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Preface

This book consists of two parts, different in form but similar in spirit.
The first, which comprises chapters 0 through 9, is a revised and somewhat
enlarged version of the 1972 book Géoméirie Différentielle. The second
part, chapters 10 and 11, is an attempt to remedy the notorious absence in
the original book of any treatment of surfaces in three-space, an omission
all the more unforgivable in that surfaces are some of the most common
geometrical objects, not only in mathematics but in many branches of
physics.

Géométrie Différentielle was based on a course I taught in Paris in 1969-
70 and again in 1970-71. In designing this course I was decisively influ-
enced by a conversation with Serge Lang, and I let myself be guided by
three general ideas. First, to avoid making the statement and proof of
Stokes’ formula the climax of the course and running out of time before
any of its applications could be discussed. Second, to illustrate each new
notion with non-trivial examples, as soon as possible after its introduc-
tion. And finally, to familiarize geometry-oriented students with analysis
and analysis-oriented students with geometry, at least in what concerns
manifolds.

To achieve all of this in a reasonable amount of time, I had to leave out
a detailed review of differential calculus. The reader of this book should
have a good calculus background, including multivariable calculus and some
knowledge of forms in R"™ (corresponding to pages 1-85 of [Spi65], for
example). A little integration theory also helps. For more details, see
chapter 0, where all of the necessary notions and results from calculus,
exterior algebra and integration theory have been collected for the reader’s
convenience.
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I confess that, in choosing the contents and style of Géométrie Différen-
tielle, I emphasized the esthetic side, trying to attract the reader with
theorems that are natural and simple to state, instead of providing an
exhaustive exposition of the fundamentals of differentiable manifolds. I
also decided to include a larger number of global results, rather than giving
detailed proofs of local results.

More specifically, here are some of the contents of chapters 1 through 9:

—We start with a somewhat detailed treatment of differential equations,
not only because they are used in several parts of the book, but because
they tend to be given less an less weight in the curriculum, at least in
France.

—Submanifolds of R™, although sometimes included in calculus courses,
are then presented in detail, to pave the way for abstract manifolds.

—Next we define abstract (differentiable) manifolds; they are the basic
stuff of differential geometry, and everything else in the book is built on
them.

—TFive examples of manifolds are then given and resurface several times
along the book, thus serving as unifying threads: spheres, real projec-
tive spaces, tori, tubular neighborhoods of submanifolds of R™, and one-
dimensional manifolds, i.e., curves. Tubular neighborhoods and normal
bundles, in particular, form a class of examples whose study is non-trivial
and illustrates a number of more or less refined techniques (chapters 2, 6,
7 and 9).

—Several important topics, for example, Morse theory and the classifi-
cation of compact surfaces, are discussed without proofs. These “cultural
digressions” are meant to give the reader a more complete picture of dif-
ferential geometry and how it relates with other subjects.

—Two chapters are devoted to curves; this is, in my opinion, justified,
because curves are the simplest of manifolds and the ones for which we
have the most complete results.

—The exercises consist of fairly concrete examples, except for a few that
ask the reader to prove an easy result stated in the text. They range from
very easy to very difficult. They are in large measure original, or at least
have not appeared in French books. To tackle the more difficult exercises
the reader can refer to [Spi79, vol. I] or [Die69].

* * *

In deciding to add to the original book a treatment of surfaces, I faced a
dilemma: if I were to maintain the leisurely style of the first nine chapters, I
would have to limit myself to the basics or make the book far too long. This
is especially true because one cannot talk about surfaces in depth without
distinguishing between their intrinsic and extrinsic geometries. Once again
the desire to give the reader a global view prevailed, and the solution I
chose was to be much more terse and write only a kind of “travel guide,”
or extended cultural digression, omitting details and proofs. Given the
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abundance of good works on surfaces (see the introduction to chapter 10)
and the great number of references sprinkled throughout our material, I feel
that the interested reader will have no-difficulty in filling in the picture.

Chapter 10, then, covers the local theory of surfaces in R3, both intrinsic
(the metric) and extrinsic (the embedding in space). The intrinsic geometry
of surfaces, of course, is the simplest manifestation of riemannian geometry,
but I have resisted the temptation to talk about riemannian geometry in
higher dimension, even though the field has witnessed spectacular advances
in recent years.

Chapter 11 covers global properties of surfaces. In particular, we dis-
cuss the Gauss—Bonnet formula, surfaces of constant or bounded curvature,
closed geodesics and the cut locus (part I, intrinsic questions); minimal sur-
faces, surfaces of constant mean curvature and Weingarten surfaces (part
II, extrinsic questions).

* * *

The contents of this book can serve as a basis for several different courses:
a one-year junior- or senior-level course, a one-semester honors course with
emphasis on forms, a survey course on surfaces, or yet an elementary course
emphasizing chapters 8 and 9 on curves, which can stand more or less on
their own, together with section 7.6.

The reader who wants to go beyond the contents of this book will find
a number of references inside, especially in chapters 10 and 11, but here
are some general ones: [Mil63] is elementary, but a pleasure to read, as is
[Mil69], which covers not only Morse theory but many deep applications
to differential geometry; [Die69], [Ste64], [Hic65] and [Hu69] cover much of
the same ground as as this book, with differences in emphasis; [War71] has
a good treatment of Lie groups, which are only mentioned in this work;
[Spi79], whose first volume largely overlaps with our chapters 1 to 9, goes
on for four more and is especially lucid in offering different approaches
to riemannian geometry and expounding its historical development; and
[KN69] is the ultimate reference work.

I would like to thank Serge Lang for help in planning the contents of chap-
ters 0 to 9, the students and teaching assistants of the 1969-1970 and 1970-
1971 courses for their criticism, corrections and suggestions, F. Jabceuf for
writing up sections 7.7 and 9.8, J. Lafontaine for writing up numerous ex-
ercises and for the proof of the lemma in 9.5. For feedback on the two new
chapters I’'m indebted to thank D. Bacry, J.-P. Bourguignon, J. Lafontaine
and J. Ferrand.

Finally, I would like to thank Silvio Levy for his accurate and quick
translation, and for pointing out several errors in the original. I would
also like to thank Springer-Verlag for taking up the translation and the
publication of this book.

Marcel Berger
IL.H.E.S, 1987
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CHAPTER 0

Background

This chapter contains fundamental results from exterior al-
gebra, differential calculus and integration theory that will be
used in the sequel. The statements of these results have been
collected here so that the reader won’t have to hunt for them
in other books. Proofs are generally omitted; the reader is
referred to [Car71], [Dix68] or [Gui69).



2 0. Background

0.0. Notation and Recap
0.0.1. Notation

0.0.2. Let X be a topological space. We denote by O(X) the set of open
subsets of X; by O,(X) the set of open subsets of X containing a point
z € X; and by O4(X) the set of open subsets of X containing a subset
AcX.

0.0.8. If X is a metric space, we let B(a,r) and B(a,r) be the open and
closed balls of radius r and center a. When X = R? we write B4(0,1)
instead of B(0,1).

0.0.4. If E and F are vector spaces over the same field, we let L(E; F) be
the vector space of continuous linear maps from E into F (if £ and F have
finite dimension every linear map is continuous). If F = R we write E*
instead of L(E;R); this space is called the dual of E and its elements are
continuous linear forms on E.

0.0.5. If X and Y are topological spaces we let C°(X;Y) be the set of
continuous maps from X into Y.

0.0.6. The algebra of continuous functions from X into R is denoted by
C%(X).

0.0.7. Recap

0.0.8. If X is a compact topological space, C°(X), with the norm of uni-
form convergence, is a complete topological space [Car71, 1.1.2, example 2].

0.0.9. A finite-dimensional vector or affine space over R has a canonical
topology, given by a norm. All norms are equivalent; in particular, we can
take any Euclidean norm [Car71, 1.1.6.2].

0.0.10. Example. If E and F are finite-dimensional vector spaces, so is
L(E; F): its dimension is equal to dim(E) - dim(F).

If E and F are normed vector spaces, L(E; F )‘has a canonical norm,
defined by

11l = sup {ll ()l : ll]] = 1}.

Then ||fog| < ||f]l-|lgll [Car71, equation 1.1.5.1], and L(E; F) is a Banach
space if F' is [Car71, theorem 1.1.4.2].
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0.0.11. If E and F are isomorphic vector spaces, denote by Isom(E; F)
the set of isomorphisms from E to F. Then

0.0.12 ¢ : Isom(E; F) > f — f~! € Isom(F; E)

is continuous for the norm defined in 0.0.10, as the reader should check
[Car71, theorem 1.1.7.3].

0.0.18. Lipschitz and contracting maps [Car71, 1.4.4.1]

0.0.13.1. Definition. Let X and Y be metric spaces. Amap f: X —Y is
a k-Lipschitz map if there exists k € R such that

d(f(2), (v)) < kd(z,y)

for every z,y € X.

A map f: X — Y is locally Lipschitz if for every z € X there exists
V € O0,(X) such that f|y is Lipschitz. A map f: X — Y is contracting if
it is k-Lipschitz with k < 1.

0.0.13.2. Theorem. If X s a complete metric space and t : X — X 1s
contracting, t has a unique fized point, that 13, there exists a unique z such
that t(z) = 2. In addition, z = lim, . t"(z) for every z € X. O

0.1. Exterior Algebra
Let E be a vector space and E* = L(E;R) its dual.

0.1.1. We denote by A"E* the vector space of alternating r-linear forms
on E, that is, continuous maps a : E* — R linear in each variable and
satisfying

alee s Ziyee oy Tgy o) = —afeey Tjy ooy Tiyen )

for every 1 <1 < 5 < r. One has A} E* = E*; by convention, A°E* = R.
If E is n-dimensional, A" E* has dimension (:) if r < n and dimension 0 if
r > n [Dix68, 37.1.11].
Recall that, if f1,..., f, are linear forms on E, we define fy A---A f, €
ATE* by
0.1.2 (fi A Af)@1ee s ) = D €afilZo(r)) - - - Fr(Zo(r));
oES,

where §, is the symmetric group on r elements and €, = +1 depending on
whether o is an even or odd permutation.
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0.1.3. Basis for A"E*. Let {e;,...,en} be a basis for £ and {e],...,e5}
the dual basis for E*. Let I = (¢1,...,1,) be an r-tuple such that

1<t <3< --- <1< n.

* __ L% e &
The forms e} = e A---Ace;,

basis for A" E* [Dix68, 37.1.9].

as I ranges over all such n-tuples, form a

0.1.4. Exterior product of alternating forms. Consider o« € APE* and
B € AIE*. The exterior product a A B, an alternating (p + ¢)-linear form,
is defined as follows: let A be the subset of §,,, consisting of permutations
o such that

o(l])<o(2)<---<o(p) and o(p+1)<---<o(p+q).

Then
0.1.5

(@AB)(@1s- s Zpra) = D €o(To(1)s-+ -1 To(p)) B(Zo(pt1)s -+ s To(pta))
oEA

[Dix68, 37.2.5-11]. The exterior product is associative.

0.1.8. If « € AT E*, we say that r is the degree of &, and write dega = r.
If a € ATE* and S € A’E* we have

0.1.7 BAa=(—1)dcxdecBy A g

Thus the exterior product makes the vector space

dim E

AE* = P A E*

r=0
into an associative and anticommutative algebra.
0.1.8. Pullbacks. For f € L(E; F) we define f* € L(A"F*; A"E*) by
0.1.9 F*B(ury ... ur) = B(F(wa),-. 5, flur))
for every f € A"E* and every u;,...,u, € E. One immediately sees that
0.1.10 (aAB) = f*(a) A £*(B)-
If f € L(E; F) and g € L(F;G) we have
0.1.11 (g0 f)* = f*og".
0.1.12. For f € L(E; E) and § € A"E*, where n is the (finite) dimension
of E, we have

0.1.12.1 F*B = (det £)B.
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In fact, A" E* has dimension one, so f* is multiplication by a constant. If
(é1,...,€n) is a basis for E and f is of form e} A --- A e}, (the associated ),
we have

(f*B)(e1,.--ren) = B(f(er),---, f(en)) = det f.
Since f*B = k@, the factor k must be equal to det f.

0.1.13. Orientation. If £ has dimension n, the real vector space A"E*
has dimension one, so A" E*\ 0 has two connected components. An orienta-
tion for E is the choice of one of these two components.

Alternatively, consider on A"E* \ 0 the equivalence relation ~ given by
“a ~ f if there exists a strictly positive number k such that a = kf.” The
set O(E) = (A"E* \ 0)/ ~ has two elements, and choosing an orientation
for E is the same as choosing one of these elements.

0.1.14. Definition. An n-form a € A"E*\ 0 is called positive if it belongs
to the element of O(E) chosen as the orientation. A basis {ey,...,e,} for
E is called positive if for some (hence any) positive a € A"E* \ 0 we have
afer,...,en) > 0.

Let E and F be oriented n-dimensional vector spaces, and consider f €
Isom(E; F). We say that f preserves orientation if, for some (hence all)
positive S € A"E* \ 0, we have f*f positive.

If E = F, saying that f preserves orientation is the same as saying that
det f > 0; this follows from 0.1.12.1 and 0.1.13.

0.1.15. Exterior algebra over a Euclidean space

0.1.15.1. Let E be a Euclidean space, whose scalar product and norm we
denote by (- |-) and || - ||, respectively. We know that the dual E* of E is
canonically isomorphic to E via the map b: z — {y — (z|y)} € E* and
its inverse § : E* — E [Dix68, 35.4.6]. Thus the Euclidean structure of £
gives rise to a canonical Euclidean structure on E*. The spaces APE* also
inherit canonical Euclidean structures [Bou74, IIL.7, prop. 7]; in the cases
that will be treated in this book, namely, p = 2 and p = d = dim E, that
structure is explicitly defir ed as follows:

0.1.15.2. p = 2. It suffices to define the norm of products o A §, where
a,f € E*. Set

llae A BII2 = llalll1811* — (| B)>.
If {e;} is an orthonormal basis for E, the dual basis {¢}} of E* is also
orthonormal, and, if

a=) oel, B=_ Pl
D t

we have

laA Bl = (a:B; — ;i)

i<g
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0.1.15.8. p = d. Let {e;} be an orthonormal basis for E; every o € AE*
can be written as kej A---Aej;. We define ||| = |k|. We have to show that
|k| does not depend on the chosen orthonormal basis; but this follows from
0.1.12.1 ant the fact that the determinant of an orthogonal transformation
is equal to *1.

0.1.15.4. We deduce from the previous paragraph that an oriented Euclid-
ean space E of dimension d has a canonical volume element A € A%E*,
namely, the element of norm 1 belonging to the chosen connected compo-
nent of A2E* \ 0.

0.1.15.5. Definition. The form Ag is called the canonical volume form of E.

Notice that Ag is also defined by the condition that Ag(ey,...,eq) =1
for every positive orthonormal basis {ey, ..., eq}.

0.1.15.6. Lemma. If {a;}i=1,..,q4 %s an arbitrary positive basis for E, we

have
Ae(ay,...,aq) = \/det((a: | a5))-

Proof. Let {e;}i=1,....a be an orthonormal positive basis for E, and let A
be the matrix whose column vectors are the a;’s in the basis {e;}. The
definition of matrix multiplication shows that A A, where *A denotes the
transpose of A, is just the matrix of scalar products ((a; | a;)). Thus

det((a; | a;)) = det(*AA) = det*A det A = (det A)>.
But
/\E(a1, .o .,ad) = AE(AG1,.. .,Aed) = detA/\E(el,...,ed) = det A,
as we wished to prove. a
0.1.15.7. One can also define spaces APE, called the exterior powers of

a vector space [Bou74, III.7.4]. In this book we will just need a skew-
symmetric map A: E x E — R. We set, for z,y € E,

zAy=1z" Ay € A2E*,

and define A by A(z,y) = ||zA y||, using 0.1.15.2. For example, |[zAy| =1
if {z,y} is an orthonormal basis; in general,

Iz A yll? = llzl2llyl® - (=] 9)? = D _(z:y; — z,9:)?
i<
in an arbitrary orthonormal basis. .
0.1.16. Now assume that E is Euclidean, oriented, and three-dimensional.

Then Ag is the mixed product of three vectors, written just (z,y,2) =
Ae(z,y,2). By lemma 0.1.23, A determines an isomorphism o between
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A%2E* and E; in the notation of 0.1.15.7 this gives rise to a map ExXE — E
defined by

0.1.17 (z,9) — o’ A ).
This map is called the cross product of two vectors z,y € E, and denoted

by z X y.

0.1.18. Contractions. Let E be a vector space and £ an element of E.
For every r > 1 we define a linear map cont(¢) : ATE* — A""1E*, called a
contraction (by &), as follows:

0.1.19 (cont(€)(@)) (€1, .- -» Er—1) = @&, €155 Emi)

for every @ € A"E* and §;,...,&,—1 € E. It is easily checked that cont(¢)
is an antiderivation of AE* of degree —1, that is, for all o, 8 € AE* we
have

0.1.20 cont(¢)(a A B) = (cont(£)(a)) A B+ (—1)%8 *a A (cont(€)(8)).
0.1.21. Use of coordinates. Let F have dimension d, and fix a basis

%51,1.1. .,eq} for E. Take a € A%E* and an element & = 2?:1 zje; of E.
e have

d
(cont(f)(a))(el, ver€iyen,ed) = a(z T7€5y €15y iy ,ed)
=1

d
= Z(—l)"lz;a(el, e s €iyenny€d)
=1

where &; means that e; is omitted. Since a € AYE*, there exists a scalar a
such that a = a(e} A --- Ae}j), and we have

0.1.22 cont (Z f,e,) (a) = E( 1)' laz;e} A AEE A Aelh

Since the forms e A---A8fA---Aej (1 = 1,...,d) form a basis for A4~ E*
(cf. 0.1.3), we deduce that:

0.1.23. Lemma. If o € AE* is non-zero, the map ¢ — cont(¢)(a) is an
1somorphism between E and A®~1E*, O

0.1.24. Densities

0.1.25. Definition. A density on a d-dimensional vector space E is a map
6§ : E4 — R such that § = |a| for some a € A%E* \ 0.
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0.1.26. Example. If E = R, the density 6o = |Ag| = | det(-)] is called the
canonical density in R?. More generally, every Euclidean space E admits
a canonical density, denoted by pr and defined by ug = |Ag|, where Ag is
the canonical volume form for an arbitrary orientation of E. By 0.1.15.6
we have

0.1.27 pe(ag,...,aq) = V det((a: | a5))

for any basis {a1,...,aq4} of E.
0.1.28. The set of densities on £ will be denoted by Dens(E).

0.1.29. Elementary properties of densities
0.1.29.1. If§ and &' are densities on E, there exists a constant k > 0 such
that §' = k6. O

0.1.29.2. If6,56' are densities on E and k,k' are non-negative constants not
both of which are zero, k6 + k'8’ is a density on E. O

0.1.29.8. Let E and F be vector spaces of same dimension d. Let § €
" Dens(F) and f € Isom(E; F). The map f*6 : E* — R, defined by
(£*6)(z1)...,za) = 5()‘(1:1,...,::,1))
for every z1,...,24 € E, 1s a density on E.
Proof. If « € A4F* \ 0 is such that |a| = §, we have
(£*6)(z1y...,24) = 8(f(z1,...,zd))
le(f(z1,.-.,24))| = |(f*@)(z1,-- ., 2d)|,
so that f*§ is the density on E associated with f*a € AE* \ 0. O

0.1.29.4. Let E, F and G be vector spaces of same dimension, f : E — F
and g: F — G 1somorphisms. If § 1s a density on G, we have

(90 1)*(6) = ("= g")(6). o

From 0.1.12.1 we deduce that
0.1.29.5. For f € Isom(E; E) and § € Dens(E) we have f*(8) = |det(f)|6.
O

0.1.29.6. For dim(E) = 1 densities are the same as norms.

Proof. A density is a map from E into R such that § = |a| for some
non-zero a € A'E* = E*. Thus

6(z)>0 and §(z)=0&z=0

(since a # 0 implies that a is an isomorphism in dimension 1);
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§(Az) = |a(Az)| = [A]||a(z)| = |A|6(2);
§(z+y) = |a(z + y)| = |a(z) + a(y)| < |a(z)| + |a(y)| = §(z) +6(y).0

0.2. Differential Calculus

0.2.1. Definition. Let E and F be Banach spaces and U C F open. A
map f : U — F is called differentiable at z € U if there exists a linear map
f'(z) € L(E; F) such that

£z + k) = f(=) = 7' (@) (R)]| = o(lIA]))
(where the notation o(||A||) means that the left-hand side approaches zero

faster than ||h||.) If f is differentiable at every z € U we say that f is
differentiable in U.

0.2:2. The map f'(z) is called the derivative of f at z.
0.2.3. The map f': U — L(E; F) is called the derivative of f.

0.2.4. Remark. In the case of a function of a single real variable we
recover the elementary notion of the derivative: L(R;F) is canonically
isomorphic to F' via the map § — 6(1), and consider f'(z)(1) is the ordinary
derivative.

0.2.5. Definition. Let E and F be Banach spaces and U C E open. A
map f : U — F is called continuously differentiable if it is differentiable
and its derivative f’ belongs to C°(U; L(E; F)).

We also say that f is (of class) C1. We denote by C*(U; F) the set of
C! maps on U, and we set C*(U) = C}(U;R).

0.2.6. Theorem. Let U be a convez open subset of a Banach space E, and
f:U — F a differentiable map such that "f’(:c)” < k for every z € U.
Then f 1s k-Lipschitz (0.0.13.1).

Proof. See [Dix67, p. 351]. O

0.2.7. Corollary. Any f € C1(U; F) is locally Lipschitz.

Proof. U is locally convex and f’, being continuous, is locally bounded. [

0.2.8. Operations on C! maps

0.2.8.1. Theorem. Let E, F and G be Banach spaces, U C E and V C F
open sets and f € C1(U; F) and g € C*(V;G) maps with f(U) C V. Then
go f € C*(U;G), and, for every z € U, we have

(90 £)'(2) = ¢'(£(2) o f'(=)-
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Proof. See [Dix68, 47.3.1] or [Car71, theorem 1.2.2.1]. O

0.2.8.2. If f and g are C* maps and A € R 1s a constant, f +g and Af are
C' maps. If multiplication makes sense in F, so 1s fg. (]

For example, every polynomial function is C*.

0.2.8.8. Any linear map f € L(E; F) 1s C!, and satisfies f'(z) = f' for ev-
ery z € E. If we denote by L(E, F;G) the space of continuous bilinear
maps from E x F into G, we have L(E,F;G) c CYE x F;QG), and
f'(z,9)(u,v) = f(z,v) + f(u,y) for every z,u € E and y,v € F [CarTl,
theorem 1.2.4.3]. O

0.2.8.4. Let Fy,...,F, be Banach spaces and p; the projection from Fy X
Fy; x .- x F, into F;. Then f € CY(U;Fy x --- x F,;) if and only if
p;o f € CY(U; Fy) for everys. In addition we have (p;o f)'(z) = pio (f'(z))
for every + [Car71, theorem 1.2.5.1]. (]

0.2.8.5. Let E,,..., E,, and F be Banach spaces. Consider an open set
UeO(Eyx ---xEyp)andamap f:U— F. If

({z1} x - X {Zic1} X By x {Zig1} X -~ x {zm}) NU

is a section of U parallel to E;, we identify the restriction of f to this section
(where only the :-th variable varies) with a map defined on a subset of E;.
If the derivative of that restriction with respect to z; exists, we denote it
by 8f/3z; (or fg,, or fs., or D;f). Thus

af
5;: € L(E,, F),

and we have the following result:

0.2.8.6. Proposition. The map f 1s C' if and only if 3f/3z; ezists and 1is
continuous for all . In addition,

0.2.8.7 F(@) (s s hm) = 3 2L (a) hi.

=1

Proof. See [Car71, proposition 1.2.6.1]. O

0.2.8.8. Particular case. Take E = R™, F = R*, U € O(E) and f €
C(U; F) with components f1,..., f,, where each f; is a function of the m
variables zy,...,%,. Denoting by 8f;/8z; the partial derivatives (in the
usual sense) of the components of f, we define the jacobian matrix of f at
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a to be the matrix
af1 af1
7

az,,.

3fn

3fn
32, @

—(a)

The jacobian matrix is sometimes denoted by f'(a) by abuse of notation.
In this particular case f € C*(U; F) if and only if 8f;/3z; € C°(U; R)
for every ¢ and j.

0.2.8.9. Definition and notation. For f € C(U;E) and U € O(E) the
jacobian of f, denoted by J(f), is the map

J(f): U >z det(f'(z)) € R.
For E = R™ we have J(f)(a) = det(f'(a)) (cf. 0.2.8.8).

0.2.9. Examples

0.2.9.1. Definition. A curve in U € O(E) is a pair (I,¢), where I ¢ R
is an interval and ¢ € CY(I;U). The velocity of ¢ at ¢t € I is the vector
¢'(t) € E (cf. 0.2.4).

Now take U € O(E) and f € C}(U; F). Given z € U and y € E, we
can calculate f'(z)(y) by using the velocity of a curve. Choose a curve
(I,¢) in U such that 0 € I, ¢(0) = z and ¢’ (0) = y. By 0.2.8.1 we have
(f 2 8)'(0) = f'(4(0)) o ¢'(0) = f'(z)(y), that is, f'(z)(y) is equal to the
velocity of the curve (I, f o ¢) at 0.

More rigorously, we should have written (cf. 0.2.4) ¢'(0)(1) = y and

(fo4)'(0)(1) = (£'(4(0)) 0 $'(0)) (1) = f'(=)(v)-
0.2.9.2. Proposition. Let E and F be isomorphic Banach spaces, and ¢ :
Isom(E; F) — Isom(F; E) the map given by ¢(f) = f~1. The map ¢ 1s of
class C* and we have

¢'()(u)=—f"touof .

Proof. We must first show that Isom(E; F) € O(L(E; F)). In finite di-
mension this is obvious since Isom(E; F) = det™!(R\ 0) and the map
f + det(f) is continuous for a fixed choice of bases.

In infinite dimension we must show that for ugo € Isom(E; F) and u €
L(E; F) close enough to ug we have u € Isom(E; F), which is equivalent to
showing that ug'u € Isom(E; E).

If f € L(E; E) satisfies || f|| < 1, the map 1 — f is invertible (its inverse
is 3500 o ™). Setting uglu=1— f we get f = ug up — ug u, whence

I£1 < llug ™ Hlwo — ull,



12 0. Background

showing that ug 'u (hence u) is invertible for ||up — u|| < 1/|jug || [Car71,
theorem 1.7.3].

To show differentiability, one can use the explicit formula for the inverse
of a matrix in finite dimension (cf. 0.2.8.2), or proceed as follows in arbitrary
dimension:

$(f+u)—d(f)+ flouof t=(f+u)—f 1+ flouof?
=(f+u) M (f+u)((f+u) = fP 4 flouo f7Y)
=(f+u) ' (1-1—uof l4uof l4uoflouof
=(f+u)"Huo frouo 1),

whence

l6(F +u)— () + frouo fH < I(F +w)~ Il £~

(cf. 0.0.10). But ||(f +u)~||||f~||? is bounded for ||u|| small enough, so
we get

l8(f +u) = $(f) + F L ouo f72| = o(||u]]). m|

0.2.10. Higher differentiability class. If f is C! on an open set U C E
and f':U — L(E; F) is its derivative, it makes sense to ask whether f’ is
differentiable, since L(E; F') is a Banach space (0.0.10).

0.2.11. Definition. If (f')'(z) € L(E; L(E; F)) exists for all z € U, we
say that f is twice differentiable and set f'(z) = (f')(z). We say that f
is (of class)C? if f" € C°(U; L(E; L(E; F))).

0.2.12. Let E, F and G be Banach spaces. The space L(E, F;G) of con-
tinuous bilinear maps from E x F into G is isomorphic to L(E; L(F; G’))
[CarT1, 1.1.9]. O

This allows us to state the following result (see [Dix67, p. 356|, or [Car71,
theorem 1.5.1.1}):

0.2.18. Theorem (Schwarz). If f : U — F is twice differentiable at a
point a, the second derivative f"(a) € L(E, E; F) is a symmetric bilinear
map, that 13, for every h,k € E we have

(£"(a)h)k = (f"(a)k)h. =)

0.2.13.1. Second derivative of a composition. The second derivative of a
composition of maps h o g is given by

(ho9)"(2) = K"(9(2)) o (4'(2),4'(2)) + 1'(9(2)) o g"(2).

This follows from 0.2.8.1 and 0.2.8.3 [Car71, equation 1.7.5.1].
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0.2.14. We define CP(U; F) analogously, as the set of p-times differentiable
maps, or maps of class CP. We also let

C™(U; F) = ﬁ CP(U; F)

p=1

be the set of maps of class C*, or differentiable infinitely often.

0.2.15. Properties of maps of class C?. This section generalizes 0.2.9.
0.2.15.1. A composition of maps of class C? is of class C?.

0.2.15.2. If f,g € CP(U; F) and X € R, the functions f + g, Ag and (when
it makes sense) fg are of class C?. Every polynomial map is C*.

0.2.15.8. The space L(E1,...,E,; F) of continuous n-linear functions is
contained in C®(Ey X - -- X En; F).

0.2.15.4. Amap f: U — Fy x--- X F,, is of class C? if and only if each

component f; = p;o f is.

0.2.15.5. Amap f:U — F, where U € O(Ey X - -- X E,), is of class C? if
and only if all its p-th order partial derivatives exist and are continuous.

0.2.15.6. The map ¢ : Isom(E; F) — Isom(F; E) defined by ¢(u) = u~! is
of class C°.

Throughout this book objects will be of class CP, for p > 1, but the
value of p won’t always be explicitly mentioned.

0.2.16. Example: bump functions

0.2.16.1. Proposition. For every integer n and every real number § > 0
there exist maps ¢ € C®°(R"; R) which equal 1 in B(0,1) and vanish in
R"\ B(0,1+ §).

Proof. Consider the function ¢ : R — R defined by

-1 .
¢(t)={exP(m:_tj) ifa<t<yd,
0

otherwise.
It is well known (and the reader should check) that ¢ € C°(R;R). Inte-

grating ¢ and normalizing we get a function § € C*°(R) defined by
J o dls)ds
B i) j: #(s)ds ’

it is clear that 6(t) = 0 for ¢ < a and 6(t) = 1 for t > b. Now take a =1
and b = (1 + 6)%; the function n(t) = 1 — 4(¢t) is C*°, equal to zero for

6(t)



14 0. Background

t > (1+ 6)? and equal to 1 for ¢ < 1. Finally set y(z) = n(||z||?). Since
z — ||z||2 is C, the function ¢ satisfies the desired conditions.

SV R

“1-8

Figure 0.2.16
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0.2.17. Diffeomorphisms and the inverse function theorem. The
proofs of the results quoted here can be found in [Dix68, §47.4 and 47.5|,
except for 0.2.22, which is in [Car71, 1.4.2.1].

0.2.18. Definition. Let £ and F be Banach spaces, U Cc Eand V Cc F
open sets. A map f: U — V is called a CP diffeomorphism (p > 1) if f is
bijective and both f and f~! are of class CP.

0.2.19. Proposition. If f : U — V 15 a CP diffeomorphism, we have
f'(z) € Isom(E; F) and (j”(a:))—_1 = (f~Y)'(f(z)) for every z € U.
Proof. Just differentiate f~1 o f =Idg and fo f~! =1IdF, to get

Y (f@) o fa)=1dz  and  f(z)o (F ) (f(=) = Wp. O

0.2.20. Definition. A map f : U — V (of class C? for p > 1) is regular
at z if f'(z) € Isom(E; F). It is regular in U if it is regular for every z € U.

0.2.21. Example. The map f: R* x R — R? defined by
f(p,0) = (pcosb, psinb)

(polar coordinates) is regular. Its jacobian matrix

1 gy _ [ cosf —psinf
f'(e%) = <sin0 pcosﬂ)
has determinant p # 0. The map f is not a diffeomorphism (since it is
periodic in §), but its restriction to R* x ]0, 2~ is.
More generally, diffeomorphisms are regular, and regular maps are locally
diffeomorphisms:

0.2.22. Inverse function theorem [Car71, 1.4.2.1]. LetU and V be open
subsets of Banach spaces E and F, respectively, and f € C?(U;V) a map
reqular at zo € U. There exists an open neighborhood U' C U of zo such
that the restriction of f to U’ is a CP diffeomorphism from U’ onto f(U’).

O

0.2.22.1. Even if f is everywhere regular it need not be injective (example
0.2.21).

0.2.23. Definition. Let E and F be Banach spaces and U an open subset
of E. A CP map f : U — F is called an immersion at z if f'(z) is injective,
and a submersion if f'(z) is surjective.

The two fundamental theorems below express the fact that submersions
and immersions are locally, and up to diffeomorphisms of the domain or
the range, equivalent to surjective or injective linear maps. In other words,
the local behavior of the function is governed by its derivative.
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0.2.24. Theorem [Dix68, 47.5.3]. Let U C R™ be an open set and f :
U — R" a map of class C?, and assume f 13 an tmmersion at z. There
ezist open sets V € Oy(5)(R") and U’ € O,(U) and a C? diffeomorphism
g:V — g(V), where g(V) C R" is open, such that f(U') C V and
go flur cotncides with the restriction to U’ of the canonical injection R™ =
R™ x {0}"~™ — R". O

0.2.25. Example. For m = 1 and n = 2 we have an arc of curve in R2:

f)

(U
V,
, ’
< UN
L

1
-

L
an)

5 &3 R
2
R’
g(v)

Figure 0.2.25.1

0.2.25.1. Remark. The local charac-
ter of this statement, that is, the need
to restrict the domain, can be clearly
seen in the figure on the right: if there
is a double point and U’ is too big,
the composition g o f cannot be one-
to-one. Figure 0.2.25.2
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0.2.26. Theorem [Dix68, 47.5.4]. Let U C R™ be an open set and f :
U — R" a map of class CP, and assume f 1s a submersion at z. There
ezist an open set U' € O,(U) and a CP diffeomorphism g : U' — g(U’),
where g(U') C R™ is open, such that fly: = 7 o g|lys, where # : R® — R™
1s the canonical projection.

— — - ————— —— |- ——

Y S

f(x)=m(g(x)
Figure 0.2.26

Theorem 0.2.26 allows one to solve the equation f(z) = f(z) in U’. The
solution is z € g~1(x~1(f(z))); but 7~ 1(f(z)) is the intersection with
g(U") of an (n—m)-dimensional affine subspace of R*, and g~ (7~ (f(z)))
is the image of this subspace (intersect g(U’)) under the diffeomorphism
g~ 1. This is the so-called implicit function theorem [Car71, 1.4.7.1].

0.3. Differential Forms

The definitions and notations in this section will be slightly modified in
chapter 5 (see 5.2.7).

0.3.1. Definition. Let £ be an n-dimensional vector space, where n is
finite, and U an open subset of E. A CP differential form of degree r,
or r-form, on U is a CP” map a : U — A"E*. We denote by Q;(U) =



18 0. Background

CP(U; A"E*) the vector space of CP differential forms of degree r on U; we
also write 2"(U) when the differentiability class is not specified.

0.3.2. The vector space
n
9;(v) =P WO
r=0

is an associate, anticommutative algebra with the product defined by
(a A B)(z) = a(z) A B(2)
for every z € U.

0.3.3. Remark. We have Q9(U) = CP(U) = CP(U; R), since A°E* = R.

0.3.4. Example. Let U C E be an open set, where E is an n-dimensional
vector space, and fix a basis {ey,...,¢e,} for E and the dual basis {e], ...,
ey} for E*. Take f € CP(U) and a point z = (z1,...,%,) € U. The map

~3f .
e

2 f(e) = ) el
1 1

from U into A'E* is of class CP~?, so it belongs to Q) _, (E).
0.3.5. Expression in a basis. Consider a form a € Q;(U). Since o(z) €

ATE* for z € U and the e} form a basis for A" E* (0.1.3), there exist scalars
ai,..i,(z) = as(z) such that

a(z) = Z o, () el A Ae .
161 <<i,<n
0.3.5.1. Let’s define e} = ¢j, A---Ae; € O (R") (by abuse of notation)
as the constant map z — e A---Aej . Then we can write
0.8.6 o= Za;e; = Z @iy..i, €5, N A€,
I 11< <1y

and a € Q7(U) if and only if a;y € CP(U) for every I.

0.3.7. Pullbacks

0.3.7.1. Proposition. Let U C E and V C F be open sets, f € CP(U;V)
withp > 1 a map and B € Q;,_,(V) a form on V. The map f*B defined

on U by

(7*8)(=) = (£'(=))" (B(f(=)))
for z € U is an r-form of class p— 1. The map f*: Qp (V) — Q;_,(U)
18 linear.
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Proof. One writes f*f : U — A"E* as the appropriate composition of
maps [Car70, 1.2.8]; in particular, the map in 0.1.8 gives a map

L(E;F)> f— f* € L(A"F*;ATE")
which is polynomial, hence C*°. a

0.3.7.2. Another proof consists in calculating in coordinates; this gives a

practical way to compute f*f.
Let {f1,..., fm} be a basis of F. We have

Bly) = Br(v)fi
for every y € V, where f; € C’P‘I(VI). Thus, for z € U, we have
(£'(=)"B(£(2) = D_(Bro =) (F'(=)" f;-
If ff = ff, A+ A f we have, for :1,...,11.,. € E:

(F'@) A A fE ) ey ur)
= (f:l A A f:,)(f'(z)(“l)’ EEY) f,(z)(“r))
= ((£5, o @) A A(F7 0 f) (@) (us .-y ur).
Each f; o f : U — R satisfies

(f5, 0 )'(z) = £ (f'(2))s
and, since f; is linear and thus equal to its derivative, we get the formula

03.8 (f'(2) BN = D (Biri, o N@)FLo0f) A A(fE o f).

1< <4y

0.3.9. We have
ffla+p) = fra+ B,
F(aAB)=f*anf*B.

Thus f* is an algebra homomorphism.
0.3.10. Remarks

0.8.10.1. If € Q2_,(V) we have f*(8) = Bo f.

0.3.10.2. If E = F and B(z) = b(z) e] A --- A e},, where n is the dimension
of E, we have

F*Bly) =aly)ein---Aey
for a = J(f)(bof), where J(f) is the jacobian of f € CP(U; E) (cf. 0.2.8.9).
This follows from 0.1.12.1. In other words, setting

0.3.10.3 wo=¢€e;A---Aep
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(cf. 0.3.5), we get
0.3.10.4 f*(bwo) = (bo f)J(f)wo.

If E, F and G are finite-dimensional vector spaces, U C E, V C F and
W Cc Gopensetsand f : U —» V and g : V — W maps of class C?, we
have

0.8.10.5 (gof)*=f"og"

0.3.11. Densities on an open set. Notice that, if E is a finite-dimen-
sional vector space, Dens(E) is an open half-line; indeed, if we fix §, €
Dens(E), we have Dens(E) = R 6o, by 0.1.29.1. Thus the following defi-
nition makes sense:

0.3.11.1. Definition. A density of class C? on U € O(E) is a map é§ €
C?(U; Dens(E)). The set of such densities will be denoted by A, (U).

Once we’ve fixed §o € Dens(E), giving a density § is the same as giving
f € CP(U; R%) such that § = f§. For example, if U € O(R?), we define
(and still denote by 8) the canonical density

U 3 z +— 6o(z) = 8o € Dens(R?)
(see 0.2.16). And every § € A (U) will be of the form fé,, with f €
C?(U;R%).
Following 0.1.29.3, 0.3.7 and 0.3.10.4, we define, for every f € CP(U;V)
and § € A,_;(V), where U C E and V C F are open, the pullback

0.5.11.2 frféen, ,(U),

provided that f is regular. If E = F = R9, we have the formula

0.3.11.8 £*(b80) = (bo £)|I(£)|o-
We also have
(go f)* =f*og".

0.3.12. Exterior differentiation

0.3.12.0. Theorem. Let E be an n-dimensional real vector space andU C E
an open set. There ezists a unique operator d : Qg (U) — Q_;ti(U), for
r=0,1,...,n— 1, such that:

(i) d is addstive;

(ii) d(aAp)=dan B+ (—1)4E*a Adp;

(iii) d(de) = 0;

(iv) df = f' for every f € Qg(U).

This operation is called exterior differentiation, and do 1s called the exterior
derivative of .
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Proof. We just have to calculate in coordinates as in 0.3.6. Any a € Q2,,(U)
can be written o = ), ae}, with oy € CP(U). If d is additive and satisfies

(i1) we must have
do=) darAef+ Y arde].
1 1

Now consider e = e, A A€} , where I = (44,...,1,). Since e}, denotes the
i-th coordinate function on E in the basis {e1,...,¢en}, we get (e )’ = e},
(0.2.8.3), whence ¢, = de} , by (iv) and because the restriction of e}, to U
belongs to 29(U). Then de}, = 0 by (iii), and we’re left with

0.8.12.1 d(Z a;e}) Zda,/\e, Za,/\e,,
I

where af is defined as in 0.3.4.

This takes care of uniqueness. One can check directly that 0.3.12.1 satis-
fies (i), (ii) and (iv). As to (iii), it suffices to show that if f € Q_g(U) (with
p > 2) we have d(df) = 0. But

af ~(\~ 9*f .
d( 3 )_Z(Z az,-ax,-ef) —Zzaz,ax ¢ Aeis

=1 ‘j=1 =1 j7=1

and this is zero because ¢ A e} =0, e;Nne; =—e; A e;-, and, by Schwarz’s
theorem (0.2.13),
a%f . 8%f
dz;0z; dz;9z;
The operator d satisfies do f* = f* o d, that is, the following diagram
commutes:

O

a;(U) < a5(v)
0.3.13 d d
o) L-ati(v)
The expression given here for the exterior derivative resorts to the canonical

basis for A"E*. One can instead use the following intrinsic formula, which
is taken as a definition in [Car70, 1.2.3.1]:

0.3.14. Proposition. If a € Q7(U) and &,..., & are elements of E, we
have, for any z € U:

da(z)(€or- 1 &) = 2 (~1)'e () (&) €or s ir -1 60),

where a'(z) denotes the derivative of a : U — ATE* and (&0, .., &, ..., &)
stands for (60; seey fi-—l; €i+1a ér)
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In fact, take @ = ), ase}; the map @ : U — A"E* has the ay’s for
coordinate functions, hence its derivative a'(z) is the linear map £ — A"E*
having for coordinate functions

3“’( Jei.

5 > a(z) =
Thus, for u € E, we have

@ (@)(0) = St (a)(wlet = (3 S aheiw) ) e

I k=1

in particular, since o'(z)(u) € ATE*, we have

o (2)(6)(Eoreer s €)= Z(Z 2] 5 60) i(6or -1 Boenns )

On the other hand, consider da(z)(&o,...,&;). By 0.3.12.1 we have
da(z) (o - .-, &) = D _ () A € (€0, ..., &)
I

—Z}((Z"’“":’) ) (o s 80
(5t ns))

Now, if e; = €], A---Aej , we have (0.1.2):

(erAef, A A )(or.n &)= D eoerlbo(o))--- el (Eo(r))-

OES, 41

Grouping together terms with same o(0) = 7, we get

(e; A 6;)(50, seey é'r) = Z e;(ft) Z eaea (66(1)) oo e:,(sa(r))
t=0

CESy41
o(0)=1

Since o(0) = i, the permutation o maps {1,...,r} onto {0,...,7 — 1,
t+1,...,r}. Consider the map 7 € §,4; defined by

% if7=0
T(f)=97-1 f1<5<y,
J ift+1<j5<r

We have (0 o 771)(¢) = 0(0) = 1, so that 00 77 = 0~ leaves ¢ fixed and
permutes the other indexes. Furthermore

e, (60(1)) ... e:'(é'a(,.)) = e:; (é’,r(o)) - e:r(é'ar(,.)),

where o'(¢) does not appear on the right-hand side.
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Since €y07-1 = o' = €4€,~1 and &,-1 = (—1)* (there being % transposi-
tions), we get

Y eoet (Eoir)) - 65 (Ear) = (<1 D eare}, (bor(0) -+ - €, (born))s
sEsr oI€s

and
(e; A e’;)(&,, ooy f,-) = Z(—l)"e;(&)e;(fo, ceey éi) ceey fr))
=0

whence the equality

dae) (&1 &) = 21 (2 (2 J2Lei e )i e s B 60)

=0 I k=1

= D1 @ (E) (G- i ).

0.3.15. Continuous families of differential forms

0.3.15.1. Definition. A continuous, one-parameter family of r-forms of class
C?onU € O(E) is a continuous map a: J XU — A"E*, where J C Ris a
(not necessarily open) interval, satisfying the following conditions: for every
t € J, the map z — a(t,z) is in CP(U; A" E*); and the p-the derivative of
z +— a(t, z) is continuous on J x U.

This implies that the restriction a; = al{t}xy, for every t € J, belongs
to Q,(U).
0.3.15.2. Example. The definition is satisfied if « € C?(J x U; A" E*).

Now let o be a continuous, one-parameter family of r-forms of class C?
on U, defined for some interval J C R. Let a and b be in J, and a < b.
Since, for every z € U, the restriction o|ry {z} is continuous, we can define

b
0.8.15.8 / a(t, u) dt

as the ordinary integral of a function of one real variable with values in a
finite-dimensional vector space (0.4.7; here the range is A"E*). Thus we
can consider the map

. b
0.3.15.4 u / a(t,u)dt
a

from U into A" E*; this map is denoted by f: o dt.

0.3.15.5. Proposition. The map f: a; dt taking u € U into f: at, u) dt
belongs to Q2 (U).

Proof. This follows by differentianting under the integral sign (see 0.4.8).
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0.3.15.6. Lemma. Let « be a continuous, one-parameter family of r-forms
of class C*, where r 1s less than the dimension of E. For every a,b € J we

have
b b
d(/ dt) =/ da; dt.

This equality makes sense because, since a; € Q2 (U), the exterior deriva-
tive () € Q5 (U) is defined. Similarly, by 0.3.15.5, the map [ . dt is
in 07(U), so d(f: dt) is also defined and belongs to Q5! (U).

Proof. Let &o,..., & be elements of E. By 0.3.14, we have

p=(s([ [ aa))@ o &)

= ( 1) (/ a(t $) dt) (6t)(€0’ sé\ia---;fr)s
=0 a
where ( f: a(t, z) dt); is the derivative of

b
z - / a(t, z)dt

with respect to z. By 0.4.8 and 0.4.7, we obtain
D= ;(—1)‘ (/ab %%(t, z)(&) dt)(fo,...,éi,...,ﬁ,)
= Zr:(‘l)‘ (/bg—:(t, ) (&) (6or-- -1 &, 0 &) dt)
/ (Z( 52626 (o or B 1))

applying 0.3.14 and again 0.4.7, we get

D= Lb(dat(x)(fo,...,f,))dt= (/abdat dt) (z)(€0y---» &),

concluding the proof. O
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0.4. Integration

A systematic reference for the whole of this section in [Gui69].

The theory that we’ll need for manifolds is that of Radon measures. This
theory works for locally compact topological spaces X which are countable
unions of compact spaces. Some texts also require X to be metrizable,
in order for a certain lemma [Gui69, p. 37] to be true; but this lemma is
automatically true for manifolds (cf. 3.3.11.1).

We denote by K(X) the space of functions f € C°(X) having compact
support. A (Radon) measure on X is a positive linear form u on K(X)
[Gui69, 1.12.3]. The domain of definition of this form can be extended to
a space L!(X) D K(X), called the space of functions on X integrable for
u. This space will be denoted by

0.4.1 LY(X) = CIPY(X).

For f € Cirt(X) we write

0.3 ulf) = /X fu.

0.4.3.1. On R"™ there is a canonical measure, called the Lebesgue measure
po [Gui69, example on p. 10]. For f € K(R") the integral uo(f) coin-
cides with the ordinary (Riemann) integral. The Lebesgue measure is also
defined for U € O(R"™).

0.4.3.2. If ps is a measure on X and @ € C°(X; R, ), we can define a measure
ap by (ap)(f) = u(af). If f € Ci2¥(X) we have af € CI**(X) [Gui69,

1.11.1), and
[ ttan) = [ @hn

0.4.4. Sets of measure zero. If y is a measure on X, one has the notion
of a subset of X of measure zero [Gui69, p. 10]. For the Lebesgue measure,
one can take the following criterion as a definition:

0.4.4.0. Definition. A set in R™ has sero Lebesgue measure if it can be
covered by a countable family of cubes whose volumes add up to less than
€, for e arbitrarily small.

0.4.4.1. Proposition [Gui69, p. 11]. A countable union of sets of measure
zero has measure zero as well. O

0.4.4.2. Proposition. The set R™ = R™ x {0} c R, for m < n, has
Lebesgue measure zero in R™. In particular, U NR™ has measure zero for
any U € O(R™). O
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0.4.4.3. Proposition. Let a be a positive function on X and u a measure on
X. If A has pu-measure zero, it has au-measure zero.

Proof. Write X as a countable union of compacts and apply 0.4.4.1 and
[Gui69, definition on p. 10], together with the fact that continuous functions
are bounded on compact sets. O

0.4.4.4. A property is said to hold u-almost everywhere (or just almost
everywhere) if it holds for all but a set of measure zero of points. We’ll
also talk about functions defined almost everywhere.

0.4.4.5. Proposition. Let U € O(R") and f € CY(U;R"). If A C U has
Lebesgue measure zero, so does f(A).

Proof. By 0.4.4.1 we can assume that A is contained in U’ c U, where U’
is compact and U’ is convex. Let k be an upper bound for ||f'|| in U’. By
0.2.6, f is k-Lipschitz; in particular, the image under f of a cube of volume
o in R™ will be contained in a cube of volume k™a, which proves the result
by 0.4.4.0. ]

0.4.4.6. In particular, if U € O(R”) f € C1(U;R") and n > m, the image
f (U ) has Lebesgue measure zero in R™. It suffices to consider the map
f: UxR"» ™ — R" defined by f(a:, y) = f(z), since Ux{0} c R™"xR"™™
has measure zero.

0.4.5. If X and Y are spaces with measures u and v, respectively, we define
on X XY a canonical product measure u ® v [Gui69, 1.7|. For instance,
if p,, is the Lebesgue measure on R"™, we have pipmtn = fym ® py [Gui69,
example on page 19]. Product measures satisfy Fubini’s theorem:

0.4.5.1. Fubini’s theorem. If f € CL’gU(Xx Y) we have, for v-almost every
yey,

{z - f(, y)} € C,i,"t(X).
Moreover, the function defined v-almost everywhere by y — fx f(z,y)p s
in CIY(Y'), and we have

/}{xyfu®v=/y</xf($,y)u)u a

0.4.6. Change of variable formula. Consider U, V € O(R") and a
diffeomorphism f : U — V (0.2.18) Let J(f) be as in 0.2.8.9, and let uo be
the Lebesgue measure on R™. If a € CitY(V), we have

(ae )|I(f)] € Cit(V),
and

[ @enlaDluo= [ suo
U v
Proof. See [Gui69, p. 33|. O
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0.4.7. Vector-valued integrals. All of the above holds without change
for functions with values in a finite-dimensional vector space E. Let u be
a measure on the domain X, and E* the dual of E. We define Ci**(X; E)
to be the space of f : X — E such that

0.4.7.1 €ofe C’,i‘"t(X) for every £ € E*.

If f € CinY(X; E) we define [, fue E by

0.4.7.2 8(/x fu) =/x(§°f)u

for all £ € E*.
0.4.7.8. If {e;}i=1,..,n is a basis for E and f = (f1,..., f») in that basis,

we have
/xfu=(/xf1#,---,/xfnu>-

0.4.8. Differentiation under the integral sign

0.4.8.0. Theorem. Consider open sets U € O(R™) and A € O(R?®), and a
map U X A — E 1into a finite-dimensional normed vector space E. Let pu
be the Lebesgue measure on R™, and assume that f satisfies the following
conditions:

(i) for any X € A, the map z — f(z,A) belongs to CiPY(U; E);

(i) for any z € U, the map A — f(z, A) 1s differentiable and its derivative,
denoted by %{, 18 continuous on U X A;

(iii) there ezists h € CiPY(U) such that

e, ,\)“ < h(z)

for every A.
Then:

(a) the map z+— §L(z,)) belongs to Cirt(U; L(R?; E));

(b) the map A — F()) = fU f(z, A)ps 1s differentiable;

(c) differentiation under the sntegral sign is allowed:
or _
"

Proof. This follows from [Gui69, p. 26] by applying 0.2.8.6 and 0.2.8.7. O

of
v a—)‘-(:c, A)M

0.4.8.1. Remark. Conditions (i) and (iii) are satisfied if, for instance, the
support of z — f(z, A) is contained in a compact subset of U independent
of A.



28 0. Background

0.4.8.2. Theorem 0.4.8.0 gives rise, by recurrence, to similar results in class
CP. There is also a result in class C°.

0.5. Exercises

0.5.1. Let E be a d-dimensional oriented Euclidean vector space. Show
that, for every p (0 < p < d), there exists a map

*: APE* — A4PE*
characterized by the condition that

(*a)(Zp+1s -1 %) = a(Z1,...,%p)

for any positive orthonormal basis {e;}i=1,..,4 and any a € APE*. Calcu-
late * o * as a function of d and p.

0.5.2. Let E be a Euclidean vector space and (- | ) the canonical scalar
product on E*. Show that, for every p (0 < p < d), the formula

llax A -+ A apl|? = (det((es | @;)))*

defines a Euclidean structure on APE*, where det((c; | @;)) indicates the
determinant of the matrix whose elements are the (a; | a;).

0.5.8. Liouville’s theorem. The purpose of this exercise is to character-
ize the differentiable maps of R" (n > 3) that are conformal, that is, whose
derivative is, at every point, an angle-preserving linear map.

0.5.3.1. Definitions. A linear map A : R™ — R" is called a similarity if
||Az|| = k||z|| for some real number k # 0 and all z € R"; it is easy to
see that A is a similarity if and only if A preserves angles. A differentiable
map f : U — R"™, where U is an open subset of R", is conformal if f'(z)
is a similarity for every z € U. It is an inversion if there exists a point
c € R"\ U and a real number a # 0 such that
o
f(z)=c+ o= o (z—¢)
for z € U; ¢ and a are called the pole and power, respectively, of the
inversion [Ber87, section 10.8]. Finally, f is a hyperplane reflection if there
exists a hyperplane H C R" such that f(z) = 2p(z) — z, where p(z) is the
unique point in H whose distance to z is minimal.

least. Show that f is a similiarity composed with one of: (a) a translation;
(b) a hyperplane reflection; (c) an inversion. Work in the following way (for

0.5.3.2. Now assume that n > 3 and that f : U — R" is of class C® at



5. Exercises 29

details see [Ber87, 9.5.4]): show first that the function u(z) = | f'(=) "—1
satisfies

3%u d%u Z ou\?
—— 3 " —_— = p, =2
dz;0x; 0 fori#y 32?2 ’ ; (ax,-) P

for some constant p (the first two formulas say that Hessu = p|| - 12,

cf. 4.2.2, and the last that ||Vu||2 = 2pu). Deduce from this that, if u is
not a constant, it is of the form

U= g-z:(x; - 04)2,
t

where the a; are constants. If u is a constant, show that we’re in case (a)
or (b); otherwise show that we’re in case (c).



CHAPTER 1

Differential Equations

Apart from their intrinsic interest and their relevance to me-
chanics and physics, differential equations are also studied as
an essential tool in differential geometry (see 7.2.3 and 8.6.13,
for example). We start by defining the notion of a differential
equation and that of a solution, and by reformulating these
concepts in terms of vector fields and integral curves. In 1.2.6
we prove the local existence and uniqueness of integral curves.
We also discuss the problem of extending an integral curve into
a maximal one (section 1.3).

We continue by studying the behavior of solutions as a func-
tion of the initial condition or of parameters appearing in the
equation (1.2.7 and 1.4.7). This is carried out in two steps: first
we discuss vector fields, that is, differential equations z' = f(z)
independent of time (section 1.2). Then we use a technical
trick to generalize to the case of equations z' = f(z,t) (section
1.4).

In section 1.6 we discuss linear equations, which enjoy the
important property that their solutions exist over the whole
interval of definition of the equation. We also state without
proof some results which, although not used in the sequel, are
so fundamental that we feel we should include them, for the
sake of readers with no background in differential equations.
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1.1. Generalities

Let E be a real Banach space and ¢ a map from an open subset of R into
E. If ¢ is differentiable, its derivative ¢'(t) at ¢ is a linear map from R
into E, and thus of the form A — AV for some vector V C E (namely
V = ¢'(t)(1), 1 € R). In this chapter we will identify the derivative ¢'(t)
with the corresponding vector V, that is, we will consider ¢'(E) as an
element of E, and the map ¢’ as having values in E instead of L(R; E)
(cf. 0.2.4).

1.1.1. Definition. Let U C R x E be open and f : U — E a continuous
map. A solution of the first-order differential equation

d
d_:= f(z1t)

is any map ¢ : I — E, where I C R is an interval, such that ¢ is of class
C?! and for every t € I we have (t,¢(t)) € U and ¢'(t) = (¢, ¢(t))-

In fact it is enough to assume that ¢ is continuous, for then ¢’, being a
composition of continuous maps, will also be continuous.

In the case that E = E; x --- x E,, is a product of real Banach spaces,
U is an open subset of R X E; X --- X E, and f is a continuous map
from U into E, with components f; : U — Ej;, a solution of the equation
dz/dt = f(t,z) is an n-tuple of continuous maps ¢; : I — E;, where I C R
is an interval, such that for every t € I we have (¢,$1(t),...,¢a(t)) € U
and

¢:(t) = fi(t1 ¢i(t)1- LX) ¢’n(t))

Thus we have a system of n first-order equations in n unknowns, often

written

dz:
%=f.-(t,z1,...,x,,) for1<:<n.

1.1.2. Higher-order differential equations. Let E be a Banach space,
UcCRx E" an open set and f: U — E a continuous map. An n-th order
differential equation is an equation of the form

dz_ (, dz iz
din g g1 )

A solution of such an equation is a map ¢ : I — E, where I C R is an
interval, such that for every t € I we have (t,4(t),...,¢(*"1(t)) € U and

™ () = £(t,6(t), ..., 4"V (2)).

Here again we have identified derivatives with vectors in E.
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1.1.3. Proposition. Every n-th order differential equation can be reduced
to a first-order equation.

n n—1
Proof. Let ZT: =f (t, d—x,..., (fitt——lz> b‘f an n-th order differential

equation, and set

dz,_2 _ a1z
= T

Solving the given differential equation is the same as determining C* maps
¢, $1, ..., pn—1 from an interval I C R into E such that

¢'(t) = ¢1(2)
$1(¢) = ¢2(¢)

t—2(t) = $n-1(t)
i;—l(t) = f(t,¢(t), ¢1(t), ceey ¢n—1(t))'

Calling F : U — E™ the map with coordinate functions

fl(t,zl,...,z,,) =z

fn—l(t’ Z1y .. -;zn) =ZTp—-1
fn(t:zla-uszn) = f(tazl)---;zn)

and setting X(¢t) = (z1,...,%n), we have reduced the problem to solving
the first-order differential equation

dX

— = F(t, X(¢)).

Thus, from the theoretical point-of-view, only first-order equations need
concern us.
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1.2. Equations with Constant Coefficients.
Existence of Local Solutions

Here we discuss differential equations of the form dz/dt = f(z), where f is
a continuous map from an open subset U C E into E.

1.2.1. Definition. Let U C E be open. A vector field on U is a map
f:U—E.

In practice we represent vectors in a vector field as arrows from each
point z to the point z + f(z). This makes geometric sense, especially in
view of the notion of flows (see figure 1.2.2).

Figure 1.2.1

| From now on we assume E is finite-dimensional.

If the vector field f is continuous, we can associate to it the differential
equation z' = f(z).

1.2.2. Definition. A C? integral curve of a vector field f is a C? curve
(J,&) in U (0.2.9.1) such that 0 € J and a'(t) = f(«(t)) for every t € J.
An integral curve a is said to have initial condition z¢ if a(0) = z,.

1.2.2.1. Remark. We require that 0 € J just for convenience in the state-
ment of initial conditions, but this requirement is not essential. It’s possible
to work with arbitrary J and talk about an initial condition e(t) = z¢ for
teJand zo €U.
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a(l)

Figure 1.2.2

1.2.3. Definition. Let f be a vector field on U. A local flow of f at zg
consists of a neighborhood U’ c U of zo, an open interval J containing 0
and a map a : J X U’ — U such that, for every z € U’, the restriction of
a to J x {z} is an integral curve with initial condition z.

1.2.4. Example. Let E = R? and let U be the open triangle determined
by the points O(0,0), A(8,0) and B(4,4). Consider the constant map
f:z— e; taking every z € U into ¢; = (0, 1).

The differential equation dz/dt = e; can easily be integrated; the integral
curve initial condition zg is given by z = te; + zo, but the values of ¢ must
be such that the vector tey; +zo is in U. Thus the integral curve with initial
condition zo = (4, 2) is the map a : |—2,2[ — U given by a(t) = te; +zo. If
the initial condition is z; = (2, 1), the interval of definition of the integral
curve is |—1,5[. It is clear that for any point in U it is possible to find an
integral curve having that point as initial condition.

A

=
JANS/AN
*1 \

'

Figure 1.2.4
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Consider again the point zo = (4,2). Finding a local flow at zo is
the same as finding a neighborhood U’ of z such that, for any y € U,
the integral curve with initial condition y is defined on some interval J
independent of y.

For example, if we take u’ to be the open ball of radius 1 centered at
Zg, there exists a number b > 0 such that every integral curve with initial
condition in B(zg, 1) is defined at least on |—b,b[ = J. On the other hand
the ball U’ = B(zo,\/Z_) is no good, since it contains points arbitrarily
close to the frontier of U, points whose integral curves are only defined on
intervals of the form | — ¢, t;| or | — t2, ¢[, for € arbitrarily small.

1.2.5. Remark. Clearly the existence of a local flow at zo defined on an
interval J does not prevent integral curves through points z € U’ from
being defined on intervals bigger than J. We thus have a problem of ex-
tensibility: see 1.6.1.

1.2.6. Theorem (existence and uniqueness of local flows). Let f be a
k-Lipschitz vector field on U, with k > 0. Let zo be a point in U, leta> 0
be a number such that B(zo,2a) C U, and set |l = SUP ¢ B(20,2a) l7=@)|-
For every b < inf(‘l‘—, 71;) there exists a unique local flow o at z¢ defined on
]—b,8[ x B(zo, a) and continuous on the same set.

If kK = O the theorem is still valid (for ¥ < a/l), but trivial. Indeed,
k-Lipschitz means (cf. 0.0.13.1) that for every z,z' € U we have

1£(2) = 1) < klla ~ 2"l

if k > 0, we get f(z) = constant = v. We’re back to example 1.2.4:
integral curves in B(zo, a) are given by t +— tv + z¢, for any ¢ such that
ltv + zo — zo|| < a, that is, |t| < a/||v]|. But here |v]| =i

Proof. We're looking for a map af(t, z) such that a}(t, z) = f(a(t,z)) and
a(0, z) = z. This is equivalent to having

1.2.6.1 a(t,z) = /0t f(a(y, 2)) du + z.

We’re thus led to considering the map S, that associates to a the function
Sz(a) given by

1.2.6.2 Sz(a)(t) =z + /ot f(a(u)) du.

Solutions of 1.2.6.1 are fixed points of S, that is, maps « such that S;(a) =
a. Thus S;(c) must have values in U, since so does a. Consider z €
B(zo, a) and the space M, of continuous functions o : [—b,b] — B(zo, 2a)
such that «(0) = z. We will show that b can be chosen in such a way
that S; maps M, into Mg; thus S;(a), for o in M, will have image in
B(zo, 2a), hence in U.
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Give M, the norm of uniform convergence (this is why we’re working in
a compact interval [—b, b]—cf. 0.0.8). Since S;(a) is continuous on [—b, b],
there remains to show that ||S;(c)(t) — zo|| < 2a. We have

‘ /0 t f(a(u) du /0 t|| f(a(w)]| du

Now u € [—b,b] implies a(u) € B(zo, 2a), whence || f(a(u))| < I, so that
| S2(2)(£) — zo|| < @+ bl. If we choose b such that

1.2.6.8 b< %,

we will indeed have ||S$(a)(t) - :t:o" < 2a, that is, S;(a) € M,. (Ifl =0,
there is no condition on b.)

Let us try to make S, contracting. To do this we must find an upper
bound for

"S_,,(a) - S.(B) " = sup
[t|<b

"S-‘t(a)(t) - 9’0" < ||z — zo| + <a+

[ 1(atw) - 1(ptw) du

[ Vet - s do

< sup

[t|<b

By assumption, f is a k-Lipschitz field, with k& > 0, so we have
t

[ Hlaw) - pa)] du

Since ||a(u) — B(u)| < |s}l£b"a(U) — B(u)|| = |l — Bl|, we have

| Sa(a) — Su(8)|| < sup
[t|<b

— kbl — 8.

t
|l il
]

Then S, will be contracting, and we will be able to apply theorem 0.0.13.2,
if b satisfies

[|S2(a) — Sz(8)]| < sup
lt<b

1.2.6.4 kb < 1.

Finally, considering conditions 1.2.6.3 and 1.2.6.4, we conclude that, for
b < inf (-‘}, i-), there corresponds to each z € B(z,a) a contracting map
Sz : Mg = Mgz, and M, is a complete metric space, since [—b, b] is compact
and E is complete (0.0.8). Thus we can associate to each z the fixed point
of S,; this gives a map a, : [—b, b] — B(zo, 2a) such that a,(0) = z and

dag(t)
— = flaa(t)

in | — b,b[. We finally define a map a : |—b,b[ x B(zo,a) — B(zo,2a) c U
by setting c(t, ) = az(t). The restriction of o to ]—b,b[ x {z} is the desired
integral curve a,. This gives a local flow at z.
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We still have to check that this flow is continuous. For fixed z the map
a(t, z) is continuous with respect to ¢, but we have to study its continuity
with respect to t and z simultaneously.

Take z,y € B(zo,a) and ¢, s € [—b,b]. We will show that if (¢, z) is close
to (s,y) the number |a(t,z) — a(s,y)| can be made arbitrarily small. We
have

le(t, 2) = als, 9)| < lla(t,2) = as,2) || + lals, 2) = a(s, w)-
Now ||a4(t, )| = || f(e(t, z))| < ! implies
|ex(ts z) — (s, z)|| < Ut — s

(theorem 0.2.6). As for the other term, we have
8 B B s , d

z+ /0 fla(u,z))du—y /0 f(a(u,y)) du

/0 | £ (e(u, 2)) — fa(u,y))| du

||a(s, z) — a(s, y) " =

.

<llz—yll+

Set ||z — ay|| = sup ||a(u, z) — a(u, y)]||; since f is k-Lipschitz and |s| < b,
we get e
""‘(31 z) — (s, y) " <|lz =yl + kbllaz — ay]|.
But this is true for every s € |—b,b[; thus
los = ayll < llz - yll + kbllaz — ay,
(1 - kb)|laz = ay|| < [|lz - y]|.

Since kb < 1, we get |laz — ay|| < ||z — y||/(1 — kb).
This completes the proof of continuity: for any z,y € B(zo,a) and
s,t € |—b, b[ we have

1
[a(t,z) — a(s,y)|| < Ut — s+ m"z—y"- O

1.2.7. Theorem. Any vector field f of class CP admits a unique local
flow, of class CP, at each point of its domain.

Proof. Class C? implies differentiable and locally Lipschitz. Apply theorem
1.2.6 for the existence of a continuous local flow at every point. We will
not prove that this flow is of class C?: see [Lan69, chapter VI, §4]. O
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1.3. Global Uniqueness and Global Flows

Theorems 1.2.6 and 1.2.7 guarantee the existence of integral curves with
given initial condition, under certain circumstances. It makes sense to
ask whether two integral curves with same initial condition coincide where
both are defined, and whether they can be extended to larger intervals of
definition. Uniqueness is assured by the next proposition; for extensibility,
see 1.6.1.

1.3.1. Proposition. Let f be a CP (or k-Lipschitz) vector field defined
on an open set U C E. Two integral curves a; : J; = E and ag: J, -+ FE
(where J; and J; are intervals containing 0) with same initial condition
coincide on Jy N Ja.

This can be interpreted as saying that integral curves do not fork (see
3.5.5).

Proof. Let Q = {t einJz:at) = az(t)}. We have Q C J; N J3 and
Q # 0 (since 0 € Q). We also have Q closed, since

Q = (o1 — a2)"1(0) N (J1 N J2).

Thus, if we show that @ is open in J; N Jz, it will follow by connectedness
that Q = J, N J.

Take b € Q, and consider the maps 8; and B2 given by §;(t) = a;(t + b)
(: =1,2). We have

Bit) = ot + ) = f(es(t+0)) = £ (A:(8)),

so A1 and B2 are integral curves for ¢ in the intervals J; — b and J; — b,
respectively. Now £1(0) = a1 (b) = a2(b) = B2(0) = zo; by local uniqueness
(theorem 1.2.6), this implies that, on an open interval Ji containing 0, the
integral curves §; and B2 coincide. Then o; and oy coincide on Ji + b,
which is an open interval around b. Since this open interval is in Q, we
have shown that Q is open. (]

1.8.1.1. Now suppose that the set of integral curves with initial condition
z is {(ak, ‘I")}kex’ where Ji is the domain of definition of o and K is a
set of indices. Set J(z) = Uk Jr (an open interval), and define «(t), for
t € J(z), to be equal to ak(t) for any k such that ¢t € Ji. This is well-defined
by 1.3.1, and J(z) is the largest open interval on which the integral curve
with initial condition z is defined. The integral curve (J(z),a) is denoted
by a, and called the maximal integral curve with initial condition z.

The following problem then arises: for zo € U, consider the maximal
integral curve z — af(t, zo) with initial condition z¢, and a time ¢; € J(zo).
Since z; = aft;,z0) € U, there exists an integral curve § with initial
condition z;, defined on a maximal interval J(z;). What is the relation
between a and B, and between J(zo) and J(z;)?
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For instance, returning to example 1.2.4 with zo = (3,2), we have an

integral curve a(t,z¢) = z¢ + tey, with t € J(zo) = |—1,3[. Put ¢ =
2 € J(zo) and z; = a(2,z0) = (5,2). The integral curve with initial
condition z; is given by B(r) = z; + rey, with 7 = |—3,1[. Moreover,

B(7) = zo + 21 + Te1 = zo + (2 + 7)e1. We see that J(z;) is obtained by
translating J(zo) by —t; (that is, by —2), and that B(r) = a(r +t1, o) for
7 € J(z1). This situation is general:

1.3.2. Theorem. Let f be a vector field of class CP on an open set U C E,
and take zo € U and t; € J(zo). The integral curve B with initial condition
zy = at1, zo) has mazimal interval of definition J(z1) = J(zo) — t1, and,
for every t € J(zo) — t;, we have (t) = a(t + t1, zo)-

Proof. Consider the function g given by B(t) = a(t + t1, o), which is
defined on J(zo) — t1. We have

B'(t) = &'(t + t1,z0) = f(a(t + t1,20)) = f(B(2))

and B(0) = «(t1, o) = z1, so B is an integral curve with initial condition
z; defined on J(zo) — ¢1. This is the maximal interval of definition for g,
otherwise the integral curve with initial condition zo would have a larger
interval of definition than J(zo). (]

1.3.8. Definition. Let f be a vector field of class C?. We set D(f) =
{(t,:z) e Rx U :te J(z)}. The map a: D(f) — U given by a(t,z) =
ag(t), where a, is the integral curve of f with initial condition z, is called
the global flow of f, and D(f) is called its domain of definition.

We can write
2(f) = U (I(=) x {=});
z€U
we necessarily have {0} x U C D(f), but in general there is no open interval
J > 0 such that J x U C D(f) (see example 1.2.4, but also theorem 1.3.6).
A nice way of formulating the relation f(t) = a(t + t1,z¢) of theorem
1.3.2 is as follows: for every (¢,z) € D(f), set

1.3.4 Gz = at, z).

We can say that G; is a “local” map from U into itself. (If {t} x U c D(f)
the map G; is really defined on the whole of U.) With this notation the
following equation is true, whenever it makes sense:

1.3.5 Gt(thZO) = (Gt o th)zo = Gt+tlx0,

because of 1.3.2. If R x U C D(f), formula 1.3.5 becomes G; o G, = Gy,
for every t,s € R, and it expresses the fact that ¢t — G, is a homomorphism
from the additive group R into the group of homeomorphisms of U. We say
that the G; (¢t € R) form a one-parameter group. In general, for arbitrary
D(f), the G; form a semigroup of local homeomorphisms of U.
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Intuitively speaking, 1.3.5 says that walking along o for ¢; seconds, then
for t seconds, is the same as walking along o for ¢t + t; seconds.

1.8.8. Theorem. If f is a C? vector field defined on an open set U, then
(i) D(f) s open in Rx U, and

(i) a € C?(D(1); V):

Proof. We will show that every point (to, zo) € D(f) has a neighborhood
contained in D(f) on which the flow « is of class C?. Since f is of class C?,
so are the local flows (1.2.7), so we just have to demonstrate the existence
of a neighborhood of (%o, zo) contained in D(f) and admitting a local flow.
The existence of a local flow at zo implies that we can find such a neigh-
borhood for points (0,z9) € D(f). Thus the problem is to pass to points
(to, zo) € D(f), with to € J(zo) arbitrary.

We will say that s € R satisfies property P if there exists an interval
J C R containing s and an open set U’ C U containing zo such that
J x U' c D(f) and a|sxp is of class CP. Let Q,, be the set of t € J(zo)
such that every s € [0,t| satisfies property P. We will show that Q,
and J(zo) have the same supremum. An analogous reasoning will show
that J(zo) and P, = {t € J(zo) : every s € [t, 0] satisfies P } have the
same infimum, and consequently that J(zo) = Qz, U Px,, since Qz, and
P,, are closed in J(zo). This will imply the theorem, since then every
(to, z0) € D(f) has a neighborhood contained in D(f) on which « is of
class CP.

Let b be the supremum of Q,,. We can assume that b < +oo0, otherwise
there is nothing to show (since Q,, C J(zo)). Assume by contradiction that
b < sup(J (zo)); we want to find ¢t > b satisfying property P. Thus we’re
looking for an interval J D b and an open set U’ D z¢ such that J x U’ C
D(f) and a|sxu is of class CP. Every t; < b satisfies property P; thus we
should try to consider an integral curve with initial condition z{, = a(b, zo),
and match it with an integral curve through zo. Now b < sup(J(zo))
implies b € J(z(); thus there exists an open set U"” C U containing z¢, an
interval K = |—a,a[ and a map f: K x U" — U that is a local flow at zj,

We will match this low with a flow whose interval contains 0, by starting
from t; < b, so that ¢; € Q,,. For that it is necessary that the solution «
defined at t; take values in U”, the domain of 8. But a(t, zo) is defined
on J(zo), in particular at ¢ = b, and is continuous there; since U" is <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>