Henri Cohen

A Course 1n
Computational
Algebraic
Number Theory

Henri Cohen

U.E.R. de Mathématiques et Informatique
Université Bordeaux I

351 Cours de la Libération

F-33405 Talence Cedex, France

Editorial Board

J.H. Ewing . F. W. Gehring

Department of Mathematics Department of Mathematics
Indiana University University of Michigan
Bloommgton, IN 47405, USA Ann Arbor, MI 48109, USA

P. R. Halmos

Department of Mathematics
Santa Clara University

Santa Clara, CA 95053, USA

Third, Corrected Printing 1996
With 1 Figure

Mathematics Subject Classification (1991): 11Y05, 11Y11, 11Y16,
11Y40, 11A51, 11C08, 11C20, 11R09, 11R11, 11R29

ISSN 0072-5285
ISBN 3-540-55640-0 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-55640-0 Springer-Verlag New York Berlin Heidelberg

Cataloging-In-Publication Data applied for
Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Cohen, Henrl:
A course in computational algebraic number theory / Henri
Cohen. - 3., corr. print. - Berlin ; Heidelberg ; New York :
Springer, 1996

(Graduate texts in mathematics; 138)

ISBN 3-540-55640-0
NE: GT

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data
banks. Duplication of this publication or parts thereof is permitted only under the provisions of
the German Copyright Law of September 9, 1965, in its current version, and permission for use
must always be obtained from Springer- Verlag. Violations are liable for prosecution under the
German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.

Typesetting: Camera-ready copy produced from the author’s output file
using ApS-TgX and LAMS-TEX
SPIN: 10558047 41/3143-543 21 0 - Printed on acid-free paper

Acknowledgments

This book grew from notes prepared for graduate courses in computational
number theory given at the University of Bordeaux I. When preparing this
book, it seemed natural to include both more details and more advanced
subjects than could be given in such a course. By doing this, I hope that
the book can serve two audiences: the mathematician who might only need
the details of certain algorithms as well as the mathematician wanting to go
further with algorithmic number theory.

In 1991, we started a graduate program in computational number theory
in Bordeaux, and this book was also meant to provide a framework for future
courses in this area.

In roughly chronological order I need to thank, Horst Zimmer, whose
Springer Lecture Notes on the subject [Zim] was both a source of inspiration
and of excellent references for many people at the time when it was published.

Then, certainly, thanks must go to Donald Knuth, whose (unfortunately
unfinished) series on the Art of Computer Programming ([Knul], [Knu2] and
[Knu3]) contains many marvels for a mathematician. In particular, the second
edition of his second volume. Parts of the contents of Chapters 1 and 3 of this
book are taken with little or no modifications from Knuth’s book. In the (very
rare) cases where Knuth goes wrong, this is explicitly mentioned.

My thesis advisor and now colleague Jacques Martinet, has been very in-
fluential, both in developing the subject in Bordeaux and more generally in
the rest of France-several of his former students are now professors. He also
helped to make me aware of the beauty of the subject, since my personal
inclination was more towards analytic aspects of number theory, like modu-
lar forms or L-functions. Even during the strenuous period (for him!) when

he was Chairman of our department, he always took the time to listen or
enthusiastically explain.

I also want to thank Hendrik Lenstra, with whom I have had the pleasure
of writing a few joint papers in this area. Also Arjen Lenstra, who took the
trouble of debugging and improving a big Pascal program which I wrote, which
is still, in practice, one of the fastest primality proving programs. Together
and separately they have contributed many extremely important algorithms,
in particular LLL and its applications (see Section 2.6). My only regret is that
they both are now in the U.S.A., so collaboration is more difficult.

VI Acknowledgments

Although he is not strictly speaking in the algorithmic field, I must also
thank Don Zagier, first for his personal and mathematical friendship and also
for his continuing invitations first to Maryland, then at the Max Planck In-
stitute in Bonn, but also because he is a mathematician who takes both real
pleasure and real interest in creating or using algorithmic tools in number
theory. In fact, we are currently finishing a large algorithmic project, jointly
with Nils Skoruppa.

Daniel Shanks!, both as an author and as editor of Mathematics of Com-
putation, has also had a great influence on the development of algorithmic
algebraic number theory. I have had the pleasure of collaborating with him
during my 1982 stay at the University of Maryland, and then in a few subse-
quent meetings.

My colleagues Christian Batut, Dominique Bernardi and Michel Olivier
need to be especially thanked for the enormous amount of unrewarding work
that they put in the writing of the PARI system under my supervision. This
system is now completely operational (even though a few unavoidable bugs
crop up from time to time), and is extremely useful for us in Bordeaux, and for
the (many) people who have a copy of it elsewhere. It has been and continues
to be a great pleasure to work with them.

I also thank my colleague Francois Dress for having collaborated with
me to write our first multi-precision interpreter ISABELLE, which, although
considerably less ambitious than PARI, was a useful first step.

I met Johannes Buchmann several years ago at an international meeting.
Thanks to the administrative work of Jacques Martinet on the French side,
we now have a bilateral agreement between Bordeaux and Saarbriicken. This
has allowed several visits, and a medium term joint research plan has been
informally decided upon. Special thanks are also due to Johannes Buchmann
and Horst Zimmer for this. I need to thank Johannes Buchmann for the many
algorithms and techniques which I have learned from him both in published
work and in his preprints. A large part of this book could not have been what it
is without his direct or indirect help. Of course, I take complete responsibility
for the errors that may have appeared!

Although I have met Michael Pohst and Hans Zassenhaus? only in meet-
ings and did not have the opportunity to work with them directly, they have
greatly influenced the development of modern methods in algorithmic number
theory. They have written a book [Poh-Zas] which is a landmark in the sub-
ject. I recommend it heartily for further reading, since it goes into subjects
which could not be covered in this book.

I have benefited from discussions with many other people on computa-
tional number theory, which in alphabetical order are, Oliver Atkin, Anne-
Marie Bergé, Bryan Birch, Francisco Diaz y Diaz, Philippe Flajolet, Guy Hen-
niart, Kevin McCurley, Jean-Francois Mestre, Francois Morain, Jean-Louis

! Daniel Shanks died on September 6, 1996.
2Hans Zassenhaus died on November 21, 1991.

Acknowledgments VII

Nicolas, Andrew Odlyzko, Joseph Oesterlé, Johannes Graf von Schmettow,
Claus-Peter Schnorr, Rene Schoof, Jean-Pierre Serre, Bob Silverman, Harold
Stark, Nelson Stephens, Larry Washington. There are many others that could
not be listed here. I have taken the liberty of borrowing some of their al-
gorithms, and I hope that I will be forgiven if their names are not always
mentioned.

The theoretical as well as practical developments in Computational Num-
ber Theory which have taken place in the last few years in Bordeaux would
probably not have been possible without a large amount of paperwork and
financial support. Hence, special thanks go to the people who made this pos-
sible, and in particular to Jean-Marc Deshouillers, Francois Dress and Jacques
Martinet as well as the relevant local and national funding committees and
agencies.

I must thank a number of persons without whose help we would have
been essentially incapable of using our workstations, in particular “Achille”
Braquelaire, Laurent Fallot, Patrick Henry, Viviane Sauquet-Deletage, Robert
Strandh and Bernard Vauquelin.

Although I do not know anybody there, I would also like to thank the
GNU project and its creator Richard Stallman, for the excellent software they
produce, which is not only free (as in “freedom”, but also as in “freeware”),
but is generally superior to commercial products. Most of the software that
we use comes from GNU.

Finally, I thank all the people, too numerous to mention, who have helped
me in some way or another to improve the quality of this book, and in partic-
ular to Dominique Bernardi and Don Zagier who very carefully read drafts of
this book. But special thanks go to Gary Cornell who suggested improvements
to my English style and grammar in almost every line.

In addition, several people contributed directly or helped me write specific
sections of the book. In alphabetical order they are D. Bernardi (algorithms
on elliptic curves), J. Buchmann (Hermite normal forms and sub-exponential
algorithms), J.-M. Couveignes (number field sieve), H. W. Lenstra (in sev-
eral sections and exercises), C. Pomerance (factoring and primality testing),
B. Vallée (LLL algorithms), P. Zimmermann (Appendix A).

Preface

With the advent of powerful computing tools and numerous advances in math-
ematics, computer science and cryptography, algorithmic number theory has
become an important subject in its own right. Both external and internal
pressures gave a powerful impetus to the development of more powerful al-
gorithms. These in turn led to a large number of spectacular breakthroughs.
To mention but a few, the LLL algorithm which has a wide range of appli-
cations, including real world applications to integer programming, primality
testing and factoring algorithms, sub-exponential class group and regulator
algorithms, etc ...

Several books exist which treat parts of this subject. (It is essentially
impossible for an author to keep up with the rapid pace of progress in all
areas of this subject.) Each book emphasizes a different area, corresponding
to the author’s tastes and interests. The most famous, but unfortunately the
oldest, is Knuth’s Art of Computer Programming, especially Chapter 4.

The present book has two goals. First, to give a reasonably comprehensive
introductory course in computational number theory. In particular, although
we study some subjects in great detail, others are only mentioned, but with
suitable pointers to the literature. Hence, we hope that this book can serve
as a first course on the subject. A natural sequel would be to study more
specialized subjects in the existing literature.

The prerequisites for reading this book are contained in introductory texts
in number theory such as Hardy and Wright [H-W] and Borevitch and Shafare-
vitch [Bo-Sh]. The reader also needs some feeling or taste for algorithms and
their implementation. To make the book as self-contained as possible, the main
definitions are given when necessary. However, it would be more reasonable for
the reader to first acquire some basic knowledge of the subject before studying
the algorithmic part. On the other hand, algorithms often give natural proofs
of important results, and this nicely complements the more theoretical proofs
which may be given in other books.

The second goal of this course is practicality. The author’s primary in-
tentions were not only to give fundamental and interesting algorithms, but
also to concentrate on practical aspects of the implementation of these algo-
rithms. Indeed, the theory of algorithms being not only fascinating but rich,
can be (somewhat arbitrarily) split up into four closely related parts. The first
is the discovery of new algorithms to solve particular problems. The second is
the detailed mathematical analysis of these algorithms. This is usually quite

Preface IX

mathematical in nature, and quite often intractable, although the algorithms
seem to perform rather well in practice. The third task is to study the com-
plexity of the problem. This is where notions of fundamental importance in
complexity theory such as NP-completeness come in. The last task, which
some may consider the least noble of the four, is to actually implement the
algorithms. But this task is of course as essential as the others for the actual
resolution of the problem.

In this book we give the algorithms, the mathematical analysis and in
some cases the complexity, without proofs in some cases, especially when it
suffices to look at the existing literature such as Knuth’s book. On the other
hand, we have usually tried as carefully as we could, to give the algorithms
in a ready to program form-in as optimized a form as possible. This has the
drawback that some algorithms are unnecessarily clumsy (this is unavoidable
if one optimizes), but has the great advantage that a casual user of these
algorithms can simply take them as written and program them in his/her
favorite programming language. In fact, the author himself has implemented
almost all the algorithms of this book in the number theory package PARI
(see Appendix A).

The approach used here as well as the style of presentation of the algo-
rithms is similar to that of Knuth (analysis of algorithms excepted), and is
also similar in spirit to the book of Press et al [PFTV] Numerical Recipes (in
Fortran, Pascal or C), although the subject matter is completely different.

For the practicality criterion to be compatible with a book of reasonable
size, some compromises had to be made. In particular, on the mathematical
side, many proofs are not given, especially when they can easily be found
in the literature. From the computer science side, essentially no complexity
results are proved, although the important ones are stated.

The book is organized as follows. The first chapter gives the fundamental
algorithms that are constantly used in number theory, in particular algorithms
connected with powering modulo N and with the Euclidean algorithm.

Many number-theoretic problems require algorithms from linear algebra
over a field or over Z. This is the subject matter of Chapter 2. The highlights
of this chapter are the Hermite and Smith normal forms, and the fundamental
LLL algorithm.

In Chapter 3 we explain in great detail the Berlekamp-Cantor-Zassenhaus
methods used to factor polynomials over finite fields and over Q, and we also
give an algorithm for finding all the complex roots of a polynomial.

Chapter 4 gives an introduction to the algorithmic techniques used in
number fields, and the basic definitions and results about algebraic numbers
and number fields. The highlights of these chapters are the use of the Hermite
Normal Form representation of modules and ideals, an algorithm due to Diaz
y Diaz and the author for finding “simple” polynomials defining a number
field, and the subfield and field isomorphism problems.

X Preface

Quadratic fields provide an excellent testing and training ground for the
techniques of algorithmic number theory (and for algebraic number theory
in general). This is because although they can easily be generated, many
non-trivial problems exist, most of which are unsolved (are there infinitely
many real quadratic fields with class number 1?). They are studied in great
detail in Chapter 5. In particular, this chapter includes recent advances on the
efficient computation in class groups of quadratic fields (Shanks’s NUCOMP
as modified by Atkin), and sub-exponential algorithms for computing class
groups and regulators of quadratic fields (McCurley-Hafner, Buchmann).

Chapter 6 studies more advanced topics in computational algebraic num-
ber theory. We first give an efficient algorithm for computing integral bases
in number fields (Zassenhaus’s round 2 algorithm), and a related algorithm
which allows us to compute explicitly prime decompositions in field exten-
sions as well as valuations of elements and ideals at prime ideals. Then, for
number fields of degree less than or equal to 7 we give detailed algorithms
for computing the Galois group of the Galois closure. We also study in some
detail certain classes of cubic fields. This chapter concludes with a general
algorithm for computing class groups and units in general number fields. This
is a generalization of the sub-exponential algorithms of Chapter 5, and works
quite well. For other approaches, I refer to [Poh-Zas| and to a forthcoming
paper of J. Buchmann. This subject is quite involved so, unlike most other
situations in this book, I have not attempted to give an efficient algorithm,
just one which works reasonably well in practice.

Chapters 1 to 6 may be thought of as one unit and describe many of the
most interesting aspects of the theory. These chapters are suitable for a two
semester graduate (or even a senior undergraduate) level course in number
theory. Chapter 6, and in particular the class group and unit algorithm, can
certainly be considered as a climax of the first part of this book.

A number theorist, especially in the algorithmic field, must have a mini-
mum knowledge of elliptic curves. This is the subject of chapter 7. Excellent
books exist about elliptic curves (for example [Sil] and [Sil3]), but our aim is
a little different since we are primarily concerned with applications of elliptic
curves. But a minimum amount of culture is also necessary, and so the flavor
of this chapter is quite different from the others chapters. In the first three sec-
tions, we give the essential definitions, and we give the basic and most striking
results of the theory, with no pretense to completeness and no algorithms.

The theory of elliptic curves is one of the most marvelous mathematical
theories of the twentieth century, and abounds with important conjectures.
They are also mentioned in these sections. The last sections of Chapter 7,
give a number of useful algorithms for working on elliptic curves, with little
or no proofs.

The reader is warned that, apart from the material necessary for later
chapters, Chapter 7 needs a much higher mathematical background than the
other chapters. It can be skipped if necessary without impairing the under-
standing of the subsequent chapters.

Preface XI

Chapter 8 (whose title is borrowed from a talk of Hendrik Lenstra) consid-
ers the techniques used for primality testing and factoring prior to the 1970’s,
with the exception of the continued fraction method of Brillhart-Morrison
which belongs in Chapter 10.

Chapter 9 explains the theory and practice of the two modern primal-
ity testing algorithms, the Adleman-Pomerance-Rumely test as modified by
H. W. Lenstra and the author, which uses Fermat’s (little) theorem in cyclo-
tomic fields, and Atkin’s test which uses elliptic curves with complex multi-
plication.

Chapter 10 is devoted to modern factoring methods, i.e. those which run
in sub-exponential time, and in particular to the Elliptic Curve Method of
Lenstra, the Multiple Polynomial Quadratic Sieve of Pomerance and the Num-
ber Field Sieve of Pollard. Since many of the methods described in Chapters
9 and 10 are quite complex, it is not reasonable to give ready-to-program al-
gorithms as in the preceding chapters, and the implementation of any one of
these complex methods can form the subject of a three month student project.

In Appendix A, we describe what a serious user should know about com-
puter packages for number theory. The reader should keep in mind that the
author of this book is biased since he has written such a package himself (this
package being available without cost by anonymous ftp).

Appendix B has a number of tables which we think may useful to the
reader. For example, they can be used to check the correctness of the imple-
mentation of certain algorithms.

What I have tried to cover in this book is so large a subject that, neces-
sarily, it cannot be treated in as much detail as I would have liked. For further
reading, I suggest the following books.

For Chapters 1 and 3, [Knul] and [Knu2]. This is the bible for algorithm
analysis. Note that the sections on primality testing and factoring are out-
dated. Also, algorithms like the LLL algorithm which did not exist at the
time he wrote are, obviously, not mentioned. The recent book [GCL] contains
essentially all of our Chapter 3, as well as many more polynomial algorithms
which we have not covered in this book such as Grébner bases computation.

For Chapters 4 and 5, [Bo-Sh], [Mar] and [Ire-Ros]. In particular, [Mar]
and [Ire-Ros] contain a large number of practical exercises, which are not far
from the spirit of the present book, [Ire-Ros] being more advanced.

For Chapter 6, [Poh-Zas] contains a large number of algorithms, and treats
in great detail the question of computing units and class groups in general
number fields. Unfortunately the presentation is sometimes obscured by quite

complicated notations, and a lot of work is often needed to implement the
algorithms given there.

For Chapter 7, [Sil] and [Sil3] are excellent books, and contain numerous
exercises. Another good reference is [Hus], as well as [Ire-Ros] for material on
zeta-functions of varieties. The algorithmic aspect of elliptic curves is beauti-
fully treated in [Cre|, which I also heartily recommend.

XII Preface

For Chapters 8 to 10, the best reference to date, in addition to [Knu2], is
[Rie]. In addition, Riesel has several chapters on prime number theory.

Note on the exercises. The exercises have a wide range of difficulty,
from extremely easy to unsolved research problems. Many are actually imple-
mentation problems, and hence not mathematical in nature. No attempt has
been made to grade the level of difficulty of the exercises as in Knuth, except
of course that unsolved problems are mentioned as such. The ordering follows
roughly the corresponding material in the text.

WARNING. Almost all of the algorithms given in this book have been
programmed by the author and colleagues, in particular as a part of the Pari
package. The programming has not however, always been synchronized with
the writing of this book, so it may be that some algorithms are incorrect, and
others may contain slight typographical errors which of course also invalidate
them. Hence, the author and Springer-Verlag do not assume any responsibility
for consequences which may directly or indirectly occur from the use of the
algorithms given in this book. Apart from the preceding legalese, the author
would appreciate corrections, improvements and so forth to the algorithms
given, so that this book may improve if further editions are printed. The
simplest is to send an e-mail message to

cohen@math.u-bordeaux.fr

or else to write to the author’s address. In addition, a regularly updated
errata file is available by anonymous ftp from megrez.math.u-bordeaux.fr
(147.210.16.17), directory pub/cohenbook.

Contents

Chapter 1 Fundamental Number-Theoretic Algorithms 1

1.1 Introductiono 1
1.1.1 Algorithms 0L |
1.1.2 Multi-precision Lo 2
1.1.3 Base Fieldsand Rings 5
1.1.4 Notations 6
1.2 The Powering Algorithms 8
1.3 Euclid’s Algorithms12
1.3.1 Euclid’s and Lehmer’s Algorithms12
1.3.2 Euclid’s Extended Algorithms 16
1.3.3 The Chinese Remainder Theorem 19
1.3.4 Continued Fraction Expansions of Real Numbers 21
1.4 The Legendre Symbol 24
1.4.1 The Groups (Z/nZ)* 24
1.4.2 The Legendre-Jacobi-Kronecker Symbol 27
1.5 Computing Square Roots Modulop 31
1.5.1 The Algorithm of Tonelli and Shanks 32
1.5.2 The Algorithm of Cornacchia 34
1.6 Solving Polynomial Equations Modulop 36
1.7 Power Detection 38
1.7.1 Integer Square Roots 38
1.7.2 Square Detection 39
1.7.3 Prime Power Detection 41

X1V Contents

Chapter 2 Algorithms for Linear Algebra and Lattices 46

2.1 Introduction00 o 000 46
2.2 Linear Algebra Algorithms on Square Matrices 47
2.2.1 Generalities on Linear Algebra Algorithms 47
2.2.2 Gaussian Elimination and Solving Linear Systems 48
2.2.3 Computing Determinants 50
2.2.4 Computing the Characteristic Polynomial 53
2.3 Linear Algebra on General Matrices 57
231 KernelandImage 57
2.3.2 Inverse Image and Supplement 60
2.3.3 Operations on Subspaces 62
2.3.4 Remarkson Modules 64
2.4 Z-Modules and the Hermite and Smith Normal Forms . . 66
2.4.1 Introduction to Z-Modules 66
2.4.2 The Hermite Normal Form 67
2.4.3 Applications of the Hermite Normal Form 73
2.4.4 The Smith Normal Form and Applications 75
2.5 Generalities on Lattices 79
2.5.1 Lattices and Quadratic Forms 79
2.5.2 The Gram-Schmidt Orthogonalization Procedure 82
2.6 Lattice Reduction Algorithms 84
2.6.1 The LLL Algorithm 84
2.6.2 The LLL Algorithm with Deep Insertions 90
2.6.3 The Integral LLL Algorithm 92
2.6.4 LLL Algorithms for Linearly Dependent Vectors 95
2.7 Applications of the LLL Algorithm 97
2.7.1 Computing the Integer Kernel and Image of a Matrix 97
2.7.2 Linear and Algebraic Dependence Using LLL 100
2.7.3 Finding Small Vectors in Lattices 103
2.8 Exercises for Chapter 2 106
Chapter 3 Algorithms on Polynomials 109
3.1 Basic Algorithms 109
3.1.1 Representation of Polynomials 109
3.1.2 Multiplication of Polynomials 110
3.1.3 Division of Polynomials 111
3.2 Euclid’s Algorithms for Polynomials 113
3.2.1 Polynomials overa Field 113
3.2.2 Unique Factorization Domains (UFD’s) 114

3.2.3 Polynomials over Unique Factorization Domains 116

Contents XV

3.2.4 Euclid’s Algorithm for Polynomials overa UFD 117
3.3 The Sub-Resultant Algorithm 118
3.3.1 Description of the Algorithm 118
3.3.2 Resultants and Discriminants 119
3.3.3 Resultants over a Non-Exact Domain 123
3.4 Factorization of Polynomials Modulop 124
3.4.1 General Strategy 124
3.4.2 Squarefree Factorization 125
3.4.3 Distinct Degree Factorization 126
3.4.4 Final Splitting 127
3.5 Factorization of Polynomials over Zor Q 133
3.5.1 Bounds on Polynomial Factors 134
3.5.2 A First Approach to Factoringover Z 135
3.5.3 Factorization Modulo p®: Hensel’s Lemma 137
3.5.4 Factorization of Polynomialsover Z 139
355 Discussion L. Lo e e . 141
3.6 Additional Polynomial Algorithms 142
3.6.1 Modular Methods for Computing GCD’sin Z(X] 142
3.6.2 Factorization of Polynomials over a Number Field 143
3.6.3 A Root Finding Algorithm over C 146
3.7 Exercises for Chapter 3 148

Chapter 4 Algorithms for Algebraic Number Theory I 153

4.1 Algebraic Numbers and Number Fields 153
4.1.1 Basic Definitions and Properties of Algebraic Numbers 153
412 Number Fields 154
4.2 Representation and Operations on Algebraic Numbers . . 158
4.2.1 Algebraic Numbers as Roots of their Minimal Polynomial 158
4.2.2 The Standard Representation of an Algebraic Number 159

4.2.3 The Matrix (or Regular) Representation of an Algebraic Number . 160
4.2.4 The Conjugate Vector Representation of an Algebraic Number . . 161

4.3 Trace, Norm and Characteristic Polynomial 162
4.4 Discriminants, Integral Bases and Polynomial Reduction . 165
4.4.1 Discriminants and Integral Bases 165
4.4.2 The Polynomial Reduction Algorithm 168
4.5 The Subfield Problem and Applications 174
4.5.1 The Subfield Problem Using the LLL Algorithm 174
4.5.2 The Subfield Problem Using Linear Algebraover C 175
4.5.3 The Subfield Problem Using Algebraic Algorithms 177

4.5.4 Applications of the Solutions to the Subfield Problem 179

XVI Contents

46O0rdersandIdeals 181
4.6.1 Basic Definitions o000 181
4621Ideals of Zg e e e 186
4.7 Representation of Modules and Ideals 188
4.7.1 Modules and the Hermite Normal Form 188
4.7.2 Representation of Ideals 190
4.8 Decomposition of Prime NumbersI 196
4.8.1 Definitions and Main Results 196
4.8.2 A Simple Algorithm for the Decomposition of Primes 199
4.8.3 Computing Valuations 201
4.8.4 Ideal Inversion and the Different 204
4.9 Units and Ideal Classes 207
4.9.1TheClass Groupo 207
4.9.2 Units and the Regulator 209
4.9.3 Conclusion: the Main Computational Tasks

of Algebraic Number Theory 217
4.10 Exercises for Chapter 4 217
Chapter 5 Algorithms for Quadratic Fields 223
5.1 Discriminant, Integral Basis and Decomposition of Primes 223
5.2 Ideals and Quadratic Forms 225
5.3 Class Numbers of Imaginary Quadratic Fields 231
5.3.1 Computing Class Numbers Using Reduced Forms 231
5.3.2 Computing Class Numbers Using Modular Forms 234
5.3.3 Computing Class Numbers Using Analytic Formulas 237
5.4 Class Groups of Imaginary Quadratic Fields 240
5.4.1 Shanks’s Baby Step Giant Step Method 240
5.4.2 Reduction and Composition of Quadratic Forms 243
5.4.3 Class Groups Using Shanks’s Method 250
5.5 McCurley’s Sub-exponential Algorithm 252
5.5.1 Outline of the Algorithm 252
5.5.2 Detailed Description of the Algorithm 255
5.5.3 Atkin’s Variant L. 260
5.6 Class Groups of Real Quadratic Fields 262
5.6.1 Computing Class Numbers Using Reduced Forms 262
5.6.2 Computing Class Numbers Using Analytic Formulas 266

5.6.3 A Heuristic Method of Shanks 268

Contents XVII

5.7 Computation of the Fundamental Unit

and of the Regulator 269
5.7.1 Description of the Algorithms 269
5.7.2 Analysis of the Continued Fraction Algorithm 271
5.7.3 Computation of the Regulator 278
5.8 The Infrastructure Method of Shanks 279
5.8.1 The Distance Function 279
5.8.2 Description of the Algorithm e e 283
5.8.3 Compact Representation of the Fundamental Unit 285
5.8.4 Other Application and Generalization of the Distance Function . 287
5.9 Buchmann’s Sub-exponential Algorithm 288
5.9.1 Outline of the Algorithm 289
5.9.2 Detailed Description of Buchmann’s Sub-exponential Algorithm . 291
5.10 The Cohen-Lenstra Heuristics 295
5.10.1 Results and Heuristics for Imaginary Quadratic Fields 295
5.10.2 Results and Heuristics for Real Quadratic Fields 297
5.11 Exercises for Chapter 5 298

Chapter 6 Algorithms for Algebraic Number Theory II 303

6.1 Computing the Maximal Order 303
6.1.1 The Pohst-Zassenhaus Theorem 303
6.1.2 The Dedekind Criterion 305
6.1.3 Outline of the Round 2 Algorithm 308
6.1.4 Detailed Description of the Round 2 Algorithm 311
6.2 Decomposition of Prime Numbers IT 312
6.2.1 Newton Polygons 313
6.2.2 Theoretical Description of the Buchmann-Lenstra Method 315
6.2.3 Multiplying and Dividing Ideals Modulop 317
6.2.4 Splitting of Separable Algebrasover ¥, 318
6.2.5 Detailed Description of the Algorithm for Prime Decomposition . 320
6.3 Computing Galois Groups 322
6.3.1 The Resolvent Method 322
6.32Degree3 325
6.33Degreed 325
6.3.4 Degree 5 e e s e 328
635 Degree 6 329
6.3.6 Degree 7 331
6.3.7 A List of Test Polynomials 333
6.4 Examples of Families of Number Fields 334
6.4.1 Making Tables of Number Fields 334

6.4.2 Cyclic Cubic Fields 336

XVIII Contents

6.4.3 Pure CubicFields 343
6.4.4 Decomposition of Primes in Pure Cubic Fields 347
6.4.5 General Cubic Fields 351
6.5 Computing the Class Group, Regulator

and Fundamental Units 352
6.5.1 Ideal Reduction 352
6.5.2 Computing the Relation Matrix 354
6.5.3 Computing the Regulator and a System of Fundamental Units . . 357
6.5.4 The General Class Group and Unit Algorithm 358
6.5.5 The Principal Ideal Problem 360
6.6 Exercises for Chapter 6 362
Chapter 7 Introduction to Elliptic Curves 367
7.1 Basic Definitionso 0oL 367
7.1.1 Introduction L. 367
7.1.2 Elliptic Integrals and Elliptic Functions 367
7.1.3 Elliptic Curves over a Field 369
7.1.4 Points on Elliptic Curves 372
7.2 Complex Multiplication and Class Numbers 376
7.2.1 Maps Between Complex Elliptic Curves 377
7.2.2 Isogenies L Lo oo e 379
7.2.3 Complex Multiplication 381
7.2.4 Complex Multiplication and Hilbert Class Fields 384
7.2.5 Modular Equations 385
7.3 Rank and L-functions 386
7.3.1 The Zeta Function of a Variety 387
7.3.2 L-functions of Elliptic Curves 388
7.3.3 The Taniyama-Weil Conjecture 390
7.3.4 The Birch and Swinnerton-Dyer Conjecture 392
7.4 Algorithms for Elliptic Curves 394
7.4.1 Algorithms for Elliptic Curvesover C 394
7.4.2 Algorithm for Reducing a General Cubic 399
7.4.3 Algorithms for Elliptic Curvesover F,, 403
7.5 Algorithms for Elliptic Curvesover Q 406
7.5.1 Tate’s algorithmo L. 406
7.5.2 Computing rational points 410
7.5.3 Algorithms for computing the L-function 413
7.6 Algorithms for Elliptic Curves

with Complex Multiplication 414
7.6.1 Computing the Complex Valuesof () 414

7.6.2 Computing the Hilbert Class Polynomials 415

Contents XIX

7.6.3 Computing Weber Class Polynomials 416
7.7 Exercises for Chapter 7 417
Chapter 8 Factoring in the Dark Ages 419
8.1 Factoring and Primality Testing B § K¢
8.2 Compositeness Tests 421
8.3 Primality Tests C e e e e 423
8.3.1 The Pocklington-Lehmer N —1Test 423
8.3.2 Briefly, Other Tests 424
8.4 Lehman’s Method 425
8.5 Pollard’s p Method 426
8.5.1 Outline of the Method 426
8.5.2 Methods for Detecting Periodicity 427
8.5.3 Brent’s Modified Algorithm 429
8.5.4 Analysis of the Algorithm 430
8.6 Shanks’s Class Group Method 433
8.7 Shanks’s SQUFOF 434
88 The p—1-method 438
8.8.1 The First Stage 439
8.8.2 The Second Stage 440
8.8.3 Other Algorithms of the Same Type 441
8.9 Exercises for Chapter 8 442
Chapter 9 Modern Primality Tests 445
9.1 The Jacobi Sum Test 446
9.1.1 Group Rings of Cyclotomic Extensions 446
9.1.2 Characters, Gauss Sums and Jacobi Sums 448
913 TheBasicTest 450
9.1.4 Checking Condition £, 455
9.1.5 The Use of Jacobi Sums 457
9.1.6 Detailed Description of the Algorithm 463
9.1.7 Discussion 465
9.2 The Elliptic Curve Test 467
9.2.1 The Goldwasser-Kilian Test 467
9.2.2 Atkin’s Test 471

XX Contents

Chapter 10 Modern Factoring MethodsAT
10.1 The Continued Fraction Method - Y4
10.2 The Class Group Method B 13 |
10.2.1 Sketch of the Method 481
10.2.2 The Schnorr-Lenstra Factoring Method 482
10.3 The Elliptic Curve Method 484
10.3.1 Sketch of the Method 484
10.3.2 Elliptic Curves Modulo N 485
10.3.3 The ECM Factoring Method of Lenstra 487
10.3.4 Practical Considerations 489
10.4 The Multiple Polynomial Quadratic Sieve 490
10.4.1 The Basic Quadratic Sieve Algorithm 491
10.4.2 The Multiple Polynomial Quadratic Sieve 492
10.4.3 Improvements to the MPQS Algorithm 494
10.5 The Number Field Sieve 495
10.5.1 Introduction L. Lo oL . . 495
10.5.2 Description of the Special NFS when h(K)=1 496
10.5.3 Description of the Special NFS when A(K) >1 500
10.5.4 Description of the General NFS 501
10.5.5 Miscellaneous Improvements to the Number Field Sieve 503
10.6 Exercises for Chapter 10 504
Appendix A Packages for Number Theory 507
Appendix B Some Useful Tables 513
B.1 Table of Class Numbers of Complex Quadratic Fields . . 513
B.2 Table of Class Numbers and Units of Real Quadratic

Fields0 515
B.3 Table of Class Numbers and Units of Complex Cubic

Fields00 L s 519
B.4 Table of Class Numbers and Units of Totally Real Cubic

Fields s 521
B.5 Table of Elliptic Curves 524
Bibliography 0o 527

Chapter 1

Fundamental Number-Theoretic Algorithms

1.1 Introduction

This book describes in detail a number of algorithms used in algebraic number
theory and the theory of elliptic curves. It also gives applications to problems
such as factoring and primality testing. Although the algorithms and the the-
ory behind them are sufficiently interesting in themselves, I strongly advise
the reader to take the time to implement them on her/his favorite machine.
Indeed, one gets a feel for an algorithm mainly after executing it several times.
(This book does help by providing many tricks that will be useful for doing
this.)

We give the necessary background on number fields and classical algebraic
number theory in Chapter 4, and the necessary prerequisites on elliptic curves
in Chapter 7. This chapter shows you some basic algorithms used almost
constantly in number theory. The best reference here is [Knu2).

1.1.1 Algorithms

Before we can describe even the simplest algorithms, it is necessary to pre-
cisely define a few notions. However, we will do this without entering into the
sometimes excessively detailed descriptions used in Computer Science. For us,
an algorithm will be a method which, given certain types of inputs, gives an
answer after a finite amount of time.

Several things must be considered when one describes an algorithm. The
first is to prove that it is correct, i.e. that it gives the desired result when
it stops. Then, since we are interested in practical implementations, we must
give an estimate of the algorithm’s running time, if possible both in the worst
case, and on average. Here, one must be careful: the running time will always
be measured in bit operations, i.e. logical or arithmetic operations on zeros and
ones. This is the most realistic model, if one assumes that one is using real
computers, and not idealized ones. Third, the space requirement (measured in
bits) must also be considered. In many algorithms, this is negligible, and then
we will not bother mentioning it. In certain algorithms however, it becomes
an important issue which has to be addressed.

First, some useful terminology: The size of the inputs for an algorithm will
usually be measured by the number of bits that they require. For example,
the size of a positive integer N is [lgN| + 1 (see below for notations). We

2 1 Fundamental Number-Theoretic Algorithms

will say that an algorithm is linear, quadratic or polynomial time if it requires
time O(In N), O(In>N), O(P(In N)) respectively, where P is a polynomial. If
the time required is O(N®), we say that the algorithm is exponential time.
Finally, many algorithms have some intermediate running time, for example

VENEWN
eC lannlnN,

which is the approximate expected running time of many factoring algorithms
and of recent algorithms for computing class groups. In this case we say that
the algorithm is sub-exponential.

The definition of algorithm which we have given above, although a little
vague, is often still too strict for practical use. We need also probabilistic
algorithms, which depend on a source of random numbers. These “algorithms”
should in principle not be called algorithms since there is a possibility (of
probability zero) that they do not terminate. Experience shows, however, that
probabilistic algorithms are usually more efficient than non-probabilistic ones;
in many cases they are even the only ones available.

Probabilistic algorithms should not be mistaken with methods (which I
refuse to call algorithms), which produce a result which has a high probability
of being correct. It is essential that an algorithm produces correct results
(discounting human or computer errors), even if this happens after a very
long time. A typical example of a non-algorithmic method is the following:
suppose N is large and you suspect that it is prime (because it is not divisible
by small numbers). Then you can compute

2N 1mod N

using the powering Algorithm 1.2.1 below. If it is not 1 mod N, then this
proves that N is not prime by Fermat’s theorem. On the other hand, if it is
equal to 1 mod N, there is a very good chance that IV is indeed a prime. But
this is not a proof, hence not an algorithm for primality testing (the smallest
counterexample is N = 341).

Another point to keep in mind for probabilistic algorithms is that the idea
of absolute running time no longer makes much sense. This is replaced by the
notion of expected running time, which is self-explanatory.

1.1.2 Multi-precision

Since the numbers involved in our algorithms will almost always become quite
large, a prerequisite to any implementation is some sort of multi-precision
package. This package should be able to handle numbers having up to 1000
decimal digits. Such a package is easy to write, and one is described in detail in
Riesel’s book ([Rie]). One can also use existing packages or languages, such as
Axiom, Bignum, Derive, Gmp, Lisp, Macsyma, Magma, Maple, Mathematica,
Pari, Reduce, or Ubasic (see Appendix A). Even without a multi-precision

1.1 Introduction 3

package, some algorithms can be nicely tested, but their scope becomes more
limited.

The pencil and paper method for doing the usual operations can be imple-
mented without difficulty. One should not use a base-10 representation, but
rather a base suited to the computer’s hardware.

Such a bare-bones multi-precision package must include at the very least:

¢ Addition and subtraction of two n-bit numbers (time linear in n).

e Multiplication and Euclidean division of two n-bit numbers (time linear
in n?).

e Multiplication and division of an n-bit number by a short integer (time
linear in n). Here the meaning of short integer depends on the machine. Usually
this means a number of absolute value less than 215, 231, 235 or 263,

o Left and right shifts of an n bit number by small integers (time linear
in n).

e Input and output of an n-bit number (time linear in n or in n? depending
whether the base is a power of 10 or not).

Remark. Contrary to the choice made by some systems such as Maple, I
strongly advise using a power of 2 as a base, since usually the time needed for
input/output is only a very small part of the total time, and it is also often
dominated by the time needed for physical printing or displaying the results.

There exist algorithms for multiplication and division which as n gets
large are much faster than O(n?), the best, due to Schonhage and Strassen,
running in O(nlnnlnlnn) bit operations. Since we will be working mostly
with numbers of up to roughly 100 decimal digits, it is not worthwhile to
implement these more sophisticated algorithms. (These algorithms become
practical only for numbers having more than several hundred decimal digits.)
On the other hand, simpler schemes such as the method of Karatsuba (see
[Knu2] and Exercise 2) can be useful for much smaller numbers.

The times given above for the basic operations should constantly be kept
in mind.

Implementation advice. For people who want to write their own bare-
bones multi-precision package as described above, by far the best reference
is [Knu2] (see also [Rie]). A few words of advice are however necessary. A
priori, one can write the package in one’s favorite high level language. As
will be immediately seen, this limits the multi-precision base to roughly the
square root of the word size. For example, on a typical 32 bit machine, a
high level language will be able to multiply two 16-bit numbers, but not two
32-bit ones since the result would not fit. Since the multiplication algorithm
used is quadratic, this immediately implies a loss of a factor 4, which in fact
usually becomes a factor of 8 or 10 compared to what could be done with the
machine’s central processor. This is intolerable. Another alternative is to write
everything in assembly language. This is extremely long and painful, usually

4 1 Fundamental Number-Theoretic Algorithms

bug-ridden, and in addition not portable, but at least it is fast. This is the
solution used in systems such as Pari and Ubasic, which are much faster than
their competitors when it comes to pure number crunching.

There is a third possibility which is a reasonable compromise. Declare
global variables (known to all the files, including the assembly language files
if any) which we will call remainder and overflow say.

Then write in any way you like (in assembly language or as high level
language macros) nine functions that do the following. Assume a,b,c are
unsigned word-sized variables, and let M be the chosen multi-precision base,
so all variables will be less than M (for example M= 232). Then we need the
following functions, where 0 <c <M and overflow is equal to 0 or 1:

c=add(a,b) corresponding to the formula a+b=overflow-M+c.

c=addx(a,b) corresponding to the formula a+b+overflow=overflow-M+c.
c=sub(a,b) corresponding to the formula a-b=c-overflow-M.
c=subx(a,b) corresponding to the formula a~-b-overflow=c-overflow-M.
c=mul (a,b) corresponding to the formula a-b=remainder-M+c,

in other words c contains the low order part of the product, and remainder
the high order part.

c=div(a,b) corresponding to the formula remainder-M+a=b-c+remainder,

where we may assume that remainder<b.

For the last three functions we assume that M is equal to a power of 2, say
M= 2T

c=shiftl(a,k) corresponding to the formula 2¥a=remainder-M+c.

c=shiftr(a,k) corresponding to the formula a'M/2k=c'M+remainder,

where we assume for these last two functions that 0 < k < m.

k=bfffo(a) corresponding to the formula M/2 < 2Ka < M, ie. k =
[lg(M/(2a))] when a # 0, k = m when a = 0.

The advantage of this scheme is that the rest of the multi-precision package
can be written in a high level language without much sacrifice of speed, and
that the black boxes described above are short and easy to write in assembly
language. The portability problem also disappears since these functions can
easily be rewritten for another machine.

Knowledgeable readers may have noticed that the functions above cor-
respond to a simulation of a few machine language instructions of the
68020/68030/68040 processors. It may be worthwhile to work at a higher
level, for example by implementing in assembly language a few of the multi-
precision functions mentioned at the beginning of this section. By doing this
to a limited extent one can avoid many debugging problems. This also avoids
much function call overhead, and allows easier optimizing. As usual, the price
paid is portability and robustness.

Remark. One of the most common operations used in number theory is
modular multiplication, i.e. the computation of a - b modulo some number N,
where a and b are non-negative integers less than N. This can, of course,

1.1 Introduction 5

be trivially done using the formula div(mul(a,b),N), the result being the
value of remainder. When many such operations are needed using the same
modulus N (this happens for example in most factoring methods, see Chapters
8, 9 an 10), there is a more clever way of doing this, due to P. Montgomery
which can save 10 to 20 percent of the running time, and this is not a negligible
saving since it is an absolutely basic operation. We refer to his paper [Mon1]
for the description of this method.

1.1.3 Base Fields and Rings

Many of the algorithms that we give (for example the linear algebra algo-
rithms of Chapter 2 or some of the algorithms for working with polynomials
in Chapter 3) are valid over any base ring or field R where we know how to
compute. We must emphasize however that the behavior of these algorithms
will be quite different depending on the base ring. Let us look at the most
important examples.

The simplest rings are the rings R = Z/NZ, especially when N is small.
Operations in R are simply operations “modulo N” and the elements of R can
always be represented by an integer less than N, hence of bounded size. Using
the standard algorithms mentioned in the preceding section, and a suitable
version of Euclid’s extended algorithm to perform division (see Section 1.3.2),
all operations need only O(In?N) bit operations (in fact O(1) since N is con-
sidered as fixed!). An important special case of these rings R is when N = p
is a prime, and then R = [F,, the finite field with p elements. More generally,
it is easy to see that operations on any finite field F, with ¢ = p* can be done
quickly.

The next example is that of R = Z. In many algorithms, it is possible to
give an upper bound N on the size of the numbers to be handled. In this case
we are back in the preceding situation, except that the bound N is no longer
fixed, hence the running time of the basic operations is really O(In>N) bit
operations and not O(1). Unfortunately, in most algorithms some divisions
are needed, hence we are no longer working in Z but rather in Q. It is possible
to rewrite some of these algorithms so that non-integral rational numbers
never occur (see for example the Gauss-Bareiss Algorithm 2.2.6, the integral

LLL Algorithm 2.6.7, the sub-resultant Algorithms 3.3.1 and 3.3.7). These
versions are then preferable.

The third example is when R = Q. The main phenomenon which occurs
in practically all algorithms here is “coefficient explosion”. This means that in
the course of the algorithm the numerator and denominators of the rational
numbers which occur become very large; their size is almost impossible to
control. The main reason for this is that the numerator and denominator of
the sum or difference of two rational numbers is usually of the same order
of magnitude as those of their product. Consequently it is not easy to give
running times in bit operations for algorithms using rational numbers.

6 1 Fundamental Number-Theoretic Algorithms

The fourth example is that of R = R (or R = C). A new phenomenon
occurs here. How can we represent a real number? The truthful answer is that
it is in practice impossible, not only because the set R is uncountable, but also
because it will always be impossible for an algorithm to tell whether two real
numbers are equal, since this requires in general an infinite amount of time
(on the other hand if two real numbers are different, it is possible to prove
it by computing them to sufficient accuracy). So we must be content with
approximations {or with interval arithmetic, i.e. we give for each real number
involved in an algorithm a rational lower and upper bound), increasing the
closeness of the approximation to suit our needs. A nasty specter is waiting for
us in the dark, which has haunted generations of numerical analysts: numerical
instability. We will see an example of this in the case of the LLL algorithm
(see Remark (4) after Algorithm 2.6.3). Since this is not a book on numerical
analysis, we do not dwell on this problem, but it should be kept in mind.

As far as the bit complexity of the basic operations are concerned, since
we must work with limited accuracy the situation is analogous to that of Z
when an upper bound N is known. If the accuracy used for the real number
is of the order of 1/N, the number of bit operations for performing the basic
operations is O(InN).

Although not much used in this book, a last example I would like to
mention is that of R = Qp, the field of p-adic numbers. This is similar to the
case of real numbers in that we must work with a limited precision, hence the
running times are of the same order of magnitude. Since the p-adic valuation is
non-Archimedean, i.e. the accuracy of the sum or product of p-adic numbers
with a given accuracy is at least of the same accuracy, the phenomenon of
numerical instability essentially disappears.

1.1.4 Notations

We will use Knuth'’s notations, which have become a de facto standard in the
theory of algorithms. Also, some algorithms are directly adapted from Knuth
(why change a well written algorithm?). However the algorithmic style of writ-
ing used by Knuth is not well suited to structured programming. The reader
may therefore find it completely straightforward to write the corresponding
programs in assembly language, Basic or Fortran, say, but may find it slightly
less so to write them in Pascal or in C.

A warning: presenting an algorithms as a series of steps as is done in
this book is only one of the ways in which an algorithm can be described.
The presentation may look old-fashioned to some readers, but in the author’s
opinion it is the best way to explain all the details of an algorithm. In particular
it is perhaps better than using some pseudo-Pascal language (pseudo-code).
Of course, this is debatable, but this is the choice that has been made in this
book. Note however that, as a consequence, the reader should read as carefully
as possible the exact phrasing of the algorithm, as well as the accompanying
explanations, to avoid any possible ambiguity. This is particularly true in if

1.1 Introduction 7

(conditional) expressions. Some additional explanation is sometimes added to
diminish the possibility of ambiguity. For example, if the if condition is not
satisfied, the usual word used is otherwise. If if expressions are nested, one
of them will use otherwise, and the other will usually use else. I admit that
this is not a very elegant solution.

A typical example is step 7 in Algorithm 6.2.9. The initial statement If
¢ =0 do the following: implies that the whole step will be executed only
if ¢ = 0, and must be skipped if ¢ # 0. Then there is the expression if
j = i followed by an otherwise, and nested inside the otherwise clause is
another if dim(...) < n, and the else go to step 7 which follows refers to
this last if, i.e. we go to step 7 if dim(...) > n.

I apologize to the reader if this causes any confusion, but I believe that
this style of presentation is a good compromise.

|z| denotes the floor of z, i.e. the largest integer less than or equal to z.
Thus |3.4] =3, |-3.4] =—4.

[z] denotes the ceiling of z, i.e. the smallest integer greater than or equal
to x. We have [z] = —|—z].

|z] denotes an integer nearest to z, i.e. |z] = |z +1/2].

[a, b[denotes the real interval from a to b including a but excluding b. Sim-
ilarly]a, b] includes b and excludes a, and]a, b[is the open interval excluding a
and b. (This differs from the American notations [a,b), (a,b] and (a,b) which
in my opinion are terrible. In particular, in this book (a,b) will usually mean
the GCD of a and b, and sometimes the ordered pair (a,b).)

lg denotes the base 2 logarithm of z.
If E is a finite set, |E| denotes the cardinality of E.

If A is a matrix, A® denotes the transpose of the matrix A. A 1 x n (resp.
n x 1) matrix is called a row (resp. column) vector. The reader is warned that
many authors use a different notation where the transpose sign is put on the
left of the matrix.

If a and b are integers with b # 0, then except when explicitly mentioned
otherwise, a mod b denotes the non-negative remainder in the Euclidean di-
vision of a by b, i.e. the unique number r such that a = r (mod b) and
0<r<|b.

The notation d | n means that d divides n, while d||n will mean that d | n
and (d,n/d) = 1. Furthermore, the notations p | n and p*||n are always taken
to imply that p is prime, so for example p®||n means that p is the highest
power of p dividing n.

Finally, if a and b are elements in a Euclidean ring (typically Z or the
ring of polynomials over a field), we will denote the greatest common divisor
(abbreviated GCD in the text) of a and b by ged(a, b), or simply by (a,b)
when there is no risk of confusion.

8 1 Fundamental Number-Theoretic Algorithms

1.2 The Powering Algorithms

In almost every non-trivial algorithm in number theory, it is necessary at
some point to compute the n-th power of an element in a group, where n may
be some very large integer (i.e. for instance greater than 101°°). That this
is actually possible and very easy is fundamental and one of the first things
that one must understand in algorithmic number theory. These algorithms
are general and can be used in any group. In fact, when the exponent is non-
negative, they can be used in any monoid with unit. We give an abstract
version, which can be trivially adapted for any specific situation.

Let (G, x) be a group. We want to compute ¢" for g € G and n € Z in an
efficient manner. Assume for example that n > 0. The naive method requires
n—1 group multiplications. We can however do much better (A note: although
Gauss was very proficient in hand calculations, he seems to have missed this
method.) The idea is as follows. If n =). ¢;2* is the base 2 expansion of n

with ¢; =0 or 1, then .
o =11 (s*),

e;=1

hence if we keep track in an auxiliary variable of the quantities gzi which we
compute by successive squarings, we obtain the following algorithm.

Algorithm 1.2.1 (Right-Left Binary). Given g € G and n € Z, this algorithm
computes g™ in G. We write 1 for the unit element of G.

1. [Initialize] Set y « 1. If n = 0, output y and terminate. If n <0 let N «— —n
and z « g~1. Otherwise, set N «— n and z « g.

2. [Multiply?] If N is odd set y — z - y.

3. [Halve N] Set N « [N/2|. If N =0, output y as the answer and terminate
the algorithm. Otherwise, set z «— 2z - z and go to step 2.

Examining this algorithm shows that the number of multiplication steps
is equal to the number of binary digits of |n| plus the number of ones in the
binary representation of |n| minus 1. So, it is at most equal to 2|Ig |n|]+1, and
on average approximately equal to 1.5 Ig |n|. Hence, if one can compute rapidly
in G, it is not unreasonable to have exponents with several million decimal
digits. For example, if G = (Z/mZ)*, the time of the powering algorithm is
O(In?mIn |n|), since one multiplication in G takes time O(In?m).

The validity of Algorithm 1.2.1 can be checked immediately by noticing
that at the start of step 2 one has g" = y - z"V. This corresponds to a right-
to-left scan of the binary digits of |n|.

We can make several changes to this basic algorithm. First, we can write
a similar algorithm based on a left to right scan of the binary digits of |n|.

In other words, we use the formula g" = (g™/2)? if n is even and g" = g -
(g"~/2)2 if n is odd.

1.2 The Powering Algorithms 9

This assumes however that we know the position of the leftmost bit of |n|
(or that we have taken the time to look for it beforehand), i.e. that we know
the integer e such that 2¢ < |n| < 2¢*1. Such an integer can be found using a
standard binary search on the binary digits of n, hence the time taken to find
it is O(lglg|n|), and this is completely negligible with respect to the other
operations. This leads to the following algorithm.

Algorithm 1.2.2 (Left-Right Binary). Given g € G and n € Z, this algorithm
computes g™ in G. If n # 0, we assume also given the unique integer e such that
2¢ < |n| < 2°*1. We write 1 for the unit element of G.

1. [Initialize] If n = 0, output 1 and terminate. If n < 0 set N — —n and
z « g~1. Otherwise, set N «— n and z — g. Finally, set y «— z, E « 2°,
N« N—-E.

2. [Finished?] If E = 1, output y and terminate the algorithm. Otherwise, set
E — E)2.

3. [Multiply?] Sety — y-yandif N>E,set N— N—Eandy «— y- 2. Go
to step 2.

Note that E takes as values the decreasing powers of 2 from 2° down to
1, hence when implementing this algorithm, all operations using £ must be
thought of as bit operations. For example, instead of keeping explicitly the
(large) number E, one can just keep its exponent (which will go from e down
to 0). Similarly, one does not really subtract E from N or compare N with
E, but simply look whether a particular bit of N is 0 or not. To be specific,
assume that we have written a little program bit(NN, f) which outputs bit
number f of N, bit 0 being, by definition, the least significant bit. Then we
can rewrite Algorithm 1.2.2 as follows.

Algorithm 1.2.3 (Left-Right Binary, Using Bits). Given g € G and n € Z,
this algorithm computes g" in G. If n # 0, we assume also that we are given the

unique integer e such that 2¢ < |n| < 2¢*1. We write 1 for the unit element of
G.

L. [Initialize] If n = 0, output 1 and terminate. If n < 0 set N — —n and
z — g1 Otherwise, set N «—n and z«—g. Finally, set y —z, f «— e.

2. [Finished?] If f = 0, output y and terminate the algorithm. Otherwise, set
f—f—-1

3. [Multiply?] Set y « y -y and if bit(N, f) = 1, set y — y - z. Go to step 2.

The main advantage of this algorithm over Algorithm 1.2.1 is that in step
3 above, z is always the initial g (or its inverse if n < 0). Hence, if g is
represented by a small integer, this may mean a linear time multiplication
instead of a quadratic time one. For example, if G = (Z/mZ)* and if g (or
g lifn < 0) is represented by the class of a single precision integer, the

10 1 Fundamental Number-Theoretic Algorithms

running time of Algorithms 1.2.2 and 1.2.3 will be in average up to 1.5 times
faster than Algorithm 1.2.1.

Algorithm 1.2.3 can be improved by making use of the representation of
|n| in a base equal to a power of 2, instead of base 2 itself. In this case, only
the left-right version exists.

This is done as follows (we may assume n > 0). Choose a suitable positive
integer k (we will see in the analysis how to choose it optimally). Precompute
g2 and by induction the odd powers g3, ¢5, ..., g2 !, and initialize y to g
as in Algorithm 1.2.3. Now if we scan the 2*-representation of |n| from left
to right (i.e. k bits at a time of the binary representation), we will encounter
digits a in base 2%, hence such that 0 < a <2*. If a =0, we square k times
our current y. If a # 0, we can write a = 2tb with b odd and less than 2%,
and 0 < t < k. We must set y «— y2 - ¢2®, and this is done by computing
first yzk-‘- g® (which involves k — t squarings plus one multiplication since g®
has been precomputed), then squaring t times the result. This leads to the
following algorithm. Here we assume that we have an algorithm digit(k, N, f)
which gives digit number f of N expressed in base 2*.

Algorithm 1.2.4 (Left-Right Base 25). Given g € G and n € Z, this algorithm

computes g" in G. If n # 0, we assume also given the unique integer e such that

2ke < |n| < 2%(e*1)_ We write 1 for the unit element of G.

1. [Initialize] If n =0, output 1 and terminate. If n <0 set N« —n and
z « g~ L. Otherwise, set N « n and z « g. Finally set f — e.

2. [Precomputations] Compute and store 22, 25, ... 251,

3. [Multiply] Set a — digit(k, N, f). If a =0, repeat k times y < y-y. Otherwise,
write a = 2tb with b odd, and if f # e repeat k —t times y «— y -y and set
y — y-2° while if f = e set y « 2% (using the precomputed value of z°),
and finally (still if a # 0) repeat t times y «— y - y.

4. [Finished?] If f =0, output y and terminate the algorithm. Otherwise, set
f < f—1and go to step 3.

Implementation Remark. Although the splitting of a in the form 2¢b takes
very little time compared to the rest of the algorithm, it is a nuisance to have
to repeat it all the time. Hence, we suggest precomputing all pairs (t,b) for
a given k (including (k,0) for a = 0) so that t and b can be found simply by
table lookup. Note that this precomputation depends only on the value of k
chosen for Algorithm 1.2.4, and not on the actual value of the exponent n.

Let us now analyze the average behavior of Algorithm 1.2.4 so that we can
choose k optimally. As we have already explained, we will regard as negligible
the time spent in computing e or in extracting bits or digits in base 2*.

The precomputations require 2¥~! multiplications. The total number of
squarings is exactly the same as in the binary algorithm, i.e. |lg|n|], and the
number of multiplications is equal to the number of non-zero digits of |n| in
base 2%, i.e. on average

1.2 The Powering Algorithms 11

(=) (5])

so the total number of multiplications which are not squarings is on average
approximately equal to

m(k) =271+ (Z2 1) igin)
= o) &lnl.
Now, if we compute m(k +1) —m(k), we see that it is non-negative as long as

k(k+1)2%
2+ —2°
Hence, for the highest efficiency, one should choose k equal to the smallest
integer satisfying the above inequality, and this gives k = 1 for |n| < 256,
k =2 for |n| < 224, etc... . For example, if |n| has between 60 and 162 decimal
digits, the optimal value of k is k = 5. For a more specific example, assume
that n has 100 decimal digits (i.e. lgn approximately equal to 332) and that
the time for squaring is about 3/4 of the time for multiplication (this is quite
a reasonable assumption). Then, counting multiplication steps, the ordinary
binary algorithm takes on average (3/4)332+ 332/2 = 415 steps. On the other
hand, the base 25 algorithm takes on average (3/4)332+16+(31/160)332 = 329
multiplication steps, an improvement of more than 20%.

There is however another point to take into account. When, for instance
G = (Z/mZ)* and g (or g~ when n < 0) is represented by the (residue) class
of a single precision integer, replacing multiplication by g by multiplication
by its small odd powers may have the disadvantage compared to Algorithm
1.2.3 that these powers may not be single precision. Hence, in this case, it may
be preferable, either to use Algorithm 1.2.3, or to use the highest power of k
less than or equal to the optimal one which keeps all the z® with b odd and
1 < b < 28— 1 represented by single precision integers.

(A long text should be inserted here, but no place to do this (see page 45).)

Igin| <

Quite a different way to improve on Algorithm 1.2.1 is to try to find a
near optimal “addition chain” for |n|, and this also can lead to improvements,
especially when the same exponent is used repeatedly (see [BCS]. For a de-
tailed discussion of addition chains, see [Knu2].) In practice, we suggest using
the flexible 25-algorithm for a suitable value of k.

The powering algorithm is used very often with the ring Z/mZ. In this case
multiplication does not give a group law, but the algorithm is valid nonethe-
less if either n is non-negative or if g is an invertible element. Furthermore,
the group multiplication is “multiplication followed by reduction modulo m”.
Depending on the size of m, it may be worthwhile to not do the reductions
each time, but to do them only when necessary to avoid overflow or loss of
time.

We will use the powering algorithm in many other contexts in this book, in

particular when computing in class groups of number fields, or when working
with elliptic curves over finite fields.

12 1 Fundamental Number-Theoretic Algorithms

Note that for many groups it is possible (and desirable) to write a squaring
routine which is faster than the general-purpose multiplication routine. In
situations where the powering algorithm is used intensively, it is essential
to use this squaring routine when multiplications of the type y —y -y are
encountered.

1.3 Euclid’s Algorithms

We now consider the problem of computing the GCD of two integers a and
b. The naive answer to this problem would be to factor a and b, and then
multiply together the common prime factors raised to suitable powers. Indeed,
this method works well when a and b are very small, say less than 100, or when
a or b is known to be prime (then a single division is sufficient). In general this
is not feasible, because one of the important facts of life in number theory is
that factorization is difficult and slow. We will have many occasions to come
back to this. Hence, we must use better methods to compute GCD’s. This
is done using Euclid’s algorithm, probably the oldest and most important
algorithm in number theory.

Although very simple, this algorithm has several variants, and, because of
its usefulness, we are going to study it in detail. We shall write (a,b) for the
GCD of a and b when there is no risk of confusion with the pair (a,b). By
definition, (a, b) is the unique non-negative generator of the additive subgroup
of Z generated by a and b. In particular, (a,0) = (0,a) = |a| and (a,b) =
(|al, |b]). Hence we can always assume that a and b are non-negative.

1.3.1 Euclid’s and Lehmer’s Algorithms

Euclid’s algorithm is as follows:

Algorithm 1.3.1 (Euclid). Given two non-negative integers a and b, this
algorithm finds their GCD.

1. [Finished?] If b =0 then output a as the answer and terminate the algorithm.

2. [Euclidean step] Set r — amod b, a — b, b« r and go to step 1.

If either a or b is less than a given number N, the number of Euclidean
steps in this algorithm is bounded by a constant times In N, in both the
worst case and on average. More precisely we have the following theorem (see
[Knu2)):

Theorem 1.3.2. Assume that a and b are randomly distributed between 1
and N. Then

(1) The number of Euclidean steps is at most equal to

1.3 Euclid’s Algorithms 13

_mEn)],
’Vln((l n ﬁV?J 2 ~2.078In N + 1.672.

(2) The average number of Euclidean steps is approrimately equal to

121n2
— - IN+0.14~0843In N+ 0.14.

However, Algorithm 1.3.1 is far from being the whole story. First, it is not
well suited to handling large numbers (in our sense, say numbers with 50 or 100
decimal digits). This is because each Euclidean step requires a long division,
which takes time O(In>/N). When carelessly programmed, the algorithm takes
time O(In®N). If, however, at each step the precision is decreased as a function
of a and b, and if one also notices that the time to compute a Euclidean
step a = bg+ r is O((Ina)(Ing + 1)), then the total time is bounded by
O((InN)((3-Ing) + O(InN))). But > lng = InJ]¢g < lna < InN, hence if
programmed carefully, the running time is only O(ln2N). There is a useful
variant due to Lehmer which also brings down the running time to O(In’N).
The idea is that the Euclidean quotient depends generally only on the first
few digits of the numbers. Therefore it can usually be obtained using a single
precision calculation. The following algorithm is taken directly from Knuth.
Let M = mP be the base used for multi-precision numbers. Typical choices
are m =2, p=15,16,31, or 32, or m =10, p=4 or 9.

Algorithm 1.3.3 (Lehmer). Let a and b be non-negative multi-precision inte-
gers, and assume that a > b. This algorithm computes (a,b), using the following

auxiliary variables. a, b, A, B, C, D, T and q are single precision (i.e. less than
M), and t and r are multi-precision variables.

L. [Initialize] If b < M, i.e. is single precision, compute (a,b) using Algorithm
1.3.1 and terminate. Otherwise, let & (resp. b) be the single precision number

formed by the highest non-zero base M digit of a (resp. b). Set A <1, B+ 0,
C—0, D1

2. [Test quotient] If b+ C = 0 or b+ D = 0 go to step 4. Otherwise, set

g |(@a+A)/(b+C)]. If g #|(a+B)/(b+ D), go to step 4. Note that
one always has the conditions

0<a+A<M, 0<b+C<M,

0<&+B<M, 0<b+D<M.

Notice that one can have a single precision overflow in this step, which must
be taken into account. (This can occur only if 4 = M —1 and A =1 or if
b=M—1and D=1)

14 1 Fundamental Number-Theoretic Algorithms

3. [Euclidean step] Set T'«— A —qC, A~ C,C T, T «— B~gqD, B« D,
D« T,T+a—gb, G« b, b T and go to step 2 (all these operations are
single precision operations).

4. [Multi-precision step] If B =0, set t «— amod b, a < b, b « t, using multi-
precision division (this happens with a very small probability, on the order of
1.4/M) and go to step 1. Otherwise, set t «— Aa, t « t + Bb, r «— Ca,
r «— r+ Db, a «— t, b — 7, using linear-time multi-precision operations, and
go to step 1.

Note that the number of steps in this algorithm will be the same as in
Algorithm 1.3.1, i.e. O(In N) if a and b are less than N, but each loop now
consists only of linear time operations (except for the case B = 0 in step
4 which is so rare as not to matter in practice). Therefore, even without
using variable precision, the running time is now only of order O(In’N) and
not O(In®N). Of course, there is much more bookkeeping involved, so it is
not clear how large N must be before a particular implementation of this
algorithm becomes faster than a crude implementation of Algorithm 1.3.1. Or,
even whether a careful implementation of Algorithm 1.3.1 will not compete
favorably in practice. Testing needs to be done before choosing which of these
algorithms to use.

Another variant of Euclid’s algorithm which is also useful in practice is
the so-called binary algorithm. Here, no long division steps are used, except
at the beginning, instead only subtraction steps and divisions by 2, which are
simply integer shifts. The number of steps needed is greater, but the operations
used are much faster, and so there is a net gain, which can be quite large for
multi-precision numbers. Furthermore, using subtractions instead of divisions
is quite reasonable in any case, since most Euclidean quotients are small. More
precisely, we can state:

Theorem 1.3.4. In a suitable sense, the probability P(q) that a Euclidean
quotient be equal to q is

P(g) =lg((g+1)*/((g+1)® - 1)).

For ezample, P(1) = 0.41504..., P(2) = 0.16992..., P(3) = 0.09311...,
P(4) = 0.05890....

For example, from this theorem, one can see that the probability of oc-
currence of B = 0 in step 4 of Algorithm 1.3.3 is lg(1 + 1/M), and this is
negligible in practice.

One version of the binary algorithm is as follows.

Algorithm 1.3.5 (Binary GCD). Given two non-negative integers a and b,
this algorithm finds their GCD.

1. [Reduce size once] If a < b exchange a and b. Now if b = 0, output a and
terminate the algorithm. Otherwise, set r — a mod b, @ «— b and b « r.

1.3 Euclid’s Algorithms 15

2. [Compute power of 2] If b = 0 output a and terminate the algorithm. Otherwise,
set k « 0, and then while a and b are both even, set k — k+ 1, a « a/2,
b—b/2.

3. [Remove initial powers of 2] If a is even, repeat a « a/2 until a is odd.
Otherwise, if b is even, repeat b < b/2 until b is odd.

4. [Subtract] (Here a and b are both odd.) Set t « (a — b)/2. If t = 0, output
2%a and terminate the algorithm.

5. [Loop] While t is even, set ¢t « ¢/2. Then if t > 0 set a « t, else set b «— —t
and go to step 4.

Remarks.

(1) The binary algorithm is especially well suited for computing the GCD
of multi-precision numbers. This is because no divisions are performed,
except on the first step. Hence we suggest using it systematically in this
case.

(2) All the divisions by 2 performed in this algorithm must be done using
shifts or Boolean operations, otherwise the algorithm loses much of its
attractiveness. In particular, it may be worthwhile to program it in a
low-level language, and even in assembly language, if it is going to be
used extensively. Note that some applications, such as computing in class
groups, use GCD as a basic operation, hence it is essential to optimize the
speed of the algorithm for these applications.

(3) One could directly start the binary algorithm in step 2, avoiding division
altogether. We feel however that this is not such a good idea, since a and
b may have widely differing magnitudes, and step 1 ensures that we will
work on numbers at most the size of the smallest of the two numbers a
and b, and not of the largest, as would be the case if we avoided step 1. In
addition, it is quite common for b to divide a when starting the algorithm.
In this case, of course, the algorithm immediately terminates after step 1.

(4) Note that the sign of ¢ in step 4 of the algorithm enables the algorithm
to keep track of the larger of a and b, so that we can replace the larger of
the two by |t| in step 5. We can also keep track of this data in a separate
variable and thereby work only with non-negative numbers.

(5) Finally, note that the binary algorithm can use the ideas of Algorithm
1.3.3 for multi-precision numbers. The resulting algorithm is complex and

its efficiency is implementation dependent. For more details, see [Knu2
p.599].

The proof of the validity of the binary algorithm is easy and left to the reader.
On the other hand, a detailed analysis of the average running time of the bi-
nary algorithm is a challenging mathematical problem (see [Knu2] once again).
Evidently, as was the case for Euclid’s algorithm, the running time will be
O(In?N) bit operations when suitably implemented, where N is an upper
bound on the size of the inputs a and b. The mathematical problem is to find

16 1 Fundamental Number-Theoretic Algorithms

an asymptotic estimate for the number of steps and the number of shifts per-
formed in Algorithm 1.3.5, but this has an influence only on the O constant,
not on the qualitative behavior. O

1.3.2 Euclid’s Extended Algorithms

The information given by Euclid’s algorithm is not always sufficient for many
problems. In particular, by definition of the GCD, if d = (a,b) there exists
integers w and v such that au+ bv = d. It is often necessary to extend Euclid’s
algorithm so as to be able to compute u and v. While v and v are not unique,
u is defined modulo b/d, and v is defined modulo a/d.

There are two ways of doing this. One is by storing the Euclidean quotients
as they come along, and then, once d is found, backtracking to the initial
values. This method is the most efficient, but can require a lot of storage. In
some situations where this information is used extensively (such as Shanks’s
and Atkin’s NUCOMP in Section 5.4.2), any little gain should be taken, and
so one should do it this way.

The other method requires very little storage and is only slightly slower.
This requires using a few auxiliary variables so as to do the computations as

we go along. We first give a version which does not take into account multi-
precision numbers.

Algorithm 1.3.6 (Euclid Extended). Given non-negative integers a and b,
this algorithm determines (u,v,d) such that au + bv = d and d = (a,b). We use
auxiliary variables vy, vs, t1, t3.

1. [Initialize] Set uw « 1, d «— a. If b =0, set v «— 0 and terminate the algorithm,
otherwise set v; «— 0 and v3 « b.

2. [Finished?] If v3 = 0 then set v «— (d —au)/b and terminate the algorithm.

3. [Euclidean step] Let g « |d/v3] and simultaneously t3 «— d mod v3. Then set
t1—u—qui, u—vy, d—v3, vi+t;, vz3—t3 and go to step 2.

“Simultaneously” in step 3 means that if this algorithm is implemented in
assembly language, then, since the division instruction usually gives both the
quotient and remainder, this should of course be used. Even if this algorithm
is not programmed in assembly language, but ¢ and b are multi-precision
numbers, the division routine in the multi-precision library should also return
both quotient and remainder. Note also that in step 2, the division of d — au
by b is exact.

Proof of the Algorithm. Introduce three more variables v, t2 and v. We want
the following relations to hold each time one begins step 2:

at; + bte =t3, au+bv=d, avy+ bvy =vs.

1.3 Euclid’s Algorithms 17

For this to be true after the initialization step, it suffices to set v «— 0, vg « 1.
(It is not necessary to initialize the ¢t variables.) Then, it is easy to check that
step 3 preserves these relations if we update suitably the three auxiliary vari-
ables (by (vg,t2,v) « (t2,v—qua, v2)). Therefore, at the end of the algorithm,
d contains the GCD (since we have simply added some extra work to the ini-
tial Euclidean algorithm), and we also have au + bv = d. O

As an exercise, the reader can show that at the end of the algorithm,
we have v; = *b/d (and v, = Fa/d in the proof), and that throughout the
algorithm, |vy|, |u|, |t,| stay less than or equal to b/d (and |vql, |v], |t2| stay
less than or equal to a/d).

This algorithm can be improved for multi-precision numbers exactly as in
Lehmer’s Algorithm 1.3.3. Since it is a simple blend of Algorithms 1.3.3 and
1.3.5, we do not give a detailed proof. (Notice however that the variables d
and v3 have become a and b.)

Algorithm 1.3.7 (Lehmer Extended). Let a and b be non-negative multi-
precision integers, and assume that a > b. This algorithm computes (u, v, d) such
that au+bv = d = (a, b), using the following auxiliary variables. 4, b, A, B, C, D,
T and q are single precision (i.e. less than M), and ¢, r, vy, v3 are multi-precision
variables.

1. [Initialize] Set u 1, vy 0.

2. [Finished?] If b < M, i.e. is single precision, compute (u,v,d) using Algorithm
1.3.6 and terminate. Otherwise, let G (resp. b) be the single precision number
formed by the p most significant digits of a (resp. b). Set A« 1, B« 0,
C—0,D1

3. [Test quotient] If 5+ C =0 or b+ D =0 go to step 5. Otherwise, set
g+ @+ A)/(b+C)|.If ¢ # |(a+ B)/(b+ D)|, go to step 5.
4. [Euclidean step] Set T— A—qC, A—C, C—T, T—B—qD, B<D,

D«T,T—a—qb, a«—b, b—T andgo to step 3 (all these operations are
single precision operations).

5. [Multi-precision step] If B = 0, set q « |a/b] and simultaneously t «— a mod b
using multi-precision division, then a «b, b «t, t —u—quy, u vy, v1 — t
and go to step 2.

Otherwise, set t «— Aa, t —t+ Bb,r —Ca,r—r+Db, a—1t, br,
t — Au, t —t+Buvy, r—Cu, r—r+Duvy, ut, v; — r using linear-time
multi-precision operations, and go to step 2.

In a similar way, the binary algorithm can be extended to find u and v.
The algorithm is as follows.

A!gorithm 1.3.8 (Binary Extended). Given non-negative integers a and b,
this algorithm determines (u,v,d) such that au+ bv = d and d = (a,b). We use
auxiliary variables vy, vs, t1, t3, and two Boolean flags f; and f,.

18 1 Fundamental Number-Theoretic Algorithms

1. [Reduce size once] If a < b exchange a and b and set fi; « 1, otherwise set
fi « 0. Now if b = 0, output (1,0,a) if f = 0, (0,1,a) if fi = 1 and
terminate the algorithm. Otherwise, let a = bq + r be the Euclidean division
of a by b, where 0 <7 < b, and seta — b and b — r.

2. [Compute power of 2] If b = 0, output (0,1,a) if f; =0, (1,0,a) if f1 =1
and terminate the algorithm. Otherwise, set k « 0, and while a and b are both
even,setk —k+1,a—a/2, b—b/2.

3. [Initialize] If b is even, exchange a and b and set f, « 1, otherwise set fo « 0.
Thenset u «— 1,d «—a, v1 <« b, v3 — b. If a is odd, set t; < 0, t3 «— —b
and go to step 5, else set ¢; «— (1+b)/2, t3 — a/2.

4. [Remove powers of 2] If ¢3 is even do as follows. Set t3 « t3/2, t1 « t1/2 if
t1 is even and t; « (t1 + b)/2 if t; is odd, and repeat step 4.

5. [Loop] If t3 > 0, set u « t; and d « t3, otherwise, set v; «— b—t1, v3 «— —t3.

6. [Subtract] Set ty «— u— vy, t3 —d —wvs. If t; <0, set t; « t; + b. Finally, if
t3 # 0, go to step 4.

7. [Terminate] Set v « (d — au)/b and d « 2*d. If f, = 1 exchange u and v.
Then set u < u — vq. Finally, output (u,v,d) if f; =1, (v,u,d) if fi =0,
and terminate the algorithm.

Proof. The proof is similar to that of Algorithm 1.3.6. We introduce three
more variables vg, t2 and v and we require that at the start of step 4 we
always have

At1+Bt2=t3, A'u,+Bv=d, A’Ul + Bug = v3,

where A and B are the values of a and b after step 3. For this to be true, we
must initialize them by setting (in step 3) v «— 0, v «— 1—a and t; — —1lifa
is odd, ty « —a/2 if a is even. After this, the three relations will continue to
be true provided we suitably update vq, t2 and v. Since, when the algorithm
terminates d will be the GCD of A and B, it suffices to backtrack from both
the division step and the exchanges done in the first few steps in order to
obtain the correct values of u and v (as is done in step 7). We leave the details
to the reader. O

Euclid’s “extended” algorithm, i.e. the algorithm used to compute (u, v, d)
and not d alone, is useful in many different contexts. For example, one frequent
use is to compute an inverse (or more generally a division) modulo m. Assume
one wants to compute the inverse of a number b modulo m. Then, using
Algorithm 1.3.6, 1.3.7 or 1.3.8, compute (u,v,d) such that bu + mv = d =
(b,m). If d > 1 send an error message stating that b is not invertible, otherwise
the inverse of b is u. Notice that in this case, we can avoid computing v in
step 2 of Algorithm 1.3.6 and in the analogous steps in the other algorithms.

There are other methods to compute b~! mod m when the factorization
of m is known, for example when m is a prime. By Euler-Fermat’s Theorem

1.3 Euclid’s Algorithms 19

1.4.2, we know that, if (b,m) = 1 (which can be tested very quickly since the
factorization of m is known), then

b*™ =1 (mod m),

where ¢(m) is Euler’s ¢ function (see [H-W]). Hence, the inverse of b modulo
m can be obtained by computing

b7t = 6%™71 (mod m),

using the powering Algorithm 1.2.1.

Note however that the powering algorithms are O(In*m) algorithms, which
is worse than the time for Euclid’s extended algorithm. Nonetheless they can
be useful in certain cases. A practical comparison of these methods is done in
[Brel].

1.3.3 The Chinese Remainder Theorem

We recall the following theorem:

Theorem 1.3.9 (Chinese Remainder Theorem). Let mi, ..., my and xi,
..., Tx be integers. Assume that for every pair (4,j) we have

z; = z; (mod ged(m;,m;)).
There exists an integer x such that
z=z; (mod m;) for 1<i<k.
Furthermore, z is unique modulo the least common multiple of my, ..., mg.

Corollary 1.3.10. Let my, ..., my be pairwise coprime integers, i.e. such
that

ged(m;,mj) =1 when i #£ j.
Then, for any integers x;, there ezists an integer x, unique modulo [m;, such
that

z=z; (mod m;) for 1<i<k.

We need an algorithm to compute 2. We will consider only the case where
the m; are pairwise coprime, since this is by far the most useful situation.
Set M = [],<;<,mi and M; = M/m;. Since the m; are coprime in pairs,
ged(M;, m;) =1 hence by Euclid’s extended algorithm we can find a; such
that a;M; =1 (mod m;). If we set

20 1 Fundamental Number-Theoretic Algorithms

T = E a;M;z;,

1<i<k

it is clear that z satisfies the required conditions. Therefore, we can output
z mod M as the result.

This method could be written explicitly as a formal algorithm. However
we want to make one improvement before doing so. Notice that the necessary
constants a; are small (less than m;), but the M; or the a;M; which are also
needed can be very large. There is an ingenious way to avoid using such large
numbers, and this leads to the following algorithm. Its verification is left to
the reader.

Algorithm 1.3.11 (Chinese). Given pairwise coprime integers m; (1 <1 < k)
and integers z;, this algorithm finds an integer x such that z = z; (mod m;) for
all 7. Note that steps 1 and 2 are a precomputation which needs to be done only
once when the m; are fixed and the z; vary.

1. [Initialize] Set j « 2, Ci « 1. In addition, if it is not too costly, reorder the
m; (and hence the z;) so that they are in increasing order.

2. [Precomputations] Set p « mymg---m;_; (mod m;). Compute (u,v,d)
such that up + vm; = d = ged(p,m;) using a suitable version of Euclid's
extended algorithm. If d > 1 output an error message (the m; are not pairwise
coprime). Otherwise, set C; — u, j < j + 1, and go to step 2 if j < k.

3. [Compute auxiliary constants] Set y; + x; mod m;, and for j = 2,...,k
compute (as written)

y; — (zj — (Y1 + ma(y2 + ma(ys + -+ - + mj_gy;_1) - --))Cj mod m;.
4. [Terminate] Output

T —yr+mi(y2 +ma(ys+ - +me_1yk)),

and terminate the algorithm.

Note that we will have 0 <z < M = [[m,.

As an exercise, the reader can give an algorithm which finds z in the more
general case of Theorem 1.3.9 where the m; are not assumed to be pairwise
coprime. It is enough to write an algorithm such as the one described before
Algorithm 1.3.11, since it will not be used very often (Exercise 9).

Since this algorithm is more complex than the algorithm mentioned pre-
viously, it should only be used when the m; are fixed moduli, and not just for
a one shot problem. In this last case is it preferable to use the formula for two
numbers inductively as follows. We want z = z; (mod m;) for i = 1,2. Since
the m; are relatively prime, using Euclid’s extended algorithm we can find u
and v such that

umi + vmg = 1.

1.3 Euclid’s Algorithms 21

It is clear that
T = umjTs + vmox; mod myme

is a solution to our problem. This leads to the following.

Algorithm 1.3.12 (Inductive Chinese). Given pairwise coprime integers m;
(1 <14 < k) and integers z;, this algorithm finds an integer z such that z = z;
(mod m;) for all 4.

1. [Initialize] Set ¢ « 1, m « m;, = « z;.

2. [Finished?] If ¢ = k output z and terminate the algorithm. Otherwise, set
i« 141, and by a suitable version of Euclid's extended algorithm compute u
and v such that um 4+ vm; = 1.

3. [Compute next z] Set «— umz; + vm;z, m «— mm;, £ « x mod m and go
to step 2.

Note that the results and algorithms of this section remain true if we
replace Z by any Euclidean domain, for example the polynomial ring K[X]
where K is a field.

1.3.4 Continued Fraction Expansions of Real Numbers

We now come to a subject which though closely linked to Euclid’s algorithm,
has a different flavor. Consider first the following apparently simple problem.
Let z € R be given by an approximation (for example a decimal or binary
one). Decide if z is a rational number or not. Of course, this question as
posed does not really make sense, since an approximation is usually itself a
rational number. In practice however the question does make a lot of sense
in many different contexts, and we can make it algorithmically more precise.
For example, assume that one has an algorithm which allows us to compute z
to as many decimal places as one likes (this is usually the case). Then, if one
claims that z is (approximately) equal to a rational number p/q, this means
that p/q should still be extremely close to 2 whatever the number of decimals
asked for, p and g being fixed. This is still not completely rigorous, but it
comes quite close to actual practice, so we shall be content with this notion.
Now how does one find p and g if z is indeed a rational number? The
standard (and algorithmically excellent) answer is to compute the continued
fraction expansion of z, i.e. find integers a; such that a; > 1 for ¢ > 1 and

1

T =ag+
al+—1
az + —

a3+"-

which we shall write as z = [ag, a1, as, as, . . .]. If a/b is the given (rational) ap-
proximation to x, then the a; are obtained by simply using Euclid’s algorithm

22 1 Fundamental Number-Theoretic Algorithms

on the pair (a,b), the a; being the successive partial quotients. The number
z is rational if and only if its continued fraction expansion is finite, i.e. if and
only if one of the a; is infinite. Since z is only given with the finite precision
a/b, x will be considered rational if = has a very large partial quotient a; in
its continued fraction expansion. Of course this is subjective, but should be
put to the stringent test mentioned above. For example, if one uses the ap-
proximation m = 3.1415926 one finds that the continued fraction for m should
start with [3,7,15,1,243,...] and 243 does seem a suspiciously large partial
quotient, so we suspect that 7 = 355/113, which is the rational number whose
continued fraction is exactly [3,7,15,1]. If we compute a few more decimals of
m however, we see that this equality is not true. Nonetheless, 355/113 is still
an excellent approximation to 7 (the continued fraction expansion of 7 starts
in fact [3,7,15,1,292,1,...]).

To implement a method for computing continued fractions of real numbers,
I suggest using the following algorithm, which says exactly when to stop.

Algorithm 1.3.13 (Lehmer). Given a real number z by two rational numbers
a/b and ' /b such that a/b < z < a//¥/, this algorithm computes the continued
fraction expansion of x and stops exactly when it is not possible to determine
the next partial quotient from the given approximants a/b and a’/b’, and it gives
lower and upper bounds for this next partial quotient.

1. [Initialize] Set ¢ « 0.

2. [Euclidean step] Let a = bg + r the Euclidean division of a by b, and set
' —a —bg lfr" <0orr' >b'set ¢ — |a'/b'] and go to step 4.

3. [Output quotient] Set a; « g and output a;, thenset i «—i+1,a b, b,
o — b and b’ « 7. If b and b’ are non-zero, go to step 2. If b = b = 0,
terminate the algorithm. Finally, if b = 0 set ¢ «— oo and ¢’ « |a’/b] while if
b’ =0 set ¢ — |a/b] and ¢’ — oo.

4. [Terminate] If ¢ > ¢’ output the inequality ¢’ < a; < g, otherwise output
q < a; < ¢'. Terminate the algorithm.

Note that the co mentioned in step 3 is only a mathematical abstraction
needed to make step 4 make sense, but it does not need to be represented in
a machine by anything more than some special code.

This algorithm runs in at most twice the time needed for the Euclidean
algorithm on a and b alone, since, in addition to doing one Euclidean division
at each step, we also multiply ¢ by b’.

We can now solve the following problem: given two complex numbers z;
and 2z, are they Q-linearly dependent? This is equivalent to z;/z2 being ra-
tional, so the solution is this: compute z « z;/z. If the imaginary part of
z is non-zero (to the degree of approximation that one has), then z; and 2
are not even R-linearly dependent. If it is zero, then compute the continued
fraction expansion of the real part of z using algorithm 1.3.13, and look for
large partial quotients as explained above.

1.3 Euclid’s Algorithms 23

We will see in Section 2.7.2 that the LLL algorithms allow us to determine
in a satisfactory way the problem of Q-linear dependence of more than two
complex or real numbers.

Another closely related problem is the following: given two vectors a and
b in a Euclidean vector space, determine the shortest non-zero vector which
is a Z-linear combination of a and b (we will see in Chapter 2 that the set
of such Z-linear combinations is called a lattice, here of dimension 2). One
solution, called Gaussian reduction, is again a form of Euclid’s algorithm, and
is as follows.

Algorithm 1.3.14 (Gauss). Given two linearly independent vectors a and b in
a Euclidean vector space, this algorithm determines one of the shortest non-zero
vectors which is a Z-linear combination of a and b. We denote by - the Euclidean
inner product and write |a|? = a - a. We use a temporary scalar variable T', and
a temporary vector variable t.

1. [Initialize] Set A « |a|?, B « |b|%. If A < B then exchange a and b and
exchange A and B.

2. [Euclidean step] Set n «— a-b, r — |n/B], where |z] = |z + 1/2] is the
nearest integer to x, and T' «— A — 2rn + r2B.

3. [Finished?] If T' > B then output b and terminate the algorithm. Otherwise,
sett —a—rb,a—b,bet, A« B, B« T and go to step 2.

Proof. Note that A and B are always equal to |a|? and |b|? respectively. I first
claim that an integer r such that |a — rb| has minimal length is given by the
formula of step 2. Indeed, we have

la—zb|?> = Bz? —2a-bz + 4,

and this is minimum for real z for z = a - b/B. Hence, since a parabola is
symmetrical at its minimum, the minimum for integral z is the nearest integer
(or one of the two nearest integers) to the minimum, and this is the formula
given in step 2.

Thus, at the end of the algorithm we know that |a — mb| > |b| for all
integers m. It is clear that the transformation which sends the pair (a,b) to
the pair (b,a — rb) has determinant —1, hence the Z-module L generated
by a and b stays the same during the algorithm. Therefore, let x = ua + vb
be a non-zero element of L. If u = 0, we must have v # 0 hence trivially
|x| > |b]. Otherwise, let v = ug +r be the Euclidean division of v by u, where
0 <7 < |u|. Then we have

x| = |u(a +gb) +rb| > |u|la+ gb| — |r|[b| 2 (jul — |r|)|b] > [b|

since by our above claim |a + gb| > |b| for any integer g, hence b is indeed
one of the shortest vectors of L, proving the validity of the algorithm.

24 1 Fundamental Number-Theoretic Algorithms

Note that the algorithm must terminate since there are only a finite num-
ber of vectors of L with norm less than or equal to a given constant (com-
pact-+discrete=finite!). In fact the number of steps can easily be seen to be
comparable to that of the Euclidean algorithm, hence this algorithm is very
efficient. O

We will see in Section 2.6 that the LLL algorithm allows us to determine
efficiently small Z-linear combinations for more than two linearly independent
vectors in a Euclidean space. It does not always give an optimal solution, but,
in most situations, the results are sufficiently good to be very useful.

1.4 The Legendre Symbol

1.4.1 The Groups (Z/nZ)*

By definition, when A is a commutative ring with unit, we will denote by A*
the group of units of A, i.e. of invertible elements of A. It is clear that A* is
a group, and also that A* = A\ {0} if and only if A4 is a field. Now we have
the following fundamental theorem which gives the structure of (Z/nZ)* (see
[Ser] and Exercise 13).

Theorem 1.4.1. We have

@2y = o) =T (1-1)

pln

and more precisely
@/mzy = I] @/pzy",
p|n
where
(Z/p°Z)" ~Z/(p —1)p*"'Z

(i-e. is cyclic) whenp >3 orp=2 and a < 2, and
(Z)2°Z)* ~7./27 x 7./2~%Z,
when p=2 and a > 3.

Now when (Z/nZ)* is cyclic, i.e. by the above theorem when n is equal
either to p*, 2p* with p an odd prime, or n = 2 or 4, an integer g such that the
class of g generates (Z/nZ)* will be called a primitive root modulo n. Recall
that the order of an element g in a group is the least positive integer n such
that g™ is equal to the identity element of the group. When the group is finite,
the order of any element divides the order of the group. Furthermore, g is a

1.4 The Legendre Symbol 25

primitive root of (Z/nZ)* if and only if its order is exactly equal to ¢(n). As
a corollary of the above results, we obtain the following:

Proposition 1.4.2.
(1) (Fermat). If p is a prime and a is not divisible by p, then we have

a?"' =1 (mod p).

(2) (Euler). More generally, if n is a positive integer, then for any integer a
coprime to n we have

a?™ =1 (mod n),

and even
a®™/2 =1 (mod n)

if n is not equal to 2, 4, p™ or 2p* with p an odd prime.

To compute the order of an element in a finite group G, we use the fol-
lowing straightforward algorithm.

Algorithm 1.4.3 (Order of an Element). Given a finite group G of cardinality
h = |G|, and an element g € G, this algorithm computes the order of g in G. We
denote by 1 the unit element of G.

1. [Initialize] Compute the prime factorization of h, say h = pj*py? - --p;*, and
set e — h, 1« 0.

2. [Next p;] Set ¢ «— ¢+ 1. If i > k, output e and terminate the algorithm.
Otherwise, set e «— e/p;*, g1 « g°.

3. [Compute local order] While g, # 1, set g; «— g} and e « e - p;. Go to step
2.

Note that we need the complete factorization of h for this algorithm to
work. This may be difficult when the group is very large.

Let p be a prime. To find a primitive root modulo p there seems to be no
better way than to proceed as follows. Tryg=2,g=3,etc... untilgis a
primitive root. One should avoid perfect powers since if g= g(’f, then if g is a
primitive root, so is go which has already been tested.

To see whether g is a primitive root, we could compute the order of g
using the above algorithm. But it is more efficient to proceed as follows.

Algorithm 1.4.4 (Primitive Root). Given an odd prime p, this algorithm finds
a primitive root modulo p.

L. [Initialize a] Set @ +— 1 and let p — 1 = p{*p3? - - - p¥* be the complete factor-
ization of p —1.

26 1 Fundamental Number-Theoretic Algorithms

2. [initialize check] Set a «+— a + 1 and i « 1.

3. [Check p;] Compute e « aP=1/Pi_|f ¢ = 1 go to step 2. Otherwise, set
te—1+1

4. [finished?] If i > k output a and terminate the algorithm, otherwise go to step
3.

Note that we do not avoid testing prime powers, hence this simple algo-
rithm can still be improved if desired. In addition, the test for p; = 2 can be
replaced by the more efficient check that the Legendre symbol (%) is equal to
—1 (see Algorithm 1.4.10 below).

If n is not a prime, but is such that there exists a primitive root modulo n,
we could, of course, use the above two algorithms by modifying them suitably.
It is more efficient to proceed as follows.

First,if n=2o0orn =4, g = n — 1 is a primitive root. When n = 2% is
a power of 2 with a > 3, (Z/nZ)* is not cyclic any more, but is isomorphic
to the product of Z/2Z with a cyclic group of order 22=2. Then g = 5 is
always a generator of this cyclic subgroup (see Exercise 14), and can serve as
a substitute in this case if needed.

When n = p® is a power of an odd prime, with a > 2, then we use the
following lemma.

Lemma 1.4.5. Let p be an odd prime, and let g be a primitive root modulo
p. Then either g or g + p is a primitive root modulo every power of p.

Proof. For any m we have m? = m (mod p), hence it follows that for every
prime [dividing p — 1, g?" 7 ®=D/l = g(p=1/l % 1 (mod p). So for g to be a
primitive root, we need only that ¢g?" (=1 2 1 (mod p*). But one checks
immediately by induction that zP = 1 (mod p?®) implies that z = 1 (mod p®)
for every b < a— 1. Applying this to z = gpa_z(p"l) we see that our condition
on g is equivalent to the same condition with a replaced by a — 1, hence by
induction to the condition g?P~! # 1 (mod p?). But if g?~! = 1 (mod p?),
then by the binomial theorem (g + p)P~! = 1 — pgP~2 # 1 (mod p?), thus
proving the lemma. 0O

Therefore to find a primitive root modulo p® for p an odd prime and a > 2,
proceed as follows: first compute g a primitive root modulo p using Algorithm
1.4.4, then compute g1 = g?~! mod p?. If g; # 1, g is a primitive root modulo
p® for every a, otherwise g + p is.

Finally, note that when p is an odd prime, if g is a primitive root modulo
p® then g or g + p* (whichever is odd) is a primitive root modulo 2p?.

1.4 The Legendre Symbol 27

1.4.2 The Legendre-Jacobi-Kronecker Symbol

Let p be an odd prime. Then it is easy to see that for a given integer a, the
congruence

> =a (mod p)

can have either no solution (we say in this case that a is a quadratic non-
residue mod p), one solution if a = 0 (mod p), or two solutions (we then say
that a is a quadratic residue mod p). Define the Legendre symbol (“) as being
—1 if a is a quadratic non-residue, 0 ifa =0, and 1 ifa is a quadratxc residue.
Then the number of solutions modulo p of the above congruence is 1 + (“)

Furthermore, one can easily show that this symbol has the following propertles
(see e.g. [H-W)):

Proposition 1.4.6.
(1) The Legendre symbol is multiplicative, i.e.

)G -6
p) \p)
In particular, the product of two quadratic non-residues is a quadratic

residue.
(2) We have the congruence

aP~1/2 = (%) (mod p).

(3) There are as many quadratic residues as non-residues mod p, i.e. (p—1)/2.

We will see that the Legendre symbol is fundamental in many prob-
lems. Thus, we need a way to compute it. One idea is to use the congruence
alP~1/2 = (%) (mod p). Using the powering Algorithm 1.2.1, this enables

us to compute the Legendre symbol in time O(In3p). We can improve on this
by using the Legendre-Gauss quadratic reciprocity law, which is itself a result
of fundamental importance:

Theorem 1.4.7. Let p be an odd prime. Then:

1) -
(7) = (~1)-V/2, (%) RN

(2) If q is an odd prime different from p, then we have the reciprocity law:

(%)e) = (=1)(P~Dia-1)/a

28 1 Fundamental Number-Theoretic Algorithms

For a proof, see Exercises 16 and 18 and standard textbooks (e.g. [H-W],
[Ire-Ros]).

This theorem can certainly help us to compute Legendre symbols since
(%) is multiplicative in @ and depends only on a modulo p. A direct use of
Theorem 1.4.7 would require factoring all the numbers into primes, and this
is very slow. Luckily, there is an extension of this theorem which takes care of

this problem. We first need to extend the definition of the Legendre symbol.

Definition 1.4.8. We define the Kronecker (or Kronecker-Jacobi) symbol (%)
for any a and b in Z in the following way.

(1) Ifb=0, then (&) =1 if a = £1, and is equal to 0 otherwise.
(2) For b # 0, write b =[] p, where the p are not necessarily distinct primes
(including p = 2), or p = —1 to take care of the sign. Then we set

() -11()

where (2) is the Legendre symbol defined above for p > 2, and where we

define
(g) _ { 0, if a is even
2) " | (-1)@-D/8 ifq is odd.
(i) _ { 1, ifa>0
-1) | -1, ifa<o.

Then, from the properties of the Legendre symbol, and in particular from
the reciprocity law 1.4.7, one can prove that the Kronecker symbol has the
following properties:

and also

Theorem 1.4.9.

(1) (§) =0 if and only if (a,b) #1
(2) For all a, b and c we have

900 Q-GE)

(3) b > 0 being fized, the symbol (§) is periodic in a of period b if b # 2
(mod 4), otherwise it is periodic of period 4b.

(4) a # 0 being fized (positive or negative), the symbol (%) is periodic in b of
period la| if a =0 or 1 (mod 4), otherwise it is periodic of period 4|a|.

(5) The formulas of Theorem 1.4.7 are still true if p and q are only supposed
to be positive odd integers, not necessarily prime.

1.4 The Legendre Symbol 29

Note that in this theorem (as in the rest of this book), when we say that a
function f(z) is periodic of period b, this means that for all z, f(z+b) = f(z),
but b need not be the smallest possible period.

Theorem 1.4.9 is a necessary prerequisite for any study of quadratic fields,
and the reader is urged to prove it by himself (Exercise 17).

As has been mentioned, a consequence of this theorem is that it is easy
to design a fast algorithm to compute Legendre symbols, and more generally
Kronecker symbols if desired.

Algorithm 1.4.10 (Kronecker). Given a,b € Z, this algorithm computes the
Kronecker symbol (%) (hence the Legendre symbol when b is an odd prime).

1. [Test b equal to 0] If b = 0 then output 0 if |a| # 1, 1 if |a| = 1 and terminate
the algorithm.

2. [Remove 2's from b] If a and b are both even, output 0 and terminate the
algorithm. Otherwise, set v « 0 and while b is even set v «— v + 1 and
b < b/2. Then if v is even set k « 1, otherwise set k «— (—1)(@*=1/8 (by
table lookup, not by computing (a? — 1)/8). Finally if b < 0 set b — —b, and
if in addition a < 0 set k «— —k.

3. [Finished?] (Here b is odd and b > 0.) If a = 0 then output 0 if b > 1, k if
b =1, and terminate the algorithm. Otherwise, set v - 0 and while a is even
dov— v+1and a— a/2 Ifvisodd set k « (—1)"~1)/8k,

4. [Apply reciprocity] Set
k (_1)(a—1)(b—1)/4k,

(using if statements and no multiplications), and then r — |a|, a < b mod r,
b — r and go to step 3.

Remarks.

(1) As mentioned, the expressions (—1)@*~1/8 and (—1)@~D(¢-1/4 should
not be computed as powers, even though they are written this way. For
example, to compute the first expression, set up and save a table tab2
containing

{07 170’ _1707_170’ 1})

and then the formula (—1)(*~1/8 = tab2[ak7], the & symbol denot-
ing bitwise and, which is a very fast operation compared to multipli-
cation (note that a&7 is equivalent to a mod 8). The instruction k «
(—1)(@=DO-1/4k i5 very efficiently translated in C by

if (a&b&2) k= -k;

(2) We need to prove that the algorithm is valid! It terminates since, because
except possibly the first time, at the beginning of step 3 we have 0 < b < a
and the value of b is strictly decreasing. It gives the correct result because
of the following lemma which is an immediate corollary of Theorem 1.4.9:

30 1 Fundamental Number-Theoretic Algorithms

Lemma 1.4.11. Ifa andb are odd integers with b > 0 (but not necessarily
a > 0), then we have

<%> = (~1)(e=D0-1)/4 (&) .

(3) We may want to avoid cleaning out the powers of 2 in step 3 at each pass
through the loop. We can do this by slightly changing step 4 so as to
always end up with an odd value of a. This however may have disastrous
effects on the running time, which may become exponential instead of
polynomial time (see [Bac-Sha] and Exercise 24).

Note that Algorithm 1.4.10 can be slightly improved (by a small constant
factor) by adding the following statement at the end of the assignments of
step 4, before going back to step 3: If @ > r/2, then a = a — r. This simply
means that we ask, not for the residue of a mod r which is between 0 and
r — 1, but for the one which is least in absolute value, i.e. between —r/2 and
r/2. This modification could also be used in Euclid’s algorithms if desired, if
tests suggest that it is faster in practice.

One can also use the binary version of Euclid’s algorithm to compute
Kronecker symbols. Since, in any case, the prime 2 plays a special role, this
does not really increase the complexity, and gives the following algorithm.

Algorithm 1.4.12 (Kronecker-Binary). Given a,b € Z, this algorithm com-

putes the Kronecker symbol (%) (hence the Legendre symbol when b is an odd

prime).

1. [Test b = 0] If b = 0 then output 0 if |a| # 1, 1 if |a| = 1 and terminate the
algorithm.

2. [Remove 2's from b] If a and b are both even, output 0 and terminate the
algorithm. Otherwise, set v « 0 and while b is even set v « v+ 1 and
b «— b/2. Then if v is even set k « 1, otherwise set k «+ (—1)@ ~1/8 (by
table lookup, not by computing (a? — 1)/8). Finally, if b < 0 set b «— —b, and
if in addition a < 0 set k « —k.

3. [Reduce size once] (Here b is odd and b > 0.) Set @ «— a mod b.

4. [Finished?] If a = 0, output 0 if b> 1, k if b = 1, and terminate the algorithm.

5. [Remove powers of 2] Set v «— 0 and, while a is even, set v «— v + 1 and
a «— a/2. If vis odd, set k « (—1)®*~1D/8f,

6. [Subtract and apply reciprocity] (Here a and b are odd.) Set r «— b—a. If r > 0,
then set k « (—1)(@=D0®=1)/4 (ysing if statements), b < a and a « r, else
set a «— —r. Go to step 4.

Note that we cannot immediately reduce a modulo b at the beginning of
the algorithm. This is because when b is even the Kronecker symbol (%) is not

1.5 Computing Square Roots Modulo p 31

periodic of period b in general, but only of period 4b. Apart from this remark,
the proof of the validity of this algorithm follows immediately from Theorem
1.4.10 and the validity of the binary algorithm. a

The running time of all of these Legendre symbol algorithms has the same
order of magnitude as Euclid’s algorithm, i.e. O(lnzN } when carefully pro-
grammed, where NN is an upper bound on the size of the inputs a and b. Note
however that the constants will be different because of the special treatment
of even numbers.

1.5 Computing Square Roots Modulo p

We now come to a slightly more specialized question. Let p be an odd prime
number, and suppose that we have just checked that (%) = 1 using one of the
algorithms given above. Then by definition, there exists an z such that z2 = a
(mod p). How do we find z7 Of course, a brute force search would take time
O(p) and, even for p moderately large, is out of the question. We need a faster
algorithm to do this. At this point the reader might want to try and find one
himself before reading further. This would give a feel for the difficulty of the
problem. (Note that we will be considering much more difficult and general
problems later on, so it is better to start with a simple one.)

There is an easy solution which comes to mind that works for half of the
primes p, i.e. primes p = 3 (mod 4). I claim that in this case a solution is
given by

z = a®/4 (mod p),

the computation being done using the powering Algorithm 1.2.1. Indeed, since
a is a quadratic residue, we have a(?"1/2 =1 (mod p) hence

2?2 =aP)/2 = 4. 0P~ D/2 = 4 (mod p)

as claimed.

A less trivial solution works for half of the remaining primes, i.e. primes
p =5 (mod 8). Since we have a®~V/2 = 1 (mod p) and since F, = Z/pZ is a
field, we must have
a®?=V/% = 41 (mod p).

Now, if the sign is +, then the reader can easily check as above that
z =aP*)/® (mod p)

is a solution. Otherwise, using p = 5 (mod 8) and Theorem 1.4.7, we know
that 2(°=1/2 = _1 (mod p). Then one can check that

T =2a-(4a)P/% (mod p)

is a solution.

32 1 Fundamental Number-Theoretic Algorithms

Thus the only remaining case is p =1 (mod 8). Unfortunately, this is the
hardest case. Although, by methods similar to the one given above, one could
give an infinite number of families of solutions, this would not be practical in
any sense.

1.5.1 The Algorithm of Tonelli and Shanks

There are essentially three algorithms for solving the above problem. One is
a special case of a general method for factoring polynomials modulo p, which
we will study in Chapter 3. Another is due to Schoof and it is the only non-
probabilistic polynomial time algorithm known for this problem. It is quite
complex since it involves the use of elliptic curves (see Chapter 7), and its
practicality is not clear, although quite a lot of progress has been achieved
by Atkin. Therefore, we will not discuss it here. The third and last algorithm
is due to Tonelli and Shanks, and although probabilistic, it is quite efficient.
It is the most natural generalization of the special cases studied above. We
describe this algorithm here.

We can always write
p—1=2%.q, with q odd.

The multiplicative group (Z/pZ)* is isomorphic to the (additive) group Z/(p—
1)Z, hence its 2-Sylow subgroup G is a cyclic group of order 2¢. Assume that
one can find a generator z of G. The squares in G are the elements of order
dividing 27!, and are also the even powers of 2. Hence, if a is a quadratic
residue mod p, then, since

a®P V72 = (@) =1 (mod p),

b = a? mod pis a square in G, so there exists an even integer £ with 0 < k < 2¢
such that

a?2*=1 inG.

If one sets
I = a(q+1)/2zk/2’

it is clear that 2 = @ (mod p), hence z is the answer. To obtain an algorithm,
we need to solve two problems: finding a generator z of G, and computing the
exponent k. Although very simple to solve in practice, the first problem is the
probabilistic part of the algorithm. The best way to find z is as follows: choose
at random an integer n, and compute z = n? mod p. Then it is clear that z is a
generator of G (i.e. 27 =—1in G) if and only if n is a quadratic non-residue
mod p, and this occurs with probability close to 1/2 (exactly (p —1)/(2p)).
Therefore, in practice, we will find a non-residue very quickly. For example,
the probability that one does not find one after 20 trials is lower than 10~6,

1.5 Computing Square Roots Modulo p 33

Finding the exponent k is slightly more difficult, and in fact is not needed
explicitly (only a‘@*1)/22%/2 is needed). The method is explained in the fol-
lowing complete algorithm, which in this form is due to Shanks.

Algorithm 1.5.1 (Square Root Mod p). Let p be an odd prime, and a € Z.
Write p — 1 = 2° . ¢ with ¢ odd. This algorithm, either outputs an x such that
7% = a (mod p), or says that such an z does not exist (i.e. that a is a quadratic

non-residue mod p).

1. [Find generator] Choose numbers n at random until (—;}) = —1. Then set
z «n? (mod p).

2. [Initialize] Set y — 2, r «— e, « al@"1/2 (mod p), b + az? (mod p),
z «— az (mod p).

3. [Find exponent] If b = 1 (mod p), output = and terminate the algorithm.
Otherwise, find the smallest m > 1 such that 2" =1 (mod p). If m =7,
output a message saying that a is not a quadratic residue mod p.

r—m-—1

4. [Reduce exponent] Set t « y? LY —t3 r—m x—xt, b by (all
operations done modulo p), and go to step 3.

Note that at the beginning of step 3 we always have the congruences
modulo p:

ab= 2?2, v =1, B =1,

If G, is the subgroup of G whose elements have an order dividing 2", then this
says that y is a generator of G, and that b is in G,_1, in other words that b is
a square in Gr. Since r is strictly decreasing at each loop of the algorithm, the
number of loops is at most e. When r < 1 we have b = 1 hence the algorithm
terminates, and the above congruence shows that z is one of the square roots
of @ mod p.

It is easy to show that, on average, steps 3 and 4 will require €?/4 mul-
tiplications mod p, and at most e2. Hence the expected running time of this
algorithm is O(In*p). o

Remarks.

(1) In the algorithm above, we have not explicitly computed the value of the
exponent k such that a%zF =1 but it is easy to do so if needed (see
Exercise 25).

(2) As already mentioned, Shanks’s algorithm is probabilistic, although the
only non-deterministic part is finding a quadratic non-residue mod p,
which seems quite a harmless task. One could try making it completely de-
terministic by successively trying n = 2,3 ... in step 1 until a non-residue
is found. This is a reasonable method, but unfortunately the most pow-
erful analytical tools only allow us to prove that the smallest quadratic
non-residue is O(p®) for a non-zero a. Thus, this deterministic algorithm,

34 1 Fundamental Number-Theoretic Algorithms

although correct, may have, as far as we know, an exponential running
time.

If one assumes the Generalized Riemann Hypothesis (GRH), then
one can prove much more, i.e. that the smallest quadratic non-residue
is O(In?p), hence this gives a polynomial runmng time (in O(Inp) since
computing a Legendre symbol is in O(In’p)). In fact, Bach [Bach] has
proved that for p > 1000 the smallest non-residue is less than 21n%p. In
any case, in practice the probabilistic method and the sequential method
(i.e. choosing n = 2,3, ...) give essentially equivalent running times.

(3) If m is an integer whose factorization into a product of prime powers
is completely known, it is easy to write an algorithm to solve the more
general problem z% = a (mod m) (see Exercise 30).

1.5.2 The Algorithm of Cornacchia

A well known theorem of Fermat (see [H-W]) says that an odd prime p is a sum
of two squares if and only if p =1 mod 4, i.e. if and only if —1 is a quadratic
residue mod p. Furthermore, up to sign and exchange, the representation of p
as a sum of two squares is unique. Thus, it is natural to ask for an algorithm
to compute z and y such that 22+ y2 = p when p = 1 mod 4. More generally,
given a positive integer d and an odd prime p, one can ask whether the equation

a:2+dy2=p

has a solution, and for an algorithm to find = and y when they exist. There is
a pretty algorithm due to Cornacchia which solves both problems simultane-
ously. For the beautiful and deep theory concerning the first problem, which
is closely related to complex multiplication (see Section 7.2) see [Cox].

First, note that a necessary condition for the existence of a solution is that
—d be a quadratic residue modulo p. Indeed, we clearly must have y # 0 mod p
hence

(zy™')’ =—dmod p,

where y~! denotes the inverse of y modulo p. We therefore assume that this
condition is satisfied. By using Algorithm 1.5.1 we can find an integer zo such
that

2 =—dmod p

and we may assume that p/2 < zo < p. Cornacchia’s algorithm tells us that
we should simply apply Euclid’s Algorithm 1.3.1 to the pair (a,b) = (p, zo)
until we obtain a number b such that b <,/p. Then we set ¢ «— (p—b?)/d, and
if ¢ is the square of an integer s, the equation z? + dy? = p has (z,y) = (b, s)

as (essentially unique) solution, otherwise it has no solution. This leads to the
following algorithm.

Algorithm 1.5.2 (Cornacchia). Let p be a prime number and d be an integer
such that 0 < d < p. This algorithm either outputs an integer solution (z,y) to

1.5 Computing Square Roots Modulo p 35

the Diophantine equation z2+dy? =p, or says that such a solution does not
exist.

1. [Test if residue] Using Algorithm 1.4.12 compute k «— (_—pd). If k=—1, say
that the equation has no solution and terminate the algorithm.

2. [Compute square root] Using Shanks's Algorithm 1.5.1, compute an integer o
such that z3 = —d mod p, and change z into 29+ kp so that p/2< zo<p.
Thenseta «—p, b—xp and [— [\/T)J

3. [Euclidean algorithm] If b > [, set T« amod b, a«<b, b« and go to step
3.

4. [Test solution] If d does not divide p—b2 or if ¢ = (p—b?)/d is not the square
of an integer (see Algorithm 1.7.3), say that the equation has no solution and
terminate the algorithm. Otherwise, output (z,y) = (b, 4/c) and terminate the
algorithm.

Let us give a numerical example. Assume that we want to solve 22+ 2y% =
97. In step 1, we first compute (32) by Algorithm 1.4.12 (or directly since here
it is easy), and find that —2 is a quadratic residue mod 97. Thus the equation
may have a solution (and in fact it must have one since the class number
of the ring of integers of Q(v/2) is equal to 1, see Chapter 5). In step 2, we
compute zo such that zZ = —2 mod 97 using Algorithm 1.5.1. Using n = 5
hence z = 28, we readily find 2o = 17. Then the Euclidean algorithm in step
3 gives 97 =5-174+ 12, 17 =112 + 5 and hence b = 5 is the first number
obtained in the Euclidean stage, which is less than or equal to the square root
of 97. Now ¢ = (97 — 5%)/2 = 36 is a square, hence a solution (unique) to our
equation is (z,y) = (5,6). Of course, this could have been found much more
quickly by inspection, but for larger numbers we need to use the algorithm as
written.

The proof of this algorithm is not really difficult, but is a little painful
so we refer to [Mor-Nic]. A nice proof due to H. W. Lenstra can be found
in [Scho2]. Note also that Algorithm 1.3.14 above can also be used to solve
the problem, and the proof that we gave of the validity of that algorithm is
similar, but simpler.

When working in complex quadratic orders of discriminant D < 0 con-
gruent to 0 or 1 modulo 4 (see Chapter 5), it is more natural to solve the
equation

22 +|D|y? = 4p

where p is an odd prime (we will for example need this in Chapter 9).
If 4| D, we must have 2 | z, hence the equation is equivalent to z’ 24 dy? =
p with ' = x/2 and d = | D|/4, which we can solve by using Algorithm 1.5.2.
If D=1 (mod 8), we must have z2 — 42 = 4 (mod 8) and this is possible
only when x and y are even, hence our equation is equivalent to z’ 24 dy’ 2= P
with 2’ = /2, ¥y’ = y/2 and d = | D|, which is again solved by Algorithm 1.5.2

36 1 Fundamental Number-Theoretic Algorithms

Finally, if D =5 (mod 8), the parity of = and y is not a priori determined.
Therefore Algorithm 1.5.2 cannot be applied as written. There is however a
modification of Algorithm 1.5.2 which enables us to treat this problem.

For this compute zo such that 2 = D (mod p) using Algorithm 1.5.1,
and if necessary change z¢ into p — zo so that in fact 3 = D (mod 4p). Then
apply the algorithm as written, starting with (a,b) = (2p, o), and stopping
as soon as b < I, where | = |2,/p|. Then, as in [Mor-Nic] one can show that
this gives the (essentially unique) solution to z2 + |D|y? = 4p. This gives the
following algorithm.

Algorithm 1.5.3 (Modified Cornacchia). Let p be a prime number and D
be a negative integer such that D = 0 or 1 modulo 4 and |D| < 4p. This
algorithm either outputs an integer solution (z,y) to the Diophantine equation
z? 4 |D|y* = 4p, or says that such a solution does not exist.

1. [Case p = 2] If p = 2 do as follows. If D+ 8 is the square of an integer, output
(v'D + 8,1), otherwise say that the equation has no solution. Then terminate
the algorithm.

2. [Test if residue] Using Algorithm 1.4.12 compute k «— (—g—). If & = —1, say
that the equation has no solution and terminate the algorithm.

3. [Compute square root] Using Shanks's Algorithm 1.5.1, compute an integer
zo such that 22 = Dmod p and 0 < o < p, and if o # D (mod 2), set
zo « p — xo. Finally, set a < 2p, b ¢ and | — [2,/p).

4. [Euclidean algorithm] If b> [, set 7 < amod b, @ < b, b — r and go to step
4.

5. [Test solution] If |D| does not divide 4p — b2 or if ¢ = (4p — b2)/|D| is not
the square of an integer (see Algorithm 1.7.3), say that the equation has no

solution and terminate the algorithm. Otherwise, output (z,y) = (b, v/c) and
terminate the algorithm.

1.6 Solving Polynomial Equations Modulo p

We will consider more generally in Chapter 3 the problem of factoring poly-
nomials mod p. If one wants only to find the linear factors, i.e. the roots mod
D, then for small degrees one can use the standard formulas. To avoid writing
congruences all the time, we implicitly assume that we work in F), = Z/pZ.

In degree one, the solution of the equation az +b = 0is x = —b-a™1,
where a~! is computed using Euclid’s extended algorithm.

In degree two, the solutions of the equation az? + bz + ¢ = 0 where @ # 0
and p # 2, are given as follows. Set D = b? — 4ac. If (—%) = —1, then there
are no solutions in Fy,. If (%) =0, i.e. if p | D, then there is a unique (double)
solution given by x = —b- (2a)~!. Finally, if (%) = 1, there are two solutions,

1.6 Solving Polynomial Equations Modulo p 37

obtained in the following way: compute an s such that s2 = D using one of
the algorithms of the preceding section. Then the solutions are as usual

(~b+s)-(2a)"L.

In degree three, Cardano’s formulas can be used (see Exercise 28 of Chap-
ter 3). There are however two difficulties which must be taken care of. The
first is that we must find an algorithm to compute cube roots. This can be
done in a manner similar to the case of square roots. The second difficulty lies
in the handling of square roots when these square roots are not in F,, (they are
then in IF,2). This is completely analogous to handling complex numbers when
a real cubic equation has three real roots. The reader will find it an amusing
exercise to try and iron out all these problems (see Exercise 28). Otherwise,
see [Wil-Zar] and [Morl], who also gives the analogous recipes for degree four
equations (note that for computing fourth roots one can simply compute two
square roots).

In degree 5 and higher, the general equations have a non-solvable Galois
group, hence as in the complex case, no special-purpose algorithms are known,
and one must rely on general methods, which are slower. These methods will
be seen in Section 3.4, to which we refer for notations and definitions, but in
the special case of root finding, the algorithm is much simpler. We assume
p > 2 since for p = 2 there are just two values to try.

Algorithm 1.6.1 (Roots Mod p). Given a prime number p > 3 and a polyno-
mial P € F,[X], this algorithm outputs the roots of P in F,. This algorithm will
be called recursively, and it is understood that all the operations are done in Fp,.

1. [Isolate roots in F,] Compute A(X) « (XP — X, P(X)) as explained below.
If A(0) =0, output 0 and set A(X) « A(X)/X.

2. [Small degree?] If deg(A) = 0, terminate the algorithm. If deg(A4) = 1, and
A(X) = a1X +ao, output —ag/a; and terminate the algorithm. If deg(A) = 2
and A(X) = a2X? 4+ a1X + ag, set d — a? — 4agay, compute e «— V/d using
Algorithm 1.5.1, output (—a; + €)/(2a2) and (—a; — €)/(2a3), and terminate
the algorithm. (Note that e will exist.)

3. [Random splitting] Choose a random a € F,, and compute B(X) « ((X +
a)(P=1)/2 _1, A(X)) as explained below. If deg(B) = 0 or deg(B) = deg(A),
go to step 3.

4. [Recurse] Output the roots of B and A/B using the present algorithm recur-
sively (skipping step 1), and terminate the algorithm.

Proof. The elements of F,, are the elements z of an algebraic closure which
satisfy P = z. Hence, the polynomial A computed in step 1 is, up to a
constant factor, equal to the product of the X — x where the = are the roots
of P in F,. Step 3 then splits the roots z in two parts: the roots such that
T + a is a quadratic residue mod p, and the others. Since a is random, this

38 1 Fundamental Number-Theoretic Algorithms

has approximately one chance in 29¢8(4)~1 of not splitting the polynomial A
into smaller pieces, and this shows that the algorithm is valid. o

Implementation Remarks.

(1) step 2 can be simplified by not taking into account the case of degree
2, but this gives a slightly less efficient algorithm. Also, if step 2 is kept
as it is, it may be worthwhile to compute once and for all the quadratic
non-residue mod p which is needed in Algorithm 1.5.1.

(2) When we are asked to compute a GCD of the form ged(u™ — b,c), we
must not compute u™ — b, but instead we compute d — u™ mod ¢ using
the powering algorithm. Then we have ged(u™ — b,¢) = ged(d — b,c).
In addition, since ¥ = X + a is a very simple polynomial, the left-right
versions of the powering algorithm (Algorithms 1.2.3 and 1.2.4) are more
advantageous here.

(3) When p is small, and in particular when p is smaller than the degree
of A(X), it may be faster to simply test all values X = 0,...,p — 1.
Thus, the above algorithm is really useful when p is not too small. In
that case, it may be faster to compute ged(X®~1/2 — 1, A(X — a)) than
ged((X +)P~ /2 — 1, A(X)).

1.7 Power Detection

In many algorithms, it is necessary to detect whether a number is a square or
more generally a perfect power, and if it is, to compute the root. We consider
here the three most frequent problems of this sort and give simple arithmetic
algorithms to solve them. Of course, to test whether n = m*, you can always
compute the nearest integer to €™ ™/* by transcendental means, and see if the
Kkt power of that integer is equal to n. This needs to be tried only for k < lgn.
This is clearly quite inefficient, and also requires the use of transcendental
functions, so we turn to better methods.

1.7.1 Integer Square Roots

We start by giving an algorithm which computes the integer part of the square
root of any positive integer n. It uses a variant of Newton’s method, but works
entirely with integers. The algorithm is as follows.

Algorithm 1.7.1 (Integer Square Root). Given a positive integer n, this
algorithm computes the integer part of the square root of n, i.e. the number m
such that m? < n < (m + 1)2.

1. [Initialize] Set « « n (see discussion).

2. [Newtonian step] Set y « |(z + |n/z])/2| using integer divides and shifts.

1.7 Power Detection 39

3. [Finished?] If y < z set £ «— y and go to step 2. Otherwise, output z and
terminate the algorithm.

Proof. By step 3, the value of z is strictly decreasing, hence the algorithm
terminates. We must show that the output is correct. Let us set ¢ = [v/n].

Since (t + n/t)/2 > y/n for any positive real value of t, it is clear that
the inequality = > ¢ is satisfied throughout the algorithm (note that it is also
satisfied also after the initialization step). Now assume that the termination
condition in step 3 is satisfied, i.e. that y = |(x+n/z)/2] > . We must show
that = ¢q. Assume the contrary, i.e. that x > ¢+ 1. Then,

o e

2
Since £ > ¢+ 1>+/n, we have n — z2%2<0, hence y —z <0 contradiction.
This shows the validity of the algorithm.]

Remarks.

(1) We have written the formula in step 2 using the integer part function
twice to emphasize that every operation must be done using integer arith-
metic, but of course mathematically speaking, the outermost one would
be enough.

(2) When actually implementing this algorithm, the initialization step must
be modified. As can be seen from the proof, the only condition which must
be satisfied in the initialization step is that x be greater or equal to the
integer part of v/n. One should try to initialize z as close as possible to
this number. For example, after a O(Inlnn) search, as in the left-right
binary powering Algorithm 1.2.2, one can find e such that 2¢ < n < 2°+1.
Then, one can take z « 21(e+2)/2] Another option is to compute a single
precision floating point approximation to the square root of n and to take
the ceiling of that. The choice between these options is machine dependent.

(3) Let us estimate the running time of the algorithm. As written, we will
spend a lot of time essentially dividing = by 2 until we are in the right
ball-park, and this requires O(Inn) steps, hence O(In®n) running time.
However, if care is taken in the initialization step as mentioned above, we
can reduce this to the usual number of steps for a quadratically convergent
algorithm, i.e. O(Inlnn). In addition, if the precision is decreased at each
iteration, it is not difficult to see that one can obtain an algorithm which
runs in O(In’n) bit operations, hence only a constant times slower than
multiplication /division.

1.7.2 Square Detection

Given a positive integer n, we want to determine whether n is a square or
not. One method of course would be to compute the integer square root of

40 1 Fundamental Number-Theoretic Algorithms

n using Algorithm 1.7.1, and to check whether n is equal to the square of
the result. This is far from being the most efficient method. We could also
use Exercise 22 which says that a number is a square if and only if it is a
quadratic residue modulo every prime not dividing it, and compute a few
Legendre symbols using the algorithms of Section 1.4.2. We will use a variant
of this method which replaces Legendre symbol computation by table lookup.
One possibility is to use the following algorithm.

Precomputations 1.7.2. This is to be done and stored once and for all.

1. [Fill 11] For k =0 to 10 set q11[k] < 0. Then for k =0 to 5 set g11[{k* mod
11] « 1.

2. [Fill 63] For k = 0 to 62 set ¢63[k] «— 0. Then for k =0 to 31 set ¢63[k* mod
63] « 1.

3. [Fill 64] For k = 0 to 63 set g64[k] «— 0. Then for k = 0 to 31 set ¢64[k* mod
64] «— 1.

4. [Fill 65] For k = 0 to 64 set g65[k] « 0. Then for k = 0 to 32 set ¢65[k? mod
65] « 1.

Once the precomputations are made, the algorithm is simply as follows.

Algorithm 1.7.3 (Square Test). Given a positive integer n, this algorithm
determines whether n is a square or not, and if it is, outputs the square root of
n. We assume that the precomputations 1.7.2 have been made.

1. [Test 64] Set t «— n mod 64 (using if possible only an and statement). If
g64[t] = 0, n is not a square and terminate the algorithm. Otherwise, set
r — n mod 45045.

. [Test 63] If ¢63[r mod 63] =0, n is not a square and terminate the algorithm.
. [Test 65] If ¢65[r mod 65] = 0, n is not a square and terminate the algorithm.
. [Test 11] If g11[r mod 11] = 0, n is not a square and terminate the algorithm.

. [Compute square root] Compute ¢ — |/n] using Algorithm 1.7.1. If n # ¢2,
n is not a square and terminate the algorithm. Otherwise n is a square, output
g and terminate the algorithm.

oA W N

The validity of this algorithm is clear since if n is a square, it must be a
square modulo k for any k. Let us explain the choice of the moduli. Note first
that the number of squares modulo 64,63,65,11 is 12,16,21,6 respectively (see
Exercise 23). Thus, if n is not a square, the probability that this will not have
been detected in the four table lookups is equal to

1216216 6

64636511 715
and this is less than one percent. Therefore, the actual computation of the
integer square root in step 5 will rarely be done when n is not a square. This

1.7 Power Detection 41

is the reason for the choice of the moduli. The order in which the tests are
done comes from the inequalities

2 16 2 6
64 63 65 11°
If one is not afraid to spend memory, one can also store the squares modulo
45045 = 63 - 65 - 11, and then only one test is necessary instead of three, in
addition to the modulo 64 test.
Of course, other choices of moduli are possible (see [Nic]), but in practice
the above choice works well.

1.7.3 Prime Power Detection

The last problem we will consider in this section is that of determining whether
n is a prime power or not. This is a test which is sometimes needed, for
example in some of the modern factoring algorithms (see Chapter 10). We
will not consider the problem of testing whether n is a power of a general
number, since it is rarely needed.

The idea is to use the following proposition.

Proposition 1.7.4. Let n = p* be a prime power. Then

(1) For any a we have p| (a™ — a,n).

(2) If k > 2 and p > 2, let a be a witness to the compositeness of n given by
the Rabin-Miller test 8.2.2, i.e. such that (a,n) = 1, and if n — 1 = 2%q
with g odd, then a? # 1 (mod n) and for all e such that0 < e <t—1 then
a*? # —1 (mod n). Then (a™ — a,n) is a non-trivial divisor of n (i.e. is
different from 1 and n).

Proof. By Fermat'’s theorem, we have a™ = a (mod p), hence (1) is clear. Let
us prove (2). Let a be a witness to the compositeness of n as defined above.
By (1), we already know that (a™ —a,n) > 1. Assume that (a™® —a,n) = n, i.e.
that a™ = a (mod n). Since (a,n) = 1 this is equivalent to a®~! = 1 (mod n),
ie a¥1=1 (mod n). Let f be the smallest non-negative integer such that
a®’? = 1 (mod n). Thus f exists and f < t. If we had f =0, this would
contradict the definition of a witness (a? # 1 (mod n)). So f>0. But then
we can write

P 1@ - T+ 1)

and since p is an odd prime, this implies that p* divides one of the two factors.
But p* | (a2’ 7' - 1) contradicts the minimality of f, and p* | (a2’ ' + 1)
contradicts the fact that a is a witness (we cannot have a?’? = —1 (mod n)
for e < t), hence we have a contradiction in every case thus proving the
proposition. [m}

42 1 Fundamental Number-Theoretic Algorithms

This leads to the following algorithm.

Algorithm 1.7.5 (Prime Power Test). Given a positive integer n > 1, this
algorithm tests whether or not n is of the form p* with p prime, and if it is,
outputs the prime p.

1. [Case n even] If n is even, set p «— 2 and go to step 4. Otherwise, set ¢ «— n.

2. [Apply Rabin-Miller] By using Algorithm 8.2.2 show that either ¢ is a probable
prime or exhibit a witness a to the compositeness of g. If ¢ is a probable prime,
set p < g and go to step 4.

3. [Compute GCD] Set d «— (a? —a,q). If d =1 or d = g, then n is not a prime
power and terminate the algorithm. Otherwise set ¢ «+ d and go to step 2.

4. [Final test] (Here p is a divisor of n which is almost certainly prime.) Using
a primality test (see Chapters 8 and 9) prove that p is prime. If it is not (an
exceedingly rare occurence), set ¢ < p and go to step 2. Otherwise, by dividing
n by p repeatedly, check whether n is a power of p or not. If it is not, n is not
a prime power, otherwise output p. Terminate the algorithm.

We have been a little sloppy in this algorithm. For example in step 4,
instead of repeatedly dividing by p we could use a binary search analogous
to the binary powering algorithm. We leave this as an exercise for the reader
(Exercise 4).

1.8 Exercises for Chapter 1

Write a bare-bones multi-precision package as explained in Section 1.1.2.

2. Improve your package by adding a squaring operation which operates faster than
multiplication, and based on the identity (aX + b)? = a?X? 4 b* + ((a + b)® —
a? - bz)X , where X is a power of the base. Test when a similar method applied
to multiplication (see Section 3.1.2) becomes faster than the straightforward
method.

3. Given a 32-bit non-negative integer z, assume that we want to compute quickly
the highest power of 2 dividing = (32 if z = 0). Denoting by e(z) the exponent
of this power of 2, show that this can be done using the formula

e(z) = t[{(z"(z — 1)) mod 37]

where t is a suitable table of 37 values indexed from 0 to 36, and a’b denotes
bitwise exclusive or (addition modulo 2 on bits). Show also that 37 is the least
integer having this property, and find an analogous formula for 64-bit numbers.

4. Given two integers n and p, give an algorithm which uses ideas similar to the
binary powering algorithm, to check whether n is a power of p. Also, if p is
known to be prime, show that one can use only repeated squarings followed by
a final divisibility test.

1.8 Exercises for Chapter 1 43

10.

11.

12.

13.

14

15.
16.

17.
18.

Write a version of the binary GCD algorithm which uses ideas of Lehmer’s
algorithm, in particular keeping information about the low order words and the
high order words. Try also to write an extended version.

Write an algorithm which computes (u,v,d) as in Algorithm 1.3.6, by storing
the partial quotients and climbing back. Compare the speed with the algorithms
of the text.

Prove that at the end of Algorithm 1.3.6, one has v; = £b/d and vz = Fa/d,
and determine the sign as a function of the number of Euclidean steps.

Write an algorithm for finding a solution to the system of congruences T = 1
(mod m1) and z = 22 (mod m2) assuming that z; = z2 (mod ged(ma,ma2)).

Generalizing Exercise 8 and Algorithm 1.3.12, write a general algorithm for
finding an z satisfying Theorem 1.3.9.

Show that the use of Gauss’s Algorithm 1.3.14 leads to a slightly different algo-
rithm than Cornacchia’s Algorithm 1.5.2 for solving the equation z* + dy® = p
(consider a = (p,0) and b = (20, Vd)).

Show how to modify Lehmer’s Algorithm 1.3.13 for finding the continued fraction
expansion of a real number, using the ideas of Algorithm 1.3.3, so as to avoid
almost all multi-precision operations.

Using Algorithm 1.3.13, compute at least 30 partial quotients of the continued
fraction expansions of the numbers e, €?, €2, €2/® (you will need some kind of
multi-precision to do this). What do you observe? Experiment with number of
the form €%/, and try to see for which a/b one sees a pattern. Then try and
prove it (this is difficult. It is advised to start by doing a good bibliographic
search).

Prove that if n = nin2 with n1 and n2 coprime, then (Z/nZ)* ~ (Z/ni1Z)" x
(Z/n2Z)*. Then prove Theorem 1.4.1.

Show that when a > 2, ¢ = 5 is always a generator of the cyclic subgroup of
order 2°~2 of (Z/2°Z)".

Prove Proposition 1.4.6.

Give a proof of Theorem 1.4.7 (2) along the following lines (read Chapter 4 first
if you are not familiar with number fields). Let p and g be distinct odd primes.
Set ¢ = ¢*"/P, R = Z[¢] and

)=). (%) ¢t

amodp

a) Show that 7(p)? = (—1)*=1/2p and that 7(p) is invertible in R/qR.

b) Show that 7(p)? = (%)T(p) (mod ¢R).

c) Prove Theorem 1.4.7 (2), and modify the above arguments so as to prove
Theorem 1.4.7 (1).

Prove Theorem 1.4.9 and Lemma 1.4.11.

Let p be an odd prime and n and integer prime to p. Then multiplication by n
induces a permutation v, of the finite set (Z/pZ)*. Show that the signature of
this permutation is equal to the Legendre symbol (-'—‘ . Deduce from this another
proof of the quadratic reciprocity law (Theorem 1.4.7).

44

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

1 Fundamental Number-Theoretic Algorithms

Generalizing Lemma 1.4.11, show the following general reciprocity law: if a and
b are non-zero and a =2%a; (resp. b= 26 b1) with a; and b1 odd, then

(2) — (—1)(@ =D 1=/ sign(an) ~)(sign(b)~1)/4 (2)_
b

a

Implement the modification suggested after Algorithm 1.4.10 (i.e. taking the
smallest residue in absolute value instead of the smallest non-negative one) and
compare its speed with that of the unmodified algorithm.

Using the quadratic reciprocity law, find the number of solutions of the congru-
ence z2 =1 (mod p). Deduce from this the number of cubic residues mod p, i.e.
numbers a not divisible by p such that the congruence z3 = a (mod p) has a
solution.

Show that an integer n is a square if and only if (%) =1 for every prime p not
dividing n.
Given a modulus m, give an exact formula for s(m), the number of squares

modulo m, in other words the cardinality of the image of the squaring map from
Z/mZ into itself. Apply your formula to the special case m = 64, 63,65, 11.

Show that the running time of Algorithm 1.4.10 modified by keeping b odd, may
be exponential time for some inputs.

Modify Algorithm 1.5.1 so that in addition to computing z, it also computes
the (even) exponent k such that a%z¥ =1 in G, using the notations of the text.

Give an algorithm analogous to Shanks’s Algorithm 1.5.1, to find the cube roots
of a mod p when a is a cubic residue. It may be useful to consider separately
the cases p =2 (mod 3) and p =1 (mod 3).

Given a prime number p and a quadratic non-residue a mod p, we can consider
K = F,2 = Fp(y/a). Explain how to do the usual arithmetic operations in K.
Give an algorithm for computing square roots in K, assuming that the result is
in K.

Generalizing Exercise 27, give an algorithm for computing cube roots in F,2, and
give also an algorithm for computing roots of equations of degree 3 by Cardano’s
formulas (see Exercise 28 of Chapter 3).

Show that, as claimed in the proof of Algorithm 1.5.1, steps 3 and 4 will require
in average e? /4 and at most e multiplications modulo P.

Let m=[] » p°? be any positive integer for which we know the complete factor-
ization into primes, and let a € Z.

a) Give a necessary and sufficient condition for a to be congruent to a square
modulo m, using several Legendre symbols.

b) Give a closed formula for the number of solutions of the congruence
z? = a (mod m).

c) Using Shanks’s Algorithm 1.5.1 as a sub-algorithm, write an algorithm
for computing a solution to > = a (mod m) if a solution exists (you should
take care to handle separately the power of 2 dividing m).

Implement Algorithm 1.6.1 with and without the variant explained in Remark
(3) following the algorithm, as well as the systematic trial of X =0,...,p—1,
and compare the speed of these three algorithms for different values of p and
deg(P) or deg(A).

1.8 Exercises for Chapter 1 45

32. By imitating Newton’s method once again, design an algorithm for computing
integer cube roots which works only with integers.

33. Show that, as claimed in the text, the average number of multiplications
which are not squarings in the flexible left-right base 2* algorithm is ap-
proximately 2571 +1g|n|/(k+1), and that the optimal value of k is the
smallest integer such that lg|n|< (k+1)(k+2)2*~1.

34. Consider the following modification to Algorithm 1.2.4.2. We choose some
odd number L such that 2¢1< I < 2% and precompute only z, 283,..., 20
Show that one can write any integer N in a unique way as N = 2%(q, +
2%(a; + ... +2%a,)) with a; odd, a;< L, and t; > k—1 for i > 1, but t;=
k—1 only if a;>L—2*"1. Analyze the resulting algorithm and show
that, in certain cases, it is slightly faster than Algorithm 1.2.4.2.

-page 11
Perhaps surprisingly, we can easily improve on Algorithm 1.2.4 by using a flex-
ible window of size at least k bits, instead of using a window of fixed size k. Indeed,
it is easy to see that any positive integer N can be written in a unique way as

N =2%(ag +2 (ar + - + 2a,)

where #, > k for i > 1 and the a, are odd integers such that 1 < a, < 2F — 1 (in
Algorithm 1.2.4 we took tg =0, t, = k for i > 1, and 0 < a, < 2¥ — 1 odd or even).

As before, we can precompute ¢°, ¢°, ... , g%~ and then compute g~ by suc-
cessive squarings and multiplications by ¢g*. To find the a, and ¢,, we use the

following immediate sub-algorithm.

Sub-Algorithm 1.2.4.1 (Flexible Base 2¥ Digits). Given a positive integer N and

k > 1, this sub-algorithm computes the unique integers ¢, and a; defined above. We

use [N], . to denote the integer obtained by extracting bits a through b (inclusive) of

N, where bit 0 is the least significant bit.

1. [Compute tg] Let g4 v2(N), e<—0 and s+ to.

2. [Compute a.] Let ae ¢ [N]spp—1,s-

3. [Compute t.] Set m < [N]oo s4k- If m =0, terminate the sub-algorithm. Other-
wise, set ¢ «— e+ 1, t, < va(m) + k, s < s+ t. and go to step 2.

The flexible window algorithm is then as follows.

Algorithm 1.2.4.2 (Flexible Left-Right Base 2¥). Given g € G and n € Z, this

algorithm computes g" in G. We write 1 for the unit element of G.

1. [Initialize] If n = 0, output 1 and terminate. If n < 0 set N + —n and z + g~ .
Otherwise, set N < n and z < g.

2. [Compute the a, and t,] Using the above sub-algorithm, compute a,, ¢, and e such
that N =2%(aq + 2 (a1+ - -~ + 2%<a.)) and set f<e.

3. [Precomputations] Compute and store 2%, 2°, ..., 221,

4. [Loop] If f=e set y< 2% otherwise set y < 2% -y. Then repeat t; times
Yy<y-y.

5. [Finished?] If f =0, output y and terminate the algorithm. Otherwise, set
f+f—1 and go to step 4.

We have used above the word “surprisingly” to describe the behavior of this
algorithm. Indeed, it is not a priori clear why it should be any better than Algorithm
1.2.4. An easy analysis shows, however, that the average number of multiplications
which are not squarings is now of the order of 2¢=! + lg|n|/(k + 1) (instead of
2F=1 4 1g|n|/k in Algorithm 1.2.4), see Exercise 33. The optimal value of k is the
smallest integer satisfying the inequality lg |n| < (k + 1)(k + 2)2F L.

In the above example where n has 100 decimal digits, the flexible base 2° algo-
rithm takes on average (3/4)332 + 16 + 332/6 = 320 multiplications, another 3%
improvement. In fact, using a simple modification, in certain cases we can still
casily improve (very slightly) on Algorithm 1.2.4.2, see Exercise 34.

Chapter 2

Algorithms for Linear Algebra and Lattices

2.1 Introduction

In many algorithms, and in particular in number-theoretic ones, it is necessary
to use algorithms to solve common problems of linear algebra. For example,
solving a linear system of equations is such a problem. Apart from stability
considerations, such problems and algorithms can be solved by a single algo-
rithm independently of the base field (or more generally of the base ring if we
work with modules). Those algorithms will naturally be called linear algebra
algorithms.

On the other hand, many algorithms of the same general kind specifically
deal with problems based on specific properties of the base ring. For example,
if the base ring is Z (or more generally any Euclidean domain), and if L is
a submodule of rank n of Z", then Z"/L is a finite Abelian group, and we
may want to know its structure once a generating system of elements of L
is known. This kind of problem can loosely be called an arithmetic linear
algebra problem. Such problems are trivial if Z is replaced by a field K. (In
our example we would have L = K™ hence the quotient group would always
be trivial.) In fact we will see that a submodule of Z" is called a lattice, and
that essentially all arithmetic linear algebra problems deal with lattices, so we
will use the term lattice algorithms to describe the kind of algorithms that are
used for solving arithmetic linear algebra problems.

This chapter is therefore divided into two parts. In the first part, we give
algorithms for solving the most common linear algebra problems. It must be
emphasized that the goal will be to give general algorithms valid over any
field, but that in the case of imprecise fields such as the field of real numbers,
care must be taken to insure stability. This becomes an important problem
of numerical analysis, and we refer the reader to the many excellent books
on the subject ([Gol-Van], [PFTV]). Apart from mentioning the difficulties,
given the spirit of this book we will not dwell on this aspect of linear algebra.

In the second part, we recall the definitions and properties of lattices.
We will assume that the base ring is Z, but essentially everything carries
over to the case where the base ring is a principal ideal domain (PID), for
example K[X], where K is a field. Then we describe algorithms for lattices. In
particular we discuss in great detail the LLL algorithm which is of fundamental
importance, and give a number of applications.

2.2 Linear Algebra Algorithms on Square Matrices 47
2.2 Linear Algebra Algorithms on Square Matrices

2.2.1 Generalities on Linear Algebra Algorithms

Let K be a field. Linear algebra over K is the study of K-vector spaces and K-
linear maps between them. We will always assume that the vector spaces that
we use are finite-dimensional. Of course, infinite-dimensional vector spaces
arise naturally, for example the space K[X] of polynomials in one variable
over K. Usually, however when one needs to perform linear algebra on these
spaces it is almost always on finite-dimensional subspaces.

A K-vector space V is an abstract object, but in practice, we will assume
that V is given by a basis of n linearly independent vectors v, ... vn in some
K™ (where m is greater or equal, but not necessarily equal to n). This is of
course highly non-canonical, but we can always reduce to that situation.

Since K™ has by definition a canonical basis, we can consider V as being
given by an m x n matrix M (V) (i.e. a matrix with m rows and n columns)
such that the columns of M (V) represent the coordinates in the canonical
basis of K™ of the vectors v;. If n = m, the linear independence of the v;
means, of course, that M (V') is an invertible matrix. (The notation M (V) is
slightly improper since M (V) is attached, not to the vector space V, but to
the chosen basis v;.)

Note that changing bases in V' is equivalent to multiplying M (V') on the
right by an invertible n x n matrix. In particular, we may want the matrix
M (V) to satisfy certain properties, for example being in upper triangular
form. We will see below (Algorithm 2.3.11) how to do this.

A linear map f between two vector spaces V and W of respective dimen-
sions n and m will in practice be represented by an m x n matrix M(f), M(f)
being the matrix of the map f with respect to the bases M (V) and M (W) of
V and W respectively. In other words, the j-th column of M (f) represents the
coordinates of f(v;) in the basis w;, where the v; correspond to the columns
of M(V), and the w; to the columns of M(W).

Note that in the above we use column-representation of vectors and not
row-representation; this is quite arbitrary, but corresponds to traditional us-
age. Once a choice is made however, one must consistently stick with it.

Thus, the objects with which we will have to work with in performing linear
algebra operations are matrices and (row or column) vectors. This is only for
practical purposes, but keep in mind that it rarely corresponds to anything
canonical. The internal representation of vectors is completely straightforward
(i.e. as a linear array).

For matrices, essentially three equivalent kinds of representation are pos-
sible. The particular one which should be chosen depends on the language in
which the algorithms will be implemented. For example, it will not be the
same in Fortran and in C.

One representation is to consider matrices as (row) vectors of (column)
vectors. (We could also consider them as column vectors of row vectors but

48 2 Algorithms for Linear Algebra and Lattices

the former is preferable since we have chosen to represent vectors mainly
in column-representation.) A second method is to represent matrices as two-
dimensional arrays. Finally, we can also represent matrices as one-dimensional
arrays, by adding suitable macro-definitions so as to be able to access individ-
ual elements by row and column indices.

Whatever representation is chosen, we must also choose the index num-
bering for rows and columns. Although many languages such as C take 0 as
the starting index, for consistency with usual mathematical notation we will
assume that the first index for vectors or for rows and columns of matri-
ces is always taken to be equal to 1. This is not meant to suggest that one
should use this in a particular implementation, it is simply for elegance of
exposition. In any given implementation, it may be preferable to make the
necessary trivial changes so as to use 0 as the starting index. Again, this is a
language-dependent issue.

2.2.2 Gaussian Elimination and Solving Linear Systems

The basic operation which is used in linear algebra algorithms is that of Gaus-
sian elimination, sometimes also known as Gaussian pivoting. This consists
in replacing a column (resp. a row) C by some linear combination of all the
columns (resp. rows) where the coefficient of C must be non-zero, so that (for
example) some coefficient becomes equal to zero. Another operation is that of
exchanging two columns (resp. rows). Together, these two basic types of oper-
ations (which we will call elementary operations on columns or rows) will allow
us to perform all the tasks that we will need in linear algebra. Note that they
do not change the vector space spanned by the columns (resp. rows). Also, in
matrix terms, performing a series of elementary operations on columns (resp.
rows) is equivalent to right (resp. left) multiplication by an invertible square
matrix of the appropriate size. Conversely, one can show (see Exercise 1) that
an invertible square matrix is equal to a product of matrices corresponding to
elementary operations.

The linear algebra algorithms that we give are simply adaptations of these
basic principles to the specific problems that we must solve, but the underlying
strategy is always the same, i.e. reduce a matrix to some simpler form (i.e. with
many zeros at suitable places) so that the problem can be solved very simply.
The proofs of the algorithms are usually completely straightforward, hence will
be given only when really necessary. We will systematically use the following
notation: if M is a matrix, M; denotes its j-th column, M] its i-th row, and
m;, ; the entry at row ¢ and column j. If B is a (column or row) vector, b; will
denote its i-th coordinate.

Perhaps the best way to see Gaussian elimination in action is in solving
square linear systems of equations.

Algorithm 2.2.1 (Square Linear System). Let M be an n x n matrix and B
a column vector. This algorithm either outputs a message saying that M is not

2.2 Linear Algebra Algorithms on Square Matrices 49

invertible, or outputs a column vector X such that M X = B. We use an auxiliary
column vector C.

1. [Initialize] Set j « 0.
2. [Finished?] Let j « j + 1. If j > n go to step 6.

3. [Find non-zero entry] If m; ; = 0 for all i > 5, output a message saying that
M is not invertible and terminate the algorithm. Otherwise, let i > j be some
index such that m; ; # 0.

4. [Swap?] If i > j, for | = j,...,n exchange m;; and m;;, and exchange b; and
bj.

5. [Eliminate] (Here m; ; # 0.) Set d « mJ_J1 and for all k > j set ¢y « dmy ;.
Then, for all k > j and [> j set my; « my,; — cym;;. (Note that we do not
need to compute this for [= j since it is equal to zero.) Finally, for k > j set
by — b, — ckb; and go to step 2.

6. [Solve triangular system] (Here M is an upper triangular matrix.) For i =
n,n —1,...,1 (in that order) set z; « (b; — D icjcn MiiT5)/ i, output
X = (zi)1<i<n and terminate the algorithm. -

Note that steps 4 and 5 (the swap and elimination operations) are really
row operations, but we have written them as working on entries since it is not
necessary to take into account the first j — 1 columns.

Note also in step 5 that we start by computing the inverse of mj,; since
in fields like [, division is usually much more time-consuming than multipli-
cation.

The number of necessary multiplications/divisions in this algorithm is
clearly asymptotic to n3/3 in the general case. Note however that this does
not represent the true complexity of the algorithm, which should be counted
in bit operations. This of course depends on the base field (see Section 1.1.3).
This remark also applies to all the other linear algebra algorithms given in
this chapter.

Inverting a square matrix M means solving the linear systems M X = E;,
where the E; are the canonical basis vectors of K™, hence one can achieve
this by successive applications of Algorithm 2.2.1. Clearly, it is a waste of
time to use Gaussian elimination on the matrix for each linear system. (More
generally, this is true when we must solve several linear systems with the same
matrix M but different right hand sides B.) We should compute the inverse
of M, and then the solution of a linear system requires only a simple matrix
times vector multiplication requiring n? field multiplications.

To obtain the inverse of M, only a slight modification of Algorithm 2.2.1
is necessary.

Algorithm 2.2.2 (Inverse of a Matrix). Let M be an n x n matrix. This
algorithm either outputs a message saying that M is not invertible, or outputs
the inverse of M. We use an auxiliary column vector C and we recall that B
(resp. X/) denotes the i-th row of B (resp. X).

50 2 Algorithms for Linear Algebra and Lattices

1. [Initialize] Set j « 0, B « I,,, where I,, is the n x n identity matrix.
2. [Finished?] Let j « j + 1. If § > n, go to step 6.
3. [Find non-zero entry] If m; ; = 0 for all i > j, output a message saying that

M is not invertible and terminate the algorithm. Otherwise, let ¢ > j be some
index such that m; ; # 0.

4. [Swap?] If i > j, for | = j,...,n exchange m;; and m,,;, and exchange the
rows B} and Bj.

5. [Eliminate] (Here m; ; # 0.) Set d « m;; and for all k > j set ¢x « dmy ;.
Then for all k > j and [> j set my; « mg; — cxm;;. (Note that we do not
need to compute this for [= j since it is equal to zero.) Finally, for all k > j
set By, « B; — ckB;. and go to step 2.

6. [Solve triangular system] (Here M is an upper triangular matrix.) For i =
n,n— 1,'. .., 1 (in that‘order) set X/ «— (B! - Zi<j§n m;,; X})/mi,i, output
the matrix X and terminate the algorithm.

It is easy to check that the number of multiplications/divisions needed is
asymptotic to 4n3/3 in the general case. This is only four times longer than the
number required for solving a single linear system. Thus as soon as more than
four linear systems with the same matrix need to be solved, it is worthwhile
to compute the inverse matrix.

Remarks.

(1) In step 1 of the algorithm, the matrix B is initialized to I,,. If instead, we
initialize B to be any n X m matrix N for any m, the result is the matrix
M~IN, and this is of course faster than computing M~! and then the
matrix product. The case m =1 is exactly Algorithm 2.2.1.

(2) Instead of explicitly computing the inverse of M, it is worthwhile for many
applications to put M in LUP form , i.e. to find a lower triangular matrix
L and an upper triangular matrix U such that M = LUP for some per-
mutation matrix P. (Recall that a permutation matriz is a square matrix
whose elements are only 0 or 1 such that each row and column has exactly
one 1.) Exercise 3 shows how this can be done. Once M is in this form,
solving linear systems, inverting M, computing det(M), etc ... is much
simpler (see [AHU] and [PFTV]).

2.2.3 Computing Determinants

To compute determinants, we can simply use Gaussian elimination as in Al-
gorithm 2.2.1. Since the final matrix is triangular, the determinant is trivial
to compute. This gives the following algorithm.

Algorithm 2.2.3 (Determinant, Using Ordinary Elimination). Let M be an
n x n matrix. This algorithm outputs the determinant of M. We use an auxiliary
column vector C.

2.2 Linear Algebra Algorithms on Square Matrices 51

1. [Initialize] Set j — 0, z « 1.
2. [Finished?] Let j « j + 1. If j > n output z and terminate the algorithm.

3. [Find non-zero entry] If m;; = 0 for all ¢ > j, output O and terminate the
algorithm. Otherwise, let i > j be some index such that m; ; # 0.

4. [Swap?] If i > j, for | = j,...,n exchange m;; and m;;, and set z < —z.

5. [Eliminate] (Here m; ; # 0.) Set d «— m]‘]1 and for all k > j set ¢, « dmy, ;.
Then for all k > j and | > j set my; «— my,; — cym;;. (Note that we do not
need to compute this for [= j since it is equal to zero.) Finally, set x « z-m; ;

and go to step 2.

The number of multiplications/divisions needed in this algorithm is clearly
of the same order as Algorithm 2.2.1, i.e. asymptotic to n3/3 in general.

Very often, this algorithm will be used in the case where the matrix M
has entries in Z or some polynomial ring. In this case, the elimination step
will introduce denominators, and these have a tendency to get very large.
Furthermore, the coefficients of the intermediate matrices will be in Q (or some
rational function field), and hence large GCD computations will be necessary
which will slow down the algorithm even more. All this is of course valid for
the other straightforward elimination algorithms that we have seen.

On the other hand, if the base field is a finite field F,, we do not have
such problems. If the base field is inexact, like the real or complex numbers or
the p-adic numbers, care must be taken for numerical stability. For example,
numerical analysis books advise taking the largest non-zero entry (in absolute
value) and not the first non-zero one found. We refer to [Gol-Van], [PETV]
for more details on these stability problems.

To overcome the problems that we encounter when the matrix M has
integer coeflicients, several methods can be used (and similarly when M has
coefficients in a polynomial ring). The first method is to compute det(M) mod-
ulo sufficiently many primes (using Algorithm 2.2.3 which is efficient here),
and then use the Chinese remainder Theorem 1.3.9 to obtain the exact value
of det(M). This can be done as soon as we know an a priori upper bound
for | det(M)|. (We then simply choose sufficiently many primes p; so that the
product of the p; is greater than twice the upper bound.) Such an upper bound
is given by Hadamard’s inequality which we will prove below (Corollary 2.5.5;
note that this corollary is proved in the context of real matrices, i.e. Euclidean
vector spaces, but its proof is identical for Hermitian vector spaces).

Proposition 2.2.4 (Hadamard’s Inequality). If M = (mi)i<ij<n i5 @
square matriz with complex coefficients, then

1/2

ldet(M)| < IT | 3 imyl?

1<i<n \1<j<n

52 2 Algorithms for Linear Algebra and Lattices

This method for computing determinants can be much faster than a di-
rect computation using Algorithm 2.2.3, but will be slower when the number
of primes needed for the Chinese remainder theorem is large. This happens
because the size of the Hadamard bound is often far from ideal.

Another method is based on the following easily proved proposition due
to Dodgson (alias Lewis Caroll), which is a special case of a general theorem
due to Bareiss [Bar].

Proposition 2.2.5. Let My=(a? i)1<ij<n be an n X n matriz where the
coefficients are considered as independent variables. Set cy=1 and for 1<
k < n, define recursively

o 1 a’gckk Y gck Y (k) (k=1)
g _Ck—l ag’kk—l) at(’l;—l)’ Mk:(ai,j)kﬂgi,jgn and cp=agy -

Finally, let ¢, = a,({‘n V. Then all the divisions by cx—1 are exact; we have

det(My) = c’,:'k -1 det(Mo), and in particular det(Mo) =cp

Proof (Sketch). Going from Mjy_1 to My is essentially Gaussian elimination,
except that the denominators are removed. This shows that

n—k—1

det(Mk) = det(Mg-1)

k-1

thus proving the formula for det(M}) by induction.
That all the divisions by cx—; are exact comes from the easily checked fact

that we can explicitly write the coefficients a() as (k+1)x(k+1) minors of
the matrix My (see Exercise 5). O

We have stated this proposition with matrices having coeflicients consid-
ered as independent variables. For more special rings, some ¢, may vanish,
in which case one must exchange rows or columns, as in Algorithm 2.2.3,
and keep track of the sign changes. This leads to the following method for
computing determinants.

Algorithm 2.2.6 (Determinant Using Gauss-Bareiss). Given an n x n ma-
trix M with coefficients in an integral domain R, this algorithm computes the
determinant of M. All the intermediate results are in R.

1. [Initialize] Set k «— 0, c 1, s « 1.

2. [Increase k] Set k « k+1. If k = n output smy, ,, and terminate the algorithm.
Otherwise, set p «— my k.

3. [Isp=07 If p#0 go to step 4. Otherwise, look for the first non-zero
coefficient m; i in the k-th column, with k+1 < i <n. If no such coefficient

2.2 Linear Algebra Algorithms on Square Matrices 53

exists, output 0 and terminate the algorithm. If it does, for j=k,...,n ex-
change m; ; and my j, then set s «— —s and p < my k.

4. [Main step] (p is now non-zero.) For i =k +1,...,n and j=k+1,...,n set
t « pm;; —m; gmg j, then m; ; « t/c where the division is exact. Then set
¢ « p and go to step 2.

Although this algorithm is particularly well suited to the computation of
determinants when the matrix M has integer (or similar type) entries, it can
of course, be used in general. There is however a subtlety which must be taken
into account when dealing with inexact entries.

Assume for example that the coefficients of M are polynomials with real
coefficients. These in general will be imprecise. Then in step 4, the division
t/c will, in general, not give a polynomial, but rather a rational function. This
is because when we perform the Euclidean division of ¢ by ¢, there may be
a very small but non-zero remainder. In this case, when implementing the
algorithm, it is essential to compute t/c using Euclidean division, and discard
the remainder, if any.

The number of necessary multiplications/divisions in this modified algo-
rithm is asymptotic to n® instead of n®/3 in Algorithm 2.2.3, but using Gauss-
Bareiss considerably improves on the time needed for the basic multiplications
and divisions and this usually more than compensates for the factor of 3.

Finally, note that although we have explained the Gauss-Bareiss method
for computing determinants, it can usually be applied to any other algorithmic
problem using Gaussian elimination, where the coefficients are integers (see
Exercise 6).

2.2.4 Computing the Characteristic Polynomial

Recall that if M is an n x n square matrix, the characteristic polynomial of
M is the monic polynomial of degree n defined by

P(X) = det(XI, — M),

where as usual I, is the n x n identity matrix. We want to compute the coeffi-
cients of P(X). Note that the constant term of P(X) is equal to (—1)™ det(M),
and more generally the coefficients of P(X) can be expressed as the sum of
the so-called principal minors of M which are sub-determinants of M. To
compute the coefficients of P(X) in this manner is usually not the best way
to proceed. (In fact the number of such minors grows exponentially with n.)
In addition to the method which I have just mentioned, there are essentially
four methods for computing P(X).

The first method is to apply the definition directly, and to use the Gauss-
Bareiss algorithm for computing det(XI, — M), this matrix considered as
having coefficients in the ring K[X]. Although computing in K[X] is more
expensive than computing in K, this method can be quite fast in some cases.

54 2 Algorithms for Linear Algebra and Lattices

The second method is to apply Lagrange interpolation. In our special case,
this gives the following formula.

det(XI, — M) =Y det(kI, - M) [] (—),f_—])
k=0 0<j<n,j#k (k=)

This formula is easily checked since both sides are polynomials of degree
less than or equal to n which agree on the n + 1 points X =i for 0 <4 < n.

Hence, to compute the characteristic polynomial of M, it is enough to
compute n + 1 determinants, and this is usually faster than the first method.
Since multiplication and division by small constants can be neglected in timing
estimates, this method requires asymptotically n*/3 multiplications/divisions
when we use ordinary Gaussian elimination.

The third method is based on the computation of the adjoint matriz or
comatriz of M, i.e. the matrix M3 whose coefficient of row i and column j is
equal to (—1)**7 times the sub-determinant of M obtained by removing row
j and column 7 (note that ¢ and j are reversed). From the expansion rule of
determinants along rows or columns, it is clear that this matrix satisfies the
identity

MM = MM = det(M)I,,.

We give the method as an algorithm.

Algorithm 2.2.7 (Characteristic Polynomial and Adjoint Matrix). Given an
n X n matrix M, this algorithm computes the characteristic polynomial P(X) =
det(XI, — M) of M and the adjoint matrix M2d of M. We use an auxiliary
matrix C and auxiliary elements a;.

1. [Initialize] Set i « 0, C « I, ag « 1.

2. [Finished?] Set i «— i+ 1. If i = n set a, «— —Tr(MC)/n, output P(X) «
2 o0<i<n @XM M?d (—=1)"~1C and terminate the algorithm.

3. [Compute next a; and C] Set C «— MC, a; «— —Tr(C)/i, C «— C +a;I, and
go to step 2.

Before proving the validity of this algorithm, we prove a lemma.

Lemma 2.2.8. Let M be an n x n matriz, A(X) be the adjoint matriz of
XI,—-M, and P(X) the characteristic polynomial of M. We have the identity

Tr(A(X)) = P'(X).
Proof. Recall that the determinant is multilinear, hence the derivative of an

n X n determinant is equal to the sum of the n determinants obtained by
replacing the j-th column by its derivative, for 1 < j < n. In our case, calling

2.2 Linear Algebra Algorithms on Square Matrices 55

E; the columns of the identity matrix (i.e. the canonical basis of K™), we
have, after expanding the determinants along the j-th column

P'(X) = (det(XI-M))' = Y A;;(X)

1<j<n

where A; ;(X) is the (n—1)x(n—1) sub-determinant of XI—M obtaining by
removing row and column j, i.e. Aj; ; is the coefficient of row and column j of
the adjoint matrix A(X), and this proves the lemma. a

Proof of the Algorithm Call A(X) the adjoint matrix of X I, — M. We can write
A(X) = EO<z<n— C; X"~ with constant matrices C;. From the lemma, it
follows that if P(X) = 3 y<;<, a:X"* we have

(n —i)a; =Tr(Cy).

On the other hand, since P(X)I, = (XI,— M)A(X), we obtain by comparing
coefficients Cyp = I, and for i > 1

Ci = MC,;_l + a,-In.

Taking traces, this gives (n—i)a; = Tr(MC;_;)+na;, i.e. a; =—Tr(MC;i_1)/i.
Finally, it is clear that A(0) = C,_; is the adjoint matrix of —~M, hence
(=1)*1C,,— is the adjoint matrix of M, thus showing the validity of the
algorithm. O

The total number of operations is easily seen to be asymptotic to n*
multiplications, and this may seem slower (by a factor of 3) than the method
based on Lagrange interpolation. However, since no divisions are required the
basic multiplication/division time is reduced considerably—especially when
the matrix M has integral entries, and hence this algorithm is in fact faster.
In addition, it gives for free the adjoint matrix of M (and even of X I, — M
if we want it).

The fourth and last method is based on the notion of Hessenberg form of
a matrix. We first compute a matrix H which is similar to M (i.e. is of the
form PMP~1), and in particular has the same characteristic polynomial as
M, and which has the following form (Hessenberg form)

hip hia hizg ... hin

k2 h22 hasz ... hyn

H = 0 ks h3,3 AN ha’n
0 ... 0 Ky huon

In this form, since we have a big triangle of zeros on the bottom left, it is not
difficult to obtain a recursive relation for the characteristic polynomial of H,

56 2 Algorithms for Linear Algebra and Lattices

hence of M. More precisely, if p,(X) is the characteristic polynomial of the
sub-matrix of H formed by the first m rows and columns, we have po(X) =1
and the recursion:

m—1 m
P(X) = (X ~ b)P 1 (X) = 3 hi,m(11 kj)pi_l(X)

i=1 j=i+1

This leads to the following algorithm.

Algorithm 2.2.9 (Hessenberg). Given an n X n matrix M = (m; ;) with
coefficients in a field, this algorithm computes the characteristic polynomial of M
by first transforming M into a Hessenberg matrix as above.

1. [Initialize] Set H — M, m « 2.

2. [Search for non-zero] If all the h; n,—1 with i > m are equal to 0, go to step

4. Otherwise, let i > m be the smallest index such that h;m-1 # 0. Set
t «— him-1. Then if i > m, for all § > m — 1 exchange h;; and hx,; and
exchange column H; with column H,,.

3. [Eliminate] Fori = m+1, ..., n do the following if h; m—1 # 0: 4 — him—1/t,
for all j > m set h; j < h; ; — uhm, j, set h; ;m—1 < 0, and finally set column
H,, — H,, +uH;.

. [Hessenberg finished?] If m < n — 1, set m « m + 1 and go to step 2.

[Initialize characteristic polynomial] Set po(X) « 1 and m « 1.

. [Initialize computation] Set pp (X) — (X — A m)Pm—1(X) and t «— 1.

. [Compute pr,] For i =1, ..., m — 1 do the following: set t «— thm—i+1,m—i
pm(X) « pm(X) - thm—i,mpm—-i—l(X)-

8. [Finished?] If m < n set m «— m + 1 and go to step 6. Otherwise, output

pn(X) and terminate the algorithm.

N o oo

This algorithm requires asymptotically only n® multiplications/divisions
in the general case, and this is much better than the preceding algorithms
when n is large. If M has integer coefficients however, the Hessenberg form as
well as the intermediate results will usually be non-integral rational numbers,
hence we lose all the advantage of the reduced operation count, since the time
needed for the basic multiplications/divisions will be large. In that case, one
should not use the Hessenberg algorithm directly. Instead, one should apply
it to compute the characteristic polynomial modulo sufficiently many primes
and use the Chinese remainder theorem, exactly as we did for the determinant.
For this, we need bounds for the coefficients of the characteristic polynomial,
analogous to the Hadamard bound. The following result, although not optimal,
is easy to prove and gives a reasonably good estimate.

Propos1t10n 2.2.10. Let M = (m; ;) be an nxn matriz, and write det(X I, —
=Y o<ken @ X" F with ap = 1. Let B be an upper bound for the moduli
of all the m; ;. Then the coefficients ay, satisfy the inequality

2.3 Linear Algebra on General Matrices 57

lax| < (Z) kk/2Bk .

Proof. As already mentioned, the coefficient ay, is up to sign equal to the sum of
the (}) principal k x k minors. By Hadamard’s inequality (Proposition 2.2.4),
each of these minors is bounded by [](3 |m;;|?)!/? where the product and
the sums have k terms. Hence the minors are bounded by (kB?)*/2 = k¥/2B*,
and this gives the proposition. O

Remarks.

(1) The optimal form for computing the characteristic polynomial of a matrix
would be triangular. This is however not possible if the eigenvalues of
the matrix are not in the base field, hence the Hessenberg form can be
considered as the second best choice.

(2) A problem related to computing the characteristic polynomial, is to com-
pute the eigenvalues (and eigenvectors) of a matrix, say with real or com-
plex coefficients. These are by definition the roots of the characteristic
polynomial P(X). Therefore, we could compute P(X) using one of the
above methods, then find the roots of P(X) using algorithm 3.6.6 which
we will see later, and finally apply algorithm 2.2.1 to get the eigenvectors.
This is however not the way to proceed in general since much better meth-
ods based on iterative processes are available from numerical analysis (see
[Gol-Van], [PFTV]), and we will not study this subject here.

2.3 Linear Algebra on General Matrices

2.3.1 Kernel and Image

We now come to linear algebra problems which deal with arbitrary m X n
matrices M with coefficients in a field K. Recall from above that M can be
viewed as giving a generating set for the subspace of K™ generated by the
columns of M, or as the matrix of a linear map from an n-dimensional space
to an m-dimensional space with respect to some bases. (Beware of the order
of m and n.) It is usually conceptually easier to think of M in this way.

The first basic algorithm that we will need is for computing the kernel of

M, i.e. a basis for the space of column vectors X such that MX = 0. The
following algorithm is adapted from [Knu?2].

Algorithm 2.3.1 (Kernel of a Matrix). Given an m x n matrix M = (m; ;)
with 1 <4 < m and 1 < j < n having coefficients in a field K, this algorithm

58 2 Algorithms for Linear Algebra and Lattices

outputs a basis of the kernel of M, i.e. of column vectors X such that M X = 0.
We use auxiliary constants ¢; (1 <4 <m) and d; (1 <7 <n).

1. [Initialize] Set r « 0, kK «— 1 and for i = 1,...,m, set ¢; « 0 (there is no
need to initialize d;).

2. [Scan column] If there does not exist a j such that 1 < j < m with mjx # 0
and ¢; = 0 then set r — r 41, di — 0 and go to step 4.

3. [Eliminate] Set d « —m;,t, mjk — —landfors=k+1,...,n set mj, «
dmj,. Then for all i such that 1 <i<mandi# jsetd — m;x, mir <0
and for s = k+1,...,n set m; s < m; s + dm; . Finally, set ¢; — k and
di «— J.

4. [Finished?] If k < n set k «— k + 1 and go to step 2.

5. [Output kernel] (Here r is the dimension of the kernel.) For every k such that
1 <k < nand dg = 0 (there will be exactly r such k), output the column
vector X = (Z;)1<i<n defined by

ma, k, ifd;>0
0, otherwise.

These r vectors form a basis for the kernel of M. Terminate the algorithm.

The proof of the validity of this algorithm is not difficult and is left as an
exercise for the reader (see Exercise 8). In fact, the main point is that ¢; > 0
if and only if m;.; = —1 and all other entries in column ¢; are equal to zero.

Note also that step 3 looks complicated because I wanted to give as effi-

cient an algorithm as possible, but in fact it corresponds to elementary row
operations.

Only a slight modification of this algorithm gives the image of M, i.e. a
basis for the vector space spanned by the columns of M. In fact, apart from
the need to make a copy of the initial matrix M, only step 5 needs to be
changed.

Algorithm 2.3.2 (Image of a Matrix). Given an m x n matrix M = (m; ;)
with 1 <4 <m and 1 < j < n having coefficients in a field K, this algorithm
outputs a basis of the image of M, i.e. the vector space spanned by the columns
of M. We use auxiliary constants ¢; (1 <4 <m).

1. [Initialize] Setr — 0,k — landfori=1,...,m,setc; « 0, and let N — M
(we need to keep a copy of the initial matrix M).

2. [Scan column] If there does not exists a j such that 1 < j < m with m;x # 0
and ¢; = 0 then set r + 1 + 1, di «— 0 and go to step 4.

3. [Eliminate] Set d — —m}}, mjx «— —1l and for s =k +1,...,n set m;, —

)

dmj,s. Then for all i such that 1 <i<m and i# jsetd — m;y, m;x < 0

2.3 Linear Algebra on General Matrices 59

and for s = k+1,...,n set m; s «— m; s + dm;,. Finally, set ¢; — k and
di «—J.

4. [Finished?] If k <n set k «— k + 1 and go to step 2.

5. [Output image] (Here n —r is the dimension of the image, i.e. the rank of the
matrix M.) For every j such that 1 < j <m and ¢; # 0 (there will be exactly
n —r such j), output the column vector N, (where Ny, is the k-th column of
the initial matrix M). These n — r vectors form a basis for the image of M.
Terminate the algorithm.

One checks easily that both the kernel and image algorithms require
asymptotically n?m/2 multiplications/divisions in general.

There are many possible variations on this algorithm for determining the
image. For example if only the rank of the matrix M is needed and not an
actual basis of the image, simply output the number n — r in step 5. If one
needs to also know the precise rows and columns that must be extracted from
the matrix M to obtain a non-zero (n—r) x (n—r) determinant, we output the
pairs (j,c;) for each j < m such that ¢; # 0, where j gives the row number,
and c; the column number.

Finally, if the columns of M represent a generating set for a subspace of
K™, the image algorithm enables us to extract a basis for this subspace.

Remark. We recall the following definition.

Definition 2.3.3. We will say that an m x n matriz M is in column echelon
form if there ezists T < n and a strictly increasing map f from [r + 1,n] to
[1,m] satisfying the following properties.

(1) Forr+1<j<mn, msi),; = 1, mi; =0 ifi > f(j) and Mf(k),j = 0 if
k<j.
(2) The first r columns of M are equal to 0.

It is clear that the definition implies that the last n — r columns (i.e. the
non-zero columns) of M are linearly independent.

It can be seen that Algorithm 2.3.1 gives the basis of the kernel in column
echelon form. This property can be useful in other contexts, and hence, if
necessary, we may assume that the basis which is output has this property.
In fact we will see later that any subspace can be represented by a matrix in
column echelon form (Algorithm 2.3.11).

For the image, the basis is simply extracted from the columns of M, no
linear combination being taken.

60 2 Algorithms for Linear Algebra and Lattices

2.3.2 Inverse Image and Supplement

A common problem is to solve linear systems whose matrix is either not square
or not invertible. In other words, we want to generalize algorithm 2.2.1 for
solving M X = B where M is an m x n matrix. If X is a particular solution
of this system, the general solution is given by X = Xo+Y where Y € ker(M),
and ker(M) can be computed using Algorithm 2.3.1, so the only problem is
to find one particular solution to our system (or to show that none exist). We
will naturally call this the inverse image problem.

If we want the complete inverse image and not just a single solution, the
best way is probably to use the kernel Algorithm 2.3.1. Indeed, consider the
augmented m x (n + 1) matrix M; obtained by adding B as an n + 1-st
column to the matrix M. If X is a solution to MX = B, and if X; is the
n+ 1-vector obtained from X by adding —1 as n + 1-st component, we clearly
have M; X, = 0. Conversely, if X; is any solution of M;X; = 0, then either
the n + 1-st component of X; is equal to 0 (corresponding to elements of
the kernel of M), or it is non-zero, and by a suitable normalization we may
assume that it is equal to —1, and then the first n components give a solution
to MX = B. This leads to the following algorithm.

Algorithm 2.3.4 (Inverse Image). Given an m x n matrix M and an m-
dimensional column vector B, this algorithm outputs a solution to M X = B or
outputs a message saying that none exist. (The algorithm can be trivially modified
to output the complete inverse image if desired.)

1. [Compute kernel] Let M; be the m x (n+ 1) matrix whose first n columns are
those of M and whose n + 1-st column is equal to B. Using Algorithm 2.3.1,
compute a matrix V whose columns form a basis for the kernel of Mj. Let r
be the number of columns of V.

2. [Solution exists?] If vy, 41, = 0 for all j such that 1 < j < r, output a message
saying that the equation M X = B has no solution. Otherwise, let j < r be
such that v,y41; # 0 and set d — —1/v,41 5.

3. [Output solution] Let X = (z;)1<i<n be the column vector obtained by setting
z; < dv; ;. Output X and terminate the algorithm.

Note that as for the kernel algorithm, this requires asymptotically n?m/2
multiplications/divisions, hence is roughly three times slower than algorithm
2.2.1 when n=m.

If we want only one solution, or if we want several inverse images cor-
responding to the same matrix but different vectors, it is more efficient to
directly use Gaussian elimination once again. A simple modification of Algo-
rithm 2.2.2 does this as follows.

Algorithm 2.3.5 (Inverse Image Matrix). Let M be an m x n matrix and
V be an m x r matrix, where n < m. This algorithm either outputs a message
saying that some column vector of V is not in the image of M, or outputs an

2.3 Linear Algebra on General Matrices 61

n x r matrix X such that V = MX. We assume that the columns of M are
linearly independent. We use an auxiliary column vector C' and we recall that B
(resp. M], X}) denotes the i-th row of B (resp. M, X).

1. [Initialize] Set j «— 0 and B « V.
2. [Finished?] Let j «— j 4+ 1. If j > n go to step 6.
3

. [Find non-zero entry] If m;; = 0 for all i such that m > % > j, output
a message saying that the columns of M are not linearly independent and
terminate the algorithm. Otherwise, let i be some index such that m >4 > j
and mi,; 75 0.

4. [Swap?] If i > j, for | = j,...,n exchange m;; and m,;, and exchange the
rows B] and B’.

5. [Eliminate] (Here m; ; # 0.) Set d < m;} and for all k such that m > k > j
set ¢k < dmg ;. Then for all k and [such that m > k > jandn>1>j
set my — mg, — ckmjy. Finally, for all k such that m > k > j set By, «
B;, — ¢ Bj and go to step 2.

6. [Solve triangular system] (Here the first n rows of M form an upper tri-
angular matrix.) For i = n,n — 1,...,1 (in that order) set X, « (B] —
Zi<j$n mi,jX_-lj)/mi,i-

7. [Check rest of matrix] Check whether for each k such that m > k > n we
have B;, = M X. If this is not the case, output a message that some column
vector of V' is not in the image of M. Otherwise, output the matrix X and
terminate the algorithm.

Note that in practice the columns of M represent a basis of some vector
space hence are linearly independent. However, it is not difficult to modify
this algorithm to work without the assumption that the columns of M are
linearly independent.

Another problem which often arises is to find a supplement to a subspace
in a vector space. The subspace can be considered as given by the coordinates
of a basis on some basis of the full space, hence as an n x k matrix M with
k < n of rank equal to k. The problem is to supplement this basis, i.e. to
find an invertible n x n matrix B such that the first k columns of B form the
matrix M. A basis for a supplement of our subspace is then given by the last
n — k columns of B.

This can be done using the following algorithm.

Algorithm 2.3.6 (Supplement a Basis). Given an nx k matrix M with k <n
having coefficients in a field K, this algorithm either outputs a message saying
that M is of rank less than k, or outputs an invertible n x n matrix B such that
the first k columns of B form the matrix M. Recall that we denote by B; the
columns of B.

1. [Initialize] Set s «— 0 and B « I,,.

62 2 Algorithms for Linear Algebra and Lattices

2. [Finished?] If s = k, then output B and terminate the algorithm.

3. [Search for non-zero] Set s «— s+ 1. Let t be the smallest j > s such that
my,s # 0, and set d — mt_s1 If such a t < n does not exist, output a message

saying that the matrix M is of rank less than k and terminate the algorithm.

4. [Modify basis and eliminate] Set B; « B, (if t # s), then set B; «— M,.
Then for j =s+1,...,k, do as follows. Exchange m, ; and my ; (if t # s).
Set mg,j < dmg ;. Then, for all i # s and i # t, set m; j « m;; — M4,sMs ;.
Finally, go to step 2.

Proof. This is an easy exercise in linear algebra and is left to the reader
(Exercise 9). Note that the elimination part of step 4 ensures that the matrix
BM stays constant throughout the algorithm, and at the end of the algorithm
the first k rows of the matrix M form the identity matrix I, and the last n—k
rows are equal to 0. O

Often one needs to find the supplement of a subspace in another subspace
and net in the whole space. In this case, the simplest solution is to use a
combination of Algorithms 2.3.5 and 2.3.6 as follows.

Algorithm 2.3.7 (Supplement a Subspace in Another). Let V' (resp. M) be
an m x r (resp. m X n) matrix whose columns form a basis of some subspace
F (resp. E) of K™ with 7 < n < m. This algorithm either finds a basis for a

supplement of F' in E or outputs a message saying that F' is not a subspace of
E.

1. [Find new coordinates] Using Algorithm 2.3.5, find an n x r inverse image
matrix X such that V. = MX. If such a matrix does not exist, output a
message saying that F' is not a subspace of E and terminate the algorithm.

2. [Supplement X] Apply Algorithm 2.3.6 to the matrix X, thus giving an n X n
matrix B whose first 7 columns form the matrix X.

3. [Supplement F in E] Let C be the n x n — r matrix formed by the last n — r
columns of B. Output MC and terminate the algorithm (the columns of MC
will form a basis for a supplement of F in E).

Note that in addition to the error message of step 1, Algorithms 2.3.5 and
2.3.6 will also output error messages if the columns of V or M are not linearly
independent.

2.3.3 Operations on Subspaces

The final algorithms that we will study concern the sum and intersection of
two subspaces. If M and M’ are m X n and m x n' matrices respectively, the
columns of M (resp. M') span subspaces V (resp. V') of K™. To obtain a
basis for the sum V + V' is very easy.

2.3 Linear Algebra on General Matrices 63

Algorithm 2.3.8 (Sum of Subspaces). Given an m x n (resp. m x n’) matrix
M (resp. M') whose columns span a subspace V (resp. V') of K™, this algorithm
finds a matrix N whose columns form a basis for V + V.

1. [Concatenate] Let M; be the m x (n + n') matrix obtained by concatenating
side by side the matrices M and M’. (Hence the first n columns of M; are
those of M, the last n’ those of M'.)

2. Using Algorithm 2.3.2 output a basis of the image of My and terminate the
algorithm.

Obtaining a basis for the intersection V NV’ is not much more difficult.

Algorithm 2.3.9 (Intersection of Subspaces). Given an m X n (resp. m x n’)
matrix M (resp. M') whose columns span a subspace V' (resp. V') of K™, this
algorithm finds a matrix N whose columns form a basis for VN V’.

1. [Compute kernel] Let M; be the m x (n+n') matrix obtained by concatenating
side by side the matrices M and M’. (Hence the first n columns of M; are
those of M, the last n’ those of M’.) Using Algorithm 2.3.1 compute a basis
of the kernel of M;, given by an (n +n’) x p matrix N for some p.

2. [Compute intersection] Let N; be the n x p matrix obtained by extracting from
N the first n rows. Set My «— M Ny, output the matrix obtained by applying
Algorithm 2.3.2 to M> and terminate the algorithm. (Note that if we know
beforehand that the columns of M (resp. M') are also linearly independent,
i.e. form a basis of V' (resp. V'), we can simply output the matrix M without
applying Algorithm 2.3.2.)

Proof. We will constantly use the trivial fact that a column vector B is in the
span of the columns of a matrix M if and only if there exists a column vector
X such that B = M X.

Let Nj be the n’ x p matrix obtained by extracting from N the last n'
rows. By block matrix multiplication, we have M N; + M’'N{ = 0. If B; is the
i-th column of My = M Ny then B; € V, but B; is also equal to the opposite
of the i-th column of M’N{, hence B; € V’. Conversely, let B € VNV’. Then
we can write B = MX = M'X’ for some column vectors X and X'. If Y is
the n +n'-dimensional column vector whose first n (resp. last n’) components
are X (resp. —X'), we clearly have MY = 0, hence Y = NC for some column
vector C. In particular, X = N;C hence B = MN,;C = M>C, so B belongs
to the space spanned by the columns of M,. It follows that this space is equal
to V NV’, and the image algorithm gives us a basis.

If the columns of M (resp. M') are linearly independent, then it is left
as an easy exercise for the reader to check that the columns of M, are also
linearly independent (Exercise 12), thus proving the validity of the algorithm.

[m]

As mentioned earlier, a subspace V of K™ can be represented as an m X n
matrix M = M (V') whose columns are the coordinates of a basis-of V on the

64 2 Algorithms for Linear Algebra and Lattices

canonical basis of K™. This representation depends entirely on the basis, so
we may hope to find a more canonical representation. For example, how do
we decide whether two subspaces V and W of K™ are equal? One method is
of course to check whether every basis element of W is in the image of the
matrix V and conversely, using Algorithm 2.3.4.

A better method is to represent V' by a matrix having a special form, in
the present case in column echelon form (see Definition 2.3.3).

Proposition 2.3.10. If V is a subspace of K™, there exists a unique basis
of V such that the corresponding matriz M (V) is in column echelon form.

Proof. This will follow immediately from the following algorithm. O

Algorithm 2.3.11 (Column Echelon Form). Given an m x n matrix M this
algorithm outputs a matrix N in column echelon form whose image is equal to
the image of M (i.e. N = MP for some invertible n x n matrix P).

1. [Initialize] Set i «— m and k — n.

2. [Search for non-zero] Search for the largest integer j < k such that m; ; # 0.
If such a j does not exist, go to step 4. Otherwise, set d — 1/m; ;, then for
| = 1,. . ,1: set t «— dm[,j, m,j < My (|f] 74 k) and myk < t.

3. [Eliminate] For all j such that 1 < j < n and j # k and for all ! such that
1<l <iset my; < my;—mygm,;. Finally, set k «— k — 1.

4. [Next row] If i = 1 output M and terminate the algorithm. Otherwise, set
i1 —1 and go to step 2.

The proof of the validity of this algorithm is easy and left to the reader
(see Exercise 11). The number of required multiplications/divisions is asymp-
totically n?(2m — n)/2 if n < m and nm?/2 if n > m.

Since the non-zero columns of a matrix which is in column echelon form
are linearly independent, this algorithm gives us an alternate way to compute
the image of a matrix. Instead of obtaining a basis of the image as a subset of
the columns, we obtain a matrix in column echelon form. This is preferable in
many situations. Comparing the number of multiplications/divisions needed,
this algorithm is slower than Algorithm 2.3.2 for n < m, but faster when
n > m.

2.3.4 Remarks on Modules

We can study most of the above linear algebra problems in the context of
modules over a commutative ring with unit R instead of vector spaces over a
field. If the ring R is an integral domain, we can work over its field of fractions
K. (This is what we did in the algorithms given above when we assumed that
the matrices had integral entries.) However, this is not completely satisfactory,
since the answer that we want may be different. For example, to compute the

2.3 Linear Algebra on General Matrices 65

kernel of a map defined between two free modules of finite rank (given as
usual by a matrix), finding the kernel as a K-vector space is not sufficient,
since we want it as an R-module. In fact, this kernel will usually not be a free
module, hence cannot be represented by a matrix whose columns form a basis.
One important special case where it will be free is when R is a principal ideal
domain (PID, see Chapter 4). In this case all submodules of a free module of
finite rank are free of finite rank. This happens when R = Z or R = k[X] for
a field k. In this case, asking for a basis of the kernel makes perfectly good
sense, and the algorithm that we have given is not sufficient. We will see later
(Algorithm 2.4.10) how to solve this problem.

A second difficulty arises when R is not an integral domain, because of
the presence of zero-divisors. Since almost all linear algebra algorithms involve
elimination, i.e. division by an element of R, we are bound at some point to get
a non-zero non-invertible entry as divisor. In this case, we are in more trouble.
Sometimes however, we can work around this difficulty. Let us consider for
example the problem of solving a square linear system over Z/rZ, where r is
not necessarily a prime. If we know the factorization of r into prime powers,
we can use the Chinese remainder Theorem 1.3.9 to reduce to the case where
r is a prime power. If r is prime, Algorithm 2.2.1 solves the problem, and if r
is a higher power of a prime, we can still use Algorithm 2.2.1 applied to the
field K = Q, of p-adic numbers (see Exercise 2).

But what are we to do if we do not know the complete factorization of r?
This is quite common, since as we will see in Chapters 8, 9 and 10 large num-
bers (say more than 80 decimal digits) are quite hard to factor. Fortunately,
we do not really care. After extracting the known factors of 7, we are left with
a linear system modulo a new r for which we know (or expect) that it does
not have any small factors (say none less than 10%). We then simply apply
Algorithm 2.2.1. Two things may happen. Either the algorithm goes through
with no problem, and this will happen as long as all the elements which are
used to perform the elimination (which we will call the pivots) are coprime to
r. This will almost always be the case since r has no small factors. We then
get the solution to the system. Note that this solution must be unique since
the determinant of M, which is essentially equal to the product of the pivots,
is coprime to r.

The other possibility is that we obtain a pivot p which is not coprime to r.
Since the pivot is non-zero (modulo r), this means that the GCD (p,r) gives
a non-trivial factor of r, hence we split r as a product of smaller (coprime)
numbers and apply Algorithm 2.2.1 once again. The idea of working “as if” r
was a prime can be applied to many number-theoretic algorithms where the
basic assumption is that Z/rZ is a field, and usually the same procedure can
be made to work. H. W. Lenstra calls the case where working this way we
find a non-trivial factor of r a side erit. In fact, this is sometimes the main
purpose of an algorithm. For example, the elliptic curve factoring algorithm
(Algorithm 10.3.3) uses exactly this kind of side exit to factor r.

66 2 Algorithms for Linear Algebra and Lattices

2.4 Z-Modules and the Hermite and Smith Normal
Forms

2.4.1 Introduction to Z-Modules

The most common kinds of modules that one encounters in number theory,
apart from vector spaces, are evidently Z-modules, i.e. Abelian groups. The
Z-modules V that we consider will be assumed to be finitely generated, in
other words there exists a finite set (v;)1<i< of elements of V such that any
element of V' can be expressed as a linear combination of the v; with integral
coefficients. The basic results about such Z-modules are summarized in the
following theorem, whose proof can be found in any standard text (see for
example [Lang]).

Theorem 2.4.1. LetV be a finitely generated Z-module (i.e. Abelian group).

(1) If Viors is the torsion subgroup of V, i.e. the set of elements v € V such
that there exists m € Z\ {0} with mv = 0, then Vios is a finite group, and
there erists a non-negative integer n and an isomorphism

V > Viors X Z°

(the number n is called the rank of V').

(2) If V is a free Z-module (i.e. if V ~ Z™, or equivalently by (1) if Viors =
{0}), then any submodule of V' is free of rank less than or equal to that of
V.

(3) IfV is a finite Z-module (i.e. by (1) if V is of zero rank), there exists n
and a submodule L of Z™ (which is free by (2)) such that V ~Z"/L.

Note that (2) and (3) are easy consequences of (1) (see Exercise 13).

This theorem shows that the study of finitely generated Z-modules splits
naturally into, on the one hand the study of finite Z-modules (which we will
usually denote by the letter G for (finite Abelian) group), and on the other
hand the study of free Z-modules of finite rank (which we will usually denote
by the letter L for lattice (see Section 2.5)). Furthermore, (3) shows that
these notions are in some sense dual to each other, so that we can in fact
study only free Z-modules, finite Z-modules being considered as quotients of
free modules.

Studying free modules L puts us in almost the same situation as studying
vector spaces. In particular, we will usually consider L to be a submodule
of some Z™, and we will represent L as an m x n matrix M whose columns
give the coordinates of a basis of L on the canonical basis of Z™. Such a
representation is of course not unique, since it depends on the choice of a
basis for L. In the case of vector spaces, one of the ways to obtain a more
canonical representation was to transform the matrix M into column echelon

2.4 Z-Modules and the Hermite and Smith Normal Forms 67

form. Since this involves elimination, this is not possible anymore over Z.
Nonetheless, there exists an analogous notion which is just as useful, called the
Hermite normal form (abbreviated HNF). Another notion, called the Smith
normal form (abbreviated SNF) allows us to represent finite Z-modules.

2.4.2 The Hermite Normal Form

The following definition is the analog of Definition 2.3.3 for Z-modules.

Definition 2.4.2. We will say that an m x n matrizr M = (m; ;) with integer
coefficients is in Hermite normal form (abbreviated HNF) if there existsT < n
and a strictly increasing map f from [r+1,n] to [1,m] satisfying the following
properties.

(1) Forr+1<j <mn, mgg),; 21, mij=0ifi> f(j) and 0 < msy,; <

Me(k),k ifk <j.
(2) The first r columns of M are equal to 0.

Remark. In the important special case where m = n and f(k) = k (or
equivalently det(M) # 0), M is in HNF if it satisfies the following conditions.

(1) M is an upper triangular matrix, i.e. m;; =0 if s > j.
(2) For every i, we have m; ; > 0.
(3) For every j > i we have 0 < m; ; < m; ;.

More generally, if n > m, a matrix M in HNF has the following shape

0 0 ... 0 x *x ... %
00 0 0 *x ... %
00 ... 00 ... 0 =«

where the last m columns form a matrix in HNF.

Theorem 2.4.3. Let A be an m x n matriz with coefficients in Z. Then there
erists a unique m X n matriz B = (b; ;) in HNF of the form B = AU with
U € GL,(Z), where GL,(Z) is the group of matrices with integer coefficients
which are invertible, i.e. whose determinant is equal to £1.

Note that although B is unique, the matrix U will not be unique.

The matrix W formed by the non-zero columns of B will be called the
Hermite normal form of the matrix A. Note that if A is the matrix of any
generating set of a sub-Z-module L of Z™, and not only of a basis, the columns
of W give the unique basis of L whose matrix is in HNF. This basis will be
called the HNF basis of the Z-module L, and the matrix W the HNF of L.

68 2 Algorithms for Linear Algebra and Lattices

In the special case where the Z-module L is of rank equal to m, the matrix
W will be upper triangular, and will sometimes be called the upper triangular
HNF of L.

We give the proof of Theorem 2.4.3 as an algorithm.

Algorithm 2.4.4 (Hermite Normal Form). Given an m x n matrix A with
integer coefficients (a; ;) this algorithm finds the Hermite normal form W of A.
As usual, we write w; ; for the coefficients of W, A; (resp. W;) for the columns
of A (resp. W).

1. [Initialize] Set i — m, k —n,l —1ifm<n, l—m-n+1ifm>n.

2. [Row finished?] If all the a;; with j < k are zero, then if a;x < O replace
column Ag by —Ag and go to step 5.

3. [Choose non-zero entry] Pick among the non-zero a; ; for j < k one with the
smallest absolute value, say a; j,. Then if jo < k, exchange column Ay with
column A;,. In addition, if a; x < O replace column Ay by —Ag. Set b — a; .

4. [Reduce] For j =1,...,k — 1 do the following: set ¢ « |a;;/b], and A; —
A; — gAg. Then go to step 2.

5. [Final reductions] Set b « a; . If b = 0, set k «— k + 1 and go to step 6.
Otherwise, for j > k do the following: set ¢ « [a; ;/b], and A; — A; — qA.

6. [Finished?] If ¢ = [then for j = 1,...,n —k + 1 set W; «— Aj4x_1 and
terminate the algorithm. Otherwise, set i « i —1, k «— k — 1 and go to step
2.

This algorithm terminates since one can easily prove that |a; | is strictly
decreasing each time we return to step 2 from step 4. Upon termination, it is
clear that W is in Hermite normal form, and since it has been obtained from
A by elementary column operations of determinant +1, W is the HNF of A.
We leave the uniqueness statement of Theorem 2.4.3 as an exercise for the
reader (Exercise 14). o

Remarks.

(1) It is easy to modify the above algorithm (as well as the subsequent ones)
so as to give the lower triangular HNF of A in the case where A is of rank
equal to m.

(2) If we also want the matrix U € GL,(Z), it is easy to add the corresponding
statements (see for example Algorithm 2.4.10).

Consider the very special case m = 1, n = 2 of this algorithm. The result
will be (usually) a 1 x 1 matrix whose unique element is equal to the GCD
(@1,1,01,2). Hence, it is conceptually easier, and usually faster, to replace in the
above algorithm divisions by (extended) GCD’s. We can then choose among

several available methods for computing these GCD’s. This gives the following
algorithm.

2.4 Z-Modules and the Hermite and Smith Normal Forms 69

Algorithm 2.4.5 (Hermite Normal Form). Given an m x n matrix A with
integer coefficients (a; ;) this algorithm finds the Hermite normal form W of A.
We use an auxiliary column vector B.

1. [Initialize] Seti «—m, j «n, k—n,I=1ifm<n,l=m—n+1ifm > n.

2. [Check zero] If j =1 go to step 4. Otherwise, set j—j —1, and if a;; =0
go to step 2.

3. [Euclidean step] Using Euclid's extended algorithm, compute (u, v, d) such that
ua; k +va;; = d = ged(aq i, as j), with |u| and |v| minimal (see below). Then
set B «— uAx+vA;, Aj — (a;x/d)A;—(a;;/d)Ax, Ay — B, and go to step
2.

4. [Final reductions] Set b < a; . If b < 0 set Ay — — A and b — —b. Now if
b=0,set k—k+1 andif [>1 and i =1 set [« [—1, then go to step 5,
otherwise for j > k do the following: set ¢ « |a;;/b], and A; — A; — qA.

5. [Finished?] If 4 =1 then for j=1,...,n —k +1 set W; «— A 51 and
terminate the algorithm. Otherwise, set i «—i—1, k«— k—1, j<—k and go
to step 2.

Important Remark. In step 3, we are asked to compute (u,v,d) with |u]
and |v| minimal. The meaning of this is as follows. We must choose among all
possible (u, v), the unique pair such that

—% <wsign(b) <0 and 1< usign(a) <

]

d

In fact, the condition on u is equivalent to the condition on v and that such
a pair exists and is unique is an exercise left to the reader (Exercise 15). The
sign conditions are not important, they could be reversed if desired, but it is
essential that when d = |a|, i.e. when a | b, we take v = 0. If this condition is
not obeyed, the algorithm may enter into an infinite loop. This remark applies

also to all the Hermite and Smith normal form algorithms that we shall see
below.

Algorithms 2.4.4 and 2.4.5 work entirely with integers, and there are no
divisions except for Euclidean divisions, hence one could expect that it be-
haves reasonably well with respect to the size of the integers involved. Un-
fortunately, this is absolutely not the case, and the coefficient explosion phe-
nomenon occurs here also, even in very reasonable situations. For example,
Hafner-McCurley ([Haf-McCur2]) give an example of a 20 x 20 integer matrix
whose coefficients are less than or equal to 10, but which needs integers of up
to 1500 decimal digits in the computations of Algorithm 2.4.4 or Algorithm
2.4.5 leading to its HNF. Hence, it is necessary to improve these algorithms.

One modification of Algorithm 2.4.5 would be for a fixed row ¢, instead
of setting equal to zero the successive a; j for j =k —1,k —2,...,1 by doing
column operations between columns i and j, to set these a;; equal to zero
in the same order, but now doing operations between columns k and k — 1,

70 2 Algorithms for Linear Algebra and Lattices

then k — 1 and k — 2, and so on until columns 2 and 1, and then exchanging
columns 1 and k. This idea is due to Bradley [Bra].

Still another modification is the following. In Algorithm 2.4.5, we perform
the column operations as follows: (k,k — 1), (k,k —2), ..., (k,1). In the
modified version just mentioned, the order is (k,k — 1), (k—1,k—2), ...,
(2,1), (1,k). One can also for row ¢ do as follows. Work with the pair of
columns (j1,j2) where a;; and a;j, are the largest and second largest non-
zero elements of row ¢ with j < k. Then experiments show that the coefficient
explosion is considerably reduced, and actual computational experience shows
that it is faster than the preceding versions. However this is still insufficient
for our needs.

When m < n and A is of rank m (in which case W is an upper triangular
matrix with non-zero determinant D), an important improvement suggested
by several authors (see for example [Kan-Bac]) is to work modulo a multiple
of the determinant of W, or even modulo a multiple of the ezponent of Z™ /W .
(Note that D is equal to the order of the finite Z-module Z™/W; the exponent
is by definition the smallest positive integer e such that eZ™ C W. It divides
the determinant.)

In the case where m = n, we have det(W) = + det(A) hence the determi-
nant can be computed before doing the reduction if needed. In the general case
however one does not know det(W) in advance, but in practice, the HNF is
often used for obtaining a HNF-basis for a Z-module L in a number field (see
Chapter 4), and in that case one usually knows a multiple of the determinant
of L. One can modify all of the above mentioned algorithms in this way.

These modifications are based on the following additional algorithm, es-
sentially due to Hafner and McCurley (see [Haf-McCur2]):

Algorithm 2.4.6 (HNF Modulo D). Let A be an m x n integer matrix of rank
m. Let L = (l;j)1<i,j<m be the m x m upper triangular matrix obtained from
A by doing all operations modulo D in any of the above mentioned algorithms,
where D is a positive multiple of the determinant of the module generated by the
columns of A (or equivalently of the determinant of the HNF of A). This algorithm
outputs the true upper triangular Hermite normal form W = (w; ;)1<i,j<m of A.
We write W; and L; for the i-th columns of W and L respectively.

1. [Initialize] Set b — D, i « m.

2. [Euclidean step] Using a form of Euclid's extended algorithm, compute (u, v, d)
such that ul;; + vb = d = ged(li;,b). Then set W; « (uL; mod b) (recall
that a mod b is the least non-negative residue of a modulo b). If d = b (i.e. if
b| ;) set in addition w; ; « d (if d # b, this will already be true, but if d = b
we would have w;; = 0 if we do not include this additional assignment).

3. [Finished?] If 4 > 1, set b « b/d, i «— i — 1 and go to step 2. Otherwise,
fori=m-—1m~—2,...,1, and for j =i+ 1,...,m set ¢ — |w;;/wi;],
W; «— W; — gWi;. Output the matrix W = (wj ;)1<i j<m and terminate the
algorithm.

2.4 Z-Modules and the Hermite and Smith Normal Forms 71

We must prove that this algorithm is valid. Since step 2 is executed exactly
m times, the algorithm terminates, so what we need to prove is that the
matrix W that the algorithm produces is indeed the HNF of A. For any
m X n matrix M of rank m, denote by ~;(M) the GCD of all the i x i sub-
determinants obtained from the last i rows of M for 1 < 7 < m. It is clear
that elementary column operations like those of Algorithms 2.4.4 or 2.4.5 leave
these quantities unchanged. Furthermore, reduction modulo D changes these
i X i sub-determinants by multiples of D, hence does not change the GCD of
~vi(M) with D. It is clear that ~y,,_ 1_,_1(W) = Wj i Wmm divides det(W),
hence divides D. Therefore we have:

Wi+ Wm,m = ged(D, Ym—iz1(W)
= ged(D, Ym-i+1(4))
= ged(D, Ym—i+1(L))

=ged(D,lii - bm,m)- (1)

hence the value given by Algorithm 2.4.6 for wy, ., is correct. Call D; the
value of b for the value i, and set P; = wjt1,it1- -+ Wm,m. Then if we assume
that the diagonal elements w;, ; are correct for j > i, we have by definition
D; = D/P;. Hence, if we divide equation (1;41) by P; we obtain

1 =ged(Ds, (lit1,it1 - lm,m)/ Ps)

for 1 <i < m. Now if we divide equation (1;) by P; we obtain

= ged(Dy, (Lii -+ lm,m) / Ps) = ged(Di, L)

by the preceding formula, hence the diagonal elements of the matrix W which
are output by Algorithm 2.4.6 are correct. Since W is an upper triangular
matrix, it follows that its determinant is equal to the determinant of the HNF
of A.

To finish the proof that Algorithm 2.4.6 is valid, we will show that the
columns W; = (uL; mod D;) output by the algorithm are in the Z-module L
generated by the columns of A. By the remark just made, this will show that,
in fact, the W; are a basis of L, hence that W is obtained from A by elementary
transformations. Since step 3 of the algorithm finishes to transform W into a
Hermite normal form, W must be equal to the HNF of A. Since

)

Wz' = Z Ci’jA]' + DiBi

1<j<m

where the A; are the columns of A, B; is a (column) vector in Z™ whose
components of index greater than i are zero, and the c¢;; are integers, the
claim concerning the W; follows immediately from the following lemma:

Lemma 2.4.7. With the above notations, for everyi with1 < i <m and any
vector B whose components of index greater than i are zero, we have D;B € L.

72 2 Algorithms for Linear Algebra and Lattices

Proof. Consider the i x ¢ matrix N; formed by the first ¢ rows and columns
of the true HNF of A. We already have proved that the diagonal elements are
wj,; as output by the algorithm. Now if one considers Z* as a submodule of
Z™ by considering the last m — i components to be equal to 0, then we see
that the columns of N; (extended by m — ¢ zeros) are Z-linear combinations
of the columns A; of A, ie. are in L. Now det(N;) = wy,1---ws; and by
definition D; is a multiple of wy ; - - - w; ;. Hence, if L; is the submodule of VA
generated by the columns of N;, we have on the one hand L; C Z! N L, and
on the other hand, since det(N;) = [Z¢ : L;], we have det(N;)Z* C L; which
implies D;Z* C L, and this is equivalent to the statement of the lemma. This
concludes the proof of the validity of Algorithm 2.4.6. O

Note that if we work modulo D in Algorithm 2.4.5, the order in which
the columns are treated, which is what distinguishes Algorithm 2.4.5 from
its variants, is not really important. Furthermore, the proof of Algorithm
2.4.6 shows that it is not necessary to work modulo the full multiple of the
determinant D in Algorithm 2.4.5, but that at row ¢ one can work modulo D;,
which can be much smaller. Finally, note that in step 2 of Algorithm 2.4.5, if
we have worked modulo D (or D;), it may happen that a; x = 0. In that case,
it is necessary to set a; < D; (or any non-zero multiple of D;). Combining
these observations leads to the following algorithm, essentially due to Domich
et al. [DKT).

It should be emphasized that all reductions modulo R should be taken
in the interval | — R/2, R/2], and not in the interval [0, R[. Otherwise, small
negative coefficients will become large positive ones, and this may lead to
infinite loops.

Algorithm 2.4.8 (HNF Modulo D). Given an m x n matrix A with integer
coefficients (a; ;) of rank m (hence such that n > m), and a positive integer D
which is known to be a multiple of the determinant of the Z-module generated
by the columns of A, this algorithm finds the Hermite normal form W of A. We
use an auxiliary column vector B.

1. [Initialize] Set i <~ m, j «n, k —n, R « D.

2. [Check zero] If j =1 go to step 4. Otherwise, set j «— j —1, and if a; ; =0
go to step 2.

3. [Euclidean step] Using Euclid's extended algorithm, compute (u,v,d) such
that ua; k + va;; = d = ged(aik, a; ;), with |u| and |v| minimal. Then set
B «— uAi+ vAj, Aj «— ((asx/d)A; — (a;;/d)Ax) mod R, Ax + B mod R,
and go to step 2.

4. [Next row] Using Euclid's extended algorithm, find (u, v, d) such that ua; x +
vR = d = ged(aix, R). Set W; — ud; mod R (here taken in the interval
[0,R—1]). fw;; =0set w;;«—R. Forj=i+1,...,msetq— |wi;/wi;]
and W; —W; — qW; mod R. If i=1, output the matrix W = (w; ;)1<i j<m
and terminate the algorithm. Otherwise, set R—R/d, i —i—1, k—k—1,
j<k, and if a;3x=0 set a;; — R. Go to step 2.

2.4 Z-Modules and the Hermite and Smith Normal Forms 73

This will be our algorithm of choice for HNF reduction, at least when
some D is known and A is of rank m.

Remark. It has been noted (see Remark (2) after Algorithm 2.4.4) that it is
easy to add statements so as to obtain the matrix U such that B = AU where
B is the n x m matrix in Hermite normal form whose non-zero columns form
the HNF of A. In the case of modulo D algorithms such as the one above, it
seems more difficult to do so.

2.4.3 Applications of the Hermite Normal Form

In this section, we will see a few basic applications of the HNF form of a
matrix representing a free Z-module. Further applications will be seen in the
context of number fields (Chapter 4).

Image of an Integer Matrix. First note that finding the HNF of a matrix
using Algorithm 2.4.5 is essentially analogous to finding the column eche-
lon form in the case of vector spaces (Algorithm 2.3.11). In particular, if the
columns of the matrix represents a generating set for a free module L, Algo-
rithm 2.4.5 allows us to find a basis (in fact of quite a special form), hence
it also performs the same role as Algorithm 2.3.2. Contrary to the case of
vector spaces, however, it is not possible in general to extract a basis from a
generating set (this would mean that (a,b) = |a| or (a,b) = |b] in the case
m =1, n = 2), hence an analog of Algorithm 2.3.2 cannot exist.

Kernel of an Integer Matrix. We can also use Algorithm 2.4.5 to find the
kernel of an m x n integer matrix A, i.e. a Z-basis for the free sub-Z-module
of Z™ which is the set of column vectors X such that AX = 0. Note that
this cannot be done (at least not without considerable extra work) by using
Algorithm 2.3.1 which gives only a Q-basis. What we must do is simply keep
track of the matrix U € GL,(Z) such that B = AU is in HNF. Indeed, we
have the following proposition.

Proposition 2.4.9. Let A be an m X n matriz, B = AU its HNF with U €
GL,(Z), and let v be such that the first r columns of B are equal to 0. Then
a Z-basis for the kernel of A is given by the first r columns of U.

Proof. If U; is the i-th column of U, then AU; is the i-th column of B so is
equal to 0 if 7 < r. Conversely, let X be a column vector such that AX =0
or equivalently BY =0 with Y =U"1X. Solving the system BY =0 from
bottom up, bs (k) x >0 for k >r (with the notation of Definition 2.4.2) implies
that the last n —r coordinates of Y are equal to 0, and the first r are
arbitrary, hence the first r canonical basis elements of Z" form a Z-basis for
the kernel of B, and upon left multiplication by U we obtain the proposition.

O

74 2 Algorithms for Linear Algebra and Lattices

This gives the following algorithm.

Algorithm 2.4.10 (Kernel over Z). Given an m x n matrix A with integer
coefficients (a;,5), this algorithm finds a Z-basis for the kernel of A. We use an
auxiliary column vector B and an auxiliary n x n matrix U.

1. [Initialize] Set i —m, je—mn, k—n, Ue1I,, l—1lifm<n,]l —m—-n+1l
if m>n.

2. [Check zero] If j =1 go to step 4. Otherwise, set j — j —1, and if a; ; = 0
go to step 2.

3. [Euclidean step] Using Euclid's extended algorithm, compute (u,v,d) such
that wa;x +va;; = d = ged(aqk,as;), with |u| and |v| minimal. Then set
B — udy +vAj, A; — (aix/d)Aj — (aij/d)Ax, Ax < B; similarly set
B — uUy +’UUj, Uj — (ai,k/d)Uj - (aiyj/d)Uk, Ui «— B, then go to step 2.

4. [Final reductions] Set b « a; k. If b < 0 set Ay « —Ak, Uy «— —Uy and
b« —b Nowif b =0, set k — k +1 and go to step 5, otherwise for j > k
do the following: set ¢ — |a;;/b], A; — Aj — qAy and U; « U; — qUs.

5. [Finished?] If i =1 then for j =1,...,k —1 set M; « Uj, output the matrix
M and terminate the algorithm. Otherwise, set i « i —1, k —k —1, j — k
and go to step 2.

Remark. Although this algorithm correctly gives a Z-basis for the kernel
of A, the coefficients that are obtained are usually large. To obtain a really
useful algorithm, it is necessary to reduce the basis that is obtained, for ex-
ample using one of the variants of the LLL algorithm that we will see below
(see Section 2.6). However, it is desirable to obtain directly a basis of good
quality that avoids introducing large coefficients. This can be done using the
MLLL algorithm (see Algorithm 2.7.2), and gives an algorithm which is usu-
ally preferable.

In view of the applications to number fields, limiting ourselves to free
submodules of some Z™ is a little too restrictive. In what follows we will
simply say that L is a module if it is a free sub-Z-module of rank m of Q™.
Considering basis elements of L, it is clear that there exists a minimal positive
integer d such that dL C Z™. We will call d the denominator of L with respect
to Z™. Then the HNF of L will be by definition the pair (W, d), where W is
the HNF of dL, and d is the denominator of L.

Test for Equality. Since the HNF representation of a free module L is
unique, it is clear that one can trivially test equality of modules: their denom-
inator and their HNF must be the same.

Sum of Modules. Given two modules L and L’ by their HNF, we can com-
pute their sum L+ L' = {z + z’,z € L,z’ € L'} in the following way. Let
(W,d) and (W', d’) be their HNF representation. Let D = dd’/(d,d’) be the
least common multiple of d and d'. Denoting as usual by A; the i-th column

2.4 Z-Modules and the Hermite and Smith Normal Forms 75

of a matrix A, consider the m x 2m matrix A such that A; = (D/d)W; and
Amti = (D/d')W/ for 1 < i < m, then it is clear that the columns of A gener-
ate D(L + L'), hence if we compute the HNF H of A and divide D and H by
the greatest common divisor of D and of all the coefficients of H, we obtain
the HNF normal form of L + L. Apart from the treatment of denominators,
this is similar to Algorithm 2.3.8.

Test for Inclusion. To test whether L’ C L, where L and L' are given by
their HNF, the most efficient way is probably to compute N = L+ L' as above,
and then test the equality N = L. Note that if d and d’ are the denominators
of L and L' respectively, a necessary condition for L' C L is that d’ | d, hence
the LCM D must be equal to d.

Product by a Constant. This is especially easy: if ¢ = p/q € Q with
(p,q) = 1 and ¢ > 0, the HNF of cL is obtained as follows. Let d; be the
GCD of all the coefficients of the HNF of L. Then the denominator of cL is
qd/((p,d)(g,d1)), and the HNF matrix is equal to p/((p,d)(q,d1)) times the
HNF matrix of L.

We will see that the HNF is quite practical for other problems also, but
the above list is, I hope, sufficiently convincing.

2.4.4 The Smith Normal Form and Applications

We have seen that the Hermite normal form permits us to handle free Z-
modules of finite rank quite nicely. We would now like a similar notion which
would allow us to handle finite Z-modules G. Recall from Theorem 2.4.1 (3)
that such a module is isomorphic (in many ways of course) to a quotient
Z™/L where L is a (necessarily free) submodule of Z" of rank equal to n.
More elegantly perhaps, we can say that G is isomorphic to a quotient L’/L
of free Z-modules of the same (finite) rank n. Thus we can represent G (still
non-canonically) by an nxn matrix A giving the coordinates of some Z-basis of
L on some Z-basis of L’. In particular, A will have non-zero determinant, and
in fact the absolute value of the determinant of A is equal to the cardinality
of G, i.e. to the index [L' : L] (see Exercise 18).

The freedom we now have is as follows. Changing the Z-basis of L is
equivalent to right multiplication of A by a matrix U € GL,(Z), as in the
HNF case. Changing the Z-basis of L’ is on the other hand equivalent to left
multiplication of A by a matrix V' € GL,(Z). In other words, we are allowed
to perform elementary column and row operations on the matrix A without

changing (the isomorphism class of) G. This leads to the notion of Smith
normal form of A.

Definition 2.4.11. We say that an n x n matriz B is in Smith normal form

(abbreviated SNF) if B is a diagonal matriz with nonnegative integer coeffi-
cients such that biy1,i41 | bi; for alli <n.

76 2 Algorithms for Linear Algebra and Lattices

Then the basic theorem which explains the use of this definition is as
follows.

Theorem 2.4.12. Let A be an n X n matriz with coefficients in Z and non-
zero determinant. Then there ezists a unique matriz in Smith normal form B
such that B = VAU with U and V elements of GL,(Z).

If we set d; = b, ;, the d; are called the elementary divisors of the matrix
A, and the theorem can be written

d 0 ... 0
A=y-1| 0 & U-1

T

0o ... 0 d,

with d;y1 | d; for 1 <i<n.

This theorem, stated for matrices, is equivalent to the following theorem
for Z-modules.

Theorem 2.4.13 (Elementary Divisor Theorem). Let L be a Z-submodule
of a free module L' and of the same rank. Then there exist positive integers

di, ..., dn (called the elementary divisors of L in L') satisfying the following
conditions:

(1) For every i such that 1 < i < n we have d;41 | d;.
(2) As Z-modules, we have the isomorphism

/L~ P (z/d:z),

1<i<n

and in particular [L' : L] = dy ---d,, and dy is the exponent of L' /L.
(3) There ezists a Z-basis (vi,...,vn) of L' such that (div1,...,dnvs) is a
Z-basis of L.

Furthermore, the d; are uniquely determined by L and L'.

Remarks.

(1) This fundamental theorem is valid more generally. It holds for finitely
generated (torsion) free modules over a principal ideal domain (PID, see
Chapter 4). It is false if the base ring R is not a PID: applying the theorem
ton =1, L' = R and L any integral ideal of R, it is clear that the truth
of this theorem is equivalent to the PID condition.

(2) We have stated Theorem 2.4.12 only for square matrices of non-zero deter-
minant. As in the Hermite case, it would be easy to state a generalization
valid for general matrices (including non-square ones). In practice, this is
not really needed since we can always first perform a Hermite reduction.

2.4 Z-Modules and the Hermite and Smith Normal Forms 7

The proof of these two theorems can be found in any standard textbook
but it follows immediately from the algorithm below.

Since we are going to deal with square matrices, as with the case of the
HNF, it is worthwhile to work modulo the determinant (or a multiple). In most
cases this determinant (or a multiple of it) is known in advance. It should also
be emphasized again that all reductions modulo R should be taken in the
interval | — R/2, R/2], and not in the interval [0, R|.

The following algorithm is essentially due to Hafner and McCurley (see
[Haf-McCur2]).

Algorithm 2.4.14 (Smith Normal Form). Given an n xn non-singular integral
matrix A = (a;,;), this algorithm finds the Smith normal form of A, i.e. outputs
the diagonal elements d; such that d; 11 | d;. Recall that we denote by A; (resp.
A;) the columns (resp. the rows) of the matrix A. We use a temporary (column
or row) vector variable B.

1. [Initialize 7] Set i « n, R « | det(A)|. If n = 1, output d; « R and terminate
the algorithm.

2. [Initialize j for row reduction] Set j « i, ¢ « 0.

[Check zero] If j = 1 go to step 5. Otherwise, set j « j — 1. If a; ; = 0 go
to step 3.

4. [Euclidean step] Using Euclid's extended algorithm, compute (u,v,d) such
that ua;; + va;; = d = ged(a;;,0,5), with w and v minimal (see remark
after Algorithm 2.4.5). Then set B «— uA; + vA4;, A; « ((aii/d)A; —
(ai,j/d)A;) mod R, A; — B mod R and go to step 3.

[Initialize j for column reduction] Set j « 3.

6. [Check zero] If j =1 go to step 8. Otherwise, set j « j —1, and if aj; =0
go to step 6.

7. [Euclidean step] Using Euclid's extended algorithm, compute (u,v,d) such
that ua;; + va;; = d = ged(ai;,a;,:), with u and v minimal (see remark
after Algorithm 2.4.5). Then set B « uA] + vA}, A} « ((aii/d)A; —
(aj,i/d)A;) mod R, A} «— Bmod R, ¢« c+ 1 and go to step 6.

[Repeat stage i?] If ¢ > 0 go to step 2.

[Check the rest of the matrix] Set b « a; ;. For 1 < k,l < i check whether
b | ak,. As soon as some coefficient ay; is not divisible by b, set A% «— A} +Aj
and go to step 2.

10. [Next stage] (Here all the ax, for 1 < k,l < i are divisible by b). Output
d; = ged(a; s, R) and set R « R/d;. If i = 2, output d; = ged(a,1, R) and
terminate the algorithm. Otherwise, set i < i — 1 and go to step 2.

This algorithm seems complicated at first, but one can see that it is ac-
tually quite straightforward, using elementary row and column operations of
determinant +1 to reduce the matrix A.

78 2 Algorithms for Linear Algebra and Lattices

This algorithm terminates (and does not take too many steps!) since each
time one returns to step 2 from step 9, the coefficient a; ; has been reduced at
least by a factor of 2.

The proof that this algorithm is valid, i.e. that the result is correct, follows
exactly the proof of the validity of Algorithm 2.4.6. If we never reduced modulo
R in Algorithm 2.4.14, it is clear that the result would be correct (however
the coefficients would explode). Incidentally, this gives a proof of Theorems
2.4.12 and 2.4.13.

Hence, we must simply show that the transformations done in step 10
correctly restore the values of d;. Denote by 6;(A) the GCD of the determinants
of all i x i sub-matrices of A, and not only from the first i rows as in the proof
of Algorithm 2.4.6. Then, in a similar manner, these §; are invariant under
elementary row and column operations of determinant +1. Hence, denoting
by A the diagonal SNF of A, by D the determinant of A4, and by S = (a; ;)
the final form of the matrix A at the end of Algorithm 2.4.14, we have:

di-+ dn = ged(D, 8n_is1(A))
= ged(D, 8p—i41(4))
= ged(D, bn-i+1(S))
=ged(D, ai; - - an,n)- (2)

Hence, if we set P; = d;11 - - - dp, exactly as in the proof of Algorithm 2.4.6 we
obtain

1= (D/Pi,(@i+1,i+1° @npn)/Pi)
(divide formula (2;4+1) by F;), then

di = (D/P“ (ai’iai+1’i+1 oo an,n)/Pi)
(divide (2;) by P;), and hence
d; = (D/P;,a;;).

But clearly in stage ¢ of the algorithm, R = D/P;, thus proving the validity
of the algorithm. a

Note that we have chosen an order for the d; which is consistent with our
choice for Hermite normal forms, but which is the reverse of the one which is
found in most texts. The modifications to Algorithm 2.4.14 so that the order
is reversed are trivial (essentially make i and j go up instead of down) and
are left to the reader.

The Smith normal form will mainly be used as follows. Let G be a finite
Z-module (i.e. a finite Abelian group). We want to determine the structure of
G, and in particular its cardinality. Note that a corollary of Theorem 2.4.13
is the structure theorem for finite Abelian groups: such a group is isomorphic
to a unique direct sum of cyclic groups Z/d;Z with d;,; | d;.

2.5 Generalities on Lattices 79

We can then proceed as follows. By theoretical means, we find some integer
n and a free module L’ of rank n such that G is isomorphic to a quotient L'/ L,
where L is also of rank n but unknown. We then determine as many elements
of L as possible (how to do this depends, of course, entirely on the specific
problem) so as to have at least n elements which are Q-linearly independent.
Using the Hermite normal form Algorithm 2.4.5, we can then find the HNF
basis for the submodule L; of L generated by the elements that we have found.
Computing the determinant of this basis (which is trivial since the basis is in
triangular form) already gives us the cardinality of L'/L;. If we know bounds
for the order of G (for example, if we know the order of G up to a factor of
/2 from above and below), we can check whether L; = L. If not, we continue
finding new elements of L until the cardinality check shows that L; = L. We
can then compute the SNF of the HNF basis (note that the determinant is
now known), and this gives us the complete structure of G.

We will see a concrete application of the process just described in the
sub-exponential computations of class groups (see Chapter 5).

Remark. The diagonal elements which are obtained after a Hermite Normal
Form computation are usually not equal to the Smith invariants. For example,
the matrix ((2) ;) is in HNF, but its Smith normal form has as diagonal

elements (4,1).

2.5 Generalities on Lattices

2.5.1 Lattices and Quadratic Forms

We are now going to add some extra structure to free Z-modules of finite rank.
Recall the following definition.

Definition 2.5.1. Let K be a field of characteristic different from 2, and let
V be a K-vector space. We say that a map q from V to K is a quadratic form
if the following two conditions are satisfied:

(1) For every A € K and z € V we have
a(x - z) = Nq(x).
(2) If we set b(z,y) = (q(z+y) —q(x) —q(y)) then b is a (symmetric) bilinear
form, i.c. b(x +4',y) = b(z,) + b(z',y) and b(\- z,y) = Ab(=,y) for all

A€ K, z, &’ andy in V (the similar conditions on the second variable
follow from the fact that b(y, z) = b(z,y)).

The identity b(z, z) = g(z) allows us to recover g from b.

80 2 Algorithms for Linear Algebra and Lattices

In the case where K = R, we say that q is positive definite if for all
non-zero € V we have ¢(z) > 0.

Definition 2.5.2. A lattice L is a free Z-module of finite rank together with
a positive definite quadratic form q on L @ R.

Let (b;)1<i<n be a Z-basis of L. If x = Zl<i<n z;b; € L with z; € Z, the
definition of a quadratic form implies that

q(x) = Z ;%% with g;,; = b(b;, by)

1<i,j<n

where as above, b denotes the symmetric bilinear form associated to g.

The matrix Q = (¢:,5)1<i,j<n is then a symmetric matrix which is positive
definite when ¢ is positive definite. We have b(x,y) = Y*QX and in particular
g(x) = X*QX where X and Y are the column vectors giving the coordinates
of x and y respectively in the basis (b;).

We will say that two lattices (L, ¢) and (L', ¢') are equivalent if there exists
a Z-module isomorphism between L and L’ sending q to ¢’. We will identify
equivalent lattices. Also, when the quadratic form is understood, we will write
L instead of (L, q).

A lattice (L, g) can be represented in several ways all of which are useful.
First, one can choose a Z-basis (b;)i<i<n of the lattice. Then an element
of x € L will be considered as a (column) vector X giving the (integral)
coordinates of x on the basis. The quadratic form q is then represented by the
positive definite symmetric matrix @ as we have seen above.

Changing the Z-basis amounts to replacing X by PX for some P €
GL,(Z), hence ¢(z) = (PX)!Q(PX) = X!'Q'X with Q' = P'*QP. Hence,
equivalence classes of lattices correspond to equivalence classes of positive
definite symmetric matrices under the equivalence relation Q' ~ Q if and only
if there exists P € GL,(Z) such that Q' = P!QP. Note that det(P) = %1,
hence the determinant of @ is independent of the choice of the basis. Since Q
is positive definite, det(Q) > 0 and we will set d(L) = det(Q)*/? and call it
the determinant of the lattice.

A second way to represent a lattice (L,q) is to consider L as a discrete
subgroup of rank n of the Euclidean vector space E = L®R. Then if (b;)1<i<n
is a Z-basis of L, it is also by definition of the tensor product an R-basis of E.
The matrix of scalar products Q = (b; - b;)1<i j<n (where b; - b; = b(b;, b;))
is then called the Gram matriz of the b;. If we choose some orthonormal basis
of E, we can then identify E with the Euclidean space R™ with the usual
Euclidean structure coming from the quadratic form g(x) = 2% + - -- + z2.

If B is the n x n matrix whose columns give the coordinates of the b; on
the chosen orthonormal basis of E, it is clear that Q = B!B. In particular,
d(L) = | det(B)|. Furthermore, if another choice of orthonormal basis is made,
the new matrix B’ will be of the form B’ = KB where K is an orthogonal

2.5 Generalities on Lattices 81

matriz, i.e. a matrix such that KK = KK*! = I,,. Thus we have proved the
following proposition.

Proposition 2.5.3.

(1) IfQ is the matriz of a positive definite quadratic form, then Q is the Gram
matriz of some lattice basis, i.e. there exists a matric B € GL,(R) such
that Q = B'B

(2) The Gram matriz of a lattice basis b; determines this basis uniquely up to
isometry. In other words, if the b; and the b] have the same Gram matriz,
then the b] can be obtained from the b; by an orthogonal transformation.
In matriz terms, B’ = KB where K is an orthogonal matriz.

It is not difficult to give a completely matrix-theoretic proof of this propo-
sition (see Exercise 20).

It follows from the above results that when dealing with lattices, it is not
necessary to give the coordinates of the b; on some orthonormal basis. We
can simply give a positive definite matrix which we can then think of as being
the Gram matrix of the b;.

We see from the above discussion that there are natural bijections between
the following three sets.

{Isomorphism classes of lattices of rank n},

{Classes of positive definite symmetric matrices Q}/~ ,

where Q' ~ Q if and only if Q' = P!*QP for some P&€ GL,(Z), and
GLH(R)/ ~

where B’ ~ B if and only if B’ = KBP for some P € GL,(Z) and some
orthogonal matrix K.

Remarks.

(1) We have considered L in particular as a free discrete sub-Z-module of the
n-dimensional Euclidean space L ® R. In many situations, it is desirable
to consider L as a free discrete sub-Z-module of some Euclidean space F
of dimension m larger than n. The matrix B of coordinates of a basis of
L on some orthonormal basis of E will then be an m x n matrix, but the
Gram matrix Q = B*B will still be an n x n symmetric matrix.

(2) By abuse of language, we will frequently say that a free Z-module of finite
rank is a lattice even if there is no implicit quadratic form.

82 2 Algorithms for Linear Algebra and Lattices

2.5.2 The Gram-Schmidt Orthogonalization Procedure

The existence of an orthonormal basis in a Euclidean vector space is often
proved by using Gram-Schmidt orthonormalization (see any standard text-
book). Doing this requires taking square roots, since the final vectors must be
of length equal to 1.

For our purposes, we will need only an orthogonal basis, i.e. a set of mu-
tually orthogonal vectors which are not necessarily of length 1. The same
procedure works, except we do not normalize the length, and we will also call
this the Gram-Schmidt orthogonalization procedure. It is summarized in the
following proposition.

Proposition 2.5.4 (Gram-Schmidt). Let b; be a basis of a Fuclidean vector
space E. Define by induction:

b;‘:bi—z.ui,jb; (I<i<n),

where
pij=b;-b}/bi-bl (1<j<i<n),

then the b} form an orthogonal (but not necessarily orthonormal) basis of
E, b} is the projection of b; on the orthogonal complement of Z' L Rb;

Z' ! 1 Rb}, and the matriz M whose columns gives the coordinates of the bf
mn tems of the b; is an upper triangular matriz with diagonal terms equal to
1. In particular, if d(L) is the determinant of the lattice L, we have d(L)? =
[Ti<icn B3I

The proof is trivial using induction. a
We will now give a number of corollaries of this construction.

Corollary 2.5.5 (Hadamard’s Inequality). Let (L,q) be a lattice of deter-
minant d(L), (bi)i<i<n @ Z-basis of L, and for x € L write |x| for q(x)1/2.
Then

n
d(L) <] bil.
i=1
Equivalently, if B is an n X n matriz then
1/2

ldet(B)| < [T | D Ibasl?

1<i<n \1<j<n

Proof. If we set B; = |b}|2, the orthogonality of the b} implies that

2.5 Generalities on Lattices 83

a(bi) = bi* =B+ 3 u2;B;
1<j<i

hence d(L)2 = HlSiSn Bi S HISiSTl lbilz- o

Corollary 2.5.6. Let B be an invertible matriz with coefficients in R. Then
there exist unique matrices K, A and N such that:

(1) B=KAN.

(2) K is an orthogonal matriz, in other words Kt = K~1.

(3) A is a diagonal matriz with positive diagonal coefficients.

(4) N is an upper triangular matriz with diagonal terms equal to 1.

Note that this Corollary is sometimes called the Iwasawa decomposition
of B since it is in fact true in a much more general setting than that of the
group GL,(R).

Proof. Let B’ be the matrix obtained by applying the Gram-Schmidt process
to the vectors whose coordinates are the columns of B on the standard basis
of R™. Then, by the proposition we have B’ = BN where N is an upper
triangular matrix with diagonal terms equal to 1. Now the Gram-Schmidt
process gives an orthogonal basis, in other words the Gram matrix of the b}
is a diagonal matrix D with positive entries. Let A be the diagonal matrix
obtained from D by taking the positive square root of each coefficient (we will
call A the square root of D). Then the equality B'*B’ = D is equivalent to
B’ = K A for an orthogonal matrix K, hence BN = K A which is equivalent
to the existence statement of the corollary.

The uniqueness statement also follows since the equality B’ = BN =
K A means that the b} form an orthogonal basis which can be expressed on
the b; via an upper triangular matrix with diagonal terms equal to 1, and
the procedure for obtaining this basis (i.e. the Gram-Schmidt coefficients) is
clearly unique. a

Remarks.

(1) The requirement that the diagonal coefficients of A be positive is not
essential, and is given only to insure uniqueness.

(2) By considering the inverse matrix and/or the transpose matrix of B, one
has the same result with N lower triangular, or with B = NAK instead
of KAN.

(3) T = AN is an upper triangular matrix with positive diagonal coefficients,
and clearly any such upper triangular matrix T can be written uniquely

in the form AN where A and N are as in the corollary. Hence we can use
interchangeably both notations.

84 2 Algorithms for Linear Algebra and Lattices

Another result is as follows.

Proposition 2.5.7. If Q is the matriz of a positive definite quadratic form,
then there ezists a unique upper triangular matriz T with positive diagonal
coefficients such that Q@ = T*T (or equivalently Q = N!DN where N is an
upper triangular matriz with diagonal terms equal to 1 and D is a diagonal
matriz with positive diagonal coefficients).

Proof. By Proposition 2.5.3, we know that there exists B € GL,(R) such that
Q = B!B. On the other hand, by the Iwasawa decomposition we know that
there exists matrices K and T such that B = KT with K orthogonal and T
upper triangular with positive diagonal coefficients (T' = AN in the notation
of Proposition 2.5.6). Hence Q = B*B = T*T thus showing the existence of
T.

For the uniqueness, note that if T*T = T"*T’ with T and T" upper trian-
gular, then

Tlt_th — TIT—I

where taking inverses is justified since @ is a positive definite matrix. But
the left hand side of this equality is a lower triangular matrix, while the right
hand side is an upper triangular one, hence both sides must be equal to some
diagonal matrix D, and plugging back in the initial equality and using again
the invertibility of T', we obtain that D? is equal to the identity matrix. Now
since the diagonal coefficients of D = TT~1 must be positive, we deduce that
D itself is equal to the identity matrix, thus proving the proposition. a

We will give later an algorithm to find the matrix T' (Algorithm 2.7.6).

2.6 Lattice Reduction Algorithms

2.6.1 The LLL Algorithm

Among all the Z bases of a lattice L, some are better than others. The ones
whose elements are the shortest (for the corresponding norm associated to
the quadratic form ¢) are called reduced. Since the bases all have the same
determinant, to be reduced implies also that a basis is not too far from being
orthogonal.

The notion of reduced basis is quite old, and in fact in some sense one
can even define an optimal notion of reduced basis. The problem with this
is that no really satisfactory algorithm is known to find such a basis in a
reasonable time, except in dimension 2 (Algorithm 1.3.14), and quite recently
in dimension 3 from the work of B. Vallée [Val].

A real breakthrough came in 1982 when A. K. Lenstra, H. W. Lenstra and
L. Lovész succeeded in giving a new notion of reduction (what is now called

2.6 Lattice Reduction Algorithms 85

LLL-reduction) and simultaneously a reduction algorithm which is determin-
istic and polynomial time (see [LLL]). This has proved invaluable.

The LLL notion of reduction is as follows. Let by,b,, ... ,b, be a basis of L.
Using the Gram-Schmidt orthogonalization process, we can find an orthogonal
(not orthonormal) basis b}, b3, ... ,b* as explained in Proposition 2.5.4.

Definition 2.6.1. With the above notations, the basis by, ba, ..., b, is called
LLL-reduced if

for1<j<i<n

N =

lpi 5] <
and

* * 3 * .
b + pii—1bi_g|* > Zlbi—1|2 for1<i<n,

or equivalently

* 3 *
|b; |2 2 (Z - l"z?,i—l) |bi—1|2'

Note that the vectors b} + u;;_1b}_; and b}_; are the projections of b,

and b;_1 on the orthogonal complement of Z;:‘; Rb;.
Then we have the following theorem:

Theorem 2.6.2. Let by, bg,...,b, be an LLL-reduced basis of a lattice L.
Then

(L
d(L) <[] Ibil < 2-D/44(L),
i=1
©) |
bl <20-D2by|, f1<j<i<n,
(3)

|b1| < 2(n_1)/4d(L)1/n,

(4) For every x € L with x # 0 we have
b < 2=/ x|,

(5) More generally, for any linearly independent vectors xi,...,%X;: € L we
have

Ibj] < 2"V 2 max(|x1|,...,|xe]) for1<j<t.

86 2 Algorithms for Linear Algebra and Lattices

We see that the vector b; in a reduced basis is, in a very precise sense, not
too far from being the shortest non-zero vector of L. In fact, it often is the
shortest, and when it is not, one can, most of the time, work with b; instead
of the actual shortest vector.

Notation. In the rest of this chapter, we will use the notation x - y instead
of b(x,y) where b is the bilinear form associated to g, and write x? instead of

x - x = q(x).

Proof. As in Corollary 2.5.5, we set B; = |b}|2. The first inequality of (1)
is Corollary 2.5.5, Since the b; are LLL-reduced, we have B; > (3/4 —
H?,iﬂl)Bi—l > B;_1/2 since |p;;i—1] < 1/2. By induction, this shows that
Bj < 2¢79B; for i > j, hence

bzﬁ‘lj
¢ 2

IA

Biy

and this trivially implies Theorem 2.6.2 (1), in fact with a slightly better
exponent of 2. Combining the two inequalities which we just obtained, we
get for all j <4, b? < (2¢=2 4 2¢=9~1)B; which implies (2). If we set j = 1
in (2) and take the product of (2) for i = 1 to ¢ = n, we obtain (b?)" <
2n(n=D/217, ... B; = 2™»=1D/24(L)2, proving (3). For (4), there exists an i
such that x —21<J<z Tibj = 3 1<j<i8ib; and r; # 0, where r; € Z and
s; € R. It is clear from the deﬁmtlon of the b* that r; = s;, hence

]x|2 > S.%B,; = T?B,; > B,;

since 7; is a non-zero integer, and since by (2) we know that B; > 2!7¢b;|? >
21-"|by|?, (4) is proved. (5) is proved by a generalization of the present argu-
ment and is left to the reader. O

Remark. Although we have lost a little in the exponent of 2 in Theorem 2.6.2
(1), the proof shows that even using the optimal value given in our proof would
not improve the estimate in (4). On the other hand, we have not completely
used the full LLL—reduction inequalities. In particular, the inequalities on the
pi,; can be weakened to u?; < 1/2 for all j < i —1 and |p;i—1| < 1/2. This

can be used to speed up the reduction algorithm which follows.

As has already been mentioned, what makes all these notions and theorems
so valuable is that there is a very simple and efficient algorithm to find a
reduced basis in a lattice. We now describe this algorithm in its simplest form.
The idea is as follows. Assume that the vectors by, ... ,bx_; are already LLL-
reduced (i.e. form an LLL-reduced basis of the lattice they generate). This
will be initially the case for k = 2. The vector by first needs to be reduced
so that |uk j| < 1/2 for all j < k (some authors call this size reduction). This
is done by replacing by by by — 3. i<k @jb; for some a; € Z in the following
way. Assume that |u ;| < 1/2 for I < j < k (initially with [= k). Then, if

2.6 Lattice Reduction Algorithms 87

q = |pk,] is the nearest integer to uy;, and, if we replace by by by — gby,
then p ; is not modified for j > | (smce b? is orthogonal to b; for | < j), and
i, is replaced by px; — g (since by - b} = b, b}) and |px,: — ¢| < 1/2 hence
the modified px ; satisfy |ux ;| <1/2forl—1<j <k.

Now that size reduction is done for the vector bk, we also need to satisfy
the so-called Lovdsz condition, i.e. By > (3/4 — i ,_;)Bg-1. If this condition
is satisfied, we increase k by 1 and start on the next vector by (if there is
one). If it is not satisfied, we exchange the vectors by and bi_;, but then we
must decrease k by 1 since we only know that by, ... ,bg_2 is LLL-reduced.
A priori it is not clear that this succession of increments and decrements of k
will ever terminate, but we will prove that this is indeed the case (and that
the number of steps is not large) after giving the algorithm.

We could compute all the Gram-Schmidt coefficients ux,; and By at the
beginning of the algorithm, and then update them during the algorithm. After
each exchange step however, the coefficients y; x and p; x—1 for i > k must be
updated, and this is usually a waste of time since they will probably change
before they are used. Hence, it is a better idea to compute the Gram-Schmidt
coefficients as needed, keeping in a variable ky,x the maximal value of k that
has been attained.

Another improvement on the basic idea is to reduce only the coefficient
ti,k—1 and not all the py,; for | < k during size-reduction, since this is the
only coefficient which must be less than 1/2 in absolute value before testing
the Lovész condition. All this leads to the following algorithm.

Algorithm 2.6.3 (LLL Algorithm). Given a basis by, by, ... , b, of a lattice
(L,q) (either by coordinates on the canonical basis of R™ for some m > n or
by its Gram matrix), this algorithm transforms the vectors b; so that when the
algorithm terminates, the b; form an LLL-reduced basis. In addition, the algorithm
outputs a matrix H giving the coordinates of the LLL-reduced basis in terms of

the initial basis. As usual we will denote by H; the columns of H.

1. [Initialize] Set k « 2, kmax < 1, b} < by, By < by -by and H « I,.

2. [Incremental Gram-Schmidt] If k < kpax go to step 3. Otherwise, set kmax —
k, bg « by, then for j =1,...,k—1 set yy ; — by -b}/B; and by « b} —
k,;bj. Finally, set By < b} - b} (see Remark (2) below for the corresponding
step if only the Gram matrix of the b; is given). If By = 0 output an error
message saying that the b; did not form a basis and terminate the algorithm.

3. [Test LLL cond|t|on] Execute Sub-algorithm RED(k,k — 1) below. If By <
(0.75 — puf x_1)Bk—1, execute Sub-algorithm SWAP(k) below, set k «
max(2,k — 1) and go to step 3. Otherwise, for [= k — 2,k — 3,...,1 ex-
ecute Sub-algorithm RED(k,l), then set k «— k + 1.

4. [Finished?] If k < n, then go to step 2. Otherwise, output the LLL reduced
basis by, the transformation matrix H € GL,(Z) and terminate the algorithm.

Sub-algorithm RED(k,[). If |ux;| < 0.5 terminate the sub-algorithm. Oth-
erwise, let ¢ be the integer nearest to py , i.e.

88 2 Algorithms for Linear Algebra and Lattices

g |pri] = 0.5+ pk -

Set by « by — by, Hy «— Hy — qH;, pxy — prg — ¢, for all 4 such that
1 <4<l —1, set g «— prs — quu,; and terminate the sub-algorithm.

Sub-algorithm SWAP(k). Exchange the vectors by and by, Hi and Hy_1,
and if k > 2, for all j such that 1 < j < k — 2 exchange pk,; with pg_1,;. Then
set (in this order) pu « prk—1, B — By + p?Bi_1, pkr-1 — uBr—_1/B,
b « bj_,, bi_; < b} + ub, b; — ~ g k-1bf + (Bk/B)b, By «— By_1Bx/B
and By_1 « B. Finally, fori = k+1,k+2,..., knax set (in this order) t « p;,
Wik < Mik—1 — Mt, Pik—1 <t + pgr—1pik and terminate the sub-algorithm.

Proof. 1t is easy to show that at the beginning of step 4, the LLL conditions
of Definition 2.6.1 are valid for ¢ < k — 1. Hence, if k > n, we have indeed
obtained an LLL-reduced family, and since it is clear that the operations which
are performed on the b; are of determinant 41, this family is a basis of L,
hence the output of the algorithm is correct. What we must show is that the
algorithm does in fact terminate.

Ifwesetfor0<i<n

d; = detr((br : bs)lgr,sgi)y

we easily check that

d= [[B

1<5<i

where as usual B; = |b}|2, and in particular d; > 0, and it is clear from this
that do = 1 and d,, = d(L)2. Set

D=] d.

1<i<n—1

This can change only if some B; changes, and this can occur only in Sub-
algorithm SWAP. In that sub-algorithm the d; are unchanged for i < k — 1
and for 7 > k, and by the condition of step 3, dx—; is multiplied by a factor at
most equal to 3/4. Hence D is also reduced by a factor at most equal to 3/4.
Let L; be the lattice of dimension i generated by the b, for j < 4, and let s; be
the smallest non-zero value of the quadratic form q in L;. Using Proposition
6.4.1 which we will give in Chapter 6, we obtain

di > siy;7t > sty

and since s, is the smallest non-zero value of ¢(z) on L, this last expression
depends only on i but not on the b;. It follows that d; is bounded from
below by a positive constant depending only on ¢ and L. Hence D is bounded
from below by a positive constant depending only on L, and this shows that
the number of times that Sub-algorithm SWAP is executed must be finite.

2.6 Lattice Reduction Algorithms 89

Since this is the only place where k can decrease (after execution of the sub-
algorithm) the algorithm must terminate, and this finishes the proof of its
validity. O

A more careful analysis shows that the running time of the LLL algorithm
is at most O(n®In®B), if |b;|2 < B for all 4. In practice however, this upper
bound is quite pessimistic.

Remarks.

(1) If the matrix transformation H is not desired, one can suppress from the
algorithm all the statements concerning it, since it does not play any real
role.

(2) On the other hand if the b; are given only by their Gram matrix, the b;
and b} exist only abstractly. Hence, the only output of the algorithm is
the matrix H, and the updating of the vectors b; done in Sub-algorithms
RED and SWAP must be done directly on the Gram matrix.

In particular, step 2 must then be replaced as follows (see Exercise
21).

2. [Incremental Gram-Schmidt] If k& < Kmax go to step 3. Otherwise, set
kmax < k thenfor j =1,... k—1setag; < bg-b; —Zf;ll Mj,i@k,; and
Pk,j < ak,;/Bj, then set By « by -by ——}:f;ll Pk iak,:. If B = 0 output
an error message saying that the b; did not form a basis and terminate
the algorithm.

The auxiliary array ay, ; is used to minimize the number of operations,
otherwise we could of course write the formulas directly with pg ;.

Asymptotically, this requires n®/6 multiplications/divisions, and this
is much faster than the n2m/2 required by Gram-Schmidt when only the
coordinates of the b; are known. Since the computation of the Gram ma-
trix from the coordinates of the b; also requires asymptotically n?m/2
multiplications, one should use directly the formulas of Algorithm 2.6.3
when the Gram matrix is not given.

(3) The constant 0.75 in step 3 of the algorithm can be replaced by any con-
stant c such that 1/4 < ¢ < 1. Of course, this changes the estimates given
by Theorem 2.6.2. (In the results and proof of the theorem, replace 2 by
a = 1/(c—1/4), and use the weaker inequality uﬁ,l < (e —1)/a).) The
speed of the algorithm and the “quality” of the final basis which one ob-
tains, are relatively insensitive to the value of the constant. In practice,
one should perhaps use ¢ = 0.99. The ideal value would be ¢ = 1, but in
this case one does not know whether the LLL algorithm runs in polynomial
time, although in practice this seems to be the case.

(4) Another possibility, suggested by LaMacchia in [LaM] is to vary the con-
stant c in the course of the algorithm, starting the reduction with a con-
stant c slightly larger than 1/4 (so that the reduction is as fast as possible),
and increasing it so as to reach ¢ = 0.99 at the end of the reduction, so

90

2 Algorithms for Linear Algebra and Lattices

that the quality of the reduced basis is a good as possible. We refer to
[LaM] for details.

We can also replace the LLL condition By > (3/4 — uf ,_;)Bk-1 by the
so-called Siegel condition By > By_1/2. Indeed, since |pg k—1] < 1/2, the
LLL condition with the constant ¢ = 3/4 implies the Siegel condition, and
conversely the Siegel condition implies the LLL condition for the constant
¢ = 1/2. In that case the preliminary reduction RED(k, k — 1) should be
performed after the test, together with the other RED(k,).

If the Gram matrix does not necessarily have rational coeflicients, the u; ;
and B; must be represented approximately using floating point arithmetic.
Even if the Gram matrix is rational or even integral, it is often worthwhile
to work using floating point arithmetic. The main problem with this ap-
proach is that roundoff errors may prevent the final basis from being LLL
reduced. In many cases, this is not really important since the basis is not
far from being LLL reduced. It may happen however that the roundoff
errors cause catastrophic divergence from the LLL algorithm, and conse-
quently give a basis which is very far from being reduced in any sense.
Hence we must be careful. Let r be the number of relative precision bits.

First, during step 2 it is possible to replace the computation of the
products b; - b; by floating point approximations (of course only in the
case where the b; are given by coordinates, otherwise there is nothing to
compute). This should not be done if b; and b; are nearly orthogonal,
ie. if b;-b;/|b;||bj| is smaller than 277/2 say. In that case, b; - b; should
be computed as exactly as possible using the given data.

Second, at the beginning of Sub-algorithm RED, the nearest integer
q to pk, is computed. If ¢ is too large, say ¢ > 272, then ey — q will
have a small relative precision and the values of the uj; will soon become
incorrect. In that case, we should recompute the pk, pk-1,1, Brk—1 and
By, directly from the Gram-Schmidt formulas, set k « max(k —1,2) and
start again at step 3.

These modifications (and many more) are explained in a rigorous the-

oretical setting in [Schn], and for practical uses in [Schn-Euch] to which
we refer.
The algorithm assumes that the b; are linearly independent. If they are
not, we will get an error message in the Gram-Schmidt stage of the al-
gorithm. It is possible to modify the algorithm so that it will not only
work in this case, but in fact output a true basis and a set of linearly
independent relations for the initial set of vectors (see Algorithm 2.6.8).

2.6.2 The LLL Algorithm with Deep Insertions

A modification of the LLL algorithm due to Schnorr and Euchner ([Schn-
Euc]) is the following. It may be argued that the Lovdsz condition Bj >
(0.75 — pZ . _1)Bi—1 (in addition to the requirement ux,; < 1/2) should be

2.6 Lattice Reduction Algorithms 91

strengthened, taking into account the earlier Bj;. If this is done rashly how-
ever, it leads to a non-polynomial time algorithm, both in theory and in prac-
tice. This is, of course, one of the reasons for the choice of a weaker con-
dition. Schnorr and Euchner (loc. cit.) have observed however that one can
strengthen the above condition without losing much on the practical speed of
the algorithm, although in the worst case the resulting algorithm is no longer
polynomial time. They report that in many cases, this leads to considerably
shorter lattice vectors than the basic LLL algorithm.

The idea is as follows. If by is inserted between b;_; and b; for some
i < k, then (Exercise 22) the new B; will become

be-be— > ulBj=Bc+ Y. ui;B;.

1<5<i i<j<k

If this is significantly smaller than the old B; (say at most %Bi as in our initial
version of LLL), then it is reasonable to do this insertion. Note that the case
i = k — 1 of this test is exactly the original LLL condition. For these tests
to make sense, Algorithm RED(k,!) must be executed before the test for all
I < k and not only for | = k — 1 as in Algorithm 2.6.3.

Inserting by just after b;—; for some i < k will be called a deep insertion.
After such an insertion, k¥ must be set back to max(i — 1,2), and the pu;;
and B; must be updated. When ¢ < k — 1 however, the formulas become
complicated and it is probably best to recompute the new Gram-Schmidt
coefficients instead of updating them. One consequence of this is that we do
not need to keep track of the largest value kpax that k£ has attained.

This leads to the following algorithm, due in essence to Schnorr and Eu-
chner ([Schn-Euc]).

Algorithm 2.6.4 (LLL Algorithm with Deep Insertions). Given a basis by,
by, ..., b, of a lattice (L, q) (either by coordinates in the canonical basis of R™
for some m > n or by its Gram matrix), this algorithm transforms the vectors
b; so that when the algorithm terminates, the b; form an LLL-reduced basis. In
addition, the algorithm outputs a matrix H giving the coordinates of the LLL-
reduced basis in terms of the initial basis. As usual we will denote by H; the
columns H.

1. [Initialize] Set k « 1 and H « I,,.

2. [Incremental Gram-Schmidt] Set b} « by, then for j = 1,...,k — 1 set
Bk j — by b} /Bj and b « b — py ;b3. Then set By « by -bi. If By =0
output an error message saying that the b; did not form a basis and terminate
the algorithm. Finally, if k = 1, set k «— 2 and go to step 5.

3. [Initialize test] For [= k — 1,k — 2,...,1 execute Sub-algorithm RED(k,)
above. Set B« b -b, and ¢ — 1.

4. [Deep LLL test] If i = k, set k «— k + 1 and go to step 5. Otherwise, do
as follows. If 3B; < B set B « B — pZ ;Bi, i — i+ 1 and go to step 4.

92 2 Algorithms for Linear Algebra and Lattices

Otherwise, execute Algorithm INSERT(k, 1) below. If i > 2 set k «— i — 1,

B «—bg-bg, i 1and gotostep4. Ifi =1, set k — 1 and go to step 2.
5. [Finished?] If kK < n, then go to step 2. Otherwise, output the LLL reduced

basis b;, the transformation matrix H € GL,(Z) and terminate the algorithm.

Sub-algorithm INSERT(k,7). Setb « by, V « Hy, forj =k, k—1,...,i+
lsetb; < bj_; and H; « H;_1, and finally set b; < b and H; < V. Terminate
the sub-algorithm.

2.6.3 The Integral LLL Algorithm

If the Gram matrix of the b; has integral coefficients, the y; ; and the By will
be rational and it may be tempting to do all the computation with rational
numbers. Unfortunately, the repeated GCD computations necessary for per-
forming rational arithmetic during the algorithm slows it down considerably.
There are essentially two ways to overcome this problem. The first is to do
only approximate computations of the y; ; and the B; as mentioned above.
The second is as follows. In the proof of Algorithm 2.6.3 we have introduced
quantities d; which are clearly integral in our case, since they are equal to sub-
determinants of our Gram matrix. We have the following integrality results.

Proposition 2.6.5. Assume that the Gram matriz (b; - b;) is integral, and
set

d; = det((by - bs)rcrsci) =] Bj-
1<5<1

Then for all i and for all j < i
1)

di_1B; € Z and dj,ui,j €Z.
(2) for all m such that j <m <1

dj Y pikkmiBr € Z.
1<k<j

Proof. We have seen above that d; = [],,; Bx hence d;_1B; = d; € Z. For
the second statement of (1), let j < 7 and consider the vector

v=Db;— z Wi kby = bl + Z pikbg -
1<k<j j<k<i

From the second expression it is clear that b} - v = 0 for all k£ such that
1 <k £ j, or equivalently since the R-span of the by (1 < k < j) is equal to
the R-span of the by,

2.6 Lattice Reduction Algorithms 93

br-v=0 for 1<k<j.

For the same reason, we can write

v=>b;— Z zibg

1<k<j
for some z € R. Then the above equations can be written in matrix form

bl'bl bl'bj X1 bi‘bl

bj'bl bj-bj Z; bi'bj

In particular, since the determinant of the matrix is equal by definition to
d;, by inverting the matrix we see that the zy are of the form my/d; for
some my, € Z (since the Gram matrix is integral). Furthermore, the equality
21<k<j TkPE = 201k Hikbf shows by projection on b} that z; = pi;,
thus proving (1).

For (2) we note that by what we have proved, d;v is an integral linear
combination of the by (in other words it belongs to the lattice), hence in
particular d;v - b, € Z for all m such that 1 < m < n. Since v = b; —
leksj' i kbj, we obtain (2). O

Corollary 2.6.6. With the same hypotheses and notations as the proposition,
set A;j = djpi; for j <i (so Njj € Z) and \;; = d;. Then for j < i fized, if
we define the sequence ux by up =b;-b; and for 1 <k <j

_drug—1— AikAjk
d-1 '

then ux € Z and uj_y = Ay ;.

Proof. Tt is easy to check by induction on k that

Yy
Uk = dk bi . b] Z dzd J = dk bi . b] - Z ui,l/‘l‘j,lBl
1<i<g M1 1<i<k

and the proposition shows that this last expression is integral. We also have
uj—1 = Bjdj_1p;; = djp; j = X ; thus proving the corollary. o

Using these results, it is easy to modify Algorithm 2.6.3 so as to work
entirely with integers. This leads to the following algorithm, where it is as-
sumed that the basis is given by its Gram-Schmidt matrix. (Hence, if the basis
is given in terms of coordinates, compute first the Gram-Schmidt matrix be-
fore applying the algorithm, or modify appropriately the formulas of step 1.)
Essentially the same algorithm is given in [de Weg].

94 2 Algorithms for Linear Algebra and Lattices

Algorithm 2.6.7 (Integral LLL Algorithm). Given a basis by, ba, ..., by of
a lattice (L, g) by its Gram matrix which is assumed to have integral coefficients,
this algorithm transforms the vectors b; so that when the algorithm terminates,
the b; form an LLL-reduced basis. The algorithm outputs a matrix H giving the
coordinates of the LLL-reduced basis in terms of the initial basis. We will denote
by H; the column vectors of H. All computations are done using integers only.

1. [Initialize] Set k «— 2, kmax < 1, do < 1, dy < by - by and H < I,,.

2. [Incremental Gram-Schmidt] If k < kpay go to step 3. Otherwise, set kmax — k
and for j=1,...,k (in that order) do as follows: set u « by - b; and for
1=1,...,7—1 set

diu - /\k,i)\j,i
- ALY 113
di—1

(the result is in Z), then if j <k set A\g; —u and if j=k set dy « u.
If dx =0, the b; did not form a basis, hence output an error message and
terminate the algorithm (but see also Algorithm 2.6.8).

3. [Test LLL condition] Execute Sub-algorithm REDI(k, k—1) below. If dxdk—2 <
3d%_, — X x_1. execute algorithm SWAPI(k) below, set k « max(2,k — 1)
and go to step 3. Otherwise, for | = k —2,k —3,...,1 execute Sub-algorithm
REDI(k,1), then set k «— k + 1.

4. [Finished?] If £ < n go to step 2. Otherwise, output the transformation matrix
H € GL,(Z) and terminate the algorithm.

Sub-algorithm REDI(k,1). If |2Ag;| < d; terminate the sub-algorithm. Oth-
erwise, let g be the integer nearest to Ay ;/d;, i.e. the quotient of the Euclidean
division of 2)\k,l+dl by 2d;. Set Hy, «— Hy—qH;, by, — by—qb;, Akl —)\k,l_qdl:
for all 4 such that 1 <@ <1 —1 set A\x; « Ak, — g)A;,; and terminate the sub-
algorithm.

Sub-algorithm SWAPI(k). Exchange the vectors Hy and Hi_1, exchange
by and bg_q, and if & > 2, for all j such that 1 < j < k — 2 exchange Ag,;
with)\k—l,j- Then set A « /\k,k—lr B — (dk_gdk +)\2)/dk_1, then for i =
k+1,k +2,...kmax set (in this order) t «— Ajk, Ak — (dkAik—1 — At)/dr—1
and A k-1 — (Bt + A\ k)/dk. Finally, set dy_; <« B and terminate the sub-
algorithm.

It is an easy exercise (Exercise 24) to check that these formulas correspond
exactly to the formulas of Algorithm 2.6.3.

Remark. In step 3, the fundamental LLL comparison dxdig—2 < %dz_l —
A% x_1 involves the non-integral number 2 (it could also be 0.99). This is not
really a problem since this comparison can be done any way one likes (by

multiplying by 4, or using floating point arithmetic), since a roundoff error at
that point is totally unimportant.

2.6 Lattice Reduction Algorithms 95

2.6.4 LLL Algorithms for Linearly Dependent Vectors

As has been said above, the LLL algorithm cannot be applied directly to a
system of linearly dependent vectors b;. It can however be modified so as to
work in this case, and to output a basis and a system of relations. The problem
is that in the Gram-Schmidt orthogonalization procedure we will have at some
point B; = b} - bj = 0. This means of course that b; is equal to a linear
combination of the b; for j < 4. Since Gram-Schmidt performs projections
of the successive vectors on the subspace generated by the preceding ones,
this means that we can forget the index i in the rest of the orthogonalization
(although not the vector b; itself). This leads to the following algorithm which
is very close to Algorithm 2.6.3 and whose proof is left to the reader.

Algorithm 2.6.8 (LLL Algorithm on Not Necessarily Independent Vectors).
Given n non-zero vectors by, by, ..., b, generating a lattice (L, q) (either by
coordinates or by their Gram matrix), this algorithm transforms the vectors b;
and computes the rank p of the lattice L so that when the algorithm terminates
b; =0for1 <i<n-—pandtheb; forn—p<i<nforman LLL-reduced
basis of L. In addition, the algorithm outputs a matrix H giving the coordinates
of the new b; in terms of the initial ones. In particular, the first n — p columns
H; of H will be a basis of relation vectors for the b;, i.e. of vectors r such that

EISiSn T‘ibi =0.
1. [Initialize] Set k « 2, kmax < 1, b} « by, B; « by by and H « I,,.

2. [Incremental Gram-Schmidt] If k& < kyax go to step 3. Otherwise, set kmax — k
and for j = 1,...,k — 1 set p; < bg-b¥/B; if B; # 0 and pg,; « 0 if
Bj =0, then set by « bk——Z?;ll Bk,jb} and By, — by by (use the formulas
given in Remark (2) above if the b; are given by their Gram matrix).

3. [Test LLL condition] Execute Sub-algorithm RED(k,k — 1) above. If By <
(0.75 — pf y_1)Bk-1. execute Sub-algorittm SWAPG(k) below, set k «—
max(2,k — 1) and go to step 3. Otherwise, for | = k -2,k —3,...,1 ex-
ecute Sub-algorithm RED(k,[), then set k «— k + 1.

4. [Finished?] If £ < n go to step 2. Otherwise, let 7 be the number of initial
vectors b; which are equal to zero, output p «— n — r, the vectors b; for
r 4+ 1 <4 < n (which form an LLL-reduced basis of L), the transformation
matrix H € GL,(Z) and terminate the algorithm.

Sub-algorithm SWAPG(k). Exchange the vectors by and by_j, Hi and
Hi_1, and if K > 2, for all j such that 1 < j < k — 2 exchange pk,; with
Mk—1,5. Then set p « pgx—1 and B « By 4 u?By_;. Now, in the case B =0
(i.e. By = p = 0), exchange By and Bj_i, exchange b} and b}_, and for
i=k+1,k+2,...knax exchange p; s and p; x—1.

In the case By = 0and pu # 0, set Bx_; « B, b}_; «— pubi_,, pkk—1 < 1/p
and fori =k + 1,k +2,...,kmax set pik_1 «— pik—1/p

Finally, in the case By # 0, set (in this order) t « Bi_1/B, pkk—1 «— Kt

96 2 Algorithms for Linear Algebra and Lattices

b « b;_;, b;_; « by + ub, by «— —pugr_1b; + (Bx/B)b, By < Bit,
Bi_1 « B, then for i = k+ 1,k 4+ 2,...,kmax set (in this order) t «— p;,
Mik < Mik—1 — 4t pik—1 <t + pg k—1Mi k- Terminate the sub-algorithm.

Note that in this sub-algorithm, in the case B = 0, we have By = 0 and
hence p; x = 0for ¢ > k, so the exchanges are equivalent to setting Bx < Bj_1,
By_1+—0andfori>k+1, p g — pig—1 and pix—1 < 0.

An important point must be made concerning this algorithm. Since several
steps of the algorithm test whether some quantity is equal to zero or not, it can
be applied only to vectors with exact (i.e. rational) entries. Indeed, for vectors
with non-exact entries, the notion of relation vector is itself not completely
precise since some degree of approximation must be given in advance. Thus
the reader is advised to use caution when using LLL algorithms for linearly
dependent vectors when they are non-exact. (For instance, we could replace a
test By = 0 by By < € for a suitable ¢.)

We must prove that this algorithm is valid. To show that it terminates, we
use a similar quantity to the one used in the proof of the validity of Algorithm
2.6.3. We set

de= [[B and D=] a& J[2~

i<k,B;#0 k<n,Bi#0 k<n,Bi=0

This quantity is modified only in Sub-algorithm SWAPG(k). If B = By +
u2Bk_1 # 0, then di_; is multiplied by a factor which is smaller than 3/4
and the others are unchanged, hence D decreases by a factor at least 3/4 as
in the usual LLL algorithm. If B = 0, then Bj_; becomes 0 and B becomes
equal to Bg_1, hence di_; becomes equal to di_z, di stays the same (since
By_1dk—2 = dg—1 = di, when By, = 0) as well as the others, so D is multiplied
by 2%~1/2% = 1/2 hence decreases multiplicatively again, thus showing that
the algorithm terminates since D is bounded from below.

When the algorithm terminates, we have for all 4, j and k the conditions
Br > (3/4 — pf y_1)Bk—1 and |p; ;| < 1/2. If p is the rank of the lattice L,
it follows that n — p of the B; must be equal to zero, and these inequalities
show that it must be the first n —p B;, since B; = 0 implies B; = 0 for j < .
Since the vector space generated by the b} for ¢ < n — p is the same as the
space generated by the b; for ¢ < n — p, it follows that b; =0 for i < n —p.
Since the b; form a generating set for L over Z throughout the algorithm,
the b; for i > n — p also generate L, hence they form a basis since there
are exactly p of them, and this basis is LLL reduced by construction. It also
follows from the vanishing of the b; for i < n — p that the first n — p columns
H; of H are relation vectors for our initial b;. Since H is an integer matrix
with determinant +1, it is an easy exercise to see that these columns form a
basis of the space of relation vectors for the initial b; (Exercise 25). O

This algorithm is essentially due to M. Pohst and called by him the MLLL
algorithm (for Modified LLL, see [Poh2]).

2.7 Applications of the LLL Algorithm 97

We leave as an excellent exercise for the reader to write an all-integer
version of Algorithm 2.6.8 when the Gram matrix is integral (see Exercise
26).

Summary. We have seen a number of modifications and variations on the
basic LLL Algorithm 2.6.3. Most of these can be combined. We summarize
them here.

(1) The Gram-Schmidt formulas of step 2 can be modified to use only the
Gram matrix of the b; (see Remark (2) after Algorithm 2.6.3).

(2) If the Gram-Schmidt matrix is integral, the computation can be done
entirely with integers (see Algorithm 2.6.7).

(3) If floating point computations are used, care must be taken during the
computation of the b; - b; and when the nearest integer to a p is com-
puted (see Remark (4) after Algorithm 2.6.3).

(4) If we want better quality vectors than those output by the LLL algorithm,
we can use deep insertion to improve the output (see Algorithm 2.6.4).

(5) If the vectors b; are not linearly independent, we must use Algorithm
2.6.8, combined if desired with any of the preceding variations.

2.7 Applications of the LLL Algorithm

2.7.1 Computing the Integer Kernel and Image of a Matrix

In Section 2.4.3 we have seen how to apply the Hermite normal form algorithms
to the computation of the image and kernel of an integer matrix A. It is clear
that this can also be done using the MLLL algorithm (in fact its integer
version, see Exercise 26). Indeed if we set b; to be the columns of A, the
vectors b; output by Algorithm 2.6.8 form an LLL-reduced basis of the image
of A and the relation vectors H; for i < r = n — p form a basis of the integer
kernel of A. If desired, the result given by Algorithm 2.6.8 can be improved
in two ways. First, the relation vectors H; for i < r are not LLL-reduced, so
it is useful to LLL-reduce them to obtain small relations. This means that we
will multiply the first r column of H on the right by an r x r invertible matrix
over Z, and this of course leaves H unimodular.

Second, although the basis b; for r < ¢ < n is already an LLL-reduced
basis for the image of A hence cannot be improved much, the last p columns of
H (which express the LLL-reduced b; in terms of the initial b;) can be large
and in many situations it is desirable to reduce their size. Here we must not
LLL-reduce these columns since the corresponding image vectors b; would not
be anymore LLL-reduced in general. (This is of course a special case of the
important but difficult problem of simultaneously reducing a lattice basis and

its dual, see [Sey2].) We still have some freedom however since we can replace
any column H; for i > r by

98 2 Algorithms for Linear Algebra and Lattices

Hi - ijHj

j<r

for any m; € Z since this will not change the b, and will preserve the relation
det(H) = £1. To choose the m; close to optimally we proceed as follows. Let
C be the Gram matrix of the vectors H; for j < r. Using Algorithm 2.2.1
compute X = (z1,...,z,)t solution to the linear system CX = V;, where V;
is the column vector whose j-th element is equal to H; - H; (here the scalar
product is the usual one). Then by elementary geometric arguments it is clear
that the vector .., z;H; is the projection of H; on the real vector space
generated by the H; for j < r, hence a close to optimal choice of the m; is
to choose m; = |z;]. Since we have several linear systems to solve using the
same matrix, it is preferable to invert the matrix using Algorithm 2.2.2 and
this gives the following algorithm.

Algorithm 2.7.1 (Kernel and Image of a Matrix Using LLL). Given an mxn
matrix A with integral entries, this algorithm computes an n x n matrix H and
a number p with the following properties. The matrix H has integral entries and
is of determinant equal to 1 (i.e. H € GL,(Z)). The first n — p columns of
H form an LLL-reduced basis of the integer kernel of A. The product of A with
the last p columns of H give an LLL-reduced basis of the image of A, and the
coefficients of these last p columns are small.

1. [Apply MLLL] Perform Algorithm 2.6.8 on the vectors b; equal to the columns
of A, the Euclidean scalar product being the usual scalar product on vectors.
We thus obtain p and a matrix H € GL,,(Z). Set r «—n — p.

2. [LLL-reduce the kernel] Using the integral LLL-Algorithm 2.6.7, replace the
first r vectors of H by an LLL-reduced basis of the lattice that they generate.

3. [Compute inverse of Gram matrix] Let C be the Gram matrix of the H; for
j<r(ie Cjx=H; Hgforl <jk<r), set D« C~! computed using
Algorithm 2.2.2, and set 7 « r.

4. [Finished?] Set ¢ «— i + 1. If i > n, output the matrix H and the number p
and terminate the algorithm.

5. [Modify H;] Let V' be the r-dimensional column vector whose j-th coordinate
is H; - H;. Set X « DV, and for j <r set m; « |z;], where z; is the j-th
component of X. Finally, set H; — H; — lejq m;H; and go to step 4.

A practical implementation of this algorithm should use only an all-integer
version of Algorithm 2.6.8 (see Exercise 26), and the other steps can be simi-
larly modified so that all the computations are done with integers only.

If only the integer kernel of A is wanted, we may replace the test By <
(0.75 — N%,k_l)Bk—1 by By = 0, which avoids most of the swaps and gives a
much faster algorithm. Since this algorithm is very useful, we give explicitly
the complete integer version.

2.7 Applications of the LLL Algorithm 99

Algorithm 2.7.2 (Kernel over Z Using LLL). Given an m X n matrix A with

integral entries, this algorithm finds an LLL-reduced Z-basis for the kernel of A.

We use an auxiliary n x n integral matrix H. We denote by H; the j-th column

of H and (to keep notations similar to the other LLL algorithms) by b; the j-th

column of A. All computations are done using integers only. We use an auxiliary

set of flags f1, ..., fa (which will be such that fi = 0 if and only if B, =0).

1. [Initialize] Set k < 2, kmax «— 1, dg — 1,t —b;-byand H «— I,. If t #0
set d; « t and f1 < 1, otherwise set d; « 1 and f; < 0.

2. [Incremental Gram-Schmidt] If & < kpax go to step 3. Otherwise, set kmax — k
and for j =1,...,k (in that order) do as follows. If f; = 0 and j < k, set

Ak,; < 0. Otherwise, set u «— by - b; and for each 1 =1,..., j —1 (in that
order) such that f; # 0 set

diu —_ /\k,i/\j,i
T A

(the result is in Z), then, if j < k set Ay ; « u and if j = k set dy «— u and
fk‘_l ifu;éO, dk<—dk_1 and fk<—-0ifu=0.

3. [Test f = 0and fx—1 # 0] If f—1 # 0, execute Sub-algorithm REDI(k, k—1)
above. If fr_1 # 0 and f = 0, execute Sub-algorithm SWAPK(k) below, set
k « max(2,k—1) and go to step 3. Otherwise, for each [= k—2, k—3,...,1
(in this order) such that f; # 0, execute Sub-algorithm REDI(k,) above, then
set k — k+1.

4. [Finished?] If k < n go to step 2. Otherwise, let r + 1 be the least index such
that f; # 0 (r = n if all f; are equal to 0). Using Algorithm 2.6.7, output an
LLL-reduced basis of the lattice generated by the linearly independent vectors
H,, ..., H, and terminate the algorithm.

Sub-algorithm SWAPK(k). Exchange the vectors Hy and Hy_1, and if k >
2, for all j such that 1 < j < k—2 exchange Ak ; with Ag_1 ;. Set A — Ag 1. If
A =0, set dx—1 « di_2, exchange fx_1 and fi (i.e. set fx—; < 0 and f — 1),
set)\k,k—l «— Oandfori=k+ 1,..., kmax set ’\i,k — /\i,k—l and)\i,k—l «— 0.

If XA #0 fori==Fk+1,... knax set Aik—1 < A\ k—1/dk—1, then set
t— di, dp_1 — /\2/dk_1, dp «— dg—1 then for j=k+1,...,knax — 1 and for
i=7+1,...,Kkmax Set Aij < A; jdk—1/t and finally for j = k+1,...,kmax set
d; « djdi_1/t. Terminate the sub-algorithm.

Remarks.

(1) Since f;=0 implies Mg ; =0, time can be saved in a few places by first
testing whether f; vanishes. The proof of the validity of this algorithm is
left as an exercise (Exercise 24).

(2) It is an easy exercise to show that in this algorithm

di = det ((b; - bj)1<i,j<k,B;B,#0)
and that d;u; ; € Z (see Exercise 29).

100 2 Algorithms for Linear Algebra and Lattices

(3) An annoying aspect of Algorithm SWAPK is that when A # 0, in addition
to the usual updating, we must also update the quantities d; and A; ; for
all 4 and j such that k+1 < j < ¢ < kpax. This comes from the single fact
that the new value of dj is different from the old one, and suggests that
a suitable modification of the definition of di can suppress this additional
updating. This is indeed the case (see Exercise 30). Unfortunately, with
this modification, it is the reduction algorithm REDI which needs much
additional updating. I do not see how to suppress the extra updating in
SWAPK and in REDI simultaneously.

2.7.2 Linear and Algebraic Dependence Using LLL

Now let us see how to apply the LLL algorithm to the problem of Z-linear
independence. Let z1, 22, ..., z, be n complex numbers, and the problem is
to find a Z-dependence relation between them, if one exists. Assume first that
the z; are real. For a large number N, consider the positive definite quadratic
form in the a;:

Q(a) =a§+a§+-~-+ai+N(zla1+z2a2+---+znan)2.

This form is represented as a sum of n squares of linearly independent linear
forms in the a;, hence defines a Euclidean scalar product on R”, as long as
z1 # 0, which we can of course assume. If N is large, a “short” vector of Z"
for this form will necessarily be such that |z1a; +- - - + 2,0,] is small, and also
the a; for i > 1 not too large. Hence, if the z; are really Z-linearly dependent,
by choosing a suitable constant N the dependence relation (which will make
z1a1 + -+ + 2n0Gn equal to 0 up to roundoff errors) will be discovered. The
choice of the constant N is subtle, and depends in part on what one knows
about the problem. If the |z;| are not too far from 1 (meaning between 106
and 10°, say), and are known with an absolute (or relative) precision €, then
one should take N between 1/e and 1/€2, but € should also be taken quite
small: if one expects the coefficients a; to be of the order of a, then one might
take € = a~1°", but in any case € < a~™.

Hence, we will start with the b; being the standard basis of Z", and use
LLL with the quadratic form above. One nice thing is that step 2 of the LLL
algorithm can be avoided completely. Indeed, one has the following lemma.

Lemma 2.7.3. With the above notations, if we erecute the complete Gram-

Schmidt orthogonalization procedure on the standard basis of Z™ and the
quadratic form

Q(a)=a§+a§+---+aﬁ+N(zla1+z2a2+-~~+znan)2

we have pii = zi/z1 for 2< i <n, p;; =042 <j<i<n b=
b; — (zi/z1)b1, B1 = N2%, and B, =1 for2<k<n.

2.7 Applications of the LLL Algorithm 101

The proof is trivial by induction.
It is easy to modify these ideas to obtain an algorithm which also works
for complex numbers z;. In this case, the quadratic form that we can take is

Q(a)=a§+"'+a$z+lela1+z2a2+"‘+znan|27

since the expression which multiplies N is now a sum of two squares of linear

forms, and these forms will be independent if and only if z;/22 is not real.

We can however always satisfy this condition by a suitable reordering: if there

exists ¢ and j such that z;/2z; ¢ R, then by applying a suitable permutation of

the z;, we may assume that z; /2, ¢ R. On the other hand, if z;/z; € R for all ¢

and 7, then we can apply the algorithm to the real numbers 1, 25/ z1, . . . , 20/ 21.
All this leads to the following algorithm.

Algorithm 2.7.4 (Linear Dependence). Given n complex numbers 2y, ... , 2,
(as approximations), a large number N chosen as explained above, this algorithm
finds Z-linear combinations of small modulus between the 2z;. We assume that
all the z; are non-zero, and that if one of the ratios 2;/2; is not real, the z; are
reordered so that the ratio 25/2; is not real.

1. [Initialize] Set b; « [0,...,1,...,0]%, i.e. as a column vector the i‘" element of
the standard basis of Z". Then, set p; ; « 0 forall i and j with3 < j <i < n,
By — |21|%, By « Im(212), By — 1 for 3 <k <n, wi,1 — Re(21%)/B; for
2<i1<n.

Now if By # 0 (i.e. if we are in the complex case), do the following: set
pi2 — Im(21%)/B, for 3 < i < n, By « N - BZ/Bj. Otherwise (in the real
case), set p; 2 — 0 for 3<i <n, By « 1.

2. [Execute LLL] Set By «— NBj, k < 2, kmax < n, H « I, and go to step 3
of the LLL Algorithm 2.6.3.

3. [Terminate] Output the coefficients b; as coefficients of linear combinations of
the z; with small modulus, the best one being probably b;.

Implementation advice. Algorithm 2.7.4 performs slightly better if z; is
the number with the largest modulus. Hence one should try to reorder the z;
so that this is the case. (Note that it may not be possible to do so, since if the
z; are not all real, one must have z3/2; non-real.)

Remarks.

(1) The reason why the first component plays a special role comes from the

choice of the quadratic form. To be more symmetrical, one could choose
instead

Q@) =a?+ad+ai+ - +a2 + N|ziay + 2202 + - - - + Znan)?

both in the real and complex case. The result would be more symmetrical
in the variables a;, but then we cannot avoid executing step 2 of the LLL

102 2 Algorithms for Linear Algebra and Lattices

algorithm, i.e. the Gram-Schmidt reduction procedure, which in practice
can take a non-negligible proportion of the running time. Hence the above
non-symmetric version (due to W. Neumann) is probably better.

(2) We can express the linear dependence algorithm in terms of matrices in-
stead of quadratic forms as follows (for simplicity we use the symmetrical
version and we assume the z; real). Set S = V/N. We must then find the
LLL reduction of the following (n + 1) x n matrix:

1 0o ... o0
0 . .
: 0
0 ... 0 1
Sz1 Sz ... Sz,

(3) We have not used at all the multiplicative structure of the field C. This
means that essentially the same algorithm can be used to find linear de-
pendencies between elements of a k-dimensional vector space over R for
any k. This essentially reduces to the MLLL algorithm, except that thanks
to the number N we can better handle imprecise vectors.

(4) A different method for finding linear dependence relations based on an
algorithm which is a little different from the LLL algorithm, is explained
and analyzed in detail in [HJLS]. It is not clear which should be preferred.

A special case of Algorithm 2.7.4 is when z; = a*~!, where a is a given
complex number. Then finding a Z-linear relation between the z; is equivalent
to finding a polynomial A € Z[X] such that A(a) = 0, i.e. an algebraic relation
for a. This is very useful in practice. (From the implementation advice given
above we should choose z; = a™~* instead if a >1.)

In this case however, some modifications may be useful. First note that
Lemma 2.7.3 stays essentially the same if we replace the quadratic form Q(a)
by

Q(a) = X2a3 + X303 + - 4+ Ma2 + N|z1a; + 2205 + -« - + 2n0n|?

where the)\; are arbitrary positive real numbers (see Exercise 32). Now when
testing for algebraic relations, we may or may not know in advance the degree
of the relation. Assume that we do. (For example, if & = v/2 + v/3 + v/5 we
know that the relation will be of degree 8.) Then (choosing z; = a™*) we
would like to have small coefficients for ™% with i small, and allow larger
ones for 4 large. This amounts to choosing A; large for small ¢, and small for
large i. One choice could be \; = A"~* for some reasonable constant A > 1
(at least such that A™ is much smaller than N). In other words, we look for
an algebraic relation for z;/A.

In other situations, we do not know in advance the degree of the relation,
or even if the number is algebraic or not. In this case, it is probably not
necessary to modify Algorithm 2.7.4, i.e. we simply choose \; = 1 for all 4.

2.7 Applications of the LLL Algorithm 103

2.7.3 Finding Small Vectors in Lattices

For many applications, even though the LLL algorithm does not always give us
the smallest vector in a lattice, the vectors which are obtained are sufficiently
reasonable to give good results. We have seen one such example in the preced-
ing section, where LLL was used to find linear dependence relations between
real or complex numbers. In some cases, however, it is absolutely necessary
to find one of the smallest vectors in a lattice, or more generally all vectors
having norm less than or equal to some constant. This problem is hard, and
in a slightly modified form is known to be NP-complete, i.e. equivalent to the
most difficult reasonable problems in computer science for which no polyno-
mial time algorithm is known. (For a thorough discussion of NP-completeness
and related matters, see for example [AHU].) Nonetheless, we must give an
algorithm to solve it, keeping in mind that any algorithm will probably be
exponential time with respect to the dimension.

Using well known linear algebra algorithms (over R and not over Z), we can
assume that the matrix defining the Euclidean inner product on R™ is diagonal
with respect to the canonical basis, say Q(x) = ¢1,1Z% + ¢2,273 + - - + @ n T2
If we want Q(x) < C, say, then we must choose |z;| < 1/C/q1,1. Once z;
is chosen, we choose |z2| < 1/(C — ¢1,17})/g2,2, and so on. This leads to n
nested loops, and in addition it is desirable to have n variable and not fixed.
Hence it is not as straightforward to implement as it may seem. The idea is to
use implicitly a lexicographic ordering of the vectors x. If we generalize this
to non-diagonal quadratic forms, this leads to the following algorithm.

Algorithm 2.7.5 (Short Vectors). If Q is a positive definite quadratic form
given by
2

n n
QX)=> qii| T+ Y 0,7
i=1

j=it+1

and a positive constant C, this algorithm outputs all the non-zero vectors x € Z™
such that Q(x) < C, as well as the value of Q(x). Only one of the two vectors
in the pair (x,—x) is actually given.

1. [Initialize] Set ¢ —n, T; « C, U; < 0.

2. [Compute bounds] Set Z —+/T;/q;i, Li —|Z—U;), zi—[—Z—U;] —1.

3. [Main loop] Set z; —z; + 1. If z; >L;, set i—1i+ 1 and go to step
3. Otherwise, if i > 1, set T;_y « T} — g;i(z; + U2 i —i—1U; «
> j=it1 %525, and go to step 2.

4. [Solution found] If x = 0, terminate the algorithm, otherwise output x, Q(x) =
C —Ti+ q1,1(z1+U1)? and go to step 3.

Now, although this algorithm (due in this form to Fincke and Pohst) is
quite efficient in small dimensions, it is far from being the whole story. Since

104 2 Algorithms for Linear Algebra and Lattices

we have at our disposal the LLL algorithm which is efficient for finding short
vectors in a lattice, we can use it to modify our quadratic form so as to shorten
the length of the search. More precisely, let R = (r; ;) be the upper triangular
matrix defined by ri; = /@i, 1ij = riaqij for 1 <i < j<n,r; =0 for
1<j<i<n. Then

Q(x) = x*'R'Rx.

Now call r; the columns of R and r the rows of R™1. Then from the identity
R~1Rx = x we obtain z; = r,Rx, hence by the Cauchy-Schwarz inequality,

z} < |Irf)*(x"R*Rx) < [rj>C.

This bound is quite sharp since for example when the quadratic form is di-
agonal, we have ||r}||2 = 1/g;; and the bound that we obtain for z;, say, is
as usual 1/C/q1,1. Using the LLL algorithm on the rows of R~!, however,
will in general drastically reduce the norms of these rows, and hence improve
correspondingly the search for short vectors.

As a final improvement, we note that the implicit lexicographic ordering
on the vectors x used in Algorithm 2.7.5 is not unique, and in particular we
can permute the coordinates as we like. This adds some more freedom on our
reduction of the matrix R. Before giving the final algorithm, due to Fincke
and Pohst, we give the standard method to obtain the so-called Cholesky
decomposition of a positive definite quadratic form, i.e. to obtain Q in the
form used in Algorithm 2.7.5.

Algorithm 2.7.6 (Cholesky Decomposition). Let A be a real symmetric ma-
trix of order n defining a positive definite quadratic form Q. This algorithm com-
putes constants ¢; ; and a matrix R such that

n n 2
Q)= qi|z+ Y. i
i=1 j=i+1

or equivalently in matrix form A = RtR.
1. [Initialize] For all i and j such that 1 < i < j < n set ¢; ; < a;,;, then set

1 0.
2. [Loop on i] Set i «—i+1.If i = n, go to step 4. Otherwise, for j =i+1,...,n

set gj,i — Gi,j and ¢ij — 45,5/ i-
3. [Main loop] For all k and [such that i +1 < k <1 < n set

Gkl < Gk, — qk,iqi,l

and go to step 2.

4. [Find matrix R] Fori =1,...,nsetr;; « ,/gi; thensetr; ; =0if 1 < j <
t<mnandr;;=r;;q,;if 1 <i<j<n and terminate the algorithm.

2.7 Applications of the LLL Algorithm 105

Note that this algorithm is essentially a reformulation of the Gram-
Schmidt orthogonalization procedure in the case where only the Gram matrix
is known. (See Proposition 2.5.7 and Remark (2) after Algorithm 2.6.3.)

We can now give the algorithm of Fincke-Pohst for finding vectors of small
norm ([Fin-Pohl]).

Algorithm 2.7.7 (Fincke-Pohst). Let A be a real symmetric matrix of order
n defining a positive definite quadratic form @, and C be a positive constant.
This algorithm outputs all non-zero vectors x € Z™ such that Q(x) < C and the
corresponding values of Q(x). As in Algorithm 2.7.5, only one of the two vectors
(x, —x) is actually given.

1. [Cholesky] Apply the Cholesky decomposition Algorithm 2.7.6 to the matrix
A, thus obtaining an upper triangular matrix R. Compute also R~! (note that
this is easy since R is triangular).

2. [LLL reduction] Apply the LLL algorithm to the n vectors formed by the rows
of R™1, thus obtaining a unimodular matrix U and a matrix S~1 such that
S~1 = U~'R~L. Compute also S = RU. (Note that U will simply be the
inverse transpose of the matrix H obtained in Algorithm 2.6.3, and this can
be directly obtained instead of H in that algorithm, in other words it is not
necessary to compute a matrix inverse).

3. [Reorder the columns of S] Call s; the columns of S and s/ the rows of S~1.
Find a permutation o on [1,...,n] such that

szl = lIsoyll = -+ > [Isgmyll-

Then permute the columns of S using the same permutation o, i.e. replace S
by the matrix whose ith column is So(s) for 1 <i<n.

4. Compute A; — S*S, and find the coefficients g; ; of the Cholesky decompo-
sition of A; using the first three steps of Algorithm 2.7.6 (it is not necessary
to compute the new matrix R).

5. Using Algorithm 2.7.5 on the quadratic form @Q; defined by the symmetric
matrix Ay, compute all the non-zero vectors y such that Q;(y) < C, and for
each such vector output x = U(Yo-1(1), - - -, Yo-1(n))" and Q(x) = Q1(y).

Although this algorithm is still exponential time, and is more complex
than Algorithm 2.7.5, in theory and in practice it is much better and should
be used systematically except if n is very small (less than 5, say).

Remark. If we want not only small vectors but minimal non-zero vectors,
the Fincke-Pohst algorithm should be used as follows. First, use the LLL
algorithm on the lattice (Z™, Q). This will give small vectors in this lattice,
and then choose as constant C the smallest norm among the vectors found by
LLL, then apply Algorithm 2.7.7.

106 2 Algorithms for Linear Algebra and Lattices

2.8 Exercises for Chapter 2

1. Prove that if K is a field, any invertible matrix over K is equal to a product of
matrices corresponding to elementary column operations. Is this still true if K
is not a field, for example for Z?

2. Let M X = B be a square linear system with coefficients in the ring Z/p"Z for
some prime number p and some integer » > 1. Show how to use Algorithm 2.2.1
over the field @, to obtain at least one solution to the system, if such a solution
exists. Compute in particular the necessary p-adic precision.

3. Write an algorithm which decomposes a square matrix M in the form M = LUP
as mentioned in the text, where P is a permutation matrix, and L and U are
lower and upper triangular matrices respectively (see [AHU] or [PFTV] if you
need help).

Give a detailed proof of Proposition 2.2.5.

5. Using the notation of Proposition 2.2.5, show that for k + 1 < 4,5 < n, the
coefficient ag’j) is equal to the (k+ 1) x (k + 1) minor of Mo obtained by taking
the first k rows and the i-th row, and the first k columns and the j-th column

Of Mo.

6. Generalize the Gauss-Bareiss method for computing determinants, to the com-
putation of the inverse of a matrix with integer coefficients, and more generally
to the other algorithms of this chapter which use elimination.

7. Is it possible to modify the Hessenberg Algorithm 2.2.9 so that when the matrix
M has coeflicients in Z all (or most) operations are done on integers and not on
rational numbers? (I do not know the answer to this question.)

Prove the validity of Algorithm 2.3.1.
9. Prove the validity of Algorithm 2.3.6.

10. Write an algorithm for computing one element of the inverse image, analogous
to Algorithm 2.3.4 but using elimination directly instead of using Algorithm
2.3.1, and compare the asymptotic speed with that of Algorithm 2.3.4.

11. Prove the validity of Algorithm 2.3.11 and the uniqueness statement of Propo-
sition 2.3.10.

12. In Algorithm 2.3.9, show that if the columns of M and M’ are linearly indepen-
dent then so are the columns of Mj.

13. Assuming Theorem 2.4.1 (1), prove parts (2) and (3). Also, try and prove (1).
14. Prove the uniqueness part of Theorem 2.4.3.

15. Show that among all possible pairs (u,v) such that au + bv = d = ged(a, b),
there exists exactly one such that —|a|/d < vsign(b) < 0, and that in addition
we will also have 1 < usign(a) < |b/d.

16. Generalize Algorithm 2.4.14 to the case where the n x n square matrix A is not
assumed to be non-singular.

e 2) be a 2 x 2 matrix with integral coefficients such that ad —bc #

0. If we set d; = gcd(a,b,c,d) and di = (ad — bc)/d2 show directly that there

17. Let A=

2.8

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Exercises for Chapter 2 107

d 0

exists two matrices U and V in GL2(Z) such that A =V (0 d
2

) U (this is
the special case n = 2 of Theorem 2.4.12).

Let G be a finite Z-module, hence isomorphic to a quotient L'/L, and let A be a
matrix giving the coordinates of some Z-basis of L on some Z-basis of L'. Show
that the absolute value of det(A) is equal to the cardinality of G.

Let B be an invertible matrix with real coefficients. Show that there exist ma-
trices K1, K2 and A such that B = K1 AK>, where A is a diagonal matrix with
positive diagonal coefficients, and K; and K, are orthogonal matrices (this is
called the Cartan decomposition of B). What extra condition can be added so
that the decomposition is unique?

Prove Proposition 2.5.3 using only matrix-theoretical tools (hint: the matrix Q
is diagonalizable since it is real symmetric).

Give recursive formulas for the computation of the Gram-Schmidt coefficients
pi,; and B; when only the Gram matrix (b; - bj) is known.

Assume that the vector b; is replaced by some other vector by in the Gram-
Schmidt process. Compute the new value of B; = b} - b} in terms of the ux,;
and B; for j <.

Prove Theorem 2.6.2 (5) and the validity of the LLL Algorithm 2.6.3.

Prove that the formulas of Algorithm 2.6.3 become those of Algorithm 2.6.7
when we set A ; « djui,; and di «— d;—1B;.

Show that at the end of Algorithm 2.6.8 the first n — p columns H; of the matrix
H form a basis of the space of relation vectors for the initial b;.

Write an all integer version of Algorithm 2.6.8, generalizing Algorithm 2.6.7
to not necessarily independent vectors. The case corresponding to Bx = 0 but
Mk, k—1 7 0 must be treated with special care.

(This is not really an exercise, just food for thought). Generalize to modules over
principal ideal domains R the results and algorithms given about lattices. For
example, generalize the LLL algorithm to the case where R is either the ring of
integers of a number field (see Chapter 4) assumed to be principal, or is the ring
K[X] where K = Q, K = R or K = C. What can be said when K = F,? Give
applications to the problem of linear or algebraic dependence of power series.

Compare the performance of Algorithms 2.7.2 and 2.4.10 (in the author’s im-
plementations, Algorithm 2.7.2 is by far superior).

Prove that the quantities that occur in Algorithm 2.7.2 are indeed all integral.
In particular, show that dr = det(b; - b;)1<i,j<k,B; B0 and that d;u; ; € Z.

Set by convention pko = 1, pk,k = B, j(k) = max{j, 0 < j < k,px,; # 0},
dp = HlSiSk Mi iy and Ay, ; = djpg,; for k > j.

a) Modify Sub-algorithm SWAPK so that it uses this new definition of dx
and Ag,;. In other words, find the formulas giving the new values of the d;, f;
and Ak ; in terms of the old ones after exchanging by and bg_;. In particular
show that, contrary to Sub-algorithm SWAPK, dj is always unchanged.

b) Modify also Sub-algorithm REDI accordingly. (Warning: dx may be mod-
ified, hence all d; and A;,; for i > j > k.)

c) Show that we still have d; € Z and Ak,; € Z (this is much more difficult

108 2 Algorithms for Linear Algebra and Lattices

and is analogous to the integrality property of the Gauss-Bareiss Algorithm 2.2.6
and the sub-resultant Algorithm 3.3.1 that we will study in Chapter 3).

31. It can be proved that sy = 3, (n(n+1) - (n+k—1))"2 is of the form an®+b
where @ and b are rational numbers when k is even, and also when k is odd if
the middle coefficient (n + (k — 1)/2) is only raised to the power —2 instead of
—3. Compute s for k < 4 using Algorithm 2.7.4.

32. Prove Lemma 2.7.3 and its generalization mentioned after Algorithm 2.7.4. Write
the corresponding algebraic dependence algorithm.

33. Let U be a non-singular real square matrix of order n, and let Q be the positive
definite quadratic form defined by the real symmetric matrix U'U. Using explic-
itly the inverse matrix V of U, generalize Algorithm 2.7.5 to find small values
of @ on Z™ (Algorithm 2.7.5 corresponds to the case where U is a triangular
matrix). Hint: if you have trouble, see [Knu2] Section 3.3.4.C.

Chapter 3

Algorithms on Polynomials

Excellent book references on this subject are [Knu2] and [GCL)].

3.1 Basic Algorithms

3.1.1 Representation of Polynomials

Before studying algorithms on polynomials, we need to decide how they will
be represented in an actual program. The straightforward way is to represent
a polynomial

P(X) =a, X" +(1,n_1)("_1 +---4+a; X +ag

by an array a[0], a[l], ..., a[n]. The only difference between different imple-
mentations is that the array of coefficients can also be written in reverse order,
with a[0] being the coefficient of X™. We will always use the first representa-
tion. Note that the leading coefficient a,, may be equal to 0, although usually
this will not be the case.

The true degree of the polynomial P will be denoted by deg(P), and the
coefficient of X9¢8(F) called the leading coefficient of P, will be denoted by
£(P). In the example above, if, as is usually the case, ap, # 0, then deg(P) =n
and £(P) = ay.

The coefficients a; may belong to any commutative ring with unit, but
for many algorithms it will be necessary to specify the base ring. If this base
ring is itself a ring of polynomials, we are then dealing with polynomials in
several variables, and the representation given above (called the dense repre-
sentation) is very inefficient, since multivariate polynomials usually have very
few non-zero coefficients. In this situation, it is better to use the so-called
sparse representation, where only the exponents and coefficients of the non-
zero monomials are stored. The study of algorithms based on this kind of
representation would however carry us too far afield, and will not be consid-
ered here. In any case, practically all the algorithms that we will need use only
polynomials in one variable.

The operations of addition, subtraction and multiplication by a scalar, i.e.
the vector space operations, are completely straightforward and need not be
discussed. On the other hand, it is necessary to be more specific concerning
multiplication and division.

110 3 Algorithms on Polynomials

3.1.2 Multiplication of Polynomials

As far as multiplication is concerned, one can of course use the straightforward
method based on the formula:

n+m

(i aixi)(zn: b,-XJ) =) ax*,
i=0 §=0 k=0
where
k
Ck = Zaibk—iy
i=0

where it is understood that a; = 0 if ¢ > m and b; = 0 if j > n. This method
requires (m + 1)(n + 1) multiplications and mn additions. Since in general
multiplications are much slower than additions, especially if the coefficients
are multi-precision numbers, it is reasonable to count only the multiplication
time. If T'(M) is the time for multiplication of elements in the base ring, the
running time is thus O(mnT'(M)). It is possible to multiply polynomials faster
than this, however. We will not study this in detail, but will give an example.
Assume we want to multiply two polynomials of degree 1. The straightforward
method above gives:

(a1 X + ao)(b1 X + bo) = c2 X% + ¢1 X + co,

with
co = agby, c¢1 = agbi+arby, ¢z =aib;.

As mentioned, this requires 4 multiplications and 1 addition. Consider instead
the following alternate method for computing the c:

co = agpbo, c2 = a1 by,

d=(a1—ao)(b1—bo), Cl=C()+(Cz—d).

This requires only 3 multiplications, but 4 additions (subtraction and addition
times are considered identical). Hence it is faster if one multiplication in the
base ring is slower than 3 additions. This is almost always the case, especially
if the base ring is not too simple or involves large integers. Furthermore, this
method can be used for any degree, by recursively splitting the polynomials
in two pieces of approximately equal degrees.

There is a generalization of the above method which is based on Lagrange’s
interpolation formula. To compute A(X)B(X), which is a polynomial of degree
m+n, compute its value at m+mn+1 suitably chosen points. This involves only
m+n 41 multiplications. One can then recover the coefficients of A(X)B(X)
(at least if the ring has characteristic zero) by using a suitable algorithmic
form of Lagrange’s interpolation formula. The overhead which this implies
is unfortunately quite large, and for practical implementations, the reader is
advised either to stick to the straightforward method, or to use the recursive
splitting procedure mentioned above.

3.1 Basic Algorithms 111

3.1.3 Division of Polynomials

We assume here that the polynomials involved have coefficients in a field
K, (or at least that all the divisions which occur make sense. Note that if
the coefficients belong to an integral domain, one can extend the scalars and
assume that they in fact belong to the quotient field). The ring K[X] is then a
Euclidean domain, and this means that given two polynomials A and B with
B +# 0, there exist unique polynomials Q and R such that

A=BQ+ R, with deg(R) < deg(B)

(where as usual we set deg(0) = —00). As we will see in the next section, this
means that most of the algorithms described in Chapter 1 for the Euclidean
domain Z can be applied here as well.

First however we must describe algorithms for computing @ and R. The
straightforward method can easily be implemented as follows. For a non-zero
polynomial Z, recall that £(Z) is the leading coefficient of Z. Then:

Algorithm 3.1.1 (Euclidean Division). Given two polynomials A and B in
K[X] with B # 0, this algorithm finds Q and R such that A = BQ + R and
deg(R) < deg(B).

1. [Initialize] Set R «+ A, Q « 0.

2. [Finished?] If deg(R) < deg(B) then terminate the algorithm.

3. [Find coefficient] Set

£(R) 1 deg(R)—deg(B)
S E(B)X ,

then Q — Q@+ S, R+~ R—S- B and go to step 2.

Note that the multiplication S - B in step 3 is not really a polynomial
multiplication, but simply a scalar multiplication followed by a shift of coeffi-
cients. Also, if division is much slower than multiplication, it is worthwhile to
compute only once the inverse of ¢(B), so as to have only multiplications in
step 3. The running time of this algorithm is hence

O(deg(B)(deg(Q) + 1)T(M)),
(of course, deg(Q) = deg(A) — deg(B) if deg(A) > deg(B)).

Remark. The subtraction R «— R — S - B in step 3 of the algorithm must
be carefully written: by definition of S, the coefficient of X9°€ ¥ must become
exactly zero, so that the degree of R decreases. If however the base field is
for example R or C, the elements of K will only be represented with finite
precision, and in general the operation ¢(R) — £(B)(¢(R)/¢(B)) will not give

112 3 Algorithms on Polynomials

exactly zero but a very small number. Hence it is absolutely necessary to set
it exactly equal to zero when implementing the algorithm.

Note that the assumption that K is a field is not strictly necessary. Since
the only divisions which take place in the algorithm are divisions by the leading
coefficient of B, it is sufficient to assume that this coefficient is invertible in
K, as for example is the case if B is monic. We will see an example of this in
Algorithm 3.5.5 below (see also Exercise 3).

The abstract value T (M) does not reflect correctly the computational
complexity of the situation. In the case of multiplication, the abstract T'(M)
used made reasonable sense. For example, if the base ring K was Z, then T'(M)
would be the time needed to multiply two integers whose size was bounded
by the coefficients of the polynomials A and B. On the contrary, in Algorithm
3.1.1 the coefficients explode, as can easily be seen, hence this abstract measure
of complexity T(M) does not make sense, at least in Z or Q. On the other
hand, in a field like Fp,, T(M) does make sense.

Now these theoretical considerations are in fact very important in prac-
tice: Among the most used base fields (or rings), there can be no coefficient
explosion in Fp, (or more generally any finite field), or in R or C (since in that
case the coefficients are represented as limited precision quantities). On the
other hand, in the most important case of Q or Z, such an explosion does take
place, and one must be ready to deal with it.

There is however one other important special case where no explosion
takes place, that is when B is a monic polynomial (/(B) = 1), and A and B
are in Z[X). In this case, there is no division in step 3 of the algorithm.

In the general case, one can avoid divisions by multiplying the polynomial
A by £(B)des(A)—deg(B)+1 This gives an algorithm which is not really more
efficient than Algorithm 3.1.1, but which is neater and will be used in the next
section. Knuth calls it “pseudo-division” of polynomials. It is as follows:

Algorithm 3.1.2 (Pseudo-Division). Let K be a ring, A and B be two poly-
nomials in K[X] with B # 0, and set m « deg(A), n « deg(B), d « £(B).
Assume that m > n. This algorithm finds Q and R such thatd™"+14 = BQ+R
and deg(R) < deg(B).

1. [Initialize] Set R — A, Q — 0, e —m—n+1.

2. [Finished?] If deg(R) < deg(B) then set ¢ « d°, Q « ¢Q, R « gR and

terminate the algorithm.
3. [Find coefficient] Set

S — E(R)Xdeg(R)—deg(B),
then@Q —~d-Q+ S, R—d-R—S-B,e«e—1 and go to step 2.
Since the algorithm does not use any division, we assume only that K is a

ring, for example one can have K = Z. Note also that the final multiplication
by ¢ = d¢ is needed only to get the exact power of d, and this is necessary for

3.2 Euclid’s Algorithms for Polynomials 113

some applications such as the sub-resultant algorithm (see 3.3). If it is only
necessary to get some constant multiple of Q and R, one can dispense with e
and q entirely.

3.2 Euclid’s Algorithms for Polynomials

3.2.1 Polynomials over a Field

Euclid’s algorithms given in Section 1.3 can be applied with essentially no
modification to polynomials with coefficients in a field K where no coefficient
explosion takes place (such as). In fact, these algorithms are even simpler,
since it is not necessary to have special versions & la Lehmer for multi-precision
numbers. They are thus as follows:

Algorithm 3.2.1 (Polynomial GCD). Given two polynomials A and B over
a field K, this algorithm determines their GCD in K[X].

1. [Finished?] If B = 0, then output A as the answer and terminate the algorithm.

2. [Euclidean step] Let A = B - Q + R with deg(R) < deg(B) be the Euclidean
division of A by B. Set A — B, B «— R and go to step 1.

The extended version is the following:

Algorithm 3.2.2 (Extended Polynomial GCD). Given two polynomials A
and B over a field K, this algorithm determines (U, V, D) such that AU+ BV =
D = (A, B).

1. [Initialize] Set U «— 1, D <+ A, V; <0, V3 — B.

2. [Finished?] If V3 = 0 then let V « (D — AU)/B (the division being exact),
output (U, V, D) and terminate the algorithm.

3. [Euclidean step] Let D = QV3 + R be the Euclidean division of D by V3. Set
T—U-ViQ UV, D«—V;, Vi «T, V3« Rand go to step 2.

Note that the polynomials U and V' given by this algorithm are polyno-
mials of the smallest degree, i.e. they satisfy deg(U) < deg(B/D), deg(V) <
deg(A/D).

If the base field is R or C, then the condition B = 0 of Algorithm 3.2.1
(or V3 = 0 in Algorithm 3.2.2) becomes meaningless since numbers are rep-
resented only approximately. In fact, polynomial GCD’s over these fields, al-
though mathematically well defined, cannot be used in practice since the coef-
ficients are only approximate. Even if we assume the coefficients to be given by
some formula which allows us to compute them as precisely as we desire, the

computation cannot usually be done. Consider for example the computation
of

114 3 Algorithms on Polynomials

ged(X — 7, X? - 6((2)),

where {(s) =)_,,~; n~° is the Riemann zeta function. Although we can com-
pute the coefficients to as many decimal places as we desire, algebra alone
will not tell us that this GCD is equal to X — 7 since ((2) = n2/6. The point
of this discussion is that one should keep in mind that it is meaningless in
practice to compute polynomial GCD’s over R or C.

On the other hand, if the base field is Q, the above algorithms make
perfect sense. Here, as already mentioned for Euclidean division, the practical
problem of the coefficient explosion will occur, and since several divisions are
performed, it will be much worse.

To be specific, if p is small, the GCD of two polynomials of Fp[X] of degree
1000 can be computed in a reasonable amount of time, say a few seconds, while
the GCD of polynomials in Q[X] (even with very small integer coefficients)
could take incredibly long, years maybe, because of coefficient explosion. Hence
in this case it is absolutely necessary to use better algorithms. We will see this
in Sections 3.3 and 3.6.1. Before that, we need some important results about
polynomials over a Unique Factorization Domain (UFD).

3.2.2 Unique Factorization Domains (UFD’s)

Definition 3.2.3. Let R be an integral domain (i.e. a commutative ring with
unit 1 and no zero divisors). We say that u € R is a unit if u has a multi-
plicative inverse in R. If a and b are elements of R with b # 0, we say that
b divides a (and write b | a) if there exists ¢ € R such that a = bq. Since R
is an integral domain, such a q is unique and denoted by a/b. Finally p € R
is called an irreducible element or a prime element if q divides p implies that
either q¢ or p/q is a unit.

Definition 3.2.4. A ring R is called a unique factorization domain (UFD)
if R is an integral domain, and if every non-unit x € R can be written in
the form x = [] pi, where the p; are (not necessarily distinct) prime elements,
and if this form is unique up to permutation and multiplication of the primes
by units.

Important examples of UFD’s are given by the following theorem (see [Kap],
[Sam]):

Theorem 3.2.5.

(1) If R is a principal ideal domain (i.e. R is an integral domain and every
ideal is principal), then R is a UFD. In particular, Euclidean domains
(i.e. those having a Euclidean division) are UFD’s.

3.2 Euclid’s Algorithms for Polynomials 115

(2) If R is the ring of algebraic integers of a number field (see Chapter 4),
then R is a UFD if and only if R is a principal ideal domain.
(3) If R is a UFD, then the polynomial rings R[X4,...,Xn] are also UFD’s.

Note that the converse of (1) is not true in general: for example the ring
C[X,Y] is a UFD (by (3)), but is not a principal ideal domain (the ideal
generated by X and Y is not principal).

We will not prove Theorem 3.2.5 (see Exercise 6 for a proof of (3)), but
we will prove some basic lemmas on UFD’s before continuing further.

Theorem 3.2.6. Let R be a UFD. Then

(1) If p is prime, then for alla and b in R, p| ab if and only if p|a orp | b.

(2) Ifa|bc and a has no common divisor with b other than units, then a | c.

(3) Ifa andb have no common divisor other than units, then if a and b divide
c€R, thenab|ec.

(4) Given a set S C R of elements of R, there exists d € R called a greatest
common dwisor (GCD) of the elements of S, and having the following
properties: d divides all the elements of S, and if e is any element of R
dividing all the elements of S, then e | d. Furthermore, if d and d’' are two
GCD’s of S, then d/d' is a unit.

Proof. (1) Assume p | ab. Since R is a UFD, one can write a = []; ;< Pi
and b =], +1<i<mn Pi> the p; being not necessarily distinct prime elements
of R. On the other hand, since ab/p € R we can also write ab = pH g; with
prime elements g;. By the uniqueness of prime decomposition, since ab =
H1<l<m +n Pi we deduce that p is equal to a unit times one of the p;. Hence,
if 2 <'m, then p | a, while if i > m, then p | b, proving (1).

(2) We prove (2) by induction on the number n of prime factors of b,
counted with multiplicity. If n = 0 then b is a unit and a | ¢. Assume the
result true for n — 1, and let bc = ga with n > 1. Let p be a prime divisor of b.
p divides ga, and by assumption p does not divide a. Hence by (1) p divides
g, and we can write b’'c = ¢’a with b’ = b/p, ¢’ = ¢/p. Since b’ has only n — 1
prime divisors, (2) follows by induction.

(3) Write ¢ = ga with ¢ € R. Since b | ¢, by (2) we deduce that b | ¢, hence
ab| e

(4) For every element s € S, write

S=Uu Hpvp(s),
r

where u is a unit, the product is over all distinct prime elements of R up to
units, and vp(s) is the number of times that the prime p occurs in s, hence is
0 for all but finitely many p. Set

116 3 Algorithms on Polynomials
= p = i .
d];[per, where a, min vp(s)

This min is of course equal to 0 for all but a finite number of p, and it is clear
that d satisfies the conditions of the theorem.]

We will say that the elements of S are coprime if their GCD is a unit.
By definition of a UFD, this is equivalent to saying that no prime element
is a common divisor. Note that if R is not only a UFD but also a principal
ideal domain (for example when the UFD R is the ring of algebraic integers
in a number field), then the coprimality condition is equivalent to saying that
the ideal generated by the elements is the whole ring R. This is however not
true in general. For example, in the UFD C[X, Y], the elements X and Y are
coprime, but the ideal which they generate is the set of polynomials P such
that P(0,0) = 0, and this is not the whole ring.

3.2.3 Polynomials over Unique Factorization Domains

Definition 3.2.7. Let R be a UFD, and A € R[X]|. We define the content
of A and write cont(A) as a GCD of the coefficients of A. We say that A
is primitive if cont(A) is a unit, i.e. if its coefficients are coprime. Finally,
if A # 0 the polynomial A/ cont(A) is primitive, and is called the primitive
part of A, and denoted pp(A) (in the case A = 0 we define cont(4) = 0,
pp(4) =0).

The fundamental result on these notions, due to Gauss, is as follows:

Theorem 3.2.8. Let A and B be two polynomials over a UFD R. Then there
exists a unit u € R such that

cont(A - B) = ucont(A) cont(B), pp(A - B) = u~! pp(A) pp(B).
In particular, the product of two primitive polynomials is primitive.

Proof. Since A = cont(A) pp(A), it is clear that this theorem is equivalent
to the statement that the product of two primitive polynomials A and B is
primitive. Assume the contrary. Then there exists a prime p € R which divides
all the coefficients of AB. Write A(X) = Y a;X* and B(X) = }_ b, X*. By
assumption there exists a j such that a; is not divisible by p, and similarly a
k such that by is not divisible by p. Choose j and k as small as possible. The
coefficient of X71* in AB is ajbk +ajp1bg_1+--- +aj+kbo +aj_1bk+1 4+ 4
apbyj, and all the terms in this sum are divisible by p except the term a;bs
(since j and k have been chosen as small as possible), and a;by itself is not
divisible by p since p is prime. Hence p does not divide the coefficient of X7tk
in AB, contrary to our assumption, and this proves the theorem.]

3.2 Euclid’s Algorithms for Polynomials 117

Corollary 3.2.9. Let A and B be two polynomials over a UFD R. Then there
exists units u and v in R such that

cont(ged(4, B)) = uged(cont(A), cont(B)),

pp(ged(4, B)) = vged(pp(A4), pp(B)).-

3.2.4 Euclid’s Algorithm for Polynomials over a UFD

We can now give Euclid’s algorithm for polynomials defined over a UFD. The
important point to notice is that the sequence of operations will be essentially
identical to the corresponding algorithm over the quotient field of the UFD,
but the algorithm will run much faster. This is because implementing arith-
metic in the quotient field (say in Q if R = Z) will involve taking GCD’s in the
UFD all the time, many more than are needed to execute Euclid’s algorithm.
Hence the following algorithm is always to be preferred to Algorithm 3.2.1
when the coeflicients of the polynomials are in a UFD. We will however study
in the next section a more subtle and efficient method.

Algorithm 3.2.10 (Primitive Polynomial GCD). Given two polynomials A
and B with coefficients in a UFD R, this algorithm computes a GCD of A and
B, using only operations in R. We assume that we already have at our disposal
algorithms for (exact) division and for GCD in R.

1. [Reduce to primitive] If B = 0, output A and terminate. Otherwise, set a «—
cont(A), b — cont(B), d «— gcd(a,b), A «— A/a, B — B/b.

2. [Pseudo division] Compute R such that ¢(B)dee(A)-deg(B)+14 — BQ + R
using Algorithm 3.1.2. If R = 0 go to step 4. If deg(R) = 0, set B « 1 and
go to step 4.

3. [Replace] Set A — B, B — pp(R) = R/ cont(R) and go to step 2.
4. [Terminate] Output d - B and terminate the algorithm.

In the next section, we will see an algorithm which is in general faster than
the above algorithm. There are also other methods which are often even faster,
but are based on quite different ideas. Consider the case where R = Z. Instead
of trying to control the explosion of coefficients, we simply put ourselves in a
field where this does not occur, i.e. in the finite field F,, for suitable primes
p. If one finds that the GCD modulo p has degree 0 (and this will happen
often), then if p is suitably chosen it will follow that the initial polynomials
are coprime over Z. Even if the GCD is not of degree 0, it is in general quite
easy to deduce from it the GCD over Z. We will come back to this question
in Section 3.6.1.

118 3 Algorithms on Polynomials

3.3 The Sub-Resultant Algorithm

3.3.1 Description of the Algorithm

The main inconvenience of Algorithm 3.2.10 is that we compute the content
of R in step 3 each time, and this is a time consuming operation. If we did
not reduce R at all, then the coeflicient explosion would make the algorithm
much slower, and this is also not acceptable. There is a nice algorithm due
to Collins, which is a good compromise and which is in general faster than
Algorithm 3.2.10, although the coefficients are larger. The idea is that one
can give an a priori divisor of the content of R, which is sufficiently large
to replace the content itself in the reduction. This algorithm is derived from
the algorithm used to compute the resultant of two polynomials (see Section
3.3.2), and is called the sub-resultant algorithm. We could still divide A and
B by their content from time to time (say every 10 iterations), but this would
be a very bad idea (see Exercise 4).

Algorithm 3.3.1 (Sub-Resultant GCD). Given two polynomials A and B
with coefficients in a UFD R, this algorithm computes a GCD of A and B, using
only operations in R. We assume that we already have at our disposal algorithms
for (exact) division and for GCD in R.

1. [Initializations and reductions] If deg(B) > deg(A) exchange A and B. Now
if B =0, output A and terminate the algorithm, otherwise, set a « cont(A),
b — cont(B), d — ged(a,b), A — A/a, B— B/b, g«—1and h « 1.

2. [Pseudo division] Set § «— deg(A) — deg(B). Using Algorithm 3.1.2, compute
R such that £(B)®*1A = BQ + R. If R = 0 go to step 4. If deg(R) = 0, set
B « 1 and go to step 4.

3. [Reduce remainder] Set A «— B, B «— R/(gh®), g — £(A), h — h'=%g® and
go to step 2. (Note that all the divisions which may occur in this step give a
result in the ring R.)

4. [Terminate] Output d - B/ cont(B) and terminate the algorithm.

It is not necessary for us to give the proof of the validity of this algorithm,
since it is long and is nicely done in [Knu2]. The main points to notice are as
follows: first, it is clear that this algorithm gives exactly the same sequence
of polynomials as the straightforward algorithm, but multiplied or divided by
some constants. Consequently, the only thing to prove is that all the quantities
occurring in the algorithm stay in the ring R. This is done by showing that
all the coefficients of the intermediate polynomials as well as the quantities
h are determinants of matrices whose coefficients are coefficients of A and B,
hence are in the ring R.

Another result which one obtains in proving the validity of the algorithm is
that in the case R = Z, if m =deg(A), n =deg(B), and N is an upper bound
for the absolute value of the coefficients of A and B, then the coeflicients of
the intermediate polynomials are all bounded by the quantity

3.3 The Sub-Resultant Algorithm 119

Nm+n(m+ 1)n/2(n+ l)m/2’

and this is reasonably small. One can then show that the execution time
for computing the GCD of two polynomials of degree n over Z when their
coefficients are bounded by N in absolute value is O(n*(In Nn)?).

I leave as an exercise to the reader the task of writing an extended version
of Algorithm 3.3.1 which gives polynomials U and V such that AU + BV =
(A, B), where r € R. All the operations must of course be done in R (see
Exercise 5). Note that it is not always possible to have r = 1. For example, if
A(X) = X and B(X) = 2, then (A, B) = 1 but for any U and V the constant
term of AU + BV is even.

3.3.2 Resultants and Discriminants

Let A and B be two polynomials over an integral domain R with quotient
field K, and let K be an algebraic closure of K.

Definition 3.3.2. Let A(X) = a(X — a1)--- (X — o) and B(X) = b(X -
B1) -+ (X — Bn) be the decomposition of A and B in K. Then the resultant
R(A,B) of A and B is given by one of the equivalent formulas:

R(A,B) =a"B(a) - B(am)
= (=)™ A(B) - - A(Ba)
=a™] (-8

1<i<m,1<j<n

Definition 3.3.3. If A € R[X], with m = deg(A), the discriminant disc(A)
of A is equal to the expression:

(~1)™m-D2R(A, A')/6(A),

where A’ is the derivative of A.

The main point about these definitions is that resultants and discriminants
have coeflicients in R. Indeed, by the symmetry in the roots a;, it is clear that
the resultant is a function of the symmetric functions of the roots, hence is in
K. It is not difficult to see that the coefficient a™ insures that R(A, B) € R.
Another way to see this is to prove the following lemma.

Lemma 3.3.4. IfA(X) =3 ocicm @iX® and B(X) = Y g<;<p biX?, then the
resultant R(A, B) is equal to the determinant of the following (n+m)x (n+m)
matric:

120 3 Algorithms on Polynomials

A Am—1 Gm-2 ... ay ag 0 o ... 0 \
0 am Am—-1 Qam-2 ce ay ap 0 0

0 0 A Am—-1 Qam-2 . ai ap 0

0 0 ce 0 am Am—-1 Qam-2 ... Qa1 Qo

b bp-1 ... by b bo 0 0 (I
0 bn, bn-1 e ba by bo 0 0

0 0 b bn_1 .. by b bo 0
0 0 e 0 bn b1 . b b b

where the coefficients of A are repeated on n = deg(B) rows, and the coeffi-
cients of B are repeated on m = deg(A) rows.

The above matrix is called Sylvester’s matrix. Since the only non-zero
coefficients of the first column of this matrix are a,, and b,, it is clear that
R(A,B) is not only in R but in fact divisible (in R) by ged(4(A), £(B)). In
particular, if B = A’, R(A, A’) is divisible by £(A), hence disc(A) is also in R.

Proof. Call M the above matrix. Assume first that the o; and g; are all
distinct. Consider the (n +m) x (n + m) Vandermonde matrix V' = (v; ;)
defined by v; ; —,Bm"'" Yif j <, Vi j =a;'”;l""' if n+1<j<n+m. Then
the Vandermonde determlnant det(V) is non-zero since we assumed the ¢;

and f; distinct, and we have

det(V) = [](8: — 8;) [(e — a])H i — ;).

i<j i<j

On the other hand, it is clear that

BIrAB) ... BA(BR) 0 0
oAy . ABY 0 . 0
MV = 0 0 o™ 1B(a) ... ™ 'Blam) |’
0 . 0 Ber) ... Blam)

hence det(M V) is equal to the product of the two diagonal block determinants,
which are again Vandermonde determinants. Hence we obtain:

det(MV) = A(B1) - - A(Bn)B(cn) - - B(am) [[(8 = 85) [(e — 5.

i<j i<j

Comparing with the formula for det(V') and using det(V') # 0 we obtain

3.3 The Sub-Resultant Algorithm 121

det(M) [[(B: — o) = A(B1) - - A(Bn)B(c) - - B(am).
)
Since clearly A(81) - -+ A(Br) = a™ [, ;(8: — @;), the lemma follows in the case

where all the a; and g; are distinct, and it follows in general by a continuity
argument or by taking the roots as formal variables. o

Note that by definition, the resultant of A and B is equal to 0 if and
only if A and B have a common root, hence if and only if deg(4, B) > 0. In
particular, the discriminant of a polynomial A is zero if and only if A has a
non-trivial square factor, hence if and only if deg(4, A") > 0.

The definition of the discriminant that we have given may seem a little
artificial. It is motivated by the following proposition.

Proposition 3.3.5. Let A € R[X] with m = deg(A), and let a; be the roots
of A in K. Then we have

disc(A4) = g(A)™~1+des@) T (ai — o).

1<i<j<m

Proof. If A has multiple roots, both sides are 0. So we assume that A has only
simple roots. Now if a = ¢(A), we have

"(X) =aZH(X—aj)

i j#d

(o) -aH a; — o).

J#i

hence

Thus we obtain
R(A, A') = gm+dee(4) (1ymm=D/2T](as — 0y)?
i<j
thus proving the proposition. Note that we have deg(A’) = m— 1, except when
the characteristic of R is non-zero and divides m.]

The following corollary follows immediately from the definitions.

Corollary 3.3.6. We have R(A;A2, A3) = R(A;, A3)R(Az, A3) and
disc(A1Az) = disc(A;) disc(A2)(R(A1, A2))%.

Resultants and discriminants will be fundamental in our handling of alge-
braic numbers. Now the nice fact is that we have already done essentially all

the work necessary to compute them: a slight modification of Algorithm 3.3.1
will give us the resultant of A and B.

122 3 Algorithms on Polynomials

Algorithm 3.3.7 (Sub-Resultant). Given two polynomials A and B with co-
efficients in a UFD R, this algorithm computes the resultant of A and B.

1. [Initializations and reductions] If A =0 or B = 0, output 0 and terminate the
algorithm. Otherwise, set a «— cont(A), b « cont(B), A — A/a, B «— B/b,
g—1,he1 s« 1andt « qlesBpdee(4d) Finally, if deg(A) < deg(B)
exchange A and B and if in addition deg(A) and deg(B) are odd set s «— —1.

2. [Pseudo division] Set § « deg(A)—deg(B). If deg(A) and deg(B) are odd, set

s « —s. Finally, compute R such that £(B)**'A = BQ + R using Algorithm
3.1.2.

3. [Reduce remainder] Set A «— B and B « R/(gh9).

4. [Finished?] Set g « £(A), h — h1=%g% If deg(B) > 0 go to step 2, otherwise
set h « h1-deg(A)g(B)dea(4) output s - ¢ - h and terminate the algorithm.

Proof. Set Ag = A, A; = B, let A; be the sequence of polynomials generated
by this algorithm, and let R; be the remainders obtained in step 2. Let t be
the index such that deg(A¢1+1) = 0. Set dx = deg(Ax), &k = £(Ak), and let gi
and hi be the quantities g and h in stage k, so that go = ho = 1. Finally set
6 = d — di+1. Denoting by f; the roots of Ay, we clearly have for k£ > 1:

R(Ap-1, Ax) = (-1)%1degie=t T Axoa(B)

1<i<dg

:(_l)dk_ldkgzk—l H Rk+l(ﬂi)

Sk—1+1
1<i<dy 6!
—1—dk(bk—1+1
— (_l)dk_ldkgik 1—dk (6k—1+1) H Rk+1(ﬁi)
1<i<dy

_ (‘"l)dk—ldke:k—l—dk(Sk_1+l)—dk+lR(Ak7gk—lhzk_—llAk+1)-

Now using R(A,cB) = ci8(A) R(A, B) and the identities gx = ¢ and hy =
h,lc Skt 6" ! for k > 1, we see that the expression simplifies to
di-1-1

g h
R(Ag-1, A) = (—1)%-1% %R(A"’ At1)-
9k k

Using di41 = 0, hence 6; = d;, we finally obtain

R(A,B) = (_1)lekst d"'ldkhl_a‘R(At,At-H)

= (—1)Dskee ordhp- degie |

— (_1)2151:9 k—1d kht+1,

thus proving the validity of the algorithm. O

3.3 The Sub-Resultant Algorithm 123

Note that it is the same kind of argument and simplifications which show
that the Ay have coefficients in the same ring R as the coefficients of A and
B, and that the hj also belong to R. In fact, we have just proved for instance
that hiy € R.

Finally, to compute discriminants of polynomials, one simply uses Algo-
rithm 3.3.7 and the formula

disc(A) = (=1)™m=D/2R(A, A"} /4(A),

where m = deg(A).

3.3.3 Resultants over a Non-Exact Domain

Although resultants and GCD’s are similar, from the computational point
of view, there is one respect in which they completely differ. It does make
practical sense to compute (approximate) resultants over R, C or Q,, while
it does not make sense for GCD’s as we have already explained. When deal-
ing with resultants of polynomials with such non-exact coefficients we must
however be careful not to use the sub-resultant algorithm. For one thing, it
is tailored to avoid denominator explosion when the coefficients are, for ex-
ample, rational numbers or rational functions in other variables. But most
importantly, it would simply give wrong results, since the remainders R ob-
tained in the algorithm are only approximate; hence a zero leading coefficient
could appear as a very small non-zero number, leading to havoc in the next
iteration.

Hence, in this case, the natural solution is to evaluate directly Sylvester’s
determinant. Now the usual Gaussian elimination method for computing de-
terminants also involves dividing by elements of the ring to which the co-
efficients belong. In the case of the ring Z, say, this is not a problem since
the quotient of two integers will be represented exactly as a rational number.
Even for non-exact rings like R, the quotient is another real number given
to a slightly worse and computable approximation. On the other hand, in the
case where the coefficients are themselves polynomials in another variable over
some non-exact ring like R, although one could argue in the same way using
rational functions, the final result will not in general simplify to a polynomial
as it should, for the same reason as before.

To work around this problem, we must use the Gauss-Bareiss Algorithm
2.2.6 which has exactly the property of keeping all the computations in the
initial base ring. Keep in mind, as already mentioned after Algorithm 2.2.6,
that if some division of elements of R[X] (say) is required, then Euclidean
division must be used, i.e. we must get a polynomial as a result.

Hence to compute resultants we can apply this algorithm to Sylvester’s
matrix, even when the coefficients are not exact. (In the case of exact coef-
ficients, this algorithm will evidently also work, but will be slower than the

124 3 Algorithms on Polynomials

sub-resultant algorithm.) Since Sylvester’s matrix is an (n + m) x (n + m)
matrix, it is important to note that simple row operations can reduce it to an
n X n matrix to which we can then apply the Gauss-Bareiss algorithm (see
Exercise 8).

Remark. The Gauss-Bareiss method and the sub-resultant algorithm are in
fact closely linked. It is possible to adapt the sub-resultant algorithm so as
to give correct answers in the non-exact cases that we have mentioned (see
Exercise 10), but the approach using determinants is probably safer.

3.4 Factorization of Polynomials Modulo p

3.4.1 General Strategy

We now consider the problem of factoring polynomials. In practice, for poly-
nomials in one variable the most important base rings are Z (or Q), Fy, or
Qy. Factoring over R or C is equivalent to root finding, hence belongs to the
domain of numerical analysis. We will give a simple but efficient method for
this in Section 3.6.3.

Most factorization methods rely on factorization methods over Fp, hence
we will consider this first. In Section 1.6, we have given algorithms for finding
roots of polynomials modulo p, and explained that no polynomial-time deter-
ministic algorithm is known to do this (if one does not assume the GRH). The
more general case of factoring is similar. The algorithms that we will describe
are probabilistic, but are quite efficient.

Contrary to the case of polynomials over Z, polynomials over [, have a
tendency to have several factors. Hence the problem is not only to break up the
polynomial into two pieces (at least), but to factor completely the polynomial
as a product of powers of irreducible (i.e. prime in R[X]) polynomials. This
is done in four steps, in the following way.

Algorithm 3.4.1 (Factor in F,[X]). Let A € F,[X] be monic (since we are
over a field, this does not restrict the generality). This algorithm factors A as a
product of powers of irreducible polynomials in F,[X].

1. [Squarefree factorization] Find polynomials Ay, Ay, ..., Ak in Fp[X] such
that
(1) A= AlA%--- A,
(2) The A; are squarefree and coprime.
(This decomposition of A will be called the squarefree factorization of A).

2. [Distinct degree factorization] For ¢ = 1,..., k find polynomials 4; 4 € Fp[X]
such that A; 4 is the product of all irreducible factors of A; of degree d (hence
A; =[lq Aia)-

3.4 Factorization of Polynomials Modulo p 125

3. [Final splittings] For each 7 and d, factor A;q into deg(A;a)/d irreducible
factors of degree d.

4. [Cleanup] Group together all the identical factors found, order them by degree,
output the complete factorization and terminate the algorithm.

Of course, this is only the skeleton of an algorithm since steps 1, 2 and 3
are algorithms by themselves. We will consider them in turn.

3.4.2 Squarefree Factorization

Let F, be an algebraic closure of F,. If A € p[X] is monic, define Ai(X) =
I1; (X ;) where the a; are the roots of Ain]Fp of multiplicity exactly equal

to i. Since the Galois group of F,/F,, preserves the multiplicity of the roots of
A, it permutes the o, so all the A; have in fact coefficients in F,, (this will also
follow from the next algorithm). It is clear that they satisfy the conditions of
step 1. It remains to give an algorithm to compute them. '

If A = [1; Ai with A; squarefree and coprime, then A" = 37,], 47 -
iALAL1. Hence, if T = ged(A, A'), then for all irreducible P dividing T', the
exponent vp(T) of P in the prime decomposition of T' can be obtained as
follows: P dividing A must divide an A,, for some m. Hence, for all i # m in
the sum for A’, the vp of the i*® summand is greater than or equal to m and
for i = m is equal to m — 1 if p + m, and otherwise the summand is 0 (note
that since A, is squarefree, A/, cannot be divisible by P). Hence, we obtain
that vp(T) =m —1if ptm, and vp(T) > m, so vp(T) = m (since T divides
A) if p | m. Finally, we obtain the formula

AAI HAz IHAz

pl

Note that we could have given a much simpler proof over Z, and in that case
the exponent of A; would be equal to ¢ — 1 for all <.

Now we define two sequences of polynomials by induction as follows. Set
Ty =Tand V; = A/T = pri A;. For k > 1, set Viyr = (Tk, Vi) if p 1 K,
Vi+1 = Vi if p | k, and Tx4+1 = Tk /Vi+1- It is easy to check by induction that

H A; and Ty = H A:'kHA:
pli

i>k, pti i>k, pf

From this it follows that A = Vi/Vi41 for pt k. We thus obtain all the A for
p 1k, and we continue as long as Vj is a non-constant polynomial. When V is
constant, we have Tj,_; = Hp] i Ag hence there exists a polynomial U such that
Ti-1(X) = UP(X) = U(XP), and this polynomial can be trivially obtained
from Ty_;. We then start again recursively the whole algorithm of squarefree

decomposition on the polynomial U. Transforming the recursive step into a
loop we obtain the following algorithm.

126 3 Algorithms on Polynomials

Algorithm 3.4.2 (Squarefree Factorization). Let A € F,[X] be a monic
polynomial and let A =[], ; A be its squarefree factorization, where the A; are
squarefree and pairwise coprime. This algorithm computes the polynomials A;,
and outputs the pairs (i, A;) for the values of i for which A; is not constant.

1. [Initialize] Set e « 1 and T « A.

2. [Initialize e-loop] If Ty is constant, terminate the algorithm. Otherwise, set
T — (To,T(;), V To/T and k « 0.

3. [Finished e-loop?] If V is constant, T must be of the form T'(X) = Y
soset Top < 3 t; X7/P, e « pe and go to step 2.
4. [Special case] Set k — k+ 1. If p|kset T« T/V and k — k + 1.

5. [Compute Agi] Set W — (T, V), Aex « V/W,V W and T « T/V. If
Ack is not constant output (ek, Aex). Go to step 3.

yi
plj ti X7

3.4.3 Distinct Degree Factorization

We can now assume that we have a squarefree polynomial A and we want to
group factors of A of the same degree d. This procedure is known as distinct
degree factorization and is quite simple. We first need to recall some results
about finite fields. Let P € F,[X] be an irreducible polynomial of degree
d. Then the field K = F,[X]/P(X)F,[X] is a finite field with p? elements.
Hence, every element z of the multiplicative group K* satisfies the equation
Pl = 1, therefore every element of K satisfies z?" = z. This shows that P
is a divisor of the polynomial X P _ X in F,[X]. Conversely, every irreducible
factor of XP* — X which is not a factor of X?* — X for e < d has degree exactly
d. This leads to the following algorithm.

Algorithm 3.4.3 (Distinct Degree Factorization). Given a squarefree poly-
nomial A € F,[X], this algorithm finds for each d the polynomial A4 which is the
product of the irreducible factors of A of degree d.

1. [Initialize] Set V — A, W «— X, d < 0.

2. [Finished?] Set e « deg(V). If d+1 > le, thenife > 0set A. =V, 4; =1
for all other i > d, and terminate the algorithm. If d+1 < %e, setd — d+1,
W — WPmodV.

3. [Output Ag] Output Ay = (W — X, V). If Ag #1,set V «— V/Ay, W «
W mod V. Go to step 2.

Once the A4 have been found, it remains to factor them. We already
know the number of irreducible factors of A4, which is equal to deg(44)/d. In
particular, if deg(A4) = d, then Ay is irreducible.

Note that the distinct degree factorization algorithm above succeeds in
factoring A completely quite frequently. With reasonable assumptions, it can

3.4 Factorization of Polynomials Modulo p 127

be shown that the irreducible factors of A modulo p will have distinct degrees
with probability close to e™” = 0.56146, where v is Euler’s constant, where
we assume the degree of A to be large (see [Knu2)).

As a corollary to the above discussion and algorithm, we see that it is easy
to determine whether a polynomial is irreducible in Fp,[X]. More precisely, we
have:

Proposition 3.4.4. A polynomial A € F,[X] of degree n is irreducible if and
only if the following two conditions are satisfied:

X?" =X (mod A(X)),

and for each prime q dividing n

(XP — X, A(X)) = 1.

Note that to test in practice the second condition of the proposition, one
must first compute B(X) = XP™"" mod A(X) using the powering algorithm,
and then compute ged(B(X) — X, A(X)). Hence, the time necessary for this
irreducibility test, assuming one uses the O(n?) algorithms for multiplication
and division of polynomials of degree n, is essentially O(n?In p), if the factor-
ization of n is known (since nobody considers polynomials of degree larger,
say than 10°, this is a reasonable assumption).

It is interesting to compare this with the analogous primality test for
integers. By Proposition 8.3.1, n is prime if and only if for each prime g dividing
n — 1 one can find an a; € Z such that a}~! =1 (mod n) and a{" £ 1
(mod n). This takes time O(In®n), assuming the factorization of n — 1 to be
known. But this is an unreasonable assumption, since one commonly wants
to prove the primality of numbers of 100 decimal digits, and at present it is
quite unreasonable to factor a 100 digit number. Hence the above criterion is
not useful as a general purpose primality test over the integers.

3.4.4 Final Splitting

Finally we must consider the most important and central part of Algorithm
3.4.1, its step 3, which in fact does most of the work. After the preceding steps
we are left with the following problem. Given a polynomial A which is known
to be squarefree and equal to a product of irreducible polynomials of degree
exactly equal to d, find these factors. Of course, deg(A) is a multiple of d, and
if deg(A) = d we know that A is itself irreducible and there is nothing to do.
A simple and efficient way to do this was found by Cantor and Zassenhaus.
Assume first that p > 2. Then we have the following lemma:

Proposition 3.4.5. If A is as above, then for any polynomial T € Fp[X] we
have the identity:

128 3 Algorithms on Polynomials

A=(AT) (A T®-D/2 11y, (4,702 1)

Proof. The roots of the polynomial X X , being the elements of F 4, are
all distinct. It follows that for any T' € F,[X], the polynomial T'(X)pd - T(X)
also has all the elements of F,4 as roots, hence is divisible by X —X. In
particular, as we have seen in the preceding section, it is a multiple of every

irreducible polynomial of degree d, hence of A, since A is squarefree. The
claimed identity follows immediately by noting that

TP — T =T . (T®"-1/2 4 1) (p*-D/2 _ 1)
with the three factors pairwise coprime. O

Now it is not difficult to show that if one takes for T' a random monic
polynomial of degree less than or equal to 2d —1, then (A4, TF*-1/2 _ 1) will
be a non-trivial factor of A with probability close to 1/2. Hence, we can use
the following algorithm to factor A:

Algorithm 3.4.6 (Cantor-Zassenhaus Split). Given A as above, this algo-
rithm outputs its irreducible factors (which are all of degree d). This algorithm
will be called recursively.

1. [Initialize] Set k — deg(A)/d. If k = 1, output A and terminate the algorithm.

2. [Try a T] Choose T' € F,[X] randomly such that T is monic of degree less
than or equal to 2d — 1. Set B « (A, T®"-1/2 — 1) If deg(B)=0 or
deg(B) = deg(A) go to step 2.

3. [Recurse] Factor B and A/B using the present algorithm recursively, and ter-
minate the algorithm.

Note that, as has already been mentioned after Proposition 3.4.4, to com-

pute B in step 2 one first computes C «— T(*"~1)/2 mod A using the powering
algorithm, and then B « (A,C —1).

Finally, we must consider the case where p = 2. In that case, the following
result is the analog of Proposition 3.4.5:
Proposition 3.4.7. Set
UX)=X+X2+ X4+ ..+ x27".
If p=2 and A is as above, then for any polynomial T € F3[X] we have the

identity
A=(AUoT)-(A,UoT+1).

3.4 Factorization of Polynomials Modulo p 129

Proof. Note that (UoT)2 =T?4+T*+...4T% hence (UoT)-(UoT+1) =
T2~ (remember that we are in characteristic 2). By the proof of Proposition
3.4.5 we know that this is a multiple of A4, and the identity follows. O

Exactly as in the case of p > 2, one can show that the probability that
(A,U oT) is a non-trivial factor of A is close to 1/2, hence essentially the
same algorithm as Algorithm 3.4.6 can be used. Simply replace in step 2
B — (A, T@'-1/2 — 1) by B < (A,U o T). Here, however, we can do better
than choosing random polynomials T in step 2 as follows.

Algorithm 3.4.8 (Split for p = 2). Given 4 € F5[X] as above, this algorithm
outputs its irreducible factors (which are all of degree d). This algorithm will be
called recursively.

1. [Initialize] Set k < deg(A)/d. If k =1, output A and terminate the algorithm,
otherwise set T+ X.

2. [Test T] Set C < T and then repeat d —1 times C < T + C2? mod A. Then
set B« (A,C). If deg(B)=0 or deg(B) = deg(A) then set T « T - X2
and go to step 2.

3. [Recurse] Factor B and A/B using the present algorithm recursively, and ter-
minate the algorithm.

Proof. If this algorithm terminates, it is clear that the output is a factorization
of A, hence the algorithm is correct. We must show that it terminates. Notice
first that the computation of C' done in step 2 is nothing but the computation
of UoT mod A (note that on page 630 of [Knu2], Knuth gives C « (C
+C? mod A), but this should be instead, as above, C — T + C? mod A).

Now, since for any T' € F3[X], we have by Proposition 3.4.7 U(T)-(U(T) +
1) = 0 (mod A), it is clear that (U(T),A) = 1 is equivalent to U(T) =1
(mod A). Furthermore, one immediately checks that U(T2) = U(T') (mod A),
and that U(Tl + Tz) = U(T]) + U(Tz)

Now I claim that the algorithm terminates when T' = X*¢ in step 2 for
some odd value of e such that e < 2d — 1. Indeed, assume the contrary. Then
we have for every odd e < 2d —1, (U(X¢),A) =1 or A, hence U(X®) =0 or
1 modulo A. Since U(T?) = U(T) (mod A), this is true also for even values
of e < 2d, and the linearity of U implies that this is true for every polynomial
of degree less than or equal to 2d. Now U is a polynomial of degree 2¢71, and
has at most (in fact exactly, see Exercise 15) 2471 roots in Foa. Let 8 € Fou
not a root of U. The number of irreducible factors of A is at least equal to
2 (otherwise we would have stopped at step 1), and let A; and Ay be two
such factors, both of degree d. Let a be a root of Ay in Fy« (notice that all
the roots of Ay are in Fya). Since A; is irreducible, o generates Fou over Fa.
Hence, there exists a polynomial P € Fo[X] such that 8 = P().

By the Chinese remainder theorem, since A; and A, are coprime we can
choose a polynomial T such that T'= 0 (mod A;) and T = P (mod A42), and

130 3 Algorithms on Polynomials

T is defined modulo the product A; As. Hence, we can choose T' of degree less
than 2d. But
UT)=U(0)=0 (mod 4;)

and
UT)=U(P)#0 (mod 4)

since
U(P(a)) = U(B) #0.
This contradicts U(T') = 0 or 1 modulo A, thus proving the validity of the

algorithm. The same proof applied to TP"— T instead of U (T) explains why
one can limit ourselves to deg(T') < 2d —1 in Algorithm 3.4.6. O

Proposition 3.4.7 and Algorithm 3.4.8 can be extended to general primes
p, but are useful in practice only if p is small (see Exercise 14).

There is another method for doing the final splitting due to Berlekamp
which predates that of Cantor-Zassenhaus, and which is better in many cases.
This method could be used as soon as the polynomial is squarefree. (In other
words, if desirable, we can skip the distinct degree factorization.) It is based
on the following proposition.

Proposition 3.4.9. Let A € F,[X] be a squarefree polynomial, and let

Ax)= [[4x)

1<ilr

be its decomposition into irreducible factors. The polynomials T' € Fp[X] with
deg(T) < deg(A) for which for each ¢ with 1 < i < r there exist s; € [,
such that T(X) = s; (mod A;(X)), are exactly the p" polynomials T such
that deg(T') < deg(A) and T(X)? =T(X) (mod A(X)).

Proof. By the Chinese remainder Theorem 1.3.9 generalized to the Euclidean
ring F,[X], for each of the p" possible choices of s; € F, (1 < i < 7), there
exists a unique polynomial T' € FF,[X] such that deg(T") < deg(A) and for
each ¢

T(X) = 8S; (mod A,(X))
Now if T is a solution of such a system, we have
T(X)P=s" =8, =T(X) (mod 4;(X))

for each %, hence
T(X)P=T(X) (mod A(X)).

Conversely, note that we have in Fp[X] the polynomial identity X? — X =
[To<s<p—1(X — s), hence

3.4 Factorization of Polynomials Modulo p 131

TXP-T(X)= [] @X) -s).

0<s<p-1

Hence, if T(X)? = T(X) (mod A(X)), we have for all ¢

ax)| I @@ -s),

0<s<p-1

and since the A; are irreducible this means that A;(X) | T(X) — s; for some
s; € IF,, thus proving the proposition. a

The relevance of this proposition to our splitting problem is the following.
If T is a solution of such a system of congruences with, say, s1 # sz, then
ged(A(X), T(X) — s1) will be divisible by A; and not by As, hence it will be
a non-trivial divisor of A. The above proposition tells us that to look for such
nice polynomials T it is not necessary to know the A;, but simply to solve the
congruence T(X)? = T(X) (mod A(X)).

To solve this, write T'(X) = 3 <<, tj X7, where n = deg(A), with t; €
Fp. Then T(X)P = 37.t;X?, hence if we set

Xrk = Z gk X' (mod A(X))

0<i<n

we have

T(X)P=) t;y ¢;X* (mod A(X))
j i
so the congruence T(X)P = T(X) (mod A(X)) is equivalent to

thqi,j =t; for 1<i<n.
J

If, in matrix terms, we set Q = (g;,;), V = (t;) (column vector), and I the
identity matrix, this means that QV = V. In other words (Q —I)V =0,s0 V
belongs to the kernel of the matrix Q — I.

Algorithm 2.3.1 will allow us to compute this kernel, and it is especially
efficient since we work in a finite field where no coefficient explosion or insta-
bility occurs.

Thus we will obtain a basis of the kernel of @—1I, which will be of dimension
r by Proposition 3.4.9. Note that trivially ¢;o = 0 if ¢ > 0 and goo = 1,
hence the column vector (1,0,...,0)* will always be an element of the kernel,
corresponding to the trivial choice T'(X) = 1. Any other basis element of the
kernel will be useful. If T(X) is the polynomial corresponding to a V' in the
kernel of Q — I, we compute (A(X),T(X) —s) for 0 < s < p — 1. Since by
Proposition 3.4.9 there exists an s such that T(X) = s (mod A;(X)), there
will exist an s which will give a non-trivial GCD, hence a splitting of A. We

132 3 Algorithms on Polynomials

apply this to all values of s and all basis vectors of the kernel until the r
irreducible factors of A have been isolated (note that it is better to proceed
in this way than to use the algorithm recursively once a split is found as in
Algorithm 3.4.6 since it avoids the recomputation of @ and of the kernel of
Q-1I).

This leads to the following algorithm.

Algorithm 3.4.10 (Berlekamp for Small p). Given a squarefree polynomial
A € TFp[X] of degree n, this algorithm computes the factorization of A into
irreducible factors.

1. [Compute Q] Compute inductively for 0 < k < n the elements g¢; x € F,, such
that
XPE= 3" gk X' (mod A(X)).

0<i<n

2. [Compute kernel] Using Algorithm 2.3.1, find a basis V;, ..., V. of the kernel
of @ — I. Then r will be the number of irreducible factors of A, and V; =
(1,0,...,0)%. Set E «— {A}, k « 1, j « 1 (E will be a set of polynomials
whose product is equal to A, k its cardinality and j is the index of the vector
of the kernel which we will use).

3. [Finished?] If k = r, output E as the set of irreducible factors of A and
terminate the algorithm. Otherwise, set j < j + 1, and let T(X) be the
polynomial corresponding to the vector V; (i.e. T(X) 205i<n(1/}-)iXi).

4. [Split] For each element B € E such that deg(B) > 1 do the following. For
each s € F,, compute (B(X), T'(X)—s). Let F be the set of such GCD's whose
degree is greater or equal to 1. Set E — (E\{B})UF and k — k—1+|F]|.
If in the course of this computation we reach k = r, output E and terminate
the algorithm. Otherwise, go to step 3.

The main drawback of this algorithm is that the running time of step 4
is proportional to p, and this is slower than Algorithm 3.4.6 as soon as p gets
above 100 say. On the other hand, if p is small, a careful implementation of
this algorithm will be faster than Algorithm 3.4.6. This is important, since in
many applications such as factoring polynomials over Z, we will first factor
the polynomial over a few fields F, for small primes p where Berlekamp’s
algorithm is superior.

If we use the idea of the Cantor-Zassenhaus split, we can however improve
considerably Berlekamp’s algorithm when p is large. In steps 3 and 4, instead of
considering the polynomials corresponding to the vectors V;—sVi for2 < j <r
and s € F,, we instead choose a random linear combination V = 3"7_; a;V;
with a; € Fp and compute (B(X), T(X)®~1/2 1), where T is the polynomial
corresponding to V. It is easy to show that this GCD will give a non-trivial
factor of B(X) with probability greater than or equal to 4/9 when p > 3 and
B is reducible (see Exercise 17 and [Knu2] p. 429). This gives the following
algorithm.

3.5 Factorization of Polynomials over Z or Q 133

Algorithm 3.4.11 (Berlekamp). Given a squarefree polynomial A € FF,[X]
of degree n (with p > 3), this algorithm computes the factorization of A into
irreducible factors.

1. [Compute Q] Compute inductively for 0 < k < n the elements g; , € F,, such

that
ka = Z qi,kXi‘
0<i<n
2. [Compute kernel] Using Algorithm 2.3.1, find a basis V1, ... , Vi of the kernel
of @—1, and let Ty, ... , T, be the corresponding polynomials. Then r will be

the number of irreducible factors of 4, and V; = (1,0,...,0)" hence Ty = 1.

Set E — {A}, k 1, (E will be a set of polynomials whose product is equal
to A and k its cardinality).

3. [Finished?] If k = r, output E as the set of irreducible factors of A and
terminate the algorithm. Otherwise, choose r random elements a; € Fp, and
set T(X) « ZISiSr a;T;(X).

4. [Split] For each element B € E such that deg(B) > 1 do the following. Let
D(X) « (B(X),T(X)®P~1/2 _1). If deg(D) > 0 and deg(D) < deg(B), set
E — (E\{B})U{D, B/D} and k « k+1. If in the course of this computation
we reach k = r, output E and terminate the algorithm. Otherwise, go to step 3.

Note that if we precede any of these two Berlekamp algorithms by the
distinct degree factorization procedure (Algorithm 3.4.3), we should replace
the condition deg(B) > 1 of step 4 by deg(B) > d, since we know that all the
irreducible factors of A have degree d.

Using the algorithms of this section, we now have at our disposal several
efficient methods for completely factoring polynomials modulo a prime p. We
will now consider the more difficult problem of factoring over Z.

3.5 Factorization of Polynomials over Z or QQ

The first thing to note is that factoring over Q is essentially equivalent to
factoring over Z. Indeed if A = [], A; where the A; are irreducible over Q,
then by multiplying by suitable rational numbers, we have dA = [],(d;A;)
where the d; can be chosen so that the d;A; have integer coefficients and
are primitive. Hence it follows from Gauss’s lemma (Theorem 3.2.8) that if
A € Z[X], then d = £1. Conversely, if A =[], A; with A and the A; in Z[X]
and the A; are irreducible over Z, then the A; are also irreducible over Q, by
a similar use of Gauss’s lemma.

Therefore in this section, we will consider only the problem of factoring a
polynomial A over Z. If A = BC is a splitting of A in Z[X], then A = BC in
F,[X], where ~ denotes reduction mod p. Hence we can start by reducing mod
p for some p, factor mod p, and then see if the factorization over Fy, lifts to
one over Z. For this, it is essential to know an upper bound on the absolute
value of the coefficients which can occur as a factor of A.

134 3 Algorithms on Polynomials

3.5.1 Bounds on Polynomial Factors

The results presented here are mostly due to Mignotte [Mig]. The aim of this
section is to prove the following theorem:

Theorem 3.5.1. For any polynomial P = Zo<z<nth' € C[X] set |P| =

(i mil®)V2 Let A = Focicm @i Xt and B = Yoo, biX* be polynomials
with integer coefficients, and assume that B divides A.” Then we have for all j

n—1 n—1
o< ("7 i+ (22t

Proof. Let o be any complex number, and let 4 = 3 o . a;X* be any
polynomial. Set G(X) = (X — @)A(X) and H(X) = (@X — 1)A(X). Then

G =) laic1 — aail* = > (lai-1]? + |aa;|? — 2Re(ca;@i77))
= Ez(laai_ﬂ2 + |as|? — 2 Re(aa;ai-T))
=Y laai1 —ail® = |HP.
Let now A(X) = am [[;(X — o;) be the decomposition of A over C. If we set
CX)=am [] (X-ay) J] @x-1),
laj|21 lajl<1

it follows that |C| = |A]. Hence, taking into account only the coefficient of
X™ and the constant term, it follows that

|A? = |C? > |am[>(M(A)? + m(A4)?),
where

II lesl, m(4) = [] leyl-

loj|>1 Iaj|<1

In particular, M(A) < |A|/|am|. Now

|aj| = |am| |Za,~l . .a,-m_j < |am| Z’Bil .o 'ﬂim—j’

where 3; = max(1, |a;|). Assume for the moment the following lemma:

Lemma 3.5.2. Ifzy > 1, ..., T,, > 1 are real numbers constrained by
the further condition that their product is equal to M, then the elementary
symmetric function omkx = Y T;, ... T;, Satisfies

m—1 m—1
<
Umk_(k_l)M+(k)

3.5 Factorization of Polynomials over Z or Q 135

Since the product of the §; is by definition M(A), it follows from the
lemma that for all j,

m—1 m—1
SR (NN RN)
m—1 m—1
(7 o ()
J -1
Coming back to our notations and applying the preceding result to the poly-
nomial B, we see that |b;| < |bn|((";1)M(B) + (?:11)) It follows that |b;| <
lam|((*;7)M(A) + (3)) since if B divides A, we must have M(B) < M(A)
(since the roots of B are roots of A), and |b,| < |am| (since in fact b, divides
am). The theorem follows from this and the inequality M(A) < |Al/|am|
proved above.
It remains to prove the lemma. Assume without loss of generality that z; <
Zg -+ < Tmp. If one changes the pair (z,,—1,Zy,) into the pair (1, T,_12Z.,), all
the constraints are still satisfied and it is easy to check that the value of ok
is increased by
O(m-2)(k=1)(Tm-1 — 1)(Tm — 1).

It follows that if z,,,—1 > 1, the point (z1,...,Z,) cannot be a maximum.
Hence a necessary condition for a maximum is that z,,_; = 1. But this imme-
diately implies that x; = 1 for all i < m, and hence that z,, = M. It is now
a simple matter to check the inequality of the lemma, the term (7=))M cor-

responding to k-tuples containing z,,, and the term (mk' 1) to the ones which
do not contain x,,. This finishes the proof of Theorem 3.5.1.]

A number of improvements can be made in the estimates given by this
theorem. They do not seriously influence the running time of the algorithms
using them however, hence we will be content with this.

3.5.2 A First Approach to Factoring over Z

First note that for polynomials A of degree 2 or 3 with coefficients which are
not too large, the factoring problem is easy: if A is not irreducible, it must
have a linear factor ¢X — p, and g must divide the leading term of A, and p
must divide the constant term. Hence, if the leading term and the constant
term can be easily factored, one can check each possible divisor of A. An ad
hoc method of this sort could be worked out also in higher degrees, but soon
becomes impractical.

A second way of factoring over Z is to combine information obtained
by the mod p factorization methods. For example, if modulo some prime p,
A(X) mod p is irreducible, then A(X) itself is of course irreducible. A less
trivial example is the following: if for some p a polynomial A(X) of degree 4
breaks modulo p into a product of two irreducible polynomials of degree 2,

136 3 Algorithms on Polynomials

and for another p into a product of a polynomial of degree 1 and an irreducible
polynomial of degree 3, then A(X) must be irreducible since these splittings
are incompatible. Unfortunately, although this method is useful when com-
bined with other methods, except for polynomials of small degree, when used
alone it rarely works. For example, using the quadratic reciprocity law and
the identities

X +1=(X2+V2I)(X2 - VD)
=(X2-XV2+1)(X2+XV2+1)
=(X2+XV2-1)(X?-XV/—2-1)

it is easy to check that the polynomial X* + 1 splits into 4 linear factors if
p=2or p=1 (mod 8), and into two irreducible quadratic factors otherwise.
This is compatible with the possibility that X*+ 1 could split into 2 quadratic
factors in Z[X], and this is clearly not the case.

A third way to derive a factorization algorithm over Z is to use the bounds
given by Theorem 3.5.1 and the mod p factorization methods. Consider for
example the polynomial

AX) = X% -6X*—2X3 —7X%2 46X +1.

If it is not irreducible, it must have a factor of degree at most 3. The bound of
Theorem 3.5.1 shows that for any factor of degree less or equal to 3 and any
J, one must have |bj| < 23. Take now a prime p greater than twice that bound
and for which the polynomial A mod p is squarefree, for example p = 47. The
mod p factoring algorithms of the preceding section show that modulo 47 we
have

A(X) = (X —22)(X — 13)(X — 12)(X +12)(X2% - 12X — 4),

taking as representatives of Z/47Z the numbers from —23 to 23. Now the
constant term of A being equal to 1, up to sign any factor of A must have
that property. This immediately shows that A has no factor of degree 1 over
Z (this could of course have been checked more easily simply by noticing that
A(1) and A(—1) are both non-zero), but it also shows that A has no factor of
degree 2 since modulo 47 we have 12-22 = —18,12-13=15,12-12=3 and
13-22 = 4. Hence, if A is reducible, the only possibility is that A is a product
of two factors of degree 3. One of them must be divisible by X% — 12X — 4,
and hence can be (modulo 47) equal to either (X2 — 12X — 4)(X —12) (whose
constant term is 1), or to (X2 — 12X — 4)(X + 12) (whose constant term is
—1). Now modulo 47, we have (X2 — 12X —4)(X —12) = X3 +23X2 - X +1
and (X% - 12X —4)(X +12) = X3 —7X — 1.

The first case can be excluded a priori because the bound of Theorem 3.5.1
gives by < 12, hence 23 is too large. In the other case, by the choice made for
p, this is the only polynomial in its congruence class modulo 47 satisfying the
bounds of Theorem 3.5.1. Hence, if it divides A in Z[X], we have found the

3.5 Factorization of Polynomials over Z or Q 137

factorization of A, otherwise we can conclude that A is irreducible. Since one
checks that A(X) = (X3 —7X — 1)(X® + X — 1), we have thus obtained the
complete factorization of A over Z. Note that the irreducibility of the factors
of degree 3 has been proved along the way.

When the degree or the coefficients of A are large however, the bounds of
Theorem 3.5.1 imply that we must use a p which is really large, and hence for
which the factorization modulo p is too slow. We can overcome this problem
by keeping a small p, but factoring modulo p¢ for sufficiently large e.

3.5.3 Factorization Modulo p¢: Hensel’s Lemma

The trick is that if certain conditions are satisfied, we can “lift” a factorization
modulo p to a factorization mod p® for any desired e, without too much effort.
This is based on the following theorem, due to Hensel, and which was one of
his motivations for introducing p-adic numbers.

Theorem 3.5.3. Let p be a prime, and let C, A,, Be, U, V be polynomials
with integer coefficients and satisfying

C(X) = Ae(X)B(X) (mod p°), U(X)Ae(X)+V(X)Be(X) =1 (mod p).

Assume that e > 1, Ae is monic, deg(U) < deg(B.), deg(V) < deg(A.). Then
there exist polynomials Aey1 and By1 satisfying the same conditions with e
replaced by e + 1, and such that

Aer1(X) = Ae(X) (mod p°), Bet1(X) = Be(X) (mod p®).
Furthermore, these polynomials are unique modulo p®*?.

Proof. Set D = (C — A.B.)/p® which has integral coefficients by assumption.
We must have Aer; = Ae + p¢S, Ber1 = B, + p°T with S and T in Z[X].
The main condition needed is C(X) = A¢;1(X)Bes1(X) (mod p**?). Since
2e > e+ 1, this is equivalent to AT + B,S = (C — A¢B.)/p® = D (mod p).
Since UA, + VB, = 1 in Fp[X] and F, is a field, the general solution is
S=VD+WA, (mod p) and T'=UD —WB,) (mod p) for some polynomial
W. The conditions on the degrees imply that S and T are unique modulo
p, hence A.y; and B.y; are unique modulo p®*!. Note that this proof is
constructive, and gives a simple algorithm to obtain A.y; and Bey1. m]

For reasons of efficiency, it will be useful to have a more general version
of Theorem 3.5.3. The proof is essentially identical to the proof of Theorem
3.5.3, and will follow from the corresponding algorithm.

Theorem 3.5.4. Let p, ¢ be (not necessarily prime) integers, and let r =
(p,q). Let C, A, B, U and V be polynomials with integer coefficients satisfying

138 3 Algorithms on Polynomials

C = AB (mod q), UA+VB=1 (mod p),

and assume that (£(A),r) = 1, deg(U) < deg(B), deg(V) < deg(A) and
deg(C) = deg(A) +deg(B). (Note that this last condition is not automatically
satisfied since Z/qZ may have zero divisors.) Then there exist polynomials
A; and B; such that Ay = A (mod ¢), B; = B (mod q), £(A1) = £(A),
deg(A;) = deg(A), deg(B1) = deg(B) and

C =A;1B; (mod gr).

In addition, Ay and B; are unique modulo gr if r is prime.
We give the proof as an algorithm.

Algorithm 3.5.5 (Hensel Lift). Given the assumptions and notations of The-

orem 3.5.4, this algorithm outputs the polynomials A; and B;. As a matter of

notation, we denote by K the ring Z/rZ.

1. [Euclidean division] Set f « (C — AB)/q (mod r) € K[X]. Using Algorithm
3.1.1 over the ring K, find t € K[X] such that deg(V f — At) < deg(A) (this
is possible even when K is not a field, since £(A) is invertible in K).

2. [Terminate] Let Ag be a lift of V f — At to Z[X] having the same degree,
and let By be a lift of Uf + Bt to Z[X] having the same degree. Output
A; — A+ qAg, By «— B+ qBy and terminate the algorithm.

Proof. It is clear that BAg+ ABg = f (mod 7). From this, it follows immedi-
ately that C = A;B; (mod gr) and that deg(By) < deg(B), thus proving the
validity of the algorithm and of Theorem 3.5.4. O

If p | ¢, we can also if desired replace p by pr = p? in the following way.

Algorithm 3.5.6 (Quadratic Hensel Lift). Assume p | g, hence r = p. After
execution of Algorithm 3.5.5, this algorithm finds U; and V; such that Uy = U
(mod p), V1 =V (mod p), deg(U) < deg(Bi), deg(V1) < deg(Ai) and

UiA;+ V1B =1 (mod p‘l‘)

1. [Euclidean division] Set g < (1 — UA; — VB;)/p (mod r). Using Algorithm
3.1.1 over thesame ring K = Z/rZ, find t € K[X] such that deg(Vg—A;t) <
deg(A1), which is possible since £(A;) = £(A) is invertible in K.

2. [Terminate] Let Ug be a lift of Ug + B;t to Z[X] having the same degree,
and let Vp be a lift of Vg — Ajt to Z[X] having the same degree. Output
Uy « U +pUp, Vi1 «— V + pVy and terminate the algorithm.

It is not difficult to see that at the end of this algorithm, (A1, B1, U1, V1)
satisfy the same hypotheses as (4, B, U, V) in the theorem, with (p, q) replaced
by (pr,gr).

3.5 Factorization of Polynomials over Z or Q 139

The condition p | ¢ is necessary for Algorithm 3.5.6 (not for Algorithm
3.5.5), and was forgotten by Knuth (page 628). Indeed, if p { ¢, G does not
have integral coefficients in general, since after constructing A; and By, one
has only the congruence UA;+V B; =1 (mod r) and not (mod p). Of course,
this only shows that Algorithm 3.5.6 cannot be used in that case, but it does
not show that it is impossible to find U; and V; by some other method. It is
however easy to construct counterexamples. Take p =33, ¢ = 9, hence r = 3,
and A(X) =X—-3,B(X)=X—-4,C(X)=X?>+2X+3,U(X) =1 and
V(X) = —1. The conditions of the theorem are satisfied, and Algorithm 3.5.5
gives us A;(X) = X— 21 and By(X) = X + 23. Consider now the congruence
that we want, i.e.

U (X)(X —21) + Vi(X)(X + 23) =1 (mod 99),
or equivalently
U(X)(X —21) + Vi(X)(X + 23) =1 + 99W (X)),

where all the polynomials involved have integral coefficients. If we set X = 21,
we obtain 44V;(21) = 1+ 99W(21), hence 0 = 1 (mod 11) which is absurd.
This shows that even without any restriction on the degrees, it is not always
possible to lift p to pr if p{ q.

The advantage of using both algorithms instead of one is that we can
increase the value of the exponent e much faster. Assume that we start with
p = q. Then, by using Algorithm 3.5.5 alone, we keep p fixed, and ¢ takes
the successive values p?, p%, etc If instead we use both Algorithms 3.5.5
and 3.5.6, the pair (p,q) takes the successive values (p?,p?), (p*,p%), etc ...
with the exponent doubling each time. In principle this is much more efficient.
When the exponent gets large however, the method slows down because of the
appearance of multi-precision numbers. Hence, Knuth suggests the following
recipe: let E be the smallest power of 2 such that p? cannot be represented
as a single precision number, and e be the largest integer such that p® is a
single precision number. He suggests working successively with the following
pairs (p,q):

(p,p), ®*0%), (0*,p%), ..., (P/%,p"/?) using both algorithms, then
(p®,pF) using both algorithms again but a reduced value of the exponent
of p (since e < E) and finally (p¢,p®*e), (pe,pf+2e), (p¢,pF*3e), ... using
only Algorithm 3.5.5.

Finally, note that by induction, one can extend Algorithms 3.5.5 and 3.5.6
to the case where C is congruent to a product of more than 2 pairwise coprime
polynomials mod p.

3.5.4 Factorization of Polynomials over Z

We now have enough ingredients to give a reasonably efficient method for
factoring polynomials over the integers as follows.

140 3 Algorithms on Polynomials

Algorithm 3.5.7 (Factor in Z[X]). Let A € Z[X] be a non-zero polynomial.
This algorithm finds the complete factorization of A in Z[X].

1.

[Reduce to squarefree and primitive] Set ¢ « cont(4), A « A/c, U «
AJ(A, A") where (A, A’) is computed using the sub-resultant Algorithm 3.3.1,
or the method of Section 3.6.1 below. (Now U will be a squarefree primi-
tive polynomial. In this step, we could also use the squarefree decomposition
Algorithm 3.4.2 to reduce still further the degree of U).

. [Find a squarefree factorization mod p| For each prime p, compute (U,U’)

over the field I, and stop when this GCD is equal to 1. For this p, using the
algorithms of Section 3.4, find the complete factorization of U mod p (which
will be squarefree). Note that in this squarefree factorization it is not necessary
to find each A; from the U;: we will have A; = U; since T = (U,U’) = 1.

[Find bound] Using Theorem 3.5.1, find a bound B for the coefficients of
factors of U of degree less than or equal to deg(U)/2. Choose e to be the
smallest exponent such that p¢ > 2¢(U)B.

[Lift factorization] Using generalizations of Algorithms 3.5.5 and 3.5.6, and the
procedure explained in the preceding section, lift the factorization obtained in
step 2 to a factorization mod p®. (One will also have to use Euclid’s extended
Algorithm 3.2.2.) Let

U=LU)U,U,...U,. (mod p°)

be the factorization of U mod p¢, where we can assume the U; to be monic.
Set d « 1.

[Try combination] For every combination of factors V = U;, ... U,, where in
addition we take ig =1 if d = %r, compute the unique polynomial V € Z[X]
such that all the coefficients of V' are in [— %_pe, %pe[, and satisfying V = ¢(U)V
(mod p°) if deg(V) < 3 deg(U), V = U/V (mod p®) if deg(V) > 1 deg(U).

If V divides £(U)U in Z[X], output the factor F' = pp(V), the exponent
of Flin A, set U « U/F, and remove the corresponding U; from the list of
factors mod p® (i.e. remove U;, ... U;, and set r «— 1 —d if d < %r, or leave
only these factors and set r «+— d otherwise). If d > %r terminate the algorithm
by outputting pp(U) if deg(U) > 0.

.Setd—d+1.1fd< %r go to step 5, otherwise terminate the algorithm by

outputting pp(U) if deg(U) > 0.

Implementation Remarks. To decrease the necessary bound B, it is a good
idea to reverse the coefficients of the polynomial U if |ug| < |un| (where of
course we have cast out all powers of X so that up # 0). Then the factors will
be the reverse of the factors found.

In step 5, before trying to see whether V divides £(U)U, one should first

test the divisibility of the constant terms, i.e. whether V' (0) | (¢(U)U(0)), since
this will be rarely satisfied in general.

3.5 Factorization of Polynomials over Z or Q 141

An important improvement can be obtained by using the information
gained by factoring modulo a few small primes as mentioned in the second
paragraph of Section 3.5.2. More precisely, apply the distinct degree factor-
ization Algorithm 3.4.3 to U modulo a number of primes px (Musser and
Knuth suggest about 5). If d; are the degrees of the factors (it is not neces-
sary to obtain the factors themselves) repeated with suitable multiplicity (so
that }°.d; = n = deg(U)), build a binary string Dy of length n + 1 which
represents the degrees of all the possible factors mod pi in the following way:
Set Dy « (0...01), representing the set with the unique element {0}. Then,
for every d; set

Dki—DkV(Dk "ldJ) s

where V is inclusive “or”, and Dy 9d; is Dy shifted left d; bits. (If desired, one
can work with only the rightmost [(n + 1)/2] bits of this string by symmetry
of the degrees of the factors.)

Finally compute D « A Dy, i.e. the logical “and” of the bit strings. If
the binary string D has only one bit at each end, corresponding to factors of
degree 0 and n, this already shows that U is irreducible. Otherwise, choose
for p the py giving the least number of factors. Then, during the execution of
step 5 of Algorithm 3.5.7, keep only those d-uplets (i1, ...,44) such that the
bit number deg(U;,) + - - - + deg(U;,) of D is equal to 1.

Note that the prime chosen to make the Hensel lift will usually be small
(say less than 20), hence in the modulo p factorization part, it will probably
be faster to use Algorithm 3.4.10 than Algorithm 3.4.6 for the final splitting.

3.5.5 Discussion

As one can see, the problem of factoring over Z (or over Q, which is essentially
equivalent) is quite a difficult problem, and leads to an extremely complex al-
gorithm, where there is a lot of room for improvement. Since this algorithm
uses factorization mod p as a sub-algorithm, it is probabilistic in nature. Even
worse, the time spent in step 5 above can be exponential in the degree. There-
fore, a priori, the running time of the above algorithm is exponential in the
degree. Luckily, in practice, its average behavior is random polynomial time.
One should keep in mind however that in the worst case it is exponential time.

An important fact, discovered only relatively recently (1982) by Lenstra,
Lenstra and Lovész is that it is possible to factor a polynomial over Z[X] in
polynomial time using a deterministic algorithm. This is surprising in view
of the corresponding problem over Z/pZ[X] which should be simpler, and
for which no such deterministic polynomial time algorithm is known, at least
without assuming the Generalized Riemann Hypothesis. Their method uses
in a fundamental way the LLL algorithm seen in Section 2.6.

The problem with the LLL factoring method is that, although in theory
it is very nice, in practice it seems that it is quite a lot slower than the
algorithm presented above. Therefore we will not give it here, but refer the

142 3 Algorithms on Polynomials

interested reader to [LLL]. Note also that A. K. Lenstra has shown that similar
algorithms exist over number fields, and also for multivariate polynomials.

There is however a naive way to apply LLL which gives reasonably good
results. Let A be the polynomial to be factored, and assume as one may, that it
is squarefree (but not necessarily primitive). Then compute the roots a; of A
in C with high accuracy (say 19 decimal digits) (for example using Algorithm
3.6.6 below), then apply Algorithm 2.7.4 to 1,q,...,af™! for some k < n,
where a is one of the a;. Then if A is not irreducible, and if the constant
N of Algorithm 2.7.4 is suitably chosen, o will be a root of a polynomial in
Z[X] of some degree k < n, and this polynomial will probably be discovered
by Algorithm 2.7.4. Of course, the results of Algorithm 2.7.4 may not corre-
spond to exact relations, so to be sure that one has found a factor, one must
algebraically divide A by its tentative divisor.

Although this method does not seem very clean and rigorous, it is certainly
the easiest to implement. Hence, it should perhaps be tried before any of
the more sophisticated methods above. In fact, in [LLL], it is shown how to
make this method into a completely rigorous method. (They use p-adic factors
instead of complex roots, but the result is the same.)

3.6 Additional Polynomial Algorithms

3.6.1 Modular Methods for Computing GCD’s in Z[X]

Using methods inspired from the factoring methods over Z, one can return
to the problem of computing GCD’s over the specific UFD Z, and obtain
an algorithm which can be faster than the algorithms that we have already
seen. The idea is as follows. Let D = (4, B) in Z[X], and let Q = (4, B) in
F,[X] where Q is monic. Then D mod p is a common divisor of A and B in
F,[X], hence D divides Q in the ring F,[X]. (We should put ~ to distinguish
polynomials in Z[X] from polynomials in F,[X], but the language makes it
clear.)

If p does not divide both £(A) and £(B), then p does not divide ¢(D) and
so deg(D) < deg(Q). If, for example, we find that Q = 1 in F,[X], it follows
that D is constant, hence that D = (cont(A),cont(B)). This is in general
much easier to check than to use any version of the Euclidean algorithm over
a UFD (Algorithm 3.3.1 for example). Note also that, contrary to the case
of integers, two random polynomials over Z are in general coprime. (In fact
a single random polynomial is in general irreducible.) In general however, we
are in a non-random situation so we must work harder. Assume without loss
of generality that A and B are primitive.

So as not to be bothered with leading coefficients, instead of D, we will
compute an integer multiple Dy = ¢ (A4, B) such that

£(D1) = (£(A),€(B)),

3.6 Additional Polynomial Algorithms 143

(i.e. with ¢ = £(D)/(£(A),£4(B))). We can then recover D = pp(D;) since we
have assumed A and B primitive.

Let M be the smallest of the bounds given by Theorem 3.5.1 for the
two polynomials £A and £B, where £ = (¢(A),4(B)), and where we limit the
degree of the factor by deg(Q). Assume for the moment that we skip the
Hensel step, i.e. that we take p > 2M (which in any case is the best choice if
this leaves p in single precision). Compute the unique polynomial Q; € Z[X]
such that Q; = ¢Q (mod p) and having all its coefficients in —%p, -%p[If
pp(Q1) is a common divisor of A and B (in Z[X]!), then since D divides Q
mod p, it follows that (A4, B) = pp(Q1). If it is not a common divisor, it is not
difficult to see that this will happen only if p divides the leading term of one
of the intermediate polynomials computed in the primitive form of Euclid’s
algorithm over a UFD (Algorithm 3.2.10), hence this will not occur often. If
this phenomenon occurs, try again with another prime, and it should quickly
work.

If M is really large, then one can use Hensel-type methods to determine
D; mod p® for sufficiently large e. The techniques are completely analogous
to the ones given in the preceding sections and are left to the reader.

Perhaps the best conclusion for this section is to quote Knuth essentially
verbatim:

“The GCD algorithms sketched here are significantly faster than those
of Sections 3.2 and 3.3 except when the polynomial remainder sequence is
very short. Perhaps the best general procedure would be to start with the
computation of (A, B) modulo a fairly small prime p, not a divisor of both
£(A) and £(B). If the result @Q is 1, we are done; if it has high degree, we use
Algorithm 3.3.1; otherwise we use one of the above methods, first computing
a bound for the coefficients of D; based on the coefficients of A and B and
on the (small) degree of Q. As in the factorization problem, we should apply
this procedure to the reverses of A and B and reverse the result, if the trailing
coefficients are simpler than the leading ones.”

3.6.2 Factorization of Polynomials over a Number Field

This short section belongs naturally in this chapter but uses notions which
are introduced only in Chapter 4, so please read Chapter 4 first before reading
this section if you are not familiar with number fields.

In several instances, we will need to factor polynomials not only over Q but
also over number fields K = Q(6). Following [Poh-Zas|, we give an algorithm
for performing this task (see also [Tra]).

Let A(X) = > y<i<maiX® € K[X] be a non-zero polynomial. As usual,
we can start by computing A/(A, A’) so we can transform it into a squarefree
polynomial, since K[X] is a Euclidean domain. On the other hand, note that

it is not always possible to compute the content of A since the ring of integers
Zg of K is not always a PID.

144 3 Algorithms on Polynomials

Call o; the m =[K : Q] embeddings of K into C. We can extend o;
naturally to K[X] by acting on the coefficients, and in particular we can
define the norm of A as follows

N = [] o4

1<j<m

and it is clear by Galois theory that N'(4) € Q[X].

We have the following lemmas. Note that when we talk of factorizations
of polynomials, it is always up to multiplication by units of K[X], i.e. by
elements of K.

Lemma 3.6.1. If A(X) € K[X] is irreducible then N'(A)(X) is equal to the
power of an irreducible polynomial of Q[X].

Proof. Let N'(A) =[], Ni* be a factorization of N'(A) into irreducible factors
in Q[X]. Since A | N(4) in K[X] and A is irreducible in K[X], we have A | N;
in K[X] for some i. But since N; € Q[X], it follows that o;(A) | N; for all j,
and consequently A'(4) | N in K[X], hence in Q[X], so M(4) = N* for
some m’ < m. m]

Lemma 3.6.2. Let A € K[X] be a squarefree polynomial, where K = Q(8).
Then there ezists only a finite number of k € Q such that N(A(X — kf)) is
not squarefree.

Proof. Denote by (8;)1<i<m the roots of o;(A4). If k € Q, it is clear that
N(A(X — k6)) is not squarefree if and only if there exists i1, i2, j1, j2 such
that

ﬂiu.’i1+ kajl(o) = 1611211'2+ kajn (0)’

or equivalently k = (8;,,j, — Bi,.,55)/(0j,(8) — 0;,(6)) and there are only a finite
number of such k. o

The following lemma now gives us the desired factorization of A in K[X].

Lemma 3.6.3. Assume that A(X) € K[X] and N(A)(X) € Q[X] are both
squarefree. Let N(A) = [],<;c, Vi be the factorization of N(A) into irre-
ducible factors in Q[X]. Then A= [Ti<ico 8cd(A, N;) is a factorization of A
into irreducible factors in K[X].

Proof. Let A = [],<;<p Ai be the factorization of A into irreducible factors in
K[X]. Since N'(A)is squarefree, N'(4;) also hence by Lemma 3.6.1 N'(4;) =
Nj(;) for some j(i). Furthermore since for j # i, N'(4;4;) | N(A) hence is
squarefree, N'(A;) is coprime to N(A;). So by suitable reordering, we obtain
N(A;) = N; and also g = h. Finally, since for j # 1, Aj is coprime to N; it

3.6 Additional Polynomial Algorithms 145

follows that A; = ged(A4, V;) in K[X] (as usual up to multiplicative constants),
and the lemma follows. 0

With these lemmas, it is now easy to give an algorithm for the factorization
of A € K[X].

Algorithm 3.6.4 (Polynomial Factorization over Number Fields). Let K =

Q(6) be a number field, T € Q[X] the minimal monic polynomial of 6. Let A(X)

be a non-zero polynomial in K[X]. This algorithm finds a complete factorization

of A in K[X].

1. [Reduce to squarefree] Set U «— A/(A, A’) where (A, A’) is computed in K[X]
using the sub-resultant Algorithm 3.3.1. (Now U will be a squarefree primi-
tive polynomial. In this step, we could also use the squarefree decomposition
Algorithm 3.4.2 to reduce still further the degree of U).

2. [Initialize search] Let U(X) =Y gcicm X" € K[X] and write u;= g;(8) for
some polynomial g; € Q[X]. Set G(X,Y) « Y ic;cm si(Y)X* € Q[X,Y]
and k — 0.

3. [Search for squarefree norm] Using the sub-resultant Algorithm 3.3.7 over the
UFD QJ[Y], compute N(X) « Ry(T(Y),G(X — kY,Y)) where Ry denotes
the resultant with respect to the variable Y. If N(X) is not squarefree (tested
using Algorithm 3.3.1), set k — k + 1 and go to step 3.

4. [Factor norm] (Here N(X) is squarefree) Using Algorithm 3.5.7, let N «
[Ti<i<y Vi be a factorization of N in Q[X].

5. [Output factorization] For ¢ =1,...,g set A;(X)« ged(U(X), N;(X + k6))
computed in K[X] using Algorithm 3.3.1, output A; and the exponent of A;
in A (obtained simply by replacing A by A/A; as long as A; | A). Terminate
the algorithm.

Proof. The lemmas that we have given above essentially prove the validity
of this algorithm, apart from the easily checked fact that the sub-resultant
computed in step 3 indeed gives the norm of the polynomial U.]

Remarks.

(1) The norm of U could also be computed using floating point approximations
to the roots of T, since (if our polynomials have algebraic integer coeffi-
cients) it will have coefficients in Z. This is often faster than sub-resultant
computations, but requires careful error bounds.

(2) Looking at the proof of Lemma 3.6.2, it is also clear that floating point
computations allow us to give the list of values of k to avoid in step 3, so
no trial and error is necessary. However this is not really important since
step 3 is in practice executed only once or twice.

(3) The factors that we have found are not necessarily in Zg[X], and, as
already mentioned, factoring in Zg[X] requires a little extra work since
Zx is not necessarily a PID.

146 3 Algorithms on Polynomials

3.6.3 A Root Finding Algorithm over C

In many situations, it is useful to compute explicitly, to some desired approx-
imation, all the complex roots of a polynomial. There exist many methods
for doing this. It is a difficult problem of numerical analysis and it is not my
intention to give a complete description here, or even to give a description of
the “best” method if there is one such. I want to give one reasonably sim-
ple algorithm which works most of the time quite well, although it may fail
in some situations. In practice, it is quite sufficient, especially if one uses a
multi-precision package which allows you to increase the precision in case of
failure.
This method is based on the following proposition.

Proposition 3.6.5. If P(X) € C[X] and =z € C, then if P(z)#0 and
P'(z) # O there exists a positive real number X such that

‘P(x—)\%)‘ <|P(z)|.

Proof. Trivial by Taylor’s theorem. In fact, this proposition is valid for any
analytic function in the neighborhood of z, and not only for polynomials. O

Note also that as soon as z is sufficiently close to a simple root of P, we
can take A = 1, and then the formula is nothing but Newton’s formula, and
as usual the speed of convergence is quadratic.

This leads to the following algorithm, which I call Newton’s modified al-
gorithm. Since we will be using this algorithm for irreducible polynomials over
Q, we can assume that the polynomial we are dealing with is at least square-
free. The modifications necessary to handle the general case are easy and left
to the reader.

Algorithm 3.6.6 (Complex Roots). Given a squarefree polynomial P, this

algorithm outputs its complex roots (in a random order). In quite rare cases the

algorithm may fail. On the other hand it is absolutely necessary that the polynomial

be squarefree (this can be achieved by replacing P by P/(P, P')).

1. [Initializations] Set Q « P, compute P’, set Q' «— P’, and set n «— deg(P).
Finally, set f «— 1 if P has real coefficients, otherwise set f < 0.

2. [Initialize root finding] Set = « 1.3 + 0.314159, v «— Q(z) and m « |v|%.

3. [Initialize recursion] Set ¢ «— 0 and dz « v/Q’'(z). If |dz| is smaller than the
desired absolute accuracy, go to step 5.

4. [Trya)] Sety « z—dz, v1 «— Q(y) and m; « |v1|%. If m1 < m, setz — y,
v « v1, m «— m; and go to step 3. Otherwise, set ¢ — c+ 1, dz « dz/4.

If ¢ < 20 go to step 4, otherwise output an error message saying that the
algorithm has failed.

3.6 Additional Polynomial Algorithms 147

5. [Polish root] Set z «— z — P(z)/P’(z) twice.
6. [Divide] If f = 0 or if f =1 and the absolute value of the imaginary part of

z is less than the required accuracy, set it equal to 0, output z, set Q(X) «
Q(X)/(X —x) and n — n — 1. Otherwise, output z and Z, set Q(X) «
Q(X)/(X2 —2Re(z)X + |$12) and n « n — 2. Finally, if n > 0 then go to
step 2, otherwise terminate the algorithm.

Remarks.

(1)

(2)

4)

Q)

The starting value 1.3 4+ 0.314159i given in step 2 is quite arbitrary. It has
been chosen so as not to be too close to a trivial algebraic number, and
not too far from the real axis, although not exactly on it.

The value 20 taken in step 4, as well as the division by 4, are also arbitrary
but correspond to realistic situations. If we find m; > m, this means that
we are quite far away from the “attraction zone” of a root. Hence, thanks
to Proposition 3.6.5, it is preferable to divide the increment by 4 and not
by 2 for example, so as to have a much higher chance of winning next
time. Similarly, the limitation of 20 correspond to an increment which
is 420 ~ 10'? times smaller than the Newton increment, and this is in
general too small to make any difference. In that case, it will be necessary
to increase the working precision.

After each division done in step 6, the quality of the coefficients of Q will
deteriorate. Hence, after finding an approximate root, it is essential to
polish it, using for example the standard Newton iteration, but with the
polynomial P and not Q. It is not necessary to use a factor A since we are
in principle well inside the attraction zone of a root. Two polishing passes
will, in principle, be enough.

The divisions in step 6 are simple to perform. If Q(X) = Y gcicn & X"®
and A(X) = Y gcicn_1 @iX* = Q(X)/(X — z), then set a,—; < ¢, and
fori =n—1,...,4i =1 set aj_; « ¢; + za;. Similarly, if B(X) =
Pocicn2biX® = Q(X)/(X? — aX +), then set bp—z — gn, bn—3 —
Qn—-1+aby,_oandfori=n—2,...,i=2 set b;_g « q; + abj_1 — Bb;.
Instead of starting with A = 1 as coefficient of Q(z)/Q’(z) in step 3, it
may be better to start with

(L _2QEP
A= (1’|Q(I)IIQ”(m)I>'

This value is obtained by looking at the error term in the Taylor expansion
proof of Proposition 3.6.5. If this value is too small, then we are probably
going to fail, and in fact z is converging to a root of @Q’(X) instead of
Q(X). If this is detected, the best solution is probably to start again in
step 2 with a different starting value. This of course can also be done when
¢ = 20 in step 4. We must however beware of doing this too systematically,
for failure may indicate that the coefficients of the polynomial P are ill
conditioned, and in that case the best remedy is to modify the coefficients

148 3 Algorithms on Polynomials

of P by a suitable change of variable (typically of the form X +— aX). It
must be kept in mind that for ill conditioned polynomials, a very small
variation of a coefficient can have a drastic effect on the roots.

(6) In step 6, instead going back to step 2 if n > 0, we can go back only
if n > 2, and treat the cases n = 1 and n = 2 by using the standard
formulas. Care must then be taken to polish the roots thus obtained, as
is done in step 5.

3.7 Exercises for Chapter 3

1. Write an algorithm for multiplying two polynomials, implicitly based on a re-
cursive use of the splitting formulas explained in Section 3.1.2.

2. Let P be a polynomial. Write an algorithm which computes the coefficients of
the polynomial P(X + 1) without using an auxiliary array or polynomial.

3. Let K be a commutative ring which is not necessarily a field. It has been men-
tioned after Algorithm 3.1.1 that the Euclidean division of A by B is still possible
in K[X] if the leading coefficient ¢(B) is invertible in XK. Write an algorithm per-
forming this Euclidean division after multiplying A and B by the inverse of £(B),
and compare the performance of this algorithm with the direct use of Algorithm
3.1.1 in the case K = Z/rZ.

4. Modify Algorithm 3.3.1 so that A and B are divided by their respective contents
every 10 iterations. Experiment and convince yourself that this modification
leads to polynomials A and B having much larger coefficients later on in the
Algorithm, hence that this is a bad idea.

5. Write an extended version of Algorithm 3.3.1 which computes not only (A, B)
but also U and V such that AU+ BV =r-(A, B) where r is a non-zero constant
(Hint: add a fourth variable in Algorithm 1.3.6 to take care of r). Show that
when (A, B) = 1 this can always be done with r equal to the resultant of A and
B.

6. Show that if A, B and C are irreducible polynomials over a UFD R and if C
divides AB but is not a unit multiple of A, then C divides B (Hint: use the
preceding exercise). Deduce from this that R[X] is a UFD.

7. Using for example the sub-resultant algorithm, compute explicitly the discrim-
inant of the trinomials X3 4+ aX + b and X* + aX + b. Try to find the general
formula for the discriminant of X™ + aX + b.

8. Call R; the i-th row of Sylvester’s determinant, for 1 < ¢ < n + m. Show that if
we replace for all 1 < i < n simultaneously R; by

i—-1

Z(kari—k —akRitm—k)

k=0

and then suppress the last m rows and columns of the resulting matrix, the n xn
determinant thus obtained is equal to the determinant of Sylvester’s matrix.

3.7 Exercises for Chapter 3 149

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

If Q(X) = (X — a)P(X), compute the discriminant of Q in terms of a and of
the discriminant of P.

Show how to modify the sub-resultant Algorithm 3.3.7 so that it can compute
correctly when the coefficients of the polynomials are for example polynomials
(in another variable) with real coefficients.

Show the following result, due to Eisenstein: if p is prime and A(X) =
2 o<icn @X* is a polynomial in Z[X] such that p { an, p | @i foralli < n
and p® { ao, then A is irreducible in Z[X].

Using the ideas of Section 3.4, write an algorithm to compute the square root

of a mod p, or to determine whether none exist. Implement your algorithm and
compare it with Shanks’s Algorithm 1.5.1.

Using the Mobius inversion formula (see [H-W] Section 16.4) show that the
number of monic irreducible polynomials of degree n over F,, is equal to

1 n
wn ()
din

where p(n) is the Mébius function (i.e. 0 if n is not squarefree, and equal to
(=1)* if n is a product of k distinct prime factors).

Extend Proposition 3.4.7 and Algorithm 3.4.8 to general prime numbers p, using

Up(X)=X+XP+---+ xP7 Compare in practice the expected speed of the
resulting algorithm to that of Algorithm 3.4.6.

Show that, as claimed in the proof of Algorithm 3.4.8, the polynomial U has
exactly 227! roots in Fya.

Generalizing the methods of Section 3.4, write an algorithm to factor polyno-
mials in Fy[X], where ¢ = p? and F, is given by an irreducible polynomial of
degree d in F,[X].

Let B(X) € Fp[X] be a squarefree polynomial with r distinct irreducible factors.
Show that if T(X) is a polynomial corresponding to a randomly chosen element
of the kernel obtained in step 2 of Algorithm 3.4.10 and if p > 3, the probability
that (B(X),T(X)® /2 _ 1) gives a non-trivial factor of B is greater than or
equal to 4/9.

Let K be any field, a € K and p a prime number. Show that the polynomial
X? — a is reducible in K[X] if and only if it has a root in K. Generalize to the
polynomials X? — a.

Let p be an odd prime and g a prime divisor of p—1. Let a € Z be a primitive root
modulo p. Using the preceding exercise, show that for any k > 1 the polynomial

X% +pX*-a

is irreducible in Q[X].

. Let p and ¢ be two odd prime numbers. We assume that ¢ = 2 (mod 3) and

that p is a primitive root modulo g (i.e. that p mod q generates (Z/qZ)*). Show
that the polynomial
X _X4p

150 3 Algorithms on Polynomials

is irreducible in Q[X]. (Hint: reduce mod p and mod 2.)

21. Separating even and odd powers, any polynomial A can be written in the form
A(X) = Ao(X?) + X A1(X?). Set T(A)(X) = Ao(X)? — X A1(X)?. With the
notations of Theorem 3.5.1, show that for any k

n—1 k n—1
ijls(i)lT’“(A)l‘/2 +(J._1)Iaml-

What is the behavior of the sequence |T*(A)|*/ 2* as k increases?

22. In Algorithms 3.5.5 and 3.5.6, assume that p = q, that A and B are monic, and
set D = AU, D, = AUy, E = BV, Ey = B, V;. Denote by (C,p*) the ideal of
Z[X] generated by C(X) and p*. Show that

Dy =3D*—2D* (mod (C,p%)) and E, =3E*—2E® (mod (C,p?)).

Then show that A; (resp. B1) is the monic polynomial of the lowest degree such
that E1A; =0 (mod (C,p?)) (resp. D1B; =0 (mod (C,p?))).

23. Write a general algorithm for finding all the roots of a polynomial in Q, to a
given p-adic precision, using Hensel’s lemma. Note that multiple roots at the
mod p level create special problems which have to be treated in detail.

24. Denote by (,)p the GCD taken over F,[X]. Following Weinberger, Knuth
asserts that if A € Z[X] is a product of exactly k irreducible factors in Z[X]
(not counting multiplicity) then

D T . C.0)

z—00 Epsz 1

Explore this formula as a heuristic method for determining the irreducibility of
a polynomial over Z.

25. Find the complete decomposition into irreducible factors of the polynomial X 44
1 modulo every prime p using the quadratic reciprocity law and the identities
given in Section 3.5.2.

26. Discuss the possibility of computing polynomial GCD’s over Z by computing
GCD’s of values of the polynomials at suitable points. (see [Schén]).

27. Using the ideas of Section 3.4.2, modify the root finding Algorithm 3.6.6 so that
it finds the roots of a any polynomial, squarefree or not, with their order of
multiplicity. For this question to make practical sense, you can assume that the
polynomial has integer coefficients.

28. Let P(X) = X3+ aX?+ bX + c € R[X] be a monic squarefree polynomial. Let
8; (1 <1< 3) be the roots of P in C and let

o1 = (01+ p*02 + p83), g = (614 pb2 +p*63)°.

Let A(X) = (X — a1)(X — a2).
a) Compute explicitly the coefficients of A(X).

3.7 Exercises for Chapter 3 151

29.

30.

31.

b) Show that —27disc(P) = disc(A), and give an expression for this
discriminant.

c) Show how to compute the roots of P knowing the roots of A.

Let P(X) = X*+aX?*+bX?+cX +d € R[X] be a monic squarefree polynomial.
Let 6; (1 < i < 4) be the roots of P in C, and let

ar = (61+62)(0s +64) a2 =(01+63)(02+64) o3 = (61+06s)(02+63),

and
Br = 61024030, P2 =6103+ 0205 P3 = 01604+ 6203.

Finally, let A(X) = (X — 01)(X - a2)(X — a3) and B(X) = (X — f1)(X —
B2)(X — Bs).

a) Compute explicitly the coefficients of A(X) and B(X) in terms of those
of P(X).

b) Show that disc(P) = disc(A) = disc(B), and give an expression for this
discriminant.

c¢) Show how to compute the roots of P knowing the roots of A.

Recall that the first case of Fermat’s last “theorem” (FLT) states that if is an
odd prime, then z' +y'+2' = 0 implies that | zyz. Using elementary arguments
(i-e. no algebraic number theory), it is not too difficult to prove the following
theorem, essentially due to Sophie Germain.

Theorem 3.7.1. Let! be an odd prime, and assume that there exists an integer
k such that k = £2 (mod 6), p = lk + 1 is prime and p{ (k* — 1)Wi where Wi
is the resultant of the polynomials X* — 1 and (X + 1)* — 1. Then the first case
of FLT is true for the exponent l.

It is therefore important to compute W and in particular its prime factors. Give
several algorithms for doing this, and compare their efficiency. Some familiarity
with number fields and in particular with cyclotomic fields is needed here.

Let A(X) = anX™ + -+ + a1 X + ao be a polynomial, with a, # 0. Show that
for any positive integer k,

disc(A(XF)) = (=1)"FE+ED/2pmk g 60)* ! disc(A)*.

Chapter 4

Algorithms for Algebraic Number Theory I

In this chapter, we give the necessary background on algebraic numbers, num-
ber fields, modules, ideals and units, and corresponding algorithms for them.
Excellent basic textbooks on these subjects are, for example [Bo-Sh], [Cas-Frd],
[Cohn], [Ire-Ros], [Marc], [Sam|. However, they usually have little algorithmic
flavor. We will give proofs only when they help to understand an algorithm,
and we urge the reader to refer to the above textbooks for the proofs which
are not given.

4.1 Algebraic Numbers and Number Fields

4.1.1 Basic Definitions and Properties of Algebraic Numbers

Definition 4.1.1. Let o € C. Then « is called an algebraic number if there
exists A € Z[X] such that A(a) = 0, and A not identically zero. The number
a 1s called an algebraic integer if, in addition, one can choose A to be monic
(i.e. with leading coefficient equal to 1).

Then we have:

Proposition 4.1.2. Let o be an algebraic number, and let A be a polynomial
with integer coefficients such that A(a) = 0, and assume that A is chosen to
have the smallest degree and be primitive with £(A) > 0. Then such an A is
unique, is irreducible in Q[X], and any B € Z[X] such that B(a) = 0 is a
multiple of A.

Proof. The ring Q[X] is a principal ideal domain (PID), and the set of B €
Q[X] such that B(a) = 0 is an ideal, hence is the ideal generated by A. If, in
addition, B has integral coefficients, Gauss’s lemma (Theorem 3.2.8) implies
that B is a multiple of A in Z[X]. It is clear that A is irreducible; otherwise A
would not be of smallest degree. We will call this A the minimal polynomial
of a.]

We will use the notation Q for the set of algebraic numbers, (hence Q@ C C),
Zﬁ for the set of algebraic integers, and if L is any subset of C we will set

154 4 Algorithms for Algebraic Number Theory I

ZL=Z60L,

and call it the set of integers of L. Note that Q is an algebraic closure of Q.
For example, we have Zg = Z. Indeed, if o = p/q € Qis aroot of A € Z[X]
with A monic, we must have ¢ | £(A4), hence ¢ = £1 so a is in Z.
The first important result about algebraic numbers is as follows:

Theorem 4.1.3. Let oo € C. The following four statements are equivalent.

(1) « is an algebraic integer.

(2) Z[a] is a finitely generated additive Abelian group.

(3) a belongs to a subring of C which is finitely generated as an Abelian group.

(4) There ezists a non-zero finitely generated additive subgroup L of C such
that oL C L.

As corollaries we have:

Corollary 4.1.4. The set of algebraic integers is a ring. In particular, if R
is a ring, the set Zg of integers of R is a ring.

Corollary 4.1.5. If o € C is a root of a monic polynomial whose coefficients
are algebraic integers (and not simply integers), then a is an algebraic integer.

Definition 4.1.6. Let a € C be an algebraic number, and A its minimal
polynomial. The conjugates of o are all the deg(A) roots of A in C.

This notion of conjugacy is of course of fundamental importance, but
what I would like to stress here is that from an algebraic point of view the
conjugates are indistinguishable. For example, any algebraic identity between
algebraic numbers is a simultaneous collection of conjugate identities. To give
a trivial example, the identity (1 + v/2)2 = 3 + 2v/2 implies the identity
(1—+/2)% = 3—2+/2. This remark is a generalization of the fact that an equality
between two complex numbers implies the equality between their conjugates,
or equivalently between their real and imaginary parts. The present example is
even more striking if one looks at it from a numerical point of view: it says that
the identity (2.41421...)2 = 5.828427. .. implies the identity (0.41421...)% =
0.171573. ... Of course this is not the correct way to look at it, but the lesson
to be remembered is that an algebraic number always comes with all of its
conjugates.

4.1.2 Number Fields

Definition 4.1.7. A number field is a field containing Q which, considered
as a Q-vector space, is finite dimensional. The number d = dimg K is denoted
by [K : Q] and called the degree of the number field K.

4.1 Algebraic Numbers and Number Fields 155

We recall the following fundamental results about number fields:

Theorem 4.1.8. Let K be a number field of degree n. Then
(1) (Primitive element theorem) There erists a 6 € K such that

K = Q(6).

Such a 6 is called a primitive element. Its minimal polynomial is an irre-
ducible polynomial of degree n.

(2) There exist exactly n field embeddings of K in C, given by 6 — 6;, where
the 6; are the roots in C of the minimal polynomial of 6. These embeddings
are Q-linear, their images K; in C are called the conjugate fields of K,
and the K; are isomorphic to K.

(3) For any i, K; C Q, in other words all the elements of K, are algebraic
numbers and their degree divides n.

The assertion made above concerning the indistinguishability of the con-
jugates can be clearly seen here. The choice of the conjugate field K; is a
priori completely arbitrary. In many cases, this choice is already given. For
example, when we speak of “the number field Q(2!/3)”, this is slightly incor-
rect, since what we mean by this is that we are considering the number field
K = Q[X]/(X? — 2)Q[X] together with the embedding X + 2'/3 of K into
R.

Definition 4.1.9. The signature of a number field is the pair (r1,72) where
r1 s the number of embeddings of K whose image lie in R, and 2ry is the
number of non-real complex embeddings, so that r; + 2rp = n (note that the
non-real embeddings always come in pairs since if o is such an embedding, so
is &, where ~ denotes complex conjugation). If T is an irreducible polynomial
defining the number field K by one of its roots, the signature of K will also be
called the signature of T. Here r1 (resp. 2r3) will be the number of real (resp.
non-real) roots of T in C. When ro =0 (resp. r1 = 0) we will say that K and
T are totally real (resp. totally complex).

It is not difficult to determine the signature of a number field K, but some
ways are better than others. If K = Q(0), and if T is the minimal polynomijal
of 8, we can of course compute the roots of T' in C using, for instance, the root
finding Algorithm 3.6.6, and count the number of real roots. This is however
quite expensive. A much better way is to use a theorem of Sturm which tells us
in essence that the sequence of leading coefficients in the polynomial remainder
sequence obtained by applying Euclid’s algorithm or its variants to T and T’
governs the signature. More precisely, we have the following theorem.

Theorem 4.1.10 (Sturm). Let T be a squarefree polynomial with real coeffi-
cients. Assume that Ao =T, A; = T, and that A; is a polynomial remainder
sequence such that for all i with 1 <1i < k:

156 4 Algorithms for Algebraic Number Theory I

eidi—1 = Qi Ai — fiAit1,

where the e; and f; are real and positive, and Ay is a constant polynomial
(non-zero since T is squarefree). Set £;=1£(A;), and d; = deg(A;). Then, if s
is the number of sign changes in the sequence £o, €1, ..., lr+1, and if t is the
number of sign changes in the sequence (—1)%&y, (—1)%41¢y, ..., (—1)%+10 41,
the number of real roots of T is equal to t—s.

Proof. For any real a, let s(a) be the number of sign changes, not count-
ing zeros, in the sequence Ap(a), Ai(a), ..., Ag+1(a). We clearly have
lim, 400 8(a) =s and lim,,_ s(a) =t. We are going to prove the fol-
lowing more general assertion: the number of roots of T in the interval]a, b]
is equal to s(a) — s(b), which clearly implies the assertion of the theorem.
First, it is clear that a sign sequence at any number a cannot have two
consecutive zeros, otherwise these zeros would propagate and we would have
Agy1 = 0. For similar reasons, we cannot have sequences of the form +, 0,
+, or of the form —, 0, — since the e; and f; are positive. Now the desired
formula s(a) — s(b) is certainly valid if b = a. We will see that it stays true
when b increases. The quantity s(b) can change only when b goes through one
of the roots of the A;, which are finite in number. Let = be a root of such an
A; (maybe of several). If € is sufficiently small, when b goes from z—e¢ to x, the
sign sequence corresponding to indices ¢ —1, ¢ and i + 1 goes from +, £, — to
+, 0, — (or from —, +, 4+ to —, 0, +) when i > 1 by what has been said above
(no consecutive zeros, and no sequences +, 0, 4+ or —, 0, —). Hence, there is
no difference in the number of sign changes not counting zeros if ¢ > 1. On
the other hand, for i=0, the sign sequence corresponding to indices 0 and 1
1 goes from +,— to 0,—, or from —,+ to 0,+ since A;(b)<0 if and only if A
is decreasing (recall that A; is the derivative of Ag). Hence, the net change
in s(b) is equal to —1. This proves our claim and the theorem. O

From this, it is easy to derive an algorithm for computing the signature
of a polynomial (hence of a number field). Such an algorithm can of course
be written for any polynomial T € R[X], but for number-theoretic uses T
will have integer coefficients, hence we should use the polynomial remainder
sequence given by the sub-resultant Algorithm 3.3.1 to avoid coefficient ex-
plosion. This leads to the following algorithm.

Algorithm 4.1.11 (Sturm). Given a polynomial T € Z[X], this algorithm
determines the signature (1, r2) of T using Sturm's theorem and the sub-resultant
Algorithm 3.3.1. If T is not squarefree, it outputs an error message.

1. [Initializations and reductions] If deg(T") = 0, output (0,0) and terminate.
Otherwise, set A — pp(T), B « pp(T"), g < 1, h — 1, s « sign(£(4)),
n « deg(A), t «— (—1)"71s, r; « 1.

2. [Pseudo division] Set § «— deg(A4) — deg(B). Using Algorithm 3.1.2, compute
R such that £(B)%*14 = BQ+R. If R = 0 then T was not squarefree, output

4.1 Algebraic Numbers and Number Fields 157

an error message and terminate the algorithm. Otherwise, if £(B)>0 or § is
odd, set R — —R.

3. [Use Sturm] If sign(€(R)) # s, set s « —s, 71 < r1—1. Then, if sign(4(R)) #
(—1)9e8(R)¢, set t «——t, 1) — 1) + 1.

4. [Finished?] If deg(R) = 0, output (71, (n—71)/2) and terminate the algorithm.
Otherwise, set A — B, B «— R/(gh®), g « |€(A)|, h — h'~%g%, and go to
step 2.

Another important notion concerning number fields is that of the Galois
group of a number field. From now on, we assume that all our number fields
are subfields of Q.

Definition 4.1.12. Let K be a number field of degree n. We say that K is
Galois (or normal) over Q, or simply Galois, if K is (globally) invariant by
the n embeddings of K in C. The set of such embeddings is a group, called the
Galois group of K, and denoted Gal(K/Q).

Given any number field K, the intersection of all subfields of Q which are
Galois and contain K is a finite extension K*° of K called the Galois closure
(or normal closure) of K in Q. If K = Q(6) where 8 is a root of an irreducible
polynomial T' € Z[X], the Galois closure of K can also be obtained as the
splitting field of T, i.e. the field obtained by adjoining to Q all the roots of T
By abuse of language, even when K is not Galois, we will call Gal(K*/Q) the
Galois group of the number field K (or of the polynomial T').

A special case of the so-called “fundamental theorem of Galois theory” is
as follows.

Proposition 4.1.13. Let K be Galois over Q and x € K. Assume that for
any o € Gal(K/Q) we have o(z) = x. Then z € Q. In particular, if in addition
T is an algebraic integer then z € Z.

The following easy proposition shows that there are only two possibilities
for the signature of a Galois extensions. Similarly, we will see (Theorem
4.8.6) that there are only a few possibilities for how primes split in a Galois
extension.

Proposition 4.1.14. Let K be a Galois extension of Q of degree n. Then,
either K is totally real ((r1,r2) = (n,0)), or K is totally complez ((r1,r2) =
(0,n/2) which can occur only if n is even).

The computation of the Galois group of a number field (or of its Galois
closure) is in general not an easy task. We will study this for polynomials of
low degree in Section 6.3.

158 4 Algorithms for Algebraic Number Theory I

4.2 Representation and Operations on Algebraic
Numbers

It is very important to study the way in which algebraic numbers are repre-
sented. There are two completely different problems: that of representing alge-
braic numbers, and that of representing sets of algebraic numbers, e.g. modules
or ideals. This will be considered in Section 4.7. Here we consider the problem
of representing an individual algebraic number.

Essentially there are four ways to do this, depending on how the number
arises. The first way is to represent o € Q by its minimal polynomial A which
exists by Proposition 4.1.2. The three others assume that a is a polynomial
with rational coefficients in some fixed algebraic number 8. These other meth-
ods are usually preferable, since field operations in Q(6) can be performed
quite simply. We will see these methods in more detail in the following sec-
tions. However, to start with, we do not always have such a 8 available, so we
consider the problems which arise from the first method.

4.2.1 Algebraic Numbers as Roots of their Minimal Polynomial

Since A has n = deg(A) zeros in C, the first question is to determine which
of these zeros « is supposed to represent. We have seen that an algebraic
number always comes equipped with all of its conjugates, so this is a prob-
lem which we must deal with. Since Q(a) ~ Q[X]/(A(X)Q[X]), @ may be
represented as the class of X in Q[X]/(A(X)Q[X]), which is a perfectly well
defined mathematical quantity. The distinction between « and its conjugates,
if really necessary, will then depend not on A but on the specific embedding
of Q[X]/(A(X)Q[X]) in C. In other words, it depends on the numerical value
of a as a complex number. This numerical value can be obtained by finding
complex roots of polynomials, and we assume throughout that we always take
sufficient accuracy to be able to distinguish a from its conjugates. (Recall
that since the minimal polynomial of « is irreducible and hence squarefree,
the conjugates of o are distinct.)

Hence, we can consider that an algebraic number « is represented by a pair
(A,z) where A is the minimal polynomial of o, and z is an approximation
to the complex number a (z should be at least closer to a than to any of
its conjugates). It is also useful to have numeric approximations to all the
conjugates of a. In fact, one can recover the minimal polynomial A of «
from this if one knows only its leading term £(A), since if one sets A(X) =
2(A) [1;(X — a;), where the &; are the approximations to the conjugates of
a, then, if they are close enough (and they must be chosen s0), A will be the
polynomial whose coefficients are the nearest integers to the coefficients of A

With this representation, it is clear that one can now easily work in the
subfield Q(a) generated by «, simply by working modulo A.

More serious problems arise when one wants to do operations between
algebraic numbers which are a priori not in this subfield. Assume for instance

4.2 Representation and Operations on Algebraic Numbers 159

that a = (X mod A(X)), and = (X mod B(X)), where A and B are primi-
tive irreducible polynomials of respective degrees m and n (we omit the Q[X]
for simplicity of notation). How does one compute the sum, difference, product
and quotient of a and §? The simplest way to do this is to compute resultants
of two variable polynomials. Indeed, the resultant of the polynomials A(X—Y)
and B(Y') considered as polynomials in ¥ alone (the coefficient ring being then
Q[X]) is up to a scalar factor equal to P(X) = [1; ;(X — o — B;) where the
o; are the conjugates of a, and the §; are the conjugates of 3. Since P is a re-
sultant, it has coefficients in Q[X], and o + f3 is one of its roots, so @ = pp(P)
is a multiple of the minimal polynomial of a + S.

If Q is irreducible, then it is the minimal polynomial of a + . If it is not
irreducible, then the minimal polynomial of o + 3 is one of the irreducible
factors of @ which one computes by using the algorithms of Section 3.5. Once
again however, it does not make sense to ask which of the irreducible factors
a + B is a root of, if we do not specify embeddings in C, in other words,
numerical approximations to a and 8. Given such approximations however,
one can readily check in practice which of the irreducible factors of @ is the
minimal polynomial that we are looking for.

What holds for addition also holds for subtraction (take the resultant of
A(X +Y) and B(Y)), multiplication (take the resultant of Y™ A(X/Y) and
B(Y')), and division (take the resultant of A(XY') with B(Y)).

4.2.2 The Standard Representation of an Algebraic Number

Let K be a number field, and let 6; (1 < j < n) be a Q-basis of K. Let a € K
be any element. It is clear that one can write « in a unique way as

n—1
o ai0;
azw, with d >0, a;€ Z and ged(ao, ..., an-1,d) =1.

In the case where 6; =67~ for some root 6 of a monic irreducible polynomial
T € Z[X], the (n+1)-uplet (ao,...,an—1,d)€Z"*! will be called the standard
representation of o (with respect to §). Hence, we can now assume that we
know such a primitive element §. (We will see in Section 4.5 how it can be
obtained.)

We must see how to do the usual arithmetic operations on these standard
representations. The vector space operations on K are of course trivial. For
multiplication, we precompute the standard representation of §7 for j < 2n—2
in the following way: if T(X)=3",t:X* with ¢; EZ for all ¢ and t,=1,
we have 6™=3 """ (t;)6". If we set 67tk = Zz o Tk,i0", then the standard

representation of 0"""‘ is (Tk,0,7k,1,--yTk,n—1,1) and the rg,; are computed
by induction thanks to the formulas ro;=—t; and

, { Thkyi-1— Tk n—1 ifi2>1,
k+1,6 = o
—toTk,n-1 ifi =0.

160 4 Algorithms for Algebraic Number Theory I

Now if (ag,...,an-1,d) and (bo,...,bn_1,€) are the standard representations
of o and B respectively, then it is clear that
—2
ano ck8* —
af = = where ¢, = Z a;bj,
i+j=k
hence .)
n 20k —
af = Lk, where zx = cx + Z Tk,iCnti -
de 1=0

The standard representation of @@ is then obtained by dividing all the 2z and
de by ged(zo, . . -, 2Zn—1, de).

Note that if we set A(X)= Y1y a;X* and B(X) =317 b:X?, the
procedure described above is equivalent to computing the remainder in the
Euclidean division of AB by T. Because of the precomputations of the 7y ,
however, it is slightly more efficient.

The problem of division is more difficult. Here, we need essentially to
compute A/B modulo the polynomial T'. Hence, we need to invert B modulo
T. The simplest efficient way to do this is to use the sub-resultant Algorithm
3.3.1 to obtain U and V' (which does not need to be computed explicitly) such
that UB + VT = d where d is a constant polynomial. (Note that since T is
irreducible and B # 0, B and T are coprime.) Then the inverse of B modulo
T is %U , and the standard representation of a/8 can easily be obtained from
this.

4.2.3 The Matrix (or Regular) Representation of an Algebraic
Number

A third way to represent algebraic numbers is by the use of integral matrices.
If 6; (1 < j < n)is a Q-basis of K and if @ € K, then multiplication by « is an
endomorphism of the Q-vector space K, and we can represent a by the matrix
M, of this endomorphism in the basis ;. This will be a matrix with rational
entries, hence one can write My, =M’/d where M’ has integral entries, d is
a positive integer, and the greatest common divisor of all the entries of M’
is coprime to d. This representation is of course unique, and it is clear that
the map o — M, is an algebra homomorphism from K to the algebra of
n X n matrices over Q. Thus one can compute on algebraic numbers simply
by computing with the corresponding matrices. The running time is usually
longer however, since more elements are involved. For example, the simple
operation of addition takes O(n?) operations, while it clearly needs only O(n)
operations in the standard representation. The matrix representation is clearly
more suited for multiplication and division. (Division is performed using the
remark following Algorithm 2.2.2.)

4.3 Trace, Norm and Characteristic Polynomial 161

4.2.4 The Conjugate Vector Representation of an Algebraic
Number

The last method of representing an algebraic number « in a number field K =
Q(#) that I want to mention, is to represent a by numerical approximations
to its conjugates, repeated with multiplicity. More precisely, let o; be the
n = deg(K) distinct embeddings of K in C, ordered in the following standard
way: 01, .., O, are the real embeddings, o, 4 ry4s = Fry4s for 1 <i <o If
o =" af, then

n—1
ai(@) = aio;(8),
i=0

and the o;(a) are the conjugates of a, but in a specific order (corresponding to
the choice of the ordering on the ¢;), and repeated with a constant multiplicity
n/ deg(a). We can then represent « as the (r; 4+ 72)-uplet of complex numbers

(al(a)7 s Oyt (a));

where the complex numbers ¢;(a) are given by a sufficiently good approx-
imation. Operations on this representation are quite trivial since they are
done componentwise. In particular, division, which was difficult in the other
representations, becomes very simple here. Unfortunately, there is a price to
pay: one must be able to go back to one of the exact representations (for
example to the standard representation), and hence have good control on the
roundoff errors.

For this, we precompute the inverse matrix of the matrix @ = ¢;(6771).
Then, if one knows the conjugate representation of a number ¢, and an integer
d such that do € Z[6), one can write a =(3_7_; a;-16°7")/d where the a; are
integers, and the column vector (ao, - . ., an—1)! can be obtained as the product
d971(o1(a),...,on(a))t, and since the a; are integers, if the roundoff errors
have been controlled and are not too large, this gives the a; exactly (note that
in practice one can work with matrices over R and not over C. The details are
left to the reader).

In practice, one can ignore roundoff errors and start with quite precise nu-
merical approximations. Then every operation except division is done using
the standard representation, while for division one computes the conjugate
representation of the result, converts back, and then check by exact multipli-
cation that the roundoff errors did not accumulate to give us a wrong result.
(If they did, this means that one must work with a higher precision.)

162 4 Algorithms for Algebraic Number Theory I

4.3 Trace, Norm and Characteristic Polynomial

If a is an algebraic number, the trace (resp. the norm) of « is by definition
the sum (resp. the product) of the conjugates of a. If A(X) = Y 1vga: X" is
its minimal polynomial, then we clearly have

aAm-1 aop
Tr(a) =— and NM(a) =(-1)"— ,
(o) = == (@)= (-2
where Tr and NV denote the trace and norm of « respectively. Usually however,
a is considered as an element of a number field K. If K = Q(a), then the
definitions above are OK, but if Q(a) & K, then it is necessary to modify the
definitions so that Tr becomes additive and N multiplicative. More generally,
we put:

Definition 4.3.1. Let K be a number field of degree n over Q, and let o; be
the n distinct embeddings of K in C.

(1) The characteristic polynomial C, of a in K is

Ca(X) = [[(X—ai(a)).
1<i<n
(2) If we set
Ca(X)= Y (-1)" sn_i(@)X?,
0<i<n

then sk (a) is a rational number and will be called the k** symmetric func-

tion of o in K.
(3) In particular, s1(a) is called the trace of a in K and denoted Tri/q(a),

and similarly s, (a) is called the norm of o in K and denoted N k().

As has already been mentioned, one must be careful to distinguish the
absolute trace of a which we have denoted Tr(c) from the trace of « in the
field K, denoted Trg/q(c), and similarly with the norms. More precisely, we
have the following proposition:

Proposition 4.3.2. Let K be a number field of degree n, o; the n distinct
embeddings of K in C.

(1) If o € K has degree m (hence with m dividing n), we have
n
TrK/Q(a) = E ai(a) = —TI‘(O[),
- m
1<i<n

and

Nra@) =] oi@) = Wia))™.

1<iln

4.3 Trace, Norm and Characteristic Polynomial 163

(2) For any o and B in K we have

Trr/qa + B) = Trg/q(a) + Trg/o(6),

and
Nka(eB) = Nkjq(a) N k/q(B)-

(8) « is an algebraic integer if and only if sy(a) € Z for all k such that
1 <k < n (note that so(a) = 1).

As usual, we must find algorithms to compute traces, norms and more
generally characteristic polynomials of algebraic numbers. Since we have seen
four different representations of algebraic numbers (viz. by a minimal poly-
nomial, by the standard representation, by the matrix representation and by
the conjugate vector representation), there are at least that many methods
to do the job. We will only sketch these methods, except when they involve
fundamentally new ideas. We always assume that our number field is given as
K = Q(0) where 8 is an algebraic integer whose monic minimal polynomial of
degree n is denoted T'(X). We denote by o; the n embeddings of K in C.

In the case where a is represented by its minimal polynomial A(X), then
each of the m = deg(A) embeddings of Q(a) in C lifts to exactly n/m embed-
dings among the o;, hence it easily follows that

Co(X) = A(X)M™,

and this immediately implies Proposition 4.3.2 (1), i.e. if we write A(X) =
2 o<i<m @iX", then

n/m
Trjale) = =222 Wige(e) = (-1(2)

Am am

In the case where a is given by its standard representation

a=% Z a,ﬂi s

0<ik<n-1

the only symmetric function which is relatively easy to compute is the trace,
since we can precompute the trace of 6* using Newton’s formulas as follows.

Proposition 4.3.3. Let §; be the roots (repeated with multiplicity) of a monic
polynomial T(X)= Y ,c.t:X* € C[X] of degree n and set Sx = >_,(6F).
Then T

k-1
Sk =—ktnk— Y tn_iSk_i (where we set t; =0 fori <O0).

i=1

164 4 Algorithms for Algebraic Number Theory I

This result is well known and its proof is left to the reader (Exercise 3).

We can however compute all the symmetric functions, i.e. the character-
istic polynomial, by using resultants, as follows.

Proposition 4.3.4. Let K = Q(6) be a number field where 6 is a'root of a
monic irreducible polynomial T(X) € Z|X] of degree n, and let

be the standard representation of some a € K. Set A(X) =3 pcicn—1 a; X"
Then the characteristic polynomial Co(X) of a is given by the formula

Ca(X) = d""Ry (T(Y),dX — A(Y)),

where Ry denotes the resultant taken with respect to the variable Y. In par-
ticular, we have
Nkjqla) = d7"R(T(X), A(X)).

Proof. We have by definition

Ca(X) = [](X = o3(@) = [J(X = Aloi(6))/d)

i i

=d" [[(dX — A(6:)) = d""Ry (T(Y),dX — A(Y)),

where the 6; are the conjugates of 6, i.e. the roots of T'. The formula for the
norm follows immediately on setting X = 0. a

Since the resultant can be computed efficiently by the sub-resultant Algo-
rithm 3.3.7, used here in the UFD’s Z[X] and Z, we see that this proposition
gives an efficient way to compute the characteristic polynomial and the norm
of an algebraic number given in its standard representation.

In the case where « is given by numerical approximations to its conjugates,
as usual we also assume that we know an integer d such that da € Z[6]. Then
we can compute numerically [],(X — do;(c)), and this must have integer
coefficients. Hence, if we have sufficient control on the roundoff errors and
sufficient accuracy on the conjugates of ¢, this enables us to compute Cyq, (X)
exactly, hence Cy(X) = d™"Cyq(dX).

Finally, we consider the case where « is given by its matrix representation
M, in the basis 1, 6, ..., *~!, where dM, has integral coefficients for some
integer d. Then the characteristic polynomial of « is simply equal to the char-
acteristic polynomial of M, (meaning always det(XI, — M,)). In particular,

4.4 Discriminants, Integral Bases and Polynomial Reduction 165

the trace can be read off trivially on the diagonal coefficients, and the norm
is, up to sign, equal to the determinant of M,,.

The characteristic polynomial can be computed using one of the algorithms
described Section 2.2.4, and the determinant using Algorithm 2.2.6.

In practice, it is not completely clear which representation is preferable.
A reasonable choice is probably to use the standard representation and the
sub-resultant algorithm. This depends on the context however, and one should
always be aware of each of the four possibilities to handle algebraic numbers.
Keep in mind that it is usually costly to go from one representation to another,
so for a given problem the representation should be fixed.

4.4 Discriminants, Integral Bases and Polynomial
Reduction

4.4.1 Discriminants and Integral Bases

We have the following basic result.

Proposition 4.4.1. Let K be a number field of degree n, o; be the n embed-
dings of K in C, and o be a set of n elements of K. Then we have

det(oi(aj))2 = det(TrK/Q(aiaj)) .

This quantity is a rational number and is called the discriminant of the oy,
and denoted d(ay,...,ay,). Furthermore, d(a,...,a,) = 0 if and only if the
a; are Q-linearly dependent.

Proof. Consider the n x n matrix M = (0;(c;)). Then by definition of matrix
multiplication, we have M*M = (a; ;) with

ai5 = p_ ok(@i)ok(as) = Trisq(aiay).
k

Since det(M?') = det(M) the equality of the proposition follows. Since
Trg/q(a) € Q the discriminant is a rational number. If the o; are Q-linearly
dependent, it is clear that the columns of the matrix M are also (since Q
is invariant by the o;). Therefore the discriminant is equal to 0. Conversely
assume that the discriminant is equal to 0. This means that the kernel of
the matrix M*M is non-trivial, and since this matrix has coefficients in Q,
there exists A; € Q such that for every j, Tr(za;) = 0 where we have set
T = Y 1cicnMi;. If the a; were linearly independent over Q, they would
generate K as a Q-vector space, and so we would have Tr(zy) = 0 for all
y € K with z # 0. Taking y = 1/z gives Tr(1) = n = 0, a contradiction, thus
showing the proposition. 0O

166 4 Algorithms for Algebraic Number Theory I

Remark. We have just proved that the quadratic form Tr(z?) is non-
degenerate on K using that K is of characteristic zero (otherwise n = 0
may not be a contradiction). This is the definition of a separable extension.
It is not difficult to show (see for example Proposition 4.8.11 or Exercise 5)
that the signature of this quadratic form (i.e. the number of positive and neg-
ative squares after Gaussian reduction) is equal to (r1 +r2,72) Where as usual
(r1,72) is the signature of the number field K.

Recall that we denote by Zg the ring of (algebraic) integers of K. Then
we also have:

Theorem 4.4.2. The ring Zk is a free Z-module of rank n = deg(K). This
is true more generally for any non-zero ideal of Zk .

Proof (Sketch). Let a; be a basis of K as a Q-vector space. Without loss of
generality, we can assume that the a; are algebraic integers. If A is the (free)
Z-module generated by the o;, we clearly have A C Zg, and the formula
M~ = M?d%i/det(M) for the inverse of a matrix (see section 2.2.4) shows
that dZx C A, where d is the discriminant of the a;, whence the result.
(Recall that a sub-Z-module of a free module of rank n is a free module of
rank less than or equal to n, since Z is a principal ideal domain, see Theorem
2.4.1) w

It is important to note that Z being a PID is crucial in the above proof.
Hence, if we consider relative extensions, Theorem 4.4.2 will a priori be true
only if the base ring is also a PID, and this is not always the case.

Definition 4.4.3. A Z-basis of the free module Zg will be called an integral
basis of K. The discriminant of an integral basis is independent of the choice
of that basis, and is called the discriminant of the field K and is denoted by
d(K).

Note that, although the two notions are closely related, the discriminant
of K is not in general equal to the discriminant of an irreducible polynomial
defining K. More precisely:

Proposition 4.4.4. Let T be a monic irreducible polynomial of degree n in
Z[X], 0 a root of T, and K = Q(6). Denote by d(T) (resp. d(K)) the discrim-
inant of the polynomial T (resp. of the number field K).

(1) We have d(1,0,...,6™) = d(T).
(2) If f = [Zk : Z[6]], we have

d(T) = d(K) >

and, in particular, d(T') is a square multiple of d(K).

4.4 Discriminants, Integral Bases and Polynomial Reduction 167

The proof of this is easy and left to the reader. The number f will be
called the indez of 6 in Z.

Proposition 4.4.5. The algebraic numbers o, ... , @, form an integral basis
if and only if they are algebraic integers and if d(o,...,an) = d(K), where
d(K) is the discriminant of K.

Proof. If M is the matrix expressing the o; on some integral basis of K, it is
clear that d(ay,...,a,) = d(K) det(M)? and the proposition follows. a

We also have the following result due to Stickelberger:

Proposition 4.4.6. Let o1, ..., oy be algebraic integers. Then

d(ag,...,on) =00r1 (mod 4).

Proof. If we expand the determinant det(c;(c;)) using the n! terms, we will
get terms with a plus sign corresponding to permutations of even signature,
and terms with a minus sign. Hence, collecting these terms separately, we can
write the determinant as P — N hence

d(a,...,an) = (P —N)?=(P+N)>-4PN.

Now clearly P+ N and PN are symmetric functions of the a;, hence by Galois
theory they are in Q and in fact in Z since the «; are algebraic integers. This
proves the proposition, since a square is always congruent to 0 or 1 mod 4. O

The determination of an explicit integral basis and of the discriminant of
a number field is not an easy problem, and is one of the main tasks of this
course. There is, however one case in which the result is trivial:

Corollary 4.4.7. Let T be a monic irreducible polynomial in Z[X], 6 a root
of T, and K = Q(0). Assume that the discriminant of T is squarefree or is
equal to 4d where d is squarefree and not congruent to 1 modulo 4. Then the
discriminant of K is equal to the discriminant of T, and an integral basis of
K is given by 1,6, ..., 61

Since a discriminant must be congruent to 0 or 1 mod 4, this immediately
follows from the above propositions. 0

Unfortunately, this corollary is not of much use, since it is quite rare that
the condition on the discriminant of T is satisfied. We will see in Chapter 6 a
complete method for finding an integral basis and hence the discriminant of
a number field.

168 4 Algorithms for Algebraic Number Theory I

Finally, we note without proof the following consequence of the so-called
“conductor-discriminant formula”.

Proposition 4.4.8. Let K and L be number fields with K C L. Then

d(K)EKT | d(r).

Corollary 4.4.9. Let K = Q(a) and L = Q(8) be two number fields, let
m = deg(K), n =deg(L), A(X) (resp. B(X)) the minimal monic polynomial
of a (resp. B). Write d(A) and d(B) for the discriminants of the polynomials
A and B. Assume that K is conjugate to a subfield of L. Then if p is a prime
such that v,(d(A)) is odd, we must have p™/™| d(B).

Proof. By Proposition 4.4.4 if v,(d(A)) is odd then p | d(X), where d(K) is
the discriminant of the field K. By the proposition we therefore have p™/™ |
d(L) | d(B), thus proving the corollary. m|

4.4.2 The Polynomial Reduction Algorithm

We will see in Section 4.5 that it is usually not always easy to decide whether
two number fields are isomorphic or not. Here we will give a heuristic approach
based on the LLL algorithm and ideas of Diaz y Diaz and the author which
often gives a useful answer to the following problem: given a number field K,
can one find a monic irreducible polynomial defining K which in a certain
sense is as simple as possible.

Of course, if this could be done, the isomorphism problem would be com-
pletely solved. We will see in Chapters 5 and 6 that it is possible to do this
for quadratic fields (in fact it is trivial in that case), and for certain classes
of cubic fields, like cyclic cubic fields or pure cubic fields (see Section 6.4). In
general, all one can hope for in practice is to find, maybe not the simplest,
but a simple polynomial defining K.

A natural criterion of simplicity would be to take polynomials whose
largest coeflicients are as small as possible in absolute value (i.e. the L° norm
on the coeflicients), or such that the sum of the squares of the coefficients is
as small as possible (the L? norm). Unfortunately, I know of no really efficient
way of finding simple polynomials in this sense.

What we will in fact consider is the following “norm” on polynomials.

Definition 4.4.10. Let P € C[X], and let o; be the complex roots of P
repeated with multiplicity. We define the size of P by the formula

size(P) = Z o).

4.4 Discriminants, Integral Bases and Polynomial Reduction 169

This is not a norm in the usual mathematical sense, but it seems reasonable
to say that if the size (in this sense) of a polynomial is not large, then the
polynomial is simple, and its coefficients should not be too large.

More precisely, we can show (see Exercise 6) that if P = ZLO ar Xk is a
monic polynomial and if S = size(P), then

s ()

Hence, the size of P is related to the size of

max |a,_ k|2/k

The reason we take this definition instead of an L? definition on the coef-
ficients is that we can apply the LLL algorithm to find a polynomial of small
size which defines the same number field K as the one defined by a given
polynomial P, while I do not know how to achieve this for the norms on the
coefficients.

The method is as follows. Let K be defined by a monic irreducible poly-
nomial P € Z[X]. Using the round 2 Algorithm 6.1.8 which will be explained
in Chapter 6, we compute an integral basis wy, ... , w, of Zk. Furthermore,
let o; denote the n isomorphisms of K into C. If we set

n
T = g T;w;
i=1

where the z; are in Z, then z is an arbitrary algebraic integer in K, hence
its characteristic polynomial M, will be of the form P; /4 where P, is the
minimal polynomial of x and d the degree of z, and P,; defines a subfield of
K. In particular, when d = n, this defines an equation for K, and clearly all
monic equations for K with integer coefficients (as well as for subfields of K)
are obtained in this way.

Now we have by definition

= H (X — Z xiok(wi))
k= i=1

—

hence,

size(M) Z

k=1

Z ziok(wi)

i=1

This is clearly a quadratic form in the x;’s, and more precisely

size(M,) = Z (Z ok(ws)ok(wj) | zizj -

i,j \1<k<n

170 4 Algorithms for Algebraic Number Theory I

Note that in the case where K is totally real, that is when all the oy are real
embeddings, this simplifies to

size(M,) = Z'I‘r(w,-wj):ci:cj
1,3

which is now a quadratic form with integer coefficients which can easily be
computed from the knowledge of the w;.

In any case, whether K is totally real or not, we can apply the LLL
algorithm to the lattice Z™ and the quadratic form size(M;). The result will be
a set of n vectors z corresponding to reasonably small values of the quadratic
form (see Section 2.6 for quantitative statements), hence to polynomials M,
of small size, which is what we want. Note however that the algebraic integers
x that we obtain in this way will often have a minimal polynomial of degree
less than n, in other words x will define a subfield of K. In particular, z =1
is always obtained as a short vector, and this defines the subfield Q of K.
Practical experiments with this method show however that there will always
be at least one element z of degree exactly n, hence defining K, and its minimal
polynomial will hopefully be simpler than the polynomial P from which we
started.

However the polynomials that we obtain in this way, have sometimes
greater coefficients than those of P. This is not too surprising since our defi-
nition of “size” of P(X) = ¥ x<, axX* involves the size of the roots of P,

hence of the quantities

|an—k|1/k

more than the size of the coefficients themselves.

Note that as a by-product of this method, we sometimes also obtain sub-
fields of K. It is absolutely not true however that we obtain all subfields of K
in this way. Indeed, the LLL algorithm gives us at most n subfields, while the
number of subfields of K may be much larger.

The algorithm, which we name POLRED for polynomial reduction, is as
follows (see [Coh-Diaz]).

Algorithm 4.4.11 (POLRED). Let K = Q(6) be a number field defined by a
monic irreducible polynomial P € Z[X]. This algorithm gives a list of polynomials
defining certain subfields of K (including Q), which are often simpler than the
polynomial P so these can be used to define the field K if they are of degree
equal to the degree of K.

1. [Compute the maximal order] Using the round 2 Algorithm 6.1.8 of Chapter
6, compute an integral basis w, ..., w, as polynomials in 6.

2. [Compute matrix] If the field K is totally real (which can be easily checked
using Algorithm 4.1.11), set m; ; «— Tr(w;w;) for 1 < 4,5 < n, which will be
an element of Z.

4.4 Discriminants, Integral Bases and Polynomial Reduction 171

Otherwise, using Algorithm 3.6.6, compute a reasonably accurate value of 8
and its conjugates o;(6) as the roots of P, then the numerical values of o;(wy),
and finally compute a reasonably accurate approximation to

Mij — Y ow(wi)or(ws)

1<k<n

(note that this will be a real number).

3. [Apply LLL] Using the LLL Algorithm 2.6.3 applied to the inner product defined

by the matrix M = (m; ;) and to the standard basis of the lattice Z™, compute
an LLL-reduced basis by, ..., b,.

4. [Compute characteristic polynomials] For 1 < i < n, using the formulas of
Section 4.3, compute the characteristic polynomial C; of the element of Zg
corresponding to b; on the basis wq, wy, ..., wy.

5. [Compute minimal polynomials] For 1 < i < n, set P; « C;/(C;,C!) where
the GCD is always normalized so as to be monic, and is computed by Euclid's
algorithm. Output the polynomials P; and terminate the algorithm.

From what we have seen in Section 4.3, the characteristic polynomial C; of
an element = € Z is given by C; = P}, where P; is the minimal polynomial
and k is a positive integer, hence C;/(C;,C]) = P;, thus explaining step 5.
In fact, to avoid ambiguities of sign which arise, it is also useful to make
the following choice at the end of the algorithm. For each polynomial P;, set
d; « deg(P;) and search for the non-zero monomial of largest degree d such
that d # d; (mod 2). If such a monomial exists, make, if necessary, the change
Py(X) « (=1)% P;(—X) so that the sign of this monomial is negative.

Let us give an example of the use of the POLRED algorithm. This example
is taken from work of M. Olivier. Consider the polynomial

T(X) = X% +2X° —7X% - 12X3 + 10X%2 + 17X +4.

Using the methods of Section 3.5, one easily shows that this polynomial is irre-
ducible over Q, hence defines a number field K of degree 6. Furthermore, using
Algorithm 3.6.6, one computes that the complex roots of T' are approximately
equal to

— 2.7494482169, —1.7152399972, —0.8531562311, —0.3074682781,
1.5839340557,2.0413786677 .

Using the methods of the preceding section, it is then easy to check that this
field has no proper subfield apart from Q.

From this and the classification of transitive permutation groups of degree
6 which we will see in Section 6.3, we deduce that the Galois group G of the
Galois closure of K is isomorphic either to the alternating groups As or Ag,

172 4 Algorithms for Algebraic Number Theory I

or to the symmetric groups Ss or Sg. Now using the sub-resultant Algorithm
3.3.7 or Proposition 3.3.5 one computes that

disc(T) = 116992

so by Proposition 6.3.1, we have G C Ag hence G is isomorphic either to As
or to As.

Distinguishing between the two is done by using one of the resolvent func-
tions given in Section 6.3, and the resolvent polynomial obtained is

R(X) = X5+ 3694X° + 1246830X* — 7355817976 X% — 5140929655107.X 2
+ 3486026298845999X + 2593668315970494361.

A computation of the roots of this polynomial shows that it has an integer root
x =—673, and the results of Section 6.3 imply that G is isomorphic to As. In
addition, Q(X) = R(X)/(X + 673) is an irreducible fifth degree polynomial
which defines a number field with the same discriminant as K. We have

Q(X) = X® +3021.X* — 786303 X — 6826636057.X 2
— 546603588746 X + 3853890514072057,

and the discriminant of @ (which must be a square by Proposition 6.3.1) has
63 decimal digits. Now if we apply the POLRED algorithm, we obtain five
polynomials, four of which define the same field as @, and the polynomial
with the smallest discriminant is

S(X)=X5—2X*-13X3+37X2-21X —1,

a polynomial which is much more appealing than Q!

We compute that disc(S) = 116992, hence this is the discriminant of the
number field K as well as the number field defined by the polynomial S.

There was a small amount of cheating in the above example: since disc(Q)
is a 63 digit number, the POLRED algorithm, which in particular computes
an integral basis of K hence needs to factor disc(Q), may need quite a lot
of time to factor this discriminant. We can however in this case “help” the
POLRED algorithm by telling it that disc(Q) is a square, which we know a
priori, but which is not usually tested for in a factoring algorithm since it is
quite rare an occurrence. This is how the above example was computed in
practice, and the whole computation, including typing the commands, took
only a few minutes on a workstation.

We can slightly modify the POLRED algorithm so as to obtain a defining
polynomial for a number field which is as canonical as possible. One possibility
is as follows.

We first need a notation. If Q(X) = 3" .. ., a: X" is a polynomial of degree
n, we set -

4.5

The Subfield Problem and Applications 173

v(Q) = (| disc(Q)],size(Q), an], lan-1l, .- -, a1l laol)-

Algorithm 4.4.12 (Pseudo-Canonical Defining Polynomial). Given a num-
ber field K defined by a monic irreducible polynomial P € Z[X] of degree n,
this algorithm outputs another polynomial defining K which is as canonical as
possible.

1.

4.

[Apply POLRED] Apply the POLRED algorithm to P, and let P; (for i =
1,...,n) be the n polynomials which are output by the POLRED algorithm.
If none of the P; are of degree n, output a message saying that the algorithm
failed, and terminate the algorithm. Otherwise, let £ be the set of i such that
P; is of degree n.

. [Minimize v(P;)] If £ has a single element, let Q be this element. If not, for each

i € L compute v; — v(P;) and let v be the smallest v; for the lexicographic
ordering of the components. Let Q be any P; such that v(P;) = v.

[Possible sign change] Search for the non-zero monomial of largest degree d
such that d # n (mod 2). If such a monomial exists, make, if necessary, the
change Q(X) « (—1)"Q(—X) so that the sign of this monomial is negative.

[Terminate] Output @ and terminate the algorithm.

Remarks.

(1

(2)

®3)

The algorithm may fail, i.e. the POLRED algorithm may give only poly-
nomials of degree less than n. That this is possible in principle has been
shown by H. W. Lenstra (private communication), but in practice, on
more than 100000 polynomials of various degree, I have never encoun-
tered a failure. It seems that failure is very rare.

At the end of step 2 there may be several i such that v; = v. In that case,
it may be useful to output all the possibilities (after executing step 3 on
each of them) instead of only one. In practice, this is also uncommon.
Although Algorithm 4.4.12 makes an effort towards finding a polynomial
defining K with small index f = [Zg : Z[f]], it should not be expected that
it always finds a polynomial with the smallest possible index. An example
is the polynomial X 3—X2—20X 49 which naturally defines the cyclic cubic
field with discriminant 612 (see Theorem 6.4.6). Algorithm 4.4.12 finds
that this is the pseudo-canonical polynomial defining the cubic field, but it
has index equal to 3, while for example the polynomial X3+12X2-13X+3
has index equal to 1. The reason for this behavior is that the notion of
“size” of a polynomial is rather indirectly related to the size of the index.
See also Exercise 8.

174 4 Algorithms for Algebraic Number Theory I

4.5 The Subfield Problem and Applications

Let K = Q(a) and L = Q(8) be number fields of degree m and n respectively,
and let A(X), B(X) € Z[X] be the minimal polynomials of o and § respec-
tively. The basic subfield problem is as follows. Determine whether or not K
is isomorphic to a subfield of L, or in more down-to-earth terms whether or
not some conjugate of a belongs to L. We could of course ask more precisely if
a itself belongs to L, and we will see that the answer to this question follows
essentially from the answer to the apparently weaker one.

We start by two fast tests. First, if K is conjugate to a subfield of L, then
the degree of K clearly must divide the degree of L.

The second test follows from Corollary 4.4.9. We compute d(A) and d(B)
and for each odd prime p such that v,(d(A)) is odd, test whether or not
p™™ | d(B). Note that according to Exercise 15, it is not necessary to assume
that A and B are monic, i.e. that @ and (3 are algebraic integers.

We could use the more stringent test d(K)™™ | d(L) using Proposition
4.4.8 directly, but this requires the computation of field discriminants, hence
essentially of integral bases, and this is often lengthy. So, we do not advise
using this more stringent test unless the field discriminants can be obtained
cheaply.

We therefore assume that the above tests have been passed successfully.
We will give three different methods for solving our problem. The first two
require good approximations to the complex roots of the polynomials A and
B (computed using for example Algorithm 3.6.6), while the third is purely
algebraic, but slower.

4.5.1 The Subfield Problem Using the LLL Algorithm

Let 8 be an arbitrary, but fixed root of the polynomial B in C. If K is conjugate
to a subfield of L, then some root a; of A is of the form P(3) for some P € Q[X]
of degree less than n. In other words, the complex numbers 1,43,...,8" !, 04
are Z-linearly dependent. To check this, use the LLL algorithm or one of its
variations, as described in Section 2.7.2 on each root of A (or on the root
we are specifically interested in as the case may be). Then two things may
happen. Either the algorithm gives a linear combination which is not very
small in appearance, or it seems to find something reasonable. The reader will
notice that in none of these cases have we proved anything. If, however, we
are in the situation where LLL apparently found a nice relation, this can now
be proved: assume the relation gives a; = P(f3) for some polynomial P with
rational coefficients. (Note that the coefficient of ; in the linear combination
which has been found must be non-zero, otherwise this would mean that the
minimal polynomial of § is not irreducible.) To test whether this relation is
true, it is now necessary simply to check that

AoP=0 (mod B),

4.5 The Subfield Problem and Applications 175

where A and B are the minimal polynomials of o and (3 respectively. Indeed,
if this is true, this means that P(f) is a root of A4, i.e. a conjugate of ¢;, hence
is a; itself since LLL told us that it was numerically very close to ;.

To compute C = Ao P (mod B), we use a form of Horner’s rule for
evaluating polynomials: if A(X) = 7" a;X*, then we set C «— am, and for
i=m-—1,m-2,...,0 we compute C « (a; + P(X)C mod B).

In the implausible case where one finds that Ao P # 0 (mod B), then we
must again test for linear dependence with higher precision used for a; and S.

Remark. There is a better way to test whether each conjugate a; is or is not
a Q-linear combination of 1, 3, ..., ™! than to apply LLL to each a;, each
time LLL reducing an (n + 2) x (n 4+ 1) matrix (or equivalently a quadratic
form in n + 1 variables). Indeed, keeping with the notations of Remark (2) at
the end of Section 2.7.2, the first n columns of that matrix, which correspond
to the powers of 3, will always be the same. Only the last column depends
on ¢;. But in LLL reduction, almost all the work is spent LLL reducing the
first n columns, the n + 1-st is done last. Hence, we should first LLL reduce
the (n+ 2) x n matrix corresponding to the powers of 8. Then, for each «; to
be tested, we can now start from the already reduced basis and just add an
extra column vector, and since the first n vectors are already LLL reduced,
the amount of work which remains to be done to account for the last column
will be very small compared to a full LLL reduction. We leave the details to
the reader.

If LLL tells us that apparently there is no linear relation, then we suspect
that a ¢ Q(B). To prove it, the best way is probably to apply one of the two
other methods which we are going to explain.

4.5.2 The Subfield Problem Using Linear Algebra over C
A second method is as follows (I thank A.-M. Bergé and M. Olivier for pointing

it out to me.) After clearing denominators, we may as well assume that @ and
(3 are algebraic integers. We then have the following.

Proposition 4.5.1. With the above notations, assume that a and 3 are al-
gebraic integers. Then K is isomorphic to a subfield of L if and only if there
exists an n/m to one map ¢ from [1,n] to [1,m] such that for 1 < h < n,

Sh = Z aq&(i)ﬂzh €Z,

1<i<n
where the o (resp. §;) denote the roots of A(X) (resp. of B(X)) in C.

Proof. Assume first that K is isomorphic to a subfield of L, i.e. that a; = P(81)
with P € Q[X] say. Then, for every i, P(8;) is a root o of A(X) = 0, and

176 4 Algorithms for Algebraic Number Theory I

by Galois theory each o; is obtained exactly n/m times. Therefore the map
i+ j = ¢(i) is n/m to one. Furthermore,

Sh = Z a¢(i)ﬂzh = Z P(B;)Br = TfL/Q(P(ﬂ)ﬁh) €Q,

1<i<n 1<i<n

hence sj, € Z since the a; and f3; are algebraic integers.
Conversely, assume that for some ¢ we have sp € Z for all h such that
1 < h < n. Note that so = (n/m) Trgq(c) € Z follows automatically.
Consider the following n X n linear system:

S o Trp (B =sn, 0<h<n.

0<ji<n

By Proposition 4.4.4 (1) the determinant of this system is equal to d(B), hence
is non-zero. Furthermore, the system has rational coefficients, so the unique
solution has coefficients z;€Q. If weset P(X)= 3 <, Tj X J, we then have
PeQ[X] and ¥, c;c, P(Bi)Br=sp. It follows that the vector of the (P(5;))
and of the ag(;) are both solutions of the linear system ZKKnviﬂf‘ =Sp,
and since the [; are distinct this system has a unique solution, so the vect-
ors are equal, thus proving the proposition. O

Remarks.

(1) The number of maps from [1,n] to [1,m] which are n/m-to-one is equal
to n!/((n/m)!)™ hence can be quite large, especially when m = n (which
corresponds to the very important isomorphism problem). This is to be
compared to the number of trials to be done with the LLL method, which
is only equal to m. Hence, although LLL is slow, except when n is very
small (say n < 4), we suggest starting with the LLL method. If the answer
is positive, which will in practice happen quite often, we can stop. If not,
use the present method (or the purely algebraic method which is explained
below).

(2) To check that s, € Z we must of course compute the roots of A(X) and
B(X) sufficiently accurately. Now however the error estimates are trivial
(compared to the ones we would need using LLL), and if s, is sufficiently
far away from an integer, it is very easy to prove rigorously that it is so.

(3) We start of course by checking whether s; € Z, since this will eliminate
most candidates for ¢.

The above leads to the following algorithm.

Algorithm 4.5.2 (Subfield Problem Using Linear Algebra). Let A(X) and
B(X) be primitive irreducible polynomials in Z[X] of degree m and n respectively
defining number fields K and L. This algorithm determines whether or not K is
isomorphic to a subfield of L, and if it is, gives an explicit isomorphism.

4.5 The Subfield Problem and Applications 177

1. [Trivial check] If m { n, output NO and terminate the algorithm.

2. [Reduce to algebraic integers] Set a «— £(A), b — £(B) (the leading terms of
A and B), and set A(X) « a™ 1A(X/a) and B(X) « b"~1B(X/b).

3. [Check discriminants] For every odd prime p such that v,(d(A)) is odd, check
that p™/™ | d(B) (where d(A) and d(B) are computed using Algorithm 3.3.7).
If this is not the case, output NO and terminate the algorithm. if for some
reason d(K') and d(L) are known or cheaply computed, replace these checks
by the single check d(K)™'™ | d(L).

4. [Compute roots] Using Algorithm 3.6.6, compute the complex roots o; and
Bi of A(X) and B(X) to a reasonable accuracy (it may be necessary to have
more accuracy in the later steps).

5. [Loop on ¢] For each n/m to one map ¢ from [1,7] to [1,m] execute steps 6
and 7. If all the maps have been examined without termination of the algorithm,
output NO and terminate the algorithm.

6. [Check s1 € Z] Let 51 < 371 ;< @(5)0i- If 51 is not close to an integer (this
is a rigorous statement, since it depends only on the chosen approximations to
the roots), take the next map ¢ in step 5.

Otherwise, check whether s, « ZlSiSn ad,(i)ﬂ{‘ are also close to an
integer for h = 2,...,n—1. As soon as this is not the case, take the next map
¢ in step 5.

7. [Compute polynomial] (Here the sp are all close to integers.) Set s, «— [sa]
(the nearest integer to s,). Compute by induction tx « Trzq(8%) for 0 <
k < 2n — 2, and using Algorithm 2.2.1 or a Gauss-Bareiss variant, find the
unique solution to the linear system >, ., Z;jtj+n = sn for 0 < h < n (note
that we know that d(B)z; € Z so we can avoid rational arithmetic), and set
P(X) « ZOSJ’(n T X7,

8. [Finished?] Using the variant of Horner's rule explained in Section 4.5.1, check
whether A(P(X)) = 0 (mod B(X)). If this is the case, then output YES,
output also the polynomial P(bX)/a which gives the isomorphism explicitly,
and terminate the algorithm. Otherwise, using Algorithm 3.6.6 (or, even more
simply, a few Newton iterations to obtain a higher precision) recompute the
roots ; and (; to a greater accuracy and go to step 6.

4.5.3 The Subfield Problem Using Algebraic Algorithms

The third solution that we give to the subfield problem is usually less efficient
but has the advantage that it is guaranteed to work without worrying about
complex approximations. The idea is to use Algorithm 3.6.4 which factors
polynomials over number fields and the following easy proposition whose proof
is left to the reader (Exercise 9).

Proposition 4.5.3. Let o and (8 be algebraic numbers with minimal poly-
nomials A(X) and B(X) respectively. Set K = Q(a), L = Q(B), and let

178 4 Algorithms for Algebraic Number Theory I

A =[l1<icy Ai be a factorization of A into irreducible factors in L[X]. There
is a one-to-one correspondence between the A; of degree equal to one and the
conjugates of a belonging to L. In particular, L contains a subfield isomorphic
to K if and only if at least one of the A; is of degree equal to one.

This immediately leads to the following algorithm. Note that we keep the
same first three steps of the preceding algorithm.

Algorithm 4.5.4 (Subfield Problem Using Factorization of Polynomials).
Let A(X) and B(X) be primitive irreducible polynomials in Z[X] of degree m
and n respectively defining number fields K and L. This algorithm determines
whether or not K is isomorphic to a subfield of L, and if it is, gives an explicit
isomorphism.

1. [Trivial check] If m { n, output NO and terminate the algorithm.

2. [Reduce to algebraic integers] Set a « £(A), b — £(B) (the leading terms of
A and B), and set A(X) « a™ 1A(X/a) and B(X) « b*~1B(X/b).

3. [Check discriminants] For every odd prime p such that v,(d(A)) is odd, check
that p™/™ | d(B) (where d(A) and d(B) are computed using Algorithm 3.3.7).
If this is not the case, output NO and terminate the algorithm. If for some
reason d(K) and d(L) are known or cheaply computed, replace these checks
by the single check d(K)™/™ | d(L).

4. [Factor in L[X]] Using Algorithm 3.6.4, let A =[], ;< A: be a factorization
of A into irreducible factors in L[X], where without loss of generality we may
assume the A; monic.

5. [Conclude] If no A; is of degree equal to 1, then output NO otherwise output
YES, and if we write A; = X — g,(3) where § is a root of B such that
L = Q(B), output also the polynomial g;(bX)/a which gives explicitly the
isomorphism. Terminate the algorithm.

Conclusion. With three different algorithms to solve the subfield problem, it
is now necessary to give some practical advice. These remarks are, of course,
also valid for the applications of the subfield problem that we will see in the
next section, such as the field isomorphism problem.

1) Start by executing steps 1 to 3 of Algorithm 4.5.2. These tests are fast
and will eliminate most cases when K is not isomorphic to a subfield of L. If
these tests go through, there is now a distinct possibility that the answer to
the subfield problem is yes.

2) Apply the LLL method (using the remark made at the end). This is also
quite fast, and will give good results if K is indeed isomorphic to a subfield
of L. Note that sufficient accuracy should be used in computing the roots of
A(X) and B(X) otherwise LLL may miss a dependency. If LLL fails to detect
a relation, then especially if the computation has been done to high accuracy
it is almost certain that K is not isomorphic to a subfield of L.

4.5 The Subfield Problem and Applications 179

An alternate method which is numerically more stable is to use Algorithm
4.5.2. However this algorithm is much slower than LLL as soon as n is at all
large, hence should be used only for these very small values of n.

3) In the remaining cases, apply Algorithm 4.5.4 which is slow but sure.

4.5.4 Applications of the Solutions to the Subfield Problem

Now that we have seen three methods for solving the subfield problem, we will
see that this problem is basic for the solution of a number of other problems.
For each of these other problems, we can then choose any method that we like
to solve the underlying subfield problem.

The Field Membership Problem.

The first problem that we can now solve is the field membership problem.
Given two algebraic numbers o and 8 by their minimal polynomials A and
B and suitable complex approximations, determine whether or not a € Q(3)
and if so a polynomial P € Q[X] such that o = P(8). For this, apply one of
the three methods that we have studied for the subfield problem. Note that
some steps may be simplified since we have chosen a specific complex root of
A(X). For example, if we use LLL, we simply check the linear dependence
of « and the powers of (. If we use linear algebra, choosing a numbering of
the roots such that a = @; and 8 = f;, we can restrict to maps ¢ such that
¢(1) = 1. In the algebraic method on the other hand we must lengthen step
5. For every A; = X — ¢;(8) of degree one, we compute g;() numerically (it
will be a root of A(X)) and check whether it is closer to a than to any other
root. If this occurs for no ¢, then the answer is NO, otherwise the answer is
YES and we output the correct g;.

The Field Isomorphism Problem.

The second problem is the isomorphism problem. Given two number fields
K and L as before, determine whether or not they are isomorphic. This is of
course equivalent to K and L having the same degree and K being a subfield
of L, so the solution to this problem follows immediately from that of the
subfield problem. Since this problem is very important, we give explicitly the
two algorithms corresponding to the last two methods (the LLL method can
of course also be used). For still another method, see [Poh3].

Algorithm 4.5.5 (Field Isomorphism Using Linear Algebra). Let A(X) and

B(X) be primitive irreducible polynomials in Z[X] of the same degree n defining

number fields K and L. This algorithm determines whether or not K is isomorphic

to L, and if it is, gives an explicit isomorphism.

1. [Reduce to algebraic integers] Set a — £(A), b «— £(B) (the leading terms of
A and B), and set A(X) « a""'A(X/a) and B(X) < b""1B(X/b).

2. [Check discriminants] Compute d(A) and d(B) using Algorithm 3.3.7), and
check whether d(A)/d(B) is a square in Q using essentially Algorithm 1.7.3.

180 4 Algorithms for Algebraic Number Theory I

If this is not the case, output NO and terminate the algorithm. If for some
reason d(K) and d(L) are known or cheaply computed, replace this check by
d(K) =d(L).

. [Compute roots] Using Algorithm 3.6.6, compute the complex roots o; and

B; of A(X) and B(X) to a reasonable accuracy (it may be necessary to have
more accuracy in the later steps).

[Loop on @] For each permutation ¢ of [1,n] execute steps 5 and 6. If all
the permutations have been examined without termination of the algorithm,
output NO and terminate the algorithm.

. [Check s; € Z] Let 51 «— < Qg(iyF;. If 51 is not close to an integer (this
1<in #(i)

is a rigorous statement, since it depends only on the chosen approximations to
the roots), take the next permutation ¢ in step 4.

Otherwise, check whether s, «— 3 ;.. agu B are also close to an
integer for h =2,...,n—1. As soon as this is not the case, take the next map
¢ in step 4.

. [Compute polynomial] (Here the s, are all close to integers.) Set sp «— |sh]

(the nearest integer to s;). Compute by induction t, — Trz,q(8¥) for 0 <
k < 2n — 2, and using Algorithm 2.2.1 or a Gauss-Bareiss variant, find the
unique solution to the linear system > o ,_, zjtj+n = sp for 0 < h < n.
(We know that d(B)z; € Z, so we can avoid rational arithmetic.) Now set

P(X) « 205j<n z; X7.

. [Finished?] Using the variant of Horner's rule explained in Section 4.5.1, check

whether A(P(X)) =0 (mod B(X)). If this is the case, then output YES, and
also output the polynomial P(bX)/a which gives the isomorphism explicitly,
and terminate the algorithm. Otherwise, using Algorithm 3.6.6 recompute the
roots a; and [3; to a greater accuracy and go to step 5.

Algorithm 4.5.6 (Field Isomorphism Using Polynomial Factorization). Let
A(X) and B(X) be primitive irreducible polynomials in Z[X] of the same degree
n defining number fields K and L. This algorithm determines whether or not K
is isomorphic to L, and if it is, gives an explicit isomorphism.

1.

[Reduce to algebraic integers] Set a «— £(A), b «— £(B) (the leading terms of
A and B), and set A(X) « a""1A(X/a) and B(X) < b*~1B(X/b).

. [Check discriminants] Compute d(A) and d(B) using Algorithm 3.3.7), and

check whether d(A)/d(B) is a square in Q using a slightly modified version of
Algorithm 1.7.3. If this is not the case, output NO and terminate the algorithm.
If for some reason d(K) and d(L) are known or cheaply computed, check
instead that d(K) = d(L).

[Factor in L[X]] Using Algorithm 3.6.4, let A = [T1<i<, Ai be a factorization
of A into irreducible factors in L[X], where without loss of generality we may
assume the A; monic.

[Conclude] If no A; has degree equal to 1, then output NO otherwise output
YES, and if we write A; = X — g;(8) where 3 is a root of B such that

4.6 Orders and Ideals 181

L = Q(B). also output the polynomial g;(bX)/a which explicitly gives the
isomorphism. Terminate the algorithm.

For the field isomorphism problem, there is a different method which works
sufficiently often that it deserves to be mentioned. We have seen that Algo-
rithm 4.4.12 gives a defining polynomial for a number field which is almost
canonical. Hence, if we apply this algorithm to two polynomials A and B, then,
if the corresponding number fields are isomorphic, there is a good chance that
the polynomials output by Algorithm 4.4.12 will be the same. If they are the
same, this proves that the fields are isomorphic (and we can easily recover
explicitly the isomorphism if desired). If not, it does not prove anything, but
we can expect that they are not isomorphic. We must then apply one of the
rigorous methods explained above to prove this.

The Primitive Element Problem.

The last application of the subfield problem that we will see is to the prim-
itive element problem. This is as follows. Given algebraic numbers oy, ..., @m,
set K = Q(ai,...,0m,). Then K is a number field, hence it is reasonable
(although not always absolutely necessary, see [Duv]) to represent K by a
primitive element 8, i.e.

K =Q(a,..am) = Q(0) ~ QX]/(T(X)Q[X]),

where T is the minimal polynomial of #. Hence, we need an algorithm which
finds such a T' (which is not unique) given o,...,an. We can do this by
induction on m, and the problem boils down to the following: Given a and 8
by their minimal polynomials A and B (and suitable complex approximations),
find a monic irreducible polynomial T € Z[X] such that

Q(a, B) = Q(8), where T'(8) =0.

We can use the solution to the subfield problem to solve this. According
to the proof of the primitive element theorem (see [Langl]), we can take
0 = ka + p for a small integer k, and Q(a,8) = Q(ka + B) is equivalent
to a € Q(ka+) which can be checked using one of the algorithms explained
above for the field membership problem.

4.6 Orders and Ideals

4.6.1 Basic Definitions

Definition 4.6.1. An order R in K is a subring of K which as a Z-module
ts finitely generated and of mazimal rank n = deg(K) (note that we use the

182 4 Algorithms for Algebraic Number Theory I

“modern” definition of a ring, which includes the existence of the multiplicative
identity 1).

Proposition 4.1.3 shows that every element of an order R is an algebraic
integer, i.e. that R C Zx. We will see that the ring theory of Zg is nicer than
that of an arbitrary order R, but for the moment we let R be an arbitrary order
in a number field K. We emphasize that some of the properties mentioned here
are specific to orders in number fields, and are not usually valid for general
base rings.

Definition 4.6.2. An ideal I of R is a sub-R-module of R, i.e. a sub-Z-
module of R such that for every r € R and i € I we have ri € I.

Note that the quotient module R/I has a canonical quotient ring structure.
In fact we have:

Proposition 4.6.3. Let I be a non-zero ideal of R. Then I is a module of
mazimal rank. In other words, R/I is a finite ring. Its cardinality is called the
norm of I and denoted N (I).

Indeed, if i € I with ¢ # 0, then iR C I C R, proving the proposition. O

If I is given by its HNF on a basis of R (or simply by any matrix A), then
Proposition 4.7.4 shows that the norm of I is simply the absolute value of the
determinant of A.

Ideals can be added (as modules), and the sum of two ideals is clearly
again an ideal. Similarly, the intersection of two ideals is an ideal. Ideals can
also be multiplied in the following way: if I and J are ideals, then

IJ= {inyi, where z; €I and y;€ J}-
i

Again, it is clear that this is an ideal. Note that we clearly have the inclusions
IJcInJcIcI+J,

(and similarly with J), and IR = I for all ideals I. It is clearly not always
true that IJ = INJ (take I = J = pZ in Z). We have however the following
easy result.

Proposition 4.6.4. Let I and J be two ideals in R and assume that [+J =
R. (It is then reasonable to say that I and J are coprime.) Then we have the
equality IJ =1INJ.

Proof. Since IJ C INJ we need to prove only the reverse inclusion. But since
I+ J=R,thereexistsae I andbe Jsuchthata+b=1.IfxecInJit

4.6 Orders and Ideals 183

follows that z = az + bx and clearly ax € IJ and bx € JI = IJ thus proving
the proposition.]

Definition 4.6.5. A fractional ideal I in R is a non-zero submodule of K
such that there erists a non-zero integer d with dI ideal of R. An ideal (frac-
tional or not) is said to be a principal ideal if there exists x € K such that
I = zR. Finally, R is a principal ideal domain (PID) if R is an integral do-
main (this is already satisfied for orders) and if every ideal of R is a principal
ideal.

It is clear that if I is a fractional ideal, then I C R if and only if I is an
ideal of R, and we will then say that I is an integral ideal.

Note that the set-theoretic inclusions seen above remain valid for fractional
ideals, except for the one concerning the product. Indeed, if I and J are two
fractional ideals, one does not even have IJ C I in general: take I = R, and
J a non-integral ideal.

Definition 4.6.6. Let I be a fractional ideal of R. We will say that I is
invertible if there exists a fractional ideal J of R such that R = IJ. Such an
ideal J will be called an inverse of I.

The following lemma is easy but crucial.
Lemma 4.6.7. Let I be a fractional ideal, and set
I'={z € K, zI C R}.

Then I is invertible if and only if II' = R. Furthermore if this equality is true,
then I' is the unique inverse of I and is denoted 1.

The proof is immediate and left to the reader.]

Remark. It is not true in general that N'(IJ) = N(I) N(J). For example,
let w = (1++/-7)/2, take R = Z + 3wZ and I = J = 3Z + 3wZ. Then
one immediately checks that A'(I) = 3, but N (I?) = 27. As the following
proposition shows, the equality N (IJ) = N(I)N(J) is however true when
either I or J is an invertible ideal in R, and in particular, it is always true

when R = Zg is the maximal order of K (see Section 4.6.2 for the relevant
definitions).

Proposition 4.6.8. Let R be an order in a number field, and let I and J

be two integral ideals of R. If either I or J is invertible, we have N(IJ) =
NI)N(J).

184 4 Algorithms for Algebraic Number Theory I

Proof. (This proof is due to H. W. Lenstra.) Assume for example that I is
invertible. We will prove more generally that if J C H where J and H are
ideals of R, then [IH : IJ] = [H : J]. With H =R, thisgives [[: IJ] = [R: J]
hence N(IJ) = [R: IJ] = [R : I|[I : 1J) = N(I)N(J) thus proving the
proposition.

Let us temporarily say that a pair of ideals (J, H) is a simple pair if
[H : J] > 1 and if there are no ideals containing J and contained in H apart
from H and J themselves.

We prove the equality [IH : IJ] = [H : J] by induction on [H : J]. For
H = J it is trivial, hence assume by induction that [H : J] > 1 and that the
proposition is true for any pair of ideals such that [H' : J'] < [H : J]. Assume
that (J, H) is not a simple pair, and let H; be an ideal between J and H and
distinct from both. By our induction hypothesis we have [IH : IH;] = [H : Hj]
and [IH, : 1J] = [Hy : J] hence [IH : IJ] = [H : J] thus proving the
proposition in that case.

Assume now that (J, H) is a simple pair. Then (IJ,IH) is also a simple
pair since I is an invertible ideal (in fact multiplication by I gives a one-to-one
map from the set of ideals between J and H onto the set of ideals between
1J and IH). Now we have the following lemma.

Lemma 4.6.9. If (J,H) is a simple pair, then there ezists an isomorphism
of R-modules from H/J to R/M for some mazimal ideal M of R. (Recall that
M is a mazimal ideal if and only if (M, R) is a simple pair.)

Indeed, let x € H \ J. The ideal zR + J is between J and H but is not
equal to J, hence H = R + J. This immediately implies that the map from
R to H/J which sends a to the class of az modulo J is a surjective R-linear
map. Call M its kernel, which is an ideal of R. Then by definition R/M is
isomorphic to H/J and since (J, H) is a simple pair it follows that (M, R) is
a simple pair, in other words that M is a maximal ideal of R, thus proving
the lemma. O

Resuming the proof of the proposition, we see that H/J is isomorphic to
R/M and IH/IJ is isomorphic to R/M’ for some maximal ideals M and M.
By construction, MH C J hence MIH C 1J, so M annihilates IH/IJ hence
M C M'. Since M and M' are maximal ideals (or since I is invertible), it
follows that M =M’ hence that [IH:IJ] = N(M') =N (M) = [H:J] thus
showing the proposition. O

Definition 4.6.10. An ideal p of R is called a prime ideal if p # R and if
the quotient ring R/p is an integral domain (in other words if zy € p implies
ze€pory€p) The ideal p is maximal if the quotient ring R/p is a field.

It is easy to see that an ideal p is maximal if and only if p # R and if
the only ideals I such that p C I C R are p and R, in other words if (p, R)

4.6 Orders and Ideals 185

form a simple pair in the language used above. Furthermore, it is clear that a
maximal ideal is prime. In number fields, the converse is essentially true:

Proposition 4.6.11. Let p be a non-zero prime ideal in R. Then p is mazi-
mal. (Here it is essential that R be an order in a number field.)

Indeed, to say that p is a prime ideal is equivalent to saying that for every
z ¢ p the maps y — zy modulo p are injections from A/p into itself. Since
A/p is finite, these maps are also bijections, hence A/p is a field. O

Note that {0} is indeed a prime ideal, but is not maximal. It will always
be excluded, even when this is not explicitly mentioned.

The reason why prime ideals are called “prime” is that the prime ideals of
Z are {0}, and the ideals pZ for p a prime number. Prime ideals also satisfy
some of the properties of prime numbers. Specifically:

Proposition 4.6.12. Ifp is a prime ideal and p D I - - - I, where the I; are
ideals, then there exists an i such that p D I;.

Proof. By induction on k it suffices to prove the result for K = 2. Assume that
p D IJandp P I and p B J. Then there exists z € I such that = ¢ p, and
y € J such that y ¢ p. Since p is a prime ideal, zy ¢ p, but clearly zy € IJ,
contradiction. 0O

If we interpret I O J as meaning I | J, this says that if p divides a product
of ideals, it divides one of the factors. Although it is quite tempting to use the
notation I | J, one should be careful with it since it is not true in general that
I'| J implies that there exists an ideal I’ such that J = II’. As we will see,
this will indeed be true if R = Zg, and in this case it makes perfectly good
sense to use that notation.

A variant of the above mentioned phenomenon is that it is not true for
general orders R that every ideal is a product of prime ideals. What is always
true is that every (non-zero) ideal contains a product of (non-zero) prime
ideals. When R = Zx however, we will see that everything we want is true at
the level of ideals.

Proposition 4.6.13. If R is an order in a number field (or more generally
a Noetherian integral domain), any non-zero integral ideal I in R contains a
product of (non-zero) prime ideals.

This is easily proved by Noetherian induction (see Exercise 11).

An important notion which is weaker than that of PID but almost as
useful is that of a Dedekind domain. This is by definition a Noetherian integral
domain R such that every non-zero prime ideal is maximal, and which is
integrally closed. This last condition means that if x is a root of a monic

186 4 Algorithms for Algebraic Number Theory I

polynomial equation with coefficients in R and if z is in the field of fractions
of R, then in fact z € R. This is for example the case of R = Z.

When R is an order in a number field, all the conditions are satisfied
except that R must also be integrally closed. Since R D Z, it is clear that if R
is integrally closed then R = Z, and the converse is also true by Proposition
4.1.5. Hence the only order in K which is a Dedekind domain is the ring of
integers Z. Since we know that every order R is a subring of Zg, we will
also call Zg the mazimal order of K.

‘We now specialize to the case where R = Zk.

4.6.2 Ideals of Zg

In this section, fix R = Zg. Let Z(K) be the set of fractional ideals of Zg.
We summarize the main properties of Zg-ideals in the following theorem:

Theorem 4.6.14.

(1) Every fractional ideal of Zk 1is invertible. In other words, if I is a fractional
ideal and if we set I"' = {x € K,xI C Zg}, then II™! = Zg.

(2) The set of fractional ideals of Zk is an Abelian group.

(3) Every fractional ideal I can be written in a unique way as

I = Hpvv(f),
P

the product being over a finite set of prime ideals, and the exponents v,(I)
being in Z. In particular, I is an integral ideal (i.e. I C Zk) if and only
if all the vy(I) are non-negative.

(4) The mazimal order Zy is a PID if and only if it is a UFD.

Hence the ideals of Z behave exactly as the numbers in Z, and can be
handled in the same way. Note that (3) is much stronger than Proposition
4.6.13, but is valid only because Zg is also integrally closed.

The quantity v,(I) is called the p-adic valuation of I and satisfies the usual
properties:

(1) I CZg <= vy(I) 2 0 for all prime ideals p.
) J CI <= v,(I) < vp(J) for all prime ideals p.
(3) wp(I + J) = min(vy (), vp(J))-
(4) 0,(11 J) = max(v, (D), v (J).
(5) vp(1J) = vp(I) + vp(J).

Hence the dictionary between fractional ideals and rational numbers is as
follows:

Fractional ideals «— (non-zero) rational numbers.

4.6 Orders and Ideals 187

Integral ideals «— integers.

Inclusion «— divisibility (with the reverse order).
Sum «— greatest common divisor.

Intersection «+— least common multiple.

Product «— product.

Of course, a few of these notions could be unfamiliar for rational num-
bers, for example the GCD, but a moment’s thought shows that one can give
perfectly sensible definitions.

We end this section with the notion of norm of a fractional ideal. We
have seen in Proposition 4.6.3 that for an integral ideal I the norm of I
is the cardinality of the finite ring R/I. As already mentioned, a corollary
of Theorem 4.6.14 is that N (IJ) = N(I)N(J) for ideals I and J of the
maximal order R = Zg (recall that this is false in general if R is not maximal).
This allows us to extend the definition of M'(I) to fractional ideals if desired:
any fractional ideal I can be written as a quotient of two integral ideals, say
I = P/Q (in fact by definition we can take @ = dR where d is an integer), and
we define N'(I) = N(P)/ N(Q). It is easy to check that this is independent of
the choice of P and @ and that it is still multiplicative (N (IJ) = N (I) N'(J)).
Of course, usually it will no longer be an integer.

The notion of norm of an ideal is linked to the notion of norm of an element
that we have seen above in the following way:

Proposition 4.6.15. Let = be a non-zero element of K. Then
Wk /e(2)| = N(2Zk),

in other words the norm of a principal ideal of Zy is equal to the absolute
value of the norm (in K) of a generating element.

One should never forget this absolute value. We could in fact have a nicer
looking proposition (without absolute values) by using a slight extension of
the notion of fractional ideal: because of Theorem 4.6.14 (3), the group of
fractional ideals can be identified with the free Abelian group generated by
the prime ideals p. Furthermore, a number field K has places, corresponding to
equivalence classes of valuations. The finite places, which correspond to non-
Archimedean valuations, can be identified with the (non-zero) prime ideals of
Z . The other (so called infinite places) correspond to Archimedean valuations
and can be identified with the embeddings o; of K in C, with ¢ identified with
& (thus giving 71+ r2 Archimedean valuations). Hence, we can consider the
extended group which is the free Abelian group generated by all valuations,
finite or not. One can show that to obtain a sensible definition, the coefficients
of the non-real complex embeddings must be considered modulo 1, i.e. can be
taken equal to 0, and the coefficients of the real embeddings must be considered

modulo 2 (I do not give the justification for these claims). Hence, the group
of generalized fractional ideals is

188 4 Algorithms for Algebraic Number Theory I

Z[P(K)] x {£1}™,

where P(K) is the set of non-zero prime ideals. The norm of such a generalized
ideal is then the norm of its finite part multiplied by the infinite components
(i.e. by a sign). Now if £ € K, the generalized fractional ideal associated to
z is, on the finite part equal to zZg, and on the infinite place o; (where
1 < i <7r;) equal to the sign of o;(z). It is then easy to check that these two
notions of norm now correspond exactly, including sign.

The discussion above was meant as an aside, but is the beginning of the
theory of adeles and ideles (see [Lang?2]). In a down to earth way, we can say
that most natural questions concerning number fields should treat together
the Archimedean and non-Archimedean places (or primes). In addition to the
present example, we have already mentioned the parallel between Proposi-
tions 4.1.14 and 4.8.6. Similarly, we will see Propositions 4.8.11 and 4.8.10.
Maybe the most important consequence is that we will have to compute si-
multaneously class groups (i.e. the non-Archimedean part) and regulators (the
Archimedean part), see Sections 4.9, 5.9 and 6.5.

4.7 Representation of Modules and Ideals

4.7.1 Modules and the Hermite Normal Form

As before, we work in a fixed number field K of degree n, given by K = Q(4),
where 6 is an algebraic integer whose minimal monic polynomial is denoted
T(X).

Definition 4.7.1. A module in K is a finitely generated sub-Z-module of K
of rank exactly equal to n.

Since Z is a PID, such a module being torsion free and finitely generated,
must be free. Let wy, ... , w, be a Z-basis of M. The numbers w; are elements
of K, hence we can find an integer d such that dw; € Z[6] for all i. The least
such positive d will be called the denominator of M with respect to Z[6)].
More generally, if R is another module (for example R = Zg), we define the
denominator of M with respect to R as the smallest positive d such that
dM C R.

Note that in the context of number fields, the word “module” will always
have the above meaning, in other words it will always refer to a submodule of
maximal rank n. If as a Q-vector space we identify K = Q(6) with Q™, and
Z[f] with Z™, the above definition is the same as the one that we have given
in Section 2.4.3. In particular, we can use the notions of determinant, HNF
and SNF of modules.

We give the following proposition without proof.

4.7 Representation of Modules and Ideals 189

Proposition 4.7.2. Let M be a module in a number field K in the above
sense. Then there exists an order R in K and a positive integer d such that
dM is an ideal of R. More precisely, there is a mazimal such R equal to
R = {z € K,zM C M}, and one can take for d the denominator of M with
respect to R.

Specializing to our case the results of Section 2.4.2, we obtain:

Theorem 4.7.3. Let ai, ..., ap be n Z-linearly independent elements of
K, and R be the module which they generate. Then for any module M, there
erists a unique basis wy, ..., wy such that if we write

1 n
“i=3 (Z wi,jai),
i=1

where d is the denominator of M with respect to R, then the n X n matrix
W = (w;,;) satisfies the following conditions:

(1) For alli and j the w; ; are integers.

(2) W is an upper triangular matriz, i.e. w;; =0 if ¢ > 7.
(3) For every i, we have w;; > 0.

(4) For every j >t we have 0 < w;j < wy;.

The corresponding basis (w;)1<i<n Will be called the HNF-basis of M with
respect to R, and the pair (W, d) will be called the HNF of M (with respect
to R). If a; = 6", we will call W (or (W, d)) the HNF with respect to 6.

We have already seen in section 2.4.3 how to test equality and inclusion
of modules, how to compute the sum of two modules and the product of a
module by a constant. In the context of number fields, we can also compute
the product of two modules. This will be used mainly for ideals.

Recall that

MM = {ijm;-,mj € M,mj; e M'}.
J

It is clear that MM’ is again a module. To obtain its HNF, we proceed as
follows: Let wy, ... , w, be the basis of M obtained by considering the columns
of the HNF of M as the coefficients of w; in the standard representation, and
similarly for M’. Then the n? elements w;w} form a generating set of MM ’
Hence, if we find the HNF of the n x n? matrix formed by their coefficients in
the standard representation, we will have obtained the HNF of M M’.

Note however that this is quite costly, since n? can be pretty large. Another
method might be as follows. In the case where M and M’ are ideals (of Zg
say), then M and M’ have a Zk-generating set formed by two elements. In
fact, one of these two elements can even be chosen in Z if desired. Hence it is

190 4 Algorithms for Algebraic Number Theory I

clear that if wy, ... , wy, is a Z-basis of M and «, 3 a Zk-generating set of M’,
then awy, ..., awn, Bwi, ..., Pw, will be a Z-generating set of MM’ (note
that M must also be an ideal for this to be true). Hence we can obtain the
HNF of M M' more simply by finding the HNF of the n x 2n matrix formed
by the coefficients of the above generating set in the standard representation.

We end this section by the following proposition, whose proof is easy and
left to the reader (see Exercise 18 of Chapter 2).

Proposition 4.7.4. Let M be a module with denominator 1 with respect to
a gwen R (i.e. M C R), and W = (w; ;) its HNF with respect to a basis oy,

.., an of R. Then the product of the w; ; (i.e. the determinant of W) is equal
to the indez [R : M].

This will be used, for example, when R =Z[f] or R = Z.

4.7.2 Representation of Ideals

The Hermite normal form of an ideal with respect to 6 has a special form, as
is shown by the following theorem:

Theorem 4.7.5. Let M be a Z[f)-module, let (W, d) be its HNF with respect
to the algebraic integer 6, where d is the denominator and W = (w; ;) is an
integral matriz in upper triangular HNF. Then for every j, wj, ; divides all the
elements of the j x j matriz formed by the first j rows and columns. In other
words, the HNF basis w1, ... , wp of a Z[f]-module has the form

zil . .
wj = 7‘7 1 4 Z hi,jé?“l R
1<i<y

where the z; are positive integers such that z;|z; fori < j, and the h; ; satisfy
0 < hij < zi/2zj for i < j. Furthermore, 2, is the smallest positive element of
dMNZ.

Proof. Without loss of generality, we may assume d = 1. We prove the theorem
by induction on j. It is trivially true for j = 1. Assume j > 1 and that it is
true for j — 1. Consider the (j — 1)*" basis element w;_; of M. We have

— i—1
wi-1= Y wij-16

1<i<j

hence w;j—1 = wj-1,j-16" " + 3, <1 wi,j—10°. Since M is a Z[f]-module,
this must be again an element of M, hence it has the form fw;_; =
ZlSiSn a;w; with integers a;. Now since we have a triangular basis, iden-
tification of coefficients (from 6"~! downwards) shows that a; = 0 for i > j

4.7 Representation of Modules and Ideals 191

and that QW55 = Wj—1,j—1- This already shows that Wy, 4 | Wj—1,j—1- But by
induction, we know that w;—; j—; divides wy j» when i’ and j' are less than
or equal to j — 1. It follows that, modulo w;_1,;—1Z[6] we have

— — — Yi-1,5-1 i—1
0= Owj_l = ajw; = =1 E wi,je ,

and this means that for every ¢ < j we have

w. .
Jj—-1j-1 . _

o Wi =0 (mod wj—y5-1),
JxJ

which is equivalent to wj; | w;; for ¢ <j, thus proving the theorem by
induction. O

Note that the converse of this theorem is false (see Exercise 16).

Theorem 4.7.5 will be mainly used in two cases. First when M is an ideal
of Zk. The second is when M is an order containing 6. In that case one can
say slightly more:

Corollary 4.7.6. Let R be an order in K containing 0 (hence containing
Z[6)). Then the HNF basis wy, ..., wy, of R with respect to 0 has the form

(‘)_,i:i 0j_1+ Z h,-,jei_l y

d;
J 1<i<j

where the d; are positive integers such that d;|d; for i<j, di=1, and the
hi; satisfy 0< h;; <dj/d; for i<j. In other words, with the notations of
Theorem 4.7.5, we have zj|d for all j.

The proof is clear once one notices that the smallest positive integer be-
longing to an order is 1, hence by Theorem 4.7.5 that 2; = d. o

If we assume that R = Zg is given by an integral basis aj,..., oy, then
the HNF matrix of an ideal I with respect to this basis does not usually satisfy
the conditions of Theorem 4.7.5. We can always assume that we have chosen
a1=1, and in that case it is easy to show in a similar manner as above that
wy,1 is divisible by w;; for all 4, and that if w;;=w;,1, then w;; =0 for
J # 1. This is left as an exercise for the reader (see Exercise 17).

Hence, depending on the context, we will represent an ideal of Zg by its
Hermite normal form with respect to a fixed integral basis of Zg, or by its
HNF with respect to 8 (i.e. corresponding to the standard representations of
the basis elements). Please note once again that the special form of the HNF
described in Theorem 4.7.5 is valid only in this last case.

192 4 Algorithms for Algebraic Number Theory 1

Whichever representation is chosen, we have seen in Sections 2.4.3 and
4.7.1 how to compute sums and products of ideals, to test equality and inclu-
sion (i.e. divisibility). Finally, as has already been mentioned several times,
the norm is the absolute value of the determinant of the matrix, and in the
HNF case this is simply the product of the diagonal elements.

Note that to test whether an element of K is in a given ideal is a spe-
cial case of the inclusion test, since x € I <= zR C I. Here however it
is simpler (although not so much more efficient) to solve a (triangular) sys-
tem of linear equations: if (W,d) is the HNF of I with respect to 6, then if
T = (X <i<n T8 1) /e is the standard representation of x, we must solve the
equation WA = %X where X is the column vector of the z;, and A is the
unknown column vector. Since W is triangular, this is especially simple, and
z € I if and only if A has integral coefficients.

To this point, we have considered ideals mainly as Z-modules. There is a
completely different way to represent them based on the following proposition.

Proposition 4.7.7. Let I be an integral ideal of Zk .

(1) For any non-zero element o € I there exists an element B € I such that
I =aZk+ fZk.

(2) There ezists a non-zero element in INZ. If we denote by £(I) the smallest
positive element of I NZ, then £(I) is a divisor of N(I) = [Zk : I]. In
particular, there exists 8 € I such that I = £(I)Zk + fZk.

(3) If o and B are in K, then I = aZk + SZk if and only if for every prime
ideal p we have min(vp(a),vp(8)) = vp(I) where v, denotes the p-adic
valuation at the prime ideal p.

To prove this proposition, we first prove a special case of the so-called
approximation theorem valid in any Dedekind domain.

Proposition 4.7.8. Let S be a finite set of prime ideals of Zx and (e;) a set
of non-negative integers indexed by S. There exists a B € Zy such that for
each p; € S we have

vp, (B) = e;.
(Note that there may exist prime ideals q not belonging to S such that ve(8) >

0.)

Remark. More generally, S can be taken to be a set of places of K, and in
particular can contain Archimedean valuations.

Proof. Let r = |S|,

T

I= prﬁ-la

i=1
and for each i, set

4.7 Representation of Modules and Ideals 193

a;=1.p7e!

(3 k)

which is still an integral ideal. It is clear that a;+as+- - -+a, = Zg (otherwise
this sum would be divisible by one of the p;, which is clearly impossible).
Hence, let u; € a; such that u; + ug + --- 4+ u, = 1. Furthermore, for each ¢

choose f; € p;* \pf‘Jrl which is possible since p; is invertible. Then I claim

that .
B=Y B
i=1

has the desired property. Indeed, since p; | a; for i #j, it is easy to check
from the definition of the a; that

Up; (B) = vy, (Bius) = e

since vp, (u;) = 0 and vy, (6;) =e;. Note that this is simply the proof of the
Chinese remainder theorem for ideals. O

Proof of Proposition 4.7.7. (1) Let aZg = [];_, p{* be the prime ideal de-
composition of the principal ideal generated by a. Since a € I, we also have
I =1TTi_, p; for exponents e; (which may be equal to zero) such that e; < a;.
According to Proposition 4.7.8 that we have just proved, there exists a 8 such
that vy, (B) = e; for ¢ < r. This implies in particular that I | 8, i.e. that 8 € I,
and furthermore if we set I' = aZg + BZyk we have for i <r

Up; (I/) = min(vpe (a),vp‘. (ﬂ)) =€

and if q is a prime ideal which does not divide a, v(I") =0, from which it
follows that I'= [];_, p{* =1, thus proving (1).

For (2), we note that since N(I) = [Zgx : I], any element of the
Abelian quotient group Zg /I is annihilated by M'(I), in other words we have
N(I)Zk c I. This implies N'(I) € I N Z, and since any subgroup of Z is of
the form kZ, (2) follows.

Finally, for (3) recall that the sum of ideals correspond to taking a GCD,
and that the GCD is computed by taking the minimum of the p-adic valua-
tions. o

Hence every ideal has a two element representation (o, () where I =
aZk + BZk, and we can take for example a = £(I). This two element repre-
sentation is however difficult to handle: for the sum or product of two ideals,
we get four generators over Zg, and we must get back to two. More gener-
ally, it is not very easy to go from the HNF (or more generally any Z-basis
n-element representation) to a two element representation.

There are however two cases in which that representation is useful. The
first is in the case of quadratic fields (n = 2), and we will see this in Chapter
5. The other, which has already been mentioned in Section 4.7.1, is as follows:

194 4 Algorithms for Algebraic Number Theory I

we will see in Section 4.9 that prime ideals do not come out of the blue, and
that in algorithmic practice most prime ideals p are obtained as a two element
representation (p,z) where p is a prime number and z is an element of p. To
go from that two element representation to the HNF form is easy, but is not
desirable in general. Indeed, what one usually does with a prime ideal is to
multiply it with some other ideal I. If w, ... , w, is a Z-basis of I (for example
the basis obtained from the HNF form of I on the given integral basis of Zg),
then we can build the HNF of the product pI by computing the n x 2n matrix
of the generating set pwi, ... pwn, Twy, ..., Tw, expressed on the integral
basis, and then do HNF reduction. As has already been mentioned in Section
4.7.1, this is more efficient than doing a n x n? HNF reduction if we used
both HNF representations. Note that if one really wants the HNF of p itself,
it suffices to apply the preceding algorithm to I = Zg.

Note that if (W, d) (with W = (w; ;)) is the HNF of I with respect to 6, and
if f = [ZK : Z[G]], then Z(I) = Wi,1 and an(I) = [ZK : dI] = leSiSn Wi,g
S0

NI =d"f [] wis

1<i<n

Now it often happens that prime ideals are not given by a two element
representation but by a larger number of generating elements. If this ideal
is going to be used repeatedly, it is worthwhile to find a two element repre-
sentation for it. As we have already mentioned this is not an easy problem
in general, but in the special case of prime ideals we can give a reasonably
efficient algorithm. This is based on the following lemma.

Lemma 4.7.9. Let p be a prime ideal above p of norm p! (f is called the
residual degree of p as we will see in the next section), and let o € p. Then we
havep = (p,a) = pLx+aZg if and only if vp(N()) = f orvp(N(a+p)) = f,
where v, denotes the ordinary p-adic valuation.

Proof. This proof assumes some results and definitions introduced in the next
section. Assume first that v,(AV(a)) = f. Then, since a € p and M (p) = p/,
for every prime q above p and different from p we must have yg(a) = 0
otherwise q would contribute more powers of p to M(a). In addition and for
the same reason we must have v,(a) = 1. It follows that for any prime ideal
q, min(vq(p), vq(a)) = ve(p) and so p = (p, @) by Proposition 4.7.7 (3).

If v, (NM(a + p)) = f we deduce from this that p = pZk + (o + p)Zk, but
this is clearly also equal to pZg + aZk.

Conversely, let p = pZg + aZg. Then for every prime ideal q above p
and different from p we have vj(a) = 0, while for p we can only say that
min(vy(p), vp(e)) = 1.

Assume first that vy(a) = 1. Then clearly v,(N(a)) = vp(N(p)) = f as
desired. Otherwise we have v,(a) > 1, and hence v,(p) = 1. But then we
will have vy(a + p) = 1 (otherwise v,(p) = vp((p + @) — @) > 1), and still

4.7 Representation of Modules and Ideals 195

vg(a + p) = 0 for all other primes q above p, and so vp(N (o + p)) =f as
before, thus proving the lemma. O

Note that the condition v,(N(a)) = f, while sufficient, is not a necessary
condition (see Exercise 20).

Note also that if we write o = Y, ., ., Ai7y; where the 7; is some generating
set of p, we may always assume that [);| < p/2 since p € p. In addition, if we
choose v; = p, we may assume that A; = 0.

This suggests the following algorithm, which is simple minded but works
quite well.

Algorithm 4.7.10 (Two-Element Representation of a Prime Ideal). Given
a prime ideal p above p by a system of Z-generators «y; for (1 <i < k), this
algorithm computes a two-element representation (p, a) for p.

We assume that one knows the norm pf of p (this is always the case in
practice, and in any case it can be obtained by computing the HNF of p from the
given generators), and that ;= p (if this is not the case just add it to the list
of generators).

1. [Initialize] Set R « 1.
2. [Set coefficients] For 2 <i < k set A\; « R.

3. [Compute & and check] Let @ «— i cp Aivis 1 — N(a)/pf, where the
norm is computed, for example, using the sub-resultant algorithm (see Section
4.3). If p t n, then output (p, @) and terminate the algorithm. Otherwise, set
n— N(a+p)/p’. If p{n then output (p,) and terminate the algorithm.

4. [Decrease coefficients] Let j be the largest i < k such that A; # —R (we will
always keep A2 > 0 so j will exist). Set Aj«—A; —1 andfor j+1<i<k
set A,’ — R.

5. [Search for first non-zero] Let j be the smallest i < k such that A; # 0. If no
such j exists (i.e. if all the A; are equal to 0) set R +— R +1 and go to step
2. Otherwise go to step 3.

Remarks.

(1) Steps 4 and 5 of this algorithm represent a standard backtracking proce-
dure. What we do essentially is to search for a = Y, Ai7vi, where the
A; are integers between —R and R. To avoid searching both for o and —a,
we add the condition that the first non-zero A should be positive. If the
search fails, we start it again with a larger value of R. Of course, some
time will be wasted since many old values of o will be recomputed, but in
practice this has no real importance, and in fact R =1 or R = 2 is usually
sufficient. The remark made after Lemma 4.7.9 shows that the algorithm
will stop with R < p/2.

196 4 Algorithms for Algebraic Number Theory I

(2) It is often the case that one of the v; for 2 < i < k will satisfy one of
the conditions of step 3. Thus it is useful to test this before starting the
backtracking procedure.

We refer to [Poh-Zas] for extensive information on the use of two-element
representations.

4.8 Decomposition of Prime Numbers I

For simplicity, we continue to work with a number field K considered as an
extension of @, and not considered as a relative extension. Many of the the-
orems or algorithms which are explained in that context are still true in the
more general case, but some are not. (For example, we have already seen this
for the existence of integral bases.) Almost always, these generalizations fail
because the ring of integers of the base field is not a PID (or equivalently a
UFD).

4.8.1 Definitions and Main Results

The main results concerning the decomposition of primes are as follows. We
always implicitly assume that the prime ideals are non-zero.

Proposition 4.8.1.

(1) Ifp is a prime ideal of K, then p NZ = pZ for some prime number p.
(2) Ifp is a prime number and p is a prime ideal of K, the following conditions
are equivalent:
(i) p D pZ.
(ii) pNZ = pZ.
(iii) pNQ = pZ.
(3) For any prime number p we have pZyx N7Z = pZ.

More generally, we have aZg NZ = aZ for any integer a, prime or not.

Definition 4.8.2. Ifp and p satisfy one of the equivalent conditions of Propo-
sition 4.8.1 (2), we say that p is a prime ideal above p, and that p is below p.

Theorem 4.8.3. Let p be a prime number. There exist positive integers e;
such that

g9
Plk = H pit,
i=1

where the p; are all the prime ideals above p.

4.8 Decomposition of Prime Numbers I 197

Definition 4.8.4. The integer e; is called the ramification index of p at p;
and is denoted e(p;/p). The degree f; of the field extension defined by

fi =2k /vi : Z/pZ]

is called the residual degree (or simply the degree) of p and is denoted f(p;/p).

Note that both Zg /p; and Z/pZ are finite fields, and f; is the dimension
of the first considered as a vector space over the second.

Theorem 4.8.5. We have the following formulas:
N(pt) = pf"

and

g
Zeifi =n = deg(K).

i=1

In the case when K/Q is a Galois extension, the result is more specific:

Theorem 4.8.6. Assume that K/Q is a Galois extension (i.e. that for all
the embeddings o; of K in C we have 0;(K) = K). Then, for any p, the
ramification indices e; are equal (say to e), the residual degrees f; are equal
as well (say to f), hence efg = n. In addition, the Galois group operates
transitively on the prime ideals above p: if p; and p; are two ideals above p,
there exists o in the Galois group such that o(p;) = p;.

Definition 4.8.7. Let pZx = []_; p;* be the decomposition of a prime p.
We will say that p is inert if ¢ = 1 and e; = 1, in other words if pZy = p
(hence fi = n). We will say that p splits completely if g = n (hence for all
i, e, = f; = 1). Finally, we say that p is ramified if there is an e; which is
greater than or equal to 2 (in other words if pZk is not squarefree), otherwise
we say that p is unramified. Those prime ideals p; such that e; > 1 are called
the ramified prime ideals of Z .

Note that there are intermediate cases which do not deserve a special
name. The fundamental theorem about ramification is as follows:

Theorem 4.8.8. Let p be a prime number. Then p is ramified in K if and only
if p divides the discriminant d(K) of K (recall that this is the discriminant
of any integral basis of Zk). In particular, there are only a finite number of
ramified primes (eractly w(d(K)), where w(z) is the number of distinct prime
divisors of an integer x).

198 4 Algorithms for Algebraic Number Theory I

We can also define the decomposition of the “infinite prime” of Q in a
similar manner, since we are extending valuations. The ordinary primes corre-
spond to the non-Archimedean valuations and the real or complex embeddings
correspond to the Archimedean ones. Since we are over Q, there is only the
real embedding of Q to lift, and (as a special case of a general definition),
when the signature of K is (r1,72), we will say that the infinite prime of Q
lifts to a product of r; real places of K times r, non-real places to the power
2. Hence, g=1r1+7r2, 6, =1fori <r;,e; =2 fori>ry,and f; =1 for all 4.

We also have the following results:

Proposition 4.8.9.

(1) (Hermite). The set of isomorphism classes of number fields of given dis-
criminant is finite.

(2) (Minkowski). If K is a number field different from Q, then |d(K)|>1. In
particular, there is at least one ramified prime in K.

Proposition 4.8.10 (Stickelberger). If p is an unramified prime in K with

pZk = [15_, pi, we have
d(K)) .
A2V (—q)ne
(p 1)

including the case p =2 where (ﬂf—)) is to be interpreted as the Jacobi-

Kronecker symbol (see Definition 1.4.8).

This shows that the parity of the number of primes above p (i.e. the
“Mobius” function of p) can easily be computed.

Note that this proposition is also true for the infinite prime as given above,
if we interpret the Legendre symbol as the sign of d(K):

Proposition 4.8.11. If K is a number field with signature (r1,72), then the
sign of the discriminant d(K) is equal to (—1)2.

Proof. Since, up to a square, the discriminant d(X) is equal to [], ;(6; — 6;)?
(with evident notations), then a case by case examination shows that when
conjugate terms are paired, all the factors become positive except for

H (01 - 01’+r2)2’

r1<i<ri+ra

whose sign is (—1)"™ since 6; — 6,4, is pure imaginary. o

Corollary 4.8.12. The decomposition type of a prime number p in a quadratic
field K of discriminant D is the following: if (%) =—1 then p is inert. If

4.8 Decomposition of Prime Numbers I 199

(%) = 0 then p is ramified (i.e. pZy = p?). Finally, if (%—) = +1, then p splits
(completely), i.e. pZg = p1pa.

4.8.2 A Simple Algorithm for the Decomposition of Primes

We now consider a more difficult algorithmic problem, that of determining
the decomposition of prime numbers in a number field. The basic theorem on
the subject, which unfortunately is not completely sufficient, is as follows.

Theorem 4.8.13. Let K = Q(0) be a number field, where 6 is an algebraic
integer, whose (monic) minimal polynomial is denoted T(X). Let f be the
indez of 0, i.e. f = [Zk : Z[f]]. Then for any prime p not dividing f one can
obtain the prime decomposition of pZg as follows. Let

T(X) = [[Ti(X)* (mod p)
i=1

be the decomposition of T into irreducible factors in Fp[X], where the T; are
taken to be monic. Then

9
pZK = H P?,
=1

where
pi = (p, T3(0)) = pZg + Ti(0)Zk -

Furthermore, the residual index f; is equal to the degree of T;.

Since we have discussed at length in Chapter 3 algorithmic methods for
finding the decomposition of polynomials in F,[X], we see that this theorem
gives us an excellent algorithmic method to find the decomposition of pZg
when p does not divide the index f. The hard problems start when p | f. Of
course, one then could try and change 6 to get a different index, if possible
prime to p, but even this is doomed. There can exist primes, called inessential
discriminantal divisors which divide any index, no matter which 6 is chosen.
It can be shown that such exceptional primes are smaller than or equal to
n — 1, so very few primes if any are exceptional. But the problem still exists:
for example it is not difficult to give examples of fields of degree 3 where 2 is
exceptional, see Exercise 10 of Chapter 6.

The case when p divides the index is much harder, and will be studied
along with an algorithm to find integral bases in Chapter 6.

Proof of Theorem 4.8.18. Set f; = deg(T;) and p; = pZk + T;(0)Zx- Let us
assume that we have proved the following lemma:

200 4 Algorithms for Algebraic Number Theory I

Lemma 4.8.14.

(1) For all i, either p; = Zg, or Zi /p; is a field of cardinality p:.
(2) Ifi # j then pei +p; =Zg.
(3) pZk | T - pg°-

Then, after reordering the p;, we can assume that p; # Zg for i < s and
pi=Zg for s <i < g (we will in fact see that s = g). Then by Lemma 4.8.14
(1), the ideals p; are prime for ¢ < s, and since by definition they contain pZg,
they are above p (Proposition 4.8.1). (1) also implies that the f; (for ¢ < 's)
are the residual indices of p;. By (2) we know that the p; for ¢ < s are distinct,
and (3) implies that the decomposition of the ideal pZg is

pLy = pr‘ where d; <e; for all 1<s.

i=1

Hence, by Theorem 4.8.5, we have n = d; f; +--- + ds fs. Since we also have
deg(T) =n=-ei1fi+---+egfy and d; < e; for all 7, this implies that we must
have s = g and d; = e; for all 4, thus proving Theorem 4.8.13. O

Proof of Lemma 4.8.14 (1). Set K; = F,[X]/(T;). Since T; is irreducible, Kj is
a field. Furthermore, the degree of K; over [, is f;, and so the cardinality of K;
is pfi. Thus we need to show that either p; = Zg or that Zx /p; ~ K;. Now it is
clear that Z[X]/(p, T;) ~ Kj, hence (p, T;) is a maximal ideal of Z[X]. But the
kernel of the natural homomorphism ¢ from Z[X] to Zg /p; which sends X to
6 mod p; clearly contains this ideal, hence is either Z[X] or (p, T;). If we show
that ¢ is onto, this will imply that p;=Zg or Zg/p;~ Z[X]/(p,Ti) ~ K;,
proving (1).

Now to say that ¢ is surjective means that Zg = Z[f] + p;. By definition,
pZk C p;- Hence

Zic - Z06) + 9] | (2 : Z060) + pxc] = ged((Zic : Z[6]), [Zxc : PLic])-

Since we have assumed that p does not divide the index, and since [Zg :
pZk] = p", this shows that [Zg : Z[f] + p;] = 1, hence the surjectivity of ¢.
Note that this is the only part of the whole proof of Theorem 4.8.13 which
uses that p does not divide the index of 6.

Proof of Lemma 4.8.14 (2). Since T; and T} are coprime in F,[X], there exist
polynomials U and V such that UT; + VT; — 1 € pZ[X]. It follows that
U(0)Ti(6) +V(6)T;(0) = 1+ pW (8) for some polynomial W € Z[X], and this
immediately implies that 1 € p; + p;, i.e. that p; + p; = Zk.

Proof of Lemma 4.8.14 (8). Set y; = Ti(9), so p; = (p,7:). By distributivity,
it is clear that

4.8 Decomposition of Prime Numbers I 201

p‘lzl ...p;g C (p,’)‘fl ...7;9).

Now I claim that (p,¥§'---75°) = pZk, from which (3) follows. Indeed, D is
trivial. Conversely we have by definition 7" - - - Ty® — T' € pZ[X] hence taking
X = 6 we obtain

Vit vg? € plf) C ply,

proving our claim and the lemma. O

Note that in the general case where p | f which will be studied in Chapter
6, the prime ideals p; above p are still of the form pZy + T;(6)Zk, but now
T; € Q[X] and does not always correspond to a factor of T' modulo p.

4.8.3 Computing Valuations

Once prime ideals are known in a number field K, we will often need to
compute the p-adic valuation v of an ideal I given in its Hermite normal form,
where p is a prime ideal above p. We may, of course, assume that I is an
integral ideal. Then an obvious necessary condition for v # 0 is that p | N'(I).
Clearly this condition is not sufficient, since all primes above p must “share”
in some way the exponent of p in N'(I).

We assume that our prime ideal is given as p = pZg+aZk for a certain a €
Z . We will now describe an algorithm to compute v,(I), which was explained
to me by H. W. Lenstra, but which was certainly known to Dedekind. It is
based on the following proposition.

Proposition 4.8.15. Let R be an order in K and p a prime ideal of R. Then
there ezists a € K \ R such that ap C R. Furthermore, p is invertible in R if
and only if ap ¢ p, and in that case we have p~! = R+ aR.

Proof. Let x € p be a non-zero element of p, and consider the non-zero ideal
zR. By Proposition 4.6.13, there exist non-zero prime ideals g; such that
TR D [];cpqi for some finite set E. Assume E is chosen to be minimal
in the sense that no proper subset of E can have the same property. Since
[Ta: C zR C p, by Proposition 4.6.12 we must have q; C p for some j € E,
hence q; = p since both are maximal ideals. Set

a= [=

i€E,i#]

Then pq C zR and q ¢ zR by the minimality of E. So choose y € q such that
Y ¢ zR. Since yp C zR, the element a = y/z satisfies the conditions of the
proposition.

Finally, consider the ideal p + ap. Since it sits between the maximal ideal
p and R, it must be equal to one of the two. If it is equal to R, we cannot
have ap C p, and since (R + aR)p =R, p is invertible and p~' =R + aR. If

202 4 Algorithms for Algebraic Number Theory 1

it is equal to p, then ap C p, and (R + aR)p = Rp. This implies that p is not
invertible since otherwise, by simplifying, we would have R + aR = R, hence
a € R. This proves the proposition. O

Knowing this proposition, it is easy to obtain an algorithm for computing
a suitable value of a. Note that ap C R hence ap € R, so we write a = 8/p
with 8 € R. The conditions to be satisfied for 3 are then 8 € R\ pR and
0Bp C pR.

Let wy, ..., w, be a Z-basis of R, and let vi,..., vm be generators of p
(for example if p = pR + aR we take 41 = p and 2 = @). Then, if we write

B= Y zwi,

1<ikn

we want to find integers x; which are not all divisible by p such that for all j
with 1 < j < m the coordinates of (}_ z;w;)vy; on the w; are all divisible by p.
If we set

WiY; = E Q4,5 kWk
1<k<n

we obtain for all j and &

Z a;jkz; =0 (mod p)

1<ikn

which is a system of mn equations in n unknowns in Z/pZ for which we want
a non-trivial solution. Since there are many more equations than unknowns
(if m >1), there