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Global Spacetime Structure 1

1 Introduction
Global spacetime structure concerns the more foundational aspects of general
relativity (e.g. the topological and causal structure of spacetime). Upon investi-
gation, it is often the case that seemingly plausible statements concerning global
spacetime structure turn out to be false. Indeed, even after the shift to a relativis-
tic worldview it seems “we are still somewhat over-conditioned to Minkowski
spacetime” (Geroch & Horowitz, 1979, p. 215). This Element can be viewed
as a kind of manual to help us unlearn what we think we know concerning the
global structure of spacetime. A large number of example spacetimes (with dia-
grams) are central to the presentation and serve to demonstrate just how much
is permitted under general relativity. Along the way, open questions are high-
lighted and periodic exercises can be used to test one’s understanding (sample
solutions are given in the Appendix).
Section 2 concerns the basic structure of spacetime. A number of prelimi-

nary definitions are presented to get things started. The cut-and-paste method
is also introduced, which is used throughout to construct a vast array of exam-
ple spacetimes. Although such spacetimes may seem artificial in some sense,
we find that “the mere existence of a space-time having certain global fea-
tures suggests that there are many models – some perhaps quite reasonable
physically – with very similar properties” (Geroch, 1971a, p. 78). Section 3
covers the causal structure of spacetime. It follows a fairly conventional pre-
sentation of the hierarchy of causality conditions (Hawking & Ellis, 1973;
Wald, 1984). But some nonstandard topics of interest are also explored includ-
ing the so-called Malament-Hogarth spacetimes allowing for “supertasks” of a
certain kind (Earman & Norton, 1993).
Section 4 concerns the singular structure of spacetime. An example sin-

gularity theorem is presented showing a sense in which some “physically
reasonable” spacetimes have singularities (cf. Hawking & Penrose, 1970). This
raises a difficulty in how to sort singular spacetimes into physically reasonable
and physically unreasonable varieties. Two families of conditions are inves-
tigated that are meant to do the sorting. One family primarily concerns the
causal structure of spacetime and forbids “naked” singularities of various types;
the other family primarily concerns the modal structure of spacetime and for-
bids spacetime “holes” of various types. After considering a rich collection of
examples, the upshot seems to be that what counts as a physically reasonable
spacetime is far from clear (Earman, 1995, p. 86).
As we leave old intuitions behind, a rather basic question arises: What

can we know concerning the global structure of spacetime? Building on a
trio of papers from Geroch (1977), Glymour (1977), and Malament (1977a),
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2 The Philosophy of Physics

Section 5 explores the epistemic structure of spacetime. It seems that even
after we have (i) taken into consideration all possible observational data we
could ever (even in principle) gather and (ii) inductively fixed the local features
of any unobservable regions of spacetime, a type of “cosmic underdetermina-
tion” keeps us from pinning down the global structure of the universe. And
if we take seriously the idea that we cannot come to know the global struc-
ture of spacetime through observation, queer possibilities present themselves.
Does our universe allow for “time travel” of a certain kind? Do spacetime
“holes” exist in our universe? This suggests that perhaps we have been too
quick to discount as physically unreasonable some of the more peculiar global
spacetime properties since, for all we know, such properties obtain in our own
universe.
In Section 6, the modal structure of spacetime is explored through the

lens of the inextendibility condition. This is the requirement that the uni-
verse be as large as possible relative to a standard background collection of
spacetimes. But the inextendibility condition would seem to be physically
significant only insofar as the background collection coincides with physi-
cally reasonable possibilities (Geroch, 1970a). And because what counts as
a physically reasonable spacetime is not clear – especially given the under-
determination results just mentioned – it seems natural to consider various
nonstandard definitions of inextendibility in a pluralistic way. Upon investi-
gation, we find that foundational claims concerning inextendibility can fail to
hold up under some modified definitions. For example, it can happen that a
spacetime is “extendible” and yet has no “inextendible extension” – a strange
state of affairs with the potential to clash with various Leibniz-inspired meta-
physical principles in favor of the “maximality” of spacetime (Earman, 1995,
p. 32). In addition, the demand for modified forms of inextendibility can lead
to situations in which a spacetime is forced into having global properties of
interest. A so-called time machine represents one example along these lines,
but other “machine” spacetimes can also be studied (cf. Earman et al., 2016).
Stepping back, we find that the prospect of a clear distinction between phys-
ically reasonable and physically unreasonable spacetimes is more elusive
than ever.

2 Preliminaries
A (general relativistic) spacetime is a pair (M,gab) where M is a smooth,
connected, Hausdorff, paracompact, n-dimensional (n ≥ 2) manifold and
gab is a smooth metric on M of Lorentz signature (+,−, . . . ,−). Under the
assumption of Einstein’s equation (see p. 6), a spacetime is a model of
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Global Spacetime Structure 3

general relativity and represents a possible universe compatible with the
theory. Details concerning the relevant background mathematics (includ-
ing the “abstract index” notation used throughout) can be found in Hawk-
ing and Ellis (1973), Wald (1984), or Malament (2012). Here, we fol-
low Geroch & Horowitz (1979) in avoiding technical machinery whenever
possible.
We begin with the notion of a manifold, which, unless otherwise stated, is

taken to be smooth, connected, Hausdorff, and paracompact (see the Appendix
for basic topological definitions). All of the topological structure of a spacetime
(M,gab) is given by the manifold M; it fully captures the shape of the model.
Locally, a manifold looks like plain oldRn although globally it may have a very
different structure. A number of manifolds are easy to visualize. For example,
consider the sphere S2. Despite its round shape, if one zooms in on the vicinity
of any point, one finds it has the same topological structure as the plane R2

(see Figure 1). Other two-dimensional manifolds include the cylinder S1 × R
and the torus S1 × S1. In addition, the result of taking any manifold and remov-
ing from it a closed proper subset also counts as a manifold. For example, a
new manifold R2 − {(0,0)} can be constructed by excising the origin from
the plane.
We say the n-dimensional manifolds M and N are diffeomorphic if there is

a bijection φ ∶ M → N such that both it and its inverse are smooth. Diffeomor-
phic manifolds have identical topological and smoothness properties. It turns
out that every non-compact manifold of two dimensions or more admits some
Lorentzian metric. One can also show that the compact manifold Sn for n ≥ 2
admits a Lorentzian metric if and only if n is odd (Geroch & Horowitz, 1979).
We also have the useful result that any manifold M × N admits a Lorentzian
metric if either M or N does. And of course, if M admits a Lorentzian metric,
then so does M −C where C is any closed proper subset ofM.

Figure 1 The sphere S2 has the same topological structure as the plane R2 in
the vicinity of each point.
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4 The Philosophy of Physics

Exercise 1 Find a manifoldM and a point p ∈M such thatM andM−{p} are
diffeomorphic.

Each point on a manifold represents an idealized possible event in spacetime
(e.g. one’s birth). The Lorentzian metric tells us how such events in spacetime
are related to one another. Consider a spacetime (M,gab). At each point p ∈
M, the metric gab assigns to each vector ξa in the tangent space of p a length
given by ξaξbgab = ξaξa ∈ R. This creates a type of double cone structure in
the tangent space of each point. Positive-length vectors are timelike and fall
inside the cone, negative-length vectors are spacelike and fall outside the cone,
and zero-length vectors are null and make up the boundary of the cone (see
Figure 2).
One can think of the cone structure at each point as representing the speed

of light in all directions there; timelike and spacelike vectors represent, respec-
tively, velocities that are slower and faster than light. For this reason, we often
refer to these structures as light cones in what follows. Now consider a smooth
curve γ ∶ I → M where I is some connected interval of R. (In what follows,
curves are understood to be smooth unless otherwise stated.) If each of its tan-
gent vectors ξa is timelike according to gab, then we say the curve γ is timelike.
Timelike curves represent the possible trajectories of massive objects. Analo-
gous definitions can be given for spacelike and null curves; a causal curve has
no spacelike tangent vectors (see Figure 3).
Associated with gab is a unique derivative operator ∇a on M that is com-

patible with the metric in the sense that ∇agbc = 0. We say that a given curve
γ ∶ I → M is a geodesic if, for each each point along the curve, the tangent
vector ξa is such that ξa∇aξ

b = 0. One can think of a geodesic as a curve
that is as straight as possible according to a given metric. Timelike geodesics

Figure 2 A three-dimensional double cone structure at the point p. A
timelike vector τ a, a null vector νa, and a spacelike vector σa are depicted.
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Figure 3 A pair of causal curves in a three-dimensional spacetime. One is
timelike (solid line) and one is null (dotted line).

represent the possible trajectories of non-accelerating (freely falling) massive
objects; null geodesics represent the possible trajectories of light. In any space-
time (M,gab), one can always find some open neighborhood O ⊆ M around
any point p ∈M such that any two points q, r ∈ O can be connected by a unique
geodesic whose image is contained in O.

Exercise 2 Find a spacetime (M,gab) and a pair of points p,q ∈ M that can
be connected by spacelike and null geodesics but not by a timelike geodesic.

A curve γ ∶ I → M in a spacetime (M,gab) is maximal if there is no curve
γ′ ∶ I′ → M such that I is properly contained in I′ and γ(s) = γ′(s) for all
s ∈ I. If a maximal geodesic γ ∶ I → M is such that I ≠ R, then we say it
is incomplete. A spacetime that harbors an incomplete geodesic is geodesi-
cally incomplete; otherwise it is geodesically complete. An incomplete timelike
geodesic can be considered a type of singularity since it represents a possible
trajectory of a freely fallingmassive object whose existence is cut short in either
the past or future direction (cf. Geroch, 1968a; Curiel, 1999). By excising points
from the manifold, one can easily create examples of geodesically incomplete
spacetimes (see Figure 4).
Given a spacetime (M,gab), one can use its associated derivative operator
∇a to define the Riemann tensor Ra

bcd where Ra
bcdξ

b = −2∇[c∇d]ξ
a for all

smooth vector fields ξa. Here, the square brackets indicate the antisymmetriza-
tion operation. In this case, we find that −2∇[c∇d]ξ

a = −(∇c∇d−∇d∇c)ξa (see
Malament, 2012, p. 33). The Riemann tensor encodes all of the curvature of
spacetime at each point inM. A spacetime is flat if its Riemann tensor vanishes
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Figure 4 The timelike geodesic γ is maximal but incomplete since it cannot
be extended through the missing point.

everywhere. The contraction of the Riemann tensor leads to the Ricci tensor
Rab = Rc

abc and the Ricci scalar R = Ra
a (see Malament, 2012, 84). The dis-

tribution of matter in spacetime can be represented by the energy-momentum
tensor Tab defined via Einstein’s equation: Rab − (1/2)Rgab = 8πTab. Here,
we have ignored the possibility of a nonzero “cosmological constant” term in
Einstein’s equation (see Earman, 2001). Indeed, within the field of global struc-
ture there is a general lack of concern with the details of Einstein’s equation; we
find that “things which can happen in the absence of this equation can usually
also happen in its presence” (Geroch & Horowitz, 1979, p. 215). If a spacetime
is such that its corresponding energy-momentum tensor vanishes everywhere,
then it is vacuum. It turns out that any two-dimensional spacetime is vacuum
(see Fletcher et al., 2018). In dimension three or greater, a spacetime is vacuum
if and only if its associated Ricci tensor vanishes everywhere. Of course, any
flat spacetime is necessarily vacuum.
We are now in a position to define Minkowski spacetime – it is any flat,

geodesically complete spacetime with manifold Rn. In standard (t, x) coordi-
nates, two-dimensional Minkowski spacetime comes out as (R2,gab) where
gab = ∇at∇bt−∇ax∇bx. This is the spacetime of special relativity and the vanilla
model of general relativity. In what follows, we use Minkowski spacetime as
our basic tool to construct various examples; we cut it, glue it, bend it, and warp
it in order to get what we need. In a representation of Minkowski spacetime in
standard coordinates, the light cones are uniformly oriented throughout and all
geodesics appear as straight lines (see Figure 5).

Exercise 3 Find a flat spacetime such that every maximal timelike geodesic
is incomplete but some maximal null and spacelike geodesics are complete.

Some spacetimes (M,gab) admit a continuous timelike vector field ξa on
M and some do not. Those that do (e.g. Minkowski spacetime) allow for a
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Figure 5 A timelike geodesic (solid line) and a null geodesic (dotted line) in
two-dimensional Minkowski spacetime.

consistent global distinction between the “past” and “future” temporal direc-
tions since the continuous timelike vector field picks out one of two “lobes”
of the light cone at each point. Such spacetimes are said to be time-orientable.
One can show that any spacetime (M,gab) is time-orientable if M is simply
connected. A classic example of a spacetime that fails to be time-orientable
can be constructed by starting with a Möbius strip manifold and orienting the
light cones in such a way that any would-be continuous timelike vector field
is flipped when transported around the strip (see Figure 6). In the following,
we assume that spacetimes are time-orientable and that a temporal direction
has been chosen. A causal curve γ ∶ I → M in a spacetime (M,gab) is future-
directed if its tangent vector at each point falls in or on the future lobe of the
light cone or vanishes; an analogous definition can be given for past-directed
causal curves. Unless otherwise stated, causal curves are understood to be
future-directed.

Figure 6 A spacetime that fails to be time-orientable since the flip in the
Möbius strip precludes any continuous timelike vector field.

https://doi.org/10.1017/9781108876070


8 The Philosophy of Physics

Exercise 4 Find a spacetime (M,gab) for some M ⊂ R2 that fails to be time-
orientable.

Consider a spacetime (M,gab) and a pair of points p and q in M that, respec-
tively, represent the past event of one’s birth and the future event of one’s
reading of this sentence. One’s trajectory through spacetime from the first event
to the second can be represented by a future-directed timelike curve γ ∶ I → M
connecting p to q. Themetric gab assigns a length ∥γ∥ = ∫ (gabξaξb)1/2ds to this
curve by adding up the lengths of all the tangent vectors ξa along the curve. This
length represents the elapsed time between p and q along γ. It follows that the
elapsed time between any two events will depend on how one moves through
spacetime from one to the other. Some trajectories with velocity vectors “close
to the speed of light” will have a short elapsed time relative to others. Indeed,
continuity considerations require that if two points can be connected by a time-
like curve, then for any ϵ > 0, there is a timelike curve connecting the points
with length less than ϵ. It turns out that some spacetimes (e.g.Minkowski space-
time) are such that if two points can be connected by a timelike curve, then there
is a longest curve connecting the points that must be a geodesic (see Figure 7).
A point p ∈ M in a spacetime (M,gab) is a future endpoint of a future-

directed causal curve γ ∶ I → M if, for every open neighborhood O of p, there
exists a point s′ ∈ I such that γ(s) ∈ O for all s > s′. A past endpoint is defined
analogously. We say that a causal curve is future-inextendible if it has no
future endpoint and analogously for past-inextendible. A causal curve is inex-
tendible if it is both future-inextendible and past-inextendible. A causal curve
that is inextendible must be maximal, but the converse is false. In Minkowski

Figure 7 The points p and q can be connected by a short timelike curve
(dotted line), but the longest such curve will be a geodesic (solid line).

https://doi.org/10.1017/9781108876070
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Figure 8 A maximal timelike curve with future endpoint p.

spacetime, a timelike curve can “wiggle” faster and faster as a future endpoint
(which is not part of the curve) is approached (cf. Penrose, 1972, p. 3). The
curve counts as maximal since any extension through the endpoint must fail to
be smooth (see Figure 8).
Given an n-dimensional spacetime (M,gab), a set S ⊂ M is a spacelike sur-

face if S is an (n − 1)-dimensional sub-manifold of M such that every curve
whose image is contained in S is spacelike. A set S ⊂M in a spacetime (M,gab)
is achronal if no two points in S can be connected by a timelike curve. The edge
of a closed, achronal set S ⊂M is the collection of points p ∈ S for which every
open neighborhood O of p contains points q and r such that future-directed
timelike curves exist from q to p, from p to r, and from q to r where the last
curve fails to intersect S (see Figure 9). A slice is a closed, achronal set with
an empty edge. In Minkowski spacetime in standard (t, x) coordinates, each
t = constant surface counts as a slice. But not all spacetimes admit slices. For
example, consider the spacetime (S1 × R,gab) where gab = ∇at∇bt − ∇ax∇bx
and 0 ≤ t ≤ 2π; this is just Minkowski spacetime that has been “rolled up”
along the time direction. Let this spacetime be called time-rolled Minkowski
spacetime. In an analogous way, one can also construct other two-dimensional
models: space-rolled, null-rolled, and (time and space)–rolled Minkowski
spacetimes.

Exercise 5 Find a spacelike surface in Minkowski spacetime that fails to be
achronal.

A diffeomorphism φ ∶M→M′ between the spacetimes (M,gab) and (M
′,g′ab)

is an isometry if φ∗(g′ab) = gab where φ∗ is the map associated with φ, which,

https://doi.org/10.1017/9781108876070
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Figure 9 The point p is in the edge of the closed, achronal set S since every
open neighborhood O of p contains points q and r such that future-directed
timelike curves exist from q to p, from p to r, and from q to r where the last

curve fails to intersect S.

for any point p ∈M, pulls back the tensor g′ab at φ(p) ∈M
′ to the tensor φ∗(g′ab)

at p ∈ M (Malament, 2012, p. 36). Spacetimes (M,gab) and (M
′,g′ab) are iso-

metric if there is an isometry between them. Isometric spacetimes have fully
equivalent structure and share all of the same physical properties; indeed, when
no confusion arises, we often take isometric spacetimes to be the same space-
time in what follows. Consider the spacetimes (M,gab) and (M

′,g′ab). If there
is a proper subset O of M′ such that (M,gab) and (O,g′ab) are isometric, then
we say that (M,gab) is extendible and (M

′,g′ab) is an extension of (M,gab). A
spacetime that is not extendible is inextendible.

Exercise 6 Find a pair of non-isometric spacetimes such that each counts as
an extension of the other.

It turns out that every geodesically complete spacetime (e.g. Minkowski space-
time) is inextendible. But the other direction does not hold. To see this,
consider Minkowski spacetime in standard (t, x) coordinates and remove
two slits Sn = {(0,n) ∶ n ≤ x ≤ n + 1/2} for n = 1,2. Excluding
the four slit boundary points, identify the top edge of each slit with the
bottom edge of the other (Hawking & Ellis, 1973, p. 58; Geroch, 1977,
p. 89). The resulting spacetime is such that an observer entering one slit
from below must emerge from the other slit from above. Because the four
slit boundary points are “missing” from the spacetime, there are incomplete
geodesics (see Figure 10). But one can show that this spacetime cannot be
extended.

https://doi.org/10.1017/9781108876070
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Figure 10 The top edge of the slit S1 is identified with the bottom edge of the
slit S2 and vice versa. A maximal geodesic (dotted line) that approaches one

of the four missing points must be incomplete.

Exercise 7 Find a flat, inextendible spacetime (R2,gab) that is not isometric
to Minkowski spacetime.

Any spacetime with compact manifold must be inextendible (O’Neill, 1983, p.
155). Moreover, one can show (using Zorn’s lemma) that every spacetime is
either inextendible or has an inextendible extension (Geroch, 1970a, p. 277).
In general, an extension to a given extendible spacetime is not unique. But
given any inextendible spacetime (M,gab) and any point p ∈ M, every exten-
sion of the extendible spacetime (M − {p},gab) is isometric to (M,gab) (see
Manchak, forthcoming). So we do have unique extensions (up to isometry) in
some cases.
Spacetimes (M,gab) and (M

′,g′ab) are locally isometric if for each point
p ∈ M there is an open set O ⊂ M containing p and an open set O′ ⊂ M′

such that (O,gab) and (O
′,g′ab) are isometric, and, correspondingly, with the

roles of (M,gab) and (M
′,g′ab) interchanged. We say that a spacetime prop-

erty is local if, given any pair of locally isometric spacetimes, one spacetime
has the property if and only if the other does as well; a spacetime property
is global if it is not local (Manchak, 2009). One can verify that the property
of being vacuum comes out as local. On the other hand, consider two copies
of Minkowski spacetime and remove a point from one of them. These space-
times are locally isometric. But although Minkowski spacetime is geodesically
complete by definition (and therefore inextendible),Minkowski spacetimewith
one point removed is clearly extendible (and therefore geodesically incom-
plete). So geodesic completeness and inextendibility count as global spacetime
properties.

https://doi.org/10.1017/9781108876070
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Exercise 8 Is being time-orientable a global property? Is being two-
dimensional?

3 Causality
We begin an exploration of the causal structure of spacetime by defining a pair
of two-place relations on M for every spacetime (M,gab). For each p,q ∈ M,
we write p≪ q if there is a future-directed timelike curve from p to q; we write
p < q if a future-directed causal curve exists from p to q. Immediately, we see
that if p ≪ q, then p < q. The other direction does not hold in general since,
for example, a future-directed null geodesic from the point p to the point q in
Minkowski spacetime will be such that p < q but p ≪̸ q (see Figure 11). One
can show that for any spacetime (M,gab) and any points p,q ∈ M, if p < q and
p≪̸ q, then any causal curve connecting p and q must be a null geodesic.
The relation < is always reflexive: for any spacetime (M,gab) and any point

p ∈M, we have p < p. To see this, consider that one can always define a trivial
curve γ ∶ I → M to be such that γ(s) = p for all s ∈ I; the curve has a vanishing
tangent vector everywhere and therefore counts as a null curve that is both past
and future directed. The relation≪ can sometimes be reflexive as in time-rolled
Minkowski spacetime (see Figure 12) and can sometimes fail to be reflexive
as in Minkowski spacetime where p ≪ p for no point p. The relations < and
≪ are always transitive (O’Neill, 1983, p. 402): for any spacetime (M,gab)
and for any points p,q, r ∈ M, if both p < q and q < r, it follows that p <
r (and analogously for the ≪ relation). Some spacetimes such as time-rolled
Minkowski spacetime have symmetric relations < and≪: for any points p,q ∈
M, if p < q, then q < p (and analogously for the ≪ relation). But in other

Figure 11 The points p and q can be connected by a future-directed causal
curve (dotted line) but cannot be connected by a timelike curve.
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Figure 12 Time-rolled Minkowski spacetime is such that a future-directed
timelike curve γ exists from any point p back to itself.

spacetimes – Minkowski spacetime is one example – one can find a pair of
points p,q ∈M, such that p < q but q ≮ p (and analogously for the≪ relation).

Exercise 9 Find a spacetime (M,gab) and points p,q ∈ M such that p ≪ p,
q≪ q, and p≪ q but q≪̸ p.

We say that a pair of spacetimes (M,gab) and (M,g′ab) are conformally equiv-
alent if there is some smooth, everywhere positive, scalar field Ω ∶ M → R
such that g′ab = Ω2gab. Here, the scalar field is called the conformal factor.
Conformally equivalent spacetimes (M,gab) and (M,g′ab) have identical causal
structure in the sense that for all p,q ∈M, p < q in (M,gab) if and only if p < q
in (M,g′ab) and analogously for the ≪ relation. One can show that if a pair
of conformally equivalent spacetimes (M,gab) and (M,g′ab) assign the same
length ∥γ∥ to every timelike curve γ ∶ I → M, then the two spacetimes are, in
fact, isometric (Malament, 2012, p. 137).
When constructing spacetimes with particular properties, it is often use-

ful to consider conformally equivalent versions of a simple model. Here is
one famous example (Geroch, 1968a, p. 531). Suppose one wanted to find
a spacetime with some timelike incomplete geodesics but no spacelike or
null incomplete geodesics. Start with Minkowski spacetime (M,gab) in stan-
dard (t, x) coordinates and consider the conformally equivalent spacetime
(M,Ω2gab) where Ω ∶ M → R is such that (i) Ω(t, x) = Ω(t,−x), (ii) Ω = 1
for ∣x∣ > 1, and (iii) Ω(t,0) → 0 as t → ∞. The symmetry of (i) ensures that
the maximal timelike curve at x = 0 is a geodesic. From (iii), we know that this
geodesic will be incomplete if Ω is chosen to approach zero sufficiently fast.
But (ii) requires that any null or spacelike maximal geodesic must escape the
region ∣x∣ ≤ 1 in both directions and thus end up being complete (see Figure 13).
Consider a spacetime (M,gab) and a point p ∈ M. The timelike future of

p is the set I+(p) = {q ∶ p ≪ q}. Similarly, the causal future of p is the
set J+(p) = {q ∶ p < q}; the timelike past I−(p) and causal past J−(p) are
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Figure 13 A maximal timelike geodesic (solid line) is incomplete due to the
chosen conformal factor Ω, but any maximal null or spacelike geodesic is

complete since it must escape the region between the dotted lines.

defined analogously. For any set S ⊆M, we define I+(S) to be⋃{I+(p) ∶ p ∈ S}
and analogously for I−(S), J+(S), and J−(S). The causal (respectively, time-
like) future of a point represents the region of spacetime that can be possibly
influenced by particles (respectively, massive particles) at the point. For any
p ∈ M, one can show that the regions I+(p) and I−(p) are open. But although
the regions J+(p) and J−(p) can sometimes be closed (e.g. inMinkowski space-
time), they are not closed in general. To see this, considerMinkowski spacetime
in standard (t, x) coordinates and remove the point (0,0). The point p = (1,1)
in the resulting spacetime is such that J−(p) is not closed (see Figure 14). A
useful result states that for any p,q, r ∈ M, if either (i) q ∈ J+(p) and r ∈ I+(q)
or (ii) q ∈ I+(p) and r ∈ J+(q), then r ∈ I+(p). And from this one can show
that for any p ∈M, the regions I+(p) and J+(p) share identical boundaries and
closures. Analogous results hold for the past direction.

Exercise 10 Find a geodesically complete spacetime (M,gab) and a point
p ∈M such that J−(p) is not closed.

We say a causal curve γ ∶ I → M is closed if there are distinct points s, s′ ∈ I
such that γ(s) = γ(s′) and γ has no vanishing tangent vectors. It is immediate
that a spacetime (M,gab) has a closed timelike curve through a point p ∈ M
if and only if p ∈ I−(p). A closed timelike curve allows for “time travel” of
a certain kind; a massive object may both begin and end a journey through
spacetime at the very same event. A spacetime free of closed timelike curves
satisfies chronology. The chronology-violating region of a spacetime (M,gab)
is the (necessarily open) set {p ∈ M ∶ p ∈ I−(p)}. It has been conjectured that
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Figure 14 The point p is such that J−(p) is not closed. No future-directed
causal curve exists from any point on the dotted line to p due to the missing

point.

all physically reasonable spacetimes must have an empty chronology-violating
region (cf. Hawking, 1992).
Minkowski spacetime satisfies chronology, but time-rolled Minkowski

spacetime does not. Let (M,gab) be time-rolled Minkowski spacetime in (t, x)
coordinates. The curve γ ∶ [0,2π]→M defined by γ(s)= (s,0) is a closed time-
like geodesic. But not all spacetimes with closed timelike curves have closed
timelike geodesics (Gödel, 1949). It turns out that if a spacetime (M,gab) is
such thatM is a compact manifold, then it must have a non-empty chronology-
violating region (Geroch, 1967). The converse does not hold, however; indeed,
one can find a chronology-violating spacetime with the manifold Rn for all
n ≥ 3. But given any non-compact manifold of two dimensions ormore, one can
find a chronological spacetime with that underlying manifold (Penrose, 1968).
A spacetime (M,gab) is totally vicious if its chronology-violating region is all
ofM. It is easy to verify that time-rolledMinkowski spacetime is totally vicious.
One can show that if (M,gab) is totally vicious, then for all p ∈ M we have
I−(p) = I+(p) =M (Minguzzi, 2019, p. 113).
A spacetime satisfies causality if it is free of closed causal curves. It is imme-

diate that any causal spacetime is chronological. But one can easily construct
spacetimes that satisfy chronology but not causality; for example, consider null-
rolled Minkowski spacetime (see Figure 15). One can show that a spacetime
(M,gab) satisfies causality if and only if J+(p)∩J−(p) = {p} for all p ∈ M.
A spacetime (M,gab) satisfies distinguishability if, for all distinct p,q ∈ M,
both I+(p) ≠ I+(q) and I−(p) ≠ I−(q) hold. A spacetime satisfying distin-
guishability must satisfy causality and moreover cannot have “almost” closed
causal curves of a certain kind. In particular, we find that a spacetime (M,gab)
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Figure 15 A closed null curve in a chronological spacetime.

satisfies distinguishability if and only if, for all p ∈M and all sufficiently small
open sets O containing p, there is neither a future-directed nor a past-directed
timelike curve that begins at p, leaves O, and returns to O (Malament, 2012,
p. 133).
Consider spacetimes (M,gab) and (M

′,g′ab) that satisfy distinguishability.
If there is a bijection θ ∶ M → M′ such that for all p,q ∈ M we have p ≪ q
if and only if θ(p) ≪ θ(q), then the spacetimes are conformally equivalent
(Malament, 1977b). This means that, since the manifolds M and M′ must be
diffeomorphic, if the causal structure of spacetime is sufficiently nice, then that
structure alone determines the shape of the universe completely.

Exercise 11 Find a causal spacetime (M,gab) and a discontinuous bijection
θ ∶M→M such that for all p,q ∈M, p≪ q if and only if θ(p)≪ θ(q).

We say that a spacetime (M,gab) satisfies strong causality if, for all points
p ∈ M and all sufficiently small open sets O ⊆ M containing p, there is no
future-directed timelike curve that begins in O, leaves O, and returns to O
(Malament, 2012, p. 134). Any spacetime that satisfies strong causality also
satisfies distinguishability. To see that the converse does not hold, consider
time-rolled Minkowski spacetime in (t, x) coordinates. One can delete the slits
S1 = {(0, x) ∶ x ≤ 1} and S1 = {(1, x) ∶ 0 ≤ x} from the manifold so that distin-
guishability is saved but strong causality is not (see Figure 16). If a spacetime
(M,gab) satisfies strong causality, then for every compact set K ⊂ M, a causal
curve γ ∶ I → K must have both past and future endpoints in K. So a strongly
causal spacetime does not permit a (future or past) inextendible causal curve to
be trapped within a compact region.
A spacetime (M,gab) satisfies stable causality if there is a continuous time-

like vector field ξa on M such that the spacetime (M,gab + ξaξb) satisfies
chronology. This means that a stably causal spacetime remains free of closed
timelike curves even if all of the light cones are opened by a small amount
at each point. One can show that any simply connected, two-dimensional
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Figure 16 The removed slits S1 and S2 are chosen so that the spacetime is
distinguishing but not strongly causal at the point p.

spacetime is stably causal (Minguzzi & Sánchez, 2008). Any spacetime that
satisfies stable causality also satisfies strong causality, but not the other way
around. Indeed, one can define an infinite number of nonequivalent causal lev-
els between strong causality and stable causality (Carter, 1971). We say that a
spacetime (M,gab) admits a global time function if there is a smooth scalar
field t ∶ M → R such that, for any distinct points p,q ∈ M, if p < q, then
t(p) < t(q). One can think of the function t as assigning a time to every point
in M such that it increases along every nontrivial future-directed causal curve.
Remarkably, one can show that a spacetime satisfies stable causality if and only
if it admits a global time function (Hawking, 1969).

Exercise 12 Find a spacetime that satisfies strong causality but violates stable
causality.

We say a spacetime (M,gab) is reflecting if for all p,q ∈ M, p is in the closure
of J−(q) if and only if q is in the closure of J+(p) (cf. Kronheimer & Pen-
rose, 1967). One can show that a spacetime (M,gab) is reflecting if and only if
the following holds: for all p,q ∈M, I+(p) ⊆ I+(q) if and only if I−(q) ⊆ I−(p)
(Hawking&Sachs, 1974). A useful result shows that a reflecting spacetime that
is not totally vicious must be chronological (Clarke & Joshi, 1988). A space-
time satisfies causal continuity if it is both distinguishing and reflecting. In a
causally continuous spacetime, points that are close must have similarly close
timelike pasts and futures. Every causally continuous spacetime must be stably
causal, but the other direction does not hold.
A spacetime (M,gab) is causally closed if for all p ∈ M, the sets J+(p)

and J−(p) are closed. Every causally closed spacetime will be reflecting (Min-
guzzi, 2019, p. 110). On the other hand, Minkowski spacetime with a point
removed is reflecting but not causally closed. We say a spacetime satisfies
causal simplicity if it satisfies causality and is causally closed. One can show
that any causally simple spacetime must be causally continuous, but not the
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other way around (Hawking & Sachs, 1974). In dimension three or more, if a
spacetime is not totally vicious, then it is causally simple if and only if it is
causally closed (Hounnonkpe & Minguzzi, 2019).

Exercise 13 Find a spacetime that satisfies stable causality but violates causal
continuity.

A spacetime (M,gab) is causally compact if for all p,q ∈ M, the region
J−(p)∩J+(q) is compact. Any causally compact spacetime must be causally
closed and therefore reflecting. But the x > 0 portion of Minkowski space-
time in standard (t, x) coordinates shows that a causally closed spacetime
need not be causally compact. The so-called transverse ladder of causal condi-
tions can be summarized as follows: causal compactness⇒ causal closedness
⇒ reflectivity (Minguzzi, 2019, p. 142). All three of these conditions can
be satisfied in causally misbehaved models such as the totally vicious (time
and space)-rolled Minkowski spacetime. But under the assumption of various
minimal causal conditions, the satisfaction of any of the transverse ladder con-
ditions ensures an extremely well-behaved causal structure. As we have seen,
any reflecting and distinguishing spacetime is causally continuous (and thus
stably causal) and any causally closed and causal spacetime is causally sim-
ple (and thus causally continuous). Let us now consider the case of causal
compactness.
We say that a spacetime satisfies global hyperbolicity if it satisfies causality

and is causally compact (Bernal & Sánchez, 2007). In dimension three or more,
we find that if a spacetime is either (i) non-compact or (ii) not totally vicious,
then it is globally hyperbolic if and only if it is causally compact (Hounnonkpe
& Minguzzi, 2019). Any globally hyperbolic spacetime is causally simple, but
there are spacetimes showing that the converse does not hold. Stepping back,
the hierarchy of causal conditions considered here can be summarized as fol-
lows: global hyperbolicity ⇒ causal simplicity ⇒ causal continuity ⇒ stable
causality ⇒ strong causality ⇒ distinguishability ⇒ causality ⇒ chronology
⇒ non-totally vicious.
One example of a spacetime that is causally simple but not globally hyper-

bolic is is anti-de Sitter spacetime – a model with manifold Rn and light cones
that open up rapidly as they approach spatial infinity (see Figure 17). In (t, x)
coordinates, two-dimensional anti-de Sitter spacetime comes out as (R2,gab)
where gab = cosh

2 x∇at∇bt −∇ax∇bx.
The timelike past of every point in anti-de Sitter spacetime contains the

image of a past-extendible timelike curve with infinite length. This is a curi-
ous property that seems to permit a “supertask” of a certain kind (Earman &

https://doi.org/10.1017/9781108876070


Global Spacetime Structure 19

Figure 17 Anti-de Sitter spacetime is causally simple but not globally
hyperbolic since the points p and q are such that the region J−(p) ∩ J+(q) is

not compact.

Norton, 1993; Manchak & Roberts, 2016). Let us say that a spacetime (M,gab)
is Malament-Hogarth if there is a point p ∈ M and a past-extendible timelike
curve γ ∶ I→M such that ∥γ∥ =∞ and the image of γ is contained in I−(p). In
such a spacetime, an observer at the event p can “see” an observer along γ who
has an infinite amount of future time inwhich to complete a “super task” such as
checking all possible counterexamples to Goldbach’s conjecture (i.e. the claim
that every even integer greater than two is the sum of two primes). It is imme-
diate that any spacetime that violates chronology will be Malament-Hogarth.
And although one can find causally simple spacetimes that are Malament-
Hogarth (e.g. anti-de Sitter spacetime), no globally hyperbolic ones exist
(Hogarth, 1992).

Exercise 14 Find a Malament-Hogarth spacetime that is flat and satisfies
chronology.

To get a better grip on the physical significance of global hyperbolicity, we
turn to an equivalent formulation of the condition that concerns causal deter-
minism of a certain kind. Consider a spacetime (M,gab) and set S ⊆ M. We
define the future domain of dependence of S, denoted D+(S), to be the set
of points p ∈ M such that every past-inextendible causal curve through p
intersects S. The past domain of dependence is defined analogously. The full
domain of dependence of S is the set D(S) = D−(S)∪D+(S). Since any causal
influence at a point in D(S) must register on the set S, one can think of the
physical situation on D(S) as fully determined by the physical situation on S
(Choquet-Bruhat & Geroch, 1969; Earman, 1986). In Minkowski spacetime,
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Figure 18 The domain of dependence D(S) of a closed, achronal surface S in
Minkowski spacetime with a point removed. Points on the dotted line are in

the boundary of D(S) but not in D(S) itself.

the domain of dependence of a closed, achronal surface will often be diamond
shaped; in Minkowski spacetime with a point removed, a notch can appear (see
Figure 18).

Exercise 15 In Minkowski spacetime (M,gab), find slices S,S
′ ⊂M such that

D(S) ∩D(S′) = ∅ but D(S) ∪D(S′) =M.

If a closed, achronal set S ⊂ M in a spacetime (M,gab) is such that D(S) = M,
then we say S is a Cauchy surface. The physical situation on a Cauchy sur-
face would seem to determine the physical situation everywhere in spacetime.
Remarkably, one can show that a spacetime satisfies global hyperbolicity if
and only if it admits a Cauchy surface; moreover, a globally hyperbolic space-
time (M,gab) will be such that M is homeomorphic to R × N where N ⊂ M
is any Cauchy surface (Geroch, 1970b). This captures a sense in which global
hyperbolicity forbids topology change of a certain kind (cf. Geroch, 1967). For
Minkowski spacetime in standard (t, x) coordinates, each t = constant slice is a
Cauchy surface. On the other hand,Minkowski spacetimewith a point removed
fails to have a Cauchy surface (see Figure 19).

Exercise 16 Find a manifold M that admits a Lorentzian metric but is such
that every spacetime (M,gab) fails to have a Cauchy surface.

Given a spacetime (M,gab) and a closed, achronal set S ⊂M, the future Cauchy
horizon of S is the region H+(S) defined by taking the closure of D+(S) and
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Figure 19 The slice S is not a Cauchy surface. The point p is not contained in
D(S) since the inextendible timelike curve γ passing through p approaches

the missing point and thereby fails to intersect S.

Figure 20 The future Cauchy horizon H+(S) of the closed, achronal surface
S. The point p is the future endpoint of a null geodesic contained in H+(S)
that has past endpoint q on the edge of S; the point p is also the future

endpoint of a past-inextendible null geodesic contained in H+(S) that emerges
from the missing point.

removing the points in I−(D+(S)). The past Cauchy horizon is defined anal-
ogously. One can show that H+(S) and H−(S) are both closed and achronal.
In addition, every p ∈ H+(S) is the future endpoint of some null geodesic con-
tained in H+(S) that is either past-inextendible or has a past endpoint on the
edge of S (see Figure 20). Analogous results hold for H−(S). The full Cauchy
horizon of S is the set H(S) = H+(S) ∪ H−(S). For any S that is closed and
achronal, we find that H(S) is the boundary of D(S) and therefore closed.
Moreover, for any non-empty S that is closed and achronal, H(S) is empty
if and only if S is a Cauchy surface.
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Figure 21 If the dominant energy condition is satisfied and Tab = 0 on some
achronal set S, then Tab = 0 throughout D(S).

4 Singularities
The various singularity theorems show senses in which a physically reasonable
spacetime can have incomplete timelike geodesics (Penrose, 1965; Hawking
& Penrose, 1970). To obtain such results, one must suppose some local con-
straint on the distribution of matter in the form of “energy conditions” (see
Curiel, 2017). We say a spacetime (M,gab) satisfies the weak energy condi-
tion if, for all timelike vectors ξa at each point inM, we have Tabξaξb ≥ 0. This
condition asserts that energy density cannot be negative. A spacetime satisfies
the strong energy condition if, for all timelike vectors ξa at each point in M
we have (Tab − 1

2Tgab)ξ
aξb ≥ 0 for T = Taa. This condition asserts that “grav-

ity attracts.” Finally, a spacetime satisfies the dominant energy condition if it
satisfies the weak energy condition and, in addition, for all timelike vectors ξa

at each point inM, the vector Tabξa is causal. This condition asserts that matter
cannot travel faster than light. Indeed, one can show that if a spacetime (M,gab)
satisfies the dominant energy condition and Tab vanishes on some achronal set
S ⊂M, then Tab vanishes on all of D(S) (see Figure 21).
It is immediate that every vacuum spacetime (e.g. a flat or two-dimensional

spacetime) satisfies all of the energy conditions. Let us now restrict atten-
tion to four-dimensional spacetimes (M,gab) satisfying the constant curvature
condition: Rabcd = (1/12)R(gacgbd − gadgbc) (see Hawking & Ellis, 1973, p.
124). One can show that spacetimes satisfying the constant curvature con-
dition must have a constant Ricci scalar R. Examples of such spacetimes
include Minkowski spacetime for which R = 0, anti-de Sitter spacetime for
which R < 0, and de Sitter spacetime for which R > 0 (see p. 35). A four-
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dimensional spacetime satisfying the constant curvature condition is such that
Tab = −(1/32π)Rgab, which provides an easy way to construct spacetimes vio-
lating one or more of the energy conditions. For example, a four-dimensional
version of anti-de Sitter spacetime for which R = −32π is such that Tab = gab
and T = Taa = n = 4, showing that the strong energy condition must be violated.

Exercise 17 Find a spacetime that satisfies the strong energy condition but
violates the weak energy condition.

We say a spacetime satisfies the generic condition if each causal geodesic with
tangent ξa encounters some effective curvature in the sense that there is a point
at which ξ[aRb]mn[cξd]ξ

mξn ≠ 0. Only spacetimes with very special symme-
tries (e.g. any flat spacetime) will fail to be generic. If a spacetime satisfies
the generic condition and is such that Rabξ

aξb ≥ 0 for all timelike vectors ξa –
a requirement that is equivalent to the strong energy condition in four dimen-
sions – we find a sense in which nearby timelike geodesics will tend to “cross”
if they are complete (Geroch & Horowitz, 1979, p. 264). If a timelike geodesic
is crossed in this way, one can always find a pair of points along it and a time-
like curve connecting the points that has a longer length than the geodesic (see
Figure 22).
We see that if a spacetime is four-dimensional and satisfies the generic and

strong energy conditions, there will be a timelike geodesic that is either incom-
plete or does not maximize length in the sense just given. One can rule out
the latter possibility by appealing to various global properties of interest. For
example, here is a singularity theorem along these lines: any four-dimensional,

Figure 22 A timelike curve (dotted line) from p to q that cuts the corner near
the crossing timelike geodesics (solid lines) has a longer length than the

geodesic from p to q.
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stably causal spacetime with compact slice that also satisfies the generic and
strong energy conditions must have an incomplete timelike geodesic (Geroch
& Horowitz, 1979, p. 265).

Exercise 18 Find a four-dimensional, stably causal spacetime with compact
slice that satisfies the strong energy condition but is geodesically complete.

Because the singularity theorems show senses in which physically reason-
able spacetimes can be geodesically incomplete, a difficulty arises in how to
rule out pathological examples. Consider a spacetime (M,gab) and any point
p ∈M; how does one prohibit the seemingly artificial spacetime (M−{p},gab)?
Requiring geodesic completeness will do the job, but this route is too heavy-
handed given the singularity theorems. Instead, several other interrelated global
conditions (e.g. inextendibility) have been suggested – none entirely satisfac-
tory – to sort singular spacetimes into physically reasonable and physically
unreasonable varieties. Let’s take a look at a few examples.
We first consider a pair of definitions concerning so-called naked singu-

larities that primarily concern the causal structure of spacetime. We say a
future-inextendible causal geodesic γ ∶ I → M is future-incomplete if there
is a r ∈ R such that r > s for all s ∈ I; a past-incomplete geodesic is defined
analogously. A spacetime (M,gab) has a detectable naked singularity if there
is a point p ∈ M and a future-incomplete timelike geodesic γ ∶ I → M such that
the image of γ is contained in I−(p) (cf. Geroch & Horowitz, 1979, p. 274). In
such a spacetime, the singularity is naked in the sense that an observer at p can
see it. It is not difficult to verify that a spacetime with a point removed from its
manifold will always have a detectable naked singularity (see Figure 23). One
can also show that any spacetime with a detectable naked singularity will not
be globally hyperbolic.

Exercise 19 Find a causally simple spacetime with detectable naked singu-
larity.

A second type of naked singularity concerns the evolution of some initial
data. We say a spacetime (M,gab) has an evolved naked singularity if there
is a slice S ⊂ M and a point p ∈ H+(S) such that the region I−(p) ∩ S
has compact closure. Here, the requirement that I−(p) ∩ S have compact clo-
sure ensures that the slice S is not poorly chosen; for Minkowski spacetime
in standard (t, x) coordinates, a poorly chosen slice includes the hyperboloid
S = {(t, x) ∶ t = −(x2 + 1)1/2}, which has a non-empty future Cauchy horizon
(cf. Earman, 1995, p. 75). Minkowski spacetime with one point removed is an
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Figure 23 The point p is such that the future-incomplete timelike geodesic γ
approaching the missing point is contained in the region I−(p).

Figure 24 Due to the missing point, the slice S is such that there is a point
p ∈ H+(S) for which I−(p) ∩ S has compact closure.

example of a spacetime with an evolved naked singularity (see Figure 24). A
spacetime with an evolved naked singularity need not have a detectable naked
singularity and vice versa. But as before, any globally hyperbolic spacetime is
free of evolved naked singularities.

Exercise 20 Find a spacetime with detectable naked singularity but no
evolved naked singularity; find a spacetime with an evolved naked singularity
but no detectable naked singularity.

A number of cosmic censorship conjectures have been suggested that serve to
rule out nakedly singular spacetimes of various types including the two con-
sidered here. One quite strong version of this conjecture that precludes both
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detectable and evolved naked singularities is simply the assertion that all physi-
cally reasonable spacetimesmust be globally hyperbolic (Penrose, 1969, 1979).
But this position seems far from secure (Earman, 1995; Penrose, 1999).
Other conditions used to rule out physically unreasonable singularities con-

cern the modal structure of spacetime; they rule out spacetime “holes” in the
sense that they require that spacetime be as large as possible in various ways
(cf. Earman, 1989, pp. 159–163). Inextendibility is one example of this type of
condition. But inextendibility alone is not strong enough to rule out all exam-
ples of seemingly artificial singularities (recall Figure 10). To handle many of
these other cases, another condition can be used. We say a spacetime (M,gab)
is hole-free if, for every achronal surface S ⊂ M and every isometric embed-
ding φ ∶ D(S) → M′ into a spacetime (M′,g′ab), we have φ[D(S)] = D(φ[S])
(Geroch, 1977, p. 87). It is immediate that Minkowski spacetime with a point
removed is not hole-free since the domain of dependence of some achronal
surfaces could have been larger in Minkowski spacetime (see Figure 25).
Despite the intuitive appeal of the hole-freeness condition, a surprising result

shows that Minkowski spacetime actually fails to satisfy it (Krasnikov, 2009).
Take an achronal surface in two-dimensional Minkowski spacetime that has
an open domain of dependence and isometrically embed it into space-rolled
Minkowski spacetime. If the embedding is well chosen, the domain of depen-
dence of the image of the surface now has a portion of its boundary included
(see Figure 26).
One can fix up the definition of hole-freeness in a variety of ways (cf.

Minguzzi, 2012). Consider a globally hyperbolic spacetime (M,gab) and an

Figure 25 Due to the missing point, the achronal surface S is such that D(S)
can be isometrically embedded via φ in such a way that a point p is contained

in D(φ[S]) but not in φ[D(S)].

https://doi.org/10.1017/9781108876070


Global Spacetime Structure 27

Figure 26 The achronal surface S is such that D(S) can be isometrically
embedded via φ in such a way that a point p is contained in D(φ[S]) but not

in φ[D(S)].

isometric embedding φ ∶M→M′ into a spacetime (M′,g′ab). We say (M′,g′ab)
is an effective extension of (M,gab) if, for some Cauchy surface S in (M,gab),
φ[M] is a proper subset of the interior of D(φ[S]) and φ[S] is achronal. We
say a spacetime (M,gab) is hole-free* if, for every K ⊆ M such that (K,gab)
is a globally hyperbolic spacetime with Cauchy surface S, if (K′,gab) is not an
effective extension of (K,gab) where K

′ is the interior of D(S), then (K,gab)
has no effective extension. One intuitively satisfying consequence of this def-
inition is this: for any spacetime (M,gab) and any point p ∈ M, the spacetime
(M − {p},gab) is not hole-free* (cf. Minguzzi, 2012). It is not difficult to see
that a hole-free* spacetime need not be inextendible and vice versa. But one can
show that a spacetime is hole-free* if it is either (i) inextendible and globally
hyperbolic or (ii) geodesically complete (Manchak, 2014a). It is an open ques-
tion whether global hyperbolicity in (i) can be weakened to causal simplicity
(cf. Minguzzi, 2012). We do know that the geodesic completeness condition in
(ii) can be weakened significantly to a type of local inextendibility condition
(see p. 28)

Exercise 21 Find an inextendible, causally continuous spacetime that is not
hole-free*.

Let us consider one more of the modal conditions used to rule out physically
unreasonable singularities. We say a spacetime (M,gab) is locally inextendible
if, for every open set O ⊂M with non-compact closure inM and every isomet-
ric embedding φ ∶ O → M′ into a spacetime (M′,g′ab), φ[O] does not have
compact closure inM′ (Hawking & Ellis, 1973, p. 59). To see the definition at
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work, consider Minkowski spacetime (M,gab), an open set O ⊂ M with com-
pact closure in M, and point p ∈ O. The spacetime (M − {p},gab) will fail to
be locally inextendible since the open set O − {p} has non-compact closure in
M − {p}, but the inclusion map φ ∶ O − {p}→M into Minkowski spacetime is
an isometric embedding and φ[O − {p}] has compact closure inM.

As with the condition hole-freeness, it turns out that local inextendibility is
much stronger than had been supposed; indeed, not even Minkowski space-
time can satisfy it (Beem, 1980). In Minkowski spacetime in standard (t, x)
coordinates, consider a curve starting at the point (1,0), which asymptoti-
cally approaches the line t = 0. Consider a small open set around the curve
that becomes thinner as t = 0 is approached; this set has non-compact closure
but can be isometrically embedded like a “spiral” into space-rolled Minkowski
spacetime such that the closure of its image is compact (see Figure 27).
The condition of locally inextendibility can be fixed in a number of ways;

here we consider just one (cf. Ellis & Schmidt, 1977, p. 928). We say a
spacetime (M,gab) is locally inextendible* if, for every future-incomplete or
past-incomplete timelike geodesic γ ∶ I → M, and every open set O ⊆ M con-
taining the image of γ, there is no isometric embedding φ ∶ O → M′ into some
other spacetime (M′,g′ab) such that the curve φ○γ ∶ I→M′ has future and past
endpoints. A locally inextendible* spacetime is sometimes called an effectively
complete spacetime. We find that any geodesically complete spacetime will
be locally inextendible* but the other direction does not hold. A useful result
shows that any locally inextendible* spacetime must be both inextendible and
hole-free* (Manchak, 2014a).

Figure 27 The open set O has non-compact closure but can be isometrically
embedded via φ in such a way that φ[O] has compact closure.
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Exercise 22 Find a spacetime that is inextendible and hole-free* but not
locally inextendible*.

Recall that any spacetime (M,gab) for which M is compact must be inex-
tendible. Surprisingly, the corresponding claim for local inextendibility* turns
out to be false. A counterexample can be constructed by considering an adapta-
tion of Misner spacetime – a flat, inextendible spacetime that has a cylindrical
manifold and light cones that tip over as they move up the cylinder (Mis-
ner, 1967). In (t, φ) coordinates, Misner spacetime comes out as (R × S1,gab)
where gab = 2∇(at∇b)φ + t∇aφ∇bφ and 0 ≤ φ ≤ 2π. Here, the round brackets
indicate the symmetrization operation. In this case, we find that 2∇(at∇b)φ =
∇at∇bφ +∇bt∇aφ (see Malament, 2012, p. 33). A closed null curve at t = 0 is
the boundary of the t > 0 chronology-violating region in Misner spacetime. A
future-incomplete timelike geodesic γ ∶ I→M exists that approaches but never
reaches t = 0 (see Figure 28).
Let (M,gab) be the t < 0 portion of Misner spacetime in (t, φ) coordinates.

One extension to this spacetime is Misner spacetime; let’s consider another.
The spacetime (M,gab) can be “reverse twisted” to produce an isometric vari-
ant where the light cones tip in the other direction by using the diffeomoprhism
θ ∶ M → M given by θ(t, φ) = (t, φ + 2 ln(−t)). This reverse-twisted space-
time can be extended to produce reverse Misner spacetime, which comes out
as (R × S1,gab) where gab = −2∇(at∇b)φ + t∇aφ∇bφ and 0 ≤ φ ≤ 2π. We
find twisted future-incomplete timelike geodesics in the t < 0 portion of Mis-
ner spacetime that do not cross t = 0 but that can be untwisted and extended

Figure 28 A future-incomplete timelike geodesic γ approaches but never
reaches the closed null curve (dotted line).
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in reverse Misner spacetime. On the other hand, there are also some twisted
future-incomplete timelike geodesics in the t < 0 portion of reverse Misner
spacetime which do not cross t = 0 but that can be untwisted and extended in
Misner spacetime. It follows that both Misner and reverse Misner are locally
extendible* (cf. Hawking & Ellis, 1973, p. 171). It is not difficult to construct
a compact, locally extendible* example that behaves very much like Misner
spacetime near t = 0. For example, consider the spacetime (S1 × S1,gab) where
gab = 2∇(at∇b)φ+sin(t)∇aφ∇bφ and 0 ≤ t, φ ≤ 2π (Beem et al., 1996, p. 244).
The modal “no hole” conditions of inextendibility, local inextendibility*,

and hole-freeness* are defined relative to a standard collection of all possible
spacetimes. But what is the physical significance of these modal conditions if
the standard collection allows for physically unreasonable possibilities? To cir-
cumvent the difficulty, one could look for a modal condition to rule out holes
that does not depend on a background collection of all possible spacetimes;
instead, it would require that regions of a given spacetime are as large as possi-
ble in the sense that they are compared to similar regions within the very same
model. Here is one example along these lines (cf. Penrose, 1979, p. 623). We
say a spacetime (M,gab) has an epistemic hole if there is a point p ∈ M and
a pair of future-inextendible timelike geodesics γ and γ′ through p such that
I−(γ) is a proper subset of I−(γ′) (Manchak, 2016a). In a spacetime with an
epistemic hole, two observers are present at the same event and yet one observer
eventually has epistemic access to a larger region of spacetime than the other.
Clearly, Minkowski spacetime with a point removed has an epistemic hole (see
Figure 29).

Figure 29 The future-inextendible timelike geodesics γ and γ′ have the same
past endpoint but since γ approaches the missing point, I−(γ) is properly

contained in I−(γ′), which is the entire manifold.
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To get a sense of how epistemic hole-freeness relates to other global prop-
erties of interest, remove from Minkowski spacetime everything except for
the timelike past of a chosen point and apply a conformal factor that goes
to infinity as the missing region is approached along every curve. The result-
ing spacetime will have an epistemic hole despite being globally hyperbolic
and geodesically complete. On the other hand, consider time-rolledMinkowski
spacetime and remove a point from themanifold; the resulting spacetime counts
as epistemically hole-free despite violating chronology, inextendibility, and
hole-freeness* (cf. Doboszewski, 2019).

Exercise 23 Find a slice in an epistemically hole-free spacetime with non-
empty Cauchy horizon.

How stable are spacetimes with singularities of various kinds? Here is one
attempt to get a grip on the question (Geroch, 1969, 1971b). Let L (M) be
the collection of spacetimes with manifold M and let hab be a positive definite
metric on M. At each point in M, the function d(gab,g′ab,hab) = h

achbd(gab −
g′ab)(gcd−g′cd) assigns a distance between the spacetimes (M,gab) and (M,g′ab)
that can be used to construct various topologies on L (M). Here, we take a
look at two natural possibilities. A C neighborhood of (M,gab) contains all
(M,g′ab) ∈ L (M) such that SupK[d(gab,g′ab,hab)] < ϵ where hab is a positive
definite metric, K ⊆M is compact, and ϵ > 0. An F neighborhood of (M,gab)
is defined analogously except the supremum ranges over all of M. These def-
initions give rise to corresponding C and F topologies on L (M). We say a
property of a spacetime (M,gab) is stable relative to a given topology onL (M)
if there is a neighborhood of (M,gab) in that topology such that every space-
time in the neighborhood also has the property. One can show that chronology
is F stable for a spacetime if and only if the spacetime is stably causal (Hawk-
ing & Ellis, 1973, p. 198). We also find that any globally hyperbolic spacetime
is F stable with respect to this property (Beem et al., 1996, p. 242).
In light of the singularity theorems, one might hope to find an appropriate

topology to show that large collections of spacetimes are stable with respect to
both geodesic incompleteness and some property to rule out physically unrea-
sonable singularities. But neither the C nor the F topologies seem appropriate.
Consider theF topology first. It seems to be much too fine since for any space-
time (M,gab) with non-compact M, the collection of spacetimes {(M, λgab)}
for λ ∈ (0,∞) fails to be F continuous (Geroch, 1971b, p. 71). This suggests
that spacetime properties will be too easily counted as F stable. So it is all the
more remarkable that one can construct spacetimes that are F unstable with
respect to geodesic incompleteness (Beem et al., 1996, p. 245). Moreover, one
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can find spacetimes that are F unstable with respect to the “no hole” prop-
erty of local inextendibility* (Manchak, 2018a; cf. Doboszewski, 2020). To see
this, start with null-rolled Minkowski spacetime and choose any F neighbor-
hood around it. The spacetime is locally inextendible* since it is geodesically
complete. But the slightest “wiggle” can turn this spacetime into one that
is isometric to the locally extendible* Misner spacetime. To get the desired
result, one need only smoothly adjust the wiggle so that it goes to zero outside
some compact region containing a future-incomplete timelike geodesic (see
Figure 30).
Now consider the C topology. It seems much too coarse since any chrono-

logical spacetime whatsoever will be C unstable with respect to this property
(Hawking&Ellis, 1973, p. 198). This suggests that spacetime properties will be
be too easily counted as C unstable. This is confirmed in the cases of geodesic
incompleteness and local inextendibility* since the F instability results above
carry over to the present context on account of the fact that any C neighbor-
hood is a F neighborhood. And yet some C stability results are available: any
chronology-violating spacetime will be C stable (and hence F stable) with
respect to this property (Fletcher, 2016).

Exercise 24 Find a spacetime that is C stable with respect to the property of
being inextendible.

Figure 30 The slightest wiggle of null-rolled Minkowski spacetime can turn
it into one that resembles Misner spacetime in the compact region between

the top and bottom closed null curves depicted here. The timelike curve γ is a
future-incomplete geodesic.
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5 Underdetermination
What can we know concerning the global spacetime properties of our own
universe? It seems that serious epistemic limitations can arise due to the vast
possibilities general relativity affords. We begin by exploring some of the diffi-
culties involved in predicting the global structure of spacetime (Geroch, 1977).
Let (M,gab) be a spacetimewith q ∈M.We say a point p ∈M is in the domain of
prediction of q, denotedP(q), if a closed, achronal, spacelike surface S ⊂ J−(q)
exists such that p ∈ D(S)− J−(q). Physically, if S can be observed from q, then
a prediction can be made concerning any point p ∈ D(S) so long as it cannot
be observed from q (which would result in a retrodiction instead). Consider
space-rolled Minkowski spacetime (M,gab); since every point q is such that its
causal past J−(q) contains some Cauchy surface, we find that p ∈ P(q) if and
only if p ∉ J−(q) (see Figure 31).

Exercise 25 Find a spacetime (M,gab) and points p,q, r ∈ M for which p ≪
q≪ r and P(p) = P(r) = ∅ but P(q) is non-empty.

Now consider Minkowski spacetime (M,gab) and any closed, achronal, space-
like surface S ⊂ M; if q ∈ M is such that S ⊂ J−(q), we find that D(S) ⊂ J−(q),
which renders prediction impossible from the point q (see Figure 32). Space-
times with non-empty domains of prediction turn out to be more the exception
than the rule. Indeed, one can show a sense in which future prediction is possi-
ble only in a closed universe: if there are points p,q ∈M in a spacetime (M,gab)

Figure 31 Since the Cauchy surface S is contained in the causal past of the
point q, any point p outside of J−(q) is in the domain of prediction of q.
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Figure 32 If a closed, achronal, spacelike surface S is contained in the causal
past of the point q, then D(S) is also contained in J−(q).

such that p ∈ P(q) ∩ I+(q), the spacetime must admit a compact slice (Man-
chak, 2008). In light of various singularity theorems indicating that a compact
slice is sufficient for a physically reasonable spacetime to have singularities,
we have a curious corollary here: future prediction is possible in a physically
reasonable spacetime only if singularities are present (cf. Hogarth, 1997).

Exercise 26 Define the domain of prediction* to be just as the domain of
prediction except drop the requirement that the closed, spacelike surface Smust
be achronal as well; find a spacetime (M,gab) with with no compact slice and
points p,q ∈M such that p ∈ P∗(q) ∩ I+(q).

Even if a spacetime has a non-empty domain of prediction, it is not clear that
prediction is actually possible. Consider again space-rolled Minkowski space-
time. The causal past of each point p contains some Cauchy surface. But how
could an observer at p ever know this? If a point to the future of pwere missing
from the manifold, the surface would no longer be Cauchy and there would be
no way of ascertaining this fact from p. Prediction seems to require more than
just knowledge about one’s past but also knowledge about the entire spacetime
into which one’s causal past is embedded (Geroch, 1977, p. 86). But one can
show various senses in which an observer will generally fail to have the epis-
temic resources to know the global structure of the spacetime into which her
past is embedded. Let us explore this “cosmic underdetermination” subject a
bit more (cf. Norton, 2011; Butterfield, 2014).
We say the spacetimes (M,gab) and (M

′,g′ab) are observationally indistin-
guishable if, for each future-inextendible timelike curve γ in (M,gab), there is
some future-inextendible timelike curve γ′ in (M′,g′ab) such that (I

−(γ),gab)
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and (I−(γ′),g′ab) are isometric; and, correspondingly, with the roles of (M,gab)
and (M′,g′ab) reversed (Glymour, 1972, 1977). If two spacetimes are obser-
vationally indistinguishable, no observer in either spacetime (even one who
lives forever) can tell them apart. Consider de Sitter spacetime – a model with
cylindrical manifold and light cones that close up rapidly as they approach
the distant past and future. In (t, x) coordinates, two-dimensional de Sitter
spacetime comes out as (R × S1,gab) where gab = ∇at∇bt − cosh2 t∇ax∇bx
and 0 ≤ x ≤ 2π. In this spacetime and its unrolled counterpart, any future-
inextendible timelike curve γ has an observational horizon in the sense that
I−(γ) has a bounded x-width of 2π (see Figure 33). So the two spacetimes are
observationally indistinguishable.

Exercise 27 Find an extendible spacetime that is observationally indistin-
guishable only to itself.

It is not difficult to see that observational indistinguishability is an equiva-
lence relation on the collection of spacetimes. We say a spacetime property
is preserved under observational indistinguishability if, given any two obser-
vationally indistinguishable spacetimes, one has the property if and only if the
other does as well. Since observationally indistinguishable spacetimes must
be locally isometric, we find that any local property will be preserved under
observational indistinguishability. One can also show that various global prop-
erties including chronology, causality, and global hyperbolicity are preserved
under observational indistinguishability. On the other hand, many other global
properties including inextendibility, strong causality, and stable causality are

Figure 33 In unrolled de Sitter spacetime, any future-inextendible timelike
curve γ is such that its timelike past I−(γ) has a bounded x-width of 2π.
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not preserved under observational indistinguishability (cf. Malament, 1977a, p.
71). Consider the case of strong causality. Recall that we can construct a space-
time violating strong causality if we take time-rolledMinkowski spacetime and
delete two well-chosen slits from the manifold. We can unroll this spacetime to
produce an observationally indistinguishable counterpart that is strongly causal
(see Figure 34).
Consider another example: inextendibility (Malament, 1977a, p. 78). Take

two copies of Minkowski spacetime in standard (t, x) coordinates and remove
a slit S = {(0, x) ∶ 0 ≤ x ≤ 1} from each copy. Excluding slit boundary points,
identify the top edge of S in one copy with the bottom edge of S in the other to
produce an inextendible spacetime. To construct an extendible observationally
indistinguishable counterpart, just remove the t ≥ 0 portion in one of the copies
(see Figure 35).

Exercise 28 Find a pair of spacetimes showing that hole-freeness* is not pre-
served under observational indistinguishability.

Figure 34 Spacetimes demonstrating that strong causality is not preserved
under observational indistinguishability.

Figure 35 Spacetimes demonstrating that inextendibility is not preserved
under observational indistinguishability.
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The definition of observational indistinguishability is quite restrictive. We
now consider a softened variant (Malament, 1977a, p. 68). Let us say that a
spacetime (M,gab) is weakly observationally indistinguishable from a space-
time (M′,g′ab) if, for every point p ∈ M, there is a point p′ ∈ M′ such that
(I−(p),gab) and (I

−(p′),g′ab) are isometric. The definition is weakened in two
senses. First, only observers who do not live forever are considered; one looks
at the timelike pasts of points instead of the timelike pasts of future-inextendible
timelike curves. Second, the relation is no longer symmetric since the epis-
temic situation of an observer in one spacetime would seem to be irrelevant
to the epistemic situation in another. We find that weak observational indistin-
guishability is a reflexive, transitive relation on the collection of spacetimes.
We see that if two spacetimes are observationally indistinguishable, then either
one is weakly observationally indistinguishable from the other. But Minkowski
spacetime is weakly observationally indistinguishable from the t < 0 portion of
Minkowski spacetime and vice versa even though the two spacetimes are not
observationally indistinguishable (see Figure 36).

Exercise 29 Find a spacetime (M,gab) and a point p ∈ M such that (M −
{p},gab) is weakly observationally indistinguishable from (M,gab) but not the
other way around.

As before, we say that a spacetime property is preserved under weak obser-
vational indistinguishability if, whenever one spacetime is weakly observa-
tionally indistinguishable from another, the first has the property only if
the second does as well. Because any two observationally indistinguishable

Figure 36 For any point p in Minkowski spacetime and any point p′ in the
t < 0 portion of Minkowski spacetime, the regions I−(p) and I−(p′) are

isometric.
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spacetimes will be such that either spacetime is weakly observationally indis-
tinguishable from the other, we find that any property that is preserved under
weak observational indistinguishability will be preserved under observational
indistinguishability.
It turns out that one can find examples where a property is preserved under

weak observational indistinguishability but not the absence of the property. To
see this, consider the case of chronology; global hyperbolicity is very simi-
lar (Malament, 1977a, p. 74). If a spacetime has a closed timelike curve, then
the curve will be contained in the timelike past of any point on the curve,
ensuring that a violation of chronology is preserved under weak observational
indistinguishability. On the other hand, consider Minkowski spacetime in stan-
dard (t, x) coordinates. Remove two slits Sn = {(n, x) ∶ 0 ≤ x ≤ 1} for
n = 1,2 and, excluding the slit boundary points, identify the top edge of each
slit with the bottom edge of the other. The resulting spacetime violates chronol-
ogy since an observer entering S2 from below must emerge from S1 from
above. Chronology is not preserved under weak observational indistinguisha-
bility since Minkowski spacetime is weakly observationally indistinguishable
from this chronology-violating spacetime (see Figure 37).
The pair of spacetimes just considered – Minkowski spacetime and its muti-

lated chronology-violating variant – can be used to show that a number of
other spacetime properties are not preserved under weak observational indis-
tinguishability: geodesic completeness, local-inextendibility*, hole-freeness*,
and any causal condition between (and including) chronology and global
hyperbolicity are just a few examples. The epistemic predicament of the

Figure 37 For any point p in Minkowski spacetime, there is a point p′ in the
depicted chronology-violating spacetime such that the regions I−(p) and

I−(p′) are isometric.
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observer also extends to global properties involving prediction. For exam-
ple, take space-rolled Minkowski spacetime and cut a slit so that some points
have an empty domain of prediction (see Figure 38). This spacetime is con-
structed so that space-rolled Minkowski spacetime is weakly observationally
indistinguishable from it, showing that the property of having a non-empty
domain of prediction at every point is not preserved under weak observational
indistinguishability.

Exercise 30 Find a spacetime that is weakly observationally indistinguishable
from a different (non-isometric) spacetime that is only weakly observationally
indistinguishable from itself.

It turns out that only spacetimes with bizarre causal structure do not have
a weakly observationally indistinguishable counterpart. Indeed, a counterpart
can be found with all of the same local properties as the original in accordance
with the demand that “the normal physical laws we determine in our spacetime
vicinity are applicable at all other spacetime points” (Ellis, 1975, p. 246). We
say that a spacetime (M,gab) is causally bizarre if there is a point p ∈ M such
that I−(p) = M. It is immediate that every causally bizarre spacetime violates
chronology (but not the other way around). In addition, we find that a space-
time that is totally vicious must be causally bizarre; on the other hand, Misner
spacetime is causally bizarre but not totally vicious. Stepping back, one can
show that for every spacetime (M,gab) that is not causally bizarre, there is a
spacetime (M′,g′ab) such that (i) (M,gab) and (M

′,g′ab) are locally isometric

Figure 38 Because of the slit, the point q has an empty domain of prediction.
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but not isometric and (ii) (M,gab) is weakly observationally indistinguishable
from (M′,g′ab) (Manchak, 2009).

Exercise 31 Find a causally bizarre spacetime that is weakly observationally
indistinguishable from a spacetime that is not causally bizarre.

To see why the result must hold, we need to collect a few basic facts. If a
spacetime (M,gab) is not causally bizarre, then for every point p ∈ M, one
can find a non-empty open set disjoint from the region I−(p). This open set
will allow for slits to be cut in M that do not intersect I−(p). Another fact we
need is this: in every spacetime (M,gab), there is a countable sequence of points
{pn} in M such that ⋃{I−(pn)} = M (Malament, 1977a, p. 80). It follows that
each q ∈M will be such that I−(q) ⊆ I−(pn) for some point pn in the sequence.
For Minkowski spacetime in standard (t, x) coordinates, the sequence {(n,0)}
for n ∈ N will have timelike pasts that cover the manifold in this way (see
Figure 39).
Now consider any spacetime (M,gab) that is not causally bizarre and let {pn}

be a countable sequence of points in M such that ⋃{I−(pn)} = M. For each
pn ∈ M, consider two copies of the spacetime (M,gab) – call them (Mn,gn)
and (M′n,g′n). In each (Mn,gn) for n > 1, find an open region disjoint from
I−(pn) in which to cut a pair of slits S+n and S−n ; for (M1,g1) only cut one slit
S+1 . In each (M′n,g′n), cut the slits S

+
n and S

−
n+1. Now, excluding the slit boundary

points, identify the top edge of S+1 in (M1,g1) with the bottom edge of S+1 in
(M′1,g′1); then identify the top edge of S

−
2 in (M′1,g′1)with the bottom edge of S−2

in (M2,g2); and so on to produce a spacetime chain (M′,g′ab) (see Figure 40).
It is not difficult to verify that (M,gab) and (M

′,g′ab) are locally isometric but

Figure 39 A collection of points {pn} in Minkowski spacetime whose
timelike pasts cover the manifold.
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Figure 40 A spacetime chain is produced by identifying slits as indicated.

not isometric and (ii) (M,gab) is weakly observationally indistinguishable from
(M′,g′ab).
By removing regions from the weakly observationally indistinguishable

counterpart, one can ensure that it fails to satisfy a number of global space-
time properties often thought necessary for a physically reasonable spacetime
(Manchak, 2011a). In particular, the counterpart can violate the following:
causal continuity (and hence causal simplicity and global hyperbolicity) and
both inextendibility and hole-freeness* (and hence local inextendibility*). In
addition, if one drops the requirement that the weakly observationally indistin-
guishable counterpart must be locally isometric to the original, one can ensure
that the former even violates chronology (Manchak, 2016b). Stepping back,
if all observational evidence we could ever gather (even in principle) is fully
consistent with our own universe having “physically unreasonable” properties
(even after the local spacetime structure has been fixed in most cases), then
perhaps we have been too quick to label these properties as such. In the follow-
ing, we build on this line of thought with respect to the property of extendibility.

Exercise 32 Find a collection of spacetimes {(Mλ,gλ)} for λ ∈ (0,∞) such
that (Mλ,gλ) is weakly observationally indistinguishable from (Mλ′ ,gλ′) if
and only if λ ≤ λ′.

6 Extendibility
Here, we explore the modal structure of spacetime through the lens of the
inextendibility condition. This is the requirement that spacetime be as large
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as possible relative to a standard background collection of models. The prop-
erty is usually taken to be satisfied by all physically reasonable spacetimes for
metaphysical reasons (Clarke, 1993, p. 8). “Why, after all, would Nature stop
building our universe at M when She could just as well carry on to build M′?”
(Geroch, 1970a, p. 262). But inextendibility would seem physically significant
only insofar as the background collection coincides with physically reasonable
possibilities (Geroch, 1970a, p. 278). Since what counts as a physically rea-
sonable spacetime is not yet clear – especially in light of the aforementioned
underdetermination results – one can consider various modified definitions of
inextendibility in a pluralistic way.

Let U be the collection of all spacetimes and let P ⊆ U be any spacetime
property. If a spacetime is in the collection P , it is a P-spacetime. If a P-
spacetime is an extension of another P-spacetime, we say the former is a P-
extension of the latter. AP-spacetime isP-extendible if it has aP-extension
and is P-inextendible otherwise. For all P ⊆ U , inextendibility implies P-
inextendibility although the converse is not true in general. Consider the t < 0
portion of Misner spacetime (see Figure 41). It is extendible but counts as P-
inextendible ifP is the collection of globally hyperbolic spacetimes (Chrusciel
& Isenberg, 1993).

Exercise 33 Find an extendible but P-inextendible spacetime where P is
the collection of all causal spacetimes.

For all spacetime properties P ⊆ U , consider the following statement.

Figure 41 The bottom half of Misner spacetime is extendible and globally
hyperbolic, but every extension must fail to be globally hyperbolic.
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(∗) Every P-inextendible spacetime is inextendible.

If (∗) is true for some property P , there is no difference between P-
inextendibility and the standard definition. Are there physically reasonable
properties P ⊆ U that render (∗) true? Cheap examples abound if one con-
siders various subcollections of the inextendible spacetimes (e.g. the collection
of locally inextendible* spacetimes). But (∗) is usually made false by nontriv-
ial properties. We have seen this in the global hyperbolicity case already. Here
is another simple example: take (time and space)-rolled Minkowski spacetime
and remove one point from the manifold (see Figure 42). Since the only exten-
sion to this spacetime is the one we started with, it counts as P-inextendible
where P is either the collection of all geodesically incomplete spacetimes or
the collection of all spacetimes with non-compact manifold. One can also show
that (∗) is false if P is the collection of all spacetimes satisfying either (i) any
of the energy conditions or (ii) any of the causal conditions at least as strong
as the causality condition (Manchak, forthcoming). Things are not yet settled
with respect to the properties of being non-totally vicious, being chronological,
or being vacuum (cf. Geroch, 1970, p. 289).

Exercise 34 Let P be the collection of all spacetimes that have extendible
extensions. Find a spacetime that renders (∗) false for P .

Because (∗) is generally false for various physically reasonable properties
P ⊆ U , it seems natural to reexamine foundational claims concerning inex-
tendibility where the standard definition is exchanged for various formulations
of P-inextendibility. Recall the result that every extendible spacetime has
an inextendible extension; this statement helps to underpin the widely held
position that all physically reasonable spacetimes must be inextendible (Ear-
man, 1995, p. 32). But do analogous results hold under variant definitions of

Figure 42 A geodesically incomplete spacetime with non-compact manifold
that cannot be extended with these properties but can be extended.
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inextendibility? For all spacetime properties P ⊆ U , consider the following
statement.

(∗∗) Every P-extendible spacetime has a P-inextendible extension.

It is easy to construct physically unreasonable properties that render (∗∗)
false. Let (M,gab) be the t < 0 portion of Minkowski spacetime in standard
(t, x) coordinates and consider the collection P = {(M,gab)}. We find that
(M,gab) counts as its own extension; the proper isometric embedding φ ∶M→
M defined by φ(t, x) = (t − 1, x) shows this (see Figure 43). So (M,gab) is
P-extendible but it cannot have a P-inextendible extension since (M,gab) is
the only spacetime in P . So (∗∗) is false for P .

Exercise 35 Let P be the collection U − {(M,gab)} where (M,gab) is
Minkowski spacetime. Is (∗∗) true or false for P?

What is the status of (∗∗) with respect to physically reasonable properties
of interest? We find that (∗∗) is true if P is the collection of all chrono-
logical spacetimes (Low, 2012). One can also show that (∗∗) is also true if
P is the collection of all geodesically incomplete spacetimes. But various
physically reasonable subcollections of the geodesically incomplete spacetimes
make (∗∗) false. For example, take the collection Q ⊂P of spacetimes such
that every maximal timelike geodesic is past-incomplete; presumably, the big
bang in our own universe renders Q physically reasonable in some sense. But
one can show that (∗∗) is false for Q (Manchak, 2016c).

Exercise 36 Let P ⊂ U be the collection of geodesically incomplete space-
times. For each P-extendible spacetime, find a P-inextendible extension.

Figure 43 The proper isometric embedding φ shows that the bottom half of
Minkowski spacetime counts as its own extension.
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To see why this might be, takeMinkowski spacetime (M,gab) in standard (t, x)
coordinates and remove the (disjoint) slit Sn = {(−n, x) ∶ x ≤ −1/n or 1/n ≤ x}
for all positive integers n ∈ N. Let S = ⋃{Sn}. Consider a conformal factor
Ω ∶ M − S → R such that Ω = 1 outside of D(S) but rapidly approaches zero as
S is approached along every timelike curve inD(S). We find that the spacetime
(M−S,Ω2gab) is inextendible due to the chosen conformal factor. Now remove
the points N = {(−1,0), (−2,0), (−3,0), . . .}. The result is a Q-spacetime
(M′,g′ab) since all maximal timelike geodesics must approach either some Sn
or some missing point in the past direction (see Figure 44). One can verify that
everyQ-extension of (M′,g′ab)will replace some non-empty subset of Nwhile
leaving an infinite number of missingN points. (If only a finite number of miss-
ing N points remain in an extension, then a past-complete timelike geodesic
running along x = 0 can be found to the past of the lowest of the missing N
points.) So any extension of (M′,g′ab) can itself be Q-extended by replacing
any one of the infinite points in N that remain missing in the extension. So
(M′,g′ab) has no Q-inextendible extension.
One might object that the spacetime just constructed is physically unreason-

able in any number of ways. But one employs the cut-and-paste method merely
to “demonstrate by some example that a certain assertion is false, or that a cer-
tain line of argument cannot work” (Geroch & Horowitz, 1979, p. 221). Here,
we see that just because a particular physically reasonable collection P ren-
ders (∗∗) true, it does not follow that every physically reasonable subcollection
Q ⊂ P will render (∗∗) true as well; each collection must be checked inde-
pendently. And even if one considers extremely nice spacetime properties, one
still needs to worry about their various subcollections. Take the collection of

Figure 44 All maximal timelike geodesics (dotted lines) are past-incomplete
since each one must approach either some Sn or some missing point.
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Figure 45 The points p1 and p2 are distinct, but open neighborhoods around
these points will always intersect in the bottom half of the spacetime.

globally hyperbolic spacetimes; simply being a member of this collection is not
sufficient to be considered physically reasonable even if one goes along with
the controversial “cosmic censorship” position that all physically reasonable
spacetimes must be globally hyperbolic.
So far, we have only considered P-inextendibility in cases where P ⊆ U .

It is also fruitful to study P-inextendibility for various collections of geomet-
ric objectsP for whichU is a subcollection. For example, one could allow for
spacetimes with continuous but non-smooth metrics (Galloway & Ling, 2017;
Sbierski, 2018). Let V be the collection of spacetimes (M,gab) that are defined
as before except thatM is now permitted to be non-Hausdorff (Hájíček, 1971a,
1971b). As before, a member of P ⊆ V will be called a P-spacetime. In
the natural way, one can also extend the definitions of various P-extendibility
notions to include all P ⊆ V . A simple example of a (V − U )-spacetime
is constructed by considering two copies of Minkowski spacetime in standard
(t, x) coordinates. Identify each point (t, x) in one copy with the point (t, x)
in the other copy if and only if t < 0; the result is V -spacetime in which
Minkowski spacetime “branches” at t = 0. Since the points p1 = (0,0) and
p2 = (0,0) in each of the copies are not identified, these points are distinct in
the branching model. But open neighborhoods around these points must inter-
sect in the t < 0 region, demonstrating that the spacetime is non-Hausdorff
(see Figure 45). In the natural way, we can also extend the scope of (∗∗) to
apply to all P ⊆ V . Because there is no limit to the number of non-Hausdorff
branches that can be attached to a V -spacetime, (∗∗) comes out as false for V

(Clarke, 1976, p. 18).
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Exercise 37 For any (M,gab) ∈ U that is not causally bizarre, find a (V −U )-
spacetime (M′,gab) such that (i) (M,gab) and (M

′,g′ab) are locally isometric
but not isometric and (ii) (M,gab) is weakly observationally indistinguishable
from (M′,g′ab).

Consider Misner spacetime (M,gab) in (t, φ) coordinates. Recall that a future-
incomplete timelike geodesic spirals around the spacetime and never reaches
t = 0. This geodesic can be extended beyond t = 0 if one “reverse twists” the
t < 0 portion of (M,gab) and then extends to produce reverse Misner spacetime
(M′,g′ab). But then a different geodesic will become twisted in reverse Misner
spacetime and fail to reach t = 0. It turns out that one can combine the two
variants of Misner spacetime so as to extend both geodesics across t = 0 if one
allows for non-Hausdorff possibilities (Hawking & Ellis, 1973, p. 173). Let
(N,gab) and (N

′,g′ab) be, respectively, the t < 0 portions of Misner and reverse
Misner and let θ ∶ N → N′ be the reverse twist isometry. A non-Hausdorff
branching Misner spacetime (M′′,g′′ab) can be constructed by considering the
spacetimes (M,gab) and (M

′,g′ab) and identifying each point (t, φ) ∈ N ⊂ M
with the point θ(t, φ) ∈ N′ ⊂M′ (see Figure 46).
Despite being non-Hausdorff, the branching Misner spacetime seems phys-

ically reasonable in a number of ways (Geroch, 1968b, p. 240). We say that a
V -spacetime (M,gab) has bifurcating curves if there exist curves γn ∶ [0,1]→
M for n = 1,2 and some t ∈ (0,1] such that γ1(s) = γ2(s) for all s < t
and yet γ1(s) ≠ γ2(s) for all s ≥ t. Immediately, we find that the branch-
ing Minkowski spacetime has bifucating curves. In each copy (Mn,gn) of
Minkowski spacetime for n = 1,2 consider the curve γn ∶ [0,1] → Mn defined

Figure 46 A non-Hausdorff branching version of Misner spacetime; the
bottom half is symmetrically depicted here.
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Figure 47 The branching version of Minkowski spacetime has bifurcating
curves since γ1 and γ2 coincide only when t < 0.

by γn(s) = (−1 + 2s,0). When the t < 0 regions of (M1,g1) and (M2,g2)
are identified to produce the branching Minkowski spacetime, we find that
γ1(s) = γ2(s) for all s < 1/2 but γ1(s) ≠ γ2(s) for all s ≥ 1/2 (see Figure 47).
It turns out that the branching Misner spacetime is curiously free of bifur-

cating curves (cf. Hájíček, 1971a). Moreover, we find the collection W of
V -spacetimes without bifurcating curves is also nice in the following ways:
(i) every W -spacetime has an underlying manifold that is second countable,
(ii) every strongly causal W -spacetime is a U -spacetime (i.e. it is Haus-
dorff), and (iii) one can show (using Zorn’s lemma) that W renders (∗∗) true
(Clarke, 1976). Result (iii) ensures that the t < 0 portion of Misner spacetime
has a W -inextendible extension that, although non-Hausdorff, can be consid-
ered the “natural extension” (Geroch, 1968c, p. 465). Result (iii) is also useful
in pushing back against the position that any non-Hausdorff spacetime must
be physically unreasonable since it must be extendible in the sense that it
can be properly and isometrically embedded it into some other non-Hausdorff
spacetime (cf. Earman, 2008, p. 202).

Exercise 38 Find a collection P ⊂ V that renders (∗∗) true and contains W

as a proper subcollection.

Let (M,gab) be the t < 0 portion of Misner spacetime in (t, φ) coordinates and
letP ⊆ V be any collection containing this spacetime.We find that demanding
P-inextendibilty can often “force” (M,gab) to have extensions with particular
global properties (Earman et al., 2009). For example, if P = U , then every
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Figure 48 Every extension to the bottom half of Misner spacetime contains a
pair of distinct points p and q such that I−(p) = I−(q).

P-inextendible P-extension of (M,gab) fails to be distinguishing (see Fig-
ure 48). If P = W , then every P-inextendible P-extension of (M,gab) is
non-Hausdorff (cf. Hawking & Ellis, 1973, p. 174). And so on. We find that
once P is fixed, we can think of (M,gab) as a type of machine that forces var-
ious global properties of interest. Let’s explore this idea a bit more (cf. Earman
et al., 2016).
We say a P-spacetime (M,gab) for P ⊆ V is P-past-inextendible if, for

every isometric embeddingφ ∶M→M′ into aP-spacetime (M′,g′ab), we have
I−(φ[M]) = φ[M]. A P-spacetime (M,gab) for P ⊆ V is a P-starter if it is
globally hyperbolic andP-past-inextendible, and has aP-inextendible exten-
sion. A P-starter represents a universe with a physically reasonable property
that has future extensions that are as large as possible with the property. Under
this definition, the t < 0 portion of Misner spacetime counts as a U -starter and
a W -starter, but not a V -starter given that it fails to be V -past-inextendible.
For all P,Q ⊆ V , a P-starter is a (P,Q)-machine if all of its P-

inextendible extensions are Q-extensions. If P is a collection of physically
reasonable spacetimes, then a (P,Q)-machine represents a physically rea-
sonable universe that forces the property Q to obtain. (One usually considers
nontrivial (P,Q)-machines in which the P-starter lacks the property Q.)
For example, let T ⊂ U be the collection of chronology-violating spacetimes;
a (P,T )-machine can be considered a type of time machine relative to the
collection P ⊆ V . A remarkable result shows that a (U ,T )-machine does
not exist where U is the collection of Hausdorff spacetimes (Krasnikov, 2002,
2018). In the case of the t < 0 portion of Misner spacetime (M,gab), a chrono-
logical U -extension can be constructed by taking Misner spacetime (M′,g′ab)
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Figure 49 The removed slit S does not permit closed timelike curves.

in (t, φ) coordinates with the slit S = {(t,0) ∶ t ≥ 0} removed (see Figure 49).
Of course, the spacetime (M′ − S,gab) is U -extendible. But one can introduce
a conformal factor Ω ∶M′ − S→ R such that Ω = 1 in the t < 0 region ofM′ − S
but rapidly approaches zero as S is approached along every curve contained in
the t > 0 region. So the resulting spacetime (M′ − S,Ω2gab) is a chronological
U -inextendible extension of (M,gab).

Exercise 39 Find a chronological, flat, U -inextendible extension of the t < 0
portion of Misner spacetime.

Are there physically reasonable collections P ⊂ U such that a (P,T )-
machine exists? It has been suggested that if P is a property forbidding holes
of some kind, perhaps such a time machine existence result can be found (Ear-
man et al., 2009). Indeed, it has even been claimed that ifP is the collection of
causally closed spacetimes, then a (P,T )-machine exists (Manchak, 2011b).
But this claim turns out to be false. To see why, consider the following no-
go result. Let R ⊂ U be the collection of reflecting spacetimes. Let P ⊆ R

be any subcollection of reflecting spacetimes (e.g. the collection of causally
closed spacetimes) and suppose a (P,T )-machine (M,gab) exists. It follows
that (M,gab) has a P-inextendible extension (M′,g′ab) that violates chronol-
ogy. It is not hard to verify that (M′,g′ab) cannot be totally vicious. (To see this,
suppose (M′,g′ab) is totally vicious. Let φ ∶ M → M′ be the proper isometric
embedding of (M,gab) into (M

′,g′ab). Considerφ(p) for any point p ∈M. Since
(M′,g′ab) is totally vicious, recall that I

−(φ(p)) =M′ (Minguzzi, 2019, p. 113).
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It follows that I−(φ[M]) = M′ ≠ φ[M], which is impossible since (M,gab)
is a P-starter and hence P-past-inextendible. Since (M′,g′ab) both violates
chronology and is not totally vicious, recall that it must fail to be reflecting
(Clarke & Joshi, 1988), which is impossible since (M′,g′ab) is a P-spacetime.
So we find that no (P,T )-machine exists where P ⊆ R. It remains to be
seen whether other physically reasonable collections P ⊂ U can yield a time
machine existence result.
In contrast to the time machine case, we find a number of available “hole

machine” existence results; here is one such (Manchak, 2014b). LetH ⊂ U be
the collection of spacetimes with holes in the sense that they fail to be causally
closed, and let E ⊂ U be the collection of empty (i.e. vacuum) spacetimes. In
three or more dimensions, it is not difficult to see that an (E ,H )-machine
must exist. Consider the t < 0 portion of three-dimensional Misner space-
time (M,gab) (see Chrusciel & Isenberg, 1993). Because (M,gab) is flat and
U -past-inextendible, it must be E -past-inextendible. Since (M,gab) is also
globally hyperbolic and has Misner spacetime as an extension (which is flat
and inextendible and therefore E -inextendible), it counts as an E -starter. Let
(M′,g′ab) be any E -inextendible extension to (M,gab). By the argument given
in the previous paragraph, we see that if (M′,g′ab) were totally vicious, then
(M,gab)would fail to be E -past-inextendible, which is impossible; so (M′,g′ab)
is not totally vicious. But since (M′,g′ab) is not totally vicious and at least
three-dimensional, it is causally closed if and only if it is causally simple
(Hounnonkpe & Minguzzi, 2019). Because every extension to the t < 0 por-
tion of Misner spacetime – including (M′,g′ab) – fails to be distinguishing, we
know that (M′,g′ab) must fail to be causally simple. So (M′,g′ab) must fail to
be causally closed as well.

Exercise 40 Find a two-dimensional (E ,H )-machine.

Let us take a look at one final machine example. Let M ⊂ U be the collection
ofMalament-Hogarth spacetimes. One can show that a (U ,M )-machine must
exist (Manchak, 2018b). To see this, consider Minkowski spacetime (M,gab)
in standard (t, x) coordinates. Let q = (0,0) and let C = J+(q). Now consider
the spacetime (M − {q},Ω2gab) where Ω ∶ M − {q} → R is chosen to go to
infinity as the missing point q is approached along any curve. Let (M′,g′ab)
be the spacetime (M − C,Ω2gab). This spacetime contains a past-extendible
timelike curve γ ∶ I → M′ that approaches the missing point q and is such
that ∥γ∥ = ∞ due to the chosen conformal factor. We find that the spacetime
(M′,g′ab) is globally hyperbolic and counts as a U -starter. Let (M′′,g′′ab) be
any U -inextendible extension of (M′,g′ab). One can verify that for any point

https://doi.org/10.1017/9781108876070


52 The Philosophy of Physics

Figure 50 The past-extendible timelike curve γ approaching the missing
point has infinite length but is contained in the timelike past of the point p.

p ∈ M′′ −M′ on the boundary of M′ in M′′, the region I−(p) will contain the
image of the curve γ (see Figure 50). So (M′′,g′′ab) is Malament-Hogarth and
(M′,g′ab) counts as a (U ,M )-machine The example fails to have a nice local
structure and so one naturally wonders about the existence of other (P,M )-
machines for various choices of physically reasonable properties P ⊂ U .
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The appendix comes in two parts. In the first, there is a brief review of some
basic topology (Steen & Seebach, 1970; Wald, 1984). In the second, sample
solutions to all exercises are presented.

Topology Basics

In what follows, let R, Q, Z, and N be, respectively, the set of real numbers,
rational numbers, integers, and positive integers. A topological space (X,T )
consists of a set X and a collection T of subsets of X satisfying (i) ∅,X ∈ T ,
(ii) if Oα ∈ T for all α, then ⋃α Oα ∈ T , and (iii) if O1, . . . ,On ∈ T , then
⋂n

i=1Oi ∈ T . If (X,T ) is a topological space, then T is a topology on X. A
set O ⊆ X is open if O ∈ T . A set C ⊆ X is closed if X − C is open. A set
A ⊆ X is a neighborhood of p ∈ X if there is an open set O ⊆ A such that
p ∈ O. For any set X, the collection {A ∶ A ⊆ X} is the discrete topology on
X while the collection {∅,X} is the indiscrete topology on X. Consider the
topological space (R,T ) where T is a collection of all sets O ⊆ R where O
can be expressed as a union of open intervals (a,b) = {x ∈ R ∶ a < x < b}. This
is the standard topology on R. We see, for example, that the disjoint region
R − {0} is open, the interval [0,1] = {x ∈ R ∶ 0 ≤ x ≤ 1} is closed, and the
interval (−1,1] = {x ∈ R ∶ −1 < x ≤ 1} is neither open nor closed but does
count as a neighborhood of 0.
If (X1,T1) and (X2,T2) are topological spaces, the product topology on

X1 × X2 is the collection of all subsets of X1 × X2, which can be expressed as
unions of sets of the form O1 × O2 with O1 ∈ T1 and O2 ∈ T2. The standard
topology on R can be used to define the product topology on R × R = R2.
The construction can be repeated to define a topology on Rn for any n ∈ N.
This is the standard topology on Rn and it is assumed unless otherwise noted.
Consider the open ball Bϵ(p) ⊂ Rn with radius ϵ > 0 centered at the point
p = (p1,. . . ,pn) ∈ Rn, which is defined as the set of all points (x1,. . ., xn) ∈ Rn

such that (Σn
i=1(pi − xi)2)1/2 < ϵ (see Figure 51). If T is the collection of sets

O ⊆ Rn such that, for all p ∈ O, there is an ϵ > 0 with Bϵ(p) ⊂ O, we find that
T is the standard topology on Rn.
If T1 and T2 are topologies on X and T1 ⊂ T2, then T1 is more coarse than

T2 and T2 is more fine than T1. For any topological space (X,T ) and any
A ⊆ X, the closure of A, denoted cl(A), is the intersection of all closed sets
containing A; the interior of A, denoted int(A), is the union of all open sets
contained in A; the boundary A, denoted bd(A) is the set cl(A) − int(A). The
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Figure 51 The ball Bϵ(p) in R2 with radius ϵ centered at the point p.

following are true: (i) cl(A) is closed, A ⊆ cl(A), and A = cl(A) if A is closed;
(ii) int(A) is open, int(A) ⊆ A, and A = int(A) if A is open; (iii) bd(A) is closed
and cl(A) = int(A) ∪ bd(A). As a simple example, consider the set A = (−1,1]
in R. We find that cl(A) = {−1} ∪ A, int(A) = A − {1}, and bd(A) = {−1,1}.
A set A ⊆ X is dense in the topological space (X,T ) if cl(A) = X. The sets Q
and R −Q are both dense in R.
For any topological space (X,T ) and any A ⊆ X, the collection T∣A = {U ∶

U = A∩O,O ∈ T } is the induced topology on A. For all n ∈ N, the n-sphere Sn

is the set {(x1, . . . , xn+1) ∈ Rn+1 ∶ Σn+1
i=1 x2i = 1}. The standard topology on Sn –

which is assumed throughout – is the induced topology from Rn+1. Let (X,T )
be a topological space and let ∼ be some equivalence relation onX. Consider the
quotient set Y = X/ ∼ defined as {[x] ∶ x ∈ X} where [x] = {y ∈ X ∶ x ∼ y} is the
equivalence class of x. Let f ∶ X → Y be the function f(x) = [x]. The quotient
topology on Y is the collection {O ⊆ Y ∶ f−1[O] ∈ T }. To see the definition at
work, let X be the closed interval [0,1] with induced topology from R. Now
consider the quotient set Y = X/ ∼ where, for all x, y ∈ X, we have x ∼ y if and
only if (i) x = y, or (ii) x = 0 and y = 1, or (iii) x = 1 and y = 0. One finds that
Y with the quotient topology is homeomorphic to S1. A similar construction
shows how the entire real line can be rolled up into a circle. Just let Y = R/ ∼
where, for all x, y ∈ R, we have x ∼ y if and only if x − y ∈ Z; the set Y with the
quotient topology is homeomorphic to S1.
If (X,T ) and (Y,S ) are topological spaces, a function f ∶ X → Y is con-

tinuous if, for every open set O ⊆ Y, the set f−1[O] = {x ∈ X ∶ f(x) ∈ O}
is open in X. Consider the function f ∶ R → R2 defined by f(x) = (x,−1)
for x ≠ 0 and f(0) = (0,1). We find that f is not continuous since the open
set O = {(x, y) ∶ y > 0} in R2 is such that f−1[O] = {0}, which is not open
in R (see Figure 52). The topological spaces (X,T ) and (Y,S ) are home-
omorphic if there is a bijection f ∶ X → Y such that f and its inverse f−1 are
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Figure 52 The function f ∶ R→ R2 is not continuous since the open set O in
R2 is such that f−1[O] = {0} is not open in R.

continuous. Topological spaces that are homeomorphic have all of the same
topological properties. We find that R is homeomorphic to the interval (−1,1)
with induced topology from R since the bijection f ∶ (−1,1) → R given by
f(x) = tan(πx/2) is continuous and so is its inverse. For additional examples,
consider (i) the cylinder R × S1 with the product topology, (ii) the once punc-
tured plane R2 − {(0,0)} with induced topology from R2, and (iii) the twice
punctured sphere S2 − {(1,0,0), (−1,0,0)} with induced topology from S2;
each of these topological spaces is homeomorphic to any other.
A topological space (X,T ) is connected if the only subsets of X that are

both open and closed are ∅ and X itself. A topological space (X,T ) is path
connected if, for all p,q ∈ X, there is a continuous function f ∶ [0,1] → X
such that f(0) = p and f(1) = q. We find Rn and Sn are path connected for all
n ∈ N. One can show that every path connected topological space is connected
but the converse is false. One counterexample is the “topologist’s sine curve”
(X,T ) where X = {(x, sin(1/x)) ∈ R2 ∶ x > 0}∪{(0,0)} and T is the induced
topology fromR2. A topological space (X,T ) isHausdorff if, for any distinct
p,q ∈ X, there are disjoint open sets U,V ⊂ X such that p ∈ U and q ∈ V. One
can verify that Rn and Sn are Hausdorff for all n ∈ N. If (X,T ) and (Y,S ) are
Hausdorff topological spaces, then (i) any A ⊂ X with the induced topology is
Hausdorff and (ii) X×Y with the product topology is Hausdorff. The “line with
two origins” is an example of a non-Hausdorff topological space. Consider the
set {1,2} with the discrete topology and let X = R × {1,2} have the product
topology. Let ∼ be an equivalence relation on X where, for all x, y ∈ R and all
n,m ∈ {1,2}, we have (x,n) ∼ (y,m) if and only if either (x,n) = (y,m) or
x = y ≠ 0. The set X/ ∼ with the quotient topology is not Hausdorff since any
open sets around the two origin points (0,1) and (0,2) must intersect.
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Let (X,T ) be a topological space with p,q ∈ X. Let γ ∶ [0,1] → X and
γ′ ∶ [0,1] → X be continuous curves with γ(0) = γ′(0) = p and γ(1) =
γ′(1) = q. The curves γ and γ′ are homotopic if there is a continuous function
h ∶ [0,1] × [0,1] → X such that h(0, s) = γ(s) and h(1, s) = γ′(s) for all
s ∈ [0,1] and h(t,0) = p and h(t,1) = q for all t ∈ [0,1]. Homotopic curves
are those that can be continuously deformed into one another while keeping the
endpoints fixed. A topological space (X,T ) is simply connected if it is path-
connected and every continuous curve γ ∶ [0,1] → X for which γ(0) = γ(1)
is homotopic to the trivial curve γ′ ∶ [0,1] → X for which γ′(s) = γ(0) for all
s ∈ [0,1]. One can show that Rn is simply connected for all n ∈ N and Sn is
simply connected if and only if n ≥ 2. In the case of S1, the continuous curve
γ ∶ [0,1]→ S1 defined by γ(s) = (cos(2πs), sin(2πs)) that loops around S1 is
not homotopic to the trivial curve γ′ ∶ [0,1] → S1 defined by γ′(s) = γ(0) =
(1,0) (see Figure 53).
Let (X,T ) be a topological space. The topological space (Y,S ) is a cov-

ering space of (X,T ) if there is map f ∶ Y → X (called the covering map)
that satisfies the following condition: for each x ∈ X, there is an open set
O ⊂ X containing x such that f−1[O] is a disjoint union of sets, each of which
is mapped homeomorphically onto O by f. Any topological space counts as its
own covering space. If a covering space (Y,S ) of (X,T ) is simply connected,
then (Y,S ) is a universal covering space of (X,T ). Intuitively, if there are
any non-homotopic curves in a topological space, its universal covering space
unwinds them. If (Y,S ) is a universal covering space of (X,T ), then it is a
covering space of all other connected covering spaces of (X,T ). Given any
topological space, one can show that any two of its universal covering spaces

Figure 53 Because the curve γ loops around S1, it is not homotopic to the
trivial curve γ′ at the point γ(0).
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are homeomorphic. We see that Rn is its own universal covering space for all
n ∈ N and Sn is its own universal covering space if and only if n ≥ 2. The
universal covering space of S1 is R; the covering map f ∶ R → S1 defined by
f(x) = (cos(2πx), sin(2πx)) can be used to show this.
If (X,T ) is a topological space and A ⊆ X, a collection {Oα} of open sets

is an open cover for A if the union of all of the sets in the collection contains
A. Any subcollection of the sets {Oα} that also cover A is a subcover. The set
A is compact if every open cover of A has a finite subcover. The open interval
(0,1) in R is not compact since the open sets On = (1/(n + 1),1) for n ∈ N
give rise to an open cover for (0,1), which fails to have a finite subcover. We
find that Sn is compact and Rn is not compact for all n ∈ N. In Rn, one can
show that a set A is compact if and only if it is closed and bounded in the sense
that A is contained in the open ball Bϵ(p) for some ϵ > 0 and some p ∈ Rn

(see Figure 54). If (X,T ) is a Hausdorff topological space, the following are
true: (i) if A ⊆ X is compact, then A is closed; (ii) if X is compact and A ⊆ X
is closed, then A is compact; (iii) if A ⊆ X is compact, then for any continuous
function f ∶ A→ R, there exist a,b ∈ R such that, for all x ∈ A, a ≤ f(x) ≤ b with
f(p) = a and f(q) = b for some p,q ∈ A. We also find that if (X,T ) and (Y,S )
are compact topological spaces, then the space X× Y is compact in the product
topology. So, for example, the torus S1 × S1 is compact.
The set B ⊆ T is a basis for the topological space (X,T ) if every open set

O ∈ T can be expressed as a union of sets in B. A topological space (X,T )
is second countable if there is a countable basis for it. We find that Rn and
Sn are second countable for all n ∈ N. In the case of Rn, a countable basis
can be found by taking the collection of all open balls Bϵ(p) where ϵ ∈ Q and

Figure 54 The closed set A ⊂ R2 is compact since it is contained in the open
ball Bϵ(p) for some ϵ > 0 and some p ∈ R2.
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Figure 55 The closed set A ⊂ X is not compact since the sequence {pn} in A
fails to have an accumulation point in A.

p = (p1, . . . ,pn) is such that p1, . . . ,pn ∈ Q. For a simple example of topological
space that fails to be second countable, consider (R,T )whereT is the discrete
topology. If (X,T ) is a topological space, a point p ∈ X is an accumulation
point of an infinite sequence {pn} inX if every open neighborhood of p contains
infinitely many points in the sequence. In R, the sequence {pn} defined by
pn = (n/n+1)(−1)n for all n ∈ N has accumulation points at −1 and 1. A useful
result is the following: if a topological space (X,T ) is second countable, then
a set A ⊆ X is compact if and only if every infinite sequence {pn} in A has
an accumulation point p in A. Consider X = R2 − {(0,0)} with the induced
topology from R2 and the closed set A = {(x1, x2) ∈ X ∶ −1 ≤ xn ≤ 1 for n =
1,2}. We see that A ⊂ X is not compact since the sequence {pn} in A defined
by pn = (1/n,0) for all n ∈ N has no accumulation point at all, let alone one in
A (see Figure 55).
Let (X,T ) be a topological space and let {Oα} be an open cover of X.

An open cover {Vβ} is a refinement of {Oα} if for each Vβ there is an Oα

such that Vβ ⊂ Oα. A cover {Vβ} is locally finite if each x ∈ X has an
open neighborhood W such that only finitely many Vβ satisfy W ∩ Vβ ≠ ∅.
A topological space (X,T ) is paracompact if every open cover {Oα} has
a locally finite refinement {Vβ}. One can show that Rn and Sn are paracom-
pact for all n ∈ N. In addition, any compact topological space is paracompact.
To construct a topological space that is not paracompact, take (R,T ) where
T = {O ⊆ R ∶ 0 ∈ O} ∪ {∅}.
A topological space (M,T ) is a (topological) manifold of dimension n ∈ N

if each point p ∈ M has an open neighborhood O ⊂ M such that O with
the induced topology and Rn are homeomorphic. Intuitively, a n-dimensional
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manifold has a topology that is locally like that of Rn. The topological spaces
Rn and Sn are manifolds for any dimension n ∈ N. Consider, for example, the
point p = (1,0,0) ∈ S2; the set O = {(x, y, z) ∈ S2 ∶ x > 0} is an open neigh-
borhood of pwhich is homeomorphic to R2. IfM is an n-dimensional manifold
and C ⊂ M is a closed proper subset, then M − C with the induced topology
is an n-dimensional manifold. If M and N are, respectively, m-dimensional
and n-dimensional manifolds, then M × N with the product topology is an
(m + n)-dimensional manifold. A useful result is this: any connected Haus-
dorff manifold is paracompact if and only if it second countable. A manifold
of dimension n ≥ 4 can fail to be smooth in the appropriate sense, but Rn and
Sn are smooth for any dimension n ∈ N.

Sample Solutions

Sample solutions to all exercises are presented here; familiarity with all
definitions given in the preceding is assumed.

Exercise 1 Find a manifoldM and a point p ∈M such thatM andM−{p} are
diffeomorphic.

Let M be the manifold R2 with the closed set of points {(n,0)} removed for
all positive integers n ∈ N and take p = (0,0). The bijection φ ∶ M → M − {p}
given byφ(x, y) = (x−1, y) is a diffeomorphism (cf. Geroch&Horowitz, 1979,
p. 289).

Exercise 2 Find a spacetime (M,gab) and a pair of points p,q ∈ M that can
be connected by spacelike and null geodesics but not by a timelike geodesic.

Consider space-rolled Minkowski spacetime (M,gab) in (t, φ) coordinates.
The pair of points p = (0,0) and q = (2π,0) can be connected by timelike,
null, and spacelike geodesics. But if the point (1,0) is removed, the resulting
spacetime is such that p and q fail to be connected by a timelike geodesic (see
Figure 56).

Exercise 3 Find a flat spacetime such that every maximal timelike geodesic
is incomplete but some maximal null and spacelike geodesics are complete.

Consider Minkowski spacetime (M,gab) and any point p ∈ M. The space-
time (M − J+(p),gab) will be such that every maximal timelike geodesic will
approach the missing region while some maximal spacelike and null geodesics
can avoid it.
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Figure 56 The points p and q can be connected by a spacelike geodesic (solid
line) and a null geodesic (dotted line) but not by a timelike geodesic due to the

missing point.

Figure 57 The annulus with rotating light cones does not admit a continuous
timelike vector field.

Exercise 4 Find a spacetime (M,gab) for some M ⊂ R2 that fails to be time-
orientable.

Delete a closed set of points from R2 to leave an open annulus; orient the light
cones so they rotate around the annulus (see Figure 57). The resulting spacetime
is not time-orientable (cf. Geroch & Horowitz, 1979, p. 227).

Exercise 5 Find a spacelike surface in Minkowski spacetime that fails to be
achronal.
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Figure 58 A “spiraling ramp” spacelike surface S in three-dimensional
Minkowski spacetime is such that the points p and q in S can be connected by

a timelike curve.

An example in two-dimensional Minkowski spacetime does not exist. But a
“spiraling ramp” spacelike surface can be found in three three-dimensional
Minkowski spacetime such that two points in the surface can be connected by
a timelike curve (see Figure 58).

Exercise 6 Find a pair of non-isometric spacetimes such that each counts as
an extension of the other.

Consider two copies of the t < 0 portion of Minkowski spacetime in standard
(t, x) coordinates. Remove one point from themanifold of one copy. The result-
ing spacetimes are not isometric but each counts as an extension of the other
(cf. Geroch, 1970, p. 276).

Exercise 7 Find a flat, inextendible spacetime (R2,gab) that is not isometric
to Minkowski spacetime.

For each n ∈ Z, let (Mn,gn) be a copy of Minkowski spacetime in standard
(t, x) coordinates. In each (Mn,gn) delete the slit Sn = {(t,0) ∶ t ≥ 0}. Exclud-
ing the origin point in each copy, identify the right edge of the slit Sn in (Mn,gn)
with the left edge of the slit Sn+1 in (Mn+1,gn+1) for all n ∈ Z to produce a flat,
inextendible spacetime (see Figure 59). Because of the missing origin points,
the resulting spacetime is geodesically incomplete and therefore not isometric
to Minkowski spacetime. But one can verify that the underlying manifold is
the universal covering space of R2 − {(0,0)}, which is just R2 (see Geroch &
Horowitz, 1979, p. 232).
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Figure 59 The right edge of the slit Sn in (Mn,gn) is identified with the left
edge of the slit Sn+1 in (Mn+1,gn+1) for all n ∈ Z.

Exercise 8 Is being time-orientable a global property? Is being two-
dimensional?

Consider two-dimensional Minkowski spacetime (M,gab) in standard (t, x)
coordinates and remove from M all points for which ∣x∣ > 1. Now, identify
the point (t,1) with the point (−t,−1) for all t to produce a flat spacetime
that is not time-orientable. Because the resulting spacetime is locally iso-
metric to Minkowski spacetime, we find that time-orientability is a global
property. Because spacetimes can be locally isometric only if they share the
same dimension, we find being two-dimensional counts as a local property.

Exercise 9 Find a spacetime (M,gab) and points p,q ∈ M such that p ≪ p,
q≪ q, and p≪ q but q≪̸ p.

Consider (S1 × S1,gab) where gab = 2 cosφ∇(aφ∇b)t + sin2 φ(∇at∇bt −
∇aφ∇bφ) and 0 ≤ t, φ ≤ 2π. The light cones are oriented so that the closed
causal curves at φ = π/2 and φ = 3π/2 are timelike. But the closed causal
curves at φ = 0 and φ = π are null and the light cones tip in different direc-
tions along these closed null curves (Malament, 1977a, p. 78). We find that
any pair of points p = (t, φ) and q = (t′, φ′) will have the desired properties if
π < φ < 2π and 0 < φ′ < π (see Figure 60).

Exercise 10 Find a geodesically complete spacetime (M,gab) and a point
p ∈M such that J−(p) is not closed.

Consider Minkowski spacetime (M,gab) in standard (t, x) coordinates.
Remove the origin q = (0,0) fromM and then construct the conformally equiv-
alent spacetime (M − {q},Ω2gab) where Ω ∶ M − {q} → R goes to infinity as
the missing point q is approached along any curve. The resulting spacetime
is geodesically complete due to the chosen conformal factor, but it must have
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Figure 60 Each of the points p and q can be connected to itself via a
future-directed timelike curve; in addition, there is a future-directed timelike

curve from p to q but not the other way around.

the same causal structure as Minkowski spacetime with the origin removed. In
particular, the point p = (1,1) will be such that J−(p) is not closed.

Exercise 11 Find a causal spacetime (M,gab) and a discontinuous bijection
θ ∶M→M such that for all p,q ∈M, p≪ q if and only if θ(p)≪ θ(q).

Consider the spacetime (R×S1,gab) where gab = 2∇(at∇b)φ+ sinh2 t∇aφ∇bφ

and 0 ≤ φ ≤ 2π. The light cones tip over as they move from the distant past
to form a single closed null curve at t = 0 at which point they tip back as they
move into the distant future. Now remove the slits S1 = {(t,0) ∶ t ≥ 0} and S2 =
{(t, π) ∶ t ≥ 0} and let (M,gab) be the resulting causal but not distinguishing
spacetime (see Figure 61). Consider the discontinuous bijection θ ∶ M → M
where θ(t, φ) = (t, φ) for t < 0 and θ(t, φ) = (t, φ + π) for t ≥ 0. We find that
for all p,q ∈M, p≪ q if and only if θ(p)≪ θ(q) (Malament, 2012, p. 135).

Exercise 12 Find a spacetime that satisfies strong causality but violates stable
causality.

Consider time-rolled Minkowski spacetime in (t, x) coordinates. Remove the
slits S1 = {(0, x) ∶ 0 ≤ x}, S2 = {(1, x) ∶ x ≤ 1}, and S3 = {(2, x) ∶ 0 ≤ x} (see
Figure 62). We find that strong causality is satisfied, but closed timelike curves
form if the light cones are opened by a small amount at each point (Hawking
& Ellis, 1973, p. 197).

Exercise 13 Find a spacetime that satisfies stable causality but violates causal
continuity.
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Figure 61 Due to the removed slits S1 and S2, the spacetime is causal. But the
timelike pasts of the distinct points p and q coincide (the region below the

dotted line).

Figure 62 The removed slits S1, S2, and S3 are chosen so that the spacetime is
strongly causal but not stably causal.

Consider Minkowski spacetime (M,gab) in standard (t, x) coordinates and
remove the slit S = {(0, x) ∶ 0 ≤ x}. The resulting spacetime (M−S,gab) inher-
its a global time function from Minkowski spacetime. But consider the points
p = (1,1) and q = (−1,−1); we find that I+(p) ⊂ I+(q) but I−(q) ⊈ I−(p)
showing that causal continuity does not hold (cf. Hawking & Sachs, 1974,
p. 289).

Exercise 14 Find a Malament-Hogarth spacetime that is flat and satisfies
chronology.

Let (M,gab) and (M
′,g′ab) be two copies of Minkowski spacetime in standard

(t, x) coordinates. Define a past-extendible timelike curve γ ∶ (0,∞)→Mwith
infinite length by setting γ(s) = (s,−1). Now for each n ∈ N, remove the slit
Sn = {(n, x) ∶ 0 ≤ x ≤ 1} from (M,gab) and the slit S′n = {(−n, x) ∶ 0 ≤ x ≤ 1}
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Figure 63 There is a future-directed timelike curve (dotted line) from each
point q on the curve γ that enters one of the slits Sn from below and emerges

from the slit S′n from above to reach the point p.

from (M′,g′ab). Identify the bottom edge of the slit Sn with the top edge of the
slit S′n for all n ∈ N and let the resulting flat spacetime be (M′′,g′′ab). We find that
any point p ∈ M′′ from which there is a past-directed timelike curve meeting
the top edge of each slit S′n will be such that its timelike past includes the image
of γ, which shows (M′′,g′′ab) to be Malament-Hogarth (see Figure 63). But one
can verify that the spacetime contains no closed timelike curves.

Exercise 15 In Minkowski spacetime (M,gab), find slices S,S
′ ⊂M such that

D(S) ∩D(S′) = ∅ but D(S) ∪D(S′) =M.

Consider Minkowski spacetime (M,gab) in standard (t, x) coordinates. Let the
slice S ⊂ M be the union of S1 = {(1, x) ∶ x ≤ 0} and S2 = {(t, x) ∶ t =
(x2 + 1)1/2, x > 0}; we find that D(S) is the region t > x. Let the slice S′ ⊂ M
be the union of S′1 = {(t, x) ∶ t = x, x ≤ 0} and S

′
2 = {(0, x) ∶ x > 0}; we find that

D(S′) is the region t ≤ x. So D(S) ∩D(S′) = ∅ and D(S) ∪D(S′) =M.

Exercise 16 Find a manifold M that admits a Lorentzian metric but is such
that every spacetime (M,gab) fails to have a Cauchy surface.

Let M be the manifold R2 with two distinct points removed. Since it is non-
compact, it admits a Lorentzian metric. But since there is no N ⊂ M such that
M is homeomorphic to R×N, we find that any spacetime (M,gab) must fail to
be globally hyperbolic (cf. Geroch & Horowitz, 1979, p. 252).
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Exercise 17 Find a spacetime that satisfies the strong energy condition but
violates the weak energy condition.

Consider a four-dimensional version of de Sitter spacetime for which R = 32π.
We find that Tab = −gab showing that the weak energy condition must be vio-
lated. Since T = Taa = −n = −4, we have Tab − 1

2Tgab = gab, showing that the
strong energy condition is satisfied.

Exercise 18 Find a four-dimensional, stably causal spacetime with compact
slice that satisfies the strong energy condition but is geodesically complete.

Consider a four-dimensional version of space-rolled Minkowski spacetime
where each t =constant surface is a compact slice of topology S1 × S1 × S1.
The spacetime is flat (and thus satisfies the strong energy condition), globally
hyperbolic (and thus stably causal), and yet geodesically complete.

Exercise 19 Find a causally simple spacetime with detectable naked singu-
larity.

Take Minkowski spacetime (M,gab) in standard (t, x) coordinates and remove
all points for which ∣x∣ ≥ 1. The spacetime is causally simple, but the image of
a future-incomplete timelike geodesic approaching x = 1 will be contained in
the timelike past of some point p (see Figure 64).

Figure 64 The point p is such that the region I−(p) contains the
future-incomplete timelike geodesic γ.
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Exercise 20 Find a spacetime with detectable naked singularity but no
evolved naked singularity; find a spacetime with an evolved naked singularity
but no detectable naked singularity.

Time-rolledMinkowski spacetime with a point removed has a detectable naked
singularity but admits no slice and is therefore free of evolved naked singulari-
ties. Now considerMinkowski spacetimewith a point removed and a conformal
factor applied that goes to infinity as the missing point is approached along
every curve. The result is a geodesically complete spacetime (and so must be
free of detectable naked singularities), but since it has the same same causal
structure as Minkowski spacetime with a point removed, it must have evolved
naked singularities.

Exercise 21 Find an inextendible, causally continuous spacetime that is not
hole-free*.

Consider Minkowski spacetime (M,gab) in standard (t, x) coordinates and let
O = I+(p) for p = (0,0). Remove p fromM and then construct the conformally
equivalent spacetime (M− {p},Ω2gab) where Ω ∶M− {p}→ R is such that (i)
Ω = 1 for all points outside of O and (ii) goes to zero as the missing point p is
approached along any curve contained in O. The resulting spacetime is inex-
tendible due to the chosen conformal factor. It has the same causal structure as
Minkowski spacetime with a point removed; in particular, it is causally con-
tinuous. But the slice S = {(t, x) ∶ t = −1} is such that D(S) is open and the
spacetime (D(S),gab) is globally hyperbolic.We find that (D(S),gab) does not
effectively extend itself. But since Ω = 1 onD(S), there is an isometric embed-
ding φ ∶ D(S) → M into Minkowski spacetime (M,gab) such that φ[D(S)]
is a proper subset of the interior of D(φ[S]) and φ[S] is achronal (see Fig-
ure 65). So (D(S),gab) has an effective extension and (M− {p},Ω2gab) is not
hole-free*.

Exercise 22 Find a spacetime that is inextendible and hole-free* but not
locally inextendible*.

Consider Minkowski spacetime (M,gab) in standard (t, x) coordinates and let
O = I−(p) for p = (0,0). Remove the region C = {(t, x) ∶ t ≥ 0} from M
and then construct the conformally equivalent spacetime (M−C,Ω2gab)where
Ω ∶ M − C → R is such that (i) Ω = 1 for all points in O and (ii) goes to
infinity as the missing region C is approached along any curve outside of O.
The resulting spacetime is inextendible due to the chosen conformal factor. It
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Figure 65 The slice S is such that the globally hyperbolic region D(S) can be
effectively extended by isometrically embedding it via φ into Minkowski

spacetime.

Figure 66 An open set O containing the future-incomplete timelike geodesic
γ can be isometrically embedded via φ into Minkowski spacetime such that

φ ○ γ has past and future endpoints.

has the same causal structure as the t < 0 portion of Minkowski spacetime and
so must be globally hyperbolic. These facts together ensure that the spacetime
is also hole-free*. But the curve γ ∶ (0,1) → O defined by γ(s) = (s − 1,0)
is a past-extendible future-incomplete timelike geodesic that approaches the
missing point p. Since Ω = 1 on O, there is an isometric embedding φ ∶ O→M
into Minkowski spacetime (M,gab) such that the curve φ ○ γ has a past and
future endpoints (see Figure 66). This means that (M − C,Ω2gab) is locally
extendible*.
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Figure 67 The point p is not in the domain of dependence of the slice S since
the inextendible timelike curve γ approaches but never never meets S.

Exercise 23 Find a slice in an epistemically hole-free spacetime with non-
empty Cauchy horizon.

Consider null-rolled Minkowski spacetime (M,gab). Each closed null curve
S ⊂ M counts as a slice. But we find that D(S) = S and therefore H(S) = S
since, through any point p ∈M−S, there will be an inextendible timelike curve
that fails to meet S (see Figure 67). But one can verify that the timelike past of
any future-inextendible timelike geodesic will be all ofM.

Exercise 24 Find a spacetime that is C stable with respect to the property of
being inextendible.

Let (M,gab) be any spacetime for whichM is compact. Since each member of
the collection L (M) is compact, each member must also be inextendible. So
inextendibility is C stable for any spacetime in L (M).

Exercise 25 Find a spacetime (M,gab) and points p,q, r ∈ M for which p ≪
q≪ r and P(p) = P(r) = ∅ but P(q) is non-empty.

Consider Minkowski spacetime (M,gab) in standard (t, x) coordinates and
remove the slits S1 = {(−2, x) ∶ −1 ≤ x ≤ 1} and S2 = {(2, x) ∶ −1 ≤ x ≤ 1}.
Excluding boundary points, identify the bottom edge of S1 with the top edge
of S2. In the resulting spacetime, there is a closed, achronal, spacelike sur-
face S contained in the region J−(q) for the point q = (0,0) such that D(S)
extends outside of J−(q) (see Figure 68). So the domain of predication of q in
not empty. But points to the distant past and future of q that can be reached by
timelike curves going around the slits will have empty domains of prediction
(cf. Geroch, 1977, p. 90).

Exercise 26 Define the domain of prediction* to be just as the domain of
prediction except drop the requirement that the closed, spacelike surface Smust
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Figure 68 The closed, achronal, spacelike surface S is contained in the causal
past of the point q. But since D(S) extends outside of the causal past of q,

there is a point p in the domain of predication of q.

be achronal as well; find a spacetime (M,gab)with no compact slice and points
p,q ∈M such that p ∈ P∗(q) ∩ I+(q).

Consider Minkowski spacetime (M,gab) in standard (t, x) coordinates and
remove the slits S1 = {(1, x) ∶ −4 ≤ x ≤ −3}, S2 = {(1, x) ∶ 3 ≤ x ≤ 4},
S3 = {(−1, x) ∶ −2 ≤ x ≤ −1}, and S4 = {(−1, x) ∶ 1 ≤ x ≤ 2} . Excluding
boundary points, identify the bottom edge of S1 with the top edge of S3 and the
top edge of S4 with the bottom edge of S2. The resulting spacetime (M′,g′ab)
admits no compact slice (cf. Hogarth, 1993, p. 726). But one can find a point
q ∈ M′ for which J−(q) contains a closed, spacelike surface S such that D(S)
extends outside of outside of J−(q) and into the region I+(q) (see Figure 69).
So there is a point p in P∗(q) ∩ I+(q).

Exercise 27 Find an extendible spacetime that is observationally indistin-
guishable only to itself.

First note that Minkowski spacetime (M,gab) is only observationally indistin-
guishable to itself. To see why, consider a future-inextendible timelike curve
γ such that I−(γ) = M; any observationally indistinguishable counterpart
(M′,g′ab)must either be isometric to (M,gab) or extend (M,gab), but the latter
possibility can be ruled out since Minkowski spacetime is inextendible. Now
remove a point p ∈M fromMinkowski spacetime (M,gab). The resulting space-
time (M′,g′ab) is extendible and will have a future-inextendible timelike curve
γ′ such that I−(γ′) =M′. So any observationally indistinguishable counterpart
must either be isometric to (M′,g′ab) or extend (M

′,g′ab). The latter possibility
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Figure 69 The point q is such that the closed, spacelike surface S is contained
in J−(q). But the point p ∈ I+(q) is in D(S) but not J−(q).

can be ruled out since the only extension to (M′,g′ab) is Minkowski spacetime,
which is only observationally indistinguishable from itself.

Exercise 28 Find a pair spacetimes showing that hole-freeness* is not
preserved under observational indistinguishability.

Let (M,gab) be the t < 0 portion of Minkowski spacetime; it is not hole-free*
since it can be effectively extended in Minkowski spacetime. Now consider the
spacetime (I−(p),gab) for any point p ∈M; it is hole-free*. But one can verify
that the two spacetimes are observationally indistinguishable.

Exercise 29 Find a spacetime (M,gab) and a point p ∈ M such that (M −
{p},gab) is weakly observationally indistinguishable from (M,gab) but not the
other way around.

Let (M,gab) be the unrolled de Sitter spacetime in (t, x) coordinates with the
points (0,0), (0,2π), and (1,2π) removed. If p = (1,0) we find that the
spacetime (M − {p},gab) is weakly observationally indistinguishable from
(M,gab). But the timelike past of the point q = (2,0) in (M,gab) has no iso-
metric counterpart in (M−{p},gab) (see Figure 70); so (M,gab) is not weakly
observationally indistinguishable from (M − {p},gab).

Exercise 30 Find a spacetime that is weakly observationally indistinguishable
from a different (non-isometric) spacetime that is only weakly observationally
indistinguishable from itself.
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Figure 70 The timelike past of q fails have have an isometric counterpart in
the spacetime with the extra missing point.

If (M,gab) is the t < 0 portion of Misner spacetime and (M′,g′ab) is Misner
spacetime, it is immediate that the former is weakly observationally indistin-
guishable from the latter. But I−(p) = M′ for any point p ∈ M′ in the t > 0
portion of Misner spacetime (M′,g′ab). It follows that because Misner space-
time is inextendible, it can only be weakly observationally indistinguishable
from itself.

Exercise 31 Find a causally bizarre spacetime that is weakly observationally
indistinguishable from a spacetime that is not causally bizarre.

Consider the spacetime (M,gab)whereM = S
1×S1 and gab = 2 cosφ∇(aφ∇b)t+

sin2 φ(∇at∇bt − ∇aφ∇bφ) and 0 ≤ t, φ ≤ 2π. The light cones are oriented
so that the closed causal curves at φ = π/2 and φ = 3π/2 are timelike. But
the closed causal curves at φ = 0 and φ = π are null and the light cones
tip in different directions along these closed null curves (recall Figure 60).
Remove all points (t, φ) for which 0 ≤ φ ≤ π and let the resulting spacetime be
(M′,g′ab). We find that any point p ∈ M′ is such that I−(p) = M′; so (M′,g′ab)
is causally bizarre (see Figure 71). Now construct a spacetime (M′′,g′′ab) that
is not causally bizarre by unrolling (M,gab) along the φ direction (cf. Mala-
ment, 1977a, p. 78). One can verify that (M′,g′ab) is weakly observationally
indistinguishable from (M′′,g′′ab).

Exercise 32 Find a collection of spacetimes {(Mλ,gλ)} for λ ∈ (0,∞) such
that (Mλ,gλ) is weakly observationally indistinguishable from (Mλ′ ,gλ′) if
and only if λ ≤ λ′.

https://doi.org/10.1017/9781108876070


Global Spacetime Structure 73

Figure 71 The spacetime is causally bizarre since the timelike past of any
point p is the entire manifold.

Figure 72 Because of the missing point, the spacetime is both
extendible and causal.

For each λ ∈ (0,∞), let (Mλ,gλ) be the 0 < t < λ portion of Minkowski
spacetime in standard (t, x) coordinates. One can verify that (Mλ,gλ) is weakly
observationally indistinguishable from (Mλ′ ,gλ′) if and only if λ ≤ λ′.

Exercise 33 Find an extendible but P-inextendible spacetime where P is
the collection of all causal spacetimes.

Consider the spacetime (M,gab) where M = R × S1 and gab = 2∇(at∇b)φ −
sinh2 t∇aφ∇bφ with 0 ≤ φ ≤ 2π. The light cones tip over as they move from
the distant past to form a single closed null curve at t = 0 at which point they
tip back as they move into the distant future (see Malament, 2012, p. 135).
Now remove a point p = (0,0) from the closed null curve to produce an
extendible spacetime that satisfies causality (see Figure 72). But this spacetime
has only one extension: the causality violating (M,gab). So (M − {p},gab) is
P-inextendible where P ⊂ U is the collection of causal spacetimes.
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Exercise 34 Let P be the collection of all spacetimes that have extendible
extensions. Find a spacetime that renders (∗) false for P .

Let P be the collection of all spacetimes that have extendible extensions.
For any distinct points p,q ∈ M in Minkowski spacetime (M,gab), consider
the spacetime (M − {p,q},gab). It has an extendible extension – the space-
time (M − {p},gab) for example. So (M − {p,q},gab) is a P-spacetime. But
every extension of (M − {p,q},gab) is either Minkowski spacetime (which
is inextendible) or Minkowski spacetime with one point removed (which can
only be extended to the inextendible Minkowski spacetime). So the extendible
(M − {p,q},gab) is P-inextendible.

Exercise 35 Let P be the collection U − {(M,gab)} where (M,gab) is
Minkowski spacetime. Is (∗∗) true or false for P?

We find (∗∗) is true for the collection P = U − {(M,gab)} where (M,gab)
is Minkowski spacetime. Consider any (M′,g′ab) ∈ P that is P-extendible.
Since (M′,g′ab) is P-extendible, it is extendible. Let (M′′,g′′ab) ∈ U be
any inextendible extension of (M′,g′ab). If (M

′′,g′′ab) ∈ P , then it must be
P-inextendible since it is inextendible. So in this case, (M′,g′ab) has a P-
inextendible extension. If (M′′,g′′ab) ∉ P , then it is isometric to Minkowski
spacetime (M,gab). So there is a proper isometric embedding φ ∶ M′ → M
taking the P-extendible (M′,g′ab) into (M,gab). Let p ∈ M be a point not in
φ[M′] ⊂ M and consider (M − {p},gab). This spacetime is not Minkowski
spacetime (so it is in P) but has Minkowski spacetime as its only exten-
sion (so it is P-inextendible). By construction (M − {p},gab) either extends
(M′,g′ab) or is isometric to (M′,g′ab), but the latter possibility can be ruled out
since (M− {p},gab) is P-inextendible and (M′g′ab) is not. So in this case too,
(M′,g′ab) has a P-inextendible extension.

Exercise 36 Let P ⊂ U be the collection of geodesically incomplete space-
times. For each P-extendible spacetime, find a P-inextendible extension.

Let P ⊂ U be the collection of geodesically incomplete spacetimes and let
(M,gab) be anyP-extendible spacetime. Let (M′,g′ab) be anyP-extension of
(M,gab). If (M

′,g′ab) is inextendible, then (M
′,g′ab) is aP-inextendible exten-

sion of (M,gab). If (M
′,g′ab) is extendible, let (M

′′,g′′ab) be any inextendible
extension to it. If (M′′,g′′ab) is geodesically incomplete, then (M′′,g′′ab) is a P-
inextendible extension of (M,gab). If (M

′′,g′′ab) is geodesically complete, then
consider the spacetime (M′′ − {p},g′′ab) for any point p ∈ M′′ − M′. We find
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Figure 73 The missing point in the first link of the chain spacetime does not
spoil the underdetermination result.

that (M′′ −{p},g′′ab) is geodesically incomplete (since it is extendible) and P-
inextendible (since its only extension is the geodesically complete (M′′,g′′ab)).
So (M′′ − {p},g′′ab) is a P-inextendible extension of (M,gab).

Exercise 37 For any (M,gab) ∈ U that is not causally bizarre, find a (V −U )-
spacetime (M′,gab) such that (i) (M,gab) and (M

′,g′ab) are locally isometric
but not isometric and (ii) (M,gab) is weakly observationally indistinguishable
from (M′,g′ab).

Consider any non-causally bizarre spacetime (M,gab) ∈ U . Construct a corre-
sponding chain spacetime (M′,g′ab) ∈ U where (i) (M,gab) and (M

′,g′ab) are
locally isometric but not isometric and (ii) (M,gab) is weakly observationally
indistinguishable from (M′,g′ab) (recall Figure 40). Find a point q ∈ M′ such
that (M′ − {q},g′ab) does not spoil the underdetermination result in the sense
that (i) (M,gab) and (M

′ −{q},g′ab) are locally isometric but not isometric and
(ii) (M,gab) is weakly observationally indistinguishable from (M

′ − {q},g′ab)
(see Figure 73). Now consider two copies (M′1,g′1) and (M

′
2,g′2) of the original

chain spacetime (M′,g′ab) and let φ ∶M
′
1 →M′2 be the identity map between the

two copies. Let (M′′,g′′ab) be the result of identifying the point p in (M′1,g′1)
with the point φ(p) in (M′2,g′2) for all p ≠ q. This non-Hausdorff V -spacetime
is just (M′,g′ab) with a doubled point q. One can verify that (i) (M,gab) and
(M′′,g′′ab) are locally isometric but not isometric and (ii) (M,gab) is weakly
observationally indistinguishable from (M′′,g′′ab).
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Exercise 38 Find a collection P ⊂ V that renders (∗∗) true and contains W

as a proper subcollection.

Let (M,gab) be the branching Minkowski spacetime that is not in the col-
lection W due to its bifurcating curves. Let P ⊂ V be the collection W ∪
{(M,gab)}. Let (M

′,g′ab) be any P-extendible spacetime. Since (M,gab) is
P-inextendible, we know (M′,g′ab) must be in the collection W . So (M′,g′ab)
must have some W -inextendible extension – call it (M′′,g′′ab). The spacetime
(M′′,g′′ab) will be P-inextendible unless the branching Minkowski spacetime
(M,gab) extends it. But in that case, (M,gab) is a P-inextendible extension
of (M′,g′ab). Either way, (M

′,g′ab) has a P-inextendible extension that shows
(∗∗) true for P .

Exercise 39 Find a chronological, flat, inextendible extension of the t < 0
portion of Misner spacetime.

For each n ∈ Z, let (Mn,gn) be a copy ofMisner spacetime in (t, φ) coordinates.
From each (Mn,gn) remove the slit Sn = {(t,0) ∶ t ≥ 0}. Excluding boundary
points, identify the right edge of the slit Sn in (Mn,gn) with the left edge of the
slit Sn+1 in (Mn+1,gn+1) for all n ∈ Z (see Figure 74). One can verify that the
resulting spacetime is a flat, U -inextendible extension of the t < 0 portion of
Misner spacetime. It is also chronological (Manchak, 2019).

Exercise 40 Find a two-dimensional (E ,H )-machine.

Let (M,gab) be Misner spacetime in (t, φ) coordinates. Remove the point
p = (0,0) from M and then construct the conformally related inextendible

Figure 74 The left edge of the slit Sn is identified with the right edge of the
slit Sn+1 for all n ∈ Z.
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Figure 75 Because of the missing point, the causal past of the point q is not
closed.

spacetime (M − {p},Ω2gab) where Ω ∶ M − {p} → R is such that it goes to
zero as the missing point p is approached along every curve. Now let (M′,g′ab)
be the t < 0 portion of this spacetime that is both globally hyperbolic and
U -past-inextendible. Because (M′,g′ab) is two-dimensional, it is vacuum and
therefore E -past-inextendible. It also has an E -inextendible extension since it
has an inextendible extension and we know that all of its extensions are vacuum
since they are two-dimensional. Let (M′′,g′′ab) be any E -inextendible exten-
sion to (M′,g′ab). Let q ∈ M

′′ − M′ be a point on the boundary of M′ in M′′.
Because the missing point p must be left out of the extension (M′′,g′′ab), we
find that J−(q) cannot be closed (see Figure 75). So the spacetime (M′,g′ab) is
a (E ,H )-machine.
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