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To define a sequence we require:
(i) the first term,
(it} the number of terms,
{iit) the faw (formula) by which the terms can be calculated.
The first term of a sequence is usually denoted by i, and the general 1erm
by u,. Thus, sequence (5.1) is defined by u, = 2 and w, = 2r. Since this is &

finite sequence, the only values of rare 1, 2, 3, 4, 5. We define sequence (5.2)
by u; = 1 and i, = r*. There is now no restriction on 7, so that r = 1,2, 3, .. ..

b ledbl o dlis O (G i b) 035 Jands ul
:r.:.:.;..jl:;

Jal e (V)

s ales sl (Y)

A2l ablin BB Lealas T Jaw g 457 J g0 3) sloue B (¥)

Un b T (gpes oz 30y sbei b Y gans i oS5 Jyh e
Up = YF gUy = ¥ baw g (8.V) Ulis ol ol agd ook Sl
ot ple Ui> O i ol 037 Db Sl s e
L@ Aok .d 9F ¥ ¢ Y o) G)ler gl ol s
s (ml 53 S r o ta Uy =TT g Uy =Y by
EEL YT, LS b (M s g g T gl 25 g
Example I The general term u, of & sequence is of the form u, = ar + b,

where a and b are constants. Given that #y=5eand u; = 11, finda and  and
show that uy = 29.
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5 Sequences and series

g o 3 LGS0

5.1 Sequences
Consider the following sets of numbers

2,4,6, 8,10,
1,4,9,16,25, ...

(5.1
(5.2)

These are examples of sequences of numbers. In ‘any sequence the numbers
appear in a given order and, further, there is usually a définite law relating
each member to other members. Each member is called a term of the
sequence.
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The sequence (5.1) has just five terms and is an example of a finire

sequence.
The sequence (5.2) may be written

13,22, 3 42,88, 5.3

where ... means and 5o on without limit". This sequence has an infinite
number of terms and is called an infinite sequence.
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The symbol L is a form of the Greek capital letter sigma, which corresponds
10§, the first letter of the word *sum’. In words, expression (5.7) reads ‘sigma.
r equals 1 to n, of u,’. The word ‘sigma’ may be replaced by ‘sum’. The
expression indicates that a summation is to be carried out, the terms 10 be
added being the u,, where r is a counter which takes consecutive integral
values from 1 to n. The lower limit of the sum is always written below the T
and the vpper limit sbove. Expression {5.7) is sometimes even further
abbreviated o '

Zu.
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(i =5>+b=235),
(s =11)>(Ba + b =11).

Solving these simultaneous equations, we obtain
(a=3andb=2)D (4, =3r +2).
Substituting r = 9, we obtain uy = 29.
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Example 2 Write down the first five terms of the sequence in which the
general term is given by u, = 2",

=22 =P d =P =84 =2=16u=2"=320
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5.2 Series
When the terms of a sequence are added together, we obtain a series, For
example, sequence (5.1) gives the series

2+4+6+8+10_, (5.4)

which is an example of a finite series.
Sequence (5.2) gives the series

144 +9+16+25+ - (5.5)

This is an example of an infinite series.

From the general finite sequence w, uy, ..., u, we obtain the series
u + uy+ o+ ou,. (5.6)

This series may be written in a2 more concise form, using what is known as the
‘sigma notation’. Instead of sequence (5.6) we write

3. 5.7
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Example 4 Write the following series in sigma notation:
(@1-a+d -2,
1 1 1

®3-5*5" 5%

+1
8

(2) We note that the general term is of the form *a’, with & positive sign
when r is even (we regard r = 0 as even) and a negative sign when r is odd.
The four terms correspond to r = 0, 1, 2, 3. Hence, we have

3

l-a+d=-d=2(-1)d.

r=0
Check that
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is an equivalent expression.
s e LR 5l & oy i sle oY Jle
by —a+a'—a'

toda_ 0

Y OF A Y :
ruﬁ,q{cc...liar‘_}i_:@u,,.sEl.q-Gr.L)l;q:_-_,:L(J|

J(r'.;:fu-‘ A3 St l) i b) e T S Sl £
G s Jler il a e 0T Cude Sl 5 T &5 Gl
:r.:)bd._l_')ftf.ﬁ...ull': o, Y, T,"LJLL.'.‘

r .
y—a+a'—-a"= ) (—\)ra’
r=-=
‘b SR Sy ot Sl 5
f -
v—a+ a'"—a"= )Y ( \)r far-

(b} We first notice that the series may be written
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Example 3 +Write out explicitly the series

@iC et @2

4 1Y _l1 _lz -l 1 __1)4 1 1 1
©® T(=1""lr + 1) =0+ (-IF1 x 2+ (-1P2 x 3 + (-1)'3 x 4
e +(-D% xS
=2-6412-20

4
© In=20+3+4
ral

=2+6+ 24
[Remember that ! denotes nr — 1)(r — 2) ... 2.1]

Note that in (b) and {c) we have 20 and 2., respectively.
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The second numbers of the pairs are 4, 7, 10, 13, again differing by 3.
Proceeding as above, we find these are obtained from (37 + 1) by substituting
the values r = 1, 2, 3, 4.

‘The general term in the series is (3r — 2)(3r + 1) and, hence, the series may
be written

i:l (3r = 2)(3r + 1}.
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5.3 Arithmetic progressions (APs}

The sequente 2,5, 8, 11, .. ., 26 is such that each term may be obtained from
the pre¥icus one by adding a constant, in this case 3. Such a sequence is called
an erithmetic progression, or AP. In general, if the first term of such a pro-
gression is @ and a given term differs from the previous one by d, usually
called the common difference, then the first n terms of the progression are

afa+d), (¢+2d), ... la+(n—-1)d] (5.8)

The common difference d may be positive or negative.
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1- Arithmetic progressions
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The general term is now of the form t-zl;- with a positive sign when r is odd

and a negative sign when r is even, The general term can then be written

1
05
and the series
3 1
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Example 5 Write, in sigma notation, the series

1.4 4 4.7+ 7.10 + 10.13,

Note that the first numbers in the paits are 1, 4, 7, 10. The difference is 3 in
each case and therefore, §incc the difference is constant, this suggests a linear
form such as ar + b,

r=1,(a+b=1)(a+b=1),
r=2(ar+ b= > Qa+b=4)
>{a=3,b==2).
Hence, we obtain 1, 4, 7, 10 by substituting the values r = 1, 2, 3, 4 in
(3r - 2).
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Example 8 The eighth term of an AP is five times the second term and the
first term is 1. Find the common difference 4 and the eleventh term.

Since a = 1 the ¢ighth term is L + 7d and the second term is 1 + 4, The given
relation between thess two terms

2 [(1 +7d) = 51 + d)}
S (4= (d=2).

The eleventh term is | + 104 = 21.
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5.4 Arithmetic serias

When the terms of an AP are added 1ogether, we obtain an arithmetic series.
From the sequence (5.8) we obtain the series

at{a+d)+@+2)+ --- +[a+ (n- 1)) (5.9)
Using the sigma notation, we may write this as
El[a + (r = 1)M].
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Example 6 The seventh term of an AP is 15 and the tenth termis 21. Find g,
the first term of the progression, and d, the common difference. Find also the
nth term.

Since the seventh term is 15, @ + 64 = 15.
Since the tenth term is 21, @ + 9d = 21,
Solving these equations for a and d, we obtain

a=3 d=2
The nth term is .
e+ (n-Nd=3+(n-12=2n+1
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Example 7 The nth term of an AP is 5 = n. Find a, the first term of the
sequence, and d, the common difference.
The first term is obtained by setting n = |

>a=5-1=4,

The second term is § = 2 = 3 and therefore the common difference d is -1.
An altemnative way of procceding is to write u, = 5 — n.
Then

Uppr = 5 —(n + 1)
Clearly,

common difference d-
-+ -(5-n=-1

Upty — Mp
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