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This book is dedicated to Alain Bensoussan, Ivar Ekeland, Pierre-Marie Larnac
and Francine Roure, in memory of the adventure which brought us together
more than twenty years ago to found the U.E.R. and the Centre de Recherche
de Mathématiques de la Décision (CEREMADE).

Jean-Pierre Aubin

Doubtless you have often been asked about the purpose of
mathematics and whether the delicate constructions which we
conceive as entities are not artificial and generated at whim.
Amongst those who ask this question, I would single out the
practical minded who only look to us for the means to make money.
Such people do not deserve a reply.

Henri Poincaré

La Valeur de la Science

Chapter V

In his use of mathematical techniques to study general economic
phenomena relating to countries or individuals Mr. Léon Walras
has truly instituted a science.

Charles Péguy

Un économiste socialiste, Mr. Léon Walras

La Revue Socialiste, no. 146, 1897

It may be that the coldness and the objectivity for which we
often reproach scientists are more suitable than feverishness and
subjectivity as far as certain human problems are concerned. It
is passions which use science to support their cause. Science does
not lead to racism and hatred. Hatred calls on science to justify
its racism. Some scientists may be reproached for the ardour with
which they sometimes defend their ideas. But genocide has never
been perpetrated in order to ensure the success of a scientific theory.
At the end of this the XXth century, it should be clear to everyone
that no system can explain the world in all its aspects and detail.
Quashing the idea of an intangible and eternal truth is possibly not
the least claim to fame of the scientific approach.

Frangois Jacob

Le Jeu des possibles

Fayard (1981) p. 12

I enjoy talking to great minds and this is a taste which I like to instil
in my students. I find that students need someone to admire; since
they cannot normally admire their teachers because their teachers
are examiners or are not admirable, they must admire great minds
while, for their part, teachers must interpret great minds for their
students.

Raymond Aron

Le Spectateur engagé

Julliard (1981) p. 302






Foreword

By Way of Warning

As in ordinary language, metaphors may be used in mathematics to explain a
given phenomenon by associating it with another which is (or is considered to
be) more familiar. It is this sense of familiarity, whether individual or collective,
innate or acquired by education, which enables one to convince oneself that one
has understood the phenomenon in question.

Contrary to popular opinion, mathematics is not simply a richer or more
precise language. Mathematical reasoning is a separate faculty possessed by all
human brains, just like the ability to compose or listen to music, to paint or
look at paintings, to believe in and follow cultural or moral codes, etc.

But it is impossible (and dangerous) to compare these various faculties
within a hierarchical framework; in particular, one cannot speak of the superi-
ority of the language of mathematics.

Naturally, the construction of mathematical metaphors requires the au-
tonomous development of the discipline to provide theories which may be substi-
tuted for or associated with the phenomena to be explained. This is the domain
of pure mathematics. The construction of the mathematical corpus obeys its
own logic, like that of literature, music or art. In all these domains, a tem-
porary aesthetic satisfaction is at once the objective of the creative activity
and a signal which enables one to recognise successful works. (Likewise, in all
these domains, fashionable phenomena — reflecting social consensus — are used
to develop aesthetic criteria).

That is not all. A mathematical metaphor associates a mathematical the-
ory with another object. There are two ways of viewing this association. The
first and best-known way is to search for a theory in the mathematical corpus
which corresponds as precisely as possible with a given phenomenon. This is the
domain of applied mathematics, as it is usually understood. But the association
is not always made in this way; the mathematician should not be simply a pur-
veyor of formulae for the user. Other disciplines, notably physics, have guided
mathematicians in their selection of problems from amongst the many arising
and have prevented them from continually turning around in the same circle by
presenting them with new challenges and encouraging them to be daring and
question the ideas of their predecessors. These other disciplines may also pro-
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vide mathematicians with metaphors, in that they may suggest concepts and
arguments, hint at solutions and embody new modes of intuition. This is the
domain of what one might call motivated mathematics from which the examples
you will read about in this book are drawn.

You should soon realize that the work of a motivated mathematician is
daring, above all where problems from the soft sciences, such as social sciences
and, to a lesser degree, biology, are concerned. Many hours of thought may
very well only lead to the mathematically obvious or to problems which cannot
be solved in the short term, while the same effort expended on a structured
problem of pure or applied mathematics would normally lead to visible results.

Motivated mathematicians must possess a sound knowledge of another dis-
cipline and have an adequate arsenal of mathematical techniques at their fin-
gertips together with the capacity to create new techniques (often similar to
those they already know). In a constant, difficult and frustrating dialogue they
must investigate whether the problem in question can be solved using the tech-
niques which they have at hand or, if this is not the case, they must negotiate
a deformation of the problem (a possible restructuring which often seemingly
leads to the original model being forgotten) to produce an ad hoc theory which
they sense will be useful later. They must convince their colleagues in the other
disciplines that they need a very long period for learning and appreciation in
order to grasp the language of a given theory, its foundations and main results
and that the proof and application of the simplest, the most naive and the
most attractive results may require theorems which may be given in a number
of papers over several decades; in fact, one’s comprehension of a mathematical
theory is never complete. In a century when no more cathedrals are being built,
but impressive skyscrapers rise up so rapidly, the profession of the motivated
mathematician is becoming rare. This explains why users are very often not
aware of how mathematics could be used to improve aspects of the questions
with which they are concerned. When users are aware of this, the intersection
of their central areas of interest with the preoccupations of mathematicians is
often small — users are interested in smmediate impacts on their problems and
not in the mathematical techniques that could be used and their relationship
with the overall mathematical structure.

It is these constraints which distinguish mathematicians from researchers
in other disciplines who use mathematics, with a different time constant. It
is clear that the slowness and the esoteric aspect of the work of mathemati-
cians may lead to impatience amongst those who expect them to come up with
rapid responses to their problems. Thus, it is vain to hope to pilot the math-
ematics downstreamn as those who believe that scientific development may be
programmed (or worse still, planned) may suggest.

In Part I, we shall only cover aspects of pure mathematics (optimisation
and nonlinear analysis) and aspects of mathematics motivated by economic
theory and game theory. It is still too early to talk about applying mathematics
to economics. Several fruitful attempts have been made here and there, but
mathematicians are a long way from developing the mathematical techniques
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(the domains of pure mathematics) which are best adapted to the potential
applications.

However, there has been much progress in the last century since pioneers
such as Quesnais, Boda, Condorcet, Cournot, Auguste and Léon Walras, despite
great opposition, dared to use the tools of mathematics in the economic domain.
Brouwer, von Neumann, Kakutani, Nash, Arrow, Debreu, Scarf, Shapley, Ky
Fan and many others all contributed to the knowledge you are about to share.

You will surely be disappointed by the fact that these difficult theorems
have little relevance to the major problems facing mankind. But, please don’t
be impatient, like others, in your desire for an overall, all-embracing explanation.
Professional mathematicians must be very humble and modest.

It is this modesty which distinguishes mathematicians and scientists in gen-
eral from prophets, ideologists and modern system analysts. The range of sci-
entific explanations is reduced, hypotheses must be contrasted with logic (this
is the case in mathematics) or with experience (thus, these explanations must
be falsifiable or refutable). Ideologies are free from these two requirements and
thus all the more seductive.

But what is the underlying motivation, other than to contribute to an ex-
planation of reality? We are brains which perceive the outside world and which
intercommunicate in various ways, using natural language, mathematics, bodily
expressions, pictorial and musical techniques, etc.

It is the consensus on the consistency of individual perceptions of the en-
vironment, which in some way measures the degree of reality in a given social
group.

Since our brains were built on the same model, and since the ability to
believe in explanations appears to be innate and universal, there is a very good
chance that a social group may have a sufficiently broad consensus that its
members share a common concept of reality. But prophets and sages often
challenge this consensus, while high priests and guardians of the ideology tend
to dogmatise it and impose it on the members of the social group. (Moreover,
quite often prophets and sages themselves become the high priests and guardians
of the ideology, the other way round being exceptional.) This continual struggle
forms the framework for the history of science.

Thus, research must contribute to the evolution of this consensus, teach-
ing must disseminate it, without dogmatism, placing knowledge in its relative
setting and making you take part in man’s struggle, since the day when Homo
sapiens, sapiens ... But we do not know what happened, we do not know when,
why or how our ancestors sought to agree on their perceptions of the world
to create myths and theories, when why or how they transformed their faculty
for exploration into an insatiable curiosity, when, why or how mathematical
faculties appeared, etc.

It is not only the utilitarian nature (in the short term) which has motivated
mathematicians and other scientists in their quest. We all know that with-
out this permanent, free curiosity there would be no technical or technological
progress.
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Perhaps you will not use the techniques you will soon master and the results
you will learn in your professional life. But the hours of thought which you will
have devoted to understanding these theories will (subtly and without you being
aware) shape your own way of viewing the world, which seems to be the hard
kernel around which knowledge organizes itself as it is acquired. At the end of
the day, it is at this level that you must judge the relevance of these lessons and
seek the reward for your efforts.
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Introduction

This is a book on nonlinear analysis and its underlying motivations in economic
science and game theory. It is entitled Optima and Equilibria since, in the final
analysis, response to these motivations consists of perfecting mechanisms for
selecting an element from a given set. Such selection mechanisms may involve
either

e optimisation of a criterion function defined on this set (or of several
functions, in the case of multi-criterion problems in game theory),
or

e searching in this set for an equilibrium of a given undelying dynam-
tcal system, which is a stationary solution of this dynmical system.

The mathematical techniques used have their origins in what is known as
nonlinear analysis, and in particular, in convex analysis.

Progress in nonlinear analysis has proceeded hand in hand with that in the
theory of economic equilibrium and in game theory; there is interaction between
each of these areas, mathematical techniques are applied in economic science
which, in turn, motivates new research and provides mathematicians with new
challenges.

In the course of the book we shall have occasion to interrupt the logical
course of the exposition with several historical recollections. Here, we simply
note that it was Léon Walras who, at the end of the last century, suggested
using mathematics in economics, when he described certain economic agents
as automata seeking to optimise evaluation functions (utility, profit, etc.) and
posed the problem of economic equilibrium. However, this area did not blos-
som until the birth of nonlinear analysis in 1910, with Brouwer’s fixed-point
theorem, the usefulness of which was recognised by John von Neumann when
he developed the foundations of game theory in 1928. In the wake of von Neu-
mann came the works of John Nash, Kakutani, Aumann, Shapley and many
others which provided the tools used by Arrow, Debreu, Gale, Nikaido et al.
to complete Walras’s construction, culminating in the 1950s in the proof of the
existence of economic equilibria. Under pressure from economists, operational
researchers and engineers, there was stunning progress in optimisation theory,
in the area of linear programming after the Second World War and following the
work of Fenchel, in the 1960s in convex analysis. This involved the courageous
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step of differentiating nondifferentiable functions by Moreau and Rockafellar at
the dawn of the 60’s, and set-valued maps ten years later, albeit in a different
way and for different reasons than in distribution theory discovered by Lau-
rent Schwartz in the 1950s. (see for instance (Aubin and Frankowska 1990) and
(Rockafellar and Wets 1997)). These works provided for use of the rule hinted at
by Fermat more than three hundred years ago, namely that the derivative of a
function is zero at points at which the function attains its optimum, in increas-
ingly complicated problems of the calculus of variations and optimal control
theory. The 1960s also saw a re-awakening of interest in nonlinear analysis for
the different problem of solving nonlinear, partial-differential equations. A pro-
fusion of new results were used to clarify many questions and simplify proofs,
notably using an inequality discovered in 1972 by Ky Fan.

At the time of writing, at the dawn of the 1980s, it is appropriate to take
stock and draw all this together into a homogeneous whole, to provide a con-
cise and self-contained appreciation of the fundamental results in the areas of
nonlinear analysis, the theory of economic equilibrium and game theory.

Our selection will not be to everyone’s taste: it is partial. For example,
in our description of the theory of economic equilibrium, we do not describe
consumers in terms of their utility functions but only in terms of their demand
functions. A minority will certainly hold this against us. However, conscious of
the criticisms made of the present-day formalism of the Walrasian model, we
propose an alternative which, like Walras, retains the explanation of prices in
terms of their decentralising virtues and also admits dynamic processing.

Our succinct introduction to game theory is not orthodox, in that we have
included the theory of cooperative games in the framework of the theory of
fuzzy games.

In the book we accept the shackles of the static framework that are at the
origin of the inadequacies and paradoxes which serve as pretexts for rejection
of the use of mathematics in economic science. J. von Neumann and O. Mor-
genstern were also aware of this when, in 1944, at the end of the first chapter
of Theory of Games and Economic Behaviour, they wrote:

‘Our theory is thoroughly static. A dynamic theory would unguestionably be
more complete and, therefore, preferable. But there is ample evidence from other
branches of science that it is futile to try to build one as long as the static side
s not thoroughly understood. . .’

‘Finally, let us note a point at which the theory of social phenomena will
presumably take a very definite turn away from the existing patterns of math-
ematical physics. This is, of course, only a surmise on a subject where much
uncertainty and obscurity prevail. ..’

‘Our static theory specifies equilibria. . . A dynamic theory, when one is found
— will probably describe the changes in terms of simpler concepts.’

Thus, this book describes the static theory and the tool which may be used
to develop it, namely nonlinear analysis.
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It is only now that we can hope to see the birth of a dynamic theory calling
upon all other mathematical techniques (see (Aubin and Cellina 1984), (Aubin
1991) and (Aubin 1997)). But, as in the past, so too now, and in the future,
the static theory must be placed in its true perspective, even though this may
mean questioning its very foundations, like March and Simon (who suggested
replacing optimal choices by choices that are only satisfactory) and many (less
fortunate) others. Imperfect yet perfectible, mathematics has been used to put
the finishing touches to the monument the foundation of which was laid by
Walras. Even if this becomes an historic monument, it will always need to
be visited in order to construct others from it and to understand them once
constructed.

Of course, the book only claims to present an introduction to nonlinear
analysis which can be read by those with the basic knowledge acquired in a first-
level university mathematics course. It only requires the reader to have mastered
the fundamental notions of topology in metric spaces and vector spaces. Only
Brouwer’s fixed-point theorem is assumed.

This is a book of motivated mathematics, i.e. a book of mathematics moti-
vated by economics and game theory, rather than a book of mathematics applied
to these fields. We have included a Foreword to take up this issue which deals
with pure, applied and motivated mathematics. In our view, this is important
in order to avoid setting too great store by the importance of mathematics in
its interplay with social sciences.

The book is divided into two parts. Part I describes the theory, while Part 11
is devoted to exercises, and problem statements and solutions. The book ends
with an Appendix containing a Compendium of Results.

In the first three chapters, we discuss the existence of solutions minimising a
function, in the general framework (Chapter 1) and in the framework of convex
functions (Chapter 3). Between times, we prove the projection theorem (on
which so many results in functional analysis are based) together with a number
of separation theorems and we study the duality relationship between convex
functions and their conjugate functions.

The following three chapters are devoted to Fermat’s rule which asserts that
the gradient of a function is zero at any point at which the function attains its
minimum. Since convex functions are not necessarily differentiable in the cus-
tomary sense, the notion of the ‘differential’ had to be extended for Fermat'’s
rule to apply. The simple, but unfamiliar idea consists of replacing the con-
cept of gradient by that of subgradients, forming a set called a subdifferential.
We describe a subdifferential calculus of convex functions in Chapter 4 and in
Chapter 5, we exploit Fermat’s rule to characterise the solutions of minimisa-
tion problems as solutions of a set-valued equation (called an inclusion) or as
the subdifferential of another function.

In Chapter 6, we define the notion of the generalised gradient of a locally
Lipschitz function, as proposed by F. Clarke in 1975. This enables us to ap-
ply Fermat’s rule to functions other than differentiable functions and convex
functions. It will be useful in the study of cooperative games.
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Chapters 7 and 8 are devoted to the theory of two-person games; here, we
prove two fundamental minimax theorems due to von Neumann (1928) and
Ky Fan (1962).

In Chapter 9, we use Ky Fan’s inequality to prove the existence theorems
for solutions of the inclusion

0 e C(z)

(where C is a set-valued map) together with the fixed-point theorems which
we shall use to prove the existence of economic equilibria and non-cooperative
equilibria in the theory of n-person games.

In Chapter 10, we provide two explanations of the role of prices in a decen-
tralisation mechanism which provides economic agents with access to sufficient
information for them to take their decisions without knowing the global state
of the economic system or the decisions of other agents. The first explanation
is provided by the Walrasian model, as formalised since the fundamental work
of Arrow and Debreu in 1954. The second explanation is compatible with dy-
namic models which go beyond the scope of this book and for which we refer
to (Aubin, 1997).

Chapter 11 is devoted to a study of the von Neumann growth model and
provides us with the opportunity to prove the Perron-Frobenius theorem on the
eigenvalues of positive matrices.

In Chapter 12 we adapt the concepts introduced in Chapter 7 for 2-person
games to study n-person games.

Chapter 13 deals with standard cooperative games (using the behaviour of
coalitions of players) and fuzzy cooperative games (involving fuzzy coalitions of
players).

The collection of 165 exercises and 48 problems with solutions in Part II
has two objectives in view. Firstly, it will provide the reader of Part I with the
wherewithal to practise the manipulation of the new concepts and theorems
which he has just read about.

Whilst, once assimilated, the mathematics may appear simple (and even
self-evident), a great deal of time (and energy) is needed to familiarise oneself
with these new cognitive techniques.

If a passive approach is taken, the assimilation will be difficult; for, strange
as it may seem, emotional mechanisms (or, in the terminology of psycholo-
gists, motivational mechanisms) play a crucial role in the acquisition of these
new methods of thinking. This mathematics book should be read (or skimmed
through) quickly when the reader is looking for a piece of information which is
indispensable to the solution of problem which is occupying his mind day and
night!

Thus, it is best to approach this work as dispassionately as possible. You will
then realise how easy it is to acquire a certain mastery of the subject. You will
also see that old knowledge takes on a new depth, when it is replaced in a new
perspective. You will improve (or at least modify) your understanding of aspects
you thought you had already understood, since there is no end to understanding,
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either in the theory of mathematics or in other areas of knowledge. That is
why we advise the reader to skim through the book to determine what it is
about. You will then begin to understand it in a more active way by proving
for yourself the results listed for each chapter of Part I at the beginning of
the relevant section of the Exercises (Chapter 14). Both the pleasure of success
and the lessons of partial failure will help you to overcome the difficulties you
encounter. The pleasure of discovery is not a vain sentiment; the more ambitious
is the challenge, the more intense is the pleasure.

These exercises (and above all the solutions) were also designed to provide
the reader with additional information which could not be given in an introduc-
tory text. The results which the reader will discover will convince him of the
richness of nonlinear analysis.

The exercises (Chapter 14) are grouped according to chapters and follow the
order of Part I. Except for certain exceptions (which are explicitly mentioned),
they only use results that have already been proved. However, some exercises
do assume that one or two immediately preceding exercises have been solved.

The problems (Chapter 15) use a priori all the material in Part I and are
largely grouped according to topic.

The first nine problems concern various topological properties of set-valued
maps. The description of the notion of set-valued maps and their properties
given in Part I is a bare minimum and is insufficient for profound applications
of nonlinear analysis. The tenth problem generalises Banach’s theorem (closed
graph or open image) either to the case of continuous linear operators defined on
a closed convex cone or to that of set-valued maps (Robinson—Ursescu theorem).
It goes together with Problem 14 which extends the inverse function theorem
to set-valued maps and which thus plays an important role in applications.
Problem 11 returns to the proof of Ekeland’s theorem in the very instructive
context of discrete dynamical systems. Problems 12, 13, 14 and 28 provide
applications of Ekeland’s theorem, which turns out to be the most manageable
and the most effective theorem in the whole family of results equivalent tQ the
fixed-point theorem for contractions. This is complemented by a fixed-point
theorem for non-expansive mappings (Problem 16) which uses an interesting
notion (the asymptotic centre of sequences, which is a sort of virtual limit)
which is the subject of Problem 15.

The solution of Problem 17 on the properties of orthogonal projectors
onto convex closed cones (discovered by Jean-Jacques Moreau, co-founder with
R.T. Rockafellar of convex analysis) is indispensable. Problem 18 studies a class
of functions with properties analogous to those of convex functions.

A continuous mapping is ‘proper’ if it transforms closed sets to closed sets
and if its inverse has compact images. As one might imagine, such functions play
an important role. Their properties are the subject of Problem 19. Problems
20, 21, 23 and 26 are designed to extend the results of Chapters 3 to 5 for the
functions © — f(z) + g(Az) to the functions z — L(z, Az); they will help the
reader to assimilate the above chapters properly. Problem 24 is devoted to the
application of Chapter 5 to linear programming. Variational principles form the
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subject of Problems 26, 27, 45 and 46; these last two problems use Ky Fan’s
inequality.

The graph of a continuous linear operator is a closed vector subspace. The
set-valued maps analogous to continuous linear operators are set-valued maps
with graphs a convex closed cone. These are known as ‘closed convex processes’
and inherit numerous properties of continuous linear operators, as Problems 10
(closed graph) and 29 (transposition) show.

Since the derivatives of differentiable mappings are continuous linear oper-
ators, we might expect to look for candidates for the role of the derivative of
a set-valued map among such closed convex processes. It is sufficient to return
to the origins, that is to say to Pierre de Fermat who introduced the notion of
the tangent to a curve. This idea is taken up in Problem 33, which provides an
introduction to the differential calculus of set-valued maps. Over recent years,
this latter has become the subject of intense activity, because of its intrinsic
attraction and its numerous potential applications. This ‘geometric’ view of the
differential calculus is taken up again in Problem 34 to complete the study of
subdifferentials of convex functions, whilst Problem 35 leads to a very elegant
formula for calculating the subdifferential of a marginal function. This differ-
ential calculus of set-valued maps is the topic of (Aubin and Frankowska 1990)
which contains a thorough investigation of set-valued maps. Problems 36, 37,
38, 39 and 40 describe refinements of the minimax inequalities of von Neumann
and Ky Fan which are very useful in infinite-dimensional spaces. Problems 41
and 48 provide variants and applications of the Gale-Nikaido-Debreu theorem,
whilst Problem 42 shows how to trade the compactness of the domain of a
set-valued map for ‘coercive’ properties. The existence of eigenvectors of set-
valued maps forms the subject of Problems 43 (general case) and 44 (positive
set-valued maps).

Problem 47 provides an introduction to maximum monotonic set-valued
maps and their numerous properties.

We could have included many other problems, but forced ourselves to make
a difficult selection. One area of applications of nonlinear analysis, namely the
calculus of variations and optimal control, is not touched on by this collection
of problems, although it is a most rich and exciting area which remains the
subject of active research.

This requires a reasonable mastery of topological vector spaces (weak
topologies) and of function and distribution spaces (Sobolev spaces) which is
not demanded of the reader (Aubin 1979a). If the latter has a knowledge of the
basic tools of convex analysis, non-regular analysis and nonlinear analysis, he
will be well equipped to tackle these theories effectively.

It remains to wish the reader (in fact, the explorer) deserved success in
mastering this exciting area of mathematics, nonlinear analysis.
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Nonlinear Analysis: Theory






1. Minimisation Problems: General Theorems

1.1 Introduction

The aim of this chapter is to show that a minimisation problem:
find z € K such that f(Z) < f(z) Vz € K

has a solution when the set K is compact and the function f from K into R is
lower semi-continuous.

This leads us to define semi-continuous functions and to describe some of
their properties.

1.2 Definitions

First, we shall study minimisation problems in a general framework: we assume
we have

e a subset K of X

e a function f from K to R
and we seek a solution Z of the problem

(4) e K
(i) £(@) = inf f(2) (1)
For ease of notation, we begin by introducing a convenient method which

avoids explicit mention of the subset X on which the function f is defined. We
set

ey {10 8258 o

where fx is no longer a real-valued function but a function from X to
IR U {+o0} such that

K = {z € X|fx(z) < +o0}. (3)

Moreover, any solution of (1) is a solution of the problem
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(7)) = i (4)
fx(@) = inf frx(z)

and conversely.
We are thus led to introduce the class of functions f from X to IRU {+o0}
and to associate them with their domain

Dom f := {z € X|f(z) < +o0}. (5)

Equation (3) may thus be written as K = Dom (fx). In order to exclude the
degenerate case in which Dom f = 0, that is to say where f is the constant
function equal to +00, we shall use the following definition.

Definition 1.1. We shall say that a function f from X to RU {+40o0} is non-
trivial if its domain is non-empty, that is to say if f is finite at at least one
point.

We shall often use the indicator function of a set, which characterises the
set in the same way as characteristic functions in other areas of mathematics.

Definition 1.2. Let K be a subset of X. We shall say that the function Yy :
X — RU {+o0} defined by

oo ={ S gk @

is the indicator function of K.

Note that the sum f 4+ 9k of a function f and the indicator function of
a subset K may be identified with the restriction of f to K and that the
minimisation problem (1) is equivalent to the problem

£(@) + ¥x(3) = inf ((2) + (). (7)

We shall see that this new formulation of the problem will enable us to derive
interesting properties of its possible solutions in a convenient and fast way.

1.3 Epigraph
We may characterise a function f from X to IRU {+o0} by its epigraph, which
is a subset of X x R.

Definition 1.3. Let f be a function from X to RU {+o0}. We shall call the
subset

Ep(f) :={(z,A) € X x R|f(z) < A} (8)
the epigraph of f.

The epigraph of f is non-empty if and only if f is nontrivial.
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The following property of epigraphs will be useful.

Proposition 1.1. Consider a family of functions f; from X to RU {+oo} and
its upper envelope sup;¢; f;. Then

Ep (sg) fi) = ﬂI Ep (f:)- (9)

Proof. Exercise. ]

1.4 Lower Sections

Definition 1.4. Let f be a function from X to RU {+o0}. The sets
S(f, ) :=={z € X|f(z) < A} (10)
are called sections (lower, wide) of f.

Let o := inf ex f(z). By the verry definition of the infimum of a function,
the set M of solutions of problem (1) may be written in the form

M= S(fx,N).
A>a
Thus, the set of solutions M ‘inherits’ the properties of the sections of f
which are ‘stable with respect to intersection’ (for example, closed, compact,
convex, etc.).

Proposition 1.2. Consider a family of functions f; from X to RU{+oco} and
its upper envelope sup;c; fi- Then

S (sup fiu A} = (1 S(3, V). (11)
i€l )

el

Proof. Exercise. O

1.5 Lower Semi-continuous Functions

Let X be a metric space.

We recall that a function f from X to IR U {400} is continuous at a point
zo (which necessarily belongs to the domain of f) if, for all € > 0, there exists
n > 0 such that Vz € B(zo,n) we have both X := f(z¢) — € < f(z) and
f(z) < f(zo) + €0 Demanding only one of these properties leads to a notion of
semi-continuity introduced by René Baire.

Definition 1.5. We shall say that a function f from X to RU{+oo} is lower
semi-continuous at zo if for all A < f(zo), there exists n > 0 such that
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Vz € B(zo,n), A< f(x). (12)

We shall say that f is lower semi-continuous if it is lower semi-continuous
at every point of X. A function is upper semi-continuous if —f is lower
semi-continuous.

We begin by proving the characteristic properties. We recall that, by defi-
nition,
liminf f(z) :=sup inf z). 13)
minf /(z) = sup_inf  f(a) (
Proposition 1.3. A function f from X to IRU{+oo} is lower semi-continuous
at o if and only if
f(zo) < lizrgizl(r)lf f(z). (14)

Proof.
a) Suppose that f is lower semi-continuous at zo. For all A < f(zo), there exists
1 such that

< i < Frmi
A< Ieél(l:i,n) flz) < h;l_l’lmrl}f f(z).

Inequality (14) now follows.

b) Conversely, given any A < sup, ¢ infzep(z,,5) f(z), by definition of the supre-
mum, there exists 7 > 0 such that A < inf.ep(zon f(z). Thus, condition (14)
implies that f is lower semi-continuous at xg. O

Proposition 1.4. Let f be a function from X to R U {+oo}. The following
assertions are equivalent

a) f is lower semi-continuous;

b) the epigraph of f is closed;

c) all sections S(f, ) of f are closed.

Proof.

a) We assume that f is lower semi-continuous and show that its epigraph is
closed. For this, we take a sequence of elements (z,, \,) € Ep (f) converging to
(z,A) and show that (z,\) belongs Ep (f), whence that f(z) < A. But Propo-
sition 1.3 then implies that

f(z) < liminf f(z,) < Hminf ), = lim A, = ),

since f(zn) < A, for all n.

b) We now suppose that Ep (f) is closed and show that an arbitrary section
S(f, ) is also closed. For this, we consider a sequence of elements z,, € S(f, \)
converging to z and show that z € S(f, ), whence that (z,\) € Ep (f). But
this is a result of the fact that the sequence of elements (z,, A) of the epigraph
of f, which is closed, converges to (z, A).

c) We suppose that all the sections of f are closed. We take o € X and
A < f(zo)- Then (zo, A) does not belong to S(f, A), which is a closed set. Thus,
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there exists 7 > 0 such that B(zo,7) N S(f, \) = 0, that is to say that A < f(z)
for all x € B(xzo, 7). Thus, f is lower semi-continuous at o. ]

Remark. If a function f is not lower semicontinuous, one can associate with it
the function f the epigraph of which is the closure of the epigraph of f:Ep(f) =
Ep(f). It is the largest lower semicontinuous function smaller than or equal to

T

We deduce the following corollary

Corollary 1.1. A subset K of X is closed if and only if its indicator function
is lower semi-continuous.

Proof. In fact, Ep (k) = K x IR, is closed if and only if K is closed. O

Proposition 1.5. The functions f, g, f; from X to RU {400} are assumed to

be lower semi-continuous. Then

a) f + g is lower semi-continuous;

b) if @ > 0, then af is lower semi-continuous;

c) inf(f, g) is lower semi-continuous;

d) if A is a continuous mapping from Y to X then f o A is lower semi-
continuous;

e) sup;e; fi is lower semi-continuous.

Proof. The proof of the first four assertions is elementary. The fifth results from
the fact that Ep (sup;c; fi) = Mier Ep (f:) is closed (see Proposition 1.1). m]

We shall see how to generalise the third assertion (see Proposition 1.7).

Remark. If f : X — IRU{+o00} is lower semi-continuous, the same is true of the
restriction to Dom f, fo : Dom f — IR, when Dom f has the induced metric.
There is no exact converse. Only the following theorem holds.

Proposition 1.6. Suppose that K is a closed subset of X and that f is a lower
semi-continuous function from the metric subspace K to IR. Then the function
fi from X to RU {+o0} is lower semi-continuous.

Proof. In fact, the sections S(fx,\) and S(f, ) are identical. Since S(f, )) is
closed in K, and since K is closed in X, it follows that S(fx, ) = S(f, ) is
closed in X. O

1.6 Lower Semi-compact Functions

Study of the minimisation problem suggests that we should distinguish the
following class of functions.

Definition 1.6. We shall say that a function f from X to RU {40} is lower
semi-compact (or inf-compact) if all its lower sections are relatively compact.

We then have the following theorem.
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Theorem 1.1. Suppose that a nontrivial function f from X to RU{+oo} is both
lower semi-continuous and lower semi-compact. Then the set M of elements at
which f attains its minimum is non-empty and compact.

Proof. Let = infiex f(z) € RU {400} and A > c. For all A €]a, Aq|, there
exists zx € S(f, A) C S(f, Xo). Since the set S(f, A\o) is compact, a subsequence
of elements z converges to an element z of S(f,\o). Since f is lower semi-
continuous, we deduce that
7) < limi /) < limi =a<L f(Z)
fl@) < léil'l_lélff(:l},\ ) < hr)‘n>1anf)\ a < f(z)

Thus, f(Z) = ¢, which implies that « is finite. Moreover, M = Na<a<a, S(f5 )
being an intersection of compact sets, is compact. [

Corollary 1.2. Any lower semi-continuous function from a compact subset
K C X to R is bounded below and attains its minimum.

Proof. We apply Theorem 1.1 to the function fx defined by fx(z) = f(z) if
z € K and fi(z) = oo if z ¢ K, noting that fg is lower semi-continuous (since
K is closed and f is lower semi-continuous) and that fk is lower semi-compact,
K being relatively compact. O

Remark. This very simple theorem is a rare general theorem for the existence
of solutions of an optimisation problem.

The difficulty essentially arises in the verification of the assumptions. For
instance, when the vector space F is infinite dimensional, we can supply it with
topologies which are not equivalent, contrary to the case of finite dimensional
vector spaces (supplied with topologies for which the addition and the multipli-
cation by scalars are continuous) are all equivalent. In this case, since compact
subsets remain compact when the topology is weaker, supplying £ with weaker
topologies increases the possibilities of having f lower semicompact. But contin-
uous or lower semicontinuous functions remain continuous or lower semicontin-
uous respectively whenever the topology of E is stronger, so that strengthening
the topology of E is advantageous. Hence, for applying Theorem 1.1, we have
to construct topologies on F satisfying opposite requirements.

We shall see another existence result which does not use compactness, but
instead requires stronger assumptions on the regularity of the function to be
minimised.

Proposition 1.7. Suppose that K is a compact topological space and that g is
a lower semi-continuous function from X x K to RU{+o0}. Then the function
f: X 5> RU{+o0} defined by

VeeX,  f(z):= inf g(z,y) (15)

is also lower semi-continuous.

Proof. We take A € IR and consider a sequence of elements z, € S(f,))
converging to an element zo,. We shall prove that zo € S(f,)\). Because
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Y = f(zn,y) is lower semi-continuous, and since K is compact, there exists
Yn € K such that f(z,) = g(zn,yn) (Corollary 1.2). Thus, the sequence y,
contains a subsequence of elements ynr Which converges to an element yo of
K. Then, the sequence of pairs (Z,yw) of S(g,\) converges to (Zo, %), which
belongs to S(g, ) since g is a lower semi-continuous function. Consequently,
o € S(f, A), since f(zo) < g(zo,y0) < A. O

Finally, we note the following interesting result.

Proposition 1.8. Consider n lower semi-continuous functions f; from X to
IR U {400} and suppose that one of these is lower semi-compact. We associate
them with the mapping F from K := N2, Dom f; to IR" defined by

i=1

Vz € K, F(z) = (fi(z),---, falx)). (16)

Then
the set F(K)+ IR} is closed in IR™ (17)

Proof. We consider a sequence of elements z,, € K and elements u,, € IR} such
that the sequence of elements y, := F(z,) + u, converges to an element y of
IR", and show that y belongs to F(K) + IR};.

Let f;, be the function which is both lower semi-continuous and lower semi-
compact. Since f; (Zn) + Un;, converges to y;,, there exists ng such that |y;, —
Jio(Zn) — Uniy| < 1 whenever n > ng. Since fi(zn) < Yip — Unip + 1 < yyp + 1,
we deduce that for n > ng, the z,, belong to S(f;,, v, + 1), which is compact.
Thus, there exists a subsequence of elements z,y which converges to an element
Z. We take an index i = 1,...,n. Since f; is lower semi-continuous, we deduce
that

fl(i‘) < hﬂg}f fi(xn) = ll'{l_l)g}f(yn'z - uﬂ.’i) < ll'IlI_l)})I.}f Yn'; = Yi-

Thus, setting u; := y; — fi(Z), which is positive or zero, we have shown that
y = F(Z) + u where Z € K and u € IR}}. O

1.7 Approximate Minimisation of Lower
Semi-continuous Functions on a Complete Space

In the statement of Theorem 1.1, and its Corollary 1.2 on the existence of a
solution to a minimisation problem, compactness plays a crucial role. However,
it is remarkable that simply with the condition that the set over which f is
minimised is complete, we nonetheless obtain an existence result for an approx-
imate minimisation problem.

Theorem 1.2 (Ekeland). Suppose that E is a complete metric space and
that f : E — IRy U {400} is nontrivial, positive and lower semi-continuous.
Consider o € Dom (f) and € > 0. There exists Z € E such that
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< f(z0)

(4) f(Z) + ed(zo, Z)
(z) < f(z) + ed(z, 7). (18)

(i4) Vz # 7,

The first property is a localization property stating that z belongs to a ball
centered around zo and of radius at least equal to %92 The second property
states that # minimizes the function z +— f(z) + ed(z, Z) (which depends upon
the unknown solution Z !)

Before proving this theorem, we state a corollary which clarifies the notion
of approximate solution.

Corollary 1.3. The assumptions are as in Theorem 1.2. Suppose €, A > 0 and
that xo is a point with f(xo) < inf f(z) +eX. Then there exists T € E such that

(4) f(Z) < f(zo)
(i4) d(zo,7) < A
(4) Ve E, f) < f(x)+ed(z, 7). (19)

Proof of Theorem 1.2. We may naturally take e = 1.
We shall associate the function f with the correspondence F of E into itseif
which associates a point = with the set F'(z) defined by

F(z) == {ylf(¥) + d(z,y) < f(=)}- (20)

The sets F'(x) are closed and the correspondence F' has the following prop-
erty:

(2) y € F(y) (reflexivity)
(47) if y € F(z), then F(y) C F(x) (transitivity). (21)

Condition (21)(ii) is evident if z ¢ Dom f, since in this case F(z) = F.
Thus, we suppose that f(z) is finite. Take y € F(z) and z € F(y). Adding
the inequalities:

f(2) +d(y,2) < f(y) and f(y) +d(z,y) < f(z)
and using the triangle inequality, we obtain the inequality
f(2) +d(z,2) < f(=),

which implies that z € F(z).
We associate the function f with the function v defined on Dom f by

v(y) == inf f(2). (22)

2€F(y)

It is clear that
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Vy € F(z),  d(z,y) < f(z) —v(z), (23)

which implies the following upper bound on the diameter of F(z)
Diam (F(z)) < 2(f(z) — v(z)). (24)

Next, we define the following sequence beginning with zo: we take z,,,, in F(z,)
such that f(%,41) < v(z,)+ 2™ (this is possible by definition of the infimum).
Since F(zn41) C F(z,), by virtue of (21)(ii), we have

0(@n) < V(@ns1). (25)
On the other hand, since we always have v(y) < f(y), we obtain the inequalities
V(Tnt1) < f(@nn) < 0(@0) + 27" < 0(Tp) +277 (26)

and thus the inequalities
0 < f(znt1) — v(Tnr) < 277 (27)

Consequently, formula (24) implies that the diameter of the closed sets F(z,)
converges to 0. As these closed sets are nested and since the space is complete,

it follows that
N Fla) = {z}. (28)

n>0

Since Z belongs to F'(z), the inequality (18)(i) is satisfied. On the other hand,
Z belongs to all the F'(z,); it follows that F(Z) C F(z,) and consequently that

F(z) = {z}. (29)
Thus, we deduce that if z # Z then « ¢ F(Z), whence f(z) + d(Z,z) > f(Z).
Thus, we have proved (18)(ii). O

1.8 Application to Fixed-point Theorems

If G is a correspondence of F into itself, a solution Z of the inclusion
z € G(T) (30)
is called a fized point of G.

Theorem 1.3 (Caristi). Let G be a nontrivial correspondence of a complete
metric space E into itself. We suppose that there exists a proper, positive, lower
semi-continuous function f from E to IRy U {+oo} such that

Vz € E, Jy € G(z) such that f(y) + d(z,y) < f(z). (31)

Then the correspondence G has a fixed point.
If f is linked to G by the stronger relationship
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Vz € E, Vy€ G(z), f(y)+d(yz) < f(z), (32)

then there exists T € E such that G(Z) = {z}.

Proof. Suppose that Z satisfies (18)(ii), with € < 1 and that § € G(Z) satisfies
f(@) + d(Z,y) < f(Z). If 7 is not equal to Z, inequality (18)(ii) with z := ¥
implies that d(Z,7) < ed(Z,7), which is impossible since € < 1. Thus, 7 is
equal to Z. There is at least one such if condition (31) is satisfied, whilst all the
7 € G(Z) are equal to Z if condition (32) is satisfied. O

Since we are discussing fixed-point theorems, we shall prove another result
in which f is no longer assumed to be lower semi-continuous; however the corre-
spondence G must have a closed graph. The graph of a correspondence G from
E to F'is defined by

Graph (G) := {(z,y) € E x Fly € G(z)}- (33)

Theorem 1.4. Let E be a complete metric space. We consider a correspondence
G from E to E with a closed graph. If there exists a nontrivial positive function
f from E to IR, U {400} satisfying condition (81), then the correspondence G
has a fized point.

Proof. We take a point 2o € Do f and use a recurrence to calculate a sequence
of elements z, € E such that, by virtue of condition (31), we have

ZTnt1 € G(mn)7 A(Znt1, l'n) < f(zn) - f($n+1)' (34)

This implies that the sequence of positive numbers f(z,) is decreasing; thus, it
converges to a number «. Adding the inequalities (34) fromn =pton=q¢—1,
the triangle inequality implies that

q—1

d(zp,Tq) < Z A(Tns1,%n) < f(zp) — f(24). (35)

n=p

Since the term on the right tends to a — a = 0 as p and g tend to infinity, we
deduce that the sequence of the z, is a Cauchy sequence which thus converges
to an element ¥ € F since the space is complete.

Since the pairs (z,,Z,41) belong to the graph of G, which is closed, and
converge to the pair (Z,Z) which thus belongs to the graph of G, the limit 7 is
a fixed point of G. O

As a corollary we obtain the Banach-Picard fixed point theorem for con-
tractions.

Theorem 1.5 (Banach—Picard). Suppose that E is a complete metric space
and that g : E — E is a contraction:

3k €]0,1[ such that Vz,y € E,  d(g9(z), 9(y)) < kd(z, y). (36)
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Then g has a unique fized point Z.
Proof. We associate g with the function f from E to IR, defined by

f(@) =3 d(g"(@), " (x)).

n=0

Condition (36) implies that

d(g"(z), g" (z)) < kd(g"(z), g"(2)) < k"d(z, g(z)).

Thus, the function f satisfies the condition:
1
0< f(z) < g3 d(z,9(2)) < +oo.
On the other hand, note that

f(x) = d(z, g(z)) + Y d(g"(x), " (z)) = d(z, 9(z)) + f(g(z)).

n=1

19

Thus, the assumptions of Theorem 1.4 are satisfied, and so there exists a fixed
point for the contraction g. Moreover, we also have uniqueness; if Z and 7 are

fixed points of g, the inequality

d(z, '.I-_/) = d(g(.’i‘), g(g)) < k'd(j7 ?j)

implies that d(Z,7) = 0 since k < 1, whence that Z = 7.






2. Convex Functions and Proximation,
Projection and Separation Theorems

2.1 Introduction

Convexity plays a crucial role in the study of minimisation problems. After
defining convex functions and describing their elementary properties, we show
that continuous convex functions are locally Lipschitz (Lipschitz in a suitable
neighbourhood of each point). We then prove the theorem for the existence and
uniqueness of a solution of the minimisation problem

Sz =zl + £@) = inf (Gl -zl + £(2))

when f is a nontrivial convex lower semi-continuous function from X to
R U {+o0}.

As a particular case, we derive the theorem for the best approximation of
Zo by elements of a convex closed set. It is known that this theorem has very
important consequences. Amongst these, we mention the separation theorems
which we shall use to prove the fundamental theorems of duality theory in
convex analysis.

2.2 Definitions

Let X be a vector space.

Definition 2.1. We shall say that a function f from X to RU{+oo} is convex
if for any conver combination x = Y 1=, A\ix; of elements x; € X we have the
inequality

f (i )\ifBi) < i;)\if(zi)- (1)

We shall say that f is concave if —f is convex, and that f is affine if f
is both convex and concave.

We begin by characterising convex functions.
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Proposition 2.1. Let f be a function from X to R U {4+oo}. The following
conditions are equivalent

a) f is convex
b) Vz,y € X, Va €]0, 1]

flaz+ (1 - a)y) < af(z) + (1 —a)f(y)

c) the epigraph of f is convex.
Proof. Clearly a) implies b).

We show that b) implies ¢). We let (z,)) and (y,p) be two points of the
epigraph of f and «a €]0, 1] and show that

a(z,A) + (1= ) (y, 1) = (az + (1 — a)y,ar + (1 — a)p)

belongs to this epigraph. In fact, the inequalities f(z) < A and f(y) < p imply
that af(z) + (1 — &) f(y) < aX + (1 — a)y, since o and (1 — a) are positive.
Consequently, f(az + (1 — a)y) < e+ (1 — )y, from b).

Lastly, we show that c) implies a). Since the 2-tuples (z;, f(z;)) belong
to Ep(f), which is convex, then 7, Ai(z;, f(;)) = (7eg M, 2imy Aaf (2:))
belongs to Ep(f), which means that f (3%, Az:) < Yy Aaf(z:)- ]

We deduce the following corollary.

Corollary 2.1. A subset K of X is convex if and only if its indicator function
1S CONVEL.

Proof. In fact, Ep(ix) = K x IRy is convex if and only if K is convex. O

Proposition 2.2. We suppose that the functions f, g, f; from X to RU {+o0}
are convex. Then

a) f + g is convex;

b) if « > 0 then af is convex;

c) if A is a linear mapping from a vector space Y to X, then f o A is convex;
d) if ¢ : IR = R is convex and increasing then ¢ o f is convex;

e) sup;¢; f; is convex.

Proof. The first four assertions are evident, whilst the last one results from the
equality Ep(sup;e; fi) = NicrEp(fi)- o

We mention the following obvious property.

Proposition 2.3. If f is a convex function from X to R U {+oc0}, then its
sections S(f,\) are convex.

Remark. The converse is not true. A function all of whose sections are convex
is said to be guasi-convex.

Definition 2.2. A nontrivial function f : X — IRU {400} is strictly convex
if for any two distinct points x and y € Dom f
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f(w-zky) < f(w);f(y). @)

This condition enables us to give a sufficient condition for the uniqueness
of a solution of an optimisation problem.

Proposition 2.4. Let f be a nontrivial convex function from X to RU {+occ}.
Then the set M of solutions T € X of the problem f(Z) = inf,ex f(z) is convex.
If f is strictly convex then M contains at most one point.

Proof. Let o := inf ¢ x f(z). The first assertion follows from the equality M =
Na>aS(f, @), which implies that M is an intersection of convex sets. If f is
strictly convex and if z; and z, are two solutions of the problem a = inf,cx f(z),
we would have

azf(zl';fl?z) < f(zl)’;'f(-’ﬂz)

which is impossible. O

Proposition 2.5. Let g be a convex function from X xY to RU{+oco}. Then
the function f from X to RU {+oo} defined by

f(z) :== inf g(z,y) (3)

yeY

is convex.

Proof. Fix € > 0, €]0,1[ and z;(i = 1,2) in X. Equality (3) is true when at
least one of the z; does not belong to the domain of f. Consider the case in
which z, and z, belong to Dom f. Then there exist y; and y, such that

9(xi, %) < flm)+e  (i=1,2). (4)
Since g is convex, we deduce that
glazy + (1 — @)zz, 0y + (1 — )y2) < af (z1) + (1 — a) f(z2) + .

But f(az;+(1—a)z,) is less than or equal to g(az; +(1— )Tz, ayr +(1—a)y2).
Whence

flaz) + (1 — a)z) < af(z) + (1 —a)f(z2) +€

and simply letting € tend to 0 completes the proof. O

Proposition 2.6. Consider n convex functions f; from X to RU{+oco}. Then
the mapping F from K := N2 ,Dom f; to R U {400} defined by

Vze K,  F(z):=(fiz),-.-, fa(2)) (5)

satisfies the following properties:
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the sets F(K) +IR? and F(K) + IR} are convez. (6)

Proof. We prove only the second assertion. The cone ]R:, the interior of the
cone IR%, is formed from vectors u with strictly positive components u;.

Fix two elements y; = F(z;) +w; (i = 1,2) of F(K) + ]R:, where z; € K
and u; € RY. If o €]0, 1], we may write

y=ay+(1—-a)y=F(z) +u
where z = az; + (1 — a)y2 and
u=au; + (1 — a)uy + aF(z,) + (1 — a)F(z2) — F(az) + (1 — a)z3).

The convexity of the functions f; then implies that the components u; of this
vector u are strictly positive. Thus y belongs to F(K) + IR, O

2.3 Examples of Convex Functions

The norms and seminorms on a vector space are convex functions.

More generally, any subadditive positively homogeneous function is a posi-
tively homogeneous convex function and conversely.

Let ((x,y)) be a scalar semiproduct on the vector space X and set

1 1
f(z) = 5((z,2)) = §II$II2 (7)
where ||z|| := 4/(z,z) is the seminorm associated with this scalar semiprod-

uct. Then f is convex and strictly convex if ||z|| is a norm. If we now take
a,B€[0,1],6=1-—aq, then

lz — ey — Bzl|* = |z — y||* + Bllz — 2||* — 208]ly — z||*. (8)
In fact, the member on the left may be written as
la(z — y) + B(z — 2)|I* = ®llz — gl + Bl|z — 2II” + 20B((x — y, = — 2)).
Multiplying the equality
ly —zI* = lly =z + 2 — 2l = llz = yI* + lly — 2lI* - 2((z — g,z — 2))

by a8 and adding it to the previous equality, we obtain the desired resuit.
Taking x = 0, we obtain

flay + Bz) = af(y) + Bf(2z) — aBlly — z|I* < af(y) + Bf(2)

and, if @ = 1 and if ||.|| is a norm, then
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£(50+2) < 50 + 1)~ 5l = =I° < 5 + 1)

when y # 2. (W]

We recall that a continuous scalar semiproduct ((z,y)) on X corresponds
to a continuous linear operator L from X to X* which satisfies

(1) L=1"L" (L is self-conjugate)
(i) Vz e X, (Lz,z) >0 (L is positive semi-definite) (9)
It is defined by the formula

vz,y€ X (Lz,y) = ((z,9))- (10)

2.4 Continuous Convex Functions

We shall show that a convex function continuous at a point is actually Lipschitz
in a neighbourhood of that point.

Definition 2.3. A function f from an open subset §2 to IR is locally Lipschitz if
for each point x € §2 there exists a neighbourhood of x on which f is Lipschitz.

Theorem 2.1. Let f : X — IRU {+o0} be a nontrivial convex function. The
following conditions are equivalent

a) f is bounded above on an open subset (necessarily contained in Dom f).

b) f is locally Lipschitz on the interior of Dom f.

Proof. a). Clearly condition b) implies condition a).

b). Suppose then that f is bounded on a ball o + 7B C Dom f by a constant

To— (1 -z
a < +o0o. We associate with each z € X the element y := % where
= iz — mll < 1. Then ||y — xo|| = n and consequently, f(y) < «. The
1+ ||z — ol

convexity of f implies that

f(mo) = f(6y + (1 — 0)z) < ba+(1—0)f(z).

Whence
0
F(@o) < T (a = f(wo)) + £(z)
and consequently, replacing 8 by its value
a— f(z
weX,  fl)- i@ < L g, )
Now take z € zo + 7B and y = .’E_M where 6 := —IM < 1. Then

¢ n
ly — 0|l < n and consequently, f(y) < a. The convexity of f implies that
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f@) = f(By + (1 — O)zo) < ba+ (1 — 6) (o)

and consequently, replacing 6 by its value, that

VeemtnB, (@)= fle) < Lozl ()
Inequalities (11) and (12) imply that
VoeaotnB,  f(@) - foo) < Lo —ml  (13)

and consequently, that f is continuous at zo.

c) We now prove that f is Lipschitz on the ball zo + B where 8 < 7. Fix an
integer n larger than ”107;;;0”‘ Take z; and z, in the ball 2o + 8B and divide
the segment from z; to z, into n parts, using the points y; := z; + %(:cl — Z3),
(7 =0,...,n). Note that yo = z1, y» = =2 and that the points y; belong to the
ball zo + BB. It is clear that the balls y; + (7 — ) B are then contained in the
ball zo + 7B, so that f is bounded by a on the balls of radius y; + (n — 6)B.
Inequality (13), with o replaced by y; and 7 replaced by 7 — 3, implies that

o) = 1) < 2Ty, — )

. 1 — T
since [|yj+1 — y;ll = ||1n_o|| <n-p.

On the other hand, iriequality (13) implies that
a — f(zo)
n

%5 — oll < a— f(wo)-

f(@o) — f(y;) <

Then

YV~ p(| < Ao f@a))
| f(yj+1) — fyi)] < —" lyir1 — wll-

Since ||z1 — zo|| = 225 |yj+1 — |, we now have

< 2(a — f(=0))
- n=p

lz1 — z2||-

|Flar) — Flaa)] < g |Fwinn) — F(w5)]

Thus, f is Lipschitz on the ball zy + 8B.

d). Lastly, we shall show that f is Lipschitz on a suitable neighbourhood of
each point z; in the interior of the domain of f. By virtue of the above, it is
sufficient to show that f is bounded above on a neighbourhood of z;. Let v > 0

be such that z; + B is contained in Dom f. Set \= —————— _ which is
, , v+ llz1 — o|
strictly less than 1. It is easy to see that the element
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Ty — )\IL’O

1— X (14)

1
Tg 1= Tg + m(ml — IEo) =

belongs to z; + 4B, and that f is bounded above on the ball z; + AnB by
Aa + (A — 1) f(z2). In fact, if y belongs to the ball z; + AnB, then the element
z = i(y — (1 — A)z3) belongs to the ball g + nB. Then f(z) < a and, by
convexity,

fy) = FAz + (1= Nz2)) S Af(2) + (1= N)f(22) < Aa+ (1 X)f(=2).
This completes the proof of the theorem. O
Corollary 2.2. If the interior of the domain of a convex function f from IR™

to RU {+oo} is non-empty, then f is locally Lipschitz on Int Dom f.

Proof. Consider a ball z9+7nB contained in the domain of f. We may then find
n points z; € z¢ + B such that the vectors x; — ¢ are linearly independent.
Thus, the set S of convex combinations Y 1 ; \;z;, where A; > 0 for all 7, is open
and contained in the domain of f. Consequently, f is bounded above on the
open set S by max;=, . f(z;) since

f (Z )\i$i> < Z)\iwi < ,max f(zi)-
i=1 i=1 Theean
Theorem 2.1 now applies. O

Remark. Baire’s theorem (see (Aubin 1977) page 189) implies the following
corollary.

Corollary 2.3. If the interior of the domain of a convex lower semi-continuous
function f from a Hilbert space X to IRU{+o0} is non-empty, then f is locally
Lipschitz on Int Dom f.

Proof. Baire’s theorem now implies that any lower semi-continuous function
defined on an open set (here, Int Dom f) is bounded above on a non-empty
open set. Theorem 2.1 then applies. O

2.5 The Proximation Theorem
We shall consider minimisation problems of the form
. 1 2]
= —|ly — 15
fi(@) = int | £(a) + 55y — al (15)

where f is a function from a Hilbert space X to IR U {+oo}, || - || is the Hilbert
norm of X and A is a positive parameter.

Theorem 2.2. Suppose that f : X — RU {400} is a nontrivial, convez, lower
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semi-continuous function from a Hilbert space X to IRU {+oc0}. There exists a
unique solution (denoted by J\(z)) of the problem (15):

I=z) = f(dhz) + —||J,\33 —z||”. (16)
This solution is characterised by the following variational inequalities

weX, sU-zda-g+fha)-f<0 (17)

Before proving this theorem, we shall apply it to the case where f = 9k is
the characteristic function of a set. This leads to the projection theorem, since
in this case

fa(z) = —d(z K)’
where d(z, K) := inf ek ||z — y|| is the distance from z to K.

Theorem 2.3 (Best Approximation). Let K be a closed convex subset of
a Hilbert space X . The minimisation problem

(i) Jz € K

(i) lz —Jz|| = d(z, K) (18)
has a unique solution Jx which is characterised by the variational inequalities
(1) Jze K

(ii) y € K, (Jr—z,Jz—y) <O0. (19)

Definition 2.4. The mapping J of X onto K is called the projector of best
approximation of X onto K.

Proof. a) If f is positive or zero, then f) is also positive or zero. This is the case,
for example, of the Best Approximation Theorem (where f = k). If f is not
positive, then we use a consequence of the projection theorem (Theorem 3.1)
which implies that f is bounded below by an affine function: there exist p € X*
and a € IR such that:

vyeX,  fly) =y +a.
Since the Cauchy-Schwarz inequality implies that
1 Ay 2 1 9
—y) < = —ll< Z Ny —
bz~ 9) < 51wl Iz — ol < Sllel® + 551y — =l
this inequality implies that
2

1 1
fly)+ ﬁlly—ﬂﬂll2 > (py—=)+a+(p,a)+ o lly —all

A
> a+(p,2) — Sl
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and thus that

£(@) 2 a+ (p,7) = 1l > —co.

b) We show that any solution Z of the problem

- 1.
() = 1(2) + g1z — 2l (20)

satisfies .

VyeX, @-z2-y+f@)-fly) <0 (21)
We take 2 =T + 0(y — ) = Oy + (1 — 0)Z where 6 €]0, 1[. Then we obtain the
inequality

_ 1. 2 - - 1. - 2
AE) +oyllz =2l < f(@+6(y - 2)) + 5112 +6(y — 2) — =
- 1,

< (1-0)f(2) +6/) + ol — ol

5@y —2) + oy~ 2l

which implies that

1 ) 2
N Y s < Liw_zl2
@) ~ F0) + 3@~ 2,2 —9) < -y~ 2]
It is now sufficient to let @ tend to 0.

c) Suppose, conversely, that Z satisfies the variational inequalities (21). We recall
that

1,_ 1 _ -
Sz =zl = Slly - 2l* < (& - 2,2 - y)
2 2

and that consequently

1@ - f) + 3@ - 2,7 )
0

£(@) + 5113~ 2l = £(y) = 5lly

IN 1A

for all y € X.

d) There exists a solution Z of the problem fy(xz). To prove this, we consider a
minimising sequence of elements z, € X satisfying

F(on) + g3llon = 2l < fy(2) + - (22)

We shall show that this is a Cauchy sequence. In fact, the so-called median
formula implies that
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Tn + Tm 2

2

(23)

20 = Zmll* = 2llen — 2| + 2|z — <l|* — 4

Consequently, by virtue of (22) and (23), we have
1
lon =l < 4A (5 + = +2f3(2) — Flam) — flan)
8 (1 (2572) - h@)

= (54 =+ 2f () — fla) - f(on)
< a(yr)

since f is convex.
Thus, x, converges to an element Z of X, since X is complete.
The lower semi-continuity of f implies that

1
£(@)+ g5la — ol < timint (f(en) + o5 len —3IF)
< Alz).
Whence fi(z) = £(Z) + %17 — z|*.
e) We now prove the uniqueness. If Z and T are two solutions to the prob-
lem of minimising fx(z), we deduce from the variational inequality (21) that
f(Z) — f(Z) + (& —z,%—T) < 0. Interchanging the roles of Z and Z we obtain
the inequality f(Z) — f(Z) + (T — =, % — Z) < 0. Adding these inequalities, we
deduce that 1|z — Z||* < 0. Whence Z = Z. ]

We note that the mappings J, and 1 — J, are both continuous, indeed
Lipschitz with constant 1.

Proposition 2.7. The mappings J, and 1 — J, are Lipschitz with constant 1
(independent of A\) and ‘monotone’ in the sense that:

(i) (ha—Dhy,z—y) > ||z — Lyl
(ii) (A=T)z—A=Dyz—y) > [(1-I)z— 1 - )yl (24)

Proof. The variational inequality which characterises Jyx implies that
1
f(z) = f(Dhy) + X(J»’C —z,hz—Jyy) <0.

Switching the roles of z and y, we have
1
A
Adding these two inequalities, we find that

f(Iy) = f(Iz) + < (Dy — v Hhy — Jaz) < 0.

(hz— Iy — (2 —y), Hha — Jhy) <0. (25)
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The inequalities (24)(i) and (ii) follow from this inequality.
This being so, we write

lz —ylI* = llz—Jaz — (¥ — Jay) + (Hrz — L)l
= (1 = J)z — (1= Iyl* + | Jaz —
+2((1 = Ja)z — (1 = NNy, Jaz — Jay)-

Following (25), we deduce that
lz = ylI” 2 11 = Jn)z = (1 = T)yll” + IIaz = Jayll’.

This completes the proof of Proposition 2.7. O

Remark. We shall study this question further to show, amongst other things,
that

im Jyz = z if z € Dom f
A0
lim M=) = f(=)
lim fi(z) = inf f(a)
: . : o T—NhT
and that f) is a convex differentiable function with V fy(z) = PO This is

the reason why f) is called the Moreau approzimation of f.

2.6 Separation Theorems
We shall use the Best Approximation Theorem to deduce one of the most useful
analytical results, known as the Separation Theorem .

Theorem 2.4 (Separation Theorem). Consider a non-empty, convez, closed
subset K of a Hilbert space X. If o does not belong to K, there exist a contin-
uous linear form p € X* and € > 0 such that

zlellg(p, y) < (p, o) — €. (26)

Proof. We consider the projection Jzy of best approximation of zy onto K.
The variational inequality which characterises Jzo implies that

(Jzo — To, JTo —y) <0 Yy € K.
We deduce that
| Tzo — Zoll® < (zo — JZo, To — ¥) Vy € K.

Since zo € K, ||Jxo — wo||? is strictly positive, and the linear form p = Jxo — o
satisfies the conclusion of the theorem (26). O
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a a
Remark. Set a := (p,To) — SUP,ex(p,y) and b= (p, o) — 5= SEIB(P) y) + b
Yy

The hyperplane
H = {z € X|(p,x) = b}

separates Ty from K, since (p,zo) > b and (p,y) < bforally € K.

Zo

Fig. 2.1.

If X is a finite-dimensional space, we obtain a Large Separation Theorem,
without assuming that the set K is closed. This is very useful, since it is often
difficult to prove that a set is closed.

Theorem 2.5 (Large Separation). Let K be a non-empty convez subset of a
finite-dimensional space X . If o does not belong to K, there ezists a linear
form p € X* such that

p#0 and S“,F(’(p’ y) < (p, To)- (27)
ye

Proof. Although K is not closed, all the convex hulls of finite families of points
of K are however closed convex subsets of X which we may separate from z
by virtue of the above theorem. We shall use this idea.
Next, with any £ € K we associate the subset F of the unit sphere defined
by
Fy:={pe€ X*||pll. = 1 and (p,z) < (p,z0)} . (28)

We note that the set of the solutions (of norm one) of (27) is the intersection
Nzex F, of the sets F,. Thus, we need to show that this intersection is non-
empty. For this we use the fact the unit sphere S := {p € X*|||p|l. = 1} is
compact, since X is finite-dimensional. As the subsets F, are clearly closed, it
is sufficient to show that they satisfy the finite-intersection property: for any
family zi,...,T,, the intersection NZ_, F;, # 0. To prove this, we consider the
convex hull of the z;, M = {3°7; Mizs| A > 0,37, A\; = 1}. Since K is convex,
M is contained in K, and consequently o ¢ M. On the other hand, M is
convex and closed (compact even). Thus, the Separation Theorem implies that
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there exists a linear form (which may always be taken to have norm 1) such
that sup,cp(p,y) < (p,zo). Since the z; belong to M, then (p,z;) < (p,zo),
whence p belongs to F;, foreach i =1,...,n.

Thus, the finite-intersection property is satisfied, whence the set Nyex Fy,
being non-empty, contains a linear form p which therefore satisfies (27). O

Fig. 2.2.

There are numerous corollaries to the separation theorems but we find it
preferable to use one or other of the previous results. We shall, however, show
how these results may be used to ‘separate’ two disjunct subsets M and N. To
say that two subsets M and N of a vector space are disjunct is equivalent to
the statement that 0 does not belong to M — N.

MNN=0&<0¢gM-—N. (29)
We also note that

sup (p1 z) = sup (p) $) — inf (p’ y) (30)
zEM—N zEM yeN

Having established these two remarks, we obtain the following corollary.

Corollary 2.4. Consider two non-empty, disjunct subsets of a Hilbert space
X.
a) If we assume that

the set M — N is convex and closed, (31)
then there exist a continuous linear form p € X* and € > 0 such that
sup (p, ) < inf (p,y) — e (32)
b) If we assume that
X is finite dimensional and M — N is convez, (33)

then there exists a linear form p € X* such that
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p#0 and sup(p,z) < inf(p,y). (39)
z€EM yeN

Proof. It is sufficient to apply the Separation Theorem and the Large Separa-
tion Theorem to the case in which K = M — N with zo = 0, using properties

(29) and (30). ]
We may now give examples of properties implying the assumptions of this
corollary.

For example, we recall that
if M and N are convex, then M — N is convex (35)
and that
if M is compact and N is closed, then M — N is closed. (36)

But, be warned, we shall use examples in which M — N is convex and M is
not closed and in which M — N is closed although neither M nor N is compact
(see Propositions 2.6 and 1.8).

The first separation theorems and the foundations of what was to become
functional analysis are due to the mathematician Minkowski (1910). The exten-
sion of these theorems to Banach spaces and the equivalence to the problem of
extending continuous linear forms is due independently to Hahn (the founder
of the famous Vienna Circle) and Banach. The Hahn-Banach theorem is one
of the three fundamental theorems of linear functional analysis all of which
carry the name of Banach (the two other theorems, the Banach Closed Graph
Theorem and the Banach-Steinhauss Theorem, deal with continuous linear op-
erator and are based on the Baire Theorem.). In 1922, Banach published his
first discoveries about “les opérations dans les ensembles abstraits et leurs ap-
plications aux équations intégrales”. In 1932, he published his masterpiece, the
monograph Théorie des Opérateurs Linéaires, which had and continues to have
a determining influence on the course of the history of mathematics.

Note that, whilst integral equations were the principal motivation which
drove Banach, Hilbert and other mathematicians at the beginning of this cen-
tury to build the foundations of functional analysis, the latter has been applied
in very different areas of mathematics and, by ricochet, in numerous disciplines.

It is this universality of mathematical results, having their origin in one
discipline and finding applications in others, which makes mathematics so fas-
cinating.



3. Conjugate Functions and Convex
Minimisation Problems

3.1 Introduction

The power and the beauty of convex analysis stem from the existence of a one-to-
one correspondence between the convex lower semi-continuous functions on X
and those on its dual X*. This correspondence plays a role analogous to that of
transposition, which is also a one-to-one correspondence between the continuous
linear operators from X to Y and those from Y* to X*. In associating a convex
lower semi-continuous function with its conjugate, we in some way double the
number of properties since we will have the option of using the properties of
the function or its conjugate.

This transformation also shows that the cone of convex lower semi-continuous
functions, which is stable on passage to the upper envelope, is in fact obtained
by saturation of the space of affine functions continuous under this operation.
In simple terms, this means that any convex lower semi-continuous function
is the upper envelope of the continuous affine functions which minorise it. To
make this more precise, let us consider the minimisation of a nontrivial function
f from X to RU {+o0}. In fact, since the function f is never known exactly,
it is wise to study not only the minimisation of the function f, but also that of
a family of perturbed functions.

For simplicity and efficiency, we restrict ourselves to simple perturbations.
In our given context, this means that we shall perturb f by continuous linear
functions and study the family of minimisation problems

—f*(p) = inf[f(z) — (9, 5)] (+)
and the variation of this infimum as a function of p. In particular,
—f7(0) := inf f(z).
The formula (*) may be rewritten in the form
f*(p) = sup|(p, z) — f(z)]
zeX

which immediately shows that the function f*: p € X* — f*(p) € RU {+o0},
which is the upper envelope of the continuous affine functions p — (p, z) — f(z)
on X*, is a convex lower semi-continuous function.
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The result mentioned above is explained by this assertion: a function f is
convex, lower semi-continuous and nontrivial if and only if f is equal to its
biconjugate (f*)*.

The second important result is known as Fenchel’s Theorem. We consider

(i) two Hilbert spaces (or reflexive Banach spaces) X and Y;
(ii) a continuous linear operator A from X to Y;
(iii) two nontrivial, convex, lower semi-continuous functions
f:X > RU{+oc0} and g : Y — RU {+oo} satisfying
(a) 0 € Int (ADomf — Domg)
(b) 0 € Int (A* Domf* + Dom g*)

We shall prove that there exist solutions T € X and § € Y* of the minimi-
sation problems

v:= inf[f(z) + g(Az)] = f(Z) + g(AZ)
and
=k (=A%) +g7()] = F1(=A"0) + 9" ()
and that, in addition, the two minimisation problems are linked by the egquation
v+, =0.

In the next section, we shall establish the connections between the solutions of
the v problem and those of the v, problem (known as the dual of the v problem).

We shall formulate a calculus of conjugate functions which will enrich the
field of applications of these two theorems. Since a closed convex subset K
of X is characterised by its indicator function g, which is convex and lower
semi-continuous, it is consequently equivalently characterised by the conjugate
function ¢y of ¢k defined on X* by

ok (p) := Pk (p) = sup(p, z).
€K

This function, called the support function of the subset K, is very useful
in that it enables us to replace the manipulation of closed convex subsets by
the more familiar manipulation of convex lower semi-continuous functions. The
discovery and use of this fact is due to Minkowski.

This will lead us naturally to the notion of polarity between closed convex
cones of X and of X*. If K is a closed convex cone we denote its (negative)
polar cone by

K ={pe X*|Vz € K, (p,z) < 0}.

This is also a closed convex cone. We shall prove that K = (K~)~.
As discovered by Steinitz from 1912, this relationship extends the orthogo-
nality relationships between vector subspaces to closed convex cones.
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3.2 Characterisation of Convex Lower Semi-continuous
Functions

Following the Danish mathematician Fenchel, who introduced this concept in
1949, after a long history beginning with Young’s inequality in 1912, we intro-
duce the following definition

Definition 3.1. Let f be a nontrivial function from X to RU{+oo}. Then the
function f* from X* to RU {+oo} defined by

Vpe X*,  f(p):= ilel)rg[(p,w) — f(z)] € RU {+oo} (1)

is called the (Fenchel) conjugate of f and the function f**: X — IR defined
by

VeeX,  f*(c)=suplp,e) - /(7] ©
is the biconjugate of f.
Note that the so-called Fenchel inequality
Vze X, Vpe X,  (p,z) < f(z)+ f(p) (3)
always holds and that
Vz € X, (=) < f(=). (4)

Remark. If we interpret the vector space X as a space of commodities, its dual
X* as the space of prices (continuous linear functions associating a commodity
with its value) and f as a cost function, then (p,z) — f(z) is a profit and the
conjugate function is the maximum-profit function, which associates every price
p with the maximum profit which it may obtain.

If a function f coincides with its biconjugate, then f is necessarily convex
and lower semi-continuous. The converse is also true.

Theorem 3.1. A nontrivial function f : X — IRU {400} is convex and lower
semi-continuous if and only if f = f**. In this case, f* is also nontrivial.

Remark. Since in this case

f(=) = sup [(p,z) — f*(D)], (5)
peEX™
we deduce that any nontrivial convex lower semi-continuous function is the
upper envelope of the affine functions which minorise it.

Proof. The idea of the proof is very simple. Since the epigraph of f is a closed
convex set, any point (z,a) which does not belong to it is separated from Ep(f)
by a hyperplane which is the graph of a continuous affine function minorising f.
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We shall now substantiate this idea.

a) Suppose that a < f(z). Since the pair (z,a) does not belong to Ep(f), which
is convex and closed, there exist a continuous linear form (p,b) € X* x IR and
€ > 0 such that

Vy € Domf, VA > f(y), (p,y) —bA< (p,z) —ba—e (6)

by virtue of the Separation Theorem (Theorem 2.4).

}

R Ep(f)
/(=) ///
: a /| (z,a)
%// /////
/

Fig. 3.1. Graph of an affine function minorising f.

T X

b) We note that b > 0. If not, we take y in the domain of f and A = f(y) + p-
We would have

—bp < (p,x—y) +b(f(y) —a) —e < +oo.

Then we obtain a contradiction if we let y tend to +oo.

c¢) We show that if b > 0, then a < f**(z). In fact, we may divide the inequality
(6) by b; whence, setting p = p/b and taking A = f(y), we obtain

VyEDOITlf, (ﬁ,y)—f(y)g(ﬁ,w)—a—e/b.

Then, taking the supremum with respect to y, we have

@) < (p,z) —a.
This implies that
(i) P belongs to the domain of f*
(i) a < (p,z) — f*(®) < [ (). (7)

d) We consider the case in which = belongs to the domain of f. In this case, b is
always strictly positive. To see this, it is sufficient to take y = z and A = f(z)
in formula (6) to show that

b>e/(f(z) - a)
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since f(z) — a is a strictly positive real number. Then, from part b), we deduce
the existence of 7 € Domf* and that a < f**(z) < f(z) for all a < f(z). Thus,
f**(z) is equal to f(z).

e) We consider the case in which f(z) = +oco and a is an arbitrarily large
number. Either b is strictly positive, in which case part b) implies that
a < f**(z), or b= 0. In the latter case, (6) implies that

Vy € Dom f, (p,y—z)+e <0. (8)

Let us take p in the domain of f* (we have shown that such an element exists,
since Dom f is non-empty). Fenchel’s inequality implies that

(d,y) — f*(®) — f(y) < 0. (9)

We take 1 > 0, multiply the inequality (8) by p and add it to the inequality
(9) to obtain

B+ up,y) — f(y) < f1(D) + w(p, z) — pe.

Taking the supremum with respect to y, we obtain:

[*@+ pp) < f1(D) + uip, z) — pe

which may be written in the form
(p, ) + pe — f*(D) < (p + pp,x) — f*(B+ wp) < ().

Taking p = etf —(’_’e)_ -,.»,,-), which is strictly positive, we have again proved that
a < f**(z). Thus, since f**(z) is greater than an arbitrary finite number, we
deduce that f**(z) = +oo.

3.3 Fenchel’s Theorem

We shall now prove Fenchel’s duality theorem which, in conjunction with the
previous theorem, provides the framework for convex analysis.

Suppose we have two Hilbert spaces (or reflexive Banach spaces) X and Y/,
together with

(i) a continuous linear operator A € L(X,Y);
(ii) two nontrivial, convex, lower semi-continuous functions
f: X 5 RU{+oc0} and g: Y - RU {400}. (10)

We shall study the minimisation problem

v := inf[f(z) + g(Az)]. (11)

Note that the function f +go A which we propose to minimise is only nontrivial
if ADomf NDom g # 0, that is to say, if
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0 € ADom f — Dom g. (12)

In this case, we have v < +o0.
Now we introduce the dual minimisation problem
. 1= : *(_  A* * 13
ve = Inf [f*(=A%) +¢°(9)] (13)
where A* € L(Y*, X*) is the transpose of A, f* : X* — IR U {400} is the
conjugate of f and g* : Y* — IRU {400} is the conjugate of g. This only makes
sense if we assume that

0 € A* Dom g* + Dom f* (14)

and in this case, v, < +00.
Note that we still have the inequality

v+v, >0 (15)
since, by virtue of Fenchel’s inequality,
f(z) + g(Az) + f*(—Aq) + g*(q) = (—A%q,z) + (g, Az) = 0.

Consequently, conditions (12) and (14) imply that v and v, are finite.

By way of a slight reinforcement of condition (12), guaranteeing that the
function f + g o A is nontrivial, we shall show that v + v, is equal to zero and
that the dual problem has a solution.

Theorem 3.2 (Fenchel). Suppose that X andY are Hilbert spaces (or reflexive
Banach spaces), that A € L(X,Y) is a continuous linear operator from X to
Y and that f : X — RU {400} and g : Y — IR U {+o0} are nontrivial,
convex, lower semi-continuous functions. We consider the case in which 0 €
ADom f —Domg and 0 € A*Domg* + Dom f* (which is equivalent to the
assumption that v and v, are finite).

If we suppose that

0 € Int (ADom f — Dom g), (16)
then
(1) v+, =0
(ii) 3g € Y* such that f*(—A*q) + ¢*(7) = v..- (17)
If we suppose that
0 € Int (A* Dom ¢g* + Dom f*), (18)
then
(i) v+v. =0;

(ii) 3z € X such that f(Z) + g(AZ) = v. (19)



3.3 Fenchel’s Theorem 41

Proof.

a) We shall begin by proving the theorem for the case in which the space Y is
finite dimensional.

We introduce the mapping ¢ from Dom f x Domg to Y x IR defined by

¢(z,y) = {Az — y, f(z) + g(y)} (20)
together with

(1) the vector (0,v) €Y xR
(ii) the cone @ = {0} x]0,c0[C Y x IR (21)

In a proof analogous to that of Proposition 2.6, it is easy to show that the
linearity of A and the convexity of the functions f and g imply that

¢(Dom f x Dom g) + @ is a convex subset of ¥ x IR. (22)

Furthermore, if we suppose that (0,v) belongs to ¢(Domf x Domg) + Q, we
may deduce the existence of £ € Dom f and y € Dom g such that Az —y =0
and v > f(z) + g(y) = f(z) + g(Az), which would contradict the definition of
v. Thus,

(0,v) ¢ ¢(Dom f x Domg) + Q. (23)

Since Y is a finite-dimensional space, we may use the Large Separation Theorem
to show that there exists a linear form (p,a) € Y* x IR such that

(i) (pa) # 0
(11) av ((p7 a)7 (O:U))
(f(=z

Al

Igi,égﬁn, [a(f (=) + 9(¥)) + (p, Az — y)] + inf af. (24)

Since the number infg- af is bounded below, we deduce that it is zero and that
a is positive or zero. We cannot have ¢ = 0, since in that case, the inequality
(24)(ii) would imply that

. _ _ . ) 9
0 = zglélof;.nf (p’ Az y) zeADo}'rl;ljf—Domg(p’ z) ( 5)
y€Domg

Since the set ADomf — Domg contains a ball of radius 7 and centre 0, by
virtue of (16), we deduce that 0 < —7||p|| and thus that p = 0. This contradicts
(24) ).
Consequently, a is strictly positive. Dividing the inequality (24)(ii) by a and
taking p = p/a, we obtain
v < _inf [(AD,z) — (B,y) + f(z) +9(¥)]

z€Domf
y€Domg

= —sup((-A'5,z) + (,y) — f(z) - 9(y)]

= —f(-A"D) — g (D)
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Whence, f*(—A*p) + ¢*(p) = —v < v,, which proves that { is a solution of the
dual problem and that v, = —wv.
The second asscrtion is proved by replacing f by g*, g by f* and A by —A*.

b) We now give a proof in the case of infinite-dimensional spaces.
In this case, we consider the mapping ¢ from Domf* x Domg* to IR x X*
defined by

¥(p.9) = (f*(p) + 9" (9): P+ A%9) (26)

together with the set

¥(Domf* x Domg*) + IR, x {0}. (27)

a) It is easy to prove that this set is convex. We show that it is closed. For this,
we consider a sequence of elements (v,, 7,), belonging to this set, converging to
(vs, ) in IR x X*. Thus, therc exist elements p, € X* and ¢, € Y* such that

Up 2> f*(p‘n) + g*(Qn) Tn = Pn+ A*Qn- (28)

We shall deduce from the assumption (16) that the sequence of elements gy is
weakly bounded.
In fact, the assumption (16) implies the cxistence of a ball of radius v > 0

contained in Dom g — ADom f. Thus, for all z € Y, there exist z € Dom f and

y € Dom g such that lz = y — Ax. Conscquently,

1=

"%”mm 2) = {gn¥) — (A", 7)

= (Qm y) + (pm.'E) - (Tmm}
< 9(gn) + £ (pa) + 9(y) + f(z) — (Tny T)
< g(y) + f(z) + vp — (Tn, T).

Since the sequences v, and (r,,x) arc convergent, they are bounded and thus
we have shown that
Vz ey, sup(gn, z) < +o0. (29)
n>0

The Banach—Steinhauss theorem then implies that the sequence of elements
g» is weakly compact; whence, it has a subsequence ¢, which converges weakly
to an element ¢, of Y* and consequently, the subsequence p,, — r — A*q,
converges weakly to p. = 7 — A*q. (see Schwartz 1970).

Since the functions f* and g* are weakly lower semi-continuous, we deduce
that

f(p.) +9°(¢.) < liminf f*(pn) + liminf g*(gn)

< lminf(f*(pn) +9%(gn)) < lim v, = .

Thus, we have shown that



3.4 Properties of Conjugate Functions 43

v 2> f(p.) + g% (q), r=p. + A*q.,
whence, that (v,r) belongs to ¥(Dom f* x Dom g*) + R, x {0}
B) Next we shall show that
(—v,0) € ¢(Dom f* x Domg*) + R, x {0}. (30)

This assertion implies the theorem, since there exists § € Dom g* such that
—Ag € Domf* and —v > f*(—A*q) + ¢*(q) > v. > —v.
Consequently,

—v=v. = f(=A"q) + ¢°(q).

We shall now suppose that assertion (30) is false. Since the set
y¥(Dom f* x Dom g*) + IR, x {0} is convex and closed and since R x X is
the dual of IR x X*, the pair (—v,0) may be strictly separated from this set;
thus, there exist (o, —Z) € IR x X and € > 0 such that

_ < i * * * = - _
av < inf[a(f*(p) +4°(2) + (o + A%¢, Z)] + [nf ab —e.

Since infg>o af is bounded below, it follows that infgsoaf = 0 and that « is
positive or zero. It cannot be zero, for in that case we would have

< - e
0_(p,q)eDorLr}t:XD°mg.(p+A q,—Z)—¢€

Since (14) implies the existence of p € Domf* and ¢ € Domg* such that
p + A*q = 0, we would have 0 < —e¢, which is impossible.
Dividing by o > 0 and setting z := Z/a and 77 = €/, we obtain

—v < (i;}qf)[f*(p)+g*(q)—(p,m)—(q,Aw)]—ﬂ
- _?’}15[@,35) + (g, Az) = f*(p) — g" (D) — 7
= —(f(z) +g(Az)) —e < —v—n.

This is impossible. Thus, assertion (30) is true and the proof of the theorem is
complete. O

3.4 Properties of Conjugate Functions

Firstly, we note the following elementary propositions.

Proposition 3.1.

o) If f < g, then g < f*.
b) If A € L(X,X) is an isomorphism, then

(foA) = froA™"
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c) If g(z) := f(z — o) + (po, T) + a, then
g*(p) = f*(p = po) + (p, To) — (a + (Po, To))-

d) If g(z) == f(Xz), then g*(p) = f* (2) and if h(z) := Af(x), then h*(p) =
A ().

Proof. The first assertion is evident. The second assertion may be proved by
showing that

sup((p, ) — f(Az)] = sup[(A"'p, ) — f(y)] = /(4" "p)-
z€X yeX
For the third assertion, we observe that

gg}g[(p, z) — g(z)] = gggl(p —po,%) — f(z —z0)l — @
= glel)g[(p—po,y) — f()] — a + {p — po, To)
= f*(p—po) + (p, To) — a — (po, Zo)- o

Proposition 3.2. Suppose that X andY are two Hilbert spaces and that f is a
nontrivial convex function from X xY to RU{+o0}. Set g(y) := infex f(z,y).
Then

g'(q) = £*(0,9). (31)

Proof.

g'(q) = sup[ ¢,y) — inf f(z,y)]

= igpiup[(O w)+(q, y) — f(z,y)] = £*(0,9). =

Proposition 3.3. Suppose that X and Y are two Hilbert spaces, that
B € L(Y,X) is a continuous linear operator from Y to X and that
f: X >RU{4+o00} and g : Y — R U {+o0} are two nontrivial functions.
Set h(z) := infyey (f(z — By) +g(y)). Then

h*(p) = f*(p) + g*(B*p). (32)

Proof.

sup((p, 7} — inf(f(z - By) +9())] = sup((p,z) — f(z — By) — g(y)]
= supl(n,z + By) - f(a) - 9(v)]

= f'p)+9"(B'p)- =
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When X =Y and B = I is the identity, the function h := f @; g defined
by h(z) := infycy (f(z —y) + g(y)) is called the inf-convolution of the functions
f and g. The above proposition states that the conjugate of the inf-convolution
of two functions is the sum of the conjugates.

Next we shall calculate the function conjugate to f* + g* o B*. We shall
not recover the function h, since we do not know if the latter is lower semi-
continuous. For this, we need a slightly more restrictive assumption, namely

0 € Int (B* Dom f* — Dom g*). (33)
In fact, this is a consequence of the following proposition:

Proposition 3.4. Suppose that X and Y are two Hilbert spaces, that
A € L(X,Y) is a continuous linear operator and that f : X — R U {+c0}
and g : Y — IR U {400} are two nontrivial, convez, lower semi-continuous
functions. Suppose further that

0 € Int (ADom f — Dom g). (34)
Then, for all p € A* Dom g* + Dom f*, there exists § € Y™ such that

(f+goA)(p) = f(p— A9 +9°(Q)
= f (f'(p—A'9) +97(d)). (35)

Proof. We may write
sup((p, ) — f(2) — g(A0)] = —inf[f(z) — (p,) +9(Ao)].

We apply Fenchel’'s Theorem with f replaced by f(-) — (p,-), the domain of
which coincides with that of f and the conjugate function of which is equal to
g — f*(g + p). Thus, there exists § € Y* such that

sup((p, z) — f(z) —g(4z)] = f'(p— A7) +97(9)
= inf[f*(p—A"9) +4°(9)- o

It is useful to state the following consequence explicitly:

Proposition 3.5. Suppose that X and Y are two Hilbert spaces, that
A € L(X,Y) is a continuous linear operator from X to Y and that
g: Y — RU {+o0} is a nontrivial, convez, lower semi-continuous function.
We suppose further that

0 € Int (Im A — Dom g) (36)

Then, for all p € A* Domg*, there exists § € Dom g* satisfying
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A'q=p and (g0 A)(p) = g'(q) = min ¢"(q)-

Proof. We apply the previous proposition with f = 0, where the domain is the
whole space X. Its conjugate function f* is defined by f*(p) = {0} if p =0 and
f*(p) = +oo otherwise. Consequently, f*(p — A*q) is finite (and equal to 0) if
and only if p = A*q. m]

The following result will be used later; in the meantime, it may be considered
as an exercise.

Proposition 3.6. Suppose X and Y are two Hilbert spaces, that A € L(X,Y)

is a continuous linear operator from X toY and that f : X — RU {+o0} and

g:Y — RU{+o0} are two nontrivial, convez, lower semi-continuous functions.
We suppose further that

0 € Int (Dom g — ADom f) (37)
We set e(z,y) := f(z) + g(Az +y). Then, for all (p,q) € X* xY*
e'(p,q) = f(p— A"9) +4°(9)- (38)

Proof. We may write

e(z,y) = f(z) + 9(Az +y) = h(C(z,v)) (39)
where h is a function from X x Y to RU {+co} given by h(z,y) = f(z) + g(y)
with domain Domh = Domf x Domg and where C € L(X x Y, X xY) is
defined by C(z,y) = (z, Az + y). Its transpose C* € L(X* x Y*, X* x Y*) is
defined by C*(p,q) = (p + A*q, g). We shall apply Proposition 3.1 to calculate

the function conjugate to h o C, since the operator C is clearly an isomorphism
of X x Y onto itself. O

Corollary 3.1. The assumptions are as in Proposition 3.6, above. We set
h(y) = infzex(f(x) + g(Az +y)). Then

k*(q) = f*(—A%q) + 9" (). (40)

Proof. We apply Propositions 3.2 and 3.6 O
Ezample. Conjugate functions of quadratic functions.

Proposition 3.7. Suppose that X is a Hilbert space and that L is a continuous
linear operator from X to X* satisfying

(i) L=1L*
(i) (Lz,z)>0 Ve e X
(iii) ImL is closed in X*. (41)
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Let f be the function from X to IR, defined by

1
f(@) = 5{Lz,2). (42)
Then its conjugate function is equal to
1 -1
sy — ) 2(p%) wherez € L7'(p) whenpe€ImL

f(p) { +00 when p ¢ ImL (43)
Proof.
a) First we take p ¢ Im L. Since the image of L is closed, it follows that Im L =
(KerL)*+

(see Theorem 3.4, below) and thus there exists an element z, € KerL such
that (p, zo) is strictly positive. Whence,

A>0

F(8) > sup((30) = ) = (512 ) = +oc

since f(Azo) = 2(AL(zo), Azo) = 0.

b) Now we take p € Im L with Z a solution of p = LZ. Then I(z,y) = (Lz,y) is
a scalar semiproduct and the Cauchy—Schwarz inequality implies that

(L3, 9) < V{12, 90\/(Tw, ) < 3(18,2) + o (Ln,v).
Whence
7(0) =sup ((L2,) - 5(Luw)) < 5(28,2) = 5(5,2).
On the other hand,
2(0.8) = (5,7) — 5(L8,3) < [ (7).

Thus, we have shown that f*(p) = (p,Z) for all solutions Z of the equation
Lz =p. O

Corollary 3.2. Let X be a Hilbert space and L € L(X, X*) the dualzty operator.
The conjugate function of the function f defined by f(z) = 3 L\|z||? is the function
f* defined by

£) = 3lpll uhere ol =sup B2 = STpp). )

Proof. The duality operator L satisfies the properties (41), is surJective and
is associated with the norms ||z|| and ||p||, by the relationships ||z||* = (Lz, z)

and ||p|l = (Z7'p, p)- =
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Corollary 3.3. Let X be a Hilbert space and f : X — IRU {+o0} a nontrivial,
convez, lower semi-continuous function. Then, for all A > 0,

inf (f(w) + %nxnz) + inf, (f*(p) + gupnf) =0. (45)

Proof. We apply Theorem 3.2 with g(z) = %”x”z, where the conjugate func-

tion is defined by g*(p) = %”P"f .

3.5 Support Functions

We have already mentioned that it is possible to characterise a subset K C X by
its characteristic function i defined by i (z) =0 if z € K and ¢g(z) = 400
otherwise.

Its conjugate function is defined by

Yk (p) = sup(p, z)- (46)
zeK

Definition 3.2. The conjugate function v} of the indicator function of a subset
K is called the support function of K and is often denoted by

ox(p) :=o(K,p) == :g}g(p, ). (47)

The domain of ok (.) is called the barrier cone K and is often denoted by
b(K) := Domog.

Ezamples.

a) If K = {z,} then ok (p) = (p, Zo)-
b) If K = B then ox(p) = ||pl,-
c) If K is a cone then

ok (p) = Y- (p) and b(K) = K (48)
where
K~ ={pe X*|Vx € K, (p,z) <0} is the negative polar cone of K.  (49)
d) If K is a vector subspace then
ox(p) = Yicr (p) and b(K) = K+ (50)

where K1 = {p € X*|Vz € K, (p,z) = 0} is the orthogonal subspace corre-
sponding to K (the orthogonal for short).
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We note that
if0e Kthenog >0 (51)

and that
if K is symmetric then o is even. (52)

Proposition 3.8. Any support function ox of a non-empty subset K C X is
a convex, lower semi-continuous, positively homogeneous function from X* to
RU {+o00}.

Conversely, any function o : X* — IR U {400} which is convez, lower
semi-continuous and positively homogeneous is the support function of the set

K, :={z € X|Vp e X*, (p,z) < o(p)}. (53)

Proof. The first assertion is evident. To establish the second assertion, we
calculate the conjugate function of .
If z belongs to K, then o*(z) = 0, since

o*(z) = :161)13((1’, z) —o(p)) <0=(0,z) — 0(0) < o*(x)

If  does not belong to K,, then there exists py with (po,z) — o(p) > 0.
Thus,

o*(z) > i‘ilg(()\po, ) — o(Apo)) > sup A({po, z) — 0 (po)) = +o0.

Thus, we have proved that o* is the support function of K. O

Theorem 3.3. If K is a convex closed subset of X, then
K= {IL'EX'VPEX*, (p,(E) SJK(p)} (54)

If K is a closed convex cone then

K=(K"). (55)
If K is a closed vector subspace then
K = (K*)". (56)

Proof. If K is convex and closed then g is convex and lower semi-continuous
and consequently ¥ = (¢¥})* = 0k%. Thus, ¢k is the indicator function of the
set K,,., which is nothing other than the right-hand side of formula (54).
Formulae (55) and (56) follow from the above together with the fact that
ox = Yk~ if K is a cone and o = Pk if K is a vector subspace. ]
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The following result is known as the bipolars theorem.

Theorem 3.4. Suppose that A € L(X,Y) is a continuous linear operator and
that K is a subset of X. Then

AK)” = A Y(K7) (57)

and if A(K) is a closed convez cone, then A(K) = (A* ' (K7)) .
In particular,
Ker A* = (Im A)* (58)

and if Im A is closed, Im A = (Ker A*)* Proof. In fact, p belongs to A(K)™ if
and only if

Vz € K, (p, Az) = (A*p,z) <0,

that is to say, if and only of A*p belongs to K~. The second assertion follows
from Theorem 3.3. The equality (58) is the particular case in which K = X,
K- ={0}. O

Since the restriction of a function f to a subset K is the sum of f and the
indicator function of K, we obtain the following formula.

Proposition 3.9. Let f be a nontrivial, convez, lower semi-continuous func-
tion from X to IR U {+oo} and let K be a closed, convex subset of X. If
0 € Int(Domf — K) and p € Domf* + b(K), then there ezists § € b(K) such
that

(flx) (p) = f*(p— @) + ok (2)- (59)

Since the barrier cone is the domain of the support function of K, which is
convex and positively homogeneous, it is a convex cone, which is not necessarily
closed.

It is clear that K is simply bounded if and only if b(K) = X, since to say
that K is simply bounded is equivalent to the statement that

Vpe X*, ok(p) =sup(p,z) < +o0. (60)
z€K

The ‘uniform-boundedness’ theorem says that, in fact, the simply bounded
sets are the bounded sets (as simple as that!).

It follows that barrier cones in some way measure the ‘lack of boundedness’
of sets. The smaller the barrier cone of a set, the more ‘unbounded’ this set, if
we dare to use this ill-sounding neologism.

Proposition 3.10. Let K be a closed convex subset. Then, for all zg € K,

b(K)™ = () MK — o). (61)

A>0
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Definition 3.3. The negative polar cone of the barrier cone of K is called the
asymptotic cone of K.

Proof of Proposition 3.10. Provisionally, we set L := Mo A(K — Zg)-

a) We take z € L. For all A > 0, there exists y» € K such that z = A\(yx — %o)-
Thus, (p,z) = A({p,y») — (p,%0)) < Mox(p) — (p,T0)) < +oo if p belongs to
the barrier cone. It suffices to make ) tend to zero to see that (p,z) < 0 for all
p € b(K), that is to say that L is contained in b(K)~.

b) Conversely, we take z in b(K)~ and A > 0. Since £ belongs to b(K)~, we
deduce that for all p € b(K),

<p, zo + §> < (p,mo) + <p, §> < (p, %) < ok (p)-

Since K is convex and closed, Theorem 3.3 implies that § + zo belongs to K,
whence that z belongs to L.

Formulae relating to support functions and barrier cones

of The following formulae relating to support functions and barrier cones may
be deduced from the properties of conjugate functions.

Remark. If f is a proper, convex, lower semi-continuous function, then
oep(s) (P, —1) = f*(p)-

o If K C L then
b(L) C b(K) and ok < oy (62)

eIf K; C X; (6 =1,...,n), then

n n

b (ln_[ Kz) = b(K,) and UK(pl, e ,pn) = Z OK; (;Di). (63)
i=1 i=0

o b (c_o U Ki) c (N b(K:) and o (c_o (U aK,.) (p)) —supog,(p).  (64)

iel iel il i€l
o If Be L(X,Y), then

W(B(K)) = B*'0(K) and og5(p) = ox(B'D). (65)

o b(I) + Ka2) = b(K1) Nb(K2) and 0k, 4k, (p) = 0k, (P) + 0k (p)-  (66)
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e If P is a convex closed cone then

. _ o if pe P~
b(K + P) =b(K)NP~ and ox.,p(z) ={ +,;gp) e (67)

. b(K + {z0}) = b(K) and 0k4z,(p) = 0k (p) + (P, To)- (68)

oIf Ac L(X,Y),if LC X and M CY are closed convex subsets and if
0 € Int(A(L) — M) then

b(L N A™Y(M)) = b(L) + A*b(M)
and Vp € b(K), 37 € b(M) such that
a1y (p) = oL(p — A*Q) +om(q) = qigf,(UL(P — A'q) +om(q)).  (69)
eIf Ac L(X,Y),if M CY isconvex and closed and if 0 € Int(Im(A) — M),
then
b(A™!(M)) = Ab(M)
and Vp € b(A™'(M)), 3g € b(M) satisfying
A*'g=p and oa-1an)(p) = om(q) = Ai,fgipUM(Q)- (70)
o If K, and K, are convex closed subsets of X such that 0 € Int(K; — Kj),
then b(K; N K;) = b(K,) + b(K>2) and for all p € b(K; N K3), there exist
P: € b(K;) (i = 1,2) such that p = p; + P, and

aKanz(p) = 0K, (1-71) + aKz(ﬁ2) = p:yll_f;_pz(afﬁ (pl) + Ok, (p2))' (71)

3.6 The Cramer Transform

The Cramer transform C associates with any nonnegative measure dy on a
finite dimensional vector space IR™ the nonnegative extended function C, :
R"™ — IR} U {+00} defined on IR" (identified with its dual) by :

Cule) = sup (o) —log ([ e dp(y)))

z€R™
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In other words, it is the product of the Laplace transform p / e N dpu(y), of
mn

the logarithm and of the Fenchel transform (conjugate functions) g(-) — g*(-).
This Cramer transform plays an important role in statistics, and in particular,
in the field of large deviations. Since C,, is the supremum of affine functions
with respect to p, this is a lower semicontinuous convex function. It satisfies

Culr) = (p.0)—log [ e®Mdp(y)) = —1og ([ dutw))

so that when du is a probability measure, its Crameér transform C, is nonneg-
ative.

We may regard nontrivial nonnegative extended functions as membership
cost functions of “toll sets”, following a suggestion of Dubois and Prades. In-
deed, they provide another implementation of the idea underlying “fuzzy sets”
exposed in chapter 13, since the set [0, 00]® of nonnegative extended functions f
from E to IRy U{+o0} is the closed convex hull of the set {0, co}¥ of indicators:

Definition 3.4 We shall regard an extended nonnegative function f : X +—
IRy U{+oo} as atoll set. Its domain is the domain of f, i.e., the set of elements
z such that f(z) is finite, and the core of f is the set of elements = such that
f(xz) = 0. The complement of the toll set f is the complement of its domain
and the complement of its core is called the toll boundary.

We shall say that the toll set f is convex (respectively closed, a cone) if
the extended function f is convex (respectively lower semicontinuous, positively
homogeneous).

We observe that the membership function of the empty set is the constant
function equal to +co.

The Cramér transform provides a mathematical reason for which toll sets
furnish a sensible mathematical representation of the concept of randomness,
but different from the representation by probabilities. This is justified by the
following observations.

The indicators 9y, of singleta a are images of Dirac measures d,: Indeed,
if &, is the Dirac measure at the point a € IR", then
0 if p=a
Culp) = s (e~ (@ah) = { oy i D56 = o)

z€lR™

The Cramer transform of the Gaussian with mean m and variance o is the
quadratic function Gy, ., defined by

z—m|?

1
Go,m(x) = 5“

which we can regard as a Gaussian toll set with mean m and variance o. Such
toll sets play the role of Gaussians in probability theory.

The function z — log ( /mﬂ e(z’y)d,u(y)) is

g
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1. convex

Indeed, applying Hélder inequality with exponents 31;, we obtain

e(alzl'f-azzg,y)dﬂ(y) — / (e(zx,y))°1 (e(mz,y))az du(y)
n R"

( ) ) ( ) a2
< / T1,Y, d ) (/ T2,Y, d )
< ( ey ey

By taking the logarithms, we get the convexity of this function with re-
spect to x.
2. and lower semicontinuous

Since the measure du is nonnegative, Fatou’s Lemma implies that if z,
converges to z, then

/" e(I'y)dp(y) < lipn_l,g}f - e(:‘”’y)du(y)

Hence the lower semicontinuity of the Laplace transform of du is estab-
lished. Since the logarithm is increasing and continuous, it is continuous
and nondecreasing.

Therefore
Ciw) = log ([ e duly))

It is actually differentiable and its gradient is equal to

Jrn ye©¥dp(y)
Jrr =9 dp(y)

When dp is the probability law of a random variable, then its mean is equal
to VC;;(0), which is centered if and only if its Cramer transform vanishes at 0.

VCi(z) =

Inf-convolution plays the role of the usual convolution product of two inte-
grable functions f and g defined by

(f*9)(z) = |  fle—y)g(y)dy

We thus deduce that the Laplace transform of a convolution product is the
product of the Laplace transforms because

/ne("‘y)/ fly — 2)g(2)dydz = / /n @2 g (’y‘z)g(y—z)dydz
—m/ ™ g(z )dz/ e‘“’g( )du

Therefore, taking the logarithm, we obtain

{ log (fir €9 (f * 9) (v)dy)
= log ( fir» €% f (y)dy) +log (fin~ €= g(y)dy)
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The Fenchel conjugate of this sum being the inf-convolution of the Fenchel
conjugates, we infer that the Crameér transform of a convolution product is the
inf-convolution of the Cramer transforms:

Cf*g = Cf ©1r Cg

The Proximation Theorem implies that inf-convolution by a quadratic func-
tion maps a lower semicontinuous convex function to a continuously differen-
tiable convex function, in the same way that the convolution product by a
Gaussian maps a function to an indefinitely differentiable function:

|

The Cramer transform thus maps the convolution by a Gaussian into inf-
convolution by quadratic functions.
The quadratic functions

foto) o= g |10 +

1l —m|?
Gy mlz) = 5|| .

are regarded as Gaussian toll sets with mean m and variance o. They form a
class stable by inf-convolution:

Proposition 3.11 The Gaussian toll sets are stable under inf-convolution:

(Gor,my ® Goyymy) () = G

a’f+0§ » mi+ma

Proof — One must compute the solution to the minimization problem

inf ( ||_u )

From Fermat’s Rule, this problem achieves its minimum at

y—m

=

2 2
o3z —my) + oyme
o} + 03

Consequently,

rT—Y—m 2

1|3,7—m2 2

1
(Gorym @ Gonma) (@) = 5|

01
1 [z — (my +my)
= - ||F—— 2 = G
2 /U%-I—U% oy+o3, mitma

Remark. The Cramér transform justifies a striking formal analogy between
optimization and probability theory. We shall only sketch it without entering
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details which may lead us too far. When f is a nonnegative extended function
from X to R U {400}, we can regard the “set-defined map” K +— Ms(K) :=
inf,c(y) as a Maslov measure whose “density” is f on the family F(X) of closed
subsets, i.e., a “set-defined map” satisfying

i) Mp(X) = infyex f(y)
i) My0) = +oo
i) My(KUL) = min(M;(K), Ms(L)

Maslov measures are analogous to usual nonnegative measures, which are set-
defined maps from the o-algebra A on a measured space §2 to IR,. Maslov
probabilities are those satisfying

My(X) = inf f(y) = 0

To the integral
2() [ 2(w)du(w)

of a nonnegative measurable function defined on a measured space (2, A, du)
corresponds the infimum of a lower semicontinuous function g : E — RU{+o0}
on a metric space E defined by

9(-) = inf(g(z) + f(2))
To the Dirac measure 4, : z(-) — z(a) corresponds the indicator 1, because

g(-) = inf(g(z) + ¢a(z)) = g(a)

zEG

To the integral / du(w) of the characteristic function of a measurable set A € A

providing the measure du of a subset A corresponds the minimization problem
of a function ¢(-) on the closed subset A

9() = inf(da(z) +9(z)) = inf g(z)

Consequently, to the measure dy, which is a function from the o-algebra A to
the half-line IR, supplied with the operations + and X, corresponds the Maslov
measure My, function from the family of compact subsets of E to [0, +00].

The analogy then becomes algebraic, because (IR, +, X) supplied with the
usual addition and multiplication and neutral elements 0 and 1 on one hand, and
(IR, inf, +) supplied with the infimum and the usual addition and the neutral
elements +o00 and 0 on the other hand, are two instances of “dioids, which are
kind of rings supplied with two operations which do not have inverses.
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4.1 Introduction

The crucial discovery of the concept of differential calculus is due to Pierre de
Fermat (1601-1655), who was one of the most important innovators in the his-
tory of mathematics. It is to him that we owe a rule for determining extrema,
described, without proof, in a short treatise Methodus ad disquirendam Mazi-
mam et Minimam written in 1637. The importance of his discoveries in number
theory has eclipsed the contributions which this exceptional and modest man
made to other areas of mathematics. Fermat also was the first to discover the
“principle of least time” in optics, the prototype of the variational principles
governing so many physical and mechanical laws. He shared independently with
Descartes the invention of analytic geometry and with Pascal the creation of the
mathematical theory of probability. His achievements in number theory over-
shadowed his other contributions, as the Last Fermat Theorem which remained
a challenge for such a long time, and still is a challenge if indeed the simple proof
of Piere de Fermat did exist. Not to mention his compositions in French, Latin,
Italian and Spanish verse and his Grecian erudition. It is also notable that he
was able to find time for these occupations in the midst of his duties as coun-
sellor to the parliament of Toulouse (even taking into account Fermat’s genius,
this makes us reflect on the leisure activities offered by a lawyer’s career).

But Fermat never knew the concept of the derivative which was only formu-
lated later by Newton (in 1671) and by Leibniz in his publication on differential
calculus entitled Nova methodus pro mazimis et minimisin 1684. However, New-
ton himself recognized explicitly that he got the hint of the differential calculus
from Fermat’s method of building tangents devised half a century earlier.

Fermat was also the one who discovered that the derivative of a (polynomial)
function vanishes when it reaches an extremum. (This is Fermat’s Rule, which
remains the main strategy for obtaining necessary conditions of optimality, from
mathematical programming to calculus of variations to optimal control).

The analogy between Fermat’s method (restricted to algebraic functions)
and that of Leibniz is remarkable, since, as you know, this rule involves searching
for the extrema of a function f among the solutions of the equation f'(z) =0,
a problem much more familiar to mathematicians.

This rule has been applied, justified, improved, adapted and generalised
in the course of three centuries of work on optimisation theory, the theory of



58 4. Subdifferentials of Convex Functions

z — |z
21
T — 2 y \\ T — —T
s ~
., \\
rd ~
Fig.4.1.

the calculus of variations and (now) optimal control theory. Three centuries of
intensive work by numerous mathematicians, punctuated by important stages
and bearing the seal of the works of Euler (XVIIIth century), Lagrange, Jacobi
(XIXth century), Poincaré and Hilbert (at the dawn of this century) are con-
tinued even today, since the results which we shall describe are recent (which
does not necessarily mean complicated, since scientific progress also involves
simplification).

The concept of functions of several differentiable variables has been known
since Jacobi and that of differentiable functions on normed spaces since Fréchet
and Gateaux. The rule due to Fermat and Leibniz remains valid. If the function
f attains its minimum with respect to z, the gradient of f is zero at that point.
There are many reasons why we should not stop there.

Firstly, we may seek to minimise so-called nondifferentiable functions. Op-
timisation theory, game theory, etc., involve such functions since the operations
of supremum and infimum destroy the usual differentiability properties; for ex-
ample, we mention the function z — |z|, which is not differentiable at the
point z = 0, but which is obtained as the upper envelope of the differentiable
functions £ — az when a ranges over [—1, +1].

We may wonder (like others before us) why there should be so much fuss in
the case of nondifferentiability at a single point. All the more so since we shall
see that any convex lower semi-continuous function may be approximated by
differentiable functions; for example, the function z — |z| may be approximated
by the functions f, defined by:

hy) =1 % if |y < A

However, if we are interested in the minimum of z — |z| which is attained

at 0, we note that it is at this point that the function is not differentiable and
thus that Fermat’s rule cannot be applied. What can we do? In fact, we may
retain Fermat’s rule, modifying the concept of gradient and generalising it ap-
propriately. Examination of the function £ — |z| may put us on the right track.
Since z — |z| is the upper envelope of the functions £ — az the derivatives of
which at 0 are a,when o ranges over [—1,4+1] why not consider the set [+1, —1]
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of these derivatives as a candidate? Clearly, we must overcome our hesitation
at the multi-valued nature of this solution, which simply results from a lack of
familiarity (and our conservatism). But, to convince ourselves of the importance
of this stroke of daring, we need only note that Fermat’s rule remains true for
this example, since

0 belongs to [—1, +1].

Since we have seen that any convex lower semi-continuous function is the
upper envelope of the continuous affine functions z — (p,z) — f*(z) which
minorise it, we thus consider the set of the gradients p of those affine functions
which pass through the point (2o, f(2o)), in other words, the set of p such that:

(p, Zo) — *(p) = f(=0)-

In the context of this theory, we shall choose this set (convex, closed, pos-
sibly empty), called the subdifferential Of(zo) of f at zo as a candidate for a
generalisation of the concept of gradient. In the context of other theories (for
example, partial differential equations), other strategies such as distribution
theory will be more appropriate.

If there is only one affine function (the tangent) then 8f(zo) reduces to the
usual gradient of f at zo: 8f(z0) = {V f(z0)}-

We shall show that Fermat’s rule remains true: Z minimises a nontrivial,
convex, lower semi-continuous function f if and only if 0 € 8f(Z).

In order to exploit this result, we need to develop a subdifferential calculus,
analogous to the usual differential calculus. We shall establish conditions under
which formulae such as
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O(f +g)(mo) = 0Of(x0) + dg(xo)
I(foA)(wo) = AOf(Azo)

a( sup f.,-) (z0) = w( U Bfi(mo)),

i=l,...,n i€l(zo)

where I(zo) := {¢ = 1,...,n|fi(%0) = sup,_, , fi(xo)} and T6' denotes the
closed convex hull, are true.

One important class of convex nondifferentiable functions consists of the
restrictions fr = f + g of convex functions to closed convex subsets K. When
the interior of K is empty, we cannot talk of either the derivative or the gradient
in the usual sense.

However, we can apply the formula

Ofk(x) = 0f(z) + Ok (x)
which, when f is differentiable, gives
Ofk(z) = Vf(z) + ¢k ().

A simple calculation shows that the subdifferential 0y of the indicator
function of K is the closed convex cone

Mk(z)={pe X*Vy e K, (p,y —x) <0}.

The elements p € X* of this set play the role of normals to K at z. This is why
OYk(x) is called the normal cone to K at  and is denoted by Ng(z).

Since we have already replaced the notion of orthogonality for vector sub-
spaces by the notion of polarity for cones, it is natural to consider the negative
polar cone Tk (z) := Nk(z)~ of the normal cone to K at z as the tangent cone
to K at z. This will be all the more justified when it is shown that

Tk (x) = closure (U %(K - x)) .

h>0

In fact, this formula shows that a vector is tangent to K at z if it is the limit
of vectors v € X such that z + tv belongs to K for all t € [0, ko). Such vectors
are the derivatives (right) of the curves t — z +tv passing through z and lying
in K.
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We shall begin by exhibiting an important property of convex functions from

X to RU {+o00}.

Proposition 4.1. Let f be a nontrivial convex function from X to RU{+cc}.

Suppose g € Domf and v € X. Then the limit

Df(z0)(v) = lim L&+ hv) = f(zo)

h—04 h

ezists in R (:= {—oo} URR U {+c0}) and satisfies

F(@o) — f(®o — v) < Df(20)(v) < f(@o + v) — f(o)-
Moreover,

v = D f(x0)(v) is convez and positively homogeneous.
Proof.

a) The function h — ! (z""'hj" —f(=o) o increasing. In fact, if h; < hy, then

flzo + hv) — f(zo) = f (%(xo + hov) + (1 — 7}?) xo) — f(zo).

2

Since f is convex and h,/h; is less than one, it follows that

f(zo + hv) — f(xo) < %f(xo + hav) + (1 - %) f (o) — f(z0);

whence, that

f(xo + hv) — f(z0) < f(zo + hav) — f(zo)
hy - ho )

Thus, these differential quotients have a limit in IR as h — 0,

Df(20)(v) =,i£% f(zo +h1})1) — f(-’Eo).

b) Taking h = 1, equation (4) implies that

Df(zo)(v) < f(zo +v) — f(zo)-

(1)

(2)

(3)

Writing o = r}_—,;(xo + hv) + P (20 — v) and using the convexity of f, we obtain

1+h

o) < HLh o + hv) +

h
1+hf($o—v)~
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This inequality implies that for all A > 0
f(@o + hv) — f(xo)
h
and consequently, by virtue of (4), that f(zo) — f(zo — v) is less than or equal

to D f(zo)(v)-

c) Clearly, v = D f(xo)(v) is positively homogeneous. We show that it is convex:

f(zo) — f(xo—v) <

f(@o + R(Av1 + (1 — A)v2)) — f(z0)
= f(Mwo + hv1) + (1 — A) (2o + hvz)) — Af(w0) — (1 — A) f(Zo)
< A (@o + hon) — f(@0)) + (1 — N)(f(zo + hvz) — f(Z0))-

Dividing by h > 0, and letting k tend to 0, we deduce that
D f(zo)(Avr + (1 — MNvz) < ADf(zo)(v1) + (1 — A) D f(zo)(v2)- o

In general, v — D f(z¢)(v) is not lower semi-continuous.

Definition 4.1. We shall say that D f(zo)(v) is the right derivative of f at

Zo in the direction v and that v — D f(xo)(v) is the right derivative of f at xy.
Ifv — D f(x0)(v) is a continuous linear function, we say that f is Gateaux

differentiable at zy, and the continuous linear form V f(xy) defined by

VoeX,  (Vf(zo),v) = Df(o)(v) (5)

is called the gradient of f at x,.

Whilst the right derivative is not necessarily linear and continuous, it is
always convex and positively homogeneous. If it is nontrivial and lower semi-
continuous, Proposition 3.8 tells us that the right derivative is the support
function of the convex closed set

{p e X*|Vv e X, (p,v) < Df(z0)(v)}-
Nothing prevents us from considering this set in the general case.

Definition 4.2. Let f : X — IRU {400} be a nontrivial convez function. We
call the subset Of(xo) defined by

9f(zo) == {p € X*|Wv € X, (p,v) < Df(20)(v)} (6)

the subdifferential of f at zo. The elements p of 0f(zo) are often called sub-
gradients.

The subdifferential 8 f(xo) is always a convez closed set and may be empty
(this is the case if D f(zo)(v) = —oo for at least one direction v).

The concept of subdifferential generalises the notion of gradient in the sense
that, when f is Gateaux differentiable at zg, the subdifferential reduces to the
set consisting simply of the gradient V f(zo) of f at zq:
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Of(zo) = {Vf(z0)} when Vf(z,) exists. (7)

If the right derivative Df(zo)(-) is nontrivial and lower semi-continuous,
Proposition 3.8 implies that

D f(20)(v) = 0(8f (o), v)- (8)
We shall characterise the subgradient of f at zo.

Proposition 4.2. Let f be a nontrivial convez function from X to RU {+oc0}.
Suppose that 0 f(zo) # 0.

The following assertions are equivalent

a) p € 0Of(x)
b) (pz) = [f(z)+[*(p)
c) flz) = (p,2) < i (fl¥) —(my)) WyeX. (9)

Proof. The inequality (2), where v = y — 2 proves that a) implies c), whilst
c) and b) are clearly equivalent. We show that c) implies a). Firstly, taking
y = z + hv, ¢) implies that (p,v) < M and consequently, that (p,v) <
Df(z)(v) for all v € X. Thus, p belongs to df(z). O

Remark. Property b), which characterises the subdifferential using the conju-
gate function will be very useful, since it is very simple to use.
Moreover, it has the following consequence

Corollary 4.1. Suppose f : X — IRU {+o0} is a nontrivial, convez, lower
semi-continuous function. Then

p€ O0f(z) < xz € 0f*(p). (10)

This may be expressed in another way, by defining the inverse of the set-valued
map z — 8f(z) to be the set-valued map p — (8f) ' (p) given by

z € 0f 7' (p) & p € df(z) (11)

Then Corollary 4.1 states that: the inverse of the subdifferential x — Of(x)
is the subdifferential p — Of*(p) of the conjugate function of f. Whence, by
abuse of terminology, it is again convenient to call the set-valued map x — 9f(z)

the subdifferential.
It was Fenchel who recognised the analogue of the Legendre transformation
which associates a function f with a function g such that

p=Vf(z) & z=Vy(p)

It is easy to see the advantageous consequences of such a property.
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Since, at that time, no one dared to talk of set-valued maps, it was assumed
that the mapping * — Vf(z) was a homeomorphism from an open subset §21
of IR® onto an open subset {2, of IR™ (that is, a bijective and bicontinuous

function).
Then the solution is given by the function ¢ defined on {2, by

9(®) = (. (V) (0)) — F(VF) 7 (o).

Setting = = (Vf)'(p), we obtain the identity
(p,z) = g(p) + f(2)

analogous to the property (9) b).
The function g is called the Legendre transformation of f. When f is also

convex, g coincides with the conjugate f*.
Next we suppose that p € 2, and z € 9f*(p). Following (9) a), £ maximises
the function y — (p,y) — f(y)- Since f is differentiable at z, we deduce that

0=V({p,-) — f(-))(z) = p— Vf(2). Thus, p= Vf(z) and
(@) = (p,z) — f(2) = &, (V) @) — F(VF)'p) = 9(p).

In summary, in the context of convex analysis, the conjugate function of a convex
function plays the same role as that played by the Legendre transformation in
classical (regular) analysis.

4.3 Subdifferentiability of Convex Continuous
Functions

Theorem 4.1. Suppose that a convex function f is continuous on the interior
of its domain. Then f is right differentiable on Int Dom f and satisfies

Df(x)(u) = imsup f(y+h1;l)—f(y)‘ (12)

h—04

Moreover,

(i) (z,u) € Int Dom f x X — Df(x)(u) is upper semi-continuous
(ii) 3c> 0 such that Vu € X, |Df(z)(u)| < c|ly|- (13)

Proof. Since f is bounded above on a neighbourhood of z, there exists o > 0
such that £ — ou and = + au belong to the domain of f. The inequalities (2)
of Proposition 4.1 imply that D f(x)(u) is finite. Thus f is right differentiable.
Since f is Lipschitz on a neighbourhood of z by virtue of Theorem 2.1, there
exists a constant ¢ > 0 such that

Df(z)(w) < LEF ’”;L) —1@ < g (14)
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which implies that D f(z)(-) is Lipschitz, whence lower semi-continuous. Provi-
sionally, we set

fly + hu) — f(y)
- :

D f(z)(u) = limsup
Py

The inequality Df(z)(u) < D.f(z)(u) is clear and we show that the inverse
inequality holds. Since the function

(h,y) — fly +h1;l) — f(y)

is continuous at (A, z), there exists a > 0 such that
fly+hu) = ) _ flz+ )= f(z)
h - A
when |h — A| < o and ||y — z|| < a. This implies, in particular, thanks to the

(y + hu) — f(y)
)

+e€

fact that h —

is increasing, that

wp  sup TN —FB) _ flo+w) - fla)
ly-zli<a 0<h<rta h A

+ €.

Taking the infimum with respect to A and «, we obtain
D.f(z)(u) < Df(z)(u) +&.

Thus, it is sufficient to let € tend to 0.
Finally, the function (z,u) — Df(z,u) is upper semi-continuous as the
f(z + hu) — f(z)

O
h

lower envelope of the continuous functions (z,u) —

We now state Theorem 4.1 in subdifferential terms.

Theorem 4.2. Suppose that a convex function f is continuous on the interior
of its domain. Then,

Vz € Int Dom f, 0f(z) is non-empty and bounded. (15)
Moreover,

(z,u) € Int Dom f x X — o(0f(x),u) is upper semi-continuous. (16)

Proof. Since the function v — D f(z)(u) is nontrivial and lower semi-continuous,
it is the support function of the subdifferential

0f(z) : Df(z)(u) = o(8f(2),u).
The inequality (14) may be written as o(9f(z), %) < c||u|| = o(cB,u), which
implies that 8f(x) is contained in the ball ¢B of radius ¢ > 0. ]

Corollary 4.2. Suppose that a convez function f is continuous on the interior
of its domain. Then f is Gateaux differentiable at x € Int Dom f if and only if
df(z) contains only one point (which is the gradient of f).
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4.4 Subdifferentiability of Convex Lower
Semi-continuous Functions

When the convex function f is only lower semi-continuous we can nevertheless
show that f is subdifferentiable on a sufficiently large set, since it is dense on
the domain of f.

Theorem 4.3. Let f : X — IRU {+o0} be a nontrivial, convez, lower semi-
continuous function. Then

a) f is subdifferentiable on a dense subset of the domain of f;

b) for all X > 0, the set-valued map  — z+ A\ f(x) is surjective and its inverse
Jx:= (1 +X0f(-))" is a Lipschitz mapping with constant equal to 1.

Proof. a) This is a consequence of Theorem 2.2. We begin by proving the second
assertion. For all A > 0, the unique solution Jyz of the minimisation problem

. 1 2
fa(@) = int [ £0) + o5 lly — o]
satisfies the inequality

1
WeX, f(he)- 1) < (Fle= ha)hay)
which says precisely that Jyz is the (unigue) solution of the inclusion
z € hax + A0f(Ihx) = (1 + A0f())(Iaz). (17)

Thus, J) is the inverse of the set-valued map 1 + AJf(-) and Proposition 2.7
implies that Jy is Lipschitz with constant 1. In particular, f is subdifferentiable
at hz.

b) For z belonging to the domain of f, we shall show that Jyz converges to
z, which proves the first part of the theorem. We take p in the domain of f*
(which is non-empty, by virtue of Theorem 3.1). Since

S5 — 2l + f(xa) = o) < (z)
and since
—f(Ixz) < f*(p) — (P, Jrz)
we deduce that
Slhe—alt < @)+ F6) - 0:9) + B2~ Jia)
sz =2l + £() + £ 0) — (0,2 + Mlpl®

(since ab < a?/4\ + b?)). Thus, since A converges to 0,
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a2 — zlI* < 4X(f(2) + F*(p) — (0, z) + Al|plI*) — O. =

Remark. The single-valued nonlinear operators Jy := (1 + Af(-))”" are often
called the Moreau-Yosida approximation of the set-valued map 8f : z — 8f(z)
for the following reason. When f is convex, the subdifferential map df is mono-
tone, i.e., that its graph is monotone in the sense that for all pairs (z,p) and
(4,9) of Graph(9F),

(p—g,z—y) 2 0.

Indeed, it is sufficient to add the inequalities

fl)—fly) £ (pz—y)

and

fy) - flz) < (gy—=)
When f is convex and lower semicontinuous, one can prove that the subdiffer-
ential is mazimal monotone in the sense that its graph is maximal among the
monotone graphs. For maximal monotone set-valued maps A : E — FE, one can
prove that Jy := (1+ AA) ™" i the Yosida approzimation of A.

4.5 Subdifferential Calculus

Theorem 4.4. We consider two Hilbert spaces X and Y, a continuous lin-
ear operator A € L(X,Y) and two nontrivial, convez, lower semi-continuous
functions f: X - RU{+o0} and g : Y — IRU {+o0}.

We assume further that

0 € Int(ADom f — Dom g). (18)

Then,
O(f +go A)(z) = 0f(z) + A'0g(Axz). (19)

Proof. It is easy to check that 8f(z)+ A*0g(Ax) is contained in 9(f +goA)(x).
The inverse inclusion follows from Proposition 3.4. We take p € 9(f +go A)(z).
There exists § € Y* such that (f +go A)*(p) = f*(p— A*q) + g7 (7). Thus, from
equation (9) b),
(p,) = f(z)+9(Az)+ (f+g0A)(p)
(f(z) + f*(p— A"D) + (9(Az) + g7(2))-

Consequently,
0= ({p— A*qz) — f(z) — f*(p— A"Q) + (7, Az) — g(Az) — ¢°(9))-

Since each of these two expressions is negative or zero, it follows that they
are both zero, whence that § € dg(Az) and p — A*§ € 0f(x). Thus, we have
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shown that p=p — A*q + A*q € 8f(x) + A*Og(Ax). =

Corollary 4.3. If f and g are two nontrivial, convez, lower semi-continuous
functions from X to RU {+co} and if

0 € Int (Dom f — Dom g) (20)

then
S + g)(z) = 0f(z) + Bg(x). (21)

If g is a nontrivial, convex, lower semi-continuous function from'Y to RU
{+o0} and if A € L(X,Y) satisfies

0 € Int (Im A — Dom g) (22)

then
0(go A)(z) = A*0g(Ax). (23)

Proposition 4.3. Let g be a nontrivial convez function from X xY to RU
{+o0}. Consider the function h: Y — IR U {+oo} defined by

h(y) := inf g(z,y). (24)

If T € X satisfies h(y) = g(Z,y), then the following conditions are equivalent:

(a) g € Oh(y)
(b) (0,9) € 99(z,v)- (25)

Proof. Since h*(g) = ¢*(0, g), following Proposition 3.2, we deduce that ¢ be-
longs to dh(y) if and only if (g,y) = h(y) + h*(q) = 9(Z,y) + ¢*(0, g), that is, if
and only if (0, ¢) € 99(Z,y)- m]

Proposition 4.4. We consider a family of convex functions x — f(z,p) in-
dexed by a parameter p running over a set P. We assume that
(i) P is compact
(ii) There exists a neighbourhood U of = such that, for all y in U,
p = f(y,p) is upper semi-continuous.

(iii) Vp € P,y — f(y,p) is continuous at x. (26)

Consider the upper envelope k of the functions f(-,p), defined by
k(y) = suppep f(y,p). Set

P(z) := {p € Plk(z) = f(z,p)} (27)

Then
Dk(z)(v) = sup Df(z,p)(v) (28)
PEP()

and



4.5 Subdifferential Calculus 69

Ok(z)=co| |J Of(z, p) (29)

€P(z)

Proof. Since when p belongs to P(z) we may write

f(@+ hw,p) — f(@,9) _ K@ +hv) — k()
h - h ’
letting h tend to 0 we obtain

sup Df(z,p)(v) < Dk(z)(v). (30)
pEP(x)
We must establish the inverse inequality. Fix € > 0; we shall show that there
exists p € P(z) such that Dk(z)(v) —e < Df(z,p)(v). Since the function k is
convex we know that

kE(xz + hv) — k(z)
- .

D(z)(v) = jn
Then, for all A > 0, the set

By, := {pGP

is non-empty. Consider the neighbourhood U mentioned in assumption (26)(ii).
There exists hg > 0 such that z + hv belongs to U for all h < hg. Since
p — f(z + hv,p) is upper semi-continuous, the set By, is closed. On the other
hand, if hy < hy, then By, C By,; if p belongs to By,, the convexity of f with
respect to  implies that

1

Rt e < (1 2) U0 = k) + {2+ havrp) ~ k(o)

< h—z(f(w + hav,p) — k(z))

since £ + hyv = (1 — P)x + —l(m + hyv) and since f(z,p) — k(z) < 0 for all
p. Consequently, since P is compact the intersection No<n<hoBr 18 non-empty
and all elements p of this intersection satisfy

h(Dk(z)(v) —€) < f(z + hv,p) — k(x). (32)

Letting h tend to 0, we deduce that f(z,p) — k(z) > 0, whence p belongs to
P(z). Dividing the inequality (32) by h > 0, replacing k(z) by f(z,p) and
letting h tend to 0, we obtain the inequality

Dk(z)(v) —e < Df(z,p)(v) < zgﬁ) Df(z,p)(v).
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0 Tk(z) x z + Tk(z)

Fig.4.3.

Thus, it is sufficient to let € tend to 0.

Since y — f(y, p) is continuous at z, we know that D f(z, p)(-) is continuous
for each p, whence that Dk(z)(-) is lower semi-continuous. Equation (28) may
be written as

o(0k(z),v) = sup o(8f(z,p),v)

PEP(z)

which, by virtue of equation (64) of Chapter 3, implies equation (29). O
Corollary 4.4. Consider n convex functions f; continuous at a point x. Then

a(,s;}p fi) () —co( U afz(:c) (33)

iel(x)
where I(z) = {i = 1,...,n|fi(z) =sup;—,, . fi(z)}.
4.6 Tangent and Normal Cones

We consider a convex subset K. If x € K, it is easy to check that

Ok (x) ={p € X*|(p,x) = ok(p)}- (34)

Definition 4.3. If K is a convex subset and if x € K, OYg(z) is called the
normal cone to K at x and is denoted by

Ng () = 0y () (35)
The cone defined by
Tk (z) := closure (U %(K — x)) (36)
h>0

is called the tangent cone to K at x.
These two cones are polar to each other.
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Proposition 4.5. The tangent and normal cones to K are linked by the rela-
tionship

Vz € K, Nk (z) = Tk(z)". (37)

Proof. Since K — z is contained in Tk (z), when p belongs to Tk (z)~, we have
(p,y —z) < 0 for all y € K and consequently p belongs to the normal cone to
K at z. o

Conversely, we fix p in Nk(z), choose v € Tk (z) and show that (p,z) < 0.
But v = lim,_,o, %(yn — z) where h, > 0 and y,, € K. Since (p,y, — z) < 0,
we deduce that (p,v) is the imit of a sequence of negative or zero numbers
;llj(p, Yn — z) and thus is itself negative or zero. O

We note that
if z € Int K, then Nk (z) = {0} and Tk (z) = X (38)

and that
if K = {20}, then Ng(z¢) = X and Tk (zo) = {0}. (39)
It is also easy to show that if K := B is the unit sphere, if ||z|| = 1 and if
L denotes the duality operator, then
NK(w) = {)\Lx})‘zo and TK(l‘) = {'l) S XI('U, 22) S 0} (40)
This follows from the Cauchy—Schwarz inequality, which implies that
(ALz,y — z) < Alz[[(lyll = ll=ll) = Algll = 1) <0

when |ly|| £ 1. Thus, ALz € Ng(z). Conversely, if p € Ng(z), we deduce
that [pllal] = llpll = Suppyyer(p:3) < (p,2) and consequently, that p = ALz.
Similarly, if K := IR} and if z € IR}, then

(i) Ng(z) = {p€ —IR}|p; =0 when z; > 0}

(11) TK(x) = {7) (S IR"|'U,- > 0 when z; = 0} (41)
This follows from the fact that SUPyeRy (,y) = (0,2) = omry(P) = Yme (D).
Thus, p € Nk(z) if and only if p € IR” and if (p,z) = > 4,502z = 0. The

second formula is obtained by polarity.
We denote

M" = {xe]Ri iwi=1}. (42)
We shall deduce the formulae -
Num(z) ={p € R"|p; = ;max. p; when z; > 0} (43)
and n
Tpn(z) = {v € R"|>_v; = 0 and v; > 0 when z; = 0} (44)

i=1

from formula (49), below.
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Formulae Relating to Normal and Tangent Cones

By applying the subdifferential calculus to set indicator functions, we obtain a
number of formulae which enable us to calculate normal and tangent cones.

o If K C L and x € K then Tx(z) C Tr(z) and Ni(z) C Nk(z). (45)
o If K;C X;(i=1,...,n) then

Tl-[:l=1 Ki(:l:l, ey :Bn) = H TKi(xi) and
i=1

an;l Ki(xl, Vs ,.'En) = H NK,'(:E;-) (46)
i=1

elf Be L(X,Y) then
TB(K)(BQI) = ClOSllI'e(BTK(:L‘)) and NB(K)(BCC) = B*_INK(iL‘). (47)

e Try 15, (T1 + 22) =  closure(Tk, (z1) + T, (2)) and
Nr+ia(#1 +22) = Nig(71) N Nigy(22)- (48)

eIf Aec (L(X,Y)) and if L C X and M C Y are convex closed subsets
satisfying 0 € Int(A(L) — M), then

Tinaon(z) = Tp(z)NA™'Ty(Az)  and
NLnA-l(M)(:C) = NL($)+A*NM(A1E). (49)

e If A € L(X,Y) and if M C Y is a convex closed subset satisfying
0 € Int (Im A — M), then

TA—I(N[)(QI) = A_ITN[(AaJ) and NA-I(A,[)(x) = A*NM(A:B). (50)

e If K, and K, are convex closed subsets of X such that 0 € Int (K; — K3),
then

TKxﬁKz(x) = TKx(m)nTKz(x) and
NKxﬂKz(m) = NK1($)+NK2(x)' (51)

Proof of formulae (45)—(51). Formulae (45), (46), (47) and (48) are trivial
to check for normal cones and follow by polarity for tangent cones.

Since the indicator function Yrna-1ary of L N A7Y(M) is equal to
YL+ Yar 0 A, formula (49) for normal cones follows from Theorem 4.4, and may

be deduced for tangent cones by polarity. Formulae (50) and (51) are corollaries
of formula (49).
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Since M™ := {x €eRY| YL,z = 1}, formula (49) may be applied with
X=R},Y=R,L=R}, M= {1} and A equal to the operator defined by
Az = Y7L, x;. Thus, we derive formulae (43) and (44). m]

Remark. There are closed relations between tangent and normal cone to convex
subsets and right-derivatives and subdifferentials of a convex function. First, the
normal cone to K at z was defined by Nk (z) := 89k (z). One can check easily
that

so that the concepts of normal and tangent cones can be derived from the
concept of subdifferential and right-derivative of a convex function. Conversely,
one can also observe that

VzeE, Ep(Df(.’L‘)) = TEp(f)(x) f(.’L‘))
and that p € 8f(z) if and only if
(p’ _1) € NEp(f)(x, f(il)))

so that the concepts of right derivative and subdifferential of a convex function
can be derived from the concepts of tangent and normal cones.






5. Marginal Properties of Solutions of Convex
Minimisation Problems

5.1 Introduction

Fenchel’s Theorem has already given us sufficient conditions for the existence
of solutions of convex minimisation problems. As a consequence of Fermat’s
rule, suitably adapted, instead of searching for solutions of the minimisation
problem,

—£7(0) = inf f(z) (*)
we may seek to solve the inclusion (or set-valued equation)
0 € 0f(z). ()

Moreover, Fenchel’s transformation shows that the set of solutions of the
minimisation problem (x) is the subdifferential

9f*(0) = {z € X|f(z) = —f*(0)}

of the conjugate function f* at 0.

We shall call this property (which is a very simple property in convex anal-
ysis) a marginal property of the solutions Z, to underline the use by neoclassical
economists of adjective ‘marginal’ instead and in place of the adjective ‘differ-
ential’ used by mathematicians.

The subdifferential calculus which we described in the previous chapter will
enable us to exploit this double characterisation for more specific minimisation
problems. We have chosen a class of problems with a structure which is strong
enough for us to acquire sufficiently useful information, but general enough to
cover numerous examples. (This compromise is a matter of taste — that is, it is
subjective.)

We shall consider a family of minimisation problems of the form

h(y) := inf[f(2) — (p,z) + g(Az +y)]

where

f: X > RU{+oo} and g:Y — RU {+o0}
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are nontrivial, convex and lower semi-continuous and where A € L(X,Y) is a
continuous linear operator. We shall show that there exists a solution Z of this
problem under the assumption

p € Int (Dom f* + A* Dom g*)

which provides an additional justification for the introduction of conjugate func-
tions.
We shall then show that if

y € Int (Dom g — ADom f),

then the set of such solutions is the set of solutions of the inclusion (or set-valued
equation)

p € 8f(T) + A*0g9(Az. + y)
That is not all: we may associate the problem h(y) with its dual problem

ex(p) = Inf [f*(p — A"9) +9°(0) — {2, ¥)]

We shall then prove that the set of solutions Z of the problem h(y) is the
subdifferential de,(p) of the function p — e.(p).

This more precise result (which describes the set of solutions of a minimi-
sation problem as the subdifferential of the function e,) plays a very prominent
role in economic theory: a minimal solution T of h(y) measures the rate of
variation of the marginal function e, as the parameter p is varied.

Moreover, the same assumptions also imply the same results for the dual
problem e,(p): the set of solutions is non-empty, it is the subdifferential of the
marginal function h : y — h(y) and it is the set of solutions of the inclusion

y € 0g*(q) — Adf"(p — A™Q).

5.2 Fermat’s Rule

As previously mentioned, the set of solutions Z of the minimisation problem
—f*(0) = inf f() ®
is the set of solutions of 0 € 0f(Z) since Z belongs to f*(0) if and only if
7(@) = (0,3)  £(0) = inf £ ().
Consequently, when f is nontrivial, convex and lower semi-continuous

0f7(0) is the set of solutions of the minimisation problem (1). (2)
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To exploit this result, we shall use the properties of conjugate functions and
subdifferentials, as established above.

The following structures provide a framework which is sufficiently general to
be the source of numerous examples and sufficiently specific that the technical
difficulties are limited:

(i)  two Hilbert spaces X and Y;
(if) two nontrivial, convex, lower semi-continuous functions
f: X —>RU{+oc}and g: Y = RU {+0c0};
(iii) a continuous linear operator A € L(X,Y). (3)

We shall choose elements y € Y and p € X* as parameters of the optimisa-
tion problems

h(y) == inf (f(z) — (p,z) + g(Az +)) (4)

and
eu(p) = If (F(p—A"Q) +9(0) — (0, 9) (5)

which we shall solve simultaneously.

We shall say the minimisation problems h(y) and e,(p) are dual and that
the (convex) functions h : y — h(y) and e, : p — e.(p) are the marginal
functions which describe the variation of the optimal values as a function of the
parameters y € Y and p € X*.

The study of these marginal functions and above all of the properties of
their gradients (or failing that their subgradients) is a subject of interest to
economists.

Theorem 5.1. a) We suppose that the conditions (3) are satisfied. If
p € Int (Dom f* + A*Domg*), (6)
then there exists a solution T of the problem h(y) and

h(y) + ex(p) = 0. (7)

b) If we suppose further that
y € Int (Dom g — ADom f) (8)

then the following conditions are equivalent
(i)

(ii)
(iii)

is a solution of the problem h(y);
belongs to the subdifferential Oe.(p) of the marginal function e.;
is a solution of the inclusion p € 8f(Z) + A*0g(AZ + y). 9)

8 B 8
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¢) Similarly, assumption (8) implies that there exists a solution @ of the problem
e.(p) and the two assumptions imply that the following conditions are equivalent:

(i) @ s a solution of the problem e, (p);
(i) @ belongs to the subdifferential Oh(y) of the marginal function h;
(iii) g is a solution of the inclusion y € dg*(g) — ADf*(p — A*Q). (10)

d) The two assumptions imply that the solutions T and § of the problems h(y)
and e.(p) are solutions of the system of inclusions

(i) p € 0f(@)+ A
(i) y € —AZ+0g"(7). (11)

Remark. An optimal solution of one of the minimisation problems h(y) or e.(p)
is usually called a Lagrange (or Kuhn—Tucker) multiplier, the inclusion (9)(iii)
is usually called the Fuler-Lagrange inclusion and the inclusion (10)(iii) is the
Euler-Lagrange dual inclusion. The system of inclusions (11) is usually called
the Hamiltonian system.

The mapping (z,q) — (0f (z) + A*q) x (—Ax + 0g*(q)) from X x Y* to its
dual X* x Y may be written symbolically in matrix form by

(% o) (12)

The set of solutions (Z, ) of the minimisation problems h(y) and e,(p) may be

written in the form
of A\ '(»p
—-A 0g* y /)’

This notation highlights the variation of the set of solutions as a function of the
parameters p€ X*andy € Y.

Proof of Theorem 5.1. a) The existence of solutions of the problems h(y)
and e, (p) and the equality h(y) +e.(p) = 0 follows from Theorem 3.2 (Fenchel’s
Theorem) with f replaced by z — f(z) — (p, z) and g replaced by z — g(z+7y),
since in this case v = h(y) and v, = e.(p).

b) We may write
h(y) = inf ¢(C(z,y))
where

o(z,y) = flz)—(pz)+9()
C(z,y) = (z,Ax+v).
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Since the operator C is clearly an isomorphism of X x Y onto itself, Proposi-
tion 3.1 implies that

ApoC)(z,y) = C0p(C(z,y))
C*((8f(z) — p) x 9g(Az +y))
= {(af(x) —p+ A*q) x {Q}}qeag(/lz-i-y)'

Proposition 4.3 implies that if T is a solution of the problem h(y), then g
belongs to Oh(y) if and only if (0, g) belongs to d(p o C)(z,y), in other words,
if § € 0g(Az + y) and 0 € 8f(Z) — p + A*q, by virtue of the previous formula.
Thus, we have shown that if Z is a solution of h(y), then the following conditions
are equivalent

(1) g € Oh(y)
(ii) 0 €df(z) — p+ A*G and g € Dg(AT +y). (13)

Eliminating ¢ from these two inclusions, we find that
p € 0f(Z) + A*0g(AZ + v). (14)
This last property implies that

0€d(f() — (p,) +9(A() +))(Z) (15)

which shows that any solution Z of the inclusion (14) is a solution of the minimi-
sation problem h(y). Conversely, assumption (8) and Theorem 4.4 imply that
any solution of h(y) which is a solution of the inclusion (15) is a solution of the
inclusion (14). This latter implies that there exists § € dg(AZ + y) such that
p € 8f(Z)+ A*q, in other words, such that § € 8h(y). Thus, we have proved that
properties (9)(i) and (9)(iii) are equivalent. Similarly, replacing the functions f
and g and the operator A by g*, f* and —A*, respectively, properties (10)(i)
and (10)(iii)) may be shown to be equivalent.

The system of inclusions (11) is clearly equivalent to the systems of inclu-
sions (9)(iii) and (10)(iii): this proves the last part of the theorem. The equiv-
alence of (13)(i) and (13)(ii) then implies the equivalence of (9)(i) and (9)(ii)
and, replacing f, g and A by g*, f* and —A*, the equivalence of (10)(i) and
(10)Gi). 0

Remarks. When assumptions (6) and (8) of Theorem 5.1 are satisfied, solu-
tion of the problem h(y) is equivalent to solution of the inclusion ( set-valued
equation)
p € 0f(Z) + A*0g(Az + y). (16)
Theorem 5.1 indicates another way of solving this problem. This involves
first solving the inclusion

y € 0g7(q) — A0f*(p — A™Q) (17)
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and then choosing Z in the set
of*(p— A" N AT (3g"(@) - v)- (18)

This procedure is only sensible if the second inclusion is easier to solve than
the first. This clearly depends on the functions f and g. If g is differentiable,
it may be better to solve the inclusion (16). If, moreover, f* is differentiable it
may be easier to solve the inclusion (17) which, in this case, may be written as

AVf*(p— A*q) +y € 0g°(7) (19)

or as

Vgevy, (—AVf (p—AQ) -y, 0—q) +9"(72) —g"(g) £0.  (20)

5.3 Minimisation Problems with Constraints

Let us consider

(i) two Hilbert spaces X and Y/

(ii) a continuous linear operator A € L(X,Y);

(ili) a convex closed subset M C Y

(iv) a nontrivial, convex, lower semi-continuous function

f: X —- IRU{+oc0} and two elements y € Y and p € X*. (21)
We consider the minimisation problem
M) = inf_(f(z)— () (22)

with its associated dual problem

e.(p) := Inf (f*(p— A%¢) +om(9) - (a:9))- (23)

Corollary 5.1. If we suppose that
p € Int (Dom f* + A*b(M)) (24)

then there exists a solution T (satisfying AT € M — y) of the problem h(y). If
we suppose further that

y € Int (M — ADom f) (25)
then the solutions T of the problem h(y) are the solutions of the inclusion
p € Of(Z) + A" Npy(AZ +y) (26)

and the set of solutions T of h(y) is the subdifferential Oe.(p) of the marginal
function e,.



5.3 Minimisation Problems with Constraints 81

The following solutions are then egquivalent:

(i)  7e€on(y);

(i) g is a solution of the problem e, (p);

(iii) 7 is a solution of the inclusion y € Hon(g) — ADf*(p — A*9). (27)
The optimal solutions T and g of the problems h(y) and e,(p) are related by

P EOf(Z)+ A*q and g € Ny (Az + ). (28)

The minimisation problem
h(v) := , inf (f(z) - (p,%)) (29)

which is a minimisation problem with ‘equality constraints’ is obtained as the
particular case in which M = {0}. Its dual problem is

e.(p) = inf.(f"(p — A°0) - (5,)) (30

Corollary 5.2. If we suppose that
p € Int (Dom f* + Im A*) (31)

then there exists a solution T of the problem h(y).
If we suppose further that

~y € Int (ADom f) (32)
then the solutions T of the problem h(y) are the solutions of the inclusion
p € 0f(Z) + Im A*, Az +y=0 (33)

and the set of solutions T is the subdifferential Oe.(p).
The following conditions are equivalent

(i) geoh(y);

(ii) g is a solution of the problem e,(p);

(iii) G s a solution of the inclusion y € —AOf*(p — A*Q). (34)
The optimal solutions T and q of the problems h(y) and e.(p) are related by

p € df(@) + A'q. (35)

Suppose that P C Y is a convex closed cone and denote its negative polar
cone by P~.
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The cone P defines an order relation > by

v1 > y2 ifand only if 13 —y2 € P (36)
and the cone P~ defines the order relation
@1 <¢q ifand only if ¢y —go € P™. (37)
The minimisation problem
hly) = ,inf (£(z) = (p, ) (38)

which is a minimisation problem with ‘inequality constraints’ is obtained in the
special case in which M = P. Its dual problem is

ex(p) = inf (f*(p — Ag) —(g:9))- (39)

Corollary 5.3. If we suppose that
p € Int (Dom f* + A*P™) (40)

then there exists a solution T of the problem h(y).
If we suppose further that

y € Int (P — ADom f) (41)
then the solutions T of the problem h(y) are the solutions of the inclusion
p € 0f(Z) + A*Np(AZ + y) (42)

and the set of solutions % is equal to de.(p).
The following conditions are equivalent

() 7€ 0nly);
(if) g s a solution of e.(p);

(i) g 4s a solution of the inclusion y € Np — (§) — A0f*(p — A*Q). (43)
The solutions T and q of the problems h(y) and e.(p) are related by

(i) p€Of(z)— A"q

(ii) AZ+y >0, <0 and (7,AZ +y) =0. (44)

5.4 Principle of Price Decentralisation

We consider

(i) n Hilbert spaces X; (i =1,...,n);

(i) n nontrivial, convex, lower semi-continuous functions f; : X; — R U {+o0};
(iii) a Hilbert space Y;

(iv) continuous linear operators 4; € L(X;,Y);

(v) a convex closed subset M C Y. (45)
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We shall now solve the minimisation problem

h(y) := inf iz , . 4
W=t (S0 - o) (46)
This is a particular case of problem (22), in which
X=X, f Zf, (z;) and Az = ZAlccl
i=1 i=1

The dual problem is

hmwﬂh—ﬁ<2ﬁ +mm—@@. (47)

€Y~

Corollary 5.4. If we suppose that
(P1y---,Pn) GInt{HDomf,-*+qu} (48)
i=1 g€b(M)

then there exists a solution (Z,...,Z,) of the problem h(y).
If we suppose further that

y € Int (M - i:Ai Dom f,-) (49)
=1

then the solutions (Zi, . .., Z») and J of the problems h(y) and e.(ps, .- ., pn) are
the solutions of the system

(1) Z; € (9f:(p1,—A:(j) (i=1,...,n

(ii) g € Ny (Z AT + y) (50)
=1

where  is a solution of the dual problem e,(p1, .- .,Prn) and the set of solutions

(Z1,---,Tn) is the subdifferential Oe.(p1, - .-, Pn)-
The following conditions are equivalent

() 7€ 0h(y);
(i) @ is a solution of e.(p1,---,Pn);
(iii) @ is a solution of the inclusion y € Oop(q) — Xi=,) AO S (pi — A;q). (51)

When the conjugate functions f; are differentiable, the solutions (Z, . . ., Zn)
are obtained using the Lagrange multipliers g (the solutions g of e.(p1,- .- ,Pxr))
from the formulae

= Virpi— A (i=1,...,n).
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In other words, once we know a Lagrange multiplier g, we may obtain an optimal

solution (Zy, ..., Z,) by solving n independent minimisation problems
I}gi(f"(xl) - (p‘h xi) + (Q7 Aimi)) (52)

which are obtained by adding a ‘cost of violating the constraints’ (g, A;z;) to
the initial loss function f;(-) — (p;,-).

It is this result which justifies the role of prices g (subgradients of the
marginal function h(y)) in economic models as a means of decentralising deci-
sions; in other words, a means of solving the n problems (52) independently.
We shall return to this fundamental problem of decentralisation in Chapter 10,
in the context of the theory of economic equilibrium.

5.5 Regularisation and Penalisation

Consider a nontrivial, convex, lower semi-continuous function f from a Hilbert
space X to RU{+oc0}. With any A > 0 we associate the function f, defined by

fa(e) = inf [ 1) + 5xlly = al?]. (53)
We shall show that the functions fy are convex differentiable functions which
are simply convergent to the function f as y tends to 0. This provides us with a
regularisation procedure which enables us to approximate f by a more regular
function.
When y tends to infinity, we may interpret the minimisation problem (53)
as a penalised version of the minimisation problem

—£*(0) = inf f(a). (54)

zeX

We recall that the minimisation problem fy(z) has a unique solution denoted
by Jyxz (see Theorem 2.2 (Proximation Theorem)).

Theorem 5.2. Suppose that f : X — RU{+o0} is a nontrivial, convez, lower
semi-continuous function. Then the functions f) are convex and differentiable
and

1
Viz) = X(w — JJhz) € 8f(Jyz). (55)
Moreover, when A tends to 0,

Vz € Dom f, fi(z) = f(z) and Jy\z — =z (56)

and when XA — 00,

Ia(x) tendsto — f*(0) = ;g)f( f(z). (57)
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Proof. a) In the proof of Theorem 4.3, we showed that ||Jyz — z|| converges to
0. Moreover, fy(z) < @)+ 55l — z||* = f(z). Since f(z) < liminfy_o f(Jrz)
(because f is lower semi-continuous) and since

7(5@) = 1r(3) = 551z — 2l < fa(a),

it follows that f(z) < liminfy_o fi(z). Thus, f(z) = limy_o fr(z)-

b) Provisionally, we set A,(z) := +(z — Jxz). In Theorem 4.3, we showed that
Ax(z) belongs to 0 f(Jaz). Thus,

@) = 1) = F(ha) - 1) + S - Sl
< (Ax(@), Dz = D) + SIA@IE - S1AE)I

(because Ay(z) € df(Jrz))

< (Ar(), — 9) — A(Ax(2), Ar(3) — A ) + S1A@IE ~ SIAI

(because Jy =1 — AA,)

= (Aa(@),2 - 1) =2 (F1@I° + SIAEI - (A=), 440)))
= (Aa)z—1) ~ 314 - AP
< (A,\(IZI), T — y)

Thus, we have shown that
Ax(z) € 0fa(). (58)

Moreover, since A(y) belongs to dfx(y) for all y, we obtain the inequalities

A=) = Hly) = (A),z—v)
= (Ax(z),2— 1) + (Aa(p) — A(e), 3~ 9)
> (Ax()z—v) - 143) ~ H@)llz -l
> (Axa)o— 1) — 5lle ol

since || Ax(z) — Ax(¥)|| < Y|lz — yl| (see Proposition 2.7, since Ay = 3(1 — J»))-
Thus,

@) = Hy) = (Ar@),z - )|
lz— ol =3

whence A)‘(:L') = Vf)‘(x).
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c) From Fenchel’s Theorem, we know that

geX*

. . A
P+ jnf (#1041l - (@.2) =o.
In other words, we may write

f/\(x) + (f* - x)]/}\(o) = 0. (59)

Consequently, when A — oo, (f* —z),,,(0) tends to (f* — z)(0) = f*(0) =
—infyex f(y) from the above.

d) From Theorem 5.1, we know that Jyz and the optimal solution g/ of the
problem (f* —z), /» are related as follows:

(il) T = —J)\.’E + )\‘71/,\- (60)

This shows that V f)(z) is the unique solution of the problem (f* — z), /- Thus,
if 0 belongs to the domain of 8f* (in other words, if there exists a minimum
of f), then Vfy(z) converges to 0 as A tends to infinity. Consequently, if the
limit of Jyz as A tends to infinity exists, it belongs to 8f*(0); in other words,
it generates the minimum of f. O



6. Generalised Gradients of Locally Lipschitz
Functions

6.1 Introduction

Since both continuously differentiable functions and convex continuous func-
tions are locally Lipschitz functions, it is natural to wonder if the latter are
‘differentiable’ in some weak sense. In 1975, Frank H. Clarke introduced the
concept of the generalised gradient of a locally Lipschitz function which is a
convex, closed, bounded subset. The generalised gradient reduces to the gra-
dient of the function if the function is continuously differentiable and is equal
to the subdifferential of the function if the function is convex and continuous.
Since the upper envelope of Lipschitz functions is Lipschitz, this upper enve-
lope also has a generalised gradient. Finally, Fermat’s rule applies: if z is a local
minimum of a locally Lipschitz function, 0 belongs to its generalised gradient
at z.

Furthermore, the concept of generalised gradient will enable us to define
the normal cone at x for an arbitrary non-empty subset; we shall show that this
coincides with the normal cone at z for a convex closed subset.

6.2 Definitions

The concept of differentiation plays such an important role that it has been
generalised and extended in many directions, according to specific applications.
We shall only describe the concepts which one meets when trying to define
directional derivatives for locally Lipschitz functions.

Definition 6.1. Let f be a function from X to IR U {+oco} with a non-empty
domain. We shall call the following limit (when it exists), the Clarke right
directional derivative of f at z in the direction v:

DL (@)(v) i=timsup W)= TW), )

We shall say that f is Clarke right differentiable at x if for all v € X, the
limit D.f(z)(v) exists and is finite.



88 6. Generalised Gradients of Locally Lipschitz Functions

We recall that (when it exists) the limit

Df(z)(v) :== lim fle+hv) - f(z) (2)

= h

is called the right derivative of f at = in the direction v, and that f is right
differentiable at = if D f(z)(v) exists for all v.

We shall say that f is Gateauz differentiable at z if f is right differentiable
and v = Df(z)(v) = (Af(z),v) is linear and continuous.

We shall call Vf(z) € X* the gradient of f at z. We shall say that f
is continuously differentiable if for all v € U, the function y — (Vf(y),v) is
continuous at z. We shall say that f is Fréchet differentiable at x if

flz+v) = f(z) — (Vf(z),v)
[l
and that f is strictly Fréchet differentiable at x if
MICERENORGJCR ]
v

We note that the function v — D.f(z)(v) is positively homogeneous and
that, when the limits below exist, we have

Df(z)(v) < Dcf(z)(v). (4)

We also note that a Géateaux-differentiable function f is not necessarily
Clarke differentiable. However, we do have the following result.

lim

v—0

=0 3)

YT
v—0

Proposition 6.1. Suppose that f is continuously differentiable at x. Then f is
Clarke differentiable and

(Vf(z),v) = Def () (v). (5)

Proof. Since f is continuously differentiable at z, then for every € > 0, there
exists 7 > 0 such that

[(Vf(2),v) = (Vf(z),v)] <€ when ||z —z] <n. (6)

If lyl| < n/2 and if 0 < t < n/2||v||, we set g(t) = f(y + tv). Then g is
differentiable and

fly+tv+6v) — f(y +tv)

g(t) = lim : — (Vi + ). (7)
Thus, if 6 < 1/2||v||, we have
fly + 02) — 1) vy, = 1O ;9(0) — (Vf(z),0)

6
= 5 /) (VI +t),0) = (Vf(@), v))t
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and consequently, since ||y + tv — z|| < »,

fly+6v) — f(y)
0

—(Vf(z)v)|<e
when

ly —zll <n/2 and 6 < 7/2|v].
This implies that if o < /2 and 8 < 1/2]|v||,

sup  sup fly +6u) — f(
ly—zll<a 6<pB 0

Y) < (Vi()v) +e. (®)

Taking the infimum with respect to o and 3, we have

Dcf(z)(v) < (Vf(z),v) +e, (9)
which, taken with (4), implies (5). ]

We recall that any convex function continuous at a point z is Clarke differ-
entiable (Theorem 4.1); we restate this result.

Proposition 6.2. Suppose that a function f : X — R U {+oo} is continuous
at a point = in the interior of its domain. Then f is Clarke differentiable and

Y e X, Df(z)(v) = Df(z)(v). (10)

We recall that continuously differentiable functions and convex continuous
functions are locally Lipschitz (see Theorem 2.1).

We shall show that not only continuously differentiable functions and convex
continuous functions but also, more generally, locally Lipschitz functions are
Clarke differentiable.

Theorem 6.1. Any locally Lipschitz function f : X — IR U {+o0} is Clarke
differentiable on the interior of its domain. For all x € Int Domf,

v — D.f(z)(v) is positively homogeneous, convex and continuous. (11)
Moreover,
{z,v} € Int Domf x U — D, f(z)(v) is upper semi-continuous. (12)

Remark. Propositions 6.1 and 6.2 show that the Clarke derivative of locally
Lipschitz functions provides a natural generalisation of the concepts of Fréchet
and right derivatives in convex analysis.
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Proof of Theorem 6.1. Suppose = € Int Domf. Since f is locally Lipschitz,
there exist n > 0 and L > 0, such that

Vy,z€xz+nB,  |f(y) — f(2)| < Llly - =|I- (13)
Then, for all @ < 71/2 and 8 < 7/2||v||,
+ 0v) —
Lol < LUV TW) < gy
when y € z + aB and 0 < (3. It follows that

Lol < Dof(@)(v) = inf  sup LEFOVZI@ by

a.f>0 jy—zji<a 0
0<e<s

whence, f is Clarke differentiable; in particular, we obtain the inequality
[Def(2)(v)| < Llv]f- (14)

We already know that v — D, f(z)(v) is positively homogeneous. We shall show
that this function is convex. Writing

fly+60w + (1 = w)) — f(y)

0
z+ aw) — f(z) fly +Bv) — f(y)
ﬁ 1

where z = y + 6\v converges to z, and a = (1 — )@ and 8 = A8 converge to 0,
and taking the upper limits of the two sides, we obtain

D.f(z)(Mv + (1 = Mw) < Def(z)(v) + (1 = A) D.f (z)(w). (15)

It remains to show that {z,v} — D.f(z)(v) is upper semi-continuous. From
the definition of D.f(z)(v), given € > 0 there exists o such that
) —
sp TEFMI I b o) e (16)

llz=zll<2a0 A
A<eg

= (1—A)f( +A

If |2 — y|| £ @ and ||y — z|| < o, then since f is locally Lipschitz, we obtain
Flz42w) — f(2) _ flz+ W) — f(2)

A - A
Consequently, if y € z + o B, o < ap and § < (o, then

flz+2w) = f() flz+ M) = f(2)

+ L|lv — w||. (17)

< + Lllv —
nzsigupg A T llz—sli<20g A o =l
r<g A<ag
< Dcf(z)(v) +€/2+ Lijv — v
< D.f(z)(v) +¢€

when [lv —w|f < 3F-
Letting o and (8 tend to 0, we deduce that
Def (4)(@w) < Def (2)(v) + & when lly = z]| < a0 and [lo —w]| < 77

whence, D.f(z)(v) is upper semi-continuous at {z,v}. O



6.3 Elementary Properties 91
6.3 Elementary Properties

Next we shall establish certain elementary properties of Clarke derivatives.

Proposition 6.3. Suppose that f and g are two locally Lipschitz functions from
X to RU {+oc0} and that z € Int Dom f NInt Domg. Then

Dc(af +Bg)(z)(v) < aD.f(z)(v) + BD.g(z)(v) (18)
ifa,B>0. Ifz € Int Dom f, then
De(=f)(z)(v) = Dcf(z)(—v). (19)

Proof. Formula (18) is self evident. To prove (19), we write

—fly+ M) = (=F(¥) _ fz+A(=v)) — f(2)
- (20)
A A
where z = y + Av converges to z when y converges to z and A > 0 tends to 0.
Taking the upper limits as y and 2 converge to z and ) converges to 0, the term

on the left converges to D.(—f)(z)(v) and that on the right to D.f(z)(—v). O

Proposition 6.4. Let f be a locally Lipschitz function from X to R U {+oo}
with a non-empty domain. Let P be a closed convex cone in X. If f is increasing
on P in the sense that

flz) < flz+v), YweP (21)
then
Yo € X, D.f(z)(v) < o(P*,v) (22)
where o(Pt,v) is the support function of the positive polar cone P* of P.
Proof. For all v € P, we have the inequality

fly+6v +6(=v) = fly+6v) _
. <o,

Taking the limit of the supremum as y tends to z and 6 tends to 0, we de-
duce that D.f(z)(—v) < 0, Vv € P. Moreover, o(Pt,v) = 0if v € —P and
o(P*,v) = +co if v ¢ —P. Whence inequality (22) holds. ]

Proposition 6.5. Let f : X — IR U {400} be a locally Lipschitz function.
Suppose that = € Int Domf is a local minimum of f. Then, for all v € X,
D.f(z)(v) > 0. If z is a global minimum of f on a convez set X then

Vye K,  D.f(z)(y—z)=0. (23)
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Proof. Suppose that z minimises f on the ball 2 + 7B with centre z and radius
7. Then, if A < /2 and B < n/2||v||, we have, if 6 <

f(z +6v) — f(x) flz +6v) — f(z)
] < sup 9 '

0<

Taking the limit as 3 tends to 0, we obtain D.f(z)(v) > 0. If K is convex, we

may take v =y — z, since z + v = (1 — 0)z + Oy € K if 6 is sufficiently small.
O

Proposition 6.6. Suppose that a nontrivial function f : X — IR U {400} is
positively homogeneous and locally Lipschitz. Then, for all z € Int Dom f,

D.f(z)(z) = f(z). (24)

Proof. We note firstly that
f(z + hz) — f(=z)

flz) = 7
< limsup fly+ h:;) - f(y)
= D.f(z)(x). (25)

Suppose L is the Lipschitz constant of f at z. We may write

fly+ hz) — f(y) fly + hz) — f(y + hy)

h h (26)

= fly)+
< fly) + L|ly —wl.

Whence, taking the upper limit as o — 04+ and y tends to z, we obtain

D.f(z)(z) < f(a)- .
Next we shall study the differentiability of the composition g = f o G where

G maps an open subset {2 of a Hilbert space Y into Dom f, the domain of f.

Definition 6.2. We shall say that G is Gateauz differentiable at z € 2 if there
exists VG(z) € L(Y, X) such that

G(z + 6y) — G(z)
0
We shall say that G is Fréchet differentiable if

Lo IG(@ +v) = G@) = VG(@) - o]l _

Yv €, converges to VG(z) -v in X as 0 — 0.  (27)

0. 28
lvli—0 iell (28)
G is said to be strictly Fréchet differentiable if
Gly+v)—Gy) —Gz) -
IG(y +v) = Gly) = G(z) -oll _ (20)

lly—=ll—0 [lv]|
full—o
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Proposition 6.7. Suppose that f is locally Lipschitz. If G is strictly Fréchet
differentiable at x then

Deg(2)(v) < (Def)(G(2))(VG(2) - v)- (30)

Proof. Since f is locally Lipschitz, given € > 0 and u € X, there exist numbers

a, 8 such that
1) =18 < pf(Ge) @) +e (31)

when ||z -~ G(z)|| £ @, 6 < B and ||lw —ul| < £. We take u = VG(z) - v. There
exists 7 < 8 such that if ||y — z|| < 7 and 8 <7, then ||G(y) — G(z)|| < a and

Gly+6v) -Gyl . €
Z = 2L

”V(m) ‘v —

since G is strictly differentiable. Taking z = G(y) and w = ﬂ”je—‘(;M, it
follows from (31) that

D.g(z)(v) < sup 9(y + 6v) —g(y)

Ty—sli<n 0

Dof(G(2))(VC(z) - v) +e. O

IA

Corollary 6.1. Let A € L(Y, X) be a continuous linear operator. Then
De(fA)(z)(v) < (Dcf)(Az)(Av). (32)
If A € L(Y, X) is surjective, then

Dc(fA)(z)(v) = (Def)(Az)(Av). (33)

Proof. In this case, Banach’s theorem (see Theorem 4.3.1 of (Aubin 1979a))
implies that A(z + aBy) contains a ball Az + v(a)Byx. Consequently,

f(z + 0Av) — f(2) f(Ay + 6Av) — f(Ay)

<
e AmtE (o) 6 i ke 6
0<h 0<p
which implies that D.f(Az)(Av) < D.(fA)(z)(v). m]

Suppose that f is a Lipschitz function from X to IR U {+oo} and that
B € L(X,Y) is a continuous, linear, surjective operator from X to Y. We

define
ay) = inf f(a), (34)

Bz=y
setting a(y) = +oo if y ¢ BDom f.
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Proposition 6.8. Suppose that f is Lipschitz and that B € L(X,Y) is sur-
jective. Then « is Lipschitz if its domain is non-empty. If a(y) = f(Z) where
Bz =y, then

Vu€ X, 0< D.aly)(Bu)+ Dof(@)(w). (35)

Proof. a) We pick arbitrary y and z in Y and € > 0. There exists y. € X such
that f(ve) < a(y)+e€ and By, = y. Since B is surjective, Banach’s theorem (see,
for example, Theorem 4.3.1 of (Aubin 1979a)) implies that there exist a constant
¢ > 0 and a solution 2, of the equation Bz, = z satisfying ||ye — zc]| < c|ly — 2|
Whence,

a(z) < f(z) < fve) + Lllve — 2zell < aly) +& + Lelly — z|.

This implies that « is Lipschitz with constant Lc, where L is the Lipschitz
constant of f.

b) Consider the inequality
a(y + 0Bu — 0Bu) — a(y + 6 Bu) + f(Z+6v) — f(T)

0 = 0 0
< sup a(z — 0Bv) — a(z) +sup f(z + 6v) — f(z).
Ie e 6 0<p 6

Passing to the limit as oo and 8 tend to 0, we obtain the inequality (35). m]

We consider m functions f; : X — IR U {+oo} and their upper enve-
lope g defined by g(x) = max;es fi(z) where I = {1,...,n}. We shall denote
I(z) = {i € I|g(z) = fi(x)}

We note that if the functions f; are locally Lipschitz, the same is true of
their upper envelope. (If | fi(y) — fi(2)| < Lilly — z|| and y,z € = + 7B, then
lg(y) —9(2)| £ Ll|ly — z|| if y,z € z + nB where n = min;;7; > 0 and L =
max;er L; > 0.) Whence, the functions f; and g are Clarke differentiable.

Proposition 6.9. Suppose that the m functions f; are locally Lipschitz and that
z € NierInt Dom f;. Then,

ch(fL‘) ('U) < lna'xiel(:r)Dcfi (fB)(U) (36)

Proof. a) We first note that there exists o1 > 0 such that if ||z — y|| < o
then I(y) C I(z). (Suppose a = g(z) — max,¢(z) f;(z) > 0,e =% and a; >0
are such that for all ¢ € I |f;(y) — fi(z)| < € whenever ||y — z|| < ;. Then if

j€l(y)

filx) > fily) —e=g(y) —e>g(z) -2
= a— 2e + maXig( fi(x) > maxigr(s) fi(z).
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Thus j € I(z).)
b) f « <a;/2and B8 < a1 /2||v||, we obtain the inequality
gw+ﬂw—QW)< max T2+ 6) — fily) fily + 0v) — fi(v)

— < max )
4 i€l(y+6v) 6 T iel(z) g
Whence,
D.g(z i fily+6v)— f;
cg( ) ('U) S algio mmel(z) sup (y 6) f (y) .

lly—zll<e
0<p8

Moreover, for all € > 0, and for all i € I, there exist o; > 0 and §; > 0 such
that

fily + 6v) = fi(y)
< Dc i .
oel2es Z < B Deli(@)w) +e

=Fi

Taking o = mingey(zy ; > 0 and B = mingey(z) B; > 0, it then follows that:

ch(a:)(v) S max sup fz(y+9'0) _.f't(y)
i€I(z) [y-zl<a 6
o<f
fily + 6v) — fi(y)
< max su < max D_fi(z)(v) + €.
icI(z) "y—a:"P)Sa e iel(z) f ( )( )
o<p
Letting € tend to 0 completes the proof of the proposition. O

Remark. If the functions f; are continuously differentiable at z, then their
upper envelope g satisfies Dg(z)(v) = max;er)(V fi(z),v). If I(z) consists of
a single index, then ¢ is Géteaux differentiable and Vg(z) = Vf; (z) where
g(:r) = fiu(x)'

6.4 Generalised Gradients

Definition 6.3. Suppose that the function f : X — IR U {+oo} is Clarke
differentiable at . Then the subset Of (z) of X defined by

0f(z) = {p € X*|{p,v) < D.f(z)(v), Vv € X} (37)
is called the generalised gradient of f af z.

Theorem 6.2. Suppose the function f : X — IRU {400} is locally Lipschitz.
Then it has a non-empty generalised gradient O f (x) at any point = in the interior
of Dom f, which is convez, closed and bounded and has a support function

o(8f(z),v) := sup{(p, v)|p € Of(z)} which satisfies
o(0f(z),v) = Dcf(z)(v). (38)
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Moreover, the set-valued map = € Int Dom f — O.f(z) € X* satisfies

(z,v) € IntDom f x X — o(0f(z),v) is upper semi-continuous. (39)

Proof. The theorem follows from Definition 6.1 and Theorem 6.1. Since
D.f(z)(-) is convex, positively homogeneous and continuous, it is the sup-
port function of the convex closed subset of elements p € X* such that
(p,v) < D.f(z)(v) for all v € X; in other words, of the generalised gradi-
ent 0f(z) of f at z. Thus, 8f(z) is non-empty, convex and closed and (38)
applies. Since o(0f(z),v) < L|v|| = Lo(B*,v) (where B* is the unit ball of
X*), it follows that

of(z) C LB (40)

This completes the proof of Theorem 6.2. m]

Proposition 6.10. If f is continuously differentiable then the generalised gra-
dient 8f(z) = {V f(z)} reduces to the usual gradient V f(z). If f is convez and
continuous at x, then the generalised gradient is equal to the subdifferential of
fatz.
Proof. Proposition 6.1 shows that if f is continuously differentiable, then
0(0f(2),v) = Def(z)(v) = (Vf(z),v). Thus, df(z) = {Vf(z)}. Propo-
sition 6.2 shows that if f is convex and continuous, then o(9.f(z),v) =
D.f(z)(v) = Df(z)(v). Now, the right derivative of a convex continuous func-
tion is the support function of the subdifferential Of(z) (see Theorem 4.1).
O
Propositions 6.3 to 6.7 translate as follows in terms of the generalised gra-
dient.

Proposition 6.11. Suppose f and g are two locally Lipschitz functions. If
z € Int Domf N Int Dom g, then if « and 8 > 0,

Aaf + Bg)(z) C adf(z) + BOg(z). (41)
If x € Int Domf, then

O(—f)(z) = —0.f(z). (42)
If f is increasing on a convez closed cone P, then
d.f(z) C P*. (43)

If z is a local minimum of f, then x is a solution of the inclusion
0 € 0f(z) (Fermat’s rule). (44)
If f is positively homogeneous, then

Vp € 0f(z),  (p,z) = f(a). (45)
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If A € L(Y, X) and if A* € L(X*,Y*) denotes its transpose, then
O£ A)(z) C A".f(Ag) (46)

with equality if A is surjective.

Proof. It suffices to note that since the generalised gradients f(z) are convex,
closed and bounded, they are weakly compact; whence 0f(z) + A is convex and
closed when A is convex and closed (see (Schwartz 1970)). O

Proposition 6.8 translates in the following way.

Proposition 6.12. Suppose that f is a Lipschitz function from X to
IRU {+o00} and that B € L(X,Y) is a surjective operator. If y € Int(B-Domf)
and if T is the solution of the minimisation problem

a(y) = inf f(z) = f(Z) where BT =y, (47)

Bz=y

then there exists € V* satisfying

5 € daly) with B*p € df (7). (48)

Proof. Following Proposition 6.8,
0 < Dea(y)(—Bv) + Def(Z)(v) = o(=B*da(y) + (%), ).
Whence 0 € 9f(z) — B*0a(y)- O

Remark. An element p € Y* satisfying (48) is called a Lagrange multiplier for
the problem of minimisation of a Lipschitz function f under the linear equality
constraints Bz = y.

Proposition 6.9 may be restated as follows:

Proposition 6.13. Suppose that the m functions f; are locally Lipschitz and
that © € NycsInt Domf;. Then

dg(z) cwo | Bfila) (49)

iel(z)

6.5 Normal and Tangent Cones to a Subset

Suppose that K is an arbitrary non-empty subset of X. We let dx denote the
distance function measuring the distance from K, defined by

dry) = inf llz — | (50)
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This is clearly Lipschitz with constant 1:
ldx(Y) — d(2)] < |ly — 2|l

Consequently, it is Clarke differentiable.
Definition 6.4. Suppose x € K. We shall say that the set

TK(a:) = {'U S Xchdk(ilJ)('v) < 0} (51)
is the tangent cone to K at x and that
Nk (z) = Tk(z)” = {p € X*|{p,v) <0, Yv € Tx(z)} (52)

is the normal cone to K at x.

Since v — D dk(z)(v) is convex, positively homogeneous and continuous,
Tk(z) is a convez closed cone. Since the normal cone is the negative polar cone
of Tk (z), Nk(z) is a convez closed cone.

Whence

Tk(z) = Ng(z)™- (53)

It is useful to define the normal cone in terms of the generalised gradient of
dk.

Proposition 6.14. The normal cone Nk (x) is the closed convex cone generated
by the generalised gradient of dic at x

Ng(z) = (0dg(z))” . (54)

Proof. We show that Odg(z) is contained in the normal cone Ng(z). If
P € Odg(z) and if v € Tk (x), then (p,v) < D.dg(x)(v) < 0. Thus, the convex,
closed cone generated by ddk(z) is contained in the normal cone Nk (z). To
prove the inverse inclusion, it is sufficient to show that (8dk(z))” C Tk(z).
Suppose then that vy € (Odk(z))”. Then D.dg(z)(vo) = o(0dk(x),v0) =
sup{(p, vo)|p € 8.dk(z)} < 0. Thus vy belongs to Tk (z). ]

Next we state certain elementary properties of tangent and normal cones.
First we mention the following fact

If Int K # 0 and if z € Int K, then Tg(z) = X and Nk(z) = 0. (55)

Indeed, if z + 7B C K, then, for all v € X, y 4 6v belongs to K if |y —z|| <
and 0 < 8 whenever a < 7/2 and 8 < 1/2||v||. Thus,

Dedr(z)(v) = inf sup KB~ di(y)

>0 jly—zj<a 6
0<p

<o
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6.6 Fermat’s Rule for Minimisation Problems with
Constraints

Proposition 6.15. Let f be a locally Lipschitz function. Suppose that z € K
minimises f over K. Then, there exists L > 0 such that

Vy € X, f(z) + Ldk(z) < f(y) + Ldk (y) (56)

and consequently, 0 € Of(z) + Nk (z) (or —0f(z) N Nk (z) #0).

Proof. Since f is locally Lipschitz, there exists a neighbourhood z + 7B on
which f is Lipschitz with constant L. We take o < 1/2 and & < 7222 which is
destined to tend to 0. Let y € = + aB. Then, we may associate y with some
Ye € K such that ||y — y|| < dk(y)(1 + €). Moreover, |z —y|| < a < 7,
dx(y) < llo —yll < @ and Iz — zell < flz — oll + lly — gell < @ + (1 +e) =
(2 +€) < n. Consequently, f(ye) < f(y) + Llly — vell < f(y) + L(1 +€)dx ().
Since di(z) = 0 (because z € K) and since f(z) < f(v.) (because y. € K) we
obtain f(z)+ Ldk(z) < f(y)+ L(1+¢€)dk(y) for all y € z + aB. Letting € tend
to 0, we deduce that x is a local minimum of the function y — f(y) + Ldk(y).
Whence, by virtue of Propositions 6.3, 6.5 and 6.14, we obtain the inequality

0 < D.(f+ Ldk)(z)(v) < D.f(z)(v) + LDcdx(z)(v)
< 0(0.f(z) + LAdk(z),v)

forall v € X.
This implies that 0 € 8f(z) + LOdk(x) C Of (z) + Nk(x), following Propo-
sition 6.15. O

Remark. The first assertion is very important in the sense that it allows us
to replace a minimisation problem with constraints by a minimisation problem
without constraints.

Remark. If K is convex, Nk(z) is the normal cone of convex analysis (see
Definition 4.3). We note that the function di is convex. Take p € Nk. If y € K,
we have

(p,y — z) < Dedi(x)(y — z) = Dd(z)(y — z) < dr(y) — dr(z) = 0.

Conversely, if £ maximises y — (p,y) over K, Proposition 6.15 implies that
0 € —p+ Ng(z). Thus, the two concepts of normal cones coincide.






7. Two-person Games. Fundamental Concepts
and Examples

7.1 Introduction

Let us consider two subsets £ and F'. Our aim is to choose pairs (z,y) € Ex F
using various optimisation techniques motivated by so-called decision theory.
This means that we shall provide mechanisms for selecting elements (called
decisions or strategies) of sets (decision sets, strategy sets) which should reflect
real decision-taking techniques as closely as possible.

The history of science shows us that parlour games have presented math-
ematicians with numerous problems. Thus, the chevalier de Méré consulted
Blaise Pascal about the problems of dice games. This led to a correspondence
between Blaise Pascal and Pierre de Fermat; the six letters they exchanged
served as a departure point for modern probability theory (which proves that
mathematicians may also profit from immoral company!) *.

The terms players and strategies have been used since the start and tradition
(conservatism) has led to their retention. The current status of the theory of
games as a mathematical theory is due to John von Neumann who, between
1928 and 1941, proposed a general framework, with a view to applications in
the social sciences, within which conflicts and cooperation of players may be
taken into account. This fundamental work formed the skeletal structure of the

¢ ..My best teacher of this worldly science was Antoine Gombaud, chevalier de Méré. . ..
He was a strong little man, very elegant and scented, who voluntarily established himself as
a judge of etiquette and graces. After several sea campaigns, he limited his gallantry to the
conquest of the salons and gave up the sword for the pen. He was very friendly with Pascal,
Balzac, Ménage, Clérambault and other men of letters of his time and himself perpetrated
a number of treatises on ‘true honesty’, ‘eloquence’, ‘the delicacy of expression’ and ‘worldly
intercourse’. . . . However, I was taken by the idea of passions and the feelings which engender
them stole into my mind with no specific object in view. It is true that they could have
settled on the chevalier himself and that it was not because of him they did not rest there.
In fact, Monsieur de Méré was enamoured of his fourteen year old school girl; he told me
as much in poems in which, because of my journeys to the islands, he referred to me as the
‘beautiful Indian’ . ... For my part, Monsieur de Méré was not to my liking, ... However, I was
flattered that he took a liking to me: the first and the last conquests are those for which one is
most grateful.” FRANCOISE CHANDERNAGOR. L’Allée du Roi. Recollections of Frangoise
d’Aubigné, marquess of Maintenon, wife of the King of France.



102 7. Two-person Games. Fundamental Concepts and Examples

book Theory of Games and Economic Behaviour, which he published in 1944
in collaboration with the economist O. Morgenstern.

In fact, this change of direction is due to Léon Walras, who introduced the
description of a consumer as an automaton seeking to mazimise a utility func-
tion subject to various types of constraints imposed by its environment. In this
case, the strategies are commodities and prices and the players are consumers,
manufacturers and other economic agents. The individuals who adopt this be-
haviour of an automaton are said to be “rational”. This should not be taken
as the definition of the adjective ‘rational’ in the philosophical context (in the
sense of natural knowledge, as opposed to that which comes from myths or from
faith). Anyway, the concept of reason is the subject of cognitive psychology and
little is known about this topic except that most of the time a rational individ-
ual cannot maximise his utility function, assuming that he has one. Some ten
years ago, H. Simon and others questioned the universality of this behaviour
and proposed replacing the notion of optimality by a less nontrivial notion of
satisfactoriness.

Whilst we await the psychologists’ findings about knowledge, one way of
resolving the dilemma is to realise that the first point of view is static, whilst
the second is dynamic. Taking into account evolutionary phenomena, we need
no longer assume that an individual is looking for a permanent optimum but
may suppose that he seeks to increase his utility as he goes along. The second
point of view is less unrealistic in this sense.

We shall restrict ourselves here to the static case (anyway, investigations
of the dynamic framework are now under course). Even with these limitations,
game theory has provided economists with useful tools for clarifying concepts. In
order to avoid being distracted, one must always remember that these are only
imperfect and perfectible tools and that one should beware of all dogmatism
when using them.

Curiously enough, the mathematical problems which have been motivated
by game theory have led to major contributions to nonlinear analysis which
have ultimately been useful in very many areas; this is another example of the
universality of mathematical results which we mentioned when talking about
Banach at the end of Chapter 2.

7.2 Decision Rules and Consistent Pairs of Strategies

Let us christen our two players Emil and Frances. Emil’s task is to choose a
strategy z in the set E and that of Frances is to choose a strategy y in the set
F'. The pair (z,y) € E x F is also called a bistrategy.

One elementary mechanism which allows Emil and Frances to select their
respective strategies involves providing them with decision rules.

Definition 7.1. A decision rule for Emil is a set-valued map Cg from F to
E which associates each strategy y € F' of Frances with the strategies T € Ci(y)
which may be played by Fmil when he knows that Frances is playing y.
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E x F, set of bistrategies

" ™ Graph of the decision rule
Cr for Frances

set of strategies

Frances
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| P Set of coherent pairs of
bistrategies

E, set of strategies for Emil

M —— Graph of the decision rule

CF for Frances

/-—.\'P\(— S ura. h of the decision rule

- or Emil

F, set of strategies

for Trances

E, set of strategies for Emil

Fig. 7.1. Examples of one-to-one and discontinuous decision rules where there are no
consistent strategy pairs.

Similarly, a decision rule for Frances is a set-valued map Cg from E to F
which associates each strategy © € E played by Emil and known to Frances with
the strategies y € Cr(z) which Frances may implement.

Once the players Emil and Frances have been described in terms of their
decision rules Cg and Cp, we may distinguish pairs of strategies- (z,y) which
are in static equilibrium, in the sense that

Z € Cp(y) and § € Cr(Z) (1)

Definition 7.2. A pair of strategies (T, 7) which satisfies condition (1) for the
decision rules Cg of Emil and Cr of Frances is called a consistent pair of
strategies or a consistent bistrategy.
The interest of this concept of consistent bistrategies naturally depends on the
choice of decision rules.

. The most simple example of a decision rule is that of a constant decision
rule. A strategy = € E of Emil may be identified with the constant decision rule
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y € F — z € E, which describes obstinate behaviour by Emil, who plays the
strategy z irregardless of the strategy chosen by Frances.

Consequently, when Emil and Frances play the strategies z and y, respec-
tively, the pair (z,y) forms a consistent pair.

The set of consistent pairs may be empty or very large or it may reduce to
a small number of bistrategies. A mechanism will only be of interest to a game
theorist if, firstly, the set of consistent pairs is non-empty and, secondly, this
set is small (in the best case consisting of a single pair).

We note that the problem of finding consistent strategy pairs is a so-called
fized-point problem. We use C to denote the set-valued map of E x F into itself
defined by

V(z,y) € ExF,  C(z,y) = Cg(y) x Cr(z). (2)

The inclusions (1) which define the consistent pairs may clearly be written in
the form

(z,9) € C(Z,9)- (3)

This is a primary motivation behind the derivation of fixed-point theorems.
We shall quote (and admit without proof the prototype of these theorems, the
Brouwer Theorem) the most famous of these theorems.

7.3 Brouwer’s Fixed-point Theorem (1910)

Theorem 7.1. Let K be a convex compact subset of a finite-dimensional space.
Any continuous mapping of K into itself has a fixed point.

We shall discuss the consequences of this theorem, which turn out to be conve-
nient and easy to handle, above all in applications to game theory.

The Dutch mathematician Brouwer (1881-1966) is famous for his contri-
butions to mathematical logic and was one of the founders of combinatorial
topology, where he innovatively introduced the important notion of a simplex
and the triangulation technique which he used to prove this famous theorem
which is at the root of nonlinear analysis.

Thus, we obtain the following corollary.

Corollary 7.1. Suppose that the behaviours of Emil and Frances are described
by one-to-one continuous decision rules and that the strategy sets E and F' are
convex compact subsets of finite-dimensional vector spaces, then there is at
least one consistent strategy pair.

Proof. We take K := E x F which is convex and compact. Then the set-valued
map C defined by (2) is a continuous mapping and thus has a fixed point. O

We shall generalise this theorem to the case of multi-valued decision rules.
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7.4 The Need to Convexify: Mixed Strategies

Brouwer’s Theorem which, in practice, is the fundamental tool for finding consis-
tent strategies together with the Separation Theorem which, as we have already
seen, is at the root of optimisation theory, both assume that the strategy sets
are convez. This is an exorbitant assumption which excludes, for example, the
use of finite strategy sets.

What then should we do? As so often in mathematics, starting from a
situation which appears hopeless because of the absence of desirable properties,
one boldly invents another situation in which the validity of these properties is
re-established.

We shall follow this course, beginning with a finite strategy set. Suppose
that £ = {1,...,n} is a set of n elements.

We associate E with the subset

M":={xeR}|> X =1} (4)
i=1
called the (n — 1) simplex of IR™.
This is clearly a convex compact subset of IR". We can embed E in M™ by
the mapping § which associates the ith element of F with the ith element e* of
the canonical basis of IR™:

d:i€{1,...,n} = 4() =¢€:=(0,...,1,...,0) (5)

We also note that
M™ = co{e',...,e"} (6)

Interpretation

J. von Neumann proposed interpreting the elements A € M™ as mized strategies.
In this framework, a player does not choose a single strategy as before but plays
all the strategies and chooses only the probabilities with which he plays them.

One important justification for a player’s use of mixed strategies is the
protection which he obtains by disguising his intentions from his partners. By
playing the different strategies randomly, in such a way that only their proba-
bilities are determined, he prevents his partners from discovering the strategy
which he is going to play, since he does not know it himself.

‘We must not hide the fact that, in ‘convexifying’ strategy sets, we are moving
away from our original static framework, since random play assumes that the
game will be repeated!

However, one might reason that there is a ‘game’ if there is uncertainty in
the choices of the players and, thus, taking this uncertainty into account we
may rejoin the static framework.

Psychologists and sociologists suggest that this uncertainty which enables
the players (actors) to take a detached view of the decisions with which they
are faced should be considered as a component of the notion of power.
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We shall also have recourse to this convezification process later in the context
of cooperative games, where we convexify the set of coalitions of players (see
Chapter 13).

In fact, this is a mathematical necessity which provides a palliative improve-
ment of the static case bringing it halfway towards the dynamic framework
which has just been invented.

Any set-valued map C from E = {1,...,n} to a vector space X may be ex-
tended to a set-valued map C from IR” to X as follows

WAER®, G\ =3 AC() (7)

If § is the mapping from {1,...,n} to M™ defined by (5), we have the following
scheme

Rﬂ

Q)

If C is a one-to-one mapping, it is clear that its extension C is a linear
mapping from IR™ to X.

The process which associates the mapping C : {1,...,n} — X with the
linear mapping C : M™ — X may be thought of as a linearisation process
associated with the convezification process which associates the convex compact
set M™ with the finite set {1,...,n}.

7.5 Games in Normal (Strategic) Form

The traditional way of modelling game theory is to assume that each player
classifies the bistrategies using an evaluation function f. This function has
several names, for example, criterion function, utility function , gain function,
loss function, cost function, etc. The terminology is a matter of taste. Whatever
terminology is used, such a function may be associated with a partial order >
(called the partial order of preferences) as follows

(z1,41) € E x F is preferred to (z2,2) € E x F
if and only if f(21,71) < f(Z2,v2) (8)
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(for loss functions or cost functions; for utility functions and gain functions, the
direction of the inequality is inverted).
A player behaves so as to minimise his losses as far as possible.

Remark. We have associated a partial order with a loss function f. We note
that the partial order remains unchanged (in fact this is the only thing that
matters) if we replace the function f by any function ¢ o f where ¢ is a strictly
increasing bijection from IR to IR.

In particular, if a > 0 and b € IR are given, the function af + b defines the
same partial order as f.

The inverse question then arises: can we represent any partial order by an
evaluation function? Sadly, the most common partial order on IR", the lexico-
graphic partial order cannot be represented by a continuous utility function.
This led to a debate lasting several decades between supporters and adversaries
of utility functions, until Gérard Debreu derived a theorem showing that a large
class of partial orders may be represented by continuous functions (for a simple
version of this theorem, see Theorem 5.4.1 of (Aubin 1977)).

We shall not become embroiled in this debate, especially since considerations
of cognitive psychology seem to indicate that the mechanisms of choice do not
obey (globally) rules for classification according to a partial order. Moreover,
this notion is of little meaning in a dynamic framework.

Nonetheless, this is still a source of intrinsically interesting mathematical
problems. The relevance of the assumption that the behaviour of the players is
based on evaluation functions is a concern of economics, which is not an exact
science.

None of this is very serious since, whilst the use of utility functions may
legitimately be rejected, it is more difficult to take issue over the use of decision
rules at this level of generality.

Let us return to our problem. We now suppose that the players Emil and
Frances choose (separately) their strategies using their loss functions fg and fr
from E x F to IR.

We set

£(z,y) == (fe(z,v), fr(z,y)) € R”. 9)

Definition 7.3. A two-person game in normal (strategic) form is defined
by a mapping £ from E x F into IR? called a biloss mapping.

We have described a natural way of associating decision rules with the
players of a game in strategic form. Let us now consider Emil’s loss function
fe. If he happens to know the strategy y € F' played by Frances, he may be
tempted to choose the strategy £ € E which minimises his loss z — f(z,y),
assuming Frances’s strategy is fixed. In other words, he may choose a strategy

in the set Cr(y) defined by
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Cr(y) == {z € E|fe(z,y) = inf fe(z,y)}- (10)
] {z€E}

This enables us to define a decision rule Cg : F — E for Emil. Similarly, we
define the decision rule Cr : E — F for Frances by the formula

Cr(z) = {7 € |fr(z,7) = {;Ielg} fr(z,9)}- (11)

Definition 7.4. The decision rules Cg and C g associated with the loss functions
by formulae (10) and (11) are called the canonical decision rules,

A consistent pair of strategies (Z,y) based on the canonical decision rules
is called a non-cooperative equilibrium (or a Nash equilibrium) of the
game.

Thus, a pair (Z, ) is a non-cooperative equilibrium if and only if

(ii) fr(@,9) = inf fr(z,y). (12)

Consequently, a non-cooperative equilibrium is a situation in which each player
optimises his own criterion, assuming that his partner’s choice is fixed. This is
called a situation with individual stability.

One convenient way of finding non-cooperative equilibria is to introduce the
functions

@ fo(y) = inf fe(z,y)  fp flat
(i) fry) = inf fr(z,y)  fr flat. (13)

Thus, we note that a pair (Z,y) € F x F' is a non-cooperative equilibrium if
and only if

(i) fe(®@,9) = fr)
(ii) fr(z,9) = fu(3) (14)

7.6 Pareto Optima

Does the concept of non-cooperative equilibrium provide the only reasonable
scheme for solution of a game in strategic form? This is not necessarily the case,
particularly if we assume that the players communicate, exchange information
and cooperate. In this case, they may notice that there exist strategy pairs (z,v)
satisfying

fe(z,y) < fe(Z,y) and fr(z,y) < fr(Z,9) (15)

where the two players Emil and Frances have losses strictly less than in the case
of non-cooperative equilibrium (Z, 7). When this situation occurs, it betrays a
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lack of collective stability , since the two players can each find ‘better’ strategies
for themselves.

]?eﬁnition 7.5. A strategy pair (z.,y.) € Ex F is said to be Pareto optimal®
if there are no other strategy pairs (z,y) € Ex F such that fe(z,y) < fe(z.,v)
and fr(z,y) < Fr(zs, ys).

The idea is that there exist non-cooperative equilibria which are Pareto
optimal. Regrettably, there are few examples of such equilibria and no general
theorem is known.

We denote the set of losses of each player by IRg = IR and Rp := R
(respectively) and the set of the players’ bilosses by IR? := IRg x Rp.

Rk
fr(2,%)
£(E x F)
afF @
ag f2(E:9) Rp

Fig.7.2.

Figure 7.2 shows the set f(ExF) C IR? of bilosses f(z,y) = (f&(z,v), fr(z,v))
suffered by the two players. The bilosses corresponding to the Pareto optima
are shown by thick lines. We note that the selection of the Pareto optima is not
a very precise mechanism.

Suppose, for example, that there exists a pair (£, ¥) which minimises Emil’s
loss function fg on E x F:

fe(%,9) = inf fe(z,y) = ap- (16)

yeEF

Clearly, such a pair is Pareto optimal. For Frances to accept this situation, we
must assume that her only goal in life is to please Emil. Similar comments apply
to any Pareto-optimal strategy pair (£,¢) which minimises fr on £ x F'

fr(8,9) = inf fr(z,3) = ar. (17)

yEF

2]p fact, to be exact, we should use the term ‘weakly Pareto optimal’. We commit this
abuse of terminology consciously.
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We observe that if a strategy pair (Z, %) minimises both fr and fr simultane-
ously on E x F, then it is the best candidate for a solution scheme. In this case,
we would have

ap= fg(%,9) and  ar = fr(%,9)
which only happens in exceptional cases. This is why the vector
a = (ag,ar) € IR? (18)

is called the virtual or ‘shadow’ minimum of the game.

We also note that the bistrategy (%, %) of (16) (or the bistrategy (£,9) of
(17)) is not a propitious choice if one takes into account sensible psychological
considerations. It is reasonable to think (or rather to expect) that the players
will agree to replace a given strategy pair by another strategy pair which will
result in lower losses for each of them. One cannot sensibly imagine that one
player would let the other player be the sole beneficiary of this operation.

In fact, one of the objectives of the theory of cooperative games is to provide
mechanisms for selecting Pareto optima. One example of this selection process
is the case in which Frances’s behaviour consists of pleasing Emil without taking
her own interest into account (devoted behaviour); this leads to the strategy
pairs (&, ¢) of (16).

7.7 Conservative Strategies

If behaviour of this type exists, it is not universal. There is also the contrary
behaviour, in which Frances’s only goal is to annoy Emil and where Emil is
aware of this (we assume that Emil is convinced of Frances’s dark designs, or
that he is paranoic, etc.). In this case, Emil evaluates the loss associated with
a strategy « using the function fg, (fe sharp) defined by

fl'l;(:r) = sup fe(z,y). (19)
yeEF

fg is said to be Emil’s worst-loss function. In this case, Emil’s behaviour consists
of finding strategies z! € E which minimise the worst loss, namely solutions of

fh(ah) = inf fh(z). (20)

We shall say that Emil’s strategy = is conservative. We set

vp = inf sup fe(z,y) = inf fh(=) (21)

and call v%; Emil’s conservative value.
This conservative value may be used as a threat. Emil may always reject a
strategy pair (z,y) € F x F satisfying
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fu(z,y) > vl (22)

since, by playing a conservative strategy z! € E, Emil ensures that his loss
fe(z!,y) is strictly less than fg(z,y) since fh(z!,y) < fe(a?) =: vk < fe(z,y)
Consequently, if he cannot reach agreement with his partner, he can always
threaten to play a conservative strategy z¥ so as to limit his loss to vg,;.
In a symmetric fashion, Frances’s conservative value is defined by

B._ s . ]
vp += inf sup fr(z,y) =: inf fr(v) (23)
where we have set
i) = sup fr(z,y) (fr sharp). (24)

We shall call the vector
vii= (o, oh) (25)
the conservative vector for the game.
Thus, the only strategy pairs of any interest are those which satisfy

f(z,y) < v (26)

Thus, the set of bilosses of the strategies of interest is contained in the
rectangle [ag, vl] X [ar, vlk] (see Fig. 7.3). Here we have a first selection process.

Ry

afp

ag vg Rg

Fig. 7.3.

The idea is to find non-cooperative equilibria which are Pareto optimal or
pairs of conservative strategies which are Pareto optimal. Games in which the
conservative vector is Pareto optimal are usually called inessential games. We
shall show that certain zero-sum games are inessential.



112 7. Two-person Games. Fundamental Concepts and Examples
7.8 Some Finite Games

We shall give examples of games to illustrate the concepts described above.

In all these games, Emil and Frances have strategy sets consisting of two
elements E := {I,1I}, F' = {1,2}. The biloss mapping is represented by bima-
trices

Frances 1 o

I (a,0) | (c,d)
11 (e, f) | (g, h)
For example, if the strategies {I, 2} are played, Emil’s loss is equal; to ¢ and

that of Frances is equal to d.
We begin with the well-known game of the prisoner’s dilemma.

Emil

Prisoner’s dilemma

Emil and Frances are accomplices to a crime which leads to their imprisonment.
Each has to choose between the strategies of confession (strategies I and 1,
respectively) or accusation (strategies II and 2, respectively).

If neither confesses, moderate sentences (a years in prison) are handed out.
If Emil confesses and Frances accuses him, Frances is freed (0 years in prison)
and Emil is sentenced to ¢ > a years in prison. If both confess, they will each
have to serve b years in prison, where a < b < c.

Frances

Ermil 1 (peaceable) | 2 (aggressive)
I (peaceable) (a,a) (c,0)
II (aggressive) (0,c¢) (b, b)

Many authors have embroidered on this game. The original interpretation may
also be modified in favour of diplomatic or military illustrations.

For example, strategies I and 1 may be interpreted as being peaceable whilst
strategies 1l and 2 are aggressive .

Figure 7.4 shows the losses incurred in each case. We illustrate this game in
the space of bilosses. We have

i =¢ fRAD =0, A1) =c, fH2) =0
whence
oh = fEI) =b, vh=fh@2) =0

and the strategy pair (I, 2) is conservative. It follows that the pairs (I,2) and
(I, 1) are useless, since, for example, by playing I, Emil risks a loss of ¢ and by
playing II, Emil limits his loss to b < c.
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In addition, we have

fe(1) =0,fp(2) =b, fr(I) =0, fH(1)=b
whence the strategy pair (I1,2) is also a non-cooperative equilibrium, since

(i) fe(l,2) =b< fp(l,2) =c
(ii) fr(Il,2) = b< fp(Il,1) =c.

The strategy pairs (I,1), (II,1) and (1,2) are Pareto optimal.

\

£(II, 1)

f(I1,2) = v*

¢ £(1,1)

£(1,2)
a b c

Fig. 7.4.

If there is no cooperation or communication between the players, aggressive
strategies will be chosen, whilst an examination of the situation and a minimum
of cooperation will enable the players to choose peaceable strategies. However,
when playing a peaceable strategy, a player runs a large risk if he allows his
partner to play an aggressive strategy.

The paradoxes which arise en masse stem from the elementary and simplistic
nature of this game, which it is improper of us to have interpreted in terms of
war and peace.

The fact that it is impossible to propose a strategy pair as a candidate
for a ‘solution to the game’ is due, amongst other things, to the static nature
of the game and the obligation to choose once and for all between polarised
strategies with no room for compromise, etc. But this game does provide a
direct illustration of some of the difficulties one meets.
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Game of Chicken

If a < b < ¢, this game is represented by the matrix

Frances
Emil 12
I (a,0) | (b,0)
11 (0,6) | (c:¢)
The bilosses are shown in Fig. 7.5:
)
£(11, 2)
[
b £(II, 1)
a f(1,1) =
£(1,2)
a b c
Fig. 7.5.

This may be interpreted as follows. Emil and Frances are driving and reach
a crossroads with no signals and no rules of priority. The strategies in each case
are to stop (strategies I and 1) or to cross (strategies II and 2). If both cross, the
cost to each player of the subsequent accident is c. If both stop, they are only
penalised by a slight delay, represented by a loss a < c. If one crosses and the
other stops, the one who crosses loses nothing, while the one who stops incurs
a delay and a loss costing b €]a, ¢[.

We have

M =b, fEA) =c, fH1)=b fh2)=c

whence the strategies I and 1 are conservative and v! = (I,1). The game is
inessential since (I, 1) is Pareto optimal as are the pairs (I, 2) and (II, 1).
Since

fe) =0, fh(2)=b, fr(I)=0 and fi(Il)=b

we note that the pairs {I,2} and {II,1} are non-cooperative equilibria which
are Pareto optimal. However, they are not interchangeable.
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Battle of the Sexes

The strategies of Emil and Frances consist of going to a football match or going
shopping. Emil prefers the match, Frances prefers window-shopping; however,
they both prefer to be together. This game is represented by

Frances
Emil 12
I (0,a) | (b,0)
Ir - (b,0) | (a,0)
where 0 < a < b.
/
b £(1,2) = £(II,1) = o
a ¢ T(1,1)
f(11, 2)
0 a b
Fig.7.6.

We note that the pairs (I, 1) and (II, 2) are Pareto optimal, that
fE@) = FEAN) = fR(1) = FE(2) =b
and that
vl = (b,b).

Whence, the four strategy pairs are conservative. We also note that the pairs
(I,1) and (11, 2) are the non-cooperative equilibria for the game.

Coordination Game

Emil and Frances have to open a door to escape from a fire. The strategies of
the players are, respectively, to go through the doorway (strategies I, 1) or to
push the door open (strategies 11, 2). If no one opens the door, they stay in the
fire, incurring a loss of ¢. If Emil pushes the door open (strategy 1I) and Frances
passes through (strategy 1), she escapes

first (zero loss) and Emil escapes second with a loss a < c.

If they both push the door open at the same time, it takes longer and both
come out with slight burns (loss b €]a,c[). This game is represented by the

matrix



116 7. Two-person Games. Fundamental Concepts and Examples

|
[ f(n’ 2)
b f(I,1) =v*
o} 11,2)
f(IL, 1)
a b c o
Fig. 7.7.
Frances )
Exnil 1 (go through) | 2 (push)
I (go through) (b,b) (0,a)
II (push) (a,0) (¢, ¢)

and the bilosses are as shown in Fig. 7.7:
The Pareto-optimal pairs are the strategies (I,2) and (II,1), where one of
the players pushes the door open and the other passes through the doorway.
Since

M) =b, fEA) =c, fEQ1)=b, fH2)=c,
we deduce that
vl = (b,b)

and that the conservative strategies involve both players pushing the door open.
Since

fe) =a, fB(2)=0, fr()=q, fr()=0

we deduce that the pairs (I,2) and (II, 1) are the non-cooperative equilibria of
the game, which are Pareto optimal.

7.9 Cournot’s Duopoly

We next describe the fundamental example of the duopoly, where the two players
are each manufacturers of the same single commodity. In this case, the loss
functions are cost functions which depend on the production of the two players.
This game and the concept of non-cooperative equilibrium were introduced
by Antoine Cournot in 1838. He was the first to propose the concept of non-
cooperative equilibrium, which he introduced in the framework of an economic
model. This model has played an important historical role in explaining the
behaviour of competing manufacturers in the same market.
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Description of the Model

We suppose that Emil and Frances manufacture the same single commodity. We
denote the quantities of this commodity produced by our players by z € IR
and y € IR,.
We assume that the price p(z, ) is an affine function of the total production
T+y
p(z,y) =a—PBE+y) (2=0,8>0) (27)

and that the cost functions Cg and CFr of each manufacturer are affine functions
of the production

Ce(z) ==z 4+, Cr(y) =y +46, (v>0,6>0). (28)

Emil’s net cost is equal to

fe(z,y) ==y + 8 —p(z,y)z = Pz (z+y+%) + 46

and that of Frances is

fr(z,y) :==vx + 6 —p(z,y)y = By (w+y+%g) + 0.

Taking 8 = 1 and § = 0 does not modify the game. Then, setting u = a — v,
the duopoly may be viewed as a two-person game, where

E :=[0,u], F:=[0,u], (29)
with loss functions defined by
fe(z,y) =z(@+y—u),  frlz,y) =ylz+y—u). (30)
The biloss mapping is then defined by
f(z,y) = (z(z +y —u), y(z + vy —v)). (31)
This maps the upper triangle
T, = {(2,y) € [0,u)’|z +y > u} (32)
into the rectangle S, = [0, u?’, the diagonal
To = {(z,y) € [0, 4’|z +y = u} (33)
onto {0} and the lower triangle
T = {(zy) €0, ulz+y < u} (34)

onto the triangle
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0 uf2 U
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Fig. 7.8.

(35)

5 = {(f,g) ¢ |-5o i+ —“z}.

We observe that the set,

P = {(x,y) c0,y’|lz+y= } (36)

e

is mapped into the subset

w2 12 u?
(P) = {(f, e |-50] 1 +9- —z} (37)
(see Fig. 7.8).
We then note that the subset P of (36) is the set of Pareto strategies.
The strategy pair:
=2 =2 38)
ZTp 4 » yp 4 (

results in a loss to each player of —38::. Thus, if the manufacturers agree to
cooperate, this Pareto-optimal strategy pair is a reasonable compromise.
It is clear that Emil’s worst-loss function fJ,

fi(z) = sup z(z+y—u) = z>

0<y<u

(39)

attains its minimum at z! = 0. In a symmetric fashion, f£, defined by fiy) =42
attains its minimum at ¢! = 0. Consequently the conservative strategies of Emil
and Frances are equal to 0, whence the production of each player is zero.

The conservative vector v! for the game is equal to (0, 0).

We note that the virtual minimum is equal to o = [—E:-, _142.]_
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Set of bistrategies

_______________ - — Graph of the_g?ptimal
decision rule C'g for Emil
uf2
BN ———— —— — — — — — Non-cooperative equilibrium
\ ——————————— [ — Set of Pareto optima

— <1 — Graph of the gptimal
decision rule %l;: for Frances

0 u/3 uf2 u

Fig.7.9.

Non-cooperative Equilibria
Suppose that Frances produces y units. In this case, Emil will produce Z units
to minimise his cost function z — z(z + y — u) on [0, u], where

2= Chly) = 5(u—y) (40)

Thus, Cp : y — 3(u —y) is Emil’s canonical decision rule. Similarly, Frances’s
canonical decision rule is given by Cg : £ — %(u — z). Consequently, the non-
cooperative equilibrium of the duopoly (also called Cournot’s equilibrium) is
the fixed point of the mapping (z,y) — (Cgr(y), Cr(z)); in other words, this is
the strategy pair

To = yo=13 (41)

which results in a cost of —“—92— to each player. We note that, in this game, the
non-cooperative equilibrium is not Pareto optimal.

We also note that the non-cooperative equilibrium may be attained algo-
rithmically. Consider the following scenario. We suppose that the players play
alternately, Emil in the even periods and Frances in the odd periods. When
Frances produces yon—1 in the period 2n — 1, Emil produces z2n := Ce(y2n—1)
in the period 2n. Frances then changes her production rate and produces
Yont1 = _C—F(-TZn), and so on.

The sequences of elements 2, and yz,—1 are subsequences (indexed by the
even and odd indices, respectively) extracted from a sequence of elements z
which satisfies the recurrence relation

2Zk+1 + 2z = u.
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Multiplying each of these equalities by (—1)**'2% and adding them, we
obtain

1427
1+2-1

U
=g + (—1)"t2me 1.
Whence, the sequence z,, and thus also the subsequences z2, and ¥2n+1, coOn-
verge to 3.

Unfortunately, this algorithm does not converge in general games.

Associated Game Relating to the Decision Rules

A duopoly may be associated with another game, which involves choosing not
the strategies but the decision rules.

Let us consider Emil’s point of view. He may decide to play an affine decision
rule C° of the form

w(y) = a(u — y) where a €]0,1]. (42)

This means that he does not produce anything when Frances produces the
maximum u and that he decides to produce u if Frances produces nothing.

When, in turn, Frances decides to behave according to an affine decision
rule C%. defined by

C%(z) := b(u — z) where b €]0, 1], (43)

the subsequent consistent strategy pair is equal to

a(l —bu bl —a)u
( l1—ab ’ 1—ab ) (44)

This subjects the players to the following costs:
a(1 — a)(1 — b)*u?

1) ge(a,b) ;== —

(1 — ab)*
. b1 =b)(1—a)’u?
(ii) gr(a,b) == (1 — ab)’ (45)

Thus, we have constructed a new game, the strategies of which are the slopes
of the affine decision rules. In this new game, if Frances plays a slope b, Emil
will play the slope @ = og(b) which minimises the function a — gg(a,b). We
obtain

_ 1
a = UE(b) = m (46)
Similarly, Frances’s canonical decision rule o in this new game is given by
1
or(a) = 5—. (47)
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The non-cooperative equilibrium of this game is formed by the pair of slopes
(@=1b=1) (48)

Adopting this concept, Emil and Frances implement the decision rules
Ci(y) =u—y and Cp(z) =u—z. (49)

The set of consistent strategy pairs associated with these decision rules is
equal to:
A= {(&,y) € [0, 4’|z +y = u}. (50)

These consistent strategy pairs result in a zero cost to the players.

Stackelberg Equilibrium

As in the initial game, the non-cooperative equilibrium (&, b) = (1,1) may be
obtained algorithmically, as follows. Frances, who starts, plays the slope %, which
is just her canonical decision rule C'r. If Emil knows (or guesses) that Frances
will play Cr = Cr'?, in the new game, he will play the slope og (%) = %
The associated decision rule Cx?? is called Emil’s Stackelberg decision rule.
The consistent strategy pair associated with the decision rules C’IZ,;/ % and C’}/ %is

equal to
4 u u

= = —. 51
2 Ys 4 ( )

This pair is called Emil’'s Stackelberg equilibrium after the economist
H. von Stackelberg who described this behaviour in 1933 in a review of price
theory.

The associated costs are given by the formulae

Tg =

U2

fe(zs,ys) = —%, fr(zs,ys) = T (52)
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Set A of strategy pairs

2uf3

uf2 — — — Stackelberg equilibrium for Frances

— —— Stackelberg disequilibrium

u/3 < — — Non-cooperative equilibrium
uf4 — — Stackelberg equilibrium for Emil
(P)
— — Set P of Pareto optima
0 uf2 u/3 u ARy
X Ry
—u? .
v/ —u?/8 -u?/16 0 = ov* = f(4)
Stackelberg _— —u?/16
equilibrium for Emil \
Stackelberg — — — —u2/25
disequilibrium
Non-cooperative )
equilibrium — —— —— N —u*/9
Stackelberg equilibrium — — — —»> —u?/8

for Frances

Pareto optima — — — — — — — — —

£(P)

Fig.7.10.
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By playing his Stackelberg equilibrium, Emil achieves a cost better than that
provided by the non-cooperative equilibrium, —%2 as against — %::, whilst Frances
loses.

Suppose now that Frances follows the same reasoning as Emil. In this case,
both will play their Stackelberg decision rules C’lz,;/ % and C'?! 8. The consistent
strategy pair associated with these two decision rules is

2u 2u
= — = —. 53
Zpi=—,  Ypi= (53)
This is called the Stackelberg disequilibrium, since the costs incurred
2u? 2u?
-2 = 54
fe(zp, yp) 25 fr(zp, yp) %5 (54)

are greater than those in the case of the non-cooperative equilibrium!

We are in the paradoxical situation where unilateral use of the Stackelberg
decision rule is advantageous for the player who uses it, whilst simultaneous
use of the Stackelberg decision rule is unfavourable to both players. We have
rediscovered the prisoner’s dilemma:

Frances .
Emil canonical (1/2) | Stackelberg (2/3)
canonical (1/2) (—%2-, —l;-) (_%, _ug)
u? u? 2 W
Stackelberg (2/3) (—?, —1—6-) (_22_5, _22_5)

3 1

The algorithm associated with the new game yields the series of slopes
3 2=o0p %), S =oF (%), .., 1—2%, ..., since

1 1 1
1—=y=— - _—1_
0( n) 2—1+1 n+1

These clearly converge to the slope 1. Thus, Emil will successively play the

slopes 1 — %, 1-—- é, T 2n1+1 in the even periods, whilst Frances will play
the slopes %, 1-— 1—, 1-— %, I ﬁ in the odd periods.

In the even periods, the consistent pairs are

u _(2n—2)n
Top = 2’ Yon 1= 2(27?, _ 1)

and in the odd periods they are

(2n —1)u

an ) Yont1 ==

Ton+1 ‘=

STES

They converge to the pair (%, %) € A.






8. Two-person Zero-sum Games:
Theorems of Von Neumann and Ky Fan

8.1 Introduction

It is in the context of two-person zero-sum games (called duels) that we shall
prove the two fundamental theorems of this book, theorems which have appli-
cations in many other domains outside game theory. The first statement and
proof of the minimax theorem are due to John von Neumann in 1928. Since
then, many different proofs and variations on this theorem have been given.
The proof we describe here is in our opinion the most elementary.

In 1972, Ky Fan proved another minimax inequality, which is stronger since
it has been shown to be equivalent to Brouwer’s fixed-point theorem.

This inequality also plays a crucial role, not only in game theory, but also as
a useful tool for proving many theorems of nonlinear analysis. Experience shows
that it is better to use Ky Fan’s Inequality than the fixed-point theorems due to
Brouwer or Kakutani, although all these results are equivalent (see Chapter 9).

8.2 Value and Saddle Points of a Game
We now consider the important class of two-person zero-sum games, which by
definition satisfy

Vz e E, Yy e F, fe(z,y)+ fr(z,y) = 0. (1)

In other words, Frances’s loss is Emil’s gain and vice-versa. Since f(E x F) is
contained in the second bisectrix of IR?, any strategy pair is Pareto optimal, so
that this concept is not of interest here. Condition (1) enables us to set

f(z,y) == fe(z,9), —f(z,y) == fr(z,y) (2)

and consequently

fiz) = supf(z,y), v":=infsup f(z,v) (3)
yEF z€E yeF

PE) = inffl@my), o =supinf f(z,5). @)
xE y€eF TE
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Wi
{(z. 9 < f(z,y) < o)
Fig.8.1.
We set

E' = {z € E|fl(z) ="}

F' = {y eFlff() =2} (5)
Then we have

fh(@) = =), fl) =—F() (6)
and

o = o, o = —ob, vl = (of, —P). (M

The subsets E' and F* consist of the conservatives strategies of Emil and
Frances, respectively.
Since

VzeE, VyeF, f(y) < fi(z)
we deduce that
o <o (8)
in other words that
vi= (@, —v) ©

lies above the second bisectrix.
We shall call [¢°, v!] the duality interval. The set K of strategy pairs

K := {(z,9) € E x Flo) < f(z,v) < o'}, (10)

which is equal to the set of strategy pairs (z,y) € E x F such that f(z,y) < v¥,
contains E* x F’. There are situations in which ¢’ is strictly less that o

Ezample. In November 1713, in a letter to Nicoli Bernoulli, Rémond de Mont-
mort proposed the following game of ‘pure reason’:

A father wishes to give his son a Christmas present and says to him: I shall
take an odd or an even number of tokens in my hand, as I think fit.
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If you guess that the number is even and the number in my hand is odd,
I shall give you two écus.

If you guess that the number is odd and the number in my hand is even,
you will give me one écu.

If you guess that the number is odd and the number in my hand is odd,
you shall have one écu.

If you guess that the number is even and the number in my hand is odd,
you will give me one écu.

I wonder

1. What rule should one prescribe for the father, so that he saves as much
money as possible?

2. What rule should one prescribe for the son, so that he turns the situation
to his advantage?

3. Determine the advantage that the father gives his son, and calculate the
value of the gift, assuming that each behaves in the way which is most
advantageous to himself.

R. de Montmort’s intuition is that ‘it would be absolutely impossible to prescribe
any rule for such a game between equally astute and perceptive players’.

Let us call the father Emil and the son Francis. This moving family scene
translates into the finite game

Francis
Emil even (1) [ odd (2)
even (I) 2 -1
odd (II) -1 1

where Francis plays the columns and Emil plays the rows.

The coefficients of this matrix represent Emil’s losses or Francis’s gains.

Let us calculate the conservative values.

Since Emil’s worst losses are 2 and 1, respectively, his conservative value is
given by v! = 1, which he obtains by taking an odd number of tokens in his
hand.

Francis’s worst gain is —1 in both cases and, consequently, his conservative
value is given by v’ = —1 < v!. The strategy pairs (odd, even) and (odd, odd)
belong to the set K.

Let us now analyse the different ways of playing. Suppose that Francis plays
the odd strategy (2), which is conservative. Anticipating this choice and using
his canonical decision rule, Emil would be well advised to play the strategy even
(I), which gives him a loss of —1. But, at that moment, Francis, guessing this
ruse, actually announces an even strategy (1), which causes Emil to lose two
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écus. He should have been satisfied with his conservative strategy (odd) which
would have limited his loss to one.

This situation illustrates the consequences of the absence of non-cooperative
equilibria. In fact, Emil’s canonical decision rule Cpg is given by

Cp(1) = {II} and Tx(2) = {1}
and that of Francis is given by
Cr(l) = {1} and Tr(II) = {2}.
We note that the mapping C := (Cr x Cg) is defined by

C(I,1) = (IL,1), C(2) =(1)
C(L1) = (I,2), C(L2) = (12

which we represent by the following scheme

. Francis even (1) [ odd (2)

Emil hof C
even (I) 1 — Erapa o
odd(II) — t

This scheme illustrates not only the absence of fixed points, but also the
circular nature of the evolution of the ‘natural’ algorithm. If Emil plays I, Francis
plays Cr(I) = {1}, Emil plays Cg(1) = {11}, Francis plays Cr(II) = {2}, Emil
plays Cg(2) = {1} and so on.

We note that we have only left the static framework to illustrate R. de Mont-
mort’s intuition.

It was two centuries before Emile Borel suggested the notion of mixed strate-
gies and von Neumann proved the theorem mentioned above and the determin-
istic framework was left behind.

Ezample. Let us consider the finite game where F := {1, 2}, F := {1,2,3} and
f is described by the matrix

Frances

Emil 1 2 3
1 —6| 2 |-3
2 4 |-5|—4

where Emil plays the rows and Frances plays the columns.
The coefficients of this matrix represent Emil’s losses and Frances’ gains.
Let us calculate the conservative values. Emil’s worst losses are 2 and 4,

respectively, his conservative value is given by v! = 2 and his conservative
strategy is 1. Frances’s worst gains are —6, —5 and —4, respectively, it follows
that v* = —4 and that Frances’s conservative strategy is strategy 3. The strategy

pairs (1,2), (1,3) and (2,3) belong to the set K.
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Here again, there are no non-cooperative equilibria. Emil’s canonical deci-
sion rule Cg is given by

Ce(1) = {1}, Ce(2) = {2}, CTe(3) = {2}

and Frances’s canonical decision rule CF is given by
Cr(1) ={2}, Cr(2) = {1}.

We note that the mapping C := (Cg x Cg) has no fixed points.

The absence of non-cooperative equilibria when ¢’ is strictly less than ! is
a general fact.

Proposition 8.1. The following conditions are equivalent:

(a) (Z,9) is a non-cooperative equilibrium;
(b) V(z,y) e ExF, f(z,y) < f(Z,9) < f(=,9);
(c) =1’ andz € E, § € F® are conservative strategies. (11)

Proof. The equivalence of properties (11)(a) and (11)(b) clearly follows from
(2) and (11)(b) evidently implies (11)(c) The converse is also easy. We let v
denote the common value v# = +*. If £ € E! and § € F® are conservative
strategies, then v = f°(3) < f(Z,%) < f!(Z) = v, which implies the inequalities
(11)(b). o

Definition 8.1. When v* = !, the common value v = v! = 1" is called the
value of the game and the non-cooperative equilibria are called saddle points.

R A F
/_f(i,‘ﬂ) :\\\
_ ,’, o e
e A
A (I,y)

Z E
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Ezample of a saddle point. We take E := {1,2}, F := {1,2,3} and f described
by the matrix

Frances

Emil 1123
1 —2|-1|—-4
2 1 0 |—6

We note that v = —1 and that the pair (1,2) is a non-cooperative equilib-
rium or saddle point of the game.

8.3 Existence of Conservative Strategies

To find non-cooperative equilibria, we must first find the conditions which imply
the equality of v! and +*. To this end, we introduce an intermediate value ! (v
natural) and prove successively that v" = ¢! (under topological assumptions)
and that v! = ¢" (under convexity assumptions).

We denote the family of finite subsets K of F' by K. We set

vh = inf sup f(z,y) (12)
z€EE yeK
and
v" := sup vl = sup inf sup f(z,y). (13)
KeK Kek *€F yek

Since every point y of F' may be identified with the finite subset {y} € KC, we note
that vgy} = f*(y) and consequently, that v’ = sup,cp vgy} < SUpgex Vi =: .

Since sup,eg f(%,y) < sup,er f(%,y), we deduce that vl < o', whence, that
v? <. In summary, we have shown that

v <of <ol (14)

We shall now prove that reasonable topological assumptions imply that
vl = oh

Proposition 8.2. We assume that
E is compact (15)

and that
Vye F, z— f(z,y) is lower semi-continuous. (16)

Then, there exists T € E such that

sup f(Z,y) = o (17)
yeF

and
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o =h (18)

Remark. Since the functions z — f(z,y) are lower semi-continuous, the same
is true of the function f! (see Proposition 1.5).

Since E is compact, Weierstrass’s theorem implies the existence of Z € E
which minimises f*. Following (3), this may be written as

3ggf(rf,y) = fiz) = ;ggf"(w) = ;g}gilelgf(w,y) = (19)

Proposition 8.2 gives a stronger result with the same assumptions, which
are the reasonable assumptions for obtaining conservative strategies (solutions

of (17)).

Proof. It suffices to show that there exists Z € E such that
sup f(Z,y) < " (20)
yeF

Since v! < sup e f(Z,y) and v" < ¥, we shall deduce that o = of.
We set

= {z € E|f(Z,y) <"}
The inequality (20) is equlva.lent to the inclusion
ze ]S, (21)
yEF

Thus, we must show that this intersection is non-empty.

For this, we shall prove that the S, are closed sets with the finite-intersection
property.

The set S, is closed since S, is a lower section of the lower semi-continuous
function z — f(z,y).

We show that for any finite sequence K := {y1,...,yn} € K of F, the finite
intersection

N 5.#0

i=1,...,n
is non-empty. In fact, since E is compact, and since
z — max f(z,y;) = max f(z,y)
is lower semi-continuous, it follows that there exists £ € E which minimises this
function. Such an £ € E satisfies

3 < _
max f(2,y) = inf max f(z,y) < sup inf max f(z,y) = o,

Since E is compact, the intersection of the closed sets S, is non-empty and
there exists Z satisfying (21) and thus (20). m]

We shall now show that convexity assumptions imply the equality v’ = b.
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Proposition 8.3. Suppose that E and F are conver sets and that

(i) YyeF, z— f(z,y) is convez, and
(i) VzeFE, y— f(z,y) is concave (22)

then v* = ol

Proof. We set M" := {A € R}|YX2, \; = 1}. With any finite subset K :=
{v1,...,Yn} we associate the mapping ¢y from E to IR™ defined by

ok (z) == (f(z, 1), ., f(Z,9n))- (23)
We also set
Wk = sup mf()\ oK (z)). (24)
AeMn =€

We shall prove successively that
a) ¢x(F)+ IR} is a convex subset (Lemma 8.1);
b) VK € K, vk < wx (Lemma 8.2);
¢) VK € K, wg <% (Lemma 8.3).

Whence, the inequalities

Wb = sup ol < sup wg < ° <ol (25)
Kek Kek

will imply the desired equality v°> = v".

Lemma 8.1. If E is convez and if the functions x — f(x,y) are convez, then
the set ¢px(E) + IR, is convez.

Proof. Any convex combination on(¢x(z1) + 1) + (P (x2) + uz) where
aj,az > 0, a1 + 02 = 1 (21,22 € E,u1,us € IR]) may be written in the
form ¢y (x) + u where z := 012, + @z, belongs to E (since E is convex) and
U = aquy +oUs+a1 O (7)) +aed i (T2) — P (). Since the functions z — f(z,y)
are convex, oy ¢k (T1) + a0k (22) — Pr (121 + aa2,) is a vector in IRY}.. Thus, u
belongs to IR} and consequently, o (¢x (1) +u1) +az(dr (22) +u2) = dx(T)+u
belongs to ¢x(E) + IR} O

We recall that M™ := {A € IR} |YX%, A\; = 1} is convex and compact and
that we set

= f (A,
wic = sup inf(A, gxc(z))-

Lemma 8.2. If E is convex and if the functions ¢ — f(z,y) are convez, then
for any finite set K, we have the inequality

vl < w. (26)
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Proof. Let € > 0 and denote 1 := (1,...,1). We shall show that
(wi + €)1 € ¢ (E) + R} (27)

Suppose that this is not the case. Since ¢x(E) + IR? is convex, following
Lemma 8.1, we may use Theorem 2.5 ( Large Separation Theorem). There exists
A€ R", X\ #0, such that

2 )‘i(wK- +e) = Mwk+e)) < ¢K1(1}«3§+m('\’ v)
= inf(\ ¢x(z)) + ulerlllffi (A, u).

Then infy,emry (A, u) is bounded below and consequently, A belongs to IR} and
infyemn (A, u) is equal to 0. Since A is non-zero, then 7 | ); is strictly positive.
We set A =X/, \i € M™ and deduce that

wg + € < inf (X, i () < sup inf(X, dr(z)) = wk.
z€E AeMn TEE

This is impossible and thus we have established the property (27).
This implies that there exist z. € E and u. € IR} such that (wg + €)1 =

¢K(IE5) + u,.
From the definition of ¢k, we deduce that

Vi=1,...,n, f(z,v:) <wg-+e.
Whence,

vg( < max_ fze,v:) S wk +e.

i=1,..
We complete the proof of the lemma by letting € tend to 0. O
Lemma 8.3. Suppose that F' is convex and that the functions y — f(z,y) are
concave. Then, for any finite subset K of F, we have wx < v°.

Proof. With each A € M™, we associate the point y, := > ; A\;y; which belongs
to F, since the latter is convex. The concavity of the functions y — f(z,y)
implies that

Vz € E) Z)‘zf(z, yz) < f(:l?, yx\)
i=1
Consequently,
. e . . b
inf, ; Aif (7 3) < fof f(z,33) < sup inf f(w,y) ="

The proof of Lemma 8.3 is completed by taking the supremum over M™. O

Lemmas 8.1 to 8.3 may now be applied, as indicated, to complete the proof of

Proposition 8.3. O

Propositions 8.2 and 8.3 imply the existence of a value.
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Theorem 8.1. Suppose that

(i) E is convex and compact

(i) Yy € F, z— f(z,y) is convez and lower semi-continuous (28)
and that
(i) F is convex
(ii) VzeE, y— f(z,y) is concave. (29)
Then f has a value:
vi=ol =P (30)

and there exists T € E satisfying:

sup f(Z,y) = v. (31)

yeF

Applying Theorem 8.1 to f and to — f, we obtain the minimax theorem.
Theorem 8.2 (von Neumann). Suppose that

(i) E s convex and compact
(i) VyeF, z— f(z,y) is convez and lower semi-continuous (32)

and that

(i) F is convex and compact
(i) Vz e E, y— f(z,y) is concave and upper semi-continuous. (33)

Then there exists a saddle point (Z,7) € E x F.

Corollary 8.1. Consider a zero-sum game defined on finite strategy sets
{1,...,n} and {1,...,p} by a matriz {a;;} 1gign (a;; is Emil’s loss and Frances’s
=SJI=pP
gain).
We associate this with the game defined on the mized strategy sets M™ and
M? by
FO ) Z Z Aifljij. (34)
i=1 j=1
Then there exists a saddle point formed from mixed strategies.

This provided an answer to R. de Montmort’s question. In this case, identifying
A with (A, 1 — ) and p with (p,1 — ), the function f(), p) may be written as

FOup) = 22— A1 —p) —p -+ (1-X)(1— p)
A\ — 22— 2u+ 1.

Thus, we see that the value of the game is equal to v = é and that the saddle

point is formed by the pair (5, 5), which involves playing the even strategies
with probability % and the odd strategies with probability 2 :
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8.4 Continuous Partitions of Unity

In the following paragraphs, we shall use convex combinations f(z) € M™ which
depend continuously on a parameter x € E. This will enable us to cover the
convex hull of n points in a continuous fashion. Even better than this, we shall
construct these functions f(z) so that the components f; are zero outside open
sets A; covering the space E. Such functions are called continuous partitions of
unity.

Definition 8.2. Let f be a real-valued function defined on a metric space E.
The smallest closed set S such that f(z) =0,z ¢ S is called the support of f
and is denoted by supp(f).

In other words, the support of f is the closure in E of the set of elements
z € F such that f(z) # 0. It is also the set of elements x € E such that any
neighbourhood V' of = contains a point y with f(y) # 0.

Definition 8.3. Consider an open covering {A:},_, , of E. A family {fi}ier
of continuous functions from E to [0,1] such that:

(i) Vz e E, YL, filz) =1
(i1) Vi=1,...,n, suppf; C A; (35)

is called a partition of unity subordinate to this covering.
Before we prove the existence of a partition of unity subordinate to a finite
open covering, we shall need the following propositions.

Proposition 8.4 (separation of two closed sets by a continuous func-
tion). Let M and N be two non-empty, disjoint, closed subsets of a metric space
E. Then there ezists a continuous function g from E to [0,1] such that

g(z) =0 Vz € M, g(x)=1 Vz € N. (36)

Proof. Since M and N are disjoint, d(z, M) +d(z,N) > 0 for all z € E. Thus,
the function g defined by
(z) = d(x, M)
9 = 4(z, M) + d(z, V)

(37)
is a continuous function from E to [0,1] which takes the value 0 on M and is

equal to 1 on V. O

Proposition 8.5. Suppose that E = AU B is the union of two open sets. Then
there exists an open set W such that

WCA and E=WUB (38)
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Proof. If A= E, we take W = E, and if B = E we take W = (. Suppose now
that A # E and that B # E. The non-empty closed sets [A and [B are disjoint.
Thus, we consider a continuous function f which takes the value 0 on [A and
1 on [B and we take W := {z € E|f(z) > 1}. This is an open set. Since W is
contained in {z € E|f(z) > 1}, and since [A is contained in [W, it follows that
W is contained in A. If z does not belong to B, f(z) = 1 and thus z belongs
to W. Thus, E is covered by W and B. o

Proposition 8.6. Let {A;},_, ., be a finite open covering of E. Then there
exists an open covering {W;},_, . such that

Vi=1,...,n, W:C A, (39)

Proof. We construct the covering W; recursively, using Proposition 8.5.
Setting B) = U2 ,A;, we obtain £ = A, U B;.
Proposition 8.5 implies that there exists an open set W; C A; such that

TK71(:441 and.13:==l@ﬁ LJ131==I4G ledjqu

Jj=1

Suppose that we have constructed the open sets W (1 < j < k — 1) such that

k—1
W;CA;jif 1<j<k-1, E= UWUUA (40)
i=1 j=k

We introduce the open set

UWUUA

j=k+1

such that £ = A, U By, following (4Q Proposition 8.5 implies that there exists
an open subset W, C Ay such that W C A, and E = W, U By.. Thus, we have
constructed k open subsets W; such that

k n
W,c4 if 1<i<k E=UwWu | A;

i=1 j=k+1

Thus, the recurrence may be continued and the proof of the proposition is
complete. O

Theorem 8.3. Given any finite open covering of a metric space E, there exists
a continuous partition of unity which is subordinate to it.

Proof. Suppose that E = U2, A; for some open sets A;.
Following Proposition 8.3, there exist n open sets W, C A; such that W, C
/L and F = Lg;lL@Q
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Since ML, [W; = 0, the function 37, d(x, [W;) is strictly positive. The func-
tions f; defined by
(=, (W)
(Z) =
o) = S e, W

form a continuous partition of unity. If f;(z) > 0, it follows that = ¢ [W; (which
is closed), whence z € W;. Thus, the support of f; is contained in W;, which is
itself contained in A;. O

(41)

8.5 Optimal Decision Rules

What should we do when the convexity assumptions are missing? As in Corol-
lary 8.1, we could embed the strategy sets in other sets of mixed strategies (we
did this for finite sets). There is another approach which involves considering a
strategy as a constant decision rule.

Let us consider, for example, the case of Frances. What value could she
attribute to a decision rule Cr : E — F'. Since she plays Cr(z) whenever Emil
plays z, the worst gain than she may incur is

f*(Cr) = inf f(z,Cr(z)) (42)

when she has no means of knowing Emil’s choice in advance.

We note that this definition is consistent with the definition of the worst
gain incurred by a strategy yo considered as a constant decision rule x — g,
since

Fwo) = mifelgf(ﬂ?,yo) = igfgf(w,yo(fﬂ))-

Consequently, if Cr is a set of decision rules which contains the set F' (of constant
decision rules) we have:

v’ := sup inf f(:c y) < sup fP(Cr) < 1nf supf(:z: y) =: o (43)

yEF-’" CreCr

Proposition 8.7. We denote the set of all the decision Tules of E in F by FE.
Then

sup f*(Cr) =o' (44)
Cp€EFE

Proof. By definition, we may associate any € > 0 and any z € E with a strategy
D,(z) € F such that

Slégf(m,y) < f(z, De(x)) +e. (45)
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It then follows that

B b i C .
v ;ggzggf(w,y) < f(D)+e< .ﬁ‘éﬁﬂfelgf(x’ r(z)) +€

C

Since this inequality holds for all € > 0, we obtain the inequality o' <
supg,.c e infep f(z, Cp(z)) which, taken with the inequalities (43), implies the
desired equality (44). O

We shall show that, under additional assumptions, the equation (44) remains
true if Frances is forced to use only continuous decision rules (this enables us
to model a regular behaviour for Frances).

Theorem 8.4. Suppose that

(i) E is compact
(i) VyeF, z— f(z,y) is lower semi-continuous (46)

and that

(i) F is a convex subset
(i) VzeE, y— f(z,y) is concave. (47)

Then if C(E, F) denotes the set of continuous mappings from E to F, we
have

sup inf f(z,D(x)) = inf sup f(z,y). 48
pp inf f(@, D(@)) = inf sup f(z,) (48)

Proof. We already know that suppec(p,r) infzee f(z, D(z)) < o, from (43).
Thus, it remains to prove the opposite inequality. Firstly, we may associate
any € > 0 with a mapping (not necessarily continuous) D, from E to F which
satisfies (45).

In addition, since the functions z — f(z, y) are lower semi-continuous, there
exist neighbourhoods B(z,7n(z)) of = such that

Vz € Bm,n(z),  f(z,De(z)) < f(2 De(z)) +&. (49)

Since FE is compact, it can be covered by n balls B(z;, n(z;)). Let {g,-}i:l,___‘n be
a continuous partition of unity subordinate to this covering. We introduce the
function D defined by

n
D(z) =} gi(z) De(x:),
i=1
which is continuous since the functions g; are continuous. Finally, since the
functions y — f(z,y) are concave, since g;(z) > 0 for all s and Y2, gi(z) = 1,
we have:

f(@D(@) > 3 gi(=)f (2, De(x:)) (50)

icl(z)
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where I(z) is the set of integers i = 1,...,n such that g;(z) > 0. This set is
non-empty since Y2, g;(z) = 1.

Moreover, if g;(x) > 0, = belongs to the support of g;, which is continuous on
the ball B(z;, n(z;)). It follows from (49) that f(z, D.(z:)) > f(z:, De(z:)) — €
and from (45) that f(z;, De(z:)) > supyep f(%:,y) —€ > ! — €.

Thus, if i € I(z), we have f(z, D:(z:)) > v" — 2¢. Then (50) implies that

f(z,D(z)) = 3 gi(z)(@" — 2€) =o' — 2.
i€l(z)
It follows that inf,cp f(z, D(z)) > v — 2¢, whence that

SUPpec(e,r) infzee f(z, D(z)) > v¥ — 2e.
We obtain the desired inequality by letting € tend to 0. O

We shall now establish another expression for v¥.

In the game-theory context, we now suppose that Emil has information
about Frances’s choice of strategy and that he has the right to choose continuous
decision rules C € C(F, E). Thus, he may continuously associate any strategy
y € F played by Frances with a strategy C(y) € E.

Theorem 8.5. We retain the assumptions of (46) and (47) of Theorem 8.4. If
C(F, E) denotes the set of continuous decision rules of F' in E, then

ceth py 592 f(CW),y) = inf sup f(z,y). (51)

Proof. We shall use the convex compact set

M™ .= {)\ € ]R.ZHZ)\, = 1}.
i=1
The inequality infcec(r gy supyer f(C(y), y) < vl is clearly always true.
Since E is compact and the functions z — f(z, y) are lower semi-continuous,
Proposition 8.2 implies that there exists £ € E such that

sup f(Z,9) =o' = sup  inf max f(z,y) (52)
yeF K={y1,.,yn}€K z€FE i=1,...,n

Thus, it is sufficient to prove that for any finite set K = {v1,...,¥»} and any
continuous mapping C € C(F, E), we have

inf max f(:l), yi) < Slelg f(C'(y), y)' (53)

z€FE i=1,...,n

Firstly, we note that

inf v9:) = inf Xf (@, 54
inf mox f(z,u) = iof sup 3 Aif(@w) (54

< 1 f Ai C iYi)y Yz
< #g}vmselﬁn; £ (;ugyg)y)

= inf sup ¢(p,A)

EM™ e pqn
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where the function ¢ is defined on M™ x M™ by

G X) = D Nf(C(D_ 1393), va)- (55)
=1 i=1

Since C is continuous and since the functions z — f(z,y;) are lower semi-

continuous, it follows that the functions p — ¢(u, A) are lower semi-continuous.

The functions A — ¢, A) are linear, whence concave. The set M™ is convex

and compact.
Thus, Theorem 8.4 implies that

inf su WA = su inf , D{(p)). 56
nf sup ¢, A) DeC(ME,Mn)ueM"d)(“ (1)) (56)

But, Brouwer’s Theorem implies that any mapping D € C(M", M™) has a fixed
point up € M™. Thus,

inf. #(u, D)) < é(up, Dlpp) = dlup, p)) < sup $lpp)- - (57)

pEM™

This then implies that

su inf , D < su ) 14)- 58
e i é(p, D(1)) Sup, &1, 1) (58)

Moreover, since the functions y — f(z,y) are assumed to be concave we have

m

Bnr) = 3 wFCO ) )

i=1 Jj=1

< f(C(i: K5Y3)s Zj: KiY5)
< sup f(C®),y)- (59)

Thus, the inequalities (54), (57), (58) and (59) imply the desired inequality
(53). O

In particular, we deduce the following important inequality.

Theorem 8.6 (Ky Fan’s Inequality). Suppose that E is a convex compact
subset of a Hilbert space and that f is a function from E x E to IR satisfying

(i) Vy € E, z— f(z,y) is lower semi-continuous
(ii) Vz € E, y— f(z,y) is concave. (60)

Then there exists T € E such that

sup f(Z,y) < sup f(v,y)- (61)
yekl yeE
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Proof. Theorem 8.5 implies that there exists Z € E such that

sup f(Z,y) <v'" < inf sup F(C(y),y) < su ,
yEEf( Y) L yegf( ¥),v) yegf(y Y)

since the identity mapping is continuous from E to E. O

Remark. We have deduced Ky Fan’s Inequality from Brouwer’s Fixed-point
Theorem. In fact, these two results are equivalent and we can deduce Brouwer’s
Fixed-point Theorem from Ky Fan’s Inequality.

Let D be a continuous mapping of a convex compact subset K of a finite-
dimensional vector space IR™ into itself. Set

f(.’E, y) = (.’L‘ - D((E),:l} - y) (62)

where (-, -} is the Euclidean scalar product on IR".
This function clearly satisfies the assumptions of Theorem 8.6 (Ky Fan’s
Inequality); thus, there exists an element Z € K such that

(% - D(2),5—y) <0 (63)
for all y € K. Taking y = D(Z), we have ||Z — DZ||> < 0, whence & = D(Z).

Remark. We can provide a direct proof of the Ky Fan inequality based on the
Brouwer Fixed-Point Theorem by deriving a contradiction from the negation of
the conclusion:

Vz € K, 3y € K suchthat f(z,y)>0
Hence K can be covered by the subsets
V, = {c € K| f(zy) > 0}

which are open since f is lower semicontinuous with respect to z. Since K
is compact, it can be covered by n such open subsets V,,. Let us consider a

and define the map c¢: K — X by

Vz € K, c(z) = zn:ai(m)yi

i=1

It maps K to itself because K is convex and the elements y; belong to K. It is
also continuous, so that Brouwer’s Fixed Point Theorem implies the existence
of a fixed point 7 = ¢(g) € K of f. Since f is concave with respect to y, we
deduce that

FBD) = f@ > a@w > 3 a@@y)

i=1
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Let us introduce
Iy) = {i=1,...,n| as(y) > 0}

It is not empty because 7 ; o;(7) = 1. Furthermore

iai(y)f(y,yi) = 3 a@f@w) >0

i€l (%)

because, whenever ¢ belongs to I(y), o;(g) > 0, so that 7 belongs to V,,, and
thus, by the very definition of this subset, f(7,y;) > 0. Hence, we have proved
that f(7,7) is strictly positive, a contradiction of the assumption that f(7,7) <
0.



9. Solution of Nonlinear Equations and
Inclusions

9.1 Introduction

Ky Fan’s Inequality (which is equivalent to Brouwer’s Fixed-point Theorem) im-
plies a whole series of ezistence theorems for the solutions of nonlinear equations
or inclusions. Such theorems are very useful in many applications, particularly
in mathematical economics and game theory, as we shall see in the following
chapters.

We shall begin by indicating how to adapt the concepts of continuity to the
case of set-valued maps; we shall consider only upper semi-continuous set-valued
maps with convex closed values.

Then we shall describe sufficient conditions for the existence of a solution

zeM={zeR}|D z;=1}
=1

of the problem
C(Z)NIR} =0 (where0 € C(z) — IR})

when C is a set-valued map from M™ to IR™. In addition to certain technical
assumptions, we shall assume that the condition

Vz € M™, sup (v,z) >0
veC(x)

is satisfied.
Then we shall study the existence of zeros Z of the inclusion

0e€C(z)

when C is a set-valued map from a convex compact subset K C X to X.
In addition to technical conditions, we assume that the tangential condition

vz e K, C(z)NTk(z) #0

is satisfied, where (we recall) Tk (z) denotes the tangent cone to K at z which
we studied in detail in Chapter 4.
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This result has a number of consequences. Firstly, there is the famous fixed-
point theorem due to Kakutani, which generalises Brouwer’s Fixed-point The-
orem to the case of set-valued maps. This says that any upper semi-continuous
set-valued map from a convex compact subset into itself, with convex closed
values, has a fixed point.

We shall then describe another consequence which will be very useful in
economic models (viability theorem).

We assume we have convex closed subsets L C X, M C Y and P C Y*,
a continuous linear operator A € L(X,Y) and a continuous mapping ¢ from
L x P to Y which is affine in its second argument.

We also suppose that

Ve L, VpeP, (p Ac(z,p)) <0

together with certain technical assumptions. We shall then prove that there
exists (Z, p) satisfying

(i) zel, AZeM, FeP
(ii) c(z,p) = 0.

We shall also prove other theorems which will be useful in game theory. The
implications of these results are summarised in a diagram at the end of the
chapter.

9.2 Upper Hemi-continuous Set-valued Maps

We shall study a whole class of nonlinear problems which reduce to an inclusion
of the following form

find Z € K such that 0 € C(Z) (1)

where C is a set-valued map from K to a Hilbert space Y which associates
z € K with a subset C(z) of Y which is always non-empty, conver and closed.
If C is an ordinary pointwise mapping, problem (1) may be written in the more
familiar form of the solution of an equation:

find T € K such that C(z) = 0. (2)

A solution Z of (1) is called a zero of C or an equilibrium or stationary point.
The use of set-valued maps is mainly motivated by problems in optimisation
theory, game theory and mathematical economics.
In fact, we only use a few elements of the general theory of set-valued maps.
We use the fact that the images C(z) are convez closed sets to represent them
by their support functions

VpeY", weset o(C(z),p) = sup (p,y) (3)
yeC(z)
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(since y € C(z) if and only if (p,y) < o(C(z),p) for all p € Y*).

Definition 9.1. We shall say that a set-valued map C is upper hemi-
continuous at z, € K if and only if for all p € Y*, the function z — o(C(z), p)
1s upper semi-continuous at . It is upper hemi-continuous if it is upper hemi-
continuous at all points zy € K.

Any continuous mapping C from K to Y clearly defines an upper hemi-
continuous set-valued map (it is even sufficient if the functions z — (p, C(z))

are continuous for any p € Y*).
Let B be the unit ball of Y.

Definition 9.2. We shall say that a set-valued map C from K toY is upper
semi-continuous at z, if, for all € > 0, there ezists a neighbourhood N(z) of
zo such that C(z) C C(zo) +€B for all x € N(xzp). It is upper semi-continuous
if it is upper semi-continuous at all points zo € K.

Thus, we see that upper semi-continuity is a generalisation of the notion of
continuity to set-valued maps.
First we indicate the link between these two notions.

Proposition 9.1. Any upper semi-continuous mapping is upper hemi-continuous.

Proof. For fixed € > 0 and p € Y*, there exists a neighbourhood N(z,) such
that
Vz € N(zo), C(z) C C(xo) +€B (4)

whence also
Vz € N(zo), 0(C(z),p) < o(C(z0),p) + €llpll, (5)

since o(eB, p) = €l|p||,. Thus, z — o(C(z), p) is upper semi-continuous at zo.
O

Theorems 4.2 and 6.2 state that the subdifferentials of convex continuous func-
tions and, more generally, the generalised gradients of locally Lipschitz func-
tions, are upper hemi-continuous.

Theorem 9.1. Consider a nontrivial function f : X — IR U {+oo} which is
locally Lipschitz on the interior of its domain (in particular, a convezx continu-
ous function on Int Domf). Then the set-valued map « € Int Domf — Of(z) is
upper hemi-continuous.

We now note a useful property of upper hemi-continuous set-valued maps.
Definition 9.3. The graph of a set-valued map C from K to X is the subset
Graph (C) := {(z,y) € K x Y|y € C(=)} (6)

and the inverse C~! of the set-valued map C is the set-valued map from Y to

K defined by
z € C™ (y) if and only if y € C(z). (7)
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We note that the graph of a set-valued map characterises the set-valued map
C and its inverse. We also note that by inverting one-to-one mappings that are
not injective, we obtain examples of set-valued maps.

Lastly, we recall that if f : X — IR U {+o00} is a nontrivial, convex, lower
semi-continuous function, then the inverse of the set-valued map z — 0f(z) is
the set-valued map p — Of*(p) where f* is the conjugate function of f (see
Corollary 4.1).

Proposition 9.2. The graph of an upper hemi-continuous set-valued map with
convezx closed values is closed.

Proof. Consider a sequence of elements (z,y,) € Graph(C) converging to
the pair (z,y). Since the functions x — o(C(z), p) are upper semi-continuous,
the inequalities

(P, yn) < 0(C(2n), )
imply, by passing to the limit, that

(py) = lim (p, %) < limsup o(C(z,), p) < o(C(x),p)-

n—roo
These inequalities imply that
y € co(C(x)) = C(z). o

Remark. We recall that if C' is a one-to-one mapping from K to Y then the
following conditions are equivalent

(a) Ve, AN(=zo) such that Vz € N(x), C(z) € C(zo) + €B;
(b) whenever a sequence x,, converges to o, C(x,) converges to C(zp). (8)

If C is a set-valued map from K to Y, the notion of upper semi-continuity
is the natural generalisation of condition (8)(a).
Generalisation of (8)(b) leads to the following definition.

Definition 9.4. We shall say that a set-valued map C from K to Y is lower
semi-continuous at o € K if for any sequence z,, converging to o € K, for
all yo € C(xzo), there exists a sequence of elements y, € C(x,) converging to

Yo-
In the case of set-valued maps, the concepts of upper and lower semi-

continuity are no longer equivalent, as the examples of Figs. 9.1 and 9.2 show.

Definition 9.5. We shall say that a set-valued map C is continuous (at ) if
it is both lower and upper semi-continuous (at g ).
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{0} if £#0
Clz) = { {-1,+1} ifz=0

Fig. 9.1. Example of a set-valued map which is upper semi-continuous at 0, but not
lower semi-continuous.

A
//////////% -
AN 7
' {—1,+1} fz#0
Clx) = {{0} ifz=0

Fig.9.2. Example of a set-valued map which is lower semi-continuous at 0, but not
upper semi-continuous.

Remark. R.T. Rockafellar and R. Wets suggest to say that F' is outer semi-
continuous at z if Limsup,_, F(z') C F(z) and inner semicontinuous at x
if F(z) C Liminf,,,,F(z'). The above proposition led several authors to
call upper semicontinuous maps the ones which are outer semicontinuous in
the Rockafellar-Wets terminology. Naturally, these two concepts coincide for
compact-valued maps.

We shall need the following property of lower semi-continuous set-valued
maps.

Proposition 9.3. Suppose that

(i) f:X xY = R s lower semi-continuous;
(ii) the set-valued map C from X to Y is lower semi-continuous. 9)
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Then the function & : T — a(Z) = SUP,cc) f(,Y) is itself lower semi-
continuous.
Proof. We must show that if a sequence of elements z, € X converges to o,

then o(zo) < liminf,, ;0 0(z,,). We fix e > 0.
From the definition of a(wzo), there exists y € C(zo) such that, a(ze) <

f(:EO, y) + E/2
Since C is lower semi-continuous at x,, there exists a sequence of elements

Yn € C(z,) converging to y.
Since f is lower semi-continuous, it follows that there exists N (€) such that,
for all n > N(g),

f("BOa y) S f(mn, yn) + 5/2.

Since y, € C(z,), we have f(Zn,yn) < a(z,). Thus, the above inequalities
imply that a(z) < a(z,) + € whenever n > N(g). O

9.3 The Debreu—Gale—Nikaido Theorem

We shall begin with a theorem which is used to prove the existence of solutions
of many problems in mathematical economics.
Consider the simplex

M" = {:BG]Ri

i@:l}.

=1

Theorem 9.2 (Debreu—Gale-Nikaido). Let C be a set-valued map from M"
to R™ with non-empty values. If

(i) C is upper hemi-continuous

(i) Vze M, C(z)— IR} is convex closed

(i) Vz € M", o(C(z),z) >0 (Walras’s law) (10)
then there exists T € M™ such that C(Z) NIRT} # 0.

Proof. We introduce the function ¢ defined on M™ x M™ by

¢("E) y) = —O'(C(LE), y)

This function is concave in y (since y — o(C(z),y) is convex) and lower
semi-continuous in z (since, as C is upper hemi-continuous, z — o(C(z),y) is
upper semi-continuous). Since M™ is convex and compact, Ky Fan’s Theorem,
implies that there exists Z € M™ such that sup epm ¢(Z,y) < sup,epm ¢(¥,y) <
0 (following (10)(iii)), in other words that

0 <o(C(z),y) for all y € M™.

This condition is equivalent to
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0<o(C(z)-R},y) forally e R" (11)

since o(—IR},y) = 0 if y € R® and o(—IR},y) = +o0 if y ¢ IR}. Since
C(z) — IR} is convex and closed, (11) implies that 0 € C(zZ) — IR, whence that
C(z)NIRY # 0. O

9.4 The Tangential Condition

Let us suppose once and for all that we have:

(i) two Hilbert spaces X and Y
(ii) a continuous linear operator A € L(X,Y);
(iii) a convex compact subset K C X;
(iv) an upper hemi-continuous set-valued map C : K — Y with
non-empty, convex, closed values. (12)

In order to solve the inclusions
0 € C(z) where Te€ K (13)

and
y € Az — C(&) where £ € K (14)

we shall impose a condition which interrelates the objects given in (12). We
recall that the tangent cone to K at z is defined by:

Tk (x) := closure (U %(K — m)) . (15)

h>0

Definition 9.6. We shall say the set-valued map C satisfies the tangential
condition with respect to A if

Vz € K, C(z) N closure(ATk(z)) # 0. (16)

We note also the dual version of the tangential condition.

Proposition 9.4. The tangential condition (16) implies the dual tangential
condition
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vz € K, Vp € A* ' Ng(z), o(C(z),—p) > 0. (17)
The converse is true if the images C(x) of the set-valued map C are compact
(and convez).
Proof. a) Suppose z € K and v € C(z) N closure(ATk(z)) are fixed. Then
v = limy,_;e0 Au, where u, belongs to Ty (z). Let us take p such that A*p
belongs to Nk (z). Then

o(C(x),—p) = (—p,v) = lim (—p, Aun) = lim (~A'p,un) 2 0

since (A*p, u,) < 0 for all u, € Tk(z) = Nk(z)™.
b) Let us now suppose that C(z) is convex and compact and that the tangential
condition is false.
0 ¢ C(z) — closure(ATk(z)) (18)
(since this is equivalent to C(z) N closure(ATk(z)) = 0).
The Separation Theorem (Theorem 2.4) implies that there exist p € Y* and
€ > 0 such that

o(C(z),—p) < inf (—p, Av) —e.

vETk ()

Since Tk (x) is a cone, this inequality implies that A*p belongs to Tk(z)™ =
Nk (z) and that inf,cq, (z)(—p, Av) = 0. Consequently, o(C(z),p) < —e < 0,
which contradicts the dual tangential condition. m|

The properties of tangent cones to convex closed sets which we described in
Chapter 4, in many cases enable us to check whether the tangential condition
is satisfied. The following self-evident proposition is very useful.

Proposition 9.5. If two set-valued maps C, and C, satisfy the tangential con-
dition (or the dual tangential condition, respectively), so do the set-valued maps
a;C1 + ayCy where oy and oy are positive.

We shall use this property as follows:
Corollary 9.1. If a set-valued map C from K toY satisfies the (dual) tangential

condition and if y belongs to A(K), then the set-valued map x — C(z)—A(z)+y
also satisfies the (dual) tangential condition.

9.5 The Fundamental Theorem for the Existence of
Zeros of a Set-valued Map

Theorem 9.3. We suppose that the assumptions (12) are in force (X andY
are Hilbert spaces, A belongs to L(X,Y), K C X is convex and compact and
C: K =Y is upper hemi-continuous with non-empty, convez, closed values).
If the tangential condition (16)
Vz € K, C(z) N closure(ATk(z)) # 0

is satisfied, then
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(a) 3Z € K, a solution of the inclusion 0 € C()
(b) Vye€ A(K), 3z € K, a solution of the inclusion y € A% — C(%). (19)

Proof. (a) We shall prove a slightly stronger result, assuming that the dual
tangential condition (17) is satisfied (instead of the tangential condition (16)).

(b) Corollary 9.1 implies that the second conclusion of the theorem follows from
the first conclusion applied to the set-valued map = — C(z) — Az + y.

(c) To prove the existence of a zero of C, we shall argue by reduction to the
absurd. Suppose therefore that for all z € K, 0 does not belong to C(z). Since
the sets C(z) are convex and closed, the Separation Theorem (Theorem 2.4)
implies that

Vz € K, JIp € Y* such that o(C(z),—p) <O0. (20)
We set
A, = {z € K|o(C(z), —p) < 0}. (21)
The non-existence of zeros of C thus translates into the following:
Kc | 4,. (22)
pEY "

d) Since C is upper hemi-continuous, the sets A, are open. Since the set K
is compact, it can be covered by n open subsets Ay,. Let {g:},_, ., be a con-
tinuous partition of unity subordinate to this covering. We define the function
¢: K x K — IR as follows

é(z,y) == — i:gi(w)(A"p, T —y). (23)

¢ is continuous in z, affine in y and satisfies
d(y,y) =0 for all ye K. (24)

The assumptions of Ky Fan’s Theorem (Theorem 8.6) are satisfied; whence,
there exists £ € K such that

Vy € K, §(Z,y) = (A5, T —y) <0 (25)

where we have set p := 3%, gi(Z)p:. In other words, A*p belongs to the normal
cone Nk(Z).
The dual tangential condition implies that

o(C(z), —p) = 0. (26)

But this inequality is false. To see this, we let I be the subset of the indices :
such that g;(Z) > 0. I is non-empty since 337, g:(%) = 1. If ¢ belongs to I, then
7 belongs to 4,, and consequently
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U(C(i))_ﬁ) =0 ( ZQZ(‘T ) < Zgz U(C(l _pi) <0.

el

Thus, we have obtained a contradiction and proved our theorem. O

This theorem has many corollaries and we shall state those which we shall
use directly in our theorems.

Remark. By taking C(z) := {c(z)} where c is a differentiable map and A(z) =
—d(z) in Theorem 9.3, we derive the existence of a solution to the equation
¢(x) = 0 where the solution Z must belong to a compact convex subset K:
Let X and Y be Hilbert spaces, K C X be a compact convex subset, {2 DO K
be an open neighborhood of K and c : £2 — Y be a continuously differentiable
single-valued map. Assume that

Vz e K, —c(z) € (2)T«(z)

Then there exists a solution T € K to the equation ¢(T) = 0. In particular, when
zg € K s given, there exists a sequence of elements z,, € K satisfying

Vn>0, d(@.)(Tn— Tao1) = —c(z,)

i.e., the implicit version of the Newton algorithm.

The most important particular case is that in which X and Y are equal and
A is the identity.

Theorem 9.4. Suppose we have a Hilbert space X, a convex compact subset
K C X and an upper hemi-continuous set-valued map C : K — X with non-
empty, convexz, closed values. If the tangential condition

Vz e K, C(z)NTk(z) #0 (27)
is satisfied, then

(a) 3z € K such that 0 € C(Z)
(b) Yy e K, 3% € K such thaty € & — C(%). (28)

9.6 The Viability Theorem

Since the velocity of a constant function ¢ — Z is equal to zero, we can regard
a zero T € K of the set-valued map C : K — X as an equilibrium Z (or a rest
point) of the differential inclusion

#'(t) € C(a(t))

governing the evolution of a time dependent function ¢ — z(¢) starting from an
initial state £(0) = zo at the initial time ¢ = 0.
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Hence an equilibrium is a particular solution to this differential inclusion,
so that it requires stronger assumptions than the mere existence of a solution.

The viability theorem states that when K is (only) compact (but not neces-
sarily convez) and C is upper hemicontinuous with non-empty, convez, compact
values, the tangential condition (27) is necessary and sufficient for K to be vi-
able under C, in the sense that for any initial state zg, there exists at least one
solution to the differential inclusion z' € C(z) starting from zo and viable in
K:

Vi>0, z(t) € K

We emphasize now this basic and curious link between the existence of the
general equilibrium theorem 9.4 and the ‘viability theorem’: the General Equi-
librium Theorem — which is an equivalent version of the 1910 Brouwer Fixed
Point Theorem, the cornerstone of nonlinear analysis — states the existence of
an equilibrium Z of the set-valued map C : K — X when the dynamics of the
uncertain dynamical system described by the set-valued map C' confronted to
the ‘viability constraints’ described by K are related by the tangential condition
(27) and when K is furthermore assumed to be convex and compact.

Both the general equilibrium theorem 9.4 and the ‘viability theorem’ find
here a particularly relevant formulation: viability implies stationarity.

Viability implies also stationarity not only when the convexity of K is traded
with the convexity of the image C(K): If C is upper hemicontinuous with non-
empty, convex, compact values, if K C X is a compact subset such that C(K) is
convex and if there ezists at least one viable solution to the differential inclusion
z' € C(z), then there exists a viable equilibrium of C in K.

Indeed, assume that there is no equilibrium. Hence, this means that 0 does
not belong to the closed convex subset C(K), so that the Separation Theorem
implies the existence of some p € X* and € > 0 such that

sup (v,—p) = o(C(K),—p) < —¢€
z€K,veC(x)

Hence, let us take any viable solution z(-) to differential inclusion z' € C(z)
which exists by assumption. We deduce that

Vt>0, (-p,z'(t)) < —¢
so that, integrating from 0 to ¢, we infer that
et < (p,z(t) — =(0))

But K being bounded, we thus derive a contradiction. O

We can even relax the assumption of the convexity of C(K): If C is upper
hemicontinuous with non-empty, convex, compact values, if K C X is a compact
subset and if there ezists a solution z(-) to the differential inclusion =’ € C(x)
viable in K such that
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S S L

inf > [ llz/(nlldr = 0

then there erists a viable equilibrium Z, i.e., a state T € K solution to the
inclusion 0 € C().

The proof starts as in the proof of Theorem 9.3: We assume that there is no
viable equilibrium, i.e., that for any z € K, 0 does not belong to C(x). Since
the images of C are closed and convex, the Separation Theorem implies that
there exists p € X, the unit sphere, and €, > 0 such that o(C(z), —p) < —é,.
In other words, we can cover the compact subset K by the subsets

A, = {z € K|o(Clz),~p) < —& }

when p ranges over X. They are open thanks to the upper hemicontinuity of
C, so that the compact subset K can be covered by g open subsets 4, . Set
€ 1= minj=,  g&p, > 0.

Consider now a viable solution to the differential inclusion ' € C(z), which
exists by assumption. Hence, for any ¢ > 0, z(t) belongs to some A, , so that

=z’ < (=pirz'(8)) < o(Clz(t),—p;) < —¢

and thus, by integrating from 0 to #, we have proved that there exists € > 0
such that, for all ¢ > 0,

1,
e <7 [ lz(llar

a contradiction of the assumption of the theorem. O

9.7 Fixed-point Theorems

The above in turn implies the famous fixed-point theorem due to Kakutani.

Theorem 9.5 (Kakutani). Suppose that K C X is a convex compact subset
and that D : K — K is an upper hemi-continuous set-valued map with non-
empty, convex, closed values. Then there exists a fizred point z, € K of the
set-valued map D.

Proof. Since D(z) —z C K — z C Tk(z), we note that the set-valued map
z — D(z) — x satisfies the assumptions of Theorem 9.4 (above). Thus, it has a
zero z, € K, which is a fixed point of D. O

In fact, the above proof implies a more general result.

Definition 9.7. We shall say that a set-valued map D : K — X isre-entrant if
Vz € K, D(z)N(z+ Tk(z)) #0 (29)
and that it is salient if

vz € K, D(z)N (z — Tx(z)) # 0. (30)
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Theorem 9.6 (Kakutani—Fan). Suppose that K C X is a convex compact
subset and that D : K — X is a re-entrant, upper hemi-continuous, set-valued
map with non-empty, convex, closed values. Then the set-valued map D has a
fized point z, € K.

Theorem 9.7. Suppose that K C X is a convex compact subset and that D :
K — X is a salient, upper hemi-continuous, set-valued map with non-empty,
convex, closed values. Then

(a) there exists a fized point z, € K
(b) Vy € K, 3z € K such that y € D(z) (whence K C D(K)) (31)

Proof. We apply Theorem 9.4 to the set-valued map z — z — D(z), which
satisfies the tangential condition since D is salient. The zeros of this set-valued
map are the fixed points of D and the solutions of y € & — (2 — D(&)) are the
elements of D~1(y). O

A fixed-point Z of a set-valued map D can be regarded as an equilibrium (or
a rest-point) of the discrete dynamical system z,41 € D(z,) because, starting
from Z, we may remain (or rest) at Z forever.

9.8 Equilibrium of a Dynamical Economy

We can describe a dynamical economy (P,c) governing the evolution of an
abstract commodity and an abstract price. The commodities evolve according to

the laws
i) Z'(t) = c(=z(t),p(t))

i) p(t)e P

where the commodity z(-) ranges over a finite dimensional vector-space X, the
price p(-) ranges over Y*, ¢ : X x Y* +— X describes the dynamics and where
P C Y™ is the set of feasible prices.

Here, the first equation describes how the price — regarded as a message,
or regulation control (in short, regulee), or again an input to the system — yields
the commodity of the dynamical economy (once the initial commodity is fixed)
— regarded as an output.

A solution to this system is a function ¢t — z(t) satisfying this system for
some time dependent price ¢ — p(t) and an equilibrium (Z,p) is a zero of c.
Next we shall prove a theorem which is very useful for proving the existence
of an equilibrium of a function c(-, -), which is constrained to satisfy additional
conditions of the form

Az e M

known as viability conditions. The choice of such a parameter p (which may be
interpreted as an adaptive control) constitutes the so-called viability problem.
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In other words, each p is associated with the set Z(p) of zeros of  — ¢(z, p).
Does there exist a parameter p such that AZ(p) belongs to M?
To be more precise, we introduce:

(i) two Hilbert spaces X and Y;

(ii) two convez closed subsets L C X and M C Y

(i) a continuous linear operator A € L(X,Y);

(iv) a convex compact subset P C Y*;

(v) a continuous mapping ¢: L x P — X. (32)

We shall solve the following problem: find Z € L and p € P such that

(i) «(z,p) = 0
(ii) Az ¢ M (viability condition) (33)

Theorem 9.8. We suppose that conditions (32) are in force, together with the
following assumptions:

(i) Ve L, p— c(z,p) is affine
(ii) Vzee L, Vpe P, c(z,p) € Tr(x) (34)
(i) LN A~ (M) is compact
(ii) 0 € Int (A(L) — M)
(iii) Vy € M, Ny(y)cC |J AP (35)
A>0
and
Vz € L, Vp€ P, (p,Ac(z,p)) <0. (36)

Then there exists a solution (Z,P) € L x P of the problem (33).

Proof. This is again a consequence of Theorem 9.4. We introduce the convex
compact subset K := L N A™!(M) and the set-valued map C from K to X
defined by

Vz € K, C(z):={c(=,p)},cp- 37

Since P is convex and compact and p — c¢(z,p) is affine, the images C(z) are
convex and compact. Since ¢: L x P — Y is continuous and P is compact, the
set-valued map C is upper semi-continuous. In fact, if 7o € L and € > 0 are
fixed, we may associate any p € P with neighbourhoods N,(zp) and N(p) of zo
and p (respectively), such that

Vx € Ny(x0), Vg € N(p), c(z,q) € c(xo,p) + B C C(z0) + €B. (38)

Since P is compact, it can be covered by n neighbourhoods N(p;) (i = 1,...,n).
Thus, N(zo) := N, N(p;) is a neighbourhood of z.
The properties (38) imply that

Vz € N(zo), C(z) C C(zo) + €B. (39)
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Whence, C is upper hemi-continuous.
We shall prove that the dual tangential condition

Vz € K, Vp € Nk(z), sup (—p,v) 20 (40)
ve€C(x)

is satisfied. In fact, since 0 belongs to Int (A(L) — M), we know from formula
(49) of Chapter 4 that

NK(ZC) = NL(IB) + A*NM(Aa:).

Thus, any element p of Nk(z) may be written as p = py + A*q where
Po € Nr(z) and ¢ € Np(Az). There exists p; € P such that ¢ = A\p, where
A > 0. Then we introduce v := ¢(z,p1) € C(z). Since c(z,p;) belongs to
Ti(z) = Np(z)~, by assumption, we have (—po, c(z,p;)) > 0. Moreover,

(—A*q,c(z,;m)) = —X(p1, Ac(z, ;1)) > 0.

Whence,

o((Cz),—p) > (—po — A*q, c(z, ;1)) > 0.

Thus, we may apply Theorem 9.4. There exists Z € K, in other words 7 € L,
satisfying AZ € M, such that 0 belongs to C(Z); whence, there exists p € P
such that 0 = ¢(z, p). O

9.9 Variational Inequalities

We shall consider

(i) a convex compact subset K C X;
ii) an upper semi-continuous set-valued ma rom K to
ii PP i ti t-valued map C f K to X
with convex compact values. (41)

which does not necessarily satisfy the tangential condition. The problem now
is how to modify C in such a way that the new set-valued map satisfies this
condition.

We note that this modification need only be carried out on the boundary
OK of K, since for all z € Int(K), Tk(x) is equal to the whole space.

For this, it is sufficient to subtract the set-valued map = — Ng(z) (which
associates each x with the normal cone to K at z) from the set-valued map C
and to find the zeros of the set-valued map C' — Ng:

Z € K such that 0 € C(Z) — Nk(z). (42)

By definition of the normal cone to K at Z, Nk(Z), the inclusion (42) is
equivalent to
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i) zeK
(ii) 39 € C(z) such that (5,2 —y) >0 Vy € K. (43)

Definition 9.8. The equivalent problems (42) and (43) are called variational
inequalities.

Remark. We saw that the solutions Z € K which minimise a nontrivial, convex,
lower semi-continuous function f : X — IR U {+oco} such that 0 € Int(K —
Domf) over K, are the solutions of the inclusion 0 € 9f(Z) + Nk(Z), whence
solutions of the variational inequality (43) with C(z) := —0f(x).

Remark. Since Tk (z) is the negative polar cone of Nk (z), Theorem 5.1 of
(Aubin 1979a) implies that any element v € C(z) decomposes into the form
v =t +n where t € Tx(z), n € Nk(z) and (¢,n) = 0. Thus, for any v € C(z),
the element v — n = ¢ belongs to (C(z) — Nk (z)) N Tk (z), which shows that
the set-valued map (C — N) satisfies the tangential condition.

We also note that any zero Z of C' — Nk which belongs to the interior of K
is a zero of C and that if

vz € K, C(z) C Tk(x) (44)
then any zero Z of C'— Nk is a zero of C, since in this case, there exists o € C(Z)
which belongs to the intersection of Tk (Z) and Nk (Z), which is zero.

We could use this remark to apply Theorem 9.4 to deduce the existence of
solutions of variational inequalities. But we can give a direct proof based on
Ky Fan’s Inequality.

Theorem 9.9. Suppose that K is convex and compact and that C' is an upper
semi-continuous set-valued map from K to X with non-empty, convex, compact
values. Then there exists a solution T € K of the variational inequality (43).

Proof. We set

d(z,y) = —o(C(z),z — y). (45)
The function ¢ is concave in y and clearly satisfies ¢(y, y) = 0. Since C is upper
semi-continuous with compact values, a variant of Proposition 9.1 shows that

z — 0(C(z),z — y) is upper semi-continuous. In fact, since C(zo) is bounded,
|C (o)l := sUP,ec(ay) |7l is finite and the inclusion

Vz € N(zo), C(z) C C(zo) +nB
implies that
Vz € N(zo) :
o(C(z),z —y) o(C(xo), x — y) + nllz — y|
a(C(xo), o — y) + o(C(w0), T — o) + 7l|z — y|
o(C(zo), Zo — ¥) + [|C (o)l llz — zol| + nllz — wol|
+7llzo — yll-

IAIA A
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Thus, taking n < AMze—yy and replacing N(zo) by its intersection with the ball of
radius m, it follows that z — o(C(z), z — y) is upper semi-continuous,
whence z — ¢(z,y) is lower semi-continuous. Ky Fan’s Inequality may then be

applied (Theorem 8.6). Thus, there exists Z € K such that
Vye K, o(C(Z),2—vy) >0
in other words, such that

inf sup (v,Z—y) > 0.
yekvec(i,( ,Z—y)

Since K and C(Z) are convex compact sets, it follows that there exists 7 € C(Z)
such that (following Theorem 9.8)

inf (9,2 -y) 2 0.

Thus, this element Z € K is a solution of the variational inequality (43). O

9.10 The Leray—Schauder Theorem

From Theorem 9.4, we may derive other theorems for the existence of zeros
using the continuation technique due to Poincaré.

Consider the boundary 0K of the convex compact set K (which is different
from K if X is finite dimensional and the interior of K is non-empty).

Theorem 9.10. Consider a convex compact set K with a non-empty interior,
together with an upper hemi-continuous set-valued map C from K x [0,1] to X,
with non-empty, convez, closed values.

Suppose that

(i) the set-valued map x — C(z,0) satisfies the tangential condition;
(i) vYxelo,1], Vz € 0K, 0¢ C(z,)). (46)

Then
3z € K such that 0 € C(Z,1). (47)

Proof. We shall suppose that the conclusion (47) is false and derive a contra-

diction.
We set A := 8K, which is a closed subset of K and introduce the subset

B := {z € K|3X € [0,1] satisfying 0 € C(z, )} (48)

The set B is non-empty, since it contains the equilibria of z — C(z,0). It
is closed (since C is upper hemi-continuous) and disjoint from A (if z € A and
t € [0,1[, assumption (46)(ii) implies that z ¢ B; if # € A and ¢ = 1, then
« ¢ B, since C(-,1) has no zeros).
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Next we introduce a continuous function ¢ from X to [0, 1], which is equal
toQonAand 1on B
— d(z, A)
9@) = @A) + d@ B)’

together with the set-valued map D defined by
D(z) := C(z, ¢(z))- (49)

D is clearly upper hemi-continuous with non-empty, convex, closed values. It
coincides with C(z,0) on A and consequently satisfies the assumptions of The-
orem 9.4. Thus, the set-valued map D has a critical point Z € K such that
0 € D(z) = C(T,¢(z)). This now implies that T € B, whence that ¢(Z) =1
and so 0 € C(Z,1). It follows that C(-,1) has a critical point, which is the
desired contradiction. O

In particular, we obtain the following result:
Theorem 9.11. Suppose that K is a convex compact subset with a non-empty
interior and that C and D are two upper hemi-continuous set-valued maps from
K to X with non-empty, convex, closed values.

Suppose that
C satisfies the tangential condition (50)

and that
Vp >0, VzedK, 0¢ C(z)+ puD(z). (51)
Then the set-valued map D has a zero T € K.
Proof. We apply the previous theorem with C(z,t) = (1 —¢)C(z) +tD(z). O

Let us take a finite-dimensional space X and zy € Int K. Then the mapping
C(z) = = — zo satisfies the tangential condition. Thus, we have the following
theorem:

Theorem 9.12. Suppose that o is a point in the interior of a convex compact
subset K of X and that D is an upper hemi-continuous set-valued map from K
to X with non-empty closed values. Suppose further that

Vi >0, Vz € 0K, zo ¢+ pD(z). (52)

Then D has a zero T € K.

9.11 Quasi-variational Inequalities

We shall now prove a theorem which reconciles Ky Fan’s Inequality and Kaku-
tani’s Fixed-point Theorem. This result will be useful in the theory of non-
cooperative games.
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Theorem 9.13. We suppose that

K is a convez compact subset of a Hilbert space X (53)
and that

C: K — K is an upper hemi-continuous set-valued map
with non-empty, convez, closed values. (54)

We consider a function ¢ : K x K — IR satisfying

(1) VYyeK, z— ¢(z,y) is lower semi-continuous
(i) VzeK, y— ¢(z,y) is concave
(ii)) supyex ¢(y,y) < 0. (55)

We suppose further that the set-valued map C and the function ¢ are related by
the property
{z € K|a(z) := sup ¢(z,y) <0} is closed. (56)
yeC(z)

Then there ezists a solution T € K of the quasi-variational inequality:

() zeC@)
(ii) S $(z,y) < 0. (57)

Remark. Assumptions (53) and (54) are those of Kakutani’'s Theorem and
assumptions (53) and (55) are those of Theorem 8.6 (Ky Fan’s Inequality).
Assumption (56) is an assumption of consistency between C and ¢.

Proof. We shall argue by reduction to the absurd. If the conclusion is false, for
all z € K we would have either a(z) > 0 or z ¢ C(z). To say that z ¢ C(z)
implies that there exists p € X* such that (p,z) — o(C(z),p) > 0. We set

(i) Vo:={z € Kla(z) > 0}

(i) V(p):={z € K|(p,z) — 0(C(),p) > 0}. (58)
The negation of the conclusion may be expressed in the form
KcVvo,u | Vip). (59)
pEX"

Assumptions (54) and (55)(i) imply that the sets Vo and V(p) are open.
Since K is compact, it follows that there exist py, ..., p, such that

KcWwu U V(p:) (60)
i=1
and that there exists a continuous partition of unity {go, g1, - - - » gn } Subordinate

to this covering.
Next we introduce the function ¢ : K x K — IR defined by
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B2 1) = 9o(@)d(z,3) + 3 6:(2) P T — 1)- (61)

i=1

This function 1 is lower semi-continuous in = (by virtue of (55)(i)) and
concave in y (by virtue of (55)(ii)). Since K is convex and compact (by
virtue of (53)) and since sup, 9¥(y,y) < 0 (by virtue of (55)(ii)), Theorem 8.6
(Ky Fan’s Inequality), implies that there exists Z € X satisfying

sup¢(Z,y) < 0. (62)

yeEK

We shall contradict this inequality by proving that there exists § € K such
that

¥(Z,9) > 0. (63)
We take:
(i) any ge C(z)if aZ) <0
(ii) 7 e C(z) satisfying ¢(Z,7) > o(Z)/2 if o(Z) >0 (64)

(the choice of 7 is free).
Since go,41,- - -, gn 18 a partition of unity, g;(Z) > 0 for at least one index
i=0,1,...,n. The inequality (63) then follows from the following assertions:

(i)  go(Z) > 0 implies that ¢(Z,7) > 0
(ii) ¢:(Z) > 0 implies that (p;,z —y) > 0. (65)

Let us now prove these assertions. If go(Z) > 0, then Z € Vp and consequently,
a(Z) > 0. Thus, ¢(Z,7) > a(Z)/2.1f g:(Z) > 0, then Z € V(p;) and consequently,
@i’i‘) > J(C(j))p‘t) Z (pi, 37)) since y € C(j) ThUS, (pi)i' - :.l—/) > 0. o

Remark. It is useful to give sufficient conditions implying assumption (56).
One such is that the function o :  — () = sup,cp(,) ¢(%, y) be lower semi-
continuous. For, Proposition 9.3 implies that if the set-valued map C is lower
semi-continuous then so too is a.

Theorem 9.14. Suppose that C is a continuous set-valued map from a conver
compact subset K into itself, with non-empty, convex, closed values. Suppose
that ¢ is a function satisfying assumptions (55) which is lower semi-continuous
in both variables. Then there exists a solution T € K of the quasi-variational
inequality (57).

9.12 Shapley’s Generalisation of the Three-Poles
Lemma

We know that the story began in 1910 with the Brouwer Fixed Point Theorem.
It was proved later in 1926 via the Three Polish Lemma, the three Poles being
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Knaster, Kuratowski and Mazurkiewicz, which allowed them to derive the Fixed
Point Theorem in a simpler way. Knaster saw the connection between Sperner’s
Lemma and the fixed point theorem, Mazurkiewicz provided a proof corrected
by Kuratowski. The extension to Banach spaces was proved in 1930 by their
colleague Schauder.

Von Neumann did need the set-valued version of this Fixed Point Theorem
in game theory, which was proved by Kakutani in 1941.

Lemma 9.1 (Three-Poles or K-K—M lemma). Consider n closed sub-
sets F; of the simplex M™ := {x € R} | Y, z; = 1} satisfying the condition

Vee M™, ze |J F. (66)
{ilz;>0}

Then "
N F: #0. (67)

i=1

At the time, this lemma was proved from Sperner’s lemma on the simplicial
decomposition and thus stemmed from the area of combinatorics. Shapley gen-
eralised it in 1973 and we shall deduce the Three-Poles Lemma from his theorem.

However, before we do so, some indications as to how to prove Brouwer’s
Theorem from this lemma would not go amiss.

Proof of Brouwer’s Theorem. Let D be a continuous mapping of the simplex
M™ into itself. We associate this with the sets F; defined by

F, == {z € M"|z; > Di(z)} (68)

which are closed since D is continuous. Condition (66) is satisfied, otherwise
there would exist * € M™ such that for all indices i, z; < D;(z). Since z
and D(z) belong to M™, we obtain the contradiction 1 < 1 by summing these
inequalities.

The Three-Poles Lemma then implies that there exists a point £ € M"
belonging to the intersection of the F;, in other words satisfying

Vi = 1,. e, N, Il-7i Z DZ(Q_I) (69)

The inequality cannot be nontrivial since, otherwise, taking the sum, we would
again obtain the contradiction 1 < 1. Thus, Z; = D;(Z) for all 4, and conse-
quently, 7 is a fixed point of the continuous mapping D. ]

Let us now denote the set of n elements by N := {1,...,n}. With any subset
T of N, we associate the sub-simplex M7 defined by

MT = {z € M"Vi € T, z; # 0}. (70)
The characteristic functions cr € {0,1}" of the subsets T'C NN are defined by
cr(i)=11if ieT, cr(d) =0 if i ¢ T. (71)
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Theorem 9.15 (K-K-M-S Theorem). Every non-empty subset T C N
1s associated with a closed subset (possibly empty) Fr C M™ in such a way that
the condition

VI #0, MTc | Fs (72)
scr
is satisfied. Then there exist non-negative scalars m(T") such that
(1) ey =) m(T)er
T#0
(ii) (|  Fr#0. (73)
{Tm(T)>0}

Proof of Lemma 9.1. We apply Theorem 9.15 with Fs := F; when S = {3}
and Fs = ( if |S| := card(S) > 2. Condition (66) implies assumption (72),
whilst the conclusion (73)(i) implies that m(i) = 1 for all = 1,...,n and the
conclusion (73)(ii) implies that the intersection of the F; is non-empty. m]

Proof of Theorem 9.15. This is a consequence of Theorem 9.4 applied to the
set-valued map G : M™ — IR™ defined by

1 1
G(z) := —cny —TO{ —¢ . 74
@)= e {|5| } ™

It is easy to prove that G is upper semi-continuous with convex compact values.
It remains to show that it satisfies the tangential condition:

Vz € M™, G(z)NTyn(z) # 0. (75)

We denote the set of indices ¢ such that z; > 0 by 7. Assumption (72) implies
that there exists a subset R C T such that z belongs to Fg. Thus,
1 L cr € Gl(z) (76)
Y= —=CN — ~=CR x).
|V IR
But y also belongs to the tangent cone to M™ at z, which is described by
formula (44) of Chapter 4. In fact, Y., ¥; is equal to zero, and for all 7 such that
z; = 0, we have y; = |7{,—|cN(i) - ﬁc;{(z’) = |7{,—[ > 0, since 7 does not belong to 7.
Thus, the tangential condition (75) is satisfied. Whence, Theorem 9.4 implies
that there exists £ € M™ such that 0 € G(Z), in other words, such that
TN
en= Y. %CT and z€ [) Fr. (77)
{T|Fr3z} T Fraz

O
Remark. We note that property (73)(i) may be written in the form

Vi, 1,...,m, S.m(T)=1. (78)
T>oi
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Definition 9.9. A family B of non-empty subsets T C N such that

ev = m(T)cr where m(T) >0 VT € B (79)
TeB

is called a balanced family and the vector m = (m(T))rcp satisfying (78) or
(79) is called a balancing.

Theorem 9.15 may be reformulated by saying that assumption (72) implies
that there exists a balanced family B such that Ngep Fr # 0.



10. Introduction to the Theory of Economic
Equilibrium

10.1 Introduction

We shall describe two ways of explaining the role of prices in the problem of
decentralisation of consumer choice (in the static framework only). This is taken
to mean that knowledge of prices enables each consumer to make his own choice,
in accordance with his own objectives, without knowing the global state of the
economy and in particular, without knowing the choice of other consumers, all
the while respecting the scarcity constraints.

It was Adam Smith who, more than two centuries ago, originated this con-
cept of decentralisation. He introduced this paradoxical and mysterious prop-
erty in a poetic way. Here is the famous quotation from his book, The Wealth
of Nations, published in 1778.

‘Bvery individual endeavours to employ his capital so that its produce may
be of greatest value. He generally neither intends to promote the public interest,
nor knows how much he is promoting it. He intends only his own security, only
his own gain. And he is in this led by an invisible hand to promote an end which
was no part of his intention. By pursuing his own interest, he frequently thus
promotes that of society more effectually than when he really intends to promote
it.’

But Adam Smith did not state what this famous hand manipulated and a
fortiori put forward a rigorous argument to justify its existence.

It was a century later that Léon Walras suggested that this invisible hand
acted on prices via the demand functions, using them to provide economic agents
with sufficient information to guarantee the consistency of their actions whilst
respecting the scarcity constraints.

This concept of economic equilibrium which we owe to Walras is not the only
thing we owe to him. For, it was Léon Walras who, from his first publication
in 1859, which refuted the ideas of Proudhon, suggested that mathematical
methods could be useful in economic theory. Originality often consists of a new
way of viewing the world rather than of discoveries and inventions which arouse
the interest of contemporaries. Walras introduced mathematical rigour into an
area which at that time had not benefitted from detailed work for a number
of centuries. He did this outside of (and against) all customs, despite major
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difficulties, alone and unaided, without the encouragement and moral support
of his colleagues, whether mathematicians or economists. He did it, because
in his heart, he was able to recognise the perspectives involved before he even
started. It should also be noted that the Parisian scientific community at that
time (like that of today), guided by snobbism, custom and prestige, did not
allow Léon Walras to take root. It was the University of Lausanne which was
recompensed by having offered him the chair of economics in which he was
succeeded by Vilfredo Pareto who shared with Walras the conviction of the
applicability of mathematics to the social sciences.

It was in 1874 that Léon Walras introduced his concept of economic equi-
librium in Elements d’économie politique pure, as the solution of a system of a
nonlinear equations. The fact that there were the same number of unknowns as
equations gave him sufficient optimism about the final outcome to affirm the
existence of a solution.

But this required the tools of nonlinear analysis, which were developed fol-
lowing the proof of Brouwer’s theorem in 1910. It took another century of mat-
uration before the works of Wald and von Neumann (in the 1930s), Arrow
and Debreu (1954), Gale, Nikaido and many others, produced the rigorous re-
sults which we shall describe in the greatly-simplified framework of exchange
economies

10.2 Exchange Economies

We begin by describing an economy by introducing ! types of elementary com-
modities, each with a unit of measurement, so that it is possible to talk about
z units of an elementary commodity. An elementary commodity is described
not only by its physical properties, but also by other characteristics such as its
location and/or the date when it will be available and, in case of uncertainty,
the event which will take place, etc.

Services may also be viewed as elementary commodities as long as they can
be quantified by units of measurement.

A commodity (or a ‘complex’ or ‘basket’ of commodities) consists of a vector
z € IR! which describes the quantity xp of each elementary commodity h =
1,...,1

The description of an exchange economy involves

a subset M C IR! of available commodities (1)

together with n consumers. We shall describe two consumer models, the first of
which could be called the classical Walrasian model. In both cases, the descrip-
tion of the ith consumer involves

the consumption set L; C R' (2)
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This is interpreted as the set of commodities which the ith consumer needs.
If z belongs to L;, then the hth component z), represents the consumer’s demand
for the elementary commodity b if z, > 0 and || represents the supply of this
elementary commodity if z;, is negative.

The fundamental question then arises: can consumers share an available
commodity?

This leads us to introduce the following concept of allocation.

Definition 10.1. An allocation z € (IR)" is a sequence of n commodities
z; € L; such that their sum Y7, z; is available.

We denote the set of allocations by:
K = {LEEHLAZ:B,E]V[} (3)
=1 i=1

Assuming that the set of allocations K is non-empty, we must describe reason-
able mechanisms which enable consumers to choose allocations.

The two mechanisms which we shall describe are decentralised mechanisms.

By this, we mean mechanisms which do not require each consumer to know
the set M of available commodities and the behaviour and the choices of the
other consumers, but which only require each consumer to know his own par-
ticular environment and to have access to common information about the state
of the economy.

In the two models to be described, this common information will take the
form of a price (or price system) which is perhaps best viewed as an adaptive
control.

As far as we are concerned, a price is a linear form p € IR'" which associates
a commodity = € IR' with its value (p, z) € IR, expressed in monetary units.

Since an elementary commodity h is represented by the hth vector e :=
(0,...,0,1,0,...,0) of the canonical basis of IR, the components p" := (p, ")
of the price p represent what is usually called the price of the commodity A.

We denote the price simplex by

l
M = {pemﬂzph: 1} (4)
h=1

We could have taken a different normalisation rule, for example, by taking a
reference commodity w € ]R:_, called the currency whose value is always 1; this
amounts to only considering prices p € IR™ such that (p,w) = 1. For simplicity,
we shall take w := }1.

10.3 The Walrasian Mechanism

In the case of the Walrasian mechanism, we view the consumer ¢ as an automa-
ton which associates a subset of consumptions D;(p,v) C L; with each price
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system p € R™ and each income r. In other words, a consumer is described by
a correspondence D; : M!' x IR — L; (5)

We interpret the support function
om(p) = sup(p,y) (6)
yeEM

of the set M of available commodities as the collective-income function which
is the maximum value of the commodities available for each price p.

The essential assumption of this mechanism is that the collective income is
shared between the n consumers:

there exist n functions r; : M' — IR such that 3%, r:i(p) = om(p). (7)

With this in place, for each price p € IR, the income of each consumer is 7;(p)
and he is thus led to choose a consumption z; in the set D;(p, :(p)). This choice
is decentralised; it depends only on the price p (via r;) and is independent of
the choice of other consumers.

There is clearly a consistency problem.

Is there a price P such that the sum of the consumptions > 7 ,Z; €
> Di(p,r:(D)) is available (in other words belongs to M) or such that the
consumptions T; € D;(p,7:(p)) form an allocation?

Definition 10.2. We shall say that a price p € M' is a Walrasian equilib-
rium price if it is a solution of the inclusion

03 Dip.ri(p)) - M. ®)

i=1

We shall call the correspondence E from M* to IR! defined by

E(p) : Z D;(p,ri(p)) — 9)

the excess-demand correspondence.

Consequently, the Walrasian equilibrium prices are the zeros of the excess-
demand correspondence. These are the prices which Adam Smith’s invisible
hand should be able to propose to the market — by solving the inclusion (8).

Remark. To avoid misunderstandings, it is useful to stress that the partition
Y1 ri(p) = om(p) of the collective income is given in the model and is not
a solution. In other words, there are as many Walrasian equilibrium prices as
partitions 7(p) = S, 7;(p). This model is neutral as far as any question of the
justice of the partition of the collective income between the players is concerned.

We can solve the existence problem for Walrasian equilibrium prices using
one of the many theorems for the existence of zeros of correspondences. In
addition, we have to find such a theorem with assumptions which are susceptible
to a reasonable economic interpretation. This is possible. We shall show that
simple (decentralised) budgetary rules guarantee the existence of an equilibrium.
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Collective Walras Law

The demand correspondences D; should satisfy the condition
Vp € Ml) vxi € Di(p7 T‘i)) <p) le> < Zri' (10)
i=1 i=1

In other words, this law forbids the set of consumers from spending more (in
terms of monetary units) then their total income.

The collective Walras law provides for transfer of income between con-
sumers. A stronger, decentralised law is given below.

Walras Law

Every correspondence D; satisfies the condition
Vp e M', Vz € Di(p,7), (p,z) <. (11)

We note that the Walras law is independent of the set M of available commodi-
ties.

Theorem 10.1. We make the following assumptions:

The consumption set M is convex and may be written as M = M, —lR'_,_, where

My is compact. (12)
The demand correspondences D; : M* x R — L; are upper hemi-continuous
with convez, compact values and satisfy the collective Walras law. (13)
The income functions r; are continuous. (14)

Then there exists a Walrasian equilibrium.

Proof. We apply Theorem 9.2 (Debreu-Gale-Nikaido) to the correspondence
C: M!' — IR! defined by

C(p) 1= Mo — 3 Dilpy (o) (15)

which is clearly upper hemi-continuous.
It follows from (12) and (13) that C(p) — IR, is convex and closed. Since

Vpe M!, Y ri(p) = o(Mo — R, p) = o(Mo,p), (16)
i=1

it follows from the collective Walras law (10) that

A(C@hp) = o(Mop)— sup > —pra)

z:€D;(pyri(p)) i=1

> o(Mo,p) — i:Ti(P)
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= o(M,p) - 3-rilo)
= 0.

Thus, there exists p € M' such that 0 € C(p) — IF‘JJr = —E(P), in other words,
a Walrasian equilibrium price. 0

One important particular case is that in which
M:=w-TR, (17)
is the set of commodities less than the available commodity w € IR.

Corollary 10.1. We suppose that assumptions (13) and (14) are in force and
that

n
w =" w; is allocated to the n consumers (18)
i=1
Then there exists a Walrasian egquilibrium price D and consumptions T; €
Di(ﬁ, <ﬁ) wz)) SUCh tha‘t Z?:lfi S Z?:l W -
In fact, Léon Walras, and the neoclassical economists following him assumed
that the demand functions and correspondence arose from the maximisation of
a utility function under the budgetary constraints:

Di(p,r) = {m € L, (p,2) < rhu(z) = sup ui(y)} 19)

{(py)<r

Of course, these demand correspondences satisfy the Walras law. Assump-
tions needed to return to the case of Theorem 10.1 are imposed on the utility
functions. So as not to overload the description with technical complications
and above all because it is not clear that the maximisation of utility functions
according to Homo economicus is compatible with the teachings of cognitive
psychology, we shall not develop this point of view any further.

We have seen that the Walrasian equilibrium prices are the zeros of the
excess-demand correspondence F.

It is tempting (as in physics) to consider these zeros as the stationary solu-
tions

0 € E(p) (20)
of the dynamical system (multi-valued)
P'(t) € E(p(t)) (21)

(again called a differential inclusion).

The algorithm thus defined (called Walras tatonnement) cannot be im-
plemented outside the stationary state, since in this case, 0 does not belong
to E(p(t)) and the sum of the corresponding demands z;(¢t) € D;(p(t), r:(p(t))
does not necessarily belong to the set M of available commodities.
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We shall introduce another mathematical description of the consumers and
another concept of equilibrium which may be viewed as a stationary state of
a dynamical system. Although dynamic considerations are beyond the limited
scope of this book, the mechanism which we shall describe avoids the criti-
cisms made of the Walrasian equilibrium. These criticisms (which were made
too quickly) do not relate to the concept of price decentralisation, but to an
excessively-specific mathematical translation which has become a dogma. The
fact that this attempt to respond to criticisms has been called the theory of
disequilibrium has added a great deal of confusion to an already complicated
situation. The notion of equilibrium is very specific, its converse could be almost
anything!

10.4 Another Mechanism for Price Decentralisation

We consider an exchange economy described by a subset M of available com-
modities together with n consumers whose consumption sets L; C IR are given.

Here, we represent each consumer i, not by a demand function or correspon-
dence, but by a continuous function

¢ Ly x M' - R (22)

called a change function

This function associates the commodity = € L; and the price p € M! with
the change c;(z,p) that the automaton consumer wishes to make to the com-
position of the commodity z. If the hth component ¢;(z,p), is positive, he will
increase his consumption of the elementary commodity k and if ¢;(z, p),, = 0 he
will conserve his elementary commodity h.

Definition 10.3. In this context, an equilibrium s defined by an allocation
T € K and a price p € M* such that

Vi=1,...,n, c(%:p)=0. (23)

In other words, the equilibrium price P is such that it stimulates each con-
sumer i to conserve his consumption Z;.

The choice of such an equilibrium allocation is again decentralised, it depends
only on the price p and the personal consumption z; € L; of each consumer,
and does not depend either on the choice of the other consumers or on the set
M of available commodities.

To solve the equations (23), we must chose an existence theorem with as-
sumptions which are susceptible to a reasonable economic interpretation. Asin
the case of the Walrasian mechanism, we shall show that simple (and decen-
tralised) budgetary rules guarantee the existence of an equilibrium.
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10.5 Collective Budgetary Rule

The change functions ¢; : L; x M' — IR! satisfy

vz € [[ L;, Vpe M, <p,Zci(m,-,p)> <0. (24)
i =1

i=1

In other words, this rule states that for each price p, the total value of the
deficits (p, ¢;(z;, p)) incurred by each agent should not be negative or zero.

The collective budgetary rule allows for transfers of deficits between the
consumers. It is possible to forbid such transfers and to require consumers to
obey the following more restrictive (but decentralised) rule:

Vz € Li, Vp € Ml) (p’ Ci(xi,p)) S 0. (25)
We obtain the following existence theorem.

Theorem 10.2. We make the following assumptions:

The consumption set M is convex and may be written as M = My — IR’_H where

M, is compact. (26)
Vi =1,...,n the consumption sets are convez, closed, bounded below and satisfy
0e€Int (-, L; — M). (27)
For eachi=1,...,n, the change functions satisfy

(2) Vz € L;, p— ci(z,p) is affine

(#7) Vz € L;, Ype M, ci(z,p) € Ty, (z) (28)

together with the collective budgetary rule

Vz € HLi, vp e M!, <p,Zc,-(:r.,-,p)> <0. (29)
i=1 i=1
Then there exists an equilibrium allocation T = (Ty,...,%Tn) € K and price

pe M.
Proof. We apply Theorem 9.8 with

X = (R), Y=R, Az:=Y 2, P:=M,

i=1

L = HLi and c(z,p) = (Ci(fci,P))i=1,...,n-

i=1

Assumptions (34) of Chapter 9 follow from assumptions (28).
Since M = M, — IR, where M, is compact, and since the sets L; are
contained in cones & + IR, it follows that the set of allocations

K = {wGﬁLiliiL‘iGM} (30)

i=1 i=1
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is compact. In fact, since M is contained in a cone w — R}, the set K is
contained in [T, [, w — 3,4 &;] where [y, z] denotes the set of z € R such
that y <z < 2.

Clearly 0 belongs to Int(A(L)— M). Since M = Mo R’ it follows that for
all y € M, the normal cone Ny (y) is contained in R’ -+, which is generated by
M. Thus, assumptions (35) of Chapter 9 are satisfied. The collective budgetary
rule clearly implies assumption (36) of Chapter 9. It remains to check that the
solutions T € K := LN A~ (M) and p € M' of the equation c(Z,p) = 0 are the
desired equilibria. O

Ezample. The functions of the form

c(z,p) := 0(z)((p, f(z))g(=) — I F(@)llg(z)llp — h(=)) (31)
where
(%) 0:L +R,andh:L— RIJr are positive
(i2) f and g are defined from L to IR, (32)

are affine with respect to p and satisfy the budgetary rule, since the Cauchy—
Schwarz inequality implies that

(p, c(z,p)) < —0(z)(p, h(z)) <0 (33)

when p runs through M*.
If we also suppose that

vz € L, f(z) e -R, (34)
we obtain the inequalities
Vze L, Vpe M', (f(z),c(z,p)) =0 (35)
again by virtue of the Cauchy-Schwarz inequality.
If we take
f=g and (f,h) =0 (36)
we obtain
vz e L, Vpe M', (f(z),c(z,p))=0. (37)

If for the mapping f we take the gradient Vu of a utility function, the
conditions (36) (or (37)) express the fact the changes c(z,p) are directions
which change (or leave invariant) the level of utility.

Ezample. Another example of a change function may be constructed from:
a twice-continuously-differentiable function w; defined on a neighbourhood of
L; (38)

by setting S (2)
w;(x
ci(z,p), § e Bmk . (39)
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If we assume that

n

> "w; is concave (or Vi, w; is concave) (40)
i=1

the collective budgetary rule (or the budgetary rule, respectively) is satisfied.
An equilibrium is defined by the conditions

(2) Te K

w,(z
3:1:h3$k

i
(iz) Vi=1,...,n, Yh=1,.. Z =0. (41)

Remark. Since the equilibrium allocations are the zeros of the correspondence
C defined by

Vz € L, C(z) = {c(z,p)}penr (42)
it is tempting to view them as the stationary points of the differential inclusion
dx
haind t 4
e Calt) (43)
which may be written explicitly as the system of differential equations
zi(t) = ci(=zi(t),p(t)), i=1,...,n (44)

in which the price p appears as a control.

The problem then is to know if there exists a function ¢ — p(¢) with values
in the set of prices M, such that the trajectories of the differential system (44)
at any given time form allocations of the set M of available commodities, in
other words they satisfy

() VE>0, Vi=1,...,n, z:(t) € L
(i1) Vi>0, Y zi(t)e M (45)
i=1

It can be shown that, under the assumptions of Theorem 10.2 there exists such
a function p(-). If we set

Ve € K, II(x,...,2,) := {p € M'|zn:c,-(:r,-,p) €T (Zn::r,)} (46)

i=1 i=1
the price p(t) is linked to the allocations X (t) by the feedback relation
vt >0, p(t) € I(z:(t),- .., zn(t)) (47)

It is at this level that one can put one’s finger on the difference between the
two concepts of equilibrium. The Walrasian equilibrium price is the stationary
state of a dynamical system p'(t) € E(p(t)) involving prices, which cannot be
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implemented; whilst the second concept for equilibrium allocation is the sta-
tionary state of a dynamical system z'(¢) € C(z(t)) involving the commodities
consumed, which is viable, in the sense that at any given time, the z(t) are allo-
cations. In this case, the price evolves according to the feedback law (46). This
being the case, the two models translate the same idea of price decentralisation
allowing each consumer to find an allocation.

Remark. In this context, one could equally well propose a decentralised planning
model which would allow one to move around in the set of allocations.
Suppose there exists a continuous mapping z € K — p(z1,---,z,) € M
such that
Vz € K, p(z1,...,%,) € II(z1,-..,%n)- (48)

Such a mapping is called a continuous selection of the correspondence IT.

In the language of planning, this is interpreted by surmising that the plan-
ning office knowing the allocation z € K is able to associate it with a price
p(z1,- .., z,) which is an element of II(z,,...,z,).

Knowing this price system, the consumers modify their consumption by
solving the system of differential equations

z;(t) = ci(zi(t), p(z1(t), . . . z:(2), ..., z0(t))) ((=1,...,n) (49)
the solutions of which at any given time satisfy the viability conditions
(2) Vi=1,...,n, Vt>0, z;(t) € L;
(#) vVt > 0, zn::z:i(t) € M. (50)

i=1
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Table 10.1. Comparison between Walrasian and viable equilibrium

Process:

Walrasian

Viable

Description of

demand functions

change functions

the behavior of d;(p,7) ci(zi, p)
consumers z; = di(p, r:i(p)) zi(t) = ci(z;(¢),p(t))
Demand map z € D;(p) :=
derived from if and only if
change function ci(z,p) =0
Derivation d;(p,T) ci(z, p)
from utility maximizes U; under =Ul(z)—p
function (p,z) <r =0 (Uil pmy<r ) ()
Equilibrium: Vi, Z; = di(p, ri(p)) Vi, ¢i(Z:,p) =0
stationarity and such that such that
(static) viability Nz eM . zeM

i=1

Budget rule

Bam<r

(p: Ci(flf,p)) < 0

(dynamic) 3 p(t) such that

Viability VE>0, d xzi(t)e M
i=1

Characterization YV (z1,-..,ZTn),

of the viability

O(zy,...,2,) #0

Regulation law

p(t) € H(xl (t)’ e rmn(t))




11. The Von Neumann Growth Model

11.1 Introduction

In 1945, J.von Neumann proposed a general economic-equilibrium model. This
model is of historical interest, because at that time it was the only economic
model which could be used to prove existence theorems for economic equilib-
rium. Another remarkable aspect of this model is that it was aimed at growth
models. At any rate, a whole area of the economic literature has developed the
points of view discovered by von Neumann. This will also provide us with the
opportunity to prove the Perron—Frobenius theorem on the existence of positive
eigenvectors of positive matrices and to study the surjectivity properties of M
matrices.

11.2 The Von Neumann Model

We shall begin by studying von Neumann’s model, which is largely concerned
with the production sector. We suppose that there are m commodities to pro-
duce and consume and that for this there are n production processes which
consume these commodities as inputs and produce them as outputs.

Each production process is implemented with a certain level of activity. The
state of the economy is then described by a vector z € IR" the component z; of
which denotes the level of activity at which the ith production process operates.
These levels of activity are positive or zero and are normalised, for example, by
imposing that z belongs to

n
M™ = {x eR}|> z; = 1}

i=1
We assume that we are dealing with an economy with constant yields, in
which inputs and outputs depend linearly on the levels of activity. In other
words, the economy is described by a pair of matrices F' and G from IR" to IR™.
The coefficient f;; of the matrix F' represents the quantity of the commodity
i consumed by the producer j operating at the unit level of activity, whilst
the coefficient g;; of the matrix G represents the quantity of the commodity ¢

produced. _
Let us consider the commodity i. Its total consumption is
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(Fz), = Y fiyms (1)
3=1
and its total production is
(Gz); = Y g5 (2)
j=1

Suppose that the production process is implemented over a period of time.
Thus, we assume that the consumption of the commodity ¢ at the end of the
period of production is lower than the production of this commodity at the
beginning of the period:

Fx' < Gz° (3)

We shall say that there is balanced growth if the levels of activity increase
at the same rate, in other words, if there exists o such that

z' = (1 + a)2°. (4)

If such an o exists it is called the balanced-growth rate. Conditions (3) and
(4) imply that z° is a solution of the inequalities

1+ a)fz° < G2°. (5)

We now consider the transposes of the matrices F' and G. We interpret the dual
IR™ (identified with IR™) as the space of prices p = (p',...,p™), where the
component p represents the unit price of the commodity i. These unit prices
are assumed to be non-negative and are normalised with the assumption that

m
pEM™ .= {p eRY> P = 1}
i=1
Thus, the images F*p and G*p denote the value of the consumptions (inputs)
and the productions (outputs). The problem is now to find prices such that the
value of the outputs at the beginning of the period does not exceed that of the
inputs at the end of the period:

Fpt > G*p°. (6)
We assume that the price p' is related to the price p° by

1 p' —p°
0 1
= — where p = 7
P =1,P P="7 (7)

where p is interpreted as the interest rate. Conditions (5) and (6) imply that p°
is the solution of the inequalities

(1+ p)Fp° > Gp°. (8)

We shall solve problems (7) and (8) and show that the interest rate p and
the balanced-growth rate coincide.
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Theorem 11.1 (von Neumann). Consider two matrices F and G from IR™
to IR™ satisfying

( z) the coeﬁicients gi; of G are non-negative, but not all zero;

() Yi=1,...,m, Y195 >0;

() Vi =1,...,n, 7, fi; > 0. (9)
Then there exist T € M™, p € M™ and § > 0 such that

(2) SFz < GZT
(2) 0F'D>G'p
(41) 8(p, Fz) = (p, GT.) (10)

Moreover, 6 is mazimal in the sense that if T € M™ is a solution of \Fz < GZ
then A < 6. Also, for all p > 6 and all y € IntIRY, there exists & € IR} such
that

pFi— Gz <y. (11)

We shall deduce this theorem from a more general result due to Ky Fan, in
which the linearity assumptions are replaced by convexity assumptions.
We recall that we have previously described the n — 1 simplex of IR™ by

M"™ = {:1: eR}|D =z, = 1}

Theorem 11.2. Consider two mappings F' and G from M™ to IR™ satisfying

(i) the components f; of f are convex and lower semi-continuous;

(i) the components g; of g are concave, positive and lower semi-continuous;
(i) 3p € M™ such that Vz € M™, (p, F(z)) > 0;

(iv) 3% € M™ such that Vi =1,...,n, g:(Z) > 0. (12)

(a) Then there exist § >0, T € M™ and p € M™ such that

(2) Vi=1,...,n, 6fi(Z) < g:(T)
(42) Ve € M", (G(z) — 6F(z),p) <0
(i) Vi=1,...,n, Bi(6fi(T)—g:(T)) =0 (13)

(b) The number 6 > 0 is defined by

1_ o o F@)
3~ peatm zetin (p,G(z))
= inf sup {p, F(z)) (14)

vt pertm (p, G(2))

If A >0 and € M™ satisfy the inequalities A fi(z) < gi(z), Vi=1,...,n, then
A< 6.
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(c) For all p > 6 and for all y € Int (IRT), there exist 8 > 0 and £ € M™ such
that

Proof. We begin by defining the number § by

1 _ {p, F(z))
5= 2k B (.0 e

which is positive and finite by virtue of assumptions (12)(ii)—(iv).

Next we consider the mapping 6F — G from M™ to R™ the components
0f; — g; of which are convex and lower semi-continuous. Propositions 1.8 and
2.6 imply that

the subset (6F — G)(M™) + IR} is closed and convex. (17)

(a) We note that
0€ (0F - G)(M"™)+ R} (18)

Otherwise, following the separation theorem (Theorem 2.4), there would exist
po € IR™ and € > 0 such that, Vz € M™,

8(po, F(@) = (0, G(@) + inf (po,0) > e

ThlS implies that po € IRY; whence, after dividing by >>7") po; and setting
= po/ >0 Poi, WE obta,ln the inequality

vz € M", 8(po, F(2)) — (po, G(x)) me

But the definition of § in (16) implies that
Vz € Mn7 5(p07F("E)> - (pO) G(:B» <0.

Thus we have obtained a contradiction.

(b) Consequently, the inclusion (18) implies that there exists Z € M™ such that
0F(Z) < G(Z). (19)
Taking the scalar product of this inequality in IR™ with p € M™, we obtain

wp 2F@)

1

pEM"‘ (P G(z)) s

whence we deduce the minimax equation (14).
v, F(T)) .
{p, G())

Since M™ is compact and p -+ ———+

such that

is continuous, there exists p € M™
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1_GF@) _ . (6F@)
o (»G@) =i (p,G(z))
Next we consider Z € M™ and A > 0 such that AF(z) < G(&). Since, for all

P € M™, Xp, F(z)(<)p, G(Z)), we obtain
1 (v, F(@) _

1
< MO\ 2
5 = pertn (1, G(@)) ~ X
(c) Suppose now that p > § and that y € Int (IRT). We define the number S by
.o {p,pF(z) — G(z))
= s f
ﬁ PGII‘}’}:)'" Iler}wn (p7 y)

which is strictly positive since the inequality

1_1_ . G.F@)

— < == M AN/

w3 sehin (5, G(a))

implies that

. BuP() - Gla)
ﬂ = ze]xgﬂ (ﬁ’ y) >0

We shall prove that
By € (bF — G)(M™) + IR} (20)

If this is not the case, then, since this set is convex and closed, the separation
theorem (Theorem 2.4) implies that there exist p; € IR™ and € > 0 such that

B{p1,y) + € < (p, pF(z) — G(z)) + vgll,f?(Pl,U)-

This implies that p; € IRT and that 7, := p,/ 3", p1; satisfies the inequality:

(P1, pF'(z) — G(2))
(ﬁh y)

B+e< inf <p
zEM"

which is a contradiction.
The inclusion (20) implies that there exists £ € M™ such that

~

pF(E) - G(f) <y (21)
from which we deduce the minimax equation
. (p, uF'(z) — G())
= inf su 22
=G peim (p,y) (22)
and the existence of § € M™ such that
5, uF () — G(&
5 (0uF(@) - G@) )
(@ y)
This completes the proof of Theorem 11.2 O

Proof of Theorem 11.1. We note that the assumptions (9)(ii) and (iii) imply
assumptions (12)(iii) and (iv) withp = 1(1,1,...,1)and z = 1(1,1,...,1). O
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11.3 The Perron—Frobenius Theorem

When the dimensions n and m are equal, boundary conditions on F' imply that
the solutions T and % of the inequalities

SF(z) < G(3)
and
pk(z) — G(&) < By
are in fact equalities
dF(Z) = G(T)
and

pF(z) — G(&) = By.

Theorem 11.3. Suppose that F is a mapping from M™ to IR™ satisfying

(i) the components f; of F' are convez and lower semi-continuous;
(i) 3p € M™ NInt (RY) such that Vx € M™, (p, F(z)) > 0;
(ii) if z; = 0 then fi(z) < 0. (24)

Suppose also that G is another mapping from M™ to IR™ satisfying
(i) the components g; of G are concave and upper semi-continuous;
(ii) Vz € M", Vi=1,...,n, gi(z) > 0. (25)
Consider the number 6 defined by (14). Then there ezist T € M™NInt (IR7)
and p € M™ NInt (IR}) such that
(%) OF(Z) = G(ZT)
(i7) Vz e M", (p,G(z)—0F(z)) <0. (26)

If p > 6 and y € Int(IR}}) are given, there exist § > 0 and £ € M™ N Int(IR7)
such that

pF(Z) — G(&) = By (27)
Proof. We let ¢/ denote the jth element of the canonical basis of IR". The
boundary condition (24)(iii) implies that

VE#14, fi(e') <0 (28)
which, together with the positivity condition (24)(ii), implies that

Vi=1,...,n, fi(e')=0 (29)
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since, because p € Int(IR7),

Pifi(e') + 3 Brfile’) = (B, F(e')) > 0.
ki

(a) Let us now consider the solutions T € M™ and p € M™ of the system

(9) 5F(z) < G(@)
(i4) Vz € M™, (5,G(z)— F(z)) <0
D) (7, G(@) — 6F(T)) =0 (30)

which exist by virtue of Theorem 11.2.
We note firstly that 7 belongs to the interior of R}}. Taking z := €’ in
(30)(ii) and using the fact that gi(e?) > 0 for all k, it follows that

p:fi(e') + 6 Y_pifu(€’) = (B, G(€))) > 0.
ki
Inequalities (28) and (29) show that p; > 0. We set z := G(z) — 6 F () which
belongs to IR} by virtue of (30)(i). Property (30)(iii) may now be written as
(®,z) =0.

Since the components p; are strictly positive, it follows that Z = 0 and
consequently that 6F(z) = G(Z). Finally, since the components g;(Z) are strictly
positive, the same is true of the components f;(Z) of F(Z) (since § > 0). The
boundary condition (24)(iii) then implies that z; >0 foralli =1,...,n.

The proof of the second part of the theorem is completely analogous. O

The mapping F' := 1 clearly satisfies the conditions (24). Thus, we obtain
the following corollary on the eigenvalues of concave, positive operators.

Corollary 11.1.Suppose G is a mapping from M™ to Int(IR7}) the components
of which are concave and upper semi-continuous. The number § defined by

(p’ :E) (31)

—:=sup inf ——<

5 pe,v?n zeM» (p, G(x))

is strictly positive and if there exist £ € M™ and X > 0 such that Az < G(x)
then A < 6.
There exist T € M™ NInt(IR}) and p € M™ NInt(IRY) such that
(2) 0z = G(T)
(#2) Vz € M™, (p,Gzx — dz) <0. (32)
If u> 6 and y € Int(IR}) are given, there exist 3 >0 and £ € M™ N Int(IR%)
which are solutions of the equation

pz — GI = fy. (33)
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When G is a positive matrix we obtain the Perron—Frobenius theorem.

Theorem 11.4 (Perron—Frobenius). Let G be a matriz with strictly positive
coefficients.

(a) G has a strictly positive eigenvalue § and an associated eigenvector T the
components of which are strictly positive.
(b) d is the only eigenvalue associated with an eigenvector of M™.
(c) & is greater than or equal to the absolute value of any other eigenvalue of
G.
(d) The matriz p — G is invertible and (u — G)™' is positive if and only if
©w>0.
Proof. (a) The existence of § > 0, T € M* NInt(IR}}) and € M™ N Int(IR})
such that 6z = GZ and G*p — dp < 0 follows from Corollary 11.1. In fact, we
have the equality G*p — ép = 0, since
(G'p—0p, %) = (9,GZ — 6Z) =0
and since the components Z; of T are strictly positive.
(b) Suppose £ € M™ and p are such that Gz = uz, It follows that
u(B,2) = (5, Gz) = (G'P, ) = §(7, ).
Since (7, =) is strictly positive (because z belongs to M™ and p € Int(IR7})), the
previous equality implies that = 4.

(c) Suppose that X is an eigenvalue of G and that z € IR” is an associated
eigenvector. The equalities

imply the inequalities
n
Mzl <37 gilzl-
j=1

If || denotes the vector with components |z;|, it follows that |A||z| < G|z,
which implies that |A| < 6.

(d) We know that when p > ¢ the matrix p— G is invertible, since § is the largest
eigenvalue. We also know that for all y € Int(IR?}), the solution (u — G) 'y
belongs to Int(IR?} ), by virtue of the second part of Corollary 11.1. This implies
that (p — G)7! is positive.

Conversely, suppose that (u—G) is invertible and that (u — G) ™' is positive.
The inequality p < ¢ cannot hold, since this would imply the inequalities

pT < 0T = GT where T€ M™
and thus also
~T = (u— G)(Ca - 7)€ R}

since GT — uT is a positive vector. Thus p is strictly larger than 4. O
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11.4 Surjectivity of the M matrices

We shall use the following more general result to show that the M matrices
which we define below are surjective.

Theorem 11.5. We consider a mapping H from IR} to IR™ satisfying

(i) the components h; of H are convez, positively homogeneous and lower semi-

continuous;
(i) b € IR such that Vz € IR}, bx; > hi(z);
(iii) Ve € M™, 3¢ € M™ such that {q, H(z)) > 0. (34)
Then
Vy € Int(IR}), Iz € IntR} such that H(z) = y. (35)

Proof. We choose a number p strictly larger than the number b used in as-
sumption (34)(ii). We associate H with the mapping G := p — H. Corollary
11.1 implies that there exist § > 0 and T € M™ satisfying

0T = GT = ux — H(Z), T € M" NInt(IRY).
Since (p — 0)T = H(Z), assumption (34)(iii) implies that

(/“L - 6)(6,5) = (C_LH(T)) > 0.

Since (g, ) is strictly positive, it follows that p > §. Again by virtue of Corollary
11.1, we can associate any y € Int(IR’}) with a strictly positive number § and
& € M™ NInt(IR7) such that

Hi=(p—-G)i=py
Then T := £/ is the desired solution. o

We now deduce the surjectivity theorem for the M matrices.

Definition 11.1. A matriz H := (h;;) from IR" to itself is called an M matrix
if the following two conditions are satisfied

Vi#j, hy <0 (36)

Vo € M™, g € M™ such that (g, Mz) > 0. (37)

Theorem 11.6. Suppose H is a matriz from R"™ to R"™ satisfying (36). The
following conditions are equivalent:

(a) H is an M matriz;

(b) H is invertible and H™' is positive;

(c) H* is invertible and H*™" is positive.
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Proof. The implication (a)=-(b) follows from the previous theorem and the
implication (b)=>(c) is clear. It remains to show that (c) implies (a).

Suppose p € Int(IR}) is the solution of the equation H*p = 1 where 1 is the
vector with components all equal to 1. Then, for all z € M™,

n

(p, Hz) = (H'p,z) => x; = 1.

i=1

Property (37) is satisfied and this implies that H is an M matrix. O

Remark. There is another criterion for the surjectivity of a matrix: any positive-
definite matrix satisfying

Vz #0, (Hz,z) >0

1s invertible.



12. n-person Games

12.1 Introduction

The fundamental concepts of two-person games extend to n-person games.
. The ith player is denoted by i = 1, ..., n. Each player i may play a strategy
z! in a strategy set E*.

We denote the set of multistrategies = := (z?,...,z") by
E=]]F (1)
i=1

12.2 Non-cooperative Behaviour

Let us put ourselves in the place of the ith player. From his point of view, the
set of multistrategies is considered to be the product of the set E? of strategies
which he may choose and the set

E=]]F (2)
i
of strategies i = (z!,...,z") of the other players, over which he has no control

in the absence of cooperation. Thus, from the ith player’s point of view, the set
of multistrategies z := (¢, z*) may be written as the set

E:=FE' xE (3)

The choice of the players’ strategies may be determined using decision rules.

Definition 12.1. A decision rule of the ith player is a correspondence C* from
E' to E* which associates the multistrategies z* € E* determined by the other
players with a strategy set C*(z?).

Once each of the n players i has been described in terms of the decision
rules C%, as in the case of two-person games, we single out the consistent mul-
tistrategies .

Definition 12.2. Consider an n-person game described by n decision rules C*
from E* to E*. We shall say that a multistrategy = € E is consistent if
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Vi=1,...,n, t€ Ci(a:;) (4)

In other words, the set of consistent multistrategies is the set of fixed points
of the correspondence C from FE to E defined by

Cle) = [ ) ©)

Thus, Kakutani’s fixed-point theorem immediately provides an existence
theorem for consistent multistrategies.

Theorem 12.1. Suppose that the n strategy sets are convez, compact subsets
and that the n decision rules C* are upper semi-continuous. with non-empty,
convez, closed values. Then there exists o consistent multistrategy.

Proof. We apply Kakutani’s theorem (Theorem 9.5) to the correspondence C
defined by (5) from the convex, compact set E into itself, which is clearly upper
semi-continuous with non-empty, convex, closed values.

12.3 n-person Games in Normal (Strategic) Form

We shall suppose now that the decision rules of the n players are determined
by loss functions.

Definition 12.3. A game in normal (strategic) form is a game in which the
behaviour of the ith player is defined by a loss function f* : E — IR that
evaluates the loss fi(x) inflicted on the ith player by each multistrategy .

A game described in strategic form may be summarised by the multiloss
mapping f : E — IR" defined by
Vz € E, f(z):=(f'(z),...,f*(z)) € R". (6)

The associated decision rules are defined by

C(@) = {z' € Blfi(z",2') = inf fi(5',2)} (7)

Definition 12.4. The decision rules C' associated with the loss functions f;
by (7) are called the canonical decision rules, A multistrateqy T € E which is
consistent for the canonical decision rules is called a non-cooperative equi-
librium (or Nash equilibrium).

This definition leads to the following characterisation. We introduce the
function ¢ : E x E to IR defined by

b(z,y) = S (i, 7) — Fiyf, o). (8)
i=1
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Proposition 12.1. The following assertions are eguivalent:

(a) T € E is a non-cooperative equilibrium;
(b)Vi=1,...,n, W€ E, fi(@7)< fiy’,7);
(c)Vy € E, ¢(z,y) <. (9)

The equivalence of (9)(a) and (9)(b) follows immediately from the definitions.
The implication (9)(b)=>(9)(c) is obtained by adding the inequalities

Fi@,7) - F(y',7) < legO. (10)

To prove that (9)(c) implies (9)(b), we fix i and take y := (¢, 7).
The inequality ¢(Z,y) < 0 may be written as

[E@T) - fi,7) + 3 @, T) - f;07,7) < 0. (11)

i
Now, z = {27,27} = {47, 27} whenever j # i. Thus, (11) implies that

vyt € EY, fi(Z,T ) £y T’)

Theorem 12.2 (Nash). We suppose that
Vi € N, the sets E* are conver and compact (12)
and that

Vi € N, the functions f; are continuous
and the functions y* — f;(y*,z") are convex (13)

Then there exists a non-cooperative equilibrium.

Proof. The theorem follows from Ky Fan’s theorem (Theorem 8.6).
We have introduced the set F and the function ¢ defined by

(3) E = ﬁ E?
(i) #(z,9) =TT, 2D - s, =) (1)

The set E is convex and compact, since it is the product of convex, compact
sets B (by assumption (12)). Moreover, assumptions (13) clearly imply that
the functions z — ¢(x,y) are continuous and that the functions y — ¢(z,y)
are concave. Thus, Ky Fan’s theorem implies that there exists T = {z*,7'} € E
such that
sup ¢(z,y) < supP(y,y) =0 (15)
yeEE yeEE

since ¢(y,y) = 0 for all y.
Proposition 12.1 may then be applied. O
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12.4 Non-cooperative Games with Constraints
(Metagames)

Here, we consider a game defined by both decision rules C* : E' — E' and loss
functions f*: E — IR.
We associate these with the canonical decision rules defined by

C() = {w € C'(@)|fi(a",z') = yieigif(zi)f%yi,xi)} (16)

We shall say that the consistent multistrategies are social equilibria of the
metagame. It is easy to adapt the proof of Theorem 12.1 to this new game.
For this, we set

(2) E = ]‘[ E?
(i) Blo,y) = 372 - £, D)
(i) Clz) = f[ Ci(a). (17)

Proposition 12.2. The following assertions are equivalent

(a) T € E is a social equilibrium, ) ) )
(b)Vi=1,...,n, T € C{(T*) and V¥’ € C(T), fi(Z*T) < fi(v},T);

(c) T € C(Z) and Vy € C(x), ¢(T,y) < 0. (18)
Proof. The proof is left as an exercise. The existence of a social equilibrium
then follows from Theorem 9.14.

Theorem 12.3 (Arrow—Debreu—Nash). We suppose that
Vi € N, the sets E* are convex and compact (19)
and that

Vi € N, the correspondences C* from [1;4; E? to E*
are continuous with non-empty, convez, closed values. (20)

Lastly, we assume that

Vi € N, the functions f* are continuous
and the functions y* — fi(y}, ) are convez. (21)

Then there exists a social equilibrium.

Proof. The set E is convex and compact. The correspondence C is clearly
continuous with non-empty, convex, closed values.
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The function ¢ is continuous and for all z € E, the function y — ¢(z,y) is
concave. Moreover, ¢(y,y) =0 for all y € F.
Theorem 9.14 implies that there exists Z € X such that

(1) z={z,...,7"} € C(z) = [[ C'@)
i=1
(i2) ¢(,y) <0, Vy e C(z) (22)
Proposition 12.2 may then be applied. O

12.5 Pareto Optima

As in the case of two-person games, we single out Pareto optima when the
players are permitted to exchange information and to collaborate.

Definition 12.5. A multistrategy T € E is said to be Pareto optimal if there
are no other multistrategies x € E such that

Vi=1,...,n, fiz)< fi(z). (23)

We also saw in the case of two-person games that there may be a number
of Pareto optima. There thus arises the problem of choosing these optima. For
example, one might attribute a weight \* > 0 to each player.

If the players accept this weighting, they may agree to collaborate and to
minimise the weighted function

f@) = 2 XS (@) 24

over E. If the vector A with components A? is not zero, we note that any mul-
tistrategy T € E which minimises fi(x) is a Pareto minimum. For, if this were
not the case, there would exist x satisfying the inequalities (23). Multiplying
these by A; > 0 and summing them, we obtain the contradiction fy(z) < fi(T).

If the n players could be made to agree on a weighting A, we would no longer
have a game problem proper but a simple optimisation problem. However, it
is interesting to know the conditions under which any Pareto optimum may be
obtained by minimising the function f, associated with a weighting A which is
borne in some way by this Pareto optimum. This question has a positive answer
if we apply convexity assumptions.

Proposition 12.3. Suppose that the strateqy sets E* are convex and that the
loss functions f : E — IR are convez. Any Pareto optimum T may be associated
with a non-zero weighting A € IR™ such that T minimises the function f) over
E.

Proof. Proposition 2.6 implies that
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f(E) + R’ is convex (25)
We then note that an element T € E is a Pareto minimum if and only if
f(z) ¢ £(E) + R} (26)

Thus, we may use the large separation theorem (Theorem 2.5) to see that there
exists A € IR", A # 0, such that

AE@) = inf (A E@) + (M),
ueﬂ{:_

It follows that ) is positive and that T minimises z — f\(z) = (), f(z)) on E.
O

Remark. A Pareto minimum also minimises other functions.
For example, we introduce the virtual minimum o defined by its components
1) — i 7 9
of = inf fi(z). (27)

We shall say that the game is bounded belowif Vi =1,...,n, o > —o0.
In this case, we take B¢ < o for all 7 and set §:= (8, ...,8") € R".

Proposition 12.4. Suppose that the game is bounded below.
An element T € E is a Pareto minimum if and only if there exists \ € ]R:
such that T minimises the function g, defined by

(fi(z) - B (28)

)= x5
g)\(iE T ig.a..‘?,{n Xl-

over E.

Proof. (a) If T € E inimises g, on F and is not a Pareto minimum, we could
find x € E satisfying the inequalities (23). Subtracting £;, and multiplying

by ;‘1; and taking the maximum of the two terms, we obtain the contradiction

9 (z) < gx(T)-
(b) If T is a Pareto minimum, we take A\' = fi(z) — f/ > 0 such that

gx\(ZT) = 1. If there were an z € E such that gx(z) < ga(T), then we would
have maxi=i,. (%) < 1 which would imply the inequalities (23). O

We can also define conservative strategies for the players. We set

fi(a') == sup fi(a,a) (29)
i€k

We shall say that = € E? is a conservative strategy for the ith player if

F¥(z") = inf sup fi(a',). (30)

S
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and we shall say the number v} defined by

o := inf sup fi(z, ). (31)
TR Jicpi

is the conservative value of the game. As in the case of two-person games,
this conservative value may be used as a threat, by refusing to accept any
multistrategy = such that
Fi(z) > of (32)
since by playing a conservative strategy z® the loss fi(z¥,z?) is strictly less
than fi(z).
Suppose that
Vi=1,...,n, vf>al (33)

(the conservative value is strictly greater than the virtual minimum).
Consider the function go : E — IR defined by

go(a) = ma, L= (34)

-
Proposition 12.4 (with §* = of and A\ = o} — of) implies that
if g € F minimises gy on F, then x4 is a Pareto minimum. (35)
If d := min,ep go(z), it follows that zo minimises gy on E if and only if

Vi,...,n, fi(zd) < (1 —d)o! + do. (36)

This property suggests that such choices of Pareto optima should be viewed
as best compromise solutions.
Other methods of selection by optimisation involve minimising functions

a:—)s(fl(z)_al,...,fn(w)_an) (37)

vf—al b —an

on F, where the function s satisfies the following increasing property
if a* > ' for all 4, then s(a) > s(b). (38)

It is easy to show that any T € E which minimises (37) is a Pareto mini-
mum. We also note that the function (37) remains invariant whenever the loss
functions f? are replaced by functions a;f* + b;, where a; > 0.

We also say that by replacing the functions f? by the functions g

dio) = L= (39)

we have ‘normalised’ the same game. For the normalised game the virtual min-
imum is zero and the conservative value is 1.
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12.6 Behaviour of Players in Coalitions

We denote the set of n players by N and write S C IV to denote a coalition of
players. As a member of a coalition S, a player i € S will modify his behaviour.
For example, we suppose that he cooperates with the players of the coalition
S and that he does not cooperate with the players of the adverse coalition
S := N\S. In other words, the player i € S, as a member of the coalition S,
assumes that the players j € S of the adverse coalition will maximise his loss.
For this, we set )
ES=]]F, E°=]]F (40)
€S ¢S

and it is convenient to make the following identifications:
(2) E = ES x Es, z = (x5, :Bs) where (ii)z° € E®, 25 ¢ ES
(i2) fiz) = fi(a%,2%). (41)

Thus, the behaviour of the player i as a member of the coalition S is described
by the loss function f& : ES — IR by

f3(a%) = sup fi(aS9P). (42)
ySeES

When S reduces to a single player i, this definition is compatible with that of
f® given in (29).
We let cs denote the operator from IR" to itself defined by

T; if 1€ S
(cs - ); "{ 0if i¢S (43)
and set
RS :=cs-R*, RS :=cs-R7, RS =cs R} (44)

Thus, the behaviour of the players ¢ of the coalition S is described by the
multiloss mapping f g from ES to IR defined by

X ifr,.S if 4
S { gsi(fzz')¢ fs* res (45)

Consider now a multistrategy £ € E and a player i. As a member of the
whole coalition, he incurs a loss f*(z). As a member of the coalition S, his loss
is f&(z%) in the worst case.

If all the players i of the coalition S can find a strategy v° € ES such that

VieS, f3°) < fiz) (46)

they will reject the multistrategy z, form a coalition S and choose the mul-
tistrategy y°. Consequently, for the multistrategy = to be accepted by all the
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players, it must be the case that whatever the coalition S, there is no multi-
strategy y° € ES such that the inequalities (46) are satisfied.
This leads us to make the following definition.

Definition 12.6. We shall say that the core of the game is the set of multi-
strategies * € E which are accepted by all non-empty coalitions S C N, in
the sense that

VS, it is not the case that (Iy° € ES|Vi € S, f3(%°) < fi(z)). (47)

This concept is not void, since we shall prove the following theorem due to
Scarf (1971).

Theorem 12.4. We suppose that the strategy sets E* are convex and compact
and that the loss functions f : E — IR are convex (with respect to all the
variables) and lower semi-continuous. Then the core of the game is non-empty.

In fact, for clarity, we shall get rid of the strategy sets and loss functions
and retain only their images in the space of multilosses.
For this, we set

VS C N, W(S) := f&(E5) c IRS. (48)

It then follows that = belongs to the core of the game if and only if its multiloss
r:= f(z) satisfies

(4) r € W(N)

(34) VSCN, cs-r¢W(S)+IR (49)
We then note that the problem (49) is equivalent to the problem

() r € W(N) +RY

(i%) VSCN, cs-réW(S)+R, (50)

Any solution of (49) is clearly a solution of (50), let us consider a solution r
of this latter problem. Then r may be written as ro + 7, where o € W(V)
and r; € IR} and we note that ry satisfies the conditions (49)(ii); for otherwise,
there would exist S and r, € W(S) + ]Ri such that Vi € s, r; = rg; + 115 >
To; + T1; > Tai, in other words r € W(S) + I(Ri‘ O

By setting V/(S) := W(S) + RS, we may thus assume that the sets V(S)
satisfy the property V(S) = V(S) + RS.

12.7 Cooperative Games Without Side Payments

In 1971, Scarf deduced the above theorem from a famous theorem which he
proved in 1963 on the non-emptiness of a game defined solely by the multiloss
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sets V(S) of each coalition S. With Nash’s theorem (1951), this is one of the
two major theorems of game theory. For a long time it remained a very difficult
theorem to prove, until, in 1973 Shapley gave a simple proof based on Theorem
9.15, which he conceived and proved just for that purpose.

Thus, you will appreciate that the discovery of these theorems and their
original proofs required considerable effort on the part of their authors (Nash,
Scarf, Shapley) not to mention originality and intelligence. If they now feature
in this master’s level book it is because, little by little, over two decades, work to
understand these results and developments in nonlinear analysis have enabled
us to unravel Ariane’s threads and to find direct approaches. Much exploration
of unknown territory was needed to find better signposted paths leading with-
out excessive difficulty to an understanding of these theorems.

Definition 12.7. A cooperative n-person game without side payments is de-
scribed by the introduction for every non-empty subset S of N of a non-empty
subset V(S) of IR satisfying

V(S)=V(S)+ RS (51)

A multiloss 7 € RN is said to be accepted if, for any coalition S, there is no
7S € V(S) such that r{ < r* for all players i in S. The core of the game is the
set of multilosses of V(N) accepted (by all the coalitions).

We denote the set of multilosses 7 accepted by all coalitions by A. Since

V(S) + IRi is the set of multilosses which are not accepted (thus rejected) by
the coalition S, we note that the set A of accepted multilosses may be written
in the form

A:= ) comp(cs) " (V(S) + RY) (52)
SCN

This is a closed set. Thus, the core of the game is equal to
C(N)=V(N)Nn A (53)

We must show that this intersection is non-empty. The idea is to consider the
subcores

C(T) = (cr) 'V N A (54)

of the multilosses of the coalition T accepted by all the others. We shall prove
the following theorem:

Theorem 12.5. Suppose that the subsets V(T) are closed and bounded below.
Then there exists a balanced family B of coadlitions such that

NresC(T) # 0 (55)

We shall prove a theorem to show that the core is non-empty under the
following assumptions.
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Definition 12.8. We shall say that a game is balanced , if for any balanced
family B, we have
N (er)V(T) € V(1Y) (56)

TeB

Theorem 12.6 (Scarf). Suppose that the game is balanced and that the subsets
V(T) are closed and bounded below, Then the core of the game is non-empty.
Proof of Theorem 12.5. The idea is simple, namely to apply Theorem 9.15.
We cannot do this directly since the subsets C(T) are not contained in the
simplex. But C(T) is contained in V(T) N comp(V(T) + IRi) which is the
Pareto surface of V(T') and which is intuitively isomorphic to the simplex M7.
We shall explain all this.
First we note that

AC]]] — o0,v;] where v :=infV({i}) (57)
i=1
since, for coalitions with one player
comp(cgy) H(V({i}) + Ry) = {r e R7|r: < w3}
Normalising by the condition
Vie N, v;:=infV({i})=0 (58)

so that A C —IR"} changes nothing in the game.
Then, since the sets V(T') are bounded below, there exists a finite number
o; > 0 such that
—a;:=inf inf n; (59)

Soi reVv(S)
<0

Consequently, the set A of the accepted multilosses is bounded:
Ac ]l — o0, —a4] (60)
i=1

We set
p:=mn sup o; > 0. (61)

i=1,...,n

We change nothing in the game by taking p = 1.
Let us now consider an element z of the simplex and the straight line z+IR1.
Since the sets V/(.S) satisfy the condition

V(S) =V(S)+ RS
it follows that

ifo<7then {z—0cle A=z —71€ A} (62)
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V(N)

Moreover, we note that if £ — 71 belongs to .4, then 7 is positive.
Thus, we may associate every £ € M™ with the number 7(z) > 0 defined by

7(z) :=inf{r|]z — 71 € A}. (63)
Let us for the moment accept the following lemma,
Lemma 12.1 The mapping 7 from M"™ to R, is continuous.
We then define the subsets
Fr:={z € M"|cr- (z — 7(z)1) € V(T)}. (64)

Since V(T) is closed and 7 is continuous, the subsets Fir are closed. Suppose
for a moment that there exist a balanced family B and T € M™ such that

ze () Fr (65)
TeEB

Then, by the construction of 7 and the Fr we have proved Theorem 12.5, since

z—-7(@)1€ [ CT) (66)

TeB

Thus, we must prove (65), for which we must apply Theorem 9.15, that is
to say verify the assumption

VI' C N, MT C |J Fs (67)
SCT

Consider firstly the case where T'= IN. We have

M™c | Fs (68)
SCN
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In fact, we may write

7(2) = max 75 () (69)
where
75(z) := inf{r|(z — 71) € compes - (V(S) + R3)} (70)

Thus, we may associate any element * € M™ with a coalition S such that
7(z) = 7s(z), whence such that £ — 7(z)1 = z — 75(z)1 € (cs-) (V(S)).

Consider now the case when T' # N. Since MT C M™ C Ugcn Fs, it is
sufficient to prove that

if MTNFs#0,then SCT (71)

to verify that the assumption (67) is satisfied.

Thus, we take z in M7 N Fg. We shall show that Vi € S, z; > 0, which
will imply that S C T Since = belongs to M7 and since T # N, there exists a
player iy € T for which

1
Moreover, since z — 7(z)1 belongs to A, then
Vi=1,...,n, z;—7(z) <0. (73)

These two inequalities imply that
! < () (74)
—<7(z
n

Since z also belongs to Fs, then ¢, - (x — 7(z)1) belongs to V(S) , whence,
following the definition of ; in (59), we obtain the inequalities

1
VZGS, —ai5$i—7($)<mi—g. (75)
Since nsup o; = 1, it follows that
vies, ;>0 (76)

and thus that S NcompT = 0, in other words, S C T. Assumption (67) is
satisfied, there exist = and B such that (65) is satisfied and Theorem 12.5 holds
and has been proved. O
Proof of Lemma 12.1. We let R denote the complement of A4 which satisfies
the property R + IR} = R. We consider the cone z — 7(z)1 + 1R}, which is
contained in R and the cone z — 7(z)1 — IR} which is contained in A.

Consider a sequence x, converging to z.

We set

(2) t, :=sup{t|z, —tl €z — 7(z)1 + ]R:}
(i4) S := inf{s|z, — sl € z — 7(z)1 — R} } (77)
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Tn

R
A z
Ty —tgl

Tn — T(In)l

z —7(z)l
Zn = 3nl

Fig. 12.2.
It then follows that
trn < T(xn) < 5, (78)
It suffices now to note that s, and ¢, tend to 7(x) as z, tends to z. 0O

Proof of Theorem 12.6 (Scarf). Following Propositions 1.8 and 2.6, we know
that the subsets V/(S) := f4(ES) + RS satisfy

V(8S) is closed, convex and bounded below. (79)

Thus, Theorem 12.5 applies to the V(S). O

To prove Theorem 12.4 from Theorem 12.6, we must show that this game
is balanced.

This will follow from Proposition 12.5, below. We recall that we defined
balancings (Definition 9.9) as vectors m = (m(S))gcy satisfying

m(S) >0, Vi=1,...,n, Y m(S)=1 (80)
S>i
or alternatively
m(S) >0, ey =Y m(S)cs (81)
ScN

where cg denotes the characteristic function of the coalition S.

Proposition 12.5. Suppose that the stmtegy sets E* and the loss functions
fi are convez. Then for any balancing m = (m(S))g-n and any family of
multistrategies x5 € ES, we have the inequalities

Vie N, fi (Z m(S)x ) <Y m(S) f(25). (82)

SCN CET

Proof of Theorem 12.4. It 1s sufficient to show that the game is balanced.
For this, we take r € Ngep(cs)™ V(.S’ ) where B is a balanced family associated
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with the balancings m(S) > 0. Thus, we may associate every S € B with a
multistrategy z° € ES such that

VS € B, cs-r > fh(z%). (83)

We take 2V 1= Sgcn m(s)zS, which is a multistrategy in E. Since 3" g5; m(S) =
1, it follows from Proposition 12.5 that, for all i € N,

ri = m(S)r; > > m(8) [ (z%) = fi(a") (84)
Soi Sai
whence that r € f(zV) + R} C V(N). O

Proof of Proposition 12.5. Consider a balancing m = (m(S))g-y and two
players i and j. We observe firstly that

TZ m(T) = SZ m(S) (85)

since

1 = > mS)=> mS)+ >, m(S)

Soi g;; S$O{i,j}
= > m(T) =% m(T)+ > m(T)
T3j T3j To{i,j}

Ti

Now we consider multistrategies z° € ES. We shall associate these with
multistrategies y; € E* defineg by

Vi i, yg;=( 3 m(T):vT’j) / ( > m(S’)). (86)

T33,THi S$2i,S%j

From equation (48) yl] belongs to E7 since the latter is convex. If S > ¢ and
j # 1 we set ) )

yf = (4),cq € B (87)
We note that for j # 1,

S m©) @S,y = 3 m(S)z + X m(S)y
S>i S$2{i,j} ‘39,?;

= ¥ m(S)mS'j+Z(Zm(T)mT'j Zm(S))

S2{i.d} 53 \7% 3
= Y m(8)z5 + Zm(T):cT'j

5505} T3
= Y m(T)z™

T3j
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if j = i, then, clearly,
> m(S)(z®, = m(S)z
Soi Soi
Thus, we have established the equality

Vie N, S m(S)(z% ) = 3 m(S)z®. (88)

SEN SCN

Since 3"g5; m(s) = 1, the convexity of the loss functions f* implies that

FCE m(9)z%) = fFi(Sm(S)(=5,5))

SCN S3i

< Sm(S)fi(z5,oF)

NEH

Y- m(S) fd(=®

S5i

IN

O
Suppose that the players in the coalition S decide to combine their losses.
The best worst-loss of the coalition S is then defined by

w(8) = lnf Z . (89)

zES

Corollary 12.1 We suppose that the assumptions of Proposition 12.5 are in
force. Then

w(N) < > m(S) w(S’) (90)

SCN

Proof. Following Proposition 12.5

> P m($)2%) < 33 m(8)fg(af

ieN  SCN iEN 53i
= > m(S)Y fi(a®
ScN i€

Next we choose z° € E° such that

> ) sw(S) +e [ 3 m

i€S SCN

Then zV := Y gcn m(S)z® € E and we have

w(N) < Y (> m(S)zS

iEN SCN

< S m(S) Y ¥ =%)

SCN SCN

> m(S)w(S) +€

SCN

IA
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12.8 Evolutionary Games

We regard the probability simplex

M":={.’E€IR.7_:_| Zzi=1}

i=1

as the set of mixed strategies of the evolutionary game. Such games provide
equilibria of dynamical systems which we shall built. We begin with systems for
which we know the growth rates g;(-) of the evolution without constraints (also
called “specific growth rates”):

Vi=1,...,n, zi(t) =z:(t)g:(z(¢t))

We set g(z) := (g1(Z1), - -, gn(2,)) and z 0 g(z) = (101(%1), - - -, Tngn(Tn))- If
the map £ € M™ — z o g(z) € IR" does not satisfy the tangential condition

Ve M zog(z)€ Tyun(x)

which boils down to .
VzeM®, Y zg(z) =0

thanks to formula (44) of chapter 4, we cannot us theorem 9.4 for obtaining the
exitence of an equilibrium. But we can correct this situation by subtracting to
each initial growth rate the common “feedback control 4(-)” (also called “global
flux” in many applications) defined as the weighted mean of the specific growth
rates

VzeM, az) := Z:ngj(:v

because .
VzeM, > z(g(z) —dz) =0
i=1

Hence, we replace the initial dynamical system by
Vi=1,..,n 2i(t) = m(t)(et) - @)
= z(t)(9:(z(¢)) — X7 z;(t)g;(z(t)))

called replicator system (or system under constant organization) by the biolo-
gists who introduced these games.

Remark. There are other methods for correcting a dynamical system to make a
given closed subset a viability domain. A general method consists in projecting
the dynamics onto the tangent cone (see variational inequalities of chapter 9.)
Here, we have taken advantage of the particular nature of the simplex.
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An equilibrium « of the replicator system is thus a solution to the system
Vi= 1,... »y N, ai(gi(a) - '&(a)) =0

Such an equilibrium does exist, thanks to Theorem 9.3. These equations imply
that either a; = 0 or g;(a) = 4(a) or both, and that g;,(«) = @(a) holds true
for at least one iy. We shall say that an equilibrium o is nondegenerate if

Vi=1,...,n, gla) = ()

Equilibria « which are strongly positive (this means that a; > 0 for all 7 =
1,...,n) are naturally non degenerate.

We shall say that an equilibrium « is evolutionary stable if and only if the
property

dn >0 suchthat z € B(o,n), = # q, Zg,-(:z;)(ai —z;) >0
i=1

holds true in a neighborhood of «. Let us consider the function V,, defined on
the simplex M™ by

n

Valz) == J]zf* = [] =
i=1 icl,
where weset 0°:=1and I, :={i =1,...,n | oz > 0}. Such an equilibrium is
called evolutionary stable because

1. a is the unique mazimizer of V, on the simplex M™,

2. starting from an equilibrium o € M™, the solution z(-) to the replicator
system satisfies

t — Va(z(t)) is increasing

since
n

LValalt) = Valo(®) Xleult) — z)ax(z(t)) > 0

i=1

in a neighborhood of a.

1This follows from the concavity of the function ¢ := log: Setting 0log0 = Ologco = 0,

we get
n
T; T;
Y alog =t = Y ailog =t < Y@ < _
a;log o «; log - log( x,) log1 0

i=1 a; >0

so that

iai logz; < i a;log o

i=1 i=1

and thus, V,(z) < V,(a) with equality if and only if z = a.
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The.rfffo?"e, whenever the equilibrium is evolutionary stable, z(t) converges to the
equilibrium o. Indeed, the Cauchy-Schwarz inequality implies that

(iz;\wz:%(ﬂ?))2 < (ng) (gwigi(l‘)z) = g:pig,-(m)z

and thus,
V20, > gi(xz(t))zi(t) = 0

i=1
Therefore, whenever oo € M™ is a nondegenerate equilibrium,

iVa(a:(t)) = YL B 2y w(z(8)Zi(t)

= Va(a(t)) Tier, 0: 53

and .

Z :C,(t) Z(az zi(t))g:(x(t))

i=1 i=1

Example: Replicator systems for linear growth rates. The main class
of examples is provided by linear gtowth rates

Vi=1,...,n, gi(z) = Za,-jrz;j

Let A denote the matrix the entries of which are the above a;;’s. Hence the
global flux can be written

n
Vze M, iz) = ) auzpa = < Az, z>
Ei=1

Therefore, first order replicator systems can be written

Vi=1,...,n, zi(t) = wi(t)(zn:aiﬂ‘j(t)— f anr(t)zi(t))
j= k,l=1

Such systems have been investigated independently in —  population genet-
ics (allele frequencies in a gene pool) —  theory of prebiotic evolution of
self replicating polymers (concentrations of polynucleotides in a dialysis reac-
tor) — sociobiological studies of evolutionary stable traits of animal behav-
ior (distributions of behavioral phenotypes in a given species) —  population
ecology (densities of interacting species). In population genetics, Fisher- Wright-
Haldane’s model regards the state x € M™ as the frequencies of alleles in a gene
pool and the matrix A := (a;;)ij=1,..n as the fitness matriz, where a;; repre-
sents the fitness of the genotype (i, 7). In this case, the matrix A is obviously
symmetric and we denote by

u(z) =< Az,x > the average fitness
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In the theory of prebiotic evolution, the state represents the concentrations of
polynucleotides. It is assumed in Eigen-Schuster’s “hypercycle” that the growth
rate of the ith-polynucleotide is proportional to the concentration of the pre-
ceding one:

Vi=1,...,n, ¢i(z) = cix;—; where z_; := Tp

In other words, the growth of polynucleotide i is catalyzed by its predecessor by
Michaelis-Menten type chemical reactions. The feedback @(z) = > i, ¢:i%:iTi—y
can be regarded as a selective pressure to maintain the concentration. The
equilibrium « of such a system is equal to

1 (1)
Vi=1,...,n, o = Z— where c,41 =
Cit1 j=1 Cj

First order replicator systems also offer a quite interesting model of dynamic
game theory proposed in 1974 by J. Maynard-Smith to explain the evolution
of genetically programmed behaviors of individuals of an animal species. We
denote by ¢ = 1,...,n the n possible “strategies” used in interindividual com-
petition in the species and denote by a;; the “gain” when strategy ¢ is played
against strategy j. The state of the system is described by the “mixed strategies”
x € M™, which are the probabilities with which the strategies are implemented.
Hence the growth rate g;(z) := >7_, a;;x; is the gain obtained by playing strat-
egy ¢ against the mixed strategy x and 4(z) := 2% j=1 G;T:T; can be interpreted
as the average gain . So the growth rate of the strategy 7 in the replicator system
is equal to the difference between the gain of i and the average gain (a behavior
which had been proposed in 1978 by Taylor and Jonker.) In ecology, the main
models are elaborations of the Lotka-Volterra equations

Yi=1,...,n, :c:(t) = IL','(t) (a,-o + zn:aij.’lij(t))

Jj=1

where the growth rate of each species depend in an affine way upon the number
of organisms of the other species. A very simple transformation replaces this
system by a first order replicator system. We compactify IR} by introducing
homogeneous coordinates. We set o := 1 and we introduce the map

R
Vi=0,...,n, ¥i'== o
j=1%j
from IR} onto S™*!, the inverse of which is defined by z; := y;/yo. We set

ao; = 0 for all j, so that Lotka-Volterra’s equation becomes

) , yi n n
Vi=1,...,n, y; = — E a;5Y; — E ArIY1Ys
Yo j=0

k=1
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because

iC, T Z ‘,LJ. n n
! 1 1 J 2
Y, = — = I; ;55 | Yo — T3 AT Ty, Yo
X (Xa)? ' (;go N J) 1 (k,lz=0 )
This is, up to the multiplication by i, i.e., up to a modification of the time
scale, a (n + 1)-dimensional first order replicator system. So, first-order replica-

tor systems appear as a common denominator underlying these four biological
processes.






13. Cooperative Games and Fuzzy Games

13.1 Introduction

Let us consider a set IV of n players and the set D(NN) of subsets of players S.
Cooperative games are those which take into account not only the behaviour of
the players but also that of coalitions of players. Thus, we require a completely
different formalism from that used for non-cooperative games. From the be-
ginning, theorists of cooperative games have wrestled with difficulties resulting
from the finite nature of D(NV). The structure of this set is too weak and the
results relating to it are either trivial or very difficult. Several attempted ap-
proaches have involved increasing the number of players by various means. For
example, one such approach involved taking the interval [0, 1] as the set of play-
ers (the interval is called the continuum of players). This technique, which was
first used by R. Aumann, is one which physicists have used since the invention
of differential calculus.

13.2 Coalitions, Fuzzy Coalitions and Generalised
Coalitions of n Players

We denote the set of n players by N.

The first definition of a coalition which comes to mind is that of a subset of
players S C IN. Thus there are 2" coalitions. However, although the number of
coalitions rapidly becomes important, it remains finite which prevents us from
using analytical techniques.

In defining mixed strategies, we saw a first example of the ‘convexification’
of a finite set.

We shall study a natural way of ‘convexifying’ the set D(IV) of coalitions of
n players. For this, we identify the set of coalitions D(IV) with the set {0,1}"
with the aid of the set characteristic functions

S € D(N) - cs € {0,1}" (1)

where cg, the characteristic function of S, is defined by

S it g



o
0o

1 13. Cooperative Games and Fuzzy Games

Since {0,1}" is a subset of IR", we can take its convez hull, which is the
cube [0, 1]". We shall call any element c of [0, 1])" which is defined by

c:i€ N —c(i) €[0,1] (3)

a fuzzy subset of N. The number c(i) € [0, 1] is called the level of membership
(of i) of the fuzzy subsct c.

This concept of the fuzzy set was introduced in 1965 by L.A. Zadeh. Since then,
it has been wildly successful, above all in many areas outside the mathematical com-
munity. In this age of anti-scientific reaction, the adjective ‘fuzzy’ must have raised
some people’s hopes of being able to escape from the constraints of rigour to which
mathematicians are subjected. Whilst the latter are wary of fuzziness could this not
offer a way of avoiding the punishing logical consistency of scientific reasoning, with-
out a bad conscience? Did not the author of Caroline chérie and Les corps tranquilles
(J. Laurent) recently entitle his last novel Les sous-ensembles flous (Fuzzy Subsets)?

Beyond such anecdotes — and the rather unkind reflections on snobbery which they
may evoke — it is useful to reflect on the power of words and the harm which may
result from word play. The success of catastrophe theory outside mathematics must
be associated with this phenomenon. At this time of collective pessimism and end-of-
the-world atmosphere, was not scientific support for this made even more legitimate
when the originator of catastrophe theory won the Fields medal, the mathematician’s
equivalent of the Nobel prize? However, all this is as nothing compared with the
alarming word play around the concept of entropy, which takes a cowardly advantage
of the difficulty of this notion. Must pervading ideologies be no longer viable for the
second law of thermodynamics to be raised to a quasi-religious statute?

That this is no exaggeration is proved by J. Rivkin’s book, the title of which,
Entropy, is repeated three times in flamboyant colours. To see this, we need only read
the titles of the last paragraphs:

Entropy: a new world in view, Toward a new economic theory, Third world de-
velopment, Domestic redistribution of wealth, A new infrastructure for the solar age,
Values and institutions in an entropic society, Reformulating science, Reformulating
education, A second Christian education, Facing the entropy crisis, From despair to
hope.

This is so scandalous that a famous professor of mathematics at the Ecole Poly-
technique has formulated the third law of thermodynamics: “Any sophistical expla-
nation of the second law of thermodynamics is a foolish affirmation”.

Since we have interpreted any subset of IV as a coalition of players, we shall
interpret any fuzzy subset ¢ of [0,1]" as a fuzzy coalition of players and each
number c(i) as the level of participation of player i in the fuzzy coalition c.
Player ¢ participates fully in c if ¢(¢) = 1, does not participate at all if ¢(z) =0
and participates in a fuzzy way if c(z) €]0, 1[.

The interest of the concept of fuzzy coalitions in political games is clear for
all to see!

Since the set of fuzzy coalitions is the convex hull of the set of coalitions
any fuzzy coalition may be written in the form

c= Y, m(S)cs where m(S) >0, Y m(S)=1. (4)

SeED(N) SED(N)
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The levels of participation of the players are then defined by

c(@) =Y _m(S) (t=1,...,n). (5)

531

Thus, if m(S) is interpreted as the probability of the formation of the coalition
S, the level of participation of player i is the sum of the probabilities of the
formation of the coalitions S to which i belongs.

But why stop there? Why not model non-cooperative behaviour of the ith
player by a negative level of participation?

. 2 o 3 Ca23 Cn
2V N ] 9
// Cs : Cia
C I ’/,
2L
C
// il N
-~
Co G 1 Co C 1
N =(1,2). Coalitions and fuzzy N =(1,2, 31). Coalitions and fuzzy
coalitions of 2 players coalitions of 3 players

Fig.13.1. Coalitions and fuzzy coalitions of players. (a) N = (1,2), 2 players,
(b) N = (1,2,3), 3 players.

Definition 13.1 A generalised coalition of n players is defined to be any
element of the cube [—1,+1])" of functions ¢ : N — [—1,+1] which associate
each player i with his level of participation c(i) € [-1,+1].

A positive level of participation is interpreted as cooperative participation of
the player 7 in the coalition, whilst a negative level of participation is interpreted
as non-cooperative participation of the ith player in the generalised coalition.

We can also enrich the description of the players by representing each player
i by what psychologists call his ‘behaviour profile ’. Let us explain this.

We consider ¢ ‘behavioural qualities’ k = 1,...,q, each with a unit of mea-
surement. For example, ¢ = 1: intelligence, & = 2: patience,
k = 3: creativity, etc. We also suppose that a behavioural quantity can be mea-
sured (evaluated) in terms of a real number (positive or negative) of units. A
behaviour profile is a vector a = (ay, - .., a,) € IR? which specifies the quantities
a of the g qualities k attributed to the player. Thus, instead of representing
each player by a letter of the alphabet, he is described as an element of the
vector space IRY.

We then suppose that each player may implement all, none, or only some
of his behavioural qualities when he participates in a social coalition. For ex-
ample, suppose that we have retained the two qualities k£ = 1: intelligence and
k = 2: patience. A player may implement these two qualities in different ways,
according as to whether he is participating in the Fraternal Society for Social
Psychology, the Anglers’ Association or the Association of Belote Players. In
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the first case, we assume that he implements the two qualities in full, while in
the second case he does not use his intelligence at all but proves his patience
to the full and in third case he uses half of the potential of each of these two
qualities.

This translates to the statement that the level of participation (or, in the
terminology of social science ‘the degree of actualisation’) of his behaviour pro-
file is (1,1) in the first case, (0,1) in the second case and (1/2,1/2) in the third
case.

We note (and this is important) that the level of participation is independent
of the behaviour profile.

More precisely, we introduce the following concept:

Definition 13.2 Consider n players represented by their behaviour profiles in
IRY. Any matriz C = (CF) describing the levels of participation CF € [—1,+1]
of the behavioural qualities k for the n players i is called a social coalition.

players Qualities quality 1 quality & quality ¢
player 1 C! CF 195,
player 2 Cr CF 7
player n C! CF Ce

The g rows represent the levels of behavioural participation of the ¢ players.
The set of all social coalitions which it is possible to construct is the

gn-dimensional hypercube [—1, +1]7".

If the players are described by their behaviour profiles a’ = (at, .. .
€ IRY, the qualities brought into play by a social coalition C € [—1,+1]™" are

equal to

Vi=1,...

patience) and the social coalition:

U (Cika;‘:)k=l

For example, let us consider three players and two qualities (intelligence and

1 2
Xavier | 1/6 | 1
Yvette | 3/4 | 1/4
Zoe 1 0

Oy -

Xavier brings 1/6 of his intelligence and all his patience to bear. Yvette uses
3/4 of her intelligence and 1/4 of her patience. Zoe shows all her intelligence
but is not patient (nor is she impatient).
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Suppose that the behaviour profiles of our three players are:

aX =

¥ =

a? =

(6' _3)
(4,4)

(—3,11)

(Xavier is intelligent and quick tempered)
(Yvette is intelligent and patient)
(Zoe is not very smart but has the patience of an angel)

The behaviour profiles effectively implemented by this social coalition will

be:

P = (1,—3)=(%-6,1-(—3))
v = (3,1)=(Z-4,%-4

v¥ = (-3,0)=(1-(-3),0-11).

We note that a social coalition of n players is simply a generalised coalition
of ng subplayers (i, k) formed by the kth quality of player i.

Patience

3

Zoe
1’ aZ
/~ Profile of Zoe implemented in
; the social coalition
/
/
/
/]
/ Yvette
/ Y
/ a . .
/ .. — Profile of Yvette implemented in
/ _-- the social coalition
4 ¥4 o " pY
v -
3 Intelligence
bX aX
-3 *——
N, Xavier

~

\ -
- Profile of Xavier implemented in
the social coalition

Fig.13.2.
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13.3 Action Games and Equilibrium Coalitions

Consider n players i = 1,...,n. We suppose that the behaviour of the ith player
entails acting on the environment to transform it.
The environment is described by:

a convex closed subset L of a finite-dimensional vector space X (7)
and the action of the ith player is described by
a continuous mapping f; from L to X. (8)
We also suppose that

the action of a generalised coalition ¢ € [—1,+1]" on the environment
is described by the continuous mapping >~ , ¢;f; from L to X. 9)

Definition 13.3. We shall say that a state of the environment T € L and a
generalised coalition ¢ € [—1,+1]" form an equilibrium if

n

> & fi(z) =0. (10)

i=1

Such a state of the environment Z is not modified by the action of the
generalised coalition ¢ € [-1, +1]".

Theorem 13.1. Suppose that L is compact and that

Vz € L, 3ce€[-1,+1]" such that Y cfi(z) € Tr(x). (11)

i=1

Then there exists an equilibrium state T and coalition ¢ € [—1, +1]".

Proof. We apply Theorem 9.4 to the set-valued map C defined on the convex
compact set L by

C(x) := {Z cif,-(:z:)} (12)
i=1 c€[-1,+1]"

which is clearly upper semi-continuous with convex compact values. The as-

sumption (11) says that the tangential condition is satisfied. There exists a

state of the environment Z € L such that 0 € C(Z) which, by virtue of (12),

implies the existence of a generalised coalition ¢ satisfying (10). O

We shall complicate this model slightly by assuming that any state of the
environment £ € L inflicts a loss (p;,z) on each player ¢ = 1,...,n, where
pi € X* is a linear form on X.
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By interpreting IR™ as the space of multilosses of the n players, we suppose

that the survival of the n players requires that the multilosses be confined to a
set M.

Thus, we require that a state of the environment should obey the additional
constraints:

(P> 2))ica,...n € M. (13)

Theorem 13.2. We suppose that assumptions (7) and (8) are satisfied and that
K := {z € L|(13) holds} is compact. (14)

We also suppose that
Vz € L, the matriz of coefficients (p;, fr(z)) is negative semi-definite. (15)

Then there ezists an equilibrium state of the environment T € L satisfying the
constraints (18) and a generalised (equilibrium) coalition c:

() T el and ((pi,%));y,.n €M

(ii) Yiaafi(z) =0. (16)

Proof. We use Theorem 9.8, where Y = IR" and the operator A is defined by:
Az = ((pi’w))i:l, n (17)

ey’

and where the role of the parameters p is played by the generalised coalitions
¢ € [-1,+1]" =: P. Assumption (36) of Chapter 9 in Theorem 9.8 follows from
assumption (15) since

<C’A (g Ckf'“(w))> = igl@i’fk(w))ack <0,

The other assumptions of Theorem 9.8 are clearly satisfied. Thus, we deduce
the existence of Z and ¢ satisfying the conditions (16). ]

Remark. (p;, fr(z)) may be interpreted as the marginal loss inflicted on the
player i by the action of the player k£ on the state of the environment z. As-
sumption (15) implies that for each player i, the marginal loss (p;, fi(z)) which
follows from his own action is not positive.

Remark. These models may be given a dynamic interpretation by considering
the equilibrium states Z € L as the stationary points of the differential equation

2(6) = Y- i) (e (0) (18)

where the generalised coalitions ¢(t) play the role of control parameters.
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13.4 Games with Side Payments

A game with side payments is described by a loss function v (called a charac-
teristic function) defined on the set of coalitions:

v:D(N) > R. (19)

The problem here is how to partition the loss v(N) of the set of players
amongst all the players,

find s = (s1,...,5,) € R" such that Y _s; = v(N). (20)
i=1

We interpret the elements s € IR" as multilosses.

The goal which game-theory specialists gave themselves was to find a fair
distribution of the loss v(IV) taking into account the results of the cooperation
of the players as described (a priori) by the characteristic function of the game.
We shall of course give examples of cooperative games with side payments.

But, before that, we shall define the notions of fuzzy games and generalised
games with side payments which are described by loss functions defined on the
sets [0,1]" and [—1,+1]" of fuzzy and generalised coalitions, respectively.

Since the number +1 which we have chosen to define set characteristic func-
tions and fuzzy coalitions is arbitrary, it is clear that this function should depend
only on the relative levels of participation; in other words, it should be positively
homogeneous.

Definition 13.4. A generalised sharing game with side payments is defined to
be a function v from R™ to R U {400} satisfying

(i) v is positively homogeneous;
(ii) v is Lipschitz in the neighbourhood of cy = (1,...,1);
(iii) wv(es) < +oo for any coalition S C N. (21)

We shall say that the subset
M :={s e R"|Vc € R", (¢, s) <v(c)} (22)

is the set of multilosses accepted by all the coalitions of players since, for any
generalised coalition ¢, the loss 37 | s;¢; = (¢, s) imputed to the coalition ¢ in
a pro rata fashion, based on the levels of participation of the players does not
exceed the loss v(c) attributed to this coalition a priori.

The conjugate function v* defined by

v*(s) = sup ({c, s) — v(c)) (23)
celR™

is the indicator function of the set M of accepted multilosses.

We shall impose a number of axioms, which must be respected by any rule
for sharing out v(cy) with a priori knowledge of the losses inflicted on any
generalised coalition c.
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A share-out rule is, by definition, a set-valued map which associates with
any game v a subset S(v) of multilosses in IR™.

Efficiency (Pareto) Axiom. This simply says that the multilosses s of S(v)
form a partition of v(cy):

n

Vs € S(v), > s =v(cn). (24)

=1

Symmetry Axiom (or Axiom of A Priori Justice). Consider a permuta-
tion @ : N — N of the set of n players, which defines the order in which these
players play. The action of 8 on the function v is defined by:

(9 * ’U)(C) = 'U(Cg—l(l), ey Cg—x(n)) (25)
and the action of 6 on the multiloss s € IR" is defined by
(9*3)i=39(i) VZ=1,,TL (26)

The symmetry axiom states that the share-out rule does not depend on the
order in which the players are called to play, in the sense that

for any permutation 6, S(0 * v) =6 = S(v). (27)

Atomicity Axiom. If P := (S,,...,S,,) is a partition of the set N of n players
into m non-empty subsets of players S;, any game v with n players may be
associated with the game POv of m players defined by

(POv)(dy,- - .,dm) :=v(c1,...,c,) where ¢, = d; when k € S;. (28)
Any n-loss s € IR" is associated with the m-loss POs € IR™ by the formula

(POs),; = Z sp j=1,...,m. (29)
kESJ'

The atomicity axiom states that

S(POv) = POS(v). (30)

Dummy Player Axiom. Consider a superset M D N of m players and an n-
person game v. This is associated with an m-player game 7y Av by the following
formula. If C denotes the projection of IR™ onto IR", we set

(mp)(d) == v(C - d), Vd € R™ (31)

and
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) S if jeN . _ 32
(’ITMAS)J-.—{O it N j=1,...,m. (32)
In other words, the players in M who do not belong to /N are dummy.
The dummy player axiom ensures that the redundant players receive noth-
ing:

S(?T,wA’U) = WmAS(’U) . (33)

Before we introduce a share-out rule in the general case (which demands a
knowledge of the generalised gradients described in Chapter 6), we shall begin
with two special cases which extend the concepts of the Shapley value and the
core to the case of generalised games.

Example 1. Shapley Value of Regular Games. If v is continuously differ-
entiable at ¢y = (1, ...,1), we shall say that the game described by v is regular
and we define the Shapley value of the regular game v to be the gradient of v
at cy:

S(v) := Vu(en) € R™ (34)

The loss s; := S(v), attributed to the ith player is the marginal loss which
he incurs by belonging to the coalition of all the players. It in some way measures
the role of the player i as a pivot.

The Shapley value defines a share-out rule. In fact, since v is positively
homogeneous, we know that, setting s := S(v),

n

> si=(s,¢) = (Vo(en), en) = v(en).
=1
It is easy to check that the symmetry, atomicity and dummy player axioms

hold for the Shapley value. In fact, we associate a permutation 6 with the matrix
A = () defined by

of =1 if j=607"() and of =0 if j+#671(0). (35)
Since
O0xv=v0A, Oxs=A%s and Acy = cy, (36)
it follows that
S(@ *v) = V(vo A)(en) = A"Vu(Acy) = 6 * S(v). (37)
Similarly, we associate any partition P = (S, ..., S,,) with the linear oper-

ator B from IR™ to IR" defined by
(Bd); = d; whenever i € A;. (38)

Since
POv=vo0B, POs= B*s and Bcy =cn (39)
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it follows that
S(POv) = V(v o B)(car) = B'Vo(Ben) = B*S(v). (40)

Finally, we associate any superset M D N with the matrix C from R™ to R"
which is the projection of IR™ onto IR™. Since

v =voC, mpds=C*s and Cecpr = cp, (41)
it follows that

S(mpdv) = V(v o C)(epr) = C*Vu(Cepr) = mar AS(v). (42)

Example 2. Weighting Game. We associate any weighting k = (k,, ..., k,) €
IR™ with the function 7; defined by

n 1/|x|
fyk(c (H c; ) where |k,'| =k +...+k, (43)

(where, by convention, 0° = 1). We note that

o= (5)..,., @

since 3 2 () = lkl'yk(c)q whenever ¢; > 0.
In this weighting game, the Shapley value leads us to share v(cy) = 1
proportionally according to the weight of each player.

We are now in a position to characterise the Shapley value by a system of
axioms.

Proposition 13.1. Let V be the set of games with side payments generated by
the weighting games . as k runs through the set N™ of integer vectors.

Then the mapping S : v € ¥V — S(v) € IR" is the unique linear operator
which satisfies the efficiency, symmetry and atomicity azioms.

Proof. Suppose ¢ is a linear mapping from V to IR™ which satisfies the efficiency,
symmetry and atomicity axioms.

Consider an integer vector k = (ky, ..., k,) € N™ and the games y; and 'yllkl
with n and |k| players, defined respectively by

n 1/ (K] 1/1K
(c) = (Hc ) and 'ylkl (d) = (]1—[1 dj) . (45)

The efficiency and symmetry axioms imply that

1
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If P is the partition of the set of k players 1nto n subsets S; of ki players,
, Sp of k, players, we note that v = PElfy1 The atomicity axiom then
implies that

. '“ 2 — S(ve).
d(m); gb; dn) J; |’»| k ()

Since S and ¢ are linear and coincide on the basis of M formed by the games
v, they are equal. O

Example 3. Core of Subadditive Games. We shall say that the generalised
game described by a function v is subadditive if

Ve, 2, (e + ¢2) < v(er) +v(ca)- (46)
Since v is positively homogeneous, this is equivalent to saying that
the loss function is convex. (47)

We note that such games are a translation of the idea that unity makes for
strength. In fact, if S and 7" are two disjoint coalitions, cs+cr is the characteristic
function of SUT and inequality (46) leads to the inequality

v(esur) < vles) +v(er) (48)

which states that the loss incurred by the union of two disjoint coalitions is less
than or equal to the sum of the losses incurred by each coalition separately.

Proposition 13.2. Suppose that the function v which describes the game is
subadditive. Then the subdifferential Ov(cn) is the set (non-empty) of accepted
multilosses s € M into which v(Cy) may be partitioned.

a’U(CN) = {S € 1\/[| isi = ’U(CN)} . (49)

=1

Proof. To say that s belongs to dv(cy) is equivalent to saying that for all
ceR",
v(en) —v(c) < {s,eny —c). (50)

Taking ¢ = Acp, this inequality implies that

(1= X)(v(en) — (s,en)) < 0.

Choosing A = +1/2 and A = —1/2, it follows that, on the one hand,
v(en) = (s,en) = D si (51)
i=1

and, on the other hand, taking into account (50),
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Ve e R", (s,c) <wv(e) (i.e. s € M). (52)

Conversely, (51) and (52) clearly imply (50). O
We define the core of the subadditive game v to be the subdifferential of v
at CN

S(v) := dw(cy) C IR™. (53)

This defines a natural share-out rule. If the game is both regular and subaddi-
tive, then the core consists of the single Shapley value, since in this case

S(v) = ov(cn) = {Vu(en)}- (54)

We note that the Shapley value and the core of a generalised game are two
special cases of a single concept, which we shall now define.

Definition 13.5 Suppose we have a generalised game with side payments defined
by a function v. We define the solution of the game to be the generalised
gradient of v at the characteristic function cy of the set of all the players

S(v) :== ov(en) C R™ (55)

Thus, this coincides with the Shapley value when the game is regular and
with the core when the game is subadditive.
The solution S(v) defines a share-out rule.

Theorem 13.3. The solution S(v) satisfies the efficiency, symmetry and
dummy player azioms, together with the properties

Q) VA >0, S(\)=AS(v)
(11) S('Ul + ’U2) C S(’Ul) + S(’Uz). (56)

Proof. This follows from the properties of generalised gradients. The efficiency
axiom follows from the fact that v is positively homogeneous (see Proposi-
tion 6.11, formula (45)). Since the matrices A associated with the permutations
6 by (35) and the projections C from IR™ onto IR™ associated with the extensions
M D N are surjective, using properties (36) and (41) we obtain

S0 *v) = d(wo A)(cn) = A*Ov(Acn) =6 + S(v) (57)

and
S(mnAv) = (o c)(en) = A*Ov(Cen) = T AS(v). (58)
Formulae (57) and (58) now imply the symmetry axiom and the dummy player
axiom. O

Remark. The properties (39) and Proposition 6.11 imply that
S(POv) c POS(v). (59)
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Equality (the atomicity axiom) only occurs under additional regularity assump-
tions. For example, when v is subadditive, Corollary 4.3 implies that the core
of a game satisfies the atomicity axiom

S(POv) = POS(v) for all partitions P (60)
together with the additivity property

S(’Ul +'l)2) = S(’Ul) + S(’Uz). (61)

The solution scheme also satisfies all the properties of the generalised gra-
dient described in Chapter 6.

The notion of the solution S(v) := dv(cy) makes the coalition of all players
cn play a privileged role. We note that for any coalition ¢ € Int Dom v, the gen-
eralised gradient Sv(c) provides a subset of multilosses s € IR™ which partition
the losses of the coalition ¢, since

Vs € ov(c), (c,s) =v(c). (62)

The converse question then arises. Does a given multiloss s belong to the
generalised gradient dv(c) of a coalition ¢?

Theorem 13.4. Suppose P is a convex compact subset contained in the inte-
rior of the domain of the function v. Any accepted multiloss s € M may be
associated with a generalised coalition ¢ € P such that

s € 0v(c)+ P~. (63)

Proof. We apply Theorem 8.6 (Ky Fan) to the function ¢ defined by
¢(c,d) == (d, s) — D.v(c)(d) (64)

which is concave in d and lower semi-continuous in ¢ (see Theorem 6.1) and
which satisfies ¢(c,c) = (¢, s) — D.v(c)(c) = {(c,s) — v(c) < 0 when s belongs
to the set M of accepted multilosses. Since the set P is compact, Ky Fan’s
Inequality implies that there exists ¢ € P such that

Vde P, (d,s) < Dw(€)(d) = o(dv(c),d).
This implies that s € Ov(c) + P~. ]

Example 4. Core of Market Games. Consider a (Hilbert) strategy space X
and

n nontrivial, convex, lower semi-continuous
loss functions from X to IR U {+o0}. (65)
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Suppose we have
n vectors y; € X. (66)

Suppose that ¢ € R} is a fuzzy coalition. We define the set K (c) of allocations
of the fuzzy coalition c by

K(c) {zel:[l|gm gciyi}. (67)

This means that in participating in the fuzzy coalition with a level of participa-
tion ¢;, the ¢th player (consumer) offers ¢;y;. The loss function of the coalition

¢ will be defined by
Tq
fle,z) =) cifi (C—) . (68)

;>0

Thus, the minimum loss function of the fuzzy coalition c is defined by

v(c) = xelrl}fc) Z cifi (:Ez) ) (69)

We shall say that v describes a fuzzy market game.
Lemma 13.1. Suppose that

Vi=1,...,n, y € Int (Dom f;). (70)
Then we may write
v(c) == sup (Z ci((p, vs) fi*(:D))) (71)
pEX c;>0

and the supremum is attained at a point p. € X*.
Proof. We apply Corollary 5.2 with X = XY := X,

Az = cimi, Y= Z civi, folz) : thfz(mz ) and M = {0}.
i=1
Assumptions (70) imply that
—y. € Int (A. Dom f.)

for any fuzzy coalition c.
Thus, we have

vie) = — inf (fX(—=Alp) — (D, ¥e))
= _ 1nf(z:()qf (-p) + (p, Zoczyz

= sup Y al(p,w) — fi(p))

PEX* ;>0
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and there exists § at which the maximum of this problem is attained. O
Whence, it follows that the function v is convez. Proposition 4.4 enables to
calculate Ov(cy); in other words, the core of the fuzzy market game.

Proposition 13.3. Suppose that the assumptions (70) are in force, whence
Vi=1,...,n, y; € Int(Dom f;).

We set
P(N) = {1—, € Plo(Cr) = 3 fic@) = 3 (~(@. 1) - f:(—z-o))} )

Then the core of the fuzzy market game is equal to

S(v) = o{((B,Zi — vi) + fi(Ti))i=1....n }peP(N)- (73)

13.5 Core and Shapley Value of Standard Games

Consider a standard game with side payments defined by a function w from
D(N) to R.
We may associate this with a solution scheme whenever we have a means
associating w with a fuzzy game or with a generalised game ww by taking S(7w).
Thus, there are as many solution schemes as methods of extending a game
to a fuzzy game. We shall introduce two methods which will lead to the concepts
of the core and the Shapley value.

Core of a Standard Game

Consider a game defined by a function w from {0,1}" to IR. We associate this
with the set M of accepted multilosses defined by

M:={seR'VSCN, > s <w(S)}. (74)
i€s

Definition 13.6. We define the core C(w) of the game w to be the set of
accepted multilosses s € M such that > 7, s; = w(N).

This notion is compatible with that of Definition 12.2. The game with side
payments w described by the function w is associated with the game without
side payments defined by the sets

V(S) == {r e R®|>_r: > w(S)}.

ieS
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This suggests associating w with a fuzzy subadditive game which has the same
set of accepted multilosses.

We shall say that the generalised game 7w defined by
mw(c) := sup{c, s) (75)
SEM

is the ‘subadditive covering’ of the game w, which is the support function of the
set of accepted multilosses of the game w.

We always have the inequalities mw(cs) < w(S) for any coalition S.

We shall say that a game is balanced if

w(N) = mw(cn)- (76)

Proposition 13.4. The core C(w) of a game is non-empty if and only if it is
balanced. In this case,

C(w) = S(mw).

Proof. (a) If s € M belongs to C(w), then
mw(en) = (en, s) = w(N).
Thus, the game is balanced since we know that 7w(Cy) < w(NV).
(b) If the game is balanced, the set S(mw) is non-empty and clearly coincides
with C(w). ]
We note that the set M is of the form A~!(w — P), where A : R* — IR**!
is defined by As = ((¢T,8))pen> @ = (W(T))pcy and P := IRY"'. Then

formula (70) of Chapter 3 allows us to write the support function 7w of the set
M in the form

mw(e) = inf ((m,w) — (m,u)).

Since A*m = Y gy m(T)c?, we obtain

mw(c) = m(iirrl)fzo T%;Vm(T)w(T)
c = Z m(T)cT.
TCN

In particular, taking ¢ = cy, the formula becomes
mw(cny) = inf{ 3" m(T)w(T), m is a balancing}
TCN
(see Definition 9.9).
To say that the game is balanced is then to say that

w(N) < Y m(T)w(T) for all balancings m.
TCN
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Fzample. The following corollary may be deduced from Theorem 12.1

Corollary 13.1. Consider a game defined in strategic form by n convez strategy
sets and n convex loss functions and associate it with the cooperative game
defined by

T):= inf 2(z7).
wT) = juf, 5 FHa")
Then its core is non-empty.

Shapley Value of a Standard Game

We shall use an extension )y which associates every standard game w with a
regular game yw. We associate every coalition S C N with its characteristic
function cs € {0,1}" and the weighting function

1/1s|
Ys(e) 1= ves(c) = (H cz-) where |S| = card(S). (77)
icS
We associate every coalition S with the functionals
as(w) = 3 (=1)S Ty (7). (78)
TCS

We define the extension operator x by

xw(e) = 3 as(w)ys(c). (79)

SCN

Lemma 13.2. The 2" functions 7ys satisfy

1if TOS
7s(Cr) = { 0 if SNcompT #0 (80)
and xw interpolates w in the sense that
VS C N, xw(cs) = w(S). (81)

Proof. Formula (80) is self-evident. We calculate

xwler) = > as(w)ys(er)
SCN

= > as(w)

ScT

= 3 > (-1)sAu(R)

SCT RCS

_ Z( v (_1)ISI—IRI) w(R).

RCT \RCSCT
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Since there are ({"Srlljllﬁ;) coalitions S between R and T with |S| elements, it
follows that

> (=psHRE = 3 ('lg:::g:)(q)wl—ml

Rcscr IRI<[SIZIT]

_ 5 ('T'A'R')< 1y

0<k<|T|-|R|
= (1- l)lTl—lRl

0 if |R|<|T|
1if |R|=|T).

Thus, we have shown that yw(cr) = w(T). O

Since yw is continuously differentiable, it follows that ¢ = S o  is a linear
mapping from the space W := RPW) of standard games into IR".

Definition 13.7. We shall say that the mapping ¢ defined by
Yw e W, ¢(w) = S(xw) € R" (82)

is the Shapley value.

We saw that S(yr), = 1/|T| if i € T and 0 otherwise and we thus deduce
that the ith component of the Shapley value of a game w is defined by

d(w), => 7 aT(w (83)

Toi

The following two propositions are independent.

Proposition 13.5. The Shapley value is given by the following formulae:

Vi=1,...,n,
S, Z('T'_l)fﬁ" T

- .75 %;(U(Tg(i)) — o(T3(2)))-

(@(T) —o(T - {2})) (84)

where, when 8 is one of the n! permutations of the set of players N,

To(s) = {416(4) < 6(i)} and T3 (i) = {j16(7) < 6(i)}- (85)

Proof. Formulae (78) and (83) imply that

d(w), = ZITI Z( 1) 17— lslw(S)

Toi SCcT

- s S

SCcN T>SU{i}
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W
e set (_1)ITI—ISI

7] (86)

pi(S) = Z
ToSU{i}
If S does not contain 4, then R = SU{i} does contain it. Thus, it is easy to see
that

(—1)ITI-IRI+

WS A T
_ (—1)71-IR
TDRzzﬁ’.U{i} 17
= —pi(R)
= —p(SU{i}).
Whence, we may write
$w); = 3 m(Syw(S)
SCN
= > p(SHw(S) + > p(S)w(S)
S3i S#
— SZ pa(S)w(S) — %j pi(S U {i})w(S)
i S
= SZ pi(w(S) — w(S — {i}))

since, for any coalition S which does not contain i, we may write SU{i} = T—{i}
where T does contain ¢, and vice versa.

Next we must calculate p;(S) when S > i. There are exactly (lll}jlljl[g[[) coali-
tions T between S and N. Thus, we obtain

(—1)\7I=Is!
SCTCN
- INI - |S| 1 T —
= (- [S'< LTI g
lSlsl%I:suw |T| - |S] ./o
— ! __1\t—s n—s 1 t—1
- /OSQZ;R( 1) (t—s)./oz dz
1 —
- /o DY (—1)t_s<7z_:)zt'sda:
o<t—s<n-—s

1
= /ms‘l(l—w)"_sda:.
0

But we know how to calculate this integral:

(151 = Dl = IS])t

n!

pi(S) = fo 25711 — 2)" Sl =
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This gives the first formula. To derive the second formula, we fix a coalition
T and i € T. The number of permutations n! such that 7' = Tp(i) is equal to

(IT1 = 1)!(n —|T)!, since the members of T — {i} and N — T may be arbitrarily
permuted. o

This formula may be interpreted by the following scenario. We fix one of
the n! permutations of the players at random (with probability ;). For a per-
mutation 6, we consider the difference between the losses v(Tp (z)) —v(T2(7)),
which we interpret as the loss of the ith player in this ordering. Then, the ith
component of the Shapley value is the mathematical expectation of these losses.

As in the case of generalised games, the Shapley value may be justified by
a system of axioms, which we define below:

Efficiency Aziom
>_¢(w); = w(N). (87)
i=1

Symmetry aziom If 6 is a permutation, and if 6 * w is defined by (6 * w)(S) =
w(6(S)), then
d(0 x w) = 0 * H(w). (88)

Redundant-players aziom A player i is said to be redundant if V.S C N,v(S) =
v(S U {i}). The axiom states that

for any redundant player, ¢(w), =0. (89)

Proposition 13.6 The Shapley value is the unigue linear operator from W to
IR™ which satisfies the efficiency, symmetry and redundant-players azioms.

Proof. Lemma 13.2 shows that x is an isomorphism from W to the space
generated by the 2" functions 7s. Thus, the functions wg = x 7 form a basis
for W. They are defined by

1iT>OS
wS(T)={ 0 if SNcompT #0 (90)
and any function w may be written in the form
w= Y os(w)ws. (91)

SCN

Firstly, the Shapley value clearly satisfies the three axioms. Suppose that
4 is another linear operator from W to IR™ which also satisfies these axioms.
It is sufficient to show that ¢ and % coincide on the elements of the basis of
W formed by the ws. Let us consider wg. If ¢ does not belong to S, then i is
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a redundant player for the game wg; in fact, if T D S, then T'U {i} D S and
ws(T) = ws(TU{i}) = 1. If SNcompT # 0, then SNcomp (T'U{i}) # 0 since
i does not belong to S. Thus, ws(T) = ws(T U {i}) = 0. Whence,

if i ¢ S, then ¢(ws), = 0. (92)

Suppose now that i and j belong to S and that 6 is a permutation which
interchanges i and j and leaves the other players unchanged. Then 6(S) = S,
whence 0 * wg = wg. The symmetry axiom implies that

PY(ws); = P(0 * ws); = 0 * P(ws); = ¢(wS)j'

Lastly, the efficiency axiom implies that

iw(ws)i =Y P(ws); = ws(N) = 1.

i€S

It then follows that

if i € S, then W(ws); = ﬁ (93)

Whence, we have obtained
Vi=1,...,n, ¥(ws); = d(ws), (94)
This completes the proof of Proposition 13.6. 0

Ezample: Simple Games. A game w is simple if for any coalition S C N we
have w(S) = 1 (winning coalition) or w(S) = 0 (losing coalition) and any
coalition of winning coalitions is again a winning coalition. In this case, the
terms v(T) — v(T" — {¢}) either have value 0 (if T and T' — {i} are both losing
coalitions or if T — 7 is a winning coalition) or value 1 if T' is winning coalition
and T — {i} is a losing coalition.

We shall denote the set of winning coalitions S such that S — {7} is a losing
coalition by G(i). Then, for a simple game we obtain

— D(n — |S])!

SEG(i)

(95)

Remark. Many authors have suggested that the Shapley value of simple games
should be interpreted as a power indez. It is a matter of definition. Consider,
for example, a game with three players. Each of these players is attributed side
weights: 1, 48 and 49. The winning coalitions are those for which the sum of
the weights is greater than 50 (electoral game).

The process which consists of attributing to each player the power index
proportional to his weight would give ﬁ, % and i%%' This partition is ob-
tained by applying the fuzzy Shapley value to the weighting game defined by

v(c) := (c1c8c®)/1%. But this fuzzy game v is not a good description, since it
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does not use the rule defining the winning coalitions. This shows that the win-
ning coalitions are {1, 3}, {2,3} and {1, 2, 3}. If power means participating in a
winning coalition then we see that player 3, who may participate in three win-
ning coalitions, is more powerful than the other two players and that these two
players have the same power of participation in two winning coalitions. Thus,
we may think of attributing the power indices %, % and g to these players. (The
Shapley value of the associated simple game attributes the players with indices
5 62 5°)

Do we have enough information to define a power index?

The first two players have the same probability of participating in a winning
coalition and are reliant on the choice of the third player. Thus, we see that this
last player may use an optimisation mechanism; for example, the third player
may pay the other players to participate.

This leads us to a very common paradox. Since he has a very low weight the
first player may be less demanding as regards the compensation which he claims
from the third player; thus, he may well participate in a winning coalition. We
see that the definition of power indices depends on the information available to
describe the game.
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14. Exercises

14.1 Exercises for Chapter 1 — Minimisation Problems:
General Theorems

The proofs of the following results are left as an exercise:

e Proposition 1.1

Proposition 1.2

Proposition 1.5

Proposition 1.6

Proposition 1.7

Proposition 1.8

Exercise 1.1

We consider the problem
= Jgf 1)
A sequence z, such that
1
Vn, f(za)La+ -

is called a minimising sequence.
(a) Say why such a sequence exists.

(b) Give a proof of Theorem 1.1 using minimising sequences.
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Exercise 1.2

Suppose f : R* — IR U {+0c0} is a nontrivial function satisfying

lim f(z) = +oo.

[zl —oc0

Show that f is lower semi-compact. Prove that this is in particular the case for
functions satisfying

im 1@ o
l=ll—c0 ||z]]

Exercise 1.3

Suppose that X and Y are two sets and that A is a mapping from X to Y.
Suppose in addition that we have two functions f : X — IR U {+oco} and
g:Y = IRU {+oo}. We associate f with the function Af : Y — IR defined by

Af(y) = jnf f(z)
where, by convention, we set Af(y) = +oo if y ¢ A(Dom f). Thus,
Dom Af = f(Dom A).
(a) Note that
Dom (gA) = A™'Dom g.

(b) Prove that if M C Y, then

Anf (f(z) +9(Az)) = inf (Af(y) + 9(y))-

(c) Deduce that the following assertions are equivalent

(i) Z minimises f(z) + g(Az) on A7}(M).
(if) ¥ = A(Z) minimises Af(y) + g(y) on M and Z minimises f(z) on
A7 ().
(d) If B is a mapping from Y to Z, deduce that (BA)(f) = B(A(f)).

Exercise 1.4

Uses Exercise 1.5.
Suppose that Y is a Hilbert space and that f,..., f, are n nontrivial functions
from Y to R U {+o00}.
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We set

HO0f0...0f(z):=  inf . zn: fi(zs)

z1+...txTn= i

(AD...Of, is said to be the inf convolution of the functions f;).
We also define B € L(Y",Y) by

By, ---29n) = D_ ¥
i=1
(a) Let f1 + ... f, be the function defined on Y™ by

(it fo)@) = filya) + ... + fr(yn)-
Show that

HOD...Ofa=B(fi+...+ fn)-

(b) Suppose that we have n Hilbert spaces X; and n mappings A; from X; to
Y. Show that

Z::;li}‘lif(mi)zy fi(z:)) = (A ADCA 0., .04, 1) (y)-

Deduce that Z = (Z,...,Z,) minimises Y i, fi(z;) with the constraint
that 3%, Ai(z;) = y if and only if

(1) ¥ = (%, --,Yn) minimises >~ ,(A;fi)(v:;) with the constraint that
TLvi=Y
(ii) for all 4, Z; minimises f;(z;) with the constraint that A;(z;) = @i.

Remark. This a decentralisation principle. First we divide the resource y
amongst the §; and then, for each i, we solve independent (decentralised) min-
imisation problems.

Exercise 1.5

Suppose that f and g are two functions from the Hilbert space X to IRU{+o0}.
We define

fOg(z) = inf (f(y)+9(2))
(inf convolution of f and g).
(a) Show that
fOg(z) = inf (@ —y) + 9(v)) = f(f(z) + o(a — ).

(b) Prove that
Ep(f) + Ep(g) C Ep(fOg) C closure(Ep(f) + Ep(g))-



240 14. Exercises

Exercise 1.6

Suppose X and Y are two Hilbert spaces. Consider a nontrivial function
g: X xY = IRU{+o0} and its marginal function f defined by

f(z) = inf g(z,y).

We let 7 denote the mapping from X x Y x IR to X x IR defined by
m(z,y, A) = (z, N).

Show that

m(Ep g) C Ep(f) C closure(w(Ep g)).

Exercise 1.7

Suppose that f is a nontrivial function from X to IRU {+o00}. We associate f
with the function f defined by

f(z) = limnf f(y)
where we suppose that for all z, f(z) > —co. Show that

Ep(f) = Ep(f).

Exercise 1.8

Uses Exercise 1.5.

Suppose that X, Y and Z are three Hilbert spaces, where A € L(X, Z) and
B € L(Y, Z) are two continuous linear operators and f : X — IR U {+oo}
and g : Y — IRU {400} are two nontrivial functions.

(a) Show that

aoinf | (f(2) +9(y)) = inf(Af (2 + By) + g(y)).

(b) Deduce that the following two assertions are equivalent

(i) (Z,9) minimises f(z) + g(y) with the constraint Az = By + z.

(ii) ¥ minimises Af(z + By) + ¢(y) and Z minimises the function f(z)
with the constraint Az = By + z.

(c) Suppose we have

e n Hilbert spaces X;, m Hilbert spaces Y;
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® n operators A; € L(X;, Z), m operators B; € L(Y;, Z)
e n functions f; : X; - IRU{+c0}, m functions g; : ¥; = IRU {+c0}.
Show that

n

inf (
Dty Asm=z 4300 Biy; \ o=
j=1

yJ 61{7 j=1

fila) + if;gj(yj))

and deduce a decomposition principle analogous to that of the previous
question.

(d) Find an economic interpretation of this decomposition principle.

Exercise 1.9

Show that if K and L are compact, then K + L is compact.

Show that if K is compact and L is closed, then K + L is closed.

Give a counter-example to show that if K and L are closed, then K + L is
not necessarily closed.

Exercise 1.10
Show that

YK + YL = YKL
and that

Yro A= 1)r-104).

Exercise 1.11

Suppose that f : X — IRU{+o0} is a nontrivial lower semi-continuous function.
Show that

sup f(z) = sup f(z).
z€K z€K

Exercise 1.12

We associate a function f : L x M — IR with the mapping F' from L to the
space RM of all continuous real-valued functions on M by
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F(z)(y) := f(z,y)-

We denote the cone of non-negative functions on M by ]R’+" . We assume that
the space IR™ has the topology of simple convergence (or the product topology)
which makes IRM a separate locally convex space.

Show that if L is compact and if

Vy € M, z — f(z,y) is lower semi-continuous (*)
then
F(L) + RY is closed in RM (*+)

(see Proposition 1.8).

14.2 Exercises for Chapter 2 — Convex Functions and
Proximation, Projection and Separation Theorems
The proofs of the following results are left as an exercise:

e Proposition 2.1

e Proposition 2.2

e Proposition 2.3

e Proposition 2.4

e Proposition 2.5

e Proposition 2.6

e Theorem 2.4

e Corollary 2.4

Exercise 2.1

Show that the image and the inverse image of a convex set under a linear
operator are convex.

Exercise 2.2

Show that any intersection of convex sets is convex.

Exercise 2.3

Show that any product of convex sets is convex.
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Exercise 2.4

Show that if K and L are convex, then K + L is convex.

Exercise 2.5

Let K be a convex subset of a Hilbert space. Suppose that
Zo € Int(K), 7, € K (*)
Show that
VA €]0,1], Azo + (1 —X)z; € Int(K). (%%)
Hint: show that if B(zo,€) C K and y € B(z1, 1), then B(Azo+(1—\)y, Ae) C

K and contains Azg + (1 — \)z;.

Exercise 2.6

Follows Ezercise 2.5.
Let K be a convex subset of a Hilbert space. Show that K and Int K are convex,
that the interiors of K and K coincide and that if Int K # 0, then K = Int K.

Exercise 2.7

Show that co(K') (the smallest convex set containing K) is the set of convex
combinations Y g, A;Z; of elements z; of K.

Exercise 2.8

Show that ¢o(K) (the smallest convex closed set containing K) is the closure
of co(K).

Exercise 2.9

Show that the convex hull co(UZ,K;) of the union of n compact sets K is
compact (whence, equal to its closure).
Deduce that the convex hull of a finite set is compact.

Exercise 2.10 (Carathéodory’s Theorem)

Let K be a non-empty subset of IR™. Show that the convex hull co(K) of K is
the set of convex combinations of (n + 1) elements of K
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=) M\z; where A € M™! := {)\ eRT D M= 1}-
i=0 i=0

Hint: show that if z = S5 \iz; for k > n, then z = Z;-:é 13T, using the fact
that the zy — zg, .. ., Zr — To are linearly dependent.
Exercise 2.11

Follows Fzercise 2.10.
Show that the convex hull of a compact subset of IR" is compact.

Exercise 2.12

Let p be a linear form on X. Show that

sup(p,z) = sup (p,z).
zeK z€co(K)

Exercise 2.13

Let K be a convex closed subset. Show that the functions z — dg(z) and
ldk(z)? are convex functions.

Exercise 2.14

Let K be a convex subset of X x IR and suppose that f is the continuous
function from X to IR U {+oc0} defined by

f(z) := inf{)|(z, ) € K}.

Show that f is convex.

Exercise 2.15

Let g be a nontrivial function from X to IR (not necessarily convex). We asso-
ciate g with the function f defined by

f(z) == inf{A|(z, A) € co(Ep(g))}- (*)
Show that

f@)i= . inf (Z )\ig(ac,-)). (+%)

finite 2 F1=F  \finite

Deduce that f is the largest convex function minorising g.
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Exercise 2.16

Let f and g be two nontrivial convex functions from X to IR U {+oc0}. Show
that the function fOg from X to IR U {400} defined by

fOg(z) = inf (f(z —y) +9(v))

is convex.

Exercise 2.17

Suppose that f; are n nontrivial convex functions from X to RU {+co} (i =
1,...,n). Show that

f(z):= Z"inf fi(z:)

i=1 Ti=T

is convex.

Exercise 2.18

Suppose that g and h are two convex functions and that f is the function defined
by

f(@) = (9(=))* + h(z).

Let M be the set of x which minimise f. Show that g and h are constant
functions on M (use the fact that a — a? is strictly convex).

Exercise 2.19

Suppose that f : X — IR U {400} is a nontrivial convex function and that
A: X =Y is a linear operator. Show that the function Af : Y — R U {+oco}
defined by

Af(y) = jnf f(z)

is also convex.

Exercise 2.20

With any function f : L x M — IR, we associate the mapping F' from L to RM
(the vector space of all real-valued functions on M) defined by

F(z)(y) :== f(z,y)

Show that if K is convex and if Vy € M, z — f(z,y) is convex, then F(L)+IR}
is convex (see Proposition 2.6).
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Exercise 2.21

Suppose that f: X — IRU {+o00} is nontrivial and convex and that
Vz € Dom(f), 3¢ € Dom(f) such that f(€) < f(z).

Show that if K C Dom f and if Z € K minimises f over K, then Z belongs to
the boundary of K.

Exercise 2.22

Suppose that f : X — IR U {+co} is a nontrivial convex function and z, €
Dom(f). Show that f is lower semi-continuous at z, if and only if for all € > 0,
there exists 7 > 0 such that

(i) Flz) < fla)+e i |l — 20| <7
(i) feo) < f(@)+Elle—moll it |z — zoll = 7.

Exercise 2.23

Suppose that f : X — IR U {+oo} is a nontrivial convex function and zo €
Dom(f). Show that f is continuous at zo if and only if there exist constants
¢ > 0 and n > 0 such that

(i) f@) < fl@)+cllz—mol VzeX
(ii) f@) < flmo) +cllz — ol if ||z — ol < .

Exercise 2.24

Suppose that f : X — IR U {+oo} is convex and continuous at a point z.
Suppose also that A € L(X,Y) is a continuous linear operator and that Af is
the function defined on Y by

Af(y) = jnf f(z).

Show that Af is convex and continuous at Axg.

Exercise 2.25

Suppose that f(z) := ||z — u||* where u € X and K is a convex subset of X.
We set

v:= inf f(x)

z€EK

and

S(f,)) == {z € K|f(z) < A}.
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Show that for all A > v,

Diam S(f, ) < 1/8(\ —v).

Deduce that if K is closed, then f admits a unique minimum Z on K (which is
the projection of u onto K). Hint: prove that the S(f,v + 1) form a decreasing
sequence of closed sets the diameter of which tends to 0.

Exercise 2.26

Let g : X — IRU{+o0} be a nontrivial, convex, lower semi-continuous function.
Adapt Exercise 2.25 for the functions

(@) = g(z) + 5l —

Exercise 2.27

Show that if K is a convex subset of the finite-dimensional vector space IR™
which is dense in IR", then K = IR™ (use the Large Separation Theorem, The-
orem 2.25).

Exercise 2.28

Let P be a closed cone in a Hilbert space X. Show that if X = P+eB (€ > 0,
B is the unit ball), then X = P (apply the separation theorem for a closed set
and a point separated by a neighbourhood).

14.3 Exercises for Chapter 3 — Conjugate Functions
and Convex Minimisation Problems
The proofs of the following results are left as an exercise:

e Proposition 3.1

e Proposition 3.2

e Proposition 3.3

e Proposition 3.4

e Proposition 3.5

e Proposition 3.6

e Corollary 3.1
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e Proposition 3.7

Corollary 3.2

Corollary 3.3

Proposition 3.8

Theorem 3.3

e Theorem 3.4
e Proposition 3.9

Derive the formulae for support functions (formulae (62) to (71) of Chapter 3).

Exercise 3.1

Let {f;}ier be a family of nontrivial functions from X to IRU {+o00}. Show that
(inf f:)" = sup f;
and that

(sup f;)" <inf f7.
i€l el

Exercise 3.2

Suppose that ¢ : R — IRU{+00} is a nontrivial, convex, lower-semi-continuous
function with conjugate *. Show that

o(l- 1) =l -1I.)

where || - ||, is the dual norm of || - ||.
Exercise 3.3
If @ > 1, calculate the conjugate of the function ¢ defined by
I
p(z) == (—l|$| :

Hint: use Holder’s inequality ab < ia"‘ + C%b"' where al + c% =1.
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Exercise 3.4
Uses Ezercises 3.2 and 3.3.

Suppose that X is a Hilbert space with norm || - || and dual norm || - ||, on X*.
Show that

1 * 1 . 1 1
—1| - = — « h — 4+ —=1.
I () = 2 lpll where ~ +

Exercise 3.5
Let f: X — IRU {+00} be a nontrivial function. Show that

f(p) = oBp(y (P, —1).

Exercise 3.6

Show that if f : X — IRU {+0c0} is a convex lower semi-continuous function
satisfying

f(p) < ollpll,)
where o : R — IRU {+0c0} is nontrivial, then f satisfies the inequality

vz € X, f(z)>o*(|z|)-

Exercise 3.7

Show that if the conjugate f* of a nontrivial function f : X — IR U {+o0} is
continuous at 0, then

VA e R, {z|f(z) < A} is bounded.

Exercise 3.8

Suppose that f is a nontrivial, convex, lower semi-continuous function from X
to IRU {+00}. Show that

f*(®) <a, Ve p+nB

if and only if

f(=) 2 nllz|| + (po, z) — a.
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Exercise 3.9

If f: X — RU {+c0} is nontrivial, convex and lower semi-continuous, show
that there exist p € X* and a € IR such that

Vz e X, f(z)> (p,x)+ea.

Exercise 3.10

Calculate the conjugate functions of the functions z — f(z) + %l[m”z and z —
2

f(z) + 35lle — ull”.

Exercise 3.11

Calculate the conjugate functions for z — f(z) + ||z|| and z — f(z) + ||z — |

Exercise 3.12

Suppose that f : X — IRU{+o0} is a nontrivial, convex, lower semi-continuous
function. Calculate

Maz) + (f7),.(2)-

For what values of A and p is this sum zero?

Exercise 3.13

Consider n functions f; : X — IRU{+o00} and the function f: X — RU{+oc0}
defined by

f@)i= il (e,

i=1 TITT

Show that

@) =3 0.

Exercise 3.14

We consider n Hilbert spaces X;, n functions f; : X; - R U {+o0} and n
continuous linear operators A; € L(X;,Y) from X; to the same Hilbert space
Y. We define

f(=z) = s ill}‘f i)

i1 FHTITT
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Show that

f(q) = if;(A’EQ)-

Exercise 3.15

Suppose that f and g are two nontrivial functions from X to IR U {40} and
that

h(z) == inf (f(z —y) + 9(y))-

Show that h*(¢) = f*(q) + g*(q)-

Exercise 3.16

Suppose g(y) := inf cx f(z,y) where f is a nontrivial function from X x Y to
R U {+00}. Show that g*(g) = £*(0, q).

Exercise 3.17

Let K be a convex closed subset of a Hilbert space X. Show that
Vi e R, {z € X|(po,z) < A} is bounded

if and only if the support function p — ok (p) is continuous at z, (use Exer-
cise 3.7).
Deduce that the support function of a bounded set is continuous.

Exercise 3.18

Let A € L(X,Y), L C X and M C Y. Show that if L and M are cones, the
following conditions are equivalent

(1) 0 € Int(A(L) — M)
(ii) AL)-M =Y.
Exercise 3.19

Prove that the Slater condition
dzy € L such that A(xp) € Int(M)

implies the condition

0 € Int(A(L) — M).
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Exercise 3.20
Let M be a subset of IR'. Show that
Int(M +R,) =M +Int R,

(use balls of the form [—g, +€]™).

Exercise 3.21

Suppose that f : X — RU{+oc0} is a nontrivial, convex, lower semi-continuous
function, that A € L(X,Y) and B € L(X,Z) are two continuous linear op-
erators and that M C Z is a non-empty, convex, closed subset. Consider the
problem

v:= inf{f(z)|]Az =0 and Bz € M}.
(a) Show that the condition
0 € Int (Im A* + B*b(M) + Dom f*)
implies that there exists a solution of the problem v.
(b) Write down the dual problem.
(c) Show that the condition

Vy,z € nB, Jz such that Ar =yand Bx € M + 2 (*)

implies that there exists a solution of the dual problem.

Exercise 3.22

Suppose that g : X x Y — IR U {+o0o} is a nontrivial, convex, lower semi-
continuous function. Consider the minimisation problem

= inf .
v = inf 9(0,y)
Characterise the associated dual problem and give sufficient conditions which

imply the existence of solutions of the primal and dual problems.

Exercise 3.23

Suppose that g : X x X — IR U {+o0o} is a nontrivial, convex, lower semi-
continuous function. Characterise the dual problem of the minimisation problem

vi= ;g[f\, f(wix)

and give sufficient conditions for these problems to have solutions.
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Exercise 3.24

Let K be a subset. We set
K° = {p € X*|ok(p) < 1} (1)
(K° is called the (negative) polar set associated with K).
(a) Show that K? is a convex closed subset with 0 € K° c b(K).
(b) Show that K% = co(K U {0}).
(c) If K is a cone, show that K° = K~.

Exercise 3.25

Suppose that P C X is a cone and that K C X is a subset. Show that
(P+K)° =P nK°.

Exercise 3.26

Let X and Y be two Hilbert spaces, A € L(X,Y) a continuous linear operator
from X to Y and p € X* fixed. We suppose that

Im A* is closed (%)
and that
(p,z) =0, Vz € X satisfying Az = 0. (x%)

(a) Show that there exists ¢ € Y™* with p = A*q. Deduce that if A is surjective,
then ¢ is unique.

(b) Show that if Im (A) is not dense in Y, then (a) implies that there exists
g € Y*, g #0, such that A*¢ =0.

Exercise 3.27
Suppose that X is a Hilbert space, that Y is a finite-dimensional space, that
A€ L(X,Y) and that K C Y* is a closed subset. We also suppose that
ImA+b(K)=Y. (*)
Consider a sequence of elements ¢, € Y* satisfying
A*g, converges to p in X*. (%)

(a) Show that there exists a subsequence of g, which converges to an element
g € K. Hint: use () to show that for all y € Y, (g, ) is bounded.

(b) Deduce that A*(K) is closed in X*.
(c) Deduce that the sets {¢ € K|A*g = p} are compact.
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Exercise 3.28
Suppose that K is a closed cone in X x Y.
(a) Show that A(0) := {y € Y|(0,y) € K} is a convex closed cone.
(b) We set A(z) := {y € Y|(z,y) € K}. Show that for all z, A(z) is a convex
closed set with asymptotic cone A(0).
Exercise 3.29
Uses Ezercise 2.17.
Let X be a Hilbert space, which is identified with its dual. Suppose that P
is a convex closed cone and that K is a convex closed subset. We denote the
orthogonal projector onto the convex closed cone P by 7p.
(a) Show that 7p(K) C K — P~.
(b) If A is a convex closed subset, we set

m(A) := 74(0) @

(the projection of best approximation of 0 by the elements of A).
Show that m(7p(K)) = m(K — P~).

(c) Show that the element Z = mp(K) is characterised by
(i) Te€P
(i) ok (=) + ||z]* < 0.
Exercise 3.30
Suppose that X and Y are finite-dimensional spaces, that L C X and M C Y

are non-empty, convex, closed subsets and that A is a continuous, injective,
linear operator from X to Y.

(a) Show that the operator A~ € L(Y, X) defined by A~y := (A7A)™'A*
satisfies A—A = 1 and prove that

lvlly == A"yl x (*)

1S a norm.
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(b) Show that for all y € Y, the solution z, € L which minimises || Az — y|
over L is given by

Ty = mL(ATY)

where 7y is the projection of best approximation by the elements of L
when Y has the norm of (*).

(c) We denote the projection of 0 at K by m(K). Show that

m(A(L) — M) = m((ArL (A7) — 1)(M)).

Exercise 3.31

Let K be a convex closed subset of a Hilbert space. Show that zo € Int(K) if
and only if

{plok(p) < (p,z0) + 1}

is bounded.

Exercise 3.32

Suppose that K is a convex compact subset. Consider the family My of non-
empty closed subsets M of K satisfying

Vy,z€ K, if Ay+(1—A)z€ then y,ze M (%)
(a) Show that K belongs to M.

(b) If f : K — IR is convex and upper semi-continuous and if M € M, show
that

{z € M|f(z) = Sélﬁf(y)} € Mg. (*%)

(c) Consider a decreasing sequence of non-empty closed subsets M; € Mk.
Show that

M := Ny M; belongs to M.

(d) Show that any minimal set My € Mg reduces to a point. Hint: if not, there
would exist two distinct points ¢ and x; of My and a continuous linear
form p € X* separating them; whence {z € My|(p, ) = on,(P)} # Mo.

(e) A point zp € K such that {zo} € Mk is called an eztremal point of K.
Characterise such points.
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(f) Use Zorn’s lemma to deduce that any set M € M contains an extremal
point and in particular, that if f is convex and upper semi-continuous,
then {z € K|f(z) = sup,cx f(v)} contains an extremal point.

(g) Use the Separation Theorem to deduce that any convex compact set is
the convex hull of its extremal points.

14.4 Exercises for Chapter 4 — Subdifferentials of
Convex Functions

The proofs of the following results are left as an exercise:

e Proposition 4.2

Corollary 4.1

Theorem 4.2

Corollary 4.2

Theorem 4.4

Proposition 4.3
e Corollary 4.4

Derive the formulae for calculating tangent and normal cones (formulae (45) to
(51) of Chapter 4).

Exercise 4.1

Let X be a Hilbert space. We denote its duality operator by L € L(X, X*).
Suppose ¢(z) := ||z||. Show that

(L";—",v) if £#0

Dep(z)(v) = {
l2]| if z=0.

Deduce that ¢ is not differentiable at 0, but that it has a right derivative and
that
L= if 2#0
= ll=l
B¢(z) { B, if z=0

where B, is the unit ball of the dual.
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Exercise 4.2

Let X be a Hilbert space. We denote its duality operator by L € L(X, X*). We
set

*(z) = ||=||>.
Prove that
Dy?(z)(v) = 2Lz, )

and show that ? is Fréchet differentiable and that its derivative is the duality
operator 2L.

Exercise 4.3

Suppose that K is a convex closed subset and consider the function d%(z) =
infyex |z — ylI*.

(a) Show that
(@ +v) — d(z) — 2a — mc(z),v) < ol
and that
d% (z) — d%(z +v) + 2(z — 7k (z), )
< (ke (z +v) — 7w (2)]] + lolD]l2]l-
(b) Deduce that z — d%(z) is Fréchet differentiable and that
Vd3(z) = 2(x — mx(z))
where 7 is the projector of best approximation onto K.

(c) Show also that this result is a consequence of Theorem 5.2.

Exercise 4.4

Suppose that K is a convex closed subset and consider the function dx defined
by dk(z) := inf,ck ||z — y||. Suppose that Tk (z) is the tangent cone to K at x.

(a) If y € K, show that for all w € Tk(y), we have
Ddk(y)(v) < |lv — -
(b) If z ¢ K, deduce that for all w € Tx(7k(2)), we have
Ddg(2)(v) < |lv —w],
whence also

Dd(2)(v) < d(v, T (mxc(2))).
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(c) If z € K and v € X, show that the convex function f(t) := dk(z +tv)
has a right derivative f (t) satisfying

FL@) < d(v, Tk (ke (T + tv)))-

Exercise 4.5

Let f : X — IRU{400} be a nontrivial (not necessarily convex) function. Show
that the following conditions are equivalent:

Zo minimises £ — f(z) — (po, x) (*)
and
(i) zo € 9f*(po)
(ii) f(zo0) = f**(o0)- ()

Deduce that the set of z which minimise z — f(z) — (po, ) is
M = {z € 0f*(p)|f(z) = f~(2)}-
Exercise 4.6
Consider a continuous strictly increasing function v : IR, — IR, such that

7(0) = 0 and lim; ,o y(¢) = co. We associate this with a convex function ¢
defined by

| fEy(m)dr if >0
wlt) = { +00 if t<0.
Let f be the function defined on X by
f(z) == o(||l=])-

(a) Show that

of(z) = {p € X"[{p,z) = llpll.llzll and ||p|l, = (llz|)}-
Hint: Use the fact that f*(p) = ¢*(|2ll.)-
(b) Show that if p € 0f(z) and ¢ € df(y), then

(p—gx —y) = (v(ll=ll) —~lyID) Ul = llyll)-

Exercise 4.7

Suppose that the function f is subdifferentiable at zy. Show that

Vz € X, f(zo) < f(z) +0(0f(x0), 0 — z)-
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Exercise 4.8

259

Suppose that f is differentiable in the neighbourhood of a convex closed set K.

(a) Show that if Z € K minimises f over K, then Z is a solution of the

variational inequality

(i) iecK
(ii) (Vf(Z),z—2z) <0 Vz € K.

()

(b) Prove that if a minimum Z belongs to the interior of K, the variational

inequality becomes the equation
Z €lInt(K)and Vf(Z)=0

(Fermat’s rule).

Exercise 4.9

()

Show that if a nontrivial function f : X — IR U {400} is both differentiable

(Gateaux differentiable) and subdifferentiable at a point zo € Dom f, then
0f (o) = {Vf(zo)}.
In this case, any solution z, of the variational inequality

(i) 0 € K
(i) (Vf(zo),zo—z) <0 Vx €K

minimises f over K.

Exercise 4.10

Let g and h be two functions such that
(i) g is convex and differentiable in the neighbourhood of K;
(if) h is convex;
(iii) K is convex and closed.
Then Z € K minimises f := g + h over K if and only of Z is a solution of

(i) zeK
(ii) Vo € K, (Vg(z),% — ) + (&) — h(z) < 0.

(%)
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Exercise 4.11

If the function f is nontrivial, convex and subdifferentiable at zo, show that f
is right differentiable and that

o(8f(x0),v) < Df(w0)(v).

Under what conditions is there equality?

Exercise 4.12

Consider n convex functions f; all continuous at a point xo. Set
flz) == max fi(z)
and

I@)i={i=1,...,nlf(z) = filz)}.
Show that

D f(zo)(u) = max Dfi(zo)(u)

i€l(zo)

and deduce that

df (xo) = co ( U afi(ico)) .

iel(zo)

Exercise 4.13

Let K be a convex closed subset. Show that
Vz € K, Ngk(z) C b(K)
and deduce that

Vz € K, Tk(z) contains the asymptotic cone.

Exercise 4.14

Suppose that the function f : X — IRU {+oc0} is nontrivial and convex. Show
that for any finite sequence of points zi,...,z, of Dom f and any sequence
pi € af(m1)7 (L =1,... ,Tl), we have

(p1, %1 — T2) + (P2, T2 — T3) + - .. + (Dn, Tn — x1) > 0.
The set-valued map F' from X to X* is said to be cyclically monotone if

v(xi) fz) € Gra‘ph(F)7 1 S 1 S n, (pl’xl - $2) +...+ (p'mxn - 331) Z 0. (1)
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Exercise 4.15

Consider a cyclically monotone set-valued map F from X to X* (satisfying
equation (1) of Exercise 4.14). We fix (zo,po) € Graph(F') and construct the
function f: X — IR U {+0c0} defined by

f(m) = Sup{(pn,m - xn) + (pn—hmn - m'n—l) + ...+ (po,331 - :EO)}

where the supremum is taken over all finite sequences of points (z;, p;) of the
graphof F (i=1,...,n).

(a) Show that f is convex and lower semi-continuous.
(b) Show that f(xo) = 0 (whence, that f is nontrivial).
(c) Show that
Vz € Dom(F), F(z)C 8f(z).
Hint: take p € F(z) and show that
Vye X, flz)—fy) < (pz—y)

by associating any € > 0 with a finite sequence of (z;,p;) € Graph(F)
such that f(z) < (pn,z — Zn) + ... + (Do, T1 — To) + €.

(d) We say that a cyclically monotone set-valued map F from X to X* is
mazimal if there is no other cyclically monotone set-valued map G # F
with Graph(G) D Graph(F).

Deduce that any maximal, cyclically monotone, set-valued map is the sub-
differential of a nontrivial, convex, lower semi-continuous function (Rock-
afellar’s Theorem).

Exercise 4.16
Consider the Sobolev space
HY0,T;R™) = {z(-) € L*(0, T; X)|z'(t) € L*(0, T; X)}
and the Hilbert subspace
H = {z € H(0,T; X)|z(0) = z0}.

Suppose that f : X — RU{+o00} is a nontrivial, convex, lower semi-continuous
function. Let ¢ be the functional defined on H by

T * / 1 2 1 2
é(z) =/0 (f (@) + fr(=2"&)))dt + 5 ll=(D" — 5 lloll”
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(a) Show that
Vz € H, ¢(z)>0.

(b) Show that the following conditions are equivalent
d(xz) =0 (*)
and
—a'(t) € Of (z(t)) and z(0) = zo- (%)

Deduce that any solution z(-) of the differential inclusion (#*) minimises ¢ and
note that the converse is not necessarily true.

Exercise 4.17

Suppose that the function f: X — IR U {400} is nontrivial, convex and lower
semi-continuous. Let zo € Dom(8f). Consider a solution of the differential
inclusion

—2/(t) € 9f(2(t)), 2(0) = zo. (+)
(a) Show that ¢ — f(z(¢)) is a decreasing function satisfying
£ fla(e) + I O =0. ()

Hint: find upper bounds for f(z(¢)) — f(z(¢+h)) and f(z(t+h)— f(z(2)),
divide by h > 0 and let k tend to O.

(b) Deduce that there exists at most one solution of the differential in-
clusion (*). Hint: if z; and z, are two solutions, differentiate ¢ —

%”xl(t) - wz(t)llz-

(c) Deduce from (*#) that the solution z(-) of (*) is in fact the solution of the
differential equation

—z'(t) = Waf(z(t))(O), IE(O) = Iyp. (***)
Remark. This involves showing that there exists a (unique) solution of

the differential inclusion (*) (Crandall-Rabinowitz Theorem) even though
the second term of the differential equation is not continuous.

(d) By integrating (*x) from s to ¢, show that
t
lim f lz'(7)|I> = 0

s,t—00

and deduce from the Cauchy criterion that

/0 ll'(7)||2dr < -+oo. (rs)
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(e) Let A, be the set of £ > 0 such that ||z’(t)]] < e. Deduce from
(#*xx) that meas(A.) = oo. Hint: suppose that meas(A.) is finite and
obtain a contradiction to (##xx*).

(f) Deduce that for all y € X
inf f(z(t)) < f(y)-

Hint: show that f(z(t)) < f(y) — (z'(t), z(t) — y), use question (e) and let
€ tend to 0.

(g) Deduce that any limit point of z(t) as ¢ — oo minimises f.

14.5 Exercises for Chapter 5 — Marginal Properties of
Solutions of Convex Minimisation Problems

The proofs of the following results are left as an exercise:
e Corollary 5.1
e Corollary 5.2
e Corollary 5.3

e Corollary 5.4

Exercise 5.1

Let X and Y be two Hilbert spaces and A € L(X,Y) a continuous linear
operator. Suppose that ©u € X and w € Im A are given. We also suppose that
we have a semi-scalar product A(z,y) associated with a self-transpose positive
semi-definite operator L € L(X,Y) by the formula

Mz, y) = (Lz,y) (1)

(see the section of Chapter 1 entitled ‘Examples of Convex Functions’). We

suppose that
Im (L) is closed. (2)

We set

(i) X(z) := Mz, z),
(ii) if p € Im(L), M3(p) = (p, ) where Lz = p. (3)
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We recall that

1 .- IX2(p) if pelIm(L)
52 () =

+oo  if p ¢ Im(L)
and that
0)(z) = 2Lx.

We consider the minimisation problem

(1) Az = w
(ii) A(Z—u) = Ai;l:fy Nz — u).

Show that if
ImA*+ImL =X*

then there exists a solution of the problem (6).

Exercise 5.2
We assume the framework of Exercise 5.1 and that
A is surjective and Im(L) = X*.

(a) Write down the dual problem associated with (6).

(4)

O

(b) Show that (Z, ) is a solution of the Hamiltonian system if and only if

(i) Lz + A*q Lu
(ii) Az = w

(c) Show that g is a solution of the equation

(AL7'A")g= Au—w

and deduce that this problem has a unique solution equal to

7= (AL A*) " (Au—w).

(d) Show that Z is equal to

ZT=u— L TAY (AL A*) 7 (Au — w).



14.5 Exercises for Chapter 5 265
Exercise 5.3
We assume the framework of Exercise 5.2.
(a) Show that
£(q) :=u— L7 A%
minimises z — 1X%(z — u) + (g, Az) over X.

(b) If A is surjective, show that the solution § of the dual problem minimises

q- %/\Z(S(q)) + (g, w)

over Y* and that the solution Z of the problem (6) is equal to Z = £(g).

Exercise 5.4

We assume the framework of Exercise 5.2. Prove that T = £(q) := v — L™ 1A*g
is a solution of the problem (6) if and only if A£(q) = w.
Exercise 5.5

We assume the framework of Exercise 5.2. Show that the solution Z of the
problem (6) is the solution of the problem

0 wan = @w
(ii) Mz —wu) = (A'qugl(q,w) Az — u).

Exercise 5.6
We assume the framework of Exercise 5.2. We set
o(w) = inf N(z —u).

IT=w

Show that ¢ is differentiable (Fréchet differentiable) and that
Veo(w) =17

where ¢ = (AL‘IA*)_I(AU — w).
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Exercise 5.7

Suppose that A € L(X,Y) is surjective, that B € L(X, Z) is injective, that
w € Z and w € Y are given and that we have a scalar product A on Z. We
consider the minimisation problem

(i) AT = w
(ii) X(BZ —u) = n:}l:x}l} \(Bz — u).

Show that there exists a unique solution Z of this problem, which is given by

(i) T = w-— M 'A*p, where M := B*LB, where
(ii) 7 = (AM™1A*)"'(Av —w), where
(iii) v = M™'B*Lu.

Exercise 5.8
We assume the framework of Exercise 5.2. We set
7(A) := (AL A*) " (Au — w).
(a) Show that if B € L(X,Y), then

. 7m(A+hB)—7(A)
hl—l+r(1)1+ h
= (AL7'A") {(B(uL 'A*w(A)) — AL7'B*n(A)).

(b) We set

h
+
Il

= LAY (AL7'A%) 7' e L(Y, X)
S(4) = (1—ATA)L'e L(X,X)

and we denote by A(A) the solution
A(A) == u— LA 7(A) = u— LT A" (AL A%) 7 (Au — w)
of the problem

P(A) = inf X(z — u).

Deduce from (a) that

im A(A+ hB) — A(A)
h—0+ h

= —A*BA(A) — S(A)B*1(A).
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Exercise 5.9
We assume the framework of Exercise 5.2.
(a) Show that
AY .= LTVAALT'AY) e L(Y, X)
satisfies
AAry =y
(A* is a right inverse of A) and

N(Aty) = min \2(z).

=Yy
(b) Prove that
(AL7'A*) 7' = (A*) LAY

is the duality operator associated with the scalar product (v, y2) defined
on Y by

ey, y2) = )\(A+y1, A+y2)-

(c) Show that the scalar product p., the dual of 1 on Y*, is defined by

(@1, @2) = M(A*qr, A% g2).

(d) Prove that the solution Z of the problem (6) is defined by

T=Atw+ (1-ATA)u.

Exercise 5.10

We assume the framework of Exercise 5.9. Suppose that 4, € L(X,Y;) and
A, € L(Y,,Y?) are two continuous, surjective, linear operators. Show that

(A2 A))" = AFAY

where A} = LTIAE(AZLTIAE)—I and Ly = (A, L71A;) 7.
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Exercise 5.11
Suppose that B € L(X, Z) is a continuous linear operator satisfying
B is injective and its image is closed. (*)

Suppose that p(z1, z3) is the scalar product on Z and that M € L(Z, Z*) is its
duality operator. We set

B~ :=(B*MB)'B*M € L(Z, X).
(a) Show that
B Br ==z
(B~ is a left inverse of B) and that

(BB 'y —u) = 1161){ 2 (Bz — u).

(b) Show that

(i) (B7) = (B)"
(ii) (B*MB)™ = (B )M Y(B™)*
(iii) B = (B7)*.

(c) Show that
1*(Bz —w)* = p*(B(z — B u)) + p*(u) — p* (BB v)

and deduce that minimising the distance from Bz to u is equivalent to
minimising the distance from Bz to BB u.

Exercise 5.12

We assume the framework of Exercises 5.7, 5.9 and 5.11. Show that T is a
solution of the problem

(1) AZ = w
(ii) X(BZ —u) = min X(Bz — u)

if and only if Z = B~z where Z is the unique solution of the problem

z=w

X(z—u)= Amin X (z — u).
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Exercise 5.13

We consider
e 4 Hilbert spaces X,U,Y and Z;

e a nontrivial, convex, lower semi-continuous function
f: X xU—RU{+oo};

e 3 continuous linear operators A € L(X,Y),B € L(U,Y) and
Ce L(X, 2);

e non-empty, convex, closed subsets LC Y and M C Y.
We consider the minimisation problem
v = inf{f(z,u)|Az + Bu € L and Cz € Z}.
(a) Write down the dual problem of this problem.

(b) Show that the surjectivity condition: 3y > 0 such that
Vy,z € vB, 3(z,u) € Dom(f) satisfying
Az + Bu € L+yand Czx € M + 2, (*)

implies the existence of a solution of the dual problem.

(c) Show that () is satisfied if we assume that

(i) Vz € X, Jusuch that f(z,u) < +oc;
(i) AxC e L(X,Y x Z) is surjective.

(d) We suppose that (x) is satisfied and that there exists a solution (Z, %) in
Dom f of the problem v. Show that there exists a solution (g, ) satisfying

(i) pe NL(AE + Bﬂ), ge NM(CIE)
(i) (-=A*p— C*q,—B"p) € 0f(%,4). (+)
(e) We now assume that

fl@yu) = g(z) + h(v)

where g : X - RU{+o0} and h : U — IRU {400} are nontrivial, convex
and lower semi-continuous.



270 14. Exercises

Show that (4) may be written the form: there exists a solution p of

@) P € Ni(AZ + Ba)
(ii) —A*p € 8g(Z) + C*Np(CZ) (++)

(adjoint equation) satisfying
@ minimises u — H(u, p) (+++)
where H(u,p) is defined by
H(u,7) = h(u) + (5, Bu)
(maximum principle).

(f) Show that if there exists 6 > 0 such that

Vr € 6B, Ywe dB, Ipeb(L) and ¢ € b(M) such that
f*(m— A*p— C*q,w — B*p) < 400 ()

then there exists a solution (Z, %) of the problem v.

(g) Deduce in particular that this solution exists if we suppose that there
exist pp € b(L) and gy € b(M) such that

(—A*po — C*qo, B*po) € Int(Domf.).

14.6 Exercises for Chapter 6 — Generalised Gradients
of Locally Lipschitz Functions
The proofs of the following results are left as an exercise:

e Proposition 6.3

e Proposition 6.4

Proposition 6.5

Proposition 6.6

Proposition 6.7

Corollary 6.1

Proposition 6.8
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Exercise 6.1

Let f : X — IR U {400} be a nontrivial function. If z € Dom(f) and v € X,
we set

D, f(z)(v) := liminf flot ’“;;) — /@) w (1)

vy

(D+f(z)(v) is called the contingent epiderivative of f at z in the direction v).

(a) Show that v — D, f(z)(v) is positively homogeneous and that if for all
v, Dy f(z)(v) > —o0, it is lower semi-continuous.

(b) Show that if f is Lipschitz (with constant L) in the neighbourhood of
z € Int (Dom f), then

D, f(z)(v) = liminf L&) = f()

h—0+ h

and

—L||vll £ D, f(2)(v) < Def(z)(v) < L|jv|l.

(c) Show that if f is convex, then

D, f(z)(v) = lim inf D f(z)(v).

Exercise 6.2

Suppose that f : X = IRU{+o0} is a nontrivial function and that Z € Dom f.
Show that if Z is a local minimum of f, then

Yo € (X), 0< D, f(z)@)-

Compare with Proposition 6.5.

Exercise 6.3

Suppose that f and g are two nontrivial functions from X to IRU {+oco}. Show
that if z € Dom f N Dom g, then

D, f(z)(v) + Dyg(x)(v) < Di(f + 9)(z)(v)-

Compare with Proposition 6.3.
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Exercise 6.4

Suppose that A € L(X,Y) and that g : X — IRU{+o0} is a nontrivial function.
Suppose we have z € X such that Az € Dom g. Show that

D, f(Az)(Av) < D, (f 0 A)(®)(v)-

Compare with Corollary 6.1.

Exercise 6.5

We consider n nontrivial functions f; : X —+ R U {+oc0} and z € Nj=,Dom f;.
We set

I(z) = {i —L..onlfila) = max fj(x)} .

Show that l

max D, fi(z) < D, (I.g}_e}gfn fj) (%) (v)-

iel(z)

Compare with Proposition 6.9.

Exercise 6.6

Suppose that A € L(X,Y) and that f : X — IRU{+00} is a nontrivial function.
We set,

9() = jnf f(z)

and we suppose that there exists a solution Z of the problem AZ = y and that
9(y) = f(z). Show that

Vz € X, D,g(y)(Av) < D, f(Z)(v).

Deduce that if g is differentiable (Gateaux differentiable) at y and f is differ-
entiable at Z, then

Vf(z) - A*Vg(y) = 0. (%)

In other words, Vg(y), the gradient of the marginal function, is a Lagrange
multiplier. Compare with Proposition 6.8. Hint: use the inequality

g(y + hAv) — g(y) < f(Z + hv) — f(T).
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Exercise 6.7

Consider a function f : X — IRU {+oo} and z € Dom f. We define

-~ , —
Df(z)(v) := limsup M
I17»0+ h
W Nz ()
(N EER()
(a) Show that
Dcf(z)(v) < Df(z)().

(b) Show that (z,v) — Df(z)(v) is upper semi-continuous and that
{v|D(z)(v) € R}
is open.
(c) Show that

Df(z)(~v) = D(~f)(=)(v).

Exercise 6.8

Let K be a non-empty subset of X. Consider the normal cone to K at =, Nk ()
(Proposition 6.14).

(a) Show that if p € X* satisfies
(p, z0) = max{p, y)
then p € Nk(zo).
(b) Show that if y ¢ K and if Z € K satisfies
ly —2ll = inf lly — =l = dx(y),
then y — Z belongs to Nk (Z). Hint: use Proposition 6.15 applied to the
functions z — (—p, z) and z — ||y — z|.
Exercise 6.9

Let K be a closed subset of a finite-dimensional vector space X. Consider the
tangent cone to K at z (Definition 6.4). Show that the following assertions are

equivalent.

(i) v € Tk(z).
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(i1) lim o+ M =0.
y—T
yER

(iii) Ve > 0, 3n > 0 such that Vh €]0, 7| and Vy € Bk (z,7), Iu € v+eB such
that z + hu € K.

(iv) For any sequences h,, — 0+ and z,, € K converging to z, there exists a
sequence v, converging to v such that z, + h,v, € K for all n.

Hint: derive the inequalities

dK(y}:. hv) < sup di(y + hz;b) —dg(y)
Ily;ﬂ‘ga ly—zl<c
d;{(z + hv)

lz=—zll<2a h
rzeK

<

by taking z € K such that ||y — 2| = dx(y) < ||y — || when y ¢ K and deduce
the equivalence of (i) and (ii).
Exercise 6.10

Let K be a subset of X and x € K. Show that the following assertions are
equivalent.

(i) D, dxe(z)) = 0.
(i) Ve >0, Va > 0, 3k €]0, ], Fu € v +€B such that z + hu € K.

(iii) For any sequence h, — O+, there exists a sequence v, converging to v
such that  + h,v, € K for all n.

The closed cone Th(z) of the elements v of X satisfying one of these equivalent
conditions is called the contingent cone to K at .

Exercise 6.11
Show that for all x € K, we have

Tr(z) C Ty(z).
If Ae L(X,Y), show that

ATIb((:E) C TA(I() (A:C)
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Exercise 6.12
Let X be a finite-dimensional space. Let K be a closed subset of X.
(a) Suppose that y € K. Show that for all w € T%(z) (see Exercise 6.10),
D1dk(y)(v) < |lv —w]|.

(b) Suppose that z ¢ K and take y € K such that ||y — z|| = dg(z). Show
that for all w € T%(y)

Ddg(2)(v) < |lv— |
and thus, that

Ddg(z)(v) < inf d(v, Ti(y)).

lly—zll=dg (z)
yEK

(c) We now suppose that for all v € T%(x)
the function y — d(v, T%(y)) is upper semi-continuous at z. (*)

Show that for all € > 0, there exists 7 > 0 such that, for all y € Bg(z,n),
h €]0, 7], we have

d[((y + h’U) <e
— 7 S
Hint: set f(¢) := dk(y + tv), deduce from the previous inequalities that

for almost all ¢, in a neighbourhood of 0, f'(t) < d(v,Tk(z)) < € when
z € K satisfies di(y + tv) = ||y + tv — z|| and integrate from 0 to h.

(d) Deduce that if the regularity condition (*) is satisfied at x, then

Tk(z) = Te(x).

Exercise 6.13

Let 1k be the indicator function of K. Show that

Dk () = Yrt (o)-

Exercise 6.14

Suppose that f : X — IRU {400} is a nontrivial function. Show that

EpD, f(z) = TEbp(f)(l', f(=)).
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Exercise 6.15

Suppose that f : X — IR U {400} is a nontrivial function, Lipschitz in the
neighbourhood of a point z € Int(Dom f). Show that

Ep D.f(z) = Tep()(, f(z))
and that
p € 9f(z) & (p, —1) € Ney(p)(z, f(=))-
Note that these properties may be used to extend D.f(z) and df(z) to any

nontrivial function f: X —- R U {+o0} and deduce that in this case we have
the formula

Dc'l,l/[{(fl;) = ¢TK(I)'

Exercise 6.16
A set K is said to be pseudo convex at x if
TE (z) = closure (Uh>0 K — :1:)) (*)
(a) Prove that any convex set is pseudo convex at any point z € K.
(b) If K is pseudo convex at z and if A € L(X,Y’), show that
ATy (z) = Tfi(x)(Aw)-

Compare with Exercise 6.11.

Exercise 6.17

A nontrivial function f : X — IR U {+oo} is said to be pseudo convex at
z € Domf if and only if

Vye X, Dyf(z)ly—z) < fy) - f(z). (%)
a Show that any convex function is pseudo convex at all z € Domf.
(b) Show that f is pseudo convex at z if and only if
Ep(f) is pseudo convex at (z, f(z)). (*x)

See Exercise 6.16.
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Exercise 6.18

Suppose that X and Y are two Hilbert spaces. We consider a nontrivial function
g:X XY — RU {+occ} and its marginal function f defined by

f(z) = inf g(z,v).
Let 3 be a point at which the minimum is attained: f(z) = g(z, 7)-
(a) Show that we have

D, f(z)(u) < inf Dyg(,7)(u,v).

(b) Show that if g is pseudo convex at (z,%) and that if the problem f(z')
has a solution for all z’ in a neighbourhood of z, then

D+f($)(u) = ig)i; D, g(=, gj)(u,v)

Hint: use Exercise 6.17.

Exercise 6.19

We say that K is star shaped around z € K if and only if
Vye K, z+0(y—=z) € K for 6 €[0,1].

Show that K is pseudo convex at z.

14.7 Exercises for Chapter 8 — Two-person Zero-sum
Games: Theorems of Von Neumann and Ky Fan

The proofs of the following results are left as an exercise:
e Lemma 8.1
e Lemma 8.3

e Corollary 8.1

Exercise 8.1
Show that in Proposition 8.2 and its consequences (Theorems 8.1, 8.2 and 8.5)
the assumption

E is compact (*)
may be replaced by

Jy1,---,Yn € F such that z — max;—) _n f(z,y:) is lower semi-compact. (%)
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Exercise 8.2

We now consider n Hilbert spaces X;, n subsets F; C X; and n functions
fit B x F — IR. We set

f(z,y) Zfz(wny

We assume that

Vi=1,...,n, Jy; € F such that z; — fi(z;,y;) is lower semi-compact
and such that inf g, fi(z;,3:) > —o0 Vj#1 (%)
and that
VYye F,Vi=1,...,n, z; = fi(z;,y) is lower semi-continuous. ()

Show that there exist Z; € F; such that

sup Z fi(Zny) =

where

h = f
v su in max E Z;
Keps IiEE yE fl( v y

Hint: use Exercise 8.1.

Exercise 8.3
We consider a metric space E, a subset F' of a Hilbert space Y and a function
f:E x F - IR. We use D to denote the canonical set-valued map from F to
E defined by

D(y) =

= inf f(z,y)}.
We suppose that

(i) F is convex and compact
(i) Vz € E, y— f(z,y) is concave and upper semi-continuous (%)

and that

(i) E is compact
(i) Yy € F, z— f(z,y) is lower semi-continuous. (%)

(a) Show that there exists § € F such that

'@ = inf f(z9) = = sup £'(y).
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(b) We take any Z, in D*((1 — A)7 + Ay). Use the fact that f is concave with
respect to y to deduce that

VAe[0,1], F(@xny) < (@)

(c) Suppose that, in addition, D is one-to-one and continuous. Deduce that
there exists Z € F such that:

Yy, f(@y) < f@) =2
and thus that (Z,7) is a saddle point of f.

(d) Show that we obtain the same conclusion if we simply assume that y —
Db(y) is lower semi-continuous with non-empty values.
Note that we have proved another minimax theorem where the convexity
assumptions on E and on z — f(z,y) are replaced by the assumption
that D is lower-semi continuous.

Exercise 8.4
Suppose that f is a nontrivial convex function from X to R U {+o0} and that
K is a convex, closed, bounded subset of X™* such that

Vo e X, f(zo) < f(x) + (K, o — ).

Show that 0f(zo) is non-zero.

Hint: consider the function ¢(z, p) :== f(z) + (p,zo — ) on Domf x K and
the fact that when X is not finite dimensional, convex, closed bounded sets are
weakly compact.

Compare with Exercise 4.7

Exercise 8.5

Let X be a Hilbert space. Consider the family K of non-empty, convex, closed
subsets of X. We define the Hausdorft semi-distance by

dL(K, L) := sup inf ||z — y|| = supd(z, L).
z€K €L z€K

(a) Show that
dL(K,L) < dL(K, M)+ dL(M, L).
(b) Show that
dl(K,L)=0< K C L.
(c) Prove that
sup (ok(p) — or(p)) = dL(K, L).

lIpll. <1

Hint: if X is infinite dimensional, use the weak topology.



280 14. Exercises

Exercise 8.6

Consider two convex compact subsets £ C X and F C Y and a function
f: E x F — IR. Suppose that p € X* and ¢ € Y* are two continuous linear
forms on X and Y, respectively. We set

v(p, q) = inf sup(f(z,y) - (p,) + (2, 9))
€L yeF
and
*(p, q) := sup inf (f(z,y) — (p,z) + (¢, 9))-
y€eF z€EE
(a) Suppose that 3 is a max inf:
inf (f(z, %) — (Po, ) + (90, %0)) = v*(Po, %0)-

Show that

v!(po, q0) — v*(po, @) < (g0 — ¢, Yo)- (*)

(in other words that yo € 0v¥(po, -)(go)) and that

infzep(f(2, o) — (po, %)) = infeey- (v*(po, 9) — (4, %0))- ()
(b) Show that if yo satisfies (*) and (**), then y, is a max inf.

(c) Suppose that Vz € E, y — f(z,y) is concave and upper semi-continuous.
Show that the condition (**) is satisfied and thus deduce from (b) that if
yo satisfies (x) (yo € v*(po,-)(go)) then yp is a max inf.

(d) Similarly, show that yo is a conservative strategy for Frances if and only
if

(i) yo € 8v"(po,-)(q0)
(ii) infzer(f(z,90) — (Po,y)) = infy(v"(po, q) — (g, %0)).

Exercise 8.7

Suppose that K is a subset of a Hilbert space X defined by a family of con-
straints

K :={z € X|Vp € P, v(z,p) < 0}
Suppose also that

(i) P is a convex closed cone in a Hilbert space Z,
(ii) < :X x P — IR is positively homogeneous in p. (*)
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We set
flz) if ze K

+00 otherwise

f K(.'z;) = {
and
t(z,p) = f(z) +v(z,p)
(the Lagrangian for the problem).
(a) Show that
fr(z) == sup £(z,p)
pEP
and that
inf f(z) = inf sup £(z, p).
(b) p € P is said to be a Lagrange multiplier if and only if
nf sup Yz, p) = inf Uz, p)
(P is a max inf of the Lagrangian).
Show that p € P is a Lagrange multiplier and that Z € X minimises f
over K if and only if
(i) Vz € X, f(Z)+(Z,p) < f(z) +¥(z,p)
(Z minimises z — f(z) + y(z,p) over X).
(ii) Vp e P, v(Z,p) <0 (Z belongs to K), and
(iii) v(z,p) =0.

Exercise 8.8

Suppose that X and Y are two Hilbert spaces and A € L(X,Y) and that
f: X >RU{+o0}and g: Y - IRU {+o0} are two nontrivial, convex, lower
semi-continuous functions such that 0 € ADom f — Domg.

(a) Show that

Inf(f(z) + 9(Az)) = inf sup U(z,q)

where
t(z,9) = f(z) +{a,9) — 9°(2)-
(b) Deduce that the following conditions are equivalent
inf (/(z) + 9(42)) = inf (z,3)
and
Inf(f(z) +9(Az)) + f*(-A"9) +9"(q) = 0.
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14.8 Exercises for Chapter 9 — Solution of Nonlinear
Equations and Inclusions

The proofs of the following results are left as an exercise:
e Proposition 9.1
e Proposition 9.2
e Proposition 9.3
e Proposition 9.4
e Proposition 9.5
e Corollary 9.1
e Theorem 9.5
e Theorem 9.6

e Theorem 9.7

Exercise 9.1

Let C be a set-valued map which is upper hemi-continuous at ¢ and bounded
in a neighbourhood of zy in the sense that

sup sup [|v]| < +oo.
z€ B(zo,n) vEC(x)

Show that

(z,p) = o(C(2),p)

is upper semi-continuous at (zg, pg) for all po.

Exercise 9.2

Suppose that C is a set-valued map from K to IR™ which is upper semi-
continuous at To. Show that if C(zo) is bounded, then (z,p) — o(C(z), )
is upper semi-continuous at (zo, pg) for all po.
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Exercise 9.3

Consider three metric spaces X,Y and U and a mapping f : X x U — Y with
an associated set-valued map F from X to Y defined by

F(z) := {f(z,u)}ev-
(a) Show that if
Yue U, z— f(z,u) is continuous
then F is lower semi-continuous.

(b) Show that if

(i) U is compact
(ii) f is continuous from X x U to Y

then F' is upper semi-continuous.

Exercise 9.4

Consider a metric space K, two Hilbert spaces X and Y, set-valued maps = —
L(z) ¢ X and ¢ — M(z) C Y with convex closed values and a mapping
z — A(z) € L(X,Y). We define the set-valued map

R(z) := {u € L(z)|A(z)u € M(z)}.
(a) Show that if
Vz € K, 0 € Int(A(z)L(z) — M(z)),
then
o(R(z),p) = inf (o(L(z),p — A(z)"q) + o (M(2),9))-

(b) Deduce that if z — A(z) € L(X,Y) is continuous, if the set-valued maps
are upper hemi-continuous and if L is bounded in the neighbourhood of
each point, then R is upper hemi-continuous.

Exercise 9.5

Suppose that X is a finite-dimensional space and that C is a set-valued map
from the unit ball B € X to X with non-empty, convex, closed values. We

suppose that
vz € X, |z|| =1, o(F(z),z)>0.
Show that there exists a solution Z € B of 0 € F(Z) .

Hint: apply Theorem 8.5 to the function ¢ defined on B x Y by ¢(z,y) :=
—o(C(z),y) and for the continuous mapping r : Y — B defined by

riy):=y if ye B, r(y):=y/llyl if y¢ B.
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Exercise 9.6

Suppose that K is a convex compact subset of a Hilbert space X and that C
is a set-valued map from K to X which is upper hemi-continuous with convex
closed values. Suppose that 7 is the projector of best approximation onto K.
Show that if

Vz € X, o(C(nk(z)),z) >0
then there exists a unique solution Z € K of the inclusion 0 € F(Z). Hint: the

proof is similar to that of Exercise 9.5.

Exercise 9.7

We define the zone of support of a convex closed subset K C X at p € X* to
be the set

9ok (p) = {z € K|(p,z) = ox(p)}-

Suppose that C is a set-valued map from K to X which is upper hemi-continuous
with convex closed values. Show that the condition

Vp e X*, Vz € dok(p), o(C(z),—p) >0 (%)
is equivalent to

Vz € K, Vp € Nk(z), o(C(z),—p) > 0. (%%)

Exercise 9.8

Suppose that X and Y are metric spaces. Let F': X — Y be a lower semi-
continuous set-valued map. Show that £ — F(z) is also lower semi-continuous.

Exercise 9.9

Suppose that X is a metric space and that Y is a normed space. Let F :
X — Y be a lower semi-continuous set-valued map with convex values. Show
that Ve > 0, there exists a continuous function f from X to Y such that

vz € X, d(f(z),F(z)) <e.

Hint: use continuous partitions of unity.

Exercise 9.10

Show that the graph of an upper semi-continuous set-valued map with closed
values is closed.
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Exercise 9.11

Show that if F" is upper semi-continuous with compact values, then the image
of any compact set under F is compact.

Exercise 9.12

Suppose that K is a convex compact subset of a Hilbert space X and that C is
a set-valued map from K to X with non-empty, convex, closed values.

(a) Show that a necessary and sufficient condition for the existence for all
z € K of an ‘explicit’ solution of the dynamical system

(i) To=1
(ii) ZTpy1 —ZTn € C(z,), n=0,1,...

which is ‘viable’ in the sense that
V>0, z,€ K
is that

vz € K, o(C(z),—p) = (p,z) — ok(p)- (*)
Hint: use the Separation Theorem.
(b) Note that the condition
Vz € K, Vpe b(K), o(C(z),—p) >0
implies both the condition (*) and the condition
Vz € K, Vp € Nk(z), o(C(z),—p) > 0.

Exercise 9.13

Let K be a convex compact subset of a Hilbert space X and C an upper hemi-
continuous set-valued map from K to X with non-empty, convex, closed values.
We suppose that

Vz € K) Vp € NK("B)i U(C(:E),_p) > 0.

Show that for all z € K it is possible to construct an ‘implicit’ solution of the
dynamical system

(i) To=7T
(i) Tny1 — Zn € C(zn), n=0,1,...

which is ‘viable’ in the sense that
vn>0, z, € K.

Compare with Exercise 9.12. Hint: use Theorem 9.4.
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Exercise 9.14

Consider a convex compact subset K of X and an upper hemi-continuous set-
valued map from K to Y with convex closed values. Consider also a continuous
mapping z € K — A(z) € L(X,Y). We suppose that

Vz € K, C(z)N closure(A(z)Tk(z)) # 0.
Modify the proof of Theorem 9.3 to show that

(i) Iz e K, 0c F(z)
(ii) Vy € K, 3% € K such that A(Z)(Z — y) € F(&).

Exercise 9.15

Let K be a convex closed subset of IR™. Let C be an upper hemi-continuous set-
valued map from K to IR™ with non-empty, convex, closed values. We suppose
that

C(K) := Uger C(x)

is contained in a compact subset M of K. Show that C has a fixed point. Hint:
consider the restriction of C to the convex closure of M.

Exercise 9.16

Suppose that C is a set-valued map from the unit ball B to itself satisfying
Vz € B, |lz|| =1, —z € C(z).

Show that
(1) dz e B, 7€ C(z)
(ii) B c C(B).

Hint: apply Theorem 9.4 to C(z) — z and C(z) — y.
If C is one-to-one, we obtain Borsuk’s Antipodal Theorem.

Exercise 9.17

Suppose that K is a convex compact subset of X. Consider an upper hemi-
continuous set-valued map C from K to X with convex closed values satisfying

Vp € X*, Vz € Ook(p), C(z)NOok(p) #0.

Show that
(1) Jz € K such that z € C(%)
(ii) Vy € K, 3% € K such that y € C(z).

Hint: apply Theorem 9.4 to the set-valued map z — z — C(x).
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Exercise 9.18
Let X be a Hilbert space, A € L(X, X*) an X-elliptical operator satisfying
Je > 0 such that Vz € X, (Az,z) > ¢z (*)

and K a non-empty, convex, closed subset of X. We consider the following
problem: if p € X*, find z such that

(i) zeK
(ii) Vy € K, (AT —p,Z —y) <0. (+%)

(a) Show that there is at most one solution Z of (*x).

(b) If mx denotes the projector of best approximation onto K, show that (x)
is equivalent to

T =7x(Z + ALY (AZ — p)) (%)
where L is the duality operator and A is an arbitrary positive scalar.

(c) Show that

1@ = AL A)z|)” < (1 + N A]I7 — 2)¢) ]|,

(d) For a judicious choice of A > 0, deduce from the Banach-Picard Theorem
(Theorem 1.5) that (***) has a fixed point and thus that there exists a
unique solution of the variational inequality (k).

(e) If G(p) denotes this uniqﬁe solution, show that

I1G(p) — G(g)ll < ¢ lp—qll.-

(f) Deduce that A € L(X, X*) is an isomorphism.

14.9 Exercises for Chapter 10 — Introduction to the
Theory of Economic Equilibrium

The proof of the following result is left as an exercise:

e Corollary 10.1
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Exercise 10.1

Consider 7 companies j described by production sets Z;. We suppose that each
consumer has a vector w; of initial resources and ‘shares’ 6;; of the yield for the
company j such that 37, 6;; = 1 for all j. Show that the set M of available
commodities is

M =Y w +izj -RS
i=1 j=1

and that

ri(p) = (0yws) + 3 650(Z5,).

i=1

Exercise 10.2

We assume the framework of Exercise 10.1. We consider a Walrasian equilibrium
P € M* and the vector § := Y7, Z; of associated demands, which may be
written as

n m
y= Zwi +sz where Ej (S Zj.
i=1 =1

Show that for each company j =1,...,m,

(P, 2j) = max(p, z)
or, in other words, that each production Z; associated with the Walrasian equi-
librium price maximises the profit (7, z) over the net production set Z;.

Exercise 10.3

The space of commodities IR¢ has a scalar product A(z,y) and we consider
the associated quadratic function A?(z) := A(z,z) and its duality operator L.
We suppose that each consumer i tries his utmost to approximate to an ideal
consumption u; subject to the financial constraint (p,z) = 7. Show that the
demand is then equal to

Dy(p,z) :==u; — %L”p.

Exercise 10.4

We assume the framework of Exercise 10.3. We denote the initial resources of
each consumer by w; € IR® and their ideal consumptions by u; € IR¢. Show that
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there exists a Walrasian equilibrium price, which is unique up to a non-zero
scalar «, given by

p=al (Zu] —wj)
j=1

and that the associated demands are equal to

_ AMu; — w;, Z;n:l uj; — wj) i

T Ty ) 2 W)

Exercise 10.5

We assume the framework of Exercise 10.4, where an appropriate institution
wishes to redistribute the yields so that the Walrasian equilibrium mechanism
provides consumptions as close as possible to (vy,...,v,) chosen in advance. In
other words, if w := ¥ ; w; and r;w is the new yield attributed to consumer ¢,
find 7 € IR™ such that

Q) S =1
(@) C DB REY) —v) = inl_ N(Dip () ~v)

where p = L(>1-,(¢; — w;)). Show that

A= (B, v') — 2(B, X (v — ’wi))_
' (ﬁ: Z?:l 'LU,')

Exercise 10.6
Suppose we have a consumption set L and a set of resources M such that
M = My — 11:{’_'7F where My is compact.

(a) Show that p — 7(p) = sup,ep(p,y) is continuous on IRY. Deduce that
the graph of the budget set-valued map (p,z) — B(p, z) defined by

B(p,r) :={z € L|(p,z) <7(p)}

is closed. Deduce from Problem 1 (Chapter 15) that if
L is compact (*)

then B is upper semi-continuous.
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(b) We suppose that

(i) L is convex
(ii) VpeIRY, 3z € L such that (p,z) < r(p). (%)

Show that the set-valued map (p,z) — B(p,r) is upper semi-continuous.

(c) We consider a continuous function f from L to IR and we construct the
following set-valued demand map

D(p,r) :={z € B(p,)|f(z) = _inf f(z)}.

x€B(p,r)
Deduce from Problem 6 (Chapter 15) that the set-valued demand map
D(p,r) is upper semi-continuous when the assumptions (*) and (*x) are
satisfied.
Exercise 10.7
We suppose that each consumer is described by
(i) a convex compact consumption set L;;

(ii) a convex continuous loss function f; : L; — IR;

(iii) a set of initial resources M; which is convex, compact, has a non-empty
interior and satisfies L; N IntM; # 0.

We consider the yield functions r;(p) := o(M;,p) and the set-valued demand
maps

Di(p,r) = {j € Bi(p’w)lfi(i') = inf )fz('l?)}

z€B,(pir
where
B;(p,r) := {z € Li|/(p,z) < r}.
Let M := Y, M; — R%. Deduce from Exercise 10.6 and Theorem 10.1 that

there exist p € M* and Z; € D,(p, r;(P)) such that

Zfi € M.

i=1
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Exercise 10.8
We assume the framework of Theorem 10.2. Let A > 0. Show that we may

associate any initial allocation o with a sequence of allocations (z¢, . ..z¢) and
prices p* € M* such that, forall i =1,...,n,

.’Bg—(EE_l =hci($§7pt)i t= 1)"') (1)
which are ‘viable’ in the sense that
Vi=1,..., zi € L; and Y zie M. (2)
i=1
Exercise 10.9
We assume the framework of Exercise 10.8. Show that if (zf...,z%,pt) is a

solution of the problem (1), (2), then

n n
zci(iﬂﬁ,l’t) €Ty (2:132_1) , t=1,...,
i=1 i=1

Exercise 10.10

We assume the framework of Theorem 10.2, with the assumption (28)(ii) re-
placed by

Vg € b(L;), Vpe M, (g,ci(z,p)) <O.

Let h > 0. Show that we may associate any initial allocation zo with a sequence
of allocations (z} ...,z¢) and prices p* € M* such that, for all i =1,...,n,

Il}ﬁ—.’l}:_l =h‘ci($2—l)pt)7 t=17"'7n (3)
which are viable in the sense that

Vt=1, ...,n, z. € L; and ) i€ M. (4)

=1

Hint: use Exercise 9.12 or prove this exercise directly from the Separation The-
orem. Compare with Exercise 10.8.

Exercise 10.11

We assume the framework of Exercise 10.10. Show that if (z%,...,z%,p") is a
solution of the problem (3), (4), then

> ez ') € Ty (Z zﬁ‘l) ) (5)
i=1 i=1
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14.10 Exercises for Chapter 11 — The Von Neumann
Growth Model
The proofs of the following results are left as an exercise:
e Corollary 11.1
e Theorem 11.5
e Theorem 11.6
See also Problem 44.

14.11 Exercises for Chapter 12 — n-person Games

The proofs of the following results are left as an exercise:
e Proposition 12.1
e Theorem 12.2
e Proposition 12.2
e Theorem 12.3

Proposition 12.3

e Proposition 12.4

Exercise 12.1

Show that Proposition 12.1 remains true if we replace the function ¢ defined
by (8) by the function

P(z,y) == i:ﬁ?n(fi(wi,wi) — fil', m3)).

Find other examples of functions ¢ for which Proposition 12.1 remains true.

Exercise 12.2

We consider n nontrivial functions f; : [T, X; = IR U {+o00} such that
Vi, y; — fi(y:, x;) is convex and lower semi-continuous.

Show that z = (z,,...,%,) is a non-cooperative equilibrium if and only if

Vi=1,...,n, 0€0fi(-,z:)(x:)



14.11 Exercises for Chapter 12 293

or, if and only if
0e Hafl(,zi)(a:l)
i=1

(Fermat’s rule). Here, Of;(-,2:)(z:) denotes the subdifferential of 3 — fi(-,z;)
at z;.

Deduce that the non-cooperative equilibria are the fixed points of the set-
valued map

z — ﬁ of (-, z:)(0).

Exercise 12.3

We assume the framework of Exercise 12.2. We consider n convex closed subsets
E; C X; such that

V?:, V.’Bi, 0¢ Int(Kz — Dom fi(-,:z:;)).

Show that = = (z),...,2z,) € [IL, E; is a non-cooperative equilibrium if and
only if

Vi=1,...,n, O€ Bfi(-,:z;;)(:z:i) + NE,(.'I;,)

Deduce that if y; — fi(vi, ;) is differentiable (Gateaux differentiable) at all
x; € E; for all z; € E;, then the non-cooperative equilibria are the solutions of
the variational inequalities

(l) Vi=1,...,n, z; € E;

(i) i(vifi(wi,wi)’xi —y:) <0

i=1

where V, f;(z;, x;) denotes the gradient of y; — f;(v;, x;) at z;.

Exercise 12.4

We assume we are in the framework of Exercise 12.2. We introduce n other
Hilbert spaces Y;, n continuous linear operators A; € L(X;,Y;) and n nontrivial,
convex, lower semi-continuous functions g; : ¥; — IR U {4+o00}. We consider the
dual problem

(e = it (3 Arnm) + @), 0

(a) Show that

'Ui*(mi) + fi(yi,xi) + gz(AzyZ) Z 0.
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(b) Show that if g; is a solution of the dual problem v;.(x;) for all 4 and if
Vi=1,...,n, v(z;)~+ filzs, z:) + gi(Aiz:) =0 (%)

then (z,...,T,) is a non-cooperative equilibrium for the loss functions
z — fi(z) + g:(Aiz).

(c) Show that in this case, we have the relations
Vi=1,...,n, 0€dfi(-,z:)(x:) + A; 0gi(Aiz:)

and that (z1,...,%n,D1,-..,Pn) is & solution of the system

(i) 0¢ 8fi(~,:c;)(a:i) + A:pi
(11) 0e —A,-a:i “+ 8g:(pz)

Exercise 12.5

We consider n finite-dimensional spaces Xj, their product X =TI, X;, an op—
erator M € L(X, X) defined by (.Mz) .y Mz where My, € L(Xy, X;
M;; = 1d, n scalar products \;(z, ) and thelr duahty operators L; € L(X;, X} *)
an operator A € L(X,Y) defined by Az =377, A;z where 4; € L(X},Y) and
u = (u,...,uUn) € X. We make the following assumption

Vz #0, (Lz,Mz) Z Z (Ljzj, Mjxzy) > 0. (*)

(a) Show that () implies that M is invertible.
(b) Show that if A is surjective then AM 1L ! A* is invertible.
(c) Prove that Z = (Z1,...,%,) € X defined by
T=MYu—L'A%),
where
p=(AM LA (AM 'y — w),

is the solution of the following problem

(i) SN Azi=w
i=1
(i) PIRY (fj + > Mk — Uj)
k#j

= inf Z )\2 (33_7‘ + Z Mjkfk—’ltj) .

2imr Ame=w [y
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Exercise 12.6

We assume we are in the framework of Exercise 12.5. We consider n convex
closed subsets K; C X;. Show that (*) implies that there exists a unique non-
cooperative equilibrium z € [] K; for the functions

k#j

T — )\? (LE]' + ZMijBk _ui) .

Hint: use Exercise 9.18.

Exercise 12.7
We consider

(i) n convex compact subsets L; C IR*

(ii) n convex compact subsets M; C IRf
such that

Vi=1,...,n, 0€L;— M; +R,.
We consider n continuous functions
fi:[[Xi xRy - R
such that
Vp, Vz;, z; — fi(zi, x5, p) is convex.

We set 7i(p) = o(M;,p) and 7(p) := >, ri(p). Show that there exist
Z1,...,Zn, 0 such that

GZM

1,...,n, Z; € Bi(p,7:(p))
1,...,n, fi(Z:,%:,p) = min{fi(y:, T:,P)|y: € Bi(D, r:(P)) }-

(i)

() Vi
(iti) Vi

Hint: use Theorem 12.3 applied to an (n + 1)-person game where the (n + 1)th
player is the ‘market’ which has loss function

fo(z,p) = r(p) — <P,Z$ >

||[\;]:x

P
Il
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Exercise 12.8

We consider
(i) n subsets L; C X;;
(ii) a convex subset M C Y, where Y is finite dimensional;
(iii) n continuous linear operators A; € L(X;,Y);
(iv) n functions f; : L; —» R.

Suppose we have A € M*, § € b(M) (barrier cone of M) and Z € [[i, L;
satisfying

) Vj =1,...,n, Nfi(%)+ (B, Aizi) = inf{Xifi(w:) + (B, Aimi)le: € Li}
(ii) z_:l(ﬁ, A;Z;) = op(p)-

We set

K = {IEGHLAZA,‘IE,‘E]VI}.

i=1 =1
(a) Show that (x) implies that T € K is a Pareto optimum for the f; on K.

(b) We set

¢($’y) = (fl(z)7 R f‘n(w))iAiwi - y)
i=1
where p: Ly x M - IR" x Y.

Show that Z is a Pareto optimum on K if and only if

(£(z),0 ¢¢(HL x]\I>+lR x {0}.

i=1
(c) We now suppose that

(i) the sets L; and M are convex;

(ii) the functions f; are convex.

Show that there exist X € IR} and p € Y* such that

O ap#£0
(i1) 2_: fi(@:) = inf (Z: ifi(z:) + p,Aimi)—aM(p)).

(d) Show that the condition

0 € Int (i AL — M)

i=1

enables us to take A € M™ and thus to show that () holds.
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Exercise 12.9

We consider a cooperative game without side payments (see Definition 12.2)
defined by subsets V(S). For all A € IR?, we set

A= i .
w(S, A) Joiks )
We also set
MT ={AeM'\\=1Vi¢ T}
and

o(r) == 21611;\), Alergs((/\, cs - ) — w(S,A)).

(a2) Show that 7 is in the core of the game if and only if

r € V(N) and ar) <0.
(b) Consider the set
0= {F € V(N)|a(7) = inf{a(r),r € V(N)}}.
Show that if
V(N) is closed and bounded below, (%)

then O is non-empty and compact. Show that O is always contained in
the set of Pareto optima and in the core when the latter is non-empty.
Exercise 12.10

We assume we are in the framework of Exercise 12.9. We set

B(r) = ,\ggn glclg((/\,cs 1) —w(S, A)).

We say that 7 € V(N) is an ‘equilibrium’ of the game if there exists Ae M
such that

VS, (A cs-7) < w(S,A) (%)

(a) Show that any equilibrium 7 belongs to the core of the game.
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(b) Show that we may write
pB(r) := il}f sup ((\,c- 1) —(c,A))

AeM™ c€(0,1)"
where
w(c,A):= _ inf (D _m(S)w(S,N))
m(S)cg=c
m((S))Zﬁ
Hint: write
sup({A, ¢cs - ) —w(S,7))
S
= sup (A O alS)es) - =Y a(S)w(S, )
a(5)>0,y . o(S)=1
= sup _sup ({Mc )= als)w(S,)))
c€(0,1]" Ea(S)c_g:c
(c) We set
Vi=ecs | (Z m(S)V(S)) :
Zm(s)cs=c S
m(S)>0
Show that

(e, A) = )\é%{ )()\,r).

(d) Deduce that any equilibrium 7 associated with a A € IR’} is contained in
the ‘fuzzy core’ of the game, namely the set of multilosses r € V(IV) such

that
Vee [0,1]%, c-r¢ V(c)+c- R,

(e) Conversely, deduce from Theorem 8.1 that any element of the fuzzy core

is an equilibrium.

Hint: show that if r belongs to the fuzzy core then
&(r) = sup inf ((A\,c-r) —w(c,N)) <0.

{n

ce[0,1]" AEN:

Exercise 12.11

We assume we are in the framework of Exercise 12.10. We suppose that the game
is strongly balanced, in the sense that for any balancing m (see Definition 9.9),

we have

S m(SV(S) C V).
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(2) Show that if the game is strongly balanced then it is balanced.
(b) We set
Q) :== {r e V(N)|{A\, c- 1) <ad(c,A) Ve € [0,1]"}.
Show that Q()) has convex compact values and that

a(Q(A),A) 2 d(cn, A) = v(N,A) = —o(=V(N), A).

(c) Deduce from Theorem 9.2 (Gale-Nikaido-Debreu) that if A — Q(}) is
upper semi-continuous, then there exists A € M™ such that

C(N) NV(N) # 0.

Show that the elements of this intersection are equilibria.

14.12 Exercises for Chapter 13 — Cooperative Games
and Fuzzy Games

The proofs of the following results are left as an exercise:
e Theorem 13.1
e Theorem 13.2
e Proposition 13.2

e Theorem 13.4

Proposition 13.4

Exercise 13.1

We assume we are in the framework of Theorem 13.1. Show that we may asso-
ciate any z° € L with a sequence of z* € L and fuzzy coalitions ¢ € [0, 1]" such

that
—:C _ Z +1f(.’13t+1

Deduce a law of evolution for fuzzy coalitions.
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Exercise 13.2

We consider a ‘continuum of players’ identified with an interval §2 of the straight
line. The ‘fuzzy coalitions’ of players are identified with the measurable functions
from §2 to [0, 1].

We associate each player with its action f(w,-) where f: 2 x L — IR™ and
each fuzzy coalition ¢(w) with its action [, f(w,z)c(w)dw. We suppose that

(i) Vte€ L, w— f(w,z) € LY
(ii) z — f(w,z) is continuous for almost all w;

(ili) Sup,ez SUps_y,__n |fi(w, 2)| < go(w) where go € L*.

If L ¢ IR" is convex and compact, show that there exist Z € L and ¢ €
L*(£2,[0,1]) such that

[ flw,2)ew)do =

Exercise 13.3
We consider a compact set L C IRY, n operators A; € L(IRY, IR¥), n closed sets
M; c IRF and n continuous mappings f; from L to IR®. We suppose that Vz € L,
Jc € [0, 1]" such that
@) il cAx € il cM;
(i) >~ eufile) € Tufe).
(a) Show that there exists 522 L and ¢ € [0,1]" such that
(i) é f &M,
(ii) é i fi(z) = 0.
(b) Show that for any z° € L and ¢ such that 3" c?A;z° € 3 M;, there
exists a sequence of z! and ¢! such that
(i) i cAt € i M,
= i=1
(i) 2t gt = 30t f(2H),
=1

Hint: use the set-valued map C defined by

Clz) = {qu,(a: |Zc,Aze zc, }
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Exercise 13.4

A share-out game v is said to be inessential if

VS, 'U)(S) = Zai.
i€S

Show that the core of such a game consists of a single vector a = (ay, ..., a,).

Exercise 13.5
Suppose that the fuzzy game v may be written as

Ve € RE, v(c) := supw(c,p)
pEP

where
(i) P is compact;
(ii) Vc € RY, p — w(c, p) is upper semi-continuous;
(i) Vp € P, ¢ — w(c,p) is convex, positively homogeneous and finite.

We consider the core C of the game v and the cores C(p) of the games w(-, p).
Let

P(N) := {p € Plo(cw) = w(cn, p)}-

Show that

c=w| U C'(p)).

€P(N)

Hint: use Theorem 4.4.

Exercise 13.6
We consider the space V™ of functions v : [0,1]" — IR which are zero at 0 and

continuously differentiable at all points of the diagonal. {tcn} (0,1 We let o(v)
denote the vector with components

1 5 4
o(v); = /0 B—Civ(t,t, ..., )t
(a) Show that for any operator A € L(IR™,IR™) such that Acy = ¢y, we have

o(vo A) = A*o(v).
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(b) Show that if v is positively homogeneous

o(v) = S(v) == Vu(c").

(c) Show that the efficiency axiom
> o(v); = v(en)
i=1
is satisfied (calculate Zv(tcy) and integrate from 0 to 1).
(d) Show that the symmetry axiom
o(f * v) = 6 x o(v) for any permutation 6

is satisfied (for A use the operator defined by formula (35) of Chapter 13).

(e) Show that the atomicity axiom is satisfied (for A use the operator defined
by formula (38) of Chapter 13).

(f) Show that the redundant-players axiom is satisfied (for A use the projec-
tion operator from IR™ onto IR™).

(8) The space V™ is assigned the scalar product

19
(v, 0)) Z/ az ci(t,...,t)dt.

Show that o(v) is the projection of v onto the space of linear functions
R"C V™
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15.1 Problem 1 — Set-valued Maps with a Closed
Graph

(a) Show that the graph of any upper semi-continuous set-valued map F from
X to Y with closed values is closed.

(b) Show that the converse is true if the codomain Y is compact.

15.2 Problem 2 — Upper Semi-continuous Set-valued
Maps

We consider two set-valued maps F' and G from X to Y such that

F is upper semi-continuous at zg (1)
F(zo) is compact (2)

the graph of G is closed (3)

Vz € X, F(z)NG(z)#0D. 4)

Let N be an open neighbourhood of F(xz¢) N G(xo).
(a) If F(z¢) C N, deduce that z — F(z) N G(z) is upper semi-continuous at
Tg-
(b) Otherwise, set K := F(zo)NN and show that we may associate any y € K
with neighbourhoods Uy (o) of zo and W (y) of y such that
Vz € Uy(zo), G(z)NW(y) =0. (5)
(c) Deduce that there exists a neighbourhood U(z) of zo and an open subset
M of Y such that
Vz € U(zy), F(z) CMUN and G(z)NM =0. (6)
(d) Now show that £ — F(z) N G(z) is upper semi-continuous at Zo under
assumptions (1)—(4).

(e) Deduce that if the graph of a set-valued map G from X to a compact set
Y is closed, then G is upper semi-continuous.
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15.3 Problem 3 — Image of a Set-valued Map

Consider three metric spaces X,Y and U and
e a set-valued map G from X to U
e a continuous mapping from Graph(G) to Y.
We define the (set-valued) image map F' from X to Y by
F(z) == {f(%, W)} uectey

(a) Show that if

G is lower semi-continuous

the same is true of F.

(b) Show that if

G is upper semi-continuous with compact values

the same is true of F.

15.4 Problem 4 — Inverse Image of a Set-valued Map

(1)

()

3)

We consider a metric space K, two set-valued maps 7" and F from K to vector
spaces Y and U and a mapping f from Graph(F') to Y. We define the associated

set-valued map R by
R(z) := {u € F(z)|f(z,u) € T(z)}.

(1)

(a) Suppose that f is continuous, that the graph of 7' is closed and that F'is
upper semi-continuous with convex compact values. Show that E is upper

semi-continuous. Hint: use Problem 2.

(b) Suppose that

F' is lower semi-continuous with convex closed values

Vz € K, T(z) is convex and closed, Int T'(z) # 0 and the graph of

z — IntT(z) isopenin K x Y
f is continuous and affine.

Show successively that
(i) The set-valued map S defined by
S(z) := {u € F(z)|f(z,u) € IntT(z)}

is lower semi-continuous.

(5)
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(ii) Vz € K, S(z) = R(x).
(iii) The set-valued map R is lower semi-continuous.

(¢) Show that if assumptions (2), (4) together with the following

T is lower semi-continuous with convex values, (6)
v > 0 such that Vz € K,vB C f(=z, F(z)) — T(z), (7N
the images F'(z) are contained in a bounded set, (8)

are satisfied, then R is lower semi-continuous.

15.5 Problem 5 — Polars of a Set-valued Map

Let Y be a finite-dimensional space. Consider a set-valued map T from a metric
space X to Y.

(2) Show that if 7" is lower semi-continuous, then the set-valued map z —
T'(z)” has a closed graph.

(b) Show that if the images T'(z) are convex closed cones, then the converse
is true. Hint: use the theorem relating to projections onto convex closed
cones (Problem 17, below).

15.6 Problem 6 — Marginal Functions

Consider two metric spaces X and Y, a function g : X xY — IR and a set-valued
map F' from X to Y with the marginal function f defined by

f(z) = sup g(z,9). (1)
yEF(z)

(a) Suppose that g and F' are lower semi-continuous and prove that f is then
lower semi-continuous.

(b) Suppose that g is upper semi-continuous and that F' is upper semi-
continuous with compact values; prove that f is upper semi-continuous.

(c) Suppose that g is continuous and that F'is continuous with compact values
(then the marginal function is continuous). Using Problem 2, prove that
the marginal set-valued map M defined by

M(z) := {y € F(z)|f(z) = g(z,v)} (2)
is upper semi-continuous.
(d) Suppose that g is Lipschitz and that F' is Lipschitz in the sense that

Vi, 2, sup d(y, F(z2)) < cf|zy — z2|- (3)
y1€F(z1)

Prove that the marginal function is also Lipschitz.
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15.7 Problem 7 — Generic Continuity of a Set-valued
Map with a Closed Graph

Consider a set-valued map F' from X to a compact set Y.

(a)

(b)

(c)

Consider a countable family of open sets U,, such that for any open set
U and for any z € U, there exists U, with z € U, C U (this is possible,
because, since Y is compact, there exists a countable dense sequence in
Y). Set

K, = {z € X|F(z)NTU, # 0}. (1)

Show that if F' is lower semi-continuous at z, then there exists K, such
that = € Int K,,, the interior of K.

Deduce that the set of points of discontinuity of F' is contained in
U;";laKn.

Deduce from Baire’s theorem that F' is lower semi-continuous (whence
continuous) on a dense subset of X.

15.8 Problem 8 — Approximate Selection of an Upper
Semi-continuous Set-valued Map

(a)

(b)

Consider the set-valued map F' from IR to IR defined by
F(z) ={-1} if z<0
F(0) = [-1,+1] (1)
F(z) = {+1} if >0

+1

-1

Verify that this set-valued map is upper semi-continuous and has no con-
tinuous selection, in other words there is no continuous mapping f such
that f(z) € F(z), Vz.

Suppose that F' is a convex-valued upper semi-continuous function from a
compact metric space X to a Hilbert space Y. Show that given any € > 0,
there exists a continuous mapping f. from X to Y such that

Vz € X, f.(z) € F(z)+e€B. (2)

Hint: use continuous partitions of unity to construct f..
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15.9 Problem 9 — Continuous Selection of a Lower
Semi-continuous Set-valued Map

Consider a lower semi-continuous set-valued map F' from a compact metric
space X to a Hilbert space Y with convex closed values.

(a) Show that given any e > 0, there exists a continuous mapping f. from X
to Y such that

Ve € X, d(f.(z), F(z)) <Le. (1)
Hint: use continuous partitions of unity to construct f..

(b) Prove inductively that there exist continuous mappings fr, : X — Y

satisfying
Q) Vo € X, d(fa(x), F(z)) < 2in
() ¥z € X, [1fa(@) ~ far @l < 5rp @

(c) Deduce that the f, converge uniformly to a continuous mapping f from
X to Y satisfying

vz € X, f(z) € F(z) (3)

(continuous selection of F).

15.10 Problem 10 — Interior of the Image of a Convex
Closed Cone

Suppose that X and Y denote Hilbert (or Banach) spaces and that B denotes
the unit ball of X or Y.

(a) We consider a convex closed subset K C X containing 0 and a continuous,
linear operator A € L(X,Y) from X to Y. We suppose that

0 € Int(A(K)). (1)

Using Baire’s theorem (if the interior of the union of a countable family of
closed subsets of a complete metric space is non-empty then the interior
of one of the closed sets is non-empty), show that

0 € Int (closure (A(K N B))). (2)
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(b)

(d)

15. Statements of Problems

We set
T:= A(KNB).
Show that this set has the property
S ettt 3)
k=0
Hint: use the fact that & N B is bounded, convex and closed and the fact
that X is complete.
Show that if T is a set satisfying property (3) and that if
0 € Int (closure (7)) (4)
then
0 € Int (7). (5)
Deduce that assumption (1) implies
Fy > 0 such that yB C A(K N B). (6)
What is the corresponding result when K = X7

We now suppose that

(i) K is a convex closed cone
(i) A(K)=Y. (7)

Deduce that there exists a constant ¢ > 0 such that for all ; € K and
y2 € Y, there exists a solution 2 € K of the equation Az, = 3, satisfying
the inequality

2 — 2| < cf| Azy — g2| (8)
or, more concisely, for all ¢;, 72 € Y
KNA Y pn) C KNA (y2) + cllyy — 52l B (9)
(the set-valued map y — K N A~!(y) is Lipschitz).

We take convex closed cones P C X and Q C Y and a continuous linear
operator L € L(X,Y) from X to Y. With any y € Y, we associate the set

M(y) = {z € P|Lz € Q + y}. (10)

Deduce from (d) that there exists ¢ > 0 such that for all o, € P and
yey,

d(zo, M(y)) < cdo(Lzo — y). (11)
Hint: set K := P x @Q and A(z,y) := Lz — y.
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We consider a set-valued map F from X to Y the graph of which is a
convex closed cone (F is said to be a convex closed process). We suppose
that F' is surjective:

Im (F) =Y. (12)
Deduce from (d) that there exists a constant ¢ > 0 such that
Vy1 €Y, YV, € Fl(y1), Yoo €Y, Tzz € F ()
such that
llz1 — || < cllyr — el (13)
or, such that
F~ () € F(y2) +cllyn — w2l- (14)

Hint: set K := Graph(F) and A := 7y, the canonical projection from
X x Y onto Y; note, moreover, that the properties (d), (e) and (f) are
equivalent.

We suppose that

(i) K is a convex closed set containing 0
(ii) O € Int(A(K)). (15)

Show that there exists a constant v > 0 such that for all zo € K and all
y € 7B, there exists a solution € K of the equation y = Az such that

e = zoll < (1 + llzoll lly — Azoll. (16)
We consider
(i) convex closed subsets PC X and Q C Y
(ii) a continuous linear operator L € L(X,Y) amn
satisfying
0 € Int(L(P) — Q). (18)
We set
M(y) :={z € P|Lz € Q +y} (19)

and we choose Z € M(0).

Deduce from (g) that there exist v > 0 and ¢ > 0 such that, for all zo € K
and z € 7B,

d(zo, M(2)) < c(||zo — Z|| + 1)do(Lzo — 2). (20)
Hint: Set K := P x Q — (%, LZ) and A(z,y) := Lz —y.
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(i) We consider a set-valued map F from X to Y the graph of which is a
convex closed cone. We suppose that

g € Int (Im (F)) (21)

and we take T € F'(g). Deduce from (g) that there exists a constant -y
such that for all (o, yo) € Graph(F) and for all y € § + vB we have

1 _
(o, F}(y)) < ;(1 + max(||zo — Z|, lvo — FIDIly — woll- (22)
Note that the inequality
N 1 _
d(z, F'(y)) < ~lly — 3l (23)

is a direct consequence. Hint: take K := Graph(F) — (Z, ) and for A take
the canonical projection of X x Y onto Y.

15.11 Problem 11 — Discrete Dynamical Systems

Suppose that X is a complete metric space and that g is a continuous mapping
from X to X.
We suppose that there exists f : X — IR, U {400} with the property that

Ve e X, f(g(z))+d(z,g(z)) < f(z). (1)

We consider a solution (z*), =t € X, t =0,1,2,... of the discrete dynamical
system

! = g(z"), 2° =z (2)

the equilibria of which are the fixed points of g.

(a) Show that assumption (1) implies that if f(z) is finite, then the solution
of (2) converges to an equilibrium.

(b) Show that if there exists a function f satisfying (1), then the function f,
defined by

fol@) == i d(g*(z), o'(x)) € [0, o0] 3)

is the smallest function f : X — IRy U {400} satisfying (1). Deduce that
the domain of f; contains an equilibrium point.

(c) Deduce the Banach-Picard Fixed-point Theorem for contractions.
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(d) Let G be a set-valued map from X to X. We suppose that there exists a
function f: X — Ry U {+c0} satisfying

Vz € X, dy € G(x) such that f(y) +d(z,y) < f(z). 4)

Show that if the graph of G is closed, then for all zo € Dom f, there exists
a solution (in X) of the dynamical system

! e G(z4), z° = =0 (5)

which converges to an equilibrium point of G, in other words a fixed point
z € G(2).

(e) We consider the set T'(z) of solutions (z*) of (5) based on z and the set
H(zx), the orbit based on z defined by

Hz):= U U{z'} (6)

(zt)eT(z) t20
Show that the relation ‘y > z if and only if y € H(z)’ is a preorder.
(f) With any solution (z*) of (5) we associate the set

K(z') := ) H(z") (M

t>0

(i) Show that the accumulation points (limit points) of the sequence z*
belong to K (zt).

(i) Show that if G is lower semi-continuous, then G(K(z%)) C K(z').

(g) We now suppose that there exists a function f : X — IRy U {400}
satisfying

Vz € X, Vye G(z), fly)+dz,y) < f(z). (8)

For a given £ € Dom(f), construct a solution (z*) of (5) based on z,
satisfying

Tps1 € H(zyn) and f(Tn41) S v(zn) +277 9)
where
v(z) = inf{{ (v)ly € H(=)}. (10)

(i) Show, by adapting the proof of Theorem 1.2, that the sequence z*
converges to a limit Z.

(i) Deduce that if G is also lower semi-continuous, then G(z) = {Z}.
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15.12 Problem 12 — Fixed Points of Contractive
Set-valued Maps

‘We consider a nontrivial set-valued map G from a metric space F to itself. We
denote by T'(z) the set of sequences z,, such that z,,, € G(z.), o = = (the set
of solutions of the discrete dynamical system defined by G beginning at z). We

set

fo(z) = :irr(lf) i d(Tp, Tny1) € IRy U {400} 1)
) n=0

(minimum length of trajectories based on ).
(2) Show that if f: F — Ry U {+o0} satisfies

(b)

(d)

(e)

Vz € E, Jy € G(z) such that f(y) +d(z,y) < f(x), (2)
then
Vo€ B, fo(z) < f(z). (3)

We associate any € > 0 with the function f. defined by

fe(z) = inf {f: Ad(Tn, Tny1)|To =  and T4y € B(G(z4), 5)} . (4)

n=0
Show that if €5 < €, then

for (&) < fuul®) < fo() (5)
and that
Vz € E, 3z. € B(G(z), €) such that f.(z.) + d(z,zc) < fe(x) +€.  (6)
We now suppose that
G is upper semi-continuous with compact values. (7)

Show that there exists a subsequence z,., converging to an element Z €
G(z) such that, for all § > 0, Jks such that Vk > k;,

f5(Z) + d(z, ze,) — d(Z, ze,) < fe (@) + € (8)
We set
fola) = lim £.(z). ©)
Show that fo = f¢ satisfies the property (2).

We now suppose that the set-valued map G is a contraction from E to E,
in the sense that there exists A €]0, 1[ such that

Vz,y € E, G(y) C B(G(z), A). (10)

If G has compact values, show that G has a fixed point. Hint: use Theo-
rem 1.4.
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15.13 Problem 13 — Approximate Variational Principle

Suppose that X is a Hilbert space and that f : X — IR is a nontrivial, positive,
lower semi-continuous, Gateaux-differentiable function.

(a) Fixe > 0, A > 0 and zy € Dom f such that
f@o) < inf f(z) + e &)
Show that there exists T such that

f(Z) < f(@o), llmo—Z|| <A and ||Df(Z)|| <e. (2)
(b) Deduce that there exists a sequence Z,, € X satisfying

(i) f(Zn) — infzex f(z)
(i) Df(%,) — 0 in X* ; (3)

(c) We also suppose that

im L8 _ +00. (4)

11m =
llzli—oo |||

Show that Df(X) is dense in X*.

15.14 Problem 14 — Open Image Theorem

Consider a Hilbert (or Banach) space X, a finite-dimensional space Y, a non-
empty closed subset K of X and a continuous linear operator A from X to
Y.

We consider the tangent cone Ty (zo) and the normal cone Ng(zo) to K
at zo (in the sense of Definition 6.4). Alternatively, we may suppose that K is
convex and closed and take the tangent and normal cones of convex analysis
(Definition 4.3).

The aim of the problem is to show that the condition

ATg(zo) =Y (1)
implies that
Az € Int A(K), (2)
in other words, that there exists v > 0 such that
Yy € A(zo) +vB, Jxr € K solution of, A(z)=1y (3)

(Frankowska’s theorem).
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(a) Suppose that A(zo) ¢ Int A(K). Using Ekeland’s Theorem (Theorem 1.2),
show that there exist sequences y, ¢ A(K) and z, € K such that z,
converges to xg and

1
vz € K, [|A(zn) = gnll < [1A(2) = gull + —llzn — =]l- (4)

(b) Calculate the Fréchet derivative of the function z — ||A(Zn + 2) — wnl|
and show that it may be written in the form A*p,, where p, is in the unit
sphere of Y.

(c) Deduce from (a) and (b), that there exists p in the unit sphere of S such
that

Vu € T (zo), 0 < (p, Au). (5)

(d) Deduce that (1) implies (2).

(e) More generally, suppose that A is a continuously differentiable mapping
from a neighbourhood of K to Y. Show that the condition

A(z0)Tk(To) =Y (6)

implies that
A(zo) € Int A(K). (7)
(f) Show that if L C X is a closed subset of a Hilbert space, M a closed

subset of a finite-dimensional space, B € L(X,Y) and zo € L N B~}(M),
then the condition

BTy (z0) — Tn(Bzo) =Y (8)
implies that
0 € Int(B(L) — M). )

Verify that this extends to the case in which B is continuously differen-
tiable and (8) is replaced by

B'(z0)TL(z0) — T (B(zo)) =Y. (10)
(g) Suppose that

K is a closed subset of X (11)

and consider a continuously differentiable mapping F' from a neighbour-
hood of L to IR™ with components f;. Show that if o is a Pareto optimum
(see Definition 12.5), then there exists A € IR}, A 3 0 such that

3~ Aifi(zo) € Nic(o). (12)

i=1
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15.15 Problem 15 — Asymptotic Centres

Let E be a finite-dimensional vector space (the problem also holds for Hilbert
spaces, provided we use weak convergence). We consider a bounded sequence of
elements z; of F with which we associate:

1. The function v defined by

v(y) = limsup ||z, —y|> (= infsup |z, —y|I*).
t—o0 520 >

2. The set N (attractor for the sequence) defined by
N :={y € Elv(y) = lim |lz: — y||"}.

3. The set C which is the convex closed hull of the limit points of the se-
quence.

(a) Show that v is a finite strictly convex function satisfying

v(y) = +oo.

lyll o0

Deduce that the function v has a unique minimum Z, which is called the
asymptotic centre of the bounded sequence z;.

(b) Let § € C be the best approximation of the asymptotic centre Z by the
elements of C. Show that

v(7) + |12 — 3l < v(@).

Hint: expand ||z —gj+gj—:2||2, pass to the limit of a suitable subse-
quence.

Deduce that the asymptotic centre Z of a bounded sequence z; always
belongs to the set C and that if a sequence converges, its asymptotic centre
is its limit (the asymptotic centre may be viewed as a virtual limit).

(c) We take y € NN C, z € E and w a limit point of the sequence ;. Show
that

v(y) + lly — zlI” + 2(w — y,y — 2) < v(2).
Deduce that
v(y) + lly — 2||* < v(2) Vz € E.

Thus, show that either NN C = 0 or NNC = {z} (reduces to the
asymptotic centre).
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15.16 Problem 16 — Fixed Points of Non-expansive
Mappings

Let K be a convez, closed, bounded subset of a Hilbert space E and f a mapping
from K to K, which is non-expansive in the sense that

Vz,y € K, |f(z) - f@)| < ||z —yll- (1)
Let 70 € K.

(a) Show that the mappings f; defined by

1 1
fi(z) := Zmo + (1 — ?) f(z) (2)
are contractions from K to K.

(b) Deduce that there exists a sequence of points z; € K such that

}i}}}o lz: — f(z)ll = 0. (3)

(c) We now suppose that E is finite dimensional. If not, use weak convergence.

Let w be a limit point of the sequence z;. Set z := (1 —A)w+ A f(w) and
show that

(zx — f(za), 22 —w) > 0. (4)
Deduce that any limit point w of the sequence z; is a fixed point of f.
(d) Show that the set of fixed points of f is convex and closed.

(e) We assume the solution of Problem 15 on asymptotic centres. We now
consider the sequence z; := f(zo).

(i) Show that any fixed point Z of f belongs the attractor set IV for this
sequence ;.

(ii) Deduce from question (c) of Problem 15 that if a limit point w of this
sequence Z; is a fixed point then this limit point is the asymptotic
centre of f(zo).

(iii) Deduce from all the above that if
: t gt _
Jim || f*(zo) — f**(2o)l| = 0 (5)

then f!(zy) converges to a fixed point of f.
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15.17 Problem 17 — Orthogonal Projectors onto
Convex Closed Cones

Suppose that K is a convex closed cone of X and consider the projector of best
approximation defined in Theorem 2.3, which we shall denote by k.

(a) Show that the variational characterisation of 7x in the case of convex
closed cones becomes

(i) (z — mr(z), mr(z)) = 0
(i) (@ —mi(z),2) <O Vz € K. (1)

(b) Use (1) to show that mg is positively homogeneous (in the sense that
Tr(Az) = Ak (z) for all A > 0).

(c) Show that
lz* = 7w (@)I1* + Iz — mx ()| (2)
(Pythagoras’s equation) and deduce that
lmx (@)l < llzll, Nz —7x ()] < ll2]l- (3)

(d) If K~ = {y € X|Vz € K, (y,z) < 0} denotes the negative polar cone of
K, show that

1 — 7 is the projector of best approximation onto K. (4)

(e) Show that
K~ = {z € X|rg(z) =0} (5)
and

K ={z € X|z — ng(z) = 0}.

(f) Deduce that any element € X may be uniquely written as
zT=y+z y€K, €K and (y,2) =0 (6)
and that in this case, y = mg(z) and z = (1 — 7k )(z).

(g) Show that if K is a closed vector subspace, then 7 is the orthogonal
projector onto K, which is linear, has norm 1 and is self-adjoint

(rkz,y) = (z,TrY) Vz,y € X. (7)

When K is a convex closed cone, by convention, the projector of best
approximation 7g is also called the orthogonal projector onto K.



318 15. Statements of Problems

15.18 Problem 18 — Gamma-convex functions

Consider a set E and denote the set of finite sequences m = {(a, iCi)}i:l,...,n
where z; € E, o; > 0and 37 0, = 1 by M(E).
If f is a nontrivial function from E to IR U {+o0} we set

f2(m) := iaif(a:z-) where m := {(;, %:)}imy - (1)

=1

(a) We suppose that E is a subset of a vector space X and define the mapping
p from M(F) to X by

p(m) = Zaiici- (2)
i=1
(i) Characterise the sets E such that SM(FE) C E.
(ii) Characterise the functions f : E — IR U {400} such that
f(B(m)) < f*(m) Vm € M(E). (3)

(b) We let E denote the family of convex compact subsets of a Hilbert space
X and define the mapping « from M(F) to E by

a(m) = iail{i where m := {(ai, Ki)}ioy  n (4)

-----
i=1

Let g be a nontrivial, convex, lower semi-continuous function from X to
IR U {+o00}. We associate this with a function f from E to IR defined by

VK € E, f(K):= Iléllf;_ f(z). (5)
Show that
vm € M(E), fla(m)) < f*(m). (6)
More generally, we have
a set-valued map 7y from M(F) to E with non-empty values. (7)
We say that a nontrivial function f from E to R U {+o0} is y-convex if
Vm € M(E), Vz €(m), f(z)< f*(m). (8)
(c) Show that if n functions f; from F to IR are y-convex, then the set
F(E) + IR} is convex 9)
where F' is the mapping from F to IR™ defined by
F(g) = (i(a), .., ful2))- (10)
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(d) Conversely, show that if n functions fi from E to IR have the property
(9), then there exists a set-valued map v from M(E) to E for which the
n functions f; are y-convex.

(e) Consider n functions f; from E to IR. We set

(i) v o= 1nf sup fi(z)
(i) P o= félg ;Ielf Z)\ fi(z). (11)

1. Show that 2* < v.

2. Conversely, suppose that the n functions f; are y-convex. Show that
for alle > 0,

v<v te. (12)
Hint: set 1 = (1,...,1) and show that
(v’ +€)1 € F(E) + R". (13)
(f) Suppose that the n functions f; from E to IR are y-convex. Consider

a Pareto optimum Z (such that there does not exist y € E such that
fily) < fi(Z) for all 2 = 1,...,n). Show that there exists A € S™ such that

S RA(@) = mip > Nefila) (14)

Remark. Questions (a), (b) and (d) are independent. Questions (e) and (f) are
independent of each other and depend only on (c).

15.19 Problem 19 — Proper Mappings

(a) We consider two metric spaces X and Y and a continuous mapping f from
X to Y. Show that the following two conditions are equivalent:

Given any sequence T, € X such that f(x,) converges in Y’

we may extract a convergent subsequence of ,,. (1)
f maps closed sets to closed subsets and for ally € Y,
fYy) is compact. (2)

We shall say that a continuous mapping which satisfies one of these equiv-
alent properties is a proper mapping.

(b) Let f be a proper mapping. Show that:
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(i) for any compact subset K of Y, f~1(K) is compact;
(ii) if X is compact, then any continuous mapping is proper;
(iii) the composition of two proper mappings is proper.
(c) Let X and Y be Hilbert spaces, A € L(X,Y) a continuous linear operator

and K a convex closed subset of X. Suppose that

b(K) :={p € X*| ilellf()(p, z) < +oo} 3)

is the barrier cone of K (Definition 3.2). Show that if
Im A* + b(K) = X* (4)

then the mapping A : K — Y is proper and consequently that A(K) is
closed and K N A~} (y) is compact for all y € Y (suppose that X is finite
dimensional if you do not wish to use the weak compactness of weakly
closed bounded sets).

(d) Suppose X and Y are two Hilbert spaces, L € L(X,Y) is a continuous
linear operator from X to Y and P C X and @ C Y are convex closed
cones. Deduce from the previous question that if

I'Q +P =X* (5)

then the mapping (z,y) € P x @ — Lz —y € Y is proper. Deduce in
particular that

(i) L(P)— Q is a convex closed cone
(ii) VyeV, {z € P|Lz € Q+ y} is compact. (6)

(e) Consider n subsets L; C IR satisfying
Vi=1,...,n L; is closed and bounded below (7

(in the sense that L; C u; + IRY where u; € RY).
Show that the mapping
n n
$=($1,...,(Bn)€HL1'—)Z$i€]R.£ (8)
i=1 i=1
is proper.

(f) Suppose that the subset L of IR is closed and bounded below and that
M is a subset of IR satisfying

(i) M is convex and closed
(i) Jw € M such that (M —w) NIRE = {0}. (9)
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Show that
{z,y} €LxM -z —yecR (10)

is proper. Hint: first show that if z,, —y, € L — M converges, the sequence
Yr is bounded, by eliminating the case in which ||y.|| — oo using (9).

Deduce that the assumptions (7) and (9) imply that the mapping

{a:l,...,:zzn,y}EHL,-X.M—>Z$i—y€IRE (11)

i=1 i—=1

is proper and that, in particular, the set

K:={:c€ﬁL,—|Zn:a:,-€M+y} (12)

i=1 i=1

is compact.

15.20 Problem 20 — Fenchel’s Theorem for the
Functions L(z, Az)

Suppose that
(i) X is a Hilbert space and Y is a finite-dimensional space.
(ii) A is a continuous linear operator A € L(X,Y).

(iii) L is a nontrivial, convex, lower semi-continuous function from X x Y to
R U {+0c0}.

We set
v o= ;g)f( L(z, Az) (1)
= i *(—AT . 2
v nf LI"(—A%¢,q) (2)
(a) Show that v < +o0 if and only if
0e((Ae® —1)DomL) (3)

where A@® —1 € L(X,Y) is defined by (A @ —1)(z,y) = Az —y. Show
also that v. < 400 if and only if

0€e(le A*)Dom L. 4)
Show that
v+u, >0 (5)

and deduce that conditions (3) and (4) imply that v and v, are finite.
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(b) We define ¢: X xY — Y x IR by

Show that
(i) ¢(Dom L) + {0} x ]0, o[ is convex
(ii) (0,v) ¢ (Dom L) + {0} x ]0, o0[. (M)

(c) Deduce that there exist p € Y* and a > 0 such that (p,a) # (0,0) and
(aL)"(—A%g,q) < —av. (8)

(d) Show that the assumption

0 € Int((A @ —1)DomlL) 9)
implies that a is positive and deduce that there exists § € Y™* such that
L (—A*q, Q) =v. = —v. (10)
(e) We set
f(z) = L(x, Ax). (11)

Deduce from (d) that assumption (10) implies that if p € (1® A*)DomL*,
there exists § € Y* such that

f*(p) =L*(p— Aq,3) = min L*(p — A%q, q).
qeY

15.21 Problem 21 — Conjugate Functions of
xz — L(z, Azx)

Let X be a Hilbert space, Y a finite-dimensional space, A € L(X,Y) and
L:X xY — IRU{+00} a nontrivial, convex, lower semi-continuous function.

(a) Show that if
0 € Int((A® —1)Dom L) (1)

then the functions ¢ — L*(p — A*q,q) are lower semi-compact when g €
(1 A*) Dom L*.

(b) Deduce that the function
— inf L*(p— A"
p— inf L*(p—A’g,q)
is convex, nontrivial and lower semi-continuous.

(c) Calculate the conjugate of this function and deduce the expression for the
conjugate function of z — L(z, Az).
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15.22 Problem 22 — Hamiltonians and Partial
Conjugates

We consider two Hilbert spaces X and Y and a nontrivial, convex, lower semi-
continuous function L: X x Y — IR U {+oc0}. We set

H(z,q) :=sup((q, ) — L(z,y)). (1)
yeY
Note: by convention, we set H(z,q) := —oco on

K :={z e X|Vy €Y, L(z,y) = +0o0}.

(a) Verify that

(i) Vze X, g— H(z,q) is convex and lower semi-continuous
(i) Vg e€Y*, z— H(z,q) is concave. (2)

Deduce that

(i) L(z,y) = félyg((q,y)—H(w,q))
(ii) L*(p,q) = ilel)rg((p,mHH(m,q))- (3)

(b) Show that if we suppose that
Vq e Y*, x — L(z,q) is upper semi-continuous 4)
then

H(z,q) = inf (L*(p.q) — (p, z))- (5)
peX
(c) Show that the following conditions are equivalent

(i) (p,q) € OL(z,y)
(i) p € 0.(—H)(z,q) and y € 8,H(z,q) (6)

where 8,(—H) and 9,H denote the subdifferentials of the functions z —
—H(z,q) and ¢ — H(z,q).
(d) Show that the following conditions are equivalent
(i) 0 € 0.(—H)(3,3) and 0 € 9,H(3, 1)
(ii) (z,q) is a saddle point of the function (z,g) — H(z, q).
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15.23 Problem 23 — Lack of Convexity and Fenchel’s
Theorem for Pareto Optima

We consider two finite-dimensional vector spaces X and Y together with
(i) a linear operator A from X toY
(ii) two nontrivial functions f : X — IRU {+o0} and g : Y — IR U {400}.
We set
L := Dom f, M :=Domg
and we suppose that
(i) L is convex (but f is not necessarily convex)
(ii) ¢ is convex.

We set
v = inf(f(2) + 9(Az)) 1)

and

w:=inf(Za,f(xl +g< (Zam))) (2)

finite finite

where in w, the infimum is taken over all (finite) convex combinations of points
z; of L (with positive coefficients a; such that Y g.e @ = 1). We associate f
with the number

o) _sup( (zazzl) Zaif(mi)) 3)

finite finite

where the supremum is taken over the (finite) convex combinations of elements
of L.

(a) (i) Show that p(f) > 0.
(i) What are the functions f such that p(f) = 07
(iii) Show that

v <w+p(f). (4)
(b) We set
(i) d(z,y) = {Az—y, f(z) +9(y)} €Y xR
(ii) Q = {0} x]0,00[C Y x IR. (5)
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Show that
(0,w) ¢ co(¢(L x M)) +Q (6)
where ‘co’ denotes the convex hull.

(c) Deduce (carefully. but concisely) from (6) that there exist ¢ > 0 and
g € Y* such that

cws  inf (cf(z)+cgly) + (g, Az —y))- (7)

(d) Assuming that
0 € Int(A(L) — M) (8)
show that ¢ > 0.

(e) Deduce from (a), (c) and (d), that there exists § € Y* such that

v < —=f(=A"9) —g"() + p(f)- (9)
(f) Deduce that if we set
' = Inf (F(=A%9) + 97(q)) (10)
then
0 <v+v" <p(f). (11)

Do you recognize something when f is convex?
(g) Show that assumption (8) is satisfied if we suppose that

Jdzo € L such that g is continuous at Azy. (12)

(h) What does (e) become if we take g defined by

0 if y=wu, ugivenin IR"

9y) = { +00 otherwise. (13)

15.24 Problem 24 — Duality in Linear Programming

We consider Hilbert spaces X and Y, a continuous linear operator B € L(X,Y),
two convex closed cones P C X and Q C Y and two elements uy € Y and
po € X*. We introduce the linear program

v(uo) = inf (po,a) M

BzeQ+ug
where we suppose that

{z € P|Bz € Q +uo} # 0. (2)
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(a) Show that the dual problem is

V(o) = le%f_ (g, uo)- 3)
—B“:]GP_ +pro

(b) Show that v(ug) and v.(pp) are finite if and only if (2) and
{¢€Q | —B'qge P~ +po} #0 (4)
are satisfied.
(c) Show that
U, € Int(BP + Q) (5)

implies that there exists a solution g of the dual problem v.(po) and that
the condition

—po € Int(P~ + B*Q7) (6)

implies that there exists a solution Z of the primal problem v(ug). Deduce
that (5) and (6) imply that

(i)  Ov(uyg) is the set of solutions of the dual problem v.(po)

(ii)  Ov.(po) is the set of solutions of the primal problem v(ug). (7

15.25 Problem 25 — Lagrangian of a Convex
Minimisation Problem

Suppose that X and Y are two Hilbert spaces and that g is a nontrivial, convex,
lower semi-continuous function from X x Y to IR U {+oc0}. We introduce the
marginal function

9(y) := inf f(z,y) (1)
together with the partial conjugate
h(z,q) := sup({(g, y) — f(z,y))- 2
yeYy
The function

Ly(z,q) := (¢, y) — h(z,q) (3)

is called the Lagrangian of the family of minimisation problems g(y).
We fix a parameter y and suppose that there exists a solution Z:

9(y) = f(Z,y). (4)
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(a) Show that the following conditions are equivalent

(i) g € 99(7)
(i) (0,9) € 0f(z,9)
(i) 0 € 8:(—h)(z,q) and § € ,h(Z, 7). (5)

Hint: use Problem 22.

(b) Show that
9(y) = inf sup &(@,q) (6)
and that
9*(g) = sup k(z,q) = f*(0,q). (7)
z€X
(c) Deduce that the marginal function ¢ is lower semi-continuous if for all
yey,

inf sup ty(z,q) = sup inf £,(z,g)- (8)

(d) We say that g € Y* is a ‘Lagrange multiplier’ for the minimisation problem
g(v) if and only if

9(y) = inf £,(z,9). (9)

Show that the set of Lagrange multipliers is the subdifferential dg(y) of
the marginal function g.

15.26 Problem 26 — Variational Principles for Convex
Lagrangians
Suppose that we have

(i) two Hilbert spaces X and Y,
(ii) a continuous linear operator A € L(X,Y),
(i) a nontrivial, convex, lower semi-continuous function
L:X xY — RU{+oc0} (1)

We set

H(z,q) :== 325((q, y) — L(z,y)) (2)

and
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We say that g is a Lagrange multiplier for the problem

=i 4
v zlg)f{ L(z, Az) (4)
if and only if

(1) vt = inf L*(=A%,q) = L"(-A'2,9)

(i) v+ov* = 0. (5)

(a) Show that the following conditions are equivalent

(i) 7 minimises z — L(z, Az) and 7 is a Lagrange multiplier for v

(i) A@zq) =0 (=minAz,q)

(ii) (—A*q,q) € 0L(z, AT)

(iv) Z is a solution of the inclusion 0 € (1 @ A*)OL(Z, AZ)

(v) @ is a solution of the inclusion 0 € (—A @ 1)0L*(—A*q, §)- (6)

(b) Using the results of Problem 22, show that each of these conditions is
equivalent to

A*G €0, H(z,7) and AZ € 0,H(Z,q). (7

15.27 Problem 27 — Variational Principles for Convex
Hamiltonians

We consider
(1) two Hilbert spaces X and Y,

(ii) a nontrivial, convex, lower semi-continuous function

H: X xY*—> RU{+oc0}. (*)
We associate these with the function L from X x Y to IR defined by
L(z,y) := sup(q,y) — H(z,q). ()
qeY*
We define the function B on X x Y* by
B(z,q) = H(z,q) — (g, Az) + H"(A"q, Az) — (A’q, z). (ox%)
(a) Deduce from the results of Problem 22 that the following conditions are
equivalent
(i) B(z,q) =0 (= minB(z,q))
(ii) 0 € —0.(—L)(z, Az) + A*0,L(z, AZ)

(iii) (A*q, AZ € OH(Z, 7). (1)
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(b) Show that any solution (Z, g) of the ‘law of least action’
w= inf (H(z,q)— (g, Az)) (2)

(z,q)EX XY™

is a solution of (1).

(c) We suppose that

0 € Int (Im (A* x A) — Dom H™). (3)
Show that one solution (Z,g) of the ‘law of least action dual problem’
w* = (I,q)ggxy' (H*(A*q, Az) — (A*q,x)) (4)

is a solution of the dual problem (1).

15.28 Problem 28 — Approximation to Fermat’s Rule

Suppose that X is a Hilbert space and that f : X — IR, U{+00} is a nontrivial,
convex, positive, lower semi-continuous function.

(a) Fixe > 0, A > 0 and 79 € Dom f such that
flzo) < 7zg)f{f(a;) + eA.
Show that there exist . € Dom f and p. € 8f(z.) such that
f(me) < f(xﬂ)) ”350 - me" < A and ”pe” <e
(use Ekeland’s Theorem, Theorem 1.2).

(b) Suppose now that f : X — IR U {400} is nontrivial, convex and lower
semi-continuous. Show that for any z € Dom f, there exists a sequence of
elements z,, € X such that

T, =z, f(za) = f(z) and Of(z,) # 0.

Deduce that the set of points at which f is subdifferentiable is dense in
Dom f. Compare with Theorem 4.3.

15.29 Problem 29 — Transposes of Convex Processes

We consider a set-valued map F' from a Hilbert space X to a Hilbert space Y
and suppose that

the graph of F' is a convex closed cone (1)

(F is said to be a convex process).
Consider the set-valued map F* from Y™ to X™* defined by

p € F*(¢q) & sup sup ((p,z) —(q,¥)) =0. (2)

z€X yeF(z)
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(a)
(b)

(c)

(d)

(f)

(e)

(h)
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Show that the graph of F* is a closed convex cone and that F' = F**.

Suppose that B € L(X,Z) is a continuous linear operator. Show that
Graph(BF') = (1 x B)Graph(F') and deduce that

(BF)* = F*B*. 3)

Let U be a Hilbert space and A € L(U, X). Suppose that

ImA—DomF = X. 4)

Show that Graph(AF) = (A x 1)”'Graph(F) and deduce (using formula
(70) of Chapter 3) that

(FA)" = A*F™. (5)
Suppose that X,Y and Z are three Hilbert spaces and that F': X — Z

and G : Y — Z are set-valued maps the graphs of which are convex closed
cones. Show that the assumption

ADomF —DomG =Y (6)
implies that
(F+GA) = F*+ A*G™.
Suppose that F' : X — Y is a set-valued map satisfying (1) and that
K C X is a convex closed cone. Show that the assumption
K—DomF =X (7
implies that (F|,)"(¢) = F*(q) + K~.
Show that
Im (F)~ = —F*7(0). (8)

Deduce that the image of F is dense in Y if and only if F*~!(0) = {0}
and that F is surjective if and only if Im(F) is closed and F*~*(0) = {0}.

Deduce from the previous two questions that if K is a convex closed cone
of X and that if (7) is satisfied, then

F(K)” =—-F"'(-K").
We consider a set-valued map F' from X to X* satisfying (1) and

dc > 0 such that V(z;,y;) € Graph(G),7 =1,2
(31— Y2, 21 — T2) > cl|lms — ]| (9)

Show that Im(F') is closed and that its inverse F'~! is one-to-one and Lips-
chitz with constant ¢~!. Deduce that if Dom(F') = X then F is surjective.
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15.30 Problem 30 — Cones with a Compact Base

Let P be a convex closed cone of a Hilbert space X and P its positive polar
cone.

(a) Show that if py € Int P+ then

Vxe P, ©#0, (po,z)>0 (1)
and deduce that the set
S = {z € Pl(po,z) =1} (2)
generates the cone S in the sense that
P=[JAXS (3)
A>0

(b) Deduce that S is a convex, closed, bounded set (which does not contain
Z€ero).

(c) Conversely, if K is a convex, closed, bounded set which does not contain 0
and which generates P in the sense that P = Uy>oAK, show that Int Pt 3#
0.

(d) Show that
Ts(z) == {v € Tp(z)|(po,v) = 0} (4)
that
Tp(z) = closure(P 4+ IRz) and Np(z) = P~ N {z}* (5)
and that

p € Np(z)<z€ Np-(p) &z €P,
p € P~ and (p,z)=0. (6)

15.31 Problem 31 — Regularity of Tangent Cones

Suppose that K C X is a convex subset of a Hilbert space X and that z € K.
(a) Set

Sk(z) = %(K—:c). (1)

h>0

Show that
Vv € Sk(z), 3h > 0 such that Vt € [0, 4], z+tv € K. (2)
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(b) Consider the set

1
c@=N U N (z0-v)+eB) (3)
€>0a,5>0 ye'f,l?(':.[m

where By (z,a) := K N (z + aB). Show that
Ck(z) = Tk(x) (:= closure(Sk(z)))-

(c) Let mx be the projector of best approximation onto the set K, which we
assume to be closed (Problem 17). Show that

(i) Ni() = n (@) —
(i) v € Ti(z) & Yy € 7 (z), (y—2,9) <O. (4)

(d) Suppose that K is closed and show that the graph of the set-valued map
z — Ng(z) is closed. Deduce from Problem 5 that if X is finite dimen-
sional then x — Tk (x) is a lower semi-continuous set-valued map.

(e) Suppose that Int K # 0 and show that

Int Ty (z) = | %(Int K —z). (5)

h>0

(f) Deduce that z — Int Tk (z) has an open graph.

15.32 Problem 32 — Tangent Cones to an Intersection

(a) Take
Ki=(-1,00+B, K,=TR:.
Verify that (0,0) ¢ Int(K; — K3) and calculate
T, (0,0) N T, (0,0) and T, (0, 0).

(b) Take K; = [-1,0] x [-1,+1], K5 = [0, 1] x [—1,+1], verify that (0,0) ¢
Int(K, — K>) and calculate

TK] (0, 0) N TK.2 (0, 0) and TK,r‘ll{z(O, 0)

(c) Consider n convex closed subsets K; (i = 1,2,...,n) and take z € N, K.
Suppose that there exists v > 0 such that
Vv, €vB (i =1,...,n), N, (K;—v;) #0. (1)
Show that
Vo € Ni, K, Tk(z) =N, Tk, (). (2)

Hint: consider A := z € X — (z,z,...,z2) € X" Show that K =
A~YTI~, K;) and apply formula (50) of Chapter 4.
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15.33 Problem 33 — Derivatives of Set-valued Maps
with Convex Graphs

Suppose that F': X — Y is a set-valued map.

(a) Show that the graph of F is convex if and only if

Vz,y € Dom(F), Va € [0,1],
aF(z)+ (1—a)F(y) C Flaz + (1 — a)y). (1)

(b) Let (zo,y0) be an element of the graph of F. We define the set-valued
maps DF(zg,yo) from X to Y and DF(zg,yo)" from Y* to X* by

v € DF(z0,Y0)(u) < (¢,v) € Taraph(r)(To, Yo) (2)
and

p € DF(x0,%0)"(q) © (p, —q) € Naraph(r)(Zo, ¥o)- (3)

Show that the following conditions are equivalent

(i) p € DF(z0,%0)"(q)
(i) Vz € X, Vy € F(z), (¢, —y) < (p, %0 — )
(111) Vu € X) Vv € DF(:EO, yO)(u)’ <p$ u) < (q) ’U). (4)

(c) Show that if p; € DF(z;,v:)"(g:), (¢ = 1,2), then
(@1 — g2, 1 — ¥2) < (p1 — P2, T1 — T2)- (5)

(d) Suppose that K is a closed convex subset of X and that ¢x is the set-
valued map from X to Y defined by

or(z) ={0}if z € K and ¢pk(z) =0if z ¢ K. (6)
Prove that

Vz € K, Déx(z,0) = ¢z, (x). (7)

(e) Show that h — d(v,ﬂi}lmf—g) is increasing and deduce that vy €
DF(zo,yo0)(xo) if and only if

liminf inf d (vo, Flao + hu) = y") = 0. (8)

u—uo h—0+ h

(f) Show that if zo,z € Dom (F'), yo € F(20), then

F(z) — yo C DF(z0,%0)(T — o). (9)
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(g) Suppose that P is a convex closed cone of X. Show that the following
conditions on (zq,yo) € Graph(F') are equivalent:

(i) Vre K, F(z)Cyo+ P
(ii) Yuo € X, DF(zo,y0)(uo) C P
(iii) Vg € P*, 0 € DF(zo,y0)"(g) (10)

Hint: show that (ii) = (i) = (iii) = (ii).

(h) Suppose that X and Y are two Hilbert spaces, that L C X and M C Y
are two convex closed subsets and that A € L(X,Y) is a continuous linear
operator. We associate A with the set-valued map F' defined by

e =5t R e )

Show that the graph of F' is convex and closed, that
Fly)=LNnAY (M +7y)
and that

DF(@ ) = { 7 TtAz =) T (12)

Deduce that

R R F

15.34 Problem 34 — Epiderivatives of Convex Functions

We consider a function f : X — RU{+co0} with which we associate a set-valued
map F, from X to IR defined by

Fi(z)= f(z) + R, if f(z) < +oo, Fi(z)=0 if f(z)= +oo. (1)

(a) Prove that Domf = DomF,, that Graph(F,) = Ep(f) and that
F7Y(A\) = S(f,)). Deduce that f is lower semi-continuous (respectively
convex) if and only if the graph of F} is closed (respectively convex).

(b) We recall (see Problem 33) that the set-valued maps DF, (z,)): X - R
and DF, (z,)\)" : R — X are defined by

(i) NS DF+(:L',)\)('U,) = (u,’u) S TGraph(F+)(w7)\)
(ll) pE DF+(:C7 )\)*(Q) Aad (p) _Q) € NGraph(F_,.)(m, )‘) (2)
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We set
D f(z)(uo) = liminf Df (z)(x) 3)
(the epiderivative of f at z in the direction o). Show that
(i) DF,(z, f(@))(uo) = Dif(e)(uo) + Ry
(i) DF\ (=, f(2))'(q) = { wortz) La>0 @)
Deduce that
(i) Ep (D, f(z)) = Tep(s)(z, f(2))
(1) p € 0f(z) & (p,—1) € Nep(y)(z, f(2)). ()

15.35 Problem 35 — Subdifferentials of Marginal
Functions

We consider a nontrivial, convex, lower semi-continuous function f : X —
IRU {400} and a set-valued map F from X to Y with a convez, closed graph.
The marginal function h is defined on Y by

h(y) == einf )f(w) (1)
We also suppose that
0 € Int(Domf — Dom(F)). (2)

(a) If z € F~!(y) is a solution of h(y) (k(y) = f(Z)), show that g € Oh(y) if
and only if there exists p € 8f(Z) such that

(_ﬁi q) € NGraph(F) (i', y) (3)
(b) Deduce from the definition of DF(Z,y)" (Problem 33 (b)) that
dh(y) = —DF(Z,y)" (—0f(z)). (4)

15.36 Problem 36 — Values of a Game Associated with
a Covering

Suppose f : X x Y — IR. Consider a covering of A by subsets K, L of F
satisfying

if Kand L € A, then KUL € A. 1)
We associate this covering A with the ‘value’

v*(A) = sup inf sup f(z,3). (2)
KeAz€E
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(a) Show that if A C B, then
Wt < WI(A) = HN(B) (3)
(we recall that v = v%(S), see formula (18), Chapter 8).
(b) If U is the family of all the subsets of F', show that for all A,
MA) <FU) =o' (= Inf sup f(=@,v))- (4)
(c) We consider the order relation on A x IN given by (K1,n1) < (K2,n2) &

K, c K, and n; < n,. Show that there exists a generalised sequence
(K,n) = zk, € E such that

VKo € A, limsup (sup f@rmy) < v”(A)) (5)

(K,n)=(Ko,1) \y€Ko

(d) If the covering A is countable, show that there exists a sequence of ele-
ments z, € E such that

VK, € A, 3po such that Vp > Py, limsup sup f(z,,y) < v"'(A). (6)

p>Py yeEK
(e) We suppose that

(i) VYyeF,z— f(z,y) is lower semi-continuous
(i) 3Ko € A such that {z|sup,r, f(z,y) < v9(A)} is compact. (7

Show that there exists Z € F such that sup cx f(Z,y) < v(A) < oM

15.37 Problem 37 — Minimax Theorems with Weak
Compactness Assumptions

(a) Let f be a function from X x Y to IR := RU{—o00} U{+00}. We suppose
that the sets

E:={ze€ X|su5 f(z,y) < +oo} (1)
and
F:={y eY|inf f(z,y) > —oo} (2)

are non-empty and that X is finite dimensional (if not, use the weak
topology). We introduce the family A of subsets

={y e Fllyll <pand inf f(z,y) > —p} (3)

and use the definition of v#(.A) given in formula (2) of Problem 36. Show
that if
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(i) Yy eE, z— f(z,y) is convex

(i) Vz € E, y— f(z,y) is concave and upper semi-continuous (4)
then
H(A) = (:= sup inf f(z,y)). (5)
yeF T€E

Hint: use the minimax theorem, Theorem 8.1.
(b) We suppose further that
Vy € F, z — f(z,y) is lower semi-continuous (6)

and that if we set

13(p);=sup((p, ) — f(z,9)) (7)
then
0 € Int (UyerDom f;) . (8)
Prove that there exists Z € E such that
sup f(2,9) = W(A). 9)

Hint: use Problem 36 (d).
Deduce that under the assumptions (3), (6) and (8), we have

sup f(Z,y) =" = o". (10)
yeF

Thus, Theorem 8.1 remains true if the compactness of E is replaced by
the weaker assumption (8).

15.38 Problem 38 — Minimax Theorems for Finite
Topologies

Suppose that F' is a convex subset of the infinite-dimensional vector space Y.
We associate any finite subset K = {y1,...,yn} of F with the mapping Bk from
the simplex M™ to F defined by

VA e M™, Br(A)= zn:/\iyz‘- (1)
=1

The ‘finite topology’ on F' is the ‘ultimate’ topology, the strongest of all
topologies, in which the mappings Sk from M™ to F' as K ranges over the
family S of finite subsets K C F are continuous. We recall that a mapping f
from F to a topological space G is continuous if and only if

VK €S, ffBx:M"— G is continuous. (2)
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(a) Show that the finite topology on a convex subset F' is stronger than any
vector-space topology.

(b) Show that any affine mapping A from F' to a vector space Z is continuous
when F' and Z have the finite topology.

(c) Show that in the proof of Theorem 8.4, we may give F' the finite topology
and thus reduce the space C(F, F) of continuous decision rules; whence,
we may obtain a stronger version of equation (48) of Chapter 8.

(d) Do the same for Theorem 8.5.

15.39 Problem 39 — Ky Fan’s Inequality

We consider a convex compact subset K of a finite-dimensional vector space and
a function ¢ : K x K — IR.

(a) We set
T(y) == {z € Klp(z,y) > 0} (1)
and we suppose that
Vy € K, z — ¢(z,y) is lower semi-continuous. (2)
Show that the negation of the property

3z € K such that supp(z,y) <0 (3)
yEK

implies the existence of y,...,y, € K such that

K = JT(). @)

=1
(b) We suppose further that

Vz € K, y— o(z,y) is concave. (5)

Deduce from Brouwer’s Fixed-point Theorem that there exists 7 € K
such that

w(Z,z) > 0. (6)

Hint: use a continuous partition of unity subordinate to the covering of
K by the T(y:)-
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(c) Deduce that Brouwer’s Theorem implies the Ky Fan Inequality, namely
that assumptions (2) and (5) together with

Vye K, ¢(y,y) <0 (7)
imply assertion (3).

(d) Prove that the Ky Fan Inequality remains true if K is a convex compact
subset of a Hilbert space. Hint: use Proposition 8.2.

(e) Prove the converse, namely that the Ky Fan Inequality implies that any

continuous mapping from a convex compact subset of a Hilbert space to
itself has a fixed point.

15.40 Problem 40 — Ky Fan’s Inequality for Monotone
Functions

Suppose that

K is a convex compact subset (1)
and that ¢ : K x K — IR is a function satisfying
(i) VyeK,z— p(z,y) is lower semi-continuous for the

finite topology (see Problem 38)
(i) Vz € K, y— ¢(z,y) is concave and upper semi-continuous

(iii) Vy € K,¢(y,y) 0. (2)

We suppose further that ¢ is monotone in the sense that

Vz,y € K, ¢(z,y)+¢(y,z) = 0. (3)
(a) Verify that
v := sup inf sup p(z,y) < 0. (4)
Kes*€E yek

(b) Assuming that Z € K satisfies

0 < sup p(Z,y) (5)
yeEK

show that there exist 7 and ¢ €]0, 1[ such that

0 < @(Z+#7—2),9) (6)
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(c) Problem 36 (c) and the compactness of K imply that there exists a gen-
eralised sequence of elements z, of K converging to an element Z and
satisfying

Vy € K, 3u(y) such that limsup o(z,,y) < o' (7
p2u(y)

Use the fact that ¢ is monotone to show that
0<p(Z+Hy—1Z),T+Hy—T))- (8)
(d) Deduce from this inequality and the fact that ¢ is monotone that
3z € K such that sg};; w(Z,y) < 0. (9)
y

15.41 Problem 41 — Generalisation of the
Gale—Nikaido—Debreu Theorem

We consider
(i) a compact metric space K,

(i) aset-valued map F from K to a Hilbert space Y (identified with its dual),
(iii) a convex closed cone P of Y and its negative polar cone P~. (1)

(a) We suppose that
F is upper hemi-continuous with convex compact values (2)

and that there exists a continuous mapping C from P~ to K such that

o(F(C(y),y)) =20 Vy e P". (3)

Show that there exists Z € K such that 0 € F(Z) + P. Hint: adapt the
proof of Theorem 9.2.

(b) Show that we may weaken the assumptions by supposing only that

(i) Vy € P~, z — o(F(z),y) is upper semi-continuous,
(ii) Vx € K, F(xz) + P is convex and closed,
(iii)) Ve > 0, 3C., a continuous mapping from P~ to K such that

o(F(Ce(y),y)) > —€, Vy € P, (4)
(c) We now suppose that
K is a convex compact subset of Y’ (5)
and that F satisfies (2) and
Yy €Y, o(F(rk(y),y)) =0 (7k is a projector onto K). (6)

Deduce that there exists £ € K such that 0 € F'(Z).
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(d) Consider the unit ball B of a finite-dimensional vector space Y and a
set-valued map F' from B to Y satisfying (2) and

Vz € B, o(F(z),z) > 0. (7)
Deduce that there exists Z € B such that 0 € F (Z).

15.42 Problem 42 — Equilibrium of Coercive Set-valued
Maps

‘We consider

(i) a convex closed subset K of a finite-dimensional space X,
(ii) an upper hemi-continuous function with convex closed values, (1)
satisfying the tangential condition
Vz € K, F(z)NTg(z) F# 0. (2)
(a) Show that the condition
im o(F(z),z) <0 (3)

llz|| 200, zEK

implies the existence of an equilibrium of F, Z € K.

(b) Show that the condition

o(F(z),z) _
lell—soowek |zl i (4)

implies that

Vy € K, 3% € K, solution of y € & — F(%). (5)

15.43 Problem 43 — Eigenvectors of Set-valued Maps

Suppose that P is a convex cone of a finite-dimensional space X such that
Int P+ # (). Suppose that F is a set-valued map from P to X which is upper
semi-continuous with convex compact values and satisfies

Vz € P, F(z)NTp(z) # 0. (1)

(a) We take po € Int P* and S := {z € P|(po, z) = 1} which is convex, closed
and bounded (whence compact, see Problem 30). Show that the set-valued

map G from S to X defined by

G(m) = {U - (po)v)x}'uEF(z) (2)
satisfies the tangential condition

vz € S, G(z)NTs(z) # 0. (3)
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(b) Deduce that there exists an eigenvector Z € P of F, in other words a
solution of

z €S, \TeF(z).
Hint: apply Theorem 9.4 to the set-valued map G.

15.44 Problem 44 — Positive Eigenvectors of Positive
Set-valued Maps

We consider

e a mapping F': M"™ — IR™ with convex lower semi-continuous
components f; (1)

and

e an upper semi-continuous set-valued map G from M™ to IR with
non-empty compact values and a closed graph (2)

We suppose that
(i) 3P € M™ such that Vz € M™, (B, F(z)) >0

(i) 3z € M™ such that Vp € M™, o(G(Z), p) > 0. (3)
We set

1 g P F(z))

5 b 5(G ), p) @

(a) Show that the set (G — 6F)(M™) — IR} is convex and closed.
(b) Deduce that there exists Z such that
0F(z) € G(z) — RT. (5)

(c) Deduce that there exists 5 € M™ such that

1_ .. (F@) #.F (@)

5 =.nf et = sup B ©

5~ seni o(G(a),5)  pemn o(G(@), p)
(d) Show that if there exist £ € M™ and p > 0 such that
pF(z) € G(z) — IR, then p > 6. (7)
(e) Take p > 0 and y € Int(IRT') and set

L . ll'(p7 F(IE)) + U(—G(ﬁ),p)
B= e BTG

Show that 8 > 0 and that there exists £ such that
By € pF(z) — G(£) + RY. (9)

(8)
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15.45 Problem 45 — Some Variational Principles

We consider a nontrivial, convex, lower semi-continuous function f from X to
IR U {+00} and a mapping A from Dom f to X. We set

(v) == f(y) + " (—Ay) + (A(y), v)- (1)

(a) Show that Vy € Dom £, ¢(y) > 0.

(b)

(d)

(e)

Show that the following problems are equivalent

(i) 3% € Dom f such that 0 € A(Z) + 8f(Z)
(i) 3p € Dom f* such that 0 € p + ADf*(D)
(iii) 3% € Dom f such that
Vy € Dom f, (A(z),Z — ) + f(3) — f(y) <0
(iv) 3% € Dom f such that ¢(Z) =0 (= minyepom rH(Y))- (2)

Identify these problems when f = vy is the indicator function of a non-
empty, convex, closed set K.

Suppose now that A is a set-valued map from Dom f to X with convex
compact values. We set

W) = F) + ot (£ (=) + (wy)). 3)

Show that Vy € Dom f, ¢(y) > 0 and (b) remains true if we replace (2)(iii)
by

Vy € Dom f, —o(A(Z),y — Z) + f(Z) — f(y) < 0. (4)

Show that a necessary condition for the existence of a solution to one of
the equivalent problems (2) is that

0 € Dom f* + ADom f. (5)

15.46 Problem 46 — Generalised Variational
Inequalities

We consider a finite-dimensional vector space X together with

(i)
(i)

a nontrivial, convex, lower semi-continuous function f : X — RU {+oc0},

a nontrivial, convex, lower semi-continuous function 3 : X — IRy U{+4oc0},
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(iii) an upper semi-continuous set-valued map A : Dom f — X with compact
values, which is 3-monotone in the sense that

V(.’E,p), (y» q) € Graph(A), (p —¢T— y) > ﬂ(.’l] - y)- (1)

We recall the results of Problem 45, namely that the problems

(i) 0 € A(Z) + 9f(Z)
(ii) Vy € Dom f, —o(A(Z),y—Z)+ f(Z)— f(y) <0 (2)

are equivalent and that a necessary condition for the existence of a solution is
that

0 € Dom f* + ADom f. (3)

(a) Show that 0 € Dom *. Calculate Dom 3 when [ is equal to one of the
following three functions

. c
fo(z) =0, fi(z) =cllzll, andifa>1, Bo(2) = 5l (4)

and characterise the following sets
Int (Dom f* + ADom f + Domf;) (i =0,1,2). (5)

Describe these sets explicitly when f is the indicator function of a convex
closed set K.

(b) Set
K, :={z € Dom f|f(z) < n and ||z|| < n}. (6)
Show that there exists z,, € K,, such that

Vy € Kn, —0(A(®n),y —on) + f(za) — f(y) < 0. (7)

(c) Suppose that
0 € Int(Domf* + ADomf + Domg"). (8)
Show that a subsequence of the sequence z,, is bounded.

(d) Deduce that assumption (8) implies the existence of a solution of problem
(2)(i). Deduce sufficient conditions for the existence of a solution of the
variational inequality

zeK and Vye K, (A(T),Z—y) <0. (9)
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15.47 Problem 47 — Monotone Set-valued Maps

Let X be a Hilbert space (identified with its dual). A set-valued map A from
X to X is said to be monotone if

V(z,p) € Graph(A), ¥(y,q) € Graph(4), (p—q,z —y) > 0. 1)

More generally, if 8 : X — IR, U {400} is a nontrivial, convex, lower semi-
continuous function, A is set to be S-monotone if

V(z,p) € Graph(4),V(y,q) € Graph(A), (p— g,z — ) 2 Bz —y).  (2)
(a) Show that if F' is non-expansive in the sense that
V(z,p), (3, 9) € Graph(F), [lp—q|l < ||lz - yll (3)
then A := 1 — F' is monotone.
(b) Show that A is monotone if and only if
VA >0, Y(z,p),(y,q) € Graph(A),
lz —yll < llz —y+ A(p—g)ll (4)

(c) Suppose that f: X — IR U {+o0} is a nontrivial convex function. Show
that A := 8f is monotone.

(d) Set
Joi= 1+ 2A)7Y A= ;(1 —Jh). (5)

Show that if A is monotone then J) and A, are (one-to-one) mappings
from Im(1 + AA) to X satisfying

Ax(z) € A(Jx(x)) (6)
and

I Ia(zn) = @)l <l — well

1
1Ax(@1) — Al = s — yal- (7)
(e) Show that A, is monotone.
(f) Suppose from now on that
YA >0, (1+ AA) is surjective. (8)

Show that A satisfies the property

V(y,v) € Graph(A), (u—v,z —y) > 0= u € A(z). 9)
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(g) Deduce that
the images of A are convex and closed (10)
and that

the graph of A is closed. (11)

(h) We denote the element of A(z) with minimum norm by m(A(x)) (the
projection of 0 onto the convex closed subset A(z)). Show that for all
z € Dom(A4),

14x(=) = m(A@))II* < lm(AE@)I* - | Ax(@)II* (12)

and deduce that

|z — Ixn(@)]l < Mm(A(z))]- (13)
(i) Show that
Apa(z) = (A, (2) (14)
and deduce that
(Ja(z), Ax(z)) converges to (z, m(A(z)) as A — 0. (15)

() If f: X - RU {+o0} is nontrivial, convex and lower semi-continuous,
show that A = Of satisfies (8) and that (0f),(z) = Vfi(z) and complete
Theorem 5.2 by showing that V fy(z) converges to the element df(x) of
minimum norm.

15.48 Problem 48 — Walrasian Equilibrium for
Set-valued Demand Maps

We consider a convex closed set L (consumption set) and a continuous function
r from the price simplex M? to IR (yield function) and we suppose that

Vp € M*, 3z € L such that (p, Z) < r(p). (1)
(a) Show that the set-valued budgetary map p — B(p, 7(p)) defined by

B(p,r(p)) :={y € Li{p,v) < r(p)} (2)

has a closed graph and is lower semi-continuous.
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Suppose that f is a (loss) function from L x M?* to IR. Suppose further
that

L is compact and f is continuous. (3)

Using Problem 6, show that the set-valued demand map defined by

Dip,r(p)) = {weB(p,r(p))If(w)= min f(y)} @)

y€B(p.r(p))
is upper semi-continuous.

We suppose that there are n consumers such that

(i) the n consumption sets are convex and compact
(ii) the n loss functions f; : L; x M - IR
are continuous and convex in z; (5)

and we consider
n compact sets M? such that M; = M — RY is convex (6)
and such that

Vi=1,...,n, 0€Int(L; — M;). (7)






16. Solutions to Problems

16.1 Problem 1 — Solution. Set-valued Maps with a
Closed Graph

(a) Consider a sequence of elements (z,, y¥,) of Graph(F') converging to (z,y)-
Since F is upper semi-continuous, given any € > 0 there is an integer N(g) such
that

Vn > N(eg), y, € F(z,) C F(z) + €B. (1)

It follows that y, € F(z) = F(x).

(b) Let V be an open neighbourhood of F(zy) and K its complement which is
compact and disjoint from F(z,). Since for all y € K, the pair (zo, y) does not
belong to the graph of F, which is closed, there exist neighbourhoods U, (o) of
zo and W (y) of y such that

Graph(F) N (U,(zo) x W(y)) = 0. (2)

Since the set K is compact, it is covered by n neighbourhoods W (y;). Then the
neighbourhood U(zo) := N2, U,, (o) is such that

Vz € N(zo), F(z)N (U, W(w))=0. (3)
It follows that
Vz € N(zo), F(z)CV (4)

whence that F' is upper semi-continuous at Zg.

16.2 Problem 2 — Solution. Upper Semi-continuous
set-valued Maps

(a) The proof for part (a) is self-evident.
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(b) If y € K, then (zo,y) does not belong to Graph(G). Since the latter is
closed, there exists neighbourhoods Uy(zo) and W (y) such that

Graph(G) N (Uy(zo) x W(y)) = 0.
Thus (5) holds.
(c) We cover K by n open sets W (y;) and set M := U2, W (y;) and Up(zo) :=
N2, U, (o), so that
Vz € Up(z), G(z)NM = 0. (*)

Since F' is upper semi-continuous at zo, there exists a neighbourhood Ui(zo)
such that

Vz € Uy(zp), F(z) C M NN, an open neighbourhood of F(z). ()
Consequently, (*) and (**) imply that
Vz € U(zo) := Ur(zo) N Ua(zp), F(z)NG(z) CN. (%)

16.3 Problem 3 — Solution. Image of a Set-valued Map

(a) We consider a sequence x,, converging to zo and take yo = f(xo, uo) € F(xo)
where uy € G(%), Since G is lower semi-continuous, there exists a sequence
u, € G(z,) converging to uy. The sequence y, := f(zn,u,) converges to yo
since f is continuous.

(b) We take o € Dom(G) and € > 0 consider the neighbourhood V' of F(zy).
It is a neighbourhood of each of the points f(zo,u) where v € G(zo). The
continuity of f implies that there exist 7, > 0 and §,, > 0 such that

f(z,v) € V when z € B(zo,n.) and v € B(u, d,,).

Since G(zo) is compact, it can be covered by p balls B(u;, ;) (i = 1,...,p).
Since G is upper semi-continuous, there exists 1 > 0 such that
P
Vz € B(Illo,?]o), F(ZC) C U B(u,-,éu,—).
i=1
We take 1 := min(ng, min;—,. ,7;) > 0. Then
Vz € B(xo,n), F(z)C V.

16.4 Problem 4 — Solution. Inverse Image of a
Set-valued Map

(a) The proof for part (a) is easy.
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(b)

(i) We take z, — 7o and u € S(x,). From (2), there exists u, € F(z,) such
that u, — wu. Since (zn, f(Zn, un)) converges to (o, f(zo,u)) and, since
the graph of z — IntT(z) is open, it follows that f(z,,u,) € IntT(z,)
for n sufficiently large. Thus u,, belongs to S(z,) and converges to u.

(ii) Since S(z) C R(z), we have S(z) C R(z). Conversely, we take u € R(z).
Since there exists ug € S(x), it follows that fug+ (1 —6)u belongs to S(z)
for all 8 > 0 since

flz,0uo + (1 — 0)u) = 0f(z,uo) + (1 — 6) f(z,w)

belongs to the interior of T'(z) because f(z,uo) does. Letting 6 tend to 0,
it follows that u belongs to S(z).

(iii) Since x — S(z) is lower semi-continuous, the same is true of z — S(z) =

R(z).

(c) We consider a sequence z, — o and u € R(%o). Since F' and T are lower
semi-continuous, there exist sequences u, € F(z,) and y, € T(z,) which con-
verge to u and f(z,u), respectively. Since f is continuous

En 1= ”f(wm 'U'n) - yn”
converges to 0 and

0, = i €]0, 1]
Y+ En

converges to 1.
Since 0, = (1 — 6,)7, it follows that

On(f(Tn,Un) —yn) € €6,B
= (1-6,)vB
C (1= 6n)(f(zn, F(zn)) — T(2x))

by virtue of assumption (7). Thus, there exist 4, € F(z,) and 9, € T(z,) such
that

On(f (Tn, Un) — Yn) = (1 = 02)(f (%, Tn) — Tn)-
This implies that v, := Opun + (1 — 6,)4, belongs to R(z,) since
f(mm Un) = Un¥Yn + (1 - en)'gn S T(IL’n).

Moreover, Un — Vn = (1 — 6,)(un — @y ). Since u, — 4, € F(x,) — F(£,) belongs
to a bounded set by virtue of (8), it follows that u, — v, tends to 0. Thus, u is
the limit of u, € R(Z,)-
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16.5 Problem 5 — Solution. Polars of a Set-valued Map

(a) We consider a sequence (z,, pn) converging to (, p) such that p, € T(z,)~
for all n. We take an arbitrary y € T'(z). Since T is lower semi-continuous, there
exists a sequence y, € T(z,) which converges to y. Since (pn, ¥») < 0, it follows
that (p,y) < 0. This is true for all y € T(z) and consequently p € T(z)~.

(b) We consider a sequence z, converging to z and take y € T'(z). Suppose
that 7y, is the orthogonal projector onto T'(zy). It is sufficient to show that
Yn 1= TP(a,)(y) converges to y. Then p, := y — y, is the projector of y onto
T(zr)" - Thus, (pn, ¥n) = 0 and ||p,]| < |||l Consequently, a subsequence (again
denoted by) p, converges to P, since Y is finite dimensional. This element 5
belongs to T'(x)~, since the graph of T'(-)” is closed, and satisfies (p,y — p) =
1My, 00 (Pn, ¥n) = 0. Thus, ||7]|*> = (B,y) < 0 since p € T(z)” and y € T(z).
Consequently p = 0 and y,, converges toy =y — p.

16.6 Problem 6 — Solution. Marginal Functions
(a) See Proposition 9.3.

(b) We take € > 0 and zy € X. Since g is upper semi-continuous, for any
y €Y, there exist neighbourhoods V(y) and U,(x,) such that

Vz € V(y), Vz € Uy(xo), 9(z,y) < g(z0,y) + €. (*)

Since F'(zo) is compact, it is covered by n neighbourhoods V(y;). Let N :=
UZ,V (y:) denote a neighbourhood of F(xo) and Uy(zo) := N, Uy, (o) a neigh-
bourhood of zy. Since F' is upper semi-continuous at zg, there exists a neigh-
bourhood Ui (z) of zg such that

Vz € Ur(zo), F(z)C N. (%)

Then () and (*x) imply that Vo € U(zo) := Up(z)NU,(z0) and for all y € F(zx),
there exists an element y; such that

9(z,y) < g(T0, ¥i) +€ < f(zo) + 2€. (#%%)

Consequently, f(z) < f(zo) + 2¢ for all z € U(zy).

(c) The set-valued map M is the intersection of the set-valued map F' and the
set-valued map G defined by

G(z) :={y € Y|f(z) = g(z,v)}-

Since f and g are continuous, the graph of G is closed. We now apply Problem 2.
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(d? le € >0, 21,z € X and y; € F(x,) such that f(z,) < g(z;, %) +¢. Since
F is Lipschitz, there exists ¢, € F(z3) such that ||yy —y2|| < d(w, F(z2)) +€ <
cllzy — z2|| + e. Whence, since g(z,y2) < f(z2), we have

f(z1) — f(z2) 9(z1,y1) — g(z2,92) + €
||y — 2|l + llyn —2ll) + €
Lc+1)||lzy — z2|| + (£ + 1)e.

IAN N IA

It now suffices to let € tend to 0.

16.7 Problem 7 — Solution. Generic Continuity of a
Set-valued Map with a Closed Graph

(a) The proof for part (a) is easy.

(b) Since F' is upper semi-continuous (see Problem 1), the points of disconti-
nuity of F' are those where F' is not lower semi-continuous, in other words those
such that

if K, > z, then z € 0K, := K, N comp Int (K,)

(c) Since K, is closed, the interior of 0K, is empty. Then, Baire’s theorem
implies that the interior of US2 0K, is empty. Thus, the interior of the set of
points of discontinuity is empty.

16.8 Problem 8 — Solution. Approximate Selection of
an Upper Semi-continuous Set-valued Map

(b) We may associate any = with neighbourhoods U(z) of z such that
Vy e U(X), F(y) C F(z)+eB. (*)

Since X is compact, it is covered by n neighbourhoods U(z;). We introduce a
continuous partition of unity {a;},_, _, associated with this covering, we choose
points y., € F(z;) and define f. by

fe(@) = 3 ai(@)ye,, I(z) = {ilai(z) > 0}, (%)

icl(x)

If i € I(z), then z € U(z;) and consequently, F(z;) C F(z) + eB. Thus,
fe(z) C co(F(z) + eB) = F(z) + €B.
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16.9 Problem 9 — Solution. Continuous Selection of a
Lower Semi-continuous Set-valued Map

(a) Given any € X and y, € F(z) there exists an open neighbourhood V(z)
of z such that

Vz, € V(z), (y= +€B)NF(xz;) # 0. (*)

Since X is compact, it is covered by n neighbourhoods V' (z;). We associate a
continuous partition of unity {a;(-)},_, _, with this covering and define f. by

vz €K, fo(z):= Y ai@)ys, (%)
iel(z)

where I(z) = {i = 1,...,nla;(z) > 0} # 0. If i € I(z), then x € V(z;) and, by
virtue of (%), ¥z, € F(z) +eB. Multiplying these inclusions by a;(z) and taking
the sum, we obtain

fe(z) € co(F(z) +eB) = F(z) +€B.

(b) We begin the induction with n = 1, by applying (a) with ¢ = 1/2. We
suppose assumption (2) holds for n and prove it holds for n + 1. We set

Fo(z) := (fn(z) + 2 é) N F(z). (ko)

By virtue of (2)(i) , Fn+1(x) is non-empty. It is easy to show that Fp is lower
semi-continuous. Applying (a) to F,41 and taking € = 2,]%, we deduce that
there exists a continuous mapping fr,; from X to Y with

d(fn+1 (:E)’ Fn+1 (IL’)) S 2n1+l -

This implies (2) for n + 1.

(c) The inequalities (2)(ii) imply that the sequence of the f, is a Cauchy se-
quence in the space of continuous mappings from X to Y. This space is complete,
since Y is complete. Thus, the sequence converges uniformly to a continuous
mapping f from X to Y and property (3) follows from (2)(ii), since the images
F(z) are closed.

16.10 Problem 10 — Solution. Interior of the Image of a
Convex Closed Cone

(a) We set
K,:=KnNnB and T := A(K)) = A(KNB).
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Since K is convex and 0 € K|, it follows that

1
—Kn C Kl
n
whence that
A(K,) C nA(K,) :=nT.
Since
0 € IntA(K) = Int (Us2, A(K,)) C Int (U2, nT) .

Baire’s theorem implies that the interior of one of these closed sets nT is non-
empty, and thus that the interior of T is non-empty. Consequently, there exists
Yo € T and § > 0 such that

Yo+ 0B CT. (%)

Moreover, since there exists v > 0 such that yB C A(K) = U2, A(K,), there
exists n > 0 such that —yes € A(K). Whence,

Yo bea
—y——€c A(K,))=TcCT. *ok
We set A := /(7 + n|lwo]]) €]0, 1] and multiply () by A and (**) by (1 — A).
Then the convexity of 7" implies that

,\53=,\y0—(1—,\)”"2i0‘i|+)\53c,\T+(1—A)TcT.

Thus, 0 € Int(7).

(b) We take y = 332202 %A(z) € 35002 *T, where 2, € K;. We
set @ = 1/¥7 o27F Thus, on — 3 and yn = nYp o2 %A(z:) =
Ala, 3702 %z;) converges to y. But, since K, is contained in B, the sequence
of the u, := 0n 37_o 2 %z, is Cauchy and so converges to an element u. Since
K, is convex and closed, the u, (and thus also u) belong to K;. Since A is

continuous, y = Au belongs to A(K,) = T. Thus,
13, .
5 kz_o 27T CT.

(c) We suppose that T' satisfies property (3) and that 0 € Int(T). Thus, there
exists v > 0 such that 2yB C T. Then for all k > 0 we have 2-27%yB C 27*T..
We take y € vB. Then there exists vg € T such that

2y —v €2-27wBC27'T
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since 2y € T. We suppose that we have constructed a sequence of v € T such
that
n—1
2y— Y 2%y, €2-27"yB.
k=0

Since 2- 2 "yB C 27T, we can find v, € T such that

n—1
2y - Z 2_kvk _ 2—n,vn c2. 2_(n+1)’)’B C 2—(n+l)T'
k=0

Thus, we have constructed a sequence of v, € T such that
1 &~ ok 1 & ok
ye=> 27 y e =N 27T
2 k=0 253

Consequently, yB C T and 0 € Int(7"). We have proved that assumption (1)
implies that there exists 7y > 0 such that

vB Cc A(K N B) ()

If K = X this is just Banach’s Theorem for the open image.

(d) If K is a convex closed cone, the statement A(K) = Y implies that 0 €
Int(A(K)). Thus, there exists v > 0 such that vB C A(K N B), in other words,
for c:= %, we obtain

Vz € Y,z € K such that y = Az and ||z|| < ||| (%)

This shows that A™! is Lipschitz, in the sense that: Vo; € K, and all y; € Y,
there exists z; € X, a solution of y, = Az, such that |21 — 22| < ¢|| Az — 2|

In fact, we associate y := y, — Az; with the solution € K given by ().
Thus,

Ty, = x+xz€ K+ K C K issuch that
Az, = Az + Az =1y, and
lzz —zill = |zl < ellyll = cll Az1 — wel|-

(e) Suppose that A € L(X x Y,Y) is the operator defined by
Alz,y):=Lz—y

and that K = P x Q. Since A(K) = L(P) — Q is the whole space, it follows
from (d) that for fixed zo in P, y in Y and yp := mg(Lzo — y), there exists a
solution (z1,y1) € P x Q of the equation A(z1,y;) = y such that

Iz — zoll < max([lzy — Zoll, l1 — voll) < clly — Alzo, %o)l
= cdo(Lzo — y).

To say that (z1,y1) € P x @ is a solution of A(x,y:) = Lz; — y1 = y implies
that z, € M(y).



16.10 Plroblem 10 - Solution 357

(f) We take K := Graph(F') a convex closed cone in X x Y and A := 7y the
canonical projection from X x Y onto Y. Since A(K) := my(GraphF) = Im(F)
is the whole space, there exists ¢ > 0 such that, for all (z,,%;) € Graph(F) and
all y, € Y, there exists a solution (2, §2) € K of the equation i, := 7y (2, %2) =
Y2 satisfying the inequality

< max(||zz — i, ly2 — wll)
< cllry(z1, 1) — well = cllyn — v2l-

Thus, F~! is Lipschitz.

(g) In the case where K is not a cone, but only a convex closed set (containing
0), the condition 0 € Im A(K) implies that there exists v > 0 such that

2yB C A(K N B).

Suppose that o € K and y € vB are given, where y # Azo. Then

Y
Y+ +———(y— Azg) € 2yBC A(KNB
o — Azo ¥ ~ A7) (KN E)
and thus there exists ©v € K N B such that
Y
Y+ ———(y — Azg) = Au. *
o — Azol] ¥~ A%0) *)

We take A := 7—{'_’1’—[;%%" €]0,1[ so that Mgz = (1 — ). Multiplying (*) by A,
we obtain Ay+(1—XA)(y— Azo) = A(Mu). Thus, y = Az, where z = (1—A)zo+Au

belongs to K (since zo and u belong to K). Furthermore

lz —zoll = A(llw— uoll)
ly — Azol|
v+ |ly — Azol|

zo|| +1
< ”—O,Y—”y — Azo|.

(Il — zoll)

(h) Suppose that A € L(X x Y,Y) is the operator defined by
Az,y) ==Lz —y

and that K := P x Q — (%, LZ) is a convex closed set containing (0,0) (since
Z € P and LT € Q). Since A(%,Lz) = 0 € Int(L(P) — Q) = Int A(K), we
may apply the results of (g). Suppose that v > 0 is the constant such that for
all (ug,v0) € K, z € vB, there exists a solution (u,v) € K of the equation
A(u,v) = z satisfying

1
max([lu — woll, v = woll) < Z(1 + max(||uoll, llvoll)llz — A(uo, vo)l-

(*)



358 16. Solutions to Problems

Fix zo in K and z in vB. We take ug := o — Z and vy := mg(Lxg — 2) — LT
so that (ug,v9) € K. Weset z .= Z4+u € P, y = LT +v € Q and prove
that Lz = LT + Lu = LT +v + A(u,v) = LT + v+ z =y + z € Q + z. Thus,
z € M(z). Since ||z — A(uo, vo)|| = || Lxo— 2z — mo(Lao— 2)|| = do(Lzo— z), since
luoll = llzo—3ll, luoll < I Lzo—2—Lall < |Ifllzo—l + 1zl < ILlllzo—Z]+7,
inequality (22) follows from (x).

(i) We take the canonical projection my from X x Y onto Y as the operator
A and consider the convex closed set K := Graph(F') — (Z,y) which contains
(0,0). Since 0 € Int(ImF — ) = Int(wy(K)), it follows from (g) that there
exists a constant y > 0 such that for all (up,v9) € K and v € B, there exists
a solution (u,?) € K of the equation ¥ =: wy(u, ) = v, satisfying

1
max(||u — woll, [[v — wol|) < S+ max l[uoll, llwol)llv — woll- (%)
If (zo, y0) € Graph(F), we take uy := o —Z, Vo := Yo — J, ¥ = y — § and we set

Z = T + u. Since (u,v) € Graph(F) — (%, ), then (z,y) € Graph(F), in other
words, z € F~!(y) and

max(|lu — uoll, [lv — woll)

max(||z — zol|, ||y — woll)

IA

1
;(1 + max(||uol|, [|voll)([lv — woll)

1 _ _
;(1 + max(||zo — Z|l, [lvo — 7y — oll-
Whence

- 1 - _
d(mo, F(y)) < ;(1 + max(||lzo — Z|, lvo — 7D Iy — woll-

16.11 Problem 11 — Solution. Discrete Dynamical
Systems

(a) See Theorem 1.4.

(b) If f(x) is finite, the assumption implies that

(g (2), '(2)) < f(g'(z)) — F(g"*(=)).

Taking the sumn from ¢ = 0 to T, we obtain

T
> d(g" M (z), ' (z)) < f(=z) — (¢ (=) < f(=)

t=0

(since f(y) > 0). Letting T tend to infinity, we deduce that fy(z) < f(z).
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Moreover,

foz) = dg(), )+ d(g“V (), ¢"(2))
t=1
= d(g(z), ) + fy(9(x)).
If there exists o such that f,(zo) < +oo, then there exists an equilibrium to
which the solution based on z, converges.
(c) See Theorem 1.5.
(d) See Theorem 1.4.

(e) It suffices to show that z € H(x) (reflexivity) and that if y € H(z), then
H(y) C H(z) (transitivity). This is self-evident.

()
(i) The set of limit points of z* is the set
L) =N1U=z]-
>0 \s>T
Since Us»z* C H(z!), it follows that L(z') C H(z).

(ii) Since G(H(z)) C H(z), it follows that when G is lower semi-continuous,
G(H(z)) C H(z). Suppose that u = lim,_,o un, where u, € H(z) and
that v € G(u). Since G is lower semi-continuous, there exist v, € G(u,) C
H(z) such that v,, converges to v. Consequently, v belongs to H(Z). It then
follows that G(L(zt)) C L(x?).

(8)

(1) Assumption (8) implies that

Vy € H(z), d(z,y) < f(z) — f(y)-

Actually, y = zt, where z' € G(z'™"),...z! € G(z). Thus,

t
d(z,y) < Y d(z*,z°7")
s=1

IA

il(fw) )

f(at) = f(z°)
f) — f(=).

Il IA
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From the definition (10) of the function f, it follows that
Vye Hz), d(,y) < f(@) - (@),
whence that
diameter(H (z)) < 2(f(z) — v(z))-
We now choose the sequence z,, satisfying (9) and show that
UTnt1) € f(@nt1) L 0(T0) + 27" < 0(Tpg1) +277

Thus, the decreasing sequence of sets H(z,), the diameter of which tends
to 0, reduces to a single point Z. Since Z € H(z,,), whence H(Z) C H(z,),
it follows that

H(Z) C NaxoH(zn) = {Z} C H(Z).
(ii) Since G is lower semi-continuous, whence, by virtue of (f)(ii) G(H (z,)) C
H(z,), it follows that

G(Z) C NnsoH (zn) = {Z}-

16.12 Problem 12 — Solution. Fixed Points of
Contractive Set-valued Maps

(a) We suppose that f satisfies (2) and construct a solution (z,) based on z,
satisfying
Tntr € G(z0) and d(Tm, Tas1) < F(Ta) — F(@nsn)-

It folows that, for all &,
k
> d(@n, Tnir) < f(z) = f(re1) < f(2),
n=0
whence that fo(z) < f(z).

(b) Inequality (5) is trivial. Moreover, for all € > 0, there exists a solution (z,)
based on z of the set-valued map =z — B(G(z),€) such that

i A(Tn, Tnt1) < fe(z) + €.
n=0
Now,
d(z,z1) + fe(z1) < d(z,71) + i Ay Tns1) < fo(x) + €.
n=1 .

Thus, we take z. := ;.
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(c) We fix z. Since G(z) is compact, there is a subsequence ze, € B(G(x),ek)
which converges to 7 € G(z). Since G is upper semi-continuous, for any § > 0,
there exists an integer ks > 0 such that

B(G(zy,,),ex) C B(G(Z),9).

Consequently, any solution (z,) of B(G(z),&x) based on z., may be associated
with the trajectory Z,z.,,z,... which is a trajectory of B(G(z),d) based on
Z. Thus, taking into account (6),

fs(z) < d(Z,zc,) + fe(ze,)
< d(z, :L'ek) - d(m,mek) + fe,.(z) + &

(d) Letting £ tend to infinity, we obtain

f5(Z) £ —d(=,Z) + fo(z)

and letting 0 tend to 0, we obtain fo(Z) + d(z,Z) < fo(z) with Z € G(z). Thus,
fo satisfies (2) and following (a) and (5), we have fc(z) < fo(z) < fo(z)-

Since G is upper semi-continuous with compact values, it follows that the
function fg defined by (1) satisfies property (2). We show that fg is a finite
function. Since G(z) has compact values, we construct a trajectory z, € T'(x)
satisfying

d(Tpt1,%n) = d(Tn, G(T1))-

Since G is a contraction we observe that

Fol®) < 3 A, Tann) € 32 Nidla, @) = T d(z,m) < +oo.

n=0 n=0

We then apply Theorem 1.4 to deduce that G has a fixed point.

16.13 Problem 13 — Solution. Approximate Variational
Principle

(a) By virtue of Ekeland’s Theorem (Corollary 1.3), there exist € > 0, A > 0,
%o € X and 7 € X, such that

fwo) < inf f(z)+ X, f(&) < fl@o), d(@0,7) < A

and

f(@) < f(z) +elz—z| VzelX.
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Taking = Z + hv, we obtain

f(Z + hv) — f(z)

<
0= h

+ g||lv]|-

Since f is Gateaux differentiable, it follows that, letting h tend to 0,
0 < (Df(Z),v) +ellv]l.
Taking the infimum with respect to v on the unit circle

IDf(@). < e

(b) We take ¢ = X = % The previous question provides z, such that
f(zn) < infeex f(z) + % and Z, such that f(Z.) < f(zn), d(@n,Tn) < 'il
and [|Df(zn)ll, < 7.

(c) Since limyz)_c0 jlllxml_l) = 400, we may associate any p € X* with a constant
¢ > 0 such that Vlal| > ¢, £(2) > lplllell. Let m := infype(f(2) — (p,)),
which is a finite number since f is lower semi-continuous. Then the function g
defined by

9(z) == f(z) — (p,z) = inf(m,0)

is bounded below. From the previous question, there exists a minimising se-
quence Z, for g such that Dg(Z,) = Df(Z,) — p converges to 0. Thus p may be
approximated by the Df(z,).

16.14 Problem 14 — Solution. Open Image Theorem

(a) The proof follows by reduction to the absurd, assuming that A(z,) does
not belong to the interior of A(K), in other words, assuming that

1
Vn > 0,y, ¢ A(K) such that || A(zo) — y=|| < e

We apply Ekeland’s Theorem (Theorem 1.2) with € = 1 to the function z —
||A(z) — y|| on the closed subset K of X. Thus, there exists z,, € K such that

1 1
1A(zn) = vall + ~llzn — Zoll < [l Alzo) — unll < —

and

1
Vz € K, [|A@@n) = gnll < |A) = vall + ~llzn — 2. ()
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(b) Since A(z,)—y, # 0 and since the function z — ||z|| is Fréchet differentiable
at any point z # 0, given any 7, there exists a number 7, > 0
such that Vz € 7, B,

1
A(zr + 2) — ynll — |A(Zn) — gnll — (Pn, Az) < ;IIZII (k)
where

._ A(Zn) = yn

n 1= € S, the unit sphere of Y.
|lzn — yall

(c) We take u € Tk(xo). Following problem 31, we may associate the sequence
T, which converges to zo with a sequence of elements h, €]0,7./(||u|| + 1)[ and
a sequence of elements u, converging to u such that

VYn >0, z,+ hyv, € K.

Since ||hntn|| < mrllunll/(lull + 1) < 7,, the inequalities (x) with z = z, + hpvy
and (**) with z = u,, imply that

2
0< hn ((pn,Aun) + ;) :

Since Y is a finite-dimensional space, its unit sphere is compact and there exists
a subsequence (again denoted by p,) which converges to p € S. Dividing by
h, > 0 and letting n tend to infinity, we obtain

0 < (p, Au) Yu € Tk(zo).
(d) Since A(Tk(zo)) =Y, it follows that

0< (p,v) WweY.

This implies that p = 0, although p is an element of norm 1. Thus, we have a
contradiction to the assumption that A(zo) ¢ Int A(K).

(e) If A is no longer linear, but continuously differentiable, the function z —
|A(z5 + 2) — yn|| is differentiable and we have

1
Vz € B, || A(zn + 2) = tnll = 1 A(@n = ya)ll = (P, A'(z0)2)| < —|2]I-
We obtain the inequality
2
0 < hn(p‘m A’(mn)un) + E

which implies that, after passing to the limit,

0 < (p, A'(zo)u) Vu € Ti(zo)-
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(f) We apply the result (d) to the mapping A from X xY to YV defined by
A(z,y) = Bz —y and to the set K = L x M. It is easy to check that Tx(z, y) =
Typ(x) x The(y). We take o € L N B~}(M) such that A(zo, Bzo) = 0.

(g) We consider the mapping A from X x IR" defined by A(z,y) = F(z) — ¥,
the set & x IR”. and the point (o, 0). Suppose that condition (12) is false. Thus,
we may write

if A € R" is such that F'(zo)"A € Ni(zo), then A = 0. (k)

Since R} = Ngr(0), since A'(zo,0)(u,v) = F'(zo)u — v and thus, since
A'(%0,0)* X = (F'(x0)" A, —)), this condition may be written as

A'(20,0)" ™" Niexg (0, 0) = {0}
which is equivalent to
A,(;Ifo, O)TleRf; (5130, 0) is dense in IR®

and thus identical (since the dimensions are finite). This would then imply that

A(zo,0) := F(zo) € Int(F(K) + R?) = F(K)+ IR",

which contradicts the fact that z¢ is a Pareto optimum.

16.15 Problem 15 — Solution. Asymptotic Centres
(a) The proof for part (a) is easy.

(b) Since the sequence is bounded in a finite-dimensional space F, it is rela-
tively compact and thus has limit points. Thus, the set C is non-empty, convex
and closed. By definition of the function v, there exists a subsequence x, such
that

(@) = lim ||z, — 7.
Whence,
limsup ||zs — Z||* < limsup ||z, — Z|* = v(i)
§—00 t—o0

Furthermore, there exists a subsequence z, of =, which converges to a limit
point z € C. Thus.

limsup(§ — Z,7 — 22) = (§— %, — 2) <0

n—oeo

since ¥ is the projection of Z onto C.
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Since
lzn — Z)1> = |Zn — 311> + 17 — 21> + 2(zn — 3,7 — Z)

it follows that

u@) 2 (@) +I7 -2l +2(z - 5,5 - 3)
> v(g)+lg -3’
> ().
Thus, § = Z (since there is a unique minimum).

(c) The limit point w of x; is the limit of a subsequence z;. Passing to the limit
as s tends to infinity in

lzs — 211> = llzs — lI* + lly — zII* + 2(zs — v,y — 2)
we obtain
v(2) > v(y) + ly — z||° + 2(w — v,y — 2)

since as y belongs to the attractor N, v(y) = lim,_ e ||z — 3||°. Since this
inequality holds for all the limit points w of the sequence z;, it holds for all
w € C and in particular for w = y which is assumed to belong there. Thus,

v(z) 2 v(y) + lly = 2II* = v(y).

This implies that the unique minimum of v is attained at y, which coincides
with the asymptotic centre of the sequence.

16.16 Problem 16 — Solution. Fixed Points of
Non-expansive Mappings
(a) We have

1 1

15:@)  fw)l < (1= 5) 17@ — F @I < (1= 7) Il =l

By virtue of the Banach-Picard Fixed-point Theorem for contractions (The-
orem 1.5), there exists z; € K, such that &, = fy(z:) = (1 — 1)f(z¢) + 120
Whence,

1 1.

lze = f(@)ll = 5 llwo — f(=o)ll < S diam(K)

and, since K is bounded,

Jim [jz, — f(z)]| =0.
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(b) Since z; € K, which is bounded and thus (weakly) relatively compact, a
subsequence , converges weakly to w € K. Since f is not expansive, it follows
that

(TC/\ - f(fﬂ,\) —(zs — f(ws)),-’ﬂ,\ - $s)
= |lzx — z||* = (f(z2) — f(@s), T — Ts)
> |lza — zoll* — [1£ (@) — f@s)llllzx — .l
> |lzx — zoll* — [lex — zl|* = 0.

Letting s tend to infinity and since z, — f(x;) is known to tend (strongly) to 0,
we obtain

(@x — f(z2), 20 —w) 2 0.
Replacing z by its value and dividing by A > 0, we obtain
(1= Nw+Af(w) — flw+ Mf(w) - w)), f(w) —w) 2 0.
Letting X tend to 0, we obtain
I1f(w) —wl* <0

whence w is a fixed point of f.

(c) Since f is continuous, the set of its fixed points is closed. Suppose that xg
and x; are two fixed points of f and show that z := (1 — A)xo + Az; is also a
fixed point. We have

1 £ (@) = Zoll = |l f () = f(@o)ll < llza — Zoll = Allzo — |
and similarly,
£ (22) — @]l < (1= N)||lzo — 4.

Thus,

1 (x) = zoll + I £ () — @l

|xo — 4|

llzo — f(z)ll + 1 f(za) — @l
in other words,

1/ (zx) = @oll = Allzo — @1l and ||f(zx) — zall = (1 = N)l|zo — 21 ]|-
Since F is a Hilbert space, it follows that

f(."(:,\) = (1 - )\)IL'O + )\IE] = T).
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(a)

(i) If Z is a fixed point of f then it belongs to the attractor V of the sequence
FH(zo), since

I1£4(mo) — zll = | f*(mo) — f(@)II < If*~ (o) — 2.

Thus, the sequence of the || f!(zo) — Z||° is decreasing and bounded below,
whence convergent.

(ii) Consequently, if a limit point w of the sequence f!(z) is a fixed point of
f, it belongs to N N C and is thus equal to the asymptotic centre of this
sequence.

(iii) The proof of (b) shows that condition (5) implies that all the limit points
of the sequence f(zo) are fixed points of f and that, consequently, they
are all equal to the asymptotic centre of f*(zo), which is thus the limit of
the sequence f!(zo).

16.17 Problem 17 — Solution. Orthogonal Projectors
onto Convex Closed Cones

(a) It is clear that (1) implies the variational inequality (19) of Chapter 2.
Conversely, taking y = 0 and y = 2z (which belong to K, since K is a cone) in
the inequality (19) of Chapter 2, we obtain (1)(i) from which we deduce (1)(ii).

(b) We write
Mz —mr(N), Tk (Mz)) = Xz — ;’NK()\.'E), ;’NK()\.'E)) =0
Az — 7k(Az),2) <O = (z— %’/rk()\:z:),z) <0

for all z € K. Then the characterisation of (1) shows that 37 (A\z) = mk(z).
(c) (2) follows from (1)(i).

(d) Set § = z — mgz. Then § € K~ (following (1)(ii)) and (z — 4,¥) =
(rg(z),z — mk(z)) = 0 and (z — 3,2) = (7k(z),z) < 0, Vz € K~, since

7x(x) € K. Thus (1) applied to K~ shows that § = mx-(z).

(e) If mx(z) = O, then z = = — mx(z) € K. Conversely, if z € K~, then
kx| = (nxz, 7xx) = (KT, ) < 0 (following (1)(i)), whence 7k(z) = 0.

(f) Clearly, y = mk(z) and z = 7g- () are solutions of (6). Conversely, (6)
implies that y = 7x(z), following the characterisation of (1).
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(g) If K is a closed vector subspace, then 5~ = K* is the orthogonal subspace
and 7y is characterised by

(z — me(z),2) =0 Vz € K (or z — ng(z) € K1). (%)

It follows from (*) that 7g is linear. Moreover,

(mx(2),y) = (7kz,TKY+ Tr1LY)
= (mkz,TKY)
= (IZ? — TglX, WKy)
= (z,7TkY).

16.18 Problem 18 — Solution. Gamma-convex Functions

(a)

(i) They are the convex sets.

(ii) They are the convex functions.
(b) We have
flem)) = f(O_aukKi)
i=1

= inf g(> aim;)

z;€EK; =
n
< i ; i
< a:,!lelif{,- z=Zl aig(z;)

= ; o mlglf(,- g(z;)

= Zj; o f(K:)

= F(m).
(c) The proof is analogous to that of Proposition 2.6.
(d) We take m := {(0s,2:)};—; _, € M(E). Then

iaiF(xi) = zn:ai(F(:z:i) +0) € co(F(E) + RY})

i=1

= F(E)+ R} (from assumption (9)).
Thus, there exist z € F and p € IR]} such that

i:lF(:z:i) = F(z) +p. (%)
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We denote the set of such z by v(m) and check that the n functions f; are
-convex.

(e) The proof is analogous to that of Lemma 8.2.

(f) The proof is analogous to that of Proposition 12.3.

16.19 Problem 19 — Solution. Proper Mappings

(a) (1) clearly implies (2). Conversely, we assume (2) and consider a sequence
Zn such that f(z,) converges to y. The set L of limit points of z,, is:

L= {z’n}nZN'
N>0

Since f is continuous and transforms closed sets into closed sets, we obtain

f({zn}nZN) = {f(xn)}nzN'

Since {y} = Ny>o{f(zn)}n>n, it follows that

VN 20, Ly:= {xn}nzN N (y) #0.

Since f~!(y) is compact and since the L, form a sequence of closed decreasing
sets, their intersection L is non-empty.

(b) The proof for part (b) is easy.

(c) Suppose we have a sequence z, € K such that Az, converges to y in Y.
Since any p € X* may be written as p = A*q + r, where ¢ € Y* and r € b(K)
by virtue of (4), it follows that

(D, zn) = (A*q, zp) + (1, zn) = (p, Azpn) + (1, 2,) < 400

(since the convergent sequence Az, is bounded and since r € b(K)). If X is
finite dimensional, it follows that the sequence z, is bounded and that it has
limit points in K, which is assumed to be closed. If X is infinite dimensional, it
follows that the sequence z,, is weakly bounded and thus that it has weak limit
points belonging to K which, being convex and closed, is weakly closed.
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(d) We apply the previous question with A € L(X xY,Y) defined by Alz,y) =
Lz—yand K = P x Q. Since A*q = (L*q,—q) and b(K) = P~ xQ~, we need to
check that for all (p, q) € X* x Y*, there exist o € Y* and (p1,q1) € P~ x Q~
such that (p,q) = (L*q0, —go) + (p1,q1). However, by virtue of (5), p+ L*q €
L*Q~ + P~ may be written in the form

p—Lq=L"q+p1 where ¢ € Q7,p1 € P".

Thus, it is sufficient to check that g = ¢, — ¢, where ¢ and p; satisfy the
question.

Since L(P) — Q = A(P x Q), it follows that this convex cone is closed.
Moreover, A~!(y) = {(z, 2) € P x Q|Lz — z = y} is compact and its projection
onto X, which is the set {z € P|Lz € Q + y}, is also compact.

(e) Suppose that y? = 37, z¥ is a sequence converging to y, which is therefore
bounded. Since L; is bounded below,

UL <zf <Y - al <P - u;<v—) u
i i i

where y? < v. Thus, the sequences z? lie in compact sets and subsequences z¥ '
converge to elements z; of L;. In particular, it follows that - ; L; is closed.

(f) Suppose that 2, = z, — ¥ is a sequence converging to z. We shall show that
Yn is bounded. If this is not the case, then there exists a subsequence (again
denoted by) yn such that ||y.|| — oo. Thus, v, := yn/||ly=|| belongs to the unit
sphere, which is compact. Thus, there exists a subsequence (again denoted by)
v, which converges to an element v. Since z, converges, there exists an element
w such that 2z, < a. Thus, y, > z, — 2, > u — a. Whence, the inequalities

iy > X 'ﬁ imply that v > 0, in other words, that v € lRi. Moreover, since M is

= lly
convex,

1 1
—rYn + (1 ) w € M.
lly-l 9=l

Letting n tend to infinity, we obtain v+w € M. Thus, v € (M —w)NIR, = {0}
(by virtue of (9)(ii)). Thus, we have obtained a contradiction.

16.20 Problem 20 — Solution. Fenchel’s Theorem for
the Functions L(z, Ax)

The proofs for parts (a) to (d) follow the proof of Theorem 3.2 (Fenchel’s The-
orem) for this particular case.

Subsidiary Question. Generalise the proof of Theorem 3.2 in the case of
Hilbert spaces to the minimisation problem (1) stated in Problem 20.
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16.21 Problem 21 — Solution. Conjugate Functions of
x — L(x, Azx)

(a) We set f(q) := L*(p — A*q,q) and K = {q|f(¢g) < A}. It suffices to show
that K is bounded, whence, that there exists v > 0 such that for all z € vB,

sup (g,2) < +oo0.
qEK)

Fenchel’s inequality implies that (g, z) < f(g) + f*(z) and since sup e, f(g) <
A, it is sufficient to show that

Vz €vB, f*(z) < +oo.
Take v > 0 such that vyB C (A @ —1)Dom L. Then z may be written as z =
Yo — Az where (zo, Yo) € Dom L, whence

fz) = Sup((q,z)—L*(p—A*q,q))
= sup 1nf 1nf((q, z) —(p— A'q,z) — (q,y) + L(z,y))

2% z€X

< ;Seuﬁ((q, z) — (p — A*q, 7o) — (¢, Yo) + L(zo, %))

Since (q, Z) - <_A*Q7 "Z:O) - (q7 yO) = (Q) z = (yO - Axo)) = 07 it follows that
f*(z) < —(p, mo) + L(zo, %0) < +o0.

(b) Set g(p) := infyey- L*(p — Ag, q). This is convex following Proposition 2.5.
When p € (1@ A*)Dom L*, there exists (7, ¢) € Dom L* such that p = r + A*q.
Thus, L*(p— A*q, ¢) < +o0 and g(p) < +oo. Take A > g(p). Since K, is compact
and since g(p) = infyex, L*(p — A*q, ¢), Proposition 1.7 implies that g is also
lower semi-continuous and finite on (1 @ A*)Dom L*, which, by assumption, is
non-empty.

(c) We may apply Proposition 3.3 or use direct calculations, as follows:
g'(z) = sup({p,z)— inf L*(p— A%¢,q))
pPEX* geY
= Sup((p - A*q,QI) + (q, AfL‘) - L*(p - A*Q) Q))
X

= L(z, Az).
Thus, g(p) = ¢**(p) = L(-, A-)*(p).

16.22 Problem 22 — Solution. Hamiltonians and Partial
Conjugates

(a) We note that H(z, -) is the conjugate function of L(z, -), whence that (2)(i)
and (3)(i) follow from Theorem 3.1. Since the function (z,y) — (¢,y) — L(z,y)
is concave, Proposition 2.5 implies (2)(ii).
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Lastly,
L*(p,q) = 81115((17, z) + (g, y) — L(z,))
= Sép((p, z) + St;p((q,y) - L(z,y)))
sup((p, z) + H(z, q)).

(b) Since p — L*(p, q) is the conjugate function of z — —H(x, q) (by (3)(ii))
and since this function is convex and lower semi-continuous (by (4)), Theo-
rem 3.1 implies that

—H(z,9) = sup ({p,z) = L'(p, q))-

(c) We begin by noting that (6)(i) is equivalent to
(p,z){g,9) = L*(p, 9) + L(z,9) (*)
which may be written as
((p,2) — (-H(z,9)) — L'(p,9)) + (&, ¥) — L(=,y) — H(=z,q)) = 0.

Since p — L*(p, q) is the conjugate function of z — —H(z, q) (by (3)(ii)) and
since g — H(z, q) is the conjugate function of y — L(z,y) (by (1)), each term
of this sum is negative, whence (*) is equivalent to

(1) (p,z) — (—H(z,q)) = L*(p,q) =0
(i) (0,y) — L(z,y) — H(z,q) = 0. ()

We end by noting that (**) is equivalent to (6)(ii).

(d) By virtue of the characterisation of the subdifferential, we have

0€0,(—H(Z,7)) & Vze X, —H(Z,q)+ H(Z,7) <(0,Z —z)
& VzeX, H(z,7) < H(z,9)

and

0€9,H(z,q) & VqeY*, H(Z,q) — H(Z,q) <(0,7— q)
& VYgeY*, H(z,q) < H(Z,q).

16.23 Problem 23 — Solution. Lack of Convexity and
Fenchel’s Theorem for Pareto Optima

(a)
(i) Clearly p(f) > f(z) — f(z) = 0, where z € Dom(f).
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(ii) f is clearly convex if and only if p(f)=0.
(iii) For any convex combination, we have
v < FQCeaf(@) + g(AQD i)
< D aif(mo) + g(AD cuzi)) + p(f)-

We obtain the inequality (4) by taking the infimum over the convex com-
binations.

(b) If (6) is false, there would exist finite sequences of z; € L, y; € M and
o; > 0 with Y- o; = 1 satisfying
(0, w) = (Z o; Az; — Z ;Y Z o; f(zs) + Z oig(y:) + P)
i=1
€ co(¢(L x M))+ Q (where p > 0).
Thus, > o;y; = A(Y, o;z;) and

w > Zaif(xi) + Zaig(yi)
> oif (@) + 9O i)

2
2

which is impossible.

(c) Since Y is finite dimensional, we may use the Large Separation Theorem
(Theorem 2.5). There exists a non-zero linear form (c, ¢) € IR x Y™, such that

cws<  inf (cf(z)+9(y) + (g, Az —y)) + inf pc.
It follows that ¢ > 0, whence inequality (7) holds.

(d) Suppose that ¢ = 0, Then (7) implies that

< i —
0 < xeggfeM(q,Aw )

—  inf
zeAl(%)—I\l(q’ 2)

<

< nf{g,2)

= —llqll-

This would give ¢ = 0, which contradicts the fact that (c, g) # (0,0).

(e) Thus, ¢ > 0 and, dividing by c and setting ¢ = q/c, we deduce from (7)
that w < —f*(—A*@) — ¢*(g). This inequality, together with (4) implies the
inequality (9).
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(f) Since v, < f*(—A*q) + g*(7) < —w < —v + p(f) (from (4)), we obtain a
majoration of v+wv, by p(f). If f is convex, p(f) = 0 and we rediscover Fenchel’s
Theorem (Theorem 3.2).

(g) The proof for part (g) is easy.

(h) In this case,
v=jol,f@)
Assumption (8) may be written as
u € IntA(L)

and the conclusion (9) implies that there exists an approximate Lagrange mul-
tiplier g such that

v < —f(—=A4"9) + p(f)-
16.24 Problem 24 — Solution. Duality in Linear

Programming

(a) The linear programme may be written in the form

v = inf({po, Z) + YPx@—(0,u0)((1 X B)z).

We apply Fenchel’s Theorem with

f(:L‘) = (pO’ :1:),
9(z,y) = Yrxg-(0u)(T:Y),
Az = (1 x B)z.

It follows that

ff®) = Yoo
9'(p,q) = vp-(p) +vo-(q) + (g, uo)
A'(p,q) = p+Bq.

Thus,

v, = inf(Py(—p — B*q) + ¢¥p-(P) + Yo-(g) + (g, uo))
= inf (g, up)

qEQ™
—-B*gqeP~+qp

= - sup (Q7 Uo)-
qeQt
B*qeP~+qp
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(b) The proof for part (b) is easy.

(c¢) The condition
(0,0) € Int(ADom f — Domg) =Int (Im A — P x Q — (0, ug))
is equivalent to the statement that |
up € Int(B(P) + Q)
and the condition 0 € Int(A*Dom ¢* + Dom f*) may be written as
—po € Int(B*Q™ + P7).
The first of the above statements implies the existence of a solution of the dual

problem, whilst the second implies the existence of a solution of the primal
problem.

(d) This is a consequence of Theorem 5.1.

16.25 Problem 25 — Solution. Lagrangian of a Convex
Minimisation Problem

(a) The equivalence of (5)(i) and (5)(ii) is simply Proposition 4.3. The equiv-
alence of (5)(ii) and (5)(iii) follows from Problem 22.

(b) Formula (2) implies that
f(=,y) = sup (g, ) — h(z,q))
geY*
(since f is lower semi-continuous), whence
9(y) = inf sup ({¢,y) — h(z,q))-
z€X geEY' "
Moreover,
g'(9) = suw((g,y) — inf f(z,y))
y

= supsup({q,y) — f(z,v))
z€X yeY

= sup h(z, g).
z€X

We also know that this is equal to f*(0, ¢) (Proposition 3.2).
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(c) As a consequence of the above,
9(a) = sup({g,y) —g"(a))
gey-
= sup inf ({g,y) — h(z,q)).
QEY’ zeX
Thus, the marginal function g is lower semi-continuous if and only if g = ¢g™*;
in other words, if and only if the minimax equality (8) holds.
(d) We know from (7) that § € dg(y) if and only if
(@y) = (@) +9)
= sup h(z, q)-
zeX
This inequality may be rewritten in the form
9v) = mf(g,y) —h(=,7)
= Inf ¢,(z,9)

Thus, § € 9g(y) if and only if 7 is a Lagrange multiplier.

16.26 Problem 26 — Solution. Variational Principles for
Convex Lagrangians

(a) We note firstly that
A(z,q) = L(z,Az)+ L*(—A%q,q)
2 (=A¢,z) + (g, Az) =0
and that the condition A(Z, 7) = 0 implies that

A(,9) = min Az, q)
q

zl

The implications (i) = (ii) = (iii) = (i) are self-evident. (6)(iii) is equivalent to
(6)(iv) eliminating g and (6)(iii), which is equivalent to (Z, AZ) € L*(—A*q,q)
is equivalent to (6)(v) eliminating Z.

(b) The equivalence of (6)(iii) and (7) follows from Problem 22.

16.27 Problem 27 — Solution. Variational Principles for
Convex Hamiltonians

(a) We note that Fenchel’s inequality implies that B(z, ¢) > 0 for all z, ¢. The
statement that B(Z,7) = 0 is equivalent to (1)(iii). The equivalence of (1))
and (1)(iii) follows from Problem 22.
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(b) It is easy to check that if (Z, g) is a solution of (2), then
V(z,q) € X xY*, (A'q,z) + (¢, AZ) < DH(Z,q)(=, 9)-

This means that (A4*g, AZ) belongs to OH(Z, ).

(c) Suppose that (Z, §) is a solution of (4). It follows that
V(z,q) € X x Y™, (A, z) + (g, AT) < DH"(A'§, A"%)(A%q, Az).
Theorem 4.4 and assumption (3) then imply that
(AZ, A*§) € (A x A")OH(A"§, AZ).
Thus, there exists (Z,y) € 0H*(A*G, AZ) such that
(Az, A*§) = (Az, A™]).

Consequently, (Z, g) € 0H*(A*g, Az), which is equivalent to (1)(iii).

16.28 Problem 28 — Solution. Approximation to
Fermat’s Rule

(a) By Ekeland’s Theorem (Corollary 1.3), there exist € > 0, A > 0 2y € Dom f
and z, such that

flwo) < inf f(z) +eX, flze) < flzo) llzo —zell < A
and
f@e) < f(=z) +ellz — z|
Fermat’s rule then implies that
0€ o(f +ell - —zcll)(ze)-
Since Dom|| - —z.|| = X, Corollary 4.3 implies that

0 € Of(ze) +0(|| - —zell)(ze) = Of(zc) +€B.

(b) By Theorem 3.1, there exists pp € Domf. We set
g(z) = f(z) + f*(po) — (po,z) = 0

Suppose that zop € Domf = Dom g. Since g is convex, lower semi-continuous
and positive, we may apply the previous question to it with &, = n(g(zo) —
infex g(z))- Taking A = 1/n, we find points z, € Domg = Domf such that
g(zs) < g(z0), llzo — zn|l < ; and points ¢, € 8g(zn) With [|gn|]| < €n- This
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implies that f is subdifferentiable at z,, since 8f(z,) = 0g(zn) + po. Moreover,
the inequality g(z,) < g(zo) may be written as

f(zn) < f(zo) — (po, To — Zn) Vn.

Since z, converges to zy, we obtain
limsup f(z,) < f(zo)-
n—oo

Since f is lower semi-continuous at zo, we have f(z) < liminf, . f(z,)- Thus,
x is the limit of a sequence of points z, at which f is subdifferentiable. This
restates the first part of Theorem 4.3, with a proof that is valid for Banach
spaces.

16.29 Problem 29 — Solution. Transposes of Convex
Processes

(a) We have p € F*(q) < (p, —q) € Graph(F')™, which is a convex closed cone.
Since Graph(F) = Graph(F)™~, we have y € F(z) < (p,z) — (—¢,y) < 0 for
all (p, ¢) € Graph(F)~, in other words

sup sup ((p,z) —(g,¥)) <O0.
q€Y* peF*(q)

(b) This follows from formula (65) of Chapter 3.

(c) It suffices to show that the assumption (4) implies that
v > 0 such that v(B x B) C Im(A x 1) + Graph(F)

so that we may apply formula (70) of Chapter 3. Since Graph(F') is a cone, it
suffices to show that Im(A x 1) + Graph(F) = X x Y. Then, z = Azy — 7,
where zo € U and z; € DomF and we may write (z,y) = (Azo,y0) — (z1,%1) €
Im(A x 1) — Graph(F) where y; € F(x,) and yo = y + -

(d) We may write

F+GA=B(F x G)(A x A)

where (1 x A)(z) = (z, Az), (F x G)(z,y) = F(z) x G(y) and B(y, 2) =y + 2.
Assumption (6) implies assumption (4) where A is replaced by (1x A). If (u,v) €
X x Y, there exist z € Dom F' and y € Dom G such that Au — v = —Az + v,
so that we may write

(u,v) = (2, Az) — (z,y) € Im(1 x A) — Dom(F x G)
taking z = v + z. Questions (b) and (c) imply that
(F+GA) =(1x A (FxG)'B*=F*+ AG".
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(e) We apply the previous question with X =Y, 4 =1 and G(z)=0ifz e K
and G(z) =0ifz ¢ K.

(f) Now ¢ € Im(F)~ is equivalent to the statement that (0,¢) € Graph(F)~
or that (0, —¢) € Graph(F*). Consequently, if Im(F) is dense, then Im(F)~ =
X~ = {0}. Conversely, suppose that Im(F)~ = {0} and that Im(F) is not
dense. Then there would exist yo ¢ Im(F) and the Separation Theorem would
then imply the existence of ¢ € Y* such that ¢ € Im(F)~ and (g, ) > 0. But
then, we would have ¢ = 0, which is a contradiction. Consequently, Im(F) =Y
if and only if Im(F') is dense and closed.

(g) We apply question (f) to the set-valued map F|,, which has image F(K).
Then

F(K)™ = Im(F|)” = =(F|)"7(0).

But, from (e), —q € (F|K)*_1(O) if and only if 0 € (F|,) (¢) = F*(—¢) + K~
in other words, if and only if —¢ € F*"1(—K ).

(h) The fact that F~! is one-to-one follows from the inequality (9), taking
Yy = = yz and z1, 23 in F~(y). This inequality also implies that

lF (1) — F (w)lI” < cllyn — wlllF~}(31) — F (w2)l

for all vy, y2 € Im(F).

To show that Im(F') is closed, take a sequence of y, € Im(F') converging to y.
Now, the inequality (9) implies that z, := F~!(y,) is a Cauchy sequence in X,
which converges to an element z since X is complete. Since (2, y») € Graph(F),
which is closed, it follows that y € F(z) C Im(F).

To show that F is surjective, it is sufficient to show that if zo € F*~1(0),
then zo = 0. We take yo € F'(z), Since (0, —z) € Graph(F)~, it follows that
(0, 7o) — (0, %) < 0. The inequality (9) then implies that

cllzoll? = ¢ll — 2o — O||* < (~z0 — 0,0 — 0) = —(zo, %o} < 0.

16.30 Problem 30 — Solution. Cones with a Compact
Base

(a) Suppose that py € IntP* is fixed. There exists € > 0 such that po +€B C
P*, whence

Vz € P, z # 0, (po,z) > 0.
If not, there would be an zg € P, ¢ # 0, such that (po,:po) = 0, whence
Vp € X*, {po + TP o) = f5{P» %o) = 0 and we would then have zo = 0. The
set S generates P, since if z € P and x # 0, then (po,z) > 0 and z = (po, )y
where y := po/(po,z) € S.



380 16. Solutions to Problems

(b) Since pg+eB C P, thenforallz € §

— = i > i z) >0
1-ellzll = (po,z) + ¢ lnf(p,z) 2 inf (p,7) 2
whence [|z|| < 1. Thus, § C 1B is a closed bounded set.

(c) Since 0 ¢ K, the Separation Theorem implies that there exists po such that
<i -1
0 < inf(po,z) =7

Suppose that | K|| := sup,ek ||z]| and set v = n/||K||. Then, for all p € vB, we
have

{po +p,2) 21— |pllllzll =7 —~IK] =0
which implies that po+p € P* for all p € yB. Thus, pq is in the interior of P*.

(d) We consider the convex compact set S which may be written as § =
PnNpg {1} where py € L(X,IR). Since po(P)— {1} = IRy — {1} has a non-empty
interior, formula (49) of Chapter 4 implies that

Ts(z) = Tp(z) Npg ' Ty ({1}) = Tr(z) N Ker po.

Moreover, if P is a convex closed cone, then p € Np(z) if and only if (p,z) =
op(p), in other words, if p € P~ and (p,z) = 0. The formulae of (6) now follow.
Consequently

Tp(z) = Np(z)” = (P~ N {z})” = closure(P + zR).

16.31 Problem 31 — Solution. Regularity of Tangent
Cones

indextangent cone—(

(a) We write = +tv = (1 — £)z + £(z + hv) where h is such that z + hv € K
and use the convexity of K.

(b) It is clear that for an arbitrary zo € K,
CK(fL‘o) C T[((:Ilo).

Suppose that ug € closure(U+ (K — o)) and € > 0 are fixed. There exist y € K
and a > 0 such that ug — L(y — z¢) € £B. Take 8 = €at/2, z € By(zo,3) and
h €]0,a] and set u := ¥5=. Then z + hu = (1~ %)z + 2y belongs to the set X,

since  and y = = + [Su belong to K and g < 1. Consequently,

llz — ol Y — %o

e — uo| < N ”uo _ <Bla+e/2=¢.

Thus, ug belongs to Ck(zo)-
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(c) We have

yerg'(z) & (y—z,2—2)<0 Vze K
< (y—=z,v) <0 Vv e Sk(z)
& (y—=z,v) <0 Vve Tg(z)
<

Yy — x € Ng(z).

(d) Suppose that (zn,pn) € GraphNg(-) is a sequence converging to (z,p).
Then, for all y € K, we have (p,,y) < (pn,zn) and, passing to the limit,
(p7 y) < (p7 IL') Thus, yZS NK(:E)

(e) It is clear that Upsof(Int K — 2) C Int Tk (z). Since Sk(z) is convex, then
Int Tk (z) = IntSk(z), whence v € IntSk(z) and there exists A > 0 such that
v € #(IntK — z). Suppose that n > 0 is such that v + 7B C Sk(z). ffz +v €
Int(K), the question is proved. Otherwise, take zo € Int(K) and vg := 7o — -
Then v — m?(mvo belongs to Sk(z), whence, there exists 7, > 0 such that z +

h(v — W’Iv;—"vo) belongs to K. Take o := m_ﬁ:]ﬁ_voﬂ and note that

z 4 (1 - a)hv = azo + (1 — a) (x—l—h(v—ﬁvo)).

Since z¢ € IntK and :z:+h(v—“—'1v§l-lvo) € K, it follows that z+(1—a)hv € Int(K)
and that v € Uxso3 (Int(K) — z).

(f) Suppose that vy € Int Tk (zo). Then there exists hy > 0 such that vy €
a(Int(K — z0)), whence, there exists € > 0 such that

zg + hovg + eB=xz¢+ ho(’Uo + hiB) C Int(K)
0
Thus,
(zo +€/2B) x (v + %B) C Graph(IntTk(+)).
0

16.32 Problem 32 — Solution. Tangent Cones to an
Intersection

(a)
TKI (0’0) = {mlml < 0}: TK2 (07 0) = IR'-2}-
Kl N KZ {07 0}) TK)ﬁKz(O) 0) = {0) 0}
TK; (07 0) n TK2 (07 0) {mlml = 0) T = O} 7é TK10K2(07 O)
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K,
! L .
(_11 0)
K,
Kl - Kg
Fig.16.1.

(b)
K NK,={0} x [-1,+1] and K; — K, = [-2,0] x [-2,+2].
Thus,

(0, 0) € Kl - Kz, (0, 0) ¢ Int(Kl — Kg)
TKanz(O, 0) = {0} X ]R, TK1 (0, 0) = ] - O0,0] X IR
Tk,(0,0) = [0,00[xIR and Tk,nk,(0,0) = Tk, (0,0) x Tk,(0,0).

v

K, LK,

Fig.16.2.

(c) The statement that z € K means that Az € [, JK;. Assumption (50) of
Chapter 4 implies that in X™,

0 € Int(ImA — [ K).

i=1

Thus, formula (50) of Chapter 4 implies that

Tx(z) = A (T, k(20 -5 Zn))
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and formula (46) of Chapter 4 implies that
Tx(z) = AH(]] T (=)
i=1

indextangent cone—)

16.33 Problem 33 — Solution. Derivatives of Set-valued
Maps with Convex Graphs

(a) The proof for part (a) is self-evident.

(b) The equivalence of (i) and (ii) follows from the definition of the normal
cone and that of (i) and (iii) from the fact that the normal cone is the polar
cone of the tangent cone.

(c) From the characterisation (ii), we have

(1,1 —¥2) < (p1, 21 — 22)
(g2,02 — 1) < (P2, 22— 71)

and we add these inequalities.

(d) It is sufficient to observe that Graph(¢x) = K x {0} and that Tgraphg, =
Tk x {0} = Grapher,.

(e) Suppose that hy < hy. The convexity of the graph of F' implies that if
y € F(z), then

hy hy hy hy
M _n Fl22 h 1— 2
th(x + hou) + (1 h2) y C (h2 (z + hou) + ( e T

= F(z + hu).

Thus,
Flz+hwu)—y _Flz+hu)—y
C
ha ha
whence
d U,F(m+h1u)—y <d U,F(x+h2u)—y .
hl h2

Thus,

- hu) —
tim d (o, F(z+ hu) —y —infd(o, Fz+hu)—y
h—0+ h h>0 h
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exists in IR.
The definition of the tangent cone to the graph of F at (zo, %) € Graph(F)
implies that vy € DF(z0, yo)(uo) if and only if for all (g1,€2) > 0 we have

F(zo + hu) - yo) el
; <

lu—uoll<ey R>0

inf infd (vo,
which is the desired formula.

(f) Take y € F(z). The convexity of the graph of F implies that
(1= h)yo + hy C F(zo + h(z — o))

whence that

F(zo + h(z — zg)) —
= o € (zo (h 0) ~%

It suffices to let h tend to O+.

(g8) We show that (ii) = (i). From the previous question, we have F(z) —yy C
DF(zo,y0)(z — zo) C P for all z € Dom(F). We now show that (i) = (iii).
From (b) we have, for all ¢ € P*,Vz € X and Vy € F(z), y € yo + P, whence
(@:%0 —y) < 0 = (0,20 — z), in other words, 0 € DF(z¢,%0)"(q). Finally, we
show that if vy € DF(z, yo)(uo), then vg € P = P**, since, by virtue of (iii),
because (O, _Q) € NGraph(F‘) (fl)o, yO) = TGraph(F) (3307 yO)_) we have

((O’ _Q)7 (UO) UO)) = _(‘LUO) S 0 Vq S P+

in other words, vg € P.

(h) Take v € DF(z,y)(u). There exist sequences u, — u, v, — v and h, > 0
such that y + h,v, € F(z + h,u,) for all n. This implies that z + h,u, € L
for all n (and thus that v € Tr(z)) and that Az — y + h,(Au, — v,) € M for
all n (and thus that Au — v € Ty (Az — y)). Conversely, take u € T (z) and
v € Au — T(Az — y). There exist sequences u, — u, w, — Au—v, h} >0,
k%2 > 0 such that z + hlu, € L and Az — y + h2w, € M for all n. We set
hyn := min(h), h2) and v, := Au, — w,, which converges to v. We then observe
that y + h,v, € F(z + hnu,). The last formula is then clear.

16.34 Problem 34 — Solution. Epiderivatives of Convex
Functions

(a) The proof for part (a) is self-evident.
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(b) We note that vg € DF,(z, f(z))(uo) if and only if for all &), e, > 0, there
exist u € up + €,B, v € vo + 2B and h > 0 such that f(z) + hv > f(z + hu),
in other words, that v > inf,cyyte, 8 DF(z)(u), or again that

vo > sup _inf BDF(:c)(u).

e1>0 u€uoter

Moreover, DF, (z, f(z))" is a positively homogeneous set-valued map from IR
to X*. It is sufficient to identify DF, (z, f(z))"(—1) and DF,(=z, f(z))*(1). But,
p € DF, (=, f(z))"(—1) if and only if

(P, 1) € Nep(s)(, f(2))

which is impossible. However, p € DF,(z, f(z))"(1) if and only if (p,—1) €
Nep(s) (2, f(2)):

vy e X, (pv)— flv) < (pz) - f(2)
in other words, if and only if p € 0f(z).

(E’—l)(pv-l) -1
21(2) {Sparh (@ ). 0)
pPE af(l') A4 (pv—l) € lvEp(f)(zv f(a:))

Fig.16.3.

16.35 Problem 35 — Solution. Subdifferentials of
Marginal Functions

(a) We identify f with the function f defined on X x Y by f(:z:,y) = f(z).
Thus,
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h(y) := inf(f (2, ) + Yerpn(r) (2, ) = f(Z)

where Z € F~!(y).
We know from Proposition 4.3 that

ge Bh(y) < (07 q) € a(f + ¢Graph(F))(j) y)
Assumption (2) implies that

(0,0) € Int(Domf — Domicraph(r))
= Int(Domf x Y — Graph(F)).

In fact, by virtue of (2), there exists v > 0 such that any u € yBx may be
written as u = x; — 2 where z; € Domf and z2 € DomF'. We take v € 7By
and y» € F(z2) and set y1 = v + y2. Thus, (u,v) = (21 — Z2,y1 — ¥2) €
Domf — DomiGrapn(r)- Following Corollary 4.3, we obtain

g € Oh(y) < (0,q) € (%) x {0} + Narapn(r)(Z: ¥)-
Thus, there exists p € Of(z) such that
(—P,9) € Ngraph(r)(Z> ¥).
(b) From the definition of DF(Z,y)", (3) may be written as
—p € DF(Z,y)"(—9)

and formula (4) now follows.

16.36 Problem 36 — Solution. Values of a Game
Associated with a Covering

The proofs for parts (a) and (b) are easy.

(c) From the definition of v%(.A), the inequality
inf sup f(z,y) < v/(A)
z€EE yeK

holds for all K" € A. Thus, given any integer n, there exists an element zx, € E
such that

1
sup f(Zxn,y) < v(A) + —
yeK n
(definition of the infimum). Taking (L, m) > (K, n), we obtain:

1 1
Sup f(ZLm,y) < sUp f(&r.my) < 0'(A) + = < (A) + =
yeK yeEL m n
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Thus, if we fix Ky € A and K D Ky, it follows that

sup (sup f(mL,m,y)) < oh(A) + 2

(Lym)=(K,n) \yeKo
whence,
lim sup (sup (K m, ) = inf su sup f(Zkm,
(K,n)>(Ko,1) \veKo (@msy) (Kn)>(Ko 1)(Lm)>I()Kn)(y€1£:; f@xmy v))
< WM(A).

(d) if A is countable, the same is true of Ax IN and the sequence (K, n) — Tk,
is a standard sequence.

(e) From (7)(ii), 3K, € A such that the (generalised) sequence of the z , lies
in a compact set. Thus, a generalised subsequence converges to an element x,
and since £ — f(z,y) is lower semi-continuous, it follows that

Vy € K, f(z.,y) <(A).

16.37 Problem 37 — Solution. Minimax Theorems with
Weak Compactness Assumptions

(a) Since y — infyep f(z,y) is concave and upper semi-continuous, the sets
K, are convex, closed and bounded (whence compact). Applying the minimax
theorem (Theorem 8.1) to —f, we obtain, for all n

1nf sup flz,y) = sup 1nf f(:z: y)
z€FE yEKn

so that, since F' = U, K,,, we have
WM(A) = sup sup 1nf f(:r )
n yeK, <
= zgg;relgf (z,y)-
(b) Assumption (8) implies that there exists v > 0 such that
"YB C UyeFDomf;.

Thus, for all p € vB, there exists y, € F' such that f; (p) < +oco. From question
(d) of Problem 36 with Ko = K, there exists IV, such that

VnZNpa (p,fl?n) < f(xmyp)'i'f;p(p)
< WA +1+ 5 (p)
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(Fenchel’s inequality). Since the sequence z, is countable, it follows that
sup(p, zn) < +00
n>0

which implies that the sequence of the z, is bounded. Thus, there exists a
subsequence z, which converges to Z and, since z — f(z,y) is lower semi-
continuous, it follows that

f(@,y) < liminf f(zn,y) < 0'(A).

Since v"(.A) = v® (from the previous question), we have proved the minimax
equality.

16.38 Problem 38 — Solution. Minimax Theorems for
Finite Topologies

(a) We take f = I, the identity mapping from F to Y. For all K € S the
mapping I8k = Bk : M™ — Y is continuous for all vector-space topologies on
Y (under which addition and scalar multiplication are continuous). Thus, I is
continuous from F (with the finite topology) to Y.

(b) Suppose that A is an affine mapping from F' to Z. We have to show that
for all K € S, APk is continuous from F to Z. But, ABx = Pak, is associated
with the finite subset A(K) of Z and is thus continuous when Z has the finite
topology.

Remark. . The weak topology on a Hilbert space Y is the initial topology, the
weakest topology under which linear forms f € Y* or linear operators from Y
to finite-dimensional spaces are continuous (for the Hilbert space topology).

(c) In the proof of Theorem 8.4, the mapping D from F to F defined by
D(z) = Y%, gi(z)De(=;) is continuous when F' has the weak topology, since D
may be written in the form Srg where K = {D.(z1),..., De(z»)} and where
g:z — g(z) = (q1(z), ..., gn(z)) is continuous. Thus, if Fy denotes F' with
the finite topology and F) denotes the set F' with a vector-space topology, then
C(E, Fy) C C(E, F}), whence

sup inf f(z,D(z)) < sup inf f(z, D(z)) < oM.
DEC(E,Fo) *€F DeC(E,Fy) *€E

Thus, equation (48) of Chapter 8 is stronger with Fp than with F).
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(d) In the proof of Theorem 8.5, we may write (u, A) = >, M f(CBx (1), ;)
in formula (55) of Chapter 8. The continuity of C from F to E when F has
the finite topology implies the continuity of u — CBx (1) and the lower semi-
continuity of the functions yu — ¢(u, A). Thus, in Theorem 8.5, we may replace
the space F; (F with a vector-space topology) by the space Fp (F with the
finite topology). Since C(Fy, E) C C(Fy, E), we obtain

ot
CEC(FoE)supf(C(y) y) < ccl{}?fx,}z)zggf(c(y) y) <

Thus, equation (51) of Chapter 8 is stronger with Fy than with Fi.

16.39 Problem 39 — Solution. Ky Fan’s Inequality

(a) The negation of (3) may be written as
Vz, Jy such that ¢(z,y) > 0
Oor as
K CUyexT(y).

Since K is compact, and since the sets T'(y) are open, (4) now follows using (2).

(b) We consider a continuous partition of unity {a;(-)} which is subordinate to
the covering of K by the open sets T'(y;). We set

fl=): Zaz(fc

Thus, f is a continuous set-valued map with values in K, since K is convex
and the y; are in K. Brouwer’s Fixed-point Theorem (Theorem 7.1) implies the
existence of a fixed point Z = f(Z) = Y=, ai(Z)y:. Thus,

0(Z,%) = ¢, Zj: a:(Z)ys)

> S a@e@y)  (fom (5))

i=1

= > @)@, w)

icl(z)
where
I(z) :={i=1,...,n|a;(z) > 0} # 0.

But, when i € I(z), a;(Z) # 0 and Z belongs to the support of a;, which is
contained in T'(y;). Thus i € I(Z) implies that a;(Z) > 0 and ©(Z, y;) > 0. Thus
(6) is satisfied.
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(c) Thus, Brouwer’s Theorem shows that the negations of (3), (2) and (5) imply
the negation of (7) and that (2), (5) and (7) imply (3).

(d) We use Proposition 8.2 to extend Ky Fan’s Inequality to the case in which
K is a convex compact subset of a Hilbert space (or a general topological vector
space). There exists Z € K such that

supgo(:c y) <= sup 121f‘ max o(z,¥:)-

i=1,..,n

But, for any fixed z € K,

Jmax o(z,y;) = ASEI;%Z/\M(% )

< sup o(z, Z)\zy'z)

reM =1

= sup  o(z,y).
YECO(Y1 yueerYn)

Since K is convex,

co(yry---,Yn) C K

and (c) implies that

inf sup  ¢(z,y) <0.
£€c0(U1,--tm) yEco(ynmn)
Thus,
< .
BBV S B P
< inf sup  (z,y) <0

ZECO(Y15-+1Yn) YyECO(Y1 yer¥n)

whence v" < 0.

(e) See the remarks following the proof of Theorem 8.6.

16.40 Problem 40 — Solution. Ky Fan’s Inequality for
Monotone Functions

(a) We may write

W <sup inf  sup o(z,y)
KeS z€co(K) yeco(K)
since co(K) C E and K C co(K). Applying Ky Fan’s Theorem (Theorem 8.6)
in finite-dimensional spaces (since K = {y1, ..., ¥} is finite, co(K) is in a finite-
dimensional space) we know from (2)(iii) that there exists Z € co(K) such that
SupyECO(K) 90(5:7 y) < SupyECO(K) ()O(yi y) < 0. ThllS, ox <o



16.41 Problem 41 — Solution 391

(b) Thus, there exists § € K such that

0 < o(Z,7) (*)

and since, from assumption (2)(i), the function t — (Z + #(§ — Z), ) is lower
semi-continuous, there exists ¢ €]0, 1[ satisfying the desired inequality.

(c) Weset y :=Z +£(§ — Z). The fact that ¢ is monotone implies that

0 < limsup(p(z,,y) + o(y,z,.))
r2p(y)
< limsup p(z,,y) + limsup p(y, z,,)
r=p(y) K
< o(v,z) (x+)

because limsup s ,¢,) (., y) < v# < 0 from Problem 36 and

limsup ¢(y, z,.) < v(y, Z)
pZp(y)

since z — ¢(y, 2) is upper semi-continuous. Since this function is also concave,
the inequalities (6) and (*x) imply that

0 < (@ +Uy—17),7)+ (1 -1y, )

< e(E+H7,2), (1 - )7 + 7). ()
The inequality (***) contradicts the assumption of monotonicity (3). It follows
that assumption (5) is false, whence (9) is true.

Remark. In other words, the assumption of monotonicity (3) allowed us to
replace the assumption of lower semi-continuity of z — ¢(z,y) for the initial
topology with that of lower semi-continuity for the finite topology, which is
stronger. This is very useful since, despite appearances, there are many inter-
esting examples in which it is not possible to assume that z — ¢(z, y) is lower
semi-continuous for the topology of an infinite-dimensional space.

16.41 Problem 41 — Solution. Generalisations of the
Gale—Nikaido—Debreu Theorem

(a) We introduce the function ¢, defined on K x P~ by

o(z,y) = —o(F(z),y)

which satisfies the assumptions of Theorem 8.5. Thus, there exists Z € K such
that

sup ©(Z,y) < sup ©(C(y),v)
yeP~ yEP~
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where, from (3), the second term is negative or zero. Thus,
Yy € P, 0< o(F(%),y) = o(F(Z),y) + o(P,y),
whence
VyeY, 0<o(F(z)+ P,y).
Since F'(Z) + P is closed, it follows that 0 € F(Z) + P.

(b) The proof for part (b) is self-evident.
(c) We take C = mg and P = {0} (whence P~ =Y).

(d) We take P = {0}, K = B (which is compact, since Y is finite dimensional)
and C to be the function defined by C(y) =y ify € B, C(y) = ir ity ¢ B.
Then o(F(C(y),9)) = lyllo(F(C(y),y)) = 0if y ¢ B and o(F(C(y),y)) =
o(F(y),y) > 0ify € B.

16.42 Problem 42 — Solution. Equilibrium of Coercive
Set-valued Maps

(a) Condition (3) implies that Ve > 0, Ja > 0 such that

sup o(F(z),z) < —e<0.
lll=axeK

This implies that F(z) C T,g(z), where aB denotes the ball of radius a. Taking
a sufficiently large that aB N K # 0, and since

TKnQB(fB) = TK(:I:) N TaB(:L')

we see that F' satisfies the tangential condition on the convex compact subset
K NaB. Theorem 9.4 then implies that F' has a zero T € K NaB.

(b) We replace the set-valued map F' by the set-valued map G defined by
Glz)=F(z)+y—=z
and note that
o(G(z),2) = o(F(),2)— ||z||* + (3, )
< o(F(z),z) + llyllll]l-

Condition (4) implies that for all A > 0 there exists a such that for all ||z|| > a,
o(F(z),z) < —A|z||. Taking A > ||y||, it follows that

o(G(z),z) < —(A—lyl)a <0

whenever ||z|| > a. Thus G satisfies condition (3) and we may apply the previous
question.
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16.43 Problem 43 — Solution. Eigenvectors of
Set-valued Maps

(a) From Problem 30 we have
Ts(z) = {v € Tp(z)|(po, ) = 0}. (*)

We see that each element u € G(z) satisfies (p,u) = 0. Let v be an element
of F(z) N Tp(z). Then u := v — (po,v)z belongs to G(z). Since v € Tp(z) =
closure(P + IRx), the same is true of v — (po, v)z. Thus, u € Tp(z) N G(z).

(b) G s clearly upper hemi-continuous, since because F' is upper semi-continuous
with compact values, for z in a neighbourhood of zy we have:

o(G(z), p) o(F(z),p — (P, z)Po)

o(F(zo),p — (P, z)Po) + &(llpll + |{p, z)|l|poll)
o(F(zo),p — (P 0)po) + || F'(@o)l|{p, 7o — @)

+ e(|lpll + (o, z)Ipoll)-

The images G(z) are clearly convex and compact since they are images of the
convex compact set F'(z) under v — v — (po, v)z. Thus, we may apply Theo-

rem 9.4; there exists Z € S such that 0 € G(Z). Thus, there exists 7 € F(Z)
such that

INIA

0 =7 — (po, V).

16.44 Problem 44 — Solution. Positive Eigenvectors of
Positive Set-valued Maps

(a) The graph of the set-valued map z — G(z) —dF'(z) —IR] is clearly convex;
whence, the set (G—0F)(M™)—IRT is convex. To show that it is closed, we take
a sequence of elements 2, € G(zx) — 0F(zx) — IRT converging to z. Then, for all
p € RT, we have (p, z) < o(G(zx), p) — 6(p, F'(zx)) and, since M" is compact,
a subsequence zp converges to z € M™. Since z — o(G(z),p) — d(p, F(2)) is
upper semi-continuous, it follows that

(p, 2) < 0(G(), p) — 6{p, F'(x))-

Since this inequality holds for all p € IRT, it follows that z € G(z)—6F(z) —IRY.
The proofs for the remaining parts are similar to those of Theorem 11.2.

16.45 Problem 45 — Solution. Some Variational
Principles

(a) This follows trivially from Fenchel’s inequality.



394 16. Solutions to Problems

(b)
(i) If 0 € A% + 8f(Z), then = — AZ belongs to Of(z) or again Z € df*(D).
Thus,

0=p—pep— Adf (D)

Conversely, if p € A9f*(p), there exists Z € 8f*(p) such that p = AZ and
so 0 € AT + 8f (7).

(i) —AZ € 0f(z) if and only if, following Proposition 4.2, we have
f@) - fly) <(-A%,2-y) WeX
or again if
f(Z) + fr(—Az) + (Az,z) = ¢(z) = 0.
(c) If f(z) = ¢¥k(z), any solution T of (2)(iii) is a solution of
zeK and Wy e K, (A@),z—y) <0
in other words a solution of a variational inequality.
(@) We consider the case in which A is a set-valued map with convex compact
values. Question (b)(i) is the same. Suppose that Z is a solution of 0 € A(Z) +

Of(Z). Then, there exists & € A(Z) such that —& € 9f(z), whence, such that
Vy € Domf,

f(@) - fly) < (-4,Z —y) < o(A@),y — 7).
Conversely, the inequality (4) may be written in the form

sup inf (f(Z)— f(y)+ (v, Z—y)) <0
y€Dom f UEA(Z)
Since Dom f is convex, A(Z) is convex and compact and (u,y) — f(Z) — f(y) +
(u,ZT — y) is lower semi-continuous and convex in u and concave in y. The
minimax theorem (Theorem 8.1) then implies that there exists & € A(Z) such
that

Vy € Domf, f(z)— f(y)+(@,2—-y) <0

in other words @ such that —a € 8f(z). Thus, 0 = 2 — @ € A(Z) + 8f ().

Finally, if @ € A(Z) is such that —a@ € 0f(Z), in other words, such that
F(@) + f*(—u) + (&,z) = 0, then ¢(Z) = 0. Conversely, if ¢(Z) = 0, there exists
an element @ € A(Z) such that

0= ¢(z) = f(z) + f(-2) + (&, T)

since A(Z) is compact and u — f*(—u) + (u, Z) is lower semi-continuous. Thus,
—u € 8f(Z) and @ € A(Z).
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(e) From (2) (i), there exists p € Domf* such that
0€p+ A0f(p) C Domf* + Az C Domf* + ADomf

since ¥ (S 8f*(ﬁ) C Domf

16.46 Problem 46 — Solution. Generalised Variational
Inequalities

(a) Since B(z) > 0, B*(0) = sup,({0, z) — B(z)) = —inf, B(2) is finite. Thus
0 € Dom 3*. We recall that

Bs = o DomfB; = {0}
\ . 1
B = Yip, DompB; = -B.
. Lo .
Bz = ol Dompg; = X*

Consequently

Int(Dom f* + ADom f + Dom ;) = Int(Dom f* + ADom f)
Int(Dom f* + ADom f + Domf;) D Dom f* 4+ ADom f
Int(Dom f* + ADom f + Dom ;) = X*.

If f = vk, then Dom f = K, Dom f* = b(K) and

Int(b(K) + A(K)) if i =0
Int(b(K)—i—A(K)—l—Domﬁ;)D{ b(K) + A(K) ifi=1.
X* if 1=2

(b) The subset K, := {z € Dom f|f(z) < n and ||z|| < n} is clearly compact.
The function ¢ defined by

o(z,y) = —0(A(z),y — z) + f(z) — f(v)

is concave in y and satisfies p(y,y) = 0. The first part of the proof of Theo-
rem 9.9 shows that z — o(A(z),y — z) is upper semi-continuous. Thus, ¢ is
lower semi-continuous in z and Ky Fan’s Inequality (Theorem 8.6) implies that
there exists a solution z, € K, such that

Vy € Kp, @(zn,y) <0.

(c) Following (8), there exists 7 > 0 such that
nB C Dom f* + ADom f + Dom *.

Thus, for all p € X*, there exist ¢ € Dom f*, y € Dom f, v € A(y) and
7 € Dom (3* such that
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£=r+q+u.

: IF2l
We choose n(p) such that y € K,,. Thus,
ﬁ(p7 :L'n) = (T7 Tn — :l/) + (Q) xn) + ('U')mn - y) + (T + u, 'lJ)
< B() +B(zn—y) + f1(q) + fz2) + (¥, 20 — y) +{r + 0, 7).
Since A is S-monotone, it follows that for all v € A(z,,),
B(zn —y) < (Tn —y,v — u)
whence that

O'(A(-'En),y - mn) = SAU(P )(v,y - -Tn) < _<U, Tn — y) - ﬁ(xm y)-
vEA(Tn

Adding these inequalities, we obtain:
® e < oA,y — ) + f@) ~ f(v)
+(B(r) + f(a) + f(y) + T +w,9))
and following (7)
) < g 0) 4 1(0) + 1)+ (-4 ) < oo

It follows that the sequence z,, is bounded.

(d) Since X is finite dimensional, there exists a subsequence (still denoted by)
Z, which converges to Z. We fix y € Dom f and choose n large enough so that
y belongs to K,. Then since A is upper semi-continuous with convex compact
values, the first part of the proof of Theorem 9.9 shows that z — o(A(z),y—z)
is upper semi-continuous. Thus,

~o(A@),y—2)+ [(@) ~ /(t) < lminf(~o(A@n),y - zn) + f(za) — F))
< 0.
This implies that £ € Dom f and that Z is a solution of (2)(iii) and thus also

of (2)(i).
Taking f = 1k, the problem (2) is equivalent to the variational inequality
(9). In this case, assumption (8) may be written as

0 € Int(b(K) + A(K) + Dom 8*). (*)

If K is bounded (b(K) = X*), if A is surjective (A(K) = X*) or if A is
Bz-monotone (Dom B3 = X*), then there always exists a solution Z of the vari-
ational inequality (9). If A is B)-monotone, it is sufficient to assume that

0 € b(K) + A(K),
while if A is only monotone, it is sufficient to assume that

0 € Int(b(K) + A(K)).
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16.47 Problem 47 — Solution. Monotone Set-valued
Maps

(a) We have

lz—ylI> — (p— g,z — v)
2
lz —vlI* = llp — gllllz — y|| = 0.

(z-p—(y—q),z—v)

IN

(b) We note that
lz =y +Xp — QII* = llz — ylI* + Xllp — ¢ll* + 2\p — ¢,z — v).

Thus, if A is monotone we obtain the inequality (4). Conversely, the inequality
(4) together with the above equation imply that

Xlp — g|I* + 2M(p— g,z —y) > 0.

We obtain the monotonicity by dividing by A > 0 and letting A tend to O.

(c) Suppose that p € 8f(z) and ¢ € 8f(y) are given. The inequalities

f@)—fly) < (p,z—y)
fly) = f(z) < (gy— =)

imply that Of is monotone.

(d) Suppose that z; € Jx(y:), ¢ = 1,2. Then there exist v; € A(y;) such that
Yi = x; + M; € 7; + AA(z;). It follows that

2
ln — wall® = llz1 — z2 + Avr — v2)|
|21 — z2l|” + Aoy — vall® + 2X\(v1 — va, @1 — @5)

> |z — zol® + Moy — vl
It follows that
(i) |21 — z2|< ||1y1 — vl
(i o —eall < S~ el

If y, = Yo, then z; = x5, which shows that J) is one-to-one. Then z; = Ia(y:)
and v; = i(l — J))(¥:). The previous inequalities imply that Jy and A, are
Lipschitz with constants 1 and 1/, respectively.
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(e) We take y; and y,.

(Ax(y1) — Ax(y2), 11 — ¥2)
= (Ax(11) — Ax(%2), (1) — Ia(w2) + A(Ar(31) — Ax(¥2)))
= (Ax(x1) — Ax(¥2), Ia(n) — Ia(y2)) + MAx(wn) — A,\(y2)||2.

The first term is positive since A is monotone and (Jx(¥:), Ax(y:)) belongs to
the graph of A for i = 1,2. Thus,

(Ax(1n) — Ax(y2), 1 — y2) 2 0.

(f) We suppose that the pair (z,u) satisfies
Y(y,v) € Graph(A4), (u—v,z—1y) > 0.

For y, we take the solution yo of the inclusion u + z € yo + A(yo) (this choice is
possible by virtue of (8)). Let vp € A(yo) be such that u + = = yo + vo. Then

(u—vo,z— %) = —llz —wol* =0
since A is monotone. Then z = yp and u = ug € A(yo) = A(z).
(g) If A satisfies (9), then A(z) is the intersection of the closed half spaces
{uv € X|(u —v,z —y) > 0} for (y,v) in the graph of A. Thus, it is a convex
closed set.

We consider a sequence z, converging to z and a sequence u, € A(z,)
converging (weakly) to u. We take (y,v) in Graph(A). The inequalities

(Un — v, 2, —y) 20
imply, after passing to the limit, that
(u—v,z—y)>0.

It follows from (9) that u € A(z).

(h) We calculate
[14x(2) = m(A@)II* = 1A (@)I1” + Im(A@) I ~ 2(Ax(2), m(A(=)))-

In addition, since A is monotone and since (z,m(A(z))) and (J\(z), Ax(z))
belong to the graph of A, we obtain the inequality

(m(A(z)) — Ax(z), 2 — Ja(2)) = Mm(A(z)) — Ax(2), Ax(z)) > 0.
These two inequalities imply that
1 4x(z) — m(A(z))|I” < [[m(A)II* - | Ax(=)l]
whence that

llz — Ja(@)Il < Allm(A(=))]l-
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(1) Let y = A,;x(z) be a solution of the inclusion y € A(z — Ay — py), which
shows that y is a solution of the equation y = A,(z — \y) and is thus equal
to (A,),(z). Since A, is monotone and m(A,(z)) = A, (z), the inequality (12)
implies that

14p4a(2) = Au@)| < AL = 1 Ar ().

This inequality shows that the sequence p — ||A,(z)|| is an increasing sequence
bounded by ||m(A(z))]||. Thus, it converges to a limit . The same inequality
shows that

Jim 14,a(2) — A,(2)I* =0

whence, the Cauchy criterion implies that A)(z) converges strongly to an el-
ement v. Since (Jx(z), Ax(z)) belongs to the graph of A, which is closed, it
follows that v € A(z). Moreover, since [|[Ax(z)| < |[m(A(z))|l, it follows that
llv|| < |lm(A(z))||- Since m(A(z)) is the unique projection of 0 onto the convex
closed subset A(z), it follows that v = m(A(z)).

(G) If f: X - IRU {+oo} is a nontrivial, convex, lower semi-continuous func-
tion, Theorems 2.2 and 4.3 show that the set-valued map A := 9f satisfies the
assumption (8). Thus, we complete the proof of Theorem 5.2 by showing that
Vfr(z) = Ax(z) converges to the element 8f(z) of minimum norm.

Remark. Conversely, Minty’s theorem shows that any monotone set-valued
map satisfying (9) also satisfies (8). Condition (9) says that the graph of A is
maximal over all monotone set-valued maps. This is why monotone set-valued
maps A satisfying (8) and (9) are called mazimum monotone set-valued maps.

16.48 Problem 48 — Solution. Walrasian Equilibrium
for Set-valued Demand Maps

(a) The graph of B is clearly closed. To show that B is lower semi-continuous
at pp € M¢, we take fixed zo € B(po,7(po)) and € > 0. Suppose that z € L
satisfies

—c := (po, Z) — 7(po) < 0.

It follows that there exists 6 such that zo := 6% + (1 — §)z € zo + €B. Since
(po, T0) — 7(po) < 0, we have

(po, o) — T(po) < —cb < 0.

Take n = 4¢f. Since 7 is lower semi-continuous, there exists a neighbourhood V'
of po such that
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VpeV, (p,z) —7(p) < (po,s) — (o) + € + (P — Po,Zo)
< —%09 < 0.

This implies that zy belongs to B(p,7(p) for all p € V, whence that p —
B(p,r(p)) is lower semi-continuous.

(b) If L is compact, the sets B(p, 7(p)) lie in a fixed compact set. Since its graph
is closed, B(-,7(+)) is upper semi-continuous whence continuous (see Problem 2).
It follows that D(p,7(p)) is an upper semi-continuous sct-valued map.

(c) We apply Theorem 9.2 (Gale-Nikaido-Debreu) to the set-valued map C :
M¢ — IR’ defined by

Clp) == MO — éDi(p, ri(p) (%)

where the functions 7;(p) are continuous since they are the support functions of
compact sets.
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17.

Compendium of Results

17.1 Nontrivial, Convex, Lower Semi-continuous
Functions

Definitions. A function f: X — IRU {+oc0o} is said to be:

nontrivial if there exists zo € X such that f(zq) < +o0;

lower semi-continuous at zg if

VA < f(zo), 3> 0 such that Vz € B(zg,n), A< f(z);

lower semi-compact if VA € R, the sets S(f, ) := {z € X|f(z) < A} are
relatively compact;

convez if for any convex combination = := 377, \;x;
f (Z )\ifBi) <> Nif(x);

strictly convez if for all z, y such that f(z) < +oc0, f(y) < +0o we have

7 (FY) < 0@ + 1)

locally Lipschitz on an open set §2 if for all Ty € §2, there exist n > 0 and
¢ > 0 such that

Vz,y € B(zo,m), |f(z)— f¥)| < cllz—yll-

We make the following definitions:

Dom f := {z € X|f(z) < +o0} is the domain of f.
Ep f := {(z,)\) € X x R|f(z) < A} is the epigraph of f.
S(f,\) := {z € X|f(z) < A} are the sections of f.
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e i defined by

bi (@) == 0 if ze K
Y7 40 if ¢ K

is the indicator function of K.

We note that
Ep (S};p fi) =(1Ep(f)

il
and
S (Sup .fi$ )‘) = ﬂ S(fi1 A)
ierl iel
and that

zex1/@ =it @)= N SUN.

A>infx f(z)

Suppose that f: X — IRU {400} is a nontrivial function.

A function f is lower semi-continuous at o if and only if

f(z0) < liminf f(z) =sup__inf  f()

The following properties are equivalent

(a) f is lower semi-continuous;
(b) the epigraph of f is closed;
(c) all the sections S(f,\) of f are closed.

ey

(2)

(3)

(14)

If f,9, fi (i € I) are lower semi-continuous functions then following are lower

semi-continuous:

e f+g;

o of,Va>0;

e inf(f,9);

® supi; fi;

e foA, where A is a continuous mapping from Y to X.

(15)

If K ¢ X is closed and if f : K — IR is lower semi-continuous, then

fr : X - IRU {+00} defined by

flz) if ze K
fI"(x):{—FOO 1f£C¢K

is lower semi-continuous.

(6)
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If K C Y is compact and if g : X x K — IRU{+o0} is lower semi-continuous,
then f: X — RU {400} defined by

f(=z) = inf g(z,y) (7)

is lower semi-continuous.

If f is both lower semi-continuous and lower semi-compact, then the
set M of elements at which f attains its minimum is non-empty and
compact. In particular, this is the case if K C X is compact and if
f + K — IR is lower semi-continuous. (1.8)

Suppose that E is complete and that f : E — Ry U {400} is nontrivial,
positive and lower semi-continuous.
Consider zg € Dom f and € > 0. There exists Z € Dom f such that

(i) f(Z) + ed(z0, Z) < f(0)
(i1) Ve # z, f(Z) < f(z) +ed(Z, x). (1.9)

17.2 Convex Functions

A function f is convex if and only if the epigraph of f is convex. In this
case, all the sections S(f, \) are convex. (2.1)

If f,g, fi(i € I) are convex, then:

f + g is convex;

Va > 0, af is convex;

if A:Y — X is affine, then f o A is convex;

sup;cy fi is convex;

ifg: X xY — IRU{4o0} is convex then f: X — RU {+o0}

defined by f(z) := inf,cy g(z,y) is convex. (2.2)

If K is convex, then f : K — IR is convex if and only if fx is convex. (2.3)
If the functions f; : X — IRU {400} are convex, and if we set

F(z) = (o)., ful@)) € R, K = ) Domf, @)

i=1

then the sets FI(K) + IR} and F(K) + R are convex.

If f is convex, the set M of elements at which f attains its minimum
is convex. If f is strictly convex, this set contains at most one point. (2.5)
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If f is convex, the following conditions are equivalent:

(a) f is bounded above on an open subset

(b) f is locally Lipschitz (whence continuous) on the interior of its domain.
In particular:

e if X is finite dimensional, any convex function is continuous on the
interior of its domain;

e if X is a Hilbert space, any convex lower semi-continuous function
is continuous on the interior of its domain. (2.6)

17.3 Conjugate Functions

Definitions. The function f*: X* — IR U {+oco} associated with a nontrivial
function f: X — IRU {+oc0} by the formula

Vpe X*, f*(p):= :g}rg((p,w) - f(=)) (1)

is called the conjugate function of f. The function f** : X — {—oco}URU{+c0}
defined by

vz € X, f*(z):= sup((p,z) — f*(p))
peEX*
is called the biconjugate function of f.

We note that
Vz e X, Vpe X*, (p,z) < f(z) + f*(p) (Fenchel’s inequality)
that
Ve e X, f*(z)< f(=)

and that
—f*(0) = in f(z). (2)

A nontrivial function f : X - IR U {400} is convex and lower semi-
continuous if and only if f = f*. In this case, f* is also nontrivial. (3.3

If f < g then g* < f*.
If A€ L(X,X) is an isomorphism, then (f o A)* = f*o A*"L.
If g(z) := f(z — zo) + (po, ) + a, then
g*(p) = f*(p — po) + (p, Zo) — (a + (po, To))-
o If g(z) := f(Ax), then g*(p) = f*(%) and if h(z) := Af(z), then
() = Af*(8)
o Iff: X xY — IRU{+oco} and if g(y) := inf,cx f(z,y), then
9*(q) = f7(0,9). (3.4)
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Iff:X - RU{+o00} and g : Y — IRU {+oo} are nontrivial, convex,
lower semi-continuous functions and if A € L(X,Y) satisfies 0 € Int (ADom f —
Dom g), then Vp € A*Domg* + Domjf*, 3G € Y* such that

(f+g0A) () = f(p—A'9) +9"(@) = Wl (Flo— 4" +9°() (5)

If, in particular, we suppose that 0 € Int (Im A — Dom g), then Vp € A*Dom g*,
317 € Dom g* satisfying

A'g=p and (90 A4)"(p) = ¢°(q) = min ¢"(q)-
If K C X is convex and closed and satisfies
0 € Int (Dom f — K)
then Vp € Dom(f|,)*, 3 € b(K) such that
(fl)"(®) = £*(p— @) + 0k (2)-
If
0 € Int (Dom f — Domg)

then Vp € Dom f* + Dom ¢*, 3G € Dom ¢* such that

(f+9)()=F (-9 +9g(@ = wf (Fp-a)+g(2)

17.4 Separation Theorems and Support Functions

Suppose that K is a convex closed subset of a Hilbert space. Then Vz € X,
there exists a unique solution 7g(z) € K of the best-approximation problem

lz — 7x (2)ll = inf Iz — o/]l. 1)

This is characterised by the variational inequality

(i) 7TK(£E) cK
(i) Yy € K, (mg(z) —z,mx(z) —y) <0. (4.2)

The mapping g : X — K is continuous and satisfies

7k (@) — 7 < llz -yl
1@ —7x)(@) — A= 7)) < Nz -yl

The mapping 7 is called the ‘projector of best approximation’ onto K.
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The function ok : X* = IRU {+oc0} defined by

Vp € X*, ok(p) := :g]g(p, z) € RU {+o0} ®3)

is called the support function of K and its domain
b(K) := Domog = {p € X*|ok(p) < +oo}

is called the barrier cone of K.

If K is a convez closed subset of a Hilbert space X and if zo ¢ K, then
there exist p € X™* and € > 0 such that

ok (p) :== zg}g(p, y) < (p, o) — €. (4)

If K is a convex subset of a finite-dimensional space X and if zo ¢ K, then
there exists p € X* such that

p#0 and ok(p) = iglg(p, y) < (p, Zo)- (5)
Vpe X*, ok(p) = o)D) (6)
ok = Yy

e If K = B is the unit ball, ok (p) = ||p|,-
e If K is a cone, ok(p) = ¥k-(p) and b(K) = K.
(] b(K)_ = ﬂ,\>0)\(K— Zo) (for all zy € K).

Any support function ok is convex, positively homogeneous and lower
semi-continuous. (4.7

Conversely, any function o from X* to RU{+oc0} which is convex, positively
homogeneous and lower semi-continuous, is the support function of the set

K, :={z € X|Vp € X", (p,3) < o(p)}. (8)
e If K is a convex closed subset, then
K={ze X|Vpe X*, (p,z) <ok(p)}. 9
e If K is a convex closed cone, then
K=(K7)

e If K is a closed vector subspace then K = (K “L)’L.
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If Ae L(X,Y) is a continuous linear operator and K C X, then
AK)” =AY (K).
In particular, (Im A)" = Ker A*.
If K C L, then b(L) C b(K) and ok < or. (4.10)
If K; C X, (i=1,...,n), b(IT%, Ki) = [T, b(K;) and

aK(ph s 7pn) = iaf(.'(pi)'

b(@ User Kz) C ﬂiefb(K,-) and UC—O(UiEIKi)(p) = SU? O'Ki(p).
i€

If B € L(X,Y), then b(B(K)) = B*"'b(K) and o5 (P) = ok (B*D).
b(Ky + K32) = b(K1) Nb(K>) and 0k, +x,(p) = 0k, (P) + 0k, (p).
If P is a convex closed cone, then
b(K + P)=b(K)N P~
and

_J ok(p) if pe P~
ox+p(T) = { 400  otherwise.

b(K + {z0}) = b(K) and ok4z,(p) = ok (p) + (P, Zo)-

If Ae L(X,Y),if L C X and M C Y are convex closed subsets and if
0 € Int(A(L) — M) then

b(L N AY(M)) = b(L) + A*b(M) (11)
and Vp € b(K), 3G € b(M) such that
OLNA-1(M) (p) = or(p— A*q) + UM(Q)
= inf (01(p — A%q) + om(q))-
g€y
IfAc L(X,Y),if M CY is convex and closed and if 0 € Int (Im (A)— M),
then b(A~}(M)) = A*b(M) and Vp € b(A~}(M)), 37 € b(M) satisfying
A'G=p and oa-1n(p) = om(q) = AifllipUM(Q)-
If K; and K, are convex closed subsets of X such that 0 € Int(K; — K3),

then b(K; N K2) = b(K1) + b(K2) and for all p € b(K; N K3), there exist
P; € b(K;) (i =1,2) such that p = p, + p2 and

OK1NK2 (p) =0k, (ﬁl) + O.K'z(p_2) = p=§3111£p2(0Kl (pl) + UKz(pZ))'
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17.5 Subdifferentiability

Definition. Suppose that f : X — IRU {+oco} is a nontrivial convex function.
Suppose also that o € Domf and v € X. Then the limit

f(zo + hv) — f(z0) (1)

h—0+ h

exists in IR and is called the 7ight derivative of f at xo in the direction v.

It satisfies the properties

f(@o) = f(zo —v) < Df(m0)(v) < f(zo +v) — f(o) @)

v — D f(xo)(v) is convex and positively homogeneous.

Definition. f is said to be Géteauz differentiable at zo if v — D f(zo)(v) =
{(Vf(z0),v) is linear and continuous. Then the subset

0f(zo) := {p € X*|Vv € X, (p,v) < Df(xo)(v)} ®)

is called the subdifferential of f at xo. The subdifferential is a convez closed set
(which may be empty, for example, if there exists v such that D f(zo)(v) = —00).

If v = D f(zo)(v) is a nontrivial lower semi-continuous function from X to
RU {+00} then
(9 (0),v) = D f(zo) (v). (4)

Suppose that f is a nontrivial convex function which is subdifferentiable at
z. Then, the following assertions are equivalent:

(a) pedf(z);
(b) (p,z) = f*(p) + f(=);

(€ WeX, f(z)—(p3) < f(v) — (pw)- (5.5)
If in addition f is lower semi-continuous, then
p € df(z) &z € 0f*(p). (6)

If f is a convex function which is continuous on the interior of its domain,
then f is right differentiable and subdifferentiable on Int Dom f and satisfies
the following properties:
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(a) (z,u) € IntDom f x X — Df(z)(u) is upper semi-continuous;
(b) 3¢ > 0 such that Df(z)(u) = o(8f(z),v) < c|u;

(c) Vz €IntDom f, 8f(z) is non-empty and bounded;

(d) the set-valued map = € Int Dom f — &f(z) is upper hemi-

continuous. (5.7)
If f is a nontrivial, convex, lower semi-continuous function, then

(a) f is subdifferentiable on a dense subset of the domain of f;
(b) VA >0, the set-valued map z — = + A\3f(z) is surjective and
its inverse Jy := (1 +A\0f(-))™" is a Lipschitz mapping with
constant 1. (5.8)

If f: X >IRU{+c0} and g : Y = RU {400} are nontrivial, convex and
lower semi-continuous, if A € L(X,Y’) and if 0 € Int (ADom f — Domg), then

O(f +goA)(z) =0f(z) + A*0g(Ax). 9)

In particular, if 0 € Int (Dom f — Dom g), then d(f + g)(z) = 8f(z) + Og(x).
If 0 € Int (Im A — Dom g), then (g o A)(z) = A*dg(Azx).
If K C X is convex and closed and if 0 € Int (K —Dom f), then 8(f|)(z) =
of(z) + Nk (z).

If f1,...,fn are n convex lower semi-continuous functions and if zo €
N ,Int Dom f;, then

0 ( sup fz) (3}0) =<0 U 8f1(IL’0) (10)

i=1,...,n i€l (zo)

where I(:EO) = {2 = 17 R n|f1($0) = Supj:l,...,n f](:cO)}

Suppose that f : X x Y — IRU {+o0} is a nontrivial convex function and
that g : Y — IRU {400} is defined by

9(v) := inf f(z,y). (11)

If £ € X satisfies g(y) = f(Z,y), then g € dg(y) if and only if (0,q) € 8f(Z,y).

17.6 Tangent and Normal Cones
Definition. Suppose that K is a convex subset. If z € K then:

(i) Tk(z) := closure ( U (K z))  is the tangent cone to K at ;
(i) Nx(z) ={p€ X|(p IE) =ok(p)} is the normal cone to K at z.  (6.1)
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We observe that

Ni(z) = O¢k (z) = Tk (z) 7, Tk (x) = Nk(z)™. 2
If z € Int(K), then Ng(z) = {0} and Tk(z) = X.
IfK = {IL’o} then N[(((Eo) = X and T}((iBo) = {O} (63)

If K = B (the unit ball) and if ||z|| = 1, then
Nk(z) = {Az},5, and Tk(z) = {v € X|(v,z) < 0}.
If K =1R] and if x € IR}, then

Nk(z) = {p€ —R}|p; =0 when z; > 0}
Tk(z) = {ve€ R"|v; >0 when z; = 0}.

If M™:={z € R}| Y, z; = 1}, then

Nuyn(z) = {peR'|p;= max p; when z; > 0}
j=l,..,n

Tun(z) = {velR" Zvi = 0 and v; > 0 when z; = 0}.

i=1
Formulae. (6.4)
e If K C Land z € X, then Tk (z) C Tr(z) and Np(z) C Ng(z).
e If K;C X; (¢=1,...,n), then
THLI k(%1 Tn) = illeKi (z:)
and

NH;;] K'-(ml) v ,$n) = H NK,(zz)
i=1

e If Be L(X,Y), then
Tp(x)(Bz) = closure (BTx(x))
and

NB(K)(BIE) = B*_INK(.'E).

° Trc,+1,(T1 + T2) = closure (T, (z1) + Tk, (z2))

NK1+K2(:C1 + :1;2) = NK) (.’131) n NKQ(:C2)'
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e IfAe L(X,Y),andif L C X and M C Y are convex closed sets satisfying
0 € Int(A(L) — M), then

Tina-rony(z) = Ti(z) N A7 Ta (Az)
and

NLﬂA—‘()\/[)(m) = NL(LE) + A*NN[(AIE).

e If A€ L(X,Y) and if M C Y is a convex closed subset satisfying 0 €
Int (Im A — M), then

TA-x()\/[) (ZC) = A_IT)\/[ (AIB)
and

NA"(I\/I) (ZC) = A*N]V[(ALE).

o If K, and K are convex closed subsets of X such that 0 € Int (K; — K3),
then

TKxﬁKz(m) = TK] (iE) nTK:(:E)
and

NKanz(:E) = NKl(m) + NKz(z)'

17.7 Optimisation

We consider the minimisation problem
v:= inf f(z) =—f"(0) (%)

where f is a nontrivial function from X to IR U {+o00}. We denote the set of
points at which f attains its minimum by M := {Z € Dom f|f(z) = v}.

If f is both lower semi-continuous and lower semi-compact, there exists
at least one solution of (*). (7.1)

If f is strictly convex, there exists at most one solution of (x). (7.2)

If f is convex, the solutions of (*) are solutions of the inclusion
0 € 9f(z) (Fermat’s rule) (3)
If f is convex and lower semi-continuous, then

M = 8f*(0).
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If f is convex and lower semi-continuous, and if

0 € Int (Dom f*) (4)

then there exists a solution of ().

If f is nontrivial, convex and lower semi-continuous and if A > 0, for every
x > 0, there is a unique solution Jy(z) of the proximation problem

@) = inf (F&)+ 55l - =)
- T (f*(—q) + 2l - <q,w>). (5)

The mapping J, satisfies
(@) IJxz— Dyl < llz —yll
(b) (1 = Tz — (1 = )yl < 1z — vl
() =1+ 20f()""
The functions f are convex and continuously differentiable and we have
1
Viiz) = X(m — \z) € 0f (Jrx).
In addition, we have the regularisation property
Vz € Dom f, f(z)= ,l\li%f,\(x) and z = 11\11’1}) Iz
and the penalisation property
() inf f(z) = Jim fo(a)
(b) 1£0f*(0) #0, lim Vfi(z) =0.
Suppose we have:

e two Hilbert spaces X and Y

e two nontrivial, convex, lower semi-continuous functions
f: X >RU{+c0} and g: Y — RU {+o0};

e a continuous linear operator A from X to Y. (7.6)
We consider the two minimisation problems
h(y) = inf(f(2) — (p,2) +9(Az +y))

and

eu(p) = inf,("(p — A9 +9°() = (@:9)).
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(a) If
p € Int (Dom f* + A*Dom g*) )
then there exists a solution Z of the problem h(y) and

h(y) + e.(p) = 0.
(b) If we also suppose that

y € Int (Dom g — ADom f) (8)
then the following conditions are equivalent:
(i) z is a solution of the problem h(y).
(ii) Z belongs to the subdifferential de.(p) of the marginal function e..
(iii) Z is a solution of the inclusion p € 8f(Z) + A*9g(AZ + y).

(c) Similarly, the assumption (7.8) implies that there exists a solution g of the
problem e,(p) and the two assumptions together imply the equivalence of the
following conditions

(i) g is a solution of the problem e, (p);
(ii) g belongs to the subdifferential Oh(y) of the marginal function k;
(iii) g is a solution of the inclusion y € dg*(g) — Adf*(p — A*q).

(d) The two assumptions together imply that the solutions Z and g of the prob-
lems h(y) and e,(p), respectively, are the solutions of the system of inclusions

(i) p € 0f(Z) + A*(q)
(i) y € —AZ + 8g*(q).
17.8 Two-Person Games

Suppose that f : E X F — IR is a function of two variables.
The following conditions on (Z,7) € E x F are equivalent

Y(z,y) € EXF, f(Z,y) < f(z,7) (1)
and
@) inf supf(:c y) = sup inf f(:c y)
z€E yeF yeFJJG
(ii) sup f (z,9) = inf fsup f(=z,v)
(i) inf f(z,9) = sup it f f(z,y)-

yEFZ
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The pair (Z, ) is then called a saddle point of f.

If we suppose that
(i) E is compact
(ii) Yy € F, z — f(z,y) is lower semi-continuous
then, there exists £ € F such that
wp /@) = s () = b sap S (59)
where K is the set of finite subsets K of Y.
If we suppose that
(i) E is compact
(il) Yy € F, x — f(z,y) is convex and lower semi-continuous
(iii) Vz € F, y — f(z,vy) is concave

then, there exists £ € E such that

sup f(Z,y) = inf sup f(z,y) = sup inf f(z,y).
yeF -'EEEyeF yeF xz€E

If we suppose that
(i) F and F are convex and compact
(ii) Yy € F, z — f(=z,y) is convex and lower semi-continuous
(i) Vz € F, y — f(z,y) is concave and upper semi-continuous
then f has a saddie point.

If we suppose that
(i) E is compact
(il) Yy € F, z — f(z,vy) is lower semi-continuous
(iii) F is convex

)

(iv) Vz € E, y — f(z,y) is concave

then there exists ¥ € E such that

yE DeC(E,F) z€eE CeC(F,E) yeF

sup f(z,y) = sup inf f(z,D(z)) = inf sup f(C(y),y).

(2)

(3)

(8.4)

(5)
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Ky Fan’s Inequality. If we suppose that K and ¢ : K x K — IR satisfy
(i) K is convex and compact
(ii) Yy € K, z — ¢(z,y) is lower semi-continuous
(iii) Vz € K, y — ¢(z,y) is concave
(iv) Vy € K, ¢(y,y) <0,
then there exists Z € E such that Vy € K, ¢(Z,y) < 0. (8.6)

17.9 Set-valued Maps and the Existence of Zeros and
Fixed Points

Definitions. A set-valued map C from K to Y is upper semi-continuous at xo
if
Ve > 0, dn > 0 such that Vz € Bg(zo,7n), C(z) C C(zo)+eB. (1)

C is upper hemi-continuous at xq if
VpeY*, z— o(C(z),p) is upper semi-continuous at zy. (2)

C is lower semi-continuous at x, if, for any sequence z,, converging to T and
for all yg € C(zo), there exists a sequence of elements y,, € C(z,) converging to

Yo-
Any upper semi-continuous set-valued map is upper hemi-continuous. (9.3)

If f: X — IRU{+oo} is convex and lower semi-continuous and
if IntDom f # 0, then z € IntDom f — Jf(z) C X* is upper hemi-
continuous. (9.4)

Banach—Picard Fixed-Point Theorem. If K is a complete metric
space and the mapping D is a contraction (3k < 1 such that Vz,y € K,
d(D(z), D(y)) < kd(z,y)) from K to itself, then D has a unique fixed
point. (9.5)

Suppose that C is a set-valued map from a complete metric space K to itself.
Suppose that there exists a nontrivial positive function f from K to IRU {+o0}
such that

Vz € K, Jy € C(z) such that f(y)+ d(z,y) < f(z)- (6)
Then one of the two assumptions
(a) f is lower semi-continuous
(b) the graph of C is closed
implies that C has a fixed point.
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Three-Poles Lemma. We consider n closed subsets F; of the simplex
M® == {z € R} XL,z = 1}. If Vo € M", © € Ugg,>0pF: then

Brouwer’s Fixed-Point Theorem. If K is a convex compact subset of
a Hilbert space and if D is a continuous mapping from K to itself, then
D has a fixed point. (9.8)

Gale—Nikaido—-Debreu Theorem. Suppose that C is a set-valued map from
M" = {z € R}| X7, z; = 1} to IR satisfying

(i) C is upper hemi-continuous
(i) Vz € M™, C(z) = C(z) — IR} is convex and closed
(iii) Yz € M™, o(C(z),z) > 0.
Then there exists Z € M™ such that 0 € C(Z). (9.9)

Brouwer—-Ky Fan Theorem. Suppose that K is a convex compact subset of
X and that C is an upper hemi-continuous set-valued map from K to X with
convex closed values. If we suppose that

Ve K, C(z)NTk(z)#£0
then

(a) 3z € K such that 0 € C(Z)
(b) Wy e€ K, 3% € K such that y € £ — C(%). (9.10)

Fixed-Point and Surjectivity Theorem. Suppose that K C X is a convex
compact subset and that D : K — X is an upper hemi-continuous set-valued
map with convex closed values.

(a) If D is re-entrant in the sense that

Vz € K, D(z)N(z+ Tx(z)) #0

(in particular any D : K — K is re-entrant) then D has a fixed point z, € K.
(b) If D is salient in the sense that

Vz € K, D(z)N(z—Tk(z)) #0
then

(i) D has a fixed point z, € K
(i) Vye€ K, 33 € K such that y € D(£). (9.11)
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Suppose we have:
® two convex closed subsets L C X and M C Y;
® a convex compact subset P C Y*;
® a continuous mapping c: L X P —» Y,

satisfying the following conditions:

(i) Vz € L, p— c(z,p) is affine
(ii) Vee L, Vpe P, c(z,p) € Tr(z)
and

(i) LN A™Y(M) is compact

(i) 0 € Int (A(L) — M)

(i) Vy € M, Nag(y) C Usso AP

together with
Vz € L, Vp€ P, (p,Ac(z,p)) < 0.
Then there exist Z € L and p € P satisfying

AZ € M and ¢(Z,p) = 0. (12)

Leray—Schauder Theorem. We consider a convex compact subset K C IR"
with a non-empty interior and a set-valued map C from K x [0, 1] to IR" which
is upper hemi-continuous with convex closed values. We suppose that

(i) vz € K, C(z,0)N Ti(z) # 0
(i) VA e (0,1, Vz € 0K, 0¢ C(z, ).
Then there exists Z € K such that 0 € C(z, 1). (9.13)

Suppose that K C X is a convex compact subset and that C : K — X*
is an upper semi-continuous set-valued map with non-empty, convex, compact
values. Then:

3z € K such that 0 € C(Z) — Nk(Z). (14)

Suppose that K C X is a convex compact subset and that C': K — K is an
upper hemi-continuous set-valued map with non-empty, convex, closed values.
We consider a function ¢ : K x K — IR satisfying

(i) Yy € K, = — ¢(z,y) is lower semi-continuous
(1) Vz € K, y— ¢(z,y) is concave
(iif) Yy € K, ¢(y,y) <0. (9.15)
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Suppose that the set-valued map C and the function ¢ are linked by the
property

{z € K| sup ¢(z,y) <0} is closed.
yeC(z)

Then there exists a solution Z € K of

(i) z € C(z)
(i) sup ¢(Z,y) <0.
yeC(T)

We consider a finite covering {A;},_, _,, of a metric space E. There exists a

.....

continuous partition of unity subordinate to this covering, in other words, there
exist n continuous functions a; : E — [0, 1] such that

(1) Vz € E, En:a,-(:z:) =1
(i) Vi=1,...,n, support(a;) C As (9.16)
where support(a;) := closure {z € F|a;(z) # 0}.
We consider two mappings F and G from M™ to R™ satisfying
(i) the components f; of F' are convex and lower semi-continuous;
(ii) the components g; of G are concave, positive and upper semi-continuous;

(iii) 3p € M™ such that Vz € M™, (p, F(z)) > 0;

i)
(iv) 3z € M™ such that Vi = 1,...,n, g;(z) > 0.

(a) Then there exist § > 0, T € M™ and p € M™ such that

(i) Vi=1,...,n, 0fi(Z) < gi(z)
(ii) Ve € M", (G(z) — 6F(z),p) <0

(b) The number § > 0 is defined by

. (¢, F(z)) _ . F(z)
5 B . Gy P (5, Cla))

If A >0 and z € M™ satisfy the inequalities Af;(z) < gi(z), Vi = 1,...,n, then
A <6,

(*)

(c) For all p > ¢ and for all y € Int(IRY), there exist 8 > 0 and £ € M™ such
that

Vi=1,...,n ufi@) - :(3) < By
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We consider two matrices F' and G from IR” to IR™ satisfying

(i) the coefficients gi; of G are non-negative;

(li) Vi= 17- -, z;l:l Gij > 0;

(iii) Vi =1,...,n, %, fi; > 0.

Then there exist Z € M™, p € M™ and § > 0 such that

(i) 0F% < G%
(ii) 0F*p > G*p
(i)

o(p, Fz) = (p, GZ).
Moreover, for all 4 > o and all y € IntIRT, there exists & € IR"; such that

pFz — Gi <y. (18)

Suppose that F is a mapping from M™ to IR™ satisfying
(i) the components f; of F' are convex and lower semi-continuous;

(i) 3p € M™ N Int(IR}}) such that Vz € M", (p, F(z)) > 0;

(lll) if T; = 0 then f,,(.’L') < 0.

Suppose that G is another mapping from M™ to IR" satisfying

(i) the components g; of G are concave and lower semi-continuous;

(ii) Vz € M™, Vi=1,...,n, gi(z) > 0.

We consider the number § > 0 defined by (*) (above). Then there exist
z € M NInt(R%) and § € M™ N Int(IR}) such that

(i) 5F(z) = G(z)
(i) Vz € M™, (p,G(z) — 0F(x)) < 0.

If £ > 6 and y € Int(IR7}) are given, then there exist 3 > 0 and 2 € M™
such that

pF(2) — G(2) = By (19)
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Perron—Frobenius Theorem. Suppose that G is a positive matrix.

(a) G has a strictly positive eigenvalue § and an associated eigenvector
T with strictly positive components.
(b) 4 is the only eigenvalue associated with an eigenvector of M™.
(c) 0 is greater than or equal to the absolute value of all other eigen-
values of G
(d) The matrix x — G is invertible and (u — G)™! is positive if and
only if p > 4. (9.20)

We consider a mapping H from IR} to IR" satisfying

(i) the components h; of H are convex, positively homogeneous and lower
semi-continuous;

(i) 3b € IR such that Vz € IR}, bz; > h;(x);
(i) Yz € M™, 3¢ € M™ such that (g, H(z)) > 0.
Then Vy € Int IR}, 3z € Int IR} such that H(z) = y. (9.21)

Theorem (Surjectivity of the M Matrices). Suppose that H is a matrix
from IR™ to IR"™ satisfying
Vi#j, hy<O. (22)

The following conditions are equivalent
(a) Vx € M™, 3¢ € M™ such that (g, Hz) > 0;
(b) H is invertible and H™! is positive;

(c) H* is invertible and H*~! is positive.
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