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Preface

The only way to learn mathematics is to do mathematics. That tenet is the
foundation of the do-it-yourself, Socratic, or Texas method, the method in
which the teacher plays the role of an omniscient but largely uncommuni-
cative referee between the learner and the facts. Although that method 1s
usually and perhaps necessarily oral, this book tries to use the same method
to give a written exposition of certain topics in Hilbert space theory.

The right way to read mathematics is first to read the definitions of the
concepts and the statements of the theorems, and then, putting the book
aside, to try to discover the appropriate proofs. If the theorems are not
trivial, the attempt might fail, but it is likely to be instructive just the same.
To the passive reader a routine computation and a miracle of ingenuity
come with equal ease, and later, when he must depend on himself, he will
find that they went as easily as they came. The active reader, who has found
out what does not work, 1s 1n a much better position to understand the reason
for the success of the author’s method, and, later, to find answers that are
not in books.

This book was written for the active reader. The first part counsists of
problems, frequently preceded by definitions and motivation, and some-
times followed by corollaries and historical remarks. Most of the problems
are statements to be proved, but some are questions (is it?, what is?), and
some are challenges (construct, determine). The second part, a very short
one, consists of hints. A hint is a word, or a paragraph, usually intended
to help the reader find a solution. The hint itself is not necessarily a con-
densed solution of the problem; it may just point to what I regard as the
heart of the matter. Sometimes a problem contains a trap, and the hint may
serve to chide the reader for rushing in too recklessly. The third part, the
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longest, consists of solutions: proofs, answers, or constructions, depending
on the nature of the problem.

The problems are intended to be challenges to thought, not legal tech-
nicalities. A reader who offers solutions in the strict sense only (this is what
was asked, and here is how it goes) will miss a lot of the point, and he will
miss a lot of fun. Do not just answer the question, but try to think of related
questions, of generalizations (what if the operator is not normal?), and of
special cases (what happens in the finite-dimensional case 7). What makes the
assertion true? What would make it false?

Problems in life, in mathematics, and even in this book, do not necessarily
arise in increasing order of depth and difficulty. It can perfectly well happen
that a relatively unsophisticated fact about operators is the best tool for the
solution of an elementary-sounding problem about the geometry of vectors.
Do not be discouraged if the solution of an early problem borrows from the
future and uses the results of a later discussion. The logical error of circular
reasoning must be avoided, of course. An insistently linear view of the
intricate architecture of mathematics is, however, almost as bad: it tends
to conceal the beauty of the subject and to delay or even to make impossible
an understanding of the full truth.

If you cannot solve a problem, and the hint did not help, the best thing to
do at first is to go on to another problem. If the problem was a statement,
do not hesitate to use it later; its use, or possible misuse, may throw valuable
light on the solution. If, on the other hand, you solved a problem, look at the
hint, and then the solution, anyway. You may find modifications, generaliza-
tions, and specializations that you did not think of. The solution may
introduce some standard nomenclature, discuss some of the history of the
subject, and mention some pertinent references.

The topics treated range from fairly standard textbook material to the
boundary of what is known. I made an attempt to exclude dull problems
with routine answers; every problem in the book puzzled me once. 1 did
not try to achieve maximal generality in all the directions that the problems
have contact with. I tried to communicate ideas and techniques and to let
the reader generalize for himself.

To get maximum profit from the book the reader should know the
elementary techniques and results of general topology, measure theory,
and real and complex analysis. I use, with no apology and no reference, such
concepts as subbase for a topology, precompact metric spaces, Lindelof
spaces, connectedness, and the convergence of nets, and such results as
the metrizability of compact spaces with a countable base, and the compact-
ness of the Cartesian product of compact spaces. (Reference: [87].) From
measure theory, I use concepts such as o-fields and L7 spaces, and results
such as that L? convergent sequences have almost everywhere convergent
subsequences, and the Lebesgue dominated convergence theorem.
(Reference: [61].) From real analysis I need, at least, the facts about the
derivatives of absolutely continuous functions, and the Weierstrass poly-
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nomial approximation theorem. (Reference: [120].) From complex analysis
I need such things as Taylor and Laurent series, subuniform convergence,
and the maximum modulus principle. (Reference: [26].)

This is not an introduction to Hilbert space theory. Some knowledge of
that subject is a prerequisite; at the very least, a study of the elements of
Hilbert space theory should proceed concurrently with the reading of this
book. Ideally the reader should know something like the first two chapters
of [50].

I tried to indicate where I learned the problems and the solutions and
where further information about them is available, but in many cases I could
find no reference. When I ascribe a result to someone without an accompany-
ing bracketed reference number, I am referring to an oral communication
or an unpublished preprint. When I make no ascription, I am not claiming
originality; more than likely the result is a folk theorem.

The notation and terminology are mostly standard and used with no
explanation. As far as Hilbert space is concerned, I follow [50], except in a
few small details. Thus, for instance, I now use fand g for vectors, instead
of x and y (the latter are too useful for points in measure spaces and such),
and, in conformity with current fashion, I use “kernel” instead of “null-
space”. (The triple use of the word, to denote (1) null-space, (2) the con-
tinuous analogue of a matrix, and (3) the reproducing function associated
with a functional Hilbert space, is regrettable but unavoidable; it does not
seem to lead to any confusion.) Incidentally kernel and range are abbreviated
as ker and ran, their orthogonal complements are abbreviated as ker* and
rant, dimension is abbreviated as dim, and determinant and trace are
abbreviated as det and tr. Real and imaginary parts are denoted, as usual,
by Re and Im. The *“signum ”* of a complex number z,i.e., z/|z| or 0 according
asz # 0 or z = 0, is denoted by sgn z.

The zero subspace of a Hilbert space is denoted by 0, instead of the correct,
pedantic {0}. (The simpler notation is obviously more convenient, and it is
not a whit more illogical than the simultaneous use of the symbol “0”
for a number, a function, a vector, and an operator. I cannot imagine any
circumstances where it could lead to serious error. To avoid even a momen-
tary misunderstanding, however, I write {0} for the set of complex numbers
consisting of 0 alone.) The co-dimension of a subspace is the dimension of
its orthogonal complement (or, equivalently, the dimension of the quotient
space it defines). The symbols \/ (as a prefix) and v (as an infix) are used to
denote spans, so that if M is an arbitrary set of vectors, then \/ M is the
smallest closed linear manifold that includes M; if M and N are sets of
vectors, then M v N is the smallest closed linear manifold that includes both
M and N; and if {M} is a family of sets of vectors, then \/; M, is the smallest
closed linear manifold that includes each M;. Subspace, by the way, means
closed linear manifold, and operator means bounded linear transformation.

The arrow in a symbol such as f, — findicates that a sequence {f,} tends
to the limit f; the barred arrow in x — x? denotes the function ¢ defined by
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@(x) = x*. (Note that barred arrows * bind ” their variables, just as integrals
in calculus and quantifiers in logic bind theirs. In principle equations such as
(x — x2)(y) = y* make sense.)

Since the inner product of two vectors f and g is always denoted by
(f, 9), another symbol is needed for their ordered pair; I use {f, g>. This
leads to the systematic use of the angular bracket to enclose the coordinates
of a vector, as in {fy, f1, f>,.-.>. In accordance with inconsistent but
widely accepted practice, I use braces to denote both sets and sequences;
thus {x} is the set whose only element is x, and {x,} is the sequence whose
n-th term is x,, n = 1, 2, 3, - - -. This could lead to confusion, but in context
it does not seem to do so. For the complex conjugate of a complex number
z, I use z*. This tends to make mathematicians nervous, but it is widely
used by physicists, it is in harmony with the standard notation for the
adjoints of operators, and it has typographical advantages. (The image of a
set M of complex numbers under the mapping z > z* is M*; the symbol M
suggests topological closure.)

Operator theory has made much progress since the first edition of this
book appeared in 1967. Some of that progress is visible in the difference
between the two editions. The journal literature needs time, however, to
ripen, to become understood and simplified enough for expository pre-
sentation in a book of this sort, and much of it is not yet ready for that. Even
in the part that is ready, I had to choose; not everything could be fitted in.
I omitted beautiful and useful facts about essential spectra, the Calkin
algebra, and Toeplitz and Hankel operators, and I am sorry about that.
Maybe next time.

The first edition had 199 problems; this one has 199 — 9 + 60. I hope
that the number of incorrect or awkward statements and proofs is smaller
in this edition. In any event, something like ten of the problems (or their
solutions) were substantially revised. (Whether the actual number is 8 or 9
or 11 or 12 depends on how a “‘substantial” revision is defined.) The new
problems have to do with several subjects; the three most frequent ones are
total sets of vectors, cyclic operators, and the weak and strong operator
topologies.

Since I have been teaching Hilbert space by the problem method for many
years, I owe thanks for their help to more friends among students and
colleagues than I could possibly name here. I am truly grateful to them all
just the same. Without them this book could not exist; it is not the sort of
book that could have been written in isolation from the mathematical
community. My special thanks are due to Ronald Douglas, Eric Nordgren,
and Carl Pearcy for the first edition, and Donald Hadwin and David Schwab
for the second. Each of them read the whole manuscript (well, almost the
whole manuscript) and stopped me from making many foolish mistakes.

Indiana University P.R.H.
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CHAPTER 1

Vectors

1. Limits of quadratic forms. The objects of chief interest in the study of a
Hilbert space are not the vectors in the space, but the operators on it. Most
people who say they study the theory of Hilbert spaces in fact study operator
theory. The reason is that the algebra and geometry of vectors, linear func-
tionals, quadratic forms, subspaces, and the like are easier than operator
theory and are pretty well worked out. Some of these easy and known things
are useful and some are amusing; perhaps some are both.

Recall to begin with that a bilinear functional on a complex vector space H
is sometimes defined as a complex-valued function on the Cartesian product
of H with itself that is linear in its first argument and conjugate linear in the
second ; cf. [50, p. 12]. Some mathematicians, in this context and in other
more general ones, use “‘semilinear” instead of ‘‘conjugate linear”, and,
incidentally, “form” instead of “functional”. Since ““sesqui’” means “one
and a half” in Latin, it has been suggested that a bilinear functional is
more accurately described as a sesquilinear form.

A quadratic form is defined in [50] as a function ¢~ associated with a
sesquilinear form ¢ via the equation @~ (f) = @(f, f). (The symbol § is used
there instead of ¢ ~.) More honestly put, a quadratic form is a function ¥ for
which there exists a sesquilinear form ¢ such that ¢(f) = @(f, f). Such an
existential definition makes it awkward to answer even the simplest algebraic
questions, such as whether the sum of two quadratic forms is a quadratic
form (yes), and whether the product of two quadratic forms is a quadratic
form (no).

Problem 1. Is the limit of a sequence of quadratic forms a quadratic
Jorm?
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2. Schwarz inequality. One proof of the Schwarz inequality consists of the
verification of one line, namely:

17121912 = 1C/ )P = — | 1g1?f — (> g

lgl?

It might perhaps be more elegant to multiply through by ||g/?, so that
the result should hold for g = 0 also, but the identity seems to be more
perspicuous in the form given. This one line proves also that if the in-
equality degenerates to an equality, then f and g are linearly dependent.
The converse is trivial: if f and g are linearly dependent, then one of them
is a scalar multiple of the other, say g = af, and then both |(f, g)|*> and
(f> ) - @, g) are equal to |a|*(f, /).

This proof of the Schwarz inequality does not work for sesquilinear
forms unless they are strictly positive. What are the facts? Is strict positive-
ness necessary?

Problem 2. If g is apositive, symmetric, sesquilinear form, is it necessarily
true that

lo(f, DI> = o(f. /) 09, 9)
Jor all f and g?

3. Representation of linear functionals. The Riesz representation theorem
says that to each bounded linear functional £ on a Hilbert space H there
corresponds a vector g in H such that &(f) = (f, g) for all f. The state-
ment is “invariant” or ‘“coordinate-free”, and therefore, according to
current mathematical ethics, it is mandatory that the proof be such. The
trouble is that most coordinate-free proofs (such as the one in [50, p. 327)
are so elegant that they conceal what is really going on.

Problem 3. Find a coordinatized proof of the Riesz representation
theorem.

4. Strict convexity. In a real vector space (and hence, in particular, in a
complex vector space) the segment joining two distinct vectors f and g
is, by definition, the set of all vectors of the form #f + (1 — f)g, where
0 <t < 1. A subset of a real vector space is convex if, for each pair of
vectors that it contains, it contains all the vectors of the segment joining
them. Convexity plays an increasingly important role in modern vector
space theory. Hilbert space is so rich in other, more powerful, structure,
that the role of convexity is sometimes not so clearly visible in it as in other
vector spaces. An easy example of a convex set in a Hilbert space is the
unit ball, which is, by definition, the set of all vectors f with | f]| = 1.
Another example is the open unit ball, the set of all vectors f with || f| < 1.
(The adjective ““closed” can be used to distinguish the unit ball from its
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open version, but is in fact used only when unusual emphasis is necessary.)
These examples are of geometric interest even in the extreme case of a
(complex) Hilbert space of dimension 1; they reduce then to the closed
and the open unit disc, respectively, in the complex plane.

If h=tf + (1 — t)g is a point of the segment joining two distinct vectors
fand g, and if 0 <t < ] (the emphasis is that 1 5 0 and ¢ s 1), then h is
called an interior point of that segment. If a point of a convex set does not
belong to the interior of any segment in the set, then it is called an extreme
point of the set. The extreme points of the closed unit disc in the complex
plane are just the points on its perimeter (the unit circle). The open unit disc
in the complex plane has no extreme points. The set of all those complex
numbers z for which |Rez| + |Imz| £ 1 is convex (it consists of the
interior and boundary of the square whose vertices are 1, i, — 1, and —i);
this convex set has just four extreme points (namely 1, i, —1, and —i).

A closed convex set in a Hilbert space is called strictly convex if all its
boundary points are extreme points. The expression “boundary point” is
used here in its ordinary topological sense. Unlike convexity, the concept of
strict convexity is not purely algebraic. It makes sense in many spaces other
than Hilbert spaces, but in order for it to make sense the space must have a
topology, preferably one that is properly related to the linear structure. The
closed unit disc in the complex plane is strictly convex.

Problem 4. The unit ball of every Hilbert space is strictly convex.

The problem is stated here to call attention to a circle of ideas and to
prepare the ground for some later work. No great intrinsic interest is claimed
for it; it is very easy.

5. Continuous curves. An infinite-dimensional Hilbert space is even roomier
than it looks; a striking way to demonstrate its spaciousness is to study con-
tinuous curves in it. A continuous curve in a Hilbert space H is a continuous
function from the closed unit interval into H; the curve is simple if the
function is one-to-one. The chord of the curve f determined by the param-
eter interval [a, b] is the vector f(b) — f(a). Two chords, determined by
the intervals [a, b] and [c¢, d], are non-overlapping if the intervals [a, b]
and [c, d] have at most an end-point in common, If two non-overlapping
chords are orthogonal, then the curve makes a right-angle turn during the
passage between their farthest end-points. If a curve could do so for every
pair of non-overlapping chords, then it would seem to be making a sudden
right-angle turn at each point, and hence, in particular, it could not have
a tangent at any point.

Problem 5. Construct, for every infinite-dimensional Hilbert space, a
simple continuous curve with the property that every two non-overlapping
chords of it are orthogonal.
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6. Uniqueness of crinkled ares. It is an interesting empirical fact that the
example of a “crinkled arc” (that is, a simple continuous curve with every
two non-overlapping chords orthogonal—cf. Solution 5) is psychologically
unique; everyone who tries it seems to come up with the same answer. Why is
that ? Surely there must be a reason, and, it turns out, there is a good one. The
reason is the existence of a pleasant and strong uniqueness theorem, dis-
covered by G. G. Johnson [80]; for different concrete representations, see
[817 and [146].

There are three trivial senses in which crinkled arcs are not unique. (1)
Translation: fix a vector f, and replace the arc f by f + f,. Remedy:
normalize so that f(0) = 0. (2) Scale: fix a positive number « and replace the
arc f by of. Remedy: normalize so that || f(1)] = 1. (3) Span: fix a Hilbert
space H, and replace H (the range space of ) by H @ H,. Remedy: nor-
malize so that the span of the range of f is H. In what follows a crinkled
arc will be called normalized in case all three of these normalizations have
been applied to it.

There are two other useful ways in which one crinkled arc can be changed
into another. One is reparametrization: fix an increasing homeomorphism ¢
of [0, 1] onto itself and replace f by f . The other is unitary equiva-
lence: fix a unitary operator U on H and replace f by Uf. Miracle: that’s
all.

Problem 6. Any two normalized crinkled arcs are unitarily equivalent
to reparametrizations of one another.

7. Linear dimension. The concept of dimension can mean two different
things for a Hilbert space H. Since H is a vector space, it has a linear dimen-
sion; since H has, in addition, an inner product structure, it has an ortho-
gonal dimension. A unified way to approach the two concepts is first to
prove that all bases of H have the same cardinal number, and then to de-
fine the dimension of H as the common cardinal number of all bases; the
difference between the two concepts is in the definition of basis. A Hamel
basis for H (also called a linear basis) is a maximal linearly independent
subset of H. (Recall that an infinite set is called linearly independent if
each finite subset of it is linearly independent. It is true, but for present
purposes irrelevant, that every vector is a finite linear combination of the
vectors in any Hamel basis.) An orthonormal basis for H is a maximal
orthonormal subset of H. (The analogues of the finite expansions appro-
priate to the linear theory are the Fourier expansions always used in
Hilbert space.)

Problem 7. Does there exist a Hilbert space whose linear dimension is
No?

8. Total sets. A subset of a Hilbert space is total if its span is the entire space.
(Generalizations to Banach spaces, and, more generally, to topological vector
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spaces are immediate.) Can a set be so imperturbably total that the removal of
any single element always leaves it total? The answer is obviously yes: any
dense set is an example. This is not surprising but some of the behavior of
total sets is.

Problem 8. There exists a total set in a Hilbert space that continues to be
total when any one element is omitted but ceases to be total when any two
elements are omitted.

9. Infinitely total sets. The statement of Problem 8 has a natural broad
generalization: for each non-negative integer n, there exists a total set in
Hilbert space that continues to be total when any n of its elements are
omitted but ceases to be total when any n + 1 elements are omitted. The
result is obvious for n = 0: any orthonormal basis is an example. Forn = 1,
the statement is the one in Problem 8. The generalization (unpublished)
was discovered and proved by R. F. Wiser in 1974,

Can a set be such that the removal of every finite subset always leaves it
total? (Note: the question is about sets, not sequences. It is trivial to con-
struct an infinite sequence such that its terms form a total set and such that
this remains true no matter how many terms are omitted from the beginning.
Indeed: let {f;, f1, f2,...} be a total set, and form the sequence
<f0’f0’f1af0af1’f2a anflﬁfZaf:ia t >) A Sharper way to formulate what
is wanted is to ask whether there exists a linearly independent total set
that remains total after the omission of each finite subset.

The answer is yes; one way to see it is to construct a linearly independent
dense set. To do that, consider a countable base {E,, E,, ---} for the norm
topology of a separable infinite-dimensional Hilbert space (e.g., the open
balls with centers at a countable dense set and rational radii). To get an
inductive construction started, choose a non-zero vector f; in E,. For the
induction step, given f; in E;, j = 1,---,n, so that {f},---, f,} is linearly
independent, note that E,,, is not included in \/{f,---, f;,} (because,
for instance, the span is nowhere dense), and choose f, . so that it is in
E,. butnotin\/{f,, -, fi}.

Another example of an “infinitely total” set, in some respects simpler, but
needing more analytic machinery, is the set of all powers f, in L%(0, 1) (i.e.,
Sx)=x",n=20,1,2,.-.). See Solution 11.

Problem 9. If a set remains total after the omission of each finite subset,
then it has at least one infinite subset whose omission leaves it total also.

10. Infinite Vandermondes. The Hilbert space /* consists, by definition, of all
infinite sequences <{&,, &,, &,, - - > of complex numbers such that

)
2 &7 < o
n=0
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The vector operations are coordinatewise and the inner product is defined
by

(<€0a Cla 52’ t '>a <’70a N1 Nas° >) = Zoénnn*'
Problem 10.1f 0 < |a| < 1, and if

ﬁc=<1’ak’a2k’a3k"">’ k=1’2’3""’

determine the span of the set of all f’s in I>. Generalize (to other collections
of vectors), and specialize (to finite-dimensional spaces).

11. T-total sets.

Problem 11. Does there exist an infinite total set such that every infinite
subset of it is total?

12. Approximate bases.

Problem 12. If {e,,e,, e5,- - -} is an orthonormal basis for a Hilbert space
H, and if { f,, f2, f3, -+ -} is an orthonormal set in H such that

Y lle; = fill? < oo,

j=1
then the vectors f; span H (and hence form an orthonormal basis for H).
This is a hard one. There are many problems of this type; the first one is

apparently due to Paley and Wiener. For a related exposition, and detailed
references, see [114, No. 86]. The version above is discussed in [14].



CHAPTER 2 ‘

Spaces

13. Vector sums. If M and N are orthogonal subspaces of a Hilbert space,
then M + Nis closed (and therefore M + N = M v N). Orthogonality may
be too strong an assumption, but it is sufficient to ensure the conclusion. It is
known that something is necessary; if no additional assumptions are made,
then M + N need not be closed (see [50, p. 28], and Problems 52-55 below).
Here is the conclusion under another very strong but frequently usable
additional assumption.

Problem 13. If M is a finite-dimensional linear manifold in a Hilbert
space H, and if N is a subspace (a closed linear manifold) in H, then the
vector sum M + N is necessarily closed (and is therefore equal to the
span M v N).

The result has the corollary (which it is also easy to prove directly) that
every finite-dimensional linear manifold is closed; just put N = 0.

14. Lattice of subspaces. The collection of all subspaces of a Hilbert space
is a lattice. This means that the collection is partially ordered (by inclusion),
and that any two elements M and N of it have a least upper bound or
supremum (namely the span M v N) and a greatest lower bound or infi-
mum (namely the intersection M n N). A lattice is called distributive if
(in the notation appropriate to subspaces)

LAMVvVN=LAM vV (LAN)

identically in L, M, and N.
There is a weakening of this distributivity condition, called modularity;
a lattice 1s called modular if the distributive law, as written above, holds at
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least when N < L. In that case, of course, LA N == N, and the identity
becomes

LaMvN)=LnM)VvN

(with the proviso N « L still in force).

Since a Hilbert space is geometrically indistinguishable from any other
Hilbert space of the same dimension, it is clear that the modularity or
distributivity of its lattice of subspaces can depend on its dimension only.

Problem 14. For which cardinal numbers m is the lattice of subspaces
of a Hilbert space of dimension m modular? distributive?

15. Vector sums and the modular law. Two possible kinds of misbehavior for
subspaces are connected with each other; if one of them is ruled out, then the
other one cannot happen either.

Problem 15. For subspaces M and N of a Hilbert space, the vector
sum M + N is closed if and only if the modular equation

LAaMvN=LAMvN

is true whenever N < L.

16. Local compactness and dimension. Many global topological questions
are easy to answer for Hilbert space. The answers either are a simple yes or no,
or depend on the dimension. Thus, for instance, every Hilbert space is con-
nected, but a Hilbert space is compact if and only if it is the trivial space with
dimension 0. The same sort of problem could be posed backwards: given
some information about the dimension of a Hilbert space (e.g., that it is
finite), find topological properties that distinguish such a space from
Hilbert spaces of all other dimensions. Such problems sometimes have
useful and elegant solutions.

Problem 16. A Hilbert space is locally compact if and only if it is finite-
dimensional.

17. Separability and dimension.
Problem 17. A Hilbert space H is separable if and only if dim H < ¥,.

18. Measure in Hilbert space. Infinite-dimensional Hilbert spaces are
properly regarded as the most successful infinite-dimensional generaliza-
tions of finite-dimensional Euclidean spaces. Finite-dimensional Euclidean
spaces have, in addition to their algebraic and topological structure, a
measure; it might be useful to generalize that too to infinite dimensions.
Various attempts have been made to do so (see [92] and [132]). The un-
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sophisticated approach is to seek a countably additive set function u defined
on (at least) the collection of all Borel sets (the o-field generated by the
open sets), so that 0 < u(M) £ oo for all Borel sets M. (Warning: the
parenthetical definition of Borel sets in the preceding sentence is not the
same as the one in [61].) In order that u be suitably related to the other
structure of the space, it makes sense to require that every non-empty open
set have positive measure and that measure be invariant under translation.
(The second condition means that u(f + M) = uw(M) for every vector f
and for every Borel set M.) If, for now, the word “measure” is used to
describe a set function satisfying just these conditions, then the following
problem indicates that the unsophisticated approach is doomed to fail.

Problem 18. For each measure in an infinite-dimensional Hilbert space,
the measure of every non-empty ball is infinite,

11



CHAPTER 3

Weak Topology

19. Weak closure of subspaces. A Hilbert space is a metric space, and, as
such, it is a topological space. The metric topology (or norm topology) of a
Hilbert space is often called the strong topology. A base for the strong topology
is the collection of open balls, i.e., sets of the form

{0 = Sl <e},

where f, (the center) is a vector and ¢ (the radius) is a positive number.

Another topology, called the weak topology, plays an important role in the
theory of Hilbert spaces. A subbase (not a base) for the weak topology is the
collection of all sets of the form

U = for 90l <&}

It follows that a base for the weak topology is the collection of all sets of the
form

{fl(f_ fO’gi)l <gi= la"'ak}a

where k 1s a positive integer, fy, ¢,, - -+ » gk are vectors, and ¢ is a positive
number.

Facts about these topologies are described by the grammatically appro-
priate use of “weak” and “‘strong”. Thus, for instance, a function may be
described as weakly continuous, or a sequence as strongly convergent; the
meanings of such phrases should be obvious. The use of a topological word
without a modifier always refers to the strong topology; this convention has
already been observed in the preceding problems.

Whenever a set is endowed with a topology, many technical questions
automatically demand attention. (Which separation axioms does the space
satisfy ? Is it compact? Is it connected ?) If a large class of sets is in sight (for
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example, the class of all Hilbert spaces), then classification problems arise.
(Which ones are locally compact? Which ones are separable?) If the set (or
sets) already had some structure, the connection between the old structure
and the new topology should be investigated. (Is the closed unit ball com-
pact? Are inner products continuous?) If, finally, more than one topology
is considered, then the relations of the topologies to one another must be
clarified. (Is a weakly compact set strongly closed?) Most such questions,
though natural, and, in fact, unavoidable, are not likely to be inspiring;
for that reason most such questions do not appear below. The questions
that do appear justify their appearance by some (perhaps subjective) test,
such as a surprising answer, a tricky proof, or an important application.

Problem 19. Every weakly closed set is strongly closed, but the converse
is not true. Nevertheless every subspace of a Hilbert space (i.e., every
strongly closed linear manifold) is weakly closed.

20. Weak continuity of norm and inner product. For each fixed vector g, the
function f — (f, g) is weakly continuous; this is practically the definition of
the weak topology. (A sequence, or a net, { f,} is weakly convergent to fifand
only if (f,,g) — (f, g) for each g.) This, together with the (Hermitian)
symmetry of the inner product, implies that, for each fixed vector f, the
function g — (f, g) is weakly continuous. These two assertions between them
say that the mapping from ordered pairs < f, g) to their inner product (f, g)is
separately weakly continuous in each of its two variables.

It is natural to ask whether the mapping is weakly continuous jointly in its
two variables, but it is easy to see that the answer is no. A counterexample
has already been seen, in Solution 19; it was used there for a slightly
different purpose. If {e,, e,, e, - - -} is an orthonormal sequence, then
e, — 0 (weak), but (e,, e,) == 1 for all n. This example shows at the same
time that the norm is not weakly continuous. It could, in fact, be said that
the possible discontinuity of the norm is the only difference between weak
convergence and strong convergence: a weakly convergent sequence (or
net) on which the norm behaves itself is automatically strongly convergent.

Problem 20. If f, — f (weak) and || f,|| = ||, then f, — f (strong).

21. Semicontinuity of norm. The misbehavior of the example that shows the
weak discontinuity of norm (Problem 20)is at the top, so to speak: norm fails
to be upper semicontinuous. Definition: a real-valued function on a
topological space is upper semicontinuous if

limsup @(x,) < ¢(x)

whenever x, — x (sequence or net); similarly ¢ is lower semicontinuous if

o(x) < liminf o(x,)

13
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whenever x, — x. (Here is how to remember which way the inequalities must
point: always liminf, ¢(x,) < limsup, ¢(x,), so that if ¢ is both lower and
upper semicontinuous, then liminf and limsup are forced to be equal, which is
a characteristic property of continuity.) Misbehavior at the bottom cannot
occur.

Problem 21. Norm is weakly lower semicontinuous.

Explicitly: if f, — f (weak), then [|f] < limiof, || f,|. Equivalently: for
every ¢ > 0, there exists an ng such that || f|| £ || f,ll + ¢ whenever n = n,.

22. Weak separability. Since the strong closure of every set is included in its
weak closure (see Solution 19), it follows that if a Hilbert space is separable
(that is, strongly separable), then it is weakly separable. What about the
converse?

Problem 22. Is every weakly separable Hilbert space separable?
23. Weak compactness of the unit ball.

Problem 23. The closed unit ball in a Hilbert space is weakly compact.

The result is sometimes known as the Tychonoff-Alaoglu theorem. It is
as hard as it is important. It is very important.

24. Weak metrizability of the unit ball. Compactness is good, but even
compact sets are better if they are metric. Once the unit ball is known to be

weakly compact, it is natural to ask if it is weakly metrizable also.

Problem 24. Is the weak topology of the unit ball in a separable Hilbert
space metrizable?

25. Weak closure of the unit sphere.
Problem 25. What is the weak closure of the unit sphere (i.e., of the set of
all unit vectors)? If a set is weakly dense in a Hilbert space, does it follow
that its intersection with the unit ball is weakly dense in the unit ball?

26. Weak metrizability and separability.

Problem 26. Ifthe weak topology of the unit ball in a Hilbert space H is
metrizable, must H be separable?

27. Uniform boundedness. The celebrated “principle of uniform bounded-
ness” (true for all Banach spaces) is the assertion that a pointwise bounded
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collection of bounded linear functionals is bounded. The assumption and the
conclusion can be expressed in the terminology appropriate to a Hilbert space
H as follows. The assumption of pointwise boundedness for a subset T of
H could also be called weak boundedness ; it means that for each fin H there
exists a positive constant a(f) such that |(f, g)| < a(f) for all g in T. The
desired conclusion means that there exists a positive constant f§ such that
[(f, 9| = Bl S| for all fin Hand all g in T; this conclusion is equivalent to
lgll < B for all g in T. It is clear that every bounded subset of a Hilbert
space is weakly bounded. The principle of uniform boundedness (for
vectors in a Hilbert space) is the converse: every weakly bounded set is
bounded. The usual proof of the general principle is a mildly involved
category argument. A standard reference for a general treatment of the
principle of uniform boundedness is [39, p. 49].

Problem 27. Find an elementary proof of the principle of uniform
boundedness for Hilbert space.

(In this context a proof is “‘elementary” if it does not use the Baire
category theorem.)

A frequently used corollary of the principle of uniform boundedness is the
assertion that a weakly convergent sequence must be bounded. The proof is
completely elementary: since convergent sequences of numbers are bounded,
it follows that a weakly convergent sequence of vectors is weakly bounded.
Nothing like this is true for nets, of course. One easy generalization of the
sequence result that is available is that every weakly compact set is bounded.
Reason: for each f, the map g+ (f, g) sends the ¢’s in a weakly compact set
onto a compact and therefore bounded set of numbers, so that a weakly
compact set is weakly bounded.

28. Weak metrizability of Hilbert space. Some of the preceding results,
notably the weak compactness of the unit ball and the principle of uniform
boundedness, show that for bounded sets the weak topology is well behaved.
For unbounded sets it is not.

Problem 28. The weak topology of aninfinite-dimensional Hilbert space is
not metrizable.

The shortest proof of this is tricky.

29. Linear functionals on /2. If
oy, 03, -+ €l? and {By, B, B3, D€
then
oy By, s Byy 03 By, - > €L
15



PROBLEMS

The following assertion is a kind of converse; it says that [? sequences are the
only ones whose product with every [? sequence is in [!.

Problem 29. If ), |, B,| < oo whenever Y, |a,|*> < oo, then
2B < 0.

30. Weak completeness. A sequence {g,} of vectors in a Hilbert space is a
weak Cauchy sequence if (surely this definition is guessable) the numerical
sequence {(f, g,)} is a Cauchy sequence for each f in the space. Weak Cauchy
nets are defined exactly the same way: just replace “sequence” by “net”
throughout. To say of a Hilbert space, or a subset of one, that it is weakly
complete means that every weak Cauchy net has a weak limit (in the set under
consideration). If the conclusion is known to hold for sequences only, the
space is called sequentially weakly complete.

Problem 30. (a)Noinfinite-dimensional Hilbert spaceisweakly complete.
(b) Which Hilbert spaces are sequentially weakly complete?
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CHAPTER 4

Analytic Functions

31. Analytic Hilbert spaces. Analytic functions enter Hilbert space theory
in several ways; one of their roles is to provide illuminating examples. The
typical way to construct these examples is to consider a region D (“region”
means a non-empty open connected subset of the complex plane), let u be
planar Lebesgue measure in D, and let A%(D) be the set of all complex-valued
functions that are analytic throughout D and square-integrable with respect
to u. The most important special case is the one in which D is the open unit
disc, D = {z:|z| < 1}; the corresponding function space will be denoted
simply by A%. No matter what D is, the set A%(D) is a vector space with
respect to pointwise addition and scalar multiplication. It is also an inner-
product space with respect to the inner product defined by

(f9) = Lf(z}g(z}* du(2).

Problem 31. Is the space A%*(D) of square-integrable analytic func-
tions on a region D a Hilbert space, or does it have to be completed
before it becomes one?

32. Basis for A”.

Problem 32. If e,(z) = \/(n + V/n- 2" for |z| < land n =0, 1,2, ---,

then the e,’s form an orthonormal basis for A%. If f € A%, with Taylor
series Y oo 4, 2", then a, = \/(n + V/n(f, e,) forn=10,1,2,---.

33. Real functions in H2. Except for size (dimension) one Hilbert space is
very like another. To make a Hilbert space more interesting than its
neighbors, it is necessary to enrich it by the addition of some external
structure. Thus, for instance, the spaces A*(D) are of interest because of
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the analytic properties of their elements. Another important Hilbert
space, known as H? (H is for Hardy this time), endowed with some struc-
ture not usually found in a Hilbert space, is defined as follows.

Let C be the unit circle (that means circumference) in the complex plane,
C={z:|z| =1}, and let u be Lebesgue measure (the extension of arc
length) on the Borel sets of C, normalized so that u(C) = 1 (instead of
wWC)=2n). If efz)=2" for |z|=1 (=0, %1, £2,---), then, by
elementary calculus, the functions e, form an orthonormal set in L2(u);
it is an easy consequence of standard approximation theorems (e.g., the
Weierstrass theorem on approximation by polynomials) that the e,’s form
an orthonormal basis for L?. (Finite linear combinations of the e,’s are
called trigonometric polynomials.) The space H? is, by definition, the
subspace of L? spanned by the e,’s with n = 0; equivalently H? is the
orthogonal complement in L? of {e_j,e_,,e_3,---}. A related space,
playing a role dual to that of H?, is the span of the e,’s with n < 0; it will
be denoted by H*".

Fourier expansions with respect to the orthonormal basis {e,:n =0,
+1, +2,---} are formally similar to the Laurent expansions that occur in
analytic function theory. The analogy motivates calling the functions in H?
the analytic elements of L?; the elements of H?" are called co-analytic. A
subset of H? (a linear manifold but not a subspace) of considerable technical
significance is the set H® of bounded functions in H?; equivalently, H® is the
set of all those functions f in L™ for which | fe,*du=0 (n= —1, -2,
—3,---). Similarly H! is the set of all those elements f of L! for which these
same equations hold. What gives H!, H2, and H* their special flavor is the
structure of the semigroup of non-negative integers within the additive group
of all integers.

It is customary to speak of the elements of spaces such as H!, H?, and
H® as functions, and this custom was followed in the preceding para-
graph. The custom is not likely to lead its user astray, as long as the
qualification “almost everywhere” is kept in mind at all times. Thus
“bounded” means “‘essentially bounded”, and, similarly, all statements
such as “f = 0™ or “fis real” or “| f| = 17 are to be interpreted, when
asserted, as holding almost everywhere.

Some authors define the Hardy spaces so as to make them honest
function spaces (consisting of functions analytic on the unit disc). In that
approach (see Problem 35) the almost everywhere difficulties are still
present, but they are pushed elsewhere; they appear in questions (which
must be asked and answered) about the limiting behavior of the functions
on the boundary.

Independently of the approach used to study them, the functions in H? are
anxious to behave like analytic functions. The following statement is evidence
in that direction.

Problem 33. If f is a real function in H?, then f is a constant.
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34. Products in H2. The deepest statements about the Hardy spaces have to
do with their multiplicative structure. The following oneis an easily accessible
sample.

Problem 34. The product of two functions in H? is in H'.

A kind of converse of this statement is true: it says that every function
in H! is the product of two functions in H2. (See [75, p. 52].) The direct
statement i1s more useful in Hilbert space theory than the converse, and the
techniques used in the proof of the direct statement are nearer to the ones
appropriate to this book.

35. Analytic characterization of H2. If fe H2, with Fourier expansion
[ =006, then Y2, |a,|? < oo, and therefore the radius of conver-
gence of the power series ) 2, a,%z" is greater than or equal to 1. It follows
from the usual expression for the radius of convergence in terms of the coef-
ficients that the power series Z,,‘” 0 4,2" defines an analytic function f in
the open unit disc D. The mapping f — f (obviously linear) establishes a
one-to-one correspondence between H? and the set H? of those functions
analytic in D whose series of Taylor coefficients is square-summable.

Problem 35. If ¢ is an analytic function in the open unit disc, ¢(z) =
Yoo 4, 2" and if p(2) = (p(rz)forO <r<land|z|=1,then ¢, H?
for each r; the series Y - ¢ |a,|* converges if and only if the norms || @,
are bounded

Many authors define H? to be H?; for them, that is, H? consists of
analytic functions in the unit disc with square-summable Taylor series,
or, equivalently, with bounded concentric L? norms. If ¢ and  are two
such functions, with @(z) = D %0 &,2" and Y(z) = Y20 Ba2", then the
inner product (¢, ¥) is defined to be ) 7o a, B.*. In view of the one-to-
one correspondence f - f between H? and A2, it all comes to the same
thing. If feH?, its image fin H2 may be spoken of as the extension of f
into the interior (cf. Solution 40). Since H® is included in H?, this concept
makes sense for elements of H® also; the set of all their extensions will be
denoted by A®.

36. Functional Hilbert spaces. Many of the popular examples of Hilbert
spaces are called function spaces, but they are not. If a measure space has
a non-empty set of measure zero (and this is usually the case), then the L2
space over it consists not of functions, but of equivalence classes of
functions modulo sets of measure zero, and there is no natural way to
dentify such equivalence classes with representative elements. There is,
however, a class of examples of Hilbert spaces whose elements are bona
fide functions; they will be called functional Hilbert spaces. A functional
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Hilbert space is a Hilbert space H of complex-valued functions on a (non-
empty) set X; the Hilbert space structure of H is related to X in two ways
(the only two natural ways it could be). It is required that (1) if f and g are
in H and if « and f are scalars, then (af + Bg)(x) = af(x) + Byg(x) for
each x in X, i.e., the evaluation functionals on H are linear, and (2) to each
x in X there corresponds a positive constant y,, such that | f(x)| < 7.1/
for all f in H, i.e., the evaluation functionals on H are bounded. The
usual sequence spaces are trivial examples of functional Hilbert spaces
(whether the length of the sequences is finite or infinite); the role of X
is played by the index set. More typical examples of functional Hilbert
spaces are the spaces A% and F? of analytic functions.

There is a trivial way of representing every Hilbert space as a functional
one. Given H, write X = H, and let H be the set of all those functions f on
X (=H) that are bounded conjugate-linear functionals. There is a natural
correspondence f — f from H to H, defined by f(g) = (f, g) for all g in X.
By the Riesz representation theorem the correspondence is one-to-one; since
(f, 9) depends linearly on f, the correspondence is linear. Write, by definition,
f, 9 = (f, 9) (whence, in particular, | Fil=11ID; it follows that H is a
Hilbert space. Since |f(9)| = [(f, )| = |1 - ligll = If1l - llgl, it follows
that H is a functional Hilbert space. The correspondence f — f between H
and H is a Hilbert space isomorphism.

Problem 36. Give an example of a Hilbert space of functions such that
the vector operations are pointwise, but not all the evaluation functionals
are bounded.

An early and still useful reference for functional Hilbert spaces is [5].

37. Kernel functions. If H is a functional Hilbert space, over X say, then
the linear functional f +— f(y) on H is bounded for each y in X, and, con-
sequently, there exists, for each y in X, an element K, of Hsuch that f(y) =
(f, K,) for all f. The function K on X x X, defined by K(x, y) = K (x), is
called the kernel function or the reproducing kernel of H.

The most trivial examples of functional Hilbert spaces are obtained by
modifying the standard inner productin C" (n = 1, 2, 3, - - ). In other words,
start with X = {1, ---, n}, and define the “standard” inner product of two
complex-valued functions f and g on X by (f, g) = 2, f(Hg(i)*; to
“modify” it, consider a linear transformation 4 on C", and define (f, g)4
to be (Af, g). This definition yields a bona fide inner product if and only
if A is positive and invertible.

If H, is the vector space C" with inner product defined by the positive
linear transformation A, then H, is a functional Hilbert space; what is its
kernel function? For a convenient notation to express the answer in, consider
the standard orthonormal basis {e;,---, ¢e,} in C" (where e;(i) = §;;, the
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Kronecker delta). If the kernel function of H, is K, then
F) = (f. ) = (f, Kpa = (4f, K)) = (f, AK)

whenever f €H, and j =1,---,n. (Since A is positive, it is Hermitian.)
Consequence: AK; = e;, so that K; = A“‘ej, and it follows that

KG, j) = Kj(i) = (A7 'e;, ).
In other words, the function K is the matrix of A~! with respect to the
standard basis.

Note that the Hermitian character of the function K persists in the
general case, in this sense:

K(x, y) = K,(x) = (K,, K,) = (K, K))* = (K.(»)* = (K, x))*.

Problem 37. If {e;} is an orthonormal basis for a functional Hilbert space
H, then the kernel function K of H is given by
K(x, y) = 2, ef(x)e()*.

J

What are the kernel functions of A% and of H*?

The kernel functions of A2 and of H? are known, respectively, as the
Bergman kernel and the Szego kernel.

38. Conjugation in functional Hilbert spaces. If f is an element of a
functional Hilbert space H, the complex conjugate f* may fail to belong
to H; the spaces H? and H? yield examples. Call a functional Hilbert
space self-conjugate if it is closed under the formation of complex conju-
gates; an example is the sequence space /°. A more sophisticated example
is the set of all square-integrable complex harmonic functions in, say, the
unit disc. (The quickest way to describe complex harmonic functions is to
say that they are the functions of the form u + iv, where each of u and v
is the real part of some analytic function. Other classical definitions refer
to the solutions of Laplace’s equation, or, alternatively, to the mean value
property.)

The definition of functional Hilbert spaces requires a strong connection
between the unitary geometry of the space and the values of the functions the
space consists of. Is the postulated connection strong enough to extend to
complex conjugation? What does the question mean? Possible interpreta-
tion: is conjugation isometric?

Problem 38. Iffis an element of a self-conjugate functional Hilbert space,
does it follow that | f*] = | f|?

Whenever the answer is yes for all f in the space, then a routine polariza-
tion argument shows that (f*, g*) = (f, g)* for all f and ¢.
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39. Continuity of extension.
Problem 39. The extensionmapping f — f(fromH? to F?)is continuous
not only in the Hilbert space sense, but also in the sense appropriate
to analytic functions. That is: if f, — f in H?, then f(z) — f(z) for
|z| < 1, and, in fact, the convergence is uniform on each disc {z:|z| =r},
O<r<l.

40. Radial limits.

Problem 40. Ifan element f of H?2 is such that the corresponding analytic
function f'in H? is bounded, then f is bounded, (i.e., f € H®).

41. Bounded approximation.

Problem 41. Iff e H®, does it follow that f is bounded?
42. Multiplicativity of extension.

Problem 42. Is the mapping f — f multiplicative?

43. Dirichlet problem.

Problem 43. To each real function u in L? there corresponds a unigue
real function v in L? such that (v, eq) = 0 and such that u + ive H>.
Equivalently, to each real u in L?* there corresponds a unique f in H?
such that (f, ey) is real and such that Re f = u.

The relation between u and vis expressed by saying that they are conjugate
Jfunctions; alternatively, v is the Hilbert transform of u.
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CHAPTER 5

Infinite Matrices

44. Column-finite matrices. Many problems about operators on finite-
dimensional spaces can be solved with the aid of matrices; matrices reduce
qualitative geometric statements to explicit algebraic computations. Not
much of matrix theory carries over to infinite-dimensional spaces, and what
does is not so useful, but it sometimes helps.

Suppose that {e;} is an orthonormal basis for a Hilbert space H. If A is an
operator on H, then each Ae; has a Fourier expansion,

Ae; =3 a;e;;
i

the entries of the matrix that arises this way are given by
oy = (Aey, ¢).

The index set is arbitrary here; it does not necessarily consist of positive
integers. Familiar words (such as row, column, diagonal) can nevertheless be
used in their familiar senses. Note that if, as usual, the first index indicates
rows and the second one columns, then the matrix is formed by writing the
coefficients in the expansion of Ae; as the j column.

The correspondence from operators to matrices (induced by a fixed basis)
has the usual algebraic properties. The zero matrix and the unit matrix are
what they ought to be, the linear operations on matrices are the obvious ones,
adjoint corresponds to conjugate transpose, and operator multiplication
corresponds to the matrix product defined by the familiar formula

Yij = Z Ocikﬁkj-
k

There are several ways of showing that these sums do not run into con-
vergence trouble; here is one. Since oy = (g, A*e)), it follows that for each
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fixed i the family {a;} is square-summable; since, similarly, f;; = (Be;, €,), it
follows that for each fixed j the family {f,;} is square-summable. Conclusion
(via the Schwarz inequality): for fixed i and j the family {ay B} is
(absolutely) summable.

It follows from the preceding paragraph that each row and each column of
the matrix of each operator is square-summable. These are necessary con-
ditions on a matrix in order that it arise from an operator; they are not
sufficient. (Example: the diagonal matrix whose n-th diagonal term is n.) A
sufficient condition of the same kind is that the family of all entries be square-
summable; if, that is, }; Y, |a;|* < oo, then there exists an operator A such
that a;; = (Ae;, €;). (Proof: since | D a;,(f, e)|> < Y, a1+ | f? for each i
and each f, it follows that |3, O a,(f, eel)> < D Y loy;1* - | £1%) This
condition is not necessary. (Example: the unit matrix.) There are no elegant
and usable necessary and sufficient conditions. It is perfectly possible, of
course, to write down in matricial terms the condition that alinear transforma-
tion is everywhere defined and bounded, but the result is neither elegant nor
usable. This is the first significant way in which infinite matrix theory differs
from the finite version: every operator corresponds to a matrix, but not every
matrix corresponds to an operator, and it is hard to say which ones do.

As long as there is a fixed basis in the background, the correspondence
from operators to matrices is one-to-one; as soon as the basis is allowed to
vary, one operator may be assigned many matrices. An enticing game is to
choose the basis so as to make the matrix as simple as possible. Here is a
sample theorem, striking but less useful than it looks.

Problem 44. Every operator has a column-finite matrix. More precisely, if
A is an operator on a Hilbert space H, then there exists an orthonormal
basis {e;} for H such that, for each j, the matrix entry (Ae;, e;) vanishes
Sor all but finitely many i’s.

Reference: [141].

45. Schur test. While the algebra of infinite matrices is more or less reason-
able, the analysis is not. Questions about norms and spectra are likely to be
recalcitrant. Each of the few answers that is known is considered a respectable
mathematical accomplishment. The following result (due in substance to
Schur [129]) is an example.

Problem 45. If o;; 20, if p;>0 and ¢; >0 (5,j=0,1,2,--), and
if B and y are positive numbers such that

Z aijpi é ﬁq) (] = 0’ 19 2’ -t ')’
i

Yoy, <ypr (=012,
7
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then there exists an operator A (on a separable infinite-dimensional
Hilbert space, of course) with ||A|* < By and with matrix {o;;> (with
respect to a suitable orthonormal basis).

For a related result, and a pertinent reference, see Problem 173.
46. Hilbert matrix.

Problem 46. There exists an operator A (on a separable infinite-
dimensional Hilbert space) with | A|| £ nand withmatrix /G +j + 1))
(19.] = 0’ 17 2’ o )

The matrix is named after Hilbert; the norm of the matrix is in fact equal to
7 ([67, p. 226]).

47. Exponential Hilbert matrix. A matrix whose {i, /> entry is a function of
i + jonlyiscalled a Hankel matrix. Thus, for instance, the Hilbert matrix (see
Problem 46) is the Hankel matrix that corresponds to the function ¢
defined by o(x)=1/(x+1) (e, a;=00G+)), i,j=0,1,2,---; the
main assertion of Problem 46 is that the matrix is “bounded” (meaning
that it is the matrix of some operator). The same question, and other
sharper ones, can be asked for other functions ¢. A pleasant function is
given by @(x) = 27“*1, In that case all questions have a simple answer.

Problem 47. The matrix {2~ ** D% is bounded. What is its norm?

48. Positivity of the Hilbert matrix. The exponential Hilbert matrix
(Problem 47) is Hermitian and its spectrum is positive (Solution 47); con-
sequence: the corresponding operator is positive. The classical Hilbert
matrix (Problem 46) is also Hermitian; its spectrum, however, is not quite so
easily visible.

Problem 48. Is the Hilbert matrix positive?

49. Series of vectors. If {a,} is a sequence of complex numbers and {f,} isa
sequence of vectors in a Hilbert space H, then the series ), o, f, sometimes
converges in Hand sometimes does not. If, for instance, { f,} is an orthonormal
sequence, then a necessary and sufficient condition for the convergence of
Y. o, f, is that the sequence o be in [2. If, for another example, H is the 1-
dimensional vector space of complex numbers, then a necessary and suf-
ficient condition that ), |, f,| < oo for every sequence {f,} in I? is, again,
that « be in 2 (Problem 29).

For an interesting concrete question not covered by either of these
examples consider this one: if the functions £, in L0, 1) are defined by
Sx)=x"n=1,2,---, and if ), |a,* < oo, does it follow that the
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series Y, a,f, converges in L?? It turns out that a general question along
these lines has an elegant and usable answer.

Problem 49. Under what conditions on a sequence {f,} of vectors in a

Hilbert space H does the series ), a,, f, converge in H for every sequence
ain 127
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CHAPTER 6

Boundedness and Invertibility

50. Boundedness on bases. Boundedness is a useful and natural condition,
but itis a very strong condition on a linear transformation. The condition has
a profound effect throughout operator theory, from its mildest algebraic
aspects to its most complicated topological ones. To avoid certain obvious
mistakes, it is important to know that boundedness is more than just the
conjunction of an infinite number of conditions, one for each element of a
basis. If 4 is an operator on a Hilbert space H with an orthonormal basis
{e,, e,, e3, - - -},thenthe numbers | Ae, | are bounded;if, forinstance, 4] = 1,
then ||Ae,| < 1 for all n; and, of course, if A = 0,then Ae, = 0 for all n. The
obvious mistakes just mentioned are based on the assumption that the con-
verses of these assertions are true.

Problem 50. (a) Give an example of an unbounded linear transformation
that is bounded on a basis. (b) Is there such an example that annihilates a
basis? (c) Is there such an example that is bounded on each basis? (d) Give
examples of operators of arbitrarily large norms that are bounded by 1 on
a basis. (e) Could all the operators in such an example be normal?

51. Uniform boundedness of linear transformations. Sometimes linear trans-
formations between two Hilbert spaces play a role even when the center
of the stage is occupied by operators on one Hilbert space. Much of the
two-space theory is an easy adaptation of the one-space theory.

If H and K are Hilbert spaces, a linear transformation A from H into K is
bounded if there exists a positive number a such that |Af || < «| f| forall fin
H; the norm of A, in symbols ||A||, is the infimum of all such values of a.
Given a bounded linear transformation A, the inner product (Af, g) makes
sense whenever fis in H and g is in K; the inner product is formed in K.
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For fixed g the inner product defines a bounded linear functional of f,
and, consequently, it is identically equal to (f, §) for some § in H. The
mapping from g to § is the adjoint of A; it is a bounded linear transforma-
tion A* from K into H. By definition

(Af, 9) = (f, A*g)

whenever f € H and g € K; here the left inner product is formed in K and the
right one in H. The algebraic properties of this kind of adjoint can be stated
and proved the same way as for the classical kind. An especially important
(but no less easily proved) connection between A and A* is that the
orthogonal complement of the range of A is equal to the kernel of A*;
since A** = A, this assertion remains true with 4 and A* interchanged.
All these algebraic statements are trivialities; the generalization of the
principle of uniform boundedness from linear functionals to linear trans-
formations is somewhat subtler. The generalization can be formulated almost
exactly the same way as the special case: a pointwise bounded collection of
bounded linear transformations is uniformly bounded. The assumption of
pointwise boundedness can be formulated in a “weak” manner and a
“strong” one. A set Q of linear transformations (from H into K) is weakly
bounded if for each f in H and each g in K there exists a positive constant
a( f, g) such that [(Af, g9)| £ a(f, g) for all A in Q. The set Q is strongly
bounded if for each f in H there exists a positive constant f(f) such that
I1Af 1 £ B(S) for all A in Q. It is clear that every bounded set is strongly
bounded and every strongly bounded set is weakly bounded. The principle of
uniform boundedness for linear transformations is the best possible converse.

Problem 51. Every weakly bounded set of bounded linear transformations
is bounded.

52. Invertible transformations. A bounded linear transformation 4 from a
Hilbert space H to a Hilbert space K is invertible if there exists a bounded
linear transformation B (from K into H) such that AB = 1 (=the identity
operator on K) and B4 = 1 (=the identity operator on H). If 4 is invertible,
then A is a one-to-one mapping of H onto K. In the sense of pure set theory the
converse is true: if A maps H one-to-one onto K, then there exists a unique
mapping A ™! from Kto Hsuchthat AA™! = 1 and A™'4 = 1,the mapping
A1 is linear. It is not obvious, however, that the linear transformation 4~}
must be bounded ;it is conceivable that 4 could be invertible as a set-theoretic
mapping but not invertible as an operator. To guarantee that 4™ ! is bounded
it is customary to strengthen the condition that A be one-to-one. The proper
strengthening is to require that A be bounded from below, i.e., that there exist
a positive number § such that |Af| = J|f || for every fin H. (It is trivial to
verify that if 4 is bounded from below, then A is indeed one-to-one.) If that
strengthened condition is satisfied, then the other usual condition (onto) can
be weakened: the requirement that the range of 4 be equal to K can be
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replaced by the requirement that the range of A be dense in K. In sum: 4 is
invertible if and only if it is bounded from below and has a dense range (see
[50, p. 38]). Observe that the linear transformations 4 and A* are invertible
together; if they are invertible, then each of A~ ' and A* ™" is the adjoint of the
other.

It is perhaps worth a short digression to discuss the possibility of the range
of an operator not being closed, and its consequences. If, for instance, A4 is
defined on 12 by A (&, &,, &5, -+ > = (&, 3,,34E5, -+, then the range of
A consists of all vectors

Mis Nz 3, o> with Y n?(n,|2 < .

Since this range contains all finitely non-zero sequences, it is dense in 12 ; since,
however, it does not contain the sequence {1, 4, 1,--->, it is not closed.
Another example: for f in L?(0, 1), define (A4f)(x) = xf(x). These operators
are, of course, not bounded from below; if they were, their ranges would be
closed.

Operators with non-closed ranges can be used to give a very simple
example of two subspaces whose vector sum is not closed; cf. [50, p. 110]. Let
A be an operator on a Hilbert space H; the construction itself takes place in
the direct sum H @ H. Let M be the “x-axis”, i.e., the set of all vectors (in
H @ H) of the form {f, 0), and let N be the “graph” of 4, i.e., the set of all
vectors of the form {f, Af>. It is trivial to verify that both M and N are
subspaces of H® H. When does < f, g)> belong to M + N? The answer is if
and only if it has the form {u, 0> + v, Av) = (u + v, Av);since u and v are
arbitrary, a vector in H @ H has that form if and only if its second co-
ordinate belongs to the range R of the operator 4. (In other words,
M+ N=H®R)Is M+ N closed? This means: if {f,, g,.> — <{f, 9>,
where f, € H and g, €R, does it follow that fe H? (trivially yes), and
does it follow that g € R? (possibly no). Conclusion: M + N is closed
in H&® H if and only if R is closed in H. Since A can be chosen so that
R is not closed, the vector sum of two subspaces need not be closed either.

The theorems and the examples seem to indicate that set-theoretic in-
vertibility and operatorial invertibility are indeed distinct; it is one of the
pleasantest and most useful facts about operator theory that they are the same
after all.

Problem 52. IfH and K are Hilbert spaces, and if A is a bounded linear
transformation that maps H one-to-one onto K, then A is invertible.

The corresponding statement about Banach spaces is usually proved by
means of the Baire category theorem. The result is a special case of the so-
called closed graph theorem; see Problem 58.

53. Diminishable complements. A complement of a subspace M in a
Hilbert space H is a subspace N suchtht MA N=0and Mv N=H
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Problem 53. (a) It is possible for a subspace M to have a diminishable
complement N, in the sense that there exists another complement N, with
No € N, Ng # N. (b) Can a complement N be infinitely diminishable, in
the sense that there exists a complement N, with No e N and
dim(N n Ng) infinite?

The statement (a) is a generalization of the existence of non-closed vector
sums, 1.e., the existence of subspaces M and N suchthat M v N # M + N.
Indeed, if N is a diminishable complement of M, then M v N cannot possibly
be equal to M + N. The reason is that the condition M n N = 0 implies the
uniqueness of the representation of a vector in the form f + g(f e M, g e N);
if any part of N is discarded, the rest cannot form a conspiracy with M to
recapture it.

54. Dimension in inner-product spaces. The statement that any two maximal
orthonormal sets have the same cardinal number is true for every inner
product space; the standard proof makes no use of completeness. Orthogonal
dimension can therefore be defined for every inner product space, word for
word as for Hilbert spaces (the common cardinal number of all maximal
orthonormal sets), but although it makes sense for “bad” inner-product
spaces, its properties are likely to be bad too.

Problem 54. There exists a linear manifold G dense in a Hilbert space H
such that dim G # dim H.

55. Total orthonormal sets. A total orthonormal set in an inner-product
space (not necessarily a Hilbert space) is maximal. A possible proof of the
converse goes as follows. Assume that {e;} is a maximal orthonormal set;
given an arbitrary vector f, form the Fourier expansion . i (f, ej)e;; since the
difference f — Y ; (f; e;)e; is orthogonal to each e;, use maximality to infer
the desired conclusion. The crucial point in this proof is the formation of
Zj (f, ej)e;. Bessel’s inequality guarantees that the terms are not too large to
be added, but completeness is needed to guarantee that the sum exists in the
space. (Cf. Solution 32.) Is this use of completeness an awkwardness in the
proof, or is it in the nature of things?

Problem 55. Is every maximal orthonormal set in an inner-product space
total?

56. Preservation of dimension. An important question about operators is
what do they do to the geometry of the underlying space. It is familiar
from the study of finite-dimensional vector spaces that a linear trans-
formation can lower dimension: the transformation 0, for an extreme
example, collapses every space to a O-dimensional one. If, however, a
linear transformation on a finite-dimensional vector space is one-to-one
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(i.e., its kernel is 0), then it cannot lower dimension; since the same can
be said about the inverse transformation (from the range back to the
domain), it follows that dimension is preserved. The following assertion
is, in a sense, the generalization of this finite-dimensional result to
arbitrary Hilbert spaces.

Problem 56. If there exists a one-to-one bounded linear transformation
from a Hilbert space H into a Hilbert space K, then dim H < dim K. If
the image of H is dense in K, then equality holds.

57. Projections of equal rank.

Problem 57. If P and Q are projections such that |P — Q| < 1, then
P and Q have the same rank.

This is a special case of Problem 130.

58. Closed graph theorem. The graph of a linear transformation A4 (not
necessarily bounded) between inner product spaces H and K (not necessarily
complete) is the set of all those ordered pairs {f, g (elements of H @ K) for
which Af = g. (The terminology is standard. It is curious that it should be so,
but it is. According to a widely adopted approach to the foundations of
mathematics, a function, by definition, is a set of ordered pairs satisfying a
certain univalence condition. Accordingto that approach, the graphof Ais A4,
and it is hard to see what is accomplished by giving it another name. Never-
theless most mathematicians cheerfully accept the unnecessary word; at the
very least it serves as a warning that the same object is about to be viewed from
a different angle.) A linear transformation is called closed if its graph is a
closed set.

Problem 58. A linear transformation from a Hilbert space into a Hilbert
space is closed if and only if it is bounded.

The assertion is known as the closed graph theorem for Hilbert spaces;
its proof for Banach spaces is usually based on a category argument ([39,
p. 57]). The theorem does not make the subject of closed but unbounded
linear transformations trivial. Such transformations occur frequently in the
applications of functional analysis; what the closed graph theorem says
is that they can occur on incomplete inner-product spaces only (or non-
closed linear manifolds in Hilbert spaces).

59. Range inclusion and factorization. If an operator 4 is ““left divisible”” by
an operator B, that is, if there exists an operator X such that A = BX, then
ran A < ran B. Is the converse true?
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Problem 59. Ifran A < ran B, does it follow that A is left divisible by B?

The corresponding question about right divisibility is different, and, as it
happens, easier to answer. If A is right divisible by B, then A is “majorized”
by B; that is, there exists a constant o such that | Af || < «|Bf|| for all f. (If
A = XB, then || X|| will do for a.) The converse is true; the proof is a straight-
forward geometric construction. Reference: [38].

60. Unbounded symmetric transformations. A linear transformation 4 (not
necessarily bounded) on an inner-product space H (not necessarily complete)
is called symmetric if (Af, g) = (f, Ag) for all f and g in H. It is advisable to
use this neutral term (rather than “ Hermitian™ or “self-adjoint”), because in
the customary approach to Hermitian operators (4 = A*) boundedness is an

assumption necessary for the very formulation of the definition. Is there really
a distinction here?

Problem 60. (a) Is a symmetric linear transformation on an inner-product
space H necessarily bounded? (b) What if H is a Hilbert space?
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Multiplication Operators

61. Diagonal operators. Operator theory, like every other part of mathe-
matics, cannot be properly studied without a large stock of concrete examples.
The purpose of several of the problems that follow is to build a stock of con-
crete operators, which can then be examined for the behavior of their
norms, inverses, and spectra.

Suppose, for a modest first step, that H is a Hilbert space and that {e;} isa
family of vectors that constitute an orthonormal basis for H. An operator 4
is called a diagonal operator if Ae; is a scalar multiple of e;, say Ae; = a;e,,
for each j; the family {a;} may properly be called the diagonal of A.

It is sometimes convenient to use the symbol

diag<a0’ Oy, Ay, >

to denote the diagonal operator with the indicated diagonal terms. The
definition of a diagonal operator depends, of course, on the basis {¢;}, but in
most discussions of diagonal operators a basis is (perhaps tacitly) fixed in
advance, and then never mentioned again. Alternatively, diagonal operators
can be characterized in invariant terms as normal operators whose eigen-
vectors span the space. (The proof of the characterization is an easy exercise.)
Usually diagonal operators are associated with an orthonormal sequence;
the emphasis is on both the cardinal number (%,) and the order (w) of the
underlying index set. That special case makes possible the use of some con-
venient language (e.g., “the first element of the diagonal”) and the use of some
convenient techniques (e.g., constructions by induction).

Problem 61. A necessary and sufficient condition that a family {o;} be the
diagonal of a diagonal operator is that it be bounded; if it is bounded, then
the equations Ae; = a;e; uniquely determine an operator A, and ||A| =

sup; | o;]-
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62. Multiplications on /2. Each sequence {a,} of complex scalars induces a
linear transformation A that maps I into the vector space of all (not necessarily
square-summable) sequences; by definition

ACE L, 8y 85, ) =Ky, 085, 0385, -0,

Half of Problem 61 implies that if 4 is an operator (i.e., a bounded linear
transformation of /2 into itself), then the sequence {a,} is bounded. What
happens if the boundedness assumption on 4 is dropped?

Problem 62. Can an unbounded sequence of scalars induce a (possibly
unbounded) transformation of 12 into itself ?

The emphasis is that all /2 is in the domain of the transformation, i.e., that
if &, &y, Exy > €12, then (o &y, a0y &5, a3 &5, - > € 2. The question should
be compared with Problem 29. That problem considered sequences that
multiply /2 into {* (and concluded that they must belong to [?); this one
considers sequences that multiply [? into [? (and asks whether they must
belong to [®). See Problem 66 for the generalization to L2

63. Spectrum of a diagonal operator. The set of all bounded sequences
{o,,} of complex numbers is an algebra (pointwise operations), with unit
(2, = 1 for all n), with a conjugation ({e,} — {&,*}), and with a norm
(I {a,} |l = sup,la,]). A bounded sequence {a,} will be called invertible if
it has an inverse in this algebra, i.e., if there exists a bounded sequence
{B,} such that a,B, = 1 for all n. A necessary and sufficient condition for
this to happen is that {«,} be bounded away from 0, i.e., that there exist a
positive number d such that |a,| = 6 for all n.

If H is a Hilbert space with an orthonormal basis {e,}, then it is easy to
verify that the correspondence {a,} — A, where A is the operator on H such
that Ae, = a,e, for all n, is an isomorphism (an embedding) of the sequence
algebra into the algebra of operators on H. The correspondence preserves not
only the familiar algebraic operations, but also conjugation; that is, if {a,} —
A, then {o,*} — A* The correspondence preserves thé norm also (see
Problem 61).

Problem 63. A diagonal operator with diagonal {,} is an invertible oper-
ator if and only if the sequence {a,} is an invertible sequence. Conse-
quence: the spectrum of a diagonal operator is the closure of the set of its
diagonal terms.

The result has the following useful corollary: every non-empty compact
subset of the complex plane is the spectrum of some operator (and, in fact, of
some diagonal operator). Proof: find a sequence of complex numbers
dense in the prescribed compact set, and form a diagonal operator with
that sequence as its diagonal.
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64. Norm of a multiplication. Diagonal operators are special cases of a
general measure-theoretic construction. Suppose that X is a measure space
with measure u. If ¢ is a complex-valued bounded (i.e., essentially bounded)
measurable function on X, then the multiplication operator (or just multi-
plication, for short) induced by ¢ is the operator 4 on L2(y) defined by

(Af) (%) = o(x)f(x)

for all x in X, (Here, as elsewhere in measure theory, two functions are
identified if they differ on a set of measure zero only. This applies to the
bounded ¢’s as well as to the square-integrable f’s.) If X is the set of all
positive integers and u is the counting measure (the measure of every set is
the number of elements in it), then multiplication operators reduce to
diagonal operators.

Problem 64. What, in terms of the multiplier @, is the norm of the multi-
plication induced by @?

65. Boundedness of multipliers, Much of the theory of diagonal operators
extends to multiplication operators on measure spaces, but the details
become a little fussy at times. A sample is the generalization of the assertion
that if a sequence is the diagonal of a diagonal operator, then it is bounded.

Problem 65. Ifan operator A on L? (for a o-finite measure) is such that
Af = @ - f for all f in L* (for some function @), then ¢ is measurable
and bounded.

66. Boundedness of multiplications, Each complex-valued measurable
function @ induces a linear transformation A4 that maps L? into the vector
space of all (not necessarily square-integrable) measurable functions; by
definition (Af)(x) = @(x)f(x). Half of Problem 65 implies that if 4 is an
operator (i.e., a bounded linear transformation of L? into itself), then the
function ¢ is bounded. What happens if the boundedness assumption on A is
dropped?

Problem 66. Can an unbounded function induce a (possibly unbounded)
transformation of L? (for a o-finite measure) into itself ?

This is the generalization to measures of Problem 62.

67. Spectrum of a multiplication. Some parts of the theory of diagonal
operators extend to multiplication operators almost verbatim, as follows, The
set of all bounded measurable functions (identified modulo sets of measure
zero) is an algebra (pointwise operations), with unit (p(x) = 1 for all x), with
a conjugation (¢ — ¢*), and with a norm (| ¢| ). A bounded measurable
function is invertible if it has an inverse in this algebra, i.e., if there exists a
bounded measurable function ¥ such that ¢(x)iy(x) = 1 for almost every x. A
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necessary and sufficient condition for this to happen is that ¢ be bounded
away from 0 almost everywhere, i.e., that there exist a positive number é such
that |@(x)| = J for almost every x.

The correspondence ¢ — A, where A is the multiplication operator defined
by (A)(x) = (%) f(x), is an isomorphism (an embedding) of the function
algebra into the algebra of operators on L2, The correspondence preserves not
only the familiar algebraic operations, but also the conjugation; that is, if
@ — A,then @* — A* Ifthe measure is o-finite, the correspondence preserves
the norm also (see Solution 64).

The role played by the range of a sequence is played, in the general case, by
the essential range of a function ¢; by definition, that is the set of all complex
numbers A such that for each neighborhood N of 4 the set ¢ !(N) has
positive measure.

Problem 67. The multiplication operator on L? (for a o-finite measure)
induced by ¢ is an invertible operator if and only if @ is an invertible func-
tion. Consequence: the spectrum of a multiplication is the essential range
of the multiplier.

68. Multiplications on functional Hilbert spaces. If a function ¢ multiplies
L? into itself, then ¢ is necessarily bounded (Solution 66), and therefore
multiplication by ¢ is necessarily an operator on L% Are the analogues of
these assertions true for functional Hilbert spaces?

Problem 68. Suppose that His afunctional Hilbert space,over a set X say,
and suppose that @ is a complex-valued function on X suchthat ¢ - f € H
whenever f € H. () If Af = ¢ - f, is the linear transformation A bounded?
MY If Af = ¢ fand if Ais bounded, is the function @ bounded?

69. Multipliers of functional Hilbert spaces. Suppose that H is a functional
Hilbert space over a set X. A function ¢ on X is a multiplier of Hif ¢ - f e H
for every fin H. Solution 68 says that every multiplier is bounded. It is fre-
quently interesting and important to determine all multipliers of a functional
Hilbert space.

For [2, the easiest infinite-dimensional space, it is easy to prove that a
necessary and sufficient condition that a function (i.e., a sequence) be a
multiplier is that it be bounded. In a certain sense the space (> has too many
multipliers: most of them do not belong to the space.

The space A% behaves differently: for it a necessary and sufficient condition
that a function be a multiplier is that it be bounded and belong to the space.
In a certain sense the space has too few multipliers: most of the functionsin the
space are not among them.

If X is finite and if H consists of all functions on X, then the set of multipliers
of His neither too large nor too small: it consists exactly of the elements of H.
Can this happen for infinite-dimensional spaces?
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Problem 69. Construct an infinite-dimensional functional Hilbert space
H such that the multipliers of H are exactly the elements of H.

To say that every element of H is a multiplier is the same as to say that His
closed under multiplication, i.e., that H is an algebra. The constant function 1
isa multiplier of every H; hence, to say that every multiplier of H belongs to H
is the same as to say that 1 e H. If 1 € H, then, of course, the algebra H has a
unit, but trivial examples show that the converse is not true. Thus, the con-
struction of an infinite-dimensional functional Hilbert space that is an
algebra with unit (under pointwise functional multiplication) is not quite,
but almost, what the problem asks for.
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CHAPTER 8

Operator Matrices

70. Commutative operator determinants. An orthonormal basis serves to
express a Hilbert space as the direct sum of one-dimensional subspaces. Some
of the matrix theory associated with orthonormal bases deserves to be
extended to more general direct sums. Suppose, to be specific, that H =
H, ®H, ®H; @ . (Uncountable direct sums work just as well, and
finite ones even better.) If the direct sum is viewed as an ‘““internal” one,
so that the H;’s are subspaces of H, then the elements f of H are sums

f=Ha+thHh+f+,
with f; in H,. If A is an operator on H, then
Af = Afi + Af, + Af5 +---.

Each Af;, being an element of H, has a decomposition:

Afi=g1+ g25 T 935+

with g;; in H;. The g;;'s depend, of course, on f;, and the dependence is linear
and continuous. It follows that

dij = Aijfj,
where A;;is a bounded linear transformation from H; to H;. The construction
is finished: corresponding to each 4 on H there is a matrix {(4,;>, whose
entry in row 7 and column J is the projection onto the i/ component of the
restriction of 4 to H;.

The correspondence from operators to matrices (induced by a fixed direct
decomposition) has all the right algebraic properties. If 4 = 0, then 4;; = 0
foralliand j;if A = 1 (on H), then A;; = O when i # j and 4; = 1 (on H).
The linear operations on operator matrices are the obvious ones. The matrix
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of A* is the adjoint transpose of the matrix of A; that is, the matrix of A* has
the entry 4;* in row i and column j. The multiplication of operators cor-
responds to the matrix product defined by Y, 4, B, ;- There is no convergence
trouble here, but there may be commutativity trouble; the order of the
factors must be watched with care.

The theory of operator matrices does not become trivial even if the number
of direct summands is small (say two) and even if all the direct summands are
identical. The following situation is the one that occurs most frequently: a
Hilbert space H is given, the role of what was H in the preceding paragraph is
played now by the direct sum H @ H, and operators on that direct sum are
expressed as two-by-two matrices whose entries are operators on H.

Problem 70. If A, B, C, and D are pairwise commutative operators on a
Hilbert space, then a necessary and sufficient condition that the operator

matrix
A B
C D

be invertible is that the formal determinant AD — BC be invertible.

71. Operator determinants. There are many situations in which the inverti-
bility of an operator matrix

A B

Cc D

plays a central role but in which the entries are not commutative ; any special
case is worth knowing.

Problem 71. If C and D commute, and if D is invertible, then a necessary
and sufficient condition that

A B

C D

be invertible is that AD — BC be invertible. Construct examples to show
that if the assumption that D is invertible is dropped, then the condition
becomes unnecessary and insufficient.

For finite matrices more is known (cf. [130]): if C and D commute, then

A B

C D
and AD — BC have the same determinant. The proof for the general case can
be arranged so as to yield this strengthened version for the finite-dimensional

case.
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72. Operator determinants with a finite entry. If A, B, and D are operators on
a Hilbert space H, then the operator matrix

M A B
(o o)
induces (is) an operator on H @ H, and (cf. Problem 71) if both A and D are
invertible, then M is invertible. The converse (if M is invertible, then A and D
are) is not true (see Problem 71 again).

Operator matrices define operators on direct sums of Hilbert spaces
whether the direct summands are identical or not. In at least one special case

of interest the converse that was false in the preceding paragraph becomes
true.

Problem 72. If H and K are Hilbert spaces, with dim H < oo, and if
A B
M =
(6 o)
is an invertible operator on H @ K, then both A and D are invertible.
Consequence: the spectrum of M is the union of the spectra of A and D.

Note that A operates on H, D operates on K, and B maps K into H.



CHAPTER 9

Properties of Spectra

73. Spectra and conjugation. It is often useful to ask of a point in the
spectrum of an operator how it got there. To say that A is in the spectrum of A
means that A — A is not invertible. The question reduces therefore to this:
why is a non-invertible operator not invertible? There are several possible
ways of answering the question; they have led to several (confusingly over-
lapping) classifications of spectra.

Perhaps the simplest approach to the subject is to recall that if an operator
is bounded from below and has a dense range, then it is invertible. Con-
sequence: if spec A is the spectrum of A, if TI(4) is the set of complex
numbers 4 such that 4 — 4 is not bounded from below, and if I'(A) is the
set of complex numbers A such that the closure of the range of A — A is a
proper subspace of H (i.e., distinct from H), then

spec A = TI(A) v I'(4).

The set II(A4) is called the approximate point spectrum of A; a number A
belongs to IT(A) if and only if there exists a sequence {f,} of unit vectors
such that (4 — A)f,|| — 0. An important subset of the approximate point
spectrum is the point spectrum I1,(A); a number A belongs to it if and only
if there exists a unit vector f such that Af = Af (i.e., I15(A) is the set of all
eigenvalues of A). The set I'(A4) is called the compression spectrum of A.
Schematically: think of the spectrum as the union of two overlapping
discs (Il and I'), one of which (IT) is divided into two parts (IT; and
IT — IT,) by a diameter perpendicular to the overlap. The result is a
partition of the spectrum into five parts, each one of which may be some-
times present and sometimes absent. The born taxonomist may amuse
himself by trying to see which one of the 2° a priori possibilities is realiz-
able, but he would be well advised to postpone the attempt until he has
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seen several more examples of operators than have appeared in this book so
far.

This is a good opportunity to comment on a sometimes confusing aspect
of the nomenclature of operator theory. There is something called the spectral
theorem for normal operators (see Problem 123), and there are things called
spectrafor all operators. The study of the latter might be called spectral theory,
and sometimes it is. In the normal case the spectral theorem gives information
about spectral theory, but, usually, that information can be bought cheaper
elsewhere. Spectral theory in the present sense of the phrase is one of the
easiest aspects of operator theory.

There is no consensus on which concepts and symbols are most convenient
in this part of operator theory. Apparently every book introduces its own
terminology, and the present one is no exception. A once popular approach
was to divide the spectrum into three disjoint sets, namely, the point
spectrum Iy, the residual spectrum I — I, and the continuous spectrum
IT — (I' v I1y). (The sets IT and I" may overlap; examples will be easy to
construct a little later.) As for symbols: the spectrum is often o (or X)
instead of spec.

The best way to master these concepts is, of course, through illuminating
special examples, but a few general facts should come first; they help in the
study of the examples. The most useful things to know are the relations of
spectra to the algebra and topology of the complex plane. Perhaps the easiest
algebraic questions concern conjugation.

Problem 73. What happens to the point spectrum, the compression spec-
trum, and the approximate point spectrum when an operator is replaced by
its adjoint?

74. Spectral mapping theorem. An assertion such as that if A is an operator
and pis a polynomial, then spec p(4) = p(spec A) (see [50,p. 53])is called a
spectral mapping theorem; other instances of it have to do with functions
other than polynomials, such as inversion, conjugation, and wide classes
of analytic functions ({39, p. 569]).

Problem 74. Is the spectral mapping theorem for polynomials true with
I, or I, or I in place of spec? What about the spectral mapping theorem
Jor inversion (p(z) = 1/z when z # 0), applied to invertible operators,
with I, or I1, or I'?

75. Similarity and spectrum. Two operators A and B are similar if there
exists an invertible operator P such that P"'4P = B.

Problem 75. Similar operators have the same spectrum, the same point
spectrum, the same approximate point spectrum, and the same com-
pression spectrum.
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76. Spectrum of a product. If 4 and B are operators, and if at least one of
them is invertible, then AB and BA are similar. (For the proof, apply BA =
A"Y(AB)A in case A is invertible or AB = B~ '(BA)B in case B is.) This
implies (Problem 75) that if at least one of A and B is invertible, then AB
and BA have the same spectrum. In the finite-dimensional case more is
known: with no invertibility assumptions, AB and BA always have the same
characteristic polynomial. If neither 4 nor B is invertible, then, in the
infinite-dimensional case, the two products need not have the same
spectrum (many examples occur below), but their spectra cannot differ
by much. Here is the precise assertion.

Problem 76. The non-zero elements of spec AB and spec BA are the
same.

77. Closure of approximate point spectrum.
Problem 77. [s the approximate point spectrum always closed?
78. Boundary of spectrum.

Problem 78. The boundary of the spectrum of an operator is included in
the approximate point spectrum.
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CHAPTER 10

Examples of Spectra

79. Residual spectrum of a normal operator. The time has come to consider
special cases. The first result is that for normal operators, the most amenable
large class known, the worst spectral pathology cannot occur.

Problem 79. If A is normal, then T(A) = I14(A) (and therefore spec A =
I1(A)). Alternative formulation: the residual spectrum of a normal operator
is always empty.

Recall that the residual spectrum of A is I'(4) — IT4(A).

80. Spectral parts of a diagonal operator. The spectrum of a diagonal
operator was determined (Problem 63) as the closure of its diagonal; the
determination of the fine structure of the spectrum requires another look.

Problem 80. For each diagonal operator, find its point spectrum, com-
pression spectrum, and approximate point spectrum.

81. Spectral parts of a multiplication.

Problem 81. For each multiplication, find its point spectrum, com-
pression spectrum, and approximate point spectrum.

82. Unilateral shift. The most important single operator, which plays a vital
role in all parts of Hilbert space theory, is called the unilateral shift. Perhaps
the simplest way to define it is to consider the Hilbert space I of square-
summable sequences; the unilateral shift is the operator U on [? defined by

U<€0’ 51’ 52’ > = <0’ CO’ 51’ 52"' >
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(The unilateral shift has already occurred in this book, although it was not
named until now; see Solution 71.) Linearity is obvious. As for boundedness,
it is true with room to spare. Norms are not only kept within reasonable
bounds, but they are preserved exactly; the unilateral shift is an isometry. The
range of U is not [? but a proper subspace of [, the subspace of vectors with
vanishing first coordinate. The existence of an isometry whose range isnot the
whole space is characteristic of infinite-dimensional spaces.

If e, is the vector {&,, &, &,, -+ for which £, = 1 and &; = 0 whenever
i#nm=0,1,2--),then the ¢,’s form an orthonormal basis for /2. The
effect of U on this basis is described by

Ue, = €,+, n=0,1,2--)

These equations uniquely determine U, and in most of the study of U they
may be taken as its definition.

A familiar space that comes equipped with an orthonormal basis indexed
by non-negative integers is H?> (see Problem 33). Since, in that space,
e,(2) = z" the effect of shifting forward by one index is the same as the
effect of multiplication by e,. In other words, the unilateral shift is the
same as the multiplication operator on H? defined by

UNE@ = zf 2.

To say that it is the “same”, and, in fact, to speak of “the” unilateral shift is a
slight abuse of language, a convenient one that will be maintained throughout
the sequel. Properly speaking the unilateral shift is a unitary equivalence class
of operators, but no confusion will result from regarding it as one operator
with many different manifestations.

Problem 82. What is the spectrum of the unilateral shift, and what are its
parts (point spectrum, compression spectrum, and approximate point
spectrum)? What are the answers to the same questions for the adjoint
of the unilateral shift?

83. Structure of the set of eigenvectors. The unilateral shift shows that the
set of eigenvalues of an operator can be much richer than finite-dimensional
experience suggests. What about the set of eigenvectors? A dull answer to the
question is given by scalars; every vector is an eigenvector, or every non-zero
vector is one, depending on how the definition of eigenvector was formulated.
Is there an interesting answer?

Problem 83. Isthere a non-scalar operator whose set of eigenvectors hasa
non-empty interior?

84. Bilateral shift. A close relative of the unilateral shift is the bilateral shift.
To define it, let H be the Hilbert space of all two-way (bilateral) square-
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summable sequences. The elements of H are most conveniently written in the
form

<"'5 5—29 5—15 (50)9 519 525 >5

the term in parentheses indicates the one corresponding to the index 0. The
bilateral shift is the operator W on H defined by

W< ) 5—23 5—13 (50)3 519 525 t > = < " 5*35 5*2’(5—1)3 50’ 51’ o >

Linearity is obvious, and boundedness is true with room to spare; the bi-
lateral shift, like the unilateral one, is an isometry. Since the range of the
bilateral shift is the entire space H, it is even unitary.

If e, is the vector {---.&_,, (&p), &1, --+> for which &, =1 and & =0
whenever i #n (n=0, +1, +2,--.), then the ¢,5s form an orthonormal
basis for H. The effect of W on this basis is described by

We,,==€,,+1 (n=:0, ils iza"')'

Problem 84. What is the spectrum of the bilateral shift, and what are its
parts (point spectrum, compression spectrum, and approximate point
spectrum)? What are the answers to the same questions for the adjoint of
the bilateral shift?

85. Spectrum of a functional multiplication. Every operator studied so far
has been a multiplication, either in the legitimate sense (on an L?) or in the
extended sense (on a functional Hilbert space). The latter kind is usually
harder to study; it does, however, have the advantage of having a satisfactory
characterization in terms of its spectrum.

Problem 85. A necessary and sufficient condition that an operator Aona
Hilbert space H be representable as a multiplication on a functional
Hilbert space is that the eigenvectors of A* span H.

Caution: as the facts for multiplications on L? spaces show (cf. Solution 81)

this characterization is applicable to functional Hilbert spaces only. The
result seems to be due to P. R. Halmos and A. L. Shields.
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CHAPTER 11

Spectral Radius

86. Analyticity of resolvents. Suppose that A is an operator on a Hilbert
space H. If A does not belong to the spectrum of A4, then the operator 4 — Ais
invertible; write p(1) = (4 — A)™!. (When it is necessary to indicate the
dependence of the function p on the operator A, write p = p,.) The
function p is called the resolvent of A. The domain of p is the complement
of the spectrum of A; its values are operators on H.

The definition of the resolvent is very explicit ; this makes it seem plausible
that the resolvent is a well-behaved function. To formulate this precisely,
consider, quite generally, functions ¢ whose domains are open sets in the
complex plane and whose values are operators on H. Such a function ¢
will be called analytic if, for each f and g in H, the numerical function
A= (@A)f, g) (with the same domain as ¢) is analytic in the usual sense.
(To distinguish this concept from other closely related ones, it is some-
times called weak analyticity.) In case the function  defined by (1) =
¢(1/4) can be assigned a value at the origin so that it becomes analytic
there, then (just as for numerical functions) ¢ will be called analytic at
o0, and ¢ is assigned at oo the value of i at 0.

Problem 86. The resolvent of every operator is analytic at each point of
its domain, and at oo} its value at oo is (the operator) 0.

For a detailed study of resolvents, see [39, VII, 3].

87. Non-emptiness of spectra. Does every operator have a non-empty
spectrum? The question was bound to arise sooner or later. Even the finite-
dimensional case shows that the question is non-trivial. To say that every
finite matrix has an cigenvalue is the same as to say that the characteristic
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polynomial of every finite matrix has at least one zero, and that is no more
and no less general than to say that every polynomial equation (with complex
coefficients) has at least one (complex) zero. In other words, the finite-dimen-
sional case of the general question about spectra is as deep as the fundamental
theorem of algebra, whose proof is usually based on the theory of complex
analytic functions. It should not be too surprising now that the theory of
such functions enters the study of operators in every case (whether the
dimension is finite or infinite).

Problem 87. Every operator has a non-empty spectrum.
88. Spectral radius. The spectral radius of an operator A4, in symbols
r(A), is defined by
r(A4) = sup{|A|: Aespec A}.
Clearly 0 < r(A) < ||A]|; the spectral mapping theorem implies also that
r(A™) = (r(A))" for every positive integer n. It frequently turns out that the
spectral radius of an operator is easy to compute even when it is hard to find
the spectrum; the tool that makes it easy is the following assertion.
Problem 88. For each operator A,
1(A) = lim, ||A"| /",
in the sense that the indicated limit always exists and has the indicated
value.
It is an easy consequence of this result that if 4 and B are commutative
operators, then
r(AB) £ r(A)r(B).

It is a somewhat less easy consequence, but still a matter of no more than a
little fussy analysis with inequalities, that if 4 and B commute, then

r(A + B) £ r(A) + r(B).

If no commutativity assumptions are made, then two-dimensional examples,

such as
0 0 0 1
A - B ==

show that neither the submultiplicative nor the subadditive property persists.

89. Weighted shifts. A weighted shift is the product of a shift (one-sided or
two) and a compatible diagonal operator. More explicitly, suppose that {e,}
is an orthonormal basis (n = 0,1,2,---, or else n =0, +1, +£2,--), and
suppose that {a,} is a bounded sequence of complex numbers (the set of n’s
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being the same as before). A weighted shift is an operator of the form SP,
where S is a shift (Se, = e,,,) and P is a diagonal operator with diagonal
{a,} (Pe, = a,e,). Not everything about weighted shifts is known, but even the
little that is makes them almost indispensable in the construction of examples
and counterexamples. It is sometimes convenient to use the symbol

Shift<a0, Xyy Aoy - >

to denote the weighted shift with the indicated weights.

Problem 89. If P and Q are diagonal operators, with diagonals {a,} and
{B,}, and if |a,| = |B,| for all n, then the weighted shifts A = SP and
B = SQ are unitarily equivalent.

A discussion of two weighted shifts should, by rights, refer to two ortho-
normal bases, but the generality gained that way is shallow. If {e,} and
{f.} are orthonormal bases, then there exists a unitary operator U such that
Ue, = f, for all n, and U can be carried along gratis with any unitary equi-
valence proof.

The result about the unitary equivalence of weighted shifts has two useful
consequences. First, the weighted shift with weights o, is unitarily equivalent
to the weighted shift with weights |a,|. Since unitarily equivalent operators
are “abstractly identical”, there is never any loss of generality in re-
stricting attention to weighted shifts whose weights are non-negative;
this is what really justifies the use of the word “weight”. Second, if A is a
weighted shift and if « is a complex number of modulus 1, then, since a4
is a weighted shift, whose weights have the same moduli as the corre-
sponding weights of A, it follows that A and «A are unitarily equivalent.
In other words, to within unitary equivalence, a weighted shift is not
altered by multiplication by a number of modulus 1. This implies, for
instance, that the spectrum of a weighted shift has circular symmetry:
if A is in the spectrum and if ja| = 1, then a4 is in the spectrum.

90. Similarity of weighted shifts. Is the converse of Problem 89 true?
Suppose, in other words, that 4 and B are weighted shifts, with weights {«,}
and {B,}; if A and B are unitarily equivalent, does it follow that |a,| = |8,|
for all n? The answer can be quite elusive, but with the right approach it
is easy. The answer is no; the reason is that, for bilateral shifts, a trans-
lation of the weights produces a unitarily equivalent shift. That is: if
Ae, = a,e,., and Be, = a,,,,., (n =0, +1, +2, --), then A and B
are unitarily equivalent. If, in fact, W is the bilateral shift (We, = e,:,
n=20, %1, +2,--), then W*AW = B; if, however, the sequence {|a,|}
is not constant, then there is at least one n such that |a,] # o, ..
Unilateral shifts behave differently. If some of the weights are allowed to be
zero, the situation is in part annoying and in part trivial. In the good case (no
zero weights), the kernel of the adjoint A* of a unilateral weighted shift is
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spanned by e,, the kernel of A*? is spanned by e, and e,, and, in general, the
kernel of A*" is spanned by ey, --,€,., (n=1,2,3,---). If A and B are
unitarily equivalent weighted shifts, then A*" and B*" are unitarily equivalent;
if, say, A = U*BU, then U must send ker A*" onto ker B*". This implies that
the span of {eq,---,e,_,} is invariant under U, and from this, in turn, it
follows that U is a diagonal operator. Since the diagonal entries of a unitary
diagonal matrix have modulus 1, it follows that, for each n, the effect of 4 on
e, can differ from that of B by a factor of modulus 1 only.

This settles the unitary equivalence theory for weighted shifts with non-
zero weights; what about similarity?

Problem 90. If A and B are unilateral weighted shifts, with non-zero
weights {a,} and {B,}, then a necessary and sufficient condition that A
and B be similar is that the sequence of quotients

ao...an

ﬁO"'ﬁn

be bounded away from 0 and from co.

Similarity is a less severe restriction than unitary equivalence; questions
about similarity are usually easier to answer. By a modification of the argu-
ment for one-sided shifts, a modification whose difficulties are more nota-
tional than conceptual, it is possible to get a satisfactory condition, like
that in Problem 90, for the similarity of two-sided shifts; this was done by
R. L. Kelley.

91. Norm and spectral radius of a weighted shift.

Problem 91. Express the norm and the spectral radius of a weighted
shift in terms of its weights.

92. Power norms. The power norms of an operator A, that is the numbers
| A*|l, constitute an interesting sequence.

Problem 92. For which sequences {p,} of positive numbers does there
exist an operator A such that p, = |A*|, k =0,1,2,---?

93. Eigenvalues of weighted shifts. The exact determination of the spectrum
and its parts for arbitrary weighted shifts is a non-trivial problem. Here is a
useful fragment.

Problem 93. Find all the eigenvalues of all unilateral weighted shifts
(with non-zero weights) and of their adjoints.
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The possible presence of 0 among the weights is not a genuine difficulty
but a nuisance. A unilateral weighted shift, one of whose weights vanishes,
becomes thereby the direct sum of a finite-dimensional operator and another
weighted shift. The presence of an infinite number of zero weights can cause
some interesting trouble (cf. Problem 98), but the good problems about shifts
have to do with non-zero weights.

94. Approximate point spectrum of a weighted shift. For each operator A
there exists a complex number of modulus r(4) in the approximate point spec-
trum of A (Problem 78). If A is a weighted shift, then the circular symmetry of
each part of the spectrum (Problem 89) implies that every complex number of
modulus r(A) belongs to the approximate point spectrum of A. Consequence:
the approximate point spectrum of a weighted shift always includes a circle
(possibly degenerate). Question: does it ever include more?

Problem 94. Is there a weighted shift whose approximate point spectrum
has interior points?

95. Weighted sequence spaces. The expression ““ weighted shift” means one
thing, butit could just as well have meant something else. What it does mean is
to modify the ordinary shift on the ordinary sequence space [ by attaching
weights to the transformation; what it could have meant is to modify by
attaching weights to the space.

To get an explicit description of the alternative, let p = {py, p1, P5, -}
be a sequence of strictly positive numbers, and let [2(p) be the set of complex
sequences (&g, &y, &y, - 0> with Y% 4 p,|&,* < co. With respect to the
coordinatewise linear operations and the inner product defined by

(<€0’ 515 525 ’ ">5 <'70, His N2y - >) = ipnénnn*a
n=0

the set [%(p) is a Hilbert space; it may be called a weighted sequence space. (All
this is unilateral; the bilateral case can be treated similarly.) When is the shift
an operator on this space? When, in other words, is it true that if f =

<€05 515 52’ o > € lz(p)’ then Sf = <O’ 505 515 525 o > € lz(p)’ and, asfvaries
over I*(p), |Sf || is bounded by a constant multiple of || f | ? The answer is easy.
An obviously necessary condition is that there exist a positive constant a such
that jle,, Il < ajle,ll, where e,, of course, is the vector whose coordinate with
index n is 1 and all other coordinates are 0. Since |le,/|> = p,, this condition
says that the sequence {p, . ,/p.} is bounded. It is almost obvious that this
necessary condition is also sufficient. If p, . ,/p, < a? for all n, then

712 = ¥ pulnesl? = 3 P2 py 16,

n=1¥n—1

< o Z:OP,.IC,,I2 = o*| fII2.
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Every question about weighted shifts on the ordinary sequence space can be
re-asked about the ordinary shift on weighted sequence spaces; here is a
sample.

Problem 95. If p = {p,} is a sequence of positive numbers such that
{Pu+ 1/Ds} is bounded, what, in terms of {p,}, is the spectral radius of the
shift on I*(p)?

96. One-point spectrum. The proof in Problem 63 (every non-empty
compact subset of the plane is the spectrum of some operator) is not
sufficiently elastic to yield examples of all the different ways spectral parts
can behave. That proof used diagonal operators, which always have
eigenvalues; from that proof alone it is not possible to infer the existence
of operators whose point spectrum is empty. Multiplication operators
come to the rescue. If D is a bounded region, if ¢(z) = z for zin D, and if
A is the multiplication operator induced by ¢ on the L? space of planar
Lebesgue measure in D, then the spectrum of A is the closure D, but the
point spectrum of A4 is empty. Similar techniques show the existence of
operators A with ITy(4A) = & and spec A = [0, 1], say; just use linear
Lebesgue measure in [0, 1]. Whenever a compact set M in the plane is
the support of a measure (on the Borel sets) that gives zero weight to each
single point, then M is the spectrum of an operator with no eigenvalues.
(To say that M is the support of u means that if N is an open set with
UM n N) =0, then M n N = ¢#.) It is a routine exercise in topological
measure theory to prove that every non-empty, compact, perfect set (no
isolated points) in the plane is the support of a measure (on the Borel sets)
that gives zero weight to each single point. (The proof is of no relevance to
Hilbert space theory.) It follows that every such set is the spectrum of an
operator with no eigenvalues. What about sets that are not perfect?

A verysatisfactory answer can be given in terms of the appropriate analytic
generalization of the algebraic concept of nilpotence. An operator is nilpotent
if some positive integral power of it is zero (and the least such power is the
index of nilpotence); an operator A is quasinilpotent if lim, |A"|'" = 0.1t is
obvious that nilpotence implies quasinilpotence. The spectral mapping
theorem implies that if A is nilpotent, then spec 4 = {0}. The expression for
the spectral radius in terms of norms implies that if A4 is quasinilpotent, then
spec A = {0}, and that, moreover, the converse is true. A nilpotent operator
always has a non-trivial kernel, and hence a non-empty point spectrum; for
quasinilpotent operators that is not so.

Problem 96. Construct a quasinilpotent operator whose point spectrum
is empty.

Observe that on finite-dimensional spaces such a construction is clearly
impossible.
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97. Analytic quasinilpotents. Polynomials in an operator make sense; what
about the obvious extension to “infinite polynomials”, or, more precisely,
power series? There are several possible approaches to defining expressions
such as f(A), where fis an analytic function and A is an operator. The simplest
of them has to do with operators that have the smallest possible spectrum,
that is, quasinilpotent operators. If A4 is such an operator, and if f is a
function that is analytic in a neighborhood of 0, then f has a power series
expansion, f(z) = Z,‘?:O o, 2", convergent when, say, |z| < ¢; in that case
write f(4) = ) % a,A4" This operator series converges (in the norm).
Reason: since | A"|'" < & for n sufficiently large, it follows that || 4"]| < ¢&"
for n sufficiently large.

The correspondence f — f(A) between functions and operators respects
the algebraic structures involved ; sums and products of functions correspond
to sums and products of operators. This phenomenon, or, more precisely, the
homomorphism from functions f analytic at 0 to operators f(A) (where Aisa
fixed quasinilpotent operator)is called afunctional calculus; it is an extension
of the trivial functional calculus for polynomials.

An operator A is called algebraic if there exists a non-zero polynomial p
such that p(A4) = 0; by a natural extension of language it seems proper to say
that A is analytic if there exists a non-zero function f analytic at 0 such that

f(A) = 0. Every nilpotent operator is algebraic; is the generalization to
“infinite polynomials” true?

Problem 97. Is every quasinilpotent operator analytic?

98. Spectrumof adirect sum. The spectrum of the directsum of two operators
is the union of their spectra, and the same is true of the point spectrum, the
approximate point spectrum, and the compression spectrum. The extension
of this result from two direct summands to any finite number is a trivial
induction. What happens if the number of summands is infinite? A possible
clue to the answer is the behavior of diagonal operators on infinite-dimen-
sional spaces. Such an operator is an infinite direct sum, each summand
of which is an operator on a one-dimensional space, and its spectrum is
the closure of the union of their spectra (Problem 63).

Problem 98. Isthe spectrumofadirect sumof operatorsalwaysthe closure
of the union of their spectra?
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Norm Topology

99. Metric space of operators. If the distance between two operators A and B
is defined to be ||[A ~ B|, the set B(H) of all operators on a Hilbert space H
becomes a metric space. Some of the standard metric and topological
questions about that space have more interesting answers than others. Thus,
for instance, it is not more than minimum courtesy to ask whether or not the
space is complete. The answer is yes. The proofis the kind of routine analysis
every mathematician has to work through at least once in his life; it offers
no surprises. The result, incidentally, has been tacitly used already. In
Solution 86, the convergence of the series Z,‘?:o A" was inferred from the
assumption {|A[] < 1. The alert reader should have noted that the justifi-
cation of this inference is in the completeness result just mentioned. (It
takes less alertness to notice that the very concept of convergence refers
to some topology.)

So much for completeness; what about separability? If the underlying
Hilbert space is not separable, it is not to be expected that the operator
space is, and, indeed, it is easy to prove that it is not. That leaves one more
natural question along these lines.

Problem 99. If a Hilbert space H is separable, does it follow that the
metric space B(H) of operators on it is separable?

100. Continuity of inversion. Soon after the introduction of a topology on an
algebraic structure, such as the space of operators on a Hilbert space, it is
customary and necessary to ask about the continuity of the pertinent
algebraic operations. In the present case it turns out that all the elementary
algebraic operations (linear combination, conjugation, multiplication) are
continuous in all their variables simultaneously, and the norm of an
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operator is also a continuous function of its argument. The proofs are
boring,

The main algebraic operation not mentioned above is inversion. Since not
every operator is invertible, the question of the continuity of inversion makes
sense on only a subset of the space of operators.

Problem 100. The set of invertible operators is open. I's the mapping A —
A~ of that set onto itself continuous?

The statement that the set of invertible operators is open does not answer
all questions about the geometry of that set. It does not say, for instance,
whether or not invertible operators can completely surround a singular
(=non-invertible) one. In more technical language: are there any isolated
singular operators? The answer is no; the set of singular operators is
(arcwise) connected. Reason: if A4 is singular, so is tA for all scalars t; the
mapping t+— tA is a continuous curve that joins the operator 0 to the
operator A. Is the open set of invertible operators connected also? That
question is much harder; see Problem 141.

Here is an amusing puzzle about exponentiation and invertibility with a
perhaps unexpected solution: determine all operators 4 and B such that B is
invertible and A" — B as n — c0. (A trivial example is given by A = B = 1.)

101. Interior of conjugate class. What are the topological properties of
similarity? The question includes several precise subquestions. One of them is
about conjugate classes. (They are the equivalence classes of the relation of
similarity. In more detail: the conjugate class of an operator A is the set of all
operators similar to A4.)

Conjugate classes do not have to be closed sets. (Example: the standard

. . . .. . M 1 i O
finite-dimensional similarity theory implies that all the matrices (O g)

o . . , 0
with a s 0, are similar; their closure contains (g O).) It is, however,

quite possible for a conjugate class to be closed; for an example, consider
A = 0. Conjugate classes do not have to be open (consider A = 0 again);
can they be?

Problem 101. Is there an open conjugate class?

102. Continuity of spectrum. The spectrum (restricted for a moment to
operators on just one fixed Hilbert space)is a function whose domain consists
of operators and whose range consists of compact sets of complex numbers. It
would be quite reasonable to try to define what it means for a function of this
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kind to be continuous. Is the spectrum continuous? The following example is
designed to prove that however the question is interpreted, the answer is al-
ways 1no.

Problem 102. If k = 1,2,3,--- and if k = oo, let A, be the two-sided
weighted shift such that Aye, is e, or (1/k)e, ., according as n # 0 or
n = 0. (Put 1/00 = 0.) What are the spectra of the operators A, (k = 1,
2,3,---,00)?

103. Semicontinuity of spectrum. The example of Problem 102 shows that
there exists an operator with a large spectrum in every neighborhood of which
there are operators with relatively small spectra. Could it happen the other
way? Is there a small spectrum with arbitrarily near large spectra? The
answer turns out to be no; the relevant concept is that of an upper semi-
continuous function. (Cf. Problem 21.)

Upper semicontinuity for a set-valued function such as spec has at least
two definitions, a metric one and a sequential one. Metric definition: to each
open set A, that includes spec A there corresponds a positive number ¢ such
that if |4 — B| < ¢, then spec B « A,. The sequential definition has to be
preceded by an auxiliary concept: if {A,} is a sequence of sets of complex
numbers, then limsup, A, is the set of all limit points of those sequences {4,}
for which 4, € A, for each n. Sequential definition of upper semicontinuity:
whenever A, —» A, it follows that

limsup spec A, < spec A.

n

The two definitions are equivalent. The proofs needed for this assertion
are straightforward; in outline form they go like this. If spec is known
to be metrically upper semicontinuous, and if 4, —» A and A ¢ spec A,
then separate A and spec A by disjoint open sets, and infer that A cannot
belong to limsup, spec A4,. If, conversely, spec is known to be sequentially
upper semicontinuous and A, is an open set that includes spec A, then
the negation of metric upper semicontinuity leads to a sequence {4,} with
A, — A that contradicts the assumption.

Problem 103. Spectrum is upper semicontinuous.

This is a standard result. One standard reference is [74, p. 167]; another
is [112, p. 35]. The semicontinuity of related functions is discussed in [63].

104. Continuity of spectral radius. Since the spectrum is upper semi-
continuous (Problem 103), so is the spectral radius. That is: to each operator
A and to each positive number § there corresponds a positive number ¢ such
that if |4 — B|| <, then r(B) < #(A) + . (The proof is immediate from
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Problem 103.) The spectrum is not continuous (Problem 102); what about
the spectral radius?

Problem 104. Is it true that to each operator A and to each posi-
tive number O there corresponds a positive number ¢ such that if
1A — Bl <&, then |r(A) — r(B)| < 0? Eguivalently: if A, — A,
does it follow that r(A,) — r(A)?

This is hard. Note that the example in Problem 102 gives no information;
in that case the spectral radius is equal to 1 for each term of the sequence and
also for the limit.

105. Normal continuity of spectrum. Does it make sense to speak of the
continuity (not just semicontinuity) of a set-valued function such as spec?
The most convenient answer is in sequential terms. If {A,} is a sequence
of sets of complex numbers, define liminf, A, to be the set of all limits of
those convergent sequences {4,} for which A, € A, for each n. (Recall that
limsup, A, was defined as the set of all limit points of not necessarily con-
vergent sequences of this kind; see Problem 103.) The sequence {A,} is
called convergent (A, — A) if and only if
liminf A, = limsup A,;

in that case the common value deserves to be called lim, A,. To say that spec
is continuous at a particular operator A means that A, — A4 implies

spec 4, — spec A.

Since upper semicontinuity is true for all 4, a necessary and sufficient con-
dition for continuity at A4 is that
spec A < liminf spec A4,.
n

The determination of the set of all points of continuity of spec is a non-
trivial problem. Some interesting subsets of it were studied by Newburgh in
his seminal paper [102]. (Example: if spec A4 is totally disconnected, then
A is a point of continuity of spec. Special case: if 4 is of finite rank, or,
more generally, if 4 is compact, then A is a point of continuity of spec.
Cf. Solution 106.) A general characterization is given in [27].

Another useful question asks whether the restriction of spec to various sets
of operators is continuous. (Sample result: the restriction of spec to every
commutative set is continuous.) Normal operators frequently behave not
only algebraically but also topologically better than others; what happens if
spec is restricted to them? '

Problem 105. s the restriction of spec to the set of normal operators
continuous?
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106. Quasinilpotent perturbations of spectra. The discontinuity of the
spectrum shows that if an operator is perturbed by a “small” summand, the
spectrum can undergo a large change. Does the converse behave any better?
That is: does a perturbation that produces only a small change in the spec-
trum have to be small? If small is interpreted in the sense of norm, the answer

. . . 0 0 1
is easily seen to be no. If, for instance, 4 = (g ﬁ) and B = ( 0 O)’ then

spec(A + B) = spec A = {a, B}, but B is not small. The operator A4 can
in fact be perturbed by arbitrarily large summands without changing its
spectrum at all: spec(4 + nB) = spec A for all n.

There is a sense in which the operator B in the preceding example is small:
its spectrum is small. Is that the clue?

Problem 106. IfA and B are operators such that spec(A + nB) = spec A
forn=0,1,2,-.-,does it follow that B is quasinilpotent?

The answer is clearly yes in some degenerate cases. If, for instance, 4 is a

scalar, and if spec(4 + nB) = spec A4 for just one non-zero value of n, then
spec B = 0.
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Operator Topologies

107. Topologies for operators. A Hilbert space has two useful topologies
(weak and strong); the space of operators on a Hilbert space has several. The
metric topology induced by the norm is one of them; to distinguish it from
the others, it is usually called the norm topology or the uniform topology. The
next two are natural outgrowths for operators of the strong and weak topo-
logies for vectors. A subbase for the strong operator topology is the collection
of all sets of the form

{A:1I(4 ~ A))fl < ¢e};
correspondingly a base is the collection of all sets of the form
{A: (4 — A fil <ei=1,---, k}

Here k is a positive integer, f}, - - -, f, are vectors, and ¢ is a positive num-
ber. A subbase for the weak operator topology is the collection of all sets
of the form

{4 (A4 = A0 f. Pl < e},

where f and g are vectors and ¢ > 0; as above (as always) a base is the col-
lection of all finite intersections of such sets. The corresponding concepts of
convergence (for sequences and nets) are easy to describe: 4, — A strongly if
and only if A, f — Af strongly for each f (i.e, (4, — A)f | — 0for each f),
and A, » Aweaklyifand onlyif 4, f — Af weakly for each f (i.e, (4, f, 9) —»
(Af, g)for each fand g). For a slightly different and often very efficient defini-
tion of the strong and weak operator topologies see Problems 224 and 225.

The easiest questions to settle are the ones about comparison. The weak
topology is smaller (weaker) than the strong topology, and the strong topo-
logy is smaller than the norm topology. In other words, every weak open
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R

set is a strong open set, and every strong open set is norm open. In still
other words: every weak neighborhood of each operator includes a strong
neighborhood of that operator, and every strong neighborhood includes a
metric neighborhood. Again: norm convergence implies strong con-
vergence, and strong convergence implies weak convergence. These facts
are immediate from the definitions. In the presence of uniformity on the
unit sphere, the implications are reversible.

Problem 107. If (A, f, g) — (Af,g) uniformly for gl =1, then
|4, f — Afl = 0, and if |4, f — Afll — Ouniformly for || f| =1, then
14, — Al - 0.

The plethora of topologies yields many questions. A few of those questions
are interesting and have useful answers, but even those few are more like
routine operator extensions of the corresponding vector questions and
answers (in Chapters 2 and 3) than inspiring novelties. In most cases the
operator proofs are not ingenious corollaries of the vector facts but
repetitions of them, with some extra notational complications. Here are a
few sample questions, with curt answers and no proofs.

(1) Is B,(H) (the closed unit ball in B(H)) compact? (A topological term
such as “‘compact”, with no indication of topology, always refers to the
norm.) Answer: yes if and only if the underlying Hilbert space H is finite-
dimensional; cf. Problem 16, (The answer is a special case of the corre-
sponding theorem about arbitrary Banach spaces.)

(2) If H is separable, is B,(H) separable? (No; see Solution 99.) Is it
weakly separable?, weakly metrizable?, strongly separable?, strongly
metrizable? (Yes, to all parts; cf. Problems 17 and 24.)

(3) Is B,(H) weakly compact? Yes; imitate Solution 23. Is B,(H)
strongly compact? No; see, for instance, Solution 115. Associated with
these questions there is a small verbal misfortune. The space B(H) is a
Banach space, and, as such, it has a conjugate space, which induces a
topology in B(H) called, regrettably, the weak topology. This weak
topology is defined in terms of the set of all bounded linear functionals on
B(H). The definition of the weak topology for operators above uses only
some linear functionals on B(H), namely the ones given by inner products
(A (Af, g)). There is a big difference between the two.

The Banach space weak topology is rarely used in the operator context;
when it is, a small additional effort must be made to avoid confusion. In an
attempt to do so, one school of thought abandons the grammatically appro-
priate form of “weak” in favor of a parenthetical WOT, standing for weak
operator topology. People who do that use SOT also (strong), but they stop
short of NOT (norm). None of these acronyms will ever be seen below;
“weak” for operators will always refer to the topology defined by inner
products.

60



OPERATOR TOPOLOGIES

108. Continuity of norm. In the study of topological algebraic structures
(such as the algebra of operators on a Hilbert space, endowed with one of the
appropriate operator topologies) the proof that something is continuous is
usually dull; the interesting problems arise in proving that something is not
continuous. Thus, for instance, it is true that the linear operations on operators
(A + BB) are continuous in all variables simultaneously, and the proofis a
matter of routine. (Readers who have never been through this routine are
urged to check it before proceeding.) Here is a related question that is
easy but not quite so mechanical.

Problem 108. Which of the three topologies (uniform, strong, weak)
. makes the norm (i.e., the function A+ || Al}) continuous?

109. Semicontinuity of operator norm. The norm is not weakly continuous;
for vectors this was discussed in Problem 20, and for operators in Solution
108 (where it was shown that the norm is not even strongly sequentially
continuous). Half of continuity is, however, available.

Problem 109. The norm (of an operator) is weakly lower semicontinuous
(and a fortiori strongly lower semicontinuous).

The assertion means that if {4,} is a net converging weakly to A, then
|4}l < liminf, | A,. Equivalently: for every ¢ > 0 there exists an n, such
that A — |A,|l = e whenever n 2 ng.

110. Continuity of adjoint.

Problem 110. Which of the three topologies (uniform, strong, weak)
makes the adjoint (i.e., the mapping A — A*) continuous?

111. Continuity of multiplication. The most useful, and most recalcitrant,
questions concern products. Since a product (unlike the norm and the ad-
joint) is a function of two variables, a continuity statement about pro-
ducts has a “joint” and a ‘““separate” interpretation. It is usual, when
nothing is said to the contrary, to interpret such statements in the ““joint”
sense, i.e., to interpret them as referring to the mapping that sends an or-
dered pair (A4, B) onto the product AB.

Problem 111. Multiplication is continuous with respect to the uniform
topology and discontinuous with respect to the strong and weak topologies.

The proof is easy, but the counterexamples are hard; the quickest ones
depend on unfair trickery.
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112. Separate continuity of multiplication. Although multiplication is not
jointly continuous with respect to either the strong topology or the weak,
it is separately continuous in each of its arguments with respect to both
topologies. A slightly more precise formulation runs as follows.

Problem 112. Eqch of the mappings A — AB (for fixed B) and B+ AB
(for fixed A) is both strongly and weakly continuous.

113. Sequential continuity of multiplication. Separate continuity (strong and
weak) of multiplication is a feeble substitute for joint continuity; another
feeble (but sometimes usable) substitute is joint continuity in the sequential
sense.

Problem 113. (a) If {A,} and {B,} are sequences of operators that
strongly converge to A and B, respectively, then A,B, — AB strongly.
(b) Does the assertion remain true if “strongly” is replaced by
“weakly” in both hypothesis and conclusion?

114. Weak sequential continuity of squaring. There is a familiar argument
that can be used frequently to show that if the linear operations and squaring
are continuous, then multiplication is continuous also. Since the argument
depends on the identity ab = % ((a + b)* — (a — b)?), it can be used only
when multiplication is commutative. Operator multiplication is not com-
mutative; does that mean that there is a hope for the weak sequential con-
tinuity of squaring, at least for some operators?

Problem 114. For which operators A (on an infinite-dimensional Hilbert
space) is squaring weakly sequentially continuous? In other words, for
which A is it true that if A, — A weakly, then AZ - A* weakly (n = 1,
2,3,--)?

115. Weak convergence of projections. Are the weak and the strong operator
topologies the same? The answer is no, and proofs of that answer can be
deduced from much of what precedes; note, for instance, the different ways
that sequential continuity of multiplication behaves. In one respect, however,
weak and strong are alike: if a net {P,} of projections converges weakly to a
projection P, then it converges strongly to P. Proof: for each f,

1P, f11? = (Puf, ) = (Pf, f) = IPfII%,

and therefore Problem 20 is applicable. How much does the restriction to
projections simplify matters?

Problem 115. Is every weakly convergent sequence of projections
strongly convergent?
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Strong Operator Topology

116. Strong normal continuity of adjoint. Even though the adjoint is not
strongly continuous, it has an important continuous part.

Problem 116. The restriction of the adjoint to the set of normal operators
is strongly continuous.

117. Strong bounded continuity of multiplication. The crux of the proof
that multiplication is strongly sequentially continuous (Solution 113) is
boundedness. That is: if {4,} and {B,} are nets that converge strongly to A
and B, respectively, and if {||4,]} is bounded, then {4, B,} converges strongly
to AB. Is this result symmetric with respect to the interchange of right and
left?

Problem 117. If{A,} and {B,} are nets that converge strongly to 0, and if
{IB,Il} is bounded, does it follow that {A,B,} converges strongly to 0?

118. Strong operator versus weak vector convergence.

Problem 118. If {f,} is a sequence of vectors and {A,} is a sequence of
operators such that f, — f weakly and A, — A strongly, does it follow
that A, f, — Af weakly?

119. Strong semicontinuity of spectrum. The spectrum of an operator varies
upper semicontinuously (Problem 103). If, that is, an operator is replaced by
one that is near it in the norm topology, then the spectrum can increase only a
little. What if the strong topology is used in place of the norm topology?
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Problem 119. Is the spectrum strongly upper semicontinuous? What can
be said about the spectral radius?

120. Increasing sequences of Hermitian operators. A bounded increasing
sequence of Hermitian operators is weakly convergent (to a necessarily
Hermitian operator). To see this, suppose that {4,} is an increasing sequence
of Hermitian operators (i.e., (4, f, /) £ (4,+.f, /) for all n and all f),
bounded by a (ie., (4,f, f) < «fff]* for all n and all f). If ¥,(f) =
(A, f, ), then each y, is a quadratic form. The assumptions imply that
the sequence {i,} is convergent and hence (Solution 1) that the limit ¥
is a quadratic form. It follows that y(f) = (Af, f) for some (necessarily
Hermitian) operator A; polarization justifies the conclusion that A, — 4
(weakly).

Does the same conclusion follow with respect to the strong and the uniform
topologies?

Problem 120. Is a bounded increasing sequence of Hermitian operators
necessarily strongly convergent? uniformly convergent?

121. Square roots. The assertion that a positive operator has a unique
positive square root is an easy consequence of the spectral theorem. In some
approaches to spectral theory, however, the existence of square roots is
proved first, and the spectral theorem is based on that result. The following
assertion shows how to get square roots without the spectral theorem.

Problem 121. If A is an operator such that 0 < A < 1, and if a sequence
{B,} is defined recursively by the equations

Bo=oand Bn+1=%((1—A)+Bn2)a n==0,1,2,~~~,

then the sequence {B,} is strongly convergent. If lim, B, = B, then
(1 - B?=A

122. Infimum of two projections. If E and F are projections with ranges M
and N, then it is sometimes easy and sometimes hard to find, in terms of
E and F, the projections onto various geometric constructs formed with
M and N. Things are likely to be easy if E and F commute. Thus, for in-
stance, if M < N, then it is easy to find the projection with range N n M*,
and if M L N, then it is easy to find the projection with range M v N. In
the absence of such special assumptions, the problems become more inter-
esting.

Problem 122. If E and F are projections with ranges M and N, find the
projection E A F with range M n N.
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The problem is to find an “expression” for the projection described.
Although most mathematicians would read the statement of such a problem
with sympathetic understanding, it must be admitted that rigorously
speaking it does not really mean anything. The most obvious way to make
it precise is to describe certain classes of operators by the requirement
that they be closed under some familiar algebraic and topological opera-
tions, and then try to prove that whenever E and F belong to such a class,
then so does E A F. The most famous and useful classes pertinent here
are the von Neumann algebras (called “rings of operators” by von Neu-
mann). A von Neumann algebra is an algebra of operators (i.e., a collec-
tion closed under addition and multiplication, and closed under multi-
plication by arbitrary scalars), self-adjoint (i.e., closed under adjunction),
containing 1, and strongly closed (i.e., closed with respect to the strong
operator topology). For von Neumann algebras, then, the problem is
this: prove that if a von Neumann algebra contains two projections E
and F, then it contains £ A F.

Reference: [150, vol. 2, p. 55].
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Partial Isometries

123. Spectral mapping theorem for normal operators. Normal operators
constitute the most important tractable class of operators known; the most
important statement about them is the spectral theorem. Students of operator
theory generally agree that the finite-dimensional version of the spectral
theorem has to do with diagonal forms. (Every finite normal matrix is
unitarily equivalent to a diagonal one.) The general version, applicable to
infinite-dimensional spaces, does not have a universally accepted formu-
lation. Sometimes bounded operator representations of function algebras
play the central role, and sometimes Stieltjes integrals with unorthodox
multiplicative properties. There is a short, simple, and powerful statement
that does not attain maximal generality (it applies to only one operator at
a time, not to algebras of operators), but that does have all classical formu-
lations of the spectral theorem as easy corollaries, and that has the advan-
tage of being a straightforward generalization of the familiar statement
about diagonal forms. That statement will be called the spectral theorem
in what follows; it says that every normal operator is unitarily equivalent
to a multiplication. The statement can be proved by exactly the same tech-
niques as are usually needed for the spectral theorem; see [56], [40,
pp- 911-912].

The multiplication version of the spectral theorem has a technical draw-
back: the measures that it uses may fail to be o-finite. This is not a tragedy,
for two reasons. In the first place, the assumption of o-finiteness in the treat-
ment of multiplications is a matter of convenience, not of necessity (see
[131]). In the second place, non-o-finite measures need to be considered
only when the underlying Hilbert space is not separable; the pathology of
measures accompanies the pathology of operators. In the sequel when
reference is made to the spectral theorem, the reader may choose one of
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two courses: treat the general case and proceed with the caution it requires,
or restrict attention to the separable case and proceed with the ease that the
loss of generality permits,

In some contexts some authors choose to avoid a proof that uses the
spectral theorem even if the alternative is longer and more involved. This sort
of ritual circumlocution is common to many parts of mathematics; it is the
fate of many big theorems to be more honored in evasion than in use. The
reason is not just mathematical mischievousness. Often a long but
“elementary” proof gives more insight, and leads to more fruitful genera-
lizations, than a short proof whose brevity is made possible by a powerful
but overly specialized tool.

This is not to say that use of the spectral theorem is to be avoided at all
costs. Powerful general theorems exist to be used, and their willful avoidance
can lose insight at least as often as gain it. Thus, for example, the spectral
theorem yields an immediate and perspicuous proof that every positive
operator has a positive square root (because every positive measurable
function has one); the approximation trickery of Problem 121 is fun, and has
its uses, but it is not nearly so transparent. A non-spectral treatment of a
related property of square roots is in Problem 124. For another example,
consider the assertion that a Hermitian operator whose spectrum consists of
the two numbers 0 and 1 is a projection. To proveit, let 4 be the operator, and
write B = A — A% Clearly B is Hermitian, and, by the spectral mapping
theorem, spec B = {0}. This implies that |B|| = r(B) = 0 and hence that
B = 0. (It is true for all normal operators that the norm is equal to the
spectral radius, but for Hermitian operators it is completely elementary;
see [50, p. 55].) Compare this with the proof via the spectral theorem: if
¢ is a function whose range consists of the two numbers 0 and 1, then
¢@? = ¢. For a final example, try to prove, without using the spectral
theorem, that every normal operator with a real spectrum (i.e., with spec-
trum included in the real line) is Hermitian.

The spectral theorem makes possible a clear and efficient description of the
so-called functional calculus. If A is a normal operator and if F is a bounded
Borel measurable function on spec A, then the functional calculus yields an
operator F(A). To define F(A) represent A as a multiplication, with multiplier
@, say, on a measure space X ; the operator F(A) is then the multiplication
induced by the composite function F o ¢. In order to be sure that this makes
sense, it is necessary to know that ¢ maps almost every point of X into spec A4,
i.e, that if the domain of ¢ is altered by, at worst, a set of measure zero, then
the range of ¢ comes to be included in its essential range. The proof goes as
follows. By definition, every point in the complement of spec A has a neigh-
borhood whose inverse image under ¢ has measure zero. Since the plane
is a Lindelof space, it follows that the complement of spec 4 is covered
by a countable collection of neighborhoods with that property, and hence
that the inverse image of the entire complement of spec A has measure
Zero.
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The mapping F +— F(A) has many pleasant properties. Its principal pro-
perty is that it is an algebraic homomorphism that preserves conjugation also
(ie., F*(A) = (F(A))*); it follows, for instance, that if F(1) = || then F(A4)
= A*A. The functions F that occur in the applications of the functional
calculus are not always continuous (e.g., characteristic functions of Borel sets
are of importance), but continuous functions are sometimes easier to handle.
The problem that follows is a spectral mapping theorem; it is very special in
that it refers to normal operators only, but it is very general in that it allows all
continuous functions.

Problem 123. If A is a normal operator and if F is a continuous function
on spec A, then spec F(A) = F(spec A).

Something like F(A) might seem to make sense sometimes even for non-
normal A’s, but the result is not likely to remain true. Suppose, for instance,
that F(A) = A*A (= |4|?), and define F(A), for every operator A, as A*A.
There is no hope for the statement spec F(A) = F(spec A); for a counter-
example, contemplate the unilateral shift.

124. Decreasing squares. If A is a positive contraction, ie, 0 S A4 < 1,
then A% < A;if, conversely, A isa Hermitian operator such that A2 < A4, then
0 < A< 1. Proof: if ¢ is a measurable function and 0 < ¢ < 1, then
©? < @; if, conversely, @ > 1 on a set of positive measure, then it is false
that @2 < ¢. This is a typical use of the spectral theorem to prove an
algebraic fact about Hermitian operators; some people have found the
possibility of getting along without the spectral theorem a little more than
commonly elusive in this case.

Problem 124. Prove without using the spectral theorem that, for
Hermitian operators, 0 < A < 1 ifand only if A> < A.

125. Polynomially diagonal operators. If an operator A is diagonal (see
Problem 61), then all the powers of A are diagonal, and so is any sum of such
powers. Isthe converse true? (Note that if 4 is diagonal, then it isnormal, and,
consequently, every function of it is normal.)

Problem 125. If A is a normal operator on a separable Hilbert space,
and if 1 + A+ ---+ A" is diagonal for some positive integer n,
does it follow that A is diagonal?

126. Continuity of the functional calculus. A functional calculus is a mapping
from functions and operators to operators. For a fixed value of the second
argument (the operator), it has good properties as a function of the first
argument (the function); see, for instance, Problem 123. What properties can
it have as a function of the second argument?
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For a special example, fix a polynomial p and consider the mapping
X p(X), defined for all operators X. Assertion: the mapping is norm
continuous. Proof: obvious, since addition and multiplication are norm
continuous. Does the functional calculus for normal operators remain
continuous in this sense if polynomials are replaced by more general func-
tions? The answer is sometimes no. If, for instance, F is the characteristic
function of (0, c0) (considered as a subset of the complex plane), and if
A, is the scalar 1/n, then A, — 0, but F(4,) (=1) does not converge to
F(0) (=0). What is the source of the trouble? Is it just that the function F
in this example is not continuous?

Problem 126. If F is a continuous function on the complex plane, is the
mapping A — F(A), defined for all normal operators, continuous?

127. Partial isometries. An isometry is a linear transformation U (from a
Hilbert space into itself, or from one Hilbert space into another) such that
(U = | f| for all f. An isometry is a distance-preserving transformation:
(Uf — Ugl = | f — g|l for all fand g. A necessary and sufficient condition
that a linear transformation U be an isometry is that U*U = 1. Indeed: the
conditions (1) |UfI* = [fI%, ) (U*US, )= (f.f), 3) (U*Uf,9) =
(f, 9), and (4) U*U = 1 are mutually equivalent. (To pass from (2) to (3),
polarize.) Caution: the conditions U*U = 1 and UU* = 1 are not equiva-
lent. The latter condition is satisfied in case U* is an isometry; in that case
U is called a co-isometry.

It is sometimes convenient to consider linear transformations U that act
isometrically on a subset (usually a linear manifold, but not necessarily a
subspace)of a Hilbert space; this just means that [Uf || = | f| for all fin that
subset. A partial isometry is a linear transformation that is isometric on the
orthogonal complement of its kernel. There are two large classes of examples
of partial isometries that are in a sense opposite extreme cases; they are the
isometries (and, in particular, the unitary operators), and the projections. The
definition of partial isometries is deceptively simple, and these examples
continue the deception; the structure of partial isometries can be quite
complicated. In any case, however, it is easy to verify that a partial
isometry U is bounded, in fact if U is not 0, then U = 1.

The orthogonal complement of the kernel of a partial isometry is fre-
quently called its initial space. The initial space of a partial isometry U turns
out to be equal to the set of all those vectors f for which [Uf| = {1
(What needs proof is that if US|l = | f|, then f L ker U. Write f=
g + h,with ge ker Uand h L ker U; then || f|| = ||Uf|| = ||Ug + Uh|| =
NUR| = |Ih); since |fII* = fgl* + |Ikl%, it follows that g = 0.) The
range of a partial isometry is equal to the image of the initial space and
is necessarily closed. (Since U is isometric on the initial space, the image is
a complete metric space.) For partial isometries, the range is sometimes
called the final space.
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Problem 127. A bounded linear transformation U is a partial isometry
if and only if U*U is a projection.

Corollary 1. If U is a partial isometry, then the initial space of U is the
range of U*U.

Corollary 2. The adjoint of a partial isometry is a partial isometry, with
initial space and final space interchanged.

Corollary 3. A bounded linear transformation U is a partial isometry
ifand only if U = UU*U.

128. Maximal partial isometries. It is natural to define a (partial) order for
partial isometries as follows: if U and V are partial isometries, write U < Vin
case V agrees with U on the initial space of U. This implies that the initial
space of U is included in the initial space of V. (Cf. the characterization of
initial spaces given in Problem 127.) It follows that if U £ V with respect
to the present order, then U*U £ V*V with respect to the usual order for
operators. (The “usual” order, usually considered for Hermitian opera-
tors only, is the one according to which A £ B if and only if (4f, f) £
(Bf, f) for all f. Note that U*U £ V*V in this sense is equivalent to
UL £ WVS)l for all f.) The converse is not true; if all that is known
about the partial isometries U and V is that U*U < V*V, then, to be sure,
the initial space of U is included in the initial space of ¥, but it cannot
be concluded that U and V necessarily agree on the smaller initial space.

IfU*U = 1,i.e.,if Uis an isometry, then the only partial isometry that can
dominate U is U itself: an isometry is a maximal partial isometry. Are there
any other maximal partial isometries? One way to get the answer is to
observe that if U < V, then the final space of U (i.e., the initial space of
U*)is included in the final space of V (the initial space of ¥ *), and, more-
over, V'* agrees with U* on the initial space of U*. In other words, if
U<V, then U*¥ £ V*, and hence, in particular, UU* < VV*. This im-
plies that if UU* = 1, i.e., if U is a co-isometry, then, again, U is maxi-
mal. If a partial isometry U is neither an isometry nor a co-isometry, then
both U and U* have non-zero kernels. In that case it is easy to enlarge U
to a partial isometry that maps a prescribed unit vector in ker U onto a
prescribed unit vector in ker U* (and, of course, agrees with U on ker* U).
Conclusion: a partial isometry is maximal if and only if either it or its
adjoint is an isometry.

The easy way to be a maximal partial isometry is to be unitary. If U is
unitary on H and if M is a subspace of H, then a necessary and sufficient
condition that M reduce U is that UM = M. If U is merely a partial isometry,
then it can happen that UM = M but M does not reduce U, and it can happen
that M reduces U but UM # M. What if U is a maximal partial isometry?
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Problem 128. Discover the implication relations between the statements
“UM = M” and “M reduces U” when U is a maximal partial isometry.

129. Closure and connectedness of partial isometries. Some statements about
partial isometries are slightly awkward just because 0 must be counted as
one of them. The operator 0 is an isolated point of the set of partial iso-
metries; it is the only partial isometry in the interior of the unit ball. For
this reason, for instance, the set of all partial isometries is obviously not
connected. What about the partial isometries on the boundary of the unit
ball?

Problem 129. The set of all non-zero partial isometries is closed but not
connected (with respect to the norm topology of operators).

130. Rank, co-rank, and nullity. If U is a partial isometry, write p(U) =
dim ran U, p’(U) = dimran* U, and wU) = dimker U. (That U is a
partial isometry is not really important in these definitions; similar defi-
nitions can be made for arbitrary operators.) These three cardinal numbers,
called the rank, the co-rank, and the nullity of U, respectively, are not com-
pletely independent of one another; they are such that both p + p” and
p + v are equal to the dimension of the underlying Hilbert space. (Cau-
tion: subtraction of infinite cardinal numbers is slippery; it does not follow
that p” = v.) It is easy to see that if p, p’, and v are any three cardinal num-
bers such that p + p” = p + v, then there exist partial isometries with
rank p, co-rank p’, and nullity v. (Symmetry demands the consideration
of v(U) = dim ker* U, the co-nullity of U, but there is no point in it; since
U is isometric on ker* U it follows that v/ = p.)

Recall that if U is a partial isometry, then so is U*; the initial space of U* is
the final space of U, and vice versa. It follows that w(U*) = p'(U)and p'(U*)
= wU).

One reason that the functions p, p’, and v are useful is that they are con-
tinuous. To interpret this statement, use the norm topology for the space P of
partial isometries (on a fixed Hilbert space), and use the discrete topology for
cardinal numbers. With this explanation the meaning of the continuity asser-
tion becomes unambiguous: if U is sufficiently near to V, then U and V have
the same rank, the same co-rank, and the same nullity. The following asser-
tion is a precise quantitative formulation of the result.

Problem 130. If U and V are partial isometries such that
U = VI < 1, then p(U) = p(V), p'(U) = p'(V), and v(U) = v(V).

For each fixed p, p’, and v let P(p, p’, v) be the set of partial isometries (on
a fixed Hilbert space) with rank p, co-rank p’, and nullity v. Clearly the sets of
the form P(p, p’, v) constitute a partition of the space P of all partial iso-
metries; it is a consequence of the statement of Problem 130 that each set
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P(p, p’, v) is both open and closed. It follows that the set of all isometries
(v = 0) is both open and closed, and so is the set of all unitary operators

(p=v=0).

131. Components of the space of partial isometries. If ¢ is a measurable
function on a measure space, such that { ¢| = 1 almost everywhere, then there
exists a measurable real-valued function § on that space such that ¢ = €
almost everywhere. This is easy to prove. What it essentially says is that a
measurable function always has a measurable logarithm. The reason is that
the exponential function has a Borel measurable inverse (in fact many of them)
on the complement of the origin in the complex plane. (Choose a continuous
logarithm on the complement of the negative real axis, and extend it by
requiring one-sided continuity on, say, the upper half plane.)

In the language of the functional calculus, the result of the preceding
paragraph can be expressed as follows: if U is a unitary operator, then there
exists a Hermitian operator A such that U = 4. If U, = ¢",0 < t < 1,
then ¢+ U, is a continuous curve of unitary operators joining 1 (=U,) to
U(=U,). Conclusion: the set of all unitary operators is arcwise connected,
In the notation of Problem 130, the open-closed set P(p, 0, 0) (on a Hilbert
space of dimension p) is connected; it is a component of the set P of all
partial isometries. Question: what are the other components? Answer: the
sets of the form P(p, p’, v).

Problem 131 Each pair of partial isometries (on the same Hilbert space)
with the same rank, co-rank, and nullity, can be joined by a continuous
curve of partial isometries with the same rank, co-rank, and nullity.

132. Unitary equivalence for partial isometries. If A is a contraction (that
means A} £ 1), then 1 — AA* is positive. It follows that there exists a
unique positive operator whose squareis I — AA*;call it A’. Assertion: the

operator matrix
A A
M(A) =
@=(5 )

is a partial isometry. Proof (via Problem 127): check that MM*M = M.
Consequence: every contraction can be extended to a partial isometry.

Problem 132. If A and B are unitarily equivalent contractions, then
M(A) and M(B) are unitarily equivalent, and conversely.

There are many ways that a possibly “bad” operator A can be used to
manufacture a “good” one. Samples: A + A* and

(& 5)
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None of these ways yields sufficiently many usable unitary invariants for 4. It
is usually easy to prove that if A and B are unitarily equivalent, then so are the
various constructs in which they appear. It is, however, usually false that
if the constructs are unitarily equivalent, then the original operators them-
selves are. The chief interest of the assertion of Problem 132 is that, for the
special partial isometry construct it deals with, the converse happens to be
true.

The result is that the unitary equivalence problem for an apparently very
small class of operators (partial isometries) is equivalent to the problem for
the much larger class of invertible contractions. The unitary equivalence
problem for invertible contractions is, in turn, trivially equivalent to the
unitary equivalence problem for arbitrary operators. The reason is that by a
translation (4— A4 + «) and a change of scale (4 — fA) every operator
becomes an invertible contraction, and translations and changes of scale do
not affect unitary equivalence. The end product of all this is a reduction of
the general unitary equivalence problem to the special case of partial
isometries.

133. Spectrum of a partial isometry. What conditions must a set of complex
numbers satisfy in order that it be the spectrum of some partial isometry?
Since a partial isometry is a contraction, its spectrum is necessarily a subset of
the closed unit disc. If the spectrum of a partial isometry does not contain
the origin, i.e., if a partial isometry is invertible, then it is unitary, and,
therefore, its spectrum is a subset of the unit circle (perimeter). Since every
non-empty compact subset of the unit circle is the spectrum of some uni-
tary operator (cf. Problem 63), the problem of characterizing the spectra
of invertible partial isometries is solved. What about the non-invertible
ones?

Problem 133. What conditions must a set of complex numbers satisfy in
order that it be the spectrum of some non-unitary partial isometry?
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Polar Decomposition

134. Polar decomposition. Every complex number is the product of a non-
negative number and a number of modulus 1; except for the number 0, this
polar decomposition is unique. The generalization to finite matrices says that
every complex matrix is the product of a positive matrix and a unitary one. If
the given matrix is invertible, and if the order of the factors is specified
(UP or PU), then, once again, this polar decomposition is unique. It is possible
to get a satisfactory uniqueness theorem for every matrix, but only at the
expense of changing the kind of factors admitted; this is a point at which
partial isometries can profitably enter the study of finite-dimensional vec-
tor spaces. In the infinite-dimensional case, partial isometries are un-
avoidable. It is not true that every operator on a Hilbert space is equal to a
product UP, with U unitary and P positive, and it does not become true
even if U is required to be merely isometric. (The construction of concrete
counterexamples may not be obvious now, but it will soon be an easy
by-product of the general theory.) The correct statements are just as easy
for transformations between different spaces as for operators on one space.

Problem 134. If A is a bounded linear transformation from a Hilbert
space Hto a Hilbert spaceK, then there exists a partial isometry U ( from
H to K) and there exists a positive operator P (on H) such that A = UP.
The transformations U and P can be found so that ker U = ker P,
and this additional condition uniquely determines them.

The representation of A as the product of the unique U and P satisfying the
stated conditions is called the polar decomposition of A, or, more accurately,
the right-handed polar decomposition of 4. The corresponding left-handed
theory (4 = PU) follows by a systematic exploitation of adjoints.
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Corollary 1. If A = UP is the polar decomposition of A, then U¥4 = P,

Corollary 2. If A = UP is the polar decomposition of A, then a neces-
sary and sufficient condition that U be an isometry is that A be one-
to-one, and a necessary and sufficient condition that U be a co-isometry
is that the range of A be dense.

135. Maximal polar representation.

Problem 135. Every bounded linear transformation is the product of a
maximal partial isometry and a positive operator.

136. Extreme points. The closed unit ball in the space of operators is convex.
For every interesting convex set, it is of interest to determine the extreme
points.

Problem 136. What are the extreme points of the closed unit ball in the
space of operators on a Hilbert space?

137. Quasinormal operators. The condition of normality can be weakened
in various ways; the most elementary of these leads to the concept of quasi-
normality. An operator A is called quasinormal if A commutes with A*4. It is
clear that every normal operator is quasinormal. The converse is obviously
false. If, for instance, A4 is an isometry, then A*4 = 1 and therefore 4 com-
mutes with 4* A, but if 4 is not unitary, then A is not normal. (For a concrete
example consider the unilateral shift.)

Problem 137. An operator with polar decomposition UP is quasinormal
ifand only if UP = PU.

Quasinormal operators (under another name) were first introduced and
studied in [18].

138. Mixed Schwarz inequality. If A4 is a positive operator, then (Af, g)
defines an inner product (not necessarily strictly positive); it follows that A
satisfies the Schwarz-like inequality

I(4f, 91> = (4, f)-(4g, 9).

(To feel comfortable about this relation it helps to recall that the positiveness
of A implies (\/Z)2 = A.) If A is not positive, then the inner product ex-
pression (Af, g) still defines something (sesquilinear, yes, positive and
symmetric, probably no), but since the equation (\/Z)2 = A is not avail-
able, it is not clear what, if any, Schwarz-like inequality prevails, A
possible guess is to replace A on the right (majorant) side by ./ A*A.
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(Reason: if z is a complex number, then ./z*z = |z|.) Objection: why

v A*A? Why not \/ AA*?

Problem 138. Is it true for every operator A that |(Af,g)* <
(VA*AS, ) - (S A*Ag, 9)? What if / AA* is used in place of ./ A*A?

What if they are both used, one in each factor?

139. Quasinormal weighted shifts. The unilateral shift is an example of a
quasinormal operator that is not normal. There is a tempting generalization
nearby that is frequently a rich source of illuminating examples.

Problem 139, Which weighted shifts are quasinormal?

140. Density of invertible operators. It sometimes happens that a theorem is
easy to prove for invertible operators but elusive in the general case. This
makes it useful to know that every finite (square) matrix is the limit of in-
vertible matrices. In the infinite-dimensional case the approximation tech-
nique works, with no difficulty, for normal operators. (Invoke the spectral
theorem to represent the given operator as a multiplication, and, by changing
the small values of the multiplier, approximate it by operators that are
bounded from below.) If, however, the space is infinite-dimensional and the
operator is not normal, then there is trouble,

Problem 140. The set of all operators that have either a left or a right
inverse is dense, but the set of all operators that have both a left and a right
inverse (i.e., the set of all invertible operators) is not. What about the set of
left-invertible operators?

141. Connectedness of invertible operators.

Problem 141. The set of all invertible operators is connected.
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Unilateral Shift

142. Reducing subspaces of normal operators. One of the principal achieve-
ments of the spectral theorem is to reduce the study of a normal operator to
subspaces with various desirable properties. The following assertion is one
way to say that the spectral theorem provides many reducing subspaces.

Problem 142. If A is a normal operator on an infinite-dimensional
Hilbert space H, then H is the direct sum of a countably infinite collection
of subspaces that reduce A, all with the same infinite dimension.

143. Products of symmetries. A symmetry is a unitary involution, i.e., an
operator Q such that Q*Q = QQ* = Q% = 1. It may be pertinent to recall
thatif an operator possesses any two of the properties “ unitary”, “involutory”,
and “Hermitian”, then it possesses the third; the proof is completely ele-

mentary algebraic manipulation.

Problem 143. Discuss the assertion: every unitary operator is the product
of a finite number of symmetries.

144. Unilateral shift versus normal operators. The main point of Problem
142 is to help solve Problem 143 (and, incidentally, to provide a non-trivial
application of the spectral theorem). The main point of Problem 143 is to
emphasize the role of certain shift operators. Shifts (including the simple
unilateral and bilateral ones introduced before) are a basic tool in operator
theory. The unilateral shift, in particular, has many curious properties, both
algebraic and analytic. The techniques for discovering and proving these
properties are frequently valuable even when the properties themselves have
no visible immediate application. Here are three sample questions.
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Problem 144. (a) Is the unilateral shift the product of a finite number of
normal operators? (b) What is the norm of the real part of the unilateral
shift? (c) How far is the unilateral shift from the set of normal operators?

The last question takes seriously the informal question: “ How far does the
unilateral shift miss being normal?” The question can be asked for every
operator and the answer is a unitary invariant that may occasionally be useful.

145. Square root of shift.

Problem 145. Does the unilateral shift have a square root? In other words,
if U is the unilateral shift, does there exist an operator V such that
v =U"

146. Commutant of the bilateral shift. The commutant of an operator (or ofa
set of operators) is the set of all operators that commute with it (or with each
operator in the set). The commutant is one of the most useful things to know
about an operator. One of the most important purposes of the so-called
multiplicity theory is to discuss the commutants of normal operators. In some
special cases the determination of the commutant is accessible by relatively
elementary methods; a case in point is the bilateral shift.

The bilateral shift W can be viewed as multiplication by e, on L? of the unit
circle (cf. Problem 84). Here ¢,(z) =2" (n=0, +1, £2,:-+) whenever
iz{ = 1, and L? is formed with normalized Lebesgue measure,

Problem 146. The commutant of the bilateral shift is the set of all
multiplications.

Corollary. Each reducing subspace of the bilateral shift is determined by a
Borel subset M of the circle as the set of all functions (in L?) that vanish
outside M.

Both the main statement and the corollary have natural generalizations
that can be bought at the same price. The generalizations are obtained by
replacing the unit circle by an arbitrary bounded Borel set X in the complex
plane and replacing Lebesgue measure by an arbitrary finite Borel measure in
X. The generalization of the bilateral shift is the multiplication induced by e,
(where e,(z) = z for all z in X).

147. Commutant of the unilateral shift. The unilateral shift is the restriction
of the bilateral shift to H2. If the bilateral shift is regarded as a multiplica-
tion, then its commutant can be described as the set of all multiplications
on the same L? (Problem 146). The wording suggests a superficially
plausible conjecture: perhaps the commutant of the unilateral shift con-
sists of the restrictions to H? of all multiplications. On second thought
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this is absurd: H? need not be invariant under a multiplication, and, con-
sequently, the restriction of a multiplication to H? is not necessarily an
operator on H2, If, however, the multiplier itself is in H? (and hence in
H®), then H? is invariant under the induced multiplication (cf. Problem
34), and the conjecture makes sense.

Problem 147. The commutant of the unilateral shift is the set of all
restrictions to H? of multiplications by multipliers in H®.

Corollary. The unilateral shift is irreducible, in the sense that its only re-
ducing subspaces are 0 and H2.

Just as for the bilateral shift, the main statement has a natural generaliza-
tion. Replace the unit circle by an arbitrary bounded Borel subset X of the
complex plane, and replace Lebesgue measure by an arbitrary finite Borel
measure u in X. The generalization of H?, sometimes denoted by H2(y),
is the span in L2(u) of the functions e,, n = 0, 1, 2, - - -, where e,(z) = z"
for all z in X. The generalization of the unilateral shift is the restriction to
H2(u) of the multiplication induced by e;.

The corollary does not generalize so smoothly as the main statement. The
trouble is that the structure of H(u) within L?(u) depends strongly on X and
u; it can, for instance, happen that H?(u) = L?(u).

The characterization of the commutant of the unilateral shift yields a
curious alternative proof of, and corresponding insight into, the assertion
that U has no square root (Solution 145). Indeed, if V2 = U, then V com-
mutes with U, and therefore V is the restriction to H? of the multiplication
induced by a function ¢ in H®. Apply V2 to e,, apply U to e,, and infer
that (p(z))® = z almost everywhere. This implies that (¢(z))*> = z in the
unit disc (see Solution 42), i.e., that the function &, has an analytic square
root; the contradiction has arrived.

148. Commutant of the unilateral shift as limit.

Problem 148. Every operator that commutes with the unilateral shift is
the limit (strong operator topology) of a sequence of polynomials in the
unilateral shift.

149. Characterization of isometries. What can an isometry look like? Some
isometries are unitary, and some are not; an example of the latter kind is the
unilateral shift. Since a direct sum (finite or infinite) of isometries is an iso-
metry, a mixture of the two kinds is possible. More precisely, the direct sum of
a unitary operator and a number of copies (finite or infinite) of the unilateral
shift is an isometry. (There is no point in forming direct sums of unitary
operators—they are no more unitary than the summands.) The useful theorem
along these lines is that that is the only way to get isometries. It follows
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that the unilateral shift is more than just an example of an isometry, with
interesting and peculiar properties; it is in fact one of the fundamental
building blocks out of which all isometries are constructed.

Problem 149. Every isometry is either unitary, or a direct sum of one or
more copies of the unilateral shift, or a direct sum of a unitary operator
and some copies of the unilateral shift.

An isometry for which the unitary direct summand is absent is called pure.
150. Distance from shift to unitary operators.

Problem 150. How far is the unilateral shift from the set of unitary oper-
ators?

151. Square roots of shifts. If U is an isometry on a Hilbert space H, and if
there exists a unit vector e, in H such that the vectors ey, Ue,, U?eq, - -
form an orthonormal basis for H, then (obviously) U is unitarily equivalent
to the unilateral shift, or, by a slight abuse of language, U is the unilateral
shift. This characterization of the unilateral shift can be reformulated as
follows: U is an isometry on a Hilbert space H for which there exists a one-
dimensional subspace N such that the subspaces N, UN, U2N, ... are
pairwise orthogonal and span H. If there is such a subspace N, then it
must be equal to the co-range (UH)*. In view of this comment another
slight reformulation is possible: the unilateral shift is an isometry U of
co-rank 1 on a Hilbert space H such that the subspaces (UH)*, U{UH)*,
U2(UH)*, --- span H. (Since U is an isometry, it follows that they must be
pairwise orthogonal.) Most of these remarks are implicit in Solution 149.

A generalization lies near at hand. Consider an isometry U on a Hilbert
space H such that the subspaces (UH)*, U(UH)*, UX(UH)", - - - are pairwise
orthogonal and span H, but make no demands on the value of the co-rank.
Every such isometry may be called a shift (a unilateral shift). The co-rank of a
shift (also called its multiplicity) constitutes a complete set of unitary invari-
ants for it; the original unilateral shift is determined (to within unitary
equivalence) as the shift of multiplicity 1 (the simple unilateral shift).

Unilateral shifts of higher multiplicities are just as important as the
simple one. Problem 149 shows that they are exactly the pure isometries.
They play a vital role in the study of all operators, not only isometries.
Here, to begin their study, is a puzzle that makes contact with Problem
145 and with a curious infinite-dimensional manifestation of Sylvester’s
law of nullity.

Problem 151. Which unilateral shifts have square roots?

80



UNILATERAL SHIFT

If U is the simple unilateral shift, then it is quite easy to see that U% is a
shift of multiplicity 2. (More generally, shifts of multiplicity n, where n is a
positive integer, can be obtained by forming the n-th power of U. The
study of shifts of infinite multiplicity is much harder and much more im-
portant than that of the finite ones; they cannot be obtained from U in
such a simple manner.) This remark shows (see Problem 145) that the
answer to Problem 151 is neither “all” nor “none”.

152. Shifts as universal operators. The most important aspect of shifts is
that they, or rather their adjoints, turn out to be universal operators.

A part of an operator is a restriction of it to an invariant subspace. Each
part of an isometry is an isometry; the study of the parts of unilateral shifts
does not promise anything new. What about parts of the adjoints of unilateral
shifts? If U is a unilateral shift, then |Uj| = |U*| = 1, and it follows that if A
is a part of U*, then ||4] £ 1. Since, moreover, U*" — 0 in the strong
topology (cf. Solution 110), it follows that A" — 0 (strong). The miracu-
lous and useful fact is that these two obviously necessary conditions are
also sufficient; cf. [43] and [32, 33].

Problem 152. Every contraction whose powers tend strongly to 0 is
unitarily equivalent to a part of the adjoint of a unilateral shift.

153. Similarity to parts of shifts. For many purposes similarity is just as
good as unitary equivalence. When is an operator A similar to a part of the
adjoint of a shift U? Since similarity need not preserve norm, there is no
obvious condition that || A} must satisfy. There is, however, a measure of size
that similarity does preserve, namely the spectral radius; since r(U*) = 1,
it follows that r(4) < 1. It is easy to see that this necessary condition is not
sufficient. The reason is that one of the necessary conditions for unitary
equivalence (4" — 0 strongly, cf. Problem 152) is necessary for similarity also.
(That is: if A" — 0 strongly, and if B = S~ AS, then B" — 0 strongly.) Since
there are many operators A such that r(4) < 1 but A" does not tend to 0
in any sense (example: 1), the condition on the spectral radius is obviously
not sufficient. There is a condition on the spectral radius alone that is
sufficient for similarity to a part of the adjoint of a shift, but it is quite a
bit stronger than r(4) < 1; it is, in fact, r(4) < L.

Problem 153. Every operator whose spectrum is included in the interior of
the unit disc is similar to a contraction whose powers tend strongly to 0,

Corollary 1. Every operator whose spectrum is included in the interior
of the unit disc is similar to a part of the adjoint of a unilateral shift.

Corollary 2. Every operator whose spectrum is included in the interior of
the unit disc is similar to a strict contraction,
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(A strict contraction is an operator A with [|A] < 1)

Corollary 3. Every quasinilpotent operator is similar to operators with
arbitrarily small norms.

These simple but beautiful and general results are in [119].

Corollary 4. The spectral radius of every operator A is the infimum of
the numbers |S™ 1 AS| for all invertible operators S.

154. Similarity to contractions. One of the most difficult open problems of
operator theory is to determine exactly which operators are similar to con-
tractions [59]. Corollary 2 of Problem 153 gives a sufficient condition for
similarity to a strict contraction. What happens to that result when the strict
inequalities in it, in both hypothesis and conclusion, are replaced by the
corresponding weak inequalities?

Problem 154. If r(A) £ 1, is A similar to a contraction?

155. Wandering subspaces. If A is an operator on a Hilbert space H, a
subspace N of H is called wandering for A if it is orthogonal to all its images
under the positive powers of A. This concept is especially useful in the study
of isometries. If U is an isometry and N is a wandering subspace for U, then
U™N L U"N whenever m and n are distinct positive integers. In other words,
if fand g are in N, then U™f L U"g. (Proof: reduce to the case m > n, and
note that (U™, U"g) = (U'U™, g) = (U™ ", 9).) If U is unitary, even
more is true: in that case U™N L U"N whenever m and n are any two
distinct integers, positive, negative, or zero. (Proof: find & so that m + &
and n + k are positive and note that (U™f, U"g) = (U™**f, U"**g).)
Wandering subspaces are important because they are connected with
invariant subspaces, in this sense: if U is an isometry, then there is a natural
one-to-one correspondence between all wandering subspaces N and some
invariant subspaces M. The correspondence is given by setting M =
V2o U'™N. (To prove that this correspondence is one-to-one, observe
that UM = \/2, UN, so that N = M n (UM)*.) For at least one
operator, namely the unilateral shift, the correspondence is invertible.

Problem 155. If U is the (simple) unilateral shift and if M is a non-zero
subspace invariant under U, then there exists a (necessarily unique) one-
dimensional wandering subspace N such that M = V2., U"N.

The equation connecting M and N can be expressed by saying that every
non-zero part of the simple unilateral shift is a shift. To add that dim N = 1 is
perhaps an unsurprising sharpening, but a useful and non-trivial one. In view
of these comments, the following concise statement is just a reformulation of
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the problem: every non-zero part of the simple unilateral shift is (unitarily
equivalent to) the simple unilateral shift. Withalmost no additional] effort, and
only the obviously appropriate changes in the statement, all these considera-
tions extend to shifts of higher multiplicities.

156. Special invariant subspaces of the shift. One of the most recalcitrant
unsolved problems of Hilbert space theory is whether or not every operator
has a non-trivial invariant subspace. A promising, interesting, and profitable
thing to do is to accumulate experimental evidence by examining concrete
special cases and seeing what their invariant subspaces look like. A good
concrete special case to look at is the unilateral shift.

There are two kinds of invariant subspaces: the kind whose orthogonal
complement is also invariant (the reducing subspaces), and the other kind.
The unilateral shift has no reducing subspaces (Problem 147); the question
remains as to how many of the other kind it has and what they look like.

The easiest way to obtain an invariant subspace of the unilateral shift U is
to fix a positive integer k, and consider the span M, of the ¢,’s with n = k.
After this elementary observation most students of the subject must stop
and think; it is not at all obvious that any other invariant subspaces exist.
A recollection of the spectral behavior of U is helpful here. Indeed, since
each complex number A of modulus less than [ is a simple eigenvalue of
U* (Solution 82), with corresponding eigenvector f; = Y 2. A",, it fol-
lows that the orthogonal complement of the singleton {f,} is a non-trivial
subspace invariant under U.

Problem 156. If M,(4)is the orthogonal complement of { f;,-++, U*"1f;}
(k=1,2,3,--"), then M(A) is invariant under U, dim M*(1) = k,
and /2, Mi* () = R

Note that the spaces M, considered above are the same as the spaces
M,(0).

157. Invariant subspaces of the shift. What are the invariant subspaces of the
unilateral shift? The spaces M, and their generalizations M,(4) (see Problem
156) are examples. The lattice operations (intersection and span) applied to
them yield some not particularly startling new examples, and then the well
seems to run dry. New inspiration can be obtained by abandoning the
sequential point of view and embracing the functional one; regard U as the
restriction to H? of the multiplication induced by e,.

Problem 157. A non-zero subspace M of H? is invariant under U if
and only if there exists a function ¢ in H®, of constant modulus 1
almost everywhere, such that M is the range of the restriction to H?
of the multiplication induced by ¢.
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This basic result is due to Beurling [13]. It has received considerable
attention since then; cf. [89, 54, 71].

In more informal language, M can be described as the set of all multiples
of ¢ (multiples by functions in H?, that is). Correspondingly it is suggestive to
write M = ¢ - H2. For no very compelling reason, the functions such as ¢
(functions in H®, of constant modulus 1) are called inner functions.

Corollary 1. If ¢ and  are inner functions such that ¢ - H* < v - H?,
then @ is divisible by s, in the sense that there exists aninner function § such
that o =y - 0. If o - H? = - H?, then @ and s are constant multiples
of one another, by constants of modulus 1.

The characterization in terms of inner functions does not solve all
problems about invariant subspaces of the shift, but it does solve some.
Here is a sample.

Corollary 2. If M and N are non-zero subspaces invariant under the
unilateral shift, then M n N # 0.

Corollary 2 says that the lattice of invariant subspaces of the unilateral
shift is about as far as can be from being complemented.

158. F.and M. Riesz theorem. Itis always a pleasure to see a piece of current
(soft) mathematics reach into the past to illuminate and simplify some of the
work of the founding fathers on (hard) analysis; the characterization of
the invariant subspaces of the unilateral shift does that. The elements of H?
are related to certain analytic functions on the unit disc (Problem 35), and,
although they themselves are defined on the unit circle only, and only almost
everywhere at that, they tend to imitate the behavior of analytic functions. A
crucial property of an analytic function is that it cannot vanish very often
without vanishing everywhere. An important theorem of F. and M. Riesz
asserts that the elements of H? exhibit the same kind of behavior; here is one
possible formulation.

Problem 158. A function in H? vanishes either almost everywhere or
almost nowhere.

Corollary. If f and g are in H? and if fg = 0 almost everywhere, then
f = 0 almost everywhere or g = 0 almost everywhere.

Concisely: there are no zero-divisors in H?,
For a more general discussion of the F. and M. Riesz theorem, see [75,
p. 471
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159. Reducible weighted shifts. Very little of the theory of reducing and
invariant subspaces of the bilateral and the unilateral shift is known for
weighted shifts. There is, however, one striking fact that deserves mention;
it has to do with the reducibility of two-sided weighted shifts, It is due to

R. L. Kelley.

Problem 159. If A is a bilateral weighted shift with strictly positive
weights a,, n =0, +1, +2,..., then a necessary and sufficient con-
dition that A be reducible is that the sequence {a,} be periodic.
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CHAPTER 18

Cyclic Vectors

160. Cyeclic vectors. An operator A on a Hilbert space H has a cyclic vector
fif the vectors f, Af, A%f,---span H. Equivalently, fis a cyclic vector for 4 in
case the set of all vectors of the form p(A)f, where p varies over all poly-
nomials, is dense in H. The simple unilateral shift has many cyclic vectors;
a trivial example is ¢,.

On finite-dimensional spaces the existence of a cyclic vector indicates
something like multiplicity 1. If, to be precise, A4 is a finite diagonal matrix,
then a necessary and sufficient condition that 4 have a cyclic vector is that the
diagonal entries be distinct (i.e., that the eigenvalues be simple). Indeed,
if the diagonal entries are 44, -+, 4,, then

P(A)Ey, o5 &) = <p(A)Ens - -5 P(AR)EnD

for every polynomial p. For f = (&, -+, &,)> to be cyclic, it is clearly
necessary that &; # 0 for each i; otherwise the i coordinate of p(4)f is
0 for all p. If the A’s are not distinct, nothing is sufficient to make f cyclic.
If, for instance, 4, = 4,, then {(&,*, —&,*,0,---,0) is orthogonal to p(A4)f
for all p. If, on the other hand, the A’s are distinct, then p(4,), - - -, p(4,) can
be prescribed arbitrarily, so that if none of the &s vanishes, then the p(A4) f’s
exhaust the whole space.

Some trace of the relation between the existence of cyclic vectors and
multiplicity 1 is visible even for non-diagonal matrices. Thus, for instance,
if A is a finite matrix, then the direct sum A @ A4 cannot have a cyclic
vector. Reason: by virtue of the Hamilton-Cayley equation, at most n of
the matrices 1, A, A%,--- are linearly independent (where n is the size of
A), and consequently, no matter what f and g are, at most n of the vectors
Af @ Alg are linearly independent; it follows that their span can never be
2n-dimensional.
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If A has multiplicity 1 in any sense, it is reasonable to expect that A* also
has; this motivates the conjecture that if 4 has a cyclic vector, then so does
A*. For finite matrices this is true. For a proof, note that, surely, if a matrix
has a cyclic vector, then so does its complex conjugate, and recall that every
matrix is similar to its transpose.

The methods of the preceding paragraphs are very parochially finite-
dimensional; that indicates that the theory of cyclic vectors in infinite-
dimensional spaces is likely to be refractory, and it is. There is, to begin with,
a trivial difficulty with cardinal numbers. If there is a cyclic vector, then a
countable set spans the space, and therefore the space is separable; in other
words, in non-separable spaces there are no cyclic vectors. This difficulty can
be got around; that is one of the achievements of the multiplicity theory of
normal operators ([50, III]). For normal operators, the close connection
between multiplicity 1 and the existence of cyclic vectors persists in infinite-
dimensional spaces, and, suitably reinterpreted, even in spaces of uncountable
dimension.

For non-normal operators, things are peculiar. It is possible for a direct
sum A @ A to have a cyclic vector, and it is possible for 4 to have a cyclic
vector when A* does not. These facts were first noticed by D. E. Sarason.

Problem 160. If U is a unilateral shift of multiplicity not greater than
N, then U* has a cyclic vector.

It is obvious that the simple unilateral shift has a cyclic vector, but it is not
at all obvious that its adjoint has one. It does, but that by itself does not imply
anything shocking. The first strange consequence of the present assertion is
that if U is the simple unilateral shift, then U* @ U* (which is the adjoint
of a unilateral shift of multiplicity 2) has a cyclic vector. The promised
strange behavior becomes completely exposed with the remark that U @ U
cannot have a cyclic vector (and, all the more, the same is true for direct
sums with more direct summands). To prove the negative assertion, con-
sider a candidate

<<€0a 51, Cza n '>a <’10’ Hys Has o >>

for a cyclic vector of U @ U. If {a, B is an arbitrary non-zero vector ortho-
gonal to (&, 7, in the usual two-dimensional complex inner product space,
then the vector

<<OC, 0,0, '>s <ﬁs 0, O, v >>

is orthogonal to

(U @ UY<Los €15 &2+ +0s KMos Mis N2s -+ 0D

foralln (=0, 1, 2, - - -), and that proves that the cyclic candidate fails. (Here is
a slightly more sophisticated way of expressing the same proof: if an oper-
ator has a cyclic vector, then its co-rank is at most 1 ; the co-rank of U @ U
is 2.)
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161. Density of cyclic operators. How large is the set of cyclic operators?
(It is convenient to say that if an operator has a cyclic vector, then it is a
cyclic operator.)

If the underlying space is finite-dimensional, a necessary and sufficient
condition for an operator to be cyclic is that every eigenvalue be of multi-
plicity 1. (The relevant multiplicity is the geometric one, the dimension of the
corresponding eigenspace.) It follows that in the finite-dimensional case the
set of cyclic operators is open. If the dimension is n, then the operators with n
distinct eigenvalues constitute a dense set; it follows that the set of cyclic
operators is dense, and hence is a “large” set in the sense of Baire category.
(Since not every operator is cyclic, it follows also that the set of cyclic

. 0 00
operators is not closed. Concrete example: (1/n >—>< ) as
0 —1i/m 00

n— c0.)

In the separable infinite-dimensional case the set of cyclic operators is not
open. Concrete example: the cyclic operator diag(l, 4, 4, --+) is the limit
of the non-cyclic operators diag{1,4,---,1/n,0,0,0,--->.

Problem 161. Ifdim H = X, is the set of cyclic operators on H dense?

162. Density of non-cyclic operators. If dim H = N, the set of cyclic
operators is not dense; what about its complement ? Even special cases of
the question are not completely trivial.

Problem 162. Is the unilateral shift a limit of non-cyclic operators?

163. Cyclicity of a direct sum. Operators constructed out of the unilateral
shift exhibit various cyclicity properties: U, U*, and U* @ U* are cyclic, but
U @ U is not. At least one question remains.

Problem 163. Is U @ U* cyclic?

164. Cyclic vectors of adjoints. Even if an operator is cyclic, its adjoint does
not have to be (remember U @ U), and even if both an operator and its
adjoint are cyclic, they don’t necessarily have the same cyclic vectors.

00
(Example: ( | O) and <1, 0>.) Does normality improve matters?

Problem 164. If f is a cyclic vector for a normal operator A, does it
Jollow that f is cyclic for A*?

165. Cyclic vectors of a position operator. It is always good to know all the
cyclic vectors of an operator, but to find them all is rarely easy. Even for
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one of the most natural operators on an infinite-dimensional space the
problem leads to some interesting analysis.

Problem 165. What are all the cyclic vectors of the position operator on
L0, 1)?

Recall that if u is a Borel measure with compact support in the complex
plane, then the position operator A4 on L?(u) is defined by (4f)(z) = zf(z).

166. Totality of cyclic vectors. How many cyclic vectors does an operator
have? One possible answer is none at all. Another conceivable answer is that,
for some operators, every non-zero vector is cyclic; it is not known whether
that is actually possible. Solution 165 describes examples for which the set of
cyclic vectors is, nevertheless, quite large. Can it be medium-sized ?

Problem 166. Is there an operator for which the span of the set of cyclic
vectors is a non-trivial subspace (that is, different from both 0 and the
whole space)?

167. Cyclic operators and matrices. What’s special about a cyclic matrix
(meaning the matrix, with respect to some orthonormal basis, of a cyclic
operator)? Nothing much: the only matrices of size 2, for instance, that are
not cyclic are the scalars. Despite this bad news, matrices can be helpful in the
study of cyclic operators.

The pertinent concept is a slight generalization of triangularity. A matrix
{a;» is triangular (specifically, upper triangular) if every entry below the
main diagonal is zero (that is, o;; = 0 whenever i > j). A matrix is tri-
angular + 1 if every entry more than one step below the main diagonal is
zero (that is, a;; = O whenever i > j + 1). Extensions of this language
(triangular + k) are obviously possible, but are not needed now.

Problem 167. (a) If an operator has a matrix that is triangular +1 and
is such that none of the entries on the diagonal just below the main one is
zero (a;; # 0 when i = j + 1), then it is cyclic. (b) Is the converse true?

168. Dense orbits. To say that an operator 4 has a cyclic vector f is to say
that finite linear combinations of the vectors A"f are dense. A much stronger
property is conceivable; is it possible?

Problem 168. Is there an operator A on a Hilbert space H and a vector
fin H such that the orbit of f under A is dense in H?

The orbit of f is the set of all vectors of the form A"f, n=20,1,2, ---,
with no scalar multiples and no sums allowed.
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Properties of Compactness

169. Mixed continuity. Corresponding to the strong (s) and weak (w)
topologies for a Hilbert space H, there are four possible interpretations of
continuity for a transformation from H into H: they are the ones suggested
by the symbols (s — s), (W — W), (s —» W), and (w — s). Thus, to say that
A is continuous (s — W) means that the inverse image under A of each
w-open set is s-open; equivalently it means that the direct image under A
of a net s-convergent to f is a net w-convergent to Af. Four different kinds
of continuity would be too much of a good thing; it is fortunate that three
of them collapse into one.

Problem 169. For a linear transformation A the three kinds of continuity
(s = s), (w —» w), and (s — W) are equivalent (and hence each is equiva-
lent to boundedness), and continuity (w — s) implies that A has finite
rank.

Corollary. The image of the closed unit ball under an operator on a
Hilbert space is always strongly closed.

It is perhaps worth observing that for linear transformations of finite
rank all four kinds of continuity are equivalent; this is a trivial finite-dimen-
sional assertion.

170. Compact operators. A linear transformation on a Hilbert space is
called compact (also completely continuous) if its restriction to the unit ball is
(w — s) continuous (see Problem 169). Equivalently, a linear transformation
is compact if it maps each bounded weakly convergent net onto a strongly
convergent net. Since weakly convergent sequences are bounded, it follows
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that a compact linear transformation maps every weakly convergent sequetice
onto a strongly convergent one.

The image of the closed unit ball under a compact linear transformation is
strongly compact. (Proof: the closed unit ball is weakly compact.) This
implies that the image of each bounded set is precompact (i.e., has a
strongly compact closure). (Proof: a bounded set is included in some
closed ball.) The converse implication is also true: if a linear transforma-
tion maps bounded sets onto precompact sets, then it maps the closed unit
ball onto a compact set. To prove this, observe first that compact (and
precompact) sets are bounded, and that therefore a linear transformation
that maps bounded sets onto precompact sets is necessarily bounded
itself. (This implies, incidentally, that every compact linear transforma-
tion is bounded.) It follows from the corollary to Problem 169 that the
image of the closed unit ball is strongly closed; this, together with the
assumption that that image is precompact, implies that that image is
actually compact. (The copverse just proved is not universally true for
Banach spaces.) The compactness conditions, here treated as consequences
of the continuity conditions used above to define compact linear trans-
formations, can in fact be shown to be equivalent to those continuity con-
ditions and are frequently used to define compact linear transformations.
(See [39, p. 484].)

An occasionally useful property of compact operators is that they “attain
their norm”. Precisely said: if A4 is compact, then there exists a unit vector f
such that |Af || = || 4. The reason is that the mapping f s Af is (W — s)
continuous on the unit ball, and the mapping g — | gil is strongly continuous;
it follows that f — || Af || is weakly continuous on the unit ball. Since the unit
ball is weakly compact, this function attains its maximum, so that | Af || =
1 A] for some fwith || f|| £ 1.If 4 = 0, then f ¢an be chosen to have norm 1;
if A # 0, then f necessarily has norm 1. Reason: since f # 0 and 1/] f{ = 1,
it follows that

141 _ 1471
FANR VA

4l =

llAf-

Problem 170. The set K of all compact operators on a Hilbert space is a
closed self-adjoint (two-sided) ideal.

Here “closed” refers to the norm topology, “self-adjoint” means that if
A €K, then A* € K, and “ideal ” means that linear combinations of operators
in K are in K and that products with at least one factor in K are in K.

171. Diagonal compact operators. Is the identity operator compact? Since
in finite-dimensional spaces the strong and the weak topologies coincide, the
answer is yes for them. For infinite-dimensional spaces, the answer is no; the
reason is that the image of the unit ball is the unit ball, and in an infinite-
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dimensional space the unit ball cannot be strongly compact (Problem 16).

The indistinguishability of the strong and the weak topologies in finite-
dimensional spaces yields a large class of examples of compact operators,
namely all operators of finite rank. Examples of a slightly more complicated
structure can be obtained by exploiting the fact that the set of compact
operator is closed.

Problem 171. A diagonal operator with diagonal {a,} is compact if and
only if o, = 0 as n — oo.

Corollary. A weighted shift with weights {o,: n = 0, 1, 2, - - -} is compact
ifand only if a, > 0 asn — co.

172. Normal compactoperators. It is easy to see that if a normal operator has
the property that every non-zero element in its spectrum is isolated (i.e., is not
a cluster point of the spectrum), then it is a diagonal operator. (For each
non-zero eigenvalue 4 of A4, choose an orthonormal basis for the subspace
{f: Af = Af}; the union of all these little bases, together with a basis for
the kernel of A4, is a basis for the whole space.) If, moreover, each non-zero
eigenvalue has finite multiplicity, then the operator is compact. (Compare
Problem 171; note that under the assumed conditions the set of eigen-
values is necessarily countable.) The remarkable and useful fact along these
lines goes in the converse direction.

Problem 172. The spectrum of a compact normal operator is countable;
all its non-zero elements are eigenvalues of finite multiplicity.

Corollary. Every compact normal operator is the direct sum of the oper-
ator 0 (on a space that can be anything from absent to non-separable)
and a diagonal operator (on a separable space).

A less sharp but shorter formulation of the corollary is this: every compact
normal operator is diagonal.

173. Hilbert-Schmidt operators. Matrices have valuable ‘“‘continuous”
generalizations. The idea is to replace sums by integrals, and it works—up
to a point. To see where it goes wrong, consider a measure space X with
measure y (o-finite as usual), and consider a measurable function K on
the product space X x X. A function of two variables, such as K, is what a
generalized matrix can be expected to be. Suppose that A is an operator on
L?(u) whose relation to K is similar to the usual relation of an operator to
its matrix. In precise terms this means that if f € L?(u), then

UN@ = K@ »S0)dut)

for almost every x. Under these conditions A is called an integral operator and
K is called its kernel.
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In the study of a Hilbert space H, to say “select an orthonormal basis” is a
special case of saying “select a particular way of representing H as L2”.
Many phenomena in L? spaces are the natural “continuous”’ generaliza-
tions of more familiar phenomena in sequence spaces. One simple fact
about sequence spaces is that every operator on them has a matrix, and
this is true whether the sequences (families) that enter are finite or infinite.
(It is the reverse procedure that goes wrong in the infinite case. From
operators to matrices all is well; it is from matrices to operators that there
is trouble.) On this evidence it is reasonable to guess that every operator on
L? has a kernel, i.e., that every operator is an integral operator. This guess
is wrong, hopelessly wrong. The trouble is not with wild operators, and
it is not with wild measures; it arises already if the operator is the identity
and if the measure is Lebesgue measure (in the line or in any interval). In
fact, if u is Lebesgue measure, then the identity is not an integral operator.
The proof is accessible, but it reveals more about integrals than about
operators; see, for instance, [66, p. 41].

What about the reverse problem? Under what conditions does a kernel
induce an operator ? Since the question includes the corresponding question
for matrices, it is not reasonable to look for necessary and sufficient con-
ditions. A somewhat special sufficient condition, which is nevertheless both
natural and useful, is that the kernel be square integrable.

Suppose, to be quite precise, that X is a measure space with o-finite
measure u, and suppose that K is a complex-valued measurable function
on X x X such that | K|? is integrable with respect to the product measure
u x w It follows that, for almost every x, the function y+— K(x, y) is in
L2(u), and hence that the product function y+— K(x, y)f(») is integrable
whenever f e L%(w). Since, moreover,

2
j j K, ) 0py) | du)
< j ( j K(x, )2 duy) - f POk du(y))du(x) = K[ ]2

(where | K[| is the norm of K in L2(u x u)), it follows that the equation

(A = fK(x, DIO)M0)

defines an operator (with kernel K) on L?(u). The inequality implies also that
14l = [K].

Integral operators with kernels of this type (i.e., kernels in L?(u x w)) are
called Hilbert-Schmidt operators. A good reference for their properties is
[1273.

The correspondence K+— A is a one-to-one linear mapping from
L?(u x ) to operators on L2(u). If 4 has a kernel K (in L?(u x u)), then
A* has the kernel K defined by

K(x, y) = (K@, x))*.
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If A and B have kernels H and K (in L2(u x p)), then AB has the kernel HK
defined by

(HK)(x, y) = fH(x, DKz, y)du(z).

The proofs of all these algebraic assertions are straightforward computations
with integrals.

On the analytic side, the situation is just as pleasant. If {K,} is a sequence
of kernels in L?(u x ) such that K, —» K (in the norm of L?(u x w)),
and if the corresponding operators are A, (for K,) and A (for K), then
IA, — A| — 0. The proof is immediate from the inequality between the
norm of an integral operator and the norm of its kernel.

Problem 173. Every Hilbert-Schmidt operator is compact.

These considerations apply, in particular, when the space is the set of
positive integers with the counting measure. It follows that if the entries of
a matrix are square-summable, then it is bounded (in the sense that it de-
fines an operator) and compact (in view of the assertion of Problem 173).
It should also be remarked that the Schur test (Problem 45) for the
boundedness of a matrix has a straightforward generalization to a theorem
about kernels; see [21].

174. Compact versus Hilbert—Schmidt.
Problem 174. Is every compact operator a Hilbert—-Schmidt operator?

175. Limits of operators of finite rank. Every example of a compact operator
seen so far (diagonal operators, weighted shifts, integral operators) was
proved to be compact by showing it to be a limit of operators of finite rank.
That is no accident.

Problem 175. Every compact operator is the limit (in the norm) of oper-
ators of finite rank.

The generalization of the assertion to arbitrary Banach spaces was an
unsolved problem for a long time. It is now known to be false; see [29] and

[41].

176. Ideals of operators. An ideal of operators is proper if it does not contain
every operator. An easy example of an ideal of operators on a Hilbert spaceis
the set of all operators of finite rank on that space; if the space is infinite-
dimensional, that ideal is proper. Another example is the set of all compact
operators; again, if the space is infinite-dimensional, that ideal is proper.
The second of these examples is closed; in the infinite-dimensional case the
first one is not.
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Problem 176. If Hisaseparable Hilbert space, then the collection of com-
pact operators is the only non-zero closed proper ideal of operators on H.

Similar results hold for non-separable spaces, but the formulations and
proofs are fussier and much less interesting.

177. Compactness on bases. An orthonormal sequence converges weakly
to 0, and a compact operator is (W — s) continuous. It follows that if an
operator A is compact, then 4 maps each orthonormal sequence onto a
strong null sequence. To what extent is the converse true?

It is plain enough what the converse means, but there are some closely
related questions that deserve a look. Could it be, for instance, that if an
operator A maps some orthonormal sequence onto a strong null sequence,
then A is compact? Certainly not—that’s absurd. Reason: the orthonormal
sequence in question could be just half of an orthonormal basis on the other
half of which A4 is large. (Example: a projection with infinite rank and nullity.)
Very well: try again. Could it be that (1) if 4 maps some orthonormal basis
onto a strong null sequence, then A is compact? (To avoid the irrelevant
distractions of large cardinal numbers, it is best to assume here that the
underlying Hilbert space is separable, and that the orthonormal bases to be
studied come presented as sequences.) It is conceivable that the answer to
question (1) is yes.

The plain converse question originally asked is this: (2) if A maps every
orthonormal basis onto a strong null sequence, then is A compact? It is
conceivable that the answer to question (2) is no.

The implications between the possible answers to (1) and (2) are clear:
if (1) is yes, then so is (2); if (2) is no, then so is (1); in the other two cases
the answer to one question leaves the other one open. What are the facts?

Problem 177. If an operator A (on a Hilbert space of dimension ¥,)
maps an orthonormal basis onto a sequence that converges strongly
to 0, is A compact? What if A maps every orthonormal basis onto a
strong null sequence?

178. Square root of a compact operator. It is easy to construct non-compact
operators whose square is compact; in fact, it is easy to construct non-
compact operators that are nilpotent of index 2. (Cf. Problem 96.) What
about the normal case?

Problem 178. Do there exist non-compact normal operators whose
square is compact?

179. Fredholm alternative. The principal spectral fact about a compact
operator (normal or no) on a Hilbert space is that a non-zero number can get
into the spectrum via the point spectrum only.
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Problem 179. If C is compact, then spec C — {0} < I1,(C).

Equivalently: if Cis compact, and if 4 is a non-zero complex number, then
either 4 is an eigenvalue of C or C — 1 is invertible. In this form the state-
ment is frequently called the Fredholm alternative. It has a facetious but
substantially accurate formulation in terms of the equation (C — A)f = g,
in which g is regarded as given and f as unknown; according to that for-
mulation, if the solution is unique, then it exists.

Corollary. A compact operator whose point spectrum is empty is quasi-
nilpotent.

180. Range of a compact operator.

Problem 180. Every (closed) subspace included in the range of a compact
operator is finite-dimensional.

Corollary. Every non-zero eigenvalue of a compact operator has finite
multiplicity.

181. Atkinson’s theorem. An operator A4 is called a Fredholm operator if (1)
ran A is closed and both ker 4 and ran* A are finite-dimensional. (The
last two conditions can be expressed by saying that the nullity and the
co-rank of A are finite.) An operator A is invertible modulo the ideal of
operators of finite rank if (2) there exists an operator B such that both
1 — AB and 1 — BA have finite rank. An operator A is invertible modulo
the ideal of compact operators if (3) there exists an operator B such that
both 1 — ABand 1 — BA are compact.

Problem 181. An operator A is (1) a Fredholm operator if and only if it is
(2) invertible modulo the ideal of operators of finite rank, or, alternatively,
if and only if it is (3) invertible modulo the ideal of compact operators.

The result is due to Atkinson [7].
182. Weyl’s theorem. The process of adding a compact operator to a given
one is sometimes known as perturbation. The accepted attitude toward

perturbation is that compact operators are “small”; the addition of a
compact operator cannot (or should not) make for radical changes.

Problem 182. If the difference between two operators is compact, then
their spectra are the same except for eigenvalues. More explicitly:
if A — B is compact, and if 2 € spec A — I14(A), then A € spec B.
Note that for B = 0 the statement follows from Problem 179.
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183. Perturbed spectrum. The spectrum of an operator changes, of course,
when a compact operator is added to it, but in some sense not very much.
Eigenvalues may come and go, but otherwise the spectrum remains invariant.
In another sense, however, the spectrum can be profoundly affected by the
addition of a compact operator.

Problem 183. There exists a unitary operator U and there exists a com-
pact operator C such that the spectrum of U + C is the entire unit disc.

184. Shift modulo compact operators. Weyl’s theorem (Problem 182) implies
that if U is the unilateral shift and if C is compact, then the spectrum of
U + Cincludes the unit disc. (Here is a small curiosity. The reason the spec-
trum of U + C includes the unit disc is that U has no eigenvalues. The
adjoint U* has many eigenvalues, so that this reasoning does not apply to
it, but the conclusion does. Reason: the spectrum of U* + C is obtained
from the spectrum of U + C* by reflection through the real axis, and C*
is just as compact as C.) More is true [137]: every point of the open unit
disc is an eigenvalue of (U + C)*.

It follows from the preceding paragraph that U + - C can never be in-
vertible (the spectrum cannot avoid 0), and it follows also that U + C can
never be quasinilpotent (the spectrum cannot consist of 0 alone). Briefly:
if invertibility and quasinilpotence are regarded as good properties, then
not only is U bad, but it cannot be improved by a perturbation. Perhaps the
best property an operator can have (and U does not have) is normality;
can a perturbation improve U in this respect?

Problem 184. [f U is the unilateral shift, does there exist a compact
operator C such that U + C is normal?

Freeman [44] has a result that is pertinent to this circle of ideas; he
proves that, for a large class of compact operators C, the perturbed shift
U + Cis similar to the unperturbed shift U.

185. Distance from shift to compact operators. An increasingly valuable part
of the study of operators is a subject called non-commutative approxima-

tion theory. The following question is a small sample of it.

Problem 185. What is the distance from the unilateral shift to the set
of all compact operators?
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Examples of Compactness

186. Bounded Volterra kernels. Integral operators are generalized matrices.
Experience with matrices shows that the more zeros they have, the easier
they are to compute with; triangular matrices, in particular, are usually
quite tractable. Which integral operators are the right generalizations of
triangular matrices? For the answer it is convenient to specialize drastically
the measure spaces considered; in what follows the only X will be the unit
interval, and the only u will be Lebesgue measure. (The theory can be
treated somewhat more generally; see [115].)

A Volterra kernel is a kernel K in L2(u x ) such that K(x, y) = 0 when
x < y. Equivalently: a Volterra kernel is a Hilbert-Schmidt kernel that is
triangular in the sense that it vanishes above the diagonal (x = y) of the
unit square. In view of this definition, the effect of the integral operator A
(Volterra operator) induced by a Volterra kernel K can be described by the
equation

(A (x) = f:K(x, DS 0)dy.

If the diagonal terms of a finite triangular matrix vanish, then the matrix is
nilpotent. Since the diagonal of the unit square has measure 0, and since from
the point of view of Hilbert space sets of measure 0 are negligible, the con-
dition of vanishing on the diagonal does not have an obvious continuous
analogue. It turns out nevertheless that the zero values of a Volterra kernel
above the diagonal win out over the non-zero values below.

Problem 186. A Volterra operator with a bounded kernel is quasi-
nilpotent.
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Caution: “bounded” here refers to the kernel, not to the operator; the
assumption is that the kernel is bounded almost everywhere in the unit
square.

187. Unbounded Volterra kernels, How important is the boundedness
assumption in Problem 1867

Problem 187. Is every Volterra operator quasinilpotent?

188. Volterra integration operator. The simplest non-trivial Volterra
operator is the one whose kernel is the characteristic function of the triangle
{{x,y>:0 £ y £ x £ 1}. Explicitly this is the Volterra operator V defined on
L%(0, 1) by

V) = f:f(wdy.

In still other words, V is indefinite integration, with the constant of inte-
gration adjusted so that every function in the range of V' vanishes at 0.
(Note that every function in the range of ¥ is continuous. Better: every
vector in the range of V, considered as an equivalence class of functions
modulo sets of measure 0, contains a unique continuous function.)

Since V'* is the integral operator whose kernel is the “conjugate trans-
pose” of the kernel of V, so that the kernel of V'* is the characteristic func-
tion of the triangle {(x, y>:0 < x < y £ 1}, it follows that ¥V + V* is
the integral operator whose kernel is equal to the constant function 1
almost everywhere. (The operators V* and V + V* are of course not
Volterra operators.) This is a pleasantly simple integral operator; a mo-
ment’s reflection should serve to show that it is the projection whose range
is the (one-dimensional) space of constants. It follows that Re V has rank
1, since V= ReV + iImV, it follows that V' is a perturbation (by an
operator of rank 1 at that) of a skew Hermitian operator.

The theory of Hilbert-Schmidt operators in general and Volterra oper-
ators in particular answers many questions about V. Thus, for instance, V is
compact (because it is a Hilbert-Schmidt operator), and it is quasinilpotent
(because it is a Volterra operator). There are many other natural questions
about V; some are easy to answer and some are not. Here is an easy one:
does ¥V annihilate any non-zero vectors? (Equivalently: “does V have a
non-trivial kernel?”’, but that way terminological confusion lies.) The
answer is no. If j’; f(dy = 0 for almost every x, then, by continuity, the
equation holds for every x. Since the functions in the range of V are not
only continuous but, in fact, differentiable almost everywhere, the equation
can be differentiated; the result is that f(x) = 0 for almost every x. As for
natural questions that are not so easily disposed of, here is a simple sample.
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Problem 188. What is the norm of V?

189, Skew-symmetric Volterra operator. There is an operator V, on
L?(—1, +1) (Lebesgue measure) that bears a faint formal resemblance to
the operator ¥ on L?(0, 1); by definition

FoH@ = 10X

Note that V}, is the integral operator induced by the kernel that is the char-
acteristic function of the butterfly {{x, y>: 0 = |y| £ |x| £ 1}.

Problem 189. Find the spectrum and the norm of the skew-symmetric
Volterra operator V.

190. Norm 1, spectrum {1}. Every finite matrix is unitarily equivalent to a
triangular matrix. If a triangular matrix has only 1’s on the main diagonal,
then its norm is at least 1; the norm can be equal to 1 only in case the
matrix is the identity. The conclusion is that on a finite-dimensional Hilbert
space the identity is the only contraction with spectrum {1}. The reasoning
that led to this conclusion was very finite-dimensional; can it be patched
up to yield the same conclusion for infinite-dimensional spaces?

Problem 190. Is there an operator A, other than 1, such that spec A
= {1} and |A| = 1?

191. Donoghue lattice. One of the most important, most difficult, and most
exasperating unsolved problems of operator theory is the problem of in-
variant subspaces. The question is simple to state: does every operator on an
infinite-dimensional Hilbert space have a non-trivial invariant subspace?
“Non-trivial” means different from both 0 and the whole space; “invariant”
means that the operator maps it into itself. For finite-dimensional spaces
there is, of course, no problem; as long as the complex field is used, the
fundamental theorem of algebra implies the existence of eigenvectors.

According to a dictum of Pélya’s, for each unanswered question there is
an easier unanswered question, and the scholar’s first task is to find the
latter. Even that dictum is hard to apply here; many weakenings of the
invariant subspace problem are either trivial or as difficult as the full-
strength problem. If, for instance, in an attempt to get a positive result,
“subspace” is replaced by “linear manifold” (not necessarily closed), then
the answer is yes, and easy. (For an elegant discussion, see [124].) If, on
the other hand, “Hilbert space” is replaced by ‘““Banach space”™, the
chances of finding a counterexample are greater, but, despite periodically
circulating rumors, no construction has yet been verified.
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Positive results are known for some special classes of operators. The
cheapest way to get one is to invoke the spectral theorem and to conclude
that normal operators always have non-trivial invariant subspaces. The
earliest non-trivial result along these lines is the assertion that compact
operators always have non-trivial invariant subspaces [6]. That result has
been generalized [12, 58, 91, 93], but the generalizations are still closely
tied to compactness. Non-compact results are few; here is a sample. If 4
is a contraction such that neither of the sequences {4"} and {4*"} tends
strongly to 0, then 4 has a non-trivial invariant subspace [100]. A bird’s
eye view of the subject is in [71], a more extensive bibliography is in [40],
and a detailed treatment in [1117.

1t is helpful to approach the subject from a different direction: instead of
searching for counterexamples, study the structure of some non-counter-
examples. One way to do this is to fix attention ot a particular operator
and to characterize all its invariant subspaces; the first significant step in
this direction is the work of Beurling [13] (Problem 157).

Nothing along these lines is easy. The second operator whose invariant
subspaces have received detailed study is the Volterra integration operator
({17, 37, 84, 122]). The results for it are easier to describe than for the
shift, but harder to prove. If (Vf)(x) = [, f(»)dy for f in L*(0, 1), and if,
for each o in [0, 17, M, is the subspace of those functions that vanish almost
everywhere on [0, a7, then M, is invariant under V'; the principal result is
that every invariant subspace of ¥ is one of the M,’s. An elegant way of
obtaining these results is to reduce the study of the Volterra integration
operator (as far as invariant subspaces are concerned) to that of the uni-
lateral shift; this was done in [123].

The collection of all subspaces invariant under some partxcular operator
is a lattice (closed under the formation of intersections and spans). One
way to state the result about V is to say that its lattice of invariant subspaces
is anti-isomorphic to the closed unit interval. (““Anti-"" because as a grows
M, shrinks.) The lattice of invariant subspaces of V'* is in an obvious way
isomorphic to the closed unit interval.

Is there an operator whose lattice of invariant subspaces is isomorphic to
the positive integers? The question must be formulated with a little more
care: every invariant subspace lattice has a largest element. The exact
formulation is easy: is there an operator for which there is a one-to-one
and order-preserving correspondence n — M,, n = 0,1, 2,3, - - -, o0, be-
tween the indicated integers (including o) and all invariant subspaces?
The answer is yes. The first such operator was discovered by Donoghue
[37]; a wider class of them is described in [103].

Suppose that {a,} is a monotone sequence (&, = %4+, 7 =0,1,2,---) of
positive numbers («, > 0) such that ) 7%, a,®> < co. The unilateral weighted
shift with the weight sequence {a,} will be called a monotone I* shift. The
span of the basis vectors e,, €,.1, €,.2, - - - Is invariant under such a
shift, n = 0, 1, 2, - - -. The orthogonal complement, i.e., the span M, of
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€g, " ', €,_4, 18 invariant under the adjoint, n = 1, 2, 3, - - - ; the principal
result is that every invariant subspace of that adjoint is one of these or-
thogonal complements.

Problem 191. If A is the adjoint of a monotone I* shift, and if M is a

non-trivial subspace invariant under A, then there exists an integer
n(=1,2,3,--ysuchthat M =M,
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Subnormal Operators

192. Putnam-Fuglede theorem. Some of the natural questions about
normal operators have the same answers for finite-dimensional spaces as for
infinite-dimensional ones, and the techniques used to prove the answers are
the same. Some questions, on the other hand, are properly infinite-dimen-
sional, in the sense that for finite-dimensional spaces they are either mean-
ingless or trivial; questions about shifts, or, more generally, questions
about subnormal operators are likely to belong to this category (see Prob-
lem 195). Between these two extremes there are the questions for which
the answers are invariant under change of dimension, but the techniques
are not. Sometimes, to be sure, either the question or the answer must be
reformulated in order to bring the finite and the infinite into harmony. As
for the technique, experience shows that an infinite-dimensional proof can
usually be adapted to the finite-dimensional case; to say that the techniques
are different means that the natural finite-dimensional techniques are not
generalizable to infinite-dimensional spaces. It should be added, however,
that sometimes the finite and the infinite proofs are intrinsically different,
so that neither can be adapted to yield the result of the other; a case in
point is the statement that any two bases have the same cardinal number.
A familiar and typical example of a theorem whose statement is easily
generalizable from the finite to the infinite, but whose proof is not, is the
spectral theorem. A more striking example is the Fuglede commutativity
theorem. It is more striking because it was for many years an unsolved
problem. For finite-dimensional spaces the statement was known to be
true and trivial ; for infinite-dimensional spaces it was unknown.

The Fuglede theorem (cf. Solution 146) can be formulated in several
ways. The algebraically simplest formulation is that if 4 is a normal
operator and if B is an operator that commutes with A, then B commutes
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with A* also. Equivalently: if A* commutes with A4, and 4 commutes with
B, then A* commutes with B. In the latter form the assertion is that in a
certain special situation commutativity is transitive. (In general it is not.)

The operator A plays a double role in the Fuglede theorem ; the modified
assertion, obtained by splitting the two roles of A between two normal
operators, is true and useful. Here is a precise formulation.

Problem 192. If A, and A, are normal operators and if B is an operator
such that A,B = BA,, then A;*B = BA,*.

Observe that the Fuglede theorem is trivial in case B is Hermitian (even
if A is not necessarily normal); just take the adjoint of the assumed equa-
tion AB = BA. The Putnam generalization (i.e., Problem 192) is, however,
not obvious even if B is Hermitian; the adjoint of A; B = BA, is, in that
case, BA,* = A,*B, which is not what is wanted.

Corollary. If two normal operators are similar, then they are unitarily
equivalent.

Is the product of two commutative normal operators normal? The answer
is yes, and the proof is the same for spaces of all dimensions; the proof
seems to need the Fuglede theorem. In this connection it should be men-
tioned that the product of not necessarily commutative normal operators
is very reluctant to be normal. A pertinent positive result was obtained by
Wiegmann [156]; it says that if H is a finite-dimensional Hilbert space
and if A and B are normal operators on H such that AB is normal, then BA
also is normal. Away from finite-dimensional spaces even this result be-
comes recalcitrant. It remains true for compact operators [157], but it is
false in the general case [85].

193. Algebras of normal operators. The properties of an operator are
intimately connected with how it enters various algebraic structures.
Thus, for instance, it is trivial that if an operator belongs to a commutative
algebra that is closed under the formation of adjoints, then that operator
is normal. If, conversely, an algebra is closed under the formation of ad-
joints and consists of normal operators only, then that algebra is com-
mutative. (Proof: if A + iB and C + iD are in the algebra, with 4, B, C,
and D Hermitian, then A, B, C, and D are in the algebra, because adjoints
are formable, and therefore so are A + iC, A + iD, B + iC,and B + iD;
the assumed normality implies that everything commutes.) Question: what
if the condition on adjoints is dropped?

Problem 193. Isan algebraof normal operators necessarily commutative?

194. Spectral measure of the unit disc. One of the techniques that can be used
to prove the Fuglede theorem is to characterize in terms of the geometry of
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Hilbert space the spectral subspaces associated with a normal operator.
That technique is useful in other contexts too.

A necessary and sufficient condition that a complex number have modulus
less than or equal to 1 is that all its powers have the same property. This
trivial observation extends to complex-valued functions:

xilo@ 1} = (xt eI < 1,n=1,2,3,- }.

There is a close connection between complex-valued functions and normal
operators. The operatorial analogue of the preceding numerical observa-
tions should be something like this: if A is a normal operator on a Hilbert
space H, then the set E of those vectors f in H for which |A*f] = |11,
n=1,23,---,should be, in some sense, the part of H on which A4 is below
1. This is true; the precise formulation is that E is a subspace of H and
the projection on E is the value of the spectral measure associated with A
on the closed unit disc in the complex plane. The same result can be for-
mulated in a more elementary manner in the language of multiplication
operators.

Problem 194, If A is the multiplication operator induced by a bounded
measurable function ¢ on a measure space, and if D = {z: |z| £ 1},
then a necessary and sufficient condition that an element f in L? be such
that y,-vpy f = fis that [|A*f|| < || fIl for every positive integer n.

Here, as usual, y denotes the characteristic function of the set indicated
by its subscript.

By translations and changes of scale the spectral subspaces associated with
all discs can be characterized similarly; in particular, a necessary and
sufficient condition that a vector f be invariant under multiplication by the
characteristic function of {x:|p(x)| < ¢} (¢ > 0) is that | A"f|| £ &"|| f]
for all n. One way this result can sometimes be put to good use is this: if,
for some positive number ¢, there are no /s in L? (other than 0) such that
| A"f|| < &"|l f]| for all n, then the subspace of f’s that vanish on the comple-
ment of the set {x:|@(x)| < &} is 0, and therefore the set {x:|p(x)| < ¢}
is (almost) empty. Conclusion: under these circumstances [p(x)| > ¢
almost everywhere, and consequently the operator A is invertible.

195. Subnormal operators. The theory of normal operators is so successful
that much of the theory of non-normal operators is modeled after it. A natural
way to extend a successful theory is to weaken some of its hypotheses slightly
and hope that the results are weakened only slightly. One weakening of
normality is quasinormality (see Problem 137). Subnormal operators con-
stitute a considerably more useful and deeper generalization, which goes in an
altogether different direction. An operator is subnormal if it has a normal
extension. More precisely, an operator A on a Hilbert space H is subnormal
if there exists a normal operator B on a Hilbert space K such that His a
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subspace of K, the subspace H is invariant under the operator B, and the
restriction of B to H coincides with A.

Every normal operator is trivially subnormal. On finite-dimensional
spaces every subnormal operator is normal, but that takes a little proving;
cf. Solution 202 or Problem 203. A more interesting and typical example
of a subnormal operator is the unilateral shift; the bilateral shift is a nor-
mal extension.

Problem 195. Every quasinormal operator is subnormal.

Normality implies quasinormality, but not conversely (witness the
unilateral shift). The present assertion is that quasinormality implies sub-
normality, but, again, the converse is false. To get a counterexample, add a
non-zero scalar to the unilateral shift. The result is just as subnormal as the
unilateral shift, but a straightforward computation shows that if it were also
quasinormal, then the unilateral shift would be normal.

196. Quasinormal invariants. The invariant subspace problem is easy for
normal operators; for subnormal operators it was very hard and yielded,
after many years, only to a subtle analytic approach [24]. In this respect,
as in all others, quasinormal operators are between the two.

Problem 196. Every quasinormal operator on a space of dimension
greater than 1 has a non-trivial invariant subspace.

197. Minimal normal extensions. A normal extension B (on K) of a sub-
normal operator A (on H) is minimal if there is no reducing subspace of B
between H and K. In other words, B is minimal over A if whenever M re-
duces B and H « M, it follows that M = K. What is the right article for
minimal normal extensions: “a” or “the”?

Problem 197. If B, and B, (on K, and K,) are minimal normal exten-
sions of the subnormal operator A on H, then there exists an isometry
U from K, onto K, that carries B, onto B, (i.e., UB, = B, U) and is
equal to the identity on H.

In view of this result, it is permissible to speak of “the” minimal normal
extension of a subnormal operator, and everyone does. Typical example: the
minimal normal extension of the unilateral shift is the bilateral shift.

198. Polynomials in the shift. The explicit determination of the minimal
normal extension of a subnormal operator can be a non-trivial problem; any
special case where that extension is accessible is worth looking at.

Problem 198. If U is the unilateral shift and p is a polynomial, then p(U)
is a subnormal operator;, what is its minimal normal extension?
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199. Similarity of subnormal operators. For normal operators similarity
implies unitary equivalence (Problem 192). Subnormal operators are de-
signed to imitate the properties of normal ones; is this one of the respects
in which they succeed?

Problem 199. Are two similar subnormal operators necessarily unitarily
equivalent?

200. Spectral inclusion theorem. If an operator A is a restriction of an
operator B to an invariant subspace H of B, and if f is an eigenvector of
A (ie., fe Hand Af = Af for some scalar A), then f is an eigenvector of
B. Differently expressed: if A « B, then I1(4) < I1(B), or, as an operator
grows, its point spectrum grows. An equally easy verification shows that
as an operator grows, its approximate point spectrum grows. In view of
these very natural observations, it i3 tempting to conjecture that as an
operator grows, its spectrum grows, and hence that, in particular, if A4 is
subnormal and B is its minimal normal extension, then spec A < spec B.
The first non-trivial example of a subnormal operator shows that this
conjecture is false: if A is the unilateral shift and B is the bilateral shift,
then spec A4 is the unit disc, whereas spec B is only the perimeter of the
unit disc. It turns out that this counterexample illustrates the general case
better than do the plausibility arguments based on eigenvalues, exact or
approximate.

Problem 200. If A is subnormal and if B is its minimal normal extension,
then spec B < spec A.

Reference: [517.

201. Filling in holes. The spectral inclusion theorem (Problem 200) for
subnormal operators can be sharpened in an interesting and surprising
manner. The result is that the spectrum of a subnormal operator is always
obtained from the spectrum of its minimal normal extension by “filling in
some of the holes ”. This informal expression can be given a precise technical
meaning. A hole in a compact subset of the complex plane is a bounded
component of its complement.

Problem 201. If A is subnormal, if B is its minimal normal extension,
and if A'is a hole of spec B, then A is either included in or disjoint from
spec A.

202. Extensions of finite co-dimension.

Problem 202. Can a subnormal but non-normal operator on a Hilbert
space H have a normal extension to a Hilbert space K when
dim(K n HY) is finite?
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203. Hyponormal operators. If A (on H)issubnormal, with normal extension
B (on K), what is the relation between A* and B*? The answer is best ex-
pressed in terms of the projection P from K onto H. If f and g are in H,
then

(A%, 9) = (f, Ag) = (f, Bg) = (B*, g) = (B*f, Pg) = (PB*f, g9).

Since the operator PB* on K leaves H invariant, its restriction to H is an
operator on H, and, according to the preceding chain of equations, that
restriction is equal to A*. That is the answer:

A* = PB*f
for every fin H.
This relation between A* and B* has a curious consequence. If f € H, then
|A*f |l = [PB*| < [B* || = |Bf || (by normality) = [ Af .
The result (| A*f|| £ ||Af||) can be reformulated in another useful way; it is
equivalent to the operator inequality
AA* < A*A.
Indeed: | A*/|> = (AAY, f) and | Af[* = (A*Af. f).

The curious inequality that subnormal operators always satisfy can also
be obtained from an illuminating matrix calculation. Corresponding to
the decomposition K = H @ H*, every operator on K can be expressed as
an operator matrix, and, in particular, that is true for B. It is easy to ex-
press the relation (4 « B) between A and B in terms of the matrix of B; a
necessary and sufficient condition for it is that (1) the principal (northwest)

entry is 4, and (2) the one below it (southwest) is 0. The condition (2) says
that H is invariant under B, and (1) says that the restriction of Bto His A.

Thus
B A R ,
0 S
A* 0
B = (R* S*)‘

Since B is normal, it follows that the matrix
A*A A*R ) (AA* + RR* RS*)

so that

R*4 R*R 4+ §*§ SR* SS*
must vanish. This implies that

A*A — AA* = RR*,

B*B — BB* = (

and hence that
A*A — AA* Zz 0.
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There is a curious lack of symmetry here: why should A*A4 play a role so
significantly different from that of A4*? A little meditation on the unilateral
shift may help. If 4 = U, the unilateral shift, then A is subnormal, and 4*4
= 1, whereas A4* is a non-trivial projection;clearly A¥4 = AA* If 4 = U*,
then A is not subnormal. (Reason: if it were, then it would satisfy the in-
equality A*4 = AA*, ie., UU* = U*U, and then U would be normal.)
If it were deemed absolutely essential, symmetry could be restored to the
universe by the introduction of the dual concept of co-subnormality.
(Proposed definition: the adjoint is subnormal.) If A4 is co-subnormal in
this sense, then AA* = A*A. An operator A4 such that 4*4 > AA* has
been called hyponormal. (The dual kind might be called co-hyponormal.
Note that “hypo” is in Greek what “sub” is in Latin. The nomenclature
is not especially suggestive, but this is how it grew, and it seems to be here
to stay.) The result of the preceding paragraphs is that every subnormal
operator is hyponormal. The dull dual result is, of course, that every co-
subnormal operator is co-hyponormal.

On a finite-dimensional space every hyponormal operator is normal. The
most efficient proof of this assertion is a trace argument, as follows. Since
tr(AB) is always equal to tr(BA), it follows that tr(4*4 — AA¥*) is always 0;
if A*4 > AA¥, then A*4 — AA¥ is a positive operator with trace 0, and
therefore A*4 — AA* = 0. What was thus proved is a generalization of
the statement that on a finite-dimensional space every subnormal operator
is normal (cf. Problem 195).

Problem 203. Give an example of a hyponormal operator that is not
subnormal.

This is not easy. The techniques used are almost sufficient to yield an
intrinsic characterization of subnormality ([49, 16]). “Intrinsic” means that
the characterization is expressed in terms of the action of the operator on the
vectors in its domain, and not in terms of the existence of something outside
that domain. The characterization is of “ finite character”, in the sense that it
depends on the behavior of the operator on all possible finite sets of vectors.
With still more work of the same kind an elegant topological characteriza-
tion of subnormality can be obtained; this was first done by Bishop [15].
Bishop’s result is easy to state: the set of all subnormal operators is exactly
the strong closure of the set of all normal operators. (See Problem 225.)

204. Normal and subnormal partial isometries.
Problem 204. A partial isometry is normal if and only if it is the direct
sum of a unitary operator and zero; it is subnormal if and only if it is the
direct sum of an isometry and zero.

In both cases, one or the other of the direct summands may be absent.
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205. Norm powers and power norms. The set T of those operators A such
that | A"|| = || 4||" for every positive integer n has at the very least, a certain
curiosity value. If A €T, then ||4"[|'"" = | A|, and therefore r(A) = | A]; if,
conversely, r(4) = | A], then [A"| < [A]" = (HA)' = r(A") < |A"], so
that equality holds all the way through. Conclusion: AeT if and only if
r(A) = [ 4]

The definition of T implies that every normal operator belongs to T (and
so does the conclusion of the preceding paragraph). For two-by-two matrices
an unpleasant computation proves a strong converse: if | A% = ||4]>3,
then A is normal. Since neither the assertion nor its proof have any merit,
the latter is omitted. As soon as the dimension becomes greater than 2, the
converse becomes false. If, for example.

1 00
A=[0 0 o}
010

then || A" = 1 for all n, but A4 is certainly not normal.

The quickest (but not the most elementary) proof of the direct assertion
(if A is normal, then 4 e T) is to refer to the spectral theorem. Since for
subnormal and hyponormal operators that theorem is not available, a
natural question remains unanswered. The answer turns out to be affirma-
tive.

Problem 205. If A is hyponormal, then | A"|| = || A||" for every positive
integer n.

Corollary. The only hyponormal quasinilpotent operator is 0.

206. Compact hyponormal operators. It follows from the discussion of
hyponormal operators on finite-dimensional spaces (Problem 203) that a
hyponormal operator of finite rank (on a possibly infinite-dimensional space)
is always normal. What about limits of operators of finite rank?

Problem 206. Every compact hyponormal operator is normal.
Reference: [4, 10, 136].

207. Hyponormal, compact imaginary part. An operator A4 is compact if
and only if both Re 4 and Im A are compact. The result of Problem 206
can therefore be stated in this form: if A4 is hyponormal and both Re 4
and Im A are compact, then A is normal. What if only one of Re A and
Im A is compact?

Problem 207. Does there exist a hyponormal operator that is not normal
but has compact imaginary part?
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It should be kept in mind that even if 4 is hyponormal, A* need not be.
What is trivially true, however, is that i4 is hyponormal at the same time
as A is and Im(i4) = Re A.

208. Hyponormal idempotents. A normal operator with one good property
usually has several good properties. A typical example of this kind of state-
ment is that an idempotent normal operator must be Hermitian (and hence a
projection). To what extent do the useful generalizations of normality
behave normally?

Problem 208. Is every quasinormal idempotent a projection? What
about subnormal idempotents? What about hyponormal ones?

209. Powers of hyponormal operators. Every power of a normal operator
is normal. This trivial observation has as an almost equally trivial con-
sequence the statement that every power of a subnormal operator is sub-
normal. For hyponormal operators the facts are different.

Problem 209, Give an example of a hyponormal operator whose square
is not hyponormal.

This is not easy. It is, in fact, bound to be at least as difficult as the con-
struction of a hyponormal operator that is not subnormal (Problem 203),
since any solution of Problem 209 is automatically a solution of Problem 203.
The converse is not true; the hyponormal operator used in Solution 203 has
the property that all its powers are hyponormal also.
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CHAPTER 22

Numerical Range

210. Toeplitz—Hausdorff theorem. In early studies of Hilbert space (by
Hilbert, Hellinger, Toeplitz, and others) the objects of chief interest were
quadratic forms. Nowadays they play a secondary role. First comes an
operator A on a Hilbert space H, and then, apparently as an afterthought,
comes the numerical-valued function f— (Af, f) on H. This is not to say
that the quadratic point of view is dead; it still suggests questions that are
interesting with answers that can be useful.

Most quadratic questions about an operator are questions about its
numerical range, sometimes called its field of values. The numerical range
of an operator A is the set W{(A) of all complex numbers of the form
(Af, 1), where f varies over all vectors on the unit sphere. (Important:
Il =1, not |fil £ 1.) The numerical range of A is the range of the
restriction to the unit sphere of the quadratic form associated with 4. One
reason for the emphasis on the image of the unit sphere is that the image of
the unit ball, and also the entire range, are easily described in terms of it,
but not vice versa. (The image of the unit ball is the union of all the closed
segments that join the origin to points of the numerical range; the entire
range is the union of all the closed rays from the origin through points of
the numerical range.)

The determination of the numerical range of an operator is sometimes
easy. Here are some sample results. If

1 0
A=
o o)

then W(A) is the closed unit interval (easy); if
00
A =
(i o)
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then W(A) is the closed disc with center 0 and radius % (easy, but more
interesting); if

0 0
A= ,
()

then W(A) is the closed elliptical disc with foci at 0 and 1, minor axis 1 and
major axis \/5 (analytic geometry at its worst). There is a theorem that
covers all these cases. If 4 is a two-by-two matrix with distinct eigen-
values a and f, and corresponding eigenvectors fand g, so normalized that
11 = llgl =1, then W(A) is a closed elliptical disc with foci at « and §;
if y=|(f,¢)|and § = /1 — 92, then the minor axis is y|a — f8]/6 and
the major axis is | — f|/d. If A has only one eigenvalue a, then W(A4) is
the (circular) disc with center « and radius 4[4 — «]|.

A couple of three-dimensional examples will demonstrate that the two-
dimensional case is not typical. If

0 0 A
A=[1 0 0},
01 0

where 4 is a complex number of modulus 1, then W(A) is the equilateral
triangle (interior and boundary) whose vertices are the three cube roots of 4.
(Cf. Problem 216.) If

0 00
A=[1 0 0}
0 0 1

then W(A) is the union of all the closed segments that join the point 1 to
points of the closed disc with center 0 and radius 4. (Cf. Problem 216.)

The higher the dimension, the stranger the numerical range can be.
If A is the Volterra integration operator (see Problem 188), then W(A) is
the set lying between the curves

1 —cost . t—sint
t— 5 +1i PR 0t 2rn
t t
{(where the value at 0 is taken to be the limit from the right).

The following assertion describes the most important common property of

all these examples.

Problem 210. The numerical range of an operator is always convex.

The result is known as the Toeplitz—Hausdorff theorem. Consideration of
real and imaginary parts shows that it is a special case (n = 2) of the
following general assertion: if A4,, - - -, A, are Hermitian operators, then

the set of all n-tuples of the form <(4,f, f), - --, (4,1, f)>, where
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Ifll = 1, is a convex subset of n-dimensional real Euclidean space. True
or false, the assertion seems to be a natural generalization of the Toeplitz-
Hausdorff theorem; it is a pity that it is so very false. It is false for n = 3
in dimension 2; counterexamples are easy to come by.

The first paper on the subject was by Toeplitz [142], who proved that the
boundary of W(A) is a convex curve, but left open the possibility that it had
interior holes. Hausdorff [69] proved that it did not. Donoghue [36] re-
examined the facts and presented some pertinent computations. The result
about the Volterra integration operator is due to A. Brown.

211. Higher-dimensional numerical range. The numerical range can be
regarded as the one-dimensional case of a multi-dimensional concept. To
see how that goes, recall the expression of a projection P of rank 1 in
terms of a unit vector f in its range:

Pg = (g9, Nf

for all g. If A is an arbitrary operator, then PAP is an operator of rank 1,and
therefore a finite-dimensional concept such as trace makes sense for it. The
trace of PAP can be computed by finding the (one-by-one) matrix of the
restriction of PAP to the range of P, with respect to the (one-element) basis
{f};since Pf = f,the value of that trace is

(PAPS, [) = (AFf, Ff) = (A1, f).

These remarks can be summarized as follows: W(A) is equal to the set of
all complex numbers of the form tr PAP, where P varies over all projec-
tions of rank 1. Replace 1 by an arbitrary positive integer k, and obtain
the k-numerical range of A, in symbols W, (A4): it is the set of all complex
numbers of the form tr PAP, where P varies over all projections of rank k.
The ordinary numerical range is the k-numerical range with k = 1.

Problem 211. Is the k-numerical range of an operator always convex?
212. Closure of numerical range.

Problem 212, Give examples of operators whose numerical range is not
closed.

Observe that in the finite-dimensional case the numerical range of an
operator is a continuous image of a compact set, and hence necessarily
compact.

213. Numerical range of a compact operator. The numerical range of an
operator isn’t always closed, not even if the operator is compact. Solu-
tion 212 exhibited a compact operator A such that W(A) = (0, 1]; that is,
0 is in the closure of W(A) but not in W(A) itself. The number O plays a
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special role with respect to the spectrum of a compact operator; does it
play an equally special role with respect to the numerical range?

Problem 213. Is there a compact operator A such that 0 € W(A) but
W(A) is not closed?

214. Spectrum and numerical range.
Problem 214. The closure of the numerical range includes the spectrum.

The trivial corollary that asserts that if A = B + iC, with B and C
Hermitian, then spec A € W(B) + iW(C) is the Bendixson-Hirsch theorem.

215. Quasinilpotence and numerical range. If A is a quasinilpotent operator,
then, by Problem 214, 0 € W(A). By Solution 212, the set W(4) may fail
to be closed, so that from 0 € W(A) it does not follow that 0 € W(A4). Is it
true just the same?

Problem 215. Give an example of a quasinilpotent operator A such
that 0 ¢ W(A).

Observe that any such example is a solution of Problem 212.

216. Normality and numerical range. Can the closure of the numerical range
be very much larger than the spectrum? The answer is yes. A discouraging

example is
0 0\
1 0

the spectrum is small ({0}), but the numerical range is large ({z:|z| £ 4}).
Among normal operators such extreme examples do not exist; for them the
closure of the numerical range is as small as the universal properties of
spectra and numerical ranges permit.

To formulate the result precisely, it is necessary to introduce the concept of
the convex hull of a set M, in symbols conv M. By definition, conv M is the
smallest convex set that includes M; in other words, conv M is the inter-
section of all the convex sets that include M. It is a non-trivial fact of
finite-dimensional Euclidean geometry that the convex hull of a compact
set is closed. Perhaps the most useful formulation of this fact for the plane
goes as follows: the convex hull of a compact set is the intersection of
all the closed half planes that include it. A useful reference for all this
is [144].

So much for making convex sets out of closed sets. The reverse process of
making closed sets out of convex sets is much simpler to deal with; it is true
and easy to prove that the closure of a convex set is convex.
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Problem 216. The closure of the numerical range of a normal operator
is the convex hull of its spectrum.

As an application consider the matrix

0 0 4
1 0 0),
010

where | 4] = 1. Since this matrix is unitary, and therefore normal, the result
just proved implies that its numerical range is the convex hull of its eigen-
values. The eigenvalues are easy to compute (they are the cube roots
of 1), and this proves the assertion (made in passing in Problem 210) that
the numerical range of this particular matrix is the triangle whose vertices
are the cube roots of A.
The general result includes the special assertion that the numerical range
of every finite diagonal matrix is the convex hull of its diagonal entries. A
different generalization of this special assertion is that the numerical range of
a direct sum is the convex hull of the numerical ranges of its summands.
The proof of the generalization is straightforward. For an example, con-
sider the direct sum of
0 0
(v o

and (1), and recapture the assertion (made in passing in Problem 210) about
the domed-cone shape of the numerical range of

0 00

1 0 0).

0 01

217. Subnormality and numerical range.

Problem 217. Does the conclusion of Problem 216 remain true if in the
hypothesis “normal” is replaced by * subnormal”?

218. Numerical radius. The numerical range, like the spectrum, associates
a set with each operator; it is a set-valued function of operators. There is a
closely related numerical function w, called the numerical radius, defined by

w(A) = sup{|A|: Ae W(A)}.

(Cf. the definition of spectral radius, Problem 88.) Some of the properties of
the numerical radius lie near the surface; others are quite deep.

It is easy to prove that w is a norm. That is: w(A4) 2 0, and w(4) = 0
if and only if A = 0; w(ad) = |a| - w(A) for each scalar o; and w(4 + B) £
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w(A) 4+ w(B). This norm is equivalent to the ordinary operator norm, in the
sense that each is bounded by a constant multiple of the other:

Al S w(4) < |14l
(See [50, p. 33].) The norm w has many other pleasant properties; thus, for
instance, w(A*) = w(A4), w(A*A) = || A|?, and w is unitarily invariant, in
the sense that w(U*AU) = w(A4) whenever U is unitary.

Since spec A € W(A) (Problem 214), there is an easy inequality between
the spectral radius and the numerical radius:

r(A) < w(A).

The existence of quasinilpotent (or, for that matter, nilpotent) operators
shows that nothing like the reverse inequality could be true.

Problem 218. (a) If w(l — A) < 1, then A is invertible. (b) If w(A) =
1Al then r(4) = || A].

219. Normaloid, convexoid, and spectraloid operators. If 4 is normal, then
w(A) = |A||. Wintner called an operator 4 with w(A4) = | A|| normaloid.
Another useful (but nameless) property of a normal operator 4 (Problem
216) is that W(A) is the convex hull of spec A. To have a temporary label
for (not necessarily normal) operators with this property, call them con-
vexoid. Still another (nameless) property of a normal operator A4 is that
r(A) = w(A); call an operator with this property spectraloid. It is a con-
sequence of Problem 218 that every normaloid operator is spectraloid.
It is also true that every convexoid operator is spectraloid. Indeed, since
the closed disc with center 0 and radius r(A) includes spec 4 and is convex,
it follows that if A is convexoid, then that disc includes W (A4). This implies
that w(A) < r(A), and hence that A is spectraloid.

Problem 219. Discuss the implication relations between the properties
of being convexoid and normaloid.

220. Continuity of numerical range. In what sense is the numerical range a
continuous function of its argument? (Cf. Problems 102 and 103.) The best
way to ask the question is in terms of the Hausdorff metric for compact subsets
of the plane. To define that metric, write

M+ @E={z+a:zeM,|a| <&}

for each set M of complex numbers and each positive number ¢ In this
notation, if M and N are compact sets, the Hausdorff distance d(M, N)
between them is the infimum of all positive numbers ¢ such that both
McN+(and N M + (o).

Since the Hausdorff metric is defined for compact sets, the appropriate
function to discuss is W, not W. As for the continuity question, it still has as
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many interpretations as there are topologies for operators. Is W weakly
continuous? strongly ? uniformly? And what about w? The only thing that is
immediately obvious is that if W is continuous with respect to any topology,
then so is w, and consequently, if w is discontinuous, then so is W.

Problem 220. Discuss the continuity of W and w in the weak, strong, and
uniform operator topologies.

221. Power inequality. The good properties of the numerical range and the
numerical radius have to do with convexity and linearity; the relations
between the numerical range and the multiplicative properties of operators
are less smooth. Thus, for instance, w is certainly not multiplicative, i.e.,
w(AB) is not always equal to w(4)w(B). (Example with commutative
normal operators: if

1 0 00
A=(O O) amdB=(O 1),

then w(A4) = w(B) = 1 and w(4AB) = 0.) The next best thing would be for w
to be submultiplicative (w(4B) £ w(A)w(B)), but that is false too. (Example:

if
0 0 0 1
A= (1 O) and B = (O O)’-

then w(A) = w(B) = 4 and w(AB) = 1.) Since w(AB) < || AB| < || 4] - | B|»
it follows that for normal operators w is submultiplicative (because if A
and B are normal, then |A| = w(A) and ||B|| = w(B)), and for operators
in general w(AB) < 4w(A)w(B) (because |A| < 2w(A) and | B|| < 2w(B)).
The example used to show that w is not submultiplicative shows also that
the constant 4 is best possible here.

Commutativity sometimes helps; here it does not. Examples of com-
mutative operators A and B for which w(AB) > w(A)w(B) are a little harder
to come by, but they exist. Here is one:

0 00O
1 000
A_OIOO
0 01 0

and B = A% It is easy to see that w(4%) = w(4%) = 4. The value of w(4) is
slightly harder to compute, but it is not needed; the almost obvious relation
w(A) < 1 will do. Indeed: w(AB) = w(A43%) =4 > w(A) -4 = w(A)w(B).

The only shred of multiplicative behavior that has not yet been ruled out is
the power inequality

w(Ad”) = (W(A)"
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This turns out to be true, but remarkably tricky. Even for two-by-two matrices
there is no simple computation that yields the result. If not the dimension but
the exponent is specialized, if, say, n = 2, then relatively easy proofs exist, but
even they require surprisingly delicate handling. The general case requires
either brute force or ingenuity.

Problem 221. If A is an operator such that w(A) < 1, then w(4A") < |
Jor every positive integer n.

The statement is obviously a consequence of the power inequality. To
show that it also implies the power inequality, reason as follows. If w(4) = 0,
then 4 = 0, and everything is trivial. If w(A4) # 0, then write B = A/w(A),
note that w(B) < 1, use the statement of Problem 221 to infer that w(B") < 1,
and conclude that w(4") < (w(A4))".

Generalizations of the theorem are known. Here is a nice one: if pis a
polynomial such that p(0) = 0 and |p(z)| < | whenever |z| £ 1, and if 4
is an operator such that w(A) < 1, then w(p(4)) < 1. With a little care,
polynomials can be replaced by analytic functions, and, with a lot of care,
the unit disc (which enters by the emphasis on the inequality [z] £ 1) can
be replaced by other compact convex sets.

The first proof of the power inequality is due to C. A. Berger; the first
generalizations along the lines mentioned in the preceding paragraph were
derived by J. G. Stampfli. The first published version, in a quite general form,
appears in [86]. An interesting generalization along completely different
lines appears in [1017.
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Unitary Dilations

222. Unitary dilations. Suppose that H is a subspace of a Hilbert space K,
and let P be the (orthogonal) projection from K onto H. Each operator B on
K induces in a natural way an operator A on H defined for each f in H by

Af = PBY.
The relation between A and B can also be expressed by
AP = PBP.

Under these conditions the operator A is called the compression of Bto H
and B is called a dilation of A to K. This geometric definition of compression
and dilation is to be contrasted with the customary concepts of restriction
and extension: if it happens that H is invariant under B, then it is not
necessary to project Bf back into H (it is already there), and, in that case,
A is the restriction of B to H and B is an extension of 4 to K. Restriction-
extension is a special case of compression-dilation, the special case in
which the operator on the larger space leaves the smaller space invariant.

There are algebraic roads that lead to compressions and dilations, as well
as geometric ones. One such road goes via quadratic forms. It makes sense to
consider the quadratic form associated with B and to consider it for vectors of
Honly (i.e., to restrict it to H). This restriction is a quadratic form on H, and,
therefore, it is induced by an operator on H; that operator is the compression
A. In other words, compression and dilation for operators are not only
analogous to (and generalizations of) restriction and extension, but, in the
framework of quadratic forms, they are restriction and extension: the quad-
ratic form of A4 is the restriction of the quadratic form of B to H, and the
quadratic form of B is an extension of the quadratic form of 4 to K.

Still another manifestation of compressions and dilations in Hilbert space
theory is in connection with operator matrices. If K is decomposed into H
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and H*, and, correspondingly, operators on K are written in terms of
matrices (whose entries are operators on H and H* and linear transforma-
tions between H and H*), then a necessary and sufficient condition that B
be a dilation of A is that the matrix of B have the form

A X

Y z/)
Problem 222. (a) If |A| =1, then A has a unitary dilation. (b) If
0 £ 4 < 1, then A has a dilation that is a projection.

Note that in both cases the assumptions are clearly necessary. If 4 has a
dilation B that is a contraction, then |Af| = |PBf|| < |Bf || £ | f|l forall f
in H, and if A has a positive dilation B, then (Af, f) = (Bf, /) = 0 for
all fin H.

Corollary. Every operator has a normal dilation.

223. Images of subspaces. The range of an operator is not necessarily closed,
and, all the more, the image of a subspace under an operator is not necessarily
closed. If the operator is very well behaved (bounded from below), all is well.
Just how well does it have to behave?

Problem 223. Is the image of a subspace under a projection closed?

224. Weak closures and dilations. Dilations have easy but sometimes sur-
prising applications to the weak operator topology. Basic weak neighbor-
hoods were defined (Problem 107) in terms of finite sets of vectors. An
equivalent definition is in terms of projections of finite rank.
Assertion: a base for the weak operator topology is the collection of all
sets of the form
{A: |[F(4 — AQF| <&},

where F is a projection of finite rank and ¢ is a positive number. An efficient
way to prove the assertion is to compare the pseudonorms

41,4 = I(Af, 9)I
defined by vectors with the ones
|Allp = IFAF]|
defined by projections of finite rank. Given vectors fy, -+, fi, g1, * -+ » g, let F
be the projection whose range is the span of all the f’s and g’s, and note that
IAll y,,q, = (FAFf;, g)| < |FAF| - M?,

where M = max{[ fy[, -+, I £l lgsll, -~ llgall}. In the reverse direction,
given a projection F of finite rank, let {e,, - -, ¢,} be an orthonormal basis
for ran F and note that

IAlF* < Y. Y I(FAFe;, e)> £ YY" [Alle,, e
i L]
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It follows from the definition of the weak topology via projections that if
A is an operator on an infinite-dimensional Hilbert space H and if Sis a set of
operators on H such that every compression of A, to a finite-dimensional
subspace has a dilation in S, then A, itself belongs to the weak closure of S.
Indeed: the hypothesis means that for every projection F of finite rank there
exists an operator S, in S such that FA, F = FS, F. The hypothesis implies
(with room to spare) that for each ¢ the set

{A:|F(A — Ag)F| < ¢}

meets S, and, consequently, that A, belongs to the weak closure of S.

Problem 224. On an infinite-dimensional Hilbert space, what are the
weak closures of the sets U (unitary operators), N (normal operators),
and P (projections)?

Sometimes it is good to know the weak sequential closures of these sets;
for some pertinent information see [98].

225, Strong closures and extensions. The strong operator topology stands in
the same relation to extension as the weak operator topology to dilation (see
Problem 224). Assertion: a base for the strong operator topology is the
collection of all sets of the form
{4: (4 — Ap)F| < e},

where F is a projection of finite rank and ¢ is a positive number. An efficient
way to prove the assertion is to compare the pseudonorms

1A4l; = IAS]
defined by vectors with the ones

Al = [IAF]|

defined by projections of finite rank. Given vectors fi, ---, f,, let F be the
projection whose range is the span of all the f’s and note that

41l 5, = IAFfl < | AF| - M,
where M = max{[|f |, -, | f,||}- In the reverse direction, given a projection

F of finite rank, let {e,, - --, ¢,} be an orthonormal basis for ran F, and note
that, for all f,

IAFf] = HA ;(Ff, epe;

Z(f, ej)Aej SIS }; ||Aej||>

so that
14lr £ 2. 4],
i
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One application of this approach to the strong topology is a simple proof
that the set of nilpotent operators of index 2 is strongly dense; see Solution
111. It is sufficient to prove that every operator A of finite rank belongs to the
strong closure of the set of nilpotents of index 2. Let Hy, be a finite-dimen-
sional subspace that includes ran A, let H, be a subspace of the same dimen-
sion as H, and orthogonal to it, and consider the matrix corresponding to A4
with respect to the decomposition H = H, @ H, @ (H, ® H))*:

A, * *
0 0 0)
0 0 0
If B is the operator whose matrix with respect to the same decomposition is
4 2dolido
€
—ed, )
TN I
0 0 0
then B is nilpotent of index 2; if F is the projection
1 00
0 0 0}
0 00

then |[(A — B)F| < ¢ That is: B belongs to the strong neighborhood of 4
determined by ¢ and F.
The technique is based on the nilpotence of all matrices of the form

A —I-A
o >
—ad —4

it is related to the alternative proof of the weak density of the set of normal
operators (Solution 224), based on the normality of all matrices of the form

A A*

A* A S
Another application of the same technique, based on the idempotence of all
matrices of the form

A «I‘A
o

al—A) 1-4
(with a = ¢/2||1 — A||) shows that the set of all idempotent operators is
strongly dense.
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The strong density of nilpotents and idempotents is part of the unbounded
pathology of operator theory; in bounded sets it cannot happen. That is: the
set of all nilpotent contractions of index 2 is strongly closed, and so is the set
of all idempotent contractions. Proof: Solution 113.

It follows from the definition of the strong topology via projections that if
Ag is an operator on an infinite-dimensional Hilbert space H and 8 is a set of
operators on H such that every restriction of A, to a finite-dimensional subspace
has an extension in S, then A, itself belongs to the strong closure of S. (The
restriction of 4, to a subspace makes sense whether the subspace is invariant
under 4, or not; in any event the restriction is a bounded linear transfor-
mation from the subspace into H.) Indeed: the hypothesis means that for
every projection F of finite rank there exists an operator S, in S such that
Ao F = S, F. The hypothesis implies, with room to spare, that for each ¢
the set

{A: (A4 = Ag)F| < ¢}

meets S, and, consequently, that 4, belongs to the strong closure of S.

As an example, consider the set S of subnormal operators on H. If 4, is
subnormal, then, by definition, 4, has a normal extension to a larger
space K. The same is true, therefore, of every restriction of 4, to a finite-
dimensional subspace M of H. Since the pairs (M, K> are obviously iso-
morphic to the corresponding pairs (M, H), it follows that 8§ is a subset
of the strong closure of the set of normal operators on H. The fact is that
S is strongly closed (Problem 203), but that’s harder to prove.

Problem 225. On an infinite-dimensional Hilbert space, what are the
strong closures of the sets U (unitary operators) and P (projections)?
What about the set of co-isometries?

226. Strong limits of hyponormal operators.

Problem 226. What is the strong closure of the set of hyponormal
operators?

227. Unitary power dilations. The least unitary looking contraction is 0,
but even it has a unitary dilation. The construction of Solution 222 exhibits

it as
0 1
1 0f

The construction is canonical, in a sense, but it does not have many useful
algebraic properties. It is not necessarily true, for instance, that the square
of a dilation is a dilation of the square; indeed, the square of the dilation
of 0 exhibited above is
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which is not a dilation of the square of 0. Is there a unitary dilation of 0
that is fair to squares? The answer is yes:

0 0 1

1 00

010
is an example. The square of this dilation is
010
0 0 1}
1 0 0
which is a dilation of the square of 0. Unfortunately, however, this dila-
tion is not perfect either; its cube is

1 00

0 1 0}

0 0 1

which is not a dilation of the cube of 0. The cube injustice can be remedied
by passage to

0 0 0 1
1 00 0
010 0F)
0010

but then fourth powers fail. There is no end to inductive greed; the clearly
suggested final demand is for a unitary dilation of 0 with the property that
all its powers are dilations of 0. In matrix language the demand is for a
unitary matrix with the property that one of its diagonal entries is 0 and
that, moreover, the corresponding entry in all its powers is also 0. Brief
meditation on the preceding finite examples, or just inspired guessing,
might suggest the answer; the bilateral shift will work, with the {0, 0)
entry playing the distinguished role. (Caution: the unilateral shift is not
unitary.) The general definition suggested by the preceding considerations
is this: an operator B is a power dilation (sometimes called a strong dilation)
of an operator A4 if B" is a dilation of 4" forn = 1,2,3, ---.

Problem 227. Every contraction has a unitary power dilation.

In all fairness to dilations, it should be mentioned that they all have at
least one useful algebraic property: if B is a dilation of A4, then B* is a dila-
tion of 4*. The quickest proof is via quadratic forms: if (Af, f) = (Bf, f)
for each fin the domain of A, then, for the same f’s, (A*f, ) = (f, Af) =
Af, NHY* = (Bf, /Y* = (f, Bf) = (B*f, ). One consequence of this is
that if B is a power dilation of A, then B* is a power dilation of A*.
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The power dilation theorem was first proved by Nagy [95]. The subject has
received quite a lot of attention since then; good summaries of results are in
[96] and [94]. An especially interesting aspect of the theory concerns minimal
unitary power dilations. Their definition is similar to that of minimal normal
extensions (Problem 197), and they too are uniquely determined by the given
operator (to within unitary equivalence). The curious fact is that knowledge
of the minimal unitary power dilation of an operator is not so helpful
as one might think. Schreiber [128] proved that all strict contractions (see
Problem 153) on separable Hilbert spaces have the same minimal unitary
power dilation, namely a bilateral shift; Nagy [97] extended the result to
non-separable spaces.

228. Ergodic theorem. If u is a complex number of modulus 1, then the
averages

1l
— w
n j;()

from a convergent sequence. This is an amusing and simple piece of classical
analysis, whose generalizations are widely applicable. To prove the statement,
consider separately the cases u = 1 and u # 1. If u = 1, then each average is
equal to 1, and the limitis 1. If u # 1, then
12} 1—u"

Lw nd — u)

n =

1
|t —ul

and the limit is 0.

The most plausible operatorial generalization of the result of the pre-
ceding paragraph is known as the mean ergodic theorem for unitary oper-
ators; it asserts that if U is a unitary operator on a Hilbert space, then the
averages

form a strongly convergent sequence. A more informative statement of the
ergodic theorem might go on to describe the limit; it is, in fact, the projection
whose range is the subspace {f: Uf = f}, ie., the subspace of fixed points of
U.

It is less obvious that a similar ergodic theorem is true not only for unitary
operators but for all contractions.

Problem 228. If A is a contraction on a Hilbert space H, then
n—1
gy
n i<
is a strongly convergent sequence of operators on H.
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229. von Neumann’s inequality. If F is a bounded complex-valued function
defined on a set M, write

IFllae = sup{|F(1)|: 1€ M}.

If A is a normal operator with spectrum A, and if F is a bounded Borel
measurable function on A, then |F(A)|| = || F|lA- (Equality does not hold in
general; F may take a few large values that have no measure-theoretically
detectable influence on F(A).) It is not obvious how this inequality can be
generalized to non-normal operators. There are two obstacles: in general,
F(A) does not make sense, and, when it does, the result can be false. There
is an easy way around both obstacles: consider only such functions F for
which F(A) does make sense, and consider only such sets, in the role of A,
for which the inequality does hold. A viable theory can be built on these
special considerations.

If the only functions considered are polynomials, then they can be applied
to every operator. If, however, the spectrum of the operator is too small, the
inequality between norms will fail. If, for instance, A is quasinilpotent and
p(z) = z, then [p(A)] = A]l and [[pllspec 4 = 0; the inequality [p(4)] <
[Pllspec 4 holds only if A = 0. The earliest positive result, which is still the
most incisive and informative statement along these lines, is sometimes
known as the von Neumann inequality. (Reference: [151], [70].)

Problem 229. If |A|| = 1 and if D is the closed unit disc, then
p(A)] = lIpllp

Jor every polynomial p.

The general context to which the theorem belongs is the theory of spectral
sets. That theory is concerned with rational functions instead of just poly-
nomials. Roughly speaking, a spectral set for an operatoris a set such that the
appropriate norm inequality holds for all rational functions on the set.
Precisely, a spectral set for A is a set M such that spec A & M and such that if
Fisa bounded rational function on M (i.e., a rational function withno polesin
the closure of M), then ||F(A)|| < | Fl,. (Note that the condition on the
poles of the admissible F’s implies that F(A4) makes sense for each such F.)
It turns out that the theory loses no generality if the definition of spectral
set demands that the set be closed, or even compact, and that is usually
done. To demand the norm inequality for polynomials only does, however,
seriously change the definition. A moderately sophisticated complex func-
tion argument (cf. [907]) can be used to show that the polynomial definition
and the rational function definition are the same in case the set in question
is sufficiently simple. (For this purpose a set is sufficiently simple if it is
compact and its complement is connected.) In view of the last remark, the
von Neumann inequality is frequently stated as follows: the closed unit
disc is a spectral set for every contraction.
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Commutators

230. Commutators. A mathematical formulation of the famous Heisenberg
uncertainty principle is that a certain pair of linear transformations P and Q
satisfies, after suitable normalizations, the equation PQ — QP = 1. It is
easy enough to produce a concrete example of this behavior; consider
L?(— 00, +00) and let P and Q be the differentiation transformation and
the position transformation, respectively (that is, (Pf)(x) = f'(x) and
(@NH(x) = xf(x)). These are not bounded linear transformations, of
course, their domains are far from being the whole space, and they mis-
behave in many other ways. Can this misbehavior be avoided?

To phrase the question precisely, define a commutator as an operator of
the form PQ — QP, where P and Q are operators on a Hilbert space. More
general uses of the word can be found in the literature (e.g., commutators on
Banach spaces), and most of them do not conflict with the present definition ;
the main thing that it is intended to exclude is the unbounded case. The
question of the preceding paragraph can be phrased this way: “Is 1 a com-
mutator?” The answer is no.

Problem 230. The only scalar commutator is 0.

The finite-dimensional case is easy to settle. The reason is that in that case
the concept of trace is available. Trace is linear, and the trace of a product of
two factors is independent of their order. It follows that the trace of a com-
mutator is always zero; the only scalar with trace 0 is 0 itself. That settles the
negative statement. More is known: in fact a finite square matrix is a com-
mutator if and only if it has trace 0 ([135], [2]).

For the general (not necessarily finite-dimensional) case, two beautiful
proofs are known, quite different from one another; they are due to Wintner
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[1607 and Wielandt [158]. Both apply, with no change, to arbitrary complex
normed algebras with unit. A normed algebra is a normed vector space that is
at the same time an algebra such that

gl = 11 llgl

for all fand g. A unit in a normed algebra is, of course, an element e such
that ef = fe = f for all f; it is customary to require, moreover, that
lell = 1. The algebraic character of the Wintner and Wielandt proofs can
be used to get more information about commutators, as follows.

The identity is a projection; it is the unique projection with nullity 0.
(Recall that the nullity of an operator is the dimension of its kernel.) What
about a projection (on an infinite-dimensional Hilbert space) with nullity I;
can it be a commutator? Intuition cries out for a negative answer, and, for
once, intuition is right [55]. Consider the normed algebra of all operators
and in it the ideal of compact operators. The quotient algebra is a normed
algebra. In that algebra the unit element is not a commutator (by Wintner
and Wielandt); translated back to operators, this means that the identity
cannot be equal to the sum of a commutator and a compact operator.
Since a projection with nullity 1 is a very special example of such a sum,
the proof is complete. The following statement summarizes what the
proof proves.

Corollary. The sum of a compact operator and a non-zero scalar is not a
commutator.

The corollary gives a sufficient condition that an operator be a non-
commutator; the most surprising fact in this subject is that on separable
spaces the condition is necessary also [22]. In other words: on a separable
space every operator that is not the sum of a non-zero scalar and a compact
operator is a commutator. The proof is not short.

231. Limits of commutators. Granted that the identity is not a commutator,
is it at least a limit of commutators? Do there, in other words, exist sequences
{P,} and {Q,} of operators such that |1 — (P,Q, — @, P)| = 0asn— c0?
The Brown-Pearcy characterization of commutators (see Problem 230)
implies that the answer is yes. (See also Problem 235.) A more modest result
is more easily accessible.

Problem 231. If {P,} and {Q,} are bounded sequences of operators
(i.e., if there exists a positive number o such that |P,| < o and |Q,| < o
Jor all n), and if the sequence {P,Q,— Q, P,} converges in the norm to an
operator C, then C # 1.

In other words: the identity cannot be the limit of commutators formed
from bounded sequences. Reference: [20].
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232. Kleinecke-Shirokov theorem. The result of Problem 230 says that if
C = PQ — QP and if C is a scalar, then C = 0. How does the proof use the
assumption that C is a scalar? An examination of Wielandt’s proof suggests
at least part of the answer: it is important that C commutes with P. Com-
mutators with this sort of commutativity property have received some
attention; the original question (PQ — QP = 17) fits into the context of
their theory. An easy way for PQ — QP to commute with P is for it to be
equal to P. Example:

() e

If that happens, then an easy inductive argument proves that P'"Q — QP" =
nP" and this implies that

n|[ Pl = 21 P"|-12]l

for every positive integer n. Since it is impossible that n < 2||Q|| for all n, it
follows that P* = 0 for some #, i.e., that P (=PQ — QP) is nilpotent.

The first general theorem of this sort is due to Jacobson [79], who proved,
under suitable finiteness assumptions, that if C = PQ — QP and C com-
mutes with P, then C is nilpotent. This is a not unreasonable generalization of
the theorem about scalars; after all the only nilpotent scalar is 0. In infinite-
dimensional Hilbert spaces finiteness conditions are not likely to be satisfied.
Kaplansky conjectured that if nilpotence is replaced by its appropriate
generalization, quasinilpotence, then the Jacobson theorem will extend to
operators, and he turnéd out to be right. The proof was discovered, inde-
pendently, by Kleinecke [88] and Shirokov [134].

Problem 232. If P and Q are operators, if C = PQ — QP, and if C com-
mutes with P, then C is quasinilpotent.

233. Distance from a commutator to the identity. By Wintner and Wielandt,
commutators cannot be equal to 1; by Brown-Pearcy, commutators can
come arbitrarily near to 1. Usually, however, a commutator is anxious to stay
far from 1.

Problem 233. (a) If C = PQ — QP and if P is hyponormal (hence, in
particular, if P is an isometry, or if P is normal), then |1 — C|| 2 L.
(b) If C commutes with P, then |1 — C| = 1.

If the underlying Hilbert space is finite-dimensional, then it is an easy
exercise in linear algebra to prove that |1 — C| = 1 for all commutators C.

234. Operators with large kernels. As far as the construction of com-
mutators is concerned, all the results of the preceding problems are negative;

they all say that something is not a commutator.
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To get a positive result, suppose that H is an infinite-dimensional Hilbert
space and consider the infinite direct sum H@ H® H@® - - -. Operators on
this large space can be represented as infinite matrices whose entries are
operators on H. If, in particular, A is an arbitrary operator on H (it could even
be the identity), then the matrix

04 0 O
0 0 4 0
P=10 0 0 4
0 0 0 O
defines an operator; if
0 0 0O
1 0 0 0
2=l0 10 0 |
0 0 1 0
then it can be painlessly verified that
A 0 0 0
0 0 00
PQ—QP=|0 0 0 0
0 000

Since the direct sum of infinitely many copies of H is the direct sum of the
first copy and the others, and since the direct sum of the others is isomorphic
(unitarily equivalent) to H, it follows that every two-by-two operator matrix

of the form
A 0
0 0
is a commutator [52, 537.

It is worth while reformulating the result without matrices. Call a sub-
space M of a Hilbert space H large if dim M = dim H. (The idea has appeared
before, even if the word has not; cf. Problem 142.) In this language, if H is
infinite-dimensional, then H (regarded as one of the axes of the direct sum
H @ H)is a large subspace of H @ H. If the matrix of an operatoron H® H

is

A 0

0 of
then that operator has a large kernel, and, moreover, that kernel reduces A4.
If, conversely, an operator on an infinite-dimensional Hilbert space has a

131



PROBLEMS

large reducing kernel, then that operator can be represented by a matrix of the

form

A 0O

0 o)
(Represent the space as the direct sum of the kernel and its orthogonal
complement. If the dimension of that orthogonal complement is too small,
enlarge it by adjoining ““half ” the kernel) In view of these remarks the
matrix result of the preceding paragraph can be formulated as follows:

every operator with a large reducing kernel is a commutator. This result
can be improved [106].

Problem 234. Every operator with a large kernel is a commutator.

Corollary 1. On an infinite-dimensional Hilbert space commutators are
strongly dense.

Corollary 2. Every operator on an infinite-dimensional Hilbert space is
the sum of two commutators.

Corollary 2 shows that nothing like a trace can exist on the algebra of all
operators on an infinite-dimensional Hilbert space. The reason is that a linear
functional that deserves the name “trace” must vanish on all commutators,
and hence, by Corollary 2, identically.

235. Direct sums as commutators.

Problem 235. Ifanoperator A on aseparable Hilbert space is not ascalar,
then the infinite direct sum A @ A @ A @ .- - is a commutator.

Even though this result is far from a complete characterization of com-
mutators, it answers many of the obvious questions about them. Thus, for
instance, it is an immediate corollary that the spectrum of a commutator is
quite arbitrary; more precisely, each non-empty compact subset of the
plane (i.e., any set that can be a spectrum at all) is the spectrum of some
commutator. Another immediate corollary is that the identity is the limit
(in the norm) of commutators; compare Problems 231 and 233.

The techniques needed for the proof contain the germ (a very rudimentary
germ, to be sure) of what is needed for the general characterization of com-
mutators [22].

236. Positive self-commutators. The self-commutator of an operator A is
the operator A*4 — AA*. The theory of self-commutators has some interest.
It is known that a finite square matrix is a self-commutator if and only if it is
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Hermitian and has trace 0 ([140]). An obvious place where self-commuta-
tors could enter is in the theory of hyponormal operators; a necessary and
sufficient condition that A be hyponormal is that the self-commutator of
A be positive. That self-commutators can be non-trivially positive is a
relatively rare phenomenon (which, by the way, is strictly infinite-dimen-
sional). It is natural to ask just how positive a self-commutator can be,
and the answer is not very.

Problem 236. A positive self-commutator cannot be invertible.
Reference: [108].

237. Projections as self-commutators. If a self-commutator C = A*¥4 — AA*
is positive, then, by Problem 236, C is not invertible. The easiest way for C to
be not invertible is to have a non-trivial kernel. Among the positive operators
with non-trivial kernels, the most familar ones are the projections. Can Cbe a
projection, and, if so, how?

The most obvious way for C to be a projection is for 4 to be normal; in that
case C = 0. Whatever other ways there might be, they can always be com-
bined with a normal operator (direct sum) to yield still another way, which,
however, is only trivially different. The interesting question here concerns
what may be called abnormal operators, i.e., operators that have no normal
direct summands. Otherwise said, 4 is abnormal if no non-zero subspace
of the kernel of A¥4 — AA* reduces A.

It is not difficult to produce an example of an abnormal operator whose
self-commutator is a projection: the unilateral shift will do. If 4 is a non-
normal isometry (i.e., the direct sum of a unilateral shift of non-zero multi-
plicity and a unitary operator—see Problem 149), then ||A| =1 and C =
A*4 — AA* =1 — AA* is the projection onto the kernel of A*. What is
interesting is that in the presence of the norm condition (||4]] = 1) this is the
only way to produce examples.

Problem 237. (a) If A is an abnormal operator of norm 1, such that
A*A — AA* isa projection, then A is an isometry. (b) Does the statement
remain true if the norm condition is not assumed?

238. Multiplicative commutators. The word ‘‘commutator” occurs in two
distinct mathematical contexts. In ring theory it means PQ — QP (additive
commutators); in group theory it means PQP~1Q~! (multiplicative com-~
mutators). A little judicious guessing about trace versus determinant, and,
more generally, about logarithm versus exponential, is likely to lead to the
formulation of multiplicative analogues of the results about additive com-
mutators. Some of those analogues are true. What about the analogue of the
additive theorem according to which the only scalar that is an additive
commutator is 07
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Problem 238. If H is an infinite-dimensional Hilbert space, then a
necessary and sufficient condition that a scalar o, acting on H be a multi-
plicative commutator is that |a| = 1.

For finite-dimensional spaces determinants can be brought into play. The
determinant of a multiplicative commutator is 1, and the only scalars whose
determinants are 1 are the roots of unity of order equal to the dimension
of the space. This proves that on an n-dimensional space a necessary con-
dition for a scalar o to be a multiplicative commutator is that o" = 1; a
modification of the argument that works for infinite-dimensional spaces
shows that the condition is sufficient as well.

It turns out that the necessity proof is algebraic, just as in the additive
theory, in the sense that it yields the same necessary condition foran arbitrary
complex normed algebra with unit. From this, in turn, it follows, just as in
the additive theory, that if a commutator is congruent to a scalar modulo
the ideal of compact operators, then that scalar must have modulus 1.

239. Unitary multiplicative commutators. The positive assertion of Problem
238 can be greatly strengthened. One of the biggest steps toward the strength-
ened theory is the following assertion.

Problem 239. On an infinite-dimensional Hilbert space every unitary
operator is a multiplicative commutator.

240. Commutator subgroup. The commutator subgroup of a group is the
smallest subgroup that contains all elements of the form PQP™'Q71;
in other words, it is the subgroup generated by all commutators (multi-
plicative ones, of course). The set of all invertible operators on a Hilbert
space is a multiplicative group; in analogy with standard finite-dimen-
sional terminology, it may be called the full linear group of the space.

Problem 240. What is the commutator subgroup of the full linear group of
an infinite-dimensional Hilbert space?
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Toeplitz Operators

241. Laurent operators and matrices. Multiplications are the prototypes of
normal operators, and most of the obvious questions about them (e.g., those
about numerical range, norm, and spectrum) have obvious answers. (This is
not to say that every question about them has been answered.) Multiplica-
tions are, moreover, not too sensitive to a change of space; aside from the
slightly fussy combinatorics of atoms, and aside from the pathology of the
uncountable, what happens on the unit interval or the unit circle is typical of
what can happen anywhere.

If ¢ is a bounded measurable function on the unit circle, then the multi-
plication induced by ¢ on L? (with respect to normalized Lebesgue measure
) is sometimes called the Laurent operator induced by ¢, in symbols L,,. The
matrix of L, with respect to the familiar standard orthonormal basis in L?
(e(2) = 2", n =0, £1, £2, - - ) has a simple form, elegantly related to ¢.
To describe the telation, define a Laurent matrix as a (bilaterally) infinite
matrix {4;;» such that

/lt+1,j+1 = /lij
foralliand j (=0, +1, £2, --.). In words: a Laurent matrix is one all of
whose diagonals (parallel to the main diagonal) are constants.

Problem 241. A necessary and sufficient condition that an operator on L*
be a Laurent operator L, is that its matrix {A;;> with respect to the basis
{e,: n =10, +£1, £2, -} be a Laurent matrix; if that condition is
satisfied, then Ay = a,_;, where ¢ = ), a,e, is the Fourier expan-
sion of .

242. Toeplitz operators and matrices. Laurent operators (multiplications)
are distinguished operators on L? (of the unitcircle), and H? is a distinguished
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subspace of L?; something interesting is bound to happen if Laurent
operators are compressed to H2. The description of what happens is called
the theory of Toeplitz operators. Explicitly: if P is the projection from
L2 onto H?, and if ¢ is a bounded measurable function, then the Toeplitz
operator T, induced by ¢ is defined by
T,f =Pl f)

for all f in H2. The simplest non-trivial example of a Laurent operator is the
bilateral shift W (=L, );correspondingly, the simplest non-trivialexample of
a Toeplitz operator is the unilateral shift U (=T,,).

There is a natural basis in L?; the matrix of a Laurent operator with respect
to that basis has an especially simple form. The corresponding statements are

true about H? and Toeplitz operators. To state them, define a Toeplitz matrix
as a (unilaterally) infinite matrix {4,;) such that

/lt+1,j+1 = /ltj

foralliand j(=0,1,2,---). In words: a Toeplitz matrix is one all of whose
diagonals (parallel to the main diagonal) are constants. The structural
differences between the Laurent theory and the Toeplitz theory are pro-
found, but the difference between the two kinds of matrices is superficial and
easy to describe; for Laurent matrices both indices go both ways from 0, but
for Toeplitz matrices they go forward only.

Problem 242. A necessary and sufficient condition that an operator on H?
be a Toeplitz operator T, is that its matrix {A;;) with respect to the basis
{e,:n =0,1,2, ...} be a Toeplitz matrix; if that condition is satisfied,
then Ay = a;_;, where ¢ = Y . a,e, is the Fourier expansion of ¢.

The necessity of the condition should not be surprising: in terms of an
undefined but self-explanatory phrase, it is just that the compressed operator
has the compressed matrix.

The unilateral shift U does for Toeplitz operators what the bilateral shift
W does for Laurent operators—but does it differently.

Corollary 1. A necessary and sufficient condition that an operator A on
H? be a Toeplitz operator is that U*AU = A.

Since W is unitary, there is no difference between W*AW = A4 and
AW = WA. The corresponding equations for U say quite different things.
The first, U*AU = A, characterizes Toeplitz operators. The second, AU =
UA, characterizes analytic Toeplitz operators (see Problem 147). The
Toeplitz operator T, induced by ¢ is called analyric in case ¢ is analytic (see
Problem 33), ie., in case ¢ is not only in L but in H®. (To justify the defini-
tion, note that the statement of Problem 242 implies that the correspon-
dence ¢ + T, is one-to-one.) Observe that an analytic Toeplitz operator
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is subnormal; it is not only a compression but a restriction of the corre-
sponding Laurent operator.

Corollary 2. The only compact Toeplitz operator is 0.

243. Toeplitz products. The algebraic structure of the set of all Laurent
operators holds no surprises: everything is true and everything is easy. The
mapping ¢ +— L, from bounded measurable functions to operators is an
algebraic homomorphism (it preserves unit, inear operations, multiplication,
and conjugation), and an isometry (supremum norm to operator norm); the
spectrum of L, is the essential range of ¢. Since the Laurent operators con-
stitute the commutant of W (Problem 146), and since the product W~ 'AW is
weakly continuous in its middle factor, it follows that the set of all Laurent
operators is weakly (and hence strongly) closed.

Some of the corresponding Toeplitz statements are true and easy, but
some are hard, or false, or unknown. The easiest statements concern unit,
linear operations, and conjugation: since both the mappings ¢ — L, and
L,— (PL,)|H? (=the restriction of PL, to H?> = T,) preserve the
algebraic structures named, the same is true of their composite, which is
¢+ T,. (The preservation of adjunction is true for compressions in
general; see Problem 227.) The argument that proved that the set of all
Laurent operators is weakly closed works for Toeplitz operators too; just
replace W~ 'AW by U*AU (cf. Corollary 1 of Problem 242).

It is a trivial consequence of the preceding paragraph that a Toeplitz
operator T, is Hermitian if and only if ¢ is real; indeed T, = T,* if and
only if ¢ = ¢*. It is also true that T, is positive if and only if ¢ is positive.
Indeed, since (T, f, ) = (L, f, f) whenever feH?, it follows that T, is
positive if and only if (L, f, f) = 0 for all f in H?. The latter condition is
equivalent to this one: (W"L, f, W"f) = 0 whenever f e H? (and n is an
arbitrary integer). Since W commutes with L,, the condition can also be
expressed in this form: (L, W"f, W"f) Z 0 whenever f € H?2. Since the set of
all W"f’s, with f in H?, is dense in L2, the condition is equivalent to L,z0,
and henceto ¢ = 0.

The easiest statements about the multiplicative properties of Toeplitz
operators are negative: the set of all Toeplitz operators is certainly not
commutative and certainly not closed under multiplication. A counter-
example for both assertions is given by the unilateral shift and its adjoint.
Both U and U* are Toeplitz operators, but the product U*U (which is equal
to the Toeplitz operator 1)is not the same as the product UU* (whichisnot a
Toeplitz operator). One way to prove that UU* is not a Toeplitz operatoristo
use Corollary 1 of Problem 242: since U¥(UUMU = (U*U)U*U) =1
(# UU%), everything is settled. Alternatively, this negative result could have
been obtained via Problem 242 by a direct look at the matrix of UU*.

When is the product of two Toeplitz operators a Toeplitz operator? The
answer is: rarely. Reference: [19].
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Problem 243. A necessary and sufficient condition that the product T, T,
of two Toeplitz operators be a Toeplitz operator is that either @* or Y
be analytic;, if the condition is satisfied, then T, T, = T,,.

The Toeplitz operator T, induced by ¢ is called co-analytic in case ¢ is
co-analytic (see Problem 33). In this language, Problem 243 says that the
product of two Toeplitz operators is a Toeplitz operator if and only if the
first factor is co-analytic or the second one is analytic.

Corollary. A necessary and sufficient condition that the product of two
Toeplitz operators be zero is that at least one factor be zero.

Concisely: among the Toeplitz operators there are no zero-divisors.

244. Compact Toeplitz products. The Toeplitz mapping ¢ +— T, from
functions to operators is not multiplicative; is it at least multiplicative
modulo compact operators?

Problem 244. If ¢ and y are in L™, does it follow that T, T, — T,,
is compact?

245. Spectral inclusion theorem for Toeplitz operators. Questions about the
norms and the spectra of Toeplitz operators are considerably more difficult
than those for Laurent operators. As for the norm of T, for instance, all that is
obvious at first glance is that ||T,|| < |IL,[l (= ¢[,); that much is obvious
because T is a compression of L. About the spectrum of T nothing is obvious,
but there is a relatively easy inequality ([68]) that answers some of the
natural questions.

Problem 245. If L and T are the Laurent and the Toeplitz operators in-
duced by a bounded measurable function, then II(L) < IK(T).

This is a spectral inclusion theorem, formally similar to Problem 200; here,
too, the “larger” operator has the smaller spectrum. The result raises a hope
that it is necessary to nip in the bud. If T, is bounded from below, so that
0 ¢ I(T,,), then, by Problem 245, 0¢ I1(L,). This is equivalent to L, being
bounded from below and hence to ¢ being bounded away from 0. If the
converse were true, then the spectral structure of T, would be much more
easily predictable from ¢ than in fact it is; unfortunately the converse is false.
If, indeed, ¢ = e_,, then ¢ is bounded away from 0, but T,e, = Pe_; = 0,
so that T, has a non-trivial kernel.

Although the spectral behavior of Toeplitz operators is relatively bad,
Problem 245 can be used to show that in some respects Toeplitz operators
behave as if they were normal. Here are some samples.

Corollary 1. If ¢ is a bounded measurable function, then n(T,) =
1Tl = llelx-
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Corollary 1 says, among other things, that the correspondence ¢ +— T, is
norm-preserving; this recaptures the result (cf. Problem 242) that that
correspondence is one-to-one.

Corollary 2. There are no quasinilpotent Toeplitz operators other than 0.
Corollary 3. Every Toeplitz operator with a real spectrum is Hermitian.

Corollary 4. The closure of the numerical range of a Toeplitz operator is
the convex hull of its spectrum.

246. Continuous Toeplitz products. The multiplicative properties of T, are
bad both absolutely and relatively (relative to compact operators, that is). The
example in Solution 244 used discontinuous functions; is that what made it
work?

Problem 246. If ¢ and y are continuous, does it follow that T, T, — T,,
is compact?

247. Analytic Toeplitz operators, The easiest Toeplitz operators are the
analytic ones, but even for them much more care is needed than for multi-
plications. The operative word is “analytic”. Recall that associated with each
¢ in H® there is a function ¢ analytic in the open unit disc D (see Problem 35).
The spectral behavior of T,, is influenced by the complex analytic behavior of
@ rather than by the merely set-theoretic behavior of ¢. Reference: [159].

Problem 247. If ¢ e H, then the spectrum of T, is the closure of the
image of the open unit disc D under the correspondmg element p of H®;
in other words spec T,, = @(D).

Here is still another way to express the result. If ¢ € L, then the spectrum
of L, is the essential range of ¢; if ¢ € H, then the spectrum of T,, is what
may be called the essential range of @.

248. Eigenvalues of Hermitian Toeplitz operators. Can an analytic Toeplitz
operator have an eigenvalue ? Except in the trivial case of scalar operators, the
answer is no. The reason is that if ¢ is analytic and ¢ - f = Af for some
fin H?, then the F. and M. Riesz theorem (Problem 158) implies that
either ¢ = 4 or f = 0. Roughly speaking, the reason is that an analytic
function cannot take a constant value on a set of positive measure without
being a constant. For Hermitian Toeplitz operators this reasoning does not
apply: there is nothing to stop a non-constant real-valued function from
being constant on a set of positive measure.

Problem 248. Given a real-valued function ¢ in L, determine the point
spectrum of the Hermitian Toeplitz operator T,.
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249. Zero-divisors. Can operators that are not small have small products?
There are many ways to interpret the question. A trivial way is to interpret
“small” to mean “zero”, and in that case the answer is trivially yes: there are
operators that are zero-divisors. It is relevant to recall, however, that with this
interpretation the answer is no for Toeplitz operators.

Another way to interpret “small” is as “compact”, but the answer for
operators in general doesn’t change; it is still yes. Indeed: there are non-
compact zero-divisors. One way to make the question more challenging
might seem to be to insist that the factors be “good ” operators, e.g., Hermitian
operators with kernel 0. The answer, however, is still the same, and
still easy. Example: if 4 = 1 (on an infinite-dimensional space) and
B = diag(1, 4, 4, - ) (on the same space), then A @ B and B @ 4 are
non-compact Hermitian operators with kernel 0, whose product is compact.

Very well, to rule out this sort of construction, rule out eigenvalues. Do
there exist two Hermitian operators with no eigenvalues whose product is
compact? Now at last the answer is not quite so near the surface, but it turns
out that it is still yes. Unless, however, the approach is right, the construction
can be quite laborious.

At least one question pertinent to the present context still remains: what
about Toeplitz operators?

Problem 249. Do there exist non-zero Toeplitz operators whose product
is compact? Equivalently: are there Toeplitz zero-divisors modulo the
compact operators?

250. Spectrum of a Hermitian Toeplitz operator.

Problem 250. Given a real-valued function ¢ in L®, determine the
spectrum of the Hermitian Toeplitz operator T,,.

For more recent and more general studies of the spectra of Toeplitz
operators, see Widom [154, 1557.
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Chapter 1. Vectors
Problem 1. Polarize.

Problem 2. Consider a perturbation of the given form by a small
multiple of a strictly positive one.

Problem 3. Use uniqueness: if f = Zf a;e;, then E(f) = Y ; a; &(ep).

Problem 4. Use inner products to reduce the problem to the strict
convexity of the unit disc.

Problem 5. Consider characteristic functions in L(0, 1). An alternative
hint, for those who know about spectral measures, is to contemplate spectral

measures.

Problem 6. If f and g are normalized crinkled arcs, define ¢ on [0, 1]
so that [lg(O)l = || f(e()Il.

Problem 7. A countably infinite set has an uncountable collection of
infinite subsets such that the intersection of two distinct ones among them

is always finite.

Problem 8. Consider the differences e, — e,_, formed from an ortho-
normal basis {--,e_;, eq, €1, ).

Problem 9. Omit an infinite subset by omitting one element at a time.
Problem 10. Determine the orthogonal complement of the span.
Problem 11. Use Solution 10.

Problem 12. [(e; — f;, e)| = [(e; — fi, f))I.

Chapter 2. Spaces

Problem 13. Prove that M + N is complete. There is no loss of
generality in assuming that dim M = 1.

Problem 14. In an infinite-dimensional space there always exist two
subspaces whose vector sum is different from their span.

Problem 15, If g + he L, withgin M and hin N, then g € L n M. For
the converse: use Solution 14,
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Problem 16. How many basis elements can an open ball of diameter

\/5 contain?

Problem 17. Given a countable basis, use rational coefficients. Given a
countable dense set, approximate each element of a basis close enough to
exclude all other basis elements.

Problem 18. Fit infinitely many balls of the same radius inside any given
ball of positive radius.

Chaper 3. Weak Topology

Problem 19, Consider orthonormal sets. Caution: is weak closure the
same as weak sequential closure?

Problem 20. Expand || f, — f||*.

Problem 21. Use the definition of weak convergence, (f,, 9) = ([, 9),
withg = f.

Problem 22. The span of a weakly dense set is the whole space.

Problem 23. Consider the set of all complex-valued functions & on
H such that |£(f)| £ | f]l for all £, endowed with the product topology, and
show that the linear functionals of norm less than or equal to 1 form a
closed subset.

Problem 24. Given a countable dense set, define all possible basic
weak neighborhoods of each of its elements, using finite subsets of itself
for the vector parameters and reciprocals of positive integers for the
numerical parameters of the neighborhoods; show that the resulting
collection of neighborhoods is a base for the weak topology. Alternatively,
given an orthonormal basis {e,, e,, e3, - - -}, define a metric by

A9 =Y510 - el

Problem 25. Given a vector in the open unit ball, add suitable multiples
of orthonormal vectors to convert it to a unit vector.

Problem 26. If the unit ball is weakly metrizable, then it is weakly
separable.
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Problem 27. If the conclusion is false, then construct, inductively,
an orthonormal sequence such that the inner product of each term with
a suitable element of the given weakly bounded set is very large; then form a
suitable (infinite) linear combination of the terms of that orthonormal
sequence.

Problem 28. Construct a sequence that has a weak cluster point but
whose norms tend to co.

Problem 29. Consider partial sums and use the principle of uniform
boundedness.

Problem 30. (a) Given an unbounded linear functional &, use a Hamel
basis to construct a Cauchy net {g,} such that (f, g;) - &(f) for each f.
(b) If {g,} is a weak Cauchy sequence, then &(f) = lim, (f, g,) defines a
bounded linear functional.

Chapter 4. Analytic Functions

Problem 31. The value of an analytic function at the center of a disc is
equal to its average over the disc. This implies that evaluation at a point of D
is a bounded linear functional on A%(D), and hence that Cauchy sequences

in the norm are Cauchy sequences in the sense of uniform convergence
on compact sets.

Problem 32. What is the connection between the concepts of con-
vergence appropriate to power series and Fourier series?

Problem 33. Is conjugation continuous?

Problem 34. Is the Fourier series of a product the same as the formal
product of the Fourier series?

Problem 35. A necessary and sufficient condition that
0
2 o |? < o0
n=0
is that the numbers

|, | 22" O<r<

M

I}

n=0

be bounded. Use continuity of the partial sums at r = 1.
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Problem 36. Start with a well-behaved functional Hilbert space and
adjoin a point to its domain.

Problem 37. To evaluate the Bergman and the Szegd kernels, use the
general expression of a kernel function as a series.

Problem 38. Examine the finite-dimensional case to see whether or not
the isometry of conjugation implies any restriction on the kernel function.

Problem 39. Use the kernel function of HZ2.

Problem 40. Approximate f, in the norm, by the values of f on ex-
panding concentric circles.

Problem 41. Use the maximum modulus principle and Fejér’s theorem
about the Cesaro convergence of Fourier series.

Problem 42. Assume that one factor is bounded and use Problem 34.

Problem 43. Given the Fourier expansion of an element of H?, first find
the Fourier expansion of its real part, and then try to invert the process.

Chapter 5. Infinite Matrices

Problem 44. Treat the case of dimension ¥, only. Construct the desired
orthonormal set inductively; ensure that it is a basis by choosing every other
element of it so that the span of that element and its predecessors includes
the successive terms of a prescribed basis.

Problem 45. Write Y ; «;;¢; as

% /) (@-5)

and apply the Schwarz inequality.
Problem 46. Apply Problem 45 with p; = ¢; = 1/./i + }.

Problem 47. Look at the sum of the squares of the matrix entries. Note
that the operator has rank 1.

Problem 48. Is it a Gramian?
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Problem 49. Consider the Gramian matrix {(f;, f;)). Use the principle
of uniform boundedness.

Chapter 6. Boundedness and Invertibility

Problem 50. For (a) and (b), extend an orthonormal basis to a Hamel
basis; for (c) imitate Solution 27; for (d) use a matrix with a large but finite
first row.

Problem 51. Apply the principle of uniform boundedness for linear
functionals twice.

Problem 52. Prove that A* is bounded from below by proving that
the inverse image under A* of the unit sphere in H is bounded.

Problem 53. (a) Use the x-axis and the graph of an operator; diminish
the graph by restricting the operator to a subspace. (b) Form infinite direct
sums.

Problem 54. Consider the graph of a linear transformation that maps a
Hamel basis of a separable Hilbert space onto an orthonormal basis of a
non-separable one.

Problem 55. Use Problem 54.

Problem 56. Write the given linear transformation as a matrix (with
respect to orthonormal bases of H and K); if ¥y < dim K < dim H, then
there must be a row consisting of nothing but 0’s.

Problem 57. Use Problem 56.

Problem 58. Apply Problem 52 to the mapping that projects the graph
onto the domain.

Problem 59. The equation Af = BXf uniquely determines an Xf in
ker*B; to prove boundedness, use the closed graph theorem.

Problem 60. For a counterexample, look at unbounded diagonal
matrices. For a proof, apply either the closed graph theorem or the principle
of uniform boundedness.
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Chapter 7. Multiplication Operators

Problem 61. |«;| = [|4e;| and

2
Z|°ijj|2 = (Sl{P |°Cj|) . Z|fj|2-

i
Problem 62. If |a,| 2 n, then the sequence {1/a,} belongs to /2.
Problem 63. The inverse operator must send e, onto (1/a,)e,.

Problem 64. If ¢ > 0 and if f is the characteristic function of a set of
positive finite measure on which | p(x)| > |¢l, — & then

1471z (lolle — &) - 1111l

Problem 65. If |4|| = 1,then |¢" - f| < || f|| for every positive integer
n and for every f in L?; this implies that |@(x)| £ 1 whenever f(x) # 0.

Problem 66. Imitate the discrete case (Solution 62), or prove that a
multiplication is necessarily closed and apply the closed graph theorem.

Problem 67. Imitate the discrete case (Solution 63).

Problem 68. For the boundedness of the multiplication, use the closed
graph theorem. For the boundedness of the multiplier, assume that if x € X,
then there exists an f in H such that f(x) # 0; imitate the “slick” proof in
Solution 65.

Problem 69. Consider the set of all those absolutely continuous
functions on [0, 1] whose derivatives belong to L.

Chapter 8. Operator Matrices

Problem 70. Necessity: if an operator commutes with each entry of
the matrix, then it commutes with each entry of the inverse. Sufficiency: use
Cramer’s rule.

Problem 71. Multiply on the right by

(r )
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with T chosen so as to annihilate the lower left entry of the product. Look
for counterexamples formed out of the operator on /2 defined by

<€0, 517 52, o '> — <O, 50, 517 527 o '>7

and its adjoint.

Problem 72. If a finite-dimensional subspace is invariant under an
invertible operator, then it is invariant under the inverse.

Chapter 9. Properties of Spectra

Problem 73. The kernel of an operator is the orthogonal complement
of the range of its adjoint.

Problem 74. To prove Iy(p(A4)) < p(T1,(A4)), given o« in Iz(p(A)),
factor p(A) — a. Use the same technique for I1, and, for T', apply the result
with A* in place of A.

Problem75. For II: if ||f,| = 1, then the numbers |P~'f,| are
bounded from below by 1/|P|. For I': the range of P~'AP is included in
the image under P~! of the range of 4.

Problem 76. Pretend that it is legitimate to expand (1 — AB)™ ! into a
geometric series.

Problem 77. Prove that the complement is open.
Problem 78. Suppose that A,¢spec A, Aespec 4, and A, - A If
f # 0and f L ran(4 — A), then

(4-A4-a)"Y

Ay

Chapter 10. Examples of Spectra

Problem 79. If A is normal, then [1o(4) = (ITo(A*))*.
Problem 80. Use Problem 79.

Problem 81. If ¢ - f = Af almost everywhere, then ¢ = A whenever
f#0.
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Problem 82. Verlfy that U*<€O, Cl, 52, o '> = <€l, 52, 53, e '>' Com-
pute that IIy(U) is empty and Io(U*) is the open unit disc. If |A]| < 1,
then U ~ A is bounded from below.

Problem 83. If all the vectors in a convex subset of a Hilbert space are
eigenvectors of an operator A, then they all belong to the same eigenvalue
of A4,

Problem 84. Represent W as a multiplication.

Problem 85. Use a spanning set of eigenvectors of A* for the domain;
for each f in that domain, define the multiplier as the conjugate of the cor-
responding eigenvalue.

Chapter 11. Spectral Radius

Problem 86. If 4, is not in the spectrum of A and if [A — 4| is suf-
ficiently small, then

P = (A= 1) T (4 = o) G = o)

Problem 87. Apply Liouville’s theorem on bounded entire functions to
the resolvent.

Problem 88. Write

(4) = (A - i)’l.

Use the analyticity of the resolvent to conclude that t is analytic for |A| <
1/r(A), and then use the principle of uniform boundedness.

Problem 89. Look for a diagonal operator D such that AD = DB.

Problem 90. If A = S~ !BS, then the matrix of S must be lower tri-
angular; find the matrix entries in row n + 1, column n, n =0, 1,2, ---.

Problem 91. For the norm: § is an isometry, and therefore ||P| =
|SP|. For the spectral radius: use Problem 8&8.

Problem 92. Look at weighted shifts.

Problem 93. Imitate the coordinate technique used for the unweighted
unilateral shift.
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Problem 94. Consider a sequence dense in an interval and let the
weights contain arbitrarily long blocks of each term of the sequence.

Problem 95. If f = (&;, &), &, -+ € PP(p), write

Uf = <{/Potos VP1l1s /P2 E2s D,

and prove that U is an isometry from [?(p) onto 2 that transforms the shift
on [*(p) onto a weighted shift on 2.

Problem 96. Try unilateral weighted shifts; apply Solution 91.

Problem 97. If f(A4) = 0, factor out the largest possible power of z
from f(z2).

Problem 98. Try unilateral weighted shifts with infinitely many zero
weights; apply Solution 91.

Chapter 12. Norm Topology
Problem 99. Think of projections on L?(0, 1).

Problem 100. If A, is invertible, then 1 — A4, = (4, — A)A4, ';
use the geometric series trick to prove that A is invertible and to obtain a
bound on |47 Y.

Problem 101. Add a small scalar.
Problem 102. Find the spectral radius of both 4, and 4, .

Problem 103. The distance from 4 — A to the set of singular operators
is positive on the complement of spec A. Alternatively, the norm of the
resolvent is bounded on the complement of Ay; the reciprocal of abound isa
suitable ¢. For a sequential proof, use the fact that the set of singular opera-
tors is closed.

Problem 104. Approximate a weighted unilateral shift with positive
spectral radius by weighted shifts with enough zero weights to make them
nilpotent.

Problem 105. What does it mean that A ¢ liminf, spec 4,? Recall that,
for normal operators, spectral radius is equal to norm.

Problem 106. In the finite-dimensional case spectrum is continuous. In
the infinite-dimensional case, modify Solution 104.
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Chapter 13. Operator Topologies

Problem 107. For the first part, assume that |(4, f, g)| < ¢ for all unit
vectors g, and replace g by A4, f/||A, . For the second part, imitate the first
part.

Problem 108. For a counterexample with respect to the strong top-
ology, consider the projections onto a decreasing sequence of subspaces.

Problem 109. Imitate Solution 21.

Problem 110. For a counterexample with respect to the strong top-
ology, consider the powers of the adjoint of the unilateral shift.

Problem 111. The set of all nilpotent operators of index 2 is strongly
dense.

Problem 112. Use nets.

Problem 113. (a) Use the principle of uniform boundedness. (b) Look
at powers of the unilateral shift.

Problem 114. Consider square roots of ((1) (1)) with one axis nailed

down and the other slipping out far away.

Problem 115. Use the slip-away technique of Solution 114.

Chapter 14. Strong Operator Topology

Problem 116. Use Problem 20.

Problem 117. Let U be the unilateral shift; use suitable multiples of
powers of U* for the A’s, and, similarly, use suitable multiples of powers of
U for the B’s.

Problem 118. Consider the adjoint of the unilateral shift.

Problem 119. Consider an increasing sequence of projections; consider
powers of the adjoint of the unilateral shift.

Problem 120. If {A4,} is increasing and converges to A weakly, then the
positive square root of A — A, converges to 0 strongly. For a counter-
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example with respect to the uniform topology, consider sequences of
projections.

Problem 121. The B,’s form a bounded increasing sequence.

Problem 122. Study the sequence of powers of EFE.

Chapter 15. Partial Isometries

Problem 123. If N is a neighborhood of F(A), then F~!(N) is a neigh-
borhood of A. If A¢ F(spec A), then some neighborhood of A is disjoint
from F(spec A).

Problem 124. Compare || Af | with |\/Af]>.

Problem 125. Represent A as multiplication operator by a function ¢,
say; if p is a non-zero polynomial such that p(A4) is diagonal, then consider,
for each eigenvalue A of p(A), the set ¢~ {z: p(z) = A}.

Problem 126. Use the Weierstrass polynomial approximation theorem
in the plane.

Problem 127, If U is a partial isometry with initial space M, evaluate
(U*Uf, f) when feM and when f 1. M; if U*U is a projection with range
M, do the same thing,

Problem 128. The only troublesome part is to find a co-isometry U
and a non-reducing subspace M such that UM = M; for this let U be the
adjoint of the unilateral shift and let M be the (one-dimensional) subspace
of eigenvectors belonging to a non-zero eigenvalue.

Problem 129. For closure: A is a partial isometry if and only if 4 =
AA*A. For connectedness: if U is a partial isometry, if ¥ is an isometry, and
if |U - V| < 1, then U is an isometry.

Problem 130. For rank: the restriction of U to the initial space of V is
one-to-one. For nullity: if f e ker ¥V and f L ker U, then
1uf = vil=Isl-
Problem 131. Find a unitary operator that matches up initial spaces,

and another that matches up final spaces, and find continuous curves that
join each of them to the identity.
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Problem 132. If U is a unitary operator matrix of size 2 that trans-
forms M(A) onto M(B), then it transforms M(A)M(A)* onto M(B)M(B)*.

Problem 133. If a compact subset A of the closed unit disc contains 0,
find a contraction 4 with spectrum A, and extend A to a partial isometry.

Chapter 16. Polar Decomposition

Problem 134. Put P> = A*A, and define U by UPf = Af on ran P and
by Uf = 0 on ker P.

Problem 135. Every partial isometry has a maximal enlargement.

Problem 136. To prove that maximal partial isometries are extreme
points, use Problem 4. To prove the converse, show that every contraction is
the average of two maximal partial isometries; use Problem 135.

Problem 137. If UP commutes with P2, then it commutes with P,
so that UP — PU annihilates ran P.

Problem 138. Look for 2-dimensional counterexamples to three of the
four possible questions; use the polar decomposition of A to prove the fourth.

Problem 139. The question and the answer are mildly interesting but
the method is not: if A is a weighted shift, just compute (4*¥ A)A and A(A*A).

Problem 140. For the positive result, apply Problem 135. For the
negative one: a left-invertible operator that is not right-invertible cannot
be the limit of right-invertible operators.

Problem 141. Consider polar decompositions UP and join both U and
Ptol.

Chapter 17. Unilateral Shift

Problem 142. Assume that H is separable, and argue that it is enough to
prove the existence of two orthogonal reducing subspaces of infinite di-
mension. Prove it by the consideration of spectral measures.

Problem 143. Apply Problem 142, and factor the given unitary opera-
tor into two operators, one of which shifts the resulting two-way sequence
of subspaces forward and the other backward.
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Problem 144. (a) If a normal operator has a one-sided inverse, then it is
invertible. (b) Since 1 is an approximate eigenvalue of the unilateral shift,
the same is true of the real part. (c) There is no invertible operator within 1
of the unilateral shift.

Problem 145. If V2 = U*, then dim ker ¥ < 1 and V maps the under-
lying Hilbert space onto itself.

Problem 146. If W commutes with an operator A4, and if i is a bounded
measurable function on the circle, then, by the Fuglede commutativity
theorem, (W) commutes with A. Put Ae, = ¢, prove that Ay = ¢ -,
and use the technique of Solution 65.

Problem 147. Begin as for Solution 146; use Solution 65; imitate
Solution 66.

Problem 148. Every function in H® is the limit almost everywhere of
a bounded sequence of polynomials; cf. Solution 41.

Problem 149. If V is an isometry on H, and if N is the orthogonal
complement of the range of ¥, then (Yo V'H = (Yo (V"N)-.

Problem 150. Use Problem 149, and recall that —1 belongs to the
spectrum of the unilateral shift.

Problem 151. If U has multiplicity m and V is a square root of U¥,
then, by Sylvester’s law of nullity, m < 2 null V. If m is finite, then the
reverse inequality holds.

Problem 152. If | 4| < 1 and 4" — 0 strongly, write T = /1 — A*A
and assign to each vector f the sequence

(Tf, TAf, TA*,-- ).

Problem 153. If r(A) < 1, then Y%, | A"||*z" converges at z = 1, and
consequently an equivalent norm is defined by | f o> = Y 2, 1412

Problem 154. If A = S™!CS, then |A"| < |IS7 ] - |C"| - |IS].

Problem 155. Write N = M n (UM)* and apply the results of Solution
149. To prove dim N == 1, assume the existence of two orthogonal unit
vectors fand g in N and use Parseval’s equation to compute || f]> + [g>
It is helpful to regard U as the restriction of the bilateral shift.

Problem 156. Prove that M, *(4) is invariant under U*.
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Problem 157. Use Problem 155 to express M in terms of a wandering
subspace N, and examine the Fourier expansion of a unit vector in N.

Problem 158, Given f in H?, let M be the least subspace of H? that
contains f and is invariant under U, and apply Problem 157 to M.

Problem 159, Necessity: consider a Hermitian operator that commutes
with A (and hence with A* and with A*4), and examine its matrix.
Sufficiency: assume {a,} periodic of period p; let M; be the span of the e;’s
with n = j (mod p); observe that each vector has a unique representation
in the form f, + --- + f,, with f; in M;; for each measurable subset E
of the circle, consider the set of all those f’s for which f(z) = 0 for all j
and for all z in the complement of E.

Chapter 18. Cyclic Vectors

Problem 160. For the simple shift, consider a vector {&,, &, &,,-+->
such that

lim — Z [ il =
k |5k|

For shifts of higher multiplicity, form vectors whose components are sub-
sequences of this sequence {£,}.

Problem 161. Consider shifts of multiplicity greater than 1.

Problem 162. There exists an orthonormal sequence {f,} such that
(1 = US| — 0 and hence there exist projections P, of rank 2 such that
a-P)1-u)y-1-"0U.

Problem 163. For each f and g in /2, consider {g* ~—f*}>, where the
stars indicate coordinatewise complex conjugation.

Problem 164. Approximate A*"f by p(A) f, with p a polynomial.
Problem 165. If K is the cyclic subspace spanned by a function that is
never 0, and if ¢ is a bounded measurable function, then ¢K < K; use

Fejér’s theorem.

Problem 166. If f is a cyclic vector of A, and if 0 < |ad| < 1, then
(1 — aA)?f is a cyclic vector of 4 for each positive integer p.

Problem 167. (a) Consider the first basis vector. (b) Gram-Schmidt.
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Problem 168. Consider 2U* (where U is the unilateral shift acting on [?).
Construct a vector f by stringing together suitable multiples of the initial
segments of the vectors in a countable dense set, separated by suitably long
sequences of zeroes.

Chapter 19. Properties of Compactness

Problem 169. Use nets. In the discussion of (w — s) continuity recall
that a basic weak neighborhood depends on a finite set of vectors, and con-
sider the orthogonal complement of their span.

Problem 170. To prove self-adjointness, use the polar decomposition.
Problem 171. Approximate by diagonal operators of finite rank.

Problem 172. If the restriction of a compact operator to an invariant
subspace is invertible, then the subspace is finite-dimensional. Infer, via the
spectral theorem, that the part of the spectrum of a normal compact operator
that lies outside a closed disc with center at the origin consists of a finite
number of eigenvalues with finite multiplicities.

Problem 173. Approximate by simple functions.

Problem 174. If A is a Hilbert-Schmidt operator, then the sum of the
eigenvalues of A*4 is finite.

Problem 175. Use the polar decomposition and Problem 172.

Problem 176. Every operator of rank 1 belongs to every non-zero ideal.
Every non-compact Hermitian operator is bounded from below on some
infinite-dimensional invariant subspace; its restriction to such a subspace is
invertible.

Problem 177. Consider the direct sum of a sequence of projections of

rank 1. Consider the collection of all operators that map orthonormal
sequences to strong null sequences.

Problem 178. Use the spectral theorem.

Problem 179. If C is compact, then TII(C) — {0} < H(C), and I(C)
is countable.

157



HINTS

Problem 180. Assume, with no loss, that ker 4 = 0. In that case, if
M is a subspace included in ran A, the restriction of 4 to the inverse image
of M is invertible.

Problem 181. From (1) to (2): the restriction of 4 to ker* A is invertible.
From (3) to (1): if 1 — BA is compact, apply Solution 179 to 1 — BA.

Problem 182. Assume A = 0; note that if B is invertible, then 4 =
B(1 + B™(4 - B)).

Problem 183. Perturb the bilateral shift by an operator of rank 1.

Problem 184. If C is compact and U + C is normal, then the spectrum
of U + C is large; but the spectrum of (U + CO)*(U + C) is small.

Problem 185. Given the shift U and a compact operator C, estimate the
spectral radius of U — C.

Chapter 20. Examples of Compactness

Problem 186. If 4 is a Volterra operator with kernel bounded by c,
then A" is a Volterra operator with kernel bounded by ¢"/(n — 1)!.

Problem 187. Can a Volterra operator have a non-zero eigenvalue?

Problem 188. Express V*V as an integral operator. By differentiation
convert the equation V*Vf = Af into a differential equation, and solve it.

Problem 189. Identify L2(—1, +1) with L2(0, 1) ® L?(0, 1), and de-
termine the two-by-two operator matrix corresponding to such an
identification. Caution: there is more than one interesting way of making the
identification.

Problem 190. Put 4 = (1 + V)~ !, where V is the Volterra integration
operator.

Problem 191. Reduce to the case where M contains a vector f with
infinitely many non-zero Fourier coefficients; in that case prove that there
exist scalars 4, such that 4, A"f — e,, so that M contains e,; use induction
to conclude that M contains e, for every positive integer k.
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Chapter 21. Subnormal Operators

Problem 192, Apply Fuglede’s theorem to two-by-two operator
matrices made out of 4,, 4,, and B.

Problem 193. Given 4 and B, consider A + Band A + iB.

Problem 194. If |4"f| < || f| for all n, and if
M, = {x:lo(x)| 2 r > 1},
then || 12 Z fy, r*"| fI? dp.

Problem 195. Show that ker A reduces A and throw it away. Once
ker A = 0, consider the polar decomposition of A, extend the isometric
factor to a unitary two-by-two matrix, extend the positive factor to a
positive two-by-two matrix, and do all this so that the two extensions
commute.

Problem 196. If A commutes with a Hermitian B, then it commutes with
the spectral measure of B.

Problem 197. The desired isometry U must be such that if {fi,- 5 fu}
is a finite subset of H, then U(}Y; B,*/f)) = ) ; B,*/f;.

Problem 198. Let W be the bilateral shift, and consider the powers of
the adjoint of the operator p(W).

Problem 199. Consider the measure space consisting of the unit circle
together with its center, with measure defined so as to be normalized Lebesgue
measure in the circle and a unit mass at the center. Form a subnormal
operator by restricting a suitable multiplication on L? to the closure of the
set of all polynomials.

Problem 200. It is sufficient to prove that if 4 is invertible, then so is B.
Use Problem 194.

Problem 201. Both A — spec A and A n spec A are open. Use Problem
78.

Problem 202. Every finite-dimensional subspace invariant under a
normal operator B reduces B.

Problem 203. If A (on H) is subnormal, and if f;, - - -, f, are vectors in
H, then the matrix {(4'f;, A’f)) is positive definite. A weighted shift with
weights {2y, &}, &5, - - -} is hyponormal if and only if |a,|* < |a,, | for all n.
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Problem 204. Use Problem 149.

Problem 205. If A is hyponormal, then
1412 < A" - A )

for every vector f.

Problem 206. If 4 is hyponormal, then the span of the eigenvectors of
A reduces A. If A is compact also, then consider the restriction of A4 to the
orthogonal complement of that span, and apply Problem 179 and Problem
205.

Problem 207. Consider the eigenvectors of the imaginary part.

Problem 208. Given a hyponormal idempotent P, decompose the
space into ran P and ran*P,

Problem 209. Try a linear combination of the unilateral shift and its
adjoint.

Chapter 22. Numerical Range

Problem 210. A set in the plane is convex if and only if its intersection
with every straight line is connected. Note incidentally that the general
Toeplitz-Hausdor ff theorem is equivalent to its 2-dimensional special case.

Problem 211. If M and N are k-dimensional Hilbert spaces and if
T is a linear transformation from M to N, then there exist orthonormal
bases {f},---,fi} for M, and {g,,---,g:} for N, and there exist positive
scalars a,,---, o, such that Tf; = a,g;,, i = 1,---, k. If P and Q are pro-
jections of rank k, apply this statement to the restriction of QP to the range
of P, and apply the Toeplitz-Hausdorff theorem k times.

Problem 212. Try a diagonal operator. Try the unilateral shift.

Problem 213, The quadratic form associated with a compact operator is
weakly continuous on the unit ball.

Problem 214. The closure of the numerical range includes both the
compression spectrum (the complex conjugate of the point spectrum of the
adjoint) and the approximate point spectrum.

Problem 215. Let V be the Volterra integration operator and consider
1—-0+V)yL
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Problem 216. Use the spectral theorem; reduce the thing to be proved
to the statement that if the values of a function are in the right half plane,
then so is the value of its integral with respect to a positive measure.

Problem 217. Use Problems 200, 214, and 216.

Problem 218, (a) Prove the contrapositive. (b) If |4 =1 and
(Af,,, f,) = 1, then Af, — f, — 0.

0 0
M:(1 o)’

let N be a normal operator whose spectrum is the closed disc with center 0
and radius %, and consider

M 0 d M 0
o ~N) ¢ \lo 1)
Problem 220. If |4 — B| < e and || f|| = 1, then (4f, f) e W(B) + (¢).
Let U be the unilateral shift and consider U*", n = 1,2, 3, -.

Problem 219. Write

Problem 221. A necessary and sufficient condition that w(4) < 1 is
that Re(1 — zA4)™! 2 0 for every z in the open unit disc. Write down the
partial fraction expansion of 1/(1 — z") and replace z by zA.

Chapter 23. Unitary Dilations

Problem 222. (a) Suppose that the given Hilbert space is one-di-
mensional real Euclidean space and the dilation space is a plane. Examine
the meaning of the assertion in this case, use analytic geometry to prove it,
and let the resulting formulas suggest the solution in the general case.
(b) Imitate (a).

Problem 223. Find an operator 4, 0 £ A £ 1, with non-closed range,

and consider
A VAL -4\
JAT=D  1-4

Problem 224. For U use Problem 222(a), and for P Problem 222(b),
together, in both cases, with the projection characterization of the weak
topology. Are the suggested closures indeed closed?
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Problem 225. For U use Problem 149; for P note that every idempotent
contraction is a projection; for co-isometries use Problem 152,

Problem 226. If an operator B is such that to every vector g there
corresponds a hyponormal operator that agrees with B on both g and B*g,
then B itself is hyponormal.

Problem 227. Look for a bilaterally infinite matrix that does the job;
use the techniques and results of Solution 222.

Problem 228. Use the spectral theorem to prove the assertion for
unitary operators, and then use the existence of unitary power dilations to
infer it for all contractions.

Problem 229. Find a unitary power dilation of A4.

Chapter 24. Commutators

Problem 230. Wintner: assume that P is invertible and examine the
spectral implications of PQ = QP + 1. Wielandt: assume PQ — QP = 1,
evaluate P"Q — QP", and use that evaluation to estimate its norm.

Problem 231. Consider the Banach space of all bounded sequences of
vectors, modulo null sequences, and observe that each bounded sequence of
operators induces an operator on that space.

Problem 232. Fix P and consider AQ = PQ — QP as a function of Q;
determine A"Q".

Problem 233. (a) Generalize the formula for the “derivative” of a
power to the non-commutative case, and imitate Wielandt’s proof. (b) Use
the Kleinecke-Shirokov theorem.,

Problem 234. Represent the space as an infinite direct sum in such a
way that all summands after the first are in the kernel. Examine the cor-
responding matrix representation of the given operator, and try to represent
it as PQ — QP, where P is the pertinent unilateral shift.

Problem 235. Find an invertible operator T such that 4 + T 'AT
has a non-zero kernel; apply Problem 234 to the direct sum of A + T~ 'AT
with itself countably many times. Prove and use the lemma that if B + C
is a commutator, then sois B @ C.
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Problem 236. If C = A*A — AA* =z 0, choose A in [I(4), find {f,}
so that || f,]| = 1 and (4 —~ A)f, - 0, and prove that Cf, — 0.

Problem 237. (a) Prove that (1) A is quasinormal, (2) ker(1 — A*A)
reduces A, and (3) ker*(1 — A*A) c ker(4*4 — AA*). (b) Consider a
weighted bilateral shift, with all the weights equal to either 1 or \/5

Problem 238. For sufficiency, try a (bilateral) diagonal operator and a
bilateral shift; for necessity, adapt the Wintner argument from the additive
theory.

Problem 239. Use Problem 142, and then try a diagonal operator
matrix and a bilateral shift, in an operator matrix imitation of the technique
that worked in Problem 238.

Problem 240. Use Problem 142, together with a multiplicative adapta-
tion of the introduction to Problem 234, to prove that every invertible
normal operator is the product of two commutators.

Chapter 25. Toeplitz Operators
Problem 241. For necessity: compute. For sufficiency: use Problem 146.

Problem 242. For necessity: compute. For sufficiency: write A4, f =
W*" APW"f for all fin L2, n=0, 1, 2,.--, and prove that the sequence
{A,} is weakly convergent.

Problem 243. If (y;;> is the matrix of T, T, then

Yie1,j+1 = Vij + ai+lﬂ—j—la

where

@=):ue and y = Zj Bie;.

Problem 244. Consider the characteristic functions of a set and its
complement.

Problem 245. Prove that W*'TPW" — L strongly, and use that to
prove that if 0 € [I(L), then 0 € TI(T).

Problem 246. What if ¢ is a trigonometric polynomial?

Problem 247. Let K be the kernel function of IEIZ, and, for a fixed y
in D and a fixed fin H?, write §(z) = (¢(z) — ¢(¥)).f(2). Since §(y) = 0, it
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follows that § L K, and hence that ¢(y) is in the (compression) spectrum
of T,.

Problem 248. If g isrealand T, f = 0, then ¢ - f* - f is real and belongs
to H'.

Problem 249. Modify Solution 244 so as to be able to apply Solution
246.

Problem 250. If ¢ is real and T, is invertible, then ¢ - f* € H, and this
implies that sgn ¢ is constant,
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CHAPTER 1

Vectors

Solution 1, The limit of a sequence of quadratic forms is a quadratic form.

Proor. Associated with each function ¢ of two variables there is a function
@~ of one variable, defined by ¢~ (f) = @(/, f); associated with each func-
tion i of one variable there is a function §* of two variables, defined by

V(S 9) = YO + 9) — Y — 9)
+ yG(f + ig)) — WG(S — ig)).

If ¢ is a sesquilinear form, then @ = ¢~ *; if ¥ is a quadratic form, then

W =yt If {,} is a sequence of quadratic forms and if , —  (that is,
Y (f) = W(f) for each vector f), then i,* — ¥ and ¢,*~ — ¢ * . Since
each i, is a quadratic form, it follows that each ,* is a sesquilinear form
and hence that i * is one too. Since, moreover, ¥, = ¥, ~, it follows that
i = ¥, and hence that i is a quadratic form.

The index set for sequences (i.e., the set of natural numbers) has nothing to
do with the facts here; the proof is just as valid for ordered sequences of
arbitrary length, and, more generally, for nets of arbitrary structure.

Solution 2. Yes, the Schwarz inequality is true for not necessarily strictly
positive forms, and one way to prove it is to reduce the general case to the
strictly positive case. Indeed, given ¢, let ¢, be an arbitrary strictly positive,
symmetric, sesquilinear form on the same space, and write, for each positive
number ¢,

Q=@+ Q..

The form ¢, is strictly positive; apply the Schwarz inequality to it and let ¢
tend to 0. As for finding a strictly positive form ¢ (on every real or complex
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vector space): just use Hamel bases. If {¢;} is one, write
‘P+<Z 2ej, Y ﬁfef) =D B>
j j J
The sums are formally infinite but only finitely non-zero.

Solution 3. To motivate the approach, assume for a moment that it is already
known that &(f) = (f, g) for some g. Choose an arbitrary but fixed ortho-
normal basis {¢;} and expand g accordingly: g = ) ; B;e;. Since
ﬁj = (ga ej) = (eja g)* = C(ej)*v
the vector g could be captured by writing
g =Y &e)*e;
J

If the existence of the Riesz representation is known, this reasoning proves

uniqueness and exhibits the coordinates of the representing vector. The main

problem, from the point of view of the present approach to the existence

proof, is to prove the convergence of the series Zj Bje;, where f; = L(e))*.
For each finite set J of indices, write g; =) ., B;e;. Then

&g,y = Z |ﬁj|23

jed

and therefore

SIS NE - llgsll = 1N~ [ Y1812
Jjeld jeJ

/I8P < 1,

Z|ﬁj|2 < 0.

This implies that
and hence that

This result justifies writing g = ) ; Be;. If f = Y ; ase;, then
&N = Z %‘5(@;) = Z %’ﬁj* =(f, 9),
J i
and the proof is complete.

Solution 4. The boundary points of the closed unit ball are the vectors on the
unit sphere (that is, the unit vectors, the vectors f with || f|| = 1). The thingto
prove therefore is that if f=1tg+ (1 —t)h, where 02t <1, |f]l =1,
lgll £ 1,and ||| £ 1, then f = g = h. Begin by observing that

1=(N=tg+ A -h)=1f,g)+ 1 -, h).
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Since |(f,¢)| £ 1 and |(f, B)| £ 1, it follows that (f, g) = (f, h) = 1; this
step uses the strict convexity of the closed unit disc. The result says that the
Schwarz inequality degenerates, both for f and g and for f and h, and this
implies that both g and h are multiples of f. Write g = af and h = fif. Since
1=(f,g9) = (f, of) = a*, and, similarly, 1 = g*, the proof is complete.

Solution 5. Since every infinite-dimensional Hilbert space has a subspace
isomorphic to L3(0, 1), it is sufficient to describe the construction for that
special space. The description is easy. If 0 < t < 1, let f(¢) be the character-
istic function of the interval [0, t]; in other words, (f())(s) =1 or 0
accordingas 0 < sZtort<s<1.If0ZLa<gbs ], then

If®) = f@I* = fl(f(b))(S) ~ (f(a)()|* ds

b
=st=b—a;

this implies that f is continuous. The verifications of simplicity and of the
orthogonality conditions are obvious.
Asfor the existence of tangents: it is easy to see that the difference quotients
do not tend to a limit at any point. Indeed,
fe+hn— 1@ 2_ h _}1

h h? h{
which shows quite explicitly that f is not differentiable anywhere.

Infinite-dimensionality was explicitly used in the particular proof given
above, but that does not imply that it is unavoidable. Is it ? An examination of
the finite-dimensional situation is quite instructive.

Constructions similar to the one given above are familiar in the theory of
spectral measures (cf. [ S0, p. 581). If E is the spectral measure on the Borel sets
of [0, 1] such that E(M) is, for each Borel set M, multiplication by the char-
acteristic function of M, and if e is the function constantly equal to 1, then the
curve f above is given by

() = E([0, tDe.
This remark shows how to construct many examples of suddenly turning
continuous curves: use different spectral measures and apply them to different
vectors. It is not absolutely necessary to consider only continuous spectral
measures whose support is the entire interval, but it is wise ; those assumptions
guarantee that every non-zero vector will work in the role of e.

Solution 6. It is convenient to begin with a few small auxiliary statements
true about every normalized crinkled arc f.

(1) ¥O<s<t<1, then (f(s), f(®) = || (&) Proof: (f(s), f(t) =
(f ) = fO), f(&) = f(s) + f(5))
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(2 f0<s=<t=1 then|f(s) = fOI*> = SOl = | f(5)I* Proof:
immediate from (1).

(3) The mapping t+— | f(¢)| is strictly monotone and continuous. Proof:
immediate from (2).

(4) The non-zero values of f are linearly independent. Proof: if
O0<th<ty<---<t, <1, then the vectors f(t;), f(t,) ~ f({t;), -,
f(t,) — f(t,—,) are pairwise orthogonal, hence linearly independent; the
vectors f(t;), -+, f(t,) span the same n-dimensional space, and hence they
too must be linearly independent.

The ground is now prepared for the uniqueness proof. Suppose that f
and g are normalized crinkled arcs. Define the mapping ¢ from [0, 1] to
[0, 1] to be the following composition: first the mapping t— |/g(t)|, and
then the inverse of the mapping ¢t — || f(¢)|. The result is a reparametriza-
tion ¢ of [0, 1] such that |g(®)| = | f(e(t))| for all ¢.

Now define a mapping U, first on the range of f only, by Uf (¢(t)) = g(t);
note that, by the definition of ¢, the mapping U is isometric. Since the non-
zero elements of ran f are linearly independent, U can be extended to the
linear (not necessarily closed) span of ran f so as to become linear. Since
both ran f and ran g span H, it follows that both the domain and the range
of the extended U are dense in H.

The next thing to prove is that the extended U is still isometric. The first
step in this direction is to consider two numberssand t,0 < s <t < 1,and
observe that

1T (@®) = fleMI* = llg@) — g@)|?
= [lg@)lI* ~ llg@s)I*
= [l /(eI — ./ (eNI?
= [ f(e®) — fle®)II*;

in other words, U is isometric on differences such as f(¢(2)) — f(@(s)). The
second and last step is to observe that each vector in the linear span of
ran f is a finite linear combination of orthogonal differences such as
f(e®) — f(@(s)), and its image under U is the same linear combination
of the corresponding orthogonal differences g(t) — g(s). Since the square
norm is additive for orthogonal summands, it follows that U, as defined so
far, is isometric.

The rest is trivial: extend by continuity and get a unitary operator U on H
such that g(r) = Uf(¢(t)).

Selution 7. If'the orthogonal dimension of a Hilbert space is infinite, then
its linear dimension is greater than or equal to 2™°.

(Recall that if either the linear dimension or the orthogonal dimension of a
Hilbert space is finite, then so is the other, and the two are equal.)
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Proor. The main tool is the following curious piece of set theory, which has
several applications: there exists a collection {J,}, of cardinal number 2%,
consisting of infinite sets of positive integers, such that J; n J, is finite when-
ever s # t. Here is a quick outline of a possible construction. Since thereis a
one-to-one correspondence between the positive integers and the rational
numbers, it is sufficient to prove the existence of sets of rational numbers with
the stated property. For each real number ¢, let J, be an infinite set of rational
numbers that has t as its only cluster point.

[An alternative construction of uncountably many “almost disjoint”
subsets of a countable set is based on an elegant geometric observation of
J. R. Buddenhagen [25]. Consider the (countable) set L of all those points in
the plane whose coordinates are integers (i.¢., the lattice points in the plane).
For each positive real number ¢, let L, be the part of L in the open band
between the line of slope ¢ through the origin and the parallel line at
distance 2 above it. Each L, is infinite; since, however, L, n L, is bounded
whenever s # t, it follows that the intersection of two distinct L,’s is always
finite.]

Suppose now that {e,, e,, €5, - - -} isa countably infinite orthonormal set in
a Hilbert space H, and let f = Y, &,e, (Fourier expansion) be an arbitrary
vector such that &, # 0 for all n. If {J,} is a collection of sets of positive
integers of the kind described above, write f, = Y., &,e,. Assertion: the
collection {f;} of vectors is linearly independent. Suppose, indeed, that a
finite linear combination of the f’s vanishes, say )*_, « f;, = 0. Since,
for each i # 1, the set J, contains infinitely many integers that do not
belong to J,,, it follows that J, contains at least one integer, say n, that
does not belong to any J,, (i # 1). It follows that «,£, = 0, and hence,
since &, # 0, that «;, = 0. The same argument proves, of course, that
o, =0foreachi=1.---,k

This result is the main reason why the concept of linear dimension is of no
interest in Hilbert space theory. In a Hilbert space context “dimension”
always means “orthogonal dimension”.

There are shorter solutions of the problem, but the preceding argument has
the virtue of being elementary in a sense in which they are not. Thus, for
instance, every infinite-dimensional Hilbert space may be assumed to include
L2(0, 1), and the vectors f(f), 0 < t < 1, exhibited in Solution 4, constitute
a linearly independent set with cardinal number 2%°. Alternatively, every
infinite-dimensional Hilbert space may be assumed to include %, and the
vectors

g =<, 2., O0<t<],

constitute a linearly independent set with cardinal number 2%e,

The problem as originally stated has at least one solution that is both short
and elementary. Assertion: if {f}, /s, f3, -} is a linearly independent
sequence, then there exists a vector that is not a (finite) linear combination
of the f’s. Proof: the Gram-Schmidt orthogonalization process implies
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the existence of an orthonormal sequence {e;,e,,es, -} such that
Ve - e} = V{fi, -+, fu} for n=1,2,3,..-; if the Fourier expan-
sion of a vector g with respect to the e’s has infinitely many non-zero co-
efficients, then g does not belong to \/{f}, - - -, f,} for any n.

An even shorter (but less elementary) solution consists of two words:
Baire category. In more detail: if {f,, f5, f5, -} is an arbitrary sequence,
then H, = \/{f}, -+, fu} is, for each n, a proper subspace and, therefore, a
nowhere dense set; it follows that the H,’s cannot fill up a complete metric
space.

Solution 8. Let {e,: n =0, +1, +2,---} be an orthonormal basis, and let T
be the set of all vectors of the form f, = e, —e,_;, n =0, +1, +2,---.

How can a vector g be orthogonal to T — {f,}? If that happens, then
(g,e,) = (9, e,—,) whenevern # k. Putn =%k + 1,k + 2, .- to get

@ e) =g exs1) =(g,€12) ="+
patn=%k —1,k—2,-- to get

@ e-1) =@ e-2) = (g, &-3) =+ -.

Since infinitely many Fourier coefficients can be equal only if they vanish, it
follows that g = 0. This proves that T — {f,} is always total (and implies, in
particular, that T itself is total).

If, on the other hand,j < k,then T — {f}, f;} is not total. The argument of
the preceding paragraph still applies, to be sure, but the result this time is that
ifg LT — {f, fi}, then

@ ) = e) =09 e) =",
9 €j-1) = (9. €j-2) = (9, €;-3) = -,
and
@9 ) =+ = (9, &-1)-

These conditions imply that (g, e,) = 0 when n = k and when n < j; when
j £ n <k, the conditions amount to the equality of a finite number of Fourier
coefficients, which is harmless. If, for instance, g = ¢; + - - + ¢, ;, then all
the conditions are satisfied, and that implies that T — {f;, f;} is not total.

The proof is due to L. J. Wallen. An alternative proof (with different
merits) goes as follows. Let {e,:n=1,2,3, .-} be an orthonormal basis,
let f be a vector in whose Fourier expansion,

f = Z Op €y,
n

every coefficient is different from 0, and let T be the set {f, e,, €,, €5, -}.
Since the span of the set T — {e,} contains the vector f — Y, ., a,e,, it
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follows that T — {e,} is total for each k. If, on the other hand, j < k, then
the vector

g = o *e; — a*e,
is orthogonal to T — {e;, ¢;}. Reason:
= (%'ej + ey, ak*ej - %'*ek) = 00y — g%y = 0.

Conclusion: T — {e;, ¢,} is not total.

Solution 9. If the given set is {f;, f5, -} (there is no loss of generality in
the assumption of countability), then omit f; and approximate it to within
3 by a vector in \/ {f2, -, f,}; then omit f,, f, ., and approximate
them to within § by vectors in \/{fy,+2, "> fu,}; then omit fi, f, .,
fr,+1 and approximate them to within % by vectors in \/{f,+2, ", fu,);
etc. The result is an infinite set {f, f,, +1, f,+1, - -} that is included in the
span of its complement in {f}, f>, f3, -+ *}-

Solution 10. If 0 < |a| < 1 and
ﬁ‘=<1,ak,a2k,a3k,'“> fork=1,2,3,---,
then the f.’s span I2.

ProoF. Perhaps the quickest approach is to look for a vector f orthogonal to
all the ﬁi,s' Iff = <€0, Cl, 52, o '>, then

0=(f,f)= 2 &ua*™
n=0
In other words, the power series
2 &
n=0

vanishes for z = a** (k = 1, 2,3, ---), and consequently it vanishes identi-
cally. Conclusion: &, = 0 for all n, and therefore f = 0.

The phrasing of the problem is deceptive. The solution has nothing to do
with the arithmetic structure of the powers oF; the same method applies if
the powers o* are replaced by arbitrary numbers o, (and, correspondingly,
a™ is replaced by a,"), provided only that the numbers o, cluster somewhere
in the interior of the unit disc. (Note that if Y ® 4 |&,|* < oo, then the
power series Y 2, &,z" has radius of convergence greater than or equal
to 1)

The result is a shallow generalization of the well known facts about
Vandermonde matrices, and the proof suggested above is adaptable to the
finite-dimensional case. If /2 is the m-dimensional Hilbert space of all
sequences (&g, -+, &noyy Of length m (=1,2,3,--), and if the vectors
Sitk=1,---,m)are defined by f, = {1, o, -+, ™" !> (Where 0 < |ay| < 1
and the o, ’s are distinct), then the span of {f,, -+ -, f,.} is [,,>. Indeed, if f =
(s s &m1y is orthogonal to each f;, then ) =4 &,04* =0, ie, the
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polynomial Y 7=} £,2" of degree m — 1 (at most) vanishes at m distinct
points, and hence identically.

Solution 11. The example described in Problem 10 works, and so do many of
the generalizations mentioned in Solution 10. For instance, let {a;, a,, - >
be a sequence of distinct complex numbers in the unit disc, with o — 0.
If f, = {1, 04, % o>, -+ +>, then the set {f,: k= 1,2,3,---} is total in [2;
since every infinite subsequence of the a,’s has the same properties as the
original sequence, it follows that every infinite subset of the f,’s is total also.

A set such that every infinite subset of it is total deserves to be called
totally total, or, abbreviated, t-total.

A final comment along these lines has to do with the concept of dimension.
One way to define dimension was mentioned in Problem 7: prove that all
bases have the same cardinal number, and then define dimension as the
common cardinal number of all bases. A more direct way is to define the
dimension of H as the minimal cardinal number of a total set in H. Caution:
this does not say that dimension is the cardinal number of a minimal total set ;
the order of the words is important. The collection of cardinal numbers under
consideration is well ordered, and hence, in particular, has a least element ;the
collection of total sets is only partially ordered. It is common mathematical
experience that a proof of the existence of minimal sets of a certain kind is
likely to prove a stronger statement, namely that every one of the sets of that
kind includes a minimal one. For total sets in Hilbert space the mere existence
of minimal ones is obvious (orthonormal bases), but the stronger statement is
false. To say that the stronger statement is falseis to say that there exists a total
set such that no total subset of it is minimal, and the existence of such a set is
obvious from Solution 11. (For further comments on dimension see Problems
54 and 55.)

Does every separable Banach space have a minimal total set? The
question seems to be open. For sufficiently unpleasant topological vector
spaces the answer is no; see [47, p. 2147

Solution 12. It seems that the more you know the harder this is. The
following ingenious proof was offered by a student who at the time was
completely innocent of the techniques of Hilbert space [ 143].

The basic observation is that

ey — firedl = [e: = Jis f))I

for all i and j. This is so trivial that it is hard to see how it could have any
usable consequences. It does, however, yield

Yle;— f12 =Y Y lte; — f e (by Parseval)
J Jot

= ZZ (e; — fis /I
= Z le; — fill2 (by Bessel).
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The assumed finiteness condition implies that the Bessel inequality must
have been an equality for each i:

Yl = fo FIP = lle; = £l

(The elementary lemma that is being used is that if 0 < a; < b, for each i and
Yia; =Y b < oo, then a; = b, for each i.) It follows that

Se— S fy =~ fi

so that
e )y = e

for each i. Consequence: each e; belongs to the span of the f}’s, and there-
fore, indeed, the f}’s span H.

There is an alternative proof, which is a shade less elementary, but whose
technique is more often usable. Begin by choosing a positive integer # so that

Llle, = fil> <1,

i>n

and then define a linear transformation A, first on the linear combinations o
the e;’s only, by writing
Ae;=¢; ifj<n,
and
Ae; = f; ifj>n.
If f = Y, &e; (finite sum), then

2

I = A2 = | T &de — 5
j>n
< Zlfﬂz Z ”ej - f;”2
j>n j>n
<IIP- Y le = Sl
i>n

It follows that 1 — A is bounded (as far as it is defined) by
2 lle; — fil12,

i>n
which is strictly less than 1. This implies ([50, p. 52]) that A has a (unique)
extension to an invertible operator on H (which may as well be denoted by 4
again). The invertibility of A implies that the vectors ey, -, e,, fyr1,
Jus2, -+ (the images under 4 of ey, -+, e,, €,:15 €42, span H. It
follows that if M is the span of f,,,, f,42, -+, then dim M* = n. Con-
clusion: the vectors fi, -+, fys15 fus2, - span H,
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Spaces

Solution 13. It is sufficient to prove that if dim M = 1,then M + Nisclosed;
the general caseis obtained by induction on the dimension. Suppose, therefore,
that M is spanned by a single vector f;, so that M + N consists of all the
vectors of the form afy + g, where a is a scalar and g eN. If f, €N, then
M -+ N = N; in this case there is nothing to prove. If f ¢ N, let g, be the
projection of f, in N; that is, gy is the unique vector in N for which
fo—godl N.

Observe now that if g is a vector in N, then
lafo + g1 = lla(fo — go) + (ago + 9)I?
2 |- | fo = gol?

(since fo — go L age + g), or

< lafo + gl ’
~ | fo — 9ol

|

and therefore

lgll = Iofo + 9) — ool

lafo + 4|
Ifo = goll

These inequalities imply that M + N (the set of all af, + ¢’s) is closed.
Indeed, if a, fy + g, = h, so that {a, fy + g,} is a Cauchy sequence, then
the inequalities imply that both {a,} and {g,} are Cauchy sequences. It
follows that a, — o and g, — g, say, with g in N of course, and consequently

h= limn(anf() +gn) = afo +g

= llofo + gl + -1 foll-
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Solution 14. The lattice of subspaces of a Hilbert space H is modular if
and only if dim H < R, (i.e., H is finite-dimensional); it is distributive if
and only ifdim H < 1.

Proor. If H is infinite-dimensional, then it has subspaces M and N such that
MAN=0and M+ N # M v N (cf. Problem 52). Given M and N, find
a vector foin M v N that does not belongto M + N, and let L be the span of
N and f;. By Problem 13, L is equal to the vector sum of N and the one-
dimensional space spanned by f;, i.e., every vector in L is of the form
afp + g, where o is a scalar and g is in N.

Both L and M v N contain f;, and, therefore, so does their intersection.
On the other hand, L » M = 0. Reason: if afy + g € M (with g in N), then
ofy € M + N; this implies that & = 0 and hence that g = 0. Conclusion:
(L n M) v N = N, which does not contain fg.

The preceding argument is the only part of the proof in which infinite-
dimensionality plays any role. All the remaining parts depend on easy finite-
dimensional geometry only. They should be supplied by the reader, who is
urged to be sure he can do so before he abandons the subject.

Solution 15. The inclusion o in the modular law is true for all lattices; just
observe that both L m» M and N are included in both Land M v N.

Suppose now that Mv N =M+ N. If feLn (M v N), then (by
assumption) f =g + h, with g in M and h in N. Since —heN < L and
feL, it follows that f — heL, so that geL, and therefore geL n M.
Conclusion: f €(L » M) + N. (This is in essence the usual proof that the
normal subgroups of a group constitute a modular lattice.)

The reverse implication if M + N # M v N for some M and N, then the
modular law fails) is exactly what the proof of Solution 14 proves.

Solution 16. In a Hilbert space of dimension n (< ;) the (closed) unit ball is
a closed and bounded subset of 2n-dimensional real Euclidean space, and
therefore the closed unit ball is compact. It follows, since translations and
changes of scale are homeomorphisms, that every closed ball is compact;
since the open balls constitute a base for the topology, it follows that the space
is locally compact.

Suppose, conversely, that H is a locally compact Hilbert space. The
argument in the preceding paragraph reverses to this extent: the assumption
of local compactness implies that each closed ball is compact, and, in partic-
ular, so is the closed unit ball. To infer finite-dimensionality, recall that the
distance between two orthogonal unit vectors is /2, so that each open ball of
diameter ﬁ (or less) can contain at most one element of each orthonormal
basis. The collection of all open balls of diameter /2 is an open cover of the
closed unit ball; the compactness of the latter implies that every ortho-
normal basis is finite, and hence that H is finite-dimensional.
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Solution 17. IfdimH < N, then Hhas a countable orthonormal basis. Since
every vector in H is the limit of finite linear combinations of basis vectors, it
follows that every vector in H is the limit of such linear combinations with
coefficients whose real and imaginary parts are rational. The set of all such
rational linear combinations is countable, and consequently H is separable.

Suppose, conversely, that {f}, f5, f5, - -} is a countable set dense in H. If
{g;} is an orthonormal basis for H, then for each index j there exists an
index n; such that | f, — g/l < \/5/2. Since two open balls of radius
\/5/2 whose centers are distinct g;’s are disjoint, the mapping j+ n; is
one-to-one; this implies that the cardinal number of the set of indices j is
not greater than X,.

The Gram-Schmidt process yields an alternative approach to the converse.
Since that process is frequently described for linearly independent sequences
only, begin by discarding from the sequence {f,} all terms that are linear
combinations of earlier ones. Once that is done, apply Gram-Schmidt to
orthonormalize. The resulting orthonormal set is surely countable; since its
span is the same as that of the original sequence {f,}, it is a basis.

Solution 18. Since a measure is, by definition, invariant under translation,
there is no loss of generality in considering balls with center at 0 only. If E is
such a ball, with radius r (>0), and if {e,, e,, €5, -} is an infinite ortho-
normal set in the space, consider the open balls E, with center at (r/2)e,
and radius r/4; thatis, E, = {f: | f — (r/2)e,| < r/4}.If f€E,, then

r r
< —— _
IIfII:“f sal + 5| <n
sothat E, c E. If f € E, and g€ E,, then
r r r r
e, — eyl S l|l=en— - —=e,l
S~ S Em| S |5 € f“+||f g||+“g 5 €m

This implies that if n s m, then

and hence that if n # m, then E, and E,, are disjoint. Since, by invariance, all
the E,’s have the same measure, it follows that E includes infinitely many
disjoint Borel sets of the same positive measure, and hence that the measure
of E must be infinite.
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Solution 19. If S is a weakly closed set in H and if {f,} is a sequence of
vectors in § with f, — f (strong), then

(S @) — (LIS NS — fl- gl =0,

so that f, — f (weak), and therefore f € S. This proves that weakly closed sets
are strongly closed; in fact, the proof shows that the strong closure of each set
is included in its weak closure. The falsity of the converse (i.e., that a strongly
closed set need not be weakly closed) can be deduced from the curious
observation that if {e,, ¢,, e5, - - -} is an orthonormal sequence, then ¢, — 0
(weak). Reason: for each vector f, the inner products (f, e,) are the Fourier
coefficients of f, and, therefore, they are the terms of an absolutely square-
convergent series. It follows that the set of all ¢,’s is not closed in the weak
topology; in the strong topology it is discrete and therefore closed. Another
way of settling the converse is to exhibit a strongly open set that is not weakly
open; one such set is the open unit ball. To prove what needs proof, observe
that in an infinite-dimensional space weakly open sets are unbounded.

It remains to prove that subspaces are weakly closed. If { f,} is a sequence in
a subspace M, and if f, — f (weak), then, by definition, (f,, g) — (f, g) for
every g. Since each f, is orthogonal to M*, it follows that f 1 M* and
hence that fe M. This argument shows that M contains the limits of all
weakly convergent sequences in M, but that does not yet justify the con-
clusion that M is weakly closed. At this point in this book the weak topology
is not known to be metrizable; sequential closure may not be the same as
closure. The remedy, however, is easy; just observe that the sequential
argument works without the change of a single symbol if the word
“sequence” is replaced by “net”, and net closure is always the same as
closure.
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With a different proof a stronger theorem can be proved; it turns out that
the crucial concept is convexity. To be precise, the theorem is that every
strongly closed convex set is weakly closed. Reference: [39, p. 422].

Solution 20. The proof depends on a familiar trivial computation:

W= 12 =(fa = i fo = D= LI = (£ f) = (s O + I

Since f, — f (weak), the terms with minus signs tend to | f||% and, by
assumption, so does the first term. Conclusion: | f, — f||* — 0, as asserted.

Solution 21. If f, — f (weak), then, for each g, |(f,g) — (f,, 9)| is small
when n is large; it follows, in particular, that |(f, )| £ [(f,, )| + ¢ for
each ¢ > 0 when 7 is sufficiently large. Consequence: || ]| < | ful - I £ + ¢
for large n, and therefore | f||* < (liminf, | £,])- | fll + & The proof is
completed by letting ¢ tend to 0.

Solution 22. Every weakly separable Hilbert space is separable.

Proor. The span of a countable set is always a (strongly) separable sub-
space; it is therefore sufficient to prove that if a set S is weakly dense in a
Hilbert space H, then the span of S is equal to H. Looked at from the right
point of view this is obvious. The span of S is, by definition, a (strongly
closed) subspace, and hence, by Problem 19, it is weakly closed; being at
the same time weakly dense in H, it must be equal to H.

Caution: it is not only more elegant but it is also safer to argue without
sequences. It is not a priori obvious that if fis in the weak closure of S, then
f is the limit of a sequence in S.

There is a one-sentence proofthat the span of a weakly dense set is the whole
space, as follows. Since a vector orthogonal to a set is orthogonal to the weak
closure of the set, it follows that the only vector orthogonal to a weakly dense
setisO.

Solution 23. Given the Hilbert space H, for each f in H let D, be the closed
disc {z:|z| = (| f||} in the complex plane, and let D be the Cartesian product
of all the D,’s, with the customary product topology. For each g in the unit
ball, the mapping f + (f, ¢) is a point, say §(g), in D. The mapping § thus
defined is a homeomorphism from the unit ball (with the weak topology) into
D (with the product topology). Indeed, if 6(g,) = 5(g.), that is, if (f, g,) =
(f, g,) for all f, then clearly g, = g,, so that § is one-to-one. As for
continuity:

g;— ¢ (weak) if and only if (f, g;) - (/, 9)

for each f'in H, and that, in turn, happens if and only if §(g;) — &(g) in D. The
Riesz theorem on the representation of linear functionals on H implies that
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the range of § consists exactly of those elements & of D (complex-valued
functions on H) that are in fact linear functionals of norm less than or equal to
1onH.

The argument so far succeeded in constructing a homeomorphism 4 from
the unit ball into the compact Hausdorffspace D, and it succeeded in identify-
ing the range of §. The remainder of the argument will show that that range is
closed (and therefore compact) in D; as soon as that is done, the weak com-
pactness of the unit ball will follow.

The property of being a linear functional is a property of “finite character ™.
That is: £ is a linear functional if and only if it satisfies equations (infinitely
many of them) each of which involves only a finite number of elements of H;
this implies that the set of all linear functionals is closed in D. In more detail,
consider fixed pairs of scalars «, and «, and vectors f; and f,, and form the
subset E(o,, o5, f1, f>) of D defined by

E(oy, 05, f1, f2) = {£€D: (g fi + 0 ) = 2, 8(f1) + %2 E(f2)}.

The assertion about properties of finite character amounts to this: the set of
all linear functionals in D (the range of 8) is the intersection of all the sets of
the form E(o,, o, , f}, f2). Since the definition of product topology implies that
each of the functions & &(fy), € &(fy), and &> E(o, f) + o, f5) is
continuous on D, it follows that each set E(a,, a5, f1, f2) is closed, and hence
that the range of § is compact.

The proof above differs from the proof of a more general Tychonoff-
Alaoglu theorem (the unit ball of the conjugate space of a Banach space is
weak * compact) in notation only.

Solution 24. In a separable Hilbert space the weak topology of the
unit ball is metrizable.

PRrooF 1. Since the unit ball H,; of H is weakly compact (Problem 23), it is
sufficient to prove the existence of a countable base for the weak topology of
H,. For this purpose, let {h;:j = 1,2, 3, -} be a countable set dense in the
space, and consider the basic weak neighborhoods (in H,) defined by

1
Up, g, 1) = {feHl:l(f — hy, b))l <a, j= 1,-~,r},

where p,q,r=1,2,3,---. To prove: if fyeH,, k is a positive integer,
g1, -+ » gy are arbitrary vectors, and ¢ is a positive number, and if

U: {fEHl:l(f - angi)l < E,i: 13"'5k}5
then there exist integers p, g, and r such that
foeU(p,q, 1) e U.
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The proof is based on the usual inequality device:

I(f = fo, I S I(f = by, )| + |(hy = fo, Bl + I(f — fo, 9 — 1)l
S = by B)L+ Ity = foll - Ul + 1f = Soll - lgs = sl
Argue as follows: for each i (=1,---,k) choose j; so that ||g; — h;| is
small, and choose p so that [|h, — fo| is very small. Specifically: choose
q so that 1/q < /3, choose j; so that |g; — h;|l < 1/2q, choose r so that
jisrifor i=1,-.-,k and, finally, choose p so that |k, — foll < 1/gm,
where m = max{||h;l|: j=1,---,r} . Ifj=1,.--,r, then

1 1
[(fo = hps B = Nl fo = Ryl - IRl < m Ty

so that foeU(p,q,r).If f e U(p,q,r) and i = 1,- .-, k, then
1 ¢
I(f = ] <; < 3’

1 €
Ihy = foll - NIl < q_r;zm <3

and

1
2q

(recall that || f|| =1 and | foll = 1). It follows that f € U, and the proof is
complete.

&
If — foll-ligi — hyll <2- <‘§,

ProoF 2. There is an alternative procedure that sheds some light on the
problem and has the merit, if merit it be, that it exhibits a concrete metric for
the weak topology of H,. Let {e,, ¢,, e, - - -} be an orthonormal basis for H.
(There is no loss of generality in assuming that the basis is infinite; in the
finite-dimensional case all these topological questions become trivial.) For
each vector f write

1
Lfl= Z*z—jl(f,ej)l;
J

since |(f, )| = | f |, the series converges and defines a norm. If d(f, g) =
| f — g| whenever f and g are in H,, then d is a metric for H,. To show that d
metrizes the weak topology of H,, it is sufficient to prove that f, — 0 (weak)
if and only if | f,| = 0. (Caution: the metric d is defined for all H but its
relation to the weak topology of H is not the same as its relation to the
weak topology of H,. The uniform boundedness of the elements of H; is
what is needed in the argument below.)

Assume that f, - 0 (weak), so that, in particular, (f,,e;) > 0asn—
for each j. The tail of the series for | f,| is uniformly small for all  (in fact, the
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tail of the series for | f | is uniformly small for all fin H,). In the present case
the assumed weak convergence implies that each particular partial sum of the
series for | f,| becomes small as n becomes large, and it follows that | f,| — 0.

Assume that | f,| — 0. Since the sum of the series for | f,,| dominates each
term, it follows that (f,, e;) — 0 as n — o for each j. This implies that if g is a
finite linear combination of e;’s, then ( f,, g) = 0. Such linear combinations are
dense. If he H, then

|(fos DI 2 1(for B = D + |(fas DI

Choose g so as to make |h — g| small (and therefore |(f,, h — g)| will be
just as small), and then choose n so as to make |(f,, g)| small. (This is a
standard argument that is sometimes isolated as a lemma: a bounded
sequence that satisfies the condition for weak convergence on a dense set
is weakly convergent.) Conclusion: f, — 0 (weak).

Solution 25, In an infinite-dimensional Hilbert space the weak sequential
closure of the unit sphere is the unit ball.

Proor. In view of Solution 24, the weak closure of the unit sphere is the same
as its weak sequential closure. What is to be proved, therefore, is that if
| f1l < 1,then fis the weak limit of a sequence of vectors f, with || f,|| = 1.
(Recall that the unit ball is weakly closed.) To do that, let {e,} be an ortho-
normal sequence of vectors orthogonal to f and write

f,,:f-i—(\,l——-||f||2e,,,n:1,2,3,-~-,

Since e, — 0 weakly, it follows that f, — f weakly.

The answer to the second question is no; the result is an easy corollary of
what was just proved. If S, and H, are the sphere and the ball of radius
r (>0) and center 0, then what is already known is that the weak sequential
closure of S, always includes H,, and hence, all the more, that the weak
sequential closure of S, includes H, whenever r 2 s. Consequence: the
exterior of the unit ball is weakly dense (because it is the union of the S,’s
with r > 1), but, obviously, the intersection of that exterior with the unit
ball is empty, and is therefore not dense in the unit ball.

Solution 26. If the weak topology of the unit ball in a Hilbert space H is
metrizable, then H is separable.

Proor. If Hy, the unit ball, is weakly metrizable, then it is weakly separable
(sinceitis weakly compact). Let { f,: n = 1, 2, 3, - - -} be acountable set weakly
dense in H,. The set of all vectors of the form mf,, m,n =1,2,3, ---, is
weakly dense in H. (Reason: for fixed m, the mf,’s are weakly dense in
mH,, and |),, mH; = H.) The proof is completed by recalling (Solution 22)
that weakly separable Hilbert spaces are separable.
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Solution 27. Supposethat Tisa weakly boundedsetin Hand that,specifically,
[(f, 9| S of) for all g in T. If H is finite-dimensional, the proof is easy.
Indeed, if {e,, - - -, e,} is an orthonormal basis for H, then

I/, 9l = (.;(faei)ehg)I: _;(f’ei)(eisg)l

éj_;luf,e,-)v- pCHLL

S ) Y (dep))?,
i=1
and all is well.

Assume now that H is infinite-dimensional, and assume that the con-
clusion is false. A consequence of this assumption is the existence of an element
g, of T and a unit vector e, such that |(e,, g,)| 2 1. Are the linear functionals
induced by T (i.e., the mappings f + (f, g) for g in T) bounded on the ortho-
gonal complement of the at most two-dimensional space spanned by e, and
g1 ?If so, then they are bounded on H, contrary to the present assumption. A
consequence of this argument is the existence of an element g, of T and a
unit vector e, orthogonal to e, and g,, such that

[(e2, g2)| = 2(x(ey) + 2).
Continue in the same vein. Argue, as before, that the linear functionals in-
duced by T cannot be bounded on the orthogonal complement of the at most
four-dimensional space spanned by ey, ¢,, g1, ¢,; arrive, as before, to the
existence of an element g5 of T and a unit vector e; orthogonal to ey, e, and
g1 g2, and such that

(e3> g3)| Z 3(aley) + 3(ez) + 3).
Induction yields, after n steps, an element g,,; of T and a unit vector e,
orthogonaltoe,,---,e,and g, -+, ¢,, such that

|(en+1agn+1)| = (n + 1)("2 %“(ei) +n + 1)

i=1

Now put f = > 2, (1/i)e;. Since

| 1
|(fagn+1)| = i=Z1 ?(ei: gn+1)+m(en+lagn+l)

;—'i—i;a(ei)-i— (n+1)-(i%¢cx(ei)+n+1)

n+1 i=1
=n+1,
it follows that if T is not bounded, then it cannot be weakly bounded either.
This proof is due to D. E. Sarason. Special cases of it occur in [148,
footnote 32] and [138, p. 59]; almost the general case is in {1, p. 45]. The
production of non-category proofs (for Banach spaces) became a cottage
industry for a while; a couple of elegant examples are [76] and [72].
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Solution 28. Let {e;, ¢,, €3, - - -} be an infinite orthonormal set in Hand let E
be the set of all vectors of the form \/; e,, n=123-... Assertion:the
origin belongs to the weak closure of E. Suppose indeed that
{fl(f’gl)l <gi= la’k}

is a basic weak neighborhood of 0. Since ., |(g;, e,)|*> < oo for each i,
it follows that > .21 QO ¥~y |(g;, e)|)* < o0. (The sum of a finite number of
square-summable sequences is square-summable.) It follows that there is at
least one value of n for which Y%, |(g;, e,)| < &/i/n; (otherwise square
both sides and contemplate the harmonic series). If n is chosen so that
this inequality is satisfied, then, in particular, |(g;, ¢,)| <¢ /\/;1 for each
i, and therefore |(\/;l -e,, 9)| <¢foreachi(=1,...,k).

The weak non-metrizability of H can be established by proving that no
sequence in E converges weakly to 0. Since no infinite subset of E is bounded,
the desired result is an immediate consequence of the principle of uniform
boundedness.

The first construction of this kind is due to von Neumann [148, p. 380].
The one above is simpler; it was discovered by A. L. Shields.

It is sometimes good to remember that every cluster point of a set is the
limit of a net whose terms are in the set. The construction of such a net is a
standard technique of general topology; in the case at hand it can be described
as follows. The underlying directed set is the set D of all basic weak neighbor-
hoods of 0 (ordered by reverse inclusion). If D e D, choose (!) an element
fp of E in D. (The first paragraph above shows that such an element
always exists; in other words, for each D there is a positive integer n such

that ./n e, € D.) The net D+ f;, converges weakly to 0. Proof: if D, is a
(basic) weak neighborhood of 0, then D,eD and fpe D, whenever
D c D,.

An alternative elegant proof was suggested by G. T. Adams. It proceeds by
contradiction, and does not construct something as explicitly as the preceding
argument, but it involves no computation. It goes as follows.

The weak closure of the unit sphere (i.e., of the set S; = {f: | f|| = 1})
contains 0; see Problem 20. Obvious extension: for each positive integer n,
the weak closure of the sphere S, = {f: | f|| = n} contains 0. If there were a
metric d for the weak topology, then, for each n, there would exist a vector f,
in S, such that d(f,, 0) < 1/n. This leads to a contradiction: the unbounded
sequence {f,} 1s weakly convergent (to 0). Conclusion: there is no such
metric.

Solution 29. Write g, = {f,*,---, $*,0,0,0,--->, so that clearly g, [?,
k=1,2,3-- I f = oy, 05,005, is in %, then (f, g) = D 5=y o, ;>
Z}‘;l a; ;. It follows that, for each f in I?, the sequence <(f, ¢,) is bounded,
i.e.,, that thesequence {g,} of vectorsin /? is weakly bounded. Conclusion (from
the principle of uniform boundedness): there exists a positive constant f§ such
that ||g,|I*> <  for all k, and, therefore, Y 2, |B;|*> < B.
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The method generalizes to many measure spaces, including all ¢-finite
ones. Suppose that X is a measure space with o-finite measure u, and
suppose that g is a measurable function on X with the property that its
product with every function in L?(u) belongs to L!(u); the conclusion is
that g belongs to L%(u).

Let {E;} be an increasing sequence of sets of finite measure such that
U« Ei = X and such that g is bounded on each E, . (Here is where o-finiteness
comes in.) Write g, = xz, g* (Where yg, is the characteristic function of Ey),
k=1,2,3,.--. The rest of the proof is the obvious modification of the
preceding discrete proof; just replace sums by integrals.

For those who know about the closed graph theorem, it provides an
alternative approach; apply it to the linear transformation f + fg* from
L2 into L. For a discussion of an almost, but not quite, sufficiently general
version of the closed graph theorem, see Problem 58.

Solution 30. (a) The idea is that a sufficiently “large” Cauchy net can turn
out to be anxious to converge to an “unbounded vector”, i.e., to something
not in the space. To make this precise, let £ be an unbounded linear functional,
fixed throughout what follows; on an infinite-dimensional Hilbert space such
things always exist. (Use a Hamel basis to make one.) Then let {e;} be a
Hamel basis, and, corresponding to each finite subset J of the index set, let
M; be the (finite-dimensional) subspace spanned by the e;’s with j in J.
Consider the linear functional ; that is equal to £ on M; and equal to 0 on
M,*. Since the &;’s are bounded (finite-dimensionality), there exists a net
J — g; of vectors such that &,(f) = (f, g,) for each fand for each J. (The
finite sets J are ordered by inclusion, of course.) Given f,, let J,, be a finite
set such that f,e M, . If both J and K include J,, then (f, g,) —
(f, gx) = 0; it follows that {g,} is a weak Cauchy net. This Cauchy net
cannot possibly converge weakly to anything. Suppose indeed that g; —» g
weakly, so that &,(f;) = (f,, ¢) for each fixed f;. As soon as J, is so large
that f, e M;,_, then &, (fo) = &(fo); it follows that &(f,) = (fo, g) for each
fo- Since ¢ is unbounded, that is impossible,

(b) Every Hilbert space is sequentially weakly complete.

Proor. If {g,} is a weak Cauchy sequence in H, then {(f, g,)} is a Cauchy
sequence, and therefore bounded, for each f in H, so that {g,} is weakly
bounded. It follows from the principle of uniform boundedness that {g,} is
bounded. Since lim, (f, g,) = &(f) exists for each f in H, and since the
boundedness of {g,} implies that the linear functional ¢ is bounded, it
follows that there exists a vector g in H such that lim, (f,g,) = (f,g) for
all f. This means that g, — g (weak), so that {g,} does indeed have a weak
limit.
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CHAPTER 4

Analytic Functions

Solution 31. For each region D, the inner-product space A*(D) is
complete.

Proor. It is convenient to present the proofin three steps.
(1) If Dis open disc with center 4 and radius r, and if f € A%(D), then

10) = == [ F@duco)

There is no loss of generality in restricting attention to the unit disc
D, in the role of D, D, = {z:|z| < 1}; the general case reduces to this
special case by an appropriate translation and change of scale. Suppose,
accordingly, that f € A? (=A%*D,)) with Taylor series ) o, ,z", and
let D, be the disc {z: |z| <r}, O <r < 1. In each D,, 0 <r < 1, the
Taylor series of f converges uniformly, and, consequently, it is term-by-
term integrable. This implies that

f F@du) = 3 o f 2 du(2)
D, n=0 D,

= o+ T2
Since | f| is integrable over D, it follows that [, f du — [p, f duasr - 1;
since o, = f(0), the proof of (1) is complete.
Return now to the case of a general region D.
(2) Ifvy(f) = f(A) whenever 1€ D and f € A%(D), then, for each fixed 4,
the functional v, is linear. If r = r(4) is the radius of the largest open disc
with center A that is entirely included in D, then

10,00 g»\};nfn.
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Let D, be the largest open disc with center A that is entirely included in D.
Since

Tik fD|f(z>|2 du(z) = fD 1f @ duz)

2
>

= 2

(by the Schwarz inequality)

f(2)du(z)
Do

2
= nr?

1
o ), SO

= | f()I (by (1)),
the proof of (2) is complete.

(3) The proof of the main assertion is now within reach. Suppose that
{£.} is a Cauchy sequence in A%(D). It follows from (2) that

D) = ful®)] < 77?1'??5 1 = ful

for every Ain D; here, as before, r(4) is the radius of the largest open disc with
center at 4 that is entirely included in D. It follows that if K is a compact
subset of D, so that r(4) is bounded away from 0 when A € K, then the
sequence {f,} of functions is uniformly convergent on K. This implies that
there exists an analytic function f on D such that f,(1) — f(4) for all 1in D.
At the same time the completeness of the Hilbert space L*(u) implies the
existence of a complex-valued, square-integrable, but not necessarily
analytic function g on D such that f, — g in the mean of order 2. It follows
that a subsequence of {f,} converges to g almost everywhere, and hence
that /= g almost everywhere. This implies that f is square-integrable,
i.e., that fe A*(D), and hence that A%(D) is complete.

These facts were first discussed by Bergman [11, p. 24]; the proof above
is in [64]. The latter makes explicit use of the Riesz-Fischer theorem (the
completeness of L?), instead of proving it in the particular case at hand,
and consequently, from the point of view of the standard theory of Hilbert
spaces, it is simpler than the analytic argument given by Bergman.

Solution 32. The evaluation of the inner products (e,, €,,) is routine calculus.
If, in fact, D, = {z:|z| < r}, then

2n pr
f Zhyxm du(z) - f fei(n~m)9pn+mp dp d@
0 0

-
+m+2

= 216, ~———=.
n"'"n+m+2

It follows (put r = 1) that if n ¢ m, then (e,, e,) == 0, and it follows also
(put n = m) that |e,||* = 1. This proves orthonormality.
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To prove that the e,’s form a complete orthonormal set, it is tempting
to argue as follows. If f € A%, with Taylor series Y2, &,z", then f(z) =
Y 0 o/ 7/(n + 1) - e,(2); this shows that each f in A% is a linear combina-
tion of the e,’s, q.e.d. The argument is almost right. The trouble is that the
kind of convergence it talks about is wrong. Although > 2, a,z" converges
to f(z) at each z, and even uniformly in each compact subset of the disc,
these facts by themselves do not imply that the series converges in the metric
(norm) of A2,

There is a simple way around the difficulty: prove something else.
Specifically, it is sufficient to prove that if feA? and f Le, for
n=20,1,2,-.-, then f= 0; and this is an immediate consequence of the
second statement in Problem 32 (the statement about the relation between
the Taylor and Fourier coefficients). That statement is a straightforward
generalization of (1) in Solution 31 (which is concerned with e, only). The
proof of the special case can be adapted to the general case, as follows. In
each D,, 0 < r < 1, the series

«Q
f(@)z*" = ) o,z"z*"
n=0

converges uniformly, and, consequently, it is term-by-term integrable. This
implies that

o rn+m+2
2)z¥du(z) = ) o, 2nb,, ————
SO D) = T o 2
n'r2m+2
= Ql, —————,
m+ 1

Since | f -e,*| is integrable over D, it follows that [, f-e,*du —
b, f-en*du = (f,e,)asr — 1, and the proof is complete.

Note that the argument above makes tacit use of the completeness of
AZ?. The argument proves that the orthonormal set {e,, e;, e,, -- -} is maxi-
mal; a maximal orthonormal set deserves to be called a basis only if the
space is complete. The point is that in the absence of completeness the con-
vergence of Fourier expansions cannot be guaranteed. (Cf. Problem 55.)

An alternative proof that the e,’s form a basis, which uses completeness
in a less underhanded manner, is this. If f € A%, with Taylor series
Yooz then (fe)=+/n/(n + 1) o, This implies, via the Bessel
inequality, that

N

o]
converges. It follows that the series whose n-th term is

vV n/(n + 1) 'oc,,e,,(z)

converges in the mean of order 2; this conclusion squarely meets and over-
comes the obstacle that stops the naive argument via power series expansions.

n+1
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The result establishes a natural isomorphism between A and the Hilbert
space of all those sequences (&g, &, &,, - - -» for which

2 ol
Yy =t < oo,
n=0 n+ 1
with the inner product of (&g, a;, %,, > and {f,, f;, B, ) given by
i oty o
n=0 n+ 1 ’

-

Solution 33. Formally the assertion is almost obvious. For any f in L?
(not only H?), with Fourier expansion f = ), «,e,, complex conjugation
yields

f* = ZOC,,*E,,* = Zoc,,*e_,, = Z(x—ﬂl*en;
n n n

it follows that if f = f*, then «, = a_,* for all n. If, moreover, f € H?, so
that a,, = 0 whenever n < 0, then it follows that &, = 0 whenever n # 0, and
hence that f = «,.

The trouble with this argument is its assumption that complex conju-
gation distributes over Fourier expansion; that assumption must be justified
or avoided. It can be justified this way: the finite subsums of Y , «,e, converge
to f in the sense of the norm of L2, i.e., in the mean of order 2; it follows
that a subsequence of them converges to f almost everywhere, and the
desired result follows from the continuity of conjugation. The assumption
can be avoided this way: since a, = | fe,* du, it follows that o_,* =
(| fe_,* dw* = | f*e,* dp, so that if f = f*, then, indeed, o, = a_,* It is
sometimes useful to know that this last argument applies to L' as well as
to L?; it follows that the constants are the only real functions in H*.

Solution 34. Like the assertion (Problem 33) about real functions in H?,
the assertion is formally obvious. If f and g are in L? with Fourier
expansions

f = Z(xnem g = Z ﬁmema

then
fg = Z Z (xnﬁmenem = ; (Z o‘nﬁk—n)ek'

If, moreover, f and g are in H?, so that «, = §, = 0 whenever n < 0, then
Y % Bi-n = 0 whenever k < 0. Reason: for each term «, B ,, either n < 0,
in which case o, = 0, or n = 0, in which case £k — n < 0 and therefore
ﬁk—n = 0.

The trouble with this argument is the assumption that the Fourier series
of a product is equal to the formal product of the Fourier series of the factors.
This assumption can be justified by appeal to the subsequence technique
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used in Solution 33. Alternatively the assumption can be avoided, as follows.
The inner product (f, g*) is equal to ) «,f_, (by Parseval, and by the
results of Solution 33 on the Fourier coefficients of complex conjugates);
in other words, the 0-th Fourier coefficient of fg is given by

ffg dp = ;anb’—n-

Apply this result with g replaced by the product ge,*. Since the Fourier
coefficients y, of ge,* are given by

Vn = fgek*e,.* du = fgem* Ap = Prsns

it follows that
ffgek* d.u = Z Un¥—n = Z o‘nﬁk—n'

It is an immediate corollary of this result that if f e H® and g € H?,
then fg e H2 It is true also that if f e H* and g € H, then fg € H!, but the
proof requires one additional bit of analytic complication.

Solution 35. If ¢(z) = Y >, ,2" for |z| < 1, then @, (z) = Y2 a,r"z" for
0 <r <1 and |z|] = 1. Since, for each fixed r, the latter series converges
uniformly on the unit circle, it converges in every other useful sense; it
follows, in particular, that the Fourier series expansion of ¢, in L? is
Yo o,7"e,, and hence that ¢, € H,

Since ||@,||I*> = Y26 |a,|?r*", the second (and principal) assertion re-
duces to this: if f= Y2, |a,|*> and B, = > %o |0, |*r?", then a necessary
and sufficient condition that § < oo is that the f,’s (0 < r < 1) be bounded.
In one direction the result is trivial; since §, < f for all r, it follows that if
B < oo, then the s are bounded. Suppose now, conversely, that f§, < vy
for all r. It follows that for each positive integer k,

|OC,, Z|a|2 2n)+ Z|a|2 2n

k

2 lon?

Il
=
{
ipa~

A

|<>C I’ = r*") + B,

It

¥|Mx— HM::-

=

|<>C A =) + 7.

For & fixed, choose r so that ) *_, (a,[*(1 — r?") < 1; this can be done
because the finite sum is a polynom1a1 in r (and hence continuous) that
vanishes when r = 1. Conclusion: Y %_,|o,|* < 1 + 7y for all k, and this
implies that Y22 |o,,|> £ 1 + 7.
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Solution 36. Start with an arbitrary infinite-dimensional functional Hilbert
space H, over a set X say, and adjoin a point that acts like an unbounded
linear functional. To be specific: let ¢ be an unbounded linear functional
on H (such a thing exists because H is infinite-dimensional), and write
X" = X u{p}. Let H be the set (pointwise vector space) of all those
functions f * on X * whose restriction to X, say f, is in H, and whose value
at ¢ is equal to ¢(f). (Equivalently: extend each fin H to a function f*
on X" by writing f *(¢) = @(f)) Iff " and g™ are in H™, with restrictions
fand g, write (f 7, ¢7) = (f, g). (Equivalently: define the inner product of
the extensions of fand g to be equal to the inner product of fand g.) The
vector space H* with this inner product is isomorphic to H with its
original inner product (e.g., via the restriction mapping), and, conse-
quently, H" is a Hilbert space of functions. Since ¢ € X ™ and f *(¢) = o(f)
for all fin H, and since ¢ is not bounded, it follows that |¢(f)| can be
large for unit vectors f, and therefore that | f ()| can be large for unit
vectors f.

Selution 37. If H is a functional Hilbert space, over a set X say, with ortho-
normal basis {e;} and kernel function K, write K (x) = K(x, y), and, for
each y in X, consider the Fourier expansion of K:

K, = Z (K,, epe; =Y ef)*e;.

J

Parseval’s identity implies that

K(x,y) = (K,, K,) = ) ex)ey)*.

J

In A? the functions e, defined by

efz) = /(n+ D/n-z" for|z| <1 n=012-."

form an orthonormal basis (see Problem 32); it follows (by the result just
obtained) that the kernel function K of A? is given by

1 Q
K(x,y) = - Y (n + Dx"y*",
n=0

(Note that x and y here are complex numbers in the open unit disc.) Since

2 o(n+ 1)z" = 1)(1 — 2)*> when |z| < 1 (discover this by integrating the
left side, or verify it by expanding the right), it follows that

1 1
K = e |
(x’ y) P (1 _ xy*)2

As for H?: by definition it consists of the functions f on the unit disc

that correspond to the elements f of H% If f = Z,‘,"’,_,O a,e, and if |y| < 1,

then f(y) = Y2, a,)" and consequently f(y)=(f,K,), where K, =
Y% o y*"e,. This proves two things at once: it proves that f» f(y) is
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a bounded linear functional (so that H? is a functional Hilbert space), and it
proves that the kernel function of H? is given by

Kix,y)= Y x"»y*, |x| <1, |yl<L
n=0
In closed form: K(x, y) = 1/(1 — xy*).

Solution 38. A necessary and sufficient condition that conjugation in a
self-conjugate functional Hilbert space be isometric is that the kernel
function be real.

ProOF. It is always true that

(LK) = f0) = (f*O)* = (f* Kp*

for all fand all y; if, in addition, conjugation is isometric, then

(f* Kp* = (f, K,*),
and therefore
(fs K,) = (f, K,*).

Consequence: K, = K,*, and hence K is real. That settles necessity; suf-
ficiency lies a little deeper.

Observe, to begin with, that the vectors K, (y € X) span H. Reason: if
f L K, for all y, then f(y) = (f, K,) = 0, so that f = 0. It follows that the
norm of every vector in H can be calculated from its inner products with the
values of K. Precisely:

171 = sup {22 K]

1225 %K
where the supremum is extended over all non-zero finite linear combinations
of the form ) ; oK, ;- The numerator is equal to

b

Z O‘j*f()’j)

and the denominator is equal to

1/2
(Z Z a0 * K(yi, )’j)) .

i

The norm of f* is, of course, a similar supremum, with numerator

b

Y ()

which is equal to

b

I;“jf()’j)
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and denominator same as for f. The new numerator (for f*) is obtained
from the old one by replacing each «; by its conjugate. If that replacement
is made in the denominator, the result is

1/2
(Zi: Z o *o; K(yi, )’j)) .

Since K{(x, y) is always equal to (K(y, x))*, it follows that if K is assumed
to be real, then the last displayed expression is equal to

1/2
(Z ; a*o; K(yj, yi)) ,

which is exactly the same as the original denominator (for f).

The set of all finite linear combinations of the form ) ; o; K. , and the set
of all those of the form } ; « ;*K, are the same set; the precedmg paragraph
implies therefore that the suprema defining | /| and || f*| are the same. The
proof is complete,

In view of this solution, it is easy to construct finite-dimensional examples
in which conjugation is not an isometry. If, for instance, an inner product is

P
defined in C? by the positive matrix 4 = ( ll), and if f is the vector

(i, 1y, then ||fl = /5 and [f*]| =

Solution 39. Let K be the kernel function of H? (see Solution 37). If f, — f
in H?, and if | y| < 1, then

1) = D=1 = LRI S N = FI- K-
Since

1
1K, |17 = Iylz"*——,
Z = |yI?

it follows that if | y| £ r, then

FAORS

Solution 40. The function f determines f—but how? Taylor and Fourier
expansions do not reveal much about such structural properties as bounded-
ness. The most useful way to approach the problem is to prove that the
values of f (on the unit circle) are, in some sense, limits of the values of f
(on the unit disc). For this purpose, write

£(2) = f(rz2), O<r<l, lz] = 1.

The functions f, are in H? (see Problem 35); the assertion is that f, —» f
(as r — 1) in the sense of convergence in the norm of H?. (The boundedness
of f is not relevant yet.)
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To prove the assertion, recall that if f = Y ° o,e,, thenf, = Y2 ; a,r"%,,
and that, consequently,

If = A2 = X lolPd = )2
n=0
It follows that for each positive integer k

k ©
If = A2 Yl =2+ ) ol
n=0 n=k+1
The desired result (| f — f,|l is small when r is near to 1) is now easy: choose
k large enough to make the second summand small (this is independent of r),
and then choose r near enough to 1 to make the first summand small.

Since convergence in L? implies the existence of subsequences converging
almost everywhere, it follows that f, — f almost everywhere for a suitable
subsequence {r,}, r, — 1; the assertion about the boundedness of f is an
immediate consequence.

The assertion f, — f is true in a sense different from (better than?) con-
vergence in the mean of order 2; in fact, it is true that f, — f almost every-
where. This says, in other words, that if a point z in the disc tends radially
to a boundary point z,, then the function value f(z) tends to f(z,), for
almost every z,. The result can be strengthened; radial convergence, for
instance, can be replaced by non-tangential convergence. These analytic
delicacies are at the center of the stage for some parts of mathematics; in
the context of Hilbert space, norm convergence is enough.

Solution 41. If f € H, then fis bounded, and, in fact, | fll = | fll -

(The norms are the supremum of f on the disc and the essential
supremum of f on the boundary.)

Proor. Consider the following two assertions. (1) If feL®, and, say,
|f| £ 1, then there exists a sequence {f,} of trigonometric polynomials
converging to f in the norm of L2, such that |f,| < 1 for all n; if,
moreover, f is in H®, then so are the f,’s. (2) If p is a polynomial and if
[p(2)| £ 1 whenever |z| = 1, then |p(z)| £ 1 whenever |z| < 1. Both
these assertions are known parts of analysis: (1) is a consequence of Fejér’s
theorem about the Cesaro convergence of Fourier series, and (2) is the
maximum modulus principle for polynomials. Of the two assertions, (2)
seems to be far better known. In any case, (2) will be used below without
any further apology; (1) will be used also, but after that it will be but-
tressed by the outline of a proof.

It is easy to derive the boundedness conclusion about f from the two
assertions of the preceding paragraph. Given fin H®, assume (this is just
a matter of normalization) that | f| < 1, and, using (1), find trigonometric
polynomials f, such that | f,| < 1 and such that f, —» fin the norm of L.
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Since, according to (1), the f,’s themselves are (can be chosen to be) in H®,
it follows that their extensions f, into the interior are polynomials. Since
fu— f in the norm of H? it follows from Problem 39 that f,(z) —» f(2)
whenever |z| < 1. By (2), |f(2)| £ 1 for all n and all z. Conclusion:
| f(2)] < 1 forall z.

The inequality | flo £ | fll, is implicit in the proof above. To get
the reverse inequality, use Solution 40 (f, —» fasr — 1).

It remains to look at a proof of (1). If = ), a,e,, write

+k
S, = Z ajej (k=0, 1,2,"').
==k
Clearly s, — f in L2, but this is not good enough; it does not yield the
necessary boundedness results. (If | f| < 1, it does not follow that |s,| < 1.)
The remedy is to consider the averages

ln—l
tn=~zsk (n:1’253a"')~
=0

(Note that if f € H?, then so are the t,’s.) Clearly t, —» f in L (In fact it is
known that t, — f almost everywhere, but the proof is non-trivial, and,
fortunately, the fact is not needed here.) This turns out to be good enough:
if | f| £ 1, then it does follow that |¢,| < 1.

For the proof, write D, = Y /*_, ¢; (k=0,1,2,.-),and

J
n—1

1
K,==3D, (n=123,--);
ni=o

the sequences of functions D, and K, are known as the Dirichlet and the
Fejér kernels, respectively. Since | D, du = feodu =1, it follows that
| K, du = 1. The principal property of the K,’s is that their values are real,
and in fact positive. This is proved by computation. For z = 1, it is obvious;
for z # 1(but, of course, |z| == 1) write

k
Dk(Z)= 1+ 2Re ZZj (k: 1:»2:3:"')5

j=1

and apply the formula for the sum of a geometric series to get
Zk _ Zk+1
Dk(Z) =2 Re(m)

(Computational trick: note that if |z| = 1, then |1 — z|*> = 2Re(l — z2).)
Substitute into the expression for K, observe that the sum telescopes, and get

2 1-2z
K(2)=-Re—— .
A2) =L Re 70

This makes it obvious that K, is real. Since, moreover, Re z" < 1 (recall that
|z"| = |z|" = 1),i.e.,, 1 — Re z" = 0, it follows that K (z) = 0, as asserted.
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To apply these results to f, note that

+k
“@)= L SO duey)

f D(y*2)f ()du(y)

- ka(wf(y*z)du(y),

and hence that

(2) = f&(y)f(y*z)du(y);

this implies that if | f | £ 1, then

lt(2)| = fK,.(y)If *2)|duy) = fK,.(y)du(y) =1

The proof is over. Here is one more technical remark that is sometimes
useful: under the assumptions of (1) it makes no difference whether the
convergence in the conclusion is in the norm or almost everywhere. Reason:
if it is in the norm, then a subsequence converges almost everywhere; if it is
almost everywhere, then, by the Lebesgue bounded convergence theorem, it is
also in the norm.

Solution 42. If f e H®, ge H?, and h = fg, then h = fg.

PrOOF. The trouble with the question as phrased is that it is easier to answer
than to interpret. If fand g are in H? and h = fg, then h is not necessarily
in H?, and hence the definition given in Problem 35 does not apply to h;
no such thing as & is defined. The simplest way out is to assume that one factor
(say f) is bounded; in that case Solution 34 shows that he H?, and the
question makes sense. (There is another way out, namely to note that
h e H!, by Problem 34, and to extend the process of passage into the interior
to H!. This way leads to some not overwhelming but extraneous analytic
difficulties.) Once the question makes sense, the answer is automatic from
Solution 34; the result there is that the Fourier coefficients of h are expressed
in terms of those of f and g in exactly the same way as the Taylor
coefficients of f-§ are expressed in terms of those of fand §. In other
words: formal multiplication applies to both Fourier and Taylor series,
and, consequently, the mapping from one to the other is multiplicative.

Solution 43. In order to motivate the construction of, say, f from u, it is a
good idea to turn the process around and to study the way u is obtained from
f- Suppose therefore that f € H? with Fourier expansion f = Y 2, o,e,, and
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write u = Re f. Since |u| £ |f|, the function u is in L If the Fourier
expansion of uisu = Y, &, e,, then (see Solution 33)

u=4f + f% :%<Zo(xe + >Zocx e-,,)

1 1
=Reay + ) Sw,e, + D So_,*e,,

n>0 n<o0

and therefore
1, (n>0),
fu ¥ (n<O).

It is now clear how to go in the other direction. Given u =Y, ¢,e,, with
&, = £_,% and, in particular, with &, real, write

% =& and o,=2{=20_*=¢ +{,5 (n>0)

Since the sequence of o’s is square-summable, an element f of H? is defined
by f = Yaso dye,. Write

503: Rﬁ “0 and 5":= {

f =Du
(D for Dirichlet); then Re Du = u for every real u in L2, It is not quite true
that DRe f = f for every f in H?, but it is almost true; the difference
f — D Re fisa purely imaginary constant that can be prescribed arbitrarily.
As for the formulation in terms of v: given u, put v = Im Du. Since
Im Du = —Re(iDu), it is easy to get explicit expressions for the Fourier
coefficients of v. If, as above, u = ), £, and f = Du = ) >, 0,e,, then

szmf:i(f*—~ (Z(x a.,,——Zoce)
2 nz0 nz0
Ifv=> n,e, then

“'_"zén:: “an (n >'0L
no=Im¢, and #,=1
% 28, = iE, (n < 0).

If Im &, = 0, the result can be concisely expressed:

o = (—isgnn)i,
for all n.

As far as L? functions on the unit circle are concerned, these algebraic
trivialities are all there is to the Dirichlet problem on the unit disc. The formal
expression for v in terms of u makes sense even when u is not necessarily
real, and the terminology (conjugate function, Hilbert transform) remains the
same. It is important to note that the Hilbert transform of a bounded function
need not be bounded, or, in other words (consider extensions to the interior)
that unbounded analytic functions can have bounded real parts. Standard
example: f(z) = ilog(l — 2).
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Infinite Matrices

Solution 44. Since H is the direct sum of separable subspaces that reduce A4,
there is no loss of generality in assuming that H is separable in the first place.
This comment, while only feebly used in the proof, eliminates the discomfort
of having to worry about the pathology of the uncountable.

There is a tempting attack on the proof that is doomed to failure but
is illuminating just the same. Let e, be an arbitrary unit vector. Since e,
and Ae, span a subspace of dimension at most 2, it follows that, unless
dim H = 1, there exists a unit vector e, orthogonal to e; such that
Ae, €V {e,, e,}. Since e, e,, and Ae, span a subspace of dimension at
most 3, it follows that, unless dim H = 2, there exists a unit vector e; or-
thogonal to e, and e, such that e, € \/ {e,, e,, e;}. An inductive repetition
of this argument yields an orthonormal sequence {e,, e,, e5, -} (which
is finite only in case dim H < o) such that Ae, e\ {e}, -, e,, €ns1)-
The finite-dimensional case is transparent and, from the present point of
view, uninteresting. In the infinite-dimensional case (4e;, ¢;) = 0 when
i > j + 1, and everything seems to be settled. There is a difficulty, however;
there is no reason to suppose that the ¢,’s form a basis. If they do not, then
the process of embedding them into an orthonormal basis may ruin the
column-finiteness of the matrix. That is, it could happen that for some e
orthogonal to all the ¢,’s infinitely many of the Fourier coeflicients (Ae, ¢;)
are different from 0. If A happens to be Hermitian, then no such troubles
can arise. The span of the ¢,’s is, in any case, invariant under 4, and hence,
for Hermitian A, reduces A; it follows that when the e,’s are embedded
into an orthonormal basis, the new matrix elements do not interfere with
the old columns. This proof, in the Hermitian case, shows more than was
promised; it shows that every Hermitian operator has a Jacobi matrix.
(A Jacobi matrix is a Hermitian matrix all whose non-zero entries are on
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either the main diagonal or its two neighboring diagonals. Some authors
require also that the matrix be irreducible, i.e., that none of the elements
on the diagonals next to the main one vanish.) Indeed: if (4e;, ;) = 0
when i > j + 1, then (¢;, A¢;) = 0 when [ > j + 1; the argument is com-
pleted by inductively enlarging the e,’s to an orthonormal basis selected
the same way as the e,’s were.

In the non-Hermitian case the argument has to be refined (and the
conclusion weakened to the form originally given) as follows. Let
{f1, f2,f3,+ -} be an orthonormal basis for H. Put ¢, = f,. Find a unit
vector e, orthogonal to e; such that de, € \/ {e;, e,}. (Once again restrict
attention to the infinite-dimensional case.) Next find a unit vector e,
orthogonal to e, and e, such that f, € \/ {e,, e,, e;}, and then find a unit
vector e, orthogonal to e;, e,, and e; such that de, € \/ {ey, e,, €5, e,}.
Continue in this way, catching alternately one of the f,’s and the next as
yet uncaught Ae,. The selection of the needed new e is always possible.
The general lemma is this: for each finite-dimensional subspace M and for
each vector g, there exists a unit vector e orthogonal to M such that
g€ M v {e}. Conclusion: the sequence {e,, e,, e5, ---} is orthonormal by
construction; it forms a basis because its span contains each f,; and it has
the property that for each n there is an i, (calculable in case of need) such
that Ae,e \/{e,, ---, ¢, }. This last condition implies that (4e;, ¢;) = 0
whenever i > i;, and the proof is complete.

Solution 45. If (&, &, &,,...> is a finitely non-zero sequence of complex
numbers (ie., &, = 0 for n sufficiently large), then

L|Tmt| =3 Z(ﬂﬁ)(%)

= 5 (L mey) (3 250

i 4

2

2 %€
J

< 1&;17 _ )
=')’Z P 'ﬁ%-ﬁ")’ZMﬂ'
i 4 J

These inequalities imply that the operator A on [? defined by

Ao, &1, 65,000 = <Z %jfj, Z fxljfja Z“zjfj, o >
J J J

satisfies the conditions.
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Solution 46. The result is a corollary of Problem 45. For the proof, apply
Problem 45 with p; = ¢; = 1/./i — 1. Since the Hilbert matrix is sym-
metric, it is sufficient to verify one of the two inequalities (with =y = 7).
The verification depends on elementary calculus, as follows:

1

%Py =
2% Zi:(i+-§~+j+-§~)«/i+—§~

<J’°° dx
o (x+j+HJSx

Solution 47. The assertion is easy to prove: since Y, Y ; (274" /*1)? < oo,
boundedness follows from the sufficient condition mentioned in the pre-
liminary discussion of Problem 44.

The determination of the norm is made easy by the special arithmetic
structure of the entries of the matrix. If f; is the first column,

f0_<27%% '>7

then all other columns are scalar multiples of f;, and, consequently, every
vector in the range of the operator A under study is a multiple of f;. In
other words, A has rank 1; in fact, Af = 2(f, f,)fo for every vector f. It
follows that [|A|l = 2l foll> = 232, 1/4" = 2/3.

(Note that 4 is Hermitian. The spectrum of A consists of two eigenvalues:
0 with infinite multiplicity, and £ with multiplicity 1.)

Solution 48. The Gramian of a finite or infinite sequence {f,} of vectors is the
matrix whose i, j> entry is the inner product (f;,f)). It is not difficult to
prove that every positive matrix is a Gramian; it is completely trivial to
prove that every Gramian is positive. To prove that the Hilbert matrix is
positive, it is therefore sufficient to exhibit, in some Hilbert space, a sequence
{f.} of vectors such that (f;, f;)=1/(i+j+1)( j=0,1,2,-.) To do
that, let the Hilbert space be L2(0, 1), and let the vectors f, be defined by
J.(x) = x". The rest is elementary calculus.

It follows on general grounds that the Hilbert matrix has a unique positive
square root. What is it? No explicit description of it seems to be known.

Solution 49. The answer is that the Gramian matrix {(f}, f;)> be bounded
(or, in other words, that there exist an operator with that matrix).
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In one direction the proof is straightforward. If the Gramian is bounded,
and if o is a finitely non-zero sequence, then

Lahi| = (Taf Tak) =TT 0 o

= (Ga, o),

where G is the Gramian (considered as an operator on [?). Consequence:

2. % fy

and that implies convergence. Note, in particular, that since the Hilbert
matrix is a bounded Gramian (Problem 46), this answers the question about
L2(0, 1).

The quickest proof of the converse is via uniform boundedness. For each
n=1,2,3,.., let T, be the linear transformation from /* to H defined by

2

< IGH - fed?,

T = Yo fi-
=1

Clearly each T, is bounded. For a fixed o, the sequence {T,«} consists of the
partial sums of a series that is convergent by assumption, and, therefore, the
sequence {T,o} is bounded. Conclusion (see Problem 51): the sequence
{IIT,I} is bounded, and that implies (in view of the identity involving | T, x|
and the Gramian) that the Gramian is bounded.

Note that the result is a generalization of the numerical fact (Problem 29):
the “Gramian™ {f;5;*) of a sequence of scalars is bounded if and only if
the sequence is in /2.
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Boundedness and Invertibility

Solution 50. Let {e,, e,, e5,- -} be an orthonormal basis for a Hilbert space
H, and find a Hamel basis for H that contains each e,. Let f, be an
arbitrary but fixed element of that Hamel basis distinct from each e, (see
Solution 7). A unique linear transformation A4 is defined on H by the re-
quirement that Af, = f, and Af = 0 for all other elements of the selected
basis: in particular, Ae, = 0 for all n. If A were bounded, then its
vanishing on each e, would imply that 4 = 0. This solves parts (a) and (b)
of the problem.

It is interesting to observe that unbounded examples for part (a) are not
only easy to come by; in fact, it is impossible to avoid them. That is: for every
linear transformation A on H, there exists an orthonormal basis {e,, e, €5, - - -}
for H such that sup, ||de,|| < co. Reference: [121].

The answer to (¢) is no: if a linear transformation A4 is bounded on each
orthonormal basis, then A4 is bounded. One way to see that is to imitate the
easy beginning part of Solution 27. (If 4 is not bounded, then there exists a
unit vector e, such that |de;|| = 1, and, by induction, whenever e ,---, e,
are orthonormal vectors with ||Ae;ll = j, j = 1,...,n, then there exists a
unit vector e, , orthogonal to {e,--,e,} such that |Ade, . || =2 n + 1.)

For part (d), choose an arbitrary but fixed positive integer k and define
an operator A (depending on k) by

Af = (f. ey + - + e)e,.

It follows that Ae, = e, or 0 according as n < k or n > k, and hence that
| Ae,|l| £ 1 for all n. Since (easy computation) A* = (f, e;)e; + - + &)
for allf, so that, in particular, A*e;, = e; + -+ + ¢, it follows that

|l = 14| 2 [ 4% = Jley + -+ + el = k.
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A simple alternative way to say all this is to describe the matrix of 4 with
respect to the basis {e;, e,, €5, ---}: all the entries are 0 except the first k
entries in the first row, which are 1’s.

As for (e), yes, there are normal matrices, and even Hermitian ones, that
have the same unboundedness properties as the ones in (d). Example:
oy = 1/\/E if 1 £4,j<kand o; =0 otherwise. If the matrix is divided
by \/ k, so that each non-zero entry becomes 1/k, then the matrix becomes
idempotent. Since it is Hermitian, it is now a projection, and hence has
norm 1. Conclusion: the original matrix has norm \/I;

Solution 51. The conclusion can be obtained from two successive applications
of the principle of uniform boundedness for vectors (Problem 27). Suppose
that Q is a weakly bounded set of bounded linear transformations from H to
K, and that, specifically, |(Af, g)| < «(f, g) for all A in Q. Fix an arbitrary
vector g, and write T, = {A*g,: 4 € Q}. Since

|(f A*g0)| = |(Af, go)| £ a(f, go),

the set T, is weakly bounded in H, and therefore there exists a constant
Blge) such that |[A*g,ll < Plg,) for all Ain Q.
Next, write T = {Af: A € Q, f € H,}, where H, is the unit ball of H. Since

1@, AN = [(4*q, NI = p@) - 1 f1| = BQ@),

the set T is weakly bounded in K, and therefore there exists a constant y such
that

141l = v
whenever 4 € Q and f € H,. This implies that
4l = v,

and the proof is complete.

Solution 52. It is sufficient to prove that A* is invertible. The range of A*
is dense in H (because the kernel of A4 is trivial), and, consequently, it is
sufficient to prove that A* is bounded from below. This means that |4*g| =
dllg| for some & (and all g in K). To prove it, it is sufficient to prove that if
| A*gll = 1, then ||g|| £ 1/ for some §. Caution: the last reduction uses the
assumption that the kernel of A* is trivial, which is true because the range of
A is dense in K. (The full force of the assumption that 4 maps H onto K will
be used in a moment.) To see the difficulty, consider the transformation 0 in
the role of A*: for it the implication from [A*g| = 1 to |g|| < 1/ is
vacuously valid. Summary: it is sufficient to prove that if

S = {h: | A*h| = 1},
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then the set S is bounded, and that can be done by proving that it is
weakly bounded. To do that, take g in K, find fin H so that Af = g, and
observe that

1@, W = 1(4f, B = |(f, A*B)| = | ]

for all hin S. The proofis complete.

Solution 53. (a) The construction of non-closed vector sums is either
laborious ([138, p. 21] and [50, p. 28]) or mildly sophisticated (Problem 52).
All known constructions can be generalized so as to solve Problem 53 also.

Consider, for example, an operator A on a Hilbert space H, and let M
be the x-axis and N the graph of 4 in H @ H. Question: under what con-
ditions on A is N a complement of M? Answer: if and only if ker A = 0
and Tan A = H. Assume that these conditions are satisfied, consider a
subspace H, of H and, in an attempt to diminish N, consider, in the role of
N, that part of the graph of A4 that lies over H,,. More precisely, let N, be the
set of all vectors in H @ H that are of the form (g, Ag) for some g in H,.
Question: under what conditions on H, is N, still a complement of M?
Answer: if and only if AH, is dense in H.

In view of all this, the construction of a diminishable complement can be
accomplished by constructing an operator A on H and a proper subspace
H, of H such that ker 4 = 0 and AH,, is dense in H. This cannot be done
if H is finite-dimensional; if H is infinite-dimensional and the kernel re-
quirement is omitted, it is very easy to do. The only mild challenge is in
the case at hand.

Let H be 1> and define A (as in Problem 52) by A<¢,, &,,&E5,--> =
&y, 385,385, -+ +); to define Hy, let h be the vector (1,4,4,---> and let H,
be its orthogonal complement. That is: H, is the set of all those vectors g
(=<€1, &, &3, -+ -) for which (g, b) (=Y, (I/m)é,) = 0. The only thing
that needs proof is that AH, is dense in /2, and for that purpose it is
sufficient to prove that each finitely non-zero vector f in /* can be approxi-
mated arbitrarily closely by vectors in AH,,.

Since fis finitely non-zero, there exists a (unique and necessarily finitely
non-zero) vector g such that Ag = f. There is no reason why the vector g
should be in H,, but by a suitable perturbation it can be put there.
Suppose, indeed, that (g, k) = o, the plan is to find a vector g, such that
(9o, h) = —oa (so that g + g, € Hy) and such that [|Ag,| is small (so that
A(g + go) s near to f). For this purpose let p be a large positive integer,
and let n be a positive integer such that all the coordinates of g after the
n-th are equal to 0; define g, so that its coordinates with indices n + 1,
n+2,...,n+ pare equal to

~an+ 1) —a(n+2)  —on+p)

p p p
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and all other coordinates are 0. The coordinates of Ag, with indices n + 1,
n+2,---,n+ pare allequal to —a/p; it follows that (g,, h) = —a and
oaf®  af?
Agoll? = p s =
4goll® = p e >
which is indeed small if p is large.

(b) Analytic phenomena (having to do with convergence) are likely to
misbehave when infinitely repeated, but algebraic ones not. To get an
infinitely multiple example of the (lattice) algebraic phenomenon observed
in the preceding example, just form the direct sum of infinitely many copies
of that example. That is: replace H, A, and H, by HO@H®H® ---,
APDADAD---,and Hy ® H, ® H, @ - - -. The verification that nothing
goes wrong is straightforward.

For a different approach, see Solution 55.

Solution 54. Let K be a Hilbert space of dimension ¥X,, let E be an ortho-
normal basis for K (of cardinal number ¥X,), and let F be a subset of K
such that E u F is a Hamel basis for K. The cardinal number of F is ¢ (the
power of the continuum). Let L be a Hilbert space of dimension ¢, and let
T be a linear transformation from K into L defined so that 7" maps E into
0 and maps F one-to-one onto an orthonormal basis for L. Note that ran T
is dense in L.

Let G be the graph of T, i.e., the set of all (f, Tf> with fin K, and let H
be the direct sum K @ L. Since <e¢, 0) € G for each ¢ in E, it follows that
{f, 0> e G (the closure) for each f in K. This, in turn, implies that
S, Tf> — {f,0) =<0, Tf > € G for each fin K. Since ran T is dense in L,
therefore G contains every <0, ¢>, for g in L, and hence G = H; the linear
manifold G is dense in H.

The dimension of His dim K + dim L = ¢; what is the dimension of G?
Answer: N,. Reason: the set of all vectors of the form (e, 0), with e in E,
is a maximal orthonormal set in G. Indeed, if {f,Tf> L (e, 0) for all ein E,
then f L E, whence f = 0, and therefore Tf = 0.

Pertinent reference: [48].

Solution 55. No, maximal orthonormal sets need not be total. One way to
get an example is to use Problem 54. Suppose, indeed, that G is a dense linear
manifold in H with dim G # dim H. An immediate consequence is that no
orthonormal basis for H is included in G. From this, in turn, it follows that
there is no orthonormal set that is total for G. The proof goes as follows. If
E, is such a set, then the intersection of its span in H with G is a closed
subspace of G that includes E,. Hence that intersection is G; hence the span
of E, in H is H; hence E, is an orthonormal basis for H; and that contra-
dicts the first consequence mentioned above.

Problems 53, 54, and 55 are concerned with the pathology of linear
manifolds; in each case a transformation with dense range can be used to
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construct a large subspace with surprising properties. There is a much more
sophisticated construction that deserves to be widely known. It is short, it
does not need much machinery, and its techniques are frequently applicable.
Its disadvantage is that, at this point, it borrows from the future: it needs the
analytic power of the F. and M. Riesz theorem about the Hardy space H?
(Problem 158).

In the notation of Problem 33, consider the Hilbert space L? and the
subspace H?. Let E be a Borel subset of C (the unit circle) such that both E
and C-E have positive measure, and let N be L?(E) (=the set of those
elements of L2 that vanish outside E).

Assertion: N is a complement of H? Indeed: if f € H> A N, then f
vanishes on a set of positive measure, and, therefore, the F. and M. Riesz
theorem implies that f= 0. If fL H? v N, then fe H?* (because
(H*)* « H**) and f vanishes on a set of positive measure (namely E);
the F. and M. Riesz theorem implies that f = 0.

If E, is a Borel subset of E such that both E, and E — E, have positive
measure, then the result just proved applies to E, as well as to E. In other
words L?(E,) is a complement of H?; since N n Ny* = L%(E — E,), it
follows that the complement H is infinitely diminishable.

So much for Problem 53. For a similar alternative approach to 55, let
P (= H?) be the set of all polynomials, and consider the vector sum P + L*(E)
as an inner product space in its own right.

The orthonormal set {e,, €,, e,, - --} (notation as in Problem 33) is not
total in P + L2%(E). The reason is that its span (in L?) is H?, but, since
wW(C — E) > 0, the F. and M. Riesz theorem implies that the only function in
both L*(E) and H? is 0. Since u(E) > 0, there exist non-zero functions in
L*(E).

The orthonormal set {e,, e;, e,, - - -} is, however, maximal in P + L2(E).
Indeed, if pe P, fe L E),and p+ f Le,,n=0,1,2,---, then p+ f L H2
This implies that f = h — p, where he H?", and hence that f* = h* — p*,
where h* € H?. Multiply the latter equation by e,, where n is sufficiently
large to make p*e, belong to H?. The result is that f*e, e H2, and hence,
by the F. and M. Riesz theorem, f*e, = 0; therefore f = 0 and therefore
p = 0 (since pe H? and pL H?).

Solution 56. If dim K < dim H, then there is no loss of generality in
assuming that K = H. Suppose, accordingly, that 4 is an operator on H
with range included in K; it is to be proved that ker A is not trivial.
Assume that dim K is infinite; this assumption excludes trivial cases only.
Let {f;} and {g;} be orthonormal bases of H and K, respectively. Each
A*g; can be expanded in terms of countably many f’s; the assumed in-
equality between the dimensions of H and K implies the existence of an
i such that (f;, A*g;) = 0 for all j. Since (f;, A*g)) = (Af;, g;), it follows
that Af; is orthogonal to each g; and therefore to K. Since, however, the
range of A is included in K, it follows that Af; = 0.
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Consider next the statement about equality. If dim H is finite, all is
trivial, If dim H is infinite, then a set of cardinal number dim H is dense
in H. (Use rational linear combinations; cf. Solution 17.) It follows that
a set of cardinal number dim H is dense in K, and this implies that dim K
< dim H.

The proof above is elementary, but, for a statement that is completely
natural, it is not at all completely obvious. (It is due, incidentally, to G. L.
Weiss; cf. [63].) There is a quick proof, which, however, is based on a non-
trivial theory (polar decomposition). It goes as follows. If A is a one-to-one
linear transformation from H into K, with polar decomposition UP (see
Problem 134), then, since ker A is 0, it follows that U is an isometry. As for
the case of equality:ifran A is dense in K, thenran U is equal to K.

Solution 57. Observe first that no non-zero vector in the range of P is
annihilated by Q. Indeed, if Pf = f and Qf = 0, then |Pf — Of|| = | fI,
and therefore f % 0 would imply |P — Q| = 1. From this it follows that the
restriction of @ to the range of P is a one-to-one bounded linear trans-
formation from that range into the range of Q, and therefore that the rank
of P is less than or equal to the rank of Q (Problem 56). The conclusion
follows by symmetry.

Solution 58. Suppose that A is a linear transformation from H to K, and
suppose, first, that A is bounded. Let {<f,, Af,>} be a sequence of vectors in
the graph of A converging to something, say (f,, Af,> = {f, ¢g>. Since
f. = [ and A is continuous, it follows that Af, — Af ; since at the same time
Af, - g,itfollows that g = Af, and hence that { f, g is in the graph of 4.

The proof of the converse is less trivial; it is a trick based on Problem 52.
Let G be the graph of A, and consider the linear transformation B from G
to H defined by B{f, Af > = f. Clearly B is a one-to-one mapping from G
onto H; since

1B, AFN? = I1AI12 S 112 + 1AfI1? = IKA AN,

it follows that B is bounded. Since G is a closed subset of the complete space
H @ K, it is complete, and all is ready for an application of Problem 52;
the conclusion is that B is invertible. Equivalently the conclusion says
that the mapping B~! from H into G, defined by B™'f = (f, Af), is a
bounded linear transformation. This means, by definition, that

I£1% + 14117 < «ll £11
for some a (and all fin H); the boundedness of A4 is an immediate con-
sequence.

It is worth remarking that the derivation of the result from Problem 52
is reversible; the assertion there is a special case of the closed graph
theorem. This, of course, is not an especially helpful comment for someone
who wants to know how to prove the closed graph theorem, and not just
how to bounce back and forth between it and a reformulation.
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Solution 59. The answer is yes. Note first that ran B = BH = B(ker*B).
It follows that for each fin H there is a unique g in ker*B with Af = Bg;
write Xf = g. (There is no ambiguity here. Reason: if Af = 0, theng = 0.)
The verification that X is linear is routine, and, obviously, Af = BXf for
all f, so that A = BX; all that needs proof is that X is bounded. That
comes quickly from the closed graph theorem. Indeed, if {f,, g,) is in
the graphof X, n=1,2, 3,---, and {f,, g.> — {f, g, then Af, > Af and
By, — Bg; since Af, = Bg, for each n, it follows that Af = Bg. Since,
moreover, ker'B is closed, so that g belongs to ker+B, it follows that { f, g>
belongs to the graph of X.

Solution 60. (a) On incomplete inner-product spaces unbounded sym-
metric transformations do exist. (b) On a Hilbert space, every symmetric
linear transformation is bounded.

PRrOOF. (a) Let H be the complex vector space of all finitely non-zero infinite
sequences. That is, an element of His a sequence (¢, &,, &5, - ), with &, = 0
for all sufficiently large n; the “sufficiently large” may vary with the sequence.
Define inner product in H the natural way: if f = (&, &,, &, - and
g = Ny, N2> N, 0, Write (f, g) = )2 E.m.* Let A be the linear trans-
formation that maps each sequence (¢,, &,, &, > onto (&, 2&,,3&,,-->;
in an obvious manner A is determined by the diagonal matrix whose sequence
of diagonal terms is {1, 2, 3, - - ->. The linear transformation A4 is symmetric;
indeed both (Af, ¢) and (f, Ag) are equal to Y ;2 né,n,*. The linear trans-
formation A is not bounded; indeed if {f,} is the sequence whose n-th term
is 1 and all other terms are 0, then ||f,| = 1 and ||Af,]| = n.

(b) This is an easy consequence of the closed graph theorem. Indeed,
if A is symmetric, and if f, — f and Af, —» f’, then, for all g,

(f,9) = lim (4f,, 9) = Lim (f,, 49) = (f, 49) = (Af, 9),

and therefore f’ == Af'; this proves that A is closed, and hence that A is
bounded.

Alternatively, use the principle of uniform boundedness directly. If
gl = 1, then

(S, Ag)| = [(4f. )| = A4S |

for all f; in other words, the image under A of the unit ball is weakly
bounded, and therefore bounded.
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CHAPTER 7

Multiplication Operators

Solution 61. If 4 is a diagonal operator, with Ae; = a;e;, then
Lol = llojesll = [Ae;ll = 141l - lle;ll = (141l
so that {;} is bounded and sup; |a;| < |[4]. The reverse inequality follows

from the relations

2 2

= Z|°‘jfj|2
i

“A 2.¢5€; 2 o5¢je;
J J

2

2 &ie

J

2 2
< (sqp Iocjl) LI = (s“."'“f') '
J J

J

Given a bounded family {«;}, define A4 by A Y, &e; =Y 0;¢e;; the
preceding computations imply that A is an operator. Clearly A is a diagonal
operator, and the diagonal of 4 is exactly the sequence {o;}. The proof of
uniqueness is implicit in the construction: via Fourier expansions the
behavior of an operator on a basis determines its behavior everywhere.

Solution 62. If {o,} is a sequence of complex scalars, such that
Yo lo,Eul? < oo whenever Y, | €, < oo, then {&,} is bounded.

Proor. Expressed contrapositively, the assertion is this: if {&,} is not
bounded, then there exists a sequence {&,} such that Y, |&,[* < co but
Y loaé,|* = 0. The construction is reasonably straightforward. If {o,}
is not bounded, then |o,| takes arbitrarily large values. There is no loss of
generality in assuming that |«,| = n; all it takes is a slight change of

210



MULTIPLICATION OPERATORS

notation, and, possibly, the omission of some a’s. If, in that case,
é&, = 1jo,,n=1,2,3,---,then

1
Z |£n|2 é Z;{f < 0,
but Y, [,&,|* diverges.

Solution 63. The assertion is that if A is a diagonal operator with diagonal
{e,}, then A and {,} are invertible together. Indeed, if {f,} is a bounded
sequence such that «,f, = 1 for all n, then the diagonal operator B with
diagonal {,} acts as the inverse of A. Conversely: if 4 is invertible, then
A~ Y(o,e,) = e,, so that
A le, = 1 €

since |4~ te,|| < |4}, thisimplies that the sequence {1/o,} is bounded, and
hence that the sequence {«,} is invertible.

As for the spectrum : the assertion hereis that 4 — Aisinvertibleif and only
if Adoes not belong to the closure of the diagonal {o,}. (The purist has a small
right to object. The diagonal is a sequence of complex numbers, and, therefore,
not just a set of complex numbers; “the closure of the diagonal” does not
make rigorous sense. The usageis an instance of a deservedly popular kind of
abuse of language, unambiguous and concise; it would be a pity to let the
purist have his way.) The assertion is equivalent to this: {&, — A} is bounded
away from 0 if and only if 2 is not in the closure of {«,}. Contrapositively: the
sequence {x, — A} has O as a limit point if and only if the set {«,} has A as a
cluster point. Since this is obvious, the proofis complete.

Solution 64. If A is the multiplication induced by a bounded measurable
function @ on a o-finite measure space, then ||A| = ||¢|, (=the
essential supremum of | ¢1).

PROOF. Let u be the underlying measure. It is instructive to see how far the
proof can get without the assumption that u is o-finite; until further notice
that assumption will not be used. Since

JAf |2 = f|<p-f|2 du < Jollo?- f|f|2 di = ol 1f12

it follows that [A] < ll¢|l.- In the proof of the reverse inequality a patho-
logical snagis possible.

A sensible way to begin the proof is to note that if ¢ > 0, then |@(x)| >
lell, — ¢ on a set, say M, of positive measure. If f is the characteristic
function of M, then

If1? = fMl dy = u(M),

and

JAf| = wa i 2 (1l — O?u(M),

211



SOLUTIONS

It follows that [Af] 2 (Il — &)l f]l, and hence that [A] = [@], — ¢
since this is true for all ¢, it follows that |4 Z |l@|.. The proof is over,
but it is wrong.

What is wrong is that M may have infinite measure. The objection may not
seem very strong. After all, even if the measurable set {x: | op(x)| = ¢l — &}
has infinite measure, the reasoning above works perfectly well if M is taken
to be a measurable subset of finite positive measure. This is true. The
difficulty, however, is that the measure space may be pathological enough
to admit measurable sets of positive measure (in fact infinite measure) with
the property that the measure of each of their measurable subsets is either
0 or co. There is no way aut of this difficulty. If, for instance, X consists of
two points x; and x, and if p({x,}) = 1 and p({x,}) = oo, then L*() is
the one-dimensional space consisting of all those functions on X that
vanish at x,. If ¢ is the characteristic function of the singleton {x,}, then
lelle = 1, but the norm of the induced multiplication operator is 0.

Conclusion: if the measure is locally finite (meaning that every measurable
set of positive measure has a measurable subset of finite positive measure),
then the norm of each multiplication is the essential supremum of the multi-
plier; otherwise the best that can be asserted is the inequality [|[A]] £ |¢] -
Every finite or o-finite measure is locally finite. The most practical way to
avoid excessive pathology with (usually) hardly any loss in generality is to
assume o-finiteness. If that is done, the solution (as stated above) is complete.

Solution 65. Measurability is easy. Since the measure is o-finite, there exists
an element f of L? that does not vanish anywhere; since ¢ - f is in L?, it is
measurable, and, consequently, so is its quotient by f.

To prove boundedness, observe that

o™ Sl =147l = 141" I f1

for every positive integer n. If A = 0, then ¢ = 0, and there is nothing
to prove; otherwise write iy = ¢/||4]|, and rewrite the preceding inequality
in the form

[ ireaus i du

(Here u is, of course, the given o-finite measure.) From this it follows that if
f # 0 on some set of positive measure, then [Y] <1 (ie., [@] S [4])
almost everywhere on that set. If f is chosen (as above) so that f# 0
almost everywhere, then the conclusion is that [¢]| < [|A]| almost every-
where.

This proof is quick, but a little too slick; it is not the one that would
suggest itself immediately. A more natural (and equally quick) approach
is this: to prove that [@| < || 4| almost everywhere, let M be a measurable
set of finite measure on which |¢| > |All, and prove that M must have
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measure 0. Indeed, if f is the characteristic function of M, then either
f = 0 almost everywhere, or

l4f* = fl(/)'fl2 dp = fMIQDIZ dp > | APuM) = A7 1 f1%

the latter possibility is contradictory. The proof in the preceding paragraph
has, however, an advantage other than artificial polish: unlike the more
natural proof, it works in a certain curious but useful situation. The situa-
tion is this: suppose that H is a subspace of L?, suppose that an operator
A on H is such that Af = ¢ - ffor all fin H, and suppose that H contains
a nowhere vanishing function. Conclusion, as before: ¢ is measurable and
bounded (by [|A]]). Proof: as above.

Solution 66. If ¢ is a complex-valued function such that ¢ - fe L2
(for a a-finite measure) whenever f € L2, then ¢ is essentially bounded.

PROOF. One way to proceed is to generalize the discrete (diagonal) con-
struction (Solution 62). If ¢ is not bounded, then there exists a disjoint
sequence {M,} of measurable sets of positive finite measure such that
@(x) = n whenever x € M,,. (There is no trouble in proving that ¢ is measur-
able; cf. Solution 65.) Define a function f as follows: if x € M, for some n,
then

[ —
i) o)’

otherwise f(x) = 0. Since

[177au= "Zan|f|2 du

_ du

gzw(M)n L

n

the function f'is in L?; since

. 2 o d'u
Jro-rra-x [ o5

the function ¢ - f is not.

For another proof, let A be the linear transformation that multiplies each
element of L? by @, and prove that 4 is closed, as follows. Suppose that
{fv» guy belongs to the graph of A (ie., g, = ¢ - f,), and suppose that

s gu> = <f 9> (e, f, » fand g, — g). There is no loss of generality
in assuming that f, — f almost everywhere and g, — ¢ almost everywhere;
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if this is not true for the sequence {f,}, it is true for a suitable subsequence.
Since f, — f almost everywhere, it follows that ¢ - f, = ¢ - f almost every-
where; since, at the same time, ¢ - f, — g almost everywhere, it follows
that g = ¢ - f almost everywhere, ie., that {f, g) is in the graph of A.
Conclusion (via the closed graph theorem): A is bounded, and therefore
(by Problem 65) ¢ is bounded.

The second proof is worth a second glance. The concept of multiplication
operator can be profitably generalized to unbounded multipliers. If ¢ is an
arbitrary (not necessarily bounded) measurable function, let M be the set
(linear manifold) of all those f in L2 for which ¢ - f € L2 The second proof
above proves that the linear transformation (from M into L?) that maps each
fin M onto ¢ - f is a closed transformation. (This sort of thing is the
operator analogue of a vague, but well-known and correct, measure-
theoretic principle. In measure theory, every function that can be written
down is measurable; in operator theory, every transformation that can
be written down is closed.) Briefly: multiplications (bounded or not) are
closed. The closed graph theorem can then be invoked to prove that if, in
addition, a multiplication has all L* for its domain, then it must be
bounded.

Solution 67. For invertibility: if ¢ - = 1, then the multiplication operator
induced by ¥ acts as the inverse of A. Suppose, conversely, that 4 is in-
vertible. This implies that ¢ can vanish on a set of measure 0 at most.
(Otherwise take for f the characteristic function of a set of positive finite
measure on which ¢ vanishes.) Since ¢ - A 'f = f, it follows that
A Yf = (1/¢) - f whenever fe L2 Conclusion (from Solution 65):
[1/@| < ||[AY||, and therefore |@| = 1/|A~ | almost everywhere.

The assertion about the spectrum reduces to the one about invertibility.
The beginner is advised to examine the reduction in complete detail. The
concept of essential range is no more slippery than other measure-theoretic
concepts in which alterations on null sets are gratis, but on first acquaintance
it frequently appears to be.

Solution 68. (a) A multiplication transformation on a functional Hilbert
space is necessarily bounded.

PrOOF. A proof can be based on the closed graph theorem. Suppose, indeed,
that {f,, g,»> is in the graph of 4, n =1, 2, 3,..., and suppose that
s Guy = <S> g> (e, f, » fand g, — g). Since convergence in H implies
pointwise convergence (if f, —» f strongly, then f, — f weakly), it follows
that f,(x) = f(x) and g,(x) — g(x) for all x. Since g, = Af, = ¢- f,, and
since @(x)f,(x) = (x)f(x) for all x, it follows that g = Af. Conclusion:
A is closed and therefore bounded.

The answer to (b) is not quite yes. The trouble is that there is nothing in the
definition of a functional Hilbert space to prevent the existence of points x in
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X such that f(x) = 0 for all fin H. The situation can be produced at will;
given Hand X, enlarge X arbitrarily, and extend each function in Hso asto be
0 at the new points. At the same time, “null-points” are as easy to eliminate as
they are to produce; omit them all from X and restrict each function in H to
the remaining set. As long as infinitely many null-points are present, however,
the answer to (b) must be no. Reason: any function on X can be redefined
at the null-points so as to become unbounded, without changing the effect
that multiplication by it has on the elements of H. Null-points play the
same role for functional Hilbert spaces as atoms of infinite measure play
for L? spaces (cf. Solution 64).

(b) If H is a functional Hilbert space with no null-points, then every
(necessarily bounded) multiplication on H is induced by a bounded
multiplier.

Proor. Note that
o™ fil = 141 < (141" 1 fl
whenever n is a positive integer and fisin H (cf. Solution 65).If A = 0, then

@ = 0, and there is nothing to prove; otherwise write ¥ = ¢/||A|, and
rewrite the preceding inequality in the form

Wl = 111

From this it follows that if f(x) s« 0, then [Y(x)| S 1 (e, |o(x)| < |4ID.
Reason: (" - f)(x) is bounded by some multiple of |y" - f|. Since for each
x there is an f'such that f(x) s 0, it follows that |p| < |4|| everywhere.

Here is an alternative proof that is more in the usual spirit of functional
Hilbert spaces; it is due to A. L. Shields. Let K be the kernel function of the
space (cf. Problem 37). Since AK, = ¢ - K, for each x, and since, at the
same time, (4K, )(y) = (AK,, K,), it follows that

|‘P(X)K(X, X)| = |(AKx7 Kx)| § HA” ) ||Kx||2

Since ||K,||* = (K, K,), and since always (K., K,) = K (y), so that
1K > = K(x, x), it follows that

(K (x, x)| < 4] - | K(x, x)|.
The relation K(x, y) = K (x) = (K,, K,) implies that

|KG 0| = 1K - 1K = KX, )/ KOs 9).-

It follows that if K(x, x) = O for some x, then K(x, y) = 0 for all y, i.e.,
K, = 0, and hence f(x) = (f, K,) = 0 for all f. The assumption that there
are no null-points guarantees that this does not happen. Conclusion:

lp(0)] = [14]].

Solution 69. Let H be the set of all those absolutely continuous (complex-
valued) functions on [0, 1] whose derivatives belong to L?; define inner
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product in H by (f,9) = f(0)g(0)* + jo f'x)g'x)*dx. If |fll =0, then
jo | f'(x)]? dx = 0, so that f'(x) = 0 almost everywhere, and therefore fis a
constant; since, however, f(0) = 0, it follows that f = 0. This proves that the
inner product is strictly positive. If {f,} is a Cauchy sequence in H, then
{£(0)} is a numerical Cauchy sequence and { f,'} is a Cauchy sequence in L.
It follows that £,(0) — « and f,” — g, for some complex number « and for
some g in L%; put f(x) = o + jg g(t)dt, and thus obtain an f such that
fu = fin H. This proves that H is complete. If 0 < x < 1, then

P = |f(0> + f:f'(r)dr

1
= 2(If(())l2 + fo L0 dt) = 2| f11%

this proves that evaluations are bounded and hence that H is a functional
Hilbert space.

If f and g are in H, then f and g are bounded; it follows that (fg)
(=fg + f'g) belongs to L? and hence that fg € H. Since 1 obviously belongs
to H, all the requirements are satisfied.

This example is due to A. L. Shields.
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CHAPTER 38

Operator Matrices

Solution 70. The assertion of Problem 70 is often useful in operator theory,
but, it turns out, the context it properly belongs to is a much more general
part of algebra. If an operator is represented as a matrix whose entries are
commutative operators, then it is profitable to consider the (commutative)
ring with unit generated by those entries. Commutative rings have a deter-
minant theory that is not much more frightening than in the numerical case.
Indeed, if S is a finite square matrix over a commutative ring M, then det S
makes sense, as an element of M : just apply the usual definition, according to
which the determinant of a matrix of size n is a sum of n! terms with appro-
priate signs.

If the matrix S is such that det S is an invertible element of M, then all is
well; the classical reasoning of Cramer’s rule shows that S has an inverse. This
remark settles the sufficiency part of Problem 70.

The difficulty of the necessity part is the presence in the background of a
large non-commutative ring, namely the ring of all operators. It is conceivable
that a matrix S over the small ring has an inverse whose entries are in the
large ring but not in the small one, and, in that case, it is not at all obvious
that anything at all follows about the element det S of the small ring. It
may not be obvious, but all is well.

If M is a commutative subring of a ring N with unit, then a necessary and
sufficient condition that a finite square matrix S over M be invertible over N is
that det S be invertible in N.

Sufficiency was discussed above.
To prove necessity, suppose that ST = TS = 1, where Tis a matrix over N

and 1 is the identity matrix of appropriate size.
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An easy lemma is needed: if R is a matrix over M, of the same size as
S, and if RS = SR, then RT = TR. Proof: multiply the assumption fore
and aft by T.

Suppose now that « is an element of N that commutes with each entry
of S, and let R be the “scalar” matrix « - 1. Since the assumed commuta-
tivity implies that R and S commute, the lemma implies that R and T com-
mute, and that in turn implies that « commutes with each entry of T. This
is the heart of the argument; everything else is almost automatic.

Indeed, since each entry of S is fit to play the role of «, it follows that
each of those entries commutes with each entry of T. Since, therefore,
each entry of T is fit to play the role of «, it follows that all the entries of
T commute with each other, as well as with the entries of S. That is: the
ring generated by the entries of S and T together is commutative. The
equation ST = TS =1 (over that ring) implies that detS-detT =
det T -detS = 1;qed.

The statement of the theorem so proved is due to J. E. McLaughlin; the
proofis due to M. A, Zorn.

Selution 71. Since
is always invertible, with inverse

it follows that

A B nd A B\({1 O
c o) ™ \c p/\r 1
are invertible together. The product works out to
A+ BT B\
C+DT D)
set T = — D~ !C and conclude that
A B
C D

A - BD™'C B
0 D

is invertible if and only if

is invertible.
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Introduce the temporary abbreviation E = A — BD~'C and proceed to
consider the invertibility of
E B
0 D/

The assumption that D is invertible is still in force. If E also is invertible, then

SO is
E B
0 D/

E-! —E"'BDp!
0 D! ’

(o 5

is invertible, then so is E. The proof is an easy computation. Suppose that
P Q
R S
E B\
0 D)

PE PB + QD EP + BR EQ +BS\ (1 0
RE RB + SD DR DS “\o 1)

Since DR = 0 and D is invertible, it follows that R == 0; since PE = 1 and
EP + BR = 1, it follows that E is invertible (and, in fact, E"! = P).
Now unabbreviate and conclude that

(€ 5)

is invertible if and only if A — BD™!C is invertible. Since D is invertible,
multiplication by D does not affect any statement of invertibility; it follows

that

A B

C D
is invertible if and only if AD — BD™'CD is invertible. Up to this point the
assumed commutativity of C and D was not needed; it comes in now and

with inverse

The converse is also true: if

is the inverse of

then
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serves to make the statement more palatable. Since C and D commute, it
follows that BD~'CD = BC. Conclusion:

A B
(€ o)
is invertible if and only if AD — BC is invertible.

The unsymmetry of the hypothesis (why C and D? and why D™ '?) is
not so ugly as first it may seem. The point is that the conclusion is equally
unsymmetric. What rights does (1) AD — BC have that (2) DA — BC,
or (3) DA — CB, or (4) AD — CB do not have? Symmetry is restored not
by changing the statement but by enlarging the context. The theorem is
one of four. To get a conclusion about all possible versions of the formal
determinant, assume that D is invertible and make the commutativity
hypothesis about (1) C and D, or (2) B and D, or, alternatively, assume
that A is invertible, and make the commutativity hypothesis about (3)
A and B, or (4) A and C.

It is well known and obvious that if the underlying Hilbert space is finite-
dimensional, then the invertible operators are dense in the metric space of all
operators. This remark (together with the result proved above)implies that in
the finite-dimensional case the invertibility assumption is superfluous: if C
and D commute, then a necessary and sufficient condition that

A B

Cc D
be invertible is that AD — BC be invertible. Actually the proof proves more
than this: since multiplication by

()

leaves unchanged not only the property ofinvertibility, but even the numerical
value of the determinant, what the proof proves is that

A B
= AD — BC).
det(c D) det(AD (8))
As for the counterexamples, an efficient place to find them is 2. Define A
and D by
A<60: 51: 52: te > = <61: 62: 53: e >

and

D<50: 51: 52: o > = <0= 50: 51: 52: o '>:
and put B = C = 0. It follows that AD — BC = 1, but

(€ 5)
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has a non-trivial kernel. (Look at {f, g>, where f =<1, 0, 0, --->, and
g = 0.) If, on the other hand, B is defined by

B<£0=51752:"'>:<€0=090:0:"'>:
D B
(o 4
A O
(B D)

but the formal determinant DA has a non-trivial kernel.

then

is invertible, with inverse

Solution 72. It is convenient to begin with a lemma of some independent
interest: if a finite-dimensional subspace is invariant under an invertible
operator, then it is invariant under the inverse too. (Easy examples show that
the assumption of finite-dimensionality is indispensable here.) To avoid the
introduction of extra notation, let H @ K be the space, H the subspace,
and M the operator. (To be sure, H is not really a subspace of H @ K,
but it becomes one by an obvious identification.) Since MH < H, and
since (by invertibility) M preserves linear independence, it follows that
dim MH = dim H, and hence (by finite-dimensionality) that MH = H.
This implies that M ~*H = H, and the proof of the lemma is complete.
The lemma applies to the case at hand. If

A B
M =
6 )
then Hisinvariant under M ; it follows from the lemma that if M is invertible,
then M ~! has the form
A B
0 D/

Finite-dimensionality has served its purpose by now; the rest of the argument
is universally valid. Once it is known that a triangular matrix has a triangular
inverse, then, regardless of the sizes of the entries, each diagonal entry in the
matrix is invertible, and its inverse is the corresponding entry of the inverse
matrix. Proof: multiply the two matrices in both possible orders and look.
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Properties of Spectra

Solution 73. If A is an operator, then
Iy(A*) = T(A)* and TI(A*) u II(A)* = spec A*.

Proor. If 2eIl (A4*), then A* — A has a non-zero kernel, and therefore the
range of A — A* has a non-zero orthogonal complement; both these implica-
tions are reversible.

The second equation is the best that can be said about the relation between
IT and conjugation. The assertion is that if 4* — 1 is not invertible, then
one of A* — 1 and A — A* is not bounded from below. Equivalently
(with an obvious change of notation) it is to be proved that if both A* and
A are bounded from below, then A* is invertible. The proof is trivial: if
A is bounded from below, then its kernel is trivial, and therefore the range
of A* is dense; this, together with the assumption that A* is bounded
from below, implies that A* is invertible,

Corollary. I1,(A4) = I'(A*)* and I1(A) U I1(A*)* = spec A.
ProOOF. Replace A by A*.

Solution 74. If A is an operator and p is a polynomial, then I1y(p(A4)) =
pIy(A4)), (p(4)) = p(Il(4)), and T'(p(A)) = p(T'(4)); the same
equations are true if A is an invertible operator and p(z) = 1/z for
z # 0.

Proor. It is convenient to make three elementary observations before the
proof really begins. If the product of a finite number of operators (1) has a
non-zero kernel, or (2) is not bounded from below, or (3) has a range that is
not dense, then at least one factor must have the same property; if the factors
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commute, then the converse of each of these statements is true. The idea of the
proofs is perhaps best suggested by the following sentences. If AB sends (1) a
non-zero vector onto 0, or (2) a sequence of unit vectors onto a null sequence,
then argue from the right: if B does not already do so, then 4 must. (3) If the
range of AB is not dense, argue from the left: if the range of A4 is dense,
then the range of B cannot be.

Now for the proofs of the spectral mapping theorems. Assume, with no
loss of generality, that the polynomial p has positive degree and leading
coefficient 1. Since p(1) — p(4,) is divisible by 1 — 4,, it follows, by (1),
that if i, € I14(A), then p(4,) € TT4(p(A4)), and hence that

p(I1,(4)) < I(p(A)).

(This part of the statement can be proved much more simply: if Af = A, f,
then p(A) f = p(4,) f. The longer sentence is adaptable to the other cases,
and therefore saves time later.) If, on the other hand, o € IT;(p(A)), then
express p(4) — o as a product of factors such as 4 — 4, and apply (1);
the conclusion is that o = p(4,) for some number A, in I1,(4). This means
that o € p(I1,(4)), and hence that IT,(p(4)) = p(I15(A4)). The arguments
for I, or T, are exactly the same, except that (2), or (3), are used instead
of (1). An alternative method is available for I': apply the result for I1, to
A*, conjugate, and apply Solution 73.

Turn now to inversion. If 4 is invertible and Af = Af with f s 0, then
A # 0. Apply A~ ! to both sides of the equation, divide by 4, and obtain

1
A Y = - f
f =S
Conclusion:

c I,(4™Y).

o (4)
Replace A by A~! and form reciprocals to get the reverse inclusion. Use the
same method, but starting with Af, — Af, — 0, |If,ll = 1, to get the in-
version spectral mapping theorem for Il. Derive the result for I' by
applying the result for I1, to the adjoint.

Solution 75. (1) If A — A is invertible, then so is P (4 — )P =
P 14AP - A

Q) If Af = Af,then P"YAP(P~'f) = AP Yf).

(3) If Af, — Af, —» 0, where || f,]| = 1, then P YAP(P™'f) — A(P"Yf) =
P~ Y(Af, — Af,) » 0. The norms [P~ 1f,|| are bounded from below by 1/||P|],
and, consequently, division by || P~ f,|| does not affect convergence to 0. This

implies that
P ) P, )
P~ 1AP — 1 - A —_-"-“ — 0.
(IIP Yl (IIP Yl
(4) If g belongs to the range of P"'AP — A (=P~ (4 — A)P), then
g belongs to the image under P~ ! of the range of 4 — A; this implies that
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if the closure of the range of 4 — 1 is not H, then the closure of the range
of P"}(4 — 2)P is not H either.

The four proofs just given show that each named part of the spectrum of 4
is included in the corresponding part for P~ AP. This assertion applied to
P~ 'AP and P! (in place of 4 and P) implies its own converse.

Solution 76. It is to be proved that if 4 ¢ 0, then AB — 4 and BA — 1 are
invertible or non-invertible together. Division by — 4 reduces the theorem to
the general ring-theoretic assertion:if 1 — ABisinvertible,thensois1 — BA.
The motivation for the proof of this assertion (but not the proof itself)
comes from pretending that the inverse, say C, of 1 — AB can be written
in the form 1 + AB + ABAB + ---, and that, similarly, the inverse of
1 - BAisl + BA+ BABA + .- =1+ B(l + AB+ ABAB + - )4 =
1 + BCA. The proof itself consists of verifying that if

C(l1 ~ AB) = (1 — AB)C =1,
then

(1 + BCAY(1 — BA)= (1 - BA)(1 + BCA) = 1.

The verification is straightforward. It is a little easier to see if the assumption
on C is rewritten in the form

CAB = ABC =C - 1.

Solution 77. For each operator A, the approximate point spectrum
I1(A) is closed.

PROOF. A convenient attack is to prove that the complement of IT(A4)is open.
If A4 is not in TH(A), then 4 — 1, is bounded from below; say

IAf = 4o f1I 2 8111
for all f. Since
tAf = Ao fIl S NAf = M1l + 14 — 4o S
for all A, it follows that
G =14 =2DISfI = 14f = 1.

This implies that if |4 — 4, is sufficiently small, then 4 — 1 is bounded
from below.

Solution 78. It is convenient (but not compulsory) to prove the following
slightly more general assertion: if {4,} is a sequence of invertible operators
and if A is a non-invertible operator such that |4, — A — 0asn — oo, then
0 e I1(A). Since A is not invertible, either 0 € [1(A4) or 0 e ['(A4). If 0 e TI(A4),
there is nothing to prove. It is therefore sufficient to prove that A4 is not
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bounded from below (i.e., that 0 € I1(A4)) under the assumption that ran A
is not dense. Suppose then that fis a non-zero vector orthogonal to ran A4,
and write

_ AT
“ A4,

Since |f,| = 1, it follows that [[(4, — A)f.| < |4, — Al = 0. Since,
however, Af, e ran A and A, f, L ran A, it follows that

14, fu = ALIZ = 4, £ull> + I14£I7 Z 1 Af12,

and hence that [[Af,}| - 0.

To derive the original spectral assertion, suppose that A is on the
boundary of spec A. It follows that there exist numbers A, not in spec 4
such that 4, — 4. The operators 4 — 1, are invertible and 4 — 1 is not;
since

o

A —4) — (4 - Dl =14, — 4| >0,
it follows from the preceding paragraph that 1e I1(A).
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Solution 79. Normality says that [[Af| = |A*f|| for every vector f. It
follows that {[(4 — A)fll = [[(4* — A*)f]| for every A, and hence that
I14(A) = (I15(A4*))*. The conclusion follows from Solution 73.

Solution 80. If A is a diagonal operator, then both T15(A) and T'(A)
are equal to the diagonal, and T1(A) (=spec A) is the closure of the diag-
onal.

PrOOF. Suppose that {e;} is an orthonormal basis such that Ae; = a;e;. The
first assertion is that a number is an eigenvelue of A4 if and only ifit is equal to
one of the a;’s. “If” is trivial: each a; is an eigenvalue of A. By an obvious
subtraction, the “only if ” is equivalent to this: if 4 has a non-zero kernel, then
at least one of the «;’s vanishes. Contrapositively: if «; % 0 for all j, then
Af = 0 implies f = 0. Indeed: if f = ) ; &;e;, then Af = ) ; 0;¢;e;, so that
Af = Oisequivalent to «;£; = 0 for all j; since no «; vanishes, every £; must.

Now that I1y(A4) is known, the result of Problem 79 applies. Since a
diagonal operator is normal, it follows that I'(A4) also is equal to the diagonal,
and that the approximate point spectrum is the same as the entire spectrum.

Solution 81. If A is the multiplication induced by a multiplier ¢ (over a
o-finite measure space), then both I1,(A) and T'(A) are equal to the set of
those complex numbers A for which ¢~ '({1}) has positive measure, and
I1(A) (=spec A) is the essential range of ¢.

Proor. If f e L? and ¢(x) f(x) = Af(x) almost everywhere, then @(x) = A
whenever f(x) # 0. This implies that in order for 1 to be an eigenvalue of A,
the function ¢ must take the value 1 on a set of positive measure. If, con-
versely, ¢(x) = A on a set M of positive measure, and if f is the charac-
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teristic function of a measurable subset of M of positive finite measure,
then fe L2, f # 0, and Af = Af, so that 1 is an eigenvalue of 4.
The remaining assertions are proved just as in Solution 80.

Solution 82. If U is the unilateral shift, then spec U = D (= the closed
unit disc), Iy(U) = &, IU) = C (= the unit circle), and T(U) =
D — C (= the interior of the unit disc). For the adjoint: spec U* = D,
II,(U*) = D — C,INU*) = D, and I'(U*) = .
ProoF. It is wise to treat U and U* together; each gives information about
the other. To treat U*, whether together with U or separately, it is advisable to
know what it is. Since (fori,j = 0,1,2,--)

(U*e;, ) = (e;, Uey) = (e, €5, 1) = 6; o1,
it follows that
U*e, = 0;
ifi > 0, then
Oije1="0i_1,;=(e;-1, €),
and therefore
U*e;, = e;_, (i=1273...).
In terms of coordinates the result is that

U*<50= 51: 52: > = <€1a 529 53: >

The functional representation of U (i.e., its representation as a multiplication
on H?) is deceptive; since the adjoint of a multiplication operator is multi-
plication by the complex conjugate function, it is tempting to think that if
f e H%, then (U*f)(z) = z*f(z). This is not only false, it is nonsense ; H? is not
invariant under multiplication by e_ . The correspondence between adjunc-
tion and conjugation works for L?, but there is no reason to assume that
it will work for a subspace of L2, The correct expression for U* on H? is
given by
WU*)(2) = z*(f(2) — (/. €o))-

Now for the spectrum and its parts. Since U is anisometry,sothat | U]} = 1,

it follows that the spectrum of U is included in the closed unit disc, and hence

the same is true of U*,
If Uf = if: Wheref = <€0: éla 52: o '>a then

<Oa 507 517 527 v > = <l€07 léla 1527 t '>a

so that 0= A&, and &, = A&, ., for all n. This implies that &, =0 for all n
(look separately at the cases A = 0 and 4 # 0), and hence that I1,(U) = .
Consequence: I'(U*) = (.
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Here is an alternative proof that U has no eigenvalues, which has some
geometric merit. It is a trivial fact, true for every operator A, that if f is an
eigenvector belonging to a non-zero eigenvalue, then f belongs to ran A"
for every positive integer n. (Proof by induction. Trivial for n = 0;if f = A"g,
then f = (1/)Af = (1/A)A"" 'g.) The range of U" consists of all vectors
orthogonal to all the es with 0 £ j < n, and, consequently, N, ran U
consists of 0 alone. This proves that U has no eigenvalues different from 0.
The eigenvalue 0 is excluded by the isometric property of U: if Uf = 0,
then 0 = Uf| = |If].

If U*f = Jf, then

<£17 52, 537 . > = <l£07 151’ 152’ T '>7

sothat &, = A&, or &, = A"y, for all n, If &, = O, then f = 0; other-
wise a necessary and sufficient condition that the resulting &’s be the co-
ordinates of a vector (i.e., that they be square-summable) is that [A] < 1.
Conclusion: I1,(U*) is the open unit disc (and consequently I'(U) is the
open unit disc). Each 4 in that disc is a simple eigenvalue of U* (i.e., it has
multiplicity 1); the corresponding eigenvector f; (normalized so that

(f,, o) = 1) is given by
f/’t = <17 ﬂ'7 12, 13, v >

Since spectra are closed, it follows that both spec U and spec U* include
the closed unit disc, and hence that they are equal to it. All that remains
is to find II(U) and TI(U*). Since the boundary of the spectrum of every
operator is included in the approximate point spectrum, it follows that
both II(U) and ITI(U*) include the unit circle. If |A| < 1, then

1Uf = A1z [IUF I = 140 = (1 =141} 111

for all f, so that U — 4 is bounded from below; this proves that IKU) is
exactly the unit circle. For U* the situation is different: since I, is always
included in I, and since IT,(U*) is the open unit disc, it follows that II(U*)is
the closed unit disc.

Solution 83. If the set of eigenvectors of an operator A has a non-empty
interior, then A is a scalar.

Suppose indeed that E is a non-empty open ball consisting of eigenvectors
of an operator A, and let g be an element of E (g # 0). Assertion: if fe E,
then f and g belong to the same eigenvalue. This is obvious if f and g are
linearly dependent. If they are linearly independent, and if Af = of,
Ag = Pg, and AG(f +¢9) = 3(f + ¢9)), then of + fg=Af + Ag
= A(f + g) = vf + yg, and, because of linear independence, « = y and
B =y

Consequence: throughout the open set E the operator A agrees with the
(scalar) operator o. Since the set of points of equality of two operators is a
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subspace, and since a subspace with a non-empty interior is the whole space,
it follows that 4 = «.

Observe that if Af = Af with f # 0, then (Af, f) = A(f, f), so that
A = (Af, )/ f|I*. The eigenvalue equation can therefore be rewritten in the
form || f||2Af = (Af, f)f; the equation holds, of course, when f = 0 also.
Since both sides of the equation depend continuously on f, it follows that the
set of eigenvectors (0 included) is always a closed set.

Solution 84. If W is the bilateral shift, then spec W = C (= the unit
circle), IIy(W) = &, IKW) = C, and T(W) = . The same equations
are true for the adjoint W*.

PRrOOF. The determination of the spectrum of W, and of the fine structure of
that spectrum, can follow the pattern indicated in the study of the unilateral
shift U (Solution 82), but there is also another way to do it, a better way.
Corresponding to the functional representation of U on H?, the bilateral
shift W has a natural functional representation on L*(u) (where u is nor-
malized Lebesgue measure on the unit circle; see Problem 33). Since the
functions e, defined by e, (z) =z" (n =0, £1, +2,---) form an ortho-
normal basis for L?, and since the effect on them of shifting forward by
one index is the same as the effect of multiplying by e, it follows that the
bilateral shift is the same as the multiplication operator on L? defined by

Wf)(2) = # (2).

This settles everything for W; everything follows from Solution 81.

As for W*, its study can be reduced to that of W. Indeed, since W is unitary,
its adjoint is the same as its inverse. The calculation of W ~! takes no effort at
all; clearly W ™! shifts backward the same way as W shifts forward. Thereisa
thoroughgoing symmetry between W and W*; to obtain one from the other,
just replace n by —n. In more pedantic language: W and W* are unitarily
equivalent, and, in particular, the unitary operator R determined by the
conditions Re, =e_, (n =0, +1, + 2, --*) transforms W onto W* (i.e.,
R™'WR = W¥). Conclusion: the spectrum of W* is equal to the spectrum of
W, and the same is true, part for part, for each of the usual parts of the
spectrum.,

Solution 85. Suppose first that the eigenvectors of A* span H. Let X be an
index set such that corresponding to each x in X there is an eigenvector
K, of A*, and such that the K’s span H; denote the eigenvalue corres-
ponding to K, by ¢(x)*. (The conjugation has no profound significance
here; it is just a notational convenience.) It follows that A*K, = @(x)*K,.
For each f in H, let f be the function on X defined by f(x) = (f, K,). The
correspondence f +» fis linear. If f = 0, i.e., if (f;, K;) = O for all x, then
f = 0 (since the K,’s span H). This justifies the definition (f, §) = (f, g).
With this definition of inner product, the set H of all functions of the form
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f (with f in H) becomes a functional Hilbert space. [Note: | f(x)| =
I(f, KILZ NS 1Kl = 11 £1I- 1K, I.] Let 4 be the image of A under the
isomorphism f + f (i.e, Af = (Af)™); then

(AF)(x) = (Af)~(x) = (4f, K,) = (f, A*K,)
(f, (x)*K,) = o(x)(f, K,)
= o(x)f(x),

so that A4 is a multiplication.

The converse is proved by retracing the steps of the last computation. In
detail, if A is a multiplication (with multiplier ¢, say) on a functional Hilbert
space H with domain X and kernel function K, so that (Af)(x) = ¢(x)f(x),
then (Af,K,) = o(x)(f,K,) (where K (y) = K(y,x)), and therefore
(f, A*K, — o(x)*K,) = 0 for all /. It follows that A*K, = @(x)*K; since
in a functional Hilbert space the set of K,’s always spans the space, the
proof is complete.

Compare the construction with what is known about the unilateral shift
(Solution 82).
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Solution 86. A standard trick for proving operator functions analytic is the
identity

Q-4 '=14+A4+4%+.-..
If |A] < 1, then the series converges (with respect to the operator norm),
and obvious algebraic manipulations prove that its sum indeed acts as the
inverse of 1 — A. (Replace 4 by 1 — A and recapture the assertion that if
[1 — A|l < 1,then A is invertible. Cf. [50, p. 52]; see also Problem 99.)

Suppose now that 4, is not in the spectrum of A, so that A — 4, is in-
vertible. To prove that (4 — 4)™! is analytic in 4, for 4 near 4,, express
A — Ainterms of A — A,:
A"/1=(A"/10)"(/1"/10)

= (4 = do)1 = (4 — 20)™'(h — 4)).
If |[A — 4| is sufficiently small, then [[(4 — 4,)” (A — 4p) < 1, and the
series trick can be applied. The conclusion is that if |4 — 4,] is sufficiently
small, then A — A 1is invertible, and

(A=DT = (=1 T4 = A= &)
It follows that if f and g are in H, then
(P, @) = 2 (A = 4)™" "', )4 — Ao
n=0

in a neighborhood of 4,, and hence that p is analytic at 4,.
As for A = oo, note that
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whenever A # 0, and hence that 4 — 1/4 is invertible whenever 4] is suf-
ficiently small (but different from 0). Since

1 1\ _

the series trick applies again:

A

The parenthetical series converges for small A, and the factor — 1 in front
guarantees that 7(0) = 0.

Analyticity doesn’t have to be treated via power series. The definition by
differentiability can be used too, but it requires a slight loan from the future.
Thus, for instance, to prove that p is analytic at co, note that 1 — 14 - 1
as A — 0, and hence (from the continuity of inversion, Problem 100) that
p(1/A) > 0as A — 0.

(A) = p(l) = —A1 + A4 + 2247 +-.)).

Solution 87. Proceed by contradiction. If the spectrum of A is empty, then
(p4f> 9) (ie., the function A+ ((4 — 1)”Yf, g)) is an entire function for each
fand g; since p,(c0) = 0, the function (p,f, g) is bounded in a neighbor-
hood of oo and therefore in the whole plane. Liouville’s theorem implies
that (p,f, g) is a constant; since p4(c0) = 0, it follows that

A-H"f,9=0

identically in f, g, and A. Since this is absurd (replace f and g by (4 — A)f
and f), the assumption of empty spectrum is untenable.

Solution 88. Since (r(4))" = r(4A") £ | A", so that r(4) < || A"||'/" for all n,
it follows that

r(A) < liminf || A"

The reverse inequality leans on the analytic character of the resolvent

(Problem 86) If
l _ =1|A '
’L‘( ) = p( ) = ( ,

then (1) = —A(1 — 44)~ ! whenever 4 s 0 and 1/4 is not in the spectrum
of A. Since, for each f and g, the numerical function (zf, g) is analytic as
long as [1/4] > 1(A) (i.e, || < 1/r(A)), it follows that its Taylor series

~1 3 AT, )

converges whenever |1| < 1/r(A). This implies that the sequence {((A4)%, )}
is bounded for each such A. The principle of uniform boundedness yields the
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conclusion that the sequence {|A["-[|4"||} is bounded. If |A]": 4" S «
for all n, then

(AL 5w,
and therefore

|A]-limsup |4"|'" £ 1.

Since this is true whenever |1 < 1/r(A), it follows that
limsup | A" < #(A).

The proof is complete.

Solution 89. The asserted unitary equivalence can be implemented by a
diagonal operator. To see which diagonal operator to use, work backwards.
Assume that D is a diagonal operator with diagonal {8,}, and assume that
AD = DB. It follows (apply both sides to e,) that

OC"(S" = ﬁn(sn-i—l

for each n. Put §, = 1, and determine the other &’s by recursion. Consider
first the positive n’s. If §, = 0, put 8,,, = (,/B.)0,. If B, = 0, then a, =0
(since, by assumption, |a,| = | 8,]); in that case put §,,, = 1. For negative
n’s (if there are any) apply the same process in the other direction. That is,
if o, # 0, put 8, = (B,/0,)0, 1; if &, =0, then put §, = 1. The result is a
sequence {4,} of complex numbers of modulus 1. The steps leading to this
sequence are reversible. Given the sequence, let it induce a diagonal operator
D; note that since |8,| = 1 for all n, the operator D is unitary; and, finally,
note that since ADe, = DBe, for all n, the operator D transforms 4 onto B.

Solution 90. Suppose first that S is an invertible operator such that 4 =
S™IBS. It follows that A* = S*B*S*~! and hence that A*" = S*B*"S*~ !,
Use the argument that worked for unitary equivalence to infer that S*
sends ker B*" onto ker A*". This implies that the matrix {o;;> of S is lower
triangular. Consider the equation SA = BS, and evaluate the matrix entries
inrown + 1, column n (n =0, 1, 2,.-+) for both sides, The result is that
On+1.n+ 1% = Bn0y, », and hence that

ﬁO"'ﬁn _

_ _Isi
ao .. -a"

=|Uo,o|'

Consequence: {|og -~ -a,/Bo - - B.|} is bounded away from 0. To get
boundedness (away from c0), work with S™! (instead of S) and with the
equation AS™! = S !B (instead of S4 = BS).

If, conversely, the boundedness conditions are satisfied, then write
6o =1, 0,01 = B+ Bufto -+, let S be the (invertible) diagonal
operator with diagonal sequence {o,, 6,, 0,,---}, and verify that
SA4 = BS.

6n+1,n+1

- I(Sen+1, en+1)

00,0

00,0
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Solution 91. If A is a weighted shift with weights w«,, then ||A| =
sup,|o,|, and r(A) = limy sup,, [[[¥=o o+l

The expression for r looks mildly complicated, but there are cases when it
can be used to compute something,

Proor. Since A4 is the product of a shift and the diagonal operator with
diagonal {u,}, and since a shift is an isometry, it follows that the norm of A4
isequal to the norm ofthe associated diagonal operator.

To prove the assertion about the spectral radius, evaluate the powers
Of A. If Aen = Up€pyys then Azen = 0Oyt 1€n4 25 A3en = 0%y 10n42€043,
etc. What this shows is that 4* is the product of an isometry (namely the
k-th power of the associated shift) and a diagonal operator (namely the
one whose n-th diagonal term is the product of k consecutive «’s starting with
o,). Conclusion: the norm of A* is the supremum of the moduli of the
“sliding products” of length &, or, explicitly,

k-1
|4¥( = sup

n

(k=1,23,-").

i

Ot
=0
The expression for the spectral radius follows immediately.

Solution 92. Ifp, = A%,k = 0,1,2,--,then p;,, < p;p,, and, conversely,
if a sequence {p,} satisfies these inequalities, then it is the sequence of power
norms of some operator A. The operator A can, in fact, be chosen as a
weighted shift. Indeed, if 4 is a weighted shift, with (positive) weight
sequence {a, &y, 0y, - - -}, then |A*| = sup,(ot,0n+ 1 * * - Gpsx—1). Given the
p’s define the o’s: put oy = p, and o, = p,/p,_1, n =1, 2, 3, ---. Since
ay £ Pp—1P1/Pu—1» the o’s are bounded, as they must be to define
a weighted shift. The rest is a natural computation:

||Ak|| = sup (anan-i—l te '“n‘i—k—l)
n

= supp"_”'_"_.i.épk =g -0y S ||A"||
n DPn-1
(The reasoning assumed that none of the p’s is 0. If some of them are 0, the
proof can be modified in an obvious way.) The result and the proof are due
to L. J. Wallen.

Solution 93. If A is the unilateral weighted shift with weights
{ag, 1, 0y, }, and if &, # 0 for n=0, 1, 2,---, then I1y(A) = &,
and T1o(A*) is a disc with center O and radius liminf, |[ [{=§ o /'™
The disc may be open or closed, and it may degenerate to the origin only.

ProoF. The proof for A is the same as for the unweighted unilateral shift
(Solution 82). In sequential (coordinate) notation, if Af = Af, where f =
<607 61, 627 : '>, then Af = <07 %o 60, “151’ %) 62’ i '>, SO that 0= 2’50 and

234



SPECTRAL RADIUS

o,é, = A&, for all n. This implies that £, = O for all n; look separately
at the cases A = 0 and 4 # 0.

To treat A*, it is advisable to know what it is. That can be learned by
looking at matrices (the diagonal just below the main one flips over to the
one just above), by imitating the procedure used to find U* (Solution 82),
or by writing A4 as the product of U and a diagonal operator and applying
the known result for U*. The answer is that A*e, = 0if n = 0 and A*e, =
o,_1*e,_, if n>0. Sequentially: if f = (&, &, &;,--+), then A*f =
Lop*Eq, a1 *E5, a*E5, - - > It follows that A*f = Af if and only if

%y *5n+ 1= lén
for all n. This implies that if n > 1, then £ is the product of &, by
lll
[Ji20 o*

Since a sequence of numbers defines a vector if and only if it is square-
summable, it follows that 1 € [To(A4*) if and only if

l" 2
s < O,
ni=0 %
The condition is that a certain power series in 1> be convergent; that proves
that the A’s satisfying it form a disc. The radius of the disc can be obtained
from the formula for the radius of convergence of a power series.

fo,=1(n=0,1,2--),then [[{Zg &, = 1(n = 1,2,3,---), and there-
fore the power series converges in the open unit disc; cf. Solution 82. If

am (o) (-(22)

then [[iZg @ = (n + 1)%, and therefore the power series converges in the
closed unit disc, which in this case happens to be the same as the spectrum;
cf. Solution 91. If &, = 1/(n + 1), then [[}Z¢ o; = 1/n!, and therefore the
power series converges at the origin only.

«Q

)3

n=1

Solution 94. The answer is yes: the approximate point spectrum of a weighted
shift can fill an annulus.

The main idea in the proof is that if one of the weights is repeated very
often, then it is very nearly an eigenvalue. Suppose, to be precise, that 4 is a
weighted shift with weight sequence {&,: n =0, 1, 2, ..}, if

vl = Oyt = "'=am+k=l’

then there exists a unit vector f such that |Af — Af| = 2/\/E. Reason:
consider the orthonormal basis {¢,: n = 0, 1, 2, - - .} that is being shifted,

and write f = (1/./k) Y52, €ps -
It follows that if a weight 4 occurs infinitely often, in arbitrarily long
blocks, then 4 must be in the approximate point spectrum. To prove the
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desired result, consider a sequence {1,} dense in some interval, and let {o,}
be a sequence in which each 4 occurs infinitely often in arbitrarily long
blocks. (Take one 4;, then two A,’s and two 1,’s, then three 4,’s, three 4,’s,
and three A4s, ete.) The resulting weighted shift will have each 4 in its
approximate point spectrum; since the approximate point spectrum is
closed and circularly symmetric, the proof is complete.

There is a valuable discussion of many properties of weighted shifts in
[133].

Solution 95. If p = {p,} is a sequence of positive numbers such that
{Pn+1/Pn} is bounded, then the shift S on I*(p) is unitarily equivalent to

the weighted shift A, with weights {\/pn+ 1/Pa}, on I>.
PrOOF. Iff = (&, &y, &5, ) € I(p) write

Uf = {/Poos/P1é1s/P2E2r )

The transformation U maps [*(p) into [?; it is clearly linear and isometric.

If o, 11, 12> € Py and i &, = 1,//py, then Yoo pal&al® = Yoo [na/%;
this proves that U maps [?(p) onto /2.

Assertion: U transforms S onto A. Computation:

USU™ Yo, N1 M2s - ++» = USKt0//Pos 11/ P> 12/n/P2> -+
= U0, 110/x/Pos 11/~ P1s T12/n/P2s -
= <0, \/P1/Po’70, \/P2/P1’71, \/P3/P2’72, )

= Ao, N1, N2, -

Conclusion: the transform of the ordinary shift on a weighted sequence
space is a weighted shift on the ordinary sequence space.

In view of this result, all questions about weighted sequence spaces can
be answered in terms of weighted shifts. The spectral radius of S, for instance,

is limy sup, ([ [¥2¢ n/Pu+ i+ 1/Pn+:)*’ (see Solution 91).
Solution 96. If A is a unilateral weighted shift with positive weights
o, such that o, — 0, then spec A = {0} and I1,(A)= .

Proor. Use Solution 91 to evaluate #(4). In many special cases that is
quite easy to do. If, for instance, &, = 1/2", then the supremum (over all n)
of (k24 1/2" %) is attained when n = 0. It follows that that supremum is

k=1 \UK
(il;lo 57) Vi

where

This implies that the supremum tends to 0 as k tends to co.
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In the general case, observe first that ([ [{Z4 «)'* — 0 as k — oo. (This
assertion is the multiplicative version of the one according to which con-
vergence implies Cesaro convergence. The additive version is that if o, — 0,
then (1/k) Y %24 o; — 0. The proofs are easy and similar. It is also easy to
derive the multiplicative one from the additive one.) Since oc,,ir1 — 0,1t follows
equally that (J]¢Zg oy 4;)"* = 0; more generally, ([[fzg o,40)'* >0 as
k — oo for each n.

The problem is to prove that sup,([[iZ¢ ,,+,)1/" is small when k is
large. Given ¢ (>0) and given n (=0, 1, ), find ky(n, &) so that
(T1526 oas)'’™ < & whenever k = k (n £). If n, is such that «, < & for
n = ng, then max(ky(0, €), ko(1, &), - - -, ko(ng — 1, €)) is “large enough;
if k is greater than or equal to this max1mum then sup,,(nl da ) <e
Indeed, if n < o, then (424 .4 0)'/* < & just because k = ko(n, €); if
n = no, then ([ [¥24 o4 1)"* < & because each factor in the product is less
than .

To see that I1,(A) is empty, apply Solution 93.

Solution 97. A quasinilpotent operator is analytic if and only if it is
nilpotent.

“If” is trivial. To prove “only if”, suppose that A4 is quasinilpotent and
f(A) = 0, where f is analytic in a neighborhood of 0. Write f(z) = z"g(z),
where n = 0, g is analytic in a neighborhood of 0, and g(0) # 0. The last
condition implies that g is invertible, i.e., that there exists a function h
analytic in a neighborhood of 0 and such that g(z)h(z) = 1. Consequence:

= f(A) = f(Ah(A) = A"g(A)h(A) = A
Conclusion: the answer to the question of Problem 97 is no. If A is quasi-
nilpotent but not nilpotent, then A is not analytic.
Solution 98. T here exists a countable set of operators, each with spectrum
{0}, whose direct sum has spectral radius 1.

ProOOF. Here is an example described in terms of weighted shifts. Consider
the (unilateral) sequence

{1, Oa 1, 1, 0’ 1’ 1, 1, 0, 1, 15 1, 1, 0,"'},

and let A be the unilateral weighted shift with these weights. The 0’s in the
sequence guarantee that A is the direct sum of the operators given by

0 0 0O
(00) (1’
0,
I 0

- O
(=R o= R

0 0
1 0
01

[ R e

0
0 b s
0
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and hence it is the direct sum of operators each of which has spectrum {0}.
Since, however, the sequence of weights has arbitrarily long blocks of 1’s,
the formula for the spectral radius of a weighted shift (Solution 91) implies
that r(4) = 1.

What makes such examples possible is the misbehavior of the approximate
point spectrum. For the point spectrum the best possible assertion is true
(and easy to prove): the point spectrum of a direct sum is the union of the
point spectra of the summands. Passage to adjoints implies that the same
best possible assertion is true for the compression spectrum.
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Norm Topology

Solution 99. The metric space of operators on an infinite-dimensional
Hilbert space is not separable.

ProoF. Since every infinite-dimensional Hilbert space has a separable
infinite-dimensional subspace, and since every separable infinite-dimensional
space is isomorphic to L*(0, 1), there is no loss of generality in assuming
that the underlying Hilbert space is L*(0, 1) to begin with. That granted,
let ¢, be the characteristic function of [0, £], and let P, be the multiplication
operator induced by ¢,, 0 £ ¢ < 1. If s < ¢, then P, — P, is the multi-
plication operator induced by the characteristic function of (s, £], and
therefore | P, — P, = 1. Conclusion: there exists an uncountable set of
operators such that the distance between any two of them is 1; the exist-
ence of such a set is incompatible with separability. For an alternative
example of the same thing, consider diagonal operators whose diagonals
consist of 0’s and 1’s only.

Solution 100. The set of invertible operators is open and inversion is
continuous.

ProoF. Recall first that if |1 — A|| < 1, then A is invertible and A~ ! =
< o (1 — A)* (cf. Solution 86); it follows that

s 1
A7l £ 1-A|"=s ————.
I47S Y= 41" =y =7

Suppose now that A4, is an invertible operator. Since
1 —AAdy™ ' = (dg — A)4y ™ *
for each 4, it follows thatif |4, — A|| < 1/|[4," |, then |1 — 44,7 || < 1.
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This implies that if |4, — A|| < 1/| A4, |, then A is invertible (because
AA,"'is)and
1471 = 1(Ade™HAo) I S 1471+ dg A"
140~
T 1[4 — All- 14,7

Conclusion: not only is the set of invertible operators open, but so long as
an operator stays in a sufficiently small neighborhood of one of them, it is
not only invertible, but its inverse remains bounded.

The result of the preceding paragraph makes the continuity proof ac-
cessible. Observe that

407" = A7H = 40714 = A)A™!| £ 14p 7" - 14 = Ao - A7),

If A, is fixed and if A is sufficiently near to A,, then the middle factor on the
right makes the outcome small, and the other two factors remain bounded.

As for the puzzle: if A" — B, then multiply by A, infer that A"*! — AB,
and conclude that AB = B; since B is invertible, it follows that A = B = 1.

Solution 101. On a Hilbert space of positive dimension a conjugate class
cannot even have a non-empty interior. Suppose, indeed, that the operator
A is such that | X|| < ¢ implies that 4 + X is similar to 4, for some
positive number ¢. It follows that 4 + ¢/2 is similar to 4, and hence that
S 'AS + ¢/2 = A for some invertible S. Consideration of the spectra
of the two sides of this equation shows its impossibility.

Solution 102. The sequence of weights for 4, is

1
(=) 1.1.1.-.-%
{ 7171, ,(k)7 9 b b }

Since 1/k < 1, it follows that the supremum of the sliding products that
enter the formula for the spectral radius of a weighted shift (see Solution 91)
is equal to 1, and hence that #(4,) = 1. Conclusion: the spectrum of 4, is
included in the closed unit disc, and this is true for k = 1,2,3, -+, co.

If k < oo, then A, is invertible, and, in fact, 4, ! itself is a weighted shift.
Since 4, 'e, is e,_; or ke,_, according as n # 1 or n = 1, it follows that
A, ! shifts the e,’s backwards (and weights them as just indicated). Back-
wards and forwards are indistinguishable to within unitary equivalence (cf.
Solution 84), and, consequently, the theory of weighted shifts is applicable
to A, !. The sequence of weights for 4, 7! is

{"'71,17 1,(1)7k7 1,1, 1,"'}'

The supremum of the sliding products of length m is now equal to k; it
follows that r(4,” ') = lim, k'™ = 1. Conclusion: the spectrum of 4, '
is included in the closed unit disc, and this is true for k = 1, 2, 3, - - - (but not
for o).
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The conclusions of the preceding two paragraphs, together with the
spectral mapping theorem for inverses, imply that the spectrum of 4,
(and also the spectrum of A4, ') is included in the unit circle (perimeter).
This, together with the circular symmetry of the spectra of weighted shifts
(see Problem 89), implies that the spectrum of A4, is equal to the unit circle
k=123

The spectrum of A, is clearly not the unit circle; since 4 e, = 0, the
spectrum of A, contains the origin. This shows that the spectrum of A
is discontinuously different from the spectra of the other A4,’s. (Note
that 4, - A, ie, |4, — A, = 0, as k = o0.) The spectrum of A is,
in fact, equal to the unit disc. The quickest way to prove this is to note that
the span of the e,’s with n > 0 reduces A, (both it and its orthogonal
complement are invariant under 4,), and that the restriction of A, to
that span is the unilateral shift. Since the spectrum of every operator in-
cludes the spectrum of each direct summand, the proof is complete.

This example is due to G. Lumetr.

Solution 103. Let T be the set of all singular operators (on a fixed Hilbert
space), and given an operator A, fixed from now on, let ¢(4) be the distance
(in the metric space of operators) from 4 — A to T. The function ¢ is con-
tinuous. (This is an elementary fact about metric spaces; it does not even
depend on T being closed.) If A, is an open set that includes spec 4, if A is
the closed disc with center 0 and radius 1 + |||, and if A e A — A,, then
@(A) > 0. (This does depend on T being closed; if @(1) =0, i.e.,
d4 — A, T)=0,then 4 — 1eT, ie., Aespec 4.) Since A — A, is com-
pact, there exists a positive number & such that ¢(1) = ¢ for all 1 in
A — Ay; there is clearly no loss of generality in assuming that & < 1.
Suppose now that |4 — B| < e. It follows that if Ae A — A,, then

(4 —4)—B-l <ec=dd-4iT)
This implies that B — 1 is not in T, and hence that 4 is not in spec B. Con-

clusion: spec B is disjoint from A — A,. At the same time, if 1 € spec B,
then

Al = Bl = Al + 14 — Bll <1 + | 4],

so that spec B < A. These two properties of spec B say exactly that spec B
Ao; the proof is complete.
A different proof can be based on the known properties of resolvents.
If (1) = (A — 4)™ ||, then ¢ is defined and continuous outside A,; since
it vanishes at co, it is bounded (cf. Problem 86). If, say, ¢(1) < a whenever
A¢Ag,pute= 1/o. If |4 — B|| < ¢and A ¢ A,, then
1

A== (B =Dl = 14 = Bl < o < gy

it follows as in Solution 100 that B — A isinvertible.
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Perhaps the simplest proof is a sequential one. Suppose that 4, —» A4
and 4 € limsup, spec A,; choose 4, in spec A, so that for a suitable sub-
sequence 4, — 4. Since A, — 4, is singular and 4, — 4, >4 — 4, it
follows from Problem 100 that A — A is singular, so that 1 € spec A.

The metric space proof is due to C. Wasiutynski; the resolvent proof is
due to E. A. Nordgren.

Solutions 104. There exists a convergent sequence of nilpotent operators
such that the spectral radius of the limit is positive.

Proor. The construction is based on a sequence {e,} of positive numbers
converging to 0. The question of what the ¢’s can be will be answered
after the question of what they are expected to do. Begin by defining a
sequence {o,} as follows: every second o is equal to &, (i.e., oy = &,
0y = €, X4 = &, - - ); every second one of the remaining o’s is equal to
g (.e., oy = &y, U5 = &, 0y = &, -+ +); every second one of the still re-
maining «’s is equal to &,; and so on ad infinitum. The sequence of &’s
looks like this:

€0, €15 Eg» €25 B9y €15 &g €35 805 E1, Egs €25 €0y €15 Egy "

Let A be the weighted unilateral shift whose weights are the o’s and, for
each non-negative integer k, let A, be the weighted unilateral shift whose
weights are what the «’s become when each ¢, is replaced by 0. Thus, for
instance, the sequence of weights for 4, is

&os €15 € 0, €05 €15 €y €3, Eg, €1, 60,07 €05 81580577

Two things are obvious from this construction: A4, is nilpotent of index
2%*1 and the norm of A, — A (which is a weighted shift) is ¢,.

All that remains is to prove that the ¢’s can be chosen so as to make
r(A) > 0. For this purpose note that

“0 = 60,
.2
A&y 0y = &g &y,
42
Qo %10 O3 0q Us0s = Eo &1 €25

and, in general, if n =27 -2 (p =1, 2, 3,--+), then

2Pt
ao...anzgo "'Ep—l'
Hence
—! P—llogeg
— -1-k Y g &
log(otg - o) = Y. 2P logg, =27 3 g
k=0 k=0
or

22 P lloge
1/n+1 __ k
IOg(“o e (xn) = 2p -1 kz —ii."'_l_'

=0

242



NORM TOPOLOGY

This implies that if the series
= log ¢,
)

K1
k=0 2

is convergent (which happens if, for instance, ¢, = 1/2%), then

liminf log(oy - - - 2,) " " ! > — 00,

n
and therefore

liminf (eg - - - o,)/"* 1 > 0.
The desired conclusion follows from Solution 91.
In some concrete cases the spectral radius can be computed;; if, for instance,
g, = 1/2% then r = (r(4)) = 1. Here is how the computation goes.
Since
lim 27 ”il log g i log &,

k+1 T k+1
pe 2P — 1,55 2 )

it follows that

logr = —

If f(z) = Z,?’:o Z¥/2% then log r = —((log 2)/2)f'(1). Since
f(z) = —2log(2 — z),

it follows that f'(1) = 0, and hence that r = 1.
This example is due to S. Kakutani; see [ 112, p. 282].

Solutions 105. The restriction of spec to the set of normal operators is
continuous.

To prove the statement, it is to be proved that if {4,} is a sequence of

normal operators and 4, — A, then
spec A < liminf spec 4,,.
n

(Note that A is necessarily normal, but that fact does not explicitly enter into
the proof.)

Question: when is a number 4 not in liminf, spec 4,? Answer: exactly
when the distance from A to the set spec 4, does not tend to 0 as n — co;in
other words, exactly when there exists a positive number ¢ such that

d(i,spec 4,) = ¢
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for infinitely many values of n. The inequality says that
1 1

— <
A =4 " ¢
whenever A’ € spec A4,. This, in turn, says that not only is 4 absent from
spec A,, so that 4, — A is invertible, but, in fact, 1((4, — 4)” ') < /e
No use was made of normality so far; here it comes. The way normality
is used is via the observation that for normal operators the spectral radius
is the same as the norm. Accordingly, the contrapositive of what is to be
proved is that if a number 4 and a subsequence {4, } are such that

_ 1
(A = D7 S -

(for some &), then A — A is invertible. There is no loss in simplifying the
notation and assuming that ||(4, — A)™!|| < 1/efor alln.
Everything is now prepared for the final argument. Since

(40 = D7 = (A — D77
= (4y = D7 (An = 1) = (4 = DA = D7
S Ay = D7 1Ay = Al 1A = D7

ItA

1
—~ |4, — A,
3 40— 4,

and since 4, — A, it follows that the sequence {(4, — 4)™'} converges, to
some operator B, say. Since

(A — 1)B =1lim (4, — 1)- lim (4, — 1)~ "
= lim (4, — AY4, - 1) =1,
and similarly, of course, B(A — ) = 1, the proof is complete.

Solution 106. The answer is yes and no: yes if the underlying Hilbert space H
is finite-dimensional and no otherwise.

Since, by assumption, spec(B + A/n) = spec A/n, and spec A/n is included
in the disc with center 0 and radius | A||/n, it follows that if B, = B + A/n,
then r(B,) — 0 (and, of course, B, — B). If dim H < oo, then spec B, is a
finite set of eigenvalues (each counted as often as its algebraic multiplicity
requires); the elementary symmetric functions of those eigenvalues determine
the coefficients of the (monic) characteristic polynomial det(A — B,). Since,
on the other hand, even the largest (in absolute value) of those eigenvalues
tends to 0 as n tends to oo, it follows that the elementary symmetric
functions tend to 0, and hence that det(l — B,) tends to A“™H, Since,
finally, det(A — B,) — det(A — B), it follows indeed that B is nilpotent.
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So much for the finite-dimensional case. (What just happened was, in
effect, a proof that in the finite-dimensional case spectrum is continuous.
Cf. Problem 105.)

A counterexample in the infinite-dimensional case resembles the example
in Solution 104 of a convergent sequence of nilpotent operators with a limit
that has large spectrum. Let A be a weighted shift with weight sequence

050, _170,0, _1,0,0, _1,"',

so that A is nilpotent of index 3. Let B be the weighted shift in whose weight
sequence every second term is 1, every second one of the remaining
terms is £, every second one of the still remaining terms is 3, and so on
(with %, %, -- -, 1/n, - - ). Since each weight of B is greater than or equal to
the corresponding weight of the Kakutani shift with ¢, = 1/2* (Solution
104), it follows that the spectral radius of B is greater than or equal to
that of the Kakutani shift (and is therefore positive). Consequence: B is
not quasinilpotent.

For each positive integer n, the weight 1/n occurs in the weight sequence of
B at position 2"~ ! the first time, and, from then on, periodically with period
2", In the weight sequence of nB, therefore, the weight 1 occurs at positions
2771 4 2"k, k=0,1,2,---. Since 3 and 2" are relatively prime, the
weight 0 (= —1 + 1) must occur in the weight sequence of 4 + nB at
least once, and, from then on, periodically with period 3 - 2". Conclusion:
A + nB is nilpotent, and, therefore, spec(4 + nB) = {0} = spec A for
all n.

These results are due to K. J. Harrison.
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Solution 107. The first assertion involving uniformity has nothing to do
with operators; it is just a statement about uniform weak convergence of
vectors on the unit sphere. The proofs of the two assertions are very similar;
what follows is a proof of the second one. For that purpose, assume A = 0;
this loses no generality. The assumption in this case is that, for each positive
number ¢, if n is sufficiently large, then

|4, fIl <& whenever | f| =1;

the uniformity manifests itself in that the size of n does not depend on f.
It follows that if n is sufficiently large, then

4.l = e

The argument is general; it applies to all nets, not only to sequences.

Solution 108. The norm is continuous with respect to the uniformtopology
and discontinuous with respect to the strong and weak topologies.

ProoF. The proof for the uniform topology is contained in the inequality
ll4ll = IBI| £ |4 - BI.

This is just a version of the subadditivity of the norm, and it implies that the
norm is a uniformly continuous function in the norm topology. The proof
says nothing about the continuity of the norm in any other topology. A
norm is always continuous with respect to the topology it defines; other
topologies take their chances.

To show that the norm is not continuous with respect to the strong
topology (not even sequentially), and, a fortiori, it is not continuous with
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respect to the weak topology, consider the following example. Let {M,}
be a decreasing sequence of non-zero subspaces with intersection 0,
and let {P,} be the corresponding sequence of projections. The sequence
{P,} converges to 0 strongly. (To see this, form an orthonormal basis for
M,*, one for M; n M,*, another for M, n M5*, etc., and string them to-
gether to make a basis for the whole space. Cf. also Solution 120.) The sequence
{lIIP,lI} of norms does not converge to the number 0; indeed | P,| = 1 for
all n.

Solution 109. If 4, — A (weak), then, for each fand g,
(41, 9) — (4.1, 9)|

is small when n is large, and therefore, for each ¢ > 0,

I(Af, 91 = (4.1, 9] + ¢
for n sufficiently large. It follows that

[Af, DI = A1 Ngll + e

for n sufficiently large, and hence that
IAf, DI = (liminf IIA,.II)- A1 lgl + &

Let ¢ tend to 0, and then recall that the supremum of |(Af, g)| over all unit
vectors fand g is | A4].

Solution 110. The adjoint is continuous with respect to the uniform
and the weak topologies and discontinuous with respect to the strong
topology.

PrROOF. The proof for the uniform topology is contained in the identity
|4* — B*|| = |4 — BJ|.

If a function from one space to another is continuous, then it remains
so if the topology of the domain is made larger, and it remains so if the
topology of the range is made smaller. (This is the reason why the strong
discontinuity of the norm implies its weak discontinuity.) If, however, a
mapping from a space to itself is continuous, then there is no telling how it
will behave when the topology is changed; every change works both ways.
In fact, everything can happen, and the adjoint proves it. As the topologies
march down (from norm to strong to weak), the adjoint changes from being
continuous to being discontinuous, and back again.

To prove the strong discontinuity of the adjoint, let U be the unilateral
shift, and write A, = U* k =1, 2, 3,--.. Assertion: 4, — 0 strongly, but
the sequence {4,*} is not strongly convergent to anything. Indeed:

||Ak<fo, 51, 52»"‘>||2 = ||<fk, 5k+1> 5k+2>"'>||2
= Y 1&5
n=k
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so that ||4, f||? is, for each f, the tail of a convergent series, and therefore
Af — 0. The negative assertion about {4,*} can be established by proving
that if f # 0, then {4,*f} is not a Cauchy sequence. Indeed:

[Amen®f — A = U™ = U2 = U — fII?
= [U"f|I> — 2 Re(U"f, f) + [ f1?
=2(IfI> = Re(f, U*"()).
Since |[U*"f|| - 0 as m — oo, it follows that |A4,.,*f — A4,% | refuses to
become small as m and n become large; in fact if m is large, then

||Am+n*f - An*f”

is nearly equal to \/5 If1-
As for the weak continuity of the adjoint, that is implied by the identity

(4%, 9) — (BYf, 9)| = ([, Ag) — (f, Bg)| = (49, f) — (Bg, [)I.

Solution 111. The proof for the uniform topology is contained in the in-
equalities
IAB — Ao Boll = [|AB — ABy|| + [|AB, — Ao B,
< 1411+ IB = Boll + |14 — A - Byl
< (14 = Aol + [ 45DDIB = Boll + |4 = Aol - 1Boll.
An elegant counterexample for the strong topology depends on the
assertion that the set of all nilpotent operators of index 2 (i.e., the set of all
operators A such that A% = 0) is strongly dense. (The idea is due to Arnold
Lebow.) To prove this, suppose that

{A: |Aofi — Afill < & i=1,---,k}

is an arbitrary basic strong neighborhood. There is no loss of generality
in assuming that the f’s are linearly independent (or even orthonormal);
otherwise replace them by a linearly independent (or even orthonormal)
set with the same span, and, at the same time, make ¢ as much smaller as is
necessary. For each i (=1, -, k) find a vector g, such that |4,f; — g;| < ¢
and such that the span of the g’s has only 0 in common with the span of the
f’s; so long as the underlying Hilbert space is infinite-dimensional, this is
possible. Let 4 be the operator such that

Afy=g; and Ag;=0 (i=1,-k)
and
Ah =0 wheneverh L fiand h L g; (i=1,---,k).
Clearly A is nilpotent of index 2, and, just as clearly, A belongs to the pre-
scribed neighborhood. (For a different proof, see Problem 225.)
If squaring were strongly continuous, then the set of nilpotent operators

of index 2 would be strongly closed, and therefore every operator would be
nilpotent of index 2, which is absurd.
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This result implies, of course, that multiplication is not jointly strongly
continuous. Since the strong topology is larger than the weak, so that a
strongly dense set is necessarily weakly dense, the auxiliary assertion about
nilpotent operators holds for the weak topology as well as for the strong.
Conclusion: squaring is not weakly continuous, and, consequently, multi-
plication is not jointly weakly continuous.

There is another way to see that squaring is not strongly continuous;
it is less geometric but, in recompense, it is also less computational.

The idea is to use a badly unbounded set that contains 0 in its weak
closure. If {ey, e,, e5,- -} is an orthonormal set, then the set E of all vectors
of the form ./ke, will serve; see Solution 28. For each k, define an operator

A, by Af = (f, Jkeey; it follows that A, f || = |(f,/key)|. (Observe
that A, is a positive operator of rank 1.) Let {k,} be a net of positive
integers such that \/E,,ekn — 0 weakly. (It cannot be a sequence.) It follows
that

(fs Vkuer) > 0
for each f, and therefore that |4, f|| — 0. As for the squares:

A2 = ALS, Vkede, = (f, ke e, kede, = k(f, eey.

If, in particular, f = Y%, (1/k)e,, then A4,*f = ¢, so that |42f| = 1.
Conclusion: |4, *f | cannot converge to 0, so that squaring is not strongly
continuous.

Solution 112. The easiest proof uses convergence. The convergence of
sequences is sometimes misleading in general topology, but the convergence
of nets (generalized sequences) is good enough. Suppose therefore that
A; — A strongly, ie., that A; f — Af for each f. It follows, in particular, that
A;Bf — ABf for each f, and this settles strong continuity in A. If, on the
other hand, B; — B strongly, i.e, if B; f — Bf for each f, then apply 4 to
conclude that AB; f — ABf for each f; this settles strong continuity in B.
Weak continuity can be treated the same way. If (A4,f,g) - (Af.g)
for each f and g, then, in particular, (4;Bf, g) — (ABf, g) for each fand g;
if (B;f,g)— (Bf,g) for each f and g, then, in particular, (4B;f, g)
= (B/f, A*g) — (Bf, A*g) = (ABYf, g) for each fand g.

Solution 113. (a) The crux of the matter is boundedness. Assume first that
the sequence {||4,||} of norms is bounded. Since, for each f,
l42B.f — ABf| £ |A4,B,f — A,Bf || + |A,Bf — ABf|
= 4,01 - 1B, — B)f | + (4, — A)Bf |,

the assumed boundedness implies, as desired, that A,B, f — ABf.
Now what about the boundedness assumption? The answer is that it
need not be assumed at all; it can be proved. It is, in fact, an immediate
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consequence of the principle of uniform boundedness for operators: if a
sequence of operators is weakly convergent (and all the more if it is strongly
convergent), then it is weakly bounded, and therefore bounded.

(b) Multiplication is not weakly sequentially continuous.

Proor. Let U be the unilateral shift, and write A, = U*", B, =U", n =
1,2, 3,.--. Since 4, — O strongly, it follows that A4, — 0 weakly, and hence
that B, — 0 weakly (cf. Solution 110). Since, however, A,B, =1 for all n,
it is not true that A, B, — 0 weakly.

Solution 114. Let A, be the infinite matrix (or, by a slight abuse of language,
the operator) whose entries at the positions {1, n) and <{n, 1) are 1, and
whose remaining entries are all 0 (n = 2, 3, 4, - - -). The matrix 4, has its
only two non-zero entries at (1, 1) and <{(n, n). The weak asymptotic
properties of both sequences {4,} and {A,?} are easy to obtain: 4, — 0
weakly and 4,2 - A weakly, where A is the matrix whose only non-zero
entry is 1 at the position {1, 1).

This proves the weak sequential discontinuity of squaring at one point,
namely 0. The same thing happens everywhere. Indeed, for any operator B,
put B, = B + A,. Clearly B, - B weakly, and

B?=B +BA, + AB+A4>->B>4+0+0+ 4

weakly. (Cf. Problem 112 on separate continuity.) Since 4 # 0, it follows
that squaring is weakly sequentially discontinuous at B. (The latter part
of the argument is due to C. A. McCarthy.)

Solution 115, There exist weakly convergent sequences of projections that
are not strongly convergent. A simple way of describing an example is to use
matrices (as in Solution 114). Let P, be the infinite matrix whose entries at
the positions <1, 1>, <1, n), {(n, 1>, and {n, n) are 1, and whose remaining
entries are all 0 (n = 2, 3, 4, ---). Each P, is a projection (Hermitian and
idempotent). If A is the matrix whose only non-zero entry is 3 at the
position {1, 1}, then P, — A weakly. The sequence {P,} cannot, however,
converge to anything strongly. Reason: if it did, then the limit would have
to coincide with A (because strong convergence implies weak), and there-
fore A would have to be a projection (because a strong limit of projections
is a projection).
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Strong Operator Topology

Solution 116. The assertion is that if {4,} is a net of normal operators and A
is a normal operator such that A, — A (strong), then A4,* - A* (strong).
What is easy and known (Solution 110) is that 4,* — A* (weak). Since (by
the assumed normality and the assumed strong convergence)

14X = A0 | = IAf ] = (4%

for each f, Problem 20 is applicable and yields the result.

Reference: [83].

Caution: the assertion does not mean that if {4,} is a net of normal
operators and A, — A (strong), then A,* — A*; the normality of 4 must
be explicitly assumed. Suppose, indeed, that {e,, e;, e,, - - -} is an ortho-
normal basis, and suppose that U, (n = 1, 2, 3, -+ ) is an operator such
that Ue, = ¢,,; When 0 S k<n—1, Ue,.; =€y, and Ue, =0
when k = n.

It follows that U, — U (strong), where U is the unilateral shift. Since,
however, U, *e, = e,_, the sequence {U,*e,} is not strongly convergent.

Solution 117. The answer is no. One good way to construct a counter-
example is to use the unilateral shift U and exploit the fact that U*U £ UU*.
The details can be arranged as follows.

Let N be the set of all pairs (p, E) where p is a (strictly) positive integer
and E is a strong neighborhood of 0; write {p, E> £ {q,F) incase p £ ¢q
and E o F. The relation so defined makes N a directed set.

The next step is to define a net of operators on N. For each n = (p,E) in
N, find a positive integer k = k(p, E) so that pU** ¢ E (which can be done
because, for p fixed, pU** tends strongly to 0 as k becomes large); write
A, = pU** and B, = (1/p)U*.
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The net {B,} converges to 0, not only strongly, but in the norm; that is,
| B,|l can be made arbitrarily small by making n sufficiently large. Indeed:
given ¢ (>0), find p, so that 1/p, < ¢, let E, be an arbitrary strong neigh-
borhood of 0, and put n, = {p,, Eo>- If n = n,, so that n = {p, E) with
p = po and E c E,, then ||B,|| < & Proof:

“ 1 ykw-e)
p

p

Note that {B,} is bounded.

The net {A,} also converges to 0 strongly. Proof: given a strong neighbor-
hood E, of 0, write n, = <1, Ey>. If n = n,, so that n = {p, E> with
p21and E c E;, then A, € E; (because 4, € E, by definition).

The product net {A4,B,} does not converge to O strongly; in fact, 4, B, is
identically equal to 1.

Solution 118. No. For an example, consider an orthonormal basis
{eo, €1, €3, '},

and write 4, = U*" (where U is the unilateral shift defined by Ue, = ¢, |,
n=0,1,2,---). Since ¢, — 0 weakly and U*" — 0 strongly, the assumptions
are satisfied ; since, however, U*", = e¢,, the conclusion is not.

Solution 119. Suppose that {e,, e;, e,,--} 1s an orthonormal basis and let
P, be the projection onto the span of {ey,--,e,}, n =1, 2,---. Clearly
P, — 1 strongly, spec P, = {0, 1}, and spec 1 = {1}. Consequence: arbi-
trarily near to the operator 1, in the sense of the strong topology, there are
operators with a (relatively) much larger spectrum. More simply:

limsup spec P, & spec 1.

Conclusion: the spectrum is not strongly upper semicontinuous.

In this example the spectral radius does not misbehave: r(P,) = 1 for
all n, and r(P) = 1. It is easy to modify the example so as to prove that r is
not continuous: just consider the corresponding unilateral shift U

(Ue,=¢e,.1,n=0,1,2,--),

and write A, = UP,. The result is that 4, — U strongly; each A4, is nil-
potent, so that r(4,) = 0 for all n, but H(U) = 1. Consequence: arbitrarily
near to the operator U, in the sense of the strong topology, there are operators
with a much smaller spectral radius; the spectral radius (and hence the
spectrum) is not strongly lower semicontinuous.

Could it be that despite all this the spectral radius is upper semicon-
tinuous? No, but to prove that a different example is needed. The powers U*"
will do. Since U*" — 0 strongly and #(U*") = 1 for all n, it follows that
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arbitrarily near to 0, in the sense of the strong topology, there are operators
with much larger spectral radius.

Solution 120. A bounded increasing sequence of Hermitian operators is
always convergent with respect to the strong topology, but not necessarily
with respect to the uniform topology.

PrOOF. One way to prove the assertion about the strong topology is to
make use of the weak version. Let {4,} be a bounded increasing sequence of
Hermitian operators, and let A be its weak limit. Since A, £ A, the operator
A — A, is positive, and therefore it has a positive square root, say B, (see
Problem 121). Since

IB, f1* = (B.f, B, f) = (Bf, /) = (4 — 4,)f, f) = 0,

the sequence {B,} tends strongly to 0. Since {||[4 — A4,||} is bounded, so is
{IB,l}; say ||B,|| < B for all n. The asserted strong convergence now follows
from the relation

I(4 = 4)f 1 = IBf Il < BIIB,fI.

As once before (cf. Solution 1) sequences play no essential role here; nets
would do just as well.

There is sometimes a technical advantage in not using the theorem
about the existence of positive square roots. The result just obtained can be
proved without that theorem, if it must be, but the proof with square roots
shows better what really goes on. Here is how a proof without square roots
goes. Assume, with no loss of generality, that 4 < 1. If m < n, then

”(An - Am)f||4 = ((An - Am)fs (An - Am)f)z
= ((An - Am)fs f)((An - Am)zf! (An - Am)f)s

by the Schwarz inequality for the inner product determined by the positive
operator A, — A,,. Since A, — A, £ 1, so that |4, — 4, £ 1, it follows
that

A frequently used consequence of the strong convergence theorem is
about projections. If {M,} is an increasing sequence of subspaces, then
the corresponding sequence {P,} of projections is an increasing (and ob-
viously bounded) sequence of Hermitian operators. It follows that there
exists a Hermitian operator P such that P, — P strongly. Assertion: P is the
projection onto the span, say M, of all the M,’s (cf. Solution 108). Reason: if
f belongs to some M,, then Pf = f, and if f is orthogonal to all M,’s,
then Pf = 0, these two comments together imply that there is a dense set
on which P agrees with the projection onto M.

Increasing sequences of projections serve also to show that the monotone
convergence assertion is false for the uniform topology. Indeed, if the se-
quence {M,} is strictly increasing, then the sequence {P,} cannot converge
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to P (or, for that matter, to anything at all)in the norm, because it isnot even a
Cauchy sequence. In fact, a monotone sequence of projections can be a
Cauchy sequence in trivial cases only; | P, — P,|| = 1 unless P, = P,,.

Solution 121. 1t is convenient (for purposes of reference) to break up the
proof into small steps, as follows.

(1) All the positive integral powers of a positive operator are positive.
Indeed (A%, f) = |Af||> and (A%"VYf, f) = (A - A%, A"f); the former
is positive because norms are, and the latter is positive because A is. In the
sequel the result is needed not for A but for 1 — A. (Note: the assertion is a
trivial consequence of the spectral theorem.)

(2) Each B, is a polynomial in 1 — 4 with positive coefficients (by in-
duction), and hence (by (1)) each B, is a positive operator.

(3) By (2), all the B,’s commute with one another, and it follows that

By, — B,y = J2'(Bn+12 - an) = %(Bn-i—l — B)(B,+1 + By).

This implies (by (2) and induction) that B,,, — B, is a polynomialin1 — 4
with positive coefficients, and hence positive; it follows that the sequence
{B,} is increasing.

(4) The definition of B,,; in terms of B, implies (induction) that
|B,l =1 for all n; the sequence {B,} is bounded.

(5) By (3) and (4), {B,} is a bounded increasing sequence of positive
operators, and therefore it is strongly convergent to some (necessarily
positive) operator B. Note that the argument needs Solution 120. Since
the point of what is now going on is to avoid square roots, it is necessary
to use the version of Solution 120 that does not use square roots.

Convergence is proved; it remains only to evaluate the limit. This is
easy from Problem 113; since B, — B (strongly), it follows that B,2 — B?
(strongly), and hence that

B =4 — A) + B%.
This says that
A=1-2B+ B*=(1 - By,

and the proof is complete.
The proof is standard; cf. [114].

Solution 122. Even a small amount of experience with non-commutative
projections shows that the familiar algebraic operations are not likely to
suffice to express E A F in terms of E and F. The following quite pretty
and geometrical consideration shows how topology comes in, and motivates
the actual proof. Suppose that the underlying Hilbert space H is two-
dimensional real Euclidean space, and suppose that M and N are two
distinct but not orthogonal lines through the origin. Take an arbitrary
point fin H, project it on M (i.e,, form Ef), project the result on N (FEf),
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then project on M (EFEf), and continue so on ad infinitum; it looks
plausible that the sequence so obtained converges to 0, which, in this case,
is (E A F)f. This suggests the formation of the sequence

E, FE, EFE, FEFE, EFEFE, . - ..
The proof itself works with the subsequence
EFE, EFEFE, EFEFEFE, .. -,

this is a matter of merely technical convenience.

Since |EFE| =1, the powers of EFE form a decreasing (and even
commutative) sequence of positive operators. It follows that (EFE)" is
weakly convergent to, say, G; since in this case weak and strong convergence
are equivalent, G belongs to the given von Neumann algebra. Assertion:
G = E A F. Clearly G is Hermitian. Since (EFE)"G = G for all m, therefore
G? = G, so that G is a projection. Since (EFE)"FG = G for all m, therefore
GFG = G; this implies that G £ F. (Proof: 0 = G — GFG = G(1 — F)G =
G — F)! — F)G,and (1 — F)G = (G(1 — F))*)) Since E(EFE)" = (EFE)"
for all n, therefore EG = G or G £ E. If, finally, G, is a projection such that
Gy £ E and Gy £ F, then Go(EFE)" = G,, whence GG = G,, so that
G, £ G. The proof is complete.

The theorem has its own dual for an easy corollary. The assertion is that
the projection £ v F on the subspace M v N belongs to any von
Neumann algebra containing E and F. Since

EvF=1—-((1—-E Al -F),

the proof is immediate.

An examination of the proof shows that not all the defining properties
of von Neumann algebras were used; all that was needed was a sequentially
strongly closed set of operators such that if A and B are in the set, then so is
ABA (for the theorem about E A F) or

1— (1 — A)1 - BY1 — A)

(for the theorem about E v F). Observe that even in the latter case it is not
required that 1 belong to the set; an expression such as

1—(1— A1 - Bl — A)

is a convenient way of writing something that can obviously (though
clumsily) be written without 1 if so desired.
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Partial Isometries

Solution 123. Use the spectral theorem to represent 4 as a multiplication
by, say, ¢. If Aespec A and if N is an arbitrary neighborhood of F(4),
then F~!(N) is a neighborhood of A, and therefore ¢ '(F~!'(N)) has
positive measure. Since ¢~ '(F~'(N)) = (F o @) (N), it follows that
F(A) is in the essential range of F o ¢, so that F(4) e spec F(A). This proves
that F(spec A) < spec F(A).

To prove the reverse inclusion is the same as to prove that if 1 ¢ F(spec A),
then 4 ¢ spec F(A). The set F(spec A) is compact. (It is the image under the
continuous function F of the compact set spec A4.) Since 4 is not in it, 4
has a neighborhood disjoint from it. If N is such a neighborhood, then
F~Y(N) = (&, and therefore not only does (Fo @) {(N) (=@~ '(F"Y(N))
have measure zero, but, in fact, it is empty. Consequence: 4 does not
belong to the spectrum of F(A). This completes the proof.

Solution 124. Perhaps one reason why the non-spectral proof is elusive
here is that square roots seem to be needed, and square roots without the
spectral theorem are known to require a little effort; see Problem 121. The
necessity for square roots is not surprising in a theorem that is explicitly
about squares.

If0 £ A £ 1, then (Af, f) = (f, f) for all £, and, in particular,

(A Af, JAf) £ (JAf, VAT,

or
(A1, 1) < (A, f);

this means that A2 < A. That’s the easier direction.
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In the other direction, note that if 4 is Hermitian, then

IAf1I* = (Af, Af) = (4°1. 1),

and hence, in particular, if A = 0, then

IVASI? = (Af.f).
It follows that if A2 £ A, then

IAf | < INASI S I/Al- 1 1)

for all f, and hence that |4 £ ||\/Z||. Consequence: ||A|* £ ||4||, or
|A|l £ 1;since 4 is Hermitian, it follows that 4 < 1.

Solution 125. The answer is yes, but the formulation of the problem is mis-
leading. The fact is that if p(A4) is diagonal for any non-zero polynomial p,
then A also must be diagonal.

Use the spectral theorem to represent A as multiplication by ¢ on L*(X)
for some measure space X with o-finite measure u. By assumption p(4) has a
set A, of eigenvalues A such that the corresponding eigenspaces M, =
{f:p(A)f = A }), A€ Ay, span the whole space. (Normality implies that if
Ay # Ay, then M, 1 M,;,)

Question: which functions in L2(X) belong to M, ? Answer: those func-
tions f for which

(Ple(x)) = ) f(x) =0 ae,
that is, those whose support is a subset of
E,=¢ Yz:p(z) — A =0}

The separability of the space implies that M, s 0 for only countably many
values of 4, and, correspondingly, that u(E,) = 0 for only countably many
values of 4. The sets {E,: 1€ Ay} are pairwise (almost) disjoint, and their
union is (almost) equal to X. If E, is an orthonormal basis for L?(E,) (=the
subspace of those functions in L2(X) whose support is a subset of E,), then
Usea, E, is an orthonormal basis for L2(X).

There is an intelligent way of choosing a basis E, for L(E,). Since the set
{z: p(z) — 4 = 0} is finite, it follows that the essential range of the restriction
of ¢ to E, is finite. That is: E, is the union of a finite number of sets on
each of which ¢ is a constant. Choose E, as the union of a corresponding
finite number of orthonormal bases, one for each of those subsets of E;.
Each vector in each such basis is an eigenvector of A, and the union of all
the bases so obtained is a basis for the whole space.

The answer is the same even if the underlying Hilbert space is not assumed
to be separable, but the proof involves some fuss necessitated by the possible
pathology of large (meaning, non-o-finite) measure spaces.

Solution 126. The answer is yes. Suppose, indeed, that 4 and A, are normal
operators (n = 1, 2, 3, .. ) with 4, — A. Let ¢ be a positive number such
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that ||4,| < c for all n (and hence such that |4 = ¢). By the Weierstrass
polynomial approximation theorem in the plane there exists a sequence
{pm} of polynomials in two variables such that p,(z, z¥) - F(z) uniformly
in the disc with center 0 and radius c. Since, for every normal operator X,
the norm |p, (X, X*) — F(X)| is dominated by the supremum norm of
DPm(z, 2*) — F(z) on the disc with center 0 and radius ¢, it follows that
Pu(X, X*) - F(X) uniformly over all normal operators X with | X|| < c.

Now note that

1F(A,) — F(AI = 1F(A,) — pulAn, A%

+ 1Pw(Ans Ax*) — Pl A, A¥)|| + |IpalA, A*) — F(A)]
for all m and n. Choose m so large that the first and last summands are small
for all n (this is the uniformity mentioned above), and then, for m fixed,
choose n so as to make the middle summand small.

The method of proof can be generalized so as to yield similar results for
functions that are not defined on the entire plane. A typical and important
example is the square root function on the positive half of the real line:
the conclusion is that the mapping A \/Z, defined for positive operators,
is continuous.

Solution 127, Suppose that H and K are Hilbert spaces and suppose that U
is a partial isometry from H into K with initial space M. (For a discussion
of such transformations and their adjoints, see Problem 51.) If E is the pro-
jection from H onto M, and if f € M, then

(UXULf) = IIUFII? = I f1I* = (Ef, f);
iff L M, then

(U*Uf, f) =0 = (Ef. /).
It follows that (U*Uf,f) = (Ef, f) for all f in H, and this implies that
U*U = E.

Suppose, conversely, that U is a bounded linear transformation from H
into K such that U*U is a projection with domain H and range M, say. It
follows that

IUFI1? = (U*US, f) = (Ef. f) = |IEf|?
for all f, and hence that || Uf|| = | f|| or Uf = 0 according as f € M or
fLiM

To prove Corollary 1, observe that ker U*U = ker U (this is true for
every bounded linear transformation U). The proof of Corollary 2 is a
trick. If U*U is idempotent, then (UU*)* = U(U*UU*U)U* = (UU*)?;
the spectral theorem implies that a Hermitian operator 4 with 43 = A2 is
idempotent. The assertion about initial and final spaces follows from the
observation that ker* UU* = ker* U* = ran U (since ran U is closed).
As for Corollary 3:if U is a partial isometry, then the product of U and the
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projection U*U agrees with U on both ker U and its orthogonal comple-
ment; if, conversely, U = UU*U, then premultiply by U* and conclude that
U*U is idempotent.

Solution 128. If U is an isometry and if UM = M, then M reduces U,
if U is a co-isometry and if M reduces U, then UM = M. The first
implication is false for co-isometries; the second implication is false for
isometries.

Proor. If U*U=1 and UM =M, then UM = U*UM =M. If
UU* = 1 and both UM « M and U*M < M, then apply U to the second
inclusion to obtain the reverse of the first.

The first implication is false if U is the adjoint of the unilateral shift and
M is the (one-dimensional) subspace of eigenvectors belonging to a non-
zero eigenvalue (see Solution 82). In that case UM = M, but M does not
reduce U. The second implication is false if U is the unilateral shift and M
is the whole space. In that case M reduces U, but UM # M.

Solution 129. The assertion about closure is obvious; the reason is that (1)
the mapping A +> AA*A is continuous, and (2) the equation 4 = AA*A
characterizes partial isometries.

An even easier version of the same proof shows that the set of all isometries
is closed; consider the mapping (1) 4 A*A4 and the equation (2) A*4 = 1.
This comment is pertinent to the question concerning the connectedness of
the set of all non-zero partial isometries. One way to prove that the answer
to that question is no is to prove that the set of all isometries is not only
closed but also open in the set of all partial isometries (in the relative topology
of the latter). The fact is that if a partial isometry is sufficiently near to an
isometry, then it is an isometry. More precisely, if U is a partial isometry,
if Vis anisometry, and if |[U — V|| < 1, then U is an isometry. It is sufficient
to prove that if Uf = 0, then f = 0. Indeed, since

LAl = 1VAl = 1Uf = VA 21U = VI-IfIL

it follows that if f 5 0, then ||[U — V| = 1, which contradicts the assump-
tion that |[U — V| < L.

The same argument shows that if the underlying Hilbert space is infinite-
dimensional, then the set of all isometries is not connected. Reason: the set
of all unitary operators is a non-empty proper (!) subset that is simul-
taneously open and closed.

Solution 130. The kernel of U and the initial space of V can have only 0
in common. Indeed, if f is a non-zero vector such that Uf = 0 and ||Vf| =
[fl, then |Uf —Vf|| =|f|, and this contradicts the hypothesis
U — V| < 1. It follows that the restriction of U to the initial space of V
is one-to-one, and hence (Problem 56) the dimension of the initial space of V
is less than or equal to the dimension of the entire range of U. In other
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words, the result is that p(V) < p(U); the assertion about ranks follows by
symmetry.

The assertion about nullities can be phrased this way: if v(U) # w(V),
then |[U — V| = 1. Indeed, if wU) # w(V), say, for definiteness,
v(U) < w(¥), then there exists at least one unit vector f in the kemnel of ¥V
that is orthogonal to the kernel of U. To say that f is orthogonal to the
kernel of U is the same as to say that f belongs to the initial space of U.
It follows that 1 = || f|| = US| = |Uf = Vf| £ ||U — V|, and the proof
of the assertion about nullities is complete.

The assertion about co-ranks is an easy corollary: if |[U — V| < 1,
then | U* — V*| < 1, and therefore p'(U) = w(U*) = w(V*) = p'(V).

The result appearsin [114,§105] for the special case of projections (which
is, in fact, Problem 57). The present statement is a generalization, and, at the
same time, the proof is a considerable simplification. The proof in [114] is,
however, more constructive; it not only proves that two subspaces have the
same dimension, but it exhibits a partial isometry that has the first for initial
space and the second for final space. The generalization appears in {65].

Solution 131. Suppose that ¥, and V, are partial isometries with the same
rank, co-rank, and nullity; let N, and N, be their kernels, M, and M,
their initial spaces, and R, and R, their ranges. Let U be an arbitrary unitary
operator that maps N, onto N, and M, onto M,. Let W be a linear trans-
formation that maps R,* isometrically onto R,*; for f in R,, define Wf =
V, UV, *f. Since it is easy to verify that this definition yields a linear trans-
formation W that maps R, isometrically onto R,, it follows that there exists
a unitary operator W that maps R, onto R, and R, * onto R,* as indicated.
If g € N,, then

WwVg =0="V,Uy;
if g € M,, then
Whyg =V, UV,*Ng =V, Ug.
It follows that WV, = V, U, or WV, U* =V,. If t+> W, and t+s U, are
continuous curves of unitary operators that join 1 to W and to U, then
t— W, V,U* is a continuous curve of partial isometries all with the same

rank, co-rank, and nullity, that joins ¥, to V.
This proof is a simplification of the one in [65]; it is due to R. G. Douglas.

Solution 132. Suppose that A and B are unitarily equivalent. If U is a unitary
operator that transforms A onto B, then U transforms A* onto B*, and

therefore U transforms A’ == ,/1 — AA* onto B’ = /1 — BB¥*; it follows
that

U 0

0 U
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If, conversely, a unitary operator matrix of size 2 transforms M(A) onto
M(B), then it transforms M(A)* onto M(B)*, and therefore it transforms

1 0 . . .
M(AYM(A)* | = < 0 0)) onto itself. A unitary operator matrix that com-

10 U
mutes with <0 ) is necessarily of the form < 0 g), with Uand V unitary.

0
The assumed relation between M(A) and M(B) implies that U*AU = B.

Solution 133. If a compact subset A of the closed unit disc contains the
origin, then there exists a partial isometry with spectrum A.

Proor. Let A be a normal contraction with spectrum A (see Problem 63).

If, as in Problem 132,
A A
M = R
(%)

where A" = /1 — AA*, then M is a partial isometry; what is its spectrum?
The question reduces to this: for which values of 4 is the operator matrix

A—-1 A
0 -2

not invertible? By Problem 70, M — Ais invertible if and only if —A(4 — 1)
is invertible, which happens when 4 # 0 and 4 — Aisinvertible. Conclusion:
spec M = {0} UA = A.

In the finite-dimensional case more can be said. If A is a finite subset of
the closed unit disc, with 0 in A, and if each element of A is assigned a
positive integral multiplicity, then there exists a partial isometry with
spectrum A whose eigenvalues have exactly the prescribed algebraic multi-
plicities; see [65].

i
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Polar Decomposition

Solution 134, Begin with the construction of P. Since A*A is a positive
operator on H, it has a (unique) positive square root; call it P. Since

IPF 11> = (Bf, Bf) = (P*f, f) = (A*Af, f) = |Af |?
for all fin H, it follows that the equation
UPf = Af

unambiguously defines a linear transformation U from the range R of P
into the space K, and that U is isometric on R. Since U is bounded on R,
it has a unique bounded extension to the closure R, and, from there, a
unique extension to a partial isometry from H to K with initial space R.
The equation 4 = UP holds by construction. The kernel of a partial iso-
metry is the orthogonal complement of its initial space, and the orthogonal
complement of the range of a Hermitian operator is its kernel. This implies
that ker U = ker P and completes the existence proof.

To prove uniqueness, suppose that 4 = UP, where U is a partial isometry,
Pis positive, and ker U = ker P. It follows that A* = PU* and hence that

A*A = PU*UP = PEP,

where E is the projection from H onto the initial space of U. Since that initial
space is equal to ker* U, and hence to an P, it follows that EP = P, and
hence that A*4 = P2 Since the equation UPf = Af uniquely determines
U for fin ran P, and since Uf = 0 when f is in ker P, it follows that U also is
uniquely determined by the stated conditions.

To deduce Corollary 1, multiply A = UP on the left by U*, and use the
equation U*U = E; cf. Solution 127. For Corollary 2, observe that ker U =
ker P = ker A*A = ker A, and ker U* = ran* U = ran* A.
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Solution 135. Suppose that A4 is a bounded linear transformation from a
Hilbert space H to a Hilbert space K, let 4 = UP be the polar decomposi-
tion of 4, let M (cH) be the initial space of the partial isometry U, and let
R (=K) be the range of U (or, equivalently, the closure of the range of A).
If dim M* < dim R4, then there exist isometries from H into K that agree
with U on M (many of them); all that is needed is to map M* isometrically
into R* and to combine such a mapping with what U does on M. If, on the
other hand, dim R* < dim M*, then there exist isometries from K into H
that agree with U* on R; the adjoint of each such isometry is a co-isometry
from H into K that agrees with U on M. In either case there exists a linear
transformation V from Hinto K such that either ¥V or V*is an isometry and
such that V agrees with U on M. Since the range of P is included in M, it
follows that VP = UP = A.

Solution 136. The extreme points of the unit ball in the space of operators
on a Hilbert space are the maximal partial isometries.

Proor. Suppose first that U is an isometry and that U = a4 + (B, with
x>0,>0,0+pB=1||A| £1, and |B|| £ 1. If f is a unit vector, then
so is Uf, and Uf = aAf + BBf, where |Af|| £ 1 and |Bf| < 1. Since the
closed unit ball of a Hilbert space is strictly convex (Problem 4), it follows
that Af = Bf = Uf, and hence that A = B = U. Conclusion: isometries
are extreme points. The result for co-isometries is an immediate consequence.

The converse can be proved by showing that every operator A, with
A £ 1, is equal to a convex combination (in fact, to the average) of two
extreme points of the kind already found. Here the theory of polar de-
compositions (or, rather, a consequence of it) is useful. By Problem 135,
it is possible to write A = VP, where V is a maximal partial isometry and
0 £ P £ 1. (The justification for the upper bound on P is that 4| £ 1))
Assertion: there exists a unitary operator W such that P = §(W + W*).
(The assertion is true and the proof below is valid whenever —1 < P £ 1;
in case the underlying Hilbert space is one-dimensional, then both the
assertion and its proof make simple geometric sense.) To prove the assertion,

just write
W=P+iJ/1— P2

and verify that everything works. Now, since 4 = VPand P = §(W + W*),
it follows that 4 = {(VW + VW?*). Since the product of a maximal partial
isometry and a unitary operator is a maximal partial isometry, the proof is
complete.

Kadison [82] has proved that, for certain operator algebras, the extreme
points in the unit ball of the algebra are those partial isometries U that satisfy
the identity

(1 - U*0)AQ1 — UU* =0
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for all A in the algebra. For the algebra of all operators on a Hilbert space
this is consistent with what was just proved. It is, indeed, clear that if either
U or U* is an isometry, then the Kadison condition is satisfied. Suppose,
conversely, that the condition is satisfied, and assume that 1 — UU* s 0;
itis to be proved that 1 — U*U = 0. In other words, it is to be proved that if
(1 — UU*f £ 0 for some f, then (1 — U*U)g = 0 for each g. That is
easy: given g, find an operator A such that A(1 — UU¥)f = g.

Solution 137. Write UP = A. If U commutes with P, then U commutes
with P?; since P also commutes with P2, it follows that A (= UP) commutes
with 4*4 (= P?).

The converse is harder. If A is quasinormal, then 4 commutes with
P% (=A*A). It follows from the most elementary aspects of the functional
calculus that A commutes with P. (Compare Problem 121, which shows that
the positive square root of a positive operator is the weak limit of a
sequence of polynomials in that operator. Alternatively, apply the Weier-
strass theorem on the approximation of continuous functions by poly-
nomials to prove that “weak” can be replaced by ““uniform ”.) This says
that (UP — PU)P = 0, so that UP — PU annihilates ran P. Since ker P =
ker U, it is trivial that UP — PU annihilates ker P also, and it follows that
UP — PU = 0.

10 0

if each of X and Y is one of \/ A*A and \/ AA*, then, three times out of
four, (Xf, f)-(Y g¢,9) = 0. The fourth possibility is a “mixed” Schwarz
inequality that is always true.

To prove it, let A = UP be the polar decomposition, with P = ,/A*A4,
and put Q = ./AA*. Since AA* = (UPYPU¥*) = U(A*A)U*, or, in other
words,

Solution 138. If 4 = <0 0),f = <1), and g = <(1)), then (4f, g) = 1, but

Q* = UP?U*,
it follows that

Q= UPU*
Reason: note first that

U*UP? = U*AP = P?
{by Corollary 1 of Problem 134), and therefore
Q* = UP2U*UP2U* = UP*U*,

and, inductively,

QZn — UPZnU*
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foralln=0, 1, 2,---, and then infer that F(Q?) = UF(P*)U* for every
polynomial F. (Compare Solution 137.) The rest is straightforward:

I(Af, @) = [(UPf, @) = |(Pf, U*g)|?
< (Pf, f)-(PU*g, U*g) = (Pf, f)- (UPU*q, g)
= (Pf.f)-(Q9, 9)

This elegant application of polar decomposition was shown me by John
Duncan.

Solution 139. Is the question about unilateral or bilateral shifts? It turns out
that it makes no difference.

Suppose that {e,} is an orthonormal basis and Ae, = a,e,,, for all n.
Assume with no loss that «, = 0 (see Problem 89). Since A*4e, = a,’e,,
it follows that (4*A4)Ae, = #,,, ’¢,.,; and A(A*Ae, = o,%e,, . Conse-
quence: A is quasinormal if and only if o,,, ;> = «,> for all n. If &, # O for
some n, then a,, 2 = a,%, and therefore o, , ; = a,; it follows by induction
that o, , = o, for all positive k. This implies that either there is a first n for
which «, # 0, and in that case the o’s are constantly equal to that o, from
then on, and 0 before, or else o, = 0 for all n. If, in particular, «, is never
0, then A is just a scalar multiple of the unweighted shift.

Solution 140. By Problem 135, every operator has the form VP, where V
is a maximal partial isometry and P is positive. Given a positive number ¢,
find an invertible operator Q (which can be made positive, if so desired)
such that |P — Q| < e. It follows that |[VP — V Q| < & The proof of the
density theorem for unilaterally invertible operators is completed by ob-
serving that if ¥ is a maximal partial isometry, then V is unilaterally in-
vertible (left-invertible if ¥ is an isometry and right-invertible if V* is one),
and that the product of a unilaterally invertible operator and an invertible
operator is unilaterally invertible.

To obtain the negative conclusion, consider an operator A that is left-
invertible but not right-invertible. (Example: the unilateral shift.) Assertion:
there is a neighborhood of A4 that contains no right-invertible operators.
Assume (with no loss of generality) that 4 has a left inverse B, with |B|| £ 1.
In the presence of this normalization, the assertion can be made more
precise: the open ball with center A and radius 1 contains no right-
invertible operators.

Now, for the proof, observe first that B is right-invertible (with right
inverse A), but not left-invertible. (If both BA = 1 and CB = 1, then B is
invertible and C = 4 = B~ ') It is to be proved that if |4 — T| < 1, then
T is not right-invertible. Indeed:

1 —BT| =|BA-DI=4-T| <1,
and hence BT is invertible; this implies that T is left-invertible. If T is right-
invertible also, then it is invertible; the invertibility of both BT and T
implies that of B, which is false.
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Solution 141. One way to approach the proof is to show that for each in-
vertible operator A there is a continuous curve that connects it to the
identity. For this purpose, consider the polar decomposition UP of A. Since
A is invertible, so also are U and P. It follows that U is unitary and P is
strictly positive. Join U to 1 by a continuous curve ¢+ U, of unitary
operators (cf. Problem 131), and, similarly, join P to 1 by a continuous
curve ¢+ P, of strictly positive operators. (The latter does not even need
the spectral theorem; consider tP + (1 — 1), 02 ¢t 1) If 4, = U,P,
then ¢+ A4, is a continuous curve of invertible operators that joins 4 (= A4,)
to 1 (=4,).



CHAPTER 17

Unilateral Shift

Solution 142. If H is not separable, then it is the direct sum of separable
infinite-dimensional subspaces that reduce 4, and, consequently, there is no
loss of generality in assuming that H is separable in the first place. In a
separable Hilbert space all infinite-dimensional subspaces have the same
dimension; the assertion, therefore, is just that H is the direct sum of ¥,
infinite-dimensional subspaces that reduce A. It is sufficient to prove the
assertion for 2 in place of NX,. In other words, it is sufficient to prove that
for each normal operator on a separable infinite-dimensional Hilbert space
there exists a reducing subspace such that both it and its orthogonal comple-
ment are infinite-dimensional. Indeed, if this is true, then there exists a re-
ducing subspace H, of H such that both H, and H, * are infinite-dimensional.
Another application of the same result (consider the restriction of 4 to H,*)
implies that there exists a reducing subspace H, of H,* such that both H,
and H,* n H,* are infinite-dimensional. Proceed inductively to obtain an
infinite sequence {H,} of pairwise orthogonal infinite-dimensional reducing
subspaces. If the intersection {) 2 ; H," is not zero, adjoin it to, say, H,.

It remains to prove the assertion italicized above. The spectral theorem
shows that there is no loss of generality in restricting attention to a multi-
plication operator A induced by a bounded measurable function ¢ on some
measure space. For each Borel subset M of the complex plane, let E(M)
be the multiplication operator induced by the characteristic function of
@~ Y(M), the operator E(M) is the projection onto the subspace of func-
tions that vanish outside ¢ ~*(M). Clearly each E(M) commutes with A,
i.e., the range of each E(M) reduces A4. If, for some M, both E(M) and
1 — E(M) have infinite-dimensional ranges, the desired assertion is true.

In the contrary case what must happen is that for each M either E(M) or
1 — E(M) has finite rank. Draw a sequence of finer and finer square grids on
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the plane, and let each square in each grid play the role of M it follows that
if E(M) has positive rank, then M contains at least one point 4 such that
E({4}) has positive rank. There cannot be more than finitely many 4’s like
that, for then they could be separated into two infinite subsets, and that would
contradict the main assumption of this paragraph. Conclusion: there exists
at least one point 4 such that the dimension of the range of E({1}) is
infinite; let M be that range. The restriction of 4 to M is a scalar and is
therefore reduced by every subspace of M. Split M into two infinite-di-
mensional subspaces My and M,; if H, = M, and H; = M, v M, then
H, and H, do everything that is required.

Solution 143. Every unitary operator on an infinite-dimensional Hilbert
space is the product of four symmetries three is not always enough.

If the underlying Hilbert space H is finite-dimensional, then the concept
of determinant makes sense. Since the determinant of a symmetry is +1, it
follows that no unitary operator with a non-real determinant can be the
product of symmetries.

Proor. Suppose that H is an infinite-dimensional Hilbert space, and begin
by representing H as the direct sum of a sequence {H,} of equi-
dimensional subspaces each of which reduces the given unitary operator
U (Problem 142). It is convenient to let the index n run through all
integers, positive, negative, and zero.

Relative to the fixed direct sum decomposition H = Y, H,, define a
right shift as a unitary operator S such that SH, = H,,,, and define a lefi
shift as a unitary operator T such that TH, =H,_,, n=0, £1, £2,---.
The equi-dimensionality of all the H,’s guarantees the existence of shifts.
If S is an arbitrary right shift, write T = S*U. Since TH, = S*UH, =
S*H, = H,,., for all n, it follows that T is a left shift. Since U = ST, it
follows that every unitary operator is the product of two shifts; the proof
will be completed by showing that every shift is the product of two symmetries.

Since the inverse (equivalently, the adjoint) of a left shift is a right shift,
it is sufficient to consider right shifts. Suppose then that S is a right shift;
let P be the operator that is equal to S! 72" on H, and let Q be the operator
that is equal to S™2" on H, (n =0, 1, +2,..). If feH,, then Qf =
S~2fe §72"H, = H_,, so that PQf= PS™2"f = S'720"mg7 2 = Sf.
The existence proof is complete.

To prove that on every Hilbert space there exists a unitary operator that is
not the product of three symmetries, let @ be a non-real cube root of unity,
and let U be wl. The operator U belongs to the center of the group of all
unitary operators; the order of U in that group is exactly three. The re-
mainder of the proof has nothing to do with operator theory; the point is
that in no group can a central element of order 3 be the product of three
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elements of order 2. Suppose indeed that u is central and that u = xyz,
where x2 = y? = z%2 = 1; it follows that

u* = uxuyuz = u(xu)y(uz) = u(yz)y(xy)
= yuz)y(xy) = yxy-yxy = 1.
Reference: [62].

Solution 144. (a) The unilateral shift is not the product of a finite number
of normal operators. (b) The norm of both the real and the imaginary
part of the unilateral shift is 1. (c) The distance from the unilateral shift
to the set of normal operators is 1.

Proor. (a) The principal tool is the observation that if a normal operator
has a one-sided inverse, then it has an inverse. (Proof: for every operator,
left invertibility is the same as boundedness from below; boundedness from
below for a normal operator is the same as boundedness from below for its
adjoint.) Suppose, indeed, that U = A4, --- 4, where U is the unilateral shift
and A, - -, A, are normal. Since U* = A4,*--. 4, *, it follows that

AX - A*A, - A, = 1,

and hence that A4, is left invertible. In view of the preceding comments,
this implies that A4, is invertible, and therefore so is 4,*. Invertible operators
can be peeled off either end of a product without altering its invertibility
character. It follows by an obvious inductive repetition of the argument that
each of the A’sisinvertible, and so therefore is U. Thisis a contradiction, and
the proof is complete.

(b) If U is the unilateral shift, and if 4 = {(U + U*), then it is clear that
[A]l £ 1. Since 1 is an approximate eigenvalue of U, there eXists a sequence
{f,} of unit vectors such that Uf, — f, — 0. Apply U* and change sign to
get U*f, — f, —» 0. Add and divide by 2 to get Af, — f, — 0. Conclusion:
1 is an approximate eigenvalue of A4, and therefore |A| = 1. To get the
result for the imaginary part, note that if U = A + iB,then —iU = B — iA,
and —iU is unitarily equivalent to U (cf. Problem 89).

(c) It is trivial that there is a normal operator (namely 0) within 1 of U;
the less trivial part of the assertion is that if 4 is normal, then |[U — 4| = 1.
If A is invertible, this follows from Solution 140; the assertion there implies
that the open ball with center U and radius 1 contains no invertible operators.
The general case is now immediate: the set of invertible normal operators is
dense in the set of all normal operators.

Solution 145. The unilateral shift has no square root.

Proor. It turns out that U* is easier to treat than U, and, of course, it comes
to the same thing. Suppose therefore that V2 = U*, and let N, be the (one-
dimensional) kernel of U*. Since ker V « ker V2 = N,, it follows that

269



SOLUTIONS

dim ker ¥V < 1. If the kernel of ¥V were trivial (zero-dimensional), then the
same would be true of U*; it follows that dim ker V' = 1, and hence that
ker V = N,. Since U* maps the underlying Hilbert space onto itself, the
same must be true of V. It follows in particular that N is included in the
range of V, and hence that there exists a vector f such that Vf is a non-zero
element of N,. Since N, is the kernel of V, this implies that V2 = 0, i.e.,
that U*f = 0, and hence that f € N,;. Do it again: since N is the kernel of
V, this implies that ¥f = 0, in contradiction to the way f was chosen in the
first place. Conclusion: there is no such V.

Similar negative results were first obtained in [64]; the techniques used
there would serve here too. The very much simpler proof given above is
due to J. G. Thompson. Further interesting contributions to the square root
problem were made in [34] and [126]. See also Problem 151.

Solution 146. It is obvious that every multiplication operator on L* com-
mutes with W. If A is the multiplication operator induced by a bounded
measurable function ¢, then

Aeo = ¢ -9 = ¢

This shows that in any attempt to prove that some operator 4 is a multi-
plication on L? there is no choice in the determination of the multiplier;
if there is one, it must be Ae,.

Suppose now that AW = WA, and put ¢ = Ae,. The first (and in fact
the major) difficulty is to prove that ¢ is bounded; one way to do it is this.
If i is an arbitrary bounded measurable function, and if B is the multiplica-
tion operator it induces, then, in the usual sense of the functional calculus
for normal operators, B = y/(W). Since W commutes with A, every function
of W commutes with A4, and hence, in particular, B commutes with A; it
follows that

@-Y =y @ =DBe =BAey = ABe, = AY.

The statement that every function of W commutes with A is not trivial;
itis the Fuglede commutativity theorem for normal operators. (See [ 50, p. 68]
and Problem 192.) It is not necessary in this argument to use all bounded
measurable functions; it would be sufficient to use trigonometric poly-
nomials (i.e., finite linear combinations of the e,’s). That way the Fuglede
theorem can be avoided; all that is needed is to observe that if W commutes
with A, then W* (=W ™ ') commutes with A.

At this point Problem 65 is almost applicable. The hypothesis there was
that A is an operator on L? such that Af = ¢ -f for all f in L?; the
situation here is that A4 is an operator on L? such that Ay = ¢ -y for all
bounded measurable . The difference is large enough to invalidate one
of the proofs that worked there, but not large enough to invalidate the
second, more “natural” proof. Conclusion: ¢ is bounded.
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The rest of the proofis trivial. Since ¢ is bounded, it induces a multiplica-
tion operator; since that multiplication operator agrees with 4 on the dense
set of all bounded functions, it agrees with A everywhere.

To prove the corollary, note that if a multiplication is a projection, then
the multiplier is a characteristic function.

Solution 147. As in Solution 146, it is inevitable to put ¢ = Ae, and to
try to prove that ¢ is the desired multiplier. Since, for each n, multiplication
by e, leaves H? invariant (n = 0, 1, 2, ), it follows that ¢ - ¢, € H>. Since,
moreover,

p-en=e,¢=U'p=U'dey = AU, = Ae,,

it follows that, for each polynomial p, the product ¢ - p belongs to H? and
@ -p = Ap. If ¢ were known to be bounded, the proof would be over (the
multiplication operator induced by ¢ agrees with 4 on a dense set), and, if
it were known that ¢ - f = Af for all fin H?, then ¢ would be bounded (cf.
the last comment in Solution 65). Since at the moment neither of these ifs
is known, there is nothing for it but to prove something. The least trouble-
some way seems to be to adapt (or, to put it bluntly, to repeat) the second
proof used in Solution 66.

If f € H?, then there exist polynomials p, such that p, — f in H?; it
follows, of course, that Ap, — Af in H?. There is no loss of generality in
assuming that p, — f almost everywhere and Ap, — Af almost everywhere;
if this is not true for the sequence {p,}, it is true for a suitable subsequence.
Since p, — f almost everywhere, it follows that ¢ -p, — ¢ - f almost every-
where; since, at the same time, ¢ - p, — Af almost everywhere, it follows
that @ - f = Af almost everywhere.

There are two ideas in this twice used proof: (1) if a closed transformation
agrees with a bounded one on a dense set, then it is bounded, and (2) multi-
plications are always closed.

The corollary is equivalent to this: if E is a projection that commutes
with U, then E = 0 or E = 1. The result proved above implies that E is the
restriction to H? of a multiplication, where the multiplier itself is in H*.
Since an idempotent multiplication on H? must be induced by an idempotent
multiplier (apply to e,), the multiplier must be the characteristic function
of a set, and hence, in particular, real; the desired conclusion follows from
Problem 33.

The corollary, incidentally, does not have to be deduced from the main
assertion; for an easy direct proof see [50, p. 41].

Solution 148. Let U be the unilateral shift, represented as the restriction to
H? of the multiplication induced by e, ; see, for instance, Problem 147. If 4
commutes with U, then (by Problem 147) there exists a function ¢ in H®
such that Af = ¢ - f for all f in H2 The crucial tool is that ¢ is the limit
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almost everywhere of a sequence {p,} of polynomials such that |p,|, =
@] - for every n;cf. Solution 41. It follows that if f € H?, then

P2 f(2)] £ 9l | f@)

almost everywhere. Since p,-f — ¢ - f almost everywhere, the Lebesgue
dominated convergence theorem applies; the conclusion is thatp,- f— ¢ - f
in H?. Since multiplication by p, is a polynomial in U (namely p,(U)), the
proof is complete.

Solution 149. The only way an isometry V on a Hilbert space H can fail
to be unitary is to map H onto a proper subspace of H. This suggests that
the extent to which VH differs from H is a useful measure of the non-unitari-
ness of V. One application of V compresses H into V'H, another application
of ¥V compresses VH into V?H, and so on. The incompressible core of H
seems to be what 1s common to all the V"H’s. This is true, and it is the crux
of the matter; the main thing to prove is that that incompressible core
reduces the operator V. A slightly sharper result is sometimes useful; it is
good to know exactly what the orthogonal complement of that core is.
Write N = (VH)*; in terms of N the main result is that

n n VnN)J_

n=0 n=0
Both the statement (and the proof below) become intuitively obvious if
orthogonal complements are replaced by ordinary set-theoretic comple-
ments. (A picture helps.)

Begin with the observation that VM* « (VM)* for all subspaces M.
(Indeed, if f € M, so that Vf is a typical element of YM*, and if g € M, so
that Vg is a typical element of VM, then Vf L Vg follows, since V is an
isometry, from f L g.) This implies that

V'IH = VY(VH) = V'N* < (V"N

and that settles half the proof. For the reverse inclusion, assume that
f en .o (V"N)* and prove by induction that f € V"H for all n. If n =
thisis trivial. If f € V"H, so that f = V"g for some g, then V"g 1 V"N (smce
f €(V™N)Y), and therefore g L N. This implies that g € VH, and hence that
f € V" H, as desired. The proof of the asserted equation is complete.

The rest is easy. Obviously (), V"H is invariant under V; since by
the result just proved, its orthogonal complement is equal to o V"N,
which is also invariant under V, it follows that (| 2, V"H reduces V The
restriction of V to thisreducing subspace is unitary (because it is an isometry
whose range is equal to its domain). The restriction of V to the orthogonal
complement \/2 =0 V"N is a direct sum of copies of the unilateral shift;
the number of copies is dim N.
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Solution 150. If U is the unilateral shift, then |U — V| = 2 for each
unitary operator V.

Proor. The proof begins with the observation that if —1 belongs to the
spectrum of an operator A4, then —2 belongs to the spectrum of A — 1.
It follows that if 4 is a non-normal (i.e., non-unitary) isometry, then

A —-1)22,

and hence |4 — 1] 2 2. (Use Problem 149, and recall that the spectrum
of the unilateral shift is the closed unit disc.) If ¥ is unitary, then |[U — V|| =
[V*U — 1]. Since V*U is a non-normal isometry, it follows that
U — V|| = 2; the reverse inequality is trivial.

This is a geometrically very peculiar result. The unilateral shift is on the
unit sphere of the space of operators, and so also is each unitary operator.
What was just proved can be expressed in geometric language by saying that
if ¥ is unitary, then U and V are diametrically opposite; they are as far from
each other asif they were at the opposite ends of a diameter. What is peculiar
is that this is true for every V.

Solution 151. A unilateral shift of multiplicity m has a square root if
and only if m is even. (For the purpose of this assertion every infinite
cardinal number m is even; recall that m = 2m.)

The “if” is obvious: if m = 2n, then the square of a unilateral shift of
multiplicity n is a unilateral shift of multiplicity m, whether n is finite or
infinite.

The “only if” part of the statement is more delicate; it is the negative
assertion that if U is a unilateral shift of (finite) odd multiplicity, then U has
no square root. For the proof it is convenient ro recall and generalize a
classical and important finite-dimensional fact.

If, for every operator A4, null A (the nullity of A)is dim ker A4 (cf. Problem
130), then the assertion of Sylvester’s law of nullity is that

null(AB) £ null A + null B.

The proof can be arranged so as to work equally well whether the dimension
of the underlying space is finite or infinite. Indeed:

B (ker A) = ker B + (B '(ker A) n ker* B),

and the restriction of B to the second summand maps that summand one-to-
one into ker A4.

Suppose now that U is a unilateral shift of multiplicity m and that V is a
square root of U*. Since m = null U*, the preceding paragraph implies that

mE2null V.
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The idea of the rest of the proof is to show that if m is finite, then equality
must hold, and hence that m cannot be odd. What is wanted is therefore a
special case of the following statement, which is an odd kind of infinite-
dimensional reverse of Sylvester’s law.

Lemma. If A is an operator of finite nullity on a Hilbert space H, with
ran A = H, then null 4?2 = 2null A.

Proor. If {f,, -, f} 1s @ linear basis for ker A, then, for each j (=1, .-, m),
there exists a vector g; with Ag; = f;. Since each of f,, -+, fo, 91> -, g
is in ker A2, the proof can be completed by proving that that set of 2m
vectors is linearly independent. To do that, suppose that

(xlfl +“'+(xmfm+ﬁlgl ++ﬁmgm=03
apply A, infer that

ﬁlfl +o+ ﬁmfm =0,
so that f; =--- = B, = 0, and then use the linear independence of the f;'s
once more to conclude that ¢, = --- = o, = 0.

Solution 152. Given: a Hilbert space H and on it a contraction A4 such that
A" — 0 strongly. To construct: a Hilbert space H and on it a shift U with the
stated unitary equivalence property. The construction is partially motivated
by the following observation: if a vector fin H is replaced by Af, then the
sequence

<.fsAf’ Azfo"'>

is shifted back by one step, i.e., it is replaced by
CAf, A%f, Af, - .

What this suggests is that H be something like the direct sum

H®PH®H® .
That does not work. There is no reason why the sequence {f, Af, A*f,--->
should belong to the direct sum (the series Y 22 || A"f || * need not converge),
and, even if it does, the correspondence between [ and {f, Af, A%, -
may fail to be norm-preserving (even if Y’ || 4f ||* converges, its sum will
be equal to || f||? only in case Af = 0).

The inspiration that removes these difficulties is to transform each term
of the sequence { f, Af, A*f,---)> by an operator T so that the resulting series
of square norms converges to || f||? the easy way, by telescoping. That is:
replace {f, Af, A%f,---> by CTf, TAf, TA%, -, so that

ITANZ =112 = 14f 1%,
ITAf |2 = |Af? — |4°F 12,
ITA | = | A% (> — | A%,

etc.
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The first of these equations alone, if required to hold for all f, implies
that 7T = 1 — A*A, and, conversely, if 7*T = 1 — A*A, then all the
equations hold.

The preceding paragraphs were intended as motivation. For the proof
itself, proceed as follows. Since A is a contraction, 1 — A*A4 is positive;

write T = ,/1 — A*A, and let R be the closure of the range of T. Let H
be the direct sum R®@R@OR @ ---. If f €H, then TAYf R for all n,
and

|
M=

k
ZOIITA"fIIZ = L ((1 = A*)AYf, A'f)

0
:ZO(IIA"fIIZ = A" 1)

LFIZ = 1A,

Since ||4*" 'f | — 0 by assumption, it follows that if f € H, and if the mapping
V is defined by

n

= |

Vf = (Tf, TAf, TA%,.. >,

then V is an isometric embedding of H into H. If U is the obvious shift on
H (U, fir for o> =<0, fo, fi, ++>), then, clearly, VAf = U*Vf for
all f. Since the ¥ image of H in H is invariant under U*, the proof is com-
plete.

Note that the multiplicity of the shift that the proof gives is equal to the
rank of 1 — A*A, where “rank” is interpreted to mean the dimension of the
closure of the range.

Solution 153. Suppose that A4 is an operator on a Hilbert space H such that
r(=r(4)) < 1. Since r = lim, |A"|!", it follows that the power series
Z,,""_.:o |[A%|z" converges in a disc with center 0 and radius (=1/r) greater
than 1. This implies that Y%, [[A"| < oo, and hence, all the more, that

2o |A"|*> < . Let H, be the Hilbert space obtained from H by re-
defining the inner product; the new inner product is given by

(fs9) = :ZO(A"f, A’g).

Since (4, A"g)| < [Af| - [|4"g|l < A" [ £ - llg], there is no difficulty
about convergence. If || f ||o> = (f, f)o, then

12 S 116 < (;OHA"HZ) e

and that implies that the identity mapping I from H to H, is an invertible
bounded linear transformation. (This, incidentally, is what guarantees that
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H, is complete) If A, = [AI"', then A4, is an operator on H,, similar to 4.
Iff # 0, then

40 fllo® _ _ X, JAYIE TR (AT
TS VL S Y (S
S

ST AT

so that A, is a strict contraction. This implies that the powers of 4, tend to
zero not only strongly, but in the norm.

Corollary 1 is immediate from Problem 152, and Corollary 2 is implied
by the proof (given above) that | 44| < 1. For Corollary 3: if 4 is quasi-

nilpotent, then
1
r<- A) <1
€

for every positive number ¢; if (1/¢)A4 is similar to the contraction C, then 4
is similar to ¢C.

Corollary 4 requires a little more argument. Clearly #(4) = r(S™1A4S) <
[S"'AS| and therefore r(A) £ infg ||S™1A4S|. To prove the reverse in-
equality, let r be a number in the open unit interval and write

t
B=—A.
r(A)
(If r(4) =0, apply Corollary 3 instead.) Corollary 2 implies that
[S~!BS| < 1for some S, so that ¢ - [|S™!AS|| < r(A). Infer that

t-infg||STAS| £ r(A),
and then let ¢ tend to 1.

Solution 154. The answer is no, not necessarily.

If an operator A is similar to a contraction, then it is power bounded, i.e.,
the sequence of numbers |A"|| is bounded. Reason: if 4 = S™!CS with
IC|l < 1, then 4" = §7'C"S and || 4" < [S™] - || SII.

In view of the preceding paragraph the negative answer can be proved by
exhibiting an operator 4 with spectral radius 1 that is not power bounded.
Here is one simple example: let X be a non-zero operator with X2 = 0 and
putA=1+X.

To understand power boundedness better it helps to look at the more
complicated counterexample of weighted shifts. Under what conditions on a
weighted shift A4, with weight sequence {u,, a4, ®,,---}, is the spectral
radius less than or equal to 1? The answer is known for all weight se-
quences (Solution 91), and is especially simple in case the o’s are strictly
positive and monotone decreasing: in that case

r(A) = lim (og - - - 0, )™
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Under what conditions on the o’s (still assumed to be strictly positive and
monotone decreasing) is A power bounded ? The answer to this question too
is known (Solution 91): since ||A"|| = ag - - - &, 1, the condition is that the
sequence of partial products o - - - &, ; be bounded.

Can a bounded sequence of «’s be chosen so that lim, (¢ - - - &, ;)" = 1
and o - -- o, — o0? That is a question in elementary analysis, and a few
experiments will reveal that the answer is yes. The conditions are equivalent
to

n-1i

~ Y logoa; — 0
an% J

and
n—1
0log oy — 00

J

respectively. That is: log o, must be small, on the average, but the sums of
the log «,’s must be large. Both conditions are satisfied if

1 n+2
= 1 P — =1 = —_ 1 .
log «, 10g< + m—y 1) og(n " 1) log(n + 2) — log(n + 1)

In that case the (telescoping) sums Z;‘-;é log ; are equal to log(n + 1).
Solution 155. The restriction of U to M is an isometry. f N = M n (UM)*,

then N is the orthogonal complement of the range of that restriction. Apply
the result obtained in Solution 149 to that restriction to obtain

NUM=Mn () (UN)-
n=0 n=0
Since (2o, U"H? = 0, it follows that
M‘v \V UN =H~
n=0

Since, on the other hand, U"N « UM < M, it follows that

<3

UNeM

n

b
=]

The span of M* and a proper subspace of M can never be the whole space.
Conclusion:

<3

UN=M

#
<

n

It remains to prove that dim N = 1. For this purpose it is convenient to
regard the unilateral shift U as the restriction to H? of the bilateral shift W
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on the larger space L2, If f and g are orthogonal unit vectors in N, then the
set of all vectors of either of the forms W"f or W"g (n,m =0, +1, £2,--9)
is an orthonormal set in L2, (This assertion leans on the good behavior of
wandering subspaces for unitary operators.) It follows that

2=f1? + 19l = LIS e * + 1@, en)I?
= 2 1(fs Wreo)l> + X 1(g, Weo)?
= YIS, eo)* + LI(W*"g, €]

< lleol? = 1.

(The inequality is Bessel’s.) This absurdity shows that f and g cannot
co-exist. The dimension of N cannot be as great as 2; since it cannot be 0
either, the proof is complete.

The last part of the proof is due to I. Halperin; see [99, p.108]. It is
geometric; the original proof in [54] was analytic. See also [116].

Solution 156. Since M,*(4) is spanned by f;, -+, U*7!f,, it is clear that
dim M, *(4) < k. To prove equality, note first that M, *(4) is invariant under
U*. (Indeed U*f, = Af, and, if j =1, U*Uf, = U*UU/"f, = U/Yf,.
Note that this proves the invariance of M,(4) under U.) If dim M,*(4) < k,
then Y ¥-} o, U'f, = 0 for suitable scalars o;, or, in other words, there exists
a polynomial p of degree less than k such that p(U)f, = 0. This implies that
U"f, is a linear combination of f;,---, U*"!f, for all n, and hence that
M,*(4) is invariant under U also. This is impossible, and therefore
dim M, *(4) = k.
Since

fi—AUf = Y Me,— A Y. A" e, = e,
n=0 n

=1
it follows that e, € M,*(1) as soon as k > 1. This implies that
Uf, — AU, = Uey = ¢; e MM(A)

as soon as k > j + 1, and, consequently, \/>; M,*(4) contains all e;’s.

Solution 157. If M = ¢ -H?, then UM =¢, M =¢,;-¢-H> = ¢ -¢, - H?
< ¢-H?= M; this proves the “if””. For another proof of the same impli-
cation, use the theory of wandering subspaces. If N is the (one-dimensional)
subspace spanned by ¢, then N is wandering; the reason is that (U"p, U™¢) =
{ ese,* du = 8,,. To prove “only if”, suppose that M is invariant under U
and use Problem 155 to represent M in the form \/{2; U"N, where N is a
wandering subspace for U. Take a unit vector ¢ in N. Since, by assumption,
(U, @) = 0 when n > 0, or | e,|@|* du = 0 when n > 0, it follows (by the
formation of complex conjugates) that e,/ @|*du =0 when n <0, and
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hence that |@|? is a function in L' such that all its Fourier coefficients with
non-zero index vanish. Conclusion: |¢| is constant almost everywhere, and,
since j lo|* du = 1, the constant modulus of ¢ must be 1. (Note that the
preceding argument contains a proof, different in appearance from the one
used in Solution 155, that every non-zero wandering subspace of U is one-
dimensional.) Since ¢, by itself, spans N, the functions ¢ - ¢, (n = 0, 1,2,--.)
span M. Equivalently, the set of all functions of the form ¢ - p, where p is a
polynomial, spans M. Since multiplication by ¢ (restricted to H?) is an
isometry, its range is closed; since M is the span of the image under that
isometry of a dense set, it follows that M is in fact equal to the range of that
isometry, and hence that M = ¢ - H2.

To prove the first statement of Corollary 1, observe thatif ¢ - H> < y - H?,
then ¢ = @-e, = Y- f for some f in H?; since f = ¢ - y*, it follows that
| f1 =1, so that fis an inner function. To prove the second statement, it is
sufficient to prove that if both 8 and 8* areinner functions, then 81is a constant.
To prove that, observe that both Re # and Im 8 are real functions in HZ,
and therefore (Problem 33) both Re 6 and Im 6 are constants. As for
Corollary 2:iff M = ¢ -H? and N = ¢ - H?, then ¢ -y e M n N.

Solution 158. Given fin HZ, let M be the least subspace of H? that contains
f and is invariant under U. By Problem 157, either f = 0 or M contains a
function ¢ such that |¢| =1 almost everywhere. Since p(U)feM for
every polynomial p, and since the closure of the set of all vectors of the
form p(U)f is a subspace of H? that contains f and is invariant under U, it
follows that ¢ is the limit in H? of a sequence of vectors of the form p(U)f.
Since every vector of that form vanishes at least when f does, it follows
that ¢ vanishes when f does.

To prove the corollary, observe that if f does not vanish almost every-
where, then, by the F. and M. Riesz theorem, it vanishes almost nowhere,
and therefore g must vanish almost everywhere.

Solution 159. Suppose first that {a,} is periodic of period p (=1, 2, 3,-- ),
and let M; (j = 0,---,p — 1) be the span of all those basis vectors e, for
which n = j (mod p). Each vector f has a unique representation in the form
fo+ -+ + fp—1 with f; in M;. Consider the functional representation of
the two-sided shift, and, using it, make the following definition. For each
measurable subset E of the circle, let M (=Mj) be the set of all those f’s
for which f(z) = 0 whenever j=0,---, p — 1 and z¢ E. If f =Y 225 f;
(with f; in M), then

p—1
j=0
and

p—1
A = Y WA
Jj=0
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this proves that M reduces 4. (Note that WM; = M, , and W*M, = M,_,,
where addition and subtraction are interpreted modulo p.)

To show that this construction does not always yield a trivial reducing
subspace, let E, be a measurable set, with measure strictly between 0 and 1/p,
and let E be its inverse image under the mapping z + z?. The set E is a mea-
surable set, with measure strictly between 0 and 1. If ¢ is a function that
vanishes on the complement of E,, and if f,(z) = g(z?), then f, vanishes
on the complement of E. If, moreover, f{z) = 252, j=0,..., p — 1,
then the same is true of each f;. Clearly f;eM;, and f, + --- + f,_, is a
typical non-trivial example of a vector in M. This completes the proof of
the sufficiency of the condition.

Necessity is the surprising part. To prove it, suppose first that B is an
operator, with matrix {f;;>, that commutes with 4. Observe that

1
Bi+1,j+1 = (Bej+1> €q) = (B;x_ Aej> ei+1)
J

1 o
= &;(Bej» A*e, ) = &':"ﬁij‘

Consequence 1: the main diagonal of (B,;> is constant (put i = j). Con-
sequence 2: if §;; = O for some i and j, then f,,, ;+, = O for all k.

If B happens to be Hermitian, then it commutes with A* also, and hence
with A*A, Since A*Ae, = a,’e,, it follows that

1
Bi; = (Be;, e) = (BFA*Aej, e,-)

J
1 o2
= — (Be;, A*Ae) = 2 B;.
2 Bey A%e) = "5,

Consequence 3:if o; # «;, then §;; = 0.

Assume now that the sequence {a,} is not periodic; it is sufficient to prove
that every Hermitian B that commutes with A4 is a scalar. The assumption
implies that if m and n are distinct positive integers, then there exist integers
i and j such that o; # «; and i — j = m — n. It follows that

0 =B, (by Consequence 3)
= Pijinj-jtn (by Consequence 2),

i.e., that §,, = 0 whenever m s n. This says that the matrix of B is diagonal;
by Consequence 1 it follows that B is a scalar.
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CHAPTER 18

Cyclic Vectors

Solution 160. Consider first the simple unilateral shift U. Let (&, &, &5, >
be a sequence of complex numbers such that

lim s 3 (&l =
; |5k|2 Z' -

(Concrete example: &, = 1/nl)) Assertion: f = (&;, &, &,, -+ is a cyclic
vector for U*. For the proof, observe first that U**f = (&, & oy, Eraay oo s

and hence that
6k+1 6k+2 >__ 1 00
“< s ék s ék s < s s s >

fospse)

L
|£k|2 Z | +k
Consequence: e, belongs to the span of f, U*f, U *2f ..., This implies that

U*k—lf — &r-1e0 = €0, &5 E15 S 25 >
belongs to that span (k = 1,2, 3, - - ). Since

2

U*f — €

&

2

2 1 ©

1 -1
‘{(U*k [ —&i-1e0) — €4

k

it follows that e, belongs to the span of f, U*f, U**f, ---. An obvious in-
ductive repetition of this twice-used argument proves that e, belongs to
the span of f, U*f, U*%f, .- for all n (=0, 1, 2, ---), and hence that f is
cyclic.
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Once this is settled, the cases of higher multiplicity turn out to be trivial.
For multiplicity 2 consider the same sequence {&,} and form the vector

<<60> 623 547 o '>> <61> 637 553 i '>>'

For higher finite multiplicities, and even for multiplicity N,, imitate this
subsequence formation. Thus, for instance, a cyclic vector for the shift of
multiplicity N, is the vector whose i-th component is the i-th row of the
following array:

G & 0 & 0 0 & 0 0 0
0 0 & 0 & 0 0 & 0 O
0 0 0 0 0 & 0 0 & O
0 0 0 0 0 0 0 O

==l
LA
©

(Rule: lengthen the diagonals. Each column contains only one non-zero
entry; each row is an infinite subsequence of {£,}.) The point is that each
subseries of a series with the property that Y 2 |£,|? has (the ratio of terms
to tails tends to 0) has the same property.

Solution 161. If U is the unilateral shift and ¥V = U @ U, then (Problem 160)
V is not cyclic; in fact, no operator in the open ball with center ¥ and radius 1
can be cyclic. Suppose, indeed, that |V — A} < 1. It follows that

11— V*All = V*V — V*4| s |V - 4] < 1,

and hence that V*4 is invertible, and hence that ran A n ker V* = (. Since
ran A is disjoint from the 2-dimensional space ker V*, the co-dimension of
ran A must be at least 2, and hence 4 cannot be cyclic.

Caution: the preceding reasoning is incomplete. The trouble is that there
exist dense linear manifolds disjoint from subspaces of arbitrarily large finite
dimension. To avoid error, it is necessary to observe that in the case at hand
the linear manifold ran A is closed. Reason: since V*A4 is invertible, the
operator A is bounded from below.

Solution 162. The answer is yes.

The usual way to prove that an operator is not cyclic is to prove that it has
co-rank 2 or more, o1, equivalently, that its adjoint has nullity 2 or more. The
multiplicity of the number 0 as an eigenvalue of U* is 1, and the same is
true of A for all A in the open unit disc. These observations do not prove
but they suggest that if an operator A4 is near to U, then the multiplicity of
4 as an eigenvalue of A* is likely to be 1 for all A with |4| < 1. The com-
plex numbers A with |A| = 1 are not eigenvalues of U*, but they are
approximate eigenvalues and, as such, they behave as if they had infinite
multiplicity; the most promising place to look for operators near to a
translate of U* with nullity greater than 1 is on the unit circle. As far as
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cyclicity is concerned, translation by a scalar makes no difference; an
operator A is just as cyclic or non-cyclicas 4 — A.

So much for the motivation of the proof. The proof itself begins with the
observation that 1 is an approximate eigenvalue of U* in a strong sense:
there exists an orthonormal infinite sequence {f,} of vectors such that
11 — U*)f,ll = 0.Indeed, consider U* as acting on [?, and, for each positive
integer n, consider a vector f, in {2 with n consecutive coordinates equal to
1 /ﬁ and all other coordinates equal to 0. For such a vector, the norm || f, || is
I, and (1 — UMl = Z/ﬁ. Choose the f,’s so that for distinct values of
n they have disjoint supports (that is, if n ¢ m, then the coordinatewise
product of f, and f,, is 0).

If P, is the projection onto the 2-dimensional space spanned by f, and
fis1,andif A, = (1 — P)(1 — U), then

U —(1 =4 =11 -U) =4, =l -Uy*— 4>

2\/5
=1 - UMP,J £ —=,
li( P, < N

so that 1 — 4, — U. Since
dim ker 4,* = dim ker(1 — U)*(1 — P,) = 2,

it follows that the co-rank of A4, is at least 2. Conclusion: A, is not cyclic,
and, therefore, neither is 1 — A,.

A somewhat more sophisticated version of the same argument proves the
general result: if dim H = N,, then the set of non-cyclic operators on H is
dense [42].

Solution 163. The answer is no.
Suppose, indeed, that f and g are in /2, and let f* and g* be their co-
ordinatewise complex conjugates; then

KUY, U*"g), <g*, —f*>) = (U, g*) — (U*"g, *)
= (U, g% — (U, g%
= 0.
Conclusion: no {f, g> is a cyclic vector of U @ U*.

(This elegant proof is due to N. K. Nikolskii, V. V. Peller, and V. 1.
Vasunin.)

Solution 164. The answer is yes.

The assertion is that to every vector g and to every positive number ¢ there
corresponds a polynomial g such that jlg — g(A*)f || < e. Since the vectors of
the form A", n = 0,1,2,---, span the space, it is sufficient to prove the
assertion in case g = A"f.
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Given n and ¢, find a polynomial p such that
14*f — p(AfI < &;

that can be done because f is cyclic for A. If g(z) = (p(z*))*, then g is a
polynomial and

147 — g(A)f | = [(A*" — p(A)*f || = (4™ — p(A)SfI;

normality is needed for the last step.

Solution 165. A vector f is cyclic for the position operator on L0, 1)
if and only if f(x) # O almost everywhere.

Proor. The “‘only if” is obvious: if A is the position operator, then A"f
vanishes at least as much as f does, so that if f vanishes on a set of positive
measure, then so do all the A"f’s, and, therefore, so does everything in their
span.

The non-trivial part of the problem is to prove that if f % 0 almost every-
where, and if K is the closure of the set of all vectors of the form p(A) f, where
p varies over all polynomials, then K = L2,

First step: if ¢ is a bounded measurable function on [0, 1], then ¢K < K.
To prove this, observe that by Fejér’s theorem (see Solution 41) there exists a
sequence {¢,} of trigonometric polynomials converging boundedly almost
everywhere to ¢. By the Weierstrass polynomial approximation theorem,
each ¢, is uniformly arbitrarily near to a polynomial. It follows that there
exists a sequence {p,} of polynomials converging boundedly almost every-
where to ¢. If now h € K, then {p,h} converges dominatedly almost every-
where to ¢@h, and therefore, by Lebesgue, p,h — @h in L2. Since pK c K
for polynomials p, so that p,h € K, it follows, as asserted, that K < K.

Next: if g is an arbitrary bounded measurable function on [0, 1], then
geK. To prove this, write ¢,(x)=0 when |f(x)|<1/n and
@ux) = g(x)/f(x) otherwise, n = 1, 2, 3, - - .. Each ¢, is a bounded measur-
able function, and therefore ¢, f € K by the preceding paragraph. Since
¢,f =0 when | f| < 1/n and ¢, f = g otherwise, it follows that the se-
quence {@,f} is uniformly bounded almost everywhere (by lgl,) and
converges to g almost everywhere. Consequence, as asserted: g € K.

The desired conclusion is now immediate: by the preceding paragraph K
is dense in L2, and by definition K is a subspace, so that K = L.

Corollary. There exists an operator A on a Hilbert space H, and there
exists a subspace K of H such that both K and K* are infinite-dimensional
and such that every non-zero vector in either K or K* is cyclic for A.
Proor. Put H = L2(0, 1), K = H?, and let A4 be the position operator on H.
Another consequence of Solution 165 makes contact with the theory of
total sets (cf. Problem 9). It needs only easy analysis to prove that the set
of all powers f, (i.e., fi(x) =x" n=0, 1, 2,---) is total in L0, 1); what
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takes a little more is that that set remains total after the omission of each
finite subset. Indeed: to prove that {f,, fu+1, fa+2,- -} is total for each n,
just observe that f, is cyclic for the position operator, and

foir =A%,k =0,1,2,---.

That all cofinite sets of powers are total is a very small fragment of the
whole truth. The fact is that a set of powers is total if and only if the reciprocals
of the exponents form a divergent series; this surprising and satisfying state-
ment is the Miintz-Szész theorem [139].

Solution 166. The span of the set of all cyclic vectors of an operator on
a Hilbert space H is either 0 or H.

The main step in the proof is to show that if f is cyclic for A, then so is
fo=0 —adyf,p=0,1,2, ---, provided only that « is sufficiently small.

If o = 0, the conclusion is trivial. Suppose now that 0 < ||aA| < 1. It
follows that the series

i(aA)"a — aA)
n=0

converges (in the norm); its sum is (1 — «4)” (1 — a4) = 1. This implies
that

fp =(1- “A)_lfpﬂ = Z “"A"fpﬂa
n=0
and hence that
Amfp= Za"A"+mfp+1> m=0,12---.
n=0

Consequence: if f,, is cyclic, then so is f,., and, therefore, by induction,
every f, is cyclic.

The proof of the principal assertion is to show that the f,’s span H. For
that purpose, note that

@A) =1 — (1 — ad))' = i(_l)p(Z)(l — aAd)P,
p=0
and that, therefore,
1 & n
AYf = — —1)? ,
! o pgo( ) (p)fp

forn=20,1,2,--. Since the vectors A"f span H, it follows that the vectors

anfla f29 -+ Span H.
Both the result and the proof are due to L. Gehér [46]; note that they are

valid for arbitrary Banach spaces.

Solution 167. (a) If A is an operator whose matrix with respect to a basis
{ey, ey, €5, -} is triangular + 1 and has no zero entries in the diagonal just
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below the main one, then ¢, is a cyclic vector of A. The reasoning goes as
follows. The span of {e,, Ae,, A%e,, - - -} contains e;, because Ae, is a linear
combination of ¢, and e¢,, with the coefficient of ¢, different from zero. (That
coefficient is the first entry in the diagonal just below the main one.) Next:
the span of {e,, de,, A%¢,, - - -} contains e,, because A2e, is a linear com-
bination of e,, ¢,, and e,, with the coefficient of e, different from zero.
These are the first steps of an induction; the rest are just like them.

(b) Yes, the converse is true. Assume, for convenience, that the underlying
Hilbert space is of dimension N,. (The result (a) is true for finite-dimensional
spaces, and the proof in the preceding paragraph applies. The converse (b) is
also true for finite-dimensional spaces; its proof is only a slight modifica-
tion of what follows.) If fis a cyclic vector of A4, consider the total sequence
{f, Af, A%*f,---} and note that it is linearly independent. (This is where
infinite-dimensionality is used.) If {e,, ey, e,,--} is the basis obtained
by orthonormalization, then the matrix of A with respect to that basis is
triangular + 1. The reason none of the entries just below the main diagonal
is zero is that if e,,, belonged to the span of {e,,:-,e,}, then A"*'f
would belong to the span of {f,---, A"}, and it does not.

Solution 168. Let H be /2, let U be the unilateral shift, and write A = 2U*.
(There is nothing magic about 2; any number greater than 1 would do just as
well.)

Consider now a sequence {f3, f5, f3, - - > of finite sequences of complex
numbers (i.e., vectors in finite-dimensional Euclidean spaces) such that if
each one is converted into an element of /> by tacking on an infinite tail
of 0’s, then the resulting sequence of vectors is dense in /2.

The vector f to be constructed depends on the f,’s and on two sequences
ki, kyy ky, > and (py, p;, ps, - --> of positive integers, and it looks like
this: a sequence of 0’s, of length k,, followed by f,/2?* (i.e., followed by the
coordinates of f/2P, in order), followed by a sequence of 0’s, of length k,,
followed by f,/2P2, and so on ad infinitum. A simple (but unnecessarily
generous) way to determine the k’s and the p’s is as follows: choose k, so
that || f,1/2“ < 1/2", and let p, be the (unique) exponent such that A7
begins with f,. (That is: the first coordinate of f,/2?* in f has exactly p,
predecessors. Alternatively: p, is the sum of k,,---, k, and the lengths of
f1> s fn—l‘)

Since Y, I full 2% < ¥, I fll 2% < o, itis clear that f €* (in fact, f ).
The density of the AP+f’s follows from the facts that A”7f begins with f, and
the norm of the tail of 4P+ is the square root of

Ifas i1\ a1\
() 5 ()

J
1y 1
3o <%
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Indeed: to approximate an arbitrary h in [* by A?%f within ¢, choose n, so
large that every tail beyond n, has norm below ¢/2, and then approximate
within ¢/2 by a vector of the form (f,, 0, 0, 0, - - >, with n > n,.

The result here described is due to Rolewicz [117]. A related result (with
scalar multiples allowed but sums still not) was discussed later, in a different
analytic context, in [73].

Here is a pertinent question: does U have a dense orbit? The answer is no.
Reason: every orbit is bounded. A more complicated proof is worthwhile.
If {f, Uf, U%f,--} is dense, then the initial coordinate of f cannot be 0;
assume, with no loss, that it is 1. If the next non-zero coordinateis the one with
index k so that

f = <1,0,""05 éks 5k+1, 5k+29"'>
with £, # 0, then consider the vector
e = <1,0,---,0,0,0,0,-->.

If ¢ < min(l1, |£,|), then no vector of the form U"f can be within ¢ of ¢;.
Reason:ifn > 0, then fle, — U"f|| = 1 (look at the coordinate with index 0);
if n =0, then e, — U"f| = || (look at the coordinate with index k). The
merit of this techniqueis that aslight refinement of it can be used to show that
even the set of scalar multiples of the vectors in the orbit of f is not dense.
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CHAPTER 19

Properties of Compactness

Solution 169. If 4 is (s — s) continuous, and if {f;} is a net w-convergent
to f, then (4f;, g) = (f;, A*g) - (f, A*g) = (4f, g) for all g, so that
Af; — Af (w). This proves that 4 is (W — w) continuous. Note that the
assumption of (s — s) continuity was tacitly, but heavily, used via the
existence of the adjoint A*.

If A is (W — w) continuous, and if { f;} is a net s-convergent to f, then, a
fortiori, f; —» f (w), and the assumption implies that Af; » Af (w). This
proves that 4 is (s — w) continuous.

To prove that if 4 is (s — w) continuous, then A is bounded, assume
the opposite. That implies the existence of a sequence { f,} of unit vectors such
that | Af,} = »n? Since

1
- f;l -0 (S),
n

the assumption implies that

%Af" -0 (w),

ol

is a bounded sequence; this is contradicted by
1
- Afn
n

Suppose, finally, that 4 is (W — s) continuous, It follows that the inverse
image under A of the open unit ball is a weak open set, and hence that it

and hence that

= n
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includes a basic weak neighborhood of 0. In other words, there exist vectors
f1i, -, f, and there exists a positive number ¢ such that if |(f, f)| <e,
i=1,---,k then | Af || < 1.If fisin the orthogonal complement of the span
of {fi, -+, fi}, then certainly {(f, f;)| <e i=1,---,k, and therefore
Il Af | < 1. Since this conclusion applies to all scalar multiples of f too, it
follows that Af must be 0. This proves that A annihilates a subspace of finite
co-dimension, and this is equivalent to the statement that A has finite
rank. (If there is an infinite-dimensional subspace on which A is one-to-one,
then the range of A is infinite-dimensional; to prove the converse, note that
the range of 4 is equal to the image under A of the orthogonal complement of
the kernel.)

To prove the corollary, use the result that an operator (i.e., a linear
transformation that is continuous (s — s)) is continuous (w — w). Since
the closed unit ball is weakly compact, it follows that its image is weakly
compact, therefore weakly closed, and therefore strongly closed.

Solution 170. The proof that K is an ideal is elementary. The proof that K is
self-adjoint is easy via the polar decomposition. Indeed,if A e Kand 4 = UP,
then P = U*A4 (see Corollary 1, Problem 134), so that P eK; since
A* = PU*, it follows that A* K.

Suppose now that A,€K and |4, — A} — 0; it is to be proved that
Af; — Af whenever {f}} is a bounded net converging weakly to f. Note that

lAf; — AfV s VASf; — A il + 1AL f; — A fI + 4. f — AS L.

The first term on the right is dominated by |4 — A4,]l - || f;ll; since {| f;|I} is
bounded, it follows that the first term is small for all large n, uniformly
in j. The last term is dominated by |4, — A}l - | |, and, consequently, it
too is small for large n. Fix some large n; the compactness of A, implies
that the middle term is small for “large” j. This completes the proof that
K is closed.

Solution 171. Let A be an operator with diagonal {«,}, and, for each positive
integer n, consider the diagonal operator A, with diagonal

{a09' Y “n»la 05 09 05" '}-
Since 4 — A, is a diagonal operator with diagonal
{0,--+,0, 040, 0ty 1, -},

so that |4 — A,|| = sup,lo,44l, it is clear that the assumption o, — 0
implies the conclusion |4 — A, - 0. Since the limit (in the norm) of
compact operators is compact, it follows that if &, — 0, then A4 is compact.

To prove the converse, consider the orthonormal basis {e,} that makes 4
diagonal. If A is compact, then Ae, — O strongly (because e, — 0 weakly; cf.
Solution 19). In other words, if A is compact, then |, e,l| — 0, and this says
exactly that o, — 0.
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If Se, = e, , then each of A and S4 is a multiple of the other (recall that
S*S = 1), which implies that 4 and SA are simultaneously compact or not
compact. This remark proves the corollary.

Solution 172, With a sufficiently powerful tool (the spectral theorem) the
proof becomes easy. Begin with the observation that a compact operator on
an infinite-dimensional Hilbert space cannot be invertible. (Proof: the
image of the unit ball under an invertible operator is strongly compact if
and only if the unit ball itself is strongly compact.) Since the restriction of a
compact operator to an invariant subspace is compact, it follows that if the
restriction of a compact operator to an invariant subspace is invertible,
then the subspace is finite-dimensional.

Suppose now that A is a compact normal operator ; by the spectral theorem
there is no loss of generality in assuming that 4 is a multiplication operator
induced by a bounded measurable function ¢ on some measure space. For
each positive number ¢, let M, be the set {x: |@(x)| > ¢}, and let M, be the
subspace of L? consisting of the functions that vanish outside M,. Clearly
each M, reduces A, and the restriction of A to M, is bounded from below; it
follows that M, is finite-dimensional.

The spectrum of A is the essential range of ¢. The preceding paragraph
implies that, for each positive integer n, the part of the spectrum that lies
outside the disc {4:|4| £ 1/n} can contain nothing but a finite number of
eigenvalues each of finite multiplicity; from this everything follows.

Solution 173. Recall that a simple function is a measurable function with a
finite range; equivalently, a simple function is a finite linear combination of
characteristic functions of measurable sets. A simple function belongs to
L? if and only if the inverse image of the complement of the origin has
finite measure; an equivalent condition is that it is a finite linear combina-
tion of characteristic functions of measurable sets of finite measure. The
simple functions in L?(u) are dense in L?(u). It follows that the finite linear
combinations of characteristic functions of measurable rectangles of
finite measure are dense in L?*(u x w). In view of these remarks it is
sufficient to prove that if 4 is an integral operator with kernel K, where

K(x, y) = ), g:()h(y),
=1

and where each g; and each A; is a scalar multiple of a characteristic function
of a measurable set of finite measure, then A is compact. It is just as easy to
prove something much stronger: as long as each g; and each h; belongs to
L?(u), the operator A4 has finite rank. In fact the range of 4 is included in the
span of the ¢’s. The proof is immediate: if f € L2(u), then

N = $009 [h6)SGM0)
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Solution 174. If A is a Hilbert—Schmidt operator, then the sum of the
eigenvalues of A*A is finite.

Proor. To say that A is a Hilbert-Schmidt operator means, of course, that 4
is an integral operator on, say, L*(u), induced by a kernel K in L*(u x u).
Since A*A is a compact normal operator, there exists an orthonormal
basis {f;} consisting of eigenvectors of A*4 (Problem 172); write

A*Af; = 1.,

The useful way to put the preceding two statements together is to intro-
duce a suitable basis for L*(u x u) and, by Parseval’s equality, express
the L2(u X p) norm of K (which is finite, of course) in terms of that basis.
There is only one sensible looking basis in sight, the one consisting of the
functions g;;, where g;{(x, y) = fi(x)f(y). It turns out, however, that a
slightly less sensible looking basis is algebraically slightly more con-
venient; it consists of the functions g;; defined by g;{(x, y) = fi(x)f{(»)*.
The rest is simple computation:

IKI? = 3. 2 I(K, gip|* (by Parseval)
O

i

) f KCx, 90,

i
~M

¥ f( [xex y)f,-(y)du(y))ﬁ()c)* du(x)

3| [ duo

i

Z Z (Af;, I = Y 14fil*  (by Parseval)

i
&M

i

i

2 Af;, Af) = Z (A*Af;, ) = X 4

The proof is over. The construction of a concrete compact operator that
does not satisfy the Hilbert-Schmidt condition is now easy. Consider an
infinite matrix (i.e., a “kernel” on [?). By definition, if the sum of the squares
of the moduli of the entries is finite, the matrix defines a Hilbert-Schmidt
operator. This is true, in particular, if the matrix is diagonal. The theorem just
proved implies that in that case the finiteness condition is not only sufficient
but also necessary for the result to be a Hilbert-Schmidt operator. Thus, in
the diagonal case, the difference between compact and Hilbert-Schmidt is the
diff