ring can carry.

4. Nakayama’s Lemma implies that a module over a local ring has pro-
jective dimension 0 iff it is free. It follows that an ideal of projective
dimension 0 in a local ring is principal, generated by a nonzerodivisor.
An ideal has projective dimension 1 (as a module) iff it is isomorphic to
the ideal J of n×n minors of an (n+ 1)×n matrix with entries in the
ring, and this ideal of minors has depth 2 (that is, depth(J,R) = 2), the
largest possible number. This is the Hilbert-Burch Theorem, described
in detail in Chapter 3.

11D Normalization (resolution of singulari-

ties for curves)

11D.1 Motivation and Definitions

If R ⊂ S are rings, then an element f ∈ S is integral over R if f satisfies a
monic polynomial equation

fn + a1f
n−1 + . . .+ an = 0
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with coefficients in R. The integral closure of R in S is the set of all elements
of S integral over R; it turns out to be a subring of S (Theorem 11.16). The
ring R is integrally closed in S if all elements of S that are integral over R
actually belong to R. The ring R is normal if it is integrally closed in the
ring obtained from R by inverting all nonzerodivisors.

These ideas go back to the beginning of algebraic number theory: the integral
closure of Z in a finite field extension K of Q, defined to be the set of elements
of K satisfying monic polynomial equations over Z, is called the ring of
integers of K, and is in many ways the nicest subring of K. For example,
when studying the field Q[x]/(x2− 5) ∼= Q(

√
5) it is tempting to look at the

ring R = Z[x]/(x2 − 5) ∼= Z[
√

5]. But the slightly larger (and at first more
complicated-looking) ring

R =
Z[y]

(y2 − y − 1)
∼= Z[

1−
√

5

2
]

is nicer in many ways: for example, the localization of R at the prime P =
(2, x − 1) ⊂ R is not regular, since RP is 1-dimensional but P/P 2 is a 2-
dimensional vector space generated by 2 and x− 1. Since x2 − x− 1 has no
solution modulo 2, the ideal P ′ = PR = (2)R is prime and RP ′ is regular. In
fact R itself is regular. This phenomenon is typical for 1-dimensional rings.

In general, the first case of importance is the normalization of a reduced ring
R in its quotient ring K(R). In addition to the number-theoretic case above,
this has a beautiful geometric interpretation. Let R be the coordinate ring
of an affine algebraic set X ⊂ Cn in complex n-space. The normalization of
R in K(R) is then the ring of rational functions that are locally bounded on
X.

For example, suppose that X is the union of two lines meeting in the origin
in C2, with coordinates x, y, defined by the equation xy = 0. The function
f(x, y) = x/(x − y) is a rational function on X that is well-defined away
from the point (0, 0). It takes the value 1 on the line y = 0 and 0 on the
line x = 0, so although it is bounded near the origin, it does not extend
to a continuous function at the origin. Algebraically this is reflected in the
fact that f (regarded either as a function on X or as an element of the
ring obtained from the coordinate ring R = K[x, y]/(xy) of X by inverting
the nonzerodivisor x − y) satisfies the monic equation f 2 − f = 0, as the
reader will easily verify. On the disjoint union X̄ of the two lines, which is a
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nonsingular space mapping to X, the pull back of f extends to be a regular
function everywhere: it has constant value 1 on one of the lines and constant
value 0 on the other.

Another significance of the normalization is that it gives a resolution of sin-
gularities in codimension 1 ; we will make this statement precise in Example
11D.4.

11D.2 Results

Theorem 11.16. Let R ⊂ S be rings. If s, t ∈ S are integral over R, then
s + t and st are integral over R. That is, the set of elements of S that are
integral over R is a subring of S, called the normalization of R in S. If S is
normal (for example if S is the quotient field of R) then the integral closure
of R in S is normal.

The following result says that the normalization of the coordinate ring of an
affine variety is again the coordinate ring of an affine variety.

Theorem 11.17. If R is a domain that is a finitely generated algebra over
a field K, then the normalization of R (in its quotient field) is a finitely
generated R-module; in particular it is again a finitely generated algebra over
C.

It is possible to define the normalization of any abstract variety X (of finite
type over a field K), a construction that was first made and exploited by
Zariski. Let X = ∪Xi be a covering of X by open affine subsets, such that
Xi ∩ Xj is also affine, and let X̄i be the affine variety corresponding to the
normalization of the coordinate ring of Xi. We need to show that the X̄i

patch together well, along the normalizations of the sets Xi∩Xj. This is the
essential content of the next result.

Theorem 11.18. The operation of normalization commutes with localization
in the following sense: let R ⊂ S are rings and let R̄ be the subring of
S consisting of elements integral over R. If U is a multiplicatively closed
subsetof R, then the localization R̄[U−1] is the normalization of R[U−1] in
S[U−1].
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What have we got when we have normalized a variety? The following result
tells us what good properties we can expect.

Theorem 11.19. Any normal 1-dimensionsonal ring is regular (that is, dis-
crete valuation rings are precisely the normal 1-dimensional rings). More
generally, we have
Serre’s Criterion: A ring R is a finite direct product of normal domains
iff

• R1) RP is regular for all primes P of codimension ≤ 1; and

• S2) depth(PP , RP ) ≥ 2 for all primes P of codimension ≥ 2.

When R is standard graded then it is only necessary to test conditions R1
and S2 at homogeneous primes.

11D.3 Examples

1. The ring Z is normal; so is any factorial domain (for example, any
regular local ring). (Reason: if f = u/v and v is divisible by a higher
power of some prime p than divides u, then an equation of the form
fn+a1f

n−1 + . . .+an = 0 would lead to a contradiction by considering
the power of p dividing each term of vn · (fn + a1f

n−1 + . . . + an) =
un + a1vu

n−1 + · · ·.)

2. Despite the simplicity of discrete valuation rings (see Example 11C.2)
there are a lot of non-isomorphic ones, even after avoiding the “obvi-
ous” differences of characteristic, residue class field R/m, and different
quotient field. For a concrete example, consider first the coordinate
ring of a quartic affine plane curve, R = K[x, y]/(x4 + y4 − 1), where
K is the field of complex numbers (or any algebraically closed field of
characteristic not 2). The ring R has infinitely many maximal ideals
of the form (x− α, y − β) where α ∈ K is arbitrary and β is any 4-th
root of 1−α4. But given one of these maximal ideals P , there are only
finitely many maximal ideals Q such that RP

∼= RQ. This follows at
once from the theory of algebraic curves (see for example Hartshorne
[1977, Ch. 1 §8]: any isomorphism RP → RQ induces an automor-
phism of the projective curve x4 + y4 = z4 in P2 carrying the point
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corresponding to P to the point corresponding to Q; but there are only
finitely many automorphisms of this curve (or, indeed, of any smooth
curve of genus ≥ 2).

3. The set of monomials in x1, . . . , xn corresponds to the set of lattice
points Nn in the positive orthant (send each monomial to its vector of
exponents). Let U be an subset of Nn, and let K[U ] ⊂ K[x1, . . . , xn] be
the subring generated by the corresponding monomials. For simplic-
ity we assume that the group generated by U is all of Zn, the group
generated by Nn. It is easy to see that any element of Nn that is in
the convex hull of U , or even in the convex hull of the set generated
by U under addition, is integral over K[U ]. In fact the integral closure
of K[U ] is K[Ū ], where Ū is the convex hull of the set generated by
U using addition. For example take U = {x4

1, x
3
1x2, x1x

3
2, x

4
2}—all the

monomials of degree 4 in two variables except the “middle” monomial
f := x2

1x
2
2. The element f is in the quotient field of K[U ] because

f = x4
1 · x1x

3
2/x

3
1x2. The equation (2, 2) = 1

2
{(4, 0) + (0, 4)} expressing

the fact that f corresponds to a point in the convex hull of U , gives
rise to the equation f 2 − x4

1 · x4
2 = 0, so f is integral over K[U ].

4. Resolution of Singularities in codimension 1. Suppose that X
is an affine variety over an algebraically closed field K, with affine
coordinate ring R. By Theorem 11.17 the normalization R corresponds
to an affine variety Y , and the inclusion R ⊂ R corresponds to a map
g : Y → X. By Theorem 11.18 the map g is an isomorphism over
the part of X that is nonsingular, or even normal. The map g is a
finite morphism in the sense that the coordinate ring of X̄ is a finitely
generated as a module over the coordinate ring of X; this is a strong
form of the condition that each fiber g−1(x) is a finite set.

Serre’s Criterion in Theorem 11.19 implies that the coordinate ring
of Y is nonsingular in codimension 1, and this means just what one
would hope in this geometric situation: the singular locus of Y is of
codimension at least 2.

Desingularization in codimension 1 is the most that can be hoped, in
general, from a finite morphism. For example the quadric cone X ⊂ K3

defined by the equation x2 + y2 + z2 = 0 is normal, and it follows that
any finite map Y → X that is isomorphic outside the singular point
must be an isomorphism.
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However, for any affine or projective variety X over a field it is con-
jectured that there is actually a resolution of singularities : that is, a
projective map π : Y → X (this means that Y can be represented as
a closed subset of X × Pn for some projective space Pn) where Y is a
nonsingular variety, and the map π is an isomorphism over the part of
X that is already nonsingular. In the example above, there is a desin-
gularization (the blowup of the origin in X) that may be described as
the subset of X × P2, with coordinates x, y, z for X and u, v, w for P2,
defined by the vanishing of the 2× 2 minors of the matrix(

x y z
u v w

)
together with the equations xu+ yv+ zw = 0 and u2 + v2 +w2 = 0. It
is described algebraically by the Rees algebra

R⊕ I ⊕ I2 ⊕ · · ·

where R = K[x, y, z]/(x2 + y2 + z2) is the coordinate ring of X and
I = (x, y, z) ⊂ R.

The existence of resolutions of singularities was proved in characteristic
0 by Hironaka. In positive characteristic it remains an active area of
research.

11E The Cohen-Macaulay property

11E.1 Motivation and Definitions

Which curves in the projective plane pass through the common intersections
of two given curves? The answer was given by the great geometer Max
Noether (father of Emmy) in 1888 [Noether 1873] the course of his work
algebraizing Riemann’s amazing ideas about analytic functions, under the
name of the “Fundamental Theorem of Algebraic Functions”. However, it
was gradually realized that Noether’s proof was incomplete, and it was not
in fact completed until work of Lasker in 1905. By the 1920’s, [Macaulay
1994] and [Macaulay 1934] Macaulay had come to a much more general un-
derstanding of the situation for polynomial rings, and his ideas were studied
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and extended to arbitrary local rings by Cohen in the 1940’s [Cohen 1946].In
modern language, the fundamental idea is that of a Cohen-Macaulay ring.

A curve in the projective plane is defined by the vanishing of a (square-free)
homogeneous polynomial (form) in three variables. Suppose that curves F,G
and H are defined by the vanishing of forms f, g and h. For simplicity we
assume that F and G have no common component, so the intersection of F
and G is finite. If h can be written as h = af+bg for some forms a and b, then
h vanishes wherever f and g vanish, so H passed through the intersection
points of F and G. Noether’s Fundamental Theorem is the converse: if
H “passes through” the intersection of F and G, then h can be written as
h = af + bg.

To understand Noether’s Theorem we must know what it means for H to
pass through the intersection of F and G. To make the theorem correct,
the intersection, which may involve high degrees of tangency and singularity,
must be interpreted subtly. We will give a modern explanation in a moment,
but it is interesting first to phrase the condition in Noether’s terms.

For Noether’s applications it was necessary to define the intersection in a
way that would only depend on data available locally around a point of
intersection. Suppose, after a change of coordinates, that F and G both
contain the point p = (1, 0, 0). Noether’s idea was to expand the functions
f(1, x, y), g(1, x, y) and h(1, x, y) as power series in x, y, and to say that H
passes through the intersection of F and G locally at p if there are convergent
power series α(x, y) and β(x, y) such that h(1, x, y) = α(x, y)f(1, x, y) +
β(x, y)g(1, x, y). This condition was to hold (with different α, β!) at each
point of intersection.

Noether’s passage to convergent power series ensured that the condition “H
passes through the intersection of F and G” depended only on data avail-
able locally near the points of intersection. Following Lasker [Lasker 1905]
and using primary decomposition, we can reformulate the condition without
leaving the context of homogeneous polynomials. We first choose a primary
decomposition (f, g) = ∩Qi. If p is a point of the intersection F ∩ G, then
the prime ideal P of forms vanishing at p is minimal over the ideal (f, g). By
Theorem 11.1, P is an associated prime of (f, g). Thus one of the Qi, say
Q1, is P -primary. We say that H passes through the intersection of F and
G locally near p if h ∈ Q1.
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In this language, Noether’s Fundamental Theorem becomes the statement
that the only associated primes of (f, g) are the primes associated to the
points of F ∩ G. Since f and g have no common component, they gener-
ate an ideal of codimension at least 2, and by the Principal Ideal Theorem
11.7 the codimension of all the minimal primes of (f, g) is exactly 2. Thus
the minimal primes of (f, g) correspond to the points of intersection, and
Noether’s Theorem means that there are no non-minimal, that is, embedded
associated primes of (f, g). This result was proven by Lasker in a more gen-
eral form, Lasker’s Unmixedness Theorem: if a sequence of c homogeneous
elements in a polynomial ring generates an ideal I of codimension c, then
every associated prime of I has codimension c. The modern version simply
says that a polynomial ring over a field is Cohen-Macaulay. By Theorem
11.23, this is the same result.

Now for the definitions: a local ring R is Cohen-Macaulay if depth(R) =
dim(R); it follows that the same is true for every localization of R (Theorem
11.20). More generally, an R-module M is Cohen-Macaulay if depth(M) =
dim(M). If R is not local, we say that R is Cohen-Macaulay if the localiza-
tion RP is Cohen-Macaulay for every maximal ideal P . If R is a homoge-
neous ring with maximal homogeneous ideal m, then R is Cohen-Macaulay iff
grade(m) = dimR (as can be proved from Theorem 11.11 and the existence
of minimal graded free resolutions).

Globalizing, we say that a variety (or scheme) X is Cohen-Macaulay if each
of its local rings OX,x is a Cohen-Macaulay ring. More generally, a coherent
sheaf F on X is Cohen-Macaulay if for each point x ∈ X the stalk Fx is a
Cohen-Macaulay module over the local ring OX,x.

If X ⊂ Pr is a projective variety (or scheme), we say that X is arithmetically
Cohen-Macaulay if the homogeneous coordinate ring SX = K[x0, . . . , xr]/I(X)
is Cohen-Macaulay. The local rings of X are, up to adding a variable and
its inverse, obtained from the homogeneous coordinate ring by localizing at
certain primes. With Theorem 11.20 this implies that if X is arithmetically
Cohen-Macaulay then X is Cohen-Macaulay. The “arithmetic” property is
much stronger, as we shall see in the examples.
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11E.2 Results

The Cohen-Macaulay property behaves well under localization and forming
polynomial rings.

Theorem 11.20. The localization of any Cohen-Macaulay ring at any prime
ideal is again Cohen-Macaulay. A ring R is Cohen-Macaulay iff R[x] is
Cohen-Macaulay iff R[[x]] is Cohen-Macaulay iff R[x, x−1] is Cohen-Macaulay.

The following result is an easy consequence of Theorems 11.14 and 11.11.
The reader should compare it with Example 11E.3 above.

Theorem 11.21. Suppose that a local ring R is a finitely generated module
over a regular local subring T . The ring R is Cohen-Macaulay as an R-module
iff it is free as a T -module. A similar result holds in the homogeneous case.

Sequences of c elements f1, . . . , fc in a ring R that generate ideals of codi-
mension c have particularly nice properties. In the case when R is a local
Cohen-Macaulay ring the situation is particularly simple.

Theorem 11.22. If R is a local Cohen-Macaulay ring and f1, . . . , fc generate
an ideal of codimension c then f1, . . . , fc is a regular sequence.

Here is the property that started it all. We say that an ideal I of codimension
c is unmixed if every associated prime of I has codimension exactly c.

Theorem 11.23. A local (or standard graded) ring is Cohen-Macaulay if
and only if every ideal of codimension c that can be generated by c elements
is unmixed.

Theorem 11.13 shows that a local ring is regular if its maximal ideal is gen-
erated by a regular sequence; here is the corresponding result for the Cohen-
Macaulay property.

Theorem 11.24. Let R be a local ring with maximal ideal m. The following
conditions are equivalent

• a) R is Cohen-Macaulay (that is, grade(m) = dim(R)).

• b) There is an ideal I of R that is generated by a regular sequence and
contains a power of m.
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The next useful consequence of the Cohen-Macaulay property is often taken
as the definition. It is pleasingly simple, and doesn’t involve localization, but
as a definition it is not so easy to check.

Theorem 11.25. A ring R is Cohen-Macaulay iff every ideal I of R has
grade equal to its codimension.

One way to prove that a ring is Cohen-Macaulay is to prove that it is a
summand in a nice way. We will apply the easy first case of this result in
Example 11E.4.

Theorem 11.26. Suppose that S is a Cohen-Macaulay ring and R ⊂ S is
a direct summand of S as R-modules. If either S is finitely generated as an
R-module, or S is regular, then R is Cohen-Macaulay.

The first statement follows from basic statements about depth and dimension
[Eisenbud 1995, Proposition 9.1 and Corollary 17.8]. The second version,
without finiteness, is far deeper. The general case was proven by Boutot
[Boutot 1987].

11E.3 Examples

1. (Complete intersections.) Any regular local ring is Cohen-Macaulay
(Theorem 11.13). If R is any Cohen-Macaulay ring, for example the
power series ring K[[x1, . . . , xn]], and f1, . . . , fc is a regular sequence in
R, then R/(f1, . . . , fc) is Cohen-Macaulay; this follows from Theorem
11.9(a). For example, K[x1, . . . , xn]/(x

a1
1 , . . . , x

ak
k ) is Cohen-Macaulay

for any positive integers k ≤ n and a1, . . . , ak.

2. Any Artinian local ring is Cohen-Macaulay. Any 1-dimensional local
domain is Cohen-Macaulay. More generally, a 1-dimensional local ring
is Cohen-Macaulay iff the maximal ideal is not an assocated prime of
0 (Theorem 11.1(2)). For example, K[x, y]/(xy) is Cohen-Macaulay.

3. The simplest examples of Cohen-Macaulay rings not included in ex-
amples 1 or 2 are the homogeneous coordinate rings of set of points,
studied in Chapter 3, and the homogeneous coordinate rings of rational
normal curves, studied in 6.
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4. Suppose a finite group G acts on a ring S, and the order n of G is
invertible in S. Let R be the subring of invariant elements of S. The
Reynolds operator

s 7→ 1

n

∑
g∈G

gs

is an R linear splitting of the inclusion map. Thus if S is Cohen-
Macaulay, so is R by Theorem 11.26. Theorem 11.26 further shows
that the the ring of invariants of any reductive group acting linearly on
a polynomial ring is a Cohen-Macaulay ring, a result first proven by
Hochster and Roberts [Hochster and Roberts 1974].

5. Perhaps the most imporant example of a ring of invariants under a finite
group action is that where S = K[x0, . . . , xr] is the polynomial ring on
r + 1 indeterminates and G = (Z/d)r+1 is the product of r + 1 copies
of the cyclic group of order d, whose i-th factor acts by multiplying xi
by a d-th root of unity. The invariant ring R is thus the d-th Veronese
subring of S, consisting of all forms whose degree is a multiple of d.

6. Most Cohen-Macaulay varieties in Pn (even smooth varieties) are not
arithmetically Cohen-Macaulay. A first example is the union of two
skew lines in P3. In suitable coordinates this scheme is represented by
the homogeneous ideal I := (x0, x1) ∩ (x2, x3); that is, it has homoge-
neous coordinate ring R := K[x0, x1, x2, x3]/(x0, x1) ∩ (x2, x3). To see
that R is not Cohen-Macaulay, note that

R ⊂ R/(x0, x1)×R/(x2, x3) = K[x2, x3]×K[x0, x1],

so that f0 := x0−x2 is a nonzerodivisor on R. By the graded version of
Theorem 11.10(1), it suffices to show that every element of the maxi-
mal ideal is a zerodivisor in R/(f0). As the reader may easily check, I =
(x0x2, x0x3, x1x2, x1x3), so R̄ := R/(f0) = K[x1, x2, x3]/(x

2
2, x2x3, x1x2, x1x3).

In particular, the image of x2 is not zero in R̄, but the maximal ideal
annihilates x2.

7. Another geometric example that is easy to work out by hand is that of
the rational quartic curve in P3. We can define this curve by giving its
homogeneous coordinate ring, which is the subring of K[s, t] generated
by the elements f0 = s4, f1 = s3t, f2 = st3, f3 = t4. Since R is a
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domain, the element f0 is certainly a nonzerodivisor, and as before it
suffices to see that modulo the ideal (f0) = Rs4 the whole maximal
ideal consists of zerodivisors. One checks at once that s6t2 ∈ R \ Rs4,
but that fis

6t2 ∈ Rs4 for every i, as required.

In general, many of the most interesting smooth projective varieties
cannot be embedded in a projective space in any way as arithmetically
Cohen-Macaulay varieties. Such is the case for all Abelian varieties of
dimension > 1 (and in general for any variety whose structure sheaf
has nonvanishing intermediate cohomology. . . ).

11F The Koszul complex

11F.1 Motivation and Definitions

One of the most fundamental homological constructions is the Koszul com-
plex. It is fundamental in many senses, perhaps not least because its con-
struction depends only on the commutative and associative laws in R. It
makes one of the essential bridges between regular sequences and homologi-
cal methods in commutative algebra, and has thus been at the center of the
action since the work of Auslander, Buchsbaum, and Serre in the 1950s. The
construction itself was already exploited (implicitly) by Cayley ([Hochster
and Roberts 1974]—see Gelfand, Kapranov, and Zelevinsky [Gel′fand et al.
1994] for an exegisis). It enjoys the role of premier example in Hilbert’s 1890
paper on syzygies. (The name Koszul seems to have been attached to the
complex by Cartan and Eilenberg in their influential book on homological
algebra [Cartan and Eilenberg 1999]. It is also the central construction in the
Bernstein-Gel’fand-Gel’fand correspondence described briefly in Chapter 7.
It appears in many other generalizations as well, for example in the Koszul
duality associated with quantum groups (see [Manin 1988].)

I first learned about the Koszul complex from the lectures of David Buchs-
baum. He always began his explanation with the following special cases, and
these still seem to me the best introduction.

Let R be a ring and let x ∈ R be an element. The Koszul complex of x is
the complex
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cohomological degree: 0 1

K(x) : 0 - R
x- R - 0.

We give the cohomological degree of each term of K(x) above that term so
that we can unambiguously refer to Hi(K(x)), the homology of K(X) at the
term of cohomological degree i. This rather trivial complex has interesting
homology: the element x is a nonzerodivisor if and only if H0(K(x)) is 0.
The homology H1(K(x) is always R/(x), so that when x is a nonzerodivisor,
K(x) is a free resolution of R/(x).

If y ∈ R is a second element, we can form the complex

cohomological degree: 0 1 2

K(x) = K(x, y) : 0 - R

(
x
y

)
- R2

(−y x )
- R - 0.

Again, the homology tells us interesting things. First, H0(K(x, y)) is the set
of elements annihilated by both x and y. By Corollary 11.2, H0(K(x, y)) = 0
if and only if the ideal (x, y) contains a nonzerodivisor. Supposing that x is a
nonzerodivisor, we claim that H1(K(x, y)) = 0 if and only if x, y is a regular
sequence. Indeed,

H
1(K(x, y)) =

{(a, b) | ay − bx = 0}
{rx, ry | r ∈ R}

.

The element a in the numerator can be chosen to be any element in the
quotient ideal (x) : y = {s ∈ R | sy ∈ (x)}. Because x is a nonzerodivisor,
the element b in the numerator is then determined uniquely by a. Thus
the numerator is isomorphic to (x) : y, and H1(K(x, y)) ∼= ((x) : y)/(x),
proving the assertion. The module H2(K(x, y)) is, in any case, isomorphic
to R/(x, y), so when x, y is a regular sequence the complex K(x, y) is a free
resolution of R/(x, y). This situation generalizes, as we shall see.

In general, the Koszul complex K(x) of an element x in a free module F is
the complex with terms Ki := ∧iF and whose differentials d : Ki - Ki+1

are given by exterior multiplication by x. The formula d2 = 0 follows because
elements of F square to 0 in the exterior algebra. (Warning: our indexing is
nonstandard—usually what we have called Ki is called Kn−i, where n is the
rank of F , and certain signs are changed as well. Note also that we could
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defined a Koszul complex in exactly the same way without assuming that F
is free—but I do not know any application of this idea.) If we identify F
with Rn for some n, we may write x as a vector x = (x1, . . . , xn), and we will
sometimes write K(x1, . . . , xn) instead of K(x).

11F.2 Results

Here is a weak sense in which the Koszul complex is “close to” exact.

Theorem 11.27. Let x1, . . . , xn be a sequence of elements in a ring R. For
every i, the homology H i(K(x1, . . . , xn)) is anhilated by (x1, . . . , xn).

The next result says that the Koszul complex can detect regular sequences
inside an ideal.

Theorem 11.28. Let x1, . . . , xn be a sequence of elements in a ring R. The
grade of the ideal (x1, . . . , xn) is the smallest integer i such that Hi(K(x1, . . . , xn)) 6=
0.

In the local case, the Koszul complex detects whether a given sequence is
regular.

Theorem 11.29. Let x1, . . . , xn be a sequence of elements in the maximal
ideal of a local ring R. The elements x1, . . . , xn form a regular sequence iff

Hn−1(K(x1, . . . , xn)) = 0, in which case the Koszul complex is the minimal
free resolution of the module R/(x1, . . . , xn).

An ideal that can be generated by a regular sequence (or, in the geometric
case, the variety it defines) is called a complete intersection.

The Koszul complex is self-dual, and this fact is the basis for much of duality
theory in algebraic geometry and commutative algebra. Here is how the
duality is defined. Let F be a free R-module of rank n, and let e be a
generator of ∧nF ∼= R. Contraction with e defines an isomorphism φk ∧k
F ∗ → ∧n−kF for every k = 0, . . . , n. The map φk has a simple description in
terms of bases: if e1 . . . , en is a basis of F such that e = e1 ∧ · · · ∧ en, and if
f1, . . . , fn is the dual basis to e1 . . . , en, then

φk(fi1 ∧ · · · ∧ fik) = ±ej1 ∧ · · · ∧ ejn−k



11F. THE KOSZUL COMPLEX 273

where {j1, . . . , jn−k} is the complement, in {1, . . . , n}, of {i1, . . . , ik} and the
sign depends on the sign of the permutation sorting the sequence {i1, . . . , ik, j1, . . . , jn−k}
into ascending order. We have

Theorem 11.30. The contraction maps define an isomorphism of the com-
plex K(x1, . . . , xn) with its dual.

11F.3 Examples

1. The Koszul complex can be built up inductively as a mapping cone. For
example, using an element x2 we can form the commutative diagram
with two Koszul complexes K(x1):

K(x1) : 0 - R
x1 - R - 0

K(x1) : 0 - R

x2

?

x1

- R

x2

?
- 0

We regard the vertical maps as forming a map of complexes. The
Koszul complex K(x1, x2) may be described as the mapping cone.

More generally, the complex K(x1, . . . , xn) is (up to signs) the mapping
cone of the map of complexes

K(x1, . . . , xn−1) - K(x1, . . . , xn−1)

given by multiplication by xn. It follows by induction that when
x1, . . . , xn is a regular sequence K(x1, . . . , xn) is a free resolution of
R/(x1, . . . , xn).

2. The Koszul complex may also be built up as a tensor product of com-
plexes. The reader may check from the definitions that

K(x1, . . . , xn) = K(x1)⊗K(x2)⊗ · · · ⊗K(xn).

The treatment in Serre’s book [Serre 2000] is based on this description.
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11G Fitting ideals and other determinantal

ideals

11G.1 Motivation and Definitions

Matrices and determinants appear everywhere in commutative algebra. A
linear transformation of vector spaces over a field has a well defined rank
(the size of a maximal submatrix with nonvanishing determinant in a matrix
representing the linear transformation) but no other invariants. By contrast
linear transformations between free modules over a ring have as invariants
a whole sequence of ideals, the determinantal ideals generated by all the
minors (determinants of submatrices) of a given size. Here are some of the
basic tools for handling them.

Let R be a ring and let A be a matrix with entries in R. The ideal of n× n
minors of A, written In(A), is the ideal in R generated by the n× n minors
(= determinants of n×n submatrices) of A. By convention we set I0(A) = R,
and of course In(A) = 0 if A is a q × p matrix and n > p or n > q. It is
easy to see that In(A) depends only on the map of free modules φ defined by
A—not on the choice of bases. We may thus write In(φ) in place of In(A).

Let M be a finitely generated R-module, with free presentation

Rp φ- Rq - M - 0.

Set Fittj(M) = Iq−j(φ). The peculiar numbering makes the definition of
Fittj(M) independent of the choice of the number of generators chosen for
M ; it is also independent of the choice of presentation.

11G.2 Results

There is a close relation between the annihilator and the 0-th Fitting ideal.

Theorem 11.31. If M is a module generated by n elements, then

ann(M)n ⊂ Fitt0(M) ⊂ ann(M).
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Krull’s Principal Ideal Theorem (Theorem 11.7) says that an ideal generated
by n elements in a Noetherian ring can have codimension at most n; the
statement for polynomial rings was proved much earlier by Lasker. Lasker’s
Unmixedness Theorem says that when such an ideal has codimension n it is
unmixed. An ideal generated by n elements is the ideal of 1 × 1 minors of
a 1× n matrix. Macaulay generalized these statements to all determinantal
ideals in polynomial rings. The generalization to any Noetherian ring was
made by Eagon and Northcott [1962].

Theorem 11.32. (Macaulay’s Generalized Principal Ideal Theorem). If A
is a p× q matrix with elements in a Noetherian ring R, and It(A) 6= R, then

codim(It(A)) ≤ (p− t+ 1)(q − t+ 1)

Let R be a local Cohen-Macaulay ring. Theorem 11.22 together with Ex-
ample 11E.1 show that if f1, . . . , fc is a sequence of elements that generates
an ideal of the maximum possible codimension, c, then R/(f1, . . . , fc) is a
Cohen-Macaulay ring. The next result, proved by Hochster and Eagon [1971]
is the analogue for determinantal ideals.

Theorem 11.33. If A is a p × q matrix with elements in a local Cohen-
Macaulay ring R and codim(It(A)) = (p− t+ 1)(q − t+ 1), then R/It(A) is
Cohen-Macaulay.

Note that the determinantal ideals defining the rational normal curves (Ex-
ample 11G.3) have this maximal codimension.

11G.3 Examples

1. Suppose that R = Z, the integers, or R = K[x], or any other principal
ideal domain. Let M be a finitely generated R-module. The structure
theorem for such modules tells us that M ∼= Rn⊕R/(a1)⊕ . . .⊕R/(as)
for uniquely determined non-negative n and positive integers ai such
that ai divides ai+1 for each i. The ai are called the elementary divisors

of M . The module M has a free presentation of the form Rs φ- Rs+n

where φ is represented by a diagonal matrix with diagonal entries the ai
followed by a block of zeros. From this presentation we can immediately
compute the Fitting ideals, and we find:
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• Fittj(M) = 0 for 0 ≤ j < n

• For n ≤ j, the ideal Fittj(M) is generated by all products of
j − n + 1 of the ai; in view of the divisibility relations of the ai
this means Fittj(M) = (a1 · · · aj−n+1).

In particular the Fitting ideals determine n by the first relation above
and the elementary divisors by the formulas

(a1) = Fittn, (a2) = (Fittn+1 : Fittn), . . . , (as) = (Fittn+s : Fittn+s−1).

Thus the Fitting ideals give a way of generalizing to the setting of arbi-
trary rings the invariants involved in the structure theorem for modules
over a principal ideal domain; this seems to have been why Fitting in-
troduced them.

2. Over more complicated rings cyclic modules (that is, modules of the
form R/I) are still determined by their Fitting ideals (Fitt0(R/I) = I);
but other modules are generally not. For example, over K[x, y], the
modules with presentation matrices

(
x y 0
0 x y

)
and

(
x y 0 0
0 0 x y

)
are not isomorphic (the second is annihilated by (x, y), the first only
by (x, y)2) but they have the same Fitting ideals

Fitt0 = (x, y)2, Fitt1 = (x, y), Fittj = (1) for j ≥ 2.

3. A determinantal prime ideal of the “wrong” codimension. Consider the
smooth rational quartic curve X in P3 with parametrization

P1 3 (s, t) 7→ (s4, s3t, st3, t4) ∈ P3.

Using the “normal form” idea used for the rational normal curve in
Proposition 6.1, it is not hard to show that the ideal I(X) is generated
by the 2× 2 minors of the matrix(

x0 x2 x2
1 x1x3

x1 x3 x0x2 x2
2

)
.

The homogeneous coordinate ring SX = S/I(X) is not Cohen-Macaulay
(Example 11E.7). The ideal I(X) is already generated by just four of
the six minors, I(X) = (x0x3−x1x2, x1x

2
3−x3

2, x0x
2
2−x2

1x3, x
3
1−x2

0x2).
The reader should compare this with the situation of Corollary 11.36.
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11H The Eagon-Northcott complex and scrolls

11H.1 Motivation and Definitions

Let A be a g×f matrix with entries in a ring R, and suppose for definiteness
that g ≤ f . The Eagon Northcott complex of A (Eagon-Northcott [1962])
bears the same relation to the determinantal ideal Ig(A) of maximal minors
of A that the Koszul complex bears to sequences of q elements; in fact the
Koszul complex is the special case of the Eagon-Northcott complex in which
g = 1. (A theory including the lower-order minors also exists, but it is far
more complicated; it depends on rather sophisticated representation theory,
and is better-understood in characteristic 0 than in finite characteristic. See
for example Akin, Weyman, and Buchsbaum [1982].) Because this material
is less standard than that in the rest of this appendix, we give more details.

Sets of points in P2 (Chapter 3) and rational normal scrolls (Chapter 6) are
some of the interesting algebraic sets whose ideals have free resolutions given
by Eagon-Northcott complexes.

The Eagon-Northcott complex.

Let R be a ring, and write F = Rf , G = Rg. The Eagon-Northcott complex
of a map α : F - G (or of a matrix A representing α) is a complex

EN(α) :

0 → (Symf−g G)∗ ⊗ ∧fF df−g+1- (Symf−g−1G)∗ ⊗ ∧f−1F
df−g-

· · · - (Sym2G)∗ ⊗ ∧g+2F
d3- G∗ ⊗ ∧g+1F

d2- ∧g F ∧gα- ∧g G

.

Here SymkG is the k-th symmetric power of G and the notation M∗ denotes
HomR(M,R). The maps dj are defined as follows. First we define a diagonal
map

(SymkG)∗ - G∗ ⊗ (Symk−1G)∗ : u 7→
∑
i

u′i ⊗ u′′i

as the dual of the multiplication map G ⊗ Symk−1G - SymkG in the
symmetric algebra of G. Next we define an analogous diagonal map

∧kF - F ⊗ ∧k−1F : v 7→
∑
i

v′i ⊗ v′′i
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as the dual of the multiplication in the exterior algebra of F ∗, or equivalently
as the appropriate component of the homomorphism of exterior algebras
induced by of the diagonal map F - F ⊕ F , that is, of

∧kF ↪→ ∧F - ∧ (F ⊕ F ) = ∧F ⊗ ∧F → F ⊗ ∧k−1F.

On decomposable elements, this diagonal has the simple form

v1 ∧ . . . ∧ vk 7→
∑
i

(−1)i−1vi ⊗ v1 ∧ . . . ∧ v̂i ∧ . . . ∧ vk.

With this notation for the diagonal maps, dj is the map

dj : (Symj−1G)∗ ⊗ ∧g+j−1F - (Symj−2G)∗ ⊗ ∧g+j−2F
dj (u⊗ v) 7→ ∑

i[α
∗(u′i)](v

′
i) · u′′i ⊗ v′′i .

The fact that the Eagon-Northcott complex is a complex follows by a direct
computation, or by an inductive construction of the complex as a mapping
cone, similar to the one indicated above in the case of the Koszul complex.
The most interesting part—the fact that d2 composes with ∧gα to 0—is a
restatement of “Cramer’s Rule” for solving linear equations; see Examples
11H.3 and 11H.4 below.

Rational Normal Scrolls.

We give three equivalent definitions, in order of increasing abstraction. See
Eisenbud and Harris [1987] for a proof of equivalence. We fix non-negative
integers a1, . . . , ad and set D =

∑
ai and N = D + d− 1.

i) Homogeneous Ideal. Take the homogeneous coordinates on PN to
be

x1,0, . . . , x1,a1 , x2,0, . . . , x2,a2 , . . . , xd,0, . . . , xd,ad
.

Define a 2×D matrix of linear forms on PN by

A(a1, . . . , ad) =
(
x1,0 . . . x1,a1−1 x2,0 . . . x2,a2−1 . . .
x1,1 . . . x1,a1 x2,1 . . . x2,a2 . . .

)
The rational normal scroll S(a1, . . . , ad) is the variety defined by the
ideal of 2 × 2 minors of I2(A(a1, . . . , ad)). This ideal is prime; one
method of proving it is to extend the idea used in Example 11G.3.
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ii) Union of planes. Let Vi be a vector space of dimension ai. Re-
gard P(Vi) as a subspace of PN = P(⊕iVi). Consider in P(Vi) the
parametrized rational normal curve

λi : P1 - P(Vi)

represented in coordinates by

(s, t) 7→ (sai , sai−1t, . . . , tai).

For each point p ∈ P1, let L(p) ⊂ PN be the (d− 1)-plane spanned by
λ1(p), . . . , λd(p). The rational normal scroll S(a1, . . . , ad) is the union
∪p∈P1L(p).

iii) Structure. Let E be the vector bundle on P1 that is the direct sum E =
⊕d
i=1O(ai). Consider the projectivized vector bundle X := P(E), which

is a smooth d-dimensional variety mapping to P1 with fibers Pd−1.
Because all the ai are non-negative, the tautological bundle OP(E)(1) is
generated by its global sections, which may be naturally identified with
the N + 1-dimensional vector space H0(E) = ⊕i H

0(OP1(ai)). These
sections thus define a morphism X - PN . The rational normal
scroll S(a1, . . . , ad) is the image of this morphism.

11H.2 Results

Here are generalizations of Theorems 11.27, 11.29 and Example 11E.1.

Theorem 11.34. Let α : F → G with rank(F ) ≥ rank(G) = g be a map
of free R-modules. The homology of the Eagon-Northcott complex EN(α) is
annihilated by the ideal of g × g minors of α.

The following result gives another (easier) proof of Theorem 11.33 in the case
of maximal order minors. It can be deduced from Theorem 11.34 together
with Theorem 3.3.

Theorem 11.35. Let α : F → G with rank(F ) = f ≥ rank(G) = g be a
map of free R-modules. The Eagon-Northcott complex EN(α) is exact (and
thus furnishes a free resolution of R/Ig(α)) iff grade(Ig(α)) = f − g + 1, the
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greatest possible value. In this case the dual complex Hom(EN(α), R) is also
a resolution.

The following important consequence seems to use only a tiny part of Theo-
rem 11.35, but I know of no other approach.

Corollary 11.36. If α : Rf → Rg is a matrix of elements in the maximal
ideal of a local ring S such that grade(Ig(α)) = f − g + 1, then the

(
f
g

)
maximal minors of α are minimal generators of the ideal they generate.

Proof. The matrix of relations on these minors given by the Eagon-Northcott
complex is zero modulo the maximal ideal of S.

We can apply the preceding theorems to the rational normal scrolls.

Corollary 11.37. The ideal of 2× 2 minors of the matrix A(a1, . . . , ad) has
grade and codimension equal to D−1, and thus the Eagon-Northcott complex
EN(A(a1, . . . , ad)) is a free resolution of the homogeneous coordinate ring
of the rational normal scroll S(a1, . . . , ad). In particular the homogeneous
coordinate ring of a rational normal scroll is arithmetically Cohen-Macaulay.

The next result gives some perspective on scrolls.

Theorem 11.38. 1. Suppose A is a 2 × D matrix of linear forms over
a polynomial ring whose ideal I of 2× 2 minors has codimension D −
1. If I is a prime ideal then A is equivalent by row operations, col-
umn operations, and linear change of variables, to one of the matrices
A(a1, . . . , ad) with D =

∑
ai.

2. If X is an irreducible subvariety of codimension c in PN , not contained
in a hyperplane, then the degree of X is at least c + 1. Equality is
achieved iff X is (up to a linear transformation of projective space)
either

• A quadric hypersurface; or

• a cone over the Veronese surface in P5 (whose defining ideal is the
ideal of 2× 2 minors of a generic symmetric 2× 2 matrix);

• a rational normal scroll S(a1, . . . , ad) with
∑
ai = c+ 1.
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11H.3 Examples

Consider a map α : F - G, where F and G are free R-modules of ranks f
and g respectively. The definition of the Eagon-Northcott complex is easier
to understand if g = 1 or if f is close to g:

1. (The Koszul complex.) If g = 1 and we choose a generator for G,
identifying G with R, then the symmetric powers Symk(G) and their
duals may all be identified with R. If we suppress them in the tensor
products defining the Eagon-Northcott complex, we get a complex of
the form

0 - ∧f F - . . . - ∧1 F - {∧1G = R}.

Choosing a basis for F and writing x1, . . . , xf for the images of the basis
elements in G = R, this complex is isomorphic to the Koszul complex
K(x1, . . . , xf ).

2. If f = g then the Eagon-Northcott complex is reduced to

0 - {R ∼= ∧fF} det(α)- {R ∼= ∧gG}.

3. (The Hilbert-Burch complex.) Supose f = g + 1. If we choose an
identification of ∧fF with R then we may suppress the tensor factor
∧fF from the notation, and also identify ∧gF = ∧f−1F with F ∗. If we
also choose an identification of ∧gG with R, then the Eagon-Northcott
complex of α takes the form

0 - G∗ α∗- {F ∗ = ∧gF} ∧gα- {∧gG = R}.

This is the Hilbert-Burch complex studied in the text of this course.
If we choose bases and represent α by a g × (g + 1) matrix A, then
(after the identification F ∗ = ∧gF ) the matrix associated to ∧gα has
i-th entry (−1)iDi, where Di is the determinant of the submatrix of A
leaving out the i-th column. The i-th entry of the composition of d2 and
∧gα is thus the determinant of the matrix made from A by repeating
the i-th row, and is thus 0 (that is, the Eagon-Northcott complex is a
complex!)
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4. If α is represented by a matrix A, then the map at the far right of
the Eagon-Northcott complex, ∧gα, may be represented by the 1×

(
f
g

)
matrix whose entries are the g × g minors of α. The map d2 admits a
similarly transparent description: for every submatrix A′ of A consist-
ing of g + 1 columns, there are g relations among the minors involving
these columns that are given by A′∗, exactly as in the Hilbert-Burch
complex, Example 11H.3. The map d2 is made by simply concatenating
these relations.

5. Suppose that α is represented by the 2× 4 matrix(
a b c d
e f g h

)
so that g = 2, f = 4. There are six 2 × 2 minors, and for each of the
four 2 × 3 submatrices of A there are two relations among the six, a
total of eight, given as in 11H.4. Since (Sym2G)∗ ∼= (Sym2(R

2))∗ ∼= R3,
the the Eagon-Northcott complex takes the form

0 - R3 - R8 - R6 - R .

The entries of the right-hand map are the 2× 2 minors of A, which are
quadratic in the entries of A, whereas the rest of the matrices (as in
all the Eagon-Northcott complexes) have entries that are linear in the
entries of A.
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