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Preface

Preface to the Second German Edition

In addition to the correction of typographical errors, the text has been
materially changed in three places. The derivation of Stirling's formula in
Chapter 2, §4. now follows the method of Stieltjes in a more systematic
way. The proof of Picard’s little theorem in Chapter 10, §2, is carried out
following an idea of H. Konig. Finally, in Chapter 11, §4. an inaccuracy has
been corrected in the proof of Szegd’s theorem.

Oberwolfach, 3 October 1994 Rewmnhold Remmert

Preface to the First German Edition

Wer sich mit einer Wissenschaft bekannt machen
will, darf nicht nur nach den reifen Friichten greifen
— er muB sich darum bekiimmern. wie und wo sie
gewachsen sind. (Whoever wants to get to know a
science shouldn’t just grab the ripe fruit he must
also pay attention to how and where it grew.)

— J. C. Poggendorf

Presentation of function theory with vigorous connections to historical de-
velopment and related disciplines: This is also the leitmotif of this second
volume. It is intended that the reader experience function theory personally
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and participate in the work of the creative mathematician. Of course, the
scaffolding used to build cathedrals cannot always be erected afterwards;
but a textbook need not follow Gauss, who said that once a good building
is completed its scaffolding should no longer be seen.! Sometimes even the
framework of a smoothly plastered house should be exposed.

The edifice of function theory was built by Abel, Cauchy, Jacobi, Rie-
mann, and Weierstrass. Many others made important and beautiful con-
tributions; not only the work of the kings should be portrayed, but also
the life of the nobles and the citizenry in the kingdoms. For this reason,
the bibliographies became quite extensive. But this seems a small price to
pay. “Man kann der studierenden Jugend keinen grofleren Dienst erweisen
als wenn man sie zweckméBig anleitet, sich durch das Studium der Quellen
mit den Fortschritten der Wissenschaft bekannt zu machen.” (One can ren-
der young students no greater service than by suitably directing them to
familiarize themselves with the advances of science through study of the
sources.) (letter from Weierstrass to Casorati, 21 December 1868)

Unlike the first volume, this one contains numerous glimpses of the func-
tion theory of several complex variables. It should be emphasized how in-
dependent this discipline has become of the classical function theory from
which it sprang.

In citing references, I endeavored —- as in the first volume — to give
primarily original works. Once again I ask indulgence if this was not always
successful. The search for the first appearance of a new idea that quickly
becomes mathematical folklore is often difficult. The Xenion is well known:

Allegire der Erste nur falsch, da schreiben ihm zwanzig
Immer den Irrthum nach, ohne den Text zu besehn. 2

The selection of material is conservative. The Weierstrass product theo-
rem, Mittag-LefHler’s theorem, the Riemann mapping theorem, and Runge’s
approximation theory are central. In addition to these required topics, the
reader will find

Eisenstein’s proof of Euler’s product formula for the sine;

Wielandt’s uniqueness theorem for the gamma function;
— an intensive discussion of Stirling’s formula;

— Iss'sa’s theorem:;

'Cf. W. Sartorius von Waltershausen: Gaufl zum Geddchtnis. Hirzel, Leipzig
1856; reprinted by Martin Sandig oHG, Wiesbaden 1965, p. 82.

2Just let the first one come up with a wrong reference, twenty others will copy
his error without ever consulting the text. [The translator is grateful to Mr. Ingo
Seidler for his help in translating this couplet.]



Preface to the First German Edition ix

Besse's proof that all domains in C are domains of holomorphy;

— Wedderburn's lemma and the ideal theory of rings of holomorphic
functions:

— Estermann’s proofs of the overconvergence theorem and Bloch™s the-
orem: ’

— a holomorphic imbedding of the unit disc in C*;

I

Gauss’s expert opinion of November 1851 on Riemann’s dissertation.

An cffort was nade to keep the presentation concise. One worries, how-
ever:

Weifl uns der Leser auch fiir unsre Kiirze Dank?
Wohl kaum? Denn Kiirze ward durch Vielheit leider! lang, *

Oberwolfach, 3 October 1994 Rewmhold Remmert

s the reader even grateful for our brevity? Hardly? For brevity, through
[=3 . . gy f‘)
abundance, alas! turned long.
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Gratias ago

It is impossible here to thank by name all those who gave me valuable ad-
vice. I would like to mention Messrs. R. B. Burckel, J. Elstrodt, D. Gaier,
W. Kaup. M. Koecher, K. Lamotke, K.-J. Ramspott, and P. Ullrich, who
gave their critical opinions. I must also mention the Volkswagen Founda-
tion. which supported the first work on this book through an academic
stipend in the winter semester 1982-83.

Thanks are also due to Mrs. S. Terveer and Mr. K. Schloter. They gave
valuable help in the preparatory work and eliminated many flaws in the
text. They both went through the last version critically and meticulously,
proofread it, and compiled the indices.

Adwnce to the reader. Parts A, B, and C are to a large extent mutually
independent. A reference 3.4.2 means Subsection 2 in Section 4 of Chapter
3. The chapter number is omitted within a chapter, and the section num-
ber within a section. Cross-references to the volume Funktionentheorie 1
refer to the third edition 1992; the Roman numeral I begins the reference,
e.g. 1.3.4.2.% No later use will be made of material in small print; chapters,
sections and subsections marked by * can be skipped on a first reading.
Historical comments are usually given after the actual mathematics. Bibli-
ographies are arranged at the end of each chapter (occasionally at the end
of each section); page numbers, when given, refer to the editions listed.
Readers in scarch of the older literature may consult A. Gutzmer's
German-language revision of G. Vivanti’s Theorie der eindeutigen Funk-
tionen, Teubner 1906, in which 672 titles (through 1904) are collected.

"[In this translation, references, still indicated by the Roman numeral I, are
to Theory of Complex Functions (Springer. 1991), the English translation by R.
B. Burckel of the second German edition of Funktionentheorie I. Trans.]
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Infinite Products
and
Partial Fraction Series



1

Infinite Products of Holomorphic
Functions

Allgemeine Satze iiber die Convergenz der unend-
lichen Producte sind zum grossen Theile bekannt.
(General theorems on the convergence of infinite
products are for the most part well known.)

— Weierstrass, 1854

Infinite products first appeared in 1579 in the work of F. Victa (Opera, p.
400, Leyden, 1646); he gave the formula

\/‘ \[1 1+11
2t 2 \2T2V2tays -

for © (cf. [Z], p. 104 and p. 118). In 1655 J. Wallis discovered the famous
product

7r_2-2 4-4 6-6 2n - 2n

2 1-3 35 5.7 7 @n-0D-2n-1) "

which appears in “Arithmetica infinitorum,” Opera 1, p. 4638 (cf. [Z]. p. 104
and p. 119). But L. Euler was the first to work systematically with infinite
products and to formulate important product expansions: cf. Chapter 9
of his Introductio. The first convergence criterion is due to Cauchy, Cours
d’analyse. p. 562 ff. Infinite products had found their permanent place in
analysis by 1854 at the latest. through Weierstrass (|Wei], p. 172 ff.).!

'In 1847 Eisenstein. in his long-forgotten work [Ei], had already systemati-
cally used infinite products. He also uses conditionally convergent products (and
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One goal of this chapter is the derivation and discussion of Euler’s prod-

uct
o0
. 22
SINTz =72 H 1-—
V2

v=1

for the sine function; we give two proofs in Section 3.

Since infinite products are only rarely treated in lectures and textbooks
on infinitesimal calculus, we begin by collecting, in Section 1. some ba-
sic facts about infinite products of numbers and of holomorphic functions.
Normally convergent infinite products [] f, of functions are investigated in
Section 2; in particular, the important theorem on logarithmic differentia-
tion of products is proved.

§1. Infinite Products

We first consider infinite products of sequences of complex numbers. In
the second section, the essentials of the theory of compactly convergent
products of functions are stated. A detailed discussion of infinite products
can be found in [Kn)].

1. Infinite products of numbers. If (a,),>x is a sequence of complex
numbers, the sequence ([])_, av), s, of partial products is called a(n) (in-
finite) product with the factors a,. We write [[°2, a, or [],», @, or simply
[1a.; in general, k =0 or k = 1. -

If we now — by analogy with series — were to call a product [] a, conver-
gent whenever the sequence of partial products had a limit a, undesirable
pathologies would result: for one thing, a product would be convergent
with value 0 if just one factor a, were zero; for another, [] a, could be zero
even if not a single factor were zero (e.g. if |a,| < ¢ < 1 for all v). We will
therefore take precautions against zero factors and convergence to zero. We
introduce the partial products

Pmn i= GmQm41 - - - G = H a,, k<m<n,
v=m

and call the product []a, convergent if there exists an index m such that
the sequence (Pm n)n>m has a limit @, # 0.

series) and carefully discusses the problems, then barely recognized, of condi-
tional and absolute convergence; but he does not deal with questions of compact
convergence. Thus logarithms of infinite products are taken without hesitation,
and infinite series are casually differentiated term by term; this carelessness may
perhaps explain why Weierstrass nowhere cites Eisenstein’s work.
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We then call a := axar+1 ... @m-18ym, the value of the product and intro-
duce the suggestive notation

Hau = QipQk+1..-0m—1Qm = Q.

The number a is independent of the index m: since @,, # 0, we have a,, # 0
for all n > m; hence for each fixed ! > m the sequence (p;n)n>: also has a
limit @; # 0, and @ = ax@k+1 - .. a;—10;. Nonconvergent products are called
divergent. The following result is immediate:

A product []a, is convergent if and only if at most finitely many fac-
tors are zero and the sequence of partial products consisting of the nonzero
elements has a limit # 0.

The restrictions we have found take into account as well as possible the
special role of zero. Just as for finite products, the following holds (by
definition):

A convergent product [[a. is zero if and only if at least one factor s
zero.

We note further:

If TIS2, a. converges, then @, := [[,—, a. ezists for all n € N. More-
over, lima, = 1 and lima,, = 1.

Proof. We may assume that a := [[a, # 0. Then @, = a/py,n-1. Since
limpp n—1 = a, it follows that lima, = 1. The equality lima, = 1 holds
because, for all n, @, # 0 and an = @n/Gps 1. O

Ezamples. a) Let ag :=0, a, ;=1 for v > 1. Then [Ja, = 0.
b) Let a, :=1— ;}f, v > 2. Then pa, = %(1 + }L), hence nuzz a, = %
c)Leta, :=1-1 v >2 Thenpyn = %;hencelimpy, = 0. The product
I_[D2 a, is divergent (since no factor vanishes) although lima, = 1.

In 4.3.2 we will need the following generalization of c):

d) Let ag, a1, az,... be a sequence of real numbers with a, > 0 and
(1 -a,) = +oo. Then lim[]},_,a. = 0.

Proof. 0 < po.. = [I5 av < exp[— Y _o(1 —a,)], n € N, since t < e*~! for all
t € R. Since Y (1 — a,) = +o0, it follows that limpg ., = 0. O

It is not appropriate to introduce, by analogy with series, the concept
of absolute convergence. If we were to call a product [] a, absolutely con-
vergent whenever []|a,| converged, then convergence would always imply
absolute convergence — but [[(—1)” would be absolutely convergent with-
out being convergent! The first comprehensive treatment of the convergence
theory of infinite products was given in 1889 by A. Pringsheim [P).
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Erercises. Show:

et -1 2 = v+ (1)L
=5 11
‘}:21/J+l 3 o v

oC
2
b)H cos 1‘1 = — (Vieta's product).
m

2. Infinite products of functions. Let X denote a locally compact metric
space. It is well known that the concepts of compact convergence and locally
uniform convergence coincide for such spaces; cf. 1.3.1.3. For a sequence f, €
C(X) of continuous functions on X with values in C, the (infinite) product
[1/f. is called compactly convergent in X if, for every compact set K in X,
there is an index m = m(K) such that the sequence py . := finfm+1 -+ - fa,
n > m, converges uniformly on K to a nonwvanishing function ﬁn. Then.
for each point r € X,

f@) =[] fulx) e C

exists (in the sense of Subsection 1): we call the function f : X — C the
lunat of the product and write

f= Hfu? then, on K. f|K = (folK) ... (fm-1|K)- ﬁrw

The next two statements follow immediately from the continuity theorem
[.3.1.2.

a) If [] f, converges compactly to f in X, then f is continuous in X and
the sequence f,, converges compactly in X to 1.
b) If [T f. and [] g, converge compactly in X. then so does [] f,g.:

[Tre=(I1+) (IT9)-

We are primarily interested in the case where X is a domain? in C and all
the functions f, are holomorphic. The following is clear by the Weierstrass
convergence theorem (cf. 1.8.4.1).

¢) Let G be a domawn i C. Every product [] f. of functions f, holomor-
phie an G that converges compactly mn G has a limit f that is holomorphic
n G

Eramples. a) The functions f, := (1+ ;2% )(1+ 25—42.1)_1’ v > 1, are holomorphic
in the unit disc E. We have

2 22 -t 2
‘n=l =2 1 E'\ henc i n = Pt

?[As defined in Funktionentheore I. a region (“Bereich” in German) is a
nonempty open subset of C, a domain (“Gebiet” in German) is a connected re-
gion. In consulting Theory of Complex Functions, the reader should be aware that
there “Bereich” was translated as “domain” and “Gebiet” as “region.” Trans.]
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and the product [])2, f. therefore converges compactly in E to 1 + 2z.

b) Let f.(z) = z for all v > 0. The product []°Z, f. does not converge (even
pointwise) in the unit disc E, since the sequence pm . = 2"~ ™! converges to
zero for every m.

We note an important sufficient

Convergence criterion. Let f, € C(X), v > 0. Suppose there exists an
m € N such that every function f,, v > m, has a logarithm log f, € C(X).
If Y, >m log f. converges compactly in X to s € C(X), then [] f, converges
compactly mm X to fofi... fm—1€Xxps.

Proof. Since the sequence sy, = S or . log f, converges compactly to s, the
SeqUENCE Pm.yn = [ |, —, fr = €xp s, converges compactly in X to exps. As
exp s does not vanish, the assertion follows.3 0O

§2. Normal Convergence

The convergence criterion 1.2 is hardly suitable for applications, since series
consisting of logarithms are generally hard to handle. Moreover, we need
a criterion — by analogy with infinite series — that ensures the compact
convergence of all partial products and all rearrangements. Here again. as
for series, “normal convergence” proves superior to “compact convergence.”
We recall this concept of convergence for series, again assuming the space
X to be locally compact: then Y f,, f. € C(X), is normally convergent in
X if and only if > |f.|x < oo for every compact set K C X (cf. 1.3.3.2).
Normally convergent series are compactly convergent; normal convergence
is preserved under passage to partial sums and arbitrary rearrangements
(cf. 1.3.3.1).

The factors of a product [] f, are often written in the form f, = 1 + g,;
by 1.2 a), the sequence g, converges compactly to zero if [] f,, converges
compactly.

1. Normal convergence. A product [[ f, with f, = 1+ ¢, € C(X) is
called normally convergent in X if the series Y g, converges normally in
X. It is easy to see that

if [1,5¢ fv converges normally in X, then
— for every byjection 7 : N — N, the product [], . fr() converges nor-
mally in X,

*The simple proof that the compact convergence of s, to s implies the compact
convergence of exp s, to exp s can be found in [.5.4.3 (composition lemma).
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- every subproduct []| i>0 fv, converges normally in X;

— the product converges compactly in X.

We will see that the concept of normal convergence is a good one. At the
moment, however, it is not clear that a normally convergent product even
has a limit. We immediately prove this and more:

Rearrangement theorem. Let [], -, f. be normally convergent in X.
Then there is a function f : X — C such that for every byection 7 : N — N
the rearrangement [ 1,5 fr) of the product converges compactly to f in X .

Proof. For w € E we have log(1 +w) =3_ -, S:IT)U_—Iw". It follows that
|log(1+w)| < |w|(14|w|+|w|?+- - -); hence |log(1+w)| < 2Jw]if |w| < 1/2.

Now let K C X be an arbitrary compact set and let g, = f, — 1. There
is an m € N such that |g,|x < % for n > m. For all such n,

v—1

1)
log frn = Z (qu € C(K), where |[logfulk <2|gn|k-

We see that 3 . |log fulk < 3,5, 90|k < 0o. Hence, by the rear-
rangement theorem for series (cf. 1.0.4.3), for every bijection ¢ of N,,, :=
{n € N:n > m} the series ) ., log fs(,) converges uniformly in K to
> us>mlog fu. By 1.2, it follows that for such o the products [[, 5, fo)
and [],>,, f. converge uniformly in K to the same limit function. But an
arbitrary bijection 7 of N (= permutation of N) differs only by finitely many
transpositions (which have no effect on convergence) from a permutation
o' : N — N with ¢/(N,,) = N,,,. Hence there exists a function f : X — C
such that every product [],., fr(,) converges compactly in X to f. O

Corollary. Let f = [],5q f. converge normally in X. Then the following
staternents hold. -

1) Every product fn :=[1,>, fv converges normally in X, and
f=Mfi- fn-rfu
2) If N =" N« 15 a (finite or wnfinite) partition of N into paur-

wise disjoint subsets Ny, ..., Ny, ..., then every product HueN.c fu
converges normally in X and

UK

vEN,
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Products can converge compactly without being normally convergent, as is
shown, for example, by [],.,(1 + g.), gv := (—=1)~!/v. It is always true that
14+ g2v-1)(1 +g2.) =1 hence p1.n = 1 for even n and p1,, =1 + L for odd n.
The product [],5,(1 + g.) thus converges compactly in C to 1. In this example
the subproduct I:L,)l(l + g2v—1) is not convergent!

All later applications (sine product, Jacobi’s triple product, Weierstrass’s
factorial, general Weierstrass products) will involve normally convergent
products. :

Ezercises. 1) Prove that if the products [] f. and [] ﬁ, converge normally in X,

then the product []( f,,f,,) also converges normally in X.
2) Show that the following products converge normally in the unit disc E, and
prove the identities

[[a+2)= T+ -2 =1

v20 v>1

2. Normally convergent products of holomorphic functions. The
zero set Z(f) of any function f # 0 holomorphic in G is locally finite in
G;* hence Z(f) is at most countably infinite (see 1.8.1.3).

For finitely many functions fo, f1,..., fn € O(G), f, # 0,

n

Z(fofv - f)=\J2(f) and oclfofr...fa) =S oclfi), c€G,
0

0

where o.(f) denotes the order of the zero of f at ¢ (1.8.1.4). For infinite
products, we have the following result.

Proposition. Let f =[] f., fu # 0, be a normally convergent product in
G of functions holomorphic mn G. Then

F#00 2N =2z odlf) =) oclf) forallceG.

Proof. Let ¢ € G be fixed. Since f(c) = [] f.(¢) converges, there ex-
ists an index n such that f,(c) # 0 for all v > n. By Corollary 1.1),

f = fofi .. facifn, where f, := [], 5, fu € O(G) by the Weierstrass
convergence theorem. It follows that

n—1

0c(f) =D 0c(fu) + 0c(fn), With o0c(fn) =0 (since fa(c) # 0).

0

“Let G be an open subset of C. A subset of G is locally finite in G if it intersects
every compact set in G in only a finite number of points. Equivalently, a subset
of G is locally finite in G if it is discrete and closed in G.
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This proves the addition rule for infinite products. In particular, Z(f) =

UZ(f,). Since each f, # 0, all the sets Z(f,) and hence also their countable
union are countable; it follows that f # 0. m]

Remark. The proposition is true even if the convergence of the product in G is
only compact. The proof remains valid word for word, since it is easy to see that
for every n the tail end f, =[], ., f. converges compactly in G.

We will necd the following result in the next section.

If f =111, f. € O(G), 1s normally convergent mn G, then the sequence
fo =115, fu € O(G) converges compactly wn G to 1.

Proof. Let Fm #0. Then A =27 (fm) is locally finite in G. All the partial
products p,, .-y € O(G), n > m, are nonvanishing in G \ A and

1

fn(z) = fm(z) ) (m

) forall ze G\ A.

Now the sequence 1/p,, ,—1 converges compactly in G\ A to 1/f,,. Hence,
by the sharpened version of the Weierstrass convergence theorem (see
[.8.5.4), this sequence also converges compactly in G to 1. O

Erercise. Show that f = ][>, cos(z/2v) converges normally in C. Determine
Z(f). Show that for cach k € N\ {0} there exists a zero of order k of f and that

= 2 =~ (2 —1 z
Hcos-i;:H( . Sm2u—1>'

v=1 v=1

3. Logarithmic differentiation. The logarithmic derivative of a mero-
morphic function h € M(G), h # 0, is by definition the function h’'/h €
M(G) (see also 1.9.3.1, where the case of nonvanishing holomorphic func-
tions is discussed). For finite products h = hihe ... hy, b, € M(G), we
have the

h'  hy A b
Additi wla: L=t e m
ddition formula iy + ™ 44 .

This formula carries over to infinite products of holomorphic functions.
Differentiation theorem. Let f = []f, be a product of holomorphic

functions that converges normally in G. Then >, f|/f, is a series of mero-
morphic functions that converges normally in (G, and

f7'=zf—ieM((;).
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Proof. 1) For all n € N (by Corollary 1,1)),

\

, n—1
f=fofi. - fo-1fn, with f, := H fo; hence L= f ,
v>n v=1 f" f"

Since the sequence ﬁ, converges compactly in G to 1 (cf. 2), the derivatives

,’, converge compactly in G to 0 by Weierstrass. For every disc B with

B C G there is thus an m € N such that all f,,, n > m, are nonvanishing
in B and the sequence f / f,, € O(B), n > m, converges compactly in B
to zero. This shows that > f/f, converges compactly in G to f'/f.

2) We now show that 3 f]/f. converges normally in G. Let g, := f, — 1.
We must assign an index m to every compact set K in G so that every pole
set P(fl/f.,), v > m, is disjoint from K and

) NS

v>2m f" K v>m

gl
21 <oo (cf L11.1.1).
fulg

We choose m so large that all the sets Z(f,) N K, v > m, are empty and
mine i | f.(2)| > 5 for all v > m (this is possible, since the sequence f, con-
verges compactly to 1). Now. by the Cauchy estimates for derivatives, there
exist a compact set L O K in G and a constant M > 0 such that |g/ |, <
M|g,|L for all v (cf. 1.8.3.1). Thus |g./fulx < |gLlk - (minex |fo.(2)]) 7' <
2M|g,|p for v > m. Since Y |g.|r < oo by hypothesis, (x) follows. O

The differentiation theorem is an important tool for concrete computa-
tions: for example, we use it in the next subsection to derive Euler’s product
for the sine, and we give another application in 2.2.3. The theorem holds
verbatim if the word “normal” is replaced by “compact.” (Prove this.)

The differentiation theorem can be used to prove:
If f is holomorphic at the ormgin. then f can be represented uniquely m a disc

B about 0 as a product

f(z)=bz" [T(1+b.2"), bb, €C. keN,

=1
which converges normally in B to f.

This theorem was proved in 1929 by J. F. Ritt [R]. It is not claimed that
the product converges in the largest disc about 0 in which f is holomorphic.
There seem to be no compelling applications of this product expansion, which is
a multiplicative analogue of the Taylor series.
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. . _ 00 2/,,2
§3. The Sine Product sinmz = w2 [],_;(1 — 2°/v*)

The product [, (1—22/v?) is normally convergent in C, since Y .-, z2/v?
converges normally in C. In 1734 Euler discovered that

(1) sinnz:wzH(l—ﬁ), z€C.

We give two proofs of this formula.

1. Standard proof (using logarithmic differentiation and the partial frac-
tion decomposition for the cotangent). Setting f, := 1 — 2%/v? and f(2) :=
rz[[oo, fo gives

2
f{//f,,:ﬁ, and thus  f'(2)/f(2) = —+222—u2

Here the right-hand side is the function m cot 72z (cf. 1.11.2.1). As this is also
the logarithmic derivative of sin 7z, we have® f(z) = ¢sinwz with ¢ € C*.

Since lim;_0 = [_Ll =1 = lim,_o 8222 it follows that ¢ = 1.

Substituting special values for z in (1) yields interesting (and uninteresting)
formulas. Setting 2z := % gives the product formula

T 2 2 4 4 6 6 =~ v v
T_4 .2 2409 5 R . Wallis, 1655).
2 H:zu—l 1 (Wallis )

For z := 1, one obtains the trivial equality 3 = []22,(1 — &) (c¢f. Example 1.1,
b): on the other hand, setting z := ¢ and using the identity sinmi = (e™ —e™")

give the bizarre formula

v=1
Using the identity sin z cos 2 = 3 sin 2z and Corollary 2.1, one obtains
coswzsinwz = wzﬁ (1 - (%)2)
= =
v=1
0 2 oo 2
2z 2z
= ] - —. 1- )
wzg( (21/) )H( <2u—1) )
“Let J #U, 97 U ue omain G which have

the same logarithmic derivative. Theu ; — oy, wiwn « « C*. To prove this, note

that f/g € M(G) and (f/g)’ = 0.
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and hence Euler’s product representation for the cosine:

C

o 42* C
(,ObWZ—H l—m N zel.

v=1

In 1734-35, with his sine product, Euler could in principle compute all the num-

bers ((2n) := 377, v op = 1,2,... (cf also I.11. .32) Thus it follows im-
mediately, for example, that ((2) = : Since fa(2) := [, (1 - 2t =
1-(3X7_ vz + tendb compactly to f(2) := (sin 7rz)/(1rz) =1- —%—i 4,
it follows that § f/(0) = — 3_0_, v~ ? converges to 3 f”(0) = — ¢ 0

Wallis’s formula permits an elementary calculation of the Gaussian error inte-
2 2
gral fox e~ " dx. For I,, := fuw z"e T dx, we have
21, =(n—-1)I,—2, n >2 (integration by parts!).
1

Since I = 3, an induction argument gives

(o) %I =1-3-5-...-(2k = 1)y, 2l =k, keN.
Since [qp1 + 2L, +t21,_) = I "Nz + t)2e_12d1‘ for all t € R, it follows that.

I2 < I._11.+1; hence 2I? <nl?_,.

With (o) we now obtain

(k12 2 2 _ (kY?
k42 2k+112k+l < Iy < Iyprlopyy = T
This can also be written
. k1?2 . 1
I3 = ——————-—( 1 ) th 0 —
2k 4k+2( +€x), with <Ek<2k
Using (o) to substitute I into this yields
46 (2k)]?
212 = 2 (2k)] (14 €x).

L 3-5-...-(2k— D]2(2k + 1)

From lime, = 0 and Wallis’s formula. it follows that 2/3 = %w and hence that

2
[ e dr = /7. i

This derivation was given by T.-J. Stieltjes: Note sur l'intégrale [™ e du,
Nowv. Ann. Math. 9, 3rd ser., 479-480 (1890); (Buvres complétes 2, 2nd ed.,
Springer, 1993. 263-264.

FEzercises. Prove:
246 2n - 1 .
1) lim ——7——5:”’_) \/ﬁ =3 \/T—I',

1 _ 1 .
T n ( (2v41)2 )'

a 2 1 a+b)z o a-b 212
3) €% — e = (a —b)ze2 V[T (1 + “ozr):
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n=1

4) cos(gmz) — sin(3wz) = [ (1 + (;nl)—nlz)‘

2. Characterization of the sine by the duplication formula. We
characterize the sine function by properties that are easy to verify for the
product z [J(1 — 22/v2). The equality sin2z = 2sinzcos z is a
Duplication formula: sin27rz = 2sinwzsinm(z +3), z€C.

In order to use it in characterizing the sine, we first prove a lemma.
Lemma (Herglotz, multiplicative form).6Let G C C be a domawn that con-

tains an wnterval [0,7), r > 1. Suppose that g € O(G) has no zeros in [0,1)
and satisfies a multiplicative duplication formula

(*) g(2z) = cg(2)g(z+3) when =z, 241, 22€(0,r) (withceC*).
Then g(z) = ae® unth 1 = acez®.

Proof. The function h := ¢'/g € M(G) is holomorphic throughout [0,r),
and 2h(22) = 2¢'(22)/9(2z) = h(z)+h(z+ ) whenever z, z+1, 2z € [0.7).
By Herglotz’s lemma (additive form), h is constant.5 It follows that g’ = bg
with b € C; hence g(z) = ae®®. By (%), acez® = 1. 0

The next theorem now follows quickly.
Theorem. Let f be an odd entire function that vanishes in [0,1] only at 0
and 1, and vamishes to first order there. Suppose that it satisfies the
Duplication formula: f(22) = cf(2)f(z+3), 2€C, whereceC*.

Then f(z) = 2¢™!sinwz.

Proof. The function g(z) := f(z)/sin7z is holomorphic and nowhere zero
in a domain G D [0,7), r > 1; we have g(2z) = Jcg(2)g(2+31). By Herglotz,
f(2) = aeb* sinwz with ace2® = 2. Since f(—z) = f(z), it also follows that
b=0. m]

5We recall the following lemma, discussed in 1.11.2.2:

Herglotz’s lemma (additive form). Let [0,7) C G with r > 1. Let h € O(G)
and assume that the additive duplication formula 2h(2z) = h(z) + h(z + 3) holds
when 2, z+ . 22 € [0,7). Then h is constant.

Proof. Let t € (1,7) and M := max{|h'(z)| : 2 € [0,t)}. Since 4h’'(22) = h'(z) +
h'(z + 1) and 3z and }(z + 1) always lie in [0,¢] whenever z docs, it follows
that 4M < 2M, and hence that M = 0. By the identity theorem, A’ = 0; thus
h = const. i
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We also use the duplication formula for the sine to derive an integral that
will be needed in the appendix to 4.3 for the proof of Jensen's formula:

1
(1) / logsinwtdt = — log 2.
Jo

Proof. Assuming for the mbdment that the integral exists. we have

) s |
(o) / log sin 2wtdt = -é—log? + / log sin wtdt + / log sin(t + %)(it.

0 JO JO
Setting 7 := 2t on the left-hand side and 7 :=¢ + % in the integral on the
extreme right immediately yields (1). The second integral on the right in
(o) exists whenever the first one does (set t + % =1—r7). The first integral
exists since g(t) := ¢! sinwt is continuous and nonvanishing in [0. 3.

3. Proof of Euler’s formula using Lemma 2. The function

00

s(z) =z H(l - 2% /v?)

v=1

is entire and odd and has zeros precisely at the points of Z, and these
are first-order zeros. Since s'(0) = lim,_.g s(z)/z = 1. Theorem 2 implies
that sin 72z = ws(z) whenever s satisfies a duplication formula. This can be
verified immediately. Since s converges normally. it follows from Corollary
2.1 that

. _ ad (22)? e 422
o) = 2T (- G) I (- )

(+) v=1 v=1

=l (1 )

A computation (!) gives

1 422 Cl+2z/2v-1) [ (22 +1)2
(1_W><1_m)_1+2z/(2u+1)('—T)‘ vzl

If we take Example a) of 1.2 into account, this yields

(-5 L0 -@) - eIl (-555)

v=1 v=1 v=1

= 2s(z+ %)

"Let f(t) =t "g(t). t € N, where g is continuous and nonvanishing i (0, r],
r > 0. Then f”T log f(t)dt exists. This is clear since fo' log t dt exists (wrlogr —r
is an antiderivative, and lims~ o 6 log & = 0).



16 1. Infinite Products of Holomorphic Functions

Thus (+) is a duplication formula: s(2z) = 4a~'s(2)s(z + %), where a :=
[1(1 - 1/402) #0. O

This multiplicative proof dates back to the American mathematician E.
H. Moore; a number of computations are carried out in his 1894 paper [M].
The reader should note the close relationship with Schottky’s proof of the

equation
0

1 ! 1 1
reotme A <z+u u)

v=—00

in 1.11.2.1; Moore probably did not know Schottky’s 1892 paper.

4*. Proof of the duplication formula for Euler’s product, following
Eisenstein. Long before Moore, Eisenstein had proved the duplication formula
for s(z) in passing. In 1847 ([Ei], p. 461 ff.), he considered the apparently com-
plicated product

o0

n
s = IL (1+535) = (0 ) o 1T (1+55%)

v=—2C

of two variables (w,2) € (C\Z) x C; here [], = limn—oo [[,__, denotes the
Eisenstein multiplication (by analogy with the Eisenstein summation ) _, which
we introduced in 1.11.2). Moreover, []' indicates that the factor with index 0 is
omitted. The Eisenstein product E(w,z) is normally convergent in the (w, z)-
space (C\Z) x C, since
T z “ 22 + 2wz
Ul:[n(1+u+w) —g(l_ V2 — w? )

and Y2 | 1/(w?® — v?) converges normally in C\Z (cf. 1.11.1.3). The function
E(z,w) is therefore continuous in (C\Z) x C and, for fixed w, holomorphic in
each 2z € C. Computations can be carried out elegantly with E(z,w), and the
following is immediate.

Duplication formula. E(2w,2z) = E(w.2)E(w + 3, 2).
Proof.

3 2z 3 2z
E(tw,22) = H (1+2u+2w)'ul—[go(l+2u+l+2w)

Eisenstein used the (trivial, but astonishing!) formula

(%) 14+ — = (1 + 2 * z) /(1 + E) (Eisenstein's trick)
v+uw v v

to reduce his “double product” to Euler’s product:

s(w + 2)

52
E(w,z) = m)——, where s(z) =2 H (1 - ;) .
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Proof.
w+z iy w2z iy w
E(U)’ z) - w nh_’ngc uﬂn (l + v ) nango ulz—[n <1 " —)
S w + 2)? ! w?
“wea [ (1-5) /(v (- 5))
v=1 v=1
_s(w+2) -
T os(w)
The duplication formula for s(z) is now contained in the equation
8(2w + 22) ) s(w+z2) s(w+35+2)
_— . == E 2 ’2 = E ) E + EX — . .
s(2w) (2w, 22) (w, z)B(w ?) s(w) s(w+ 3)
. . . . s(2w) .
Since s is continuous and lim = 2. it follows that
w0 a(w)
. 8(2w) s(w+ % +2) _
8(2z) = ilﬂlo 5(w) s(w + z)_s(-w-:T = 2.9(%) 's(z)s(z + %) a

The elegance of Eisenstein’s reasoning is made possible by the second
variable w. Eisenstein also notes (loc. cit.) that E is periodic in w: E(w +
1,2) = E(w, z) (proved by substituting v+1 for v); he uses E and s to prove
the quadratic reciprocity law; the duplication formula appears there at the
bottom of p. 462. Eisenstein calls the identity E(w, z) = s(w + 2)/s(w) the
fundamental formula and writes it as follows (p. 402; the interpretation is
left to the reader):

H(l— ? ):Si”(ﬁ"z)/“, a, BEC, Blag¢Z

ek am+ 3 sinT(3/a

5. On the history of the sine product. Euler discovered the cosine
and sine products in 1734-35 and published them in the famous paper “De
Summis Serierum Reciprocarum” ([Eu], I-14, pp. 73-86); the formula

2 2 2 2
(-3) (-5) (-5) (- 5) -
4p 9p 16p
(with p := 7) appears on p. 84. As justification Euler asserts that the zeros
of the series are p, —p, 2p, —2p, 3p, —3p, etc., and that the series is thercfore
(by analogy with polynomials) divisible by 1 — %, 1+ %, 1- 7"‘};, 14+ ﬁ etc.!
In a letter to Euler dated 2 April 1737, Joh. Bernoulli emphasizes that
this reasoning would be legitimate only if one knew that the function sin z
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had no zeros in C other than nm, n € Z: “demonstrandum esset nullam
contineri radicem impossibilem” ([C], vol. 2, p.16); D. and N. Bernoulli
made further criticisms; cf. [Weil], pp. 264-265. These objections, acknowl-
edged to some extent by Euler, were among the factors giving incentive to
his discovery of the formula e** = cos z + isin z; from this Euler, in 1743,
derived his product formula, which then gives him all the zeros of cos z and
sin z as a byproduct.

Euler argues as follows: since lim(1 + z/n)" = e* and sinz = (e'* — e™'*)/2i,

sinz = 51; lim pn, (%) . where pp(w):=(1+w)" —(1-w)".

For every even index n = 2m, it follows that
(%) pu(w) =2nw(l+w+ - +w"?).

The roots w of p, are given by (1 +w) = ((1 —w), where { = exp(2vm2/n) is any
nth root of unity; hence p2m. as an odd polynomial of degree n — 1, has the n—1
distinct zeros 0, +w,, ..., *xwm_1, where

_epumi/m) =1
exp(2vmi/n) + 1 n

The factorization

m~1 m—1
w w 2 2 VT
m(w)=2nw [T (1-2) (14 2 ) =200 [] (14w i )
Pam (W) nw ( wu)( +w.,) nw + w’co -

v=1 v=1

then follows from (x). Thus

dnt 2 (1 v\ ?
sinz =2z lim H (l—zz (—cot—) .
n—osc n n
v=1
Since limp—sc (2 cot vn) = #, interchanging the limits yields the product for-

mula. This last step can, of course, be rigorously justified (cf., for example. [V],
p. 42 and p. 56). An even simpler derivation of the sine product, based on the
same fundamental idea, is given in [Nu], 5.4.3.

§4*. Euler Partition Products

Euler intensively studied the product

Qeq) = [T +0°2) = 1+ a1+ a2)(1 +0%) ...

v>1

as well as the sine product. Q(z, q) converges normally in C for every g € E
since Y |g|¥ < oc; the product is therefore an entire function in z, which



§4*. Euler Partition Products 19

for ¢ # 0 has zeros precisely at the points —q~!, —q~2,..., and these are
first-order zeros. Setting z = 1 and z = —1 in Q(=z,q) gives, respectively,
the products

(1+¢)(1+¢)1+¢* ... and (1-¢)(1-¢°)(1-¢*)-.... ¢€E

which are holomorphic in the unit disc. As we will see in Subsection 1, their
power series about 0 play an important role in the theory of partitions of
natural numbers. The expansion of [[(1—¢") contains only those monomials
¢” for which n is a pentagonal number 1 (du + v): this is contained in the
famous pentagonal number theorem, Whl(‘h we discuss in Subsection 2. In
Subsection 3 we expand Q(z.q) in powers of z.

1. Partitions of natural numbers and Euler products. Every repre-
sentation of a natural number n > 1 as a sum of numbers in N\ {0} is called
a partition of n. The number of partitions of n is denoted by p(n) (where
two partitions are considered the same if they differ only in the order of
their summands); for example, p(4) = 5, since 4 has the representations
4=4,4=3+4+1,4=2+24=2+1+1,4=1+1+1+1. Weset p(0):=1.
The values of p(n) grow astronomically:

n| 7 0] 30| s0 | 100 | 200
p(n) | 15 | 42 | 5604 | 204,226 | 190,569,202 | 3,972,999,029,388

In order to study the partition function p, Euler forined the power series
Y p(v)¢¥; he discovered the following surprising result.

Theorem ([I], p. 267). For every q € E,

oo

(+) [Ta-¢9) Zp

=1

Sketch of proof. One considers the geometric series (1 —¢¥)~! = 377 ¢*¥,
g € E, and observes that [ _ (1 = ¢*)™! = 377  pa(k)g*, g € E, n > 1,
where p,(0) := 1 and, for n > 1, p,,(k) denotes the number of partitions of
k whose summands are all < n. Since pn(k) = p(k) for n > k, the assertion
follows by passing to the limit. A detailed proof can be found in [HW] (p

275). 0O

There are many formulas analogous to (x). The following appears in
Euler ([I], pp. 268-269):

Let u(n) (resp., v(n)), denote the number of partitions of n > 1 inlo odd
(resp., distinct) summands. Then. for every q € E.

H(l ¢ 1+Zu(z/ H(l-{—q”): I+Zv(u)q'

21 v2>1 v>1 v>1
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From this. since

o2 1—q* 1—¢b
l-q 1-¢2 1-¢3
1 1 1
1—-q 1-¢% 1—-¢8

I+l +¢H(1+4q%)... =

one obtains the surprising and by no means obvious conclusion
u(n) =uv(n). n>1. O

Since Euler's time, every function f : N — C is assigned the formal power series
F(z) =5 f(r)z"; this series converges whenever f(v) does not grow too fast. We
call F' the generating function of f; the products [J(1 — ¢*)~*. [1(1 = ¢*~ 1)1,
and [](1 + ¢") are thus the generating functions of the partition functions p(n),
u(n), and v(n), respectively. Generating functions play a major role in number
theory: cf.. for instance, [HW] (p. 274 ff.).

2. Pentagonal number theorem. Recursion formulas for p(n) and
o(n). The search for the Taylor series of [[(1 — ¢*) about 0 occupied Euler
for years. The answer is given by his famous

Pentagonal number theorem. For all g € E,

[T-¢) = 1+ 3 (~1)¥[gE® =) 4 g3 +v)

r>1 v>1
~

% -3

[ZEE

= l_q_(12+q5+q7__ql2_q15+q22+q26

_q35 _q"l()+q51 4.,

We will derive this theorem in 5.2 from Jacobi’s triple product identity.

The sequence w(r) := %(31/2 — v), which begins with 1, 5, 12, 22, 35, 51, was
already known to the Grecks (cf. [D], p. 1) Pythagoras is said to have determined
w(n) by nesting regular pentagons whose edge length increases by 1 at each stage
and counting the number of vertices (see Figure 1.1).

Because of this construction principle, the numbers w(v), v € Z. are called
pentagonal numbers; this characterization gave the identity (*) its name.

Statements about the partition function p can be obtained by comparing
cocflicients in the identity

L= p)e” | [ 1+ D (=1)"[¢"™ + ¢
v>0 v>1 '

which is clear by 1(*) and (*). In fact, Euler obtained the following formula
in this way. (Cf. also [HW], pp. 285-286.)
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O

1 1+ 4=5 I+ 4+7=12 1+ 44+74+10=22

FIGURE 1.1.

Recursion formula for p(n). If we set p(n) :=0 for n <0, then

p(n) = pn—-1)+p(n-2)—p(n—-5)—pn-"7)+---
= (=) p(n ~ w(k)) + p(n ~ (=)
k>1

It was a great surprise for Euler when he recognized — and proved, using
the pentagonal number theorem — that almost the same formula holds for
sums of divisors. Let o(n) := }_,,, d denote the sum of all positive divisors
of the natural number n > 1. Then we have the

Recursion formula for o(n). If we set o(v) := 0 for v <0, then

on) = on—-1)+o(n-2)—oc(n—-5)—-o(n-"7)+---
= Z(—l)k-l[o(n—w(k)) + o(n — w(—k))]
k>1

for every natural number n > 1 that s not a pentagonal number. On the
other hand, for every number n = %(31/2 tv),v>1,

on) = (=1)"'n+on-1)+ocn-2)—-o(n-5 —-on-7)+--

= (=) In+ Z(—l)k'l[a(n —w(k)) + o(n —w(—k))].

k>1

Often, in the literature, only the first formula is given for all n > 1, with the
provision that the summand o(n —n), if it occurs. is given the value n. Euler also
stated the formula this way. For 12 = %(3 - 32 — 3), we have

0(12) = (-1)*12+0(11) +0(10) — o (7) — o (5) +0(0) = 12+ 12+ 18 -8 — 6 = 28.
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Proof of the recursion formula for a(n) accordmg to Fuler One takes the
logarithmic derivative of (*) A sitnple transforination gives

x 0

e ll(]‘, 14 v g n— w(n
(+) Zl—q" S =D = S () (g™

v=1 = x v=—¢C

The power series about 0 of the first series on the left-hand side is 3% | o(k)g*.®
Multiplying the two series gives a double sum with general term (—1)* o (x)g=* ().
Grouping together all terms with the same exponent gives

x.

Z Z(—l)ka(n—w(k)) q".
n=1 LA=Z%
The assertion follows by comparing coefficients in (+). 0

There appear to be no known clementary proofs of the recursion formula for
o(n). The function o(n) can be expressed recutsively by means of the function
p(n). For all n > 1,

on) = pn—=1y+2p(n=2)=5p(n —-5) —Tp(n —7)+
+12p(n — 12) + 1Hp(n — 15) — -

= Z(—l)k"l[w(k)p(n — w(k)) +w(=k)p(n — w(—k))].

k>1

This was observed in 1834 by C. Zeller [Z]. We note another formula that can be
derived by means of the pentagonal number theorem:

n

p(n) = % Za(u)p(n - v).

=1

3. Series expansion of [[°2, (1 + ¢¥z) in powers of z. Although the
power series expansion of this function in powers of ¢ is known only for
special values of z (cf. Subsections 1 and 2), its expansion in powers of z
can be found easily. If we set Q(z,q) := [],-,(1 + ¢¥2), it follows at once
that

(1) (1+¢2)Q(qz,q) = Q(z.q):

8Series of the type Yoo awq” /(L — qY) are called Lambert serves. Since g” -
(1-¢")" ' = Z;":I q"", the following is immediate (cf. also [Kn]. p. 450).
If the Lambert series >~ aunq”/(1 —¢") converges normally m E. then

fad 1% o

Za,, 4 = Avq’. q € B, where A, 1= Zud.

1_ v -
q -1 d v




§4*. Euler Partition Products 23

for (q.z) € E x C, this functional equation immediately gives

(r+1)

o qQI/ ’
2 | I (1 =1 E 2v.
@ vl +q7 AR S (G ) S

v=1

Proof. For fixed q € E, let 3~ ., a,z"” be the Taylor series for Q(z,¢). Then
ap = 1, and (1) gives the recursion formula

a,q" + a,_1¢" = ay; e a, = —7%—1 for v > 1.

It follows from this (by induction, for example) that a, = g3 *+D[(1 - ¢)-
(=g~ " o

For z := 1. we see that

(2 ) _ q q:i
(3) I+ +¢)A+q)... = 1+ + g
q° e
BT e T

If we write ¢° instead of q in (2) and set z := ¢!, we obtain

l/‘Z

o0
1 2v—1 _1 q i )
RS TTED S a—

or, written out,

4

: q q

1+¢)1+¢3Y1+¢°)... = 1+ . .
qSI

T - -

This derivation and more can be found in [I], p. 251 ff. O

The product Q(z.q) is simpler than the sine product. Not only does
normal convergence already follow because of the geometric series, but the
functional equation (1), which replaces the duplication formula for s(z).
follows easily and is also more fruitful.

Ezercises. Show that the following hold for all (q.2) € E x C:

14

o o} l q !
a) =1+ . z
,,I;[ll—q"z —(l-g)(1-¢*)-.. - (1-¢")

10
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d 1
1

v

I g
= aTonse)

b) wv=1 e (1=¢Y)
X 2
(1-q2)(1-g%2)-...- (1 —¢q¥2)
Compare the results for z = 1.
Hint. For a), first consider [])_, 1—_;,,—2, 1 £ n < oo. Find functional equations

in each case and imitate the proof of (2); for a), conclude by letting n — oo.
Equation b) can be found, for example, in the Fundamenta ([Jai], pp. 232-233).

4. On the history of partitions and the pentagonal number the-
orem. As early as 1699, G. W. Leibniz asked Joh. Bernoulli in a letter
whether he had studied the function p(n); he commented that this prob-
lem was important though not easy (Math. Schriften, ed. Gerhardt, vol.
III-2, p. 601). Euler was asked by P. Naudé, a Berlin mathematician of
French origin, in how many ways a given natural number n could be repre-
sented as a sum of s distinct natural numbers. Euler repeatedly considered
these and related questions and thus became the father of a new area of
analysis, which he called “partitio numerorum.” In April 1741, shortly be-
fore his departure for Berlin, he had already submitted his first results to
the Petersburg Academy ([Eu], I-2, pp. 163-193). At the end of this work
he stated the pentagonal number theorem, after he had determined the
initial terms of the pentagonal number series up to the summand ¢°! by
multiplying out the first 51 factors of [J(1 — ¢*) (loc. cit., pp. 191-192).
But almost 10 years passed before he could prove the theorem (letter to
Goldbach, 9 June 1750; [C], vol. 1, pp. 522-524). In its introduction, Chap-
ter 16 deals thoroughly “with the decomposition of numbers into parts”;
the pentagonal number theorem is mentioned and applied (p. 269).

The recursion formula for the function p(n) first appears in 1750, in
the treatise De Partitione Numerorum ([Eu], I-2, p. 281). It was used in
1918 by P. A. Macmahon to compute p(n) up to n = 200; he found that
p(200) = 3,972,999, 029, 388 (Proc. London Math. Soc. (2) 17, 1918; pp.
114-115 in particular).

In 1741, Euler had already verified the recursion formula for o(n) nu-
merically for all n < 300 (letter to Goldbach, 1 April 1741; [C], vol. 1, pp.
407-410). In that letter, he called his discovery “a very surprising pattern
i the numbers” and wrote that he “would have [noj rigorous proof. But
even if I had none at all, no one could doubt its truth, since this rule 1s
always vald up to over 300.” He then informed Goldbach of the deriva-
tion of the recursion formula from the (then still unproved) pentagonal
number theorem. He gave a complete statement with a proof in 1751, in
“Découverte d'une loi tout extraordinaire des nombres par rapport a la
somme de leurs diviseurs” ([Eu], I-2, pp. 241-253). — The reader can find
further historical information and commentary in [Weil], pp. 276-281. Not
until almost eighty years later could Jacobi give the complete explanation
of the Euler identities with his theory of theta functions. We examine this
a bit more closely in the next section.
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5* Jacobi’s Product Representation of the Series J(z,q) := 57" ¢“ 2" 25
q v=

§5*. Jacobi’s Product Representation of the Series

2
J<Z’ Q) = Zicj—-—oc, q" 2"

The Laurent serfes > . q"zz" =1+, ¢’ (2" + 27") converges for
every g € E; thus J(z,q) € O(C*) for all q € E. Readers familiar with the
theta function will immediately observe that

Iz.1) = J(E*™ = e™™)  (cf. 1.12.4);
this relation, however, plays no role in what follows. It is immediate that
(1) Ji,q) =J(-1.q"), q€E

Jacobi saw in 1829 that his series J(z,q) coincided with the product

H[(l 2u 1+q2u 1 )(1+q-:/ 1 —l)]'

which had been studied by Abel. A(z.q) € O(C*) for every ¢ € E, since
the product converges normally in C* for each ¢. The following relation
holds between the Euler product Q(z,q) of 4.3 and A(z,q):

H(1 ¢*)-Qla™"2.¢%) - Qg™ =7 ¢P).

v=1

The identity J(z,q) = A(z,q). called Jacobi's triple product identity. is
one of many deep formulas that appear in Jacobi’s Fundamenta Nova. We
obtain it in Subsection 1 with the aid of the functional equations

(2) A(¢?z,q) = (q2) ' A(z,q). A(z7'.¢) = A(z.q). (s.q) € C* x EX.

(3) Ali,q) = A(-1,¢"), q€E.

all of which can easily be deduced from the definition of A; in the proof of
(3), we observe that

oc
H 2:/ H[ (1— q4u) 4u 2 ]' (l+q2u—ll~)(l_q2z/-ll) _ I_le_'z'
v=1 =1

Fascinating identities. some of which go back to Euler, result from con-
sidering special cases of the equation .J(z.q) = A(z,¢). we give samples in
Subsection 2.

1. Jacobi’s theorem. For all (y.z) € [E x C*,

&) Z ¢ 2 H[(l—qz"><1+q‘”"s><1+q‘2"—':-‘)}.
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Proof (cf. [HW], pp. 282-283). For every q € E, the product A(z,q) has
a Laurent expansion Y. a,z” about 0 in C*, with coefficients a, that
depend on ¢. Equations (2) of the introduction imply that a_, = a, and
a, = ¢*~'a,_; for all v € Z. From this it follows (first inductively for

v > ( and then in general) that a, = q“zag for all v € Z. 1t is thus already
clear, if we write a(q) for ag, that

A(z.q) = a(q)J(z,q) with a(0)=1.

A(l,q) and J(1.q) are holomorphic in E as functions of ¢ and J(1,0) = 1;
hence a(q) is holomorphic in a neighborhood of zero. From equations (1)
and (3) of the introduction it follows, because J(i,q) # 0, that

a(q) = a(q") and hence a(q) =a(¢*"), n>1, forallqeE.

The continuity of a(q) at 0 forces a(q) = lim, o a(¢g?" ) = a(0) = 1 for all
g € E. |

The idea of this elegant proof is said to date back to Jacobi (cf. [HW], p.
296). The reader is advised to look at Kronecker’s proof ([Kr|, pp. 182-186).
With 2z := e?*" (J) can be written in the form

Z q w2 21uw H[(l _ q 1+ 2q2u—1 cos 2w +q<lu—2)]'
]/_

=00

The identity (J) is occasionally also written as

(1) 3 (et = (- I - ¢)(1 - ¢ 2)(1 - =7 Y)
y=— v=1

(J') follows from (J) by substituting —qz for z, rearranging the resulting
product. and finally writing ¢ instead of ¢°.

2. Discussion of Jacobi’s theorem. For z := 1, (J) gives the product
representation of the classical theta series

20
(1) Z (]U2:1+2Zq ﬁ 1+q2u 1 "QQV)],
V=1 =

Vv=—-00
which converges in E. We also note:

Suppose that k,l € N\{0} are both even or both odd. Then, for all (z.¢) €
C* x E,

[>. @

(2) Zq%u(klﬂ-l)z H[ (1-g¢ l_i_qlw—%(kvl)z)(l_}_qku ~(k+{) )]
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Proof. First let 0 < g < 1. Then ¢3*, g#! € (0,1) are uniquely determined,
and substituting ¢2* for ¢ and g%z for z turns (J) into (2). By the hypoth-
esis on k and [. all the exponents in (2) are integers (!); hence the left- and
right-hand sides of (2) are holomorphic functions in g € E for fixed z. The
assertion follows from the identity theorem. )

For k =1 =1 and z = 1,'(2) becomes

20 o0 . 00
(3) ZQ%U(V+1) — 2+2Zq%u(u+l) — H[(l _ q2u)(1 + qu—l)];
-G v=1 v=|

this identity, due to Euler, was written by Gauss in 1808 as follows ([Ga],
p. 20):

1-gq 1-¢* 1-¢° 1-¢%

3) 1+q+¢*+¢°+¢'% +etc. = . =
(3) 1+qg+q" +q +qg +etc ¢ 1T-F 1-¢ 1-¢

etc.

(to prove this, use Exercise 2) of 2.1). |

For k = 3.1 =1, and z = —1, equation (2) says that

[T =) -g*Ha-g* )= > (-1)gt+h,
rv=1 v=—0C

Since each factor 1 — ¢, v > 1, appears here on the left-hand side exactly
once, this yields the pentagonal number theorem

o0

@ Jla-¢)=1+3(-1)*[g?® D 4 g3+ g€k,

v=1 v=1

as announced in 4.2. Written out, this becomes

(@) 1-g)(1-¢*)(1-¢%...
Now, in principle, the power series about 0 of H(l + ¢”) can also be
computed. Since [[(1—¢¥)- H(l +¢”) =[](1 = ¢?"). we use (4') to obtain
x
) 1—q? —qt+ql¥4gt—...
H(1+ql) - : q2 qs q?
l-q-¢*+¢ +q" -
1+q+¢2+2¢°+2¢" +3¢° +4¢° +5¢" + - --.

v=1

H

The first coefficients on the right-hand side were already given by Euler;
no simple explicit representation of all the coefficients is known. Number-
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theoretic interpretations of the formulas above, as well as further identities,
can be found in [HW)]. 0

We conclude this discussion by noting Jacobi’s famous formula for the
cube of the Euler product (cf. [Ja;], p. 237, and [JF], p. 60):

(5) [T =)= (-1)"(2v + 1)g= 0+,
v=1 v=0

To prove this, Jacobi differentiates the identity (J’) of Section 1 with respect
to z, then sets z := 1 (the reader should carry out the details, grouping
the terms in the series with index v and —v — 1). In 1848, referring to
identity (5), Jacobi wrote ([JF], p. 60): “Dies mag wohl in der Analysis das
einzige Beispiel sein, dafl eine Potenz einer Reihe, deren Exponenten eine
arithimetische Reihe zweiter Ordnung [= quadratischer Form an? + bn + ¢J
bilden, wieder eine solche Reihe giebt.” (This may well be the only example
in analysis where a power of a series whose exponents form an arithmetic
series of second order [= quadratic form an? + bn + c] again gives such a
series. )

3. On the history of Jacobi’s identity. Jacobi proved the triple product
identity in 1829, in his great work Fundamenta Nova Theoriae Functionum
Ellipticarum; at that time he wrote ([Ja,], p. 232):

Aequationem identicam, quam antecedentibus comprobatum
ivimus:

(1 — 2gcos 2z + ¢?)(1 — 2¢3 cos 2z + ¢°)(1 — 2¢° cos 2x + ¢*9) . ..
_ 1 —2qcos 2z + 2¢* cos 4z — 2¢° cos 6z + 2¢*® cos 8x — - - -
(1-¢3)(1-¢")(1-¢%)(1-¢®)...

In a paper published in 1848, Jacobi systematically exploited his equation
and wrote ([Jag), p. 221):

Die sammtlichen diesen Untersuchungen zum Grunde gelegten
Entwicklungen sind particuldre Falle einer Fundamentalformel
der Theorie der elliptischen Functionen, welche in der Gleichung

1-¢-)1-¢)1-¢*)(1-4g%)...
x(1-qz)(1 - ¢%2)(1 - ¢°2)(1 - q"2) ..
x(1-gz7)(1 — @)1~ ¢z~ )(1 ~ ¢'=7Y)...
Cloqlz4 ) 4 g2+ D) — PP 4 2 4 -

enthalten ist. (All the developments that underlie these investi-
gations are special cases of a fundamental formula of the theory
of elliptic functions, which is contained in the equation ....)
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The preliminary work for the Jacobi formula was carried out by Euler
through his pentagonal number theorem. In 1848 Jacobi wrote to the sec-
retary of the Petersburg Academy, P. H. von Fuss (1797 1855) (cf. [JF].
p.60): “Ich mochte mir bei dieser Gelegenheit noch erlauben, Thnen zu
sagen. warum ich mich so fiir diese Eulersche Entdeckung interessiere. Sie
ist némlich der erste Fall gewesen, in welchem Reihen aufgetreten sind.
deren Exponenten eine arithmetische Reihe zweiter Ordnung bilden, und
auf diese Reihen ist durch mich die Theorie der elliptischen Transcenden-
ten gegriindet worden. Dic Eulersche Formel ist ein specieller Fall einer
Formel, welche wohl das wichtigste und fruchtbarste ist, was ich in reiner
Mathematik erfunden habe.” (I would also like to take this opportunity to
tell you why T am so interested in Euler’s discovery. It. was, yvou see. the
first case where series appeared whose exponents form an arithmetic series
of second order. and these series, through my work, form the basis of the
theory of elliptic transcendental functions. The Euler formula is a special
case of a formula that is probably the most important and fruitful [ have
discovered in pure mathematics.)

Jacobi did not know that. long before Euler. Jacob Bernoulli and Leibniz had
already come across series whose exponents form a series of second order. In 1685
Jacob Bernoulli, in the Journal des Scavans, posed a problem in probability the-
ory whose solution he gave in 1690 in Acta Eruditorum: series appear there whose
cxpouents are explicitly asserted to be arithmetic series of second order. Shortly
after Bernoulli, Leibniz — in Acta Eruditorum — also solved the problem; he
considered the question especially interesting because it might lead to series that
had not yet been thoroughly studied (ad serics tamen non satis adhuce examinatas
ducit). For further details. sce the article [En| of G. E. Enestrom.

In his Ars Congectandi, Bernoulli returned to the problem; the series

{h

3] -
- m

3]

3 6 ] 15 21 28 4
l—m+m —m +m —m +m° —m +mn + e

appears in [B] (p. 142). Bernoulli says that he cannot sum the series but that
one can easily “compute approximate values to arbitrarily prescribed accuracy”
(from R. Haussner’s German translation of [B], p. 59). Bernoulli gives the ap-
proximation 0.52393, which is accurate up to a unit in the last decimal place.

Gauss informed Jacobi that he had alreadv known this formula by about
1808: cf. the first letter from Jacobi to Legendre ([JL]. p. 394). Legendre,
bitter toward Gauss because of the reciprocity law and the method of least
squares. writes to Jacobi on the subject ([JL], p. 398): “Comment se fait-il
que M. Gauss ail 0sé vous faire dire que la plupart de vos théorémes lui était
connus et qu'il en avait fait la découverte dés 18087 Cet exceés d'impudence
n'est pas croyable de la part d'un homme qui a assez de mérite persounel
pour n’avoir besoin de s’approprier les découvertes des autres ... ." (How
could Mr. Gauss have dared inform vou that most of your theorems were
known to him and that he had discovered them as early as 18087 Such
outrageous impudence is incredible in a man with enough ability of his own
that he shouldn’t have to take credit for other people’s discoveries ... .)
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But Gauss was right: Jacobi's fundamental formula and more were found
in the papers he left behind. Gauss’s manuscripts were printed in 1876, in
the third volume of his Werke: on page 440 (without any statements about
convergence) is the formula

(1 4+ xy)(1 +3y) (1 +0Py) ... (1 + f—l> (1 + %) (1 + “’1—/>
= {%{ {1 +r (.7/+ xl/) + ot (yy+ yiu) + 0 (;/3 + ;';) _{_...}:

where [0 stands for (1 — 22)(1 — z4)(1 — x%).... This does in fact give
Jacobi's result (J). Schering, the editor of this volume, declares on page
494 that this research of GGauss probably belongs to the year 1808.

Kronecker, generally sparing of praise. paid tribute to the triple product
identity as follows ([Kr|, p. 186): “Hierin besteht die ungeheurc Entdeckung
Jacobi's; die Umwandlung der Reihe in das Produkt war sehr schwicrig.
Abel hat auch das Produkt, aber nicht die Reihe. Deshalb wollte Dirichlet,
sie auch als Jacobi’sche Reihe bezeichnen.” (Jacobi's tremendous discovery
consists of this: the transformation of the series into the product was very
difficult. Abel too had the product, but not the series. This is why Dirichlet
also wanted it to be called the Jacobi series.)

The Jacobi formulas are only the tip of an iceberg of fascinating identi-
ties. In 1929, G. N. Watson ([Wal, pp. 44 45) discovered the

Quintuple product identity. For all (q.z) € E x C*,

)
Z q15u2—2U(:3u + :—.Su _ Z3V~ 2 Z—Z!u-t—'l)
v=—"x
.
— H(l _ (1211)(1 _ (]2”'43)(1 _ q‘Zu—lz——I)(l _ qfll/-ilz'Z)(l _ q/lu—'lz—'.l).
=1

Many additional formulas come from considering special cases: see also
[Go] and [Ew]. For some years there has been a renaissance of the Jacobi
identitics in the theory of affine root systems. As a result. identities have
been discovered that were unknown in the classical theory. E. Neher, in
[N]. gives an introduction with many references to the literature.
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The Gamma Function

Also das Product 1-2-3...r ist die Function, die
meiner Meinung nach in der Analyse cingefithrt wer-
den muss. (Thus the product 1-2-3 ... ¢ is the func-
tion that, in my opinion, must be introduced into
analysis.)

C. F. Gauss to I'. W, Bessel, 21 November 1811

1. The problem of extending the function n! to real arguments and finding
the simplest possible “factorial function™ with value n! at n € N led Euler
in 1729 to the I'-function. He gave the infinite product

. 1-22 21—-:3: 31—7.42 < 1 < ]
He+1):= l+z 2+z 3+= .'”_H(l-{-l_/) (I-FI/)

=1

| ¢2

as a solution.! Euler considered only real arguments; Gauss, in 1811, admit-
ted complex numbers as well. On 21 November 1811, he wrote to Bessel
(1784-1846). who was also concerned with the problem of general factorials,
“Will man sich aber nicht ... zahllosen Paralogismen und Paradoxen und
Widerspriichen blossstellen, so muss 1-2-3. .. nicht als Detinition von [] «
gebraucht werden, da eine solche nur, wenn r eine ganze Zahl ist, einen bes-
timmten Sinn hat, sondern man muss von einer héheren allgemein, selbst

'Precise references to Euler can be found in the appropriate sections of this

chapter; we rely to a large extent on the article “Ubersicht iiber die Bande 17.
18. 19 der ersten Scrie” of A. Krazer and G. Faber in [Eu|. I-19, pp. XLVII LXV
in particular.
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auf imaginare Werthe von & anwendbaren, Definition ausgehen, wovon .
jene als specieller Fall erscheint. Ich habe folgenden gewahlt

1.2.3.. . K.A7T
Ilr =
r+1lor+2.0r+3...c+k

\

wenn A unendlich wird.” (But if one doesn’t want . .. countless fallacies and
paradoxes and contradictions to be exposed, 1-2-3... 2 must not be used
as the definition of ]z, since such a definition has a precise meaning only
when o is an integer: rather, one must start with a definition of greater
generality, applicable even to imaginary values of r, of which that one
occurs as a special case. [ have chosen the following ... when k becomes
infinite.) (Cf. [Gy], pp. 362-363.) We will understand in §2.1 why, in fact.
Gauss had no other choice.
The functions of Euler and Gauss are linked by the equations

[z+1)=1(z). Tn+1)=In)=n! forn=1.2,3,....

The I-function is meromorphic wn C: all its poles are of first order and occur
at the points —n, n € N. This function has the value n! at n+1 (rather than
n) for purely historical reasons. Gauss's notation I1z did not last. Legendre
introduced the now-standard notation ['(2) in place of II(z — 1) (cf. [Ly],
vol. 2, p. 5); since then, one speaks of the gamma function.

2. In 1854, Weierstrass made the reciprocal

b= ety =<1 (7)) = H1 0 ) e

of the Euler product the starting point for the theory; Fe(z), in contrast
to I'(z), is holomorphic everywhere in C. Weierstrass savs of his product
([Wey], p- 161): “Ich mochte fiir dasselbe die Benennung ‘Factorielle von
u” und die Bezeichnung Fe(u) vorschlagen. indem die Anwendung dieser
Function in der Theorie der Facultaten dem Gebrauch der I'-Function de-
shalb vorzuziehen sein diirfte, weil sie fiir keinen Wert von u eine Unter-
brechung der Stetigkeit erleidet und iiberhaupt ...im Wesentlichen den
Charakter einer rationalen ganzen Function besitzt.” (I would like to pro-
pose the name “Factorielle of «” and the notation Fc(u) for it, since the
application of this function in the theory of factorials is surely preferable
to the use of the I-function because it suffers no break in continuity for
any value of u and, overall, ...essentially has the character of a rational
entire function.) Moreover, Weierstrass almost apologized for his interest
in the function Fe(u); he writes (p. 158) “daff’die Theorie der analytischen
Facultaten in meinen Augen durchaus nicht die Wichtigkeit hat, die ihr in
fritherer Zeit viele Mathematiker beimassen™ (that the theory of analytic
factorials, in my opinion. does not by any means have the importance that
many mathematicians used to attribute to it).




|A]

[Li]

2 The Gamma Function 35

Weierstrass’s “Factorielle” Fe is now usually written in the form

20 5 n 1

z€7 " H (1 + :) e”v, n:= lim Z — —logn | = Euler’s constant.
v n— v

I 1

We set A := Fc and compile a list of the most important properties of A

in Section 1. The I'-function is studied in Section 2. Wicland’s uniqueness

theorem, which. for example, immediately yields Gauss's multiplication

formula, is central.

3. A theory of the gamma function is incomplete without classical in-
tegral formulas and Stirling’s formula. Euler was familiar with integral
representations from the outset: the equation

1
n! = / (—log.r)'de, n €N,
Jo

appears in his first work on the I-function, in 1729.
For a long time, Euler's identity

X
[(2) :/ t*~le7'dt for 2€C. Rez>0.
0

has played the central role; in Section 3 we derive it and Hankel's fornnilas
by using Wielandt's theorem. In Section 4 Stirling's formula, with a wniver-
sal estirnate of the error function, is also derived by means of Wielandt's
theorem; at the same time, following the example of Stieltjes (1889), the
error function is defined by an improper integral. In Section 5. again using
the uniqueness theorem. we prove that

IF(w)l(2)

]
B(w.z) = N1 =) = .
(w 2) L ( ) L I(w + 2)

Tezthooks on the T -function:
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and Winston, New York. 1964.
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JENSEN: An clementary exposition of the theory of the gamma function,
Ann. Math. 17 (2nd ser.), 1915 16, 124-166. For the reader's convenience,
these references are listed again in the bibliography at the end of this
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§1. The Weierstrass Function

Az) = ze [, (1 + z/v)e #"

In this section we collect basic properties of the function A. including
A€ OC), Alz)=zA(z+1). wA(l —2)=sinnwz.
1. The auxiliary function H(z) := z[[02,(1 + 2/v)e~*/¥. The next
result is fundamental.
(1) The product [],,5,(1 + z/v)e~ ¥ converges normally in C.
Proof. Let B, := B,(0). n € N\{0}. It suffices to show that

Si-(1+2)e

v>i

< oo foralln>1.
B,

In the identity

, . 1 1 1
L= (I —w)er = [(l—§> + (a——j) w+ -

()]

all expressions in parentheses on the right-hand side (...) are positive.
Hencee

SO
. 5 | 1
11— (1 —w)e"| < |w|” Z (—- - _T) = [w|® whenever |w| < 1.

- vl (v+ 1
For w = —z/v, it follows that |1 — (1 +z/v)e™*/¥| < |2|2/v? if |z| < v; thus
. 1
—(] - —z/v n? —
gll (14 2/v)e M|y, <n Z:U2<oc. 0
v>n v>n

Convergence is produced in the preceding expression by inserting the
exponential factor exp(—z/v) into the divergent product [], (1 + 2/v).
Weierstrass was the first to recognize the importance of this trick. He de-
veloped a general theory from it; see Chapter 3.

Because of (1), H(z) := 2[[(1+z/v)e™*(* is an entire function. By 1.2.2.
H has zeros, each of first order, precisely at the points —n, n € N. The
identity

(2) —-H(z)H(-z) =z2H(l - 22/v?) =77 zsinmz

v>1
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follows innnediately; it says that H(z) consists essentially of “half the fac-
tors of the sine product.” Furthermore.

1 l 1
(3) H1) =e™*, with ~:= lim (1444 -+ - —logn ) e R
‘ n—oc 2 3 n

Proof. Since [T_, (1 4+ 1) = n+ 1. we have

=1
H(1l) = linx fI 14—1 ex _1 = lim exp || )(erl)—i:l
- 7¢—~31L 1 1% p v - n—*loc Xl OB ] Vi '
v= =
Clearly H(1) > 0:hence y := —log H(1) = limy—nc (D1, £ = log(n + 1))
€ R. Since log(n + 1) —logn = log (1 + +) and lim, . log (L + &) = 0.
the assertion follows. O

The real number ~ is called Euler’s constant, v = 0.5772156. . ..

Euler introduced this number in 1734 and computed it to 6 decimal places
((Eu], I-14, p. 94); in 1781 he gave it to 16 decimal places ([Eu], I-15, p. 115),
of which the first 15 are correct. It s nol known whether v is rational or wra-
tional, nor has anyone yet succeeded in finding a representation for 4 with simple
arithmetic formation rules like those known, for example, for e and .

With 7% := ¢7!96" we have

n

2+ D). (z + "1
2 H(l + z/u)e"zf" = i 7)1!712( n) exp [: (10',_’, n— Z ;)J :

v=1 =]

thus H can also be written as follows:

(4) H(z) =¢7"% lim z(z+1)...(z+n)

n—,2c nlnz

In the next subsection. the annoying factor e~7% is interwoven with the
product.

Ezercise (Pringsheim 1915). Let p,q € N\{0}. Prove that

pn qn N
. z r4 ( sSInmwz ~ %
,,h_l}L [H (1 - ;) H (I + z—/)} = [exp (z log [—1))] . CE C

v=1 =1

. . : . . qn l _ .
Huwnt. Prove. among other things. that lim, . an+1 = = log ﬁ for g > p.

2. The entire function A(z) := ¢"*H(z) has zeros. all of first order,
precisely at the points —n, n € N. We have

A(z) = A(z). A(e) >0 forevery r € R r >0,
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It follows from 1(3) and 1(4) that

(1) A(l)=1. A(z) = lim 2zt (2 +n)

N nlnz

From this, since lim(z + n + 1)/n = 1. we immediately obtain the
Functional equation. A(z) = zA(z + 1).

The sine function and the function A are linked by the equation
(2) mA(2)A(l — z) =sin7wz.

Proof. This is clear by 1(2), since A(2)A(l — 2) = —z71A(2)A(-2) =
-2 VH(2)H(=2). o

In 2.5 we will need the multiplication formula

(3) (2%)%“‘_”A(%> A(—f—) A(—kzl) =vVk fork=23

Proof. We use the well-known equation

k—1 K
(%) ok~ H sin -7 = k.
k
n=1
(The quickest way to see this is to observe that sinz = (2¢) " '¢**(1 — e~ %**) and
nt;: ermr/k = imk=1/2 = th=1 yrite the sine product in () in the form

l k. k lH(l —Zl‘rx/)\

and use the identity 1 +w+---+w' ™' = (¥ -1)/(w-1) = Hﬁ;‘l(w — e~ nmn/ky
for w:=1.)

Since []*Z "V A(k/k) = T | A(1 = k/k) holds trivially. (2) and () yicld

T M\ _TT K K Y1k k
fa(2)' o (a0 D) T ot s

Since A(r) > 0 for x > 0. the assertion follows by taking roots.

Exercise (Weierstrass, 1876). Show that

A(z)—zH(

v>1
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§2. The Gamma Function
We define
[(z) :=1/A(2)

and translate the results of the preceding section into statements about the
gamma function, thus giving its theory a purely multiplicative foundation.

1. Properties of the I'-function. Our first result is immediate,

['(z) s holomorphic and nonvanishing in C\{0, -1, —2....}: every pomnt
—n,n € N. s a first-order pole of I'(z). Moreover,

(F) T(z+1)==z[(z), with I'(1)=1 (functional cquation).

The functional equation (F) is central to the whole broader theory. For
instance, if I'(z) is known in the strip 0 < Rez < 1. then (F) can immedi-
ately be used to find its values in the adjacent strip 1 < Rez < 2. and so
on. In general, it follows inductively from (F), for n € N\{0}, that

(1) Fz+n)=z2(2+1)...(z+n-1I(2), '(n)=@n-1)>.
We immediately determine the residues of the gamma function:

(2) res_,I' = (_nl‘) , neN.

Proof. Since —n is a first-order pole of I', we know that res _,,I" = lim, . _,, (24
n)[(z) (sec. for example. 1.13.1.2). By (1).

| . I'(z+n+1)
I'()b—nr - zl_l}l_l,, 2(2 + l) (2 +n — l)
F(l) _ (—l)u
(—n)(—n+ D ...(=1) al °

Remark. Every function h(z) € M(C) that satisfies the equation h(z +1) =
zh(z) with h(1) € C* has a first-order pole at each —n. n € N, with residue

(=D)"h(1)(nH)~ L.

The formula 1.2(1) for A(z) becomes Gauss's product representation:

. ) n'n*
(G) [z) = "111’1310 z(z+1)...(z+n)

1

Plausibility argument that (G) s the “only” equation for functions f that satsfy
(F): By (F). for all z. n € N,

fz4n) = n-Dnn+1)-...-(n+2-1)

: p z -1
= (n,—l)!1l‘(l+l><1+£)-...'(1+ )
n n n
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Clearly f(z + n) ~ (n — 1)In® for large n: more precisely. lim,_nc f(z + 1)/
((n = Dn®) = 1. If one postulates this asymptotic behavior for arbitrary z, then
(1) forces

N f(z+n) o (n - 1)!In*
f(')—wlgllez(z—i-l)...(z—kn—l)_nh.l.]; 2(z+1)...(z+n-1)

which, since limn/(z + n) = 1, is just Gauss's equation (G). See also Subsection
4

It follows immediately from (1) and (G) that

(3) litn F(Z—Jrn)

= 1.
n—x I'(n)n®

Formula 1.2(2) can be rewritten as Euler's supplement:

™

(E) I'(z)'(1 —2) =

sinwz

It follows immediately from the definition of I'(2) that

I'(z) =T(z) and I'(x) >0 forr > 0.

Since [n*| = n* and |z + v| > z + v for all z with x = Rez > 0, (G)
implies that

(4) IN(2)] < I(xr) forall z € C withx=Rez > 0.

In particular, I'(2) is bounded in every strip {z € C : » < & < s} with
() < r < s < oc; this is needed in the proof of the uniqueness theorem 2.4.

We note some consequences of (E).

2n)!
1) T (§) = /7 more generally, T' (n + §) = (—7%\/%, n € N.

4" n!
DT (L +2)I (4 -2) = ——. T((~2) = ——
2 2 COSTZ zsinwz
T it
3 [\ N 2 = — F 7l.. 21 2 = .
) | (ly)l ySi“h 7ry | (2 + I'y) I COSh 7ry

l
1) / log T'(t)dt = log V27 (Raabe, 1843. Crelle 25 and 28).
JA0

Proof. ad 1) and 2). These follow from (E).

ad 3). This follows from 2) by observing that I'(z) = ['(Z). sinht =
—isinet, and cosht = cosit. '

ad 4). The supplement (E) vields

1 1 ' 1
/ log T'(t)dt + / logl'(1 —t)dt =logm —/ log sinwtdt.

¥ JO 0

4) follows immediately from this, by using 1.3.2(1) and the footnote there. O
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Ezercises. 1) For all = € C\{1. -2.3,—-4,...},
W-2a(+3)(-2)(1+3) = ‘/’?' ;

. = (1 —z))
all 2 L rz=7x1 — =2 14+ ——= ).
2) For all z € C, sinwz = w2 ),Ll, ( + Y

]t

(84

Hint. Use the factorization n® + n+2(1 —2) = (n + 2)(n 4+ 1 = 2) and (E).

2. Historical notes. Euler had discovered the relation 1(IZ) by 1749 at
the latest; cf. [Eu]. I-15, p. 82. In 1812, Gauss made the product 1(G) the
starting point of the theory ([Gz]. p. 145). Gauss scems not to have known
that Euler had already anticipated the formula 1(G) in 1776 (|Eu]. I-16. p.
144): Weierstrass Loo. as late as 1876, gave Gauss credit for the discovery
([Weq). p. 91).

It Lias become customary (cf.. for example, [WW], p. 236) to call

F:/"

(W) () =77 H Ty

21

the “Weierstrass product.”™ But it does not appear in this form in his work:
in [We,], p. 91, however, the product [T°2, {(1 + £) e rloaltnt D/nl} oes
appear for the “Factorielle™ 1/T'(x). The formula (W) was very much ad-
mired in the last century. Hermite writes on 31 December 1878 to Lipschitz:
“...son [Weierstrass's] théoréme concernant 1/I'(z) aurait dit occuper une
place d’honneur qu'il est bien singulier qu’on ne lii ait pas donné” (... his
[Weierstrass's] theorem about 1/T'(z) should have held a place of honor
that very strangely wasn’t given to it): of. [Scha], p. 140.2  The equation
(W) had already appeared in an 1843 paper of O. Schlomilch and an 1848
paper of F. W. Newman (cf. [Schl]. p. 171, and [Ne], p. 57).
Since €2/ = (1 + 1/v)* exp z[1/v + logr — log(v + 1)) and

7 l
litn Z == log(n+1) | =7,

2>

it. follows immediately from (W) that

T(z) = [] ”l_zl;(:; U™ _ I1 (1 + 11/) (1 + l—/)l (Euler, 1729).

v>1 v>1

*Letters of praise were hardly nnusual at that time; for example, there was the
“Société d’admiration mutuelle.” as the astronomer H. Glydén called the group
consisting of Hermite, Kovalevskaya, Mittag-Leffler. Picard. and Weicerstrass.



42 2. The Gamma Function

For Euler, this product was the solution of the problem of interpolating
the sequence of factorials 1. 2. 6, 24, 120, ...: cf. [Eu], I-14, pp. 1-24.
Weierstrass makes no reference to the Euler product.
Writing w/v instead of z in 1(1) gives
WT(5+n)

L (%)
The finute product on the left-hand side was studied intensively in the first half
of the nineteenth century, under the name “analylic factorial™ This function of
three variables had even been given a symbol of its own, u"!". Gauss opposed
this nonsense in 1812 with the words, “Sed consultius videtur, functionem wunius
variabilis in analysin introducere, quam functionem trium variabilium. praeser-
titn quum hanc ad illam reducere liceat.” (It seems, however, more advisable to
introduce a function of one variable into analysis than a function of three vari-
ables. especially since the latter can be reduced to the former.) ([Gz], p. 147)
The theory of analytic factorials continued to flourish despite such criticism. e.g.
in the work of Bessel. Crelle, and Raabe. It was Weierstrass who, with his 1856
paper [Weg|, linally brought this activity to an end.

u(w+ v)(u+2v)...(u+(n—1w)=v

3. The logarithmic derivative » :== I'/T" € M(C) satisfies the equations
(1) gz 1 D =w(2) Fz7 @l - 2) ¥(z) = meotwa.

These formulas can be read off from the following series expansion.
Proposition (Partial fraction representation of ¥1(z)).

 Q— 1 1
/,\ = P} —_— —_— — — ——
(z) f z Z<z+u 1/)'

v=1}

where the series converges normally in C.
Proof. Since ' = 1/A, we have ¢ = —A’/A. Hence the assertion follows

from Theorem 1.2.3 by logarithmic differentiation of A(z) = ze?* [J(1 +
z/v)e =", a

Corollary 1. I"(1) = (1) = —v; w(k) = 1 + % +--+ kll —~ for k =2,
Proof T'(1) =¥(1) = —y=1=->_ o, (1/(wv +1) = 1/v) = —v—14+1 = —v.
The assertion for (k) then follows inductively by (1). a

Corollary 2 (Partial fraction representation’ of ' (z)).

y 1
Wi(z) = Zma

v=_

where the series converges normally in C.
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Proof. This is clear, since (by [.11.1.2, for instance) normally convergent.
series of meromorphic functions can be differentiated term by term. a

Note that the series for i and ¢’ are essentially “half” the partial fraction
series for 7 cot 7z ‘and 72/ sin? 7z, respectively (cf. 1.11.2.1 and 2.3).

The first equation in (1) makes possible an additive approach to the gamma
function. This path was chosen by N. Nielsen in 1906 in his manual [Ni]. One can
also proceed from the functional equation

glz+1)=g(z) = 272,

which is satisfied by v': for every solution g € M(C) of this equation,

n

9(2)=Z(~Z-+1—V);+g(z+n+1)

w=()
(proof by induction): the partial fraction series for ¢’ is thus no surprise.
Ezercise. Show that (1) —¥(5) = 2log?2.

4. The uniqueness problem. The exponential function is the only func-
tion F : C — C holomorphic at 0 and with F’(0) = 1 that satisfies the
functional equation F(w + z) = F(w)F(z). Can the I'-function also be
characterized by its functional equation F(z + 1) = zF'(z)? To begin with,
this equation is satisfied by all functions F' := gI', where ¢ € M(C) has
period 1. The following theorem was proved by H. Wielandt in 1939.

Uniqueness theorem. Let F' be holomorphic in the mght half-plane T :=
{z € C: Rez > 0}. Suppose that F'(z + 1) = zF(2) and also that F s
bounded mn the strp S = {: € C:1 < Rez2 < 2}. Then FF =al' in T,
where a := F(1).

Proof (Demonstratio fere pulchrior theoremate). The equation v(z + 1) =
zv(z) also holds for v := F — al' € O(T). Hence v has a meromorphic
extension to C. Its poles, if any, can occur only at 0, —1, =2, ... Since
v(1) = 0. it follows that lim,_. zv(z) = 0; thus v continues holomorphically
to 0. Since v(z + 1) = zv(z), v can also be continued holomorphically to
every point —n, n € N.

Since I'|S is bounded  see 1(4) — sois v|S. But then # is also bounded
in the strip Sy :={z € C: 0 < Rez < 1} (for 2 € Sy with |Imz| < 1, this
follows from continuity: for |Im z| > 1 it follows, since ©»(z) = v(z + 1)/z.
from the boundedness of v|S). Since v(1 — z) and v(z) assume the same
values in Sy). q(z) := v(2)v(l — 2) € O(C) is bounded in Sy. It follows from
Liouville that ¢(z) = ¢(1) = v(1)»(0) = 0. Thus v =0, i.e. F = al. )

We will encounter five compelling applications of the uniqueness theoren.
[n the next subsection, it gives Gauss's multiplication formula in a few lines;
in Section 3 it makes possible short proofs of Euler’s and Hankel's product.
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representations of I'(2): in Section 4 it leads quickly to Stirling’s formula;
and in Section 5 it immediately yields Euler's identity for the beta integral.

The following elementary characterization of the real I'-function by means of
the concept of logurithmnic converity — without differentiability conditions  can
be found in E. Artin's little book |A]. which appeared in 1931,

Uniqueness theorem (I1. Bolir and J. Mollerup. 1922: of. [BA], p. 149 ). Let
F:(0,%) — (0.0c) be a function with the following propertics:

) F{e+ 1) =rF(z) for allz >0 and F(1) = 1.
b) I is logarithmically conver (v.e. log F' is convex) in (0, 00).

Then # = I'|(0, oc).
I(r) satisfies property b). since by 2.3

(lOgF(,r))” = 1;:,'(.1;) = Z (;L—-}—l—u)—‘ >0 forxz>0.

Historical remark. Weierstrass observed in 1854 ([Weq), pp. 193-194) that
the [-function is the only solution of the functional equation I'(z + 1) =
2 £(2) with the normalization F(1) = 1 that also satisfies the limit condition

. Flz+n)
sy 0 F(n) =1

(This is trivial: the first two assertions imply that

B (n— 1)! et
FO= ) G R

with the third condition, this becomes Gauss’s product.)

Hermann Tlankel (1839-1873. a student of Riemann), in his 1836 Habil-
itationsdissertation (Leipzig. published by L. Voss). songht tractable con-
ditions “on the behavior of the function for infinite values of x [= 2].”
He was dissatisficd with his result: “Uberhaupt scheint es, als ob die Doef-
inition von I'(r) durch ein System von Bedingungen, ohne Voraussetzung
ciner explicirten Darstellung derselben, mir in der Weise gegeben werden
kann, dafl man das Verhalten von I'(#) fiir £ = oc in dieselbe aufnimmt. Die
Brauchbarkeit einer solchen Definition ist aber sehr gering, insolern es nur
in den seltensten Fallen moéglich ist, ohine grosse Weitlaufigkeiten und selbst
Schwierigkeiten den asymptotischen Werth einer Function zu bestimmen.”
(In fact, it seems as if the definition of T({x) by a system ol conditions,
without assuming an explicit representation for it, could be given only by
including the behavior of I'(z) for « = o¢ in the definition. The usefulness
of such a definition is, however, very modest, in that it is possible anly in
the rarest cases Lo determine the asymptotic value of a function without
great tediousness and even difficulties.) ({(H], p. 3)

It. was not until 1922 that Bohr and Mollerup succeeded in characterizing
the real T-function by means of logarithmic convexity. But this — despite



§2. The Gamma Function 45

the immediately compelling applications (see [A]) -— was not the kind of
characterization that Hankel had had in mind. Such a characterization
was first given in 1939 by H. Wielandt. His theorem can hardly be found
in the literature, although K. Knopp promptly included it in 1941 in his
Funktionentheorie 11, Sammlung Goéschen 703, 47-49.

In his paper “Note on the gamma function,” Bull. Amer. Math. Soc. 20,
1-10 (1914), G. D. Birkhoff had already derived Euler’s theorem (p. 51) and
Euler’s identity (p. 68) by using Liouville’s theorem. He first investigates
the quotients of functions in the closed strip {z € C : 1 < Rez < 2},
then shows that they are bounded entire functions and therefore constant
(loc. cit., p. 8 and p. 10). Was he perhaps already thinking of a uniqueness
theorem a la Wielandt?

5. Multiplication formulas. The gamma function satisfies the equations

1 2 k-1
) F(Z)F(2+E)F(Z+E)"'F(Z+——k—)
= (2m)3*-DE3-k(kz), k=23,.
Proof. Set F(Z = ( ) ( ) (_z_j_—_k_:_l_) /(2#)%("'1)]‘;%“:, Then
F(2) € O(C™), where C~ = C\(—ox, 0] We have

F(z+1)= kF(%)_IF(z)T (”“,:’“) = zF(2);

moreover, it follows immediately from 1.2(3) that F(1) = 1. Since |k*| = k*
and |I'(z)] <€ I'(z) whenever x = Rez > 0 (cf. 1(4)), F is bounded in
{z € C:1 < Rez < 2}. By the uniqueness theorem of the preceding sub-
section, it follows that F =T'; hence F(kz) = ['(kz), i.e. (1). m|

Historical note. By about 1776, Euler already knew the formulas

(1) VkI (i—) r (%) ..T (’”_;1) = (2m)h-D)

([Eul, I-19, p. 483); they generalize the equation I'(3) = /7. The equations
(1) were proved by Gauss in 1812 ([G2], p. 150); E. E. Kummer gave another
proof in 1847 [Ku]. a

Logarithmic differentiation turns (1) into the convenient

Summation formula: ¥(kz) =logk + %}::;(1, 'w(z + %), k=2.3,....
For k = 2, (1) becomes the

Duplication formula: /7T'(2z) = 2%*7'T'(2)['(z + 3).

which was already stated by Legendre in 1811 ([L;], vol. 1, p. 284).
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The identities (1) contain

Multiplication formulas for sinnz. Forallk € N, k > 2,

sinkmz = 2* 'sinmzsin® (z+ ‘]15) sin (z+ -,2;) ...sinm (z+ k—;—1> .

Proof. Since 1 — kz = k(—z + 1/k), Euler’s formulas 1(E) and (1) yield

m(sinkmz) "' =(k2)T(k(—z + 1/k))

=(2.,r)1—'°iI:I; [I’ (z+ %)I‘ (—z+ l-L-n)].

It is clear that [T* 22T (—z + 1£%) = [J*ZI T (1 — 2 = £); hence

~=0

m(sinkwz)"! = (2m)"*T(2)[(1 - 2) I:[1[ ( ) (1 B (z+%>)]
[ sinm z+k))—l]- =

N

= (2n)} ~*7(sin7z)

n.':J_

The duplication formula leads to another

Uniqueness theorem. Suppose that F € M(C) s positwe in (0,0c) and satis-

fies
F(z+1) =2zF(2) and 7F(22) =2""'F(2)F(z+ 1).

Then F =T.

Proof. For g := F/T' € M(C), we have g(2z) = g(z)g9(z + 3) and g(z + 1) = g(2).
Therefore g(z) > 0 for all £ € R. Hence, by Lemma 1.3.2, g(z) = ae’®, where
b is now real. Since g has period 1, it follows that b = 0; hence g(z) = 1,i.e. F =T.

FEzrercises. Prove the following:

1
1) / log I'(t)dt = log V2x directly, using the duplication formula (cf. 1.4).
0

1
2) / logI'(¢ + 2)d¢ = log V27 + zlog z — 2 for z € C\(—oc, 0) (Raabe’s func-
(4]
tion).

] 1 1 1 &
)1+§+§+ +_—‘__'7’_'k':z ( ) k=23,....

6*. Holder’s theorem. One can ask whether the I'-function — by analogy
with the functions exp z and cosz, sinz — satisfies a simple differential
equation. O. Holder proved that this is not the case ([Ho], 1886).
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Holder’s theorem. The I'-function does not satisfy any algebraic diyfferen-
tial equation. In other words, there is no polynomial F(X, Xo. X1,...,Xy)
# 0 in finitely many indeterminates over C such that

F(z,T(2),I(2),...,T™(z)) = 0.

Weierstrass assigned the proof of this theorem as an exercise. There is
a series of proofs, for example those of Moore (1897), F. Hausdorff (1925),
and A. Ostrowski (1919 and 1925) (cf. [M], [Ha], and [O]). Ostrowski’s 1925
proof is considered especially simple; it can be found, among other places,
in [Bi], pp. 356-359. All the proofs construct a contradiction between the
functional equation I'(z + 1) = zI'(z) and the hypothesized differential
equation.

7*. The logarithm of the I'-function. Since I'(z) has no zeros in the
star-shaped domain C~, the function ¥(z) = I''(2)/I'(z) is holomorphic
there and

(1) I(2) := /[1 ]w(c) d¢, z€C.with (1) =0,

as an antiderivative of the logarithmic derivative of I'(z), is a logarithm
of [(2) (that is, e'(*) = I'(2); cf. 1.9.3). We write log I'(z) for the function
I(z); this notation, however, does not mean that [(z) is obtained in C~
by substituting I'(z) into the function log z. It follows easily from (1) and
Proposition 3 that

(1Y logl(z) = —vz —logz + i [S — log (1 + %)] , z€C.

v=1

Proof. Since the partial fraction series —y — 1/¢ — 3°07, [1/(( +v) = 1/v]
converges normally in C™, it can be integrated term by term; cf. 1.8.4.4.
Forz€e C~ and v > 1, 1 + 2/v € C~ and hence log(z + v) — log(1 + v) =
log (1 + z/v) — log(1 + 1/v) (!). Thus

- 1
logl'(z) = —vz+7v—logz— Z [log(z +v) —log(l +v) — S + ;]
v=1

o0
—7z+’7+2[§-—10g(1+§)+10g<1+£) —H
v=1

Since Y, _, [1/v —log(1+1/v)] =37 _,1/v —log(n + 1) tends to v, (')
follows. O
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We now consider the function logI'(z + 1) in E. Its Taylor series about
0 has radius of convergence 1; we claim that

8

(2) logl(z+1)=—vz+ Z

(n , where ((n —.
V=1V

Proof. Since

1 1 1 1 Z (=1 sz\"
1l - (2)" iflel <o
z+v v u[1+z/u ] Z v \v if 2] <w

it follows from 3(1) and Proposition 3 that

Yiz+1)=—v- Z (Z TR ) = —y+ Z(—l)"‘((n)z"—l, z e E

n=1 n=2
But (logI'(z + 1)) = % (2 + 1) and log (1) = 0; this gives (2). O
For z = 1, the series (2) gives the formula

n

1) ¢(n) (Euler, 1769).

(3) 7=
n=2

Proof. Since {(n+1) < ((n), the terms of the alternating series on the right-hand
side tend monotonically to 0: hence the series is convergent. Abel’s limit theorem
can be applied to (2):

20 (_1)" . oo
; ~ <<n>=xh;.n§;

C(n =v+logl'(2) =~.

Historical note. Rapidly convergent series for logI'(2z + 1) can be obtained
from the series (2); cf., for example, [Ni|, p. 38. These give enough infor-
mation to tabulate the initial values {(n) of the logarithm of the gamma
function. Legendre established the first such table: it contains the values
of log'(x + 1) from x = 0 to x = 0.5, with increment 0.005, up to seven
decimal places. Legendre later published tables from z = 0 to £ = 1 with
increment 0.001, correct to seven decimal places ([L;], vol. 1. pp. 302-306);
in 1817 he improved these tables to twelve decimal places ([L;], vol. 2,
pp. 85-95). Gauss, in 1812, gave the functional values of ¥(1 + x) and
log'(1 + z) from x = 0 to = = 1, with increment 0.01, up to twenty deci-
mal places ([Gz], pp. 161-162). Euler announced equation (3) in 1769 ([Eu],
1-15, p. 119).
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83. Euler's and Hankel’s Integral Representations

of I'(2)

Euler observed as early as 1729 — in his first work ([Eu], I-14, pp. 1-24)
on the gamma function — that the sequence of factorials 1, 2, 6. 24,... is
given by the integral

i
n! =/ (—log7)"dr. neN
0

(loc. cit., p. 12). In general,

1
I(z+1) =/ (= logT)*dT  whenever Rez > -1,
0

with 2 instead of 2 + 1 and t := — log 7, this yields the equation

(1) F(z):/ t*7le7'dt, z€T:={zeC:Rez>0}.
0

The improper integral on the right-hand side of (1) was called Fuler's
integral of the second kind by Legendre in 1811 ([L,]. vol. 1, p. 221). Its
existence is not obvious: we prove in Subsection 1 that it converges and is
holomorphic. The identity (1) is a cornerstone of the theory of the gamma
function; we prove it in Subsection 2. using the uniqueness theorem 2.4. In
Subsection 4 we use the uniqueness theorem to obtain Hankel's formulas
for I'(2).

Integral representations of the I'-function have repeatedly attracted the
interest of mathematicians since Euler. R. Dedekind obtained his doctorate
in 1852 with a paper entitled “Uber die Elemente der Theorie der Euler-
schen Integrale” (cf. his Ges. Math. Werke 1, pp. 1-31), and H. Hankel
qualified as a university lecturer in 1863 in Leipzig with a paper called “Die

Eulerschen Integrale bei unbeschrankter Variabilitiat des Argumentes™; of.
[H].

1. Convergence of Euler’s integral. We recall the following result.
Majorant criterion. Let g : D x [a.oc) — C be continuous. where D C C

is a region and a € R. Suppose there exists a function M(t) on [a.20) such
that

lg(z,t)| < M(t) forallz€ D, t > a, and / M(t)dt € R vausts.

Then f:o g(z.t)dt converges uniformly and absolutely m D. If g(z.t) €
O(D) for every t > a. thenf"oo g(z, t)dt is holomorphic mn D.
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Proof. Let = > 0. Choose b > a such that f, M(t)dt < e. Then

l / (it

The uniform and absolute convergence of the integral in D follows from
('au(-hy's convergence criterion. If g is alwavs holomorphic in D for fixed

, then _}W g(z.)dt € O(D) for all r and s such that ¢ < r < s < o (cf.
18 2.2). Then we also have [~ g(z.t)dt € O(D). (Incidentally. it is eas-
ier to show that this integral is holomorphic by using Vitali’s theoreni: cf.
T.1.2.) a

/ lg(=. O)]dt < / M(t)dt <e forallze€ Dandc >b.
b

Jb

For r € R, let S} (resp.. S,7) denote the right half-plane Re z > r (resp.,
the left half-plane Re z < r). Fox brevity. we set

1 X
w(z): / t e dt. v(2) = / t* e tdt.
JO J|

Convergence theorem The integral v(z) converges uniformly and abso-
lutely ' S, for every r € R, moreover. v(z) € O(C).

The integral w(z) converges uniformly and absolutely m S} for every
r > 0. Moreover, u(z) € O(T) and

(1) w(z) = Z (= 1‘)“ ! for every z € T.

Proof. a) For all z € S7, we have [t*71] < "=, Since lim;_ » fr-le=3t = 0,
there exists an A > 0 such that [~ 1le | < Me= 3t for all z € S, t> 1.
Since [ e itdt = 2/ /e and et € O(C) for all t > 1, the claims
about v follow from the maiordnt criterion.

b) H(l s := 1/t then u( f ¢ “VigT= s If r > 0. th(*11|€'1/“s_”_]|
< s ' 7lforall z e SF, dn(l IOTCOVET f s " 'ds = r='. The majorant
criterion now gives all the claims about u except for equation (1). This
follows from the identity

! ’.:~l =t It = - (—1)’, ltz-H/—l dt
Ja ©f T Z 1B A

=0
x . -~
-1)” 1 . -1 o
I = S Y I
— vz tv ~ vl oz+v

which holds for all & € (0.1) (theorem on interchanging the order of inte-
gration and summation; cf. 1.6.2.3), since Rez > 0 and the last surnmand
therefore tends to 0 as & — 0. a
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The integrals u(r), r < 0, diverge. Since ' ‘¢ ' > ¢ 1" 7' in (0,1),

1 1 !
/ e dt > e"l/ ="' (1 = 6"): thus lim / e =
é 6 6

-

2. Euler’s theorem. The integral f‘:c >~ le=tdt converges umformly and
absolutely to T'(z) m every strip {z€ C:a < Rez < b}, 0<a<b< x:

['(z) = / e 'dt for € T.
0

Proof. Convergence follows from the convergence theorem |1, since the in-
tegral coincides with F' := v + ¢ in T. For F € O(T). it is immediate
that

F(z+1)=2F(z). F()=1, |F(:)|<|F(Rez)l. forall zeT.

In particular, F is bounded if 1 < Rez < 2. That I = I follows from
Theorem 2.4. O

Of course. there are also direct proofs of the equation F = I'. The reader may
consult. for instance, [A], where the logarithunic convexity of F(r). & > O is
proved, or [WW)|. where Gauss's proof is given. One verifies the equations

nln? o
= T =t/m)dt, eT on=1,2,...
z2(z+1)...(z+n) /.) /

by induction, then proves that the sequence on the right-hand side converges to
F(z). C

The T-integral can be used to determine a number of integrals. The
Gaussian crror integral, discussed at length in Volume 1, is a special -
value:

26 X
n . . 2 |
/ e dr=a 'I(a™!) for a > 0:  in particular, / e7hde = 5 V.
0 Juo ~

~ - l p— — -
Proof. For t := r®. we have t* ~' = r!1=% and dt = as” " tdr: thus

x 30 X
_ 1 _ _ e R “"
la™") =/ tr Tlemldt = / s e e = n/ o ' odr.
Jo

JA) JO

The last equality is clear, since F(%) = /7 by 2.1.1). a
An inductive argument using integration by parts vields
x be)
/ e Ve = %F(n + %)‘ n ¢ N
3}

(Cf. also 1.12.4.6(3).)
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The Fresnel integrals, already determined in 1.7.1.6*, can also be derived
from the T'-integral; for more on this, sec Subsection 3.

We mention in addition the representation given by F. E. Prym ([Pr], 1876).
Partial fraction representation of the ['-function. The identity

(=D X a1 -t
I(z)=>_ ~ Z+I/+l t*"le tdt

v={

holds for all z € C\{0, —1.-2...}.

Proof. The assertion is true for z € T. Since the functions that appear are holo-

morphic in C\{0. -1, —2,...}. the general case follows from the identity theorem.
a

3°. The equation [™t*"'e™"dt = ¢"™*/?T'(2), 0 < Rez < 1. To prove this.
let

a) g(¢) = ¢ 'e™% then [g(¢)] <
el T lp=r o8¢ where 2 = v + iy € C,
(=re'¥ € C . Since g € O(C™), we have
by Cauchy (see Figure 2.1): )
v YR

b) -[*r’+ﬁ.ugd< = fw.ngdC' J
If we show that, for 0 < Rez < 1, %

Vs
¢) lim / gd¢ = lim / gd¢ =0,

E=0/,, R—xJyp

8 r R
the assertion will follow from b) by taking " —A
limits, since v is the path ((¢t) := it. § <
t < R. By a), FIGURE 2.1.

m/e
/ gdC =/ g(re'*)ire'¥de:
0

L P
/ (}dC’ _<_ eﬂlylrr/ e—r(,os,odip
BRI 0

for all » € (0,). To verify the second equality in c). we observe that cosyp >
1 - 2p for all ¢ € [0, %n‘] (concavity of the cesine). Hence

v

thus

d)

w/2 n/2 3 RURE L P,
RN, < exp(2R7 ™ 'p — R)dp= e Re*Rm 02" « T
[ ¢ (’Q‘A xp( v — R)dp'= e R . R

By d).

< %we"i’lex_': thus nlim_ gd( =0 ifz<]l. a

"R

./ gdg
YR
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For z := & € (0, 1), splitting into real and imaginary parts gives

(1) / t°~ ! costdt = cos(3mz)I'(x), / t*" 'sintdt = sin(37z)I(2).
0

0

For z := % and 72 :=t, these are the Fresnel formulas (cf. [.7.1.6™):

/cosz'rdr=/ sinz‘rdrzl\/lw.

The equations (1), combined with Euler’s summation formula, give an ex-
tremely simple proof of the functional equation for the Riemann (-function; cf.
(T], p. 15.

Ezercises. 1) Argue as above to prove that
20
/ t* e ¥dt = w I'(z) forw.zeT.
0

(We had w = i above. The concavity of cos ¢ is no longer needed.)

2) Prove that the following holds for the {-function {(2) :=3 77, n™%
oc tz—l
((2)I'(2) :/ . dt forall z€T.
0 e — 1

(This formula can be used to obtain the functional equation

(1 —2) =2(2nr) *cos %'n'zl“(z)((z).)

Historical note. Euler knew the formulas (1) in 1781. In [Eu] (I-19, p. 225), by
taking real and imaginary parts of w® [ t*~'e™"!dt = I'(z), with w = p +2q,
he obtained the equations

/ t* e Plcosqt dt = TD'(2) - f “coszf and
0

o0
/ t*~ e " sin gt dt [(z) - f~" sinzf,
0

where 8 := arctan(q/p) and f := |w| = /p? + ¢2. Euler did not worry about the
region in which his identities were valid; (1) follows from setting p = 0, ¢ = 1 (cf.
also 1.7.1.6%).

4*. Hankel’s loop integral. Euler’s integral represents I'(z) only in the
right half-plane. We now introduce an integral, with integrand w%e",
which represents I'(2) in all of C\(—N); we will “make a detour™ around
the annoying singularity of w~%e¥ at 0. Clearly

(%) lw™2e®| < e™¥l|w|"TeRe® forz=a+1wyeC, weC .

Now let s € (0,00) and ¢ € 9B4(0), ¢ # s, be chosen and fixed. We
denote by < the “improper loop path” ~ + é + 2 (Figure 2.2) and by
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FIGURE 2.2.

S a strip [a,b] x iR, a < b. The next statement follows from (*), since
im0 |t — c|"e‘5“ = 0 for every q € R.

(1) There exists a ty such that max,ecs |lw™?e”| < e™lVle=3t forw = y,(t) =
cC— t, t Z t().

We claim that the following holds.

Lemma. The “loop integral” —2;1;1- f~r w™*e¥dw converges compactly and ab-

solutely in C to an entire function h satisfying h(1) = 1 and h(—n) = 0,
n € N. Moreover, h(z)e™™¥! is bounded in every strip S.

Proof. Since ™! is bounded on every compact set K C C, the integral
converges, by (1), uniformly and absolutely along <, (majorant criterion).
As the same holds for the integral along 7, the claim about convergence
follows.

For every m € Z, we have lim,_.o fd w™me¥dw = 0 (Figure 2.2). Hence
h(m) = resg(w~"e*) for m € Z. 1t follows that h(1) = 1 and A(—-N) = 0.
(1) also shows that h(z)e~™¥! is bounded in S. a

Hankel’s formulas now follow quickly:

1 1 -z Ww .
F(z) = % [/w e dw, 2 € (C,
1 1w
— W2 w —N).
I(z) 2isin7rz[Yu e’dw, z¢€ C\(-N)

Proof. We denote the functions on the right-hand side by h and F, respec-
tively. Then

h(1 - 2)
sin Tz
Since h(—N) = 0 (by the lemma), it follows'that F' € O(T). Integration by
parts in the integral for h gives h(z) = zh(z+1), whence F(z+1) = 2F(z).

Since |2sin z| > el¥! — e~ ¥l it follows from the lemma that
|F(z)|=1rlh(l—z)|< 4 for 1 <Rez <2, y#0,

|sinmz] — 1 —e—27lyl

(%) F(z)=m , zeC\Z
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with a constant A > 0. Thus F' is bounded for 1 < Rez < 2. Hence, by
the uniqueness theorem 2.4, F' = al', a € C. The supplement I'(z)['(1 —
z)sinwz = 7 and (%) then give h = a/T". Since @ = h(1) = 1 (by the
lemma), Hankel’s formulas are proved. O

Historical note. Hankel disgovered his formulas in 1863; cf. [H], p. 7. The
proof presented here follows an idea of H. Wielandt.

“By varying the path of integration in [his] generally valid integral,”
Hiankel “easily” obtains “the forms of the integral I'(x) or the quotient
1: I'(z) that have been familiar so far”; thus, for example, the equations
3*(1) (cf. [H], top of p.10). The reader may also consult [WW], p. 246.

Hankel’s formulas remain valid for ¢ = —s if in the integrals along ¥,
(from —oc to —s), resp. ¥z (from —s to —o0), we substitute for the in-
tegrands the limiting values of w~2e", resp. w*~!e¥, as (—oc, —s) is ap-
proached from the lower, resp. wupper half-plane. Thus we have
eFim(z=et|t|2=1  _o0 < t < —s, in the second formula. If we now assume
in addition that z € T, we may also let s approach 0. Thus integrating
along the degenerate loop path (from —oo to 0 and back) gives, for all
2€T,

0 —oc
2i[(2)sinmz = e’i”(z_l)/ t]*~'etdt + e”("l)/ [t]~te'dt

—00 0

0
= Qisinwz/ t|* e’ dt.

— 0o

Here the final integral on the right-hand side is [;* t*~'e'dt. We have
proved that

Euler’s formula for I'(z), z € T, follows from Hankel’s second formula.

Euler’s formula is thus a degenerate case of Hankel’s. Conversely, Han-
kel’s formulas can be recovered from this degenerate case (cf., for example,
[H], pp. 6-8; [K], pp. 198-199; or [WW], pp. 244-245).

§4. Stirling’s Formula and Gudermann’s Series

Invenire summam quotcunque Logarithmorum, quo-
rum numeri sint in progressione Arithmetica.

— J. Stirling, 1730, Methodus Differentialis

For applications — not just numerical applications — the growth of the
function I'(z) must be known: For large z, we would like to approximate
['(z) in the slit plane C~ := C\(—00,0] by “simpler” functions (we omit
the half-line (—o0, 0] since I'(z) has poles at —N). We are guided in this
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search by the growth of the sequence n!, which is described by Stirling’s
classical formula

(ST) n! = \/27rn"+%e_"e“", with lima, = 0;

cf. [W]. pp. 351-353. This formula suggests looking for an “error function”
it € O(C™) for the I'-function such that an equation

I"(z) — 27rz‘z_ %e—ze}l(Z)’ Witxll lile—»oc /J'(z) = 0’

holds in all of C~, where 2573 = exp((z — §)log(z)]: (ST) would be con-
tained in this since nI'(n) = n!. We will see that

u(z) =logT(z) — (z — 3)logz + 2z — S log2m

is an ideal error function. It even tends to zero hike 1/z as the distance
from z to the negative real aris tends to infinaty. Thus V2rzi"1e™% is a
“simpler” function that approximates I'(2) in C™.

The equation given for u(z) is hardly suitable as a definition. We define
@(z) in Subsection 1 by an improper integral that makes the main properties
of this function obvious and leads inmediately, in Subsection 2, to Stirling’s
formula with solid estimates for u(z). These estimates are further improved
in Subsection 4. In Subsections 5 and 6, Stirling’s formula is generalized to
Stirling’s series with estimates for the remainder.

To estimate integrands with powers of 2+t in the denominator, we always
use the following inequality:

(%) |z +t| > (|| + t)cos 3 for z = |z|e’? and t > 0.

Proof. Let 1 := |z|. Since cos ¢ = 1 — 2sin® 3¢ and (r +¢)2 > 4rt, it follows
that

|2+ 8> =7r% +2rtcosp + 2 = (r +¢)* —drtsin® 1o > (r +1)%cos? L. O

One consequence of this is a “uniform” estimate in angular sectors.

(#x) Let 0 < 6 < 7 and t > 0. Then (since cos -12-<,o > sin %6)

|z + t| > (|z| + t)sin §6  for all z = |z|e** with |p| < 7w — 6.

1. Stieltjes’s definition of the function p(z). The real functions
(1) PA@M:=t-[]-3 and Qt):=z(t—[t] - (t-[t])?),

where [t] denotes the greatest integer < t, are continuous in R\Z and have
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AP, Ar o

A L —
SV !

FIGURE 2.3.

period 1 (see Figure 2.3); P;(t) is the “sawtooth function.” The function
Q(t) is an antiderivative of — P; (t) in R\Z; we have 0 < Q(t) < . Moreover,
Q is continuous on all of R. The starting point for all further considerations
is the following definition:

(2) u(z) = — /0 ~ f 1f2dt= fo ” (Zth))zdte oC).

This definition is certainly legitimate once we prove that the integrals in
(2) converge locally uniformly in C~ to the same function. Let § € (0, |
and € > 0. For all ¢ > 0, we then have (by (**) of the introduction)

Q(t)

(z+t)?

1 1 1
~ 8sin? 15 (e +1)?

if z = |z|e*? with |z] > € and |¢| < 7—6§. The second integral thus converges
locally uniformly in C~ by the majorant criterion 3.1. The first integral also
converges locally uniformly in C~ to the same limit function since

_ [ R, _ Qo

f = —= +/ it)—dtf for0<r<s<oo.
» 2+ z+t ,

(z+t)2

r

(Integration by parts is permissible because @ is continuous.)
We immediately obtain a functional equation for the u-function:

11
Ly
3) p(z)—u(z—i—l):/o L dt=(z+4)log1+ 1)~ 1, zeC.

Proof. Observe that P;(t + 1) = P;(t) and write

oc 00 ‘,l—t
u(z+1)=—/ wdt:-/ Pl—(t)dt=u(z)—/ 2 =
0 1 0

z2+t+1 2+t z+t

The integrand on the right-hand side has (z + 3)log(z + t) — t as an an-
tiderivative; (3) follows since log(z + 1) — log z = log(1 + 1) in all of C~.
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2. Stirling’s formula. For each é§ € (0.7]. we denote by W; the angular
sector {|z]et? € C* @ |p| < m — 6}, which omits the negative real axis. The
following theorem describes the relationship between the functions T'(z)
and pi(z), as well as the growth of u(z).

Theorem (Stirling’s formulas).

I'(z) = V2rz 2" 2er(®), z2e€C,
1 \ 1
. - < - z = |z|le'Y € C™,
(ST) (=)l < Beo? To Tz £
1 1 1
1z < =, zeWs, 0<é6< 7.
ll ( )I = SSillz lzé ‘Z' 6

Proof. Since Q(t) < & and |z+1| > |2] cos %\,o > |z|sin —%b (see the introduc-

tion to this section), the inequalities follow from 1(2). We show, morcover,
that F(3) := 23~ 3¢~ 2eM(3) € O(C™) satisfies the hypotheses of the unique-
ness theorem 2.4, The functional equation 1(3) for u(z) immediately gives

Nl

F(z4+1) = (z+1)**

(ML

e—z—le;:(z)w(,ﬂ-%)log(l+§)+1 — zz-i—::gc—z(,p(z) — ZF(Z).

Furthermore, F' is bounded in the strip S = {z € C: 1 < Rez < 2}:
Certainly e#¢) is bounded there. For all z = 2 + iy = |z|ei*““ € C~, we have
|22 2¢ *| = 2|7 2e ¥ . Ifz € Sand |y| > 2, then r—3 <2 |z| <2y, and
—yyp < —37lyl; for such z. it follows that |z~ 2e~%| < 4y2e~ 2719l Since
limy, .~ y?¢ 2™ = 0, F is bounded in S.

That I'(z) = az*" e *eM2) now follows from Theorem 2.4. In order to
show that a = V27, we substitute the right-hand side into the Legendre
duplication formula of 2.5. After simplifying. we obtain

Vore oh(22)—n(z)—u(z+1) a(l + 2_1£)z.

Since lim, .« p(a) = 0 and lim, (1 + 5&)’ = /e, it follows that a =

V2T, O

The equation (ST) shows — as claimed in the introduction — that the
following holds:

(ST') logI'(2) = 3 log2m + (2 — §)logz — z + pu(2).

For real numbers. (ST) can be written as

(ST*) o+ 1) = V2rz a7e *H0E/E) 1250, 0<8<1;
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for z := n, this is a more precise version of the equation (ST) of the
introduction.

The great power of this theorem lies in the estimates for y(z). They are
actually seldom used with this precision. Usually it suffices to know that,
in every angular sector Wy, /.l.(Z) tends uniformly to zero like 1/2z as z tends
to o0.

The statements of (ST) are easily summarized in the “asymptotic equa-
tion”

I‘(z)~\/27rzz"%e_z, or I'(z+1)~ 2#2(3),

€

where the symbol ~ means that the quotient of the left- and right-hand
sides converges uniformly to 1 as z — o¢ in every angular sector Wy punc-
tured at 0. One consequence is that

I['(z+a)~ 2°T(z) for fixed a € C\{-1,-2,-3.,...}.

The inequalities in (ST) can immediately be sharpened through better esti-
mates for the integral deﬁning u(z). We first note that

1
z <_ =
ln(z)| < 8/ |z+t|‘ 8|z| s—{—(‘owp 2+sm 0

If we now observe that arctanx = §7r arccot & is an antiderivative of (r2+41)7!

it follows immediately (with ¢/sing := 1 for ¢ = 0) that

1 ¢ 1 -
1 < - — fi =|zle"? € C™.
(1) B < §aeary Tor = lele? e

Since ¢/ sin ¢ is monotone increasing in [0, 7). this contains the inequality

-6 1

(2) lu(z)| < 8 Smb L

e Ws, 0<ébéd<m.

The bounds in (1) and (2) are better than the old ones in (ST) when ¢ # 0 or
6 # m: for then || < 2tan J|pl.or 7—6 < 2cot 16, whence 1t follows immediately
that /sinp < (cos 3¢)~ ~2 (resp. (7 — 6)/siné < (sin 36) 2).

Historical note. For the slit plane C~, Stirling’s formula was first proved in
1889 by T.-J. Stieltjes; cf. [St]. Until then, the formula had been known to
hold only in the mght half-plane. Stieltjes systematically used the definition
of the p-function by means of Pj(t) given in Subsection 1 ([St]. p. 428 ff.).
It has the advantage over older formulas of Binet and Gauss of holding
in all of C™, not just in the right half-plane T. This formula for u(z) was
published in 1875 by P. Gilbert in “Recherches sur le développement de
la fonction I' et sur certaines intégrales définics qui en dépendent.” Mém.
de l'Acad. de Belgique 41, 1-60. especially p. 12. However, I know of no
compelling applications for large angular sectors.

3. Growth of |I'(x + iy)| for |y| — oco. An elementary consequence
of Stirling’s formulas is that |['(x + iy)| tends exponentially to zero as y
increases. As early as 1889, S. Pincherle observed ([Pi], p. 234):
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(1) The following holds uniformly as |y| — oo, for x wn a compact subset
of R: L
IT( + 1y)| ~ Vor|y|*~ze" 37,

Proof. I'(z)| ~ V2x|z|*~%|e~?| by 2(ST). Since |22~%| = |2|*~2e~¥# for
=2+ 11y = |z|e*¥, p € (—m,7), it follows that

(%) IT(r + iy)| ~ \/27r|z|’_%e_’"y“° uniformly as |y| — oc,

for x in a compact subset of R. Since |z| ~ |y| as

yl — o0,
(*x) |z|r_% ~ Iyl‘”‘é uniformly as |y| — oc,

for r in a compact subset of R. To deal with exp(—x — y¢) asymptotically.
we may restrict to the case y — +oc (because I'(Z) = I'(2)). Since tan(%w—

w) =yl

¢ = —m—arctan.ry” ', where arctanw = w — tuw’ + fuw® -+ |Jw| < 1.
2 3 5

Since lim,_.o yarctanzy~! = r uniformly for z in a compact subset of R,

we see that €77 %Y ~ ¢~ 2™V as y — o0, (1) now follows from (*) and (*x). O

4*. Gudermann’s series. Equation 1(3) yields
. ] 1 " Pt

Z 24v+—Jlogll4+ —— ) -1 :—/ —1(—)dt.

— 2 z+v o 2+t
This and 1(2) give Gudermann'’s series representation:

= 1 1

1 = z - =1 14—} -1 inC.
1 u(z) 2[( H/+2> og( +z+y> ] in

The series (1) can be used to improve the factor 1/8 in 2(ST) to 1/12. We
write (z + %) log(1 + %) — 1 as A(z) for brevity, and begin by proving the
following:

L=, o (302 _
(0) /\(Z)_E/O (z+t)2dt"2A (z+t§(z+1—t)dt’ ze

(00) Aol s £ L (i - L) |

12 cos? 1

Proof. (0) Integration by parts in 1(3) gives the first integral for A(2). The
second integral results from integrating from 0 to 1/2 and 1/2 to 1 in 1(3),
then substituting 1 — ¢ for ¢ in the second integrand.
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(0o) Since t(1 —t) > 0 in [0, 1], (%) of the introduction and (o) give

1 -2
p@Is g [ dar s (cosge)  A(aD:

Since (r +t)(r +1—1t) > r(r + 1) for t € [0, 1], the second integral in (o)
gives

i

2 1\’ 1 /1 1
< L =—(-= . O
Ar) < r(r+1)/0 (2 t) dt T (r r+1) for all » >0

One can also estimate A(r) by means of the power series for log }—*_% (cf.
A, p. 21).

The following theorem is now immediate.

Theorem. Gudermann’s series converges normally in C~, and

1 1 1
12 cos? 1 |2|

lu(z)| <

for z = |z|e!¥ € C~.

Proof. By (1) and (00),

1 1\ & 1 1
< A( —
(2)] ZI z+v) 2((‘082('0) g(|z+u| |z+z/+1|>

2(ST*) now holds with 1/12 instead of 1/8 in the exponent. Moreover,
it follows at once that

when Rez >0 and |u(iy)| < 11 for y € R.

6 [y]

The boundb for u(z) are better than the bounds in 2(1) and 2(2) when-
ever tan 3¢ < cp and cot 36 > 3(7 — 6) i.e. for ¢ < 110.8° and 6 > 69 2°.
We will see in §5 3 that |u(z)| < $512]7! in the angular sector |p| < 7.

, < —
k)] < SRS

Historical note. C. Gudermann discovered the series u(z) in 1845 [G]; it
has sin(‘ed been named after him. The inequality with the classical initial
factor =% 12 instead of -é is due to Stieltjes ([St], p. 443).

5*. Stirling’s series. We seek an asymptotic expansion of the function
p(z) in powers of 2~ !. We work with the Bernoulli polynomials

k
Bk(w):z(i)B,’j"‘:wk—%Icwk_l+---+Bk, k>1,
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where B, := B,(0) is the sth Bernoulli number. The following identities
hold (cf. 1.7.5.4):

(*) Bip(w)=(k+1)Bi(w), keN. and By(0)= Bx(1) for k > 2.

To every polynomial B, (t), we assign a periodic function P, : R — R
defined by

(1) P,(t) .= B,(t) for 0 <t <1, P,(t) has period 1.

Then P, (t) is the sawtooth function. We now set

(2) j(2) 1= —%fo (;P:(i;kdt. k>l

All the functions pj are holomorphic in C™; furthermore,

pui(z) = p(2). pr(z) = %-ﬁ; + tar1(2). pan(2) = pons1(2)
(3) .

B2u 1
#z) = Zl (@0 = 12w 201 T Henni(2)

Proof of (3). The recursion formulas follow from integrating by parts in (2):
the equations jig,, = 2,41 hold because By = By = --- = (). a

The series in (3) is called Stirling's series with remainder term g, 4.
Forn =1,

111 [ Pyt
2) = —.——2f B here
(3) uiz) 12z 3/0 (z )3 e
. 3., 1
Pt = td—§t2+§t for ¢ € [0, 1].

Since |Py(t)| < 1/20 (the maximum occurs at 1/2 + v/3/6) and [J° |z +
t|73dt = |z]7(Jz| + Re z) ™! (because a~?z(xr® +a?)~'/? is an antiderivative
of (2% 4+ a?)~%/2), it follows that
11
12 2

1 1

< ——— eC.
60 |z| |z| + Re 2 ¢

(3’/)

p(z)

-

Stirling’s series (3) does not give a Laurent expansion for g as n — >
(since i does not have an isolated singularity.at 0). In fact:

Ba, 1
(2v —1)2v z2v-1

This follows since | By, | > 2(2v)!/(27)% (cf. 1.11.3.2) and limn!/r™ = oo
for r > 0. O

For every z € C*, the sequence 15 unbounded.
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The full significance of Stirling’s series is realized only through useful
estimates for the complicated remainder term. By (3),

> — I 2n
1 / Ban = Pau(t)
0

~ o (z + )2

ote that L1 ” dt
n —— = —].
e At Pk o (z4t)kt!

For n > 1, we set M, 1= sup,», |[Ban — P2n(t)] € R and z = [z]e'¥ € C. It
follows immediately that

Hon-1 (Z)
(4)

M, 1 1

X A _ 0
2n — 1)2n  cos?” %¢ 2|27 -1

(5) l2n-1(2)] < (

A direct estimate for p2,—;(z) without the detour via (4) would have
given, instead of (5). only the power |z|?"~2 in the denominator. (2) and
(5) immediately give

1iﬂl 22”—1 on-1\%) = —/m/m/m/mmm/™— .
2€We,z—oc an-1(2) (2n —1)2n

From (3) and (5) we obtain the following limit equation for every angular
sector Wj:

: "\ By, 1
) fm_ 1) - 2 (2v — 1)2v z2v-1 2" =0, n2>1.
v=1

z€Wg,z2—oc

Stirling’s series is thus an asymptotic expansion of u(z) (at 0 — sce 1.9.6.1).
If z is large compared to 7. this gives a very good approximation for p(z),
but making the index n large for fixed z yields nothing. For n = 3, for
example,

1 1 1 1 1
Jlog z—z+log V2T + — - — — — + —— — —error term.

log’ =(z— :
ogT'(z) = ( 122 36023 " 1260 25

|-

6*. Delicate estimates for the remainder term. Whoever is ambitious
looks for good numerical values for the bounds M, in 5(5). Stieltjes already
proved ([St], pp. 434 -436):

|BZn| ) 1 ‘ 1
2n — 1)2n  cos?" %ap |z[2n-1"
z=|zle®? € C. n > 1.

(1) Ill2n——l(z)| < (

For n = 1, this is the inequality of Theorem 4. The proof of (1) uses the
following unobvious property of the sign of the function P, (1), t > 0:

(S) Ba, — Py, (t) always has the sign (=1)" 71, n > 1.
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(1) follows quickly from (S): Since Bg, — P2n(t) never changes sign, 5(4)
(with z = re*?) immediately gives

> n — Pon(t
0

B |
COSZ"§<P|N211_1(Z)| <

2n (r+t)2m
1 > By, — Pgn(t)

- Z2n 200 il = (g1 (7).
m L (7" + t)2n |,u'2 l(r)l

To estimate pon—1(r), we use 5(3). We have

B, 1
2n — 1)2n r2n-1"

“271—1(r) - u2n+1(r) = (
Since, by 5(4) and (S), p2n—1(r) and —puon+1(r) have the same sign for
all » > 0, it follows that

| B2n| 1
n—1)2n r2n-1

|pan-1(r)| < |lt2n—1("‘) - u2n+1(7”)| < (2

(1) is then proved by applying (S). To prove (S), we exploit the Fourier
series of Py, (t) (cf. 1.14.3.4):

2(2n)! i cos 27t

P, (t) = (—1)n_1 (2m)2n

3 , t20, n>1.
V'n

v=1

Since Py, (0) = By, (Euler’s formula),

e 2(2n)! f: 1 — cos 27wt

an - P2n(t) = (_'1) (27r)21l

2n
v
v=1

Since no summand on the right-hand side is negative, it is clear that (S)
holds.

7*. Binet’s integral. There are other interesting representations of the p-
function besides the Stieltjes integral formula and Gudermann’s series, but these
are valid only in the right half-plane. J. M. Binet proved in 1839 that

*° arctan(t/z)
et . 1

(1) u(z) =2 dt ifRez>0

0
([B], p.- 243). The following formula is convenient for the proof.

Plana’s summation formula. Let f be holomorphic in a neighborhood of the
closed half-plane {z € C: Rez > 0} and have the follounng properties:

L350 f(v) and [° f(x)dz emst;
2. limjgmoo f(z + z't)e"z"“I = 0 uniformly for z € [0,s], s > 0 arbitrary;
3. limg o [0 | f(s + iy)le™?"¥dy = 0.
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Then

Zf(u)=; f(.T d1'+¢/ fGy) —f(_ y)dy.
v=0

0 6,27ry

A proof of this formula can be found in [SG]. pp. 438-440. Plana gave his formula
(which he described as “remarquable”) in 1820 in [Pl]. Abel arrived at this formula
three years later. Cauchy, in 1826, gave one of the first correct proofs; Kronecker
treated this and related questions’in 1889. For further details. see [Li], pp. 68-69.

Clearly the function h(w) := (z + w)~? satisfies the hypotheses of Plana’s
summation formula for every fixed number z € T. We have (cf. Corollary 2.3)

= I 1 izt
1 . . - ~
It follows that
" _ 1 1 > 4zt dt
(@ (logD)"(x) = 55+ + / ey Res>o.
Integrating under the integral sign in this equation yields
Wz = - /“ 2t dt
B 2?2 +t2e2mt — 1
(3) ,E) , Rez > 0.
(z) = / 2arctant/z dt
H 0 et ]
Proof. Integrating (2) once gives
, 1 2t dt
(0)  (logD)'(2) =c1 — % + log z — A SipaT o] = constant.

Since [(z — 3)logz — 2|’ = log z — 1/2z, integrating again gives

* 2arctant/z
et _ ]

(00) logl'(z) =co+ a1z + (z—%)logz—z+/ dt.
0

Comparing (0o) with 4.2(ST’) leads to the equation

1 o ‘tant/z
u(z)=co—§log21r+clz+/ Mdt.

0 e27rt -1

For the integral I(z) on the right-hand side, since 0 < arctant/x < t/x for ¢ > 0,

OSI(w)SE/ ;dt; thus lim, .~ I(x) = 0.
0

x e?rt — 1

Since limg —oc s2(z) = 0 as well, it follows that ¢y = § log 27 and ¢; = 0. 0
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The equations (3) are called Binet's integrals for ;' and p. There are other
integral representations for u(z): for example,

z [ log(l — e~ %)
n(z) = —;A —are dt. Rez>0.

(Integration by parts gives (3).) All these formulas -— except for the Stieltjes
formula — are valid only in the right half-plane.

8°. Lindel6f’s estimate. A series expansion of 2t/(z® + t?) in Binet’s inte-
gral formula yields formulas for the Bernoulli numbers B;, and the functions

lt’lln—l(z):

x t2n—l -1 n—1
/ e,le'df:(—‘l)T'Bgn, TLZI
0 -

(_l)n—l /00 t'2n—1 dt
0

z2n-1 22 + 12 g2t _ 1

(1)

/1"271-—1(2):2 n>1and Re z > 0.

Proof. Since 1/(1 +q) = 771 (=1)""1¢*~" + (=¢)" "' /(1 + g¢), we have (with
q:=t*/2%)

2 _1t2u—| . tzn-l 1
=2 -1)" >— + )"
22 + t2 ;( ) ZZ ( ) 22 + 2 zZ2n-2
Hence, for Re z > 0, 7(3) gives the series
n-1 | 1 oC t"!u—l
/ ¢ v—
Wz)==D 2-0""5 | St
(0) v=1 0
+ 2(_1)7L—1 o o} t2'n—1 dt
22n—2 o z22+tert —1°

On the other hand, differentiating the series in 4.5(3) gives

n—1

(00) W) = =3 Pt i (2).

2 22

=1

For fixed n and large z, the last terms in (o) and (00) tend to zero like z72™:

In (0) this follows directly; in (00) one estimates the equation

! > BQn - P2n (t)
Hon—1(2) = —/(; Wdt’ Rez > 0.

which comes from differentiating under the integral sign in 5(1). Thus (o) and
(00) are “asymptotic Laurent cxpansions” for p'(2). The uniqueness of such ex-
pansions follows as for power series (cf. 1.9.6.1, p. 294). Comparison of coefficients
gives (1). W]
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We now estimate p5,_;(z). For the function defined in the interval (- %n’, 1

by

)

c(p) :=1for |p| < 37 and c(y) = | sin2p| " for in < |l < 3,

we have 2% + 2| > |z|%/c() if 2 = |z]e*® and |p| < 1. [t follows by (1) that

. B, ¢ -
(2) |#l2n—l(z)| < L—fl_l ((L{?) if Rez > 0.
Since limy_~ i’ (zt) = 0 for z € C™, integration along ((t) = zt. t > 1. gives

~
#211—1(3) = _/ zu;,._l(zt)d.t.
1

Thus, for all 2 with Re z > (),

luz'-~1(z)|ssz|/ W o (et < 122 ) / t
1

2n |z|2n—l 1y $4n

An immediate result of this is Lindeldf s estimates ([Li]. p. 99):

|Bznl ()

2 — <
(L) l/—"2n I(Z)l = (2’!1 _ 1)2n |zl2n—l !

for z = |z]e*?, |p| < min > 1.

In the angular sector |p| < iﬂ', these inequalitics are better than 4.6(1); for

example. it follows that

1 1
lu(z)] < ﬁ|_2| for all 2 = |z|e™ with |¢| < 3.

Lindelof’s bound ¢(p) = 1 cannot be improved for || < %n because of 4.5(6).

For |p| > im. (L) is better than 4.6(1) as long as |sin 2p| > cos®"** 1.

Interest in delicate estimates like (L) is still alive today. In their recent article
[Sch F] in the venerable Crelle’'s Journal, W. Schifke and A. Finsterer showed
that |sin 25| ™!, in the angular sector 17 < |yl < %w, is the best of n independent
bounds for which (L) holds. For ecach individual n, however, there exists a better
bound ¢ () < () (cf. [Sch S]).

§5. The Beta Function

The improper integral

1
(1) B(w. z) ::/ t N =)t
JU

converges compactly and absolutely in the quadrant T x T = {(w, z) € C?:
Rez > 0,Rew > 0}, and is therefore holomorphic in z € T (resp.. w € T)
for fixed w € T (resp. z € T): the proof, like that for the ['-integral, uses
a majorant test (cf. also 7.4.2). The function B(w, z) is called the (Euler)
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beta function; Legendre referred in 1811 to Euler’s integral of the first kind
([L1], vol. 1, p. 221). The main result of the theory of the beta function is

[(w)l'(z)
I'w + 2)

It will be derived in Subsection 1 by means of the uniqueness theorem 2.4.

Euler’s identity: B(w,z) = for allw, z € T.

1. Proof of Euler’s identity. We need the following results:
a) B(w,1) =w™!, B(w,z+1) = Z-B(w,2).
b) |B(w, z)| < B(Rew, Re z).

Proof. a) The first formula is trivial; the second is proved as follows:

(w+ 2)B(w, 2 + 1) — 2B(w, 2)

1 1
=(w+z)/ t“"l(l—t)zdt—z/ tw=1(1 —t)* " tat
0 0

= /l{wt“’_l(l — )% —t¥z(1 — t)* " !}dt
0

b) This is clear, since |(1 — ¢)¥w~1¢*71| < (1 — ¢)Rew-1gRez-1 O

To prove Euler’s identity, we now fix w € T and set F(z) := B(w, z)'(w+
z) € O(T). By a), F(1) =I'w) and F(z + 1) = 2F(2). Since |T'(w + 2)| <
I'(Re(w + z)), b) shows that F is bounded in the strip {1 < Rez < 2}. By
the uniqueness theorem 2.4, F(z) = I'(w)I'(2). ]

A proof of Euler’s identity for real arguments, using the logarithmic convexity
of the product B(z, y)['(z + y), can be found in Artin’s book ([A], pp. 18-19).

Because of the formula B(w, z) = I'(w)I'(2)/T'(w + 2), the beta function
is not interesting in its own right. Despite this, it survived for quite a
while alongside the gamma function as a separate function: a profusion
of relations between beta functions was derived, especially by means of
the identities a); these often reduce to trivialities as soon as the Euler
identities are applied. See, for example, the classical works of Legendre
([Ly 2], passim) and Binet [Bin], or even those of Euler himself (and also
[Ni], p. 15).

The following integral formulas, valid for all w, z € T, are useful:

%” Sw—l

(1)  B(w,z2) = 2/0 (sin )2~ (cos p)%*~ldyp = /°°

—d.
0 (1+3)w+z ’

Proof. In (1) of the introduction, substitute ¢t = Sin2<'p (resp., s = tan? p);
thus (1 + s)™! = cos? ¢ and ds = 2tan ¢(cos ) ~2dp. o
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Historical note. Euler, in 1766, systematically studied the integral

! P~ Vdx

0 n/(l —_ In)n—q

([Ev], }-17. pp. 268-287); h;e writes (g) for his integral. Substituting y :=
" yields

1
(%) / 2P~ (1 - g")n~ldr =
0

Integrals of the type (*) already occur in Euler’s “De productis ex infinitis
factoribus ortis,” which was submitted to the Petersburg Academy on 12
January 1739 but not published until 1750 ([Eu], I-14, pp. 260-290).

Euler knew by 1771 at the latest that the beta function could be reduced
to the gamma function (cf. [Eu], 1-17, p. 355).

2. Classical proofs of Euler’s identity. Because B is holomorphic in T,
it suffices to verify the formula for real numbers w > 0, z > 0 (identity
theorem).

Dirichlet’s proof (1839, [D], p. 398). First, we have

20
(14 s)"*T(2) :/ t*"le U+t Res>—1. 2>0 (evenzeT).
0

Substituting w + z for z and using 1(1), we find that
o0 20
F(w+ 2)B(w.z) = / g1 {/ t‘”“_le_(””)'dt] ds, w>0, 2>0.
0 0

By theorems of real analysis, reversing the order of integration is legitimate
here for all real w > 0, z > 0 (!); thus

ocC o
['(w+ z)B(w, 2) :/ [/ s‘”_le—”ds] teta—letds,
0 0
The inner integral equals I'(w)t~*. Hence
oo}
MNw+ 2)B(w, 2) = F('Lb)/ t*~le7tdt = D(w)T(2). O
0

Dirichlet carefully examined the theorem used to reverse the order of inte-
gration. Jacobi, in 1833, argued concisely as follows [J]:



70 2. The Gamma Function

Demonstratio formulae

[~z [Teaox  pary
‘/:”c—«_,a-i-b—nax — T(e+b)°

(Auct. Dr. C. G. J. Jacobi, prof. math, Regiom.)

St —w)itow =

uotics variabilibus x, y valores omnes positivi tribuuntur inde a O us-
que ad 4~ %, posito
x4y=r, x=ruw,
variabili novac = valores conveniunt omncs positivi a O usque ad - oo,
variabili @ valores omnes positivi a O usque ad 4 1. Fit simul
dxdy = rdrdw.
Sit iam ¢ notatione nota:

T(a) = /’“ ez x,
T@a)T®) = [/e-*-rxﬂyb—'axa ¥,

variabilibus x, y tributis valoribus omnibus positivis a O usque ad 4 oo,
I'osito autom:

habotur

rt+y=r, r=ruw,
integrale duplex propositum cx antecedentibus altcro (uoque modo in
duos factores discerpitur:

T@TE) = f crttor " wrt (L w)
unde

S —wytow = (O,
Quod est thcoroma fundameantale, quo integraliun Eulerianorum, quae ill.
Legendre vocavit, altera species per altcram cxhibetur,

23. Aug. 1833,

Exercises. Prove the following identities.

D) 5 (cos )" sin o) dip = § SEEETE for m, n € N\{0}.

. -1 2z— N z-1
2) ﬁ = jooo (;——t)‘dt = 2];;36(1/8.11\,9) ld{p = j()oo SleS for 0 < Rez < 1.
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Entire Functions with Prescribed Zeros

Es ist also stets moglich, eine ganze eindeutige Func-
tion G(z) mit vorgeschriebenen Null-Stellen a;, a2,
as, - .. zu bilden, wofern nur die nothwendige Bedin-
gung Limn=o|a,| = oc erfiillt ist. (It is therefore
always possible to construct a single-valued entire
function G(z) with prescribed zeros a,, az, as. ...,
provided only that the necessary condition Lim, =
lan| = o0 is satisfied.)

— Weierstrass, Math. Werke 2. p. 97

If f # 0 is a holomorphic function on a domain G, its zero set Z(f) is
locally finite in G by the identity theorem (cf. 1.8.1.3). It is natural to pose
the following problem:

Let T be any locally finite subset of GG, and let every pommt d € T be
assigned a natural number d(d) > 1 in some way. Construct functions
holomorphic in G which each have zero set T and, moreover, whose zeros
at each point d € T have order d(d).

It is not at all clear that such functions exist. Of course, if T is finite,
the polynomials

[[G-@ or 22 ] (1—2)0({“
deT deT\{0}

give the desired result (the initial factor z°(") appears only if 0 € T).
In 1876, Weierstrass extended this product construction to transcendental



74 3. Entire Functions with Prescribed Zeros

entire functions: for a prescribed sequence d, € C* with limd, = oc, he
constructs products of the form

2 k.
Z"‘H l_i exp i+_1. __Z_. +...+l i
o d, d, 2\d, k, \d,

and forces their normal convergence in C by an appropriate choice of natu-
ral numbers k,,. The novelty of this construction is the use of nonvanishing
convergence-producing factors (for historical details, see 1.6).

We study Weierstrass’s construction in detail in Section 1 and discuss its
applications in Section 2.

§1. The Weierstrass Product Theorem for C

The goal of this section is the proof of the Weierstrass product theorem for
the plane. To formulate it properly, we make use of the concept of divisors.
In Subsection 1, with a view toward later generalizations, we define divisors
for arbitrary regions D in C. Theorem 2 describes the simple principle
by which Weierstrass products are used to obtain holomorphic functions
with prescribed divisors. In order to apply this theorem, we introduce the
Weterstrass factors F, (z) in Subsection 3. They are used in Subsection 4 to
construct the classical Weierstrass products for the case D = C. Subsection
5 contains elementary but important consequences of the product theorem.

1. Divisors and principal divisors. A map 0 : D — Z whose support
S:={z€ D:0 # 0} is locally finite in D is called a divisor on D. Every
function A meromorphic in D whose zero set Z(h) and pole set P(h) are
discrete in D determines. by z — 0,(h), a divisor (h) on D with support
Z(h) U P(h); such divisors are called principal divisors on D. The problem
posed in the introduction to this chapter is now contained in the following
problem:

Prove that every divisor is a principal divisor.

We begin by making a few general observations. Divisors , 0 (as maps
into Z) can be added in a natural way; the sum 0 + 0 is again a divisor
(why?). Tt follows easily:

The set Div(D) of all the divisors on D 1s an abelian group, with addition
as group operation.

A divisor D is called positive and written 0 > 0 if 9(2) > 0 for all z € D;
for obvious reasons, positive divisors are also called distributions of zeros.
Holomorphic functions f have positive divisors (f). The set M(D)* of all
functions meromorphic in D that have discrete zero sets is a multiplicative
abelian group; more precisely, M(D)* is the group of units of the ring
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M(D). If D = G is a domain, then M(G) is a field: thus M(G)* =
M(G)\{0} (cf. [.10.3.3).

The following is immediate.

The map M(D)* — Div(D), h — (h), 1s a group homomorphism. More-
over,

1) f e M(D)* 1s holomorphic imn D < (f) > 0:

2) f e M(D)* is a unit in O(D) & (f) =0.

Every divisor 0 is the difference of two positive divisors:
0 =0" — 0. where 0% (2) :=max(0,0(z)), 0 (z) :=max(0, -0(z)), z € D.
It follows immediately from this that

0 is a principal diisor on D 1f 07 and 0 are principal dinisors on D.

Proof. Let 0% = (f), 0~ = (g), with f,g € O(D). Then, for h := f/g €
M(D)*. we have (h) = (f/g) = (f) - (g) =0t -0~ =0. O

The problem stated above is thus reduced to the following:

For every positive divisor ® on D, construct a function f € O(D) unth

(f)="0.

Such functions can be constructed with the aid of special products, which
we now introduce.

2. Weierstrass products. Let 0 # 0 be a positwe divisor on D. The
support T' # @ of 0 is at most countable (since T is locally finite in D).
From the points of T\{0} we form, n some fashion, a finite or infinite
sequence dy, da, ... such that every point d € T\{0} appears exactly d(d)
times in this sequence. We call d,, da, ... a sequence corresponding to d. A
product

(%) [=201] {0 foe0OW),
v2>1
is called a Weerstrass product for the divisor © > 0 wn D if the following
conditions hold.
1) f, has no zeros in D\{d,} and o4, (f,) =1, v > 1.
2) The product [, fu converges normally mn D.

This terminology will turn out to be especially convenient; the next result
is immediate.

Proposition. If f is a Weierstrass product for 0 > 0, then (f) = 0: that
is, the zero set of f € O(D) 1s the support T of 0, and every pomnt d € T
is a zero of f of order 0(d).
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Proof. By 2), f € O(D). Every point d € T. d # 0, occurs exactly 9(d)
times in the sequence d,; hence 1) and Theorem 1.2.2 (applied to the con-
nected components of D) imply that o,(f) = 0(2) for all z € D. Therefore

(f) = . 0

The next statement follows immediately from the definition.

If 220 T] £, and 2> [1/. are Wererstrass products ford > 0 andd > 0,
2(0)+2(0) [T g, is a Weierstrass product for 0 + 0, where

~

92v-1 = fi, and g2 = fv-

respectively, then z

We will construct Weierstrass products for every positive divisor 9. (This
involves more than finding functions f € O(D) with (f) = 2.) In the
construction, the “only” thing that matters is choosing the factors f, €
O(D) in such a way that 1) and 2) hold. When D = C, such factors can
be specified explicitly.

3. Weierstrass factors. The entire functions

22 23 2"
Eyz)i=1-2, E,(2)=(1-2)explz+ —+—=+-+— ). n2>21,
2 3 n
are called Weierstrass factors. We observe immediately that
2 n
(1) El (z) = —z" exp <z+ % + 4 z——) forn > 1,
n

(2) E.(z) =1+ Z a, 2", where Z la,| = 1, for n > 0.
v>n v>n

Proof. Let t,(z) := 2+ 2%2/2 + --- + z"/n; then (1 — 2)t,(2) =1 — 2™,

ad (1): Write E},(2) = —expt,(2)+(1—=2)t,,(z) exptn(z) = —z" expt,(2).

ad (2): Let Y a,z" be the Taylor series for E,, about 0. The case n =0
is trivial. For n > 1, we have 3 va,2*"! = —z"expt,(z) by (1). Since
the function on the right-hand side has an nth-order zero at 0 and all the
Taylor coefficients of expt,(2) about 0 are positive. we see that

ay=:-=a, =0and ¢, <0; thus|a,| = —a, forv>n.
(2) follows because ap = E,(0) =1land 0= E,(1) =1+, a,. O

From (2), we immediately obtain
(3) |En(z) =1 <|z|"*'. n=0,1,2,.... forall z € C wnth |z| < 1.

A second proof of (3), using only (1). Since le¥| < e'*!, w € C, it follows
immediately that

|En(tz)| < =|z|"En(t) for all (t,z) € [0,0¢) x E



§1. The Weierstrass Product Theorem for C 77
Since f(2) — f(0) = zf(,l f'(tz)dt for all f € O(C) and all z € C,

1 1
|En(z) — 1] < |z|/ |EL(t2)|dt < —|z|”+1/ E'(t)dt, 2 € E.
0

JO

The integral on the right-hand side is equal to —1. |

In the next subsection, Weierstrass products will be formed from Weier-
strass factors; the estimate (3) will be crucial for the proof of convergence.

Historical note. The sequence E,, appears in [W,] (p. 94). From the equa-
tion

1 -z =exp(log(l — z)) = exp —Z— , z2€E,
he obtains the formula E,(z) = exp (- 3,5, z"/u), z € E, which plays
the role of the estimate (3) in his reasoning. — The first proof of (3) given

above is attributed to L. Fejér; cf. [Hi], vol. 1, p. 227, as well as [F], vol. 2.

pp. 849--850. But the argument appears as early as 1903, in a paper of L.
Orlando; cf. [O].

4. The Weierstrass product theorem. In this subsection, d # 0 denotes
a positwe dimsor on C and (d,),>1 a sequence corresponding to .

Lemma. If (k,).>) is any sequence of natural numbers such that

20
(1) Z |r/d,|**t! < oc  for every real r > 0,
1

then 2°(0) [1,51 Ex.(2/d.) 15 a Wewerstrass product for 0.

Proof. We may assume that 0 is not finite. By 3(3),

|Ex, (2/d,) — 1] < |r/d,|F** for all 2z € B,.(0) and all v with |d,

>

Since lim |d, | = oo, for every r > 0 there exists an n(r) such that |d,| > r
for v > n(r). Hence

Z |Ek, (2/dv) — 1] B,(0) < z |r/d,|F**! < o< for every r > 0,

v>n(r) v>n(r)

proving the normal convergence of the product. Since the factor Ey  (2/d,) €
O(C) has no zeros in C\{d, } and has a first-order zero at d,,, we have a
Weierstrass product for 0. a

Product theorem. For every dunsor 0 > 0 on C, there exist Weierstrass
products, e.g.
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L2OT] Ev-i(2/dy)

21

2 v—1
z 1/ 2 1 z
=z0(0) 1—— —Z —_ —_— . e _— .
|>|1[( du)exp(du+2(d,,)+ +u—1(d,,> )]

Proof. Given r > 0, choose m € N such that |d,| > 2r for v > m. It follows
that >, o, Ir/du]” < 3,5, 27" < oo. Thus (1) holds for k, :=v —1. O

The choice k, := v — 1 is not optumal. It suffices, for example, just to require
that k, > alogv with a > 1: since |dy| > e - r for all but finitely many v, we
have |r/d.|***' < v, so that (1) holds.

5. Consequences. The product theorem 4 has important corollaries.

Existence theorem. Every dwisor on C is a principal dwvisor.

Factorization theorem. Every entire function f # 0 can be written n
the form

2 k.
_ o9l2)ym _ 2 LI 2 O )
f(z) =9z H[(l d,,)exP<du+2<du> + +k,,(du) )},

where g € O(C) and and 2™ [],5, ... s a (possibly empty) Weierstrass
product for the dwnsor (f). B

Only the factorization theorem needs justification. By the product the-
orem, there exists a Weierstrass product f for the divisor (f). Then f/ f
is a function without zeros, and thus of the form exp g with g € O(C) (cf.
1.9.3.2). 0

The next result is a simple consequence of the existence theorem.

Theorem (Quotient representation of meromorphic functions). For every
function h meromorphic in C, there exist two entire functions f and g,
without common zeros m C, such that h = f/g.

Proof. Let h # 0. Positive divisors on C with disjoint supports are de-
fined by 0% (2) := max{0,0,(h)} and 97 (2) := max{0, —o,(h)}; they satisfy
(h) =0t —07. Let g € O(C) be chosen with (g) = 0~. Then g # 0. For
f := gh, it follows that (f) = (g) + (h) = 0+ > 0, whence f is holomorphic
in C. By construction, Z(f) N Z(g) is empty. m]

In particular, we have proved the following:

The field M(C) of functions meromorphic in C s the quotient field of
the integral domawn O(C) of functions holomorphic in C.
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The theorem contains more than this last statement: for an arbitrary quotient
f/g, the numerator and denominator may have infinitely many common zeros:
without the existence theorem. it is not clear that these zeros all cancel out.

We conclude hy noting a

Root criterion. The folloywing statements about an entire function f # 0
and a natural number n > 1 are equivalent:

i) There exists a holomorphic nth root of f; that 1s, there exists a
g € O(C) with g" = f.
ii) Fvery natural number 0,(f), z € C, is dunsible by n.

Proof. Only the implication ii) = i) must be proved. By hypothesis, there
exists a positive divisor d on C with nd = (f). Let g € O(C) be chosen such
that (g) = 0. Then u := f/g" is holomorphic and nonvanishing in C; hence
there exists u € O(C) with @ = u" (existence theorem for holomorphic
roots; cf. 1.9.3.3). The function g := ug is an nth root of f. O

The existence theorem allows us to prescribe the location and order of
the poles of meromorphic functions. We will see in Chapter 6 that, in doing
so, we can also arbitrarily prescribe all principal parts. But the following
is immediate from the product theorem 4, by logarithmic differentiation of
Weierstrass products.

(1) Let 0, d,, da,... be a sequence of pairwise distinct pownts in C that
have no accumulation point in C. Then the function

| 1 1 z 2V 2
2+Z<z—d +E+d_2+"'+d5—‘)

is meromorphic in C and holomorphic in C\{0, d,. do, ...}: it has principal
part (z~d,)"! atd,, v > 1.

6. On the history of the product theorem. Weierstrass developed his
theory in 1876 ([W,]. pp. 77-124). His main objective was to establish the
“general expression” for all functions meromorphic in C except at finitely
many points. “[Dazu| hatte ich jedoch ... zuvor eine in der Theorie der
transcendenten ganzen Functionen bestehende ... Liicke auszufiillen, was
mir erst nach manchen vergeblichen Versuchen vor nicht langer Zeit in be-
friedigender Weise gelungen ist.” (To do this, however, I ... first needed
to fill in a gap ... in the theory of transcendental entire functions, which,
after a number of futile attemnpts, I succeeded only recently in doing in a
satisfactory way.) ([W,], p. 85) The gap he mentioned was closed by the
product theorem ([W]. pp. 92-97). What was new and, for his contem-
poraries, sensational in Weierstrass’s construction was the application of
convergence-producing factors that have no influence on the behavior of
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the zeros. Incidentally, according to Weierstrass ([W;], p. 91), the idea of
forcing convergence by adjoining exponential factors came to him by way
of the product formula

YT(z) = 2 [ {(1+ 5) (”jl)_z} ==IT{(1+ S)e‘“"g("‘?")},

v>1 v>1

which he attributes to Gauss rather than Euler; cf. 2.2.2. In 1898 H.
Poincaré, in his obituary for Weierstrass, assessed the discovery of the fac-
tors E, (z) as follows ([Pg], p. 8): “La principale contribution de Weierstra8
aux progres de la théorie des fonctions est la découverte des facteurs pri-
maires.” (Weierstra’'s major contribution to the development of function
theory is the discovery of primary factors.) Special cases of the product
theorem had already appeared in the literature before 1876, for example in
the work of E. Betti (cf. 2.1).

The awareness that there exist entire functions with “arbitrarily” pre-
scribed zeros revolutionized the thinking of function theorists. Suddenly
one could “construct” holomorphic functions that were not even hinted at
in the classical arsenal. Of course, this freedom does not contradict the sol-
wdarity of value behavior of holomorphic functions required by the identity
theorem: the “analytic cement” turns out to be pliable enough to globally
bind locally prescribed data in an analytic way.

From his product theorem. Weierstrass immediately deduced the theo-
rem on quotient representation of meromorphic functions ({W,], p. 102).
He attracted attention by this alone. No less a figure than H. Poincaré
scized this observation of the “célebre géometre de Berlin” and carried it
over to meromorphic functions of two variables [P;]. With his theorem on
the representability of every function meromorphic in C? as the quotient
f(w, 2)/g(w, 2) of two entire functions in C? (locally relatively prime ev-
crywhere), Poincaré initiated a theory that, through the work of P. Cousin,
H. Cartan, K. Oka, J-P. Serre, and H. Grauert, is still alive today; see the
glimpses in 4.2.5, 5.2.6, and 6.2.5.

§2. Discussion of the Product Theorem

When we apply the product lemma 1.4, we will choose the numbers k&, as
small as possible, in accordance with the idea that the smaller k, is, the
simpler the factor Ey (z/d,). Situations in which all the k&, can be chosen
to be equal are especially nice; they lead to the concept of the canonical
product (Subsection 1). In Subsection 2 we show that not only the Euler
products of Chapter 1.4 but also the sine product and the product H(z). so
important for the theory of the gamma function, are canonical Weierstrass
products.
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In Subsections 3 and 4 we discuss the o-product and the p-function. We
prove that o(z;w;,ws) and p(z; w;,ws) are holomorphic and meromorphic,
ré8pectively, in all three variables. Since the time of Eisenstein and Weier-
strass, these functions have been central to the theory of elliptic functions.
Subsection 5 contains an amusing observation of Hurwitz.

1. Canonical products. Let ? again denote a positive divisor on C and
dy, da, ... a corresponding sequence. We first make a few observations.

(1) If f(z) = [1(1 = 2/d.,)eP**) converges normally in C and every func-
tion p, is a polynomial of degree < k, then Y |1/d,|**! converges.

Proof. Differentiating f'(z)/f(z) = > [1/(z —d,) + p,(2)] k times yields
the series S_(—1)*k!/(z — d,)**'. which converges absolutely at 0 € C. O

We now ask when, for a given 0, there exist Weierstrass products of the
particularly simple form 2% [] -, Ex(2/d,) with fixed k € N.

(2) 2°© [1,51 Ex(2/dy) 1s a Weierstrass product for the divisor d if and
only if 3 [1/d,|* ! < oc.

Proof. If the product in question is a Weierstrass product for 0, then
Y |1/d, ¥t < oo by (1), since Ex(z/d) = (1 — z/d)eP'®) with a poly-
nomial of degree k. Conversely, if 3 |1/d,|**! < oo, then the product is a
Weierstrass product for 9 by Lemma 1.4. m]

If there exist Weierstrass products for 9 as in (2), we can choose k to
be minamal; in this case 2>V [T ., Ex(z/d,) is called the canonical Weier-
strass product for 0.

The following is clear by (2).

Proposition. 2> ], ., Ex(z/d,) s the canonical product for 0 if and
only if
> /df =oc and > [1/d,|**! < 00

Examples of canonical products are given in the next two subsections.
Such products depend only on‘the divisor ; the incidental choice of the
sequence d,, — in contrast to the general situation — plays no role. If the
sequence d,, grows too slowly, there is no canonical product: there is none,
for example, if log(1 + v) is a subsequence of the sequence d,,. (Prove this.)
It is thus easy to sce that the function 1 — exp(expz) has no canonical
product. — We also note, without proof:

(3) If m > 0 is such that |d,—d,| > m forallp # v, then d>_|1/d,|* < oc
for a > 2. In this case, there exists a canonical product for 0 with k < 2.




82 3 Entire Functions with Prescribed Zeros

Historical note. E. Betti. in 1859- 60, proved (3) in order to write elliptic
functions as quotients of theta series; cf. the article by P. Ullrich ([U], p.
166).

2. Three classical canonical products. 1) The product

H(l +q"z) = H Fo(—¢"2), where 0<|q| <1,

v p>1

discussed in 1.4.3, is the canonical product for the divisor on C given by
(—q ") =1forv=1,2,...; 0:=0 otherwise.

(Proposition 1 holds with & :=0.)

2) The function

PR LY N eV _=z
H(z) = ¢ /r(k)_QH(Hy)p =z [] Fu( ~).

2> v>1

considered in 2.1.1. is the canomcal product for the divisor on T defined
by

o(—v):=1forv e N, 9(z):= 0 otherwise.

(Proposition 1 holds with A := 1 but not with & :=0.)
3) The sine product

.2

Z. g z
1 - = = 2 R PR-¥ 47 N, —2fy
[0 - LTI =2y (14 =)em=]
v>1 v>l
= II.EH Eq —-—)
v>|
is the canomieal product for the divisor on C defined by -

o(v):=1forveZ; 0(z) =0 otherwise.

(Proposition I holds with A& := 1 but not with & := 0; a corresponding
sequence d, is 1. 1,2, =2,.... )

In lectures and textbooks. these examples are sometimes given as exame-
ples of applications of the Weierstrass product theorem. This is misleading.
These products were known long before Wewerstrass. Of course, his theorem
shows that the same construction principle underlies them all.

Ererceses. Determine the canonical product for © > 0 in C corresponding to each
of the following sequences:

ay d, = (=1)" Vv, v > 1,
b) d. = 1", where p € Nwithdp -3 < v <dpforv>1
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3. The o-function. If w;, ws € C are linearly independent over R, the set
Q= Zw) + Zwy = {w =mw) + nwy : m,n € Z}
is called a lattice in C. Q is locally finite in C and

{1 if 2 €9,

6:C - N -z 6(2):= 0 ifz¢Q

is a positive divisor on C with support Q.

Proposition. The entire function

(1) o(2):=0(2,0):=2= H (1_5)95+%(§)2:z H Ez(i)

0#£weN OFweS

is the canonical Weierstrass product for the lattice divisor 6.

The proposition is contained in Betti's result 1(3). We give a direct proof,
which even yields the normal convergence of the o-product (1) in all three
variables z, wy, and wy. The set U := {(u.v) € C? : u/v € H} is a domain
in C2. For every point (wi,ws) € U, the set Qw;,wy) := Zw; + Zw, is a
lattice in C; conversely, every lattice 2 C C has a basis in U. The following
lemma is now crucial.

Convergence lemma. Let K C U be compact and let o« > 2. Then there
exists a bound M > 0 such that

Z lw|™" < M for all (wy.w2) € K; Z w2 = 0.

0Fwe N wy.w2) OFWENw) w2)

Proof. The function

q: (Rz\{(0,0)}‘) xU =R, (z,y.w),w2)r |zw) + ywa|/ /12 + y?

is homnogeneous in r, y; hence q(R2\{(0.0)} x U) = ¢q(S' x U). Since ¢
is continuous, it has a maximum T and a minimum t on the compact
set S! x K. The R-linear independence of w;. wy implies that ¢ is always
positive; hence t > 0. Since

tv/m2 +n? < |nwy + nws| < TvVm? + n?
for all (w,ws) € K and all (m,n) € Z?, the convergence of Y |w|™® is
equivalent to the convergence of

x oC

—y 1 ,
Z (m2 +n2) 3 =4 Z me +4 Z (—m, \Vh(f‘re U = %(Y.

0#(m.n)eZ? m=1 m,n=1
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Since m? +n? > 2mn > mn > 0 for all m, n > 1, it follows for a > 2 that

= 1 =1 =1 =1
— — — _ 1
) (m?2 +n2)7 2 mPnB (Z nﬁ) (Z m@) < 0.
mn=1 m,n=1 n=1 m=1
Divergence follows for 3 := 1, since the inequality m? + n? < 2n? for

1 < m < n implies that

oC

lem e 1 11
Z m2+n2>zzm2+n 52::;—5:—2-

m,n=1 n=\1m=1 n=1

N
§

Since |E2(z/w) — 1] < |z/w|? for |z| < |w]|. the lemma immediately yields
not only the proposition but also:

(2) InCx U, the o-product o(z;w;,ws) = o(z,82(21, 22)) converges nor-
mally to a function holomorphic in z, w;, and wy.

Historical remark. The trick of trivializing the proof by means of the in-
equality m? + n?2 > mn is due to Weierstrass; he “dictated it to Herr F.
Mertens in 1863" ([Wa2], Foreword and p. 117). The arithmetic-geometric
inequality n‘? + -+ ng >d(ny - ... -nd)ﬁ/" cven gives

1
Z 7, .8 B <

(m1.. ng)#0 (nl + y + o+ n’d)

if d € N\{0}, @ > 0, 8 > 0. a8 > d. Such series (with 3 = 2) were
considered by Eisenstein in 1847 ( Werke. pp. 361-363).

A varant of the proof was given in 1958 by H. Kneser ([Kn|, pp. 201 202). He
replaces g by the function |zw) +yw2|/ max(|z|, |y|). As above, there exist numbers
S > 5 > 0 such that s < |mwi + nwz2|/ max(|m|.|n]) < S. The convergence of
> lw|™" is now equivalent to that of

Z [max(|m|. [n)]”" =4 Z — +4 Z [max(m.n)]”°.
0#(m,n)ex? m=1 mn=1
But the series on the right-hand side can be written as follows (!):

i (nn'“ + i m'“) = i n'"* + i(k -1k = i(?nl"’ -n" %)
n=1 k=1

n=l m=n+1 n=]

this converges for a > 2 and diverges for a = 2.

N
"For v > 0, noting that - < (ﬁ) — 1, we have

o0 v o

Y 8 1 1y
z:n“"7 <Z(n—1)n’? S;((n—l)'y —n_") =1

2 2
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4. The p-function. Since the product o(z;w;,wz) € O(C x U) converges
normally by 3(2), it can be differentiated logarithmically with respect to 2
(Theorem 1.2.3):

o' (z;wy, wy
((zwiwg) = —(—)
o(z;wr,wz)

(1)
=§+ ) (1 +$+§)6M(CXU).

zZ—Ww
O#wéﬂ(wl .wz)

This series (of meromorphic functions), which converges normally in Cx U,
is called the Eisenstein-Weierstrass (-function. Ordinary differentiation of
(1) gives

o(z;wy wr) == (z;wy,we)

(2) 1 ] 1
=5+ 3 (m w2>eM(CxU)

0AweN(w) w2)

This series also converges normally in C x U. Both the {-function and the
p-function are holomorphic in C\Q(w;,ws,) for fixed wq, wy and have poles
of first and second order, respectively, at each lattice point. The p-function
is doubly perodic (= elliptic), with Q(wq,w-) as period lattice. In the theory
of elliptic functions, it is fundamental that the p-function is meromorphic
wn all three variables z, wy, and ws; this is often not sufficiently emphasized
in the literature.

In the case wy := oc, the functions g. ¢, and g become trigonometric
functions: Writing w for w; € C*, we have

W x2(z\ . 2 % /2
o(z;w,00) := Y% (3) sinT—, ((ziw,00):= — (—) —cotn—
s w 3 \w
1 /m\2 z
olziw0) = =3 (5) + (Z) (sin (x2))
1
o(z;0c,00) := 2z, ((2;00.00):= o p(z;00,00) 1= —.
z
Here we continue to use the notation { = ¢'/o and p = —(’. With some
effort, it can be shown that lim,, .. 0(z;wi.w2) = o(z;w,00), where

the convergence is compact; the same holds for ¢ and . Thus the theory
of elliptic functions contains the theory of trigonometric functions as a
degenerate case.

5%. An observation of Hurwitz. Every positwwe dwisor 0 on C is the dwisor
of an entire function Y a, 2" whose coefficients all lie in the field Q(i) of rational
complex numbers. In particular, if 0(Z) = 0(2) for all z € C, then all the numbers
a, can be chosen to lie in Q.

The following lemma is necessary for the proof.
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Lemma. Let f be holomorphie at O € C. Then there exists an entire function
g such that all the coefficients a,, of the Taylor seres of fexpg about O belong
to Q¢). In particular, 1f all the cocfficients of the Taylor series of f about 0 are
real, then ¢ can be chosen in such a way that all the a,, lie in Q.

Proof. Let f # 0. Then f(z) = 25" s € N, where h(z) = by + b1+ +
bn 2" + -+ is holomorphic in a neighborhood of 0. (Write f(z) = z‘f(z), where f
is holomorphic and nonvanishing in a neighborhood of 0: then f~can be put in the
form ¢".) Since the field Q(2) is dense in C, there exist numbers 1. go. ... € Q(z)
such that g(2) ‘= by + Z‘,>,l((],, — b, )z" is an entire function. We have

g(z S qrzaquz? 8 1 2 7
J(2)eE) = premEnaasts z 1-#2;((1124"022 + )

v2)

Expanding the right-hand side in powers of = gives Taylor cocefficients a,, that in-
deed lie in @Q(1), since each a,, is a polvnomial with rational coefficients in finitely

many of the ¢1. qz2,. . € Q(¢). If the power series of f about 0 has only real co-
efficients, then all the b, with v > 1 are real. In this case. one can always choose
qv € Q and hence a,, € Q. O

At this point, Hurwitz's observation is quickly proved. We choose f € O(C)
with (f) = 0. Then 0 is also the divisor of every function ¢ := fexpyg. g € O(C).
Bv the lemina, g can be chosen in such a way that all the Taylor coefficients a,
of ¢ belong to Q7).

If it always holds that 9(Z) = 0(z), then d is also the divisor of the entire func-
tion ¢ whose Taylor coeflicients are the numbers @,. Then 20 is the divisor of ¢g:
by the root criterion, there exists § € O(C) with ¢° = ¢g. Moreover, (§) = 0. Since
all the Taylor coefficients of gg are rational real numbers and the first nonzero
coefficient is positive, all the Taylor coeficients of § are rational real numbers. O

Hurwitz proved the preceding assertion in 1889. As an amusing corollary, he
also noted the following:

Every (real or complex) number u (thus. for instance, ¢ or w) s the root of an
2 . . . .
equation 0 = roy + riz + ryz° + -+« whose mght-hand side is an entire function
unth rational cocflicients (real or compler. respectively). which has no roots other
than a.
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Holomorphic Functions
with Prescribed Zeros

We extend the results obtained in Chapter 3 for entire functions to func-
tions holomorphic in arbitrary regions D in C. Our goal is to prove that
every divisor on D is a principal divisor (existence theorem 1.5). For this
purpose we first construct, in Section 1, Weierstrass products for every pos-
itive divisor. As before, they are built up from Weierstrass factors E, and
converge normally in regions that contain C\dD (product theorem 1.3).
In Section 2 we develop, among other things, the theory of the greatest
common divisor for integral domains O(G).

Blaschke products are a special class of Weierstrass products in E; they
are studied in Section 3 and serve in the construction of bounded functions
in O(E) for prescribed positive divisors. In an appendix to Section 3 we
prove Jenscn'’s formula.

§1. The Product Theorem for Arbitrary Regions

A convergence lemma is proved in Subsection 1. In Subsection 2, Weier-
strass products are constructed for some special divisors; the factors F, (z/d)
are now replaced by factors of the form

(d—c) (z—d) [d-c 1 <d—c-)2 1(d—(~)"]
E, = -exp + = ot = :
zZ—cC z2—cC z—¢ 2\z-c¢ n\z—c

¢ # d, which also vanish to first order at the point d. The general product
theorem is derived in Subsection 3.
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1. Convergence lemma. Let 0 be a positive divisor on D with support 7'
From the points of the countable set T, we somehow construct a sequence
(d,) in which every point d € T occurs exactly 0(d) times. (In contrast to
our earlier discussion  in 3.1.2 — the origin. if it lies in 7", is not excluded
from the sequence.) The following is a substitute for Lemma 3.1.4.

Lemma. Let (c,).>1 be a sequence in C\D and (k,),>1 a sequence of
natural numbers such that

k'u+l

<o forallr > 0.

(1) Z lr(du - CU)

Then the product
v — Cy - Uy v — Ly d,,—lu 2
Mo (45) - 1 (22) [ (552) 13 (525)
I—cC, z-c z—c, 2\ z—-c¢,
v>1 v>1
4 + 1 /d, —c, ky
k., \ z—c¢,

converges normally in C\{¢y,ca....} D D; it ws a Wewerstrass product wn D
for the dwisor d.

Proof. We set S := {c1,¢a,...}. For f,(z) := Ex [(dy — ¢.)/(z — ¢.)], we
have

(%) fo € O(C\S), fu(z)#0if z#d,, and o4, (f.)=1.

Let K be a compact set in the region C\S. For all z € K, |2 - ¢,| >
d(K,c,) > d(K.S) > 0; hence |(d, — ¢.)/(z — ¢)|k < r|d, — ¢,|, where
r:=d(K,S)"!. Since lim|d, — ¢,| = 0 by (1), there exists n(K) € N such
that r|d, — ¢,| < 1 for v > n(K). Since |E,(w) — 1| < |w|**! for w € E by
3.1.3(3). it follows that

Z |fu —1fx < Z 'T(du - Cu)|k"+1 < X,

v>n(K) v>n(K)

This proves the normal convergence of [[.f, in C\S. By (%), this product
is a Weierstrass product for ® in D. O

Corollary to the lemma. If 5 |d, — c,|**! < oo for some k € N, the
product [, Ex[(dy — ¢,)/(2 = ¢.)] 15 a Weierstrass product for d in D.

Proof. (1) holds with &, := k. a
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2. The product theorem for special divisors. In general. the region
of convergence of the product constructed in Lemma 1 is larger than D.
As the zero set of the product, T is closed in this larger region. We make
a general observation, leaving the proof to the reader:

(1) If T 15 a discrete set wn C, then the set T' := T\T of all the accu-
mulation ponts' of T in C s closed in C. The requon C\T' 15 the largest
subset of C mn which T s closed.

By (1), every positive divisor ® on D with support T can be viewed as
a positive divisor on C\7" > D with the same support (set 9(z) := 0 for
z € (C\T")\D). Clearly T' > dD. The next theorem now follows quickly
from Lemma 1.

Product theorem. Let 0 be a positive dunsor on D unth corresponding
sequence (d,)u>1. Let a sequence (¢,),>1 T be grwen such that lim|d,, —
¢| = 0. Then the product [ Ev-1[(dv — ¢u)/(z — ¢.)] is a Wererstrass
product for ® in C\T’.

Proof. Since lim|d, — ¢, | = 0, it follows that > |r(d, —c.)]” < x for every
7 > 0. Henee 1(1) is satisfied with &, := v—1. Now we have {¢).¢y,...} C T’
(in fact. the two sets are equal!). Thus the claim follows from Lenuna 1.0

Remark. In C*, every divisor 0 with lind, = 0 has the “satellite se-
guence” ¢, := 0. For such divisors on C*. the product theorem holds
with [ E,—1(d,/2). If we set w = 2z L this is the Weierstrass product
[1E, 1(w/d;!) for the divisor ?’ on C with the sequence (d,)'),~y. The
product theorem 3.1.4 is thus contained in the product theorem above. O

Il

“Satellite sequences™ (¢, ),>1 with e, € T or just ¢, € C\D do not exist
in gencral: for example, they do not exist for divisors on [ := H with
support T := {i, 2¢, 31, ...}. However, the following does hold.

(2) If T' 1s nonempty and every set T(g) :={z € T : d(T",z) > e}. = >0,
18 finite, then there exists a sequence (¢,),>1 m T' with lim|d,, — ¢,| = 0.

Proof. Since T' is closed in C, for every d,, there exists ¢, € T’ such that
|dy, — ¢,| = d(T",d,). If d, — ¢, did not converge to zero. there would exist
g9 > 0 such that |d, —e¢,| > ¢ for infinitely many v. But then the set T(zy)
would be infinite. O

If T is bounded and wmfinite, then 7" is nonempty and every set T'(s), ¢ >
0, is finite. (Otherwise some set T'(zq). €9 > 0, would have an accumulation
point d* € T’. which cannot occur since |d* — w| > d(T',w) > &, for all
w € T(gp).) Hence:

'Following G. Cantor. we call T’ the derwed set of T in C.
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(3) For every positive dwisor ® on D with bounded infinite support, there
erists a sequence (¢, ),>1 wm T' with lim|d, — ¢, | = 0.

In particular. it is thus clear that on bounded regions every divisor is a
principal divisor (special case of the existence theorem 5).

3. The general product theorem. Let D be an arbitrary region in C.
Then, for every positive divisor 0 on D with support T, there exist Weier-
strass products in C\T".

The idea of the proof is to write the divisor 9 as a sum of two divisors
for which there exist Weierstrass products in C\7”. To do this, we need
a lemma from set-theoretic topology, which will also be used in 6.2.2 in
solving the analogous problem for principal part distributions.

Lemma. Let A be a discrete set in C such that A’ = A\A # (. Let
A i={ze A:|z|d(4",2) > 1}, Ay:={z€ A:|z|ld(4".2) < 1}.

Then A, 1s closed in C. Every set Az(e) := {z € Ay : d(A’,2) > ¢}, >0,
is finite.

Proof. 1) If A; had an accumulation point a € C, it would follow that
a € A’ and there would exist a sequence a,, € A, with lima, = a. Since
d(A’,a,) < |a — a,l, the sequence |a,|d(A’,a,) would converge to zero,
contradicting the definition of A4;. Thus 4, = A;.

2) |z| < e7! for every z € Az(€). If there were an ey with Ay (eq) winfinite,
then Az(eg) would have an accumulation point a € A’; but this is impossi-
ble since |a — 2| > d(A’,z) > ¢ for all z € A,(ep). 0

Proof of the general product theorem. We take 0 to be a positive divisor on
C\T'. We may assume that 7' # (0. Let the sets 77, T be defined as in
the lemma (with A :=T). Then 7] = 0 and T, = T’. Since T; and T3 are
locally finite in C and C\7", respectively, setting

0,(2) :=0(z2) for z € T,. 1d,(z):=0 otherwise, j=1,2,

gives positive divisors 9; on C with support T} and 92 on C\T’ with sup-
port Ty. Moreover, ? = 0; + 07 in C\T” since T3 N T = §). By the product
theorem 3.1.4 there exists a Weierstrass product for 0; in C. Since all the
sets T, () are finite, 2(2) and the product theorem 2 imply that there exists
a Weierstrass product for 9, in C\T”. Hence, by 3.1.2(1), there also exists
a Weierstrass product for 9 = 0; + 02 in C\7". O

4. Second proof of the general product theorem. Using a biholo-
morphic map v, we will first transport the divisor 9 to a divisor 9 o v~ ! on
another region in such a way that a Weierstrass product f exists there for
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do v:l; we will then transport this product back to a Weierstrass prod-
uct f owv for 0. We assume that 7T is infinite, take d to be a divisor on
C\T’, fix a € C\T, and map C\{a} biholomorphically onto C* by means
of v(z) := (z —a)~!. Then 0 ¢ v(T) and v(T)" = v(T"). A positive divisor
0 in C\v(T)" with support v(T) is defined by

dw) ;== Hw)), weC\u(T), d0):=0.

If (d,).> is a sequence for d, then (d,).>1, with El:, := v(d, ), is a sequence
for d (transporting the divisor by v). Since v(T') is infinite and bounded
(because a ¢ T'), 2(3) and the product theorem 2 imply that

Hﬁu where ﬁ(lb) = Eu—l[(‘/{u - Cu)/(w - Cu)] and C, € U(T,)»

is a Weierstrass product for 3 in C\v(T"). We now set f, (2) := ﬁ,(v(z)) for
z € C\(T' U{a}) and set f,(a) := 1. Then f, is holomorphic in C\T" since
lim,_q fu(2) = limy— e ﬁ,(w) = E,_1(0) = 1. The normal convergence of
T1/, in C\v(T") implies the normal convergence of [] f, in C\(T" U {a}).
Since a is isolated in C\T”, the product converges normally throughout
C\T' (inward extension of convergence: cf. 1.8.5.4). Since f,, vanishes only
at d, = v“l(c/i\,,), and vanishes there to first order, [] f, is a Weierstrass
product for  in C\7T".

5. Consequences. The product theorem 3 has important consequences
for arbitrary regions — as we saw in 3.1.5 for C; the proofs arc similar to
those of 3.1.5.

Existence theorem. On every region D C C, every divisor is a principal
divisor.

Factorization theorem. Fvery function f # 0 that is holomorphic in an
arbitrary domain G can be written in the form

f=ul] .

v2>1

where u is a unit wn the ring O(G) and [],5, f. 15 a (possibly empty)
Weierstrass product for the divisor (f) in G.

In general, the unit u is no longer an exponential function (although it
is for (homologically) simply connected domains; cf. 1.9.3.2).

Proposition. (Quotient representation of meromorphic functions). For ev-
ery function h meromorphic in G there exist two functions f and g, holo-
morphic in G and without common zeros there, such that h = f/g. In par-
ticular, the field M(G) s the quotient field of the integral domain O(G).
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Root criterion. The following statements about a function f € O(G)\{0}
and a natural number n > 1 are equivalent:

i) There ezist a unit u € O(G) and a function g € O(G) such that
f=ug™
ii) Every number o,(f), z € G, is divisible by n.

In general, the unit u is no longer an nth power. For (homologically)
simply connected domains, one can always choose u = 1; cf. 1.9.3.3.

In the older literature, the existence theorem was often expressed as follows:

Theorem. Let T be an arbitrary discrete set in C and let an integer ng # 0
be assigned to every point d € T. Then in the region C\T', where T' := T\T,

there exists a meromorphic function h that 1s holomorphic and nonvanishing in
(C\T')\T and for which

od(h) =nq foralldeT.

C\T’ 15 the largest subregion of C in which there emsts such a function.

Proof. By 2(1), C\T" is the largest region in C in which T is closed. There exists
a divisor d on C\T' with support T such that d9(d) = n4, d € T. The existence
theorem yields an h € M(C\T") with (k) = 0. 0

§2. Applications and Examples

We first use the product theorem 1.3 to prove that in every integral do-
main O(G) there exists a greatest common diunsor for every nonempty set.
We then deal explicitly with a few Weierstrass products in E and C\0E,
including a product due to E. Picard, which is constructed with the aid of
the group SL(2,Z).

1. Divisibility in the ring O(G). Greatest common divisors. The
basic arithmetic concepts are defined in the usual way: f € O(G) is called
a divisor of g € O(G) if g = f - h with h € O(G). Divisors of the identity
are called units. A nonunit v # 0 is called a prime of O(G) if v divides
a (finite) product only when it divides one of the factors. The functions
2 —c¢, ¢ € G, are — up to unit factors — precisely the primes of O(G).
Functions # 0 in O(G) with infinitely many zeros in G cannot be written
as the products of finitely many primes. Since such functions exist in every
domain G by Theorem 1.3, we see:

No ring O(G) 18 factorial.

Despite this, all rings O(G) have a straightforward divisibility theory.
The reason is that assertions about divisibility for elements f, g # 0 are
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equivalent to assertions about order for their divisors (f), (g). Writing® < 0
if 0 — 0 is positive, we have the simple

Divisibility criterion. Let f, g € O(G)\{0}. Then
f divides g & (f) < (9).

Proof. f divides g if and only if h := g/f € O(G). But this occurs if and
only if 0,(h) = 0,(9)—0,(f) > Oforall z € G, i.e. ifand only if (f) < (g). O

If S is a nonempty set in O(G), then f € O(G) is called a common
dwisor of S if f divides every element g of S; a common divisor f of S
is called a greatest common divisor of S if every common divisor of S is a
divisor of f. Greatest common divisors — when they exist — are uniquely
determined only up to unit factors; despite this, one speaks simply of the
greatest common divisor f of S and writes f = gcd(S). A set S # 0 is
called relatively prime if 1 = ged(S).

S # @ is relatively prime if and only if the functions in S have no common
zeros in G, i.e. of (\yes Z(g) = 0.

The proof of the next result is a simple verification.
If f = ged(S) and g = ged(T), then ged(SUT) = ged{f, g9}-

If D # 0 is a set of positive divisors ? on G, then the map G — Z,
z+— min{d(z) : 0 € D} is a divisor min{d : @ € D} > o. The divisibility
criterion implies the following:

Every function f € O(G) with (f) = min{(g) : g € S, g # 0} 15 a gcd of
S # {0}.

The next statement is now an immediate consequence of Theorem 1.3.

Existence of the gcd. In the ring O(G), every set S # @ has a ged.

Proof. Given S # {0}, choose f € O(G) such that (f) = min{(g) : g €
S, g # 0} O

It may seem surprising that the product theorem 1.3 is needed to prove the
existence of the ged (even if S has only two elements!). But it should not be
forgotten that there are integral domains with identity in which a gcd does not
always exist: in the ring Z[v/=5]. for example, the two elements 6 and 2(1++/—5)
have no gcd.

In principal ideal rings such as Z, Z|z], and C|z], every set S has a gcd; in fact,
it is always a finite linear combination of elements of S. This assertion also holds
for the ring O(G) if S is finite, as we will see in 6.3.3 by means of Mittag-Leffler’s
theorem.

Ezercises. Define the concept of the least common multiple as in number theory
and, if it exists, denote it by lcm. Prove:
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1) Every set S # 0 has a least common multiple. If (f) = lem(S) # 0, then
() = max{(g) : g € S}.

2) If f and g are respectively a ged and lem of two functions u, v € O(G)\{0}.
then the products f - g and u - v differ only by a unit factor.

2. Examples of Weierstrass products. 1) Let @ > 0 be a divisor on
E that satisfies 0(0) # 0 and has sequence (d,).>1. and suppose that
2u>1(1 = du]) < oo. Then

~
() HEO (gi—:—_d—u?r) = Ha g—d O(C\{d, 1,—2—11---})

21 dl’

18 a Weierstrass product for 0.

Proof. Let ¢, := 1/d,; then ¥ |¢,, — d,,| < oo since

(+) d, — cu| = |Eu|—1(1_|dV|2) S27n—l(1‘|du|)’

where m := min{|d, | : v > 1}. The assertion follows from Lemma 1.1 with

k, :=0. m]

The products (%) are bounded in E; up to a normalization, they are
Blaschke products (cf. 3.3). Because of their importance, we also give a
direct proof of convergence. It follows from (+) that

2 —d 1 - |d|? 2 1-|d —-

d= —I‘Z%S——_‘—_If—,z#d lade{dbd?a"-}'
dz -1 dilz—d | ™ |z-d |

Now for every compact set K in C\{Ef‘,?i{l. ...} there exists £ > 0 such

that |2 — E,,_1| >t forall ze K and all v > 1. Thus

_ z-d, 9t-1
3 ld =2 ~1 <—Z|l—-d|<oo
sl dz—1 v>1
which implies the normal convergence of () in C\{El_l.c_lg—l e}

2) Let r, > 0, 7, # 1, be a sequence of pairwise distinct real numbers
with limr, = 0. The set

T:= {dup = (1 _ru)cup, OSP<I/, VvV = 1,2,...},

where c,, 1= exp(2pr/v) € IE, is locally finite in C\JE. Since d,, — ¢, =
—~T,Cyp tends to 0, the product theorem 1.2 implies that



§2. Applications and Examples 97

is a Weierstrass product in C\JE, which vanishes to first order preciscly at
the points of S.

Since > o Z;;,l, |dup — Cupl¥t! = 3500 vrk*! converges in the cases
rn=1/v.k=2and r, = 1/v3, k = 0. the corollary to Lemma 1.1 gives
the Weierstrass products

1 ¢ Cup c?
I I (1 + ——2 )exp “t + 5 —F——| and
e VZ—_Cyy view, —z)  20%cyp — 2)
1 ¢y .
l I 1+ — , respectively.
v Z - Cyp
v,p

3. On the history of the general product theorem. Weierstrass left
it to others to extend his product theorem to regions in C. As carly as 1881
([Pi], pp. 69-71), E. Picard considers the region C\OE; he discusses, among
other things, the product

. (A-B - A A-B
HEI(Z—B>=H2—Besz—B’

A__ﬁ-i—"/—(a—ﬁ)i B+ b
T a+ 6+ (B—7)i’ R

and a, 3, v, and é run through all numbers in Z satisfying ad — 3y = 1.
Picard’s product is probably the first example of a Weierstrass product in
a region # C where convergence-producing factors of the Weierstrass type
were consciously used. Picard said nothing about the convergence of his
product, but in 1893 made the following comment (cf. Traité d'analyse,
vol. 1, p. 149): “..., c’est ce que I'on reconnait en considérant a la place
de la série une intégrale triple convenable dont la valeur reste finie quand
les limites deviennent infinies.” (. ... it is what one recognizes if, instead of
the series, one considers an appropriate triple integral whose value remains
finite when the limits become infinite.) A year later. Picard studied slit
regions ([Pi], pp. 91-93). He introduced the products [[ E,((d, —¢.)/ (2 —
¢,)) in his notes. They were also used in 1884 by Mittag-Leffler to prove the
existence theorem for general regions ([ML], especially pp. 32 38). Picard’s
notes are not mentioned by Mittag-Leffler; in 1918 Landau ([}, p. 157)
speaks of the “well-known Picard-Mittag-Lefller product construction.”

In their work [BSt;]. carried out in 1948 but not published until 1950,
H. Behnke and K. Stein extended the existence theorem 1.5 to arbitrary
noncompact Riemann surfaces (loc. cit.. Satz 2, p. 158).

where

4. Glimpses of several variables. With his product theorem, Weierstrass
opened the door to a development that led to new insights in higher-dimensional
function theory as well. The product theoremn was generalized to the case of sev-
eral complex variables as early as 1835 by P. Cousin, a student of Poincaré. in
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[Co]. The formulation of the concept of divisors already presented difficultics at
this point, since the zeros of holomorphic functions in C*, n > 2, are no longer
isolated but form real (2n — 2)-dimensional surfaces. Cousin and his successors
could derive the analogous theorem only for C* itself and polydomains in C*
(product domains G, x G2 x - -+ X Gn, where each G, is a domain in C). Cousin
thought he had proved his theorem for all polydomains. But the American math-
ematician T. H. Gronwall discovered in 1917 that Cousin’s conclusions hold only
for special polydomains; at least (n — 1) of the n domains G,....,Gn must be
sumply connected (cf. {Gro], p. 53). Thus there exist — and this was a sensa-
tion topological obstructions! It was soon conjectured that Cousin’s theorem
was valid for many topologically nice domains of holomorphy:? for example, H.
Behnke and K. Stein proved in 1937 that the theorem holds for all star-shaped
domains of holomorphy ([BSt;|, p. 188). The Japanesc mathematician K. Oka
achieved a breakthrough in 1939; he was able to show that, in arbitrary domains
of holomorphy G C C*, a positive divisor is the divisor of a function holomorphic
in G if and only if it is the divisor of a function continuous in G ([O], pp. 33-34).
This statement is the famous Oka principle, which K. Stein generalized in 1951 to
his manifolds, interpreted homologically, and made precise [St|. It was J-P. Serre
who. in 1953, gave the final solution of the Cousin problem ([S], pp. 263-264):

In a Stewmn manifold X, a dwisor d is the divisor of a function meromorphic
X 4f and only if its Chern cohomology class ¢(d) € H?*(X.Z) vanishes. In
particular, on a Stewn manifold X unth H*(X,Z) = 0, every divisor is a principal
dinsor.

The significance of the second cohomology group with integer coefficients for
the solvability of the Weierstrass-Cousin problem becomes evident here. In the
thirties, the fundamental group 7 (X) was still thought to have great importance
in this context: but in [S] (p. 265). Serre exhibited a simply connected domain of
holomorphy in C* where not all divisors are principal divisors.

The methods that Serre and Cartan developed jointly to prove Serre’s theorem
revolutionized mathematics: the theory of coherent analytic sheaves and their
cohomology theory began their triumphant advance. Serre ([S], p. 265) also put
the finishing touches on Poincaré’s old theorem (cf. 3.1.6):

In a Stean manafold, every meromorphac function s the quotient of two holo-
morphic functions (which need not be locally relatwely prime).

We must be satisfied with this sketch; a comprehensive presentation can be

found in [GR].

The Oka principle was substantially extended by H. Grauert in 1957; he
showed, among other things, that holomorphic fiber bundles over Stein manifolds
are holomorphically trivial if and only if they are topologically trivial ([Gra), p.
268 in particular). Weierstrass, Poincaré. and Cousin would certainly have been
impressed to sec how their theories culminated in the twentieth century in the
Oka-Grauert principle: Locally prescribed analytic data with globally continuous
solutions always have globally holomorphic solutions as well.

“For the concept of domains of holomorphy and Stein manifolds, see also 5.2.6.
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§3. Bounded Functions on E and Their Divisors

By the product theorem 1.3, the zeros of functions holomorphic in ) can
be arbitrarily assigned in D as long as they have no accumulation point
there. The situation changes when growth conditions are imposed on the
functions. Thus, for divisors @ # 0 on C. there never exist bounded functions
f with (f) =0.

A Weierstrass product [] f, is certainly bounded in D if |f.|p < 1 for
all v. Products with such nice factors are rare. In what follows, we study
the case D = E. For the functions

z—d

= = . dekE,
dz -1

94(2)

which we recognize as automorphisms of E, |gq|g = 1. We will see that a
divisor > 0 on E with 2(0) = 0 is a divisor of a bounded function on E if
and only if @ has a Weierstrass product of the form [[(|d.|/d.)ga, (z). and
that such products exist if and only if

Z(l —|dy]|) < > (Blaschke condition).

The necessity of this condition, which implies an identity theorem, follows
quickly (in Subsection 2) from Jensen’s inequality (Subsection 1). Its suffi-
ciency is proved in Subsection 3.

1. Generalization of Schwarz’s lemma. Let f € O(E), and letd,.... d,
€ E be parrwise distinct zeros of f. Then

Z—dl

d]Z—l

z—dy

(1) |f(2)] < : ﬁ

“|flg for all z € E.

Proof. Let z € E be fixed, and let m := max{|z|,|d;|,...,|d,|}. Set h :=
[T} 94.: then g := f/h € O(E). and the maximum principle implies that
19(2)| < |flg/ minj = {|A(w)]} for all + € (m,1). Now |h(w)| = 1 for all
w € OE (since Wgq(w) = (1 — dw)/(dw — 1) for w € JE). Hence

lim min {|A(w)|} =1, andthus |g(z)| <|f|k. 0

I'—>1 luri:'r'

Remark. If |[flge < 1 and n =1, d, = 0. (1) is Schwarz’s lemma; cf. 1.9.2.1. As in
that case, we now have a sharpened version of the result:

If equality holds in (1) for a point d € E\{d,...., d.}. then

f(z) = Ulfl[EHgdu(Z). with n € S'.
1
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For z = 0, (1) becomes “Jensen’s inequality™:

(2) IS(O)] < |didy ... dn| - | flE.

Inequality (2) is a special case of Jensen’s formula, which we derive in the
appendix to this section.

Historical note. The proof above dates back to C. Carathéodory and L.
Fejér [CF|. Inequality (2) appears in the work of J. L. W. V. Jensen ([J],
1898 -99) and of J. Petersen ([P], 1899).

2. Necessity of the Blaschke condition. Let f # 0 be holomorphic and
bounded i E, and let dy, da,... be a sequence for the divisor (f). Then

S (1= ldul) < oc.

Proof. We may assume that f(0) # 0. Then ) (1 — |d,|) = oo would imply
that lim|d,dy ... d,| = 0 by 1.1.1(d), and hence f(0) = 0 by 1(2). ]

As a corollary, we point out the surprising

Identity theorem for bounded functions on E. Let A = {a;,a2,...}
be a countable set in E such that > (1—|a,|) = o0o. Suppose that f, g € O(E)
are bounded in E and f|A = g|A. Then f = g.

Proof. The function h := f — g € O(E) is bounded in E. If h were not the
zero function, then ) (1 —|a,|) would be a subseries of the series > _(1—|d,|)
determined by the sequence (d,) for the divisor of hA. Hence it would be
convergent by the statement above. a

Bounded holomorphic functions in E therefore vanish identically as soon
as their zeros move too slowly toward the boundary of E (this is made
precise by Y (1 — |a,|) = o). Thus f € O(E) must be the zero function if
it is bounded and vanishes at all points 1 — 1/n, n > 1.

3. Blaschke products. For each point d € E, we set

—-1

|d| z —d 4 d—d )
2 = == = E fd ,
Had) = G =l By (S ) a0

b(2.0) = =z

Then b(z,d) is holomorphic on E and nonvanishing in E\{d}, the point d
is a first-order zero, and |b(z,d)|g = 1. '

Now let 9 > 0 be a divisor on E and let (d,),>; he a corresponding
sequence. The product

b(z) := [] bz.dv)

v>1
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is called the Blaschke product for 0 if it converges normally in E (and hence
even in C\OE). Blaschke products are thus a special class of Weierstrass
products.

(2) If b is a Blaschke product, then b € O(E), (b) = 0, and |blg < 1.
Moreover, if b(0) # 0, then

b(z) = b(0) ™ ] Eol(d — 3, )/(z =3, )], wnth b(0) := [ ldul-
v=1 v=1

Example 1) in Subsection 2.2 contains the existence theorem for Blaschke
products:

o0
(3) If Z(l — |d,|) < oc, the Blaschke product for d exists.
v=1
The direct proof — without recourse to Lemma 1.1 — goes as follows: For

d € E\{0}. we have b(z.d)—1 = (1—|d|)(d+|d|z)/[d(dz—1)]. Since |dz—1| > 1|z
ford € E and (14 |2])/(1 = |2]) £ 2(1 = 7)7'if |z] <7 < 1. it follows that

1b(z,d) — 1], 0) < &(1 —Id)) forall r € (0,1) and all d € E.

It is thus clear that 3 7°|b(z,d.) — 1|B,(») < 0o. Hence the Blaschke product
converges normally in E.

The next result is now immediate from (3) and Theorem 2.

Proposition. The following assertions about a dwvisor 0 > 0 on E are
equivalent:

i) 0 is the divisor of a function in O(E) that is bounded n E.

ii) Zo(z)(l —|z|) < oc (Blaschke condition).
2zl

iii) The Blaschke product H b(z,d,) exists for 0.

v=1

Because of ii) there does not exist. for example, any bounded function
f € O(E) that vanishes to nth order at each point 1 — 1/n* n € N\{0}.
The following is immediate.

For every bounded function f € O(E), there exist a Blaschke product b
and a function g € O(E) such that f = e9 - b.

Historical note. W. Blaschke introduced his products and proved the exis-
tence theorem in 1915 ([Bl], p. 199). Of course — as the title of his paper
indicates — Blaschke was then mainly interested in Vitali's convergence
theorem; we go into this in 7.1.4. Edmund Landau reviewed Blaschke’s
work in 1918 and simplified the proof by using Jensen’s inequality; cf. [L].
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4. Bounded functions on the right half-plane. Setting ¢t(z) := (z—1)/(z+1)
gives a biholomorphic map of T := {z € C: Rez > 0} onto E; we have

4Rez _ 4
lz+ 12 |1+ 212

1) 1-|tz)*= Re(1/z) for all z € C\{0, —1}.

The results obtained for E carry over easily to T.

a) A positiwe divisor d on T with corresponding sequence di, da, . .. is the divisor
of a bounded holomorphic function on T if and only if

Z llRf : 75 <0 (Blaschke condition for T).

b) Let the function f € O(T) be bounded in T and vanish at the pairwise
distinct points dy, dz...., where § := inf{|dn|} > 0 and }_ ., Re(l/d,) = o0
Then f vanishes identically on T. -

Proof. a) The map dot™! : E — N is a positive divisor on E with corresponding
sequence dn := t(dn). If f € O( ’lI') is bounded in T, then (f) = 0 if and only if
(fot™')y =dot™!, where fot™! € O(E) is bounded in E. By Proposition 3,
this occurs if and only if 3 (1 - |d.|) < o0o. The assertion now follows from (1)
because

%(1 —|lw?)<1—|w| <1-|w?® forall wekE.
b) Since |1 + w“|'2 > (1+67)72 for all w with |w| > 6, it follows from (1)
that
2 |1+d 72 Ty ZRG tdv) =
By a), f must then vanish identically. 0

Statement b) will be used in 7.4.3, in the proof of Miintz’s theorem.

Analogues of a) and b) are valid for the upper half-plane H. The map H = T,
z +— —1iz, i8 biholomorphic and Re (—%z) = Im z. In this situation, we thus obtain
the convergence condition Y (Imd,/|i + d.|*) < oo in a) and the divergence
condition Y Im(1/d,) = —o0 in b).

Ezercise. Define “Blaschke products” for T and H and prove the analogue of 3(3)
for these half-planes.

Appendix to Section 3: Jensen’s Formula
Jensen's inequality 3.1(2) can be improved to an equality:
Jensen’s formula. Let f € O(E), f(0) # 0. Let 0 < r < 1 and let d,

dg,...,d, be all the zeros of f in B,(0), where each zero appears according
to its order. Then /

n

2r
(J) log|f(0)| + log Idxdzr—dnl = %/0 log | f(re*?)|df.
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The integral on the right-hand side is improper if f has zeros on the
boundary of B,(0). The second summand on the left-hand side is zero if f
has no zeros in B,(0). Since log z is monotone for z > 0, (J) immediately
leads to the inequality

r*|f(0)] < |didz ... dn| - |flas, (0)-
Jensen’s inequality 3.1(2) follows by passing to the limit as » — 1.

We reproduce the proof given by J. L. W. V. Jensen in 1898-99 ([J], p.
362 ff.); he also admitted poles of the function f. The formula can also be
found in an 1899 paper of J. Petersen ([Pe], p. 87).

We write B for B,(0). Our starting point is the following special case of

(J)-
(1) If g € O(E) has no zeros in B, then

1 2n .
log l9(0)| = 5- /0 log |g(re™®)|db.

Proof. There exist a disc U with B C U C E and a function h € O(U) such
that g|U = g(0) exp h with h(0) = 0.3 Since h(z)/z € O(U),

I 19 Y LA
O_-/BB CdC—z/O h(re')d8.

Since Re h(z) = log |g(2)/g(0)| for z € U, it follows that

2w 27
0 = Re f h(re®)dd = / log |g(re*?)|d6 — 27 log |g(0)|. O
0 0

Statement (1) is Poisson's mean-value equation for the function log|g(z)|,
which is harmonic in a neighborhood of B; cf. also 1.7.2.5°.

In order to reduce (J) to (1), we need the following result.
2n '
(2) / log |1 — e'?|df = 0.
0
Proof. Since |1 — €%**| = 2sin ¢ for ¢ € [0, 7], we have (with 8 = 2¢)

1 27 ) ™ 7r
§f log|1 — €'®|df = / log(2sin p)dy = 7log2 + / log sin pdy.
0 0

0

3Choose U such that g|U has no zeros. Since U is star-shaped, g = exp h with
h € O(U). Then set h := h — h(0).
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The integral on the right-hand side exists and, by 1.3.2(1), equals —m log 2.
a

Formula (2) is usually derived by function-theoretic methods. The direct cal-
culation above supports Kronecker’s sardonic maxim on the occasionally “gute
Friichte bringenden Glauben an die Unwirksamkeit des Imaginaren” (fruitful be-
lief in the ineflicacy of the imaginary); cf. also 1.14.2.3.

It is now easy to prove (J). If ¢1,. .., ¢, are all the zeros of f on 9B, the
function N -
—r? Cu
_f(znr )ch_zEO(E)
v=1 u,:l
. dyz — 12
has no zeros in B. Since ¢g(0) = f(0)r"/d1d;...d, and e=d) =1 for
z € OB, it follows from (1), if we set ¢, = re*«, that
log | f(0)| + log 7———— ady ] d ]
(*) 2 m .
= —/ log | f(re®) H — {61 gg.

Since the integrand on the right-hand side is the difference log | f (ret?)| -
Zz':l log |1 — €'®=%)| (J) follows from () because of (2). O

In applications, r can often be chosen so that f has no zeros on 8B-(0) (as in
the derivation of 3.1(2). for example). Then the factors ¢, /(c. — z) drop out, and
(J) follows directly from (1) — without using (2).

Jensen’s formula has important applications in the theory of entire func-
tions and the theory of Hardy spaces; for lack of space we cannot investigate
these further.
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5

Iss’sa’s Theorem. Domains
of Holomorphy

We begin by giving two interesting applications of the Weierstrass product
theorem that have not yet made their way into the German textbook lit-
erature. In Section 1 we discuss Iss’sa’s theorem, discovered only in 1965;
in Section 2 we show — once directly and once with the aid of the product
theorem — that every domain in C is a domain of holomorphy. In Section
3 we conclude by discussing simple examples of functions whose domains of
holomorphy have the form {z € C : |¢(2)| < R}, q € C|z|; Cassini domains,
in particular, are of this form.

81. Iss’sa’s Theorem

Every nonconstant holomorphic map h : G — G between domains in C
lifts every function f meromorphic in G to a function f o h meromorphic
in G. Thus h induces the C-algebra homomorphism

@: M(G)—> M(G), fw foh,

which maps O(G) into O(G) (cf. also 1.10.3.3). Iss'sa’s theorem says that ev-
ery C-algebra homomorphism M(G) — M(G) is induced by a holomorphic
map G — G. In preparation, we prove that all C-algebra homomorphisms
O(G) — O(G) are induced by holomorphic maps G — G. The proof of this
theorem of Bers is elementary; it is based on the fact that every character
x : O(G) — C is an evaluation. The proof of Iss’sa’s general theorem, how-
ever, requires not only the Weierstrass product theorem but also tools from



108 5. Iss’sa’s Theorem. Domains of Holomorphy

valuation theory; in the background is the theorem that every valuation on
M(G) is equivalent to the order function o. of a point ¢ € G (Theorem 5).
— G and G always denote domains in C.

1. Bers’s theorem. Every C-algebra homomorphism O(G) — C is called
a character of O(G). Every evaluation x.: O(G) - C, f— f(¢),c€ G, is
a character. We prove that these are all the characters of O(G).

(1) For every character x of O(G), x = x. with ¢ := x(idg) € G.

Proof. Set e(z) := z — ¢; then x(e) = x(idg) — ¢ = 0. It follows that
¢ € G, since otherwise e would be a unit in O(G) and we would have
1 =x(e-e7 1) = x(e)x(e™!) = 0. Now let f € O(G) be arbitrary. Then
f(z) = f(c) + e(2) fi(z). with fi € O(G). It follows that

x(f) = x(f(c)) + x(e)x(f1) = f(c) = x(f): hence x=x. O

The theorem now follows quickly from (1).

Bers’s theorem. For every C-algebra homomorphism ¢ : O(G) — (9(6),
there exists exactly one map h : G — G such that ¢(f) = f o h for all

f € O(G). In fact, h = p(idg) € O(G). — ¢ 1s bijective if and only if h is
btholomorphac.

Proof. Since h is to satisfy o(f) = f o h for all f, it must satisfy ¢(idg) =
tdg o h = h. We show that the theorem does in fact hold for h := ¢(idg).

Since xq, 0@, a € G, is always a character of O(G), it follows from (1) that

o~

Xa©@ = Xe, With ¢ = (xe09)(idg) = Xa(h) = h(a), a€C.
Hence ¢(f) = foh for all f € O(G), since we now have
e(f)(a) = xa((f)) = (Xa © )(f) = xn(w)(f) = f(Rh(a)) = (F o h)(a)
for all @ € G. The last statement of the theorem is immediate. o

Bers's theorem contains some real surprises:

— if the function algebras O(G) and (’)(@) are algebraically isomorphac,
then the domains G and G are biholomorphically isomorphac;

~

- every C-algebra homomorphism ¢ : O(G) — O(G) is automatically
continuous (if a sequence in O(G) converges compactly in G to f,
then the image sequence converges compactly in G to o(f)).
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2. Iss’sa’s theorem. Let ¢ : M(G) — M(G) be any C-algebra homomor-

phism. Then there exists exactly one holomorphic map h : G — G such
that o(f) = f o h for all f € M(G).

Because of Bers’s theorem and because M(G) is the quotient field of
O(G) (cf. 4.1.5), it suffices to prove the following lemma.

Lemma. For every field homomorphism ¢ : M(G) — M(@).

—~

»(O(G)) C O(G).

The proof is carried out in the next subsection. We use methods from val-
uation theory (well known to algebraists, but less familiar to classical func-
tion theorists). We write M(G)* for the multiplicative group M(G)\{0}.
A map v : M(G)* — Z is called a valuation on M(G) if for every f,
g € M(G)*,

Bl) v(fg) = v(f) +v(g) (product rule),
B2) v(f + g) 2 min{v(f),v(9)} if f# —g.
Our next result is immediate.

If v is a valuation on M(G), then v(c) = 0 for all c € C*.

Proof. For every n > 1 there exists ¢, € C* such that (c,)" = c. It follows
from B1) that v(c) = nv(c,) € nZ for all n > 1; but this is possible only if
v(c) = 0. o

Condition B2) can be sharpened:

BY) u(f +g) = min{v(f),v(9)} ¥ f # —g and v(f) # v(g).
Proof. Let v(f) < v(g). Since v(—g) = v(g), it follows from B2) that

v(f) 2 min{o(f + g).v(g9)} = min{v(f),v(g)} = v(f);
thus min{v(f + g),v(g9)} = v(f). Hence v(f + g) = v(f) if v(f) < v(g). O

The valuations on M(G) that are important in function theory are the
order functions o., ¢ € G, which assign to each function f € M(G)* its
order at the point c; see, for example, [.10.3.4. The following is immediate:

Holomorphy criterion. A meromorphic function f € M(G)* is holo-
morphic in G if and only if o.(f) > 0 for allc € G.

3. Proof of the lemma. The core of the proof is contained in the next
lemma.
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Auxiliary lemma. If v s a valuation on M(C), then v(z) > 0.

Proof (cf. [Is], pp. 39-40). Suppose that v(z) = —m with m > 1. Since
v(c) = 0 for all ¢ € C*, it follows from B2') that

(1) v(z —c)=-m for all c € C*.

Now let d € N, d > 2. By the cxistence theorem 3.1.5, there exists a function
q € O(C) which has no zeros in C\N and vanishes to order d* at k£ € N.

Set ¢, (z) := q(z)/ 8—1(2 — ) . n>1. Thengq, € O(C). and B1) and
1) imply that

n—1

(2) w(gn) = v(g) +m Y d” = v(g) + = (d" ~ ).
0

By the construction of g,, d" divides every number 0,(q,), z € C; hence,
by the root criterion 3.1.5, there exists g, € O(C) with ¢g¢" = g,. Thus
d"v(gn) = v(gn) and. by (2),

™ (@ —1)ed*Z foralln > 1.

(3) v(q) + 7— ’

Therefore (d — 1)v(g) — m € d"Z for all n > 1, which is possible only for
v(q) = m/(d — 1). Since d > 2 was arbitrary, this gives the contradiction
m = (). o

The next statement is immediate from the auxiliary lemma:
(*) If v 15 any valuation on M(G), then v(f) > 0 for all f € O(G)\{0}.

Proof of (). A verification shows that for every f # 0 in O(G), the map
vyt M(C)* — Z, g — v(go f). is a valuation on M(C). Since vs(z) = v(f),
(x) follows from the auxiliary lemma. 0

After these preliminaries. the proof of the lemma is easy: Since ¢ is
injective as a homomorphism of fields, p(f) # 0 for all f € M(G)*. Hence.
for every ¢ € G. setting

ve(f) = 0c(0(f))y  f € M(G)™,

defines a valuation on M(G). By (%), o(p(f)) > 0 for all ¢ € G if f e
O(G)*. The holomorphy criterion 2 then implies that ¢(f) € O(G), and
the assertion follows. o

4. Historical remarks on the theorems of Bers and Iss’sa. The
American mathematician Lipman Bers discovered his theorem in 1946 and
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published it in 1948 [Ber]. Bers considers only isomorphisms; he works with

~

the maximal principal ideals of the rings O(G) and O(G). Incidentally, Bers
proves more: he proceeds from ring isomorphisms ¢ : O(G) — 0(6) and
shows ingeniously. that ¢ induces either the identity or conjugation on C;
h:G—Gis correspondingly biholomorphic or anti-biholomorphic.

Before Bers, C. Chevalley and S. Kakutani had already studied the dif-
ficult case of the algebra of bounded holomorphic functions (unpublished).
A historical survey can be found in [BuSa] (p. 84).

Bers’s theorem is also valid for holomorphic functions of several variables, if
their domains of definition are assumed to be normal Stein spaces. But the proof
becomes rather demanding: one must use cohomological methods and resort to
the theory of coherent analytic sheaves (cf. [GR], Chapter V, §7).

Hej Iss'sa (the pseudonym of a well-known Japanese mathematician)
extended Bers's theorem to fields of functions in 1965. He immediately
handles the case of complex spaces (cf. 2.6); his result is the following ([I],
Theorem I1, p. 34):

Let G be a normal complex space and G a reduced Stewn space, and let
1 M(G) - M(G) be any C-algebra homomorphism. Then there exists
ezactly one holomorphic map h : G — G such that ¢(f) = f o h for all

f e M(G).

Once again. the hard part of the proof is to show that v maps the ring

O(G) into O(G). Iss’sa’s theorem should also be compared with the 1968
paper [Ke] of J. J. Kelleher.

5. Determination of all the valuations on M(G). The algebraically inclined
reader will ask whether there actually exist valuations on M(G) that are not
order functions. Certainly the function mo. is a valuation on M(G) for every
point ¢ € G and every m € N. We prove that there are no other valuations.

Proposition. For every valuation v # 0 on M(G), there exists exactly one pont
c € G such that v(z — ¢) > 1. Moreover, v(h) = moc(h) for all h € M(G)*,
where m := v(z — ¢).

Proof (cf. [1], pp. 40-41). First, v(e) = 0 for every unit e € O(G). since 0 = v(1) =
v(e-1/e) = v(e) + v(1/e) and since both v(e) > 0 and ©(1/e) > 0 hold by 3(x).
We now set A :={a € G: v(z — a) > 0} and claim that

(#) v(f) = 0 for every f € O(G) \ {0} such that Z(f)N A=20.

If Z(f) is finite, then f(2) = e(2)[[,_,(z — ¢.), where e is a unit in O(G). Since
v(z —c,) > 0 by 3(*) and since ¢, ¢ A. it follows from B1) that v(f) = v(e) = 0.
On the other hand, if Z(f) = {c1,c2....} is infinite. we use the existence theorem
4.1.5 to choose h € O(G) such that

Z(h)=Z(f) and o (h)=o0c,(f) - (W —=1), v=12....
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For hp, :=h - f/ (z = c,)%» (D € O(G), we then have

Z(hn) = {cn\Cnt1,. ..}, v(ha) = v(h)+v(f), and oc, (hn) = o, (f)-V! for v > n.

Therefore n! divides every number o.(h,), z € Gj; thus, by the root criterion
4.1.5, there exists g € O(G) such that h, /g7 is a unit in O(G). It follows that
v(hn) = nlv(gn) and hence that v(h) + v(f) = v(hn) € n!Z, n = 1,2,.... This
implies that v(h) + v(f) = 0. Since v(h) > 0 and v(f) > 0 by 3(x), we obtain
v(f) = 0. This proves (#).

It follows immediately from (#) that A is nonempty, since otherwise v(f) =0
would hold for all f € O(G)\{0}, and therefore — since, by 4.1.5, M(G) is the
quotient field of O(G) — v would have to be the zero valuation.

Hence there exists some ¢ € A. There exist no other points ¢’ € A, ¢’ # c, since
the equation r(z — ¢’) —r(z —¢) = 1, where r := (¢ = ¢') ! € C*, would lead to
the contradiction

0 = v(1) > min{v(z — ¢'),v(z — ¢)} > 0.

Thus A = {c}, proving the first statement of the proposition. Now let m := v(z -
c¢). Then, if f # 0 is in O(G) and n := o.(f), the function g := f/(z—-¢)" € O(G)
has no zero in A. It follows from (#) that

v(g) =0, ie v(f)=1v((z~-c)")=moc(f).
Taking quotients gives v(h) = mo.(h) for all h € M(G)*. 0

§2. Domains of Holomorphy

Es giebt analytische Functionen, die nur fiir einen
Theil der Ebene existieren und fiir den iibrigen Theil
der Ebene gar keine Bedeutung haben. (There are
analytic functions which exist only for part of the
plane and have no meaning at all for the rest of the
plane.) — Weierstrass, 1884

1. A domain G in C is called the domain of holomorphy of a function f
holomorphic in G if, for every point ¢ € G, the disc about ¢ in which the
Taylor series of f converges lies in G. The following is immediate:

If G 1is the domain of holomorphy of f, then G is the “mazimal domawn
of existence” of f; in other words, if G O G is a domain in which there
ezists a function f € O(G) such that f IG f, then G coincides with G.

If a disc is the maximal domain of existence of f, then it is also the do-
main of holomorphy of f (prove this); the definition given in 1.5.3.3 for discs
is thus consistent with the definition above. In general, however, domain of
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holomorphy means more than mazximal domain of existence. For example.
the slit plane C~ is the maximal domain of existence of the functions /2
and log z € O(C™) but not their domain of holomorphy: the Taylor series
for /z and log z about ¢ € C~ have Bj.(c) as their disc of convergence,
and By (c) ¢ C™ if Re ¢ < 0. (The functions /2 and log z can be continued
holomorphically “from above and below” to every point on the negative real
axis, but all the boundary points of C~ are “singular” for \/z and log z, in
the sense that none has a neighborhood U with a function h € O(U) that
coincides in U NC~ with /z or log z; cf. 1.5.3.3 and Subsection 3 of this
section.)

2. The domains C, C*, and E are the domains of holomorphy of z, 271,
and > 22", respectively (for the last example, cf. 1.5.3.3). The focal point
of this section is the following general theorem.

Existence theorem. For every domain in C, there erists a function f
holomorphic in G such that G 1s the domawn of holomorphy of f.

There are two ways to prove this. A function f € O(G) is constructed
that either tends to oc as the boundary of G is approached or has zero
set Z(f) # G accumulating at every boundary point. Difficulties arise if
the boundary 9G is tricky (if it has accumulations of spikes, for exam-
ple, as in Figure 8.4, page 176). We must ensure that the boundary is
approached “from all directions inside G.” To define this kind of approach
to the boundary, we introduce the concepts of well-distributed boundary set
and peripheral set. The first proof then goes through with “Goursat series”;
the second exploits the existence theorem 4.1.5.

In what follows, we use concepts and methods of proof from set-theoretic
topology. We use the fact that every point of an open set D in C lies in a
uniquely determined connected component of D (cf. for example 1.0.6.4),
which for brevity we call a component of D; every such component is a
nonempty mazimal subdomain of D.

Remark. The following weak form of the existence theorem is easy to obtain:
Every domain G 1s the mazimal domawn of exstence of a function f € O(G).

Proof. Choose a set A that is locally finite in G and accumulates at every bound-
ary point of G. By the general product theorem, there exists an f € O(G) with
Z(f) = A. By the identity theorem, there is no holomorphic extension of f to a

domain G D G. 0
1. A construction of Goursat. We fix a sequence a;. a,,... in C* with
Y la,| < oo and a sequence by. ba. ... of pairwise distinct points in C. We
denote by A the closure in C of the set {b1,b7....}.

oC

(1) The seres f(z) = Z

v=1

converges normally in C\ A.
z—b,
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Proof. If K C C\ A is compact, the distance d between K and A is positive.
Since |z—b,| > dfor z € K, it follows that 5 |a,/(2=b,) |k <d™ 'Y |a,| <
0. ]

The function f € O(C\A) defined by (1) becomes arbitrarily large as the
points of A are approached radially. The next lemma makes this precise.

Lemma (Goursat). Let B be a disc in C\A such that an element b, of
the sequence lies on OB. Then limy,_p,, f(w) = oo if w approaches b, along
the radius of B to b,.

Proof. If w lies on the radius of B to b,, then (!)
(o) |w — bn| < |w—b,| for all v # n.

Let p > n be chosen such that Zf__p_}_l lay| < 3|an|. We rewrite (1) in the
form

f(z) =

oo r
an a, - a )\  an
e G > T Whereg(z):= (Zz—b,,) .

v=p+1 1

By (o), for all w on the radius of B to by,

o o]

)2 A2 gy - 3 s

|an|
—— — lg(w)|.
Iw - bnl v=p+1 I’UJ - bu|

1
2 |lw — byl
Since |g(w)| remains finite as w approaches by, the assertion follows. DO

Remark. The statement of the lemma is not obvious once the point b, is an ac-
cumulation point of other points bx. The growth of the “pole terms” a,/(z — bs)
about b, could then be offset by the infinitely many terms ax/(z — bx) corre-
sponding to the by that accumulate at b,. This phenomenon actually does occur
for other series. For instance, every summand of the series

g(z) = i?’zzu_l/(l +2%),

v=0

which converges normally in E, has poles on JE; different summands never have
equal poles (so that nothing cancels here), the poles of all the summands are
dense in OE, yet in the limit these poles cancel completely. The limit function,
far from having infinitely many singularities on JE, is just g(z) = 1/(1 — 2); this
can be seen at once by logarithmic differentidtion of the product [J72 (1 + 2%)
(cf. Exercise 2 in 1.2.1).

Hzistorical note. E. Goursat used series of the type 3 a,/(z — b,) in 1887 to
construct functions with natural boundaries [Gour|. A. Pringsheim studied such
series intensively; cf. [Pr], pp. 982-990.
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2. Well-distributed boundary sets. First proof of the existence
theorem. If b is a boundary point of G, a disc V C G is called a wvisible
disc for b if b € OV; b is called a wisible (from G) boundary powmnt of G.
In general, domains have boundary points that are not visible. Thus, in
squares, the vertices are not visible; in domains with spikes (Figure 8.4, p.
176), there exist boundary curves none of whose points are visible.

A set M of visible boundary points of G is called well distributed if the
following holds:

(¥) Let ¢ € G and let B be a disc about ¢ that intersects OG. Then n the
component of BN G containing ¢ there is a wnistble disc V' for some pownt

be MNDB.

With the aid of this concept, we obtain a

First criterion for domains of holomorphy. If {b,b2....} 1 a count-
able well-distributed boundary set, then G 1s the domain of holomorphy of
every function

X >
f2) =Y a/(z=b), z€G, where a,€C*, 3 a| <.
1 1

Proof. f € O(G) by 1(1) since {b),ba....} C IG. Let ¢ € G and let B be
the disc of convergence of the Taylor series h of f about c¢. Suppose that
BNOG # 0. Then, by (). in the component W of BNG containing ¢ there
is a visible disc V for some point b, € B. Since h|W = f|W, Lemma 1
implies that h tends to oo as b, is approached along the radius of V to b,,.
Then b, ¢ B. It follows that B C G. a

The following statement is not obvious:

(1)  Any G # C has a countable well-distributed boundary set M.

Proof. Let R be countable and dense in 7, e.g. R = (Q+ iQ)NG. For each
( € R, choose b € JG on the boundary of the largest disc V C G about (.
The set M of all these visible boundary points b is countable.

Now let B be a disc about ¢ € G that intersects dG. If ( € R is chosen
close enough to ¢, then the largest disc V C GG about ( lies, together with
0V, in B, and ¢ € V. By the construction of M, V is the visible disc for
some point b € M. Since b € gV C B, and since V. C BN G lies in the
component of BN G containing ¢ because ¢ € V', (1) is proved. m)

The construction of the set M by way of (Q + iQ) N G is motivated hy the
Poincaré-Volterra theorem, which says, among other things, that the Taylor series
of f about all the rational complex points yield all possible holomorphic contin-
uations of f. (These “function elements” are dense in the “analytic structure”

of f.)
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The existence theorem follows immediately from (1) and the criterion
above.

Historical note. The proof of the existence theorem given here can be found
in Pringsheim’s 1932 book [Pr| (pp. 986-988): he credits an oral commu-
nication of F. Hartogs. Pringsheim works only with dense sets of visible
boundary points. In 1938, J. Besse pointed out drawbacks to such a choice
of boundary points (see the following exercises) and eliminated them ([Bes],
pp. 303-305). H. Kneser, in his Funktionentheorie, 2nd ed. (pp. 158-159),
discusses only the weak form of the existence theorem (see the introduction
to this section); his approach is the same as Pringsheim’s.

Ezercises. Prove: a) Well-distributed boundary sets for G are dense in 8G.

b) There exist domains for which not every dense set of visible boundary points
is well distributed.

¢) If G is conver, then every dense set of visible boundary points is well dis-
tributed.

3. Discussion of the concept of domains of holomorphy. A function
f € O(G) is called holomorphically extendible (or continuable) to a bound-
ary point p of G if there exist a neighborhood U of p and a holomorphic
function g € O(U) such that f and g coincide on a component W of UNG.
with p € OW; otherwise p is called a singular point of f. In gencral, the
neighborhood U is “large”: Thus, for the boundary point 0 of the domain
G = H\U;Z,{(-o00,n] x {i/n}}, there does not exist any disc B # C
such that O lies in the boundary of a component of B N G every function
f = g]G with g € O(C) is of course holomorphically extendible to 0 (with
U :=Q).

If there exist discs B C U about p such that BN G is connected, then we
can choose U to be such a disc. If G is a conver domain, then for every disc
B the region BN G is again convex and thus a domain; the next statement
follows.

(1) If G is convex and f € O(G) can be extended holomorphically to
p € 0G, then there exist a disc B about p and a function g € O(U) such
that g|BNG = fIBNG.

By (1), the expression “singular point of f” just introduced agrees for
discs with that introduced in 1.5.3.3. We now make precise the notion that
a domain of holomorphy is the mazimal domain in which a function is
holomorphic.

Theorem. The following statements about a function f € O(G) are equiv-
alent:

i) The domain G is the domain of holomorphy of f. .
ii) There do not exist a domain G ¢ G and a function f € O(G)

such that the set {z € GNG : f(z) = f(z)} has interior pownts.
iii) Every boundary pont of G is a singular point of f.
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Condition ii) sharpens the maximality property discussed in the intro-

duction, where we required that G O G. To prove this theorem, we need a
lemma.

Lemma. Let G and G be domains in C, and let W be a component of
GNG. Then GNOW C 8G. If G ¢ G, then G N OW is nonempty (see
Figure 5.1).

FIGURE 5.1.

Proof. 1) Let ¢ € GN&W. Since 3W C W C G, it follows that ¢ € G.
If ¢ were in G, then, since ¢ E_@, it would follow that ¢ € W; but this
contradicts ¢ € 8W. Hence ¢ € G\G = 0G.

2) Let G ¢ G. Then G\W is nonempty, for otherwise the inclusion W C
G would imply that W = G but this would give the contradiction G cG
since W C G. Moreover, G\W is not open in C since G =W u(G\W),
W is open, and G is connected. Let p € G\W but not an interior point of
G’\W. Then U NW # @ for every neighborhood U of p; that is, p € OW. It
follows that p € Gnow. ]

We now prove the equivalence of the statements of the theorem in the
form “non i) = non ii) = non iii) = non i).”

non i) = non ii). There exists a ¢ € G such that the disc of convergence
of the Taylor series fof f about ¢ does not lie in G. Since f € O(@) and
fIW = F|W on the component W of G N G containing ¢, non ii) follows.

non ii) = non iii). Suppose that G Z G, fe 0(@) and W) is a compo-
nent of GN G such that fIWy =f |W1 By the lenma, there exists a point
pE G N oW, C 8G. We may assume that p is a visible boundary point of
W, (by density; cf. Exercise 2.a)). We choose a disc U C G about p and
a visible circle V. C W) for p € OW,. Then U NV lies in a component W
of GNU. That p € 8V N OG implies that p € OW. Set g := fIU then
glW = f|W since VNU C W;. Thus p is not a singular boundary point of

f.
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non iii) = non i). Suppose that p € G is not singular for f, and let U,
g. and W be chosen accordingly. Let » be the radius of convergence of the
Taylor series of g about p. We choose ¢ € W with |¢ — p| < /2. The disc
of convergence of the Taylor series of g about ¢ then contains the point
p € 0G. Since f and g have the same Taylor series about ¢, G is not the
domain of holomorphy of f. O

Ezercise. If G is convex and is the maximal domain of existence of f € O(G) in
the sense of the introduction, then G is the domain of holomorphy of f.

4. Peripheral sets. Second proof of the existence theorem. A set A
that is locally finite in a domain G is called peripheral in G if the following
holds:

(x) If GcCis any doman and W 1s a component of GN é, then every
point of G NOW s an accumulation point of ANW.

With the aid of this concept, we obtain a

Second criterion for domains of holomorphy. If the zero set Z(f) of
f € O(G) 1s peripheral in G, then G is the domain of holomorphy of f.

Proof. We show that statement iii) of Theorem 3 holds. For contradic-
tion, suppose there exist a point p € 0G, a disc U about p, and a function
g € O(U) such that f|W = g|W on a component W of GNU with p € OW.
Since Z(f) is peripheral in G, p is an accumulation point of Z(f)NW. Since
Z(f)INW=2Z(g)NW, the identity theorem implies that g = 0. It follows that
f =0, which is impossible since Z(f), as a peripheral set, is discrete in G. D

It is not obvious that peripheral sets always exist.
(1) If G # C, then there emist peripheral sets A in G.

Proof. Let the set (Q+iQ)NG be arranged in a sequence (3. (2,.... In the
largest disc B¥ C G about (,, choose a point a, with d(a,,dG) < 1/v. Let
A= {a\,az,...}. Since every compact set K C G has a positive distance
to the boundary d(K, dG), the set AN K is always finite: in other words,
A is locally finite in G. R

Now let G and W be as in (x). and let p € G N OW. Then, for every
e > 0 with B:(p) C 6:, there exists a rational point {x € B.(p) " W with
Ip — (| < 3<. The largest disc B* about ¢ that is contained in G now lies
in B, (p), since p € AG by Lemma 3. B* N W # 0; hence B* C W since W
is a maximal subdomain of GN G. For the point a; € B* corresponding to
Ck. it now follows that ax € B.(p) N AN W. Since € > 0 is arbitrary, (%)
holds. O

The existence theorem again follows from (1) and the criterion. since
there exists f € O(G) with Z(f) = A by the existence theorem 4.1.5. 0O
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Besides domains of holomorphy, one also considers domains of meromor-
phy. G is called the doman of meromorphy of a function_h meromorphic
in G if there exists no domain G ¢ G with a function h € M(G) such
that h and A agree on a component of G N G. Clearly C* is the domain
of meromorphy of exp(1/z) (but not of 1/z). The reader should convince
himself that we have actually proved the following:

Every domain G in C is the domain of meromorphy of a function holo-
morphic in G.

Ezercise. Prove: If G is convex, then cvery set that is locally finite in G and
accumulates at every boundary point of G is peripheral.

5. On the history of the concept of domains of holomorphy. As
early as 1842, Weierstrass was well aware that holomorphic functions could
have “natural boundaries” ([W,], p. 84). He pointed this out in his lectures
from 1863 on. At the same time Kronecker knew that E is the domain of
holomorphy of the theta series 1 + 25 q"?; cf. 11.1.4. The first reference in
print to the appearance of natural boundaries occurs in 1866 in a treatise
of Weierstrass (Monatsber. Akad. Wiss. Berlin, p. 617; in Weierstrass's
Werke, which are hardly a faithful reproduction of the original papers, this
passage is omitted).

Weierstrass claimed in 1880 that all domains in C are domains of holo-
morphy: he says ([Wy]|, p. 223): “Es ist leicht, ... selbst fiir einen be-
liebig begrenzten Bereich ...die Existenz von [holomorphen| Functionen
|anzugeben], die tiber diesen Bereich nicht [holomorph] fortgesetzt werden
konnen.” (It is easy, ... even for an arbitrary bounded region, to show the
existence of [holomorphic] functions that cannot be continued [holomorphi-
cally] beyond this region.) He gave no precise statement, far less a proof,
of this claim. A few years later, in 1885. Runge gave a proof using the
approximation theorem, which he had devised especially for this purpose
(see Chapters 12 and 13): in Runge’s paper ([R], p. 229) is the assertion
“dass der Giltigkeitsbereich einer eindeutigen analytischen Function ...
keiner andern Beschrankung unterliegt als derjenigen, zusammenhingend
zu sein” (that the region of validity of a single-valued analytic function ...
is subject to no other constraint than that of being connected).

Mittag-Leffler stated in a footnote to Runge’s work (loc. cit., p. 229)
that Runge’s result had already appeared in 1884 in his own work [ML};
the existence theorem, however, does not appear there explicitly. The proof
by means of the product theorem is given in many textbooks; for example,
in 1912 in that of Osgood, in 1932 in that of Pringsheim. in 1934 in that of
Bieberbach, and in 1956 in that of Behnke-Sommer. (Cf. [O]. pp. 481-482;
[Pr], pp. 713-716; [Bi], p.295; and [BS]. pp. 253-255). In 1938 J. Besse, a
student of G. Pdlya, noted that the problem of approach to the boundary
is overlooked in the first three books; he gave his elegant solution of the
problem in [Bes].
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6. Glimpse of several variables. The concept of domain of holomorphy can
also — almost verbatim as in the introduction — be introduced for holomorphic
functions of several variables. Surprisingly, it turns out that not all domains in
C", n > 2, are domains of holomorphy: for example, punctured domains G\{p}.
where p € G, are never domains of holomorphy, since holomorphic functions of
n > 2 variables cannot have isolated singularities: Hurwitz mentioned this as
early as 1897 ([Hu|. p. 474 in particular). Soon thereafter. in 1903, F. Hartogs
discovered the famous “Kugelsatz,” which appeared in his dissertation: If 7 is a
bounded domain in C*, 2 < n < oc. with connected boundary 9G, then every
function holomorphic in a neighborhood of 9G can be extended holomorphically
to all of G ([Har], p. 231 in particular).

The best-known examples of domains that are not domains of holomorphy
are “notched” bidiscs in C?, which are produced by removing sects of the form
{(w,2) € D:|w| >r|z]| <s}.0< 78 <1} from the unit bidisc D := {(w, 2) €
C* : |lw| < 1,]z| < 1}: every function f € O(Z) can be extended to all of D.

In 1932, H. Cartan and P. Thullen recognized holomorphic convezity as a char-
acteristic property of domains of holomorphy; cf. [CT]. In the period that fol-
lowed, a theory developed that brought deep insights into the nature of singular-
ities of holomorphic functions of several variables and is still active today. The
reader can find details in the monograph [BT] of H. Behnke and P. Thullen and
in the textbook [GF] of H. Grauert and K. Fritzsche.

In 1951 K. Stein, in his notable paper [St], discovered complex spaces that
have properties similar to those of domains of holomorphy. A complex space X
is called a Stein space if many holomorphic functions live on it; more precisely,
one imposes the following conditions.

a) For any two points p, g € X, p # q, there exists f € O(X) with f(p) # f(q)
(separation axiom).

b) For every locally finite infinite set A, there enists f € O(X) with sup{|f(z)|:
r € A} = oc (convezxity axiom).

A domain G in C" is a domain of holomorphy if and only if it is a Stein space.
It turns out that many theorems of complex analysis can be proved at once for
Stein spaces (sce also 4.2.5 and 6.2.5). Readers who would like to go more deeply
into these matters are referred to [GR].

§3. Simple Examples of Domains of Holomorphy

For domains G with complicated boundary, one can seldom explicitly de-
termine holomorphic functions that have G as domain of holomorphy.
But for discs, Cassini domains, and. more generally. domains of the form
{z € C:|¢(z)] < R}, where ¢ is a nonconstant entire function, there are
simple constructions, as we will now see. '

1. Examples for E. The disc E is the domain of holomorphy of ) 22" (cf.
[.5.3.3): more generally, the circle of convergence of Hadamard lacunary
series is their natural boundary (see 11.2.3 and 11.1.4). We give examples
of a different kind.
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1) Let a € C, |a| > 1; let w € R\Qn. Then the domain of holomorphy of
the “Goursat series”

f(Z) = Z z f etvw € O(IE)

is the disc E. Moreover, ae™ f(e*z) = (z — 1)~ + f(2).

Proof. {e'**, v > 1} is a well-distributed boundary set since w ¢ Qr. Hence
the claim follows by Theorem 2.2. a

2) The domain of holomorphy of the power series

>0 A

f(z)ZZerT

A=0
1s the disc E.

Proof. For G = E, the “Goursat series” 3.7 a,/(z — b,) has the following
Taylor series in [ about 0:

0o , 1 oc y oc A o0 o ,
Trem-ErEE) - EE#) -

A=0 \v=1

Setting b, := e** and a, := —e™Vb, gives 2). a

3) The domain of holomorphy of the product

f(2) = [J(1 - 2*) € OE)
v=0

1s the disc E.

(Sketch of ) Proof. Near every 2"th root of unity ¢, f assumes arbitrarily
small values. This holds for ¢ = 1since f(t) = (1-t)(1—-#2)(1-t1)... < 1—t
for all t, 0 < t < 1; it holds in general since

n—1
fz) =1 [T -27), whence |£(2)] < 2"I7("")]
v=0
But the 2™th roots ¢ are dense in JE, and 3) follows. 0

4) The domain of holomorphy of the products in Example 2 of 4.2.2 is E
if ,, is always chosen to be less than 1.
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2. Lifting theorem. Lct G be a doman. let q € O(C) be nonconstant,
and let G be a component of ¢~V (G). If G is the domamn of holomorphy of
f.then G as the domain of holomorphy of f:= f o q|G.

Proof. Suppose that f could be extended holomorphically to a point p € 0G.
Then there would exist a dise 7 about p and a function g € O(U) such
that g|W = f|W on a commponent W of U NG with p € OW'.

Suppose first that ¢'(p) # 0. Then ¢ is locally biholomorphic about. 12
We choose {7 50 smiall that ¢ maps {7 biholomorphic dlh onto a domain G.
Since ¢(p) € ()(,, we have G ¢ G. For f =go(qU)"' € O(G), it follows
that {z € GNG @ f(z) = f(2)} D q(W). By Theorem 2.3. G is not the
domain of holomorphy of f

Suppose now that ¢'(p) = 0. Since U NIW C G by Lemma 2.3, g is a
holomorphic extension of f to all the boundary points p of G that lie in
{7 N oW’ . Since p is an 1solated zero of ¢'. by what has already been proved
there do not exist such points p arbitrarily near p. Hence p is an wsolated
boundary point of ¢ and p := ¢(p) is an isolated boundary point of G.
But now f is bounded in a neighborhood of p; therefore f is bounded in a
neighborhood of p. which is impossible since G is the domain of holomor-
phy of f. ]

Applications of the lifting theorem arc obvious. In the next subsection.
we discuss a situation that plays an important role in the theory of over-
convergenee; of. also 11.3.1-11.3.4.

3. Cassini regions and domains of holomorphy. Regions D = {z € C:
iz- =il |z —z2] < const.}, 2y, 22 fixed, are called Cassini regions, after the Italian-
French astronomer G. D. Cassini (1625 1712), who — in contrast to Kepler -
chose Classini curves (lemmniscates) |z — 23| |z — 22| < const. rather than ellipses
as the path of the planets around the sun. A normal form is

(1 |z —ul|z+al=R* with a.ReR, a>0 R>O0.

These Cassini curves have only ordinary points except in the case a = R, where
() is a double point (left-hand part of Figure 5.2). The Cassini region D corre-
sponding to (1) has two components if « > K and is connected if ¢ < R. We
prove a more precise result.

Ifa < R, then the Cassim reqion D s a star-shaped domain with center 0.

PProof. In polar coordinates, (1) has the form r* - 2a’r? cos 2 = R — o', With
g(t) := (t - a?cos2p)? + atsin? 22 — RY. it follows that D = {rc"" eC:y(rH) <
0}. Since R' > «'. ¢ has exactly one positive and one negative zero, hence
g(p?) < 0 for all p € [0, 7] whenever g(r%) < 0. Thus if re*” lies in D, so do all
points tre™ ) <t < 1. C

The next statement follows immediately from the lifting theorem 2.



§3 Simple Examples of Domains of Holomorphy 123

+5\7

19 —-

/ _/ -
a>R
a=R
a<R

FIGURE 5.2.

For every p € N\{0}. the sertes > 0 [32(z — 1)]2"? converges compactly m the
Cassini domamn W := {z € C: |2(z = 1)| < 2}. The lamit function has W as
doman of holomorphy. Moreover, W D (E\{—1})U B,(1)\{2}).

The right-hand part of Figure 5.2 shows the domain W (Writing = ¢+ 1/2
instead of z gives the normal form (1) for W, with @ = 1/2, R = v2.) We will
come across the Cassini domain W again, in the theory of overconvergence in
11.2.1.
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6

Functions with Prescribed Principal
Parts

If A is meromorphic in the region D, its pole set P(h) is locally finite in D.
By the existence theorem 4.1.5, every set that is locally finite in D is the
pole set of some function h € M(D) (see also 3.1.5(1)). We now pose the
following problem:

Let T = {dy,ds,...} be a set that s locally finite imn D, and let ev-
ery point d, € T be somehow assigned ¢ “finite principal part” q,(z) =
Yot up(z —dy)™" # 0. Construct a function meromorphic in D that
has T as its pole set and moreover has principal part g, at each pownt d,,.

It is not at all clear that such functions exist. Of course, if T is finite,
the “partial fraction series”

ZQV(Z) = Zavu(z ~d,)™"

v,

solves the problem. But if T is infinite, this series diverges in general.
Mittag-Leffler, in the last century, forced convergence by subtracting a
convergence-producing summand g, € O(D) from each principal part: the
Mittag-Leffler series Y (q.(z) — g,(2)) is then a meromorphic function in
D with the desired poles and principal parts.

In this chapter we first treat Mittag-Leffler’s theorem for the plane (Sec-
tion 1). In Section 2 we discuss the case of arbitrary regions. In Section 3, as
an application, we develop the basics of ideal theory in rings of holomorphic
functions.
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§1. Mittag-Lefller’'s Theorem for C

The goal of this section is the proof of Mittag-Leffler’'s theorem for the
plane. In order to formulate it conveniently, we use the concept of principal
part distributions, which we discuss in Subsection 1, with a view toward
later generalizations, for arbitrary regions in C. The simple principle of
using Mittag-Leffler series to find meromorphic functions with prescribed
principal parts is described by Theorem 2. The classical Mittag-LefHer se-
ries for D = C are constructed in Subsection 3.

1. Principal part distributions. Every Laurent series > 7" b, (z—d)™# €
O(C\{d}) is called a principal part at d € C; a principal part is called finite
if almost all the b, vanish.

(1) q € O(C\{d}) is a principal part at d if and only 1f lim,_. g(z) = 0.
Proof. Every q € O(C\{d}) has a Laurent representation (cf. 1.12.1.2 3):

g=q" +q7, with ¢*€O(C). ¢ (2)=) bu(z—d)™* € O(C\{d}),
u=1

and lim,_,» ¢~ (2) = 0. By Liouville’s theorem, lim, .o ¢(z) = 0 if and
only if ¢* = 0. O

A map ¢ which assigns to every point d € D a (finite) principal part gq
at d is called a distribution of (finite) principal parts on D if its support
T :={z € D: ¢(z) # 0} is locally finite in D. For brevity, we also call ¢ a
principal part distribution on D.

Every function h that is holomorphic in D except for isolated singularities
has a well-defined principal part h~ € O(C\{d}) at each such singularity;
cf., for instance, 1.12.1.3. Thus every such function determines a principal
part distribution PD(h) on D whose support is the set of nonremovable
singularities of h in D. PD(h) is a distribution of finite principal parts on
D if and only if h is meromorphic in D; then the pole set P(h) of h is the
support of PD(h).

Principal part distributions on D can be added and subtracted in a
natural way, and thus (like divisors) form an additive abelian group.

There is a simple connection between divisors and principal part distri-
butions:

(2) Ifo(d) is the dwisor of f € O(D), then p(d) := 0v(d)/(2—d),d € D, s
the principal part distribution of the logarithmic derivative f'/f € M(D).

This is clear: from f(z) = (2 — d)*g(z), with g(d) # 0, it follows imme-
diately that f'(z)/f(z) = n/(z — d) + v(z), where v is holomorphic at d.
a
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The problem posed in the introduction to this chapter is now contained
in the following problem:

For every principal part distribution ¢ in D with support T, construct a
function h € O(D\T) with PD(h) = .

The key to the construction of such functions is provided by special series,
which we now introduce.

2. Mittag-Lefller series. The support T of a principal part distribution
. like the support of a divisor, is always at most countable. We arrange the
points of T in a sequence d;, ds, . .., in which, however — unlike the case of
divisors — each point of T occurs ezactly once. We stipulate once and for
all that d; = 0 if the origin belongs to T. The principal part distribution
i is uniquely described by the sequence (d,,q,), where ¢, := ¢(d,).

A series h = 37°(q, —g,) is called a Mittag-Leffler series for the principal
part distrbution (d,,q,) on D if

1) g, s holomorphic in D;
2) the series h converges normally in D\{d,ds,...}.

This terminology will turn out to be especially convenient, as we now
see.

Proposition. If h is a Mittag-Leffler series for (d,,q.), then
h e O(D\{d1,dq,...}) and PD(h)=(d,,q).

Proof. By 2), h is holomorphic in D\{d,,ds,...}. Since all the summands
gy — gv, ¥ # n. are holomorphic in a neighborhood U C D of d,,, the
series D, . (q. — g,) converges compactly in U, inclusive of d,, to a
function A, € O(U) (inward extension of convergence; cf. 1.8.5.4). Since
h—gq, = /f;n — gn in U\{dn} and ’}\ln and g, are holomorphic at d,,, it
follows that g, is the principal part of h at d,, n > 1. This proves that
PD(h) = (dv,qu). o

We also note:

If (g —gv) is a Mittag-Lefller series for a distribution of finite principal
parts, then every summand g, — g, is meromorphic mn D and the series is
a normally convergent series of meromorphic functions wn D (in the sense
of [11.1.1).

The terms ¢, in ) (g, — g.) force the convergence of the series, without
disturbing the singular behavior of the series about d,, that is prescribed
by q,. The functions ¢, ga, ... are called convergence-producing summands
of the Mittag- Leffler series.

We will construct Mittag-Lefller series for every principal part distribu-
tion . (This involves more than just finding functions h with PD(h) = ;
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compare the theorems on partial fraction decomposition in 4 and 2.3.)
For this purpose, we need a way to determine convergence-producing sum-
mands. This is relatively simple in the case D = C.

3. Mittag-Leffler’s theorem. In this subsection (d,,q,).>1 denotes a
principal part distribution on C. Every function ¢, € O(C\{d,}) has a
Taylor series about 0, which converges in the disc of radius |d, |, v > 2 (ob-
serve that d) = 0 is possible). We denote by p,x the kth Taylor polynomial
for q, about 0 (deg p,x < k) and show that these polynomials can serve as
convergence-producing summands.

Mittag-LefHler’s theorem. For every principal part distribution (d,, g, )v>
win C, there exist Mittag-Leffler series in C of the form

q + Z — DPuk, ), where pyk, = k,th Taylor polynomial of q, about 0.

Proof. Since the sequence (p,x)k>1 converges compactly in By, (0) to g,
for every v > 2 there exists a k, € N such that |q,(2) — pyk,| < 277 for
all z with |2| < 1|d,|. Since limd, = oo, every compact set K in C lies in
almost all the discs B %14.,1(0)' Hence

Z gy — Puk, |k < Z 27 < oo for appropriate n = n(K).
v2n v2n

This proves the normal convergence of the series in C\{d;,ds,...}. Since
it always holds that p,x, € O(C), the series in question is a Mittag-Leffler
series in C for (dv,q,)u>1. O

The series

zu—2
—+Z<z_ +—+(—ﬁ+ d',j‘l)

is a Mittag-Leffler series (with q,(2) = (z — d,)™! and p, . _2(2)); it ap-
peared in 3.1.5(1).

4. Consequences. Mittag-Leffler’s theorem has important corollaries.

Existence theorem. Every principal part distribution on C with support
T is the principal part distribution of a function holomorphic in C\T .

Theorem on the partial fraction decomposition of meromorphic
functions. Every function h that is meromorphic in C can be represented
by a series > h, that converges normally in C, where each summand h, is
rational and has at most one pole in C.
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The existence theorem is clear; the second theorem is proved as follows:
By Theorem 3, corresponding to the principal part distribution PD(h) there
is a Mittag-LefHer series hin C whose convergence-producing summands are
polynomials. Since all the principal parts of h are finite, all the summands
of this series are rational functions that have exactly one pole in C. The
difference h — h is an entire function and therefore a normally convergent
series of polynomials in C (Tay lor series). )

The Weierstrass product theorem can be obtained from Mittag-Leffler’s
theorem. We sketch the proof for the case that 0 is a positive divisor on
C satisfying 9(0) = 0 and prescribing only first-order zeros. If d;, da, ... is
a sequence correspondmg to 0, we consider the prmcxpal part distribution
(dv,1/(z — d,))u>1 on C. Then —(d,) IE,\ _o(2/d,)" is the kth Taylor
polynomial; Mittag-LefHler series for this distribution look like

1 ko 2\ "
raa(z)
Every f € O(C) with f’/f = h now has 0 as divisor. Since

k. 1 2 K+1
Y (3._)

Weierstrass's assertion that f = [] Ex, (z/d,) follows automatically. Of
course, it must still be shown that this product converges. This can be
done, for example, by integrating f|/f,; for details, see [FL], pp. 176 177.

=ihu(z), with h,(z) :=
v=1

v

. VEN,

5. Canonical Mittag-LefHler series. Examples. In applying Theorem
3, we will choose the numbers k, as small as possible — as we did for
Weierstrass products. If all the &, can be chosen to be equal, the Mittag-
Lefler series g1 + Y 5 (a, — puk) with the smallest k > 0 is called the
canonical series for the principal part distribution (d,.q,).>1 in C. We
give four examples.

1) The Eisenstein series em(2) :== Y o (2 +v)™™, m > 2, is the canom-
cal series for the principal part distribution (—v, 1/(24v)™),cz; convergence-
producing summands are unnecessary here. We recall the explicit formulas
(1.11.2.3)

oo}

oc

'7T2 Z 1 3 COt 94 Z
sin® 72 (z +v)?’ (z + v)3

—oc —oc

bln w2

2) The cotangent series

[> @]

l

meotwz = €1(z2 -
()= 20(

-2)
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is the canonical series for the principal part distribution (—v.1/(z4v))yez;
here A = 0.

3) The series

Mz) 1 & 11 .
TS i Z( — V) (cf. 2.2.3).

if we disregard the term —-, is the canonical series for the principal part
distribution (—v. —1/(2 + v))u>0. Again k = 0.

1) The Fisenstein-Weierstrass series

w#0

is the canonical series for the principal part distribution (—w, 1/(z4+w)?)ucq.
where 2 denotes a lattice in C; cf. 3.2.4. Here also, & = 0.

These examples were well known before Mittag-Leffler proved his theo-
rem. The theorem shows that the same construction principle underlies all
four examples.

6. On the history of Mittag-Leffler’s theorem for C. In connection
with the rescarch of Weierstrass, which was published in 1876 ([Wei]. pp.
77 124), Mittag-Leffler published his theorem in 1876 77 for the case that
all the principal parts are finite, in Swedish, in the Reports of the Royal
Swedish Academy of Scrences, Stockholm (cf. [ML], p. 20 and p. 21). In
his 1880 note [Wei]. pp. 189 199, Weierstrass simplified the proof consid-
erably by introducing the Taylor polynomials as convergence-producing
summands: in this work, Weierstrass also drew attention to the theorem
proved by Mittag-Leffler in 1877 on the partial fraction decomposition (cf.
pp. 194-195):

Fs ldsst sich also jede eindeutige analytische Function f(x), fir
dve 1m Endlichen keine wesentliche singuldre Stelle existirt, als
cine Summe von rationalen Functionen der Verdnderlichen x
dergestalt ausdriicken, dass jede dieser Functionen im Endlichen
hochstens ewmme Unendlichkeits-Stelle hat. (Thus every single-
valued analytic function f(x) for which no essential singularity
exists in the finite plane can be expressed as a sum of rational
functions of the variable x in such a way that each of these func-
tions is infinite at no more than one point in the finite plane.)

The derivation of the Weierstrass product theorem for C from Mittag-
LefHer's theorem for C by integrating logarithinic derivatives was commu-
nicated to Mittag-Leffler by Hermite in a letter in 1880 ([Her|, especially
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pp. 48-52). This method of proof found its way into textbooks at the be-
ginning of this century. A.Pringsheim expressed his indignation with this
approach in 1915 ([P], p. 388): “Wenn nun aber einige Lehrbiicher sich so
weit von der Weierstralichen Methode entfernen, daf} sie den fraglichen Satz
als Folgerung (!) aus dem Mittag-Lefflerschen Satze durch logarithmische
Integration herleiten (und zwar dieses Verfahren nicht etwa nur in Form
einer gelegentlichen, ja sehr nahe liegenden Bemerkung, sondern als einzi-
gen und mafgebenden Beweis mitteilen), so diirfte diese Art, die Dinge
auf dem Kopf zu stellen, wohl von niemandem gebilligt werden, der in der
Mathematik etwas anderes sieht, als eine regellose Anhaufung mathema-
tischer Resultate.” (But even if some textbooks now deviate so far from
Weierstrass’s methods that, using logarithmic integration, they derive the
theorem in question as a consequence (!) of Mittag-LefHler’s theorem (and in
fact present this method not just in the form of an incidental, indeed quite
obvious, remark, but as the only and standard proof), this topsy-turvy way
of doing things should not be sanctioned by anyone who sees mathematics
as something other than a disordered heap of mathematical results.)

Interesting details of the history of ideas of Mittag-Leffler’s theorem can
be found in Y. Domar’s article [D].

82. Mittag-Leffler’s Theorem for Arbitrary Regions

As always, D denotes a region in C. Our goal is to construct Mittag-Leffler
series in D for every principal part distribution in D. We consider only
principal part distributions (d,, q,) with infinite supports.

Mittag-Leffler series for special principal part distributions are given in
Subsection 1. The general case is handled in Subsection 2.

1. Special principal part distributions. We begin by proving the fol-
lowing:

Let q(z) € O(C\{d}) be a principal part at d € C, and let ¢ € C\{d}.
Then, in the annulus {z € C: |z —¢| > |d — c|} about ¢, q has a Laurent
ezpansion of the form 377 | a,(z — c)*.

Proof. For all p > |d — ¢|, the coefficients a, of the Laurent series of ¢ in
the given annulus satisfy the Cauchy inequalitics

pMla,| < M(p) := max{|q(z)| : z € 0B,(c)}, peZ

lim,—.oo M(p) = 0 since lim,_,~ g(z) = 0 (cf. 1.1); hence a, = 0 for all
p > 0. a

We call gx(z) := Z;ﬁ_, a,(z —c)* € O(C\{c}) the kth Laurent term
of g about c. We will see that in special situations such Laurent terms can
serve as convergence-producing summands for Mittag-Lefller series.
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Let (dv,q.).>1 be a principal part distribution on D with support T'. As
in 4.1.2, let 7" := T\T denote the set of all the accumulation points of T
in C; this is closed in C. Then (d,,¢.),>1 can be interpreted in a natural
way as a principal part distribution on the region C\7’ > D.

Proposition. Let a sequence (c,),>1 in T’ be gwen with lim|d, — ¢, | =
0. Let g,r denote the kth Laurent term of q, about c,. Then there ezist
(many) sequences (k,),>1 of natural numbers such that > v (g, — guk,)
15 a Mittag-Leffler seres for (qu,d,),>1 in C\T".

Proof. Since the sequence (g,x)k>0 converges uniformly to ¢ in {z € C:
|z = cu| > 2|d, — ¢,|}, for every v > 1 there exists a k, € N such that

lg.(2) — guk, (2)] <27¥ for all z € C with |z — ¢,| > 2|d, — ¢

Now let A be a compact set in C\T. Since d(K,T) > 0 and lim |d,, —c, | = 0.
there exists an n(K') such that, for all v > n(K),

Kc{zeC:|z-c¢,| >2|d, —c|}

Z lgy — gur, |k < 22“" < 0.

v>n(K)

and hence

This proves the normal convergence of the series in C\T. Since gy, is
holomorphic in C\{c, } D C\T", Y_(q. — gv«. ) is a Mittag-Leffler series for
(d,,,q,,),,zl in C\T' O

2. Mittag-LefHer’s general theorem. Lei D be any region in C. Then
for every principal part distrmbution ¢ on D with support T there exist
Mittag-Leffler series imn C\T".

Proof (similar to that of the general product theorem 4.1.3). We view ¢
as a principal part distribution on C\T’ and assume that 7" # (. Let the
sets Ty and T, be defined as in Lemma 4.1.3 (with A := T). Then Ty = 0§,
T, =T, and T\ and T are locally finite in C and C\T", respectively: hence

p;(2) :=p(z) for 2 €T}, @,(2):=0otherwise, j=1,2,

defines principal part distributions ¢; on C with support 77 and 2 on
C\T" with support T5. Since Ty NT> = @, we have ¢ = @1 + g in C\T".
By Theorem 1.3, there exists a Mittag-Leffler series ) (g1, — g1.,) for ¢
in C. Since all the sets Ty(e), € > 0, are finite, 4.1.2(2) and Proposition 1
imply that there exists a Mittag-Lefler series (g2, — g2,,) for o in C\T".
A Mittag-LefHer series for ¢ in C\T’ can now be formed (in various ways)
by rearranging the terms of the series Y (g1, — g1,) + Y_ (g2, — g2v), which
converges normally in C\T. 0
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Remark. A proof can also be modeled on the second proof in 4.1.4. One again
works with the map v(z) = (z — @)~ and begins by proving:

(%) If g is a principal part at d # a, then ¢ := q ov™!
at v(d).

— q(a) is a principal part

Thus (ci,,?j,,).,zh with d, := v(d,) and @, := q, o v~ — q,(a), is the principal
part distribution transported by v to C\v(T"). By (*), ¢» — g = (§v — §) o v; it
follows that 3" (q. — g.) is a Mittag-Leffler series in C\T’, as desired. Details are
left to the reader.

A third short proof, using Runge theory, is given in 13.1.1.

3. Consequences. We first note the following:

Existence theorem. Fvery principal part distribution on an arbitrary re-
gion D C C unth support T is the principal part distribution of a function
holomorphac i D\T'.

Fvery distribution of finite principal parts on D is the principal part
distribution of a function meromorphic in D.

Theorem on the partial fraction decomposition of meromorphic
functions. Every function meromorphic in D C C can be represented by a
partial fraction series; that is, by a series Y h, of meromorphic functions
on D that converges normally in D, where each function h, has at most
one pole in D.

By combining the general product theorem 4.1.3 with the general Mittag-
Leffler theorem, we obtain

Mittag-LefHler’s osculation theorem. Let T be locally finite in D and
let every point d € T be assigned a series vg(z) = Y aq(z — d)” that
converges normally in C\T, where ng € N. Then there exists a function h,
holomorphic tn D\T, whose Laurent expansion about d has the function v,
as “section”; that is, og(h —vq) > ng for alld € T.

Proof. Let f € O(D) be chosen such that ng < 04(f) < oo for all d € T.
We consider the principal part distribution (d, ¢4)q4eT on D with support T,
where g4 is the principal part of vg/f at d. Let g € O(D\T) be a solution of
this distribution. Then h := f - g is a function with the desired properties.
To begin with, it is clear that h is holomorphic in D\T. The functions

pa:=9—4qa and 74:= (va/f)—qa
are holomorphic in a neighborhood of d € T'. Since the equation

h=f-(pa+qa)=Ff (va/f +pa—ra) =va+f (Pa—r14a)
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obviously holds in a neighborhood of d € T and since py — 4 is holomorphic
in a neighborhood of d, it follows that o4(h —vy) > ng for alld € T. 0

A special case of the osculation theorem is the

Interpolation theorem for holomorphic functions. Let T be locally
finite in D; let a polynomial py(z) = > 4" aau(z — d)” be assigned to every
point d € T. Then there exists a function f, holomorphic in D, whose
Taylor series about d begins with the polynomaal py, d € T.

For the special case D = C, this theorem means that there always cxist
entire functions that have arbitrarily prescribed values on a sequence dj,
dy. ... without accumulation points in C. This statement generalizes the
well-known Lagrange interpolation theorem. which says that given n dis-
tinct points dy,...,d, and n arbitrary numbers w,,...,w,, there always
exists (exactly) one polynomial p(z) of degree < n — 1 with p(d,) = w,.
I < v < n, namely

p(z)=>_w, [[(z = dy)/(dv — dy).

v=1 737

(This is the Lagrange interpolation formula.)

Erercise. Let (a.).>0 be a sequence of pairwise distinct complex numbers with
aop = 0 and lima, = ~o. Assume that f € O(C) has no zcros in C\{aoy,a:1....}
and that o,,(f) = 1 for all v. Then for every sequence (b, )u>o0. b € C, there
exists a sequence (n,),>o, with n, € N, such that the series

bof(z) o bf(z)  [z\™
0t TG @) (a)

converges normally in C to a function F' € O(C). Moreover, F(a,) = b, for v > 0.

4. On the history of Mittag-Lefller’s general theorem. Theorem
2 was stated in 1884 by Mittag-Leffler ([ML], p. 8). With Weierstrass's
encouragement, he had worked on these questions since 1876 and had
published several papers about them in Swedish and French. Y. Domar
writes ([D]. p. 10): “The extensive paper [ML] is the final summing-up of
Mittag-Lefller’s theory . ... The paper is rather circumstantial. with much
repetition in the argumentation, and when reading it one is annoyed that
Mittag-LetHer is so parsimonious with credits to other researchers in the
ficld, Schering. Schwarz, Picard, Guichard, yes. cven Weierstrass. But as a
whole, the exposition is impressive, showing Mittag-Lefller’s mastering of
the subject.”

In [ML] the osculation theoremn is also treated for the case of finite prin-
cipal parts (cf. p. 43 and pp. 53-54): our elegant proof can be found in the
1930 paper of H. Cartan ([Ca;]. pp. 114-131). The paper [ML], in which
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ideas of G. Cantor already appear, contributed to Mittag-Leffler's reputa-
tion in the mathematical world (see his short biography on p. 323). The
results immediately exerted a great influence; C. Runge wrote his ground-
breaking paper on approximation theory under the impact of Mittag-LefHer's
work (cf. 13.1.4 and Runge’s short biography on p. 325).

H. Behnke and K. Stein showed in 1948, with methods of the function
theory of several variables, that Theorem 2 and hence its corollaries in 3
hold verbatim if one admits arbitrary noncompact Riemann surfaces in-
stead of regions in C (cf. [BSty], Satz 1, p. 156): the osculation theorem
can be found at the end of this paper as Hilfsatz C.

5. Glimpses of scveral variables. In his paper {Co|. already mentioned in
4.2.4, Cousin extended Mittag-Leffler's theorem to polydomains in C". As in the
case of the product theorem, difficulties arise even in formulating the problem:
the concept of the principal part distribution must be understood in a different
way. since the poles of meromorphic functions are no longer isolated. but — like
their zeros — form real (2n — 1)-dimensional surfaces. Furthermore, the various
surfaces can intersect each other; this occurs, for instance, for the function w/z
Surprisingly, it turns out that despite these complications the situation is nicer
than when the Weierstrass product theorem is extended to higher dimensions;
of. 4.2.4. No topological obstructions appear! H. Cartan first observed, in 1934,
that a domain in C? for which Mittag-Lefller’s theorem holds must be a domain
of holomorphy ([Cai], p. 472); a proof of this was given in 1937 by H. Behnke
and K. Stein ([BSt,], pp. 183-184). In the same year, K. Oka [O)] succeceded
in proving that Mittag-Leffler's theorem holds for all domains of holomorphy
in C". In 1953. H. Cartan and J-P. Serre finally proved again using sheaf
theory and cohomological methods — that in any Stein space there always exist
meromnorphic functions corresponding to prescribed principal part distributions
([Caz], p. 679). The reader can find precise forms of these statements in [GR,],
especially pp. 140 142: the monograph [BT] contains further historical details.

§3*. Ideal Theory in Rings of Holomorphic
Functions

Der Weierstrafische Produktsatz lehrt uns, daff in
den Bereichen der z-ebenc alle [endlich erzeugten)
Ideale Hauptideale sind. (The Weierstrafl product
theorem teaches us that in the regions of the z-plane
all [finitely gencrated] ideals are principal ideals )

— H. Behnke, 1940
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Recall that a subset a # 0 of a commutative ring R with unit element 1
is called an ideal in R if ra+ sb € aforall a, b € a and all r, s € R. If
M # 0 is any subset of R, then the set of all finite linear combinations
Srufu, fu € M, is an ideal in R with generating set M. Ideals a that
have a finite generating set {f1,..., fn} are called finitely generated: the
suggestive notation a = Rf; + --- + Rf, is used in this case. Ideals of the
form Rf are called principal ideals. A ring R is called Noetherian if every
ideal in R is finitely generated, and a principal 1deal ring if every ideal is a
principal ideal.

One of the goals of this section is to show that in the ring O(G) of all
functions holomorphic in a domain G C C, every finitely generated ideal
is a principal ideal (Subsection 3). Our tools are a lemma of Wedderburn
(Subsection 2) and Theorem 4.2.1, on the existence of the ged; thus Mittag-

LefHler series and Weierstrass products form the basis for the ideal theory
of O(G).

1. Ideals in O(G) that are not finitely generated. Let A be an infinite
locally finite set in G. The set

a:= {f € O(G) : f vanishes almost everywhere on A}

is an ideal in O(G). If fy,..., fn are arbitrary functions in a, the set of
their common zeros again consists of almost all the points of A. By the
existence theorem 4.1.5, for every point a € A there exists an f € a with
f(a) # 0; hence the ideal a is not finitely generated. We have proved the
following result.

No ring O(G) is Noetherian; in particular, O(G) s never a principal
wdeal mng.

Ezercise. Let G := C and let a denote the ideal in O(G) generated by the functions

sinmz H (z-v)"' €0O(C), neN.

v=-n

Is a finitely generated?

Because of what we have just proved, the ideal theory of the rings O(G)
is necessarily more complicated than the ideal theory of Z, Z[i], or the
polynomial rings C[X, ..., X,] in finitely many indeterminates. Nonethe-
less, we will see that O(G) has an interesting ideal-theoretic structure. Our
starting point is

2. Wedderburn’s lemma (representation of 1). Let u, v € O(G) be
relatively prime. Then they satisfy an equation

au+ bv =1 with functions a,b € O(G).
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Proof. We may assume that uv # 0. Since 1 = ged{u,v} implies that
Z(u)N Z(v) = 0, the pole set of 1/uv is the disjownt union of the pole sets
of 1/u and 1/v. By rearranging a (normally convergent) partial fraction
series for 1/uv (using Theorem 1.4). we thus obtain

1/uv=a1 + b, a],bléM(G),

where «; has poles (of order —o.(v)) only at the points ¢ of Z(v) and b,
has poles (of order —o.(u)) only at the points ¢ of Z(u). Then a := va,
and b := ub, are holomorphic in G, and it follows that au + bv = 1. O

Historical note. The lemma just proved was published in 1915 by J. H.
M. Wedderburn; we have reproduced his elegant proof, which is almost
unknown in the literature ([Wed], p. 329). The trick of splitting the pole
set of a meromorphic function h into two disjoint sets P, and P, and
writing a Mittag-LefHler series for h as the sum h; + hy of two such series,
with P(h;) = P, and P(hy) = I, had already been used in a different
context by A. Hurwitz in 1897 ([Hu], p. 457).

Wedderburn’s lemma reappears implicitly in a 1940 paper of O. Helmer
for G = C ([Hel], pp. 351-352); he considers entire functions with co-
efficients in a prescribed fixed subfield of C. Helmer is not familar with
Wedderburn’s work. O

We give a second proof of Wedderburn's lemma, using Mittag-Leffler’s oscula-
tion theorem, which even gives a sharpened version:

If u, v € O(G) are relatively prime, then there exist functions a, b € O(G)
such that

au+bv=1. a has no zeros in G.

Proof. If v = 0, set a := 1/u, b := 0. Suppose v Z 0. It suffices to show that there
exist functions A, h € O(G) with u — Av = e, since a := e, b:= —Ac™" will
then give the desired result. Since Z(u) N Z(v) = 0, for every ¢ € Z(v) there exist
a disc U. C G about ¢ and a function f. € O(U,) such that u|U. = ef. Since
Z(v) is locally finite in G, by the osculation theorem 2.3 there exists h € O(G)
such that o.(h — f.) > oc(v). ¢ € Z(v). Noting that oc(e? — 1) = o.(q) whenever
g vanishes at ¢, we see that

oc(u —e*) = ocef —e"y =oc(e 7" = 1) = 0.(f. = R), ce€ Z(v).
Hence A := (u — e™)/v € O(G). 0

The preceding proof was sketched in 1978 by L. A. Rubel, who, however,
uses Wedderburn’s lemma [Rub]. In general, it is impossible to choose both the
functions a and b to be nonvanishing; for instance, when G =Candu=1,v =2

([Rub}, p. 505).

Ezercise. Prove that for every g € M(G) there exists an f € O(G) such that
f(2) # g(2) for all z € G.

Hint. Start with a representation g = f1/f, with relatively prime f,, fo € O(G).
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3. Linear representation of the gcd. Principal ideal theorem. In
4.2.1 we saw that every noncmpty set in O(G) has a ged. Wedderburn’s
lemma makes it possible, in important cases, to represent the ged additively.

Proposition. If f € O(G) s a ged of the finitely many functions fi..... fa
€ O(G), then there exist functions ay,....a, € O(G) such that

f=afitafo+ - +a,f.

Proof (by induction on n). Let f # 0. The case n = 1 is clear. Let n > 1 and
let f := ged{fa, ..., fu}. By the induction hypothesis, f-—- Az fo+ - -+an,fa,
with a,,...,a, € O(G). Since f = g(:d{fl‘f} by 4.2.1. it follows that
w:= fi/f, v:= f/ f € O(G) are relatively prime. Thus by Wedderburn
there exist a, b € O(G) such that 1 = au+bv. Hence f = a1 f1 +- - -+ anfa,
with a, :=a, a, := ba, for v > 2. 0

One important consequence of the proposition and the existence of the
ged is the

Principal ideal theorem. Every finitely generated ideal a in O(G) is
a principal ideal: If a is generated by f1,..., f., then a = O(G)f, where
f=ged{fr,.... fa}.

Proof. By the proposition, O(G)f C a. Since f divides all the functions
fieoooy fu, we have fi, ..., f, € O(G)f: hence a C O(G)f. O

The proposition and the principal ideal theorem, together with their proofs, are
valid for any integral domain R with gcd in which the statement of Wedderburn's
lemma is true. — Integral domains in which any finite collection {fi,..., f.}
always has a gcd are sometimes called pseudo-Bézout domains; they are called
Bézout domains if this ged is moreover a linear combination of the fi,.... fa (cf.
[Bo|, pp. 550-551, Exercises 20 and 21). O(G) is thus a Bézout domain.

Ezxercise. Let A denote the set {sin27 "z : n € N} in O(C). Is the ideal generated
by A in O(C) a principal ideal?

4. Nonvanishing ideals. A point ¢ € G is called a zero of an ideal a
in O(G) if f(¢) = 0for all f € a,ie. ifaC OG) -(z—c). Wecalla
nonvanishing if a has no zeros in G. An ideal a in O(@) is called closed
if a contains the limit function of every sequence f, € a that converges
compactly in G.

Proposition. If a is a closed nonvanishing wdeal in O(G), then a = O(G).

For the proof, we need a
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Reduction rule. Let a be an ideal in O(G) for which the powmnt ¢ € G s
not a zero. Let f, g € O(G) be such that fg € a and, f [ vanishes anywhere
m G, it does so only at c. Then g € a.

Proof. Choose h € a with h(c) # 0. Let n:= o.(f). If n > 1, then

S 1 h(z)—h((:).fg_f_gh ca

z—c h(c) z—cC z-c

Applying this n times gives [f/(z —¢)"]-g € a. Since f/(z —c¢)" is invertible
in O(G), it follows that g € a. 0

The proof of the proposition now goes as follows: Let f € a, f # 0. Let
[1/. be a factorization of f, where f, € O(G) has exactly one zcro ¢, in

G. Then the sequence fn = [1,s, f € O(G) converges compactly in G to
1 (cf. 1.2.2). We have fn = f,,ﬁ,_H. Since ﬁ) = f € a and f, has no zeros
in G\{c, }. it follows (inductively) by the reduction rule that f, € a for all
n > 0. Since a is closed, it follows that 1 € a; hence a = O((G). O

The hypothesis that a is closed is essential for the validity of the propo-
sition: the ideals given in Subsection 1 are nonvanishing but not finitely
generated and hence also not closed.

Ezercise. Let a # O(G) be a nonvanishing ideal in O(G). Prove that cvery func-
tion f € a has infinitely many zeros in G.

5. Main theorem of the ideal theory of O(G). The followng stale-
ments about an ideal a C O(G) are equivalent.

1) a is finutely generated.
ii) a s a principal 1deal.
iii) a s closed.

Proof. i) = ii): by the principal ideal theoremn; ii) = i): trivial.

ii) = iii): Let a = O(G)f # 0. and let g, = a, [ € a be a sequence that
converges compactly to g € O(G). Then a,, = ¢,/ f converges compactly
in G\Z(f) and therefore, by the sharpened version of the Weierstrass con-
vergence theorem, in G, to a function a € O(G) (cf. 1.8.5.4). It follows that
g=af € a.

iii) = ii): By Theorem 4.2.1, a has a greatest common divisor f in O(G).
Then a’ := f~la is a nonvanishing ideal in O(G). Since a’ is closed if a is,
Proposition 4 implies that a’ = O(G). Hence a = O(G)f. O

Corollary. The follounng statements about an ideal m C O(G) are equiv-
alent.
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1) m is closed and a mazimal ideal in O(G).}
ii) There ezists a point ¢ € G such that m = {f € O(G) : f(c) =
0}.
ili) There exists a character O(G) — C with kernel m.

Details are left to the reader, who should also convince himself that there
exist uncountably many maximal ideals in O(G) that are not closed. 0O

One might think that for mazimal 1deals m in O(@G) that are not closed,
the residue class fields O(G)/m would be complicated. In 1951. however,
M. Henriksen used transfinite methods to prove (for G = C) that O(G)/m,
as a field, is always isomorphic to C ([Hen], p. 183); these isomorphisms
are extremely pathological.

All the results obtained in this section remain true if we admit noncompact
Riemann surfaces instead of domains in C. The thcorems of Weierstrass and
Mittag-Leffler are at our disposal in this situation (cf. 4.2.4 and 2.4): hence so
are Wedderburn’s lemma and the existence of a ged for arbitrary noncompact
Riemann surfaces, and we can argue just as for domains.

6. On the history of the ideal theory of holomorphic functions.
The ideal theory of the ring O(G) was not developed until relatively late in
the twentieth century. Mathematicians of the nineteenth and early twen-
tieth centuries had no interest in it. As early as 1871, R. Dedekind had
completely mastered the ideal theory of the ring of algebraic integers (cf.
his famous supplement to the 2nd edition of Dirichlet’s Vorlesungen tber
Zahlentheorie, and also Dedekind’s Gesammelte Mathematische Werke, vol.
3, pp. 396-407). But even a great algebraist like Wedderburn, who was cer-
tainly familiar with Dedekind’s theory, and who in 1912, with his lemma,
already held the key to ideal theory in arbitrary domains G C C, said
nothing about ideal theory. His goal - as the very title of his work [Wed]
indicates — was to obtain normal forms for holomorphic matrices (cf. also
[N], p. 139 ff). It was not until Emmy Nocther who, incidentally, is
credited with the statement: “Es steht alles schon bei Dedekind” (It’s all
in Dedekind already) — that the ideal theory of rings that are not Dedekind
was also considered.

The ideal theory of the ring O(C) was first considered in 1940 by O.
Helmer. Helmer admits subfields of C. He first proves Hurwitz’s observation
(cf. 3.2.5%), without referring to Hurwitz ([Hel], p. 346). Helmer’s main
result is that finitely generated ideals are principal ideals ([Hel], p. 351); to
this end, he proves Wedderburn’s lemma - compared to Wedderburn, in a
rather complicated way. Among function theorists in several variables, the
principal ideal theorem 3 was already folklore by around 1940; the epigraph

'An ideal m # R of a ring R is called mazimal if R is the only ideal in R
which properly contains m. With the aid of Zorn’s lemma, it can be shown that
every ideal a # R is contained in a maximal ideal.
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of this section is in Behnke's report (Fortschr. Math. 66, p. 385 (1940)) on
Cartan's work ([Cagy], pp. 539-564); cf. also Subsection 7.

A paper by O. F. G. Schilling, in which our Proposition 4 for the case
G = C occurs as Lemma 1, appeared in 1946 ([Sch], p. 949). Further
papers then appeared in rapid succession; in these, arbitrary domains in
C and finally arbitrary noncompact Riemann surfaces were admitted. The
approach at that time was somewhat different: the principal ideal theorem
was proved first, and everything else was derived from it. Of these numerous
publications, we have included in our bibliography only the 1979 paper [A]
of N. L. Alling, which gives a good overview of the status quo. All these
papers have a strong algebraic flavor, and offer little to the reader primarily
interested in function theory.

7. Glimpses of several variables. The ideal theory of holomorphic functions
of several variables — in contrast to that of one variable — has long been a
focal point of research, and has been an essential factor in shaping the higher-
dimensional theory. The local theory was already developed in 1931. W. Rickert,
a student of W. Krull, then proved in his paper [Rii], published only in 1933 and
now considered a classic, that the ring of all convergent power series in n variables,
1 < n < oo, is Noetherian; in other words, that every ideal is finitely generated.
(For n = 1 the ring is even a principal ideal domain, as we know by 1.4.4.4.)
The analytic tool is the so-called Weierstrass division theorem; as to the rest,
Riickert argues algebraically; he says proudly (p. 260), “|[Es] wird gezeigt, daf
eine sachgemile Behandlung nur formale Methoden, also keine functionentheo-
retische Hilfsmittel benotigt. Als solche Methoden erweisen sich die allgemeine
Idealtheorie ...." ([It] is shown that an adequate treatment requires only formal
methods, thus no function-theoretic techniques. General ideal theory turns out
to yield such methods ....) No attention was paid at first to Riickert's work;
contempaorary function theorists had little taste for algebra.

The verbatim analogue of Wedderburn's lemma appears in 1931 in [Cai], p.
279, for the case G = C* | but ideals are not yet mentioned. The systematic devel-
opment of global ideal theory does not begin until 1940, in the paper [Cas] {(pp.
539-564); Cartan writes cautiously about his patching lemma for holomorphic
matrices (p. 540): “Notre théoréme semble susceptible de jouwer un réle impor-
tant dans l'étude globale des idéaur de fonctions holomorphes” (Qur theorem
seems likely to play an important role in the global study of ideals of holomorphic
SJunetions.) He was right. But even though Cartan immediately proved that for
domains of holomorphy &' C C", finitely many functions fi,..., f, € O(G) with-
out common zeros in (¢ always generate the ideal O(G) (p. 560), it was still a
long way to general ideal theory in Stein spaces. Riickert's local theory first had
to be refined. Moreover, since the common zeros of systems of holomorphic func-
tions are not necessarily isolated, one began by facing apparently insurmountable
difficulties in global problems. Oka, in his 1948 paper with the significant title
“Sur quelques notions arithmétiques” (not published until 1950), struggled with
“idéaux de domaines indéterminés” ([Oz], p. 84 and p. 107). It was Cartan who,
in 1950, was first able to formulate the problem clearly and adapt it to a calcu-
lation; he made systematic use of the concept of coherent analytic sheaves (see,
for example, [Caz], p. 626). The general theory of coherent analytic sheaves in
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Stein spaces then yields trivially that in any Stein space X, given finitely many
functions f1,..., fp € O(X) without common zeros in X, there always exist func-
tions a1,...,ap € O(X) such that 1 =} a;f, (see, for example, [Cag], p. 681).
A detailed presentation of ideal theory in Stein spaces, with complete proofs, can
be found in [GR4] and [GR2].
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7
The Theorems of Montel and Vitali

In infinitesimal calculus, the principle of selection of convergent sequences
in bounded subscts M of R™ is crucial: Every sequence of points in M has a
subsequence that converges in R™ (Bolzano-Weierstrass property). The ex-
tension of this accumulation principle to sets of functions is fundamental for
many arguments in analysis. But caution is necessary: There arc sequences
of real-analytic functions from the interval [0,1] into a fized hounded in-
terval that have no convergent subsequences. A nontrivial example is the
sequence sin 2nwx; cf. 1.1.

It is of the greatest significance for function theory that, in Montel's
theorem, we have a powerful accurnulation principle at our disposal. We
formulate, prove. and discuss this theorem in Sections 1 and 2. In Section 3
we treat Vitali’s convergence-propagation theorem. The theorems of Montel
and Viteli are equivalent: each can be derived from the other (¢f. 1.4 and
3.2). Section 4 contains amusing applications of Vitali's theorem.

In analysis, sets of functions are usually called families;' we follow this
practice.

LAt the turn of the century, the concept of sets was still very narrow; the word
“set” was reserved mainly for sets in R or R”. Mathematicians thought that sets
of functions were more complicated and devised the term “family.” which is still
in use today.
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§1. Montel’s Theorem

Une suite infinie de fonctions analytiques et bornées
& l'intérieur d'un domaine simplement connexe, ad-
met au moins une fonction limite & l'intérieur de ce
domaine. (An infinite sequence of functions that are
analytic and bounded in the interior of a simply con-
nected domain admits at least one limit function in
the interior of this domain.) -~ P. Montel, 1907

If the sequence fy, fi. fo2,... of functions defined in a region D of C is
bounded at a point a € D, then — since C has the Bolzano-Weierstrass
property — it has a subsequence that converges at a. Since passage to sub-
sequences does not destroy existing convergence, Cantor’s diagonal process
leads to the following insight:

() Let fn : D — C, n € N, be a sequence of functions that is bounded
at every point of D. Then for every countable subset A of D there ezxists a
subsequence g, of the sequence f, that converges pointwise in A.

Proof. Let ay, a;, ag,... be an enumeration of A. For every { € N, there
exists a subsequence fi, fi1, fiz, ... of the sequence fy, fi, f2,... such that

a) the sequence (fin)n>0 converges at ay;
b) the sequence (fin)n>0, I > 1, is a subsequence of (fi-1.n)n>0.

We argue inductively. Given the sequences (fin)n>0, & < I, choose a
subsequence (fin)n>0 of the sequence (fi—1 n)n>0 Which converges at a;.
Then a) and b) are satisfied for all sequences (fin)n>0, & < 1.

From the sequences fi, fi1, fi2,..., we now construct the diagonal se-
quence go, g1, 92,..., With gn := fnn, n € N. It converges at every point
am € A since, by b), from the term g,, on it is a subsequence of the se-
quence frma, fmi, fm2,- .-, which converges at a,, by a). g

The set A must be countable for (x) to hold. The subsequence g, obtained
above cannot be expected to converge pointwise everywhere in D. With
suitable hypotheses on the sequence fo, fi, fo, ..., however, this does occur.
We can even obtain compact convergence, as will now be shown.

1. Montel’s theorem for sequences. A family F C O(D) is called
bounded in a subset A C D if there exists a real number M > 0 such that
|fla < M for all f € F (equivalently, sup;c zsup,e4 | f(2)] < o<).

The family F is called locally bounded in D if every point z € D has
a neighborhood U C D such that F is bounded in U: this occurs if and
only if the family F is bounded on every compact set in ID. In particular,
a family F € O(B) in a disc B = B,(c¢), r > 0, is locally bounded in B if
and only if it is bounded in every disc B,(c), p < 7.
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Bounded famailies are locally bounded; the converse is not true, as is
shown, for instance, by the family {nz" € O(E). n € N}. A sequence
fo, f1. f2,... of functions f, € O(D) is called (locally) bounded in D if
the family { fo. f1. f2,...} is (locally) bounded in D. The following theorem
now holds. .

Montel’s theorem (for sequences). Every sequence fo, fi, fa.... of holo-
morphic functions i D that s locally bounded in D has a subsequence that
converges compactly in D.

Warning. The assertion of the theorem is false for sequences of real-analytic
functions: the sequence sinnx, n € N, which is bounded in R, does not even
have powntwise convergent subsequences. In fact:

The set {xr € R : limy_. sinngr exists} has Lebesgue measure zero for
every sequence ny < ng < --- mm N,

This statement is consistent with the Arzela-Ascoli theorem since the
sequence sinnar is not locally equicontinuous; cf. 2.2.

Montel’s theorem will be proved in the next subsection; we use the fol-
lowing lemma.

Lemma. Let F C O(D) be a locally bounded family in D. Then for every
point ¢ € D and every € > 0 there exists a disc B C D about ¢ such that

If(w) = f(2)| <= forall f€F and allw, z € B.

Proof. We choose r > 0 so small that B, (c) C D. We set B:= B,(¢) and
B’ := By,.(c). It follows from the Cauchy integral formula

Fw) - f(z) = —— f(o[ L _ 1]d<
B’ ¢

2w -w (—=z

 w—z f($)
S 2m ./anl (C—w)((—z)dc

since |(¢ — w)(¢ — 2)| > r? for all w, z € B,

and the standard estimate
( € OB’ — that

92 -
|f(w) = f(2)] < |w — 2| - [fl: forallw, z € B and all f € F.

Since F is locally bounded, M := (2/r) - sup{|flp : f € F} < ox;

we may assume that M > 0. It now suffices to set B := By(c) with
6 :=min{e/(2M),r}. O

The lemma says that locally bounded families are locally equicontinuous; cf.
2.2.
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2. Proof of Montel’s theorem. We choose a countable dense set A C D,
for instance the set of all rational complex numbers in D. By (%) of the in-
troduction, there exists a subsequence g, of the sequence f,, that converges
pointwise on A. We claim that the sequence g, converges compactly in D.
To prove this, we need only prove that it converges continuously in D,? i.e.
that

lim g,,(z,,) exists for every sequence z, € D with z, = z* € D.

Let € > 0 be given. By Lemma 1, there exists a disc B C D about z*
such that |g,(w) — g.(2)| < € for all n if w, z € B. Since A is dense in D,
there exists a point a € AN B. Since lim z,, = 2*, there exists an n; € N
such that 2z, € B for all n > ny. The inequality

|gm(2m) = gn(zn)| < |gm(2m) = gm(a)| + |gm(a) — gn(a)| + |gn(2n) — gn(a)|

always holds; hence |gm(2m) — gn(2n)| < 26 + |gm(a) — gn(a)| for all m,
n > n,. Since lim g, (a) exists, there is an n, such that |gm(a) — gn(a)| <€
for all m, n > ny. We have proved that |gm(z,m) — gn(2n)| < 3¢ for all
m, n > max(n;,ny); thus the sequence g,(z,) is a Cauchy sequence and
therefore convergent. o

We comment on the history of Montel’s theorem in 2.3. The theorem is
often used in the following form:

3. Montel’s convergence criterion. Let fy, fi, f2... be a sequence of
functions f, € O(D) that s locally bounded i D. If every subsequence of
the sequence f, that converges compactly in D converges to f € O(D), then
fn converges compactly in D to f.

Proof. If not, there would exist a compact set K C D such that |f, — f|x
did not converge to zero. There would then exist an € > 0 and a subse-
quence g, of the sequence f, such that |g, — flx > € for all j. Since the
sequence g, would also be locally bounded, by Theorem 1 it would have
a subsequence hj converging compactly in D. But |hy — flx > ¢ for all
k, so f would not be the limit of this sequence. But this is a contradiction. O

As a first application, we prove

4. Vitali’s theorem. Let G be a domain in C, and let fo, f1, f2,... bea

2A sequence h, € C(D) converges continuously to h : D — C if lim hn(2n) =
h(z*) for every sequence 2z, € D with limz, = z” € D. Continuous convergence
of the sequence h, in D is equivalent to compact convergence in D (the reader
may either prove this or refer to .3.1.5%). If a sequence h, € C(D) is such that,
for every sequence 2z, € D with limz, = z* € D, the sequence of complex
numbers h,(zn) is a Cauchy sequence, then obviously the sequence h, converges

continuously in D to the limit function defined by h(z) := limhn(z), z € D.
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sequence of functions f, € O(G) that s locally bounded wn G. Suppose that
the set

A:={we€ G :lim f,(w) exsts in C}

has at least one accumulation powint in G. Then the sequence fy, fi, fa....
converges compactly in G.

Proof. Because of Montel’s criterion 3. it suffices to prove that all the com-
pactly convergent subsequences of the sequence f,, have the same limit. But
this is clear by the identity theorem, for any two such limits must agree on
the set A, which has accumulation points in G. )

Imitating this proof gives

Blaschke’s convergence theorem. Let f,, € O(E) be a sequence bounded
in E. Suppose there erists a countable set A = {a,az,...} m E, unth
Y. (1—-lay|) = oc. such that lim, f,(a;) exists for every point a, € A. Then
the sequence f, converges compactly in E.

Proof. Let f. f € O(E) be limits of two compactly convergent subsequences
of the sequence f,: then f|A = f|A. Now f, f are both bounded in E. By

the identity theorem 4.3.2, it follows that f = f. Montel’s convergence cri-
terion yields the assertion. 0O

For the history of Vitali's and Blaschke’s theorems, see 3.3.

We will encounter other compelling applications of Montel's theorem in
the proof of the Riemann mapping theorem in 8.2.4 and the theory of
automorphisms of bounded domains in Chapter 9.

5*. Pointwise convergent sequences of holomorphic functions. In
the theorems of Montel and Vitali, can the hypothesis of local boundedness
be dropped if the sequence is assumed to converge at all points? The answer
is negative: in 12.3.1. we will construct sequences of holomorphic functions
that converge pointwise but not compactly and whose limit functions are not
holomorphic. Such limit functions must, however, be holomorphic almaost
everywhere, as we Nnow prove.

Theorem (Osgood, 1901, [O], p. 33). Let fo. fi. f2,... be a sequence of
functions holomorphic i D that converges powntwise wn D to a function
f. Then this sequence converges compactly on a dense subset D' of D: m
particular, f is holomorphic in D'.

We base the proof on the following lemma.

Lemma. Let F be a family of continuous functions f : D — C that s
pointunse bounded i D (ve., every set {f(z): f € F}, z € D, is bounded
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in C). Then there exists a nonempty subregion D’ of D such that the re-
striction of the family to D', {f|D’: f € F}, is locally bounded in D’.

Proof (by contradiction). Suppose the assertion is false. We recursively
construct a sequence gy, 9.... in F and a descending sequence Ko D K; D
.-+ of compact discs K,, C D such that |g,(z)] > nforallz € K,,. Let go # 0
be in F, and let K, C D be a compact disc such that 0 ¢ go(Ko). Suppose
that ¢,—, and K, _, have already been constructed. By hypothesis, there
exist a g,, € F and a point 2, in the interior of K,,_; such that |g,(2,)] > n.
Since g, is continuous, there exists a compact disc K,, C K, about 2,
such that |g,(z,)| > n for all z € K.

The set. MK, is nonempty. For each of its points z*, we have |g,(z*)] > n
for all n, contradicting the pointwise boundedness of F. O

Osgood’s theoremn now follows by applying the lemma to the family
{fo. f1, f2,...} and all subregions of D: We obtain a dense subregion D’
such that the sequence f,|D’ is locally bounded. By Vitali, it then con-
verges compactly in every connected component of D’; the limit function
is holomorphic in D’ by Weierstrass. :

§2. Normal Families

Montel's accumulation-point principle carries over immediately from se-
quences to families. In the classical literature, the concept of a “normal
family” took shape in this setting; it is still widely used today.

1. Montel’s theorem for normal families. A family F C O(D) is called
normal in D if every sequence of functions in F has a subsequence that
converges compactly in D. We immediately make an obvious

Remark. Any family F C O(D) that s normal m D is locally bounded in
D.

Proof. It must be shown that the number sup{|f|x : f € F} is finite for
every compact set K. If this failed to hold for some compact set L C D,
then there would exist a sequence f, € F with lim,_ o |fn| = 0o0. This se-
quence f, would have no subsequence converging compactly in D, since for
its limit f € O(D) we would have |f|r > |fn|L —|f — fn|L- Contradiction!O

The converse of the remark above is the general form of

Montel’s theorem. Every family F C O(D) that is locally bounded in D
1s normal in D. .

This statement follows immediately from Montel’s theorem 1.1 for se-
quences. 0O
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By what has been shown, the expressions “normal family” and “locally bounded
family” are equivalent. A colleague reports that in the early forties, after proving
this equivalence in his lectures, he received an inquiry from a higher-level admin-
istrative department in Berlin asking whether he would also consider the latest
findings of racial theory.

Ezamples of normal families. 1) The family of all holomorphic mappings
from D to a (given fixed) bounded region D’ is normal in D.

2) For every M > 0, the family
Fu ={f= Za,,z” i lay| £ M for all v € N}

is normal in E: For every r € (0,1) and every f € Fjps, we have |f(z)| <
M(1 —7)"! for all z € B,.(0), whence Fys is locally bounded in E.

3) If F is a normal family in D, then every family {f*) : f € F}, k €N,
is also normal in D.

Proof. Since F is locally bounded in D, for every disc B = Ba.(c) with
B C D there exists an M > 0 such that |f|p < M for all f € F. Using

the Cauchy estimates for derivatives and setting B := B,(c), we have (cf.
1.8.3.1)

|f(k)|g < 2(M/r") k! forall f€ FandallkeN.

The family {F(*) : f € F} is thus bounded in B for fixed k € N. Hence it
is locally bounded and therefore normal in D.

Another example of a normal family can be found in 4*.

Remark. In the literature, the concept of a normal family is often defined more
generally than here: The subsequences are also allowed to converge compactly to
oc. This formulation is especially useful if one wants to include meromorphic
functions as well.

2. Discussion of Montel’s theorem. Montel's theorem — in contrast to
that of Vitali — is not, strictly speaking, a theorem of function theory, as it
can easily be subsumed under a classical theorem of real analysis. We need
a new concept. A family F of functions f : D — C is called equicontinuous
in D if for every € > 0 there exists a § > 0 such that, for all f € F.

|f(w) — f(2)| <e forall w, z € D with |w— z| <.

The family F is called locally equicontinuous in D if every point z € D has
a neighborhood U C D such that the restriction of the family to U, F|U,
is equicontinuous in U. Every function in a family that is locally equicon-
tinuous in D is locally uniformly continuous in D. Our next result follows
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from carrying the expression “normal family” over verbatim to arbitrary
families of functions.

Theorem (Arzela-Ascoli). A family of complex-valued functions wn D is
normal i D whenever the following conditions are satisfied.

1) F is locally equicontinuous in D.
2) For every w € D, the set {f(w): f € F} C C 1s bounded wmn C.

This theorem, which is not about holomorphic functions. contains Mon-
tel's theorem: If a family F C O(D) is locally bounded in D, then 1) holds
because of Lemma 1.1, while 2) is trivial. The reader should realize that in
Subsection 1.2 we actually proved the Arzela-Ascoli theorem for families of
continuous functions.

The Arzela-Ascoli theorem plays an important role in real analysis and
functional analysis; regions in R™ replace regions in C.

3. On the history of Montel’s theorem. A process of selecting conver-
gent subsequences from sets of functions was first used in 1899. by David
Hilbert, to construct the desired potential function in his proof of the
Dirichlet principle ([Hi], pp. 13 14). Hilbert does not yet use the concept
of local equicontinuity, introduced in 1884 by G. Ascoli. nor the “Arzela-
Ascoli theorem,” discovered in 1895 by C. Arzela (1847 1912).

Paul Montel was the first to recognize the great significance for function
theory of the principle of selecting convergent subsequences. e published
the theorem named after him in 1907, in his thesis ([Moy], pp. 298-302).
Montel reduces his theorem to the Arzela-Ascoli selection theorem by prov-
ing that local boundedness implies local equicontinuity in the holomorphic
casc (Lemma 1.1). Independently of Montel. Paul Koebe discovered and
proved the theorem in 1908 ([K], p. 349); Koebe says that he drew the ba-
sic ideas of the proof from Hilbert's fourth communication on the “Theorie
der linearen Integralgleichungen,” Gott. Nachr. 1906, p. 162. In the lit-
erature, Montel's theorem is occasionally also called the Stieltjes-Osgood
theorem, e.g. in the book by S. Saks and A. Zygmund, ([SZ], p. 119); see
also 3.4.

The handy expression “normal family” was introduced by Montel in 1912;
cf. Ann. Sci. Ec. Norm. Sup. 24 (1912), p. 493. He devoted the work of
half a lifetime to these families; in 1927 he published a coherent theory in
the monograph [Moy].

4°. Square-integrable functions and normal families. For every function
f € O(G), we set

IFIE = // |f(2)?|do € [0,00] (do := Euclidean surface element).
G



82. Normal Families 155
Ezample. Let f =5 a.(z2—¢)” € O(Br(c)) and let B := B,(c), 0 < r < R. Then

2
O W =3 2L particutar, 17(0)] < (VAR Il

Proof. In polar coordinates z — ¢ = pe'¥, we have do = pdpdy and

m .
1f(2))P = 3 auap'te® % zeB.

uwv=0
Thus
2 r 2 2 o0 , | 2n
Il =/ / f(2)Ppdpdp =Y a‘,au/ phrt dp/ e Mg,
o Jo Pty 0 o
The integrals on the right-hand side vanish if y # v. 0

We call f € O(G) square integrable in G if ||f|lc < oc. The set H(G) of all
functions that are square integrable in G is a C-vector subspace of O(G) because
for all f, g € O(G),

laf(z) +bg(2)|* < 2(lal*|f(2)I* + |6*lg(2)*), z€G.

If G is bounded, then H(G) contains all functions that are bounded and holo-
morphic in G. Since 2u - T = Ju + v|? + iju + iv|® = (1 + 1)(|u|? + |[v]?). we have

(f,g) = //f(z)ﬁdoec for all f, g € H(G).
G

A verification shows that (f, g) is a positive-definite Hermitian form on H(G). It
always holds that

Ifllc < VvolG - |f|ls, where vol G := // do = Euclidean surface area of G.
G

The next result is more important.

Bergman’s inequality. If K is a compact subset of G # C and d denotes the
Euclidean distance from K to 0G, then

(2) Iflx < (Vrd) ' fllc for all f € H(G).

Proof. Let ¢ € K and let r € (0,d). Then ||f||s < ||f|lc since B := B,.(¢) C G. It
follows from (1) that, in the limit, |f(c)| < (/7d) || fllc for all c € K. )

The next result follows immediately from Bergman’s inequality.

Proposition. Every ball {f € H(G) : ||fllc < r} n the unitary space H(G) 1s a
normal family.
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Proof. This is clear by Montel since, in view of Bergman's inequality, every ball
in H(G) is a locally bounded family in O(G). ]

Remark. The results of this subsection can be expressed in a more modern way
by using the language of functional analysis. One first establishes that O(G).
with respect to the topology of compact convergence, is a Fréchet space and that
H((). with respect to the scalar product (f, g}, is a Hilbert space. One can then
state.

The mjection H(G) — O(G) s continuous and compact (wn other words,
bounded sets in 1{(G) are relatwely compact in O(G)).

Erercises. 1. a) Find an f € H(E) such that f' ¢ H(E).

b) Prove that H(C) = {0}.
2) (Schwarz's lemma for square-integrable functions). For all f € H(E) and all r
with 0 < r < 1,

lflls, 0y < 7" flle, where n := oo(f).

§3*.  Vitali’s Theorem

Man kann die Fortpflanzung der Konvergenz mit der
Ausbreitung einer Infektion vergleichen. (The propa-
gation of convergence can be compared to the spread
of an infection.) G. Polya and G. Szego, 1924

If a power series Y~ a, z¥ converges at a point a # 0, then it converges nor-
mally in a disc of radius |a| about 0. This elementary convergence criterion
is the simplest example of the propagation of convergence. The phenomenon
also occurs in more general situations: the convergence of sequences of holo-
morphic functions is frequently contagious; it can spread from subsets to the
entite domain of definition. An impressive example of this is Vitali's con-
vergence theorem, which was proved in Section 1. Vitali's theorem can be
understood especially well by seeing its similarity to the identity theorem.
Just as a holomorphic function f in a domain G is completely determined
once its values are known at infinitely many points of G that have an accu-
mulation point in G, a locally bounded sequence f, € O(G) is compactly
convergent in (7 once it converges at infinitely many points of G that have
an accumulation point in G.

1. Convergence lemma. Let B = B,(c), r > 0, and let f, € O(B).
n € N, be a sequence that is bounded in B.. Then the following statements
are equivalent.
i) The sequence f,, s compactly convergent in B.
i) For cvery k € N, the sequence of numbers fék)(c), fl(k)(c), ... 18
convergent.
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Proof. Since the sequences f,(lk) of all the derivatives converge compactly in
B whenever the sequence f, does, only the implication ii) = i) needs to
be verified. We may assume that B = E and |fn|g < 1, n € N. We consider
the Taylor series

fn(2) = Zanuz", where a,, = %fﬁ")(()).

By hypothesis, all the limits a, := lim, an,, ¥ € N, exist. Since we always
have |a,,| < 1 by Cauchy’s inequalities, it follows that |a,| < 1 for all
v € N and hence that f(2) = Y a,2” € O(E). We fix p with 0 < p < L.
For all z € C with |z] < pand alll € N, Il > 1, we have

L 3

-1
1fn(2) = F@I €3 lany —aule® +20'/(1 = p), neN

v=0

Now let € > 0 be arbitrary. Since p < 1, we can first choose [ such that
20'/(1 — p) < . Since lim, Zf;lo|am, — a,|p¥ = 0, there now exists an
no such that this sum of | terms is less than ¢ for n > ng. It follows that
|fa(2) — f(2)| < 2¢ for all n > ng and all 2z with |z| < p. Since p < 1 can
be chosen arbitrarily close to 1, the sequence f,, converges compactly to f
in E. )

If boundedness is not assumed, the implication ii) = i) is false in general:
the sequence f,(z) := n"z" € O(E) does not converge at any point z €

E\ {0}, even though limu_oc f$¥(0) = 0 for all k € N.

2. Vitali’s theorem (final version). We put the theorem in a form whose
similarity to the identity theorem 1.8.1.1 is obvious.

Vitali’s theorem. Let G be a domain, and let fy, f1, fo,... € O(G) be
a sequence of functions that is locally bounded in G. Then the following
statements are equivalent.

i) The sequence f, is compactly convergent in G.
ii) There exists a point ¢ € G such that for every k € N the se-
quence of numbers fék)(c), ffk)(c), fék)(c),... converges.
iii) The set A:= {w € G : lim f,(w) exists in C} has an accumu-

lation point in G.

Proof. 1) = ii) is clear, since for every k the sequence f,(.k'), n €N, is
compactly convergent in G. In order to prove ii) = iii), let B be a disc
about ¢ with B C G. Then the sequence f,|B is bounded in B and hence,
by the convergence lemma 1, compactly convergent in B. It follows that
B C A; thus iii) holds.

iii) = i). This was proved in 1.4. 0
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Vitali’s theorem trunally imphes Montel’s theorem 1.1 for sequences. For
if f,, is a sequence of functions holomorphic in G that is locally bounded
in (7, the diagonal process can be used (as in 1.2) to obtain a subsequence
gn that converges pointwise on a countable dense subset of 6. By Vitali,
this sequence converges compactly in G.

[ . . . -

The following exercise shows how contagious convergence can be.

Erercise Let g € O(G) and suppose there exists a point ¢ € G such that the
series
9(2) + ¢ (2) + g () + -+ g () +

converges (absolutely) at . Then ¢ is an entire function and the series converges
compactly (normally) in all of C.

3. On the history of Vitali’s theorem. In 1885 C. Runge observed
that sequences of holomorphic functions that converge compactly on the
boundaries of domains always converge compactly in the domains them-
selves: “Wenn ein Ausdruck von der Form limn g, (r) auf einer geschlossenen
Curve von endlicher Lange gleichmassig convergirt, so ist er auch im Innern
derselben gleichimassig convergent.™ (If an expression of the form lim g, ()
converges uniformly on a closed curve of finite length, then it also con-
verges uniformly in its interior.) ([Run], p. 247) This mward extension of
convergence was also quite familiar to Weierstrass. Runge’s observation is
the first link in a chain of theorems which. from successively weaker hy-
potheses, vield the same result: the proof that sequences of holomorphic
functions f,, € O(G) converge compactly in G. The Dutch mathematician
T.-J. Stieltjes saw the principle of propagation of convergence clearly in
1894. In his paper [St]. he proves Vitali's theorem under the stronger hy-
pothesis that the sequence f, converges compactly in a subdomain of G in
a letter of 1.1 February 1894 to Hermite, Stieltjes expresses his surprise at
his result: *... ayant longuement réfléchi sur cette démonstration. je suis
sur qu'elle est bonne, solide et valable. J'ai dii I'examiner avec autant plus
de soin qu’a priort il me semblait que le théoreme énoncé ne pouvart pas
exister el devait étre faux” (... having thought at length about this proof.
I am sure that it is good, solid, and valid. I had to examine it all the more
carcfully because a pror: it seemed to e that the theorem stated could
not exist and had to be false); of. [HS], p. 370.

In 1901. W. F. Osgood substantially weakened the hypothesis of Stieltjes:
Osgood gets by with pointwise convergence in a subset of G that is dense
in a subregion of G ([O], p. 26). In 1903. G. Vitali finally reduced the
convergence hypotheses to the minimum ([V]. p. 73). The American M. B.
Porter (1869 1960) rediscovered Vitali's theorem in 1904 [P]. Montel was
still unaware of the Vitali-Porter theorem in 1907; he cites only the work
of Osgood and Stieltjes.

The hypothesis of local boundedness in Vitali’s theorem can be replaced
by the assumption that there exist two different complex constants ¢ and
b such that all functions f, in G omit both the values a and b. This was
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shown in 1911 by C. Carathéodory and E. Landau in their paper [CL],
which also contains a number of historical remarks.

A proof of Vitali’s theorem by means of the Schwarz lemma, without
recourse to Montel’s theorem. can be found in the 1914 Berlin dissertation
of R. Jentzsch. which was first published in 1917 ([J], pp. 223-326). The
idea is already contained in-a 1913 paper of Lindeldf [Li]. Jentzsch's proof
was reproduced in the first edition of this book.

W. Blaschke proved his convergence theorein, discussed in 1.4, in 1915
by means of Vitali’s theorem and that of Montel-Koebe: ef. [Bl], where,
incidentally. only Kocbe is cited. A direct proof, which even yields Vitali's
original theorem for E, was given in 1923 by K. Lowner and T. Rado (¢f.
[LR] and also [Bu]. p. 219).

84*.  Applications of Vitali’s theorem

Vitali’s theorem is often viewed as an appendage of Montel's theorem and
considered a curiosity. Vitali’s theorem is. however, very useful: it often
yields easy proofs that complicated analytic expressions are holomorphic.
We illustrate this by classical examples; another beautiful application is
given in 11.1.3.

Using his theorem, Stieltjes justified the compact convergence of a con-
tinued fraction in the slit plane T by its compact convergence in the right
half-planc T; he writes to Hermite ([HS], p. 371): “L utilité que pourra avoir
mon théoreme, . .. ce sera de permettre de reconnaitre plus aisément la pos-
sibilité de continuation analytique de certaines fonctions définies d’abord
dans un domaine restreint.” (The usefulness of my theorem may well lie

. in making it easier to tell whether certain functions that are initially
defined in a restricted domain can be continued analytically.)

1. Interchanging integration and differentiation. In 1.8.2.2 we showed,
as an application of Morera'’s theorem. that

F(z) = / F(¢.2)d¢, z2€ D,

is holomorphic in D if f is continuous in |y| x D and. for cach lixed ¢ € |7].
holomorphic in D. (We recall the notation used there. If v is a path with
domain [a,b] C R, then |4| := v(la.b]).) Osgood observed in 1902 that
this statement and more follow directly from Vitali's theorem. We denote
by v : [0,1] — C a continuously differentiable path in C and claim the
following:

Theorem. Let f((,z) : |3 x D — C be locally bounded (e.g.. continuous).
For cvery pomnt ( € |y|. let f(C.z) be holomorphic in D. and assume
addition that every (Riemann) mitegral [ f(C.2)d¢, = € D. exists. Then

~ o
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the function

F(z) :=/f(C,z)dC, z€ D,
¥

s holomorphic in D. All the integrals f,y %{((,z)d(, z € D, also exist, and
) of :
F'(z) = -,—d—;((, z), z€ D (interchange rule).
¥

Proof ([O], pp. 33-34). We may assume that f is bounded, say |f|}xp» <
M. If we set g(t,z) := f(y(t),2)7'(t), then, for every point z € D, every
sequence of Riemann sums

> a(¢tM, 2y, — )
v=1

converges by hypothesis to F(z). The functions S, (z) are holomorphic in
D; moreover, |S,|p < M - |7'|;. Hence, by Vitali, the sequence S, con-
verges compactly in D and the limit function is therefore holomorphic in
D; furthermore, the sequence

99 ¢tm 2y, — £
Za b v )3

as the sequence of derivatives of S,, converges compactly to F’ by Weier-
strass. Since the S} (z) form arbitrary sequences of Riemann sums for
az(t z), everything hab been proved. 0

2. Compact convergence of the I'-integral. Let 0 < a < b < .
Since e~t¢*~! is continuous in [a, b] x C and, for fixed ¢, holomorphic in C,
Theorem 1 implies that

b
f(z,a,b) :=/ t*~le~tdt € O(C).

If we assume the existence of the real I'-integral h(z) := [5°t*~'e'dt.
x > 0 (pointwise convergence), the next statement follows trivially.

The family {f(z,a,b) : a,b € R with 0 < a < b} is locally bounded in
T={z€C:Rez>0}; forallz=z+iy with0< ¢ <z <d< o0, we
have .

|f(z,a,b)] < / tcle~tdt +/ td=letdt.
0 1
The next statement follows immediately from Vitali.
For every choice of real sequences a,, b, with 0 < a,, < b,, lima,, =0,

limb, = 00, the sequence f(z,an,by,) converges compactly in T to a function
holomorphic in T.
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Since the limit function is independent of the choice of the sequences a,,
and b, (it equals h(x) on (0.oc)!), we see that

The TI'-integral fooc t>~le~'dt exists in T and 1s holomorphic there.

This proof that I' is holomorphic uses only the existence of the real I'-
integral; we need no information about the I'-function itself.

Analogously, the compact convergence in T x T of the beta integral
1
/ "' - )Y dt forz>0,y>0
0

follows from its pointwise convergence. Interested readers may construct their
own proof.

3. Miintz’s theorem. By the Weierstrass approximation theorem. every real-
valued function h that is continuous in I := [0, 1] can be approximated uniformly
by real polynomials, e.g. by the sequence of Bernstein polynomials

gn(x) = Z (n) h (Z) ’(1-x2)""", neN
v=0 v n

for h (cf., for instance, M. Barner and F. Flohr: Analys:s I. De Gruyter. 1991, p.

324).

Corollary. Let h be continuous on I and satisfy

1
(%) / h(t)t"dt =0 for all n € N.

0

Then h vanishes identically on I.

Proof. By (%), fol h(t)g(t)dt = 0 for all polynomials ¢ € R[t]; thus

/l[h(t)]zdt = /] h(t)[h(t) — q(t)]dt for all ¢ € Rt].
0 0

This implies the estimate fUl h(t)3dt < |h — gl f()l |h(2)|dt for all ¢ € R[t]. Since
inf{lh — g, : ¢ € R[t]} = 0. it follows that fﬂl h(t)?dt = 0 and hence that h = 0.
O

We now prove by function-theoretic methods that not all powers of t are needed
to force h = 0 in (x).

Miintz’s identity theorem. Let k., be a real sequence such that ) < k, < -+ <
kn < -~ and 3 1/k, = 2. Then a function h that 1s continuous on I must be
identically zero if

1
/ h(t)tF*dt =0 foralln=1.2,....
0
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Proof. Set f(t,z) := h(t)t* for t > 0 and f(0,z) := 0; then f is continuous
in I x T. Since f(t.z) is always holomorphic in T for fixed ¢t € I and since
|flixt < |h|r, Theorem 1 implies that F(z) := fol f(t, 2)dt is holomorphic in
T. Since |F|r < |h|;, F is bounded in T. Since F(kn,) = O for all n > 1 and
3" 1/k., = oo, F vanishes identically in T by 4.3.4b). In particular,

1
F(n+l)=/ t-h(t)-t"dt =0 forallneN.

O

Hence, by the corollary, t - h(t) is identically zero in 1. ]

Historical remark. In his 1914 paper [Mii], C. H. Miintz discovered the following
generalization of the Weierstrass approximation theorem:

Let k. be a real sequence such that 0 < ky < - kn < -+ and Y_1/k, =

0o. Then every continuous function on [0,1] can be apprommated uniformly by
ky

functions of the form Y Ta,z™.

Miintz derived his identity theorem from this (arguing as in the proof of the
corollary above). The function-theoretic proof given here is due to T. Carleman
([Ca], especially p. 15). The converses of Miintz's identity theorem and approxi-
mation theorems are true; cf. [Rud], pp. 312-315. — Elementary proofs of Miintz's
approximation theorem can be found in the papers of L. C. G. Rogers [Ro] and
M. v. Golitschek [G].

§5. Consequences of a Theorem of Hurwitz

In this section we gather some properties of limit functions of sequences
of holomorphic functions that will be needed later. There is no connec-
tion with the theorems of Montel and Vitali; rather, the following lemma,
obtained in 1.8.5.5, is our starting point.

Lemma (Hurwitz). Let the sequence f,, € O(G) converge compactly in
G to a nonconstant function f € O(G). Then for every point ¢ € G there
exist an index n. € N and a sequence ¢,, € G, n > n., such that

lime, =c¢ and fn(c,) = f(c), n>ne.

This lemma, which is a special case of a more general theorem of Hurwitz
(cf. 1.8.5.5), has important consequences. The following is well known.

Corollary. Let the sequence f, € O(G) converge compactly in G to f €
O(G). If all the functions f, are nonvanishing in G and f is not identically
zero, then f is nonvanishing in G.
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Proof. We may assume that f is not constant. Then if f had a zero ¢ € G,
by Hurwitz almost all the f,, would have zeros ¢, € G. m)

Another corollary follows from this one.

Corollary. If the sequence f, € O(G) converges compactly in G to a non-
constant function f € O(G); then the following statements hold.

(1) If all the vmages f,(G) are contawned in a fivred set A C C, then
f(G) C A.

(2) If all the maps fn : G — C are injectwve, then so s f : G — C.

(3) If all the maps fn, : G — C are locally biholomorphuic, then so
s f: G —C.

Proof. ad (1). Let b € C\A. Since f,(G) C A, every function f, — b is
nonvanishing in G. Since f — b # 0, the corollary implies that f — b is
nonvanishing in G. This means that b ¢ f(G). It follows that f(G) C A.

ad (2). Let ¢ € G. By the injectivity of all the f,,, the functions f,, — f,(c)
are all nonvanishing in G\ {c}. Since f - f(c) £ 0, the corollary implies that
f — f(c) is nonvanishing on G\{c}. Hence f(z) # f(c) for all z € G\{c}.
Since ¢ € G was chosen arbitrarily, the injectivity of f follows.

ad (3). The sequence f, of derivatives converges compactly in G to f'.
Since f is not constant, f’ is not the zero function. By the local biholomor-
phy criterion 1.9.4.2, all the f/ are nonvanishing in G. By the corollary, f’
is also nonvanishing in G; hence — again by 1.9.4.2 — themap f: G — C
is locally biholomorphic. 0

Remark. If A is a domain such that A = A (a disc, for example). then state-
ment (1) follows dircctly from the open mapping theorem 1.8.5.1. (Prove
this.)

The following formulation of statements (1) and (2) is used in the proof
of the Riemann mapping theorem:

Hurwitz’s injection theorem. Let G and G’ be domains, and let f, :
G — G’ be a sequence of holomorphic wnjections that converges compactly
in G to a nonconstant function f € O(G). Then f(G) C G’ and the induced
map f: G — G’ 15 myectwve.

We also note a supplement to statement (2), which will be used in 9.1.1.

(2') If all the maps fn are ingective and lim f,,(bn) = f(b), where b, , b € G,
then limb,, = b. In particular,

lim 7' (a) = f~'(a) for everya € f(G)N [ fu(G).

n2>0
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Proof. If limb,, were not equal to b, there would exist € > 0 and a subse-
quence by, of the sequence b,, with b, ¢ B := B.(b). By the injectivity of
all the f,, the sequence f, — fn:(by/) would then be nonvanishing in B.
Its limit f — f(b) would therefore also be nonvanishing in B; but this is

impossible. Thus b,, = b. O
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8
The Riemann Mapping Theorem

Zwei gegebene einfach zusammenhangende ebene

Flachen konnen stets so auf einander bezogen wer-
den, dafl jedem Punkt der einen Ein mit ihm stetig
fortrickender Punkt der andern entspricht und ihre
entsprechenden kleinsten Theile ahnlich sind. (Two
given simply connected planar surfaces can always be
related to each other in such a way that every point
of one corresponds to one point of the other. which
varies continuously with it, and their corresponding
smallest parts are similar.) — B. Riemann, 1851

Since Riemann, the problem of determining all domains in the plane that
are biholomorphically (= conformally) equivalent to each other has been
one of the main interests of geometric function theory. Existence and unique-
ness theorerns make it possible to study interesting and important holomor-
phic functions without knowing closed analytic expressions (such as integral
formulas or power series) for them. Furthermore, analytic properties of the
mapping functions can be obtained from geometric properties of the given
domains.

The Riemann mapping theorem — this chapter’s epigraph — solves the
problem of when simply connected domains can be mapped biholomorphi-
cally onto each other. In order to understand this theoremn, we familiarize
ourselves in Section 1 with the topological concept of a “simply connected
domain.” Intuitively, these are domains without holes; that is, domains in
which every closed path can be continuously contracted to a point (i.e. is
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null homotopic). We discuss two integral theorems; the result that will be
crucial is the following:

Stmply connected domamns G in C are homologically sirmply connected:
]7 fd¢ =0 for all f € O(G) and all pieceunse continuously differentiable
paths v mn (.

Readers primarily interested in the Riemann mapping theorem may skip
Section 1 on a first reading and think of the concepts “simply connected”
and “homologically simply connected” as equivalent.

It took many years and the greatest efforts to prove Riemann'’s assertion.!
Such mathematicians as C. Neumann. H. A. Schwarz. H. Poincaré, D.
Hilbert, P. Koebe, and C. Carathéodory worked on it. Finally. in 1922, the
Hungarian mathematicians L. Fejér and F. Riesz gave their ingenious proof
by means of an extremal principle. In Section 2 we reproduce Carathéodory’s
variant of the Fejér-Riesz proof.

In Section 3 we give a detailed account of the history of the mapping
theorem. Section 4 contains supplements to the mapping theorem, including
a Schwarz lemma for simply connected domains.

§1. Integral Theorems for Homotopic Paths

In star-shaped domains, integrals of holomorphic functions over paths with
fixed initial and terminal points do not depend on the choice of path. This
path independence remains valid for arbitrary domains as long as the path
of integration is “only continuously deformed.” Precisely what this means
will be explained in this section.

Two notions of homotopy, which will be introduced in Subsections 1 and
2, are fundamental. To each notion of homotopy corresponds a version of
the Cauchy integral theorem. The proofs of these integral theorems are
clementary but rather technical; all they use from function theory is that
holomorphic functions in discs have antiderivatives.

In Subsection 3 we show that null-homotopic paths are always null ho-
mologous, but that the converse is not true in general. The basic concept
of a “simply connected domain” is introduced and discussed in detail in
Subsection 4.

1. Fixed-endpoint homotopic paths. Two paths ~, ¥ with the same
initial point ¢ and terminal point b in a metric (more generally. topolog-
ical) space X are called fived-endpoint hemotopic in X if there exists a

"Incidentally, L. Ahlfors writes: “Riemann’s writings are full of almost cryptic
messages to the future. For instance, Riemann’s mapping theorem is ultimately
formulated in terms which would defy any attempt of proof, even with modern
methods.”
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continuous map ¢ : I x I — X, (s,t) — 1(s,t). such that, for all s, t € I,
(*) ¥(0.t) =~(t) and (1,t) =75(t), +(s,0)=a and ¥(s,1)=0.

The map v is called a homotopy between v and 5. For every s € I,
vs: 1 — X, t — ¥(s,t), is a'path in X from a to b; the family (v,)ses is
a “deformation” of the path v = v into the path v; = 5. We note (omit-
ting the simple proof) that “being fixed-endpoint homotopic in X” is an
equivalence relation on the set of all paths in X from a to b.

1

FIGURE 8.1.
|
The importance of the concept of homotopy just introduced is shown by
the

Cauchy integral theorem (first homotopy version). Let v, ¥ be precewise
continuously differentiable fired-endpoint homotopic paths in the domain
GcC.

Then

/fdg‘:'[fdc for all f € O(G).
vy Y

Observe that the paths 7,4, 0 < s < 1, need not be piecewise continuously
differentiable.

The idea of the proof can be explained quickly. The rectangle I x I is
subdivided into rectangles I, in such a way that the images (1., ) lie in
discs C G (Figure 8.1). By the integral theorem for discs, the integrals of
f along all the boundaries dy(1,,) are zero. Hence the integrals of f are
equal along sufficiently close paths 7, vy (see figure 8.1). —- The technically
rather tedious details are given in Subsections 5 and 6; they can be skipped
on a first reading.

2. Freely homotopic closed paths. Two closed paths v, ¥ in X are said
to be freely homotopic in X if there exists a continuous map #: I'x I — X
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with the following properties:

(%) ¥(0,t) =v(t) and w(1.t) =75(t) forallt eI,
¥(s,0) = ¥(s,1) forall s € I.

Then all the paths v, : I — X, t — ¥(s.t) are closed; their initial points
trace the path 6 : I — X, t — (¢,0) in X (Figure 8.2). The paths v and
6+~ — & have the same initial and terminal points. The following statement
is intuitively clear.

FIGURE 8.2.

(1) If v and ¥ are freely homotopic in X, then the paths ~v and 6 +7 -6
are fized-endpoint homotopic in X.

Proof. For every s € I, set x4 := 6][0,s] + 75 — 6|0, s]. A parametrization
can be chosen (!) such that x : I x I — X, (s,t) — xs(t), is continuous
and hence a fixed-endpoint homotopy between v and 6 + 7 — é. a

Cauchy integral theorem (second homotopy version). Let~, ¥ be piece-
wise continuously differentiable closed paths wn the domawn G C C that are
freely homotopic mn G. Then

/fd(:/_fd( for all f € O(G).
2 ¥

The proof follows trivially from (1) and Theorem 1 if, n add:ition, 6 is
piecewise continuously differentiable; for then

/vfd<=/6+§_6fdc=/6fdc+/ﬁ7fd<-/6fd<=/afd4-

The proof of the general case is completely analogous to that of Theorem
1 (cf. Subsections 5* and 6°., where 9 is now a “free homotopy” between 7
and 7).

3. Null homotopy and null homology. A closed path v in G is said to
be null homotopic in G if it is freely homotopic to a constant path (point
path). By 2(1). this holds if and only if v is fixed-endpoint homotopic in
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G to the constant path t — ~(0). The next statement follows immediately
from Theorem 2.

Proposition. Every piecewise continuously differentiable closed path ~ that
is null homotopic in G is null homologous in G:

/fdg —0 forall feO@QG)

The wnterior Int v of every such path also lies in G; cf. 1.9.5.2. Null
homology is a consequence of null homotopy, but the converse is false. In
G := C\{-1,1}, for instance, consider the boundaries 7, ¥2, ¥3, 74 of the
discs B1(—1). B1(1), B2(—2), B3(2), each with 0 as initial and terminal
point (Figure 8.3). Then one can prove:

FIGURE 8.3.

The closed path v := v1 — v3 — Y2 + 74 s null homologous but not null
homotopic mn G.

It is easy to see that < is null homologous in G:
Inty = [By(=2)\B1(-1)] U [B2(2)\B1(1)] C G (Figure 8.3).

It is also immediately clear from the figure that -« is not null homotopic in
G: every deformation i from -« to a point must certainly pass through the
omitted points 1 or —1. To give a clean argument is harder; one can argue,
for example, as follows. Choose a function f holomorphic at O which can be
continued holomorphically along every path in G but whose continuation

along v does not lead back to f (one such function is f(z) = \/log %(1 + z).

where f(0) := iy/log2). Then, by the monodromy theorem, < is not null
homologous in G. The argument shows that the fundamental group of the
twice-punctured plane is not abelian.

4. Simply connected domains. A path-connected space X is called
simply connected if every closed path in X is null homotopic. Clearly, this
occurs if and only if two arbitrary paths in X with the same initial and
terminal points are always fixed-endpoint homotopic in X.
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(1) Every star-shaped domain G in C (or R™) is simply connected.

Proof. Let ¢ € G be a center of G. If v is a closed path in &, the continuous
map
v IxI—>G, (st)—v(st):=(1-3s)y(t)+ sc

is a free homotopy between v and the constant path c. 0

In particular, all conver domains, of which the plane C and the unit
disc E are special cases, are simply connected. — Simple connectivity is a
topological invariant.:

(2) If X — X’ is a homeomorphism, then X' is simply connected if
and only 1f X 1is. In particular, every domain in C that can be mapped
topologically onto E is simply connected.

The (Cauchy) function theory of a domain G is simplest when G is
homnologically simply connected; that is, when every closed path in G is null
homologous in GG. The next result follows immediately from Proposition 3.

Proposition. Every simply connected domain G wn C s homologically sim-
ply connected.

This proposition will be used to prove the Riemann mapping theorem. In
the course of the proof, it will be shown that the converse of the proposition
also holds; cf. 2.6. Later, by means of Runge theory. we will see that simply
connected domains G in C are also characterized by having no holes (=
compact components of C\G); cf. 13.2.4.

Historical note. Riemann introduced the concept of simple connectivity
in 1851 and recognized its great significance for many function-theoretic
problems: he defines it as follows ([Rie], p. 9): “Ewne zusammenhdngende
Flache heifit, wenn sie durch jeden Querschnatt in Stiicke zerfillt, eine ein-
fach zusammenhangende.” (A connected surface is called simply connected
if it is divided into pieces by every cross cut.) By cross cuts he means, in this
context, “Linien, welche von einem Begrenzungspunkte das innere einfach
— kewnen Punkt mehrfach — bis zu einem Begrenzungspunkte durchschnei-
den” (lines which cut across the interior simply — no point more than once
— from a boundary point to a boundary point). It is intuitively clear that
this definition does in fact describe simply connected domains.

5*. Reduction of the integral theorem 1 to a lemma. We first prove:

(1) If Y : I x I — G is continuous, there exist numbers sg, $1,...,Sm, to,
By, With0 =855 <81 < <Sy=1and0=ty<t; < - <t, =1,
such that for every rectangle 1, := (s, Su+1) X [tu, tus1] the Y-image V(1)
is contained wn an open disk B,, CG,0< pu<m,0<v <n.

Proof. We cover G by open discs B,, j € J. By the continuity of ), the
family {¢~!(B,).j € J} is an open cover of I x I (where I x I C R? is
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equipped with the relative topology). There exists a cover of I x I by open
rectangles R parallel t6 the axes such that cach R lies in a set ¥~ '(B,).
Sinee I x I is compact, it is already covered by finitely many such rect-
angles Ry, ..., Rg. Each rectangle R, is of the form [o,0'] x [7,7'], with
0<o <o <1,0 <7 <7 < 1. Arranging and enumerating all the

¢ and 7 appesring here, we obtain numbers sp,...,8m, tu,...,t,, with
O=s83 <81 < <sp=1land 0=ty <ty <--+ <t, =1, such that
every rectangle I, lies in a set 5~ 1(B;). 0

Now let @ : I X I — G be a fixed-endpoint homotopy between v and 7.
We choobe the rectangles I, asin (1). Every f € O(G) has antiderivatives
on B,,, which are détermined up to additive constants. A clever choice of
these constants gives the following result.

Lemma. For every f € O(G), there exist a continuous function o : IxXI —
R and antiderivatives F,,, € O(Byy) of f|Bu, such that

Wl = Py o (W) for 0<pu<m, 0<v<n.
The functions ©{(s,0) and (s, 1), s € I, are constant; in particular,
0(0,0) =(1,0) and »(0,1) = p(1,1).
This lemma immediately implies the integral theorem 1! Let vy + -+ +
“n—1 and Fy+- - - +¥n—1 be the partitions of the paths v and 7, respectively,

into subpaths that correspond to the interval partition 0 =ty < ) < -+ <
tn = 1. Then

?fd<=7g_[ufd€ and Lf"d<=§L”fdc.

Sinee v(t) = v(0,) C Bo, for £ € [t,,l,.1] and Fy, is an antiderivative of
f|Bgu, it follows from the lemma, that

/ Jd¢ = Fo (9(0,t41)) — Fo, (4(0,1,))
| = 9(0,tu41) — 9{0,%,). 0<v<n

Hence [ fd¢ = (0,1) — (0, 0). Similarly, [> fd¢ = @(1,1) —p(1,0). The
lemma. shows that the twey integrals are equal,

Remark. For the reader familiar with the theory of path liftings, the lemma is a
special form of the monodromy theorem. A germ of an antiderivative Fy of f at a
can be continued holomorphically along every path «y;. These continuations are a
lifting of the homotopy ¥ to the sheaf space O. By the monodromy theorem for
path liftings, the continuations of F, along all the paths <y, determine the same
terminal germ Fj.
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6. Proof of Lemma 5*. Let F,,, € O(G) be any antiderivative of f|B,,,.
0 <pu<m0< v < n Let u be fixed. The region B,, N B, .41 is
simply connected and nonempty (it contains ¥([s,., su+1] X {t,+1})); hence
F,., and F, ., differ there only by a constant. By successively adding
constants to Fj,, Fy,...,F, -1, we can arrange that F,, and F, .
agree on B, N B, 41,0 <v <n-—1. Now set

(o) eu(s.t) = Fu,(¥(s,t)) for (s.t) €, 0<v < n;

then the function ¢, is continuous on [s,, s,4+1) x I. Let this construction
be carried out for all x =0, 1,...,m — 1. The sets on which ¢, and .4,

are defined have intersection {s,4;} x /. We claim:

(x) There exists a 41 € C such that @, (sp+1,t) — Put1(Sut1,t) = Cut1
foralltel, 0 < u<m.

By the definition of ¢,
99;1(3;1+1v t) — ©u41 (S;H-l ) t) = pr(w(su+l ) t)) - Fp+l.u("+’)(3u+l’ t))

forallt € [t,,t,41]). Since Y({su4+1} %[t . tu41]) C BuNB,41,, and F),, and
F,+1, are antiderivatives of f in this domain, their difference is constant
there. Hence there exists a ¢, € C such that

(p}l("";l+lat) - (Pp.+l(3p+lvt) = Cuw for t S [tl/atu+l]v 0 S H <m, 0 S v<n.

Since t, 41 € [tu, tus1]N[tu41, tuse], it follows that cuo = cu1 = -+ = Cun-1
for all 4 =0,...,m — 1. This proves (x).

Passing from ¢, to ¢, + > % _, ¢y, 1 < p < m, and retaining the previous
notation yields

(pu(su+lyt) = 99#+1(Sl-t+l\t) for te Ia 0 < u<m.

Finally, (o) remains valid if we replace F,, by F,, + ZZ e, 1 < p<m.
Now, setting

o(s.t) :=pu(s,t) for s€[su,su+1), tE€L, 0< p<m,
defines a continuous function on I x I for which
olhw =Fuo@l.,), 0Su<m,0<v<n.
Since ¥'(s,0) = a, ¥(s,1) = b for all s € 1, it follows for s € [s,, s,+1] that
#(5,0) = 9u(5,0) = Fuo(1(s,0)) = Fuo(a),
@(s,1) = pu(s,1) = Fun_1((s,1)) = Fn_1(b).

The functions ¢(s,0) and ¢(s, 1), s € I, are therefore constant; in particu-
lar, ©(0,0) = ¢(1,0) and ¢(0.1) = ¢(1,1). |
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Remark. The method of proof of the lemma is well known to topologists. It is
used to show that the union G U G’ of simply connected domains G, G’ with
simply connected intersection G N G’ is again simply connected. More generally,
this method is used to compute the fundamental group m (G U G’) of arbitrary
domains G, G’ if the groups m (G), m1(G’), and m (GNG') are known (a theorem
of Seifert and van Kampen; the interested reader may consult W. S. Massey:
Algebraic Topology: An Introduction, GTM. Springer, 1987, p. 113 f.).

§2. The Riemann Mapping Theorem

Which domains G in C can be mapped biholomorphically onto the unit
disc E? Certainly G # C, since every holomorphic map C — E is constant
(Liouville). Since biholomorphic maps are homeomorphisms and E is simply
connected, G must also be simply connected (cf. 1.4(1) and (2)). We claim
that (7 is subject to no further constraints.

Theorem (Riemann mapping theorem). Fuvery simply connected domain
G # C wn the plane C can be mapped biholomorphically onto the unit disc [E.

Note that the possible unboundedness of G plays no role. Thus the upper
half-plane H and the slit plane C~ are mapped biholomorphically onto the
unit disc by the maps

: 2
H:+E.zr—+2—?, and IE:NC_,zr—»<z+l) )
z+1 z—1

The topological assertion of the mapping theorem is impressive by itself.

Since
z

is a topological map of C onto [E. we see:

C—oE 2z

Every simply connected domain G in C can be mapped topologically onto
E. In particular, any two simply connected domains in R? are always home-
omorphic (that 1s, they can be mapped topologically onto each other).

It is hardly conceivable that the simply connected domain shown in Fig-
ure 8.4 can be mapped topologically, indeed biholomorphically (hence pre-
serving angles and orientation), onto [E.

1. Reduction to -domains. The first step of the proof consists of replac-
ing the topological property of simple connectivity by an algebraic property

of the ring O(G).



176 8. The Riemann Mapping Theorem

I

M

FIGURE 8.4.

Lemma. If G C C s sumply connected, then every unit in O(G) has o
square root in O(G) (square root property).

Proof. By Proposition 1.4, G is homologically simply connected. By 1.9.3.3,
homologically simply connected domains have the square root property. O

In what follows, only the square root property will be used. The topo-
logical notion of simple connectivity may be forgotten for the time being.
(Of course, once the mapping theorem has been proved, the square root
property and simple connectivity turn out to be equivalent; cf. Theorem
2.6.) — We prove the following elementary invariance statement.:

WIff:G> G is biholomorphic and G has the square root property,
then so does G.

Proof. If 4 is a unit in O(é), then u := %o f is a unit in O(G). If u = v*
with v € O(G), then 4 = 9? with 7 :=vo f~1. u|

For convenience, we call domains G in C with 0 € G that have the square
root property simply @-domains. The Riemann mapping theorem is then
contained in the following statement:

Theorem. Every Q-domain G # C can be mapped biholomorphically onto
E.

The proof of this theorem will be carried out in the next three subsec-
tions. The essential tools are

— a “square root trick” due to Carathéodory and Koebe,

Montel's theorem,

— Hurwitz’s injection theorem, and

the involutory automorphisms g. : E — E, z — (2—c¢)/(¢z—1),c €E
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2. Existence of holomorphic injections. For every Q-domain G # C
there exists a holomorphic injection f : G — E with f(0) = 0.

Proof. Let a € C\G. Then z — a is a unit in O(G); hence there exists a
v € O(G) such that v(2)? = 2 —a. The map v : G — C is wmgectrve. It must
be true that

(%) v(G) N (-v)(G) =0,

since if there were points b, b € G with v(b) = —v(b'), we would have
b—a=v(b)? =v(b)? = b — a, whence b = b’ and thus v(b) = 0; but this
is impossible since b # a.

Since (—v)(G) is nonempty and open, there exists by (x) a disc B =
B.(c), r > 0, such that v(G) ¢ C\B. Since

PETHE Sy (R

maps C\B injectively into E, the function f := g o v has the desired prop-
erties. 0O

A substantial generalization of the injection theorem will be given in 13.2.4.

Remark. The statement is unexciting for domains whose complements contain
interior points c¢: in that case, maps z — €(z — ¢)~!, € small, give an immediate
solution. In all cases where C\G has no interior points (slit regions, e.g. C ),
the “square root trick” yields the simplest conformal maps onto domains which
contain discs in their complement. This trick is due to P. Koebe, who noticed as
early as 1912 that every holomorphic square root of a unit (z —a)/(z = b) € O(G),
where a. b € 9G, a # b, gives an image domain whose complement has interior
points ([Koes], p. 845).

3. Existence of expansions. If G is a domain with 0 € G C E, then
every holomorphic injection xk : G — E for which

k(0) =0 and |k(2)| > |z| forall ze€ G\{0}

is called a (proper) ezpansion of G to E (relative to the origin). We coustruct
expansions as inverses of contractions. We denote by ; the square map
E — E, z — 22, and begin by making a simple but not obvious observation:

Every map v, : E — E, z — (g2 0j 0 g.)(2), where ¢ € E, 18 a proper
contraction:

(1) V.(0) =0, |¥.(2)] <|z| for all z € E\{0O}.

Proof. This is clear by Schwarz: ¥, is not a rotation about 0 since j ¢ Aut E.
O
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Lemma (square root method). Let G C E be a Q-domamn and let
c € E utth * ¢ G. Let v € O(G) be the square root of g.2|G € O(G) with
0(0) = ¢. Then the map k : G — E, z — g.(v(2)), s an expansion of G.
Moreover,

(2) 1dg = V¥ 0 K.

Proof. Since g,z is nonvanishing in G and g.2(0) = ¢?, v is well defined; since
v((7) C E. so is n. We have k(G) C E and (0) = g.(v(0)) = g.(c) = 0. It
follows from g. o g. = idg and jov = g.2 that

YeOR=020J00r00e0U = g2 0 gez = idc.

Therefore x : G — E is injective; by (1), |2| = [ve(x(2))] < |x(z)] for all
k(=) # 0, hence for all z € G\{0}. 0

Remark. Since square roots are used in the construction of expansions, it is
hardly surprising that r — \/z is a simple expansion of the interval [0, 1).
The *auxiliary function” . can be given explicitly:
z—b 2c

(3) ’l,'/‘,,(z) = ZB:; — 1 where b := t,):.(()) = m‘z € E.

The calculation is left to the reader. By (2), it follows in particular that

1+ |c|?
4 /(0) = .
(1) K(0) = =
v is a finete map of E onto itself of mapping degree 2; cf. 9.3.2 and 9.4.4.

0

Historwcal note. The contraction 1. was introduced geometrically by Koebe
in 1909 and used as a majorant ([Koey]. p. 209). Carathéodory writes
it explicitly in 1912 ([Ca,], p. 401): he normalizes it by ¥ (0) > 0. We
will come across the function ¢, again in the appendix to this chapter, in
“("arathéodory-Koebe theory.”

4. Existence proof by means of an extremal principle. If G # C is
a Q-domain, the family

F:={f € OG): f maps G ingectwely mnto E, f(0) = 0}

is nonempty by 2. Each f € F maps G biholomorphically onto f(G) C E
(biholomorphy criterion 1.9.4.1). The functions in F with f(G) = E can be
characterized surprisingly simply by an extremal property.

Proposition. Let G # C be a Q-domawmn and let p # 0 be a fized pownt in
;. Then h(G) = E for every function h € F such that

(%) |h(p)| = sup{|f(p)| : f € F}.
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Proof. By 1(1), h(G) C E is a Q-domain whenever G is. Suppose that
h(G) # E; then by Lemma 3 there exists an expansion k : h(G) — E,
and g := ko h € F. Since h(p) # 0 by the injectivity of A, it follows that
l9(p)| = |&(h(p))| > |h(p)|. Contradiction! 0

At this point Theorem 1 can be proved quickly. Let p € G\{0} be fixed.
Since F is nonempty, i := sup{|f(p)| : f € F} > 0. We choose a sequence
fo, f1.--. in F with lim|f,(p)| = p. Since F is bounded. Montel implies
that a subsequence h, of the sequence f,, converges compactly to a function
h € O(G). We have h(0) = 0 and |h(p)] = p. Since p > 0, h is not
constant; Hurwitz’s injection theorem 7.5.1 now implies that h : G — E is
an injection. It follows that h € F. By the proposition above, h(G) = E.
Thus h : G — E is biholomorphic. This proves Theorem 1 and hence also
the Riemann mapping theorem. m]

Propaedeutic hint. The extremal principle used here can be better understood
by observing that, in general. biholomorphic maps f : G — E with f(0) = 0
are characterized by the following extremal property (apply Schwarz's lemma to
foh™h):

|h(2)| > |f(2)| for all z € G. If equality holds at a pomnt p # 0, then f : G S E
biholomorphically.

Thus. once one believes that biholomorphic maps G = E exist, one must look
among all holomorphic maps f : G — E with f(0) = 0 for those with |f(p)]
maximal.

5. On the uniqueness of the mapping function. The following theo-
rem, due to Poincaré, can be obtained from Schwarz's lemma alone.

Uniqueness theorem. Let h and h be btholomorphic maps from a doman
G onto E, and suppose there exists a point a € G such that h(a) = h(a)
and h'(a)/h'(a) > 0. Then h = h.

Proof. Let b := h(a). If b = 0, then f := ho h=! € AwtE with f(0) = 0,

—~

f(0) = ﬁ’(a)/h’(a) > 0. It follows from Schwarz that f = id; hence h = h.

Ifb#0,set g:=—gp, hy := goh, and IAzl = go h. This is the case
already treated: it follows that h; = h;, hence that h = h. a

We now have the following theorem:

Existence and uniqueness theorem. If G # C is simply connected, then

for every point « € G there enists exactly one btholomorphic map h : G — E
with h(a) = 0 and h'(a) > 0.

Proof. Only the existence of h needs to be proved. By Riemann, there exists
a biholomorphic map h, : G = E. For hy := g. o hy with ¢ := h(a), it
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follows that ha(a) = 0. For h := e*?hy with e := |h}(a)|/hy(a). we then
have h(a) = 0 and h'(a) > 0. O

6. Equivalence theorem. The following statements about a domain G in
C are equivalent:

i) G s homologically stmply connected.
i) Fvery function holomorphic in G 1s wntegrable in G.
iii) For all f € O(G) and every closed path v m G,

ind, (2)/(2) = 5 / Ci‘_%dc, e C\l.

iv) The wnterior Int vy of every closed path ~ in G lies mn G.
v) Every unit imn O(G) has a holomorphic logarithm in G.
Every unit in O(G) has a holomorphic square root in G.

vi)

vii) Eather G = C or G can be mapped bitholomorphically onto E.

viii) G can be mapped topologically onto E.
)

ix) G 18 sstmply connected.

Proof. Equivalences i) through vi) are known from 1.9.5.4.

vi) = vii).

This is Theorem 1 (where it is now unnecessary that 0 € G). — vii) = viii)
=> ix). Trivial (note the introduction to this section and 1.4(1) and (2)).
— ix) = i). This is Proposition 1.4. )

This theorem is an aesthetic peak of function theory. The following turn
out to be equivalent:

— topological statements (simple connectivity);
— analytic statements (Cauchy integral formula);

— algebraic statements (existence of a square root).

Each of these statements implies that one is actually looking at C or E.

The list of nine equivalences can be considerably and nontrivially lengthened.
Thus one can add:

x) G has no holes.
xi) Every function in O(G) can be approrimated compactly in G by poly-
nomials. (G 18 a Runge domain.)
xii) G is homogeneous relative to Aut G and G % C*.
xiii) There exists a point a € G with wmfinite isofropy group Aut,G.
xiv) The monodromy theorem holds for G.

That ix), x), and xi) are equivalent is proved in 13.2.4. The equivalence xii) &
ix) is proved in 9.1.3 for bounded domains “with smooth boundary components.”
The last two equivalences will not be pursued further.
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83. On the History of the Riemann Mapping
Theorem

The names of many mathematicians are inseparably linked to the history
of the Riemann mapping theorem:

Carathéodory, Courant, Fejér, Hilbert, Koebe,

Riemann, Riesz, Schwarz, Weierstrass.

There are three different ways to prove the theorem, using
— the Dirichlet principle,
— methods of potential theory, or
— the Fejér-Riesz extremal principle.

We describe the principal steps in the development of each approach.

1. Riemann’s dissertation. Riemann stated the mapping theorem in his
dissertation in 1851, and sketched a proof tailored to bounded domains
with piecewise smooth boundaries ([Rie], p. 40). He uses a method of proof
that ties the problem of the existence of a biholomorphic map G = E to
the Dirichlet boundary value problem for harmonic functions. Riemann
solves the boundary value problem with the aid of the Dirichlet principle,
which characterizes the desired function as that function ¢(r.y) with given
boundary values for which the Dirichlet integral

[ [ (o2 + diydsay
G

has the smallest possible value. Riemann’s revolutionary ideas are not ac-
cepted by his contemporaries; the time is not yet ripe. An awareness of the
mapping theorem as an existence theorem is missing. Only after his death
does Riemann find public relations agents in H. A. Schwarz, L. Fuchs, and,
above all, F. Klein; cf. F. Klein: “Riemann und scine Bedeutung fiir die En-
twicklung der modernen Mathematik,” a lecture given in 1894 (Ges. Math.
Abh. 3, pp. 482-497).

What did the philosophy faculty of the venerable Georgia Augusta at Gottingen
think of Riemann’s dissertation? E. Schering reports on this in a culogy, “Zum
Gedachniss an B. Riemann,” delivered before the Gottingen Academy on 1 De-
cember 1866 but not published until 1909, in Schering's Ges. Math. Werke 2.
p. 375, Verlag Mayer und Miiller Berlin. This culogy remained almost unknown
until it appeared recently in the new edition of Riemann’s Werke cdited by R.
Narasimhan, pp. 828-847. Springer und Teubner 1990: cf. p. 836 in particular.

In Figure 8.5, we reproduce a copy of parts of the Riemann-Akte Nr. 135, with
the kind permission of the Gottingen University archives. The dean of the faculty,
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Ewald (1803-1875, an evangelical theologian, orientalist, and politician, one of the
Gottingen Seven), asks Gauss for an expert opinion; the dean finds “das Latein
in dem Gesuche und der Vita [von Riemann] ungelenk und kaum ertréaglich” (the
Latin in the application and vita [of Riemann| clumsy and almost unbearable).
Gauss, in his terse commentary. does not say a word about the content of the
work. The reviewer. known to be sparing of praise, does speak of “griindliche und
tief eindringende Studien in demjenigen Gebiete, welchem der darin behandelte
Gegenstand angehort” (profound and deeply penetrating studies in that area
to which the subject trcated there belongs), of “strebsame dcht mathematis-
che Forschungsgeiste” (industrious and ambitious genuine mathematical spirit of
research), and of “rithimnliche productive Selbstthatigkeit” (commendable produc-
tive creativity). He thinks that “der groBter Theil der Leser méchte wohl in eini-
gen Theilen noch eine groBere Durchsichtigkeit der Anordnung wiinschen” (most
readers may well wish in some places for greater clarity in the presentation): he
summarizes. however, by sayving: “Das Ganze ist eine gediegene werthvolle Arbeit,
das Maafl der Anforderungen, welche man gewohnlich an Probeschriften zur Er-
langung der Doctorwiirder stellt, nicht blo8 erfillend, sondern weit iiberragend.”
(The whole is a solid work of high quality. not merely fulfilling the requirements
usually set for a doctoral thesis. but far surpassing them.) Gauss did not suggest
a grade; a third of his letter concerns a time and date that would be convenient
for him, not too carly in the afternoon, for the oral exam.

2. Early history. In his 1870 paper [Wei], Weicrstrass temporarily pulled
the rug out from under Riemann’s proof with his criticism of the Dirichlet
principle, by showing through examples that the existence of a minimal
function is by no means certain. Around the turn of the century Hilbert
weakened this criticism by a rigorous proof of the Dirichlet principle to the
extent required by Riemann ([Hi]. pp. 10-14 and 15 37). Since then it has
regained its place among the powerful tools of classical analysis; cf. also
[Hi], pp. 73-80, and the 1910 dissertation of Courant, [Cou].

In the meantime. other methods were developed. C. Neumanun and H.
A. Schwarz devised the so-called alternating method; sce the encyclope-
dia articles [Lich] and [B] of L. Lichtenstein and L. Bieberbach, especially
[Lich], §48. The alternating method allows the potential-theoretic bound-
ary value problem to be solved for domains that are the union of domains
for which the boundary value problem is already known to be solvable.
With this method. which also uses the Poisson integral and the Schwarz
reflection principle, Schwarz arrived at results which finally culminated in
the following theorem ([Schw], vol. 2, passim):

If G 1s a stmply connected domain bounded by finitely many real analytic
curves which intersect in angles not equal to 0, then there exists a topologucal
map from G onto E that maps G biholomorphically onto E.

Ine Schwarz’s time. statements of this kind were considered the hardest
in all analysis. — Simply connected domains with arbitrary boundary were



184 8. The Riemann Mapping Theorem

first treated in 1900 by W. F. Osgood [Osg]: Osgood’s research is based on
carlier developments by Schwarz and Poincaré.

3. From Carathéodory-Koebe to Fejér-Riesz. The proof in 2.2-4 is an
amalgam of ideas of C. Carathéodory, P. Koebe, L. Fejér, and F. Riesz. All
the methods of proof known up to 1912 use the detour via the solution of the
(real) boundary value problem for the potential equation Au = 0. In 1912
Carathéodory had the felicitous idea, for a given domain G, of mapping the
unit disc E onto a sequence of Riemann surfaces whose “kernel” converges
to (7: the sequence f, itself then converges compactly to a biholomorphic
map f : E 5 G (cf. [Cay], pp. 400-405, and Satz VI, p. 390). Thus for
the first time, with relatively simple, purely function-theoretic means. “die
Abbildungsfunktion durch ein rekurrentes Verfahren gewonnen [wurde], das
bei jedem Schritt nur die Auflosung von Gleichungen ersten und zweiten
Grades verlangt” (the mapping function [was] obtained by an iteration
process, which at each step required only the solution of first- and second-
degree equations) (loc. cit., p. 365). Koebe could immediately, to a large
extent, eliminate Carathéodory’s auxiliary Riemann surfaces [Koes 4]: thus
there emerged a very transparent constructive proof for the fundamental
theorem of conformal mapping. The construction of expansions described
in Lemma 2.3 plays the central role ([Koey], pp. 184-185). We will present
this beautiful Carathéodory-Koebe theory in detail in the appendix to this
chapter and, in doing so, will also go more deeply into the “competition”
between these two mathematicians.

In 1922 L. Fejér and F. Riesz realized that the desired Riemann map-
ping function could be obtained as the solution of an extremal problem for
derivatives. They had their stunningly short proof published by T. Rado in
the recently founded Hungarian journal Acta Szeged. Radé needed one full
page to present it ([Ra), pp. 241-242); the Carathéodory-Koebe square root
transformation was godfather to this “existence proof of the first water.”

Fejér and Riesz consider bounded @-domains G and show:

There exist p > 0 and a biholomorphic map h : G = B,(0) such that h(0) =0
and h'(0) = 1.

The key to the proof is furnished by the (nonempty) family
H:={f € O(G) : f is bounded and injective, f(0) =0, f'(0) = 1}.

Corresponding to p := inf{|f|c. f € H} < oc. there exists a sequence f, € H that
is bounded in G and satisfies lim|f,|¢ = p. By Montel, a subsequence converges
compactly in G to some h € O(G). We have h(0) = 0, A'(0) = 1, and |h|gc = p.
By Hurwitz, h : G — B,(0) is imyective; in particular. it follows that h € H and
p > 0. The surjectivity of h is now the crucial point: assuming that h(G) # B,(0).
Fejér and Riesz use the Carathéodory-Riesz square root method to construct a
function h € H with |h|¢ < p: this contradicts the minimality of p.

4. Carathéodory’s final proof. For the proof that [ (0) = 1, Fejér and
Riesz must compute explicit derivatives: cf. [Ra], pp. 241-242. In 1929 A.
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Ostrowski published a variant of the Fejér-Riesz proof in which “samtliche
Rechnungen - auch dic Berechnungen der Nullpunktsableitung der Ab-
bildungsfunktion — vermieden werden” (all computations — cven the cal-
culation of the derivative at zero of the mapping function — are avoided)
(|Ost], pp. 17-19).

Ostrowski works with the family F of 2.4 and begins by observing (substitute
this for Proposition 2.4):

If G # C is a Q-domawn, then h(G) = E for every function h € F with
(x). |h'(0)] = sup{|f'(0)| : f € F}.

Indeed, for every g € F with f(G) # E there exists by Lemma 2.3 an expansion
k : g(G) — E. Since |k'(0)] > 1 (see 1.1 of the appendix to this chapter), it
follows that |g'(0)] > |¢'(0)]| for § := ko g € F. - The existence of a function
h € F satisfying (*) now follows again from the fact that. by Montel, there exists
a sequence h, € F with lim|h}(0)| = p := sup{|f'(0)| : f € F} that converges
compactly to some h € O(G). Then |h'(0)] = p. Since F # {0} implies that
i > 0, it follows from Hurwitz that h € F.

When Ostrowski published his proof, he was unaware that not long be-
fore, in 1929, in the almost unavailable Bulletin of the Calcutta Mathe-
matical Society, Carathéodory had presented a variant completely free of
derivatives: “... durch eine geringe Modifikation in der Wahl des Vari-
ationsproblems [kann man] den Fejér-Rieszschen Bewews noch wesentlich
vereinfachen” (... through a minor modification in the choice of the vari-
ational problem, [one can] further simplify the Fejér-Riesz proof counsid-
erably) ([Ca,], pp. 300--301). We have presented Carathéodory’s version
in 2.2-4. It is the most elegant proof of the Riemann mapping theorem.
In the prevailing literature, however. up to the present, Ostrowski’s ver-
sion has won out over that of Carathéodory; the 1985 textbook [N] of R.
Narasimhan is an exception.

In 1928 Carathéodory wrote the following on the history of the proof
of the mapping theorem ([Ca;], p. 300): “Nachdemn die Unzuldanglichkeit,
des urspriinglichen Riemannschen Beweises erkannt worden war. bildeten
fiir vielen Jahrzehnte die wunderschionen, aber sehr umstidndlichen Be-
weismethoden, die H.A. Schwarz entwickelt hatte, den einzigen Zugang
zu diesem Satz. Seit etwa zwanzig Jahren sind dann in schneller Folge
eine GroBie Reihe von neuen kiirzeren und besseren Beweisen [von ihm
selbst und von Koebe| vorgeschlagen worden; es war aber den ungarischen
Mathematikern L. Fejérund F. Riesz vorbehalten, auf den Grundgedanken
von Riemann zuriickzukehren und die Losung des Problems der konformen
Abbildung wicder mit der Losung eines Variationsproblems zu verbinden.
Sie wahlten aber nicht ein Variationsproblem, das. wie das Dirichletsche
Prinzip, aulerordentlich schwer zu behandeln ist, sondern ein solches, von
dem die Existenz einer Losung feststeht. Auf diese Weise entstand ein Be-
weis, der nur wenige Zeilen lang ist. und der auch sofort in allen neueren
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Lehrbiichern aufgenommen worden ist.” (After the inadequacy of Rie-
mann's original proof was recognized, the exquisite but very intricate meth-
ods of proof developed by H. A. Schwarz were for many decades the only
approach to this theorem. Then, since about twenty years ago, a great
number of new shorter and better proofs [his own and Koebe’s] have been
proposed in rapid succession; but it remained for the Hungarian mathe-
maticians L. Fejér and F. Riesz to return to Riemann’s basic ideas and
once again tie the solution of the conformal mapping problem to the solu-
tion of a variational problem. They did not. however, choose a variational
problem that, like the Dirichlet principle, is extremely hard to handle, but
rather one that is certain to have a solution. In this way a proof emerged
that is only a few lines long and that was also immediately adopted by all
new textbooks.) In fact, the Fejér-Riesz proof appears as carly as 1927 in
Bieberbach's Lehrbuch der Funktionentheorie, vol. 2, p. 5. The old proofs
were forgotten: The better 1s the enemy of the good.

5. Historical remarks on uniqueness and boundary behavior. In
his dissertation, Riemann not only asserted the existence of a conformal
map f : G, = Gy between simply connected domains G, Gy, but stated
that f can moreover be chosen to be a topological map G; = G,: that,
in particular, f maps the boundaries 0G,, 0G2 topologically onto each
other (for Riemann, all boundaries are piecewise smooth). Riemann also
had precise ideas about when f is uniquely determined ([Rie], p. 40):

Zu Einem innern Punkte und zu Einem Begrenzpunkte [kann/
der entsprechende beliebig gegeben werden,; dadurch aber ist fir
alle Punkte die Beziehung bestimmt. (The points corresponding
to an interior point and to a boundary point [can] be assigned
arbitrarily; doing this, however, determines the relationship for
all points.)

In 1884 Poincaré proved a uniqueness theorem that assumes nothing
about the existence of the map on the boundary of G; cf. Lemme fondamen-
tal ([Po], p. 327). Poincaré’s lemma is  in modern language - nothing but
the uniqueness theorem 2.5; our proof is essentially the same as Poincaré’s
(loc. cit., pp. 327-328). — The uniqueness problem played an important
role in the history of conformal mapping theory. In 1912 Carathéodory, by
determining that the uniqueness theorem is ultimately based on Schwarz’s
lemma, put the elegant finishing touches on these matters.

Schwarz, in 1869, sharply separated the -problem of mapping a domain
conformally onto a disc from the problem of extending this map con-
tinuously to the boundary. Carathéodory studied the extension problem
from 1913 on and developed his penetrating theory of prime ends; cf. the

first three papers in the fourth volume of his Gesammelte Mathematische
Schriften.
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In order to formulate the high points of extension theory. we consider a
biholomorphic map f : E — & onto a bounded domain (. ‘The following
lemma is the starting point.

Extension lemma. The map f can be extended to a continuous map from
E to G if and only if the boupdary of G is a closed path (in other words. if
there exists o continuous map g : OE — C with p(9E) = 9G ).

This lemumna is used to prove

Carathéodory’s theorem. The map f : E — (7 can be extended to a
topological map from B onto G of and only of the boundary of (7 is a closed
Jordan curve (in other words, if there exists a topological map ¢ : UE - C
with p(OE) = G ).

A simple corollary is Schoenflies™s theorem on Jordan curves. which has
nothing to do with function theory:

Every topological map from one Jordan curve onlo another can be ca-
tended to a topological map from C onto itself.

Details of this theory can be found in the book [Pom).

6. Glimpses of several variables. There is no obvious generalization of
the Riemann mapping theorem to simply connected domains in C*, n > 1,
even in the case n = 2. The polydisc {(w.z) € C? : |w| < L. |2| < 1} and
the ball {(w,z) € C? : lw]? + |zI1? < 1} are natural analogues of the nuit,
disc; both domains are topologically cells, {hus certainly simply connected.
But Poincaré proved in 1907:

There is no bikolomorphic map from the ball onlo the polydisc.

Simple proofs are given in [Kal, p. 8, aud |Ran], p. 24. There even ex-
ist famelics of bounded domains of holomorphy Gy, 1 € R, with boundaries
0G, that are real analytic everywhere. such that all the domains (7 arce
diffeomorphic to the 4-dimensional cell but two domains Gy, (7; are hiliolo-
morphically equivalent only if ¢ = ¢.

Positive statements can be obtained if the automorphisms of the domain
are brought into play. Thus, for example, E. Cartan proved in 1935 [Cary):

Every bounded homogeneous domamn m C? can be mapped bikolomorphi-
cally onto either the ball or the bidisc.

For n > 3 the situation is more complicated, even for bounded homoge-
neous domains.
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§4. Isotropy Groups of Simply Connected Domains

The automorphism group Aut G of all the biholomorphic maps of a domain
G onto itself contains important information about the function theory
of G. Two domains @G, G’ can be mapped biholomorphically onto each
other only if their groups AutG, Aut G’ are isomorphic. In addition to
automorphisms, we study inner maps of G; these are holomorphic maps
from G to itself. The set Hol G of all the inner maps of G, with composition
as group operation, is a semugroup with Aut G as a subgroup.

For every point a € G. the set Hol, G of all the inner maps of G with fized
point a is a subsemigroup of Hol G. The set Aut,G of the automorphisms
of G with fixed point a is a subgroup of Hol, G; Aut, G is also called the
wsotropy group of G at a. The map

o:Hol,G—C, fw f'(a)

is fundamental for the study of Hol, G and Aut, G. It is multiplicative (by
the chain rule):

(fog)(a) = f'(a)g'(a). f, g€ HolaG;

in particular, ¢ induces a homomorphism Aut, G — C* of the group
Aut, G into the multiplicative group C*.

In Subsection 1, we describe ¢ for four special domains. In Subsection
2, o is studied for simply connected domains # C. The tools for doing this
are the Riemann mapping theorem and the Schwarz lemma, which we use
in the following form:

(8) 1g'(0)] €1 for g € Holy E. Moreover, AutoE = {g € Holp E : |¢’(0)|
= 1}. The map AutyE — S, g(2) — ¢'(0), is a group isomorphism.

1. Examples. 1) Since Aut,C = {z — uz +a(l —u) : v € C*}, 0:
Aut, C — C* is an isomorphism.

2) Since Aut, C* = {idgx,z — a?/z}, o : Aut, C* — C* is injective;
the image is the cyclic group {1, —1} of order 2.

3) By (S), 0 : Auty E — C* is injective; the vmage is the circle group S*.

4) Let ¢ = exp(2mi/m), with m € N\{0}: let E = E\{%¢, %Cz, e %{”‘}.
Then AutgE = {z — (*z. 0 € N}. Thus o : AutgE — C* is injective; the
image s the cycle group {1.¢.. ... (™'} of order n.

In these examples o is always injective; when G # C, the image is al-
ways a subgroup of S!', and in addition to S! all finite cyclic groups occur
as isotropy groups (of bounded domains). With the aid of uniformization
theory it can be shown that the examples are already characteristic: the
only groups other than C that have infinite isotropy groups are those that
can be mapped biholomorphically onto C.
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2. The group Aut,G for simply connected domains G # C. By the
Riemann mapping theorem, for every point a € G there exists a biholo-
morphic map u : [E — G with u(0) = a. The next statement can be readily
verified.

(*) The correspondence 1 : Hol, G — HolpE, f — g:=u"'o fou, s
bijective and a semigroup homomorphism. Moreover, o(f) = ¢'(0).
Aut, G is mapped biholomorphically onto Autg E by 1.

A Schwarz lemma for simply connected domains now follows immediatcly
from (%) and (S) of the introduction:

(1) If G # C is suzmply connected, then |f'(a)| <1 for every f € Hol, G,
a € G. Moreover, Aut, G = {f € Hol, G : |f'(a)] = 1}.

Since & is the composition of the isomorphism 2 : Aut, G — Autg E with
the isomorphism AutyE — S!, g — ¢'(0), we have another result:

Proposition. If G # C is simply connected, then ¢ : Aut,G — C,
[~ f'(a), maps the group Aut, G isomorphically onto the circle group
St,aeG.

One corollary of this is a uniqueness theorem.

Uniqueness theorem. Let G # C. Suppose that either G is simply con-
nected or G ~ C*. Let f € Aut, G satisfy f'(a) > 0. Then f =id¢.

Proof. The case G ~ C* is clear (Example 1.2). In the other case. |f'(a)| =
1: hence f'(a) = 1 since f'(a) > 0. Since o is injective, it follows that
f=idg. a

This yields the following uniqueness theorem.

Let G # C be simply connected and let g, h € AutoG. a € G. Theng=h «f g
and h “have the same direction at a”; that is, if g’'(a)/|g'(a)| = h'(a)/|h (a)|.

Proof. For f := g~ ' oh € Aut, G, verify that f'(a) = |h'(a)|/|¢’(a)| > 0. ]

Iteration theory will be used in 9.2.3 to prove the results of this subsection
for arbstrary bounded domains. Uniformization theory can be used to show
that the results are actually valid for all domains # C.

3*. Mapping radius. Monotonicity theorem. If G # C is simply con-
nected, then for every point ¢ € G there exists exactly one biholomor-
phic map f from G onto a disc B,(0) with f(a) = 0, f’(a) = 1: namely
f:= (1/h(a))h, where h : G = E, with h(a) = 0 and h’(a) > 0, is chosen
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as in 2.5. The number p = p(G, a) is called the mapping radius of G relative
to a. Thus

(1) p(G,a) = 1/h'(a), h := mapping function of 2.5.

We also set p(C,a) := oo for all a € C.

Monotonicity theorem. If @, G are simply connected and GcC G, then
(2) p(G,a) < p(G,a) forall ac G.
If there exists a point b € G such that p(@, b) = p(G,b), then G=0G.

Proof. Let G # C and let h: G S E, h:G = E be chosen as in 2.5. Then
g := h™! o h € Hol,G. Since ¢g'(a) = h'(a)/h'(a) > 0, 2(1) implies that
g'(a) < 1. Hence h'(a) < TL’(a), and (2) follows from (1).

It follows from p(@, b) = p(G,b) that h'(b) = E’(b); hence ¢'(b) =1
for the maps corresponding to b. Now 2(1) and Theorem 2 imply that
h=!oh = idg; hence fz‘l(E) =G, ie. G=0G. i

Ezercises

1) Compute p(G,a), a € G, in the following cases:

a) G:= By(c),ceC, >0

b) G := H = upper half-plane;

c) G := {z =re** € C:r > 0 arbitrary, 0 < ¢ < o, where ¢y €
(0,27]}.

2) If G is simply connected and g : G — C is a holomorphic injection, then

p(9(G),9(a)) = 1¢'(a)|p(G.a) forall a€G.

3) Let G # C be simply connected and let a € (. Prove:

a) |fle > p(G,a) for every f € O(G) with f(a) =0, f'(a) =1.
b) Equality holds in a) if and only if f maps G biholomorphically onto
B,(0) (“minimum-maximorum principle”).

Bibliography for Chapter 8: See p. 201



§1. Simple Properties of Expansions 191
Appendix to Chapter 8: Carathéodory-Koebe Theory

The Fejér-Riesz-Carathéodory proof is not constructive: No rule is given (in
8.2.4) telling how the sequence f, with lim, |f,(p)| = w is to be constructed,
and absolutely nothing is said about how to find the subsequence h, of the
sequence f,. A proof free of these defects was given in 1914 by P. Koebe,
who applied ideas of Carathéodory: By ezpansion, the domain is mapped
successively onto subdomains on [E in such a way that these subdomains
exhaust the unit disc. Koebe obtains the expansion maps by clementary
means, solving a quadratic equation and determining a boundary point
with minimal distance from the origin: his expansion sequences converge
— though slowly  to the desired biholomorphic map G = E; no passage
to subsequences 18 necessary.

In Section 1 we discuss the expansions used by Koebe; in Section 2 we
describe the Carathéodory-Koebe algorithm and apply it to the special
expansion family X,. In Section 3 we construct other families suitable for
the algorithm.

§1. Simple Properties of Expansions

We begin with a simple expansion lemma (Subsection 1), which is funda-
mental for the considerations of this appendix. In Subsection 2 “admissible™
expansions are discussed. In Subsection 3, as an example of such expan-
sions, we study the “crescent expansion.”

1. Expansion lemma. If G is a domain in C with 0 € G, then
7(G) :=sup{t € R: B;(0) C G} = d(0.0G)

is called the nner radius of G (relatwve to the origin). We have 0 < r(G) <
o0; when 7(G) # oc, there always exist boundary points a € 0G with
la| = r(G). The following monotonicity property of inner radi: with respect
to holomorphic maps is crucial for our purposes in this appendix.

Expansion lemma. Let f, g € O(G) be nonconstant and let the map
g: G — C be injectwve. Assume moroever that f(0) = 0 and |f(z)| > |g(z)|
for all 2 € G. Then r(f(G)) > r(g9(G)).

Proof. Let B = B,(0) C g(G), s < oo. It suffices to prove that B C
flg=*(B)). This will follow if we prove that |b] > s for every pomnt b €
5/(g7(B)). _

We set h := fog~!. There exists a sequence a, € B with a := lima, € B
and b = lim h(a, ). Then |a| > s, since otherwise a € B; thus b = h(a) €
h(B). Now the inequality |h(w)| = |f(g~ (w))] > lg(g~ (w))| = |w| holds
for all w € B. Hence |b] = lim |h(a,)| > lim |a,| = |a| > s. 0
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Now let G C E and 0 € G. Then r(G) < 1. According to 8.2.3, holomor-
phic injections x : G — E with x(0) = 0 and |x(2)| > |z|. 2 € G\{0}, are
called expansions of G. It is trivial that

() Kok : G — E 1s an ezpanswon if k : G — E and & : G — E are
expansions with G O x(G).

The following is important:

Proposition. Ifx : G — E 1s an ezpansion, then |k'(0)| > 1 and r(k(G)) >
r(G).

Proof. We have k(z) = z2f(z2), with f € O(G). Since |f(2)| > 1 in G\{0},
we also have |f(0)| > 1 (minimum principle): hence |k'(0)] = |f(0)] > L.
-- The inequality r(k(G)) > r(G) follows immediately from the expansion
lemma. g

Warning. The reader should not think that x(G) D G for all expansions.
The crescent, expansions are instructive counterexamples: see Subsection 3.

One often speaks of expansions if, besides x(0) = 0. only |&(z)| > |z| holds. In
that case, the proposition is true with |&'(0)] > 1.

2. Admissible expansions. The square root method. A @-domain G
is called a Koebe domain if G € E (this means that G C E but G # E).
Then 0 < 7(G) < 1. An expansion k of a Koebe domain is called admassible
if K(G) is again a Koebe domain. The next statement follows trivially from
8.2.1(1).

(1) Every cxpansiwon k : G — E of a Koebe domain such that kK(G) #E
18 admissible.

Admissible expansions have already appeared in Lemima 8.2.3. We state
matters more precisely here:

Theorem (square root method). Let G be a Koebe domawn and let ¢ € E.
2 @& G. Let v € O(G) be the square root of g2|G with v(0) = c. Let
Y : E — E be a rotation about 0. Then k := J o g. o v 1s an admussible
expansion of G and

1+ |c|?
2|c|

(2) |&"(0)] =

Proof. By Lemma 82.3. g.ov : G — E is an expansion; hence so is
k : G — E. If we had k(G) = E, it would follow that »(G) = E and
(because g.. = v?) that g..(G) = E, i.e. G = E. But this is impossible. By
(1), ~ is therefore admissible. Equation (2) is equation 8.2.3(4). a
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In particular, for every Koebe domain G the square root method yields
an admissible expansion x : G — E with «’(0) > 1; these “normalized”
expansions play a leading role in Carathéodory-Koebe theory; cf. 2.3. O

The following representation of the square root v is useful in computa-
tions:

(3) Set G* := g.2(G). Then

v=gqog.=, whereq€ O(G*) with ¢* = z|G*, q(c?) =

For all expansions k constructed in the theorem above,

(4) r(G) < 7(k(G)) (sharpened version of Proposition 1)

(5) E\k(G) always has interior points in E.

Proof. ad (4). Let b € EN 3(k(G)) with |b] = r(k(G)). There exists a sequence
7, € G\{0} with limk(z,) = b and a := lim2, € 8G. Then |a| > r(G). By
Lemma. 8.2.3, 1d = ¢ o &k, where ¥ € O(E) and |c(2)| < |z| for z € E\{0}. It
follows that z, = ¥-(k(2n)); hence a = ¢c(b), so |a] < [b] and 7(G) < r(x(G)).

ad (5). Since 9, g, gc2 € AutE, it suffices by (3) to show that E\q(G") has
interior points in E. But this is clear: (—¢)(G*) C E and ¢(G*) N (—¢)(G*) =0
(the second statement because 0 ¢ G* — compare the proof of 8.2.2).

3*. The crescent expansion. All slit domains G, := E\[t?,1),0 < ¢ < 1,
are Koebe domains. The effect of the admissible expansion & := g; o v on
G, is surprising:

(1) The image domain k(Gy) is the “crescent” E\K, where K is the
closed disc about p := (1 + t2)/2t with t € K (Figure 8.6). In particular,
K(Gg) z Gf.

Proof. By 2(3). k : G = &(G) can be factored as follows:

&2 q
—_— G* — |y
01 o1 7
—f
FIGURE 8.6.

Here G*

¢t) = E\(=1,0] and H := q(G*) = {z € E: Re z > 0}.
thus sufhce's to show that g;(0H) is the boundary of

912(G
Since gt(t) 0 it
(OE) = OE, the functions g; map the semicircle in 0H onto

E\K. Since g;
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the arc in OE that goes from ¢ := g,(i) through —1 = g;(1) to  := g;(~)
(note that Im ¢ < 0). The image under g; of the line iR is the circle L
through ¢t = ¢;(0) (punctured at 1/t) that intersects OE orthogonally at (
and ¢ (conformality). The equation for L is thus |z — m|? = m? — 1, with
m > 1 (by Pythagoras; the tangents to OE at (, ¢ are perpendicular to the
radii and intersect each other on R). Since t € L, it follows that m = p.
hence L = (OK)\{t~'}. This proves that g,(0H) = 9(E\K). n|

Remark. The crescent expansion is discussed from a computational point
of view in [PS], Problem 90, Part TV.

§2. The Carathéodory-Koebe Algorithm

If a nonempty set D(G) of admassible expansions is assigned (according to
some rule) to every Koebe domain G, we call the union D := |JD(G),
where G runs through all Koebe domains, an expansion famaly. With the
aid of such families, “expansion sequences” can be assigned to every Kocbe
domain G in various ways. We set Gy := G and choose kg € D(Gy).
Since K is admissible, G, := ko(Gy) is a Koebe domain; we can therefore
choose k) € D(G)). Since G, := k,(G)) is again a Koebe domain. we can
continue and (recursively) determine Koebe domains G, and expansions
kn € D(Gp) with k,(G,) = G +1, n € N. Then, by 1(1),

hy ‘= Kn0Kkn_10---0K9:G—E, h,=xrn0h,

is an admissible expansion. The procedure just described is called the
Carathéodory-Koebe algorithm and the sequence h, thus constructed an
expansion sequence (for G relative to D). It will be shown that “correctly
chosen” expansion sequences converge to biholomorphic maps h: G 5 E.

1. Properties of expansion sequences. For all expansion sequences
h,: G — E:

0
|An41(2)] > |hn(2)] > - > |ho(2)] > |2], 2 € G\{0},
@) F(h(G)) < T{hnsr(G). limr(ha(G)) < 1,
(3) lim |, (0)] = 1.

Proof. Statements (1) and (2) follow immediately from the equation k), =
K o hp—1, where Proposition 1.1 is used in the proof of (2). To prove (3).
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let B;(0) C G, t > 0. Then every map E — E, z — h,(tz), is holomor-
phic. Since h,(0) = 0, it follows from Schwarz that |h](0)] < 1/t. The
sequence |h/,(0)| is thus bounded. Since |k, (0)] > 1 for all v by Propo-
sition 1.1, the sequence is also monotone increasing by (1). Hence a :=
lim |k}, (0)] = [15°|%.,(0)] exists. Since a # 0 (indeed, @ > 1), it follows that,
lim|x,,(0)] =1 (cf. 1.1.1). . O

Koebe. in 1915. called the algorithm a Schmiegungsverfahren (osculation
process). The nth osculation operation is the choice of the expansion «,,
which produces the domain Gny, from G, ([Koey), pp. 183-185). The
osculation effect is expressed by (2). Equation (3) is the key to forcing the
desired equation limr(h,(G)) = 1 by means of “cleverly” chosen sequences
Kn: see Subsection 3.

2. Convergence theorem. We seek expansion sequences h,, : G — E that
converge to biholomorphic maps G — E. The following convergence theo-
rem shows when this occurs. An expansion sequence h, : G — E is called
an osculation sequence if h,, (0) is always positwe and limr(h,(G)) =1.

Convergence theorem. 1) Let h,, : G — E be an expansion sequence that
converges compactly to a function h. Then h : G — E is an expansion, and
r(h(G)) 2 limr(h,(G)).

2) Ewvery osculation sequence h,, : G — E converges compactly in G to a
biholomorphic expansion h : G = E.

Proof. ad 1). By 1(1), |h(z)| > |ha(z)] > |z| for all z € G\{0} and all
n € N. Since h(0) = 0, it follows that h is not constant; hence, since all
the h, are injections, h is injective by Hurwitz. Therefore h: G — E is an
expansion of GG. Furthermore, it follows from the expansion lemma 1.1 that
r(h(G)) > limr(h, (G)) for all n. Hence r(h(G)) > limr(h,(G)).

ad 2). Since subsequences of expansion sequences are again expansion
sequences, 1) implies that every limit function h of a subsequence of the
sequence h, is an expansion and hence maps G biholomorphically onto
h(G) C E. Since moreover r(h(G)) > 1 by 1), we have h(G) = E; that
is. h: G = E is biholomorphic. To see that the sequence h,, converges
compactly, it suffices since h,(G) C E to show that all its compactly con-
vergent subsequences have the same limit (Montel's convergence criterion
7.1.3). 1f h, h are such limits, then. by what has already been proved,
they furnish biholomorphic maps G = E with h(0) = h(0) = 0. Since
! 1(0) > R (0) > 0 for all n, it follows that A’(0) > 0, h/(0) > 0: hence

h=h by the uniqueness theorem 8.2.5. O

Observe that 1(3) was not used in this proof and that the limit map in
2) is. by 8.2.5, the uniquely determined map G = E. a
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Since simply connected domains # C can be mapped biholomorphically
onto Koebe domains (cf. 8.2.2), the Riemann mapping theorem follows
from 2) once an osculation sequence h, has been constructed for G. Spe-
cial expansion families are used in this construction. In the next subsec-
tion we describe how Koebe constructed such a family. Since he wants
limr(h,(G)) = 1 and knows that lim |«],(0)| = 1 (by 1(3)), he “artificially”
produces a relationship between inner radii and derivatives of expansions.

3. Koebe families and Koebe sequences. 7 will denote a continuous
real-valued function on (0, 1) for which 7(z) > 1, z € (0,1). An expansion
family X is called a Koebe family for T if

(a) k'(0) =7(r(G)) forall kx:G—E in K.

An expansion sequence h, = KpOKkn_10 0Ky : G — E relative to a Koebe
family KC is called a Koebe sequence. If 7 is the function corresponding to
K, it follows from (a) that

(a¥) 7(r(hn(G))) = £741(0), neN.
From (a*) and 1(3), we now immediately obtain the crucial

Osculation lemma. Fvery Koebe sequence is an osculation sequence.

Proof. By 1(2), r := limr(h,(G)) € (0,1]. If r were less than 1, the con-
tinuity of 7 in r, together with (a*), would imply that lim «],(0) = 7(r).
But this contradicts 1(3) since 7(r) > 1. Thus r = 1. Since «,,(0) > 0, 1(1)
implies that h/,(0) > 0 for all n; hence h, is an osculation sequence. C

To complete our study of Carathéodory-Koebe theory, the “only” thing
we need to prove is the existence of Koebe families. For every Koebe domain
G, we use the square root method of 1.2 to construct all expansions & :
G — E with £'(0) > 0, where ¢ € E is always chosen in such a way that ¢
is a boundary point of G with mintmum distance to the origin. We let G
run through all Koebe domains and denote by K, the set of all expansions
obtained in this way. We set

1 z—z! l1+z
T2:="‘ 1 1 = )
227 — g% 2V

this function is continuous in (0, 1), and 7o(z) > 1 for all € (0.1).

z € (0,1);

Proposition. The family K, is a Koebe family for 7.

Proof. By Theorem 1.2, K5 is an expansion family. For all k € Ky, &'(0) =
72(r(G)) by 1.2(2), since &'(0) > 0 and |c|? = r(G) by the choice of ¢. O
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Other Koebe families are constructed in Section 3.

4. Summary. Quality of convergence. Carathéodory-Koebe theory
contains the following as a special case.

Koebe’s main theorem. For every Koebe domain GG there exist Koebe
domawns G, with Gy = G, and expansions k, : G, — E, with k,(G,) =
Gns1, such that the sequence kK, o Ky -y 0--- 0Ky : G — E converges com-
pactly to a biholomorphic expansion G = E. Every expansion k, can be
explicitly constructed by a square root operation: k,, € Ks.

By 1.2(4), (G) < r(k(G)) for all expansions x € K;. Since
it can even be proved that

o = r(G),

r(k(G)) > vr (V21 +r2)+r—1). if r:=r(G), k€K,

“ 147

([Caq|, pp. 285-286; also [PS], Part IV, Problem 91). For numerical ap-
proximation of the Riemann mapping function h : G 5 E, the square root
method converges very slowly. Suppose that the inner radius r, of the do-
main h,(G) is chosen as a measure of the quality of the nth approximation
hy = K, © K-y © -+ 0 Kg. Ostrowski showed in 1929 ([Ost], p. 174):

There emsts a constant M > 0, depending on r(G), such that r, >
1-M/n, n>0.

5. Historical remarks. The competition between Carathéodory
and Koebe. Square root maps occur early in Koebe’s work (e.g. in 1907
in [Koe;], p. 203 and p. 644, and also in 1909 in [Koes], p. 209 and p. 216).
But they were first used systematically by Carathéodory in 1912, in his
recursive procedure for constructing the Riemann mapping function. He
works explicitly with the function

(1 +7r2)z - 2re™
z .
2rz — (1 +7r2)e?

([Ca,], p. 401):

in the terminology of 8.2.3, this is the function ¢~ 1. with ¢ := re*’.

To prove that his sequence converges compactly. Carathéodory used
Montel’s theoren (loc. cit.. pp. 376-378). In 1914, in the Schwarz Festschrift,
he explained his method in detail; he formulated the convergence theorem
explicitly and proved it directly, without resorting to Montel ([Ca,]. pp.
280-284).

Koebe did not let Carathéodory’s breakthrough rest in peace. He had
dedicated his life to conformal maps and enriched the theory by a vast
abundance of papers — from 1905 to 1909 alonc he wrote more than 14
papers. some of them quite long — and could imnediately (in 1912) let
the approximating Riemann surfaces that had appeared in Carathéodory’s
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work “arise automatically.” Stimulated by “Mr. C. Carathéodory’s inter-
esting work.” he takes up his “earlier thoughts again” and “reveals a new
elementary method of mapping the most general [schlicht] simply connected
region onto the surface of the unit disc.” which has “ideal perfection in more
than one respect”; cf. [Koes], pp. 844-845. Here Koebe sketches the square
root algorithm for the first time. He presents his “osculation process” in
detail in 1914 ([Koeq], p. 182):

Die [Konstruktion] der konformen Abbildung des gegebenen
Bereichs auf das Innere des Einheitskreises werden wir durch
unendlich viele Quadratwurzeloperationen bewirken, . .. die we-
sentliche Eigenschaft der einzelnen dieser Operationen ... ist.
eine Verstarkung der Anschmiegung der Begrenzungslinie des
jeweilig abzubildenden Bereichs an die Peripherie des Einheits-
kreises, und zwar vom Innern her zu bewirken. (We will carry
out the [construction] of the conformal map of the given region
onto the interior of the unit disc by infinitely many square root
operations: ... the crucial property of each of these operations
. is to improve the osculation of the boundary curve of the
region to be mapped to the boundary of the unit disc and, more
precisely, to do so by working outward from the interior.)

Koebe argues geometrically — as did Carathéodory before him; thus two-
sheeted Riemann surfaces are used again. In 1916, at the 4th Scandindavian
congress of mathematicians, Lindelof gave a detailed lecture on Koebe's
proof; cf. [Lin].

G. Pélya and G. Szego, in 1925, split Koebe’s proof into nine problems
([PS], Problems 88-96, Part IV, pp. 15-16); they prove the convergence
theorem directly (without Montel) — as. of course, does Koebe. Their
arguments are free of Riemann surfaces and simpler than in the pioneering
work of Carathéodory and Koebe.

§3. The Koebe Families K,, and KX

Koebe noticed immediately (in 1912) that, in his osculation process, taking square
roots “could readily be replaced by taking roots of higher orders or taking log-
arithms” ([Koez], p. 845). We want to construct corresponding Koebe families.
In the construction, we use the fact that holomorphic functions that have no ze-
ros in @-domains always have holomorphic mth roots. m € N, and holomorphic
logarithms. -- In what follows, the (large) family

£ ={f:E — E holomorphic, f(0) =0, f & AutE, f(E) is not a Koebe domain}

plays an important role. G again always denotes a Koebe domain. We first gen-
eralize Lemma 8.2.3.
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1. A lemma. Let ¢p € £, and let K : G — E be a holomorphic map such that
k(0) = 0 and p ok = id. Then K s an admissible expansion of G.

Proof. Since ¢ ¢ Aut E, Schwarz implies that jp(w)| < |w|, w € E*. Since
@ ok = id, x is injective; moreover, |z| = |p(k(z))| < |k(2)] if x(2) # 0, i.e. if
z € G\{0}. Hence k is an expansion of G. If k(G) were equal to E, then o(E) = G
would be a Koebe domain, contradicting ¢ € £. Thus « is admissible by 1.2(1). O

The trick is now to track down those functions ¢ € £ for which there exists a
k as in the lemma. We give two examples for which this is possible.

Ezample 1. Let m € N, m > 2, and let ¢ € EX. We denote the map E — E,
z2— 2", by jm and claim:

The map Yem :=gem 0jmogc :E = E s n € and

2 m-—1 -1
y o ler-1 c le| = ||
1 H m() = m lﬁJ—-—: — —
) Vem(0) =me™ 7 =™\ e[ =[]

Proof. $c.m € &€ since jm & Aut E and .. (E) = E. Equation (1) follows (by the
chain rule) since ji,(c) = mc™ " and ¢4(0) = 1/g4(a) = |a]* - 1, a € E. O

Ezample 2. Let ¢ € EX. We choose b € H such that ¢ = €'®. The map

z - . - b— bz
gy : H — E, sz-}-b with ¢, ' :E — H, e T,

is biholomorphic (a generalized Cayley map). The function €(z) := e'* maps H
onto E\{0}. We claim:

The map xc :=gco€ogq,' :E—E is ;€ and

2cloglc| 0 € log |¢|

y x.(0) = £ 081 OBl
@) O =171 = i=1a-

Proof. Since € : H — E\{0} is not biholomorphic and x.(E) = E\{c} is not a Q-
domain, we have x. € £. Equation (2) follows, since x.(0) = g-(c)e’ (b) (g ")’ (0)
and g;(c) = 1/(|c|* = 1), €'(b) = ic, (g5 ')'(0) = b— b= —ilog|c|*. O

In the next subsection, for the functions ¥m., xc € £, we construct maps ~
satisfying the hypotheses of the lemma.

2. The families X,, and K.,. The functions

1 1

1 -z
m gl/m — x—-1/m

r—x

(1) tm(z) = 2logx

,m=2,3,...; Teolx):= , £ € (0.1),
are continuous and map (0, 1) to (1,00). (Prove this.) For every Koebe domain,

we construct admissible expansions « such that [£'(0)| = T (r(G)), 2 < m < o0.

The mth root method, m > 2. Let ¢ be chosen in such a way that c™ 15 a
boundary point of G with minimum distance to the origin. Let v € O(G) be the
mth root of gem|G with v(0) = ¢. Then k := gcov : G — E is an admassible
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expansion of G and

(2) [K'(0)] = Tm (r(G)).

Proof. k : G — E is well defined since v(G) C E. We have
(%) k(0) =g.(c) =0 and @emok =1id (because jm 0ov = gem|G).

Example 1.1 shows that ¥.,, € £; hence k is an admissible expansion of G
by Lemma 1. By (x), |£'(0)] = 1/|we.m(0)]. Thus (2) follows from 1(1) since
l[e™] = 7(G). 0

The logarithm method. Let ¢ be a boundary point of G with minimum distance
to the ormgin, and let iv € O(G) be a logarithm of g.|G. Then Kk := gy o v, with
b := v(0), 1s an admissible expansion of G and

(3) |6'(0)] = T (r(G)).

Proof. Since e**) = g.(z) € E, z € G. we have v(G) C H; in particular, b € H.
Hence k : G — E is well defined. It follows (with £ o v = g.) that

(%) k(0) =gu(b) =0 and xcok =1id.

Example 1.2 shows that x. € £; hence « is an admissible expansion of G by
Lemma 1. By (%), |'(0)] = 1/]|x(0)]. Thus (3) follows from 1(2) since |c| = r(G).
]

In addition, we “normalize” each expansion obtained above (by multiplying by
an a € S') so that x’'(0) > 0; this normalized expansion is again admissible. Now
let Ky and Koo denote, respectively, the families of all normalized expansions
constructed by means of the mth root method and the logarithm method. Then
2.3(a) is satisfied by 7 := 7,,, and by 7 := 7. The next assertion follows.

Proposition. K, s a Koebe famuly for 7., m =2, 3,...; Kx 3 a Koebe famaly
for 7.

Remark. The family K is the “limit” of the families Cp,: For fixed G and ¢ € 9G,
each expansion kK € K is the limit of a sequence kK € K. For the functions
Tm and 7o, it is immediate that lim 7, (z) = 7o () for all z € (0, 1].

For the proof of the Ricmann mapping theorem, the square root method is
generally used. Carathéodory applied the logarithm method in 1928, choosing
c =h € (0,1) and working with the function

h — exp [(log h) - H:f]
1 — hexp [(logh) C ]

1-2

(cf. [Cai], p. 304, formula (6.2)),

which is precisely the function xn with b = —ilogh. (Prove this.) This says, by
the way, that he could just as well have chosen the function
2(2vh - (14 h)2)
(14+h) —2vVhz

thus 42, (cf. p. 305).
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H. Cartan ([Carz], p. 191) also uses the logarithm method. He works with the
admissible expansion R := gy o v, where ¢ = —c¢ and v € O(G) is a logarithm
of —gc; it still holds that K'(0) = 7.(r(G)). The reader should carry out the
computations and determine a ¥ € £ with ¥ oK = ud. a

The families Kj». Koo, and others are treated in detail by P. Henrici; see [He],
pp. 328-345, where the rate of convergence of the corresponding Koebe algorithms
is discussed. ‘

The functions ¥ m. m > 2, h € (0,1), and x» are studied by Carathéodory in
[Caz], pp. 30-31: it is also shown there that lim ¥ m = Xxn.
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Automorphisms and Finite Inner Maps

The group Aut G and the semigroup Hol G, which were already studied in
8.4, are central to Sections 1 and 2. For bounded domains G, every sequence
fn € Hol G has a convergent subsequence (Montel); this fact has surprising
consequences. For example, in H. Cartan’s theorem, one can read off from
the convergence behavior of the sequence of iterates of amap f : G — G
whether f is an automorphism of G. In 2.5, as an application of Cartan’s
theorem, we give a homological characterization of automorphisins.

An obvious generalization of the biholomorphic maps G — G’ is the
finate holomorphic maps G — G', for which all fibers are finite sets which
always have the same number of points (branched coverings). Such maps
are studied in Sections 3 and 4: we show, among other things, that every
finite holomorphic map of a nondegenerate anuulus onto itself is linear
(fractional), hence biholomorphic.

§1. Inner Maps and Automorphisms

We first show that composing inner maps and taking inverses of auto-
morphisms are compatible with compact convergence (Subsection 1). The
proofs are easy, since the sequences f, € O(G) that converge compactly in
G are precisely those that converge continuously in G to their limit f, and
thus for which

lim f.(cn) = f(c) if lime,=c€CG
(see the footnote on p. 150 or 1.3.1.5%).
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We write f = lim f,, if the sequence f, € O(G) converges compactly
(continuously) to f € O(G). If G is bounded and f,, € HolG, then, by
Vitali, f = lim f, if the sequence f,, just converges pointunse to f.

1. Convergent sequences in Hol G and Aut G. The next statement
follows immediately from 7.5(1).

(1) If fn € HolG andlim f,, = f € O(G) is not constant, then f € HolG.

We also note:

(2) If fn € HolG, g, € O(G) andlim f,, = f € HolG,limg, = g € O(G),
then lim(g,, o fn) = go f € O(G).

Proof. Let ¢,, € G be a sequence with limit ¢ € G. Continuous convergence
implies that lim f, (¢,) = f(c¢) and also that lim g,(f.(c.)) = g(f(c)). The
sequence g, o f,, therefore converges continuously in G to go f. 0

For the inverse map. we show:
(3) If fn € AutG andlim f, = f € Awt G, thenlim f;! = f~! € AutG.

Proof. Let ¢, € G be a sequence with limit ¢ € G. For b,, := f}(¢,,) € G.
b:= f~!(c) € G, we then have lim f,,(b,) = f(b). Tt follows from 7.5(2')
that lim f;'(c,) = f~!(c) and hence that the sequence f;! converges con-
tinuously to f~!.

Remark. Behind (2) and (3) lies a general theorem on topologizing transformation
groups. If X is a locally compact space, then the set of all homeomorphisms from
X onto itself is a group Top X. Consider the sets { f € Top X : f(K) C U}, where
K is compact and U is open in X. The family of all finite intersections of such sets
forms a base for a topology on Top X. In this so-called C-O topology (compact-
open topology), the group operation Top X x Top X — Top X, (f,g) — fog.is
continuous. 1If X is moreover locally connected, the inverse map Top X — Top X.
f— f~!is also continuous. Hence the following holds:

Theorem (Arens (A}, 1946). If X s locally compact and locally connected, then
Top X — equipped with the C-O topology — is a topological group.

In the case of domains G in C, Aut G is a rlosed subgroup of Top GG: the
sequences that converge in the C-O topology are precisely those that converge
compactly in G. If G is bounded, the topological group Aut G is locally compact
and in fact a Lie group. These results were proved in 1932 and 1936 by H. Cartan
for all bounded domains in C*, 1 < n < oc ([C], pp. 407-420 and 474-523).

2. Convergence theorem for sequences of automorphisms. If G is
bounded and f,, € Aut G s a sequence unth f = lim f,, € O(G), then two
cases are possible.

(1) If f s not constant, then f € AutG.
(2) If f 1s constant, then f(G) s a boundary point of G.
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Proof. By Montel, the sequence of inverses g, := f,;! € AutG contains a
subsequence that converges compactly in G to some g € O(G). We may
assume that g = lim g, (omit all troublesome g, and f,). We claim that

(%) g(f(w))  fflw)=1 forallw € G with f(w) € G.

Since g, o fn, = id and therefore g/, (fn(z))- f}(2) = 1 for alln and all z € G,
we need only show that lim g/, (fn(w)) = ¢'(f(w)) for all w € GN f~1(G).
But this holds because lim f,,(w) = f(w) and the sequence g;, converges
continuously to ¢’.

Now if f is not constant, then f € HolG by 1(1). By (%), g is not
constant; it follows from 1(1) that g € Hol GG. Since g, o f,, = 1d = f, o ga,
1(2) implies that go f = id = f o g; hence f € AutG.

But if f is constant, then (%) implies that ¢ := f(G) cannot be a point
in G. It follows that c € 0G. 0O

In the degenerate case (2), one can prove the sharper result that f(G) is not
an isolated boundary point of G. (Prove this.) All sequences

2 —Cn

n:E_’IEa y
f ZH'énz—l

¢n € E with lime, =: ¢ € OE,

are examples of (2). They converge compactly in E to f(z) = ¢, although frof, =
id for all n.

3. Bounded homogeneous domains. The disc E is homogeneous: the
group Aut E acts transitively on E. The following converse holds:

Fvery homogeneous domain G % C, C* can be mapped biholomorphically
onto E.

This theorem can be obtained most easily with the aid of the uniformiza-
tion theorem. Here we prove a special case:

Let G be bounded and homogeneous, and suppose there exist a boundary
point p € OG and a netghborhood U of p such that UNG is simply connected.
Then G can be mapped biholomorphically onto E.

Proof. We fix ¢ € G and choose a sequence g, € Aut G with limg,(¢) = p.
We may assume that ¢ := limg,, € O(G) (Montel). Then g(c) = p € 0G;
hence g(2) = p by Theorem 2. Thus for every closed path v in G there
exists an m such that the image path ~,, := gm o7 lies in U NG. Since v,y
is null homotopic in U NG by hypothesis, v = g,;.! o7,y is null homotopic in
G. Hence G is simply connected. The assertion follows from the Riemann
mapping theorem. O

Boundary points p with the required property always exist when 0G
contains “smooth boundary pieces.”
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4*. Inner maps of H and homotheties. Let f : H — H be holomorphic
and suppose there exists a positwe real number A # 1 such that f(\i) =
Af(i). Then f is a homothety: f(z) = az for all z € H, where a := |f(i)|.

Proof. Let g := a~! f € Hol H; then g(\i) = Ag(i) and |g()| = 1. It must
be shown that g = idy. By the Schwarz-Pick lemma (cf. 1.9.2.5),

g(w) —g(x)| _ |w-

g(w) — g(z)

(%)

w-z

<’ il for all w, z € H.

For w := M. z :=1, it follows that

Ag(i) — g(i)
Ag(i) — g()

9(1)
Hence, for 3 := g(2)/g(i), we have |A— 3| > A+1 and |3] = 1. It follows that
i3 = —1 and hence that g(i) = —g(i); that is, g(i) € Ri. Since g(i) € HNS?,
it follows that g(i) = i; therefore g(Ai) = Ai. Thus equality holds in (*) for
w = M and 2 := i. By the Schwarz-Pick lemma, ¢ is an automorphism of
H. Since g has the two fixed points i and A¢, it follows that g = idy. O

A — _
< l)\+ i‘; hence |Ag(i) — g(?)| > A+ 1.

The proof given here is due to E. Mues and H. Koditz. Under the stronger

hypothesis that f(Az) = Af(z) for all z € H, the theorem follows trivially from
the

Carathéodory-Julia-Landau-Valiron theorem. For every function f € HolH
there exists a real constant a > 0 such that, in every angular sector
Se:={re"’:r>0ande <o <7 —¢}, wheree € (0. 37),
f(2)/z converges uniformly to « as z tends to oc.
The number « is called the angular derwative of f at co. Proofs of the theo-
rem for E instead of H can be found in C. Carathéodory: Theory of Functions 1],
28-32, trans. F. Steinhardt, Chelsea, 1954; A. Dinghas: Vorlesungen tiber Funktio-

nentheorie, 236-237, Springer, 1961; and C. Pommerenke: Univalent Functions,
306 307, Vandenhoeck & Ruprecht, 1975.

If f(Az) = Af(z) for all 2 € H and some X > 1, it follows from the theorem
stated that

f(z)/z= f(A"2)/A"2z, n€N; hence f(2)/z= nan;o fQA"2)/ A"z =0, z€ H

§2. Iteration of Inner Maps

For every inner map f € Hol G, the sterates fI™! € Hol G are defined recur-
sively by

fOi=dg, fMi=foflrlU n=12,....
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This sequence contains valuable information about f: for example, f €
Aut G if fl™ € Aut G for just one m > 1. This trivial observation is sharp-
ened considerably in Subsection 1; as a corollary we obtain, in Subsection
2, a theorem of H. Cartan for bounded domains.

The equation

(%) (f™Y(a) = f'(@)", fe€HoG, a€G. n>1,

which is clear at once by induction, has surprising consequences when com-
bined with the theorems of Montel and Cartan; we give samples in Subsec-
tions 2, 3, and 5. — We often write f, for f["].

1. Elementary properties. Suppose that a subsequence f,, of the se-
quence of wterates of f € HolG converges compactly in G to a function
g € O(G). Then the following statements hold.

a) If g€ Aut G, then f € AutG.
b) If g is not constant, then every convergent subsequence of the
sequence hy := fn, ., —n, € HolG has the limit function .

Proof. ad a) f is injective. From f(a) = f(b), a, b € G, it follows that
fn(a) = fn(b) for all n: hence g(a) = g(b), and therefore a = b since
g€ AutG.

[ s surjective. We always have f,, (G) C f(G). It follows from 7.5(1)
that g(G) C f(G) C G. But g(G) = G because g € Aut G; hence f(G) = G.

adb) By 1.1(1), g € Hol G. Suppose h is the limit of a subsequence of the
sequence hy. Then, by 1.1(2). fn,,, = hio fn, implies that g = hog. Hence
h is the identity on g(G). Since g(G) is open in G, it follows that h = idg. O

Statement b) gives, in particular (with ng := k):

If the sequence f (] converges compactly in G to a nonconstant function, then
f = 1idg.

Thus sequences of iterates fi"l, f # idg, if they converge at all, have constant
limits. We consider an erample. Let 0 < a < 1. For f := —g, € AutK, where
ga(z) = (z—a)(az — 1), we have f" = —g, with a; := a, an := (a+an_1)/(1 +
aan-1), n > 2. (Prove this.) Since a) < a2 < --- < 1. it follows that lima, = 1.
Hence

. nl . an — 2 1-2z

in _— l — J——— z .
lim f (z)_lmanz—l_z—l_ 1 forallzeE
The sequence f™ thus converges compactly in E to the fixed point —1 of f.

The next theorem follows easily from a) and b).
2. H. Cartan’s theorem. Let G be bounded and let f € Hol G. Suppose

there exists a subsequence fn, of the sequence of iterates of f that converges
compactly in G to a nonconstant function. Then f € AutG.
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Proof. By Montel, the sequence hy = f,,_, -, has a convergent subse-
quence. By Lb) its limit is «de;: by 1a), f € Aut G O

Corollary 1. If (i s bounded and [ € Hol G has two distinet fired pomnts
a, be i, then [ s an automorphism of (7.

Proof. By Montel. a subsequence f,, converges in ;' to a function g. Since
fula) = a and [f,(b) = b for all n, it follows that g(a) = a # b = g(b).
Hence g is not constant; by Cartan. f € Aut G. O

Corollary 2. (Cf. 8.1.2(1).) If G s bounded and a € G. then |f'(a)] <1
for all f € Hol, ;. Moreover. Aut, (i = {f € Tol, & : ' f'{a)| = 1}.

Proof. Again let ¢ - lim f,,, € O(G) (Montel). By (*) of the introduction,
lim f"(a)" = ¢'(a). This is possible only if | f'(a)] << 1 In the case [f/(a)] =

1, we have |¢'(a)] — 1. Then ¢ is not constant. and Cartan implies that
fe Aud.

Conversely, if f € Aut,G, then f 1 € Aut, (7 Thus. since |f'(a)] < 1.
we also have [1/f/ ()] = |(f "){(a)|] < L.ie. [f'(a)] = 1. O

Hustorieal note. 1. Cartan published his theorem in 1932: he considers
arbitrary bounded domains in €, 1 < n < x (cf. [C], pp. 117 118).

Erercises. 1) Let G be bounded, a € G. and f € Hol, GG but [ ¢ At G Prove
that the sequence f[“] converges i G Lo g(z) =T a
in Cartan’s theorem converges.

2) Prove that the sequence fo, | —n,

Remark The proofs of Cartan’s theorem and of both corollaries work be-
cause the sequences iy and f1°1 have convergent subsequences. Tt can be
shown by means of uniformization theory that this occurs for all domains

# C. C*.

3. The group Aut,G for bounded domains. /f (¢ 1s bounded and
a € G, then o Aul,G — C*, [ — f'(a). maps the group Aut,GG somor-
phacally onto either the cirele group St or a finite cyclie subgroup of S (cf.
Proposition 8.4.2).

Proof. a) By Corollary 2.2, Imageo < S'. If we show that Imageo is
closed in §'. then Image o 15 either St or finite cvelic by Theorem 4 (next
subsection). Thus let ¢ € S! be the limit of a sequence ¢, € limageo.
Choose h,, € Aut, G with a(h,,) = ¢,. By Montel. a subsequence of by,
converges in (7 to an h € O((). Since h(a) = a, it follows from Theorem
1.2 that h € Aut, ;. Henee a(h) = h'(a) = c.

b) It remains to show that o is injective, in other words that if f € Aut, ¢
and f'(a) = 1. then f = wd;. We may assume that a = 0. The Taylor series
of f about 0 has the form = + «a,, 2"~ higher-order terms. where m > 2.
Then z + na,, 2" + -+ is the Taylor series of fl*l about 0 (sce () below).
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Since a subsequence of the sequence f ("] converges, so does a subsequence
of nay, = (FIPH)0)/m!, n=1.2..... This can happen only if a,, = 0.
Therefore f(z) = z. a

The following was used in the proof of (b):

(%) Let G be a domain with 0 € G, and let z+amz™ + Y
m > 2, be the Taylor series for f € Holg G about 0. Then

pom Wz, uth

z+ na,z™ + terms in z¥ with v > m
is the Taylor seres for fi") about 0, n =1,2,....

Proof (by induction). We set f, = fl"l. The case n = 1 is clear. Suppose
the assertion has already been verified for n = k > 1. Since fy41 = f o fi,
we have

frsr(2) = ful2) + am fel2)™ + g(2), where g(z)i= > @, ful2)".

v>m

Since fx(0) = 0 implies that og(g) > m, by taking the induction hypothesis
into account we see that the Taylor series of fi4; looks like

2+ kamz™ +am(z + ka,,z™ + )m + .. =2z 4 (k + l)amzm 4+

The theorem contains the following (proof as in 8.4.2):

Uniqueness Theorem. Let G be bounded, a € G, f € Aut,G, f'(a) > 0.
Then f = idg.

L. Bieberbach discovered this theorem in 1913 and proved it by iteration,
as above ([B], pp. 556-557).

4. The closed subgroups of the circle group. Every closed subgroup H # S'
of S' s finute and cychc.

We first prove a lemma.

Lemma. Let L be a closed subgroup of the additwve group R such that L # {0}
and L # R. Then L = rZ, wherer :=inf{z € L : x > 0} € R.

Proof. 1) r is well defined since L # {0}, and r > 0. If » were equal to 0, then for
every £ > 0 there would exist an s € L with 0 < s < ¢. In every interval in R of
length 2¢, there would now be an integer multiple of s. Hence. for every t € R,
there would exist an ¢ € L with |t — x| < e. Thus for € := 1/n, n > 1, there
would be an z, € L with |t — z,| < 1/n. Since L is closed in R. it follows that
t =limzx, € L, giving the contradiction L. = R.

2) We show that L = rZ. Since L is closed, r € L. The inclusion rZ C L
is clear. Let € L be arbitrary. Since r > 0 there exists an n € Z such that
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r(n — 1) < ¢ < rn. This means that 0 < rn —z < r. Since rn — x € L, the
minimality of r implies that ¢ = rn. O

The theorem on subgroups of S' now follows immediately. The “polar coordi-
nate epimorphism” p: R — S!, ¢ — €', is continuous; hence L := p™!(H) is a
closed subgroup of the additive group R. Now L # R since H # S'; hence L = rZ
with 7 > 0 by the lemma. With 7 := ¢'", we then have H = p(L) = {n" : n € Z}.
Since 27 € L because p(27) = 1, there exists an m € N\{0} with rm = 27. This
means that ™ = 1. Thus H = {1,1,7%,....n" " '}.

5*. Automorphisms of domains with holes. Annulus theorem. We
first note a sufficient criterion for a sequence g, € O(G) that converges
compactly in a domain G to have a nonconstant limit function g.

(1) Suppose there exists a closed path v in G such that the intersection of
all the sets Int(g, o7v) contains at least two points. Then g is not constant.

Proof. If g were constant, say g(z) = a, there would exist b € Int(g, o),
b # a, such that

/

d

/ qu = e 2miZ\{0} for almost all n.
vy 9n — b gnoy 11—

Since the sequence g/, /(gn — b) converges compactly to 0 on =, this gives a
contradiction. O

In what follows, we use terminology and results from the theory of do-
mains with holes (see Chapters 13 and 14). We consider bounded domains
G that have no isolated boundary points and have at least one but not in-
finately many holes (and thus are m-connected, 2 < m < oo). For such
domains, the following theorem holds.

Theorem ([C], pp. 448-449). Let f € Hol G be such that every closed path

in G that s not null homologous in G has an image under f that is not
null homologous in G. Then f € AutG.

Proof. Let g € O(G) be the limit of a subsequence g, of the iterates of f.
Since G has holes, there is a closed path + in G that is not null homologous
in G (cf. 13.2.4). Hence, since fl"l oy = fo (f*~U 04), no path g, o is
null homologous in G. Thus for every n there exists a hole L, of G such
that L, C Int(g, o~); cf. 13.1.4. Since G has only finitely many holes, we
may assume (by passing to a subsequence and renumbering the holes) that
L, C Int(g, o7y) for every n. Since L; has at least two points, it follows
from (1) that g is not constant. Theorem 2 now implies that f € AutG. O

The hypothesis on f means that f induces a monomorphism 17: H(G) —
H(G) of the homology group of G; cf. 14.1.2. The next theorem now follows
immediately from elementary homology theory.
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Annulus theorem. If A= {z € C:r < |z|<s},0<r<s< . 15a
(nondegenerate) annulus and f € Hol A s such that f maps at least one
closed path that s not null homologous 1 A to another such path, then
f€ Aut A; hence f(z) = nz or f(z) =nrsz~!, ne S'.

Proof. If I denotes a circle about 0 in A, then (cf. 14.2.1)

-~

H(A) =72l ~Z and f(H(A)) #D0.

Hence f~ : Z — Z is injective, and it follows from the theorem that
f € Aut A. By Theorem 3.4, p. 215, f has the asserted form. m]

Historical note. The annulus theorem was proved in 1950, without the use
of Cartan’s theorem, by H. Huber ([Hu], p. 163). There are direct proofs;
see for example E. Reich: Elementary proof of a theorem on conformal
rigidity. Proc. Amer. Math. Soc. 17, 644-645 (1966).

Glimpse. In general, domains with several holes have finite automorphism groups.
M. H. Heins, in 1946, proved the following for domains G with ezactly n holes,
2<n < oc [Heig):

The group Aut G, 1s isomorphic to a subgroup of the group of all linear frac-
tional transformations. The best possible upper bound N(n) for the number of
elements of Aut G,, 1s:

Nn):=2n i n#4.6, 8, 12, 20:
N(4):=12; N(6):= N(8):=24; N(12):= N(20) := 60.

The numbers 2n, 12, 24, and 60 are the orders of the dihedral, tetrahedral, octa-
hedral, and icosahedral groups. respectively. — (Bounded) domains with infinitely
many holes can have infinite groups: for example, Aut(C\Z) ~ Aut(H\{/ +Z}) =
{z—2+n:ne€lZ}

§3. Finite Holomorphic Maps

A sequence z, € G is called a boundary sequence in G if it has no accu-
mulation point in G. A holomorphic map f : G — G’ is called finite if the
following is true.

If 2, 1s a boundary sequence i G, then f(z,) is a boundary sequence m

G

Biholomorphic maps are finite. A map f : C — C is finite if and only if
f s a nonconstant polynomial. (Prove this.)

In Subsection 2 we give all the finite holomorphic maps E — E. In the
remaining subsections we study finite holomorphic maps between annuli.
Our tools are the maximum and minimum principles.
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1. Three general properties. Finite holomorphic maps f : G — G’ have
the following properties:

(1) Bvery f-fiber f~1(w), w € G', s finate.
(2) Ewvery compact set L wn G’ has a compact prexzmage under f.
(3) f is surjective: f(G) =G’.

Proof. ad (1). First, f is not constant. Hence every f-fiber is locally finite
in ;. If there were an infinite fiber F', then there would be a boundary
sequence z, € F in G. But then the constant image sequence f(z,) would
not be a boundary sequence in G’. Contradiction.

ad (2). We show that every sequence z, € K := f~!(L) has an accumu-
lation point in K. Since f(z,) € L is not a boundary sequence in G’, z, is
not a boundary sequence in G. Hence it has an accumulation point z € G.
Since K is closed. it follows that z € K.

ad (3). If f(G) were not equal to G’, then f(G) would have a boundary
point p € G’. Choose a sequence z, € (7 with lim f(2,) = p. Then z,, is not
a boundary sequence in G, and therefore has an accumulation point z € G.
Hence p = f(z) € f(G). Contradiction. |

Other general statements about finite holomorphic maps can be found
in §4.
2. Finite inner maps of E. Our first assertion is clear.

An mmner map f : E — E s finite if and only if

(1) Il}ml If(z)| =1 (boundary rule).

The next lemma follows immediately from the maximum and minimum
principles.

Lemma. Let G be bounded, and let g be a unit in O(G). Suppose that
lim, _.s¢;|g(2)| = 1. Then g s constant.

This tool easily gives our next result.

Theorem. The following statements about a function f € O(E) are equiv-
alent:

i) f is a finite map E — E.
ii) There exist fimitely many pownts c1,...,¢q € E, d > 1, and an
n € S! such that

d
f(z) = nn £ _:'"1 (finite Blaschke product).
1

[
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Proof. i) = ii). The set f~1(0) C E is finite and nonempty by 1(1) and
(3). Let ¢1,...,¢cq4 € E be the zeros of f in E, where ¢, occurs according
to the order of f at ¢,. Set f, := (2 — ¢,)/(E,z — 1) € O(E); then g :=
fl(fif2... fa) is a unit in E. Since lim,j_, |f.(2)| = 1,1 < v < d, and
lim, 1 |f(2)] = 1 by (1), it follows that limj,_; |g(z)|] = 1. The lemma
now implies that g(2) =n € St,ie. f=nfifs... fa

ii) = i). f(E) C E because |(z — ¢,)/(€,z — 1)| < 1 for all z € E. Since
limp,—; |f(2)| =1, f is finite. m]

Corollary. Let q be a polynomial. Suppose there erists an R € (0, 00) such
that the region {z € C : |g(2)| < R} has a disc By(c), 0 < r < 00, as a
connected component. Then g(z) = a(z — c)?, where d > 1 and |a| = R/7¢.

Proof. The induced map B,(c) == Bg(0) is finite (!). The polynomial
p(z) := q(rz+c)/R induces a finite map E — E. By the theorem, it follows
that p(z) = n2? with n € S, d > 1. This is the assertion. O

The theorem shows that E admits many finite inner maps that are not
automorphisms. The simplest such maps with f(0) = 0 are given by f(z) =
2(z — b)/(bz — 1), b € E. The derivative f’ vanishes at the unique point
c of E that satisfies b = 2¢/(1 + |c|?)! These maps were denoted by 1. in
8.2.3. — In general, bounded domains have no finite inner maps other than
automorphisms; the standard examples are annuli; cf. Theorem 4.

Historical note. P. Fatou (French mathematician, 1878-1929) initiated the
theory of finite holomorphic maps in 1919. Using the Schwarz reflection
principle and nontrivial theorems on the boundary behavior of bounded
holomorphic functions in E, he showed that finite inner maps of E are
given by rational functions ([F;], pp. 209-212). He observed in 1923 ([F,],
p. 192) that these functions are finite Blaschke products. Meanwhile Radé,
in 1922, had already introduced the concept of finite holomorphic maps;
the elegant proof above is his.

With the aid of uniformization theory, one can prove:

If f . E — G is holomorphic and finite, then G can be mapped biholomorphically
onto E (where G can be any Riemann surface).
3. Boundary lemma for annuli. A := A(r,s) and A’ := A(7/, ') always
denote annuli in C with center 0, inner radii v, 7’ > 0, and outer radii s,
8’ < 0o. In order to study finite maps A — A’ we need a purely topological
lemma, which generalizes the boundary rule 2(1) and, intuitively, says that
boundary components of A are mapped to boundary components of A’,
where the inner and outer boundaries may be interchanged.

Boundary lemma. If f : A — A’ s holomorphic and finite, then either

lim |f(z)|=7" and lim |f(2)| =+

|z|—r |z|—s
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or

lim [f(z)] =5 and lim |f(2)] =7".

lz) -1 |z} —~s

Proof. Let t € (r'.8") be fixed. and let S:={2€ C: |z| =t} C A’. Since f
is finite, f~1(S) is compact in A by 1(2) and hence has a positive distance
from 0A. Thus there exist numbers p, 0 with r < p < ¢ < s such that. for
the annuli ¢’ := A(r, p) and D := A(o.s) (as in Figure 9.1).

CNnf ' (S)y=0=Dn f1(9).

FIGURE 9.1.

This means that
f(CYyc A\S and f(D)cC AN\S.

Since f is continuous and (" and D are connected, f(C) and f(D) are also
connected; it follows that

1) f(CYC A(F".t) or f(C)C A(t,s)
and
2) f(D)C A('.t) or f(D)cC A(t,$).

For every sequence z, in A4 with lim |z, | = r, we have z, € C for almost
all n; hence 1) implies, for all such sequences:
Either ' < |f(z,)] < t for almost all n or t < |f(z,)| < &’ for almost all

n. Since t € (r'.s') is arbitrary. we see:

Futher Ilim [f(2)| =7 or 'l}m If(z)| =s".

-7
Similarly, applying 2) shows:
Either |l}m If()=7" or |lim |f(2)] = .

z|—s
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The lemma, will thus be proved if we also show that lim,,|_... | f(2)| cannot
equal lim,_, | f(2)|. Since f(A) = A’ by 1(3), there always exist sequences
zn and wy, in A with lim|f(z,)| = v’ and lim|f(w,)| = ¢/, where, by the
finiteness of f, one of the sequences |z,| and |wn| converges to r and the
other to s. a

Remark. In the proof of the lemma, all that is used is that f is continuous
and surjective and has the boundary sequence property.

4. Finite inner maps of annuli. Every rotation z — nz, 7 € S!, is an
automorphism of the annulus A = A(r,s). If A is nondegenerate, i.e. if
0 <7 < s < oc, then all the combined rotations and reflections z — nrz=!
are automorphisms of A; they interchange the boundary components. It
now follows quickly from Lemma 3 that in the nondegenerate case these
are all the finite inner maps.

Theorem. If A is nondegenerate, then every finite holomorphic map f :
A — A is an automorphism and

f(z)=nz or f(z)=nrsz”*, neS.

Proof. We define a function g € O(A) by

£ lm () =,
g(2) = o
I Jim |f(2)] = 5.

This definition makes sense because rs # 0 and because of Lemma 3 (with
A’ = A). The function g is nonvanishing in A. By Lemma 3,

Il}m lg(z)|=1= II}m lg(2)]-
It follows from Lemma 2 that g(z) =7 € S!. 0

Remark. If A is degenerate, there exist finite inner maps of A that are not
biholomorphic: if r = 0 and s < oo, every map

A(0,s) — A(0,s), z+— az?, where d € N\{0} and a € C* with |a| = !¢,

is finite. The reader should show that these are all the finite inner maps of
A(0, s).

Ezercise. Determine all the finite inner maps of A(r,oc), 0 < r < oo, and of
A(0,00) = C*.

The theorem can be generalized considerably, as Radé showed as early
as 1922 [R]:
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Let G C C be a domain with exactly n holes, 1 < n < oo; suppose that no
hole consists of a single point. Then every finite holomorphic map G — G
ws biholomorphac.

An elegant proof was given in 1941 by M. H. Heins [Hei, |; the statement
is false for n = oco.

5. Determination of all the finite maps between annuli. In order to
generalize Theorem 4. we prove a lemima.

Lemma. Let f € O(A). If |f| 1s constant on every circle about () n A,
then f(z) = az™ witha € C, me Z.

Proof. We may assume f is nonvanishing. Then f(z) = e9(2) 2™ with
g € O(A) and m € Z (lemma on units; cf. Exercise 1.12.1.4 as well as
Theorem 14.2.4). By the hypothesis on |f|, Reg is constant on all cir-
cles about 0 in A. Then, for every 11 € S1, explg(z) — g(nz)] has absolute
value | everywhere in A. The function is therefore constant: it follows
that g(z) — g(nz) = 6. 6 € R, for all z € A, and hence (by induction)
g(z)—g(n™z) = ién, n > 1. Since g is bounded on circles about 0. it follows
that 6 = 0: thus g(z) = g(nz) for all n € S'. Hence g is constant by the
identity theorem. a

For every nondegencrate annulus A = A(r.s), the ratio of the radii
1(A) := s/r > 1 is called the modulus of A.

Theorem. The following statements about nondegenerate annuli A, A’ are
equivalent:

i) There exists a finite holomorphic map f: A — A'.
ii) There exists a natural number d > 1 such that u(A’) = u(A)“.

If ii) s satisfied. then all finite holomorphic maps f: A — A’ are gven by
the functions

f(2) =0’ (z/r)! and  f(z) =ns'(r/2)*, ne St

Proof. i) = ii). By Lemma 3 (the boundary lemma) and Lemma 2, all
functions f(z)/f(e'*2), @ € R, are constant on A with absolute value 1.
In particular, |f(z)| is constant on every circle about 0 in A. Thus, by the
lemma, f(z) = az™ with m € Z\{0}, a € C*. Since f(A) = A’ by 1(3), it
follows that j1(A’) = pu(A) with d := |m|; moreover, it is clear that f has
the given form. :

i) = i). The given functions induce finite maps A — A’. a

Corollary. Two nondegenerate annuli A and A’ are biholomorphaically
equivalent if and only if they have the same modulus. In this case, every fi-
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nite holomorphic map A — A’ is biholomorphic and of the form 2 — 'z /7
orz+— ns'r/z, n € St

If one continues to assume that the outer radii s, s’ are finite but allows

the inner radii to be equal to 0, matters are different. The reader should
prove:

Ifr =0andr >0, orifr > 0 and ' = 0, then there erists no
finite holomorphic map from A to A’. If r = v’ = 0, then the functions
f(z) =ns's™4z%, n € S, d € N\{0}, are precisely the finite maps A — A’.

Ezercise. Discuss the remaining cases of finite maps between degenerate annuli.

The corollary appears in Koebe’s 1914 paper [K] (especially pp. 195-200);
all the degenerate cases are also treated there.

§4*. Radd’s Theorem. Mapping Degree

For all the finite holomorphic maps E — E, A — A’ that have been dis-
cussed. every point in the image has the same number of points in its
preimage (if these are counted according to their multiplicity). This is no
coincidence: we will see in Subsection 3 that for every finite holomorphic
map, all the fibers have the same number of points; this number is called
the mapping degree In Subsection 1. finite maps are characterized with-
out using boundary sequences. In Subsection 2 we consider winding maps.
These are the simplest finite maps. Locally, all nonconstant holomorphic
maps are winding maps; they are the building blocks of finite maps along
each fiber (Proposition 2). — G, G’ always denote domains in C.

1. Closed maps. Equivalence theorem. A map f : X — Y between
topological (metric) spaces is called closed if every closed set in X has a
closed image in Y. For such maps. we have the following result:

(1) For every open neighborhood U in X of a fiber f~'(y). y € Y. there
exists an open mewghborhood V of y in Y such that f~1(V) C U.

Proof. Since X\U is closed in X, f(X\U) is closed in Y. The set V :=
Y\f(X\U) is a neighborhood with the desired property. 0O

(1) will be crucial in the proof of Radé’s theorem in Subsection 3. We
now prove an

Equivalence theorem. The follounng statements about a holomorphic
map f: G — G' are equivalent:

i) f maps boundary sequences in G to boundary sequences in G’
(finiteness).
ii) Every compact set in G’ has a compact prevmage under f.
iil) f is nonconstant and closed.
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Proof. 1) =»> ii). This is statement 3.1(2).

ii) > iii). f(G) is certainly not a single point, for then G = f=1(f(G))
would be compact. Suppose that A is closed in G. Let p € G’ be the
limit of a sequence f(z,). z, € A: we show that p € f(A). Since L :=
{p. [(z0). f(z1)....} € G'is compact, f~1(L) C G is also compact. Hence
the sequence z, € AN f71(L) has a subsequence with a limit 2 € A. It
follows that p = f(2) € f(A). Thus f is closed.

iii) = 1). If there were a boundary sequence z,, € GG whose image f(zn)
had a limit p € @, then — since f~!(p) is locally finite in G — there would
exist a sequence Z, € G\ f~1(p) such that

1z — zal < 1/n and  |f(Z,) — f(z,)] < 1/n.

Then z, would again be a boundary sequence in G. Since p = lim f(Z,)
and f(Z,,) # p for all n. the set {f(z,)} would not be closed in G’. But it
is the image under f of the set {z,,}. which is closed in . Contradiction.

a

2. Winding maps. A nonconstant holomorphic map f: U — V is called
a wmdimg map about ¢ € U if

a) V is a disc about f(c) and there exist a biholomorphic map w: U S E,
w(e) = 0. and a linear map v E — V, v(0) = f(c) such that

A £
22"

b) f has the factorization U 5 E =5 E 5 V. where n = v(f.c).!

Such maps are finite and locally biholomorphic in U\{c}: the number
n is called the mapping degree of f. In the small, holomorphic maps are
always winding maps; in fact (cf. 1.9.4.4):

(1) If f € O(G) s nonconstant, then for every point ¢ € (G there exists
a newhborhood U C G such that the wnduced map fIU : U — f(U) s a
winding map of mapping degree v(f,c) about c.

Winding maps have the following “shrinkage property™:

() If f: U — V 1s a winding map of degree n about ¢, then for every disc
Vi €V oabout f(¢) the induced map f|U, : Uy — Vy. where Uy := f~1(V}),
is a wndmg map of degree n about c.

Proof. Let ¢ o pou. with p(z) := z", be a factorization of f as in a)
and b). Since v is linear, B’ := v~ (V}) is a disc about 0. If » is its radius,
then B := p~Y(B’) is the disc about 0 of radius & := /7. If we now set
wy(z) = s tu(z), z € Uy, and vy(2) := v(rz), z € E, then vy o po u, gives
a factorization of f|U) as a winding map. ]

"Ihe multiplicaty v(f.c¢) of f at ¢ € G is the order of the zero of f — f(c) at
¢. For nonconstant f, the inequality 1 < v(f, ¢) < oc always holds: v(f.c) = 1 if
and only if f is biholomorphic in a neighborhood of ¢; that is, if f'(¢) # 0. For
more on this. sece 1.8.1.4 and 1.9.4.2.
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We now genceralize (1). Let f € O(G) have finite fibers, and let ¢y...., ¢y,
be the distinct points of such a fiber f~!(p). Then f has the following
representation about f~!(p):

Proposition. There exist an open disc V aboul p and open pawrunse dis-
joint neighborhoods Uy, ..., Uy C G of cy,.... cn such that V = f(U/,)
and every mduced map f|U, : U,y — V s a wanding map about ¢ of degree
v(fiep), 1 <p<m.

If f 1s finite, the sets U, and V can be chosen so that f~'(V) = U U
Uo U --- U U,.

Proof. Using (1). we choose pairwise disjoint (,71. R (7,,, C (¢ aboul ¢, ....
¢m such that fl(;',, : (}“ — f(ff,l) is a winding map about ¢ of degree
v(f.cu), 1 < pp < m. There exists a disc V C N, F(U,,) about p. If we sct
U,:=f~1(V)n (}“. then. by (2). f|U, — V is also a winding map about
¢ of degree v(f,c,), 1 < p < m.

If f is finite, then f is closed: hence, by 1(1) and the shrinkage property
(2), V can be chosen so that f~Y(V)=U,U---UU,,. m|

Corollary. If f : G — G’ is finite and locally biholomorphic, then cvery
point p € G’ has a newghborhood V for which f=Y(V) can be decomposed
into finitely many domains U,, j € J. m such a way that cvery mmduced
map f:U; — V s biholomorphac.

Such maps are also called finite-sheeted (unbranched) coverings.

3. Radd’s theorem. If [ € O(G) is nonconstant, then for every point
w € C the number of points in the fiber f='(w) is measured by

deg,.f = Z v(f.e) ifwe f(G), deg,Sf :=0 otherwise.
ce f 7N w)
We have the equivalence
1 < deg, f < oc <= the fiber f ' (w) is nonempty and finmite.
For polynomials ¢ of degree d > 1.
deg..q = d for all w € C (fundamental thecorem of algebra).

For winding maps f : G — G’ about ¢ € G. the degree function is also
constant: deg,.f = v(f,¢) for all w € G'. We prove the following general
result.

Theorem (Radd). A holomorphic map f: (G — G’ s finete if and only of
its degree function deg,, f s finite and constant m (.
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Proof. For every point p € G’ with 1 < deg f < oo, we choose V,
Uy,...,U,, asin Proposition 2. Weset U := U U---UU,,. Since U, . .., Un
are pairwise disjoint, it follows from Proposition 2 that =

(1) deg, (flU) = ) deg,(flU,) = ) _v(fic) =deg,f. weV.

=1 p=1

We can morcover arrange that U is compact and lies in G.

1. Let f be finite. Let p € G’ be arbitrary. By Proposition 2, we may
assume that U = f~1(V). Then deg, f = deg,, (f|U) for all w € V: hence
deg,.f = deg,f for all w € V by (1). Thus the degree function deg,, f is
locally constant, and hence constant in G'.

2. Let deg,, f be finite and constant in G'. If f were not finite, there
would exist a boundary sequence z, in G whose image f(z,) had a limit
p € G'. By (1), it would follow that deg, f=deg,,(f|U) for all w € V. Hence
fY(w) € U for all w € V. Since p = lim f(z,), it thus follows that z,, € U
for almost all n. But this is impossible because I/ C G is compact and z,
is a boundary sequence in G. O

Radé proved this theorem in 1922 ([R], pp. 57-58). The theorem and proof
hold verbatim for arbitrary Riemann surfaces G, G'.

4. Mapping degree. For every finite map f: G — G’,

deg f :=deg,.f = Z v(f.c), wedq,
cef~ 1 (w)

is a positive integer by Theorem 3; it is called the mapping degree of f.
Polynomials of degree d define finite maps C — C of mapping degree d.
The integers d > 1 that appeared in the theorems of Subsection 3 are
always the degree of the corresponding finite maps. We emphasize:

(1) The finite maps f : G — G’ of degree 1 are exactly the biholomorphic
maps.

For every function f € O(G), the set S := {2z € G: f'(z) = 0} is called
the branch locus of f. If f is nonconstant, then S is locally finite in G. For

finite maps f : G — G’, f(S) is therefore always locally finite in G’. The
following is immediate from Radd’s theorem.

(2) If f: G — G' s finite with degree d, then every fiber has at most
d dwstinct points. The fibers over G'\ f(S) are exactly those that have d
distinct pownts. (The induced map G\f~1(f(S)) — G\f(S) is a d-sheeted
covering.)

The following is another immediate consequence of Radé’s theorem.

Degree theorem. If f : G — G’ and g : G' — G” are holomorphic and
finate, then go f : G — G" 1s also finite, and deg(go f) = (degg) - (deg f).
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This statement is to be viewed as an analogue of the degree theorem
M : K] = [M: LJ[L : K] of ficld theory (M is an extension field of L
and L is an extension field of K). For lack of space we cannot pursue the
interesting connections further; see the exercise.

Historical note. Radé introduced the general concept of finite holomorphic
maps in 1922 [R]; he called them (1.m) conformal maps, where m is the
degree.

Ezercise. Let f : G — G’ be holomorphic and finite. Regard O(G) as a ring
containing Q(G’) (with respect to the lifting f* : O(G’') — O(G), h— ho f) and
prove:

a) For every g € O(G). there cxists a polynomial w(Z) = 2" +a, 2" ' +- +
an € O(G")[Z], with n = deg f. such that w(g) = 0.

b) If g is bounded, then ai,...,an are also bounded.

¢) If G is bounded. then G’ # C.

5. Glimpses. That f is holomorphic is used only superficially in the proof of the
equivalences in 1. (To prove the implication iii) = i), one needs only that f. as
a nonconstant function. is nowhere locally constant.) The theorem can thercfore
be generalized. We sketch a more general situation. Let X and Y be metrizable
locally compact spaces whose topologies have countable bases. A continuous map
f: X — Y is called proper if every compact set in Y has a compact preimage
under f. One can prove the following:

a) A continuous map X — Y ts proper if and only i1f 1t maps boundary sequences
m X to boundary sequences Y.
b) Every proper map is closed.

Finite maps are now defined as proper maps whose fibers are all discrete sets;
this definition is equivalent to ours in the holomorphic casc

Finite holomorphic maps play an important role in the function theory of
several variables. With their aid, the n-dimensional local theory can be developed
in a particularly elegant way; the reader can find this carried out systematically
in [GR], Chapters 2 3.

All proper holomorphic maps between domains in C", 1 < n < ~, are au-
tomatically finite. The situation changes if one studies maps hetween arbitrary
complex spaces: since holomorphic maps can now be dimension-lowering (without
being constant), there exist many proper (but not finite) holomorphic maps. For
all such maps. Grauert's famous coherence theorem for image sheaves is valid; cf.
[GR]. Chapter 10, especially p. 207.
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The Theorems of Bloch, Picard,
and Schottky -

Une fonction entiére, qui ne devient jamais ni a a
ni a b est nécessairement une constante. (An entire
function which is never equal to either a or b must
be constant.) — E. Picard, 1879

The sine function assumes every complex number as a value; the exponen-
tial function omits only the value 0. These examples are significant for the
value behavior of entire functions. A famous theorem of E. Picard says that
every nonconstant entire function omits at most one value. This so-called
little Picard theorem is an astonishing generalization of the theorems of
Liouville and Casorati-Weierstrass.

The starting point of this chapter is a theorem of A. Bloch, which deals
with the “size of image domains” f(E) under holomorphic maps; this the-
orem is discussed in detail in Section 1. In Section 2 we obtain Picard’s
little theorem with the aid of Bloch’s theorem and a lemma of Landau.

In Section 3 we introduce a classical theorem of Schottky, which leads to
significantly sharpened forms of Picard’s little theorem and the theorems
of Montel and Vitali. The short proof of Picard’s great theorem by means
of Montel’s theorem is given in Section 4.
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§1. Bloch’s Theorem

One of the queerest things in mathematics. ... the
proof itself is crazy. - J. E. Littlewood

For every region D C C, let O(D) denote the set of all functions that are
holomorphic in an open neighborhood of D = D U 8D.

Bloch’s theorem. If f € O(E) and f'(0) = 1, then the image domain
f(E) contains discs of radius % V2> —112-

The queer thing about this statement is that for a “large family” of func-
tions a unwersal statement is made about the “size of the image domains.”
In our proof of this in Subsection 2, we give a center for a disc of the as-
serted radius. (That the point f(0) is in general not such a center is shown
by the function f,(2) := (e"* — 1)/n = z + ---, which omits the value

—1/n.)

Corollary. If [ is holomorphic m the domain G C C and f( c) # 10
at a pownt ¢ € G, then f(G) contawns discs of every radius L3slf'(c)|.
0 < s <d(e,dG).

Proof. We may assume ¢ = 0. For 0 < s < d(c, G), we have B,(0) C G;
hence g(z) := f(s2)/sf’(0) € O(E). Since ¢’(0) = 1, Bloch’s theorem im-
plies that g(E) contains discs of radius 1/12. Since f(B,(0)) = s|f'(0)|g(E),
the assertion follows. 0

In particular, the corollary contains the following:
If f € O(C) s nonconstant, then f(C) contains discs of every raduwus.

For connoisseurs of estimates, the bound % - V2 = 0.0858 will be im-
proved in Subsection 3 to %\/5 — 2 = 0.1213 and ecven. in Subsection 4,
to v3/4 ~ 0.43301. The optimal value is unknown: see Subsection 5. —

For the applications of Bloch’s theorem in Sections 2, 3, and 4, any (poor)
bound > 0 suffices.

1. Preparation for the proof. If G C C is a domain and f € O(G) is
nonconstant, then by the open mapping theorem f(G) is again a domain.
There is an obvious criterion for the size of discs in the image domain.

(1) Let GG be bounded, f : G — C continuous, and f|G : G — C open.
Let a € G be a pownt such that s := min,es¢1f(2) — f(a)| > 0. Then f(G)
contains the disc By(f(a)).

Proof. Since Of(G) is compact, there exists a point w, € 9f(G) such
that d(0f(G), f(a)) = |w. — f(a)|. Since GG is compact. there exists a se-
quence 2, € (7 w1th lim f(z,) = w. and 2, := limz, € G. It follows that
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f(24) = wa € 8f(G). Since f|G is open, z, cannot lie in G. Hence z, € 0G
and therefore |w. — f(a)| > s. It follows that By(f(a)) C f(G). O

We apply (1) to holomorphic functions f. The number s certainly de-
pends on f’(a) and |f|c (example: f(2) = ez in E). For discs V := B,(a),
r > 0, there are good estimates from below for s.

Lemma. Let f € O(V) be nonconstant and satisfy |f'|v < 2|f'(a)|. Then

Br(f(a)) C f(V), with R:=@-2V2)r|fi(a). (3-2vV2>1})
Proof. We may assume that a = f(a) = 0. Set A(z) := f(z) — f'(0)z; then
1
AR = [ [FQ- O, whence AR)|< [ 1(zt)- £/(0)] lzlat
[0.2] 0
For v € V, Cauchy’s integral formula and standard estimates give

ro) -0 = [ FE% ipe - rors L2

|flv-

[t follows that

1 2 ' 2
) @< [ B < 3

— |2t — |2

Now let p € (0,7). The inequality |f(z) — f/(0)z| > |f'(0)|p — |f(2)| holds
for z such that |z| = p. Since |f'|v < 2|f/(0)|, it follows from () that

OE (p—

Now p — p?/(r — p) assumes its maximum value, (3 — 2¢/2)r, at p* :=
(1 - 1v2)r € (0,7). Tt follows that | f(2)| > (3 — 2v/2)r|f'(0)| = R for all
|2| = p*. Setting G := B, (0) in (1) shows that Bg(0) C f(G) C f(V). O

o’ ’
2 p) 1£(0).

Ezercise. Use (1) Lo show that, for all f € O(E) with f(0) = 0 and f(0) = 1, the
inclusion f(E) D B,(0) holds with r := 1/6 | f|z.

2. Proof of Bloch’s theorem. To every function f € _Q(E), let us as-
sign the function |f'(z)|{1 — |2|}, which is continuous on E. It assumes its
mazimum M at a point p € [E. Bloch’s theorem is contained in the following

Theorem. If f € O(E) is nonconstant, then f(E) contains the disc about
F(p) of radius (3 — V2)M > L|F(0)].
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Proof. With t := (1 — |p|), we have

M =2t

f'(p)l. Bi(p) CE, 1—|z|>t for z€ By(p).

From |f'(2)|(1 — |z|) < 2t|f'(p)|, it follows that |f'(z)| < 2|f'(p)| for all
z € By(p). Henee, by Lemma 1, Br(f(p)) C f(E) for R := (3—2v2)t|f'(p)|.
a

Historieal note. A. Bloch discovered this theorem in 1924 (in fact in a
sharper form; cf. Subsection 4); see [Bl;], p. 2051, and [Blz]. G. Valiron
and E. Landau simplified Bloch's arguments considerably: see [Lz], which
contains a “three-line proof in telegraphic style™. Landau reports on the
early history of the theorem in [Lj].

The proof given above is due to T. Estermann ([E], 1971). It is more
natural than Landau’s proof ([Ls], pp. 99-101) and, for those who like
bounds, yields g— -2 > 1_15 which is better than Landau’s %; for more on
this. see Subsection 5.

A theorem of the Bloch type was first proved in 1904 by Hurwitz. He used
methods from the theory of elliptic modular functions to prove (Math. Werke 1,
Satz [V, p. 602):

If f € O(E) satisfies f(0) =0, f'(0) =1, and f(E*) C C*, then

F(E) 5 Bo(0) for s> % = 0.01724.
Carathéodory showed in 1907 (Ges. Math. Schriften 3. pp. 6-9) that in Hurwitz's
situation 1/16 (rather than 1/58) is the best possible bound.

3*. Improvement of the bound by the solution of an extremal
problem. In Theorem 2. the auxiliary function |f’(z)|(1 - |2|) was intro-
duced without motivation. Here we discuss a variant whose proof is more
transparent: the other auxiliary function |f/(2)|(1 — [2]|?) and the better
bound 2v2 - 2 > /2 appear automatically.

Let f € O(E) be nonconstant. The hope that f(E) contains larger discs
f'(0)] increases leads to an

Extremal problem. Find a function F € O(E) such that F(E) = f(E) and
F has the greatest possible derwative at 0 (extremal function).

as

To make this precise we consider. for a given f. the family

F:={h=foj je Aut E},

(1) £z — W

where j(z) := e €S wek

wez — 1
Since j € O(E) and 5/(0) = e(|w|? — 1), it is clear that

(2) he OE), h(E)=f(E). [rO)=|f(w)(1—|w?
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for every h = foj € F. Since f' € O(E), the (auxiliary) function on the
right-hand side assumes its maximum N > 0 at a point ¢ € E. Thus one
solution of the extremal problem is the function

|F"(0)] = maxju <1 £/ (w)l(1 - [w]?).

F(z):=f (6‘2“’1) € O(E), where F(0)= f(q) and

The following estimate for the derivative of F' is now crucial:

|F'(2)| < 1-LE for 2 € E; in particular,

for 0<r<l.

— 72

Proof. Since F = {F oj, j € AutE} (group property) and every j € AutE
has the form (1), the inequality N > |(F 03)(0)| = |F'(w)|(1 — |w|?) holds
for all w € E. 0

The hopes placed in F are now fully justified.

Bloch’s theorem (variant). Let f € O(E). Suppose that the function
If(2)|(1=|2]?) assumes its mazimum N > 0 at g € E. Then f(E) contains
the disc about f(q) with radius (3v2 — 2)N. — If f'(0) = 1, then f(E)
contains discs of radius 3v2 —2 > £V/2.

Proof. Choose F as in (3). Since |F'(0)] = N and, by (4), |F'(2)] <
N/(1-|z|?), it follows that |F'(z)| < 2|F'(0)| for all |z| < 1v/2. By Lemma
1, f(E) = F(E) therefore contains the disc about f(gq) = F(0) of radius
3v2-2)N. a

The extremal problem has led us to the auxiliary function | f'(z)|(1—|z|?).
It is clear that M < N; thus the new lower bound is obviously better than
that in Theorem 2.

Remark. The auxiliary function |f/(2)|(1 — |2|?) and its maximum N in E
were introduced in 1929 by Landau ([Ls], p. 83). All functions in the set

B:{feomwmmu«am—+ﬁ><m}
z€E

have come to be called Bloch functions. It can be shown that

B is a C-vector space. In fact, B is a Banach space when it is equipped
with the norm || f|| := |f(0)| + sup,cg | f'(2)|(1 — |2]?), which satisfies the
inequality | fI| < 2 sup,eg | F(2)]. 0

A still sharper version of Bloch’s theorem is given in the next subsection.
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4*. Ahlfors’s theorem. If f : G — C is holomorphic, a disc B C f(G) is
called schlicht (with respect to f) if there exists a domain G* C G that is
mapped biholomorphically onto B by f.

Ahlfors’s theorem. Let f € O(E); set N := max ;<1 |f'(2)](1—1z]?) > 0.
Then f(E) contawns schlicht discs of radius %\/§N.

This theoremn makes Bloch’s theorem look weak: not only do we now
have schlicht discs instead of discs, but the new bound v3/4 ~ 0.433 is
more than three times the old bound %\/— —2=0.121.

Ahlfors obtains the theorem from his differential-geometric version of
Schwarz’s lemma ([A], p. 364). In what follows, we give what is probably
the simplest proof at present, that of M. Bonk ([Bon], 1990). The next
lemma is crucial.

Lemma. Let F € O(E) satisfy |F'(z)| < 1/(1 = |2|?) and F'(0) = 1. Then

(*) Re F'(2) > L - V32|

> (1—\/:;'——55 for all z with |z| < l/ﬁ
- z

In order to obtain the theorem from this, we need a biholomorphy crite-
rion.

a) Let G C C be conver and h € O(G), and suppose that Re h'(z) >0
for all z € G. Then h maps G biholomorphically onto h(G).

Proof. For u, v € G the line segment y(t) = u + (v —u)t, 0 < ¢t < L. lies in
G. Hence

1 1
h(v) = h(u) = (v — u) [/0 Re h'(y(¢))dt + 'i/ Im h'('y(t))dt] #0

0

if u # v, since the first integral on the right-hand side is positive because
Re h'(z) > 0. O

We now prove the theorem. We may assume that N = 1. Choose F asin
3*(3); then F’'(0) = n € S!. First let n = 1. By the lemma, Re F'(2) >0
in B := B,(0). p:=1/V3: hence F|B: B — F(B) is btholomorphuc by a).
For all ¢ = pe** € OB, the lemma implies that

IF(¢) - F(0)] = / F ’(te"*°>dt} > / "Re F(te')dt
0 0
V31 3t 1,
ATy T

Hence, by 1(1), F(B) contains discs of radius v/3/4. Since f = F o g with
g € Aut E, f maps the domain G := g~'(B) C E biholomorphically onto a
domain G* that contains discs of radius v/3/4.
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For arbitrary n € S!, one works with n='F. Then f : G — nG* is bi-
holomorphic and nG*, like G*. contains schlicht discs of radins V3/4. O

We now come to the proof of the lemma. We first observe:
It suffices to prove the estimate (x) for all real z € [0,1/V/3].

Indeed, F,(z) := e ¥F (e““’z) satisfies the hypotheses of the lemma for
every ¢ € R. Thus (*) holds for £ and z = re'¥ if it holds for F, and z = r.

The proof itself is rather technical and requires:

b) For z := p(w) := V3(1 — w)/(3 — w) and g(w) := Jw(l - tw)?. the
follounng statements hold:

p(E) C E; p maps [0,1] onto (0, %],

1—\/§z

(%)

¢) If h € O(E) with h'(0) = 1 and |h'(2)| < 1/(1 - |2]|?), then h"'(0) = 0.

qp™!(2)) = and |g(w)|(1 = [p(w)|?) =1 for all w € OE.

The proof of b) is a routine calculation. — For the proof of ¢), consider
the antiderivative

/zh'(C)dC=z+az2+---e(9(E)

0

of h'. For all z = re’¥ € E,

lz+az2+---| < ' |h'(ePt)|dt < /1‘ _dt |z| + l|z|3 + .-
—Ju ~Jy 1-t? 3
Since the quadratic term in |z| is missing on the right-hand side, considering
small |z| shows that @ = 0 and hence that A”(0) = 2a = 0. ]

After these preliminaries, the proof of (*) in the lemma gocs as follows.
Consider the auxiliary function

(w/(1 — w)? is Koebe's extremal function). Since p(E) C E, H is holomor-
phic everywhere in E\{1}. Since F”/(0) = 0 by c), H is also holomorphic
at 1 € C. It follows that H € O(E). Now w/(1 — w)? is real and negative
(< —1) for all w € OE\{1}. Hence

Re H(w) = ﬁ Re (%ﬁ - 1) for all w € OE.
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The inequality |F'(z)|(1 — |z|?) < 1 and the last equation in b) imply
that |F'(p(w))| < |g(w)| on SE. Since Re(a — 1) < 0 for every a € E, it
follows that Re H(w) > 0 for all w € E. Applying the maximum principle
to e~ () now gives Re H(w) > 0 for all w € E. Since q(w) > 0 and

w/(1 - w)? >0 for w € [0,1), it also follows that
Re F'(p(w)) > q(w) for all w € [0, 1].

By the statements in b), this is (x) for all z € [0,1/+/3]. 0o

The next result follows immediately from Ahlfors’s theorem (see the
introduction):

If f € O(C) is nonconstant, then f(C) contains arbitrarily large schlicht
discs.

5*. Landau’s universal constant. Bloch’s theorem and its variation
prompted Landau to introduce “universal constants”; cf. [Ls], pp. 609-
615, and [L4), p. 149. For every h € F := {f € O(E) : f/(0) = 1}, let L,
denote the radius of the largest disc that lies in A(E) and let Bj denote
the radius of the largest disc that is the biholomorphic image under A of a
subdomain of E. Then

=inf{L,:h€ F} and B :=inf{B,:he F}

are called Landau's and Bloch’s constants, respectively. Landau correspond-
ingly defines the numbers A, and A for the family 7* := {h € F:
h injective}. It is trivial that B < L < A. Only bounds are known for
B, L, and A; thus, in the preceding subsection, we showed first that L >
g - V2 ~ 0.0858 and then that L > 3V2 -2 ~ 0.1213. Ahlfors’s the-

orem even says that B > 1v/3 ~ 0.4330. In [Bon], Bonk shows more:
B > 134107, Since 1 log 12 € F*, certainly A < 1r ~ 0.7853. Thus

04330+ 107 < B< L < A <0.7853.

Such estimates and refinements continue to fascinate function theorists; it
has been proved (cf. [L4], [M], and [Bon]) that

0.5 < L <0.544, 0.433+107'% < B <0472, 05< A.

More recently, Yanagihara (Y] proved that 0.5 + 10733 < L. It actually
holds that B < L < A. The

Ahlfors-Grunsky conjecture:

has been unsolved since 1936.
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The thcorem of Hurwitz and Carathéodory also has a corresponding universal
constant. “Diese mochte ich aber nicht die Carathéodory Konstant C nennen, da
Herr Carathéodory festgestellt hat. daBl sie schon einen anderen Namnen, namlich
1/16, hatte.” (But I would not like to call it the Carathéodory constant C, as
Mr. Carathéodory determined that it already had another name, namely 1/16.)
([Ls]. p. 78)

§2. Picard’s Little Theorem

Nonconstant polynomials assume all complex numbers as values. In con-
trast, nonconstant entire functions can omit values, as the nonwvanishing
exponential function shows. With the aid of Bloch’s theorem, we will prove:

Theorem (Picard’s little theorem). Every nonconstant entire function
omits at most one complex number as value.

This statement can also be formulated as follows:

Let f € O(C) and suppose 0 ¢ f(C) and 1 ¢ f(C). Then f 1s constant.

The theorem follows immediately from this: Indeed, suppose h € O(C)
omits the values a. b, where a # b; then [h(z) — a]/(b — a) € O(C) omits
the values 0 and 1 and is therefore constant. Hence h is also constant. O

In C. meromorphic functions can omit two values: for instance, 1/(1+¢%)
is never () or 1. This example is significant in view of

Picard’s little theorem for meromorphic functions. Every function
h € M(C) that omuts three distinct values a,b,c € C s constant.

The function 1/(h — a) is then entire and omits 1/(b — @) and 1/(c — a).
O

In Subsections 1 and 2, we give the Landau-Konig proof of Picard’s little
theorem (cf. [Ly4], pp. 100 102, and [K]).

1. Representation of functions that omit two values. If G C C is
simply conunected, then the units of O(G) have logarithms and square roots
in O(G); cf. 8.2.6. Our next result follows just from this, by elementary
manipulations.

Lemma. Let G C C be simply connected, and let f € O(GQ) be such that
1¢ f(G) and —1 ¢ f(G). Then there exists an F € O(G) such that

f =cosF.

Proof. Since 1 — f? has no zeros in G, there exists a function g € O(G)
such that (f +ig)(f — ig) = f2 + g2 = 1. Then f + ig has no zeros in G,
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and hence f +ig = ¥ with F € O(G). It follows that f —ig = e~*F; thus
f= %(e‘p + e“p) = cos F. O

With the aid of the lemma, we now prove:

Theorem. Let G C C be simply connected, and let f € O(G) be such that
0¢ f(G) and 1 ¢ f(G). Then there exists g € O(G) such that

(1) f= %[1 + cos w(cos wg)].

If g € O(G) s any function for which (1) holds, then g(G) contains no disc
of radius 1.

Proof. a) The function 2f — 1 omits the values +1 in G. Thus, by the
lemma, we have 2f — 1 = cosnF. The function F € O(G) must omit all
integer values. Hence there exists a ¢ € O(G) with F' = cosng.

b) We set A := {m +ir~'log(n + vVn?2 - 1), m € Z. n € N\{0}} and
prove first that ANg(G) = 0. Let a := pxin~'log(qg+ /g% — 1) € A; then
cosma = (e +e77) = F(~1)P((g+ V@ -1+ (g + Ve? - 1) =
(—=1)Pq. Hence cos m(cosma) = +£1 in the case p,q € Z. Since 0,1 ¢ f(G),
the set g(G) N A is empty.

The points of A are the vertices of a “rectangular grid” in C. The “length”
of every rectangle is 1. Since

1+ 1 4+4/14

1+4/1- %
5bg@+%+,h+%)sbg2+¢®<w

by the monotonicity of log =, the “height” of each rectangle is less than 1.
Thus for every w € C there exists an a € A such that |[Rea — Rew| < 1/2
and |Ima — Imw| < 1/2, i.e. |a — w| < 1. Every disc of radius 1 therefore
intersects A. But g(G) N A = §; hence g(G) contains no disc of radius 1. O

S

log(n+ 1+ +y/(n+1)2 - log(n + v/n? = log

In the first edition of this book, Landau’s equation f = — exp|ni cosh(2g)]
was used instead of (1). The presentation with the iterated cosine seems
easier and more natural; it was given in 1957 by Heinz Konig [K], who
at that time was not familiar with the second edition of [L4) and used
Schottky’s theorem in the proof.

2. Proof of Picard’s little theorem. We have f = 1(1 + cos 7(cos7g))
by Theorem 1, where g € O(C) and ¢g(C) contains no disc of radius 1. By
the corollary to Bloch’s theorem (see the introduction to §1), g is constant.
Hence f is also constant. m]
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Remark. Picard’s little theorem can also be formulated as follows:
Suppose that f,.g € O(C) and 1 = ef +¢9. Then f and g are constant.
This statement is equivalent to Picard’s statement. (Prove this.)

Ezercises. 1) Let f,g.h € O(C). Then the following assertions are true.
a)Ilf h = e/ +e9. then h has gither no zeros in C or infinitely many zeros in C.
b) If h is a nonconstant polynomial, then he’ assumes every value.

Hint for a). Transform the problem and apply Picard’s little theorem to g — f.
2) Construct a function f € O(E) that maps E locally brholomorphically onto C.

Hint. Set h(z) := ze®. k(z) := 4z/(1 — z)* (the Koebe function), and f := h o k.
Show that k(E) = C\(—oc. —1] and h((—oc, —1)) = h((-1,0)).

Glimpse. A “three-line proof” of Picard’s little theorem is possible if one
knows that there exists a holomorphic covering v : E — C\{0, 1} (uni-
formization). For one can then, by a general principle from topology. lift
every holomorphic map [ : C — C\{0.1} to a holomorphic map f: C—E
with f = uo j? Since fis constant by Liouville, f is constant. — There
is also a proof of Picard’s little theorem by means of the theory of Broum-
ian motion; cf. R. Durrett: Brownian Motion and Martingales in Analysis,
Wadsworth, Inc.. 1984, 139-143.

3. Two amusing applications. In general, holomorphic maps f: C — C
have no fixed points; f(z) := z+¢?, for example, has none. But the following
does hold.

Fixed-point theorem. Let f : C — C be holomorphic. Then fof . C — C
always has a fized pownt unless f 1s a translation z — =+ b. b # 0.

Proof. Suppose f o f has no fixed points. Then f also has no fixed points,
and it follows that g(z) := [f(f(z)) - z]/[f(z) - 2] € O(C). This function
omits the values 0 and 1 (!); hence, by Picard. there exists a ¢ € C\{0, 1}
with

f(f(z)) —z=c(f(2)—2). z€eC.

Differentiation gives f'(2){f'(f(z)) —¢] = 1 —¢. Since ¢ # 1. f’ has no zeros
and f'(f(z)) is never equal to ¢. Thus f’ o f omits the values 0 and ¢ # 0:
by Picard. f’ o f is therefore constant. It follows that f’ = constant, hence
that f(z) = az + b. Since f has no fixed points, a = 1 and b #£ 0. O

Erercise. Show that every entire periodic function has a fixed point.

The entire functions f := cos o h and g := sin o h, where h € O(C),
satisfy the equation f? + ¢g? = 1. (It is easy to show that these are all the
solutions by entire functions of the equation (f + ig)(f — ig) = 1.) We
investigate the solvability of the Fermat equation X" +Y" = 1. n > 3, by
functions that are meromorphic in C.
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Proposition. If f,g € M(C) and f* +g" =1 withn € N, n > 3, then
either f and g are constant or they have common poles.

Proof. Let P(f) N P(g) = 0. It follows from the equation f™ + g™ =1
that P(f) = P(g); hence f,g € O(C). Suppose that g # 0. Since Z(f)N
Z(g) =0, f/g € M(C) assumes the value a € C at w € C if and only if
f(w) = ag(w). It now follows from the factorization

n

1=H(f—g'"g), (1,...,(n the n roots of X™ + 1,
1

that f/g assumes none of the n distinct values (;,...,(n. Since n > 3,
Picard implies that f = cg with a constant ¢ # (1,...,(,. It follows that
(¢™ + 1)g" = 1. Hence g, and therefore f, is constant. O

Remark 1. The statement just proved is representative of theorems of the following
type. One considers polynomials F(z1, 22) of two complex variables, for instance
2z — 28 — 1, and their zero sets X in C2.

If the unit disc E 1s the universal cover of the “projective curve™ X, there exist
no nonconstant functions f,g € O(C) such that F(f,g) =0.

The hypothesis is satisfied if and only if the curve X has genus g > 1; the
genus of the Fermat curves 27 + 23 —1is g = %(n - 1)(n —2).

Remark 2. There exist nonconstant functions f,g € M(C) with common poles
such that f* 4+ ¢° = 1. Indeed, the equation X3 4+ Y* = 1 describes an affine
elliptic curve in C?, the universal cover of the projective curve is C, and the
projection of C onto the curve determines such functions f, g. Anyone familiar
with the Weierstrass g-function can give such functions explicitly. Starting with

(@a+bp')® + (a—bp')® = p® with constants a,b € C
leads immediately, because of the differential equation p'? = 4p° — g2 — g, to
2dab® =1, g¢2=0, 8a®=gs.

Now it is well known that the value go = 0 corresponds to the “triangular lattice”
{m+ ne*"/® : m,n € Z} (and gs = £['(3)'®/(27)®). Thus, if we choose the g-
function corresponding to this lattice, we have f3 4+ g% =1 for

a+ by’ _a—by 1 1

= , = with a:= = ¥g3, b:= .
f o g o 5 V9s T

§3. Schottky’s Theorem and Consequences

The growth of holomorphic functions that omit 0 and 1 can be estimated
by a unwersal bound. Let S(r) denote the set of all functions f € O(E)
with |f(0)] < r that do not assume the values 0 and 1. We choose any
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constant 3 > 0 for which Bloch’s theorem holds (8 = 75, for instance). In
(0,1) x (0,00), we consider the positive function

L(©,r) :=exp [wexpw (3+ 2r + (3(1—6—_65)] :

Schottky’s theorem. For any function f € S(r),

[f(2)| < L(©,r) forallz € E with |2/ <0,0< O < 1.

It may seem surprising at first glance, but this peculiar theorem is stronger
than Picard’s little theorem, as we see in Subsection 2. In Subsection 3
we use Schottky’s theorem to obtain substantially sharpened versions of
Montel’s and Vitali’s theorems. Of course, the explicit form of the bound-
ing function L(©,r) is not significant; our L(©,r) can be considerably
improved.

1. Proof of Schottky’s theorem. The proof works, with the aid of
Bloch’s theorem, by a clever choice of the function g in Theorem 2.1. We
first observe:

() If cosma = cosmb, then b = a + 2n, n € Z. For every w € C there
erists a v € C such that cosmv = w and |v] < 1+ |w|.

Proof. Since cos ma —cos mb = —2sin 5 (a+b) sin 5 (a—b), the first assertion
is clear. To see the second, choose v = o + 18 w1th w = cos v such that
lo| < 1. Since |w|? = cos? ra + sinh® 78 and sinh? 73 > 7232, it follows
that

lv] = \/02 + 082 < \/l + |wl?/7? <1+ |w|. O

We quickly obtain a sharpened version of Theorem 2.1.

Theorem. If f € O(E) omits the values 0 and 1, then there exists a func-
tion g € O(E) with the followrng properties:

1) f= {1 4+ cosm(cosmg)] and |g(0)| < 3+ 2|£(0)].
2) |g(z )| < |g(0)| + ©/B(1 — ©) for all z such that |2| < 6, 0 <
O <

Proof. ad 1). First, the equation 2f — 1 = cos 7F holds with F € O(E).
By (*), there exists a b € C such that cos7b = 2f(0) — | and |b] < 1 +
[2£(0) - 1] < 2+2|£(0)]. It follows from (x) that b = +F(0) +2k, k € Z. For
F:=+F + 2k € O(E), we now have 2f — 1 = cosF with F(0) = b. Since
F omits all integer values, there exists a § € O(E) with F' = cos7g. By (x)
there exists an a € C such that cosma = b and |a| <1+ |b] < 3+ 2|f(0)].

Since cosma = cosmg(0), we can pass — just as for F — to a function
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g = g + 2m, with g(0) = @ and F = cos7wg. Property 1) holds for these
functions g.

ad 2). By Theorem 2.1, g(E) contains no disc of radius 1. Since d(z.0F) >
| — O when |z] € 6, the corollary to Bloch's theorem (see the introduction
to §1) implies that 3(1 — Q)|¢'(2)] < 1, i.e. |¢'(2)| < 1/3(1 — ©). Hence, for

all z with [z] € 6,
| o
0

This theorem immediately yields Schottky s theorem. For all w. | cos w| <
el and % 1+ cos w| < ¢'*l. Hence 1) and 2) imply that. for all 2 such that
lz| < ©.

S~

g(z) - g(0) :/ ¢'(¢)d¢ and

0

<O/3(1-0). O

£ (2)] < exp[mexp(n|g(2)])] < exp[mexpm(3 + 2[f(0)] + ©/3(1 — O))].

The assertion follows since | f(0)] < r. )

2. Landau’s sharpened form of Picard’s little theorem. 7There exists
a positwve function R(a), defined on C\{0.1}. for which there ws no functwon
[ € O(Bpry(0)) such that f(0) = a. f'(0) = L. and [ onats the values 0
and 1.

Proof. Set R(a) :=3L(3.|a)). I f(z) =a+2+4--- € O(B (ay(0)) omitted
the values 0 and 1. then g(z) := f(Rz) = a+ Rz + - € O(E), where

R := R(a). would also omit these values. By Schotiky, we would have
max{|g(z)] : |z| < 3} < 3 R. But R < 2max{|g(z)| : |z] < 3} by Caunchy's
inequalities, giving a contradiction. O

Landau’s theorem contains Picard’s little theorem: If f € O(C) is non-
constant, choose ¢ such that a := f(¢). f/(¢) # 0. Then, for « € C\{0. 1},

h(z) = F(C+2/f'(Q) = a+ 24 € O(C)

is not always different from 0 and 1 in —B_R(,U(O). O

Landau’s theorem can be proved quite easily with uniformization theory, and
the best possible bounding function R(a) can be given explicitly by mecans of the
modular function A(7).

Hustorecal note. In 1904 Landau “appended™ his theorem. as an “unex-
pected fact.” to Picard’s theorem ([L;]. p. 130 ff). He “hesitated for a long
time to publish it, as the proof seemed correct but the theorem too immprob-
able™ (Coll. Works 4, p. 375). His situation was similar to that of Stieltjes
ten years earlier; of. Chapter 7.3.4. The classical form of the theorem
can be found in [Ly] (p. 102). The precise value of the Landau radius R(e)
was given in 1905 by Carathéodory (Ges. Math. Schriften 3. pp. 6-9).
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3. Sharpened forms of Montel’s and Vitali’s theorems. Let G be a
domain in C and set F := {f € O(G) : f omits the values 0 and 1}. For
w€ G and r € (0, 20), let F, be a subfamily of F such that |g(w)| < r for
all g € F..

(1) There exists a neighborhood B of w such that F, 1s bounded in B.

Proof. Let Bo(w) C G, t > 0. We may assume that w = 0 and 2t = 1. By
Schottky, sup{|g| g, w) : f € F=} < L(3,7) < oc. 0

We now fix a point p € G and set F, :={f € F : |f(p)| < 1}.
(2) The family F, is locally bounded in G.

Proof. The set U := {w € G : F) is bounded in a neighborhood of w} is
open in G; by (1), p € U. If U were not equal to GG, then by (1) there would
exist a point w € U NG and a sequence f,, € F; with lim f, (w) = .
Set g, := 1/fn; then g, € F. Since limg,(w) = 0, the family {g,} is
bounded in a neighborhood of w by (1). By Montel (Theorem 7.1.1), there
is a subsequence gn, that converges uniformly in a disc B about w to some
g € O(B). Since all the g,, are nonvanishing and g(w) = 0, it follows from
Hurwitz (Corollary 7.5.1) that g = 0. But then lim f,, (2) = oc at points
of U as well. Contradiction. O

We now generalize the concept of normal families so as to admit se-

quences that converge compactly to oo in G. The next theorem then follows
from (2).

Sharpened version of Montel’s theorem. The family F 13 normal

in G.

Proof. Let f,, be a sequence in F. If f,, has subsequences in F;, then the
assertion is clear by (2). If only finitely many f, lie in Fi, then almost all
1/fn lie in F;. Choose from these a subsequence g, that converges com-
pactly in G. If its litnit ¢ is nonvanishing, then the subsequence 1/g, of the
sequence f, converges compactly in G to 1/g. If g has zeros, then g = 0
(Hurwitz) and 1/g,, converges compactly to oo. O

The sharpened version of Vitali’s theorem mentioned in 7.3.4 now follows
immediately.

Carathéodory-Landau theorem (1911). Let a,b € C, a # b, and let
f1. f2,... be a sequence of holomorphic maps G — C\{a.b}. Suppose that
lim f,,(w) € C exsts for a set of points in G that has at least one accumnu-
lation point in G. Then the sequence f, converges compactly in G.

Proof. We may assume that a = 0 and b = 1. The sequence f,, € F must
then be locally bounded in G. O
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Exercises. 1) Let A and B be disjoint bounded sets in € with a positive distance
d(A.B). Then {f € O(G) : A ¢ f(G) and B ¢ f(G)} is a normal family in G.
Formulate a corresponding Vitali theorem.

2) Let m € N. The family {f € O(G): f never equals 0 and equals 1 at most
m times i G} is normal in G.

§4. Picard’s Great Theorem

Theorem (Picard’s great theorem). Let ¢ € C be an isolated essential
singularity of f. Then, wm every newghborhood of ¢, f assumes every com-
pler number as a value wmfinitely many times, with at most one exception.

This contains a sharpened form of Picard’s little theorem:

Fuvery entire transcendental function f assumes every compler number
as a value infinitcly many times, with at most one exception.

Apply the theorem to g(z) := f(l/2) € O(C*).
1. Proof of Picard’s great theorem. It suffices to prove:

If fe€ O(E*) and 0.1 ¢ f(E*), then f or 1/f 1s bounded 1n a neighbor-
hood of 0.

Proof. By Montel, there exists a subsequence ( f,, ) of the sequence f,(z) :=
f(z/n) € O(E*) such that the sequence (fy,) or (1/f,,) is bounded
on 9By (0). In the first case, |f(z/ni)| < M for 2] = 5 and ng > 1
with M € (0,0c). Hence |f(z)] < M on every circle about 0 with ra-
dius 1/(2n;). By the maximum principle, |f(z)] < M on every annulus
1/(2ny41) < |z| € 1/(2n4). Hence f is bounded in a neighborhood of 0. In
the second case, it follows similarly that 1/f is bounded in a neighborhood
of 0. a

The proof shows that-the family {f(z/n)} is not normal in E* if f has an
essential singularity at 0. Then there exists (!) a ¢ € EX such that this family is
not normal in any neighborhood of ¢. The next theorem follows easily from this.

Sharpened version of Picard’s great theorem. If f € O(E™) has an ¢ssen-
tial singularity at 0, then there exist ¢ € EX and a € C such that, in every disc
Beml(c/n). 0 < e <|c|. f assumes every value in C\{a}.

The proof is left to the reader.

2. On the history of the theorems of this chapter. E. Picard proved
his theorems in 1879 with the aid of elliptic modular functions ([P], p. 19
and p. 27): his results mark the beginning of a development which eventu-
ally culminated in the value distribution theory of R. Nevanlinna. In 1896.
E. Borel derived Picard’s little theorem with elementary function-theoretic
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tools ([Bor|, p. 571). In 1904 Landau, in [L,], through a modification of
Borel’s train of thought, proved among other things the existence of the
“radius function” R(a). In the same year, F. Schottky was able to generalize
Landau’s result ([Sch], p. 1258).

The theory took a surprising turn in 1924, when A. Bloch discovered the
theorem named after him. As we have seen, everything now follows from
this theorem.

In 1971 T. Estermann. in [E], managed to prove Picard’s great theorem
without resorting to Schottky’s theorem.
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Boundary Behavior of Power Series

A function holomorphic in a domain is completely determined as soon as
one of its Taylor series Y a, (2 — ¢)” is known. Thus all the properties of the
function are, in principle, stored in the sequence of coefficients «,,. As carly
as 1892, J. Hadamard, in his thesis [H], considered the following problem:

What relationships are there between the coefficients of a power seres
and the smgularities of the function it represents?

Hadamard says in this regard (loc. cit. p. 8): “Le développement de Tay-
lor, en effet. ne met pas en évidence les propriétés de la fonction représentée
et semble méme les masquer completement.” (Indeed, the Taylor expansion
does not reveal the properties of the function represented. and even seems
to mask them completely.) Hadamard's question has led to many beautiful
results: this chapter contains a selection. In presenting them. we formmlate
the question more narrowly:

What relationships are there between the coefficients and partial sums of
a power serres and the possibility that the corresponding function can be
eztended holomorphically or meromorphwcally to cerfam boundary pownts of
the disc of convergence?

We discuss theorems of Fatou. Hadamard, Hurwitz, Ostrowski, Polya.
Porter, M. Riesz, and Szeg6. The four sections of this chapter can be read
independently of each other: the bibliography is given section by section.
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§1. Convergence on the Boundary

Even if a function f € O(E) can be extended holomorphically to a boundary
point ¢ € E, its Taylor series about 0 may diverge at c. The examples

S2¥ withe:=x1, Y 2¢/v? withc:=1, 3 2Y/v withc:= -1

show that, in general, convergence or divergence at boundary points has
nothing to do with the possibility of holomorphic extension to these points.
But it. was discovered in the early twenties that there are transparent rela-
tionships for special series. In Subsection 1 we present three classical theo-
rems of Fatou, M. Riesz, and Ostrowski, which link the extension problem
for a power series with the boundedness or convergence of its series of partial
sums. These theorems are proved in Subsections 2 and 3; Vitali’s theorem
again proves helpful. In Subsection 4 we discuss Ostrowski’s theorem.

If B is the dise of convergence of f = > a,2Y, a closed circular arc L in
OB is called an arc of holomorphy of f if f can be holomorphically extended
to every point of L. We have L # OB, since at least one singular point of
f must lie on 08 (cf. 1.8.1.5).

1. Theorems of Fatou, M. Riesz, and Ostrowski. The sequence of
partial sums s,,(z) = (1 — z"*1)/(1 — 2) of the geometric series Y 2 is
uniformly bounded on every arc of holomorphy L C 8E\{1}. In contrast,
the sequence of partial sumns ¢,(z) of the derivative Y vz”~! no longer has
this property; for example, topm41(—1) = m+ 1, m € N. The reason for this
different behavior is that the coefficients of the series are bounded in the
first case, but not in the second.

M. Riesz’s boundedness theorem. If f = > a,2¥ 15 a power series
with bounded sequence of coefficients, then the sequence of its partial sums
Sn 1= Dy au2¥ 18 (unyformly) bounded on every arc of holomorphy L of f.

The boundedness of the sequence of coeflicients alone is not enough to

guarantee the convergence of the sequence s, on L (geometric series). But
we do have the

Convergence theorem of Fatou and M. Riesz. If f = Y a,2" isa
power sertes unth lima,, = 0, then its sequence of partial sums s, converges
uniformly on every arc of holomorphy L of f (to the holomorphic extension

of f to L).

This theorem has an amusing consequence:

If 3" a,2¥ can be continued holomorphically to 1, then (as in p-adic anal-
ys1s)
Za,, 1s convergent < lima, = 0.
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A power series Y a, 2z is called a lacunary series if there exists a sequence
m, € N such that

(*) a, =0 when m, <j<my4;, vEN;, lim(m,4 —m,) = .

The method used to prove the Fatou-Riesz theorem also yields

Ostrowski’s convergence theorem. If f = E A, 2™ 18 a lacunary

series with bounded sequence of coefficients, then its sequence of partial
sums sy, converges uniformly on every arc of holomorphy L of f.

The theorcms just stated are proved in the next two subsections. We
may assume in all cases that the power series has radius of convergence 1.

2. A lemma of M. Riesz. For every arc of holomorphy L C JE of a

power series f = Za, ¥ with radius of convergence 1, there exists a

compact circular sector S with vertex at 0 such that L lies in the interor

S of S and f has a holomorphic extension f to S.! Let 2, and z, be the

corners # 0 of S, and let w; and ws be the points of intersection of JE with

[0.21] and [0, z5]. respectively. (See Figure 11.1.) Then |wy| = |w,| = 1 and
= |z1] = |z2| > 1.

Wy

12

—_
()

FIGURE 11.1.

‘To prove the theorems of Subsection |, we consider the functions

—~

f(z) = sn(2)

gn(z) 1= T(Z —wy)(z —wy), meN

Every function g, is holomorphic in S (!) and the following holds.

IBy definition, f can be extended holomorphically to every point of L. The
reader should convince himself that this extension determines a holomorphic
function in a neighborhood of L that agrees with f in E (one argues as in the proof

of the existence of singular points on the boundary of the disc of convergence, cf.
1.8.1.5).
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M. Riesz’s lemma. Suppose that the power series f = > a,z" (with

radwus of convergence 1) has a bounded sequence of coefficients and that f
is a holomorphic extension of f to S. Then the sequence g, is bounded in

S.

Proof. Because of the maximum principle, it suffices to show that the se-
quence g,|0S is bounded. We verify this directly. Let A := sup|a,| < oo,

M= |ﬂb < o0o. If 2 = rw; with 0 < r < 1, then, first.

o0
i
E ayz

n+1

SA(TH+1+T"+2+...)= lA 7‘"+1.
-7

1f(2) = sn(2)] =

Since |z — wy| =1 —r and |z — ws| < 2, it follows that

A n+4+1 1
|gn('z)| S 1 _ TT rn+1

(1-71)2=24, neN

If z =rw; with 1 < r < s, then, first,
1f(2) = su(2)| S M+ AQ +7+4 - +7") < M + A"V (r = 1).

Since |z —wy| =7 —1and |z — we| < 1+ s, it follows that

lgn(2)] < (M + T—Alr'”l) rn%(r— D(1+s) < (M+A)(1+s), neN
because (r — 1)/r"*! < 1. Since g,(w;) = 0 and |g,(0)| = |an+1wiws| < A
for all n, the sequence g, is therefore bounded on the line segment [0, z;].
Its boundedness on the line segment [0, 23] follows similarly.

On the circular arc between z; and 23, |2] = s and |(z — w;) (2 — w2)| <
(1 + s)2. Hence

- A n+1 1 2 A 2
|gn(/«)| < (1\/[ + ms ) W(l'FS) < <M+ S—_]. (1"*’9) ) nEN,

because s > 1. The sequence g, is therefore bounded on 3S. a

M. Riesz’s lemma plays a crucial role in the next subsection as well as
in 4.1.

Historical note. M. Riesz, in 1916, wrung the lemma out of older proofs
of Fatou's theorem ([R], pp. 145-148 and 151-153). The trick of consider-
ing the “auxiliary sequence” g, is based on an old idea of Riemann: the
convergence (here, for the present, only boundedness) of a series is to be
investigated in certain sets; the behavior of the series is improved at two
auxiliary points by multiplying it by an appropriate function; cf. [R], p.
146.
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3. Proof of the theorems in 1. In all three cases, S and f can be chosen
as in Subsection 2. Since |z| = 1 for z € L, the inequality

(1) |f = sule < a Hgn

5, where a:= mi}l{](z —wy)(z —un)|} >0,
z€L

holds for all n € N.

Proof of M. Riesz’s boundedness theorem. By Lemma 2 there exists a B > 0
such that |g,|s < B, n > N. Hence it follows from (1) that |s,|;, < |f|. +
a !B foralln e N. O

Proof of the convergence theorem of Fatou and M. Ruesz. Since L C S, it
suffices by (1) to show that the sequence g, converges compactly to zero
in S. We fix a ¢ € (0,1). The sequence g, is bounded in S by Lemma 2;
hence. by Vitali's theorem. all we need to prove is that limg,(z) = 0 for

all z with |z| = ¢. Setting &, := sup,s,, |a,|, we have

o~

>0
F2) = a2 < lanle” S eua™ /(L -q). |sl=q, neN

n+1i

Since |(z — w1)(z — wy)| < (1 + q)?, it is clear that

qn+1 1 ’ (1 + q 2

lgn(z)l§5n .;.1(1+(J)2=€n——)\ lZ|=(], n €N,
l1-qgq" 1-g¢

But limz, = 0 since lima, = 0: hence limg, (2) = 0 if |z| = ¢. 0

Proof of Ostrowski’s convergence theorem. Now f is a lacunary series, and
it must be shown that lim |f—s,, | = 0. By (1). it suffices to show that the
sequence ¢, tends compactly to zero in S, Again let ¢ € (0,1). By Vitali,
it suffices to show that limg,, (z) = 0 for |z| = ¢. Setting A 1= suplayn,, |.
we have

If(z) - '5'771L,(/3)| < Z A(]“ = A(]m”"' /(1 - (])‘

Ty

gre | 2 L0 +Q? -
L (2 < 1 + — A My, m,,.
lg' u( )! — 1 ~-q q,n‘l_+_1 ( (J) (1 . q)qq
But lim¢"'v+t~ ™ = () since lim(m, 4+, — m,) = >c: hence limg,, (z) =0
for all z such that |z| = q. O
Since the logarithm function log(l — 2) = =) z” /v can be extended holo-

morphically to every point ¢ € 9E\{1}. the theorem of Fatou and F. and M.
Ricsz yields as a byproduct that

S 2" /v is compactly convergent on OE\{1}.

Of course, this can also be seen in an elementary way, by means of Abel sum-
mation. sce, for example. Exercise 1.4.2.2.
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Historical note. P. Fatou proved his theorem in 1906 for the case that L
is a point and the sequence a, tends to zero like 1/v ([F], p. 389). The
sharper form, for circular arcs and arbitrary sequences a, converging to
zero, was given by M. Riesz in 1911 ([R], p. 77); he gave the elegant proof
by means of Lemma 2, which also yields the boundedness theorem, in 1916
([R], pp. 145-164). In 1921 A. Ostrowski used Vitali’s theorem to prove the
analogue of Fatou’s theorem for lacunary series ([O}, pp. 19-21).

4. A criterion for nonextendibility. Let > a.,, 2™~ be a lacunary series
that dwverges at all points of OE and has a bounded sequence of coefficients.
Then its domawn of holomorphy is E.

This follows immediately from Ostrowski’s theorem in 1.

Corollary. Every wnfinite lacunary series Y am,, 2™v has E as domamn of
holomorphy.

The series 3 22" and 5~ 2™ thus have OE as their natural boundary.
We see moreover that the theta series 8(z) =1+2) z*° has the disc E as
domain of holomorphy. Kronecker pointed out this mathematically natural

example (in contrast to the artificial cxamples of Weierstrass) as early as
1863; for more on this. see [Sch], p. 214, and [K]|, p. 118 and p. 182.

Kronecker obtains nonextendibility from classical transformation formulas for
theta functions; see for instance his terse hints in (K], p. 118. One argues as
follows: the “theta function”

o

I(r) = Ze’”"zf. T € H,

-

satisfies the (by no means obvious) transformation formulas

INT) = \/m-(;—+d5 (i:::;) ,  where ( (Cl 3 ) € SL(2,2); ab. cd even, ¢® =1.
Let p and g be relatively prime integers with even product pg. One concludes
from these formulas that as 7 € H approaches the point p/q vertically, ¥ tends
to oo like 1/\/97 — p.
Since
0(z) = 9(r) with z=¢""",

6(z) becomes infinitely large in the course of a radial approach from E to any
root of unity of the form exp(wip/q), where p and g are as above. Since these
roots of unity are dense in OE, 6(z) cannot be extended holomorphically to any
boundary point of E.

Of course, the growth statement obtained heré for 6(z) does not contradict
the equation 6(z) = []7(1 — 2*)(1 + 2z¥)(1 + 2> 1)2, 2 € E (which follows im-
mediately from 1.5%.1, (J), if one sets z = 1 there and writes z instead of q): the
factors vanishing at the roots of unity suggest only to a cursory glance that 6(z)
could tend to 0.
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§2. Theory of Overconvergence. Gap Theorem

We can get an analytic extension of our power series
merely by inserting parentheses.

— M. B. Porter. 1906

If a power series > a,z” has a finite radius of convergence R > 0, it is
quite possible that sequences of sections of this series may converge com-
pactly in domains that properly contain Br(0). This phenomenon, called
overconvergence, is based on the fact that divergent scries can become con-
vergent through the insertion of parentheses. A simple example is given in
Subsection 1.

There is a close relationship between overconvergence and gaps in the se-
quence of exponents of the power series. Ostrowski's overconvergence theo-
rem, in Subsection 2, deals with this. A simple corollary is Hadamard’s gap
theorem in Subsection 3. In Subsection 4 we describe an elegant procedure
for constructing overconvergent power series.

1. Overconvergent power series. A power series Y  a, 2" with finite ra-
dius of convergence R > 0 is called overconvergent if there exists a sequence
of sections

mp

Smy (2) 1= Za,,z” with mg<m; <---<mp<---
0
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that converges compactly in a domain that properly contains B (0). Prob-
ably the simplest example is due to Ostrowski (|O], 1926. p. 160). He starts
with the polynomial series

- )4 -1 ._ 4¥ .
(1) ;dulz(l 2. 4y -—Ogjg,,(j>-

clearly d;! is the coefficient of the polynomial [z(1 — z)]%" with greatest
absolute value. Since [z(1 — 2)]*" contains only those terms cz/ for which
4" < j < 2-4% successive addition of these polynomials yields a formal
power series

2.4%

k
Za,,::" with sy 4 (2) = Za,,z" = Za’,,[z(l 2. keN
0 0

Proposition. The series Y_ a, 2" 1s overconvergent: Its radwus of conver-
gence is 1, but the sequence of sections sq.4x(2) converges compactly in the
Cassine domamn

W:={zeC:|z(z-1)| <2} D> E\{-1D) U B (D\{2})

(see the right-hand part of Figure 5.2, p. 122).

Proof. By the definition of d,, in (1). all the coefficients in d,[z(1 — 2)]*
have absolute value < 1 and equality holds at least once. Ilence |a,| <1
for all v € N, with equality occurring infinitely many times. It follows that
lim{/]a,| = 1.

Since lim “/d, = %,2 the power series Y d, w?”" has radius of conver-
gence 2. Hence the sequence s, 44 (2) converges compactly in W. a

The only singular point of Z a,z” on OE is —1. The sequence of sections

8y 4+ (2) thus converges compactly in a neighborhood of the set of all the
boundary pownts that are not singular. We now turn to the general theorem
hidden behind this insight.

2. Ostrowski’s overconvergence theorem. A power series [ = ) _a,z"
is called an Ostrowski series if there exist a & > 0 and two sequences

mqg, my, ... and ng,ny,... in N such that
2Since d;! = ,nax (4] ), we have 274 < d, < (4¥ + 1)2_4". Indeed.
<154

for the largest number (’J’.L> among all binomial coefficients (’:) we have

1 ” b4 . . .
T‘Z ' < (T) < 2™, as can immediately be deduced from the equation
m

o= 3) () (2)
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a) 0 < mp <mpg <m <m <o < my <My < Mgy < ooy
n,—m, >bém,, veN

b)a,=0ifm, <j<n, veN

Such series thus have infinitely many gaps (between m,, and n,,), which grow
uniformly; between two sucgessive gaps, however, there may be arbitrarily
long (finite) sections without gaps (between n, and m, ). Thus Ostrowski
series are not necessarily lacunary series in the sense of 1.1. The series in
1 is an Ostrowski series with m, = 2-4¥, n, = 4“*! and, for example,
6=0.9.

Ostrowski’s overconvergence theorem. Let f = Y a,z” be an Os-
trowski series with radius of convergence R > 0, and let A C OBRr(0)
denote the sct of all the boundary points f that are not singular. Then the

" . g v . . . l . }
sequence of sections spm, (2) =Y " a,2z” converges compactly in a neigh-

borhood of Br(0) U A.

Proof (following Estermann [E]). Let R = 1 and let ¢ € JE. We introduce
the polynomial

1
q(w) = §c(wp +wPt!), where peN and p>67',

and consider the following function, which is holomorphic in ¢~ (E) = {w €
C:lq(w)| < 1}:

g(w) = f(q(w)) = Zauq(w)" (Porter-Estermann trick).

We denote by 3~ b,w? the Taylor series of g about 0 € ¢7!(E) and by s, (2)
and t,(2) the nth partial sums of > «, 2" and > b, w", respectively, and
claim that

(%) tLpt1ymy (W) = Sm, (g(w)) forall weC, keN

By the Weierstrass double series theorem [.8.4.2, Zb,,'w" comes from the
series Y a,q(w)” by multiplying out the polynomials ¢(w)” and grouping
the resulting series > a,(...) according to powers of w. The polynomial
sm, (¢(w)) has degree < (p + 1)mi. By b), each polynomial a,q(w)*, u >
my, contains only monomials aw’ with j > png. Since png > pmy +pdmy >
(p + 1)my by a) and since p > 6!, no such polynomial contributes to the
partial sum ¢, .1)m, (w) (Which is a polynomial of degree < (p+1)my). (¥)
follows.

After these technical preliminaries, the proof concludes elegantly. We
have ¢~'(E) D E\{1}, since |1 + w| < 2 and hence |g(w)| < 1 for all
w € E\{1}. The function g = foq € O(g }(E)) is thus holomorphic at
every point of E\{1}. Now. if ¢ € A. then g is also holomorphic at 1 since
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q(1) = c. The Taylor series > b,w” of g and a fortiori the sequence of
sections ¢(,41ym, (w) then converge in an open disc B D E. By (%), the
sequence s, (z) now converges compactly in g(B). Since g(B) is a domain
containing ¢ = (1), the sequence s,,, (z) thus converges compactly in a
neighborhood of any point ¢ € A. a

3. Hadamard’s gap theorem. A power series Y  a, 2" is called an Hada-
mard lacunary series if there exist a 6 > 0 and a sequence my, my,...in N
such that

(L) myy1—my, >0m,, veéN: a,=0ifm, <j<myqy, an, #0.

Every Hadamard lacunary series is a lacunary series in the sense of 1.1
and also an Ostrowski series (with n, := m,;). The converse is not true.
For lacunary series as in 1.1, only lim(m,4+; — m,) = 20 is required; for
Ostrowski series, gaps need appear only “here and there”: but (L) requires
that a gap lic between any two successive terms that actually appear.

Hadamard’s gap theorem. Every Hadamard lacunary series f = 3 a,2"
wnth radus of convergence R > 0 has the disc Br(0) as domawn of holo-
morphy.

Proof. The sequence of partial sums s, (2) is the sequence s,,, (2) (whose
terms, however, appear repeatedly). The sequence s,,,, thus diverges at ev-

ery point ¢ ¢ Bgr(0). Hence, by the overconvergence theorem, all the points
of OBg(0) are singular points of f. |

The gap theorem is in some sense a paradox: power series that, because
of their gaps, converge especially fast in the interior of their disc of conver-
gence have singularities almost everywhere on the boundary precisely on
account of these gaps.

Hadamard's gap theorem is both broader and narrower than Ostrowski's
gap theorem l.1: broader. because the sequence a, need not be bounded;
narrower, because Ostrowski gets by with a weaker gap condition than (L).
Hadamard’s theorem shows once again that E is the domain of holomorphy
of 3" 2% and Y z¥', but is not strong enough to show that the same is true
for the theta series 1+ 25 2,

An instructive example. The series f(z) = 1+ 2z + 3. b,2%", unth
b, 1= 2", defines a function that 1s one-to-one and continuous on E and
holomorphac i E. This function s real differentiable to arbitrarily high or-
der atl every pownt of the curcle OE, but cannat be continued holomorphically
to any pownt of OE.

Proof. Since lim(v?/2%) = 0, we have %/|b,| = 1. Since 2%b, < 27V for
v > k, the sequence and all its derivatives converge uniformly in E; hence
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f is differentiable to arbitrarily high order on E. For all w,z € E, w # z,

|f(w):f(z)

o o]
2+ z:b,,('wzv_1 w4 422
1

o0 oC
2 2'_zl:b"2v‘_‘ 21:2;/(;/ 1)

hence f(w) # f(z). Thus E is the domain of holomorphy of f by the gap
theorem. o

The surprising thing about this example is that singularities on OE are
quite compatible with “smooth and bijective” mapping behavior of the
function there. For experts in Riemann mapping theory, however, nothing
sensational is going on; all we have done is explicitly give a biholomorphic
map E = G that can be extended to a C™ diffeomorphism E — G. But 6G
is an infinitely differentiable closed path that is not real analytic anywhere,
since f|OE cannot be real analytic anywhere (this follows immediately from
the Schwarz reflection principle, which is not discussed in this book).

4. Porter’s construction of overconvergent series. Let the following
be chosen in some way:

— a polynomial g # 0 of degree d with ¢(0) = 0 that has at least one
zero # 0;

— a lacunary series f = a,, 2" with m,4+; > dm, and radius of con-
vergence R € (0,00).

Set

g(Z) = f(Q(Z)) = Zam.,Q(z)mv\
V. = {z2€C:lq(2)| < R},

r = d(0,0V) € (0,00).
Proposition. The Taylor series Y b,z" of g € O(V) about 0 € V is
overconveﬂgent It has radius of convergence r and its sequence of sections
tam, (2) = Zom" b,z¥ converges compactly in V. The component % of V

containing 0 properly contains B,(0) and is the domawn of holomorphy of
glv.

Proof. The key (as in the overconvergence theorem) is the equation

(*) tdmk Z m,q )m,, keN,
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which follows since ¢4, (2) is a polynomial of degree < dmy and g(z)™++
has only terms a2/ with j > mygyq > dmy. The compact convergence of
the sequence ¢4, in V is clear from (*).

The Taylor series > b,z of g € O(V) converges in B.(0) C V. If its
radius of convergence were greater than r = d(0,0V), there would exist
points ¢ ¢ V such that Y b,v” converged. Then, by (x), ZSL U, g(v)™
would be convergent. But this is impossible because |g(v)| > R. Hence r is
the radius of convergence of > b, 2".

We have V' O B,.(0) (trivially) and V # B, (0) (by Corollary 9.3.2, since
g has distinct zeros). By the gap theorem, Bg(0) is the domain of holo-
morphy of f; hence, by Theoremn 5.3.2, V is the domain of holomorphy of
g=foq. O

Ostrowski's example in [ is a special case of the proposition just proved.

5. On the history of the gap theorem. The phenomenon of the ex-
istence of power series with natural boundaries, discovered by Weierstrass
and Kronecker in the 1860s, was given a natural explanation in 1892 by
Hadamard. He proves the gap theorem in [Ha| (p. 72 ff.); a simpler proof
was given in 1921 by Szegd ([Sz], pp. 566 568). In 1927 J. 1.. Mordell, sub-
stituting polynomials w”(1 + w), gave a particularly elegant argument [M]].
M. B. Porter. however, had already had this beautiful idea in 1906, when
he gave the construction in 4 and. in passing, proved the gap theorcm for
the case my,41 > 2m, by means of the substitution w(1 + w) ([Por|. pp.
191 192). Porter’'s work remained unnoticed until 1928; sec the next sub-
section. Ostrowski, in 1921, saw Hadamard's theorem as a corollary of his
overconvergence theorem ([O], p. 150).

In 1890 the Swedish mathematician [. Fredholm. a student of Mittag-Leffler,
pointed out an example like that in 3. For fixed a, 0 < |a| < 1. he considers the
power series

YL ¢
g(z)zZu’z' =l+az+a’2' +a’2"+ -

cf. [Fr}. Becanse lim “v/[a]” = 1. Fabry's gap theorem (see Subsection 7) shows
that E is the domain of holomorphy of g. Since 3~ v**|a]” < 20 for every k and
since 3_ 2, v%|a|” < |a| for small a. g also has the propertics that were shown in
3 to hold for f.

In a letter to Poincaré in 1891, Mittag-Lefller called Fredholm's construction
“un résultat assez remarquable”; cf. Acta Math. 15. 279 280 (1891). Fredholm's
example was also discussed by Hurwitz in 1897 ([Hu]. p. 478).

Lacunary series, in the form of Fourier series. appcar carly in real analysis.
Weierstrass reports in 1872 ([W], p. 71) that Riemann, “in 1861 or perhaps even
carlier,” had presented the lacunary series

Z sinn’x
n?

1
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to his students as an example of a nowhere-differentiable function on R. “Leider ist
der Beweis hierfiir von Riemann nicht veroffentlicht worden und scheint sich auch
nicht in scinen Papieren oder durch miindliche Uberlieferung erhalten zu haben.”
(Unfortunately, Rietnann’s proof of this was not published. nor does it seem to
have survived in his papers or to have been passed down orally.) It is now known
that Riemann’s function is differentiable only at the points 7(2p + 1)/(2¢ + 1),
p.q € Z. and that its derivative there is always —§ (cf. [Ge] and [Sm])."

Since Weierstrass was unable to prove Riemann’s claim, he gave his famous
series

, 3
Zh ‘cos(@"zw), a>3, ao0dd, 0<b<a. ab>1+ 5

in 1872 as a simple example of a continuous nowhere-differentiable function ([W].
pp. 72-74).

6. On the history of overconvergence. In 1921, Erhard Schmidt pre-
sented the paper [O]. pp. 13-21, to the Prussian Academy; in this paper A.
Ostrowski proves his overconvergence theorem with the aid of Hadamard’s
three-circle theorem. Ostrowski wrote at that time (footnote 2) on p. 14)
that R. Jentzsch had discovered overconvergence in 1917 ([J], p. 255 and
pp. 265-270). Ostrowski’s theorem attracted attention at once. Ostrowski
extended his result in several papers (cf. [O]. pp. 159-172, and the bibliog-
raphy given there on p. 159); the “very elegantly constructed examples™ of
Jentzsch were highly regarded until 1928.

But it had escaped the notice of interested mathematicians that M. B.
Porter had already clearly described the phenomenon of overconvergence in
1906. Porter’s examples > a,,, [2(1 + 2)]™v ([Por|, pp. 191 192). which we
discussed in 4. are more natural than the “rather artificially constructed”
examples of Jentzsch. Porter’s series — surprisingly, this too remained hid-
den from the experts — were also studied in the same vear, 1906, by G.
Faber in Munich. but Faber did not particularly emphasize the property
of overconvergence. Porter's examples were rediscovered by 15, Goursat,
who discussed them in the fourth edition of his Cours d'analyse (vol. 2, p.
284). All this first became known in 1928, when Ostrowski published an
addendumny; cf. [O], p. 172.

Ostrowski's proof of the overconvergence theorem is complicated. In 1932
T. Estermann, in [E], saw that Porter’s trick of exploiting the polynomials
wP(1 + w) leads to a direct proof.

7. Glimpses. The sharpest nonextendibility theorem that contains both
Hadamard’s gap theorem and criterion 1.4 was already discovered in 1899
by E. Fabry (1856-1944). A series Y a,2z™ is called a Fabry seres if
limm, /v = oc. We have the following deep result.

3Riemann’s example is also discussed in the article “Riemann’s example of
a continuous ‘nondifferentiable’ function.” by E. Neuenschwander, in Math. Int.
1, 40-44 (1978), which is considerably supplemented by S. L. Segal in the same
volume, pp. 81-82.
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Fabry’s gap theorem. If f = ) a,2™ is a Fabry series with radius of
convergence R, then the disc Bg(0) is the domain of holomorphy of f.

Proofs can be found in (L] (pp. 76-84) and in [D] (pp. 127-133). Fabry,
incidentally, stated his theorem only for lacunary series as defined in 1.1
([Fabry}, p. 382); the formulation given here first appeared in 1906 in
[Faber] (p. 581). The following exercise shows that this version is sharper.

Ezercise. Prove that every general lacunary series is a Fabry series. Give examples
of Fabry series that are not lacunary.

Poélya noticed in 1939 that the converse of Fabry’s theorem is true; he
shows ([Pdl], p. 698):

Let m, be a sequence of natural numbers with mg < my < ---. Sup-
pose that every series > a,z™ has its disc of convergence as domain of
holomorphy. Then limm, /v = oo.
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A Theorem of Fatou-Hurwitz-Pdlya

Fiir eine beliebige Potenzreihe 1ait sich der Konver-
genzkreis zur natiirlichen Grenze machen, blof§ durch
geeignete Anderung der Vorzeichen der Koeffizien-
ten. (For an arbitrary power series, the circle of con-
vergence can be turned into the natural boundary
just by a suitable change in the signs of the coeffi-
cients.) —-G. Polya, 1916

The natural boundary of Hadamard lacunary series is their circle of conver-
gence. This knowledge now leads to the surprising insight that such series
are by no means necessary to specify uncountably many functions with
discs as their domain of holomorphy. We will prove:

Theorem (Fatou-Hurwitz-Pdlya). Let B be the disc of convergence of
the power series f = Y a,z”. Then the set of all functions of the form

Ze,,a,,z". g, € {—1,1}, whose doman of holomorphy 1s B has the carde-

nality of the continuum.*

‘It is known that the set of all sequences ¢ : N — {+1, =1} has the cardi-
nality of the continuum (binary number system): hence, in any case, there exist
“continuously many” functions of the form } e,a,2". ¢ = 1.
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There is something paradoxical about this lovely theorem: Although
there do exist conditions on the absolute values of the coeflicients that
guarantee nonextendibility (Hadamard gaps. for example). there is no con-
dition that refers only to the absolute values of the coeflicients and implies
extendibility.

The theorem does not assert that there exist at most countably many
functions Y e,a,z", ¢ = £1, whose domain of holomorphy is not the disc
B. But F. Hausdorfl showed that this always does occur if lim{/]a,| =
lim {/|a,| (cf. (H]. p. 103)

1. Hurwitz’s proof. We may assume that B = E. Then lim {/]a,| = 1
and there exists a subseries h = Y, 2" of f such that m, > 2m,
and lim "¢/|a,, | = 1. From this Hadamard lacunary series i € O(E), we
construct infinitely many series h, € O(E). n C N, such that none of the

~ 1,

series is finite and every term a,,, 2”7 appears in exactly one of them. Then
h=hy+hy +hy 4 -+ in E (normal convergence of power series).

We set g := [ — h and assign (o every sequence 5y N — {+1. =1}, v — 1,
the series

f,) =q + I]“}I() -+ I“hl e I)nhn + € (/)(IE)

By normal convergence. the Tayvlor series for every fumetion f,, about 0 has
the form > e,a,z". ¢, = £1. Thus it suflices to show that at most count-
ably infinitely many fanctions f,, do not have the unit disc E as domain of
holomorphy. If this were not true, there would exist an uncountable set of
sequences 6 such that every function fs could be extended holomorphically
to a root. of unity. Since the set of all roots of unity is countable, there
would thus exist two distinet sequences & and &’ such that fc and fs could
be extended holomorphically to the same root of unity. Then

fo = for = aghy +ohy +-- . where «, =6, — &, € {-2,0,2}.

would not have the unit disc as domain of holomorphy. But since not all the
v, vanish (becanse & £ &), and since by construction all the h,, are wnfinite
series, the Taylor series > b, 2" of fs — for € O(E) about 0 is an Hadamard
lacunary series (as a subseries of such a series). Moreover, lim {/|b,| =
1 since lim "¢/|a,, |. By Theorem 1. E is the domain of holomorphy of
f& — fo. Contradiction! O

Historwcal note. P. Fatou conjectured the theorem in 1906 ([F]. p. 400)
and proved it for the case lima, = 0 and Z la,,| = >t he wrote at that
time: “Il est infiniment probable. que cela a lieu dans tous les cas.” (It is
extremely probable that this occurs in all cases.) A. Hurwitz and G. Pdlya
gave different proofs of the full theorem in 1916 [HP].
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2. Glimpses. In 1896, E. Fabry and E. Borel already thought that almost all
power series are singular at all points of their circle of convergence. hence that
holomorphic extendibility at certain boundary points is the exception. Borel saw
in this a problem of probabilities. In 1929, H. Steinhaus made these notions
precise and proved [St]:

Suppose that the power serigs Y anz" has radius of convergence 1. Further-
more. let (yr)n>0 be a sequence of independent random nurmnbers that are uni-
formly distributed in the interval [0, 1]. Then, with probability 1, the power series
Y ane®™ ¥z has the unit disc as domain of holomorphy (in other words, the
set of sequences (wn)n>0 € [0, 1]N for which the seres can somewhere be extended
holomorphically beyond OE has measure zero).

In 1929, it was not at all clear what “probability” and “independent random
numbers” meant mathematically, and Steinhaus first had to make these concepts
precisc He did so by constructing a product measure on the infinite-dimensional
unit cube [0, 1]" with the (bounded) Lebesgue measure on each factor [0, 1].

A very transparent proof of Steinhaus’s theorem is due to H. Boerner [Bo]; in
1938 he gave the theorem the following suggestive form:

Almost all power series have their circle of convergence as natural boundary
(here “almost all” means “all up to a set of measure zero” in [0, 1)V).

But one can also interpret the concept “almost all” topologically and ask
whether a corresponding precise formulation of the notions of Fabry and Borel
is possible. This idea was successfully worked out by Pdlya in 1918, in [P]. He
showed that there is a natural topology on the space of all power series with radius
of convergence | such that the set of nowhere-extendible power series is open and
dense in this topological space and hence, in this sense, contains “almost all” the
power secries of the space in question.

Thus the domain of holomorphy of a “general power series” is always its disc
of convergence. Further results from this circle of ideas can be found in [Bi] (pp.
91-104).
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§4. An Extension Theorem of Szego

Geometric series Y 2™, m > 1 fixed. and Hadamard lacunary series Y 2"
have radius of convergence 1, but the corresponding holomorphic functions
behave completely differently as the boundary OE is approached: although
the former can be extended to rational functions with poles at the roots
of unity. the latter have E as domain of holomorphy. This situation is
significant for power series with only finitely many distinct coefficients.

Szegd’s theorem. Let f = Y a,z¥ be a power sermes unth only finitely
many distinct coefficients. Then either E is the domawn of holomorphy of
f or f can be extended to a rational function f(z) = p(2)/(1 = z¥), where
p(z) € C[z] and k € N.

This beautiful theorem is proved and discussed in this section. We may
assume that f is not a polynomial. Then lim{/|a,| = 1 and the series
therefore has radius of convergence 1. It suffices to prove the following:

(Sz) If E is not the domain of holomorphy of f, then from some coeffi-
ctent on the coefficients are periodic; that s, there exist indices A and u,
A < pu, satwsfying

xt; = @u4; forall jeN

Setting P := 23—1 a,2¥ and Q := Zf\'_l a,2¥, we then have
f=P+Q+Q*+Q*MNy...=P+Q/(1-2*"). z€eLE

Preliminaries for the proof of (Sz) are given in Subsection 1; Runge’s little
theorem (12.2.1) is used there. In Subsection 2 we prove a lemma that
will yield, in Subsection 3, a surprising proof of (Sz). In Subsection 4,
as an application of Szegd’s theorem, we characterize the roots of unity
(Kronecker’s theorem).

1. Preliminaries for the proof of (Sz). Let ¢. ¥, s € R be prescribed
numbers with 0 < ¢»—p < 27, s > 1; let § € [0, 1) be a variable. We denote
by G a star-shaped domain with center 0 whose boundary I'(8) consists of
two concentric circular arcs 1 () = se®, ¢ <t < ¥. and y3(t) = (1 —8)e',
¥ <t < 2w+ p, and the two line segments v, (t) = tel . 1 -6 <t <s,and
va(t) = te’¥, 1 — § <t < s, connecting their endpoints (see Figure 11.2).
We need the following:
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FIGURE 11.2.

a) (Approximation theorem) There exists a 6 > 0 such that, for every
n > 0, there is a function (depending on n) R(z) = co + c1/z + c2/2% +
ot cqo1/2971 +1/29, q € N, satisfying

|R‘F(6) <n forallb with0 <6< .

b) (Variant of Riesz’s lemma) Suppose that the power series f = Z a,z”

has bounded coefficients and that there exists a 6 > 0 such that f has a

holomorphic extension f to a neighborhood of Gs. Then there exists an
M > 0 such that

If(z) ~ 5n-1(2)

zn+1

<M foralln>1.
r'(s)

Proof. ad a). Since I'(0)NOE is a compact set # OF, there exist by 12.2.2(1')
a neighborhood U of I'(0) N OE and a function Q(2) = bo + by/2+ -+ +
bk—1/2%71+1/2* such that |Q|y < 1 (Runge’s little theorem!). Choose r >
1 such that I'(0) N B,(0) C U and fix | € N such that, for Q(z2) := z7'Q(2),

|Q(z)| < 1 for all z € I'(0) with |2| > .

Then |é|1"(0) < 1. Now let V be a neighborhood of I'(0) with |C§|v < 1. For
every 1 > 0 there exists an m € N such that |R|y < 7 for R := Q™. Now
choose 8y > 0 so small that I'(§) C V for all § < éo.

ad b). There exists a compact circular sector S with vertex at 0 and
corners zj, 2z such that vy, 2, and v4 lie in S (see Figure 11.2) and f is
still holomorphic in S. By Riesz’s lemma 1.2, the sequence

f(z) — 3 (2)

gn(2) := 7+—1——(z —w)(z —wy), mEN,
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is bounded in S. Set A := sup|a,|; then, for all points z € ~v3,

19n(2)] = |@nt1 + Gup2z+ 0| |z —wi| - |z — wo

< (Ai |z|") .4=44/8.

Thus the sequence g, is bounded on I'(§). Since

f(z) = sn-1(2) _ gn-1(2)

2n+1 T z(z = w)(z — wy)

and |z(z — wy)(z — wy)| has a minimum > 0 on I'(§), this shows that the
sequence [f(z) — 8p-1(2)]/2™*! is bounded on I'($). i

2. A lemma. Let f =) a,z" be a power series with bounded coefficients
and radius of convergence 1 that does not have E as domain of holomorphy.
Then for every € > 0 there erist a ¢ € N and numbers cp,c1,...,cq-1 €C
such that

|Cﬂan +caanyr + -+ Cq—10n4q-1 + an-+-q| <e fO'I" alln _>.. 1.

Proof. We choose 8y > 0 as in 1,a). Since OE is not the natural boundary
of f, there exists a domain G5 of the kind described in Subsection 1 such
that f has a holomorphic extension f to a neighborhood of Gs U I'(6).
We may assume that § < éy. We choose M as in 1,b) and determine the
function R(z) = ¢co + ¢1/2 + -+ + ¢g—1/29"! + 1/27 as in 1,a) such that
|R|r(s)y < 2me/M L, where L denotes the Euclidean length of I'(6). Then

Ry FE) = 501 (2)

(%)

<2me/L foralln>1.
r(5)

It is now immediately clear from the equation

-~

R(Z) f(Z) - 3"—1(2)

zn+l

S (. R S (22 + ans1 +@ngaz + )
=\t Z-1 1 2 n+1 n+2

that the number cpan, + c1@n+1 4+ + Cg—18n4g—1 + Gn4q is the residue at
zero of the function on the left-hand side. This function is holomorphic in
G5\{0}. It follows (from the residue theorem, since I'(§) is a simple closed
path) that

1 o - Sp—
Coan+* +Cq-10n+q-1+0ntq = 5 r(6) R(C)f(o ¢t 1)

d¢, n2>1.

Because of (*), the standard estimate for integrals implies the assertion. O
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The lemma says that, from the gth coefficient on, no coefficient of the
Taylor series for (1 + ¢q-12 + -+ + cp2%) f(2) has absolute value greater
than e.

3. Proof of (Sz). Let d;,...,dx be the pairwise distinct numbers that
occur as values of the coefficients ag,a;,. ... Since (Sz) is trivial for k = 1
(geometric series), we may assume that k > 2. Then

d := min |dx — dx| > 0.
K#EA

Since the sequence ag,a;,... is bounded, Lemma 2 can be applied with
€ := d/3. Hence there exist ¢ € N and numbers cp,c1,...,¢cq-1 € C such
that

1

We now consider all g-tuples (@n,@n+1,...,8n4+¢g-1), n € N. Since only
finitely many distinct g-tuples (namely k7) can be formed from the & num-
bers dy, ..., dx, there exist numbers A, u € N with A < u such that

(a/\aa)\+11 v aa)\+q—1) = (a/,n 277 PRI ,au+q—l)°

Since ax4+, = au+, for 0 < j < g, it now follows from the inequality (#)
that

g-—1 q—1
lax+q—au+ql = z Ci@rts + Qxrta = 2 :Cjauﬂ + Qutq
0 0

1 1
< —d+-=-d < d.
_3+3 <

By the choice of d, this implies that ay+q = a,+4 and hence also that

(a)\+1:a)\+2a cen aaz\+q) = (au+la e aau+q)-

From this it follows, as before, that ax+q+1 = @u4q+1. Thus we see (by
induction) that ax4; = a4, for all j € N. This proves (Sz) and hence
Szegd’s theorem.

Historical note. P. Fatou, in 1906, was the first to investigate power series
with finitely many distinct coefficients [F]. Around 1918, papers of F. Carl-
son, R. Jentzsch, and G. Pélya appeared; cf. [B], p. 114 ff. In 1922 G. Szego
settled the questions, in a certain sense, with his extension theorem ([Sz],
pp. 555-560).

4. An application. We first prove a theorem of Fatou.

Theorem (Fatou, 1905). Let R be a rational function with the following
properties:

1) R is holomorphic mn E and has exactly k poles on GE, all of first
order, k > 1.
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2) The set {ap,ay....} of coefficients of the Taylor series Y, a, 2"
for R about 0 has no accumulation point in C,

Then R(z) = P(2)/(1 = 2¥). where P(2) C Ciz].
Proof.  A{', ..., A" € OE arc the poles of R on JE, then the equation

B, By
R e [ 7 4

holds, where the series on the right-hand side has radius of convergence
> 1. Thus limb, = 0. Since 1/(1 — zA) = Y A¥2¥, it follows (by comparing
coefficients) that

a»p = Bl(\‘; + st + Bk }‘: <+ bu: th.LlS |(1,,,

<B4+ |Bk|+|b], v €N

Hence the set. {ap,q)....} is bounded and therefore, since it has no accu-
mulation points, finite. The assertion follows from Szeg6’s theorem. 0

We note a surprising result.

Corollary (Kronecker’s theorem). If the zeros of the polynomial Q(z) =
2+ @zt Vb 4 gue1z +gn € 2[2]. n > 1, all have absolute value 1,
then all the zeros of Q are roots of unity.

Proof. We may assume that @ is irreducible over Z (Gauss's lemma). Then
Q@ has only lirst-order zeros (division with remainder of @ by @' in Q[z]),
and the rational function 1/ has only first-order poles. which all lie on
OE. Since q, is the product of all the zeros of 2, we have |g,| = L: hence
¢n = £1. Thus all the Taylor coeflicienls of 1/Q are integers (geometric

series for 1/(£1 + @) with v := g,z | --+ | 2"). Our theorem therefore
vields
1 P(z) ) &
00 =" & 1—-2%=P(2)Q(z).
Thus Q() = 0 only if o* = 1. a

Kronecker published his theorem in 1857 ([K]. p. 105). In algebra, the
theorem is usually formulated as follows:

An algebraic integer # 0 which, together with all its conjugates, has ab-
solute value < 1 15 a root of unily.

Of course, there are simple algebraic proofs; the reader may refer to [K]
and also, for instance. to [PSz] (Part VIII, Problem 200. p. 145 and p.
346). An especially elegant variation of Kronecker's proof was given by T.
Bieberbach in 1953, in “Uber einen Satz Pélyascher Art® Arch. Math. 4,
23-27 (1953).



§4. An Extension Theorem of Szego 265

5. Glimpses. Besides power series with finitely many distinct coefficients, power
series with integer coefficients have fascinated many mathematicians — beginning
with Eisenstein, in 1852. Can having integer coefficients exert a tangible effect
on the behavior of the function? The next theorem gives an unexpected answer.

Pélya-Carlson theorem. Let f = Y a.z"” be a power series with integer coeffi-
cients and radius of convergence R = 1. Then either E is the domain of holomor-
phy of f or f can be extended to a rational function of the form p(z)/(1 —2™)".
where p(z) € Z[z] and m,n € N.

This theorem was formulated in 1915 by G. Pdlya ([P], p. 44), and proved in
1921 by F. Carlson [C]. The hypothesis R = 1 is the proper one: when R > 1, f
is obviously a polynomial since lim '\’/m =R'<1landa, € Z when R < 1,
the serics

1

- 2u) m
—_— = 2™, where R=1/V4. m=12,...,
v1-—4zm ;(V

show that f can have extensions that are not rational. The Pdlya-Carlson theo-
rem was generalized in 1931 by H. Petersson to power series with algebraic integer
coefficients (cf. Abh. Math. Sem. Unw. Hamburg 8, 315-322). Further contribu-
tions are due to W. Schwarz: Irrationale Potenzreihen, Arch. Math. 17, 435-437
(1966).

F. Hausdorff had already pointed out in 1919, “as support for Pdlya’s conjec-
ture,” that there are only countably many power series with integer coefficients
that converge in E and do not have E as domain of holomorphy (|H], p.103). In
1921 G. Szego gave a new proof of the Pélya-Carlson theorem ([Sz]. pp. 577 581);
in the same year, Pdlya finally gave the theorem the following definitive form ([P].
p. 176):

Pélya’s theorem. Let G be a simply connected domain unth 0 € G, and let f be
a function that is holomorphic in G up to wsolated singularitics and whose Taylor
sertes about 0 has only integer coefficients. Let p(G) denote the mapping radius
of G with respect to 0 (cf. 8.4.3).

1) If p(G) > 1, then f can be extended to a rational function.

2) If p(G) = 1 and OG 1is a simple closed path, then either f cannot
be extended holomorphically beyond OG anywhere or else f can be
extended to a rational function.

From this deep theorem, which combines such heterogeneous properties as
the rationality of a function, the integrality of its Taylor coeflicients. and the
conformal equivalence of domains, one easily obtains the Pdlya-Carlson theorem
by observing that p(G) < p(G') when G & G’ (cf. 8.4.3). A beautiful presentation
of this circle of problems can be found in [P} (pp. 192-198).
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12
Runge Theory for Compact Sets

Runge approximation theory charms by its wonder-
ful balance between freedom and necessity.

In discs B. all holomorphic functions are approximated compactly by their
Taylor polynomials. In particular, for every f € O(B) and every compact
set K in B, there exists a sequence of polynomials p, such that lim|f —
pnlk = 0. In arbitrary domains, polynomial approximation is not always
possible; in C*, for example, there is no sequence of polynomials p,, that
approximates the holomorphic function 1/z uniformly on a circle %, for it
would then follow that

2mi = / & _ lim/pn(C)dC =0.!
A

The problem of polynomial approximation is contained in a more general
approximation problem. Let K C C be a compact set. A function f: K —
C is called holomorphic on K if there exist an open neighborhood U of
K and a function g that is holomorphic in U and satisfies g|K = f. For
regions D D K, we pose the following question:

When can all functions holomorphic on K be approximated uniformly by
functions holomorphic in D?

"More generally: A function f that is holomorphic in a neighborhood of a curcle
v about ¢ can be approrimated uniformly by polynomials on v iof and only if there

esst a disc B about ¢ with v C B and a function f € O(B) such that fly = f.
The proof is left to the reader.
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The example K = 0E, D = C, shows that such approximation is not
always possible: Runge theory, named after the Gottingen mathematician
Carl Runge, answers the question definitively. Our starting point is the
following classical theorem.

Runge’s approximation theorem. Every function holomorphic on K
can be approrimated uniformly on K by rational functions with poles outside
K.

Since the location of the poles can be well controlled, this leads to a
surprising answer to the question above (cf. Theorem 2.3).

Every function holomorphic on K can be approximated uniformly by
functions holomorphic wn D f and only if the topological space D\K has
no connected component that is relatwely compact in D.

This contains, in particular:

Runge’s little theorem. [If C\K is connected, then every function holo-
morphic on K can be approrimated uniformly on K by polynomials.

This approximation theorem, odd at first glance, will be obtained in
Section 2 from a Cauchy integral formula for compact sets by means of a
“pole-shifting method.” These techniques will be set up in Section 1.

Runge’s little theorem already permits surprising applications; we use it
in Section 3 to prove, among other things,

— the existence of sequences of polynomials that converge pointwise to
functions that are not continuous everywhere;

— the existence of a holomorphic tmbedding of the unit disc in C3.

§1. Techniques

The Cauchy integral formula for discs is sufficient to prove almost all the
fundamental theorems of local function theory. For approximation theory,
however. we need a Cauchy integral formula for compact sets in arbitrary

regions. Our starting point is the following formula, which was mentioned
in 1.7.2.2.

Cauchy integral formula for rectangles. Let R be a compact rectangle
i a region D. Then, for every function f € O(D),

1 Q. | e ifze R
QW/é)RC—de_{O if 2¢ R.
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In what follows, we apply this formula to rectangles parallel to the azes.
In Subsection 1 we obtain the Cauchy integral formula for compact sets,
which is fundamental for Runge theory. The structure of the Cauchy kernel
in the integral formula suggests that we try to approximate holomorphic
functions by linear combinations of functions of the form (z — w,)~!. The
approximation lemma 2 describes how to proceed. In Subsection 3, we
finally show how the poles of the approximating functions can be “shifted
out of the way.”

1. Cauchy integral formula for compact sets. Let K # () be a com-
pact subset of D. Then in D\ K there exist finitely many distinct oriented
horizontal or vertical line segments o!,...,0" of equal length such that,
for every function f € O(D),

) =53 [ i zer
v=1vY7" -

Proof. We may assume that D # C. Then é := d(K,0D) > 0.2 We lay a
lattice on the plane that is parallel to the axes, consists of compact squares,
and has “mesh width” d satisfying v2d < 8. Since K is compact. it inter-
sects only finitely many squares of the lattice (see Figure 12.1); we denote
them by Q!, ..., Q. We claim that

h
KclJQ cp.

K=1

The first inclusion is clear. To show that Q* C D, let us fix a point ¢x €
Q"N K. Then Bg(c,) € D by the definition of é. Since the square Q" has

*The distance between two sets A. B # () is denoted by d(A4, B) := inf{|a - b| :
a€ A.be B}. If Ais compact and B is closed in C, then d(A, B) > 0 whenever
AnNB =0

I I N R I

—

FIGURE 12.1.
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diameter v/2d, the distance from ¢, of every point in Q* is < v/2d. Since
V2d < 6, it follows that Q* C Bs(cx) C D, 1 < k <k.

We now consider those line segments, say o!,...,0", that are part of the
boundaries Q" but are not common sides of two squares Q?, Q9, p # q.
We claim that

(*) U lo¥] C D\K.

For if K intersected a segment o7, then the two squares of the lattice with
o’ as a side would have points in common with K, contradicting the choice
of the segments o, ..., 0"

Since the common sides of different squares of the lattice occur in their
boundaries with opposite orientations, it follows that

Z/ o Z C d( foralleD\UaQ"
BQ" - ov & T

=1

o
If ¢ is an interior point of some square, say ¢ € Q*, then

/ f(¢) dC = 27if(c) and / f(©) d( =0 forall K #¢
oQ: C aQx
by the integral formula for rectangles. Thus (1) has already been proved

for all points of the set U Cf)". Now let ¢ € K be a boundary point of a
square (/. Because of (*), ¢ does not lie on any line segment o”. Hence
the integrals on the right-hand side in (1) are also well defined in this case.

We choose a sequence ¢; € @ with lim¢; = ¢. By what has already been
proved, equation (1) holds for all points z := ¢;. That it holds for 2z :=¢
follows by continuity, once we observe that the vth summand on the right-
hand side of (1) is a continuous function at z € D\|o¥|.3 a

Remark. The theorem was probably first presented and used as a basis
for Runge theory by S. Saks and A. Zygmund in their textbook [SZ], p.
155. The integral formula (1) plays a fundamental role in what follows.
For the present, it is unnecessary to know that the segments o?!,...,o"
automatically fit together into a simple closed polygon; see §4.

We could also argue directly: first, for all [,

£ £(0) ' f(©)
ettt et Sl C Al B (e 7 ol

If we now choose p > 0 such that [({ — &:)(¢ — ¢)| > p on |o”] for all I, then the
absolute value of the difference of the integrals on the left-hand side is bounded
above by |c; — ¢| - |flov - p7' - L(0¥); thus it tends to zero as | increases.
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2. Approximation by rational functions. We begin with a lemma.

Lemma. Let o be a line segment in C disyoint from K and let h be con-
tinuous on |o|. Then the function [ h({)(¢ —z)7'd(, z € C\|o|, can be
approzimated uniformly on K by rational functions of the form

m

C

1
E z —w.’ C1,--.,Cm€C, ’U)],..-,wm6|0|-
p=1 H

Proof. The function v({, z) := h(¢)/(¢ — 2) is continuous on |o| x K. Since
|o] x K is compact, v is uniformly continuous on |o| x K; hence for every
€ > 0 there exists a § > 0 such that

[v(¢,2) —v(¢’,2)| <e forall ((,{',2) € o] x || x K with | — | <.

We subdivide o into segments n!,...,®™ of length < § and choose w, €
|n#|. With ¢, := —h(w,) [ . d¢, we then have, for z € K (standard esti-
mate),

Cu

/” U(C)z)dC— 2z —w

For q(z) := Y7, cu(z —w,)™! € C(K), it now follows, since L(0) =
S L(m*), that

p=1

[ (6.2) = vt 2| s - L)

< L(oc)-¢ forall z€ K. 0

/ v(C, 2)dC — a(2)

The lemma and the integral formula (1) now easily imply the basic

Approximation lemma. For every compact set K in a region D, there
exist finitely many line segments o!,...,0™ in D\K such that every func-
tion f € O(D) can be approzimated uniformly on K by rational functions
of the form

n
c
E ", €C, wgE€ U le¥|.
k=1 z We v=1
Proof. We choose line segments ¢,...,0" in D\K, as in Theorem 1, such

that 1(1) holds. By the lemma, for a given € > 0 there exist functions

m,
Cuv y
qV(Z)zzz_#wuuy w,_u/EIO' I, ISUSTL,
u=1
such that 0
€
Py d¢ — <-, 1<v<
2mi [,v(—zc q"(z)lK"n v=n
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For ¢ := q; + - - - + gn, we then have |f — q|g < €. By construction, ¢ is a
finite sum of terms of the form ¢, /(2 — wy), where w, € |J|0¥|. 0

The set |J|o¥| in which the poles of ¢ lie is — independently of the
quality of the approximation — determined only by D and K (it does, of
course, depend on the choice of the lattice in the proof of Theorem 1). It
is true that if € is decreased, the approximating function ¢ will have more
poles w, on | J|o¥|, but they will not get any closer to K. We show in the
next subsection that, in addition, these poles can be shifted by admitting
polynomials in (z — w) ™! instead of the functions ¢/(z — w).

3. Pole-shifting theorem. Every topological space X can be uniquely
represented as the union of its components (= maximal connected sub-
spaces); for more on this, see 1.0.6.4 and Subsection 1 of the appendix to
Chapter 13. In this subsection, X is a space C\ K, where K denotes a com-
pact set in C. Every component of C\K is then a dormain in C. There is
exactly one unbounded component.

Pole-shifting theorem. Let a and b be arbitrary points in a component Z
of C\K. Then (z—a)~! can be approzimated uniformly on K by polynomials
m (z — b)~1. In particular, if Z is the unbounded component of C\K, then
(2 —a)~! can be approzrimated uniformly on K by polynomials.

Proof. For w ¢ K, let L,, denote the set of all f € O(K) that can be ap-
proximated uniformly on K by polynomials in (2—w)~!. Then the following
is clear.

(x)If (z—s)"' € L. and (2 —c)~? € Ly, then (2 —s)~! € Ly (transitivity).

The first assertion of the theorem is that S := {s € Z : (z—s)"! € Ly} =
Z. Since b € S, it suffices to prove the following:

Ifce S and B C Z is a disc about ¢, then B C §.4

Let s € B. The (geometric) series Z(s —¢)”/(z — ¢)**! converges nor-
mally in C\B to (z — s)~!. Since K N B = ), the sequence of partial sums
converges uniformly on K to (2 —s)~!. Hence (2 —s)™! € L.. Since c € S,
it now follows from (*) that (z —s)~! € Ly, i.e. s € S.

If Z is unbounded, then there exists a d € Z such that K C By (0).
Then all the functions (z —d) ™" are approximated uniformly on K by their
Taylor polynomials. Hence, by what has already been proved (transitiv-
ity!), (z — a)~! can also be approximated uniformly on K by polynomials.

a

‘We use the following assertion, whose justification is left to the reader: Let
S # 0 be a subset of a domain G such that every disc B C G about a powntc € S
liesin S. Then S =G.
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The statement about the unbounded components of C\ K is often inter-
preted as saying that the pole can be shifted to oo. (Polynomials are viewed
as rational functions with poles at 00.)

Remark. The statement that a and b lie in the same component of C\K is nec-
essary for the pole-shifting theorem to hold. For instance, if we choose K := JE,
a € E. and b € C\E, then (2 —a)~! cannot be approximated uniformly on E by
polynomials in (z—b)~!, since such functions g are holomorphic in a neighborhood
of E and therefore

> 1.
S8E

2w = /61-" [ I _ g(()] d¢, whence ‘ - 9(2)

(—a

z—a
In general:

Let Z be a component of C\K, a € Z,b¢ KUZ, and § = |2 —a|k > 0. Then
(z—a)~! —g(2)|k > 6! for every holomorphic function g that is a nonconstant
polynomial in (z — b)~! and for which lim;_og(z) = 0.

Proof. First observe that 0Z C K (cf. 2.3(1)). Now, if there were a g with
|(z—a)~'—g(2)|x < 6", we would have [1—(z—a)g(z)|x < 1.Since 8Z C K and
lim g(z) = 0, it would follow from the maximum principle that |1~ (z—a)g(z)|z <
1, which is absurd because a € Z. m]

§2. Runge Theory for Compact Sets

For every compact sct K C C, the set O(K) of all functions holomorphic
in K is a C-algebra. (Prove this.) We first prove that every function in
O(K) can be approzimated uniformly on K by rational functions with poles
outside K : the location of these poles is given more precisely in Subsection
1. We obtain as a special casc that, if the space C\K is connected, every
function in O(K) can be approximated uniformly by polynomials. With
the techniques of §1, the proofs are easy.

In Subsection 3 we prove the main theorem of Runge theory for compact
sets.

1. Runge’s approximation theorem. For every set P C C. the collection
Cp|z] of rational functions whose poles all lie in P is a C-algebra. and
Clz] € Cp[z] € O(C\P). The significance of the algebras Cp(z] for Runge
theory lies in the following theorem.

Approximation theorem (Version 1). If P C C\K wntersects every
bounded component of C\K, then every function in O(K) can be approzx:-
mated uniformly on K by functions in Cp|z].

Proof. Let f € O(K) and let € > 0. Since f is holomorphic in an open
neighborhood of K. by the approximation lemmma 1.2 there exist a compact
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set L in C, disjoint from K, and a function

q(z)=Z Cn , withwy,...,wx € L,

k=1 We

such that |f — q|x < €/2. Let Z, be the component of C\K containing
wy. If Z, is bounded, there exists by hypothesis a t, € PN Z,. By the
pole-shifting theorem 1.3, there is then a polynomial g, in (z — ¢.)~! such
that

Cx

(%)

1
—gx(2)| < ﬁ-e for all z € K.

Z—w,(

But if Z. is unbounded, then (x) holds, by the same theorem, even with

a polynomial g, in z. The function g := Zﬁzl g« is now rational, all its
poles lie in P, and

Cx

<e. 0O

K

— gx(2)

k

1

— <|f - - <=
ol 17 = e +la =gl < e+ 30|25

The set P can be infinite, e.g. for K := {0} UJ2., 8B;/,(0). — The
next result follows immediately from the theorem just proved.

Approximation theorem (Version 2). If K 1s a compact set in the region
D and if every bounded component of C\K intersects the set C\D, then
every function i O(K) can be approrimated uniformly on K by rational
functions that are all holomorphic in D.

Proof. We can choose the set P C C\K to lie outside D. 0
The next theorem follows for the special case D = C.

Runge’s little theorem on polynomial approximation. If C\K is
connected, then every function in O(K) can be approzimated uniformly on
K by polynomaials.

The sufficient conditions for approximability given in this subsection are
also necessary, as will become apparent in Subsection 3.

Glimpses. Runge’s little theorem stands at the beginning of a chain of theorems
on approximation by polynomials in the complex plane. The hypothesis that f is
holomorphic on K can be weakened. If f is to be approximated uniformly on K by
polynomials, it must certainly be continuous on K and holomorphic at all interior
points of K. In 1951, after Walsh, Keldych, and Lavrentieff had settled special
cases, Mergelyan proved that this necessary condition for polynomial approxi-
mation also suffices if C\K is again assumed to be connected. The book [Gai]
of D. Gaier is recommended to readers who would like to go more deeply into
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this circle of problems; see also [Ga;], where the construction of approximating
polynomials is considered.

2. Consequences of Runge’s little theorem. The next result follows
at once.

(1) If K # OE is a nonempty compact set in OE, there exists a polynomial
P such that P(0) =1 and |P|x < 1.

Proof. Since C\ K is connected, there exists by Runge a polynomial P such

that IP +1/z|g < 1. Then P:=1+ zP is a polynomial with the desired
properties. a

Remark. Every polynomial P(z) = 1+ bz + --- + bp2™, bp # 0, n > 1, as-
sumes values of magnitude > 1 on JE by the maximum principle. This does not
contradict (1).

The following variant of (1) was used in 11.4.1:

(1) If K # OE is a compact set in JE, then there exist a neighborhood
U of K and a function Q(z) = by + by /z+ - + b1 /2¥~1 + 1/2*, with
k> 1, such that |Q|y < 1.

Proof. By (1), there exists a polynomial P(z) = 1 +ajz + - - - + ax2* with
|P|x < 1. Set Q(z) := P(z)/2*; then the inequality |Q|x < 1 also holds.
By continuity, there exists a neighborhood U of K such that |Qy < 1. O

We will need the following in 3.2:

(2) Let Ay, ..., Ak, By,..., B, be parrwise disjoint compact sets in C such
that C\(A; U--- U By) 1s connected, and let uy,...,ux, v1,...,0 be entire
functions. Then for any two real numbers € > 0, M > 0, there ezxists a
polynomial p such that

lux +pla, <e, 1<k<k,

and
min{|va(z) + p(2)| :2€ By} > M, 1<A<L

Proof. Let K := A U---U B,. Since A, ..., B, are pairwise disjoint, the
function h defined to be u, on A« and vy—M —¢ on B) is holomorphic on K.
Hence, by Runge, there exists a polynomial p such that |h + p|x < e. This
means that |ux +p| <e€,1 < k < k. Moreover, since vx+p=M+e+h+p
on B,, it follows for all z € By, 1 < A <[, that

lua(z) +p(2)| 2 M + ¢ — |h(2) + p(z)| 2 M. 0

One can also approximate and interpolate stmultaneously. For example, let 0
be any positive divisor on C with finite support A, and let K denote a compact
set with A C K such that C\K is connected. Then the following holds.
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(3) Ife > 0, then for every f € O(K) there exists a polynomaal p such that
If —plk <e  and oq(f —p) >0(a) forallae A.

Proof. Choose p € Clz] such that oo(f — p) > d(a). a € A. Then, setting
q(2) = [laealz - a)®® we have F := (f — p)/q € O(K). We may assume
that |¢|x # 0. since the case A = K is trivial. Hence. by Runge, there exists a
p € Clz] with |F —plk < ¢|q|x'. Now p := p+¢qp is a polynomial with the desired
properties. O

3. Main theorem of Runge theory for compact sets. The approxi-
mation theorem 1 (version 2) will be strengthened. We first note two simple
statements:

(1) For every component Z of D\K, we have DNOZ C K. If, in addition,
Z 1is relatwely compact® wn D, then |f|z < |flx for all f € O(D).

Proof. If there were a ¢ € DNOZ with ¢ ¢ K, then there would exist a disc
B C D\K about ¢. Since ZN B # @, B would then be contained in Z (since
Z is a component of D\ K'), contradicting ¢ € 8Z. Thus DNOZ C K.

If Z is relatively compact in D, then 8Z C D; hence Z C K. The esti-
mate now follows from the maximum principle for bounded domains. 0O

(2) Every component Zy of C\K that les in D 1s a component of D\K.
If, in addition, Zy 1s bounded, then Z, is relatively compact in D.

Proof. Since Z; is a domain in D\ K, there cxists a component Z, of D\K
such that Zy C Z,. Since Z, is a domain in C\K, it follows from the
maximality of Zy that Zy = Z;.

If Zy is bounded, then Zy := Zo U 82, is compact. Since 8Zy C K (by
(1), with D := C), it follows that Zo ¢ DUK C D. u

We now prove:

Theorem. The following statements about a compact set K in D are equiv-
alent.

i) No component of the space D\K is relatively compact in D.

ii) Every bounded component of C\K intersects C\D.

iii) Every function in O(K) can be approzimated uniformly on K
by rational functions without poles wn D.

iv) Every function in O(K) can be approximated uniformly on K
by functions holomorphic in D.

v) For every c € D\K there exists a function h € O(D) such that
lh(c)| > |hlk-

®A subset M of D is relatively compact in D if there exists a compact set
LCDwithMCL.
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Proof. i) = ii). Clear by (2). — ii) = iii). This is approximation theorem
1 (version 2). — iii) = iv). Trivial. — iv) = i). If D\ K has a component
Z that is relatively compact in D, let a € Z and 6 := |z — a|lg € (0, 00).
For (z — a)~! € O(K), there exists a g € O(D) such that

(z—=a) "t —g(2)|k < c}"l; hence |1 — (z —a)g(2)|k < 1.

By (1), it follows that |1 — (2 — a)g(2)| < 1 for all z € Z, which is absurd
for z = a.

i) = v). The region D\(K U {c}) has the same components as D\ K,
except one from which ¢ has been removed. Hence i) holds and thus, by
what has already been proved, iv) also holds for K U {¢} instead of K.
Thus. corresponding to the function g € O(K U {c}) defined by

g(z):=0 forze K, g(c):=1,

there is an h € O(D) such that |h|x < 3 and |1 — h(c)| < &. This implies
that |h(c)| > 3 and proves v).

v) = i). If D\K had a component Z that was relatively compact in D,
then, by (1), v) would fail for every point c € Z. O

For D = C, we obtain a more precise form of Runge’s little theorem.

Corollary 1. Every function in O(K) can be approrimatled uniformly on
K by polynomials if and only if C\K is connected. This occurs if and only
if for every ¢ € C\K there exists a polynomial p such that |p(c)| > |plk-

Proof. C\K is connected if and only if C\K has no component that is
relatively compact in C. Thus the corollary follows immediately from the
theorem, since every entire function in C can be approximated compactly
by Taylor polynomials. )

We now also have the converse of the first version of the approximation
theorem 1.

Corollary 2. If P ¢ C\K 1s such that every function in O(K) can be ap-
prozvmated uniformly on K by functions in Cp|(z]. then P intersects every
bounded component of C\K.

Proof. By the pole-shifting theorem 1.3, we may assume that P intersects
every component of C\K in at most one point. Then D := C\P is a region
with K C D. Since Cp|z] C O(D), every bounded component of C\K in-
tersects C\D = P because of the implication iv) = ii). 0

With the aid of (2). the equivalence i) < ii) can immediately be improved. For
a set B C C. the following statements are equivalent:
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— B is a component of D\ K that is relatively compact in D,
— B is a bounded component of C\K that lies in D.

The implication iv) = i) can be strengthened. A necessary condition for ap-
proximability is the following (the proof, using (1), is left to the reader):

If f € O(K) can be approzimated uniformly on K by functions in O(D), then
for every component Z of D\K that is relatively compact in D there exzists exactly

one function f that is continuous in ZUK and satisfies fIK = f and flz e 0(2)
(holomorphic extendibility of f to Z ).

§3. Applications of Runge’s Little Theorem

Runge’s theorem belongs in every analyst's bag of
tricks. — L. A. Rubel

It is easy to construct sequences of continuous functions that converge
pointwise to functions with points of discontinuity. But it is hard to find a
pointwise convergent sequence of holomorphic functions whose limit func-
tion is not holomorphic. Osgood’s theorem (see 7.1.5*) could even serve as
an indication that such pathological (?) functions do not exist and that
pointwise convergence is the appropriate notion of convergence for func-
tion theory. Using Runge’s little theorem, one is easily convinced of the
opposite; with this, we fulfill a promise made in the first volume (p. 92).
We prove in Subsection 1 that there exist sequences of polynomials that
converge pointwise in C to discontinuous limit functions and for which the
sequences of derivatives converge everywhere in C — though not compactly
— to the zero function.

In Subsection 2, we use Runge’s little theorem to map the unit disc
biholomorphically onto a complez curve in C3.

1. Pointwise convergent sequences of polynomials that do not
converge compactly everywhere. We set Rt := {z € R: z > 0} and
prove:

Proposition. There exists a sequence of polynomials p, with the following
properties:

1) lim pn(O) =1, lim pn( ) = 0 for every point z € C*.

2) hm p, N z2)=0 for every pownt z € C and every k > 1.

3) E’very sequence p(1 ),pék),...,pn)...., k € N, converges com-
pactly in C\R*, but none of these sequences converges com-

pactly in any neighborhood of any point in RY.

Proof. We set.

I, = {z € B,(0) and d(z,R") > -71;} K, :={0}u [}ln] Ul,, n>1
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K, is compact and every set C\ K, is connected (see Figure 12.2). We place
compact rectangles R,, and S,, around 0 and [%, n|, respectively, in such a
way that the following holds.

FIGURE 12.2.

The sets Ry, Sn, and I, are pairwise disjownt. The compact set L,, :=
R, U S, UI,,1 is a neighborhood of K, ; that is, K,, C L,. The set C\L,
18 connected. )

The function g, defined by

gn(2) :=0for z € L,\Ryn, gn(z):=1forz€ R,

is holomorphic in L,,. Hence, by Runge, there exists a polynomial p, such
that

(*) |pn_gnlL,, < n=l,2,....

S|l

(=}

Since g;, = 0 on L,,, we can even approximate so closely in (*) that p, also
satisfies

1
(%%) ngc)lKnS; fork=1,....n; n=12...5

Since | J K, = C, assertions 1) and 2) follow from (*) and (*x).

By construction, all the sequences p%k) converge compactly in C\R™.
Certainly the sequence p,, does not converge compactly in any disc about
0. If it converged compactly in a disc B about x > 0, then the sequence

would be uniformly convergent on 8B,;(0). By the maximum principle,

5This follows immediately from the Cauchy estimates for derivatives in com-
pact sets; cf. 1.8.3.1.
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it would also be compactly convergent in By,(0), which is impossible. It
now follows that none of the sequences of derivatives converges compactly
about points of R*; cf. 1.8.4.4. ]

Historical note. In 1885, Runge constructed a sequence of polynomials that
converges pointwise everywhere in C to 0, without the convergence be-
ing compact in all of C. He showed, “an einem Beispiel einer Summe von
ganzen rationalen Functionen ..., dass die gleichmaéassige Convergenz eines
Ausdrucks nicht nothwendig ist, sondern dass dieselbe auf irgend welchen
Linien in der Ebene der complexen Zahlen aufhoren kann, wahrend der
Ausdruck dennoch iberall convergirt und eine monogene analytische | =
holomorphe] Function darstellt” (by an example of a sumn of rational entire
functions ..., that the uniform convergence of an expression is not nec-
essary, but rather that it can cease on any line in the plane of complex
numbers, while the expression nevertheless converges cverywhere and rep-
resents a monogenic analytic [ = holomorphic| function) ([Run]. p. 245).
Runge approximates the functions 1/[n(nz — 1)] by polynomials: his se-
quence “convergirt ungleichmassig auf dem positiven Theil der imaginaren
Achse” (converges nonuniformly on the positive part of the imaginary axis).
Runge was the first to ask whether, in the Weierstrass convergence theo-
rem, “die gleichméissige Convergenz nothwendig ist. damit eine monogene
analytische Function dargestellt werde” (uniform convergence is necessary
for a monogenic analytic function to be represented). His counterexample
was hardly noticed at the time.

[ have yet to learn who gave the first example of a sequence of holomorphic
functions that converges pointwise and has a discontinuous limit function. This
was already mathematical folklore by around 1901; cf., for example, [O], p. 32.
Since 1904 at the latest, it has been easy to give such sequences explicitly. It
was then that Mittag-Lefller constructed an entire function F with the following
paradoxical property (cf. [ML], théoréme E. p. 263):

(1) F(0)#0, lim F(re'*)=0 for every (fixed) ¢ € [0, 27).

The sequence gn(z) := F(nz) converges pointwise in C to a discontinuous limit
function. — The Mittag-Leffler function F' can be written down explicitly as
a “closed analytic expression”; see, for example, [PS] (vol. 1, III, Problem 158,
and vol. 2, IV, Problem 184). Montel, in 1907, systematically investigated the
properties of such limit functions, which he called “fonctions de premiére classe”
([Mo], p. 315 and p. 326). F. Hartogs and A. Rosenthal, in 1928, obtained very
detailed results [HR).

A particularly simple construction of an entire function satisfying (1) was given
in 1976 by D. J. Newman [N]. He considers the nonconstant entire function

G(z) := g(z + 41), where g(z):= / e*'t™'dt, z€C,
0

and proves:
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The function G is bounded on every real line through 0 € C.

Then, if G — G(0) vanishes to order k at 0, it is obvious that F(2) := [G(z) -
G(0)]/2* is an entire function for which (1) holds.

Remark. “Explicit” sequences in O(C) can also be given which vanish pointwise
everywhere in C but do not converge compactly to 0. Let F' denote the “Mittag-
LefHler function” given by (1).’

The sequence fn(z) := F(nz)/n € O(C) converges pointunse to 0 wn C, but this
convergence is not uniform mn any neighborhood of the origin.

Proof. By (1), the sequence f, converges pointwise in C to 0. If it were uniformly
convergent in a neighborhood of 0, then, in particular, it would be bounded
in a neighborhood of 0. There would then exist » > 0 and M > 0 such that
|F(z)] < nM for all n > 1 and all z € C with |z| < nr. For the Taylor coefficients
ap,ay,... of F about 0, it would follow that

la,| < (nM)/(nr)” for all v > 0 and all n > 1.

Since lim, o (nM)/(nr)” = 0 for v > 2, F would be at most linear and hence,
since lim,— o, F(re*?) = 0, identically zero, contradicting F(0) # 0. a

Ezercise. Let f € O(C). Construct a sequence of polynomials p,, that converges
pointwise to the function

_J 0 for € C\R
9(2) = { f(2) for z € R.

Do this in such a way that the convergence in C\R is compact and all the se-

. . k . . .
quences of derivatives pﬁ. ) converge pointwise everywhere in C.

2. Holomorphic imbedding of the unit disc in C3. If f,,....f, €
O(D).1 <n < oc,themap D — C*, 2 — (fi(2),...,fn(2)), is called
holomorphic. Such a map is called smooth if (fi(2),..., fL(2)) # (0,....0)
for all 2 € D. Holomorphic maps that are injective, closed,” and smooth
are called holomorphic imbeddings of D into C". It can be shown that
the image set of D in C” is then a smooth (with no singularities) closed
complex curve in C" ( = complex submanifold of C" of real dimension 2).
— Regions D # C admit no holomorphic imbeddings in C, since every
holomorphic imbedding D — C is biholomorphic. Our goal is to prove the
following theorem.

Imbedding theorem. There ezists a holomorphic vmbedding E — C3.
To prove this, it suffices to construct two functions f, g € O(E) such that

lim(|f(zn)| + |g(zn)|) = oc for every sequence z, € E converging to a point
in OE\{1}. Then the three functions f, g. and h, where h(z) :=1/(z — 1),

"A map X — Y between topological spaces is called closed if every closed set
in X has a closed image in Y: see also 9.4".1.
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give a closed holomorphic map E — C3. Since h : E — C is injective and
h'(z) # 0 for all z, this map is also injective and smooth.

The functions f and g are constructed with the aid of Runge’s little the-
orem. We choose a “horseshoe sequence” K, of compact pairwise disjoint
sets in E such that C\(KoU---UK,) is always connected and the sets K,
tend to the boundary JE and taper toward 1 (as in Figure 12.3).

FIGURE 12.3.

Lemma. There exists a holomorphic function f € O(E) such that min{|f(z)|:
z€ Kp,} >2" foralln € N.

Proof. We choose an increasing sequence Vo C V| C --- of compact discs
about 0 such that | JV, = E and

KoUK\ U---UK,_1CV,, VaoNK,=0, neN

Then C\(V, U K,,) is connected. We now recursively construct a sequence
(p) of polynomials. We set py := 3. Let n > 1 and assume that pg,p1,....
Pn-1 have already been constructed. By 2.2(2) (with A; :=V,, B; := K,,
uy :=0,v) :=pg+ -+ pn—1), there exists a polynomial p, such that

() Ipnlv, <27, min{lpo(z)+- - +Pno1(2)+Pa(2)] : 2 € K} 2 27 +1.
The series Y p, converges normally in E to a function f € O(E), since

lpolv, <lpvly, <277 forallv>n

and therefore

oC
Z lpulv, < oo foralln>1.

v=0
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Since K, C V, for v > n, we have |p, |k, < 27" for v > n by (). It follows
from the second inequality in (x) that, for all z € K,,,

oC
f(2) = Ipo(2) + -+ Paci(2) + Pu(2) = D ol
o von
> m+1- )y 27z, O
v>n

Similarly, we choose a second horseshoe sequence L,, in E such that L,
covers the ring between K,, and K,,,; except for a trapezoid with the real
axis as midline (L,, is drawn with a dashed line in the figure). Then, by
the lemma, there exists a ¢ € O(E) such that min{|g(z)| : 2 € L,} > 2"
for all n. By the construction of f and g, it now follows immediately that,
for every sequence z, € E with lim z,, € E\{1},

(xx) lim(] f(2n)| + g(2n)|) = oo.
This completes the proof of the imbedding theorem. )

Remark. The construction of the functions f and g can be refined so that
(xx) also holds for all sequences 2, € E with lim z,, = 1. H. Cartan noticed
this as early as 1931 ([C], p. 301); cf. also [Rub], pp. 187-190. Thus there
exist finite holomorphic maps E — C? (for the concept of a finite map, see
9.3). It can be shown that there even exist holomorphic imbeddings of E
into C?; see, for example, [Gau). It can also be proved that every domain
in C can be imbedded in C3.

84. Discussion of the Cauchy Integral Formula
for Compact Sets

It is aesthetically unsatisfying that in the Cauchy integral formula, which
underlies Runge theory, integrals are taken over line segments rather than
closed paths. In this section we give Theorem 1.1 a more attractive form.
It turns out that, although we cannot get by with a single closed path in
general, there always exist finitely many such paths with nice properties.
— To formulate the theorem conveniently, we introduce some terminology
that is also used in the next chapter. Every (formal) linear combination

y=av' + -4+ a,7", ay, €Z, ¥ aclosed pathin D, 1<v <n,

is called a cycle in D. The support |v| = J|v¥| of v is compact. Integrals
over cycles are defined by

[sic=3a [ sac secn

v=1
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The index function

1 d
ind,(z) := — % €Z, ze€C\|y,

2rt J, C— 2
is locally constant. The interior and exterior of v are defined by
Int~v := {z € C\|v| : ind4(2) # 0}, Exty:={z¢€ C\|v|:ind,(2z) = 0};

these sets are open in C, and the exterior is never empty.

A closed polygon 7 = [p1p2...pkp1] composed of k segments [pi,pal,
[p2,p3). .-, [Pk, p1] is called a step polygon if every segment is horizontal
or vertical in C and all the “vertices” p;,pa,...,px are pairwise distinct.
Then every point in 7 except p; is traversed exactly once.

1. Final form of Theorem 1.1. We use the notation of 1.1. Let o', ...,
o™ € D\K be oriented segments of a square lattice, parallel to the axes in
C, for which Theorem 1.1 holds. We may assume that c"* # to" for u # v.
The integral formula 1.1(1), applied to f(z)(z — ¢) with ¢ € K gives the
integral theorem

(1) Z/ f(O)d¢ =0 for all f € O(D).
v=1v09"

One consequence of this formula is that the segments ¢” automatically fit
together into a step polygon. We claim:

Cauchy integral formula for compact sets (final form). For every

compact set K # 0 in a region D, there exist finitely many step polygons

!, .., 7™ in D\K such that, for the cycle y:= 71 +--- + 7™,

(2) f(z) = ﬁ/ zf—(_g—);dC forall f € O(D) and all z € K.
Y

In particular,
(3) KcIntyCD and indy(z)=1 forallze€ K.

Proof. We write 0¥ = [a,.b,] and first prove:

(%) Every point ¢ € C 1s the witial point a, eractly as many times as it
18 the terminal pownt b, of one of the segments o', ... o".

Let # and ¢ denote the multiplicity with which ¢ occurs in the n-tuples
(ay,....a,) and (by,....by,), respectively. We choose a polynomial p such
that

p(c)=1. p(a,)=0fora, #¢, p(b,) =0 forb, #c.
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Then E::l p(aV) =/and ZZ:I p(bﬂ) = Z By (1)’

0= ;/a p(Q)d¢ = ;[p(bu) —play)]; hences=¢, ie. (x).

The next statement now follows easily.

(%) There exist an enumeration of the 0¥ and natural numbers 0 = ky <

ky < - < kme1 = n such that T+ := gku + gkutl ... 4 gkut1 4 q step
polygon, 1 < pu < m.

Because of (x), finitely many closed polygons can be formed from the o¥.
Let § = [d1dy ... dkd;] be such a polygon. We show by induction on k that
6 decomposes into step polygons. The case k = 4 is clear. If kK > 4 and 6
is not a step polygon, then there exist indices s < t with d; = d;. Then
[dida ... dsdi1 ... didi] and [dsdsy - . . d:] are closed polygons with fewer
than k£ segments to which the induction hypothesis can be applied. Hence
(¥) holds. By Theorem 1.1, this proves the existence of a cycle for which
(2) holds.

The integral theorem for v now follows from (2), and 1/(z — ¢) € O(D)
for all ¢ ¢ D; hence Inty C D. Setting f =1 in (2) gives ind,(K) =1. O

Warning. In general, there is no closed path v in D\K with K C Inty C D and
a fortiori no closed path for which formula (2) holds. If K is a circle about 0
in D := E*, for instance, then every closed path v with K C Int+ lies in the
exterior of K. The disc bounded by K then lies in Int+y, so that Inty ¢ E*.
In this example, the theorem holds for all cycles 4! + 4%, where 4! and 2 are

oppositely oriented circles about 0 in E*, one of which lies outside and one inside
K.

Remark. That the segments o!,...,0" in Theorem 1.1 automatically fit
together into closed polygons was observed in 1979 by R. B. Burckel; in
[B], pp. 259-260, he derives (*) somewhat differently.

2. Circuit theorem. It is intuitively clear that one can go around any
connected compact set K in D by following a closed path in D\K. This
staterment is made precise in what follows; in addition to Theorem 1, we
need the Jordan curve theorem for step polygons:

Lemma. Every step polygon divides C into ezactly two domains:

C\|7| =Intt UExtT and ind,(Int7) = %1.

We carry out the proof in three steps. Let T = [p1p2. .. pxp1], with succes-
sive segments 7, = [px,Px+1), 1 < & < k, where pr41 := p1. Around each
segment m, we place the open rectangle R, of length d ( = mesh width
of the lattice) and width d/4, with . as midline. In one subrectangle of
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Ry\|m;| we choose a point p, and in the other a point g. We denote by U
and V the components of C\|7| with p € U. ¢ € V, and first prove that

o “T w7 -
P = P> > Px >~ ™\
oy - T -1 Ty Ty -1 Px }
* 0 ? R\ R, R, m, |R
—_—
u v
FIGURE 12.4.

a) ind,(U) = ind,(V) £ 1; hence, in particular, UNV = 0.

If @ is the square that has |m| as one side and contains q, let v € {£0Q}
be chosen in such a way that —m; is a segment of « (first part of Figure
12.4). With the auxiliary polygon é := [pyuvps ... pip1], we then have

inds(z) = ind,(z) + ind,(z) for all z € C\(|6| U [p1. p2)).

Since the index function is locally constant and [p,q] € C\|6], it follows
that inda(p) = inds(q). Since ind(p) = 0 and ind,(¢) = %1, this yields
ind, (p) = ind,(q) £ 1 and therefore a). — We next observe that

b) Re\lme| CUUYV forallk =1,...,k.

Every point in Ri\|7.| can be joined to a point in Rx_1\|mx—1| by a
path in C\|7|, 2 < k < k (the two possible situations are illustrated in the
second and third parts of Figure 12.4; since 7 is a step polygon, neither
of the segments of the grid distinct from 7,_, and 7, that intersect at p,
belongs to 7). Thus b) follows by induction since Ry\|7;| C U UV trivially,
by the choice of U and V.

After these preliminaries, it is easy to complete the proof of the lemma.
Let w € C\|7| be arbitrary. We pass a line g through w such that gN|r| # 0
and g intersects no vertex px of 7. On g, there is a point w’ € |7| that is
closest to w. Since u' is not a vertex, some point of the rectangle Ry
lies on the segment [w,w’]. Since [w,w’) C C\|7|. it follows from b) that
C\|7| ¢ UU V. The domains U and V are thus the only components of
C\|7|. Since UNV = @ by a), it follows that either U = Int 7 and V = Extr
or vice versa. In both cases, a) implies that ind,(Int 7) = £1. 0

Remark. The proof can be modified so as to hold for all simply closed polygons;
it is also easy to see that the polygon is the common boundary of its interior and
exterior. — The proof above is probably due to A. Pringsheim ([Pr], pp. 41-43).

The theorem now follows from Theorem 1 and the lemma.
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Circuit theorem. If K is a compact set in D, then for every connected
subset L of K there exists a closed path (step polygon) 7 in D\K such that
ind,(L) = 1.

Proof. Choose v = 7! + --- + 7™ as in Theorem 1. Let ¢ € L. Since
1 = ind,(c) = }_7_, ind,x(c), there exists a k such that ind,«(c) # 0. By
the lemma, ind,(c) = 1 for 7 := 7% or 7 := —7*. That ind, (L) = 1 follows

because L is connected. 0

Remark. One cannot always find 7 such that Int 7 C D; for example, no such 7

exists in the case L = K := 0E and D := C*.
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13
Runge Theory for Regions

Jede eindeutige analytische Function kann durch eine
einzige unendliche Summe von rationalen Functionen
in ihrem ganzen Giiltigkeitsbereich dargestellt wer-
den. (Every single-valued analytic function can be
represented by a single infinite sum of rational func-
tions in its whole region of validity.)

-- C. Runge, 1884

In Chapter 12 we proved approximation theorems for compact sets; we now
prove their analogues for regions. We pose the following question:

When are regions D, D' with D C D' a Runge pawr? That is, when can
every function holomorphic in D be approximated compactly by functions
holomorphic in D'?

The pair E*, C is not Runge since 1/2 € O(E*) cannot be approximated
on circles about 0. Topological constraints must be imposed on how D lies
in D'. Our starting point is the following theorern.

Runge’s approximation theorem. Fvery function holomorphic in D
can be approrimated in D by rational functions that have no poles in D
(Theorem 1.2).

Since, as in the case of compact sets, the location of the poles in C\D
can be well controlled, a bit more thought shows that
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D and D' form a Runge pawr of and only +f the space D'\ D has no compact
components (Theorem 2.1).

This contains:

If D has no holes ( = compact components of C\D ), then every function
holomorphic an D can be approximated compactly by polynomials.

The proofs will be carried out in Sections 1 and 2. They involve no
function-theoretic difficulties. but some topological obstacles must be over-
come. An important tool is Sura-Bura’s theorem, proved in the appendix
to this chapter, on compact components of locally compact spaces. (Refer-
ences to this appendix will be indicated by A.)

In 1.3, as an application of the approximation theorem. we give a short
proof of the main theorem of Cauchy function theory. In Section 2 we
prove, among other things, that D, D’ form a Runge pair if and only if
every cycle in D that is null homologous in D’ is already null homologous
in D (the Behnke-Stein theorem). In Section 3 we introduce the concept of
the holomorphically convex hull; this leads to another characterization of
Runge pairs.

§1. Runge’s Theorem for Regions

Let A and B. where A C B, be subalgebras of the C-algebra of all C-valued
functions that are continuous in D. The function algebra A is said to be
dense m B if every function in B can be approrimated compactly m D by
functions in A; that is, if for every g € B there exists a sequence f, € A
that converges compactly to g. We observe immediately:

A function g € B can be approximated compactly in D by functions in A
of it can be approzimated uniformly on every compact set in D by functions

m A.

Proof. Every set K,, := {2 € D :|2| <n and d(z,0D) > 1/n} C D, n > 1,
is compact. Choose f, € A such that |¢g — fu|k, < 1/n, n > 1. Since
K,, C K, for m < n, we have

1
K, <—, 1<m<n.
n

lg_fannl S |g_f’ll

The sequence (f,,) thus converges uniformly to g on every K,,. Since every
compact set in D is contained in some K, (prove this), the sequence f,
converges compactly to g in D. a

In what follows, the components of the (locally compact) space C\ D play
a crucial role. They are closed in C\D (see the appendix) and hence also in
C. There may be uncountably many bounded and unbounded components;
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the reader should sketch examples (Cantor sets, see the appendix). The
bounded components are compact; we call them — in accord with intuition

— the holes of D (i C).

Warning. The “theory of holes” is more complicated than one might think at first.
Thus isolated boundary points are obviously one-point holes: but it is not at all
clear that isolated one-point holes are also isolated boundary points. (Such holes
could still be accumulation points of unbounded components of C\ D; Sura-Bura's
theorem shows that this is impossible.)

1. Filling in compact sets. Runge’s proof of Mittag-LefHler’s the-
orem. For the approximation theorem 12.2.1 (version 2), every bounded
component of C\K must intersect the set C\D. By enlarging K, we can
ensure that this happens.

(1) For every compact set K in D, there exists a compact set Ky D K n
D such that every bounded component of C\K; contains a hole of D.

Proof. I D = C, let K} D K be a compact disc. Then C\K; has no
bounded component. Thus we may assume that D # C. We choose p with
0< p<d(K,0D) and set M :={z € D :d(z,0D) > p}; then K C M. It
follows immediately from the definition of M that

(%) C\M = U B, (w).

wel\D

Thus M is closed in C. We choose a compact disc B with A C B and set
K, := M N B. Then K, is compact and K ¢ K, C D.

Now let Z be a bounded component of C\ K, . Since C\ B is connected and
unbounded, and since C\K; = (C\B) U (C\M), it follows that Z C C\A/.
For every disc B,(w) C C\M, cither B,(w) C Z or B,(w)NZ = 0. Hence,
by (*).

Z = U B, (w).

weZ\D

Therefore Z intersects the set C\D. Thus there exists a component S of
C\D such that ZN S # §. Because C\D C C\K|, S is a connected subset
of C\K; hence S lies in the maximal connected subset Z of C\A'. Since
Z is bounded, S is also bounded and therefore a hole of D. )

The construction shows that K, is not uniquely determined by K. We will sce
in 3.1 that K can always be chosen to be the holomorphically convexr hull K.
and that K is the smallest compact set K, O K in D with property (1).

Mittag-LefHler’s theorem 6.2.2 can be elegantly derived from (1) and the
approximation theorem 12.2.1. We use the notation of Chapter 6. Let a
principal part distribution (d,.q,) be given, with support T in D := C\T".
We first choose a sequence Ky C Ko C -+ - of compact sets K, in D such
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that TNK; = @ and every compact subset of D lies in some K,,, (exhaustion
sequence for D). By (1), we can arrange that every bounded component of
C\K,, intersects the set C\D, n > 1. Since T is locally finite in D, every
set T,, := T N (Kn+1\Kn), n > 1, is finite. We may assume that T,, # 0.
Let k,, be the number of points in T,,. Since, for every point d, € T, the
principal part ¢, is holomorphic in K,, there exists by 12.2.1 a g, € O(D)
such that g, — gu|k, < 27"/kn. Now h:= > 1°(q. — g.) is a Mittag-Leffler
series for the distribution (d,,q,): Every compact set in D lies in almost
all the K,, and, after omission of finitely many terms, the series is bounded
above on K by Y 27%; thus it converges normally in D\T. ]

Historical note. This proof was given in 1885 by C. Runge ([R], pp. 243-
244).

2. Runge’s approximation theorem. As an analogue of the approxi-
mation theorem 12.2.1, we now have

Runge’s theorem on rational approximation. Let P C C\D be a set
whose closure P intersects every hole of D. Then the algebra Cp{z] C O(D)
is dense in O(D).

Proof. Let. K be a compact subset of D. We choose K, as in 1(1). Then
every bounded component of C\ K intersects P and hence also P. By the
approximation theorem 12.2.1, every function in O(D) C O(K) can there-
fore be approximated uniformly on K; and a fortiori on K by functions in
Cp|z]. The claim follows from the observation made in the introduction. O

Setting P := () gives an immediate corollary.

Runge’s polynomial approximation theorem. If D has no holes, then
the polynomial algebra C|z] is dense in the algebra O(D).

We also obtain (even if D has uncountably many holes):

For every region D in C, there exists a finite or countable set P of bound-
ary points of D such that the algebra Cp|z] is dense in the algebra O(D).

Proof. Every hole of D intersects 0D (see A.1(3)). Since 9D is a subspace of
C, there exists a countable set P C 8D with P = 8D (second countability
of the topology on dD). O

3. Main theorem of Cauchy function theory. In 1.9.5 it was proved,
by an argument due to Dixon, that the Cauchy integral theorem holds for
closed paths in D whose interiors lie in D. We alluded then to a short
proof using Runge theory. We now give this proof for arbitrary cycles. The
following convergence theorem holds for cycles « just as it does for paths:
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(1) If a sequence fn € C(|y|) converges uniformly on |vy|, then

im [ fud = [ (tm f,)dc

A cycle v in D is called null homologous in D if its interior lies in D:
Int v C D. We can now state and prove the

Main theorem of Cauchy function theory. The following statements
about a cycle v in D are equivalent.

i) The integral theorem f_y fd¢ =0 holds for all f € O(D).
ii) The integral formula

ind, (2)f(2) =g / = dC, z € D\|1|,

holds for all f € O(D).
iii) v s null homologous in D.

Proof. The equivalence i) & ii) follows verbatim as for paths. The impli-
cation 1) => iii) is trivial, since 1/(¢ — w) € O(D) for all w € C\D. The
implication iii) = 1) is the core of the theorem and is proved as follows:
Let f € O(D) be given. By Runge’s theorem 2, there exists a sequence ¢,
all of whose terms are rational functions with poles only in C\D, which
converges uniformly to f on the support |y| of v. By (1),

(%) [rfd( = liqundC.

Now, if P,, denotes the finite pole set of g,, we have

'—/qn d¢ = ind, (c)res.qn, (residue theorem).
CGPnﬂInt ¥

But P, C C\D and Inty C D; hence P, NIntvy = @ and all the integrals
on the right-hand side of (x) vanish.

4. On the theory of holes. Runge’s theorems in Subsection 2 lead us to
consider the holes of regions. The proof of our first result is quite easy.

(1) If v s a cycle in D that is not null homologous, then the interior of
v contains at least one hole of D.

Proof. Since Inty ¢ D, there exists a point a € C\D with ind,(a) # 0.
Since the index function is locally constant and the component L of C\D
containing a is connected, ind. (2) = indy(a) for all z € L. Hence L C Int .
Since the function ind, vanishes when z is large, L is bounded and there-
fore a hole of D. a
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Our next result follows from the contrapositive of (1).
(2) If D has no holes, then D 1s (homologically) simply connected.

The converse of (2) is true but not as easy to prove. We obtain it in 2.4
by a function-theoretic detour. In 14.1.3, we will reverse (1) and show (as is
immediately evident) that for every hole L of D there exist closed paths
with L C Int~. The construction of such paths is difficult, since the family
of holes of D can be quite unpleasant (Cantor sets). O

The theory of holes is complicated. The definition of holes is based on
“how D lies in C”; it is not a definition by “intrinsic properties of D,” and
is not a priori an invariant of D. Perhaps domains with two holes could be
topologically or even biholomorphically mapped onto domains with three
holes. We will see in 14.2.2 that this cannot happen.

Although simply connected domains in R? (~ C), by the discussion above, are
precisely those domains that have no holes, domains in R®, n > 3, may have holes
and still be simply connected: For instance, if (in)finitely many pairwise disjoint
compact balls are removed from R", n > 3, what remains is a simply connected
domain in R™ with (in)finitely many holes.

5. On the history of Runge theory. The year 1885 marks the be-
ginning of compler and real approximation theory: Runge published his
groundbreaking theorem — our Theorem 2 — in Acta Mathematica [R];
Weierstrass, in the Sitzungsberichte der Koniglichen Akademie der Wis-
senschaften zu Berlin, published his theorem on the approximation of con-
tinuous functions by polynomials on real intervals [W]. Runge’s approx-
imation theorem did not receive much attention at first; only since the
1920s has it decisively influenced the development of function theory (cf.,
for example, [G]).

Runge approximates the Cauchy integral by Riemann sums. In doing so.
he already obtains rational functions, which, however, still “become infi-
nite at points where the behavior of the function is regular. To remedy
this situation,” he develops the pole-shifting technigue, whereby he moves
the poles to the boundary. Runge says nothing about approximation by
polynomials, although his method also contains the theorem on polyno-
mial approximation. No less a mathematician than D. Hilbert proved this
important special case by different means in 1897 [Hi]; Hilbert does not
mention Runge’s work.

The motive for Runge’s investigations was the question whether every
domain in C is a domain of holomorphy. With his approximation theorem,
he could give an affirmative answer (see also 5.2.5); he showed moreover
that his approximation theorem subsumed that of Mittag-LefHer, proved
two years earlier.

Even today, a hundred years later, Runge’s method provides the easiest
approach to complex approximation theory. Other approaches to Runge
theory can be found in [FL], [Ho], and [N].
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Runge’s theorem was generalized in 1943 by H. Behnke and K. Stein.
In their paper [BS], which because of the war did not appear until 1948,
they consider arbitrary noncompact Riemann surfaces X instead of C; they
prove (cf. p. 456 and p. 460):

For cvery region D in X, there exists a set T of boundary pownts of D (in
X ) that s at most countable and has the following property: Every function
in O(D) can be approzimated compactly in D by functions meromorphic in
X that each have only finitely many poles, all of which lie in T.

This theorem can be used to show, for example, that noncompact Rie-
mann surfaces are Stein manifolds.

§2. Runge Pairs

In this section, D, D’ always denote regions in C with D C D’. We call D,
D’ a Runge pair if every function in O(D) can be approximated compactly
in D by functions h|D, h € O(D’) (the subalgebra of O(D) resulting from
the restriction O(D') — O(D), h — h|D, is then dense in O(D)). In
Subsection 1, we characterize such pairs topologically by properties of the
(unpleasant) locally compact difference D'\ D; its components play a crucial
role. We need Sura-Bura’s theorem from set-theoretic topology (see the
appendix to this chapter).

In Subsection 2 we consider Runge hulls; in Subsection 3, following
Behnke and Stein, we characterize Runge pairs by a homological property.
In Subsection 4, those functions that can be approximated will be described
by an extension property.

Runge pairs D, D’ with D' = C are of particular interest; D is then
called a Runge region. In Subsection 5 we prove, among other things, that
every Runge domain # C can be mapped biholomorphically onto the unit
disc.

1. Topological characterization of Runge pairs. We begin by proving
two lemmas.

(1) Ewvery component L of C\D wnth L C D' 1s a component of D'\D.

Proof. We have L C D'\ D. Since L is connected, there exists a component
L' of D'\D with L’ O L. Since L' ¢ C\D and L' is connected, it follows
from the definition of components that L' = L. 0

(2) For every open compact subset A of D'\D, there exists a set V that
1s open and relatiwvely compact in D' and satisfies A C V and 0V C D.

Proof. We have D'\D = AUB, ANB = (), where B is closed in D'\ D. Since
D'\D is closed in D', B is also closed in D’. Hence there exists a covering
of A by discs that are relatively compact in D'\ B. By Heine-Borel there
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exists a set V' that is relatively compact and open in D’ and satisfies A C V,
VN B =01t follows from VN B =@ = 9V N A that 8V n (D'\D) = 0.
But 8V C D’; hence 8V C D. o

The next theorem is an easy consequence of (1), (2), and Corollary A.2.1.

Theorem. The following statements about regions D, D' with D C D' are
equivalent:

i) The space D'\D has no compact component.
ii) The algebra of all rational functions without poles in D’ is dense
in O(D).
ili) D, D’ is a Runge pair.
iv) In the space D'\D, there is no open compact set # {.

Proof. i) = ii). By (1), the set P := C\D’ intersects every hole of D. Since
P c C\D, Theorem 1.2 implies that the algebra Cp|2] is dense in O(D).

ii) = iii). This is clear, since rational functions without poles in D’ are
in O(D").

iii) = iv). Let A be an open compact subset of D'\D. We choose V
as in (2); then 9V is compact and 0V C D. Suppose there were a point
a € A. Then (z — a)~! € O(D); choose a sequence g, € O(D’') with
lim|(2 — a)~! — gploy = 0. But then lim|l — (z — a)gn(2)|ov = 0. Since
V c D', the sequence (z — a)gn(2) would converge uniformly to 1 by the
maximum principle, which is impossible because a € A C V. Hence A is
empty.

iv) = i). This is clear by Corollary A.2.1. 0

Behind the purely topological implication iv) => i) lies Sura-Bura’s the-
orem; see the appendix. In general, compact components of D'\D are not
open in D'\ D, as is shown by the examples D := D'\ Cantor sets. O

We now also have the converse of Theorem 1.2.

Corollary. If P C C\D is such that the algebra Cp(z] is dense in O(D),
then P intersects every hole of D.

Proof. D C C\P and Cp|z] C O(C\P); hence D, E\ﬁ form a Runge pair.
It follows from the implication iii) = i) that (C\P)\D = C\(P U D) has
no compact component. But this means that P intersects every hole of D. O

2. Runge hulls. Let D’ be a given fized region in C (total space). For
every subregion D of D', we set

D:=Du Rp, where Rp := union of all open compact subsets of D'\ D.

The set Rp can be quite pathological, e.g. a Cantor set; see A.1.4). By
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Corollary 1 of A.2, Rp is the union of all the compact components of D'\ D.
The next statement now follows from A.3(1).

(1) The set D is a subregion of D'. The difference D'\D contains no
open compact set.

D is called the Runge hull of D (in D’). When D' = C, we obtain D
from D by “plugging up all the holes of D.” We now justify the choice of
the term “Runge hull.”

Proposition. The pair D, D' is Runge. D = D if and only if D, D' isa
Runge pair. For every Runge pair E, D' with D C E, we have D C E.

Proof. The first two statements are clear by (1) and Theorem 1. — If
D C E C D', then D'\E is closed in D'\D. Thus (D'\E) N K is compact
and open in D'\ E for every open compact subset K of D'\ D. Since E, D’
is a Runge pair, Theorem 1 implies that (D’\E) N K is empty. It follows
thatKCE;thereforeszLJKCEand1~?=DURDCE. 0

We see that D is the “smallest region between D and D’ that is relatively
Runge in D'.” It follows immediately from the proposition that

D=D, DcE(CD)=DCE.

3. Homological characterization of Runge hulls. The Behnke-Stein
theorem. Let the regions D, D’ be given, with D C D’. We denote by .7
the family of all cycles 4 in D that are null homologous in D’, hence for
which Int v is a subregion of D’.

Theorem. D = .. Int~.

~E.”
Proof. Let D =DURp. If we D, then w € Int for every small circle v €
S about w. If w € Rp, then w lies in an open compact subset K of D'\ D.
Then Dy := DU K is a subregion of D’ (see A.3(1)). By 12.4.1(3), there
exists a cycle v in D = Dg\K such that K C Inty C Dg. In particular,
7€ %and w € Int4y.

For the opposite inclusion, let w € Int~y with v € %, In order to show
that w € D, we may assume that w ¢ D. Then, since |y| C D, we have
ZN|y| = 0 for the component Z of D'\ D containing w. The index function
ind,, is now well defined and constant on Z. Since w € Int 7, it follows that
Z C Inty. Hence Z C (Inty U |y|)\D. Thus Z is compact. It follows that
Z C Rp and therefore that w € Rp C D. 0O

Corollary (Behnke-Stein theorem). A pair D, D' of regions with D C
D’ is Runge if and only if every cycle v in D that is null homologous in
D' 1s already null homologous in D.
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Proof. D, D' is a Runge pair if and only if D = D, i.e. if and only if
Inty C D for all v € 7. 0

In the theorem and the corollary, we nust admit cycles. not just closed paths.
If D .= CX\OE, D' .= C*, then D = C* but Inty C D for every path v € .7,
All cycles ! + 42 consisting of oppositely oriented circles 4! in EX and 4% € C\E
about 0 are null homologous in D’ but not in D.

If D is a domain GG, we can get by with paths v € .7/ in the theorem; every
cvele in (7 can then be turned into a closed path by joining the components of
the cycle by paths in G

Ihstorweal note. H. Behnke and K. Stein proved their theorem in 1943 in
[BS] for arbitrary noncompact Riemann surfaces; they state the homology
condition in such a way that D is simply connected relative to D’ (loc. cit..,
pp. 444 445).

4. Runge regions. A region D in C is called a Runge region if every
function holomorphic in D can be approximated compactly in D by poly-
nomials. Since C[z] is dense in O(C), D is a Runge region if and only if
D. C is a Runge pair. The statements of Theorem 1 and the Behnke-Stein
theorem make possible a simple characterization of Runge regions.

Theorem. The follounng statements about a region D in C are equivalent:

) D has no holes.
) D s a Runge region.
iii) There is no open compact set £ @ in the space C\D.
) D s homologically symply connected.
) Every component of D is a sumply connected domain.

Proof. i) => ii) => iii) = i). This is Theorem 1, i) = iii) = iv) = i), with
D' =C.

ii) < iv). This is the Behnke-Stein theorem with D’ = C. since all cycles
are mill homologous in C.

iv) <> v). Since D is homologically simply connected if and only if ev-
erv component of D is, the assertion follows from Theorem 8.2.6, 1) < ix). O

The equivalence i) < v) says in particular that the simply connected
domains in R? are precisely the domains without holes; see 1.4. The next
statement follows immediately.

A bounded domamm G in C 15 simply connected if and only of C\G s
connected.

There are, however, unbounded simply connected domains G in C for
which C\(' has (in)finitely many components (the reader should sketch
exatnples).

With the aid of i) = v), the injection theorem 8.2.2 can be generalized:
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For every domain G i C whose complement C\G has a component with
more than one point, there exists a holomorphic injection G — E.

Proof. If C\G has an unbounded component Z, then C\Z # C is a domain
(1) without holesand can therefore be mapped biholomorphically onto E.
Hence G € C\Z can be mapped biholomorphically and injectively into E.

Now let M be a component of C\G that has more than one point. Then
z+— 1/(z —a), a € M, maps C\M biholomorphically onto a domain G,
whose complement has at least one unbounded component. Thus G, ad-
mits a holomorphic injection into E; hence so does G ¢ C\M =~ G,. m]

5*. Approximation and holomorphic extendibility. If D, D’ is not a
Runge pair, then not all functions in @(D) can be approximated in D by
functions in O(D’). We prove:

Theorem. The following statements about a function f € O(D) are equiv-
alent:

i) f can be approzumated compactly in D by functions in O(D").
ii) There exists a single-valued holomorphic extension f of f to the
Runge hull D.

Proof. ii) = 1). Clear, since le = f and D, D' is a Runge pair by Theorem
2.

i) = ii). We define . as in Subsection 3 and consider, in D', all the
subregions D, := DU Intvy, v € .%. Let a pair D, f, with f, € O(D,),
v € 7. be called an f-extension if f,|D = f. We claim:

a) For every v € 7, there exists an f-extension.
b) If Dy, fy and Ds, fs are f-extensions, then f, = f5 on D,NDs.

It follows immediately from a) and b) that there exists exactly one holo-
morphic function f on U,es D+ such that f |Dy = fy, v € S. Theorem 3
then implies ii).

For the proof of a), we choose a sequence g, € O(D’) that converges
compactly to f in D. Then, since lim | f —gn ||, = 0. g» is a Cauchy sequence
on |v| for every « € .. Since Int ~ is a bounded region with d(Int ) C |vl,
the maximum principle implies that g, is also a Cauchy sequence in Int v
and hence in D,. Let f, := lim,_.oc(gn|D~); then D.,, f, is an f-extension.

For the proof of b), it suffices (by the identity theorem) to prove that
every component Z of (Int-y) N (Int §) intersects the region D. But this is
clear since

0Z C d(Inty)ud(Inté) C |y|U 6| C D. O
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§3. Holomorphically Convex Hulls and Runge Pairs
If M is a subset of a region D in C, the set
={z € D:|f(2)] < |f|m for all f € O(D)}

is called the holomorphically conver hull of M in D. This is often written
M instead of Mp. For the circle S := JE, we have Sc = F and Scx =S.
The next statement follows immediately from the maximum principle for
bounded domains.

If V 15 relatively compact and open in D, then (5‘7 )p D V.

Let a, 3, r € R, z = z + iy. Then, since |e(®+?¥)?| < e if and only if
axr — By <1, M always lies in the intersection of all the closed half-planes
containing M. This implies:

The holomorphically convex hull M is contained in the linearly convex
hull of M.

Runge pairs D, D’ can be characterized analytically by the property that
every compact set K C D has the same holomorphically convex hull in D

and in D’; this equivalence is the main result of this final section on Runge
theory.

1. Properties of the hull operator. The following properties are imme-
diate from the definition:

(1) M is closed in D. Moreover,

McM=McD McM =>McM,and Dc D' = Mp C Mp..

(2) c € D\ﬁ if and only if there exists an h € O(D) such that |hiy <
1 < |h(c)].

The next property is important for what follows.

(3) It 15 always true that d(M,C\D) = d(M,C\D). If M is compact, so
s M.

Proof. Since M C M, we need only prove that d(M,C\D) < d(JT/I\, C\D).
Let ¢ ¢ D. Since (z ()~ 1 € O(D), we have |lw—¢|™* <sup{|z—(|7!: 2z ¢
M} forall w € M. 1t follows that d(M ) =inf{|z—(|:z€ M} <|w—{|
for all w € M hence d(M, () < d(M ¢) for all-¢ € C\D. — If M is com-
pact, then M is closed in C because 0 < d(M,C\D) = d(M C\D). Since

M lies in the linearly convex hull of M, which is bounded if M is, M is
also bounded. m
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By (2), M = M\D if and only if, for every ¢ € D\M, there exists an
h € O(D) such that |h(c)| > |h|pr. Our next result thus follows directly
from Theorem 12.2.3.

Theorem. The following statements about a compact set K wn D are equiv-
alent:

i) K =Kp.
ii) The space D\K has no component that 1s relatively compact in
D

iii) Every bounded component of C\K contains a hole of D.
iv) The algebra O(D) is dense in O(K).

For the proof, it suffices to observe that a bounded component of C\K
contains a hole of D if and only if it intersects C\D. a

The equivalence i) < iii) immediately yields a more precise form of 1.1(1):

For every compact set K in D, there exists a smallest compact set Ky D K n

D, namely Kp, such that every bounded component of C\K contains a hole of
D.

The implication i) = ii) can be generalized as follows.

(4) For every compact set K in D, Kp is the union of K and all the
components of D\K that are relatively compact in D.

Proof. Let A denote the union of all the components of D\ K that are rela-
tively compact in D; let B denote the union of all the remaining components
of D\ K. Since each component is a domain,

A and B are openin D, D\K = AUB, and AnB=49.

We set M := KUA. Then, by 12.2.3(1) and (1), M C Kp C Mp. Hence
M = IA{D if M = A?D. Since D\M = B is open, M is closed in D and
therefore compact, since Kp is compact by (3). By the definition of B, no
component of D\ M is relatively compact in D; hence the theorem implies
that M = M\D. 0

Thus passage from K to K p “fills in the holes of D\K in D.” The
purely topological description of holomorphically convex hulls given by (4)

is occasionally used in the literature as the definition of K p; cf. [N], pp.
112-113, and [FL}, p. 204.
By a simple argument, one can also show (cf. [N], pp. 112-113):

IfK = K D, then C\K has only finitely many components.

The concept of the holomorphically convex hull comes from the function theory
of several variables; it was developed in the 1930s (cf. [BT], Chapter VI, and the

appendix by O. Forster). For regions D in C*, n > 1, the hull Kp of a compact
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set K C D, which is defined word for word as above, is in general no longer
compact. The following holds:

A domawmn G m C", 1 < n < oc, is a domain of holomorphy if and only +f, for
every compact set K C G, the holomorphically conver hull K¢ has only compact
components (weak holomorphic convexity of G); this occurs of and only if Kg is
always compact (holomorphic convenity of G).

2. Characterization of Runge pairs by means of holomorphically
convex hulls. The following statements about regions D, D' with D C D'
are equivalent:

i) D, D' 1s a Runge pair.
ii) For every compact set K C D, I/{’D/ KD
111) For every compact set K C D, DN RDI Kbp.
iv) For every compact set K C D. DN Kp 1s compact.

Proof. We argue according to the following diagram:

i)

I\

i) = iil) => iv) = ii).
FIGURE 13.1.

The implications ii) = m) = iv) are clear, the last one because of 1(3).

i) = iii). Since Kn C RD/ and KD C D, all we need to prove is that
DN Kp c Kp. or, equivalently, that D\Kp C D\Kp. Let ¢ € D\Kp.
By 1(2), there exists an h € O(D) with |h|x < 1 < |h(c)|. Since h can be
approximated uniformly on K U {c¢} by functions in O(D’), there exists a
g E O(D') with |g|x < 1 < |g(c)|- It follows from 1(2) that ¢ ¢ Kp.

iv) = i) and ii). Not only is K' := DN K p' compact, but (as the inter-

ser‘tion of a closed set with a compact set) so is K" := (C\D) N Kp:. Let
f € O(D) be arbitrary. Since K’ N K" = §, setting

h(z) := f(z) for z€ K’ and h(z):=2forze K"

defines a function h € O(K’ U K"”). Since I/(\'Dr = K'U K", Theorem 1 —
applied to K p in D’ — implies that h can be approximated uniformly by
functions in O(D’). This proves i) since K C K'. In particular, choosing
f = 0 shows that there exists a function g € O(D’) with |g|lk < 1 < |g(w)
for all w € K”. It follows that K" = 0, since otherwise 1(2) gives the con-
tradiction w ¢ Kp. Hence Kp = DN Kp. Since iii) also holds by i) and
what has already been proved, we see that KD =Dn KD/ KD' a
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The theorem also holds verbatim for regions in C*, 1 < n < oc, if D and
D’ are assumed to be regions of holomorphy; cf. [Ho|, p. 91. A purely topological
characterization of Runge pairs — for example, by analogy with the Behnke-Stein
theorem — is no longer possible when n > 1. For more on this, see the appendix
by O. Forster to Chapter VI of [BT], where general Runge pairs of Stein spaces
are considered.

Every set M in C is assigned its polynomually conver hull
M’ :={z € C:|p(2)| < |p|m for all polynomals p};

we have M’ = ]/M?C. A region D in C is called polynomially convez if, for
every compact set K C D, the (compact) set K’ lies in D. The theoremn
contains the following statement:

A region wn C is Runge if and only if it is polynomaally convez.

This equivalence also remains valid for domains in C™.

Appendix: On the Components of Locally Compact
Spaces. Sura-Bura’s Theorem

Theorem 2.1 says in particular that a difference D’\D has compact con-
nected components if and only if it contains nonenipty open compact sets.
This is a theorem of set-theoretic topology (which does not appear in cur-
rent textbooks). We prove it here in a more general situation; cf. Theorem
2 and Corollary 2.1. — X always denotes a topological space.

1. Components. We consider connected subspaces of X; every one-point
subspace {z}, z € X, is connected. If A,, 1 € J, is a family of connected
subspaces of X such that any two have a nonempty intersection, then the
union |J A, is connected. Hence the union of all the connected subspaces
of X containing a fixed point is a mazximal connected subspace of X. Ev-
ery such subspace is called a component — more precisely, a connected
component — of X.

(1) Distinct components of X are disjoint. Every component of X 1s
closed in X.

The last statement follows because the closure A of A is connected when-
ever A is. — In general, components of X are not open in X.

(2) Every subspace of X that s both open and closed s the union of
components of X .

Ezxamples. 1) Let X := Q C R, equipped with the relative topology. The
components are the points of X; no component of X is open; there are no
open compact sets # @ in X.
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2) Let X := {0,1,1/2,...,1/n,...} C R, equipped with the relative
topology. The components of X are the points of X; every component
# {0} is open in X. The component {0} is the intersection of all the open
compact subsets of X containing it.

3) Let X be a Cantor set in [0, 1]. The components are the points of X:
no component of X is open; there are open compact sets # @ in X.

4) For regions D ¢ D' C C, the difference D'\D is locally compact.
In the case D := D'\ Cantor set, D'\D has uncountably many compact
components, and no union of D with finitely many of these components is
a region.

The following was used in 1.2.

(3) If D' is a domain, then every component Z of D'\D intersects the
boundary of D.

Proof. Let a € Z, let b € D, and let v be a path in D’ from a to b. On 7,
there is a “first” point ¢ € 8D. Since Z is connected and the subpath ¥
from a to ¢ passes through D'\D, we have || C Z: hence c € Z. |

2. Existence of open compact sets. FEvery compact component A of a
locally compact (Hausdorff) space X has a neighborhood base in X consist-
ing of open compact subsets of X.

This theorem was proved in 1941 by M. Sura-Bura for (bi)compact
spaces; cf. [SB]. The theorem appears implicitly in N. Bourbaki; cf. [Bo],
p. 205, corollary and its proof. The significance of the theorem for function
theory was pointed out by R. B. Burckel; ¢f. [Bu]. We prove Sura-Bura’s
theorem in Subsection 4, but we first derive a few of its consequences here
and in Subsection 3. Since open compact sets, by 1(2), are always the union
of compact components, our first result is immediate.

Corollary 1. A locally compact space X has compact components if and
only if there exist nonempty open compact sets in X. The union of all the
compact components of X coincides with the union of all the open compact
subsets of X, and in particular is open in X.

This contains the equivalence statement i) < iv) of Theorem 2.1.

Corollary 2. If the locally compact space X has only finitely many com-
pact components, then each of these components is open in X.

Proof. Let A be a compact component of X. If A,,..., A are the remain-
ing compact components, then U := X\(A; U---U Ag) is a neighborhood
of A which intersects no other compact component of X. By the theorem,
there exists an open compact set B in X such that A C B C U. Since B is
the union of compact components, it follows that A = B. O
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Corollary 3. Let X be a connected compact space containing more than
one point, and let p € X. Then p is an accumulation point of every com-

ponent of X\{p}.

Proof. Let A be a component of X\{p}. Since A is closed in X\{p}, if p
were not in A then A would also be closed in X and therefore compact.
Since X\ {p} is locally compact, there would exist an open compact subset
B of X\{p} such that B O A. But then X would not be connected, since
X = BU(X\B), with B and X\ B nonempty closed subsets of X. 0

3. Filling in holes. We apply Sura-Bura’s theorem to the difference D’ \D
of two regions D C D’ C C; see Example 1.4). We first observe:

(1) If M is open in D'\D, then D UM 1s a subregion of D'. If M is also
a union of components of D'\D, then the components of D'\(D U M) are
ezactly those components of D'\D that do not lie in M.

For the proof, it suffices to show that D U M is open in D’. Since there
exists a set U that is open in D’ and satisfies M = (D'\D) N U, it follows
that

DUM=DuU[(D'\D)nU)=DU((U\D)=DuUU. O

An important application of (1) and Corollary 2.1 was already given in
13.2.2(1). Here we note further:

(2) If D'\D has ezactly n compact components Ly,...,L,, 1 <n < oo,
then D U Ly is a subregion of D’; the space D'\(D U L,) has ezactly the
(n — 1) compact components Ly, ..., L.

(3) If L is a compact component of C\D (a hole of D), N is closed in
D, and LNN =0, then there exists a compact subset K of C\D such that
Lc KcC\N and DUK is a region in C.

Proof. (2) is clear by (1) and Corollary 2.2. — ad (3). Since (C\N)N(C\D)
is a neighborhood of L in C\D, there exists by Sura-Bura a compact set
K that is open in C\D and satisfies L C K C C\N. By (1), DU K is then
a region. 0

We will need statement (3) in 14.1.3.

4. Proof of Sura-Bura’s theorem. We first reduce the claim to the
compact case. Thus assume that the theorem has already been proved for
compact spaces. Let U be any neighborhood of A in X. Since X is locally
compact, there exists an open neighborhood V of A in X whose closure
V is a compact subset of U. Now A is also a component of the space V
(every connected subspace of V is also connected as a subspace of X).
By hypothesis, there exists an open compact subset B of V such that
A C B C V. Then B is also open in V and hence in X. Thus B is an open
compact subset of X such that Ac B C U. 0
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The reduction step can be carried out more easily by passing from X to the
Alexandroff compactification X U {oc}.

Now let X be compact. If A is any compact set in X, we denote by F
the family of all open compact sets F in X with F O A. Then X € F. The
intersection B of all the sets in F is compact and contains A.

(o) Every set U that 1s open in X and satisfies U D B contains an
element of F.

Proof. We have (X\U) N(gcx F = 0. Since X\U is compact, there exist
finately many sets F1, ..., Fy, € F such that (X\U)N(j_, Fj = @.! - Since
/-, F; € F, this proves (o). 0

We now prove Theorem 2 for compact spaces X. Let A be a compact
component of X. We retain our earlier notation. If we prove that B is
connected, it will follow from A C B that A = B since A is a mazimal
connected subspace of X. Hence it suffices to prove the following:

If B = B, U By, where B, and By are disjoint sets that are closed in X,
then either By or By 1s empty.

Since A = (BiNA)U(B2N A) and A is connected, either A = ByNAor
A = BoN A. Suppose that A C B;. Since B;, B; are disjoint compact sets.
there are sets V), V, that are open in X and satisfy B; C Vq, By C V,, and
VinVy, = 0. Since B € V} U V,, there exists by (o) an F € F such that
B C F C VUV, But now (!)

FN(X\W,) =FnV, = W.

Since F and V; are open and F and X\V; are compact, this shows that
W is a compact set that is open in X. The inclusions A C B C F and
AC By C Vy imply that A C W; thus W € F and B C W C V|. Then

B NV, is empty, whence B; = . — This proves Theorem 2. 0
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14

Invariance of the Number ot Holes

Is it intuitively clear that biholomorphically (more generally, topologically)
equivalent domains have the same number of holes? There is no direct proof
of this invariance theorem. The property of “having the same number of
holes” is defined by how G lies in C and at first glance is not an invariant of
G. In order to prove the invariance of the number of holes, we assign every
domain in C its (first) homology group. The rank of this group, called the
Betti number of G, is a biholomorphic (even topological) invariant of the
domain.
The invariance of the number of holes now follows from the equation

number of holes of G = Betti number of G.

We carry out the proof in 2.2 with the aid of special families of paths,
which we call orthonormal. We obtain the (intuitively clear) existence of
such families of paths in 1.3, using Sura-Bura’s theorem and the circuit
theorem 12.4.2.

§1. Homology Theory. Separation Lemma

In Subsection 1, we assign every region in C its (first) homology group (with
coefficients in the ring Z of integers). In Subsection 2 we prove, among
other things, that biholomorphically equivalent regions have isomorphic
homology groups. In Subsection 3, we make precise the idea that holes in
regions can always be “separated” by paths that go around them. — U, V,
and W denote regions in C.
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1. Homology groups. The Betti number. The set Z(U) of all cycles
(1) y=a1m1 + -+ @nYn, @ € C, v, a closed path in U, n € N\{0},

in U forms a free abelian group with respect to (natural) addition, with the
closed paths as basis. Every cycle (1) defines a C-linear form

(2) 7:0(U) = C, = 7(f) := [, fd¢.
The following holds because of Theorem 13.1.3.
(3) A cycle v € Z(U) is null homologous in U if and only if 7 = 0.
Null homology and holes are related in the following way:
(4) A cycle v in U is null homologous in U if and only if its indez ind vy
vanishes identically on every hole L of U, i.e. if ind,(L) = 0.

Proof. Int v C U if and only if indy(C\U) = 0. Since ind,, always vanishes
on all unbounded components of C\U, (4) follows. |

The set of all C-linear forms
HU):={y:v€ Z(U)}

defined by (2) is a subgroup of the C-vector space of all C-linear forms on
O(U). We call H(U) the (first) homology group of U (with coefficients in
Z). H(U) = 0 if and only if U is homologically simply connected. The next
assertion is clear because of (3).

(5) The map Z(U) — H(U), v — ¥, is a group epimorphism with the
group B(U) := {y € Z(U) : Inty C U} as kernel; it induces a group
isomorphism

(*) Z(U)/BU) = H(U).

The left-hand side of (*) gives a topological description of H(U). In algebraic
topology, null-homologous cycles in U are called boundaries in U (intuitively, v
“bounds” the surface Int+, which lies in I/). Two cycles v, v in U are called
homologous in U if ¥y — ' is a boundary in U, i.e. if § = %'. “Being homologous"
is an equivalence relation. The set of all cycles homologous to - is the homology
class ¥ € H(U).

The abelian group H(U) has a well-defined rank b(U) (= maximal num-
ber of Z-linearly independent elements in, H(U)). This rank b(U) is called
the (first) Betti number of U.

It can be shown that H(U) is always a free abelian group whose rank b(U) is
at most countably infinite.

The vector space O'(U) of all derivatives f', f € O(U ), is characterized
homologically by

(6) O'(U)={f € OU):5(f) =0 for ally € H{U)}.
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2. Induced homomorphisms. Natural properties. Every holomorphic
map h : U — V induces a group homomorphism

h:Z(U) = Z(V). 7= ay—hoy:=) ayhomy)
By linearity, the substitution rule
hovy(f)=F((foh)-h") forallye Z(U). f € O(V)

holds for cycles as well as for paths.

It is clear that if vy, v2 € Z(U) are homologous, then h(~y;), h(v2) € Z(V)

are homologous. Hence h induces a homomorphism h : H(U) — H(V) of
the homology groups. We now make this precise (vertical arrows denote
passage to homology classes).

Proposition. Given h, there emists ezactly one map h : H (U) = H(V)
that makes the following a comrmutative diagram:

Z(U) —2— zZ(V)

|

HU) —2— H(V)
The map hsa group homomorphism and

(1) E(*/):m for all v € Z(U).

Proof. By the discussion above, (1) defines a map H(U) — H(V) that is
clearly additive. This is obviously the only map that makes the diagram
commute. O

The correspondence h ~~ h has the following “natural” properties:

(2) If «d: U — U 1is the identity map on U, then id : HU) — H(U) 1s
the wdentity map on H(U). If h: U -V and g: V — W are holomorphic,
then goh =goh.

Proof. The first statement holds since z~d(7) = 1doy = % by (1). The second
statement holds because (1) implies that, for all v € Z(U),

———

(goh)(7) =(gom) oy and (Goh)(F) =§(hon) =go(hoy). O
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The next result is iminediate.

Invariance theorem. If h : U 5 V is biholomorphac, then h: H(U) —
H(V) 1s an wsomorphism. In particular, the Bettt numbers of U and V' are
equal.

Proof. This is clear by (2) for g := h™!, since go h = wdy; and ho g = idy-.
O

The invariance theorem refines the statement that. for a biholomorphic
map h : U/ =V, acycle v in U is null homologous in U if and only if its
image h o~ is null homologous in V.

Remark. In modern terminology, we have proved:

The correspondences U ~~ H(U') and h ~ h give a covariant functor from the
calegory of all reqrons i C (unth the holomorphic maps as morphisms) to the
category of abelian groups (with the group homomorphisms as morphisimns).

The homomorphisms A can be defined for all continuous maps h: U — V. If
this is done, the functoral property (2) is preserved; the invariance theorem thus
holds for all homeomorphisms U7 = V

3. Separation of holes by closed paths. We begin by noting:

(1) Let Ly, Ly, ..., L, be finitely many holes of a domawn GG. Then there
rrists a closed, unbounded, and connected set N wn C that does not intersect
L, and contawns all the remaining holes Ly, ..., L,,.

Proof. Let p € (& be fixed. For every component M # Ly of C\G, there
exist paths in C\L, from p to points in A/ N3G (there exist a ¢ € M NIG,
of. Example 13.A.1(4), and a corresponding line segment [¢,q] € C\L,
with ¢ € (7). We assign such paths ~v9,7v3..... ~, to Lo, Ly,....Ly,. and
set N i= Ly U |yl U LgU|y3|U--- UL, Uly,|. We also choose a ray o
in C\L, with initial point w € G and a path & in G from p to w. Then
N :=|o|Ul|é] U N’ is a set with the desired properties. a

The next result. which is intuitively clear, now follows from (1), 13.A.3(3).
and the circuit theorem 12.4.2.

Separation lemma. Let Ly, Ly, ..., L, be finitely many holes of a domuan
(. Then there exist closed paths yy.. ... G such that

) ) ' .
ind, (L,) =4é&,, = { (1 ;Z: Z i Z (orthonormality relations).

Proof. Tt sutlices to construct the path ~;. We choose N as in (1). Since
NN Ly =0, there exists by 13.A.3(3) a compact set. K C C\G such that
Ly ¢ K ¢ C\N and G U K is open in C. The compact set K lies in the
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reqron D := (G U K)\N. Since L} C K. the circuit theorem 12.4.2 implies
that there exists a closed path v, in D\K C G with ind,, (L) = 1. Since
|71l NN = 0 and N is unbounded and connected, we have ind,, (N) = 0.
Since LoU---U L, C N, it follows that ind,, (L,) = 0 for v > 1. O

The first appearance of the separation lemma in the textbook literature
is probably in the book of S. Saks and A. Zygmund (cf. [SZ], p. 209). The
lemma does not rule out that still other holes # L, of G may lie in the
interior of the path ~,. For example. if there is a Cantor set C in the space
of holes of G, then every path in G that encloses a hole of C contains
uncountably many other holes of C in its interior.

§2. Invariance of the Number of Holes. Product
Theorem for Units

In Subsections 1 and 2, the homology group H(G) and the C-vector space

G)/O'(G) of an arbitrary domain G are investigated: one result that
emerges is the equality of the Betti number b(G) and the number of holes.
In Subsection 3, the multiplicative group O(G)* of all the units of O(G) and
its subgroup exp O(G) are studied; one result here is that, in domains with
finitely many holes, for every function f € O(G)* there exists a rational
function ¢ such that ¢|G € O(G)* and ¢f has a holomorphic logarithm in
G (product theorem).

1. On the structure of the homology groups. If L, .... L, are distinct
holes of G and ;.. ... ~n form a corresponding orthonormal family of paths
(as in the separation lemma 1.3), we consider the two maps

e: H(G) —» H(G)., Fw— Zind.,(L )7,
n:O0(G) — C", fH(’n(f) ()

the first is Z-linear (additivity of the index!), the second C-linear.

Lemma. /{(G) = kerc ¢ imagee. The elements 5,.. ... A, form a basis of
image z; for every § € imagee, we have ¥ =3 _, ind(L,)7,.

The map 1 1s surjectwe and O'(G) C kery.
Proof. a) £(5,) = 7, by the orthonormality of ¥,,...,%,; hence £2 = ¢
(projection) and therefore H(G) = kere @ imagee. Let Y\ _ a7, = O.
a, € Z. Applying this linear form to a function (z —¢)™! € O(G) with
c€ L, gives a, =0 for all 4. Hence 7,...,%, form a basis of imagec.

b) By 1.1(6), O'(G) C kern. Since n((z —¢)™ '), ¢ € L,. is the vth unit
vector (0,...,1,...,0), n is also surjective. O
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The next resull now follows quickly.

Theorem. [If G has eractly n holes Ly,....L,, n € N, and v1..... Ny 18
an orthonormal family of paths corresponding to these holes, then

) &y, 7, 18 a basis of the group H(G) and
3= Z ind,(L.)%, for every homology class 5 € H(G):

2) 1: O(G) — C" induces o C-vector space isomorphism O(G) /O (G) =
Cc",

Proof. By the lemima, it suffices to prove that ker = = 0 and kerny = O/(G).
1) Since kere = {F : ind,(L,) = 0 for » = 1....,n} by the lemma and
since Ly.. ... L, are all the holes of G, 1.1(3) and (4) imply that kerz = 0.
2) By (1), kery = {f € O(G) : 7(f) = 0 forall ¥ € H(G)}. Henee
ker i) = O'((7) by 1.1{(8). O

The theorem conlains. as o special case:

If A is an annulus with hole L and T' C A is a curele around L. then

H(AY=2ZI' and 7 =ind,(L)T for allm € H(A).

2. The number of holes and the Betti number. A domain G is called
(n + 1)-connected, 0 < n < oo, if it has exactly n distinct holes. (We do
not distinguish among infinitely large cardinal numbers.) Simply connected
domains are, by 13.2.4, precisely those domains without holes; all annuli are
examples of doubly connected domains. For more on this, sce Subsection 3.

We prove here that the number of holes of ¢ is an invariant and hence
a measure of the intrinsic connectivity of (7. The next thcorem follows
immediately from the insights into the structure of H{C) and O(G)/O'(G)
that we have obtained so far.

Theorem. For every (n+ 1)-connected domain G, the following statements
hold.

1) If n € N, then the groups H(G) and Z", as well as the C-
vector spaces O(G)/O(G) and C, are isomorphic; in particu-
lar, b((7) = n.

2) If n = oc, then b(G) = o = dimge O(G)/O'(G).

Proof. ad 1), This follows immediately from Theorem 1.
ad 2), For every k € N, there are & distinet holes in (. By Lemma 1,

— H(G) then contains a subgroup isomorphic to Z8 (namely Image ¢);

— there exists a C-epimorphism O(()/O'(G) — C* (induced by 7).
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The rank of H(G) and the dimension of O(G)/O'(G) are thus > k,
k> N. O

In particular, we have the equations
Betti number of G = number of holes of G = dime O(G)/O'(G).

Since Betti numbers are biholomorphic invariants by 1.2, this implies the

Invariance of the number of holes. Biholomorphically equivalent do-
mams m C have the same number of holes.

Invariance also follows from the right-hand equality, since for every biholomor-
phic map h . G = (| the map O(G,) — O(G). f — (foh)h, is a C-vector space
isomorphism which maps O’(G;) onto O'(G): sec Exercise 1.9.4.4.

Glimpse. The topological mmuariance of the number of holes is contained in a
general (and quite deep) duality theorem of algebraic topology for compact sets

in oriented manifolds. Let G denote a domain in the two-dimensional sphere
5% := CuU {oc}. Then

Hy($?.G:Q) ~ H'(S\G: Q),

where the 2nd homology group of the pair §2. G with coefficients in Q is on the
left-hand side. and the Oth homology group, which appears on the right-hand
side, is isomorphic to the group of locally constant functions S*\G — Q. (Sce, for
example, . H. Spanier: Algebraic Topology, McGraw-Hill and Springer, 1966. In
Theorem 17 on p 296, set X = §% ;= CuU {mc}, A:= S*\G. B :=0. G := Q
n := q := 2; then use the theorem at the bottom of p. 309.) If G now has n holes in
C. then S*\G has exactly n+ 1 components (all the unbounded components of G
i € have ~ as an accumulation point and thus form — together with o —— one
component of S4\(). In the case n < oo, it follows that H“(S"*\G; Q) ~Qrtt,
Since H;(G.Q) = 111(5%2.Q) = 0, the exact homology sequence for the pair
(S%.G) shows that H(S%. G, Q) ~ Q - I (G: Q) depends only on the domain G
and not on the inbedding G C §? (exactness axiom. loc. cit., p. 200). This gives
the topological invariance of the number of holes.
One can also prove:

Frvery (n + 1)-connected domain i C, where n € N, s homeomorphic to the
n-punctured plane C\{1,2,....n}.

(Cf. M. 1. A. Newman: FElements of the Topology of Plane Sets of Points, Cam-
bridge Univ. Press 1951, p. 157.)

Thus domains in C with the same Betti number in N are always homeomorphic.

3. Normal forms of multiply connected domains (report). Let G
be an (n+ 1)-connected domain. n € N, and let L. Lo, ..., L, be the holes
of G. Then. by 3(2) of the appendix to Chapter 13, GUL, ULyU---UL,
is a simply connected domain and can therefore, by the Riemann mapping
theorem. be mapped biholomorphically onto C or E. The domain G itself is
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thus biholomorphically equivalent to a domain that results from “drilling”
n holes out of C or E, respectively. But much more can be said.

Mapping theorem. FEvery (n+ 1)-connected domain in C can be mapped
biholomorphically onto a circle domain, i.e. a disc B,(0), 0 < r < ~c, from
which n pairwise disjomnt compact discs (possibly single points) have been
removed, n € N.

Every btholomorphic map between circle domains is realized by a linear
fractional transformation.

Koebe was the first to prove this theorem. We refer the reader inter-
ested in details to [Gai] or [Gru], where the problem of mapping arbitrary
domains conformally onto slit domains is also treated.

For n = 1. a more precise result can be proved. (We write ~ for “biholo-
morphically equivalent” and A,; for the annulus {z € C : r < |2| < 1},
0<r<l)

If L is the only hole of (7, then

a) L consists of a single point and GUL =C & G >~C*; or

b) L consists of a single point and GUL # C & G ~E*; or

¢) L consists of more than one point and GUL = C & G ~ EX;
or

d) L consists of more than one point and GUL # C & G ~ A,,.

The nondegenerate case d) causes the only difficulties. H. Kneser ([Kn],
pp. 372 375). uses the logarithm to reduce the proof to the case of simply
connected domains.

4. On the structure of the multiplicative group O(G)*. The group
O(G)* of all functions that are holomorphic and nonvanishing on G con-
tains the set exp O(G) of all the functions exp g. g € O(G), as a subgroup.
We have (cf. [.9.3.1)

(1) expO(G) = {f € O(G)* :/(f'/f)d( =0 for all v € Z(G)}.

7

In order to describe the quotient group O(G)* / exp O(G), we assign every
function f € O(G)* the Z-linear period map

1 1 !
As i H(G) — Z, 7‘?’—*%7(}”/”:%/]{7(1@
. ~

We denote by H(G)* the abelian group of all Z-linear forms on H(G) (the
dual of H(G)) and note immediately:

(2) The map O(G)* — H(G)*, f — Af, 15 a group homomorphism with
the group exp O(G) as kernel.
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Proof. Since (fg)'/fg=f'/f+4'/g, the map f — As is a homomorphism.
Its kernel is exp O(G) by (1). o

Now let Ly,..., L, be distinct holes of G, n € N. As in 1.3, we choose
an orthonormal family ~y,...,7n of paths in G. We fix points ¢, € L,,
1 < v < n. Then the forms A,_¢,,...,As—¢, € H(G)" are well defined and

(%) Az—e, (7;1) = ind,, (Ly) = by
It thus follows:

(3) The forms Ay—cy..., Azs—c, are linearly independent. If b(G) = n,
they form a basis of H(G)*; for all f € O(G)*,

Af=aiA;_e, +- -+ anA,—,, where a,:=A;(7,), 1<v<n<oo.
Proof. In the case b(G) = n, 74,...,7%, are a basis of G by Theorem 1. By
(%)y Az=cys -3 Az—c, then form the dual basis of H(G)*. )

(2) and (3) contain an existence and uniqueness theorem.

Product theorem for units. Let G be a domain with eractly n holes
Ly,...,Lyp; let v1,....7vn be a corresponding orthonormal family of paths
in G, n € N. Let ¢, € L, be chosen in some way. Then every function
f € O(G)* has a representation

F(2)=e Pz —c) . (2 —ca)*n,
where g€ O(G) and k,:= f -—d(, l1<v<n.
If f(2) = e"@(z—c))™ - ... (2 — cn)m" is another representation with

h € O(G) andmy,...,my, € Z, then h—g € 2miZ and m, = k,, 1 <v <n.

Proof. By (3). Ay = Y_kyA.—.,. Corresponding to v := (2 —¢;)%1 -...- (2 =
cn)fm € O(G)*, ¢, € Z, we have Ay, = S 0, \,_.,. By (2), f = e%v with
g € O(G) if and only if Ap = A,, ie. ifand only if &, = k1,..., 8, = k,. O

For domains without holes, the product theorem says (as we already
know) that every nonvanishing function f € O(G) has a holomorphic log-
arithm in G.

Another result follows from (2) and (3).

Proposition. The quotient group O(G)*/exp O(G) is isomorphic to a
subgroup of H(G)* (through the map induced by \).
The Betti number b(G) < oo if and only if O(G)* / exp O(G) is finitely

generated, in which case O(G)* [ exp O(G) is isomorphic to the group H(G)*
~ ZMNG)
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Proof. By (2), the group T := O(G)* / exp O(G) is isomorphic to the sub-
group Image A of H(G)*. If b(G) < oc, then Image A = H(G)* ~ Z°(©) by
(3). Conversely, if T is finitely generated, then T and hence also Image A

have finite rank m. By (3), G then has at most m holes: in other words,
b(G) < m.

5. Glimpses. The product theorem for units can be generalized:

(*) Every continuous map f : G — C* of a domain G C C wath ezactly n
holes, n € N, 1s of the form f(z) = e"(‘)n'l'(z —¢,)* . where g € C(G), k. € Z.

This statement dates back to Eilenberg’'s 1936 paper [E]; cf. p. 88 ff. The
1945 paper [Ku] of Kuratowski is also relevant to these topics; cf. p. 332 ff. In
textbooks, the theorem can be found in [SZ] (3rd edition, p. 211 ff.) and [Bu] (p.
111 ff.); the reader will find further historical information in [Bu].

It follows from (), by setting f(z,t) := e "9z - ¢,)*, 0 <t < 1.
that the continuous map f(z) = f(2,0) : g — C* is deformed by the “continuous
famaly” f(z,t) of maps G x[0, 1] — C* to the holomorphic map f(z,1) : G — C*.
Every continuous map G — C* is said to be homotopic to a holomorphic map.
In this form. () can be considerably strengthened:

If X is a Stein manifold and L is a complex Lie group, then every continuous
map X — L 18 homotopic to a holomorphic map X — L (special case of the
Oka-Grauert principle; cf. [Gra}).

The period homomorphism A : O(G)* — H(G)* of 4(2) was systematically
investigated in 1943 by H. Behnke and K. Stein; they showed that it is always
suryjective (cf. [BS], Satz 10, p. 451). The groups O(G)* / exp O(G) and H(G)"
are thus always canonically isomorphic. Since H(G)* has an uncountable basis
when b(G) = oc. we have the following phenomenon:

For every domain G, O(G)* / exp O(G) 1s a free abelian group; its rank is either
finite or uncountably infinite.

The surjectivity of A is a special case of a theorem on the existence of additive
automorphic functions with arbitrarily prescribed complex periods on arbitrary

noncompact Riemannian surfaces. A modern prescntation is given by O. Forster
([F], pp. 214-218).
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Short Biographies

Source, among others: Dictionary of Scientific Biography

Lipman Bers, Latvian-American mathematician: b. 1914 in Riga; 1938,
dissertation at the German university in Prague; from 1940 on, in the
United States: d. 1993 in New Rochelle, New York.

Wilhelm Blaschke, Austrian mathematician: b. 1885 in Graz; professor
in Prague, Leipzig, and Konigsberg; from 1919 to 1953 in Hamburg; d.
1962 in Hamburg. — Blaschke was a differential geometer, founder of the
geometry of webs.

André Bloch, French mathematician: b. 1893 in Besangon; 1913, student
at the Ecole Polytechnique; 1914-1915, wounded; 1917, after a bloody fam-
ily drama, committed to a psychiatric clinic, where he remained until his
death in 1948; 1948, posthumously awarded the Becquerel Prize. — Cf. H.
Cartan and J. Ferrand: The case of André Bloch. Math. Intelligencer 10,
23-26 (1988).

Constantin Carathéodory, Greek-German mathematician: b. 1873 in
Berlin; 1891, received his secondary-school diploma in Brussels; 1895, officer
in the corps of engineers at the Belgian military school; 1898, in Egypt. with
the Nile dam project; 1900, studied mathematics in Berlin; 1905, qualified
as a university lecturer in Go6ttingen; 1909, professor in Hannover; 1913,
succeeded F. Klein in Gottingen; 1920, founding president of the Greek
university in Smyrna; 1922, flight to Athens; 1924, succeeded F. Lindemann
(transcendence of 7) in Munich; d. 1950 in Munich.

Leopold Fejér, ITungarian mathematician: b. 1880 in Pécs; 1897- 1902,
studied in Budapest and Berlin; from 1911 on, professor in Budapest; d.
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1959 in Budapest. Fejér is one of the founders of the great TTungarian
school of analysis. which has included P. Erdos, F. and M. Riesz, J. v. Neu-
mann, G. Pdélya, T. Radé, O. Szasz. G. Szego. and J. Szokefalvi-Nagy. -
Obituary by JJ. Acz€él: Leopold Fejér, In memoriam. in Publ. Math. Debrecen
8.1 24 (1961).

Jacques Hadamard. French mathematician: b. 1865 in Versailles; 1884~
1883, student at the Ecole Normale Supéricure; 1897 1909. lecturer at the
Sorbonne: 1909 1937, professor at the College de Irance; d. 1963 in Paris.

Obituary by S. Mandelbrot and L. Schwartz in Bull. Amer. Math. Soc.
71,107 1219 (1965).

Friedrich Hartogs. German mathematician: b. 1874 in Brussels: 1905,
lecturer and. as of 1927, full professor at the University of Munich; 1935.
forced retirement; d. 1943 in Munich. by suicide. because of racial persecu-
tion.

Otto Holder, German mathematician: b. 1859 in Stuttgart: professor in

Tiibingen, Konigsberg, and, from 1899 on. in Leipzig: d. 1937 in Leipzig.
Known for the Holder inequalities and Holder continuity as well as the

Jordan-older-Schreier theorem on composition series of groups.

Adolf Hurwitz. German-Swiss mathematician: b, 1839 in Hildeshein:
secondary school instruction from H. C. H. Schubert, father of the “count-
ing calculus™ of algebraic geometry: 1877, studied with Klein, Weierstrass.
and Kronecker; 1831, received his doctorate at Leipzig: 1882, qualified as
a university lecturer at Gottingen. since graduates of secondary schools
emphasizing modern languages were not permitted to qualifv as univer-
sity lecturers at Leipzig: in 1884, at the age of 25. associate professor in
Konigsberg, and friendship there with Hilbert and Minkowski: 1892, de-
clined an offer to succeed Schwarz at Gottingen and accepted an offer to
succeed Frobenius at the Federal Polytechnic School in Zurich; d. 1919 in
Zurich.  Worked in function theory, theory of modular functions, algebra.
and algebraic mumnber theory.

Carl Gustav Jacob Jacobi. German mathematician: b. 1804 in Potsdam;
1824, received his doctorate and qualified as a university lecturer in Berlin.
defended the thesis “All seiences must strive to become “mathematics™ ™,
1826, lecturer in Konigsberg; 1829, full professor there: 1829. friendship
with Dirichlet. whose wife, Rebecea Mendelsohn, described the time they
spent together by “they did mathematics in silence”: 1842, member of
the order “Pour le Mérite fiir Wissenschaft und Kiuste™: 1844, moved
to Berlin, ordinary mewmber of the Prussian Academy of Sciences: 1849,
financial reprisals because of his conduct after the revolution of March
I1848; 1849, called to Vienna: d. 1351 in Berlin. of smallpox.  From about
1330 on. Jacobi was considered the greatest German mathematician after
Gauss. Bib.: Gedachtnisrede, delivered in 1852 by L. Dirichlet. in Jacobi's
Ges. Wearken 1, 1 28, or Teubner-Archie zur Mathematdk, vol. 10, 1983.
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ed. H. Reichardt, 8-32; also L. Konigsberger: Carl Gustav Jacob Jacobi, J.
DMV 13, 405 433 (1904).

Robert Jentzsch, German mathematician: b. 1890 in Konigsberg; 1914,
received his doctorate in Berlin; 1917, lecturer at the University of Berlin;
killed in action. 1918.

Paul Koebe, German mathematician: b. 1882 in Luckenwalde, near Berlin;
student of H. A. Schwarz: 1907, qualified as a university lecturer at
Gottingen; 1914, full professor in Jena: 1926, full professor in Leipzig; d.
1945 in Leipzig. — Koebe was a master of conformal mapping and uni-
formization theory. He attached great importance to being a famous math-
ematician; one anecdote recounts that he always traveled incognito, so as
not to be asked in hotels whether he was related to the famous function
theorist. — Obituaries by L. Bieberbach and H. Cremer: Paul Koebe zum
Gedachtnis, Jahresber. DMV 70, 158-161 (1968); and R. Kiihnau: Paul
Koebe und die Funktionentheorie, 183-194, in 100 Jahre Mathematisches
Seminar der Karl-Marx Universitat Leipzig, ed. H. Beckert and H. Schu-
mann, VEB Deutscher Berl. Wiss. Berlin, 1981.

Edmund Landau. Germman mathematician: b. 1877 in Berlin; student
of Frobenius; 1909, full professor at Gottingen, as Minkowski's successor;
1905, son-in-law of Paul Ehrlich (chemotherapy and Salvarsan); 1933, dis-
missed for racial reasons: d. 1938 in Berlin. Obituary by K. Knopp in
J. DMV 54, 55-62 (1951), cf. also M. Pinl: Kollegen in einer dunklen Zeit,
Part 1. J. DMV 72.165-189 (1971). N. Wiener says of the so-called L.andau
style, “IIis books read like a Sears-Roebuck catalogue.”

Magnus Gustaf Mittag-Lefller. Swedish mathematician: b. 1846 in
Stockholm; 1872, received his doctorate in Uppsala; 1873, held a fellow-
ship in Paris: 1874-1875, attended lectures by Weierstrass: 1877, professor
in Helsinki; 1881, professor in Stockholm; 1882, founded Acta Mathematica;
1886, president of the University of Stockholm; d. 1927 in Stockholm.
Obituaries for Mittag-TLeffler were written by N. E. Norlund, Acta Math.
50, I XXIIT (1927): G. II. Hardy, Journ. London Math. Soc. 3, 156-160
(1928); and, in 1944. by the first director of the Mittag-LefHler Institute.
T. Carleman, Kung. Svenska Vetenskapsakademiens levnadsteckmingar 7.
459 471 (1939 1948).

Mittag-Lefler was a manager of mathematics. With Acta Mathematica,
he eased the scientific tensions that had existed since 1870 1871 between
the mathematical powers of Germany and France: among those whose work
he published in Acta was G. Cantor, who faced great hostility. In 1886. he
succeeded in getting Sonia Kovalevsky appointed professor; at that time,
women were not even allowed as students in Berlin. For more on this,
see L. Hormander: The First Woman Professor and Her Male Colleague
(Springer. 1991). — Mittag-Leffler’s relations with A. Nobel were strained;
see C.-O. Selenius: Warum gibt es fiir Mathematik keinen Nobelpreis?, pp.
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613 624 in Mathemata, Festschr. fir H. Gericke. Franz Steiner Verlag.
1985.

In 1916, Mittag-Leffler and his wife willed their entire fortune and their villa in
Djursholm to the Royal Swedish Academy of Sciences (the will was published in
Acta Math. 40, 111 X). The Mittag-Lefiler Institute is still an international center
of mathematical research.

Paul Montel. French mathematician: b, 1876 in Nizza; 1894, studied at
the Ecole Normale Supérieure: 1897, received a fellowship from the Thiers
Foundation; 1904. professor in Nantes: 1913. professor of statistics and
materials testing at the Ecole Nationale Supérieure des Beaux-Arts; 1956.
after the death of E. Borel, director of the Institut Henri Poincaré; d. 1975
in Paris.

Eliakim Hastings Moore. American mathematician: b. 1862 in Mari-
elta, Ohio; 1885, received his doctorate at Yale; 1885, held a fellowship in
Gottingen and Berlin; 1892, professor at the recently founded University
of Chicago; 1896-1931, permanent chairman of the Mathematical Institute
at Chicago; 1899, received an honorary doctorate from Gottingen; d. 1932
in C'hicago. Moore is known, among other things, for Moore-Smith se-
quences and the Moore-Penrose inverse. L. E. Dickson. O. Veblen, and G.
D. Birkhoff are numbered among his students. Moore was probably the
most influential American mathematician around the turn of the century:
in 1891, for instance. he was one of the founders of the American Mathe-
matical Society. NMoore was a member of the National Academy of Sciences.

Alexander M. Ostrowski. Russian-Swiss mathematician: b. 1893 in Kicv:
1912 19138, studied in Marburg with Hensel: 1918--1920, at Gottingen: 1920
1923, assistant at Hamburg: 1923-1927. lecturer at Gottingen; 1927-1958,
full professor in Basel; d. 1986 in Montagnola/Lugano. — Obituary by R.
Jeltsch-Fricker in Elem. Math. 43, 33-38 (1988).

Charles Emile Picard, French mathematician: b. 1856 in Paris; 1889,
member of the Académie des Sciences, and from 1917 on its secretary:
from 1924 on. member of the Académie Francaise: d. 1941 in Paris. —
Major work in the theory of differential equations and function theory,
father of value distribution theory. In his opening address to the Inter-
national Congress of Mathematicians in 1920, in Strasbourg, he quoted
Lagrange’s bon mot: “Les mathématiques sont comme le pore, tout en est
bon.” (Mathematices is like the pig, all of it is good.)

Jules Henri Poincaré, I'rench mathematician: b. 1854 in Nancy: 1879,
professor at Cacn: 1881, professor at the Sorbonne: d. 1912 in Paris.
Poincaré discovered automorphic functions and did pioneering work in ce-
lestial mechanies and algebraic topology. Along with Einstein, Lorentz.
and Minkowski, he founded the theory of special relativity. Poincaré was a
cousin of Raymond Poincaré, who served several times and for many years
as prime minister of IFrance.
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George Polya, Hungarian mathematician: b. 1887 in Budapest; studied
in Budapest. Vienna, Gottingen, and Paris; 1912, received his doctorate in
Budapest: 1914 to 1940, at the ETH Zurich, from 1928 on as full profes-
sor; 1942 1953, full professor at Stanford University: d. 1985 in Stanford.
— Polya enriched analysis and function theory through penetrating and
excellently written papers. The books of Pdlya and Szego that appeared in
1925 are among the most beautiful books of function theory. In 1928 Pdélya,
in “On my cooperation with Gabor Szeg6,” Coll. Papers of G. Szegé, vol.
1, p. 11, gave his own judgment: “The book PSz. the result of our coop-
eration, is my best work and also the best work of Gabor Szego.” — An
obituary can be found in Bull. London Math. Soc. 19, 559-608 (1987).

Tibor Radd, Hungarian-American mathematician: b. 1895 in Budapest;
1922, received his doctorate at Szeged, under F. Riesz; from 1922 to 1929,
lecturer in Budapest; 1929, emigrated to the United States; from 1930 on,
full professor in Columbus, Ohio; d. 1965 in Florida.

Frederic Riesz, Hungarian mathematician: b. 1880 in Gyor; studied in
Zurich, Budapest. and Gottingen; 1908, high school teacher in Budapest;
1912, professor in Klausenburg (Cluj); from 1920 to 1946, professor in
Szeged; from 1946 on, in Budapest; d. 1956 in Budapest.

Marcel Riesz, Hungarian-Swedish mathematician (brother of Frederic):
b. 1886 in Gyor; studied in Budapest, Gottingen, and Paris; 1911, lecturer
in Stockholm; 1926, full professor in Lund; d. 1969 in Lund.

Carl David Tolmé Runge, German mathematician: b. 30 August 1856
in Bremen; beginning in 1876, student in Munich and Berlin, friendship
with Maz Planck; 1880, received his doctorate under Weierstrass (differ-
ential geometry): 1883, qualified as a university lecturer with work, influ-
enced by Kronecker, on a method for the numerical solution of algebraic
equations; 1884. after a visit to Mittag-Lefller in Stockholm, publication
of his groundbreaking paper in Acta Mathematica; 1886, full professor at
the technical college in Hannover, concerned with spectroscopy; 1904, full
professor in “applied mathematics” at Gottingen; 1909-1910, visiting pro-
fessor at Columbia University; d. 3 January 1927 in Gottingen. — Runge
was the first advocate of approximate mathematics (numerical analysis) in
Germany: his many papers (with Kaiser, Paschen, and Voigt) on spectral
physics also earned him an outstanding reputation as a physicist.

Friedrich Schottky, German mathematician: b. 1851 in Breslau; 1870-
1874, studied in Breslau and Berlin: 1875, received his doctorate under
Weierstrass: 1882. professor in Zurich; from 1892 to 1902, full professor in
Marburg: from 1902 to 1922. full professor in Berlin; d. 1935 in Berlin.

Thomas Jan Stieltjes. Dutch mathematician: b. 1856 in Zwolle; 1877~
1883, at the observatory in Leiden; 1883, professor at Groningen: from 1886
on, professor in Toulouse: d. 1894 in Toulouse. — A great variety of work
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in analysis, function theory. and number theory. In 1894 he introduced the
integral later named after him.

Gabor Szegd, Hungarian mathematician: b. 1895 in Kunhegyes: 1912-
1913, friendship with G. Pdlya: 1918, received his doctorate in Vienna:
1921, lecturer in Berlin (with S. Bergmann. S. Bochner. E. Hopf, H. Hopf,
C. Lowner, and J. von Neumann): 1926 1934. full professor in Konigsberg:
1931, emigrated to St. Louis, Missouri; 1938-1960). full professor at Stan-
ford: d. 1985 in Stanford.

Giuseppe Vitali. Italian mathematician: b. 1875 in Bologna: to a large
extent self-taught; 1904 1923, middle school teacher: 1923 1932, professor
in Modena, Padua, and Bologna; d. 1932. — Vitali worked mainly in the
theory of real functions and is regarded as a precursor of Lebesgue.

Joseph Henry Maclagan Wedderburn, Scottish-American mathemati-
cian: b. 1882 in Forfar; 1904, studied in Berlin under Frobenius and Schur;
1905 1909, lecturer at the University of Edinburgh; from 1909 on, at Prince-
ton University, where Woodrow Wilson, later president of the United States,
had appointed him preceptor: 1911 1932, editor of Annals of Mathemat-
wes; d. 1948 in Princeton. - Wedderburn was an algebraist; he classified
all semisimple finite-dimensional associative algebras over arbitrary ground
felds; he showed moreover that finite fields are automatically commutative.
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C Cararnropory 1873-1950 C.D.T. Run:r 1856-1927

M.G. Mirtaa-Litiirr 1846 1927 P Kotsr 1882 1945

Pen and ink drawings by Martina Koecher
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(Supplement. to the symbol index of Theory of Complex Functions)

Clziwy wy),
T', 91

D, 95
ged(S), 95
lem(S), 95
b(z,d), 100
b(z), 101
Yeu 108
M(G)*. 109
PD(f), 126
Aut G, 188
Aut, G\ 188
Hol G, 188
Hol, G, 188
p(G.a), 190
AC B. 192
D(G). D, 194
Koy K xy 200
[l 207
p(A). 216
deg,. f, 219
O(D), 226
d(A, B). 269
Cplz], 273
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D. 296
Rp, 296
Mp. 300
M. 300
7, 310
b(17), 310

H(U). 310
Z(U). 310
O'(U). 310
O(G)*, 316
exp O(G). 316
H(G)*. 316



Name Index

Abel, Niels Henrik (1802 1829),
25

Ahlfors. Lars Valerian (1907
1996). 168. 230. 241

Alling. Norman L. (*1930), 141,
142

Arens. Richard Friedrich
(1919). 204. 221

Artin, Emil (1893-1962), 35. 44,
51, 68. 70

Arzela. Cesare (1847-1912). 154

Ascoli, Giulio (1832-1396). 1hH4

Behnke, Heinrich (1898-1979),
07. 98, 104, 135, 142,
295, 298, 300, 318

Bernoulli. Jakob (16541 1705),
29, 30

Bernoulli, Johann (1667 1748).
17,24

Bers, Lipman (1914 1993). 110.
123. 321

Besse, Jean, 116, 119, 123

Bessel, Friedrich Wilhelin
(1734 1846). 33, 42

Betti, Enrico (1823 1892), 80, 82

Bieberbach. Ludwig
(1886--1982), 183, 201,
2009. 221. 264, 266. 323

Binet. J.NL.. 61. 68

Birkhoft, GG. D.. 45

Blaschke. Wilhehn (1835 1962),
101, 104, 151, 159, 164,
321

Bloch. André (1893 1918). 226,
241, 321

Bohr, Harald (1887 1951), 1, 70

Bonk, Mario, 230, 241

Borel. Emile (1871 1936), 240,
211, 259

Burckel, Robert Bruce (*1939),
LT, 1230 159, 164, 285,
287, 304, 307, 318

Carathéodory, Constantin
(1873-1950), 100. 104,
159, 16-1. 168, 178,
184 186, 197, 200. 201,
200. 228, 233, 238, 321
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Carleman. Torsten (1892-1949),
162, 164

Carlson, Fritz (1888-1952), 263,
265, 266

Cartan, Henri (*1904), 80, 98,
120, 123, 134, 135, 142,
201, 204, 208, 221, 283,
287

Cassini, Giovanni Domenico
(1625-1712), 122

Cauchy, Augustin-Louis
(1789-1857), 3, 65

Cousin, Pierre (1867-1933), 80,
97, 98, 105, 135, 142

Dedekind. Richard (1831-1916),
49, 140

Dirichlet. Gustav Peter Lejeune
(1805-1859), 69, 71,
140, 322

Domar, Yngve, 131. 134, 142

Eilenberg, Samuel (*1913), 318
Eisenstein, Ferdinand Gotthold
Max (1823-1852), 3,
16, 17, 31, 81, 129
Enestrom, Gustav E.
(1852 1923), 29, 31
Estermann, Theodor (*1902).
228, 241, 251, 255
Euler, Leonhard (1707-1783), 3,
12, 13, 17-21, 24, 27,
29, 31, 33, 35, 37, 41,
42, 45, 48, 53, 69, 71

Faber, Georg (1877-1966), 256

Fabry, Eugéene (1856-1944), 256,
259

Fatou, Pierre Joseph Louis
(1878-1929), 213, 222,
248, 249, 258, 259, 263,
266

Fejér, Leopold (1880-1959), 77,
86, 100, 104, 168, 184,
321

Finsterer, A., 67. 72
Fredholm. Erik Ivar
(1866-1927), 254, 256
Fuchs. Immanuel Lazarus
(1833-1902), 181
Fuss, Paul Heinrich von
(1797 1855), 29, 30

Gaier, Dieter (*1928), 274. 287,
294, 307. 316. 319

Gauss, Carl Friedrich
(1777-1855). 27, 29, 31,
33, 41, 42. 45, 48, 71,
183

Golitschek, Edler von Elbwart,
M.. 162, 164

Goursat. Edouard Jean Baptiste
(1858-1936), 114, 123,
255

Grauert, Hans (*1930). 80. 98,
105, 318, 319

Gronwall, Thomas Hakon, 98,
105

Grunsky, Helmut (1904-1936),
316, 319

Gudermann. Christoph
(1798-1852). 61, 71

Hadamard. Jacques Solomon
(1865 1963). 243. 249,
254-256, 322

Hankel, Hermann (1839-1873),
44, 49, 55, 71

Hardy, Godfrey-Harold
(1877 1947). 19, 20, 26,
31

Hartogs, Friedrich (1874-1943),
116, 120. 124, 280, 287,
322

Hausdorff, Felix (1868-1942), 47,
71, 258, 259, 265, 266

Heins, Maurice H. (*1915), 211,
216, 222

Helmer, Olaf (*1910), 137. 140,
142



Henriksen, Melvin (*1927), 140,
142

Hermite, Charles (1822-1901),
130, 142, 158, 159

Hilbert, David (1862-1943), 154,
164, 168, 181, 183, 201,
294, 307

Holder, Ludwig Otto
(1859-1937), 46, 71,
322

Hormander, Lars Valter (*1931),
294, 303, 307, 323

Huber, Heinz (*1926), 211, 222

Hurwitz, Adolf (1859-1919), 81,
86, 120, 124, 137, 140,
142, 162, 228, 254, 256,
258, 259, 322

Iss’sa, Hej, 111, 124

Jacobi, Carl Gustav Jakob
(1804-1851), 25, 28-31,
69, 71, 322

Jensen, Johan Ludwig William
Valdemar (1859-1925),
35, 71, 100, 103, 105

Jentzsch, Robert (1890-1918),
159, 164, 255, 257, 263,
323

Julia, Gaston (1893-1978), 206

Kelleher, James J., 111, 124

Klein, Felix (1849-1925), 181

Kneser, Hellmuth (1898-1973),
71, 84, 87, 116, 316, 319

Knopp, Konrad Hermann
Theodor (1882-1957),
4, 22, 31, 45

Kdoditz, Helmut (*1947), 206

Koebe, Paul (1882-1945), 154,
164, 168, 177, 178, 184,
195, 197, 201, 217, 222,
323

Konig, H. (*1929), 233, 234, 241

Name Index 333

Kronecker, Leopold (1823-1891),
26, 30, 31, 65, 119, 248,
249, 254, 264, 266

Kummer, Ernst Eduard
(1810-1893), 45, 71

Kuratowski, Kazimierz
(1896-1980), 318, 319

Landau, Edmund (1877-1938),
97, 101, 105, 159, 164,
206, 228, 229, 232, 238,
241, 323

Legendre, Adrien Marie
(1752-1833), 29, 45, 49,
68, 71

Leibniz, Gottfried Wilhelm
(1646-1716), 24, 29

Lindelof, Ernst Leonard
(1870-1946), 35, 65, 67,
71, 159, 164, 198, 202

Lowner, Karl (1893-1968), 159,
164

Minda, Carl David (*1943), 232,
241

Mittag-Leffler, Magnus Gustaf
(1846-1927), 97, 105,
119, 124, 125, 130, 134,
143, 254, 280, 287, 323

Mollerup, Johannes (1872-1937),
44, 70

Montel, Paul (1876-1975), 148,
154, 164, 280, 287, 324

Moore, Eliakim Hastings
(1862-1932), 16, 47, 71,
324

Mordell, Louis Joel (1888-1972),
254, 257

Mues, Erwin (*1936), 206

Miintz, C. H., 102, 161, 162, 164

Narasimhan, Raghavan (*1937).
185, 202, 294, 301, 307

Neumann, Carl Gottfried
(1832-1925), 168, 183
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Nevanlinna, Rolf Hermann
(1895-1980), 240

Newman, Donald Joseph
(*1930), 280, 287

Nielsen, Niels (1865-1931), 35,
43, 48, 68, 71

Noether, Emmy (1882-1935),
140

Oka, Kiyoshi (1901-1978), 80,
98, 105, 141, 143

Orlando, Luciano (1877-1915),
77, 87

Osgood, William Fogg
(1864-1943), 151, 158,
159, 165, 184, 202, 280,
287

Ostrowski, Alexander M.
(1893-1986), 47, 71,
185, 197, 202, 248-250,
254, 255, 257, 324

Petersen, Julius (1839-1910),
100, 103, 105

Picard, Charles Emile
(1856-1941), 97, 105,
225, 240, 241, 324

Pincherle, Salvatore
(1853-1936), 59, 71

Plana, J., 65

Poincaré, Jules Henri
(1854-1912), 80, 87, 97,
98, 168, 179, 184, 186,
202, 254, 324

Pélya, Georg (1887-1985), 194,
197, 198, 202, 256-260,
263-266, 325

Porter, Milton Brocket
(1869-1960), 158, 165,
249, 253-255, 257

Pringsheim, Alfred (1850-1941),
5, 31, 37, 114, 131, 143,
286, 287

Prym, F. E., 52, 72

Radé, Tibor (1895-1965), 159,
164, 202, 213, 215,
220-222, 325

Riemann, Georg Friedrich
Bernhard (1826-1866),
167, 172, 175, 181, 186,
202, 246, 254

Riesz, Frederic (1880-1956), 168,
184, 325

Riesz, Marcel (1886-1969), 246,
248, 249, 325

Ritt, Joseph Fels (1893-1951),
11, 32

Rogers, L. C. G., 162, 165

Rosenthal, Arthur (1887-1966),
280, 287

Rubel, Lee Albert (*1923), 137,
143, 278, 283, 287

Riickert, Walther, 141, 143

Rudin, Walter (*1921), 162, 165

Runge, Carl David Tolmé
(1856-1927), 119, 158,
165, 280, 288, 289, 292,
294, 307, 325

Saks, Stanislaw (1897-1942),
154, 165, 270, 288, 313,
318, 319

Sattler, A., 67, 72

Schafke, W., 67, 72

Schilling, Otto Franz Georg
(1911-1973), 141, 143

Schottky, Friedrich Hermann
(1851-1935), 16, 241,
242, 325

Schwarz, Hermann Amandus
(1843-1921), 168, 181,
183, 186, 202

Serre, Jean-Pierre (*1926), 80,

_ 98,105, 135

Stein, Karl (*1913), 97, 98, 104,
120, 124, 135, 295, 298,
306, 318

Steinhaus, Hugo (1887-1972),
259, 260



Stieltjes, Thomas-Jan
(1856-1894), 13, 56, 59,
61, 63, 72

Stirling, James (1692-1770), 55,
58

Sura-Bura, Mikhail Romanovich,
304, 307 -

Szeg6, Gabor (1895-1985), 194,
197, 198, 202, 254, 257,
263, 264, 266, 326

Thullen, Peter (*1907), 120, 123
Titchmarsh, Edward Charles
(1899-1963), 53, 72

Ullrich, Peter (*1957), 82, 87

Valiron, Georges (1884-1954),
18, 32, 206, 228

Vitali, Giuseppe (1875-1932),
50, 101, 151, 156, 158,
165, 326

Wallis, John (1616-1703), 3, 12

Watson, George Neville
(1886-1965), 30, 32, 35,
51, 72
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Wedderburn, Joseph Henry
Maclagan (1882--1948),
136-138, 140, 143, 326

Weierstrass, Karl Theodor
Wilhelm (1815-1897),
3, 32, 34, 36, 38, 42, 44,
47, 72, 73, 79, 80, 84,
87, 97, 119, 124, 130,
134, 143, 158, 183, 202,
254, 257, 294, 307

Weil, André (*1906), 18, 24, 32

Whittaker, Edmund Taylor
(1873-1956), 35, 51, 72

Wielandt, Helmut (*1910), 43,
45, 55

Wright, Sir Edward Maitland
(*1906), 19, 20, 26, 31

Zeller, Christian Julius Johannes
(1822-1899), 22, 32

Zygmund, Antoni (*1900), 154,
165, 270, 288, 313, 318,
319
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addition formula for the
logarithmic derivative,
10
admissible expansion, 192, 194
Ahlfors’s theorem, 230
Ahlfors-Grunsky conjecture, 232
angular derivative, 206
angular sector, 58
annuli
boundary lemma for, 214
finite inner maps of, 215
finite maps between, 213,
216
annulus theorem, 211
annulus
degenerate, 215
homology group of an, 314
modulus of an, 216
approximation
by holomorphic functions,
267
by polynomials, 267, 268,
277, 292, 294
by rational functions, 271,
273, 292

approximation theoremn
Runge’s, 268, 273, 274, 289,
292
for polynomial
approximation. 274
Weierstrass, 161
arc of holomorphy, 244
Arzela-Ascoli theorem, 154
automorphism group of a
domain, 188
automorphisms
convergence theorem for
sequences of, 204
convergent sequences of, 205
of domains with holes, 210
with fixed point, 188, 208

Behnke-Stein theorem, 297
Bergman's inequality, 155
Bernoulli numbers, 62
Bernoulli polynomials, 61
Bernstein polynomials, 161
Bers’s theorem, 108, 111
beta function

Euler’s, 68



338 Subject Index

Euler’s identity for the, 68
Betti number
of a domain. 309
of a region, 310, 312
invariance theorem for the,
312
biholomorphically equivalent,
167, 175
biholomorphy criterion, 230
Binet's integral, 64
Blaschke condition, 99-101
Blaschke product, 96, 101. 212
finite, 212

Blaschke’s convergence theorem,

151
Bloch function, 229
Bloch’s constant, 232
Bloch’s theorem, 226, 227, 229,
237, 241
Bohr and Mollerup, uniqueness
theorem of, 44
Bolzano-Weierstrass property,
147
boundaries, natural. 119
boundary behavior of power
series, 243
boundary lemma for annuli, 213
boundary point
holomorphically extendible
to a, 116, 244
singular, 116
visible, 115
boundary sequence, 211
boundary set, well-distributed,
115
boundary value problem,
Dirichlet, 181
bounded component, 291
bounded component of C\ K,
273, 276, 278
bounded family, 148
bounded functions
in O(E), 99
in O(E), identity theorem
for, 100

in O(T), 102

bounded homogeneous domain,
205

bounded sequence (of functions),
148

boundedness theorem, M.
Riesz’s, 244

Brownian motion, 235

canonical Mittag-Lefller series,
129
canonical Weierstrass product,
81. 82
Cantor’s diagonal process, 148
Carathéodory-Koebe algorithim,
194
Carathéodory-Koebe theory, 191
Carlson and Pdlya. theorem of),
265
Cartan’s theorem, 207
Cassini domain, 123
Cassini region, 122
Cauchy function theory, main
theorem of, 293
Cauchy integral formula, 293
for compact sets, 269, 284
for rectangles, 269
Cauchy integral theorem, 293
first homotopy version, 169
second homotopy version,
170
character of O(G), 108
circle domain, 316
circle group, closed subgroups of
the, 209
circuit theorem, 285, 287
closed ideal, 138
closed map, 217, 281
closed subgroups of the circle
] group, 209
common divisor (of holomorphic
functions), 95
compact component, 290, 296
compact convergence of the
I-integral, 160



compact set, open, 296, 304
compact sets
Cauchy integral formula for,
269, 284
main theorem of Runge
theory for, 276
compactly convergent product of
functions, 6 )
complex space, 221
component (of a topological
space), 272, 290, 303
bounded, 291
component of C\ K,
bounded, 273. 274. 276
unbounded, 272
conjecture, Ahlfors-Grunsky, 232
connected
component, 268, 272, 303
subspace, maximal, 303
multiply, 315
simply, 171, 180
simply, homologically, 172,
180
constant
Bloch’s. 232
Euler’s (v). 35, 37
Landau’s, 232
construction, Goursat's. 113
continuously convergent
sequence of functions,
150, 203
convergence criterion
for products of functions, 7
Montel’s, 150
convergence theorem
for expansion sequences, 195
for sequences of
automorphisms, 205
of Fatou and M. Riesz, 244,
247
Blaschke’s, 151
Ostrowski’s, 247
convergence, continuous, 203
convergence-producing
factor, 74, 79, 97

Subject Index 339

summand, 125, 127
convergent

compactly, 6

continuously, 150
convergent product of numbers,

4

convergent sequences

of automorphisins, 204, 205

of inner maps, 204
cosine product, Euler’s, 13, 17
cotangent series, 12, 129
cover, universal, 236
covering, holomorphic. 219
crescent expansion, 193
criterion

for domains of holomorphy,

118

for nonextendibility. 248
cycle. 283, 310

exterior of a, 284

interior of a, 284

null homologous, 293, 310

support of a, 283
cycles, homologous, 310

A(z), 35
functional equation for, 38
multiplication formula for,

38

deformation. 169

degenerate annulus, 215

degree theorem for finite maps,
220

dense function algebra, 290

derivative, logarithmic, 10, 126

diagonal process, Cantor’s, 148

differentiation. logarithmic, 10.
126

differentiation theorem for
normally convergent
products of
holomorphic functions.
10

Dirichlet boundary value
problem, 181



340 Subject Index

Dirichlet principle, 181, 183
distribution of (finite) principal
parts, 126
distribution of zeros, 74
divergent product of numbers, 5
divisibility criterion for
holomorphic functions,
95
divisibility in O(G), 94
divisor, 74, 126
positive, 74
principal, 74
sequence corresponding to a
divisor, 75
divisor sum function o(n), 21, 24
domain, 6
of existence of a
holomorphic function,
maximal, 112
of holomorphy, 112, 113,
115, 118, 248, 252, 253,
256, 257, 259, 260, 265
of holomorphy, existence
theorem for functions
with prescribed, 113
homogeneous, 205
of meromorphy, 119
multiply connected, 315
simply connected, 171, 175,
176, 180, 189
domains of holomorphy
criterion for, 115, 118
lifting theorem for, 122
duplication formula
for the gamma function, 45
for the sine function, 14

Eisenstein series, 129
Eisenstein-Weierstrass
¢-function, 85
entire functions
existence theorem for, 78
factorization theorem for, 78
root criterion for, 79
equicontinuous family, 153

equivalence theorem
for finite maps, 218
for simply connected
domains, 180
equivalent, biholomorphically,
167, 175
error integral, Gaussian, 51
Euler’s
beta function, 68
constant (v), 35, 37
cosine product, 17
identity for the beta
function, 68
integral representation of
the I'-function, 49, 51
product representation of
the I'-function, 42
sine product, 12, 13, 17, 82
supplement, 40
evaluation, 108
existence theorem
for entire functions with
given divisor, 78
for functions with
prescribed domain of
holomorphy, 113
for functions with
prescribed principal
parts, 128, 133
for greatest common
divisors, 95
for holomorphic functions
with given divisor, 93
expansion, 177, 192
admissible, 192
family, 194, 196
sequence, 194, 195
sequences, convergence
theorem for, 195
theorem, Ritt’s, 11
extendible to a boundary point,
holomorphically, 116,
244
exterior of a cycle, 284
extremal principle, 178, 181



Fabry series, 255
Fabry’s gap theorem, 256
factorization theorem
for entire functions, 78
for holomorphic functions,
93
family, 147
bounded, 148
equicontinuous, 153
locally bounded, 148, 152
locally equicontinuous, 153,
154
normal, 152, 154
of paths, orthonormal, 312
Fatou, convergence theorem of
M. Riesz and, 244, 248
Fatou’s theorem, 263
Fermat equation, 235
filling in compact sets, 291
filling in holes, 301, 305
finite inner maps
of E, 212
of annuli, 215
finite map, 211
between annuli, 216
degree theorem for, 220
finite maps, 203
between annuli, 213
finite principal part, 126
finitely generated ideal, 136
first homology group of a
domain, 309
fixed point, 188, 208
theorem, 235
automorphisms with, 188
inner map with, 208
fixed-endpoint homotopic, 168
formula,
Jensen’s, 103
formulas
Fresnel, 53
Stirling’s, 58
freely homotopic paths, 169
Fresnel integral, 53
function, square integrable, 155

Subject Index 341

functional equation

for A(z), 38

for the u-function, 57

for the gamma function, 39
fundamental group, 175

v (Euler’s constant), 35, 37
gamma function (I'(z)), 33, 39
gamma function (I'(z)),
logarithmic derivative
of the, 130
gamma function (I'(z))
duplication formula for the,
45
Euler’s integral
representation of the,
51
Euler’s supplement for the,
40, 41
functional equation for the,
39
growth of the, 59
Hankel’s integral
representation of the,
54
logarithm of the, 47
logarithmic derivative of
the, 42
multiplication formula for
the, 45
partial fraction
representation of the,
52
product representation of
the, 39
uniqueness theorem for the,
43, 44, 46
supplement for the, 40
gamma integral, compact
convergence of the, 160
gap theorem, 252, 254, 256
Fabry's, 256
Hadamard’s, 252, 254
Gaussian error integral, 51
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Gauss’s product representation
of the gamma function,
39
ged (greatest common divisor),
95
existence theorem for, 95
linear representation of, 138
general Weierstrass product
theorem, 91, 92, 97
generalization of Schwarz's
lemma, 99
generating function (of a
number-theoretic
function), 20
Goursat series, 114
Goursat’s construction, 113
greatest common divisor(ged),
95
existence theorem for, 95
group of automorphisms with
fixed point, 188, 208
group of units of M(D), 75
growth of I'(z), 59
Gudermann’s series, 60

Hadamard lacunary series, 120,
252
Hadamard’s gap theorem, 252
Hankel’s integral representation
of the gamma function,
54
Hankel’s loop integral, 53
Herglotz’s lemma, 14
Holder’s theorem, 47
hole
(of a domain, region), 210,
290, 309, 310, 314
holomorphic covering, 219
holomorphic functions
divisibility criterion for, 95
factorization theorem for,
78, 93
interpolation theorem for,
134
root criterion for, 79, 94

holomorphic imbedding of E in
C, 281
holomorphic injection, 177
holomorphic logarithm, 180
holomorphic map, finite, 203,
211
holomorphic square root, 176,
180
holomorphically extendible to a
boundary point, 116,
244
holomorphy criterion, 109
homeomorphism, 172, 175
homogeneous domains, mapping
theorem for, 205
homologically simply connected,
168, 172, 180
homologous cycles, 310
homology group
of a domain, 309, 314
of an annulus, 314
homothety, 206
homotopic paths, 168, 169
homotopy, 169
homotopy version of the Cauchy
integral theorem, 169,
170
hull
holomorphically convex, 300
linearly convex, 300
polynomially convex, 303
Runge, 297
Hurwitz’s
injection theorem, 163, 179,
185
lemma, 162
observation, 85

ideal, 136
theory for O(G), 135, 140
theory of O(G), main
theorem of the, 139
closed, 138
finitely generated, 136
maximal, 140



nonvanishing, 138
theory for O(G), 135, 140
theory of O(G), main
theorem of the, 139
zero of a, 138
identity theorem for bounded
functions in O(E), 100
identity theorem, Miintz’s, 161
imbedding of E in C,
holomorphic, 281
imbedding theorem, 281
inequality
Bergman'’s, 155
Jensen'’s, 100
infinite product of functions, 6
infinite product of numbers, 4
injection, holomorphic, 177
with fixed points, 188
inner maps, 188, 203
of annuli, finite, 215
convergent sequences of, 204
injection theorem, Hurwitz'’s,
163, 176, 179, 185
of E, finite, 212
of H, 206
inner radius of a domain, 191
integral formula
for compact sets, Cauchy,
284
final form, 284
integral formula, Cauchy, 293
for compact sets, 269
for rectangles, 269
integral formulas for p(z), 57
integral representation
of the beta function, 67
of the gamma function,
Euler’s, 51
of the gamma function,
Hankel’s, 54
integral theorem, Cauchy, 293
first homotopy version, 169
2nd homotopy version, 170
interchanging integration and
differentiation, 160

Subject Index 343

interior of a cycle, 284
interpolation formula,
Lagrange’s, 134
interpolation theorem for
holomorphic functions,
134
interpolation theorem,
Lagrange’s, 134
invariance theorem
for the Betti number, 312
for the number of holes, 315
isotropy group, 188
Iss’sa’s theorem, 107, 109, 111
iterated maps, 207

Jacobi’s theorem, 25

Jacobi’s triple product identity,
25, 28, 30

Jensen’s formula, 103

Jensen’s inequality, 100

Jordan curve theorem for step
polygons, 285

Koebe
domain, 192, 194
family, 196

sequence, 196
Koebe’s main theorem, 197
Kronecker’s theorem, 264

lacunary series, 245, 251, 252,
255
Hadamard, 120, 252
Lagrange’s interpolation
formula, 134
Lagrange’s interpolation
theorem, 134
Lambert series, 22
Landau’s constant, 232
lattice, 83, 130
parallel to the axes, 269
lemma
Herglotz’s, 14
Hurwitz’s, 162
M. Riesz’s, 246
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Schwarz’s, 156, 188
Schwarz-Pick, 206
Wedderburn'’s, 136-138
Lie group, 204
lifting theorem for domains of
holomorphy, 122
Lindelof’s estimate, 66
linear representation of the gcd,
138
linearly convex hull, 300
little theorem, Picard’s, 233,

234, 238
little theorem, Runge’s, 268, 274,
275

locally bounded family, 148, 152
locally bounded sequence, 149
locally equicontinuous family,
153, 154
logarithm, holomorphic, 180
logarithm method, 200
logarithm of the gamma
function, 47
logarithm series, 247
logarithmic derivative, 10, 126
addition formula for the, 10
of the I'-function, 42, 130
logarithmic differentiation, 10,
126

M(D), group of units of, 75
M(G), valuation on, 109, 111
main theorem
of Cauchy function theory,
293
of Runge theory for
compact sets, 276
of the ideal theory of O(G),
139
majorant criterion (for
integrals), 49
map
finite, 211
inner, 188
proper, 221
support of a, 74

topological, 172, 175
map between annuli, finite, 216
mapping degree, 217
mapping radius, 190, 265
mapping theorem for
homogeneous domains,
205
mapping theorem for multiply
connected domains, 316
maps between annuli, finite, 213
maps
closed, 217
finite, 203
inner, 203
iteration of, 207
maximal
connected subspace, 303
domain of existence (of a
holomorphic function),
112
ideal, 140
meromorphic function, principal
part distribution of, 126
meromorphic functions
partial fraction
decomposition of, 128,
133
Picard’s little theorem for,
233
quotient representation of,
78, 93
Mittag-Leffler series, 127, 132,
292
canonical, 129
Mittag-Leffler’s
general theorem, 132, 134
osculation theorem, 133
theorem, 128, 130, 132, 134,
291
modulus of an annulus, 216
monodromy theorem, 173
monotonicity property of inner
radii, 191
monotonicity theorem, 190



Montel’s convergence criterion,
150
Montel’s theorem, 148, 150, 152,
154. 159, 176. 179, 197,
239
mth root method, 200
multiplication formula
for A(z), 38
for the gamma function, 45
for the sine, 46
multiplicative group of M(G),
109
multiply connected domain, 210,
315
mapping theorem for, 316
Miintz’s identity theorem, 161

natural boundaries, 119
Noetherian ring, 136
nonextendibility, criterion for,
248
nonvanishing ideal, 138
normal family, 152, 154
normally convergent product
of functions, 7
rearrangement, theorem
for, 8
of holomorphic functions, 9
differentiation theorem
for, 10
null homologous cycle, 293, 301
null homologous path, 171
null homotopic path, 168, 170
number of holes, invariance
theorem for the number
of, 315

O(G), character of, 108
Oka principle, 98, 318
Oka-Grauert principle. 318
open compact set. 296, 304
order function o, 109, 110
orthonormal family of paths, 312
osculation

lemma, 196

Subject Index 345

process, 195, 198
sequence, 195, 196
theorem, Mittag-Lefller's,
133
Osgood’s theorem, 151
Ostrowski series, 250
Ostrowski’s convergence
theorem, 245, 247
Ostrowski’s overconvergence
theorem, 251, 255
overconvergence theorem,
Ostrowski’s, 251, 255
overconvergent power series, 249,
253

p(n). 19, 24
p(n). recursion formula for, 21,
24
p-function, Weicrstrass, 85, 130,
236
/2, Wallis's product formula
for, 12
partial fraction
decomposition of
meromorphic functions,
128, 133
representation of IV /T, 12
representation of the
gamma function, 52
partial product, 4
partition (of a natural number,
19, 24
partition function (p(n)). 19, 24
partition product. Fuler's, 19
path lifting, 173
path
null homologous, 171
null homotopic. 168, 170
paths
freely homotopic. 169
homotopic, 168, 169
pentagonal number. 20
pentagonal number theorem, 20,
24, 27,29
peripheral set, 118



346 Subject Index

Picard’s great theorem, 240
Picard’s little theorem, 233, 234,
238
for meromorphic functions,
233
sharpened form of, 238
Plana’s summation formula, 64
Poincaré-Volterra, theorem of,
115
pointwise convergent sequence of
functions, 148
pole-shifting technique, 294
pole-shifting theorem, 272
Pélya-Carlson theorem, 265
Pélya’s theorem, 265
polydomain, 98
polynomial approximation,
Runge’s theorem on,
274, 292
polynomially convex hull, 303
Porter’s construction of
overconvergent power
series, 253
positive divisor, 74
potential theory, 181, 183
power series
boundary behavior of, 243
with bounded sequence of
coefficients, 244
with finitely many distinct
coefficients, 260
with integer coefficients, 265
overconvergent, 249
prime elements of O(G), 94
principal divisor, 74
principal ideal, 136
ring, 136
theorem, 138
principal part, 126
principal part distribution, 126,
291
existence theorem for
functions with
prescribed, 128, 133

of a meromorphic function,
127
principal part, finite, 126, 127
product formula for 7/2,
Wallis’s, 12
product of functions
compactly convergent, 6
infinite, 6
normally convergent, 7
Picard’s, 97
product of holomorphic
functions, normally
convergent, 9
product of numbers, 4
convergent, 4
divergent, 5
infinite, 4
product representation of the
gamma function
Euler’s, 42
Gauss’s, 39
Weierstrass’s, 41
product theorem for units of
O(G), 317
product theorem, general
Weierstrass, 91
product theorum, Weierstrass,
78, 79, 129
for C, 78
product, Picard’s, 97
products of functions,
convergence criterion
for, 7
proper map, 221

Q-domain, 176, 184, 185, 192
quintuple product identity, 30
quotient representation of

meromorphic functions,
78, 93

radius, inner, 191

Radé’s theorem, 219

rational approximation, Runge'’s
theorem on, 292



rearrangement theorem for
normally convergent
products, 8

rectangles, Cauchy integral
formula for, 269

recursion formula for o(n), 21,
24

recursion formula for p(n), 21, 24

reduction rule, 139

region, 6

region of holomorphy, 303

relatively compact, 268, 276

relatively prime holomorphic
functions, 95

representation of 1, 136

representation of the gcd, linear,
138

Riemann (-function, 13

Riemann mapping theorem, 175,
181, 187

Riemann surface, 295, 318

Riesz and Fatou, convergence
theorem of, 244, 248

Riesz’s boundedness theorem,
244
Riesz’s lemma, 246
ring, Noetherian, 136
Ritt’s expansion theorem, 11
root criterion for entire
functions, 79
root criterion for holomorphic
functions, 79, 94
Runge
hull, 297
pair, 289, 295, 296
region, 295
theory for compact sets,
main theorem of, 276
Runge’s approximation theorem.
268, 273, 274, 289, 292,
204
Runge’s little theorem, 268, 274,
275

Subject Index 347

Runge’s polynomial
approximation
theorem, 292

Runge’s theorem

on polynomial
approximation, 274

on rational approximation,
292

o-function, Weierstrass, 83
o(n) (divisor sum function). 21
o(n), recursion formula for, 21
schlicht disc, 230
Schottky’s theorem, 237, 241
Schwarz’s lemma, 186, 188
for square-integrable
functions, 156
generalization of, 99
separation lemma (for holes),
312
sequence
bounded, 148
corresponding to a divisor,
75
of functions, continuously
convergent, 150, 203
of iterates, 207
locally bounded, 149
of partial products, 4
sequences
of automorphisms, 203, 205
of inner maps, 203, 204
series
Eisenstein, 129
Gudermann'’s, 60
Lambert, 22
Stirling’s, 62
sharpened form of Picard’s little
theorem, 238
sharpened version of Montel’s
theorem, 239
sharpened version of Vitali’s
theorem, 239
simply connected domain, 171,
175, 176, 180, 189



348 Subject Index

simply connected, homologically,
168, 180
simply connected space, 171
sine function, duplication
formula for the, 14
sine, multiplication formula for
the, 46
sine product, Euler, 82
sine product, Euler’s, 12, 13, 17
singular point, 116
square root
holomorphic, 176, 180
method, 178, 192, 198
property, 176
trick, 176, 177
square-integrable
function, 155
functions, Schwarz's lemma
for, 156
Stein manifold, 295, 318
Stein space, 111, 120, 135, 142,
303
Steinhaus’s theorem, 259
step polygon, 284, 285
step polygons, Jordan curve
theorem for, 285
Stirling’s series, 62
structure of the group O(G)*,
316
subgroups of the circle group,
closed, 209
supplement, 40
supplement (for the I'-function),
Euler’s, 40, 41
support of a cycle, 283
support of a map, 74
Sura-Bura’s theorem, 304, 305
Szego'’s theorem, 260

theorem
Ahlfors’s, 230
Arzela-Ascoli, 154
Behnke-Stein, 297
Bers'’s, 108, 111

Bloch’s, 226, 227, 229, 237,
241

Carathéodory-Julia-Landau-
Valiron, 239

Carathéodory-Landau, 239

Cartan’s, 207

Fabry’s, 256

Fatou and M. Riesz, 244,
247

Fatou’s, 263

Fatou-Hurwitz-Pélya, 257

Hadamard’s, 252, 254

Holder’s, 47

Hurwitz's injection, 163,
176, 179, 185

Iss’sa’s, 107, 109, 111

Jacobi’s, 25

Kronecker'’s, 264

Mittag-Leffler’s general,
132, 134, 291

Mittag-Leffler’s, for C, 128,
130

Montel’s, 148, 150, 152, 154,
159, 239

for sequences, 148, 150,
159
sharpened version, 239

Miintz's, 161

Osgood’s, 151

Ostrowski’s, 247, 250

Polya's, 265

Pélya-Carlson, 265

Picard’s great, 240

Picard’s little, 233, 238

Poincaré-Volterra, 115

Radéd’s, 219

Riemann mapping, 175,
181, 187

Riesz’s, 244

Ritt’s, 11

Runge’s little, 268, 274,
275

Runge’s, on polynomial
approximation, 274,
292



Runge's, on rational
approximation, 292
Schottky’s, 237, 241
Steinhaus’s, 259
Sura-Bura’s, 304, 305
Szegd’s, 260
Vitali's, 151, 157, 158, 239
final version, 157
sharpened version, 239
theta series, 119, 248
triple product identity, Jacobi’s,
25, 28, 30

unbounded component of C\ K,
272
uniformization, 235
uniformization theory, 238
uniqueness theorem
for bounded domains, 209
for sitnply connected
domains, 189
of H. Bohr and J. Mollerup,
44
of H. Wielandt, 43
Poincaré’'s, 179
units of O(G), 93, 317
product theorem for, 317
universal cover, 236

valuation, 109, 111

visible boundary point, 115
visible disc, 115

Vitali’s theorem, 151, 158, 239

Wallis’s product formula for 7/2,
12

Wedderburn’s lemma, 136-138,
140

Subject Index 349

Weierstrass
o-function, 83
gp-function, 85, 130
approximation theorem. 161
division theorem, 141
factors, 76
product (for a positive
divisor), 75, 78, 81, 82,
89, 90, 96
product (for a positive
divisor), canonical. 81,
82
product theorem, 78, 79,
129, 130
product theorem for C, 78
product theorem, general,
92, 97
products for special
divisors, 89, 91
product representation of
the gamma function, 41
Weierstrass-Eisenstein
¢-function, 85
well-distributed boundary set,
115
Wielandt's uniqueness theorem,
43
winding map, 218

¢-function
Eisenstein-Weierstrass, 85
Riemann, 13
¢(2n), computation of. 13
zero of an ideal in O(G), 138
zeros of normally convergent
products of
holomorphic functions,
9
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70
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