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Preface

Their memorials are covered by sand,

their rooms are forgotten.

But their names live on by the books they wrote,
for they are beautiful.

(Egyptian poem, 1500-1000 BC)

The theory of Bergman spaces experienced three main phases of development
during the last three decades.

The early 1970’s marked the beginning of function theoretic studies in these
spaces. Substantial progress was made by Horowitz and Korenblum, among others,
in the areas of zero sets, cyclic vectors, and invariant subspaces. An influential pre-
sentation of the situation up to the mid 1970’s was Shields’ survey paper “Weighted
shift operators and analytic function theory”.

The 1980°s saw the thriving of operator theoretic studies related to Bergman
spaces. The contributors in this period are numerous; their achievements were
presented in Zhu’s 1990 book “Operator Theory in Function Spaces”.

The research on Bergman spaces in the 1990’s resulted in several breakthroughs,
both function theoretic and operator theoretic. The most notable results in this
period include Seip’s geometric characterization of sequences of interpolation and
sampling, Hedenmalm’s discovery of the contractive zero divisors, the relationship
between Bergman-inner functions and the biharmonic Green function found by



vi Preface

Duren, Khavinson, Shapiro, and Sundberg, and deep results concerning invari-
ant subspaces by Aleman, Borichev, Hedenmalm, Richter, Shimorin, and Sund-
berg.

Our purpose is to present the latest developments, mostly achieved in the
1990’s, in book form. In particular, graduate students and new researchers in
the field will have access to the theory from an almost self-contained and read-
able source.

Given that much of the theory developed in the book is fresh, the reader is
advised that some of the material covered by the book has not yet assumed a
final form.

The prerequisites for the book are elementary real, complex, and functional
analysis. We also assume the reader is somewhat familiar with the theory of
Hardy spaces, as can be found in Duren’s book “Theory of H® Spaces”, Gar-
nett’s book “Bounded Analytic Functions”, or Koosis’ book “Introduction to H®
Spaces”.

Exercises are provided at the end of each chapter. Some of these problems
are elementary and can be used as homework assignments for graduate students.
But many of them are nontrivial and should be considered supplemental to the
main text; in this case, we have tried to locate a reference for the reader.

We thank Alexandru Aleman, Alexander Borichev, Bernard Pinchuk, Kristian
Seip, and Sergei Shimorin for their help during the preparation of the book. We
also thank Anders Dahlner for assistance with the computer generation of three
pictures, and Sergei Treil for assistance with one.

January 2000 Haakan Hedenmalm
Boris Korenblum
Kehe Zhu
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1

The Bergman Spaces

In this chapter we introduce the Bergman spaces and concentrate on the general
aspects of these spaces. Most results are concerned with the Banach (or metric)
space structure of Bergman spaces. Almost all results are related to the Bergman
kernel. The Bloch space appears as the image of the bounded functions under the
Bergman projection, but it also plays the role of the dual space of the Bergman
spaces for small exponents (0 < p < 1).

1.1 Bergman Spaces

Throughout the book we let C be the complex plane, let
D={zeC:|z] < 1}

be the open unit disk in C, and let
T={zeC:|z| =1}

be the unit circle in C. Likewise, we write R for the real line. The normalized
area measure on D will be denoted by dA. In terms of real (rectangular and polar)
coordinates, we have

1 1 .
dA(z):;dxdy:;rdrdG, =x+iy=ré?v.

We shall freely use the Wirtinger differential operators

3 1<a ,a) 3 1(a+_a
=3 el el B == n P R
oz 2 \ax '3y 0z 2 \ax 'y



2 1. The Bergman Spaces

where again z = x +iy. The first acts as differentiation on analytic functions, and
the second has a similar action on antianalytic functions.

The word positive will appear frequently throughout the book. That a function
f 1s positive means that f(x) > O for all values of x, and that a measure p is
positive means that u(E) > O for all measurable sets £. When we need to express
the property that f(x) > O for all x, we say that f is strictly positive. These
conventions apply — mutatis mutandis — to the word negative as well. Analogously,
we prefer to speak of increasing and decreasing functions in the less strict sense,
so that constant functions are both increasing and decreasing.

We use the symbol ~ to indicate that two quantities have the same behavior
asymptotically. Thus, A ~ B means that A/B is bounded from above and below
by two positive constants in the limit process in question.

For0 < p < 400 and —1 < a < 400, the (weighted) Bergman space
AP = AZ(D) of the disk is the space of analytic functions in L?(D, dAy), where

dAy(z) = (@ + (1 — |z1)* dA(2).
If fisin LP(D,dA,), we write

1/p
I fllpe = [fnlf(Z)I”dAa(z)] .

When 1 < p < 400, the space LP(D, dA,) is a Banach space with the above
norm; when 0 < p < 1, the space LP(D, dA,) is a complete metric space with
the metric defined by

d(f,8) =IIf — gllbe-

Since d(f,g) = d(f — g.,0), the metric is invariant. The metric is also p-
homogeneous, that is, d(Af, 0) = |A|Pd(f, 0) for scalars A € C. Spaces of this
type are called quasi-Banach spaces, because they share many properties of the
Banach spaces.

We let L% (D) denote the space of (essentially) bounded functions on . For
f € L*®°(D) we define

| fllo = esssup {|f(2)| : z € D}.

The space L>°(DD) is a Banach space with the above norm. As usual, we let H*®
denote the space of bounded analytic functions in . It is clear that H*° is closed
in L°°(D) and hence is a Banach space itself.

PROPOSITION 1.1 Suppose 0 < p < +00, —1 < a < 400, and that K is
a compact subset of D. Then there exists a positive constant C = C(n, K, p, @)
such that

sup {If™ @1 : 2 K} < Cliflpe

forall f € A and alln =0, 1,2, . ... In particular, every point-evaluation in D
is a bounded linear functional on A.
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Proof. Without loss of generality we may assume that
K={zeC:lz| <r}

for some r € (0, 1). We first prove the result for n = 0.
Leto = (1 — r)/2 and let B(z, o) denote the Euclidean disk at z with radius
o. Then by the subharmonicity of | f |7,

1
lﬂdWS—:/ £ (w)I? dA(w)
0° JB(z.0)

for all z € K. It is easy to see that for all z € K we have
I—lzP = 1—1lzl = (1 —r)/2.

Thus, we can find a positive constant C (depending only on r) such that

IﬂUVSCf

B(z.0)

|f )P dAe(w) < C/le(w)l”dAa(w)

for all z € K. This proves the result for n = 0.

By the special case we just proved, there exists a constant M > 0 such that
| f(| < M| fllp.qforall || = R, where R = (1 +r)/2. Now if z € K, then by
Cauchy’s integral formula,

) :n_!/ f@yds
(@ ] |;|=R_——(§—z)”+'"

It follows that

'MR
FP@1 < = 1 lpa

forallz € K and f € AE. [

As a consequence of the above proposition, we show that the Bergman space
A% is a Banach space when 1 < p < 400 and a complete metric space when
O<p<l.

PROPOSITION 1.2 Forevery0 < p < 400 and —1 < a < +00, the weighted
Bergman space A% is closed in LP(D, dAy).

Proof. Let {f,}, be a sequence in AZ and assume f, — f in LP(D, dA).
In particular, { f,}, is a Cauchy sequence in L? (D, dAy). Applying the previous
proposition, we see that { f,,}, converges uniformly on every compact subset of .
Combining this with the assumption that f, — f in L?(D, dA,), we conclude
that f,(z) — f(z) uniformly on every compact subset of D. Therefore, f is
analytic in D and belongs to A%. n

In many applications, we need to approximate a general function in the Bergman
space AZ by a sequence of “nice” functions. The following result gives two
commonly used ways of doing this.
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PROPOSITION 1.3 For an analytic function f inDand 0 < r < 1, let f; be
the dilated function defined by f,(z) = f(rz), z € D. Then

(1) Forevery f € AL, we have || f, — flpae—0asr— 1.

(2) Forevery f € AL, there exists a sequence {py}, of polynomials such that
l pn — f”p.a — Qasn — +0o0.

Proof. Let f be a function in A%. To prove the first assertion, let § be a number
in the interval (0, 1) and note that

‘[I;Ifr(z)—f(Z)lpdAa(Z) < [[ 8|fr(z)—f(z)|PdAa(Z)
+j; o (@1 +1f@))° dAx(2).
<|z]<

Since fisin LP(D, dA,), we can make the second integral above arbitrarily small
by choosing § close enough to 1. Once § is fixed, the first integral above clearly
approaches Oasr — 17.

To prove the second assertion, we first approximate f by f, and then
approximate f, by its Taylor polynomials. ]

Although any function in A% can be approximated (in norm) by a sequence of
polynomials, it is not always true that a function in A% can be approximated (in
norm) by its Taylor polynomials. Actually, such approximation is possible if and
only if 1 < p < 400; see Exercise 4.

We now turn our attention to the special case p = 2. By Proposition 1.2 the
Bergman space A;-; is a Hilbert space. For any nonnegative integer n, let

T +2+a)
w@) = [ 20 D.
@ =\ Teta ° ¢€

Here, " (s) stands for the usual Gamma function, which is an analytic function of s
in the whole complex plane, except for simple poles at the points {0, —1. =2, ... }.
It is easy to check that {e,}, is an orthonormal set in Ag. Since the set of poly-
nomials is dense in Ag, we conclude that {e,}, defined above is an orthonormal
basis for A2. It follows that if

+00 +oo
f@ =Y ad" and g =) bud"
n=0 n=0

are two functions in A2, then

+00 '
2 n'F'2+a) 2
I £l —’?:0 Tnt2ta lan|
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and

+2°° nTQ+a) 5

(f.8)a= =Om nbn,

where (-, -)o is the inner product in Ag inherited from L2(D, dAy).

PROPOSITION 14 For —1 < a < 400, let P, be the orthogonal projection
from L%(D, dA,) onto Ai. Then

fw)dAy(w)

L = e zeD,

Py f(z) =
forall f € L2(D,dAy).

Proof. Let {e,}, be the orthonormal basis of Aﬁ defined a little earlier. Then
for every f € L2(D, dAy) we have

+00
Pyf = Z(Paf, €n)a €y.
n=0
In particular,

+00
Pof(2) =) (Paf en)aen(z)

n=0

for every z € D and the series converges uniformly on every compact subset of D.
Since

(Po fren)a = ([, Patn)a = (f, en)a,
we have

. RT+2+a) n
Py f(z) = ”Z;mfnf(w)(zw) dAq(w)

+°°r(n+2+a) o
[ s )LO e )<w>}dAa(w)

fw)dAqy(w)
D (1 _ ZE)Z‘“" !

The interchange of integration and summation is justified, because for each fixed
z € D, the series

+2’°1"(n+2+oe)

< T2 +a) (zw)

converges uniformly in w € D. ]



6 1. The Bergman Spaces

The operators P, above are called the (weighted) Bergman projections on D.
The functions

1
(1 — zw)>+e’

are called the (weighted) Bergman kernels of ID. These kernel functions play an
essential role in the theory of Bergman spaces.

Although the Bergman projection P, is originally defined on L*(D, dA,), the
integral formula

Ko(z, w) = LweD,

fw)dAq(w)
D (1 _ Zﬂ;)2+a

Pof(2) =

clearly extends the domain of P, to L'(D, dA,). In particular, we can apply P,
to a function in L?(D, dA,) whenever | < p < 4o0.
If f is a function in Ag, then P, f = f, so that

[ fw)dAg(w)

= DW, z € D.

f@

Since this is a pointwise formula and A2 is dense in A}, we obtain the following.

COROLLARY 1.5 If f is a function in Al, then

[+

f(w)dAy(w)

D-(i-—z—z—u")m—’ z€D,

f@) =

and the integral converges uniformly for 7 in every compact subset of D.

This corollary will be referred to as the reproducing formula. The Bergman
kernels are special types of reproducing kernels.

On several occasions later on theorems will hold only for the unweighted
Bergman spaces. Thus, we set A? = A(’)’ and call them the ordinary Bergman
spaces. The corresponding Bergman projection will be denoted by P, and the
Bergman kernel in this case will be written as

Hew ==

The Bergman kernel functions are intimately related to the Mdobius group
Aut (D) of the disk. To see this, let z € D and consider the Mobius map ¢, of
the disk that interchanges z and O,

—w
w € D.

P (w) = E—)
1 —7Zw
We list below some basic properties of ¢,, which can all be checked easily.

PROPOSITION 1.6 The Mobius map @, has the following properties:

(1) o7' = ¢..
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(1—1z1%)?

(2) The real Jacobian determinant of ¢- at w is [(pé(w)l2 = T

(1 =z = Jw|? )
|1 — zw|?

(3) 1= lp(w)* =

As a simple application of the properties above, we mention that the formula
for the Bergman kernel function K, (z, w) can be derived from a simple change of
variables, instead of using an infinite series involving the Gamma function. More
specifically, if f € A] then the rotation invariance of d A, gives

1O = [ s daco).
Replacing f by f o ¢,, making an obvious change of variables, and applying
properties (2) and (3) above, we obtain

f(w)dAq(w)
1- wz)2+a(1 _ Zw)2+a'

f@)=01- |z12)2+“/
D

Fix z € D, and replace f by the function w — (1 — wZ)**® f(w). We then arrive
at the reproducing formula

f@) = / = T gaew), zeD,

—)"+a

for f € Aé. From this we easily deduce the integral formula for the Bergman
projection P,,.

1.2 Some LP Estimates

Many operator-theoretic problems in the analysis of Bergman spaces involve esti-
mating integral operators whose kernel is a power of the Bergman kernel. In this
section, we present several estimates for integral operators that have proved very
useful in the past. In particular, we will establish the boundedness of the Bergman
projection P, on certain L? spaces.

THEOREM 1.7 Forany —1 < a < +00 and any real B, let
(1 — |w?)*
I p(2) = / 1= zwprath dA(w), zeD,

and

2w 4o
J = —_— D.
5(2) /O T 2
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Then we have

1 ifB <0,

L
Iy p(z) ~ Jp(2) ~ log 1—z)? ifB =0,
ifB >0,

(1—1z/HP

aslz| - 17.

Proof. The condition —1 < & < +oo ensures that the integral I, g(z)
convergent for every z € ID. The integral Jg(z) clearly converges for all z € D.
Let A = (2 + a + B)/2. If A is a nonpositive integer, then clearly 8 < O a
Jo.p(2) is bounded. In what follows, we assume that A is not a nonpositive integ
In this case, we make use of the following power series:
1 3 +X°:° C(n+A)

=y & a0

Since the measure (1 — |w|?®)® dA(w) is rotation invariant, we have
/ (1= lw)* dAw)
D 1 — zw|?

i" T(n+ A)? I
()22

Ia.ﬁ(Z) =

|2 f (1 = Jw® |w* dA(w)
D

n=0
T+ 1) +2°:° I'(n+ A)? 2P
)2 ! Tn+a+2) ’
By Stirling’s formula,
C(n+ A)? P
_— _~ A1, n— +00.
nTntatrs "D -
If B < 0, then the series
+00 |Z|2n
]_
e G R VL

clearly defines a bounded function on D, and so Iy g(z) is bounded on .
If B = 0, then we have

+00 Ilen 1
Iy 0(2) ~ —— ~log
20(z) :L:;)Hl S1— 22

as|z] > 17.
If B8 > 0, then we have
1

+00 st
I ~S o+ P P N ——
(@ =0(n R (1—lz[»)f
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as |z]| = 17, because

1 . = C(n+B) o
1= z)P =2 nir(p)

n=0
and

Cn+ B)

AL AN B-1
2T ) (n+1)

by Stirling’s formula again.
The estimate for Jg(z) is similar; we omit the details. n

The following result, usually called Schur’s test, is a very effective tool in proving
the LP-boundedness of integral operators.

THEOREM 1.8 Suppose X is a measure space and . a positive measure on X.
Let T(x, y) be a positive measurable function on X x X, and T the associated
integral operator

Tf(z) = fx T, y) f)du(y),  x € X,

defined wherever the integral converges. If, for some 1 < p < +oc, there exists a
strictly positive measurable function h on X and a positive constant M such that

/XT(x, YV R dp(y) <M h(x)?, x € X,
and
/XT(x, Y h(x)? du(x) < Mh(y)?, yE€X,
where p~! 4+ q~! =1, then T is bounded on L?(X, du) with | T|| < M.

Proof. Fix a function f in L?(X,du). Applying Holder’s inequality to the
integral below,

T < /X RO RO LF O T (k. y) du(y),

we obtain

1
ITf ()] < [/X T(x,y)h(3)? du(y)]q [/X T(x,y)h(y)”’lf(y)l"du(y)]p
Using the first inequality in the assumption, we have

1

TFG0l < MY h(x) UX T(x, y)h(y)_"lf(y)lpdu(y)r .
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Using Fubini’s theorem and the second inequality in the assumption, we easily
arrive at the following:

/X ITf)Pdu(x) < M”/X [fOIP du(y).

Thus, T is a bounded operator on L (X, du) of norm less than or equalto M. m

We now prove the main result of this section.
THEOREM 1.9 Suppose a, b, and ¢ are real numbers and
du(z) = (1~ 121" dA).
Let T and S be the integral operators defined by

(1 —|w?)?

TF@) = (1 -1 [ S ) dAw

and

o [ (=|w??
Sf()=(1— 1z /Dl—l_z—‘u—le—“Ef(w)dA(w)'

Then for 1 < p < +00 the following conditions are equivalent:
(1) T is bounded on LP (D, d ).
(2) S is bounded on L (D, du).
(3) —pa<c+1<pb+1).

Proof. Itis obvious that the boundedness of S on L?(D, du) implies that of T

Now, assume that T is bounded on L? (D, du). Apply T to a function of the form
f@) = (1 —|z]»)", where N is sufficiently large. An application of Theorem 1.7
then yields the inequality ¢ + 1 > — pa. To prove the inequality c+ 1 < p(b+ 1),
we first assume p > 1 and let ¢ be the conjugate exponent. Let T* be the adjoint
operator of T with respect to the dual action induced by the inner product of
L%(D, dy). It is given explicitly by

(1 = [w[})aF€ f(w)

(1— zw)2+a+b dA(w),

T f(z) = (1 —|z)P~°
D

must be bounded on L9 (D, d ). Again, by looking at the action of T* on a function
of the form f(z) = (1 — (z|>)V, where N is sufficiently large, and applying
Theorem 1.7, we obtain the inequality ¢ + 1 < p(b+ 1). If p = 1, then T* is
bounded on L*>°(D), and the desired inequality becomes ¢ < b. Let T* act on the
constant function 1. We see that ¢ < b. To see that strict inequality must occur, we
consider functions of the form

(1 - Zw)2+a+b

fz(W)Zm—m, z,w e D.
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Clearly, || fzlloo = 1 forevery z € D. If b = c, then

PP / (1 — |[w?)* ¢ dA(w) | 1 ol 1-
- = ~ 108 —=, — s
f:(z D 11— Zw|2+a+c 1 = IZIZ <

by Theorem 1.7. This implies | T* f;llcc — 400 as |z] — 17, a contradiction
to the boundedness of T* on L°°(D). Thus, the boundedness of T on L? (D, d)
implies the inequalities —pa < c+ 1 < p(b + 1).

Next, assume —pa < ¢+ 1 < p(b+ 1). We want to prove that the operator S is
bounded on L? (D, du). The case p = 1 is a direct consequence of Theorem 1.7
and Fubini’s theorem. When p > 1, we appeal to Schur’s test. Thus, we assume 1 <
p < 400 and seek a positive function A(z) on D that will satisfy the assumptions
in Schur’s test. It turns out that such a function exists in the form h(z) = (1—|z|?)%,
where s is some real number. In fact, if we rewrite

l— 2\a l__ 2\b—c
Sf(Z):/D( [z (1 — |wl*) Fw)duw),

11— Zw|2+n+b

then the conditions that the number s has to satisfy become

_ 2\b+gs
(1 — (w9 dAw) _ C LeD
D l—zwPrett T (1= [gh)mes ’
and
—112\a+ps+c
(1= 2P dAE) _ C beD
D “ _ Zw|2+a+b (1 - lwlZ)b—p:—c’ ’

where g is the conjugate exponent of p and C is some positive constant. According
to Theorem 1.7, these estimates are correct if

b+gs > —1, a—gqs >0,
and
a+ps+c>-—1, b—ps—c>0.

We rewrite these inequalities as

b+1 a a+c+1 b—c
—_——<s < -, - <s< .
q q p p
It is easy to check that the inequalities —pa < ¢+ 1 < p(b + 1) are equivalent to
b+1 b-c at+c+1 a
—— < , _—— <
q p p q

which clearly imply that the intersection of intervals

b+1 q) ( a+c+1 b—c)
( q 'q M p T p

is nonempty. This shows that the desired s exists, and so the operator S is bounded
on LP(D,du). [ ]
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One of the advantages of the theory of Bergman spaces over that of Hardy spaces
is the abundance of analytic projections. For example, it is well known that there
is no bounded projection from L! of the circle onto the Hardy space H', while
there exist a lot of bounded projections from L' (DD, 4A) onto the Bergman space
A, as the following result demonstrates.

THEOREM 1.10 Suppose —1 < &, f < +00and 1 < p < +00. Then Pg is a
bounded projection from LP (D, dAy) onto Al if and only ifa +1 < (B + 1)p.

Proof. This is a simple consequence of Theorem 1.9. ]

Two special cases are worth mentioning. First, if @ = 8, then Py is a bounded
projection from L”(D, dA4) onto AY if and only if 1 < p < +o00. In particular,
the (unweighted) Bergman projection P maps L? (D, dA) onto A” if and only if
1 < p < +00.Second, if p = 1, then Pg isabounded projection from L' (D, dA,)
onto A1 if and only if 8 > «. In particular, Pg is a bounded projection from
L'(D, dA) onto Al when 8 > 0.

PROPOSITION 1.11 Suppose 1 < p < +00, —1 < a < +00, and that n is a
positive integer. Then an analytic function f in D belongs to AL if and only if the
function (1 — |z|)" ™ (z) is in LP(D, dAg).

Proof. First assume f € AL. Fix any 8 > «. Then, by Corollary 1.5,

— B
f@ = (5+1)/M%f< ydAw),  zeD.

Differentiating under the integral sign n times, we obtain

(1 - [w?)?

b (1 — zw)2n+B w" f(w)dA(w),

(1= 1z M (z) = C (1 — [z]?)"
where C is the constant
=B+DB+2)---(B+n+1).
By Theorem 1.9, the function (1 — |z|?)" f ™) (z) is in LP(D, d Ay).

Next, assume that f is analytic in D and the function (1 — |z|?)" ™ (z) is in
LP(D, dAqy). We show that f belongs to the weighted Bergman space AZ. Without
loss of generality, we may assume that the first 2n + 1 Taylor coefficients of f are
all zero. In this case, the function ¢ defined by

(L= 12" ")

pa)=C = , zeD,

isin LP(D, d Ay), for any constant C. Fix B, @ < B < 400, and let g = Pgg. By
Theorem 1.10, the function g belongs to A%. The explicit formula for g is

1 —|w|?)8
@ =@+ [ TG e dAw,  zeD,
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If we set the constant C to be
c 1
T B+DB+) B+’

then differentiating n times in the formula for g yields

(1 — |w[>)n+P

T —zmpee! Mwdaw),  zeD.

M@=+ B+ 1)/
D

Applying Corollary 1.5 again, we find that g™ = £ so that f and g differ only
by a polynomial. Since g is in A}, we have f € A}. ]

1.3 The Bloch Space
An analytic function f in D is said to be in the Bloch space B if

171 = sup {(1 = 12P)| £ ] : 2 € D} < +o0.

It is easy to check that the seminorm || - || is Mobius invariant. The little Bloch
space By is the subspace of B consisting of functions f with

Jim (1~ 2Pl =0

The Bloch space plays the same role in the theory of Bergman space as the space
BMOA does in the theory of Hardy spaces. When normed with

IfIE=1fO)N+ 11l

the Bloch space B is a Banach space, and the little Bloch space By is the the closure
of the set of polynomials in B.
If f is an analytic function in D with || f|lsc < 1, then by Schwarz’s lemma,

A—1zPIf @l <1-1f@P  zeD.

It follows that H>® C B with || flIB < || f llec-

Let C(D) be the space of continuous functions on the closed unit disk D. Denote
by Co(D) the subspace of C( D) consisting of functions vanishing on the unit circle
T. It is clear that both C(D) and Co(DD) are closed subspaces of L>®(ID).

THEOREM 1.12 Suppose —1 < a < +0o and that Py is the corresponding
weighted Bergman projection. Then

(1) Py maps L°°(D) boundedly onto B.
(2) P, maps C(D) boundedly onto By.
(3) Py maps Co(D) boundedly onto By.
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Proof. First assume g € L>°(D) and f = P, g, so that

B (1 = JwH)g(w)
f(z)_(a+l)f1)(—l—-z-°lﬁ——)2—+_“—dA(w)’ z e D.

Differentiating under the integral sign and applying Theorem 1.7, we see that f
belongs to B with

fOI+1flB < Cligleo

for some positive constant C (independent of g). Thus, P, maps L°°(D) boundedly
into B.

Next, assume g € C(D). We wish to show that f = P,g is in the little Bloch
space. By the Stone-Weierstrass approximation theorem, the function g can be
uniformly approximated on D by finite linear combinations of functions of the
form

gn.m(2) = 2"7", zeD,

where n and m are nonnegative integers. Using the symmetry of D, we easily check
that each P, g, belongs to the little Bloch space. Since P, maps L°° (D) bound-
edly into B, and By is closed in B, we conclude that P, maps C(D) boundedly
into By.

Finally, for f € B we write the Taylor expansion of f as

f@) =a+bz+c + fi(2), zeD,
where f1(0) = f{(0) = 0, and define a function g in L*°(D) by
a®+ 50 +6 . +Ta+12 5, fl@ ]
(a+1)2 2(a + 1)2 Z@+ 1) |

It is clear that g is in Co(D) if £ is in the little Bloch space. A direct calculation
shows that f = P,g. Thus, P, maps L>°(D) onto B; and it maps Co(D) (and
hence C(DD)) onto By. ]

g(2) =(1—z1% [a+

PROPOSITION 1.13 Suppose n is a positive integer and f is analytic in D. Then
f € Bifand only if the function (1 — |z|*)" f™(z) is in L(D), and f € By if
and only if the function (1 — |2|2)" f ™ (z) is in C(D) (or Co(D)).

Proof. If f is in the Bloch space, then by Theorem 1.12 there exists a bounded
function g such that

_ [ gw)dA(w)
Q= i

Differentiating under the integral sign and applying Theorem 1.7, we see that the
function (1 — |z|%)" £ (z) is bounded.

If the function g above has compact support in D, then clearly the function
(1—1z/%)" £ (z) isin Co(D) (and hence in C(D)). If £ is in the little Bloch space,
then by Theorem 1.12 we can choose the function g in the previous paragraph to

e D.



1.3. The Bloch Space 15

be in Co(ID). Such a function g can then be uniformly approximated by continuous
functions with compact supportin ID. This shows that the function (1—(z|)" f ™ (z)
is in Co(D) (and hence in C(ID)) whenever f is in the little Bloch space.

To prove the “if” parts of the theorem, we may assume the first 2n + 1 Taylor
coefficients of f are all zero. In this case, we can consider the function

1 — 2\n £(n)
g(z)=C( lz‘;,f (Z), zeD.

By the proof of Proposition 1.11, the functions f and Pg differ by a polynomial.
The desired result then follows from Theorem 1.12. ]

As a consequence of this result and Proposition 1.11, we see that B is contained
in every weighted Bergman space A%. We can then use this observation and the
following result to construct nontrivial functions in weighted Bergman spaces. In
particular, we see that every weighted Bergman space contains functions that do
not have any boundary values.

Recall that a sequence {A,}, of positive integers is called a gap sequence if there
exists aconstant A > 1 such that A, /%, > Aforalln =1,2,3..... In this case,
we call a power series of the form Z:{g’) anz alacunary series.

THEOREM 1.14 A lacunary series defines a function in B if and only if the
coefficients are bounded. Similarly, a lacunary series defines a function in By if
and only if the coefficients tend to 0.

Proof. Suppose {a,}, is a sequence of complex numbers with |a,| < M
foralln = 1,2,3,..., and suppose {A,}, is sequence of positive integers with
Ang1/rn = Aforalln =1,2,3,..., where | < A < 400 is aconstant. Let

+00
f)=) and".  zeD.

n=0

Clearly, f is analytic in D and
+00 ‘
Fl@) =) aaz™!,  zeD.
n=0

Let C = A/(A — 1);then 1 < C < +00. It is easy to check that
Antl < C (Apy1 — An), n=1273,....
This implies that
hntlz?7m1 7 < € Qo = A) [zt
<C izl =123
We also have, rather trivially,

A.l[Z[)xl—l _<_ 1 +|Z|+...+|ZI)\1—I SC(] +|zl++lzll\|—l)
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It follows that
MC
1 —|z|

+00
If' @I <MCY Izl" = . zeD,
n=0
and hence f is in the Bloch space.
A similar argument shows that if f is defined by a lacunary series whose
coefficients tend to O, then f must be in the little Bloch space.
Conversely, if

+00
f(z):Zanz”, zeD,
n=0

is any function in the Bloch space, we show that its Taylor coefficients must be
bounded. By Corollary 1.5, we have

1 — |w|?

T f(wydA(w), zeD,

fl)=2
whence it follows that
(n)
an=——fn,(0)=<n+1>fW(l—lwlZ)f’(w)dA(w), n=123....
! D

This clearly implies that {a,}, is bounded. Similarly, the formula above together
with an obvious partition of the disk implies that {a,}, converges to 0 if f is in
the little Bloch space. n

Finally in this section we present a characterization of the Bloch space in terms
of the Bergman metric. Recall that for every z € D, the function ¢, is the Mdbius
transformation that interchanges z and the origin. The pseudohyperbolic metric p
on D is defined by

1 —zw
and the hyperbolic metric B, also called the Bergman metric or the Poincaré metric,
is defined by

Pz, w) =g (w)| =

l, z,weD,

1+ p(z, w)
1—p(z,w)’

It is easy to check that the pseudohyperbolic metric (and hence the hyperbolic
metric) is Mobius invariant. The infinitesimal distance element for the Bergman
metric on D is given by

]
Bz, w) = 2 log z,w e D.

ldz|
1—1z12
THEOREM 1.15 An analytic function f in D belongs to the Bloch space if and
only if there exists a positive constant C such that

| f(z) — f(w)] < C B(z, w)
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holds for all z and w in D.

Proof. If f is analytic in D, then

1
f@=-10 =z [ fed
for all z € D. If £ is in the Bloch space, then it follows that

(z) — f(0) ! dt
li——— <15 [ s = If I8 A& 0)
z o 1-—|z|*t=
for all z € D. Replacing f by f o ¢, replacing z by ¢,(w), and applying the
Mobius invariance of both || - ||z and B, we arrive at
If(@) = f)l =1 fliBB(z, w)
forall f € Band z, w € D.
The other direction follows from the identity
po @) = F@I

w=z  B(w, 2)

(I —1zM)If' @), zeD,

which can easily be checked. ]

Carefully examining the above proof, we find that

) — f(w
| fllB = sup M:z,weﬂz#w}.
B(z, w)
With the help of functions of the type
1 1 + ze'?
f(Z)ZEIOgl‘—_W, zeD,

we can also prove that

Bz, w) =sup{If(x) — fw)|: I fls <1}

These formulas exhibit the precise relationship between the Bloch space and the
Bergman metric.

1.4 Duality of Bergman Spaces

Suppose 0 < p < +ooand —1 < & < +00. A linear functional F on AL is called
bounded if there exists a positive constant C such that |F(f)| < C|| fl.p for all
f e AL, where

1/p
I fllap = [/le(Z)IpdAa(Z)] :

Recall that point evaluation at every z € ID is a bounded linear functional on every
Ag. In particular, every weighted Bergman space AP has nontrivial bounded linear
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functionals. We let AZ™ denote the space of all bounded linear functionals. Then
AL™ is a Banach space with the norm

1FN = sup {IF(NI: I fllap < 1},
even though AZ is only a metric space when 0 < p < 1.

THEOREM 1.16 For 1 < p < +ocand —1 < a < 400, we have AL™ = Al
under the integral pairing

(fog) = /D F3@dAR),  feAl ge Al

where q is the conjugate exponent of p: p~' +q7 ! = 1.

Note that the identification isomorphism A% * = AZ need not be isometric for
p#2

Proof. By Holder's inequality, every function g in AZ defines a bounded linear
functional on AZ via the above integral pairing. Conversely, if F is a bounded
linear functional on A%, then by the Hahn-Banach extension theorem, F can be
extended to a bounded linear functional (still denoted by F) on L?(D, d A, ) with-
out increasing its norm. By the duality theory of L? spaces, there exists a function
@ in L9(D, dA,) such that

F(f)= /D f@eR)dALG),  feAL

Writing f = P, f and using the fact that the operator P, is self-adjoint with
respect to the inner product associated with d A, we obtain

F(f) = fo(Z)Pa<P(Z)dAa(z), feAL
Letting g = P, and using Theorem 1.10, we conclude that g is in A% and that

F(f)= /D f(2)g(2) dAu(2)

forall f € AL. n

In order to identify the dual space of AS when 0 < p < 1, we first introduce a
certain type of fractional differentiation and integration.

Let H(ID) denote the space of all analytic functions in D and equip H (D) with
the topology of “uniform convergence on compact subsets”. Thus, a linear operator
T on H (D) is continuous if and only if Tf, — T f uniformly on compact subsets
whenever f, — f uniformly on compact subsets.

LEMMA 1.17 Foreverya, —1 < a < +00, there exists a unique linear operator
D% on H (D) with the following properties:

(1) D% is continuous on H (D).

(2) DX [(1 —zw)%] = (1 — zw)~ @Y for every w € D.
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Proof. Recall that

a —zw)2 Z(n+ H"w"

and
o
Frn+2+a) ,_,
a—zwﬁw Z; ET T R
If we define
'n+2+a)

n+DITQ+a)”
foralln =0,1,2,3,... and extend D linearly to the whole space H (D), then

the resulting operator D has the desired properties. The uniqueness also follows
from the earlier series expansions. ™

n

D*(") =

By Stirling’s formula,
T(n+2+a)
n+DTQ+a)
as n — o00. Thus, the operator D® can be considered a fractional differential
operator of order « in the case o > 0.

It is easy to see that for each —1 < @ < 400, the operator D* can also be
represented by

frw)dA(w)

—5a €D,
r—1-Jp (1 — zw)?+e

D%f(z) =

for f € H(D). In particular, the limit above always exists. If f isin A!, then

f(w)dA(w)

— R z € D.
5 (1 — zw)2te

D*f(z) =

LEMMA 1.18 Forevery —1 < a < 4o, the operator D¥ is invertible on H (D).

Proof. Define an operator D, on monomials by
n+DITQC+a) ,

Dy (") =
(@) = R T
and extend D,, linearly to the whole space H (D). Then D, is a continuous linear
operator on H (D), and it is the inverse of D?. (]
It is easy to see that
o (1—w)”
Dy f(2) = lml] (x+1) —“*—:)‘Z—f( rw)dA(w), zeD,
r—1- D

forevery f € H(D). Whena > 0, the operator Dy, is a fractional integral operator
of order .
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We now proceed to identify the dual space of Ay when 0 < p < 1. The
following two lemmas will be needed for this purpose, but they are also of some
independent interest.

LEMMA 1.19 Forevery0 < p < land —1 < a < 409, there exists a constant
C,0 < C < +o9, such that

/D @1 = 2P P 4AZ) < C £ llap
forall f € AL.

Proof. For z € D, we let D(z) be the Euclidean disk centered at z with radius
(1 —|z])/2. By the subharmonicity of | f|?, we have

4
If(Z)IpS———Q/ | f(w)|? dA(w).
1 —1zD)* Jpe)

Since (1 — |w|) ~ (1 — |z|) for w € D(z), we can find a positive constant C such
that

If@<C -1z~ fllo,,  zeD,
forall f € AS.For0 < p < 1, we can write

If @ =1f@PIf@)IF:

use the above inequality to estimate the second factor, and write out the remaining
integral. What comes out is the desired result. ]

LEMMA 1.20 Suppose —1 < a < 4oc and f is analytic in D. If either f or
the function (1 — Izlz)_"f(z) is bounded, then the function (1 — Izlz)"‘ DYf(z)is
area-integrable and

/Dﬂz)‘g‘(z")dA(z) = (a+ 1)/@D“f(z)%<l — 121 dA(2),
forall g € H™.

Proof. The case « = 0 is trivial. If 0 < o < +oc, then by the integral
representation of D¥ and Theorem 1.7, the function (1 — |z|?)% D% f(z) is bounded.

If -1 < o < 0 and f is bounded, then Theorem 1.7 and the integral
representation of D imply that D® f(z) is bounded, and hence the function
(1 — |z|*)2 D% f(z) is area-integrable.

If -1l <a<O0and|f(@) <Ci1 (1 - |z|>)¥, then by Theorem 1.7 and the
integral representation of D%, we have

1
(1= 12D f(2)| < C2 (1 — |z1P)* log ——

R

and hence (1 — |z|?)¥ D? f(z) is area-integrable.
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The desired identity now follows from the integral form of D?, the reproducing
property of Py, and Fubini’s theorem. L

THEOREM 1.21 Suppose0 < p <1, -1 <a < +oc,and B = 2+a)/p—2.
Then AE™ = B under the integral pairing

(.) = lim. /D Frag@(1 - 12D dAQ),
r—
where f € AL and g € B.
Proof. Firstassume F € AS" and f € AZ.Since | f — frllo.p — Oasr — 17,
we have
F(f) = lin?_ F(fr), feAl
r—
Write

fr(w)dA(w)

D.
(1 — zm)? €

fr(@) =

Since the integral converges in AZ, the continuity of F implies that

1
F(fr) 2/ fr(w)Fl:—“—_—z] dA(w).
D (1 = zw)
where on the right hand side we think of F as acting with respect to the running
variable z. Let

weD.

S 1
h(w)=F [a——zﬁz‘] )

Then £ is analytic in D and
F(fr) = /; Jr(w) h(w) dA(w).

Put
24+«
p

-2

g =
and apply Lemma 1.20, with the result
F( = 6+ 1) [ f,0) DFRG) (1 = P dA(w),
Let g = (B8 + 1) DPh and apply the second property of Lemma 1.17. Then

S 1
gw)=B+DHF [————]

(1 — zw)@+)/p

and

+ D2
) = B+D2+a) F[ z

p (- zw)<2+a>/p+1] » webD.
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Using Theorem 1.7 and the boundedness of F, we easily check that g is in the
Bloch space and that

Fip = tim [ fowg@ (1 -z dAw)

for every f € AL.
Next, assume g € B. We show that the formula

F(f)= lim / £ (1= 12PPdAG),  f e AL,
r—1-Jp

defines a bounded linear functional on A2. By Theorem 1.12, there exists a function
@ € L°°(D) such that

1—|w®p
(il—_—z%l-z%rgw(w)dA(w), zeD.

Using Fubini’s theorem and the reproducing property of Pg, we easily obtain

8(2) =Ppo(z) = (B + 1)[@

/waz)@(l—1z|2>f’dA<z>=/Dfr<w>w<w>(1—|w|2>ﬁdA<w>.

By Lemma 1.19, we have
F(f) = /Dﬂz)a‘z")(l —1z2H%dA@),  f e AL,

and this defines a bounded linear functional on A%. n

1.5 Notes

The notions of Bergman spaces, Bergman metric, and Bergman kernel are by now
classical. General references include Bergman’s book [19], Rudin’s book [105],
Dzhrbashian and Shamoyan’s book [36], and Zhu’s book [135]; see also Axler’s
treatise [14]. The classical reference for Bloch spaces is [9].

Theorems 1.7 and 1.10 were proved by Forelli and Rudin in [47] in the context
of the open unit ball in C". Proposition 1.11 should be attributed to Hardy and
Littlewood [53]. That the Bergman projection maps L°°(D) onto the Bloch space
was first proved by Coifman, Rochberg, and Weiss [34]. The duality results in
the case 1 < p < 400 follow directly from the estimates of the Bergman kernel
obtained by Forelli and Rudin [47]. The duality problem for 0 < p < 1 has been
studied by several authors, including [41] and [115]. Theorem 1.21 is from Zhu
[136].
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Exercises and Further Results

Suppose 1 < p < 4o0. Show that f;, — O weakly in A” as n — +o0
if and only if {|| || p}» is bounded and f,(z) — O uniformly on compact
subsets of D as n — +oc.

For —1 < « < 400, show that the dual space of the little Bloch space can
be identified with A under the integral pairing

(f.8) = rET_/u}f(rz)g—@SdAa(z), feBy geAl.

Show that f, — 0in the weak-star topology of AL ifand only if the sequence
{fu}n 1s bounded in norm and f,(z) — O uniformly on compact subsets of
Dasn — 4oc.

For an analytic function f on D, let f, be the n-th Taylor polynomial of f.
Ifl < p<+00,—1 <a < +00,and f € AL, show that f, — f in norm
in AZ as n — +00. Show that this is false if 0 < p < 1.

Prove Proposition 1.6.

If f is a function in the Bloch space, then there exists a positive constant C
such that | f(z)| < Clog(1/(1 —|z|%)) for all z with 3 < |z < L. Similarly,
if f is in the little Bloch space, then for every ¢ > 0 there exists § € (0, 1)
such that | f(z)] < elog(1/(1 — Izlz)) forall z withé < |z] < 1.

For every § € (0, 1), there exists a positive constant C = C(p, §) such that
if f and g are analytic functions in D with | f(z)| < |g(z)| ford < |z| < 1,
then

ﬁlf(Z)I”dA(Z) < C/Dlg(z)l”dA(z)-

. There exists an absolute constant o, 0 < o < 1, such that

/le(z)lsz(z) < ﬁlg(znsz(z)

whenever | f(z)] < |g(z)|ono < |z| < |, where f and g are analytic in D.
For details, see [87], [57], and [75].

. For 1 < p < +o0, let B, denote the space of analytic functions f in D

such that
f (1= 12?1 @I di(z) < +oo,
D

where
dA(z)

dir -=—
@ =0
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10.

11.

12.

13.

1. The Bergman Spaces
is the Mobius-invariant measure on D). These are called analytic Besov

spaces. Show that the Bergman projection P maps L?(D, d)) onto B, for
all 1 < p < 4o0. For details, see [135].

Ifl<p<2pl4+g!'=1,and
+00
f@R) =) an"
n=0

isin A”, then

+Z°° _____la,,[" < +00
-1 *
n=0 (n+ 14

For problems 10-14, see [95].

Suppose 1 < p<2and p~l 447! = L.If

+00

.,
2 Gy T <

then the function
+00
f@ =Y ad"
n=0

belongs to A9.

Ifl <p<2and
+00
f@ =) an"
n=0

belongs to A”, then

+00

Z lan|? < 400
— .
=+ 1P

If 1 < p <2 and the function
+00
fR) =) ad"
=0

is in AP, then the function

+00

an n
g(@) = ;mz

belongs to the Hardy space H?”.
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15.

16.
17.

18.

19.

20.
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If 2 < p < 400 and the function
+00
f@) =) a?"
n=0

is in HP, then the function

+00

g@) =Y (n+1)"Pa,z"

n=0

belongs to A”.

Suppose 0 < p < +oc and f is analytic and bounded in D. Then

Ii / P dAg( —i/h P dr
Jim | le(z)l aZ)—ij A | f(e)]” dr.

Suppose g is analytic in D. Then 9 AL C A} if and only if ¢ € H®.
Suppose ¢ is analytic in D. Show that 9B C B if and only if ¢ € H* and
sup {(1 = 12P)lg/ @) logl1/(1 = [z/9)] : z € D] < +oo.
Formulate and prove a similar result for the little Bloch space. See [134].

Recall that K, (z, w) is the reproducing kernel for the weighted Bergman
space A2. Show that
Ko (2, w)* < Koz, 2) Ka(w, w)

for all z and w in D, and that

N N
Z cick K(zj, ) =0
j=lk=1

forallcy,...,cyinCandall zy,... ,zy inD.
Let X be a linear space of analytic functions in D. Suppose there exists a
complete seminorm | - || on X such that:

(1) || fopll = lIfIl forany f € X and any M&bius map ¢ of the disk.
(2) Point evaluations are bounded linear functionals on X.

Then X C B. See [104].

Let X be a linear space of analytic functions in D. Suppose there exists a
complete semi-inner product (-, -) on X such that:

(1) (fop,gop) = (f, g) forall f, gin X and any M&bius map ¢ of the
disk.
(2) Point evaluations are bounded linear functionals on X.

Then X = B> (See Exercise 9). Note that B; is usually called the Dirichlet
space and frequently denoted by D. See [11].
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22.
23.

24.

25.

26.

27.

28.

29.

30.

1. The Bergman Spaces

Show that there exist infinite Blaschke products in the little Bloch space.
See [23].

If f € AP and ¢ : D — D is analytic, then f o ¢ € AP, See [135].
For0 < p < +ooand —1 < a < 400, define
dpalz, w) =sup{|f@) — f@):Ifllpa=<1}, zweD.
Show that
llm dp.a(w» Z)
w—2z lw — ZI
for each z € D. See [137].

There exist functions in the little Bloch space whose Taylor series do not
converge in norm.

=sup{If' @I : I fllpe <1},

Let B; consist of analytic functions f in D such that f” € Al. Show that
f € By if and only if there exists a sequence {c,}, in /! and a sequence
{an}n in D such that

400 ay —
f(z)=nz=;)cn1 — zeD.

Z
— anz ’
Show that the Bergman projection P maps the space L!(D, dA) onto B,
where dA is as in Exercise 9.

Show that for f € H(D) and 1 < p < +00, we have f € B, if and only if

/ MdA(z)dA(w) < +00.
pJp 1—zw]*

See [135].

Foreach1 < p < +ooand —1 < @ < 400, there exists a positive constant
C such that

“f”p.ot <C|Re f”p.a
forall f € AL with £(0) = 0.

Foreach 1 < p < +o0and —1 < o < 400, there exists a positive constant
C such that

/ [H(2)|” dAa(2) < C/ lu(2)|” dAa(2)
D D

for all harmonic functions u in D, where ¥ is the harmonic conjugate of u
with #(0) = 0.

Solve the extremal problem
inf { fllp.a : f € AL, f(w) =1},

where w is any point in D.



1.6. Exercises and Further Results 27

31. Try to extend Proposition 1.11 to the case 0 < p < 1.
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The Berezin Transform

In this chapter we consider an analogue of the Poisson transform in the context of
Bergman spaces, called the Berezin transform. We show that its fixed points are
precisely the harmonic functions. We introduce a space of BMO type on the disk,
the analytic part of which is the Bloch space, and characterize this space in terms
of the Berezin transform.

2.1 Algebraic Properties

Recall that one way to obtain the Poisson kernel is to start out with a harmonic
function A in D that is continuous up to the boundary and apply the mean value
property to get

h(0) = -21;/0 h(e'tydr.

Replace h by h o ¢,, where ¢, is the Mobius map interchanging O and z,

(pz(w) = ¢ __w ’ w e ID)»
1 —7Zw
and make a change of variables. Then
1 2n 1 — 2 )
h(z) = — 2 peityar.

2 Jo |1 —zeitf2
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This is the Poisson formula for harmonic functions. The integral kernel

. 1— |z
P, ) = ——————

( ) |1 —z e—lt|2
is the Poisson kernel, and the transform

2
fe LT, di)— i/ P(e'", 2) f(e'")dt
2 0

is the Poisson transform.
Now, let us start out with a bounded harmonic function 4 in D and apply the
area version of the mean value property

h(0) = / h(w) dA(w).
D
Again replace & by h o ¢, and make a change of variables. We get

[ a=1z2»?

h(z) = —
2 p |1 —zwl*

h(w)dA(w), zeD.

By a simple limit argument, we see that the formula above also holds for every
harmonic function 4 in L1(D, dA).
For every function f € L'(D, dA), we define

(1 -z
Bf(z) = ——:74—f(w)dA(w), zeD.
D |1 — zw|
The operator B will be called the Berezin transform.
Actually, we shall need to use a family of Berezin type operators. Recall that
for @ > —1, we have

dAy(2) = (@ + 1)1 — |z1)* dA(2).

Suppose h is a bounded harmonic function on D. The mean value property together
with the rotation invariance of d A, implies that

h(0) = (@ + 1)/Dh<w>(1 — [w|?)* dA(w).

Replacing h by & o ¢, and making a change of variables, we get

1212221 — |w|?)®
“ _ ZE|4+2¢1

1 —
h(z):(a+1)/l;)( h(w)ydA(w), ze€D.

Thus, for f € L1(D, dAy) we write

121%)%+2(1 — |w|?)®
“ _ Zw|4+2a

B, f(2) = (a« + 1)/D (- f(w)dA(w), zeD.

A change of variables shows that we also have

B, f(z) = foocpz(w)dAa(w), zeD,
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forevery f € L'(D, dA,). Note that By = B

PROPOSITION 2.1 Suppose —1 < a < +o0c and ¢ is a Mobius map of the disk.
Then

Baf)op =Ba(fop)
forevery f € LI(D, dA,).

Proof. For every z € ID, the Mdbius map ¢, ;) o ¢ o ¢, fixes the origin. Thus,
there exists a unimodular number ¢ (depending on z) such that
Ppz) 0P 0@z (w) = Lw, thatis, @ o (w) = @) (Cw),

for all w € . It follows that

By(fop)z) = fooqoosoz(w)dAa(w)
= /L_;Dfofptp(z)({w)dAa(w)
= (Bof)(p().
In the last equality above, we used the rotation invariance of d A, . ]

Since dA, is a probability measure for —1 < @ < 400, the operator By, is
clearly bounded on L°°(ID). Actually, |By flloo < | fllco forall —1 < o < +o00.

PROPOSITION 2.2 Suppose —1 < a < +00, | < p < +00, and that B € R.
Then By is bounded on LP (D, dAg) if and only if —(«+2)p < B+1 < (e + 1)p.

Proof. This is a direct consequence of Theorem 1.9. n

Fix an @, —1 < a < +oc. By Proposition 2.2, the operator Bg is bounded
on LI(D,dA,) if and only if B > «. Actually, Bg is uniformly bounded on
L'(D,dAy) as B — +o00. To see this, first use Fubini’s theorem to obtain
(1 Jz])**F

— w24

f IBg f(2)|dAy(2) < (B + 1)/ [ f(w)]
D D DIl

Making the change of variables z + ¢,,(z) in the inner integral, we get

dAy(z)dAg(w).

(1 _ IZI )2+a+ﬂ
/ Bgf(2)|dAy(2) < (B+ 1)/ | f(w )I/ —_W;J—dA(Z)dAa(w)~
Note that for all z, w € D, we have
1 1 I+ - 2

T—zwl ~T—ld 1=z = 1= 2P
It follows that for 8 > o + 1,

leﬁf(Z)IdAa(Z)SC/ if(w)|dAa(w>/<1—|z'2>ﬂ—<“+2>dA<z>.
D D D
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where C = 49+2(8 + 1); that is,

2 1
i) f | f(w)] d Ag(w).
B—a—-1 Jp

This clearly shows that Bg is uniformly bounded on L'(D,dAy) when B — +oc.

4ot+
/D IBg f(2)|dAqs(2) <

PROPOSITION 2.3 Suppose —1 < a < +ooand f € C (D). Then we have
B,f € C(D)and f — By f € Co(D).

Proof. We use the formula
B, f(z) = [I;)f 0@ (w)dAy(w), zeD.

Since @,(w) — zo as z — zo € T, the dominated convergence theorem shows
that B, f(z) — f(z0) wheneverz — zp € T. This shows that f — B, f € Co(D).
In particular, we have B, f € C(ID). [ ]

PROPOSITION 24 If -1 < B8 < a < +o0o, then BBg = BgBy on
L'(D,dAp).

Proof. By Proposition 2.2, the operator B, is bounded on LY(D, dAg). Thus,
BgB, f makes sense for every f € L'Y(D,dA ). Also, the operator Bg maps
L'(D, dAg) boundedly into L'(D, dA,). Hence BoBg f is well defined for f €
L'(D,dAp).

Let f € L'(D,dAp). To prove BoBgf = BgB,f it suffices to show —
according to Proposition 2.1 — that B,Bg £ (0) = BgB, f(0). Now,

B.Bsf(0) = /DBﬂf(z)dAa(z)

. NB(1 _ 1-12\a+B+2
C/Df(w)dA(w)f (1 — w1 = |z|7) dAG),
D

1 — Zw|2ﬂ+4

where C = (a + 1)(B + 1). Making the change of variables z — ¢, (z) in the
inner integral, we find that o and B will switch positions, and hence B,Bg f(0) =
BB, £(0). n

PROPOSITION 2.5 Let —1 <a < +ooand f € L'(D,dA,). ThenBg f — f
in L'(D,dAy) as B — +oo.

Proof. First, assume that f is continuous on the closed disk. Since dAg is a
probability measure, we have the formula

Bef(z) - fy=(B+1) /D(l — WP (f 0 p.(w) - f(2)) dA(w).

Writing D as the union of a slightly smaller disk D, of radius r € (0, 1) centered
at 0 and an annulus, estimating the integral over D, by the uniform continuity of
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f on D, and estimating the integral over D \ D, using the fact that f is bounded
and that

(ﬁ+1)f (1—1z21)PdAGx) > 0, B— +oo,
D\D,

we easily find that
Bsf(2) = f(2), zeD,

as B — +o00. Since |Bg fllco < || flloo for every B, it follows from the dominated
convergence theorem that Bg f — f in L'(D,dA,) as B — +oc. The general
case then follows from a simple limit argument, using the density of C(DD) in

L'(D, dAy) and the uniform boundedness of the operators Bg on L'(D,dA,). m

PROPOSITION 2.6 For each a with —1 < a < +00, the operator By is one-
to-one on the space LY (D, dAy).

Proof. Suppose f € L'(D, dA,) and B, f = 0. Let
F(z)=/ : f(w)dAq(w) 1eD.
D

1 — ZE)Z‘H’(I _ Ew)2+a ’

Since
Baf(Z)
1 - ]Z|2)2+a’
we have F(z) = 0 throughout D, and hence
an+mF
9z"97"™
for all nonnegative integers n and m. Differentiating under the integral sign, we
find that

F@) =

0y =0

/ W' w™ f(w)dAy(w) =0
D

for all nonnegative integers n and m. This clearly implies that f = 0. ]

2.2 Harmonic Functions

Recall that if f is a harmonic function in L' (D, dA), then Bf = £. In this section
we prove the converse, that is, the conditions f € L' (D, dA) and Bf = f imply
that f is harmonic.

In dealing with harmonic functions on the unit disk, we find it more convenient
to use the invariant Laplacian A instead of the usual Laplacian A. We shall use

the operator
Ao P 1 32+az)
T 9z07 4 \ox2  8y?)’
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where z = x + iy, as the Laplacian (this is a quarter of the standard Laplacian).
This renormalization has the advantage that certain formule assume a particularly
attractive form; for instance, if f is a holomorphic function, then A| f |2 =|f /|2.
The invariant Laplacian is defined by

Af() =1 —12)2Af(2).
As its name suggests, the invariant Laplacian A is Mdbius invariant, namely,
A(f o 9)(2) = (A f)(p(2))

for every Mobius map ¢ of the disk. We may interpret A as the Laplace-Beltrami
operator on D, provided ID is supplied with the Poincaré metric.

PROPOSITION 2.7 For —1 < a < +00, the identity
AB, f = (@+ 1)(@+2) (Bof — Bas1f)
holds for every f € LY(D, dAy).

Proof. By the Mébius invariance of both B, and A, it suffices to show that

AB, f(0) = (& + 1)( +2) (B f(0) — Bo41 £(0))

holds for every f € LY(D,dA,). This follows from differentiating under the
integral sign and regrouping terms. ]

In other words, for —1 < « < +00, we have the operator identity

A
S (B S
(@ + 1)(a +2)

The following conclusion is immediate.

COROLLARY 2.8 Suppose n is a positive integer, and set

! z
Gn(z):l’[(1~m>, zeC.

k=1

Then B, = G,(A)B on LY(D, dA).
Let
+00 z
G(2) = [———}.

@ D,( K+ 1))
It is clear that G is an entire function and that G,(z) — G(z) uniformly on
compact sets of C. It should not be surprising now to see that the function G plays

an important role in our analysis of the Berezin transform.
Throughout this section, we let

Y={weC: -1 < Rew <2},
and

Q={ze€C: z=—w(l —w)forsome w € T}.
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By the open mapping theorem for analytic functions, £2 is a connected open subset
of C.

PROPOSITION 2.9 [fz = —w (1 — w), then

G(z) = sin(;r w)
9= rw(l —w)’

Furthermore, G(z) # 1 for z € Q2 \ {0}.

Proof. The k-th factor in the product
+00
w(l — w)
G(z) = 14+ ——
(2) kl:[l< + k(k+1))

equals

(| (R R [ (e

The desired formula for G then follows from the well-known identities

1 +00

L 2\ -2/k
re+D ¢ ,D(l+k)e
and
Fr@Qra -z =

sinz’
To show that G(z) # 1 for z €  \ {0}, it suffices to show that the function
1 —
sin(rw)
has ®(w) # 1 forw € X\ {0, 1}.
Observe that ¢ has the symmetry property

*(are)=2(a-v)

1 m(y?+1)
Pl-+iy)|=——""<1
<2 +zy) cosh(my) =

for all real y. Thus, it suffices to show that the only solution of ®(w) = 1 in the
strip —1 < Rew < % is w = 0. We achieve this with the help of the Argument
Principle.

By an easy estimate, we can choose a positive number A such that |®(w)| < 1
for all w = u + iv, where —1 < u < % and v is real with [v] > A. We now

consider the positively oriented contour y given by the following picture.

and that it has
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—1+iA 3 +iA

N —

—1—-iA —iA

09—

We proceed to show that the image of the contour y, ®(y), winds around the
point 1 exactly once. We start from w = % on y and move upwards. The curve
®(y) will then start at 7 /4 and move toward O along the real axis. When w makes
a left turn at % + i A and moves horizontally to the left, the curve ®(y) oscillates
in the half-plane to the left of the point 1. For w between —1 4+ iA and —1 + i¢,
we have

. V4 )
S(—1+iv) = ——[3u+i@?-2)].
sinh(r v)
This part of ®(y) meets the real axis to the left of the point 1 when (and only
when) v = /2. So far, the image of y under ® has not reached the real axis to
the right of the point 1. Next, consider ®(w) for w on the little semicircle near the
point w = —1. An easy calculation shows that

2
d = —— + WU(w),
(w) — + ¥ (w)
where W(w) is analytic near w = —1. It follows that
it 2 —it
O(—1+¢ce’) = ;e + O(¢).

This shows that if ¢ > 0 is small enough, then the curve

O(—1+ee'") Tz

, 5 St=5
crosses the real axis near the point 2/¢; the winding number of ®(y) around 1
will not depend on the exact number of times the above curve crosses the real axis.
Finally, by the analysis above and the symmetry relation ®(w) = ®(w), when
w moves downward from —1 — ¢i and comes back to the starting point 2, the
image (w) will not cross the real axis from the right-hand side of the point 1.
We conclude that the curve ®(y) winds around the point 1 exactly once. [ |
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We need the following facts about eigenfunctions of the invariant Laplacian
before we can prove our main result.

PROPOSITION 2.10 Suppose o and A are complex numbers related by » =
—a(l — ). Let X, be the eigenspace of A corresponding to the eigenvalue A. Let

(1 _ |Z|2)a fZﬂ 46
= - s e D.
8a(2) 27 0o |1 —ze 02 ¢

Then we have:
(1) The function g, belongs to X,.
(2) If f € X, and f is radial, then f = f(0)g,.
(3) The space X, contains a nonzero function in L' (D, dA) ifand only ifa € X.

Proof. Let P(¢'?, 7) be the Poisson kernel. Then the function g, can be rewritten
as

1 2 . o
2a(2) = — f [P(e'(*,z)] 46, zeD.
2 0

Part (1) now follows from differentiating under the integral sign and the fact that
P(e'?, 7) is harmonic in z.

To prove (2), we let f(z) = g(lzlz) be a radial function in X,. It is easy to
check that the function g(x), 0 < x < 1, is a solution to the following differential
equation:

x(1=x)2g"(x) + (1 —x)%g'(x) = Ag(x), O<x < 1.

The solution space of the above differential equation is two-dimensional, and we
can exhibit a basis for it. In fact, by (1), the function g (x) = g¢(+/x) is a solution,
and an easy calculation shows that the function

82(x) = gi1(x )fl 1(t)2 O<x<l,

is also a solution. It is obvious that g| and g, are linearly independent. Thus, there
exist constants a and b such that g = a g; + b g2. Since the functions g and g, are
bounded near x = 0 and g is unbounded near x = 0, we must have b = 0 and
hence g = g(0)g1, so that f = f(0)g,-

To prove (3), let us assume that X, contains a nonzero function f € LY(D,dA).
By invariance, we can also assume that f(0) # 0. It is easy to check that f € X;
implies that its radialization

2 .
i) = %T_/O f(ze'')dt, z €D,

also belongs to X;. By (2), we have f# = f(0)g,. This clearly implies that X;
contains a nonzero function of L'(ID, dA) if and only if g, € L' (D, dA). By
Theorem 1.7, the function g, is in L'(D, dA) if and only if ¢ € £. n
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We now prove the main result of the section.

THEOREM 2.11 Suppose f € L'(D,dA). Then f is harmonic if and only if
Bf = f.

Proof. Let M be the set of fixed points of B in L!(ID, dA). It is easy to see
that M is a closed subspace of L' (D, dA). We already know that every harmonic
function in L'(D, d A) belongs to M. We proceed to show that every function in
M is harmonic.

By the integral formula for the operator B, every function satisfying f = B f is
real-analytic in D. In particular, we can apply the Laplacian to every function in
M. Let A be the restriction of A to M. By Proposition 2.7,

Auf =2(f —Bif), feM.

Since B, is bounded on Ll(ID), dA), we see that Ay maps M boundedly into
LY(D, dA). Moreover, since BB; = BB, we have

BAyf=2Bf -BBf)=2(f =Bi1f) =Auf, feM.

Thus Ay maps M into M, and hence Ay is a bounded linear operator on the
Banach space M.
Recall from Corollary 2.8 that

Bpf =Gn(A)Bf = Gu(AMm) f, feM.

Since G, — G uniformly over compact subsets of C, and A y is a bounded linear
operator on M, we have G, (A ) — G(A ). This together with Proposition 2.5
shows that G(A ) f = f forevery f € M, making G (A ) the identity operator
on M.

Suppose A is an eigenvalue of A . By Proposition 2.10, we must have A € Q.
Also, if f is a nonzero eigenfunction corresponding to A, then

f=GAmf =GN/

It follows that G(A) = 1. By Proposition 2.9, we must then have A = 0. Thus, the
only eigenvalue of the operator A s is 0.

Recall that G(z) — 1| = zH(z), where H is an entire function with H(0) # 0.
By the holomorphic functional calculus (see, for instance Rudin’s book [106]), we
have

0=G(Am) -1 =H(An) Apy,

where [ is the identity operator on M. Since the only eigenvalue of A s is 0, the
spectral mapping theorem (see, for instance, [106, Theorem 10.33]) implies that
the only eigenvalue of H (A ) is H(0) # 0. In particular, H(A ) is one-to-one:
after all, if for some f € M, H(Apy) f = 0 holds, then f is an eigenvector for
(eigenvalue) 0, which is possible only for f = 0, as O fails to be an eigenvalue of
H(Apy). Now if f € M, then H(Ap)Apy f = 0. It follows that Ay f = 0; in
other words, f is harmonic. »
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2.3 Carleson-Type Measures

Just as we can integrate the Poisson kernel against a measure on the circle, we can
also integrate the kernel of the Berezin transform against a measure on the disk.
More specifically, for a positive Borel measure ¢ on D, we consider the function
dp(w)
2.2
Bu(z) = (1 - lzl')‘/ ———  zeD.
p |l — zw|
In this section we characterize those positive Borel measures p on D such that
By is bounded. As a by-product we also characterize those measures u such that
Bu(z) > Oas|z] - 1.
Recall that

1 |1 —zw| + |z — w|
Bz, w) = 3 log —

2 11 —zw| — |z — w]|
is the Bergman metric on D. Throughout this section, we fix some positive radius
0 < r < 400 and consider disks D(z, r) in the Bergman metric. The set

D(z,ry={weD:B(z,w) <r}, z €D,

is called the hyperbolic disk of radius r about z. It is well known (see [49] or [135])
that D(z, r) is a Euclidean disk with Euclidean center (1 — sz)z/(l — s2|z|2) and
Euclidean radius (1 — |z]?)s/(1 — s2|z|?), where s = tanhr € (0, 1).

Let |D(z, r)|a denote the normalized area, or the d A-measure, of D(z, r); the
subscript indicates precisely that dA is used. Then |D(z, r)|4 ~ (1 — |z|%)? as z
approaches the unit circle. The following lemma lists some additional properties
of the hyperbolic disks.

LEMMA 2.12 Let r, s, and R be positive numbers. Then there exists a positive
constant C such that for all z and w in D, we have

(1) C7Y 1 —1z1?) < |1 — zw| < C (1 — |z]?) when B(z, w) <r.
(2) C7YD(z,7r)la < |D(w, s)|a < C|D(z,r)|a when B(z, w) < R.

Proof. If w € D(z,r), then w = ¢,(u) for some |u| < s, where s = tanhr. It
follows that

1 — 2
R

1 —zu’
This clearly implies (1). Since the condition B(z, w) < r is symmetric, (1) also

holds with the positions of z and w interchanged. In particular, we have 1 — |z|? ~
1 — |w|? if B(z, w) < r. Thus

ID(z, r)la ~ (1 = 121%)% ~ (1 — [w]®)? ~ |D(w, 5)|a
for B(z, w) < R. u
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LEMMA 2.13 Fixr, 0 < r < +4o00. There exists a positive integer N and a
sequence {an}y in D such that:

(1) The disk D is covered by {D(an, r)}n-
(2) Every point in D belongs to at most N sets in {D(a,, 2r)}p.
(3) Ifn # m, then B(an, am) > r/2.

Proof. Itis easy to construct a sequence {an }, in D satisfying conditions (1) and
(3). We show that (2) has to hold, too. In fact, if we let N be the smallest integer
such that D(0, 2r) can be covered by N hyperbolic disks of radius r/4, then by
Mobius invariance of the Bergman metric every hyperbolic disk of radius 2r can
be covered by N hyperbolic disks of radius /4. Now, if a point z in D) belongs to
N + 1 disks D(ap,,2r),1 <k < N+ 1,thena,, € D(z,2r)forl <k < N+ 1.
Let D(zx,r/4), 1 <k < N, be acover of D(z, 2r). Then at least one of the disks
D(zx, r/4) contains two points from a,,, 1 < k < N + 1. Two such points will
have hyperbolic distance less than r/2, a contradiction to (3). ]

In connection with the above lemma, we mention that a sequence {a} ; of points
in D is said to be separated (or uniformly discrete) provided that

0 <inf {B(aj, ar) : j # k}.

LEMMA 2.14 Fixanr, 0 < r < +00. Then there exists a positive constant
C = C(r) such that

C
P — PdA D,
[f@IF < DG /D(mlf(w)l (w), ZE€

holds for all f analytic inD and all0 < p < +00.

Proof. Recall that D(0, r) is a Euclidean disk centered at the origin. By the
subharmonicity of | f]?,

1
If(O)P < —"‘—/ | f(w)|? dA(w).
D(0.r)

T |D(0,r)la
Replace f by f o ¢, and make a change of variables. Then
1 (1—1z1»?
I f(@)I? < ——/ | f ()P —=dA(w).
50.91a Joen TP T A
The desired result then follows from Lemma 2.12. [ |

As aconsequence of Lemmas 2.14 and 2.12, we obtain the following inequality:

(=21 f@IP < C/ (1= w72 f (w)|? dA(w),
D(z.r)
where f is analytic in D, s is real, and 0 < p,r < +o0, and C is a constant
depending on p, r, and s (but not on the function f and the point z € D).
We now prove the main result of this section.
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THEOREM 2.15 Fix0 < p,r < 409, and let 1 be a positive Borel measure on
D. Then the following are equivalent:

(1) The function By is bounded on D.

(2) The function [i,(z) = u(D(z,r))/|D(z,r)|a is bounded on D.

(3) The Bergman space AP is boundedly contained in LP (D, d ).

Proof. Recall that

(1—lz2»? / (1—12%)?
—:—dﬂ(w) = ———rdu(w).
p 11 —zw* Dy 11— zwl*

That (1) implies (2) now follows from (1) of Lemma 2.12 and the fact that
|D(z, r)|a is comparable to (1 — |z]|%)%.
To see that (3) implies (1), assume that there exists a constant C > 0 such that

Bu(z) =

/Dif(w)lpdu(Z) =< C/le(w)l”dA(w)
forall f € AP.Fix z € D and let

I_IZIZ 2/p
(1 —Ew)z]

=]

Then we obtain Bu(z) < C.

It remains to show that (2) implies (3). Thus, we assume there exists a positive
constant Cy such that u(D(z,r)) < C1|D(z,r)|4 forall z € D. Pick a sequence
{an}, in D satisfying the conditions in Lemma 2.13. For f € A?, we have

IA

+00
I f()IPdu(z) / | f @) du(z)
[ID) ‘ ,; D(an.r) ¢

+00
< Y u(D(@n, r))sup{| f(2)I” : z € D(an, r)}.

n=1

By Lemmas 2.14 and 2.12, there exists a positive constant C; such that

sup{| f(2)|” : z € D(an, 1)} < |f(2)|” dA(z)

Ch /
[D(an,r)la D(an.2r)
foralln =1,2,3,....Itfollows that

+00
[ireraosaad; [ irerdac,
D =1 Jpa,2n

Since every point in D belongs to at most N of the sets D(a,. 2r), we conclude
that

[le(z)l”du(z) 5C1C2Nﬂ)1f(z)|”dA(z)
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forevery f € AP. |

Note that if a positive measure y satisfies any one of the three conditions in the
theorem, then x must be finite. The following is the “little oh” version of the above
theorem.

THEOREM 2.16 Fix1 < p < +ooand0 < r < +00. Let u be a positive Borel
measure on D. Then the following conditions are equivalent:

(1) The function By is in Co(DD).
(2) The function [, is in Co(D).

(3) AP C LP(D, du) and the inclusion map is compact.

Proof. That (1) implies (2) follows from the estimate in the first paragraph of
the proof of the previous theorem.
To prove (3) implies (1), recall that

Bu(z) = /lez(w)l”du(w), zeD,

where

1 — 2 2/p
f:(w) = I:ET—_;Ul—)z:I , zZ,weD.

Itis easy to check that f, — O weaklyin A? as |z] — 17. Thus, the compactness of
the inclusion map from A? into L? (D, du) implies that Bu(z) — Oas |z] — 17.
To prove (2) implies (3), let us assume that z,(z) — Oas |z] — 17 and f, — 0
weakly in A? as n — +00. We must show that f, — 0 in norm in L (D, du)
as n — +oc. Let {an}, be the sequence from Lemma 2.13. It is easy to see that
la,| = 1~ asn — +oo. Given ¢ > 0, we can find a positive integer Ny such
that u(D(ayn, r))/|D(a,,r)|a < ¢ forall n > Np. Since f, — 0 weakly in A? as
n — 400, we can find a positive constant C such that || fy||, < C forall n > 1;
see Exercise 1 of Chapter 1. The desired result now follows from the inequality

+00
/lfk(Z)lpdu(Z)SZ/ | fe(@)IP dpu(2).
D n=19 D(an.r)

In fact, we can break the sum above into two parts; the first partis for 1 < n < Np
and the second part for n > Np. The first part can be made arbitrarily small by
choosing k sufficiently large, because fy — O weakly in A? implies that f;(z) — 0
uniformly over compact sets. By the technique used in the proof of the previous
theorem, the second part here can be shown to be less than a constant (independent
of ¢) times ¢. We omit the details of this elementary ¢-N argument. |
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2.4 BMO in the Bergman Metric

A well-known characterization of BMO on the unit circle is Garsia’s lemma (see
[49]), which says that a function £ in L? of the circle belongs to BMO of the circle
if and only if the function

2

21
i/ P, 2) f(e) dt
2,7'[ 0

1 2 . S
s —/ P(e", )| f(e"))7dr -
2 0

is bounded, where P(e'!, z) is the Poisson kernel at z. A similar result also holds
for functions in VMO of the circle. The purpose of this section is to develop this
theory in the Bergman metric.

Recall that for 0 < r < +o00 and z € D, the set D(z, r) is the hyperbolic disk
with hyperbolic center z and hyperbolic radius r. Also, | D(z, r)| 4 is the Euclidean
area of D(z, r) divided by . R

For a locally integrable function f on D, we define the averaging function f,
as follows:

~ 1
(2) = —— dA(w), D.
fr(@) DG ./D(“)f(w) (w) z€

If f is locally square-integrable, then we define the mean oscillation of f at z in
the Bergman metric as

1
-~ 2
MOr(f)(z)=[ /D ( )If(w)—fr(z)lz dA(w)] :

ID(z,r)|a

LetBMO, = BMO, (D) denote the space of all locally square-integrable functions
f such that

Nfllr = sup{MO,(f)(2) : z € D} < +o0.

The main result of this section is that the space BMO, is independent of r and can
be described in terms of the Berezin transform.

LEMMA 2.17 Suppose r and s are positive numbers and B is the Bergman metric
on ID. Then the following conditions on a function f defined on D are equivalent.

(1) My = sup{|f(z) — f(w)] : B(z,w) <r} < +oo.
(2) Ms = sup{| f(z) = f(w)| : B(z, w) < s} < +00.

(3) 1f(z) — f(w)] < C(B(z,w) + 1) for some positive constant C and all
z,weD.

Proof. Assume r < s. Then M, < Mj, and hence (2) implies (1). It is clear
that (3) implies (2). To prove the remaining implication, we fix two points z and w
in D with B(z, w) > r; the desired inequality is obvious if (z, w) < r.Leta(t),
0 <t < 1, be the geodesic from z to w in the hyperbolic metric. Let N be the
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smallest integer greater than or equal to 8(z, w)/r.Forty =k/N,0 <k < N-—1,
we have
Bz, w)

N

Bla(te), a(te+1)) =

<r.

It follows that

N—-1
1f@ = F)l < Y [ f @) = fla(e)] < N M;.

k=1

By the choice of N, we have

Nswﬂ < %(ﬁ(z,w)+1).
Thus,
2M,
F@ = f)l = = (B w) +1)
forall B(z, w) > r. [ ]

The Bergman metric grows logarithmically:
1+ |z|

1—lz|’
It follows that a Borel measurable function f which satisfies any of the three equiv-
alent conditions of Lemma 2.17 is in LP(DD, dA) for all finite positive exponents

p.
We can now prove the main result of the section. For convenience, we introduce
for f € L*(D, dA) the following notation:

1
ﬂ(z,0)=§1<>g zeD.

1
MO(/)(2) = [BUf)@) — Bf@P]".

It is easy to see that B(f1?)(2) > IBf(2)|%, so that the above expression is
well-defined. In fact, we can write
fw) = f(v)

M = (1— 2> //
O(N@ = (1 —IzP) [D et —e

THEOREM 2.18 Suppose 0 < r < +00 and that the function f is locally
square-integrable in D. Then f € BMO, if and only if f € L*(D, dA) and the
Junction MO(f) is bounded on D.

2

1/2
dA(u)dA(v)] .

Proof. By Lemma 2.12, we can choose a small constant & > 0 such that
g
ke (w))? > ———
ID(z,r)|a
forall z € D and w € D(z, r), where
1=z

)= e
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are the normalized reproducing kernels of A2. In view of the above formula for
MO(f), we have

o) 1
MO()@F = 3 fD /D |f () — £ @)1k, )Pl (v)> dA(u) dA(v)

which we compare with
1
MO, 2=————/ f — 2dA(u)dA
MO, (f)(2)] 10 Joen Dz.r)lf(u) fW)I°dAu)dA(v)

for z € D. By shrinking the domain of integration D to D(z, r), we obtain
MO(f)(z) = o MO, (f)(2), zeD.

Thus, the boundedness of the function MO(f) implies that f € BMO,.

Next, assume that f is in BMO,. Let r = 2s, and recall that f; is the averaging
function for f with parameter s. Write f = fi + fa, where filz) = f:(z) and
@)= f@@)— f:(z) Since the space of functions f in L% (D, d A) with bounded
MOC(f) is linear, it suffices to show that both f; and f, have this property.

First, using the identity

_~ —~ 1 -~
s — Js = - Js dA
fs(2) = fs(w) e /D (w[f(u) fs(w)] dAu)

and the Cauchy-Schwarz inequality we easily obtain

7@ - fw)]
1

- 24dAw) dA ).
5|D<z,s>|A|D<w,s)|A/mz.s)/mw.s)'f W)= FW)"dAw) dAw)

If B(z, w) <s, then

D(z,s) C D(z,r), D(w,s)cC D(z,r),
and
ID(w, s)|a ~ |D(z,8)|a ~ |D(z,r)|a;

see Lemma 2.12. Thus, there exists a positive constant C such that

—~ ~ 2 C )
s = Js < — - dA d
|fi@) = )| < DG r>|i/omfoz.,>'f(”) FW)>dAu)dA®W)

C MO, (f)(2))?

for all B(z, w) < s. Since MO, (f) is bounded, it follows from Lemma 2.17 that
there exists a positive constant C such that

17:(2) — Fi(w)| < Cy (B(z, w) + 1)

I
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for all z and w in D. In particular, f; € L2(D, dA). Now,
2[MO(f)(@)]°
fD fD | () = )Pk )k (0)]* dAu)d A(v)

IA

c? f / (B, v) + D2k, ()2 |k; () > dAw)d A(v)
DJD

= Cf/ /(ﬁ(u, V) + D2dAWm) dA®).
DJD

The last equality follows from a change of variables and the invariance of the
hyperbolic metric. The last integral above can easily be checked to be finite. Hence
the function MO( f;) is bounded.

Second, we look at fo = f — f;. Then, by the triangle inequality,

1

[F@] = [ [ 1w - Rrda |
AR@ = [|D<z,s)rA by ) T R AL

1
1 . 1
DG ) = Js “dA
[ID(z,s)lA /D(“) [ f(w) — fs(2)| (w)]

1 o
DG 9)a () = fi(w)PdA
" [|D(z,s)|A /D(“)'f(z) fs(w)] (w)]

The last term is bounded in z because of an earlier estimate on f;. The term
preceding it is bounded, too, because f € BMO, and

MO;(f)(2) = C2 MO, () (2), zeD,

which follows from Lemma 2.12 and the double-integral formula for MO, (f) used
earlier in the proof. By Theorem 2.15, the function B(|f2|2) is bounded, which
obviously implies that f, € L?(DD, dA) and that MO( f) is bounded. |

1
2

It follows from Theorem 2.18 that the space BMO, does not depend on the
parameter r, 0 < r < +oo (but the norm changes with r, of course). Let us
write BMOy = BMO; (D) for the space BMO,, for any 0 < r < +00. The new
notation signifies the independence of the parameter r; it also emphasizes the fact
that whether or not a function from L2(D, dA) belongs to BMO; is a boundary
property.

It is easy to check that BMOj, becomes a Banach space with the norm

IfII=IBf(0)] + sup {MO(f)(z) : z € D}.
If the term involving
Bf(0) = /Df(z)dA(z)

is removed, then what remains is only a seminorm. This seminorm is Mobius
invariant, although the norm above is not.
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Let VMO, be the space of locally square-integrable functions f in D such that
MO, (f)(z) — 0 as |z] — 17. It is clear that VMO, is contained in BMO,.
THEOREM 2.19 A locally square-integrable function f in D belongs to VMO,
if and only if MO(f)(z) = Oas|z] = 1.

Proof. The proof is similar to that of the previous theorem; we leave the details
to the interested reader. ]

Again we let VMOy = VMO, (D) stand for the space VMO, for any r, 0 <
r < +oo. It is easy to check that VMO is a closed subspace of BMOj and that
VMOj contains C(D).

THEOREM 2.20 Let H(D) be the space of analytic functions in D. Then
(1) BMOyN HD) = B.
(2) VMOy N H(D) = By.

Proof. Since both BMOj and B are contained in L2(ID, dA), we may begin
with a function f in A2. By the symmetry of ID,

£ =2 /D T (f(w) — £(0)) dA(w).

Replacing f by f o ¢, and performing an obvious estimate, we get

(1= 1z @) <4 fD If 0 o (w) — f(2)1*dA(w)

for every z € D. Since B f = f for analytic f, we easily verify that

/va o (w) — f(DI*dAw) =B(fI1*)(2) — IBf ().

This shows that BMOy N H(D) C B.

On the other hand, if f € B, then by Theorem 1.15, there exists a positive
constant C such that | f(z) — f(w)|] < CB(z, w) for all z, w € D. This, together
with the integral formula for B(|f|>) — |Bf|? in the previous paragraph, then
shows that B € BMOy N H(D).

The proof of the identity VMO, N H(D) = By is similar. [ |

2.5 A Lipschitz Estimate

Let () be a smooth curve in . If 5(¢) is the arc length of a(¢) in the Bergman
metric, then

ds  |d'(0)]

dr 1 —|a@)]?
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For a pointa € D, we let I, denote the rank-one orthogonal projection from A2
onto the one-dimensional subspace spanned by k., where
1 - a)?
(1 —az)?’
which is a unit vector in A2. In concrete terms,
2
Nof = (f ka) ka = (1 = lal”) f(a) ka, aeD.

LEMMA 2.21 Let a(t) be a smooth curve in D, and let s(t) be the arc length of
a(t) in the Bergman metric. Then

ka(z) = zeD,

ds 1 d

—=— (-1 —k

i~ h ‘( a) (dt a(r))
where || - || is the norm in A% and I is the identity operator.

Proof. Since

e e () | 222 (1)1 = la@)P)

a0 = T o (1 - a()?
a simple calculation gives
d —a'(Da(t) + a()a!(r)
Ha t ——ka - —
® (dt (')) ® (1 —a(1)z)?

and so

d 20/ (t) (z — (1))
I — l'Ia ot = ———.
( ) (d ”)( TR

By a change of variables we then obtain
2 210

Mow) [ ket )| = 2
” ”( ”) (1= a2

which clearly implies the desired result. [ ]

THEOREM 2.22 Let a(t) be a smooth curve in D, and let s(t) be the arc length
of a(t) in the Bergman metric. Then, for any f € BMOj, we have

%Bf(a(r)) < NiMO(f)(a(z))%

Proof. Recall that

Bf(a(r)) = /D Fw) ka2 dAw).
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Differentiation under the integral sign gives

d -
LB fat)) =2 / f(w)Re [(—ka(z)(w)> kam(w)] dA(w).
dt D dt

Also, differentiation of the identity (kq (), ka(y) = 1 gives

d
Re <d—[-ka(,), ka(,)> =0.

Using this and the formula

d d
M) (d ka(t)) = <67t'ka(t)’ koz(t)> ko),

d [,
Re [na(t) (E;ka(t)) (w) ka(l)(w)] =

d d
E‘Bf(a(t)) = 2/ f(w)Re [(1 - 1-[oz(t)) ( 01(1)) (w) ka(t)(w)] dA(w).
t D dt

we then obtain
It follows that

On the other hand,

d -
./D(I — Ma@y) (Eka(t)) (w) ko(ry(w) dA(w) =0

by the definition of I1,;). Therefore, the derivative dB f («(r))/dt is equal to

d o
2/@ (f(w) —Bf(a(t)))Re [(1 Meay) ( a(l)) (w) koz(t)(w):| dA(w),

and hence |dB f («(t))/dt| is less than or equal to

/ | f(w) — Bf(a(t>)||ka<,>(w>|I(I—nam)( a(x)>(w)‘dA(w)

The desired result now follows from Lemma 2.21 and an application of the Cauchy-
Schwarz inequality. L

COROLLARY 2.23 For f € BMOy, we have
IBf(z) — Bf(w)| < 2v2 || fllzmo B(z, w)

for all z and w in D, where

I fllBMO = sup {MO(f)(2) : z € D}.
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Proof. Fix z and w in D and let (¢), 0 < ¢ < 1, be the geodesic from z to w
in the Bergman metric. Then, by the above theorem,

IBf(z) — Bf(w)|

I

1 d 1 ds
f —Bf(a(t))dt 52«/5] MO(f)(a()) — dt
o dt 0 dt

IA

Ld
2v2 1 flsmo /0 ﬁdr =221/ fllamo B(z, w),

as claimed. n

2.6 Notes

The Berezin transform was introduced by Berezin in [17] and [18]. Most applica-
tions of the Berezin transform so far have been in the study of Hankel and Toeplitz
operators; see [135]. Section 2.1 is elementary. All results in Section 2.2 are taken
from the paper [4]. The results of Section 2.3, in various forms, are due to Hast-
ings [54], Luecking [92], and Zhu [133]. The theory of BMO and VMO in the
Bergman metric, as presented in Sections 2.4 and 2.5, was begun by Zhu in his
thesis [132] and then developed by Békollé, Berger, Coburn, and Zhu in [15].

2.7 Exercises and Further Results
1. If f € L'(D, dA) is subharmonic, then B f is subharmonic and f < Bf on
D.

2. If f € L*°(D) and f has a nontangential limit L at some boundary point
¢ € T, then B f also has nontangential limit L at ¢.

3. Find a real-valued function f € L'(D, dA), strictly negative on a subset of
positive area, such that B f is strictly positive on D.

4. Show that there exist two functions f and g in A? such that B(|f|2) <
B(|g|%) on D, but nevertheless

Alf(z)p(z)lsz(z)>/D|g(z)p(z)|2dA(z)

holds for some polynomial p.

5. Show that the Berezin transform commutes with the invariant Laplacian on
the space C2(D).

6. If f is a bounded subharmonic function in D, then {B" f}, converges to a
harmonic function in D.

7. If f is continuous on D, then {B"f}, converges uniformly in D to the
harmonic extension of the boundary function f. See [42].
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11.

12.

13.
14.

15.

16.

17.
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. If f is bounded and radial, then Bf € Cy(D) if and only if

1 1
——/ fydr — 0
1-rJ,

asr — 17. See [89].

. If f € L°°(D), then B f € Cy(D) if and only if

n /D f@zI*"dA(z) - 0

asn — +o0.
For f(z) = —2log |z| on D, show that Bf (z) = 1 — |z|>.
If f € C2(D), then

Bf(z) =F(z) - /D [l - I(pz(z)lz] Ay f(w)dA(w), zeD,

where F is the harmonic extension of the boundary function of f.

If f € C*(D), then
7@ =F@+ [ [loglpsl] Ausdac).  zeD,

where F is the harmonic extension of the boundary function of f.
For f(z) = log[1/(1 — |z]*)] on D, show that Bf = f + 1.

Let 0 < p < 4o0. Characterize those functions ¢ € H® such that

U/DIf(Z)I”dA(z)</D|<p(z)f(z)|"dA(z)

forall f € AP and some constant 0 > O (depending on ¢ and p but not on
f)- See [29].

Suppose 2 < p < 400 and that f is an analytic function on D. Show that
MO(f) € LP(D, dx) if and only if f € B, (the analytic Besov spaces).
See Exercise 9 in Chapter 1 for the definition of dA. See [135].

A bounded function ¢ on D is a pointwise multiplier of BMO; if and only
if MO(p) log(1 — |z/|?) is bounded in D. See [134].

Fix a sequence {z,}, in D. For t > 0, let A, be the operator on /> whose
matrix under the standard basis has

(1= lzm)"2(1 = |za*)'"?
(I = z2mzp)!
as its (m, n) entry. For t > 1, A, is bounded on 12 if and only if {z,}, is
the union of finitely many separated sequences; for t = 1, A, is bounded on

12 if and only if {z,}, is the union of finitely many (classical) interpolating
sequences. See [142].
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18. Show that the Bergman projection maps BMO; onto the Bloch space.
Similarly, the Bergman projection maps VMOj onto the little Bloch space.

19. Fix —1 <a < +o00and 0 < p < +o0. For a sequence A = {a,}, in D, let
R4 be the operator that sends an analytic function f to the sequence

{(1 = 1anHE+DP £ @)} .

Show that R4 is bounded from AZ to I” if and only if A is the union of
finitely many separated sequences. See [139].

20. If f € BMO;, then the function
(1—12PIVBf(2)l

is bounded on D. Here, V stands for the gradient operator.
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AP-Inner Functions

In this chapter, we introduce the notion of AZ-inner functions and prove a growth
estimate for them. The AZ-inner functions are analogous to the classical inner
functions which play an important role in the factorization theory of the Hardy
spaces. Each AZ-inner function is extremal for a z-invariant subspace, and the
ones that arise from subspaces given by finitely many zeros are called finite zero
extremal functions (for @« = 0, they are also called finite zero-divisors). In the
unweighted case @ = 0, we will prove the expansive multiplier property of A?-
inner functions, and obtain an “inner-outer”-type factorization of functions in A?.
In the process, we find that all singly generated invariant subspaces are generated
by its extremal function. In the special case of p = 2 and @ = 0, we find an
analogue of the classical Carathéodory-Schur theorem: the closure of the finite
zero-divisors in the topology of uniform convergence on compact subsets are the
AZ-subinner functions. In particular, all A%-inner functions are norm approximable
by finite zero-divisors.

3.1 AP-Inner Functions
Classical inner functions in D play an important role in the theory of Hardy spaces.

Recall that a bounded analytic function ¢ in D is called inner if |¢(z)| = 1 for
almost all z € T. This is clearly equivalent to

1 2
2_/ ()P = 1)z" |dz| =0
7 Jo
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for all nonnegative integers n; and the condition above is independent of p, 0 <
p < +oo. This motivates the following definition of inner functions for Bergman
spaces.

DEFINITION 3.1 A function ¢ in AL is called an A% -inner function if

/D(Itp(z)I" D)2 dAa(D) =0

for all nonnegative integers n.

It follows easily from the above definition that a function ¢ in AP isan AP -inner
function if and only if

fD @I 9(2) dAa(2) = 4 (0)

for every polynomial ¢, and this condition is clearly equivalent to
/D lo(2)IP h(z) dAa(2) = h(0),

where 4 is any bounded harmonic function in D. In particular, every A%-inner
function is a unit vector in AZ.

An obvious example of an AZ-inner function is a constant times a monomial.
In fact, forany n = 0, 1, 2, . .., the function

0= F (%2 +a+2) %n
Pl = (%2 +1)T(e+2)

is AZ-inner. More examples of A%-inner functions will be presented later when
we study a certain extremal problem for invariant subspaces.

Our first goal is to show that AZ-inner functions grow much more slowly near
the boundary than an arbitrary function from A% does. The following lemma tells
us how fast an arbitrary function from A} grows near the boundary.

LEMMA 3.2 If f is a unit vector in A%, then

| f(2)] Su——TzWﬂ“—W’ zeD.

Proof. Let u be a positive subharmonic function in D. Then by the sub-mean
value property of subharmonic functions on circles and by using polar coordinates
we have

u(0) < jﬂ;u(z) dAy(2).

Replace u by u o ¢,, where, for a € D,
a—z
1 —az

©0a(2) = , zeD.
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We conclude that
u(a) < / U0 @a(2)dAy(2)
D

for all a € D. Making an obvious change of variables, we obtain
u@) = [ 1@ @R dan

for all a € D, where
1 = la 2y2+a)/2
ke = L la
(1 —az)*t«

are the normalized reproducing kernels of Ag.
Now suppose f is a unit vector in A%. Fix any a € D, and let

@ =|ro@) ™", zem.

Applying the estimate in the previous paragraph, we conclude that

r@ @)™ <1,

that is,

1
[f(@)] = (1= jaP)C+ap

for all a € D, completing the proof of the lemma.

Since the polynomials are dense in A%, it is an immediate consequence of

Lemma 3.2 that for f € A%,

f@)] =0 (——'———) as 2] — 1.

(1= [z @+e/p

which means that the boundary growth is actually not quite as fast as permitted by

Lemma 3.2.

To obtain a better estimate for AZ-inner functions, we are going to show that
every AL-inner function is a contractive multiplier from the classical Hardy space

HP into A%. Recall that H? consists of analytic functions f in D such that

2n

1 .
I F1G, = Osupl 7 A | f(re'")|P dt < +oc.
<r<

If f € HP, then the radial limits f(e”) exist for almost all real ¢ and

1 27 )
P = NP dt.
N ep 271'/0 [f ()]

The books [37], [49], and [82] are excellent sources of information about Hardy

spaces.
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THEOREM 3.3 If ¢ is AL-inner, then ¢ is a contractive multiplier from HP into
Ag, and consequently,

1
lp(2)| < a_ zeD.

|z]2)(1+a)/p ’

Proof. Suppose f € H? and let h be the least harmonic majorant of | f (z)|”.
More explicitly,

1 2 . .
h(z) = —/ P, )| f ()P dt, zeD,
2 0

where P(e'?, z) is the Poisson kernel at z € ID. By Fatou’s lemma and the definition
of AP-inner functions,

/Dlw(z)l”h(z)dAa(Z) < lim ilr_lf/D lo(@1Phy(2) dAa(2) = h(0),

where h,(z) = h(rz) for z € D. It follows that
/leﬂ(z)f(Z)I”dAa(z) < /lep(Z)lph(Z)dAa(Z) <h©) = |5

so that ¢ is a contractive multiplier from H? into A%.
For any z € D, consider the function

1.2 \ /P
f= (1) wen

(1 —Zw)?

Then £, is a unit vector in H?, and so ¢f; has norm less than or equal to 1 in AZ.
Applying Lemma 3.2 to the function ¢f,, we conclude that

1

(1 —|z|H)+a)/p’ z€D,

lp(2)] <

as claimed. L

3.2 An Extremal Problem

In this section, we exhibit the close relationship between A%-inner functions and
invariant subspaces of A%. In particular, this will provide us with more examples
of AZ-inner functions.

A closed subspace I of A% is called invariant if zf € I whenever f € I. Here,
z denotes the identity function on D. It is easy to see that a closed subspace I
is invariant if and only if it is closed under multiplication by bounded analytic
functions.

We give two examples of invariant subspaces in AZ. First, if A = {a,}, is a
sequence of points from I, and if I4 consists of all functions in A? whose zero
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sets contain A (counting multiplicities), then /4 is an invariant subspace of A”.
We call such spaces zero-based invariant subspaces.

Next, if f isany functionin AY, and if /1 is the closure in A of the set consisting
of all polynomial multiples of f, then Iy is an invariant subspace (called the
invariant subspace generated by f). We call such spaces singly generated invariant
subspaces, or sometimes, cyclic invariant subspaces. Note that the notation [ f] is
sometimes used instead of .

For any invariant subspace I of AP we let n = n; denote the smallest
nonnegative integer such that there exists a function f € I with f™(0) # 0.

THEOREM 3.4 Suppose I is an invariant subspace of AL and G is any function
that solves the extremal problem

sup {Re f™(0) : f € LI fllpa <1},
wheren = ny. Then G is an Ag-innerfunction.
Proof. It is obvious that G is a unit vector. We will prove the theorem by a

variational argument.
Fix a positive integer k, and set

re' = / 1G(2)1PZF dAu(2),
D

where 0 < r < 1 and — < 6 < m (polar coordinates). For any complex number
A, we consider the function

G(2)(1 + ArZ5)
G + )\Zk)”p.a )

Since fj is a unit vector in /, the extremal property of G gives

Re £ (0) < G™(0).

fil) =

This implies that
< / G@IPIL + 24P dAg(2)
D
for all A € C, so that

1<1+pRe l:k/ |G (2)|P* dAa(z)] + O(IA).
D

Put A = —ge™ ¥ where ¢ > 0 is small and 6 is as above. We then obtain
0<—r+ 0().
Letting ¢ — 0, we see that 7 = 0, and so G is A-inner. n

For any invariant subspace I, the extremal problem stated in the theorem above
will be referred to as the extremal problem for 1.1t is now natural to ask when the
extremal problem for I has a solution, and when the solution, if it exists, is unique.
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PROPOSITION 3.5 Suppose 1 < p < +oco and I is an invariant subspace of
A%. Then the extremal problem for I has a unique solution.

Proof. Let S be the supremum in the extremal problem for 7. Choose a sequence
{ fi}x of unit vectors in I such that

§ = lim £ (0),

where n = n;. By a normal family argument, we may assume f;(z) — f(z) as
k — +o0, uniformly on compact subsets of D. By Fatou’s lemma, || fl,.« < I,
and also, f is in the weak closure of /. Basic Functional Analysis tells us that the
weak closure and norm closure of a subspace in A2, for 1 < p < 400, are the
same. It follows that f belongs to I and solves the extremal problem for /.

To prove uniqueness, suppose f and g are two solutions to the extremal problem.
Then f and g are unit vectorsin I, and forevery t € (0, 1), the functionzf +(1—1)g
also solves the same extremal problem. It follows that

ltf + (A =t)gllp,=1=[tfll, + 1A =)glp,
for all t € (0, 1). From Real Analysis we know that
IF+Glp,=1Fllp, + Gl

if and only if one of the two functions is a positive constant multiple of the other.
From this we conclude that f = g. ]

When 0 < p < 1, the space Af is no longer locally convex, and so we do
not know automatically whether the weak and “norm” closures of I coincide.
Neither the existence nor the uniqueness of solutions is known in general in the
case 0 < p < 1. However, if I is a zero-based invariant subspace in AP, then the
existence of a solution to the extremal problem for I, even when 0 < p < 1, is
easily established by a normal family argument; we are going to show later in the
chapter that such a solution is also unique in the unweighted case.

If the extremal problem for I has a unique sclution, we then denote it by G and
call it the extremal function of I. In particular, if I = I4 is a zero-based invariant
subspace in A”, then the corresponding extremal function G4 = G, will be
called a zero divisor. The phrases canonical divisor or contractive zero divisor are
sometimes used as well.

The extremal problem is explicitly solvable only in very special cases. We give
several simple examples here.

First, if p = 2, then every invariant subspace I in Ag has a reproducing kernel
K‘,’(z, w). If in addition n; = 0, then the extremal function G‘;’ for I is simply

Gi(z) = K} (z,0)/,/K§(0,0).

We now mention an iterative procedure for obtaining the reproducing kernel
function for finite zero-based invariant subspaces, which by the above leads to
explicit formulas for the corresponding extremal functions. Let A = {qy, . .. ,an}
be a finite sequence of points in D, and suppose a € D\ A. To simplify the notation,
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we write K for K7, . Then the kernel function for an additional zero at a is given
by
_ K3z, a)Kj(a, w)

, , e D xD.
K% (a,a) (z, w) X

K (@ w) = Kj(z, w)

Iteratively this formula gives us the kernel function for finitely many distinct zeros.
The first step is to apply the formula to the case of A = @, and get

e B 1 _( l—Ia[z >2+a
@)=y et —aw)

where we write a in place of {a}. As we insert this into the formula for the extremal
function G, for I, = {f € Ag . f(a) = 0}, we arrive at

. 2\ 2+«
Ga(z)=(l—(l—lalz)”")—%{l—(1 ‘“') ] zeD.

1 —az

In general, for a finite zero sequence A = {ay, ... , ay} of distinct points in I, the
extremal function G is a linear combination of the functions

1 1
(L—@2’ 777 (1—ayye’
which are the reproducing kernel evaluated at the zeros and at the origin. If multiple
zeros are encountered, then derivatives of the kernel function,
3/ 1 2
. =Q+a) - (+l4+a)——n——,
dw’ (1 — zw)?+e ( ) ) (1 — zw)2+i+a

are needed for the construction of G§.

We return to general p, 0 < p < +00, but put « = 0. For a pointa € D\ {0},
let I x4 be the invariant subspace of the unweighted Bergman space A? consisting
of functions having a zero at z = a of order at least n. Then the extremal problem
for Inx, has a unique solution G,x, (see Section 3.5 for uniqueness), which is
given explicitly by

n 2\ 2/p
a—2z npl—ja
ana(Z)ZC — 1+—p"“4 ,
1 —az 2 1—az

—(ZY (1420 = 1ap)
c_<|a|) (1+2(1 lal )) .

We leave the necessary verifications as an exercise to the reader. Hansbo has ob-
tained an analogous explicit formula for the case of two different zeros of arbitrary
multiplicities [52]; a Bessel-type function appears as aresult of interaction between
the zeros. Finally, if 0 < 0 < 400, and

where

1
sa<z>=exp(—ol+z), zeD,
— 2
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is the singular inner function with atomic singularity at z = 1, then the invariant
subspace [ S ] of the unweighted Bergman space A generated by S, gives rise to
a unique extremal function G, (see Theorem 3.33 for uniqueness), where

2/p
_ o 14z
Go(z) = (1 + po) 1/p (1+T£:—z) exp (—al—_z-), z€D.

This follows from the formula in the previous paragraph. In fact, if a = a, =
1 — o/n in the extremal function in the previous paragraph, then G,xq, — Go

asn —> +00. Again, we leave the verification and justification of this limit as an
exercise to the reader.

3.3 The Biharmonic Green Function

Our next goal in this chapter is to show that A”-inner functions have the so-called
expansive multiplier property, or equivalently, the contractive divisibility property.
We recall that we have normalized the Laplacian:

1/ 92 92 _
A:Azzz ai‘-'-a—yz' ) z:x+1y_

In terms of Wirtinger derivatives, we have the following alternative and often more
convenient expression for the Laplacian:

32
*7 9207
We recall that a function f defined on a planar region is harmonic if Af = 0. A

real-valued twice differentiable function f on a planar domain is subharmonic if
Af > 0. We shall write ds for normalized length measure:

ds(z) = —.
() e

The starting point for our proof of the expansive multiplier property is the
classical Green formula below, which can be found in any book on multivariable
calculus and whose proof will be omitted here.

THEOREM 3.6 Suppose 2 is a domain in the complex plane whose boundary
92 consists of afinite number of smooth curves. If f and g have continuous second
derivatives on Q, the closure of Q, then

1 el
[ rae-sapan=3 [ (g—f - f—ag> ds,
Q IR on on

where 3/3n is the inward normal derivative.
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COROLLARY 3.7 Suppose 0 < r < +oo and f has continuous second
derivatives on the closed disk |w| < r. Then we have the identity

/ r? = 12dH Af(2)dAGR) = r f(@)ds(z) — f(2)dA(2).
|z]<r

|zl=r lzl<r

Proof. This is a straightforward application of Green’s formula. [ ]

COROLLARY 3.8 Suppose 0 < r < +o00 and f has continuous second
derivatives on the closed disk \w| < r. Then for any fixed z with |z| < r,

riz—w 1 r2—|z2
2/ log —52-——*-:)‘ Af(w)dA(w)=f(Z)——/ ——I—l—z-f(w)ds(w).
lwl<r re<—w r lwl=r |Z - wl
Proof. For small positive ¢, we remove a closed disk centered at 7 with radius
& from the disk |w| < r and denote the remaining domain by .. We note that the
function

r(z —w)

w > log | ———
ré—zw

is harmonic in €2,. The desired result then follows from applying Green’s formula
to the domain €2, and then letting ¢ shrink to zero. We omit the routine details. m

The Green function for D is

2

—w -

G(z, w) = log = 2log —

— wl, (z, w) € D x D.
1 —zw 4

The Green potential of a function f is then the function defined by
Glfl(x) = / G(z,w)f(w)dA(w), zeD.
D

In what follows we let C*(X), where X is a planar set, denote the space of
complex-valued functions on X whose k-th-order partial derivatives are all con-
tinuous on X. To make this precise, it is sometimes necessary to obtain extensions
of the functions beyond X, and apply the differentiation to the extended function.

THEOREM 3.9 Suppose f € C(D) N C*(D). Then
(1) G[f] € C(D)N C3(D).
(2) AG[f]= finD.
(3) G[f1=00nT.

Moreover, these conditions determine the Green potential G[ f] uniquely.
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Proof. For any fixed z € D, we let ¢, denote the conformal mapping of D
defined by

Z—w
—, w e D.
1 —Zw

p(w) =
By a change of variable argument,

(1—1z2%?

T Zwp dA(w).

Glf1R) = fDIOg wl* fog.(w)
This clearly shows that G[ f] € C*(D).
Next we show that G[f] € C(D) and G[f] = O on T. Fix a pointa € T, and
write

5 (1—1z21»?
Glfl) = / log lw? [ £ o pe(w) — F(@)] S22 4aqw)
D |1 — Zw]
2
—|—f(a)/ log | ~——— l dA(w).
D 1 —zZw

If we use the function |w|? and » = 1 in Corollary 3.8, the result is

2

LY dAw) = —(1 — |23,

1
./Dogl

G[f](z)=/]D)loglwl2 [fop.(w)— f(a)]

—_ Ew
It follows that

(= z/»)?
1 —zZw|*
The second term on the right-hand side above clearly tends to zero as z — a.
To see that the first term also goes to zero as z — a, break the integral into two
parts, one over the disk |w| < 8, where § € (0, 1), and the other over the annulus
8 < |w| < 1. The integral over the annulus can be made arbitrarily small by
choosing § close enough to 1, because log |w| — 0 as jw| — 1 and

(1 —121»?

e dAW) < 21|l

11 —Zw|

The integral over the disk |w| < § tendsto 0 as z — a, because fop,(w) — f(a)
uniformly for |w| < 8. This shows that G[f](z) — 0 as z — a and hence
completes the proof of (1) and (3).

To prove (2), take any C* function g with compact support in D. By Green’s
formula and Fubini’s theorem,

/D AGLf1(2)2(2) dA(2)

dAw) — f(a) (1 —z%).

/ If o @.(w) = fla)l
D

/DG[f](z)Ag(z)dA(z)

fD Ag(2) dA®) fD Gz, w) f(w) dA(w)

fD f(w) dA(w) /D Gz, w)Ag(2) dA(2).
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By Corollary 3.8,

g(w) = /D G(z,w)Ag(2)dA(2)
whenever g is C* with compact support in D. It follows that

/D AGLF1(2) 8(2) dA() = /D Fw) g(w) dA(w).

This clearly implies that AG[f] = f. [ ]

The above theorem tells us how to solve the Laplace equation Af = g. It also
tells us that the solution is unique with the additional boundary condition f = 0
onT.

It turns out that we can also solve the fourth-order partial differential equation
A%f = g on D in a similar fashion. For that we introduce the biharmonic Green
function for D:

2
+ (0 =12H = w?),  (zw)eDxD.

Z
'z,w)=|z— wlzlog n

The biharmonic Green potential of a function f is then defined as the function

Iiflz) = /Dl“(z, w) f(w) dA(w), ze€D.

THEOREM 3.10 Suppose f € CY(D) N C*(D). Then
(1) T[f1 e CH(D) N CHD).
(2) A’T[f]= f inD.
(3) TIf1= £&Tf1=00nT.
Furthermore, these conditions uniquely determine the potential T'[ f].

This theorem will not actually be used for the presentation of the material in this
book, and its proof is rather tedious though analogous to that of Theorem 3.9, so
we omit the proof here. However, the above properties are important for the gen-
eral understanding of biharmonic Green potentials. We shall need several further
properties of the biharmonic Green function. It is good to know approximately
how big I'(z, w) is.

LEMMA 3.11 Forall z, w € D, we have

(1 — 12121 — |w|»)? (1= 12121 - lw?)?
M_wp S l@wW= n—zw?

In particular, T'(z, w) is strictly positive.
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Proof. Simple manipulations with the definition of I'(z, w) and the well-known
identity

R A e R I e o)
l—zw| 1 — zw]|?
yield the formula
Plewy = LT P2A = b ) z—w ’
' 1 - zw|? 1-zw| )’
where
1 —x)log(l —
Fy =47 °i(2 DX
It is easy to see that
+o0 X"
F)y=Y ——M——, <1
(x) ,g(k+1)(k+2) il =

This implies that
1
ESF(X)EI, 0<x=<I,

and the desired estimate for I'(z, w) follows. ]

We emphasize three points that are easily seen from the asymptotic formula for
I'(z, w) above. First, the biharmonic Green function is positive on D x D. Second,
if z € D is fixed, then

Tz, w) ~ (1 — |w|??, lw| — 1.

Finally, for fixed z € D, we have

d
F(Z, LU) = m—)r(z, w) =0

for all {w| = 1 (this can be checked directly from the definition of I" or from the
power series expansion of F in the proof of the lemma above).

LEMMA 3.12 Fix w € D. Then
AT(z,w) =G w)+ (1 —w?HH(Ew), zeD)\{w),
where

Hz.w) = = jwp?
Z, = -
1 — zw|?

Proof. This is a straightforward calculation using Wirtinger derivatives. We
omit the details. ]

We need the following monotonicity property of the above function H.
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LEMMA 3.13 Fixz € T and w € D. Then the function

w
r— rH(z, ——)
-

is increasing on the interval (Jw|, 1).

Proof. For |w| <r < 1, we have

r

H(z ) = M
r2|r —we|”

A computation shows that the derivative

d w

a7)

dr ¢ r
is equal to

y 7 wp (r2—|w|2)2(2+ I I )

r3

(3]
~~
~
l
gl
&~
SN
~

N
—
~
|
g
Il
S

rlr-—wzlz - |r—wz|2 r

It then follows that the derivative

L) (e ) (e

is equal to

(r2_|w|2)2( r—|w| 2 1 1 )
r

(r +1wl) r—lwl r—wz r-—wz

— 2
rlr —wz|
which is greater than or equal to
212
(r? = i) " = [wi)

r2|r — wzlz(r + lw)) '

because for r > |w| we have

1 | 2 2
p — :2Re( _)5 — < .
r—wz r-—wz r— wz [r —wz] = r —|w|

The proof is complete. "

The monotonicity of H leads to a corresponding monotonicity property of the
Green function T", as the two are related by the formula

I'(z, w) = nlfmlax“mw” /_7; H(em, g) H(em, %) do € dt.

This identity can be verified by explicit computation. However, it is more appro-
priate to view it as a special case of Hadamard’s variational formula, which will
be discussed in detail in Chapter 9.
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LEMMA 3.14 Fix z, w € D. Then the function

r— rl"(z, E)
’

is increasing on the interval (|w|, 1).

Proof. By the above integral representation of the biharmonic Green function,

)7 fo [ )0

ax{|z|.lwl|/r}

for lw| < r < 1. Note that the interval

onf 2

gets bigger as r increases. On the other hand, since |[w|/r < &, we have |w| < r§,

and hence
W
H( 19’ _
r&€ e r’g’)

is an increasing function of r, according to Lemma 3.13. The proof is complete. m

Recall that for a function f inD and O < r < 1, the dilation f, is defined by
fr(@) = f(rz),z€D.

LEMMA 3.15 [If f is a positive locally summable function in D, then
PTIf1@ < TIfIR),  zeD,

forall 0 < r < 1. Moreover, r3T[ f,] increases monotonically to T'[ f] pointwise
onDasr — 1°.

Proof. After a change of variables, the formula

Prifl@ =r / ['(z, w) fy(w)dA(w), zeD,
D

becomes

rTf)z) = /

lw|<r

w
/T (22) fw)dAw),  zeD.
The assertion is now immediate from Lemma 3.14. [ ]

LEMMA 3.16 Suppose 0 < p < +oo and f is an analytic function on D. Then

the potential r T[A| f,|P] increases monotonically to T[A| f|P], pointwise in D,
asr — 17.

Proof. Since | f|7 is subharmonic, the function A|f|? is positive. Moreover,
Alfy@IP =r*AlfIP(r2),  zeD,

The desired result then follows from Lemma 3.15. ]
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3.4 The Expansive Multiplier Property

In this section we prove an integral formula concerning AP-inner functions. As
a consequence we obtain the expansive multiplier property for such functions.
Note that the results in this section are stated and proved in the unweighted case;
they cannot be generalized to the weighted Bergman spaces A} in the full range
-1l <a<+o0.

WEe shall need the following lemma from integration theory.

LEMMA 3.17 Suppose that 1 is a finite positive measure on the measure space
X andthat 0 < p < +oo. If f, and f are ju-measurable functions on X such that
fn(x) = f(x) p-almost everywhere as n — +oc and

1imSUPf | fnl? dp 5/ If1Pdu < 400,
X X

n—+o00

then

lim / o= fIPdp=0.
X

n—+00

Proof. Let E be any measurable set in X. Then by Fatou’s lemma,

/Ifl"du < liminf/lfnl"du
E n E

< limsup[/ |f,,|pdu—/ |fn|pdﬂ]
n X X\E

< /|f|pdu—liminf/ [ful? du
X n X\E

<

/Ifl"du—/ Iflpdu=/ 1P dp.
X X\E E

lim/ Ifnl"du=/ £17 dp.
n E E

Given any positive number &, we can choose 8 > 0 such that

/Ifl”du <e
E

whenever u(E) < §. By Egorov’s theorem (see any book on Real Analysis), there
exists X; C X such that u(X \ X;) < & and f, — f uniformly on X;. It is
elementary to check that

It follows that

|z — wl? < 2P (jz” + [w|?)
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for all 0 < p < 400 and all complex numbers z and w. Thus,

/len—flpdu - fxllfn—fl"du+/ \fu— F1Pdu

X\X,

IA

n= PP au 27 [ (1l 171
X X\X,
Since the integral over X| above tends to zero by uniform convergence, we obtain
imsup [ 17, = £17du <2770 [ 1717 a <2071
n b'¢ E

completing the proof of the lemma. n

Recall the expression of the kernel A,I'(z, w) from Lemma 3.12.

PROPOSITION 3.18 If0 < p < +oc and f is analytic in D, then

/ F(z, w)A|f(2)IP dA(2) =/ AT (z, w)|f(2)IP dA(2)
D D
for all w € D. Furthermore, either integral is finite if and only if f € AP.

Proof. We observe that for fixed w € D, A,TI'(z, w) is positive except on a
compact subset of ID, and that part makes a finite contribution to the right hand
side. So, if the right-hand integral diverges, it is because of the contribution from
points near the boundary, in which case the integral equals +oo.

If f is analytic in D, then the desired identity follows directly from Green’s
formula and the fact that

a
[(z,w) = mr(z, w) =0

for z € T; the zeros of f and the logarithmic singularity of A,I'(z, w) atz = w
can be taken care of by removing from D a finite number of disks with radius ¢
and then taking the limit as ¢ tends to zero. In particular, the identity holds if f is
replaced by f,, 0 < r < 1. The general case then follows from an obvious limit
argument involving Lemma 3.16. ]

COROLLARY 3.19 Suppose0 < p < +oco and ¢ is an AP-inner function. Then
ﬁr(z, w)Alp(2)|P dA(2) = fDG(Z’ w)lp()IP dAR) + 1 — |wl?
forallw € D.
Proof. Recall that by Lemma 3.12,
1 — |zw|?

AT(z,w) = Gz, w) + (1 — |w]?) —
11— zw|?
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For any fixed w € D, the function
1 — Jzw|?
11— w2

is bounded and harmonic in D. The assertion then follows from Proposition 3.18
and the definition of AP-inner functions. [ ]
Using the identities

2
dA(z) = —(1 — |w]?), w e D,

/ G(z, ) dA(2) =/ log | ~———
D D 1 -
we can rewrite Corollary 3.19 as

I [Alel?] =G [lelP —1].

Since the Green function G(z, w) is negative and the biharmonic Green function
I'(z, w) 1s positive, it follows that

0<T[alplP] @ =G[lolP =1]@) <1-z,  zeD,

for all AP-inner functions ¢.
We can now prove the main result of the section.

THEOREM 3.20 Suppose 0 < p < +o0c and ¢ is an AP-inner function. Then
[wrgan= [ gan+ [ [ rewmaswaipordacdaw
D D DJD
forall g € C*(D). In particular, if g is also subharmonic, then

/ 2(2)dA() < f 0(2)1P8(2) dAQ).
D D

Proof. By Theorem 3.9, there exists a bounded harmonic function A in D such
that

8(z) = GlAg] (2) + h(2), zeD.
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Using the definition of A”-inner functions, Fubini’s theorem, and the remark after
Corollary 3.19, we obtain

fD(W — 1) gda

/D(Iw(z)l" = 1)[h(2) + G[Ag] ()] dA(2)

/D(Iw(z)l"— 1)/ G(z, w)Ag(w)dA(w) dA(z)

D

= fDAg(w)fDG(z, w) (lp(2)IP — 1) dA(z) dA(w)
= _/H}Ag(w)fgl“(z, w)A|lp(2)|P dA(z) dA(w)
= /D/DF(Z’ w)Ag(w)Alp(2)|P dA(2) dA(w).

If g is also subharmonic, then Ag > 0in D; since I'(z, w) and A|p(z)|? are both
positive, we conclude that

/g(z)dA(z)§/ lp(2)|Pg(2) dA(2),
D D

as asserted. ]

The form of Theorem 3.20 that we will actually use runs as follows.

COROLLARY 3.21 Suppose 0 < p,q < +0o0 and ¢ is an AP-inner function.
Then

/ lel?1f19dA =/ If14 dA+[ / Lz, Al f(w)I? Alp(2)IP dA(z) dA(w)
D D DJD
provided f is analytic in D.

Proof. Although the function g = | f|” is not necessarily in C(DD), the proof
of Theorem 3.20 can easily be modified to work in this case; all one has to do is
remove from D tiny disks centered at the finitely many zeros of f and then use a
limit argument. L
COROLLARY 3.22 If0 < p < +o0 and ¢ is AP-inner, then

/ If (@17 dA(2) < f lo@) f()I” dA(2)
D D
forall f € H*®.
Proof. By an obvious approximation argument, we may assume that f is ana-

lytic in D. The assertion now follows from Corollary 3.21 with ¢ = p, in view of
the positivity of the biharmonic Green function and the subharmonicity of | f|7. m
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COROLLARY 3.23 Suppose 0 < p < +00 and ¢ is a bounded AP-inner
function. Then

/le(z)l”dA(z)S/Dlw(z)f(z)l”dA(z)
holds for all f € AP.

Proof. This follows from Corollary 3.22 if we approximate f by its dilates f,
with0 < r < 1, given by f,(z) = f(rz) for z € D. ]

The property exhibited in the two corollaries above will be called the expansive
multiplier property of AP-inner functions.

We observe from Corollary 3.21 that if p = 2 and g is an A’-inner function,
then

f lph|?dA = / lh|?dA + / f T(z, w)|¢ (@) Pk (w) > dA(z) dA(w),
D D DJD

where A is any function analytic in D.
We conclude the section with an integral estimate for dilated A”-inner functions,
which should be compared with Corollary 3.19.

PROPOSITION 3.24 Suppose 0 < p < +00 and ¢ is an AP-inner function.
Then, for0 < r < 1, we have

/]D)I“(z,w)A!wr(z)I”dA(z) < A)G(z, w)ler@)IP dA(R) + 1 — |w|?
forallw e D.

Proof. By Lemma 3.12 and Proposition 3.18,

/;DF(Z, w)Alg (DIP dAGz) = /G(Z, w) lgr (2)1P dA(2)

wl?) f . |z_|2 lor ()17 dA(2),

where we observe that the function
1 — |zw|?

P(Z,w)=|l—_—zg'!§

is the Poisson kernel extended harmonically to both variables. We are to show that
[ Pewin @i <t
D
Consider, for A € D, the function

/TP()», £) lp(z8)17 ds(8), zeD,

where we recall the notation ds(z) = |dz|/(2r) for normalized arc length measure.
As a function of A, it is harmonic with boundary values |¢(zA)|?, and in view of
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the fact that the function |@(zA)|” is subharmonic as a function of A, we obtain
from the sub-mean value property that

lo(zM)I? SAP(Kf)I(p(Z&)I”dS(é), zeD.

Specializing to A = r, we obtain

0 @17 < A P(r.6)lp(zE)7 dsE),  zeD.

Since ¢ is AP-inner, an application of Fubini’s theorem gives
@ pp g

/D PG w) lor@IP dAG) < /D Pz w) /T P(.€) ()17 ds(®) dA)
_ Ar PG 8) fD Pz, w) lp(z8)I? dA2) ds (&)
- /T P(r,£) P(0, w) ds(€)
= AP(r,&)d&($)=P(r,0):1’

as claimed. "

The above proof actually shows that for an A”-inner functionp and0 < r < 1,
the dilation ¢, is a subinner function in the sense of Section 3.7, that is,

ﬁh(z) lor(2)17 dA(z) < h(0)

holds for all positive harmonic functions 4 on D.

3.5 Contractive Zero Divisors in AP

In this section we take a closer look at the extremal problem for invariant subspaces
generated by zero sets of AP. We show that a unique solution exists in this case,
even when 0 < p < 1. Recall that existence follows from a normal families
argument (see Section 3.2). We will also prove that the extremal function, which
we call a (contractive) zero divisor, is analytic across the unit circle when the zero
set is finite.

We begin with the case of a single zero with multiplicity 1.

LEMMA 3.25 Suppose 0 < p < +00 and a is a nonzero point in D. Let I, be
the invariant subspace of AP consisting of functions f € AP with f(a) = 0. Then
the extremal problem for I, has a unique solution, and the solution is given by

_ _ 2/p
Ga(z)=calZ f[1+§(1+az a)] ,

F4 1 —az
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where

a ~1/p
C, :__"_[1+£(1—|a|2)] .
lal 2

Proof. Let g be any polynomial. Then a change of variables leads to

w+a
1 +aw

f 1Ga(2)1Pq(2) dA(2) = (1 — |a|})*IC,l? /D lk(w)|*lw|Pq [ ] dA(w),
D i

where
k(w) = 1+ (p/2)_(1 —};aw)
(I +aw)~

Now, let

+00 +00
k(w)=anw" and f(w)=k(w)q<w+a ) =chw",
n=0 n=0

1+aw

and integrate by polar coordinates to get
- +00 2
(1 —1al1Cal” )
n=0
(1 = 1a|}?|Cal” f (—a):

here, we used the fact that b, = (n + p/2 + 1)(—a"). The definitions of C,
and k easily reduce the last expression above to ¢ (0), so that G, is an A”-inner
function that clearly belongs to I,. Since G, is analytic on D, the expansive mul-
tiplier property of G, becomes ||gll, < |Gagll, for all g € AP, or equivalently,
lg/Gallp < ligll, forall g € I,, since G, only vanishes at a in D.

Suppose g € I, and ||g||, < 1. Then

g0 | _ H 8
Ga(0)| ™ | Ga

I

14 - -
/DIGH(Z)I q(z)dA(2) 2n+p+2bncn

<lglp =1,
p

so that G, is an extremal function for I,. Since the first inequality above is strict
unless g/G, is constant, we see that G, is the unique solution of the extremal
problem for I,; otherwise, taking g to be another extremal function would yield
8(0) < G,(0), a contradiction. n

COROLLARY 3.26 Suppose 0 < p < 400, A is an AP-zero set, and 14 is
the corresponding invariant subspace in AP. If G is any solution of the extremal
problem for 14, then G has no extraneous zeros.

Proof. If A consists of a single zero of multiplicity 1, then an inspection of the
formula for G 4 in Lemma 3.25 reveals that G 4 has no extraneous zeros.

In the general case let us assume, for the sake of arriving at a contradiction, that
G has an extraneous zero at z = a; thus either a is a new zero,ora € A but G
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has a zero at z = a of order higher than prescribed in A. It is obvious that a # 0.
Let G, be the function from Lemma 3.25. Then G/G, belongs to 14, and the
expansive multiplier property of G, gives [|G/Gg4ll, < 1. Since 0 < G,4(0) < 1,

the function G/ G, solves the extremal problem for I4 better than G does, which
is a contradiction. -

Our next step is to show that for a finite zero set A the extremal problem for
I4 in AP has a unique solution and that the solution is analytic in a larger disk.
Recall that the uniqueness for 1 < p < 4oo follows from the local convexity of
the space A”.

LEMMA 3.27 Suppose 1 < q < +00 and p = mgq for some integer m > 2. Let
G be the zero divisor in AP of a finite zero set {z};, and let H be the zero divisor
in A9 of the zero set {w;}; obtained from {z;}; by including each z; exactly m
times. Then H = G™.

Proof. By an approximation argument, we may assume that {z;}; does not
contain 0. Since by Corollary 3.26, the zeros of H are exactly the z;’s, each of
which is of order m, we see that H'/™ (the branch with H'/™(0) > 0) is analytic
and has all the properties required in the extremal problem that determines G. Thus
HY™ = G,or H=G™, by uniqueness. |

We will need to use the reproducing kernel functions for a class of Hilbert spaces
of analytic functions in I. Thus, we consider a weight function

(2) = |h(@)I, z €D,

where 0 < t < 400 and 4 is a function in the Bergman space A’ (not identically
zero). For 0 < p < +oc let B? (w) be the space of analytic functions f in D such
that

1/p
1 fllpow= (ﬁ lf(z)l”w(z)dA(z)) < +o0.

Itis easy to show that each point evaluation in I is a bounded linear functional on
the space B” (). In fact, if f is any analytic function in D, then the subharmonicity
of the function | f | w implies that any point evaluation at z € I, where w(z) > 0,
is bounded on B”(w); actually, if K is any compact subset of D where w is strictly
positive, then point evaluations at z are uniformly bounded on B? (w) for z in K. If
Z 1s a point with w(z) = 0, then we can find a sufficiently small positive number r
such that the circle S = {w € C: [w — z| = r} is contained in D and w is positive
there. An application of Cauchy’s formula, together with the earlier remark that
point evaluations at w € S are uniformly bounded on B”(w), then shows that the
point evaluation at z is also bounded on B”(w). Using the continuity of w, we see
that the argument above also works for z in a sufficiently small neighborhood of
a zero of w. We conclude that point evaluations at z are uniformly bounded on

B?(w) if z is restricted to any compact subset of D, and consequently, each space
BP(w) is complete.
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It is clear that each B? (w) contains H*. Let A? (w) be the closure of the set of
polynomials in B (w). Equivalently, A”(w) is the closure of H* in B”(w). For
p=2, B2(w) is a Hilbert space, and then so is A?(w), with the inner product

(fyg)w=ﬁf(z)g(_z)w(z)dA(z).

LEMMA 3.28 Let K, (z, w) be the reproducing kernel for the Hilbert space
A%(w). Then K, (z, w) # O for all z and w in D.
Proof. We first show that K,(z, 0) is nonvanishing in . It is obvious that
Ko (0,0) = sup{| FO) : || fllw2 < 1} > O: (€R))

the maximizing function is f(z) = K,(z,0)/+/K,(0,0). If K,(x,0) = O for
some A € D \ {0}, we consider the function

F(z) = Ku(z,0)/Ga(2), zeD,

Ga(2) : I (‘_'“2)2
)= — —
T V- e 1 -z

is the one-point zero divisor in A2. The function G is analytic on D and vanishes
only at A in D. By the subharmonicity of | F|>w and the expansive multiplier prop-
erty of G, (see Theorem 3.20 and its corollaries; the lower degree of smoothness
of w at its zeros can easily be taken care of by a limit argument), we have

where

fD F(2)Po(2) dAG) < /D 1Koz, 0)[20(2) dAZ) = Ku(0, 0).

Since 0 < G (0) < 1, the function F(z)/+/K (0, 0) solves the extremal problem
in (3.1) better than the function K, (z,0)/+/K(0,0) does. This contradiction
shows that K,(z,0) # O for all z € D.

To show that K, (z, w) # O for all z and w in D, observe that for any Mdbius
map ¢ preserving the disk D, we have

Ky(@(2), 9 (w)) = Kuy(z, w)

for all z and w in D, where

ws(2) = 19’ @D)Pwo¢(z), zeD,

is a weight of the same type as w (since ¢’ is nonvanishing). Combining this with
the result in the previous paragraph, we conclude that K,,(z, w) # O for all z and
w e D. ]

We return to the extremal problem for zero sets. For general p, 0 < p < +o0,
and a finite zero set A = {aj}'j?zl, we are going to show that any solution of the
extremal problem for /4 in A” can be written as the corresponding finite Blaschke
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product

bA(Z)znl_aLILZ_

j=1 aj l—ajz

times the reproducing kernel of the weighted Bergman space A%(w), where 0 =
|ba(2)|”, so the uniqueness of the extremal solution follows. Then we are going to
show that the reproducing kernel of this A%(w) has an analytic continuation across
the unit circle. Note that A2(w) = B%(w) = A? as spaces in the present situation.

LEMMA 3.29 Suppose 0 < p < +oo, A is a finite zero set, and 1 is the
corresponding invariant subspace in AP. If G = G 4 solves the extremal problem
for 14, then

G(2) = K,(0,0)"1P b(z) K,(z, 0)2/7, zeD,

where w = |b|P and b is the Blaschke product corresponding to A. In particular,
G is unique.

Proof. Since G has no extraneous zeros, we can write G(z) = b(z) k(z)¥?,
where k is a nonvanishing function in A%. By the same variational argument as
used in the proof of Theorem 3.4, with the variation G* = G + Azh instead, where
h € I4 and A € C, we see that

/ IG(2)IP*G(2) zh(z)dA(z) =0
D
forall h € I4. Since I4 = bAP, the decomposition f = (f — f(0)) + f(0) gives
/ |G|1P~2G bf dA = f(O)/ IGIP~2GbdA,
D D
where f is any function in AP. Using the factorization of G, we obtain
/ k'=%Pk fIb|PdA = f(O)/ k'=2/Pk |b1P dA, f e AP,
D D
Combining this with the fact that |G|, = 1, we get
1= / k'Y PEMPE\bIPAA = k(O)z//’/ k'72/Pk \b|P dA.
D D
It follows that
/ k'"2P £k |bIP dA = k(0)”¥P £(0)
D
forall f € AP.
If0 < p < 2, we can choose f = hk®/P)=1 where h is any polynomial. Then
f € AP (since0 <2 — p < 2) and

k(O)/ hk\|b|? dA = h(0).
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A simple approximation argument then shows that the above also holds for all
h € AX(w); thus k(0)k(z) = Ku(0, 2) by the uniqueness of the reproducing
kernel in A2(w).

If2 < p < +o00, we can choose an integer m > 2 such thatg = p/m < 2. By
Lemma 3.27, the function G™ = b™k?/4 is the zero divisor in A7 corresponding to
the zero set of b™. According to the previous paragraph, we must have k(0)k(z) =
K, (0, 7), where K, (z, w) is the reproducing kernel of A%(|p™|9) = A2(|b|P).
This shows that the desired representation of G holds for all p. |

LEMMA 3.30 Suppose 0 < p < 400 and 14 is the invariant subspace of AP
corresponding to a finite zero set A. Then the zero divisor G 4 (the unique solution
of the extremal problem for 1 4 ) has an analytic continuation across the unit circle.

Proof. We assume that A consists of distinct points ay, ... , a,; the case of
multiple zeros will then follow from the formulas in the following proof and an
obvious limit argument.

Letb = b4 be the Blaschke product corresponding to A, and foreach1 < j < n,
let b; denote the Blaschke product corresponding to A \ {a;}. For any w € D and
h € H®, an application of the residue theorem yields

— 2, b 1 — |ag|?
k(@) dz = hw) = Y WL Lo,

=1 I—Ekw bk(ak)

1 b(w)z

2mi lz]=1 1 —ZU)

Rewriting the left-hand side as

1 b(w)z

277.'i Jzl=1 I—Zw

b(2) 1b(2)IPh(z) dz,

and applying the Cauchy-Green’s formula to this integral, we obtain

/Db(w) [& +(£+1) L) ] h@Ib@IP dAER)

(1 —Zw)? 2 1 -zZw

n 12
Chy -3 ) Lol

=1 —aw  bi(ax)

Writing the right-hand side above as an integral involving the reproducing ker-
nel K, (z, w) of A%(w), where w = |b|?, and then using the uniqueness of the
reproducing kernel, we conclude that

—_ b(z) p zb'(2)
b(w) [——7+ (£+1) ]

(1 —-zw 2 l —zw

n 2

br(w) 1 —lakl”
= — E — K .
Kole) = L7707 Taao @ W
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Setting z = O reveals that K,,(0, w) has a conjugate analytic continuation across
the unit circle. In view of Lemma 3.29, the proof is now complete. |

We can now prove the existence and uniqueness of the solution of the extremal
problem for any zero-based invariant subspace in A?.

THEOREM 3.31 Suppose 0 < p < 400, A is an AP-zero set, and 14 is the
corresponding invariant subspace in AP. Then the extremal problem for I4 has a
unique solution G 4. Furthermore, G 4 has no extraneous zeros in D, |G 4 f |, >
Ifll, forall f € AP, and llg/G all, < ligll, for all g € Ia.

Proof. Recall that the existence of an extremal function follows from a simple
normal family argument, and that any such extremal function has no extraneous
zeros in D.

Write A = {aj,az,as, ...}, and for any positive integer n, write A, =
{ay, ... ,a,} for the corresponding cut-off sequence. Let G,, be the (unique) zero
divisor for 14, in A?. Let G be any solution of the extremal problem for /4. By
Corollary 3.26, the function G has no extraneous zeros in . We will show that
G, — G in norm, which clearly gives the desired uniqueness.

Since |Gpll, = 1 for all n, the sequence {G,}, is a normal family. Thus a
subsequence {G,, }x converges uniformly on compact sets to an analytic function
H in D. Since each G, has no extraneous zeros, Hurwitz’s theorem tells us that
either H is identically zero, or H has A as its zero set.

The function G belongs to each I4,. So the extremal property of G, gives
G,(0) > G(0) > 0 (an obvious adjustment can be made if 0 € A). This implies
that H(0) > G(0), and hence H has A as its zero set. Also, Fatou’s lemma tells
us that ||[H||, < 1. Combining this with the extremal property of G, we obtain
H(0) = G(0).

Another application of Fatou’s lemma gives
co| )¢

ao)| = |7, <IGl, =1
This implies that G = H. And using Fatou’s lemma one more time, we see that
lg/Gllp < ligllp forall g € I4.

The same arguments above show that each subsequence of {G,}, has a subse-
quence that converges uniformly on compact sets to the function G. It follows that
Gp — G uniformly on compact sets. Since ||G,ll, = G|, = 1, an application
of Lemma 3.17 shows that G, — G in norm. In particular, the extremal function
G is unique.

Finally, given any f € AP, if |Gf|, = +o0, we automatically have [|Gf||, >
Il £l . Otherwise, using g = Gf € A” we obtain

Ny =11g/Gllp < liglp = 1GSfllp.
This completes the proof of the theorem. : [ ]

We mention that even when A is infinite, the contractive zero divisor G 4 in A?
has an analytic continuation across any open arc of the unit circle that does not
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contain any accumulation point of A. The rest of the book does not use this fact,
so we have not included a proof here. The interested reader should consult [128]
for details.

3.6 An Inner-Outer Factorization Theorem for AP

Recall from the theory of Hardy spaces that every function f € H?” admits a
factorization f = GF, where G is an inner function (a bounded analytic function
whose boundary values have modulus 1 almost everywhere) and F is acyclic vector
in H” (a function that has the whole H” as its generated invariant subspace). In
this section, we show that an analogue of this holds for the Bergman spaces A”.

Also, recall that for a weight function of the form w(z) = |g(z)|’, we defined
the spaces B”(w) and AP (w) in the previous section. We introduce another space
X?(w) here, which consists of all analytic functions f in D such that

1 Wy = I£15 + /D /@ [z, w)Af () Ao (w) dA(z) dAw) < +o0.

We are going to use the dilations f, (0 < r < 1), where f,(z) = f(rz) forz € D.

THEOREM 3.32 Suppose 0 < p < 400, ¢ is AP-inner, and 1, is the invariant
subspace of AP generated by . Then,

(a) we have
I, = AP (0) = pXP(w) C pB(w) C AP,
where w = ||
(b) we have the norm relations
lg/elixrw) = llglp
forg e l, and
I fellp =1 fllxre)
for f € XP(w);

(c) for g = fo € Iy, we have | fro — foll, > Oasr — 17.

Proof. First, assume that g € I,,. Then there exists a sequence {p,}, of poly-
nomials such that | p,¢ — gll, = 0 asn — +oo. By the expansive multiplier
property of ¢, the sequence {p,}, is Cauchy in A”, so that {p,}, converges in
norm to some f € AP, In particular, g = f¢. Recall from Corollary 3.21 that

IPn@llp = 1l pall} +/I;D/DF(Z, w)Alpn()I7 Alp(w)|” dA(z) dA(w).
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Since the biharmonic Green function I'(z, w) is positive, and since | p,¢ll, —
ligllp and I pxllp — |l £ p» an application of Fatou’s lemma shows that

/D/Dl"(z’ WA f(@)IPAlpw)|? dA(z) dA(w) < lIglh — I flIf < +oo,
which we write as

Ifllxr) < I fellp = lglps g=foel,. (3.2

In particular, f € X?(w), and hence g € pX?(w).
Next, assume that g = ¢f, where f € X”(w). Applying Corollary 3.21 to f,
with ¢ = p and then using Lemma 3.16, we obtain

’Hfrwll,[; = r"frnl;(p(w)

- rIIfrII§+r/DF[Alfrl”](w)Also(w)l”dA(w)

< IIfIIZ+fDl“[AIfI”](w)Alw(w)l”dA(w)

= 1 f1%r@ < oo,

for all 0 < r < 1. This together with Fatou’s lemma shows that

I fellp < 1 fllxpw < +oo, (3.3)

so that g = @f € AP. The function f¢ is then a weak limit of the functions
fro € Iy as r — 17, so that by basic Functional Analysis, we have f¢ € I, in
the case 1 < p < 4oc; the case 0 < p < 1 will be handled a little later.

The space ¢BP(w) coincides with the subspace of AP of all functions that
vanish on the zero set of ¢, counting multiplicities, so that by the above, we have
the inclusion X?(w) C BP(w).

Combining the above two inequalities (3.2) and (3.3), we obtain the isometry

lg/elxrw) = lgllp, 8 €1y

Since M, the operator of multiplication by ¢, is an isometry from A”(w) to
Iy, it follows from the above that A”(w) C X”(w), and that the inclusion map
is an isometry. Moreover, we have obtained the equality A”(w) = X?(w) for
1 <p<+o0.

We proceed to show that || fr¢ — foll, — Oasr — 17, provided that g =
f¢ € I,. By Lemma 3.17, it suffices to show that || fr@ll, = | fell,asr — 1.
In view of the isometry ||h /@l xr(w) = Ik, forh € I,, this means that we should
verify that || fr || xr(w) = | flixr(w) as r — 17. Recall that

Il @) = I fr0llp = £ 15 + /D CLALf1P)(w) Alp(w)|? dA(w).

From Lemma 3.16, we see that r['[A|f,|”] increases monotonically to
I'[A|f|P]asr — 17. So, by the Monotone Convergence Theorem,

Jim [ PUaLA1710) Alpw)l? daq) = [ TI81f1P)w) Alp) dAw)
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It follows that
linln_ Ifrellp = 115w f e XP(w).
.

It remains for us to prove that I, = ¢X?(w) in the case 0 < p < 1. To this
end, observe that the above proof can be modified to produce the identity X?(w) =
A?(w) with equality of norms. Furthermore, if f € A%(w), then || f, — fll2.o—>0
asr — 17.

For the remainder of this proof, we assume 0 < p < 1. Let f be a function in
XP(w). Then we know that f € BP(w). We are going to show that f¢ € I,, or,
in other words, f € AP (w). ‘

First, suppose that f is zero-free in D. Then we may form the power (f)?/2,
which is an element of B%(w). Since

212 _
[P, = 1w = 1 flixr@ = Wflixr@  asr—17,

the functions ( f,)?/2 converges weakly to (f)?/? in B(w) asr — 1~. Butall the
functions ( f,)P/? belong to A%(w), and we know that the weak closure of a sub-
space in Bz(a)) is the same as the norm closure, so it follows that (f)/’/2 € Az(w).
By the observation in the previous paragraph, the functions ( f,)?/? converges to
(f)f’/2 in norm in the space A%(w) as r — 17. In view of Lemma 3.17, we get
that f, — f in norm in the space B” (w) asr — 17, and hence f € A?(w), as
we wanted, because f, € AP(w) foreachr,0 <r < 1.

Next, we consider the case when f has finitely many zeros. Let ¥ be the extremal
function in A? for those zeros, which extends analytically to a neighborhood of
D, by Lemma 3.30. Then f = ¥ g, where the zero-free function g is in X?(w). In
fact, from the early part of this proof, we have

llgllxrw) = rl_i)f?_ llgrlixriw = rif?_ lgrllpw = rif?_ llgrelip,

because r| g, ||f(p(w) is monotonically increasing in r. If we apply this to both f
and g, taking into account the properties of ¥, we find that g € X”(w). We now
apply the result proved in the previous paragraph to the zero-free function g to
obtain that g € A?(w) and that g, — g in norm as r — 17. Since ¥ is bounded,
we also have f € AP(w) with f, — finnormasr — 17.

Finally, we turn to the case when f has infinitely many zeros. Let A =
{a1, a2, a3, ...} denote the sequence of zeros of f in D. Let N be a large pos-
itive integer, and split the zeros into two portions: ANy =1{ai,az,...,ay} and
A™) = {ay 1, an4a, ...} Let ¢y be the extremal function in AP for the zero
sequence A(y), and let ¥ be the extremal function for AY). For 0 < r < 1, let
Any(r) = (r"'Apwy) NDand AM(r) = (r—'A™) N D be the correspondingly
dilated zero sequences, restricted to the unit disk. Observe that they are both fi-
nite sequences. We let ¢y, be the extremal function in A? for the zero sequence
A(n)(r), and let Yy, be the extremal function for AN (r). It is easy to see that
asr —> 17, ¢n, — ¢y and ¥y, — Yy in the norm of AP. Let gy, be the
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function

(@)
N (2DUN(2)
which is zero-free in the disk and extends analytically across the unit circle. From

the contractive division property of the functions ¢y and ¥y ,, together with the
fact that r || f, Ilf(,,(w) is monotonically increasing in r, 0 < r < 1, we see that

en.r(2) = zeD,

lenrllpw = ”gN.r¢”p = “fr(/’“p = frlipw
= N flxrw <7 VPl flixrw)

for all 0 < r < 1. Since each gy, is zero-free, this is the same as
2 - 2
len.r) ]y <7 U1y O <r <l

For 0 < r < 1, each function gy_, is holomorphic on D, so that in particular
(gN.r)p/2 € A%(w). Asr — 17, we have

/2 pl2 f@ )”/2
(ev.r@)"" — (Hn(2) (—————¢N o) e

where the equality is used to define Hy, and the convergence is uniform compact
subsets of . It follows that (Hx)?/2 is a weak limit in B2(w) of functions in
A%(w), and hence (Hy)P'? € A*(w). We now argue as we did for zero-free f,
and obtain that Hy € A”(w). The property of being in AP (w) is preserved under
multiplication by an H* function, and hence we have ¢y Hy = f/¢yn € AP (w)
as well. By the contractive divisor property of ¥,

1f/¥nllpw=1fe/¥nlp < IIfellp.

and since ¥y (z) — 1 as N — 400 uniformly on compact subsets of I (after all,
the zero sequence AY) for Yy gradually evaporates as N — +00; see Exercise
3), it follows from Lemma 3.17 that f/¥y — f in the norm of B”(w). Since each
f/¥n isin AP (w), we conclude that f € AP (w) as well. n

Recall that if 0 < p < 1, then neither the existence nor the uniqueness of
the solution of the extremal problem for an arbitrary invariant subspace in A” is
known. In the previous section we proved the existence and uniqueness for zero-
based invariant subspaces. The next result shows that we have both existence and
uniqueness for singly generated (or cyclic) invariant subspaces in A”. In addition,
the extremal function generates the invariant subspace.

THEOREM 3.33 If I is a cyclic invariant subspace of AP, then there exists a
unique solution ¢ to the extremal problem for 1. Furthermore, I = I,.

Proof. Suppose [ = Iy for some f € AP. We assume f(0) # O; the re-
maining case is handled by the observation that for a function g € A”, we have
Iz'g = z{g- Let the spaces A”(lﬂp) and A2(] f17) be the weighted Bergman spaces
with weight w = |f|?, with norms || - lp.ir1» and || - |2, 1», respectively. Then
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multiplication by f, denoted by M ¢, is an isometry from A? (] f17) to AP; itis clear
that the range is Ir, so that Iy = fAP(| f|¥). By Lemma 3.28, the reproducing
kernel function K| 7|» for A%(| £|7) never vanishes on the bidisk D x D. We claim
that the extremal function ¢ = ¢y for I is unique and given by the formula

0(2) = Ki71r(0,0" P f() K 1o (2, 0¥, z D, (3.4)

which is analogous to the formula obtained for the invariant subspace associated
with finitely many zeros, with the Blaschke product b in place of f. The function
K, fir(-, 0) maximizes the value at the origin among all unit vectors in A2(1f1P).
We claim that the function

H(2) = K51p (0,00 P K| 1 (z, 0)2/7

is the unique maximizer of the value at 0 among all unit vectors in A”(] f|7).
Clearly, | H || p.;s1p = 1. Let g, be a (maximizing) sequence of polynomials such
that fignll p. f1p =1 and

gn(0) — sup {Ig(0)] : g € AP(IfIP), lglp.ifir =1} asn — 4oo.

Similarly, let p, be another (maximizing) sequence of polynomials such that
Il pnll2 ip = 1 and

pn(0) — sup{lh(O)l the A2(|f]”), A2 r1p = l} as n — +o0.

For each n, let ¢, be the contractive zero divisor in AP corresponding to the zeros
of gn, and let ¥, be the contractive divisor in A2 corresponding to the zeros of p,,.
Then, by Theorem 3.31,

Ngn/@nllp.if1e = llgn f/onllp < lgnfllp = llgnllp.ifip-

Since 0 < ¢, (0) < 1, we have |g,(0)] < |gn(0)/9,(0)], so that by replacing gy,
by gn /¢, if necessary, we may assume that each g, has no zeros in ID. Now, of
course, g, need not be a polynomial any more, but at least it extends analytically
to a neighborhood of the closed unit disk. Similarly, Theorem 3.31, for p = 2, has
an analogue which states that

Ipn/Ynlizgfie < Wpnll2frp:

the derivation is analogous to that of Theorem 3.31. Since 0 < ¥,(0) < 1, we
have | p,(0)| < [p,(0)/¥,(0)], so that by replacing p, by pn/¥n if necessary, we
may assume that each p, has no zeros in D. Again, p, need not be a polynomial
any more, but it extends analytically to a neighborhood of the closed disk. We
compare the sequences {(q,,)/’/z}n and {py}, in the one maximization problem,
and {(pn)*/P}n and {g,}, in the other. The conclusion is that the maximization
problems are equivalent, and that since we know that p, — (H)?/? in the norm
of A%(|f|7), we must have that gn — H in the norm of AP(|f|P) as well (use
Lemma 3.17). Since the maximization problem that g, approximates is equivalent
to the extremal problem for ¢ — in view of the fact that My : AP(|fIP) — If
is an isometry — it follows that the extremal function ¢ exists, is unique, and is
explicitly given by (3.4).



3.6. An Inner-Outer Factorization Theorem for AP 83

We proceed to show that f € I, which will complete the proof. In the following,
we set

F(2) = (f/9)"*(2) = K 5p (0,0 K 5p(z, 00!, zeD.

The zero-free function F is in B(|¢|”), because

/ FlRlplPdA = / \f/olPlplPdA = f \fIPdA < +00.
D D D

We recall the polynomials p, from the maximization problem, and note that
pnF — 1 as n — +o0, uniformly on compact subsets of ID. Moreover, since

1PaF 113010 =/D|pnF12|<p|”dA = /Dlpnlzlfl"dA = llpall3 pp = 1

and ]Illl%lwlp = ilgol[ﬁ = 1, Lemma 3.17 shows that p,F — 1 in the norm of
B2(jp|P). For j = 1,2,3,..., we find that

/Dsz(Z)lfp(z)I”dA(z) = K|/ (0, 0)—‘/2szf‘K]f,p(o, DIf@)IPdA(z) =0,

by the reproducing property of the kernel. Let Jr stand for the closure of the
polynomial multiples of F in B2(J¢|P); in other words, JF is the invariant sub-
space generated by F in B?(|p|P). From the above, we know that 1 € Jr, and
that 1 L zJp, which we compress to 1 € Jr & zJr. We can represent Jr as
F A2(|F|?|@|P) = F A%(|f|P). It follows that for fixed A € D, g € (z — A)JF
if and only if g € JF and g(A) = 0. Consequently, again for fixed A € D, the
function

F(z)— F(})
i —
Z— A
is in Jg, and hence the fact that 1 € Jr © zJF entails that

/ JOZFD s =0, reD. (3.5)
D Z—A
Since
_ 2 _ 2
F@) ~AFW)[* ’F(” L F@-Fof
zZ—A —A

expanding the expression on the right-hand side and then integrating over the disk
— with respect to the reproducing probability measure |¢(z)|?d A(z) — we obtain
from the above identity (3.5) that

il

_|/
—‘¢(A)

2

F@) —AFW] A

Z—A

F()—F)
- X

2
} lo(2)1” dA(z)

2
lp(2)” dA(2).

p 2 2
+/(Izl'— )
D

F(z)— F(»)
Z—A
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We are going to integrate this identity over the circle |A| = r for 0 < r < 1, but
first let us observe that we can write

F(z) —
Z—A

2
= 'F(z)+x£(iz~—@|

F(z) —
Z—A

Z—A

— [F@)P +2Re [mx —F(Z—)_—F—“—)J A

and so, by the mean value property of harmonic functions,
Fx)— FW)|?
_ ! 2| F (@) ) l dsQh),
Al—r Z—A

where we recall the notation ds(z) = |dz|/(2x). It follows that

f

1
flf(z)l”dA(z)=—f
D r Jixj=r | ¥

ZF(2) - 2
Z— A

’—(z)

p
ds(})

F
/ /M_ (2= ) (Z) 45 901 dAGD),
and so
1 14
/ I f()IPdA(z) > —/ ! ds())
D rJia=rl®
——/ / ]Z'; |F(Z)—F(k)|2|<p(z)lpdA(z)ds(A). (3.6)
lzl<r JIAj=r 12 — Al*

Write w in place of A, and apply Corollary 3.7 to the first integral on the right-hand

side, which gives
4 1
ds(w) = - / (r* - ’f
r Jiw|<r

Juo e
f

—(w)

1
oy
r Jiw|<r | @

Next, we apply Corollary 3.8 to the second integral on the right-hand side, which
result in

dA(w)

dA(w).

2 2
l/ "l E @) — PP dstw)
lw

r Jlwi=r |z — w!?

=[0Gl

dA(w).
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Putting things together in (3.6), we then have

f

1
/ [f@IPdAZ) = —2/ =
D lwl<r | @
1

+ (r* - [wl?) |

lwl<r

/|‘|<r /w|<r r r

After an appropriate dilation in both variables, the inequality reads

f 14
flf(z)l”dA(z)z/ =
D IngR%

dA(w)
+/ (1—1wl?) Ay
D

+r2//G(z,w)Aw f
o JD (4

14
dA(w)

dA(w)

14
;(w)l dA(w) lp(2)I? dA(2).

(rw)

14
—j:(rw)‘ dA(w)
2

p
=(rw)| dAw) e, ()P dA(2).

We now invoke Proposition 3.24 to handle the last integral expression on the
right-hand side, and find that

/lf(z)l”dA(z)z/ li
D DY

+(1— rz)/ (1—jw?) A
D

rszr(z,w)Aw )
DJD @

p
dA(w)

p
dA(w)

P
=(rw)| dAw) Aler ()P dA(2).

Letting r — 1~ and applying Fatou’s lemma results in

14
IFI5 > Ilf/<p|15+/DF(z,w)A Alp(2)|P dA(z) dA(w).

Z(w)
®

This shows that f/¢ belongs to the space X?(|p|”), and hence according to
Theorem 3.32, the function f isin Iy, sothat I = Iy = I,,. n

We can now prove the “inner-outer” factorization for functions in A¥ . First recall
that a function f € A” is called a cyclic vector if there exists a sequence {p,}, of
polynomials such that || p, f — 1|, — O asn — +o00.

THEOREM 3.34 Suppose 0 < p < +oo and f € AP. Then there exists an AP-
inner function G and a cyclic vector F in AP such that f = GF. Furthermore,
NN < 11f 1 p-

Proof. Let I be the invariant subspace generated by f. According to Theo-
rem 3.33, there is a unique solution G to the extremal problem for /, the quotient
F = f/G belongs to A”, and there exists a sequence {p,}, of polynomials such
that ||p, f — Gll, = 0 as n — +oc. The expansive multiplier property of G
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together with the fact that ] = I implies that G is a contractive divisor on the
whole space I. Thus {p, F}, is a Cauchy sequence in A”. Since p,(2) F(z) — 1
pointwise, we must have ||p, F — 1|, — 0, that is, F is cyclic in A?. ]

In the classical theory of H? spaces, the inner-outer factorization is unique (up to
aunimodular constant multiple of the inner factor). Unfortunately, the factorization
here in A? does not have such a strong uniqueness property; counterexamples will
be constructed in Chapter 8.

3.7 Approximation of Subinner Functions

A classical theorem of Carathéodory-Schur (see [49]) states that if F is an element
of the closed unit ball of H®, then there exists a sequence of finite Blaschke
products by, such that b, — F uniformly on compact subsets of D as n — +o0.
The purpose of this section is to show that a version of this result also holds for
Bergman spaces. In other words, we are going to characterize the normal limits of
finite zero divisors in Bergman spaces. Recall that G is called a finite zero divisorin
AP? if there is a finite zero set Z such that G is the extremal function of the invariant
subspace Iz in AP. We begin with the following simple necessary condition.

PROPOSITION 3.35 If {Gn}, is a sequence of finite zero divisors in AP and
G, — G, as n — +00, uniformly on compact sets, then

[ 6@ dae < ho)
D
holds for all positive harmonic functions h in D.

Proof. Let 4 be any positive harmonic function in D. Foranyn = 1,2, 3,...,
define a bounded harmonic function 4, on D by

hn(z) = h(nz/(n + 1)), zeD.

Since each G, is an AP-inner function, we have
v/DIGn(Z)iphn(Z)dA(Z) = hp(0) = h(0), n=123,....

The desired inequality now follows from this and Fatou’s lemma. =

The rest of this section is devoted to proving that the converse of the proposition
above also holds, at least in the case p = 2. For convenience, we introduce the
following.

DEFINITION 3.36 A function F € AY called an AL-subinner function if

/ |F(2)IPh(z) dAa(z) < h(0)
D

holds for all (bounded) positive harmonic functions h on D.
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The Hardy space analogue of this definition, with the normalized measure d A,
on D replaced by normalized arc length measure ds on T, requires that the function
F € H” have |F(z)| < 1 almost everywhere on T, in which case F is in the closed
unit ball of H®. The Carathéodory-Schur theorem then asserts that such functions
are indeed normal limits of finite Blaschke products.

We now prove the following Bergman space analogue of the Carathéodory-Schur
theorem.

THEOREM 3.37 Let F be a subinner function in A%. Then there exists a sequence
of finite zero divisors @, in A* such that ¢, — F uniformly on compact subsets
ofDasn — 4c0.

Proof. For N = 1,2,3, ..., let &y denote the Fejér kernel:

1 sin? 5(N 4+ 1)8

d eiH —
v N+1 sin® 16

R 6 € R.

It is positive, and we use it to mollify the subinner function F,

F~(z>:F*<bN(z)=fTF(zZ)<I>N<c>ds<;), zeD,

which constitutes a polynomial of degree N or less. Let & be a positive harmonic
function in D. Then, by the Cauchy-Schwarz inequality, Fubini’s theorem, and the
observation that the property of being a subinner function is rotation invariant,

_ 2
Lirvinaa = [| [ Feoeeas [ haac
< Lﬁlmblz Py (¢) h(2)ds () dA)
D JT
< 1O [ en@)dse) = k).

It follows that the polynomial Fy is a subinner function. As N — +o0, Fy
approaches F, uniformly on compact subsets of D). Consequently, if we can ap-
proximate each of the polynomials F by finite zero divisors, then F, too, is so
approximable.

We may now, without loss of generality, assume that F itself is a polynomial;
let N be the degree of F. Moreover, we can assume that the function is strictly
subinner, in the sense that

/nh(z) |F(2) dA(z) < (1 — &) h(0) (3.7

holds for some small fixed &, 0 < & < 1, and all bounded positive harmonic
functions h on . For f € L1(D), let P*[ £] be the function

1 — 2
PLF1(2) =/ 128 r0ydaw).  zer,
D |l —2zgl*
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which is in L!(T) and has the property that

/T h(2) PULFIG) ds(2) = fn 1) f(2)dAG), (3.8)

for all bounded harmonic k. The function P*[ f] is frequently called the sweep of
f. Note that a function ¢ is A2-inner if and only if
Plipl1 =1,

and a function F is A2-subinner if and only if 0 < P*[|F[*] < 1. As we apply the
operation P* to |F 12, we obtain a trigonometric polynomial:

+00
P*IFPI) = Y Ajz/,  zeT, (3.9)
j=—00
where A; = (F,z/F) for j > 0and A; = (z™/F, F) for j < 0. The inequality
(3.7) together with the property (3.8) implies that

0< P IFPI<1-6

on T. The function 1 — P*[|F|?] is a positive trigonometric polynomial of degree
N. By a classical theorem of Fejér and Riesz (See Exercise 19), there exists an
analytic polynomial G of degree N, zero-free in the closed disk D, such that
IGI> = 1 — P*[|F1*) on T; then ¢ < |G|?> < 1 on T, and by the maximum
principle, also on D.

We now put, forn =1,2,3,...,

fn(2) = F(2) +vn+ 17" G(2), zeD, (3.10)

and let M, be the invariant subspace generated by f,. Let ¢, be the extremal
function for M,. The functions ¢, are finite zero divisors, and we shall see that
¢n — F, uniformly on compact subsets of . The assertion of the theorem is
immediate once this has been achieved.

By the definition of f,, we have

@1 = IFQP+ 0+ D" IG@)?
+2v/n+1Re (" G(2) F(2)) 3.11)

forallz e D. Asn — 400,
JiFl / 2" G(2) F(2)| dA(z) > 0,
D

so that the third term on the right-hand side of (3.11) is eventually insignificant.
As for the second term, we have
(n+ D12 |G dAR) > |G(2)I*ds(2),

in the weak-star topology of Borel measures, where ds is the normalized arc-length
measure on the unit circle T, and

(n+ 1 P12 G@I*] @) — 1G@)1
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uniformly on T; both limits are taken as n — +o0. From the construction of G
we see that P*[| f,|?] is approximately 1 for large values of 7, so that f, is, in
a sense, an approximate A%-inner function. In other words, we expect g, not to

differ much from f, for large n. The rigorous demonstration of this requires some
technical work.

LEMMA 3.38 There exists a positive integer L = L(F, €) such that
3 2 _ 3 n 2 2 2
gellel” = g+ Dlzgl” < lifngl™.  g€4%,

forany n with L < n < +00.

Proof. Since F is bounded and ¢ < |G|?> < 1, there exists an L = L(F,¢)
such that for n with L < n < 400,

1
IF(2)] = Zvn-i-l lzI" G (@), rn <lzl <1,

provided that 0 < r, < 1 and r, is so close to 1 that its n-th power is bounded
away from O as n — +co. Then in the same annulus,

3 3
FRAGRS De |z]" < YA 121" 1G(2)] < | fu(2)], rm<lzl < 1.
It follows from the above estimate that for g € AZ,
9 2 2n
—((n+1e lg(D)I” |zI7" dA(2)
16 rn<|zl<l
< / () 2P AR < Il fu gl (3.12)
m<l|zi<l
Let M, be the radial square-mean function
I
My(r) = —/ lgre®)*ds, 0<r<l,
2n J_g
which increases with r. Then
1
/ lg(2)* 121> dAz) =2 / M(r)r®"*dr, (3.13)
rn<|zl<l rn

and using the monotonicity of M, and redistributing masses along the interval
(0, 1), we have

_(n+1)
p— / Mg(ryrdr

IA

1
(1 =+ / Mg(r)r*"*ldr
0

IA

1
f Mg (r) r2ntl gy
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Combining this with (3.12) and taking into account (3.13), we arrive at

9 9 1
Ze(-r2r gl = Ze(1-r®) [ Myrar
i6 3 i
9 1
< Zeon (-2 [T
0
9
= 1_68(n+1)(1 —r;’?(”+l)) Ilzngnz
9 1
=< g& (n+ 1)/ Mg(r)r2”+l dr
Tn
9
= et 8@ 121" dA(2)
16 ra<lzl<l
< el (3.14)
Choosing r, such that 3r,"*" = 1 then finishes the proof of the lemma. ]

For large n, therefore, the polynomial f, has no zeros on T. The function ¢,
is defined as the extremal function for the invariant subspace M, in A% generated
by f.. We may assume, without loss of generality, that f,(0) # 0, and after a
rotation, that f,(0) > 0. Then ¢, solves the extremal problem

max{Re(p(O) e M, ol = 1},

so that the function g, € A? defined by @, = f,g, solves the related extremal
problem

max {Req(0) : g € A2, |l fngll = 1}.

In a Hilbert space of holomorphic functions, the function maximizing the value
at a point among the elements of the unit ball equals an appropriate constant
multiple of the kernel function. In other words, if Az(lfnlz) stands for the space
of holomorphic functions f on D with norm

“f||A2(|f,,|2) = |[fa Il <+o0,

and K|f"|z is the associated kernel function, then

qn(2) = K|f"|2(0’ 0)—% K]f”IZ(Z» 0), ze€D:

compare with formula (3.4). We intend to show that ¢, convergesto F asn — +00,
uniformly on compact subsets of D. From the above identity, it follows that it
suffices to show that Kif2(z,0) > lasn — +00, uniformly on compact subsets
of D.

LEMMA 3.39 If L = L(F,¢) is the constant from Lemma 3.38, then for any n
with L < n < +00 we have
1

0<K (z,2) < 8 e =
| f12425 2 = 3e (1 —|z]?)2
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forz e D.

Proof. For z € D, the quantity K ¢ 2(z, z)% expresses the norm of the point eval-

uation functional at z in the space A%(D, | £,1%). However, each element A%(| fal?)
isin A2 (and vice versa), and for f € A%, we have the growth estimate

r@is s cem

see Lemma 3.2. The assertion now follows from Lemma 3.38. ]

To complete the proof of Theorem 3.37, we shall need to understand the behavior
of the inner products (z/ f,, fn) for j =0, 1, 2, .... A computation based on (3.10)
yields

@ fur fr) = (@ F,F)+Vn+1(F,2"G)
+Vn+ 16, F)+ (n+ 1) ("G, 2"G).

Forn with N < n < 400 we have (z"1/G, F) = 0, as the functions G and F are
polynomials of degree at most N. The above identity then simplifies to

(& fas f) = D F,FY+Vn+ 1 F,"G) + (n+ 1)(Z"T G, "G). (3.15)

Expanding the polynomial G in a power series
G(z) = Z G(n) 7",

where@(n):Oforn =N+1,N+2,...,we find that

+00 RN s
. Gk)G(j+k)
"G, "G) = —
( eo) kX:(:)j+k+n+l
and hence

7G,G —(n+ DG, "G = — Gk) G(j + k).
( iz — (n+ 1) (2 ) Z;j+k+n+l (k) G(j +k)

Each term on the right-hand side vanishes for N < j + k < 400, and hence

[(2/G.G)yz — (n+ 1) ("G, 2"G)|

400 .
jtk P
=L TFkrar1|C0CUTH

+00
=< m ; [G(k)G(f +k)|

N

< — -
< Va1 S oo (3.16)
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where we used the fact that |G| < 1 on T. The inner products (zJF, F) appear as
Fourier coefficients of the function P*[|F|?], and the inner products (z/ G, G) H?
are the Fourier coefficients of |G|2. From the identity

P*(|FI"1+ 1G> =1
on T it then follows that
(Z/F,F)+(Z/G,G)y2 = 8,0, j=0,1,23,..., (3.17)

where §; o is the Kronecker delta symbol. The expanded expression (3.15) then
assumes the form

(& fur fr) = 8jo+~n+1{F,7"G) (3.18)
+(n+ 1) ("G, 7"G) — (Z/G, G) .

Expanding the function F in a power series as well,

+oo

F@) =) F(m,

n=0

where f(n) =0forn=N+1,N+2,..., weobtain
. +m —~ .
(Z/F,2"G) = ) F(k) (Z/**,2G),
k=0

so that the Cauchy-Schwarz inequality yields

+00
|IF,2°G)| < Y IFMI |/, 2"G)]| (3.19)
k=0
2 Pl (L )
- g k+1 D k+ D 6|
=l k=0

A subinner function has norm at most 1, which shows that the first factor on the
right-hand side of (3.19) is bounded by 1. Since |G| < 1 on T, the maximum
principle informs us that |G| < 1 on D as well. Consequently,

2

Zj+k,ZnG </ j+k+ndA ) = ,
K )| < |l @ =

and hence (3.19) leads to the estimate

1
N 2
|(sz7z,,G)|<2 k+1 - 2(N+}) ' (3.20)
- ,(2:=0(j+k+n+2)2 N+n+j+2
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Summing up and using the identity (3.18) together with the estimates (3.16) and
(3.20), we obtain

5 (N+Dvn+1 4 N
N+n+j+2 N+n+1
N+1
3 , j=0,1,2,.... 3.21)
vn+1 / (
Recall that we need to show that X ¢ 2(z, 0) — 1 uniformly as long as z is confined
to compact subsets of . We expand the kernel in a convergent power series,

|(ijn’ fn) — aj.Ol =<

—+00 )
Kjpp@) =Y Bi)z), (20 eD?
j=0

where the functions B; are antiholomorphic. By the reproducing property of the
kernel function applied to the constant function 1, we have

+00 )
1= Bi@Q) @& fu fa). ¢ €D,
j=0
which we may rewrite as

+00
1=K 20.0) = (Ifal> = 1) Bo@) + Y Bi(Q) (& fu. fu).  (322)

j=1

in view of the fact that Bo(§) = K|, 12(0, £). We recover the Taylor coefficients
Bj(Z) via the integral formula

Bi({)=(j+n+ l)ﬁz—:f Kip@ 0l dA@,  ¢eD,

which leads to the following estimate for { € D and large n:

IBi(Ol < G+n+DZ™ " K f 20 (3:23)
1
8\2 Jj+n+1
< ('3';) Tﬁ—f—“anlmz('vO"

1
8\ [ .8 JTFjn

here we used Lemma 3.38 as well as Lemma 3.39. Looking at the support set
for the Taylor coefficients of f,,, we see that (z/ f,,, f,,) vanishes for J off the set
[0, N]U[n — N, n + N]. For large n, the estimate (3.23) simplifies to (restricting
1t to the relevant interval)

1

3
B < -
1B, < 2 7=

{eD, 0<j<n+N. (3.24)
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It follows from (3.21) and (3.24) that for large n and ¢ € D,

+o0 ) N )
STIBON fun f)] = D IBIOI [ fur fi)]
Jj=1 j=1
n+N )
+ Y B fu, f)]
j=n—-N
27T (N+1)2 1
= ) 3.25
PRV P -2)
by counting the number of terms. Similarly,
9 N+1 1
12— 1) B R N D. 3.26
(11 = 1) o(i)lfgm—”_mz ¢ e (3.26)

We now see from the identity (3.22) and the estimates (3.25) and (3.26) that
K'fn|2(0, ;) — 1

as n — +00, uniformly when ¢ is confined to compact subsets of D.
The proof of Theorem 3.37 is now complete, because K| 2(z, 0) equals the
complex conjugate of K| 2(0, z). [ ]

3.8 Notes

The study of Bergman inner functions originated from Hedenmalm’s paper [59],
which marked the beginning of a very fruitful period for the study of Bergman
spaces.

Lemma 3.2 is from Vukoti¢ [131]. This estimate is almost “obvious”, but it is
critical in the proof of Theorem 3.3.

Theorem 3.3 is from Hedenmalm’s paper [59] for p = 2 and « = 0; the general
case here was shown in Zhu [144]. This result will play an important role when
we study zero sequences in Chapter 4 and interpolating sequences in Chapter 5.

The extremal problem of Section 3.2 is classical in the study of Hardy spaces.
The importance of this extremal problem for the study of factorization and the
structure of invariant subspaces in the Bergman spaces was first demonstrated by
Hedenmalm in [59].

The connection between Bergman inner functions and the biharmonic Green
function was found by Duren, Khavinson, Shapiro, and Sundberg in [38], and was
further studied in [39], [40], and [7]. Lemma 3.13 is from Abkar’s thesis [2].

The expansive multiplier property, or equivalently, the contractive divisibility
property, of Bergman inner functions was first obtained by Hedenmalm [59] in A2,
and then by Duren, Khavinson, Shapiro, and Sundberg [38], [39], and [40], in A”
for general exponents p, 0 < p < 4+o0c. Lemma 3.28 — even in the more general
setting of logarithmically subharmonic weights — is due to Hedenmalm (see [40]).
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Hedenmalm and Zhu [73] showed that the expansive multiplier property fails
for the weighted Bergman spaces Ag with | < a < 4o00. Shimorin [120, 121]
later found that the expansive multiplier property remains valid for the spaces Ag
with —1 < @ < 1; Hedenmalm [60] had settled the case A% earlier (see also [65]).
The case of 0 < @ < 1 remains open for p # 2.

The uniqueness of the contractive zero divisors in A” forO < p < 400, p # 2,
is due to Duren, Khavinson, Shapiro, and Sundberg. The proof of Lemma 3.30
here is taken from [94]. Sundberg [128] proves that the contractive zero divisor of
14 in AP has an analytic continuation across each open arc of the unit circle that
does not contain an accumulation point of A.

The material in Section 3.6 is from the fundamental paper [7] of Aleman, Richter,
Sundberg. The final touch in the proof of Theorem 3.33, involving the dilation of
the A?-inner function, however, is new. It was inspired by the paper of Hedenmalm,
Jakobsson, and Shimorin [69].

The material in Section 3.7 is from Shimorin’s paper [125]. It is an open problem
to do the same for A?, p # 2.

3.9 Exercises and Further Results

1. Let A = {ay, ... ., a,} be afinite sequence of distinct points in D. Show that
G 4 in A? is a linear combination of the functions

1 1
1» - s T, — .
(1—-aiz)? (1-a,2)?

2. If G is AL-inner, then 1 < |G(¢)| whenever ¢ € Tis a point of continuity
of G.

3. Let A = {ay,az, a3, ...} be the zero sequence of a function in A”. For
positive integers N, let A(M) be the tail sequence

A(N) = {aN+1’ AN+2,AN+35 - - - }

Let G 4v) be the canonical divisor for the zero sequence AY). Show that
G 4 (2) = 1, uniformly on compact subsets of D, as N — +o00.

4. Let us say that a sequence A = {ay, a2, a3, ...} is a sub-zero sequence for
AP if there exists a function f € A? which vanishes along A without being
identically zero. In other words, a sub-zero sequence is a subsequence of
a zero sequence. Consider the extremal function G4 for A, and show by
an argument which involves a competing function for the extremal problem
that G 4 vanishes precisely on A. Consequently, each sub-zero sequence is
itself a zero sequence.

5. If G is AP-inner and bounded, then G is a zero divisor whose zero set is the
union of finitely many interpolating sequences. See [77].
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10.

11.

12.

13.

14.

15.
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. Show that the contractive zero divisor G 4 of an A”-zero set A has an analytic

continuation across any arc of T that does not contain an accumulation point
of A. See [128].

Derive the formula for the zero divisor in A” corresponding to a single point
a repeated n times.

. Derive the formula for the extremal function of the invariant subspace in A?

generated by the singular inner function with an atomic mass o atz = 1.

. Let G, be the extremal function of the invariant subspace in A? generated

by the singular inner function S, with an atomic mass o at z = 1. Show that
— Iz 1
A —_
/ |Go (2 )I P @) == 1

Let G be any A%-inner function. Then

forall o > 0.

/I()l" 'ldA<>-1

for almost all ¢ € T.

Show that for certain « the zero divisor in A2 with a single zero a € D can
have extraneous zeros. Then deduce that zero divisors in such cases fail to
be contractive. See [73].

Show that if —1 < & < 0, then zero divisors in A% are contractive. See
[120], [122], as well as Chapter 9.

If G is the extremal function for an invariant subspace I of A2, then

IG@)? < 1ZI)K ;1 (z, 2)

1—1z2
for z € D, where K1 (z, w) is the reproducing kernel for I+,

Show that

1 -2
[ ‘f(z)eXP(—2 L +Z)
forall f € A2. See [86].

/ f@ ?
D 2—2

2
dA) < /D 12 @) dA®)

Show that

dAQ) < /D 2 (DR dAG)

for all f € A2.
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17.

18.

19.

20.
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Show that
/D F QP 0. @P@ dAG) < /D 2f (P dAG)

foralla € Dand f € A2, where ba) = 2(1 + |al)/(1 — |a|), and
¢q : D — D is the usual Mobius involution associated with a.

Show that
2
V2 —r? B ,
/ S——f@)] dA@ = f l2f QP dA)
D —rz D

forall 0 < r < 1and f € A%. Moreover, equality holds above if and only
if for some constant C,

2—-rz
(1 —rz)?
Suppose f is an analytic function f in D and 0 < p < 400. Show that f
belongs to A” if and only if

f@=C

/(1 —1Z)*A1f @)IP dA(z) < +00.
D

Suppose f is a positive trigonometric polynomial on T of degree N. Then
there exists an analytic polynomial p(z) of degree N, zero-free on I, such
that |p|? = f on T. This is usually referred to as a the Fejér-Riesz theorem.

If {1,,}, is a decreasing sequence of cyclic invariant subspaces of A”, then
I = N,1, is cyclic (singly generated). Moreover, if I # {0} and ¢, is the
extremal function for I, then ¢, converges in A to the extremal function
for I. In particular, if /4 1s the invariant subspace of all functions that vanish
on the zero set A, then /4 is generated by its extremal function G 4. For
details, see [7].
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Zero Sets

For an analytic function f in D, not identically zero, we let Z y denote the zero
sequence of f, with multiple zeros repeated according to multiplicities. A sequence
A = {a,}, inDis called a zero set for A if there exists a nonzero function f € A2
such that A = Z, counting multiplicities. Zero sets for other spaces of analytic
functions are defined similarly.

In this chapter, we study the zero sets of functions in several Bergman-type
spaces. It is well known that the zero sets cannot be described in terms of a simple
Blaschke-type condition, because the angular distribution of the zeros plays a role.
We shall obtain sharp necessary conditions for a sequence A to be a zero set
for A4, and sharp sufficient conditions as well. The gap between necessary and
sufficient conditions is quite small. The characterizations are in terms of partial
Blaschke sums on Stolz star domains and the Beurling-Carleson characteristic of
the corresponding boundary set. In the case of the Bergman-Nevanlinna class Ag,
however, we shall be able to characterize its zero sets by a simple Blaschke-type
condition.

4.1 Some Consequences of Jensen’s Formula

An effective tool for studying zeros of analytic functions is the classical Jensen
formula, which gives us a relationship between the growth of the function and the
growth of its zero set.

PROPOSITION 4.1 Suppose the function f is analytic in D and f(0) # 0. For
O0<r<lletay,...,ay,bethezeros of f inthedisk|z| < r, repeated according
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to multiplicity. Then

1 2 .
lo<:|f(0)l+Zl Z_I E/o log | f(re'?)| d6.

Proof. First, assume that f is nonvanishing on the closed disk |z] < r. Then

1 2 )
lwumn=—1/ log | £ (re'®)| 8,
2 0

since the function log | f(z)| is harmonic on |z] < r.

Next, assume that f is nonvanishing on |z| < r but has a single zero a = re'!
on the circle |z| = r. Then the function g(z) = f(z)/(z — a) is analytic and
nonvanishing on |z| < r, so that

1 2 . . )
log |g(0)] = ——/ [1og|f(re"’)| —log|re'® —re”l] do.
2w 0
Since
log |g(0)| = log | f(0)] —logr

and

2 .
/ log |1 —e'?1d6 =0
0

we conclude that

1 2r )
l%wwz—/lwmwa
2w 0

whenever f is nonvanishing on |z| < r and has a single zero on |z|] = r. By
induction, the above formula remains valid if f is nonvanishing on |z| < r and
has a finite number of zeros on |z| = r.

Finally, if ay,--- ,a, are the zeros of f in |z] < r, repeated according to
multiplicity, then the function

de@n

f(z—ak)

is analytic in D, nonvanishing on |z| < r, and has a finite number of zeros on
|z] = r. Thus,

1 2 .
log | F(0)] = 5/0 log |F (re'?)| d6.

Since |F(z)| = | f(z)| on |z] = r and

n r
F0) = 0 -
()fug(@)
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Jensen’s formula results. ™

Let f be an analytic function in D, not identically zero, but with a zero of order
m at z = 0, m > 0. Applying Jensen’s formula to the function g(z) = f(z)/z",
we obtain

f('")(O)

Zl

where 0 < r < landay, ..., a, are the zeros of f in 0 < |z| < r. It follows that
for every 0 < o < 1, there exists a constant C = C (o) such that

1 2 A
_/ log | f(re'®)|d6 = mlogr + log | ———
2w 0

1 277 .
C < 55/0 log | f(re'?)| dé

forall r witho <r < 1.
For f analyticinDand 0 < r < 1, weletn(r) = n¢(r) be the number of zeros
of f in |z| < r, counting multiplicity. If f(0) # 0, we let

N(r):Nf(r):/ 0 4
0 t

The counting functions n(r) and N(r) play important roles in the study of zeros
of analytic functions.

PROPOSITION 4.2 Suppose f is analytic in D with f(0) # 0. Then

N@) = Z]o

where ay, ... , ay are the zeros of f in |z| < r, repeated according to multiplicity.

Proof. Sincen(t) =0for0 <1t < |a;|, we have

n—l lak+11 t r t
Ny =Y " [ Oy,
t t
k=1 Y lakl |anl

By definition, n(t) = k for |ax| < t < |aks1],and n(t) = nforja,| <t <r. It
follows that

n—1
N(r) =Y [k(oglaxs1| —loglal) ] +n (logr —loglaxl).
k=1

A little manipulation then shows that

N@) = Zloo —

as claimed. ]
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PROPOSITION 4.3 Suppose u is a probability measure on a measure space X
and that g is a positive measurable function on the measure space X. Then

/ log g(x) du(x) < log U g(x)du(x)] .
X X

Proof. This is a special case of a general result in Real Analysis, which is
usually called the arithmetic-geometric mean inequality. ]

We proceed to prove some necessary conditions for a sequence in D to be a zero
set for AS.

PROPOSITION 4.4 Suppose f € AL with £(0) # 0. Then

/(1 r?)ePN rdr <

—o7 L F@IPa - 2P dA).

Proof. If f is analytic in D with f(0) = 1, then by Propositions 4.1 and 4.2,

1 21 )
N(r) = E/o log | f(re'?)| d6

for all 0 < r < 1. The desired result then follows from the arithmetic-geometric
mean inequality. The general case follows by considering g = f/f(0). ]

COROLLARY 4.5 Suppose f € AL with f(0) # 0. Let ay,az, a3, ... be the
zeros of f, repeated according to multiplicity and arranged so that |a;| < |az| <
las| <.... Then

1
|70 ﬂ [ 1 = Cn@DIPY £l g

foralln =1,2,3, ..., where C is a positive constant dependent only on p and a.

Proof. Recall from Proposition 4.2 that

n(r) .p

ePN( — n ;
e lakl?

where we recall that n(r) counts the number of zeros in |z| < r. It follows that

r?

n
PN > I l
lag|P

for every positive integer n. Combining this with Proposition 4.4, we obtain

()14
[ f(O)] I_I lax|P — T(e +2)I'(1 +np/2)

/ |f (D)1 dAqg(2).
D
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The desired result now follows from Stirling’s formula. n

It is easy to see that (see Exercise 15 of Chapter 1)

hm /lf(z)l”qu(z) ——/ | f(e'")IP dt

for every function f in the Hardy space H?. It follows from the proof of the above
corollary that

U©q1—~<wmp

for every f € H” with f(0) # 0. This clearly implies the Blaschke condition
Y (= lal) < +oo

k
for zero sets of functions in Hardy spaces.
We are going to show that zero sets for A2 satisfy a slightly weaker condition. To
accomplish this, we need an estimate for the growth of n(r) and N(r) associated
with functions in A%.

PROPOSITION 4.6 Suppose f € AL with f(0) # 0. Then there exists a positive
constant C such that for all r € (0, 1),

1
(1 —=r)n(r) < Clog i
and

1
Noy<c+ 2

Proof. By Proposition 4.4, the quantity
1
C=(+ 1)/ (1 =1)%ePN® gy
0
is finite. Since N (¢) is increasing on (0, 1), we have

1
c > (a+1)/(l—t)"e”N(')dt

1
> (a+1)ePN<'>/ (1-0%dt = PN (1 — ry*+!
r

for every r € (0, 1). It follows that

N(r)5a+l

1
log - +C

for all € (0, 1) and some positive constant Cj.
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Since n(r) is monotone, we have
a+1

n(rHr —r?) < / n()dt <N(@) <

log
r= ° 1

+C
—-r

for all r € (0, 1). This together with the assumption f(0) # 0 easily implies that

1
(I =r)n(r) = €z log

for all r € (0, 1) and some positive constant C3. |
We can now prove the main result of the section.

THEOREM 4.7 Suppose f € AL with £(0) # 0. If {ay }x is the zero sequence of
f, then for every positive ¢ we have

+00
1 — |ay|

1 I+¢
[log - |au]

Proof. It is clear that the desired result is equivalent to the convergence of the
integral

< +0o0.

where a = |a1| € (0, 1). Integrating by parts and applying Proposition 4.6, we

obtain
I'l+¢+log
1=/ —————% (tYdt =1 + I,
a [log ﬁ]

5 _(1+s)/ n(:)dzm

_1_
-

where

oo
D
whose convergence is also guaranteed by Proposmon 4.6, and

1 1
12=/ n(t)dt1 5/ dN(t) '
+e I+¢

| * Jie ]

1
0g 1—_t]

We integrate by parts again to get

! dN(t) _ N(1r)
/a [ : ]l+s - [l | ]l+e

log = 0g 77

1

/’ (1+&)N(t)dt
24¢°
-]

By Proposition 4.6, both terms above converge. n

a
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COROLLARY 4.8 If{a,}, is a zero set for some AL, then for every e > 0,
Z(l — Jan|H'E < 0.

n

4.2 Notions of Density

In order to better understand the structure of zero sets for Bergman spaces, we
need to introduce several notions of density for sequences in the unit disk. The
reason is that it is well known that the zero sets cannot be captured by a simple
Blaschke-type condition in terms of moduli: indeed, a spread-out zero set need not
fulfill the Blaschke condition, whereas a concentrated one must do so — if, say, all
the zeros are contained in a finite union of Stolz angles.

For a point z € T, we let s, denote the standard relatively closed Stolz angle in
D with vertex at z and aperture 7 /2. Thus, s, is the convex hull of the set

{z}u[weC:|w|51/ﬁ},

with the vertex point z removed. The term Privalov “ice cream” cone is also used
in the literature.

Foranarc I C T, let |I| be its arc length, and |I|; = |I|/(27) its normalized
arc length. The subscript s refers to the measure ds(z) = |dz|/(2m). For a closed
and proper subset F' of T with complementary arcs {I,},, we define

R(F) =Y s log ——.
- Hnls
wheree = 2.71828 ... . is the base for the natural logarithm. The quantity ¥ (F) will
be called the Beurling-Carleson characteristic of F. Sometimes the term entropy
is also used for ¥ (F). We define ©(@) = O for the empty set.

A closed subset F of T is called a Beurling-Carleson set if F is nonempty, has
Lebesgue length measure zero, and ¥(F) < +00. It is clear that 1 < ¥(F) for
such sets, with equality occurring only for one-point sets F. Let dT be the standard
metric on the unit circle T:

Z
arg ("’)‘ )
w

where the argument function is assumed to take values in the interval (-, 7).
The distance to a closed subset F of T is then

dr(z, w) =

dr(z, F) = inf {dr(z, w) : w € F},

and F is a Beurling-Carleson set if and only if

~ T
K(F) = [Elogmds(z) < +o0.
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Actually, the left hand side only represents the integral over the complement of F,
which does not matter as long as F has zero length. Let dc stand for the Euclidean
metric in C: dc(z, w) = |z — w|. Then, for any closed subset F of T,

2
- dr(z, F) <dc(z, F) <dt(z, F), z€T,

where the distance to sets is defined in terms of an infimum as for dr, so that by
the above,

K(F)—logm < / ds(z) <k(F)—log2,

log —————
T = dc(z, F)

provided F has zero length.
For most of our discussion, we assume that F is a finite set. In association with
F, we define the Stolz star domain s as follows:

sp=Uls;:z€ F}.

Let A = {a,}, be a sequence of (not necessarily distinct) points from D. We
will not be primarily interested in the order that the the various points a, appear,
but rather think of A as a subset of D, except that multiplicities are allowed. For
an arbitrary subset E of D, we form the partial Blaschke sum

T(A,E) = %Z{l —lay|*: a, € E}.

We note that for points a € D close to T, the quantitities %(1 —la*)and 1 — |a|
are very close. Later on, we also need the related “logarithmic” sum

A(A,E):Z{log |al | S ay € E}:

n

again, for a € D close to T, the quantity we sum over, log[1/|al], is very close
to 1 — |a|. Another thing to think of is that the above sums are in fact taken over
the “sets” A N E, by which we mean that all the points of A are included with
multiplicities, provided they are in E. We shall sum over the Stolz stars s, where
F C T is finite: the «x-density of the sequence A in the Stolz star s¢ is
D(A,sr) = X(A,sF)/k(F).

DEFINITION 4.9 Let A be a sequence of points in D and F be finite subsets of
T. Then the quantities

D (A) = limsup D(A,sF)
K(F)—>+00

and
D™ (A) = Alim inf D(A,sF)
K(F)—+o0

are called the upper and lower asymprotic k -densities of A, respectively.
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The upper asymptotic k -density will be crucial for our description of zero sets for
the Bergman spaces. It will also play an essential role later when we characterize
sequences of interpolation for the Bergman spaces.

We proceed to give several equivalent definitions of the upper asymptotic «-
density. First, observe that replacing the standard Stolz angle s, by a general Stolz
angle s; o with any fixed aperture 0 < « < 7 and making the corresponding
changes in the definitions of s, £ (A, sF), and D(A, s¢) will not alter the quan-
tities DT (A). What is somewhat surprising is that the angle « can be reduced to
0 with no effect on DT (A). More specifically, for a finite set F and a sequence A
of points in D, we set

tF:{rze]D): 0<r< l,zeF}‘
The set tg is the union of radii from O to the points of F. Then we have the

following result.

PROPOSITION 4.10 Let A = {a,}, be any sequence of points from D and F be
finite subsets of T. Then

)
D+(A) = lim sup ————
RF)—>+o00  K(F)

To prove the identity above, we need yet another notion of density based on
Carleson squares. Recall that for an open arc I C T, with |I| = 2w |I|s < 1, the
associated Carleson square is the set

o) ={weD\{0}: 1 —|I| <|wl, w/|w| €1};
for open arcs of bigger length, we let Q () be the entire sector
o) ={weD\{0}: w/lw| e}

If {I,}, are the complementary arcs of a finite set F in T, we define

ar =D\ U, Q).
We then arrive at another way of obtaining DT (A).
PROPOSITION 4.11 Let A = {a, }, be any sequence of points from D and F be
finite subsets of T. Then

Y (A,
D*(A) = limsup ﬂ
R(F)—>+o0 K(F)

We proceed now to prove the two above propositions, that is, the equivalence of
all the three definitions of D*(A). Note that the lim sup in each of these definitions
will not change if we allow closed countable sets F of finite entropy as well.

We start with the proof of Proposition 4.11.

Proof. Enlarge every finite set F by inserting on each complementary arc /
of F additional points accumulating at the endpoints of I so that their distances
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from the nearest endpoint of I form a geometric progression with some fixed ratio
g, 0 < g < 1. An elementary computation then shows that the augmented set
F) D F will have the property

K(F) <k(F)) <k(F)+C,
where the constant C depends only on the ratio g. We can also choose g such that
ar Csr CqF,
so that
2(A,qr) < X(A,s5r) < B(A, qF)-

This proves Proposition 4.11. ]

We turn to the proof of Proposition 4.10.

Proof. Observe that tp C sr, and thus £ (A, tr) < X (A, sr), which implies

lim sup E—E\m < limsup g/?—S—F)

R(F)—>+o00 K(F) R(F)—>+oo K(F)

By Proposition 4.11, the reverse inequality is equivalent to

. %(A,qF) . T(A,tF)
lim sup ———— =< lim sup ————
R(F)—>+00 K(F) RF)—>+00  K(F)

At first glance this looks highly improbable, since the sum defining £ (A, qf)
involves all points from qf, while the sum defining X (A, tr) involves only those
points lying on one of the radii from O to points of F. However, a more careful
argument will prove the above inequality.

Without loss of generality, we may assume that the lim sup on the left-hand
side of the desired inequality is positive. Let L be a positive number less than this
lim sup. This implies that there are finite subsets F of T of arbitrarily large ¥ (F)
such that

1 _
T4 ap) =5 D (- lal®) > LR(F).

akeqr

Until the end of the proof, we shall assume that F satisfies this inequality.
Let Fj equal the set F plus the radial projections z/|z| of points from the set
AN (qr \ tF), so that

Y(A,qr) S Z(A,tF).

Let k, be the number of such radial projections (counting multiplicities) that lie
on I,, where I, is a complementary arc to the finite set F C T. Observe now that
the contribution to ¥ ( F; ) from the complementary arcs of F} contained in I, does
not exceed the quantity

e
[1n s |:10g 7

|n5

+ log(kn + l)] ,
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which corresponds to the case of k, equidistant points of (F} \ F) N I,,. Therefore,
K(F) <®(F) <%(F)+r(F),

where r (F) is the “remainder” term

r(F) = |Ils log(ky + 1).

n

Suppose the pointa; € AN (qF \ tF) is such that its radial projection lies on .
Then |I,| = 2m|l,|s < 1 by the construction of the Carleson squares forming the
complement of qF in DD, and moreover, we have |a;| < 1 — |I,|. It follows that

1 1 1 5

[Inls < 7 [Inls = 3 [1y] < 3 I+ la;DA = la;) = 3 (1 —la;|).

This leads to the the conclusion

Y knlluls < Z(A, qF \ tr) < Z(A, qF).
n

We now show that the “remainder” term is small:
r(F) =0(Z(A,qF)) as k(F) = +00.

To this end, we pick a positive integer N and split the sum defining r (F) into two
parts, keeping the above estimate in mind:

r(F)y = [Z + Z:||In|310g(kn+1)

kn<N  kp,>N
log(N + 1
logV + 1)+ 228D ™ gy,
N kp>N

log(N + 1
log(N + 1) + —(T——Z Y (A, qF).

IA

A

Letting ¥(F) — +00, with £(A, qF) — +o0, first holding N constant and then
making N — 400, we obtain r(F) = o(X(A, qr)), as desired. Consequently,

K(F1) =%k(F) +0(Z(A,qF))
ask(F) — +oc. Since by the above, £(A, qr) < T(A, tf,), we get

X(A,tR) - 2(A, qrF)
K(F) ~ ®(F)+o(X(A, qF))
as K(F) — +oo. This implies that

(A,
lim sup ——i—ﬂ > L.
R(F)—>+o0o K(F1)

Since F) above can be substituted for F, and L can be chosen arbitrarily close to

lim sup E.ar)
R(F)>+o0 K(F)

’
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Proposition 4.10 is proved. n

Let A = {a,}, be a sequence in D, and fix a real parameter o € (0, +00). If,
for every finite subset F of T,

E(A,5F) <0k(F)+C,
for some constant C independent of F, then by the inclusion tg C sg, we also
have

Z(A,tr) <ok(F)+C.
Conversely, if for every finite subset F of T,

(A, tF) <0k(F)+C,
then by Proposition 4.10, D+ (A) < g, so that

E(A,5F) < (0 +&)K(F) + C'(e)

for every ¢ > 0, where C'(¢) is a constant that is independent of the finite set
F C T, but may vary with ¢.

We shall need a similar but more precise comparison between X (A, sr) and
X (A, tr) for some slightly different asymptotic restrictions on the latter.

PROPOSITION 4.12 Fix 0 < g, n < +00. Suppose that the sequence A in D is
such that

T(A,tr) <ok(F)+nlogk(F)+C,
for every finite nonempty subset F of T, where C is a constant. Then
E(A,5F) < 0R(F) + (n+ o) loghk(F) + C’,
for every finite nonempty subset F of T, for some other constant C'.
Proof. As in the proofs of Propositions 4.10 and 4.11, we can show that the
second inequality here is equivalent to a similar estimate with summation over

Stolz stars s replaced by summation over the regions qr with omitted Carleson
squares:

Z(A.qr) < 0Kk(F) + (n+ 0)logk(F) + O(1),

where O (1) stands for a quantity that is bounded independently of the finite set F.

Let F C T be finite, and {I,,}, the collection of complementary arcs; {Q(1,)},
are the associated Carleson squares. Project all points from A N qf (other than 0)
radially to T, and let

F':{I—i—leTzzeAﬂqp,z#-O}

be the resulting set, so that £(A, qr) < (A.tf). We put k, = card (I, N F'),
and note that an elementary argument shows

R(F) <®(F') <R(F)+ Y |I[s log(ky + 1),
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with equality occurring in the right hand side inequality if the k,, points from F'N1,
divide I, into k, + 1 equal subarcs. On the other hand, as we saw in the proof of
Proposition 4.10,

D knllnls < (A, qr) < (A, tp).

Since Zn |In]s = 1, the concavity of the function log (that is, the geometric-
arithmetic mean value inequality) gives

Y Halslog(kn + 1) < log (1 + anllnlx) <log (1 +£(4,9F)).
n n

Now, replace F with F’ in the assumption of the proposition and use two of the
above inequalities to get

E(A,qr) < Z(A,vp) < oR(F') + nlogk(F') + O(1)
< 0R(F)+olog (A, qr) + nlog (R(F) +log (A, gF)) + O(D).
From the proofs of Propositions 4.10 and 4.11, we know that
log (A, qr) < logk(F) + O(1),
and thus
E(A,qF) < 0Kk(F) + (n+ o) logk(F) + O(1),

which is equivalent to the inequality stated at the beginning of the proof. ]

4.3  The Growth Spaces A™% and A~

In this section, we introduce a class of Bergman-type spaces, denoted by A™¢
and A%, which are closely related to the Bergman spaces A% and are sometimes
called growth spaces, and begin the study of their zero sets.

DEFINITION 4.13 For any a > 0, the space A% consists of analytic functions
f inD such that
1/ - = sup {(1 = 12| f(2)] : 2 € D} < +o0.

It is easy to verify that A% is a (nonseparable) Banach space with the norm
defined above. Each space A~ clearly contains all the bounded analytic functions.
The closure in A of the set of polynomials will be denoted by Ag®, which is a
separable Banach space and consists of exactly those functions f in A% with

Jim (1= 12)%1f @)1 =0.

We will also consider the space
A= ) A

O<a<+oo



4.3. The Growth Spaces A~% and A~° 111

It is clear that an analytic function f in D belongs to A~ if and only if there exist
positive constants C and N such that

C
|f(Z)|Sa_—kW, z€D.

It is also clear that

A= ] 42

O<p<+oo

for any @ € (—1, +00). The space A~ is a topological algebra when endowed
with the inductive-limit topology (for a definition, see any book on Functional
Analysis).

For an analytic function f in D that is not identically zero, we define its
hyperbolic exponential type

log
t(f) = limsup—o°——————

o1~ log 7=

The function f is said to be of finite hyperbolic exponential type if t (f) < +o00.
It is clear that

t(f)y=infla: feA}

When f € A™% for o = t(f), we say that f is of exact type. If t (f) = 0, we say
that f is of minimal type. Clearly, t(f) = O if and only if f € A7 forall o > 0.

The space A~°° then consists of 0 and functions of finite hyperbolic exponential
type.

In order to understand the complexity of the zero sets for Bergman spaces,
we first show that zero sets for Bergman spaces cannot be characterized by any
condition that involves only the modulus of the zeros.

Let zo be a point on the unit circle. Then, for 1 < a < 400, the set

|z — zol <a
1 — |zl

Fa(z0) = {z eb:

behaves like a Stolz angle at zp.

THEOREM 4.14 Suppose f is in A=, If the zeros of f, A = {an}n, lie in some
Ta(z0), with zo € T, then A satisfies the Blaschke condition

> (1= lan)) < +o0.

Proof. Using arotation if necessary, we may assume that zo = 1. By eliminating
a finite number of zeros. our assumption then implies that the zeros of f all lie in
the circle [z — 3| < 3.

Since f isin A~ there exists a constant A such that the function (1 —|z|)* f(z)
is bounded in D. It follows easily that the function g(z) = (1 —2z)?* f(z) is bounded
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Since the disk |z — %l < % is mapped to the unit disk D

in the disk |z — §| < 3.
= 2z — 1, the function A(w) = g((w + 1)/2) is bounded and

by the mapping w
analytic in D.

The zeros of & are wy = 2a,y — 1, k = 1,2,3,.... Since the points {ay}, lie
in an angle at z = 1, it follows that the {wy }4 lie in an angle at w = 1. Thus, the
Blaschke condition ), (1 — |wi|) < +oc implies that ), |1 —wy| < +00. Since
[T — wg| = 2|1 — axl, we obtain ), |1 — ax| < +o00. By the triangle inequality,
this implies that ), (1 — |ax|) < +o0. [ |

To better formulate the main results about zero sets for Bergman-type spaces,
we introduce two additional types of spaces. Thus, we set

A= [ AP ={0)U{f e HD): 1(f) < o}
B:B>a
and
ATY = U AP =(0)U{f e HD): t(f) <a}.
B:B<a
It 1s clear that
A% CATY C AT C ALS

We can now state the main results of this chapter; the next two sections are
devoted to their proofs.

THEOREM 4.15 Let A = {an}, be a sequence in D. Then A is a zero set for
A% ifand only if D*(A) < a.

In concrete terms, we prove that the condition DV (A) < « is necessary and
the condition DY (A) < « is sufficient for A to be an A™% zero set. This clearly
implies the following.

COROLLARY 4.16 A sequence A = {a,}, inD is an AZ® zero set if and only
if DT (A) < a.

COROLLARY 4.17 A sequence A C D is a zero set for A~ if and only if
DT (A) < 400.

44 A% Zero Sets, Necessary Conditions

We begin the proof of the necessity of the condition D™ (A) < « for A™% zero
sets with the following balayage-type estimate, which enables us to “sweep” zeros
of an analytic function f radially to the circumference T and convert them into
singular masses without increasing | f| in a certain critical region.

LEMMA 4.18 Let s) be the standard Stolz angle at z = 1. Then

a—z 1— |z
. 1 —az = exp [(loga)'l—_—Z?
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forall0 <a <landz e D\s;.

Proof. Using the Cayley transform
l1+z
w=¢()=——
-z

from D onto the right half-plane C4 = {w € C : Rew > 0}, we can rewrite the

desired inequality as
=l
= eXp og uj,
b+1

where w = u +iv e C, \ ¢(s1) and

1
b— +a
1—a

b—w
b+w

> 1.

We are going to take the logarithm on both sides of this second inequality and
show that it actually holds for w in the larger set C, \ €2, where

Q={w=u+iv:u>1, |v] <u}

To see that 2 is smaller than ¢(s)), observe that (K ~!()) consists of parts of
two orthogonal circles through 1 and —1 and an arc of the circle through 0 and 1
tangent to T at 1. Then it is geometrically obvious that K ~1(Q2) C s.
We now show that

1. b?+u? +v? 4 2bu b+1
log <2log —,

Sb2 4+ u? 402 —2bu °bh-1
where b > 1 and w = u +iv € C \ Q. Itis easy to check that the left-hand side
above decreases, for any fixed u, as |v| increases; and for v = 0, it is an increasing
function of u. Thus, the inequality above holds in the strip 0 < u < 1 with equality
attained at « = 1 and v = 0. It remains to verify the case |v| = u:

u

1. b2+ 2u?+2bu b+1
| < 2log

ot toou g
O T ou —obu B h

u

foru > 1.

Let u = bt. It then suffices to show that
1. 1+202+2 b+1
—log ————— < 2blog ——
t Og14—2[2—2t - Ogb—l

for b > 1 and ¢ > 0. The right-hand side here is decreasing in b and tends to 4 as
b — +00. So it is enough to show that

1 1+ 212 4+ 21
~log ——5— =<
t 14212 -2t

for all t > 0. An easy computation shows that the function

f(t) =41 +1og(1 + 212 — 21) — log(1 + 217 + 21)
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has a positive derivative on (0, +00):
() = 8t2(1 + 2t%) /(1 + 4r*).
Thus,
f@0) > f(0) =0, r>0,
and the proof of the proposition is complete. [ ]

Given a finite subset E of the punctured disk D \ {0}, we define the push-out
measure dAg:

dAp = Zlog—l—dazx,
R
where z* = z/|z| € T is the the pushed-out point and d§; stands for the unit point
mass at { € T. This measure is related to the counting function A(A, E) which
we met back in Section 4.2. It can also be defined for more general subsets E of D.
For a finite Borel measure u on T, we recall the definition of the Poisson extension

Plul(z) =fTP(z, w)du(w), zeD,

where

1 — |zw|?
P LW)= —"T>->
(@ w) |1 — zw]?
is the Poisson kernel. Lemma 4.18 states that the following assertion holds for a
one-point set A; the general case follows by iteration.

COROLLARY 4.19 Suppose f € A% and A = {a;,...,a,} C D\ {0} are
some of the zeros of f. Let By be the Blaschke product associated with A, and let
A* = {ay/l|ail, ...an/la,|} be the pushed-out sequence on T. Then

f@ | _ _Ifl-
Ba@ |~ (=12

exp (P[AA)(@),  z€D\sy-.

We shall need some estimates for several auxiliary harmonic functions. Recall
from Section 4.2 that for a closed set F in T,
dc(z, F) =inf{|lz = ¢|: ¢ € F}, zeD,
is the Euclidean distance from z to F. Also, recall that ds is the normalized arc-

length measure on T.

LEMMA 4.20 Suppose F is a finite set in T and its complementary arcs
Iy, ..., Iy satisfy |Iy| = 2n|Ixls < 1, forallk = 1, ..., n. Then the harmonic
function

1 — |z o
TI¢ —z1> Tdc(, F)

Ur(2) = ds(¢), z €D,
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is positive and satisfies

dc( G < Ur(2), zeD.

Proof. We have

0g ———— = max lo R ze D,
8dc F)  1er Cli—¢|

so that the left hand side expresses a positive subharmonic function on D whose

boundary values equal those of Ur(z). Hence the desired inequality follows from
the maximum principle. ™

For 0 < p < 1, consider the harmonic function
Vp(z,8) = (sec —2—> Re(l—¢z)7P, zeD,

where ¢ is a point on T. The choice of the constant factor involving the secant
function ensures that

I1—20|7P < V,(z.8), (2.8)eDxT.
Also, for¢ € T,and0 < ¢ < %, let y (¢, p, ¢) be the curve
y&. pooy={zeD: 1 -z =clt —21*77},

which makes one loop around the origin and touches the unit circle exactly at ¢.
More generally, for a finite subset F' of T, we define the curve

y(F, p,c) = [z eD:1- Izl2 = cdc(z, F)z_”],

which encloses a star-shaped domain touching the unit circle exactly at the points
of F (see Figure 4.1).
We now compare the kernel V,(z, ¢) to the Poisson kernel P(z, {).

LEMMA 4.21 Fix0 < p < 1and 0 < ¢ < §. Then, for fixed ¢ € T,

1 — 2
: |Zl|2 = P(z.2) <cVp(z,0)

for all 7 in the region between T and y (¢, p, c).

Proof. In the region between y (¢, p, ¢) and T, we have
L=zl < clg =277,
and there
1 Jz)?

T <cll =227 < e Vp(z. Q).

by the inequality we derived before the statement of the lemma. ]
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Figure 4.1. The curve y (F, p, ¢) and the domain it encloses

For a finite Borel measure p on T, let

be corresponding potential, which represents a harmonic function on D.

Nota bene: We restrict the parameters pand cto0 < p < land 0 < ¢ <
and assume that the finite set F' has complementary arcs {/i}¢ satisfying |I|
2| Iils < 1 for all k.

I

LEMMA 4.22 Let u a finite positive Borel measure on T, supported on a finite
set F. Then the inequality

Plul(z) < ¢ Vp[nl(2)

holds for all z between T and the curve y (F, p, c).

Proof. The function P[] is a finite sum of Poisson kernels; apply Lemma 4.21
to each term. As the set of points between T and y (F, p, ¢) is the intersection of
the domains described in Lemma 4.21 over { € F, the assertion is immediate. ®

The key to our necessary conditions for A~ zero sets is the following Jensen-
type inequality. Recall the definition of the logarithmic sum

A(A,E):Z{loc,gL Saj € E}

7 lajl

from Section 4.2, where A = {a;}, counting multiplicities.
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THEOREM 4.23 Let f be a nonzero function in A™% having zeros (counting
multiplicities) at A = {an}, withOQ & A. Then, for any finite set F in T,

A(A,cr) —alogA(A,tF)
< a[R(F) + logk(F)] — a(loga — 2) + log || fll—¢ — log| £(0)|

whenever 4o < A(A, tp)K(F).

Proof. We can assume A to be a finite sequence. By Corollary 4.19,

| f@

1
° BAr‘ltF (2)

1
< logllfll-«+alog I—ZEI—E‘FP[AANF](Z), zey(F,p,o),

where Bancy(2) 1s the Blaschke product for the zeros A N tF and the push-out
measure d A s 1S as before. We now apply Lemmas 4.20 and 4.22, and use the
geometric properties of the curve y (F, p, ¢), to obtain

loo f(@)
BAﬂtF (Z)

o

1
<a—-p)Ur(x) +alog . +c VplAane1(z) + log |l fll -«

for z € y(F, p, c); the function U is as in Lemma 4.20. The left-hand side here
is a subharmonic function in the region enclosed by the curve y (F, p, ¢). Note
that
pr
log |Banes (0)] = —A(A.tr) and  Vy[Aanep)(0) = (sec 7) A(A, tF).

Hence, by the maximum principle, we then have

f0)
Banep (0)

1
<a2=p)Ur(0) +alog — +c VplAane1(0) +log | fll-a

=log|f(0)| + A(A,tF)

log

1 1
=a(2 — )/ log ————ds(¢) + alog —
P )" de@ P c
pr
+ (c sec 7) A(A,tr) +log | fll-a,
By what we did in Section 4.2, the integral expression above is less than or equal
to K(F), and it is elementary that

pr 1
sec — < .
2 I1-p

Thus,

log |£(0)] < (2 — PR(F) + (Tj_;; - 1) A(A, <F) +ozlog% +10g 1 fl—a-

To minimize the right-hand side, we put

1 _ o
T AARE)
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The desired result then follows. n

Note that the result above implies that A(A, tr) < +oo for every finite subset

F of T.
We now prove two necessary conditions for A™% zero sets.

THEOREM 4.24 [f A = {a,}, is an A~ zero sequence, then

T(A,tr) < afk(F)+2logk(F)1+ O(1),
where O(1) stands for a quantity which is uniformly bounded independently of the
finite nonempty subset F of T.

Proof. Since
1 1
E(l—t2)<log?, 0<t<l,
a comparison of the summation functions £ and A shows that by Theorem 4.23,
(A, tr) —alogt B(A, tr) < a[k(F) +logk(F)] + O(1).

We readily find an “almost inverse” to the mapping ¢t +— t — «logt for large
positive ¢, which results in

(A, tF) < a[K(F) + 2logk(F)] + O(1),

as asserted. ™

THEOREM 4.25 If A = {a,}n is an A™% zero sequence, then
E(A, sF) < a[R(F) +3logk(F)] + 0(1),
where O (1) stands for a quantity which is uniformly bounded independently of the
finite nonempty subset F of T.
Proof. This is a direct consequence of the preceding theorem and Proposi-
tion 4.12. [ ]
We derive two useful corollaries from the above necessary conditions.
COROLLARY 4.26 Let A = {a}, be an A= zero sequence. Then
1
S(r) = Z (1—la,)) =0 (log 1 _r> asr— 17,

lapl<r

and for each ¢ > 0, we have

1__
n

¢ I+
[log 1‘—Tan'|]

Proof. Taking
F = {exp(2kni/N): 1 <k < N}
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in Theorem 4.25 and letting N — o0 yields the first estimate, because the Stolz
star s will then cover a disk of radius 1 — 7 /N, and a computation reveals that
K(F)=1+logN. Since

P :]0‘ ds(r)
[

I+¢ I+¢
™ [log 55 og 1]
1
S(rydr
= SO+ (1+e¢) o
0 (1-p) [log Tf—;]
the second estimate then follows from the first one. ]

COROLLARY 4.27 If A is an A~%-zero sequence, then DY (A) < a.

45 A% Zero Sets, a Sufficient Condition

In this section, we present a sufficient condition for a sequence A inID to be an A™¢
zero set. The proof of the main theorem consists of two key ideas: an “oblique”
projection technique, and a technique from Linear Programming.

Throughout this section, we let 5; denote a Stolz angle with the vertex at £ € T
and an arbitrary but fixed aperture ¢ with 7/2 < ¢ < m. Thus, s; is the convex
hull of

{t}U{z e C: |z| = sin(p/2)},

with the vertex ¢ removed. As before, for a finite subset F of T,

sp=Uls;: ¢ € F})

is the corresponding Stolz star domain.

Given a point A € D, contained in the annulus sin(¢/2) < |A| < 1, there are
exactly two Stolz angles s; (with £ € T) such that A € ds;. Let £; and & be
the corresponding points of T, which of course depend on A. Given another point
¢ € T, we pick the one (out of &1, §2) which is the farthest away from ¢, and call it
the oblique projection w, (1) of A. This can be done unless A is on the straight line
connecting ¢ with —{¢; however, we shall mainly be interested in A € D\ 5{; _).
We also need the concept of a tent: for an open arc I C T with endpoints w,
and w,, we define the rent b as the component of I \ s, .«,) abutting on /. The
geometric situation is illustrated in Figure 4.2.

LEMMA 4.28 Fix the aperture of the Stolz angles ¢ € [3m /S, ). Then for all
z2=1¢,0<t<1,and A € D\ sq; ¢y, we have
U2V — 1312
A= lzPa=]rD) _ o
2|11 —wz)? -

A—2z

log =
Sl =2z

where @ = wy (1)
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N

@ (X)

Figure 4.2. The oblique projection @y (1)

Note that the inequality above means that on the radius {z =1¢ : 0 <1 < 1},
the Blaschke factor (A —z) /(1 — Az) is dominated in modulus by the singular inner
function exp[—o (@ + z)/(w — z)], where o = (1 — |A|%)/2.

Proof. Using the identity
A' —_

|- ’ L

1 —Az

we can rewrite the desired inequality as

2 A=A - =P
11— xz|?

log(l — 20a3) +20a; <0,

where
1 — g 1 -z
20 = 1— A%, = ="
M T = A T L
Since
2 n
log(1 —20a3) +20a; = -— Z ( aaz)
(20a)?
< 2 — —_——
< 20(a; —a) 30 —oa)

20(a; —ar — oaya)

k]

1—0oay
it suffices for us to prove

ay —ay —oayaz <0,
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which is equivalent to

that is,

Let
B = larg(¢ /@), y = larg(¢ /M,

where as usual the argument takes values in the interval (—x, ]. The definition
of oblique projection implies that 0 < /2 < y < B < =, and a geometric
consideration reveals that

% 1
=M =(B—y)cos 3 < 7 —9)B V).
Using the expansions

’ ! +[| 2|[cs
= — — Ccosy
|z|? |z

1
==
Z

and

1
- —
Z

2 2
—H2+l—ﬁcosﬂ

we obtain the reformulation
1
cos B — |A[cosy < — (IZI + iz I) a—r?.
Since

1
|Z|+ﬁ>2 z € D\ {0},

it is enough to prove
1
cosﬁ—|k|cosy§§(l—|k|2), LeD\s;.

We can further assume 8 < 7/3; otherwise, the above inequality holds for all
4 € D. Solving the quadratic inequality, we are led to check that

172
051—|A|5(1—cosy)+[(1-cosy)2+4smﬁzy i E%Z] .

The right-hand side is actually greater than (2/7)(8 — y). For %n <@ <m,we
have

1 2
1—|kl<§(ﬂ—<p)(ﬁ—y)§%(ﬁ—y)<;(;8—)/).
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which completes the proof of the lemma. n

In the remainder of this section, we assume that the aperture ¢ of the Stolz
angles is chosen in the interval [37/5, 1), so that the conclusion of Lemma 4.28
holds true. For instance, we can pick ¢ = 37 /5. Given an arc / of the circle T, let
« (I) be the quantity

(D) = ] log —
K 0g —
TR
DEFINITION 4.29 Suppose A = {an}n is a finite sequence in D, wy is a point
in T, and « is a positive number. A positive Borel measure p on T is (A, a, wo)-

admissible if
(i) u(fwo}) =0
(ii) for each open arc I C T, with wy ¢ I, the following inequality holds:
0<pul) <ax()+X(A, b)),

where b} is the tent associated with I.

The set of all (A, &, wp)-admissible measures will be denoted by M(A, &, wp),
or just M. The second condition above, (ii), clearly implies that u({¢}) = 0 for
any ¢ € T, not just for { = wy.

LEMMA 4.30 Suppose 0 < @ < 400, wg € T, and A = {an}, is a finite
sequence in D. Then

sup {u(T) : u € M} = inf {@®(F) + B(A, D\ s¢) : F C T finite, wo € F},

where M = M(A, a, wg) is the set of all (A, a, wy)-admissible measures.
Furthermore, there is at least one maximal admissible measure (1o for which

po(T) = inf {@X(F) + B(A, D\ s¢) : F C T finite, wo € F}.

Proof. The set D \ sf is a disjoint union of tents of the kind b, with wo ¢ I,
so by the definition of the (A, &, wp)-admissible measures, the “sup” on the left
hand side is less than or equal to the “inf” on the right hand side.

Define a finite set F; consisting of wo and all those points on T which are
“oblique projections” of points of A in the annulus sin(p/2) < |z| < 1. Here, that
a point ; € T is an “oblique projection” of aset B C D means that (3s;) N B # @.
Let {Ik} be the complementary arcs of Fp. The point wq acts as a divider; it
permits us to order the arcs [; according to their position relative wyg.

Forevery u € M, let 1 denote the measure with constant density on each I and
such that 1(I;) = u(ly) for all k. We claim that u € M implies i € M. In fact,
if the endpoints e/"! and e/2 of some arc I are not in Fp, then the right-hand side
of the inequality in Definition 4.29 is a locally continuous and concave function
of #; and 1, and so replacing u by iz will not invalidate that inequality. For the
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same reason, to ascertain that a measure 4 = & is in M, it is enough to check
the inequality in Definition 4.29 only for arcs I with wo & I, whose endpoints
are in Fp. Each such measure is described by a vector x = (x1, ..., xy), where
N = cardFp and x; = p(ly). We are thus led to a standard optimization problem
from Linear Programming: maximize the functional

L(x)=x;+---+xn,

where the positive vector x = (x1, ..., xy) satisfies N(N + 1)/2 restrictions of
the type

Xe+ X1+ +x <byy, 1<k<I<N,

which correspond to the inequality in Definition 4.29 with arcs / whose endpoints
are in Fp. Written out, the quantities by ; are

by =ak(lr)+X(A, by,),

where I ; is the arc obtained by filling in finitely many points in the union I U
I U--- U I;. We will refer to this as the optimization problem. Let C denote the
closed convex polyhedron in R defined by the above-mentioned restrictions

Xe+Xxppr+ -+ x <by, 1<k<IZ<N,

and denote by C, its intersection with RY: Rﬁ stands for the N-fold Cartesian
product of the half-axis Ry = [0, +00).

The “inf” over all finite subsets F C T appearing in the formulation of the lemma
can only get bigger if we restrict F to be subsets of the “obliquely projected” set
Fo, so it is clearly enough to prove the equality under the additional restriction
F C Fp. In fact, one can argue that only subsets of Fj have a chance of being
extremal for the “inf”. Thus, in terms of the optimization problem stated earlier,
the assertion of the lemma can now be reformulated as follows:

max{L(x):x € C+} = min Zbkv~lv’

where the minimum is taken over all simple coverings {[k,.l,]1}, of Ny =
{1.2,..., N}. We will refer to this as the min-max equation. Note that we here
deviate from standard notation and let [k, /] stand for an interval consisting of
integers and not of reals.

Itis at least clear that on C, L(x) assumes its maximum somewhere. We claim
that the maximum is in fact assumed at some point x = (x1, ..., xy) € C4 with
xj>O0forall j =1,...,N.Tothis end, take a point x € Cy, with x; = 0 for
some j. There may be a few zero slots clustering together, so say that x; = 0 on
the “interval” k < j < I, but that at the end points we have x; > 0 and x; > 0.
For a small parameter ¢ > 0, consider the point

X' =, xpm,xk—el —k—=1), e, - 8, x, XN

We now use a property of the given quantities by ;, namely that they are positive
and strictly monotonically increasing in the interval [k, I]: by ; < by whenever
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[k, 1] is strictly contained in [k, I]. It follows that the competing point x” is in
C, for sufficiently small ¢, and moreover, L(x") = L(x). If x is the point where
L(x) assumes its maximum, we treat all clusters of zeros the same way, and find
a (perhaps different) point x’ € C4 with L(x") maximal, and x} > 0 for all
j=1,...,N.

We next claim that L(x) < L(x') for all x € C. By what we have done so far,
it is so for all x € C. Suppose for the moment that at some point x° € C, the
inequality L(x% > L(x’) holds. Then we consider points x close to x’ along the
line segment connecting x” with x%. Such x will be in C by convexity, and they
are in RY, and hence in C... The value of L(x) must then be slightly bigger than
L(x"), a contradiction.

We can now apply the standard duality theorem of Linear Programming due to
Gale, Kuhn, and Tucker [48], [127, p. 28]. To formulate the result, we write the
N (N + 1)/2 inequalities defining C as

(x,el) <bj, j=1,2,...,N(N+1)/2,

where b; equals by ; for the pair (k, /) numbered by j, and similarly, e/ stands for
the vector (0,...,0,1,...,1,0,...,0)in RY, with 1’s precisely on the interval
[k, 1] associated with the index j. Here, (-, -) is the usual inner product of RV:

(5, yy=xi1y1+ ...+ xNyN, x=(xy,...,xn), Yy=01,--.,IN)-

We also write L(x) = (x, L), where L = (1,1,...,1). The assertion of the
duality theorem is

max {(x, L) : x € C+} = max {(x,L) : x € C}

=min{Y 6;b;: 6; € Ry forall j, Y 0/ =L
j j

The min-max equation we encountered earlier claims that the above minimum is
achieved with coefficients 6; € {0,1}. The points 6 = (8y,...,0nN+1)/2) €
RNNED/2

+ with

Zejej =L
J

constitute - by inspection of the vectors involved (the e/’s and L) - a closed convex
lower-dimensional polyhedron S contained in the cube [0, 1]V(N+1D/2_ We show
that the polyhedron S is the (closed) convex hull of “edge points” 6 € S of the
type that 6; € {0, 1} for every j. The min-max equation then follows easily. Points
6 with positive rational coordinates are dense in S, and it suffices to obtain that
they are in the convex hull of the “edge points”. Multiplying by the least common
denominator n of the positive rationals 61, . .. , On(N+1y/2, We have

Zl?,-ej:nL, 4.1
J
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where #; = n6; € Z, . Here, Z, = {1, 2, 3, ...} stands for the set of all positive
integers. We interpret the above situation in terms of coverings. Let J stand for
the set of all closed intervals J = [k, ] in the integers Z whose endpoints are
integers satisfying 1 < k <1 < N. A system P = {J,}, = {[kv, [,]}, of such
intervals (repetitions are allowed) is called an n-fold covering (or n-covering, to
shorten the notation) of Ny = {1,2, ..., N} if every n € Ny belongs to exactly
n intervals from P (if n = 1, we speak of a simple covering). In (4.1), we have an
n-fold covering of Ny supplied by the various support intervals of the coordinates
of the vectors e/, with multiplicities as expressed by 6 . We now claim:

Every n-covering P of Ny is the union of n simple coverings. In fact, every
interval J = [k,l] € P with < N has the property that/ + 1 is covered n times
by P\ {J} while [ is covered only n — 1 times. This is possible only if there is an
interval in P \ {J} whose left endpoint is / + 1. The rest is done by induction.

This means that the integer-valued vector & = (#y,..., %y +1)/2) can be
written as a sum of n vectors of the type € = (€1, ..., env+1y/2), where €; €

{0, 1} for all j and
Zej el =L:
J

each € is then an “edge point” of S. That is, 6 is a convex combination of “edge
points”, as claimed. The proof is complete. [ ]

The reason why we introduced the splitting point wo € T is that without it, we
cannot assert that an n-covering is the union of n simple coverings, a technical
point needed in the proof of the lemma. For example, there is a 2-covering of
{1, 2, 3} - made cyclic by declaring that after 3 comes again 1 — which cannot be
decomposed as the union of two simple coverings.

We can now prove the main result of this section.

THEOREM 4.31 Suppose A = {an}, is a sequence in D. Suppose
T(A,sF) <ak(F)+ 0(1)

holds for all finite subsets F of T, where O(1) is bounded independently of F.
Then A is an A% zero sequence.

Proof. Without loss of generality, we can assume that 0 ¢ A. Let A be a finite
subsequence of A. Now we choose an arbitrary wg € T, construct as in Lemma4.30
a maximal (Ao, a, wp)-admissible measure (g, and form the function

fo(z) = Bay(2) ®(2),
Where By, is the Blaschke product for Ag and ® is the outer function
E+z
P(z) =exp {/ duo)y -
T2
We are going to obtain an upper estimate for || fo||_ and a lower estimate for
| f0(0)], both independent of Ag C A. To this end, we fix a point { € T and
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consider two subsequences of Ag: Ay = AgN s, —z) and Ag = Ag \ Ay Let BA()
and B~ be the Blaschke products for A{ and Ag, respectively. For each a, € A,
let w, = @ (a,) be its oblique projection. Form an atomic measure o on T by
placing at each @, a point mass of magnitude o,, = %(1 —lay|?),andlet ¥ = ®S,,
where S, is the singular inner function

+
So(2) = exp {—/ ks dcr(’g‘)} .
T2
From its definition, we see that the measure o has
o(I) = (Ag, br) = (Ao, b1)

for each open arc I in the punctured circle T \ {¢, —¢}. The (Ao, «, wp)-
admissibility of ©o means that

po(l) < ak(l) + (Ao, br)

for any open arc I in T \ {wp}. We need this inequality for arcs that contain the
point wo, too. This is achieved by the following argument, if we pay a small price.
If we partition an arc / C T into two arcs I} and I, then

e e e e
1|5 log — < |I1|slog —— + | hb|s log —— < |I|;log — + (log2)|/];.
SR, L "L T '

This implies that
pmo(f) < awx(l)+a(og2)|l|s + (Ao, br)

holds for all arcs 1, also those containing the point wy.
The boundary measure for the zero-free function W is ug — o, and putting the
above observations together, we have

(no — o)1) < ak(l) + a(log2)|]|s
for every arc I in T \ {¢, —¢}. We apply this to arcs having ¢ as one endpoint,
Using integration by parts (see Exercise 1), we derive from this

W) < a =1L,

— |z’
forO0 <t < 1, where the constant C = C (@) only depends on a. At this point, we
apply Lemma 4.28, to get

|Bay(2)] < 155 (2)1, z =1,
for0 <t < 1. Since | By, (2)| < |Bz(2)], we obtain
[fo()| = \BAO(Z)QD(Z)' < \BAg(z)QD(z)'
< WEIs—S . i=x
= TS T e T

where 0 <t < 1. The point ¢ € T is arbitrary, and hence || foll—« < C.
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‘We note that
log|Ba,(0)| = —A(Ap, D) and log |®(0)| = po(T),

where the logarithmic sum function A is as in Section 4.2, so that for the function
fo = Ba,®, we have

log | fo(0)] = —A (Ao, D) + po(D).
By Lemma 4.30 and the maximality of 1,
1o(T) = inf {« ¥(F) + (A, D\ s¢) : F C T finite, wo € F}.

We obtain
log——— = A(Ag, D) — uo(T)
| fo(O)] °
= —inf{a®(F)+E(A,D\sp): F C T finite, wo € F}
+3 (A0, D) + [A(A, D) — (Ag, D)]
= sup{X(4,sF) —a®(F): F C T finite, wo € F}
+[A (A0, D) — E(Ag, D)].
Since

1 1 ) )
Oglog;—z(l—t):O[(l—t)] ast — 1,

and the assumption on the sequence A = {a,}, easily implies (see the proof of
Corollary 4.26)

Y (1 —laa)? < +oo,
n

we have that
A(Ap,. D) — (40, D) = O(D),

with a bound that is independent of which particular finite subsequence Ag we
have picked. From the assumption of the theorem, we thus have

1 —
| foO)]

with a bound independent of Ay C A.

Now, take a nested sequence of finite subsets of A, A} C Ay C A3 C -+,
with A = U, A,, and construct as above functions f, for each A,. The functions
{fn}n form a normal family. Hence there is a subsequence { fy,, }x converging to an
analytic function f uniformly on compact subsets of D; the function f is in A™¢
and its zero sequence is A. [ ]

log

o),

COROLLARY 4.32 Suppose A is a sequence in D with DY (A) < «. Then A is
a zero set for A™°.
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4.6 Zero Sets for AL

In this section, we consider zero sets for the standard weighted Bergman spaces
AP The main work was done in the previous sections; we only have to take care
of some minor technical points here.

We begin with a Blaschke-type product that can be used to divide out zeros of
functions in weighted Bergman spaces. In the unweighted case, this product is not
really necessary, since the contractive zero divisors will do the job even better.

Recall that the Blaschke factor induced by a single point a in D is defined as

lal a —z

Ba(2) = — =
al—az

, zeD:

fora = 0 we set By(z) = z.

PROPOSITION 4.33 Suppose A = {a,}, is a sequence of points in D with
+00
D (1= lan?)? < +o0.
n=1

Then the product

400
Hp@) = [ | Ba,(2) [2 = Ba, (2)]

n=1

converges uniformly on every compact subset of D; the zero set of Hy is exactly A
(counting multiplicities); and the function Hy is independent of the order of the
factors.

Proof. Without loss of generality, we may assume a, # O for every n. Then it
is easy to check that

|l = Bo,(2) (2 - Bay@)| = |1 = Baoy@)|
ap +Z|an|

2
_ 2
2 —3,2) (I = lan ).

The desired results now follow from standard facts about the convergence of infinite
products of analytic functions. u

The function H, is known as the Horowitz product.

LEMMA 4.34 Suppose 0 < p < 400 and —1 < @ < +oo. Let f € Al be
a function with f(0) # 0, and let A = {ap}, be its sequence of zeros, counting
nlzultiplicities‘ Then there exists a positive constant C = C(p, a) such that

/O < Clifllpa

::c; lanl(2 = lanl) —
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Proof. It is clear that we may assume f(0) = 1.Letn =nyand N = Ny be
the usual counting functions associated with f. Consider the expression

+00 1 1 1
S = log———— = / log dn(r).
Z lanl(2 — lanl) 0 r(2—r)

n=1
By Proposition 4.6 and integration by parts (twice),

lN(r)dr
S=2/0 -

Since f(0) = 1, Jensen’s formula gives

2
N(r) = L[ log| f(re'?)| de.
0

2
It follows that
dA(z)
Sp = / log| f@P ———=
D |21(2 — |z])?
= Ci+ /D log (lf(Z)I"(l - lzlz)“) du(z),
where
C 2/l ! log : d
= r,
: 0 r@Q—r? °(1-r2e
and
dA(z)
du(z) = ———=
212 — |z])?
is a probability measure on D. The desired result then follows from the arithmetic-
geometric mean inequality; see Proposition 4.3. ]

Since |a|(2 — |a|) < 1 for all a € D, we see that the lemma above remains true
if we replace the zero sequence {a,}, by any of its subsequences.

THEOREM 4.35 Suppose0 < p < +o0 and —1 < a < +oc. Then there exists
a positive constant C = C(p, ) such that for every f € AL that has A as its zero
set, we have “f/HA”a‘p < Cll flle.p-

Proof. Let f be a function in AZ with zero set A = {ap},. Forevery w € D\ 4,
let f, = f o ¢, where

w
Yw(z) = zeD.

b4
1 —wz’
Then f,, is in Ay and its zero set is {¢,(an)},, which does not contain 0. Fix any
B > «, and apply Lemma 4.34 to the function f,,. Then

| f (w)]
v 10w (@n)|(2 — |@w(an))

< C”fw”p.ﬁq
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where C is a positive constant depending only on p, «, and 8. Since
lpw (@12 = lpw(@)]) < |Ba(w)(2 — Ba(w))|
for all @, w € D, we obtain

fw)
Ha(w)

p

IA

CPB+ 1) fD @171 = 122P dAG)

1 —12128(1 — jw|?)B+2
cre+n [ 1 e — s

for all w not in A. By continuity, the above also holds for other w’s in . The
desired norm estimate now follows from Fubini’s theorem and Theorem 1.7. =

Again, the theorem above remains true if A is replaced by a subsequence of A.
The next corollary is then obvious.

COROLLARY 4.36 Suppose 0 < p < +o00 and —1 < « < +0o. Then any
subset of an AL -zero set is also an AL-zero set.

We now derive some very sharp conditions that are necessary or sufficient for a
sequence to be an Af-zero set. For —1 < a < 400 and 0 < p < 400, let

Azt = a2
q:p<q
and

Ab- =) AL

q-g<p

THEOREM 4.37 Suppose 0 < p < 400, —1 < o < +00, and that A is a
sequence in' D. Then A is a zero set for AL~ if and only if D*(A) < (1 + a)/p.

Proof. If DY (A) < (1 +a)/p, then, by Theorem 4.15, A is a zero set for A;ﬂ,
where 8 = (1 4+ «)/p. Since A;’S C AL, we conclude that A is a zero set for
Ay .

Conversely, if A is a zero set for A2, then A is a zero set for A for every
q < p.Let G4 be an extremal function for the invariant subspace of Al generated
by the sequence A. Then G, € A~(1%%)/4 by Theorem 3.3. Let A, be the zero
setof G4. Then A C Ay, and hence by Theorem 4.15,

1
D*(4) < D*(A) < —2.
q

Letting ¢ — p~, we arrive at DT (A) < (1 + @)/p. u

COROLLARY 4.38 Suppose 0 < p < 400, =1 < @ < +00, and A is a
sequence in D. Then A is a zero set for ALY if and only if D*(A) < (1 + )/p.
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Note that the results above simply state that the condition D1 (A) < (1+a)/p
is necessary and the condition D*(A) < (1 + &)/p is sufficient for A to be an
AL -zero set.

4.7 The Bergman-Nevanlinna Class

In this section, we consider the Bergman-Nevanlinna class A-g, -1 <a < +oo,
consisting of analytic functions f in D with

‘/DlogjL 1f (@)1 (1 = |21 dA(z) < 400,

where log* x = log x if x > 1 and log* x = 0if 0 < x < 1. Our main purpose is
to characterize the zero sets of AY by a Blaschke-type condition. The spaces Ag
appear in the limit as p — 0 of the weighted Bergman spaces A%, in the sense of

tP—1

lim = logt, 0<t < 4o00.

p—>0 p
We begin with the elementary factors from the classical Weierstrass factorization
theory for entire functions. For any nonnegative integer N, let Ey be the entire
function defined by

2 N
EN(Z):(I—‘Z)CXP<Z+?+-“+W), zeC.

It is easy to see that its derivative is

, N 2 N
Eny(@) =~z exp(z+7+-~-+—ﬁ>.
Since En (0) = 1, we must have
En@ = 1+""Fy(2),
where Fy is an entire function. This proves the following lemma.

LEMMA 4.39 For every nonnegative integer N, there exists a positive constant
C such that

En@I <1+ Cl" |1 - En@| < M,
forall |z| < 2.
We can now prove the main result of this section.

THEOREM 4.40 Fix —1 < o < +00. A sequence A = {a,}, in D is the zero
set of a function in A if and only if

+00

D (= 1an)**? < +oo.

n=|
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Proof. First, assume f € AO with zero set A = {a,},. To simplify the use of
Jensen’s formula, we may as well assume f(0) = 1. In this case, Jensen’s formula
yields

2

1 [ 1 ,
Zlo" 2, ent p(r) = —nfo log | f(re'")|dt < 7 )y log™ | f(re')|dr.

Integrating the inequality over [0, 1) with respect to 2r(1 — r2)® and applying
Fubini’s theorem to the left-hand side, we obtain

1
Z/ 2r(1 = r2)% log — drg/10g+lf(z)l(l—Izlz)“dA(z).
lan| lan| D

By integration by parts, the integral on the left-hand side equals

)

d
(1 2)d+1 r
a+1Ji

which is obviously greater than

2
LT et gy = (D™
a+1Jg, (a+ D(a+2)

This shows that

D (= lan ) < @+ D+ 2>fD‘°g+ £ @I (1 = [z])* dA(z) < +o0.

Next, assume that A = {ap}, is a sequence in D satisfying

+00
D (1 —lan)**? < +o0
n=1

We shall construct a function in A whose zero set is exactly A, counting
multiplicities. To do this, we may assume a, # 0 for every n.
Fix a positive integer N such that N > « + 1. Consider the product expression

lan
f@= HEN( 1 —a,,z)

It is clear that each factor in the above product is analytic in . Since

1—a?

—| <2, z €D,
1—az

for each a € D, we have from Lemma 4.39
_ 2 _ 2
|- Ey (I—'f—'> <cC ’l—'f—'
1 —auz 1 —anz
foralln =1,2,3,.... This, along with

(1= lan )V < (1 = Ja. )2,

N+1
zeD,
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shows that the infinite product defining f converges, and that the function f is
analytic in D with zero set A = {a,}n.

To show that the function f belongs to A? o+ We apply Lemma 4.39 and the
obvious inequality

log(1 + x) < x, x>0,

to obtain

—|a '2 N+1
loolf(z)l<CZ(———"—> , zeD.

anzl

This implies that

2\
/1oo+|f<z>|<1—|zn )“dA(z)<CZ<1 an] )N“[ (A=) dAk)

[1 —a,z|N+!

Applying Theorem 1.7, we obtain another positive constant C’ such that

+00
/D log* 1 £ () (1 = 2)*dA(z) < C' Y (1 —la.|)**? < +oo,

n=1

which completes the proof of the theorem. ]

4.8 Notes

It is still an open problem to characterize geometrically the zero sets for Bergman
spaces. And it is well known that this problem is very difficult; for example,
Theorem 4.14 clearly shows the subtlety of the problem. Only a handful of papers
exist on zero sets for Bergman spaces.

Horowitz studied zero sets in his thesis and subsequent papers [76, 77]. His
main tools were the classical Jensen’s formula and lacunary series. In particular,
Horowitz was able to show, using those elementary tools, that different Bergman
spaces have different zero sets, that the union of two zero sets for a Bergman space
can fail to be a zero set for the same space, but that any subset of a zero set for a
Bergman space is still a zero set for the same space. Also, Theorem 4.35 is due to
Horowitz.

Deeper properties of Bergman space zero sets were obtained by Korenblum in
[83], and in a sharper form, by Seip in [112] and [113]. In particular, the results
of Sections 4.2—4.5 are essentially Korenblum’s, although the proofs here have
been improved over those in the original paper. Theorem 3.3 allows us to obtain
Korenblum’s main results in the context of AZ; this is done in Section 4.6. The
oblique projection technique is due to Seip [113]. The use of Linear Programming
techniques first appeared in the context of .4~ zero sets in [83].
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Luecking [93] has reformulated the condition on a sequence of points in D to
be a zero sequences for the growth space .A™¢ in terms of harmonic majorants; he
also has a similar condition for the Bergman spaces A”.

Probabilistic results on zero sets for the Bergman spaces were obtained by
Shapiro [116], and later, in a different vein, by LeBlanc and Bomash {90, 24].

Theorem 4.40 is due to Heilper [74] in the case ¢ = 0; the proof here is basically
from [36].

4.9

1.

10.

Exercises and Further Results

Carry out the integration by parts argument needed to show that |W(1¢)]| <
C(l- 12)“" for 0 <t < 1 in the proof of Theorem 4.31. See [83].

. If I is an invariant subspace of A” and I contains a Blaschke product, then

I is generated by a Blaschke product.

Fix a space A?, 0 < p < +4o0. For the singular inner function S, with a
single point mass o at z = 1, construct a sequence of Blaschke products
{Bn}n such that B, — S, uniformly on compact sets. If G, is the extremal
function of the invariant subspace generated by B, in A?, and G, is the
extremal function of the invariant subspace generated by S, in A?, show
that G, — G, in norm.

. Explicitly construct a zero sequence for AZ that is not a Blaschke sequence.

. Let I4 be the invariant subspace of A? generated by a zero set A. Show

that the orthogonal complement of 1, is the closed linear span of the kernel
functions (1 — @z) 2, witha € A.

. For a zero set A for the space A”, let I4 be the corresponding zero-based

invariant subspace, and G 4 the associated extremal function. Suppose we
have two zero sets A and B, with A C B. Show that the closure of Ig/ G4 =

{f/Ga: f e lp}equalsipa.

. Suppose {A,}, is a decreasing sequence of zero sets in A? with

+00
A=()A4n
n=1
Show that the closure of | J{/4, : n > 1}is I4.

Fix 0 < @ < +00. Construct a zero sequence for A~ that is not a zero
sequence for Aj*. Hint: consider the regular sequences of Section 5.4.

. Let A be a zero set for A% and let H, be the product defined in

Proposition 4.33. Show that || f/Hall2 < || fll forall f € 4.

Forany 0 < p < +o00and —1 < « < 400, there exist two zero sets A and
B for A% such that A U B is no longer a zero set for AZ. See [76].
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12.
13.

14.
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Decide whether for (p, @) # (g, B), the spaces A% and A‘é have different
zero sets. This is probably still an open problem.
If A ={aj,...,an}isafinite sequence in D, then G4(0) > |a; - - - a,|.

Let A = {a,}, be a zero set for A? with a,, # a,, for n # m. If we apply
the Gram-Schmidt process to the functions

K(z,a1),K(z,a2),...,K(z,an), ...,

where K is the Bergman kernel, then the result is the following orthonormal
system:

K(z.,a1)  Ka(z,a2)  Ka(zan4)
VK@i, a) \JKa(az,a2)’ J/Ka, @1, ans1)
Here; A, = {a1,...,a,} and K,, is the reproducing kernel of I4,. In

particular, the above system forms an orthonormal basis for / Al. See [140].

Let A = {a,}, be a uniqueness sequence for A? (that is, A is not a zero
set for A%) with a, # a, forn # m.Foranyn > land 1 < k < n, let
Ak ={ay, ... ay)\ {a} and let

Pnk(2) = Kpe(z, an) /K gr (@ ar), 2 €D.

Then

f= nllr-ll:loo ,; far) nk

for every f € A2. The convergence is in norm, and each @, is a linear
combination of the Bergman kernel functions K(z,4a;), 1 < j < n. See
[140].
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Interpolation and Sampling

In this chapter, we define and study sequences of interpolation and sampling for
the Bergman spaces A~ and AZ. The main results include the characterization
of interpolation sequences in terms of an upper density and the characterization of
sampling sequences in terms of a lower density.

We will make use of the several notions of density introduced in Chapter 4. We
will also introduce a new Mobius invariant density and show how it is related to
the ones in Chapter 4.

As a final item, we show (in Section 5.4) how to compute the upper and lower
densities of regular sequences.

5.1 Interpolation Sequences for A7

Recall that A7, with 0 < « < +00, is the Banach space of analytic functions f
in D such that

I£ll—e = sup{(1 = [21))*| (2] : z € D} < +o0. (5.1

We say that a sequence I' = {z;}; C D of distinct points is an interpolation
sequence (or set) for A™% if the restriction operator R defined by

fe{f@py=fir
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maps A~ onto C~%(T"). Here, C~%(I") denotes the Banach space of sequences
a = {a;}; with the norm

lall—a.r = sup (1 = 1z;1*)*la;l. (52)
J

Write
Kr =kerRr ={f e A% fIr =0},
and observe that R induces the quotient map
Rr: A™/Kr — C™%(I),

which has norm < 1. Suppose T is an interpolating sequence for A~%; this then
means that Rr is onto, so that by Basic Functional Analysis, Rr is an invertible
operator. Let M(I") = M, (") be the norm of the inverse of the above quotient
map. Then it follows easily from a normal family argument that for every sequence
a € C7%(T') there is a solution f € A~ to the interpolation problem

f(zj) =aj forall j, (5.3)
with || fll—¢ < My(D)||lall—e.r. We write My(I') = 400 if " fails to be an

interpolation sequence for A™%.
We shall also consider the separable subspace A;* of A%, whose elements
satisfy

f@=o[t =1z ], -1,

as well as the corresponding sequence space C;; ®(T"). The definition of the concept
onga-interpolation sequence as well as the meaning of My = My(I") = My o(T")
are then self-explanatory.

If ® is a Mobius map of D, then a straightforward computation shows that the
transformation T defined by

(To f)(2) = ' (D" f(P(2)) (5.4)

is a unitary operator on both A™* and Aj . This implies that interpolation sets
for A™* and .A;* are Mobius invariant, and so are the interpolation constants:

My (T) = My (P(I)), Mo o(T) = Moo (P()).
LEMMA 5.1 Suppose f € A™® and
Sef@=(1~-12)*f@, zeD.
Then there exists a constant C,, (depending only on «) such that
ISe.f(@) = S f(B)] < Co |l fll -« p(a, b) (5.5)

foralla and b in D with p(a, b) < % where p is the pseudohyperbolic distance.
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Proof. By Cauchy’s formula,

: ! f(&)deg
@) =-— 5
270 Jie—zj=(1=1zpy2 (€ = 2)
which yields the estimate

I @D < Vel Fll—a(l = 277!, zeD.

If p(a, b) < % then 1 — |z|? ~ 1 — |a|? for all z lying on the line segment joining

a and b; also,
la — bl ~ p(a, b)(1 - la]*).
Therefore, if d Sy (z) is the total differential of S, at z, then

@S f@1 = [200 = 2P I @1+ (1= 1217 @l 1zl
[+ r)(1 =122 11 142,

A

IA

It follows that
1Se f(@) = Sa f(B) < Vil fll—a(l = la>)"Va — bl ~ yoll fll—a p(a, b),
as claimed. u

Recall that a sequence I' = {z;}; of points in D is called separated (in the
hyperbolic or pseudohyperbolic metric) if

0 < inf{p(zk, z1) : k # I}.
COROLLARY 5.2 Every A~%-interpolation sequence I = {z}; is separated.

Proof. Fix k, and define a sequence {a,}; by
aj =1 -z ™84,
where §; 4 is the Kronecker delta symbol. Choose f € A~ such that || f||_o <
My (T') and f(zj) = a; forall j. If j # k, then according to Lemma 5.1, either
p(zj,2k) > 3 or
1 =18(z;) — S(z)| < CaMo(T)p(z), 2k)-
Thus, it follows that

(1 1
; > S ——
p(zj i) Z min { 2’ CQ,MO,(F)}

If I' = {z;}; is a separated sequence in I, then by the estimate following
Lemma 2.14 we can find a positive constant C (independent of f) such that

Z(l—lznz)ﬂf(znv’schv(z)lP(l—|z|2>5"2dA<z> (5.6)

J
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for all analytic f in D. Obviously, the above estimate is also possible if T" is the
union of finitely many separated sequences.

We already mentioned that .4~%-interpolation sequences are Mobius invari-
ant. Next, we show that A™“-interpolation sequences are invariant under smail
perturbations with respect to the hyperbolic metric.

PROPOSITION 5.3 Let T = {z;}; be an A™%-interpolation sequence. Then
there is some constant § € (0, %], depending only on My(T") and «, such that
each sequence T’ = {z;.} j satisfying p(z;, z’j) < 8 is also an A™%-interpolation
sequence.

Proof. We fix § > 0, whose value will be determined later, and assume that
{z’j}j is a sequence satisfying p(z;, z’j) < é forall j. Given asequence {w,}; with
|lwj] < 1forall j, we wish to solve the interpolation problem

A-1PfEp =w=w?  j=123.. (5.7)

We proceed by iteration. We first find a function fi such that || f||_y < My (T)
and (1 — |z;1)% fi(z)) = wﬁo) for all j. Set

M _ O 2\ ’ .
w® = w® — (4P A, =123

By Lemma 5.1, we have ij.l)| < CuMy(T')é. We can now find f» € A7 such
that || f2ll—¢ < Co Mo ()28 and (1 — |2;12) fa(z;) = w" for all j. Define
wﬁz) = wj»” — (=GP fE), i=123,....
By Lemma 5.1 again, we have lez)l < CgtMo,(r‘)zé2 for j = 1,2,3,....
Continuing this process, we get a sequence { f,, }, of functions in A™% with
I fall-a < Co™' My (T) 8"~
forallm =1,2,3,...,and a doubly indexed sequence {wﬁ")}j,n with

w”| < CqMo(r)" 15"
for all j and n, such that
(=15 fa@p) = w] ™ —w?
for all j and n. If § is chosen so small as to satisfy § C, M, (T") < 1, then the series
f= ::? fn will converge in the norm of A™%, and the function f will solve
the interpolation problem (5.7). Moreover,

) My (T
Mo(T) < I fll—a < - () (5.8)

CadMy(T)
The proof is complete. ]

We are going to combine the basic properties above with the properties of A~-
zero sets studied in Chapter 4 to obtain necessary and sufficient conditions for
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A~ %-interpolation sets. As a matter of fact, we will show that the density conditions
that more or less described the zero sets for A™%, if made Mobius invariant, will
completely describe the A™*-interpolation sets.

Given a sequence I' = {z;}; in D \ {0} and a finite subset F of T, we recall
from Chapter 4 the logarithmic summation function

1
AT, tp) = Z {logﬁ 175 € 'CF} ,
- Zj
J
where tr is the union of radii from O to points in F.

LEMMA 5.4 Suppose ' = {z;}; is the zero set of a function f € A% with
f(0) = 1. Then, for every e > 0,

A, tr) < (@ +&)K(F) +2logll fll-« + O(1),

where O(1) expresses a bounded quantity that only depends on « and ¢.

Proof. This is an immediate consequence of Theorem 4.23. ]

For a sequence I' = {z}; of distinct points in D (not containing the origin),
recall from Chapter 4, Section 4.2, that the upper asymptotic x-density D+ (T) is
the infimum of all positive real numbers g for which

A(T, tr) < oK (F)+ O(1),

uniformly in all the finite subset F of T. We want to define a Mobius invariant
uniform density. To this end, we introduce the Mobius maps

n —2
“ s Zner,

() = T
n

and consider the shifted sequence ®,(I") with the origin removed:
Ip=®,(T)\ {0} = D, \ {z,}), n=1,2,3,....

DEFINITION 5.5 The uniform separating upper asymptotic «-density D (T') is
the infimum of all positive real numbers o for which:

sup A(Tp, tr) < 0k(F) + O(1)

holds uniformly in all the finite subset F of T.

Observe that the logarithmic singularity at the origin in the definition of A(T", tr)
puts a severe penalty on points of I" too close to 0, and as we insert this into the
Mobius invariant form with the shifted sequences I',, we see that any sequence
I with D;f(I") < +o0 is separated. Conversely, any separated sequence I' has
D; (') < +o0. See Exercises 16 and 17 for details. Like the upper asymptotic
k-density D*(I") of Chapter 4 (see Section 4.2), the uniform density D, (I") can
also be expressed as a lim sup:
sup, A(T'p, tF)

DY () = limsu —
w (D) ?(F)——>+Fc)>o K(F)
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We can now give a characterization of .A~%-interpolation sequences in terms of
the uniform separating upper asymptotic k-density.

THEOREM 5.6 LetT" = {z;}; beasequence inD. Then the following conditions
are equivalent:

(i) T is an A™%-interpolation sequence.

(ii) There is some § > O such that T is an A~B-interpolation sequence for all
B>a—34.

(iii) D (T') < a.

Proof. Clearly, it is enough to prove the equivalence of (i) and (iii).

We first prove that (i) implies (iii). For each n = 1,2,3,..., the iden-
tity My(I') = My(P,(I')) — which expresses the Mobius invariance of the
interpolation problem — implies that there is a function f, € A™% such that

I fall— < Mu(T), fn(O) =1, and fn!l‘,, =0.
Using Lemma 5.4, we see that for each ¢ > 0 and finite subset F C T,

supA(Tp, tF) < (a +&)K(F) + O(1),

where the bound O (1) only depends on «, €, and the interpolation constant M, (I").
We proceed to improve this estimate.
+

For eachn = 1,2,3,..., write [, = {Zk.n}k:]) and construct for positive

parameter § a perturbed sequence I‘ﬁ = {zi‘ n}:j‘l’ by setting

S )
Zkn = [Zk.nl® Zk.n

for all k. Note that on the left hand side, § is only a superscript, whereas on the
right, it is an exponent. The points of the sequence l"g are pushed inward into the
disk compared with I". We see that

(n 2y = \nl = a0 8 8
P Zhns Zpn) = 1 — |ZI<.n|2+(S - O<IEI 1 _I2+5 Bl 2+34 2
Let Cy be the constant of (5.8), which comes from Lemma 5.1. By Mobius
invariance,
My (Tp U{0}) = Mo(®n(T)) = My (),

so that if § is so small that

8 1

- << _—,

2 T 2CaMy (D)
then the estimate (5.8) implies the following: for each n, there exists a function
fn € A7 (not the previous f,, of course) with

| full—a < 2M,(T), fa0)=1, and fulrs =0.
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By the definition of the logarithmic sum and the perturbed sequence,
ATy tp) = (1 +8) A(Th, tr)

holds for all n. We apply LemmaS5.4 to these new functions f,, and obtain, for
every ¢ > 0,

(14+8) A(Tn,tF) < (@ +&)K(F) + O(1),

where the bound O (1) only depends on «, €, and the interpolation constant M (I").
This implies that

sup A(Tp, tr) < (14+8) N (a+ &) R(F) + 0(1),

so that if we let § be as big as allowed,

1
§= ——r,
CoaMo(T)
we get

CoMy (M) -
sup A (T, S —————(@+e)k(F)+ 0(),
up (T, tF) 1+CaMa(F)(a YK(F) (1)
uniformly in the finite subsets F of T. As ¢ is an arbitrarily small positive number,
it follows that

CoMy (T
Dj(r)gl o Ma (1) <a

P e— 0 1
+ Ca M, (T)

This proves that (i) implies (iii).

To prove the reverse implication, the following observation is essential. If we
replace the radial stars vz with Stolz stars sz, the crucial estimate of Lemma 5.4
remains unaffected. This follows from the methods we developed in Chapter 4.
Thus, we may assume that the definition of D;L(I‘) is based on A(T, sF) instead
of A(T, tf).

We now prove that (iii) implies (i). Assume that ¢ = D} (I') < «. By the
proof of Theorem 4.31 and Mobius invariance, there exist analytic functions g €
A~@+/2 ‘for k =1,2,3, ..., such that

gk(zk) = (1 — |z)~@r02 g (zj)) =0 for j#Kk,
and
lgk(z)] < C (1 —|z?)~@*02 7 eD,

where C is a positive constant independent of k. The interpolation problem is then
solved explicitly by the function

-zl
f<z>=Zwk<1—|zk|2><9+">/zgk(z>(—'zi) : (5.9)
k

1 —7Zkz
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where 6 is a real parameter with & > 1 + (@ — 0)/2. To see that f € A™Y, we
observe that

[f(@ =< CSl/:p {(1 _ lelz)“lwkl} (1 — |z?)~@+e)2
(1 _ IZjIZ)H—(a—Q)/Z

x = ) zeD.
Z 1—2;zl

J

Since {z}; is separated, an application of (5.6) yields a positive constant M such

that

1 —|z:]2)f—(@=0)/2 1— 2\6—(¢—0)/2-2

Z( Izjl)_ i st( lwI)_H dAw)
; 11 -2,z ) 11 —wz|

for all z € D. Combining this with Theorem 1.7, we can find a positive constant
C such that

If@l<C—12»)7%  zeD.

This completes the proof of the theorem. ]

Note that the proof of Theorem 5.6 implies an additional property of A7%-
interpolation sequences I', namely that Mg(T") is bounded for § in some interval
[ — 6, a].

THEOREM 5.7 Every Ay®-interpolation sequence is also a sequence of
interpolation for A™%, and vice versa.
Proof. First,letI" = {z;}; be an Aa"—interpolation sequence and leta = {a;};
be a sequence in C~%(I"). Consider the truncated sequences
a™ ={ay,... .an,0,0,...}, N=123,....

For each N, there exists an fy € Aaa such that fy|r = a™ and

[Nl —a = Moo (D)lla]l-q-

By a normal family argument, we can extract from {fy}y a subsequence con-
verging to some f € A% uniformly on compact sets. Clearly, flr = a and
Ifll—« < Moo(I'). This shows that I' is an .A™%-interpolation sequence with
My(T) < Mo o (T).

Next, let I' = {z;}; be an A™%-interpolation sequence and let a = {a;}; be a
sequence in CO'“(F). We can assume ||al|_, < 1 and pick a sequence of natural
numbers

=Ny <Ny<N3<---
such that the tails

k
a® =10,...,0,an,, ane+1, ...}
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satisfy la®|_q.r < 27%+! for all k = 1,2,3,.... Consider now the finite
sequences

b® =10,...,0,an,, ang+1--- s AN -1,0,... ), k=1,2,3,....

Each b® belongs to all Cgﬂ(l“), B > 0. Also, we can choose 8 < a so close to
a that [|[b®]|_g, < 27+ and M_g, (') < C for all k, where C is some constant.
For each k, there exists a function f; € A~A C A—“ with fi|r = b% and

I fiell—a < Il ficll—p, <27%F'C.

It follows that the function f =Y, fi is in A™® with | f||_o < 2C. Clearly, the
function f solves the interpolation problem f|r = a. ]

The rest of the section will be devoted to proving that the uniform upper asymp-
totic k-density D; (T') is equivalent to a simpler and more elegant notion of density.
This will result in a more transparent characterization of .4~%-interpolation sets
than that provided by Theorem 5.6.

It is sometimes necessary to distinguish between the notion of a countable set
I’ C D and that of an associated sequence (or arrangement), although we may use
the same notation for both. Two sequences associated with the same set will be
called rearrangements of each other. A sequence I' = {z;}; is naturally ordered if
lzil <zl = - <zl <---

For a (countable) subset I" of D that is separated in the pseudohyperbolic metric,
we define

o) =inf{p(a,b): a,beTl, a+#b}.

Suppose {I'™}, is a sequence of subsets in ID such that p(I'™) > § > 0 for
all n. We say that {I'™} converges weakly to a separated set I, and then write
'™ — Iasn — +oo, if there are naturally ordered arrangements '™ = {z&")}j
and some 1 < N < +o00 such that

(n)

lim =z; €D, 1<j<N,
N7 = <]
and
. (n) .
1 =1, > N.
n—lTooIZ/ | ] =

The limit set " is then defined as {z,} ! for N > 1 and as the empty set for
N=1.

LEMMA 5.8 Every sequence {I'™}, of sets satisfying p(I'™) > § > 0 for all
n contains a subsequence that converges weakly to a separated set T (which may
be empty).

Proof. Arrange each I'™ into a naturally ordered sequence rm = {zi-")}j‘ Pick

a subsequence {I""")}; such that z\"¥ converges to some z; € D or 12" - 1

as k — +o00. In the latter case we stop, since the weak limit of {'"*)}, is empty.
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In the former case, we pick a subsequence {I'™)}; of {I'®)}; such that either
zg'"") converges to some z; in D or Izg'"")[ — 1 as k — +oo. If this process does
not stop after a finite number of steps, then the resulting diagonal sequence of sets
converges weakly toT" = {z;, 22, 23,...}. n

LEMMA 5.9 If {[' M} converges weakly to T, then
My(T) = liminf My (I'™).
n—+oo

Proof. We may assume that { M, (I" ™)}, converges; otherwise, we could replace

{T™}, by a suitable subsequence. There are arrangements '™ = {zg.")} j and

I' = {z,}; such that zj.")

the unitball of /*°. Then for each # there is a solution f,, € .A~% to the interpolation
problem

— zjasn — +oo foreach j. Let {b;}; be a sequence in

A= PP ™ =b; j=123,..,

such that || fll—a < Mg (I'™). By a normal family argument, there is a subse-
quence { fy, }x that converges to some f € .4™% uniformly on compact subsets of
D. Clearly, || f | .o < lim, My (['™), and

(1= 12, f ) = lim(1 = 1P fu ) =), j=1,2.3,....
This shows that I is an A™%-interpolation set. ]

LEMMA 5.10 Given 8y, lg, and «, there exists a positive constant ¢ such that if
[ is an A™%-interpolation set with My (I') < lo, and if z is a point in D with
p(z0, T) > 8¢, then there is an element f € A~ for which flr =0, || fll-a < 1,
and (1 — |201%)*| f (20)] > c.

Proof. By Mobius invariance, we may assume that zo = 0. If the assertion is
false, then there exists a sequence of sets ') = {zj")}j (n=1,2,...) such that
(0, T™y > §y, M, (™) < Io, and

sup {IfO): fe A |Ifll-¢« <1, flrm =0} >0 (5.10)

as n — +oo. By Lemma 5.8, there is a subsequence {I""*)}; that converges
weakly to a set [V = {z’j}j. For notational simplicity, assume that {T""%)} is
the original sequence {I'™},. Since I'™ is an .A~%-interpolation sequence with
My (T'™) < Iy for each n, an obvious normal family argument shows that I is
also an A~%-interpolation sequence with My (I'") < ly. By Theorem 5.7, I'" is
also an A “-interpolation set and therefore an .4 *-zero set. Choose an arbitrary

¢ € Ay® such that |l¢||—¢ = 1, ¢|rr = 0, and ¢(0) = y > 0. We can solve the
interpolation problem

fEM) =™,  k=1,23,...,
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for each n by a function v, with

Wnle < losup {(1 = 5”1 lo (I |

Since <p(z,((")) — @(zx) = 0 as n — +o0 for each &, and because ¢ € Ag”, the
above supremum tends to O and ||{, |- — 0 as n — +o0. Now, the function

¢ =
fn = _r rn
lo — ¥nll-c
vanishes on T™ || f,||_o = 1, and f,(0) — y, which is a contradiction to (5.10).

We will need a modification of the notion of uniform separated upper asymptotic
«-density D;F (I"). More specifically, we want to extend the family {®, }, of Mbius
shifts involved in the definition of D} (") to the entire Mdbius group Aut (D) of
D. We modify the Stolz stars s slightly:

sp =57 \D(O, 3),
where D(O0, %) ={zeC:|z] < %} is the Euclidean disk of radius % about the
origin.
DEFINITION 5.11 The uniform upper asymptotic k-x-density D}, (T') of T is
the infimum of all positive real numbers g for which:

sup A(P(T), s%) < ok(F)+ O(1)
[}

holds uniformly in all the finite subset F of T. Here, the supremum ranges over all
d e Aut (D).

We check the relation to the density D, (T").

LEMMA 5.12 [fT is separated in the pseudohyperbolic metric, then D} (I') =
D} ().

Proof. First note that whereas D;f (T') < +oo implies that I" is separated, it is
not the case for D, (I").

A comparison of the definitions in terms of radial and modified Stolz stars
immediately reveals that D (T") < D} (), since I' is assumed separated.

Assume now that D (I") < Dj,(I'), and pick a real parameter « between

D (I") and D}, (T):
DS (T) <a < D}, ().

By Theorem 5.6, I is an .A~%-interpolation set. Then, by Lemma 5.10, there is a
positive constant ¢ such that

sup {|£(O)[ : Ifl-a = 1. flory- =0} = ¢
for all ® € Aut (D), where
O(M)* = &) \ DO, D).
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Thus, for every @ € Aut (D) there is a function f = fo € A% with

|f(0>|>§, Ifl-a =1 and flory =0.

Applying Lemma 5.4 to the function f/f(0), with A(T', tr) replaced by A(T", %),
we find that

A(®(),s7) < (@+ &)k (F)+ 0(1), (5.11)

where the bound O (1) only depends on «, &, and c¢. The small positive number ¢ is
arbitrary, and hence it follows from the definition of the uniform upper asymptotic
ic-*-density that D (I') < a, which contradict how we defined «. The proof is
complete. [ ]

We are now ready to introduce a more transparent notion of density and show that
it is equivalent to the uniform separated upper asymptotic k-density for separated
sequences.

Suppose I' = {z;}; is separated and r € (%, 1). Let

Zj [log ‘lel : % < |zj] <r]

D, r)= T (5.12)
lOg 1=
For every z € D, we form a new sequence
I = {if—_z} )
- 1 -2z j
The upper Seip density of T is then defined as
D;L(F):limsupsupD(l"z,r). 5.13)

r—1- zel
Note that because of rotational symmetry, D (I") can also be defined as

Dj(l“) =limsup sup D(P(),r). (5.14)
r—1- ®e Aut (D)

THEOREM 5.13 IfT" = {z;}, is separated, then D} (") = D} (I').

Proof. Foreveryr € (%. 1), we can construct a standard Stolz star
sp=U{s;: ¢ € F}

containing the disk |z] < r, so that F = F, consists of a minimum number
N, of points placed equidistantly on T. A simple computation shows that N, is
approximately C/(1 —r) as r — 17, for some positive constant C. Therefore,

K(F,)=logN,+1=log + 0(1).

1—r

By Lemma 5.12, we have D}, (T') = D, (TI"). We recall the estimate from the

definition of D}, (I),

SiPA@(F)»STr) < ok(F)+ 0(l),
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forall fixed o with D, (T') < o < +o00.If we apply this toequidistantsets F = F;,
using the separation of the sequence T, the assertion D} (I') < D} (I') = D} (T")
is immediate.

To prove the reverse inequality D (I') < D; (T"), we need the notion of the
k-area of a (Borel) measurable set S C D:

KA(S) =/-1d—f£)-2. (5.15)
s 1 —lz

In the rest of the proof, we will use the notation s ¢ to denote only standard regions

made up of the standard Stolz angles s, with aperture /2. If other Stolz angles
are used with an aperture ¢ € (%, ), we will indicate this by writing

5;”:5;’-¢:U{5/§~<p: S F}.
Now, an elementary computation shows that
kA —®(F)| < C, (5.16)

where the constant C depends on the aperture ¢ but not on the finite set F C T;
see Exercise 25.

Let I' be an arbitrary set in D, with separation constant p(I') = § > 0, and
Seip density D} (T') = y < +o0. For any ¢ > 0, let rj = r;(¢) be so large that
D(®(T),r) <y +eforall ® € Aut (D) and all r with r; < r < 1. Choose the
aperture ¢ so large that for each finite subset ¥ C T and each ¢ € 35, [¢] < 1,
we have p(¢, ) > ry; it is easy to check that this is possible (¢ will of course
have to depend on r} = r;(¢)).

For any finite subset F C T, we consider the set ®(I")Nsg, where ® € Aut (D)
is a Mobius automorphism. For each k = 0, 1,2, .. ., consider the radii

1 — r - 1-r) k’

1+ (l+r|>
note that this is consistent for index k = 1. For k = 0, we have ry = 0, and with
increasing k, ry increases up to 1. The consecutive pseudohyperbolic distance is
constant: p(ry, ry4+1) = r;. Foreachk =0, 1,2, ..., we introduce an annulus

k
1—
1+r1) 1_(l+::> .

k
ry = tanh (— log
2

o ={z€C: r < lz| <res2},
and consider the associated Blaschke product

lz] z—w

weD,
z 1—-zw’

Br(w) =
2€d(D)NsFNoy

so that

! I
(93 — . ﬂ .
. | B (w)] Z {log ow) € ®(INNsr ak}
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We shall apply Jensen’s formula to the function By in the disk
DO, re+1) ={z € C: |z] < i1}

First, recall that ds(w) = |dw|/(2m) is the normalized length measure, and for
0 < r < 1, introduce the notation T(0, r) for the circle {w € C : |w| = r}.
Jensen’s formula then results in

Z log i = Z log il

ccoPrerng 9 z€¢(r)ﬂsFﬁmﬁq ' Izl

1
Tt Jeonn © lBk@): s @),

and considering that a; = (ag N ag—1) U (ax N ag41), we see that
l 1 - 1
0g— = — 2

2D (MNSFNGNG | IZ] Tk+1 T(O.rk.;_;) IBk(S)l

ds(§). (5.17)

We shall study the sets T(0, rg+1) N s/FA(p, and their “complementary sets”
T(O, res1) \5/F.<p' For & € T(0, r¢y1) \5,1".(;)’ we have

1 1
o = log —— PN N
£1B.®) ;{%p@.z) cedMner “k]

< CU-rgy) Y, —s.

— 52
zed(MNspNay ‘é/‘: Zl

for some absolute constant C. Integrating the above inequality term by term and
using the fact that

1= rgs1
l—r1

-] >

, for zear, &€TO,rks1)\Sk,

where o is a small but positive constant, we find

L g ——ds@ <C-r) Y (-l

Tkl JTOre\sp,  1Bk(§)] e (s F N

Applying the estimate following Lemma 2.14 in the same fashion as we did for
(5.6), using the separation of I", we see that

dA(2)

Y a-izh=ce

5 = C(&) kA Nsk):
zed(MNsNay ansy 1 — 1z

8 is the separation constant, and C(8) a positive constant which depends on §.
Putting things together,we obtain

1

log
Tkl JTOransy, 1Bkl

ds(§) < C) (1 —r)kA(ax Nsy), (5.18)

where the value of the constant has changed.
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Now, consider the part of the integral on the right hand side of (5.17) over
T(O, re+1) N s - We need separate estimates for the quantities

01=Y {1-p@&):ze®dT)NsrNa, p(z. &) <71}

and
0= {1-p@8:zedM)NsrNar, 11 <p(. &) <1},

7

for & € T(0, rg1) N 5’F_‘p. The first sum Q; differs from

;{log p(zl,g) 1 z2€ ®(I)Nsr, %Ep(z,é) <r1}

by a bounded quantity. Therefore, by the choice of the radius r; = rj(e), we have

1
01 =(y+¢&)log = +0(1).
—r

To estimate Q», first observe that 1 — ¢ <1 — t2for0 <t < 1, so that

1,12 1 — 2
szzl(l 21 |s|)2Ze@(r)nsm%nSp(z,g)d}

11— z&|2
and if we again use the estimate following Lemma 2.14, we find
dA(w)
02 =C(9) ) 5,
S(E‘rl)( ) (1—[wl?)?

for some positive constant C(8), where

1+ & |-

The above integral is bounded; to obtain the bound we apply a M6bius change of
variables that takes & to O:

dA(w) dA(w)
L= p*w, ————_/ =KkA(S(r));
'/~§(§"1)( P ‘f)) (1—|w|?)? = sy 1= [w|? “ ( (rl))

here

S, n) = [w eD:r <p(w, &), lw<

1 — 1
S(r1)={w€]D:|w|>r1‘ .w— dl < +r1}'

2 2

A straightforward computation then shows that the x-area of S(r}) is bounded by
a constant Cy that is independent of ry.
We now combine the above estimates, and obtain

1
_ log ds(&)
Tk+1 JTO.res N8} o8 |Bk(‘§)|

T(, gl
< IT(O, re+1) N sgls ((y—l—s)log
Tk+1 1

lr +Co+cl(a)), (5.19)
— I
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where | - |5 is the normalized length (measure) of the set in question and C; ()
corresponds to the contribution from the points z € ®(I')Ns ¢ for which p(z, &) <
%; it depends on the separation constant §.

Fork =1,2,3,... andany 0 < r; < 1, we have

1_
<log—* 4+ 0(1)

log
“l1-n 1 —rg41

and
IT(O, res1) N Sgls 1—rg
log

o
Tk+1 I = ri4

< KA(ﬁll,- NagNag_1).

With these estimates in our pocket, we see from (5.19) that

1 1
—_ log ds(&)
Tkt JTQOrsnsy  1Bk(§)]
Cr(8
< ()/ +e+ 2( l) ) KA(S’F Nag N ag—q). (5.20)
2 1—r)

Adding (5.18) and (5.20), we then deduce from (5.17) that

1
log— < C'(8) (1 = r1) kA(ag Nsg)
2€®(M)NspNa Ny | 4

log _—lr.

Cy(8
+(y P10 )KA(s'Fﬂakﬂak_l).

Summing over all indices k = 1,2,3, ..., we get

1
log— <2C'(8) (1 — r1) kA(ax Nsg)
ze®(M)Nsg\D(0.r})

Cy(6
+<y pet 20 )KA(s’F)
Og l—l‘]
C
< (26’(a><1—r1>+y+s+] 20 >f<F>+c3<a,<p>,
S T—r|

where D(0, r}) = {z € C: |z| < r1} and C3(8, ¢) is a constant.

Since p(®(T)) = p([') = 3§ > 0 for each ® € Aut (D), the number of points
from ®(T") in the annular region D(0, r) \ D(O, %) is bounded by a constant that
depends only on r} and & but not on the Mbius automorphism @; we can therefore
include in the sum above all the points z € ®(I') Nsg \ D(O, %) and obtain for
all finite F C T the following estimate of the modified logarithmic summation
function:

sup  A(P(D),s}) < (v + &+ cle, 8))K(F) + C(e, 8):
®e Aut (D)
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here, we recall the notation s = s¢ \ D(0, %). We replaced the k-area of s’z by
K (F), because we know the two are comparable. The constants have the following
properties: c(g, 8) — 0as e — 0, and C(¢, 8) is independent of F but may grow
to +c0 if we let ¢ — 0. Comparing this with the definition of the uniform upper
asymptotic k-x-density D*u(l‘) we conclude that D*“(I‘) <y = D+(F) In
view of Lemma 5.12, which states that for separated I, D;f (I") = D} (D), this
completes the proof of the identity D;f (') = D}(T"). (]

COROLLARY 5.14 A sequenceT" in D is an A™%-interpolation sequence if and
only if T is separated and D} (T') < a.

5.2 Sampling Sets for A

A relatively closed subset I' of D is called an .A~%-sampling set (or a sampling set
for A7%) if there exists a positive constant L such that

I fll—¢ < Lsup{(1 —[2|)%|f(2)]: z €T} (5.:21)

for all f € A7%. The smallest such constant L will be denoted L(I") = Ly(TI");
we will write L(I") = 400 if T is not not a set of sampling for A™%. It is easy to
check that L(I") = L (®(I")) for every Mobius map @ of the disk.

For two relatively closed subsets I" and [’ of D, we define

p(U,T) = sup {p(w, ")} = sup mf pw,w').

werl
The quantity
[, I'] = max {p(T, T"), p(I", 1)}
is called the Hausdorff pseudohyperbolic distance between I" and I"'.

LEMMA 5.15 IfT and T’ are two relatively closed subsets of D with
1 1
p(T, I‘)<m1n{2 m}
then
Lo (')
CoLo(D)p(T, 1)’

where C, is the constant in Lemma 5.1.

Lo(I) < i

Proof. Forany f € A% and any w, w’ € D with p(w, w') < %, Lemma 5.1
says that

(1= w f ) = (1 = W fF )] < Call fll—ap(w, w'),
which implies that
(1 — (w2 f "] = (1= [wDf )] = Call fl—ap(w, w).
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For every w € T, the definition of po(I", I'') implies that there is some w’ € T’
with p(w, w’) < p(T', ') + &, where ¢ > 0 is arbitrary.
Now, by assumption, there is some w € I such that

Lo (Y1 = [w® [ fw)] > | flle — &

Thus, there exists some w’ € I’ with

1
_ 12\a ’
(1= jw D f(w)] > s

Since ¢ can be arbitrarily small, we have

(Ifll-¢ — &) = Ca Il fll—a[p(T, T") + &].

sup [(1 — W' P f): w' e F'] Ed IIfII—a( — Cop(T, F')),

L (T)

whence the assertion follows. n

COROLLARY 5.16 If T is an A~%-sampling set, then T contains a separated
sequence that is also sampling for A™%.

Since any superset of an . A~%-sampling set is also .A~%-sampling, the corollary
above tells us that to characterize sampling sets for A7, it suffices to consider
separated sequences.

COROLLARY 5.17 If " = {z;}; is a separated A~%-sampling sequence, then
there exists a constant § > 0 such that every sequence I’ = {Z'j }jwith p(zj, z’j) <
8 for all j is also an A~%-sampling sequence. Moreover, Lo(T'") < C, where C
depends only on § and Ly (T").

The above corollary states that separated .A~%-sampling sequences are stable
under small perturbations in the pseudohyperbolic metric. Recall that sequences
of interpolation for A% also have this property.

The A~%-sampling sets will be characterized in terms of a certain notion of
lower density. More specifically. if ' = {z;}; is separated, then the lower Seip
density of T is defined as

D/ (I') = liminf inf D(I";, r), (5.22)
r—>1- zeD
where I'; and D(T", r) are the same as in the definition of the upper Seip density;
see equations (5.12) and (5.13) in the preceding section.
We can now characterize the sampling sets for A™%.

THEOREM 5.18 A set ' C D is A™%-sampling if and only if it contains a
separated sequence I'" with « < D{ (T''). In particular, if T itself is separated,
then T is sampling if and only if @ < D; (I').

Proof. We first prove the necessity of the condition. By Corollary 5.16, we may
assume that I" is a separated sequence. Put 8 = D (T") and assume L(I") < +o0.
Let {e;} be a sequence of positive numbers approaching zero, and pick a sequence
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{w;}; of points in I and a sequence {r;}; (with 1 —¢; < r; < 1 for all j) such
that

D(Ty,,rj) < B +ej, i=123 ..., (5.23)
where Iy, is the Mobius shifted sequence, as above. For each w; in the sequence,
put I‘wj = I'j = {zx_j}x and construct a new sequence of points I‘;. = {z;.j}k
as follows. If z; ; # 0, set Z;.j = zk_jlzk.jl“s‘); otherwise, set z;(.j = §p. Here,
8o € (0, %) is so small that sup; L(I‘}) < 4oc. By Corollary 5.17, this can be

accomplished, because an easy computation shows that p(z, |z|™%z) — 0asé — 0
uniformly in z € D. We now have

DT, rj) < (1 —380) D(Tj,r}) + ——— (5.24)

1
og —1—‘—'1
for all j. On the other hand, the modified finite Blaschke products
7 =2
fim) = f—j_—/—
’ [1 7 ;11 =7, ;2)

k:Izz,.j|<rj

satisfy || fjll-¢ > 1 and

1
sup (1 — 12)%] £(2)] < exp Z log N —alog AE
ZGr; klzij|<f, k.j l - rj

which by (5.23) and (5.24) implies that

(1 =380)(B+¢j)+

> «,

where C depends only on L(I') and §. Since ¢; — 0 as j — +00, we have
proved that 8 > «.

To prove the sufficiency part of the condition, we assume now that a separated
sequence I' with D (I") > « is not sampling for A™%. Then there exists a sequence
of functions {f,,}, in .A= and a corresponding sequence of points {a,}, in D, such
that || fll—¢ = n and

(1 = an|)%| fulan)| = g

but
sup(l — 21)%| fn(2)] < C,
zel

where C is a constant (independent of n). We now apply the unitary operator 7},
to f,, where
zZ+ap

Lf@) = @, f(@a(2)) and &) = Tz
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The resulting functions

(1= la )" z+an)
gn(Z)— (1+(7nz)2“ fn(l+§nz

have the properties that [|g, |-« = 7, g,(0)| > 5, and

sup {(1 - 121")%Ign(2)] : 2 € Tg,} < C,

where I'_,, = ®,(I).

By Lemma 5.8 and a normal family argument, there exists a sequence of indices
ny < ny < --- such that I‘-an — I and f,, /nx — h uniformly on compact
subsets of D, as k — 400, where I'" is a separated sequence with D7 (I') > a.
Also, ||hll—¢ <1, |A(0)| > 5, and h|r = 0. Thus, I' is a zero sequence for 479,
which, according to Corollary 4.27, implies that D™ (I'’) < . On the other hand,
repeating the argument used in the first part of the proof of Theorem 5.13, we
obtain D*(I'") > D; (I'") > « and arrive at a contradiction. This completes the
proof of the theorem. n

Note that it is also easy to prove that I'” is not a zero set for A™%, when D;” (') >
«, by using the classical Jensen’s formula.

5.3 Interpolation and Sampling in A%

In this section, we show how the techniques of the previous two sections can be
adapted to yield characterizations of interpolating and sampling sequences for the
spaces A5. We begin with AZ-interpolation sequences.

A sequence I' = {z;}; of distinct points in D is called an AL -interpolation
sequence (or a sequence of interpolation for AZ) if for every sequence {w j}jof
complex numbers satisfying the condition

D= 1w 1P < oo,
J

there exists a function f € A£ such that f(z;j) = w; for all j. The compatibil-
ity condition above follows easily from estimate (5.6); that any AZ-interpolation
sequence is separated will be proved shortly.

It will be convenient for us later if we introduce the weighted restriction operator
Rr = Rr._p 4, which is defined by assigning to every analytic function f in D the
numerical sequence

Rrf = {(1 =1z f(z))};.
In terms of this restriction operator, we see that I is an AZ-interpolation sequence
if and only if ” C Rr(Af).
Recall from Exercise 19 of Chapter 2 that the restriction operator Rr maps

Al boundedly into [ if and only if the sequence I is the union of finitely many
separated sequences. Thus, if we can show that every A% -interpolation sequence is
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separated, then for every AZ-interpolation sequence I' we actually have R (A =
7.

It is important to realize that the space A% possesses a natural group of unitary
operators. More specifically, if ® is a Mobius map of the disk and Ug is the
operator defined by

Us f(@) = f o ®(2) (¢ ()77,
then Uy is an isometric isomorphism of AZ.

LEMMA 5.19 IfT is an AL-interpolation sequence, then T is separated, and so
Rr maps Ag boundedly onto IP.

Proof. Assume that I' = {z;}; is not separated. Then there is a sequence
{(wn, wy,)}n of pairs of distinct points from I" such that p(w,, w;,) < 27" for all
n. From the interpolation assumption on I', we see that there must exist a function
f € AF such that

(1 = [wa )PP () =27V forall n,

and f(z) =0forallz e '\ {wy}n.
Consider now the functions g, = U, f, where U, is the unitary operator on Al
introduced earlier that corresponds to the Mobius map

Wy — 2

on(z) = ———, zeD.
1 - n

For each n, we have || g, = || f1l, g,(0) = 2-V"_ and gn(tn) = 0, where

!

Wy, — Wy,

tn = pn(wy,) = T—ww
— Wyw,
In particular, the sequences {g,}, and {g,}, are both uniformly bounded on
compact subsets of D.
For each n, we have

1Zn] = p(wn, wy) <277

Now, write g,(Z;) — g,(0) = —27V" a5 an integral of the derivative g, along
the line segment joining 0 and ¢, and apply the triangle inequality. The result is
that for each n, there exists some 8, € [0, 1] such that 18, Bnin)| > 2n=v_This
contradicts the earlier conclusion that {g;}, is uniformly bounded on compact
subsets in . ]

IfI" = {2} is an Af-interpolation sequence, then I is clearly an Ab-zero set,
and the invariant subspace It = {f € Af : f|r = 0} is the kernel of the weighted
restriction operator Rr : AY — IP. Since Rr is bounded and onto, the quotient
map Rr : AL /Ir — 1P has a bounded inverse with the norm

M(F) = sup 1nf{||f||pa : f(Z]) = u)j} : Z(l _ |Zj|2)2+d|wjlp < 1
J
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A normal family argument shows that the infimum above is always achieved. The
quantity M(T") is Mobius invariant, that is, M (') = M (P (I")) for every Mo6bius
map ®. We will call M(I") the AZ-interpolation constant of I". By convention, we
are going to write M (') = 4-oc if [" is not an A% -interpolation sequence.

We need an estimate for the /7-distance between Rr f and Ry f, where f € Af,
and I" and I’ are two sequences close in the hyperbolic metric. This will enable
us to prove that A% -interpolation sequences are stable under small perturbations
with respect to the hyperbolic metric.

LEMMA 5.20 Let I = {z}}; be a separated sequence with separation constant
oo = o) =inf{p(a,b): a,bel,a#b}>0.

Then there exists a positive constant C = C(p, a, po) with the property that if
= {z’j}j is another sequence in D with p(z;, z'j) <& < po/8forall j, then for
each f € AL we have

IRrf —Rr fliir = C8 |l flpa-

Proof. For each j, let Dj, D}, and D}' be the closed pseudohyperbolic disks
“centered” at z; with “radius” po/2, po/4, and pp/8, respectively. Also let

mj =m;(f) =max{|f(z)| : z € D}}
and
m'y = m;(f) = max{| f(2)| : z € DJ}.

Using the fact that p(a, b) is comparable to |a — b|/(1 — |a|?) for p(a, b) < %,
we get

|1 = 12O £ () — (1 = 12 HEP )|
< (1= 1z, f(z)) = F (&)
X [(1 =12 @+ — (1 = 2P| )|
< [ = 1D w4 (1= 1D P ] oz, ).
By Cauchy’s formula, m; < Cymj/(1 = |z;|?). Thus,
|1 =12, £2) = (1= [z YO £ (2))]
< Co(1 — |z |H P Pm 5.
Here, the constants C, C|, and C, depend only on p, «, and py. It follows that
IRef = Reeflify < CJ87 (1 =121+ m?.
J
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By Lemma 2.14 and the remark thereafter, there exists another positive constant
C3, depending only on p, a, and pg, such that

C3 /
p p
mi < —————— | [f(2)|”dAu(2)
J pg(l _ |Zj12)2+a D; @
for all j. The desired inequality now follows immediately. ]

LEMMA 521 Let ' = {z;}; be an AL-interpolation sequence with py =
p(I') > 0. Then there exists a positive constant § such that any other sequence
= {z’j} j satisfying p(z;, z’j) < 8 for all j is also a sequence of interpolation
for AL.

Proof. The proof is similar to that of Proposition 5.3. However, since for 0 <
p < 1 the “norms” || - ||, and || - ||l;» do not satisfy the triangle inequality, we
have to use the metric d(f, g) = | f — gll5. in A% and d(a, b) = lla —b]|f, in[?,
rather than the norms, in proving the convergence of the iteration process. Because
of this complication, we obtain two different estimates for M (I"’), namely, if

§ < min @,—1— ,
8 CMI)

then
M(
M(F') < ____(_)_
1-CsM((T)
for1 < p < 400, and
/ M(T)
MT) <

[1 - (csm(ry)r]'”
for 0 < p < 1. Here, C is the constant in Lemma 5.20. n

We can now characterize the AZ-interpolating sequences in terms of the upper
densities D (T") and D;F(I").

THEOREM 5.22 Suppose 0 < p < +00, —1 < & < +00, and T is a sequence
of distinct points in D. Then the following conditions are equivalent:

(i) T is a sequence of interpolation for AL.
(ii) T is separated and D} (I') < (a + 1)/p.
(iii) Df(T) < (@ + 1)/p.

Proof. According to Theorem 5.13, we only need to prove the equivalence of
(1) and (iii). Essentially we are going to modify the proof of Theorem 5.6 to suit
the present situation.

First assume that I = {z}; is a sequence of interpolation for Al For each n,
the identity M (") = M (®,(T")), where ®,(z) = (z, — 2)/(1 — Z»2), implies that
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there is a function f, € Af such that
”fn”p.a < M(F), fn(O) = 1, and fn|l‘,, =0:

recall that ', = @,(I") \ {0} = ®,(I" \ {z4}). On the other hand, the extremal
function G,, for the invariant subspace Ir, maximizes | f(0)| on the unit ball of
Ir,, so that G,(0) > M(T)~! for all n. According to Theorem 3.3, the function
G, belongs to A=+ with |G, |- (1 4«)/, < 1. Using the Jensen-type estimate
of Lemma 5.4, we see that for every ¢ > 0,

1+« -
supA([y,tp) < (T +8) K(F)+ 0O(l),
n

uniformly in the finite subsets F of T. In other words, D (") < (1 +a)/p.

To prove that we actually have the strictinequality D (T') < (a+1)/p, we write
T'n = {zk.n )k and constructa new sequence I', = {z, , k. where z; , = Zk.n|Zk.n 8,
and proceed exactly as we did in the proof of Theorem 5.6, except that we use
Lemma 5.21 here instead of Proposition 5.3. This completes the proof that (i)
implies (iii).

Next, we assume that (iii) holds. By Theorem 5.6 and Corollary 5.2, the sequence
T is separated. We now fix any 8 such that

D} (I) < B < (a+1)/p.

By Corollary 4.32 and Mobius invariance, there exists a sequence {gi }x of functions
in A~ such that for each k,

gk(ze) = (1 — %) ™?
and
& (z;) =0, J=12,3,...,j#k,
which meet the growth restriction
@l <CU -1z, zeD,

for all k, where C is some constant independent of z and k.
If {wy }« 1s a sequence of complex numbers satisfying the compatibility condition

D=1zl |wj|P < 400,
k

we can construct a function f € A% such that f(z;) = w; forall j. In fact, if we
fix a sufficiently large number 6 and define

L—Jzel?\"
f(z)=Zwk<1—izuz)"gk(z)(ﬂ) . zeD,
k

1 —Zxz

then it is clear that f is analytic in D with f(z;) = w; forall j. It remains to show
that f € AZ.
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If0 < p <1,then

8,
1 —zl2|

— zeD.
1 —Zkz

IF@IP <) w1 = 1zl g (2)1P
k

Using the growth condition that each g; satisfies, we can find a positive constant
C such that

yP(B+6) (1~ lzH)~Pr

R e D.
1= Zxzl?” ¢

IF@IP <CY w1 = |zl
k

An application of Theorem 1.7 then yields that f € AZ.
If 1 < p < +00, we let ¢ be the conjugate exponent with p~! + ¢! = 1. By
the growth constraint of each gy, we can find a positive constant Cy such that

(1 — |z |??
1 —Zxzl?

A= 1zPP1f @) < C1 ) el (1 = |zl)°
k

where a and b are constants satisfying a + b = 8 + 6. We then apply Holder’s
inequality to get

1 1
P(1— 2ypa | P 1— 2\bg 19
(1 - PP f @] < [}j'“’k'( 1z l) ] {ZL_BQ_} .

Y .l
p 11— Ziz| 11—z

The second sum above can be estimated as follows:

— AN _ 2\bg—2
Z(l |2k ]%) <C2/ (I = wl9)*~* d A(w)
D

k < C5(1 — |zP)ba—¢,
11—zl 11— wz? 3(1 = 12%)

k

here the first inequality follows from (5.6) and the second from Theorem 1.7,
provided that @ is sufficiently large and bg > 1 (which are easy to achieve). We
can now find a positive constant C3 such that

lwilP (1 — |z¢|?)P?

D.
=22l ¢e

@I < C3(1 — |z]yPEF=010 % "
k
If 6 is sufficiently large and
0
p{b—B——)+a>-1,
q
which are again easy to achieve, another application of Theorem 1.7 shows that
/D|f<z>|f’dAa<z) <CY (=),
k

where C is some other constant. This completes the proof of Theorem 5.22. =

We now turn to the study of AZ-sampling sequences.
A sequence I' = {z;}; of (not necessarily distinct) points in D is called an Ab-
sampling sequence (or a sequence of sampling for AP) if there exists a positive
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constant C such that

+00
C“fD|f<z>|PdAa<z>sZ<1—|z,~!2)2+“|f<zj>|Pschv(z)lPdAa(z)
j=1
(5.25)

forall f € AS. Once again, the second inequality above implies that I' is the union
of finitely many separated sequences.

THEOREM 5.23 Suppose 1 < p < 400, —1 < o < 400, and I is a sequence
of points in D. Then T is a sequence of sampling for AL if and only if T is the
union of finitely many separated sequences and contains a separated sequence I'’
suchthat D7 (T") > (a + 1)/ p. In particular, if T itself is separated, the criterion
for sampling is D (I') > (@ + 1)/p.

Proof. Assume that I' is an AZ-sampling sequence. Then I is the union of
finitely many, say 7, separated sequences. We show that I" contains an A% -sampling
sequence that is the union of n — 1 separated sequences. By induction, it will
then follow that every AZ-sampling sequence contains a separated A%-sampling
sequence.

LetI' = I'y U 'y, where I'; is separated with p(I';) = p2 > 0 and I'; is the
union of n — | separated sequences:

n—1
= U Iy
Jj=1

If
8 =inf {p(z1,22) : 21 €1, 22 € T2} > 0,
there is nothing to prove because
=M UlM)UlriaU--- Ul g1,

and so I" is the union of n — 1 separated sequences. If § = 0, we split I'; into two
sequences, 'y = I'; UT, where

Iy={zely: p(z,T1) <&}

and I') = "y \ T'%; here ¢ is any fixed positive number less than or equal to p/8.

Write T, = {z’z_j}. For each j, pick some Z/l.j e 'y with p(z/l.j, le.j) < e¢.Let
r = {z’l.j } j be the resulting sequence. It follows from Lemma 5.20 that for every
f € AP we have

1Re; £l = IRe, £llp| < IRe £ = Rey £l < C(pact, o2 f 1 pat.

For || fllp.« = 1, we obtain

[1Re £15 = IRe, £115] < CIRr £ = Ry fllp < C'(pat, pe,
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and so by homogeneity,

IRe £15 = IRe, £15] < €. 0221 £ 15

for all f € A. This implies that
> {a-Per@ir: zer) = ire i}

z
<

= IRey fllp + IRp, flIp + IRr, flIp + 1 Rr, £l
< 2lRrury fllp + C I lip.at-

Since T is AZ-sampling, the above inequality implies that 'y U '] is also Al-
sampling, provided that ¢ is small enough. On the other hand,

inf{p(z1,22) : z1 € T1, 22 € T5} > 0.

Therefore, I'y U ') is the union of n — 1 separated sequences. This com-
pletes the proof that every AL -sampling sequence contains a separated sampling
subsequence.

Next, we show that if I" is a separated A%-sampling sequence, then D; (I") >
(a+ 1)/ p. The proof is very similar to that of the necessity part of Theorem 5.18;
it involves the following steps.

Step 1. Stability and Mébius invariance. For a separated sequence I' = {z};,
let L(I') = L(T"; p, «) denote the smallest constant L such that

+00
fDu(zw’dAa(z) <LY (=1, P fEplP (5.26)

j=1

forall f € AZ; weput L(T") = +o00 if I' is not AP -sampling. Stability means that
if L(T") < +o0 then there exist positive constants § and C such that every sequence
= {z/j}j with p(z;, z;) < & for all j satisfies L(I"") < C; moreover, § and C
depend only on p(T") and L(I"). Mébius invariance means that L(I') = L(®(T")),
where & is any Mobius map of the disk. The proof of Mobius invariance is based
on the unitary transformations of AZ; see the paragraph preceding Lemma 5.19.
The proof of stability is essentially a replica of the proof of Corollary 5.17.

Step 2. By moving radially every zj away from the origin and replacing it with
6j=2; 2178, where § is sufficiently small, we obtain a new sequence I’ = {¢i}j
that is also AZ-sampling (by stability) but has smaller local densities:

D', r)y <(1-8D(,r)+ :
log 1=

Step 3. The desired result then follows by constructing a Blaschke product B
with zeros from I'’/ lying in a disk of radius r and substituting B for f in (5.26).

The above is an outline of the proof of the necessity part of Theorem 5.23.
Details are left out to avoid repetition.
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To prove the sufficiency part of Theorem 5.23, let us assume that I' = {z;}; is
a separated sequence with D (I") > (@ + 1)/p. Write 8 = (« + 1)/p and pick
some £ > O such that 8 + & < D (I"). By Theorem 5.18, I is a sequence of
sampling for A~(B+&)_This implies that the linear transformation

frTf={0- 1M el

is a bounded invertible operator from A; ®+9) 5nto a closed subspace of the
sequence space co (consisting of sequences that converge to 0). Denote this sub-
space by ap. Then any bounded linear functional ¢ on Ay #+#) induces a bounded

linear functional ¢ on ag via T, with [|¢|| < K|l¢|. For each ¢ € D, let e,

denote the normalized functional on .Aa (B+¢) of point evaluation at ¢, that is,

er (f) = (1 = |¢2)P+e £(£). We have |les || = 1. Since the dual space of cg is I,
an application of the Hahn-Banach extension theorem shows that for each ¢ € D,
there exists a sequence {g;(¢)}; in I such that

A= 1P @) =Y A =1z PP* f())g;0), (5.27)
z,€l
with
D g0 < K. (5.28)
J

The factors g;(¢) in (5.27) are not uniquely determined, and we shall see that
we can use this uncertainty to make them behave like O[(1 — |¢ Plas || — 17,
and in the process improve the convergence of (5.27). Fix an arbitrary number c,
and for each ¢ € D, define

(1 —1gH( - |z12>}
11 —zz|? '
By (5.28), each A(J, ¢, ¢) is a Blaschke sequence, so that we may apply (5.27) to

Ba f,where f € Ag(ﬁH) and B, is the Blaschke product associated with the set
A =A(j, ¢, c). Thus,

(= [EPPFEBAQ) F(&) = D (1 = 12;1)P¥ F(2)E; (0, (529)
Jj

1
A(j, g, c) = :z el: p(z,¢) > 3 lgj (¢ > ¢

where g;(¢) = Ba(z;)g;j(¢). Itis easily seen that for all j, we have
(1= 12HA = z; %)

I1-zz?
where C is independent of ¢. In fact, if z; € A(J,¢,c), then g;() = 0; if
z2j & A(j, ¢, ¢) with p(z;, ¢) > 4, then by the definition of A(j, ¢, ¢),

(=120 —1zj%)
11—2z;0? .

lgi=<c , { €D,

lgi) <c
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andif z; € A(j, ¢, ¢) with p(z;,¢) < %,then

~ 3 o] 3, U=l =1z
BN <K s 3K [1- 0007 = 3K

Observe that
BA)I= [] e 0=c

2,€A(j.L.0)

where C is independent of ¢. This follows from the facts that all factors in the
above product are greater than or equal to % and that

K
; [1-0@. 0%z engso) <=

We thus obtain the following sharper form of (5.27):
A= PP F@) =Y (0 =1z fehy @), (5.30)

/el
where h () = g;(£)/Ba(¢) satisfies
(=1 =1z

— (5.31)
11 —1¢z;1?

Yol <c, QI C
J

To complete the proof of Theorem 5.23, we only need to verify (5.26) for
fe .Aa(ﬁﬂ) N AL, because this space is dense in AZ.

Forl < p < +o© with%%—é = 1, weuse (5.30), (5.31), and Holder’s inequality
to get

A

p
A= REPAf@IP < (- bror [Z(l - |z,»|2>f’+f|f<zj>hj<;)|}

J

(1= 1A (1= 1z )P £ )IP LR )
J

IA

p/q
x [Zm,-(cn}
J

(1= ZP) P (1 — [zj ) +2tPe

< C = (z)IP.
; =7, 1f(z;

We now integrate over D and use Theorem 1.7, to obtain

fD|f(C)|”dAa(C) <CY (=1 fEIP
J

The case p = 1 follows from (5.30), (5.31), and Theorem 1.7 as well; we simply
proceed as in the previous paragraph but omit the use of Holder’s inequality. m



5.4. Hyperbolic Lattices 165
5.4 Hyperbolic Lattices

In this section, we present a class of sequences in the disk for which the upper and
lower Seip densities are computable. Basically, these sequences are lattices in the
hyperbolic metric. Because the hyperbolic lattices are easier to describe and easier
to visualize in the upper half plane, we will need to switch between the unit disk
and the upper half plane via the Cayley transform.

For a positive Borel measure 1 on D and r € (0, 1), we use n,,(r) to denote the
w-measure of the disk |z| < r. Define

Ny (r) —_-f n,(t)dt, O0<r<l.
0

It is easy to see that
Nu(r)zf| (r = lzh du(2).
z|l<r

If " is a sequence in D and

du =Yy ds,
yel
is corresponding atomic measure, where each dé, is a unit point mass at y, then
n, and N, are the classical counting functions associated with " (except that N,
is slightly different here); see Section 4.1.
We introduce two more counting type functions. Thus, for 0 < r < 1 we define

1
B,(r) = / log — du(z)
%<lz|<r |Z|

and

r
Cu(r) :ﬁ log — du(z).
5 <lzl<r 1z

Observe again that if w is the atomic measure associated with a sequence I" in D,
then

1 1
Bu(r)=Z{logl—Z—|: zerl, §<|z|<r]

and

Cu(r):;{logé 1 zeTl, % < |z| <r|.
The counting function By, appears as the numerator in the definition of the Seip
densities; see the previous two sections. The denominator in the definition of the
Seip densities, log l—l—r, has the same magnitude as N, (r), B, (r), and C,(r), if
we take
dA(z)

dp(z) = A 1p2’
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the Mdbius invariant area measure on D.

LEMMA 5.24 Suppose u is a positive Borel measure on D such that

nu(r) = 0 (llj) o 1-,

Ny(r) = 0<log 1 1r> r—1".

Furthermore, we have

B, (r) = N,(r)+ O0(1), r—17,

Then

and
Cu(r)=N,(r)+0(), r—1"

Proof. The estimate on N, (r) follows immediately from integrating the growth
bound on n, (r). Also, after a second integration, we have

/ (r =z du@z) = 0(1), r—1". (5.32)
lz|<r

Since

1 1
Bu(r) C (r)= 100;/; " d“(z):["#(r)_nu(%+)]log—,

r

the assumption on the growth of n,, gives
B,(r) = Cyu(r)+ 0(1), r—17.

Finally, we can write

Cur) = Nu(r) = / (10——1+lzl>du(z)
3 <lzl<r |Z|

+(l—r)/ ( 'z')d()
3<lzl<r
- /II (r = |z|) du(z).

By the growth conditions on n, and Ny, the last two terms above are O(1) as
r — 17; also, combining the estimate (5.32) with

1
1og7 =1-14+0((1-1)?), t—> 17,

we see that the third term is O(1) asr — 17. u
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Note that the estimates in the lemma above are uniform in ¢ € Aut (D) if u
is replaced by the atomic measures associated with ¢(I"), where I' is a separated
sequence in D and Aut (D) is the full Mobius group. This is because the counting
function n,, associated with ¢(I") has the estimate

1
n#(r)=0<1_r), r—17,

uniformly in ¢. As a consequence, we see that when computing the Seip densities
D;L(l") and D ("), we may use N, (r) or C,(r) in place of B,,(r), with u being
the atomic measure associated with ". This helps us develop better geometric
intuition for the Seip densities.

We now begin the construction of hyperbolic lattices in D.

A sequence of points {x;}; on the real line R has pure density o provided that
the points are separated (in the usual Euclidean metric) and

#({x;}; N[A, B]) = (B—A)o+ 0(1),

where O(1) stands for a quantity bounded by a constant that is independent of
A, B; and # counts the number of points in a set.

If we have a sequence of sequences {x}l)}j, {xﬁz)}j, {x§3) }j»---.each of which
has pure density o, we say that they have pure density ¢ uniformly provided that

jir}(fl {|x§k) —x,(k)| : j;él} >0

and
sup [#((x"); N14, B1) + (4~ By g = 0D,

where again O(1) stands for a quantity that is bounded independently of A and B.
Let U be the open upper half plane. Recall that the hyperbolic metric on U is

given by
, 1 1+ p'(z, w)
,w) = = log ——,
Flzw) 2 8T C p'(z, w)

where p’ is the pseudo-hyperbolic metric on U:

i—w

p'(z, w) = —1.
I—w

We shall first construct a sequence I'' = {,,}, in U, and then map it to a sequence
" in D by the Cayley transform

o) = L cU
';_g+i’ ceb

THEOREM 5.25 Fix a real parameter B € (1,+00). For each integer k, let
{x;k)} j be a sequence in R with pure density 0. Also, assume that these sequences
have pure density ¢ uniformly in k. Let T = {{j i}« be the doubly indexed
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sequence
Cia=B* () +1)

inU, and letT = {zj x}; .« be the image sequence in D under the Cayley transform.

Then T is separated, and

21
logB’

D} () =D; () =

Proof. Clearly, the sequence I' is separated, as the hyperbolic distance between
two points of T’ is bounded from below by a positive number and the Cayley
transform preserves the hyperbolic metric.

For & € U, let

;¢
= —, e,
#O) =z ¢
be the associated conformal mapping U — D. We need to estimate Ny, (r)(r) for
r € (0, 1) close to 1, because this is equivalent to Ny(r)(r) for Mobius maps ¢ of
D. We do this by first estimating ng, (r)(r), which equals the number of points of
I’ in the pseudohyperbolic disk

Dy, ry={zeU: p'(z,w) <r}.
The Euclidean center of this disk is located at the point

+r2

1
Re& 4+

1 —r2

Imég,

and the Euclidean radius is 2r (1 — r?)~ ' Im .

The points of I are located along the horizontal lines Im¢ = g*, with k
an integer. The number of different such lines intersecting the disk Dy (&, r) is
approximately given by

2 looliﬁ

S 1l-r
logf

If we, instead of counting the number of points on each such line Im¢ = g* in
TyN Dy(§, r), just calculate o B~* times the Euclidean length of the line segment,
the error we make each time will be O(1) uniformly in k, by the assumptions we
made on the sequence I'’. Adding up the errors, we obtain a total error of the order
of magnitude
1
1- r)’

which is negligible compared with the total number of points in the disk Dy (&, r),
the latter being of the order of magnitude (1 — r)~!, for r close to 1. Let us write
this down more carefully.

0(log



5.4. Hyperbolic Lattices 169

Let u be the positive Borel measure on U defined by

I® +o00
[ @ = 3 5 [ s ripnax,

for compactly supported continuous functions f. Then

1
Ry (r) = ng ry)(r) = Qn¢gu(l‘) + 0(log = r) aa r—1,

where ¢§l/« 1s the positive Borel measure on D defined by

d(¢f ) (2) = du(d; ' (2)),

provided that £ € U is chosen such that ¢ (I'") equals ¢(I") modulo a rotation.
After an integration, we obtain

Nomy(r) = Ng.rn(r) = o N¢§u(r) + 0(1) as r — 1. (5.33)

We turn to the function C¢;u(r), which is equivalent to N¢;“ (r) by Lemma 5.24.
It is easy to see that

C¢;u(’)=/ _ ‘ €= S)‘du(cl
Dy(¢.r)\Dy(t. 1)
We show that
oo
og|——| du(f) = O(1), (5.34)
Dy.y) 1§ —§

uniformly in & € U. In fact, it follows from the construction that the p-mass of
the pseudohyperbolic disk Dy (&, -é—) is uniformly bounded in &. The kernel

§-¢
¢ —§
is bounded in the variable ¢ except for a logarithmic singularity at { = &; the
logarithmic singularity is leveled out in the integral by the fact that d i is so smooth
in the Re ¢ direction. To simplify the calculations, we switch from integrating over
the disk Dy (£, %) to the larger square (after all, the integrand is positive)

log

4 1
{z:x+iyetU: x| <3 Img, o Imé _<_y_<_3Im§-’].
After some simplifications, it remains to show that
4 2 2
1 3 t= 1 +068")°
6 2 F /4 z21§1+9ﬁ";2d’
n: }<6p7<3 3

is uniformly bounded in 6, 0 < 6 < +oo. This is easily verified, and the claim
(5.34) follows.
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We now introduce the function

F(S,n:r):/ log
Dy(&.r)

which, according to (5.34) and the above observation that the y-mass of Dy (£, %)
is uniformly bounded in &, satisfies

r¢ —n
—

’ du(g),

C(Pg/t(r) =F(¢, &:r)+0Q), r—1-, (5.35)

uniformly in . The advantage with the function F (£, n: r) is that in 7, it solves a
boundary value problem on Dy (&, r): it vanishes on the boundary d Dy (&, r), and
inside, its Laplacian is, in the sense of distribution theory,

1
ApF (&, nir) = —Edu(n)‘

We will return to this function shortly.
Let H be the Heaviside function, so that H(x) = 1 for 0 < x < 400 and
H(x) = 0for —oo < x < 0, and consider the function

+00 X
Ux) = Z ﬁ‘”/ H(B" —1)dt, 0 <x < +oo.
n=-00 1

The series converges, because only finitely many terms with negative index n
actually occur in the sum. This function has the functional property

UPBx)y=Ux)+1, 0<x < +o0:

the verification involves two manoeuvres, the first one being to check that the two
sides have the same derivative, and the second to obtain that U(B8) = 1 whereas
U (1) = 0. Using the above functional equation, we easily establish that

log
0< 22 _ym)<3,  0<x<+oo. (5.36)
log B
The second derivative of U is
+00
U'(x) = — Z B~ 8pn (x), 0 <x < +00,

n=-—0oo

where égn (x) represents the unit point mass at x = . In view of the definition
of the Borel measure , it follows that

1
A, (U(Imn)) = — 2 du, nel.

The factor 7 ~! comes from our choice of interpreting locally integrable functions
u on a domain 2 as distributions via the duality

(f. u) =/Qf(z)u(z)dA(z).
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We return to the function F (£, n: r), and conclude that
Fg n:r)=2m (U(Imn) = Ug (D), n € Dy&.r),

where ﬁg (n) stands for the harmonic function on Dy (&, r) which equals U (Im 7)
along the boundary. The harmonic extension operation respects inequalities, so
that in view of (5.36), we can get F (&, n: r) trapped:

f%fﬂswmm—@m+a n e Dy, r),

V(Imn) — Ve(n) — 6 <
where V(x) = (logx)/(logpB), and Vg(n) stands for the harmonic function
on Dy(&,r) which equals V(Imn) along the boundary. Since the Laplacian
of V(Imn) is readily calculated, an application of Green’s formula yields the
representation

r(¢ —m| dA@)

o

V(Imn) — Ve(n) =

2log B Jpye.r ¢=n | (Img)
Plugging in n = &, we have
Fg &) 1 r(¢ —&)| dAQE)
= o >+ 0(1).
2 2log B Jpy(e.r (=& | (Img)

Performing the integration on the unit disk instead, using the change of variables
Z = ¢ ({), we obtain

F(,&; 2 dA
€.5n) tog - —24@ 1 o).
2n logﬂ \z|<r Iz} (1 —1z|%)
An easy calculation then shows that
b4
FE, &r)= 1 o).
(§,8:r) oz B og—, Tol

Combining this with (5.33), (5.35), and Lemma 5.24, we conclude that
B — 272 1og
o) (r) = oz B log -— + O (1),
uniformly in ¢ € Aut (D). It is now immediate from the definitions of the Seip
densities that
210
log B’

and we are done. n

Df () = D;(T') =

5.5 Notes

The characterization of interpolation and sampling sequences for the spaces A~
is due to Seip [112], where the spaces A2 are also discussed. The cases A%, as
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presented here in Section 3, essentially follow from Seip’s proof in [112] as well.
Seip’s work was strongly influenced by Beurling’s results [22] on interpolation
and sampling for the Banach space of functions of exponential type < «, bounded
on the real line.

The proofs of Theorems 5.18 and 5.23 supply no quantitative information
concerning the size of the sampling constants; such information would be desirable.

We believe that Theorem 5.23 holds for 0 < p < 1 as well. However, this
cannot be proved using the line of ideas pursued in Section 3. It appears that a
proof for 0 < p < 1 can be built by suitably modifying the methods in [20].

In [130], Thomson applies Seip’s sampling theorem to show that the closure of
the polynomials in L?(ID, dut) can change quite dramatically with the parameter
p: for a certain Borel probability measure u this closure is a space of holomorphic
functions on D if p is large, but for small p it becomes all of L”(ID, d )); see also
Thomson’s fundamental paper [129].

The section on hyperbolic lattices is new: it was left unexplored by Seip be-
cause he first characterized extremely regular lattices in terms of sampling and
interpolation properties using very explicit methods [111], and only later in terms
of counting functions for the sets [112]. Counting points in hyperbolic space is a
bit tricky because the space expands faster than in Euclidean geometry: the hyper-
bolic area of the (hyperbolic) annulus between the disks of radii R and R + 1 is
comparable to that of the whole disk of radius R.

5.6 Exercises and Further Results

1. If A is a classical interpolating sequence, then A is a sequence of
interpolation for A”.

2. There exist two sequences of interpolation for A? such that their union is a
sampling sequence for A”. See [61].

3. Let A = {a,}, be a sequence of distinct points in D. Then A is sampling
for A% if and only if atomic decomposition for A2 holds on A, that is, an
analytic function f in D belongs to A2 if and only if

+00

2
f2) = ch_l__—J_a_"l_

for some {c,}, € I? and the series converges in norm. See [139].

4. For asequence A = {a,}, of distinct points in D, let R4 denote the operator
that sends a function f € A? to the sequence {(1 — lan|?) f (an)}n. Recall
from Exercise 19 of Chapter 2 that R4 maps AZinto % if and only if A is the
union of finitely many separated sequences. For such a sequence A, show
that R4 has closed range in {2 if and only if A is a sampling sequence for
A? or A is a sequence of interpolation for AZ. See [139].
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11.
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. Suppose A is sequence of distinct points in D such that the operator R4

defined above maps A2 onto a closed subspace of /2. Then A is sampling
for A% if and only if A is not a zero sequence for A%; and A is a sequence of
interpolation for A2 if and only if A is a zero sequence for A2. See [139].

. Let A = {a,}, be a sequence of interpolation for A2. Define a sequence

{@n}n of functions in A% by
¢on(z2) = Ka,(z,an)/Ka,(an, an), zeD, n=1,2,3,...,

where A, = A\ {a,} foralln = 1,2,3,..., and K4, is the reproduc-
ing kernel function for the zero-based invariant subspace I4,. Show that
¢n(an) = 1 and g, (am) =0if n # m.

With the same assumption and notation as before, show that there exists a
positive constant C such that

1= lanl? < l@all < C (1 — lanl®)

foralln = 1,2, 3,.... For Problems 7-12, see [140].

. With the same assumption and notation as before, show that the sequence

(1 = lan® 3/2<pn(z)},, 1s uniformly bounded on every compact subset of
y
D.

. With the same assumption and notation as before, show that for every

sequence {wy}, of complex numbers satisfying

> (1 = lan*)|wal* < +oo,

the series Y, wn ¢, converges (in norm) to a function in A? that uniquely
solves the minimal interpolation problem:

inf{l| fll : f(an) = wp, n > 1}.

With the same assumption and notation as before, show that the reproducing
kernel K 4 of I4 admits the following partial fraction expansion:

1 on(w)

Kaew) =g ~ L a0

With the same assumption and notation as before, show that every function
f in I} admits the following expansion:

f(z):z (f, ¥n)

— (1 —an2)?’

with the series converging in norm.
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12.

13.

14.

15.
16.

17.

18.

19.

20.

21.
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Let A = {a,}, be a sequence of interpolation for A?. Show that an analytic
function f in D belongs to IAL if and only if

1 — |an|?
f(z):Zc,,(—lal—

-— ?7
7 I —a,z)*

where {c,}, € 2 and the series converges in norm. In fact, the mapping that
sends {c,}, to f via the above series is an invertible operator from 12 onto
IJ_

e

Every A%-sampling sequence is the union of finitely many AJ-interpolating
sequences. In fact, every separated sequence is a finite union of A%-
interpolating sequences.

A sequence I" of distinct points in D is called a weak .4~ “-interpolating
sequence if there exists a positive constant C such that for each k there
is a function g € A~ with |igkll—« < C, (1 — |zx|>)%gx(zx) = 1, and

8k(zj) = 0O for j # k. Show that I is a weak .A™“-interpolating sequence
if and only if it is an A~ “-interpolating sequence. See [110].

Formulate and prove a result in the context of A% that is similar to the above.

Show that if the sequence I" is separated in ), then D" (I') < 400 and
D () < +o0.

Show that the condition D} (I") < 400 implies that I' is separated. Does
this hold for D} (I")?

Define and characterize interpolating sequences for the space A™>°. See
[32] and [96].

Let us call the sequence I' = {z;}; of distinct points in D a type sampling
sequence if for each f € A~ we have

: log [f(zj)l _ . log | f(2)]
lim sup ——— = limsup ————
jtoo 108 =g pzs1- log

=1(f).

Characterize the type sampling sequences. This is an open problem; for
partial results, see [78].

Suppose A = {ay}, is a zero set of AP consisting of distinct points. For
n=1,23 ..., define A, = A\ {a,} and let G, be the contractive zero
divisor for A, in A?. Show that A is an interpolating sequence for A” if and
only if there exists a positive constant § such that § < G, (a,) for all n. See
[109].

Give another proof, based on Lemma 5.1, Corollary 5.2, and the contrac-
tive imbedding AZ ¢ A~(@+9/P_that every AZ-interpolation sequence is
separated.



22.

23.

24.

25.
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Show that if T" is a separated sequence, then there exists a positive constant
C such that the number of points of I" lying in |z] < r is less than or equal
toC/(1 —r),wherer € (0, 1).

Suppose A and B are disjoint sequences in D. Show that
Df (AU B) < D{ (A) + D; (B)
and
D; (AU B) = D, (A) + D; (B).

Do the analysis of Section 5.4 for concentric circles about the origin in D
instead of horizontal lines in the upper half plane U.

Prove the estimate (5.16) relating the Beurling-Carleson characteristic to the
Kk-area of the corresponding Stolz star.
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Invariant Subspaces

In this chapter we study several problems related to invariant subspaces of Bergman
spaces. First, we show by explicit examples that there exist invariant subspaces of
index n for all 0 < n < +00. Then we prove a theorem that can be considered an
analogue to the classical Beurling’s theorem on invariant subspaces of the Hardy
space. It states that in the spaces Aé, with —1 < & < 0, each invariant subspace 1
is generated by I ©z/ . In the classical Hardy space case,  ©z1 is one-dimensional,
and spanned by a classical inner function (unless I = {0}). In Aé, the dimension
may be bigger, but all elements of I © zI of unit norm are Ai-inner functions.

6.1 Invariant Subspaces of Higher Index

Let I be an invariant subspace of A%. We say that I has index n (or the codimension
n property) if n = dim(Z/zI). In this section we show that forany 0 < n < +00
there exists an invariant subspace I of A% of index n. Of course, n = 0 occurs
only for the trivial subspace I = {0}.

First observe that if  is a singly generated invariant subspace, or a zero-based
invariant subspace of A?, then I has index 1; see Exercise 13.

LEMMA 6.1 IfI is an invariant subspace of AL with index I, then there exists a
nonzero continuous linear functional ¢ : I — C such that ¢ vanishes exactly on
zI.
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Proof. Letn be the smallest nonnegative integer such that there exists a function
f € I with £ (0) # 0. Define ¢ : I — C by

o(f)=f"0), fel

Then ¢ has the desired properties. [ ]

LEMMA 6.2 Fixapositiveintegernandlet Iy, I», . .. , I, be invariant subspaces
of AL, all having index 1. If there exists a positive number € such that

Ifi+- 4 full Zedlfill + -+ 1 flD

forall fieh,..., fn€l, then I =11 +---+ I, is an invariant subspace of
AL having index n.

Proof. It is easy to see that the reverse triangle inequality implies that I =
I, +---+ I, is a direct sum and that I is closed in AZ. In particular, I is an
invariant subspace of AZ%.

Foreach 1 <k < n,letgy : I, — C beanontrivial continuous linear functional
that vanishes on z/Iy. Define ¢ : I — C" by

e(fi+-+ fu) = (@1 (1) en(fn)),

where fi € Iy for 1 <k < n. The reverse triangle inequality guarantees that ¢ is
continuous. Since each ¢y is surjective, ¢ is also surjective. And since the kernel
of each ¢y is zIj, the kernel of ¢ must be zI = zI| + - - - + zI,. It follows that ¢
induces an isomorphism between I /(zI) and C”", so that the quotient space I /(zI)
is n-dimensional. [ ]

We proceed to construct zero-based invariant subspaces of A% that satisfy the
reverse triangle inequality Lemma 6.2. This will then produce invariant subspaces
of arbitrary index.

LEMMA 6.3 Suppose0 < p < 400, —1 < o < 400, and n is a positive integer
greater than or equal to 2. Then there exists a sampling sequence A for A%, and a
decomposition of it as a finite disjoint union A = U’]'.I] Aj, with the property that
each A\ Aj is an interpolating sequence for Al

Proof. First recall from Chapter 5 that a sequence A is sampling for AZ if it
is a finite union of separated sequences and contains a separated subsequence Ag
with

_ o+ 1
D (Ag) > ——.
p
Similarly, a sequence A is interpolating for A% if it is separated with

I
DF(a) < 21,
2

We say that a sequence A is regular if its upper and lower Seip densities coincide,
in which case we write D, (A) in place of D} (A) = D (A).
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Let A be aregular sequence as constructed in Section 5.4. More specifically, let 8
and g be real parameters with 1 < 8 < +00and 0 < g < +00,let A" = {a}.k}j.k
be the doubly indexed sequence in U defined by

al =B (ej +0),

where j and k run over all the integers, and let A = {a «} j.x be the image sequence
in D under the Cayley transform

=i
=—, eU.
¢(£) Cri ¢
By Theorem 5.25, the sequence A is regular with
2o
Dg(A) = .
log B
Form =1,2,... ,n,let Ay, be the image under the Cayley transform of A;n,
where A consists of those points a}_k in A’ such that j = m (mod n). Clearly,
A=U}_ Ap, andthesets Ay, m = 1,2,...,n, are disjoint. Each A,, contains

every n-th element of A, and by the analysis of Chapter 5 (Theorem 5.25), each
sequence A,, is regular with its Seip density given by
D;(A) B 2o

Ds(Am) = n nlogf

Analogously, each sequence A \ A, is regular with its Seip density given by

n—1 2(n — mo
Ds(A\ Ap) = - D;(A) = Thlogf
It follows that
n n
Ds( U Am) = Z D (Ap):
m=1 m=1

when this happens, we say that the decomposition A = U” _, Ay, is homogeneous.
We need to fulfill the requirements

1 2
OF <Dy = 28
log
and
2(n —1 1
Dy(A\ Ay = 2= Dre et l
nlog B p
These amount to the condition
1 2 1
Ol—-’_—<D5(A): nQ< " a+.
p logg n—-1 p

All that remains is for us to pick the density in this nonempty interval. This is
easily done by suitably adjusting the parameters 8 and o. L]
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THEOREM 6.4 For j =1,... ,n, let I; =I5\ A, be the invariant subspace of

Al consisting of all functions that vanish on A \ A j» where A and A are as in
the previous lemma. Then there exists some €, 0 < &€ < 1, such that

Ifid-F fall Zedlftl+ -+ 1L fal)

forall fk € IA\Ak’ 1 <k<n

Proof. Foreach pointa € A, and for f; € I}, ..., fy € I,, we have

i@+ ...+ @] = 1A@I + ...+ f@]”.

Since A is sampling, there are positive constants K and K> such that

K [ 1f1Pdas < 0 - aP U@ < K [ 17PdAG £ e Al
D D

acA

Apply these inequalities to each f; and thento f = f) +--- + f,. We conclude
that

Y D (= 1aP) fi@)”

Jj=lacA

Y (= 1a® | f@If < K2l f11P.

acA

IA

K1) IfillP
j=1

This is the sought-after reverse triangle inequality, except that it is with p-th powers
of norms. But in finite-dimensional spaces, [” and I! norms are equivalent, so the
result follows. [ ]

COROLLARY 6.5 For any positive integer n there exists an invariant subspace
of AL with index n.

The technique used in this section does not allow us to find invariant subspaces
of infinite index. However, the main scheme, to form the closure of the sum I} +
L+ I3+ ---,denoted Iy V I vV I3 vV ---, where I, I, I3, ... are index-one
invariant subspaces, still applies. Essentially, by requiring the subspaces I; to
be “far apart” from each other, we obtain an invariant subspace of infinite index
in AZ; the details are worked out in [71]. An alternative construction, which is
perhaps more flexible and applies to a large collection of (quasi) Banach spaces
of holomorphic functions on the unit disk, can be found in [26]; see also [1]. It
is known that the elements of invariant subspaces of index bigger than or equal
to 2 must exhibit rather bad boundary behavior; for instance, if we restrict our
attention to p = 2 and o = 0, then at each point of T, every such function must
have the whole plane C as cluster set (part of this assertion can be found in [62]).
A considerably more precise statement can be found in [8].
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6.2 Inner Spaces in A2

In the classical theory of Hardy spaces it was shown by Beurling that every invariant
subspace I of H 2 is of the form I = @H?, where ¢ is inner. Furthermore, the
invariant subspace I determines the inner function uniquely up to a unimodular
constant. Therefore, Beurling’s theorem can be restated as follows: The invariant
subspaces of H? are in a one-to-one correspondence with the (one-dimensional)
spaces Cy, where ¢ is inner. In the next section we will show that an analogue
holds in the Bergman space setting, except that here one-dimensional spaces will
not be enough.

DEFINITION 6.6 A closed subspace X of AL is called an inner space if every
unit vector in X is AL-inner.

The next result characterizes inner spaces in A2, whose proof works in much
more general settings (an injective bounded operator with closed range on separable
Hilbert space).

THEOREM 6.7 A closed subspace X of Af; is inner if and only if there exists an
invariant subspace I of A2 suchthat X =1 zl.

Proof. If I is an invariant subspace of A?x, then it is obvious that every unit
vectorin I © zI is an A?x—inner function, so that I © z[ is an inner space.

Next assume that X is an inner space in A2. Let I be the invariant subspace
generated by X. We proceed to show that X = I © z[.

Let {e, }, be an orthonormal basis for X. In particular, each vector e, is Ag—inner.
Toprove X C I ©zI,0r X L zI, it suffices to show that

(en, ZXem) = 0, k=1,2,3,...,

for all indices m and n. If n = m, then the desired equalities follow from the fact
that e, is A2-inner. If n # m, we use a polarization trick. The function

aey(z) +ben(z)
Vial> + b

is AZ-inner for all complex numbers a and b with |a|2 + lbl2 > 0, because the
space X is inner. It follows that

f@)=

(ae, +bey, zk(a en+bey)) =0
for all complex numbers a and b. Since
(en, ZXen) = (em, 2¥em) =0,
we obtain

ab (en, ZXep) +ab (em, Xen) =0



6.3. A Beurling-Type Theorem 181
for all complex a and b. By first setting a = b # 0, and then setting a = ib # 0,
we easily obtain
(en, Zkem) = (em., Zken) =0.

This proves X C I © z1.
If X is not all of I © zI, then there exists a unit vector f € I © zI such that
f L X.Itis of the form

= lim Zp,ﬁm)ek,

m—+00

where each p,im) is a polynomial and N, is a positive integer. Write

Ny N
Y e = Z(p('") PO e+ pO) ex,
k=1 k=1

and denote the two sums on the right-hand side above by f} ,, and f>_,, respec-
tively. Then f1.,, L fa.m, by what was proved in the previous paragraph. Also,
f L X implies that f L f>.,,,and f L zI implies that f L fj . Thus, by the
Pythagorean theorem,

W

=wn+mmWHmmW2wW—

This contradicts the assumption that

2

=1f = fim— foml?

— A m)
S = lim 2 P
k=1
and hence completes the proof of the theorem. ]

Combining the theorem above with results from the previous section, we con-
clude that the dimension of an inner space in A2 can assume any value in the set
{0,1,2,3,...,400}.

6.3 A Beurling-Type Theorem

The purpose of this section is to show that invariant subspaces of A2 are in a
one-to-one correspondence with inner spaces in Ai, provided that —1 < o < 0.
More specifically, we show that every invariant subspace I in AZ; is generated by
Iozl.

Actually, we will prove a stronger result in the context of general Hilbert spaces.
Throughout this section we let H be a separable (infinite-dimensional) Hilbert
space and let T : H — 7 be a bounded linear operator satisfying
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@ ITx+yl? <2(lIxl> +ITyl?), x.ye™H,
() (H{T"H :n = 0} = {0}.

First note that setting x = O in condition (a) above shows that T is bounded
below. In particular, the operator T is one-to-one and has closed range, so that the
operator T*T is invertible. The operator

T, = (T*T)"!

will play a vital role in our analysis. In the following, operator inequalities are
given the standard interpretation in terms of positive definiteness.

LEMMA 6.8 For all x € H, we have
ITEx + xli® < 2 Thx ™.
Proof. Let y = (T*T)~ /27 in condition (a). Then
ITx + (@D~ 221 <2 (Ix12 + ITT D22 )2)
for all x and z in H. An easy calculation shows that
IT(TT) "2 = |21
for any z € H. Thus,
ITx + (T*T) ™2z > < 2(flx )1 + lz)®)

forall x,z € H.
Consider the operator S : H & H — H defined by

S(x,2) =Tx +(T"D)""%z,  (x,))eHBH.
We have ||S|| < +/2, so that S$* < 2I, where I is the identity operator on H. Since
S* () =Ty TNy, yeH,

it follows that

SS* =TT+ (T*T) "',
and so

TT* +(T*T)~' <2L
Multiplying both sides by T7 from the left and by T, from the right, we arrive at

I+T;T? <2TiT),

which is clearly what we wanted. n

We will say that the operator T is concave down. This concavity of T} is the
key to the success of our analysis.

LEMMA 6.9 ||T x| > |x|l forall x € M.
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Proof. Forany x € H, the sequence { HT’{x Il 2},, is positive and concave down, by
Lemma 6.8. It follows that ||T’1')c]|2 is increasing in n; in particular, | T;x|| > ||x].
[ ]

In what follows, we let
Hi=(){TjH:n >0}

It is obvious that ‘H; is invariant under T;. Also, the operator T maps H; onto
Hy.Infact, if x € Hj, thenforanyn =0, 1,2, ..., wecan find y, € H such that
x = T]y,. In particular,

x=Tiy =T(T7 yy)

foralln = 1,2,3,.... Since T is one-to-one on H, so is T;. Therefore, y; =
T’l'_ly,, foralln =1, 2,3, ..., whichimplies that y; € H,.Combining these with
Lemma 6.9, we conclude that the restriction of T} to H; is an invertible operator.

LEMMA 6.10 The restriction of T| to H, is unitary: TyH; = H) and || T x| =
x|l for all x € H;.

Proof. Fix a point x € Hy. Forany n = 0,1,2,..., pick y, € Hj such
that x = T'l’ ¥n- Since T, is one-to-one, we easily obtain y,_; = Ty, for all
n = 1,2,3,.... An application of Lemma 6.9 then shows that the sequence
{llynl}n 1s decreasing.

On the other hand, the concavity of T} (see Lemma 6.8) gives

1

I3 Yns 12 + Iy 1
< 2Tiynetl? =20yl
so that the sequence {]|yn||?}, is positive and concave down, which implies that

{Ilynll}n is increasing. We conclude that the sequence {||y,||}» is constant. In
particular,

Iyn1l? + lynsill®

A

ITiyill = llyoll = liyrll.
Since x is arbitrary and T, is invertible on Hj, it follows that y; = Tl“lx is
arbitrary in H, that is, we have shown that || T y|| = ||y| forall y € H;. ]

DEFINITION 6.11 Let R be a bounded linear operator on a general Hilbert
space 'H. A closed subspace G of H is said to be reducing for R if both G and its
orthogonal complement H © G are invariant under R.

LEMMA 6.12 The subspace H, is reducing for the operator T.
Proof. We have already shown that the restriction of T| to H) is a unitary

operator. Given any x € H}, an easy calculation shows that Py T{Tx = x, where
Py is the orthogonal projection from H onto H,. It follows that

(T]T) —Dx, x) =0, x € Hj.
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By Lemma 6.9, the operator T| is norm expansive, which means that T;T; —I > 0.
In view of the above, we conclude that T{T x = x for all x € H;; see Exercise
16. Combining this with the fact that T\ = H,, we arrive at T{H; = H,. In
particular, 1 is invariant under T7, and hence H © H is invariant under T. =

In the remainder of this section, we let
E=ker(T")=HOTH
and
L=T=(T*D)"'T"

It is easy to check that LT = I, the identity operator on H, and that I — TL = Pyg,
where Pg is the orthogonal projection from H onto £.

LEMMA 6.13 Forn=1,2,3, ..., we have
ker(L") = E+TE +---+ T &
Proof. By the definitions of £ and L we have L(£) = {0}, and so L"(£) = {0}
foralln =1,2,3,....Since LT = I, we have
LT E) = L&) = (0}
fork=0,1,2,...,and so
L"(E+TE+---+T1E) = {0).
On the other hand,

n—1 n—1
I-T'L" = ZT"(I —~TL)LF = ZT"PgL".
k=0 k=0

Thus, x € ker(L") implies that

n—1
x=Y TPeLlx e E+TE+ - + TV
k=0
This proves the desired formula for ker(L"). ]

We are now ready to prove the main theorem of this section.
THEOREM 6.14 If T : H — 'H satisfies conditions (a) and (b), then
H=[5]:\/{T”x :xeé’,nzO},
where £ = ker(T*) = H & TH.
Proof. It is easy to check that T;T, is invertible on H, and that T =

T, (T’{Tl)‘l. Since H, reduces T}, it also reduces T.
IfR = Ti#, and Ry = Ty|y,, then we have

R=R;RIR)' =R,
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because H, is reducing for both T and T, and as R is invertible, we obtain that
R is invertible.

Write H = H; & H; and use the fact that T(H,) = H,. We obtain ; C T"H
foralln = 1,2, 3,....It follows that

+00 +00
HiC () T'H = () T"H = {0},
n=l1 n=0

so that H; = {0}. By the definition of H, we have

+00 +00
0} =(TiH =) T}H.
n=0 n=1

Taking the orthogonal complement, we get

+00 L 4o +oo
H = [ﬂ T’{H] = \/ @)t = \/ ker@L?.
n=1 n=1

n=1

The lastidentity holds because the kernel of the adjoint equals the orthocomplement
of the range of the operator. The desired result now follows from Lemma 6.13. m

As an application of the above operator-theoretic result we obtain the following
Beurling-type theorem for invariant subspaces of the Bergman space.

THEOREM 6.15 Suppose —1 < « < 0 and I is an invariant subspace of Ag;.
Then I is generated by I © z1.

Proof. Let S be the operator of multiplication by z on Aé. We shall see that
condition (a) holds for S:

IS+l <2(IF12+1Sgl?),  fr g€ A2

Scrutinizing the proof of Lemma 6.8, we see that this is in fact equivalent to the
operator inequality

SS*+(s*S)"! <21
Using Taylor expansions, we realize that the latter is equivalent to the concavity
of the sequence {1/wp}n, where
_ n'TQ2+a)
T T(n+2+4a)

plus the condition wy < 2wy, which is satisfied for all =1 < & < 0. The concavity
condition reads

Wp

1 1 2
+ < —
Wp—| Wn+1 wn

) n=12,3,...,

which is equivalent to

nn+DIrn+14+a)+T(n+34+a) <2n+ DI'(n+2+a).
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Using the well-known functional identity I" (x 4+ 1) = xI"(x), we reduce the above
to

nn+D+n+2+a)n+14+a) <2(n+Dn+1+a), n=1,23,...,
which is easily seen to be the same as
a+a®<0.

We conclude that the sequence {1/wy}, is concave for —1 < o < 0.

To treat the general case, let T be the restriction of S to the invariant subspace
1. The property (a) holds for T since it does for S. Likewise, it is obvious that T
satisfies condition (b). The result is now immediate from Theorem 6.14. [

COROLLARY 6.16 Fixa, —1 <« < 0. If I is an invariant subspace of A% of
index 1, then I is generated by its extremal function G, and | f/ G| < || f]l for
all f € I

Proof. If I has index | and G is the extremal function of I, then it is easy to
see that

16zl =CGy.

The assertion that 7 is generated by G then follows from Theorem 6.15. We omit
the proof that G is a contractive divisor on I; this is a special case of Exercise 8
in Chapter 9. ]

COROLLARY 6.17 If —1 < «a < 0, then every function f € Ag‘[ admits a
factorization f = GF, where G is Aé-inner and F is cyclic in Ag.

Proof. Let G be the extremal function of I, where Iy is the invariant subspace
generated by f. Then I is generated by G, since I has the index 1. It follows
that f = GF with ||F|| < || f|. Furthermore, if p is a polynomial, then

pf

IpFll = < lpfll.

Now, if {p,}, is a sequence of polynomials such that p, f — G in norm, then
Pn(2)F (z) — 1 pointwise. But the inequality

lpnF — pmFll < llpnf — P f

shows that {p, F}, is a Cauchy sequence. We must have p,F — 1 in norm,
making F cyclic in A2. "

6.4 Notes

That an invariant subspace I of a Bergman space may have index greater than 1 was
first proved by Apostol, Bercovici, Foias, and Pearcy in [10]; their proof, however,
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is only an existence result and gives no clue of what such invariant subspaces
look like. Explicit construction of such spaces was first carried out by Hedenmalm
in [61], based on Seip’s work on interpolation and sampling sequences, in the
case n = dim(I/zI) < +o0; this construction was later improved to cover the
case dim(Z/zI) = o0 in the paper [71]. It should be mentioned that the reverse
triangle inequality of Lemma 6.2 is by no means necessary for the index one
invariant subspaces Iy, ... , I, to generate an invariant subspace of index n.

The notion of inner spaces was introduced by Zhu in [143], where another
notion called maximal inner spaces was also introduced. Several characterizations
and examples of maximal inner spaces can be found in [143] as well.

Theorem 6.15, which we call a Beurling-type theorem, was proved by Aleman,
Richter, and Sundberg in [7] in the special case « = 0. The proof given here,
which covers the cases —1 < a < 0, is due to Shimorin; see [126]. The case
0 < « < 1 remains open. We point out that, unlike the classical Beurling theorem
for H?, Theorem 6.15 does not imply a function-theoretic description of invariant
subspaces of AgA Such a description in the context of Bergman spaces is known
only for A=%°; see [84].

One of the reasons that Bergman spaces have attracted so much attention in
recent years is that they are closely related to an old open problem in Opera-
tor Theory. More specifically, the invariant subspace problem (of whether every
bounded linear operator on a separable Hilbert space of dimension greater than one
has a nontrivial invariant subspace) is equivalent to the following question about
z-invariant subspaces of the Bergman space A2: Given two invariant subspaces I
and J of A2 with I C J anddim(J ©1) = +0o0, does there exist another invariant
subspace L of A? lying strictly between I and J? See [71] for an explanation and
references.

6.5 Exercises and Further Results

1. A maximal invariant subspace is an invariant subspace contained in no other
invariant subspace than the whole space. Show that if I is a maximal invariant
subspace of AL then I = I, for some point a € D, where I, stands for the
subspace of all functions that vanish at a. See [67].

2. If aninvariant subspace / contains a Nevanlinna function, then 7 is generated
by a Nevanlinna function. See [143].

3. If {1,}, is an increasing sequence of invariant subspaces in A% and each I,
has index 1, show that the closure of U,{I,} also has index 1.

4. Let I be an invariant subspace of AZ. Then J = {f € AL : zf € I} is also
an invariant subspace of AZ. Furthermore, I and J have the same index. See
[80].

5. For any function f € A2, the space Jr ={g € A% . P(fg) = O} is an
invariant subspace of AZ.
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10.

11.

12.

13.

14.

15.

16.

17.

6. Invariant Subspaces

For Problems 5-8, see [143].

Let G be an A2-inner function. With the notation from the previous problem,
show that Jg either has index 1 or 2.

A maximal inner space in A2 is an inner space contained in no larger inner
space. Show that every inner space is contained in a maximal inner space.
Hint: apply Zorn’s lemma.

If G is an A%-inner function, then the one-dimensional space generated by
G is a maximal inner space if and only if Jg has the index 1, where Jg is
as defined in Problem 5.

. For an invariant subspace I in A2, let M,[I] denote the multiplication oper-

ator on [ induced by the coordinate function z. Show that M,[I] and M,[J]
are unitarily equivalent if and only if I = J.

Let I = A2 and J be an invariant subspace of AZ2. Show that M,[I] and
M, [J] are similar if and only if J is generated by a Blaschke product whose
zero set is the union of finitely many interpolating sequences. See (29].

Let I = A2, and let J be an invariant subspace of A2, Show that M,[I] and
M, [J] are quasi-similar if and only if J is generated by a bounded analytic
function. See [70].

For any positive real number o, let I, be the invariant subspace of A2
generated by the singular inner function S, (with a single point mass o at
z = 1). Show that M,[I,] and M,[I;] are similar for all positive o and 1.
See [141].

Show that if the invariant subspace I of A? is singly generated or if I is
zero-based, then I has the index 1.

If A and B are disjoint regular sequences, then A U B is regular, and the
decomposition A U B is homogeneous.

If I and J are invariant subspaces in A% of index 1, with the properties that
I C Jand n = dim(J/I) < 400, then there exists a Blaschke product b
with n zeros such that I = bJ. What if I, J have higher index, say 2?

Let A be a positive bounded operator on the (separable) Hilbert space H
(over the scalar field C, as usual), which means that (Ax, x) > 0 for all
x € H. Suppose H; is a closed subspace of H, and that (Ax, x) = O for all
x € H,. Show that Ax = 0 for all x € H,;.

Fix0 < p < 4+o0and —1 < a < +00. Recall that the index of an invariant
subspace I in A} is defined as the dimension of the quotient space I/z1.
Show that for A € D, (z — A)I is a closed subspace of I, and that the
dimension of the quotient space I/(z — A)I does not depend on A. Hint:
prove that the dimension is a locally constant function of A.
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19.
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Fix0 < p < +o0and —1 < @ < +00. Suppose [ is an invariant subspace
of AZ other than the trivial one {0}. Let Z (/) denote the common zero set
of the functions in I; we think of it as a discrete subset of D. Then I has
index 1 if and only if it satisfies the following division property: for each
A e D\ Z(I), the function

_f@
i) = pa—y

extended analytically across the point A, isin  whenever f € I and f(X) =
0.

ze D\ {A},

Suppose 7 is an invariant subspace of A2 having index 2. This means that
I © z[ is an inner space of dimension 2. Let ¢, ¢2 be two orthogonal
inner functions in I © zI. Then each function f € I can be written f =
fio1 + fre2, where fi, f» € AZand || fill* + || f2I* < || fII?. What should
be added to insure uniqueness? Can we get f1¢1, fags € A2? See [7].
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Cyclicity

In this chapter, we study the cyclic functions in the Bergman spaces AP. First,
we identify them with the A”-outer functions, which are defined in terms of a
notion of domination, in a fashion analogous to what is done in the classical Hardy
space setting. Second, we show that a function that belongs to a smaller space A7,
p < q,iscyclicin A? if and only if it is cyclic in the growth space A~°°. Then we
characterize the cyclic vectors for A~ in terms of boundary premeasures; this
constitutes the bulk of the material in the chapter.

7.1 Cyclic Vectors as Outer functions

A function in AP is said to be cyclic if it generates AP as an invariant subpace,
that is, the smallest invariant subspace of A? containing the function is the whole
space. Thus, f is cyclic in A? if and only if the closed linear span of the vectors
fraf 22 f, ... isall of AP.

In the classical Hardy space theory, a function f € H” (0 < p < 4-00)is said to
be outer if it is zero-free in the disk ID, and if the harmonic function log | f| equals
the Poisson integral of its boundary values; the latter condition may be formulated
as

T

1 ,
log1fO)1 = 5 [ toglte)1de,
27 J_»
where the boundary values of f are obtained from nontangential approach regions.
It is well known that a function in H? is cyclic if and only if it is outer; see [37],
[49], or [82].
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An alternative characterization of classical outer functions is as follows: f € H?
is outer if and only if whenever the conditions g € H?, |g| < |f|on T hold, we
also have that |g(0)| < |f(0)|. This latter form is amenable to generalization.
In fact, it is clear that the condition that |g| < |f| on T (almost everywhere) is
equivalent to requiring ||gq|lzr < || fq|lue for all polynomials g. This motivates
the following definitions.

DEFINITION 7.1 For f,g € AP, we say that f dominates g in AP, denoted
g < f.ifllgqgllar < | fqllar holds for all polynomials q. And we say that a

function f € AP is AP-outer if |g(0)| < | f(0)| whenever g < f in AP.

THEOREM 7.2 Let f € AP with0Q < p < 4o00. Then f is AP-outer if and only
if it is cyclic in AP.

Proof. We first assume that f is cyclic, with the intention to prove that it is
AP-outer. Let g € AP with g < f. Since f is cyclic, there exists a sequence of
polynomials {g,}, such that fg, converges to the constant function 1 in the norm
of AP.Since g < f,

18(0)g (0)| < liggnliar < | fgnllar — 1 asn — +o0,

and ¢,(0) — 1/f(0) as n — 400, it follows that |g(0)| < |f(0)], and so f is
AP-outer.

For the reverse implication, we assume instead that f is AP-outer. Let ¢ be
the extremal function for the invariant subspace /s generated by f in A?. By
Theorem 3.33, I, = If, and |lgf/¢lla» < ligfllar for all polynomials g. Thus,
f/e < f,so by the definition of outer functions,

II(O) =< 1f0)I.
12

Since I, = Iy, the left-hand side cannot vanish, and hence we must have 1 <
|¢(0)|. Since ¢ has norm 1, we must then have ¢(z) = 1,so that f iscyclic. =

7.2 Cyclicity in A? Versus in A~

Just as in the case of the Bergman spaces A?, a function f in A~ is said to be
cyclic in A~ if the functions f, zf, z2f, 2> f, . . . span a dense subspace of A~
Since the topology in A~ is softer than that of any A”, 0 < p < +o00, it is
immediate that a cyclic function in A? is cyclic in 47, too. It is a meaningful
question whether these two concepts are in fact equivalent, that is, whether a
function f € AP? that is cyclic in A~ is automatically cyclic in A”. In the next
chapter we will show that this is not true in general. However, if the function f
belongs to a slightly smaller space than A”, then cyclicity in A~ implies cyclicity
in AP.
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THEOREM 7.3 Let f € A9 with0 < p < q < +o0. Then f is cyclic in AP if
and only if it is cyclic in A™°.

Proof. By the definition of the topology in A~ the fact that f is cyclic
translates to the requirement that for some sequence {Qn}, of polynomials and
some fixedr, 0 < r < +00, f Q, tends to the constant function 1 in norm in A” as
n — +o00. The assertion holds automatically if p < r, and hence we may restrict
our attention to the case r < p.

If these polynomials Q, were all zero-free in D, we could run the following
argument. For real &, 0 < ¢ < 1, we form the powers f° and g5 to obtain
well-defined holomorphic functions in I, and in particular, f¢ belongs to A9/¢.
Moreover, if the power is chosen in such a way that f¢ Q% tends to 1 uniformly on
compact subsets of D as n — 400, then one shows that the convergence is also
in norm in A™/¢. This is a consequence of the fact that in A”/¢, the norm of £ Q¢
tends to the norm of 1; see Lemma 3.17. For sufficiently small ¢, the functions
fQ% = f17¢ f¢Q¢, which are elements of A9, tend to f1=% asn — 400 in the
norm of AP. Scrutinizing the requirement for £, we find that for the above to work,
£ should satisfy

r(g —p)
plg—r)

We conclude that f !¢ belongs to the invariant subspace /  generated by f in AP.
Proceeding analogously, we also get 172 ¢ Ir. By choosing ¢ in such a way
that 1/¢ is an integer, we get eventually that 1 is in I, which clearly implies that
f iscyclic.

Now we return to the real world where the polynomials Q, need not be zero-
free at all. Let Z, denote the finitely many zeros the polynomial Q, may have
in D (with multiplicities), and let ¢, be the corresponding canonical zero divisor
(extremal function) in A”. It is the function of norm 1 in A" that vanishes on Z,
and has biggest value in modulus at 0. Since f Q,, for large n has norm close to 1,
and the value at O close to 1, we conclude that |¢,(0)| — 1 asn — +o0c. We now
form f Q,,, where Q,, = Qn/¢n, and observe that it has smaller norm than f Q,
in A", by the contractive division property of canonical divisors. Therefore,

lim sup ||f§,, A

O<e<

—

whereas the limit of the values at the origin is
lim |£(0)2a(0)] = 1,

sothatin afirst step, f é,, — 1 uniformly on compact subsets of D, and in a second
step, the convergence is in the norm of A”; see Lemma 3.17. We are now able to
work with the zero-free functions Q, in place of the functions Q, in the above
argument; they are not polynomials, but certainly approximable by polynomials,
since the extremal function ¢, extends holomorphically across the unit circle and
is bounded away from 0 in a neighborhood of T. [ ]
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Although a complete “geometric” characterization for cyclic vectors in A? is
still lacking, the corresponding problem for A~ was solved over twenty years
ago. The key idea of the solution is the notion of premeasures for functions in

A—OO
7.3 Premeasures for Functions in A~
Let B(T) be the set of all open, closed, and half-open arcs of T, including T, @, and

all one-point sets. A real-valued function p defined on B(T) is called a premeasure
if

(i) w(T)=0.
(i) w(h UL) = u(l)) + () forall I, I, € B(T) with I; N [, = & and
I, U L e B(T).

(i) w(I,) — 0asn — +oo whenever {I,}, is a decreasing sequence in B(T)
with empty intersection.

Every premeasure is immediately extended by finite additivity to the class of
sets of the form

n
S = U I,
k=1

where each Iy is in B(T). In particular, if {Ii} is a finite collection of mutually
disjoint arcs in T, then

w(Uek) Z ().
For every premeasure p, we define a real-valued function 7z on (0, 27] as
follows:
() = n(ly), 6 € (0,2r],
where
I ={¢":0<1<6).

Thus, a one-to-one correspondence is established between the set of premeasures
and the set of real-valued functions f on (0, 27 ] such that

(a) f(6—)exists forall & € (0,27] and f(6+) exists for all 8 € [0, 27).
(b) f(®) = f(6—)forall 6 € (0,27].
(¢) fQm) =0.

It is clear that any function f satisfying the above conditions has only a countable
number of discontinuities, all of which are jumps.
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For an arc I on the unit circle T, let |I]; = |I|/(2m) be its normalized length,
as in Chapter 4. The logarithmic entropy of I is the quantity

e
k(I) = |I|; log l_ITs

A premeasure u is said to be «-bounded above if
() < Ck(I)

for all arcs I, with some positive constant C independent of /. The least such
constant C will be called the «-bound of « and will be denoted by ||| *. The set
of all premeasures p with |||t < +o00 will be denoted by « B*. For comparison,
consider the case when p(I) < C |I|, for all arcs 7. Then the premeasure y is an
ordinary real-valued Borel measure, with the property thatdu — C ds is a negative
measure, where ds(z) = |dz|/(2m) is the normalized arc length measure on T, as
usual.

It is clear that in general, ||u||T > 0, and ||u||T = 0 holds if and only if u = 0.
The space k B is not linear; it is only a cone. In fact, for all i1, 42 € « B* and
reals 0 < 11,1, < +00, we have ||ty 1|7 = f1]jue1 || and

Itipr + tpallt < alla I + 2llpall .

To obtain a vector space we should instead consider premeasures of the form
kBT — kB*; these are the so-called premeasures of bounded k-variation (see
Exercise 4). This concept is important for the study of meromorphic functions of
the class of quotients A7°°/ A~ as well as for the description of all invariant
subspaces of .4~>°. However, it will not be needed for the study of cyclicity in
A,

We now prove that a large class of real-valued harmonic functions in ID can be
represented as the Poisson integral of premeasures that are «-bounded above.

THEOREM 7.4 Let U be a real-valued harmonic function in D with U (0) = 0,
such that for some positive constants A and B,

1
U(z)SAlogl—WJrB, zeD. (7.1)
—IZ

Then for every open arc 1 of T the following limit exists:

uw) = py) = rll_rpl /; U(rz)ds(z), (7.2)

where ds is the normalized arc-length measure. Moreover, there exists an absolute
constant C such that

u(l) <2A«(I)+ (A+ B)C |I]s. (7.3)

We can represent U in terms of the Poisson integral of u:

1 —z|?
U(x) = / 5 du(g), zeD. 7.4)
Tl —z|
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Proof. The proof consists of three steps. First we establish a crude estimate for

sup {

where B(T) is the collection of all arcs in T. In particular, this implies that the
supremum is finite. Based on that crude estimate, we then refine it to obtain that
forallarcs I on T andr withO < r < 1,

/ UGr2) ds()
I

:0<r<1,IeB(T)},

fU(r;)ds(C) <2Ax(I)+C(A+ B)|I|;.
I

To derive from this the existence of the limit (7.2) we need a compactness property
of premeasures that are uniformly «-bounded above; this is analogous to the classi-
cal Helly selection theorem for functions of bounded variation. The representation
(7.4), the uniqueness thereof, and the existence of the limit (7.2) then follow. Note
that the integral in (7.4), although it involves a premeasure u, can be understood
as a classical Stieltjes integral involving the integrated function .

Step 1. Fix r, 0 < r < 1, and let 1 (&, ¢2) (the arc running counterclockwise
from ¢ to {) be a solution to the extremal problem

min{/U(r;)ds({): 1 GB(T)}.
I

Since U is harmonic and U (0) = 0, this minimum will be negative or 0; and if we
denote it by —M, where 0 < M < 400, then we see that

M = max {/ U(rg)ds(¢): J e B('JI‘)} ,
J
the extremum being attained for J = T\ 1({y, £2). It follows that

M = / U(r;)dsms/U(n;)ds(c)
1(31.22) !

IA

/ U(rg)dst)=M,
TN\(£1.82)

for all I € B(T).
Consider the harmonic function

Vo(z) = / P(z,5)U(rg)ds(t)
T\ (51.62)

U(rz) —/ P(z,0)U(rg)ds(),
1(51.82)

where
1 — |z
11— z¢|?

is the Poisson kernel. Let S(¢1, £2) be the sector of D bounded by two radii and
the arc I (¢1, £2)- Using the symmetry and unimodality of the Poisson kernel, we

P(z,0) =
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obtain by applying integration by parts the estimate

1= 2
V@ <UC)+M——E  eD\s@L ), (19
dc(z, {1, &2))

where as usual d¢ is the Euclidean metric in C. After all, in the remaining sector
D\ S(¢1, £2), the distance to the arc ({1, ¢2) coincides with the distance to the
two end points {{1, £2}. Consider now the curve y (g, {1, £2) joining ¢ and &2:

1—1z)?

)/(8, {1, ;2) =32€ D\S(C], (2) : —
de(z, {¢1, ¢2})

’

where 0 < ¢ < 41. The curve y (¢, {1, {2) consists of two arcs of congruent circles
tangent to T at {1 and {7, respectively, which are joined at a point outside the sector
S(Z1, £2)- To get the general idea, take a look at Figure 4.1. An easy way to see
this is to identify the circles to which the arcs belong as level sets for the Poisson

kernels P(-, £1) and P (-, £2). We have from (7.5) that

1
Vo(r) = Alog———— 5 + B +&M, zey(e &1, 8),
edc(z. {t1,2})

and Vy(z) = 0 for z € I(¢y, £2). We can rewrite this in the form

2 2
Vo(z) < 2A max {log , log }
lz =il 1z = &2l
1
+Alog—+ B+eM
4e

2A (l 2 +1 2 )
og og
“lz=ul 1z — &2

1
+A log o +B+eM, (7.6)

IA

forz € y (e, ¢1, £2).

The function Vj vanishes on I (1, ¢2), so that (7.6) holds on I (¢, ¢2) as well.
Since the right-hand side of (7.6) is a harmonic function, we can apply the maxi-
mum principle to the domain bounded by the closed contour y (¢, ¢1, £2)UI (L1, £2)
to get that (7.6) holds there, and in particular at the origin, so that

1 4
VO(O)=M§4Alog2+Alog4—+B+8M=AlogE+B+eM,
£

which yields, for instance by fixing & = %, that

M <4(A+B). 1.7
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Step 2. Let I be an arbitrary arc of T and let S(/) be the associated sector
bounded by two radii and /. We want to establish a sharper upper estimate for

fIU(rC)dS(C),

validforall 7,0 < r < 1. We define, for 0 < ¢ < %,
1— |z)?

— =
dc(z, {81, £2))°

where &) and &, are the endpoints of the arc I (ordered so that we go coun-
terclockwise as we go from £ to & along I), and consider the harmonic
function

y'e = {z € S): , (7.8)

V1(Z)=/P(Z,§)U(r5)ds(é')» zeD.
1

Repeating the argument based on unimodality of the Poisson kernel, we obtain

1—1z)2

Vi) <U(r2) + M ——————, z e SU).
dc(z. {61, &2})
It follows that
1
Viz) < A log—2+B+Ms
1 —z|
1
= Alg——— +B+ M
(dc(z. (&1, &2))
1 1
< 2Alog———  +Alog-+ B+ Ms¢
dc(z, (€1, 62}) €
<

1 1
A|2log———— = +log—+4¢}+ B(1+4¢),
( dc(z, {81, £2)) € )

where have used (7.7).
Consider now a harmonic function V, on D with boundary values

1
V) = | ¢ ey el
- 0, teT\I
In terms of an integral formula, it is expressed by

1

V@) = | P ¢)log ————d , 7.9
2(2) /, @oloe g e e @ 7
so that
1 il s 1
Va(0) = —/ log —dt + o(|1]s)
T Jo t
= llslog = + O(Ily) = k(1) + O(Ily)  as |I]; — 0.

s
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One shows that

Va(z) > lo C, zey'(e ), (7.10)

1
o - —
®dc(z, {1, &)
with some constant C; independent of I and . This can be seen either directly
from (7.9), which is somewhat messy, or by comparing V,(z) with the harmonic
function (recall that the real part times the imaginary part of a holomorphic function

is always harmonic)
— )2 2
-6 -2| 7 &1 -2 —-2)

where & is the midpoint of the arc I = I (£, &2), and the branch of the argument
in the third term is chosen such that its value at O equals 0. The boundary values
of the third term are 1 on I (£1, &), —1 on I (&g, &2), and O on the remaining T \ /.
A close inspection of the second term (the first term is a constant) then leads to
the conclusion that Q(¢) < V2(¢) on T. Hence Q(z) < Va(z) throughout D.
Moreover, from geometric considerations, it is evident that Q(z) satisfies

1
Q(z) = log —— +log
115

0(z) = 1o Cy

1

“dc(z, (&1, &)
on the part of y’(g, I') corresponding to the first quarter of [ starting from &, where
C is a constant. Thus, (7.10) holds on that part of y'(g, I). A similar argument
establishes (7.10) for the quarter of 7 ending at &>, and finally for the middle half
of I, too. Of course, we need different harmonic functions for comparison in each
case.

We also need a harmonic function V3(z) with boundary values 1 on I and 0 on
T\ I.Itis given by the explicit formula

& —2
& —z

and a simple geometric argument shows that

1
Vi(2) = — arg — s,

min {V3(z) : z € y'(e, D} = 1 = C(e) |1s,

with C(g) — 0 as ¢ — 0. We also have V3(0) = |I|;.
Combining all the above facts, we see that the harmonic function

Va@) = Vi(z) —24V(2)
- (ACl + Alogé +AC(E)+B+B C(e)) (V3@ + C@1ls)

is negative in the domain bounded by T\ 7 and y'(g, I), which contains the origin.
Therefore, fixing some value of ¢, we get

V4(0) = f U(re)ds(g) — 24111 log ﬁ — C4A|l|s — CsBII|s <0,
T

s
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which is equivalent to
/U(r()ds(;) <2Ak(I)+C(A+ B)|I|s, (7.12)
1

as asserted.

Step 3. For r with 0 < r < 1, we can represent the function U,(z) = U(rz) as
a Poisson integral

U, (2) = ﬁ P(z,¢)du,(8), (7.13)
i

where du,(¢) = U,(¢)ds(¢) is the corresponding boundary measure. This
measure is also a premeasure, and by (7.12),

u,(l):/U(r;)ds(g)g2AK(I)+C(A+B)[I|5, (7.14)
1

which makes the family of premeasures u,, 0 < r < 1, uniformly «-bounded
above. By the above-mentioned compactness principle, there is a sequence of
radiir; < rp < --- — 1 and a premeasure u that is k-bounded above such that
Un = W, — p weakly (as premeasures) as n — -+o0o. Weak convergence (as
premeasures) of i, to i means that u, (1) — w(I) forall arcs 7, with the possible
exception of a countable set of arcs with the property that p carries nonzero mass
at at least one of the endpoints of the arc. This weak convergence permits us to go
to the limit in the Poisson integral (7.13):

U(Z)Z/TP(Z,Z)dM(Z),

which is (7.4). Clearly, u satisfies (7.3). The existence of the limit (7.2) then
follows from (7.4) by integration by parts, computation of the integral in (7.2), and
subsequent transition to the limitas r — 1. ]

Note that the term C(A + B)|I|s in the theorem above can be discarded at the
cost of increasing the coefficient of the principal quantity « (/). In particular, the
w in the theorem is a premeasure that is k-bounded above.

A converse statement to Theorem 7.4 is supplied by Exercise 1 of Chapter 4: if
u € k BY with ||u||™ = A, then its Poisson extension has the bound

P[u](z) < Alog 7 + B, zeD.

HE

for some constant B.

Given a premeasure i € « BT, it is natural for us to ask whether 1 can be
reasonably defined for sets F C T that are more general than finite unions of arcs.
If F is closed, then it is natural to define

w(F) == p(he),
k

where {k}« 1s the collection of complementary arcs of F in T. For this definition
to be useful (or just for it to be meaningful), the series above should be absolutely
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convergent. If, in addition, we want the corresponding series for any closed subset
of F also to be absolutely convergent for all & € ¥ B, then F must have finite
entropy: ¥ (F) < +o0. In particular, this is so for Beurling-Carleson sets F, which
in addition have zero length.

Now suppose i € « B and F is a Beurling-Carleson set in T. Then u generates
a negative Borel measure o, r on the o -algebra of all Borel measurable subsets of
F; see Exercise 7. Furthermore, if F} and F» are two Beurling-Carleson sets, then
the measures 0, g, and o, r, coincide on F1 N F,. The totality of all o, r, where F
is Beurling-Carleson in T, form the « -singular part of i, and is denoted by o, ; it is
anegative Borel measure defined on the o -algebra generated by Beurling-Carleson

sets.
Recall that the logarithmic entropy of an arc I on the circle T is the quantity

e
k(I) = 11]s 10°m;

The definition extends to unions of disjoint open arcs:
I) = Z k(1)
J

so that for a closed subset F of T, we have the identity
R(F) = k(T \ F).
The «-singular part o, of a premeasure 1 € « B¥ satisfies
— |l *R(F) < 0, (F) <0,

for all Beurling-Carleson sets F. Recall from Section 4.2 that the entropy of F can
also be written as

K(F) = [ L F)dS(C)

provided that F is a Beurling-Carleson set. Here, for z and w in T, the distance on
the circle is

dr(z, w) = lafg i} )
w
with arg taking values in (-, 7], and
dr(¢, F) = inf{d1({, w) : w € F}.

The «-singular part o, of i is supported on a “small” set. In fact, there exists
an increasing sequence {F,}, of Beurling-Carleson sets such that o, is supported
on E = U, F,. Note that the total k-singular measure of T might be infinite:

0, (T) = oy (E) = —0c0.
For a closed set F, let
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be the 8-neighborhood of F, which is an open set. It can be shown that

5y — +
K(F)_/pa d({F)dS(g)_)() as § — 0T,

for all Beurling-Carleson sets F; see Exercise 8. From this and the definition of
w(F), we conclude that

0,(F)= lim u(F® = lim wu(F?%),
50+ >0+
which then implies that

Ouytuy = Opy + 0y,

forall #; and uo ink BY.

A premeasure p in « BT will be called «-smooth, or k-absolutely continuous, if
there exists a sequence {i,}, of premeasures in k BT such that & + p,, is in k BY
for all n,

sup [l + in ”+ < 400,
n

and

Sl;pl(u +un))| =0

as n — 400, where the second supremum is taken over all arcs in T.
The rest of the section is devoted to the following approximation theorem for
premeasures.

THEOREM 7.5 A premeasure j in k B is «-absolutely continuous if and only
if its k-singular part, o, is zero.

This theorem is critical for describing the cyclic vectors of A™*°. To better
understand it, let us first consider the classical setting of H* and explain the
underlying ideas.

A function f € H is called weakly cyclic if there exists a sequence {f,},
of functions in H® such that sup, || fnfllec < 400 and f(2)f(z) — 1, as
n — +o00, uniformly on compact sets of D. One obvious condition for f to be
weakly cyclic is that f be zero-free. The other condition is that the boundary
Herglotz measure u = uy of log | f(z)|, determined by

|z|2

log | f(2)] —/ dus(g),

g =

be absolutely continuous with respect to Lebesgue measure, that is, the (negative)
singular part o, of u must be zero.

The classical singular part o, is “indestructible”, in the sense that o, ,, < 0,
for all g € H. Therefore, we cannot “whittle down” the singular part of 11 r. On
the other hand, we can do that with an absolutely continuous measure

dug(¢) =log|f(5)lds(t)
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by truncating the L'-function log | f (¢)| and gradually reducing it to zero; namely,
we can achieve this by multiplying f by suitable functions g, € H*.

In the A~ setting, the truncation process is not available for premeasures.
Therefore, to show that the condition o, = 0, where i = i is the premeasure
of the harmonic function log | f|, is sufficient for f to be cyclic in A7, we must
find an alternative method.

We now begin the proof of Theorem 7.5.

Proof. The necessity is relatively simple. Thus, we assume that y is k-absolutely
continuous, so that there exists a sequence {i,}, ink BT such that ||+ u, |7 < C
forall nand (u + u,)(I) = 0,as n — +o0, uniformly in I, where C is a positive
constant and [ is any arc in T.

Take an arbitrary Beurling-Carleson set F and let {I,}, be its complementary
arcs in T. We have

~Outuy = D WA )T+ Y (1t ia)Un)

n<N n>N
< D AU +C Y k),
n<N n>N

and so

—liminf oy, (F) < C Y k().
" n>N

Letting N — +o00 and using ¥ (F) < +00, we obtain

llm"mf Optu, (F) > 0.

Since u, € « BT, its k-singular part is negative, and so Optu,(F) > 0, (F).
It follows that o, (F) > O for all Beurling-Carleson sets F. On the other hand,
i € kBT implies that 0, (F) < 0. Thus, 0, (F) = 0 for all Beurling-Carleson
sets F, and we have proved the necessity of the condition o, = 0 in order for u
to be k-absolutely continuous.

We will need several auxiliary results before we can prove the sufficiency part
of Theorem 7.5. The following is a kind of “normal families” result for Beurling-
Carleson sets.

LEMMA 7.6 Let {F,}, be a sequence of sets, each of which is the union of a
finite number of closed arcs. Suppose that |F,|s — 0 and (T \ F,) = O(1) as
n — +00. Then there exists a subsequence {Fy, }x and a Beurling-Carleson set
Foo with the following property: For every & > 0, there is some N = Nj with
Fp, C Fc‘fo and F, C F,‘fk forallk > N, where we recall the notation F?® for the
8-neighborhood of F.

Proof. For each n, let {Ix, : k = 1,2,...} be the complementary arcs of
Fy, arranged so that |l ,|s is decreasing in k. First, we show that the sequence
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{|I1.n|s}n 1s bounded away from zero. In fact,

e
(TN Fp) = 3 llinlslog
k I k.nls

e
> |T'\ Fyl;log
\ Frls S inls’

and therefore,
log e < K(T\F,,)‘
|Il.n|s IT\Fnls

Since |T'\ F,|s — 1 and «(T \ F,) = O(1) as n — +00, the inequality above
shows that the sequence of normalized lengths {|I} ,|s}» is bounded away from
zZero.

Next, choose a subsequence {Fk}/< = {Fyn, }k such that I1 . — Jiasn — +o0,
where 1]  are the complementary arcs of F,, and J; is some open arc of positive
length. If IJIIS = 1, then {F,}, is the desired subsequence and

Foo =T\ J;

is the desired Beurling-Carleson set.
If |J1]s < 1, then the same argument shows that
T\ F!
log ,e < K(, \ "), )
|12.n|s |T\Fn|x - |11.,,ls

Since [T\ F,|s — |1] ,Is = 1 = |/ilg > 0 as n — +o0, the sequence of normal-
ized lengths {|I7 |5}, must be bounded away from zero. We can then choose a
subsequence {F}'}y = {F, } such that I — Jp asn — +oc; here I/, are the
complementary arcs of F,.

Continuing this process, we then arrive at two scenarios. Either

(1) after a finite number of steps, we obtain a subsequence {F,f[)},,, such that
1/((1')1 — Jyasn — +ooforalll <k <!land|Jj|s + -+ |Jils = 1, in which
case {F,f[)},, is the desired sequence and

Foo =T\ Ui Jk
is the desired Beurling-Carleson set, or

(2) the number of steps is infinite, in which case we must have

+00
Yol =1,
k=1

which follows from
e A

s = - S Il

and the fact that |J;|; — 0 as/ — +o0. Here, A is any upper bound for the

sequence {k (T \ Fp)},. Taking the diagonal subsequence {F(")}n‘ we then get the
required result, with Foo = T \ U Jk

log
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The proof of the lemma is complete. n

To state the next lemma, we need to introduce a certain notion of covering for
intervals of integers.

For any integers k and / with k < [, we let I = [k, [] denote the set of integers
n with k < n <[ and call I an interval of integers. In particular, [n, n] = {n}.

A simple covering of [p, q] is a system of intervals {I,}, of integers such that

ZXI,, = Xlp.gl>
n

where x; denotes the characteristic function of the interval 1.

LEMMA 7.7 Consider the following system of N(N + 1)/2 linear inequalities
with N unknowns xi, ... ,xn:

]
Y xj<bu, 1<k<I<N,

subject to the constraint x| + - - -+xy = 0. The necessary and sufficient condition
for this system to have a solution is that y_, by, 1, > O for every simple covering
P = {lkn, In}}n of [1, N].

Proof. The necessity part is easy. In fact, if ), by, , < O for some simple
covering P = {[kn, Ix]}n, then adding up the inequalities

!
Z Xj < by
j=k

corresponding to [k, l,] € P yields x; + --- + xy < 0, which contradicts the
constraint x; + - - - + xy = 0, and so the system has no solution.

To prove the sufficiency part, we proceed somewhat analogously to the proof
of Lemma 4.30, and let C be the closed convex set in RV consisting of vectors
X = (x1,...,xy)suchthat x; +---4+x; < by forall 1 <k <l < N (without
the constraint x; + - - - + xy = 0). It is clear that C contains all x with sufficiently
large (in absolute value) negative coordinates. Therefore, the linear functional

L(x)=(x,L)y=x1+---+xn

maps C onto some interval (—oo, Ag]. In the above, the symbol L stands for the
vector (1,..., 1) € RV as well as the associated functional, and (-, ) is the inner
product of RV .

Number the N(N + 1)/2 different intervals of integers [k, [] by the index j,
and let e/ be the vector @©,...,0,1,...,1,0,...,0) with 1’s precisely on the
interval [k, I], and write b; for the bound by ;; in both instances, we assume [k, /]
and j are in correspondence. We recall from the proof of Lemma 4.30 the assertion
of the duality theorem of Linear Programming [127, p. 28]:

max {(x,L): x eC} =min{Y 6;b;: 0; € Ry forall j, ¥ 6;e/ = L].
j j
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Also, the vectors

6 =(61....0nNns+1)2) € RZ(NHW

over which the minimum is taken on the right hand side form a closed convex lower-
dimensional polyhedron S contained in the cube [0, 1]V (V+1)/2, Using a covering
type argument, we showed in the proof of Lemma 4.30 that the polyhedron S is
the (closed) convex hull of all its “edge points” €, which are characterized as those
points € = (€1, ..., €nN+1)/2) € S that have €; € {0, 1} for all j. In particular,
the above minimum is achieved by one of the finitely many “edge points”. The
assumption »_, by, ;, > 0 for every simple covering P = {[kn, Ix]}» of [1, N]
means that for any “edge point” 6, we have ) j0ibj = 0. By the duality theorem,
the maximum Ag on the left hand side is then > 0, too. Since the whole interval
(—00, Ag] is attained by the functional L on C, it follows that there exists a point
x € C with L(x) = 0. The proof is complete. ]

LEMMA 7.8 For a premeasure . € kB¥, the following conditions are equi-
valent:

(1) w is k-absolutely continuous.

(2) There is a positive constant C with the property that for every € > 0 there
exists some positive real number M such that the system

Xkt < ML i),
w(lis) + xeq < min {Cr(Ixp). €}
Xkl = le—:}( Xs.s+15

xo.n =0,

with unknowns xi;, 0 < k <1 < N, is consistent for all positive integers
N. Here,

Ly = (€ : 2nk/N < 6 < 2nl/N}

forO0 <k <l <N.

Proof. If i is x-absolutely continuous, then x;; = u(lxy), 1 <k <1l <N,
satisfy the system in (2).

If the system in (2) is consistent forevery N = 1,2, 3, ..., then for every N we
pick a solution xV = {xﬁ,}k.l of the system and form a measure ., having constant
density x;5+1/|15.s+1|s on each I s41; the density is with respect to normalized
arc length measure ds. Using the Helly-type selection principle for premeasures
and effecting the transition to the limit over a subsequence N} < N < N3 < ---
we obtain a premeasure x satisfying

’

x(I) < M«(I), w(I) +x(I) <min{C «k(I), €},
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for all open arcs / C T that do not contain ¢ = 1; this condition on I can be
removed if (1 + log?2) C and 2¢ are substituted for C and ¢, respectively. This
shows that u is k-absolutely continuous. n

We continue the proof of Theorem 7.5, and now supply the sufficiency part.

Thus, we assume that u is not k-absolutely continuous. Using Lemma 7.8 we
see that for every positive constant C there exists an ¢ > 0 such that no matter how
large M is, the system in (2) of Lemma 7.8 has no solution for some N. Combining
Lemmas 7.7 and 7.8, with unknowns x; ; + w1 (Jy_;), we conclude that for such a
combination of C, ¢, and M, there is a simple covering of T by a finite number of
disjoint half-closed arcs {/,}, such that

> “min {u(l) + M&(L), Ck (1), e} <O.

Let {I,}, be those arcs from {1}, for which
min {u (L) + Mk (L), Ck (L), e} = u(ly) + M k(1)
and let {1}, = {L,}, \ {I}},. Clearly, u(I)) < 0if M > C. Setting Fp = U, 1},
we find that

u(FM) < =Mk(Fp) = CY {11l <8y —e > _{1:11))5 > 8},

where § is defined by the equation
e
Célog—- =¢.
8

Let C = 3|lu|l™ in the rest of the proof. For M > 2C, the collection {I” :
[I}'|s > &} is nonempty; otherwise, the displayed inequalities in the previous two
paragraphs would imply that

0 u(T) = u(Fp) + u(T\ Fu)
—2CY k(1) = CL e (1)) + il Xy (1))
—6llull™ Y k(1)) = 20plT Y k(1) <0,

v v

IIA 1

which is a contradiction.
We can also show that as M — +o0,

Y k(1)) = 0()
and

K(Fy) =Y k(I])) —> L.

In fact, for any partition of T, and in particular for {I,},, we have

Do) = 3 ud)T+Y )T

23 Ut <20ult Y k),
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so that

W(Fm) > =20l ™ Y k(L)

The desired estimates then follow from this and our earlier estimate about 1t (Fyy).
Note that above, we adhere to the standard convention to write t+ = max{t, 0}
and ¢~ = max{—t, 0}.

Applying Lemma 7.6, we can extract a sequence M, — +00 asn — +oo such
that Fjy, converges to a Beurling-Carleson set F. To simplify the notation, we
write Fj, in place of Fy, .

To summarize the situation, the assumption that  is not «-absolutely continuous
implies the existence of a sequence { Fy, }, of sets with each F,, composed of a finite
number of closed arcs such that

(1) k(F,) — 0and a fortiori |F,|s — 0 as n — +o0,
(i) (T \ F,) < A for some constant A and all n,
(i) w(Fn) < =3 llult [K(Fa) + Xy {kin) : knls < 8}] — &,

where {Ix ,}x are the complementary arcs of F,, and § and ¢ are some positive
constants. Moreover, there is a Beurling-Carleson set F, such that forevery p > 0
the p- neighborhood of F, F&, contains all but a finite number of Fj,, and Fy
is contained in all but a finite number of F,?.

We are going to show that 6, (F) < 0, where o, is the k-singular part of
w. We actually show that the contrary assumption o, (Foo) = 0 would lead to a
contradiction.

Thus, we assume o, (Foo) = 0. Since

0u(Foo) = lim w(F&),
p—0F
we can replace F, by F, \ F& in (i)—(iii) and choose p, so small that (i)—(iii)
still hold, although perhaps with a smaller ¢. Therefore, we can choose a sequence

{on}n of positive numbers, decreasing to 0, as well as a sequence {F,}, of sets
(composed of a finite number of closed arcs) such that

FoC FE\FE
and
W(Fy) < =3 |ull™ [k (Fp) +k(Ga)l — &,
where

G = (F& \FZ™" )\ Fu.

Let Z,, J», and K,, denote the systems of arcs I of which F,, G,, and F£ are
composed, respectively. Let Zy be the system of arcs that form T \ F£!, and let

50 = (CJn) u(L"J ﬂ)UKm.
k=1 k=1
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Adding up the estimates about (Fy) in the previous paragraph, and keeping in
mind that C = 3|u||t, we get

>l + Zm(l)|>Zm<F>|

1eZy 1 eS

C ZK(F,,) + ZK(G'I{I + ne
v=1 =1

= Ci/c(l)—Cv_Z k(1) + ne

v

1€S, 1eKn41
B

= C| > k=Y kM=) k)| +ne
| 1€5,VT 1eknysy I1eZy

Since

i, ¥ s=0

[€,Cn+l

for large enough n, we must have

Yoo =3t Y e,

1eS,UZ, 1€S,UTy

which contradicts an earlier estimate, because S, U Iy is a system of non-
overlapping arcs covering T.
The proof of Theorem 7.5 is now complete. n

7.4 Cyclicity in A~
Recall that A~ is the space of analytic functions f in D such that

1
If(z)|=0((1 ||)N> as 2] = 17,

for some positive constant N = N(f). If
+00
f@Q=) fm,  zeD,
n=0

then it is easy to see that f € A~ if and only if
| F(n)| = o(n), as n — 400,

for some positive constant A = A(f). In the rest of this section, We shall make no
distinction between A~ as a space of analytic functions and A~ as a space of
sequences.
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We have
AT® = U AP,
O<p<+co

and we define the topology of A~ as that of the inductive limit of A? as p — 0.
Let A be the space of functions that are infinitely differentiable on D and
analytic in D. If

+00 -
f@Q=)Y_fm", zeD,
n=0
then f € A if and only if
fml=0(m™), as n— +oo,

for all positive constants A. It is well known that the dual space of A~ is A
under the following duality pairing, for f € A~ and g € A*:

+00
(f,8) =) fnz(n) = lim ﬁ fro)gr) ds(),
n:0 r— T

where ds(z) = |dz|/(2m) is normalized arc length measure.
It will be convenient for us to view .A~% as a closed subspace of a larger space
C~° consisting of formal Fourier (or Laurent) series

+00
f@ =Y fme, el

n=—0oo

with the coefficients satisfying
Ifmi=o0(n"),  as In| > o0,

for some positive constant A = A(f). The space C~° consists of all Schwartzian
distributions on T. We shall think of it both as a space of distributions and as a
space of sequences. As with 47, a topology can be put on C~>° via an inductive
limit.

Let C™ be the space of infinitely differentiable functions on T,

+00

f@ =Y fme',  ¢eT:

n=-—00
it is well known that f € C* if and only if
Ifl=o0(n™),  as In| > 400,

for all positive constants A. It is classical that C* and C~ are each other’s dual
spaces via the the duality pairing

+00
(fre)= Y. fmzm),

n=—0oo
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where f € C™* and g € C*°.

It is clear that A% can be viewed as a subspace of C*°. Note also that A% is a
subspace of A7,

Let x be the operation of multiplication on functions defined in terms of the
usual convolution * of the corresponding coefficient sequences. We are going to
use the operation x in the following cases:

(1) CT®xC® C C™°,
(if) C®xC® C C™.
(i) A®xA® C A%,
(iv) A7®xA™® C A7
It is important to keep in mind that the operation X may not be the same as
pointwise multiplication, even if the latter is well-defined. However, in the case
C®xC™ the operation x coincides with pointwise multiplication on T, and
in the case A7 x. A% it agrees with pointwise multiplication in D. The case
A~ x C* may be treacherous.

Of the above cases only (i) needs a proof.

PROPOSITION 7.9 Fix g € C*®. Then f > gx f is a well-defined continuous
linear operator on C~%°,

Proof. Since f € C™, there exist positive constants A and C such that
leal < C (Inl + D)

for all integers n, positive or negative. Since g is in C™, we can choose another
positive constant C’ such that

/

PN
BON= Gy
again for all integers n. Using the elementary inequality
I+n—m| <1+ |m)(+ |n])

and the definition

+00 +00
gxf@y="Y (Z ig‘(n—m)) Fomyer,

n=—00 \m=—00
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in the sense of formal Fourier series, we then obtain

(1 + |m)*
< CcC’ - 7
= O T

(14 n—mph*
CCZ (1+ |m)*+2

/ 1 A
ccC [; m} (Inl+ 1

for all integers n, which shows that gx f is in C~°° and that the operation is
continuous in f, as the sum of reciprocals of squared positive integers converges.
n

Y & —m) f(m)

IA

We now use the operation x and the space C* to construct a class of invariant
subspaces for A™%°.

PROPOSITION 7.10 For g € C*°, define
Io={fe A% 1 gxfe A}
Then I, is a closed invariant subspace of A~*°. Furthermore, if g & A, then

Iy # A (but it may happen that I, = {0}).

Proof. This follows immediately from Proposition 7.9 and the fact that

gx@izf) =z(gxf) e A%

if gxf € A7 If g is not in A, then I, does not even contain the constant
function 1. ]

We need another lemma before we can characterize the cyclic vectors of .47,

LEMMA 7.11 If F C T is a Beurling-Carleson set, then there exists an outer
function ® € A with ®(0) = 1 and ©(z) # 0 for z € D\ F, which is flat on F:
(I>(")(z) =0foralln=0,1,2,3.... andz € F.

Proof. let T\ F = U,I,, where I, are the complementary arcs of F. For
each n, let I, = U;J, ; be a partition of I, into nonoverlapping closed arcs Jj,_;
(that two arcs are nonoverlapping means that their intersection is empty or a single
point) satisfying

[n.jls = dr(Jn.j. F)/(2m)
for all j. Relabel the doubly indexed sequence {J, j}n.; as {Ju}y. Itis clear that
this sequence of arcs has F as “cluster set”. For each v, let ¢/”» be the middle point

of J, and a, = rye!® (with 1 < r, < +00) be the point in C from which J,, is
seen at a right angle. Clearly, r, — 1 is approximately |J,|/2 = 7|J,|s and

e
Dok =D |y log
; - vl

< Ck(F) < +o0
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for some positive constant C. Pick some real numbers A,, > O suchthat i, — 400
as v — +oo and

4
D k() =) Al log
- - Tuls

and consider the function

A J\) i,
®)(z) =exp [— Z —%(—T)f—_] .

v

< 400,

It can be seen that ®; is an outer function with |®(z)| < 1 in D. Furthermore,
we have

e
o - A —o Y, € Jy,
[P1(2)| <exp (C " log Ihls) ‘

for some positive constant ¢, and

dr(z, F)
|Jv|S§szljv|s, zZ € Jy.

Hence
|®1(2)| = o(d1(z, F)Y)  as dq(z, F) — 0,

for all positive constants N. On the other hand, forn = 1,2,3,..., we easily
calculate the n-th derivative:

" (2) = @1(2) $n (),

where

[pn(2)] < W

holds for some positive constant C,. It follows that the function ®(z) =
@1 (z)/P1(0) has all the desired properties. n

THEOREM 7.12 A function f € A~ is cyclic in A= if and only if f is
nonvanishing in D and the premeasure p. = (15 in the representation

f@) = f(O)exp U — du(é‘)]
is k-absolutely continuous.

Proof. The sufficiency follows directly from Theorem 7.5 (the approximation
theorem for premeasures).

To prove the necessity, we assume that the «-singular part of i ¢, denoted 0 =
oy, is nonzero. Then there exists a Beurling-Carleson set F C T with —oo <
0(F) < 0. Let & be the function as in Lemma 7.11. Clearly, the powers ok
(k =2,3,...) also have the same properties.
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Now, fork =1,2,3, ..., define

W (2) = [®(2)F exp [—/ £+ da(K)} , zeD.
F§{—z

Each Wy is analytic in D, and in fact, it extends to a C™ function on D \ F. It
also belongs to the Nevanlinna class, but it is not in . A~%, because its boundary
(pre)measure has a positive «-singular part (namely, the restriction of —o to F).

If we define W (¢) = Ofor¢ € Fandk = 1,2,3,..., then W; becomes a
C* function on T. This is because every derivative of the first factor ®* in Wy
IS o [dc(g, F )"] for all n > 0, whereas the derivatives of the second factor in ¥,
increases not faster than some negative power of dc (¢, F) as dc (¢, F) — 0.

Let gk (2) = f(@Q)W(2) fork =1,2,3,... and 7 € D. We can write

+
gk(z) = f(0)exp UT g—_—i(du(s“) —dop(¢) +klog ICD(C)Ids(C))] ,

where oF is the restriction of ¢ to F, and ds(¢) = |d¢|/(2m) is normalized arc
length measure, as usual. The boundary premeasure of g is
dpg =dp —dor + klog|®(5)|ds(Z).

Let J be an arbitrary open arc in T. If J N F = @, then
Mg (J) ZM(1)+k/103|¢({)ldS({) <ax(J)+b|Jls
J

for some positive constants a, b, both independent of J, because u is x-bounded
above and log |®(¢)| is bounded above. If J N F # @, we let {J, }, be the com-
ponents of the open set J \ F. For every ¢, 0 < ¢ < 400, there exists a constant
b(c) such that

log |®(2)] < clogdr(¢, F) + b(c)

for all ¢ € T. Since at least one of the endpoints of each J, belongs to F, we
obtain by integration

f log [®(5)1ds(Z) < b(c) [Juls —ck(Jy)

v

for all indices v. If we choose ¢ > a/k, then

pe (D) = Zu(lv)JrkajlogI@({)ldS(C)
(a—ke) Yk (Jy) +b(e) s < be) 1.

IA

This shows that u, is k-bounded above, and so each g, belongs to A™°.
Take k = 3, and let

S(z) = exp UF %i_"—jdo(;)], e D.
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Then

Fx(@3S7) = fx [q>2x(q>5“‘)]
= (fPHx(@SH= [(fcl>5—‘)x(q>5)] x(PS™h
= (fOS T Hxd? = fO357! = fus.

fxW3

Here we treat ®S~ !, <I>ZS_', and ®3S~! as elements of C*; &, d>2, @3, and ©S
as elements of A%; and f®S~! and fW5 as elements of A~>°. We also used the
associative law for the operation x.

As fW¥3 € A7, and W3 € C*°\ A as a boundary function, Proposition 7.10
tells us that f € Iy, and that Iy, is a proper invariant subspace of 4=, This
shows that f is not cyclic in A7, [ ]

7.5 Notes

A difficult (and still open) problem in the theory of Bergman spaces is to charac-
terize the cyclic vectors. Theorem 7.2 was conjectured by Korenblum in [88] and
later proved by Aleman, Richter, and Sundberg in [7]. The description of cyclic
vectors for A7 was given by Korenblum in [84], where it is a corollary of the
theorem describing all invariant subspaces of A~ in terms of zeros and boundary
premeasures. Partial results on cyclic vectors were obtained in [117] and [102].
Theorem 7.3 is from Brown and Korenblum [31]; however, the proof is simpli-
fied by the use of the results on AP-inner functions in Chapter 3. The combination
of Theorems 7.3 and 7.12 seems to be the most powerful tool available to deal
with cyclic vectors in the Bergman spaces AP. However, as will be clear from the
next chapter, there exist functions in A? that are cyclic for A~ but not for A”.

7.6 Exercises and Further Results

1. Show that every classical outer function in A is necessarily a cyclic vector
cAP
In Agy.

2. If f and g are functions in AL with f = g, where ¢ is a classical outer
function, then f and g generate the same invariant subspace. Does this
remain true if ¢ is just a cyclic vector in AS?

3. Fix0 < p < +o00 and —1 < a < 400. Show that there exists a classical
inner function ¢ such that 1/¢ belongs to AZ.

4. Let 'V be the space of premeasures ;t = | — 2, where 1 and u; belong
to k« B*. Prove that i € « V if and only if there exists a constant C > 0 such
that for any finite partition T = Uy I, where each [, € B(T)and [t NI} =@
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for k # I, we have
DUl £ C Y k(h).
k k

See [35].

. Recall that for f € A7 we use o s to denote the x-singular measure of f.
Show that o, = 0 + 0, for all f and g in 4A7%°.

. Let Z be a zero set for AL and o be a k-singular measure on T. Show that
I(Z,o)y={feAb:ZCZs 0 <oy)

is an invariant subspace of A5 . Here Z £ isthe zeroset of f, and the inclusion
Z C Zj takes multiplicities into account.

. Suppose u € kBY is a premeasure and let F be a Beurling-Carleson set.
Show that — in the context of the material following after the proof of The-

orem 7.4 — the “restriction” of u to F is a negative Borel measure. See
[83].

. Let F be a Beurling-Carleson set, and F? its §-neighborhood, for positive
8. Show that k (F®) — 0 as § — 0%. See [84].
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Invertible Noncyclic Functions

A function f in a space X of analytic functions is said to be invertible if 1/f also
belongs to X. In the classical theory of Hardy spaces, every invertible function in
HP is necessarily cyclic in H?. This is also true in the A~ theory; an invertible
function in A~ is always cyclic in 4™,

In this chapter, we construct invertible functions in A” that are not cyclic there.
What makes the construction possible is a delicate combination of growth and
decay. The construction is quite challenging technically, which may explain why
ittook some 30 years for the solution to appear after Shapiro first posed the problem.

The functions we construct will in some sense be extremal in the given space.
In particular, the set of points E in the unit circle where the function is “maximal”
should be rather massive. Our functions exhibit bad boundary behavior everywhere
on the unit circle. However, it is possible to modify our constructions so that the
resulting functions extend analytically across any given proper arc of the unit circle.

In Section 8.1, we supply an estimate of Poisson integrals of Borel measures in
terms of the size of of the smallest supporting arc, and introduce harmonic measure.
Sections 8.1-8.5 are devoted to the technical details of constructing certain real-
valued harmonic functions 4 on D with specific properties, and the non-cyclic
element f of A” is then obtained from 4 via the formula

f(@ =exp(h(2) +ih(z)), zeD,

where the tilde indicates the harmonic conjugation operation.
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8.1 An Estimate for Harmonic Functions

For1 < p < +o0,let h? (D) denote the Banach space of complex-valued harmonic
functions f in the disk D with finite norm

1 b4 . 1/p
| fllrr = sup (—/ lf(re“’)["do) < 400.

O<r<l1 2r -7
Also, let h°°(D) be the Banach space of complex-valued bounded harmonic
functions on D, with norm

£k =sup {|f(2)] : z € D} < +o0.

For a finite complex-valued Borel measure u on T, its Poisson integral is the
function

Pu(z)=/TP(z,C)du(C), zeD,

where
1 —|z|?
¢ —z|?

is the Poisson kernel. It is well known that a harmonic function belongs to i ! (ID)
if and only if it is the Poisson integral of a finite Borel measure. Moreover, for
1 < p < 400, the space h? (D) coincides with the space of Poisson integrals of
LP(T) functions. We shall need to estimate the size of the Poisson integral of a
measure with small support. For a Borel measure p on T, || || stands for its total
variation.

P(z,0) = (z,0) eDxT,

THEOR_EM 8.1 For0 <t < 2m, let J(t) be the closed arc connecting the point
1 with €', running counterclockwise. If u is a complex-valued Borel measure
supported on J(B) for some B, 0 < B < 2m, which has ||| = 1 and u(T) =0,
then

IPM(Z)I</3—1_—IZ—!2— zeD
= de(z, I () ’
where dg is the Euclidean metric. In particular,
28
[Ppu)l < —, zeD.
(1 —z])?

Proof. Let M (') be the function 1 (J (8)), which is well defined at 1 because
u(T) = 0. The function M is supported on J(B8) with |[M| < < % Integration
by parts gives

T i ; n ) d )
f PG e due®) = (1= 12P) | M) 5 1e —z72dp.

-7 -
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Since
d i ) 2
—nle —z T =3 eD,
|d9 le"” —z|77 < P z
we get
i N 2 [P Ml
|/ P e due®)| < 201~ lzl')/ o do
e o e —z]
—————l — 'ZIZ zeD
dc(z, J(B))3’
The proof is complete. .

We will need to use harmonic measure late on, so we briefly review the notion
here. Let Q be a bounded planar domain such that the Dirichlet problem can
be solved on 2. In other words, for any continuous function f on the boundary
<2, there is a harmonic function on €2 which extends continuously to € and has
boundary values f. By the maximum principle, the harmonic function is uniquely
determined by its boundary values. We write H (f) for the harmonic extension of
f- The mapping H is clearly linear. In view of the maximum principle,

IH()@I <sup{lf(): t €0}, ze,

so that for each z € 2, the mapping f — H(f)(z) is a bounded linear functional
of norm 1 on the space C(32) of continuous functions on 9S2. By the Riesz
representation theorem, there is a Borel measure dw, on 02 of total variation
norm 1 such that

H(F)(2) = f £(¢) doy (¢)
IR

for all f € C(92). If we apply this to the constant function 1, we realize that dw,
is a probability measure. It is called harmonic measure. To indicate properly the
dependence on the point z and the domain €2, we shall write

dw(z, -, Q)

in place of dw;, and for Borel measurable subsets E of 92, w(z, E, ) is the
corresponding mass of E with respect to harmonic measure. Actually, the notion
of harmonic measure can be extended to much more irregular domains than those
for which the Dirichlet problem can be solved.

Harmonic measure has a well-known interpretation in terms of Brownian mo-
tion. The quantity w(z, E, Q) represents the probability that a Brownian motion
starting at the point z €  will exit the domain 2 on the subset E of 9€2. It
is assumed that the Brownian motion comes to a halt once the boundary 9<2 is
reached.
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8.2 The Building Blocks

Our basic building blocks in later constructions will be the functions ®, g, where
0 <« < B < 2m, which are defined as

Po.p(2) = éw(z, I(a), D) — %w(z’ 1(B), D), zeD.
Here, w is harmonic measure and /() is the arc defined by
Ir)y={e:0¢ [—%r, %r] b
In the case B = 27 we write @4 in place of @, 25. Thus
CDa(Z):éw(z,I(a),D)——zl;, zeD.

We extend the function @, g to the boundary T by declaring

0, zeT\I(B),
Dy p(2) =1 —1/B, zel(B)\I(a),
1/ —1/8, 7€ I(a).

One checks that ®4 g(0) = 0. An elementary solution of the Dirichlet problem
(see [49, pp. 41-42]) yields the explicit formula

1 el%/? — 7 a
w(z, (), D) = - (m) ~ o zeD,
with a suitable choice of the argument function, so that
1 1 —zeie/?
(DQ(Z):E arg(-—l——w ’ zeD,

and ®, g = &y — Pg. For0 <r < 1, put
Qu.p(r) = max { e 5(2) : Izl =r},

and extend the function continuously to [0, 1] by setting Q4 (1) = 1/a — 1/8.
Note that it is increasing in r, and has the property that the function Q, g(e')
is convex on (—oo, 0]. For geometric reasons, the above maximum is attained at
Z = r, and an explicit computation yields
rsin %a 2 rsin %,B

— — — arctan

2
Qq.p(r) = @4 g(r) = — arctan ———=—— e L
“p «f T l1—rcosya 7B l—rcos%ﬁ

For0 < a < 7, the value of Qq g atr = cos %a is readily estimated as follows:

1 1
—'____SQa.ﬂ(r)<E'—_ cos%a§r<1.

5
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We proceed to get an estimate on a longer interval. For 0 < a < %J‘[, we have

1
1 -1
COS 70t > l—gsmja,

so that
1
rsin 5 1
<—————2—l—, 1——sin-]2-ot5r<1,
1 —rcos 5o 2
and consequently,
1 Ous(r) 1 1 1. < I
————< r<———, —=sinsa <r<1.
2 B %P B 2702
The second derivative of Qg g(r) is
4 (cos%a—r)sin %a *i (cos%ﬂ—r)sin %/3

Qup(r) = —
P T (1472 = 2rcos ba)> TP (1+4r2—2rcos %‘3)2

When 0 < ¢ < 8 < 7, we have Q ﬁ(r) > 0 on the interval 0 < r < cos ;a
so that Q g is convex there. In the spec1al case B = 2m, we write Q, in place of

Qa.27t ’

o1
rsmiot

1

2
Qq(r) = — arctan ————;
To 1 —rcos U

its second derivative reduces to

1 o1
g(r) _ _4_ (cos 50 — r)sin 5
T (1472 —2rcos %oz)2

It follows that Q,, is convex on [0, cos %a], and concave on [cos %a, 1]. The value
at the inflexion point is

1 2 sin %a cos %a 1
Qq(cos —a) = — arctan — ==
2 o 1—cos? 30

1
n b
so that by convexity (0 < o < 1),

Qa(r)slr, 0<r <cos

T COS %a

N —

.

For0 < a < 17, we have
1 1
T —a < (m—za)cosza,
. 2
since 1 — %a* < cos a. Therefore,

Qq(r) < 11 r, 0 <r < cosia.
p 2

2n
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We also need to estimate the first derivative of Q,(r),
2 sin 1o
2
Q,(r)=— .
“ mo 14 r2 = 2rcos Ja

It can be checked that Q) (r) attains its maximum at the point r = cos 5a (which

is the inflection point for Qy(r)), so that for0 < @ < 57

2 2
Q4 (r) < Qg ((cos 3 )=——_,—5£2, O<r=<1
ytasm§a a

~! for 0 < x < 7/4. The function

Here, we used the fact that (sinx)/x > 23/2
Q,,(r) increases on [0, cos %a] and decreases on [cos %a, 1], so by estimating its

valuesatr =Qandr =1, weseethat (0 < o < 37)

1 V2
7<% =—5  0=<r=i, 8.1)
and
1 2
—<Q()<[2—, cosfa <r <1 8.2)
104
Define
r sin %a
A(r, o) = arctan —
1 —rcos 50
and
2 1.\1/2
B(r,a) = (1 + r“ —2rcos ia) .
Then
rQu(r)  sinA(r, @)

Qu(r)  A(r,@)B(r,a)’

Using this identity and the elementary estimate 2/ < (sinx)/x < 1for0 < x <

1
3T, we get

L _re.n 0O<r<l,0<a<ir (8.3)
2 Qa(")
and
2 ! 3
rQq(r) < -, cos %a <r<l,0<acx %rr. (8.4)

— <
3 Qqlr)
At some point, we shall also need to be able to handle the function Q7 _(r) for

small positive angles «. One shows that for 0 < o < -—177T,

1 rQ,Zn—a(r)
4<m<1, O<r§l. (85)

We omit the details.
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Figure 8.1. The set E}(N, &)

8.3 The Basic Iteration Scheme

We now describe an iteration scheme that produces bounded harmonic func-
tions with certain desired properties. First, we need some notation. For k =
0,1,...,N —1and 0 < @ < 27, define arcs Iy(a, N) and Jy(, N) by

; 1 1
Li(a,N) = {e “:0¢€ (N(Zn'k - 1a), 5 2k + %a))],
and
; 1 1
Je(e, N) = le b.0¢ (N(an + 1), 5 rk+1D - %a)>] ,

and form the set

Ef = EY(N,q) = {re"" crh<r<ry, e Ul_j(a/l N)t, (8.6)
j

where ry, = 1 — (N log N)~!and rﬁ, =1—2(Nlog N)~!. The set E* looks like
a union of equidistributed rectangular boxes placed along a concentric circle (see
Figure 8.1).

LEMMA 8.2 Letu(t) = 1 —log(1 —t) and v(t) = B u(t), where B is a positive
constant. Suppose f € h® (D) is real-valued and satisfies

—-v(jz]) — A < f(2) < u(lz]) + B, zeD,

for some constants A and B. Let p € (0,1) and ¢ > 0 be given. Also, fix a
parameter a with 0 < a < min{1, 28}. Then for any real parameter &, there is a
radius @ € (p, 1) and a constant C = C(«) such that for sufficiently large positive
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integers N we can find a real-valued function g € h® (D) satisfying the following:

1 f(2) —g@)| <&, Izl < p,
—-v(lzl]) —A-¢e=<g(@) =u(z]) + B +e, p<lz <o,
—v(lz]) < g() <u(lz]) —& +C, o=<lz] <1,

and
u(lz)) =& - C < g(2), z € EXN,a).

Furthermore, the function g can be made to satisfy

/ exp (¢(2)) dA(z) < Ce™" +¢° / exp (f(2)) dA(2)
D D

as well.

Proof. We may assume that f extends continuously to the closed disk D. If it
is not, we can replace f by its dilate f,, where f,(z) = f(rz) for z € D, with
0 < r < 1 sufficiently close to 1.

Let ®, and Q, be as in the previous section. For any positive integer N, let
on(z) = Po(zV) and gn(r) = Qu(r™). Then ¢y is harmonic in the unit disk
and gy (r) is the maximum of ¢x(z) on the circle |z| = r. The function ¢y (2)
extends continuously to the unit circle except for a finite set of points, and equals
1/a—1/2m)on Uil (a, N),and —1/(2m) on U J («r, N). As a matter of notation,
let us agree to write I (a, N) and Ji («, N) for the closures of the respective arcs.

Step 1. For any real ¢, define

gn(r)
u(r)y—t

An(t) = sup o) <r< l}, 8.7
where

1
o (t) = max {E 1 - e_z’}.

Note that u(r) —t is at least 1 for o () < r < 1. By the properties of the functions
u(r) and o (t), we also have

%u(r) <u(r)—t, c®)<r<l. (8.8)

It is clear by inspection that the supremum in (8.7) is attained at some point of
[o (1), 1), because the function u(r) tends to +00 as r — 1. Since

d gn(r) =q;v(r)(u(r)—t)—-qN(r)u’(r)
dr u(r) —t (u(r)—t)z

after some simplifications we see that this derivative has the same sign as

N Q™) r W)
Qu(rNy N u(r)—t’

8.9)
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Suppose the variable ¢ is confined to some given finite interval [T, T]. The first
term of (8.9) is greater than %, by (8.3); for r = o (¢), the second term tends to
0 as N grows to infinity, so that for large N, the sign of the quantity in (8.9) is
positive, and the supremum in (8.7) is not attained at the left boundary point. So,
for N large, any point r = ry(¢) where this maximum is attained is an interior
point, and hence, by elementary calculus, we have that

v Q™) r W)
Qu(rNy — N u(r)—1t’

This identity, together with (8.3), (8.4), and (8.8), shows that for large N we can
estimate the position of a point where the maximum in (8.7) is attained:

C
- <) <1— —2—
NlogN Nlog N

where the constants C; and C, depend only on the parameter «. For example, we
may pick C to be 2« and C; to be a /4.

r=ry(t).

(8.10)

Step 2. For any large N and real ¢, put

o~ —@2r)7!

N = ————
v log(Nlog N) —t

One then calculates that
1 1
An(t)  AN()

for some positive constant C = C(«) that depends only on ¢, provided that N
is large enough. This is so because 1 — ry (1) is comparable to (log N) 1 and
gN(rn (@) = Qg (rN (t)N), so that when we plug in the point r = ry (¢) into (8.7),
and use the estimate (8.10), the value of the denominator on the right-hand side of
(8.7) is close to A’,‘V(t)“‘, and the numerator is close to 1; see Exercise 1.

By the way the parameter A y (¢) was defined,

<C (8.11)

PN (2)
— = u(lz]) -1, o(t)<lzl < 1.
AnD) (Iz]) ) =< lz|
Combining this with (8.11) we obtain
N (2)
<u(z]) —t+C, o(t) <|z] <1, (8.12)
AL () (Iz]) ) < lz

with a positive constant C that depends only on c.

The point ry =1—(Nlog N)~! is similar to the point ry (t), where the max-
imum in (8.7) is attained, in that the corresponding distances to the point 1 are
comparable. We shall now show that for some positive constant C = C(a), which
depends only on «, the following estimate holds for large N:

on(2)
—t—-C s
u(lzl) t < 0

z € EXN, ). (8.13)
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We first observe that by the definition of ry(#),

on(z) _
An() =u(lz]) - t, ———( 0 € E(N),

where E(N) is the set of N-th roots of unity consisting of

ex(N) = exp(Rmik/N), k=0,...,N—1.

Next, by using (8.1), we see that replacing A (), rn(t) with A% (¢), ry, carries
the cost of introducing a positive constant C = C(«) depending only on «, in the
sense that

z
u(lz) —1-C < o) 2w,
Ay (@) TN
Extending the estimate beyond the set E(N) to the union of rectangular-shaped

boxes E*(N, o) requires some simple estimates of harmonic measure, which are
left to the reader; see Exercise 2.

Step 3. Up to this point, the parameter ¢ is confined to a prescribed interval
[T, T], and N is a large integer depending on T and «. We now let T equal the
supremum of | f(z) + &| on . Let ex(N) = exp(2wik/N) be an N-th root of
unity, and set

w(N, &) = f(ex(N)) +&.
Then #, (N, &) is confined to the interval [—7T, T], and we can consider
log(N log N) — f(ex(N)) — &
- —@2n)~!

(N, £) = A (t(N, £) ™' =

and the associated function
| V=l

xne@ =5 > wk(N. &) Papvamw (B(N)2),  zeD.
k=0

The points ex(N) = exp(—2mik/N) are the complex conjugates of the ex(N).
The size of the function ®y/n 278 (2) is estimated by means of Theorem 8.1; for
large Nand 0 < « < %n this results in

log N 8o
N (I-1zh?
The function ¢ (z) may be written as

lxnve(@)| < zeD. (8.14)

] N-l )
én(2) = v Z Doyn.2n/n (€ (N)2), zeD.
k=0

We intend to compare x v ¢ (z) with the more easily analyzed function x (z)
uk(N, &) N (2). It, 100, enjoys (for large N) the estimate

lx(k) (Z)I < ]0c 8a

N —_l—lzl)z’ zeD.
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The difference is

}
5 2 (1 (N.6) = (N, ) @an 2n/n (] (N)2)
j=0

Il

AN @) = Xy (@)
(@' =™ N

N—

Z( (ex (WD) = 1 () (N)) ) Payv.2/ (&5 (N)2).

I

X

By the uniform continuity of f on D, we can fix a positive § such that | f(z) —
f(w)| < 1 whenever |z — w| < §. Split up the index set {0, 1,... , N — 1} into
two parts, one, X (k, N), consisting of those j for which |e;(N) —ex(N)| < 8, and
the other, Y (k, N), where the opposite occurs. Then, since the various building
blocks @y /N 27/N (éj(N)z) are supported on disjoint arcs of T for different j, we
see that the quantity

1
M) = F(e;(N)))®o /w20 /5 (21 (N
N[“_l‘(2”)—1],-6)(2(/(:,N)’(f(6k( )) = £ej( ))) /N2 N (2 )Z)\

is less than or equal to 1. Summing over the remaining indices in Y (k, N) and
noticing that

| f (e (N)) — f(e;(N))| < 2T,

we conclude that the quantity

1
N)) = Fle;(N)))®o/n 20/n (21 (N
Nla=! = 2m)~1] je%N)Kf(Ek( ) = £lei ))) n2m/N (8 )Z)|

is less than or equal to 2T w(z, T \ L, D), where w is harmonic measure, L; =
L (8) is the arc on T of points within distance %8 from ex(N), and N is so large
that 27 /N is considerably smaller than %5 . These two estimates lead to

ive@ - xE@| < 14+2T 0@ T\ Li, D), zeD. 8.15)

Let Dy = Dy(8,T) be the lunula that is the intersection with D of a disk
centered at the point ex(N) with radius depending only on T and &, such that
2T w(z, T\ Ly) < 1for z € Dy; then, by (8.15),

|xn.t(2) — XN S(Z)l < z € Dy. (8.16)

We may assume that all the Dy are contained in the annulus o (T) < |z| < 1, and
that the radius of each Dy is at most %5. By (8.12) and (8.13),

FleN) + xyk@ <u(zh —£+C. o) <zl <1,
and

u(lz) =& —C < fla(N) + xy:(@.  z€ EYN,a).
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Since If(z) - f(ek(N)){ < 1 for z € Dy, we get from (8.16) that
F@+xne@ < fla) + xy i@ +3 <ulzh—£+C 817
for z € Dy, and
u(lz) —& = C' < fla) + 1@ =3 < f@+xwe@ (.18

for z € Dy N E%(N,a); here C' = C + 3 with C = C(«) being the constant
appearing in (8.12) and (8.13). For large N, the distance between the centers
ex(N) of the lunule Dy gets much smaller than the radius (which is independent
of k and N), so that Uy Dy contains an annulus ¢ < |z| < 1, where & = #(5,T)
has 0 < < 1. Moreover, for large N, the set E*(N, ) will be contained in the
annulus ¥ < |z] < 1, by (8.10). So it follows from (8.17) and (8.18) that

f@+xnve@ <u(lz) —€+C, O <zl <1,
and

u(lzl) =6 —C' < f(@) + xnv.t(2), z€ E*(N,a).

Step 4. Let po be the bigger of the two numbers p and ¢. Let o =
o(p, %, €, a, f), with pg < ¢ < 1, be so close to 1 that

[ f()] < %ﬂ“(lzl) -2, o<zl <1:

after all, f is a bounded function. By (8.14), we have

xve@)] <e, lzl <o,
provided that N is large enough. We now make the pick

8(2) = f(2) + xne(2), ze€D:

this function meets all the required conditions, save the control from below and
the integral estimate. If we can show that

—xnvg(2) < %/3 u(lz)) +2

ong < |z| < 1, we will be done with the control from below. We turn to estimating
the function xn ¢(z) from below on the lunula Dy. We have

k
ve@ —xyr@] <2, zeD
SO we estimate the simpler function instead. We solve the problem of estimating

— x5 (@/v(lz) = —pe(N. E)gw (2)/v(l2])

from above by first noting that along any concentric circle |z| = r, the value is the
biggest when z" is real and negative. It is easily checked that

— Py (~w) = (2ra”! = 1)Prr_a(w),
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and since ¢n (z) = P (zV), we obtain

_y® _ N
sup[ XN.E(Z)} 27—« sup {M} . .19
zeD

o(z) |~ aBAR(N,©)) 0zrr | u()

The extremal problem on the right-hand side is of the same kind as (8.7), and based
on (8.5), one shows with the same methods as were used for problem (8.7) that the
point where the above supremum is attained satisfies the analogue of the estimate
(8.10), only this time the constants are absolute. When this information is inserted
into (8.19), one obtains, using (8.11), that for large N,

(k)
—Xn.e(2) } o
_ D —
! { I A

see Exercise 3. It follows from the restrictions on « that

(8.20)

1
—xNg(@) < Eﬁ u(lzl)
on o < |z| < 1, as desired.

Step S. We need an additional estimate of the function g = f + xn.¢, one that
is so accurate that it allows us to say how big the integral

/ exp (g(z)) dA(2)
D

is. To this end, we look again at the extremal problem in (8.7) for + = 0 and
% <r < (cos %a)l/N, and note by the considerations involving the sign of (8.9)

1/N

that the extremal value is attained at the right endpoint r = (cos %a) , at least

for large N. This entails that

qn ((cos 3a)'/N) Qq(cos Sa)

we) < u((cos%a)l/N) ulr) = u((cos %a)l/N) u(r)
ol — g1 ol — -1
- u((cos %a)l/N) u(r) = log N + C(a) u(r)
for
1 /N

1
5Sr= (cos3a) '™,
where C () is areal-valued constant. In the setting of the estimate (8.17), with the
necessary modifications due to £, we then arrive at

FleeN) + (N E)pn (@) < f(ex(N)) + (N, E)gn(lz])
(04
< fle) + (1= 52) utizb

for large N and for

<z < (cos 3a)'/V.

N~
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If the parameter g selected in Step 4 is sufficiently close to 1, any fixed fraction of
u(|z]) will dominate over f(ex(N)) + & for o < |z| < 1, so that we can get
o

Fle) +m(N. 6on@ < (1-5) ulzh—§ @21

for

0 <lz] < (cos %a)l/N.

By (8.21) and the appropriate analogue of (8.17) involving &,
o

f@+xwe@ = (1-%) uleh - +3 (8.22)

for o < |z] < (cos %a)l/N. From Step 4, we know that |y ¢ (z)| < & holds on

|z| < . To control f + xn ¢ in the remaining annulus

/N

(cos %a) <zl <1,

we need the following elementary estimates of Q, which follow from (8.2) (rg is

a number in the interval cos %a <rg < 1)

ro
Qo (r) = Qul(ro) —/ QL (1) dt < Qu(ro) —a 2(ro —r)

for cos(a/2) < r <rp,and
0u(r) = Qalro) + / QL) dt < Qalro) + V2a™2(r — ro)

forrg <r < 1.Withrg = (r})" = 1 — 1/log N, these estimates lead to

an(r) < g (i) —a () = ")
for (cos(a/2))V/N < r <r¥, and

an(r) < an(ry) + V220N = rip)™)
for ry, < r < 1. For large N, we know that
f(ex(N)) + ue(N, &) g (r}y)

is within an additive constant (depending only on «) of

u(ry) — & =1+ log(N log N) — :

Just look at how we got (8.17) and (8.18). Using the above estimates of gy (r), we
obtain a constant C(e) such that for large N,

FleeN)) + (N, E)pn(z) < fle(N)) + (N, &) gn(lz])
< u@r})—¢&
log N

e _ N
2wy (N C@



230 8. Invertible Noncyclic Functions

for (cos(a/2)/N < |z| < r};, and
Flex(N)) + ux(N. &) ¢n(z) < f(ex(N)) + (N, &) gn(Jz])
< u(ry) -+ C(e)
forry < |z| < 1. By the localization trick of (8.17), involving the lunule, these
estimates lead to
(log N)(1 — [z]™)
a(l —a/@2n))

f@+ xne(@ <u(ry) — —£+4C(a) (8.23)

for (cos(et/2)'/N < |z <r}, and
f@O+nve@ =suri) —E+C@, ry<lzd<l, (8.24)
for some other constant C’(«). It follows from (8.24) and
u(ry) =1+ log(N log N)

that

/ P @+ X @) dA@ < Cet,
ry<lzl<

where C(w) is a positive constant. An exercise involving Taylor series shows that
for positive real 7,

/ exp (= (1 — |2/V)) dA@) < e + = L2
D - N r
so that by (8.23),
] exp (f(2) + xn.£(2)) dA(2) < C(a)e™® (8.25)
(cos(a/2) VN <|z|<r},

if (1l —a/(27)) < 1, where C(a) is a positive constant, possibly different from
the earlier one. Since 1 — /8 < 1, we get from (8.22) that

/ el<costa/ M exp (f(z) + ANE (Z))dA(z) < C@)e ¢, (8.26)
o<|zi<(cos(a

where C(a) is yet another positive constant. Moreover, since |xn.£(z)] < & on
|z| < o, we obtain

_/H exp (f(2) + xn.£(2)) dA(z) < es/DeXP (f(2)) dA(). (8.27)
Zl<Q

The last part of the lemma now follows from (8.25), (8.26), and (8.27). ]

8.4 The Mushroom Forest

Let N(n) be a sequence of positive integers approaching +oo rapidly, and let ES
be given by (8.6), with N = N(n). Moreover, let &, be a sequence of nonnegative
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numbers that tend to +oo rather slowly. For a Borel subset E of D, let | E| 4 denote
the normalized area of E (the usual area divided by 7). If instead E is a rectifiable
curve or a (relative Borel) subset of one, we let | E|, be the length of E divided by
2. The latter definition is related to ds, the normalized one-dimensional Lebesgue
measure in the complex plane. Suppose A is a subharmonic function about which
it is known (1) that it 1s bounded from above by some unspecified constant, (2)
that

h(z) < yu(lz), zeD, (8.28)
holds for some positive constant y, and (3)
o0
Z‘-’_E" / exp (h(z)) dA(z) < M < +00. (8.29)
n=1 IEn|A

We wish to estimate the average radial growth of /(z). More to the point, we want
to know how quickly the integral mean

s .
/ ht(re'”)do
-7

increases as r approaches I, where h*(z) = max [h(:). O}. Fubini’s theorem
together with the Intermediate Value Theorem of Calculus tells us that there is a
radius R,,, rﬁ,(,,) <R, < r;,(”), such that with E, = E; N (R,T),

h(z)) dA(z),
IEII l.\‘ /;" exp (h(Z)) dS(Z) S IE?IIA LB, exp ( (Z)) (Z)

so that
o0

Y e #/ exp (h(2))ds(z) <M < +oo.
|En|.\ E,

n=|
A crude estimate of each term leads to

/ exp (h(2)) ds(z) < M e, (8.30)

E,

1
We note that
E,,—[ eD: U Ot/2 N(n) l
R" J
so that |E, |, = «R,/(47) tends to a/(4m) as n — +oc. Introduce the union of

rectangular boxes %,,.

= [rei"' “Ry<r<1. €"¢ Ui,-(ot/4. N(n))l.
J

and put a hat on each box to form I, = E, U %,. The set I1, looks like a
collection of identical mushrooms, with stems affixed to the ground, the unit circle.

Let 2, =D\ UC’?_" IT;, which is an open subset of D, and let QE, be the connected
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Figure 8.2. The mushroom forest

component that contains the origin (see Figure 8.2 for a graphic illustration of the
set Q?,), which is easily seen to be simply connected. The boundary aQF, of Q,D,
consists of a closed subset of the unit circle T, mushroom hats E;, or parts of them,
and stem sides

0% = [re” Ry =r <1 e e Jor s Nan).
j

or parts of them, as well, for j = n, n4+1,n42....; onthe right-hand side of the
displayed formula, the 9 is the boundary operation with respect to the topology of
T.

Recall that we reserve the symbol w for harmonic measure; we sometimes write
dw(z, ¢, 2) and think of it as a measure, where the variable of integration is £.
Since h(z) is subharmonic and bounded above in I, A7 (Z) is subharmonic and
bounded as well. If 4, is the harmonic function in Q,u, defined by

m@= [ KOdoera,  ced,
I

n

then, by the maximum principle, A7 (z) < h,(z) on Q,D, For any r with D C Q,D,
the mean-value property for harmonic functions gives

1 1
3 H@ds@ < 1 [ @ ds@ =ma© = [ 50,1, 2.
rT rJrr aQ;

This calculation suggests that we should estimate w(0, L. Q,:,) for various Borel
subsets L of 9Q5.

One quickly checks that w(0, L, Q,a,) is 0 if L is a subset of T N 982;,. The
principle of extension of the domain (see any book on Harmonic Measure) states
that the harmonic measure of a piece of the boundary of a region with respect to
a fixed interior point gets larger if the region is expanded in such a way that the
boundary piece remains on the boundary. If L is a Borel subset of

Yk = Relj(3a, N(k)) C E; N3
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forsomek =n, n+1l.n+2,..., wereplace Qp with D\ Y k. and see that
w(0, L. Q) <wO,L.D\Y,;) <C(a)lLl;, (8.31)

for some positive constant C (¢r). The remaining type of boundary parts is formed by
the stem sides. So. let L be a subset of 3° & OBQ,D, forsomek =n. n+1.n+2. ...,
and suppose for simplicity that it is a subset of a single stem side of one mushroom.
Then, if we remove all the other mushrooms, the harmonic measure of L increases,
but it is still quite small. We can visualize this by thinking of harmonic measure as
arising from Brownian motion: to reach L, the particle starting at the origin first
has to reach some point of the opening between the hat and the unit circle, and
second, it must then also hit the stem, and in particular, the part that lies on L.
The hat and the stem define a “boxed” region of dimension %a N@k)~'by | — Ry,
so that an estimate of the second process using harmonic measure for the boxed
region shows that

w(0,L, Q%) < C(a) N(k)™" @ |L;, (8.32)

for some positive constants C(«) and v(«); v(a) = /6 should work.
The estimates (8.30) and (8.31) will be used to control

fa y h*(¢)dw(0, ¢, Q) (8.33)

on the hats of the mushrooms, and (8.28) and (8.32) to control it on the stems. Not
all mushrooms are so lucky as to form part of the boundary of QL. as many are
contained in the stems of earlier generations of them, and some are trapped between
two bigger intersecting mushrooms. Approximately the proportion « /(87 ) of those
remaining are lost with each new generation, and by jacking up the growth of the
N (n), we may safely claim that the proportion is between «/30 and « /20 each
time.

We first do the stems. In generation k, k = n,n+ 1,n+2, ..., there are N (k)
different mushrooms in Iy, but at most (1 — oz/30)k_”N(k) of them make it to
395. The integral of u(|z|) along the two sides of a single mushroom is at most

! 6
2/ u(t)ydtr < ——,
R N (k)

k

where the estimate holds for large N (k). It follows from (8.28) and (8.32) that the
integral (8.33) taken only over the stems is bounded by the series

Cary (1-5) N,

which converges quite rapidly.

We turn to the hats. In generation k (k = n, n+1,...), there are N (k) different
mushrooms in [Ty, butat most (1 —a/30)* =" N (k), and at least (1 —ar /20)~" N (k),
of them make it to 3Q2%. Since exp(ht) < exp(h) + 1, an application of Jensen's
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inequality shows that

_.__'__u_ / ht(z)ds(2)
|Ex N OS2 |5 J Exnag

< log (1 + -——1——-a— / exp (h(2)) ds(z)),
|Ex N 325 JExnag]

and together with (8.30) and the fact that

(I oz)k—"<m<<l Ot)k—n

20/ TR, 30

we see that

+ _i k—n —i n—k &
fﬁkmgh @ds@ = (1-55)  IEs log(1+(1 =) Me

Since [Ex|y = a R /(4m) < a/(4m), it follows that

o0
> / B () ds(2)
k=n"YEx

nagk

: ﬁ‘k:(“%)” '°g<'+(“§5)nkkMe“)~ (8.34)

where the right-hand side converges, provided that

f:(l —%)k £ < +oc.

By estimates (8.31) and (8.34). the integral (8.33) is controlled on the hats as well.
For the choice &, = 2 log n, we get more specifically

! f m@ds < f () do(, £, Q)
rJrr 395

C+C't, =C+2C'logn,

IA

where C = C(a. y. M) and C' = C'(«) are positive constants.
We summarize what we have done in this section as the following.

LEMMA 8.3 Let h be a subharmonic function on D that is bounded above, and
write &, = 2 log n. Suppose h satisfies, for positive constants y and M,

h(z) < yu(zl), 2 € D.

and

e 1
Ze“g" ; /:exp (h(2))dA(z) < M.

n=| |Enla JES
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Then if the sequence N(n) increases sufficiently rapidly, there are two positive
constants C = C(a, y, M) and C' = C'(a) such that

1
—f h*(z)ds(z) < C + C'E,, 0<r <Ry,
r JrT

forn=1,2,3,..., where R, belongs to the interval rf:,(n) <R, < r;,(n).

8.5 Finishing the Construction

We first use Lemmas 8.2 and 8.3 to construct an extremally growing harmonic
function.

THEOREM 8.4 Letu and v be as in Lemma 8.2 and @ = min{1, 28}. Moreover,
let N(n) be an increasing sequence of positive integers approaching +00, and EEJ
be the union over n = 1,2,3, ... of the sets E,j, = E*(N(n), a) appearing in
(8.6). Then, if the positive integers N (n) increase sufficiently rapidly, there are an
increasing function ug : [0, 1) — [0, +00), with uy(t) = o(u(t)) ast — 1 and
lim; 1 up(t) = 400, and a real-valued harmonic function f in D such that

(1) —=v(|z]) — 1 < f(z) < u(lz]) —uo(z]) + C forall z € D.
(2) u(z]) —uo(|z]) = C < f(z) forall z € E&

(3) /D exp (f(2))dA(z) < C.

(4) limsup (% [T f(2)ds(z) — kuo(r)> = +400.

r—>1-

Here ) is any positive constant and f~(z) = max { - f(2), O}. Furthermore, if h
is any subharmonic function on D that is bounded above and satisfies

f exp (f(2) + h(z))dAGx) < 1,
i)
then
! +
S| @i =C (1+uo(r)), O0<r<l.
rT
Above, C = C(w) stands for a positive constant.

Proof. We produce iteratively functions f, € h* (D), radiir,, positive constants
C,, and compact subsets E,SI‘U, as follows. Along the way, we will define increasing
functions ug., : [0, 1) — [0, +oc) that tend to the desired function ug as n —
+oo. Westart with fo = 0,79 = 4, Co = 1,and Ej"” = @. We also set ug o(1) = 0
on [0, 1). In general, the radius r, will be chosen such that r,_; < r, < 1, and
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such that the set Eg_ul is contained in the disk |z| < r,. Moreover, as n — +00,

we want r, — 1. Suppose we have f,_; and Eg‘_ul satisfying
—v(lzh) = 1+ 27" < fo1(2) < uizh) — uoa-1(lz)) + € =277
forz e D,
u(jzl) = uon-1(12) = € +27"* < f(2)

forz € ES'_Ul, and

/DCXP (fa-1(2)) dA) < Cp-1.

At this point we choose r,, as prescribed above. If N (n) is large enough, Lemma
82 —withe = 27", p = r,, and § = &, = 2logn — will then deliver a radius
o = on Withr, < 0, < 1, acompact set E! = E%(N(n), @) contained in the ring
on < 12| < 1, and a function g = f, € h°°(D) such that (use a slightly different
constant than in the lemma)

—v(lz]) = 14 27" < fu(2) < u(jz]) —uon-1(jz) + € —27"
for |z] < on,
=v(lz]) < fu(@) <u(lz]) =& —-1+C
foro, <zl < 1,
u(lz)) —uon-1(Iz) = C +27" < fa(2)
forz € Eg‘_ul,
u(lz) =6, —C+ 1< f(2)

for z € E,'i, and

/ exp (f2(2)) dA(z) < Cn.
D
Here

Cn=Ce™ +exp™") Cpoi.

Declare ug , (1) = ug,—1(t) for 0 <t < @, and uga(t) = & = 2logn for
on <t < 1. Itis readily checked that this defines an increasing function. Also, put

EfY = EX° U EL
Part of the above estimates then simplifies to
—v(jzl) = 1+ 27" < fu(2) < u(zl) —uon(lzh) + C —27"
for z € D, and

u(1z)) —uop-102l) = C +27" < fu(2)
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forz € Eﬁ’u. As n — 400, the functions f, € h*°(D) converge, uniformly
on compact subsets of I, to a harmonic function f in D, and the functions ug ,
converge to a function u. Since 3_, e % = Y, n=2 converges, the constants Cj,
converge to a limit C, as well. Thus, we obtain

—v(lz]) = 1 = f(z) < u(lz]) —uo(z) +C

forz € D,
u(lz)) —uo(Jzl) — C < f(2)

forz € EY) = Uj’=°‘ijli and

/Dexp (f(2))dA2) < Coo.

For rapidly increasing N(n), the radii o,, being contained between r,’(,(n__l) and
r;‘,(n), tend to 1 very rapidly in n, so that we can make ug(r) go to +00 as slowly

as we like as ¢t — 1. In particular, we can get ug(t) = o(u(t)) ast — 1.
We now turn to the assertion that

lim sup (% / f(2)ds(z) — kug(r)) = +00.
rT

r—1

Since f is big and positive on E * the integrals

l/ ff@ds@)
rJrT

are correspondingly big for r = ry, (ny’ and the order of magnitude is at least a pos-
itive constant times u(r (n))- BY the mean value theorem for harmonic functions,
the integrals where f* is replaced by f~ are of the same magnitude, whence the
assertion follows.

Finally, we look at the part of the assertion involving the function 4. Since f
has the bound from below, the integrability of exp(f + #) on the unit disk forces
the subharmonic function to satisfy (8.28), for some y = y(«, ), by the mean-
value property of subharmonic functions on disks. In fact, if we subtract a suitable
absolute constant from A, we can get y = 8+ 2. Moreover, by the way the function
ug was defined in terms of &,,, and the control from below on f on EF ,(8.29) holds
for some M = M («). So, we can apply Lemma 8.3 to get the desired estimate,
by replacing the &, with the appropriate expression in terms of ug; see Exercise 4.
The proof is complete. ]

As a consequence of Theorem 8.4, we obtain an extremally growing analytic
function in D, which will enable us to construct noncyclic invertible functions in
the Bergman spaces.

COROLLARY 8.5 Forany B > 0, there are an increasing function uy : [0, 1) —
[0, +00), withuo(t) = o(~log(l—t)) butug(t) — +ooast — 17, andafunction
F holomorphic on D, such that:
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(1 / \F(2)]dAG) < +o0.
D

2) A=z <|F@)I < €A~z exp (—uo(Iz])) for all z € D and some
positive constant C.

(3) limsup ((2n)-’ f log™ |F(re'?)|d6 — kuo(r)) = 4ooforall x > 0.

r—1 -n

(4) If h is any subharmonic function on D that is bounded above and satisfies

AIF(Z)IeXp(h(Z))dA(z) =M < +o0,
then

1 [ .
— | hT(re?)dé <logt M + Cuo(r),
2w J_,

for 0 < r < 1and some constant C that does not depend on h and M.

We can now prove the main result of the chapter. Recall that H(DD) is the space
of all analytic functions in D, with the usual topology of uniform convergence on
compact sets.

THEOREM 8.6 For any positive exponents p and q, there exists a function f in
AP such that f is not cyclic in AP but 1/f belongs to A9.

Proof. Let F be as in Corollary 8.5, with 0 < B8 < p/q. Then the function
f = FYPisin AP, and 1/f is in A9, because (1 — |z))/? < | f(2)|. We need
to show that f is noncyclic in A?. Let g be a sequence of functions in H* such
that fgx converges in norm in A”. By property (4) of Corollary 8.5 applied to the
functions log |g|, we have

1 /7 ,
— log" gk (re'®)1do < C (1 + uo(r)), 0<r<l,
2 J_,
for a positive constant C. If g — g in H(D), then
) 1 [T , A
lim sup — (log™ | f(re'®)| —log™ |g(re'®)|) df = 00
r>1 27 -
by property (3) of Corollary 8.5. This, however, cannot be true if the limit fg is
the constant function 1, for then log™ | f| = log™ |g|. The proof is complete. ®

8.6 Two Applications

As consequences of Theorem 8.6 we discuss two problems related to “inner” and
“outer” functions in the context of Bergman spaces.
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First, recall from Theorems 7.3 and 7.12 that if a function f € A” belongs to a
slightly smaller space A7 (¢ > p), then f is cyclic in A? if and only if f has no
zeros in the disk D and carries no «-singular measure on the circle T. It is natural
to ask whether the extra assumption that f € A9 with g > p is really needed. The
following corollary answers this question.

COROLLARY 8.7 For any 0 < p < 400, there exists a noncyclic function
f € AP such that f has no zeros in D and carries no «-singular measure on T.

Proof. Let f be the function from Theorem 8.6: it does not matter what the
value of ¢ is. Since 1/f belongs to A7 C A~%°, we see that f is invertible in
A7, so that f is cyclic in A~ (see Exercise 6). By Theorem 7.12, the function
f is zero-free in D and carries no «-singular measure on T. n

Next, recall from Theorem 3.34 that every function f € A admits an “inner-
outer” factorization, f = GF, where G is AP-inner and F is cyclic in A”.
A natural follow-up question is whether this factorization is unique. The next
corollary answers this question in the negative.

COROLLARY 8.8 Forany 0 < p < +00, there exists a function g € AP such
that g admits two different “inner-outer” factorizations.

Proof. Let f be the function from Theorem 8.6. It does not matter what g is here.
According to Theorems 3.33 and 3.34, the invariant subspace of A? generated by
f yields a unique extremal function G € A?, and f/G € A? is cyclic. It follows
that the function 1/G = (f/G)(1/f) belongs to A~*°. Applying Theorem 7.3,
we see that if ¢ is a sufficiently small positive number, then both G~¢ and G'~¢
are cyclic in A?. Let g = G'~¢. Then

g=1.G""*=G-G*

are two different “inner-outer” factorizations of g in A?. ]

8.7 Notes

The results of this chapter, along with their proofs, are taken from the paper [27]
by Borichev and Hedenmalm.

Considering the Hardy space situation, where the “largest” functions are outer,
and hence cyclic, it is perhaps surprising that “largeness” can imply non-cyclicity.
But in spaces determined by growth, say the separable spaces A;“, largeness
can imply non-cyclicity, as is seen from the following general idea. If a function
f € Ag" grows almost as fast as allowed on a sufficiently massive set, and for
polynomials g, we have that fg, is norm bounded in A;® uniformly in 7, then the
polynomials g, will be very much controlled on the massive set, and this implies
that we can estimate g,, uniformly in n by a radial function which increases very
slowly in toward the boundary in D. Then fg, cannot tend to the constant function
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1, and consequently, f is non-cyclic. The Bergman spaces A” share a lot of the
characteristics of the growth spaces, and the construction here shows that this idea
for growth spaces carries over to the Bergman space setting.

In view of Theorem 8.6, it is natural to ask if there exists at all a decreasing radial
function ®(z) = ®(|z]), with &(r) — 0 as r — 17, such that the conditions
f € AP and ®(|z]) < |f(2)| for z € D would imply that f is cyclic. In [25],
Borichev shows that the answer is affirmative. More specifically, the function

1 1/2+¢
P(|z]) = 8 exp —(log1 I |> , z €D,
— |z

has the desired property when § and & are positive.

8.8 Exercises and Further Results

1. Fill in the details of the verification of (8.11).

2. Show how to use estimates of harmonic measure so as to obtain the esti-
mate (8.13) from the corresponding estimate on the set ry, E(N). Hint: the
argument is simplified if one introduces the complex variable w = z" and
recalls that ¢n (2) = Do (ZV) = g (w).

3. Check that (8.20) holds for sufficiently large N.

4. Fill in the details of how the mushroom forest Lemma 8.3 is applied at the
end of the proof of Theorem 8.4.

5. Fix0 < p < 4+00. An AP-inner function G has the estimate

IG)I = a zeD,

which we derived in Chapter 3 from the fact that G is a contractive multiplier
H? — AP The latter means that G has the stronger property that |G|PdA
is a Carleson measure. Check that the function f in Theorem 8.6 has an
estimate of the same kind as the extremal functions, but with a constant. Then
show that for the same f, we can modify the construction so that | f|PdA
is a Carleson measure. Hint: a Carleson measure 4 is a finite positive Borel
measure on D with u(Q) < C £(Q), for some constant C, where Q is a
Carleson square and £(Q) is the side length of the square. It is therefore
enough to get a radial majorant to f which is in L7 (D, dA). See [27].

6. Show that if both f and 1/f are in A, then f is cyclic in A7,

7. Show that for every 0 < p < 400, there exists an A”-inner function G
such that || f|| , < || fG|l, holds for all f € H* butnotall f € A”.
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Show that forevery 0 < p < +00, there exists an A”-inner function G such
that (GAP) N AP is not the same as the invariant subspace of AP generated
by G.

Suppose f and g are cyclic vectors in A2 such that fg belongs to A2.Is fg
necessarily cyclic in A2?

Generalize the constructions in this chapter to the setting of the spaces A2,
with0 < p < +ooand —1 < @ < +00.

We now mention an open problem. Let the Bergman-Dirichlet space BD?(T)
consist of formal Laurent series

+00
f@) = Z an ",

n=—00
where
) +00 |an|2 +00 5
I W5pe =Y +3 (4 D lay)? < +oo.

":0n+1

n=1

The shift operator S f (z) = z f(z) acts boundedly on this space, and so does
its inverse S™!. Closed subspaces invariant under both S and S~! are called
bilaterally invariant. Does there exist a bilaterally invariant subspace J in
BD2(’I[‘) such that the intersection J N A2, which is an invariant subspace in
A2, is nontrivial in A2? In radially weighted Bergman spaces, with weights
that drop down to zero very quickly near T, the corresponding question has
an affirmative answer [28]. To throw further light on the issue, we mention
that the invariant subspace I = J N A? then has index 1 and no common
zeros in D, and hence is generated by a zero-free A2-inner function . The
function ¢ should also be cyclic in A~°, and hence similar to the functions
constructed in this chapter (if it exists).
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Logarithmically Subharmonic Weights

In this chapter, we study weighted Bergman spaces for weights that are logarithmi-
cally subharmonic and reproduce for the origin; the latter means that if we integrate
a bounded harmonic function against the weight over D, we obtain the value of
the harmonic function at the origin. Two important examples of such weights are
w(2) = |G(2)|P, where G is an AP-inner function, and

0@ = (@+ D)1 —|z1D), zeD,

where —1 < « < 0. Not only are these weights interesting in themselves, they
also have nice applications to the study of unweighted Bergman spaces. The main
result of the chapter is that the weighted biharmonic Green function I',, is positive,
provided that the weight is logarithmically subharmonic and reproduces for the
origin. As a consequence, we will prove the domination relation |Gafll, <
IGg fll 5, where f is any function in A”, and G4 and G p are contractive zero
divisors in A? with A C B.

9.1 Reproducing Kernels

Suppose E is any set and H is a Hilbert space of complex-valued functions on
E such that the point evaluation at each point in E is a bounded linear functional
on H. Then by the Riesz representation theorem, for each y € E there exists a
function Ky = K (-, y) in H such that

FO) ={f, Ky), feHr
The function K (x, y), with (x, y) € E x E, is called the reproducing kernel of H.
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It is natural to ask what kind of functions K : E x E — C arise as reproducing
kernels of Hilbert spaces of functions on E. We will need the following classical
characterization of reproducing kernels. We recall that a square matrix {4 ;} 7 k=1
is said to be positive definite if

N

— N N
Z Ajkwjwg >0, {wj}i=, € C".
jk=1

If we require strict inequality for all nonzero vectors in CV, the matrix is called
strictly positive definite.

PROPOSITION 9.1 A function K : E x E — C is the reproducing kernel of a
Hilbert space of functions on E if and only if K is positive definite, that is, for any
finite subset {x1, ... ,xn} of E the matrix {K (x;, xj)}?.’jzl is positive definite.

Proof. First assume that K is the reproducing kernel of a Hilbert space H
of functions on E. Given any finite set {x1, ... ,xy} of E and any finite subset
{c1, ..., cn} of C we consider the function

f@)=aK@x, x))+ - +cyK(x,xy), x€E.
Then f € 'H, and the reproducing property of K yields

N
Y KGj.x)eiew = (f. f) 0.

jk=l

This shows that the matrix {K (x;, )ck)}j?’k:1 is positive definite.
Next assume that a function K : E x E — C is positive definite. Let Hg be the
vector space of functions of the form

aK(x,x)+---+cnK(x, xn), xeE,

where N is any positive integer, ci, ... , cy are arbitrary complex constants, and
X1, ..., Xy are arbitrary points in E. If

fx)=aKx, x))+ -+ cnK(x, xn)
and
gx) =diK(x,y1) +---+duK(x, ym)
are two functions in Hy, we define
N M
(f.8) =YD c;jdi K(xj. 0.
j=lk=1

That K is positive definite implies that (-. -} defined above is an inner product on
Ho, because it is easy to check that any element in Hg of norm O assumes the
value O at all points. Let H be the completion of Ho with respect to this inner
product. Then every point evaluation is a bounded linear functional on H, and H is
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a space of functions on E, because any element of the completion which vanishes
as a function on E must be orthogonal to all the spanning vectors, as the latter
are correspond to point evaluations. The kernel K is the reproducing kernel of the
Hilbert space of functions H. n

Let K be the reproducing kernel of a Hilbert space of functions on E. For any
two points x and y in E, the matrix

(K(x,)c) K(x,y))
K(y.x) K(y,y)

is positive definite. In particular, the above matrix is self-adjoint, so that
K(y,x) = K(x, y).
Moreover, a positive definite matrix has a nonnegative determinant, so that
K@, )P < K(x,0)K(»,y),  x,yeE.

This will be referred to as the Cauchy-Schwarz inequality for reproducing kernels.
If H is a separable Hilbert space, so that it has a countable orthonormal basis
{en }:;"l’, we can represent the reproducing kernel as a series:

+00
K(x,y) =) ex()ealy),  (x,y)€E xE.

n=1

It is worth noting that it does not matter which particular orthonormal basis is used.

We will be concerned with the case E = D. Also, we will be interested in
only Hilbert spaces of analytic functions in D on which the point evaluations are
bounded linear functionals. In terms of kernel functions, we will study functions
K :D x D — C such that X (z, w) is analytic in z (and hence conjugate analytic
in w).

More specifically, we will be concerned with weighted Bergman spaces. We
first specify the kind of weights to be used. Therefore, throughout the chapter, we
use w to denote a function from D to [0, +00) such that

(a) w is logarithmically subharmonic, that is, log w is subharmonic on D.

(b) w is reproducing for the origin, that is,

p(O) = /D P () dAR)

for every polynomial p.

Note that if we take p = 1, the constant polynomial, in condition (b) above,
then we get

/w(z)dA(,Z) = 1.
D
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For a holomorphic function f on the unit disk, we consider the norm

1/2
1710 = ([ 1f@Po@aa@)
and let B2(w) consist of all such f for which the above norm is finite. For each
0 < p < +00, the space B” (w) is defined in a similar way.
PROPOSITION 9.2 The point evaluations on the space B*(w) are uniformly

bounded on compact subsets of D.

Proof. Fix an interior point zg € D, and for 0 < r < 1 — |z¢], let D(zg, r) be
the Euclidean disk

D(zo.r) ={zeC: |z—z0l = r}.

For a holomorphic function f on D, the function | f|Pw is subharmonic, and
therefore, by the sub-mean value property,

1
FGo o) < / f @@ dA@ < r 212,

D(z0.r)
so that
1
2 . 2
Ifo)l” < T 20) (Nl
Taking logarithms, we obtain
1 1
log | f (20)| < log e 1 log :
r 2 T w(20)

The point zg € D is arbitrary, the left-hand side is subharmonic, and the right-hand
side is superharmonic. So we obtain the estimate

I flle + 1 1
r

ds(z),

— log
2r Japzgry  @(2)

where ds(z) = |dz|/(27); the subharmonicity of log w implies that it is inte-
grable on circles in D such as dD(zg, r). Introducing the Poisson kernel in these
calculations allows us to get a uniform estimate on compact subsets. ]

log | f(z0)| < log

Note that the above proof does not use the assumption that  is reproducing for
the origin. Also, the proof works for all B? (w) with 0 < p < +00.

Let A%(w) be the closure of the polynomials in B?(w). Although for most
weights that come to mind these two spaces coincide, there are weights for which
A%(w) is strictly smaller than B?(w); see Exercise 13. Being a closed subspace of
B%(w), the space A%(w) is a Hilbert space of analytic functions on D with locally
uniformly bounded point evaluations.

The reproducing kernel for A%(w) will be denoted by K,,. Since w reproduces
for the origin, we have K, (z,0) = K,(0, w) = 1 for all z and w in D. Before
we can obtain deeper properties of K, we need to know how the operator of
multiplication by z acts on A2(w).
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Let S denote the operator of multiplication by z on A%(w). Thus Sf(z) = z£(2),
z € D, forall f € A%(w). The operator S is obviously bounded on A?(w) with
I1Slh=1.

PROPOSITION 9.3 For any two functions f, g € A*(w), we have the inequality

IS+ gl2 <2(I1fI2 + 11Sgli2).

Proof. It is enough to obtain the inequality when f and g are polynomials.
We prove the result under the additional assumption that the weight w is C*
up to the boundary. The general case then follows from a simple application of
Theorem 9.14 (whose proof will be independent of the present result).

For any A € C\ {0}, we have

2.(ls@ - 272 f @0 w@)
= A:(ls@IP0@) —2Re (1714 (32 F@ 0())
+ 1172 A (12 D 0(2)),

0

IA

for z € D, where the first inequality holds because the product of a logarithmically
subharmonic function and the modulus square of a holomorphic function is again
logarithmically subharmonic, and in particular, subharmonic. Setting A = Z2, we
obtain

0 = AP o@)-2Re (724, (@7 f(D) w(@))
+12 ™ A (1 f Q)P 02)-

None of the three terms on the right-hand side has any singularity at the origin,

even though it may seem so to the inexperienced eye. We are going to integrate

the above inequality, term by term, against the positive measure (1 — 121)2 dA(2).
By Green’s formula,

fDa — 12?2 (1g(@)1* w(2)) dA(z) = fD (412> = 2) 181> w(2) dA(2).

A slightly more sophisticated exercise involving Green’s formula shows that if
D(0, &) stands for a small circular disk about the origin of radius &, then

[ - (7 ans@F F@0(@) dAw
D\D(0.¢)

= 2/ 78(2) fQ) w(2)dA(2) + O(e),
D\D(0.¢)
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where the normal derivative is taken inward with respect to the disk D(0, ). We
apply Green’s formula a third time to obtain

|- (8 a2 s @R o) dac)
D\D(0.¢)

=/ (4—2|le)lf(z)l2w(z)dA(z)+ O(¢).
D\D(0.¢)
Let ¢ — 0. We obtain

0 = /D(“IZIZ—Z)lg(z)lzw(z)dA(z)
—4Re/D§g(Z) f@w(z)dA®)

+ /D (4 —21z1%) 1 f (@)Pw () dA®),

which expresses the inequality we are looking for in expanded form. ]

In addition to the forward shift S, we will also need the backward shift T defined
by

Tf(z) =

f(z)—f(O)’ €D,
z

which we think of as acting on A%(w). It is clear that TS is the identity operator
and ST is given by

STf(z) = f(z) — f(0), zeD, f e AX(w).

The shift S is a contraction on A%(w), and so is ST, because the reproducing
property of the weight w leads to the norm identity

L1 = 1f = FOUL+1FOF,  fe A ).
What we shall actually use later is the following variant of Proposition 9.3.

COROLLARY 9.4 For any two functions f, g € A%>(w), we have the inequality
IS+ el < 201715 + ligl3)-

Proof. Just replace g by Tg in the theorem and use the fact that ST is a
contraction. ]

The following structure result is key to our further investigations.
THEOREM 9.5 The function L, defined by
1 - 20Ly(2, %)

(1 —z2t)?

is the reproducing kernel of a Hilbert space of analytic functions on D.
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Proof. Solving for L, we find that

— ! 32
Lo@t) = = (1-0-@PKe@.0)

1-— Kw s =
& +2Kp(z, ) — 28 Ku(z, 0).
49
Since
Ku(z,0) = Ky,(0,¢) = 1, (z.¢) e D x D,

the function L, (z, ¢) is analytic in z (and conjugate analytic in ). According to
Proposition 9.1, we need only show that L,, is positive definite. In other words,

we need to show that for any finite subset {z}, z2, ... , zy} of D, the inequality
N
> Lo(zj.z0)wj iy >0 ©.1)
jk=1

holds for all sequences {w;}.,

kernel K, we easily deduce that

€ CN. From the reproducing property of the

Lo(zj. 2k) :/D(/D Ly(z,8) Ku(zj,2) Ku(S, Zk)w(s“)dA(O) w(2)dA(2).

If we define a function f by
N
f@) =) ;Ku(z.2;), z€D,
j=1

then (9.1) is equivalent to

fﬂ)(f@ Lw(Z»()f(Z)f@)w(C)dA(C)) w(z)dA(z) = 0. 9.2)

We proceed to show that (9.2) holds for all f € A%(w).

Let $* and T* denote, respectively, the adjoint of operators S and T on the
Hilbert space A2(w). Using the formula for L,, at the beginning of the proof and
the fact that K, (z, 0) = K, (0, w) = | for all z and w in D, we obtain

/DLw(z,C)f(C)w(t)dA(Z)
1
= _E (f’ TKy(-. Do + 2 (f’ Ko(. 2w — 2 (f SKw(" Do
1
= =T Kl Dl + 2 Kals D = 208" Kol D

1
=—ET*f(z)+2f(z)—zS*f(z), zeD,
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for every f € A?(w). Since T*f(0) = 0, which is a consequence of the
reproducing property of the weight @, we can condense the above to

/D Lo(z.0) fQ) 0@)dAE) =TT f() +2 f() - SS*f(2).,  zeD.

Integrating now with respect to the z variable, we arrive at

fD(/DLQ,(z,c)f(z>f<c)w(c)dA<c)) 0(2)dA®)

= —(TT*f, lo+2{f, flo = (SS"f. Flu
= —IT"f15 + 2115 = 15" F13,
which shows that what we are trying to prove is the operator inequality
2—-TT*—-SS8*>0. 9.3)
To prove (9.3), we consider the operator
R: AY(0) ® A*(0) > A% (0)
defined by

R(f.g) =271 (Sf+Tg). f ge AXw).

An easy calculation shows that the adjoint of R is given by
R*(h) =277 (S*h, T*h).
It follows that
RR*f:%(SS*f—{-TT*f), f e A%(w).

Thus the operator inequality (9.3) can be rewritten as R R* < 1. According to
Corollary 9.4, the operator R is a contraction, which is equivalent to RR* < 1,
completing the proof of the theorem. ]

COROLLARY 9.6 |L,(z,¢)| <l forallzand¢ inD.

Proof. Since K, (z,2) > 0and L,(z, z) > 0 for all z € D, the identity

1 — |z12Lw(z, 2)
(1 —1z]?)?

together with the subharmonicity of L,,(z, z) shows that0 < L,(z, z) < l.Infact,
unless L, (z, z) is identically 1, we must have the strict inequality L, (z, z) < 1.

If L,(z,z) = 1, we must also have L, (z.¢) = 1, because an analytic kernel
function is determined by its values along the diagonal. In this case, K., becomes
the reproducing kernel of the space HZ2, which is impossible, since H? is not of
the type A%(w).

K(:)(Z’ Z) = Z € ID),
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We conclude that L, (z,z) < 1 for all z € . An application of the Cauchy-
Schwarz inequality for reproducing kernels then yields |L.(z, {)| < 1 for all z
and ¢ in D. |
COROLLARY 9.7 The reproducing kernel K, satisfies

— |z¢| 1+ |z¢|
11— Tozgp = e OIS Tp

forallzand ¢ inD. In particular, the kernel function K, is nonvanishing on D x D.

Proof. This is immediate from Corollary 9.6. |
The kernel L, has the following boundary behavior.

THEOREM 9.8 Suppose w is continuous on ﬁ._T hen w|T > 1, and the diagonal
function L,(z, z) has a continuous extension to . More specifically,
1
Ly(z,2) =1— —, zeT.

w(2)

Proof. For A € D, let k; be the normalized reproducing kernel of A?, that is,

1— A2

_ zeD.
(1 —xz)?

kn(z) =

Fix a point ¢ € T. Since |k; (z)|? is the real Jacobian of the involutive Mobius
map ¢, a change of variable combined with the continuity of w at ¢ gives

/D k()12 0(2) dA(z) — w(¢)

asA — ¢.
On the other hand, the reproducing property

ki(A) = (kn, Ko (-, Mo

together with the Cauchy-Schwarz inequality yields

T = e < Kol fD o (2)I? 0(2) dA(2),

so that

IA

lim i?f(l — M52 K, A)

liminf (1 — |A1* Lo(A, A))
AL

= 1 —Ilimsup L,(A, A),
A—¢
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which leads to half of the desired assertion,

li ka)»_l——— T
msp Lo M =1=70y  F€

For the other half, we use the normalized reproducing kernels of A%(w). Thus
for A € D, we let G, be the function
1
G (2) = Kp(A, A)" 2K, (z,A), zeD,

which has norm 1 in A?(w). By Corollary 9.7 and the easy fact that K, (A, A) —
+00 as |A| — 1, the function G tends to O uniformly off a fixed neighborhood of
the point ¢ as A approaches ¢ € T. In particular, the measure |G |2 wd A converges
to a point mass at { as A — ¢{. In view of Corollary 9.7, we can write

G1(2)dA®2)
A) = _—
N /ID) (1 - 1z)?

By the Cauchy-Schwarz inequality,
Ko ) =GP < (1 — Iklz)_Z/DIGx(z)lsz(Z),
so that
/ Gr(PdAR) — ——  as A — 1.
D w(¢)

It follows that

lim sup (1 — [A|? Ly, (X, 1))
A=

limsup (1 — [A1$)? Ko (X, 1)
A—¢

L
()’

1 — liminf L,(A, A)
A=

and consequently,

1—;(1—;)—<hmme (A, M), e .

This proves that

1
lim L,(A,A) =1 — ——
Al—rpz 4= ()

The inequality w(¢) > 1 then follows from the fact that L,,(z, z) > Oforall z € D.
[ ]

The harmonic polynomials are functions of the form p + g, where p and ¢
are (analytic) polynomials. Let HP?(w) denote the closure of the harmonic poly-
nomials in L2(D, wdA). We collect the elementary properties of this weighted
Bergman space of harmonic functions in the next proposition.
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PROPOSITION 9.9 HP?(w) is a Hilbert space with locally uniformly bounded
point evaluations. Let AZ;.O denote the subspace of A(w) consisting of those

functions that vanish at the origin, and A , , its image under complex conjugation.
Then the harmonic Bergman space splits as

-2
HP*(w) = A*(0) ® A,

the two subspaces on the right-hand side being orthogonal. Moreover, the kernel
function Q, for HPz(w) has the form

Qu(z,¢8) =2ReKu(z,¢) — 1, z,{ €D.

Proof. Let p and g be analytic polynomials. If g (0) = 0, then by the reproducing
property of w,

(P.q)o = /DP(Z)CI(Z)CU(Z)dA(Z) =0,

and so A%(w) and Zi.o are perpendicular. The Pythagorean theorem then gives

Ip+q12 = Ipl> + lgl>.

If we take a Cauchy sequence {p +¢ ;}; of harmonic polynomials in L*(D, wdA)
with g;(0) = O for all j, then the above identity shows that {p;}; is a Cauchy
sequence in A%(w), and {g;}; a Cauchy sequence in Afu.o. By the completeness
of the spaces A%(w) and AZ).O there are elements f € A%(w) and g € AZ).O such
that p; — f and g; — g as j — +o0. The limit function & = f 4 g is then
harmonic in D, and we have

IB12 = ILf + 812 = 1 FI2 + lgll>.

The local boundedness of point evaluations now follows from Proposition 9.2.
The reproducing kernel for A%(w) is K, and for qu.o itis Ko — 1. It follows

from the direct-sum decomposition of HP?(ID, w) that Q,, is the sum of these two
kernels. |

The function L, is bounded and sesqui-holomorphic on D?, meaning that the
function L, (z, ¢) is a holomorphic function of two variables there, and hence it
possesses radial boundary values almost everywhere on the torus T2. It follows
that the kernels K, and Q,,, too, have radial boundary values almost everywhere
on T2. The following result will be used later in the proof of the positivity of the
weighted biharmonic Green function.

COROLLARY 9.10 Ifw is continuous on D, then we have

1 1 1
0z, ) < - : 0) €T x T\&(T),
0wz, ) < (w(z)+w(;)) Py (z.0) € T x T\ &(
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almost everywhere with respect to surface measure, where §(T) denotes the
diagonal in T x T.

Proof. Since L,, is a reproducing kernel, we have

Lo 0 < Lo(z.2)? Lo, £)?,  2.{ €D.

Applying Theorem 9.8 and the geometric-arithmetic mean inequality, we obtain

) (a)
[——— 1] — ——
( (z) w(?)

ILw(ng)I <
1 1 1
< 1-a(—+— 9.4
= 3ot ew) o4
for almost all (z, ¢) € T?. Since
1 — 2z Lo(z, 1 3 ¢
Ko(e.) = L Le@D) I S S S )

(1-20? 1-2z0 (1-20* (1-20)?
it follows that
1 1 1
—2 z=¢P Je—¢]
for almost all (z, ¢) € T2\ §(T).

The first term on the right-hand side has real part % In view of Proposition 9.9,
the above representation formula, and inequality (9.4), we see that

Ko(@:0) = S Lo(2.0),  (2,0) € T2\ &(T),

0wz, ) = - 2 2 Re Ly(z,¢)
L T Ay A
2, 2 |Lw(z, )]
lz—¢PR Jz—¢2 T
B _( . ) 1
B 0@ @) lz-¢?
for almost all (z, ¢) € T? \ 8(T), as desired. n

9.2 Green Functions with Smooth Weights

Throughout this section we assume that w, in addition to being logarithmically
subharmonic and reproducing for the origin, is strictly positive and real-analytic
on D (this means that the weight is real-analytic in a neighborhood of D).

Let D C D be a simply connected domain with C* boundary. The Green
function Iy, p for the weighted biharmonic operator Aw ™! A is defined as follows.
For fixed ¢ € D, the function Ty, p(-, ¢) is the unique solution to the boundary
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value problem

A0 'A Ty p(z,8) = 8(2), z€D,
F'u.pz¢) = 0, z€dD, 9.5)
O Tw.n(z, L) = 0, z€4D.

As we integrate back one Laplacian, we see that

A;To.p(z.8) = 0(2) (Gp(z, ) + Hy.p(2, §)),

where Gp is the Green function for A on D, and the function H, p(z, ) is
harmonic in the first variable z on . In view of the boundary condition

Fw.n(, Oep =0,

the integral version of this identity is

Fo.p(z,8) = /DGD(Z, £) (G, &) + Hop(5, D)) w(§)dAE).  (9.6)

An application of Green’s formula along with the zero boundary data of T',, p
shows that for a harmonic function 4 that is smooth up to the boundary of D, the
kernel H, p has the balayage property

fD 1) (Gp(z. §) + Hoop(z, 1)) w(2) dA(Z) = 0. ©0.7)

We call H, p the harmonic compensator (for the Green function Gp with
respect to the weight w). It follows from (9.7) that H,,_p (-, ) equals the weighted
harmonic projection of —Gp (-, ¢):

Hop(z¢) = — /D 0u.0(2,8) Gp(E, 0) 0(E) dAE), 0.8)

where Q,, p is the reproducing kernel for the weighted harmonic Bergman space
HP%(D, w), the completion of the harmonic polynomials in L*(D,wdA). Taking
the Laplacian with respect to ¢, we obtain

A¢Hy p(z,8) = —0(¢) Qu.0(z,§),

a nice relationship between the harmonic compensator and the harmonic
reproducing kernel.

The remainder of this section is devoted to proving that the weighted biharmonic
Green function

Fw=TuD

is positive on D x D, a result that turns out to have far-reaching consequences.
Unfortunately, the proof depends on the following result. Recall that ds(z) =
ldz|/(2m).

THEOREM 9.11 For each 0 < r < 1, there is a (unique) simply connected
domain D(r) contained in D and a conformal map ¢, : D — D(r) with the
following properties:
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(1) The boundary of D(r), 3D(r), is a real-analytic Jordan curve.
(2) Each D(r) contains the origin and each ¢, preserves the origin.

(3) The domains D(r) are increasing inr with D(1) = D, and their intersection
is the point at the origin.

(4) The reproducing property
o = [ e daw (9.9)
D(r)

holds for all bounded harmonic functions h on D(r).

(5) The mapping (r,z) — ¢,(z) extends to a holomorphic function of two
complex variables on a neighborhood of (0, 1] x D.

(6) For each 0 < r’ < 1, there is a small open interval J around it such that
all the functions ¢,, r € J, extend as conformal maps to one and the same
neighborhood of D.

(7) ForeachQ < r’ < 1, we have

1 1 () dA) dw, ()
=3 lpenne)(2) dAR) > ———
r2 _ (rl)z (r)\D(r") a)(Z)
asr — r'’t, in the weak-star topology of the Borel measures. Here, w, is
harmonic measure on 0 D(r); we do not use the notation w for harmonic
measure here, to avoid confusion with the weight.

, (9.10)

+

(8) The evolution equation

o, ) {4z ds(¢)
ar O | e ) I OP

9.11)
holds for all0 < r < 1 and z € D.

The proof of this theorem is too technical and depends on the theory of weighted
Hele-Shaw flows, and is therefore omitted. The interested reader is referred to [69].

We will call the domain D(r) an w-mean value disk of radius r. The reproducing
property (4) above is the most fundamental; in fact, it uniquely determines the
domain D(r).

Let I'y., denote the weighted biharmonic Green function I'y, p(r). Similarly,
let G, be the classical Green function for D(r), and let H, , be the harmonic
compensator corresponding to the weight w and the domain D(r). We shall derive
a variational formula, originally found by Hadamard in 1908, which describes the
development of I',, , as r increases quantitatively [50, pp. 515-641]. Since w is
real-analytic on D and the w-mean value disks D (r) depend on r very smoothly, we
conclude that the Green function I',, , extends real-analytically to a neighborhood
of the set

D(r) x D(r)\ 8(D(r)),



256 9. Logarithmically Subharmonic Weights

where
8(D(r)) ={(z.2): z€ D(r)}

is the diagonal. In particular, for fixed ¢ € D(r), the function T, , solves the
differential equation

Aw 'AT,, (7)) =&

on a neighborhood of D(r) \ {¢}.
We consider two parameter values r and ', with O < r < r’ < 1, and introduce
the expression

Frr(&,8,2)= (Gf(sv z) + Hy.r (&, Z)) (Gﬂ(f, O+ Hy (&, {))
By (9.6) and (9.7),

Ror0) = [ Frr 006 dae
for (z,¢) € D(r) x D(r), and
Far@o= [ Frr006)dae

for (z, ¢) € D(r') x D(r').
Since D(r) C D(r’), we have

Fur (@ 2) = Tor(e, ) = f Fop (6. £, 2) 0(8) dAGE)
D(r")\D(r)
for (z,¢) € D(r) x D(r). If r’ is sufficiently close to r, we can actually take
(z,2) € D(r') x D(r"). It follows from (9.10) that as r’ — r,

di Cor(z,8) :Zr/ Hy,(&,2) Hy r(§,0)dw (). (9.12)
r dD(r)
Here, we have used the fact that the Green function G, vanishes when one of the
variables is on the boundary 3 D(r).

We want to turn the differential equation (9.12) into an integral equation. Note
that when one of the variables z and ¢ is on the boundary 3 D(r) and the other is
in the interior D(r), we have ', ,(z, ¢) = 0. If we integrate (9.12) with respect
to r, the following formula emerges:

Fw.r(z,€)=/ / Hw.g(&Z) Hw.g(fvg)dwg(s)szQ»
max{R(z).R(¢)} /9 D(e)
(9.13)

for (z, £) € D(r) x D(r). Here, R(z) stands for the parameter value of ¢ for which
the boundary of D(p) reaches the point z:

R(z) =inf {o : z € D(0)}.
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The integral formula (9.13) will be referred to as Hadamard’s variational formula;
it clearly shows that the positivity of the weighted biharmonic Green function
will be established once we are able to show that the harmonic compensators are
positive. To this end, we proceed to show that the harmonic compensators can be
written as an integral in terms of the Poisson kernel and the weighted harmonic
reproducing kernel.

Let P, be given by

1
2

the normal derivative being taken with respect to the boundary d D(r) in the interior
direction. This function serves as a Poisson kernel on D(r). For instance, we have
the identity

Pr(z,8) = —5 ) Gr (2. 8), (z,£) € D(r) x aD(r),

dw,(z) = Pr(z0,2) ds(2), z€dD(r).
Using arguments similar to the proof of (9.12), we can show that

dw,(§)
w(&)

d
d—Gr(z’§)=—2rf P (z,8) P (£, 6)
r aD(r)

for _(z, £) € D(r) x D(r). In integral form this becomes

Gr(ng):“/ faDng(Z,-‘E)Pg(C’é)
0

max{R(z).R(¢)}

dwy(§)
w(§)
for (z, ¢) € D(r) x D(r). Combining this with equation (9.8), we get

r
Hy,, (¢, 2) = / / / Ow.r(C,n)
D(r) Jmax{R(z).R(n)} Y3 D(o)

d
x Py(2,&) Py(n. £) Z’fg)

20do

20dow(n)dA(n),
which transforms to
Hor(60) = f / Qo (2. 1) Po(n, &) () dA()
R(z) JoD(o) J D(o)
dwy (&)

X Py(z, §) 20do, (9.14)
w(§)
where (z,¢) € D(r) x D(r).
As a consequence of formula (9.14), we see that if
Qw.r(8, 1) Po(n,§) w(n)dA(n) =0 (9.15)

D(o)

for (£,¢) € 9D (o) x D(r), where0 < ¢ < r < 1, then the harmonic compensator
H,,., is positive on D(r) x D(r). Note that the function Q,,(¢, -) is harmonic on
D(r), and in particular, bounded there. Since the Poisson kernel P(-, £) is area
summable on D(p). we see that the integral in (9.15) makes sense.

We are going to prove the following result, which is seemingly stronger than,
but actually equivalent to, inequality (9.15).
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LEMMA 9.12 Fix o andr suchthat0Q < o < r < 1. Let h be a positive harmonic
function on D(p), and define

hr(2) :/ Qu.r(z.E)h(E) w(§)dA(E), z€D(r).
D(o)
Then h, is positive on D(r).

Proof. It suffices to obtain the result under the proviso that 4 is harmonic
and strictly positive on D(p). Since O, ,(0,-) = r~2, a consequence of the
reproducing property of the domain D(r), the value of the function 4, at the
center point O is

2

1
he(©) = — fD( HO0E)dAE) = f— h(0),
o

which is positive. We split the proof into three parts.

Part 1: continuity of /4, in r. The function 4, is the orthogonal projection of
h 1p(p), interpreted to vanish on D(r)\ D(), onto the weighted harmonic Bergman
HP2(D(r), ). From the smoothness of the harmonic compensator H,, , in the r
variable alluded to above, and the corresponding fact for the weighted harmonic
Bergman kernel Q,, , as deduced from the identity

Quwr(@8) = 0@ ArHy (2, 0),

itisimmediate that 4, (z) is real-analytic in the coordinates (z, r) in a neighborhood
of the set

{@.r):2eD@), re N}U{@r): ze D), rele 11}

We need to investigate the continuity of 4, (z) near the left endpoint r = p. By the
reproducing property of the domains D(p),

2
f Qu.r(2.8) ) dAE) = 0% Qur (2.0) = 5, z€ D(r),
D(o) r
and hence
2
h(z) = r—zh(z) = Qw.r(z,8) (h(E) — h(z)) w(§) dA) (9.16)
@ D(o)

for z € D(r), provided that r is so close to o that 4 is defined as a harmonic
function on D(r). Since

h() —h(z) = O(lz = §D)

for z and & in some fixed neighborhood of D(p), part of the singularity of the
kernel Q, , is neutralized by the appearance of this factor on the right-hand side
of (9.16). Let w, stand for the pulled-back weight on the unit disk,

W (2) =r2wo ¢, (2) 9 (D)1,
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which is reproducing for the origin as well as logarithmically subharmonic. It
follows from the conformal invariance of the reproducing property of the weighted
harmonic Bergman kernel that

2 Qur(r(2), $r(0)) = Qu, (2.8) =2Re Ky, (2,8) — 1 9.17)

for (z,¢) € D x D. Applying Corollary 9.7 to K,, and using the relationship
between the harmonic and analytic kernels of Proposition 9.9, we obtain

4
r? |Qwr(¢r(1)v¢r(§))l = |Qa),(z,§)| <1+ m (9.18)

for (z, ) € D x D. Rewriting (9.16) in terms of the variable ¢, ¢,() = &, we get

2
hy o ¢ (2) — é ho ¢, (2) (9.19)

:fl Qu, (2.£) (h(¢r (1)) = h(r(2))) 0r () dA(Z)
¢ (D(e)

for z € D, where ¢~ 1(D(0)) C D. Given the estimates mentioned previously, it is
easily deduced from this identity that 4, o — hog¢, uniformlyonDasr — o.In
fact, if r € (g, 1) is close enough to g, the function / is well defined and harmonic
on B(r), so that the above integral also makes sense when we extend the domain
of integration to ID. And the integral over D is zero, by the reproducing property
of the harmonic kernel. So the right hand side of (9.19) reduces to an integral over
the thin “circular” band D \ q),“ (D(0)), which is quite small. In particular, since
we assume h to be strictly positive on E(Q), it follows that A, o ¢, is uniformly
(in r) strictly positive on D for r in some short interval (0,0 + 8], with § > 0.

Part 2: the derivative of /1, o ¢,. The derivative of the composition 4, o ¢, with
respect to the parameter r is, by the chain rule,

d ah dh,

k090 = 57 090+ 2Re (5L 00,0 S @) 9.20)
dr ar

where the partial derivatives with respect to r and z correspond to thinking of the

function 4, as a function of two variables: 4, (z) = h(z, r). The derivative of ¢,

with respect to r is supplied by formula (9.11), which simplifies to

¢r _z {+2zds(t)
( ) ¢r( ) o)

for z € D, where the symbol H stands for the Herglotz transform.

To find a way to express the partial derivative d,h,, letr’, 0 < r’ < r, be so
close to r that .+ extends harmonically and boundedly to D(r). Then, from the
reproducing property of the weighted harmonic Bergman kernel,

= —¢>,( 2) H+[ ](z) (9.21)
Wy

ho(2) = fD( 0.6 ) () dAE) (9.22)
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for z € D(r). On the other hand, by the reproducing property again,

Quw.r(2,8) QurE. Hw@E)dAE) = Qu.r(z.{)

D(r')
for (z,¢) € D(r) x D(r'), so that

Qu.r(z,8) hp(§) w(§)dA(®)

D(r")

= Quw.r(z,8) Qu.r (€, ) () w(@)dAR) w(§)dA(E)

D(r') D(o)

=/ Qu.r(z, ) () () dAK) = h(2) (9.23)
D(o)
for z € D(r). Forming the difference between (9.22) and (9.23), we obtain
he(z) = hp(2) = ~/ Qu.r(z, &) hp(§) w(§)dA(E) (9.24)
D(r)\D(r")

for z € D(r). It follows from (9.10) and (9.24) that
oh,
or

7) = —2r/ 0uw.r(z,8) he(§) dw, (§), z € D(r).
aD(r)

Shifting the coordinates back to the unit disk and keeping in mind (9.17), we obtain
Bh,

°¢>r(Z) ——/ Qu, (2, 8) hr 0 ¢r(¢)ds (), zeD. (9.25)

By the Poisson integral formula for harmonic functions in I, we have the
representation
2
Iz

hr0¢r(z):/——— 0d(0)ds(t).  zeD,
T |1 — z¢)?

which easily yields

B0 0 61(0) = /(1 kot ©ds©). zeB. 026

We insert the above representauon formulas (9.21), (9.25), and (9.26) into (9.20),
and obtain that the derivative < 77 hr 0 9r(2) is equal to

2 g
;[E{Re (H+|: }(Z) m) - Qw,(Z,C)} hr o ¢r(£)ds(8),

where z € ID. Just as in the proof of Corollary 9.10, we notice the appearance of the
Keebe function. Suppose for the moment that for some value of the parameter r,
0 <r < 1, the real-analytic function 4, o ¢, |1 vanishes along with its (tangential)
derivative at some point z; € T. Then &, o ¢,(z) = O(|z — z1|%) as z approaches
z1 along T, which counterbalances the singularities of the Keebe function and the
weighted harmonic Bergman kernel, as estimated by (9.18), at least when z € D
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approaches the boundary point z; radially. Taking into account the well-known
boundary behavior of the Keebe function, we obtain in the limit that (the real
part of the Herglotz transform is the Poisson integral, with well-known boundary
values)

d 2 1 1
“‘h r = - w, hr r d .
—hror(z1) /{wr(a) Toap Qe ;)} 0 ¢r(¢)ds(¢)

If, in addition, 0 < h, o ¢, on D, then by invoking Corollary 9.10, which states
that

1 1 1
Q“"(Z"g)&(wr(zl)+w,(c)) o feT\ab
we can assert that
< 2/ : : 0¢r(£)ds(¢) = ih o ¢r(z1). 927
T @) [t -2l I

The leftmost inequality holds because /, o ¢, cannot vanish identically, since we
know that 0 < h,(0) = h, o0 ¢,(0).

Part 3: the finishing argument. Consider the function
h(r) = min {h,(z:) 1 Z € B(r)} = min {h, o, (z): z € ﬁ} o<r<l,

which, by the results of Part 1, extends continuously to the interval [g, 1), and
is positive at the left endpoint. We shall demonstrate that 0 < h(r) holds for all
r € [o, 1), which is actually slightly stronger than what is needed. We argue by
contradiction and thus assume h(r) < 0 for some r € (g, 1). Forming the infimum
over all such r, we find a parameter value r; € (o, 1) with h(r;) = 0 such that
0 < h(r) holds for all r € [p, r}). By the maximum principle, there exists a point
z1 € T such that A, o ¢,,(z1) = 0and O < h,, o ¢, elsewhere on D. The point
z1 1s precisely of the type considered in Part 2, so that by (9.27),

d

- hr © ¢r(21)| r=r|
We immediately see that i, o ¢,(z1) < O forr, o0 < r < ry, sufficiently close
to ry; and hence h(r) < 0 for such r. This contradicts the minimality of r}, and
completes the proof of the lemma. ]

Combining the lemma above with equations (9.13) and (9.14), we conclude that
for any r € (0, 1), both H,, , and T, , are positive on D(r) x D(r). In fact, they
are strictly positive on D(r) x D(r). Consequently, under the assumptions that
w is logarithmically subharmonic, reproducing for the origin, real-analytic on I,
and strictly positive on D, we have the following result.

THEOREM 9.13 The weighted biharmonic Green function Ty, is strictly positive
onD x D.
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9.3 Green Functions with General Weights

To prove that Theorem 9.13 remains valid without the assumptions that o is
real-analytic and strictly positive on D, we need only establish the following two
approximation results.

THEOREM 9.14 For each positive ¢, there is another logarithmically subhar-
monic weight @ that is reproducing for the origin such that:

(1) @ is real-analytic on the closed disk D.

(2) @ is strictly positive on .
(3) / lw(z) — &(2)|dA(z) < e.
D
Proof. Let Aut (D) denote the automorphism group of D. Every ¢ € Aut (D)

admits a unique factorization ¢ = Rg o ¢ with 8 € T and A € D, where Rg is a
rotation and

A—2Z
o (2) = =, zeD.
* 1—Az

Thus we can identify Aut (D) with the set T x D. Under the representation above,
the (invariant) Haar measure on Aut (D) is given by

dA(V)
—=d .
=z “P
Fix a real-analytic function ® : Aut (D) — (0, +00) in the following form:

Q(¢) = P1(BYP2(2), ¢ = Rg oo,

de =

where
Dr(A) = (N = 1) (1 — AN, reD, (9.28)

for some integer N = 2, 3,4, ..., so that

dA(A)
Pr(A)) ———=—= =1,
A XM T e

and ®; : T — (0, 4+00) is some real-analytic function with

‘/waﬂm=k
T

For instance, we can take

l—g2
e 2

for some real parameter o with 0 < g < 1.

D1 (B) =
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It is easy to see that
[ e@ihos 0o =ho) 930)
Aut (D)

for all bounded harmonic functions A on . In fact, for ¢ = Rpg o @y, we have
o' =pro RB’ so that ~1(0) = A, and the left-hand side of (9.30) becomes

dA())
b Pr(Mh(M) d _
/m (B @2(h) ds ()

=(N - 1)/Td>1(ﬁ)d5(ﬁ)fm(l — AN TR dAGY).

An application of the mean value theorem then shows that the integral above equals
h(0) for all bounded harmonic functions 4 on D.

We use the function & to regularize w. More specifically, we consider the
function

we(2) = / D() w0 (2) 19’ (2)12do. 9.31)
Aut (D)

It is clear that w¢ is strictly positive on D. The function w¢ is also logarithmically
subharmonic, because each individual function wo ¢ |¢’ |2 occurring in the integral
is, and because the logarithmically subharmonic functions form a cone. If 4 is
bounded harmonic function in D, we use (9.30) to obtain

/h(Z)ahp(Z)dA(Z) = / q>(¢)/ h(z)w 0 ¢(2) |9/ (2)*dAz) dp
D Aut (D) D

= f <b(¢>/ho¢“(z>w(z)dA(z>d¢>
Aut (D) D

/ D(p) h o™ (0)dp = h(0),
Aut (D)

so that w¢ is representing for the origin.
A change of variables gives

wo(2) = (1~ |z|2>‘2/ D(pog:)wod(0)¢'(0) do
Aut (D)
for z € D. This clearly shows that w¢ is real-analytic in .

In order for wg to approximate w in L!'(D), we just need to choose & so that
most of its mass is concentrated near the unit element of Aut (D). This will be
achieved if the parameter N is sufficiently large in ®; and if the function ®| has
most of its mass near the point —1 on the unit circle.

We have thus shown that w can be approximated in L' (D) by a logarithmically
subharmonic weight that is reproducing for the origin, real-analytic in D, and
strictly positive on D. So, in the rest of this proof we will assume that w itself has
all these additional properties.
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For 0 < r < 1, let w,(z) = w(rz) be the associated dilation of w. Each w,
is logarithmically subharmonic, strictly positive, and real-analytic on the closed
disk D, but obviously, w, is not representing for the origin. However, each w, is
subrepresenting, that is, for all positive bounded harmonic functions 4 on D we
have

/Dh(z) wr(2)dA(z) < h(0). (9.32)

If fact, if P(z, ¢) denotes the Poisson kernel
-z

11— zZ|?

then for each z € D the function

P(z,¢) = (z,0) e D x T,
A / P\, a)w(az)ds(a)
T

is harmonic in D and equals w(Az) for A € T. Since the function w(rz) is
subharmonic in the variable A, we must have

w(Az) < A P\, a)w(az)ds(a), (z,A) e D x D.
In particular,
wr(z) < /TP(r, o) w(az)ds(a), zeD.
By the reproducing property of w,

fD M@ o () dAR) < / @) P(a) 0(@) dAG) ds(@)
I Tx

/ P(r,a) / h(2) w(@z) dAG) ds(@)
T D

= /P(r,a)h(O)ds(ot):h(O)
T

for all positive bounded harmonic functions # in D.

We now complete the subrepresenting weight w, by adding a suitable small term
which will make the sum representing for the origin but at the same time preserve
the other properties of w,.

First, consider the harmonic function

where we have extended the Poisson kernel to the interior:
1 — |z ]?
P(Zv {) = =
I1—2z¢)?

This is the sweep of f, a function we encountered back in Chapter 3. The function
P*[w,] extends harmonically to a neighborhood of the closed unit disk. By the

(z.2) e D x D.
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subrepresenting property (9.32) of w,, we have 0 < P*[w,] < 1 throughout D,
and hence 0 < P*[w,] <l alsoonT.
Next, let 8 be a real parameter with 0 < 8 < 1, and consider the function

H() =1-6 P*w/])(2), z2eD,

which is harmonic, bounded above by 1, and positive, on some oD with 1 < o <
+00. The function
(1-07%?
F@) = | ——— =7 H{ds(), z € oD, (9.33)
T —o07'z8]
is then real-analytic, strictly positive, and logarithmically subharmonic in oD.
Moreover, for each z in D we have

P*[F1(z) / P(z,8) F(£)dA(%)

~Q—2)2
/P(Z $) / “ g H(0§)ds(§)dA(L)

- // _2)2 dA@) H(ot)ds(€)
|1 — o Tep
= /TP(Q"Z,§)H(Q§)dS(E)=H(z).
It follows that the weight function
&(2) =0w,(2)+ F(2)

is logarithmically subharmonic, strictly positive, and real-analytic on some
neighborhood of . It also satisfies P*[w] = 1, which is equivalent to

/D h(2)3(2) dA(z) = h(0),

where h is any bounded harmonic function in D). Therefore, @ is representing for
the origin as well.

If the parameter r is close to 1, then the dilation w;, is close to w in L} (D). Also,
if 6 is close to 1, the function 6 w, still approximates w well in L1(D). But this
means that & P*[w,](0) is close to 1, and since the L'(D) norm of F equals the
difference 1 — P*[w,](0), the modified weight & approximates w well in L'(ID).
The proof is complete. ]

Note that if @ = |G 4|%, where G 4 is a finite zero divisor in A2, then the proof
above can be greatly simplified. For example, we can take

o(z) = (1 =8) w(z) + 34, zeD,
for sufficiently small positive §.

PROPOSITION 9.15 Let w and wy,, for n = 1,2.3...., be logarithmically
subharmonic weights that reproduce for the origin. If w, — w in the norm of
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L'(D)asn — +oc, then Ty, (2. ¢) = T,(2.¢) pointwise inD xDasn — +o0.

Proof. Let v denote a weight of the same general type as w and wj,. and recall that
by the reproducing property of v, we have the following identity of reproducing
kernel functions (see Proposition 9.9):

0.(z.2) =2ReK,(z.2)— 1. (z.¢) e D xD. (9.34)

Let H,(-, £) be the harmonic compensator function
Hy(z.0) = —f) Qv(z.m G(n. &) v(n)dA(n). (z.¢) €D xD.
so that
ru(z.¢)= fnG(Z' £) (GE. 1)+ Hy(5.0)) v(E)dAE)  (9.35)

for (z.£) € D x D. By Corollary 9.7 and the relationship (9.34). we have the
estimate

4
|0v(z.0)| = |+m. (z.0) €D x D. (9.36)

We shall use this to estimate the size of the kernel H,. We observe that by the
reproducing property of v,

/ T "”I' v dA(m =1, zeD, (9.37)

and that by Fatou’s lemma, the integral on the left-hand side is bounded by 1 for
z € T. For ¢ confined to a compact subset X of D, the Green function G(1.¢)
is comparable to —(1 — |n|2) near the boundary, which allows us to use estimate
(9.36) in conjunction with (9.37) to obtain the uniform estimate

|Ho(z.0)|<C, zeD. reX, (9.38)

for some positive constant C depending on X, universal for all the weights v. We
now show that H,, (-, £) — H,(:, £) in an appropriate norm. For fixed ¢ € D, the
function F,(-. ¢), defined by

FU(:‘ {) = G(Z C) + Hv(f:'n ;).

is perpendicular to bounded harmonic functions with respect to the inner product
of L3(D, v). Using this fact and the estimate (9.38), we arrive at the identities

ﬁ |H(l)(:v ¢) — Hw,,(z. §)|20)(Z) dA(2)

= L(IFw,,(z.C)IZ — |Fou(z. )1} w(2) dA(2)
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and

/D |Ho(2, £) — Hoy, (2, 0)2won(2) dAD)

= /D (IFu(z, O = [Fu, (2, O )wn(2) dA2).

We add these together to obtain

/D |Ho(2,8) = Ha, (2, O (0(2) + 0n(2)) dA(D)

_ /D (12 O = 1Fu, 22 OF) (@n(2) — 0(2)) dAG).

The weight v always satisfies

v@) < -zhH7h zeD;
see Exercise 1. By estimate (9.38), the above growth estimate of weights, and the
assumed L!(D) convergence w, — w, we have

/IHw(z,t)~Hwn(z,§)]2w(z)dA(z)—>0 as n— +0o (9.39)
D

uniformly for { € X; in other words, H,, (-,¢) — Hy(-, ¢) in the norm of
L%(D, w). Now, by (9.35),

Fu(z.0) = To, (2. 0) = /DG@,&)(Hw(s,c) ~ Hoy(5.0)) 0(6) dAE)

+ /D G2 8) (GE. §) + Hap (8. D)) (0(6) — 0n(6)) dAGE)

for (z, ¢) € D x D, so that the desired result follows from (9.38), (9.39), the growth
estimate of weights, and the L!(ID) convergence w, — . ]

Combining Theorem 9.13, Theorem 9.14, and Proposition 9.15, we have now
proved the following resultunder the standing assumptions that w is logarithmically
subharmonic on D and reproducing for the origin, but without the assumptions that
w is real-analytic and strictly positive on D.

THEOREM 9.16 The weighted biharmonic Green function T, is positive on the
setD x D.

9.4 An Application

In this section, we use the positivity of the weighted biharmonic Green function

to prove an important result about contractive zero divisors of ordinary (that is,
unweighted) Bergman spaces.
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Fix0 < p < 400. We write @4 for the contractive zero divisor in A associated
with the zero sequence A; we do not use G 4 to avoid conflict with notation for the
Green function for the Laplacian.

THEOREM 9.17 Let A and B be two zero sequences for AP with A C B. Then
loaflil < lles fl

forall f € AP, where || - || is the norm in AP.

Proof. For finite sequences A and B, the functions ¢4 and g are holomorphic
in a neighborhood of ID. We consider the function ®p 4 that solves the boundary
value problem

ADp A(2) = lpp(D)IP — lpa(2)I?, zeD,
®Pp a(z) =0, zeT.

From an application of Green’s formula, we see that the fact that the function
l¢8|P — @4 |P annihilates harmonic functions in L2(ID) translates to the additional
boundary condition

On(z) Pp.A(2) =0, zeT.

Dividing the differential equation by |@4(z)|?, then applying another Laplacian,
we find that

v () |°

loa(z)|? pa(2)

which is positive on D. In view of the given boundary data, we may write the
function ®p_4 as an integral in terms of the weighted biharmonic Green function
I :

@AlP-

zeD,

Adpa(z)=A

p

(L) dAD), zeD,

wa(l)

which is then positive. The importance of the potential function ®g_4 comes from
the fact that Green'’s formula yields the identity

4>3.A(z)=/DF|¢A|P(Z,§)Ac

lps flihs — lpaflh, = /D<1>B.A(Z) ALl f ()P dA(2), zeD,

for polynomials f. Because we can approximate functions in A? by polynomials,
and because the functions ¢4 and ¢ are bounded on D, we have proved the desired
result in the case of finite zero sets. Furthermore, setting g = ¢p f leads to

|26, < ghan. (9.40)
wp NAF

for all g € A? that vanish on B.

If A and B are arbitrary zero sequences, we form finite subsequences A’ C A
and B' C B with A" C B’. Then inequality (9.40) holds with A and B replaced
by A" and B’, respectively, and with g vanishing on B. Letting A’ grow up to A4,
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and B’ up to B, then ¢4 — @4 and ¢p' — @p in AP. An application of Fatou’s
lemma delivers the inequality (9.40) for arbitrary A and B, which easily implies
the assertion of the theorem. ]

9.5 Notes

Proposition 9.1 is a key resultin the theory of reproducing kernels, due to Aronszajn
[12], Krein, Mercer, Moore, and Schwartz; see [107]. The other results of this
chapter, along with their proofs, are taken from the papers [69, 72] by Hedenmalm,
Jakobsson, and Shimorin. The assumption on the weight w that it is logarithmically
subharmonic has a natural differential geometric interpretation: it means that the
unit disk I equipped with the (isothermal) Riemannian metric +/w(z)|dz| has
negative Gaussian curvature everywhere (in other words, it is a hyperbolic surface).
The differential operator we have studied, Aw™! A, then corresponds to the squared
Laplace-Beltrami operator on the Riemannian manifold.

Engli§ has made explicit computations of certain weighted biharmonic Green
functions [45].

Hadamard’s variational formula is from the classical paper on plaques élastiques
encastrées [50, pp. 515-641], and the version that applies to the Laplacian A is
of fundamental importance for conformal mapping; see [97, pp. 42-48, pp. 263-
265]. It has been used by Lowner [91] and then later by de Branges [30] in his
proof of the Bieberbach conjecture.

There exists a vast mathematical literature on Hele-Shaw flows; here, we men-
tion only Richardson’s paper [99]. However, these flows have been studied almost
exclusively in the context of Euclidean space, with an irregular but nonempty blob
of liquid at time ¢ = 0.

9.6 Exercises and Further Results

1. If w is logarithmically subharmonic and reproduces at the origin, then we
have the growth estimate

o@<-lzP7  zeD.
2. The function
Jo(z,8) = (1 = 28) Ku(z, )
is the reproducing kernel of a Hilbert space of analytic functions on D.
3. Suppose K and K7 are two analytic reproducing kernels on D. If
Ki(z,2) = Ka(z,2)
for all z € D, then
Ki(z, w) = Ka(z, w)
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10.

11.
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for all z and w in D.
Prove Corollary 9.7.

Show that K,,(z, z) = +o0 as |z|] — 17, provided that the weight w on D
is logarithmically subharmonic and area-summable.

. Let A and B be two zero sequences for A% such that B\ A consists of a single

point a € D. Then the quotient f, = @p/@a is a bounded holomorphic
function on D, and it vanishes only at the point a in D. Moreover, if b, is
the Blaschke factor corresponding to the point a, then | f;/b,] > 1 holds
throughout . In particular, f, (D) covers the whole disk D.

. Let B be a zero sequence for A” and M an invariant subspace in A?. If M

has index 1 and if Mg C M, then M = M 4 for some subsequence A of B.
For details, consult [69].

Assume that w is logarithmically subharmonic and reproducing for the
origin, and let ¢ € A%(w) be an A%(w)-inner function; these are defined
analogously as for the spaces AZ. Then || f|l» < ll¢f |l for all polynomials
f.In fact,

lefI2 = I£I12 + /D Drw(z,o|¢>’<z>|2|f'(:>|2dA<z>dA(;)

for all f € A?(J¢|’w). Hint: follow the general outline of the proof of
Theorem 9.17.

. Assume that @ and o' are two logarithmically subharmonic weights that are

reproducing for the origin. Suppose that in addition, both are C* on D, and
that the quotient o’ /w is subharmonic. Then || fll, < || fllo holds for all
fe A%

Under the same assumptions of the previous exercise, the difference K, —
K.y is areproducing kernel on D x D. In other words,

Lw(z,8) — Lu(z,§)
(1 —20)?
is a reproducing kernel on D x . What about the kernel
Ly(2.0) = Lo(z.2) ,
1 -z¢
The latter is an open problem; see [69].

We now mention an open problem. Let w be a logarithmically subharmonic
weight that is reproducing for the origin. Decide whether foreacha € D\ {0},
the one-point zero divisor in Az(w),

(1 -n(_ Kw(z,a)>
pa(2) = (1 = Kpla,@)7') (1 Xaw) € D,
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13.

14.

15.

16.

17.
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is univalent, and in particular whether ¢, (D) is starshaped about the origin.
Is the function always bounded by 3 in modulus? The problem about star-
shapedness would follow if a certain additional property of the weighted
biharmonic Green function I, were known, namely

d ]
— A Tu(z,0) = —2P(z,{)+ —— Hp(z2,2) <0
n(2) o) (2, 0) (z,¢ @ (2, ¢)
for all z € T and ¢ € D. Here, P is the Poisson kernel, H,, is the har-
monic compensator, and the normal derivative is in the interior direction.
Together with the positivity of the Green function I, this conjectured prop-
erty constitutes the strong maximum principle for biharmonic operators, as

envisaged by Hadamard in his treatise on plaques élastiques encastrées [50,
pp- 541-545]. See [69] for details.

Suppose 0 < p < 400 and 0 < 0] < 03 < +00. Let G| and G be
the extremal functions of the invariant subspaces of A? generated by the
functions S,, and S,,, respectively, where S, is the classical atomic singular
inner function with a point mass o at z = 1. Show that |G f|l, < G2 f]l,
for all bounded analytic functions f in D.

If w(z) = |G(2)|* for some A2-inner function G, then B%(w) = A%(w) if
and only if G is a zero divisor.

Suppose I is an invariant subspace of A%(w), where the weight w is logarith-
mically subharmonic and reproduces for the origin. Prove that I = [I ©z1],
that is, I is generated by I © zI. Hint: try to apply Theorem 6.14.

Fix the parameter —1 < o < +400. Show that each function u on D with
Aw;l Au = 0is of the form u(z) = g(z) + |z|?**2h(z), where g and h are
harmonic. This is an Almansi-type representation of weighted biharmonic
functions. Use this information to find an explicit formula for the harmonic
compensator for the weight w,. See [64].

Fix the parameter —1 < o < +00. Use the positivity of the harmonic com-
pensator for the weight wy, to prove that the Green function I'y,, is positive
on D x D. Hint: apply Hadamard’s variational formula with concentric cir-
cles about the origin. See [64]. For 0 < o < +00, wy is logarithmically
subharmonic, making this a special case of Theorem 9.16.

In the exercises that follow, w is a C*>°-smooth strictly positive weight on
D that need not be logarithmically subharmonic, nor reproducing for the
origin. The symbol M,, stands for the operator of multiplication by w. We
also let ), w7, and v be weights of the same type.

Associate with the reproducing kernel K, the integral operator

wa(z>=fDKw(z,c>f<c>dA<;>, ceD,
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19.

20.

21.

22.
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and do the same for the weights w; and w> as well. Show that as operators
on L%(D, dA), we have

Kuy = Koy + Koy (Mo, — Myy) Ko,
+ Ko, (Mo, — Mop) Koy (Mo, — My)Koy + ...

provided w; and w» are sufficiently close uniformly on ID. We mention that
an analogous perturbation formula was key to Fefferman’s analysis of the
Bergman kernel in C" [46].

Suppose w; = w + tv for 0 < ¢ < +00. Do the perturbation formula of
Exercise 17 infinitesimally, to obtain
d
dt
Do Exercises 17 and 18 with Q,, instead of K. The variational formula
from Exercise 18 of course takes the form
d
dt

Ko = —Ku MK,

Qw, = "‘Qw,MUQw,-

It is known that the reproducing kernel K,, for A%(w) extends to a C*°-
smooth function on (D x D) \ §(T), where 8(T) is the boundary diagonal.
The following seems to be an open problem: Find an asymptotic expansion
for singular behavior (that is, the behavior modulo C*°-smooth functions
on D x D) of K, near §(T).

Do the same analysis for the kernel Q. The following may be helpful.
If w reproduces for the origin, then we know from Proposition 9.9 that
O» =2Re K, — 1. If wis not reproducing, is it still true that Q,, —2 Re K,
is a C*-smooth kernel on D x D?

Let R denote the operation of restriction to the boundary T. Let HL?(D)
denote the subspace of L2(D), dA) consisting of harmonic functions. The
restriction of a function in HL2(D) to T is in the Sobolev space W~1/2(T)
of distributions f on T with (formal) Laurent (or Fourier) series expansion

+00 +00 | 7y 2
f(2) = Z fn) 7, Z Ml—<+oo

n=oo nEoo Inl 1

In fact, R maps the harmonic subspace HL?(ID) onto W~1/2(T). We should
specify that R f is defined as the distributional limit as r — 1 of the dilated
functions f,(z) = f,(z),withz e Tand 0 < r < I.

Let us take a closer look at the perturbation formula of Exercise 19. Consider
the kernel

Vi(z,8) = Qu(z, §) v(§) — Qu, (2. &) wr (D),



24.

25.

26.
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and check that the perturbation formula implies that
%(wt(Z) Vi(z,0)) = /D Vi€, 2) Vi(§. ) v(§) dA(8).
Write the variational formula of Exercise 23 in integral form:
0@ Va0 =0@ W0+ [ [ w0 vedaeds
Let P be the Poisson transform (or Poisson solver):

Pf(z) = /TP(LC)f(C)dS(s“), zeD,

where P(z, ¢) is the Poisson kernel. Using the harmonicity of V;(z, ¢) in
the first variable z, we can then write

Vi(z.8) = P [—‘3 Vot c)] @)
Wy

t .
+/ / P[Vﬁ(g’ ):l(z) Vo (£, £) v(E) A(E) dF.
0 JD Wy

This equation is amenable to treatment with the classical Picard process
from the theory of Ordinary Differential Equations [79]. As a result, if we
assume Vp(z,¢) > 0on D x T, we get Vi(z,¢) > Oon D x T for all
0 <t < +00. See [66]; the technical details involve the operator R met
in Exercise 22, and studying integral operators on Sobolev spaces, using
boundary correspondences as exemplified in Exercise 22.

Let us say that the weight w; is more suppressive than w; if the harmonic
compensators satisfy

H,,(2,8) < Hy (2, %), (z,0) e D x D.

Show that if w; is more suppressive than w), or vice versa, we have, for all
real parameters 0 < t1. 12 < +00,

tlra)l(Zv {) + [’ZFwI(Z, ;) < r11w1+t2w2(27 ;)7 (Zv ;) eDx D.

This is a concavity-type property of the biharmonic Green function in the
weight space. Show by a local analysis near T in the first variable z that the
above conclusion leads to

1w1(2) Hy (2, §) + 1w2(2) Hwy (2, 1) < (hw1(2) + ho1(2)) Hy, (2, 0),

for z € T and ¢ € D. Hint: consider w; = w + tv as before and find a
variational formula for I'y,,, analogous to that of Q,, in Exercise 19. See
[66] for details.

In Exercise 25, do we really need the assumptions on the two weights to
have the concavity-type property? Is there a counterexample?
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factorization, 78
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duality theorem, 124, 204
little Bloch space, 13
localization trick, 230
logarithmic entropy, 194
logarithmically subharmonic, 94, 242,

244

Index

lower asymptotic «-density, 105

lower Seip density, 153
lunula, 227

Mobius group, 6

Mobius map, 6

Mobius transformation, 16
maximal inner space, 187
mean oscillation, 42
min-max equation, 123
minimal type, 111
mushroom, 231
mushroom forest, 230
mushroom hat, 232
mushroom stem, 231

nonoverlapping arcs, 211
normalized arc length, 59, 104

oblique projection, 119
optimization problem, 123
outer function, 190

perturbation, 139
Poincaré metric, 16
point-evaluation, 2
Poisson extension, 114
Poisson formula, 29
Poisson kernel, 29, 114
Poisson solver, 273

285

Poisson transform, 28, 29, 114, 273

positive

function, 2

measure, 2
premeasure, 190, 193
pseudohyperbolic metric, 16
push-out measure, 114

quasi-Banach space, 2
quasi-similar operators, 188

regular sequence, 177
reproducing for the origin, 242
reproducing kernel, 57, 242
residue theorem, 76
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restriction operator, 155
reverse triangle inequality, 177

sampling sequence, 136
Schur’s test, 9, 11
Seip density

lower, 153
Seip density

upper, 147
separated sequence, 39, 50, 138
sequence of interpolation, 136
sequence of sampling, 136
sesquiholomorphic, 252
similar operators, 188
simple covering, 125, 204
singly generated invariant subspace,

56

singular inner function, 59
singular measure, 201
spectral mapping theorem, 37
Stieltjes integral, 195
Stolz angle, 104
Stolz star, 105
strictly positive, 2
subinner function, 86
suppressive weight, 273
sweep of a function, 88, 264

Toeplitz operator, 49
truncation, 202
type, hyperbolic exponential, 111

uniform separating upper asymptotic
x-density, 140

uniform upper asymptotic «-x*-density,
146

uniformly discrete, 39

upper asymptotic «-density, 105

upper Seip density, 147

variational argument, 56
variational formula, 255
VMO, 42

weakly cyclic, 201

Weierstrass factorization, 131

weighted Bergman kernel, 6

weighted Bergman projection, 6

weighted Bergman space, 2

weighted biharmonic Green function,
242

weighted Hele-Shaw flows, 255

Wirtinger derivatives, 1

zero divisor, 57

zero sequence, 98

zero set, 98

zero-based invariant subspace, 56
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