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Preface

The primary goal of these lectures is to introduce a beginner to the finite-
dimensional representations of Lie groups and Lie algebras. Since this goal is
shared by quite a few other books, we should explain in this Preface how our
approach differs, although the potential reader can probably see this better
by a quick browse through the book.

Representation theory is simple to define: it is the study of the ways in
which a given group may act on vector spaces. It is almost certainly unique,
however, among such clearly delineated subjects, in the breadth of its interest
to mathematicians. This is not surprising: group actions are ubiquitous in 20th
century mathematics, and where the object on which a group acts is not a
vector space, we have learned to replace it by one that is (e.g., a cohomology
group, tangent space, etc.). As a consequence, many mathematicians other
than specialists in the field (or even those who think they might want to be)
come in contact with the subject in various ways. It is for such people that
this text is designed. To put it another way, we intend this as a book for
beginners to learn from and not as a reference.

This idea essentially determines the choice of material covered here. As
simple as is the definition of representation theory given above, it fragments
considerably when we try to get more specific. For a start, what kind of group
G are we dealing with—a f{inite group like the symmetric group &, or the
general linear group over a finite field GL,(F,), an infinite discrete group
like SL,(2), a Lie group like SL,C, or possibly a Lie group over a local
field? Needless to say, each of these settings requires a substantially different
approach to its representation theory. Likewise, what sort of vector space is
G acting on: is it over C, R, Q, or possibly a field of finite chdracteristic? Is it
finite dimensional or infinite dimensional, and if the latter, what additional
structure (such as norm, or inner product) does it carry? Various combinations
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of answers to these questions lead to areas of intense research actlivity in
representation theory, and it is natural for a text intended to prepare students
for a career in the subject to lead up to one or more of these areas. As a
corollary, such a book tends to get through the elementary material as quickly
as possible: if one has a semester to get up to and through Harish~Chandra
modules, there is little time to dawdle over the representations of &, and
SL,C.

By contrast, the present book focuses exactly on the simplest cases: repre-
sentations of finite groups and Lie groups on finite-dimensional real and
complex vector spaces, This is in some sense the common ground of the
subject, the area that is the object of most of the interest in representation
theory coming from outside.

The intent of this book to serve nonspecialists likewise dictates to some
degree our approach to the material we do cover. Probably the main feature
of our presentation is that we concentrate on examples, developing the general
theory sparingly, and then mainly as a useful and unifying language to describe
phenomena already encountered in concrete cases. By the same token, we for
the most part introduce theoretical notions when and where they are useful
for analyzing concrete situations, postponing as long as possible those notions
that are used mainly for proving general theorems.

Finally, our goal of making the book accessible to outsiders accounts in
part for the style of the writing. These lectures have grown from courses of
the second author in 1984 and 1987, and we have attempted to keep the
informal style of these lectures. Thus there is almost no attempt at efficiency:
where it seems to make sense from a didactic point of view, we work out many
special cases of an idea by hand before proving the general case; and we
cheerfully give several proofs of one fact if we think they are illuminating.
Similarly, while it is common to develop the whole semisimple story from one
point of view, say that of compact groups, or Lie algebras, or algebraic groups,
we have avoided this, as efficient as it may be.

It is of course not a strikingly original notion that beginners can best learn
about a subject by working through examples, with general machinery only
introduced slowly and as the need arises, but it seems particularly appropriate
here. In most subjects such an approach means one has a few. out of an
unknown infinity of examples which are useful to illuminate fh general
situation. When the subject is the representation theory of complex semisimple
Lie groups and algebras, however, something special happens: once one has
worked through all the examples readily at hand—the “classical” cases of the
special linear, orthogonal, and symplectic groups—one has not just a few
useful examples, one has all but five “exceptional” cases.

This is essentially what we do here. We start with a quick tour through
representation theory of finite groups, with emphasis determined by what is
useful for Lie groups. In this regard, we include more on the symmetric groups
than is usual. Then we turn to Lie groups and Lie algebras. After some
preliminaries and a look at low-dimensional examples, and one lecture with
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some general notions about semisimplicity, we get to the heart of the course:
working out the finite-dimensional representations of the classical groups.

_For each series of classical Lie algebras we prove the fundamental existence
theorem for representations of given highest weight by explicit construction.
Our object, however, is not just existence, but to see the representations in
action, to see geometric implications of decompositions of naturally occurring
representations, and to see the relations among them caused by coincidences
between the Lie algebras.

The goal of the last six lectures is to make a bridge between the example-
oriented approach of the earlier parts and the general theory. Here we make
an attempt to interpret what has gone before in abstract terms, trying to make
connections with modern terminology. We develop the general theory enough
to see that we have studied all the simple complex Lie algebras with five
exceptions. Since these areencountered less frequently than the classical series,
it is probably not reasonable in a first course to work out their representations
as explicitly, although we do carry this out for one of them, We also prove the
general Weyl character formula, which can be used to verify and extend many
of the results we worked out by hand earlier in the book.

Of course, the point we reach hardly touches the current state of affairs in
Lie theory, but we hope it is enough to keep the reader’s eyes from glazing
over when confronted with a lecture that begins: “Let G be a semisimple
Lie group, P a parabolic subgroup, ...” We might also hope that working
through this book would prepare some readers to appreciate the elegance (and
efficiency) of the abstract approach.

In spirit this book is probably closer to Weyl's classic [Wel] than to others
written today. Indeed, a secondary goal of our book is to present many of the
results of Weyl and his predecessors in a form more accessible to modern
readers. In particular, we include Weyl's constructions of the representations
of the general and special linear groups by using Young's syminetrizers; and
we invoke a little invariant theory to do the corresponding result for the
orthogonal and symplectic groups. We also include Weyl's formutlas for the
characters of these representations in terms of the elementary characters of
symmetric powers of the standard representations. (Interestingly, Weyl only
gave the corresponding formulas in terms of the exterior powers for the general
linear group. The corresponding formulas for the orthogonal and symplectic
groups were only given recently by Koike and Terada. We include a simple
new proof of these determinantal formulas.)

More about individual sections can be found in the introductions to other
parts of the book.

Needless to say, a price is paid for the inefficiency and restricted focus of
these notes. The most obvious is a lot of omitted material: for example, we
include little on the basic topological, differentiable, or analytic properties of
Lie groups, as this plays a small role in our story and is well covered in dozens
of other sources, including many graduate texts on manifolds. Moreover, there
are no infinite-dimensional representations, no Harish--Chandra or Verma
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modules, no Steifel diagrams, no Lie algebra cohomology, no analysis on
symmetric spaces or groups, no arithmetic groups or automorphic forms, and
nothing about representations in characteristic p > 0. There is no consistent
attempt to indicate which of our results on Lie groups apply more generally
to algebraic groups over fields other than R or C (e.g., local fields). And there
is only passing mention of other standard topics, such as universal enveloping
algebras or Bruhat decompositions, which have become standard tools of
representation theory. (Experts who saw drafts of this book agreed that some
topic we omitted must not be left out of a modern book on representation
theory—but no two experts suggested the same topic.)

We have not tried to trace the history of the subjects treated, or assign
credit, or to attribute ideas to original sources—this is far beyond our knowl-
edge. When we give references, we have simply tried to send the reader to
sources that are as readable as possible for one knowing what is written here.
A good systematic reference for the finite-group material, including proofs of
the results we leave out, is Serre [Se2]. For Lie groups and Lie algebras,
Serre [Se3], Adams [Ad], Humphreys [Hul], and Bourbaki [Bour]} are
recommended references, as are the classics Weyl [Wel] and Littlewood
[Lit1].

We would like to thank the many people who have contributed ideas and
suggestions for this manuscript, among them J-F. Burnol, R. Bryant, J. Carrell,
B. Conrad, P. Diaconis, D. Eisenbud, D. Goldstein, M. Green, P. Griffiths,
B. Gross, M. Hildebrand, R. Howe, H. Kraft, A. Landman, B. Mazur,
N. Chriss, D. Petersen, G. Schwartz, J. Towber, and L. Tu. In particular, we
would like to thank David Mumford, from whom we learned much of what
we know about the subject, and whose ideas are very much in evidence in this
book.

Had this book been written 10 years ago, we would at this point thank the
people who typed it. That being no longer applicable, perhaps we should
thank instead the National Science Foundation, the University of Chicago,
and Harvard University for generously providing the various Macintoshes on
which this manuscript was produced. Finally, we thank Chan Fulton for
making the drawings.

Bill Fulton anfi Joe Harris



Using This Book

A few words are in order about the practical use of this book. To begin with,
prerequisites are minimal: we assume only a basic knowledge of standard
first-year graduate material in algebra and topology, including basic notions
about manifolds. A good undergraduate background should be more than
enough for most of the text; some examples and exercises, and some of the
discussion in Part IV may refer to more advanced topics, but these can readily
be skipped. Probably the main practical requirement is a good working
knowledge of multilinear algebra, including tensor, exterior, and symmetric
products of finite dimensional vector spaces, for which Appendix B may help.
We have indicated, in introductory remarks to each lecture, when any back-
ground beyond this is assumed and how essential it is.

For a course, this book could be used in two ways. First, there are a number
of topics that are not logically essential to the rest of the book and that can
be skimmed or skipped entirely. For example, in 2 minimal reading one could
skip§84, 5,6, 11.3,13.4,15.3-15.5,17.3,19.5,20, 22.1, 22.3, 23.3-23.4,25.3, and
26.2; this might be suitable for a basic one-semester course. On the other hand,
in a year-long course it should be possible to work through as much of the
material as background and/or interest suggested. Most of the material in the
Appendices is relevant only to such a long course. Again, we have tried
to indicate, in the introductory remarks in each lecture, which topics are
inessential and may be omitted.

Another aspect of the book that readers may want to approach in different
ways is the profusion of examples. These are put in largely for didactic reasons:
we feel that this is the sort of material that can best be understood by gaining
some direct hands-on experience with the objects involved. For the most part,
however, they do not actually develop new ideas; the reader whose tastes run
more to the abstract and general than the concrete and special may skip many
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of them without logical consequence. (Of course, such a reader will probably
wind up burning this book anyway.)

We inctude hundreds of exercises, of wildly different purposes and difficulties.
Some are the usual sorts of variations of the examples in the text or are
straightforward verifications of facts needed; a student will probably want to
atlempt most of these. Sometimes an exercise is inserted whose solution is a
special case of something we do in the text later, if we think working on it will
be useful motivation (again, there is no attempt at “efficiency,” and readers
are encouraged to go back to old exercises from time to time). Many exercises
are included that indicate some further directions or new topics (or standard
topics we have omitted); a beginner may best be advised to skim these for
general information, perhaps working out a few simple cases. In exercises, we
tried to include topics that may be hard for nonexperts to extract from the
literature, especially the older literature. In general, much of the theory is in
the exercises—and most of the examples in the text.

We have resisted the idea of grading the exercises by (expected) difficulty,
although a “problem” is probably harder than an “exercise.” Many exercises
are starred: the  is not an indication of difficulty, but means that the reader
can find some information about it in the section “Hints, Answers, and
References™ at the back of the book. This may be a hint, a statement of the
answer, a complete solution, a reference to where more can be found, or
a combination of any of these. We hope these miscellaneous remarks, as
haphazard and uneven as they are, will be of some use.
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PART I
FINITE GROUPS

Given that over three-quarters of this book is devoted to the representation
theory of Lie groups and Lie algebras, why have a discussion of the represen-
tations of finite groups at all? There are certainly valid reasons from a logical
point of view: many of the ideas, concepts, and constructions we will introduce
here will be applied in the study of Lie groups and algebras. The real reason
for us, however, is didactic, as we will now try to explain.

Representation theory is very much a 20th-century subject, in the following
sense. In the 19th century, when groups were dealt with they were generally
understood to be subsets of the permutations of a set, or of the automor-
phisms GL(V)of a vector space V, closed under composition and inverse. Only
in the 20th century was the notion of an abstract group given, making it
possible to make a distinction between properties of the abstract group and
properties of the particular realization as a subgroup of a permutation group
or GL(V). To give an analogy, in the 19th century a manifold was always a
subset of R"; only in the 20th century did the notion of an abstract Riemannian
manifold become common.

In both cases, the introduction of the abstract object made a fundamental
difference to the subject. In differential geometry, one could wake a crucial
distinction between the intrinsic and extrinsic geometry of the manifold: which
properties were invariants of the metric on the manifold and which were
properties of the particular embedding in R". Questions of existence or non-
existence, for example, could be broken up into two parts: did the abstract
manifold exist, and could it be embedded. Similarly, what would have been
called in the 19th century simply “group theory” is now factored into two
parts. First, there is the study of the structure of abstract groups (e.g., the
classification of simple groups). Second is the companion question: given a
group G, how can we describe all the ways in which G may be embedded in
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(or mapped to) a linear group GL(V)?. This, of course, is the subject matter
of representation theory.

Given this point of view, it makes sense when first introducing representa-
tion theory to do so in a context where the nature of the groups G in question
is itsell simple, and relatively well understood. It is largely for this reason that
we are starting off with the representation theory of finite groups: for those
readers who are not already familiar with the motivations and goals of
representation theory, it seemed better to establish those first in a setting where
the structure of the groups was not itsell an issue. When we analyze, for
example, the representations of the symmetric and alternating groups on 3, 4,
and 5 letters, it can be expected that the reader is already familiar with the
groups and can focus on the basic concepts of representation theory being
introduced. :

We will spend the first six lectures on the case of finite groups. Many of the
techniques developed for finite groups will carry over to Lie groups; indeed,
our choice of topics is in part guided by this. For example, we spend quite a
bit of time on the symmetric group; this is partly for its own interest, but also
partly because what we learn here gives one way to study representations of
the general linear group and its subgroups. There are other topics, such as the
alternating group ,, and the grouns SL,(F,) and GL,(F,) that are studied
purely for their own interest and do not appear later. (In general, for those
readers primarily concerned with Lie theory, we have tried to indicate in the
introductory notes to each lecture which ideas will be useful in the succeeding
parts of this book.) Nonetheless, this is by no means a comprehensive treat-
ment of the representation theory of finite groups; many important topics,
such as the Artin and Brauer theorems and the whole subject of modular
representations, are omitted.



LECTURE 1

Representations of Finite Groups

In this fecture we give the basic definitions of representation theory, and prove two of
the basic results, showing that every representation is a (unique) direct sum of irreduc-
ible ones. We work out as examples the case of abelian groups, and the simplest
nonabelian group, the symmetric group on 3 letters. In the latter case we give an
analysis that will turn out not to be useful for the study of finite groups, but whose
main idea is central to the study of the representations of Lie groups.

§1.1: Definitions
§1.2: Complete reducibility; Schur’s lemma
§1.3: Examples: Abelian groups; S,

§1.1. Definitions

A representation of a finite group G on a finite-dimensional complex vector
space V is a homomorphism p: G — GL(V) of G to the group of automor-
phisms of V; we say that such a map gives ¥ the structure of a G-module. When
there is little ambiguity about the map g (and, we’re afraid, even sometimes
when there is) we sometimes call V itself a representation of G; in this vein we
will often suppress the symbol p and write g v or gv for p(g)(v). The dimension
of V is sometimes called the degree of p.

A map ¢ between two representations Vand Wof Gis a vec(or space map

¢: V = W such that
v w
vV w

—* .,

—_*,
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commutes for every g € G. (We will call this a G-linear map when we want to
distinguish it from an arbitrary linear map between the vector spaces V and
W.) We can then define Ker ¢, Im ¢, and Coker ¢, which are also G-modules.

A subrepresentation of a representation V is a vector subspace W of V which
is invariant under G. A representation V is called irreducible if there is no
proper nonzero invariant subspace W of V.

If ¥ and W are representations, the direct sum V @ W and the tensor product
V ® W are also representations, the latter via

g @ w) = gv @ gw.

For a representation V, the nth tensor power ¥®" is again a representation of
G by this rule, and the exterior powers /\"(V) and symmetric powers Sym"(V)
are subrepresentations' of it. The dual V* = Hom(V, C) of V is also a repre-
sentation, though not in the most obvious way: we want the two representa-
tions of G to respect the natural pairing (denoted { , )) between V* and V,
so that if p: G = GL(V) is a representation and p*: G — GL(V*) is the dual,
we should have

<P (g)v*), p(g)(v)) = <v*, v)
for all ge G, veV, and v* e V*. This in turn forces us to define the dual
representation by
pHg)="plg™" )y V*>V*
forallgeG.

Exercise 1.1. Verily that with this definition of p*, the relation above is
satisfied.

Having defined the dual of a representation and the tensor product of two
representations, it is likewise the case that if ¥ and W are representations, then
Hom(V, W) is also a representation, via the identification Hom(V, W) =
V* ® W. Unraveling this, if we view an element of Hom(V, W) as a linear map
@ from V to W, we have

(g9)(v) = go(g~"v)

f
for all v e V. In other words, the definition is such that the diagram

'

v —2 5w

al Ja
| LA ¥

commutes. Note that the dual representation is, in turn, a special case of this:

! For more on exlerior and symmelric powers, including descriptions as quotient spaces of tensor
powers, see Appendix B.
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when W = C is the trivial representation, i.e., gw = wfor all w € C, this makes
V* into a G-module, with go(v) = p(g~'v),ie, go = (g7 ")e.

Exercise 1.2. Verify that in general the vector space of G-linear maps between
two representations ¥ and W of G is just the subspace Hom(V, W)° of
elements of Hom(V, W) fixed under the action of G. This subspace is often
denoted Homg(V, W).

We have, in effect, taken the identification Hom(V, W) = V* ® W as the
definition of the representation Hom(V, W). More generally, the usual iden-
tities for vector spaces are also true for representations, e.g.,

VU W) =VeU)e Ve w),
NVOEW)= @ NVeNW,
k

ath=

N(V*) = N(V)*,

and so on.

Exercise 1.3*. Let p: G —» GL(V) be any representation of the finite group G
on an n-dimensional vector space V and suppose that for any g € G, the
determinant of p(g) is 1. Show that the spaces AV and A" *V* are iso-
morphic as representations of G.

If X is any finite set and G acts on the left on X, ie, G — Aut(X) is a
homomorphism to the permutation group of X, there is an associated per-
mutation representation: let V be the vector space with basis {e,: x € X}, and
let G act on V by

g Z ae, = Z axe'x'
" The regular representation, denoted R or R, corresponds to the left action of

G on itself. Alternatively, R is the space of complex-valued functions on G,
where an element g € G acts on a function o by (go)(h) = a(g™" h).

Exercise 1.4*. (a) Verify that these two descriptions of R agree, by identifying
the element e, with the characteristic function which takes the value ! on x,
0 on other elements of G.

(b) The space of functions on G can also be made into a G-module by the
rule (ga) (h) = a(hg). Show that this is an isomorphic representation.

§1.2. Complete Reducibility; Schur’s Lemma

As in any study, before we begin our attempt to classify the representations
of a finite group G in earnest we should try to simplify life by restricting our
search somewhat. Specifically, we have seen that representations of G can be
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built up out of other representations by linear algebraic operations, most
simply by taking the direct sum. We should focus, then, on representations
that are “atomic” with respect to this operation, i.e., that cannot be expressed
as a direct sum of others; the usual term for such a representation is Inde-
composable. Happily, the situation is as nice as it could possibly be: a repre-
sentation is atomic in this sense if and only if it is irreducible (i.e., contains no
proper subrepresentations); and every representation is the direct sum of
irreducibles, in a suitable sense uniquely so. The key to all this is

Proposition LS. If W is a subrepresentation of a representation V of a finite
group G, then there is a complementary invariant subspace W' of V, so that
V=WwWow.

ProoF. There are two ways of doing this. One can introduce a (positive
definite) Hermitian inner product H on ¥V which is preserved by each g € G
(i.e, such that H(gy, gw) = H(v, w) for all v, w € V and g € G). Indeed, if H,, is
any Hermitian product on ¥, one gets such an H by averaging over G:

H(v, wy= Y, Ho(gv, gw).
geG

Then the perpendicular subspace W+ is complementary to W in V. Alterna-
tively (but similarly), we can simply choose an arbitrary subspace U comple-
mentary to W, fet ny: ¥V — W be the projection given by the direct sum
decomposition V = W @ U, and average the map n, over G: that is, take

a@) = Y, glnolg™" v)).
geG

This will then be a G-linear map from ¥ onto W, which is multiplication by
|G| on W; its kernel will, therefore, be a subspace of ¥ invariant under G and
complementary to W. O

Corollary 1.6. Any representation is a direct sum of irreducible representations.

This property is called complete reducibility, or semisimplicity. We will see
that, for continuous representations, the circle S!, or any compact group, has
this property; integration over the group (with respect to an invariant measure
on the group) plays the role of averaging in the above prool. The (additive)
group R does not have this property: the representation

a»—»la
0 1

leaves the x axis fixed, but there is no complementary subspace. We will see
other Lie groups such as SL,(C) that are semisimple in this sense. Note also
that this argument would fail if the vector space V was over a field of finite
characteristic since it might then be the case that n(v) = 0 for v € W. The failure
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of complete reducibilily is one of the things that makes the subject of modular
representations, or representations on vector spaces over finite fields, so tricky.

The extent Lo which the decomposition of an arbitrary representation into
a direct sum of irreducible ones is unique is one of the consequences of the
following:

Schur’s Lemma 1.7. If V and W are irreducible representations of G and
@: V - W is a G-module homomorphism, then

(1) Either ¢ is an isomorphism, or ¢ = 0.
Q) If V=W, thenop = A1 for some A € C, I the identity.

ProoF. The first claim follows from the fact that Ker ¢ and Im ¢ are invariant
subspaces. For the second, since C is algebraically closed, ¢ must have an
eigenvalue A, i.e., for some A € C, » — Al has a nonzero kernel. By (1), then,
we must have ¢ — Al = 0,50 ¢ = Al O

We can summarize what we have shown so far in

Proposition 1.8. For any representation V of a finite group G, there is a
decomposition

V = Vleaal DD y;@m.,

where the V; are distinct irreducible representations. The decomposition of V
into a direct sum of the k factors is unique, as are the V; that occur and their
multiplicities a,.

Proor. 1t follows from Schur’s lemma that if W is another representation of
G, with a decomposition W = @ W;®", and ¢: V — W is a map of represen-
tations, then ¢ must map the factor ¥®" into that factor W®% for which
W, = V;; when applied to the identity map of ¥ to V, the stated uniqueness
follows. 0

In the next lecture we will give a formula for the projection of ¥ onto V%%,
The decomposition of the ith summand into a direct sum of g; copies of V; is
not unique if g; > 1, however.

Occasionally the decomposition is written

V=a,V® - ®al=aV + +aV, (L.9)

especially when one is concerned only about the isomorphisin classes and
multiplicities of the ¥;.

One more fact that will be established in the following lecture is that a finite
group G admits only finitely many irreducible representations 1 up to iso-
morphism (in fact, we will say how many). This, then, is the framework of the
classification of all representations of G: by the above, once we have described
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the irreducible representations of G, we will be able to describe an arbitrary
representation as a linear combination of these. Our first goal, in analyzing
the representations of any group, will therefore be:

(i) Describe all the irreducible representations of G.

Once we have done this, there remains the problem of carrying out in practice
the description of a given representation in these terms. Thus, our second goal
will be:

(ii) Find techniques for giving the direct sum decomposition (1.9), and in
particular deterntining the multiplicities a, of an arbitrary representation V.

Finally, it is the case that the representations we will most often be concerned
with are those arising from simpler ones by the sort of linear- or mulitilinear-
algebraic operations described above. We would like, therefore, to be able to
describe, in the terms above, the representation we get when we perform these
operations on a known representation. This is known generally as

(iii) Plethysm: Describe the decompositions, with multiplicities, of represen-
tations derived from a given representation V, such as V@ V, V*, A(V),
Sym*(¥), and A*(A'V). Note that if ¥ decomposes into a sum of two represen-
tations, these representations decompose accordingly; e.g,if V = U @ W, then

Ny = /\' UNW,
i+f=
so it is enough to work out this plethysm for irreducible representations.
Similarly, if V and W are two irreducible representations, we want to decom-
pose ¥V ® W; this is usually known as the Clebsch—Gordon problem.

§1.3. Examples: Abelian Groups; S,

One obvious place to look for examples is with abelian groups. It does not
take long, however, to deal with this case. Basically, we may observe in general
that if V is a representation of the finite group G, abelian or not, each g€ G
gives a map p(g): V — V; but this map is not generally a (‘-module homomor-
phism: for general h € G we will have

g(h()) # h(g(v)).

Indeed, p(g): V — V will be G-linear for every p if (and only if ) g is in the center
Z(G) of G. In particular if G is abelian, and V is an irreducible representation,
then by Schur’s lemma every element g € G acts on V by a scalar multiple of
the identily. Every subspace of V is thus invariant; so that ¥ must be one
dimensional. The irreducible representations of an abelian group G are thus
simply elements of the dual group, that is, homomorphisms

p:G - C*,
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We consider next the simplest nondbelian group, G = ,. To begin with,
we have (as with any symmetric group) two one-dimensional representations;
we have the trivial representation, which we will denote U, and the alternating
representation U’, defined by setting

gv = sgn{g)v

for g € G, v e C. Next, since G comes to us as a permutation group, we have
a natural permutation representation, in which G acts on C* by permuting
the coordinates. Explicitly, if {e,, ¢,, €4} isthe standard basis, theng-e; = ¢
or, equivalentiy, '

gty

97 (215 22, 23) = (Z5-101p Z4- 10200 Zg- 1)

This representation, like any permutation representation, is not irreducible:
the line spanned by the sum (1, 1, 1) of the basis vectors is invariant, with
complementary subspace

V={(zy,25,2,) €C* 2y + 2, + 2, = 0}.

This two-dimensional representation V is easily seen to be irreducible; we call
it the standard representation of &,.

Let us now turn to the problem of describing an arbitrary representation
of &,. We will see in the next lecture a wonderful tool for doing this, called
character theory; but, as inefficient as this may be, we would like here to adopt
a more ad hoc approach. This has some virtues as a didactic technique in the
present context (admittedly dubious ones, consisting mainly of making the
point that there are other and far worse ways of doing things than character
theory). The real reason we are doing it is that it will serve to introduce an
idea that, while superfluous for analyzing the representations of finite groups
in general, will prove to be the key to understanding representations of Lie
groups.

The idea is a very simple one: since we have just seen that the representation
theory of a finite abelian group is virtually trivial, we will start our analysis
of an arbitrary representation W of &, by looking just at the action of the
abelian subgroup A, = Z/3 = S, on W. This yields a very simple decom-
position: if we take t to be any generator of 2, (that is, any three-cycle), the
space W is spanned by eigenvectors v, for the action of t, whose eigenvalues
are of course all powers of a cube root of unity @ = ¢*3, Thus,

W=DV,
where
Vi=Cv, and 1=,

Next, we ask how the remaining elements of &, act on W in terms of this
decomposition. To see how this goes, let ¢ be any transposition, so that t and
o together generate S, with the relation oto = 12, We want to know where
o sends an eigenvector v for the action of 1, say with eigenvalue '; to answer
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this, we look at how 1 acts on ¢(v). We use the basic relation above to write

t(o(v) = a(*(v)
= g{w* - v)

= w? a(v).

The conclusion, then, is that if v is an eigenvector for t with eigenvalue w', then
o(v) is again an eigenvector for v, with eigenvalue w*.

Exercise 1.10. Verify that with ¢ = (12), t = (123), the standard representation
has a basis a = (o, 1, ®?), f = (1, w, w?), with

ww=wr, P=wh oau=fp of=a

Suppose now that we start with such an eigenvector vfor 7. If the eigenvalue
of vis o' # |, then o(v) is an eigenvector with eigenvalue w? # ', and so is
independent of v; and v and ¢(v) together span a two-dimensional subspace
V' of W invariant under €,. In fact, V' is isomorphic to the standard repre-
sentation, which follows from Exercise 1.10. If, on the other hand, the eigen-
value of v is 1, then ¢(v) may or may not be independent of v. I it is not, then
v spans a one-dimensional subrepresentation of W, isomorphic to the trivial
representation if 6(v) = v and to the alternating representation if a(v) = —v.
If 6(v) and v are independent, then v + o(v)and v — ¢(v) span one-dimensional
representations of Wisomorphic Lo the trivial and alternating representations,
respectively.

We have thus accomplished the first two of the goals we have set for
ourselves above in the case of the group G = &,. First, we see from the above
that the only three irreducible representations of S, are the trivial, alternating,
and standard representations U, U’ and V. Moreover, for an arbitrary repre-
sentation W of €, we can write

W=U® @U@ Ve

and we have a way to determine the multiplicities a, b, and c: ¢, for example,
is the number of independent eigenvectors for t with eigenvalue w, whereas
a + cis the muitiplicity of 1 as an eigenvalue of 5, and b + c is the multiplicity
of —1 as an eigenvalue of o. '

In fact, this approach gives us as well the answer to our third problem,
finding the decomposition of the symmetric, alternating, or tensor powers of
a given representation W, since if we know the eigenvalues of T on such a
representation, we know the eigenvalues of © on the various tensor powers of
W. For example, we can use this method to decompose V ® V, where V is
the standard two-dimensional representation. For ¥ ® V is spanned by the
vectors a ®@a, a @ ff, f @ «, and B ® f; these are eigenvectors for t with
eigenvalues w? 1, 1, and w, respectively, and o interchanges a ® o with
A ® f,and a ® f with f# ® . Thus « ® « and f @ f span a subrepresentation
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isomorphic to V, a®@ i+ f® « spans a trivial representation U, and
e ® fi — ff ® aspans U, so

VeVv=UeU @V

Exercise 1.11. Use this approach to find the decomposition of the represen-
tations Sym?V and Sym?*V.

Exercise 1.12. (a) Decompose the regular representation R of &,.
(b) Show that Sym**®V is isomorphic to Sym*V @ R, and compute
Sym*V for all k.

Exercise 1.13*, Show that Sym?(Sym*V) = Sym*(Sym2V). Is
Sym™(Sym"V) isomorphic to Sym™(Sym™"V)?

As we have indicated, the idea of studying a representation ¥ of a group G -
by first restricting the action to an abelian subgroup, getting a decomposition
of V into one-dimensional invariant subspaces, and then asking how the
remaining generators of the group act on these subspaces, does not work well
for finite G in general; for one thing, there will not in general be a convenient
abelian subgroup to use. This idea will turn out, however, to be the key to
understanding the representations of Lie groups, with a torus subgroup
playing the role of the cyclic subgroup in this example.

Exercise 1.14*. Let ¥ be an irreducible representation of the finite group G.
Show that, up to scalars, there is a uniqgue Hermitian inoer product on V
preserved by G.



LECTURE 2

Characters

This lecture contains the heart of our treatment of the representation theory of finite
groups: the definition in §2.1 of the character of a representation, and the main theorem
(proved in two steps in §2.2 and §2.4) that the characters of the irreducible representa-
tions form an orthonormat basis for the space of class functions on G. There will be
more examples and more constructions in the following lectures, but this is what you
need to know.

§2.1: Characters

§2.2: The first projection formula and its consequences
§2.3: Examples: &, and N,

§2.4: More projection formulas; more consequences

§2.1. Characters

As we indicated in the preceding section, there is a remarkably effective
tool for understanding the representations of a finite group G, called
character theory. This is in some ways motivated by the example worked out
in the last section where we saw that a representation of S, was determined
by knowing the eigenvalues of the action of the elements 7 and o € S,. Fora
general group G it is not clear what subgroups and/or elements should play
the role of 5, t, and o; but the example certainly suggests that knowing
all the eigenvalues of each element of G should suflice to describe the
representation.

Of course, specifying all the eigenvalues of the action of each element of G
is somewhat unwieldy; but forlunately it is redundant as well. For example,
if we know the eigenvalues {1,} of an element g € G, then of course we know
the eigenvalues {4¥} of g* for each k as well. We can thus use this redundancy
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to simplify the data we have to specily. The key observation here is it is enough
to give, for example, just the sum of the eigenvaiues of each element of G, since
knowing the sums )_ Af of the kth powers of the eigenvalues of a given element
g € G is equivalent to knowing the eigenvalues {1,} of g themselves. This then
suggests the following;

Definition. If ¥ is a representation of G, its character y, is the complex-valued
function on the group defined by

xv(g) = Tr(gly),
the trace of g on V.

In particular, we have
xrthgh™) = x,(g),
so that y, is constant on the conjugacy classes of G; such a function is called '
a class function. Note that y,(1) = dim V.

Proposition 2.1, Let V and W be representations of G. Then

Yvew = Xv + Xw, Xrew = Xy Xw,
te=%v and xp(9) = 3lxv(9)* - xv(g)].
ProoF. We compute the values of these characters on a fixed element g € G.
For the action of g, V has eigenvalues {1;} and W has eigenvalues {yt,}. Then
{4 + 1y} and {4, 445} are eigenvalues for ¥ @ W and V @ W, from which the
first two formulas foliow. Similarly {47! = A,} are the eigenvalues for g on V'*,

since all eigenvalues are nth roots of unity, with n the order of g. Finally,
{4 Ali < j} are the eigenvalues for g on AV, and

PRI PE
T 44, = QZ__:LZ_Z,_, .

and since g2 has eigenvalues {2}, the last formula follows. O

Exercise 2.2. For Sym?V, verify that
XSym1v(g) = %[Xv(g)z + Xl’(gz)]'

Note that this is compatible with the decomposition

VRV =Sym?*V @ A\*V.
Exercise 2.3*, Compute the characters of Sym*V and A*V.

Exercise 2.4*. Show that if we know the character xv of a representation V,
then we know the eigenvalues of each element g of G, in the sense that we
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know the coefficients of the characteristic polynomial of g: V — V. Carry this
out explicitly for elements g € G of orders 2, 3, and 4, and for a representation
of G on a vector space of dimension 2, 3, or 4.

Exercise 2.5. (The original fixed-point formula). If V is the permutation repre-
sentation associated to the action of a group G on a finite set X, show that
xv(g) is the number of elements of X fixed by g.

As we have said, the character of a representation of a group G is really a
function on the set of conjugacy classes in G. This suggests expressing the basic
information about the irreducible representations of a group G in the form of
a character table. This is a table with the conjugacy classes [g] of G listed
across the top, usually given by a representative g, with (for reasons that will
become apparent later) the number of elements in each conjugacy class over
it; the irreducible representations ¥ of G listed on the left; and, in the appro-
priate box, the value of the character x,, on the conjugacy class [g].

Example 2.6. We compute the character table of ©,. This is easy: to begin
with, the trivial representation takes the values (1, 1, 1) on the three conjugacy
classes [11, [(12)], and [(123)], whereas the alternating representation has
values (1, —1, 1). To see the character of the standard representation, note
that the permutation representation decomposes: C* = U @ V; since the
character of the permutation representation has, by Exercise 2.5, the values
(3,1,0), we have 1y =y — 2y =03, ,0)— (1,1, 1) =(2,0, —1). In sum,
then, the character table of S, is

] 3 2
S, 1 (12) (123)

triviat U 1 | 1
alternating U’ 1 -1 1
standard V 2 0 -1

This gives us another sofution of the basic problem posed in Lecture 1: if
W is any representation of €, and we decompose W into irreducible repre-
sentations W =~ U®* @ U'®* @ V<, then xy = axy + byy. + cxp- In particu-
lar, since the functions gy, x,- and x, are independent, we see that W is
deterntined up to isomorphism by its character yy .

Consider, for example, ¥ @ V. Its character is (x,/)%, which has values 4, 0,
and | on the three conjugacy classes. Since V @ U @ U’ has the same char-
acter, this implies that V ® ¥V decomposes into V @ U @ U’, as we have seen
directly. Similarly, ¥V ® U’ has values 2,0,and —1,s0 V@ U’ = V.
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Exercise 2.7*. Find the decomposition of the representation V®" using char-
acter theory.

Characters will be similarly useful for larger groups, although it is rare to
find simple closed formulas for decomposing tensor products.

§2.2. The First Projection Formula and
Its Consequences

In the last lecture, we asked (among other things) for a way of locating
explicitly the direct sum factors in the decomposition of a representation into
irreducible ones. In this section we will start by giving an explicit formula for
the projection of an irreducible representation onto the direct sum of the trivial
factors in this decomposition; as it will turn out, this formula alone has
tremendous consequences.

To start, for any representation ¥V of a group G, we set

Vé={veV:ign=v VgeG}

We ask for a way of finding V¢ explicitly. The idea behind our solution to
this is already implicit in the previous lecture. We observed there that for any
representation V of G and any g € G, the endomorphism g: V — V is, in
general, not a G-module homomorphism. On the other hand, if we take the
average of all these endomorphisms, that is, we set

1
= — € End(V),
? IGI,;cg nd(V)

then the endomorphism ¢ will be G-linear since ) g = ) hgh™'. In fact, we
have

Proposition 2.8. The map ¢ is a projection of V onto V°.

PROOF. First, suppose v = @(w) = (1/|G|) Y gw. Then, for any he G,

t 1
ho = — Y haw = ——.
w |GIZ gw 'GIZgw,

so the image of ¢ is contained in ¥°. Conversely, if ve V%, then p(v) =
(1/IGhY.v=1v,50 VS = Im(p) and ¢ o ¢ = . 0

We thus have a way of finding explicitly the direct sum of the trivial
subrepresentations of a given representation, although the formula can be
hard to use if it does not simplify. If we just want to know the number m of
copies of the trivial representation appearing in the decomposition of ¥, we
can do this numerically, since this number will be just the trace of the
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projection p. We have

= dim V¢ = Trace(yp)

Y Trace(g) =

. 2.9
'ClgEG |(~.| Z xv{(9) (2.9)

In particular, we observe that for an irreducible representation V other than
the trivial one, the sum over all g € G of the values of the character g, is zero.

We can do much more with this idea, however. The key is to use Exercise
1.2:if V and W are representations of G, then with Hom(V, W), the representa-
tion defined in Lecture I, we have

Hoin(V, W) = {G-module homomorphisms from V to W}.

If ¥ is irreducible then by Schur’s lemma dim Hom(¥, W)% is the multiplicity
of V in W; similarly, if W is irreducible, dim Hom(V, W)° is the multiplicity
of Win V, and in the case where both V and W are irreducible, we have

T fvoew

0 ifVvEW

But now the character yy,m. 1) Of the representation Hom(V, W)= V* @ W
is given by

dim Homg(V, W) = {

J(nnm(v.m(g) = X;(g—) * Xw(g).
We can now apply formula (2.9) in this case to obtain the striking
1 ifv=w
|G| X, 1v(9)uwle) = {0 v 2w (2.10)
To express this, let
C 1as5(G) = {class functions on G}

and define an Hermitian inner product on C,,,.(G) by

(@) == Y. alg)blg) @11)

1
'GI geG
Formula (2.10) then amounts to

Theorem 2.12. In terms of this inner product, the characters of the irreducible
representations of G are orthonormal.

For example, the orthonormality of the three irreducible representations
of &, can be read from its character table in Example 2.6, The numbers over
each conjugacy class tell how many times to count entries in that column.

Corollary 2.13. The number of irreducible representations of G is less than or
equal to the number of conjugacy classes.
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We will soon show that there are no nonzero class functions orthogonal
to the characters, so that equality holds in Corollary 2.13.

Corollary 2.14. Any representation is determined by its character.

Indeedil V = V®1 @ @ V8, with the ¥ distinct irreducible characters,
then y,, = ) a;xy,, and the y,, are linearly independent.

Corollary 2.15. A representation V is irreducible if and only if’ (x,, 1v) = 1.

Infact,if V= V@ @ - @ V8™ as above, then (x,, x,,) = ), af.
The multiplicities g, can be calculated via

Corollary 2.16. The multiplicity a; of Vyin V is the inner product of x, with xy,,
ie,a; = (v, xv,)

We obtain some further corollaries by applying all this to ihe regular
representation R of G. First, by Exercise 2.5 we know the character of R; it is
simply

(g) = 0 ifgste
I =6] ifg=-e

Thus, we see first of all that R is not irreducible if G # {e}. In fact, if we set
R = P V;®, with ¥, distinct irreducibies, then

1 .
a; = (ty,» Xr) = @xv,(e)‘l(?l =dim ¥. @17

Corollary 2.18. Any irreducible representation V of G appears in the regular
representation dim V times.

In particular, this proves again that there are only finitely many irreducible
representations. As a numerical consequence of this we have the formula

|G| = dim(R) = Y. dim(¥)>. (2.19)

Also, applying this to the value of the character of the regular representation
on an element g € G other than the identity, we have

0=Y (dim ¥;) x,,(g) ifg#e (2.20)

These two formulas amount to the Fourier inversion formula for finite groups,
cf. Example 3.32. For example, if dll but one of the characters is known, they
give a formula for the unknown character.

Exercise 2.21. The orthogonality of the rows of the character table is equiv-
alent to an orthogonality for the columns (assuming the fact that there are as
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many rows as columns). Written out, this says:
(i) Forge G,

where the sum is over all irreducible characters, and c(g) is the number of
elements in the conjugacy class of g.
(ii) If g and h are elements of G that are not conjugate, then

Y. x(@x() = 0.

X

Note that for g = e these reduce to (2.19) and (2.20).

§2.3. Examples: S, and N,

To see how the analysis of the characters of a group actually goes in practice,
we now work out the character table of &,. To start, we list the conjugacy
classesin &, and the number of elements of S, in each. As with any symmetric
group S,, the conjugacy classes correspond naturally to the partitions of d,
that is, expressions of d as a sum of positive integers ay, a,, ..., a,, where
the correspondence associates to such a partition the conjugacy class of a
permutation consisting of disjoint cycles of length a,, a,, ..., a,. Thus, in S,
we have the classes of the identity element | 4 =1+ 1+ 1+ 1), a trans-
position such as (12), corresponding to the partition 4 =2 + 1 + [; a three-
cycle (123) corresponding to 4 = 3 + I; a four-cycle (1234) (4 = 4); and the
product of two disjoint transpositions (12)(34) (4 = 2 + 2).

Exercise 2.22. Show that the number of elements in each of these conjugacy
classes is, respectively, 1, 6, 8, 6, and 3.

As for the irreducible representations of &,, we start with the same ones
that we had in the case of S,: the trivial U, the alternating U’, and the
standard representation V, i.e., the quotient of the permutation representation
associated to the standard action of &, on a set of four elements by the
trivial subrepresentation. The character of the trivial representation on the
five conjugacy classes is of course (1, 1, 1, 1, 1), and that of the alternating
representation is (1, —1,1, —1, 1). To find the character of the standard
representation, we observe that by Exercise 2.5 the character of the permuta-
tion representation on C* is yc« = (4, 2, 1, 0, 0) and, correspondingly,

XV=XC‘_xU=(3’ l909 —1$ _l)'

Note that |y, | = 1, so V is irreducible. The character table so far looks like
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1 6 8 6 3

S, I 1 (12) (123) (1234) (12)(34)
trivial U 1 1 1 I 1
alternating U’ 1 —1 f —1 1
standard V 3 1 0 —1 —1

Clearly, we are not done yet: since the sum of the squares of the dimensions
of these three representations is 1 + 1 +9 = 11, by (2.19) there must be
additional irreducible representations of &, the squares of whose dimensions
add up to24 — 11 = 13. Since there are by Corollary 2,13 at most two of them,
there must be exactly two, ol dimensions 2 and 3. The latter of these is easy
to locate: il we just tensor the standard representation ¥ with the alternating
one U’, we arrive at a representation V' with character x,- =y xp- =
(3, —1,0, 1, —1). We can see that this is irreducible either from its character.
(since |xy-] = 1) or from the fact that it is the tensor product of an irreducible
representation with a one-dimensional one; since its character is not equal to
that of any of the first three, this must be one of the two missing ones. As for
the remaining representation of degree two, we will for now simply call it W;
we can determine its character from the orthogonality relations (2.10). We
obtain then the complete character table for S,:

1 6 8 6 3
3, 1 (12) (123) (1234) (12)(34)
trivial U 1 1 f i i
alternating U’ 1 —1 1 -1 !
standard V 3 1 0 —1 —1
V=veUu 3 -1 0 1 —1
Another W 2 0 -1 0 2

Exercise 2.23. Verify the last row of this table from (2.10) or (2.20).

We now get a dividend: we can take the character of the mystery represen-
tation W, which we have obtained from general character theory alone, and
use it to describe the representation W explicitly! The key is the 2 in the last
column for y,: this says that the action of (12)(34) on the two-dimensional
vector space W is an involution of trace 2, and so inust be the identity. Thus,
W is really a representation of the quotient group'

LI N is a normal subgroup of a group G, a representation p: G — GL(V) is trivial on N if and
only if it factors through the quotient

G — G/N = GL(V).

Representations of G/N can be identified with representations of G that are trivial on N.
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&, /{1, (12)(34), (13)(24), (14)(23)} = &,.

[One may see this isomorphism by letting &, acl on the elements of the
conjugacy class of (12)(34); equivalently, if we realize &, as the group of rigid
motions of a cube (see below), by looking at the action of &, on pairs of
opposite faces.] W must then be just the standard representation of G, pulled
back to &, via this quotient.

Example 2.24. As we said above, the group of rigid motions of a cube is the
symmetric group on four letters; &, acts on the cube via its action on the four
long diagonals. It follows, of course, that &, acts as well on the set of faces.
of edges, of vertices, etc.; and to each of these is associated a permutation
representation of ©,. We may thus ask how these representations decompose;
we will do here the case of the faces and leave the others as exercises.

We start, of course, by describing the character y of the permutation
representalion associated to the faces of the cube. Rotation by 180 about a
line joining the midpoints of two opposite edges is a transposition in &, and
fixes no faces, so x(12) = 0. Rotation by 120° about a long diagonal shows
x(123) = 0. Rotation by 90° about a line joining the midpoints of two opposite
faces shows x(1234) = 2, and rotation by 180° gives x((12)(34)) = 2. Now
(x, x) = 3, so x is the sum of three distinct irreducible representations. From
the table, (x, xy) = (06 ) = (6 xw) = 1, and the inner products with the
others are zero, so this representation is U ® V' @ W. In fact, the sums of
opposite faces span a three-dimensional subrepresentation which contains U
(spanned by the sum of all faces), so this representation is U@ W. The
differences of opposite faces therelore span V.

Exercise 2.25*. Decompose the permutation representation of €, on (i) the
vertices and (ii) the edges of the cube.

Exercise 2.26. The alternating group 2, has four conjugacy classes. Three
representations U, U’, and U” come from the representations of
W /{1, (12)(34), (13)(24), (14)(23)} = 2/3,

so there is one more irreducible representation V¥ of dimension 3. Compute
the character table, with @ = €2™/;

1 4 4 3
W, |1 (123) (132} (12)(34)
1

S q
- - —
i~

g

N

a

<
————



§2.4. More Projection Formulas; More Consequences 21

Exercise 2.27. Consider Lhe representations of &, and their restrictions to %,.
Which are still irreducible when restricted, and which decompose? Which
pairs of nonisomorphic representations of S, become isomorphic when
restricted? Which representations of 9, arise as restrictions from &,?

§2.4. More Projection Formulas; More Consequences

In this section, we complete the analysis of the characters of the irreducible
representations of a general finite group begun in §2.2 and give a more general
formula for the projection of a general representation V onto the direct sum
of the factors in ¥ isomorphic to a given irreducible representation W. The
main idea for both is a generalization of the “averaging” of the endomorphisms
g: V — V used in §2.2, the point being that instead of simply averaging all the
g we can ask the question: what linear combinations of the endomorphisms
g: V - V are G-linear endomorphisms? The answer is given by

Proposition 2.28. Lef o: G — C be any function on the group G, and for any
representation V of G set

Poy =2 0(g) g: V> V.

Then ¢, y is a homomorphism of G-modules for all V if and only if « is a class
Junction.

Proor. We simply write out the condition that i, ,, be G-linear, and the result
falls out: we have

@av(hv) =} a(g)- g(hv)
=Y a(hgh™')- hgh™' (hv)
(substituting hgh™! for g)
= h(} a(hgh *)-g(v))
= h(}, a(g)-g(v))
(if o is a class function)

= h(pg, v (v)).
Exercise 2.29*. Complete this proof by showing that conversely if « is not a
class function, then there exists a representation ¥ of G for which ¢, y fails to

be G-linear. 0

As an immediate consequence of this proposition, we have
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Proposition 2.30. The number of irreducible representations of G is equal to the
number of conjugacy classes of G. Equivalently, their characters {x, } form an
orthonormal basis for C,..(G).

PROOF. Suppose o: G — C is a class function and (g, x,/) = 0 for all irreducible
representations ¥; we must show that a = 0. Consider the endomorphism

Guy =3, 0%(g) g: V>V
as defined above. By Schur’s lemma, ¢, , = A-1d; and if n = dim V, then

|
= — trace(,, v)
n

1
= E Z al(ghxv(9)

G
-z

=0

Thus, ¢, , = 0, or Y, a{g)-g = 0 on any representation ¥ of G in particular,
this will be true for the regular representation ¥ = R. But in R the elements
{g € G}, thought of as elements of End(R), are linearly independent. For
example, the elements {g(e)} are all independent. Thus a(g) = 0 for all g, as
required. 0

This proposition completes the description of the characters of a finite
group in general. We will see in more examples below how we can use this
information to build up the character table of a given group. For now, we
mention another way of expressing this proposition, via the representation
ring of the group G.

The representation ring R(G) of a group G is easy to define. First, as a group
we just take R(G) to be the free abelian group generated by all (isomorphism
classes of ) representations of G, and mod out by the subgroup generated by
elements of the form V + W — (V @ W). Equivalently, given the statement of
complete reducibility, we can just take all integral linear combinations ) a; V;
of the irreducible representations ¥, of G; elements of R(G) are correspondingly
called virtual representations. The ring structure is then given simply by tensor
product, defined on the generators of R(G) and extended by linearity.

We can express most of what we have learned so far about representations
of a finite group G in these terms. To begin, the character defines a map

X R(G) - Cclnss(G)

from R(G)to the ring of complex-valued functions on G; by the basic formulas
of Proposition 2.1, this map is in fact a ring homomorphism. The statement
that a representationin determined by its character then says that y is injective;
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the images of y are called virtual characters and correspond thereby to virtual
representations. Finally, our last proposition amounts to the statement that
¥ induces an isomorphism

xc: R(G)® € - €y (G).

The virtual characters of G form a lattice A = Z° in C,,,,,(G), in which the
actual characters sit as a cone Ay = N° < Z°. We can thus think of the
problem of describing the characters of G as having two parts: first, we have
to find A, and then the cone A, < A (once we know Ay, the characters of the
irreducible representations will be determined). In the following lecture we
will state theorems of Artin and Brauer characterizing A ® @ and A.

The argument for Proposition 2.30 also suggests how to obtain a more
general projection formula. Explicitly, if W is a fixed irreducible representation,
then for any representation V, look at the weighted sum

1
v = Z xw(g)- g € End(V).
[Gl 6

By Proposition 2.28, ¢ is a G-module homomorphism. Hence, if ¥ is irreduc-
ible, we have = 1-1d, and

1
— Trace ¥

dim

1
¥ [Gl wa(g) ()

°-l

t .
_Jdmy V=W

0 ifvs+Ww
For arbitrary V,

Yp=dimW-.— % r,(g)g: V>V (2.31)

l(' Gl 4<%
is the projection of V onto the factor consisting of the sum of all copies of W

appearing in V. In other words, if V = ) V", then

. t JE—
7, = dim e ,;G 1w, (9) g (2:32)

is the projection of ¥ onto V&%,

Exercise 2.33* (a) In terms of representations ¥ and W in R(G), the inner
product on C,,,(G) takes the simple form

(V. W) = dim Homg(V, W).
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(b) Il x € C_4,.(G) is a virtual character, and (x, y) = 1, then either y or —x
is the character of an irreducible representation, the plus sign occurring when
x(1)> 0. I (x, x) = 2, and x(1) > 0, then y is either the sum or the difference
of two irreducible characters.

(c) If U, ¥, and W are irreducible representations, show that U appears in
V® W if and only if W occurs in ¥* ® U. Deduce that this cannot occur
unless dim U > dim W/dim V.

We conclude this lecture with some exercises that use characters to work
out some standard facts about representations.

Exercise 2.34*. Let V and W be irreducible representations of G, and
Ly: V — W any linear mapping. Define L: V - W by

—_ 1 -1, .
L{v) = m“ZG g " Lo(g-v).

Show that L = 0if ¥ and W are not isomorphic, and that L is multiplication
by trace(Ly)/dim(V)if V = W.

Exercise 2.35*. Show that, if the irreducible representations of G are represented
by unitary matrices [cf. Exercise 1.14], the matrix entries of these representa-
tions form an orthogonal basis for the space of all functions on G [with inner
product given by (2.11)].

Exercise 2.36*. If G, and G, are groups, and ¥, and V, are representations of
G, and G,, then the tensor product ¥; ® V, is a representation of G, x G,,
by(g, % g,)-(v; ®v;) =g, v, ® g, v,. To distinguish this “external” tensor
product from the internal tensor product—when G, = G,—this external
tensor product is sometimes denoted V, @ V,. If y, is the character of V], then
the value of the character y of ¥, @V, is given by the product:

x(g: % g2) = x1(g:)x2(g2)

If ¥, and V, are irreducible, show that ¥, @V, is also irredugible and show
that every irreducible representation of G; x G, arises this way. In terms of
representation rings,

R(G, x G,) = R(G|)® R(G,).

In these lectures we will often be given a subgroup G of a general linear
group GL(V), and we will look for other representations inside tensor powers
of V. The following problem, which is a theorem of Burnside anid Molien,
shows that for a finite group G, all irreducible representations can be found
this way.
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Problem 2.37*. Show that if V is a faithful representation of G, ie., p: G —
GL(V) is injective, then any irreducible representation of G is contained in
some tensor power V®" of V.

Problem 2.38*. Show that the dimension of an irreducible representation of
G divides the order of G.

Another challenge:

Problem 2.39*. Show that the character of any irreducible representation of
dimension greater than 1 assumes the value (0 on some conjugacy class of the
group.



LECTURE 3

Examples; Induced Representations;
Group Algebras; Real Representations

This lecture is something of a grabbag. We start in §3.1 with examples illustrating the
use of the techniques of the preceding lecture. Section 3.2 is also by way of an example.
We will see quite a bit more about the representations of the symmetric groups in
general later; §4 is devoted to this and will certainly subsume this discussion, but this
should provide at least a sense of how we can go about analyzing representations of
a class of groups, as opposed to individual groups. In §§3.3 and 3.4 we introduce two
basic notions in representation theory, induced representations and the group algebra.
Finally, in §3.5 we show how to classify representations of a finite group on a real
vector space, given the answer to the corresponding question over C, and say a few
words about the analogous question for subfields of C other than R. Everything in this
lecture is elementary except Exercises 3.9 and 3.32, which involve the notions of Clifford
aigebras and the Fourier transform, respectively (both exercises, of course, can be
skipped).

§3.1: Examples: &, and

§3.2: Exterior powers of the standard representation of &,

§3.3: Induced representations

§3.4: The group algebra

§3.5: Real representations and representations over subfields of C

§3.1. Examples: S5 and 2,

We have found the representations of the symmetric and alternating groups
for n < 4. Before turning to a more systematic study of symmetric and alter-
nating groups, we will work out the next couple of cases.
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Representations of the Symmetric Group S,

As before, we start by listing the conjugacy classes of S and giving the number
of elements of each: we have 10 transpositions, 20 three-cycles, 30 four-cycles
and 24 five-cycles; in addition, we have 15 elements conjugate to (12)(34) and
10 elements conjugate to (12)(345). As for the irreducible representations, we
have, of course, the trivial representation U, the alternating representation U’,
and the standard representation V; also, as in the case of S, we can tensor
the standard representation ¥ with the alternating one to obtain another
irreducible representation ¥’ with character x,. = xp " xp-.

Exercise 3.1. Find the characters of the representations V and V’; deduce in
particular that ¥ and V' are distinct irreducible representations.

The first four rows of the character table are thus

1 10 20 30 24 15 20

S | 1 (12) (123 (1238 (12345 (1234  (12)(345)
Ul 1 1 1 1 1 1
vt -1 1 —1 1 1 -1
v | a 2 1 0 -1 0 -1
vi4 -2 1 0 —1 0 1

Clearly, we need three more irreducible representations. Where should we
look for these? On the basis of our previous experience (and Problem 2.37), a
natural place would be in the tensor products/powers of the irreducible
representations we have found so far, in particular in ¥ ® V (the other two
possible products will yield nothing new: we have V'@ ¥V = V® V ® U’ and
V' ®V' = V® V). Of course, ¥V ® V breaks up into A2V and Sym?V, so we
look at these separately. To start with, by the formula

Inv(g) = %(Xv(g)z - Xv(gz))
we calculate the character of A2V
Irey = (6,0,0,0, 1, —2, 0

we see from this that it is indeed a fifth irreducible representation (and that
A2V ® U’ = AV, so we get nothing new that way).

We can now find the remaining two representations in either of two ways.
First, if n; and n, are their dimensions, we have

51=120=124 12 4 42 + 42 1 62 + n? + n},

0 n? + n} = 50. There are no mnore one-dimensional representations, since
these are trivial on normal subgroups whose quotient group is cyclic, and 2,
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is the only such subgroup. So the only possibility isn, = n, = 5. Let W denote
one of these five-dimensional representations, and set W' = W® U’. In the
table, if the row giving the character of W is

S o ay a5 a4 as o),

that of W'is(5 —a; a, —o5 a, as —ag). Using the orthogonality
relations or (2.20), one sees that W’ % W; and with a little calculation, up to
interchanging W and W', the last two rows are as given:

{ 10 20 30 24 i5 20

S, 1 (12  (123) (1234) (12345) (12)(34)  (12)(345)
U 1 1 1 | 1 1 |
g 1 —1 ! —1 1 1 -1
Vv 4 2 1 —1 0 -1
V] 4 -2 1 0 -1 0 1
% 6 0 0 0 1 -2 0
W | s 1 -1 -1 0 | 1
w15 -1 -1 I 0 { -1

From the decomposition V@ U = C3, we have also A*V = ASC’ = U,
and V* = V. The perfect pairing’

Vx NV AY=U,

taking v X (v; A v3 A U3) tO B A U] A U, A v, shows that A’V is isomorphic
o V*U =V

Another way to find the representations W and W’ would be to proceed
with our original plan, and look at the representation Sym?¥. We will leave
this in the form of an exercise:

Exercise 3.2. (i) Find the character of the representation Sym?2V.
(ii) Without using any knowledge of the character table of S, use this to
show that Sym?V is the direct sum of three distinct irreducible representations.
(iii) Using our knowledge of the first five rows of the character table, show
that Sym?2V is the direct sum of the representations U, ¥, and a third irreduc-
ible representation W. Complete the character table for &;.

Exercise 3.3. Find the decomposition into irreducibles of the representations
AW, Sym2W, and V @ W.

Y1If ¥ and W are n-dimensional vector spaces, and U is one dimensional, a perfect pairing is a
bitinear map fi: ¥ x W — U such that no nonzero vector ¢ in ¥ has fi(», W) = 0. Equivalently,
the map ¥V - Hom(W, U) = W* @ U, v+ (w+ fi(v, w)), is an isomorphism.
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Representations of the Alternating Group 2,

What happens to the conjugacy classes above if we replace S, by U,?
Obviously, all the odd conjugacy classes disappear; but at the saine time, since
conjugation by a transposition is now an outer, rather than inner, auto-
morphism, some conjugacy classes may break into two.

Exercise 3.4. Show that the conjugacy class in S, of permutations consisting
of products of disjoint cycles of lengths b,, b, ... will break up into the union
of two conjugacy classes in 2, if all the b, are odd and distinct; if any b, are
even or repeated, it remains a single conjugacy class in %,. (We consider a
fixed point as a cycle of length 1.)

In the case of s, this means we have the conjugacy class of three-cycles
(as before, 20 elements), and of products of two disjoint transpositions (15
elements); the conjugacy class of five-cycles, however, breaks up into the
conjugacy classes of (12345) and (21345), each having 12 elements.

As for the representations, the obvious first place to look is at restrictions
to A, of the irreducible representations of S found above. An irreducible
representation of &5 may become reducible when restricted to s; or two
distinct representations may become isomorphic, as will be the case with U
and U’, V and V', or W and W’ In fact, U, V, and W stay irreducible
since their characters satisfy (y, y) = 1. But the character of A’V has values
(6,0, -2, 1, 1) on the conjugacy classes listed above, so (x, ) = 2,and A2V is
the sum of two irreducible representations, which we denote by Y and Z. Since
the sums of the squares of all the dimensions is 60, (dim Y)? + (dim Z)? = 18,
so each must be three dimensional.

Exercise 3.5. Use the orthogonality relations to complete the character table
of Ay:

t 20 15 12 12
A, | 1 (123 (1934 (12345)  (21345)
U 1 1 1 1 !
vV 4 1 0 -1 —1
wils =1 1 0 0
Y | 3 0 -1 l__+_\/§ l:_\é
2 1
- 5
z |3 0 -1 ! 2\/ 5 '—J'ESZ-

The representations ¥ and Z may in fact be familiar: 25 can be realized as
the group of motions of an icosahedron (or, equivalently, of a dodecahedron)
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and Y is the corresponding representation. Note that the two representations
N, — GL,4(R) corresponding to Y and Z have the same image, but (as you
can see from the fact that their characters difler only on the conjugacy classes
of (12345) and (21345)) differ by an outer automorphism of ;.

Note also that A’V does not decompose over @; we could see this directly
from the fact that the vertices of a dodecahedron cannot all have rational
coordinates, which follows from the analogous fact for a regular pentagon in
the plane.

Exercise 3.6. Find the decomposition of the permutation representation of 2
corresponding to the (i) vertices, (i) faces, and (iii) edges of the icosahedron.

Exercise 3.7. Consider the dihedral group D,,, defined to be the group of
isometries of a regular n-gon in the plane. Let I' = Z/n < D,, be the subgroup
of rotations. Use the methods of Lecture | (applied there to the case S5 = Dy)
to analyze the representations of D,,,: that is, restrict an arbitrary representa-
tion of D,, to I, break it up into eigenspaces for the action of I', and ask how
the remaining generator of D,, acts of these eigenspaces.

Exercise 3.8. Analyze the representations of the dihedral group D,, using the
character theory developed in Lecture 2.

Exercise 3.9. (a) Find the character table of the group of order 8 consisting of
the quaternions {41, +i, +j, +k} under multiplication. This is the case
m = 3 of a collection of groups of order 2™, which we denote H,,. To describe
them, let C,, denote the complex Clifford algebra generated by v,, ..., v, with
relations v} = —1 and v;-v; = —v;-v;, 80 C, has a basis v, = v; -... v, as
I ={i, < <i,} varies over subsets of {1, ..., m}. (See §20.1 for notation and
basic facts about Clifford algebras), Set

H, = {+v;:|1|is even} < (C*")*.

This group is a 2-to-1 covering of the abelian 2-group of m x m diagonal
matrices with 4 | diagonal entries and determinant 1. The center of H,, is
{£1}ifmis odd and is {1, £vy,, .} il mis even The other conjugacy
classes consist of pairs of elements { +v,}. The isomorphisms; of C&*” with a
matrix algebra or a product of two matrix algebras give a 2"-dimensional
“spin” representation § of I,,,,, and two 2"~'-dimensional “spin” or “half-
spin” representations S* and 5§~ of H,,.

{b) Compute the characters of these spin representations and verify that
they are irreducible.

(c) Deduce that the spin representations, together with the 2™~! one-
dimensional representations coming from the abelian group H,,/{ + 1} give a
complete set of irreducible representations, and compute the character table
for H,,.
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For odd m the groups H,, are examples of extra-special 2-groups, cf. [Grie],

[Qu].
Exercise 3.10. Find the character table of the group SL,(Z/3).

Exercise 3.11. Let H(Z/3) be the Heisenberg group of order 27:

1 a b
HZ3) =410 1 ¢|abcez3} <SLy2/)
0 01

Analyze the representations of H(Z/3), first by the methods of Lecture |
(restricting in this case to the center

1 0 b
Z= 0 1 0} beZ/3 »=2Z/3
00 1
of H(Z/3)), and then by character theory.

§3.2. Exterior Powers of the Standard
Representation of S,

How should we go about constructing representations of the symmetric
groups in general? The answer to this is not immediate; it is a subject that will
occupy most of the next lecture (where we will produce all the irreducible
representations of S,). For now, as an example of the elementary techniques
developed so far we will analyze directly one of the obvious candidates:

Proposition 3.12. Each exterior power A*V of the standard representation V of
S, is irreducible, 0 < k <d — 1.

ProOF. From the decomposition C! = V @ U, we see that V is irreducible if
and only if (xce, Xxca) = 2. Similarly, since

NC =NV QNN NT'VRAU)Y= NV Ny,
it suffices to show that (y, x) = 2, where y is the character of the representation

NC* Let 4 ={1,2,...,d}. For a subset B of 4 with k elements,andge G =
S, let

0 ifg(B)#B
{g}s = 1 ifg(B) = B and gl is an even permutation
—1 ifg(B) = B and gj, is odd.
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Here, if g(B) = B, gls denotes the permutation of the set B determined by g.
Then x(g) = . {g}s, and

)= Z (Z { q}n)

d— g chz {9}s{g}c

; z (sen glp)- (sen glc),

&I,...

where the sums are over subsets B and C of 4 with k elements, and in the last
equation, the sum is over those g with g(B) = B and g(C) = C. Such g is given
by four permutations: one of B C, one of B\B n C, one of C\B n C, and one
of A\B u C. Letting I be the cardinality of B n C, this last sum can be written

%ZZ LY Y Y (sena)’@gnb)isgnc)
+ B C aeG bhe S,

—1c€ Spy e B4 2py

- % LT~ 2+ (.,§ sgn b) ( Y sgn c).

€ Gy g

These last sums are zero unless k — [ = 0 or 1. The case k = | gives

—Zk'(d k)l = l(d)kl(n——k)'—l

Similarly, the terms with k — | = 1 also add up to 1, s0(x, x) = 2, as required.
O

Note by way of contrast that the symmetric powers of the standard repre-
sentation of S, are almost never irreducible. For example, we already know
that the representation Sym? ¥ contains one copy of the trivial representation:
this is just the statement that every irreducible real representation (such as V)
admits an inner product (unique, up to scalars) invariant under the group
action; nor is the quotient of Sym?¥ by this trivial subrepresentation neces-
sarily irreducible, as witness the case of S5,

§3.3. Induced Representations

If H = Gisasubgroup, any representation V of G restricts to a representation
of H, denoted Res§ V or simple Res V. In this section, we describe an impor-
tant construction which produces representations of G from representations
of H. Suppose V is a representation of G, and W < V is a subspace which is
H-invariant. For any g in G, the subspace g- W = {g-w: w e W} depends only
on the left coset gH of g modulo H,since gh- W = g- (- W) = g- W, for a coset
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o in G/H, we write ¢ - W for this subspace of V. We say that V is induced by W
if every element in ¥ can be written uniquely as a sum of elements in such
translates of W, i.e.,

V=@ o W

oeGIH

Tn this case we write V = Ind§W = Ind W.

Example 3.13. The permutation representation associated to the left action of
G on G/H is induced from the trivial one-dimensional representation W of H.
Here ¥ has basis {e,: 0 € G/H}, and W = C - ¢,;, with [ the trivial coset.

Example 3.14. The regular representation of G is induced from the regular
representation of H. Here V has basis {e¢,: g € G}, whereas W has basis
{ey: he H}.

We claim that, given a representation W of I, such V exists and is unique
up to isomorphism, Although we will later give several fancier ways to see
this, it is not hard to do it by hand. Choose a representative g, € G for each
coset o € G/I, with e representing the trivial coset H. To see the uniqueness,
note that each element of V has a unique expression v = )_ g, w,, for elements
w, in W. Given g in G, write g-g, = g, h for some 1 € G/H and h e H. Then
we must have

g (gsw,) = (g9°9,)w, = (g, I}w, = g.(hw,).

This proves the uniqueness and tells us how to construct V = Ind(W) from
W. Take a copy W? of W for each left coset o € G/I; for w € ¥, let g, w denote

the element of W* corresponding to w in W. Let V= (P W, so every
oeGIH
element of ¥ has a unique expression v = . g, w, for elements w, in W. Given

g € G, define
g:(g9.w,) = g.(hw,) ilg-g, =g, h

To show that this defines as action of G on ¥, we must verify that g’ - (g - (g,w,))
= (9" g)*(g,w,) for another element ¢’ in G. Now if g’ g, = g, I, then

g’ (g (g,w,)) = 9" (g(hw,)) = g,(K (hw,)).
Since (¢’ 9)-9,=9""(g°9,) =9 g h =g, I - h, we have

(' 9) ' (g,w,) = g, (W - Wyw,) = g, (I - (hw,)),
as required.

Example 3.15. If W = (D W, then Ind W = P Ind W,

The existence of the induced representation follows from Examples 3.14
and 3.15 since any W is a direct sum of summands of the regular representation.
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Exercise 3.16. (a) If U is a representation of G and W a representation of H,
show that (with all tensor products over C)

U ®Ind W = Ind(Res(U) ® W).

In particular, Ind(Res(U)) = U ® P, where P is the permutation representa-
tion of G on G/H. For a formula for Res(Ind(W)), for W a representation of
H, see {Se2, p. 58].

(b) Like restriction, induction is transitive: if H = K = G are subgroups,
show that

Ind§(W) = Ind§(Ind§ ).

Note that Example 3.15 says that the map Ind gives a group homomor-
phism between the representation rings R(f1) and R(G), in the opposite direc-
tion from the ring homomorphism Res: R(G) - R(H) given by restriction;
Exercise 3.16(a) says that this map satisfies a “push—pull” formula o* Ind(f) =
Ind(Res(c) - B) with respect to the restriction map.

Proposition 3.17. Let W be a representation of H, U a representation of G, and
suppose V = Ind W, Then any H-module homomorphism ¢: W — U extends
uniquely to a G-module homomorphism $: V — U. i.e.,

Homg(W, Res U) = Homg(Ind W, U).
In particular, this universal property determines Ind W up to canonical
isomorphism.
Proor. With V = @), 5,4 o- W as before, define ¢ on - W by
o WL W2 U2 U,
which is independent of the representative g, for o since ¢ is H-linear. O
To compute the character of V = Ind W, note that g € G maps ¢ W to go W,

so the trace is calculated from those cosets ¢ with go = 0, i.e., s7'gse H for
s € 0. Therefore,

Xmaw(@) = ¥ xw(s'gs)  (seoarbitrary). (3.18)

go=o

Exercise 3.19. (a) If C is a conjugacy class of G, and C n H decomposes into
conjugacy classes Dy, ..., D, of H, (3.18) can be rewritten as: the value of the
character of Ind Won C is

IGl & |Dd
n C) = e =T 2 D .
Xina w( i i; iC 1w(Dy)
(b) If W is the trivial representation of H, then
G:H]
Yinaw(C) = E—’* 1 jCn HJ.

ICl
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Corollary 3.20 (Frobenius Reciprocity). If W is a representation of H,and U a
representation of G, then

(Xinaws Xvde = (Xws Arest)nr-

ProoF. It suffices by linearity to prove this when W and U are irreducible.
The left-hand side is the number of times U appears in Ind W, which is
the dimension of Homg(Ind W, U). The right-hand side is the dimension of
Homy, (W, Res U). These dimensions are equal by the proposition. O

If Wand U are irreducible, Frobenius reciprocity says: the number of times
U appears in Ind W is the same as the number of times W appears in Res U.

Frobenius reciprocity can be used to find characters of G if characters of
H are known.

Example 3.21. We compute IndGW, when H = S, =« G = G,, W=V, (the
standard representation) = U, (the alternating representation). We know the
irreducible represenatations of S,: U, Uj, Vi, which restrict to Uy, U = V;,
U, & U3, respectively. Thus, by Frobenius, Ind V, = U; @ V;.

Example 3.22. Consider next H = G, « G = G,, W = V,. Again we know the
irreducible representations, and Res Uy = U;, Res Uy = U3, Res V, = U, @ V,
[the vector

(LLL =3)eVy={(x, x5, x3,%): Y, x;, =0}

is fixed by H], Res ¥V, = U; @ V5, with V5 = ¥, and Res W, = V, (as one may
see directly). Hence, Ind ¥, = V, @ V; & W,. (Note that the isomorphism
Res W, = V, actually follows, since one W, is all that could be added to
V,® Vi toget Ind V3.)

Exercise 3.23. Determine the isomorphisin classes of the representationsof S,
induced by (i) the one-dimensional representation of the group generated by
(1234) in which (1234)-v = iv, i = \/~_l; (i) the one-dimensional representa-
tion of the group generated by (123) in which (123)-v = €2"Py,

Exercise 3.24. Let H = W, < G = S,. Show that Id U =U @ U', Ind V =
Ve V,and Ind W= W@ W', whereas Ind Y = Ind Z = A*V.

Exercise 3.25*. Which irreducible representations of &, remain irreducible
when restricted to W,? Which are induced from 2,7 How much does this tell
you about the irreducible representations of A,?

Exercise 3.26*, There is a unique nonabelian group of order 21, which can be
realized as the group of affine transformations x+» ax + f of the line over the
field with seven elements, with a a cube root of unity in that field. Find the
irreducible representations and character table for this group.
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Now that we have introduced the notion of induced representation, we can
state two important theorems describing the characters of representations of
a finite group. In the preceding lecture we mentioned the notion of virtual
character; this is just an element of the image A of the character map

X: R(G) i Cchss(G)

from the representation ring R(G) of virtual representations. The following
two theorems both state that in order to generate A ® Q (resp. A) it is enough
to consider the simplest kind of induced representations, namely, those induced
from cyclic (respective elementary) subgroups of G. For the proofs of these
theorems we refer to [Se2, §9, 10]. We will not need them in these lectures.

Artin’s Theorem 3.27. The characters of induced representations from cyclic
subgroups of G generate a lattice of finite index in A.

A subgroup H of G is p-elementary if H = A x B, with A cyclic of order
prime to p and B a p-group.

Brauer’s Theorem 3.28. The characters of induced representations from elemen-
tary subgroups of G generate the lattice A.

§3.4. The Group Algebra

There is an important notion that we have already dealt with implicitly but
not explicitly; this is the group algebra CG associated to a finite group G. This
is an object that for all intents and purposes can completely replace the group
G itself; any statement about the representations of G has an exact equivalent
statement about the group algebra. Indeed, to a large extent the choice of
language is a matter of taste.

The underlying vector space of the group algebra of G is the vector space
with basis {e,} corresponding to elements of the group G, that is, the under-
lying vector space of the regular representation. We defline the algebra struc-
ture on this vector space simply by

€, e =e,

By a representation of the algebra CG on a vector space V we mean simply
an algebra homomorphism

CG - End(V),

so that a representation V of CG is the same thing as a left CG-module, Note
that a representation p: G — Aut(V) will extend by linearity to amap j: CG —
End(V), so that representations of CG correspond exactly to representations
of G; the left CG-module given by CG itsell corresponds to the regular
representation.
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If { W;} are the irreducible representations of G, then we have seen that the
regular representation R decomposes

R = (_B (u/i)edlm(w‘).

We can now refine this statement in terms of the group algebra: we have

Proposition 3.29. As algebras,
CG = P End(W)).

PRrOOF. As we have said, for any representation W of G, the map G — Aut(W¥)
extends by linearity to a map CG — End(W); applying this to each of the
irreducible representations W, gives us a canonical map

¢: CG - P End(W).

This is injective since the representation on the regular representation is
faithful. Since both have dimension ) (dim W,)%, the map is an isomorphism.

O

A few remarks are in order about the isoinorphism ¢ of the proposition.
First, ¢ can be interpreted as the Fourier transform, cf. Exercise 3.32. Note
also that Proposition 2.28 has a natural interpretation in terms of the group
algebra: it says that the center of CG consists of those ) a(g)e, for which o is
a class function.

Next, we can thinkof ¢ as the decomposition of the semisimple algebra CG
into a product of matrix algebras. It implies that the matrix entries of the
irreducible representations give a basis for the space of all functions on G, cf.
Exercise 2.35.

Note in particular that any irreducible representation is isomorphic to a
(minimal) left ideal in CG. These left ideals are generated by idempotents. 1n
fact, we can interpret the projection formulas of the last lecture in the language
of the group algebra: the formulas say simply that the elements

dim w-.l-,- Y xwlg)-e,€CG
|Gl geG
are the idempotents in the group algebra corresponding (o the direct sum
factors in the decomposition of Proposition 3.29. To locate the irreducible
representations W, of a group G [not just a direct sum of dim(W,) copies], we
want to find other idempotents of CG. We will see this carried out for the
symmetric groups in the following lecture.

The group algebra also gives us another description of induced representa-
tions: if W is a representation of a subgroup I{ of G, then the induced
representation may be constructed simply by

Ind wW=CG ®C" W,
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where G acts on the first factor: g- (e, ® w) = ¢;,, ® w. The isomorphism of
the reciprocity theorem is then a special case of a general formuta for a change
of rings CH — CG:

Hom (W, U) = Hom¢g(CG ®cy W, U).

Exercise 3.30*. The induced representation Ind (W) can also be realized con-
cretely as a space of W-valued functions on G, which can be useful to produce
matrix realizations, or when trying to decompose Ind(W¥) into irreducible
pieces. Show that Ind(W) is isomorphic to

Homy,(CG, W)= {f: G > W:f(hg) = hf(g), VheH,geG},
where G acts by (g"- f)(g) = f(gg’).

Exercise 3.31. If CG is identified with the space of functions on G, the function
¢ corresponding to ) _; ¢(g)e,, show that the product in CG corresponds
to the convolution #* of functions:

(o x¥)(g) = hZG e(W¥(h™g).

(With integration replacing summation, this indicates how one may extend
the notion of regular representation to compact groups.)

Exercise 3.32*. Il p: G —» GL(V,) is a representation, and ¢ is a function on G,
define the Fourier transform ¢(p) in End(V,) by the formula

é(p) = .,;G o(g) p(g).

~ ~
(a) Show that ¢+ ¥/(p) =(0) Y(p).
(b) Prove the Fourier inversion formula

o(g) = Zdlm(V) Trace(p(g™")" ¢(p)),

IGl

the sum over the irreducible representations p of G. This formula is equivalent
to formulas (2.19) and (2.20).
(c) Prove the Plancherel formula for functions ¢ and |/1 on G:

2. 0@ Wio) = IGl % dim(V,)- Trace((p)§ (o))

Our choice of left action of a group on a space has been perfectly arbitrary,
and the entire story is the same if G acts on the right instead. Moreover, there
is a standard way to change a right action into a left action, and vice versa:
Given a right action of G on ¥, define the left action by

gv=v(g") geGureV
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If A = CG is the group algebra, a right action of G on ¥ makes V a right
A-module. To turn right modules into left modules, we can use the anti-
involution a—» @ of A defined by (} a,¢,)" =Y a,e,.. A right A-module is
then turned into a left A-module by settinga-v =v-4.

The following exercise will take you back to the origins of representation
theory in the 19th century, when Frobenius found the characters by factoring
this determinant.

Exercise 3.33*. Given a finite group G of order », take a variable x, for each
element g in G, and order the elements of G arbitrarily. Let F be the deter-
minant of the n x n matrix whose entry in the row labeled by g and column
labeled by h is x,.4-1. This is a form of degree n in the n variables x,, which is
independent of the ordering. Normalize the factlors of F to take the value |
when x, = 1 and x, =0 for g # e. Show that the irreducible factors of F -
correspond to the irreducible representations of G. Moreover, if F, is the factor
corresponding to the representation p, show that the degree of F,, is the degree
d(p) of the representation p, and that each F, occurs in F d(p) times. if g, is
the character of p, show that y,(g) is the coeflicient of x, - xi®~! in F,.

§3.5. Real Representations and Representations
over Subfields of C

If a group G acts on a real vector space ¥, then we say the corresponding
complex representation of V =V, ®y C is real. To the extent that we are
interested in the action of a group G on real rather than complex vector
spaces, the problem we face is to say which of the complex representations of
G we have studied are in fact real,

Our first guess might be that a representation is real if and only if its
character is real-valued. This turns out not to be the case: the character of a
real representation is certainly real-valued, but the converse need not be true.
To find an example, suppose G = SU(2) is a finite, nonabelian subgroup. Then
G acts on C? = V with a real-valued character since the trace of any matrix
in SU(2) is real. If V were a real representation, however, then G would be a
subgroup of SO(2) = §*, which is abelian. To produce such a group, note that
SU(2) can be identified with the unit quaternions. Set G = { + 1, +i, +j, +k}.
Then G/{ + 1} is abelian, so has four one-dimnensional representations, which
give four one-dimensional representations of G. Thus, G has one irreducible
two-dimensional representation, whose character is real, but which is not real.

Exercise 3.34*. Compute the character table for this quaternion group G, and
compare it with the character table of the dihedral group of order 8.
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A more successful approach is to note that if V is a real representation of
G, comiug from V,, as above, then one can find a positive definite symmetric
bilinear form on ¥, which is preserved by G. This gives a symmetric bilinear
form on V which is preserved by G. Not every representation will have such
a form since degeneracies may arise when one tries to construct one following
the construction of Proposition 1.5, In fact,

Lemma 3.35. An irreducible representation V of G is real if and only if there is
a nondegenerate symmetric bilinear form B on V preserved by G.

ProOF. If we have such B, and an arbitrary nondegenerate Hermitian form H,
also G-invariant, then

vavriy
gives a conjugate linear isomorphism ¢ from V to V: given x € V, there is a
unique ¢(x) € V with B(x, y) = H(p(x), y), and ¢ commutes with the action

of G. Then ¢? = ¢ o ¢ is a complex linear G-module homomorphism, so
@2 = A-1d. Moreover,

H(p(x), y) = B(x, y) = B(y, x) = H(p(y), x) = H(x, 9(1)),

from which it follows that H(p(x), y) = H(x, ¢2(y)), and therefore A is a
positive real number. Changing H by a scalar, we may assume 1 = 1, so
¢? = Id. Thus, V is a sum of real eigenspaces ¥, and V. for ¢ corresponding
toeigenvalues 1 and — 1. Since @ commutes with G, ¥, and V_ are G-invariant
subspaces. Finally, ¢(ix) = —ip(x),s0iV, = V_,and V=V, ® C. (]

Note from the proof that a real representation is also characterized by the
existence of a conjugate linear endomorphism of ¥ whose square is the
identity; if ¥ = V, ®g C, it is given by conjugation: v, ® A v, ® 1.

A warning is in order here: an irreducible representation of G on a vector
space over R may become reducible when we extend the group field to C. To
give the simplest example, the representation of Z/n on R? given by

2nk | 2=nk
COS —— —sin—-
n n
prk—
. 2nk 2nk
sin — cos —
n n

is irreducible over R for n > 2 (no line in R? is fixed by the action of Z/n), but
will be reducible over C. Thus, classifying the irreducible representations of G
over C that are real does not mean that we have classified all the irreducible
real representations. However, we will see in Exercise 3.39 below how to finish
the story once we have found the real representations of G that are irreducible
over C.
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Suppose V is an irreducible representation of G with x,. real. Then there is-
a G-equivariant isomorphism V = V*, ie, there is a G-equivariant (non-
degenerate) bilinear form B on V; but, in general, B need not be symmetric.
Regarding B in

V*@V* =Sym’V* @ NV,

and noting the uniqueness of B up to multiplication by scatars, we see that B
is either symmetric or skew-symmetric. If B is skew-symmetric, proceeding as
above one can scale so ¢ = —Id. This makes V “quaternionic,” with ¢
becoming multiplication? by j:

Definition 3.36. A quaternionic representation is a (complex) representation V
which has a G-invariant homomorphism J: ¥V — V that is conjugate linear,
and satisfies J> = —Id. Thus, a skew-symmetric nondegenerate G-invariant
B determines a quaternionic structure on V.

Summarizing the preceding discussion we have the

Theoem 3.37. An irreducible representation V is one and only one of the
following:

(1) Complex: gy is not real-valued; V does not have a G-invariant non-
degenerate bilinear form.

(2) Real: V = ¥, ® C, a real representation; V has a G-invariant symmetric
nondegenerate bilinear form.

(3) Quaternionic: xy is real, but V is not real, V has a G-invariant skew-
symmetric nondegeneate bilinear form.

Exercise 3.38. Show that for ¥ irreducible,
0 if V is complex
|
— Y wlg®) = 1 if Visreal
IGl geG
—1 if ¥ is quaternionic.

This verifies that the three cases in the theorem are mutually exclusive. It also
implies that if the order of G is odd, all nontrivial representations must be
complex.

Exercise 3.39. Let V, be a real vector space on which G acts irreducibly,
V = ¥, ® C the corresponding real representation of G. Show that if V is not
irreducible, then it has exactly two irreducible factots, and they are conjugate
complex representations of G.

2 See §7.2 for more on quaternions and quaternonic representations.
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Exercise 3.40. Classify the real representations of 91,.

Exercise 3.41*, The group algebra RG is a product of simple R-algebras corre-
sponding to the irreducible representations over R. These simple algebras are
matrix algebras over C, R, or the quaternious H according as the representa-
tion is complex, real, or quaternionic.

Exercise 3.42*. (a) Show that all characters of a group are real if and only if
every element is conjugate to its inverse.

(b) Show that an element ¢ in a split conjugacy class of U, is conjugate to
its inverse if and only if the number of cycles in ¢ whose length is congruent
to 3 modulo 4 is even.

(c) Show that the only d’s for which every character of 2, is real-valued are
d=1,2,5,6,10,and 14.

Exercise 3.43*. Show that: (i) the tensor product of two real or two quater-
nionic representations is real; (i) for any V, V* ® V is real; (iii) if V is real, so
are all A*V; (iv) if ¥ is quaternionic, A*V is real for k even, quaternionic for
k odd.

Representations over Subfields of C in General

We consider next the generalization of the preceding problem to more general
subfields of C. Unfortunately, our results will not be nearly as strong in
general, but we can at least express the problem neatly in terms of the
representation ring of G.

To begin with, our terminology in this general setting is a little different.
Let K <= C be any subfield. We define a K-representation of G to be a vector
space ¥, over K on which G acts; in this case we say that the complex
representation V = V, ® C is defined over K.

One way to measure how many of the representations of G are defined over
a field K is to introduce the representation ring Ry(G) of G over K. This is
defined just like the ordinary representation ring; that is, it is just the group
of formal linear combinations of K-representations of G modulo relations of
the form V + W — (V @ W), with multiplication given by tensor product.

Exercise 3.44*. Describe the representation ring of G over R for some of the
groups G whose complex representation we have analyzed above. In partic-
ular, is the rank of Rg(G) always the same as the rank of R(G)?

Exercise 3.45*. (a) Show that R(G) is the subring of the ring of class functions
on G generated (as an additive group) by characters of representations defined
over K.
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(b) Show that the characters of irreducible representations over K form an
orthogonal basis for Rg(G).

(c) Show that a complex representation of G can be defined over K if and
only if its character belongs to Rg(G).

For more on the relation between Rg(G) and R(G), see [Se2].



LECTURE 4

Representations of S;: Young Diagrams
and Frobenius’s Character Formula

In this lecture we get to work. Specifically, we give in §4.1 a complete description of
the irreducible representations of the symmetric group, that is, a construction of the
representations (via Young symmetrwers) and a formula (Frobenius' formula) for their
characters. The proof that the representations constructed in §4.1 are indeed the
irreducible representations of the symmetric group is given in §4.2; the proof of
Frobenius’ formula, as well as a number of others, in §4.3. Apart from their intrinsic
interest (and undeniable beauty), these results turn out to be of substantial interest in
Lie theory: analogs of the Young symmetrizers will give a construction of the irreduc-
ible representations of SL,C. At the same time, while the techniques of this lecture are
completely elementary (we use only a few identities about symmetric polynomials,
proved in Appendix A), the level of difficulty is clearly higher than in preceding
lectures. The results in the latter half of §4.3 (from Coroliary 4.39 on) in particular are
quite difficult, and inasmuch as they are not used later in the text may be skipped by
readers who are not symmetric group enthusiasts.

§4.1: Statements of the results
§4.2: Irreducible representations of 6,
§4.3. Prool of Frobenius's formula

§4.1. Statements of the Results

The nuinber of irreducible representaton of S, is the number of conjugacy
classes, which is the number p(d) of parlitions' of d:d =4, + - + 4,,
Ay > > A, > 1. We have

It is sometinies convenienl, and sometimes a nuisance, to have partitions that end in one or
more zeros; if convenient, we allow some of the 4, on the end to be zero. Two sequences define
the same partition, of course, if they differ only by zeros at the end.
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@ 1
. p(d)t! = "I;[l (T:_t;)

=(l4t+2 - )+ 41424

™

d

which converges exactly in {t| < 1. This partition number is an interesting
arithinetic function, whose congruences and growth behavior as a function of
d have been much studied (cf. [Har], [And]). For example, p(d) is asymptoti-
cally equal to (1/ad)e? VA with o = 4/3and f = n\/§/3.

To a partition 4 = (4,, ..., 4,) is associated a Young diagram (sometimes
called a Young frame or Ferrers diagram)

with 1; boxes in the ith row, the rows of boxes lined up on the left. The
conjugate partition X' = (4,,..., 4)) to the partition A is defined by inter-
changing rows and columns in the Young diagram, i.c., reflecting the diagram
in the 45° line. For example, the diagram above is that of the partition
(3,3,2, 1, 1), whose conjugateis (5, 3, 2). (Without reference to the diagram, the
conjugate partition to 1 can be defined by saying 4; is the number of terms in
the partition 4 that are greater than or equal to i.) '

Young diagrams can be used to describe projection operators for the
regular representation, which will then give the irreducible representations of
S,. For a given Young diagram, number the boxes, say consecutively as
shown:

2]3]

“

EIENEE

More generally, define a tableau on a given Young diagram to be a numbering
of the boxes by the'integers 1, ..., d. Given a tableau, say the canonical one
shown, define two subgroups? of the symmetric group

? Il a tableau other than the canonical one were cliosen, one would get diffcrent groups in place of
P and @, and different elements in the group ring, but the representations constructed this way
wilt be isomorphic.
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P = P, = {g € S g preserves each row}
and
0 = 0, = {g € S, g preserves each column}.

In the group algebra C&,, we introduce two elements corresponding to these
subgroups: we set
a;=Y e, and b= ) sgn(g)-e, @.n
geP geQ
To see what a, and b, do, observe that if V is any vector space and &, acts

on the dth tensor power V ® by permuting factors, the image of the element
a, € CS, - End(V ®’) is just the subspace

Im(a,) = Sym*V @ Sym*V ® - ® Sym™V < V¥,

where the inclusion on the right is obtained by grouping the factors of ¥ ®¢
according to the rows of the Young tableaux. Similarly, the image of b, on
this tensor power is

]m(bl) =NVRNV® - @NYV V®",

where p is the conjugate partition to A.
Finally, we set

Cy = al'bl € CGJ; (42)

this is called a Young symmetrizer. For example, when 1 = (d), ¢y = au, =
Y scc, € and the image of ¢, on V® is Sym‘V. When 1=(1,..., 1),
Caoty= b 1) = Y.ges,580(g)e,, and the image of ¢y 4, 0n V' is A'V.
We will eventually see that the image of the symmetrizers c; in V®¢ provide
essentially all the finite-dimensional irreducible representations of GL(V).
Here we state the corresponding fact for representations of S,

Theorem 4.3. Some scalar multiple of c, is idempotent, i.e., ¢} = n,c,, and the
image of ¢, (by right multiplication on C&,) is an irreducible representation
V, of ©,. Every irreducible representation of. &, can be obtained in this
way for a unique partition.

We will prove this theorern in the next section. Note that, as a corollary,
each irreducible representation of &, can be defined over the rational numbers
since ¢, is in the rational group algebra Q@&,. Note also that the theorem gives
a direct correspondence between conjugacy classes in &, and irreducible
representations of &,, something which has never been achieved for general
groups.

For example, for A = (d),

Va=CS; Y ¢

(4
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is the trivial representation U, and when A = (1, ..., 1),

Voo = €8y Z sgn(gle, = C- Z sgn(gle,

g€ Sq g Sq
is the alternating representation U’. For 1 = (2, 1),

Con=(er +eqz)(er —eqs) =1+ ey~ eu3y —euaz

in C&,, and ¥V, ,, is spanned by ¢, 5, and (13)- ¢34y, 50 V5, y, is the standard
representation of ;.

Exercise 4.4*. Set 4 = CS,,s0 V, = Ac, = Aa,b,.

(a) Show that V, = Ab,a,.

(b) Show that V, is the image of the map from Aa, to Ab, given by right
multiplication by b,. By (a), this is isomorphic to the image of Ab, — Aa, given
by right multiplication by a,.

(c) Using (a) and the description of V; in the theorem show that

Vo= V,®U,

where ' is the conjugate partition to A and U’ is the alternating representation.

Examples 4.5. In earlier lectures we described the irreducible representations
of G, ford < 5. From the construction of the representation corresponding to
a Young diagram it is not hard to work out which representations come from
which diagrams:

S, CI]  trivial B alternating

S, (T1IJ U trivial B U' altemating

EP V standard
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S5 e v u

Bﬂw EBZIW'

Exercise 4.6*. Show that for general d, the standard representation V corre-
sponds to the partition d = (d — 1) + 1. As a challenge, you can try to prove
that the exterior powers of the standard representation V are represented by
a “hook™

11T
sf NV

H

Note that this recovers our theorem that the A’V are irreducible.

Next we turn to Frobenius’s formula for the character y, of V,, which
includes a formula for its dimension. Let C; denote the conjugacy class in S,
determined by a sequence

i=(i1,i2,...,id) Withai,=d:
C, consists of those permutations that have i, I-cycles, i, 2-cycles, ..., and i,
d-cycles.
Introduce independent variables x,, ..., X,, with k at least as large as the

number of rows in the Young diagram of A. Define the power sums Py(x),
{ <j <d, and the discriminant A(x) by

Px)=x{ +x} +- +xf,

4.7
Alx) = l[]j (x; — x,-).

If f(x) = f(xy,..., %) is a formal power series, and (I,,..., 1) is a k-tuple
ol non-negative integers, let

[f(x)]q,.....1y = coeflicient of xieo.. X in f. (4.8)
Given a partition A: 1, > -+ > A4, = 0 of 4, set
= +k—1 L=A,+k-2,...,4L=A, 4.9)



§4.1. Statements of the Results 49

a strictly decreasing sequence of k non-negative integers. The character of ¥,
evaluated on g € C; is given by the remarkable

Frobenius Formula 4.10

(G = [A(x)' I1 P,(x)"]
J [C P &)

For example, if d = 5, 1 = (3, 2), and C; is the conjugacy class of (12)(345),
ie,i; =0,iy=1,i3 =1, then

230G = [(6) — x3) (2 + 3D + xPJpany = L.

Other entries in our character tables for &,, ©,, and &, can be verified as
easily, verifying the assertions of Examples 4.5.

In terms of certain symmetric functions S, called Schur polynomials, Fro-
benius’s formula can be expressed by

I,] Px)r = ¥ 1(C)S,,

the sum over all partitions A of 4 in at most k parts (cf. Proposition 4.37
and (A.27)). Although we do not use Schur polynomials explicitly in this
lecture, they play the central role in the algebraic background developed in
Appendix A.

Let us use the Frobenius formula to compute the dimension of V;. The
conjugacy class of the identity corresponds to i = (d), so '

dim V, = 1,(Cy) = [AQx) (xy + - + xk)d](h ..... )

Now A(x) is the Vandermonde determinant:

| X X:“l
: : - Z (sgn a)x:(l)—l ..... x‘,’"‘"l.
tox, o xl;—l o€ Sk
The other term is
ven d __ d! (SIS . vTe
(x,+ +x,,) —me,xz st Xy
the sum over k-tuples (ry, ..., r,) that sum to d. To find the coeflicient of
x{'*...- x{in the product, we pair off corresponding terms in these two sums,
getting
¥ d!
sgn(o) ,
e G @ O, = o() ¥ 11

the sum over those g in &, such that [, _;,, —a(()+ 1 >0forall t <i<k.
This sum can be written as
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k
L. %sgn(a')j_l:[llj(lj—l)'...'(lj—-a(k——j+l)+2)
VL L= 1)

i1 . M .
L n -

By column reduction this determinant reduces to the van der Monde deter-
minant, so

dim V, = 4 [1¢:—=1), @.11)
NEAR
withl, =4+ k—i
There is another way of expressing the dimensions of the V,. The hook
length of a box in a Young diagram is the number of squares directly below
or directly to the right of the box, including the box once.

!

3

In the lollowing diagram, each box is labeled by its hook length:

4[3]1]

]v—-&a\
[ )
o

Hook Length Formula 4.12.

d!
dmV, = —— e e e,
[ 1(Hook lengths)
For the above partition 4 + 3 + 1 of 8, the dimension of the corresponding
representation of Sy is therefore 81/6-4-4-2-3 = 70.

Exercise 4.13*, Deduce the hook length formula from the Frobenius formula
@.11).

Exercise 4.14*, Use the hook length formula to show that the only irreducible
representations of &, of dimension less than d are the trivial and alternating
representations U and U’ of dimension 1, the staridard representation V
and V' = V® U’ of dimension d — 1, and three other examples: the two-
dimensional representation of &, corresponding to the partition 4 =2 + 2,
and the two five-dimensional representations of Sg corresponding to the
partitions6 =3+ 3and6 =2+ 2+ 2
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Exercise 4.15*. Using Frobenius’s formula or otherwise, show that:
X(d—l.n(cl) =i -
X(a—z,x.n(cl) = %(fx — N, — 2) —iy;
Xa-2.20C) = 3, — )iy — 2) + i, — L.
Can you continue this list?

Exercise 4.16*. If g is a cycle of length d in &,, show that y,(g)is £ 1i[lisa
hook, and zero if 1 is not a hook:

() = (—1y fi=@d-s51..,1),0<s<d-— 1
xalg) = 0 otherwise,

Exercise 4.17. Frobenius [Fro1] used his formula to compute the value of y,
on a cycle of lengthm < d. ’

(a) Following the procedure that led to (4.11)—which was the case
m = 1—show that

d V, I

where h,, = d'/(d — m)lm is the number of cycles of length m (ifm > 1), and

(4.18)

k m
(x) = ‘I:Il x—10) Yx)=olx—m) ,l-I. (x—j+1

The sum in (4.18) can be realized as the coeflicient of x™! in the Laurent
expansion of §(x)/¢(x) at x = oo

Define the rank r of a partition to be the length of the diagonal ol its Young
diagram, and let a, and b, be the number of boxes below and to the right of
the ith box of the diagonal, reading from lower right to upper left. Frobenius
called (Z' bz n ) the characteristics of the partition. (Many writers now use

2 -

areverse notation for the characteristics, writing (b,, ..., b, |a,, ..., a,) instead.)
For the partition (10, 9,9, 4, 4, 4, 1):

- |

r=4
. 2 3 46
characteristics =
0 6

Algebraically, r and the characleristics a, <--* <a, and b, <--- < b, are
determined by requiring the equality of the two sets
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...k —1—ay,...,k—1—a} and
{08, k—1Lk+b,....k+ b}

(b) Show that ¥ (x)/p(x) = g(y)/f(y), where y = x — d and

110 \
=" g =fy-m[[y—j+D
[Toy+a+1) =t
i=1

Deduce that the sum in (4.18) is the coefficient of x™! in g(x)/f(x).
(c) When m = 2, use this to prove the formula

dim V, 1
dd—1)

Hurwitz [Hur] used this formula of Frobenius to calculate the number of
ways to write a given permutation as a product of transpositions. From this
he gave a formula for the number of branched coverings of the Riemann sphere
with a given number of sheets and given simple branch points. Ingram [In]
has given other formulas for x,(g), when g is a somewhat more complicated
conjugacy class.

nl(2) = Z (bith, + 1) — ayfa; + 1)).

Exercise 4.19*. If V is the standard representation of &,, prove the decom-
positions into irreducible representations:

Sym? V2 U@ V@ Vy-s,2
VRV =Sym* VANV 2UDVD Vy-2.5D Vu-a.1. 1)

Exercise 4.20*. Suppose A is symmetric, ie, A=A, and let g, > g, > - >
q, > 0 be the lengths of the symmetric hooks that form the diagram of 1; thus,
qy =21, — 1,4, =24, — 3,....Show that if g is a product of disjoint cycles
of lengths q,, q,, ..., g,, then

Xilg) = (= ™.

§4.2. Irreducible Representations of S,

We show next that the representations V, constructed in the first section are
exactly the irreducible representations of &,. This prool appears in many
standard texts (e.g. [C-R], [Ja-Ke], [N-S], [Wel]), so we will be a little
concise.

Let A = C&, be the group ring of S,. For a partition A of d, let P and Q
be the corresponding subgroups preserving the rows and columns of a Young
tableau T corresponding to A, let a=aqa,, b="5,, and let ¢ =c, = ab be
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the corresponding Young symmetrizer, so V, = Ac, is the corresponding
representation. (These groups and elements should really be subscripted by
T to denote dependence on the tableau chosen, but the assertions made
depend only on the partition, so we usually omit reference to T.)

Note that P n Q = {1}, so an element of &, can be written in at most one
way as a product p-q, p€ P, g € Q. Thus, ¢ is the sum Y, +e,, the sum over
all g that can be written as p- q, with coeflicient + 1 being sgn{q); in particular,
the coeflicient of ¢, in cis 1.

Lemma 4.21. (1) Forpe P,pra=a'p=a.

(2) For ge Q,(sgn(q)q) b = b-(sgn(q)q) = b.

(3) Forall pe P, g€ Q, p-c-(sgn(g)g) = ¢, and, up to nultiplication by a
scalar, ¢ is the only such element in A.

PROOF. Only the last assertion is not obvious. If ). n e, satisfies the condition
in (3), then n,,, = sgn(q)n, for all g, p, q; in particular, n,, = sgn(q)n,. Thus,
it suffices to verify that n, =0 il g ¢ PQ. For such g it suffices to find a
transposition t such that p =t e P and ¢ = ¢ 'ig € Q; for then g = pgq, so
n,= —n,. If T' = gT is the tableau obtained by replacing each entry i of T
by g(i), the claim is that there is are two distinct integers that appear in the
same row of T and in the same column of T7; ¢ is then the transposition of
these two integers. We must verify that if there were no such pair of integers,
then one could writeg = p-gforsome p € P,q € Q. To do this, first take p, € P
and ¢ € Q' = gQg ! so that p, T and g} 7" have the same first row; repeating
on the rest of the tableau, one gets p e P and ¢’ € Q' so that pT = ¢'T’. Then
pT = q'gT, so p = q'g, and therefore g = pq, where ¢ = g7'(¢") 'g€ Q, as
required, O

We order partitions lexicographically:

A > p if the first nonvanishing 4; — p, is positive. 4.22)

Lemma 4.23.()If A > p, then forall x € A,a;- x-b, = 0. In particular,if X > p,
thene¢y-c, = 0.

(2) Forallxe A,c,-x-c, = is a scalar multiple of c,. In particular,c, ¢, =
ny¢, for some n, € C.

Proor. For (1), we may take x = g € S,. Since g- b, g~" is the element con-
structed from gT", where T" is the tableau used to construct b, it sulfices to
show thata, - b, = 0. One verifies that 1 > pimplies that there are two integers
in the same row of T and the same column of T". If ¢ is the transposition of
these integers, then a,-t = a,, t-b, = —b,,50a,"b, =a, t"t-h, = —a, b,

as required. Part (2) follows from Lemma 4.21 (3). ]

Exercise 4.24%, Show thatif 1 # g, thenc, A -c, = 0;in particular, ¢, ¢, = 0.
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Lemma 4.25, (1) Each V, is an irrediicible representation of &,.
(2) If A # u, then V, and V, are not isomorphic.

Proofr. For (1) note that ¢, V; < Cc, by Lemma 423 If WcV, is a
subrepresentation, then ¢, W is either Cc, or 0. If the first is true, then
Vy=A-c, = W. Otherwise W-W < A-c;W =0, but this implies W = 0.
Indeed, a projection from A4 onto W is given by right multiplication by an
element p e A with ¢ = > € W-W =0. This argument also shows that
¢, V; # 0, ie., that the number n, of the previous lemma is nonzero.

For (2), we may assume A > p. Then ¢, ¥, = Cc,; # 0, but ¢, ¥, = ¢, Ac, =
0, so they cannot be isomorphic 4-modules.

Lemma 4.26. For any A, ¢, ¢; = nyc,, with ny = dl/dim V.

PrOOF. Let F be right multiplication by c, on 4. Since F is multiplication by
n, on V), and zero on Ker(c,), the trace of F is n, times the dimension of V,.
But the coefficient of e, in ¢, c; is 1, so trace(F) = |&,| = d\. (]

Since there are as many irreducible representations V, as conjugacy classes
of &,, these must form a complete set of isomorphism classes of irreducible
representations, which completes the prool of Theorem 4.3, In the next section
we will prove Frobenius’s formula for the character of V,, and, in a series of
exercises, discuss a little of what else is known about them: how to decompose
tensor products or induced or restricted representations, how to find a basis
for V,, etc.

§4.3. Proof of Frobenius’s Formula

For any partition A of d, we have a subgroup, often called a Yoiing subgroup,
S, =6, x " x G, 6, 4.27)

Let U, be the represenlation of €, induced from the trivial representation of
©,. Equivalently, U, = A4 a,, with a, as in the preceding section. Let

¥, = Xu, = character of Uj. (4.28)

Key to this investigation is the relation between U, and V,, i.e., between ¥,
and the character y, of ¥,. Note first that V, appears in U,, since there is a
surjection

U,= Ada, » V, = Aa,b,, x—x-b,. 4.29)
Alternatively,

V, = Aa,b; = Abja, < Aa, = U,,
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by Exercise 4.4. For example, we have

Uu-t.1) = Va1, ® W)

which expresses the fact that the permutation representation C? of &, is the
sum of the standard representation and the trivial representation. Eventually
we will see that every U, contains ¥, with multiplicity one, and contains only
other ¥, for p > A

The character of U, is easy to compute directly since U, is an induced
representation, and we do this next.

Fori = (i}, ..., i) a d-tuple of non-negative integers with Zaia = d, denote
by

C| < 64

the conjugacy class consisting of elements made up of i, I-cycles, i, 2-cycles,

..., Iy d-cycles. The number of elements in C, is easily counted to be

d!
1 12001 dbi,l

IGl = (4.30)

By the formula for characters of induced representations (Exercise 3.19),

1
¥, (C) = lfl_l [€::8,] 1Cin &y

il dlel 'Zf A
h d! Al A & e 1 der,

where the sum is over all collections {r,;: 1 <p <k t <q<d} of non-
negative integers satisfying

ip=ry+ g+t g,

Ap=ry +2rpy 4t dry,

(To count C,n &,, write the pth component of an element of S, as a product
ofr,, t-cycles, r,, 2-cycles, ....) Simplilying,
4 i}
V@=L ] i — (4.31)

=1 r,q!rzq! Tees Tt

the sum over the same collections of integers {r,,}.
This sum is exactly the coefficient of the monomial X* = x}1- ...  xj«in the
power sum symmetric polynomial

PO = (xy 4 b x) o (xd 4 X)L A xD (432)
So we have the formula
V,(C) = [PM], = coefficient of X*in P, (4.33)

To prove Frobenius’s formula, we need to compare these coefficients with the
coefficients w, (i) defined by
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) =[APY], I=( +k—-LA, +k=2...,4). (434

Qur goal, Frobenius's formula, is the assertion that x,(Cy) = w,(i).
There is a general identity, valid for any symmetric polynomial P, relating
such coeflicients:

[Pl,= Z K,‘A[A'P](;‘,+k—|,,,,+k—2,...,;4,,p
"

where the coefficients K,, are certain universally defined integers, called
Kostka numbers. For any partitions A and pof d, the integer K, may be defined
combinatorially as the number of ways to fill the boxes of the Young diagram
for p with 4, I's, 1, 2’s, up to A, K’s, in such a way that the entries in each
row are nondecreasing, and those in each column are strictly increasing; such
are called semistandard tableaux on p of type A. In particular,

Ku=1 andK,,=0forp <A
The integer K ,; may be also be defined to be the coefficient of the monomial
X*=x{1-...-x} in the Schur polynomial S, corresponding to y. For the
proof that these are equivalent definitions, see (A.9) and (A.19) of Appendix

A. In the present case, applying Lemma A.26 to the polynomial P = P, we
deduce

¥a(C) = X Ko, ) = o,() + E‘ K, w,6). (4.35)
[ >
The result of Lemma A.28 can be written, using (4.30), in the form
1 o
i [Clo,()w,() = 6, (4.36)

This indicates that the functions w,, regarded as functions on the conjugacy
classes of &, satisly the same orthogonality relations as the irreducible
characters of €,. In fact, one can deduce formally from these equations that
the w, must be the irreducible characters of &,, which is what Frobenius
proved. A little more work is needed to see that w, is actually the character
of the representation V,, that is, to prove

Proposition 4.37. Let x, = xy, be the character of V,. Then for any conjugacy
class C; of S,

1) = w, ().

ProoF. We have seen in (4.29) that the representation U,, whose character is
¥, contains the irreducible representation V. In fact, this is all that we need
to know about the relation between U, and V. It implies that we have

Ya= 2 ke M= tallng >0 (4.38)
n

Consider this equation together with (4.35). We deduce first that each w, is a
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virtual character; we can write

w; = Z My Xy Mau € Z.
But the w,, like the y,, are orthonormal by (4.36), so

l = (wb (DA) = Z "!i‘n
"

and hence w, is 4 x for some irreducible character y. (It [ollows from the hook
length formula that the plus stgn holds here, but we do not need to assume
this.)

Fix 4, and assume inductively that y, = w, for all 1 > 1, so by (4.35)

Vi=o, + Z KXy

Comparing this with (4.38), and using the linear independence of characters,
the only possibility is that w, = x,. O

Corollary 4.39 (Young’s rule). The integer K, is the multiplicity of the irreduc-
ible representation V,, in the induced representation U,:

Ul = VA @ @1 K,Ul Vu? 'Ill Xa + Z K;ulx‘u
">

Note that when A=(1,..., 1), U, is just the regular representation, so
K,q,...1y =dim V,. This shows that the dimension of V, is the number of
standard tableaux on A, i.e., the number of ways to fill the Young diagram of
A with the numbers from 1 to d, such that all rows and columns are increasing.
The hook length formula gives another combinatorial formula for this dimen-
sion. Frame, Robinson, and Thrall proved that these two numbers are equal.
For a short and purely combinatorial prool, see [G-N-W]. For another proof
that the dimension of V, is the number of standard tableaux, see [Jam]. The
latter leads to a canonical decomposition of the group ring 4 = CS, as the
direct sum of left ideals Ae;, summing over all standard tableaux, with
er = {dim V,/d!)- ¢y, and ¢, the Young symmetrizer corresponding to T, cf.
Exercises 4.47 and 4.50. This, in turn, leads to explicit calculation ol matrices
of the representations V¥, with integer coeflicients.

For another example of Young's rule, we have a decomposition

M a,a) — @VMH)

In fact, the only 1 whose diagrams can be filled with d — a 1I's and a 2’s,
nondecreasing in rows and strictly increasing in columns, are those with at
most two rows, with the second row no longer than a; and such a diagram
has only one such tableau, so there are no multiplicities.

Exercise 4.40*, The characters , of &, have been delined only when 1is a
partition of d. Extend the definition to any k-tuple a = (ay, ..., a;) of integers
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that add up to d by setting ¥, = 0 if any of the q, are negative, and otherwise
W, =, where 1 is the reordering of a,, ..., a, in descending order. In this
case i, is the character of the representation induced from the trivial represen-
tation by the inclusion of &, x -+ x &, in &, Use (A.5) and (A.9) of
Appendix A to prove the determinantal formula for the irreducible characters
Xa in terms of the induced characters ,:

= % Sg“(t)'//(ll+:(l)-l.A1+t(2)—2...../\k+v(k)—k)'

e Sy

If one writes y, as a formal product i, -i,,-... V., the preceding formula
can be written

'/’A. '//A|+l 'IlAIH(—l

Vi, Y,
= |'/’1,+j—l| = ? ?

'l’alk—H-l e '/’A.(

The formal product of the preceding exercise is the character version of an
“outer product” of representations. Given any non-negative integers d,, ...,
dy, and representations V; of €,,, denote by ¥, o -+- o I the (isomorphism class
of the) representation of &,,d = }.d,, induced from the tensor product repre-
sentation V@ - @V, of &, x - x &, by the inclusion of &, x - x &,
in S, (see Exercise 2.36). This product is commutative and associative. It will
turn out to be useful to have a procedure for decomposing such a representa-
tion into its irreducible pieces. For this it is enough to do the case of two
factors, and with the individual representations V,irreducible. In this case, one
has, for V, the representation of &, corresponding to the partition A of d and
¥, the representation of &, corresponding to the partition y of m,

VioV, =3 NyVi (441

the sum over all partitions v of d + m, with N,,,, the coefficients given by the
Littlewood—Richardson rule (A.8) of Appendix A. Indeed, by the exercise, the
character of V, o ¥, is the product of the corresponding determinants, and, by
(A.8), that is the sum of the characters Ny, x,.

When nt = I and p = (), V, is trivial; this gives

Ind g:n V, = Z v, (4.42)

the sum over all v whose Young diagram is obtained from that of A by adding
one box. This formula uses only a simpler form of the Littlewood-Richardson
rule known as Pieri’s formula, which is proved in (A.7).

Exercise 4.43*. Show that the Littlewood-Richardson number N,,, is the
multiplicity of the irreducible representation V,®V, in the restriction of ¥,
from &,,,, to &, x S,,. In particular, taking m = 1, u = (1), Pieri’s formula
(A.7) gives

Resge 1, =3 V,,
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the sum over all 1 obtained from v by removing one box. This is known as
the “branching theorem,” and is useful for inductive proofs and constructions,
particularly because the decomposition is multiplicity free. For example, you
can use it to reprove the fact that the multiplicity of ¥, in U, is the number of
semistandard tableaux on g of type A. It can also be used to prove the assertion
made in Exercise 4.6 that the representations corresponding to hooks are
exterior powers of the standard representation.

Exercise 4.44* (Pieri’s rule). Regard &, as a subgroup of G,,,, as usual. Let 1
be a partition of d and v a partition of d + m. Use Exercise 4.40 to show that
the multiplicity of V, in the induced representation Ind(V,) is zero unless the
Young diagram of 1 is contained in that of v, and then it is the number of
ways to number the skew diagram lying between them with the numbers from
f to m, increasing in both row and column. By Frobenius reciprocity, this is
the same as the multiplicity of V; in Res(V,). .

When applied to d = 0 (or 1), this implies again that the dimension of V, is
the number of standard tableaux on the Young diagram of v.
For a sampling of the many applications of these rules, see [Dia §7, §8].

Problem 4.45*. The Murnaghan—-Nakayama rule gives an efficient inductive
method for computing character values: If 1 is a partition of d, and g € S, is
written as a product of an m-cycle and a disjoint permutation i € &,_,,, then

(@) = X (= 1"y, (h),

where the sum is over all partitions it of d — m that are obtained from A by
removing a skew hook of length m, and r{y1) is the number of vertical steps in
the skew hook, i.e., one less than the number of rows in the hook. A skew hook
for 1 is a connected region of boundary boxes for its Young diagram such
that removing them leaves a smaller Young diagram; there is a one-to-one
correspondence between skew hooks and ordinary hooks of the same size, as
indicated:

1=1(1,6,5,54,4,1,1)
; n=(7,44,331,1,1)
L hook length = 9,r =4

For example, if 1 has no hooks of length m, then y,(g) = 0.

The Murnaghan -Nakayama rule may be written inductively as foltows: If
g is a written as a product of disjoint cycles of lengths m,, m,, ..., m,, with
the lengths m, taken in any order, then x,(g) is the sum 3. (— 1y", where the
sum is over all ways s to decompose the Young diagram of 1 by successively
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removing p skew hooks of lengths m,, ..., m,, and r(s) is the total number of
vertical steps in the hooks of s.

(a) Deduce the Murnaghan—Nakayama rule from (4.41) and Exercise 4.16,
using the Littlewood—-Richardson rule, Or;

(b) With the notation of Exercise 4.40, show that

R T 3 2 At S A

Exercise 4.46*, Show that Corollary 4.39 implies the “Snapper conjecture™
the irreducible representation V, occurs in the induced representation U, if
and only if

i i
YAh<Yu forallj>t
1 i=1

Problem 4.47*. There is a more intrinsic construction of the irreducible
representation V,, called a Specht module, which does not involve of the choice
of a tableau; it is also useful for studying representations of &, in positive
characteristic. Define a tabloid {T} to be an equivalence class of tableaux
(numberings by the integers 1 to d) on A, two being equivalent if the rows are
the same up to order. Then S, acts by permutations on the tabloids, and the
corresponding representation, with basis the tabloids, is isomorphic to U,.
For each tableau 7, define an element E; in this representation space, by

Er =be{T} =Y sgn(q){qT},

the sum over the g that preserve the columns of T. The span of all E’s is
isomorphic to V), and the E;’s, where T varies over the standard tableaux,
form a basis.

Another construction of V, is to take the subspace of the polynomial ring
C[x,,..., x,] spanned by all polynomials Fr, where F; =[] (x, — x;), the
product over all pairs i < j which occur in the same column in the tableau 7.

Exercise 4.48*. Let U, be the representation A - b,, which is the representation
of &, induced [rom the tensor product of the alternating representations on
the subgroup &, = &, x -~ x &, , where 1 = 1' is the conjugate partition.
Show that the decomposition of Uy is

“Up=Y. Kpn ¥
u

Deduce that ¥, is the only irreducible representation that occurs in both U,
and Uj, and it occurs in each with multiplicity one.

Note, however, thatin general A-¢c, # 4-a,n A b, since A c; may not be
contained in 4 -a,.
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Exercise 4.49*. With notation as in (441), il U' = ¥, __,, is the alternating
representation of €, show that V, o I{, _,, decomposes into a direct sum
@®V,, the sum over all r whose Young diagram can be obtained from that of
A by adding mt boxes, with no two in the same row.

Exercise 4.50. We have seen that 4 = CS, is isomorphic to a direct sum of
m, copies of V; = Ac,, where m; = dim V, is the number of standard tableaux
on A. This can be seen explicitly as follows. For each standard tableau T on
each 1, let ¢; be the element of CS, constructed from T. Then 4 = @4 - c;.
Indeed, an argument like that in Lemma 4.23 shows that ¢;- ¢;~ = 0 whenever
T and T’ are tableaux on the same diagram and T > T, i.e., the first entry
(reading from left to right, then top to bottom) where the tableaux differ has
the entry of T larger than that of T". From this it follows that the sum £A4- ¢,
is direct. A dimension count concludes the proof. (This also gives another
proof that the dimension of V, is the number of standard tableaux on 4,
provided one verifies that the sum of the squares of the latter numbers is d!, '
cf. [Boe] or [Ke].)

Exercise 4.51*. There are several methods for decomposing a tensor product
of two representations of &,, which amounts to finding the coefficients C,,,,
in the decomposition

VA ® Vu = Evclyv Vvv

for 4, 1, and v partitions of d. Since one knows how to express V, in terms
of the induced representations U,, it suffices to compute V, ® U,, which
is isomorphic to Ind(Res(V,)), restricting and inducing from the subgroup
8, =6, x &,, x +-+; this restriction and induction can be computed by the
Littlewood-Richardson rule. For d < 5, you can work out these coefficients
using only restriction to €,_; and Pieri’s formuia.

(a) Prove the following closed-form lormula for the coefficients, which
shows in particular that they are independent of the ordering of the subscripts
A, g, and v:

{
C/luv = ZI :Z-ij (ul(i)wp(i)wv(i)’
the sum over all i = (i, ..., i;) with Xai, = d, and with w,{i) = x,(C;) and
z(i) = i 11" iy122- g ld,
(b) Show that

c. |t itn=1 c _Jpitp =%
@ 710 otherwise, Al 00 otherwise.

Exercise 4.52*. Let R, = R(S,) denote the representation ring, and set
R = (Bf.o R,. The outer product of (4.41) determines maps

Rn ® Rm - Rn+nn
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which makes R into a commutative, graded Z-algebra. Restriction determines
maps

Rosm = R(enhn) d R(Gn x &,) = R,® R,

which defines a co-product 6: R -+ R ® R. Together, these make R into a
(graded) Hopf algebra. (This assertion implies many of the formulas we have
proved in this lecture, as well as some we have not.)

(a) Show that, as an algebra,

R Z[H,,...,H,...],

where H, is an indeterminate of degree d; H, corresponds to the trivial
representation of &,. Show that the co-product d is determined by

oH)=H,®1+H, , @H, +--+1®H,.

If we set A=2Z[H,,...,H,...]= @A, we can identify A; with the
symmetric polynomials of degree d in k > d variables. The basic symmetric
polynomials in A, defined in Appendix A therefore correspond to virtual
representations of S,.

(b) Show that E, corresponds to the alternating representation U’, and

H,~ U, Sy Vy, E, Uy,

(c) Show that the scalar product { , ) defined on A, in (A.16) corresponds
to the scalar product defined on class functions in (2.11).

(d) Show that the involution 3 of Exercise A.32 corresponds to tensoring
a representation with the alternating representation U".

(e) Show that the inverse map from R, to A, takes a representation W to

1
; ;m XW(Cm)Pm,

where z(i) = i 11" {,122- - {1d",

The (inner) tensor product of representations of €, gives a map R, ® R; —
R, which corresponds to an “inner product” on symmetric functions, some-
times denoted #.

(f) Show that

0 forj#i
M, pl —
PT+P {z(i)P"’ ifj=1i.

Since these P form a basis for A, ® O, this formula determines the inner
product.



LECTURE 5
Representations of 2, and GL, ()

In this lecture we analyze the representation of two more types of groups: the alternat-
ing groups U, and the linear groups GL,(F,) and SL,(F,) over finite fields. In the former
case, we prove some general results relating the representations of a group to the
representations of a subgroup of index two, and use what we know about the symmetric
group; this should be completely straightforward given just the basic ideas of the
preceding lecture. In the latter case we start essentially from scratch. The two sections
can be read (or not) independently; neither is logically necessary for the remainder of
the book.

§5.1: Representations of 2,
§5.2: Representations of GL,(F,) and SL,(F,)

§5.1. Representations of A,

The alternating groups N, d > 5, form one of the infinite families of simple
groups. In this section, continuing the discussion of §3.1, we describe their
irreducible representations. The basic method for analyzing representations
of A, is by restricting the representations we know [rom &,.

In general when H is a subgroup of index two in a group G, there is a close
relationship between their representations. We will see this phenomenon again
in Lie theory for the subgroups SO, of the orthogonal groups O,.

Let U and U’ denote the trivial and nontrivial representation of G obtained
from the two representations of G/H. For any representation V of G, let
V' =V ® U'; the character of V' is the same as the character of V on
elements of H, but takes opposite values on elements not in H. In particular,
Res§ V' = Res§ V.
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If W is any representation of H, there is a conjugate representation defined
by conjugating by any element ¢ of G that is not in H; il ¥ is the character
of W, the character of the conjugate is h+— (tht™?). Since ¢ is unique up to
multiplication by an element of H, the conjugate representation is unique up
to isomorphism.

Proposition 5.1. Let V be an irreducible representation of G, and let W = Res3 V
be the restriction of V to H. Then exactly one of the following holds:

(1) VisnotisomorphictoV'; W isirreducible and isomorphic to its conjugate~
Ind§Wwxve V.

Q2 VeV, W=wW®W", where W and W are irreducible and conjugate
but not isomorphic; IndS W’ = Ind§w” = V.

Each irreducible representation of H arises uniquely in this way, noting that
in case (1) V' and V determine the same representation.

PRrOOF. Let x be the character of V. We have
IGl=2{H|= Y lxmPF + Y. 1x)*.
heH FH

Since the first sum is an integral multiple of {H|, this multiple must be 1 or 2,
which are the two cases of the proposition. This shows that W is either
irreducible or the sum of two distinct irreducible representations W’ and W".
Note that the second case happens when y(t} = 0 for all ¢ ¢ H, which is the
case when V' is isomorphic to V, In the second case, W’ and W” must be
conjugate since W is self-conjugate, and if W’ and W* were self-conjugate V
would not be irreducible. The other assertions in (1) and (2) follow from the
isomorphism Ind(Res V) = V ® (U ® U') of Exercise 3.16. Similarly, for any
representation W of H, Res(Ind W) is the direct sum of W and its conjugate—
as follows say from Exercise 3.19—from which the last statement follows
readily. 0

Most of this discussion extends with little change to the case where H is a
normal subgroup of arbitrary prime index in G, cf. [B-tD, pp. 293-296].
Clifford has extended much of this proposition to arbitrary normal subgroups
of finite index, cf. [Dor, §14].

There are two types of conjugacy classes ¢ in H: those that are also
conjugacy classes in G, and those such that c U ¢’ is a conjugacy class in G,
where ¢’ = tet ™}, t ¢ H; the latter are called split. When W is irreducible, its
character assumes the same values—those of the character of the representa-
tion V of G that restricts to W—on pairs of split conjugacy classes, whereas
in the other case the characters of W' and W” agree on nonsplit classes, but
they must disagree on some split classes. If y,.(c) = yw-(¢') = x,and yy(c’) =
Iw-(€) =y, we know the sum x + y, since it is the value of the character of
the representation V that gives rise to W’ and W” on c u ¢’. Often the exact
values of x and y can be determined from orthogonality considerations.
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Exercise 5.2*. Show that the number of split conjugacy classes is equal to the
number of irreducible representations V of G that are isomorphic to V', or
to the number of irreducible representations of H that are not isomorphic
to their conjugates. Equivalently, the number of nonsplit classes in H is same
as the number of conjugacy classes of G that are not in H.

We apply these considerations to the alternating subgroup of the symmetric
group. Consider restrictions of the representations V, from &, to U,. Recall
that if A’ is the conjugate partition to 4, then

VA’ = V). ® U,,

with U’ the alternating representation. The two cases ol the proposition
correspond to the cases (1) ' 1 and (2) ' =4 If X' # A, let W, be the
restriction of V; to W, I A’ = 4, let W) and W} be the two representations
whose sum is the restriction of V,. We have

Ind W, =V, ®V,, Res V, = Res V;. = W, when 1’ # A,
Ind W} =Ind W) =V, Res V, = W, ® W, wheni =4
Note that
# {sell-conjugate representations of S,}
= # {symmetric Young diagrams)
= # {split pairs of conjugacy classes in 2,}
= # {conjugacy classes in &, breaking into two classes in ,}.

Now a conjugacy class of an element written as a product of disjoint cycles
is split il and only if there is no odd permutation commuting with it,-which is
equivalent to all the cycles having odd length, and no two cycles having the
same length. So the number of self-conjugate representations is the number
of partitions of d as a sum of distinct odd numbers. In fact, there is a natural
correspondence between these two sets: any such partition corresponds to a
symmetric Young diagram, assembling hooks as indicated:

If 1 is the partition, the lengths of the cycles in the corresponding split
conjugacy classes are q; = 24, — 1,9, =24, — 3,9, =22, -5, ....
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For a self-conjugate partition 4, et x, and yj denote the characters of W}
and Wy, and let c and ¢’ be a pair of split conjugacy classes, consisting of cycles
of odd lengths g, > g, > -** > g,. The following proposition of Frobenius
completes the description of the character table of ;.

Proposition 5.3. (1) If ¢ and ¢’ do not correspond to the partition A, then
140 = xi(c) = X3(0) = 1i(c") = dualc v ©).
(2) If c and ¢’ correspond to A, then
B =1kc)=x 6 =1x0) =y,
with x and y the two numbers
H-0m s (=D q.),

andm = Y[]g:— ) =4d - 1)

For example, {d =4 and 1 = (2,2), we haver=2,q9, = 3,q, =1, and x
and y are the cube roots of unity; the representations W, and W)’ are the
representations labeled U’ and U” in the table in §2.3. Ford = 5,1 = (3, 1, 1),
r=1,q, =5, and we find the representations called Y and Z in §3.1. For
d <7, there is at most one split pair, so the character table can be derived
from orthogonality alone. '

Note that since only one pair of character values is not taken care of by
the first case of Frobenius’s formula, the choice of which representation is Wy
and which W)’ is equivalent to choosing the ptus and minus sign in (2). Note
also that the integer m occurring in (2) is the number of squares above the
diagonal in the Young diagram of A.

We outline a proof of the proposition as an exercise:

Exercise 5.4* Step 1. Let q = (q, > - > q,) be a sequence of positive odd
integers adding to d, and let ¢’ = ¢'(q) and ¢” = ¢"(q) be the corresponding
conjugacy classes in ;. Let A be a self-conjugate partition of 4, and let ¥, and
11 be the corresponding characters of ;. Assume that y, and x7 take on the
same values on each element of A, that is not in ¢’ or ¢”. Let u = y)(c') =
xi(c"yand v = xj(c") = x;(c"). .

(i) Show that u and v are real when m = 13(q; — 1)is even, and 7 = v when
m is odd.

(ii) Let 9 = x — x5 Deduce [rom the equation (9, §) = 2 that ju — v|? =
a1°..." 4.

(iii) Show that A is the partition that corresponds to g and that u + v =
(— 1", and deduce that ¥ and v are the numbers specified in (2) of the
proposition.

Step 2. Prove the proposition by induction on d, and for fixed d, ook at
that ¢ which has smallest g,, and for which some character has values on the
classes ¢'(q) and ¢"(q) other than those prescribed by the proposition,



§5.2. Representations of GL,(¥,) and SL,(F,) 67

(i) Ifr =1,50q, = d = 2m + 1, the corresponding self-conjugate partition
isd=(m+ 1, 1,..., 1). By induction, Step 1 applies to y; and xj.

(1) If r > 1, consider the imbedding H = %, x NA,_, < G = Uy, and let
X" and X" be the representations of G induced from the representations
WimW; and Wy'mW,, where Wy and W' are the representations of U,
corresponding to q,, i.€., to the self-conjugate partition (3(q, — 1), I,..., ) of
q1; W; is one of the representations of U, corresponding to (g5, ..., q,); and
® denotes the external tensor product (see Exercise 2.36). Show that X’ and
X" are conjugate representations of N,, and their characters y' and y” take
equal values on each pair of split conjugacy classes, with the exception of ¢'(g)
and ¢"(q), and compute the values of these characters on ¢’(q) and ¢"(q).

(iif) Let 3=y’ — x”, and show that (3, 3) = 2. Decomposing X’ and X"
into their irreducible pieces, deduce that X' = Y@ Wy and X" = Y @ W) [or
some sell-conjugate representation Y and some self-conjugate partition A of d.

(iv) Apply Step 1 to the characters y}, and x}, and conclude the prool.

Exercise 5.5*. Show that if d > 6, the only irreducible representations of
U, of dimension less than d are the trivial representation and the (n — )-
dimensional restriction of the standard representation of &,. Find the excep-
tions for d < 6.

We have worked out the character tables for all €, and U, for d < 5. With
the formulas of Frobenius, an interested reader can construct the tables for a
few more d—until the number of partitions of d becomes large.

§5.2. Representations of GL,(F,) and SL,(F,)

The groups GL,(F,) of invertible 2 x 2 matrices with entries in the finite field
F, with q elements, where q is a prime power, form another important series
of finite groups, as do their subgroups SL,(F,) consisting of matrices of
determinant one. The quotient PGL,(F,) = GL,(F,)/F; is the automor-
phism group of the finite projective line P'(F,). The quotients PSL,(F,) =
SL,(F,)/{ £ 1} are simple groups if g # 2, 3 (Exercise 5.9). In this section we
sketch the character theory of these groups.
We begin with G = GL,(F,). There are several key subgroups:

san={(5 W=n-{; O}

(This “Borel subgroup” B and the group of upper triangular unipotent
matrices N will reappear when we look at Lie groups.) Since G acts transitively
on the projective line P'(F,), with B the isotropy group of the point (1:0), we
have

[Gl = |Bl"IP'(F)l = (¢ — 1)’qlg + 1).
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We will also need the diagonal subgroup

=i 3)reon

where we write F for F,. Let F' = F; be the extension of F ol degree two, unique
up to isomorphism. We can identify GL,(F,) as the group of all F-linear
invertible endomorphisms of F’. This makes evident a large cyclic subgroup
K = (F')* of G. At least if ¢ is odd, we may make this isomorphism explicit by
choosing a generator ¢ for the cyclic group F* and choosing a square root \/e
in F’. Then 1 and \/é form a basis for F’ as a vector space over F, 50 we can
make the identification;

ITE 1 DU x e\ . .
K—Ky x)}=(“’ <y x) C=xtre

K is a cyclic subgroup of G of order q* — 1. We often make this identification,
leaving it as an exercise to make the necessary modifications in case g is even.
The conjugacy classes in G are easily found:

Representative No. Elements in Class No. Classes

x 0

ax_<0 X) . 1 q—'l
x 1 2

b,—<0 X) -1 q—1t

0 — 1) (g -2
cx-y = <x y)’x #y q2 + q (—q—)-(q—)

0

X &y q(g - 1)
d,, = 2 __ !
xy <y X),y #0 a—-q

. 0 1 .
Here ¢, ,and ¢,  are conjugate by < ), andd, ,and d, _, are conjugate

o

a - . .
by any < ) To count the number of elements in the conjugacy class
c -—a

of b,, look at the action of G on this class by conjugation; the isotropy group

. a b . . . .
is {(0 ")}, so the number of elements in the class is the index of this group

in G, whichis > — 1. Similarly the isotropy group for c, , is D, and the isotropy
group for d, ,is K. To see that the classes are disjoint, consider the eigenvalues
and the Jordan canonical forms. Since they account for |G| elements, the list
is complete.

There are q> — 1 conjugacy classes, so we must find the same number of
irreducible representations. Consider first the permutation representation of
G on P*(F), which has dimension q + 1. It contains the trivial representation;
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let V be the complementary g-dimensional representation. The values of the
character y of ¥ on the four types of conjugacy classes are y(a,) = g, x(b,) = 0,
xle.,) = 1, x(d,. ) = — 1, which we display as the table:

Vi ¢ 0 1 -1

Since (x, x) = I, V is irreducible.

For each of the g — | characters «: F* - C* of F*, we have a one-
dimensional representation U, of G defined by U,(g) = a(det(g)). We also
have the representations V, = ¥V ® U,. The values of the characters of these
representations are

Uy a(x)? a(x)*  alx)a(y) a(x? - ey?)
Vi qa(x) 0 a(x)a(y)  —alx? —ey?)
Note that if we identify <; sy) with{ = x + y\/E in ', then

X

x? — gy? = det <; 2’) = Normg () = {- {1 = ('L

The next place to look for representations is at those that are induced
from large subgroups. For each pair «, f# of characters of F*, there is a character
of the subgroup B:

Bo B/N =D = F* x F* 5 C* x C* > C*,

b
which takes (g d) to a(a)f(d). Let W, ; be the representation induced from

B to G by this representation; this is a representation of dimension [G : B] =
q + 1. By Exercise 3.19 its character values are found to be:

Wepr (@ + Na)Bx)  ax)px)  a(x)B(y) + a(»h(x} 0
We see from this that W, ; = W, ,, that W, , =~ U, @ V,, and that for a # 8

the representation is irreducible. This gives {(g — 1){g — 2) more irreducible
representations, of dimension g + 1.

Comparing with the list of conjugacy classes, we see that there are 1q(g — 1)
irreducible characters left to be found. A natural way to find new characters

is to induce characters from the cyclic subgroup K. For a representation
¢: K =(F)*-C*

the character values of the induced representation of dimension [G: K] =
2
q° — 1are

Ind(¢):  q(g—Delx) 0 0 o)+ ey

Here again { =x + y\/E € K = (F)*. Note that Ind(p?) = Ind(p), so the
representations Ind(p) for @7 # ¢ give 1q(g — 1) diflerent representations.
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However, these represenations are not irreducible: the character y of Ind(p)
satisfies (1, x) = q — 1 il ¢? # @, and otherwise (y, x) = q. We will have to
work a little harder to get irreducible representations from these Ind{g).

Another attempt to find more representations is to look inside tensor
products of representations we know. We have V@ U, =V, ,and W, , @ U, =
W,,.py» 50 there are no new ones to be found this way. But tensor products of
the V.’s and W, ,'s are more promising. For example, V ® W, , has character
values:

VW, ql@+Nalx) 0 ax)+a(y) O

We can calculate some inner products of these characters with each other
to estimate how many irreducible representations each contains, and how
many they have in common. For example,

(tvew.,» xw., ) =2,
(Xlnd(wXW.,.) =1 il@lpe=a,
(Xvew.  Xvew,,) =q+3,
(Xvenv.,., XInd(q:)) =q ifglp =0,

Comparing with the formula (Xi,a¢p) Xindw) =4 — 1, one deduces that
V ® W, , and Ind(¢) contain many of the same representations. With any
luck, Ind(p) and W, ; should both be contained in V ® W, . This guess is
easily confirmed; the virtual character

Xo = Xvew,, — Xw,, — Xindie)

takes values (g — [)a(x), —a(x), 0, and —(@({) + ¢({)*) on the four types of
conjugacy classes. Therefore, (x,, x,) =1, and y,(1)=q— 1 >0, so g, is,
in fact, the character of an irreducible subrepresentation of V® W, ; of
dimension q — 1. We denote this representation by X,. These iq(q — 1)
representations, for ¢ # ¢4, and with X, = X_., therefore complete the list
of irreducible representations for GL,(F). The character table is

! g’ -1 @+q ’—q
_(x © _(* | _[x 0 _fx ey _
GL’“‘!) a, = (0 x) bx = (0 X) Cry = (0 y) dx.y = (_V X) —C
U, a(x?) a(x?) ofxy) a({?)
v, ga(x) 0 a(xy) —af{?)
Wes | @+ Dx)f(x) a(x)f(x) a(x)B(y) + a(y)f(x) Y
Xy (9 — Dolx) —p(x) 0 —(e@) + o)

Exercise 5.6. Find the multiplicity of each irreducible representation in the
representations V' ® W, | and Ind(p).
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Exercise 5.7. Find the character table of PGL,(F) = GL,(F)/F*. Note that its
characters are just the characters of GL,(F) that take the same values on
elements equivalent mod F*.

We turn next to the subgroup SL,(F,) of 2 x 2 matrices of determinant

one, with g odd. The conjugacy classes, together with the number of elements
in each conjugacy class, and the number of conjugacy classes of each type, are

Representative No, Elements in Class No. Classes

1 0
(1) e=<0 1) l 1
-1 0
@ —e=< 0 _]) 1 1
1 g -1
) (O I) 2 I

o ()
o (o) T .
© <_(1> : 1) L !
U] (g x‘l,), x# 1 g+ 1) ‘_’_%3
®) <€xy D,x#il 9@ —1) 9_:2'_'_

The verifications are very much as we did for GL,(F,). In (7), the classes of
0 o
(; _1> and <x0 x) are the same. In (8), the classes for (x, y) and (x, —y)
x
are the same; as before, a better labeling is by the element { in the cyclic group

C={le()y: (" =1}

the elements + 1 are not used, and the classes of { and {~! are the same.

The total number of conjugacy classes is g + 4, so we turn to the task of
finding ¢ + 4 irreducible representations. We first see what we get by restrict-
ing representations from GL,(F,). Since we know the characters, there is no
problem working this out, and we simply state the results;

(1) The U, all restrict to the trivial representation U. Hence, il we restrict any
representation, we will get the same for all tensor products by U,’s.
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(2) The restriction V of the V,'s is irreducible.

(3) Therestriction W, of W, , isirreducibleifa® # 1,and W, = Wy when f = «
or ff = a~'. These give (g — 3) irreducible representations of dimension
q+ 1.

(3') Let 1 denote the character of F* with 12 = 1,1 # 1. The restriction of W, ,
is the sum of two distinct irreducible representations, which we denote
W' and W”.

{4) The restriction of X, depends only on the restriction of ¢ to the subgroup
C, and ¢ and ¢! determine the same representation. The representation
is irreducible if @2 # 1. This gives §(q — 1) irreducible representations of
dimension q — 1.

(4) If ¢ denotes the character of C with ¢y = 1, # 1, the restriction of X,
is the sum of two distinct irreducible representations, which we denote
X" and X",

Altogether this list gives q + 4 distinct irreducible representations, and it
is therefore the complete list. To [inish the character table, the problem is to
describe the four representations W', W”, X', and X". Since we know the sum
of the squares of the dimensions of all representations, we can deduce that the
sum of the squares of these four representations is q* + 1, which is only
possible if the first two have dimension 4(q + 1) and the other two (g — 1).
This is similar to what we saw happens for restrictions of representations to
subgroups of index two. Although the index here is larger, we can use what
we know about index two subgroups by finding a subgroup H of index two
in GL,(F,) that contains SL,(F,), and analyzing the restrictions of these four
representations to f.

For H we take the matrices in GL,(F,) whose determinant is a square. The
representatives of the conjugacy classes are the same as those for GL,(F,),
including, of course, only those representatives whose determinant is a square,

but we must add classes represented by the elements <g 6), x € F*. These
x

1
are conjugate to the elements <3 x) in GL,(F,), but not in H. These are the

q — 1 split conjugacy classes. The procedure of the preceding section can be
used to work out all the representations of H, but we need only a little of this.

Note that the sign representation U’ from G/H is U, so that W, | =
W, ® U'and X, = X, ® U’, their restrictions to H split into sums of conju-
gate irreducible representations of half their dimensions. This shows these
representations stay irreducible on restriction from H to SL,(F,), so that W’
and W” are conjugate representations of dimension 1(g + I), and X' and X"
are conjugate representations of dimension 4(g — 1). In addition, we know
that their character values on all nonsplit conjugacy classes are the same as
half the characters of the representations W, , and X, respectively. This is all
the information we need to finish the character table. Indeed, the only values
not covered by this discussion are
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Go) 68 Co) (02

w’ s t s’ t'
w” t s t' s
b ¢ u v u' v
X v u v u’

The first two rows are determined as follows. We know that s 4 ¢ =

E = 1. In addition, sinc 1 ]—1— b1 is conjugate to
x""-'01"'" I,S|e0l =lo | juga

1 1
((l) l) if q is congruent to { modulo 4, and to 0 7 otherwise, and since

x(g™") = x(g) for any character, we conclude that 5 and ¢ are real if q =
1 mod(4), and s = 7if ¢ = 3 mod(4). In addition, since — e acts as the identity
or minus the identity for any irreducible representation (Schur’s lemma),

x(—g) = x(g)- x(1)/x(-—e)

for any irreducible character y. This gives the relations s' = t(— 1)s and
t' = t(—1)t. Finally, applying the equation (g, ) = 1 to the character of W"
gives a formula for st + (5. Solving these equations gives s, t = 4 + 1\/_q,
where @ = t(—1) is I or — 1 according as q = 1 or 3 mod(4). Similarly one
computes that ¥ and v are ~1 + é\/a_ni This concludes the computations
needed to write out the character table.

Exercise 5.8. By considering the action of SL,(F,) on the set P'(F,), show that
SL,(F,) = &,, PSL,(F;) = U, and SL,(F,) = Us.

Exercise 5.9*, Use the character table for SL,(F,) to show that PSL,(F ) is a
simple group if q is odd and greater than 3.

Exercise 5.10. Compute the character table of PSL,(F,), either by regarding
it as a quotient of SL,(F,), or as a subgroup of index two in PGL,(F,).

Exercise 5.11*. Find the conjugacy classes of GL,(F,), and compute the char-
acters of the permutation representations obtained by the action of GL,(F,,)
on (i) the projective plane P*(F,) and (ii) the “flag variety” consisting of a point
on a line in P2(F,). Show that the first is irreducible and that the second is a
sum of the trivial representation, two copies of the first representation, and
an irreducible representation.

Although the characters of the above groups were found by the early
pioneers in representation theory, actually producing the representations in
a natural way is more difficult. There has been a great deal of work extending
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this story to GL,(F,) and SL,(F,) for n > 2 (cf. [Gr]), and for corresponding
groups, called finite Chevalley groups, related to other Lie groups. For some
hints in this direction see [Hu3], as well as [ Ti2]. Since all but a finite number
of finite simple groups are now known to arise this way (or are cyclic or
alternating groups, whose characters we already know), such representations
play a fundamental role in group theory. In recent work their Lie-theoretic
origins have been exploited to produce their representations, but to tell this
story would go far beyond the scope of these lecture(r)s.



LECTURE 6

Weyl’s Construction

In this lecture we introduce and study an important collection of functors generalizing
the symmetric powers and exterior powers. These are defined simnply in terms of the
Young symmetrizers ¢, introduced in §4: given a representation V of an arbitrary group
G, we consider the dth tensor power of ¥, on which both G and the symmetric group
on d letters act. We then take the image of the action of c, on ¥®9; this is again a
representation of G, denoted S,(V). This gives us a way of generating new representa-
tions, whose main application will be to Lie groups: for example, we will generate all
representations of S1.,C by applying these to the standard representation C" of SL,C.
While it may be easiest to read this material while the definitions of the Young
symmetrizers are still fresh in the mind, the construction will not be used again until
§15, so that this lecture can be deferred until then.

§6.1: Schur functors and their characters
§6.2: The proofs

§6.1. Schur Functors and Their Characters

For any finite-dimensional complex vector space V, we have the canonical
decomposition

VQ V= Sym?2V ® A?V.

The group GL(V) acts on ¥ ® V, and this is, as we shall soon see, the decom-
position of ¥ ® V into a direct sum of irreducible GL(V)-representations. For
the next tensor power,

VR V@V =Sym*V®AV @ another space.

We shall see that this other space is a sum of two copies of an irreducible
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GL(V)-representation. Just as Sym?V and A’V are images of symmetrizing
operators from V® = V@ V® - ® V to itsell, so are the other factors. The
symmetric group S, acts on V8, say on the right, by permuting the factors

(1 ®  ®Vy) 0 = 0,1, ® " ® V-

This action commutes with the left action of GL(V). For any partition A of d
we have from the last lecture a Young symmetrizer ¢, in C&,. We denote the
image of ¢, on V®! by S, V:

S,V = Im(c,lyed)

which is again a representation of GL(V). We call the functor' ¥ ~~S, V the
Schur functor or Weyl module, or simply Weyl's constriction, corresponding
to A. It was Schur who made the correspondence between representations of
symmetric groups and representations of general linear groups, and Weyl who
made the construction we give here.> We will give other descriptions later, cf.
Exercise 6.14 and §15.5.

For example, the partition d = d corresponds to the functor V ~~ Sym? V,
and the partition d = 1 + -+ 4 1 to the functor V ~~A'V.

We find something new for the partition 3 =2 + 1. The corresponding
syminetrizer ¢, is

Ca.y =1+ eus ~€us — €z
so the image of ¢, is the subspace of V ®3 spanned by all vectors
0@V, ®U3 + 1, @V, @V —v; vV, ®v; —1; Qv @ V,.

If A2V ® V is embedded in V' ®? by mapping
Wy ARV, @V, Q03 — 03 QV, 1y,
then the image of ¢, is the subspace of A’V ® V spanned by all vectors
(vy A 03)® vy + (0 A D;)D .

It is not hard to verify that these vectors span the kernel of the canonical map
from A2V ® V to AV, so we have

SV = Ker(AZV @ V - A*),

(This gives the missing factor in the decomposition of V'®3)

Note that some of the S, V can be zero if V has small dimension. We will
see that this is the case precisely when the number of rows in the Young
diagram of 1 is greater than the dimension of V.

! The funclorialily means simply that a linear map @: V — W of vector spaces determines a linear
map S,(9): S,V =+ S, W, with S,(¢ o ¥) = $,(¢) o S,(¥) and $,(1d,) = Ids,,

? The notion goes by a variety of names and notations in 1he literature, depending on the context.
Constructions differ markedly when not over a field of charactetistic zero; and many authors now
parametrize them by the conjugate partitions. Our choice of noiation is guided by the corre-
spondence between these [unctors and Schur polynornials, which we will see are their characters.
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When G = GL(V), and {or important subgroups G = GL(V), these S,V
give many of the irreducible representations of G; we will come back to this
later in the book. For now we can use our knowledge of symmetric group
representations to prove a few facts about them—in particular, we show that
they decompose the tensor powers ¥ ®4, and that they are irreducible repre-
sentations of GL(V). We wilt also compute their characters; this will eventually
be seen to be a special case of the Weyl character formula.

Any endomorphism g of V gives rise to an endomorphism of S, ¥, In order
to tell what representations we get, we will need to compute the trace of this
endomorphism on S, V; we denote this trace by y¢,,(g). For the computation,
let xy, ..., x; be the eigenvalues of g on V, k = dim V. Two cases are easy. For
A =(d),

SV = Sym‘v, Xsur(g) = Hy(xys ... X)), (6.1)

where Hy(x,, ..., x,) is the complete symmetric polynomial of degree d. The
definition of these symmetric polynoinials is given in (A.1) of Appendix A.
The truth of (6.1) is evident when g is a diagonal matrix, and its truth for the
dense set of diagonalizable endomorphisms implies it for all endomorphisms;
or one can see it directly by using the Jordan canonical form of g. For
A=(1,..., 1), we have similarly

W =NV s, @)= Egxys e X 6.2)

with E (x|, ..., x;) the elementary symmetric polynomial [see (A.3)]. The
polynomials H, and E, are special cases of the Schur polynomials, which we
denote by S, = (x4, ..., X,). As 4 varies over the partitions of d into at most
k parts, these polynomials S, form a basis for the symmetric polynomials of
degree d in these k variables. Schur polynomials are defined and discussed in
Appendix A, especially (A.4)-(A.6). The above two formulas can be written

Xsp(@) =Sy(xyy ..y x) ford=(dyandi=(1,..., 1)

We will show that this equation is valid for all A:

Theorem 6.3. (1) Let k=dim V. Then S,V is zero if 744, #0. If 1=
(A= 22,20), then

oAt
1si<jsk J—i '

dim S,V =S$,(1,..., 1) =

(2) Let m, be the dimension of the irreducible representation V, of &,
corresponding to 1. Then
el (Ps,rem
1

(3) For any g e GL(V), the trace of g on S,V is the value of the Schur
polynomial on the eigenvalues x,, ..., x, of gon V:

Xs,w(@) = 8(xy, ... x)
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(4) Each S,V is an irreducible representation of GL(V).

This theorem will be proved in the next section. Other formulas for the
dimension of S,V are given in Exercises A.30 and A.31. The following is
another:

Exercise 6.4*. Show that
(k—i+])
hy

: m sy
d1m§1V=7;—‘]—l(k—n+j)=]—l ,
where the products are over the d pairs (i, j) that number the row and column
of boxes for 4, and h,; is the hook number of the corresponding box.

Exercise 6.5. Show that ¥®3 = Sym*V @ A°V @ (Si2,1 V) ®2, and
Ve = Sym*V @AV B (Si.) V)P D (S, V)2 D (Su,1,) N B

Compute the dimensions of each of the irreducible factors.
The proof of the theorem actually gives the lollowing corollary:

Corollary 6.6. If c € CS,, and (CS,):c = @, V,&"* as representations of S,,
then there is a corresponding decomposition of GL(V)-spaces:

yel.c=@PS,ven
i

If xy, ..., X\ are the eigenvalues of an endomorphism of V, the trace of the
induced endomorphism of V®-cis Y r;Si(xy, ..., X).

If 2 and g are different partitions, each with at most k = dim V parts, the
irreducible GL(V)-spaces S,V and S,V are not isomorphic. Indeed, their
characters are the Schur polynomials S, and S, which are different. More
generally, at least for those representations of GL(V) which can be decom-
posed into a direct sum of copies of the represenations S, V’s, the representa- -
tions are completely determined by their characters. This [ollows immediately
from the fact that the Schur polynomials are linearly independent.

Note, however, that we cannot hope to get all finite-dimensional irreducible.
representations of GL(V) this way, since the duals of these representations
are not included. We will see in Lecture 15 that this is essentially the only
omission. Note also that although the operation that takes representations of
&, to representations of GL(V) preserves direct sums, the situation with
respect to other linear algebra constructions such as tensor products is more
complicated.

One important application of Corollary 6.6 is to the decomposition of a
tensor product S,¥ ® S,V of two Weyl modules, with, say, 4 a partition of
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d and p a partition of m. The result is

S.VRS,. V=P M,,S.V; (6.7)

here the sum is over partitions v of d + m, and N,,,, are numbers determined
by the Littlewood—Richardson rule. This is a rule that gives N,,, as the number
of ways to expand the Young diagram of 4, using ¢ in an appropriate way, to
achieve the Young diagram for v; see (A.8) for the precise formula. Two
important special cases are easier to use and prove since they involve only the
simpler Pieri formula (A.7). For st = (m), we have

S,V Sym™r = PS,¥, (6.8)

the sum over all v whose Young diagram is obtained by adding m boxes to
the Young diagram of 4, with no two in the same column. Similarly for
p=(,..., 1),

S, VNV =@@PS.Y, (6.9)

the sum over all partitions # whose Young diagram is obtained from that of
A by adding m boxes, with no two in the same row.
To prove these formulas, we need only observe that

S, V@S, V=V®-c,®@V® ¢,
— V®n® V®""(C,'®C‘,) — V®"'+"'"c,

with c=¢,® ¢, e C6,®CG, = C(G,; x &,) c CS,,,.. This proves that
S,V ® S,V has a decomposition as in Corollary 6.6, and the coefficients are
given by knowing the decomposition of the corresponding character. The
character of a tensor product is the product of the characters of the factors;
so this amounts to writing the product S, S, of Schur polynomials as a Jinear
combination of Schur polynomials. This is done in Appendix A, and formulas
(6.7), (6.8), and (6.9) follow from (A.8), (A.7), and Exercise A.32 (v), respectively.
For example, from Sym?V ® V = Sym**'V @ S, ,,V, it follows that

Su.1yV = Ker(Sym?V ® ¥ - Sym**'y),
and similarly for the conjugate partition,

Sar....nyV =Ker(ANV® V- A1),
Exercise 6.10*. One can also derive the preceding decompositions of tensor
products directly from corresponding decompositions of representations of

symmetric groups. Show that, in fact, S,V ® S,V corresponds to the “inner
product” representation ¥, o ¥, of &,,,, described in (4.41).

Exercise 6.11*. (a) The Littlewood-Richardson rule also comes into the de-
composition of a Schur functor of a direct sum of vector spaces V and W. This
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generalizes the well-known identities

Sym"(V @ W)= @ (Sym"V® Sym*W),

atb=n

NVeW)= @ NV AW

ath=n
Prove the general decomposition over GL(V) x GL(W):
SJ(V® W) = D Npy(S: VRS, W),

the sum over all partitions 4, u such that the sum of the numbers partitioned
by 4 and g is the number partitioned by v. (To be consistent with Exercise
2.36 one should use the notation & for these “external” tensor products.)

(b) Similarly prove the formula for the Schur functor of a tensor product:

SAVO W) =D C,(S:VO S, W),
where the coefficients C, ,, are defined in Exercise 4.51. In particular show that
Sym'(y ® W) = (D S:V @ S, W,

the sum over all partitions 1 of d with at most dim V or dim W rows. Replacing
W by W*, this gives the decomposition for the space of polynomial functions
of degree d on the space Hom(V, W) over GL(V) x GL(W). For variations
on this theme, see [Ho3]. Similarly,

Nrew) =P S,V¥res, W,
the sum over partitions A of d with at most dim V rows and at most dim W
columns.
Exercise 6.12, Regarding
GL,C=GL,Cx {1} =GL,C xGL,C=GL,,C,

the preceding exercise shows how the restriction of a representation de-
composes:

Res(S,(C™*™)) = Y. (N,,,, dim S,(C™))S,(C").
In particular, for m = 1, Pieri’s formula gives
Res(S,(C™*")) = P SHC"),

the sum over all 1 obtained from v by removing any number of boxes from
its Young diagram, with no two in any column.

Exercise 6.13*. Show that for any partition g = (p,, ..., i) of d,
NVRINV R - @ NV 6;') K1u,S:V,

where K, is the Kostka number and 1’ the conjugate of 1.
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Exercise 6.14*. Let j1 = 1’ be the conjugate partition. Put the factors of the
dth tensor power V ®¢ in one-to-one correspondence with the squares of the
Young diagram of A. Show that S, V is the image of this composite map:

& (V) > @i (@) > V' > ) (®4F) - &), (Sym*V),

the first map being the tensor product of the obvious inclusions, the second
grouping the factors of ¥ ®4 according to the columns of the Young diagram,
the third grouping the factors according to the rows of the Young diagram,
and the fourth the obvious quotient map. Alternatively, S,V is the image of
a composite map

& (Sym*¥) = R (®*V) = V' > R, (®"F) - &) (V).

In particular, S,V can be realized as a subspace of tensors in V® that are
invariant by automorphisms that preserve the rows of a Young tableau of
A, or a subspace that is anti-invariant under those that preserve the columns,
but not both, cf. Exercise 4.48.

Problem 6.15*. The preceding exercise can be used to describe a basis for the
space S, V. Let v,, ..., v, be a basis for V. For each semistandard tableau T
on A, one can use it to write down an element vy in (X);(A"V); v, is a tensor
product of wedge products of basis elements, the ith factor in A"V being the
wedge product (in order) of those basis vectors whose indices occur in the ith
column of 7. The fact to be proved is that the images of these elements vy
under the first composite map of the preceding exercise form a basis for S, V.

At the end of Lecture 15, using more representation theory than we have
at the moment, we will work out a simple variation of the construction of S, V
which will give quick proofs of refinements of the preceding exercise and
problem.

Exercise 6.16*. The Pieri formula gives a decomposition
Sym’V ® Sym'y = @ Sutad-aVs
the sum over 0 < a < d. The left-hand side decomposes into a direct sum of
Sym?(Sym?¥) and A*(Sym?V). Show that, in fact,
Symz(Sym"V) =S0a0V D Su-2,V ®Spi-4,4V D,
N Sym'V) = Spy-1.0)V @ S@e-3.3V D Sau-s,5 VB .

Similarly using the dual form of Pieri to decompose A’V ® A’V into the sum
(—I:—)S‘V, thesumoverall A =(2,...,2,1,..., ) consisting of d — a 2’s and 2a
- 15,0 < a < d, show that Sym?(A?V) is the sum of those factors with a even,

and A*(A?V) is the sum of those with a odd.
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Exercise 6.17*. If 1and pare any partitions, we can form the composite functor
S,(S; V). The original “plethysm” problem—which remains very difficult in
general—is to decompose these composites:

SuS:V) = P M,,,S.V,

the sum over all partitions v of dm, where 1is a partition of d and y s a partition
of m. The preceding exercise carried out four special cases of this.

(a) Show that there always exists such a decomposition for some non-
negative integers M,,, by constructing an element c in C&,,,, depending on
Aand g, such that S,(S, V) is V®-c.

(b) Compute Sym*(S, ;) V) and A2 (S, ,, V).

Exercise 6.18* “Hermite reciprocity.” Show that if dim ¥ = 2 there are iso-
morphisms

Sym?(Sym?V) = Sym?(Sym*V)
of GL(V)-representations, for all p and q.

Exercise 6.19%. Much of the story about Young diagrams and representations
of symmetric and general linear groups can be generalized to skew Young
diagrams, which are the differences of two Young diagrams. If 1 and u are
partitions with u, < 2, for all i, A/u denotes the complement of the Young
diagram for g in that of 1. For example, if 1 = (3,3, [)and p = (2, 1), A/p is
the numbered part of

To each A/ we have a skew Schur finction S,,,, which can be defined by
any of several generalizations of constructions of ordinary Schur functions.
Using the notation of Appendix A, the following definitions are equivalent:

(i) S)./u = Ili).‘—u,—l+jly
(ﬁ) Sz/u = |EA;—;1,'-:+]|,
(iii) Syn = 3 M X" Xk,

where m, is the number of ways to number the boxes of A/u with a, Us, a, 2's,
..., @ kK’s, with nondecreasing rows and strictly increasing columns.
In terms of ordinary Schur polynomials, we have

(lV) ’ Slln = z NuvASvy

where N,,, is the Littlewood- Richardson number.
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Each A/u determines elements a,,,, b,,,, and Young symmetrizers c,,, =
a3, by in A =CS,,d =Y 1, — p, exactly as in §4.1, and hence a representa-
tion denoted ¥, = Ac,;, of &,. Equivalently, V,,, is the image of the map
Ab,,, - Aa,,, given by right multiplication by a,,,, or the image of the map
Aay, ~ Ab,,, given by right multiplication by b,,,. The decomposition of ¥,
into irreducible representations is

(V) VA/[A = z Nuv). Vv

Similarly there are skew Schur functors S,,,, which take a vector space V
to the image of ¢, on V ®%, equivalently, S, V is the image of a natural map
(generalizing that in the Exercise 6.14)

(vi) R N HY) - V5 (X); Symb ™ V),
or
(vii) ®, (Sym"“"'V) - Vel ®J (/\‘!'_"-;V).

Given a basis v, ..., v [or V and a standard tableau Ton 1/u, one can write
down an element vy in ), (AN¥*V¥); for example, corresponding to the dis-
played tableau, v; = v, ® v, ® (v, A v4). Akey fact, generalizing the result of
Exercise 6.15, is that the images of these elements under the map (vi) form a
basis for S,,, V.

The character of Sy, V is given by the Schur function §,,: if g is an
endomorphism of V with eigenvalues x, ..., x,, then

(viii) Xs,,,v(g) = Syu(Xgs s Xa):
In terms of basic Schur functors,
(ix) SunV =Y, NyuiS, V.

Exercise 6.20*. (a) Show thatif 1 = (p, q), S
tion map

.V 1S the kernel of the contrac-

Cp.pt SYm?V @ Sym*¥ — Sym?*' V @ Sym? ™' .

(b) I A = (p, q, 1), show that S, ,,,V is the intersection of the kernels of
two contraction maps ¢, , ® 1,and 1, ® ¢, ,, where |; denotes the identity map
on Sym' V.

In general, for 1=(4,,..., ), S; ¥ <= Sym* V@ - ® Sym*™V is the inter-
section of the kernels of the k — | maps

lll‘ = 111 R ® l‘i—i ®Cli.1u1 ® lluz® T ® llk’ I<i<k-1

{c) For A=(p, 1,...., 1), show that S,V is the kernel of the contraction
map:

Seot....nV =Ker(Sym?¥ @ APy — Sym" 'V @ APty),

In general, for any choice of @ between 1 and k — 1, the intersection of



84 6. Weyl's Construction

the kernels of all , except ¢, is S,V ® S, V, where ¢ = (4,,...,1,) and
T =(A441,.-., A4) 50 S,V is the kernel of a contraction map defined on
S,V®S.,V.Forexample,ilais k — 1,and we set r = J,, Pieri’s formula writes
S,V ® Sym'V as a direct sum of S,V and other factors S, V; the general
assertion in (b) is equivalent to the claim that S,V is the only factor that is
in the kernel of the contraction, ie.,

S,V =Ker(Sq,....1,_yV @ Sym'V - V@4 @ Symrty),

These results correspond to writing the representations ¥, « U, of the sym-
metric group as the intersection of kernels of maps to U, . 1.41.1,,,-1..... 4

P

Exercise 6.21, The functorial nature of Weyl's construction has many conse-
quences, which are not explored in this book. For example, if E is a complex
of vector spaces, the tensor product E$? is also a complex, and the symmetric
group &, acts on it; when factors in E, and E, are transposed past each other,
the usual sign (— 1) is inserted. The image of the Young symmetrizer c, is a
complex S,(E,), sometimes called a Schur complex. Show that il E, is the
complex E_; = V- E, = V, with the boundary map the identity map, and
A = (d), then S,(E,) is the Koszul complex

0—»/\"-—’/\‘_1®Sl—»/\"_2®S2—>"'—’/\1®S"_1—»S"—»O,
where A' = AV, and §/ = Sym’y.

§6.2. The Proofs

We need first a small piece of the general story about semisimple algebras,
which we work out by hand. For the moment G can be any finite group,
although our application is for the symmetric group. 1f U is a right module
over 4 = CG, let

B = Homg(U, U) = {¢p: U - U: (v-g) = ¢(v)-g,Yve U,ge G}.
Note that B acts on U on the left, commuting with the right action of 4; B is
called the commutator algebra. If U = (P U®™ is an irreducible decomposition

with U, nonisomorphic irreducible right 4-modules, then by Schur’s Lemma
1.7

B= @z Homg(U®™, UP™) = @1 M, (C),

where M, (C) is the ring of n; x n, complex matrices.
If W is any lelt A-module, the tensor product

U®4 W = U ®c W/subspace generated by {ra@ w — v ® aw}
is a left B-module by acting on the first factor: b-(v @ w) = (b-v) @ w.
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Lemma 6.22. Let U be a finite-dimensional right A-module.

(i) For any c & A, the canonical map U ®, Ac — Uc is an isomorphisimn of left
B-modules.

(i) If W = Ac is an irreducible left A-module, then U ®, W = Uc is an
irreducible left B-module.

(iii) If W, = Ac, are the distinct irreducible left A-modules, with m; the
dimension of W,, then

Uz @x(u ® W)™ = @r (Uc,)®™

is the decomposition of U into irreducible left B-modules.

ProoF. Note first that Ac is a direct summand of A as a left A-module; this is
a consequence of the semisimplicity of all representations of G (Proposition
1.5). To prove (i), consider the commutative diagram

UA—> U®dc = U®, 4

L

U - U-c [ U

where the vertical maps are the maps v ® a+ v-q; since the left horizontal
maps are surjective, the right ones injective, and the outside vertical maps are
isomorphisms, the middle vertical map must be an isomorphism.

For (i), consider first the case where U is an irreducible A-module, so
B = C. It suffices to show that dim U ®, W < 1. For this we use Proposition
3.29 to identily A with a direct sum (P}, M,, C of r matrix algebras. We can
identify W with a minimal Jeft ideal of A. Any minimal ideal in the sum of
matrix algebras is isomorphic to one which consists of r-tuples of matrices
which are zero except in one factor, and in this factor are all zero except [or
one column. Similarly, U can be identified with the right ideal of r-tuples which
are zero except in one factor, and in that factor all are zero except in one row.
Then U ®, W will be zero unless the factor is the same for U and W, in which
case U ®, W can be identified with the matrices which are zero except in one
row and column of that factor. This completes the proof when U is irreducible.
For the general case of (ii), decompose U = @); UP™ into a sum of irreducible
right A-modules, so U ®, W = (B,(U, ®, W)®" = C®" for some k, which is
visibly irreducible over B = (P M, (C).

Part (jii) follows, since the isomorphism A = (P W;®™ determines an iso-
morphism

UzU® AU (P W)= @i (U ®, wy)®™. O

To prove Theorem 6.3, we will apply Lemma 6.22 to the right C&;-module
U = ¥® That lemma shows how to decompose U as a B-module, where B
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is the algebra of all endomorphisms of U that commute with all permuta-
tions of the factors. The endomorphisms of U induced by endomorphisms of
V are certainly in this algebra B. Although B is generally much larger than
End(V), we have

Lemma 6.23. The algebra B is spanned as a linear subspace of End(V®9) by
End(V). A subspace of V® is a sub-B-module if and only if it is invariant by
GL(V).

PrOOF. Note that if W is any finite-dimensional vector space, then Sym*W is
the subspace of W®4 spanned by all w¥ = d!lw® -+ ® w as w runs through
W. Applying this to W = End(V) = V* ® V proves the first statement, since
End(V®!) = (V*)®¢ @ V® = W®, with compatible actions of S,. The second
follows [rom the fact that GL(V) is dense in End(V). 0

We turn now to the proof of Theorem 6.3. Note that S,V is Uc,, so parts
(2) and (4) follow from Lemmas 6.22 and 6.23. We use the same methods to
give a rather indirect but short prool of part (3); for a direct approach see
Exercise 6.28. From Lemma 6.22 we have an isomorphism of GL(V)-modules:

S,V=v®e,V, (6.24)

with ¥, = A-c;. Similarly for U, = 4-a,, and since the image of right muiti-
plication by a, on V® is the tensor product of symmetric powers, we have

Sym*V @ Sym*V ® - @ Sym*V = V4 @, U,. (6.25)

But we have an isomorphism U, = (P, K, ¥, of A-modules by Young's rule
(4.39), so we deduce an isomorphism of GL(V)-modules

Sym* 'V @ SymV ® - @ Sym*V = P K,,S, V. (6.26)
"

By what we saw before the statement of the theorem, the trace of g on the
left-hand side of (6.26) is the product H,(x,, ..., x,) of the complete symmetric
polynomials H, (x,,..., x;). Let S;(g) denote the endomorphism of S,V
determined by an endomorphism g of V. We therefore have

Hy(xy, ..., %) = L, K, Trace(S,(g)).

But these are precisely the relations between the functions H, and the Schur
polynomials S, [see formula (A.9)], and these relations are invertible, since
the matrix (K ;) of coeflicients is triangular with 1’s on the diagonal. It follows
that Trace(S,(g)) = S,(x,, -.., X;), which proves part (3).

Note that if 1 = (4,, ..., 4;) with d > k and 1,,, 5 0, this same argument
shows that the trace is Sy(x,, ..., x,, 0, ..., 0), which is zero, for example by
(A.6). For g the identity, this shows that S; ¥ = 0 in this case. From part (3)
we also get
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dim S,V = §,(1,..., 1), (6.27)
and computing S,(1, ..., 1) via Exercise A.30(ii) yields part (1). 0

Exercise 6.28. If you have given an independent proof of Problem 6.15, part
(3) of Theorem 6.3 can be seen directly. The basis elements vy for S, V specified
in Problem 6.15 are eigenvectors for a diagonal matrix with entries x,, ..., X,
with eigenvalue X* = x{*-...* xf*, where the tableau T has q, 1’s, a, 2’s, ...,
a, k's. The trace is therefore Y K,,X° where K, is the number of ways to
number the boxes of the Young diagram of 1 with a, 1's,a, 2’s, ..., a; k's. This
is just the expression for S, obtained in Exercise A.31(a).

We conclude this lecture with a few of the standard elaborations of these
ideas, in exercise form; they are not needed in these lectures.

Exercise 6.29*. Show that, in the context of Lemma 6.22, if U is a faithful
A-module, then A is the commutator of its commutator B:

A={Y:U-> U:y(bv) = by(v), Vve U, b e B}.

If U is not faithful, the canonical map from 4 to its bicommutator is surjective.
Conclude that, in Theorem 6.3, the algebra of endomorphisms of V24 that
commute with GL(V) is spanned by the permutations in &,.

Exercise 6.30. Show that, in Lemma 6.22, there is a natural one-to-one cor-
respondence between the irreducible right A-modules U, that occur in U and
theirreducible left B-modules V;. Show that there is a canonical decomposition

U= @(V:®c U)

asa left B-module and as a right A-module. This shows again that the number
of times ¥, occurs in U is the dimension of U;, and dually that the number of
times U, occurs is the dimension of ¥;. Deduce the canonical decomposition

Ve =(PS,VQV,,

the sum over partitions 1 ofdinto at most k = dim V parts; this decomposition
is compatible with the actions of GL(V) and &,. In particular, the number of
times ¥, occurs in the representation V®4 of G, is the dimension of S, V.

Exercise 6.31. Let e be an idempotent in the group algebra 4 = CG, and let
U = eA be the corresponding right A-module. Let E = eAe, a subalgebra of
A. The algebra structure in A makes eA a left E-module. Show that this delines
an isomorphism of C-algebras

E = eAe >~ Hom (eA, eA) = Homy(U, U) = B.
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Exercise 6.32. If H is a subgroup of G, and ¢ € CH is an idempotent, corre-
sponding to a representation W = CH - e of H, show that CG - e is the induced
representation Ind§(W). For example, if 3: If - C* is a one-dimensional
representation, then

1 S
Ind§(9) = CG-ey, whereeg=—. 3 I(ge,.
1Gl /<%



PART N

LIE GROUPS AND
LIE ALGEBRAS

From a naive point of view, Lie groups seem to stand at the opposite end of
the spectrum of groups from finite ones.! On the one hand, as abstract groups
they seem enormously complicated: for example, being of uncountable order,
there is no question of giving generators and relations. On the other hand,
they do come with the additional data of a topology and a manifold structure;
this makes it possible—and, given the apparent hopelessness of approaching
them purely as algebraic objects, necessary—to use geometric concepts to
study them.

Lie groups thus represent a confluence of algebra, topology, and geometry,
which perhaps accounts in part for their ubiquity in modern mathematics. It
also makes the subject a potentially intimidating one: to have to understand,
both individually and collectively, all these aspects of a single object may be
somewhat daunting,

Happily, just because the algebra and the geometry/topology of a Lie group
are so closely entwined, there is an object we can use to approach the study
of Lie groups that extracts much of the structure of a Lie group (primarily
its algebraic structure) while seemingly getting rid of the topological com-
plexity. This is, of course, the Lie algebra. The Lie algebra is, at least according
to its definition, a purely algebraic object, consisting simply of a vector space
with bilinear operation; and so it might appear that in associating to a Lie
group its Lie algebra we are necessarily giving up a lot of information about
the group. This is, in fact, not the case: as we shall see in many cases (and
perhaps all of the most important ones), encoded in the algebraic structure of
a Lie algebra is almost all of the geometry of the group. In particular, we will

' In spite of this there are deep, if only partially understood, relations between finite and Lie
groups, extending even to their simple group classifications.



90 I1. Lie Groups and Lie Algebras

see by the end of Lecture 8 that there is a very close relationship between
representations of the Lie group we start with and representations of the Lie
algebra we associate to it; and by the end of the book we will make that
correspondence exact.

We said that passing from the Lie group to its Lie algebra represents a
simplification because it eliminates whatever nontrivial topological structure
the group may have had; it “flattens out,” or “linearizes,” the group. This, in
turn, allows for a further simplification: since a Lie algebra is just a vector
space with bilinear operation, it makes perfect sense, if we are asked to study
a real Lie algebra (or one over any subfield of C} to tensor with the complex
numbers. Thus, we may investigate first the structure and representations of
complex Lie algebras, and then go back to apply this knowledge to the study
of real ones. In fact, this turns out to be a feasible approach, in every respect:
the structure of complex Lie algebras tends to be substantially simpler than
that of real Lie algebras; and knowing the representations of the complex Lie
algebra will solve the problem of classifying the representations of the real one.

There is one further reduction to be made: some very elementary Lie
algebra theory allows us to narrow our focus further to the study of semisimple
Lie algebras. This is a subset of Lie algebras analogous to simple groups in
that they are in some sense atomic objects, but better behaved in a number
of ways: a semisimple Lie algebra is a direct sum of simple ones; there are easy
criteria for the semisimplicity of a given Lie algebra; and, most of all, their
representation theory can be approached in a completely uniform manner.
Moreover, as in the case of finite groups, there is a complete classification
theorem for simple Lie algebras.

We may thus describe our approach to the representation theory of Lie
groups by the sequence of objects

Lie group
~~ Lie algebra
~» complex Lie algebra

~ semisimple complex Lie algebra.

We describe this progression in Lectures 7--9. In Lectures 7 and 8 we intro-
duce the definitions of and some basic facts about Lie groups and Lie algebras.
Lecture 8 ends with a description of the exponential map, which allows us to
establish the close connection between the first two objects above. We then
do, in Lecture 9, the very elementary classification theory of Lie algebras that
motivates our focus on semisimple complex Lie algebras, and at least state
the classification theorem for these. This establishes the fact that the second,
third, and fourth objects above have essentiaily the same irreducible repre-
sentations. (This lecture may also serve to give a brief taste of some general
theory, which is mostly postponed to later lectures or appendices.) In Lecture
10 we discuss examples of Lie algebras in low dimensions.
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From that point on we will proceed to devote ourselves almost exclusively
to the study of semisimple complex Lie algebras and their representations.
We do this, we have to say, in an extremely inefficient manner: we start with
a couple of very special cases, which occupy us for three lectures (11-13);
enunciate the general paradigm in Lecture 14; carry this out for the classical
Lie algebras in Lectures 15-20; and (finally) finish off the general theory in
Lectures 21-26. Thus, it will not be until the end that we go back and use the
knowiedge we have gained to say something about the original problem. In
view of this long interlude, it is perhaps a good idea to enunciate one more
time our basic

Point of View: The primary objects of interest are Lie groups and their
representations; these are what actually occur in real life and these are what
we want to understand. The notion of a complex Lie algebras is introduced
primarily as a tool in this study; it is an essential tool? and we should consider
ourselves incredibly lucky to have such a wonderfully effective one; but in the
end it is for us a means to an end.

The special cases worked out in Lectures 1113 are the Lie algebras of SL,
and SL,. Remarkably, most of the structure shared by all semisimple Lie
algebras can be seen in these examples. We should probably point out that
much of what we do by hand in these cases could be deduced from the Weyl
construction we saw in Lecture 6 (as we will do generally in Lecture 15), but
we mainly ignore this, in order to work from a “Lie algebra™ point of view
and motivate the general story.

2 Perhaps not logically so; cf. Adams’ book [Ad].



LECTURE 7

Lie Groups

In this lecture we introduce the definitions and basic examples of Lie groups and Lie
algebras. We assume here familiarity with the definition of differentiable manifolds and
maps between them, but no more; in particular, we do not mention vector fields,
differential forms, Riemannian metrics, or any other tensors. Section 7.3, which
discusses maps of Lie groups that are covering space maps of the underlying manifolds,
may be skimmed and referred back to as needed, though working through it will help
promote familiarity with basic examples of Lie groups.

§7.1: Lie groups: definitions
§7.2: Examples of Lie groups
§7.3: Two constructions

§7.1. Lie Groups: Definitions

You probably already know what a Lie group is; it is just a set endowed
simultaneously with the compatible structures of a group and a #° manifold.
“Compatible” here means that the multiplication and inverse operations in
the group structure

x:Gx GG

and
G-G

are actually differentiable maps (logically, this is equivalent to the single
requirement that the map G x G — G sending (x, y) to x* y ™! is %™).

A map, or morphism, between two Lie groups G and H is just a map
p: G — H that is both differentiable and a group homomorphism. In general,
qualifiers applied to Lie groups refer to one or another of the two structures,
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usually without much ambiguity; thus, abelian refers to the group structure,
n-dimensional or connected refers to the manifold structure. Sometimes a
condition on one structure turns out to be equivalent Lo a condition on the
other; for example, we will see below that to say that a map of connected Lie
groups ¢: G — H is a surjective map of groups is equivalent to saying that the
differential dg is surjective at every point.

One area where there is some potential confusion is in the definition of a
Lie subgroup. This is essentially a difficulty inherited directly from manifold
theory, where we have to make a distinction between a closed submanifold of
a manifold M, by which we mean a subset X < M that inherits a manifold
structure from M (i.e., that may be given, locally in M, by setting a subset of
the local coordinates equal to zero), and an immersed submanifold, by which
we mean the image of a manifold X under a one-to-one map with injective
differential everywhere—that is, a map that is an embedding locally in X.
The distinction is necessary simply because the underlying topological space
structure of an immersed submanifold may not agree with the topological
structure induced by the inclusion of X in M. For example, the map from X
to M could be the immersion of an open interval in R into the plane R? asa
figure “6”:

l

Another standard example of this, which is also an example in the category
of groups, would be to take M to be the two-dimensional real torus R?/Z? =
5! x §', and X the image in M of a line V = R? having irrational slope:

/

/

The upshot of this is that we define a Lie subgroup (or closed Lie subgroup,
if we want to emphasize the point) of a Lie group G to be a subset that is
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simultaneously a subgroup and a closed submanifold; and we define an
immersed subgroup to be the image of a Lie group H under an injective
morphism to G. (That a one-to-one morphism of Lie groups has everywhere
injective differential will follow from discussions later in this lecture.)

The definition of a complex Lie group is exactly analogous, the words
“differentiable manifold” being replaced by “complex manifold” and all
related notions revised accordingly. Similarly, to define an algebraic group one
replaces “differentiable manifold” by “algebraic variety” and “differentiable
map” by “regular morphism.” As we will see, the category of complex Lie
groups is in many ways markedly different from that of real Lie groups (for
example, there are many fewer complex Lie groups than real ones). Of course,
the study of algebraic groups in general is quite different from either of these
since an algebraic group comes with a field of definition that may or may not
be a subfield of C (it may, for that matter, have positive characteristic). In
practice, though, while the two are not the same (we will see examples of this
in Lecfure 10, for example), the category of algebraic groups over C behaves
very much like the category of complex Lie groups.

§7.2. Examples of Lie Groups

The basic example of a Lie group is of course the general linear group GL,R
of invertible n x n real matrices; this is an open subset of the vector space of
all n x n matrices, and gets its manifold structure accordingly (so that the
entries of the matrix are coordinates on GL,R). That the multiplication
map GL,R x GL,R - GL,R is differentiable is clear; that the inverse map
GL,R - GL,R s follows from Cramer’s formula for the inverse. Occasionally
GL,R will come to us as the group of automorphisms of an n-dimensional
real vector space V; when we want to think of GL R in this way (e.g., without
choosing a basis for V and thereby identifying G with the group of matrices),
we will write it as GL(V) or Aut(V). A representation of a Lie group G, of
course, is a morphism from G to GL(V).

Most other Lie groups are defined initially as subgroups of GL, (though
they may appear in other contexts as subgroups of other general linear groups,
which is, of course, the subject matter of these lectures). For the most part,
such subgroups may be described either by equations on the entries of an
n x nmatrix, or as the subgroup of automorphisms of ¥ = R” preserving some
structure on R". For example, we have:

the special linear group SL,R of automorphisms of R" preserving the
volume element; equivalently, n x n matrices 4 with determinant .

the group B, of upper-triangular matrices; equivalently, the subgroup of
automorphisms of R" preserving the flag' '

‘. VIn general, a flag is a sequence of subspaces of a fixed vector space, each properly contained in
- the nexy; it is a complete flag if each has one dimension larger than the preceding, and partial
" otherwise.
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O=VocWechec -V cl=R,

where V; is the span of the standard basis vectors ¢, ..., ¢;. Note that choosing
a different basis and correspondingly a different flag yields a different sub-
group of GL,R, but one isomorphic to (indeed, conjugate to) B,. Somewhat
more generally, for any sequence of positive integers a,, ..., a, with sum n we
can look at the group of block-uppes-triangulas matrices; this is the subgroup
of automorphisms of R” preserving a partial flag

0=VOCVICV2C"'CI4_|CV1=R",

where the dimension of V;isa, + -+ + a,. Il the subspace V; is spanned by the
firsta, + -+ 4 a;basis vectors, the group will be the set of matrices of the forin

N }a,
0 £ 1% | }a,
010} =

010101« / }a,

The group N, of upper-triangular unipotent matrices (that is, upper triangular
with 1's on the diagonal); equivalently, the subgroup of automorphisms of R”
preserving the complete flag {V;} where ¥, is the span of the standard basis
vectorse,,..., ¢, and acting as the identity on the successive quotients V,,,/V;.
As before, we can, for any sequence of positive integers a,, ..., a, with sum n,
look at the group of block-upper-triangular unipotent matrices; this is the
subgroup of automorphisms of R" preserving a partial flag and acting as
the identity on successive quotients, i.e., matrices of the form

Il x]x]|= }al
Of1]*[{* |}a,
0|0 *

0101011 Yay

Next, there are the subgroups of GL,R defined as the group of transforma-
tions of V' = R" of deterininant 1 preserving some bilinearform Q: V x V — V.
If the bilinear form @ is symmetric and positive definite, the group we get
is called the (special) orthogonal group SO,R (sometimes written SO(n); see
p- 100). If Q is symmetric and nondegenerate but not definite—e.g,, if it has k
positive eigenvalues and I negative—the group is denoted SO, ;R or SO(k, I);
note that SOk, I} @ SO(, k). If Q is skew-symmetric and nondegenerate, the
group is called the symplectic group and denoted Sp,R; note that in this case
n must be even.

The equations that define the subgroup of GL,R preserving a bilinear form -
Q are easy to write down. If we represent Q by a matrix M —that is, we write

O, w)="v-M-w
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for all v, w € R"—then the condition
Q(Av, Aw) = Q(v, w)
translates into the condition that
YvA-MAw="v-Mw
for all v and w; this is equivalent to saying that
‘A-M-4=M.

Thus, for example, if Q is the symmetric form Q(v, w) = ‘v-w given by the
identity matrix M = I, the group SO, R is just the group of n x n real matrices
A4 of determinant 1 such that ‘4 = A",

Exercise 7.1*. Show that in the case of Sp,,R the requirement that the
transformations have determinant 1 is redundant; whereas in the case of SO, R
if we do not require the transformations to have determinant | the group we
get (denoted O, R, or sometimes O(n)) is disconnected.

Exercise 7.2*, Show that SO(k, I) has two connected components if k and [ are
both positive. The connected component containing the identity is often
denoted SO*(k, I). (Composing with a projection onto R* or R/, we may
associate to an automorphism A e SO(k, I) automorphisms of R* and R';
SO*(k, I) will consist of those 4 € SO(k, I} whose associated automorphisms
preserve the orientations of R* and R')

Note that if the form Q is degenerate, a transformation preserving Q will
carry its kernel

Ker(Q)={ve V:Q(v,w)=0¥we V}

into itself; so that the group we get is simply the group of matrices preserving
the subspace Ker(Q) and preserving the induced nondegenerate form § on the
quotient V/Ker(Q). Likewise, if Q is a general bilinear form, that is, neither
symmetric nor skew-symmetric, a linear transformation preserving Q will
preserve the symmetric and skew-symmetric parts of Q individually, so we just
get an intersection of the subgroups encountered already. At any rate, we
usually limit our attention to nondegenerate forms that are either symmetric
or skew-symmetric.

Of course, the group GL, C of complex linear automorphlsms ol a complex
vector space V = C" can be viewed as subgroup of the general linear group
GL,,R; it is, thus, a real Lie group as well, as is the subgroup SL,C of n x n
complex matrices of determinant 1. Similarly, the subgroups SO,C < SL,C
and Sp,,C < SL,,C of transformations of a complex vector space preserving
a symmetric and skew-symmetric nondegenerate bilinear form, respectively,
. are real as well as complex Lie subgroups. Note that since all nondegenerate
. bilinear symmetric [orms on a complex vector space are isomorphic (in partic-
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ular, there is no such thing as a signature), there is only one complex
orthogonal subgroup SO,C = SL,C up to conjugation; there are no analogs
of the groups SO, ,R.

Another example we can come up with here is the unitary group U, or U(n),
defined to be the group of complex linear automorphisms of an n-dimensional
complex vector space V preserving a positive definite Hermitian inner product
H on V. (A Hermitian form H is required to be conjugate linear in the
first? factor, and linear in the second: H(Zv, uw) = 2H(v, w), and H(w, v) =
H{v, w); it is positive definite if H(v, v) > 0 for v # 0.)

Just as in the case of the subgroups SO and Sp, it is easy to write down the
equations for U(n): for some n x n matrix M we can write the form H as

How="95Mw VoweC"

(note that for H to be conjugate symmetric, M must be conjugate symmetric,
ie,'M = M); then the group U(n) is just the group of n x n complex matrices
A satisfying

YU-M-A=M.

In particular, if H is the “standard” Hermitian inner product H(v, w) = T- w
given by the identity matrix, U(n) will be the group of n x r complex matrices
Asuch that'4 = A",

Exercise 7.3. Show that if H is a Hermitian form on a complex vector space
V, then the real part R = Re(H) of H is a symmetric form on the underlying
real space, and the imaginary part C = Im(H) is a skew-symmelric real
form; these are related by C(v, w) = R(iv, w). Both R and C are invariant by
multiplication by i: R(iv, iw) = R(v, w). Show conversely that any such real
symmetric R is the real part of a unique Hermitian H. Show that if H is
standard, so is R, and C corresponds to the matrix J = 01 8) Deduce
n

that
Um) = 0(2n)n Sp,,R.

Note that the determinant of a unitary matrix can be any complex number
of modulus 1; the special unitary group, SU(n), is the subgroup of U(n) of
automorphisms with determinant [. The subgroup of GL,C preserving an
indefinite Hermitian inner product with k positive eigenvalues and I negative
ones is denoted U, , or U(k, I); the subgroup of those of determinant 1 is
denoted SU, ; or SU(k, I).

In a similar vein, the group GL,H of quaternionic linear automorphisms
of an n-dimensional vector space V over the ring H of quaternions is a real

2 This choice of which factor is linear and which conjugate linear is less common than the other.
It makes little difference in what follows, but it does have the small advantage of being compalible
with the natural choice for quaternions.
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Lie subgroup of the group GL,,R, as are the further subgroups of H-linear
transformations of V preserving a bilinear form. Since H is not commutative,
care must be taken with the conventions here, and it may be worth a little
digression to go through this now. We take the vector spaces V to be right
H-modules; H" is the space of column vectors with right multiplication by
scalars. In this way the n x n matrices with entries in H act in the usual way
on H" on the left, Scalar multiplication on the left (only) is H-linear.

View H = C @ jC = C2 Then left multiplication by elements of I give
C-linear endomorphisms of C?, which determines a mapping H — M,C to
the 2 x 2 complex matrices. In particular, H* = GL,H < GL,C. Similarly
H" = C"@ jC" = C?", so we have an embedding GL,H < GL,,C. Note that
a C-linear mapping ¢: H" = H" is H-linear exactly when it commutes with
J: o) = o). If v = v, + jv,, then v-j = —7, + jv,, so multiplication by
jtakes( ' ) to (0 _’) (E') It follows that if J is the matrix of the preceding

Uy I 0 U, :
exercise, then

GL,H = {4 € GL,,C: AJ = JA}.

Those matrices with real determinant 1 form a subgroup SL,H.

A Hermitian form(or “symplectic scalar product™) on a quaternionic vector
space V is an R-bilinear form K: V x V — H that is conjugate H-linear in the
first factor and H-linear in the second: K(vA, wu) = AK(v, w)p, and satisfies
K(w, v) = K(v, w). It is positive definite if K(v, v} > 0 for v # 0. (The conjugate
Tof a quaternion A = a + bi + ¢j + dk is defined to be a — bi — ¢j — dk.) The
standard Hermitian form on H" is Zt;w;. The group of automorphisms of an
n-dimensional quaternionic space preserving such a form is called the compact
symplectic group and denoted Sp(n) or Uy, (n). The standard Hermitian form on
H" is Zv,w,.

Exercise 7.4. Regarding V as a complex vector space, show that every quater-
nionic Hermitian form K has the form

K(v, w) = H(v, w) + jQ(v, W),

where H is a complex Hermitian form and Q is a skew-symmetric complex
linear form on V, with H and Q related by Q(v, w) = H(yj, w), and I satisfying
the condition H(vj, wj) = H(v, w). Conversely, any such Hermitian H is the
complex part of a unique K. If K is standard, so is H, and @ is given by the
same matrix as in Exercise 7.3. Deduce that

Sp(n) = U@2n)n Sp,,C.

This shows that the two notions of “symplectic” are compatible.

More generally, if K is not positive definite, but has signature (p, q), say the
standard ) §_, T;w, — 3 734, B,w;, the automorphisms preserving it form a
group U, H. Or if the form is a skew Hermitian form (satisfying the same
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linearity conditions, but with K(w,v) = —K(v, w)), the group is denoted
U

Exercise 7.5. Identify, among all the real Lie groups described above, which
ones are compact.

Complex Lie Groups

So far, all of our examples have been examples of real Lie groups. As for
complex Lie groups, these are fewer in number. The general linear group GL,C
is one, and again, all the elementary examples come to us as subgroups of the
general linear group GL,C. There is, for example, the subgroup SO,C of
automorphisms of an n-dimensional complex vector space V having deter-
minant 1 and preserving a nondegenerate symmetric bilinear form Q (note
that @ no longer has a signature); and likewise the subgroup Sp,C of trans-
formations of determinant 1 preserving a skew-symmetric bilinear form.

Exercise 7.6. Show that the subgroup SU(n) = SL,C is not a complex Lie
subgroup. (It is not enough to observe that the defining equations given above
are not holomorphic.)

Exercise 7.7. Show that none of the complex Lie groups described above is
compact.

We should remark here that both of these exercises are immediate con-
sequences of the general fact that any compact complex Lie group is abelian;
we will prove this in the next lecture. A representation of a complex Lie group
G is a map of complex Lie groups from G to GL(V)= GL,C for an n-
dimensional complex vector space V; note that such a map is required to be
complex analytic.

Remarks on Notation

A common convention is to use a notation without subscripts or mention of
ground field to denote the real groups:

Om), SOMm), SO(p,q), U(n), SUm), SU(pg), Sp()

and Lo use subscripts for the algebraic groups GL,, SL,, SO,, and Sp,. This,
of course, introduces some anomalies: for example, SO, R is SO(n), but Sp,R
is not Sp(n); but some violation of symmetry seems inevitable in any notation.
The notations GL(n, R) or GL(n, C) are often used in place of our GL,R or
GL,C, and similarly for SL, SO, and Sp.

Also, where we have written Sp,,,, some write Sp,.. In practice, it seems that
those most interested in algebraic groups or Lie algebras use the former
notation, and those interested in compact groups the latter. Other common
notations are U*(2n) in place of our GL,H, Sp(p, q) for our U, H, and
O*(2n) for our UXH.
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Exercise 7.8. Find the dimensions of the various real Lie groups GL,R, SL, R,
B,, N,, SO,R, SO, ;R, Sp,,R, U(n), SU(n), GL,C, SL,C, GL,H, and Sp(n)
introduced above.

§7.3. Two Constructions

There are two constructions, in some sense inverse to one another, that arise
frequently in dealing with Lie groups (and that also provide us with further
examples of Lie groups). They are expressed in the following two statements.

Proposition 7.9. Let G be a Lie group, H a connected manifold, and ¢: H - G a
covering space map.® Let ¢’ be an element lying over the identity e of G. Then
there is a unique Lie group structure on H such that e’ is the identity and ¢ is
amap of Lie groups; and the kernel of ¢ is in the center of H.

Proposition 7.10. Let H be a Lie group, and I’ < Z(H) a discrete subgroup of
its center. Then there is a unique Lie group structure on the quotient group
G = H/I such that the quotient map H — G is a Lie group map.

The proof of the second proposition is straightforward. To prove the first, one
shows that the multiplication on G lifts uniquely to a map H x H — H which
takes (¢', e’) to ¢', and verifies that this product satisfies the group axioms. In
fact, it suffices to do this when H is the universal covering of G, for one can
then apply the second proposition to intermediate coverings. 0O

Exercise 7.11*. (a) Show that any discrete normal subgroup of a connected
Lie group G is in the center Z(G).
(b) If Z(G) is discrete, show that G/Z(G) has trivial center.

These two propositions motivate a definition: we say that a Lie group map
between two Lie groups G and H is an isogeny if it is a covering-space map
of the underlying manifolds; and we say two Lie groups G and H are isogenous
if there is an isogeny between them (in either direction). Isogeny is not an
equivalence relation, but generates one; observe that every isogeny equiv-
alence class has an initial member (that is, one that maps to every other one
by an isogeny)—that is, just the universal covering space G of any one—and,
if the center of this universal cover is discrete, as will be the case for all our
semisimple groups, a final object G/Z(G) as well. For any group G in such an
equivalence class, we will call G the simply connected form of the group G, and
G/Z(C) (if it exists) the adjoint form (we will see later a more general definition
of adjoint form).

3 This means that ¢ is a continuous map with the property that every point of G has a
neighborhood U such that ¢~'(U) is a disjoint union of apen sets each mapping homeomor-
phically to U.
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Exercise 7.12. If [ - G is a covering of connected Lie groups, show that Z(G)
is discrete if and only if Z(H) is discrete, and then H/Z(H) = G/Z(G). There-
fore, if Z(G) is discrete, the adjoint form of G exists and is G/Z(G).

To apply these ideas to some of the examples discussed, note that the center
of SL, (over R or C) is just the subgroup of multiples of the identity by an nth
root of unity; the quotient may be denoted PSL, R or PSL,C. In the complex
case, PSL,C is isomorphic to the quotient of GL,C by its center C* of scalar
matrices, and so one often writes PGL,C instead of PSL,C. The center of the
group SO, is the subgroup { + I} when n is even, and trivial when n is odd; in
the former case the quotient will be denoted PSO,R or PSO,C. Finally the
center of the group Sp,, is similarly the subgroup {1}, and the quotient is
denoted PSp,,R or PSp,,C.

Exercise 7.13*, Realize PGL,C as a matrix group, i.e, find an embedding
(faithful representation) PGL,C <» GL,C for some N. Do the same for the
other quotients above.

In the other direction, whenever we have a Lie group that is not simply
connected, we can ask what its universal covering space is. This is, for example,
how the famous spin groups atise: as we will see, the orthogonal groups SO, R
and SO,C have fundamental group Z/2, and so by the above there exist
connected, two-sheeted covers of these groups. These are denoted Spin,R and
Spin,C, and will be discussed in Lecture 20; for the time being, the reader may
find it worthwhile (if frustrating) to try to realize these as matrix groups. The
fast exercises of this section sketch a few steps in this direction which can be
done now by hand.

Exercise 7.14. Show that the universal covering of U(n) can be identified
with the subgroup of the product U(n) x R consisting of pairs (g, 1) with
det(g) = e™.

Exercise 7.15. We have seen in Exercise 7._4 that

SU(2)=Sp2) = {qgeH:q7 = 1}.

Identifying R* with the imaginary quaternions (with basis i, j, k), show that,
for g7 = 1, the map vi— qu maps R? to itself, and is an isometry. Verily that
the resulting map

SUQ) = Sp(2) —» SO(3)

is a 2: I covering map. Since the equation q§ = 1 describes a 3-sphere, SU(2)
is the universal covering of SO(3); and SO(3) is the adjoint form of SU(2).

Exercise 7.16. Let M,C = C* be the space of 2 x 2 matrices, with symmetric
form Q(A, B) = } Trace(AB%), where B* is the adjoint of the matrix B; the
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quadratic form associated to Q is the determinant. For g and 4 in SL,C, the
mapping A~ gAh™" is in SO,C. Show that this gives a 2 : | covering

SL,C x SL,C —» SQ,C,
which, since SL,C is simply connected, realizes the universal covering of
S0,C.
Exercise 7.17. Identify C* with the space of traceless matrices in M,C, so
g e SL,C acts by A+>gAg~'. Show that this gives a 2 : | covering
SL,C - SO,C,

which realizes the universal covering of SO, C.



LECTURE 8

Lie Algebras and Lie Groups

In this crucial lecture we introduce the definition of the Lie algebra associated to a Lie .
group and its relation to that group. All three sections are logically necessary for what
follows; §8.1 is essential. We use here a little more manifold theory: specifically, the
differential of a map of manifolds is used in a fundamental way in §8.1, the notion of
the tangent vector to an arc in a manifold is used in §8.2 and §8.3, and the notion of a
vector field is introduced in an auxiliary capacity in §8.3. The Campbell-Hausdorff
formnula is introduced only to establish the First and Second Principles of §8.1 below;
if you are willing to take those on faith the formula (and exercises dealing with it) can
be skimmed. Exercises 8.27-8.29 give alternative descriptions of the Lie algebra
associated to a Lie group, but can be skipped for now.

§8.1: Lie algebras: motivation and definition
§8.2: Examples of Lie algebras
§8.3: The exponential map

§8.1. Lie Algebras: Motivation and Definition

Given that we want to study the representations of a Lie group, how do we
go about it? As we have said, the notions of generators and relations is hardly
relevant here. The answer, of course, is that we have to use the continuous
structure of the group. The first step in doing this is

Exercise 8.1. Let G be a connected Lie group, and U = G any neighborhood
of the identity. Show that U generates G.

This statement implies that any map p: G — H between connected Lie
groups will be determined by what it does on any open set containing the
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identity in G, i.e, p is determined by its germ at e € G. In fact; we can extend
this idea a good bit further: later in this lecture we will establish the

First Principle: Let G and H be Lie groups, with G connected. Amap p: G - H
is uniquely determined by its differential dp,: T,G — T,H at the identity.

This is, of course, great news: we can completely describe a homomorphism
of Lie groups by giving a linear map between two vector spaces. It is not really
worth that much, however, unless we can give at least some answer to the
next, obvious question: which maps between these two vector spaces actually
arise as differentials of group homomorphisms? The answer to this is expressed
in the Second Principle below, but it will take us a few pages to get there. To
start, we have to ask ourselves what it means for a map to be a homomor-
phismn, and in what ways this may be reflected in the differential.

To begin with, the definition of a homomorphism is simply a ¥ map
such that :

p(gh) = p(g)- p(h)

for all g and h in G. To express this in a2 more confusing way, we can say that
a homomorphism respects the action of a group on itself by left or right multi-
plication: that is, for any g € G we denote by m,: G — G the differentiable map
given by multiplication by g, and observe that a ¥ map p: G — H of Lie
groups will be a homomorphism if it carries m, to m,, in the sense that the
diagram

(LA

G
"‘nl Mgy
G

_)H
I

commutes. .

The problem with this characterization is that, since the maps m, have no
fixed points, it is hard to associate to them any operation on the tangent space
to G at one point. This suggests looking, not at the diffeornorphisms m,, but
at the automorphisms of G given by conjugation. Explicitly, for any g € G we
define the map

¥Y,:6-G
by
Wyh)y=g-h-g™".
(¥, is actually a Lie group map, but that is not relevant for our present
purposes.) It is now equally the case that a homomorphism p respects the action

of agroup G on itself by conjugation: that is, it will carry ¥, into ¥, in the
sense that the diagram
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6 —2> H

""l 1“’»m

G — H
commutes. We have, in other words, a natural map
Y: G - Aut(G).

The advantage of working with ¥, is that it fixes the identity element e € G;
we can therefore extract some of its structure by looking at its differential at
e: we set

Ad(g) = (d¥,).: T.G - T,G. (8.2)
This is a representation
Ad: G - Aut(T,G) (8.3)

of the group G on its own tangent space, called the adjoint representation of
the group. This gives a third characterization': a homomorphism p respects the
adjoint action of a group G on its tangent space T,G at the identity. In other
words, for any g € G the actions of Ad(g) on T,G and Ad(p(g)) on T,H must
comnmute with the diflerential (dp),: T,G - T,H, i.e., the diagram

T,G =, TH

Ad(g)]

T.G —— T,H

(dp)e
commutes; equivalently, for any tangent vector v € 7,G,

dp(Ad(g)(v)) = Ad(p(g)){dp(v))- (34

This is nice, but does not yet answer our question, for preservation of the
adjoint representation Ad: G — Aut(T,G)still involves the map p on the group
G itself, and so is not purely a condition on the differential (dp),. We have
instead to go one step further, and take the differential of the map Ad. The
group Aut(7,G) being just an open subset of the vector space of endomor-
phisms of T,G, its tangent space at the identity is naturally identified with
End(T, G); taking the differential of the map Ad we arrive at a map

ad: T,G — End(T,G). (8.5)

Ad(p(g)

This is essentially a trilinear gadget on the tangent space T,G; that is, we can
view the image ad(X)(Y) of a tangent vector Y under the map ad(X) as a

! “Characterization” is not the right word here (or in the preceding case), since we do not
mean an equivalent condition, but rather something implied by the condition that p be a
homomorphism.
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function of the two variables X and Y, so that we get a bilinear map
T.G x T,G -» T,G.

We use the notation [ , ] for this bilinear map; that is, for a pair of tangent
vectors X and Y to G at e, we write
[X, Y1= ad(x)(Y). (86)
As desired, the map ad involves only the tangent space to the group G at
e, and so gives us our final characterization: the differential (dp), of a homo-
morphism p on a Lie group G respects the adjoint action of the tangent space
to G on itself. Explicitly, the fact that p and dp, respect the adjoint represen-
tation implies in turn that the diagram

.6 % TH

ad(u)[ [ad(dp(vn

T.G —m TH
commutes; i.e., for any pair of tangent vectors X and Y to G at e,
dp(ad(X)(Y)) = ad(dp (X)) (dp.(Y)). 3.7
or, equivalently,
dp[X, Y1) = [dp(X), dp.(Y)]. (8.8)

All this may be fairly conlusing (if it is not, you probably do not need to
be reading this book). Two things, however, should be borne in mind. They
are;

(i) It is not so bad, in the sense that we can make the bracket operation,
as defined above, reasonably explicit. We do this first for the general linear
group G = GL,R. Note that in this case conjugation extends to the ambient
linear space E = End(R") = M, R of GL,R by the same formula: Ad(g}(M) =
gMg™!, and this ambient space is identified with the tangent space 7,G;
differentiation in E is usual differentiation of matrices. For any pair of tangent
vectors X and Y to GL,R at e, let y: I — G be an arc with y(0) = ¢ and tangent
vector y'(0) = X. Then our definition of [X, Y] is that

X, Y] = ad(X)(Y) =:—t _O(Ad(v(t))(Y))-

Applying the product rule to Ad(p())(Y) = y() Yy{t) !, this is
=7(0): ¥ -y(0) + y(0) Y- (—3(0)""-y'(0)- y(0) ")
=XY-Y X, '

' which, of course, explains the bracket notation. In general, any time a Lie
group is given as a subgroup of a general linear group GL,R, we can view its
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tangent space T,G at the identity as a subspace of the space of endomorphisms
of R"; and since bracket is preserved by (differentials of ) maps of Lie groups,
the bracket operation on T,G will coincide with the commutator.

(ii) Even if it were that bad, it would be worth it. This is because it turns out
that the bracket operation is exactly the atuswer to the question we raised
before. Precisely, later in this lecture we will prove the

Second Principle: Let G and H be Lie groups, with G connected and simply
connected. A linear map T,G — T_H is the differential of a homomorphism
p: G — H il and only if it preserves the bracket operation, in the sense of (8.8)
above.

We are now almost done: maps between Lie groups are classified by maps
between vector spaces preserving the structure of a bilinear map from the
vector space to itself. We have only one more question to answer: when does
a vector space with this additional structure actually arise as the tangent space
at the identity to a Lie group, with the adjoint or bracket product? Happily,
we have the answer to this as well. First, though it is far from clear from our
initial definition, it follows from our description of the bracket as a commu-
tator that the bracket is skew-symmetric, i.e, [X, Y] = —[Y, X]. Second, it
likewise follows from the description of [ X, Y] as a commutator that it
satisfies the Jacobi identity: for any three tangent vectors X, Y, and Z,

[X,[Y,Z11+[Y,(Z, X1 +[Z,[X, Y]] =0.
We thus make the

Definition8.9, A Lie algebra g is a vector space together with a skew-symmetric
bilinear map

[, lgxg—g
satisfying the Jacobi identity.

We should take a moment out here to make one important point. Why,
you might ask, do we define the bracket operation in terms of the relatively
difficult operations Ad and ad, instead of just defining [X, Y] to be the
cominutator X-Y — Y- X? The answer is that the “composition” X-Y of
elements of a Lie algebra is not well defined. Specifically, any time we embed
a Lie group G in a general linear group GL(V), we get a corresponding
embedding of its Lie algebra ¢ in the space End(V), and can talk about the
composition X - Y € End(V) of elements of g in this context; but it must be
borne in ind that this composition X - Y will depend on the embedding of
¢, and for that matter need not even be an element of g. Only the commutator
XY — Y- X isalways an element of g, independent of the representation. The
terminology sometimes heightens the confusion: for example, when we speak
of embedding a Lie algebra in the algebra End{V') of endomorphisms of ¥, the
word algebra may mean two very diflerent things. In general, when we want
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to refer to the endomorphisms of a vector space V (resp. R”) as a Lie algebra,
we will write gl(V) (resp. gl,R) instead of End(V) (resp. M, R).

To return to our discussion of Lie algebras, a mmap of Lie algebras is a linear
map of vector spaces preserving the bracket, in the sense of (8.8); notions like
Lie subalgebra are defined accordingly. We note in passing one thing that will
turn out to be significant: the definition of Lie algebra does not specify the
field. Thus, we have real Lie algebras, complex Lie algebras, etc., all defined
in the same way; and in addition, given a real Lie algebra g we may associate
to it a complex Lie algebra, whose underlying vector space is g ® C and whose .
bracket operation is just the bracket on g extended by linearity.

Exercise 8.10*. The skew-commutativity and Jacobi identity also follow from
tlie naturality of the bracket (8.8), without using an embedding in gl{(V}):

{a) Deduce the skew-commutativity [X, X] = 0from that fact that any X can
be written the image of a vector by dp, for some homomorphism p: R - G.
{See §8.3 for the existence of p.)

(b) Given that the bracket is skew-commutative, verify that the Jacobi identity
is equivalent to the assertion that

ad = d(Ad),: g — End(g)
preserves the bracket. In particular, ad is a map of Lie algebras.

To sum up our progress so far: taking for the moment on faith the state-
ments made, we have seen that

(i) the tangent space g at the identity to a Lie group G is naturally endowed
with the structure of a Lie algebra;

(i) if G and H are Lie groups with G connected and simply connected,
the maps from G to H are in one-to-one correspondence with maps of
the associated Lie algebras, by associating to p: G - H its diflerential
dp)e:g— .

Of course, we make the
Definition 8.11. A representation of a Lie algebra g on a vector space V is
simply a map of Lie algrbras
p:g->gl(V) = End(V),
ie, a linear map that preserves brackets, or an action of g on V such that

[X, Y](v) = X(Y(v)) — Y(X(0)).

Statement (ii) above implies in particular that representations of a connected
and simply connected Lie group are in one-to-one correspondence with repre-
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sentations of its Lie algebra. This is, then, the first step of the series of
reductions outlined in the introduction to Part I1.

At this point, a few words are in order about the relation between repre-
sentations of a Lie group and the corresponding representations of its Lie
algebra, The first remark to make is about tensors. Recall that if V and W are
representations of a Lie group G, then we define the representation V' ® W to
be the vector space ¥ ® W with the action of G described by

glv ® w) = g(v) ® g(w).

The delinition for representations of a Lie algebra, however, is quite different.
For one thing, if g is the Lie algebra of G, so that the representation of G on
the vector spaces V and W induces representations of g on these spaces, we
want the tensor product of the representations V and W of g to be the
representation induced by the action of G on ¥ @ W above. But now suppose
that {y} is an arc in G with y, = e and tangent vector y, = X € q. Then by
definition the action of X on V is given by

%(v)

=0

X(v)=%

and similarly for w € W; it follows that the action of X on the tensor product
v wis

(7.(v) ® %(w))

1=0
_ d
=\ -0 %(w) ),

Xo@w)=X0)Qw+ v® X(w). (8.12)

This, then, is how we define the action of a Lie algebra g on the tensor product
of two representations of g. This describes as well other tensors: for example,
if V is a representation of the group G, v € V is any vector and v € Sym? V
its square, then for any g € G,

Xo® w)=;1d—t

o'y,(v)>® w4+ v®(g~t

SO

g(v?) = g(v)’.

On the other hand, if V is a representation of the Lie algebra g and X e g is
any element, we have

X(?)=2-v-X(v). {8.13)

One further example: if p: G — GL(V) is a representation of the group G, the
dual representation p': G -+ GL(V*) is defined by setting

plg)="p(g7):V*—>V*
Differentiating this, we find that if p: g — gl(V) is a representation of a Lie
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algebra g, the dual representation of g on V* will be given by
pX)="p(—X)= —'p(X): V* > V* (8.14)

A second and related point to be made concerns terminology. Obviously,
when we speak of the action of a group G on a vector space V preserving some
extra structure on ¥, we mean that literally: for example, if we have a quadratic
form Q on V, to say that G preserves Q means just that

Q(Q(U), g(W)) = Q(D, W), Vg eG and v,we V.

Equivalently, we mean that the associated action of G on the vector space
Sym2V* fixes the element Q € Sym?V*. But by the above calculation, the
action of the associated Lie algebra g on V satisfies

o, X(W)) + 0(X(v),w) =0, YXegandv,weV (8.15)

or, equivalently, Q(v, X(¢)) = 0 for all X € g and v € V; in other words, the
induced action on Sym?V* Lkills the element Q. By way of terminology, then,
we will in general say that the action of a Lie algebra on a vector space preserves
some structure when a corresponding Lie group action does.

The next section will be spent in giving examples. In §8.3 we will establish
the basic relations between Lie groups and their Lie algebras, to the point
where we can prove the First and Second Principles above. The further
statement that any Lie algebra is the Lie algebra of some Lie group will foliow
from the statement (see Appendix E) that every Lie algebra may be embedded
in gl,R.

Exercise 8.16*. Show that if G is connected the image of Ad: G — GL(g) is the
adjoint form of the group G when that exists.

Exercise 8.17* Let V be a representation of a connected Lie group G and
p: ¢ — End(V) the corresponding map of Lie algebras. Show that a subspace
W of V is invariant by G if and only if it is carried into itself under the action

. of the Lie algebra g, i.e., p(X)(W) = W for all X in g. Hence, V is irreducible
over G if and only if it is irreducible over g.

§8.2. Examples of Lie Algebras

We start with the Lie algebras associated to each of the groups mentioned in
Lecture 7. Each of these groups is given as a subgroup of GL(V) = GL,R, so
their Lie algebras will be subspaces of End(V’) = gl R.

Consider first the special linear group SL,R. If {4,} is an arc in SL R with
Ao = I and tangent vector Ay = X at ¢ = 0, then by definition we have for
any basis ey, ..., e, of V = R",

Afe)n - AAfe)=e A Ae,
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Taking the derivative and evaluating at t = 0 we have by the product rule

0= 7 (Al a-aAge)

t
=Ye A AX(e)A - Ae,
= Trace(X) (e, A *** A e,).

The tangent vectors to SL,, R are thus all endomorphisms of trace 0; comparing
dimensions we can see that the Lie algebra sl,R is exactly the vector space of
traceless 11 x n matrices.

The orthogonal and symplectic cases are somewhat simpler. For example,
the orthogonal group O,R is defined to be the automorphisms A of an
n-dimensional vector space V preserving a quadratic form @, so that if {4}
is an arc in O,R with A, = I and Ay = X we have [or every pair of vectors v,
weV

Q(A(v), A(w)) = Q(v, w).
Taking derivatives, we see that
2(X(v),w) + Q(v, X(w)) =0 (8.18)

for all v, w € V; this is exactly the condition that describes the orthogonal Lie
algebra so,R = 0,R. In coordinates, if the quadratic form Q is givenon V = R"
as

Q,w)y="v-M-w (8.19)

for some symmetric n x n matrix M, then as we have seen the condition on
A€ GL,R to be in O,R is that

A-M-A =M. (8.20)

Differentiating, the condition on an n x n matrix X to be in the Lie algebra
so0, R of the orthogonal group is that

X M+M-X=0 (8.21)

Note that if M is the identity matrix—i.e., @ is the “standard” quadratic
form @(v, w) = "v- w on R"—then this says that so,R is the subspace of skew-
symmetric n x n matrices. To put it intrinsically, in terms of the identification
of V with V* given by the quadratic form @, and the consequent identification
End(V) =V ® V* = V @ V, the Lie algebra so,R = End(V) is just the sub-
space A’V < V ® V of skew-symmetric tensors:

s0,R = A’V c End(V) = VQ V. (8.22)

All of the above, with the exception of the last paragraph, works equally
well to describe the Lie algebra sp,,R of the Lie group Sp,,R of transforma-
tions preserving a skew-symmetric bilinear form Q; that is, sp,,R is the
subspace of endomorphisms of V satisfying (8.18) for every pair of vectors v,
we V, or, if Q is given by a skew-symmetric 2n x 2n matrix M as in (8.19), the
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space of matrices satisfying (8.21). The one statement that has to be substan-
tially modified is the last one of the last paragraph: because Q is skew-
symmetric, condition (8.18) is equivalent to saying that

QX (v), w) = Q(X (W), v)

for all v, we V; thus, in terms of the identification of V with V* given
by @, the Lie algebra sp,,Rc End(V)=V @ V* = V'@ V is the subspace
Sym*VecvQ®V:

5p,aR = Sym?V c End(V) = V @ V. 8.23)

Exercise 8.24*. With Q a standard skew form, say of Exercise 7.3, describe
Sp,,R and its Lie algebra sp,,R (as subgroup of GL,,R and subalgebra of
gl,,R). Do a corresponding calculation for SO, ;R.

One more similar example is that of the Lie algebra u,, of the unitary group
U(n); by a similar calculation we find that the Lie algebra of complex linear
endomorphisms of C" preserving a Hermitian inner product H is just the space
of matrices X satisfying

H{X(v),w)+ Hlv, X(w)) =0, Yv,weV;

if H is given by H(v, w) = '7- w, this amounts to saying that X is conjugate
skew-symmetric, i.e., that 'X = — X,

Exercise 8.25. Find the Lie algebras of the real Lie groups SL,,C and SL,, 11—
the elemeats in GL,H whose real determinant is 1.

Exercise 8.26. Show that the Lie algebras of the Lie groups B, and N, intro-
duced in §7.2 are the algebra b,R of upper triangular n x n matrices and the
algebra 11, R of strictly upper triangular n x n matrices, respectively.

If G is a complex Lie group, its Lie algebra is a complex Lie algebra. Just
as in the real case, we have the complex Lie algebras gl,C, sl,C, s0,C, and
p,,C of the Lie groups GL,C, SL,C, SO,,C, and Sp,,C.

Exercise 8.27. Let A be any (real or complex) algebra, not necessarily [inite
dimensional, or even associative. A derivation is a linear map D: A - A satis-
fying the Leibnitz rule D(ab) = aD(b) + D(a)b.

(a) Show that the derivations Der(A) form a Lie algebra under the bracket
[P, E] = Do E — E o D. If Aisfinite dimensional, so is Der(A).

. (b) The group of automorphisms of A is a closed subgroup G of the group
GL(A) of linear automorphisms of A. Show that the Lie algebra of G is
Der(A).

{c) If the algebra A is a Lie algebra, the map A — Der(A), X +- Dy, where
Dy(Y)=[X, Y], is a map of Lie algebras.
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Exercise 8.28*. If g is a Lie algebra, the Lie algebra automorphisms of g form
a Lie subgroup Aut(g) of the general linear group GL(g).

{a) Show that the Lie algebra of Aut(g) is Der(g). If G is a simply connected
Lie group with Lie algebra g, the map Aut(G) — Aut(q) by ¢+ody is
one-to-one and onto, giving Aut(G) the structure of a Lie group with Lie
algebra Der(g).

(b) Show that the automorphism group of any connected Lie group is a Lie
subgroup of the automorphism group of its Lie algebra.

Exercise 8.29* For any manifold M, the C* vector fields on M form a Lie
algebra v(M), as follows: a vector field v can be identified with a derivation of
the ring A of C™ functions on M, with v(/) the function whose value ata
point x of M is the value of the tangent vector v, on f at x. Show that the
vector fields on M form a Lie algebra, in fact a Lie subalgebra of the Lie
algebra Der(A). If a Lie group G acts on M, the G-invariant vector fields form
a Lie subalgebra vy M of o(M). If the action is transitive, the invariant vector
fields form a finite-dimensional Lie algebra.

If G is a Lie group, v5(G) = T,G becomes a Lie algebra by the above
process. Show that this bracket agrees with that defined using the adjoint map
(8.6). This gives another proof that the bracket is skew-symmetric and satisfies
Jacobi’s identity.

§8.3. The Exponential Map

The essential ingredient in studying the relationship between a Lie group G
and its Lie algebra q is the exponential map. This may be defined in very
straightforward fashion, using the notion of one-parameter subgroups, which
we study next. Suppose that X € g is any element, viewed simply as a tangent
vector to G at the identity. For any element g € G, denote by m,: G - G the
map of manifolds given by multiplication on the left by g. Then we can define
a vector field vy on all of G simply by setting

vx(g) = (m,),(X).

This vector field is clearly invariant under left translation (i.e,, it is carried
into itself under the diffeomorphism m, for all g); and it is not hard to see that
this gives an identification of g with the space of all lelt-invariant vector fields
on G. Under this identification, the bracket operation on the Lie algebra g
corresponds to Lie bracket of vector fields; indeed, this may be adopted as the
definition of the Lie algebra associated to a Lie group (cf. Exercise 8.29). For
our present purposes, however,'all we need to know is that vy exists and is
left-invariant.

Given any vector field v on a manifold M and a point pe M, a basic
theorem from differential equations allows us to integrate the vector field. This
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gives a diflerentiable map ¢: 7 — M, defined on some open interval I con-
taining 0, with ¢{0) = p, whose tangent vector at any point is the vector
assigned to that point by v, i.e., such that

@'(1) = v(e(1)

for all t in I. The map ¢ is uniquely characterized by these properties. Now
suppose the manifold in question is a Lie group G, the vector field the field
vy associated to an element X € g, and p the identity. We arrive then at a map
@: I - G; we claim that, at least where ¢ is defined, it is a homomorphism, i.e.,
o(s + t) = @(s)p(t) whenever s, t, and s + t are in I. To prove this, fix s and
let ¢ vary; that is, consider the two arcs « and f§ given by a(t) = ¢(s) ¢{t) and
B(t) = @(s + t). Of course, a(0) = f(0); and by the invariance of the vector field
vy, we see that the tangent vectors satisfy o (t) = v,(x(t)) and fi'(t) = v, (f(1))
for all ¢. By the uniqueness of the integral curve of a vector lield on a manifold,
we deduce that a{t) = f(t) for all ¢. :

From the fact that ¢(s + t} = ¢(s)¢(t) for all s and r near 0, it follows that
¢ extends uniquely to all of R, defining a homomorphism

oy R->G
with @y () = vx(@Xt) = (my,)(X) for all t.

Exercise 8.30. Establish the product rule for derivatives of arcs in a Lie group
G:if c and f are arcs in G and y(t) = oft)- B(t), then

Y (0) = dimy (' () + dngiy(e' (1)),

where for any g € G, the map m, (resp. n,}): G — G is given by left (resp. right)
multiplication by g. Use this to give another proof that ¢ is a homomorphism.

Exercise 8.31. Show that ¢, is uniquely determined by the fact that it is a
homomorphism of R to G with tangent vector ¢y(0} at the identity equal to
X. Deduce that if y: G — H is a map of Lie groups, then ¢y x = s o .

The Lie group map ¢y: R — G is called the one-parameter subgroup of G
with tangent vector X at the identity. The construction of these one-parameter
subgroups for each X amounts to the verification of the Second Principle of
§8.1 for homomorphisms from R to G. The fact that there exists such a
one-parameter subgroup of G with any given tangent vector at the identity is
crucial. For example, it is not hard to see (we will do this in a moment) that
these one-parameter subgroups fill up a neighborhood of the identity in G,
which immediately implies the First Principle of §8.1. To carry this out, we
define the exponential map

exp:g—+ G
by
exp(X) = ox(1). 8.32)
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Note that by the uniqueness of ¢y, we have

Pun(t) = ex(4t);

so that the exponential map restricted to the lines through the origin in g
gives the one-paraineter subgroups of G. Indeed, Exercise 8.31 implies the
characterization:

Proposition 8.33. The exponential map is the unigue map from g to G taking 0
to e whose differential at the origin

expylo: Tog=9->1T.G =g

is the identity, and whose restrictions to the lines through the origin in g are
one-parameter subgroups of G.

This in particular implies (cf. Exercise 8.31) that the exponential map is
natural, in the sense that for any map y: G — H of Lie groups the diagram

g———f—'—*l)

G —— H
commutes.

Now, since the differential of the exponential map at the origin in g is an
isomorphism, the image of exp will contain a neighborhood of the identity in
G. If G is connected, this will generate all of G; from this follows the First
Principle: if G is conpected, then the map \ is determined by its differential (dy),
at the identity.

Using (8.32), we can write down the exponential map very explicitly in the
case of GL,R, and hence for any subgroup of GL,R. We just use the standard
power series for the function e, and set, for X € End(V),

X2 3
exp(X)=1+X+,2_+?+..._ (8.34)
Observe that this converges and is invertible, with inverse exp(— X). Clearly,
the diflerential of this map from ‘g to G at the origin is the identity; and by
the standard power series computation, the restriction of the map to any line
through the origin in ¢ is a one-parameter subgroup of G. Thus, the map
coincides with the exponential as defined originally; and by naturality the
same is true for any subgroup of G. (Note that, as we have pointed out, the
individual terms in the expression on the right of (8.34) are very much depen-
dent of the particular embedding of G in a general linear group GL(V) and
correspondingly of g in End(V), even though the sum on the right in (8.34) is
not.)
This explicit form of the exponential map allows us (o give substance to
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the assertion that “the group structure of G is encoded in the Lic algebra.”
Explicitly, we claim that not only do the exponentials exp(X) generate G, but
for X and Y in a sufficiently small neighborhood of the origin in g, we can
write down the product exp(X)-exp(Y) as an exponential. To do this, we
introduce first the “inverse” of the exponential map: forg € G « GL, R, we set

-0, -0
— __A_i_ B _u_3__._ -

Of course, this will be defined only for g sufficiently close to the identity in G;
but where it is defined it will be an inverse to the exponential map.
Now, we define a new bilinear operation on gl R: we set

X » Y = log{exp(X)-exp(Y)).

log(g) = (g — 1) egl,R.

We have to be careful what we mean by this, of course; we substitute for g in
the expression above for log(g) the quantity

X? v?
exp(X)-exp(Y)=<I +X+ -5-+---)-<1 + Y )

X2 Y2
=I+(X+ Y)+<7+X-Y+--i«)+---,

being careful, of course, to preserve the order of the factors in each product.
Doing this, we arrive at

X Yz 2 2
X*Y=(X+Y)+(~-(—i2~—)—+()§—+X-Y+»-};—-))+---

=X+ Y+iX, Y1+,

Observe in particular that the terms of degree 2 in X and Y do not in-
volve the squares of X and Y or the product X - Y alone, but only the com-
mutator. In fact, this is true of each term in the formula, i.e., the quantity
log{exp(X)- exp(Y)) can be expressed purely in terms of X, ¥, and the bracket
operation; the resulting formula is called the Campbell-Hausdorfj’ formula
(although the actual formula in closed form was given by Dynkin). To degree
three, it is

X+Y=X+Y+I[X YT+ &0X0X Y1 £ 500 XTT+ .

Exercise 8.35*. Verify (and find the correct signs in) the cubic term of the
Campbell--Hausdorfl formula.

Exercise 8.36. Prove the assertion of the last paragraph that the power series
log(exp(X)- exp(Y)) can be expressed purely in terms of X, ¥, and the bracket
Operation.

Exercise 8.37. Show that for X and Y sufficiently small, the power series
log(exp(X)-exp(Y)) converges.
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Exercise 8.38*. (a) Show that there is a constant C such that for X, Y € gl,,
X*Y =X+ Y +[X, Y]+ E, where |E| < C(|X|| + I Y]).

{b) Show that exp(X + Y) = lim,__ {exp{X/n)- exp(¥Y/n))".

(c) Show that

) X Y X \\”
exp([X, Y]) = ll:’n (exp (—’{)-exp (;)exp(— h—)-exp(——;)) .

Exercise 8.39. Show that if G is a subgroup of GL,R, the elements of its

Lie algebra are the “infinitesimal transformations” of G in the sense of von

Neumann, i.e., they are the matrices in gl,R which can be realized as limits
A

. -1
lim , A,€G,e>0,8-0.
-0 E(

Exercise 8.40. Show that exp is surjective for G = GL,C butnot for G = GL} R
ifn>1,orfor G =SL,C.

By the Campbell-Hausdorfl formula, we can not only identify all the
elements of G in a neighborhood of the identity, but we can also say what their
pairwise products are, thus making precise the sense in which g and its bracket
operation determines G and its group law locally. Of course, we have not
written a closed-form expression for the Campbell-Hausdorll formula; but,
as we will see shortly, its very existence is significant. (For such a closed form,
see [Sel, 1§4.8].)

We now cousider another very natural question, namely, when a vector
subspace [y = g is the Lie algebra of (i.e., tangent space at the identity to) an
immersed subgroup of G. Obviously, a necessary condition is that }) is closed
under the bracket operation; we claim here that this is sufficient as well:

Proposition 8.41, Let G be a Lie group, g its Lie algebra, and ly = g a Lie
subalgebra. Then the subgroup of the group G generated by exp(h) is an
immersed subgroup H with tangent space T,H = }.

ProoF. Note that the subgroup generated by exp(h) is the same as the sub-
group generated by exp(U), where U is any neighborhood of the origin in b. It
will suffice, then (see Exercise 8.42), to show that the image of § under the
exponential map is “locally” closed under multiplication, i.e., that for a suffi-
ciently small disc A < b, the product exp(A)- exp(A) (that is, the set of pairwise
products exp{X)-exp(Y) for X, Y € A) is contained in the image of |) under
the exponential map,

We will do this under the hypothesis that G may be realized as a subgroup
of a general linear group GL R, so that we can use the formula (8.34) for the
exponential map. This is a harmless assumption, given the statement (to be
proved in Appendix E) that any finite-dimensional Lie algebra may be
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embedded in the Lie algebra gl,R: the subgroup of GL,R generated by
exp(g) will be a group isogenous to G, and, as the reader can easily check,
proving the proposition for a group isogenous to G is equivalent to proving
it for G.

It thus suffices to prove the assertion in case the group G is GL,R. But this
is exactly the content of the Campbell--Hausdorfl formula. (0]

When applied to an embedding of a Lie algebra g into gl,, we see, in
particular, that every finite-ditnensional Lie algebra is the Lie algebra of a Lie
group. From what we have seen, this Lie group is unique if we require it to be
simply connected, and then all others are obtained by dividing this simply
connected model by a discrete subgroup of its center.

Exercise 8.42*, Suppose G, is an open neighborhood of the identity in a Lie
group G such that Gy G, c G, and G5! = G,. Suppose H,, is a closed sub-
manifold of G, such that H, - Hy = Hyand Hg! = H,. Show that the subgroup
H of G generated by H, is an immersed Lie subgroup of G.

As a fairly easy consequence of this proposition, we can finally give a proof
of the Second Principle stated in §8.1, which we may restate as

Second Principle. Let G and H be Lie groups with G simply connected, and let
g and |y be their Lie algebras. A linear map a: g - b is the differential of a map
A:G - H of Lie groups if and only if « is a map of Lie algebras.

Proor. To see this, consider the product G x H. its Lie algebra is just g ® .
Letj = g @ |) be the graph of the map & Then the hypothesis that « is a map
of Lie algebras is equivalent to the statement that jis a Lie subalgebra of g ® y;
and given this, by the proposition there exists an immersed Lie subgroup
J © G x H with tangent space T,J = i.

Look now at the map n: J — G given by projection on the first lactor..By
hypothesis, the differential of this map dn,: | — g is an isomorphism, so that
the map J — G is an isogeny; but since G is simply connected it follows that
7 is an isomorphism. The projection #: G = J — H on the second factor is then
a Lie group map whose diflferential at the identity is o. (0]

Exercise 8.43*. If g — ¢’ is a homomorphism of Lie algebras with kernel [,
show that the kernel H of the corresponding map of simply connected Lie
groups G — G’ is a closed subgroup of G with Lie group b. This does not
extend to non-normal subgroups, i.e., to the situation when |y is not the kernel
of a homomorphism: give an example of an immersed subgroup of a simply
connected Lie group G whose image in G is not closed.

Exercise 8.44. Use the ideas of this lecture to prove the assertion that a
compact complex connected Lie group G must be abelian:
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(a) Verify that the map Ad: G —» Aul(T,G) < End(T,G) is holomorphic, and,
therefore (by the maximum principle), constant.

(b) Deduce that if ‘¥, is conjugation by g, then d'¥, is the identity, so
¥ (exp(X)) = exp(d¥,(X)) = exp(X) for all X € T,G, which implies that
G is abelian.

{c) Show that the exponential map from T,G to G is surjective, with the kernel
a lattice A, so G = T,G/A is a complex torus.



LECTURE 9

Initial Classification of Lie Algebras

In this lecture we define various subclasses of Lie algebras: nilpotent, solvable, semi-
simple, etc., and prove basic facts about their representations. The discussion is entirely
elementary (largely because the hard theorems are stated without proof for now); there
are no prerequisites beyond linear algebra. Apart from giving these basic definitions,
the purpose of the lecture is largely to motivate the narrowing of our focus to
semisimple algebras that will take place in the sequel. In particulat, the first part of
§9.3 is logically the most important for what follows.

§9.1: Rougl classification of Lie algebras
§9.2: Engel’s Theorem and Lie's Theorem
§9.3: Semisimple Lie algebras

§9.4: Simple Lie algebras

§9.1. Rough Classification of Lie Algebras

We will give, in this section, a preliminary sort of classification of Lie algebras,
reflecting the degree to which a given Lie algebra g fails to be abelian. As we
have indicated, the goal ultimately is to narrow our focus onto semisimple Lie
algebras, .

Before we begin, two definitions, both completely straightforward: First,
we define the center Z(g) of a Lie algebra g to be the subspace of g of elements
X egsuch that [X, Y] =0 for all Y € g. Of course, we say g is abelian if all
brackets are zero.

Exercise 9.1. Let G be a Lie group, g its Lie algebra. Show that the subgroup
of G generated by exponentiating the Lie subalgebra Z(g) is the connected
component of the identity in the center Z(G) of G.
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Next, we say that a Lie subalgebra I « g of a Lie algebra g is an ideal if it
satisfies the condition

[X,Y]elh forall Xelh, Yeg.

Just as cotinected subgroups of a Lie group correspond to subalgebras of its
Lie algebra, the notion of ideal in a Lie algebra corresponds to the notion of
normal subgroup, in the following sense:

Exercise 9.2. Let G be a connected Lie group, H « G a connected subgroup
and g and [) their Lie algebras. Show that H is a normal subgroup of G if and
only if ) is an ideal of g.

Observealso that the bracket operation on g induces a bracket on the quotient
space q/l) if and only if [) is an ideal in g.

This, in turns, motivates the next bit of terminology: we say that a Lie
algebra g is simple if dim g > 1 and it contains no nontrivial ideals. By the last
exercise, this is equivalent to saying that the adjoint form G of the Lie algebra
g has no nontrivial normal Lie subgroups.

Now, to attempt to classify Lie algebras, we introduce two descending
chains of subalgebras. The first is the lower central series of subalgebras 9,4,
defined inductively by

29159
and

2,8 = [, Di—_18).

Note that the subalgebras 9, g are in fact ideals in g. The other series is called
the derived series {9*g}; it is defined by

?'q=1[9.4]
and
g*g=[9""'g, P 1g).
Exercise 9.3. Use the Jacobi identity to show that 9" is also an ideat in g. -

More generally, if ) is an ideal in a Lie algebra g, show that [}, §] is also an
ideal in g; hence all 9*]) are ideals in g

Observe that we have 2*g c P,q for all k, with equality when k = 1; we
often write simply @q for 2,9 = 9'qg and call this the commutator subalgebra.
We now make the

Definitions

(i) We say that g is nilpotent if 2,q = 0 for some k.
(if) We say that g is solvable if 9*g = 0 for some k.
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(iii) Wesay that gis perfect if 2q = g(thisis not a concept we will use much).
(iv) We say that g is semisimple if g has no nonzero solvable ideals.

The standard example of a nilpotent Lie algebra is the algebra n,R of
strictly upper-triangular n x n matrices; in this case the kth subaigebra 2,4
in the lower central series will be the subspace 11, ,R of matrices A = (a; ;)
such that a; ; = 0 whenever j < i+ k, ie, that are zero below the diagonal
and within a distance k of it in each column or row. (In terms of a complete
flag {V;} as in §7.2, these are just the endomorphisms that carry Vinto V;_,_,.)
1t follows also that any subalgebra of the Lie algebra 1, R is likewise nilpotent;
we will show later that any nilpotent Lie algebra is isomorphic to such a
subalgebra. We will also see that if a Lie algebra g is represented on a vector
space V, such that each element acts as a nilpotent endomorphism, there is a
basis for V such that, identifying gl(V) with gl,R, g maps to the subalgebra
1,R < gl R.

Similarly, a standard example of a solvable Lie algebra is the space b,R of
upper-triangular n x n matrices; in this Lie algebra the commutator %b,R is
the algebra n,R and the derived series is, thus, 2*b,R = 1.« ,R. Again, it
follows that any subalgebra of the algebra b,R is likewise solvable; and we
will prove later that, conversely, any representation of a solvable Lie algebra
on a vector space V consists, in terms of a suitable basis, entirely of upper-
triangular matrices (i.e., given a solvable Lie subalgebra g of gl(¥), there exists
a basis for V such that under the corresponding identification of gl{}V) with
gl,R, the subalgebra g is contained in b,R < gl,R).

It is clear from the definitions that the properties of being nilpotent or
solvable are inherited by subalgebras or homomorphic images. We will see
that the same is true for semisimplicity in the case of homomorphic images,
though not for subalgebras.

Note that g is solvable if and only if g has a sequence of Lie subalgebras
9=80>8, @ g =0, such that g;,, is an ideal in g, and g;/g;;, is
abelian. Indeed, if this is the case, one sees by induction that 9'q < g, for all
i. (One may also refine such a sequence to one where each quotient g,/g;,, is
one dimensional.) It follows from this description that if l) is an ideal in a Lie
algebra g, then g is solvable if and only if b and /b are solvable Lie algebras.
(The analogous assertion for nilpotent Lie algebras is false: the ideal n, is
nilpotent in the Lie algebra b, of upper-triangular matrices, and the quotient
is the nilpotent algebra b, of diagonal matrices, but b, is not nilpotent.) If g is
the Lie algebra of a connected Lie group G, then g is solvable if and only if
there is a sequence of connected subgroups, each normal in G (or in the next
in the sequence), such that the quotients are abelian.

In particular, the sum of two solvable ideals in a Lie algebra g is again
solvable [note that (a + b)/b = af{a ~ b)]. It follows that the sum of all solv-
able ideals in g is a maximal solvable ideal, called the radical of g and denoted
Rad(g). The quotient g/Rad(g) is semisimple. Any Lie algebra g thus fits into
an exact sequence
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0 Rad(g) - g - g/Rad(g) + 0 94

where the first algebra is solvable and the last is semisimple, With this
somewhat shaky justification (but see Proposition 9.17), we may say that to
study the representation theory of an arbitrary Lie algebra, we have to
understand individually the representation theories of solvable and semi-
simple Lie algebras. Of these, the former is relatively easy, at least as regards
irreducible representations. The basic fact about them—that any irreducible
representation of a solvable Lie algebra is one dimensional—will be proved
later in this lecture. The representation theory of semisimple Lie algebras, on
the other hand, is extraordinarily rich, and it is this subject that will occupy
us for most of the remainder of the book.

Another easy consequence of the definitions is the fact that a Lie algebra
is semisimple if and only if it has no nonzero abelian ideals. Indeed, the last
nonzero term in the derived sequence of ideals 2*Rad(g) would be an abelian
ideal in g (cf. Exercise 9.3). A semisimple Lie algebra can have no center, so
the adjoint representation of a semisimple Lie algebra is faithful.

It is a fact that the sequence {(9.4) splits, in the sense that there are sub-
algebras of g that map isomorphically onto g/Rad(g). The existence of such
a Levi decomposition is part of the general theory we are postponing. To show -
that an arbitrary Lie algebra has a faithful representation (Ado’s theorem), one
starts with a faithful representation of the center, and then builds a represen-
tation of the radical step by step, inserting a string of ideals between the center
and the radical. Then one uses a splitting to get from a faithful representation
on the radical to some representation on all of g; the sum of this representation
and the adjoint representation is then a faithful representation. See Appendix
E for details.

One reason for the terminology simple/semisimple will become clear later
in this lecture, when we show that a semisimple Lie algebra is a direct sum of
simple ones.

Exercise 9.5. Every semisimple Lie algebra is perfect. Show that the Lie group
of Euclidean motions of R? has a Lie algebra g which is perfect, i.e., @¢ = g,
but g is not semisimple. More generally, if b is semisimple, and V is an
irreducible representation of y, the twisted product

g={(X)veV,Xeb} with [, X),(% ¥)] = (Xw — Yo, [X, Y])
is a Lie algebra with 2g = g, Rad{(g) = V abelian, and g/Rad(g) = l.

Exercise 9.6. (a) Show that the following are equivalent for a Lie algebra g: (i)
g is nilpotent. (ii) There is a chain of ideals g = gy = g, @ - > g, = 0 with
0:/0,4 contained in the center of g/g;,,. (iii) There is an integer n such that

ad(X,)cad(X,)o---oad(X{Y)=[X,,[X,,...,[X,, VY]...]1]1=0
forall X,,..., X,, Ying.
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(b) Conclude that a connected Lie group G is nilpotent if and only if it can
be realized as a succession of central extensions of abelian Lie groups.

Exercise 9.7*. If G is connected and nilpotent, show that the exponential map
exp: g — G is surjective, making g the universal covering space of G.

Exercise 9.8. Show that the following are equivalent for a Lie algebra g: (i) g
is solvable. (ii) There is a chain of ideals g =g, 2> g; @' 2 g, =0 with
8:/9;:4, abelian. (iii) There is a chain of subalgebrasg =g, 2 g, @ 2, =0
such that g,,, is an ideal in g;, and g;/g;,, is abelian.

§9.2. Engel’s Theorem and Lie’s Theorem

We wili now prove the statement made above about representations of so}v-
able Lie algebras always being upper triangular. This may give the reader an
idea of how the general theory proceeds, before we go back to the concrete
examples that are our main concern. The starting point is

Theorem 9.9 (Engel's Theorem). Let g = gl(V)} be any Lie subalgebra such that
every X € gisa nilpotent endomorphism of V. Then there exists a nonzero vector
ve Vsuchthat X(v) =0 forall X € g.

Note this implies that there exists a basis for V in terms of which the matrix
representative of each X € g is strictly upper triangular: since g kills v, it will
act on the quotient ¥ of V by the span of v, and by induction we can find a
basis ¥, ..., B, for ¥ in terms of which this action is strictly upper triangular.
Lifting §; to any v, e ¥ and setting v, = v then gives a basis for V as desired.

Proor or THEOREM 9.9. One observation before we start is that if X € gl(V)
is any nilpotent element, then the adjoint action ad(X): gi(V) — gl(V) is nil-
potent. This is straightforward: to say that X is nilpotent is to say that
there exists a flag of subspaces 0 c V, « ¥, < - < W, < ¥, = V such that
X(V)) « V,_;; we can then check that for any endomorphism Y of V the
endomorphism ad(X)™(Y) carries V;into V4.

We now proceed by induction on the dimension of g. The first step is to
show that, under the hypotheses of the problem, g contains an ideal 1) of
codimension one. In fact, let ) « g be any maximal proper subalgebra; we
claim that [) has codimension one and is an ideal. To see this, we look at the
adjoint representation of g; since [y is a subalgebra the adjoint action ad(l)) of
I on g preserves the subspace fj < ¢ and so acts on g/l). Moreover, by our
observation above, for any X e ) ad(X) acts nilpotently on gl{(}'), hence on g,
hence on g/h. Thus, by induction, there exists a nonzero element ¥ e g/ killed
by ad(X)for all X € Ij; equivalently, there exists an element ¥ € g not in ) such
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that ad(X)(Y) e | for all X €. But this is to say that the subspace ly of g
spanned by h and Y is a Lie subalgebra of g, in which b sits as an ideal of
codimension one; by the maximality of b we have I’ = g and we are done.

We return now to the representation of g on V. We may apply the induction
hypothesis to the subalgebra §) of g found in the preceding paragraph to
conclude that there exists a nonzero vector v € V such that X(v) = 0 for all
X ely; let W V be the subspace of all such vectors ve V. Let Y be any
element of g not in j; since § and Y span g, it will suffice to show that there
exists a (nonzero) vector v € W such that Y(v) = 0. Now for any vectorwe W
and any X €0, we have

X(Y(w)) = Y(X(W)) + [X, Y](w).

The first term on the right is zero because by hypothesis w e W, X € [) and so
X{(w) = 0; likewise, the second term is zero because [ X, Y] = ad(X)(Y)eb.
Thus, X(Y(w)) = Oforall X e b; we deduce that Y(w) € W. But this ineans that
the action of Y on V carries the subspace W into itself; since Y acts nilpotently
on V, it follows that there exists a vector v € W such that Y(v) = 0. Cl

Exercise 9.10*. Show that a Lie algebra g is nilpotent if and only if ad(X) is a
nilpotent endomorphism of g for every X € g.

Engel’s theorem, in turn, allows us to prove the basic statement made
above that every representation of a solvable Lie group can be put in upper-
triangular form. This is implied by

Theorem 9.11 (Lie’s Theorem). Let g < gl(V) be a complex solvable Lie algebra.
Then there exists anonzerovector v e V that is an eigenvector of X forall X € q.

Exercise 9.12. Show that this implies the existence of a basis for V in terms of
which the matrix representative of each X € g is upper triangular.

PROOF OF THEOREM 9.1 1. Once more, the first step in the argument is to assert
that g contains an ideal § of codimension one. This time, since g is solvable
we know that 2q # g, so that the quotient a = o/%g is a nonzero abelian Lie
algebra; the inverse image in g of any codimension oné subspace of a will
then be a codimension one ideal in g.

Still following the lines of the previous argument, we may by induction
assume that there is a vector v, € V that is an eigenvector for alt X e f). Denote
the eigenvalue of X cortesponding to v, by A(X). We then consider the
subspace W < ¥ of all vectors satisfying the same relation, i.e., we set

W={veV: X(v)=AX)vVX eh}.

Let Y now be any element of g not in §. As before, it will suffice to show that
Y carries some vector v € W into a multiple of itself, and for this it is enough
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to show that Y carries W into itsell. We prove this in a general context in the
following lemma.

Lemma 9.13. Let b be an ideal in a Lie algebra g. Let V be a representation of
g, and A: b — C a linear function. Set

W={veV:X(v)= UX) v¥Xebh).
Then Y(W)c W forall Y €.

PROOF. Let w be any nonzero element of W; to test whether Y(w) e W we let
X be any element of h and write

X(Y(w)) = Y(X(W)) + [X, Y](w)
= XX) Y(w) + M[X, Y])-w (9.14)

since [ X, Y] €. This differs from our previous calculation in that the second
term on the right is not immediately seen to be zero; indeed, Y(w) will lie in
Wifand only if A([X, Y])=0forall X €l).

To verify this, we introduce another subspace of ¥, namely, the span U of
the images w, Y(w), Y2(w), ... of w under successive applications of Y. This
subspace is clearly preserved by Y; we claim that any X € b carries U into
itself as well. It is certainly the case that [) carries w into a multiple of itself,
and hence into U, and (9.14) says that [) carries Y(w) into a linear combination
of Y(w) and w, and so into U. In general, we can see that [ carries Y*(w) into
U by induction: for any X € b we write

X(Yw)) = Y(X(Y*"'(w)) + [X, Y](Y*" (w)). ©.15)

Since X(Y*'(w)) € U by induction the first term on the right is in U, and
since [ X, Y] €|y the second term is in U as well. '

In fact, we see something more from (9.14) and (9.15); it follows that, in
terns of the basis w, Y(w), Y2(w), ... for U, the action of any X €1) is upper
triangular, with diagonal entries all equal to A(X). In particulat, forany X e §
the trace of the restriction of X to U is just the dimension of U times (X).
On the other hand, for any element X € I) the commutator [ X, Y] acts on U,
and being the commutator of two endomorphisms of U the trace of this action
is zero. It follows then that ([ X, Y]) = 0, and we are done. O

Exercise 9.16. Show that any irreducible representation of a solvable Lie
algebra q is one dimensional, and @g acts trivialty.

At least for irreducible representations, Lie's theorem implies they will all
be known for an arbitrary Lie algebra when they are known for the semisimple
case. In fact, we have:

Proposition 9.17. Let g be a complex Lie algebra, g,, = g/Rad{g). Every irre-
ducible representation of g is of the form V = V, ® L, where V, is an irreducible
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representation of g, [i.e., a representation of g that is trivial on Rad(g)], and
L is a one-dimensional representation.

ProoF. By Lie's theorem there is a 1 € (Rad(g))* such that
W={veV: X{v)= UX) v VX e Rad(g)}

is not zero. Apply the preceding lemma, with ) = Rad(g). Since V is irreduc-
ible, we must have W = V. Now extend 1 in any way 1o a linear function on
q, and let L be the one-dimensional representation of g determined by 4; in
other words, Y(z) = A(Y)-zforall Yegand ze L. Then V ® L* is a repre-
sentation that is trivial on Rad(g), so it comes from a representation of g,,,
as required. O

Exercise 9.18. Show that if g’ is a subalgebra of g that maps isomorphically
onto g/Rad(g), then any irreducible representation of q restricts to an irre-
ducible representation of g, and any irreducible representation of ¢’ extends
to a representation of g.

§9.3. Semisimple Lie Algebras

As is clear from the above, many of the aspects of the representation theory
of finite groups that were essential to our approach are no longer valid in the
context of general Lie algebras and Lie groups. Most obvious of these is
complete reducibility, which we have seen fails for Lie groups; another is the
fact that not only can the action of elements of a Lie group or algebra on a
vector space be nondiagonalizable, the action of some element of a Lie algebra
may be diagonalizable under one representation and not under another.

That is the bad news. The good news is that, if we just restrict ourselves to
semisimple Lie algebras, everything is once more as welt behaved as possible.
For one thing, we have complete reducibility again:

Theorem 9.19 (Complete Reducibility). Let V be a representation of the semi-
simple Lie algebra g and W < V a subspace invariant under the action of g
Then there exists a subspace W' < V complementary to W and invariant under g,

The proof of this basic result will be deferred to Appendix C.

The other question, the diagonalizability of elements of a Lie algebra under .
a representation, requires a little more discussion. Recall first the statement
of Jordan decomposition: any endomorphism X of a complex vector space V
can be uniquely written in the form

X =X, +X,
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where X, is diagonalizable, X, is nilpotent, and the two commute. Moreover,
X, and X, may be expressed as polynomials in X.

Now, suppose that q is an arbitrary Lie algebra, X € q any element, and
p: g — gl,C any representation. We have seen that the image p(X) need not
be diagonalizable; we may still ask how p{X) behaves with respect to the
Jordan decomposition. The answer is that, in general, absolutely nothing need
be true. For example, just taking g = C, we see that under the representation

it ()

every element is diagonalizable, i.e., p(X), = p(X); under the representation

pait— 0
00

every element is nilpotent [i.e., p(X), = 0]; whereas under the representation

paiti— et
00

not only are the images p(X) neither diagonalizable nor nilpotent, the dia-
gonalizable and nilpotent parts of p(X) are not even in the image p(g) of the
representation.

If we assume the Lie algebra g is semisimple, however, the situation is
radically diflerent. Specifically, we have

Theorem 9.20 (Preservation of Jordan Decomposition). Let g be a semisimple
Lie algebra. For any element X € g, there exist X, and X,, € g such that for any
representation p: g — ql(V) we have

p(X) = p(X,) and p(X), = p(X,).

In other words, if we think of p as injective and g accordingly as a Lie
subalgebra of gl(V), the diagonalizable and nilpotent parts of any element X of
g are again in o and are independent of the particular representation p.

The proofs we will give of the last two theorems both involve introducing
objects that are not essential for the rest of this book, and we therefore relegate
them to Appendix C. It is worth remarking, however, that another approach
was used classically by Hermann Weyl; this is the famous unitary trick, which
we will describe briefly.

A Digression on “The Unitary Trick”

Basically, the idea is that the statements above (complete reducibility, pre-
servation of Jordan decomposition) can be proved readily for the represen-
tations of a compact Lie group. To prove complete reducibility, for example,
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we can proceed more or less just as in the case of a finite group: if the compact
group G acts on a vector space, we see that there is a Hermitian metric on V
invariant under the action of G by taking an arbitrary metric on V and
averaging its images under the action of G. If G fixes a subspace W < ¥, it will
then fix as well its orthogonal complement W' with respect to this metric.
(Alternatively, we can choose an arbitrary complement ¥’ to W, not neces-
sarily fixed by G, and average over G the projection map to g{W’) with kernel
W; this average will have image invariant under G.)

How does this help us analyze the representation of a semisimple Lie
algebra? The key fact here (to be proved in Lecture 26) is that if g is any
complex semisimple Lie algebra, there exists a (unique) real Lie algebra g, with
complexification g, ® C = g, such that the simply connected form of the Lie
algehra g, is a compact Lie group G. Thus, restricting a given representation
of g to gy, We can exponentiate to obtain a representation of G, for which
complete reducibility holds; and we can deduce from this the complete re-
ducibility of the original representation. For example, while it is certainly not
true that any representation p of the Lie group SL,R on a vector space V
admits an invariant Hermitian metric (in fact, it cannot, unless it is the trivial
representation), we can

(i) let p’ be the corresponding (complex) representation of the Lie algebra
s, |R;
(ii) by linearity extend the representation p' of sl, R to a representation p” of
sl,C;
(iii) restrict to a representation p” of the subalgebra su, < si,C;
(iv) exponentiate to obtain a representation p™ of the unitary group SU,,.

"

We can now argue that
If a subspace W < V is invariant under the action of SL,R,

it must be invariant under sf,R; and since ¢l,C = s[,R ® C, it follows that
it will be invariant under sl,C; so of course

it will be invariant under su,; and hence

it will be invariant under SU,,.

Now, since SU, is compact, there will-exist a complementary subspace W’
preserved by SU,; we argue that :

W’ will then be invariant under su,; and since ¢l,C = su, ® C, it follows
that

it will be invariant under sl,C. Restricting, we see that

it will be invariant under sl,R, and exponentiating,

it will be invariant under SL,R.

Similarly, if one wants to know that the diagonal elements of SL,R act
semisimply in any representation, or equivalently that the diagonal elements
of sf,R act semisimply, one goes through the same reasoning, coming down
to the fact that the group of diagonal elements in su, is abelian and compact.
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In general, most of the theorems about the finite-dimensional represen-
tation of semisimple Lie algebras admit proofs along two different lines: either
algebraically, using just the structure of the Lie algebra; or by the unitary trick,
that is, by associating to a representation of such a Lie algebra a representation
of a compact Lie group and working with that. Which is preferable depends
very much on taste and context; in this book we will for the most part go with
the algebraic proofs, though in the case of the Weyl character formula in Part
1V the proofl via compact groups is so much more appealing it has to be
mentioned.

The following exercises include a few applications of these two theorems.

Exercise 9.21*. Show that a Lie algebra g is semisimple if and only if every
finite-dimensional representation is semisimple, i.e., every invariant subspace
has a complement.

Exercise 9.22. Use Weyl's unitary trick to show that, for n > 2, all represen-
tations of SO, C are semisimple, so that, in particular, the Lie algebras so,C
are semisimple. Do the same for Sp,,C and sp,,C, n > |. Where does the
argument break down for SO,C?

Exercise 9.23. Show that a real Lie algebra q is solvable if and only if the
complex Liealgebra g ®gC is solvable. Simnilarly for nilpotent and semisimple.

Exercise 9.24*, I [) is an ideal in a Lie algebra g, show that g is semisimple if
and only if b and g/h are semisimple. Deduce that every semisimple Lie algebra
is a direct sum of simple Lie algebras.

Exercise 9.25* A Lie algebra is called reductive if its radical is equal to its
center. A Lie group is reductive if its Lie algebra is reductive. For example,
GL,C is reductive. Show that the following are true for a reductive Lie algebra
o {i) Dg is semisimple; (ii) the adjoint representation of g is semisimple; (iii) g
is a product of a semisimple and an abelian Lie algebra; (iv) g has a [inite-

- dimensional faithful semisimple representation. In fact, each of these condi-
tions is equivalent to g being reductive.

§9.4. Simple Lie Algebras

There is one more basic fact about Lie algebras to be stated here; though its
proof will have to be considerably deferred, it informs our whole approach to
the subject. This is the complete classification of simple Lie algebras:

" Theorem 9.26. With five exceptions, every simple complex Lie algebra is iso-
morphic to either sl,C, s0,C, or sp,,C for some n.
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The five exceptions can all be explicitly described, though none is pat-
ticularly simple except in name; they are denoted g,, {4, ¢¢, ¢;, and e5. We
will give a construction of each later in the book (§22.3). The algebras sl,C
(for n > 1), 0, (for n > 2), and sp,,C are commonly called the classical Lie
algebras (and the corresponding groups the classical Lie groups); the other five
algebras are called, naturally enough, the exceptional Lie algebras.

The nature of the classification theorem for simple Lie algebras creales a
dilemma as to how we approach the subject: many of the theorems about
simple Lie algebras can be proved either in the abstract, or by verifying them
in turn for each of the particular algebras listed in the classification theorem.
Another alternative is to declare that we are concerned with understanding
only the representations of the classical algebras sl,C, s0,C, and sp,,C, and
verily any relevant theorems just in these cases.

Of these three approaches, the last is in many ways the least satisfactory;
it is, however, the one that we shall for the most part take. Specifically, what
we will do, starting in Lecture 11,is the following:

(i) Analyze in Lectures 11-13 a couple of examples, namely, sl,C and sl,C,

on what may appear to be an ad hoc basis.

(i) On the basis of these examples, propose in Lecture 14 a general paradigmn
for the study of representations of a simple (or semisimple) Lie algebra.

(iif) Proceed in Lectures 15-20 to carry out this analysis for the classical
algebras ¢l,C, ¢0,C, and sp,,C.

(iv) Give in Part IV and the appendices prools for general simple Lie algebras
of the facts discovered in the preceding sections for the classical ones (as
well as one further important result, the Weyl character formula).

We can at least partially justify this seemingly ineflicient approach by
saying that even if one makes a beeline for the general theorems about the
structure and representation theory of a simple Lie algebra, to apply these
results in practice we would still need to carry out the sort of explicit analysis
of the individual algebras done in Lectures 11-20. This is, however, a fairly
bald rationalization: the fact is, the reason we are doing it this way is that this
is the only way we have ever been able to understand any of the general results,



LECTURE 10

Lie Algebras in Dimensions One, Two,
and Three

Just to get a sense of what a Lie algebra is and what groups might be associated to it,
we will classify here all Lie algebras of dimension three or less. We will work primarily
with complex Lie algebras and Lie groups, but will mention the real case as well.
Needless to say, this lecture is logically superfluous; but it is easy, fun, and serves a
didactic purpose, so why not read it anyway. The analyses of both the Lie algebras
and the Lie groups are completely elementary, with one exception: the classification
of the complex Lie groups associated to abelian Lie algebras involves the theory of
complex tori, and should probably beskipped by anyone not familiar with this subject.

§10.1: Dimensions one and two
§10.2: Dimension three, rank one
§10.3: Dimension three, tank two
§10.4: Dimension three, rank three

§10.1. Dimensions One and Two

To begin with, any one-dimensional Lie algebra g is clearly abelian, that is,
€ with all brackets zero.

The simply connected Lie group with this Lie algebra is just the group C
under addition; and other connected Lie groups that have g as their Lie
algebra must all be quotients of C by discrete subgroups A < C. If A has rank
one, then the quotient is just C* under multiplication. If A has rank two,
however, G may be any one of a continuously varying family of complex tori
of dimension one (or Riemann surfaces of genus one, ot elliptic curves over C).
The set of isomorphism classes of such tori is parametrized by the complex
plane with coordinate j, where the function j on the set of lattices A < C is
as described in, e.g., [Ahl].

Over the real numbers, the situation is completely straightforward: the only
teal Lie algebra of dimension one is again R with trivial bracket; the simply
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connected Lie group associated to it is R under addition; and the only other
connected real Lie group with this Lie algebra is R/Z = S'.

Dimension Two
Here we have to consider two cases, depending on whether g is abelian or not.

Case I: g abelian. This is very much like the previous case; the simply con-
nected two-dimensional abelian complex Lie group is just €2 under addition,
and the remaining connected Lie groups with Lie algebra g are just quotients
of €2 by discrete subgroups. Such a subgroup A < €2 can have rank 1, 2, 3,
or 4, and we analyze these possibilities in turn (the reader who has seen enough
complex tori in the preceding example may wish to skip directly to Case 2 at
this point).

If the rank of A is 1, we can complete the generator of A to a basis for C?,
sothat A = Ze, < Ce, @ Ce,and G = C* x C. If the rank of A is 2, there are
two possibilities: either A lies in a one-dimensional complex subspace of C2
or it does not. If it does not, a pair of generators for A will also be a basis
for C? over C, so that A = Ze, @ Ze,, C*> = Ce, ® Ce,, and G x C* x C*.
If on the other hand A does lie in a complex line in C?, so that we have
A =Ze, ® Z1e, for some 1€ C\R, then G = E x C will be the product of
the torus C/(Z ® Z1) and C; the remarks above apply to the classification of
these (see Exercise 10.1).

The cases where A has rank 3 or 4 are a little less clear. To begin with, if
the rank of A is 3, the main question to ask is whether any rank 2 sublattice
A’ of A lies in a complex line. If it does, then we can assume this sublattice is
saturated (i.e., a pair of generators for A’ can be completed to a set of
generators for A) and write A = Ze, ® Zte, @ Ze,, so that we will have
G = E x C*, where E is a torus as above.

Exercise 10.1*. For two one-dimensional complex tori E and E', show that
the complex Lie groups G = E x € and G’ = E’' x C are isomorphic if and
only if E = E'. Similarly for E x C* and E' x C*.

If, on the other hand, no such sublattice of A exists, the situation is much
more mysterious. One way we can try to represent G is by choosing a generator
for A and considering the projection of C? onto the quotient of C? by the line
spanned by this generator; thus, il we write A = Ze, ® Ze, ® Z(xe, + fe,)
then (assuming f is not real) we have maps

c? > C%/Ce, =C

G =C*/2e, ® Ze, ® Zfae, + fe,) — C/zeZp)
expressing G as a bundle over a torus E = CAZ & Z ), with fibers isomorphic
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to C*, This expression of G does not, however, help us very much to describe
the family of all such groups. For one thing, the elliptic curve E is surely not
determined by the data of G: if we just exchange e, and e,, for example, we
teplace E by C/Z @& Zo), which, of coutse, need not even be isogenous to E.
Indeed, this yields an example of different algebraic groups isomorphic as
complex Lie groups: expressing G as a C* bundle in this way gives it the
structure of an algebraic variety, which, in turn, determines the elliptic curve
E {for example, the ficld of rational functions on G will be the field of rational
functions on E with one variable adjoined). Thus, different expressions of the
complex Lie group G as a C* bundle yield nonisomorphic algebraic groups.

Finally, the case where A has rank 4 remains completely mysterious.
Among such two-dimensional complex tori are the abelian varieties; these are
just the tori that may be embedded in complex projective space (and hence
may be realized as algebraic varieties). For polarized abelian varieties {Lhat is,
abelian varieties with equivalence class of embedding in projective space) there .
exists a reasonable moduli theory; but the set of abelian varieties forms only
a countable dense union in the set of all complex tori (indeed, the general
complex torus possesses no nonconstant meromorphic functions whatsoever).
No satisfactory theory of moduli is known for these objects.

Needless to say, the foregoing discussion of the various abelian complex
Lie groups in dimension two is completely orthogonal to our present pur-
poses. We hope to make the point, however, that even in this seemingly trivial
case there lurk some fairly mysterious phenomena. Of course, none of this
occurs in the real case, where the two-dimensional abelian simply connected
real Lie group isjust R x R and any other connected two-dimensional abelian
real Lie group is the quotient of Lhis by a sublattice A = R x R of rank 1 or
2, which is to say either R x §' or §' x §'.

Case 2: g not abelian. Viewing the Lie bracket as a linearmap[ , J:A’g—g,
we see that if it is not zero, it must have one-dimensional image. We can thus
choose a basis {X, Y} for g as vector space with X spanning the image of
[, ] after multiplying Y by an appropriate scalar we will have [ X, Y] = X,
which of course determines g completely. There is thus a unique nonabelian
two-dimensional Lie algebra g over either R or C.

What are the complex Lie groups with Lie algebra g? To find one, we start
with the adjoint representation of g, which is faithful: we have

ad(X): X —0, ad(Y): X — X,
Y— X, Y—0

or in matrix notation, in terms of the basis {X, Y} for g,

0 1 -1 0
ad(X)=<o 0), ad(Y)=< 0 0).

* %

These generate the algebra g = < gf,C; we may exponentiale to arrive
g ] 0 0 at; y

at the adjoint form
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Gy = {(g 'l’>:a # o} < GL,C.

Topologically this group is homeomorphic to C x C*. To take its universal
cover, we write a general member of G, as

e s
0 1)
The product of two such matrices is given by
et s\ (e s\ _ [ s+es
0 1tJ\o 1/ \o0 1)
so we may realize the universal cover G of G, as the group of pairs (¢, s) €
€ x C with group law
ts)(,s)=(+t,s+e's)
The center of G is just the subgroup
Z(G) = {(2nin, 0)} = Z,
so that the connected groups with Lie algebra g form a partially ordered tower

G
!

!
G, = G/nZ = {{a,b)e C* x C;(a, b)-(a’, b') = (ad’, b + a"b"}}.
1
I
Go

Exercise 10.2*. Show that for n = m the two groups G, and G, are not
isomorphic. '

Finally, in the real case things are simpler: when we exponentiate the
adjoint representation as above, the Lie group we arrive at is already simply
connected, and so is the unique connected real Lie group with this Lie algebra.

§10.2. Dimension Three, Rank 1

As in the case of dimension two, we look at the Lie bracket as a linear map
from A2q to g and begin our classification by considering the rank of this map
{that is, the dimension of %g), which may be either 0, 1, 2, or 3. For the case
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of rank Q, we refer back to the discussion of abelian Lie groups above. We
begin with the case of rank 1.

Here thekernel of themap [ , J: A?g — gis two dimensional, which means
that for some X ¢ g it consists of all vectors of the form X A Y with Y ranging
over all of g (X here will just be the vector corresponding to the hyperplane
ker([ , 1) < A*g under the natural (up to scalars) duality between a three-
dimensional vector space and its exterior square). Completing X to a basis
{X, Y, Z} of g, we can write g in the form

(X, Y]1=[X,2]=0,
[Y,Z)=aX + BY +y2

forsomea, f, y € C. If either § or y is nonzero, we may now rechoose our basis,
replacing Y by a multiple of the linear combination aX + Y + yZ and either
leaving Z alone (if # # 0) or replacing Z by Y (if y # 0). We will then have.

[X,Y]1=[X,Z]=0,
(r,zZ]=v

from which we see that g is just the product of the one-dimensional abelian
Lie algebra CX with the non-abelian two-dimensional Lie algebra CY @ CZ
described in the preceding discussion. We may thus ignore this case and
assume that in fact we have f§ = y = 0; replacing X by aX we then have the
Lie algebra

[X7 Y] =[X,Z] =9,
[Y,Z]=X.

How do we find the Lie groups with this Lie algebra? As before, we need
to start with a faithful representation of g, but here the adjoint tepresentation
is useless, since X is in its kernel. We can, however, arrive at a representation
of g by considering the equations defining g: we want to find a pair of
endomorphisms Y and Z on some vector space that do not commute, but that
do commute with their commutator X = [Y, Z]; thus,

Y(YZ — ZY)—(YZ — ZY)Y = Y2Z —2YZY + ZY? =0

and similarly for [Z, [¥, Z]]. One simple way to find such a pair of endo-
morphisms is make all three terms Y?Z, YZ Y, and Z? Y in the above equation
zero, e.g., by making Y and Z both have square zero, and to have YZ =0
while ZY # 0. For example, on a three-dimensional vector space with basis
€, 3, and ¢, we could take Y to be the map carrying e,y to e, and killing
¢, and e,, and Z the map carrying e, to e; and killing e, and e,; we then have
YZ =0 while ZY sends e, to e,. We see then that q is just the Lie algebra n,
of strictly upper-triangular 3 x 3 matrices. When we exponentiale we arrive
at the group
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t a b
G= 01 cl,abceC
0 0 1
which is simply connected. Now the center of G is the subgroup
I 0b
ZG)=<10 1 0|, beC ) =C,
00 |

so the discrete subgroups of Z(G) are just lattices A of rank 1 or 2; thus any
connected group with Lie algebra g is either G, G/Z, or G/(Z x Z)—that is,
an extension of C x C by either C, C*, or a torus E,

Exercise 10.3. Show that G/A is determined up to isomorphism by the one-
dimensional Z(G)/A.

A similar analysis holds in the real case: just as before, n; is the unique real
Lie algebra of dimension three with commutator subalgebra of dimension one;
its simply connected form is the group G of unipotent 3 x 3 matrices and (the
center of this group being R) the only other group with this Lie algebra is the
quotient H = G/Z.

Incidentally, the group H represents an interesting example of a group that
cannot be realized as a matrix group, ie, that admits no faithful finite-
dimensional representations. One way to see this is to argue that in any
irreducible finite-dimensional representation V the center S* of H, being
compact and abelian, must be diagonalizable; and so under the corresponding
representation of the Lie algebra g the element X must be carried to a
diagonalizable endomorphism of V. But now if v € V is any eigenvector for X
with eigenvalue 4, we also have, arguing as in §9.2,

X(Y(v)) = Y(X(v)) = Y{iv) = 1Y (1)

and similarly X(Z(v)) = 1Z(v), i.e,, both Y(v) and Z(v) are also eigenvectors
for X with eigenvalue A. Since Y and Z generate g and the representation V
isirreducible, it follows that X must act as a scalar multiple 1 I of the identity;
butsince X = [Y, Z]isa commutatorand so has trace 0, it follows that 1 = 0.

Exercise 10.4*. Show that if G is a simply connected Lie group, and its Lie
algebra is solvable, then G cannot contain any nontrivial compact subgroup
(in particular, it contains no elements of finite order).

The group H does, however, have an important inflinite-dimensional repre-
sentation. This arises from the representation of the Lie algebra g on the space
V of € functions on the real line R with coordinate x, in which ¥, Z,and X -
are the operators
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Y: frsmix-f,

df

VA =
fde

and X = (¥, Z}is — ni times the identity. Exponentiating, we see that e'* acts

on a function f by multiplying it by the function (cos tx + i-sin tx); e'* sends

S to the function F, where F,(x) = f{t + x), and e'* sends f to the scalar

multiple e™™ - f.

§10.3. Dimension Three, Rank 2

In this case, write the commutator subalgebra @q < g as the span of two
elements Y and Z. The commutator of Y and Z can then be written

[Y,Z]=aY + pZ.

But now the endomorphism ad(Y) of g carries g into @q, kills Y, and sends Z
toaY + BZ,and so has trace f§; on the other hand, since ad(Y)is a commutator
in End(q), it must have trace 0. Thus, f, and similarly &, must be zero; i.e., the
subalgebra 2 must be abelian. It follows from this that for any element X € g
not in 9q, the map

ad(X): Dq —» 2q

must be an isomorphism. We may now distinguish two possibilities: either
ad(X) is diagonalizible or it is not.

(Note that for the first time we see a case where the classification of the
real Lie algebra will be more complicated than that of the complex: in the real
case we will have to deal with the third possibility that ad(X) is diagonalizible
over C but not over R, i.e, that it has two complex conjugate eigenvalues.
Though we have not seen it much in these low-dimensional examples, in fact
it is generally the case that the real picture is substantially more complicated
than the complex one, for essentially just this reason.)

Possibility A: ad(X) is diagonalizable. In this case it is natural to use as a basis
for Zg a pair of eigenvectors ¥, Z for ad(X); and by multiplying X by a suitable
scalar we can assume that one of the eigenvalues (both of which are nonzero)
is 1. We thus have the equations for g

X, Yl1=Y, [X,Z]1=aZ, [Y,Z]=0 (10.5)

for some o € C*.

Exercise 10.6. Show that two Lie algebras g,, g,- corresponding to two different
scalars in the structure equations (10.5) are isomorphic if and only if & = o or
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o = 1/o. Observe that we have for the first time a continuously varying family
of nonisomorphic complex Lie algebras.

To find the groups with these Lie algebras we go to the adjoint represen-
tation, which here is faithful. Explicitly, ad(Y) carries X to —Y and kills Y
and Z; ad(Z) carries X to —aZ and also kills Y and Z; and ad(X) carties Y
to itsell, Z to aZ, and kills X. A general member aX — bY — ¢Z of the Lie
algebra is thus represented (with respect to the basis {Y, Z, X} for g) by the
matrix

a 0 b
0 aa oc .
0 0 0
Exponentiating, we find that a group with Lie algebra g is
e 0 u
G= 0 e v, t,u,veC } < GL,C.
0 0 1

Here we run across a very interesting circumstance. If the complex number o
is not rational, then the exponential map from g to G is one-to-one, and hence
a homeomorphism; thus, in particular, G is simply connected. If, on the other
hand, « is rational, G will have nontrivial fundamental group. To see this,
observe that we always have an exact sequence of groups

1+B-G- A1,

where
e 0 0
A= 0 e 0),teC
0 0 1
and
I 0 u
B = 01 v]uveC ) =C xC.
0 0 1

Now when « ¢ Q3 the group 4 = C is simply connected; but when « € Q—
whateverits denominator—we have A = C* and correspondingly n,(G) = Z.

Exercise 10.7. Show that G has no center, and hence when & # Q, it is the
unique connected group with Lie algebra g. For o € Q, describe the universal-
covering of G and classify all groups with Lie algebra gq.

Observe that in this case, even though we have a continuously varying
family of Lie algebras g,, we have no corresponding continuously varying
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family of the adjoint (linear) Lie groups; the simply-connected forms do form
a faily, however.

Possibility B: ad(X) is not diagonalizable. In this case the natural thing to do
is to choose a basis {Y, Z} of @g with respect to which ad(X) is in Jordan
normal form; replacing X by a multiple, we may assume both its eigenvalues
are 1 so that we will have the Lie algebra

(X, Y]=1Y, [X.Z]=Y+ Z, [Y.Z]=0. (10.8)

With respect to the basis { ¥, Z, X} for g, then, the adjoint action of the general
element aX — bY — ¢Z of the Lie algebra is represented by the matrix

a a b+ec
0 a c
00 0

and exponentiating we [ind that the corresponding group is

'

e te' u
G = 0 e vlt,u,veC
0 0 1

Exercise 10.9. Show that this group has no center, and hence is the unique
connected complex Lie group with its Lie algebra.

Note that the real Lie groups obtained by exponentiating the adjoint action
of the Lie algebras given by (10.5) and (10.8) are all homeomorphic to R? and
have no center, and so are the only connected real Lie groups with these Lie
algebras. '

Exercise 10.10. Complete the analysis of real Lie groups in Case 2 by con-
sidering the third possibility mentioned above: that ad(X) acts on 2q with
distinct complex conjugate eigenvalues. Observe that in this way we arrive
al our first example of two nonisomorphic real Lie algebras whose tensor
products with C are isomorphic.

§10.4. Dimension Three, Rank 3

Our analysis of this final case begins, as in the preceding one, by looking for
tigenvectors of the adjoint action of a suitable element X € g. Specifically, we
thim that we can find an element H e g such that ad(H):q— ¢ has an
tigenvector with nonzero eigenvalue. To see this, observe first that for any
ponzero X € g, the rank of ad(X) must be 2; in particular, we must have
“Ker{ad(X)) = CX. Now start with any X € g. Either ad(X) has an eigenvectot
‘with nonzero eigenvalue or it is nilpotent; if it is nilpotent, then there exists a
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vector Y €g, not in the kernel of ad(X) but in the kernel of ad(X)*—that
is, such that ad(X)(Y) = aX for some nonzero a € €. But then of course
ad(Y)(X) = —aX, so that X is an eigenvector for ad(Y) with nonzero
eigenvalue.

So: choose H and X € gso that X is an eigenvector with nonzero eigenvalue
for ad(H), and write [H, X] = aX. Since H € @q, ad(H) is a commutator in
End(g), and so has trace 0; it follows that ad(H) must have a third eigenvector
Y with eigenvalue —o. To describe the structure of g completely it now
remains to find the commutator of X and Y; but this foltows from the Jacobi
identity. We have

(H,[X, Y11= —[X,[Y, H]] - Y, [H, X]]
= —[X,a¥Y] - [¥,0X]
=O’

from which we deduce that [ X, Y] must be a multiple of H; since it must be
a nonzero multiple, we can multiply X or Y by a scalar to make it 1. Similarly
multiplying H by a scalar we can assume « is | ot any other nonzero scalar.
Thus, there is only one possible complex Lie algebra g of this type. One could
look for endomorphisms H, X, and Y whose commutators satisfy these
relations, as we did before. Or we may simply realize that the three-dimensional
Lie algebra sl,C has not yet been seen, so it must be this last possibility. In

fact, a natural basis for sl,C is
0 1 00
X = =
(o 0>’ d (1 0>

1 0
"= (O )
whose Lie algebra is given by

[H, X]=2X, [H,Y]=-2Y, [X,Y]=H (10.11)

What groups other than SL,C have Lie algebra sl,C? To begin with, the
group SL,C is simply connected: for example, the map SL,C — C? — {(0, 0)}
sending a matrix to its first row expresses the topological space SL,C as a
bundle with fiber C over C? — {(0, 0)}. Also, it is not hard to see that the center
of SL,C is just the subgroup { 4 1} of scalar matrices, so that the only other
connected group with Lie algebra sl,C is the quotient PSL,C = SI,C/{ +1}.

As in the preceding case, the analysis of real three-dimensional Lie algebras
q with @q = g involves one additional possibility. At the outset of the argu-
ment above, we started with an arbitrary H € g and said that if ad(F) had no
eigenvector other than H itself, then it would have to be nilpotent. Of course,
in the real case it is also possible that ad(H) has two distinct complex conjugate -
eigenvalues 1 and 1. Since ad(H) is a commutator in End(g) and so has trace
0, 1 will have to be purely imaginary in this case; and so multiplying H by a
real scalar we can assume that its eigenvalues are i and —i. It follows then
that we can find X, Y € g with



§10.3. Dimension Three, Rank 2 143

[H,X]=Y and [H Y]=—X.

Using the Jacobi identity as before we may conclude that the commutator of
X and Y is a multiple of H; aftet multiplying each of X and Y by a real scalar
we can assume that it is either H or —H. Finally, if [X, Y] = —H, then
we observe that we are in the case we considered before: ad(Y) will have
X + H as an eigenvector with nonzero eigenvalue, and following our previous
analysis we may conclude that g = s[,R. Thus, we are left with the sole
additional possibility that g has structure equations

[H,X]=Y, [HY]=-X, [X Y]=AH. (10.12)

This, finally, we may recognize as the Lie algebra su, of the real Lie group
SU(2) (as you may recall, the isomorphism si, ® € = sl,C was used in the
last lecture).

What are the real Lie groups with Lie algebras sl, R and su,? To start, the
center of the group SL, R is again just the scalar matrices { 11}, so the only
group dominated by SLZIR is the quotient PSL,R. On the other hand, untike
the complex case SL, R is not simply connected: now the map associating to
a 2 x 2 matrix its first row expresses SL,R as a bundle with fiber R over
R? — {(0, 0)}, so that 7,(SL,R) = Z. More precisely PSL, R maps to the real
projective line P! R, which is homeomorphic to the circle, with fiber homeo-
morphic to R?,s0 7, (PSL,R) = Z. We thus have a tower of covering spaces of
PSL,R, consisting of the simply-connected group § with center Z and its
quotients §, = §/nZ (not all of these ate covers of SL,R, despite the diagram
below).

A note: In §10.2 we encountered a real Lie group with no faithful finite-
dimensional representations; only its universal cover could be represented as
a matrix group. Here we find in some sense the opposite phenomenon: the
groups S and S, have no faithful finite-dimensional representations, all finite-
dimensional representations factoring through SL, R or PSL, R. This fact will
be proved as a consequence of our discussion of the representations of the Lie
algebra sI,C in the next lecture.

What about groups with Lie algebra su,? To begin with, there is SU(2),
which (again via the map sending a matrix to its first row vector) is homeo-
morphic to 52 and thus simply connected. The center of this group is again
{+1}, so that the quotient PSU(2} is the only other group with Lie algebra
su,. (Alternatively, we may realize SU(2) as the group of unit quaternions, cf.
Exercise 7.15.) '

Finally, we remark that there are other representations of the real and
tomplex Lie groups discussed above. As we will see, the Lie algebra s0,C is
isomorphic to s(,C, which induces an isomorphism between the correspond-
ing adjoint forms PSL, € and SO, C (and between the simply-connected forms
SL,C and the spin group Spin;C). This in turn suggests two more real forms
of this group: SO, R and SO*(2, 1). In fact, it is not hard to see that SO, R =
PSU(2), while SO*(2, 1) = PSL,R. Lastly the isomorphism su, , @ C =
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su, ® C = sl,C implies that the real Lie algebra su, , is isomorphic to either
s11, ot sl,R; in fact, the latter is the case and this induces an isomorphism of
groups SU, , = SL,R. We summarize the isomorphisms mentioned in the
diagram below:

-~

S

S, Spin,C Spin, R

:
SU(,1)=SL,R <, SL,C «— = SU(2) = {unit quaternions}

|

PSL,R <__, PSL,C = PSU(2) = {unit quaternions}/+ |

\\

SO*(2, ) =, SO,C «— > SO,R (10.13)

Note also the coincidences:
Sp2(C) = SL,(C),  Sp,(R) = SLy(R), (10.14)

which follow from the fact that Sp refers to preserving a skew-symmetric
bilinear form, and for 2 x 2 matrices the determinant is such a form.

Exercise 10.15. Identily the Lie algebras so;, su,, su, 4, s0, , and verify the
assertions made about the corresponding Lie groups in the diagram.

Exercise 10.16. For each of the Lie algebras encountered in this lecture,
compute the lower central series and the derived series, and say whether the
algebra is nilpotent, solvable, simple, or semisimple.

Exercise 10.17. The following are Lie groups of dimension two or three, so
must appear on our list. Find them: (i) the group of affine transformations of
the line (x+» ax + b, under composition); (ii) the group of upper-triangular
2 x 2 matrices; (iii) the group of orientation preserving Euclidean transforma-
tions of the plane (compositions of translations and rotations).

Exercise 10.18, Locate R3 with the usual cross-product on our list of Lie -
algebras. More generally, consider the family of Lie algebras parametrized by
real quadruples (q, b, c, d), each with basis X, Y, Z with bracket given by

[X,Y]=aZ +dY, [Y,Z]=bX, [Z X]=cY—dz
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Classify this Lie algebra as (g, b, ¢, d) varies in R*, showing in particular that
every three-dimensional Lie algebra can be written in this way.

Exercise 10.19, Realize the isomorphism of SU(1, 1) with SL, R by identifying
them with the groups of complex automorphisms of the unit disk and the
upper half-plane, respectively.

Exercise 10.20. Classily all Lie algebras of dimension four and rank I; in
particular, show that they are all direct sums of Lie algebras described above.

Exercise 10.21. Show more generally that there exists a Lie algebra of dimen-
sion m and rank 1 that is not a direct sum of smaller Lie algebras if and only
if m is odd; in case m is odd show that this Lie algebra is unique and realize
it as a Lie subalgebra of sl,C.



LECTURE 11

Representations of sl,C

This is the first of four lectures—§11-- 14—that comprise in some sense the heart of
the book. In particular, the naive analysis of §11.1, together with the anatogous parts
of §12 and §13, form the paradigm for the study of finite-dimensional representations
of all semisimple Lie algebras and groups. §11.2 is fess central; in it we show how the
analysis carried out in §11.1 can be used to explicitly describe the tensor products of
irreducible representations. §11.3 is teast important; it indicates how we can interpret
geometrically some of the results of the preceding section. The discussions in §11.1 and
§11.2 are completely elementary (we do use the notion of symmetric powers of a vector
space, but in a non-threatening way). §11.3 involves a fair amount of classical projective
geomelry, and can be skimmed or skipped by those not already familiar with the
relevant basic notions from algebraic geometry.

§11.1: The irreducible representations
§11.2: A little plethysm
§11.3: Alittle geometric plethysm

§11.1. The Irreducible Representations

We start our discussion of representations of semisimple Lie algebras with the
simplest case, that of s, C. As we will see, while this case does not exhibit any
of the complexity of the more general case, the basic idea that informs the
whole approach is clearly illustrated here.

This approach is one already mentioned above, in connection with the
representations of the symmetric group on three letters. The idea in that case
was that given a representation of our group on a vector space V we first
restrict the representation to the abelian subgroup generated by a 3-cycle t.
We obtain a decompusition
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V=@V
of V into eigenspaces [or the action of t; the commutation relations satisfied
by the remaining elements ¢ of the group with respect to t implied that such ¢
simply permuted these subspaces ¥,, so that the representation was in effect
determined by the collection of eigenvalues of 1.

Of course, circumstances in the case of Lie algebra representations are quile
different: to name two, it is no longer the case that the action of an abelian
object on any vector space admits such a decomposition; and even if such a
decomposition exists we certainly cannot expect that the remaining elements
of our Lie algebra will simply permute its summands. Nevertheless, the idea
remains essentially a good one, as we shall now see.

To begin with, we choose the basis for the Lie algebra sl,C from the last

lecture:
1 0 0 1 00
n=(o 1) x=( o} (o)

[H, X]=2X, [H,Y]=-2Y, (X, Yl=~H (11

satisfying

These seem like a perfectly natural basis to choose, but in fact the choice is
dictated by more than aesthetics; there is, as we will see, a nearly canonical
way of choosing a basis of a semisimple Lie algebra (up to conjugation), which
will yield this basis in the present circumstance and which will share many of
the properties we describe below. '

In any eveat, let ¥ be an irreducible finite-dimensional representation of
sl,C. We start by trotting out one of the facts that we quoted in Lecture 9,
the preservation of Jordan decomposition; in the present circumstances it
implies that

The action of H on V is diagonalizable. (11.2)

We thus have, as indicated, a decomposition
V=@V, (11.3)

where the o run over a collection of complex numbers, such that for any vector
ve ¥, we have

H@p)=oa-v.

The next question is obviously how X and Y act on the various spaces
V,. We claim that X and Y must each carry the subspaces V, into other sub-
spaces V.. In fact, we can be more specific: il we want to know where the
image of a given vector v € ¥, under the action of X sits in relation to the
decomposition (11.3), we have to know how H acts on X(v); this is given by
the
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Fundamental Calculation ( first time):
H(X(v)) = X(H(v)) + [H, X](v)
= X(a-v) + 2X(v)
= (o +2) X(v);

i.e.,if vis an eigenvector for H with eigenvalue o, then X (v)is also an eigenvector
Jor H, with eigenvalue o + 2. In other words, we have

X:Va—’ at2

The action of ¥ on each V/, is similarly calculated; we have Y(V,) = V,_,.

Observe that as an immediate consequence of this and the irreducibility of
V, all the complex numbers o that appear in the decomposition (11.3) must be
congruent to one another mod 2:for any o, that actually occurs, the subspace

@ Va“+2n
nel

would be invariant under sl,C and hence equal to all of V. Moreover, by the
same token, the ¥, that appear must form an unbroken string of numbers of
theform f3,f + 2,..., B + 2k. We denote by n the last element in this sequence;
at this point we just know n is a complex number, but we will soon see that
it must be an integer.

To proceed with our analysis, we have the foliowing picture of the action
of s, C on the vector space ¥:

X X X

(\\V /\\V /\\V
Y n.4 % ¥ n-2 - I3 "
O Q4

Choose any nonzero vector v € V,; since ¥,,, = (0), we must have X(v) = 0.
Weask now what happens when we apply the map Y to the vector v. To begin
with, we have

Claim 11.4. The vectors {v, Y{v), Y2(v),...} span V.

Proor. From the irreducibility of ¥ it is enough to show that the subspace
W < V spanned by these vectors is carried into itself under the action of sl,C.
Clearly, Y preserves W, since it simply carries the vector Y™(v) into Y™ (v).
Likewise, since the vector Y™(v) is in V,_,,, we have H(Y™(v)) = (n — 2m)*
Y™(v), so H preserves the subspace W. Thus, it suffices to check that X(W) c
W, i.e, that for each m, X carries Y™(v) into a linear combination of the Y'(v).
We check this in turn for m = 0, 1, 2, etc.

To begin with, we have X (v) = 0 € W, To see what X does to Y(v), we use
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the commutation relations for sl,C: we have
X(Y()) =X, Y]() + Y(X(v)
= H(v) + Y(0)
= -0
Next, we see that
X(Y?() = [X, YY) + Y(X(Y(v)))
= H(Y(v)) + Y(n-v)
=(n-—2)Y()+n Y

The pattern now is clear: X carries each vector in the sequence v, Y(v), Y?(v),
... into a multiple of the previous vector. Explicitly, we have

X(Y"w)=m+m—-2)+n—N+-+n-—2m+2) Y" ),
of
X(Y™o) =m@n —m + 1)- Y™ (), (11.5)

as can readily be verified by induction. O

There are a number of corollaries of the calculation in the above Claim.
To begin with, we make the observation that

all the eigenspaces V, of H are one dimensional. (11.6)

Second, since we have in the course of the proof written down a basis for V
and said exactly where each of H, X, and Y takes each basis vector, the
representation V is completely deterinined by the one complex number n that
we started with; in particular, of course, we have that

V is determined by the collection of & occurring in the decomposition
v=@V. (11.7)

To complete our analysis, we have to use one more time the finite dimen-
sionality of ¥. This tells us that there is a lower bound on the o for which
V, # (0)as well as an upper one, so that we must have Y*(v) = 0 for sufficiently
large k. But now if m is the smallest power of Y annihilating v, then from the
telation (11.5),

0= X(Y"(0)) =m{n —m+ 1) Y""'(v),

and the fact that Y™ }(v) # 0, we conclude that n — m + 1 = 0; in particular,
it follows that n s a non-negative integer. The picture is thus that the eigen-
‘values a of H on V form a string of integers differing by 2 and symmetric about
the origin in Z. In sum, then, we see that there is a unique representation ¥
for each non-negalive integer n; the representation V™ is (n + 1)-dimensional,
with H having eigenvaluesn,n — 2, ..., —n + 2, —n,
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Note that the existence part of this statement may be deduced by checking
that the actions of H, X, and Y as given above in terms of the basis v, Yv,
Y2(v),..., Y"(v)for ¥ do indeed satisfy ali the commutatian relations for s, C.
Alternatively, we wili exhibit them in a moment. Note also that by the
symmetry of the eigenvalues we may deduce the useful fact that any represen-
tation V of sl,C such that the eigenvalues of H all have the same parity and
occur with multiplicity one is necessarily irreducible; more generally, the number
of irreducible factors in an arbitrary representation V of s1,C is exactly the sum
of the multiplicities of 0 and 1 as eigenvalues of H.

We can identify in these terms some of the standard representations of s, C.
To begin with, the trivial one-dimensional representation C is clearly just V*,
As for the standard representation of s1,C on ¥V = C?, if x and y are the
standard basis for C2, then we have H(x) = x and H(y) = —y, so that ¥ =
C-x®C-y=V_, @ V,isjust the representation ') above. Similarly, a basis
for the symmetric square W = Sym*V = Sym?C? is given by {x?, xy, y*}, and
we have

H(x-x)=x"H(x) + H(x) x = 2x" x,
H(x-y)=x"H(y) + H(x)'y = 0,
H(y-yy=y H(y)+ H(y) y= =2y,

so the representation W =C-x?@C-xy@C > = W_, D W, @ W, is the
representation V'® above. More generally, the nth symmetric power Sym"V
of ¥ has basis {x", x"'y,..., y"}, and we have

H("™*y%) = (1 = k) H(x) <"k ke () xmoph!
= (n — 2k)- x""kyk

so that the eigenvalues of H on Sym"V are exactly n, n — 2, ..., —n. By the
observation above that a representation for which all eigenvalues of H occur
with multiplicity 1 must be irreducible, it follows that Sym"V is irreducible,
and hence that

y®™ = Sym"y.
In sum then, we can say simply that '

Any irreducible representation of s1,C is a symmetric power of the
standard representation V = C2, (1L.8)

Observe that when we exponentiate the image of s, C under the embedding
sl,C — sl,,, C corresponding to the representation Sym"V, we arrive at the
group SL,C when n is odd and PGL,C when n is even. Thus, the represen-
tations of the group PGL,C are exactly the even powers Sym*"V.

Exercise 11.9. Use the analysis of the representations of sl,C to prove the
statement made in the previous lecture that the universal cover S of SL,R has
no finite-dimensional representations.
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§11.2. A Little Plethysm

Clearly, knowing the eigenspace decomposition of given representations tells
us the eigenspace decomposition of all their tensor, symmetric, and alternating
products and powers: for example, if ¥ = (D V,and W = (P W then ¥ @ W =
PV, ® W;) and ¥, ® W, is an eigenspace for H with eigenvalue o + . We
can use this to describe the decomposition of these products and powers into
irreducible representations of the algebra sl, C.

For example, let ¥ = C? be the standard representation of sl,C; and
suppose we want to study the representation Sym?V ® Sym®V; we ask in
particular whether if it irreducible and, if not, how it decomposes. We have
seen that the eigenvalues of Sym?V are 2,0, and —2, and those of Sym?3V are
3,1, —1,and —3. The 12 eigenvalues of the tensor product Sym*V ® Sym*V
are thus 5and —5, 3 and — 3 (taken twice), and 1 and — I (taken three times);
we may represent them by the diagram

B e O O o

The eigenvector with eigenvalue 5 will generate a subrepresentation of the
tensor product isomorphic to Sym*¥, which will account for one occurrence
of each of the eigenvalues 5, 3, 1, — 1, -3, and — 5. Similarly, the complement
of Sym3¥ in the tensor product will have eigenvalues 3 and —3, and | and
—1 (taken twice), and so will contain a copy of the representation Sym?V,
which will account for one occurrence of the eigenvalues 3, I, —1 and —3;
and the complement of these two subrepresentations will be simply a copy of
V. We have, thus,

Sym?¥ ® Sym®*V = Sym*V & Sym*V @ V.
Note that the projection map
Sym*V ® Sym*V — Sym®V
on the first factor is just multiplication of polynomials; the other two projec-

tions do not admit such obvious interpretations.

Exercise 11.10. Find, in a similar way, the decomposition of the tensor product
Sym*V @ Sym3V.

Exercise 11.11*. Show, in general, that for a > b we have

Sym“V ® Sym®V = Sym 'V @ Sym*' "2V @ --- @ Sym“ V.

As indicated, we can also look at symmetric and exterior powers of given
fepresentations; in many ways this is more interesting. For example, let
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¥ = C? be as above the standard representation of s[,C, and let W = Sym?V
be its symmetric square; i.e., in the notation introduced above, take W = V2.
We ask now whether the symmetric square of W is irreducible, and if not what
its decomposition is. To answer this, observe that W has eigenvalues -2, 0,
and 2, each occurring once, so that the symmetric square of W will have
eigenvalues the pairwise sums of these numbers—that is, —4, —2, 0(occurring
twice), 2, and 4. We may represent Sym?V by the diagram:

1 L @I | -
T
-4 -3 2 -1 0 1 2 3 4

From this, it is clear that the representation Sym>W must decompose into
one copy of the representation V™ = Sym*V, plus one copy of the trivial
(one-dimensional) representation:

Sym2(Sym2V)) = Sym*V @ Sym°V. (11.12)
Indeed, we can see this directly: we bave a natural map
Sym?(Sym?V)) - Sym*V

obtained simply by evaluation; this will have a one-dimensional kernel (if x
and y are as above the standard basis for V we can write a generator of this
kernel as (x2)-(y?) — (x* y)*).

Exercise 11.13. Show that the exterior square A?W is isomorphic to W itsell.
Observe that this, together with the above description of Symi>W, agrees with
the decomposition of W ® W given in Exercise 11.11 above.

We can, in a similar way, describe the decomposition of ail the symmetric
powers of the representation W = Sym?V. For example, the third syminetric
power Sym3W has eigenvalues given by the triple sums of the set {2, 0, 2};
theseare —6, —4, — 2 (twice), 0 (twice), 2 (twice), 4, and 6; diagrammatically,

O OO —
6 4 2 o 2 4

Again, there is no ambiguity about the decomposition; this collection of
eigenspaces can only come from the direct sum of Sym®V with Sym?V¥, so we
must have

Sym?®(Sym?V) = Sym®V @ Sym?V.

As before, we can see at least part of this directly: we have a natural evaluation
map

Sym3(Sym?¥) - Sym®¥,
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and the eigenspace decomposition tells us that the kernel is the irreducible
representation Sym?V,

Exercise 11.14. Use the eigenspace decomposition to establish the formula
In/2}
Sym"(Sym?V) = (P Sym?"~**y
a=0

for all n.

§11.3. A Little Geometric Plethysm

We want to give some geometric interpretations of these and similar decom-
positions of higher tensor powers of representations of s, C. One big difference
is that instead of looking at the action of either the Lie algebra sl,C or the
groups SL,C or PGL,C on a representation W, we look at the action of the
group PGL,C on the associated projective space' PW. In this context, it is
natural to look at various geometric objects associated to the action: for
example, we look at closures of orbits of the action, which all turn out to be
algebraic varieties, i.e., definable by polynomial equations. In particular, our
goal in the following will be to describe the symmetric and exterior powers of
W in terms of the action of PGL,C on the projective spaces PW and various
loci in PW.

The main point is that while the action of PGL,C on the projective space
PV = P! associated to the standard representation ¥ is transitive, its action
on the spaces P(Sym"V) = P" for n > 1 is not. Rather, the action will preserve
various orbits whose closures are algebraic subvarjeties of P"—for example,
the locus of points

= {[v-v-...-v):ve V} = P(Sym"V)

corresponding to nth powers in Sym"V will be an algebraic curve in
P(Sym V) = P, called the rational normal curve; and this curve will be carried
into itself by any element of PGL,C acting on P" (more about this in a
moment). Thus, a knowledge of the geometry of these subvarieties of PW may
illuminate the representation W, and vice versa. This approach is particularly
useful in describing the symmetric powers of W, since these powers can be
viewed as the vector spaces of homogeneous polynomials on the projective
_ space P(W*) (or, mod scalars, as hypersurfaces in that projective space).
Decomposing these symmetric powers should therefore correspond to some
interesting projective geometry.

1 PW here denoles the projective space of lines through the origin in W, or the quotient space of
- Wi{0} by multiplication by nonzero scalars; we wrile [w] for the point in PW determined by the

nonzero vector w. For W = C"*, [z,, ..., z,,] is the point in P™ = PW determined by a point
{20y .. 4 2p) in C™HE,
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Digression on Projective Geometry

First, as we have indicated, we want to describe representations of Lie groups
in terms of the corresponding actions on projective spaces. The following fact
from algebraic geometry is therefore of some moral (if not togical) importance:

Fact 11.15. The group of automorphisms of projective space P"—either as
algebraic variety or as complex manifold—is just the group PGL,,,C.

For a proof, see [Ha]. (For the Riemann sphere P! at least, this should be
a familiar fact from complex analysis.)

For any vector space W of dimension n + 1, Sym*W* is the space of
homogeneous polynomials of degree k on the projective space P* = PW of
lines in W; dually, Sym*W will be the space of homogeneous polynomials of
degree k on the projective space P" = P(W*)of lines in W*, or of hyperplanes
in W. Thus, the projective space P(Sym*W) is the space of hypersurfaces of
degree k in P" = P(W*).(Because of this duality, we usuaily work with objects
in the projective space IP(W*) rather than the dual space PW in order to derive
results about symmetric powers Sym*W; this may seem initially more con-
fusing, but we believe it is ultimately less so.)

For any vector space V and any positive integer », we have a natural map,
called the Veronese embedding

PV* < P(Sym"V*)

that maps the line spanned by v € V' * to the line spanned by v" € Sym"V*, We
will encounter the Veronese embedding of higher-dimensional vector spaces
in later lectures; here we are concerned just with the case where V is two
dimensional, so P¥* = P!, In this case we have a map

1,: P! < P = P(Sym"1#)

whose image is called the rational normal curve C = C, of degree n. Choosing
bases {o, i} for ¥* and {...[nl/k!(n — k)!Ta*f""*...} for Sym"V'* and ex-
panding out (xa + yf#)" we see that in coordinates this map may be given as

[yl Dxm x™ 7y, 722,y ],

From the definition, the action of PGL,C on P" preserves C,; conversely,
since any automorphism of P" fixing C, pointwise is the identity, from Fact
11.15 it follows that the group G of automorphisms of P" that preserve C, is
precisely PGL,C. (Note that conversely if W is any (n + 1)-dimensional
representation of SL,C and PW = P" contains a rational normal curve of
degree n preserved by the action of PGL,C, then we must have W = Sym"V;
we leave this as an exercise.?)
When n = 2, C is the plane conic defined by the equation

2 Nole that any confusion between PW and PW* is relatively harmless for us here, since the
representations Sym"V are isomorphic to their duals.
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F(Zy,2,,Z,)=2Z,Z, — Z} = 0.

For n = 3, C is the twisted cubic curve in P3, and is defined by three quadratic
polynomials

ZoZy — 22, ZoZy—Z1Z, and  Z,Z,— Z2.

More generally, the rational normal curve is the common zero locus of the
2 x 2 minors of the matrix

ZyZ,...Z,
M= 041 n—1 ,
(zlzz... Z,

that is, the locus where the rank of M is 1.

Back to Plethysm

We start with Example (11.12). We can interpret the decomposition given
there (or rather the decomposition of the representation of the corresponding
Lie group SL,C) geometrically via the Veronese embedding 1,: P' <» P2, As
noted, SL, C acts on P? = P(Sym?V *) as the group of motions of P? carrying
the conic curve C, into itself. Its action on the space Sym?(Sym?V)) of
quadratic polynomials on P? thus must preserve the one-dimensional sub-
space C- I spanned by the polynomial F above that defines the conic C,. At
the same time, we see that pullback via 1, defines a map from the space of
quadratic polynomials on P? to the space of quartic polynomials on P!, which
has kernel C- IF; thus, we have an exact sequence

0 - C = Sym°V - Sym?*(Sym?¥’)) - Sym*V - 0,

which implies the decomposition of Sym?(Sym?1)) described above.

Note that what comes to us at first glance is not actually the direct sum
decomposition (11.12) of Sym?(Sym?¥’)), but just the exact sequence above.
The splitting of this sequence of SL,C-modules, guaranteed by the general
theory, is less obvious. For example, we are saying that given a conic curve C
in the plane P2, there is a subspace U, of the space of all conics in P2
complementary to the one-dimensional subspace spanned by C itself and
invariant under the action of the group of motions of the plane P2 carrying
Cinto itself. Is there a geometric descnptlon of this space? Yes: the following .
proposition gives one.

Proposition 11.16. The subrepresentation Sym*V < Sym?*(Sym? V) is the space
of conics spanned by the family of double lines tangent to the conic C = C,.

Proor. One way to prove this is to simply write out this subspace in coor-
dinates: in terms of homogeneous coordinates Z; on I?? as above, the tangent
line to the conic C at the point [ 1, @, 2*] is the line
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Ly=1{Z:0*Zy — 20Z, + Z, = 0}.
The double line 2L, is, thus, the conic with equation
W72 — AP ZoZ, + 202 ZoZ, + 40272 — 4aZ, Z, + Z2 = Q.

The subspace these conics generate is thus spanned by 22, Z,Z,, Z,Z,, Z3,
and Z,Z, + 2Z?. By construction, this is invariant under the action of SL,C,
and it is visibly complementary to the trivial subrepresentation C-F =
C(ZoZy — Z2).

For those familiar with some algebraic geometry, it may not be necessary
to write all this down in coordinates: we could just observe that the map from
the conic curve C to the projective space P(Sym?(Sym?V)) of conics in P?
sending each point p e C to the square of the tangent line to C at p is the
restriction to C of the quadratic Veronese map P2 — P%, and so has image a
quartic rational normal curve. This spans a four-dimensional projective sub-
space of P(Sym?(Sym?¥’)), which must correspond to a subrepresentation
isomorphic to Sym*V. O

We will return to this notion in Exercise 11.26 below.

We can, in a similar way, describe the decomposition of all the symmetric
powers of the representation W = Sym?V; in the general setting, the geo-
metric interpretation becomes quite handy. For example, we have seen that
the third symmetric power decomposes

Sym3(Sym?V) = Sym®V @ Sym?V.

This is immediate from the geometric description: the space of cubics in the
plane P? naturally decomposes into the space of cubics vanishing on the conic
C = C,, plus a complementary space isomorphic (via the pullback map 1$)to
the space of sextic polynomials on IP'; moreover, since a cubic vanishing on
C, factors into the quadratic polynomial F and a linear factor, the space of
cubics vanishing on the conic curve C  P? may be identified with the space
of lines in P2,
One more special case: from the general formula (11.14), we have

Sym*(Sym?V) =~ Sym®V @ Sym*V @ Sym°V.

Again, this is easy to see [rom the geometric picture: the space of quartic
polynomials on P? consists of the one-dimensional space of quartics spanned
by the square of the defining equation F of C itself, plus the space of quartics
vanishing on C modulo multiples of F2, plus the space of quartics modulo
those vanishing on C. (We use the word “plus,” suggesting a direct sum, but
as before only an exact sequence is appatent).

Exercise 11.17. Show that, in general, the order of vanishing on C defines a
filtration on the space of polynomials of degree n in P2, whose successive
quotients are the direct sum factors on the right hand side of the decomposi-
tion of Exercise 11,14.
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We can similarly analyze symmetric powers of the representation U =
Sym3V. For example, since U has eigenvalues — 3, — [, 1, and 3, the symnetric
square of U has eigenvalues —6, —4, —2 (twice), 0 (twice), 2 (twice), 4, and 6;
diagrammatically, we have

oo @ | @@ e e —

This implies that
Sym?(Sym?®¥F) = Sym®V @ Sym?V. (1L.18)

We can interpret this in terms of the twisted cubic C = C, < P? as follows:
the space of quadratic polynomials on IP? contains, as a subrepresentation, the
three-dimensional vector space of quadrics containing the curve C itsell; and
the quotient is isomorphic, via the pullback map 1%, to the space of sextic
polynomials on P!, '

Exercise 11.19*, By the above, the action of SL,C on the space of quadric
surfaces containing the twisted cubic curve C is the same as its action on
P(Sym?V*) = P2 Make this explicit by associating to every quadric con-
taining C a polynomial of degree 2 on P!, up to scalars.

Exercise 11.20*, The direct sum decomposition (11.18) says that there is a
linear space of quadric surfaces in P? preserved under the action of SL,C and
complementary to the space of quadrics containing C. Describe this space.

Exercise 11.21. The projection map from Sym?(Sym3V) to Sym?¥ given by
the decomposition (11.18) above may be viewed as a quadratic map from the
vector space Sym3V to the vector space Sym?¥, Show that it may be given in
these terms as the Hessian, that is, by associating to a homogeneous cubic
polynomial in two variables the determinant of the 2 x 2 matrix of its second
partials.

Exercise 11.22. The map in the preceding exercise may be viewed as associating
to an unordered triple of points {p, g, r} in P! an unordered pair of points
{s,t} = P'. Show that this pair of points is the pair of fixed points of the
automorphism of P! permuting the three points p, g, and r cyclicalty.

Exercise 11.23*. Show that
Sym?(Sym*V) = Sym®V @ Sym3V @ Sym?V,

and interpret this in terms of the geometry of the twisted cubic curve. In
particular, show that the space of cubic surfaces containing the curve is the
direct sum of the last two factors, and identify the subspace of cubics corre-
sponding to the last factor.
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Exercise 11.24. Analyze the representation Sym*(Sym*V’) similarly. In par-
ticular, show that it contains a trivial one-dimensional subrepresentation.

The trivial subrepresentation of Sym*(Sym?3V) found in the last exercise
has an interesting interpretation. To say that Sym*(Sym?3V) has such an
invariant one-dimensional subspace is to say that there exists a quartic surface
in P? preserved under all motions of P carrying the rational normal curve
C = C; into itself. What is this surface? The answer is simple: it is the tangent
developable to the twisted cubic, that is, the surface given as the union of the
tangent lines to C.

Exercise 11.25*%. Show that the representation Sym?®(Sym*¥’) contains a trivial
subrepresentation, and interpret this geometrically.

Problem 11.26. Another way of interpreting the direct sum decomposition of
Sym?(Sym?V) geometrically is to say that given a conic curve C <« P? and
given four points on C, we can [ind a conic C' = C'(C; p,, ..., p,) < P?
intersecting C in exactly these points, in a way that is preserved by the action
of the group PGL,C of all motions of P2 (i.e., for any motion A: P2 - P? of
the plane, we have A(C'(C; py, ..., Ps)) = C'(AC; Apy, ..., Ap,)). What is a
description of this process? In particular, show that the cross-ratio of the four
points p; on the curve C' must be a function of the cross-ratio of the p, on C,
and find this function. Observe also that this process gives an endomorphism
of the pencil

{CcPpy,....pseCxP!

of conics passing through any four points p, € P2 What is the degree of this
endomorphism?

The above questions have all dealt with the symmetric powers of Sym"V.
There are also interesting questions about the extetior powers of Sym"V.
To start with, consider the exterior square A*(Sym® V). The eigenvalues of this
representation are just the pairwise sums of distinct elements of {3, 1, — 1, -3},
that is, 4, 2, 0 (twice), —2, and —4; we-deduce that

A*(Sym®V) = Sym*V @ Sym°V, - 11.27)
Y (

Observe in particular that according to this there is a skew-symmetric bilinear
form on the space U = Sym?3V preserved (up to scalars) by the action of SL,C.
What is this form? One way of describing it would be in terms of the twisted
cubic: the map from C to the dual projective space (P3)* sending each point
p € C to the osculating plane to C at p extends to a skew-symmetric linear
isomorphism of P? with (P?)*.

Exercise 11.28. Show that a line in P? is isotropic for this form if and only if,
viewed as an element of P(A2U), it lies in the linear span of the locus of tangent
tines to the twisted cubic.
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Exercise 11.29. Show that the projection on the first factor in the decomposi-
tion (11.27) is given explicitly by the map

FAG—F-dG— G-dF

and say precisely what this means.

Exercise 11.30. Show that, in general, the representation A>(Sym"V) has as a
direct sum factor the representation Sym?"~2¥, and that the projection on this
factor is given as in the preceding exercise. Find the remaining factors of
A2(Sym"V), and interpret them.

More on Rational Normal Curves

Exercise 11.31. Analyze in general the representations Sym?(Sym"V); show,
using eigenvalues, that we have

Sym*(Sym"V) = @% Sym?2" 42y,
a>

Exercise 11.32*. Initerpret the space Sym?(Sym”V) of the preceding exercise
as the space of quadrics in the projective space P”, and use the geometry of
the rational normal curve C = C, = P”" to interpret the decomposition of this
representation into irreducible factors. In particular, show that direct sum

@ SymZn——4aV

a1
is the space of quadratic polynomials vanishing on the rational normal curve;
and that the direct sum

@ SymZn—41V

22
is the space of quadrics containing the tangential developable of the rational
normal curve, that is, the union of the tangent lines to C. Can you interpret
the sums for a > k for k > 27

Exercise 11.33. Note that by Exercise 11.11, the tensor power
Sym"V @ Sym"V

always contains a copy of the trivial representation; and that by Exercises
11.30 and 11.31, this trivial subrepresentation will lie in Sym*(Sym"V) if n is
evenand in A?(Sym"V} if n is odd. Show that in either case, the bilinear form
on Sym"V preserved by SL,C may be described as the isomorphism of P" with
(P")* carrying each point p of the rational normal curve C < P" into the
osculating hyperplane to C at p.

Comparing Exercises 11.14 and 11.31, we see that Sym?(Sym"V) =
Sym"(Sym?V'); apparently coincidentaily. This is in fact a special case of a
more general theorem (cf. Exercise 6.18):
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Exercise 11.34. (Hermite Reciprocity). Use the eigenvalues of H to prove the
isomorphism

Sym*(Sym"V’) = Sym"(Sym*V’).

Can you exhibit explicitly a map between these two?

Note that in the examples of Hermite reciprocity we have seen, it
seems completely coincidental: for example, the fact that the representations
Sym?3(Sym*V’) and Sym*(Sym?V’) both contain a trivial representation cor-
responds to the facts that the tangential developable of the twisted cubic in
P? has degree 4, while the chordal variety of the rational normal quartic in
P* has degree 3.

Exercise 11.35* Show that A"(Sym"V) = Sym™(Sym"*!™"}).

We will see in Lecture 23 that there is a unique closed orbit in P(W) for any
irreducible representation W. For now, we can do the following special case.

Exercise 11.36. Show that the unique closed orbit of the action of SL,C on
the projectivization of any irreducible representation is isomorphic to P!
(these are the rational normal curves introduced above).



LECTURE 12

Representations of sl;C, Part 1

This lecture develops results for sI3C analogous to those of §11.1 (though not in exactly
the same order). This involves generalizing some of the basic terms of §11 (e.g,, the
notions of eigenvalue and eigenvector have to be redefined), but the basic ideas are in
some sense already in §11. Certainly no techniques are involved beyond those of §11.1.

We come now to a second important stage in the development of the theory:
in the following, we will take our analysis of the representations of sl,C and
sec how it goes over in the next case, the algebra sl,C. As we will see, a number
of the basic constructions need to be modified, or at least rethought. There
are, however, two pieces of good news that should be borne in mind. First,
we will arrive, by the end of the following lecture, at a classification of the
representations of sl,C that is every bit as detailed and explicit as the classifi-
cation we arrived at previously for sl,C. Second, once we have redone our
analysis in this context, we will need to introduce no further concepts to carry
out the classification of the finite-dimensional representations of all remaining
semisimple Lie algebras.

We will proceed by analogy with the previous lecture. To begin with, we
started out our analysis of sl,C with the basis {H, X, Y} for the Lie algebra;
we then proceeded to decompose an arbitrary representation V of sI,C into
a direct sum of eigenspaces for the action of . What element of sl,C in
particular will play the role of H? The answer-—and this is the first and
perhaps most wrenching change from the previous case-—is that no one
element really allows us to see what is going on." Instead, we have to replace

! This is not literally true: as we will see from the following analysis, if 17 is any diagonal matrix
whose entries are independent over O, then the action of H on any representation V of ¢t,C
determines the representation (i.e., if we know the eigenvalues of H we know ). But (as we will
also see) trying to carry this out in practice would be sheer perversity.
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the single element H esl,C with a subspace b < sl,C, namely, the two-
dimensional subspace of all diagonal matrices. The idea is a basic one; it
comes down to the observation that commuting diagonalizable matrices are
simultaneously diagonalizable. This translates in the present circumstances to
the statement that any finite-dimensional representation V of sl,C admits a
decomposition V = @V,, where every vector v € V, is an eigenvector [or every
element H €1).

At this point some terminology is clearly in order, since we will be dealing
with the action not of a single matrix H but rather a vector space [) of them.
To begin with, by an eigenvector for Iy we will mean, reasonably enough, a
vector v € ¥ that is an eigenvector for every H € ). For such a vector v we can
write

H(v) = «(H)"v, (12.1)

where a(H) is a scalar depending linearly on H, ie., o € h*, This leads to our
second notion: by an eigenvalue for the action of I) we will mean an element
o € h* such that there exists a nonzero element v € V satisfying (12.1); and by
the eigenspace associated to the eigenvalue o we will mean the subspace of all
vectors ¢ € ¥ satisfying (12.1). Thus we may phrase the statement above as

(12.2) Any finite-dimensional representation V of sl5C has a decomposition
V=@V,
where V, is an eigenspace for ly and a ranges over a finite subset of ly*.

This is, in fact, a special case of a more general statement: for any semisimple
Lie algebra g, we will be able to find an abelian subalgebra §) < g, such that
the action of ) on any g-module V will be diagonalizable, i.e., we will have a
direct sum decomposition of ¥ into eigenspaces ¥, for .

Having decided what the analogue for sl,C of H e¢i,C is, let us now
consider what will play the role of X and Y. The key here is to look at the
commutation relations

[H,X]=2X and [H,Y]=-2Y

in sl,C. The correct way to interpret these is as saying that X and Y are
eigenvectors for the adjoint action of H on sl,C. In our present circumstances,
then, we want to look for eigenvectors (in the new sense) for the adjoint action
of h on sl;C. In other words, we apply (12.2) to the adjoint representation of
s13C to obtain a decomposition

sl,C =h & (Dg,) (12.3)

where « ranges over a finite subset of h* and |y acts on each space g, by scalar
multiplication, i.e., forany H el and Y e g,

[H, Y] = ad(H)(Y) = a(H)- Y.

This is probably easier to carry out in practice than it is to say; we are being
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longwinded here because once this process is understood it will be straight-
forward to apply it to the other Lie algebras. In any case, to do it in the present
circumstances, we just observe that muitiplication of a matrix M on the left
by a diagonal matrix D with entries a; multiplies the ith row of M by a,, while
multiplication on the right multiplies the ith column by a;; if the entries of M
are m; ;, the entries of the commutator [ D, M] are thus (a; — a))m; ;. We see
then that the commutator [D, M] will be a multiple of M for all D if and only
ifall but one entry of M are zero. Thus, if we let E; ; be the 3 x 3 matrix whose
(i, j)th entry is | and all of whose other entries are 0, we see that the E, , exactly
generate the eigenspaces for the adjoint action of  on g.
Explicitly, we have

a 0 O
h= 0 a, O)ia,+a,+ay;=0
0 0 ay

and so we can write

h*=C{L,,L,, Ly}/(L; + L, + L3 = 0}},

where
a 0 O
L0 a 0=a,.
0 0 a4

The linear functionals a € h* appearing in the direct sum decomposition (12.3)
are thus the six functionals L, — L;; the space g;,; will be generated by the

element E, ;. To draw a picture

Ly-L,

(12.4)

Ly-1,

The virtue of this decomposition and the corresponding picture is that we
can read off from it pretty iuch the entire structure of the Lie algebra. Of
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course, the action of ) on g is clear from the picture: ) carries each of the
subspaces g, into itsell, acting on each g, by scalar multiplication by the linear
functional represented by the corresponding dot. Beyond that, though, we can
also see, much as in the case of representations of 1, C, how the rest of the Lie
algebra acts. Basically, we let X be any element of g, and ask where ad(X)
sends a given vector Y € g,; the answer as belore comes from knowing how
acts on ad(X)(Y). Explicitly, we let H be an arbitrary element of j and as on
page [48 we make the

Fundamental Calculation (second time):
[H.[X, Y1} ={X,[H Y]] + [[H, X]. Y]
=[X, B(H) Y] + [a(H) X, Y]
= (a(H) + p(H))-[X, Y]
In other words, [ X, Y] = ad(X)(Y) is again an eigenvector for 1), with eigen-
value a + f§. Thus,
ad(ga): 85 —* Barps

in particular, the action of ad(g,) preserves the decomposition (12.3) in the
sense that it carries each eigenspace g, into another. We can interpret this in
terms of the diagram (12.4) of eigenspaces by saying that each g, acts, so to
speak, by “translation”; that is, it carries each space g, corresponding to a dot
in the diagram into the subspace g,, , corresponding (o that dot translated by
a. For example, the action of g, _, , may be pictured as

Lz-L}/

(12.5)
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ie,itcarriesg,,_, intog, ;,;8;,-;, intoh;hintogy, 4, 0;,-,,into g, 4,
and kills g;,_, , 91,,-1,,, and g, _;,. Of course, not all the data can be read off
of the diagram, at least on the basis on what we have said so [ar. For example,
we do not at present see from the diagram the kernel ofad(g,,_,,,) on b, though
we will see later how to read this off as well. We do, however, have at least a
pretty good idea of who is doing what to whom.

Pretty much the same picture applies to any representation ¥ of ¢1,C: we
start from the eigenspace decomposition V = @V, for the action of | that we
saw in (12.2). Next, the commutation relations for sl C tell us exactly how the
remaining summands of the decomposition (12.3) of s1;C act on the space V,
and again we will see that each of the spaces g, acts by carrying one eigenspace
V, into another. As usual, for any X € g, and v € V; we can tell where X will
send v if we know how an arbitrary element H e Iy will act on X(v). This we
can determine by making the

Fundamental Calculation (third time):

H(X(v)) = X(H(v)) + [H, X](v)
= X(B(H) v) + (2(H)" X)(v)
= (a(H) + p(I1)) X (v).

We see from this that X(v) is again an eigenvector for the action of 1), with
eigenvalue o + P; in other words, the action of g, carries V; to V,, ,. We can
thus represent the eigenspaces V, of V by dots in a plane diagram so that each
g, acts again “by translation,” as we did for representations of sI,C in the
preceding lecture and the adjoint representation of si,C above. Just as in the
case of sl,C (page 148), we have

Observation 12.6. The eigenvalues « occurring in an irreducible representation
of sl,C differ from one other by integral linear combinations of the vectors
Li—Ljeh*

Note that these vectors L; — L; generate a lattice in h*, which we will denote
by Ag, and that all the « lie in some translate of this lattice.

At this point, we should begin to introduce some of the terminoiogy that
appears in this subject. The basic object here, the eigenvalue a e h* of the
action of ) on a representation V of g, is called a weight of the representation;
the corresponding eigenvectors in V, are called, naturally enough, weight
vectors and the spaces V, themselves weight spaces. Clearly, the weights that
occur in the adjoint representation are special; these are cailed the roots of
the Lie algebra and the corresponding subspaces g, = g root spaces; by
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convention, zero is not a root. The lattice Ag < h* generated by the roots «
is called the root lattice.

To see what the next step should be, we go back to the anatysis of represen-
tations of sI,C. There, at this stage we continued our analysis by going to an
extremal eigenspace ¥, and taking a vector v € V,. The point was that since ¥,
was extremal, the operator X, which would carry ¥, to ¥,,,, would have to
kill v; so that v would be then both an eigenvector for H and in the kernel of
X. We then saw that these two facts allowed us to completely describe the
representation V in terms of images of v.

What would be the appropriately analogous setup in the case of s[;C? To
start at the beginning, there is the question of what we mean by extremal: in
the case of s,C, since we knew that all the eigenvalues were scalars differing
by integral multiples of 2, there was not much ambiguity about what we meant
by this. In the present circumstance this does involve a priori a choice (though
as we shall see the choice does not affect the outcome). we have to choose a
direction, and look for the farthest a in that direction appearing in the
decomposition (12.3). What this means is that we should choose a linear
functional

AR R

extend it by lipearity to a linear functional I: h* — C, and then for any
representation V we should go to the eigenspace ¥, for which the real part of
I(«) is maximal.® Of course, to avoid ambiguity we should choose [ to be
irrational with respect to the laitice Ag, that is, to have no kernel.

What is the point of this? The answer is that, just as in the case of a
representation V of sl,C we found in this way a vector pe V that was
simultaneously in the kernel of the operator X and an eigenvector for H, in
the present case what we will find is a vector v € ¥, that is an cigenvector for
b, and at the same time in the kernel of the action of g, for every f§ such that
I(f) > Q—that is, that is killed by half the root spaces g, (specifically, the root
spaces corresponding to dots in the diagram (12.4) lying in a half plane). This
will likewise give us a nearly complete description of the representation V.

To carry this out explicitly, choose our functional [ to be given by

la, L, + a,L, + ayL,) = aa, + ba, + ca,,

where @ + b4 ¢ =0 and a > b > ¢, so that the spaces g, < g for which we

have I(a) > O are then exactly a,, ., 81,-1,, 3nd g, _,,; they correspond to

matrices with one nonzero entry above the diagonal.

2 The real-versus-complex business is a red herring since (it will turn out very shortly) all the
eigenvalues o actually occurring in any representation will in fact be in the real (in fact, the
rational) linear span of A,.
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(12.7m

Thus, for i < j, the matrices E; ; generate the positive root spaces, and the E;
generate the negative root spaces. We'set

Hi;=[E ,E;]=E;;~E, (12.8)

Now let ¥ be any irreducible, finite-dimensional representation of si,C.
The upshot of all the above is the

Lemma 12.9. There is a vector v € V with the properties that

(i) vis an eigenvector for b, i.e. v € V, for some a; and
(ii) v iS ki"ed by EI.Z’ El.3! and E2.3'

For any representation V of s1,C, a vector v € V with these properties is
called a lighest weight vector.

In the case of s,C, having found an eigenvector v for H killed by X, we
argued that the images of v under successive applications of Y generated the
representation. The situation here is the same: analogous to Claim 11.4 we
have

Claim 12.10. Let V be an irreducible representation of s1,C, and v e V a highest
weight vector. Then V is generated by the images of v under successive applica-
tions of the three operators E, 4, E, , and E, ;.

Before we check the claim, we note three immediate consequences. First,
_ it says that all the cigenvalues f e b* occurring in V lie in a sort of §-planc
. with corner at «:
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Second, we see that the dimension of V, itself is 1, so that v is the unique
eigenvector with this eigenvalue (up to scalars, of course). (We will see below
that in fact v is the unique highest weight vector of V up to scalars; see
Proposition 12.11.) Lastly, it says that the spaces V. p,-1,) 304 Voinr -1y
are all at most one dimensional, since they must be spanned by (E,_,)"(v) and
(E4 ,)'(v), respectively.

Proor oF CLAIM 12.10. This is formally the same as the proof of the corre-
sponding statement for sl,C: we argue that the subspace W of V spanned by
images of v under the subalgebra of sl C generated by E, |, E; ;,and E, , is,
in fact, preserved by all of sl,C and hence must be all of V. To do this we just
have to check that E, ,, E, ,, and E, ; carry W into itself (in fact it is enough
to do this for the first two, the third being their commutator), and this is
straightforward. To begin with, vitself is in the kernel of E| ,, E, 3, and E, 4,
so there is no problem there. Next we check that E, , (v} is kept in W: we have

Eq3(Eq (V) = (Eq (Ey 2(0)) + [E} 3, E5 1 1)
=a([E; 5, E;, 1)
since E; ,(v) =0and [E, ,, E; ;] eb;and

E; 3(E;, ()} = (Eq, 1 (E3,5(0)) + [E3, 3, E;  1(0)
=0

since E, 5(v) =0 and [E, 5, E, ;] =0. A similar computation shows that
E, ,(v} is also carried into V by E, ; and E, .

More generally, we may argue the claim by a sort of induction: we let W
denote any word of length n or less in the letters E, | and E, , and take W,
to be the vector space spanned by the vectors w,(v) for all such words; note
that W is the union of the spaces W,, since E, , is the commutator of E, , and
E, . We claim that E, ; and E, , carry W, into W,_,. To see this, we can
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write w, as either E; ; o w,_y or E; ; o w,_,; in either case w,_,(v) will be an
eigenvector for b with eigenvalue f for some f. In the former case we have

E\ 2(W,(v) = Ey 5(E; 1 (W,-(v))
= E3 1 (Ey,2(Wa-1 () + [Ey 2, Bz 1 J (-1 (V)
€ E; ((W,-2) + B(LE; 2, E3 1 1) Way (V)
< W,

since [E, ,, E, ] € b; and

E, s(wa(1)) = E3, 3(E3, {(Wa-1 (1))
= Ej 1(E3,3(Wa—1 () + [E3 3, E3, 1 1(W,-(v))
€ E; i(W,-y)
< W

since [E, 5, E; ;] = 0. Essentially the same calculation covers the latter case
w, = E, 5 o w,_,, establishing the claim. O

This argument shows a little more; in fact, it proves

Proposition 12.11. If V is any representation of sl,€C and ve V is a highest
weight vector, then the subrepresentation W of V generated by the images
of v by successive applications of the three operators E, ,, E5 |, and E, , is
irreducible.

Proor. Let « be the weight of v, The above shows that W is a subrepresenta-
tion, and it is clear that W, is one dimensional. If W were not irreducible, we
would have W = W' @ W" for some representations W’ and W". But since
projection to W’ and W” commute with the action of ), we have W, =
W, @ W,'. This shows that one of these spaces is zero, which implies that v
belongs to W’ or W, and hence that W is W’ or W", O

As a corollary of this proposition we see that any irreducible representation
of sl;C has a unique highest weight vector, up to scalars; more generally, the
set of highest weight vectors in V forms a union of linear subspaces ‘¥,
corresponding to the irreducible subrepresentations W of ¥, with the dimen-
sion of W), equal to the number of times W appears in the direct sum
decomposition of V into irreducibles.

What do we do next? Well, let us continue to look at the border vectors
(E;,1)}(v). We call these border vectors because they live in (and, as we saw,

- span) a collection of eigenspaces g,, 0asr,-1,» Gas 21,1, -+ - that correspond
to points on the boundary of the diagram above of possible eigenvalues
-of V. We also know that they span an uninterrupted string of nonzero eigen-
Spaces G,4uq,-1y = C, k=0, 1, ..., until we get to the first m such that
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(E,,,)"(v) = 0, after that we have g,.x,-1, = (0) for all k > m. The picture
is thus:

(12.12)

where we have no dots above/to the right of the bold line, and no dots on that
line other than the ones marked.

The obvious question now is how long the string of dots along this line is.
One way to answer this would be to make a calculation analogous to the one
in the preceding lecture: use the computation made above to say explicitly for
any k what multiple of (E, ;)* "' (v) the image of (E, ,)*(v) under the map E, ,
is, and use the fact that (E, ,)"(v) = 0 to determine m. It will be simpler—
and more useful in general—if instead we just use what we have already
Jearned about representations of sI, C. The point is, the elements E, ; and E, |,
together with their commutator [E, ,, E; ;1= H, ;, span a subalgebra of s1,C
isomorphic to s1,C via an isomorphism carrying E| ,, E, , and H, , to the
elements X, Y and H. We will denote this subalgebra by s, _, . (the notation
may appear awkward, but this is a special case of a general construction). By
the description we have already given of the action of sl;C on the representa-
tion ¥ in terms of the decomposition V' = (P ¥,, we sec that the subalgebra
s;,, -1, Will shilt eigenspaces ¥, only in the direction of L, — L,; in particular,
the direct sum of the eigenspaces in question, namely the subspace

W= @Qauu,z—l,‘) (12.13)

of ¥ will be preserved by the action of s; _; . In other words, W is a
representation of s, _; = sl,C and we may deduce from this that the eigen-
values of H, , on W are integral, and symmetric with respect to zero. Leaving
astde the integrality for the moment, this says that the string of dots in diagram
{12.12) must be symmetric with respect to the line {H, ,, L) = Qin the plane
h*. Happily (though by no means coincidentally, as we shall see), this line is
perpendicular to the line spanned by L, — L, in the picture we have drawn;
50 we can say simply that the string of dots occurring in diagram (12.12} is
preserved under reflection in the line {H, ,, L) = 0.

In general, for any i # j the elements E; ; and E;;, together with their
commutator [E, ;, E; ;] = H, ;, span a subalgebra s, _; of el,0 isomorphic

iJ
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to sl,C via an isomorphism carrying E, ;, E;;, and H, ; to the elements X, ¥,
and H. (Note that 7, ; = —H,; ;) Analyzing the action of the subalgebra
s;,-1, in particular then shows that the string of dots corresponding to the
eigenspaces g,,,(L; — L,) is likewise preserved under reflection in the line
{H,, 3, LY = 0 in h* The picture is thus

CHypl>=0

KH,y L>=0

Let us now take a look at the last eigenspace in the first string, that is, ¥}
where m is as before the smallest integer such that (E, ,)"(v)=0and f =
a+(m—1)(L, — L,). If v" € ¥ is any vector, then, by definition, we have
E,,,(v") = 0; and since there are no eigenspaces ¥, corresponding to y above
the bold line in diagram (12.12), we have as well that E, ,(v') = E, 4(v") = 0.
Thus, v’, like v itself, satisfies the statement of Lemma 12.9, except for the
exchange of the indices 2 and I; or in other words, if we had chosen the linear
functional { above differently—precisely, with coeflicients b > a > c—then
the vector whose existence is implied by Lemima 12.9 would have turned out
to be v’ rather than v. If, indeed, we had carried out the above analysis with
_ respect to the vector v’ instead of v, we would find tht all eigenvalues of V
occur below or to the right of the lines through f in the directions of L, — L,
and Ly — L,, and that the strings of eigenvalues occurring on these two lines
were symmetric about the lines (H, ,, L) =0 and (H, ;, L) =0, respec-
tively. The picture now is

KHypL>=0 CHipl>=9
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Needless to say, we can continue to play the same game all the way around:
at the end of the string of eigenvalues {8 + k(Ly — L)} we will arrive at a
vector v” that is an eigenvector for h and killed by E; ; and E, ,,and to which
therefore the same analysis applies. In sum, then, we see that the set of
eigenvalues in ¥ will be bounded by a hexagon symmetric with respect to the
lines (H, ;, L) = 0 and with one vertex at «; indeed, this characterizes the
hexagon as the convex hull of the union of the images of a under the group
of isometries of the plane generated by reflections in these three lines.

CHypL>=0 <HyL>=0

\ V4

a

AVAVAV. Vo
NN/ |

We will see in 2 moment that the set of eigenvalues will include all the points
congruent to « modulo the lattice A, generated by the L, — L, lying on the
boundary of this hexagon, and that each of these eigenvalues will occur with
multiplicity one.

The use of the subalgebras s, _ 1, does not stop here. For one thing, observe
that as an immediate consequence of our analysis of s[,C, all the eigenvalues
of the elements H; ; must be integers; it is not hard to see that this means that
all the eigenvalues occurring in (12.2) must be integral linear combinations of
the L,, i.e., in terms of the diagrams above, all dots must lie in the lattice Ay
of interstices (as indeed we have been drawing them). Thus, we have

Proposition 12.15. All the eigenvalues of any irreducible finite-dimensional
representation of sl,C must lie in the lattice Ay, = h* generated by the L; and
be congruent modulo the lattice Ay = b* generated by the L; — L,.

This is exactly analogous to he situation of the previous lecture: there we
saw that the eigenvalues of H in any irreducible, finite-dimensional representa-
tion of sl,C lay in the lattice Ay, = Z of linear forms on CH integral on H,
and were congruent to one another modulo the sublattice A = 2+ Z generated
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by the eigenvalues of H under the adjoint representation. Note that in the case
of sl,C wehave Ay, /A g = Z/2, whilein the present case we have Ay, /A = Z/3;
we will see later how this reflects a general pattern. The lattice A, is called
the weight lattice.

Exercise 12.16, Show that the two conditions that the eigenvalues of V are
congruent to one another modulo Ay and are preserved under reflection in
the three lines (H; ;, L) = 0 imply that they all lie in Ay, and that, in fact,
this characterizes A.

To continue, we can go into the interior of the diagram (12.14) of eigen-
values of ¥ by observing that the direct sums (12.13) are not the only visible
subspaces of ¥ preserved under the action of the subalgebras s, _, ; more
generally, for any § € h* appearing in the decomposition (12.2) and any i, j the

direct sum
W= @ Qg+~ Ly)

will be a representation of s, (not necessarily irreducible, of course); in
particular it follows that the values of k for which Vj,i, -1, # (0) forin an
unbroken string of integers. Observing that if # is any of the “extremal”
eigenvalues pictured in diagram (12.14), then this string will include another;
so that all eigenvalues congruent to the dots pictured in diagram (12.14) and
lying in their convex hull must also occur. Thus, the complete diagram of
eigenvalues will look like

(12.17)

We can summarize this description in

Proposition 12.18. Let ¥ be any irreducible, finite-dimensional representation
of sl,C. Then for some a € Ay < h*, the set of eigenvalues occurring in V is
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exactly the set of linear functionals congruent to o. modulo the lattice Ay and
lying in the hexagon with vertices the images of o under the group generated by
reflections in the lines (H, ;, L) = Q.

Remark, We did, in the analysis thus far, make one apparently arbitrary choice
when we defined the notion of “extremal” eigenvalue by choosing a lincar
functional { on h* We remark here that, in fact, the choice was not as broad
as might at first have appeared. Indeed, given the fact that the configuration
of eigenvalues occurring in any irreducible finite-dimensional representation
of si,C is always either a triangle or a hexagon, the “extremal” eigenvalue
picked out by I will always turn out to be one of the three or six vertices of
this figure; in other words, if we define the linear functional [ to take a, L, +
a,Ly + a;Ly to aa; + ba, + cay, then only the ordering of the three real
numbers a, b, and ¢ matters. Indeed, in hindsight this choice was completely
analogous to the choice we made (implicitly) in the case of sl,C in choosing
one of the two directions along the real line.

We said at the outset of this lecture that our goal was to arrive at a
description of representations of s{,€ as complete as that for sl,C. We have
now, certainly, as complete a description of the possible configurations of
eigenvalues; but clearly much more is needed. Specifically, we should have

an existence and uniqueness theorem;

an explicit construction of each representations, analogous to the statement
that every representation of sl,C is a symmetric power of the standard; and

for the purpose of analyzing tensor praducts of representations of si;C, we
need a description not just of the set of eigenvalues, but of the multiplicities
with which they occur.

(Note that the last question is one that has no analogue in the case of sl,C:
in both cases, any irreducible representation is generated by taking a single
eigenvector v € ¥, and pushing it around by elements of g,; but whereas in the
previous case there was only one way to get from ¥, to ¥, —that is, by applying
Y over and over again—in the present circumstance there will be more than
one way of getting, for example, from V, to 'V,J,,,s_,‘l; and these may yield
independent eigenvectors.) This has been, however, already too long a lecture,
and so we will defer these questions, along with all examples, to the next.



LECTURE 13

Representations of sl;C, Part II:
Mainly Lots of Examples

In this lecture we complete the analysis of the irreducible representations of s, C,
culminating in §13.2 with the answers to all three of the questions raised at the end of
the last lecture: we explicitly construct the unique irreducible representation with given
highest weight, and in particular determine its multiplicities. The latter two sections
correspond to §11.2 and §11.3 in the lecture on si,C. In particular, §13.4, like §11.3,
involves some projective algebraic geometry and may be skipped by those to whom
this is unfamiliar.

§13.1: Examples

§13.2: Description of the irreducible representations
§13.3: A little more plethysm

§13.4: A little more geometric plethysm

§13.1. Examples

This lecture will be largely concerned with studying examples, giving construc-
tions and analyzing tensor products of representations of si;C. We start,
however, by at least stating the basic existence and uniquencss theorem that
provides the context for this analysis.

To state this, recall from the previous lecture than any irreducible, finite-
dimensional representation of sl,C has a vector, unique up to scalars, that is
simultaneously an eigenvector for the subalgebra 1) and killed by the three
subspaces g,,,_1,, 8y, ..,, and g, ,_, .. We called such a vector a highest weight
vector of the representation V; its associated eigenvalue will, of course, be
called the highest weight of V. More generally, in any finite-dimensional
representation W of s1,C, any vector v € W with these properties will be called
a highest weight vector; we saw that it will generate an irreducible sub-
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representation V of W. Finally, from the description given in the last lecture
of the possible configurations of eigenvalues for a representation of s(,C, we
sec that any highest weight vector must lie in the (§)-plane described by the
inequalities {H, ,,L> >0 and (H, ,, L) >0, ie, it must be of the form
(a + b)L, + bL, = aL, — bL, for some pair of non-negative integers a and
b. We can now state

Theorem 13.1. For any pair of natural niunbers a, b there exists a unique
irreducible, finite-dimensional representation T, , of s1,C with highest weight
aL, - bL3

We will defer the proof of this theorem untii the second section of this
lecture, not so much because it is in any way difficult but simply because it is
time to get to some examples. We will remark, however, that whereas in the
case of sl,C the analysis that led to the concept of highest weight vector
immediately gave the uniqueness part of the analogous theorem, here to
establish uniqueness we will be forced to resort to a more indirect trick. The
proof of existence, by contrast, will be very much like that of the corresponding
statement for sl,C: we will construct the representations I',, out of the
standard representation by multilinear algebra.

For the time being, though, we would like to apply the analysis of the
previous fecture to some of the obvious representations of sl C, partly to gain
some familiarity with what goes on and partly in the hopes of seeing a general
multilinear-algebraic construction.

We begin with the standard representation of sl,C on ¥ = C3. Of course,
the eigenvectors for the action of §) are just the standard basis vectors e,, e,
and e4; they haveeigenvalues L, L,,and L,, respectively. The weight diagram

f,
\VAVAVA

Next, consider the dual representation ¥*. The eigenvalues of the dual of
a representation of a Lie algebra are just the negatives of the eigenvalues of
the original, so the diagram of V* is
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Alternatively, of course, we can just observe that the dual basis vectors ¢ are
eigenvectors with eigenvalues —L,.

Note that while in the case of sl,C the weights of any representation were
symmetric about the origin, and correspondingly each representation was
isomorphic to its dual, the same is not true here (that the diagrams for ¥ and
V* look the same is a reflection of the fact that the two representations are
carried into one another by an automorphism of s[;C, namely, the auto-
morphism X +» —‘X). Observe also that ¥* is also isomorphic to the repre-
sentation A?¥, whose weights are the pairwise sums of the distinct weights of
¥; and that likewise ¥ is isomorphic as representation to A2V*.

Next, consider the degree 2 tensor products of V and ¥*, Since the weights
of the symmetric square of a representation are the pairwise sums of he weights
of he original, the weight diagram of Sym?V will look like

“and likewise the symmetric square Sym? ¥ * has weights { —2L,, — L, -- L;} =
(2L, — 2L, L, }:
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VAN

We see immediately from these diagrams that Sym?V and Sym?V* are
irreducible, since neither collection of weights is the union of two collections
arising from representations of sl,C.

As for the tensor product V& V*, its weights are just the sums of the
weights {L,} of ¥ with those { — L} of V'*,that is, the linear functionals L, —
(each occurring once, with weight vector ¢; ® e}) and 0 (occurring with multi-
plicity three, with weight vectors ¢; ® ). We can represent these weights by
the diagram

(&

=X

where the triple circle is intended to convey the fact that the weight space ¥,
is three dimensional. By contrast with the last two examples, this represema-
tion is not irreducible: there is a linear map :

VeV*-C
given simply by the contraction

v ® u*s (v, u*) = u*(v)



§13.1. Examples 179

(or, in terms of the identification V& V* =~ Hom(V, V), by the trace) that is
a map of sl;C-modules (with C the trivial representation, of course). The
kernel of this map is then the subspace of ¥ ® V* of traceless matrices, which
is just the adjoint representation of the Lie algebra sl,C and is irreducible (we
can see this either from our explicit description of the adjoint representation—
for example, E, , is the unique weight vector for |) killed by g, _;,, 8;,-1,,
and g, _, —or, if we take as known the fact that SL;C is simple, from the
fact that a subrepresentation of the adjoint representation is an ideal in a Lie
algebra, and exponentiates to a normal subgroup, cf. Exercise 8.43.)

(Physicists call this adjoint representation of sl,C (or SU(3)) the “eightfold
way,” and relate its decomposition to mesons and baryons. The standard
representation V is related to “quarks” and V* to “antiquarks.” See [S-W],
[Mack].)

(We note that, in general, if V is any faithful representation of a Lie algebra,
the adjoint representation will appear as a subrepresentation of the tensor
Ve r+)

Let us continue now with some of the triple tensor products of ¥V and V*,
which will be the last specific cases we look at. To begin with, we have the
symmetric cubes Sym®V and Sym3V*, with weight diagrams

and
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respectively. In general it is clear that, in terms of the description given in
the preceding lecture of the possible weight diagrams of irreducible repre-
sentations of sl,C, the symmetric powers of ¥V and V* will be exactly the
representations with triangular, as opposed to hexagonal, diagrams.

1t also follows from the above description and the fact that the weights of
the symmetric powers Sym"V occur with multiplicity 1 that Sym"V and
Sym"V* are all irreducible, i.e., we have, in the notation of Theorem 13.1,

Sym"V=1,, and Sym"V*=1T, .

By way of notation, we will often write Sym"V in place of T, 4.

Consider now the mixed tensor Sym?¥V ® V*. Its weights are (he sums of
the weights of Sym?V—that is, the pairwise sums of the L;-— with the weights
of V'*; explicitly, these are L, + L; — L, and 2L; — L; (each occurring once)
and the L; themselves (each occurring three times, as L; + L; — L;). Dia-
grammatically, the representation looks like

Now, we know right off the bat that this is not irreducible: we have a natural
map

LSym*V@ v -V
given again by contraction, that is, by the map
ow@ u* s (v, u*> w4 {w, u*) o,

which is a map of s1,C-modules.” What does the kernel of this map look like?
Of course, its weight diagram is

! Another way to see that Sym?V ® V* is not Irreducible is to observe that if a representation
W is generated by a highest weight vector v of weight 2L, — L,, as Sym?V ® V* must be il it is
irreducible, the eigenvalue L, can be taken with multiplicity at most 2, the corresponding
eigenspace being generated by By , 0 B, s(v) and E, 30 E; ,(v).
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and we know one other thing: certainly any vector in the weight space of
2L, — L,—that is to say, of course, any multiple of the vector e} ® e¥-—is
killed by g1, -1,. 95, -1,> and g, , so that the kernel of 1 will contain an
irreducible representation I' = I, | with 2L, — L as its highest weight. Since
I must then assume every weight of Ker(r), there are exactly two possibilities:
either Ker(1) = I', which assuines the weights L, with multiplicity 2; or all the
weights of I" occur with multiplicity one and Ker() = T @ V.

How do we settle this issue? There are at least three ways. To begin with,
we can try to analyze directly the structure of the kernel of 1. An alternative
approach would be to determine a priori with what multiplicities the weights
of I, , are taken. Certainly it is clear that a formula giving us the latter
information will be tremendously valuable—it would for one thing clear up
the present confusion instantly—and indeed there exist several such, one of
which, the Weyl character formula, we will prove later in the book. (We will
also prove the Kostant multiplicity formula, which can be applied to deduce
directly the independence statement we arrive at below.) As a third possibility,
wecan identify the representations I, , as Weyl modules and appeal to Lecture
6. Rather than invoke such general formulas at present, however, we will take
the first approach here. This is straightforward: in terms of the potation
.we have been using, the highest weight vector for the representation
T'c Sym*V @ V* is the vector ef ® 3, and so the eigenspace I, < I with
eigenvalue L, will be spanned by the images of this vector under the two
compositions E, , o E; , and E; , o E, . These are, respectively,

Ey 0 E; (et @e3) = Ey 1 (E; 5(€]) ® e} + €] ® E; 4(e3))
=E; (-} @e})

= —2e;-e;)Ret + el @et
and

Es;0E; (] ®ef) = Ey4(E, 1 (€]) ® e} + el ® E, (e}))
= Ej3 5((2¢,-¢;)® %)
=2e  e;) @ e} —2e e,) @ e}
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Since these are independent, we conclude that the weight L, does occur in T
with multiplicity 2, and hence that the kernel of 1 is irreducible, i,

Sym*Y@Vv*=T,, @V

§13.2. Description of the Irreducible Representations

At this point, rather than go on with more examples we should state some of
the general principles that have emerged so far. The first and most important
{though pretty obvious) is the basic

Observation 13.2. If the representations V and W have highest weight vectors
v and w with weights a and f, respectively, then the vector v@ we V@ W is
a highest weight vector of weight a + f.

Of course, there are numerous generalizations of this: the vector v" € Sym"V
is a highest weight vector of weight na, etc.? Just the basic statement above,
however, enables us to give the

ProorF ofF THEOREM 13.1. First, the existence statement follows immediately
from the observation: the representation Sym?V ® Sym®V* will contain an
irreducible subrepresentation I, , with highest weight aL, — &L,.

The uniqueness part is only slightly harder (if less explicit) Given
irreducible representations ¥ and W with highest weighta,letve Vandwe W
be highest weight vectors with weight a. Then (v, w) is again a highest weight
vector in the representation V @ W with highest weight o; let Uc VW
be the irreducible subrepresentation generated by (v, w). The projection
maps n;: U— V and =n,: U — W, being nonzero maps between irreducible
representations of sl, C, must be isomorphisms, and we deduce that V xx W.

a

Exercise 13.3*. Let S, be the Schur functor introduced in Lecture 6. What
can you say about the highest weight vectors in the representation S,(V)
obtained by applying it to a given representation V7

To continue our discussion of tensor products like Sym*V @ Sym®V* in
general, as we indicated we would like to make more explicit the construction
of the representation T, ,, which we know to be lying in Sym*V ® Sym°V*,
To begin with, we have in general a contraction map

top: SYM'V @ Sym? V* - Sym*™' vV @ Sym" ! v+
analogous to the map 1 introduced above; we can describe this map either
(in fancy language) as the dual of the map from Sym"™!V ® Sym®™ v*
to Sym*V ® SymPV* given by multiplication by the identity elément in

2 One slightly less obvious statement is this: if the weighis of V are ay, a,, ay... with I(a,) > i) >
..., then A"V possesses a highest weight vector weight a, + -+ + a,. Note that since the ordering
of the &, may in fact depend on the choice of f {feven with the restriction a > b > ¢ on the coefficients
of I as above), this may in some cases imply the existence of scveral subrepresentatious of A"V,
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V® V* = Hom(V, V), or, concretely, by sending
W ... )@} 0F)
IR G S Y CTENREY FEY S 1Y (1 SINRY - SN 3 }

Clearly this map is surjective, and, since the target does not have eigenvalue
al, — bL,, the subrepresentation T, , = Sym*V ® Sym®V* must lie in the
kernel. In fact, we have, just as in the case of Sym?¥ ® V* above,

Claim 13.4. The kernel of the map 1, is the irreducible representation T, ;.

We will defer the proof of this for a moment and consider some of its
consequences. To begin with, we can deduce from this assertion the complete
decomposition of Sym®V ® Sym® ¥*: we must have (if, say, b < a)

b
Sym'V @ Sym*V* = P T, ;. (13.5)
i=0 :

Since we know, a priori, all the multiplicities of the eigenvalues of the tensor
product Sym”V ® Sym*V*, this will, in turn, determine (inductively at least)
all the multiplicities of the representations T, ,. In fact, the answer turns
out to be very nice. To express it, observe first that if @ > b, the weight dia-
gram of either I, , or Sym*V @ Sym®V * looks like a sequence of I shrinking
concentric (not in general regular) hexagons H; with vertices at the points
@—dL, —(b—iLyfori=0,1,...,b — 1, followed (after the shorter three
sides of the hexagon have shrunk to points) by a sequence of [(a — b)/3] + 1
triangles T; with vertices at the points (a —b — 3j)L, for j=0, 1, ...,
[{a — b)/3] (it will be convenient notationally to refer to T, as H, occasionally).
Diagram (13.6) shows the picture of the weights of Sym®V ® Sym?V*;

(13.6)
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{Note that by the decomposition (13.5), the weights of the highest weight
vectors in Sym*V & Sym® V* will be aL, — bL,, (@ — 1)L, — (b — 1)Ls, ...,
{a — b)L,, as shown in the diagram.) _

An examination of the representation Sym”V ® Sym®V* shows that it has
multiplicity (i + 1)(i + 2)/2 on the hexagon H;, and then a constant multi-
plicity (b + 1)(b + 2)/2 on all the triangles T;; and it follows from the decom-
position (13.5), in general, that the representation I, , has multiplicity (i + 1)
on H,and b on T,. In English, the multiplicities of T, ,, increase by one on each
of the concentric hexagons of the eigenvalue diagram and are constant on the
triangles. Note in particular that the description of I, | in the preceding
section is a special case of this.

Proor oF CLAIM 13.4. We remark first that the claim will be implied by the
Weyl character formula or by the description via Weyl’s coistruction in
Lecture 15; so the reader who wishes to can skip the following without dire
consequences to the logical structure of the book. Otherwise, observe
first that the claim is equivalent to asserting the decomposition (13.5)
this, in turn, is equivalent to the statement that the representation
W =Sym"V ® Sym"V* has exactly b + | irreducible components (still
assuming a > b). The irreducible factors in a representation correspond
to the highest weight vectors in the representation up to scalars; so in
sum the claim is equivalent to the assertion that the eigenspace W, of
Sym?V ® Sym® V* contains a unique highest weight vector (up to scalars) if «
is of the form(a — )L, — (b — i)L, for i < b, and none otherwise; this is what
we shall prove.

To begin with, the “none otherwise™ part of the statement follows (given
the other) just from looking at the diagram: if, for example, any of the
cigenspaces W, corresponding to a point « on a hexagon H, (other than the
vertex {a — )L, — (b — i)L, of H;) possessed a highest weight vector, the
multiplicity of & in W would be strictly greater than of (a — i), — (b — i)L,,
which we know is not the case; similarly, the fact that the multiplicities of W
in the triangular part of the eigenvalue diagram are constant implies that there
can be no highest weight vectors with eigenvalue on a Tj for j > 1. Thus, we
just have to check that the weight spaces W,.for a = (a ~ i)L, — (b — i),
contain only the one highest weight vector we know is there; and we do this
by explicit calculation.

To start, for any monomial index I = (i, i,, iy) of degree i, = i, we denote
by e’ € Sym'V the corresponding monomial | [ (ef) and define (¢*)’ € Sym'V*
similarly. We can then write any element of the weight space W,_y, -p-nt,
of Sym*V @ Sym? V* as

v=71 ¢ (] ey @ ((e3) - (e*)).

In these terms, it is easy to write down the action of the two operators E, ,
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and E, ,. First, E, , kills both e, € V and e} € V*, so that we have

E ((e]" " ") @ ((e3) ™" (e*))
=iy(ef" " e") @ ((e3) " (e*))

—ip(ef" ) ® () (e*)"),

where I' = (i, + 1,i, — 1,i3) and I” = (i, — 1, i, + 1, i;) (and we adopt the
convention that e’ = 0if i, < 0 for any y). It follows that the vector v above is
in the kernel of E, , if and only if the coefficients c, satisfy i,¢; = (i, + )¢y,
and by the analogous calculation that v is in the kernel of E, ; if and only if
iy¢; = (i + 1)c; whenever the indices I and J are related by j, =i, j, =
i, + 1, and J, = i; — 1. These conditions are equivalent to saying that the
numbers i,1i,1i,l¢c; are independent of I. We see, in other words, that v is a
highest weight vector if and only if all the coeflicients ¢, are equal to ¢/i, li,li,!
for some constant c. O

§13.3. A Little More Plethysm

We would like to consider here, as we did in the case of s[,C in Lecture 11,
how the tensor products and powers of the representations we have described
decompose. We start with one general remark: given our knowledge of the
eigenvalue diagrams of the irreducible representations of sl;C (with multi-
plicities), there can be no possible ambiguity about the decomposition of any
representation U given as the tensor product of representations whose eigen-
value diagrams are known. Indeed, we have an algorithin for determining the
components of that decomposition, as follows:

1. Write down the eigenvalue decomposition of U.

2. Find the eigenvalue o = aL, — bL, appearing in this diagram for which
the value of I() is maximal.

3. Wenow know that U will contain a copy of the irreducible representation
I,=T,,ie, UxT,® U forsome U’ Since we also know the eigenvalue
diagram of I,, we can thus write down the eigenvalue diagram of U’ as well.

4. Repeat this process for U".

To see how this goes in practice, consider some examples of tensor products
of the basic irreducible representations described so far. We have already seen
how the tensor products of the symmetric powers of the standard represen-
tation V of sl, C and symmetric powers of its dual decompose; let us look now
atan example of a more general tensor product of irreducible representations:
say Vitself and the representation I, ;. We start by writing down the weights
of the tensor product: since I3, has weights 2L, — L;, L; + L; — Ly, and L;
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(taken twice) and V has weights L,, the tensor product will have weights
3L; - L, 2L; + L; — Ly (taken twice), 2L; (taken [our times), and L, + L,
(taken five times). The diagram is thus

VV V %‘;‘ % e
a oS ”)&’
W SN

(One thing we may deduce from this diagram is that we are soon going to
need a better system for presenting the data of the weights of a representation.
In the future, we may simply draw one sector of the plane, and label weights
with numbers to indicate multiplicities.)

We know right off the bat that the tensor product ¥ ® I, ; contains a copy
of the irreducible representation I'y ; with highest weight 3L, — L,. By what
we have said, the weight diagram of T ; is

R0
%‘e',e«»e"o,e

50 the complement of I’y ; in the tensor product ¥ ® I, , will look like
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One obvious highest weight in this representation is 2L; + L, — L, =
Ly — 2L,, so that the tensor product will contain a copy of the irreducible
representation I , as well; since this has weight diagram

the remaining part of the teisor product will have weight diagram
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aeeee
KR
e

A

which we recognize as the weight diagram of the symmetric square Sym?V =
I3, o of the standard representation. We have, thus,

Ve® rz.l =T,® rx.z @ rz.o- (13.7)

Exercise 13.8*. Find the decomposition into irreducible representations of the
tensor products V® T, ,, V® I, and ¥ ®I; ;. Can you find a general
pattern to the outcomes?

As in the case of sl,C, the next thing to look at are the tensor powers—
symmetric and exterior—of representations other than the standard; we
look first at tensors of the symmetric square W = Sym?V. First, consider
the symmetric square Sym> W = Sym?(Sym?2V)). We know the diagram for
Sym2W; it is

Now, there is only one possible decomposition of a representation whose
eigenvalue diagram looks like this: we must have
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Sym?(Sym?V)) = Sym*V @ Sym?V*,
Indeed, the presence of the Sym*V factor is clear: there is an obvious map
@: Sym?(Sym2V)) = Sym* v

obtained simply by multiplying out. The identification of the kernel of this
map with the representation Sym? V'* is certainly less obvious, but can still be
made explicit. We can identify ¥* with A>V as we saw, and then define a map

7: Sym2(A2V) - Sym?(Sym? 1))

by sending the generator (u A v)-(w A z)€ Sym?(A2F) to the element
(- w)+(v-2) — (u-2)* (v- w) € Sym*(Sym? V), which is clearly in the kernel of ¢.

Exercise 13.9. Verify that this map is well defined and that it extends linearly
to an isomorphism of Sym2(A2V) with Ker(p). '

Exercise 13.10. Apply the techniques above to show that the representation
A*(Sym? V) is isomorphic to I ;.

Exercise 13.11. Apply the same techniques to determine the irreducible factors
of the representation A*(Sym?V). Note: we will return to this example in
Exercise 13.22.

Exercise 13.12. Find the decomposition into irreducibles of the representa-
tions Sym2(Sym3V) and Sym?*(Sym? V) (observe in particular that Hermite
reciprocity has bitten the dust). Describe the projection maps to the various
factors. Note: we will describe these examples further in thie following section.

§13.4. A Little More Geometric Plethysm

Just as in the case of sl,C, some of these identifications can also be seen in
geometric terms. To do this, recall from §11.3 the definition of the Veronese
embedding: if P* = PV* is the projective space of one-dimensional subspaces
of V*, there is then a natural embedding of P? in the projective space P =
P(Sym?2V *), obtained simply by sending the point [v*] € P? corresponding
to the vector v* € ¥'* to the point [v*2] € P(Sym?2V *) associated to the vector
v*2 = v*-¢v* € Sym2V* The image § = P is called the Veronese surface. As
in the case of the rational normal curves discussed in Lecture I 1, it is not hard
to see that the group of automorphisms of P° carrying § into itself is exactly
the group PGL,C of automorphisms of § = P2,

Now, a quadratic polynomial in the homogeneous coordinates of the space
P(Sym?V*) > P* will restrict to a quartic polynomial on the Veronese surface
§ = PV*, which corresponds to the natural evaluation map ¢ of the preceding

“section; the kernel of this map is thus the vector space of quadratic poly-
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nomials in P> vanishing on the Veronese surface S, on which the group of
automorphisms of P3 carrying S to itsell obviously acts. Now, for any pair of
points P = [u*], Q@ = [v*] €S, it is not_hard to see that the cone over the
Veronese surface with vertex the line PQ < P® (that is, the union of the
2-planes PQR as R varies over the surface S) will be a quadric hypersurface
in P® containing the Veronese surface; sending the generator u* - v* € Sym*v*
to this quadric hypersurface will then defline an isomorphism of the space of
such quadrics with the projective space associated to Sym?V*,

Exercise 13.13. Verily the statements made in the last paragraph: that the
union of the PQR is a quadric hypersurface and that this extends to a linear
isomorphism P(Sym2V*) = P(Ker(p)). Verify also that this isomorphism
coincides with the one given in Exercise 13.9.

There is another way of representing the Veronese surface that will shed
some light on this kernel, If, in terms of some coordinates e, on V*, we think
of Sym?2 ¥V * as the vector space of symmetric 3 x 3 matrices, then the Veronese
surface is just the locus, in the associated projective space, of rank 1 matrices
up to scalars, i, in terms of homogeneous coordinates Z, ; = ¢;-¢; on P5,

Ziy Zy, Zy,
S=<[Z}rank| Z,, Z,, Z,5|=1
Z1.3 Zz.a Z3.3

The vector space of quadratic polynomials vanishing on § is then generated
by the 2 x 2 minors of the matrix (Z, ;); in particular, for any pair of linear
combinations of the rows and pair of linear combinations of the columns we
get a 2 x 2 matrix whose determinant vanishes on S.

Exercise 13.14. Show that this is exactly the isomorphism Sym2(A?V) =
Ker(p) described above.

We note in passing that if indeed the space of quadrics containing the
Veronese surface, with the action of the group PGL,C of motions of P3
preserving S, is the projectivization of the representation Sym? V*, then it must
contain its own Veronese surface, i.e., there must be a surface T = P(V*) c
P(Ker(¢g)) invariant under this action. This turns out to be just the set of
quadrics of rank 3 containing the Veronese, that is, the quadrics whose singular
locus is a 2-plane. In fact, the 2-plane will be the tangent plane to § at a point,
giving the identification T = §.

Let us consider one more example of this type, namely, the symmetric cube
Sym?*(Sym?V)). (We promise we will stop after this one.) As before, it is easy
to write down the eigenvalues of this representation; they are just the triple
sums of the eigenvalues {2L,, L, + L;} of Sym?V. The diagram (we will draw
here only one-sixth of the plane and indicate multiplicities with numbers
rather than rings) thus looks like
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from which we see what the decomposition must be: as representations we
have

Sym*(Sym?Vv)) = Sym®*V @ T, ,®C. {(13.15)

As before, the map to the first factor is just the obvious one; it is the identifica-
tion of the kernel that is intriguing, and especially the identification of the last
factor.

To see what is going on here, we should look again at the geometry of the
Veronese surface § = P* = P(Sym?2 V*). The space Sym*(Sym?V)) is just the
space of homogeneous cubic polynomials on the ambient space P, and as
belore the map to the first factor of the right-hand side of (13.15) is just the
restriction, so that the last two factors of (13.15) represent the vector space
1(8S), of cubic polynomials vanishing on S. Note that we could in fact prove
(13.15) without recourse to eigenvalue diagrams from this: since the ideal of
the Veronese surface is generated by the vector space I(S), of quadratic
polynomials vanishing on it, we have a surjective map

1(5), ® W = Sym?V* @ Sym>V ~» I(S),.
But we already know how the left hand side decomposes: we have
Sym*V*@®@Sym*V =1,,8 [, ,®C, (13.16)
so that I(S),; must be a partial direct sum of these three irreducible represen-
tations; by dimension considerations it can only be I; , ® C.

This, in turn, tells us how to make the isomorphism (13.15) explicit (assum-
ing we want to): we can define a map

Sym?(A’V) ® Sym?V - Sym3(Sym?V)
by sending
Ay WA (- t)—((-w(vz)—(u2)(0-w)(so)



192 13. Representations of sl3C, Part II: Mainly Lots of Examples

and then just check that this gives an isomorphism of I, ,®C <
Sym2 V* ® Sym2V with the kernel of projection on the first factor of the
right-hand side of (13.15).

What is really most interesting in this whole situation, though, is the trivial
summand in the expression (13.15). To say that there is such a sammand is to
say that there exists a cubic hypersurface X in P® preserved under all auto-
morphisms of P* carrying § to itself. Of course, we have already run into this
one: it is the determinant of the 3 x 3 matrix (Z, ;) introduced above. To
express this more intrinsically, if we think of the Veronese as the set of rank
1 tensors in Sym? V*, it is just the set of tensors of rank 2 or less. This, in turn,
yields another description of X: since a rank 2 tensor is just one that can be
expressed as a linear combination of two rank 1 tensors, we see that X is the
famous chordal variety of the Veronese surface: it is the union of the chords
to §, and at the same time the union of all the tangent planes to S.

Exercise 13.17. Show that the only symmetric powers of Sym2V that possess
trivial summands are the powers Sym**(Sym?2V)) divisible by 3, and that the
unique trivial summand in this is just the kth power of the trivial summand
of Sym?(Sym?2V)).

Exercise 13.18. Given the isomorphism of the projectivization of the vector
space I(S5);—that is, the projective space of quadric hypersurfaces containing
the Veronese surface—with P(Sym2¥*), find the unique cubic hypersurface
in I(S), invariant under the action of PGL,C.

Exercise 13.19. Analyze the representation Sym2(Sym®V)) of sl,C. Interpret
the direct sum factors in terms of the geometry of the Veronese embedding of
PV* = P2in P(Sym*V*) = P°,

Exercise 13.20*. Show that the representations Sym*(Sym*V)) and
Sym®(Sym’V)) contain trivial summands, and that the representation
Sym!%(Sym?*V)) contains two, Interpret these.

Exercise 13.21. Apply the techniques above to show that the representation
A*(Sym?V) is isomorphic to T, ;.

Exercise 13.22*. Apply the techniques above to analyze the representation
A}(Sym?V), and in particular to interpret its decomposition into irreducible
representations.

Exercise 13.23. If P5 = P(Sym?V*) is the ambient space of the Veronese
surface, the Grassmannian G(2, 5) of 2-planes in P3 naturally embeds in the
projective space P(A3(Sym?2V)). Describe, in terms of the decomposition
in the preceding exercise, the span ol the locus of tangent 2-planes to the
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Veronese, and the span of the locus of 2-planes in P53 spanned by the images
in § of lines in PV *,

Exercise 13.24*. Show that the unique closed orbit of the action of SL,C on
the representation I, , is either isomorphic to P2 (embedded as the Veronese
surface) il either a or b is zero, or to the incidence correspondence

L={(p:pel) cP?x P

if neither a or b is zero.







PART 111

THE CLASSICAL LIE ALGEBRAS
AND THEIR REPRESENTATIONS

As we indicated at the outset, the analysis we have just carried out of the
structure of sl,C and sl;C and their representations carries over to other
semisimple complex Lie algebras. In Lecture 14 we codify this structure, using
the pattern of the examples we have worked out so far to give a model for
the analysis of arbitrary semisimple Lie algebras and stating some of the most
important facts that are true in general. As usual, we postpone proofs of many
of these facts until Part IV and the Appendices, the main point here being to
introduce a unifying approach and language. The facts themselves will all be
seen explicitly on a case-by-case basis for the classical Lie algebras s1,C, sp,,C,
and so,C, which are studied in some detail in Lectures 15-20.

Most of the development follows the outline we developed in Lectures
11-13, the main goal being to describe the irreducible representations as
explicitly as we can, and to see the decomposition of naturally occurring
representations, both algebraically and geometrically. While most of the
representations are found inside tensor powers of the standard representations,
for the orthogonal Lie algebras this only gives half of them, and one needs
new methods to construct the other “spin” representations. This is carried out
using Clifford algebras in Lecture 20.

We also make the tie with Weyl’s construction of representations of GL,C
from Lecture 6, which arose from the representation theory of the symmetric
groups. We show in Lecture 15 that these are the irreducible representations
of s,C; in Lecture 17 we show how to use them to construct the irreducible
representations of the symplectic Lie algebras, and in Lecture 19 to give the
nonspin representation of the orthogonal Lie algebras. These give useful
descriptions of the irreducible representations, and powerful methods for
decomposing other representations, but they are not necessary for the logical
progression of the book, and many of these decompositions can also be
deduced from the Wey! character formula which we will discuss in Part 1V,






LECTURE 14

The General Setup: Analyzing the
Structure and Representations of an
Arbitrary Semisimple Lie Algebra

This is the last of the four central lectures; in the body of it, §14.1, we extract from the
examples of §11-13 the basic algorithm for analyzing a general semisimple Lie algebra
and its representations. It is this algorithm that we will spend the remainder of Part
HHI carrying out for the classical algebras, and the reader who finds the general setup
confusing may wish to read this lecture in parallel with, for example, Lectures 15 and
16. In particular, §14.2 is less clearly motivated by what we have worked out so far;
the reader may wish (o skim it for now and defer a more thorough reading until after
going through some more of the examples of Lectures 15-20.

§14.1: Analyzing simple Lie algebras in general
§14.2: About the Killing form

§14.1. Analyzing Simple Lie Algebras in General

We said at the outset of Lecture 12 that once the analysis of the representations
of sl, € was understood, the analysis of the representations of any seinisimple
Lie algebra would be clear, at least in broad outline. Here we would like to
indicate how that analysis will go in general, by providing an essentially
algorithmic procedure for describing the representations of an arbitrary com-
plex semisimple Lie algebra g. The process we give here is directly analogous,
step for step, to that carried out in Lecture 12 for sl,C; the only difference is
one change in the order of steps: having seen in the case of sl, C the importance
of the “distinguished” subalgebras s, = sI,C < g and the corresponding dis-
tinguished elements H, € s, < ), we will introduce them eatlier here.

Step 0. Verify that your Lie algebra is semisimple; if not, none of the
following will work (but see Remark 14.3). If your Lie algebra is not semi-
simple, pass as indicated in Lecture 9 to its semisimple part; a knowledge of
the representations of this quotient algebra inay not tell you everything about
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the representations of the original, but it will at least tell you about the
irreducible representations.

Step 1. Find an abelian subalgebra % < g acting diagonally. This is of course
the analogue of looking at the specific element H in sl,C and the subalgebra
I) of diagonal matrices in the case of sl;C; in general, to serve an analogous
function it should be an abelian subalgebra that acts diagonally on one faithful
(and hence, by Theorem 9.20, on any) representation of g. Moreover, in order
that the restriction of a representation ¥V of g to ) carry the greatest possible
information about ¥, ) should clearly be maximal among abelian, diagonali-
zable subalgebras; such a subalgebra is called a Cartan subalgebra.

Note that while this step would seem to be somewhat less than algorithmic
(in particular, while it is certainly possible to tell when a subalgebra of a given
Lie algebra is abelian, and when it is diagonalizable, it is not clear how to tell
whether it is maximal with respect to these properties). This defect will,
however, be largely cleared up in the next step (see Remark 14.3).

Step 2. Let ) act on g by the adjoint representation, and decompose g
accordingly. By the choice of b, its action on any representation of g will be
diagonalizable; applying this to the adjoint representation we arrive at a direct
sum decomposition, called a Cartan decomposition,

g =D (D s (14.1)

where the action of ) preserves each g, and acts on it by scalar multiplication
by the linear functional « € h*; that is, for any H € ) and X ¢ g, we will have

ad(H)(X) = a(H)" X.

The second direct sum in the expression (14.1) is over a finite set of eigenvalues
o € h*; these eigenvalues—in the language of Lecture 12, the weights of the
adjoint representation—are called the roots of the Lie algebra and the corre-
sponding subspaces g, are called the root spaces. Of course, } itself is just the
eigenspace for the action of j corresponding to the eigenvalue 0 (sce Remark
14.3 below); so that in some contexts—such as the following paragraph, for
example—it will be convenient to adopt the convention that g, = I; but we
do not usually count O ¢ l)* as a root. The set of all roots is usually denoted
R c bh*,

As in the previous cases, we can picture the structure of the Lie algebra in
terms of the diagram of its roots: by the fundamental calculation of §11.1 and
Lecture 12 (which we will not reproduce here for the fourth time) we see that
the adjoint action of g, carries the eigenspace g, into another eigenspace g,4.

There are a couple of things we can anticipate about how the configuration
of roots (and the corresponding root spaces) will look. We will simply state
them here as

Facts 14.2

(i) each root space g, will be one dimensional.
(ii) R will generate a lattice Ay < b* of rank equal to the dimension of .
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(iii) R is symmetric about the origin, le., if o€ R is a root, then —a e R is
a root as well.

These facts will all be proved in general in due course; for the time being,
they are just things we will observe as we do the analysis of each simple Lie
algebra in turn. We mention them here simply because some of what follows
will make sense only given these facts. Note in particular that by (ji), the roots
all lie in (and span) a real subspace of y*; all our pictures clearly will be of this
real subspace.

Remark 14.3. If indeed 0 does appear as an eigenvalue of the action of h on
a/l), then we may conclude from this that h was not maximal to begin with:
by the above, anything in the 0-eigenspace of the action of ) commutes with
Iy and {given the fact that the g, are one dimensional) acts diagonally on g, so
that if it not already in ¥, then ) could be enlarged while still tetaining the
properties of being abelian and diagonalizable. Similarly, the assertion in (ii)
that the roots span h* follows from the fact that an element of l) in the
annihilator of all of them would be in the center of g.

From what we have done so far, we get our first picture of the structure of
an arbitrary irreducible finite-dimensional representation V of g. Specifically,
V will admit a direct suin decomposition

V=@V, (14.4)

where the direct sum runs over a finite set of « € h* and I) acts diagonally on
each V, by multiplication by the eigenvalue a, i.e., for any Hebandve V,we
will have

H(v) = a(H)-v.

The eigenvalues « € h* that appear in this direct sum decomposition are called
the weights of V; the ¥, themselves are called weight spaces; and the diinension
of a weight space V, will be called the multiplicity of the weight a in V. We will
often represent ¥ by drawing a picture of the set of its weights and thinking
of each dot as representing a subspace; this picture (often with some annota-
tion to denote the multiplicity of each weight) is called the weight diagram of V.

The action of the rest of the Lie algebra on V can be described in these
terms: for any root f§, we have

Q' Ve — a+ fr

s0 we can think of the action of g; on ¥ as a translation in the weight diagram,
shifting each of the dots over by f§ and mapping the weight spaces
correspondingly.

Observe next that all the weights of an irreducible representation are
congruent to one another modulo the root lattice Ag: otherwise, for any
weight « of ¥ the subspace
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V=D Vesp
PeAr
would be a proper subrepresentation of V. In particular, in view of Fact 14.2(i),
this means that the weights all [ie in a translate of the real subspace spanned
by the roots, so that it is not so unreasonable to draw a picture of them.
Step 3. Find the distinguished subalgebras s, = sl,C < g. As we saw in the
example of s, C, a crucial ingredient in the analysis of an arbitrary irreducible
finite-dimensional representation is the restriction of the representation to
certain special copies of the algebra sl,C contained in g, and the application
of what we know from Lecture 11 about such representations. To generalize
this to our arbitrary Lie algebra g, let g, < g be a root space, one dimensional
by (i) of Fact 14.2. Then by (iii) of Fact 14.2, there is another root space g_, < g;
and their commutator [g,, 9, ] must be a subspace of g = b, of dimension
at most one. The adjoint action of the commutator [g,, g_.] thus carries each
of g, and g_, into itself; so that the direct sum

5, =0, D g_, D [84: 6] (14.5)

is a subalgebra of g. The structure of s, is not hard to describe, given two

further facts that we will state here, verify in cases, and prove in general in
Appendix D.

Facts 14.6.

(i) [ga’ g—a] # 0; and
(i) [[95 9-o) 8.1 # 0.

Given these, it follows that the subalgebra s, is isomorphic to si,C. In
particular, we can pick a basis X, € g,, ¥, € g, and H, € [g,, g-,] satisfying
the standard commutation relations (9.1) for sl,C; X, and Y, are not deter-
mined by this, but H, is, being the unique element of [g,, §_,] having eigen-
values 2 and —2 on g, and g_,, respectively [i.e., H, is uniquely characterized
by the requirements that H, € [g,, g_,] and a(H,) = 2.]

Step 4. Use the integrality of the eigenvalues of the H,. The distinguished
elements H, € }) found above are important first of all because, by the analysis
of the representations of si,C carried out in Lecture 9, in any representation
of s,—and hence in any representation of g—all elgenvalues of the action of
H, must be integers. Thus, every eigenvalue § € lj* of every representation of
g must assume integer values on all the H,. We correspondingly let Ay be
the set of linear functionals ff & h* that are integer valued on all the H,; Ay
will be a lattice, called the weight lattice of g, with the property that

all weights of all representations of g will lie in Ay.

Note, in particular, that R < Ay, and hence Ay = Ay in fact, the root
Iattice will in general be a sublattice of finite index in the weight lattice.
Step 5. Use the symmetry of the eigenvalues of the H,. The integrality of the



§14.1. Analyzing Simple Lie Algebras in General 201

eigenvalues of the H, under any representation is only half the story; it is also
true that they are symmetric about the origin in Z. To express this, for any «
we introduce the involution W, on the vector space hH* with + I-eigenspace
the hyperplane

Q, = {feb*: <H, > =0} (14.7)

and minus | eigenspace the line s;i:énned by « itself.! In English, W, is the
reflection in the plane €3, with axis the line spanned by a:

_25(1,)

W) =B~ oS

o =p— B(H,)e (14.8)

Let 983 be the group generated by these involutions; 28 is called the Weyl group
of the Lie algebra g.

Now suppose that V is any representation of g, with eigenspace decomposi-
tion ¥ = (P V}. The weights § appearing in this decomposition.can then be
broken up into equivalence classes mod «, and the direct sum

VU’] = "gl')l V[i+mx (149)

of the eigenspaces in a given equivalence class will be a subrepresentation of
V for s,. It follows then that the set of weights of ¥ congruent to any given
B mod « will be invariant under the involution W,; in particular,

The set of wéights of any representation of g is invariant under the Weyl
group.

To make this more explicit, the string of weights that correspond to nonzeto
summands in (14.9) are, possibly after replacing # by a translate by a multiple
of a: :

B B+a,f+2a...,0+ma, withm= —g(H). (14.10)
(Note that by our analysis of sl, C this must be an uninterrupted string.) Indeed

if we choose ff and m > 0so that (14.10) is the string corresponding to nonzero
summands in (14.9), then the string of integers

B(H,), (B + o)(H,) = B(H,) + 2, ..., (B + ma)(H,) = f(H,) + 2m

must be symmetric about zero, so f(H,) = —m. In particular,
WAB + k)= B+ (—p(H,) —k)a = f + (n — k).

Note also that by the same analysis the multiplicities of the weights are
invariant under the Weyl group.

We should mention one other fact about the Weyl group, whose proof we
-also postpone:

"1 Note that by the nondegeneracy assertion (i) of Fact 14.6, the line €-a does not lie in the
hyperplane 0,. Recall that { , ) is the pairing between § and b*, so (H,, f) = (I1,).
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Fact 14.11. Every element of the Weyl group is induced by an automorphism
of the Lie algebra g carrying |y to itself.

We can even say what automorphism of g does the trick: to get the involution
W,, take the adjoint action of the exponential exp(niU,) € G, where G is any
group with Lie algebra g and U, is a suitable element of the direct sum of the
root spaces g, and g_,. To prove that Ad(exp(niU,)) actually does this requires
more knowledge of g than we currently possess; but it would be an excellent
exercise to verify this assertion directly in each of the cases studied below.
(For the general case see (23.20) and (26.15).)

Step 6. Draw the picture (optional). While there is no logical need to do so
at this point, it will be much easier to think about what is going on in b* if
we introduce the appropriate inner product, called the Killing form, on g
(hence by restriction on b, and hence on §*). Since the introduction of the
Killing form is, logically, a digression, we will defer until later in this lecture
a discussion of its various definitions and properties. It will suffice for now to
mention the characteristic property of the induced inner product on h*: up to
scalars it is the unique inner product on h* preserved by the Weyl group, i,
in terms of which the Weyl group acts as a group of orthogonal transforma-
tions. Equivalently, it is the unique inner product (up to scalars) such that the
line spanned by each root « € h* is actually perpendicular to the plane Q, (so
that the involution W, is just a reflection in that hyperplane). Indeed, in
practice this is most often how we will compute it. In terms of the Killing form,
then, we can say that the Weyl group is just the group generated by the
reflections in the hyperplanes perpendicular to the roots of the Lie algebra.

Step 7. Choose a direction in h*. By this we mean a real linear functional {
on the lattice Ay irrational with respect to this lattice. This gives us a
decomposition of the set

R=R*UR", (14.12)

where R* = {a: I() > 0} (the « & R* are called the positive roots, those in R~
negative); this decomposition is calied an ordering of the roots. For most
purposes, the only aspect of | that matters is the associated ordering of the
roots. .

The point of choosing a direction—and thereby an ordering of the roots
R = R* U R™—is, of course, to mimic the notion of highest weight vector that
was so crucial in the cases of sl,C and sl,C. Specifically, we make the

Definition. Let V be any representation of g. A nonzero vector ve V that is
both an eigenvector for the action of h and in the kernel of g, for all « € R*
is called a highest weight vector of V.

Just as in the previous cases, we then have
Proposition 14.13. For any semisimple complex Lie algebra g,

(i) every finite-dimensional representation V of g possesses a highest weight
vector,
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(ii) the subspace W of V generated by the images of a highest weight vector v
under successive applications of root spaces gy for f € R™ is an irreducible
subrepresentation;

(iii) an irreducible representation possesses a unique highest weight vector up to
scalars.

PRrOGF. Part (i) is immediate: we just take o to be the weight appearing in V
for which the value {(a) is maximal and choose v any nonzero vector in the
weight space V,. Since V,,, = (0)for all f € R*, such a vector v will necessarily
be in the kernel of alf root spaces g, corresponding to positive roots f.

Part (ii) may be proved by the same argument as in the two cases we have
already discussed: we let W, be the subspace spanned by all w, - v where w, is a
word of length at most n in elements of g, for negative f. We then claim that
for any X inany positive root space, X - W, < W,. To see this, write a generator
of W,in theform Y -w, w e W,_;, and use the commutation relation X - Y- w =
Y X w+ [X, Y] w; the claim follows by induction, since [X, Y] is always
in h. The subspace W < V which is a union of all the W,’s is thus a sub-
representation; to see that it is irreducible; note that if we write W = W' @ W,
then either W’ or W will have to contain the one-dimensional weight space
W,, and so will have to equal W.

The uniqueness of the highest weight vector of an irreducible representation
follows immediately: if v € V, and w € V; were two such, not scalar multiples
of each other, we would have I(x) > (/) and vice versa. 0

Exercise 14.14. Show that in (ii) one need only apply those g4 for which
gs° v # 0. (Note: with W, defined using only these g,, and X in any root space,
the same inductive argument shows that X - W, = W,,,. On the other hand,
il one uses all g, with f negative and primitive, as in Observation 14.16, then
X-W, c W,_;. One cannot combine these, however: V may not be generated
by successively applying those gg with ff negative, primitive, and g, v # 0,e.g,
the standard representation of sl,C.)

The weight o of the highest weight vector of an irreducible representation
will be called, not unreasonably, the highest weight of that representation; the
term dominant weight is also common.

We can refine part (ii) of this proposition slightly in another direction; this
is not crucial but will be useful later on in estimating multiplicities of various
representations. This refinement is based on

Exercise 14.15*. (a) Let «,, ..., o, be roots of a semisimple Lie algebra g and
9., < g the corresponding root spaces, Show that the subalgebra of g gene-
rated by the Cartan subalgebra §) together with the g, is exactly the direct
sum § B (@ g.), where the direct sum is over the intersection of the set R of
toots of g with the semigroup N{a;y, ..., a;} < I) generated by the «;.

“+ (b) Similarly, let a,, ..., o, be negative roots of a semisimple Lie algebra
andg,, < g the corresponding root spaces. Show that the subalgebra of g gene-
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rated by the g, is exactly the direct sum @ 9., where the direct sum is over the
intersection of the set R of roots of g with the semigroup N{a,,...,5:} < b
generated by the a,.

(Note that by the description of the adjoint action of a Lie algebra on itself
we have an obvious inclusion; the problem here is to show—given the facts
above—that if « + f € R, then [g,, 9,1 # 0)

From this exercise, it is clear that generating a subrepresentation W of a
given representation ¥ by successive applications of root spaces g, for f & R™
to a highest weight vector v is inefficient; we need only apply the root spaces
gs corresponding to a set of roots f generating R™ as a semigroup. We
accordingly introduce another piece of terminology: we say that a positive
(resp., negative) root o € R is primitive or simple if it cannot be epxressed as a
sum of two positive (resp. negative) roots. (Note that, since there are only
finitely many roots, every positive root can be written as a sum of primitive
positive roots.) We then have

Observation 14.16. Any irreducible representation V is generated by the images
of its highest weight vector v under successive applications of root spaces g,
where [} ranges over the primitive negative roots.

We have already seen one example of this in the case of sl,C, where we
observed (in the proof of Claim 12.10 and in the analysis of Sym?V ® V* in
Lecture 13) that any irreducible representation was generated by applying the
two elements E, ; € gq,,_;, and E, ; € g,,_,, to a highest weight vector.

To return to our description of the weights of an irreducible representation
¥V, we observe next that in fact every vertex of the convex hull of the weights
of V must be conjugate to o under the Weyl group. To see this, note that by the
above the set of weights is contained in the cone a + C,, where C; is the
positive real cone spanned by the roots ff € R™ such that gy(v) # 0—that is,
such that a(H,) # 0. Conversely, the weights of ¥ will contain the string of
weights

a0+ fa+2p,..., 0+ (—a(Hy))p S (1447)

for any f € R™. Thus, any vertex of the convex hull of the set of weights of V
adjacent to « must be of the form

& — a(H,)B = Wy)

for some f3; applying the same analysis to each successive vertex gives the
statement.

From the above, we deduce that the set of weights of V will lie in the convex
hull of the images of « under the Weyl group. Since, moreover, we know that
the intersection of this set with any set of weights of the form {f 4 ny} will be
a connected string, it follows that the set of weights of V will be exactly the
weights that are congruent to o modulo the root lattice Ag and that lie in the
convex hull of the images of o under the Weyl group.
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One more bit of terminology, and then we are done. By what we have seen
(cf. (14.17)), the highest weight of any representation of V will be a weight «
satisfying a(H,) > O for every y € R*. The locus ¥/, in the real span of the
roots, of points satisfying these inequalities—in terms of the Killing form,
making an acute or right angle with each of the positive roots—is called the
{closed) Weyl chamber associated to the ordering of the roots. A Weyl chamber
could also be described as the closure of a connected component of the
complement of the union of the hyperplanes Q,. The Weyl group acts simply
transitively on the set of Weyl chambers and likewise on the set of orderings
of the roots. As usual, these statements will be easy to see in the cases we study,
while the abstract proofs are postponed (to Appendix D).

Step 8. Classify the irreducible, finite-dimensional representations of 9.
Where all the above is leading should be pretty clear; it is expressed in the
fundamental existence and uniqueness theorem:

Theorem 14.18. For any o in the intersection of the Weyl chamber W~ associated
to the ordering of the roots with the weight lattice Ay, there exists a unique
irreducible, finite-dimensional representation I, of g with highest weight a; this
gives a bijection between W Ay, and the set of irreducible representations of
. The weights of T, will consist of those elements of the weight lattice congruent
to o modulo the root lattice A and lying in the convex hull of the set of points
in h* conjugate to a under the Weyl group.

HALF-PROOF. We will give here just the prool of uniqueness, which is easy.
The existence part we will demonstrate explicitly in each example in turn; and
later on we will sketch some of the constructions that can be made in general.
The uniqueness part is exactly the same as for sl,C. If ¥ and W are two
irreducible, finite-dimensional representations of g with highest weight vectors
v and w, respectively, both having weight «, then the vector (v, w)e VO W
will again be a highest weight vector of weight « in that representation. Let
U < V@ W be the subrepresentation generated by (v, w); since U will again
be irreducible the projection maps ny: U — V and n,: U — W, being nonzero,
will have to be isomorphisms. i

Another fact which we will see as we go along—and eventually prove in
general—is that there are always fundamental weights oy, ..., o, with the
property that any dominant weight can be expressed uniquely as a non-
negative integral linear combination of them. They can be characterized
geometrically as the first weights met along the edges of the Weyl cham-
ber, or algebraically as those elements @, in h* such that w,(H,,) = &,;, where
ay, ..., o, are the simple roots (in some order). When we have found them,
we often write T, , for the irreducible representation with highest weight
a0 + - + a,0,; i€,

r

LITYSIY

r

agwy te - +a,0,°

As with most of the material in this section, general proofs will be found in
Lecture 21 and Appendix D.
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One basic point we want te repeat here (and that we hope te demenstrate
in succeeding lectures) is this: that actually carrying cut this processin practice
is completely elementary and straightforward. Any mathematician, stranded
on a desert istand with only these ideas and the definition of a particular Lie
algebra g such as sl,C, s0,C, or sp,,C, would in short order have a complete
description of all the objects defined above in the case of g. We should say as
well, however, that at the conclusion of this procedure we are left without one
vital piece of information about the representations of g, without which we
will be unable to analyze completely, for example, tensor products of known
representations; this is, of coursse, a description of the multiplicities of the basic
representations I',. As we said, we will, in fact, describe and prove such a
formuta (the Weyl character formula); but it is of a much less straight-
forward character (our hypothetical shipwrecked mathematician would have
to have what could only be described as a pretty good day to come up with
the idea) and will be left until later. For now, we will conclude this lecture with
the promised introduction to the Kiliing form. T

§14.2. About the Killing Form

As we said, the Killing form is an inner product (symmetric bilinear form) on
the Lie algebra g; abusing our notation, we will denote by B both the Killing
form and the induced inner products on ) and h*. B can be defined in several
ways; the most common is by associating to a pair of elements X, Y € g the
trace of the composition of their adjoint actions on g, i.e.,

B(X, Y) = Tr(ad(X) o ad(Y): g - g). (14.19)

As we will see, the Killing form may be computed in practice either from this
definition, or (up to scalars) by using its invariance under the group of
automorphisms of g. We remark that this definition is not as opaque as it may
seem at first. For one thing, the description of the adjoint action of the root
space g, as a “translation” of the root diagram—that is, carrying each root
space g into g,4,—tells us immediately that g, is perpendicular to g, for all
f§ other than —a; in other words, the decomposition

=0 ( ® 6o 9-,)) (14.20)

is orthogonal. As for the restriction of B (o b, this is more subtle, but it is not
hard to write down: if X, Y are in b, and Z, generates g,, then ad(X)oad(Y)(Z,)
= a(X)(Y)Z,, 50 B(X, Y) = ¥ a(X)a(Y), the sum over the roots; viewing Bl
as an element of the symmetric square Sym?(h*), we have

|

Bly=5 ¥ o (1421)

(e
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A key fact following from this—cne that, if nothing else, makes picturing
b* with the inner product B invelve less eyestrain—is

(14.22) B is positive definite on the real subspace of b spanned by the vectors
{H,: a € R}.

Indeed, all roots take on real values on this space (since all a(H,) € Z = R),
so for H in this real subspace ol ), B(H, H) is non-negative, and is zero only
when all a(H) = 0, which implies H = 0, since the roots span h*.

To see that the Killing form is nondegenerate on all of g, we need the useful
identity:

B([X, Y], Z)=B(X,[Y, Z]) (14.23)
for all X, Y, Z in g. This follows from the identity
Trace((X Y — YX)Z) = Trace(X(YZ — ZY))

for any endomorphisms X, ¥, Z of a vector space. And this, in turn, follows
from

Trace(YXZ — XZY) = Trace([ ¥, XZ]) = 0.

An immediate consequence of (14.23) is that if a is any ideal in a Lie algebra
g, then its orthogonal complement a® with respect to B is also an ideal. In
particular, if g is simple, the kernel of B is zero (note that the kernel cannot
be g since it does not contain b). Since the Killing form of a direct sum is the
sum of the Killing forms of the factors, it follows that the Killing form is
nondegenerate on a semisimple Lie algebra g.

One of the reasons the Killing form helps to picture h* is the fact mentioned
above:

Proposition 14.24. With respect to B, the line spanned by each root « is perpen-
dicular to the hyperplane ©,.

As we observed, this is equivalent to saying that the involutions W, above
are simply reflections in hyperplanes, and in turn to saying that the whole
Weyl group is orthogonal. Note also that Proposition 14.24 thereby follows
immediately from the Fact 14.11: from the definition of B above, it is clearly
invariant under any automorphism of g. Nevertheless, we would prefer not to
rely on this fact; and anyway giving a direct proof of the propesition is not
hard, in terms of the picture we have of the adjoint action of g on itself. To
prove the assertion a L €, it suffices to prove the dual assertion that H L H,,
for all H in the annihilator of a. But now by construction H, is the commutator
[X,, Y, ] of an element X, € g, and an element Y, € g,. Using (14.23) we have
for any H in |,

B(H,, H) = B((X., Y,], H) = B(X,, [X,, H])
= B(X,, a(H) I,) = a(H) B(X,, Y)), (14.25)

which vanishes since a(H) = 0,



208 14. The General Set-up: Analyzing the Structure

Note that as a consequence of this, we can characterize the Weyl chamber
associated to an ordering of the roots as exactly those vectors in the real span
of the roots forming an acute angle with all the positive roots (or, equivalently,
with all the primitive ones); the Weyl chamber is thus the cone whose faces lie
in the hyperplanes perpendicular to the primitive positive roots.

Equation (14.25) leads to a formula for the isomorphism of ) with b*
determined by the Killing form. First note that for H = H,, it gives

B(H,, H,) = 2B(X,, ¥,) # 0,

forif B(X,, Y,) were zero we would have B(H,, H) = 0 for all H, contradicting
the nondegeneracy of B on ). The element T, of ) which corresponds to « € h*
by the Killing form is by definition the element of ) that satisfies the condition

B(T,,H)=a(H) forall Hel. (14.26)
Looking at (14.25), we see that T, = H,/B(X,, Y,) = 2H,/B(H,, H,). This

proves

Corollary 14.27. The isomorphism of h* and 1) determined by the Kzllmg SJorm
B carries a to T, = (2/B(H,, H,))- H,.

The Killing form on §* is defined by B(a, ) = B(T,, Tp).

Exercise 14.28. Show that the inverse isomorphism from § to h* takes H, to
(2/B(a, @) .

The orthogonality of W, can be expressed by the formula

2B(p, a)

W) = B~ S ®

Comparing with (14.8) this says:

Corollary 14.29. If o and f§ are roots, then
2B(p, @)/ B(x, @) = B(H,)

is an integer.
By the above identification of h with )*, (14.22) translates to

Corollary 14.30. The Killing form B is positive definite on the real vector space
spanned by the root lattice Ap.

Note that it follows immediately from (14.22) that the Weyl group 18 is
finite, being simultaneously discrete (I3 preserves the set R of roots of g and
hence the lattice Ap; it fellows that I8 can be realized as a subgreup of GL,Z)
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and compact (3B preserves the Killing form, and hence is a subgroup of the
orthogonal group O,R.) Alternatively, I8 is a subgroup of the permutation
group of the set of roots.

As we observed, the Killing form on )* is preserved by the Weyl group. In
fact, in case g is simple, the Killing form is, up to scalars, the unique inner
product preserved by the Weyl group. This will follow from

Proposition 14.31. The space b* is an irreducible representation of the Weyl
group 18,

ProoF. Suppose that 3 < h* were preserved by the action of 8. This means
that every root a € h* of g will either lie in the subspace 3 or be perpendicular
toit, i.e, for every a € 3 and f ¢ 3 we will have f(H,) = 0. We claim then that
the subspace §' of g spanned by the subalgebras {s,},., will be an ideal in g.
Clearly it will be a subalgebra; the space spanned by the distinguished sub-
algebras s, corresponding to the set of roots lying in any subspace of h* will
be. To see that it is in fact an ideal, let ¥ € g; be an element of a root space.
Then for any a € 3, we have

[Y,Z]€g,4y=0
since « + f}is neither in 3 nor perpendicular toit, and so cannot be a root; and
[Y,H,]=—[H, Y1=p(H) Y =0

Thus, ad(Y) kills g'; since, of course, all of H itself will preserve g, it follows
that g’ is an ideal. Thus, either all the roots lie in 3 and so 3 = b*, or all roots
are perpendicular to 3 and correspondingly 3 = (0). (]

Note that given Fact 14.11, we can also express the last statement by saying
that (in case g is simple) the Killing form on [ is the unique form preserved
by every automorphism of the Lie algebra g carrying ) to itself. As we will
see, in practice this is most often how we will first describe the Killing form.

Exercise 14.32. Find the Killing form on the Lie algebras sl,C and sl,C by
explicit computation, and verify the statements made above in these cases.

Exercise 14.33*. If a semisimple Lie algebra is a direct sum of simple sub-
algebras, then its Killing form is the orthogenal sum of the Killing forms of
the factors. Show that, cenversely, if the roots of a semisimple Lie algebra lie
in a collection of mutually perpendicular subspaces, then the Lie algebra
decomposes accordingly.

Exercise 14.34*. Suppose g is a Lie algebra that has an abelian subalgebra
b such that g has a decomposition (14.1), satisfying the conditions of Facts
14.2 and 14.6. Show that g is semisimple, and 1) is a Cartan subalgebra.
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The preceding exercise can be used instead of Weyl’s unitary trick or any
abstract theory to verify that the algebras we meet in the next few lectures are
all semisimple. It is tempting to call such a Lie algebra “visibly semisimple.”

The discussion of the geometry of the roots of a semisimple Lie algebra will
be continued in Lecture 21 and completed in Appendix D. The Killing form
becomes particularly useful in the general theory; for example, solvability and
semisimplicity can both be characterized by properties of the Killing form (see
Appendix C).

Exercise 14.35%. Show that b = § ® ), » ¢ 9, is a maximal solvable subalgebra
of g; b is called a Borel subalgebra. Show that (P, ¢ g, is a maximal nilpotent
subalgebra of g. These will be discussed in Lecture 25.

Exercise 14.36*. Show that the Killing form on the Lie algebra gl,, is given by
the forimula

B(X,Y)=2mTr(X oY) — 2Tr(X) Tr(Y).

Find similar formulas for sl,,, so,,, and sp,,, showing in each case that B(X, Y)
is a constant multiple of Tr(X o Y).

Exercise 14.37. If G is a real Lie group, the Killing form on its Lie algebra
g = T,G may not be positive definite, When it is, it determines, by left trans-
lation, a Riemannian metric on G. Show that the Killing form is positive
definite for G = SO, R, but not for SL,R.



LECTURE 15
s[,C and sl,C

In this lecture, we will illustrate the general paradigm of the previous lecture by
applying it to the Lie algebras s}, C; this is typical of the analyses of specific Lie algebras
carried out in this Part. We start in §15.1 by describing the Cartan subalgebra,
roots, root spaces, etc., for sl, C in general. We then give in §15.2 a detailed account of
the representations of s, C, which generalizes directly to sl,C; in particular, we deduce
the existence part of Theorem 14.18 for s[,C.

In §15.3 we give an explicit construction of the irreducible representations of s{,C
using the Weyl construction intreduced in Lecture 6; analogous constructions of the
irreducible representations of the remaining classical Lie algebras will be given in §17.3
and §19.5. This section presupposes familiarity with Lecture 6 and Appendix A, but
can be skipped by those willing to forego §17.3 and 19.5 as well. Section 15.4 requires
essentially the same degree of knowledge of classical algebraic geometry as §§11.3 and
134 (it does not presuppose §15.3), but can alse be skipped. Finally, §15.5 describes
representations of GL,C; this appears to involve the Weyl construction but in fact the
main statement, Proposition 15.47 (and even its proof) can be understood without the
preceding two sections.

§15.1: Analyzing sl,C

§15.2: Representations of s, C and sl,C

§15.3: Weyl’s construction and tensor products
§15.4: Some more geometry

§15.5: Representations of GL,C

§15.1. Analyzing sl,C

To begin with, we have to locate a Cartan subalgebra, and this is not hard;
as in the case of sl,C and sl, C the subalgebra of diagonal matrices will work
fine. Writing H, for the diagonal matrix E;; that takes ¢, to itself and kills ¢,
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for j # i, we have
b={aH, +aH,+ - +aH:a +a,+  +a,=0};
uote that H, is not in [). We can correspondingly write
b*=C{Ly,Ly,...,LJ(Ly+ Ly +-+L,=0)

where L(H;) = ¢, ;. We often write L, for the image of L, in h*.

We have already seen how the diagonal matrices act on the space of all
traceless matrices: if E, ; is the endomorphism of C" carrying e; to e; and killing
e, for all k # j, then we have

ad(a Hy + a,Hy + -+ + a, HWE, ;) = (a, — a)) E; ; (15.1)

or, in other words, E, ; is an eigenvector for the action of b with eigenvalue
L, — L;;in particular, the roots of si,C are just the pairwise differences of the L;.

Before we try to visualize anything taking place in [) or h*, let us take a
motment out and describe the Killing form. To this end, note that the auto-
morphism ¢ of C" sending e, to ¢;, ¢;to —e, and fixing e, for all k # i, jinduces
an automorphism Ad(gp) of the Lie algebra s1,C (or even gl,(C)) that carries
I to itself, exchanges H; and H,, and fixes all the other H,. Since the Killing
form on ) must be invariant under all these automorphisms, it must satisfy
B(L;, L;) = B(L;, L)) for all i and j and B(L;, L) = B(L;, L) for ail i, j and
k # i, j; it follows that on Iy it must be a linear combination of the forms

B'(Z a;H;, Z bH) = Z aibh;
and

B"(Z a,H,, Z bH) = Zlaﬁj aby.

On the space {) a;H:) a;=0}, however, we have 0=} a)(} b)=
Yab; + Y, a;by, so in fact these two forms are dependent; and hence we can
write the Killing form simply as a multiple of B'. Similarly, the Killing form
on h* must be a linear combination of the forms B'(} a,L;, Y. h L) =Y a;b,
and B"(Y a;L,, Y. b,L;) = Y+ a;b;; the condition that B() a;L;, Y. b;L)) =0
whenever a;, =a, ="'~ =a, or by = b, =--- = b, implies that it must be a
multiple of :

-1 | J—
B(Z aL;, Z bL;,) = (n " ) E':albl T Z a;by

i#f

| (15.2)
= ; a,b, —_— Z a,bj.

nij

We may, of course, also calculate the Killing form directly from the defini-
tion. By (14.21), since the roots of sl,C are {L, — L;},,,, we have

B(Z a;H;, Z bH) = Zt;sj (a; — a})(bl - bj)
= Z‘ Z}’” (a,b, + ajbj o a,bj - ajbi).
Noting that Zj,,aj = —a;and, similarly, )", b, = —b;, this simplifies to
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B(Y a;H, Y biH)=2nY ab, (15.3)
1t follows with a little calculation that the dual form on h* is

B(Z aly, Z hL)= (1/2")(21 ab; — (1/n) Zi,] albj)' (15.4)
It is probably simpler just to think of this as the form, unique up to scalars,
invariant under the symmetric group &, of permutations of {1, 2, ..., n}. The
L;, therefore, all have the same length, and the angles between all pairs are
the same. To picture the roots in §*, then, we should think of the points L, as
situated at the vertices of a regular (n — 1)-simplex A, with the origin located
at the barycenter of that simplex. This picture is easiest to visualize in the
special case n = 4, where the L; will be located at every other vertex of a unit
cube centered at the origin:

(15.5)

L,

Now, as we said, the roots of s[,C are now just the pairwise differences of
the L;. The root lattice A, they generate can thus be described as

Ar={Y aL;:a€Zy a=0}3 L,=0).

Both the roots and the root lattice can be drawn in the case of sl, C: if we think
of the vectors L, € h* as four of the vertices ol a cube centered at the origin,
the roots will comprise all the midpoints of the edges of a second cube whose
linear dimensions are twice the dimensions of the first:

Ly-1,

L,-L; @

o

# ®Li-Ly (15.6)
|

|

L

Plainiaie bl

L,-L,
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The next step, finding the distinguished subalgebras s,, is also very easy.
The root space g,,,, corresponding to the root L; — L is generated by E; ;,
so the subaligebra s;,_, is generated by

E"j, Ej',, and [E,'j, E]',] = H’ - }ij.

The eigenvalue of H; — Hjacting on E; ;is (L, — L))(H; — H;) = 2, so that the
corresponding dlslmgmshed element H, _, in b must be just H; — H,. The
annihilator, of course, is the hyperplane Q,l_,d {3 a,L;: a; = a;}; note that
this is indeed perpendicular to the root L; — L; with respect to the Killing
form B as described above.

Knowing the H, we know the weight lattice: in order for a linear functional
Za,-L,el)* to have integral values on all the distinguished elements, it is
clearly necessary and sufficient that all the a, be congruent to one another
modulo Z. Since ) L, = 0 in *, this means that the weight lattice is given as

Aw=Z{Ly,..., LY.L, = 0).

In sum, then, the weight lattice of ¢l,C may be realized as the lattice generated
by the vertices of a regular (n — 1)-simplex A centered at the origin; and the
roots as the pairwise differences of these vertices.

While we are at it, having determined Az and A, we might as well compute
the quotient Ay /A . This is pretty easy: since the lattice A,, can be generated
by Ap together with any of the vertices L, of our simplex, the quotient Ay, /Ap
will be cyclic, generated by any L,; since, modulo Ag,

0= Z} (L‘ - 141) = nL; - Z] L] = "L’.
we see that L, has order dividing nin Ay /Ag.

Exercise 15.7. Show that L, has order exactly a in Ay/Ap, 5o that Ay /A, =
Z/nz.

From the above we can also say what the Weyl group is: the reflection in
the hyperplane perpendicular to the root L, — L, will exchange L, and L, € h*
and leave the other L, alone, so that the Weyl group I is just the group S,
acting as the symmetric group on the generators L, of h*. Note that we have
already verified that these automorphisms of [)* do come from automorphisms
of the whole Lie algebra sl,C preserving b.

To continue, let us choose a direction, and describe the corresponding Weyl
chamber. We can write our linear functional [ as

I(Z a;L;) = Z Cid;

with Y ¢, = 0; let us suppose that ¢, > ¢, > --- > ¢,. The corresponding
ordering of the roots will then be '

R* ={L,— Lsi<j}

and
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N R™ ={L—L;J<i}.

The primitive negative rools for this ordering are simply the roots L;,; — L,.
(Note that the ordering of the roots depends only on the relative sizes of the
¢, so that the Weyl group acts simply transitively on the set of orderings.) The
(closed) Weyl chamber associated to this ordering will then be the set

¥ ={)alia, >a,>" >a,)}.

One way to describe this geometrically is to say that if we take the barycentric
subdivision of the faces of the simplex A, the Weyl chamber will be the cone
over one (n — 2)-simplex of the barycentric subdivision: e.g., in the case n = 4

Lytly=-Ly-L,

LydLy+ly= L,

It may be easier to visualize the case n = 4 if we introduce the associated cubes:
in terms of the cube with vertices at the points + L,, we can draw the Weyl
chamber as

(15.8)
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Alternatively, in terms of the slightly larger cube with vertices at the points
+2L;, we can draw ¥  as

L,-L,
*——
A
| ' (15.9)
*
|
* |
L
/.//

From the first of these pictures we see that the edges of the Weyl chamber are
the rays generated by the vectors L, L, + L,,and L; + L, + L,; and that
the faces of the Weyl chamber are the planes orthogonal to the primitive
negative roots L, — L,, Ly — L,, and L, — Ly. The picture in general is
analogous: for sl,C, the Weyl chamber will be the cone over an (n — 2)-
simplex, with edges generated by the vectors

L‘, Lx+L2, L1+L2+L3,...,L]+"'+Ln_!z“‘Ln.
The faces of % will thus be the hyperplanes

QL("LH: = {Z aij: a; = ai-H}

perpendicular to the primitive negative roots Ly, — L;.

Note the important phenomenon: the intersection of the closed Weyl
chamber with the Jattice Ay will be a [ree semigroup N""! generated by the
fundamental weights w; = L, + -~ + L, occurringalong the edges of the Weyl
chamber. One aspect of its signilicance that is immediate is that it allows us
to index the irreducible representations sl,C nicely: for an arbitrary (n ~ 1)-
tuple of natural numbers (a,, ..., a,-;) € N""* we will denote by T, _, , the
irreducible representation of sl, C with highest weight a, L, + a,(L, + L,) +
gLy + o Lyyg) = (ap 4+ a )Ly H(ay+ o +a, )Ly +
i an—ll‘n—l:

T,

oy ra.L.+az(L,+L;)+---+d,,-|(l..+'~-+l.,._,)'

This also has the nice consequence that once we have located the irreducible
representations V@ with highest weight L, + --- 4 L,, the general irreducible
P 1 1 g
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representation I, .  with highest weight Y.a(L, + - + L) will occur
inside the tensor product of symmetric powers

Sym* V"V Q@ Sym VP @ --- @ Sym® 1y

of these representations. Thus, the existence part of the basic Theorem 14.18
is reduced to finding the basic representations V?; we will do this in due
course, though at this point it is probably not too hard an exercise to guess
what they are.

§15.2. Representations of sl,C and sl,C

We begin as usual with the standard representation of s{,C on V = C*. The
standard basis vectors e, of C* are eigenvectors for the action of b, with
eigenvalues L,, so that the weiglt diagram looks like

or, with the reference cube drawn as well,
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The dual representation V* of course has weights — L, correspending to the
vectors of the dual basis e¥ for V*, so that the weight diagram, with its
reference cube, looks like

—_—— e~ —— ) ———
R

b . L,

Note that the highest weight for this representation is — L, which lies along
the bottom edge of the Weyl chamber, as depicted in Diagram (15.8). Note also
that the weights of the representation A?V—the triple sums L, + L, + L,
Li+ L+ L4 Ly +Ly+ Ly, and Ly + Ly + L, of distinct weights of V—are
the same as those of V'*, reflecting the isomorphism of these two representations.
This suggests that we look next at the second exterior power A?V. This is
a six-dimensional representation, with weights L, + L; the pairwise sums of
distinct weights of V; its weight diagram, in its reference cube, looks like

L,+L,

The diagram shows clearly that A’V is irreducible since it is not the nontrivial
union of two configurations invariant under the Weyl group S, (and all
weights occur with multiplicity 1). Note also that the weights are symmetric
about the origin, reflecting the isomorphism of A2V with (A2V)* = A2(V'*).

Note that the highest weight L, + L, of the representation AV is the
primitive vector along the front edge of the Weyl chamber # as pictured in
Diagram (15.8). Now, we have already seen that the intersection of the closed
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Weyl chamber with the weight lattice is a free semigroup generated by the
primitive vectors along the three edges of #"—that is, every vectorin %" n A,
is a non-negative integral linear combination of the three vectors L, L, + L,,
and L, + L, + L,. As we remarked at the end of the first section of this
lecture, it follows that we have proved the existence half of the general existence
and uniqueness theorem (14.18) in the case of the Lie algebra s,C. Explicitly,
since ¥, A*V, and A’V = V'* have highest weight vectors with weights L,,
Ly + Ly, and Ly + L, + L,, respectively, it follows that the representation

Sym*V ® Sym®(A*V) ® Sym (A\V)

contains a highest weight vector with weight al, + b(Ly + L,) +
¢(Ly + Ly + Ly), and hence a copy of the irreducible representation T, ,, . with
this highest weight.

Let us continue our examination of representations of s{,C with a pair of
tensor products of the three basic representations: ¥ ® A2V and V @ A3V.
As for the first of these, its weights are easy to find: they consist of the sums
2L, + L; (which occur once, as the sum of L, and L; + L;) and L; + L; + L,
(which occur three times). The diagram of these weights looks like

(We have drawn only the vertices of the convex hull of this diagram, thus
omitting the weights L, + L; + L,; they are located at the centers of the
hexagonal faces of this polyhedron.)

Now, the representation V @ A?V cannot be irreducible, for at least a
couple of reasons. First ofl, just by looking at weights, we see that the
irreducible representation W = Iy, , with highest weight 2L, + L, can have
multiplicity at most 2 on the weight L, + L, + Lj: by Observation 14.16, the
weight space W, ;. ., . is generated by the images of the highest weight vector
ve Wy, +1, by successive applications of the primitive negative root spaces
8L,~Ly» OLa~Ly ANd gy, But Ly + Ly + L, is uniquely expressible as a sum
of 2L; + L, and the primitive negative roots:

Ly +Ly+Ly=2L,+ Ly +(Ly,— L))+ (Ly— Ly);
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so that V, ..., is generated by the subspaces g, r,(8,-1,(v)) and
81,-1,(0,-,(v). We can in fact check that the representation I, , , takes
on the weight L, + L, + Ly with multiplicity 2 by writing out these
generators explicitly and checking that they are independent: for example, we
have

QL,—I,,(QL,—I,,(U)) = C-E, ((E; 3(e; ®(e; A e3)))
=C-E,; (e, ® (e, A e3))
=C(e; ®(e; ne3) +e, ®(e; A &)

This is in fact what is called for in Exercise 15.10.

Alternatively, forgetting weights entirely, we can see from standard muiti-
linear algebra that the representation ¥V ® A?V cannot be irreducible: we have
a natural map of representations

@: VRNV - A3V
which is obviously surjective. The kernel of this map is a representation with
the same set of weights as ¥ @ A*V (but taking on the weights L, + L, + L,

with muitiplicity 2 rather than 3), and so must contain the irreducible represen-
tation I'y , o with highest weight 2L, + L,.

Exercise 15.10. Prove that the kernel of ¢ is indeed the irreducible represen-
tation I'y , o.

Finally, consider the tensor product V @ A3V. This has weights
2L, + L, + Ly = L, — L, each occurring once, and 0, occurring four times. Its
weight diagrams thus look like

This we may recognize as simply a direct sum of the adjoint representa(ion
with a copy of the trivial; this corresponds to the kernel and image of the
obvious contraction (or trace) map
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VAV =V ®V*=Hom(V, V) C.

(Note that the adjoint representation is the irreducible representation with
highest weight 2L, + L, + L,, or in other words the representation I', ¢ ,.)

Exercise 15.11. Describe the weights of the representations Sym"V, and deduce
that they are all irreducible,

Exercise 15.12. Describe the weights of the representations Sym"(A?V), and
deduce that they are not irreducible. Describe maps

@, Sym"(A2V) - Sym" " 2(A?V)

and show that the kernel of g, is the irreducible representation with highest
Weight n(Ll + Lz).

Exercise 15.13. The irreducible representation I'; ; ; with highest weight
3L, + 2L, + Ly occurs as a subrepresentation of the tensor product
¥ ® AV @ A’V lying in the kernel of each of the three maps

VAV @AY - NPV @AYV
VRNV QN o ANV @ AV = A2V
VOANVRINV 2 VRQANV*@V*s VRNV VRV

obtained by wedging two of the three factors. Is it equal to the intersection of
these kernels? To test your graphic abilities, draw a diagram of the weights
(ignoring multiplicities) of this representation.

Representations of sl,C

Once the case of sl, C is digested, the case of the special linear group in general
offers no surprises; the main difference in the general case is just the absence
of pictures. Of course, the standard representation V of sl,C has highest weight
L;, and similarly the exterior power A*V is irreducible with highest weight
Ly + -+ + L. 1t follows that the irreducible representation I, , , with
highest weight (a; + -~ + a,)L; + - + a,-;L,-; will appear inside the
tensor product

Sym“V ® Sym(A*V) ® - @ Sym™ (A" p),
demonstrating the existence theorem (14.18) for representations of sl,C.
Exercise 15.14. Verify that the exterior powers of the standard representations

of s1,C are indeed irreducible (though this is not necessary for the truth of the
last sentence).
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§15.3. Weyl’s Construction and Tensor Products

At the end of the preceding section, we saw that the irreducible representation
T.,...a. ofs,,Cwithhighest weight(a; + - + a, )Ly + " + @y Ly will
appear as a subspace of the tensor product

Sym"V ® Symaz(/\z N ® Syma,.-|(/\n—1 ),

or equivalently as a subspace of the dth tensor power V®? of the standard
representation V. The natural question is, how can we describe this subspace?
We have seen the answer in one case already (two cases, if you count the trivial
answer I, = Sym®V in the case n = 2): the representation I, , of sl;C can be
realized as the kernel of the contraction map

Sym*V ® Sym®’(A*V) - Sym® ™'V ® Sym® " (A2V).

This raises the question of whether the representation I', can in general be
described as a subspace of the tensor power (X)(Sym®(A\'V)) by intersecting
kernels of such contraction/wedge product maps. Specifically, for i and j with
i + j <n we can define maps :

Sym“V @ Sym2(A?V)® - @ Sym ™ (A" 1)
SAVRAY®SYym" VYV ® - @ Sym* ' ANV ® -
® Sym¥ ' NV) @+ @ Sym™ (A1)

and we have similar maps for i < jwithi + j > nand ieven with 2i > #; there
are likewise analogously defined maps in which we split off three or more
factors. The representation I, ., _, is in the kernel of all such maps; and we
may ask whether the intersection of all such kernels is equal to T,.

The answer, it turns out, is no. (It is a worthwhile exercise to find an example
of a representation I, that cannot be realized in this way.) There is, however,
another way of describing I, as a subspace of ¥®; in fact, we have already
met these representations in Lecture 6, under the guise of Schur functors or
Weyl modules. In fact, at the end of this lecture we will see how to describe
them explicitly as subspaces of the above spaces () (Sym™(A'V)). Recall that
for V = C" an n-dimensional vector space, and any partition

Lhizlh>24,20,

we can apply the Schur functor S; to V to obtain a representation
S,V = S,(C") of GL(V) = GL,(C). If d = Y 1, this was realized as

S, V=V®c,=V®Qcs, Vi
where ¢, is the Young symmetrizer corresponding to 4, and V, is the irreducible
representation of &, corresponding to 1.

We saw in Lecture 6 that S,V is an irreducible representation of GL,C. It
follows immediately that S, V remainsirreducible as a representation of SL,C,
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since any element of GL,C is a scalar multiple of an element of SL,C. In
particular, it determines an irreducible representation of the Lie algebra sl,C.

Proposition 15.15. The representation S,(C") is the irreducible representation
of 1, C with highest weight A, L, + A,L, + -~ + A, L,.

In particular, $,(C") and S,(C") are isomorphic representations of sl,C if
and only il A; — y; is constant, independent of i. To relate this to our earlier
notation, we may say that the irreducible representation I, |, | of s[,C with
highest weighta, L, + a,(L, + Ly} + -+ a,_(L; + - + L,_,)is obtained
by applying the Schur functor S, to the standard representation V, where

A=(a;+ - +a,,a,+ "+ gy 0y, 0)

(If we want a unique Schur functor for each representation, we can restrict to
those A with A, = 0.) In terms of the Young diagram for 1, the coeflicients
a; = A; — A4, are the differences of lengths of rows. For example, if n = 6,

[]

l
Ny

___ -04
as

is the Young diagram corresponding to [ ; ¢.4,;-

PROOF OF THE PROPOSITION. In Theorem 6.3 we caiculated that the trace of a
diagonal matrix with entries x,, ..., x, on S,(C") is the Schur polynomial
Si(xq, .-, x,). By Equation (A.19), when the Schur polynomial is written out
it takes the form

Sixps X)) =M+ Y. KM, (15.16)
jp<d

where M, is the sum of the monomial X* = x{'x§2-...- x! and all distinct
monomials obtained from it by permuting the variables, and the K, are
certain non-negative integers called Kostka numbers. When S,(C") is
diagonalized with respect to the group of diagonal matrices in GL,(C), it
is also diagonalized with respect to | = sl (C). There is one monomial in
the displayed equation for each one-dimensional eigenspace. The weights of
S;(C") as a representation of sl,(C) therefore consist of all

.“llLl + .u2L2 + 4 /lnl’m

each occurring as often as it does in the monomial X* in the polynomial
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Si(xq, .-+, x,). Since the sum is over those partitions p for which the first
nonzero A; — p; is positive, the highest weight that appearsis A, L, + 1,L, +
-+ + A,L,, which concludes the proof. [In fact one can describe an explicit
basis of eigenvectors for S,(C”) which correspond to the monomials that
appear in (15.16), cf. Problem 6.15 or Proposition 15.55.] (]

In particular, we have (by Theorem 6.3) formulas for the dimension of the
representation with given highest weight. Explicitly, one formula says that
@+ +a_)+j—i

1gi<jsgn j—i

dim(ra,,....u,._l) = (|5.17)

As we saw in the prool, this proposition also gives the multiplicities of all
weight spaces as the integers K ;, that appear in (15.16), which have a simple
combinatorial description (p. 456): the dimension of the weight space with
weight p in the representation S,(C") is the number of ways one can fill the
Young diagram of 2 with p, s, py 2’s, ..., p, s, in such a way that the entries
in each row are nondecreasing and those in each column are strictly increasing.

Exercise 15.18. Use the formula in case n = 4 to calculate the dimensions of
the irreducible representations Iy ; ¢ and I} ; ; of si,C. In the former case,
use this to redo Exercise 15.10; in the latter case, te do Exercise 15.13.

Exercise 15.19*. Use this formula to show that the dimension of the irreducible
representation I, , of sl; with highest weight aL, + b(L, + L,) is
(@ + b+ 1)(a + 1)(b + 1)/2. This is the same as the dimension of the kernel
of the contraction map

I,.p: SymM?V & Sym®V* — Sym*~ 'V ® Sym" ' V*.

Use this to give another proof of the assertion madeinClaim 13.4 that I, , is
this kernel.

Exercise 15.20*. As an application of the above formula, show that if V is the
standard representation of sl,C, then the kernel of the wedge product map

‘V®/\kv_)/\k+lV.
is the irreducible representation Iy, ¢, with highest weight

2Ly + Ly + --* + L,; and that the irreducible representation I, _, , ... with
highest weight k- L, + L, is the kernel of the product map

V ® Sym*V — Sym**p,
Exercise 15.21*. Show that the only nontrivial irreducible representations of
sl,C of dimension less than or equal to n are ¥ and V'*.

One important consequence of the fact that the irreducible representations
of sl, C are obtained by applying Schur functors to the standard representation
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is that identities among the Schur—Weyl functors give rise to identities among
representations of GL, (and hence SL, and ¢l,), as we saw in Lecture 6. For
example, the representation

Sym*(V) @ Sym* (V) ® - ® Sym*~(V) (15.22)

is a direct sum of representations S,(V) ® @), K,.:S,(V), where K, is the
coelficient described above. The particular application of this principle that
we will use most frequently in the sequel, however, is the consequence that
one knows the decomposition of a tensor product of any two irreducible represen-
tations of sl,C: specifically, the tensor power S,(V) ® S, (V) decomposes into
a direct sum of irreducible representations

SyV)® Su(V) = D Ny S(V)s (15.23)

where the coefficients N,,, are given by the Littlewood- Richardson rule, which
is a formula in terms of the number of ways to fill the Young diagram between
A and v with py U's, u, 2s, ..., p, ', satislying a certain combinatorial
condition described in (A.8).

Exercise 1524. Use the Littlewood-Richardson rule to show that the
representation I, yp . 4., OCcurs exactly once in the tensor product

r'l|.....n,.,| ® rb.....,b,l_l .

A special case of this is the analogue of Pieri’s formula, which allows us
to decompose the tensor product of an arbitrary irreducible representation
with either Sym*V =TI, , ., or the fundamental representation NV =
Fo.... 1.0.....0» (Where the 1 occurs in the kth place):

Proposition 15.25. (i) The tensor product of T, ...
decomposes into a direct sum:

rﬂ,....,n,,._, ® rk,....o = @r‘b;.....b"_,’

the sum over all (b, ..., b,_,) for which there are non-negative integersc,,...,c,
whose sum is k, with ¢,y < a, for | <i<n — 1, and with b; = a; + ¢; — ¢4,
Jori<igsn—1.

(ii) The tensor product of T, . ., with NV =T,  o..0... 0 decomposes
into a direct sum:

Lo @ T, 0.100,.0 = @r‘b..‘...bn_.’
the sum over all (by, ..., b,_,) for which there is a subset S of {1,...,n} of
cardinality k, such that if i ¢ S and i + 1 € S, then a, > 0, with
a—1 fi¢Sandi+1eS
b=<{a+1 iflieSandi+1¢S
a otherwise.

with Sym*V = Lo.....0



226 15. sl,C and s[,C

PrOOF. This is simply a matter of translating the prescriptions of (6.8) and
{6.9), which describe the decompositions in terms of adding boxes to the Young
diagrams. In (i), the c; are the number of boxes added to the ith row, and in
(i), S is the set of rows to which a box is added. O

Exercise 15.26. Verify the descriptions in Section 2 of this lecture of V ® A2V
and ¥V @ A3V, where V is the standard representation of s1,C.

Exercise 15.27. Use Pieri’s formula (with n = 4) twice to find the decomposition
into irreducibles of ¥ ® A2V ® A3V, where V is the standard representation
of sl,C. Use this to redo Exercise 15.13.

Exercise 15.28. Use Pieri’s formula to prove (13.5). You may also want to look
around in Lecture 13 to see which other of the decompositions found there
by hand may be deduced from these formulas.

Exercise 15.29. Verify that the statement of Exercise 15.20 follows directly
from Pieri’s formula.

In the foliowing exercises, ¥ = C" is the standard representation of sl,C.
Exercise 15.30. Consider now tensor products of the form A*V ® AV, with,
say, k > [. Show that there is a natural map

NV @AV > Ny QAN

given by contraction with the element “trace” (or “identity”) in V@ V* =
End(V). Explicitly, this map may be given by

WA ABR)DMW A Aw
i
Y (DO A A AW)R (W A /\fv\‘/\ A W)
i=1

What is the image of this map? Show that the kernel is the .irreducible
representation Ty o.4.0.. 0,1.0,.. With highest weight 2L, + - + 2L; +
Lisg + 0+ Ly :

Exercise 15.31*. Carry out an analysis similar to that of the preceding exercise
for the maps
Sym*V @ Sym‘V — Sym**!V ® Sym‘~'V

defined analogously.

Exercise 15.32*. As a special case of Pieri’s formula, we see that if V is the
standard representation of sl,C, the tensor product
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Nv ® NV = @ S(z,....z. 1.....1.0....)( V)

= @ Io....0.1,0....0.1.0,..5

where in the ith factor the 1's occur in the (k — i)th and (k + i)th places. A
the same time, of course, we know that

NV @ AV = Sym>(AV) @ A(AV).

1f we denote the ith term on the right-hand side of the first displayed equation
for NV @ A'V by @,, show that

Sym* (AV) =P O, and AN NV)=D Oyy,y.

Exercise 15.33*. As another special case of Pieri’s formula, we see that the
tensor product

Sym*V ® Sym*V = @ Suik-o(V)

= @ rli.k—i.o.‘.o-
At the same time, of course, we know that

Sym*V ® Sym*V = Sym?(Sym*V) @ N> (Sym*V).

Which of the factors appearing in the first decomposition lie in Sym?(Sym*V),
and which in AX(Sym*V)?

1t follows from the Littlewood—-Richardson rule that if 4, &, and v all have
at most two rows, then the coefficient N,,, is zero or one (and it is easy to
say which occurs). In particular, for the Lie algebras st,C and sl,C, the
decomposition of the tensor product of two irreducible representations is
always multiplicity free. Groups whose representations have this property,
such as SU(2), SU(3), and SO(3) which are so important in physics, are called
“simply reducible,” cf. [Mack].

§15.4. Some More Geometry

Let V be an n-dimensional vector space, and G(k, n) = G(k, V) = Grass, V the
Grassmannian of k-planes in V. Grass, V is embedded as a subvariety of the
projective space P(A\*V) by the Pliicker embedding:

p: Grass, V < P(A'V)

sending the plane W spanned by vectors vy, ..., v, to the alternating tensor
v; A -+ A 0. Equivalently, noting that if W < V is a k-dimensional subspace,
then AW is a line in A*V, we may write this simply as

0 Wims AW,
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This embedding is compatible with the action of the general linear group:
PSL,C = Aut(P(V)) = {0 € Aut(P(A*V)): a(G(k, V)) = Gk, V)}".

This follows from a fact in algebraic geometry ([Ha]): all automorphisms
of the Grassmannian are induced by automorphisms of V, unless n = 2k,
in which case we can choose an arbitrary isomorphism of V with V*
and compose these with the automorphism that takes W to (C"/W)*. Here
the superscript © denotes the connected component of the identity. As in
previous lectures, if we want symmetric powers to correspond to homo-
geneous polynomials on projective space, we should consider the dual situa-
tion: G = Grass*V is the Grassmannian of k-dimensional quotient spaces of
¥, and the Pliicker embedding embeds G in the projective space P(A*V'*) of
one-dimensional quotients of A*V.

The space of all homogeneous polynomials of degree m on P(A*V*) is
naturally the symmetric power Sym™(A*V). Let I{G),, denote the subspace of
those polynomials of degree m on P(A\*V'*) that vanish on G. Each I(G),, is a
representation of sl,C:

0 — 1(G), = Sym™(A*V) - W, - 0,
where W,, denotes the restrictions to G of the polynomials of degree m on
the ambient space P(A*V*). We shall see later that W, is the irreducible
representation Ty, o m.o,.. With highest weight m(L, + --* + L,) (the case
m = 2 will be dealt with below). In the following discussion, we consider the

problem of describing the quadratic part I{G), of the ideal as a representation
of s1,C.

Exercise 15.34. Consider the first case of a Grassmannian that is not a
projective space, that is, k = 2. The ideal of the Grassmannian G(2, V) of
2-planes in a vector space is easy to describe: a tensor ¢ € A?V is decomposable
if and only if @ A @ = 0 (equivalently, if we think of ¢ as given by a skew-
symmetric n x nmatrix, if and only if the Pfaffians of symmetric 4 x 4 minors
all vanish); and indeed the quadratic relations we get in this way generate the
ideal of the Grassmannian. We, thus, have an isomorphism

HG), = AV
and correspondingly a decomposition into irreduéfbles
Sym*AWV) = AV @ Ty ,50...00
where [, 4. ¢ i, as above, the irreducible representation with highest

weight 2(L; + L,), cf. Exercise 15.32.

Exercise 15.35. When k = 2 and n = 4, G is a quadric hypersurface in P5, so
polynomials vanishing on G are simply those divisibie the quadratic poly-
nomial that defines G. Deduce an isomorphism.

I(G)y, = Sym™ *(\?V).
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The first case of a Grassmannian that is not a projective space or of the
form G(2, V) is, of course, G(3, 6), and this yields an interesting example.

Exercise 15.36. Let V be six dimensional. By examining weights, show that
the space /(G), of quadratic polynomials vanishing on the Grassmannian
G{3, V) = P(A*V) is isomorphic to the adjoint representation of sl;C, ie,
that we have a map

@: Sym*A V)V ® V*

with image the space of traceless matrices.
Exercise 15.37. Find explicitly the map ¢ of the preceding exercise.

Exercise 15.38. Again, let V be six dimensional. Show that the representation
Sym*(A3V) has a trivial direct summand, corresponding to the hypersurface
in P(A*V*) dual to the Grassmannian G = G(3, V) = P(A*V).

In general, the ideal I{G) = (D /(G),, is generated by the famous Pliicker
equations. These are homogeneous polynomials of degree two, and may be
written down explicitly, cf. (15.53), [H-P], or [Ha]. In the following exercises,
we will give a more intrinsic description of these relations, which will allow
us to identify the space I(G), they span as a representation on sl,C {and to
see the general pattern of which the above are special cases).

Exercise 15.39. For a given tensor A € A'V, we introduce two associated
subspaces:

W={veV:ioaA=0}cV
and
W*={v*eV*v* A A* =0} c V*,

where, abusing notation slightly, A* is the tensor A viewed as an element of
NV = A\""*V*_ Show that the dimensions of W and W* are at most k and
n — k, respectively, and that A is decomposable if and only if W has dimension
kor W* has dimension n — k; and deduce that A is decomposable if and only
if the annihilator W' of W* is equal to W.

Exercise 15.40. Now let e A**!V* = A"*" '), Wedge product gives a map
g NV NV =V

Using the preceding exercise, show that A is decomposable if and only if
A AA=0eNY

for all E e A+ =,
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Exercise 15.41. Observe that in the preceding exercise we construct a map
NHY* @ Sym2(A*Y) — A1y,
or, by duality, a map
NFLYy* @ Ny * o Sym2(AV*) (15.42)

whose image is a vector space of quadrics on P(A*V) whose common zeros
are exactly the locus of decomposable vectors, that is, the Grassmannian
G(k, V). Show that this image is exactly the span of the Pliicker relations
above,

Exercise 15.43. Show that the map (15.42) of the preceding exercise is just the
dual of the map constructed in Exercise 15.30, with k = [ and restricted to the
symmetric product. Combining this with the result of Exercise 15.32 (and
assuming the statement that the Pliicker relations do indeed span I(G),),
deduce that in terms of the description

Sym*(A'V) =P 0y
of the symmetric square of A'V, we have

W, =8, = ro,....o 2,0,

(the irreducible representation with highest weight 2(L, + -+ + L,)), and
G, = @ O,
i1

Hard Exercise 15.44. Show that in the last equation the sub-direct sum
= @ @y
>

is just the quadratic part of the ideal of the restricted chordal variety of the
Grassmannian: that is, the union of the chords LM joining pairs of points
in G corresponding to pairs of planes L and M meeting in a subspace of
dimension at least k — 2! + 1.(Question: What is the actual zero locus of these

quadrics?)

Exercise 15.45. Carry out an analysis similar to the above to relate the
ideal of a Veronese variety PV* < P(Sym*V*) to the decomposition given in
Exercise 15.33 of Sym?(Sym*V). For which k do the quadratic polynomials
vanishing the Veronese give an irreducible representation?

Exercise 15.46. (For algebraic geometers and/or commutative algebraists,)
Just as the group PGL,C acts on the ring S of polynomials on projective space
PN, preserving the ideal of the Veronese variety, so it acts on that space of
relations on the ideal (that is, inasmuch as the ideal is generated by quadrics,
the kernel of the multiplication map I,(2) ® § — §), and likewise on the entire
minimal resolution of the ideal of X. Show that this resolution has the form
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o R,®SOR®S> (RS,

where all the R, are finite-dimensional representations of PGL,C, and identify
the representations R, in the specific cases of

(i) the rational normal curve in P3,
(ii) the rational normal curve in P4, and
(iii) the Veronese surface in P5,

§15.5. Representations of GL,C

We have said that there is little difference between representations of GL,C
and those of the subgroup SL, C of matrices of determinant 1. Our object here
is to record the difference, which, naturally enough, comes from the deter-
minant: if ¥ = C" is the standard representation, A"V is trivial for SL,C but
not for GL,C. Similarly, ¥ and A" 'V* are isomorphic for SL,C but not
for GL,C.

To relate representations of SL,C and GL,C, we first need to define some
representations of GL,C. To begin with, let D, denote the one-dimensional
representation of GL,C given by the kth power of the determinant. When k
is non-negative, D, = (A"V)®*; D_, is the dual (D,)* of D,. Next, note that the
irreducible representations of SL,C may be lifted to representations of GL,C
in two ways. First, for any index a = (a,, ..., a,) of length n we may take @,
to be the subrepresentation of the tensor product

Sym"V @ --- @ Sym™ (A" V) ® Sym™(A"V)

sbanned by the highest weight vector with weight a,L; + a,(L, + L,) +
o+ a, (L, + -+ L, ;)—that is, the vector

v="_e;)" (e, ne))* ...-(ey A" A g™

This restricts to SL,C to give the representation I',., where @’ = (a,, ..., a,-);
taking different values of a, amounts to tensoring the representation with
different factors Sym™(\'V) = (A"V)®* = D, . In particular, we have

ay,.... a4k = d’n, ..... a, ® Dk’

which allows us to extend the definition of ®, to indices a with a, < 0: we
simply set
@ = d’n, ..... a,tk ® D,

Aloeenlpy

for large k.
Alternatively, we may consider the Schur functor S, applied to the standard
representation V of GL,C, where

A=(a;+ - +a,a,+ - +a,...,a,.4 + a, a,)
We will denote this representation S,V of GL,C by ‘¥;; note that

' -
q1,+k,...,l,,+k = PA, ..... 1,,®Dk
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which likewise allows us to define P, for any index A with 4, > 1, >--- > 4,,
even if some of the 4, are negative: we simply take

\'Pl, ..... A= ‘Pl.u ..... Atk ®D_,

for any sulficiently large k.

As is not hard to see, the two representations ®, and ¥, are isomorphic as
representations of GL,C: by §15.3 their restrictions to SL,C agree, so it suffices
to check their restrictions to the center C* = GL,C, where each acts by
multiplication by zZ4 = zLi%) It is even clearer that there are no coincidences
among the @, (ie, @, will be isomorphic to ®,. il and only if a = a’). if
&, =~ d,., we must have ;= a; fori = 1,..., n — 1, so the statement Jollows
from the nontriviality of D, for k + 0. Thus, to complete our description of the
irreducible finite-dimensional representations of GL,C, we just have to check
that we have found them all. We may then express the completed result as

Proposition 15.47. Every irreducible complex representation of GL,C is iso-
morphic to W, for a unique index A = Ay, ..., 4, withA, 2 1, > -+ > 1, (equiv-
alently, to ®, for a unique index a = ay, ..., a, witha,,...,a,_; > 0).

ProoF. We start by going back to the corresponding Lie algebras. The scalar
matrices form a one-dimensionat ideal C in gl,C, and in fact gl,C is a product
of Lie algebras:

gl,C = 1,C x C. (15.48)

In particular, C is the radical of g1, C, and sl,C is the semisimple part. It follows
from Proposition 9.17 that every irreducible representation of gl,C is a tensor
product of an irreducible representation of sI,C and a one-dimensional repre-
sentation. More precisely, let W, = §,(C") be the representation of sl,C deter-
mined by the partition 1 (extended to s{,C x C by making the second factor
act trivially). For w € C, let L(w) be the one-dimensional representation of
sl,C x C which is zero on the first factor and multiplication by w on the
second; the proof of Proposition 9.17 shows that any irreducible representa-
tion of sl,C x C is isomorphic to a tensor product W, ® L{w). The same is
therefore true for the simply connected® group SL,C x C with this Lie
algebra. '

We write GL,C as a quotient modulo a discrete subgroup of the center of
SL,C x C:

1 - Ker(p)~»SL,C x C 5GL,C— 1, {15.49)

where p(g x z) = e*' g, so the kernel of p is generated by e*-I x (—s5), where

§ = 2mifn. .
Our task is simply to see which of the representations W, ® L{w) of

SL,C x C are trivial on the kernel of p. Now e*- I acts on §,C" by multi-

' For a proof that SL,C is simply connected, see §23.1.
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plication by e, whered = ) A,; indeed, this is true on the entire representation
(C"y®? which contains §,C". And —s acts on L(w) by multiplication by e™**, so
e*- I x (—s)acts on the tensor product by multiplication by e*~**. The tensor
product is, therefore, trivial on the kernel of p precisely when sd — sw € 2niZ,
i.e., when

w=Y A+ kn

for some integer k.

We claim finally that any representation W, ® L(w) satisfying this condi-
tion is the pullback via p of a representation ¥ on GL,C. In fact, it is not hard
to see that it is the pullback of the representation W, ,, . 1 .4 the two clearly
restrict to the same representation on SL,C, and their restrictions to C are
just multiplication by e%? = et Actnkz, ]

Exercise 15.50. Show that the dual of the representation ¥, which is iso-
morphic to S,(V*)is the representation W,_,  _, .

Exercise 15.51*, Show that if p: GL,C — GL(W) s a representation (assumed
to be holomorphic), then W decomposes into a direct sum of irreducible
representations.

Exercise 15.52*, Show thal the Hermite reciprocity isomorphism of Exercise
11.34 is an isomorphism over GL, C, not just over SL,C.

More Remarks on Weyl’s Construction

We close out this lecture by looking once morte at the Weyl construction of
these representations of GL(V). This will include a realization “by generators
and relations,” as well as giving a natural basis for each representation. First,
it may be illuminating—and it will be useful later—to look more closely at
how S,V sits in ¥®%, We want to realize S,V as a subspace of the subspace
Sym*(A'V) @ Sym™-1 (A V) ® - ® Sym" (V) < V@4,

where q; is the number of columns of the Young diagram of A of length i (and
kis the number of rows). This space is embedded in ¥®* in the natural way:
from left to right, a factor Sym*(A*V) is embedded in the corresponding v ®°*
by mapping a symmetric product of exterior products

(Wi,0 AUy A A ) (D2 ADya At AT L)

'(Ul.n " ”z,a A A vb.a)
to

2 SBRG) (U, (1), pt1) @ ® Vg 8y, pu1)) ® *** @ (Vg 111, i) ® ** ® Vg i1, pir)s

thesumoverpe S,and g ={q,, ..., q,) € S, x - x &,. In other words, one
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first symmetrizes by permuting columns of the same length, and then performs
an alternating symmnetrizer on each column,

Letting a = (a,, ..., a;), let 4*(})/) denote this tensor product of symmetric
powers of exterior powers, i.e., set

AW = Sym""(/\"V) ® Symak.g(/\k-l V) ®- - ® Sym“x(V)_

We want to realize S, V as a subspace of A*V, To do this we use the construc-
tion of S,V as V®4-¢,, where ¢, is a Young symmelrizer; to get compatibility
with the embedding of A"V we have just made, we use the tableau which
numbers the columns from top to bottom, then left to right.

11416 3J dy=4
215t 7]a=1 Ry=13
3 a;= 2 Ay= i
N
Ay =

W My M3 My
[
3 02 2

Wetakey = A" =(u; > - = j; > 0) to be the conjugate of 4. The symmetrizer
c, is a product a,-b,, where a, = Y e,, the sum over all p in the subgroup
P =8, x - x &, of@,preserving the rows, b, = Y sgn(g)q, the sum over
the subgroup Q = &, x --- x &, preserving the columns, as described in
Lecture 4. The symmetrizing by rows can be done in two steps as follows.
There is a subgroup

R=6, % x8,

of P, which consists ol permutations that move all entries of each column
to the same position in some column of the same length; in other words,
permutationsin R are determined by permuting columns which have the same
length. (In the illustration, R = {1, (46)(57)}.) Set

a=Y e inCS,.

reR

Now if we define o to be ¥ e,, where the sum is over any set of representatives
in P for the left cosets P/R, then the row symmetrizer a, is the product of 4]
and a. So

SV} = (V®"-a}) a} b,
The point is that, by what we have just seen,
Vyed.aqi-b, = AV.
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Since V®4-q) is a subspace of V® its image S,(V) by a} b, is a subspace of
A*(V), as we claimed.

There is a simple way to construct all the representations S,V of GL{V)
at once. In fact, the direct sum of all the representations S, ¥, over all (non-
negative) partitions 1, can be made into a commutative, graded ring, which
we denote by S” or S'(V), with simple generators and relations. This is similar
to the fact that the symmetric algebra Sym'V = ()Sym*V and the exterior
algebra \'V = @)A*V are easier to describe than the individual graded pieces,
and it has some of the similar advantages for studying all the represen-
tations at once. This algebra has appeared and reappeared frequently, cf.
[H-P]; the construction we give is essentially that of Towber [Towl1].

To construct S'(V), start with the symmetric algebra on the sum of all the
positive exterior products of V: set

AWV)=Sym(VONVONVS - DNYV)

.....

the sum over all n-tuples a, ..., a, of non-negative integers. So A'(V) is the
direct sum of the A*(V) just considered. The ring §" = S'(V) is defined to be
the quotient of this ring 4'(V) modulo the graded, two-sided ideal I" generated
by all elements (“Pliicker relations™) of the form

(03 A AD) (W A A W)

-~ i WL A A AW AU A AG) (D AWy A A W)
i=1
(15.53)
lorall pzg=1andalv,...,uv, w,..., w,e V. (If p=gq, this is an ele-
ment of Sym* APV, if p > g, it is in APV @ ATV = Sym! (AP V) ® Sym!(A*¥).
Note that the multiplication in §'(V) comes entirely from its being a symmetric
algebra and does not involve the wedge products in A'V)
Exercise 15.54*. Show that I" contains all elements of the form
g A A (W A AW,
~ YW ATTAW AT AW AT AD)
W, AU AT AU A W AT A W)
forallp>gqzr>1tlandalloe,...,v,w,...,w eV where the sum is over

all 1 i, <i, <+ <i, < p, and the elements w,, ..., w, are inserted at the
corresponding placesin vy A =+ A U,

Remark. You can avoid this exercise by simply taking the elements in the
exercise as defining generators for the ideal I'. When p = ¢ = r, the calcula-
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tion of Exercise 15.54 shows that the relation (v, A == A ) (wy A AW,
=(w; A A W) (v A A p,)follows from the generating equations for I'.
In particular, this commutativity shows that one could define S'(V) to be the
full tensor algebra on V@ NV @ --- @ A"V modulo the ideal generated by
the same generators.

The algebra S'(V) is the direci sum of the images S*(V) of the summands
A*(V). Lete,,..., e, be a basis for V. We will construct a basis for S*(V), with
a basis element e, for every semistandard tableau 7 on the partition 2 which
corresponds to a. Recall that a semistandard tableau is a numbering of the
boxes of the Young diagram with the integers 1, ..., n, in such a way that the
entries in each row are nondecreasing, and the entries in each column are
strictly increasing. Let 7(i, j) be the entry of T in the ith row and the jth
column. Define e to be the image in S*(V) of the element

!
fl:II erag A erap AT A ergy € Sym™(AV) @ - @ Symn(V), -

i.e., wedge together the basis elements corresponding to the entries in the
columns, and multiply the results in S'(V).

Proposition 15.55, (1) The projection from A*(V) to S*(V) maps the subspace
S,(V) isomorphically onto S*(V).
(2) The ey for T a semistandard tableau on A form a basis for S*(V).

PrOOF. We show first that the elements e, span S*(V). It is clear that the ey
span if we allow all tableaux T that number the boxes of 4 with integers
between [ and n with strictly increasing columns, for such elements span before
dividing by the ideal I'. We order such tableaux by listing their entries column
by column, from left to right and top to bottom, and using the reverse
lexicographicorder: T’ > T if the last entry where they differ has a larger entry
for T' thanfor 7. 1f T is not semistandard, there will be two successive columns
of 7, say the jth and (j + 1)st, in which we have T(r, j) > T(r,j + 1) for some
r. It suffices to show how to use relations in I' to write e, as a lincar
combination of elements e;. with T' > T. For this we use the relation in
Exercise 15.54, with v, =epq , for 1 <i<p=p; and w, = epy ;4 for
I < i<q=,,tointerchange the first r of the {w;} with subsets of r of the
{t;}. The terms on the right-hand side of the relation will al correspond to
tableaux T in which the r first entriesin the (j + 1)st column of T are replaced
by r of the enties in the jth column, and are not otherwise changed beyond
the jth column. All of these are farger than T in the ordering, which proves the
assertion.

It is possible to give a direct proof that the e; corresponding to semi-
standard tableaux T are linearly independent (see [Tow1]), but we can get by
with fess. Among the semistandard tableaux on 1 there is a smallest one T,
whose ith row is filled with the integer i. We need to know that ey, is not zero
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in §". This is easy to see directly. In fact, the relations among the e; in
I’ A*(V) are spanned by those obtained by substituting r elements from
some column of some T to an earlier column, as in the preceding paragraph.
Such will never involve the generator e, unless the T that is used is Ty, and
in this case, the resulting element of I' is zero. Since e, occurs in no nontrivial
relation, its image in S’ cannot vanish.

Since ey, comes from S,(V), it follows that the projection from S,(V) to
S*(V) is not zero. Since this projection is a mapping of representations of
SL(V), it foltows that S*(V) must contain a copy of the irreducible representa-
tion S,(V). We know from Theorem 6.3 and Exercise A.31 that the dimension
of S,(V) is the number of semistandard tableaux on 1. Since we have proved
that the dimension of S*(V) is at most this number, the projection from S,(V)
to S*(¥) must be surjective, and since S,(V) is irreducible, it must be injective
as well, and the e, for T a semistandard tableau on A must form a basis, as
asserted. ) O

Note that this proposition gives another description of the representations
S,(¥), as the quotient of the space A*(V) by the subspace generated by the
“Pliicker” relations (15.53).

Exercise 15.56. Show that, if the factor A"V is omitted from the construction,
the resulting algebra is the direct sum of all irreducible representations of
SL{V) = SL,C.

It is remarkable that all the representations S,(C") of GL,C were written
down by Deruyts (following Clebsch) a century ago, before representation
theory was born, as in the following exercise.

Exercise 15.57*. Let X = (x, ;) be an n x n matrix of indeterminants. The
group G = GL,C acts on the polynomial ring C[x; ,1by g° x; ; = Y by Oy iXa
forg = (a, ;) € GL,C. For any tableau T on the Young diagram of A consisting
of the integers from 1 to a, strictly increasing in the columns, let e, be the
product of minors constructed from X, one for each column, as follows: if the
column of T has length y;, form the minor using the first 4, columns, and use
the rows that are numbered by the entries of the column of T. Let D, be the
subspace of C[x; ;] spanned by these e,, where d is the number partitioned
by A. Show that: (i) D, is preserved by GL,C; (ii) the ey, where T is semi-
standard, form a basis for Dy; (iii) D, is isomorphic to S (C").



LECTURE 16

Symplectic Lie Algebras

In this lecture we do for the symplectic Lie algebras exactly what we did for the special
linear ones in §15.1 and most of §15.2: we will first describe in general the structure of
a symplectic Lie algebra (that is, give a Cartan subalgebra, find the roots, describe the
Killing form, and so on). We will then work out in some detail the representations of
the specific algebra sp,C. As in the case of the cotresponding analysis of the special
linear Lie algebras, this is completely elementary.

§16.1: The structure of Sp,,C and sp,,C
§16.2 Representations of sp,C

§16.1. The Structure of Sp,,C and sp,,C

Let V be a 2n-dimensional complex vector space, and

OV xV-C,

a nondegenerate, skew-symmetric bilinear form on V. The symplectic Lie
group Sp,,C is then defined to be the group of automorphisms A4 of V
preserving Q—that is, such that Q(A4v, Aw) = Q(v, w)for all v, w e V—and the
symplectic Lie algebra sp,,C correspondingly consists of endomorphisms
A: V - V satisfying

Q(Av, w) + Q(v, AW) =0

for all v and w € V. Clearly, the isomorphism classes of the abstract group and
Lie algebra do not depend on the particular choice of Q; but in order to be
able to write down efements of both explicitly we will, for the remainder of
our discussion, take Q to be the bilinear form given, in terms of a basis e, ...,
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ey, for V, by
e, er0) =1,
Qerin &) = —1,
and
Qle;, ) =0 ifj#itn
The bilinear form Q may be expressed as
Q(x, ) ="x"M-y,

where M is the 2n x 2n matrix given in block form as

0 1
M = "l
('—In 0)
the group Sp,, C is thus the group of 21 x 21 matrices A satisfying
M="4-MA

and the Lie algebra sp,,C correspondingly the space of matrices X satisfying
the relation

‘X M+M-X=0. {(16.1)

Writing a 2n x 2n matrix X in block form as
A B
x= (c D)
~'C A
‘X‘M = (_lD t )

wx=( )

so that this relation is equivalent to saying that the off-diagonal blocks B and
C of X are symmetric, and the diagonal blacks A and D of X are negative
transposes of each other.

With this said, there is certainly an obvious candidate for Cartan sub-
algebra [ in sp,,C, namely the subalgebra of matrices diagonal in this
representation; in fact, this works, as we shall see shortly. The subalgebra b is
thus spanned by the n 2n x 2n matrices H; = E; ; — E,; ,+; whose action on
Vis to fix e, send e, 4, to its negative, and kill all the remaining basis vectors;
we will correspondingly take as basis for the dual vector space h* the dual
basis L, where (L, H;> = §, ;.

We have already seen how the diagonal matrices act on the algebra of all
matrices, so that it is easy to describe the action of b on g. For example, for

_ we have

and
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1 < i, j < nthe matrix E; ; € gl,,C s carried into itself under the adjoint action
of H,, into minus itself by the action of H;, and to 0 by all the other H,; and
the same is true of the matrix E,,; ,,;. The element

X = Ei.] - En+}.n+i € sp,,C

is thus an eigenvector for the action of h, with eigenvalue L, — L. Similarly,
for i # j we see that the matrices E; ,, and E, ., are carried into themselves
by H; and H, and killed by all the other H,; and likewise E,,; ;and E,, , , are
each carried into their negatives by H, and H, and killed by the others. Thus,
the elements

Yo ;=Einiy+ E oy

and
Zi,j = En-H,j + En+j.i

are eigenvectors for the action of ), with eigenvalues L; + L;and —L; — L,
respectively. Finally, when i = j the same calculation shows that E,,; is
doubled by H; and killed by all other H;; and likewise E,,, ; is sent to minus
twice itself by H, and to O by the others. Thus, the elements

U= E(,nH
and

Vl = En+(,l
-are eigenvectors with eigenvalues 2L, and —2L,, respectively. In sum, then,
the roots of the Lie algebra sp,,C are the vectors + L, + L;e h*.

In the first case n = [, of course we just get the root diagram of s{,C, which
is the same algebra as sp,C. In case n = 2, we have the diagram

(16.2)

As in the case of the special linear Lie algebras, probably the easiest way -
to determine the Killing form on sp,,C (at least up to scalars) is to use its
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invariance under the automorphisms of sp,,C preserving ). For example, w
have the automorphisms of sp,,C induced by permutations of the basi
vectors e, of V: for any permutation ¢ of {1,2,...,n} we can define a:
automorphism of V preserving Q by sending e; to e, and e,,; 10 €, . AN
this induces an automorphism of sp,,C preserving ly and carrying H; to 1,
Also, for any i we can define an involution of ¥—and thereby of sp,,C—b:
sending ¢; to e,,,, €, to —¢;, and all the other basis vectors to themselves
this will have the effect of sending H; to — H; and preserving all the other H;
Now, the Killing form on § must be invariant under these automorphisms
fromn the first batch it follows that for some pair of constants « and § we mus
have

BH,H) =«
and
B(H,, Hy) = f fori+j;

from the second batch it follows that, in fact, § = 0. Thus, B is just a multiple
of the standard quadratic form B(H;, H)) = 9, ;, and the dual form correspond-
ingly a multiple of B(L,, L;) = J; ;; so that the angles in the diagram above are
correct,

Also as in the case of sl,C, one can also compute the Killing form directly
from the definition: B(H, H') = Y a(H)a(H"), the sum over all roots o. Fou
H =Y aH,and H' = ) b H,, this gives B(H, H') as a sum

Y (@ + a)b + b) + 23 (2a,)(2bi) + IZ (a; — a))(b; — b)
i#j 7 £
which simplifies to

B(H, H') = (4n + 4)(Y a;b). (16.3)

Our next job is to locate the distinguished copies s, of l,C, and the
corresponding elements H, € ). This is completely straightforward. We start
with the eigenvalues L, — L; and L; — L, corresponding to the elements X, ;
and X; ;; we have

[X(.}s Xj.i] =(E,; - En+j,n+b Ei— Epiined
=[Ei;, Eji] + [Eprjnsor Ensines]
=Ei i~ E;j+Epjny— Enginai
=H, — H;.

Thus, the distinguished element H;, _; is a multiple of H, — H;. To see what
multiple, recall that H; _; should act on X; ; by multiplication by 2 and on
X; ; by multiplication by —2; since we have

ad(H; — Hj)(XI,}) =((L; - Lj)(Hi -~ Hj))'Xi,j
= 2XIJ’
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we conclude that
HL.—LJ = H‘ -_ Iij.

Next consider the pair of opposite eigenvalues L; + L; and —L, — L,
corresponding to the eigenvectors Y; ;and Z; ;. We have

[Ya,p Zi,]] = [Ei.n+j + Ej.rvH’ En+i.j + En+j.i]
= [E(,n+}7 Enijil + [Ejnie Envigl
=E 1= Epijnss+ Epy— Epppnai
=H, + H,.

We calculate then
ad(H, + H)(Y, ) = (L, + L)(H; + H)) Y,
=2Y,
so we have
Hps, = Hi + H,
and similarly
H.pp-r,=—~H—H,

Finally, we look at the pair of eigenvalues +2L; coming from the eigen-
vectors U;and V,. To complete the span of U;and V;to a copy of sl, C we add

[U‘, W= [Ei.n-H) EnHJ]

= Eu - En+i.n+(
= H,.
Since
ad(H)(U)) = QL{(H))- U,
=2-U,

we conclude that the distinguished element H,,, is H,, and likewise H_,; =
—H,. Thus, the distinguished elements {H,} < ) are {+H, + H;; + H;}; in
particular, the weight lattice Ay of linear forms on [y integral on all the H, is
exactly the lattice of integral linear combinations of the L,. In Diagram (16.2),
for example, this is just the lattice of intersections of the horizontal and vertical
lines drawn; observe that for all # the index [Ay, : AR] of the root lattice in the
weight lattice is just 2.

Next we consider the group of symmetries of the weights of an arbitrary
representation of sp,,C. For each root « we let W, be the involution in
h* fixing the hyperplane Q, given by (H,, L) = 0 and acting as —I on the
line spanned by «; we observe in this case that, as we claimed will be true in
general, the line generated by « is perpendicular to the hyperplane Q,, so that
the involution is just a reflection in this plane. In the case n = 2, for example,
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we get the dihedral group generated by reflections around the four lines drawn
through the origin:

so that the weight diagram of a representation of sp,C will look like an
octagon in general, or (in some cases) a square.

In general, reflection in the plane Q,, given by (H,, L) = 0 will simply
reverse the sign of L; while leaving the other L; fixed; reflection in the plane
(H; — Hj, L) = 0 will exchange L; and L; and leave the remaining L, alone.
The Weyl group IB acts as the full automorphism group of the lines spanned
by the L; and fits into a sequence

1=(Z/22)) > WS, > 1.

Note that the sequence splits: I8 is a semidirect product of &, and (Z/22)".
(This is a special case of a wreath product.) In particular the order of Wis 2"n!.
We can choose a positive direction as before:

I aL)=ciay + " +c,a, ¢ >c3>>¢c,>0
The positive roots are then
R* ={L; + Li}ic;u {Li — Li}i<y, (16.4)

with primitive positive roots {L; — Ly }i=1
(closed) Weyl chamber is

a1 and 2L,. The corresponding

W={aqL,+aly+ - +alya 2a,>->a,>20} (165)
note that the walls of this chamber-—the cones
DaLlia > >aq=a,>>a,>0)
and
S aliay>a,> - >a,=0

‘liein the hyperplanesQ, _; and Q,; perpendicular to the primitive positive
or negative roots, as expected.
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§16.2. Representations of sp,C

Let us consider now the representations of the algebra sp, C specifically. Recall
that, with the choice of Weyl chamber as above, there is a unique irreducible
representation [, of sp,C with highest weight a for any « in the intersection
of the closed Weyl chamber %~ with the weight lattice: that is, for each lattice
vector in the shaded region in the diagram

Any such highest weight vector can be written as a non-negative integral
linear combination of L, and L, + L,; for simplicity we will just write
[, for the irreducible representation I, .pe,+r, with highest weight
aLl + b(L1 + Lz) = (ﬂ + b)Ll + bLz

To begin with, we have the standard representation as the algebra of
endomorphisms of the four-dimensional vector space V; the four standard
basis vectors e, e, e5, and e, are eigenvectors with eigenvalues L, L,, —L;,,
and — L,, respectively, so that the weight diagram of V is
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V is just the representation T, , in the notation above. Note that the dual of
this representation is isomorphic to it, which we can see either from the
symmetry of the weight diagram, or directly from the fact that the correspond-
ing group representation preserves a bilinear form V x V - C giving an
identification of V with V'*.

The next representation to consider is the exterior square A?V. The weights
of A%V, the pairwise sums of distinct weights of ¥, are just the linear forms
+L; + L, (each appearing once) and O (appearing twice, as L, — L, and
L, — L,), so that its weight diagram looks like

Clearly this representation is not irreducible. We can see this from the weight
diagram, using Observation 14.16; there is only one way of getting to the
weight space 0 from the highest weight L, + L, by successive applications of
the primitive negative root spaces ¢_,,,r, (Spanned by X, , = E, ; — E; 4)
and §_,,, (spanned by V, = E, ,)—that is, by applying first V,, which takes
you to the weight space of L, — L,, and then X, ,-—and so the dimension of
the zero weight space in the irreducible representation I'y_; with highest weight
L, + L, must be one. Of course, we know in any event that A2V cannot be
irreducible: the corresponding group action of Sp,C on V by definition
preserves the skew form Q e A2V* = AV, Either way, we conclude that we
have a direct sum decomposition

ANV =WweaC,

where W is the irreducible, five-dimensional representation of sp,C with
highest weight L, + L,—in our notation, [ ; —and weight diagram
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Let us consider next some degree 2 tensors in V and W. To begin with, we
can write down the weight diagram for the representation Sym?2¥; the weights
being just the pairwise sums of the weights of V, the diagram is

This looks like the weight diagram of the adjoint representation, and indeed
that is what it is: in terms of the identification of V and V* given by the skew
form Q, the relation (16.1) defining the symplectic Lie algebra says that the

subspace
sp,Cc Hom(V, V)= V@RV*=VRV

is just the subspace Sym?V = V @ V. In particular, Sym?V is the irreducible
representation I', o with highest weight 2L, .
Next, consider the symmetric square Sym2W, which has weight diagram
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KK

A

To see if this is irreducible we first look at the weight diagram: this time there
are three ways of getting from the weight space with highest weight 2L, + 2L,
to the space of weight 0 by successively applying X, , = E, , — E; , and
Vy = E, ,,50 if we want to proceed by this method we are forced to do a little
calculation, which we leave as Exercise 16.7.

Alternatively, we can see directly that Sym?W decomposes: the natural map
given by wedge product

NVRAYY AV =C
is symmetric, and so factors to give a map
Sym*(A\?V)) - C.

Moreover, since this map is well defined up to scalars—in particular, it does
not depend on the choice of skew form Q—it cannot contain the subspace
Sym?W < Sym*(A%V)) in its kernel, so that it restricts to give a surjection

@: Sym?W - C.

This approach would appear to leave two possibilities open: either the
kernel of this map is irreducible, or it is the direct sum of an irreducible
representation and a further trivial summand. In fact, however, from the
principle that an irreducible representation cannot have two independent
invariant bilinear forms, we see that Sym?W can contain at most one trivial
summand, and so the former alternative must hold, i.e., we have

Sym*Ww =T, ,®C. (16.6)
Exercise 16.7*. Prove (16.6) directly, by showing that if v is a highest

weight vector, then the three vectors X, ¥, X, Vv, X, 1 X, (¥, V0, and
12X3,1X3,, V20 span a two-dimensional subspace of the kernel of ¢.

Exercise 16.8. Verify that AW = Sym?V. The significance of this isomor-
phism will be developed further in Lecture 18.
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Lastly, consider the tensor product V ® W. First, its weight diagram:

This obviously must contain the irreducible representation I', , with highest
weight 2L, + L,; but it cannot be irreducible, for either of two reasons. First,
looking at the weight diagram, we see that I, , can take on the eigenvalues
+ L, with multiplicity at most 2, so that V ® W must contain at least one copy
of the representation V. Alternatively, we have a natural map given by wedge
product

AMVRINYV SNV =V*=V,;

and since this map does not depend on the choice of skew form @, it must
restrict to give a nonzero (and hence surjective) map

o VWV,

Exercise 16.9. Show that the kernel of this map is irreducible, and hence that
we have

VQW=TI,,®V

What about more general tensors? To begin with, note that we have
established the existence half of the standard existence and uniqueness theorem
(14.18) in the case of sp,C: the irreducible representation I, ; may be found
somewhere in the tensor product Sym*V ® Sym*W. The question that remains
is, where? In other words, we would like to be able to say how these tensor
products decompose. This will be, as it was in the case of sl,C, nearly
tantamount (modulo the combinatorics needed to count the multiplicity with
which the tensor product Sym’V ® Sym®W assumes each of its eigenvalues)
to specifying the multiplicities of the irreducible representations T, ,,.

Let us start with the simplest case, namely, the representations Sym’V.
These have weight diagram a sequence of nested diamonds D, with vertices at
alL,,(a —2)L,,etc.:
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Moreover, it is not hard to calculate the multiplicities of Sym”V: the multi-
plicity on the outer diamond D, is one, of course; and then the multiplicities
will increase by one on successive rings, so that the multiplicity along the
diamond D, will be i.

Exercise 16.10. Using the techniques of Lecture 13, show that the representa-
tions Sym?V are irreducible.

The next simplest representations, naturally enough, are the symmetric
powers Sym*W of W. These have eigenvalue diagrams in the shape of a
sequence of squares S, with vertices at b(L, + L,), (b — 1)(L, + L,), and so
on:

e @@
® —e
° ?
) ——e
S .
— o o -

Here, however, the multiplicities increase in a rather strange way: they grow
quadratically, but only on every other ring. Explicitly, the multiplicity will be
one on the outer two rings, then 3 on the next two rings, 6 on the next two;
in general, it will be i(i + 1)/2 on the (2i — {)st and (2i)th squares S,;_, and

S
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Exercise 16.11. Show that contraction with the skew form ¢ € Sym*W*
introduced in the discussion of Sym?W above determines a surjection from
Sym®W onto Sym® 2W, and that the kernel of this map is the irreducible
representation I, , with highest weight h(L, + L,). Show that the multi-
plicities of I'y ,, are i on the squares §,,_, and §,, described above.

We will finish by analyzing, naively and in detail, one example of a represen-
tation I, , with a and b both nonzero, namely, I'; , ; one thing we may observe
on the basis of this example is that there is not a similarly simple pattern to
the multiplicities of the representations I', , with general a and b. To carry out
our analysis, we start of course with the product Sym?V ® W. We can readily
draw the weight diagram for this representation; drawing only one-eighth of
the plane and indicating multiplicities by numbers, it is

We know that the representation Sym?V ® W contains a copy of the irreducible
representation I'; , with highest weight 2L, + (L, + L,); and we can see
immediately from the diagram that it cannot equal this: for example, I', , can
take the weight 2L, with multiplicity at most 2 (if v € I’ is its highest weight
vector, the corresponding weight space (I, ,),,, < I;,, will be spanned by the
two vectors X, ,(V,(v)) and ¥,(X, ,(v))); since it cannot contain a copy of
the representation I'y , (the multiplicity of the weight 2(L, + L,) being just
one) it follows that Sym?V ® W must contain a copy of the representation
I, o = Sym?V.

We can, in this way, narrow down the list of possibilities a good deal. For
example, I', , cannot have multiplicity just one at each of the weights 2L and
L, + L,: if it did, Sym*V ® W would have to contain two copies of Sym?*V
and a further two copies of W to make up the multiplicity at L, + L,; but
since 0 must appear as a weight of I'; ,, this would give a total multiplicity of
at least 7 for the weight 0 in Sym?V ® W. Similarly, I', , cannot have multi-
plicity 1 at 2L, and 2 at L, + L,: we would then have two copies of Sym?V
and one of W in Sym?V ® W, and since the multiplicity of 0 in I, ; will in
this case be at least 2 (being greater than or equal to the multiplicity of
L, + L,), this would again imply a multiplicity of at least 7 for the weight 0
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in Sym?V ® W. It follows that Sym®¥ & W must contain exactly one copy of
Sym?¥; and since the multiplicity of L, + L, in I'; , is at most 3, it follows
that Sym?V @ W will contain at least one copy of I'y , = W as well.

Exercise 16.12. Prove, independently of the above analysis, that Sym?V @ W
must contain a copy of Sym?V and a copy of W by looking at the map

e:SYM*VRW vV
obtained by sending

u-v®@(w A z)!——»u®@(v/\ WA 2Z)+ v®é(u AWA2),

where we are identifying A’V with the dual space V* and denoting by
0: V* - V the isomorphism induced by the skew form Q on V. Specifically,
show that the image of this map is complementary to the line spanned by the
element Qe NV* =NV c V@ V. :

The above leaves us with exactly two possibilities for the weights of I, ;:
we know that the multiplicity of 2L, in I, , is exactly 2; so either the
multiplicities of L, + L, and Oin I, , are both 3 and we have

Sym*VeW=I,,®Sym*V @ w;
or the multiplicities of L, + L, and 0in T, , are both 2 and we have
Sym*V@W =1, , ®Sym?V & w2,

Exercise 16.13. Show that the former of these two possibilities actually occurs,
by

(a) Showing that if v is the highest weight vector in I, , < Sym?V ® W,
then the images (X, )*V,(v), X;,, V2 X,,,(v), and V,(X, {)?v are independent;
and (redundantly)

{(b) Showing that the representation Sym?V ® W contains only one highest
weight vector of weight L, + L,.

The weight diagram of I, , is therefore
N

00
IS0
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We see from all this that, in particular, the weights of the irreducible
representations of sp,, C are not constant on the rings of their weight diagrams,

Exercise 16.14. Analyze the representation V ® Sym?W of sp,C. Find in
particular the multiplicities of the representation I', ,.

Exercise 16.15. Analyze the representation Sym?V @ Sym?W of sp,C. Find
in particular the inultiplicities of the representation I ,.



LECTURE 17

speC and sp,,C

In the first two sections of this lecture we complete our classification of the representa-
tions of the symplectic Lie algebras; we describe in detail the example of sp4C, then
sketch the representation theory of symplectic Lie algebras in general, in particular
proving the existence part of Theorem 14.18 for sp,,C. In the final section we describe
an analog for the symplectic algebras of the construction given in §15.3 of the irreduc-
ible representations of the special linear algebras via Weyl's construction, though we
postpone giving analogous formulas for the decomposition of tensor products of
irreducible representations. Sections 17.1 and 17.2 are completely elementary, given
the by now standard multilinear algebra of Appendix B. Section 17.3, like §15.3,
requires familiarity with the contents of Lecture 6 and Appendix A; but, like (hat
section, it can be skipped withoul affecting most of the rest of the book.

§17.1: Representations of spsC
§17.2: Representations of the symplectic Lie algebras in general
§17.3: Weyl's construction for symplectic groups

§17.1. Representations of sp,C

As we have seen, the Cartan algebra |) of sp4C is three-dimensional, with the
linear functionals L,, L,, and L, forming an orthonormal basis in terms of
the Killing form; and the roots of spsC are then the 18 vectors +L; + L;. We
can draw this in terms of a “reference cube” in h* with faces centered at the
points + L;; the vectors & L; + L, with i # j are then the midpoints of edges
of this reference cube and the vectors + 2L, the midpoints of the faces of a
cube twice as large. Alternatively, we can draw a reference octahedron with
vertices at the vectors +2L;; the roots + L, + L; with i # j will then be the
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midpoints of the edges of this octahedron:

L,

2L,

or, if we include the reference cube as well, as

(7.1

This last diagram, however ineptly drawn, suggests a comparison with the
root diagram of sl,C; in fact the 12 roots of spsC of the form + L, + L, for
i # j are congruent to the 12 roots of sl,C. In particular, the Weyl group of
spsC will be generated by the Weyl group of sl,C, plus any of the additional
three reflections in the planes perpendicular to the L, (i.e., the planes parallel
to the faces of the reference cube in the root diagram of either Lie algebra).
We can indicate the planes perpendicular to the roots of spsC by drawing
where they cross the visible part of the reference cube:
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We see from this that the effect of the additional reflections in the Weyl
group of spsC on the Weyl chamber of sl, C is simply to cut it in half; whereas
the Weyl chamber of sl,C looked like

the Weyl chamber of sp,C will look like just the upper half of this region:

In terms of the reference octahedron, this is the cone over one part of the
barycentric subdivision of a face:
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Litlqyvly

or, if we rotate 90° around the vertical axis in an attempt to make the picture
clearer,

(172)

We should remark before proceeding that the comparison between the root
systems of the special linear algebra sf,C and the symplectic algebra spsC is
peculiar to this case; in general, the root systems of sl, ., C and sp,,C will bear
no such similarity.

As we saw in the preceding lecture, the weight lattice of spsC consists
simply of the integral linear combinations of the weights L,. In particular, the
intersection of the weight lattice with the closed Weyl chamber chosen above
will consist exactly of integral linear combinations a, L, + a,L, + a; L5 with
a, > a, = ay > 0. By our general existence and uniqueness theorem, then,
for every triple (a, b, ¢) of non-negative integers there will exist a unique
irreducible representation of spsC with highest weight aL, + b(L; + L;) +
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oLy +Ly+ Ly)=(@+hb+c)L; + (b + c)L, + cL,; we will denote this re
resentation by I, , . and will demonstrate its existence in the following.

We start by considering the standard representation of spsC on V = (
The eigenvectors of the action of b on V are just the standard basis vecto
e;, and these have eigenvalues + L,, so that the weight diagram of V looks lii
the midpoints of the faces of the reference cube (or the vertices of :
octahedron one-half the size of the reference octahedron):

Ly

Ly L,

In particular, V is the representation I'y ¢ o.

Since we are going to want to [ind a representation with highest weigl
L, + L,, the natural thing to look at next is the second exterior power /\?
of the standard representation. This will have weights the pairwise sum «
distinct weights of ¥, or in other words the 12 weights + L, + L, with i #
and the weight 0 taken three times. This is not irreducible: by definition th
action of spg C on the standard representation preserves a skew form, so th:
the representation on A*V will have a trivial summand. On the other hanc
the skew form on V preserved by spsC, and hence that trivial summand ¢
A2V, is unique; and since all the nonzero weights of A2V occur with mult
plicity 1 and are conjugate under the Weyl group, it follows that the comple
ment W of the trivial representation in AV is irreducible. So W =T ; ¢.

As in previous examples, we can also see that A*V is not irreducible b
using the fact {Observation 14.16) that the irreducible representation I, |
with highest weight L, 4+ L, will be generated by applying to a single highes
weight vector v the root spaces g,,_;,, 81,-1,, and g_,,, corresponding t
primitive negative roots. We can then verify that in the irreducible representa
tion W with highest weight L, + L,, there are only three ways of going fron
the highest weight space to the zero weight space by successive application o
these roots spaces: we can go

Ly+Ly-»Ly+Ly—»L,—Ly—»L;~—-1L,

N

Lz + L3 —’_Lz - L3 — 0
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Exercise 17.3. Verify this, and also verify that the lower two routes to the
zero-weight space in A’V yield the same nonzero vector, and that the upper
route yields an independent element of A?V, so that 0 does indeed occur with
multiplicity 2 as a weight of I, o.

To continue, we look next at the third exterior power AV of the standard
representation; we know that this will contain a copy of the irreducible
representation I , , with highest weight L, + L, + L,. The weights of A*V
are of two kinds; we have the eight sums + L, 4+ L, 4+ L,, corresponding to
the vertices of the reference cube and each occurring once; and we have the
weights + L, each occurring twice (as +L, + L, — L; and + L, + L, — L,).
The weight diagram thus looks like the vertices of the reference cube together
with the midpoints of its faces:

Liy+Ly+L,

Now, the weights + L, must occur in the representation I'y o , with highest
weight L, + L, + L,, since they are congruent to L, + L, + L, modulo the
root lattice and lie in the convex hull of the translates of L, + L, + L, under
the Weyl group (that is, they lie in the closed reference cube). But they cannot
occur with multiplicity greater than 1: for example, the only way to get from
the point L, + L, + L, to the point L, by translations by the basic vectors
L,—- L, Ly— L,,and —2L, pictured in Diagram (17.1) above (while staying
inside the reference cube)is by translation by — 2L, first,and then by Ly — L,.
it follows that the multiplicities of the weights + L, in I, o, are 1. On the
other hand, we have a natural map

NV-sV

obtained by contracting with the element of A*V* preserved by the action of
speC, and the kernel of this map, which must contain the representation
I'o.0.1, will have exactly these weights. The kernel of ¢ is thus the irreducible
representation with highest weight L, + L, + L,; we will call this representa-
tion U for now.

At this point, we have established the existence theorem for repre-
sentations of spsC: the irreducible representation I, , . with highest weight
(@a+ b+ c)L, + (a + b)L, + cL; will occur inside the representation

Sym“V ® Sym’W ® Sym‘U.
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For example, suppose we want to find the irreducible representation I’ , 4
with highest weight 2L, + L,. The weights of this representation will be the
24 weights + 2L, 4 L;, each taken with multiplicity 1; the 8 weights + L, +
L, + L,,taken with amultiplicity we do not a priori know (but that the reader
can verify must be either 1 or 2), and the weights 4 L, taken with some
other multiplicity. At the same time, the representation V ® W, which contains
I, .0, will take on these weights, with multiplicities [, 3, and 6, respectively.
In particular, it follows that V ® W will contain a copy of the irreducible
representation U with highest weight L, + L, + L, as well; alternatively, we
can see this directly by observing that the wedge product map

VRNV - NV
factors to give a map
Vew-U

and that I}, o must lie in the kernel of this map. To say more about the
location of I , o inside V' ® W, and its exact weights, would require either
explicit calculation or something like the Weyl character formula. We will see
in Lecture 24 how the latter can be used to solve the problem; for the time
being we leave this as

Exercise 17.4. Verify by direct calculation that the multiplicities of the weights
of T, ; 0are 1,2,and 5, and hence that the kernel of the map ¢ above is exactly
the representation I'y ; o.

'

§17.2. Representations of sp,,C in General

The general picture for representations of the symplectic Lie algebras offers
no further surprises. As we have seen, the weight lattice consists simply of
integral linear combinations of the L,. And our typical Weyl chamber is a cone
over a simplex in n-space, with edges the rays defined by

ag=ay="r=0q>aqy="""=d,=0.

_ The primitive lattice element on the ith ray is the weight w, = L, + --- + L,

. and we may observe that, similarly to the case of the special linear Lie algebras,
these n fundamental weights generate as a semigroup the intersection of
the closed Weyl chamber with the lattice. Thus, our basic existence and
uniqueness theorem asserts that for an arbitrary n-tuple of natural numbers
(ay, ..., a,) € N" there will be a unique irreducijble representation with highest
weight

a, 0 + a0, + - + a,w,

=(a, + e+ an)Ll +((l2 + o +0")L2 4 - +0"L".
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These exhaust all irreducible representations of sp,,C.

We can find the irreducible representation V™ =T, with highest
weight L, + - + L, easily enough. Clearly, it will be contained in the kth
exterior power 'V of the standard representation. Moreover, we have a
natural contraction map

o NV - A2y
defined by

ooy A A ) = ;jQ(v,, o= 1o A A G A A D A A,

(see §B.3 of Appendix B for an intrinsic definition and explanation). Since the
representation A'"2F does not have the weight L, + -+ + L,, the irreducible
representation with this highest weight will have to be contained in the kernel
of this map. We claim now that conversely

Theorem 17.5, For 1 < k < n, the kernel of the map ¢, is exactly the irreducible
representation V® =T o o with highest weight L, + -+ + L,.

Proor. Clearly, it is enough to show that the kernel of ¢, is an irreducible
representation of sp,,C. We will do this by restricting to a subalgebra of sp,,C
isomorphic to sl,C, and using what we have learned about representations of
sl,C.

To describe this copy of s, C inside sp,,C, consider the subgroup G < Sp,,C
of transformations of the space V = C?" preserving the skew form Q introduced
in Lecture 16 and preserving as well the decomposition V = C{e,,...,e,} ®
C{eys1s ---» 35} These can act arbitrarily on the first factor, as long as they
do the opposite on the second; in coordinates, they are the matrices

X 0
G={(0 'X_l>,XEGL,,C}.

We have, correspondingly, a subalgebra

A 0
s:—-{(o _‘A),Aesl,,C}cspz,,C

isomorphic to si,C.
Now, denote by W the standard representation of s1,C. The restriction of
the representation V of sp,,C to the subalgebra s then splits

V=Wao w*

into a direct sum of W and its dual; and we have, correspondingly,
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NV = @ FWRNW*).

ath=k

How does the tensor product AW ® N’W* decompose as a representation
of s[,C? We know the answer to this from the discussion in Lecture 15 (see
Exercise 15.30): we have contraction maps

Yo MW RNW* S NI @ AN s,

and the kernel of ¥,, is the irreducible representation W =
_____ 0.1,0.....0.1,0,... With (if, say,a < n — b) highest weight 2L, + --- + 2L, +
L,y + -+ L,_,. The restriction of A*V to s is thus given by
NV = weh
2,
a+b=k(2)
and by the same token,

Ker(ps) = (D W,

at+h=

Note that the actual highest weight factor in the summand W' < Ker(¢,)
AV is the vector

WO =g At A, A €y AT A B,
=€ AN E A Crppagrt N A €y
Exercise 17.6. Show that more generally the highest weight vector in any
summand W® < AV is the vector
WP =gy A A€ A Cyppiary AT A €y, A QETETO2
=€ ATAC A Cappiars A A € A (L (0 A 2, )T

By the above, any subspace of Ker(¢g,) invariant under sp,,C must be a
direct sum, over a subset of pairs (a, b) with a + b = k, of subspaces W,
But now (supposing for the moment that k < n) we observe that the element

Za.n—b = EZn—b.n + En+a.n—b € sz,,c
carries the vector w'? jnto w " 1'*+1) and, likewise,
Yot n-s41 = Eart,20-0+1 + Encpir,nrars € 592,C
carries w'® to w®**"1) In case a + b = k = n, we see similarly that
Va = En+a,a € sz,,c
carries the vector w'™® into w'*~1-**1) and
Ua+l = Ea+l,n+a+l € 5p2,,C

carries w@? to w@*1:b-D Thus, any representation of sp,,C contained in
Ker(¢,) and containing any one of the factors W will contain them all, and
we are done. (W]
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Exercise 17.7. Another way to conclude this proof would be to remark that,
inasmuch as all the w'™? above are eigenvectors of different weights, any
highest weight vector for the action of sp,,C on ker(q,) = AV would have
to be (up to scalars) one of the w'™®, It would thus be sufficient to find, for each
(a, b) with a + b = k other than (a, b) = (k, 0), a positive root a such that
g.(w™?) # 0. Do this.

Note that, having found the irreducible representations V® =T, |
with highest weight L, + --- + L,, any other representation of sp,,C will
occur in a tensor product of these; specifically, the irreducible representation
I,,.....a, With highest weight a, L, + -* + a,(L, + - + L,) will occur in the
product Sym”'V ® Sym2V A ® - .- ® Sym* V™,

One further remark is that there exist geometric interpretations of the
action of sl,,C on the fundamental representations 1"**). We have said before
that the group PSp,,C may be characterized as the subgroup of PGL,,C
carrying isotropic subspaces of V into isotropic subspaces. At the same time,
PGL,,C acts on the projective space P(/\*V) as the connected component of
the identity in the group of motions of this space carrying the Grassmannian
G = G(k, V) = P(A\*V) into itself. Now, the subset G, = G of k-dimensional
isotropic subspaces of V is exactly the intersection of the Grassmannian G
with the subspace P(V ™) associated to the kernel of the map ¢ above; so that
PSp,,C wilt act on P(V™) carrying G, into itself and indeed when | <k <n
may be characterized as the connected component of the identity in the group
of motions of P(V™) preserving the variety G, .

Exercise 17.8. Show that if k > n the contraction ¢, is injective.

§17.3. Weyl’s Construction for Symplectic Groups

We have just seen how the basic representations for sp,,C can be obtained
by taking certain basic representations of the larger Lie algebra st,,C—in this
case, AtV for k < n—and intersecting with the kernel of a contraction con-
structed from the symplectic form. In fact, all the representations of the
symplectic Lie algebras can be given a similar conrete realization, by inter-
secting certain of the irreducible representations of si,,C with the intersections
of the kernels of all such contractions.

Recall from Lectures 6 and 15 that the irreducible representations of sl,,C
are given by Schur functors S, V, where 1 = (4, > --- > 4,, = 0) is a partition
of some integer d = )" 4;, and ¥ = C*". This representation is realized as the
image of a corresponding Young symmetrizer c, acting on the d-fold tensor
product space VV®. For each pair I = {p < g} of integers between 1 and d,
the symplectic form @ determines a contraction

(D': V®d—' V®M~2)’

(17.9)
v, ®"'®UJHQ(U,,, vq)vl ®"'®6,,®"'®6,,®"'®Ud.
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Let V¥ = V® denote the intersection of the kernels of all these contractions.
These subspaces is mapped to itsell by permutations, so ¥<*> is a subrepresen-
tation of ¥'®7 as a representation of the symmetric group &,. Now let!

SV =VDAS,V. (17.10)

This space is a representation of the symplectic group Sp,,C of @, since V¥
and S,(V) are subrepresentations of ¥®* over Sp,,C.

Theorem 17.11. The space S (;,(V) is nonzero if and only if the Young diagram
of A has at most n rows, i.e., 1,4y = 0. In this case, S ;;5(V) is the irreducible
representation of sp,,C with highest weight 2, L, + -+ + 4,L,.

In other words, for an n-tuple (a,, ..., a,) of non-negative integers

where 1 is the partition (a, + a; + *- + a,,a5 + - + qa,, ..., a,).

The proof follows the pattern for the general linear group given in §6.2, but
we will have to call on a basic result from invariant theory in place of the
simple Lemma 6.23. We first show how to find a complement to V<*> jn V®.
For example, if d = 2, then

Vo2 = V(D@@.,/,'

where i is the element of ¥V ® V corresponding to the quadratic form Q. In
terms of our canonical basis, = ) (e, ® e,,; — €,.: ® ¢,). In general, for any
I'={p < q} define

P, peutd) ., pyed

by inserting  in the p, g factors. Note that ®; o W, is multiplication by
2n = dim V on V242, We claim that

Vol =V @y, W, (veu-2), (17.12)

To prove this, put the standard Hermitian metric ( , ) on V = C2", using the
given e; as a basis, so that (ae;, be;) = &,ab. This extends to give a Hermitian
metric on each V®?, We claim that the displayed equation is a perpendicular
direct sum. This follows from the following exercise.

Exercise 17.13. (i) Verify that for v, we ¥V, (y, v ® w) = Q(v, w).
(ii) Use (i) to show that Ker(®;) = Im(¥,)* for each I.

Now define F? < V'®? to be the intersection of the kernels of all r-fold
contractions ®; o---o®, , and set

Vi, =Y W, 0 oW, (VOUID), (17.14)

¥ This follows a classical notation of using ¢ ) for the symplectic group and [ ] for the

orthogonal group (although we have omitted the corresponding notation { } for the general
linear group).
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Lemma 17.15. The tensor power V®* decompases into a direct sum
H=VODVRDVRD DV,
with p = [d/2}, and, for allr > 1,
Fl=VOoVYe @V,

Exercise 17.16. (i) Show as in the preceding exercise that there is a perpendi-
cular decomposition

yed — FFo Z \.p" 00 ‘Plr(V®(d~2'))-

(i) Verify that ¥,(F3 %) < F,

(iijy Show by induction that V®" is the sum of the spaces V1,

(iv) Finish the proof of the lemma, using (i) and (ii) to deduce that both
sums are orthogonal splittings. ]

All the subspaces in these splittings are invariant by the action of the
symplectic group Sp,,C, as well as the action of the symmetric group &,. In
particular, we see that

Sy V=V®c,=Imlc: ¥ > V®) (1747

Exercise 17.18* (i) Show that if s > n, then AV ® V®¥~* is contained in
Y. W (V24 D) and deduce that S ,,(V) = 0if 4,,,, is not 0.
(i) Show that S,,(V)is not zero if 4,,, = 0.

For any pair of integers I from {1, ..., d}, define
9y =W,od;: VI V&

From what we have seen, V<? is the intersection of the kernels of all these
endomorphisms. Note that the endomorphism of V'®* determined by any
symplectic automorphism of V not only commutes with all permutations of
the factors &, but also commutes with the operalors 3;. We need a fact which
is proved in Appendix F.2: :

Invariant Theory Fact 17.19. Any endomorphism of V'®* that commutes with
all permutations in S, and all the operators 3, is a finite C-linear combination
of operators of the form A® - ® A, for AeSp,,C.

Now let B be the algebra of all endomorphisms of the space V<* that
are C-linear combinations of operators of theform A ® --- ® A4, for 4 € Sp,,C.

Proposition 17.20. The algebra B is precisely the algebra of all endomorphisms
of V¥ commuting with all permuitations in &,

ProOF. If F is an endomorphism of V <9 commuting with all permutations of
¢ t--= thew tho endamarnhism F of V'® that is F on the factor V<?’ and
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zero on the complementary summand )., ¥,(V®“?) is an endomorphism
that commutes with all permutations and all operators 3,. The fact that F
is a linear combination of operators from the symplectic group (which we
know from Fact 17.19) implies the same for F. (]

Corollary 17.21. The representations S (V) are irreducible representations of
Sp,.C.

PRrOOF, Since B is the commutator algebra to A = C[&,] acting on the space
V¢, Lemma 6.22 implies that (V<?)- ¢, is an irreducible B-module. But we
have seen that (V<*)-¢c, =S, ¥, and the proposition shows that being
irreducible over B is the same as being irreducible over Sp,,C. ]

Exercise 17.22*. Show that the multiplicity with which S (,,(V) occurs in V ¢
is the dimension m, of the corresponding representation V; of S,.

As was the case for the Weyl construction over GL,C, there are general
formulas for decomposing tensor products of these representations, as well as
restrictions to subgroups Sp,,_,C, and for their dimensions and multiplicities
of weight spaces. We postpone these questions to Lecture 25, when we will
have the Wey! character formula at our disposal.

As we saw in Lecture 15 for GL,C, it is possible to make a commutative
algebra which we denote by S<> = S<?(V) out of the sum of all the irreducible
representations of Sp,,C, where ¥V = C?"is the standard representation. Prob-
ably the simplest way to do this, given what we have proved so far, is to start
with the ring

AV, =Sym(VONVONV S - ®NV)
= @ Sym™(N'V)® - ® Sym(A'V) ® Sym* (V),

the sum over all n-tuples a = (a,, ..., a,) of non-negative integers. Define a
ring S°(V, n) to be the quotient of A'(V, n) by the ideal generated by the same
relations as in (15.53). By the argument in §15.5, the ring S°(V, n) is the direct
sum of all the representations S,(V) of GL(V), as 1 varies over all partitions
with at most n parts.

The decomposition V® = V< @ W< of (17.12) determines a decom-
position V®.¢c, = V<. ¢, @ W .¢,, which is a decomposition

SA(V) = S(;.)(V) @ -’<1>(V)

of representations of Sp,,C. We claim that the sum J< = (P, J,,(V) is an
ideal in S'(V, n) = (P, Sa(V). This is easy to see using weights, since J ;,(V)
is the sum of all the representations in S,(V) whose highest weight is strictly
smaller than A. This implies that the image of J;,(V) ® S,(V) in S;, (V) is
a sum of representations whose highest weights are less than 4 + g, so they
must be in J;,,(V).

The quotient ring is, therefore, the ring $<*(V) we were looking for:
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SO =S(V,n/J =P S,V
)

In fact, the ideal J¢ is generated by elements of the form x A i, where x € 'V,
i < n —2,and ¢ is the element in A2V corresponding to the skew form Q. An
outline of the proof is sketched at the end of Lecture 25. The calculations, as
well as other constructions of the ring, can be found in [L-T], where one can
also find a discussion of functorial properties of the construction. For bases,
sec [DC-P], [L-M-S], and [M-S].



LECTURE 18

Orthogonal Lie Algebras

In this and the following tw.y lectures we carry out for the orthogonal Lie algebras
what we have already done it- the special linear and symplectic cases. As in those cases,
we start by working out ii: peneral the structure of the orthogonal Lie algebras,
describing the roots, root spaces, Weyl group, etc., and then go to work on low-
dimensional examples. There is one new phenomenon here: as it turns out, all three of
the Lie algebras we deal with in §18.2 are isomorphic to symplectic or special linear
Lie algebras we have already analyzed (this will be true of s0,C as well, but of no other
orthogonal Lic algebra). As in the previous cases, the analysis of the Lie algebras and
their representation theory will be completely elementary. Algebraic geometry does
intrude into the discussion, however: we have described the isomorphisms between the
orthogonal Lie algebras discussed and special linear and symplectic ones in terms of
projective gecometry, since that is what seems to us most natural. This should not be
a problem; there are many other ways of describing these isomorphisms, and readers
who disagree with our choice can substitute their own.

§18.1: SO,,C and 50,,C
§18.2: Representations of sv;C, so,€, and so C

§18.1. SO,,C and so0,,C

m
We will take up now the analysis of the Lic algebras of orthogonal groups.
Here there is. as we will see very shortly, a very big difference in behavior
between the so-called “even” orthogonal Lic algcbias s0,,C and the “odd”
orthogonal Lie algebras w0,,,,C. Interestingly enough, the latter seem at first
glance to be more coiapiicated, especially in terms of notation; but whzn we
analyze their represeniations we sec “hat in fact the y behave more regularly
than the even ones. In any event, we w:il try to carry ¢ut the analysis in parallel
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fashion for as long as is feasible; when it becomes necessary to split up into
cases, we will usually look at the even orthogonal Lie algebras first and then
consider the odd.

Let V be a m-dimensional complex vector space, and

Q:VxV-C

a nondegenerate, symmetric bilinear forin on V. The orthogonal group SO,,C
is then defined to be the group of automorphisms A of V of determinant 1
preserving Q—that is, such that Q(Av, Aw) = Q(v, w)for all v, w ¢ ¥—and the
orthogonal Lie algebra so,,C correspondingly consists of endomorphisms
A: V = V satisfying

Q(Av, w) + Q(o, Aw) =0 (18.1)

for all vand w e V. As in the case of the symplectic Lie algebras, to carry out
our analysis we want to write Q explicitly in terms of a basis for ¥, and here
is where the cases of even and odd m first separate. In case m = 2n is even, we
will choose a basis for ¥ in terms of which the quadratic form Q is given by

Oley, €iva) = Qleinr ) =1
and .
Qe e) =0 ifj#i+n
The bilinear form Q may be expressed as
0(x,y) ="x"M-y,
where M is the 2n x 2n matrix given in block form as
()
I, o)
the group SO,,C is thus the group of 2r x 2n matrices A satisfying
M="A-M-A

and the Lie algebra so,,C correspondingly the space of matrices X satisfying
the relation

XM+ M-X=0.

Writing a 2n X 2n matrix X in block form as
A B

X =
(@ o)

'C A
ty . -
XM (,D ‘B)

we have

and



§18.1. SO,,C and s0,,C 269

C D
wx=(§ 7)

so that this relation is equivalent to saying that the off-diagonal blocks B and
C of X are skew-symmetric, and the diagonal blocks A and D of X are negative
transposes of each other.

Exercise 18.2. Show that with this choice of basis,

SO,(C) = {(g a‘f,)} ~ C*,

and s0,C = C.

The sitnation in case the dimension m of V¥ is odd is similar, if a little messier.
To begin with, we will take Q to be expressible, in terms of a basis e,, ..., 5,4,
for ¥, by ~

Oless €ivn) = Qlerrme) =1 for 1 <i<n;

Qleznr1s 2041) = b

and
Qfle;, ¢)) = 0 for all other pairs i, j.

The bilinear form Q may be expressed as
Qx, y)="x"M"y,
where M is the (2n + 1) x (2n + 1) matrix

0L1]0
M=| 1,10
ololt

(the diagonal blocks here having widths n, n, and 1). The Lie algebra so,,,,C
is correspondingly the space of matrices X satisfying the relation 'X-M +
M- X = 0;if we write X in block form as

A|B|E
X={ C|D|F |
GiIHIJ

then this is equivalent to saying thut, as in the previous case, B and C are
skew-symmetric and A and D negative transposes of each other; and in addition
E=—-'H F=~'G,andJ = 0.

With these choices, we may take as Cartan subalg:bra—in both the even
and odd cases—the subalgebra of matrices diagonal in this representation.’

! Note that if we had taken the simpler choice of O, with M the identity matrix, the Lie algebra
would have consisted of skew-symmetric matrices, and there would have becn no nonzero
diagonal matrices in the Lie algcbra.
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The subalgebra b is thus generated by the n 2n x 2n matrices H; = E, ; —
E, +i nei Whose action on V is to fix e;, send e, ; to its negative, and kill all the
remaining basis vectors; note that this is the same whether m = 2nor 2n + 1.
We will correspondingly take as basis for the dual vector space h* the dual
basis L;, where {L;, H;> = ¢, ;.

Given that the Cartan subalgebra of s0,,C coincides, as a subspace of sl,,C,
with the Cartan subalgebra of sp,,C, we can use much of the description of
the roots of sp,,C to help locate the roots and root spaces of so,,C. For
example, we saw in Lecture 16 that the endomorphism

Xii=E ;= Eyjni€5p2,C

is an eigenvector for the action of b with eigenvalue L, — L;. Since X; ; is also
an element of s0,,C, we see that L, — L; is likewise a root of s0,,,C, with root
space generated by X; ;. Less directly but using the same analysis, we find that
the endomorphisms

Yl.j = Ei.n+j - Ej.n+i
and

Zi.j = En+i.j - En+j.|'

are eigenvectors for the action of ), with eigenvalues L, + L;and —L; — L;,
respectively (note that Y, ; and Z, ; do not coincide with their definitions in
Lecture 16). In sum, then, the roots of the Lie algebra s9,,C are the vectors
{£L;+ L}, < b*

The case of the algebra so,,,, C is similar; indeed, u:l the eigenvectors for
the action of I found above in s9,,C, viewed as endomorphisms of C2"*!, are
likewise eigenvectors for the action of [y on so0,,,,C. In addition, we have the
endomorphisms

Ui = Ei.2n+l - E2u+1.n+i

and
Vi = En+i.2n+1 - E2n+1.i

which are eigenvectors with eigenvalues + L, and — L,, respectively. The roots
of s0,,,,C are thus the roots + L; + L; of s0,,C, together with additional
roots +L;.

We note that we could have arrived at these statements without decompos-
ing the Lie algebras so,,C: the description (18.1) of the orthogonal Lie algebra
may be interpreted as saying that, in terms of the identification of ¥ with V*
given by the form @, so0,,C is just the Lie algebra of skew-symmetric endlo-
morphisms of ¥ (an endomorphism being skew-symmetric if it is equal to
minus its transpose). That is, the adjoint representation of so,,C is isomorphic
1o the wedge product A’V In the even case m = 24, since the weights of V are
+ L, (inasmuch as the subalgebras b < End(V) coincide, the weights of ' must
likewise be the same for so,,C as for sp,,C), it follows that the roots of so,,C
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are just the pairwise distinct sums +L; + L;. In the odd case m = 2n + [, we
see that e,,,, € V is an eigenvector for the action of h with eigenvalue 0, so
that the weights of the standard representation V" are {4+ L;} U {0} and the
weights of the adjoint representation correspondingly {+L; + L;} u {+L,}.

Exercise 18.3. Use a similar analysis to find the roots of sp,,C without explicit
calculation. :

To make a compurison with the Lie algebra sp,,C, we can say that the root
diagram of s0,,C looks like that of sp,,C with the roots +2L; removed,
whereas the root diagram of so,,,; C looks like that of sp,,C with the roots
+2L,; replaced by + L,. Note that this immediately tells us what the Weyl
groups are: first, in the case of s0,,,, C, the Weyl group is the same as that of
sz,,@:

1 (Z/2 > B, S, L.

In the case of s0,,C, the Weyl group is the subgroup of the Weyl group of
sp,,C generated by reflection in the hyperplanes perpendicular to the roots
+L; + L;, without the additional generator given by reflection in the roots
+ L;. This subgroup still acts as the full symmetric group on the set of
coordinate axes in h*; but the kernel of this action, instead of acting as 4+ I on
each of the coordinate axes independently, will consist of transformations of
determinant 1;i.e., will act as — I on an even number of axes. (That every such
transformation is indeed in the Weyl group is easy to see: for example,
reflection in the plane perpendicular to L; + i, followed by reflection in the
plane perpendicular to L, — L; will send L; to —L;, L; to —L;, and L, to L,
for k # i, j.) Another way to say this is that the Weyl group is the subgroup
of the Weyl group of sp,,C consisting of transformations whose determinant
agrees with the sign of the induced permutation of the coordinate axes; so that
while the Weyl group of sp,,C fits into the exact sequence

1-(Z/2y >

5py,C - 6n - la
the Weyl group of sv,,C has instead the sequence
1= (Z/2y ' -, c— S, L.

We can likewise describe the Weyl chambers of so,,C and so,,,,C by
direct comparison with sp,,C. To start, to choose an ordering of the roots
we take as linear functional on h* a form ! =c¢, H, + -+ ¢, H,, where
¢y > ¢y >+ > ¢, > 0. The positive roots in the case of so,,,, C are then

R* ={L; + Lj}i<; U {L; — Li}ic; 9 {Li}ss
whereas in the case of s0,,C we have
R* ={Li+ Li}ic; v {Li — Li}i<;

The primitive positive roots are
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L,-L,L,—Ls,...,L,.;,—L,L, for s0,,,,C;
L,-L,,L,-L,,...,L,.;,—L,L,,+L, forso,,C.

In the first case, the Weyl chamber is exactly the same as for sp,,C, namely,
form = 2n + 1,

W ={yalia >a,>"2a,>0}

since the roots are the same except for the factor of 2 on some. In the case of
s0,,C, since there is no root along the line spanned by the L;, the equality
a, = 0 does not describe a face of the Weyl chamber; however, since L,,; + L,
is still a root (and a positive one) we still have the inequality a,_; + a, > 0 in
W, so that we can write, for m = 2n,

W ={3Yalia2a,>":2a,,>|a,l}

(Note that in the case of s0,,C we could have chosen our linear functional
I=¢,H, + " +¢,H, With ¢, >¢; >-> —¢,> 0; the ordering of the
roots, and consequently the Weyl chamber, would still be the same.)

As for the Killing form, the same considerations as for the symplectic cage
show that it must be, up to scalars, the standard quadratic form: B(H,;, H;) =
d; ;. (This was implicit in the above description of the Weyl group.) The explicit
calculation is no more difficult, and we leave it as an exercise:

_f@n—2)Y aib ifm=2n+1
B, a;H,, 3 biH) = {(4n -4 Y ab; ifm=2n

Next, to describe the representations of the orthogonal Lie algebras we
have to determine the weight lattice in h*; and to do this we must, as before,
locate the copies s, of sl,C corresponding to the root pairs +a, and the
corresponding distinguished elements H, of b. This is so similar to the case of
$p,,C that we will leave the actual calculations as an exercise; we will simply
state here the results that in so0,,C for any m,

(i) the distinguished copy s,,_;, of s[,C associated to the root L; — L;
is the span of the root spaces g;,;, =C-X;;, g-1,-;, = C' X;; and their
commutator [X; ;, X;;1=E;; — E; j + E,yjuej = Epyinei> With distinguished
element H; _, = H, — H; (this is exactly as in the case of sp,,C);

(ii) the distinguished copy s, of sl,C associated to the root L; + L;
is the span of the root spaces gy,4p,=C- Y, g-1,-1, = C-Z;; and their
commutator [Y; ;, Z; ;] = —E;;+ E;; — Epyjasj+ Enviari = —Hi— Hj,
with distinguished element H, ,; = H; -+ H;(so that we have also H_; _, =
—H; — Hy); and in the case of so,,,,C,

(ili) the distinguished copy s, of s[,C associated to the root L, is the span
of the root spaces g; = C- U;, g_;, = C+ ¥, and their commutator [U;, V] =
[Ei 2041 — Eznt1omtis Enti 2ns1 — Eansy..] = — H;, with distinguished element
H; = 2H;(sothat H_, = —2H, as well).

Exercise 18.4. Verify the computations made here.
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Again, the configuration of distinguished elements resembles that of sp,,C
closely; that of sv,,,,C differs from it by the substitui’on of +2H, for + H,,
whereas that of sn,,C differs by the removal of the 4- H;. The effect on the
weight lattice is the same in either case: for both even and odd orthogonal Lie
algebras, the weight lattice Ay, is the lattice generated by the L; together with
the element (L, + -+ + L,)/2.

Exercise 18.5. Show that

Zj2 ifm=2n+41
Aw/Ag=<2Z/4 if m =2nand nis odd
ZR2®Z/2 ifm=2nand nis even.

§18.2. Representations of so;C, s0,C, and so5C

To give some examples, start with the case n = [. Of course, s0,C = C is not
semisimple. The root system of so; C, on the other hand, looks like that of s, C:

") | ®
Ly 0 L,

This is because, in fact, the two Lie algebras are isomorphic. Indeed, like the
symplectic group, the quotient PSO,,C of the orthogonal group by its center
can be realized as the motions of the projective space PV preserving isotropic
subspaces for the quadratic form Q; in particular, this means we can real-
ize PSO,,C as the group of motions of PV = P™™! carrying the quadric
hypersurface

0 = {[v]: Q(v,v) = 0}

into itself. Tn the first case of this, we see that the group PSO;C is the group
of motions of the projective plane P? carrying a conic curve C < P2 into itself.
But we have seen before that this group is also PGL,C {the conic curve is
itself isomorphic to P!, and the group acts as its full group of automorphisms),
giving us the isomorphism s0,C = sl,C. One thing to note here is that the
“standard” representation of s0,C is not the standard representation of sI,C,
but rather its symmetric square. In fact, the irreducible representation with
highest weight 1L, is not contained in tensor powers of the standard represen-
tation of o, C. This will turn out to be significant: the standard representation
of sl,C, viewed as a representation of so;C, is the first example of a spin
representation of an orthogonal Lie algebra.

The next examples involve two-dimensional Cartan algebras. First we have
s0,C, whose root diagram looks like
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L+ Ly Ly+L,

Note one thing about this diagram: the roots are located on the union of
two complementary lines. This says, by Exercise 14.33, that the Lie algebra
50, C is decomposable, and in fact should be the sum of two algebras each of
whose root diagrams looks like that of s[, C; explicitly, so,C is the direct sum
of the two algebras s,, foraa = L, + L, and «a = L, — L,. In fact, we can see
this isomorphism

50,C = sL,C x sl,C, (18.6)

as in the previous example, geometrically. Precisely, we may realize the group
PSO,C = SO,C/{ +1} as the connected component of the identity in the
group of motions of projective three-space P* carrying a quadric hyper-
surface @ into itself. But a quadric hypersurface in P* has two rulings by
lines, and these two rulings give an isomorphism of @ with a product P! x P!

PSO, C thus acts on the product P! x [*!; and since the connected component
of the identity in the automorphism group of this variety is just the product
PGL,C x PGL,C, we get an inclusion

PSO,C — PGL,C x PGL,C.

Another way of saying this is to remark that PSO,C acts on the variety of
isotropic 2-planes for the quadratic form Q on V; and this variety is just the
disjoint union of two copies of P!. To see in this case that the map is an
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isomorphism, consider the tensor product ¥V = U ® W of the pullbacks to
sl,C x sl,C of the standard representations of the two factors. Clearly the
action on P(U ® W) will preserve the points corresponding to decomposable
tensors (that is, points of the form [u ® w]); but the locus of such points is
just a quadric hypersurface, giving us the inverse inclusion of PGL,C x
PGL,C in PSO,C.

In fact, all of this will fall out of the analysis of the representations of s0,C,
if we just pursue it as usual. To begin with, the Weyl chamber we have selecte
looks like :

Now, the standard representation has, as noted above, weight diagram

with highest weight L, {note that the highest weight of the standard represen-
tation lies in this case in the interior of the Weyl chamber, something of an
anomaly). Its second exterior power will have weights +L, £ 1., and 0
(occurring with multiplicity 2), i.e., diagram
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Ly+L,

We see one thing about this representation right away, namely, that it cannot
be irreducible. Indeed, the images of the highest weight L, + L, under the
Weyl group consist just of +(L, + L,), so that the diagram of the irreducible
representation with this highest weight is

Ly+L,

We see from this that the second exterior power A*V of the standard
representation of so,C must be the direct sum of the irreducible represen-
tations W, =T, ,,, and W, =T, _, with highest weights L, + L, and
L, — L,. Since A’V is at the same time the adjoint representation, this says
that so,C itself must be a product of Lie algebras with adjoint representations
Fpeand 1y oo

One way to derive the picture of the ruling of the quadric in P from this
decomposition is to view so0,C as a subalgebra of sI,C, and the action of
PSO,C on P{A*V) as a subgroup of the group of motions of P*(A?V) = P°
preserving the Grassmannian G = G(2, V) of lines in P3. In fact, we see from
the above that the action of PSO, on P will preserve a pair of complementary
2-planes PW, and PW,; it follows that this action must carry into themselves
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the intersections of these 2-planes with the Grassmannian. These intersections
are conic curves, corresponding to one-parameter families of lines sweeping
out a quadric surface (nccessarily the same quadric, since the action of SO, C
on V preserves a unique quadratic form); thus, the two rulings of the quadric.

Note one more aspect of this example: as in the case of s0,C 2 st,C, the
weights of the standard representation of so,C do not generate the weight
lattice, but rather a sublattice Z{L,, L,} ol index 2 in Ay. Thus, there is no
way of constructing all the representations of so,C by applying linear- or
multilinear-algebraic constructions to the standard representation; it is only
after we are aware of the isomorphism so,C = sl,C x sl,C that we can
construct, for example, the representation Iy ,p,,, with highest weight
(L, + L,)2 (of course, this is just the pullback from the first factor of
st,C x sl,C of the standard representati~.n of sl,C).

We come now to the case of so,C, which is more interesting. The root
diagram in this case looks like
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{as in the preceding example, the weight lattice is the lattice of intersections
of all the lines drawn). The first thing we should notice about this diagram is
that it is isomorphic to the weight diagram of the Lie algebra sp,C; the
diagram just appears here rotated through an angle of 7/4. Indeed, this is not -
accidental; the two Lie algebras sp,C and so;C are isomorphic, and it is
not hard to construct this isomorphism explicitly. To see the isomorphism
geometrically, we simply have to recall the identification, made in Lecture
14, of the group PSp,C with a group of motions of P*, There, we saw
that the larger group PGL,C could be identified with the automorphisms
of the projective space P(A2V) = P*® preserving the Grassmannian G =
G(2, 4) < P(A*V). The subgroup PSp,C c PGL,C thus preserves both the
Grassmannian G, which is a quadric hypersurface in P°, and the decomposi-
tion of A?V into the span C-Q of the skew form Q e A*V* = A’V and its
complement W, and so acts on PW carrying the intersection G, = G n PW
into itself. We thus saw that PSp, C was a subgroup of the group of motions
of projective space P* preserving a quadric hypersurface, and asserted that in
fact it was the whole group.

(To see the reverse inclusion directly, we can invoke a little algebraic
geometry, which tells us that the locus of isotropic lines for a quadric in P* is
isomorphic to P, 5o that PSO,C acts on P>, Moreover, this action preserves
the subset of pairs of points in P* whose corresponding lines in P* intersect,
which, for a suitably defined skew-symmetric bilinear form §, is exactly the
set of pairs ([v], [w]) such that (v, w) = 0, so that we have an inclusion of
PSO,C in PSp,C.)

Let us proceed to analyze the representations of sosC as we would
ordinarily, bearing in mind the isomorphism with sp,C. To begin with, we
draw the Weyl chamber picked out above in h*:

Ly

As for the representations of so5C, we have 1o begin with the standard, which
has weight diagram
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This we see corresponds to the representation W=NA V/C- Q of sp, C. Next,
the second exterior power of the standard representation of so, C has weights

\ L,+L,

L-

This is of course the adjoint representation of sosC; it is the irreducible
representation with highest weight L, + L,. Note that it corresponds to the
symmetric square Sym?V of the standard representation of sp, C (see Exercise
16.8).

Exercise 18.7, Show that contraction with the quadratic form Q e Sym2V*
preserved by the action of so;C induces maps

@: SymV — Sym*~ 2V,

Show that the kernel of this coutraction is exactly the irreducible representa-
tion with highest weight a-L,. Compare this with the analysis in Exercise
16.11.
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Exercise 18.8. Examine the symmetric power Sym®(/A2V) of the representation
A?V. This will contain a copy of the irreducible representation I, ,,,; what
else will it contain? Interpret these other factors in light of the isomorphism
s05C = sp,C.

Exercise 18.9. For an example of a “mixed” tensor, consider the irreducible
representation I, ., ,. Show that this is contained in the kernels of the wedge
product map

@: VRNV » N3V
and the composition
O VONV S V*QNV SV,

where the first map is induced by the isomorphism 0: V - V* and the second
is the contraction V*®@ A*V — V. Is it equal to the intersection of these
kernels? Show that the weight diagram of this representation is

After you are done with this analysis, compare with the analysis given of the
corresponding representation in Lecture 16.

Note that, as in the case of the other orthogonal Lie algel.ras studied so
far (and as is the case for all s0,C), the weights of the standard representation
do not generare the weight lattice, but only the sublattice of index two generated
by the L. Thus, the tensor algebra of the standard representation will contain
only one-half of all the irreducible representations of so,C. Now, we do know
that there are others, and even something about them-—for example, we see
in the following exercise that the irreducible representation of sosC with
highest weight (L, + L,)/2 is a sort of “symmetric square root™ of the adjoint
representation:

Exercise 18.10. Show, using only root and weight diagrams for so5C, that the
exterior square A2V of the standard representation of soC is actually the
syimetric square of an irreducible representation.
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We can also describe this irreducible representation via the isomorphism
of s0,C with sp,C: it is just the standard representation of sp,C on C*. We
do not at this point have, however, a way of constructing this representation
without invoking the isomorphism. This representation, the representation of
s05C with highest weighi L,/2, and the representation of so,C with highest
weight (L, + L,)/2 discussed above are called spin representations of the
corresponding Lie algebras and will be the subject matter of Lecture 20.



LECTURE 19
s0,C, s0,C, and s0,,C

This lecture is analogous in content (and prerequisites) to Lecture 17: we do some
more low-dimensional examples and then describe the general picture of the represen-
tations of the orthogonal Lie algebras. One difference is that only half the irreducible
representations of s0,,C lie in the tensor algebra of the standard; to complete the picture
of the representation theory we have to construct the spin representations, which is
the subject matter of the following lecture. The first four sections are completely
clementary (except possibly for the discussion of the isomorphism so0,C = sl,C in
§19.1); the last section assumes a knowledge of Lecture 6 and §15.3, but can be skipped
by those who did not read those sections.

§19.1: Representations of s0,C

§19.2: Representations of the even orthogonal algebras
§19.3: Representations of s0,C

§19.4: Representations of the odd orthogonal algebras
§19.5: Weyl’s construction for orthogonal groups

§19.1. Representations of so,C

We continue our discussion of orthogonal Lie algebras with the example of
s0gC. First, its root diagram:
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LytLy
e._
i‘_ Ly+L,
¢ L +L,
|
® | )
S
4 o Ly-Ls

Once more {(and for the last time), we notice a coincidence between this and
the root diagram of a Lie algebra already studied, namely, sl,C. In fact, the
two Lie algebras are isomorphic. The isomorphism is one we have already
observed, in a sense: in the preceding lecture we noted that if V is a four-
dimensional vector space, then the group PGL,C may be realized as the
connected component of the identity in the group of motions of P(A2V) = P>
carrying the Grassmannian G = G(2, 4) < P(A*V) into itself, and PSp,C <«
PGL,C the subgroup fixing a hyperplane PW = P* < P>, We used this to
identify the subgroup PSp,C with the orthogonal group PSO4C; at the same
time it gives an identification of the larger group PGL,C with the orthogonal
group PSO,C.

Even though so04C is isomorphic to a Lie algebra we have already examined,
it is worth going through the analysis of its representations for what amounts
to a second time, partly so as to understand the isomorphism better, but
mainly because we will see clearly in the case of so4C a number of phenomena
that will hold true of the even orthogonal groups in general. To start, we draw
the Weyl chamber in h*:

Li+Ly+Ly
A

As usual, we begin with the standard representation, which has weights
+ L,, corresponding to the centers of the faces of the cube:
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Note that the highest weight L; once more lies on an edge of the Weyl chamber
(the front edge, in the diagram on the preceding page). Observe that the
standard representation of sus C corresponds, as we have already pointed out,
to the exterior square of the standard representation of sl,C.

Next, we look at the exterior square A2V of the standard representation
of s0,C. This will have weights + L, + L, (of course, it is tiie adjoint represen-
tation) and so will have weight diagram

Note that the highest weight vector L; + 1., of this representation does not
lie on an edge of the Weyl chamber, but rather in the interior of a face (the
back face, in the diagram above). In order to generate all the representations,
we still need to find the irreducible representations with highest weight along
the remaining two edges of the Weyl chamber.

We look next at the exterior cube A3V of the standard representation. The
weights here are the eight weights +L, + L, + L;, each taken with multi-
plicity one, and the six weights + L,, each taken with multiplicity 2, as in the
diagram
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Mow, we notice something very interesting: this cannot be an irreducible
representation. We can see this in a number of ways: the images of the weight
L, + L, + L;under the Weyl group, for example, consist of every other vertex
of the reference cube; in particular, their convex hull does not contain the
remaining four vertices including L, + L, — L;. Equivalently, there is no way
to go from L, + L, + Ly to L, + L, — L5 by translation by negative root
vectors. The representation /A*V will thus contain copies of the irreducible
representations Iy ..., and I, ,, ;. with highest weights L, + L, + L
and L, + L, — L,, with weight diagrams

L‘+L2+L3
//7

and

) I ) Ly+L,-L,

Since the weight diagram of each of these is a tetrahedron containing the
weights + L;, we have accounted for all the weights of A3V and so must have
a direct sum decomposition

3y —
NV = rL,+L2+L3 O, iL,-1,

We can relate this direct sum decomposition to a geometric feature of a
quadric hypersurface in P°, analogous to the presence of two rulings on a
quadric in P3. We saw before that the locus of lines lying on a quadric
surface in P turns out to be disconnected, consisting of two components
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each isomorphic to P! (and embedded, via the Pliicker embedding of the
Grassmannian G = G(2, 4) of lines in P? in P(A?C) = P?, as a pair of conic
curves lying in complementary 2-planes in P). In a similar fashion, the variety
of 2-planes lying on a quadric hypersurface in P* turns out to be disconnected,
consisting of two components that, under the Pliicker embedding of G(3, 6)
in P(A’CS) = P'®, span two complementary 9-planes PW, and PW,; these
two planes give the direct sum decompositicn of A*V as an so,C-module.

In fact, if we think of a quadric hypersurface in P> as the Grassmannian
G = G(2, 4) of lines in P3, we can see explicitly what these two families of
2-planes are: for every point p € P? the locus of lines passing through p forms
a 2-plane on G, and for every plan: H < P2 the locus of lines lying in His a
2-plane in G. These are the two families; indeed, in this case we can go two
steps further. First, we see from this that each of these families is para-
metrized by P32, so that the connected comnponent PSO4C of the identity
in the group of motions of P preserving the Grassmannian acts on P>,
giving us the inverse inclusion PSOC < PGL,C. Second, under the Pliicker
embedding each of these families is carried iuto a copy of the quadratic
Veronese embedding of P2 into P2, giving us the identification of the direct
sum factors of the third exterior power of the standard representation of s0,C
with the symmetric square of the standard representation of sl, C.

Exercise 19.1. Verify, without using the isomorphism with sosC and the
analysis above, that the standard representation V of 1, C satisfies

A (A*V) = Sym2V @ Sym?V *,

Note that we have now identified, in terms of tensor powers of the standard
one, irreducible representations of sogC with highest weight vectors L,
L, + L, + Lyand L, + L, — L, lying along the edge of the Weyl chamber,
as well as one with highest weight L., 4 L, lying in a face. We can thus find
irreducible representations with highest weight y, if not forevery yin Ay N %,
at least for every weight 7 in the intersection of #~ with a sublattice of index
2in Ay,

§19.2. Representations of the Even
Orthogonal Algebras

We will not examine any further representations ot sosC per se, leaving it as
an exercise to do so (and to compare the sesults to the corresponding analysis
for s!, €). Instead, we can now describe the general pattern for representations
of the even orthogonal Lie algebras so,,C. The complete story will have to
wait until the following lecture, since at present we cannot construct all the
representations of su,,C (as we have pointed out, we have been able to do so
in the cases n = 2 and 3 studied so far only by virtue of isomorphisms with
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other Lie algebras; and there are no more such isomorphisms from this point
on). We will nonetheless give as much of the picture as we can.

To begin with, recall that the weight lattice of so,,C is generated by
L,,..., L, together with the further vector (L; + --- + L,)/2. The Weyl cham-
ber, on the other hand, is the cone

W ={YaqLia, =a,> = +a,}.

Note that the Weyl chamber is a simplicial cone, with faces corresponding
to the n planes a, = a,, ..., a,., = a, and a,_; = —a,; the edges of the
Weyl chaniber uare thus the rays generated by the vectors Ly, L, + L, ...,
L+ +L,,,Li+--+L,and L, + -+ L,_, — L, (note that L, +
.-+ 4 L,_, is not on an edge of the Weyl chamber). We see from this that, as
in every previous case, the intersection of the weight lattice with the closed
Weyl cone is a free semigroup generated by fundamental weights, in this case
the vectors L, L, + L,, ..., L, + -** + L,_, and the vectors'

a=(L;+ +L,)2 and f=(L,+ -+ L,., —L,)2

As before, the obvious place to start to look for irreducible representations
is among the exterior powers of the standard representation. This almost
works: we have

Theorem 19.2. (i) The exterior powers NV of the standard representation V of
s0,,C are irreducible for k = 1,2, ..., n — 1; and (ii) The exterior power \"V
has exactly two irreducible factors.

ProOF. The proof will follow the same lines as that of the analogous theorem
for the symplectic Lie algebras in Lecture 17; in particular, we will start by
considering the restriction to the same subalgebra as in the case of sp,,C.
Recall that the group Sp,,C < SL,,C of automorphisms preserving
the skew form Q introduced in Lecture 16 contains the subgroup G of
antomorphisms of the space ¥V =C?" preserving the decomposition
“=Clef,..., e} DClen,s---, €5}, acting as an arbitrary automorphism
on the first factor and as the inverse transpose of that automorphism on the
second factor; in matrices

G = {(’é X°1> Xe GL,,C}.

In fact, the subgroup SO,,C < SL,,C also contains the same subgroup; we
have, correspondingly a subalgebra

! To conform to standard conventions, with simple roots o, = L; — Ly, for t i< n— 1, and
a, = L,y + L,, to have w(H,) = §, ;, the fundamental weights w, should be put in the order:
=L+ + Lforl <i<n-2und

Wy ==Ly b dey = L)2 wg=a=(Ly 4+ + L2
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A 0
5 = {(O —'A)’ Ae sInC} < sp,,C

isomorphic to sl,C.

Denote by W the standard representation of ${,C. As in the previous case,
the restriction of the standard representation V of s0,,C to the subalgebra s
then splits :

V=Wag@W*
into a direct sum of W and its dual; and we have, correspondingly,
Ny = P NWRNWH.
atb=k
We also can say how each factor on the right-hand side of this expression
decomposes as a representation of sl,C: we have contraction maps

W, MW R NW* - N @ NPT,

and the kernel of ¥, , is the irreducible representation W*® with highest
weight 2L, + - + 2L, + L, + - + L,_,. The restriction of A*V to s is
thus given by

NV = @ wian

atb<k
at+b=k(2)

where the actual highest weight factor in the summand W% < AV is the
vector

wlad — CLATTIACA Copp AT A € A Q(k—a—b)ﬂ
— : k-a-b)/2
=€ A A€ A€y pir A A €y A (Z (e; A €,))* 72702,

Now, all the vectors w* have distinct weights; and it follows, as in Excicise
17.7, that any highest weight vector for the action of $0,,C on NV will e a
scalar multiple of one of the w®®, 1t will thus suffice, in order to show ihat
AV isirreducible as representation of s0,,C for k < u, to exhibit for each (a, b)
with a + b < k < n other than (k, 0) a positive root a such that the image
a,(w?) 5 0. This is simplest in the case a -+ b = k < n (so there is no factor
of @ in w'?): just as in the case of sp,,C we have

b
Yu-fl,n—b+1(w(a ))

= (Eqvi,2n-b41 = Encpirprart) €5 A A€ A€oy At A€,

— w(u+1.b—l)

#0

and Y; ; is the generator of the positive root space gy, ;.
In case ¢ + b < k < n, we observe first that for any i and j
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Yl',j(Q) = (Ei,n+j - Ej,n+i)(z (ep A en+p))

=2-¢Nn¢
#0
so that whenevera < i,j<n-—b,

Y, (w')
= Yl.'j(el AN E A Conpat AT A €2y A Q(k—a—b)/z)
=CLATTAC A Cppiy AT A € A y“((z (e, A e”+p))(k—a—b)/2)
=(k—a-b)(e, A re, A €A €A Copit A A €3y A Q(k-—a—b-—Z)/2)
#0.

Itis always possible to find a pair (i, j) satisfying the conditionsa < i,j<n—~b
since we are assuming a + b < k < n; this concludes the proof of part (i).
The proof of part (ii) requires only one further step: we have to check the
vectors w? with a + b = k = n to see if any of them might be highest weight
vectors for s0,,C. In fact (as the statement of the theorem implies), two of them
are: It is not hard to check that, in fact, w*>® and w*~'-!) are killed by every
positive root space gy, ,- To see that no other vector w"~? is, look at the

action of Y.\ 4.2 € 81, ,+1,.,: WE have

Ya+1,a+2(W(a'”_a))
=(Esrt,ntarz — Egianras1) €0 A m Alg A Cyaiy At A €3,)
TN CTTNC N Coug N Chygig N Cuigi3z N A€y
TELANTTTANENEug NEpigia AT N €y,

#0. 0

Remarks. (i) This theorem will be a consequence of the Weyl character
formula, which will tell us a priori that the dimension of the irreducible

] 2
representation of so,,C with highest weight L; + --- + L, has dimension ( kn)

if K < n, and half that if k = n.

(ii) Note also that by the above, A"V is the direct sum of the two irreducible
representations I',, and T,; with highest weights 2o = L, + -~ + L, and
=L, + -+ L, — L, Indeed, the inclusion I,, @ I,y < A"V can be
seen just from the weight diagram: /' {” possesses a highest weight vector with
highest weight L, + - + L,, and so contains a copy of I,,; but this repre-
sentation does not possess the weight 2, and so A"V must contain I, as
well. (Alternatively, we observed in the preceding lecture that in choos-
ing an ordering of the roots we could have chosen our linear functional [ =
eHy 4+ + ¢,H,withec, > ¢, > - > —¢, > 0 without altering the positive
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roots or the Weyl chamber; in this case the weight A of /\"V with [(A) maximal
would be 2, showing that Iy < A'V)

{iii) If we want to avoid weight diagrams altogether, we can still see that
A"V must be reducible, because the action of s0,,C preserves two bilinear
forms: first, we have the bilinear form induced on AV by the form @ on V;
and second we have the wedge product .

P NV x NV > NV = C,

thelast map taking e, A --- A e,,to L. It follows that A"V is reducible; indeed,
if we want to see the direct sum decomposition asserted in the statement of
the theorem we can look at the composition

TNV s NV* S A,

where the first map is the isomorphism given by QO and the second is
the isomorphism given by ¢. The square of this map is the identity, and
decomposing A'V info +1 and — 1 eigenspaces for this map gives two
subrepresentations.

Exercise 19.3*. Part (i) of Theorem 19.2 can also be proved by showing that
for any nonzero vector w e NV, the linear span of the vectors X (w), for
X € $0,,C, is ali of A*V. For these purposes take, instead of the basis we have
been using, an orthonormal basis v, ..., v, for V = C*, m = 2n,s0 Q(v;, v;) =
0;,;- The vectors v, = v, A=+ A, I = {i; < " <y}, form a basis for A'V,
and s0,,C has a basis consisting of endomorphisms V, _, p < g, which 1akes
v to vy, v, to —v,, and takes the other v; to zero. Compute the images ¥, ,(v),
and prove the claim, first, when w = v, for some I, and then by induction on
the number of nonzero coefficients in the expression w =3 a,v,. For (it) a
similar argument shows that A"V is an irreducible representation of the group
0O,C, and the ideas of §5.1 (cf. §19.5) can be used to see how it decomposes over
the subgroup SO,C of index two.

We return now to our analysis of the representations of so,,C. By the
theorem, the exterior powers ¥, AV, ..., A*"2V provide us with the irreduc-
ible representations with highest weight the fundamental weight dlong the first
n — 2 edges of the Weyl chamber (of course, the exterior power A*™'V is
irreducible as well, but as we have observed, L, + - + L,_, is not on an edge
of the Weyl chamber, and ;o A"V is not as useful for our purposes). For the
remaining two edges, we have found irreducible representations with highest
weights located there, namely the two direct sum factors of A*V; but the
highest weights of these two representations are not primitive ones; they are
divisible by 2. Thus, given the theorem above, we see that we have constructed
exactly one-half the irreducible representations of s0,,C, n.mely, those whose
highest weight lies in the sublattice Z{I. ,..., L,} < A ,. Explicitly, any
weight y in the closed Weyl chamber can be e pressed (uniquely)in the form
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y=a L+ +a, L+ + L, ;)
+a,_(Ly+-+ L, —L)2+a (L, +-+L)2
witha, € N. If a,.., + a,is even, with a,_, > a, we see that the representation
Sym®V ® -+ ® Sym* (A" V) ® Sym™(A""' V) ® Sym'*=-1 "2 (T,)

will contain an irreducible representation I, with highest weight y; whereas if
a, > a,_,, we will find T, inside

Sym*¥V ® - - ® Sym*-x (A" 2¥V) ® Sym*™ (A" 'V)® Sym‘“f-;“"-"’z(FZ,).

There remains the problem of constructing irreducible representations T,
whose highest weight y involves an odd number of «’s and f§’s. To do this, we
clearly have to exhibit irreducible representations I', and I’y with highest
weights « and . These exist, and are called the spin representations of so,,C;
we will study them in detail in the following lecture. We see from the above
that once we exhibit the two representations I, and I';, we will have con-
structed all the representations of so,,C. The representation I, with highest
weight y written above will be found in the tensor product

Sym*V ® -+ ® Sym*™2(A""2¥) ® Sym®+(Iy) ® Sym*(T).

For the time being, we will assume the existence of the spin representations
of s0,,C; there is a good deal we can say about these representations just on
the basis of their weight diagrams.

Exercise 19.4*, Find the weights (with multiplicities) of the representations
NV, and also of Ty, Ty, T, and T

Exercise 19.5. Using the above, show that I, and T}, are dual to one another
when n is odd, and that they are self-dual when i is even.

Exercise 19.6. Give the complete decomposition into irreducible representa-
tions of Sym?T, and A’[,. Show that

L= ONVON*VON VSR .
Exercise 19.7. Show that
LOL=N"VONTVONT VD .

Exercise 19.8. Verify directly the above statements in the case of so4C, using
the isomorphism with sl,C.

Exercise 19.9. Show that the automorphism of C?" that interchanges e, and
¢,,, leaving the other ¢, fixed, determines an automorphism of so,,C that
preserves the n—2 roots L, — L,, ..., L, ,— L, ; and interchanges
L,.,— L,and L,_, + L,. This automorphism takes the representation V to
itself, but interchanges I', and I'.
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§19.3. Representations of so,C

While we might reasonably be apprehensive about the prospect of a family of
Lie algebras even more strangely behaved than the even orthogonal algebras,
thereis some good news: even though the roots systems of the odd Lie algebras
appear more complicated than those of the even, the representation theory of
the odd algebras is somewhat tamer. We will describe these representations,
starting with the example of so,C; we begin, as always, with a picture of the
root diagram:

® Ly+Ly+Ly
/-/} K
[ .
? ‘-' ______ -. $L1+Lz
C N Sl el
R RS
R
/L"".?."*.'L"—"‘—
7 K 3
@

As we said, this looks like the root diagram for sp¢C, except that the roots
+2L; have been shortened to + L,. Unlike the case of s0,C, however, where
the long and short roots could be confused and the root diagram was corre-
spondingly congruent to that of sp,C, in the present circumstance the root
diagram is not similar to any other; the Lie algebra so,C, in fact, is not
isomorphic to any of the others we have studied. Next, the Weyl chamber:

Li+L,+L,
422

Again, the Weyl chamber itself looks just like that of spsC; the difference
in this picture is in the weight lattice, which contains the additional vector
(g + Ly + Ly)2.
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As usual, we start our study of the representations of so,C with the
standard representation, whose weights are + L; and O:

Note that the highest weight L, of this representation lies along the front edge
of the Weyl chamber. Next, the weights of the exterior square A’V are
+L;+ L;, £L,; and 0 (taken three times); this, of course, is just the adjoint
representation. Note that the highest weight L, + L, of this representation is
the same as that of the exterior square of the standard representation for sogC,
but because of the smaller Weyl chamber this weight does indeed lie on an
edge of the chamber.

Next, consider the third exterior power A3V of the standard. This has
weights + L, + L, + L3, +L; + L;, +L; (with multiplicity 2) and 0 (with
multiplicity 3), i.e., at the midpoints of all the vertices, edges, and faces of the
cube:

® L]+LZ+L3
| a
LR
RAEENN
,"'6 L _@ ) ?L]«FLZ
o : N
® RN
[
SR CA
r'e ®

It is not obvious, from the weight diagram alone, that this is an irreducible
representation; it could be that AV contains a copy of the standard represen-
tation ¥ and that the irreducible representation I'; ,, ., thus has multiplicity
1 on the weights + L; and multiplicity 2 (or 1) at 0. We can rule out this
possibility by direct calculation: for example, if this were the case, then A*V
would contain a highest weight vector with weight L, . The weight space with
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eigenvalue L, in A’V is spanned by the tensors ¢; A e, A esande, A e, A ¢,
however, and if we apply to these the generators X, , =E, , — E; 4,
X,3=E, ;- Eg s, and Uy = E; , — E; ¢ of the root spaces corresponding
to the positive roots L, — L,, L., — L, and L., we see that

X,3(e; Aesneg)=ey ne; n e,
Us(e, nesneg)=e Ae3ne, #0;

Xys(eg ney nes)=e Aey Aes,
Usle, A ey nes)=0.

There is thus no linear combination of ¢, A e; A e5 and ¢; A e; A ¢ killed
by both U, and X, 5, showing that A*V has no highest weight vector of weight
L.

Exercise 19.10. Verify that A’V does not contain the trivial representation.

We have thus found irreducible representations of so, C with highest weight
vectors along the three edges of the Weyl chamber, and as in the case of s0,C
we have thereby established the existence of the irreducible representations of
50,C with highest weight in the sublattice Z{L,, L,, L,}. To complete the
description, we need to know that the representation T, with highest weight
o =(L{ 4+ L, + Lj)/2 exists, and what it looks like, and this time there is no
isomorphism to provide this; we will have to wait until the following lecture.
In the meantime, we can still have fun playing around both with the represen-
tations we do know exist, and also with those whose existence is simply
asserted.

Exercise 19.11. Find the decomposition into irreducible representations of the
tensor product ¥ ® A*V; in particular find the multiplicities of the irreducible
representation [ ., with highest weight 2L, + L,.

a

Exercise 19.12. Show that the symmetric square of the representation ¥
decomposes into a copy of A’V and a trivial one-dimensional representation.

Exercise 1913, Find the decomposition into irreducible represéntations of
AT,

§19.4. Representations of the
Odd Orthogonal Algebras

We will now describe as much as we can of the general pattern for representa-
tions of the odd orthogonal Lie algebras so,,,,C. As in the case of the even
orthogonal Lie algebras, the proof of the existence part of the basic theorem
(14.18) (that is, the construction of the irreducible representation with given
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highest weight) will not be complete until the following lecture, but we can

" work around this pretty well.

_ To begin with, recall that the weight lattice of s0,,,; C is, like that of s0,,C,
generated by L, ..., L, together with {}.e further vector (L, + -+ + L,)/2. The

Weyl chamber, on the other hand, is tiie cone

W ={)alLia >2a,>" >a,>0}

The Weyl chamber is as we have pointed out the same as for sp,,C, that is,
it is a simplicial cone with faces corresponding to the n planes a, = a,, ...,
a,_, =a, and a, = 0. The edges of the Weyl chamber are thus the rays
generated by the vectors Ly, Ly + Ly, ..., Ly + -+ L,_;yand L, + -+ L,
(note that L, + -+ + L,_; is on an edge of the Weyl chamber). Again, the
intersection of the weight lattice with the closed Weyl cone is a free semigroup,
in this case generated by the fundamental weights w, = L,, w, = L, + L,,
vees Wy =L +--+ L, , and the weight o,=o0a= (L, + -+ L,)/2.
Moreover, as we saw in the cases of so;C and so,C, the exterior powers of
the standard representation do serve to generate all the irreducible representa-
tions whose highest weights are in the sublattice Z{L, ..., L,}: in general we
have the following theorem.

Theorem 19.14. For k=1, ..., n, the exterior power NV of the standard
represeniation V of $0,,,, C is the irreducible representation with highest weight
L+ 4+ L,

Proor. We will leave this as an exercise; the proof is essentially the same as in
the case of s0,,C, with enough oi 1 difference to make it interesting. O

We have thus constructed one-half of the irreducible representations of
$0,,,,C: any weight y in the closed Weyl chamber can be written

Yy=a, Ll + aZ(Ll + Lz) +o an—l(Ll 4+t Ln—l) + an(Ll + Ln)/2
with a; € N; and if g, is even, the representation
Sym®V ® -+ ® Sym® {(A"'V) ® Sym* 2 (A"V)

will contain an irreducible representation I, with highest weight y. We are still
missing, however, any representation whose weights involve odd multiples of
a; to construct these, we clearly ha-e to exhibit an irreducible representation
T, with highest weight a. This exists and is called (as in the case of the even
orthogonal Lie algebras) the spin representation of s0,,,,C. We see from the
above that once we exhibit the spin representation I, we will have constructed
all the representations of so0,,,,C; for any y as above the tensor

Sym™V @+ @ Sym* (A" V) ® Sym*~(T,)

will contain a copy of I',.

As in the case of the spin representation I, of the even orthiogonal Lie
algebras, we can say some things about I, even in advance of its explicit
construction; for example, we can do the following exercises.
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Exercise 19.15. Find the weights (with multiplicities) of the representations
AV, and also of T,.

Exercise 19.16. Give the complete decomposition into irreducible representa-
tions of Sym?I, and A?[},. Show that

RL,=NVON'VON VD - @/\‘V@/\"V

Exercise 19.17. Verify directly the above statements in the case of so,C, using
the isomorphism with sp,C.

§19.5. Weyl’s Construction for Orthogonal Groups

The same procedure we saw in the symplectic case can be used to construct
representations of the orthogonal groups, this time generalizing what we saw
directly for A*V in §§19.2 and 19.4. For the symmetric form Q on V = C™,
the same formula (17.9) determines contractions from ¥®4 1o V®¢~2) Denote
the intersection of the kernels of all these contractions by V. For any
partition A = (A, = --- > 4, = 0) of d, let

SV =Vvans,v. (19.18)

As before, this is a representation of the orthogonal group O,,C of Q.

Theorem 19.19. The space S,V is an irreducible representation of 0,,C; S,V
nonzero if and only if the sum of the lengths of the first two columns of the
Young diagram of X is at most m.

Tle tensor power ¥ ®¢ decomposes exactly as in Lemma 17.15, with every-
thing the same but replacing the symbol (d) by [d]. In particular,

SV = V¥-¢; = Im(c;: V¥ - plh),

Exercise 19.20. Verify that S,,V is zero when the sum of the lengths of the
first two columns is greater than m by showing that AV @ A’V @ V¥ 2D g
contained in ), ¥,(V®“"?) when a + b > m. Show that S,V is not zero
when the sum of the lengths of the first two colinns is at most m.

Exercise 19.21*. (i) Show that the kernel of the contraction from Sym?V to
Sym?~2V is the irreducible representation S,V o so,,C with highest weight
dL,.
(ii) Show that
Sym?V = SV®Syu-V @@ Sp-2p1"5

where p is the largest integer < d/2.
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The proof of the theorem proceeds exactly as in §17.3. The fundamental
fact from invariant theory is the same statement as (17.19), with, of course, the
operators 9, = ¥, o @, defined using the given symmetric form, and the group

-Sp,,C replaced by O,C (and the same reference to Appendix F.2 for the
proof). The theorem then follows from Lemma 6.22 in exactly the same way
as for the symplectic group.

To find the irreducible representations over SO,,C one can proceed as in
§5.1. Weyl calls two partitions (each with the sum of the first two column
lengths at most m) associated if the sum of the lengths of their first columns is
m and the other columns of their Young diagrams have the same lengths.
Representations of associated partitions restrict to isomorphic representa-
tions of SO,,C. Note that at least one of each pair of associated partitions will
have a Young diagram with at most m rows. If m = 2n 4+ 1 is odd, no A is
associated to itself, but if m = 2n is even, any A with a Young diagram with n
nonzero rows will be associated to itself, and its restriction will be the sum of
two conjugate representations of SO,,C of the same dimension. The final result
is:

Theorem 19.22.() If m=2n+ lyand A= (A, = -+ = 1, = 0), then S,V is the
irreducible representation of so,,C with highest weight A, L, + -+ + 4,L,.

(i) If m=2n,and 1 =4y = = A, = 0), then Sy, V is the irreducible
representation of so,,C with highest weight 2, L, + -+ + A,L,.

(@) Ifm=2nand A=A, > - =4, > 24,>0), then S,V is the sum of
two irreducible representations of so,,C with highest weights A,\L + -+ + A,L,
and A L, +--+ 4, L,., —A4,L,

Exercise 19.23. When m is odd, show that O,,C = SO, C x {1+ I}. Show that
if 4 and pare associated, then i = A ® ¢, where ¢ is the sign of the det« rminant.

We postpone to Lecture 25 all discussion of multiplicities of weight spaces,
or decomposing tensor products or restrictions to subgroups.

As we saw in Lecture 15 for GL,C and in Lecture 17 for Sp-,,C, it is possible
to make a commutative algebra S!'T= SU')(V) out of the sum of oIl the
irreducible representations of SO,,C, where V = C™ is the standard repre-
sentation. First suppose m = 2n + 1 is odd. Define the ring S'(V, n) as in §15.5,
which is a sum of all the representations S,(V) of GL(V) where A runs over
all partitions with at most n parts. As in the symplectic case, there is a
canonical decomposition

S, (V)= Sm(V) @ Jm(V),
and the direct sum J'' = ), J;;,(V) is an ideal in S'(V, n). The quotient ring
SHY) = AV, m/ = D Sp(V)
A

is a commutative graded ring which contains each irreducible representation
of SO,,.,C oncs.
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If m = 2n is even, the above quotient will contain each representation
S y(V) twice if 4 has n rows. To cut it down so there is only one of each, one
can add to JU! relations of the form x — #(x), for x € A"V, where 7: A"V - A"V
is the isomorphism described in the remark (ii1) after the proof of Theorem
19.2. For a detailed discussion, with explicit generators for the ideas, see [ L-T).



~ LECTURE 20

Spin Representations of so,,C

In this lecture we complete the picture of the rep.esentations of the orthogonal Lie
algebras by constructing the spin representations S* of so,,C; this also yields a
description of the spin groups Spin,,C. Since the representation-theoretic analysis of
the spaces $* was carried out in the preceding lecture, we are concerned here primarily
with the algebra involved in their construction. Thus, §20.1 and §20.2, while elementary,
involve some fairly serious algebra. Section 20.3, where we briefly sketch the notion of
triality, may seem mysterious to the reader (this is at least in part because it is so to
the authors); if so, it may be skipped. Finally, we should say that the subject of the spin
representations of so,,C is a very rich one, and one that accommodates many different
points of view; the reader who is interested is encouraged to try some of the other
approaches that may be found in the literature.

§20.1: Clifford algebras and spin representations of so,,C
§20.2: The spin groups Spin,,C and Spin,,R
§20.3: SpingC and triality

§20.1. Clifford Algebras and Spin Representations
of s0,,C

We begin this section by trying to motivate the definition of Clifford algebras.
We may begin by asking, why were we able to find all the representations of
SL,C or Sp,,C inside tensor powers of the standard representation, but only
half the representations of SO,,C arise this way? One difference that points in
this direction lies in the topology of these groups: SL, C and Sp,, C are simply
connected, while SO,,C has fundamental group Z/2 for m > 2 (for proof:
see §23.1). Therefore SO,,C has a double covering, the spin group Spin,,C.
(For m < 6, these covering® could also be extracted from our identifications



KLY 20. Spin Representations of so,,C

of the adjoint group PSO,,C with the adjoint group of other simply connected
groups; e.g. the double cover of SO,C is SL,C.) We will see that thc missing -
representations are those representations of Spin,,C that do not come from
representations of SO,,C.

This double covering may be most readily visible; and probably familiar,
for the case of the real subgroup SO, R of rotations: a rotation is specified by
an axis to rotate about, given by a unit vector u, and an angle of rotation
about u; the two choices +u of unit vector give a two-sheeted covering. In
other words, if D? is the unit ball in R3, there is 2 double covering

§3 = D*/0D3 - SO,R,

which sends a vector v in D3 to rotation by the angle 2r|jv]| about the unit
vector v/|v|l (the origin and the unit sphere 3D? are sent to the identity
transformation).

This covering is even easier to see for the entire orthogonal group O, R,
which is generated by reflections R, in unit vectors v (with +v determining
the same reflection): we can describe the double cover of O;R as the group
generated by unit vectors v, with relations

Oy oot D, =Wyt Wy,

whenever the compositions of the corresponding reflections are equal, ie.,
whenever

R, °

i

e RU" = R 04.‘. o R\\'"‘;

Wy

and also relations
(—=v)(—w)=vw

for all pairs of unit vectors v and w. (Note that if we restricted ourselves to
products of even numbers of the generators v € dD* we would get back the
double cover of the special orthogonal group SO;C))

How should we generalize this? The answer is not obviou:. For one thing,
for various reasons we will not try to construct directly a group that covers
the orthogonal group in general. Instead, given a vector space V (real or
complex) and a quadratic form Q on ¥V, we will first construct an algebra
Cliff(V, Q), called the Clifford algebra. The algebra Cliff(V, Q) will then turn



§20.1. Clifford Algebras and Spin Representations of so,, C 301

- out to contain in its multiplicative group a subgroup which is a double cover
of the orthogonal group O(V, Q) of automorphisms of V preserving Q.

By analogy with the construction of the double cover of SO R, the Clifford
. algebra CIliff(V, Q) associated to the pair (¥, Q) is an associative algebra
containing and generated by V. (When we want to describe the spin group
inside CIliff(V, Q) we will restrict ourse'ves to products of even numbers of
elements of ¥ having a fixed norm Q(v, ); if odd products are allowed as well,
we get a group called “Pin” which is a double covering of the whole orthogonal
group.) To motivate the definition, we would like Cliff(V, Q) to be the algebra
generated by ¥ subject to relations analogous to those above for the double
cover of the orthogonal group. In particular, for any vector v with Q(v, v) = 1,
since the reflection R, in the hyperplane perpendicular to v is an involution,
we want

vo=1
in CLiff(V, Q). By polarization, this is the same as imposing the relation
v'w+woo=20Q(v, w)

for all v and w in V. In particular, w-v = —v- wif v and w are perpendicular.
In fact, the Clifford algebra' will be defined below to be the associative algebra
generated by ¥ and subject to the equation v-v = Q(v, v).

Looking ahead, we will see later in this section that each complex Clifford
algebra contains an orthogonal Lie algebra as a subalgebra. The key theorem
is then that CLif(V, Q) is isomorphic either to amatrix algebra or to a sum of two
matrix algebras. This in turn determines either one or two representations of
the orthogonal Lie algebras, which turn out to be the representations which
were needed to complete the story in the last lecture. Just as in the special linear
and symplectic cases, the corresponding Lie groups are not really needed to
construct the representations; they can be written down directly from the Lie
algebra. In this section we do this, using the Clifford algebras to construct
these representations of so,,C directly, and verify that they give the missing
spin representations. In the second section of this lecture we will show how
the spin groups sit as subgroups in their multiplicative groups.

Clifford Algebras

Given a symmetric bilinear form Q on a vector space V, the Clifford algebra
C = C(Q) = CIiff(V, Q) is an associative algebra with unit I, which contains
and is generated by V, with v-v = Q(v, v)- | for all v € V. Equivalently, we have
the equation

v-w-+ wo=20(v, w), (20.1)

! The mathematical world seems to be about evenly divided about the choice of signs here, and
one must translate from Q to —Q to go from one side to the other.
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for all v and w in V. The Clifford algebra can be detined to be the universal
algebra with this property: if E is any associative algebra with unit, and a
linear mapping j: ¥ — E is given such that j{v)> = G(v,v): 1 for all ve V, or
equivalently

J@) jw) + j(w)j(v) = 2Q(v, w)- 1 (20.2)

for all v, w € V, then there should be a unique homomorphism of algebras from
C(Q) to E extending j. The Clifford algebra can be constructed quickly by
taking the tensor algebra
TV =@V®=Coverererere e
nz20

and setting C{(Q) = T"(V)/1(Q), where I(Q) is the two-sided ideal generated by
all elements of the form v® v — Q(v, v)- 1. It is automatic that this C(Q)
satisfies the required universal property.

The facts that the dimension of C is 2™, where m = dim(V), and that the
canonical mapping from V to C is an embedding, are part of the following
lemma:

Lemma 203. If e, ..., e, form a basis for V, then the products e, =
e, e, ... e, for I ={i, <i, <+ <i}, and with e; = 1, form a hasis for
C(Q) = Chfl(V, Q).

Proor. From the equations ¢;-¢; + ¢;-¢; = 20(e;, ¢;) it follows immediately
that the elements ¢, generate C(Q). Their independence is not hard to verify
directly; it also follows by seeing that the images in the matrix algebras under
the mappings constructed below are independent. For another proof, note
that when Q =0, the Clifford algebra is just the exterior algebra AV, In
general, the Clifford algebra can be filtered by subspaces F,, consisting of those
elements which can be written as sums of at most k products of elements in
V; one checks that the associated graded space F,/F,,, is A°V. For a third
proof, one can verify that the Clifford algebra of the direct sum of two
orthogonal spaces is the skew commutative tensor product of the Clifford
algebras of the two spaces (cf. Exercise B. 9), which reduces one to the trivial
case where dim V = 1. ]

Since the ideal I(Q) < T(V) is generated by elements of even degree, the
Clifford algebra inherits a Z/2Z grading:

C = Ceven @ Codd = C+ @ C—«,

withC*-C* = C*,C*-C " cC~,C™-C*=C~,C™-C~ < C*;C" is spanned
by products of an even number of elementsin I and C~ is spanned by products
of an odd number. In particular, C***" is a subalgebra of dimension 2™,

Since C(Q) is an associative algebra, it determines a Lie algebra, with
bracket [a, b] = a- b — b- a. From now on we assume { is nondegenerate, The
new representations of s0,,C will be found in two steps:
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(i) embedding the Lie algebra so(Q} = so,,C inside the Lie algebra of the even
part of the Clifford algebra C(();
(i) identifying the Clifford algebras with one or two copies of matrix algebras.

To carry out the first step we make explicit the isomorphism of A2V with
~ s0(Q) that we have discussed before. Recall that

$0(Q) = {X € End(V): Q(Xv, w) + Q(v, Xw) = O for all p, win V}.
The isomorphism is given by
ANVEso(@Q) ciind(V), anabg,g -
for a and b in V, where ¢,,, is defined by
Pans(v) = 2(Q(b, v)a — Q(a, v)b). (204)

It is a simple verification that ¢,,, is in so(Q). One sees that the natural bases
correspond up to scalars, e.g., e; A e,,; maps to 2(E; ; — E,,; ,.;), so the map
is an isomorphism. (The choice of scalar factor is unimportant here; it was
chosen to simplify later formulas.) One calculates what the bracket on A2V
must be to make this an isomorphism of Lie algebras:

[@anss Peral(v) = @ans © B:naV) = Pena © Pans(v)
= 20,,5(Qd, v)c — Qlc, v)d) — 2¢,,4(Q(b, v)a — Q(a, v}b)
= 40(d, v)(Q(b, c)a — Q(a, A)b)
— 40(c, v)(Q(b, d)a — Q(a, d)b)
— 40(b, v)(Q(d, a)c — Q(c, a)d)
+ 40(a, v)(Q(d, b)c — Q(c, b)d)
= 20(b, ¢)@aralv) — 2Q(b, d)pync(v)
— 20(a, ), (v) + 2Q(a, ) @4.5(v).
This gives an explicit formula for the bracket on A*V:
lanbecand]=200Hcand—200bdanc
—20(a, d)c A b +2Q(a,c)d A b. (20.5)
On the other hand, the bracket in the Clifford algebra satisfies
[a-b,crd)=ab-ccd—c-d-a'b
= (20, c)a-d —a-c b-d)— (2Q(a,d)c-b —c-a*d-b)
=20(b,c)a-d — (20, dya-c —a-c-d-b)
—2Q(a,d)c'b + (2Q(a,c)'d"b—a-c-d-b)
=20Q(b,c)a-d —22{b,d)a-c — 20(a, d)c-b + 2Q(a, c)-d-b.
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1t follows that the map y: A2V — CHfl(V, Q) defined by
Yanby=3@ab—b-ay=ab- Qa,b) {20.6)
is a map? of Lie algebras, and by looking at basis elements again one sees that

it is an embedding. This proves:

Lemma 20.7. The mapping yr o ¢~ *: s0(Q) - C(Q)*"*" embeds so(Q) as a Lie
subalgebra of C(Q)™*".

Exercise 20.8. Show that the image of ¢ is
FE, n C(Q)"*" n Ker(trace),

where F, is the subspace of C(Q) spanned by products of at most two elements
of ¥, and the trace of an element of C(Q) is the trace of left multiplication by
that element on C(Q).

We consider first the even case: write V= W@ W', where W and W’ are
n-dimensional isotropic spaces for Q. (Recall that a space is isotropic when Q
restricts to the zero form on it) With our choice of standard Q on V = C?",
W can be taken to be the space spanned by the first n basis vectors, W’ by the
last n.

Lemma 20.9. The decomposition V = W @& W' determincs an isomorphism of
algebras
C(Q) = End(A'W),
where N\W =/ \NW@--- @ N'W.
Proor. Mapping C(Q) to the algebra E = Fnd(A'W) is the same as defining

a linear mapping from V to E, satisfying (20.2). We must construct maps
[: W— Eand I'": W — E such that

Iw)? =0, I'w)? =0, (20.10)
and '
Iw)o I'(w’) + I'(w’) o l{w) = 2Q(w, w')I

forany we W, w' e W'. For each we W, let L, € E be left multiplication by
w on the exlerior algebra A'W:

Li)=wnal CeAW
For $ € W*, let D; € E be the derivaiion of A'W such that Dy(1) = 0, Dg{w) =
3(w)e N°W = C forwe W= A'W, and

2 Note that the bilinear form y given by (20.6) is alternating since y{a A a) = 0, 50 it defines a
linear map on A2y,
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Dyl A &Y= Dy(0) A & + (—1)*2O0 A Dy(0).
Explicitly, Dg(wy; A - A w) =Y. (— 1} 19(w)(wy A= AW, A+ A w,). Now
set :
W) =L,, I'(w)=Ds o)

where 8 € W* is defined by the identity 3(w) = 2Q(w, w') for all w e W. The re-
quired equations (20.10) are straightforward verifications: one checks directly
on elements in W = A'W, and then that, if they hold on { and ¢, they hold
on { A & Finally, one may see that the resulting map is an isomorphism by
looking at what happens to a basis. ]

Exercise 20.12. The left C(Q)-module A'W is isomorphic to aleftideal in C(Q).
Show that if f is a generator for A"W’, then C(Q)- f = A'W- f, and the map
{+ {- f gives an isomorphism

KW AW-f=C(Q)f
of left C(Q)-modules.
Now we have a decomposition AW = A™*"W @ A\°¥W into the sum of

even and odd exterior powers, and C(W)***" respects this splitting, We deduce
from Lemma 20.9 an isomorphism

C(Q)y"e" = End(A*"W) @ End(/\**W). (20.13)
Combining with Lemma 20.7, we now have an embedding of Lie algebras:
s50(Q) < C(Q)™*"  glA*"W) @ g\ W), (20.14)

and hence we have two representations of so(Q) = so,,C, which we denote by
St =AW and § = NYW
Proposition 20.15. The representations ST are the irreducible representations of

$0,,C with highest weightsa = YL, + -+ L,)and = (L, + -+~ + L,-y —
L,). More precisely,

St =T, and S™ =T, ifniseven,

S* =T, and S~ =T, ifnisodd
ProoF. We show that the natural basis vectors ¢; = ¢; A --* A ¢, for AW
are weight vectors. Tracing through the isomorphisms established above, we

see that H; = E; ; — E,,,; ,s in b < 0,,C corresponds to (e, A e,,;) in A2V,
which corresponds to i(e;-e,,; — 1) in C(Q), which maps to

(L., 0 Dyep — I) = L, 0 D,y — 31 € End(A'W).

A simple calculation shows that
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e, ifiel

Le{ e De:(el) = {0 ifl ¢ I

Therefore, ¢, spans a weight space with weight 33, L, — Y4, L;). All such
weights with given |I| mod 2 are congruent by the Weyl group, so each of
S* = A*"W* and §~ = A°“W must be an irreducible representation. The
highest weights are easy to read off. For example, the highest weight for
AW is 1Y L, = aif nis even, while if n is odd, its highest weightis 8. [0

These two representations S* and S~ are usually called the half-spin
representations of so,,C, while their sum § = S* @ S~ = A'W is called the
spin representation. Frequently, especially when we speak of the even and odd
cases together, we call them all simply “spin representations.” Elements of §
are called spinors. For other proofs of the proposition see Exercises 20.34 and
20.35.

For the odd case, write V=W® W’ @ U, where W and W’ are n-
dimensional isotropic subspaces, and U is a one-dimensional space perpendic-
ular to them. For our standard Q on C2"*!, these are spanned by the first n,
the second n, and the last basis vector.

Lemma 20.16. The decomposition V=W @ W’ @ U determines an isomor-
phism of algebras

C(Q) ~ End: A W) ® End(A'W").

PRrooF. Proceeding asin the even case, tomap Vto E = End(A'W),mapwe W
toL,,w' € W' to Dy, where $(w) == 2Q(w, w') as before. Let u, be the element
in U such that Q(ug, uy) = 1, and send u, to the endomorphism that is the
identity on A®*"W, and minus the identity on A°**W. Since this involution
skew commutes with all L,, and D,, the resulting map from V= W@ W' @ U
to E determines an algebra homomorphism from C(Q) to E. The map to
End(A\'W’) is defined similarly, reversing the roles of ¥ and W’. Again one
checks that the map is an isomorphism by looking at bases. ]

Exercise 20.17*. Find a generator for a left ideal of C(Q) that is isomorphic
to A'W.

The subalgebra C(Q)***" of C((Q) is mapped isomorphically onto either of
the factors by the isomorphism of the lemma, so we have an isomorphism in
the odd case:

C(Q)"*" =~ End(A'W). (20.18)

As before, this gives a representation § = A\'W of Lie algebras:

8§0,,+;C = s0(Q) = C(Qy ™" = gl(ANW) = g{(8). (20.19)
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Proposition 20.20. The representation S = N'W is the irreducible representation
of $0,,., C with highest weight

a=3Ly +--+L,)..

Proor. Exactly as in the even case, each ¢, is an eigenvector with with weight
3G ie1Li =Y. ;1 Ly). This time all such weights are congruent by the Weyl
group, so this must be an irreducible representation, and the highest weight
isclearly (L, + -+ + L,). 0

As we saw in Lecture 19, the construction of this spin representation S
finishes the proof of the existence theorem for representations of so,,C, and
hence for all of the classical complex semisimple Lie algebras.

Exercise 20.21*, Use the above idcntification of the Clifford algebras with
matrix algebras (or direct calculation) to compute their centers. In particular,
~ show that the intersection of the center of C with the even subalgebra C***" is
always the one-dimensional space o: scalars. Show similarly that if x is in C*%
and x-v= —v-xforallvin V, then x = 0.

Exercise 20.22*. For X e s0(Q) and v € ¥, we have X -v e V by the standard
action of so(Q) on V. On the other hand, w~ have identified so(Q) and V as
subspaces of the Clifford algebra C, so we can compute the commutator
[X, v]. Show that these agree:

Xv=[X,v]eVcC
Problem 20.23*. Let C(p, g) be the real Clifford algebra corresponding to the
quadratic form with p positive and g negative eigenvalues. Lemmas 20.9 and
20.16 actually construct isomorphisms of C(n, n) with a real matrix algebra,
andof C(n + 1, n) with a product of two real matrix algebras. Compute C(p, )

for other p and g. All are products of one or two matrix algebras over R, C,
or H.

§20.2. The Spin Groups Spin,,C and Spin,, R
The Clifford algebra C = C(Q) is generated by the subspace ¥ = C", and C
has an anti-involution x— x*, determined by

o0y =(—1)v,-... 0,

for any vy, ..., v, in V. This operation =, sometimes called the conjugation, is
the composite of:

the main antiautomorphism or reversing map t: C — C determined by



(0.0 0)= 0,00 (20.24)
forv,,..., v, in ¥, and

the main involution o which is the identity on C*"*" and minus the identity
on C*%, ie,

avy...o0)=(—1)vy-...00,. (20.25)
Note that (x - y)* = y*- x*, which comes from the identities t(x- y) = t(y)- 1(x)
and a(x-y) = a(x)-a(y).

Exercise 20.26. Use the universal property for C to verify that these are well
defined: show that a is a homomorphism from C to C and 7 is a well-defined
homomorphism from C to the opposite algebra of C (the algebra with the
same vector space structure, but with reversed multiplication: x 7y = y- x).

Instead of defining the spin group as the set of products of certain elements

of V, it will be convenient to start with a more abstract definition. Set
Spin(Q) = {x e C(Q)**": x-x* =l and x-V-x* c V}. (20.27)
We see from this definition that Spin(Q) forms a closed subgroup of the group

of units in the (even) Clifford algebra. Any x in Spin(Q) determines an endo-
morphism p(x) of V by

px)v)=x"v-x* veV.

Proposition 20.28. For x e Spin(Q), p(x) is in SO(Q). The mapping
p: Spin(Q) — SO(Q)

is a homomor phism, making Spin(Q) a connected two-sheeted covering of SO(Q).
The kernel of pis {1, —1}.

Proor. We will prove something more. Define a larger subgroup, this time of
the multiplicative group of C(Q), by

Pin(Q) = {x e C(Q): x-x* =1 énd x-V-x* <V}, (20.29)
and define a homomorphism
p:Pin(@Q) - 0(Q),  (x)v) = alx) v-x*, (20.30)

where a: C(Q) — C(Q) is the main inveation.
To see that p(x) preserves the quad. atic form Q, we use the fact that for w
inV,Q(w,w) =w-w= —w-w* and calculate:

Qp) (), p() (V) = —a(x) v x*-(a(x) v- x*)*

= —a(x) v x* - x 0¥ a(x)*



= —a(x) v v*-a(x*)
= Q(v, v)a(x)- a(x*)
= Q(v, v)a(x - x*) = Q(v, v).

. We claim next that p is surjective. This follows from the standard fact (see
Exercise 20.32) that the ortliogonal group O(Q) is generated by reflections.
Indeed, if R,, is the reflection in the hyperplane perpendicular to a vector w,
normalized so that Q(w, w) = —1, it is easy to see that w is in Pin(Q) and
p(w) = R,,; in fact,

wewk = w-(—w) = —Q(w, w) =1,
and so
pwW)w) = a(w) ww¥ = —w-1= —w;
and if Q(w, v) =0,
pw)(v) = a(w)-v-w* = —w-p-wk=p-w-w* =y,

The next claim is that the kernel of p <u the larger group Pin{Q) is +1.
Suppose x is in the kernel, and write x = x4 + x, with xo € C**"and x, € C*%.
Then xy-v =v-x,forallve V,so xyisin the center of C. And x, - v = —v-x,
for all v e V. By Exercise 20.21, x, isin C-1,and x, = 0. So x = x, isin C and
xX*=1ls0x= +1.

It follows that if Re O(Q)is written as a product of reflections R,, ©...oR,, ,
then the two elements in p~'(R) are +w;, -...- w,. In particular, we get another
description of the spin groups:

Spin(Q) = Pin(Q) n C(Q)™*" = p~'(SO(Q))
={+w ...owyzweV, Qw, w)= —1}. (20.31)

Since —1{ = v-v for any v with Q(v, v) = — 1, we see that the spin group
consists of even products of such elements.

To complete the proof, we must check that Spin(Q)}is connected or, cquiva-
lently, that the two elements in the kernel of p can be connected by a path.
We leave this now as an exercise, since much more will be seen shortly. [J

Exercise 20.32*. Let Q be a nondegenerate symmetric bilinear form on a real
or complex vector space V.
(a) Show that if » and w are vectors in V with Q(v, v) = Q(w, w) # 0, then
there is either a reflection or a product of two reflections that takes v into w.
(b) Deduce that every element of the orthogonal group of Q can be written
as the product of at most 2-dim(V) reflections.

Exercise 20.33*. Since Spin(Q) is a subgroup of the multiplicative group of
C(Q), its Lie algebra is a subalgebra of C(Q} with its usual bracket. Verify that
this subalgebra is the subalgebra so(Q) that was constructed in §20.1.



Exercise 20.34. The fact that AW (and A'W’ in the odd case) is an irreducible

module over C(Q) is equivalent to the fact that jt is an irreducibie represen-

tation of the group Pin(Q) since the linear span of Pin(Q) is densz in C(Q).
{a) Apply the analysis of §5.1 to the subgroup

Spin(Q) <= Pin(Q)

of index two. In the odd case, AW and AW’ are conjugate representations,
so their restrictions to Spin(Q) are isomorphic and irreducible: this is the spin
representation. In the even case, W is self-conjugate, and its restriction to
Spin(Q) is a sum of two conjugate irreducible representations, which are the
two half-spin representations.

(b) Of the representations of Spin((Q) (i.e., the representations of so,C),
which induce irreducible representations of Pin{@) and which are restrictions
of irreducible representations of Pin(Q)?

Exercise 20.35. Deduce the irreducibility of the spin and half-spin represen-
tations from the fact that their restrictions to the 2-groups of Exercise 3.9 are
irreducible representations of these finite groups.

Exercise 20.36*. Show that the center of Spin,,(C)is p™'(1) = { £ 1} if mis odd.
If m is even show that the center is

p ()= {%1, tw}
where, in terms of our standard basis,

’el n+1 ’en+l el .‘en‘eln ,eln €y

= - 2 oo T - ’2 i
Exercise 20.37*. Show that the spin representation Spin(Q) — GL(S) maps
into the special linear group SL(S). Show that for m = 2n and n ¢ven, the

half-spin representations also map into the special linear groups SL(S*) and
SL(S7).

Exercise 20.38*. Construct a nondegenerate bilinear pairing f§ on the spinor
space § = /W by choosing an isomorphism of A"W with € and letting j(s, 1)
be the image of t(s) A 1 e AW by the projection 10 A"W = C, where 1 is the
main antiautomorphism).

(a) When m = 2n, show that f can also be defined by the 1dent1ty Bs, t)f =
t(s- f)-t- f for an appropriate generator f of A"W’. Deduce that the action
of Spin{(Q) on S respects the bilinear form §.

(b) Show that f# is symmetric if n is congruent to 0 or 3 modulo 4, and
skew-symmetric otherwise. So the spin representation is a homomorphism

Spin,,,;C = S0,.C ifn=0,34),
Spin,,,;C - Sp;.C  ifn=1,2(4)
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() If m = 2n, the restrictions of fto S* and S~ are zero if n is odd. For n
even, deduce that the half-spin representations are homomosphisms

Spin,,C - SO,..C ifn=0(4),
Spin,,C — Sp2.-:C  ifn=2(4).

Note in particular that SpingC has two maps to SOzC in addition to the
original covering. “Triality,” which we discuss in the next section, describes
the relation among these three homomorphisms.

Exercise 20.39. Show that the spin and half-spin representations give the
isomorphisms we have seen before:

Spin,C =~ GL(§*) = GL,C = C*,

Spin; C 2 SL{S) == SL,C,

Spin,C = SL(§*) x SL(S7) = SL,C x SL,C,
SpinsC = Sp(S) = Sp,C,

SpingC =~ SL(§*)=SL,C.

Exercise 20.40. Let C,, denote the Clifford aigebra of the vector space C™ with
our standard quadratic form Q,,.

(a) Th-embeddingofC*" =W @ W' inC*"*' = W @ W’ @ U asindicated
induces an embedding of C,, in C,,,,, and corresponding embedding of
Spin,,C in Spin,, ;; C and of SO,,C in SO,,+; C. Show that the spin represen-
tation S 6/ Spin,,., C restricts to the spin representation $* @ S~ of Spin,, C.

{b) Similarly there is an embedding of Spin,,;, C in Spin,,,,C coming
fromanembeddingof C*"' = W@ W @ UinC* 2 =Wa@W & U, ® U,;

here U, @ U, =C@C with the quadrmic form <(1) (1)), and U=C is

embedded in U; @ U, by sending 1 to ) Show that each of the

\ff

half-spin representations of Spin,,,,¢" restricts to the spin representation of
Spiﬂ2"+1c.

Very little of the above discussion needs to be changed to construct the real
spin groups Spin,(R), which are double coverings of the real orthogonal
groups SO,(R). One uses the real Clifford algebra CHff(R™, Q) associated to
the real quadratic form @ = — Q,,, where @, is the standard positive definite
quadratic form on R™. If v; are an orthonormal basis, the products in this
Clifford algebra are given by

vovy= —vpry ifi# and v v;=—1
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The same definitions can be given as in the compiex case, giving rise to
coverings Pin, (R) of O,(R) and Spin,,(R) of SO,,(R).

Exercise 20.41. Show that Spin,, R is connected by showing that if v and w are
any two perpendicular elements in V with Q(v, v) = Q(w, w) = —1, the path

t—{cos(f)v + sin(f)w)- (cos(t)v — sin(f)w), 0 <t < x/2

connects —1 to 1.

Exercise 20.42. Show that i+ v, v,, j>v5 vy, k- v, v, determines an iso-
morphism of the quaternions I onto the even part of Clff(R? —Q,), such
that conjugation ~ in H corresponds to the conjugation # in the Clifford
algebra. Show that this maps Sp(2) = {g e H|gg = 1} isomorphically onto
SpinyR, and that this isomorphism is compatible with the map to SO;R
defined in Exercise 7.15.

More generally, if Q is a quadratic form on R™ with p positive and g negative
cigenvalues, we get a group Spin*(p, q) in the Clifford algebra C(p, q) =
CIliff(R™, Q), with double coverings

Spin*(p, q9) - SO*(p, q).

Exercise 20.43* Show that Spin*(p, ) is connected if p and g are positive,
except for the case p = g = 1, when it has two components. Show that if in
the definition of spin groups one relaxes the condition x-x* =1 to the
condition x- x* = 41, one gets coverings Spin(p, q) of SO(p, g).

§20.3. SpingC and Triality

When m is even, there is always an outer automorphism of Spin,(C) that
interchanges the two spin representations S* and §~, while preserving the
basic representation V = C™ (cf. Exercise 19.9). In case m = 8, all three of these
representations ¥, S*, aud §” are eight dimensional. One basic expression of
triality is the fact that there are autornorphisms of SpingC or so,C that
permute these three representations arbitrarily. (In fact, the group of outer
automorphisms modulo inner automorphisms is the symmetric group on
three elements.) We give a brief discussion of this phenomenon in this section,
in the form of an extended exercise.

To see where these automorphisms might come from, consider the four
simple roots:

a1=L1—L2, a2=L2—_L3, a3=L3“’L4, a4=L3+L4.

Note that «,, a5, and a, are mutually perpendicular, and that cach makes an
angle of 120° with a,:
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0y = Ly-Ly

oy = Lytl,

Exercise 20.44*. For each of the six permutations of {«;, a5, a,} find the
orthogonal automorphism of the root space which fixes o, and realizes the
permutation of ay, a4, and ay.

Each automorphism of this exercise corresponds to an automorphism of
the Cartan subalgebra b. In the next lecture we will see that such auto-
morphisms can be extended (nonuniquely) to automorphisms of the Lie
algebra s04(C). (For explicit formulas sec [Ca2].)

There is also a purely geometric notion of triality. Recall that an even-
dimensional quadric Q can contain lincar spaces A of at most half the dimen-
sion of Q, and that there are two families of linear spaces of this maximal
dimension (cf. [G-H], [Ha]). In case Q is six-dimensional, each of these
families can themselves be realized as six-dimensional quadrics, which we may
denote by @* and Q™ (see below). Moreover, there are correspondences that
assign to a point of any one of these quadrics a 3-plane in each of the others:

Pointin ) —— 3.planein Q*

3-planein @~ Point in Q~ (20.45)

S

Point in * —— 3-planein @

Given P e Q, {A e Q*: A contains P} is a 3-plane in 0*, and {Ae Q7: A
contains P} ‘s a 3-plane in Q™.

Given A e 0%, Atself is a 3-plane in @, and {T' e Q™: ' n A is a 2-plane}
is a 3-plane in Q™.

Given A € @7, Aitself is a 3-plane in @, and {I" e @*: ' n A is a 2-plane}
is a 3-plane in Q7.

To relate these two notions of triality, take @ to be our standard quadric
in P7 = P(V), with V = W@® W’ with our usual quadratic space, and let
* = AW and §” = AW be the two spin representations. In Exercise
20.38 we constructed quadratic forms on S* and S~, by choosing an iso-
- morphism of A*W with C. This gives us two quadrics Q* and Q in P(S*)
and P(S7).
To identify Q* and @~ with the families of 3-planes in Q, recall the action
of Von S=AW=S*@®S  whick gave rise to the isomorpliism of the
Clifford algebra with End(S) (cf. Lemma 20.9). This in fact maps S* to §~
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and S” to §™; so we have bilinear maps

Vx8" =58 and VxS S (26.46)

Exercise 20.47. Show that for each point in Q, represented by a vectors € S*,
{ve V:v-s = 0} is an isotropic 4-plane in V, and hence determines a projective
3-plane in Q. Similarly, each point in ¢~ determines a 3-plane in Q. Show that
every 3-plane in Q arises uniquely in one of these ways.

Let ¢, ) denote the symmetric form corresponding to the quadratic
form in V, and similarly for $* and S™. Define a product

St xS” Y, S X (>80t (20.48)
by requiring that (v, s- 1), = (v-s, t)s forallve V.

Exercise 20.49. Use this product, together with those in (20.46), to show that
the other four arrows in the hexagon (20.45) for geometric triality can be
described as in the preceding exercise.

This leads to an algebraic version of triality, which we sketch following
[Ch2]. The above products determine a commutative but nonassociative
product on the direct sum 4 = V@ S* @ S™. The operation

5, ) {v-s, t)s-

determines a cubic form on A4, which by polarization determines a symmetric
trilinear form ® on A.

Exercise 20.50*. One can construct an automorphism J of A of order three
that sends V to §*, S* to S™, and S~ to V, preserving their quadratic forms,
and compatible with the cubic form. The definition of J depends on the
choice of an element v, € V and s, € $* with (v, v, ) = {5y, 5, )5+ = 1; set
t, = v,°sy, so that {t,,1,) =1 as well. The map J is defined to be the
composite pov of two involutions p and v, which are determined by the
following: :

(i) pinterchanges S* and S™, and maps V to itself, with u(s) = v, -sfors € S*;
(@) = 2{v, v, yv, —vforve V.

(ii) v interchanges V and S~, maps S* to itself, with v(v) = v's, for ve V;
v(s) = 2{s, 5, )5+5; —sforse S*.

Show that this J satisfies the asserted properties.
Exercise 20.51*, In this algebraic form, triality can be expressed by the asser-

tion that there is an automorphism j of Sping C of order 3 compatible with J,
i.e, such that for all x e SpingC, the following diagrams commute:
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J J

315

J

V » St r §7 » V
]p(x) lp‘(i(x)) Jp‘(jz(x)) \p(n
V—— 8" —— §" —— ¥

If j': 504C — 504 C is the map induced by j, the fact that j is compatible
with the trilinear form @ (cf. Exercise 20.49) translates to the “local triality”

equation

D(Xv, 5, 1) + v, Y5, ) + O, 5, Zt) = 0

for X e s04C, Y = j'(X), Z = j(Y).






PART IV
LIE THEORY

The purpose of this final part of the book is threefold.

First of all, we want to complete the program stated in the introduction to
Part I1. We have completed the first two steps of this program, showing in
Part IT how the analysis of representations of Lie groups could be reduced to
the study of representations of complex Lie algebras, of which the most
important are the semisimple; and carrying out in Part III such an analysis
for the classical Lie algebras s1,C, sp,,C, and go,,C. To finish the story, we
want now to translate our answers back into the terms of the original problem.
In particular, we want to deal with representations of Lie groups as well as
Lie algebras, and real groups and algebras as well as complex. The passage
back to groups is described in Lecture 21, and the analysis of the real case in
Lecture 26.

Another goal of this Part is to establish a framework for some of the results
of the preceding lectures—to describe the general theory of semnisimple Lie
algebras and Lie groups. The key point here is the introduction of the Dynkin
diagram and its use in classifying all semisimple Lie algebras over C. From
one point of view, the impact of the classification theorem is not great: it just
tells us that we have in fact already analyzed all but five of the simple Lie
algebras in existence. Beyond that, however, it provides a picture and a
language for the description of the general Lie algebra. This both yields a
description of the five remaining simple Lie algebras and allows us to give
uniform descriptions of associated objects: for example, the compact homo-
geneous spaces associated to simple Lie groups, or the characters of their
representations. The classification theory of semisimple Lie algebras is given

~in Lecture 21; the description in these terms of their representations and
characters is given in Lecture 23. The five exceptional simple Lie algebras,
whose existence is revealed from the Dynkin diagrams, are studied in Lecture
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22; we give a fairly detailed account of one of them (g,), with only brief
descriptions of the others.

Third, all this general theory makes it possible to answer the main out-
standing problem left over from Part I1I: a description of the multiplicities of
the weights in the irreducible representations of the simple Lie algebras. We
give in Lectures 24 and 25 a number of formulas for these multiplicities.

This, it should be said, represents in some ways a shift in style. In the
previous lectures we would typically analyze special cases first and deduce
general patterns from these cases; here, for example, the Weyl character
formula is stated and proved in general, then specialized to thie various
individual cases (this is the approach more often taken in the literature on the
subject). In some ways, this is a fourth goal of Part 1V: to provide a bridge
between the naive exploration of Lie theory undertaken in Parts 11 and HI,
and the more general theory readers will find elsewhere when they pursue the
subject further.

Finally, we should repeat here the disclaimer made in the Preface. This
part of the book, to the extent that it is successful, will introduce the reader
to the rich and varied world of Lie theory; but it certainly underiakes no
serious exploration of that world. We do not, for example, touch on such
basic constructions as the universal enveloping algebra, Verma modules, Tits
buildings; and we do not even hint at the fascinating subject of (infinite-
dimensional) unitary representations. The reader is encouraged to sample
these and other topics, as well as those included here, according to background
and interest.



LECTURE 21

The Classification of Complex Simple
Lic Algebras

In the first section of this lecture we introduce the Dynkin diagram associated to a
semisimple Lie algebra g. This is an amazingly efficient way of conveying the structure
of g: it is a simple diagram that not only determines g up to isomorphism in theory,
but in practice exhibits many of the properties of g. The main use of Dynkin diagrams
in this lecture, however, will be to provide a framework for the basic classification
theorem, which says that with exactly five exceptions the Lie algebras discussed so far
in these lectures are all the simple Lie algebras. To do this, in §21.2 we show how to
list all diagrams that arise from semisimple Lie algebras. In §21.3 we show how to
recover such a Lie algebra from the data of its diagram, completing the proof of the
classification theorem. All three sections are completely elementary, though §21.3 gets
a little complicated; it may be useful to read it in conjunction wi